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Resumen

Escherichia coli K es un organismo modelo mu importante para investigar los

mecanismos de regulación transcripcional microbiana Su genoma fue de los primeros

secuenciados por completo sus genes operones factores de transcripción han sido

ampliamente estudiados organi ados en bases de datos especiali adas Aunque aún

falta información por descubrir sobre las redes de regulación transcripcional de E coli

las tecnologías de secuenciación masiva desarrolladas durante los últimos años

permiten contemplar su posible caracteri ación e haustiva en un futuro cercano Para

lograr este objetivo se tienen que revisar los conceptos biológicos fundamentales

detrás de los mecanismos de regulación así como las infraestructuras que permiten el

manejo  almacenamiento adecuado de los datos

En el pro ecto de doctorado presentado en este manuscrito se trabajaron estos

aspectos recolectando múltiples fuentes de datos literatura estableciendo una

nomenclatura para el manejo de los genes formali ando formatos de almacenamiento

para los objetos genómicos reguladores Además se desarrollaron herramientas

computacionales para reali ar el análisis automati ado de datos generados por

tecnologías de secuenciación de alto rendimiento Finalmente este trabajo culminó con

la integración de dichos datos con los datos de referencia generados mediante

e perimentos clásicos ofreciendo un nuevo fundamento para entender los

mecanismos de regulación genética a escala global en un organismo modelo como

Escherichia coli K



Comprehensive characterization of
 E che ichia c li  K 12 regulatory networks
by bioinformatics integration
of high throughput data
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Abstract

Escherichia coli K is the best studied free living organism on Earth hich makes it a
fundamental model organism in microbiolog It is a reference for the stud of
transcriptional regulation E tensive information about its genes transcription
factors and transcription units has been manuall curated and inde ed for decades in
dedicated databases and its genome as one of the rst to be entirel sequenced and
published

Currentl the ide variet of high throughput technologies available allo s for the
acquisition of larger collections of genomic features regulator elements or gene
e pression pro les and does so ith a higher than ever accurac opening the
possibilit of comprehensivel characteri ing the transcriptional regulator net ork of
a species such as E  coli

Ho ever such a tremendous amount of data triggers ne concerns regarding the
proper anal sis and integration of this ne information ithin the e isting
frame orks together ith the kno ledge established through decades of
lo throughput e perimentation and manual literature curation

In this ork I tackled those challenges b orking through these issues I searched
public databases and recent literature for relevant datasets I revised ke biological
concepts ith the aim of tting a common frame ork and I conceived bioinformatics
tools for the automatic and reproducible anal sis of high throughput datasets Finall
I built on those foundations to perform the anal sis of do ens of high throughput
datasets the standardi ation of thousands of genomic features and regulator
elements and their integration ith reference kno ledge from classic e periments
This provides a foundation for further research to understand gene regulation at a
global scale in this model organism



Abbreviations

ChIP exo chromatin immunoprecipitation ith e onuclease digestion

ChIP seq chromatin immunoprecipitation follo ed b  high throughput sequencing

CTG co transcribed genes

DAP seq DNA a nit  puri cation sequencing

DNA deo ribonucleic acid

ENA European nucleotide archive

GEO gene e pression omnibus

gSELEX genomic s stematic evolution of ligands b  e ponential enrichment

HT high throughput

LT lo throughput

mRNA messenger RNA

ORF open reading frame

RBS ribosome binding site

RNA ribonucleic acid

PSSM position speci c scoring matri

RNAP RNA pol merase

RNA seq RNA sequencing

SRA sequence read archive

sRNA small RNA

TF transcription factor

TFBS transcription factor binding site

TFRS transcription factor regulator  site

TRN transcriptional regulator  net ork

TSS transcription start site

TTS transcription termination site

TU transcription unit



Introduction

E che ichia c li K 12  a fundamental microbial model organism

Escherichia coli is a Gram negative facultative anaerobic gammaproteobacteria from the
Enterobacteriaceae famil Though it is mainl kno n for living in the digestive s stem
of health mammals as a commensal species it also has the capacit of being a
free living organism or being pathogenic

Escherichia coli as rst discovered in b Theodor Escherich ho ould later on
give this ne species its current name Over time it became a model organism for
stud ing and understanding ke biological processes due to its ease of culturing in a
laborator  setting  its rapid reproduction and its relative ine pensiveness

In particular a strain labeled as K as isolated in and as the basis for
scienti c breakthroughs such as the rst description of the mechanism of bacterial
conjugation Lederberg and Tatum and the discover of the transcriptional
regulation of the Lac operon Jacob and Monod Finall the genome of
Escherichia coli K as one of the rst genomes to be completel sequenced Blattner
et al  

Its anatom includes a single circular chromosome encapsulated in the cell envelope
along ith ribosomes and other proteins and cellular components The envelope is
made of an inner c toplasmic membrane a peptidogl can rich periplasmic space and
an outer membrane The cell also possesses peritrichous agella and pili that enable
motilit  and intercellular communication Figure 



Figure 1 Escherichia coli cell structure simpli ed

Bacterial genome and gene expression

Prokar otes t picall possess a single circular and double stranded molecule of DNA
and in some cases one or several smaller plasmids The main chromosome contains
the majorit of the genes nel organi ed spatiall into operons and e pressed either
constitutivel  or under speci c gro th conditions

Operons are de ned as clusters of genes that share the same orientation and are
usuall separated b short intergenic segments Salgado et al
Moreno Hagelsieb and Collado Vides and are under the control of a single
promoter and co transcribed together into pol cistronic RNA molecules The
transcription mechanism is triggered b the binding of a protein comple called RNA
pol merase RNAP on a promoter sequence speci call recogni ed via its sigma
subunit Figure a The RNAP can then open the double stranded DNA around the
transcription start site TSS initiate transcription and slide along the DNA sequence
resulting in the elongation of the transcript until reaching a terminator sequence
Figure b The resulting messenger RNAs can contain one or several ribosome

binding sites RBS allo ing their translation into proteins hile small RNAs can
complete other metabolic and or regulator  functions Figure c



Escherichia coli K has a circular chromosome of million base pairs of
length ith a high densit of genes accounting for about of the total DNA
sequence It contains a total of inventoried genes of hich are currentl
reported as protein coding and another as coding for small RNAs Those genes are
organi ed into  operons Tierrafría  Rioualen et al   Keseler et al  

Figure 2 a Operon structure An operon is composed of one or several genes that are associated ith a
promoter The RNA pol merase comple binds the promoter in order to initiate transcription of the
do nstream genes b Transcription After binding the promoter the pol merase opens the
double stranded DNA to initiate the transcription and slides along the DNA sequence to elongate the
transcript until reaching a terminator c Translation Ribosomes can bind mRNAs via ribosome binding
sites  and translate their do nstream sequences into amino acids and proteins

Gene regulatory networks

Regulation of gene e pression is crucial for living organisms in order to be able to adapt
to environmental conditions and maintain homeostasis even more so for a
micro organism such as E coli hich holds the capacit of surviving and even striving



in a ide variet of environments and lifest les The mechanisms of adaptation involve
several coordinated la ers the signaling net ork comprises intra and e tra cellular
receptors that detect environmental changes temperature osmolarit etc and signal
transduction mechanisms the transcriptional regulator net ork consists of
protein DNA interactions that can activate or repress the e pression of speci c genes
genetic s itches and trigger appropriate metabolic responses and nall the

metabolic net ork is made of interconnected path a s of biochemical reactions that
are triggered b  speci c signals Lede ma Tejeida et al  

The modulation of gene e pression can occur at an stage of the process di erent
gro th conditions ill a ect signal transduction structural modi cations of the DNA
can impact the level of transcription of speci c regions eg DNA supercoiling
transcription initiation can be triggered di erentiall through alternative sigma
subunits of the RNA pol merase holoen me small RNAs can act at the
post transcriptional level to silence mRNA molecules and prevent their translation
into proteins  and some mRNAs are able to self regulate ribos itches

But one of the most important mechanisms involved in the regulation of gene
e pression at the transcriptional level involves DNA binding proteins called
transcription factors TFs TFs have the abilit to bind to speci c sites of the DNA that
are t picall located upstream of genes and operons thereb allo ing or prohibiting
access of the RNA pol merase to promoter regions in order to positivel or negativel
regulate the e pression of the do nstream genes These mechanisms ere rst
described b Jacob and Monod Jacob and Monod ith their ork on the lactose
operon Figure and have been sho n to be responsible for the direct regulation of
more than half of Escherichia coli K s genes Pére Rueda et al The complete
set of transcription factors and their respective target genes form the so called
transcriptional regulator  net ork TRN



Figure 3 Transcriptional regulation of the lactose operon Jacob and Monod a Repression of
expression In the absence of lactose the LacI transcription factor is usuall bound to a speci c site
located immediatel do nstream of the operon promoter impeding the recruitment of the DNA
pol merase and the initiation of the transcription of this operon coding for lactose metabolism related
genes b Induction of expression When lactose is present allolactose is formed and binds to the
repressor hich consequentl unbinds from the DNA Combined ith a lo level of glucose this allo s
CRP to bind its cAMP co factor and its operator upstream of the LacI operon promoter contributing to the
induction This phenomenon allo s for the recruitment of the RNA pol merase and thus the transcription
of lactose metabolism genes in order to use lactose as a nutrient Irrespective of lactose in the presence of
glucose cAMP levels go do n provoking the unbinding of CRP transcription factor from its activator sites
in man  operons for carbon utili ation such as the lactose operon

Transcription factors

Transcription factors are de ned as DNA binding proteins that allo or block the
transcription genes and are not part of the RNAP core or holo en me Zhou and Yang

Meta anal ses have sho n that TF coding genes can make up for up to of
all coding genes in bacteria though this proportion can var greatl depending on
bacterial genome si e and lifest le Pére Rueda et al Though a complete and
de nitive identi cation of all TFs in E coli K is still lacking a consensus has been
reached over the ears around a total estimate of to TFs Pére Rueda and
Collado Vides Pére Rueda et al Gao et al Flores Bautista et al

Kim et al most of hich have been sho n to perform negative
auto regulation Pére Rueda et al  

Transcription factors usuall comprise a DNA binding domain DBD and a companion
domain CD The DNA binding domain is necessar for a TF to bind onto speci c sites



of the genome thus called transcription factor binding sites TFBS hile the
companion domain can have a variet of functions such as ligand binding
protein protein interactions or en matic activities Pére Rueda et al Each
TF binds speci call to its o n target sites and regulates speci c target genes some of

hich ma be TF coding themselves generating a comple net ork of interactions
Together a group of genes that are regulated b a common transcription factor form a
regulon A variet of DBDs has been described ho ever in bacteria about of them
contain a heli turn heli or HTH segment that binds to the DNA Pére Rueda and
Collado Vides Flores Bautista et al Protein binding domains have been
used to classif bacterial TFs into evolutionar families Pére Rueda et al and
DNA binding sites have been used to identif  TF speci c binding genomic patterns

Currentl TFs have been characteri ed and con rmed ith e perimental evidence
Tierrafría Rioualen et al mostl through binding of puri ed proteins and site

mutation sometimes combined ith additional data of lo er con dence such as gene
e pression anal sis and binding of cellular e tracts Additionall computational
methodologies have been developed in order to predict TFs that have not et been
characteri ed e perimentall Predictions ere based on several criteria and methods
such as sequence homolog ith e perimentall characteri ed TFs identi cation of a
DBD preferentiall including an HTH structure Pére Rueda and Collado Vides

Pére Rueda et al identi cation of orthologous proteins Flores Bautista
et al   as ell as deep learning methods Gao et al   Kim et al  

