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Introduction

Convex sets are geometrical objects with very interesting properties and have been studied
in several branches of mathematics. In particular, discrete and convex geometry is a branch
of discrete mathematics with the goal of studying the combinatorial properties of convex sets.
The classical theorems in discrete and convex geometry are the theorems of Carathéodory [3]
(in 1907), Radon [34] (in 1921) and Helly [18] (in 1923). In order to start seeing the geometrical
and combinatorial ideas we state Carathéodory’s theorem [3] and Helly’s theorem [15].

Carathédory’s theorem states that if a point a € R? is in the convex hull of some set A C R,
then there exist at most d 4+ 1 points in A such that their convex hull contains the point a. In
other words, in order to know if a point is in the convex hull of some set A we only need to
know if the point is in the convex hull of a finite subset (of size at most d 4+ 1) of A.

Helly’s theorem states that if a finite family of convex sets in R? satisfies that every d+ 1 or
fewer of them have non-empty intersection, then the whole family has non-empty intersection.
In fact, the result is also true for infinite families of compact convex sets. In other words, Helly’s
theorem states that we only need information concerning the intersection of finite subfamilies
(of size d + 1) in order to know if the whole family has non-empty intersection.

On the other hand, there are several theorems in discrete mathematics which have colorful
versions. For example, Lovész proved the Colorful Helly theorem in 1973 (see [1]). In addition,
in 1982 Bérdny [!] proved the Colorful Carathéodory theorem.

The Colorful Helly theorem states that if we have d+1 finite families Fi, . .., F4.1 of convex
sets in R? such that for every choice of sets C; € Fi,...,Cyrq € Far1, the intersection ﬂf;l Ci
is non-empty, then there exists i € {1,...,d + 1} such that the family F; has non-empty
intersection.

The Colorful Carathéodory theorem states that if we have d + 1 finite sets Ay, ..., Agi1
of points in R such that the origin is contained in the convex hull of every set A;, for i =
1,...,d + 1, then there exist d + 1 points a; € Aj,...,aq441 € Agy1 such that the origin is
contained in the convex hull of {ay, ..., as1}.

Note that we recover Helly’s theorem from the Colorful Helly theorem when all the families
are equal. Therefore, the Colorful Helly theorem is a generalization of Helly’s theorem. By
a similar argument, the Colorful Carathéodory theorem is a generalization of Carathéodory’s
theorem. In general, Colorful theorems are usually generalizations of their uncolored versions.

The name colorful comes from thinking that every family is colored (and every family has
a different color). Then colorful theorems follow some of the following two ideas.

e In the hypothesis of colorful theorems we have information concerning rainbow subfamilies

7



8 INTRODUCTION

and the conclusion is concerning subfamilies of the same color.

e In the hypothesis of colorful theorems we have information concerning subfamilies of the
same color and the conclusion is concerning rainbow subfamilies.

For example, in the Colorful Helly theorem we have information concerning the intersection
of rainbow subfamilies and the conclusion is concerning the intersection of a subfamily of the
same color. On the other hand, in the Colorful Carathéodory theorem we have information
concerning sets of the same color and the conclusion is concerning a rainbow set.

This work has two purposes. On the one hand, we present a collection of several colorful
theorems in discrete and convex geometry by introducing the ideas of proofs intuitively in low
dimensions. On the other hand, we also present new results concerning colorful theorems and
improve bounds of colorful theorems.

In Chapter 1 we see an introduction to convex geometry and present the definitions and
notation that we use in this work. We present the classical theorems of convex geometry:
Carathéodory [3], Helly [18] and Radon [31]. We also see Eckhoft’s theorems concerning
transversals.

In Chapter 2 we prove the classical colorful theorems in convex geometry: Colorful Helly
(done by Lovész in 1973, see [1]), Colorful Carathéodory (done by Bardny [!] in 1982) and
Colorful Radon (done by Lovasz in 1989, see [2]).

In Chapter 3 we see the following two generalizations of the classical colorful theorems.

e Pach, Holmsen and Tverberg [21] (in 2008) and independently Arocha, Barany, Bracho,
Fabila and Montejano [I] (in 2009) proved that we can weaken the hypothesis of the
Colorful Carathéodory theorem and obtain the same conclusion. They proved that if
we have d + 1 finite sets A;, ..., Agy; of points in R? such that the origin is contained
in the convex hull of A; U Aj, for every 1 < i < j < d + 1, then there exist d + 1
points a; € Ajy,...,aq11 € Agy1 such that the origin is contained in the convex hull
of {ai,...,aq41}. In addition, we prove that this result cannot be generalized in two
different senses.

e In 2020, Martinez-Sandoval, Roldan-Pensado and Rubin [28] wondered if there are further
consequences with the hypothesis of the Colorful Helly theorem. They proved that for
each dimension d > 2 there exist numbers f(d) and g(d) with the following property.
If Fi,...,F; are finite families of convex sets in R? such that for every choice of sets
Cy € Fi,...,Cq € F4 the intersection ﬂ?zl C; is non-empty, then either there is a family
JF; that can be pierced by f(d) points, or the family U?Zl F; can be crossed by g(d) lines.
In particular, they proved that their result in the plane (d = 2) holds with f(2) =1 and

g(2) =4.

In Chapter 4 we present our results. First, we see the topological preliminaries that we use
to prove our results. Then we do the following:

e We improve the 2-dimensional case of the theorem by Martinez-Sandoval, Roldan-Pensado
and Rubin [28]; we prove that the 2-dimensional case of their theorem also holds with
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f(2) =1 and g(2) = 2. We prove that if i, ..., F, are finite families of convex sets in R?
(with n > 2), such that AN B # 0 for every A € F; and B € F; (with ¢ # j), then either
there exists j € {1,2,...,n} such that Ui#}} can be pierced by 1 point, or the family
Ui, Fi can be crossed by 2 lines. Furthermore, we also prove that if K is a compact
convex set in the plane and Fi, ..., F, are finite families of translates of K (with n > 2),
such that AN B # () for every A € F; and B € F; (with ¢ # j), then either there exists
j€{1,2,...,n} such that Ui# F; can be pierced by 3 points, or the family (J_, F; can
be crossed by 1 line. We also prove similar results for families of homothets, circles and
rectangles.

e We state an open problem proposed by Martinez-Sandoval, Roldan-Pensado and Rubin
[28]. The problem is if there exists n € Z* such that for any two families A, B of convex
sets in R3 so that AN B # () holds for all A € A and B € B, one of the families A or B
can be crossed by n lines. We show a particular case of this problem (for small families)
solved by Montejano and Karasev ([32], [33]) and give an elementary proof (for small
families) by Strausz [11]. In addition, we propose a geometrical idea to reduce the open
problem to a topological problem.

e We prove colorful versions of Eckhoff’s theorems.

We prove that if F, ..., Fy are finite families of connected sets in R? such that every four
sets Ay € Fi, Ay € Fo, ..., Ay € F4 have a line transversal, then there is a family JF; that
can be crossed by 2 lines.

We also prove that if F, ..., Fg are finite families of connected sets in R? such that every
three sets Ay € F;,, Ay € Fi,, Az € Fy,, for 1 <y < iy < i3 < 6, have a line transversal,
then there is a family JF; that can be crossed by 3 lines.

In addition, we prove the following theorem. Let K be a compact convex set in R2. If
F1, Fa, F3 are finite families of translates of K such that every three sets A; € Fi, Ay €
Fo, Az € F3 have a line transversal, then there is a family JF; that can be crossed by 4
lines.

Finally, we present new problems and conjectures related to these colorful versions of
Eckhoft’s theorems.
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Introduccion

Los conjuntos convexos son objetos geométricos con propiedades muy interesantes y han
sido estudiados en varias areas de las matematicas. En particular, geometria discreta y convexa
es una rama de las matematicas discretas que tiene el propdsito de estudiar las propiedades
combinatorias de conjuntos convexos. Los teoremas clasicos en geometria discreta y convexa son
los teoremas de Carathéodory [8] (en 1907), Radon [31] (en 1921) y Helly [18] (en 1923). Para
empezar a ver las ideas geométricas y combinatorias enunciamos el teorema de Carathéodory
[8] v el teorema de Helly [18].

El teorema de Carathédory nos dice que si un punto a € R est4 en la envolvente convexa
de un conjunto A C R?, entonces existen a lo mas d + 1 puntos en A tal que su envolvente
convexa contiene el punto a. En otras palabras, para saber si un punto esta en la envolvente
convexa de un conjunto A solo necesitamos saber si el punto esta en la envolvente convexa de
un subconjunto finito (de tamano a lo més d + 1) de A.

El teorema de Helly nos dice que si una familia finita de conjuntos convexos en R? cumple que
cada d+1 o menos de ellos tienen interseccién no vacia, entonces toda la familia tiene interseccién
no vacia. De hecho, el resultado también es cierto para familias infinitas de conjuntos convexos
y compactos. En otras palabras, el teorema de Helly nos dice que solo necesitamos informacion
sobre la interseccién de subfamilias finitas (de tamano d+ 1) para saber si toda la familia tiene
interseccion no vacia.

Por otro lado, hay muchos teoremas en matematicas discretas que tiene versiones coloreadas.
Por ejemplo, Lovész probé el teorema de Helly coloreado en 1973 (ver [1]). Ademds, en 1982
Barany [!] probé el teorema de Carathéodory coloreado.

El teorema de Helly coloreado nos dice que si tenemos d + 1 familias finitas J7, ..., Fqyq de
conjuntos convexos en R? tal que para cada eleccién de conjuntos C, € Fi,...,Cup1 € Far1,
la interseccion ﬂj;l C; es no vacia, entonces existe i € {1,...d + 1} tal que la familia F; tiene
interseccién no vacia.

El teorema de Carathéodory coloreado nos dice que si tenemos d 4+ 1 conjuntos finitos

Ay, ..., Agyr de puntos en R? tal que el origen esté contenido en la envolvente convexa de cada
conjunto A;, para ¢ = 1,...,d + 1, entonces existen d + 1 puntos a; € Ay, ... ,aq11 € Agy1 tal
que el origen esta contenido en la envolvente convexa de {ay,...,aqs1}-

Note que el caso particular del teorema de Helly coloreado donde todas las familias son
la misma familia, es el teorema de Helly. Por lo tanto, el teorema de Helly coloreado es una
generalizacién del teorema de Helly. Por un argumento similar, el teorema de Carathéodory co-
loreado es una generalizaciéon del teorema de Carathéodory. En general, los teoremas coloreados

11



12 INTRODUCCION

la mayoria de las veces son generalizaciones de sus versiones no coloreadas.

El nombre coloreado es porque podemos pensar que cada familia estd coloreada (y cada
familia tiene un color diferente). Entonces los teoremas coloreados siguen alguna de las siguientes
dos ideas.

e En las hipotesis de los teoremas coloreados tenemos informacién sobre subfamilias arcoiris
y la conclusion es sobre subfamilias del mismo color.

e En las hipotesis de los teoremas coloreados tenemos informacién sobre subfamilias del
mismo color y la conclusién es sobre subfamilias arcoiris.

Por ejemplo, en el teorema de Helly coloreado tenemos informacion sobre la interseccion de
subfamilias arcoiris y la conclusion es sobre la interseccion de una subfamilia del mismo color.
Por otro lado, en el teorema de Carathéodory coloreado tenemos informacién sobre conjuntos
del mismo color y la conclusion es sobre un conjunto arcoiris.

Este trabajo tiene dos propédsitos. Por un lado, presentamos una coleccion de varios teoremas
coloreados en geometria discreta y convexa, introduciendo las ideas de las pruebas intuitivamen-
te en dimensiones bajas. Por otro lado, también presentamos nuevos resultados sobre teoremas
coloreados y mejoramos cotas de teoremas coloreados.

En el Capitulo 1 vemos una introduccién a geometria convexa y presentamos las definiciones
y la notacién que usamos en este trabajo. Presentamos los teoremas clasicos de geometria
convexa: Carathéodory [3], Helly [18] y Radon [31]. También vemos los teoremas de Eckhoff
sobre transversales.

En el Capitulo 2 probamos los teoremas clasicos coloreados en geometria convexa: Helly
coloreado (por Lovasz en 1973, ver [1]), Carathéodory coloreado (por Barany [!] en 1982) y
Radon coloreado (por Lovész en 1989, ver [2]).

En el Capitulo 3 vemos las siguientes dos generalizaciones de los teoremas coloreados clasicos.

e Pach, Holmsen y Tverberg [21] (en 2008) e independientemente Arocha, Bardny, Bracho,
Fabila y Montejano [1] (en 2009) probaron que podemos debilitar las hipdtesis del teorema
de Carathéodory coloreado y obtener la misma conclusion. Ellos probaron que si tenemos
d+1 conjuntos finitos A1, ..., Az de puntos en R? tal que el origen est4 contenido en la
envolvente convexa de A; U A; para cada 1 <i < j < d+1, entonces existen d + 1 puntos
a; € Ay, ... aq11 € Agyq tal que el origen estd contenido en la envolvente convexa de
{ai,...,aq4+1}. Ademads, nosotros probamos que este resultado no puede ser generalizado
en dos sentidos diferentes.

e En el 2020, Martinez-Sandoval, Rolddn-Pensado y Rubin [28] se preguntaron si hay maés
consecuencias usando las mismas hipotesis del teorema de Helly coloreado. Ellos probaron
que para cada dimension d > 2 existen ntimeros f(d) y g(d) con la siguiente propiedad.
Si Fi,...,Fq son familias finitas de conjuntos convexos en R? tal que para cada eleccién
de conjuntos Cy € Fi,...,Cy € Fy la interseccién ﬂ?zl C; es no vacia, entonces hay
una familia F,; que puede ser pinchada por f(d) puntos, o la familia Ule Fi puede ser
atravezada por ¢(d) lineas. En particular, ellos probaron que su resultado en el plano
(d = 2) se cumple con f(2) =1y g(2) =4.
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En el Capitulo 4 presentamos nuestros resultados. Primero vemos los preliminares topoldgi-
cos que usamos para probar nuestros resultados. Después, vemos los siguientes resultados y
problemas:

e Nosotros mejoramos el caso 2-dimensional del teorema de Martinez-Sandoval, Roldan-
Pensado y Rubin [28]; nosotros probamos que el caso 2-dimensional de su teorema también
se cumple con f(2) = 1y ¢g(2) = 2. Probamos que si Fi,...,F, son familias finitas de
conjuntos convexos en R? (con n > 2), tal que ANB # () para cada A € F; y B € F; (con
i # j), entonces existe j € {1,2,...,n} tal que Ui# F; puede ser pinchado por 1 punto,
o la familia (J;_, F; puede ser atravezada por 2 lineas. Ademds, también probamos que
si K es un conjunto convexo y compacto en el plano y Fi,...,F, son familias finitas de
trasladados de K (con n > 2), tal que AN B # () para cada A € F; y B € F; (con i # j),
entonces existe j € {1,2,...,n} tal que U#j F; puede ser pinchado por 3 puntos, o la
familia | J!_, F; puede ser atravezada por 1 linea. También probamos resultados similares
para familias de homotéticos, circulos y rectangulos.

e Vemos un problema abierto propuesto por Martinez-Sandoval, Roldan-Pensado y Rubin
[28]. El problema es si existe n € Z* tal que para todas dos familias A, B de conjuntos
convexos en R? tal que ANB # () se cumple para cada A € Ay B € B, una de las familias
A o B puede ser cruzado por n lineas. Vemos un caso particular de este problema (para
familias pequenas) resuelto por Montejano y Karasev ([32], [33]) y vemos una prueba
elemental (para familias pequenas) por Strausz [11]. Ademds, nosotros proponemos una
idea geométrica para reducir el problema abierto a un problema topolégico.

e Nosotros probamos versiones coloreadas de los teoremas de Eckhoff.

