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1 Introduction 

 

The polarization state of light is fundamentally linked to the electric and magnetic 

field plane of vibration. When light interacts with matter the polarization state is 

altered, and this change will depend on the physical properties of the material and 

the incident light. Thus, measuring the polarization allows us to infer more 

information that can not be obtained directly from irradiance measurements. The 

complete characterization of the polarization properties of radiation gives important 

information about the radiation source or its interaction with matter, and plays an 

important role in many research areas such as remote sensing, medical diagnosis, 

microscopy, and astronomy [1-8]. For this characterization, Stokes polarimeters are 

used to determine all the polarization properties of light beams, allowing us to 

measure the complete Stokes vector of light from irradiance measurements [9,10]. 

As mentioned in the applications, a partial or full polarization analysis of an extended 

scene is needed in many situations, in these cases image acquisition is necessary, 

and imaging polarimetry is used.  

Polarimeters based on liquid crystal variable retarders (LCVRs) are widely used [11-

16], because of the variable retardance of these devices, allowing manipulation of 

the polarization state of a light beam. This can be achieved by applying a low voltage, 

with the benefit of a fast response time and eliminating the errors caused by moving 

parts. However, due to the nature of the liquid crystals (LC), a well-known problem 

in these types of devices is that they have spatial variations in the induced 

retardance. Another problem is the fast axis spatial variations and dependance on 

the applied voltage. As in all instruments, in addition to systematic errors we also 

have noise in the irradiance measurements. An optimization is normally used to 

minimize the noise amplification from the irradiance measurements to the 

polarimetric information [17-19], but the instrumental errors due to nonideal elements 
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or alignment errors, are not considered in the optimization process. If these errors 

are not considered, they will lead to polarimetric measurements different from the 

ideal. Also, a calibration procedure is frequently used to estimate the real values of 

the component parameters of a polarimeter. However, regardless of the calibration, 

even if we can accurately estimate the parameters of the polarimeter, the errors can 

lead to a poorly-optimized instrument, and to a larger than expected noise 

amplification in the final measurements.  

Considering these facts, in this thesis we analyze the effect of the principal errors on 

Stokes imaging polarimeters based on LCVRs, in order to improve their performance 

and accuracy. First, we present a description of the capabilities, properties and main 

problems of LC, which are the main elements of our polarimeter. The real effect and 

benefits of using an optimization of a Stokes polarimeter is showed. Then, the 

performance of a calibration method that compensates instrumental errors is 

verified. For the implementation of an imaging polarimeter, an important factor is that 

the complete aperture of the LC cell is used. Thus, a characterization method of the 

induced retardance as a function of the applied voltage, over the full aperture of 

LCVRs, is proposed. Then, an imaging polarimeter is implemented, to see the real 

effect of these variations in the polarimetric images. After the experimental results, 

a numerical analysis of a polarimeter based on two LCVRs is simulated adding errors 

in the induced retardance and fast-axis orientation, to analyze the effect of these 

errors in the measurements and in the optimization of imaging polarimeters. 

 

1.1 Structure 

In chapter 2 we present a brief description of light and the complete theory used to 

describe the polarization state of a light beam and the polarizing properties of 

materials, samples, or polarization components, with the Stokes-Mueller formalism. 

Then the principles of polarimetry and the main equations are described, as well as 

the metrics used for the optimization of polarimeters. In chapter 3 we describe the 
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operation and properties of LCVRs, which are used to manipulate the polarization 

state of light beams, in the polarimeter.  

In chapter 4 we present the design and results of an optimized and non-optimized 

Stokes polarimeter based on two LCVRs. The polarimeter only uses a small part of 

the LC cell, thus the errors will be smaller, these results are a first approximation to 

the imaging system. At the end of this chapter a calibration method for Stokes 

polarimeters is presented and verified using a set of measurements. The calibration 

method and the obtained results were published as a scientific contribution of this 

thesis [20].  

In chapter 5 we present the characterization of the LCVRs, first measuring the fast-

axis orientation as a function of the applied voltage. For the induced retardance 

characterization, an experimental method to measure the retardance as a function 

of the applied voltage over the full aperture of a LCVR is presented. The method was 

used to characterize a pair of variable retarders. This characterization method is 

another published contribution of this thesis [21]. At the end of this chapter we 

implement and test a Stokes imaging polarimeter, to see the real effect of these 

variations. The results show that the nature of the liquid crystals, does not allow us 

to have as good a system as predicted from the theoretical values. These results 

were published as a proceedings paper [22].  

In chapter 6 we present the numerical simulations of a set of optimized polarimeters, 

with four measurements, including errors in the induced retardance and fast axis 

orientation. The analysis is focused on the impact of experimental errors on the 

optimization. The results will help with the design of Stokes polarimeters based on 

LCVRs, with lower sensitivity to experimental errors, to help reduce the total error in 

the final measured Stokes parameters [23]. Chapter 7 summarizes the main 

conclusions of the work. 
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2 Polarimetry 

 

Light was described by James Clark Maxwell as an electromagnetic disturbance 

propagated in the form of waves according to electromagnetic laws. The expressions 

that describe the behavior of electric and magnetic fields are known as Maxwell’s 

equations [24]. The differential versions of these equations are: 

∇ሬሬ⃗ ∙ Eሬሬ⃗ =
ఘ

ఢబ
,                                               (2.0.1) 

∇ሬሬ⃗ ∙ Bሬሬ⃗ = 0,                                                (2.0.2) 

∇ሬሬ⃗ 𝑥Eሬሬ⃗ = −
డ୆ሬሬ⃗

డ௧
,                                            (2.0.3) 

∇ሬሬ⃗ 𝑥Bሬሬ⃗ = 𝜇଴J⃗ + 𝜇଴𝜖଴
డ୉ሬሬ⃗

డ௧
,                                      (2.0.4) 

where Eሬሬ⃗  and Bሬሬ⃗  represent the electric and magnetic fields, respectively, J⃗ represents 

the current density, 𝜇଴ and 𝜖଴   represent the permittivity and permeability of free 

space and 𝜌 is the electric charge density. Considering equations (2.0.3) and (2.0.4), 

a time-varying electric field, produced by an accelerated charge, induces a time-

dependent magnetic field. This time varying magnetic field will generate an electric 

field, the process will continue in an endless cycle, moving out from the source as a 

disturbance through space. This is the electromagnetic phenomenon described by 

Maxwell that is known as electromagnetic radiation. In free space Maxwell’s 

equations can be manipulated to obtain [24], 

∇ଶEሬሬ⃗ = 𝜇଴𝜖଴
డమ୉ሬሬ⃗

డ௧మ
,                                          (2.0.5) 

∇ଶBሬሬ⃗ = 𝜇଴𝜖଴
డమ୆ሬሬ⃗

డ௧మ
.                                          (2.0.6) 

As we can see, these expressions remind us of the differential wave equation with a 

wave speed of  
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𝑐 =
ଵ

ඥఢబఓబ
≈ 3𝑥10଼ 𝑚/𝑠.                                (2.0.7) 

This is the speed of any electromagnetic wave, in free space. We have seen that 

light is propagated as a wave with a speed that depends only on the medium, but 

we have not considered if it is a transverse or longitudinal wave. If we consider a 

plane wave propagating in the z direction, the electric field is constant in the planes 

perpendicular to the z direction [24]. This means it is a function only of z and time, 

therefore, in free space, equation (2.0.1) can be reduced to   

డா೥

డ௭
= 0.                                              (2.0.8) 

This expression has two possibilities, the first one is that 𝐸௭ is constant for any value 

of z, but this does not correspond to a traveling wave. The second case is that 𝐸௭ =

0, this corresponds to a wave without an electric field component in the propagation 

direction, which corresponds to a transverse wave.  

Considering the fact that light can be represented as a transverse electromagnetic 

wave, in order to completely describe the wave, we have to describe the amplitude, 

frequency and vibration direction of the electric field. The behavior of this vibration 

direction is referred to as the polarization state of the wave. Then, when we talk 

about polarimetry, we are referring to everything related to the measurement and 

description of the polarization of light.  

In this thesis to describe mathematically the polarization state of light beams and the 

polarization properties of optical elements we use Stokes vectors and Mueller 

matrices. In the rest of this chapter, we present the description of the Stokes-Mueller 

formalism. Then the principal relations of polarimetry, in particular the polarimetric 

equation and the instrument matrix, are described. Finally, two figures of merit used 

for the optimization of polarimeters are presented.  
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2.1 Stokes-Mueller formalism 

2.1.1 Stokes parameters 

The transverse components of the electric field of a beam of light propagating in the 

z direction, can be represented by two orthogonal wave equations in the x and y 

directions,  

𝑬𝒙(𝑧, 𝑡) = 𝐸଴௫𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑧 + 𝛿௫),                               (2.1.1) 

𝑬𝒚(𝑧, 𝑡) = 𝐸଴௬𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑧 + 𝛿௬),                               (2.1.2) 

where 𝛿௫ and 𝛿௬ are the phases, 𝐸଴௫ and 𝐸଴௬ are the amplitudes of the components 

in the x and y directions, respectively. The parameter 𝜔 is the angular frequency of 

the light wave, and 𝑘 is the wave number, 𝑘 = 2𝜋 𝜆⁄ , with 𝜆 the wavelength of the 

light. Following the procedure presented by Goldstein [9], we can obtain the 

equation: 

ாೣ
మ

ாబೣ
మ +

ா೤
మ

ாబ೤
మ − 2

ாೣ

ாబೣ

ா೤

ாబ೤
 cos𝛿 = sinଶ 𝛿.                              (2.1.3) 

Equation (2.1.3) describes the polarization ellipse, which shows the complete 

behavior described by the electric field. In Fig. 2.1.1, we show the plot of the 

polarization ellipse. 

 

Fig. 2.1.1 Representation of the polarization ellipse. 
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The azimuth angle of the polarization ellipse, 𝜒 (0°<𝜒<180°), is related to the 

parameters 𝐸଴௫ , 𝐸଴௬ and 𝛿 as:  

tan 2𝜒 =  
ଶாబೣாబ೤

ாబೣ
మ ିாబ೤

మ cos𝛿.                                     (2.1.4) 

The ellipticity, 𝜖 (-45°<𝜖<45°), is the ratio of the semi-major axis to the semi-minor 

axis of the polarization ellipse and is related to the parameters 𝐸଴௫ , 𝐸଴௬ , and 𝛿 as: 

sin 2𝜖 =  
ଶாబೣாబ೤

ாబೣ
మ ାாబ೤

మ sin𝛿.                                      (2.1.5) 

We can define the Stokes parameters, for any polarization of the beam of light, in 

terms of elements of the polarization ellipse as follows [9]:  

𝑆଴ = 𝐸଴௫
ଶ + 𝐸଴௬

ଶ , 𝑆ଵ = 𝐸଴௫
ଶ − 𝐸଴௬

ଶ , 𝑆ଶ = 2𝐸଴௫𝐸௢௬ cos 𝛿  , 𝑆ଷ = 2𝐸଴௫𝐸௢௬ sin 𝛿.   (2.1.6) 

It is important to comment that the light beam can be either completely or partially 

polarized, and it can be shown [9] that: 

𝑆଴
ଶ ≥ 𝑆ଵ

ଶ + 𝑆ଶ
ଶ + 𝑆ଷ

ଶ.                                           (2.1.7) 

The equality is satisfied when the light beam is completely polarized, and the 

inequality when the light is partially polarized. In the case of unpolarized light 𝑆ଵ =

𝑆ଶ = 𝑆ଷ = 0.  

The terms of equation (2.1.6) can be arranged in a column vector that is called the 

Stokes vector, expressed as [9]  

𝑺 = ൮

𝑆଴

𝑆ଵ

𝑆ଶ

𝑆ଷ 

൲ =

⎝

⎜
⎛

𝐸଴௫
ଶ + 𝐸଴௬

ଶ

𝐸଴௫
ଶ − 𝐸଴௬

ଶ

2𝐸଴௫𝐸௢௬ cos 𝛿

2𝐸଴௫𝐸௢௬ sin 𝛿 ⎠

⎟
⎞

.                                  (2.1.8) 

The Stokes vector as a function of the ellipticity and azimuth angle, with a total 

irradiance 𝐼଴, can be expressed as  
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𝑺 = ൮

𝑆଴

𝑆ଵ

𝑆ଶ

𝑆ଷ 

൲ = 𝐼଴ ൮

1
cos(2𝜖) cos(2𝜒)

cos(2𝜖) sin(2𝜒)

sin(2𝜖) 

൲.                                  (2.1.9) 

Furthermore, the four parameters are real values and are related to irradiance 

measurements. The first parameter, 𝑆଴, is the total irradiance of the light beam. While 

the other 3 parameters represent the amount of a polarization component contained 

in the light beam. We can rewrite the Stokes parameters in terms of the irradiance 

polarization components as [9], 

𝑺 = ൮

𝑆଴

𝑆ଵ

𝑆ଶ

𝑆ଷ 

൲ = ൮

𝐼଴ = 𝐼௛ + 𝐼௩ = 𝐼ାସ + 𝐼 ସ = 𝐼௖௥ + 𝐼௖௟  
𝐼௛ − 𝐼௩

𝐼ାସହ − 𝐼ିସହ

𝐼௖௥ − 𝐼௖௟ 

൲,                  (2.1.10) 

where 𝐼 is the irradiance measurement of a given polarization component, the 

subscripts ℎ, 𝑣, +45, −45, represent the linear horizontal, vertical, at +45°, and at -

45°, polarization component, respectively. The other two subscripts, 𝑐𝑟 and 𝑐𝑙, 

represent the circular right and left polarization components. 

When describing the polarization state of a light beam, the Degree Of Polarization 

(DOP), the ellipticity, and the azimuth angle of the polarization ellipse, are important 

quantities that can be directly calculated using the Stokes parameters. In other 

words, we can calculate them using irradiance measurements.  The DOP is defined 

as [9], 

𝐷𝑂𝑃 =
௉೛೚೗

௉೟೚೟ೌ೗
=

ටௌభ
మାௌమ

మାௌయ
మ

ௌబ
, 0 ≤ 𝐷𝑂𝑃 ≤ 1.                          (2.1.11) 

The value 0 is obtained when the light beam is unpolarized and 1 when the beam is 

completely polarized. The ellipticity and azimuth angle are calculated using the 

relationships:  

𝜖 =
ଵ

ଶ
arcsin ቀ

ௌయ

ௌబ
ቁ ,   𝜒 =

ଵ

ଶ
arctan ቀ

ௌమ

ௌభ
ቁ.                              (2.1.12)  

The Stokes parameters, the ellipticity and the azimuth angle of the polarization 

ellipse were used by Poincaré, to establish a model to represent the polarization 
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state of a light beam in a sphere, as shown in Fig. 2.1.2. Every point P on the sphere 

represents a unique polarization state and the parameters 𝑆ଵ, 𝑆ଶ and 𝑆ଷ are the 

Cartesian coordinates of the point P, on the sphere of radius 𝑆଴. 