Regulatory interactions

Most of the regulator interactions kno n to date ere identi ed from in vitro
e periments through the binding of puri ed proteins DNAse footprint uses
DNAse protected fragment isolation to detect the footprint of a protein on the DNA
sequence ith a good accurac Galas and Schmit On the other hand
electrophoretic mobilit shift assa s EMSA also called gel shift consist in the
electrophoretic separation of DNA fragments of interest ith or ithout bound
proteins Garner and Rev in allo ing the identi cation of transcription factor
binding sites More recentl biotin DNA a nit puri cation sequencing DAP seq
O Malle et al and genomic s stematic evolution of ligands b e ponential

enrichment gSELEX  Shimada et al    have also been used



The identi cation of TF binding sites took a ne turn ith recent in vivo chromatin
immunoprecipitation IP techniques combined ith high throughput sequencing
technologies The share the same principle after a TF of interest is bound to

hole genome DNA via its speci c sites cross linking of the protein is performed The
hole DNA is then fragmented using a process such as sonication and an antibod that

is speci c to the TF is added DNA fragments that are bound b the TF are isolated
through IP and nall the cross linking is reversed leaving free DNA fragments
originall bound b the TF These fragments are then ampli ed and sequenced before
the are nall mapped to the genome of reference In the case of ChIP on chip Buck
and Lieb the sequencing step is performed b using DNA microarra s As HT
sequencing technologies improved binding sites identi cation gained resolution hile
dramaticall lo ering in cost The ChIP seq technolog Johnson et al shares
the same strateg but the nal sequencing is performed using ne t generation
sequencing devices resulting in a better resolution of the binding locations Finall
ChIP e o Rhee and Pugh is similar to ChIP seq but includes an additional step
that consists in trimming DNA from the protein DNA comple es before the IP is
carried out increasing the precision of protein binding sites identi cation In all cases
the resulting reads can be aligned to a genome sequence of reference and the regions
enriched in reads at certain positions of the genome form so called peaks that
indicate possible binding positions for the TF of interest Figure 

When a TFBS can be linked to evidence of a change in gene e pression of immediate
do nstream genes under a given gro th condition it can formall be identi ed as a
regulator sequence and is then labeled as transcription factor regulator site TFRS
Mejía Almonte et al hile the regulated genes are considered as targets of the

transcription factor



Figure 4 Overview of chromatin immunoprecipitation based techniques for protein binding sites
identification a The protein of interest is cross linked to the hole DNA molecule b The genome is
fragmented c Immunoprecipitation is performed using an antibod speci c to the protein of interest d
After reversing the cross linking DNA fragments can be ampli ed and sequenced e Upon mapping the
resulting reads to the hole genomic sequence of the reference organism regions ith a high densit of
mapped reads  or peaks  indicate protein binding sites



The relative levels of e pression of genes can be measured using transcriptomic
technologies The essentiall consist in e tracting total mRNAs from a cell and
perform their fragmentation puri cation reverse transcription and sequencing The
latter step used to be reali ed using microarra s and is no routinel done using
massive parallel sequencing technologies this is the RNA seq technolog
Transcriptome anal ses can also uncover genomic elements such as transcription
units and transcription start and termination sites Various protocols based on
RNA seq strategies have been proposed that allo for the identi cation of TSSs at
single nucleotide resolution Con a et al and more recentl for the
determination of entire transcripts along ith their TSSs and TTSs Yan et al Ju
et al  

Databases on transcriptional regulation in E che ichia c li K 12

Most of the current kno ledge of E coli s genome its features and its regulator
processes comes from the accumulation of lo throughput e periments reali ed and
published over decades of scienti c investigations E tensive information about E coli
K TFs their binding sites target genes and operons has been manuall curated and
inde ed for decades b the team at the Program of Computational Genomics at the
CCG and simultaneousl described in dedicated databases such as RegulonDB
Tierrafría  Rioualen et al   and EcoC c Keseler et al  

Since the creation of RegulonDB in biocurators have gathered information from
thousands of original scienti c publications reporting data from classical molecular
genetics et laborator e periments Ho ever genome scale technologies based on
high throughput sequencing no allo for the accurate identi cation of genomic
features and regulator elements genome ide Additional interactions based on gene
e pression anal ses and computational predictions ere also integrated In order to
account for their di erent level of reliabilit a s stem of classi cation as
implemented in the database that categori es the con dence associated ith
regulator features as strong or eak depending on the pieces of evidence the
rel on Weiss et al Features that are associated ith solid ph sical and genetic
evidence are classi ed as strong hile those associated ith less reliable evidence i e
change in e pression of a target gene  that could be indirect  are classi ed as eak



To date the total transcriptional regulator net ork currentl characteri ed of E coli
comprises TFs regulating genes for a total of regulator interactions

strong and eak con dence RIs Tierrafría Rioualen et al
Ho ever it is ell kno n that this is just a fraction of the complete transcriptional
regulator net ork since nearl a third of the estimated total of TFs lack
characteri ation and a similar proportion of E coli s genes are not et
functionall  characteri ed Flores Bautista et al   Gao et al  

Databases of high throughput datasets

High throughput datasets are usuall made publicl available upon their publication
and uploaded to dedicated databases The main ones are the European Nucleotide
Archive ENA and Arra E press from the EMBL EBI that store nucleotide sequencing
information and high throughput functional genomics e periments respectivel
https ebi ac uk and the Sequence Read Archive SRA and Gene E pression

Omnibus GEO their counterparts from the NCBI https ncbi nlm nih gov
Additionall several databases store more speciali ed datasets that are orth
mentioning COLOMBOS o ers transcriptomic data from prokar otic organisms
Moretto et al https colombos net and Transcription Pro le of Escherichia

coli TEC o ers genomic SELEX data for E coli TFs Ishihama et al
shigen nig ac jp ecoli tec

https://www.ebi.ac.uk/arrayexpress/
https://www.ncbi.nlm.nih.gov/geo/
https://colombos.net
http://www.shigen.nig.ac.jp/ecoli/tec/


Objectives

Problematic

Despite decades of investigation and e perimentation dedicated to Escherichia coli
K its transcriptional regulator net ork remains far from being e haustivel
characteri ed nearl of its TFs and genes are not et characteri ed and most of
the characteri ed TFs lack hole genome pro les that ould allo to retrieve
e haustive binding sites and target genes

Main goal

The main objective of this ork is to take advantage of recent high throughput based
HT published data available for E coli K and combine it ith the

lo throughput based LT kno ledge of reference curated in RegulonDB in order to
complete its kno n transcriptional regulator  net ork

Specific goals

In order to pursue this nal aim a large amount of data from ver diverse sources had
to be manipulated hich highlighted a recurrent issue the identi cation and the
mapping of genomic objects and coordinates bet een sources In order to circumvent
this bottleneck I developed an R librar that performs a number of conversions and
operations on genes and other genomic features Chapter Getting a hang of E coli
genes and transcription factors

The goal of characteri ing the regulator net orks of Escherichia coli also triggered
considerations about genomic features such as promoters TUs and terminators and
the need to la out de nitions and integrate novel kno ledge alongside established



concepts in order to integrate recent HT based data ith previous kno ledge
Chapter  Building a comprehensive set of genomic features

On another hand I developed a librar of bioinformatic ork o s that allo s for the
anal sis of high throughput data in a reproducible manner ith a focus on ChIP seq
and RNA seq data Chapter Building tools to anal e high throughput datasets
This ork as published in the form of a protocol Rioualen et al  

Building on these founding elements I orked to ards the central goal of m PhD the
completion of the E coli K transcriptional regulator net ork b integrating
high throughput data Chapter Integration of high throughput data ithin a
reference frame ork This ork constituted a major upgrade of RegulonDB and as
recentl  published Tierrafría  Rioualen et al   as version 

Finall I investigated an alternative approach to building transcription factor binding
matrices based on de novo pattern discover using the curated binding sites available in
RegulonDB hich subsequentl enabled me to produce an alternative collection of TF
binding motifs for Escherichia coli Chapter An alternative collection of binding
motifs



Chapter 1

Getting a hang of E  c i genes and
transcription factors

Problematic

Despite a ide kno ledge of the E coli K genome and regulator net orks the
computational manipulation of numerous datasets from a variet of sources can prove
to be rather fastidious due to a lack of congruence in the de nition of biological
objects as ell as their names or identi ers Genes and their products can be referred
to using a variet of names and s non ms obsolete or not di erent bnumbers an
inde speci c of E coli genes coordinates can change over time due to the addition of
ne kno ledge and frequent updates in genome annotations can lead to discrepancies
bet een sources Additionall a signi cant amount of published datasets are based on
obsolete genome assemblies  leading to erroneous genomic coordinates

In order to overcome these limitations and process datasets containing information on
E coli genes TUs promoters or an other genomic features associated ith
coordinates I took on the challenge of building a dictionar of genes TFs and genomic
coordinates After e tracting information from several public databases and articles I
built reference tables for genes and transcription factors that allo for an eas
translation of inconsistent names or coordinates and created EcoliGenes a librar of
functions that perform veri cations and homogeni ation of E coli genomic datasets
https github com rioualen EcoliGenes

Comprehensive table of genes and their attributes

There are numerous names identi ers and s non ms for most genes and proteins of E
coli as ell as outdated annotations products or coordinates This complicates the

https://github.com/rioualen/EcoliGenes


programmatic manipulation of datasets containing genomic information In order to
be able to process datasets containing an information on E coli genes TUs
promoters or an other genomic objects associated ith coordinates I started
gathering comprehensive information into one single place I rst retrieved all genes
and their products from RegulonDB Figure a and completed this information ith
additional data e tracted from Ecoc c and Genbank I merged them rst on the basis of
their bnumbers and then using their s mbols and coordinates Finall I added

reference columns to this master table reference bnumber reference s mbol
reference start reference stop reference strand and s non m columns to store
additional names from an  source  gene s non ms and product s non ms Figure b

Figure 5 a Entit relationship diagram of the gene information retrieved from RegulonDB b
Construction of the gene master table e traction classi cation and organi ation of gene names
s non ms  attributes and products



Comprehensive list of transcription factors

To date there is no single consensual list of con rmed TFs for E coli RegulonDB
contains e perimentall con rmed TFs Tierrafría Rioualen et al
associated ith at least one regulator interaction ho ever the total number of TFs in
E coli is estimated to be slightl above and several groups have predicted TF
candidates based on in silico predictions using criteria such as the presence of a DNA
binding domain or a signi cant homolog ith kno n TFs Pére Rueda and
Collado Vides Pére Rueda et al Gao et al Flores Bautista et al

 Kim et al  

B combining those di erent sources I built a list of con rmed or proposed
transcription factors and gathered their most relevant attributes First I retrieved the
information available in RegulonDB Figure a then added gene products annotated
in Genbank as transcriptional regulators putative or not as ell TF predictions
published in recent ears Pére Rueda et al Flores Bautista et al Kim et
al I added their respective identi ers from e ternal databases such as Uniprot
RefSeq and Pfam other e isting s non ms and the follo ing reference columns
reference TF name reference gene s mbol reference gene bnumber It is orth noting
that there are heterodimeric TFs hich are therefore associated ith t o genes
Proteins that are considered as TFs both individuall and as part of a dimer have
duplicate entries hile proteins that are kno n to be regulator onl as part of a dimer

ill be considered as s non m names for said dimer Finall I performed a comparison
of the lists of TFs from all the di erent sources hich sho s the e istence of several
discrepancies bet een one another Figure b mainl due to the absence of
e perimental evidence to back up computational predictions The most striking
di erence is observed in the list of TFs predicted b Kim and colleagues hich
includes proposed TFs absent from all other datasets Kim et al This can be
e plained b the fact that the used a deep learning approach that does not rel on
homolog ith kno n TFs thus revealing potential ne classes of TFs though the
could also be false positives



Figure 6 a Entit relationship diagram of the TF information retrieved from RegulonDB b Comparison
of the lists of TFs from di erent sources

The EcoliGenes library

I built a tid R package designed to process E coli datasets using the master tables
described above It is conceived to manipulate an number of genes TFs or genomic
coordinates using vectori ed functions that allo manipulating data frames using
basic functions from the tid verse packages https tid verse org Figure 

https://www.tidyverse.org/


These tools can be divided into three categories

Coordinate based tools gra headed bo es The con ert_coords function

allo s to convert genomics coordinates based on E coli genome version
NC to the currentl used genome version NC The functions

test_position and test_inter al perform the e traction of information related to

speci c genomic positions or regions
Gene based tools blue headed bo es Genes reported as s mbols or identi ers
from an source can be readil converted to s mbols or bnumbers of reference

ith the con ert_gene function The get_genes functions allo retrieving a list of

genes bnumbers given a speci c criteria Then bnumbers can be used to

perform boolean tests using test_gene, or retrieve speci c attributes of the genes

ith get_gene_info

TF based tools green headed bo es Transcription factors reported as protein
names gene s mbols or an other identi ers are converted to their names of

reference using con ert_tf The get_tfs functions allo retrieving a list of TF

reference names given speci c criteria Then the can be used to perform

boolean tests using test_tf or retrieve speci c attributes of the TF ith

get_tf_info

With such a simple tool an number of datasets from a variet of sources and times
can be readil uniformi ed and reliabl compared and visuali ed This ork as
heavil used for the processing of numerous datasets presented in Chapter and
Chapter 