Probamos que si Fi, ..., F,; son familias finitas de conjuntos conexos en R? tal que cada
cuatro conjuntos A; € Fi, Ay € Fo, ..., Ay € F, tienen una linea transversal, entonces
hay una familia F; que puede ser cruzada por 2 lineas.

Probamos que si Fi, ..., Fg son familias finitas de conjuntos conexos en R? tal que cada
tres conjuntos A; € F;,, Ay € Fi,, A3 € F;,, para 1 < i3 < ig < i3 < 6, tienen una linea
transversal, entonces hay una familia F; que puede ser cruzada por 3 lineas.

Ademas, nosotros también probamos el siguiente teorema. Sea K un conjunto compacto
y convexo en R%. Si Fy, Fy, F3 son familias finitas de trasladados de K tal que cada tres
conjuntos A; € Fi, Ay € Fy, A3 € F3 tienen una linea transversal, entonces hay una
familia F; que puede ser cruzada por 4 lineas.

Finalmente, presentamos nuevos problemas y conjeturas relacionados con estas versiones
coloreadas de los teoremas de Eckhoff.
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Chapter 1

Convex geometry

In this chapter we give an introduction to convex geometry. In Section 1.1 we see the
definitions and the notation that we use in this thesis. In Sections 1.2 and 1.3 we see some of
the classical theorems in convex geometry.

1.1. Convexity

Most of the results in this work are concerning convex sets. Intuitively, a convex set is a set
without holes. To formally define a convex set, we have to recall the definition of a segment.
For any two points a,b € RY, we define the segment [a,b] as the set

la,b) ={aa+pb:a,f >0,a+ 5 =1}.

Definition 1.1. A4 set C C R? is convex if for every two points a,b € C, the segment [a,b] is
contained in C'.

To give the first example of a convex set, let us recall that a hyperplane H in R? is a set
H={zecR?: u-z=adl,

for some v € R?\ {0} and a € R. The hyperplane H = {x € R? : u -z = a} define two half
spaces denoted as HF = {z € R? : v >a}and H- = {z € R? : u-z < a}. An immediate
observation is that the hyperplane H and the half spaces H' and H~ are convex sets.

For the second example of a convex set, we need the following definition.

Definition 1.2. Let x = (21,...,24),y = (Y1,-..,ya) € R? be two different points. Let j =
min{i : x; # yi}. If x; < y; we say that x is less than y with the lexicographical order and
denote it as x <jep y (if T; > yj, then © >ip y). For every two points x,y € R, we denote
T <iex Y if x is less than y with the lexicographic order or x = y.

Note that for any point ¢ € R?, the set C = {z € R? : x <, q} is a convex set.

Let A C RY. We say that

oar + -+ anag

15



16 CHAPTER 1. CONVEX GEOMETRY

is a convex combination of elements of A, if {a1,...,a,} CA, a1+ -+, =1and a; > 0 for
alli=1,...,n.

The convex hull of A, denoted by conv(A), is the set of all the convex combinations of
elements of A. Note that conv(A) is the smallest convex set that contains A.

In this work we focus on the combinatorial properties of convex sets. For instance, an
important observation is that the intersection of convex sets is also a convex set. We are
interested in the necessary conditions for a family of convex sets to have non-empty intersection.
Another goal is to impose hypotheses to a family to get weaker conclusions; for example,
sometimes the goal is to intersect the family by few points or few lines instead of having it
intersect. Now, we present the definitions and the notation we use in these geometric results.

An affine subspace is a set x + L, where z € R? is some vector and L is a linear subspace
of R?. A k-flat is an affine subspace of dimension k. For instance, a line is a 1-flat and an
hyperplane is a (d — 1)-flat in R

Let F be a family of sets in R%. A set T C R? is a transversal to the family F if every set
C € F intersects the set T. Additionally, if T is a k-flat and is transversal to the family F, we
say that T' is a k-flat transversal. For example, a line transversal is a line that intersects every
member of F, and a hyperplane transversal is a hyperplane that intersects every member of F.

Let F be a family of sets in R? and let n € Z*. We say that the family F can be pierced by
n points if there exist n points py, ..., p, € R? such that every set C € F intersects some of the
points py,...,p, (in other words, P = {p1,...,p,} is a transversal to the family F). We say
that the family F can be crossed by n lines if there exist n lines [y, ..., 1, € R% such that every
set C' € F intersects some of the lines Iy, ..., [, (in other words, [; U---Ul, is a transversal to
the family F).

Although the results in this thesis are concerning convex sets, sometimes convexity is not
sufficient to prove the results. For that reason there are results where we need additional
hypotheses. For example, sometimes the results hold only for families of translates of some
compact convex set or families of constant width sets.

Given K C R? we say that K + z (for some x € R?) is a translate of K. Given K C R?
compact convex set, for every direction u € S?!, there are two tangent hyperplanes [y, [y to
K such that [; and [, are orthogonal to u and the strip bounded by the two hyperplanes [, l5
contains K. The width of the strip is the width of K in the direction u (see Figure 1.1).

i ll
(x—y) u
ly

Y

Figure 1.1: Definition of the width of K in the direction wu.
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Formally, we define the width of K in the direction u as
max{(z —y)-u : z,y € K}.

We say that K C R? is of constant width if K has the same width in every direction.

Let K, L be two disjoint compact convex sets in the plane. It is known that there are exactly
four tangent lines to K and L (see [13] or [29, page 260]). These lines are called the inner or
outer common tangents of K and L (see Figure 1.2).

12 ll

Figure 1.2: The lines [; and [y are the inner common tangents of K and L, and the lines /3 and
l4 are the outer common tangents of K and L.

1.2. Carathéodory, Radon and Helly

In this section we state the three classical theorems in convex geometry: Carathéodory’s
theorem [3], Helly’s theorem [18] and Radon’s lemma [31]. We do not prove these theorems in
this section. Despite this, the reader interested in the proofs of the theorems in this section
can consult [29] and [5].

We begin with Carathédory’s theorem, proved by Carathédory [3] in 1907. According to
Barany (see [, page 9]), this theorem is probably the first result in combinatorial convexity.

Carathédory’s theorem states that if a point a € R? is in the convex hull of some set A C R,
then there exist at most d 4+ 1 points in A such that their convex hull contains the point a (see
Figure 1.3). In other words, in order to know if a point is in the convex hull of some set A we
only need to know if the point is in the convex hull of a finite subset (of size at most d + 1) of

A.

Theorem 1.3. (Carathéodory’s theorem) Let A C RY and a € conv(A). Then there exists
B C A with |B] < d+ 1 such that a € conv(B).

In Section 2.1 we show the Colorful Carathéodory theorem (proved by Barany [1] in 1982),
that implies the Carathéodory theorem (Theorem 1.3). Additionally, in Section 3.1 we give a
generalization of the Colorful Carathéodory theorem (proved by Holmsen, Pach and Tverberg
[21] in 2008 and independently by Arocha, Bardny, Bracho, Fabila and Montejano [1] in 2009).
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Figure 1.3: In the plane, Caratheodory’s theorem states that if a point is in the convex hull of
some set, of points, then the point is in the convex hull of at most 3 points.

Now, we shall see Helly’s theorem, which is probably the most famous theorem in convex
and discrete geometry. According to Barany (see [5, page 29]), Helly discovered his theorem in
1913, but he did not publish it until 1923 [18] due to the First World War.

Helly’s theorem states that if we have a finite family of convex sets in R? such that every
d + 1 or fewer of them have a non-empty intersection, then the whole family has a non-empty
intersection (see Figure 1.4). In other words, Helly’s theorem states that we only need informa-
tion concerning the intersection of finite subfamilies of size d + 1 in order to know if the whole
family has a non-empty intersection.

Figure 1.4: In the plane, Helly’s theorem states that if a family has empty intersection, then
there are three sets in the family with empty intersection.

Theorem 1.4. (Helly’s theorem). Let F = {C1,Cy,...,C,} be a finite family of convez sets in
R such that for every I C {1,2,...,n} with |I| < d+1, the intersection (,.; C; is non-empty.
Then (\F # 0.

In Section 2.2 we show the Colorful Helly theorem (proved by Lovéasz in 1973), that implies
Helly’s theorem. Additionally, in Section 3.2 we give a generalization of the Colorful Helly
theorem (proved by Martinez-Sandoval, Rolddn-Pensado and Rubin [28] in 2020).

Note that Helly’s theorem holds for finite families, however Helly’s theorem does not hold
for infinite families as we see in Example 1.5.
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Example 1.5. For any i € Z*, let H;" be the half space defined by the equation xy > i. Let
F ={H}icgr. Foriy <iy < --- <igy1 positive integers, we have that

HfnH'n---nH! =H" +#0,

d+1 1d+1

then the family F satisfies the hypothesis of Helly’s theorem (Theorem 1.4). However, (\F = 0.

Despite this, Helly’s theorem is also true for infinite families if we assume that the sets are
compact (see [5, Theorem 7.3] or [29, Theorem 1.3.3]).

Theorem 1.6. (Infinite Helly theorem) Let F = {C; : i € J} be a infinite family of compact
convex sets in R such that for every I C J with |I| = d + 1, the intersection (\,c; C; is
non-empty. Then (F # 0.

In fact, although in Helly’s theorem (Theorem 1.4) we do not need the sets to be compact, we
can assume that the sets are compact without losing generality. Indeed, if F = {C},Cs, ..., C,}
are convex sets satisfying the hypothesis of Theorem 1.4 and we denote Cr = (,.; Cj, then for
each I so that C; # (), we can choose p; € C7. Then, let

K;=conv({p; : C; #0, i € I}).

We notice that the sets K; are compact convex sets satisfying the hypothesis of Theorem 1.4 and
K; C C;. Hence, if (_, K; is non-empty, (._, C; is non-empty. Therefore, in Helly’s theorem
(Theorem 1.4) we can assume without loss of generality that the sets are also compact.

On the other hand, we have a connection between intersections of convex sets and intersec-
tions of half-spaces.

Theorem 1.7. Let Cy,...,C, be convex sets in R, with n > 2. Then (i, Ci = 0 if and
only if there are hyperplanes Hy, ..., H, such that the closed half-spaces Hi ..., HI satisfy
C; C H" for alli and N, H = 0.

The proof of Theorem 1.7 can be consulted in [5, page 30]. The particular case when n = 2
is a very useful lemma in discrete geometry and is known as the separation theorem.

We finish this section with Radon’s lemma. In 1921, Radon [31] gave an elementary and
beautiful proof of Helly’s theorem (Theorem 1.4). The idea was to take a point in the inter-
section of every subfamily of size d + 1, then Radon studied the combinatorial properties of
the points in order to prove Helly’s theorem. In particular, Radon [34] proved the following
theorem (see Figure 1.5).

Theorem 1.8. (Radon’s theorem). Let A be a set of d+ 2 points in RY. Then there exists two
disjoint subsets Ay, Ay C A such that conv(A;) Nconv(Ay) # 0.

In Section 2.3 we see a Colorful Radon theorem (by Lovész, see [2]) and a proof by Soberén
[37], which is very similar to the proof of Radon’s lemma.
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Figure 1.5: The two examples of Radon’s theorem in the plane.

1.3. Transversals

In Section 1.2 we saw Helly’s theorem (Theorem 1.4) which states that a finite family of
convex sets in R% has non-empty intersection if each d + 1 sets of the family have non-empty
intersection. A natural question is whether we have a similar conclusion if in the hypothesis
we only have that each d sets of the family have non-empty intersection. A first answer is the
following Proposition.

Proposition 1.9. Let F be a finite family of convex sets in R such that the intersection of
every d sets in F is non-empty. Then F has a line transversal.

Sometimes, mathematicians restrict the results to some families and obtain stronger results
for these families. For instance, Grunbaum [10] (in 1959) proved the following theorem for
families of homothets of a convex set.

Theorem 1.10. For any integer d > 1 there exists an integer ¢ = ¢(d) such that the following
holds. If F is a finite family of homothets of a convex set in R? and any two members of F
have non-empty intersection, then F can be pierced by ¢ points.

The special case of circles in the plane was solved by Danzer [10] (in 1956, but not published
until 1986).

Theorem 1.11. Let F be a finite family of circles in R? such that the intersection of every 2
sets in F is non-empty. Then F can be pierced by 4 points.

In addition, Karasev [23] (in 2000) proved the following theorem for families of translates
of a compact convex set in the plane (in fact, Karasev [21] also proved similar results in higher
dimensions).

Theorem 1.12. Let K be a compact convex set in R%. Let F be a finite family of translates
of K such that the intersection of every 2 sets in F is non-empty. Then F can be pierced by 3
points.

It is also known (see [17, page 7]) the following result concerning rectangles with sides
parallel to the coordinate axes in the plane.

Theorem 1.13. Let F be a finite family of rectangles with sides parallel to the coordinate axes
in R? such that the intersection of every 2 sets in F is non-empty. Then F # 0 (in other
words, F can be pierced by 1 point).
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In Section 3.2 we see colorful versions of Proposition 1.9. In Section 4.2 we see colorful
versions of Theorems 1.10, 1.11, 1.12 and 1.13.