 

Fig. 2.1.2 Representation of the Poincaré sphere. 

Then every point in the Poincaré sphere represents a Stokes vector. For example, 

unpolarized light is represented in the center of the sphere, where 𝑆ଵ = 𝑆ଶ = 𝑆ଷ = 0, 

and the Stokes vector is 

𝑺 = ൮

𝑆଴

0
0
0 

൲.                                                (2.1.13) 

If the point is on the surface of the sphere, it represents a fully polarized state. For 

example, for linear polarizations where the ellipticity is 𝜖 = 0, the value of 𝑆ଷ will 

always be 0 and can be represented on the equator of the Poincaré sphere. The 

Stokes vector of linearly polarized light can be described as  

𝑺 = ൮

𝑆଴

𝑆ଵ

𝑆ଶ

𝑆ଷ 

൲ = 𝐼଴ ൮

1
cos(2𝜒)

sin(2𝜒)
0 

൲.                                 (2.1.14) 

Circular polarized light, where the ellipticity is 𝜖 = +45° for circular right (cr) and 𝜖 =

−45°  for circular left (cl), are represented on the north and south poles, respectively, 
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of the Poincaré sphere. Any other value of  𝜖, or latitude in the Poincaré sphere, is 

referred to as elliptical polarization. The Stokes vectors for various polarizations are 

shown in table 2.1.1.  

 

𝜒 = 0° or 𝜒 = 90° 

𝜖 = 0° 

 

𝜒 = ±45° 

𝜖 = 0° 

 

𝜒 = ±22.5° 

𝜖 = 0° 

 

𝜖 = ±45° 

 

𝜒 = 22.5° 

𝜖 = 17.6° 

 

𝐼଴ ൮

1
±1
0
0 

൲ 

 

𝐼଴ ൮

1
0

±1
0 

൲ 

 

𝐼଴ ൮

1

1/√2

±1/√2
0

൲ 

 

𝐼଴ ൮

1
0
0

±1

൲ 

 

𝐼଴ ൮

1
0.577
0.577
0.577

൲ 

Table 2.1.1. Stokes vectors of polarized beams. 

 

2.1.2 Mueller matrices 

We have seen that the polarization properties of a light beam can be described by a 

Stokes vector. If the beam interacts with a polarizing element, after emerging it is 

described by a new Stokes vector. Fig. 2.1.3 shows a representation of an incident 

beam interacting with a polarizing element or system. 

 

Fig. 2.1.3. Light beam through a polarizing element. 
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The new Stokes vector can be expressed as a linear combination of the incident 

Stokes parameters. Particularly we can represent a linear combination as a matrix, 

then 

⎝

⎛

𝑆଴′

𝑆ଵ′

𝑆ଶ′

𝑆ଷ′⎠

⎞ = ቌ

𝑚଴଴ 
𝑚ଵ଴ 
𝑚ଶ଴

𝑚ଷ଴
 

𝑚଴ଵ 
𝑚ଵଵ 
𝑚ଶଵ

𝑚ଷଵ
 

𝑚଴ଶ 
𝑚ଵଶ 
𝑚ଶଶ

𝑚ଷଶ
 

𝑚଴ଷ

𝑚ଵଷ
𝑚ଶଷ

𝑚ଷଷ

ቍ ൮

𝑆଴

𝑆ଵ

𝑆ଶ

𝑆ଷ

൲,                          (2.1.15) 

or 

𝑺′ = 𝑴ഥ 𝑺,                                               (2.1.16) 

where 𝑺 is the Stokes vector of the incident beam, and 𝑺′ is the Stokes vector of the 

emerging beam. The matrix 𝑴ഥ  is a 4 × 4 real matrix, called the Mueller matrix, and 

has the complete information of the polarization properties of any surface, optical 

system or medium. In other words, for an incident light beam with an arbitrary 

polarization state, if we know the Mueller matrix of the medium, we can calculate the 

polarization state of the light beam emerging from the medium.  

The two main polarizing elements used in practice are linear polarizers and 

retarders. A polarizer is an element that unequally changes the amplitudes of the 

orthogonal components of the incident beam. An ideal linear polarizer has a fixed 

transmission axis, where the parallel component of the beam will be completely 

transmitted, and the amplitude in the orthogonal direction will be completely 

absorbed. The Mueller matrix of an ideal linear polarizer with its transmission axis at 

an angle θ is, 

𝑴ഥ ௉(𝜃) =
ଵ

ଶ
൮

1 cos(2𝜃) sin(2𝜃) 0

cos(2𝜃) cos²(2𝜃) sin(2𝜃)cos(2𝜃) 0

sin(2𝜃) sin(2𝜃)cos(2𝜃) sin²(2𝜃) 0
0 0 0 0

൲.       (2.1.17) 

An important property of linear polarizers is that the emerging beam will always be 

linearly polarized, independently of the incident polarization. This can be seen in the 

following calculation 
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𝑺ᇱ =
ଵ

ଶ
൮

1 cos(2𝜃) sin(2𝜃) 0

cos(2𝜃) cosଶ(2𝜃) sin(2𝜃) cos(2𝜃) 0

sin(2𝜃) sin(2𝜃) cos(2𝜃) sinଶ(2𝜃) 0
0 0 0 0

൲ ൮

𝑆଴

𝑆ଵ

𝑆ଶ

𝑆ଷ 

൲,  (2.1.18a) 

𝑺ᇱ =
ଵ

ଶ
(𝑆଴ + cos(2𝜃) 𝑆ଵ + sin(2𝜃) 𝑆ଶ) ൮

1
cos(2𝜃)

sin(2𝜃)
0 

൲.             (2.1.18b) 

The emerging Stokes vector has the form of equation (2.1.14), which represents 

linearly polarized light with azimuth angle aligned with the transmission axis of the 

polarizer, 𝜃. 

A retarder is an element that introduces a phase shift of 𝛿 between orthogonal 

components of the incident light, caused by the birefringence of the material. The 

birefringence is the characteristic of some materials to possess two different 

refractive indices. Because of the difference in the refractive index, the two 

components travel at different speeds inside the element, producing the phase shift. 

The birefringence is defined as, 

∆𝑛 = |𝑛௘ − 𝑛௢|,                                            (2.1.19) 

where 𝑛௘  is the extraordinary refractive index, and 𝑛௢ is the ordinary refraction index. 

The phase shift produced by the birefringence is also called retardance and is 

defined as, 

𝛿 =
ଶగ

ఒ
𝑑∆𝑛,                                          (2.1.20) 

where 𝜆 is the wavelength of the incident beam and 𝑑 is the width of the retarder. 

The principal axes of a retarder are referred to as the fast and the slow axes, related 

to the ordinary and extraordinary refractive indices. The Mueller matrix of a retarder 

with fast axis at θ and a retardance 𝛿 is  

𝑴ഥ ோ(δ, 𝜃) =

⎝

⎜
⎛

1 0 0 0
0 cosଶ(2𝜃) + cos(𝛿)sinଶ(2𝜃) ൫1 − cos(𝛿)൯sin(2𝜃)cos(2𝜃) −sin(𝛿)sin(2𝜃)

0 ൫1 − cos(𝛿)൯sin(2𝜃)cos(2𝜃) sinଶ(2𝜃) + cos(𝛿)cosଶ(2𝜃) sin(𝛿)cos(2𝜃)

0 sin(𝛿)sin(2𝜃) −sin(𝛿)cos(2𝜃) cos(𝛿) ⎠

⎟
⎞

. 

(2.1.21) 
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In retarders if the incident light is unpolarized then the emerging beam will still be 

unpolarized, so they have an effect only when using polarized light. The Mueller 

matrices of a pair of retarders with a variable phase shift at two fixed orientations are 

shown in table 2.1.2  

𝜃 = 0° 𝜃 = 45° 

 

൮

1 0 0 0
0 1 0 0
0 0 cos(𝛿) sin(𝛿)

0 0 −sin(𝛿) cos(𝛿)

൲ ൮

𝑆଴

𝑆ଵ

𝑆ଶ

𝑆ଷ 

൲

= ൮

𝑆଴

𝑆ଵ

𝑆ଶcos(𝛿) + 𝑆ଷsin(𝛿)

−𝑆ଶsin(𝛿) + 𝑆ଷcos(𝛿)

൲ 

 

൮

1 0 0 0
0 cos(𝛿) 0 −sin(𝛿)
0 0 1 0
0 sin(𝛿) 0 cos(𝛿)

൲ ൮

𝑆଴

𝑆ଵ

𝑆ଶ

𝑆ଷ 

൲

= ൮

𝑆଴

𝑆ଵcos(𝛿) − 𝑆ଷsin(𝛿)
𝑆ଶ

𝑆ଵsin(𝛿) + 𝑆ଷcos(𝛿)

൲ 

Table 2.1.2. Mueller matrices and the emerging Stokes vectors, from retarders at a predefined 

orientation. 

The Mueller matrices of a pair of retarders with a fixed phase shift are shown in table 

2.1.3.  

𝛿 = 90°  

Quarter-wave plate 

𝛿 = 180° 

Half-wave plate 

 

൮

1 0 0 0
0 cosଶ(2𝜃) sin(2𝜃)cos(2𝜃) −sin(2𝜃)

0 sin(2𝜃)cos(2𝜃) sinଶ(2𝜃) cos(2𝜃)

0 sin(2𝜃) −cos(2𝜃) 0

൲ ൮

𝑆଴

𝑆ଵ

𝑆ଶ

𝑆ଷ 

൲

=

⎝

⎛

𝑆଴

cosଶ(2𝜃)𝑆ଵ + sin(2𝜃)cos(2𝜃)Sଶ − sin(2𝜃)𝑆ଷ

sin(2𝜃)cos(2𝜃)Sଵ + sinଶ(2𝜃)𝑆ଶ + cos(2𝜃)𝑆ଷ

sin(2𝜃)𝑆ଵ − cos(2𝜃)𝑆ଶ ⎠

⎞ 

 

൮

1 0 0 0
0 cos(4𝜃) sin(4𝜃) 0

0 sin(4𝜃) −cos(4𝜃) 0
0 0 0 −1

൲ ൮

𝑆଴

𝑆ଵ

𝑆ଶ

𝑆ଷ 

൲

= ൮

𝑆଴

cos(4𝜃)𝑆ଵ − sin(4𝜃)𝑆ଶ

sin(4𝜃)𝑆ଵ − cos(4𝜃)𝑆ଶ

0 − 𝑆ଷ

൲ 

Table 2.1.3. Mueller matrices Mueller matrices and the emerging Stokes vectors, from retarders 

with predefined retardance. 

It is important to mention that the Mueller matrix of an optical system, based on 

various polarizing elements, can be described by the right to left product of the 

Mueller matrices individually, 
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𝑴ഥ 𝒔𝒚𝒔 =  𝑴ഥ 𝒊 … 𝑴ഥ 𝟐𝑴ഥ 𝟏,                                  (2.1.22) 

where the subscript 𝑖 represents the i-th element of the complete optical system. 

 

2.2 Stokes polarimetry 

In equation (2.1.10) we define the Stokes parameters in an irradiance formulation, 

so we can measure them. A Stokes polarimeter allows us to determine some or all 

the four Stokes parameters, that is the partial or the complete Stokes vector of a light 

beam. For a complete Stokes polarimeter the six ideal measurements shown in 

equation (2.1.10) are not the only way to measure the Stokes vector, we can use 

different sets of measurements to reconstruct the Stokes parameters. In this section 

we present the formulation of the procedure to measure the Stokes parameters, and 

two metrics commonly used in the optimization process of polarimeters. 

 

2.2.1 Polarimetric measurement equation 

The light beam to be analyzed passes through a Polarization State Analyzer (PSA). 

We refer to a PSA as all the polarization elements used to measure the polarization 

state of an incident beam. The Stokes parameters are determined by a set of 

irradiance measurements for different configurations of the PSA, each configuration 

measures the irradiance of a different polarization component of the incident beam. 

Above we provide the relation between an input and output Stokes vector, which is 

written in terms of the Mueller matrix of the optical system: 

⎝

⎛

𝑆଴′

𝑆ଵ′

𝑆ଶ′

𝑆ଷ′⎠

⎞ = ቌ

𝑚଴଴ 
𝑚ଵ଴ 
𝑚ଶ଴

𝑚ଷ଴
 

𝑚଴ଵ 
𝑚ଵଵ 
𝑚ଶଵ

𝑚ଷଵ
 

𝑚଴ଶ 
𝑚ଵଶ 
𝑚ଶଶ

𝑚ଷଶ
 

𝑚଴ଷ

𝑚ଵଷ
𝑚ଶଷ

𝑚ଷଷ

ቍ

⎝

⎜
⎛

𝑆0
𝑖𝑛𝑐

𝑆1
𝑖𝑛𝑐

𝑆2
𝑖𝑛𝑐

𝑆3
𝑖𝑛𝑐

⎠

⎟
⎞

.                           (2.1.15) 

In this case we measure the irradiance of the output beam, which is given by the 

component 𝑆଴′ of the output Stokes vector, and: 
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𝐼 = 𝑆଴
ᇱ = (𝑚଴଴ 𝑚଴ଵ 𝑚଴ଶ 𝑚଴ଷ)

⎝

⎜
⎛

𝑆଴
௜௡௖

𝑆ଵ
௜௡௖

𝑆ଶ
௜௡௖

𝑆ଷ
௜௡௖

⎠

⎟
⎞

= (𝑚଴଴ 𝑚଴ଵ 𝑚଴ଶ 𝑚଴ଷ)𝑺௜௡௖ .     (2.2.1) 

The measured irradiances for the different polarimeter configurations can be 

organized into a vector 𝑰, which is related to the unknown input Stokes vector 𝑺௜௡ by 

the polarimetric measurement equation [10] 