Figure Framework of the EcoliGenes library a Reference data is gathered from several databases and
publications in order to build gene and TF master tables beige frame Operations can be performed on
coordinates genes and TFs gra blue and green frames respectivel b Use case a random list of gene
names is generated that are translated to their reference names and ltered to get tf coding genes
Finall  genes and TFs attributes are retrieved



Reference  availability

Github

The EcoliGenes librar  is available at Github
https github com rioualen EcoliGenes

Poster

This ork as presented under the form of a poster at the Bioconductor conference
 in Seattle  Washington

The EcoliGenes librar  Solving the never ending struggle with Escherichia coli K  genes

Citation
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Chapter 2

Building a comprehensive set of
genomic features

Problematic

Despite e tensive information in RegulonDB e don t have an e haustive panorama of
E coli K operons transcription units promoters and terminators Nonetheless
clarif ing the genomic structure of E coli is a necessar preliminar step in order to
properl connect the pieces together and unravel its transcriptional regulator
net ork Recentl published high throughput datasets can help us dra a
comprehensive picture of E coli genome composition but challenges remain as the
de nitions for these genomic features are some hat blurr and handled di erentl
depending on the source

In this chapter I sho ho I gathered high throughput datasets from recent
publications and databases updated and standardi ed them together ith the classic
data from RegulonDB in order to create a ne integrated set of genomic features for E
coli

Revising core concepts

Bacterial genomes possess a characteristic organi ation of their genes into so called
operons The are de ned as clusters of genes under the control of a single promoter
and co transcribed together into pol cistronic RNA molecules The concept of
transcription unit as introduced to account for the e istence of distinct transcripts
and promoters present in one operon The ere de ned as sets of one or several genes
co transcribed as pol cistronic units ho ever their proper description and distinction

ith operons have remained some hat unclear Mejía Almonte et al  



As kno ledge gre the necessit arose to revise original concepts and de ne ne
ones in order to t ith the biological comple it of the bacterial genome Here I
de ne a transcription unit as a ph sical entit made of a portion of the genome
bet een given start and end coordinates that contains a set of contiguous genes that
share the same orientation and are co transcribed into one single transcript An operon
is a conceptual object composed of one or several transcription units that share at least
one gene and consequentl all of the genes contained in said transcription units
Mejía Almonte et al This means that a given gene can be part of several

distinct transcription units  but onl  one operon

Besides the concepts of promoter and terminator had to be clari ed as ell Here I
consider that a promoter can contain one or several transcription start sites ithin a
ma imum distance of bp and an operon can contain one or several promoters A
given transcription unit is associated to a speci c TSS hich marks its start
coordinate Like ise terminator regions can contain one or several distinct
transcription termination sites and operons can contain one or several terminator
regions

Transcription unit  and co transcribed genes unit sets

In order to build an e haustive transcription unit set the question arose of ho to
de ne them in terms of objects and their attributes TUs are theoreticall de ned b a
promoter and a terminator ho ever in databases the can be associated ith one
several or none of them TU coordinates can also be de ned b the genes the contain
and the transcripts the form and those can be characteri ed b di erent
e perimental methods that do not necessaril have a single nucleotide resolution
Therefore multiple coordinates can be considered that potentiall refer to the same
biological object and numerous redundant TUs can be generated For these reasons I
de ned t o kinds of objects

transcription units are de ned b their unique start and end coordinates and
their direction or strand

co transcribed genes CTG units are made of genes that are co transcribed
together as a pol cistronic unit at least once regardless of coordinates Figure



Figure Definitions A transcription unit is uniquel de ned b its genomic coordinates and strand
Coordinates can be those of the associated TSS and TTS or those of the leading and closing genes A
co transcribed genes unit can be composed of one or several TUs and is de ned b its gene content A
given gene can be in several CTG sets  but no t o CTG sets can contain e actl  the same genes

First I retrieved transcription units from RegulonDB together ith their
associated promoters and terminators hen available Theoreticall a transcription
unit should be associated ith a speci c TSS and TTS ho ever in man cases the
information is unkno n or ambiguous I de ned transcription unit start and end
coordinates using their TSS and TTS positions hen available and in their absence the
coordinates of their rst and last genes Second I added transcription units
generated through SMRT Cappable seq technolog Yan et al using t o
distinct gro th conditions and t o methods for determining the ending position
formal identi cation of a TTS of reported TUs or longest read coordinate
of reported TUs Considering their coordinates onl one TU from RegulonDB as also
present in the HT datasets and TUs from the HT dataset ere present in more than
one condition Figure a All of these TUs ere given a gene content attribute
listing the genes entirel contained in each TU per their respective coordinates Gene



names ere homogeni ed using the EcoliGenes librar Chapter When the start or
end position of a TU fell inside a genic sequence the corresponding gene as e cluded
from the TU gene content ithout impacting its coordinates and onl the entire genes

ere included Finall in order to get a full coverage of all genes of E coli the genes
that ere not included in an TU ere made into orphan TUs ith their start and
end coordinates being those of the gene All of the TUs ere merged b coordinates and
strand  amounting to a total of  unique transcription units

Then I derived the co transcribed genes set from the TU set Ever group of CTG is
made of genes that are present together in at least one TU impl ing the can be
co transcribed together as a pol cistronic unit In practice TUs that contain e actl
the same gene content are grouped into CTG units and their idest coordinates are
kept for reference This allo ed to reduce the redundanc inside each dataset the
collection of TUs from RegulonDB lo ered to unique CTGs and the HT collection
lo ered from TUs to CTGs mostl due to the numerous TUs that don t
have a precise terminator site associated Overall a total of CTG units compose
the hole set hich dramaticall lo ers the redundanc observed in the initial TU set
Figure b  of hich  ere not initiall  present in RegulonDB

Figure Overlap bet een classic and high throughput data a Overlap bet een transcription units
de ned b their unique coordinates b Overlap bet een co transcribed gene units de ned b their unique
gene content



Brie out of unique TUs I reduced the total number to almost half of this
amount b taking into account their gene content reaching a total of CTGs This
drastic change can be e plained b technical and biological factors some e periments
don t allo a precise identi cation of the TSS and or TTS leading to ambiguous
coordinates and numerous sets of co transcribed genes are associated ith several
distinct TSS and or TTS This sho s that in E coli gene e pression diversit is mostl
achieved b alternate regulation more than alternate transcription unit membership a
strateg  that is frequentl  observed  in bacterial genomes

Promoter and TSS sets

As detailed above transcription start sites are de ned b a unique position hile
promoters are small regions containing one or several TSSs usuall separated b less
than bp from one another Ho ever those concepts have been interchangeabl used
in the literature

The TSS set as built from the data available in RegulonDB and completed ith
several HT based datasets from independent sources Mendo a Vargas et al
Salgado et al Cho et al Thomason et al Yan et al Wade
laborator not published Datasets prior to based on an older genome assembl
NC ere updated to the latest genomic coordinates NC using

the EcoliGenes librar Chapter TSSs from all of the datasets ere merged hen the
shared the same position and strand reducing their total number from to

and ere homogeni ed into a common format ith the most relevant
attributes

The promoter set as derived from the unmerged TSS set Associating di erent TSSs to
a single promoter is not a trivial process Depending on the e perimental method used
the precision of a TSS position can var greatl and biologicall distinct TSSs can be
present in the same promoter Mejía Almonte et al Furthermore several
promoters associated ith distinct sigma factors can overlap spatiall and even share
TSSs resulting in promoter regions Here I built the promoter objects b grouping all
of the TSSs that ere at most bp a a from one another regardless of the associated
sigma factor hich is not al a s reported using a sliding indo In total
promoters ere built ith an average length of bp and a ma imum length of bp
Though it is considered that a promoter should be at most bp long about of the



collection of promoters obtained is larger and distinguishing potential overlapping
promoters ould require further anal sis Figure On average promoters included

TSSs consistent ith a previous stud that reported an average of TSSs per
promoter Cho et al   and a ma imum of  TSSs

Figure 10 Composition of t o of the largest promoters and source of their respective TSSs top panel
TSSs can be further distinguished b their associated gro th conditions and e perimental methods
bottom  panels

Brie current kno ledge amounts to di erent TSSs in the E coli genome
hich might be reduced to around functionall distinct promoter regions

making on average around promoter regions per gene Note that these numbers come
from di erent gro th conditions and e perimental setups and therefore the global
picture could change as ne  datasets become available



Binding sites set

I retrieved all of the transcription factor binding sites curated from RegulonDB version
ith strong evidence and merged them using their coordinates TF coding gene

bnumber and e ect positive or negative When the TF as a heterodimer I created
t o entries one per coding gene bnumber This resulted in TFBSs associated

ith transcription factors Those numbers hide signi cant disparities most TFs
have less than associated binding sites hile TFs have more than binding sites
each and account for a total of binding sites or of the hole set Figure a
Roughl half are reported to be repressors and half activators Figure b As it is ell
kno n most binding sites are found in the intergenic regions of the genome and in
particular bet een  and  bp relative to gene start codons Figure c d

Figure 11 Statistics associated with the binding sites set a Number of binding sites associated ith TFs
b E ect associated ith binding sites activation in pink repression in bro n c Genomic location of
binding sites d Binding sites distribution relative to gene start position

Unified set of genomic features

I generated unique custom identi ers for each object of each set and created additional
tables to connect them ith one another in the form of a small database of its o n
Table Figure This database of features can be readil connected to RegulonDB

through the gene master table described in Chapter 

Type of object Size of the set

TSS

promoter

TU

CTG

TFBS

Table 1 C n en  f he da ed E  c i fea e e



Figure 12 The updated E c li feature set Five sets of objects are connected together via custom
identi ers transcription units CTG units transcription start sites promoters and TF binding sites pink
frame This small independent database can be connected to RegulonDB beige frame through gene
identi ers and EcoliGenes blue frame

Availability

Github

The updated E  coli feature set is available at Github
https github com rioualen Ecoli feature set

https://github.com/rioualen/Ecoli_feature_set


Chapter 3

Building tools for high-throughput
data analysis

Problematic

Ne t generation sequencing technologies enable the characteri ation of gene
regulation mechanisms at an unprecedented scale Transcription factor binding sites
can be identi ed genome ide ith ChIP seq and RNA seq makes it possible to
quantif all transcripts from a given cell thus revealing gene e pression and TUs
Ho ever the anal sis of their respective outputs under the form of sequenced reads
requires multiple processing steps that can be reali ed using a variet of tools and
parameters and can represent a challenge hen dealing ith diverse e perimental
setups and strategies

I developed a collection of ork o s that enable the chaining of the successive steps to
be performed With a proper setup these ork o s can be customi ed ith e ibilit
to cater to the objective of the anal sis to be performed but also ensure the full
traceabilit and reproducibilit of the results This ork as published as a protocol
Rioualen et al  

Workflows for the analysis of ChIP seq and RNA seq data

The frame ork snakemake Mölder et al as conceived to build pipelines
ensuring the full portabilit and reproducibilit of the anal ses performed and their
subsequent results Based on the p thon programming language and GNU make
concepts it de nes ork o s as sets of rules characteri ed b their input and output

les or dependencies and optional parameters The rst rule of a ork o b



convention de nes the nal targets to be produced and b deduction the list of rules
to be e ecuted according to inner dependencies Figure 

Figure 13 Schematic structure of a snakemake workflow a Work o e ample b Dependenc graph
also called rulegraph c Directed ac clic graph of the ork o  ith paralleli ation