Proposition 1.9 shows that we can weaken the hypothesis of Helly’s theorem (Theorem 1.4)
and obtain interesting results regarding transversals. Now, we want to answer what conclusions
we can obtain if now the hypothesis concerns line transversals (instead of information concerning
intersections).

Let F be a family of sets in the plane. We say that the family F has the property T'(r)
if every r sets in F have a line transversal. Motivated by Helly’s theorem (Theorem 1.4), we
wonder whether there exists r € Z* such that for any finite family F (of convex sets) in the
plane, if the family F has the property T'(r), then F has a line transversal. However, Santal6
[35] (in 1940) and Danzer [9] (in 1957) observed that for any integer n > 3 there is a family of
n convex sets in the plane satisfying the property 7(n — 1) while the family does not have a
line transversal.

Even though a family satisfying the property T'(r) does not necessary have a line transversal,
we wonder if such families can be crossed by few lines. In 1969, Eckhoff [ 1] proved that any
finite family of convex sets in the plane satisfying the property 7'(4) can be crossed by 2 lines.

Theorem 1.14. Let F be a finite family of connected sets in R?. If every four sets in F have
a line transversal (in other words, F has the property T'(4)), then the family F can be crossed
by 2 lines (the lines can actually be chosen to be orthogonal).

The following question was if there exists n € Z* such that any finite family (of convex
sets) in the plane satisfying the property T'(3) can be crossed by n lines. In 1973, Eckhoff [12]
gave an example of a finite family of compact convex sets in the plane satisfying the property
T'(3) and the family cannot be crossed by 2 lines. Fortunately, in 1974, Kramer [20] proved
that any finite family of convex sets in the plane satisfying the property 7'(3) can be crossed by
5 lines. In 1993, Eckhoff [13] proved that actually the finite families of convex sets in the plane
with the property 7'(3) can be crossed by 4 lines. So during several years an open question was
if such families can be crossed by 3 lines. In 2021, McGinnis and Zerbib [31] proved that any
finite family of connected sets in the plane that satisfies the property 7'(3) can be crossed by 3
lines, and the problem is over.

Theorem 1.15. Let F be a finite family of connected sets in R?. If every three sets in F have
a line transversal (in other words, F has the property T(3)), then the family F can be crossed
by 3 lines.

It is known that Theorems 1.14 and 1.15 are also true for infinite families if we assume that
the sets are compact (see [11]).

In addition, in Theorems 1.14 and 1.15 we can assume that the sets are compact and we
do not lose generality. This is because for a finite family F = {A;, As, ..., A, } satisfying the
hypothesis of Theorem 1.15 (or Theorem 1.14) we define another family of compact sets as
follows. For every three sets in the family F we choose a line transversal for these sets. Then,
for every set in the family F and every one of these lines that intersects the set, take a point
in the intersection of the set and the line. Let X be the set of all these points. Note that the
family

G ={conv(4;NX) : A € F}
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of compact sets satisfies the hypothesis of Theorem 1.15 (or Theorem 1.14). Besides, for each
A; € F, we have that conv(A; N X) C conv(A4;). Hence, if the family G can be crossed by few
lines, F can also be crossed by few lines. Therefore, in Theorems 1.14 and 1.15 we can assume
without loss of generality that the sets are also compact.

In Section 4.4 we prove colorful versions of Theorems 1.14 and 1.15, which are generalizations
of these theorems. The main tools to prove our results (the colorful versions of Theorems 1.14
and 1.15) are the Colorful KKM theorem (Theorem 4.4 in Section 4.1) and the following lemma.
In fact, the following lemma has been very useful to prove theorems concerning line transversals
in the plane, in particular was used in [26] and [13].

Lemma 1.16. Let Cy, Cy, Cy C R? be convex sets. The following two conditions are equivalent:
(i) There is no line transversal for Cy, Cy, Cs.
(i) For each i € {1,2,3}, the set C; can be strictly separated by a line of U#i Cj.

In fact, Lemma 1.16 is also true in arbitrary dimension (proved by Goodman, Pollack and
Wenger in 1996 [15]), although we do not use it in this work.

Lemma 1.17. Let C,,Cs,...,Cyyq C R be convex sets. The following two conditions are
equivalent:

(i) There is no hyperplane transversal for C1,Cy, ..., Cqyq.

(ii) For each non-empty I C {1,2,...,d+ 1}, the sets |J,c; C;i can be strictly separated by a
hyperplane of U;¢; C;-

Furthermore, Goodman, Pollack and Wenger proved the following stronger result concerning
k-flats.

Lemma 1.18. Let C1,Cs,...,Ciia C RY be convex sets. The following two conditions are
equivalent:

(i) There is no k-flat transversal for Cy,Csy, . .., Cyia.

(ii) For each non-empty I C {1,2,...,k+2}, the sets |J;,c; C; can be strictly separated by a
hyperplane of Ujgj C;.
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Colorful theorems

In this chapter we see generalizations of the classical theorems in convex geometry, which
are known as colorful theorems. According to Barany (see [, page 49]), Lovéasz proved the
Colorful Helly theorem in 1973, although he did not publish it. In 1982, Barany [/] proved
the Colorful Carathéodory theorem and gave another proof of the Colorful Helly theorem. In
addition, Lovész proved a Colorful Radon theorem and his proof was published in [2]. In the
next sections we prove these colorful theorems by introducing the ideas of the proofs in low
dimensions.

2.1. Colorful Carathéodory

Imagine we have red points and blue points in the real line. Suppose that the convex hull
of the red points contains the origin and the convex hull of the blue points also contains the
origin (see Figure 2.1). Since the convex hull of the red points contains the origin, there must
be a negative red point and a positive red point. Analogously, there must be a negative blue
point and a positive blue point. Therefore, we can take a negative red point and a positive blue
point and the convex hull of them also contains the origin. If we have a red point and a blue
point we say that the segment joining these two points is a rainbow segment. We can notice
that we proved that there is a rainbow segment containing the origin. In fact, if now we take
a negative blue point and a positive red point, then the convex hull of them also contains the
origin. Therefore, there are at least two rainbow segments containing the origin.

@ ® @ ® *—& @ @ ®

0,

Figure 2.1: An example of blue points containing the origin and red points containing the
origin.

A natural question is if we have similar results in higher dimensions. Let Ay, Ao, ..., A, be
finite point sets in R?. We say that 7' C |J;"; A; is a rainbow set and conv(T) is a rainbow
simplex if |[T'NA;| <1 for each 1 <47 < n. If we suppose that a € (;_, conv(4;) for some point
a € R?, the question is if there are rainbow simplexes containing the point a. For example, we
have the following result in the plane.

23
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Proposition 2.1. Let A;, Ay, As be finite point sets in R? and a € R? so thata € ﬂ?zl conv(A;).
Then, for each a3y € Ay, there exist ay € Ag,a3 € Az so that a € conv({ay,as,as}). In
particular, there are at least as many rainbow simplexes containing a as the cardinality of A;.

Proof. Let a; € A;. Since a € conv(Ay), by the 2-dimensional case of Carathéodory’s theorem
(Theorem 1.3), there are three points by, be,b3 € Ay such that a € conv({by,bs,b3}). Set
B = {by, b, bs}.

Let [ be the line through a; and a. Denote by {* and [~ the closed half-planes bounded by
. By the pigeon-hole principle one of the half-planes bounded by [ contains at least 2 points
of B, without loss of generality [T contains at least 2 points of B. Since a € conv(B), then [~
contains at least 1 point of B. Without loss of generality, by, by are in [T and b3 is in [ ™.

For any ¢ = 1,2,3, let I; be the line trough b; and a, and let [ be the closed half-plane
bounded by /; that does not contain a; (see Figure 2.2). Let Ry = I NI~, Ry = I NI,
Ry =15 NIt and Ry =R\ (UL, R)).

aq bl

Figure 2.2: Ilustration for the proof of Theorem 2.1.

If AsN (Uf:1 R;) = (), then A3 C R4 and hence Az does not contain the point a, a contra-
diction. Otherwise, we can assume that Az N ({J>_, R;) # 0. Then there is j € {1,2,3} such
that A3 N R; # 0.

Let ¢; € A3 N R;. Therefore, conv({ay, bj,c;}) is a rainbow simplex that contains a. O
Note that we have the following reformulation of Proposition 2.1 using only 2 colors.

Proposition 2.2. Let Ay, Ay be finite point sets in R* and a € R? so that a € ();—, conv(4;).
Then, for each x ¢ U?Zl A;, there exist a; € Ay, as € Ay so that a € conv{z,ay,as}.

We have a similar result in arbitrary dimensions and it is known as the Colorful Carathéodory
theorem made by Bérdny [1] in 1982. The idea of the proof is to use the extremal principle.

Theorem 2.3. (Colorful Carathéodory). Let Ay, As, ..., Ags1 be finite point sets in RY and
a € R? so that a € flill conv(A;). Then there exist a; € Ay, a9 € Ag, ... aq:1 € Agi1 so that
a € conv{ay,as,...,a4.1}.

Proof. Let T' = {ay,as,...,a4+1} be a rainbow set (with a; € A; for every i = 1,...,d+ 1)
such that the distance of conv(7T) to a is the smallest possible. If the distance of conv(T) to a
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is 0, then a € conv(7T') and we are done. Otherwise, we assume that the distance of conv(7’) to
a is greater than 0 in order to get a contradiction.

Let p € conv(T") be the point of conv(7") closest to a. Let H be the hyperplane containing
p and orthogonal to the segment [a, p], and denote by H* the closed halfspace bounded by H
and containing a. Let

B(a,p) ={z €R" : [la—al <lla—p|}

be the open ball centered at a through p (see Figure 2.3).

as

b

Figure 2.3: Illustration for the proof of Theorem 2.3 (in the plane).

We claim that conv(7') C H—, where H™ is the closed halfspace bounded by H which does
not contain a. Indeed, if there exists y € conv(T) N (H™ \ H), then the segment [p,y] meets
B(a, p) at a point q. Note that ¢ € B(a,p) is a point in conv(7’) closer to a than p, contradicting
that p € conv(T) is the point of conv(T") closest to a. Then conv(T) C H™.

Since conv(T') C H~, we have that p € H Nconv(T) = conv(H NT). By the Carathéodory
theorem (Theorem 1.3) in dimension d — 1, there exist at most d points in 7'N H such that the
convex hull of them contains p. Without loss of generality,

p € conv({ay,as,...,aq}).
Since a € conv(Agi1), then there exists b € Agyy N(HT\ H). Let
S ={ay,aq9,...,a4,b}.
Since p € conv({ay, as, ..., aq}), then the segment [b, p| is contained in conv(S). Note that [b, p]

meets B(a,p) at a point r, then r € B(a,p) is a point in conv(S) closer to a than p. Hence
conv(S) is a rainbow simplex closer to a than conv(7), a contradiction. O

Note that Theorem 2.3 implies Theorem 1.3. Indeed, if A C R? and a € conv(A), then the
sets A; = Afori=1,...,d+ 1 satisfy the hypothesis of Theorem 2.3, thus there exist at most
d 4+ 1 points in A such that their convex hull contains the point a.



26 CHAPTER 2. COLORFUL THEOREMS

2.2. Colorful Helly

Imagine we have red intervals and blue intervals in the real line. Suppose that every red
interval and every blue interval have non-empty intersection. Then we want to prove that either
the red intervals have non-empty intersection or the blue intervals have non-empty intersection
(see Figure 2.4). We begin this section with two different proofs of this fact.

by by b3 b4 by bg

[ [ [ [\ [ [ ) A V)
\ \ \ N \ \ ) ) ) J )
1 () Ts T3 T6 T4

Figure 2.4: An example of three red intervals, (ry,73), (r3,74), (75, 7¢), and three blue intervals,
(b1,b2), (b3, by), (b5, bs), such that every red interval intersect every blue interval. In this example
the blue intervals have non-empty intersection.

In the first proof we use the 1-dimensional case of Helly’s theorem. If every two red intervals
have non-empty intersection, then by Helly’s theorem (Theorem 1.4) the red intervals have
non-empty intersection. Otherwise, there are two disjoint red intervals (ry, ), (r3,7r4), with

rp < ry < r3 < ryq. Since every blue interval intersects the intervals (r1,73), (3, 74), then
To + T3

is in every blue interval. Therefore, the blue intervals have non-empty intersection.

In the second proof we do not use the 1-dimensional case of Helly’s theorem, however it is
less intuitive. The idea is to use the extremal principle. For every interval (xq,x2) (either red
interval or blue interval), we consider its minimal point with the lexicographic order, that is
the point z;. Let X be the set of all the points which are the minimal point of some interval
(either red interval or blue interval). In other words,

X ={z1 € R: there is x9 € R such that (x1,x2) is either a red interval or a blue interval}.

Let + = max X. Without loss of generality, we assume x is the minimal point of some red
interval (z,y). We claim that z is in every blue interval. Let (by,by) be any blue interval.
Since = max X, then b; < z. In addition, the intervals (b, by) and (z,y) have non-empty
intersection, then by > x. Therefore, x € (by,by) and the blue intervals have non-empty
intersection.

As in the last section, we have a similar result in arbitrary dimensions and it is known as the
Colorful Helly theorem made by Lovész (see [1] and [5, page 49]). Let Fi,...,F, be families
of convex sets in R?. We say that F C I, F; is a rainbow subfamily if |F N F;| <1 for each
1 <i < n. The Colorful Helly theorem states that if every rainbow subfamily of size d 4+ 1 has
non-empty intersection, then there is some family F; with non-empty intersection. The proof
is very similar to the second proof that we saw of the 1-dimensional case, in particular, we use
the extremal principle.

Theorem 2.4. (Colorful Helly). Let Fi,...,Fas1 be finite families of convex sets in R? such
that for every choice of sets Cy € Fi,...,Car1 € Fai1, the intersection ﬂf;l C; is non-empty.
Then there exists i € {1,...,d+ 1} such that (\F; # 0.

Proof. We can assume, without loss of generality, that the sets in the families F; are compact
(see Section 1.2). Then for every rainbow subfamily of size d, we consider the lexicographically
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minimum of its intersection. We take a rainbow subfamily of size d such that the lexicograph-
ically minimum of its intersection is maximum among all the lexicographically minimum of
intersections of rainbow subfamilies. Without loss of generality, we assume that

{017027 o )Cd}

is a rainbow subfamily, with C; € F; for each 1 < ¢ < d, and such that the lexicographically
minimum p of ﬂle C; is maximum. We claim that p € (| Fai1.

Let Cyyq € Fyi1 be any convex set in the family Fy. 1. By hypothesis, ﬂf;rll C; # 0, then
let ¢ be the lexicographically minimum of ﬂf;rll C; (note that in particular ¢ € Cyyq). We will
prove that p = q.