𝑰 = 𝑨ഥ𝑺௜௡௖,                                            (2.2.2) 

where 𝑨ഥ is a [𝑁𝑥4] real, non-singular matrix, N represents the number of 

measurements, or configurations of the polarimeter. This matrix is called the 

instrument matrix and can be defined as 

𝑨ഥ =

⎝

⎜
⎛

൫𝑴ഥ ௉ௌ஺(ଵ)൯
𝟏

൫𝑴ഥ ௉ௌ஺(ଶ)൯
𝟏

⋮
൫𝑴ഥ ௉ௌ஺(ே)൯

𝟏⎠

⎟
⎞

,                                       (2.2.3) 

where 𝑴ഥ ௉ௌ஺(ே) is the Mueller matrix of the PSA in the N-th configuration of the 

polarimeter, and the subscript 1 represents the first row of each Mueller matrix.  The 

irradiance measurements are the linear combinations of the incident Stokes 

parameters, 

൮

𝐼ଵ

𝐼ଶ

⋮
𝐼ே

൲ = ൮

𝑎ଵ଴ 
𝑎ଶ଴ 

⋮
𝑎ே଴

 

𝑎ଵଵ 
𝑎ଶଵ 

⋮
𝑎ேଵ

 

𝑎ଵଶ 
𝑎ଶଶ 

⋮
𝑎ேଶ

 

𝑎ଵଷ

𝑎ଶଷ

⋮
𝑎ேଷ

൲

⎝

⎜
⎛

𝑆଴
௜௡௖

𝑆ଵ
௜௡௖

𝑆ଶ
௜௡௖

𝑆ଷ
௜௡௖

⎠

⎟
⎞

.                           (2.2.4) 

It is important to mention that the instrument matrix does not represent a Mueller 

matrix, in this matrix each row is the first row of the Mueller matrix for different 

configurations of the optical systems. Each measurement can be expressed as, 

𝐼ே = 𝑎ே଴𝑆଴
௜௡௖ + 𝑎ேଵ𝑆ଵ

௜௡௖ + 𝑎ேଶ𝑆ଶ
௜௡௖ + 𝑎ேଷ𝑆ଷ

௜௡௖.                  (2.2.5) 
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Each measurement represents the irradiance of a given polarization state analyzed, 

which can also be represented as a Stokes vector. To determine the complete 

unknown input Stokes vector, an inversion process of the instrument matrix is 

necessary. A condition of the instrument matrix is that should be invertible, and then 

we have two cases. First, when 𝑁 = 4, where 𝑨ഥି𝟏 exists and is unique, the data 

reduction equation is then 

𝑺௜௡ = 𝑨ഥି𝟏𝑰.                                              (2.2.6) 

The second case is when 𝑁 > 4. 𝑨ഥ is a rectangular matrix, the system is 

overdetermined and 𝑨ഥି𝟏 is not unique. A solution that minimizes the mean square 

error can be obtained by using the Moore-Penrose pseudoinverse, leading to the 

following equation to obtain the input Stokes vector: 

𝑺௜௡ = (𝑨ഥ𝑻 𝑨ഥ)ି𝟏𝑨ഥ𝑻 𝑰 = 𝑨ഥ𝒑 𝑰,                                 (2.2.7) 

𝑨ഥ𝒑 denotes the Moore-Penrose pseudoinverse of 𝑨ഥ. 

 

2.2.2 Polarimeter optimization 

When measuring the Stokes parameters we normally have noise in the irradiance 

measurements, and different instrument matrices will lead to different transmission 

of the noise to the measured Stokes parameters. To maximize the signal to noise 

ratio, the optimization of the instrument matrix, 𝑨ഥ, is often related to its singular value 

decomposition [18,25]. The singular value decomposition permits us to factorize the 

instrument matrix in the form [26], 

𝑨ഥ = 𝑼ഥ𝑫ഥ𝑽ഥ𝑻 = [𝒖𝟏 𝒖𝟐 … 𝒖𝑵]

⎝

⎜
⎛

𝜎ଵ 𝟎 𝟎 𝟎
𝟎 𝜎ଶ 𝟎 𝟎
𝟎 𝟎 𝜎ଷ 𝟎
𝟎 𝟎 𝟎 𝜎ସ

⋮ ⋮ ⋮ ⋮ ⎠

⎟
⎞

[𝒗𝟏 𝒗𝟐 … 𝒗𝟒]𝑻,            (2.2.8) 

where 𝑼ഥ  consists of N orthonormalized eigenvectors of 𝑨ഥ𝑨ഥ𝑻 and the matrix 𝑽ഥ 

consists of the orthonormalized eigenvectors of  𝑨ഥ𝑻𝑨ഥ. 𝜎௝ are the non-zero singular 

values, the number of singular values is related to the rank of the instrument matrix. 
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For a full Stokes polarimeter, the rank of the matrix 𝑨ഥ is 𝑅 = 4, for an incomplete 

polarimeter 𝑅 < 4. Tyo [18] showed that to reduce the effect of noise in the 

measurements on the final solution, the instrument matrix must be optimized, by 

reducing its condition number (CN), which is related to the singular values. The CN 

is defined as the product of the norm of the matrix and the norm of its inverse: 

𝜅(𝑨)തതത = ‖𝑨ഥ‖ฮ𝑨ഥି𝟏ฮ.                                             (2.2.9) 

In terms of the singular values, we have 

‖𝑨ഥ‖ = 𝜎ଵ, ฮ𝑨ഥି𝟏ฮ =
ଵ

ఙೕ
,                                       (2.2.10) 

where 𝜎ଵ is the largest singular value and 𝜎௝ is the smallest nonzero singular value. 

Then we can define the CN as the ratio of the largest to the smallest singular value 

of 𝑨ഥ. Therefore, reducing the condition number is equivalent to equate the range of 

the singular values, maximizing the relative importance of each measurement. With 

the minimum CN we also ensure that we have a matrix as far from singular as 

possible, since if the matrix is singular the condition number is infinite. In the 

presence of noise in the irradiance measurements we can rewrite the polarimetric 

equation (2.2.2) as, 

(𝑰 + 𝛿𝑰) = 𝑨ഥ൫𝑺௜௡ + 𝛿𝑺௜௡൯,                                 (2.2.11) 

where 𝜹𝑰 represents the error in the irradiance measurements and 𝜹𝑺௜௡ the error in 

the Stokes vector measured. Consequently, we can obtain the following equation 

[27], 

ฮ𝜹𝑺ഢ೙തതതതതതฮ

ฮ𝑺ഥ೔೙ฮ
≤ 𝜅(𝑨)തതത ‖ఋ𝑰ത‖

‖𝑰ത‖
.                                             (2.2.12) 

Minimizing the CN of the instrument matrix minimizes the noise in the Stokes vector 

measured. In the literature. It has been shown that the minimum condition number 

for a Stokes polarimeter is √3, independently of the number of measurements made 

with the polarimeter[18]. Another figure of merit often used is the equally weighted 

variance (EWV) which is defined as [25], 
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𝐸𝑊𝑉 = ∑ 1/ோ
௝ୀଵ 𝜎௝

ଶ,                                             (2.2.13) 

where R is the rank of the instrument matrix, and 𝜎௝ are all the singular values. A 

benefit of the EWV is that it weights all the singular values equally. As we can see 

the singular values are in the denominator, then the EWV diverges when the 

instrument matrix is close to singular. To optimize a polarimeter the EWV should be 

minimized. Foreman et. al. [28], showed that the minimum 𝐸𝑊𝑉 = 40/𝑁, showing 

that increasing number of measurements reduces the noise amplification. 

The EWV, unlike the CN, detects the benefits of increasing the number of 

measurements. Due to the use of a ratio of the singular values in the CN, the effect 

of any change to the system which scales the singular values together is cancelled 

out, which is the reason that the number of measurements has no effect on the CN. 

Considering this fact, the EWV is recommended in the case of redundant 

measurements. 

Goudail and Foreman [19], showed that the optimization of polarimeters using the 

EWV or CN led to the same optimal set of measurements. The set of measurements 

in the polarimeter can be represented by N unmatched points in the Poincaré sphere. 

Both figures of merit lead to a maximum volume spherical N design, known as 

Platonic solids. For example, for  𝑁 = 4 we obtain a regular tetrahedron, and for 𝑁 =

6 an octahedron. Then the optimization of polarimeters reduces to maximizing the 

volume of these platonic solids in the Poincaré sphere. 

 

 

 

 

 



19 
 

3 Liquid Crystal Variable Retarders 

 

As mentioned before, a Stokes polarimeter is a device that estimates the four Stokes 

parameters containing all the polarization information. This is achieved by measuring 

the irradiance of at least four adequate polarization components. With a set of 

different irradiance measurements, we can reconstruct the Stokes vector as shown 

in section 2.2.1. To measure different polarization components, the polarimeter 

requires a control in the polarization state of the incident beam. In this thesis we 

decided to use LCVRs to manipulate the polarization state of a light beam. The 

advantage of using these devices is the capability of reorienting the liquid-crystal 

molecules with an external applied voltage. This reorientation changes the induced 

retardance thus the polarization can be modulated, making them very useful to 

analyze the polarization state of light. In this chapter we present the description of 

the nature of liquid crystals, their main properties and their function as variable 

retarders in a polarimeter.  

 

3.1 LCVR operation 

The way that molecules interact with each other determines the phases of matter, 

like solids, liquids, gases, or liquid crystals. In solids, the molecules have fixed 

positions and are held together by very strong intermolecular forces. They have 

definite shape and volume, but they can vibrate. In the case of crystalline solids, the 

molecules that compose the solid have a well-defined arrangement in a definite 

pattern, with internal symmetry. This long-range order means that once the position 

of a molecule and the molecules beside it are known at some point, the positions of 

the other molecules throughout the crystal are also known. Also, the position and 

orientation of molecules are correlated. Uniaxial crystals are anisotropic materials, 

so they have different physical properties in different directions. In liquids, the 

molecules have enough space between them, so they can move around. Although 
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molecules are not fixed in one position, they are also subject to intermolecular 

attraction that maintains the volume constant, but not the shape. Liquids have short 

range order where nearby molecules have an order but at some distance, the 

position and orientation of the molecules are uncorrelated.  

Liquid crystal is a mesophase of matter that has properties between a solid and a 

liquid, materials in this mesophase have a combination of long-range order and 

mobility. In liquid crystals the correlation of position is lost, and molecules can move 

as in liquids, but the orientation correlation is maintained as in a crystal. In this thesis 

we use nematic liquid crystals, these are formed by long molecules, with a large 

dipole moment, that tend to be aligned without any positional order. The prevailing 

orientation of the liquid crystal molecules is called the director. In Fig. 3.1.1, we show 

a representation of three states of matter. From left to right first we represent a 

crystalline solid, where molecules cannot move in x-y-x or change orientation, they 

can only vibrate. Then a nematic liquid crystal where molecules have a preferential 

orientation, but they can move in x-y-z freely. Finally, a liquid where molecules can 

move around and change orientation.  

 

Fig. 3.1.1 Molecules in a solid, a nematic liquid crystal and a liquid. 

The nematic liquid crystals exhibit optical anisotropy or birefringence, meaning that 

they possess two different refractive indices, as a result of the long shape of the 

molecules. When an electromagnetic wave goes through a liquid crystal, the part of 

the electric field that oscillates parallel to the director gets slowed down more than 

the perpendicular part. The parallel component experiences an extraordinary 

refractive index, 𝑛௘ , while the perpendicular component experiences the ordinary 

refractive index, 𝑛௢. This behavior is represented in Fig. 3.1.2, where 𝑬𝒙 and 𝑬𝒚 are 
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the polarization components represented in equations 2.1.1 and 2.1.2. 𝒌 is the 

direction of propagation of light. 

 

 

Fig. 3.1.2 Ordinary and extraordinary refractive index in nematic liquid crystal molecule. 

If light passes through a cell filled with a nematic liquid crystal, the parallel and 

perpendicular components travel at different speeds producing a phase shift 

between components. If the optical axis or director is perpendicular to the light 

propagation, they will have the same effect as a retarder with slow or fast axis along 

the director, and retardance 𝛿. As seen in the previous chapter, this element can be 

described by the Mueller matrix: 

𝑴ഥ ோ(δ, 𝜃) =

⎝

⎜
⎛

1 0 0 0
0 cosଶ(2𝜃) + cos(𝛿)sinଶ(2𝜃) ൫1 − cos(𝛿)൯sin(2𝜃)cos(2𝜃) −sin(𝛿)sin(2𝜃)

0 ൫1 − cos(𝛿)൯sin(2𝜃)cos(2𝜃) sinଶ(2𝜃) + cos(𝛿)cosଶ(2𝜃) sin(𝛿)cos(2𝜃)

0 sin(𝛿)sin(2𝜃) −sin(𝛿)cos(2𝜃) cos(𝛿) ⎠

⎟
⎞

. 

(2.1.21) 

Liquid crystal cells or LCVRs are usually made with a transparent cell with an 

alignment layer, filled with a nematic liquid crystal. The alignment layer is used to 

determine the director of the molecules. To have control of the polarization, LCVRs 

use a conductive layer to apply an electric field that alters the molecule, reorienting 

them and changing the induced retardance, this reorientation is possible due to the 

large dipolar moment of the molecules. When an electric field is applied the 

reorientation produces a change in the molecule symmetry, and the extraordinary 

refractive index changes, therefore, it is possible to manipulate the induced 
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retardance. This effect is represented in Fig. 3.1.3., where the applied voltages are 

represented as 𝑉ଵ = 0𝑉 < 𝑉ଶ < 𝑉ଷ < 𝑉ସ < 𝑉ହ < 𝑉଺ < 𝑉଻. Without any applied voltage 

the retardance is maximum. When a voltage is applied the molecules reorientate 

and the induced retardance is lower. 

Fig. 3.1.3 Liquid crystal molecule reorienting, with an external electric field, top and front view. 

This variable retardance permits a polarimeter to measure different polarization 

components without moving parts, and with a fast response time. A representation 

of the complete cell without any applied voltage is shown in Fig. 3.1.4, with an applied 

voltage is shown in Fig. 3.1.5. 

 

Fig. 3.1.4 Molecules inside a liquid crystal variable retarder, without any applied voltage.  
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  Fig. 3.1.5 Molecules inside a liquid crystal variable retarder, with an applied voltage. 

The LCVRs used in this thesis are model LCC2415-VIS/M by Thorlabs. One of the 

LCVRs used is shown in Fig. 3.1.6 

 

Fig. 3.1.6 Liquid crystal variable retarder by Thorlabs. 

 

3.2 LCVR polarimetry 

A design of a Stokes polarimeter based on two LCVRs is shown in Fig. 3.2.1. The 

light to be analyzed passes through the PSA, a pair of LCVRs and a polarizer, before 

entering the detector.  
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Fig. 3.2.1 Stokes polarimeter based on two LCVRs. 