I developed ork o s and rules organi ed into a librar called SnakeChunks and
published in the form of a protocol Rioualen et al It comprises more than
rules to perform numerous tasks using a variet of tools Figure a Those rules can
be linked to one another via their respective input output intermediar les in order
to compose ork o s Figure b Work o s can be customi ed b selecting
di erent tools and optional parameters for each inner step using e ternal
con guration les Figure c Additionall the librar contains read to use

ork o s dedicated to perform qualit control anal ses read mapping ChIP seq
anal sis RNA seq anal sis and integration of binding and e pression data from
RNA seq and ChIP seq anal ses Table 



Figure 14 SnakeChunks framework a Selected list of rules available b categor b All rules can be
assembled to create custom ork o structures c Metadata and parameters can be speci ed in separate

les for further customi ation and traceabilit  Adapted from Rioualen et al  

workflow category rule input output

qualit  control formatting sra to fastq sra fastq

qualit  control trimming sickle fastq fastq

qualit  control trimming bbduk fastq fastq

qualit  control trimming cutadapt fastq fastq

qualit  control qualit  control fastqc fastq  bam html

qualit  control qualit  control bam stats bam t t

qualit  control qualit  control multiqc html



workflow category rule input output

mapping mapping bo tie inde fasta fai

mapping mapping bo tie inde fasta fai

mapping mapping b a inde fasta fai

mapping mapping hisat inde fasta fai

mapping mapping inde fasta fasta fai

mapping mapping subread inde fasta fai

mapping mapping bo tie fastq fai bam

mapping mapping bo tie fastq fai bam

mapping mapping b a fastq fai bam

mapping mapping hisat fastq fai bam

mapping mapping tophat fastq fai bam

mapping mapping subread align fastq fai bam

mapping mapping bam b name bam bam

mapping mapping bam b pos bam bam

mapping mapping split bam b strands bam bam

mapping mapping inde bam bam bai

mapping coverage coverage bedgraph bam bedgraph

mapping coverage coverage bedgraph stranded bam bedgraph

mapping coverage coverage big ig bam big ig

mapping coverage coverage ig bam ig

mapping coverage bedgraph to big ig bedgraph big ig

mapping coverage bedgraph to tdf bedgraph tdf

mapping mapping bam to bed bam bed

mapping mapping sam to bam sam bam

ChIP seq peak calling bPeaks bam bed

ChIP seq peak calling homer bam bed

ChIP seq peak calling macs bam bed

ChIP seq peak calling macs bam bed

ChIP seq peak calling mosaics bam bed

ChIP seq peak calling spp bam bed

ChIP seq peak calling s embl bam bed

ChIP seq peak annotation annotate peaks bed fasta gtf tab

ChIP seq peak annotation bedops intersect bed bed

ChIP seq peak annotation bedops peaks vs sites bed bed

ChIP seq peak annotation bedtools closest bed g bed

ChIP seq peak annotation bedtools intersect bed g bed

ChIP seq peak annotation bedtools indo bed g bed

ChIP seq peak annotation peaks vs tfbs bed bed

ChIP seq formatting bed to fasta bed fasta

ChIP seq formatting getfasta bed fasta

ChIP seq motif anal sis d ad anal sis fasta html transfac



workflow category rule input output

ChIP seq motif anal sis peak motifs fasta html transfac

ChIP seq motif anal sis matri clustering transfac html

ChIP seq motif anal sis matri qualit transfac fasta html

ChIP seq RegulonDB regulondb do nload url tab

ChIP seq RegulonDB regulondb get matri TF name transfac

ChIP seq RegulonDB regulondb get tfbs TF name bed

RNA seq transcript detection cu inks bam gtf gtf

RNA seq di erential e pression subread featureCounts bam gtf tab

RNA seq di erential e pression DESeq tab tab

RNA seq di erential e pression sartools target le tab tab

RNA seq di erential e pression sartools DESeq tab html tab

RNA seq di erential e pression sartools edgeR tab html tab

misc formatting get chrom si es fasta tab

misc formatting gun ip ip

misc formatting g ip ip

misc formatting md sum

Table 2 List of rules and ork o s available in the SnakeChunks librar and their respective input and
output le formats  de ning their mutual dependencies

This librar and its published protocol present a methodological development
undertaken before the PhD and nali ed during the rst ear hich I used for
subsequent anal ses of high throughput data to ards the aim of E coli s
transcriptional regulator  net ork completion Chapter 

Reference  availability

Github

The SnakeChunks librar is available for do nload and use through github
https github com SnakeChunks SnakeChunks

Publication

This ork as used as part of e ternal collaborations before it as published under the
form of a protocol

https://github.com/SnakeChunks/SnakeChunks
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Next-generation sequencing (NGS) is becoming a routine approach in most
domains of the life sciences. To ensure reproducibility of results, there is a
crucial need to improve the automation of NGS data processing and enable
forthcoming studies relying on big datasets. Although user-friendly interfaces
now exist, there remains a strong need for accessible solutions that allow
experimental biologists to analyze and explore their results in an autonomous
and flexible way. The protocols here describe a modular system that enable a
user to compose and fine-tune workflows based on SnakeChunks, a library of
rules for the Snakemake workflow engine (Köster and Rahmann, 2012). They
are illustrated using a study combining ChIP-seq and RNA-seq to identify target
genes of the global transcription factor FNR in Escherichia coli (Myers et al.,
2013), which has the advantage that results can be compared with the most
up-to-date collection of existing knowledge about transcriptional regulation in
this model organism, extracted from the RegulonDB database (Gama-Castro
et al., 2016). C© 2019 by John Wiley & Sons, Inc.
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INTRODUCTION

Next-generation sequencing (NGS) technologies enable the characterization of biological
gene regulation at an unprecedented scale. Transcription-factor binding can be character-
ized at the genome scale by chromatin immunoprecipitation with DNA sequencing (ChIP-
seq), whereas RNA sequencing (RNA-seq) makes it possible to quantify all transcripts.

The analysis of sequenced reads requires a number of successive bioinformatics process-
ing steps, organized into workflows. A workflow, or pipeline, is defined as a chaining of
commands and tools applied to a set of data files, such that the output of a given step
is used as input for the subsequent one (Fig. 1). Ideally, the experimental design should
from the outset take into account a perspective on the bioinformatics analyses that will
enable relevant information to be extracted from the raw data. Biological samples are
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Figure 1 Schematic wiring of a basic workflow for ChIP-seq analysis.

subject to variation, and replication is thus essential to make it possible to estimate the
statistical significance of the final results and to ensure an appropriate tradeoff between
sensitivity and specificity. It is also necessary, as in any other biological experiment,
to carefully define the control conditions that will distinguish signal from noise (see
Commentary for more details).

Exploitation of the data by properly implemented bioinformatics workflows (with com-
prehensive specification of the tools and their versions and selection of parameters)
is crucial to ensuring the traceability and reproducibility of the results from the raw
data. Following a defined workflow also makes it possible to perform identical op-
erations on dozens of samples, using powerful computing infrastructures when nec-
essary. Snakemake (Köster & Rahmann, 2012) is a software conceived for building
such workflows. Based on the Python language, it inherits concepts from GNU make
(https://www.gnu.org/software/make): a workflow is defined by a set of rules, each defin-
ing an operation characterized by its inputs, outputs, and parameters, and a list of target
files to be generated through these operations.

SnakeChunks is a library of workflows using the Snakemake framework and designed
for the analysis of ChIP-seq and RNA-seq data. It includes rules for the quality control of
sequencing reads, removal of adapters and trimming of low-quality bases, read mapping
on a reference genome, peak calling to detect local enrichment of reads resulting from
the binding of a transcription factor, gene-wise quantification of RNAs, and differential
gene expression analysis (Fig. 2A).

The SnakeChunks library has been used to analyze RNA-seq data from Mus musculus,
Drosophila melanogaster, Saccharomyces cerevisiae, and Glossina palpalis (Tsagmo
Ngoune et al., 2017) and from Desulfovibri desulfuricans (Cadby et al., 2017), as well
as ChIP-seq data from Arabidopsis thaliana (Castro-Mondragon, Rioualen, Contreras-
Moreira, & van Helden, 2016). We illustrate here its use on combined RNA-seq and
ChIP-seq data from Escherichia coli (Myers et al., 2013).

Since the initial description of the operon structure (Jacob & Monod, 1961), E. coli
K-12 has been a model organism of reference for the study of gene regulation, resulting
in thousands of publications reporting information about around 200 of the total !300
transcription factors (TFs) identified in its genome (Blattner et al., 1997; Pérez-Rueda &
Collado-Vides, 2000). Detailed information about TFs and their binding sites, binding
motifs, target genes, and operons has been collected for three decades in RegulonDB,
the database on the transcriptional regulation in E. coli (Gama-Castro et al., 2016), by
manual curation of publications based on low-throughput experiments. Nonetheless, aRioualen et al.
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Figure 2 Organization of the SnakeChunks library. (A) Principle of the SnakeChunks library.
The library is built around a set of Snakemake rules that can be used as building blocks to build
workflows in a modular way. Each rule makes it possible to perform a given type of operation
with a given tool. A given operation can also be done with alternative tools, as denoted by the
color code in list of rules (left side) and on the building bricks. The rules marked with an asterisk
(*) are currently supported by Conda. (B) Schematic flowchart of the workflows described in this
unit.
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good deal of information remains to be discovered to provide a global, comprehen-
sive picture of the regulatory network of even this best-characterized model organism.
NGS technologies enable the characterization of biological regulation at an unprece-
dented scale, and have been widely adopted by research communities. ChIP-seq gives
insight into regulatory mechanisms by providing genome-wide binding locations for
transcription factors, whereas RNA-seq provides information about the functional impli-
cations of regulation by measuring the level of transcription of all genes under different
conditions.

ChIP-seq publications initially focused on human and metazoan models (PubMed cur-
rently returns !1,600 ChIP-seq studies for Homo sapiens and more than 2,000 for
M. musculus), and a surprisingly small number of factors were characterized by ChIP-
seq in E. coli (44 entries in PubMed). However, systematic studies have led to the
characterization of 50 transcription factors of Mycobacterium tuberculosis (Galagan
et al., 2013), and similar projects are on the way for other bacteria, including E. coli. The
protocols described here address the foreseeable needs of microbiologists undertaking
projects based on ChIP-seq, RNA-seq, or both together to analyze bacterial regulation.
Those are illustrated by a case study based on a genome-scale analysis of the FNR tran-
scription factor (Myers et al., 2013), a DNA-binding protein that regulates a large family
of genes involved in cellular respiration and carbon metabolism during anaerobic cell
growth.

This unit is organized as follows.! Strategic Planning: installation and configuration of the software environment
(Conda environment, software tools, SnakeChunks library, and reference genome).! Basic Protocol 1: preprocessing, which includes quality control, trimming, and
mapping of the raw reads on the reference genome. This protocol is illustrated for
the case of a ChIP-seq study but can be applied to RNA-seq data as well.! Basic Protocol 2: analysis of ChIP-seq data: peak calling, assignation of peaks
to genes, motif discovery, and comparison between ChIP-seq peaks and sites
annotated in RegulonDB.! Basic Protocol 3: analysis of RNA-seq data: preprocessing (as in Basic Protocol 1),
transcript quantification (counts per gene), and detection of differentially expressed
genes.! Basic Protocol 4: integration of ChIP-seq and RNA-seq results: comparison be-
tween genes associated with the ChIP-seq peaks, differentially expressed genes
reported by transcriptome analysis, and experimentally proven TF target genes
annotated in RegulonDB, as well as visualization of the results using a genome
browser.! Alternate Protocol: running of the RNA-seq workflow with the user-friendly graph-
ical interface Sequanix.! Support Protocol: customization of the ChIP-seq workflow parameters.

The basic protocols are conceived in a modular way (Fig. 2B). In particular, ChIP-seq
and RNA-seq analyses can be done separately.

NECESSARY RESOURCES

Computer Resources

This protocol runs on any Unix system (Linux, Mac OS X). Memory and CPU require-
ments depend on the volumes of data being handled. The study cases have been tested
on Ubuntu 14.04, 16.04, and 18.04 (4 CPUs, 16 Gb RAM), on Centos 6.6, and on Mac
OSX High Sierra (4 CPUs, 16 Gb RAM).