C Cy

Figure 2.5: Illustration for the proof of Theorem 2.4 (in the plane).

Since ﬂjill C; C ﬂ?zl C;, then p <. q. In order to prove that ¢ <., p, we define the
convex set C' = {z € R : = <., q} (see Figure 2.5). Then

F = {C].? .. .,Cd,cd+17c}

is a family of convex sets such that (| F = ﬂfill C; N C = (. By Helly’s theorem (Theorem
1.4) and since ﬂf;“ll C; # 0, we have that there is a subfamily G of {C1,...,Cy4, Cyi1} of size
d such that (VG N C = (. Let r be the minimum lexicographically of (G, then ¢ <;., r. By

the maximality of p, we have that r <, p. Thus, ¢ <z 7 <ier p and p = ¢ (note that then
G ={C1,Cy,...,Cq}). Therefore, p € (| Fyr1 and (| Far1 # 0. O

Note that Theorem 2.4 implies Theorem 1.4. Indeed, if F is a family of convex sets satisfying
the hypothesis of Theorem 1.4, then the families F; = F for i« = 1,...,d + 1 satisfy the
hypothesis of Theorem 2.4, thus (| F # 0.

2.3. Colorful Radon

The result of this section is known as the colorful Radon theorem and was proved by Lovéasz
(see [2]) using the Borsuk-Ulam theorem [3]. The ingenious proof presented here is by Soberén
[37] and is very elemental.

Theorem 2.5. (Colorful Radon) Let Fy,...,Fy1 be sets of 2 points each of RY. Then the
union Uf:ll F; can be partitioned into 2 sets Ay, Ay such that |A; N Fj| = 1 for each i,j and
conv(A;) Nconv(As) # 0.
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Figure 2.6: An example of the colorful Radon theorem in the plane.

Proof. Let F; = {w;,y;} be a set of two points in R?, for each 1 < i < d+1. Since {z; —y1, 72 —

Yo, .., Tgy1 — Yar1} 18 a set of d + 1 points in RY, then the d + 1 vectors x; — y; are linearly
dependent. Then there exists d 4+ 1 real numbers ay,...,aq11 € R such that not all of them
are 0 and

d+1

Z Oéi(xi - yi) = 0.
i=1

If there is a; < 0, we relabel the names of the points z;,y; and change the sign of «;, then we
can assume that all the o; are non negative. In addition, since each a; > 0 and not all of them
are 0, we can use scalar multiplication and so we can also assume that Zfill o; = 1. Then we
have the following convex combinations:

d+1 d+1
b= Z Q;x; = Z@z‘yi-
i=1 i=1
Therefore, A; = {x1,...,x441} and Ay = {y1, ..., y4+1} satisfy that we want with
p € conv(A;) Nconv(Ay).

]

The proof of Soberén is very similar to the proof of Radon’s theorem (Theorem 1.8), despite
that no one had thought of this clever proof.
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Very colorful theorems

Pach, Holmsen and Tverberg [21] (in 2008) and independently Arocha, Barany, Bracho,
Fabila and Montejano [1] (in 2009) proved a generalization of the Colorful Carathéodory the-
orem (Theorem 2.3). In 2020, Martinez-Sandoval, Roldédn-Pensado and Rubin [28] proved a
generalization of the Colorful Helly theorem (Theorem 2.4).

In this chapter we prove these generalizations of the Colorful Carathéodory theorem and
the Colorful Helly theorem.

3.1. Colorful Carathéodory-type theorems

In Section 2.1 we proved Proposition 2.1, which is stronger than the 2-dimensional Color-
ful Carathéodory theorem (Theorem 2.3). The generalization of Proposition 2.1 to arbitrary
dimensions is also true. In other words, if A;, As, ..., Ay, are finite point sets in R? such that
a € ﬂ‘jill conv(A;), then for each a; € A;, there is a rainbow set T' = {aq, as,...,aq41} such
that a € conv(T). In particular, there are at least as many rainbow simplexes containing a as
the cardinality of A;. This result is stronger than the Colorful Carathéodory theorem (Theorem
2.3).

Proposition 3.1. Let Ay, Ay, ..., Aq1 be finite point sets in R? and a € R? such that a €
ﬂf:ll conv(A;). Then, for each a; € Ay, there exist ay € As a3 € As, ..., aq41 € Agy1 so that

a € conv({ay,as,...,agi1}).

Notice that when |A;| =d+1foralli=1,... ,d+ 1, then there are at least d + 1 rainbow
simplexes containing a. Moreover, Sarrabezolles [30] (in 2015) proved that, in this case, there
are at least d? + 1 rainbow simplexes containing a.

In this section, we prove the following stronger result (Theorem 3.2) found by Arocha,
Béaréany, Bracho, Fabila and Montejano [1] and independently by Holmsen, Pach and Tverberg
[21]. First, we see the proof of Theorem 3.2 by Arocha, Barany, Bracho, Fabila and Montejano
[1]. Then, we prove that Theorem 3.2 implies Proposition 3.1.

Theorem 3.2. Let Ai, Ay, ..., Agp1 be finite point sets in R? and a € R? such that a €
conv(A; U A;) foralll1 <i<j<d+1. Then there exist a; € Ay, a2 € Ao, ... 0441 € Ags1 S0
that

a € conv({ay,as,...,a4:1}).

29
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Proof. Let T = {ay,as,...,aq4+1} be arainbow set (with a; € A; for every i = 1,...,d+ 1) such
that conv(7') is closest to a among all the rainbow simplexes. If the distance of conv(T") to a
is 0, then a € conv(T") and we are done. Otherwise, we assume that the distance of conv(T") to
a is greater than 0 in order to get a contradiction.

Let p € conv(T") be the point of conv(7') closest to a. Let H be the hyperplane containing
p and orthogonal to the segment [a, p], and denote by H* the closed halfspace bounded by H
and containing a.

By the same arguments of the proof of Theorem 2.3 we have that conv(T) C H~ (where
H~ is the closed halfspace bounded by H which does not contain a) and p is in the convex hull
of at most d points in T'N H. Without loss of generality,

p € conv({ay,...,aq}).

If there exists b € Ag1 N (HT\ H), then conv({ai,...,asb}) is a rainbow simplex closer to
a than conv(T") (by the same argument of the last paragraph of the proof of Theorem 2.3),
contradicting the minimality of conv(7"). Hence Ay C H™.

Since Agr1 C H™ and a € conv(A;UA;) forall 1 <i < j <d+1,thenforeachi=1,...,d,
there is a point b; € A; such that b; € H \ H.

We claim that p is in the relative interior of conv({ay, ..., as}). We assume on the contrary
that p is in the convex hull of at most d — 1 points of {ay,...,aq}, without loss of generality
p € conv({ay,...,aqs_1}). Then conv({ai,...,aq_1,bq,aq:1}) is a rainbow simplex closer to
a than conv(T) (by the same argument of the last paragraph of the proof of Theorem 2.3),
contradicting the minimality of conv(T"). Thus, p is in the relative interior of conv({as, ..., aq}).

Let L; be the half-line starting at a and containing p. Let by, be the point such that
agi1,@,bgr1 are in the same line and |la — agy1]] = ||a — bay1]|. Since Ay; C H~, then
agr1 € H™ and by; € H'. Let Ly be the half-line starting at a and containing by, 1. Let
L = Ly U Ly (see Figure 3.1). The homotopy group II;_»(R%\ L) is non-zero and in fact, the
(d — 1)-dimensional simplex conv({ay,...,aq}) is an essential (d — 2)-cycle (because p is in the
relative interior of conv({a,...,aq})).

Figure 3.1: Hlustration for the proof of Theorem 3.2 (in the plane). In this example
conv({by, by, as}) is a rainbow simplex that contains a.
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Denote by E = {ey, ..., eq} the standard orthonormal basis of R?. The d-dimensional cross-
polytope is conv(E U —E). Let Q47! be the boundary of the d-dimensional cross-polytope.
Observe that a subset of d vertices of Q%! spans a facet if and only if it does not contain
antipodal points. For any ¢ € {1,...,d}, we color e¢; and —e; of the same color of a;. Then
every facet of Q971 is a (d — 1)-dimensional rainbow simplex. Let U be the interior of the facet
conv(E).

Let f: Q4 1\ U — R? be the piecewise linear map defined as follows. For i = 1,...,d, we
set f(e;) = a; and f(—e;) = b;. Then we extend f linearly. Note that f preserves colors, hence
f sends rainbow simplexes in rainbow simplexes.

By definition, f(E) = {a4,...,aq} and conv({ay,...,as}) is an essential (d — 2)-cycle of
[y o(RT\ L), then f(Q%1\ U) must intersect L. Let 0 = {21,..., 24} # E be a set of vertices
of Q%! such that conv(e) is a facet of Q41 \ U and L N conv(f(c)) # 0. Since every facet
of Q41 is a (d — 1)-dimensional rainbow simplex and f preserves colors, then conv(f(o)) is a
(d — 1)-dimensional rainbow simplex. Since L N conv(f (o)) # 0, we have that either

Lynconv(f(o)) #0 or Lynconv(f(o)) # 0.

If Ly Nconv(f(o)) # 0, then there exists a point ¢ € Ly N conv(f (o)) which is closer to a
than p. Hence the rainbow simplex conv(f(o) U ag41) is closer to a than 7', contradicting the
minimality of 7.

If Ly Nconv(f(o)) # 0, then conv(f(o) Uagyq) is a rainbow simplex that contains a. [

The following proposition is a reformulation of Proposition 3.1 and is a corollary of Theorem
3.2.

Proposition 3.3. Let Ay, Ay, ..., Ay be finite point sets in R and a € R? such that a €
ﬂle conv(A;). Then, for each x € R®\ Ule Ay, there exist a1 € Ay a9 € Ao, ... aq € Ay S0
that

a € conv({ay,as,...,aq4,2}).

Proof. Let x € R\ Ule A; and Ay = {x}. The sets Ay, Ay, ..., Ay, Agrq satisfy the hypoth-
esis of Theorem 3.2, then there exist a; € Ay,a0 € A, ..., aq € Ag,x € Agyq such that

a € conv({ay,as,...,aq,x}).

]

Let Ay, Ay, ..., Agp1 be finite point sets in R and @ € R?. The Colorful Carathéodory
theorem (Theorem 2.3) states that if a € ﬂf;rll conv(A;), then there is a rainbow simplex
containing a. Theorem 3.2 states that if a € conv(A4; U A;) for all 1 < i < j < d+ 1, then
there is a rainbow simplex containing a. A natural question is whether we only need that
a € conv(Ad, UA;UA,) forall 1 <i < j <k <d+1, to conclude that there is a rainbow
simplex containing a. However, the answer to this question is no. The counterexample is given

in Example 3.4 (see Figure 3.2).

Example 3.4. For each 1 <i<d—1, let A; = {e;, —e;}, where {ey,ea,...,eq} is the standard
basis of RY. Let Ag = {eq} and Aqy1 = {2eq}. The sets A1, Ay, ..., Aqy1 satisfy that the origin
is in the convexr hull of conv(A; U Aj U Ag) for all1 <i < j <k <d+ 1. However, there is
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no rainbow simplex containing the origin. Indeed, if the origin 0 was a convexr combination of
a rainbow simplex, then

0= o1a1 + -0+ Qg_1ag—1 + Qgeq + @d+12€d7

where a; € {e;, —e;}, for 1 <i<d—1. Thena; =as =+ =ag-1 =0 and ag + 20441 = 0.
However, ag + agr1 = 1 and agyqy > 0 (because it is a convexr combination), this contradicts
that ag + 2a411 = 0. Therefore, there is no rainbow simplex containing the origin.

262

—e1e ° eCq

0

Figure 3.2: The 2-dimensional case of Example 3.4.

Despite this, it is true that if we have d + 2 finite point sets A, Ay, ..., Agpo in R? (instead
of d + 1 finite point sets) such that a € conv(A; U A; U Ay) forall 1 <i < j <k <d+2, then
there is a rainbow simplex containing a. In general, Soberén [38] (in 2018) and Holmsen [19]
(in 2016) found the following result, which can be proved following the same arguments of the
proof of Theorem 3.2 (as was noted in [38]).

Theorem 3.5. Let Ay, As,..., A, be finite point sets in R?, with n > d + 1, and a € R?

such that a € conv (U,c; Ai) for all I C {1,...,n} with |I| = n —d+ 1. Then there exist
a1 € Ay,a9 € As,...,a, € A, so that

a € conv({ay,aq,...,a,}).

Another natural question is if in Theorem 3.2 there are several rainbow simplexes containing
a. However, Example 3.6 shows that it is possible to have only 1 rainbow simplex containing a
(see Figure 3.3).

Example 3.6. Foreach1 <i <d, let A; = {e;, —e;}, and let Agr1 = {(e1+ea+---+eq)}. The
sets Ay, Asg, ..., Aqr1 satisfy the hypothesis of Theorem 3.2, where a s the origin. However,

there is only 1 rainbow simplex containing the origin. Indeed, if the origin 0 is a convex
combination of a rainbow simplex, then

0=aia; + -+ agaq + agyi(er +ea + - +eq),

where a; € {e;,—e;}, for 1 < i < d. Then, for each 1 < i < d, agy1 € {a;, —a;}. Since
ag+- 4 ag =1 and a; >0 for everyi € {1,...,d+ 1}, then a; = agy =
for every i € {1,...,d}. Therefore,

conv({—ey, —ea,...,—€q,e1 + e+ -+ eq})

1 P — .
| and a; = —e;

1s the only raimbow simplex containing the origin.
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€1 + €9

Figure 3.3: The 2-dimensional case of Example 3.6.

3.2. Colorful Helly-type theorems

Motivated by Theorem 3.2, we could think that, in the Colorful Helly theorem (Theorem
2.4), there is a second color that can be pierced by few points. Unfortunately, that is false as
we see in Example 3.7.

Example 3.7. For each 1 <i <d, let F; be a set of hyperplanes orthogonal to the x;-axis, and
let Farr = {R9}. The families satisfy the hypothesis of the Colorful Helly theorem (Theorem
2.4) and the family Fy.1 is the family with non-empty intersection. Moreover, every family F;,
for 1 <i <d, needs an arbitrary large number of points in order to be pierced (see Figure 3.4).

Figure 3.4: The 2-dimensional case of Example 3.7.

Despite that it is not true that a second color can be crossed by few points in the Colorful
Helly theorem, the purpose of this section is prove that we can say something concerning the
remaining colors.