As mentioned in section 2.1, the Mueller matrix of an optical system, in this case the 

two LCVRs and the polarizer, can be described by the right to left product of the 

Mueller matrices individually, 

𝑴ഥ ௉ௌ஺(ே)(𝜃ଵ, δଵ, 𝜃ଶ, δଶ) = 𝑴ഥ ௉(0°)𝑴ഥ ோଶ൫𝜃ଶ, δଶ
୒൯𝑴ഥ ோଵ(𝜃ଵ, δଵ

୒),              (3.2.1) 

where 𝑴ഥ ோ௝൫𝜃௝ , 𝛿௝൯ is the Mueller matrix of the j-th LCVR, 𝑴ഥ ௉(0°) is the Mueller matrix 

of a horizontal linear polarizer, and 𝑴ഥ ௉ௌ஺(ே) is the Mueller matrix of the polarimeter in 

the N-th configuration of the polarimeter. Then for this polarimeter the instrument 

matrix is defined as 

𝑨ഥ =

⎝

⎜
⎛

ൣ𝑴ഥ ௣௢௟(0°)𝑴ഥ ோଶ(𝜃ଶ, δଶ
ଵ)𝑴ഥ ோଵ(𝜃ଵ, δଵ

ଵ)൧
ଵ

ൣ𝑴ഥ ௣௢௟(0°)𝑴ഥ ோଶ(𝜃ଶ, δଶ
ଶ)𝑴ഥ ோଵ(𝜃ଵ, δଵ

ଶ)൧
ଵ

⋮
ൣ𝑴ഥ ௣௢௟(0°)𝑴ഥ ோଶ൫𝜃ଶ, δଶ

୒൯𝑴ഥ ோଵ(𝜃ଵ, δଵ
୒)൧

ଵ⎠

⎟
⎞

,                           (3.2.2) 

where the subscript 1 in the brackets means the first row of the Mueller matrix of the 

polarimeter in the N-th configuration, which is related to the detected irradiance. The 

detected irradiance is dependent on the linear horizontal component of the light 

emerging from the second LCVR (𝑆ଵ
ᇱᇱ), because of the polarizer placed just before 

the detector. Using the Mueller matrices for a retarder, shown in equation (2.1.20), 

the detected irradiance is directly related to 

𝑆ଵ
ᇱᇱ = [cosଶ(2𝜃ଶ) + cos(𝛿ଶ)sinଶ(2𝜃ଶ)]𝑆ଵ

ᇱ + 

ൣ൫1 − cos(𝛿ଶ)൯sin(2𝜃ଶ)cos(2𝜃ଶ)൧𝑆ଶ
ᇱ − [sin(𝛿ଶ)sin(2𝜃ଶ)]𝑆ଷ

ᇱ ,          (3.2.3) 
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where 𝑆௜
ᇱ are the Stokes parameters emerging from the first LCVR. These 

parameters are related to the Stokes vector entering the polarimeter as 

𝑆ଵ
ᇱ = [cosଶ(2𝜃ଵ) + cos(𝛿ଵ)sinଶ(2𝜃ଵ)]𝑆ଵ

௜௡௖ + ൣ൫1 − cos(𝛿ଵ)൯sin(2𝜃ଵ)cos(2𝜃ଵ)൧𝑆ଶ
௜௡௖ −

[sin(𝛿ଵ)sin(2𝜃ଵ)]𝑆ଷ
௜௡௖,                                     (3.2.4) 

𝑆ଶ
ᇱ = ൣ൫1 − cos(𝛿ଵ)൯sin(2𝜃ଵ)cos(2𝜃ଵ)൧𝑆ଵ

௜௡௖ + [sinଶ(2𝜃ଵ) + cos(𝛿ଵ)cosଶ(2𝜃ଵ)]𝑆ଶ
௜௡௖ +

[sin(𝛿ଵ)cos(2𝜃ଵ)]𝑆ଷ
௜௡௖,                                     (3.2.5) 

𝑆ଷ
ᇱ = [sin(𝛿ଵ)sin(2𝜃ଵ)]𝑆ଵ

௜௡௖ − [sin(𝛿ଵ)cos(2𝜃ଵ)]𝑆ଶ
௜௡௖ + [cos(𝛿ଵ)]𝑆ଷ

௜௡௖.  (3.2.6)                                   

The total irradiance in each measurement can be expressed as, 

𝐼ே = 𝑆଴
௜௡௖ + 

            𝑆ଵ
௜௡௖ ൣ൫cosଶ(2𝜃ଵ) + 𝐴sinଶ(2𝜃ଵ)൯൫cosଶ(2𝜃ଶ) + 𝐶sinଶ(2𝜃ଶ)൯ 

                 + ቀ1/4൫(1 − 𝐴) sin(4𝜃ଵ)൯൫(1 − 𝐶) sin(4𝜃ଶ)൯ቁ − ൫𝐷𝐴sin(2𝜃ଶ)sin(2𝜃ଵ)൯ቃ + 

            𝑆ଶ
௜௡௖ 2⁄ ൣ൫cosଶ(2𝜃ଶ) + 𝐶sinଶ(2𝜃ଶ)൯൫(1 − 𝐴)sin(4𝜃ଵ)൯ 

          +൫(1 − 𝐶)sin(4𝜃ଶ)൯൫sinଶ(2𝜃ଵ) + 𝐴cosଶ(2𝜃ଵ)൯ + 2𝐷𝐵sin(2𝜃ଶ)cos(2𝜃ଵ)൧ + 

             𝑆ଷ
௜௡௖ൣ൫cosଶ(2𝜃ଶ) + 𝐶sinଶ(2𝜃ଶ)൯൫−𝐵sin(2𝜃ଵ)൯ 

                 +൫1/2(1 − 𝐶)𝐵sin(4𝜃ଶ)൯൫cos(2𝜃ଵ)൯ − ൫𝐷𝐴sin(2𝜃ଶ)൯൧,           (3.2.7)                  

where 𝐴 = cos(𝛿ଵ
ே), 𝐵 = sin(𝛿ଵ

ே), 𝐶 = cos(𝛿ଶ
ே), 𝐷 = sin(𝛿ଶ

ே). With this equation we 

can relate each measurement to a polarization state analyzed, depending on the 

experimental parameters of the LCVRs. Using equation (2.2.6), the instrument 

matrix in equation (3.2.2), and at least four measurements we can estimate the 

Stokes vector of any incident beam.  

However, due to its liquid nature, the molecules in the LCVRs, have only a 

preferential orientation, which is not completely defined, so the director orientation 

can vary over the aperture. Also, the orientation changes with the applied voltage, 

this behavior has also been reported by other authors [29,30]. When an electric field 

is applied, we have to consider that this field is not completely uniform, nor are the 
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changes in the molecules, as represented in Fig. 3.1.5, then the induced retardance 

will vary over the full aperture. These spatial variations have also been reported 

before [31,32]. Thus, the polarization measurements will differ from the ideal. 

Considering the variations mentioned before, on this thesis we will focus on the 

errors in the axis position and induced retardance in the LCVRs. In the next chapter 

we verify the performance of a Stokes polarimeter and estimate the Root Mean 

Squared Error (RMSE) values obtained with optimized and non-optimized schemes. 

Also, a calibration method is proposed and verified to compensate the mentioned 

errors. 
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4 Stokes polarimeter 

 

To verify the performance of a Stokes polarimeter based on two LCVRS, we 

designed and implemented a polarimeter without an imaging system, based on the 

diagram shown in Fig. 3.2.1. The experimental set-up is shown in Fig. 4.0.1. This is 

a simpler set-up as a first approximation to the final objective, this system only uses 

a small part of the aperture of the LCVRs, unlike in an imaging system where the full 

aperture is used and the spatial variations are expected to be larger. We measured 

the Stokes parameters of three different samples and compared the obtained results 

using an optimized and a non-optimized polarimeter. The results were compared, 

showing smaller RMSE values when using an optimized polarimeter. Finally, to 

reduce the RMSE in the obtained results a calibration method is proposed. The 

method compensates variations in retardance and fast axis position of the LCVRs, 

with a fitting procedure. 

 

Fig. 4.0.1 Experimental set-up of the Stokes polarimeter. 
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4.1 Experimental results  

The experimental set-up shown in Fig. 4.0.1 was tested in our laboratory. The first 

LCVR was mounted with its fast axis at 0°, and the second LCVR, with its fast axis 

at 45°. Then we can rewrite equation (3.2.7) as 

𝐼ே =
ଵ

ଶ
൫𝑆଴

௜௡௖ +  cos𝛿ଶ
ே𝑆ଵ

௜௡௖ +  sin𝛿ଵ
ேsin𝛿ଶ

ே𝑆ଶ
௜௡௖ −  cos𝛿ଵ

ேsin𝛿ଶ
ே𝑆ଷ

௜௡௖൯.       (4.1.1) 

The application of at least four combinations of retardance values to the LCVRs and 

equation (2.2.6) are used to extract all the Stokes parameters from irradiance data. 

This can be achieved by four combinations, that measure the irradiance of the linear 

horizontal, vertical, at +45°, and right circular, polarization components. These 

combinations are represented by the instrument matrix: 

𝑨ഥସି୫ =

⎝

⎜
⎛

𝐌ഥ ୮୭୪(0°)𝐌ഥ ୖଶ(45°, 360°)𝐌ഥ ୖଵ(0°, 90°)

𝐌ഥ ୮୭୪(0°)𝐌ഥ ୖଶ(45°, 180°)𝐌ഥ ୖଵ(0°, 90°)

𝐌ഥ ୮୭୪(0°)𝐌ഥ ୖଶ(45°, 90°)𝐌ഥ ୖଵ(0°, 90°)

𝐌ഥ ୮୭୪(0°)𝐌ഥ ୖଶ(45°, 90°)𝐌ഥ ୖଵ(0°, 360°)⎠

⎟
⎞

= 1 2⁄ ൮

1 1 0 0
1 −1 0 0
1 0 1 0
1 0 0 1

൲. (4.1.2) 

For this case the CN is 3.23 and the EWV is 16.00, but as mentioned in section 2.2.2 

to reduce the effect of noise in the measurements on the final solution, the CN must 

be minimized to an optimal value of √3, or the EWV to an optimal value of 40/𝑁, in 

this case 𝑁 = 4. The optimization of the polarimeter can be achieved with the same 

experimental set-up with two more measurements, giving a total of six 

measurements. The instrument matrix in this case is, 

𝑨ഥ଺ି୫ =

⎝

⎜
⎜
⎜
⎜
⎛

𝐌ഥ ୮୭୪(0°)𝐌ഥ ୖଶ(45°, 360°)𝐌ഥ ୖଵ(0°, 90°)

𝐌ഥ ୮୭୪(0°)𝐌ഥ ୖଶ(45°, 180°)𝐌ഥ ୖଵ(0°, 90°)

𝐌ഥ ୮୭୪(0°)𝐌ഥ ୖଶ(45°, 90°)𝐌ഥ ୖଵ(0°, 90°)

𝐌ഥ ୮୭୪(0°)𝐌ഥ ୖଶ(45°, 90°)𝐌ഥ ୖଵ(0°, 270°)

𝐌ഥ ୮୭୪(0°)𝐌ഥ ୖଶ(45°, 90°)𝐌ഥ ୖଵ(0°, 360°)

𝐌ഥ ୮୭୪(0°)𝐌ഥ ୖଶ(45°, 90°)𝐌ഥ ୖଵ(0°, 180°)⎠

⎟
⎟
⎟
⎟
⎞

= 1 2⁄

⎝

⎜⎜
⎛

1 1 0 0
1 −1 0 0
1 0 1 0
1 0 −1 0
1 0 0 1
1 0 0 −1⎠

⎟⎟
⎞

, (4.1.3) 

where the CN is 1.73 and the EWV is 6.67, in this case we have an optimized 

polarimeter, with 𝑁 = 6. With a non-optimized polarimeter, the CN and EWV have 
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an increment of 87% and 139% from the optimal values obtained with six 

measurements. To test the polarimeters we measure the Stokes parameters of a 

light beam emerging from three different rotating samples: a linear polarizer, a half-

wave plate and a quarter-wave plate. As light source we used a 633 nm He-Ne laser, 

with a collimated beam spot of (0.837 ± 0.003) 𝑚𝑚 in diameter. The light passed 

through a beam splitter to yield an auxiliary beam to monitor and eliminate variations 

due to the laser instability. Then the light passed through a linear polarizer to ensure 

that the incident light on the sample was polarized. After the sample, the light beam 

entered the Stokes polarimeter. The detector used in this thesis is model S120C, by 

Thorlabs. We measured the irradiance for the six configurations of the optimized 

polarimeter, rotating the axes of the samples from 0° to 180° in 10° increments. In 

Fig. 4.1.1 we show the typical irradiance measurements for a given sample, in this 

case the half-wave plate measurements are presented. 
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Fig. 4.1.1 Irradiance measurements for the half-wave plate. 

Using four irradiance measurements, equation (2.2.6) and the instrument matrix 

shown in equation (4.1.2), we can estimate the Stokes parameters for every axis 

orientation for each sample. We also estimate the Stokes parameters using the six 

measurements and equations (2.2.7) and (4.1.3), which leads to an optimized 
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polarimeter. Then we calculated the RMSE, between the theoretical and the 

experimentally estimated Stokes parameters for both cases. The RMSE is defined 

as 

RMSE =  ට
ଵ

ெഇ
∑ ൫𝑆௜

௘௫௣
− 𝑆௜

௧௛௘௢൯
௠

ଶெഇ
௠ୀଵ ,                                   (4.1.4) 

where the superscript exp denotes the experimental values, the superscript theo 

denotes the theoretical (ideal or expected) values. The subscript 𝑖 indicates a 

particular Stokes parameter, the subscript 𝑚 indicates the angle at which the Stokes 

vector is calculated and there are 𝑀ఏ rotation angles in the measurement of each 

Stokes vector. The results obtained from this experiment are shown in Fig. 4.1.2  

 

 

Fig. 4.1.2. RMSE in the measured Stokes parameters with an optimized (circles), and non-
optimized (crosses) polarimeter. The x-axis indicates the element of the Stokes vector and the 
sample used: Pol is the linear polarizer, HW is the half-wave plate, and QW is the quarter-wave 

plate. 

From Fig. 4.1.2 it can be seen that there is a larger RMSE in the non-optimized 

polarimeter. In both polarimeters the parameter 𝑆ଷ has the largest RMSE values for 

each sample. The first two rows, or measurements, of the two instrument matrices 
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are the same, which are related to the parameter 𝑆ଵ, so the RMSE for this parameter 

is the same. The solid horizontal line marks the maximum RMSE (0.323) for a non-

optimized polarimeter and the dashed line the maximum (0.167) for an optimized 

polarimeter. In table 4.1.1 we show the average and standard deviation of the RMSE 

values in both polarimeters. 