Rioualen et al.
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The full procedure uses !60 Gb of disk space, including !5 Gb for the installation of
the software environment (Conda, libraries, and tools), !15 Gb of downloaded raw reads
(compressed fastq files, genome annotations), and !40 Gb for the intermediate and final
result files.

The total processing time for all tasks is !12 h, of which 45% is spent on read mapping and
33% on trimming RNA-seq samples. This time might be further reduced by parallelizing
some tasks on a multi-CPU server or cluster (on our four-core configurations, the analyses
were completed in !3 h).

Conda

Conda is an open-source package and environment management system used to automate
the installation of all the software components required by the workflows. It greatly
facilitates the installation of software tools from multiple sources on different Unix
operating systems (Linux and Mac OS X). In addition, the installation and use of all
software tools inside a custom environment ensures their isolation from the hosting
system and prevents potential clashes with existing tools and libraries.

Conda should be installed prior to the execution of the protocols. It comes in two different
versions, Anaconda and Miniconda. We recommend using Miniconda, which takes less
disk space and makes it possible to install only the required software. Instructions can
be found here: https://conda.io/docs/user-guide/install/index.html.

Make sure that the folder containing the Conda executable is added to your $PATH
variable. This can be done automatically during the execution of the Miniconda in-
stallation script, or later by adding the following command to the bash profile (file
!/.bash_profile).

export PATH=$PATH:!/miniconda3/bin/

You now need to log out and open a new terminal session in order for the path to be
updated.

Other Software

In the protocols, we use the “tree” software to display the structure of folders and included
files in the Unix terminal. This software is not technically required for the analysis, but
offers a convenient way to check the proper organization of the files in the shell. Its
installation can vary depending on the operating system or Linux distribution. Here are
examples of tree installation with some popular package management systems.

Linux Ubuntu: sudo apt-get install tree
Linux CentO: sudo yum install tree
Mac OS X: brew install tree

IMPORTANT NOTE: Throughout the following protocols, the instructions (text in
Courier font) should be typed or copy-pasted in a terminal.

STRATEGIC PLANNING

Configuration of the Conda Environment

This section provides a succession of Unix commands that enable a user to configure
Conda, create a specific environment, install the required software (Snakemake and NGS
tools), and download the reference genome and annotations (in our case, E. coli K-12
MG1655, release 37). Much of this procedure needs to be done only once, when first Rioualen et al.
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setting up the environment; steps 3, 5, and 7 then need to be repeated for each session
(see annotation to step 10 for details).

1. Configure Conda.
conda config --add channels r;
conda config --add channels defaults;
conda config --add channels conda-forge;
conda config --add channels bioconda

IMPORTANT NOTE: These commands must be typed in the precise order indicated
above, which defines the priorities for packages that exist in several channels. Conda
may issue warnings, which can be ignored, when some of the channels are already
present — we intentionally re-add these channels in order to place them in the right order
of precedence.

2. Create an empty SnakeChunks environment using Python version 3.6.
conda create --name snakechunks_env python=3.6

3. Activate the environment.

This must be done for each new analysis session.
source activate snakechunks_env

Check that the environment is active: i.e., that the Unix prompt is prepended by
“(snakechunks_env)”.

4. Install Snakemake and some required software tools in the Conda environment: GNU
make software, Python panda library, and the Integrative Genomics Viewer (IGV).
conda install make snakemake=5.1.4 igv=2.4.9 pandas=
0.23.4

5. Define an environment variable with the directory for this analysis.

This must be done for each new analysis session (alternatively, you can declare it in
your bash profile).
export ANALYSIS_DIR=$HOME/FNR_analysis

6. Create the analysis directory.
mkdir -p $ANALYSIS_DIR

7. Set the current working directory to the analysis directory.

This must be done for each new analysis session.
cd $ANALYSIS_DIR

8. Download the SnakeChunks library from GitHub. We recommend keeping a copy
of the library in the analysis directory to ensure consistency and reproducibility.
The latest version of the SnakeChunks library can be downloaded easily with the
following Git command.
git clone https://github.com/SnakeChunks/SnakeChunks.
git

IMPORTANT NOTE: The SnakeChunks code will continue evolving with time. For the
sake of backward compatibility, we froze the precise version of the library used at the
time of publication of this article. This version can be downloaded with the following
command.

Rioualen et al.
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Figure 3 File organization after the Strategic Planning section is completed.

wget --no-clobber "
https://github.com/SnakeChunks/SnakeChunks/archive/
4.1.4.tar.gz

tar xvzf 4.1.4.tar.gz
mv SnakeChunks-4.1.4 SnakeChunks

9. Download the reference genome of E. coli K-12 and its annotations.
make -f SnakeChunks/examples/GSE41195/tutorial_
material.mk \

download_genome_data

10. Check the organization of the files in the genome directory (Fig. 3).
tree -L 2

IMPORTANT NOTE: The above steps are used to set up the environment and need to be
executed only once, except for steps 3, 5, and 7, which are required for each working
session for this project. If you log out of the terminal and want to start a new session later,
you will need to reactivate the Conda environment (step 3), redefine the environment
variable for the analysis directory (step 5), and set it as the current directory (step 7).

BASIC
PROTOCOL 1

DATA PREPROCESSING AND READ MAPPING

Data preprocessing covers the first steps of the analysis, which are common to most NGS
workflows. The goal is to make sure that the raw sequencing data are suitable for a proper
bioinformatics analysis. This process includes quality control of the sequenced reads,
removal of the sequencing adapters, and trimming of the read extremities when needed.
These operations are described more thoroughly in the Guidelines for Understanding
Results below. We illustrate these steps with a ChIP-seq dataset, but they can be applied
similarly to RNA-seq data.

Once the reads are processed and filtered appropriately, a common operation to perform
before ChIP-seq and RNA-seq analyses is to map the reads on a reference genome in
order to identify their genomic location.

This protocol covers the following steps:! Quality control of the reads using the program FastQC (Andrews, 2010);! Removal of the adapters and trimming of the read extremities using the utility
cutadapt (Martin, 2011);! Read mapping using the algorithm bowtie2 (Langmead & Salzberg, 2012).

Rioualen et al.
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Figure 4 File organization of the ChIP-seq samples before the analyses are run.

1. Download the ChIP-seq dataset from the GEO series GSE41195 (Myers et al.,
2013).

make -f SnakeChunks/examples/GSE41195/tutorial_
material.mk\

download_chipseq_data
This creates a subdirectory called “ChIP-seq” in the analysis directory defined in the
Strategic Planning section above (Fig. 4), with two fastq files corresponding to the
FNR-chipped and control samples, respectively.

tree ChIP-seq

2. Create a local copy of the metadata folder.
make -f SnakeChunks/examples/GSE41195/tutorial_
material.mk copy_metadata;

tree metadata
This creates a local copy of the metadata folder, which contains files describing the
samples, the analysis design, and the workflow configuration.

3. Run the workflow for quality control.
snakemake -s SnakeChunks/scripts/snakefiles/
workflows/quality_control.wf \

--configfile metadata/config_ChIP-seq.yml
--config trimming=′′′′ -p --use-conda
The command above runs a workflow using the “snakemake” command with the
following specifications.

The wiring of the workflow is defined in the file quality_control.wf, spec-
ified with the option -s. Modifying this wiring requires some knowledge of the
Snakemake language, which is outside the scope of this protocol (Snakemake tuto-
rials can be found in the Snakemake documentation at http://snakemake.readthedocs.
io/en/stable/tutorial/tutorial.html). quality_control.wf produces quality re-
ports using the FastQC tool (Andrews, 2010), and running this is an essential step
to assess the quality of the samples and plan the next steps of the analysis.

The workflow invokes a series of tools, each of which can be tuned with different
parameters. All of the parameters of the workflow are specified in a YAML-formatted
configuration file, specified with the option --configfile. The YAML format is
human readable and can be easily edited with a standard text editor (see Support
Protocol).! The option --config is used in order to specify that trimming will not be

performed during this run. It overrules the configuration defined in the con-
figuration file mentioned above, which is to perform trimming automatic-
ally, as will be done in step 5.! The option -p tells Snakemake to print out all the Unix commands that will
be executed. This listing is very convenient as a means to check that eachRioualen et al.
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command is called with the appropriate parameters and to keep a trace of
the full process between raw data and final results.! When the option --use-conda is used, Snakemake creates a separate
virtual environment for each rule executed in the workflow, and installs the
required tools and their dependencies in a rule-specific subfolder. This ensu-
res compatibility between the different tools invoked. The process can take
some time at the first invocation of a given environment, but is faster for
subsequent uses of the same environment.

4. The presence of the two FastQC reports can be checked with the ls commands
below.

ls -l $ANALYSIS_DIR/ChIP-seq/fastq/FNR1/FNR1_fastq.
gz_qc/FNR1_fastqc.html;

ls -l $ANALYSIS_DIR/ChIP-seq/fastq/input1/input1_
fastq.gz_qc/input1_fastqc.html

These files can be opened with a Web browser. Insights about these reports can be
found in the Guidelines for Understanding Results below.

5. Run the quality control workflow again using the software cutadapt, which performs
both read trimming and adapter removal.

snakemake -s SnakeChunks/scripts/snakefiles/
workflows/quality_control.wf "

--configfile metadata/config_ChIP-seq.yml -p
--use-conda

This time, the workflow will run cutadapt, as defined in the configuration file, before
doing a new FastQC check. Note that SnakeChunks can be used to specify several
tools for the same step, in order to compare the results. An overview of the options is
proposed in Support Protocol.

6. The presence of FastQC reports can be checked with the ls commands below.
ls -l "
$ANALYSIS_DIR/ChIP-seq/fastq/FNR1/FNR1_cutadapt_
fastq.gz_qc/FNR1_cutadapt_fastqc.html;

ls -l "
$ANALYSIS_DIR/ChIP-seq/fastq/input1/input1_
cutadapt_fastq.gz_qc/input1_cutadapt_fastqc.html

Open the new FastQC reports with a Web browser. The reports show the improvement
in the quality of the reads, as well as the absence of over-represented sequences cor-
responding to adapters. This is further discussed in the Guidelines for Understanding
Results.

7. Run the read-mapping workflow.
snakemake -s SnakeChunks/scripts/snakefiles/
workflows/mapping.wf "

--configfile metadata/config_ChIP-seq.yml -p --use-
conda -j 2

This workflow essentially performs two operations: read mapping and genome cover-
age.

We added the option -j 2, which permits Snakemake to parallelize the processing
with a maximum of two simultaneous jobs. Because the mapping step can be time
consuming, we recommend running it in parallel for the different samples. This option
should be adapted to the number of cores of your system. For example, if you analyze
a large number of files on a cluster, you could increase the number of simultaneous
jobs to 40 or even more (this has to be negotiated with your system administrator).

Rioualen et al.
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Figure 5 Read mapping statistics. Statistics were computed using the flagstats software from
SAMtools for the FNR ChIP-seq sample (A) and genomic input (B), respectively.

More information about the mapping results can be found in the Guidelines for Un-
derstanding Results.

8. Check the contents of the files containing the statistics of the mapping from the shell
(Fig. 5).

cat \
$ANALYSIS_DIR/ChIP-seq/results/samples/FNR1/FNR1_
cutadapt_bowtie2_bam_stats.txt;

cat \
$ANALYSIS_DIR/ChIP-seq/results/samples/input1/
input1_cutadapt_bowtie2_bam_stats.txt

These files, generated by the SAMtools program flagstat, display basics statistics for
the mapping. As can be seen in Figure 5A and B, here both samples have a very high
mapping rate, which confirms that the sequencing data are of good quality and that
we are going to dispose of a large quantity of data to perform the ChIP-seq analysis.