Let F,...,Fq41 be finite families of convex sets in RY such that for every choice of sets
Cy € Fi,...,Cqi1 € Fqy1, the intersection ﬂfill C; is non-empty. By the Colorful Helly theorem
(Theorem 2.4), there is a family with non-empty intersection, without loss of generality the
family F; has non-empty intersection.

We project the families Fy, F3, ..., Fqy1 to a (d — 1)-dimensional hyperplane H and, for
each i € {2,3,...,d+ 1}, let G; be the family of all the projections of sets in the family F;.
Note that the families Go, Gs, . . ., G441 satisfy the hypothesis of the (d — 1)-dimensional Colorful
Helly theorem in the hyperplane H, then all the sets in one of the families G, Gs, . . ., G411 have
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a common point, without loss of generality the sets in the family G, have a common point gs.
The line whose the projection is the point gs is a line transversal of the family F.

If now we consider the remaining d—1 families, projecting to a (d—2)-dimensional hyperplane
and applying the Colorful Helly theorem in dimension d — 2, we obtain that there is another
family with a 2-flat transversal. We can follow the same argument d times to say something
concerning all the families. We have proved the following proposition.

Proposition 3.8. Let Fi,..., Fsu1 be finite families of convex sets in R such that for every
choice of sets Cy; € Fi,...,Cyqs1 € Fgqu1, the intersection ﬂflill C; 1s non-empty. Then there
exists a permutation ™ € Syi1 such that for each i € {1,...,d + 1} the family Fr(i) has a
(1 — 1)-flat transversal.

We have the following reformulation of Proposition 3.8 using only d colors.

Proposition 3.9. Let Fy,...,F,; be finite families of convex sets in RY such that for every
choice of sets Cy € Fy,...,Cq € Fy, the intersection ﬂle C; is non-empty. Then there exists a
permutation m € Sy such that for each i € {1,...,d} the family Fr(i) has a i-flat transversal.

Note that Proposition 3.9 is a colorful version of Proposition 1.9.

Motivated by Proposition 3.8, a natural question is what additional consequences we can
obtain with the same hypothesis of the Colorful Helly theorem (Theorem 2.4). Let Fi,...,Fy
be finite families of convex sets in R satisfying the hypothesis of the Colorful Helly theorem. By
Theorem 2.4 we know that there is a family with non-empty intersection. Martinez-Sandoval,
Roldén-Pensado and Rubin [28] proved that either there is an additional family whose sets can
be pierced by few points or all the sets in the union of the d + 1 families can be crossed by few
lines.

Theorem 3.10. For each dimension d > 2 there exist numbers f(d) and g(d) (depending only
on the dimension) with the following property. Let Fi, ..., Fyr1 be finite families of conver sets
in R? such that for every choice of sets Cy € Fi,...,Cqs1 € Fay1, the intersection ﬂf:ll C;

is non-empty. Let i € {1,...,d+ 1} such that (\F; # 0 (by Theorem 2.4). Then one of the
following statements must also hold:

1. an additional family F;, for j € {1,...,d+ 1} \ {i}, can be pierced by f(d) points, or
2. the family Uflill Fi can be crossed by g(d) lines.
We have the following reformulation of Theorem 3.10 using only d colors.

Theorem 3.11. For each dimension d > 2 there exist numbers f(d) and g(d) (depending only
on the dimension) with the following property. Let Fi,...,Fq be finite families of conver sets
in RY such that for every choice of sets Cy, € Fi,...,Cq € Fy, the intersection ﬂ?zl C; is
non-empty. Then one of the following statements holds:

1. there is a family F;, for j € {1,...,d}, that can be pierced by f(d) points, or

2. the family Ule Fi can be crossed by g(d) lines.

Note that Theorem 3.11 is a strong colorful version of Proposition 1.9. Since the proof of
Theorem 3.11 is very involved, we only see the main ideas of its proof. In particular, we prove
the 2-dimensional case of Theorem 3.11. We begin with the following lemma that was proved
in [28] in order to prove Theorem 3.11.
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Lemma 3.12. Let A and B be finite families of convex sets in R? such that AN B # 0 for
every A € A and B € B. Then either

(1) NAF#D, or
(2) B can be crossed by d hyperplanes.

Proof. If A # 0, we are done. Otherwise, we assume that ().A = (. Then by Helly’s
theorem (Theorem 1.4) there are n convex sets Aj,..., A, € A, with 2 < n < d+ 1, such
that (;_; A; = 0. By Theorem 1.7, there exist n hyperplanes Hy, ..., H, such that the closed
half-spaces H;", ..., H, satisfy A; C H;" for all i and (),_, H;" = 0. We claim that the family
B can be crossed by the n — 1 hyperplanes Hy, H, ..., H, 1, where n — 1 < d (see Figure 3.5).

Figure 3.5: Hlustration for the proof of Lemma 3.12.

By contradiction, suppose that a set B € B does not intersect any of the hyperplanes H;,
fori =1,2,...,n — 1. Then B must be contained in an open region bounded by the n — 1
hyperplanes Hy, Ha, ..., H, 1, in other words, B C ()=} H; where * € {+, —}. By hypothesis,

A;NB # 0 foreach 1 <i<n—1, then B C (/' H;". Since N, H;" =0 and B c N, H;,

then BN H = (. Hence BN A, = (), contradicting the hypothesis. O

Applying Lemma 3.12 twice in dimension d = 2, we have that either one of the two families
has non-empty intersection or every one of the families can be crossed by 2 lines. Then as
a corollary of Lemma 3.12, Martinez-Sandoval, Roldan-Pensado and Rubin also proved that
the 2-dimensional case of Theorem 3.11 holds with f(2) = 1 and ¢(2) = 4. In Section 4.2
we improve the last result; we prove that the 2-dimensional case of Theorem 3.11 holds with
f(2)=1and g(2) = 2.

On the other hand, the following lemma [25] is a generalization of Lemma 3.12 and is the
main result needed to prove Theorem 3.11.

Lemma 3.13. For any 1 < k < d and m > 1 there exist numbers F(m,k,d) and G(m,k,d)
with the following property. Let A and B be finite families of convex sets in R? so that the
family

T(AB)={ANB:Ac A BeB

can be crossed by m k-flats. Then one of the following conditions is satisfied:
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1. A can be pierced by F(m,k,d) points, or
2. B can be crossed by G(m, k,d) (k— 1)-flats.

The proof of Lemma 3.13 is very sophisticated and can be consulted in [28]. Note that in
Lemma 3.13 the hypothesis that Z(.A, B) can be crossed by m k-flats implies that every two
sets A € A, B € B intersect, then the family Z(A, B) can be crossed by R?. Thus, by Lemma
3.12, the particular case of Lemma 3.13 in which £ = d and m = 1 holds with F(1,d,d) = 1
and G(1,d,d) < d.

We are now ready to prove Theorem 3.11. Before we see the rigorous proof, we will see the
idea of the proof. The idea is to apply Lemma 3.13 d — 1 times. For each 1 < i < d we define

d
I(Fiy.. . Fa) = {ﬂAj:Aj efj}.

j=i

First, we apply Lemma 3.13 (or Lemma 3.12) to the families A = F; and B = Z(F, . .., Fq).
If A = F) can be pierced by 1 point, we are done. Otherwise, the family B = Z(F, ..., Fy)
can be crossed by d hyperplanes. Then, in the case where the family B = Z(F, ..., F;) can be
crossed by d hyperplanes, we apply Lemma 3.13 to the families A = F, and B = Z(F3, ..., Fy).
Thus, A = F, can be pierced by F(d,d — 1,d) points or B = Z(F3,...,F,) can be crossed
by G(d,d — 1,d) (d — 2)-flats. In the first case we are done, in the second case we continue
applying Lemma 3.13 using the families Z(F;, ..., Fy). Following the same argument several
times we have that either there is a family that can be pierced by few points or the last family
(F4) can be crossed by few lines. Since the labeling of the families was arbitrary, we can choose
d different labelings such that every family is the last family in one of the labelings. Therefore,
there is a family that can be pierced by few points or all the families can be crossed by few
lines.

Proof of Theorem 3.11. Let Fi,..., F; be finite families of convex sets in R? satisfying the
hypothesis of Theorem 3.11. We set

1 fori=1,
M(i,d)=<¢ d fori=2,
GM(i—1,d),d—i+2,d) for3<i<d-1.

Since for every choice of sets Cy € Fy,...,Cy € F, the intersection ﬂle C; is non-empty, the
families A = F; and B = Z(F, ..., Fy) satisfy the hypothesis of Lemma 3.13. Then, A = F;
can be pierced by 1 point or B = Z(Fs, ..., Fy) can be crossed by M(2,d) = d hyperplanes. In
the first case we are done. Otherwise, we assume that none of the families F;, for 1 <: < d—1,
can be pierced by F(M(i,d),d — i+ 1,d) points, then applying d — 1 times Lemma 3.13, the
last family Fy can be crossed by G(M(d — 1,d),2,d) lines.

Applying the last argument to d different labelings such that every family is the last family
in one of the labelings, we prove Theorem 3.11 with

f(d) = max{F(M(i,d),d —i+1,d): 1 <i<d—1}, and
g(d)=d-G(M(d—1,d),2,d).
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Finally, Martinez-Sandoval, Rolddn-Pensado and Rubin [28] also proved that if f(d), g(d)
are numbers satisfying Theorem 3.11, then g(d) > (%w . In Section 4.2, we see the construction
of Martinez-Sandoval, Roldan-Pensado and Rubin in the plane that shows that if f(2), g(2) are
numbers satisfying the 2-dimensional case of Theorem 3.11, then g(2) > [2H] = 2.
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Chapter 4

Colorful theorems for line transversals

In this chapter we prove colorful theorems in low dimensions. Most of the results in this
chapter are our own, although there are also other people’s results in this chapter. Some of our
main tools are the KKM theorem and the Colorful KKM theorem. For that reason, in Section
4.1 we see the KKM theorem and the colorful KKM theorem. In Section 4.2 we improve the 2-
dimensional case of Theorem 3.11; in fact, we give the best numbers satisfying the 2-dimensional
case of Theorem 3.11. In Section 4.3 we see an open problem proposed in [28], some ideas that
have been used to prove particular cases and we give an idea in order to prove the general case
of the open problem. In Section 4.4 we prove colorful versions of Theorems 1.14 and 1.15, we
also present new problems and conjectures.

4.1. KKM theorem

There are a lot of problems in discrete mathematics that have been solved using tools from
topology. For instance, the Borsuk-Ulam theorem [3] and the KKM theorem [25] are some of
the results from topology most used to solve problems from discrete mathematics. The reader
interested in the history of applications of topology in discrete mathematics can consult [30].
In this section we state the KKM theorem and some of its equivalent theorems.

In 1929, Knaster, Kuratowski and Mazurkiewicz [25] proved the called KKM theorem. Let

n+1
An = {(ffl,...,xn_,_l) & Rn+1 L X Z 07 Z:}jz = 1}
i=1
denote the n-dimensional simplex in R™! that is the convex hull of {e;, ..., e,.1}, the standard

orthonormal basis of R**!.

Theorem 4.1. (KKM theorem). Let {O1,0s,...,0n41} be an open cover (or closed cover) of
A" such that:

a) e; € O; for eachi € {1,2,...,n+ 1}, and
b) conv{e; i € I} CU;; O; for each I C {1,2,...,n+1}.
Then (1] O; # 0.

39
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The KKM theorem is equivalent to Sperner’s lemma [10] and Brouwer’s fixed point theo-
rem [7]. In fact, Knaster, Kuratowski and Mazurkiewicz [25] proved the KKM theorem using
Sperner’s lemma (a combinatorial lemma). In 1994, Krasa and Yannelis [27] gave another

elementary proof of the KKM theorem using Brouwer’s fixed point theorem.

Theorem 4.2. (Sperner’s lemma). Let A be a n-dimensional simplex with vertices vy, vy, ..., Vpi1.
Let T be a triangulation of A and let

FiV(T) — {1,2,...,n+1}
be a coloration such that:
a) f(v;) =i foreach 1 <i<n+1, and
b) if v € conv({v; : i € I}), then f(x) € I, for each I C {1,2,...,n+ 1}.

Then there are an odd number of rainbow simplexes of the triangulation T of dimension n. In
particular, there is at least one rainbow simplex in the triangulation.

Theorem 4.3. (Brouwer’s fized point theorem). FEwvery continuous function f : B* — B¢,
where B¢ = {x € R? : ||z|| < 1} is a closed ball, has a fized point; that is, there exists x € BY
such that f(x) = x.

In 1984, Gale [11] proved a colorful version of the KKM theorem (Theorem 4.1).

Theorem 4.4. (Colorful KKM theorem). Fori,j =1,...,n+1 let Ozj be open sets (or closed
sets) such that for every j, {O1,0%,...,0} 1} is an open cover (or closed cover) of A™ such
that:

a) e; € Of for each i € {1,2,...,n+ 1}, and
b) conv{e; :i €I} C Uielogf for each I C {1,2,...,n+ 1}.
Then there exists a permutation ™ € S,41 such that ﬂ?jll O:(i) # 0.

Note that Theorem 4.4 implies Theorem 4.1. Indeed, if O = {01, 03,...,0,41} is an open
cover satisfying the hypothesis of Theorem 4.1, then the open covers O7 = O for j =1,...,n+1
satisfy the hypothesis of Theorem 4.4 and thus (/2] O; # 0.

)

Recently, Soberén [39] proved the following generalization of Theorem 4.4.

Theorem 4.5. Let k < n be positive integers. Fori=1,... kandj=1,...,n, let Og be open
sets (or closed sets) such that for every I € ( ] ), the family

n—k+1
{Uo{,...,UOg}
jer jel

is an open cover (or closed cover) of A*~! that satisfies the hypothesis of Theorem j.1. Then
there exists an injective function 7 : [k] — [n] such that (i, OF WL,

Notice that we recover Theorem 4.4 from Theorem 4.5 when k& = n.
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4.2. A colorful Helly-type theorem in R?

In Section 3.2 we saw that Martinez-Sandoval, Roldédn-Pensado and Rubin [28] proved that
the 2-dimensional case of Theorem 3.11 holds with f(2) = 1 and g(2) = 4. In this section, using
the KKM theorem (Theorem 4.1), we improve this result. We prove that the 2-dimensional
case of Theorem 3.11 holds with f(2) =1 and ¢(2) = 2.

We begin with the following particular case of our result which has a very elementary proof.