 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝑝𝑜𝑙𝑎𝑟𝑖𝑚𝑒𝑡𝑒𝑟 

𝑘 = 1.73: 𝐸𝑊𝑉 = 6.67 

𝑁𝑜𝑛 − 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝑝𝑜𝑙𝑎𝑟𝑖𝑚𝑒𝑡𝑒𝑟 

𝑘 = 3.22: 𝐸𝑊𝑉 = 16.00 

Average RMSE 0.09 ± 0.04 0.16 ± 0.09 

Table 4.1.1 RMSE in an optimized and a non-optimized polarimeter. 

From table 4.1.1 we can see that the average RMSE increases by 70% with the non-

optimized polarimeter, which is a significant reduction in the accuracy. Also, the 

standard deviation increases by 106%, which means that the accuracy varies for 

different Stokes parameters. So, an increment in the optimization metric of the 

instrument matrix leads to larger RMSE values. Although the analysis was performed 

for only two condition numbers, the results are clear and show that the minimization 

of the optimization metric is essential in polarimetric measurements. 

However, even with the optimized polarimeter, the accuracy and precision of the 

polarimeter are not as expected. This could be due to the fact that the optimization 

only considers noise, but the instrumental errors are ignored. A calibration can help 

to reduce the RMSE in the measurements, considering the experimental errors. In 

the next section we present and verify a novel method that compensates errors in 

the polarimeter and calibration samples, to obtain more accurate and precise results.  

 

4.2 Calibration method 

A calibration method requires an analysis of the results obtained with a number of 

known polarization calibration samples. The detected irradiances or the measured 

Stokes parameters are then compared to the ideal cases to deduce the errors in the 

system and the corrections required to obtain accurate results. In this thesis we 
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propose the use of either four or six calibration samples, and we compare the results 

of the two cases. As calibration samples, for the case of six samples we used a 

horizontal linear polarizer, a vertical linear polarizer, a half-wave retarder with its 

axes at 30° and at 60°, and a quarter-wave retarder with its fast axis at 30° and at 

60°. These values of the angles of the axes of the fixed retarder plates were chosen 

to have contributions in as many as possible of the elements in the generated Stokes 

vectors.  For the case of four calibration samples, we chose a horizontal linear 

polarizer, a vertical linear polarizer, a half-wave retarder with its fast axis at 30°, and 

a quarter-wave retarder with its fast axis at 30°. With these samples, in both cases 

we obtain contributions in the four Stokes parameters. Using an optimized 

polarimeter and six calibration samples we have 36 irradiance measurements. With 

a non-optimized polarimeter and four calibration samples we have only 16 irradiance 

measurements. Obviously, this second case has the advantage of fewer 

measurements, which means a shorter measurement time. However, as shown 

below, there is an adverse effect on the final measurement precision. 

The calibration procedure proposed consists of two stages. In the first stage the 

experimental errors in the set-up are calculated by fitting the experimental irradiance 

measurements for the calibration samples to the theoretical polarimeter with errors. 

This is performed by using a non-linear fitting procedure with the experimental errors 

as the fitting parameters, and the sum of the differences between the experimental 

irradiances and the calculated model irradiances, including experimental errors, as 

the metric to be minimized. The measured irradiances were fitted to the theoretical 

model with the error parameters using a computer program developed in our 

laboratory, and the “Powell” algorithm [33]. Fitting algorithms need a starting 

solution, and we used an ideal experimental set-up, without errors, as the starting 

value. The errors introduced in the polarimeter model to replicate the measured 

irradiances were:  errors in each of the orientation angles of the LCVR axes, and 

errors for each different value of the retardance of each LCVR. This means that, for 

the optimized polarimeter, equation (4.1.3), there are four different retardance values 

for LCVR 1, and three different values of retardance for LCVR 2, giving a total of 

seven retardance errors. For the non-optimized case, there are 2 retardance values 
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for LCVR 1, and again 3 for LCVR 2, giving a total of five retardance errors for this 

case. We also included errors in the axes positions of the calibration samples, giving 

one error for each sample. This means that the case of an optimized polarimeter and 

six calibration samples has 15 error terms, and so 15 fitting parameters in our 

method. For a non-optimized polarimeter and only four calibration samples, we have 

a total of 11 fitting parameters. The metric, M, used in the fitting procedure is the rms 

difference between the experimental and expected (theoretical) irradiances over all 

the calibration samples and all of the polarimeter configurations: 

𝑀 = ቀ∑ ∑
ଵ

ே௡
൫𝑆଴

௘௫௣
− 𝑆଴

௧௛௘௢൯
ଶ௡

௝ୀଵ
ே
௜ୀଵ ቁ

ଵ
ଶൗ

,                             (4.2.1) 

where the superscript exp denotes the experimentally measured irradiance, the 

superscript theo denotes the theoretical irradiance from the model of the polarimeter 

with errors, n indicates the number of calibration samples used (in our case 4 or 6), 

N denotes the number of irradiances detected for the N configurations of the 

polarimeter, for each sample, and this metric is minimized in the fitting procedure. 

The second step of the proposed method takes the fitting parameters optimized in 

the first step and assumes that they represent the fixed systematic experimental 

errors. Then we use the irradiance measurements of the unknown sample beam to 

obtain its complete Stokes vector, by fitting using the difference between the 

calculated and measured intensities as metric, and the four Stokes parameters as 

the fitting parameters. In this case we have four unknowns, the Stokes parameters, 

and either six irradiances, for the optimized case, or four irradiances, for the non-

optimized case. The metric, M’, in this case is 

𝑀′ = ቀ∑ ∑
ଵ

ସே
൫𝑆଴

௘௫௣
− 𝑆଴

௧௛௘௢൯
ଶସ

௝ୀଵ
ே
௜ୀଵ ቁ

ଵ
ଶൗ

.                        (4.2.2) 

To verify the calibration method, the results shown in the previous section were the 

initial values to be calibrated. The calibrated results with four calibration samples are 

shown in Fig. 4.2.1. The solid horizontal line marks the maximum RMSE (=0.561) 

for a non-optimized polarimeter and the dashed line the maximum (=0.086) for an 

optimized polarimeter. The results using six calibration samples are shown in Fig. 
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4.2.2. Also, the solid horizontal line marks the maximum RMSE (=0.223) for a non-

optimized polarimeter and the dashed line the maximum (=0.077) for an optimized 

polarimeter. 

Fig. 4.2.1 and 4.2.2 show the same results as Fig. 4.1.2 but calibrated with four and 

six calibration samples, respectively. After applying the calibration method, for an 

optimized polarimeter, the maximum RMSE is reduced by 48% and 51% using four 

and six calibration samples, respectively. For a non-optimized polarimeter and using 

six samples the maximum RMSE is reduced by 30% but using four calibration 

samples the maximum RMSE increases. In table 4.2.1 we show the average RMSE 

before and after calibrating the results, with six and four calibration samples. 

 

Fig. 4.2.1.  RMSE in calibrated measured Stokes parameters with an optimized (circles), and non-
optimized polarimeter (crosses), using four samples in the calibration process. The x-axis indicates 
the element of the Stokes vector and the calibration sample used: Pol is the linear polarizer, HW is 

the half-wave retarder plate, and QW is the quarter-wave retarder plate. 
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Fig. 4.2.2. RMSE in calibrated measured Stokes parameters with an optimized (circles), and non-
optimized polarimeter (crosses), using six samples in the calibration process. The x-axis indicates 
the element of the Stokes vector and the calibration sample used: Pol is the linear polarizer, HW is 

the half-wave retarder plate, and QW is the quarter-wave retarder plate. 

 

Average RMSE 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝑝𝑜𝑙𝑎𝑟𝑖𝑚𝑒𝑡𝑒𝑟 

𝑘 = 1.73, 𝐸𝑊𝑉 = 6.67 

𝑁𝑜𝑛 − 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝑝𝑜𝑙𝑎𝑟𝑖𝑚𝑒𝑡𝑒𝑟 

𝑘 = 3.23, 𝐸𝑊𝑉 = 16.00 

Experimental 0.09 ± 0.04 0.16 ± 0.09 

Calibrated with 4 samples 0.05 ± 0.02 0.15 ± 0.16 

Calibrated with 6 samples 0.04 ± 0.02 0.09 ± 0.05 

Table 4.2.1. Average RMSE and standard deviation in the calibrated results. 

It can be seen that the calibration method proposed fails when it is used with a non-

optimized polarimeter, and four calibration samples, leading to similar RMSE results 

but with a bigger standard deviation. When using a non-optimized polarimeter and 

six calibration samples the average RMSE is reduced by 44%, however these results 

are very similar to the results obtained with an optimized polarimeter without a 

calibration. The best results are obtained in the case of an optimized polarimeter, 

with a reduction in the average RMSE of 44% with four calibration samples and 55% 
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with six calibration samples. Even though the method works properly with the non-

optimized polarimeter and six calibration samples, comparing with the optimized 

polarimeter shows that it is not recommended. 

To verify the performance of the calibration method, with an optimized polarimeter 

we made 3 sets of 9 Stokes parameter measurements using an optimized 

polarimeter and six calibration samples. But before each measurement the LCVRs 

were recharacterized, the experimental set-up was reassembled, and the calibration 

samples were measured. The calibration calculation was applied each time we 

measured the complete Stokes vector of the three rotating samples. These test runs 

show the stability of the experimental setup and of the calibration method proposed. 

The results of these measurements are shown in Fig. 4.2.3.  

 

Fig. 4.2.3. RMSE of measured Stokes parameters, before (crosses) and after (circles) applying the 
calibration method, using six calibration samples, with an optimized polarimeter. The x-axis 
indicates the element of the Stokes vector and the calibration sample used: Pol is the linear 

polarizer, HW is the half-wave retarder plate, and QW is the quarter-wave retarder plate. The 
vertical dotted lines separate the different test runs performed. 

 

We can see from Fig. 4.2.3, that the parameters 𝑆ଵ and 𝑆ଷ have the biggest RMSE 

values with the experimental results without a calibration. Also, that the precision of 

the final results changes with alterations in the experimental system. However, with 
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the calibration process proposed here nearly all of the RMSEs after the calibration 

are less than those before the calibration. There are two values of RMSE in the third 

test run that have a larger RMSE after calibration, but the absolute value of the 

changes in RMSE is small (in the third decimal place) for both cases. The worst case 

RMSE after the calibration is 0.105, and the RMSE is reduced by the calibration 

between 17% and 94.5%. Figure 4.2.4 shows the percentage reduction in the RMSE 

with our calibration procedure as a function of the uncalibrated RMSE.  

 

 

Fig. 4.2.4. The percentage reduction of the RMSE as a function of uncalibrated RMSE, showing 
that higher values of the uncalibrated RMSE tend to have a higher correction percentage. The 

dotted line is drawn as an aid for visualization of the tendency. 

 

This figure shows that most of the measurements have reductions above 60% for 

any value of the uncalibrated RMSE. All values below 20% of reduction of the RMSE 

appear for uncalibrated RMSE values that are already lower than about 0.12. This 

figure also shows that higher values of the uncalibrated RMSE tend to have larger 

percentage reductions in the calibrated RMSE, as shown by the dashed line drawn 

on the graph as an aid to visualization. In table 4.2.2 we present the average RMSE 
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before and after the calibration, showing a significant reduction in the average and 

in the standard deviation, which means an enhancement in the accuracy and 

precision of the polarimeter. 

 𝐵𝑒𝑓𝑜𝑟𝑒 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝐴𝑓𝑡𝑒𝑟 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 

Average RMSE 0.13 ± 0.09 0.04 ± 0.03 

Table 4.2.2. Average RMSE before and after the calibration. 

The experimental data for an optimized polarimeter and six calibration samples, yield 

very good results, having a reduction of 69% in the average RMSE and of 66% in 

the standard deviation, after the calibration. The results for a non-optimized 

polarimeter are also improved using the proposed calibration method, although 

these improvements are not enough for the final measurements. These results show 

that this method can help compensate instrumental errors in the measurements of 

the Stokes vectors, but only for optimized schemes. The results presented in this 

chapter are clear and show that the optimization and calibration are essential in 

polarimetric measurements 
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5 Stokes imaging polarimeter 

 

With the same basic structure as the PSA, shown in section 3.2, we designed a 

Stokes imaging polarimeter, the diagram of the set-up is shown in Fig. 5.0.1. To 

acquire the polarimetric images we used two lenses along with a CCD camera. The 

light emerging from the object is collimated with an achromatic lens, which gives 

parallel rays between the two lenses. In this parallel beam path, we can insert our 

PSA, and the second lens is focused on the CCD camera to record the image. 

 

Fig. 5.0.1. Diagram of the set-up of a Stokes imaging polarimeter based on two LCVRs. 

To reduce the measurement time, we decided to use only four measurements but 

with an optimized scheme, the retardance values and axes positions used in the 

polarimeter were obtained following the procedure presented by De Martino et. al. 

[34]. The configuration used can be expressed by the following instrument matrix, 

𝑨ഥଵ =

⎝

⎜
⎛

𝑴ഥ ௣௢௟𝑴ഥ ோଶ(27.4°, 315°)𝑴ഥ ோଵ(72.4°, 135°)

𝑴ഥ ௣௢௟𝑴ഥ ோଶ(27.4°, 135°)𝑴ഥ ோଵ(72.4°, 135°)

𝑴ഥ ௣௢௟𝑴ഥ ோଶ(27.4°, 135°)𝑴ഥ ோଵ(72.4°, 315°)

𝑴ഥ ௣௢௟𝑴ഥ ோଶ(27.4°, 315°)𝑴ഥ ோଵ(72.4°, 315°)⎠

⎟
⎞

=
ଵ

ଶ
൮

1 0.47 −0.33 −0.82
1 −0.94 −0.33 0.00
1 0.00 1.00 0.00
1 0.47 −0.33 0.82

൲.   (5.0.1) 

With this configuration the CN of this matrix is 1.732, and the EWV is 10, which are 

very close to the optimized values, with four measurements. In this experimental set-

up it is important to consider that the full aperture of the LCVRs is used, unlike the 

set-up presented in chapter 4. As mentioned before we do not expect a uniform 

retardance in the complete aperture, due to the structure of the liquid crystal cell; 
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also in previous characterizations we have detected differences while characterizing 

LCVRs between methods using an unexpanded, and an expanded laser beam. 

These effects can be attributed to spatial variations over the clear aperture of the 

LCVRs, leading to a different instrument matrix in different points of the aperture. In 

section 5.1 we propose a method to characterize the induced retardance over the 

complete aperture of each LCVR. In section 5.2, using the results of the 

characterization and the proposed scheme, we implemented and tested the 

performance of the Stokes imaging polarimeter shown in Fig. 5.0.2.  