BASIC
PROTOCOL 2

ChIP-seq

ChIP-seq (Johnson, Mortazavi, Myers, & Wold, 2007; Robertson et al., 2007) is a technol-
ogy that allows the characterization of DNA binding at a genome scale. The experiment
includes the following steps: cross-linking DNA and the bound proteins with a fixative
agent, breaking DNA into random fragments by ultrasonication, immunoprecipitating
a transcription factor of interest together with its cross-linked DNA, unlinking these
DNA fragments, amplifying them by PCR, and sequencing them using massively par-
allel sequencing technologies. The raw sequences (“reads”) are then mapped onto a
reference genome, and putative binding regions—regions that contain a large number
of reads, usually extending over a few hundred base pairs—are denoted as “peaks.”
These peaks can then be used to search for precise transcription-factor (TF) binding
sites, which can then be associated with nearby genes to infer the potential TF target
genes.Rioualen et al.
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Table 1 Descriptions of the ChIP-seq Samples

ID Condition GSM identifier SRR identifier

FNR1 FNR GSM1010220 SRR576934

input1 Input GSM1010224 SRR576938

Column headers indicate their contents. the columns ID and Condition are mandatory for the proper use of the workflow.
Additional columns can be added at will to document samples.

Table 2 Experimental Design of the ChIP-seq Dataset

Control Treatment

input1 FNR1

A critical step of a ChIP-seq data analysis is peak calling, which is the detection of
these genomic regions with a higher density of mapped reads than would be expected
by chance. The choice of a peak-calling algorithm and the tuning of its parameters can
drastically affect the number of returned peaks and their sizes. To identify reliable peaks
and avoid false positives, it is important to use control samples (see Commentary for
more details). Peak callers also have parameters that can be used to tune the rate of
false positives by imposing more or less stringent thresholds on peak scores, in order
to optimize the tradeoff between sensitivity (the proportion of actual binding regions
detected) and specificity (the ability to reject non-binding regions).

Table 1 describes each sample used in the analysis: a test sample resulting from the
immunoprecipitation of the FNR transcription factor, and a genomic input. Table 2
specifies the design of the analysis, by indicating the respective status of the samples
(control versus treatment).

Although many publications rely on the Macs2 peak caller (Feng, Liu, & Zhang, 2011),
generally used with its default parameters, there are actually a variety of tools that can be
used and customized in different ways (Pepke, Wold, & Mortazavi, 2009). SnakeChunks
currently supports seven of these in a completely interchangeable way (Fig. 2A). We
will demonstrate two, Homer (Heinz et al., 2010) and Macs2, which are among the most
widely used, maintained, and up-to-date programs for this purpose and which are also
supported by Conda.

The main operations performed by the workflow described are the following:! Peak calling using Homer and Macs2 (Feng et al., 2011; Heinz et al., 2010);! Motif discovery by remote invocation of the tool peak-motifs (Thomas-Chollier
et al., 2012) from the RSAT software suite (Nguyen et al., 2018) via its Web
services interface; RSAT peak-motifs also compares discovered motifs with the
TF-binding motifs annotated in RegulonDB;! Comparison between ChIP-seq peaks and known TF binding sites listed in the
RegulonDB database (Gama-Castro et al., 2016);! Assignment of genes to peaks with the tool “annotate peaks” from the Homer
suite;! Gene comparison: comparison between genes associated with peaks and TF target
genes (as annotated in RegulonDB).

1. Run the ChIP-seq workflow.
snakemake \
-s SnakeChunks/scripts/snakefiles/workflows/
ChIP-seq_RegulonDB.wf \ Rioualen et al.
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--configfile metadata/config_ChIP-seq.yml -p --use-
conda -j 2

2. The output files can be found here.

a. Peaks: Because these files are quite large, we use the Unix command less
to display them page by page (press enter to move one page forward). After
inspecting a few pages, type “q” to quit the less program.

less \
$ANALYSIS_DIR/ChIP-seq/results/peaks/FNR1_vs_
input1/homer/FNR1_vs_input1_cutadapt_bowtie2_
homer.bed;

less \
$ANALYSIS_DIR/ChIP-seq/results/peaks/FNR1_vs_
input1/macs2/FNR1_vs_input1_cutadapt_bowtie2_
macs2.bed

b. Motifs discovered with RSAT in the peaks: Check that the html files produced
by peak-motifs are at the expected place.

ls -l \
$ANALYSIS_DIR/ChIP-seq/results/peaks/FNR1_vs_input1/
homer/peak-motifs/FNR1_vs_input1_cutadapt_bowtie2_
homer_peak-motifs/peak-motifs_synthesis.html;

ls -l \
$ANALYSIS_DIR/ChIP-seq/results/peaks/FNR1_vs_input1/
macs2/peak-motifs/FNR1_vs_input1_cutadapt_bowtie2_
macs2_peak-motifs/peak-motifs_synthesis.html

Open the peak-motifs reports with a Web browser. The results of this workflow are
further described in the Guidelines for Understanding Results below.

BASIC
PROTOCOL 3

RNA-seq

RNA-seq technology, or whole-transcriptome shotgun sequencing, reveals the presence
or absence of RNAs from a given sample, at a given moment in time, and also quantifies
them if needed. It consists of extracting the total RNA from a cell and filtering out
genomic DNA using a deoxyribonuclease (DNase). The RNA is then reverse transcribed
to cDNA, which can either be mapped onto a genome of reference or assembled de novo.
Subsequent analysis options include quantification of gene expression, identification of
alternative transcripts, and discovery of single-nucleotide variation.

In this protocol, we will use as a case study an RNA-seq experiment published by Myers
et al. (2013), in which the transcriptome of E. coli K-12 was measured in two samples
from the wild type (WT) and from a mutant strain whose FNR transcription factor activity
is inhibited (Lazazzera, Bates, & Kiley, 1993). To perform reliable RNA-seq analyses, it
is crucial to dispose of biological replicates (see Commentary). This dataset includes two
replicates per genotype (Table 3). Our goal will be to identify genes that are differentially
expressed between the FNR mutant (defined as the test condition in Table 4) and the WT
(reference condition).

This workflow accomplishes the following steps:! Quality control and trimming of the reads (for further detail, see Basic
Protocol 1);! Mapping onto a genome of reference using the algorithm BWA (Li & Durbin,
2009) (for further detail, see Basic Protocol 1);

Rioualen et al.
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Table 3 Descriptions of the RNA-seq Samples

ID Condition GSM identifier SRR identifier

WT1 WT GSM1010244 SRR5344681

WT2 WT GSM1010245 SRR5344682

dFNR1 FNR GSM1010246 SRR5344683

dFNR2 FNR GSM1010247 SRR5344684

Column headers indicate their contents. The columns ID and Condition are mandatory for the proper use of the workflow.
Additional columns can be added at will to document samples

Table 4 Experimental Design of the RNA-seq Analysis

Test Reference

FNR WT

The design file can contain one or several rows, each describing a pair of conditions to be compared. The test and reference
conditions must correspond to the values in the Condition column of the sample description table.! Quantification of transcripts per gene with featureCounts from the Subread package

(Liao et al., 2014);! Detection of differentially expressed genes with DESeq2 (Love, Huber, & Anders,
2014) and edgeR (Robinson, McCarthy, & Smyth, 2010);! Automatic generation of a report summarizing the results.

1. Copy the example metadata from the SnakeChunks library (can be skipped if al-
ready done in Basic Protocol 1, step 2), and check the content of the metadata
folder.

make -f SnakeChunks/examples/GSE41195/tutorial_
material.mk copy_metadata; tree metadata

2. Download RNA-seq data.
make -f SnakeChunks/examples/GSE41195/tutorial_
material.mk download_rnaseq_data

This creates a subdirectory “RNA-seq” in the analysis directory defined in Strate-
gic Planning (Fig. 6), and downloads the raw data. Beware: during our tests, the
download takes approximately 8 min per sample. Since the analysis requires eight
files, this download can take up to a few hours depending on your connection speed.
After the command has been completed, check the organization of the downloaded
files.

tree -C RNA-seq
You should now see four directories (one per sample), each containing two files with
the extension .fastq.gz (there is one file per sequencing end).

3. Run the RNA-seq analysis workflow.
snakemake -s SnakeChunks/scripts/snakefiles/
workflows/RNA-seq_complete.wf \

--configfile metadata/config_RNA-seq.yml -p
--use-conda -j 4

Here we use the option -j 4 in order to parallelize the treatment of the four samples,
which is time consuming.

4. Check the organization of the result files in the RNA-seq folder, with a folder depth
limit of 3.

tree -C -L 3 RNA-seq Rioualen et al.
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Figure 6 File organization of the RNA-seq samples before the analyses are run.

5. The results of the differential expression analysis performed by this workflow are
summarized in an automatically generated HTML report, which can be opened using
a web navigator.

RNA-seq/results/diffexpr/cutadapt_bwa_featureCounts_
rna-seq_deg_report.html

The elements of this report are further described in the Guidelines for Understanding
Results below.

6. Optionally, it is now possible to check the content of the main result files, which can
be found here.

ls -l RNA-seq/results/diffexpr

This folder contains a table with the counts of reads per gene:
less RNA-seq/results/diffexpr/cutadapt_bwa_
featureCounts_all.tsv

and a subfolder with the differential analysis results produced by edgeR, DESeq2,
and the two together.

ls -l RNA-seq/results/diffexpr/FNR_vs_WT

It also contains two tables with the differential analysis statistics returned by DESeq2
and edgeR, respectively.

less \
RNA-seq/results/diffexpr/FNR_vs_WT/cutadapt_bwa_
featureCounts_FNR_vs_WT_DESeq2.tsv;

less \
RNA-seq/results/diffexpr/FNR_vs_WT/cutadapt_bwa_
featureCounts_FNR_vs_WT_edgeR_TMM.tsv

The subset of differentially expressed genes (those declared positive because they
pass the significance threshold) are exported in an additional file.

less \
RNA-seq/results/diffexpr/FNR_vs_WT/cutadapt_bwa_
featureCounts_FNR_vs_WT_DEG_table.tsv

In the tutorial, we retain the union of genes called positive by either DESeq2 or edgeR,
but alternatively, the combination rule can be tuned in the YAML configuration file.

7. We can count the rows of this file to get an idea of the number of differentially
expressed genes (after subtracting one for the header line).

Rioualen et al.
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wc -l
RNA-seq/results/diffexpr/FNR_vs_WT/cutadapt_bwa_
featureCounts_FNR_vs_WT_DEG_table.tsv\

| awk ‘{print $1 -1}’

BASIC
PROTOCOL 4

INTEGRATION

We have seen in Basic Protocol 2 that a ChIP-seq experiment followed by peak calling
can be used to identify genomic binding locations for a given transcription factor. In Basic
Protocol 3, we analyzed results of an RNA-seq experiment to identify genes differentially
expressed between two conditions (wild-type versus FNR mutant).

Here, we show how to combine the results of those two types of experiments in order to
unravel the links between genome binding data (ChIP-seq) and differential expression
data (RNA-seq). This allows to detect not only direct target genes of a factor, i.e., genes
whose transcription level is affected in the mutant, and whose upstream region contains
a binding peak, but also indirect regulation (absence of a binding peak but presence of an
observed effect on the expression of a gene) or binding of the FNR transcription factor
without detected effect on the level of transcription of the associated genes. We also
compare the NGS results with the list of FNR target genes annotated in the RegulonDB
database (Gama-Castro et al., 2016).

1. Run integration workflow.
snakemake -p \
-s SnakeChunks/scripts/snakefiles/workflows/
integration_ChIP_RNA.wf \

--configfile metadata/config_integration.yml
--use-conda

2. Check the first lines of the table summarizing the results for each gene.
less $ANALYSIS_DIR/integration/ChIP-RNA-regulons_
homer_gene_table.tsv

For a better readability, we recommend opening this table with spreadsheet software
(e.g., Office Calc or Excel). The table contains annotations for all genes known in
E. coli K-12, as well as an indication of whether they are associated with FNR
binding (ChIP-seq column), whether their transcription is affected by FNR (RNA-seq
column), and whether they have been previously demonstrated to be regulated by FNR
(FNR_regulon column).

3. Launch the IGV browser (Robinson et al., 2011; Thorvaldsdóttir, Robinson, &
Mesirov, 2013):

On Linux operating systems: igv

In Mac OS X: open the IGV in the Applications folder.