Theorem 4.6. Let A, B be finite families of rectangles with sides parallel to the coordinate
azes in R2. Suppose that AN B # 0 for every A € A and B € B. Then one of the following
statements holds:

1. one of the families A or B can be pierced by 1 point, or

2. the family AU B can be crossed by 2 lines (the lines can actually be chosen to be orthog-
onal).

Proof. We project all the rectangles in the family A U B to the = axis, then we obtain two
finite families of intervals satisfying the hypothesis of the 1-dimensional Colorful Helly theorem
(Theorem 2.4). Thus one of the families, A or B, has a line transversal orthogonal to the x
axis. Without loss of generality, the family 4 has a line transversal {; orthogonal to the x axis.

Now we project all the rectangles in the family A U B to the y axis and, by the same
argument, one of the families, A or B, has a line transversal [y orthogonal to the y axis. Note
that [y is orthogonal to l. Let p be the point intersection of the lines [; and Iy (see Figure 4.1).

Y I

Figure 4.1: Hlustration for the proof of Theorem 4.6.

First we suppose that [, is transversal to .A. Then [; and [y are line transversals to the
family A. Since A is a family of rectangles with parallel sides to the axes and [y, [, are parallel
to the axes, then every rectangle in the family A contains the point p.

Now we suppose that [, is transversal to B. Then [; is transversal to the family A and [,
is transversal to the family B. Therefore, the family A U B can be crossed by two orthogonal
lines (I; and [y). O

Note that we proved Theorem 4.6 using only tools from combinatorial geometry. To prove
the general case we also need tools from topology. We prove that the 2-dimensional case of
Theorem 3.11 holds with f(2) = 1 and ¢g(2) = 2. In other words, we prove that if A, B are
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finite families of convex sets in R? such that AN B # () for every A € A and B € B, then either
one of the families A or B can be pierced by 1 point or the family A U B can be crossed by 2
lines.

The geometrical idea to prove our result is the following. If there are two lines crossing
the family A U B, we are done. Otherwise, for any two lines in the plane with non-empty
intersection there is a set in the family A U B contained in the interior of one of the 4 regions
bounded by the two lines. Then, by using the KKM theorem (Theorem 4.1) and following ideas
similar to the ones used in [31], we prove that, in this case, there are two lines Iy, [y with point
intersection p and four sets C4, Cy, C3, Cy in the same family (either A or B) so that every set
C; is contained in the interior of one of the 4 regions bounded by the lines [1, [5, each set C; in
a different region (see Figure 4.2). Using the convexity, we prove that the point p is contained
in every set in the other family.

Figure 4.2: If there are no two lines crossing the family A U B, then there are two lines Iy, [5
with point intersection p such that p € (A or p € N B.

Theorem 4.7. Let A, B be finite families of convex sets in R? such that AN B # () for every
A€ A and B € B. Then one of the following statements holds:

1. one of the families A or B can be pierced by 1 point, or
2. the family AU B can be crossed by 2 lines.

Proof. We can assume, without loss of generality, that the sets in both finite families are
compact (see Section 1.2). Hence, we may scale the plane such that every set in AU B is
contained in the unit disk. Let f(¢) be a parametrization of the unit circle defined by

f(t) = (cos(2mt), sin(27t)).

To each point z = (xy,...,24) € A% we associate 4 points on the unit circle given by

filz) = f (Z%) :
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for 1 < i < 4. Let hi(z) = l3(x) = [fi(z), f3(z)] and l(z) = l(z) = [f2(2), fa(z)]. For
i =1,...,4 let R’ be the interior of the region bounded by I;_;(x),[;(xz) and the arc on the
unit circle connecting f;_1(x) and f;(z), where i — 1 is taken modulo 4 (see Figure 4.3).

Figure 4.3: Hlustration for the proof of Theorem 4.7.

Notice that fy(x) = (1,0) for each & € A3. Also, the points x1, s, z3, 24 are always in
counter-clockwise order.

Fori=1,...,4, let O; be the set of points x € A3 such that R! contains a set C' € AU B.
Since the sets C' € AUB are compact, O; is open. If there is some z € A3 for which x ¢ Ule O;,
then since the sets in A U B are convex, every set in AU B must intersect | J7_, li(z), and we
are done. Otherwise, we assume that A® = [J'_, O;. Observe that if z € conv{e, : i € I} for
some I C {1,...,4}, then R, =0 for j ¢ I, and therefore x € |J,; O;.

The last paragraph shows that the second statement of the theorem holds or {Oy, ..., O}
is an open cover that satisfies the hypothesis of the KKM theorem (Theorem 4.1). Then there
is a point y = (y1,...,4s) € A% such that y € (_, O;. In other words, each one of the open
regions R; contains a set C; € AU B (in particular R, # () and y; # 0 for all i € {1,...,4}).

Since AN B # () for every A € A and B € B (by hypothesis), then the sets Cy,...,C, are
in the same family (either A or B). Without loss of generality, we assume C1, ..., Cy are in the
family A. Let p be the point intersection of the lines 4 (y) = I3(y) and l2(y) = l4(y). Take any
set B € B. Since BN C; # ) for every i € {1,...,4} and B is convex, then B intersects the
line segments [p, f4(y)] and [p, f2(y)]. Therefore, p € B and the first statement of the theorem
holds. [

In fact, using the same proof we have proved the following stronger result.

Theorem 4.8. Let F,...,F, be finite families of convex sets in R? with n > 2. Suppose that
ANB # 0 for every A € F; and B € F; with i # j. Then one of the following statements
holds:

1. there exists j € {1,2,...,n} such that J,,; Fi can be pierced by 1 point, or
2. the family |J;_, F; can be crossed by 2 lines.

Proof. If the family J;_, F; can be crossed by 2 lines, we are done. Otherwise, following
the same ideas of the proof of Theorem 4.7 and using the same notation, we have that there
is a point y = (yi,...,y4) € A3 such that each one of the open regions R; contains a set

Ci € U, Fie
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Since AN B # 0 for every A € F; and B € F; with ¢ # j, then the sets C1,...,Cy are in
the same family. Without loss of generality, we assume (1, ..., Cy are in the family F;. Let p
be the point intersection of the lines I1(y) = l3(y) and lz(y) = ls(y). Take any set B € (J;, Fi.
Since BN C; # ) for every i € {1,...,4} and B is convex, then B intersects the line segments
[p. fa(y)] and [p, fo(y)]. Therefore, p € B and the family |J,,, F; can be pierced by 1 point. [

We already proved that the 2-dimensional case of Theorem 3.11 holds with f(2) = 1 and
g(2) = 2. Now a natural question is if there exists n € Z* such that the 2-dimensional case
of Theorem 3.11 holds with f(2) = n and g(2) = 1, however this is false. In Section 3.2
we saw that Martinez-Sandoval, Rolddn-Pensado and Rubin [28] proved that if f(d), g(d) are
numbers satisfying Theorem 3.11, then g(d) > ’—%W In Example 4.9 we see the construction
of Martinez-Sandoval, Roldan-Pensado and Rubin in the plane that prove that if f(2), g(2) are
numbers satisfying the 2-dimensional case of Theorem 3.11, then g(2) > [21] = 2.

Example 4.9. Let n € Z*. We want to construct two families, A, B satisfying the hypothesis
of the 2-dimensional case of Theorem 3.11 while neither A or B can be pierced by n points nor
AU B can be crossed by 1 line.

Let A be a triangle in the plane with one edge parallel to the z-axis. Let A = {Aq, ..., Agpy1}
be a family of triangles in the plane such that any triangle A; has an edge parallel to the x-azxis,
the three vertices of A; are in the relative interior of the edges of A (two vertices of A; are in
different edges of A), and any three different triangles A;, A;, Ay, have empty intersection. We
can construct the family A recursively, as follows. We start with two arbitrary triangles A,
and Ay satisfying the conditions of the family A, and at each step i > 2 we place the horizontal
edge of A; sufficiently close to the horizontal edge of A so that A; does not intersect all previous
pairwise intersections (see Figure 4.4). By construction, we need at least n+ 1 points to pierce
the family A.

Let Eq, Es, E3 be the edges of A. Since every triangle A; intersects the edges of A, we can
take three segments Fi, Fy, F3, every segment F; contained in the relative interior of E;, such
that every segment F; intersects every triangle in the family A. For each segment F;, we take
n translates of F; pairwise disjoint so that they still intersect every triangle in the family A.
Let B be the set of the 3n defined segments (see Figure 4.4). By construction, we need at least
3n > n+ 1 points to pierce the family B.

In order to cross A U B, in particular we have to cross the interiors of the three edges
E1, Es, E5, hence we need at least 2 lines to cross the family AU B.

Theorem 4.7 and Example 4.9 show that the best numbers f(2),¢(2) satisfying the 2-
dimensional case of Theorem 3.11 are f(2) =1 and g(2) = 2.

Despite that the 2-dimensional case of Theorem 3.11 does not hold with g(2) = 1, we prove
that in the case where the families are translates of a compact convex set in the plane, Theorem
3.11 holds with f(2) = 3 and ¢(2) = 1. This result is joint work with Edgardo Roldan-Pensado.

Theorem 4.10. Let K be a compact convex set in R%. Let Fi,...,Fn be finite families of
translates of K, with n > 2. Suppose that AN B # 0 for every A € F; and B € F; with i # j.
Then one of the following statements holds:

1. there exists j € {1,2,...,n} such that Ui#j F; can be pierced by 3 points, or

2. the family |J._, Fi can be crossed by 1 line.
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4
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Figure 4.4: Tllustration for Example 4.9 in the case where n = 2. The family A is the set of
blue triangles and the family B is the set of red segments.

Proof. For every direction u € S', let [, be the line through « and the origin. For every u € S*,
we project all the sets in the family (J!_, F; to the line [,, then we obtain a finite family of
intervals in the line [,,.

If there exists u € S! such that every two intervals in the line [, have non-empty intersection,
then by the 1-dimensional Helly theorem (Theorem 1.4); the intervals in the line [, have a
common point p. Thus, if k, is the line whose the projection (to the line [,) is the point p,
then k, is a line transversal to the family | J;_, F;, and we are done (see Figure 4.5).

Sl

Figure 4.5: If the intervals in the line [, have a common point p, then k, is a line transversal
to the family (J;", Fi.

Otherwise, for every u € S', there are two disjoint intervals in the line ,. Hence, for
every u € S', there are two sets A,, B, in the family (I, F; that are separated by a line m,,
orthogonal to [, (see Figure 4.6). Since A, N B, = ), then A, and B, must be in the same
family F;, for some i € {1,...,n}.

We color the sphere St as follows. We color u € S of color i if there are two sets A, B, € F;
that are separated by a line m, orthogonal to l,. Let O; be the set of u € S such that u has
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my,

AU, BU

Sl

Figure 4.6: If there are two disjoint intervals in the line [,, then there are two sets A,, B, in
the family (JI |, F; that are separated by a line m,, orthogonal to [,,.

color i. Since K is a compact set, then the sets O; are open. Notice that we already proved
that S' = |, O;. We have two cases.

First we suppose that at least two sets from Oi,...,0, are non-empty. Since the sets
O1,...,0, are open and S' = |J._, O;, then there exist 7,5 € {1,...,n} with i # j and
u € O;NO; # (. Hence there exist two lines m,, n,, orthogonal to [, and sets A,, B, € F; and
Cy, Dy, € Fjsuch that A, C m}\m,, B, C m; \m,, C, C n}\n, and D, C n, \n, (see Figure
4.7). Notice that we can assume without loss of generality that (mj} \ m,) N (n; \ n,) = 0.
Then A, € F; and D, € F; satisfy that A, N D, = 0, contradicting the hypothesis.

My Ny

Figure 4.7: In this example, A, N D, = ().

Then there exists j € {1,...,n} such that S' = O;. Hence for every u € S! there exists a
line m, orthogonal to I, and sets A,, B, € F; such that A, C m} \ m, and B, C m, \ m,.
We claim that, for every u € S', the line m, is transversal to {J,,; Fi. Indeed, if u € S' and
Ce Ui# F;, by hypothesis we have that A, NC # () and B, NC # (). Since A, C m; \ m, and
B, C m, \ my, then C must intersect the line m, (see Figure 4.8). Thus, the family (J,; F;
has a line transversal in every direction.

Now we claim that every two sets in (J, ; Fi intersect. If there are two sets C, D € U, 2 Fi
such that C' N D = (), then C' and D can be separated by a line . Hence C' and D do not have
line transversal in the same direction of [, a contradiction (see Figure 4.9).

Therefore, every two sets in |, ; Fi intersect and by Theorem 1.12, the family |, 4 Fi can
be pierced by 3 points. O
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Figure 4.8: For every u € S' and C' € U#j F;, the line m,, intersects C'.

[

Figure 4.9: If the convex sets C, D € U#j F; can be separated by a line [, then Ui#}"@- does
not have line transversal in the same direction of [.

Notice that we used that the families are translates of K in the last part of the proof.
Actually, we used that every two sets in [J,; F; intersect. Grunbaum [16], Danzer [10] and
Karasev [23] [24] have studied families (in the plane) such that every two sets in the family
have non-empty intersection, and for some families of this type they proved that the whole
family can be pierced by few points. For example, Theorems 1.10, 1.11, 1.12 and 1.13 show
some families of this type. Then we observe that with the same proof of Theorem 4.10 we have
similar results for families of this type.

Theorem 4.11. Let F,...,F, be finite families of compact convex sets in R?, with n > 2
and the following property: if there exists j € {1,2,...,n} such that every two sets in Ui# Fi
intersect, then Ui;&jﬂ can be pierced by c points. Suppose that AN B # 0 for every A € F;
and B € F; with © # j. Then one of the following statements holds:

1. there exists j € {1,2,...,n} such that U#j Fi can be pierced by c points, or
2. the family |J;_, F; can be crossed by 1 line.

Proof. If the family | J!_, F; can be crossed by 1 line, we are done. Otherwise, as in the proof
of Theorem 4.10, we have that there exists j € {1,...,n} such that every two sets in (J,; Fi
intersect. Therefore, by hypothesis, the family |, oy JF; can be pierced by ¢ points.

In particular, by Theorems 1.10, 1.11 and 1.13, we have the following corollaries.
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Theorem 4.12. Let K be a compact convex set in R?. Let Fi,...,Fn be finite families of
homothets of K, with n > 2. Suppose that AN B # () for every A € F; and B € F; with i # j.
Then one of the following statements holds:

1. there exists j € {1,2,...,n} such that Ui#]—] can be pierced by ¢ points (where c is the
number that there exists in Theorem 1.10), or

2. the family |J;_, F; can be crossed by 1 line.