 

Fig. 5.0.2. Experimental set-up of the Stokes imaging polarimeter based on two LCVRs. 

 

5.1 LCVR Characterization 

A correct and complete characterization of the induced retardance over the full 

aperture of the LCVRs is very important. Previously, we had characterized the 

retardance using a photodetector to measure the irradiance of the direct beam from 

a laser, illuminating only a small part of the clear aperture. We also used a spatial 

filter to expand and clean the laser beam, to illuminate the complete aperture of the 

LCVRs and calculate the retardance by focusing all the light on the same 

photodetector. We found differences between the characterization for these two 

configurations, and as we mentioned before this suggests that there are variations 

of the retardance over the aperture of the LCVRs. Here we propose a method to 

measure the retardance as a function of the applied voltage using a CCD camera 

and a lens to obtain the retardance pixel by pixel over the complete aperture of a 
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LCVR. With this characterization we have higher accuracy and control of the 

retardances obtained for each applied voltage, and the magnitude of the spatial 

phase variations in the LC. 

Before the retardance characterization, it is necessary to find the optical axes 

position of each LCVR, which are related to the director of the molecules. We 

performed a simple experiment, using two linear polarizers with their transmission 

axis crossed, and the LCVR placed between both polarizers. Then the LCVR is 

rotated until a minimum irradiance is reached, in this position the slow or fast axis is 

parallel to the transmission axis of the first polarizer. Considering the direction of the 

slow axis marked by the manufacturer, we can differentiate the slow from the fast 

axis. We applied voltages in a range from 1.5 to 8 volts in steps of 0.25 volts and 

measure the slow-axis position in each applied voltage. The relative axis position 

was plotted versus the applied voltage, the graphs for each LCVR are shown in Fig. 

5.1.1 and 5.1.2. 
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Fig. 5.1.1. Slow-axis relative position as a function of the applied voltage, for LCVR 1*. 
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Fig. 5.1.2 Slow-axis relative position as a function of the applied voltage, for LCVR 2*. 

For LCVR 1*, we found that the average axis position varies with a standard 

deviation of 3.62°, and for the LCVR 2*, the standard deviation is 1.72°. These 

results consider variations in the axis position due to the applied voltage, there are 

also spatial variations that have to be considered due to variations in the director of 

each molecule. To obtain the retardance as a function of the applied voltage, over 

the full aperture of the LCVRs, we used the set-up shown in Fig. 5.1.3.  

 

Fig. 5.1.3. Experimental set-up to characterize the induced retardance in a LCVR. 

We use a LED as a light source, the light passes through a laser line filter (632.8 

nm) and a diffuser to illuminate the LCVR with uniform intensity. The LCVR is placed 

with its fast axis at 45° from the horizontal plane, between two crossed linear 

polarizers, with their optical axes at 0° and 90°, respectively. A lens is placed after 
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the second polarizer to focus the LCVR image on the CCD camera and the 

irradiance is measured for every pixel. In terms of Mueller matrices this optical 

system can be represented as 

𝑀௦ = 𝑀௉(90°)𝑀ோ(𝛿, 45°)𝑀௉(0°),                          (5.1.1) 

where 𝑀௦ is the Mueller matrix of the system, 𝑀௉(𝜃) is the Mueller matrix of a linear 

polarizer with its transmission axis at an angle of 𝜃, and 𝑀ோ(𝛿, 𝜃) is the Mueller matrix 

of a retarder with retardance 𝛿 and fast axis at 𝜃. The Mueller matrix of this system 

is, 

𝑴ௌ = 1/4 ൮

1 − cos (δ) 1 − cos (δ) 0 0
−1 + cos (δ) −1 + cos (δ) 0 0

0 0 0 0
0 0 0 0

൲.                      (5.1.2) 

Considering the light emerging from the LED is unpolarized, the incident Stokes 

vector, 𝑺௜ , is 

𝑺௜ = ቌ

1
0
0
0

ቍ.                                                (5.1.3) 

Using these equations, the emerging Stokes vector is  

𝑺 = 𝐴 ቌ

1 − cos𝛿
−1 + cos𝛿

0
0

ቍ,                                         (5.1.4) 

where A is a constant that depends on the factor ¼ of the matrix 𝑀௦, and also on 

the experimental parameters such as absorption of the polarizers. Considering that 

the irradiance is related to the first Stokes parameter we find that the detected irradiance 

on the CCD is 

𝐼 = 𝐴(1 − cos𝛿).                                          (5.1.5) 

Additionally, we know that the maximum irradiance is obtained when cos𝛿 = −1, 

then 𝐼௠௔௫ = 2𝐴, therefore  
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𝛿 = cosିଵ ቀ1 −
ଶூ

ூ೘ೌೣ
ቁ.                                       (5.1.6) 

With this equation the retardance value can be obtained, using the experimental data 

of the relative irradiance of the detected light as a function of the applied voltage. 

We applied different values of voltages to each LCVR based on previous results and 

on the retardance values required in equation (5.0.1). The range of applied voltages 

used in each LCVR is shown in table 5.1.1, the measurements were made in steps 

of 0.05 V. 

LCVR Voltage range (V) 

LCVR 1* 2.15–- 3.8 

LCVR 2* 2.9 – 5 

Table 5.1.1. Intervals of applied voltages used to characterize each LCVR. 

An example of the retardance maps obtained with this method, for different voltages 

in LCVR 1*, are shown in Fig. 5.1.4. 

 

Fig. 5.1.4. Example of retardance maps obtained for a LCVR with different applied voltages. 
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We calculated the mean value and standard deviation over the full aperture for every 

applied voltage. In Fig. 5.1.5, we present the mean value as a function of the applied 

voltage for each LCVR. In Fig. 5.1.6, the standard deviation as a function of the 

retardance value is shown. 

 

Fig. 5.1.5. Mean values of the retardance as a function of the applied voltage in the LCVR 1*(Black) 

and LCVR 2*(Red). 
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Fig. 5.1.6. Standard deviation as a function of the induced retardance in the LCVR 1*(Black) and 

LCVR 2*(Red). 
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From Fig. 5.1.5 we can see that the behavior is similar in both cases, with a 

displacement, but the behavior seems more unstable for LCVR 2* than for LCVR 1*, 

for which the graph is smoother. These results show that is necessary to perform an 

individual characterization of every used LCVR.  Fig. 5.1.6 shows an average 

standard deviation over the measured interval of 7.3° and 10.3°, however in both 

cases we have a large peak around the retardance value of 180°, where the standard 

deviation reaches a value of 16.6° for LCVR 1* and 23.9° for LCVR 2*. If we consider 

the error propagation of equation (5.1.6) we obtain, 

 

(𝜎ఋ)ଶ = (𝜎ூ)ଶ ቌ
ଵ

ூ೘ೌೣට
಺೘ೌೣ(಺ష಺೘ೌೣ)

಺మ

ቍ

ଶ

+ (𝜎ூ௠௔௫)ଶ ቌ
ଵ

ூ೘ೌೣ
మ ට

಺(಺೘ೌೣష಺)

಺೘ೌೣ
మ

ቍ

ଶ

.          (5.1.7) 

In Fig. 5.1.7 we plotted the behavior of equation (5.1.7) varying the relative measured 

irradiance (left) and the maximum irradiance (right). From these graphs we can see 

that the error in the retardance has a maximum value when the measured irradiance 

is near 0 or near the maximum value. This means that the error will be maximum 

when the induced retardance has values of 0°, 180°, or 360°, which explains the 

peaks of the graph shown in Fig. 5.1.6. It can also be seen from the figure on the 

right that a bigger maximum irradiance can help to reduce the error propagation.  

  

Fig. 5.1.7. Error propagation with a varying measured irradiance and maximum irradiance. 

This analysis suggests that the variations of the larger peak in Fig. 5.1.6 is more 

related to the measurement process than to the LC properties. If we do not consider 
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values around 180°, in a range from 165° to 195°, the average standard deviation in 

the rest of the interval is 6.2° for LCVR 1* and 8.8° for LCVR 2*, these results 

approximately agree with the manufacturer’s specification, where they mention a 

variation of less than 7.2° [35].  

Considering the results presented in this section and a slightly larger error due to 

effects that we were not able to measure, such as spatial variations in the axis 

position or due to temperature changes, in table 5.1.2 we show the errors that we 

will consider in the use of LCVRs.  

Axis position  Induced retardance 

𝜃 ± 4° 𝛿 ± 9° 

Table 5.1.2. Errors considered in LCVRs. 

In particular, in the next section, we develop an optimized Stokes imaging 

polarimeter based on the experimental set-up shown in Fig. 5.0.1, using only four 

measurements. The configuration represented by equation (5.0.1), used for the 

imaging polarimeter, uses only two retardance values in each LCVR: 135° and 315°. 

The detailed retardance maps for these induced retardances are shown in Fig. 5.1.8 

for each LCVR. 

In Fig. 5.1.8, it is clear that there is a small defect in the center region of LCVR 1*. It 

can be also seen that there are larger variations in the zones near the edges of the 

clear aperture. With a smaller voltage, where the retardance is larger, we can see 

diagonal “line” structures that are possibly due to organization of the directors of the 

long molecule direction parallel to the figure, while with a larger voltage this structure 

is less visible since in this case the molecules are tilted, and the director of the 

molecules is shorter in the plane of the figure. 
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Fig. 5.1.8. Retardance maps for the two applied voltages, 315° (Left) and 135° (Right) of the 

complete aperture, of LCVR 1*(Top), and LCVR 2* (Bottom) 

In this section an experimental method to characterize the retardance over the full 

aperture of LCVRs as a function of the applied voltage was proposed. With this 

characterization we were able to measure the errors in the axis position and in the 

induced retardance of the LCVRs, mentioned at the end of section 3.2. We also have 

a better control of the voltages needed to obtain the induced retardances used in the 

optimized polarimeter scheme, presented in the next section 
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5.2 Polarimetric images 

To test our experimental set-up and characterization, we implemented the 

experimental set-up shown in Fig. 5.0.2, represented by the instrument matrix in 

equation (5.0.1). We used a set of four optimized calibration polarization samples 

obtained using a polarizer along with a quarter-wave plate [36]. We used a LED 

along with a diffuser and a laser line filter as light source, then the light reaches the 

polarizer and finally the quarter-wave retarder before entering the polarimeter.  

 

Fig. 5.2.1. Diagram of the experimental set-up to illuminate the calibration samples. 

Using combinations of the orientation of the polarizer and the quarter wave plate, 

the normalized Stokes vectors for the four ideal samples are:  

𝑺(଴,ଵଷହ) = ൮

1
0
0

−1

൲,𝑺(ଵ଴,ଽ଴) = ൮

1
0.9397

0
0.3420

൲ , 𝑺(ିହ଴,ଷ଴) = ൮

1
−0.4698
−0.8138
0.3420

൲ , 𝑺(଻଴,ଵହ଴) = ൮

1
−0.4698
0.8138
0.3420

൲, 

(5.2.1) 

where 𝑺(ఏ೛,ఏೝ) represents the Stokes vector or the light passing through a linear 

polarizer with transmission axis at 𝜃௣ and a quarter wave plate with fast axis at 𝜃௥. 

Considering an ideal polarimeter, and hence an ideal instrument matrix, we obtained 

an image for the degree of polarization and one image for each Stokes parameter 

𝑺ଵ, 𝑺ଶ and 𝑺ଷ. The experimentally obtained images are shown in Fig. 5.2.2 to 5.2.5.  
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Fig. 5.2.2. Polarimetric images for  𝑺(଴,ଵଷହ) sample. 

 

Fig. 5.2.3. Polarimetric images for 𝑺(ଵ଴,ଽ଴) sample. 
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Fig. 5.2.4. Polarimetric images for 𝑺(ିହ଴,ଷ଴) sample. 

 

Fig. 5.2.5. Polarimetric images for 𝑺(଻଴,ଵହ଴) sample. 

We calculated the mean value and standard deviation for each of the Stokes 

parameters and degree of polarization for each sample. The obtained values are 

presented in equations from 5.2.2 to 5.2.5, 



52 
 

𝑺(0,135) = ൮

1

0.11 ± 0.04

0.01 ± 0.12

−0.95 ± 0.07

൲ , 𝐷𝑜𝑃 = 0.92 ± 0.12;                          (5.2.2) 

𝑺(ଵ଴,ଽ଴) = ൮

1
0.73 ± 0.04
0.20 ± 0.14
0.05 ± 0.15

൲ , 𝐷𝑜𝑃 = 0.75 ± 0.08;                          (5.2.3) 

𝑺(ିହ ,ଷ଴) = ൮

1
−0.35 ± 0.05
−0.76 ± 0.05
0.67 ± 0.15

൲ , 𝐷𝑜𝑃 = 1.05 ± 0.14;                          (5.2.4) 

𝑺(଻଴,ଵହ଴) = ൮

1
−0.39 ± 0.10
0.40 ± 0.04
0.14 ± 0.07

൲ , 𝐷𝑜𝑃 = 0.55 ± 0.11.                          (5.2.5) 

As can be seen the results were not as we expected from the theoretical Stokes 

parameters. The degree of polarization differs from the theoretical value of one, in 

particular in 𝑆(ଵ଴,ଽ଴) and 𝑆(଻଴,ଵହ଴), where the difference is more than a 25%. In the 

case of 𝑺(ିହ଴,ଷ଴), we obtained a value bigger than one, which lacks of physical 

meaning considering that the real irradiance measurements differ from the expected, 

due to differences between the experimental instrument matrix and the theoretical 

matrix. We can   also see that the standard deviation of each parameter varies from 

one parameter to another, with no particular trend.  The absolute error was 

calculated for each sample, ∆𝑆(ఏ೛,ఏೝ) = ቚ𝑆(ఏ೛,ఏೝ)
௘௫௣

− 𝑆(ఏ೛,ఏೝ)
௧௛௘௢ ቚ, and the total RMSE for all 

the samples. These values are presented in equation 5.2.6 and 5.2.7 

∆𝑆(0,135)=൮

0
0.11
0.01
0.05

൲ ; ∆𝑆(10,90)=൮

0
0.21
0.20
0.29

൲; ∆𝑆(−50,30)=൮

0
0.12
0.05
0.33

൲ ; ∆𝑆(70,150)=൮

0
0.08
0.41
0.20

൲,      (5.2.6) 

𝑅𝑀𝑆𝐸 = ቀ∑ ∑
ଵ

ே௡
൫𝑆ே

௘௫௣
− 𝑆ே

௧௛௘௢൯
ଶ

௡
ସ
୬ୀଵ

ଷ
୒ୀଵ ቁ

ଵ
ଶൗ

= 0.220.                       (5.2.7) 

In fact, the total RMSE is 37% larger than the results of the non-optimized 

polarimeter with four measurements presented in section 4.1. We tried to calibrate 

these results using the procedure shown in section 4.2, but the method failed. These 
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results suggest that the polarimeter is not completely optimized. We decided to 

calibrate our polarimeter in each pixel of the image, considering ideal samples.  For 

the set of incident Stokes vectors, used as calibration samples, we can put the 

vectors as the columns of a matrix 𝑺ഥ = ൣ𝑺௦௔௠௣௟௘ିଵ, 𝑺௦௔௠௣௟௘ିଶ, … , 𝑺௦௔௠௣௟௘ି௡൧, and rewrite 

equation (2.2.2) to estimate the instrument matrix as, 

𝑨ഥ = 𝑰ത𝑺ഥି𝟏,                                                   (5.2.8) 

where 𝑰ത is the [4 x n] matrix with the irradiance measurements for each of the n 

samples and the four polarimeter configurations. This way we can relate the 

irradiance measurements with an instrument matrix, and thus a condition number in 

each pixel of the camera. In equation 5.2.9 we present the mean value and standard 

deviation of the elements of the instrument matrix, also in Fig. 5.2.6 we present the 

condition number in every pixel of the calibrated polarimeter. 