4. Click on menu File, select Open session . . . , and select the session file meta-
data/igv_session.xml in the FNR analysis directory.

This will load an IGV session with our selection of relevant tracks for the interpretation
of ChIP-seq and RNA-seq results, which are discussed further in the Guidelines for
Understanding Results below.

ALTERNATE
PROTOCOL

RUNNING THE WORKFLOW WITH THE USER-FRIENDLY INTERFACE
SEQUANIX

Sequanix (Desvillechabrol et al., 2018) is a graphical user interface (GUI) based on PyQt,
developed to facilitate the execution of NGS Snakemake pipelines. It was originally de-
signed to run workflows included in the Sequana project (http://sequana.readthedocs.io), Rioualen et al.
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Figure 7 Sequanix graphical user interface. (A) Configuration of the workflow parameters. (B)
Display of workflow wiring. The diagram shows the directed acyclic graph (DAG) of rules automat-
ically generated by Snakemake.
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but can also handle any Snakemake pipeline. Thanks to the graphical interface, the pa-
rameters can be customized easily and the workflows can be run without using any
command line.

Here we demonstrate the execution of the RNA-seq workflow (see Basic Protocol 3)
using this interface.

Necessary Resources

Conda: If not already done, create and activate a Conda environment (Strategic
Planning, steps 1 to 10)

Sequana: Install Sequana: type conda install -c bioconda
sequana=0.7.1

RNA-seq dataset: If not already done, download the RNA-seq dataset (Basic
Protocol 3, step 1 and 2) to install the metadata and download RNA-seq raw
reads

1. Launch Sequanix.
sequanix

2. At the top of the Sequanix window, select the tab “Generic pipelines.”

3. Under the Snakefile tab, fetch the workflow file RNA-seq_complete.wf in the
directory SnakeChunks/scripts/snakefiles/workflows.

4. Under the Config file tab, fetch the configuration file config_RNA-seq.yml in
the directory metadata.

5. Under the Working directory tab, select the directory you defined above as $ANAL-
YSIS_DIR (Strategic Planning, step 5) (Fig. 7A).

6. In the menu of the application, select Options > Snakemake options . . . > General,
and type “--use-conda” in the bottom box “other options,” then press OK.

7. In the Sequanix main window, press Save.

8. Press Show pipeline to check that everything looks reasonable (Fig. 7B).

9. Press Run.

If you have followed Basic Protocol 3, the Run button should not start any new analysis,
because Snakemake will detect that the result files are already present. If not, Sequanix
will run the workflow just as in the terminal.

SUPPORT
PROTOCOL

CUSTOMIZATION OF PARAMETERS

Each workflow available in SnakeChunks requires three basic files in order to specify the
input data files and all the parameters of an analysis. These files have been placed in a
directory named “metadata.” We explain here how to adapt the ChIP-seq metadata files,
but the same principle applies to the RNA-seq and integration workflows. The ChIP-seq
workflow runs using three metadata files:! Sample file: samples_ChIP-seq.tab;! Design file: design_ChIP-seq.tab;! Workflow and tool parameters: config_ChIP-seq.yml (Fig. 8A).

The sample file (Table 1) describes each sample to be analyzed (one row per sample), with
two mandatory columns (ID and Condition) and optional columns for complementary
information such as GSM identifiers. Here, we have two samples: one ChIP-ped with
FNR, and a control sample labeled “input” following the ChIP-seq convention.

Rioualen et al.
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Figure 8 YAML-formatted configuration file for the ChIP-seq workflow. The YAML format enables
the user to specify all the parameters of a workflow in a structured way while being human readable
and easily editable. (A) Default configuration. (B) Customized configuration.

The design file (Table 2) defines the samples to be compared in order to perform peak
calling. Here, we are going to perform peak calling of the ChIP sample, using the input
sample as a background control. For RNA-seq, the design defines the conditions to be
compared.

The configuration file (Fig. 8A) is specific to the workflow to be run. It contains three
main parts: (1) general information about the reference genome, metadata file, and file
organization; (2) general design of the workflow, such as the steps to be performed
(trimming, mapping, peak calling, annotation) and the tools to be used at each step; and
(3) an optional section enabling to customize the parameters used for each tool (if not
specified, their default parameters are used).

Below, we explain how to edit the configuration file in order to generate alternative
results, using different tools and parameters.

IMPORTANT NOTE: Be aware that performing alternative trimming and/or mapping can
require additional disk space, since FASTQ files (raw reads, trimmed reads) and BAM
files (aligned reads) are very space consuming. In the following protocol, that requires
about 2 Gb of disk space, but this can go as high as tens of gigabases in the case of larger
raw files, such as the RNA-seq files analyzed in Basic Protocol 3.Rioualen et al.
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1. Create a copy of the ChIP-seq config file.
cd $ANALYSIS_DIR; \
cp metadata/config_ChIP-seq.yml metadata/config_
ChIP-seq_custom.yml

2. With a text editor, make the following changes to your custom configuration file
(metadata/config_ChIP-seq_custom.yml).

a. Change the trimming software from cutadapt to sickle.
b. Change the mapping software from bowtie2 to subread-align.
c. Add the SPP peak caller to Homer and Macs2.
d. Customize the SPP, Homer, and Macs2 parameters in the third section according

to the values shown in Figure 8B.

Alternatively, you can avoid manual editing of parameters by copying the ready-to-use
customized configuration file provided in the distribution. To do this, skip step 2 and
instead run the following command:

cp metadata/config_ChIP-seq_advanced.yml metadata/
config_ChIP-seq_custom.yml

3. Run the commands below, which correspond to steps 5 and 7 of Basic Protocol 1, and
step 1 of Basic Protocol 2, 1.5, 1.7, and 2.1 adapted to use the custom configuration
file.

snakemake \
-s SnakeChunks/scripts/snakefiles/workflows/quality_
control.wf \

--configfile metadata/config_ChIP-seq_custom.yml -p
--use-conda -j 2;

snakemake \
-s SnakeChunks/scripts/snakefiles/workflows/mapping.
wf \

--configfile metadata/config_ChIP-seq_custom.yml -p
--use-conda -j 2;

snakemake \
-s SnakeChunks/scripts/snakefiles/workflows/
ChIP-seq_RegulonDB.wf \

--configfile metadata/config_ChIP-seq_custom.yml -p
--use-conda -j 2

4. Visualize the differences in the IGV: load a session as in Basic Protocol 4, steps 3
and 4.

5. Click on the menu File, select “Load from File . . . ,” and select the following peak
files:

$ANALYSIS_DIR/ChIP-seq/results_advanced/peaks/FNR1_
vs_input1/spp/FNR1_vs_input1_sickle_subread-align_
spp.bed

$ANALYSIS_DIR/ChIP-seq/results_advanced/peaks/FNR1_
vs_input1/homer/FNR1_vs_input1_sickle_subread-
align_homer.bed

$ANALYSIS_DIR/ChIP-seq/results_advanced/peaks/FNR1_
vs_input1/macs2/FNR1_vs_input1_sickle_subread-
align_macs2.bed

By running the command wc -l on these files, you can note the influence of the choice
of peak caller, as well as its parameters.

Rioualen et al.
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GUIDELINES FOR UNDERSTANDING RESULTS

Data Preprocessing and Read Mapping (Basic Protocol 1)

Quality control

For each sample, FastQC produces a box plot representing per-base sequence quality. A
common phenomenon in high-throughput sequencing is a decrease in sequence quality
at the 3′ end of the reads. This can indeed be observed for the input sample in our
case study (Fig. 9). Low read quality can reduce the percentage of reads mapped on
the reference genome. To avoid this, we recommend performing sequence trimming to
remove low-quality read extremities.

Another interesting category of information in FastQC reports is the sequence-duplication
levels. The graph outlines read sequences found in an excessive number of copies, which
may diagnose an effect of PCR amplification due to poor complexity of the DNA library.
Note that duplication is often interpreted in contexts in which the sequence library is
much smaller than the genome size (typically !50 M reads for a !3-Gb mammalian
genome), so that reads resulting from a random sampling are not expected to fall on
exactly the same genomic position. When studying bacterial regulation, however, library
size can exceed genome size (typically 4 Mb) so that multiple matches are expected along

Figure 9 Quality report of the FNR1 ChIP-seq raw reads before trimming. The abscissa
(columns) corresponds to nucleotide positions along the mapped reads; the ordinate indicates
read quality scores. For each position, statistics are summarized for all the reads of a library:
median (red line), interquartile range (yellow box), and quality range (vertical line). Background
colors indicate an arbitrary subdivision of quality scores, from red (insufficient) to green (good).Rioualen et al.
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the whole genome. Another section of the FastQC report provides statistics about over-
represented sequences. Before removal of the adapters by cutadapt (Basic Protocol 1,
step 5), Illumina adapters represent respectively 0.5% and 2.6% of the total num-
ber of reads of the FNR1 and input1 samples. After cutadapt is run, these se-
quences are gone (Basic Protocol 1, step 6). Detailed information on the in-
terpretation of read quality is provided on the FastQC Web site (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/).

Read mapping

Using the bowtie2 algorithm, the trimmed reads in FASTQ format are aligned onto a
genome of reference, downloaded as described in Strategic Planning. In our case, the
reference is E. coli K-12. The result of the alignment comes in a BAM format that retains
all the information from the fastq files about read sequences and quality, but adds the
putative positions of the reads in the reference genome.

Genome coverage

Genome coverage files makes it possible to visualize the mapped reads in a condensed
way, by showing the number of reads overlapping each position on each strand of the
reference genome (Fig. 10A, pink, gray, and jade tracks in the middle panel) or their sum
on both strands (purple track). Coverage profiles can be stored in different file formats
(e.g., tdf, bedgraph, bigwig) depending on the size of the dataset and the way to display
it. In this protocol, we use the TDF format, which is the recommended format for optimal
IGV visualization.

ChIP-seq (Basic Protocol 2)

Peak calling

The peaks detected by Homer and Macs2 can be visualized in IGV as BED files. This
file format contains essentially the coordinates of the regions with a high density of
mapped reads, which are called “peaks.” Although in bacteria it is expected that ChIP-
seq peaks will fall into intergenic regions upstream of the regulated genes, it has been
shown that a surprisingly high amount of binding may occur into coding or downstream
regions (Galagan, Lyubetskaya, & Gomes, 2012). This observation should be interpreted
by taking into account the fact that bacteria have a very small proportion of intergenic
regions (10% to 15% of the genome).

Figure 10A shows a very clear peak around position 2,344,000, detected by both peak
callers, in the noncoding region upstream of the gene nrdA. On comparing the ChIP-
seq read coverage on the forward and reverse strands (pink tracks in the middle panel),
we see a shift between forward and reverse peaks. This typical pattern is consistent
with the expectation for ChIP-seq experiments, because immunoprecipitated fragments
are sequenced at their extremities, so that the reads are expected to be found either
on the forward strand to the left of the binding site, or on the reverse strand to its
right.

Different peak-calling tools can produce very different results for the same dataset. In
the same region (Fig. 10A), Macs2 detects another peak around position 2,347,000,
associated with the gene nrdB, which belongs to the same operon as nrdA. It is not
identified as a peak by Homer, and it is not associated with any known FNR TF binding
sites from RegulonDB. However, RegulonDB indicates that nrdB is regulated by H-
NS and Fis, nucleoid-associated proteins (NAPs) that are known to mask FNR binding
sites under anaerobic conditions (Myers et al., 2013). Although barely detected by peak
callers, this site is thus supported by some experimental evidence.

Rioualen et al.
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Figure 10 Snapshots of ChIP-seq results for selected genomic regions. The figures were gener-
ated with the Integrative Genomics Viewer (IGV). (A) High-confidence peak in the promoter region
of the nrdAB operon. Note the characteristic shift between reads mapped on the plus and minus
strands. (B) Example of a peak that is likely to be a false positive. For both IGV maps (A and B),
the top panels show the coordinates of the displayed genomic region. The middle panels show
read density profiles in the input (gray) and ChIP-seq samples (purple for strand-insensitive, pink
for strand-sensitive profiles), and RNA-seq data (WT in gray, FNR mutants in turquoise). The lower
panels show annotation tracks for genes (yellow), annotated FNR binding sites (none found in the
displayed regions), and binding peaks.
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Figure 11 Most significant motif discovered by RSAT peak motifs in the FNR peaks, aligned with
matching motifs in RegulonDB.