Theorem 4.13. Let Fy,...,F, be finite families of circles in R%, with n > 2. Suppose that
ANB # 0 for every A € F; and B € F; with i # j. Then one of the following statements
holds:

1. there exists j € {1,2,...,n} such that U#j Fi can be pierced by 4 points, or
2. the family |Ji_, F; can be crossed by 1 line.

Theorem 4.14. Let Fi,...,F, be finite families of rectangles with sides parallel to the coordi-
nate azes in R?, with n > 2. Suppose that AN B # 0 for every A € F; and B € F; with i # j.
Then one of the following statements holds:

1. there exists j € {1,2,...,n} such that Ui# Fi can be pierced by 1 point, or
2. the family |J;_, F; can be crossed by 1 line.

In summary, Theorems 4.10, 4.11, 4.12, 4.13 and 4.14 show some special families where the
2-dimensional case of Theorem 3.11 holds with g(2) = 1. In particular, Theorem 4.14 shows
that for rectangles with sides parallel to the coordinate axes in R?, the 2-dimensional case of
Theorem 3.11 holds with f(2) = 1 and g(2) = 1, hence Theorem 4.14 improves the result of
Theorem 4.6.

On the other hand, we wonder if we can improve the numbers in Theorem 4.10. We propose
the following problem.

Problem 4.15. Let K be a compact convex set in R?. Let Fi,...,F, be finite families of
translates of K, with n > 2. Suppose that AN B # 0 for every A € F; and B € F; with i # j.
Is it true that one of the following statements holds?

1. there exists j € {1,2,...,n} such that J,,; Fi can be pierced by 1 point, or
2. the family |J;_, F; can be crossed by 1 line.

Jer6nimo-Castro, Magazinov and Sober6n [22] proved that in the case where the families
are circles of the same radius there is a stronger conclusion.

Theorem 4.16. Let Fy,...,F, be finite families of circles of the same radius in R?, with
n > 2. Suppose that AN B # () for every A € F; and B € F; with i # j. Then there exists
j€{1,2,...,n} such that J,,; Fi can be pierced by 3 points.

Theorem 4.16 is a colorful version of Theorem 1.12 in the case of circles with the same
radius. Jerénimo-Castro, Magazinov and Soberén [22] also conjectured that Theorem 4.16
holds for families of translates of K, for any compact convex set K in R2. In other words, they
conjectured a colorful version of Theorem 1.12.
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Conjecture 4.17. Let K be a compact convex set in R%. Let Fi,...,F, be finite families of
translates of K, with n > 2. Suppose that AN B # 0 for every A € F; and B € F; with i # j.
Then there exists j € {1,2,...,n} such that Ui# F; can be pierced by 3 points.

We believe that Theorem 4.10 can be useful to prove Conjecture 4.17.

4.3. A colorful Helly-type problem in R?

We already proved the 2-dimensional case of Theorem 3.11. Another natural question is if
with 2 color classes we have a similar conclusion in R3. Martinez Sandoval, Roldan-Pensado
and Rubin [28] presented the following problem.

Problem 4.18. Is it true that there exists n € Z* such that for any two families A, B of
convex sets in R3 so that AN B # () holds for all A € A and B € B, one of the families A or
B can be crossed by n lines?

The last problem is still open. Actually, the next weaker problem is also open.

Problem 4.19. Is it true that there exists n € Z* such that for any family F of conver sets
in R3 so that AN B # 0 holds for all A, B € F, the family F can be crossed by n lines?

In this section we prove a particular case of Problem 4.18 by Montejano [32] and we give
an idea to solve Problem 4.19.
Montejano [32] proved that Problem 4.18 holds for small families of convex sets. Imagine

three red convex sets and three blue convex sets in R? such that every red set and every blue
set have non-empty intersection. Montejano proved that either there is a line transversal to the
red sets or there is a line transversal to the blue sets.

If we project the two families to a line, we obtain two finite families of intervals satisfying
the hypothesis of the 1-dimensional Colorful Helly theorem (Theorem 2.4), then the intervals
of one of the families have a common point, without loss of generality the blue intervals have
a common point b. The plane whose the projection is the point b is a plane transversal to the
blue sets (see Figure 4.10). However, we only have a plane transversal to one of the families
and we want a line transversal to one of the families. Montejano and Karasev ([32], [33]),
following the last argument in every direction and using topology proved that there is a line
transversal to one of the families. Although Montejano and Karasev proved the last particular
case of Problem 4.18 Montejano wanted to see an elementary proof. Strausz [11] gave an
elementary proof based on the non-planarity of the complete bipartite graph K3 3. We will see
the elementary proof by Strausz [11].

Theorem 4.20. Let A, B, C be three red convex sets in R® and let U, V,W be three blue convex
sets in R3. Suppose that every red convex set intersect every blue convex set. Then either there
15 a line transversal to the red convex sets or there is a line transversal to the blue conver sets.

Proof. By contradiction, suppose that there are no line transversals to the red convex sets nor
to the blue convex sets. Then, by Lemma 1.18, each red convex set can be separated by a
plane from the other two red convex sets. Analogously, each blue convex set can be separated
by a plane from the other two blue convex sets. Let H4 be a plane such that A C H} and
BUC C Hy, and let a € S? be the unitary normal vector of the plane H4. Analogously, we
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Figure 4.10: Montejano’s problem in R? is easy projecting the sets to a line and applying the
1-dimensional case of Colourful Helly. However, with the same argument in R*® we only have a
plane transversal to one of the families instead of a line transversal to one of the families.

define the planes Hg, He, Hyr, Hy, Hy and the unitary normal vectors b, c,u,v,w € S%. We
color the vectors a, b, ¢ red and the vectors u, v, w blue.

Now, we join each red vector to each blue vector with a spherical segment. Then we have
K33 drawn in S?, thus there must be a crossing (by Kuratowski’s theorem). Without loss of
generality, the spherical segment through a € S? and u € S? intersects the spherical segment
through ¢ € S? and w € S%

Since ANU # 0, then there exists ¢ € ANU C (Hj N H). Since A C H; and U C Hy,,
then ANU C Hg N Hy,. Therefore, ¢ € (Hf N H) \ (HS U Hyf;). Analogously, there exists
r e (HY N Hy) \ (Hf UHZ). In order to prove that this is a contradiction, we prove the
following lemma in arbitrary dimension.

Lemma. Let H}, H}, HY, H}, be half spaces in R? with unitary normal vectors a,u, ¢, w €
S9! respectively. If

(HiNH)\ (HEUHy) #0,
and
(HE N Hy) \ (Hy U HG) # 0,
then the spherical segment au and the spherical segment cw are disjoint.

Proof. Let ¢ € (Hf N HF)\ (HEZ UH},) and r € (HL N Hy,y) \ (Hi U H). Without loss of
generality, we suppose that 0 € H4 N Hy and let p € Ho N Hyy. In other words,
Hy={rcR:qa-z =0}
Hy={z R u-z =0},
Ho={reR:c-o=c-pl={zeR: ¢ (v —p) =0},
Hy ={zcR":w-r=w-p}={z R w-(z—p) =0}
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Then, since ¢ € (HINHF)\ (HLUHY) and r € (HLNHy) \ (H UH), we have the following
eight inequalities:

a-q>0 u-q>0
¢c-(q—p) <0 w-(¢g—p) <0
c-(r=p)>0 w-(r—p) >0
a-r<0 u-r<0

To prove the lemma, we suppose, by contradiction, that z is in the intersection of the spherical
segment au and the spherical segment cw. Then there exists i,j,m,n > 0 such that z =
1a + ju = mc + nw.

On the one hand, z - ¢ = (ia+ ju) - ¢ > 0 and z - (¢ — p) = (mc+ nw) - (¢ — p) < 0. Thus,

0<z-g<z-p.
On the other hand, z -7 = (ia+ ju)-r <0 and z - (r —p) = (mc+nw) - (r —p) > 0. Thus,
0>z-r>z-p,

a contradiction. 0

Since the spherical segment through a € S? and u € S? intersects the spherical segment
through ¢ € S? and w € S§?, by the lemma, we have a contradiction. O

Recently, Holmsen [20] gave a new proof of Theorem 4.20 (which is a particular case of
Problem 4.18) using the Borsuk-Ulam theorem [3]. On the other hand, Bardny [0] proved a
particular case of Problem 4.19. However, both Problem 4.18 and Problem 4.19 are still open.
We finish this section with an idea to prove Problem 4.19.

An idea to Problem 4.19.

We suspect Problem 4.19 holds with n > 3. The idea goes as follows. For every orthonormal
base {u,v,w} in R3 let [, l,,, be lines through the origin such that u € l,,v € l,,w € l,,. We
project the convex sets in the family F to the line [,, then we obtain a family of intervals in
the line [, satisfying the hypothesis of the 1-dimensional Helly theorem (Theorem 1.4). Since
every two sets in F have a non-empty intersection, then the intervals have a common point
f € l, (by Theorem 1.4). Let H, be the hyperplane where the projection is the point f € [,,.
Note that H, is orthogonal to u € S? and is transversal to the family F. Analogously, there
exist hyperplanes H,, H,, such that H,, H, are orthogonal to v,w € S? (respectively) and are
transversal to the family F. Let k,,k,, k, be the pairwise intersections of the hyperplanes
H, H, H,.

We believe that there exists an orthogonal base {u, v, w} such that the three lines k,, k,, ky,
and perhaps together with other lines cross the family /. A new topological result might be
needed to prove our claim.
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4.4. Colorful Eckhoff

In 2021, McGinnis and Zerbib [31] proved Theorem 1.15 using the KKM theorem (Theorem
4.1). We observed that following the same ideas of McGinnis and Zerbib and using the Colorful
KKM theorem (Theorem 4.4) we can obtain colorful versions of Theorems 1.14 and 1.15. Af-
terwards, McGinnis and Zerbib also noticed the colorful versions and uploaded a second version
of their paper. In this section we prove colorful versions of Theorems 1.14 and 1.15.

We begin with the colorful version of Theorem 1.14. Let Fi,...,F; be finite families of
connected sets in R?. Suppose that every four sets A, € F, Ay € Fo, A3 € F3, Ay € F, have
a line transversal. We prove that there exists i € {1,...,4} such that the family F; can be
crossed by 2 lines. This result is joint work with Edgardo Roldan-Pensado.

The geometrical idea of our proof goes as follows. If there are two lines crossing one of the
families, we are done. Otherwise, we suppose, by contradiction, that for each family F; and for
each two lines in the plane with non-empty intersection there is a set in the family JF; contained
in the interior of one of the 4 regions bounded by the two lines. Then using the colorful KKM
theorem (Theorem 4.4) we prove that there are two lines i,y (with non-empty intersection)
and four sets C; € F;, for i = 1,...,4, so that every set C}; is contained in the interior of one
of the 4 regions bounded by the lines [, l5, each set C; in a different region (see Figure 4.11).
Then the sets C1, Cy, C3, Cy do not have a line transversal, a contradiction.

S

Cs

Figure 4.11: If there are no two lines crossing one of the families F;, then there are four sets
C; € F;, fori=1,...,4, such that the sets C, Cy, C3, C4y do not have a line transversal.

Theorem 4.21. Let Fi,...,Fs be finite families of connected sets in R?. If every four sets
Ay € Fi,Ay € Fy, ..., Ay € Fy have a line transversal, then there exists i € {1,...,4} such
that the family F; can be crossed by 2 lines.

Proof. We can assume, without loss of generality, that the sets in the four finite families are
compact (see section 1.3). Hence, we may scale the plane such that every set in F; is contained
in the unit disk, for each j € {1,...,4}. For each point z = (z1,...,74) € A® and every
i=1,...,4 we define f;(z), [;(x) and R as in the Proof of Theorem 4.7 (see Figure 4.12).
Fori,7=1,...,4, let Of be the set of points z € A? such that R’ contains a set F € Fj.
Since the sets F' € F; are compact, Of is open for all 4,j. If there is some z € A% and
j € {1,...,4} for which z ¢ (J._, O/, then since the sets in F; are connected, every set in
F; must intersect |J7_, l;(z), and we are done. Otherwise, we assume for contradiction that
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fi(z)

fo()
f4<3)) = (17 O>

f3(z)
Figure 4.12: Illustration for the proof of Theorem 4.21.

A3 = |Ji_, O] for all j. Observe that if = € conv{e; : i € I} for some I C {1,...,4}, then
RF = for k ¢ I, and therefore z € |J,.,; O} for all 5.

The last paragraph shows that, for all j, {O{, e ,Oi} is an open cover that satisfies the
hypothesis of the Colorful KKM theorem (Theorem 4.4), then there exists some permutation
m € Sy and a point y = (y1,...,v4) € ﬂle Of(i). In other words, each of the open regions RZ
contains a set C; € Fr(;) (in particular R, # 0 and y; # 0 for all i € {1,...,4}).

Then the sets C1, Cy, C3, Cy do not have a line transversal, a contradiction. n

Note that Theorem 4.21 implies Theorem 1.14. Indeed, if F is a family satisfying the
hypothesis of Theorem 1.14, then F; = F for ¢ = 1,...,4 satisfy the hypothesis of Theorem
4.21 and thus the family F can be crossed by 2 lines.

Further, if we use Theorem 4.5 (instead of Theorem 4.4) we have the following stronger
result.

Theorem 4.22. Let F,...,F, be finite families of connected sets in R?, with n > 4. Suppose
that every four sets Ay € Fi,, Ay € Fiy, Az € Fiy, Ay € Fiy, Jor 1 < iy < ig < i3 < ig < n,
have a line transversal. Then there exists I C {1,...,n}, with |I| = n — 3, such that the family
Uies Fi can be crossed by 2 lines.