𝑨ഥଵ = 1/2 ൮

0.99 ± 0.01 0.33 ± 0.06 0.07 ± 0.15 −0.72 ± 0.08
0.99 ± 0.01 −0.86 ± 0.08 −0.14 ± 0.08 0.13 ± 0.07
0.94 ± 0.02 0.11 ± 0.07 0.77 ± 0.07 −0.01 ± 0.12
0.97 ± 0.02 −0.10 ± 0.18 −0.44 ± 0.10 0.67 ± 0.10

൲,   (5.2.9) 

 

In Fig. 5.2.6 theoretically we expected a condition number of 1.73 in all the pixels of 

the image, but as can be seen the optimization varies in the polarimeter, which is an 

undesirable effect that can be attributed to the variations over the aperture presented 

in the previous section. From this calibration we calculated the average and standard 

deviation of the condition number in the polarimeter, as well as the probabilities of 

obtaining a CN smaller than 2, which we consider a well optimized polarimeter, 

smaller than 2.59 which is considered a moderately optimized polarimeter, and the 

probabilities of obtaining a CN smaller than 3 which we considered a poorly 

optimized polarimeter. These results are shown in table 5.2.1. 
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Fig. 5.2.6. Condition number of the calibrated polarimeter. 

Calibrated 
polarimeter 

Average CN<2 CN<2.59 CN>3 Percentile 
99 

Calculated values 3.28 ± 0.74 0% 4% 49% CN<5.7 

Table 5.2.1. Results of the calibration of the polarimeter. 

These results suggest that the variations of the retardance parameters over the 

LCVR aperture limit the application of these devices in imaging polarimeters. It can 

also be seen that the polarimeter has a different optimization in each pixel of the 

image, furthermore only a small percentage of the pixels are at least moderately 

optimized. The results in this section show that an optimization and a calibration are 

not sufficient to guarantee accurate polarimetric measurements and a model is 

necessary for the optimization of the polarimeter to reduce the effect of systematic 

error on the optimization of imaging polarimeters. This will be discussed in the next 

chapter, using numerical simulations.  
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6 Analysis of the effect of 

experimental errors on the 

optimization 

 

As mentioned before, a model is required to optimize the polarimeter to reduce the 

effect of instrumental errors on the final measurements. As we have seen, the optical 

retardance introduced by these devices is in general not homogenous across the 

aperture, and the fast-axis orientation changes with the applied voltage.  We have 

optimized the polarimeter in terms of the condition number, but the effects of LCVR 

variations are not considered, and a calibration is not enough. Although the 

polarimeter can be calibrated these errors can lead to a non-optimized polarimeter 

and to larger than expected noise amplification as shown in the Stokes imaging 

polarimeter in section 5.2. 

In this chapter we analyze the impact of errors on LCVRs in a set of optimized Stokes 

polarimeters. In particular the effect of retardance and fast-axis orientation errors on 

a set of four differently optimized polarimeter schemes, previously published, based 

on two LCVRs.  The set of Stokes polarimeters are simulated adding errors in the 

induced retardance and fast-axis orientation, as well as an error in the transmission 

axis of the polarizer. Then the CN is calculated to observe the effect of these errors 

on the optimization. We also present the propagation error theory to choose the best 

experimental parameters to reduce the nonideal effects in optimized polarimeters. 

The objective is to find a four-measurement scheme optimized but less sensitive to 

systematic errors. The instrument matrix and CN of the analyzed polarimeter 

schemes, with the minimum number of measurements (four), are: 
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𝑨ഥ𝟏 =

⎝

⎜
⎛

𝑴ഥ ௣௢௟𝑴ഥ ோଶ(27.4°, 315°)𝑴ഥ ோଵ(72.4°, 135°)

𝑴ഥ ௣௢௟𝑴ഥ ோଶ(27.4°, 135°)𝑴ഥ ோଵ(72.4°, 135°)

𝑴ഥ ௣௢௟𝑴ഥ ோଶ(27.4°, 135°)𝑴ഥ ோଵ(72.4°, 315°)

𝑴ഥ ௣௢௟𝑴ഥ ோଶ(27.4°, 315°)𝑴ഥ ோଵ(72.4°, 315°)⎠

⎟
⎞

 

=
ଵ

ଶ
൮

1 0.47 −0.33 −0.82
1 −0.94 −0.33 0.00
1 0.00 1.00 0.00
1 0.47 −0.33 0.82

൲ : CN = 1.735,                          (6.0.1) 

𝑨ഥ𝟐 =

⎝

⎜
⎛

𝑴ഥ ௣௢௟𝑴ഥ ோଶ(62.64°, 45°)𝑴ഥ ோଵ(17.64°, 45°)

𝑴ഥ ௣௢௟𝑴ഥ ோଶ(62.64°, 225°)𝑴ഥ ோଵ(17.64°, 45°)

𝑴ഥ ௣௢௟𝑴ഥ ோଶ(62.64°, 45°)𝑴ഥ ோଵ(17.64°, 225°)

𝑴ഥ ௣௢௟𝑴ഥ ோଶ(62.64°, 225°)𝑴ഥ ோଵ(17.64°, 225°)⎠

⎟
⎞

 

=
ଵ

ଶ
൮

1 0.47 0.33 −0.82
1 −0.94 0.33 0.00
1 0.00 −1.00 0.00
1 0.47 0.33 0.82

൲ : CN = 1.732,                         (6.0.2) 

𝑨ഥ𝟑 =

⎝

⎜
⎛

𝑴ഥ ௣௢௟𝑴ഥ ோଶ(45°, −16.3°)𝑴ഥ ோଵ(22.5°, −3.59°)

𝑴ഥ ௣௢௟𝑴ഥ ோଶ(45°, 134°)𝑴ഥ ோଵ(22.5°, −61.1°)

𝑴ഥ ௣௢௟𝑴ഥ ோଶ(45°, 49.3°)𝑴ഥ ோଵ(22.5°, 103°)

𝑴ഥ ௣௢௟𝑴ഥ ோଶ(45°, 156°)𝑴ഥ ோଵ(22.5°, 107°) ⎠

⎟
⎞

 

=
ଵ

ଶ
൮

1 0.95 0.01 0.32
1 −0.07 −0.62 −0.78
1 −0.27 0.92 −0.28
1 −0.60 −0.31 0.74

൲ : CN = 1.738,                       (6.0.3) 

𝑨ഥ𝟒 =

⎝

⎜
⎛

𝑴ഥ ௣௢௟𝑴ഥ ோଶ(45°, 234.74°)𝑴ഥ ோଵ(0°, 225°)

𝑴ഥ ௣௢௟𝑴ഥ ோଶ(45°, 125.26°)𝑴ഥ ோଵ(0°, 225°)

𝑴ഥ ௣௢௟𝑴ഥ ோଶ(45°, 54.74°)𝑴ഥ ோଵ(0°, 315°)

𝑴ഥ ௣௢௟𝑴ഥ ோଶ(45°, 305.26°)𝑴ഥ ோଵ(0°, 315°)⎠

⎟
⎞

 

=
ଵ

ଶ
൮

1 −0.58 0.58 −0.58
1 −0.58 −0.58 0.58
1 0.58 −0.58 −0.58
1 0.58 0.58 0.58

൲ : CN = 1.732.                       (6.0.4) 
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As we can see in all cases the polarimeters are optimized, having a CN equal to or 

very close to the minimum. The configuration represented by 𝑨ഥ𝟏 was found and used 

by De Martino et al. [34], also used in the polarimeter presented in section 5.2. 𝑨ഥ𝟐 

was optimized, by us, following the same procedure. The polarimeter represented 

by 𝑨ഥ𝟑 was discussed by Tyo [37], while 𝑨ഥ𝟒 was found by maximizing the polarimetric 

efficiencies [38] and used by Alvarez-Herrero et al. [16]. 

 

6.1 Individual errors 

For this analysis we calculated the CN obtained considering simulated individual 

misalignment errors in both LCVRs, as well as individual errors in the induced 

retardances. The error parameters are considered for a range from -20° to +20° in 

the induced retardance and from -15° to +15° in the axis position, which are larger 

than the errors presented in table 5.1.2, to have a clearer view of the behavior of the 

polarimeters. The results are shown Fig. 6.1.1, where the CN as a function of each 

error is plotted, and each parameter is represented by a different marker. In these 

graphs, 𝜃௜ represents the error in the axis position of the i-th LCVR, and 𝛿௜ represents 

the error in the retardance used in the i-th LCVR. 

It can be observed that the errors in the axis positions (circle and cross marks), 

orange and blue lines, cause larger changes in the CN than the errors in the 

retardance values. This is because an error in the axis position will change the four 

rows of the instrument matrix, while an error in one retardance value will change one 

or maximum two rows of the instrument matrix. In the four configurations analyzed, 

the error parameter that has the biggest impact in the optimization is the error in fast-

axis position of the second LCVR. It can also be seen that the direction of the error 

is important, this difference is evident in the first two configurations, but not in the 

case of 𝑨ഥ𝟒, where the red line is symmetric. In Table 6.1.1 we show the maximum 

CN obtained in these results, for each error parameter. 
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Fig 6.1.1. CN as a function of the errors, for each instrument matrix. 

Polarimeter 

configuration 

Error of 

±15° in 𝜽𝟏 

Error of 

±15° in 𝜽𝟐 

Error of 

±20° in 𝜹𝟏,𝒋 

Error of 

±20° in 𝜹𝟐,𝒋 

𝑨ഥ𝟏 2.58 14.28 1.92 2.28 

𝑨ഥ𝟐 2.57 14.07 1.91 2.28 

𝑨ഥ𝟑 4.79 9.12 1.94 2.05 

𝑨ഥ𝟒 2.35 3.71 2.13 2.04 

Table 6.1.1.  Maximum CN obtained in each polarimeter with errors in the fast-axis 

position and retardance. 

It is evident from table 6.1.1 that the parameters that contribute the most to the 

increase in the condition number are the axis positions of the LCVRs, in particular in 

the second retarder. The polarimeter represented by 𝑨ഥ𝟒 has the lowest values of the 

CN obtained with axis position errors. The configurations represented by 𝑨ഥ𝟏 and 𝑨ഥ𝟐  

suffer the largest effect in the CN with errors in the second LCVR. We can also see 
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that the polarimeter that suffers the largest impact of the errors in the fast-axis of the 

first LCVR is 𝑨ഥ𝟑.  

 

6.2 Simultaneous errors 

Considering that the fast-axis position of the LCVRs has the biggest impact in the 

optimization, we calculated the CN with combinations of these errors in both 

retarders. In Fig. 6.2.1 we show the maps of the CN, with an upper bound of 3.46, 

which represents an increase of 100% from the ideal value. Each color line is an 

increase of approximately 0.22 in the CN. The upper bound was set considering te 

results presented in chapter 4, where we showed that using a polarimeter with a 

CN=3.22, the obtained results differ significantly from the expected values. Thus, we 

considering that using CN values above 3.46 are not useful for polarimetric 

measurements, as they will lead to inaccurate results.  

 

 

Fig. 6.2.1. CN maps as a function of error in the orientation of the LCVRs 
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In Fig. 6.2.1, we can see how the CN increases from the center, when there are no 

errors, to the maximum value considered, 3.46. In all configurations we can see in 

the bottom left corner and upper right corner, where the errors of both LCVRs are in 

the same direction and maintain the relative difference between retarders, tend to 

have a smaller CN, than in the opposite corners where the errors are in different 

directions, and the relative difference changes.  

For the analysis of simultaneous retardance and axis position errors we simulated 

one million cases, adding random errors from a gaussian distribution of each error 

parameter to the LCVR configuration of the polarimeter. As presented in section 5.1, 

we measured the retardance variations in the aperture of the LCVRs, and the 

variations in the axis position as a function of the applied voltages. Using the results 

obtained in table 5.1.2, we decided to add errors of ±9° in the retardance values, 

and ±4° in the axis position of the LCVRs. We also considered an error of ± 1° in 

the axis position of the polarizer. We calculated the CN values for each one of the 

million cases and the Mean Absolute Error (MAE). In Fig. 6.2.2 we show the CN as 

a function of the MAE in each case and for every polarimeter scheme. The obtained 

values for the matrices 𝑨ഥ𝟏 and 𝑨ഥ𝟐, are shown in color green and red, but the results 

are very similar and are overlapped. The results for 𝑨ഥ𝟑 are shown in blue, and for 𝑨ഥ𝟒 

are shown in cyan.     

Fig. 6.2.2 shows the different behavior for each configuration, this difference is more 

evident when we have MAE values above 0.05. In particular, using 𝑨ഥ𝟒, the CN tends 

to have smaller values, independently of the MAE, and using 𝑨ഥ𝟑, tends to have larger 

values, with an increasing MAE. From these simulations, in the second column of 

table 6.2.1, we calculated the CN values for each case and the probabilities of 

obtaining a CN smaller than 2, which, from our experience, will represent the 

probabilities of having a well-optimized polarimeter. In the third column, we 

calculated values larger than 2.59, which represent the probabilities of having a 

poorly-optimized system, with an increment of 50% from the ideal value. Any value 

between 2 and 2.59 will be considered as a moderately-optimized polarimeter.  
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Fig. 6.2.2. CN maps as a function of the MAE in each polarimeter configuration. 