Proof. We assume for contradiction that for every I C {1,...,n}, with |I| =n — 3, the family
U,e; Fi cannot be crossed by 2 lines. Then, following the same arguments of the proof of

Theorem 4.21 and using the same notation, we have that for every I € ( ] ), the family

n—4+1
{UO{,...,UOi}

jel jeI

is an open cover of A% that satisfies the hypothesis of Theorem 4.1. Then, by Theorem 4.5,
there is an injective function 7 : [4] — [n] and a point y € (), Of(l) # (). In other words,
each of the open regions R; contains a set C; € Fr(;). Then the sets C1,...,Cy do not have a
line transversal, a contradiction. O

Now we prove a colorful version of Theorem 1.15. Let Fi,...,Fs be finite families of
connected sets in R%. Suppose that every three sets A; € F;,, Ay € F,, Az € Fy,, for 1 < i) <
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iy < i3 < 6, have a line transversal. We prove that there exists i € {1,...,6} such that the
family F; can be crossed by 3 lines. This result is joint work with Edgardo Roldan-Pensado.
The proof is very similar to the proof of Theorem 4.21. The idea goes as follows. If there are
three lines crossing one of the families, we are done. Otherwise, we suppose, by contradiction,
that for each family F; and for every three lines in the plane there is a set in the family JF; not
crossing the three lines. Then using the Colorful KKM theorem (Theorem 4.4) we prove that
there are three lines 1y, [5, [3 separating three sets C}, Cy, C3 from three different families (see
Figure 4.13). By Lemma 1.16, the sets C, Cy, C3 do not have a line transversal, a contradiction.

Ch

2

Figure 4.13: If there are no three lines crossing one of the families F;, then there are three
sets (1, Cy, C3 from three different families such that the sets C4,Cs, C3 do not have a line
transversal.

Theorem 4.23. Let Fy,...,Fs be finite families of connected sets in R%. If every three sets
Ay e Fi, Ay € Fiy, As € Fiy, for 1 <1y < iy < i3 < 6, have a line transversal, then there exists
i €{1,...,6} such that the family F; can be crossed by 3 lines.

Proof. We can assume, without loss of generality, that the sets in the six finite families are
compact (see section 1.3). Hence, we may scale the plane such that every set in F; is contained
in the unit disk, for each j € {1,...,6}. Let f(¢) be a parametrization of the unit circle defined
by f(t) = (cos(2t), sin(27t)).

To each point z = (z1,...,26) € A we associate 6 points on the unit circle given by

(x)

6. Let L(x) = lu(z) = [fi(x), fa(@)], la(2) = I5(x) = [fa(2), fs(2)] and I3(z) =

<1<
= [f3(x), fe(x)]. For i = 1,...,6 let R\ be the interior of the region bounded by

or 1
( )
1(z),l;(z) and the arc on the unit circle connecting f;_1(z) and f;(x), where i — 1 is taken
modulo 6 (see Figure 4.14).
Notice that f¢(z) = (1,0) for each z € A®. Also, the points x1,2s,...,7s are always in
counter-clockwise order.
Fori,j =1,...,6, let O/ be the set of points z € A’ such that R contains a set F € F;.
Since the sets F' € F; are compact, Of is open for all 7,j. If there is some z € A’ and
j € {1,...,6} for which z ¢ [J’_, O/, then since the sets in F; are connected, every set in
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fo(z) fi(x)

f3(x)

falx)
Figure 4.14: Illustration for the proof of Theorem 4.23.

F; must intersect U?:l li(z), and we are done. Otherwise, we assume for contradiction that
A5 = |J2_, O] for all j. Observe that if x € conv{e; : i € I} for some I C {1,...,6}, then
RF = for k ¢ I, and therefore x € |J,.; O} for all j.

The last paragraph shows that, for all j, {O{, e ,Oé} is an open cover that satisfies the
hypothesis of the colorful KKM theorem (Theorem 4.4), then there exists some permutation
m € S¢ and a point y = (y1,...,Ys) € ﬂ?zl Of(i). In other words, each of the open regions RZ
contains a set C; € Fr( (in particular R} # () and y; # 0 for all i € {1,...,6}).

Observe that the regions R;, RS, R?‘j are pairwise disjoint or the regions Rz, R;, RS are pair-
wise disjoint. Without loss of generality, we assume Rj, RS, R are pairwise disjoint. Then by
Lemma 1.16, the sets C, C3, C5 do not have a line transversal, a contradiction. n

Note that Theorem 4.23 implies Theorem 1.15. Indeed, if F is a family satisfying the
hypothesis of Theorem 1.15, then F; = F for ¢« = 1,...,6 satisfy the hypothesis of Theorem
4.23 and thus the family F can be crossed by 3 lines.

Further, if we use Theorem 4.5 (instead of Theorem 4.4) we have the following stronger
result.

Theorem 4.24. Let F,...,F, be finite families of connected sets in R?, with n > 6. Suppose
that every three sets Ay € Fi, Ay € Fi,, As € Fiy, for 1 < iy < 19 < i3 < n, have a line
transversal. Then there exists I C {1,...,n}, with |I| = n — 5, such that the family \J,c; F;
can be crossed by 3 lines.

Proof. We assume for contradiction that for every I C {1,...,n}, with |I| = n — 5, the family
U;e; Fi cannot be crossed by 3 lines. Then, following the same arguments of the proof of

Theorem 4.23 and using the same notation, we have that for every I € ( [n] ), the family

n—6+1
{Uo{,...,UOg}

jel jeI

is an open cover of A® that satisfies the hypothesis of Theorem 4.1. Then, by Theorem 4.5,
there is an injective function 7 : [6] — [n] and a point y € °_, Of(z) # (). In other words,
each of the open regions R; contains a set C; € Fr).
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Observe that the regions R, RS, R, are pairwise disjoint or the regions R>, R}, Ry are pair-

wise disjoint. Without loss of generality, we assume R;, RS, R} are pairwise disjoint. Then by
Lemma 1.16, the sets C, C3, C5 do not have a line transversal, a contradiction. n

The colorful version of Theorem 1.15 that we wanted to prove uses 3 colors instead of 6
colors. Although we have not been able to prove a colorful version of Theorem 1.15 using only
3 colors, we prove the following theorem concerning finite families of translates of a compact
convex set using only 3 colors.

Theorem 4.25. Let K be a compact convex set in R2. Let Fi, Fo, F3 be finite families of
translates of K in R2. If every three sets A, € Fy, Ay € Fo, A3 € F3 have a line transversal,
then there exists i € {1,2,3} such that the family F; can be crossed by 4 lines.

Proof. Let C be the set of all the rainbow pairs (C;, C;) such that C; and C; are disjoint. In
other words,

C:{(Ci’cj) ‘ Cie‘/_—-i’ Cje"t-jv 275], Ciij:Q)}.

If C is empty, then we project the sets of the three families in some fixed line and so we
obtain three families of segments satisfying the hypothesis of the 1-dimensional case of the
Colorful Helly theorem (Theorem 2.4). Thus, by the Colorful Helly theorem (Theorem 2.4) on
the line, there is i € {1, 2, 3} such that F; has a line transversal, and we are done.

Otherwise, choose a pair (C;,C;) € C for which the angle between the inner common
tangents of (C;, C;) is minimal among all pairs in C. Without loss of generality, we assume that
(C1,Cs) € C, with Cy € F1,Cy € Fy, is one of the pairs for which the angle between the inner
common tangents is minimal.

We claim that the 4 common tangents of (C7,Cs) cross the family F3. Let l1,ly be the
inner common tangents of C; and C5. Let [3,l; be the outer common tangents of C; and
Cy. We denote by [, 13,15, 1] the half-planes bounded by [y, [y, 13,14, respectively, such that
C) C ﬂ?:1 I

We define the regions Ry, ..., Rg as follows. Let R; be the interior of [ NI, let Ry the
interior of [ N1, let R3 be the interior of I NIy N3, let Ry be the interior of I NIy N1,
let Rs be the interior of I Ny N3 and let Rg be the interior of I; N3 NI} . See Figure 4.15.

l9 R I
, \ /
R5
Ry Cl C Ry
Ly Fg
/ Ry \

Figure 4.15: Illustration for the proof of Theorem 4.25.
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If there is a set (3 € JF3 contained in the region R;, then the angle between the inner
common tangents of (Cy, C3) € C is less than the angle between the inner common tangents of
(C1,Cy), contradicting the choice of the pair (Cy, Cy), see Figure 4.16. Analogously, if there is
a set U5 € F3 contained in the region R, then the angle between the inner common tangents of
(C1,C3) € Cis less than the angle between the inner common tangents of (C, Cy), contradicting
the choice of the pair (Cy, Cy). Thus, there are no sets in the family F3 contained in the regions
R; or Rs.

l2 ll

Figure 4.16: Notice that « = f 4+ w + v, then a > .

If there is a set ('3 € F3 contained in the region Rj3, then by Lemma 1.16, the sets C €
F1,Cy € Fy,C3 € F3 do not have a line transversal, a contradiction. Analogously, if there is a
set C'3 € F3 contained in the region R4, then by Lemma 1.16, the sets C}, € F1,Cy € Fo,C3 € F3
do not have a line transversal, a contradiction. Thus, there are no sets in the family F3 contained
in the regions R3 or Ry.

Since the sets in the three families are translates of K, then every set in the family F3 has
the same width of C; and Cs in the direction orthogonal to the lines l3,l4. Thus, there are no
sets in the family F3 contained in the regions Rs or Rg.

Therefore, every set in the family F3 must intersects some of the lines [y, s, l3, l4. O

Note that using the same proof, we have that Theorem 4.25 is also true for finite families
of congruent copies of a compact convex set of constant width.

Theorem 4.26. Let K be a compact convex set of constant width in R?. Let Fi, Fo, F3 be
finite families of congruent copies of K in R%. If every three sets A, € Fi, Ay € Fa, A3 € F3
have a line transversal, then there exists i € {1,2,3} such that the family F; can be crossed by
4 lines.

In particular, Theorems 4.25 and 4.26 hold for translates of circles of the same radius.

Theorem 4.27. Let Fi, F, F3 be finite families of circles of the same radius in R%. If every
three circles Ay € F1,Ag € Fa, A3 € F3 have a line transversal, then there exists i € {1,2,3}
such that the family F; can be crossed by 4 lines.

An interesting question is if we can improve the number of lines in the conclusion of Theo-
rems 4.25, 4.26 and 4.27.



58 CHAPTER 4. COLORFUL THEOREMS FOR LINE TRANSVERSALS

Problem 4.28. Let K be a compact convex set in R, Let Fy, Fo, F3 be finite families of
translates of K in R? such that every three sets A, € Fi,Ay € Fo, A3 € F3 have a line
transversal. Is there exists i € {1,2,3} such that the family F; can be crossed by 3 (or 2) lines?

On the other hand, we still wonder if there is a colorful version of Theorem 1.15 using 3
colors.

Problem 4.29. Is there exists n € Z* with the following property? Let Fy, Fa, F3 be finite
families of connected sets in R%. If every three sets A, € Fy, Ay € Fo, A3 € F3 have a line
transversal, then there exists i € {1,2,3} such that the family F; can be crossed by n lines.

In addition, we conjecture the following colorful version of Theorem 1.15 that uses 4 colors.

Conjecture 4.30. There exists n € Z* with the following property. Let Fy,Fo, F3, Fy be
finite families of connected sets in R?. If every three sets Ay € Fi,, Ay € Fi,, A3 € Fi,, for
1 <y < iy < i3 < 4, have a line transversal, then there exists i € {1,...,4} such that the
family F; can be crossed by n lines.

We tried to prove that Conjecture 4.30 holds with n = 3, however we did not succeed.
The idea was the following: for each i € {1,...,4} we applied the KKM theorem (Theorem
4.1) to the family F;, then following the same ideas of the proof of Theorem 4.23, we have
that there are three sets A}, A%, A% in the family F; such that the sets A%, A5, A% do not have
a line transversal. Using the 12 convex sets Aé‘v forv =1,2,3,4 and j = 1,2,3, we wanted
to prove that there are 3 sets in different families without line transversal, which would be a
contradiction. It gave rise to the following conjecture.

Conjecture 4.31. Let F|, Fy, F3, Fy be families of connected sets in R?, each family with 8
sets. If every three sets Ay € F;, Ay € Fi,, As € Fiy, for 1 < iy < iy < i3 < 4, have a line
transversal, then there exists i € {1,2,3,4} such that F; has a line transversal.

However, Conjecture 4.31 is false. The counterexample is given in Example 4.32 and Figure
4.17.

Example 4.32. Let

2,6)],1(2,6), (20, 6)],[( 8,12),(8,12)]},
(=8,6),(=8,24)],(8,6), (8,24)]},

(— 17 10), (— 1,10)],[(1,10),(17, 10)]},
(—10,6),(—10,24)],[(10,6), (10,24)]}

be families of segments in the plane. The families F1, Fo, F3, Fy satisfy the hypothesis of Con-
jecture 4.31. However, none of the four families has a line transversal (see Figure 4.17).

Even though Conjecture 4.31 is false, it does not imply that Conjecture 4.30 is false. Moti-
vated by Theorem 4.25, we still believe Conjecture 4.30 is true, although maybe n will be very
large.
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Figure 4.17: Illustration for Example 4.32.

29



60

CHAPTER 4. COLORFUL THEOREMS FOR LINE TRANSVERSALS



Chapter 5

Conclusions

As we mentioned in the Introduction, this work is a survey of colorful theorems in discrete
and convex geometry. Chapters 1 and 2 were introductory. In Chapter 3 we saw Theorems 3.2
([1], [21]) and 3.11 ([28]) which are generalizations of the Colorful Carathéodory theorem and
the Colorful Helly theorem, respectively.

The original contributions of this Thesis are the following theorems and observations.

e In Example 3.4 we showed that we can not continue to weaken the hypothesis of Theorem
3.2. In Example 3.6 we showed that in Theorem 3.2 we can only ensure the existence of
1 rainbow simplex.

e In Theorem 4.7 we gave and proved the best numbers satisfying the 2-dimensional case
of Theorem 3.11 (f(2) = 1 and g(2) = 2). Furthermore, we proved Theorem 4.8 which is
stronger than Theorem 4.7. In addition, in Theorem 4.6 we proved a particular case of
Theorem 4.7 with an elementary proof. We also proved Theorems 4.10, 4.11, 4.12, 4.13
and 4.14 concerning some special families where the 2-dimensional case of Theorem 3.11
holds with ¢g(2) = 1. Finally, we proposed Problem 4.15 and we believe that Theorem
4.10 can be useful to prove Conjecture 4.17.

e We proved Theorems 4.21 and 4.23 (colorful versions of Eckhoff’s theorems), although
McGinnis and Zerbib [31] after wrote a paper with these results. Additionally, we proved
Theorems 4.25 and 4.26 (and Theorem 4.27 which is a particular case of Theorems 4.25
and 4.26) concerning families of translates of a compact convex set or families of congruent
copies of a compact convex set of constant width. An interesting question is if in Theorem
4.25 we can improve the 4 lines (in the conclusion) by 3 or 2 lines (Problem 4.28). Finally,
in Problem 4.29 and Conjecture 4.30 we wonder if we can improve the number of families
(or colors) in Theorem 4.23.
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