𝑨ഥ𝟏(green), 𝑨ഥ𝟐(red), 𝑨ഥ𝟑(blue) and 𝑨ഥ𝟒(cyan)  

 

Instrument 

Matrix 

CN<2 CN>2.59 99 percentile 

𝑨ഥ𝟏 16.2% 22.0% CN<4.83 

𝑨ഥ𝟐 16.3% 21.8% CN<4.73 

𝑨ഥ𝟑 10.9% 28.3% CN<5.53 

𝑨ഥ𝟒 17.4% 11.6% CN<3.33 

Table 6.2.1. Probabilities of obtaining a value of the CN in a given range for each polarimeter 

configuration with errors. 

As can be seen from table 6.2.1, the probabilities of obtaining given values of the 

CN differ from one configuration to another, which means that the errors in the 

LCVRs have a different impact on the CN of the different polarimeters.  The only 

configurations that have similar values are  𝑨ഥ𝟏 and 𝑨ഥ𝟐, but it should be noted that 

these configurations have similar instrument matrices, with only changes of sign. It 

can also be seen that the configuration represented by 𝑨ഥ𝟒 has the minimum 

probability of obtaining larger values of the CN by a considerable difference 
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compared to the other three configurations. This means 𝑨ഥ𝟒 has the maximum 

probability of obtaining at least a moderately-optimized system. Also, the percentile 

99 is presented, and a very significant difference is also found between polarimeters 

for this parameter. All the configurations except 𝑨ഥ𝟒 have a limit larger than 4.73. This 

means that the configuration 𝑨ഥ𝟒 is more stable in the presence of experimental errors 

than the other configurations. The configurations  𝑨ഥ𝟏 and 𝑨ഥ𝟐, have a better global 

performance than  𝑨ഥ𝟑 because the sensitivity to the errors in the fast axis of the first 

LCVR is significantly larger in  𝑨ഥ𝟑. Also, the probability of a well optimized 

polarimeters is reduced significantly in  𝑨ഥ𝟑.  

In this section we presented the results of simulations of different configurations of 

optimized polarimeters using LCVRs. It was found that different configurations of 

optimized systems have very different tolerances to experimental errors in the LCVR 

fast-axes positions. In particular, we identified a configuration, denominated 𝑨ഥ𝟒 in 

this chapter, with four measurements that has smaller increases of CN with 

increases in the experimental error and, therefore, is more stable in the presence of 

these errors. This configuration reduces the probability of obtaining a CN larger than 

2.59 by at least half compared to the other configurations, for errors in the range of 

±9° in the retardance values, and ±4° in the axis position of the LCVRs.  

 

6.3 Optimal alignment 

To reduce the impact of errors in the axis position, which have the biggest impact in 

the optimization, we analyzed the error propagation in each LCVR. Analyzing the 

second Stokes parameter, 𝑆ଵ
ᇱᇱ, of the beam emerging from the second LCVR, we 

have the following expression 

𝑆ଵ
ᇱᇱ = [cosଶ(2𝜃ଶ) + cos(𝛿ଶ)sinଶ(2𝜃ଶ)]𝑆ଵ

ᇱ + ൣ൫1 − cos(𝛿ଶ)൯sin(2𝜃ଶ)cos(2𝜃ଶ)൧𝑆ଶ
ᇱ  

−[sin(𝛿ଶ)sin(2𝜃ଶ)]𝑆ଷ
ᇱ ,                                      (3.2.3) 
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where 𝑆௜
ᇱ are the incident Stokes parameters coming from the first LCVR. The total 

error in the parameter 𝑆ଵ
ᇱᇱ due to the second LCVR is given by the propagation 

equation, 

𝜎ௌభ
ᇲᇲ

ଶ = 𝜎ఏమ

ଶ ቀ
డௌభ

ᇲᇲ

డఏమ
ቁ

ଶ

 + 𝜎ఋమ

ଶ ቀ
డௌభ

ᇲᇲ

డఋమ
ቁ

ଶ

.                                   (6.3.1) 

The retardance values will depend on the measured polarization state and we have 

seen in Fig. 6.1.1 that this error has a small impact in the change of the condition 

number so this term will not considered here. Then 

𝜕𝑆ଵ
ᇱᇱ

𝜕𝜃ଶ
= [2(cos(𝛿ଶ) − 1) sin(4𝜃ଶ)]𝑆ଵ

ᇱ − [2(cos(𝛿ଶ) − 1) cos(4𝜃ଶ)]𝑆ଶ
ᇱ  

−[2sin(𝛿ଶ)cos(2𝜃ଶ)]𝑆ଷ
ᇱ .                                          (6.3.2) 

In order to reduce the total contribution of the axis position of the second LCVR we 

need to reduce each of the terms on the right-hand side of equation (6.3.3). The 

terms depending on 𝜃ଶ are sin(4𝜃ଶ), cos(4𝜃ଶ), and cos(2𝜃ଶ). To reduce the 

contributions to the total error, these terms should be zero, but we can only do this 

in a maximum of two of the three terms, using a fast-axis orientation of 
(ଶ௡ାଵ)గ

ସ
𝑟𝑎𝑑, 

where 𝑛  is an integer, since sin(4𝜃ଶ) = 0 and cos(2𝜃ଶ) = 0. This is consistent with 

the results presented in table 6.1.1 where the configurations with the lowest values 

of CN with errors in 𝜃ଶ are 𝑨ഥ𝟑 and 𝑨ഥ𝟒 and both of these configurations use 𝜃ଶ = 45°. 

It can also be seen that the configurations 𝑨ഥ𝟏 and 𝑨ഥ𝟐 which use values of 27.4° and 

64.64°, respectively, differ less than 5° to the values were the contribution in 𝑆ଵ
ᇱ is 

maximum, this is 22.5° and 67.5°.   

For the first LCVR all three Stokes parameters emerging from the first LCVR can 

contribute to the detected irradiance. With a similar analysis as that presented for 

the second LCVR we have  

𝜕𝑆ଵ
ᇱ

𝜕𝜃ଵ
= [2(cos(𝛿ଵ) − 1) sin(4𝜃ଵ)]𝑆ଵ

௜௡௖ − [2(cos(𝛿ଵ) − 1) cos(4𝜃ଵ)]𝑆ଶ
௜௡௖ − 

[2sin(𝛿ଵ)cos(2𝜃ଵ)]𝑆ଷ
௜௡௖,                                               (6.3.3) 
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𝜕𝑆ଶ
ᇱ

𝜕𝜃ଵ
= [2(cos(𝛿ଵ) − 1) cos(4𝜃ଵ)]𝑆ଵ

௜௡௖ − [2(cos(𝛿ଵ) − 1) sin(4𝜃ଵ)]𝑆ଶ
௜௡௖ + 

[2sin(𝛿ଵ)sin(2𝜃ଵ)]𝑆ଷ
௜௡௖,                                               (6.3.4) 

డௌయ
ᇲ

డఏభ
= [2 sin(𝛿ଵ)cos(2𝜃ଵ)]𝑆ଵ

௜௡௖ + [2 sin(𝛿ଵ)sin(2𝜃ଵ)]𝑆ଶ
௜௡௖.                   (6.3.5) 

The terms to be minimized are cos(2𝜃ଵ) and sin(2𝜃ଵ). Given that the two LCVRs 

cannot be at the same angle to produce all the required polarization states before 

passing through the polarizer, the term sin(2𝜃ଵ) suggests the use of a fast- axis 

orientation of 
௡గ

ଶ
 𝑟𝑎𝑑. This is also consistent with the values presented in table 6.1.1 

where the configuration with the lowest contribution is 𝑨ഥ𝟒 which uses an orientation 

of 𝜃ଵ = 0° . We can also see that the configuration 𝑨ഥ𝟑 which has the largest change 

in the CN with respect to 𝜃ଵ, uses a value of 22.5° where the contribution to 𝑆ଵ
ᇱ is 

maximum.  We recommend to avoid using positions near 22.5° or 67.5°, in both 

LCVRs. 

As mentioned above if we use an orientation of 45° in both retarders, which also 

reduces the error propagation in the first retarder, we cannot have an optimized set 

of measurements. This is because all the possible polarization states analyzed lie 

on a circumference where the Stokes parameter 𝑆ଶ is always zero. This can be seen 

in Fig. 6.3.1, were all the possible polarization states analyzed, using both LCVRS 

at 45°, and different retardance value combinations are plotted as a black line. 

Another important benefit of using the LCVRs in the suggested optimal orientations, 

𝜃ଵ = 0°  and 𝜃ଶ = 45°, as in 𝑨ഥ𝟒,  is that the polarimeter is capable of analyzing any 

Stokes vector on the surface of the Poincaré sphere, unlike the other three cases 

𝑨ഥ𝟏, 𝑨ഥ𝟐 and 𝑨ഥ𝟑, where the complete surface is not reachable. This can be seen in 

Fig. 6.3.2, where the black areas represent the Stokes vectors capable of being 

analyzed by each configuration. Considering that optimal configurations lead to a 

maximum volume tetrahedron inside the Poincare sphere, we represent the vertices 

of these ideal tetrahedrons with blue dots. When these vertices are deviated, due to 

errors, the limiting black area will also limit the volume of the figure inscribed in the 
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Poincare sphere. The capacity of the system to reach the complete Poincare sphere 

will help to maintain a bigger volume, and thus a smaller CN.  

  

Fig. 6.3.1. Poincaré sphere areas able to be analyzed (black), by a polarimeter 

configuration with 𝜃ଵ = 45° and 𝜃ଶ = 45°. 

 

Fig. 6.3.2. Poincare sphere areas able to be analyzed (black), by each polarimeter 

configuration. 
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Moreover, using the proposed alignment, equation 3.2.3 reduces to 

𝑆ଵ
ᇱᇱ = [cos(𝛿ଶ)]𝑆ଵ

ᇱ − [sin(𝛿ଶ)]𝑆ଷ
ᇱ  .                                  (6.3.7) 

In this case we do not have a contribution by 𝑆ଶ
ᇱ . Thus, we do not have a contribution 

to the total error by this parameter of the first LCVR.  Then, only two of the three 

Stokes parameters emerging from the first LCVR, equations (3.2.4) and (3.2.6), can 

contribute to the detected irradiance. Also, these equations are reduced to 

𝑆ଵ
ᇱ = 𝑆ଵ

௜௡௖,                                               (6.3.8) 

𝑆ଷ
ᇱ = −[sin(𝛿ଵ)]𝑆ଶ

௜௡௖ + [cos(𝛿ଵ)]𝑆ଷ
௜௡௖.                             (6.3.9) 

In this case the contribution by different Stokes parameter is also reduced. And 

equation 3.2.7, which represents the measured irradiance reduces to, 

𝐼௉ௌ஺ = 𝑆଴
௜௡௖ + cos𝛿ଶ𝑆ଵ

௜௡௖ + sin𝛿ଵsin𝛿ଶ𝑆ଶ
௜௡௖ − cos𝛿ଵsin𝛿ଶ𝑆ଷ

௜௡௖.          (4.1.1) 

This equation is easier to use, and the relation between the measured Stokes 

vectors and the retardance of each LCVR is very simple. In summary, we found that 

using a fast axis position for the second LCVR of 45° or 135°, and a fast axis position 

of 0° or 90° for the first LCVR, will lead to a more robust system that is less sensitive 

to experimental errors.  
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7 Conclusions 

 

In this thesis we have shown the importance of considering instrumental errors in 

polarimeters based on LCVRs. The description of the properties and benefits of 

liquid crystals were presented, as well as the main problems when used in 

polarimetry. We find two main errors considering the nature of the liquid crystals: 

variations in the induced retardance and variations in the fast-axis position.  

In addition to instrumental errors, we also considered noise in the irradiance 

measurement and showed experimentally the benefits of using an optimization of 

the Stokes polarimeter based on the CN, and the disadvantage of using a non-

optimized system. However, the errors are higher than expected even with the 

optimization of the instrument matrix. To compensate the retardance and axis 

position errors, we have presented and verified a novel calibration method. The 

results show that this method can help reduce significantly the RMSE in polarimetric 

measurements, but only for optimized polarimeters. These results also confirm that 

it is important to consider an optimization, as well as a calibration. 

A novel method to measure the spatial variations in the induced retardance was 

proposed. The method gives the complete information of the full aperture of the 

retarder with a simple and fast procedure. We also measured the variation of the 

fast-axis position with the applied voltage. With these results we obtained a better 

estimation of the voltages needed to induce a particular retardance value. We also 

estimated experimentally the magnitude of the two principal errors that will have an 

impact on the final measurements. The characterization method presented in this 

section showed a high spatial resolution, being able to detect small defects and 

variations in different points of the aperture. 

The effect of these variations on a real imaging system was shown, implementing a 

Stokes imaging polarimeter and estimating the real instrument matrix. The 

experimental results showed the optimization differs from the ideal case, and the 
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polarimeter has different condition numbers in each pixel of the image, furthermore 

only a small percentage of the pixels remained optimized. This demonstrates that 

even they are necessary, a condition number optimization of the instrument matrix 

and a calibration are not sufficient to guarantee accurate polarimetric 

measurements. 

The results of the numerical simulations showed that different instrument matrices, 

even equally optimized, respond differently to instrumental errors. It was also found 

that the errors in the orientation of the second LCVR are more important than any 

other error parameter, as these errors have the biggest impact on the optimization 

metric. These results also suggest that the optimal alignment of the axis positions of 

the LCVRS in the design of polarimeters are 
௡గ

ଶ
 𝑟𝑎𝑑, for the first retarder and 

(ଶ௡ାଵ)గ

ସ
𝑟𝑎𝑑  for the second retarder. Using this alignment allows the polarimeter to 

measure any polarization state desired on the surface of the Poincaré sphere, 

producing a completely flexible system. Furthermore, the polarimeter is less 

sensitive to instrumental errors, producing an experimental design based on the 

reduction of the impact of instrumental errors in the final measurements. 

Considering the principal errors in LCVRs, the results in this thesis showed the 

importance of using an optimal alignment, an optimization of the instrument matrix, 

and a calibration, in Stokes imaging polarimeters. Future work concerns deeper 

analysis of the optimization. Although we have proposed an optimal alignment and 

examined an optimization metric, if we minimize the CN or EWV, to optimize the 

instrument matrix, the solution will always be a tetrahedron inside the Poincaré 

sphere, regardless of the orientation or measured Stokes vectors, leading to infinite 

solutions. How to choose the best solution is not a trivial process. Further research 

is necessary, to have an accurate method to optimize the instrument matrix that 

helps differentiate one configuration from another.  
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