In contrast, Figure 10B shows a typical example of a peak that is likely to be a false
positive. Note that its read enrichment is restricted to the reverse strand and falls within the
coding region of a gene. Strand-specific display of read coverage thus makes it possible to
assess the reliability of peaks by inspecting their distribution around the putative binding
sites.

The number of peaks and their width can vary considerably, hence the need to adapt
the tools to a given study and assess the relevance of the downstream results. Under
our working conditions, Homer returns 161 peaks of equal width (exactly 177 bp each),
whereas Macs2 returns 411 peaks ranging from 200 to 5893 bp (with an average of
475 bp), an obviously excessive size for TF binding sites. The broadest peaks reported
by Macs2 correspond to wide regions covering several genes, which are entirely covered
by reads in the ChIP-seq sample, and indeed enriched with respect to the genomic input,
but which likely do not correspond to TF binding sites. For Macs2, the number of peaks
can be strongly modified by tuning the q-value threshold and the minimal fold change.
For example, the number of peaks drops from 547 with a q-value threshold of 0.05 and
a minimal fold-change of 2, to 159 with q-value threshold of 0.001 and a minimal fold
change of 5. The most permissive conditions give fewer relevant peaks, denoted by a drop
in the significance of the FNR motif. In summary, the choice of a peak-calling algorithm
and the fine-tuning of its parameters crucially affect ChIP-seq results, and should be
evaluated case by case.

Motif discovery in peak sequences

The top panel of Figure 11 shows the most significant motif returned by RSAT peak-
motifs (Thomas-Chollier et al., 2012) in the sequences of Homer peaks. This motif
was discovered by the tool dyad-analysis (van Helden, Rı́os, & Collado-Vides, 2000),
which detects over-represented pairs of spaced oligonucleotides. This motif discovery
approach is particularly relevant for bacteria, where most transcription factors form ho-
modimers that bind spaced motifs. The comparison of this discovered motif with all
the TF binding motifs annotated in RegulonDB returns two matches, corresponding
to FNR and CRP, respectively. The alignment highlights the strong similarity between
the motifs recognized by FNR and CRP (they differ only by one nucleotide at posi-
tion 7 of the motif alignment), which is consistent with the fact that these two fac-
tors are known to co-regulate a number of genes (Gama-Castro et al., 2016; Myers
et al., 2013).
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Figure 12 Global views of the results for the detection of differentially expressed genes between
FNR mutant versus wild-type. These plots are generated as part of the differential analysis step,
using an R script. Left and right panels respectively show the results of DESeq2 and edgeR. (A) MA
plots. The abscissa indicates the mean level of expression (average of the log-transformed counts),
and the ordinate shows the log fold change between FNR mutant and wild-type strain, which
indicates the level of over- (positive values) or underexpression (negative values). Differentially
expressed genes (DEGs), i.e., those passing both the effect size and significance thresholds,
are highlighted in blue. Triangles indicate genes whose log2 fold change exceed the plot limits.
(B) Volcano plots. The abscissa represents the log fold change, which indicates the size of the
effect and its sign (–, downregulation; +, upregulation). The ordinate shows the significance of the
differential expression (negative log of the adjusted P value).

RNA-seq (Basic Protocol 3)

Differentially expressed genes

The results of the RNA-seq analysis are summarized in an HTML report (RNA-
seq/results/diffexpr/cutadapt_bwa_featureCounts_rna-seq_
deg_report.html), which can be visualized using a web browser. It features
information and statistics about the RNA-seq samples, read counts, and differentially
expressed genes, detected by using two different tools: DESeq2 (Love et al., 2014) and
edgeR (Robinson et al., 2010). Figure 12 shows MA plots and volcano plots that are
automatically produced by the workflow to provide a synthetic representation of theRioualen et al.
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global results of the RNA-seq differential analysis. The MA plots (Fig. 12A) indicate
the relationship between the mean level of expression of each gene (abscissa) and
its differential expression, measured as the log fold difference between FNR mutant
and wild type (ordinate). The genes declared differentially expressed between the two
conditions (WT versus FNR) are highlighted as blue crosses. Genes overexpressed and
underexpressed in the FNR mutants appear above or below the x axis, respectively.
The volcano plots (Fig. 12B) provide a combined view of the expression changes
(log fold change, on the abscissa) and the statistical significance of these changes (on
the ordinate). The significance is computed as the negative logarithm of the adjusted
P values reported by DESeq2 (left) and by edgeR (right), respectively. High values
are indicative of significant differences of expression between FNR mutant and WT
strains. To select differentially expressed genes, SnakeChunks combines user-modifiable
thresholds on the adjusted P value (default: α = 0.05) and on the fold change (default:
at least twofold over- or underexpression).

In total, these thresholds lead to the retention of 278 differentially expressed genes that
were declared positive by either DESeq2 (255 genes) or edgeR (272 genes). This number
is consistent with the fact that FNR acts as global regulator in E. coli. Note that we chose
to keep the union of both lists in order to favor sensitivity, but this can be parameterized
in the configuration file by specifying that the detection of differentially expressed genes
relies on edgeR, DESeq2, their intersection, or their union.

Integration (Basic Protocol 4)

The Venn diagram generated by the workflow (Fig. 13, file integration/ChIP-
RNA-regulons_venn.png) shows the number of E. coli genes associated with FNR
peaks in the ChIP-seq experiment (pink), reported as differentially expressed in the
RNA-seq analysis (green), or annotated as FNR targets in RegulonDB (violet), as well
as the intersections between these gene sets. Supporting Information Tables S1 and S2
provide the complete data table used to generate these Venn diagrams. Depending on
the peak-calling algorithm, the number of genes found at the intersection between the
three gene lists (ChIP-seq, RNA-seq, and RegulonDB) will be quite small (38 for Macs2
peaks and 28 for Homer peaks) relative to the respective size of the compared gene sets.
It is interesting to consider an interpretive guideline for the pairwise intersections or
set memberships. The genes reported by both ChIP-seq (FNR binding) and RNA-seq
(FNR transcriptional response) but not annotated in RegulonDB are likely to be direct
FNR target genes, and might be considered to be added to RegulonDB, in an annotation
track based on combined evidence from complementary high-throughput experiments.
This would give 29 genes with Macs2 peaks and 25 with Homer peaks. It would be
interesting to furthermore scan their promoter sequences in order to search instances of
the FNR binding motif in order to predict binding-site locations, and consolidate the
results. The genes detected as differentially expressed (RNA-seq) without any annotated
FNR site (RegulonDB) or associated peak (Figure 13, pale green, on the Venn diagrams
of Figure 13, covering, respectively, 160 and 167 genes for Macs2 and Homer) include
genes located inside the target operons of FNR. Indeed, in bacteria, polycistronic tran-
scripts are regulated by cis-acting elements located in the promoter of the operon leader
gene. Consistently with this, 38 of these 167 genes (!23% when the analysis is led with
Homer) have a very short upstream noncoding region (<55 bp) typical of intra-operon
genes, whereas almost all the genes of the triple intersection (28 of 29) have larger up-
stream sequences typical of operon-leader genes. The remaining 77% of differentially
expressed genes without associated ChIP-seq peak are likely to be indirect FNR tar-
gets, whose transcription might be affected via intermediate transcription factors that are
themselves regulated by FNR. The genes associated with ChIP-seq peaks without tran-
scriptional response (334 for Macs2, 119 for Homer) likely result from different effects: Rioualen et al.
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Figure 13 Integration of ChIP-seq, RNA-seq results, and RegulonDB annotations. Venn dia-
grams show the intersections of the genes linked to ChIP-seq peaks (pink), those declared differ-
entially expressed by the RNA-seq experiment (green), and those annotated as FNR target genes
in RegulonDB (violet). These diagrams are automatically generated by the integration workflow,
using the R library VennDiagram. (A) Results with the 411 ChIP-seq peaks reported by Macs2 with
q < 0.01 and fold change between 2 and 50. (B) Results with the 166 ChIP-seq peaks reported
by Homer.
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Figure 14 IGV snapshots of RNA-seq results for three illustrative operons. Middle panel, genome coverage
profiles for the two replicas of the wild-type (gray) and FNR mutant (jade). Lower panel, genome annotations for
the genes (yellow), FNR binding sites from RegulonDB (gray), differentially expressed genes (jade), and FNR
target genes annotated in RegulonDB (dark olive). Shown are views of selected regions encompassing (A) the
cydABX operon, (B) the dmsABC operon, and (C) the leuLABCD operon.

nonfunctional binding of the FNR factor under the experimental conditions of the study
(missing co-activator, co-binding of a repressor); binding between two divergently tran-
scribed transcription units, but regulating only one of them; or false positives from peak
calling (e.g., regions with a high density of reads on one strand only, as discussed above).

Figure 14 highlights some illustrative examples of differentially expressed genes detected
by DESeq2 or edgeR. For the cydABX operon (Fig. 14A), the FNR mutant (jade tracks
on the genome coverage profiles) has an increased level of expression compared to the
wild-type (gray tracks). Consistently with that result, this operon is repressed by FNR
(Salmon et al., 2003), and it has two annotated FNR binding sites in RegulonDB, which
overlap a strong peak detected by both Homer and Macs2 in the ChIP-seq results.

The dmsABC operon also exemplifies the genes found at the triple intersection: it is
regulated by FNR (Melville & Gunsalus, 1996), and, consistently, it has one TF binding
site listed in RegulonDB, and is reported by both the ChIP-seq and RNA-seq experiments
(Fig. 14B). Rioualen et al.
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A more subtle example is the leuLABCD operon (Fig. 14C): RNA-seq coverage pro-
files also reveal reduced expression, although the differential expression analysis did
not report the presence of any significant gene, due to the stringent thresholds applied
to both adjusted P value (<0.05) and fold change (>2). This operon encodes the en-
zymes responsible for the biosynthesis of leucine from valine. It has no binding sites
annotated in RegulonDB for the FNR transcription factor, and based on the RNA-seq
results only, several possibilities could be invoked to explain this inconsistency: the leu
operon might (i) be indirectly regulated by FNR via another transcription factor, (ii) be
a direct target of FNR whose binding sites have not yet been characterized, or (iii) be a
false-positive. This situation can be clarified by analyzing the ChIP-seq profiles, since
we observe a clear peak upstream of the operon, detected by both Macs2 and Homer
(Fig. 14C), supporting the evidence for a direct regulation of the leu operon by FNR.

In summary, a detailed analysis and human-based interpretation of combined RNA-seq
and ChIP-seq data is worthwhile as a means to go beyond the gene lists returned by the
automatic comparison of target genes predicted by ChIP-seq and RNA-seq experiments.

COMMENTARY

Background Information
Next-generation sequencing (NGS) tech-

nologies (Schuster, 2007) emerged in 2007
with the development of several approaches
for massively parallel sequencing of short
DNA sequences (a few tens of base pairs
per sequence). This unprecedented gain in
sequencing speed was mobilized for a wide
variety of applications: genome sequenc-
ing, transcriptome (RNA-seq), genome-wide
binding location analysis (ChIP-seq), chro-
matin conformation (Hi-C), metagenomics,
and many others. Research projects based on
NGS typically lead to the situation where
the biologist performs experiments, sends
the samples to a sequencing center, and
receives a link to download several giga-
bases of raw sequences known as “short
reads.” Since 2007, a wide variety of soft-
ware tools has been developed to handle NGS
data and extract relevant information (Pepke
et al., 2009).

Proper use of such software requires a good
understanding of their parameters, strengths,
and weaknesses. Beyond the choice and pa-
rameterization of each particular tool, it has
become crucial to formalize their wiring by
implementing workflows that ensure traceabil-
ity and reproducibility of all the steps used to
produce the results from the raw data. Many
alternative software systems can be used to
manage the development and execution of
analysis workflows. Among them, Galaxy
(Goecks, Nekrutenko, & Taylor, 2010) be-
came highly popular because it offers an
immediate access through a graphical inter-
face to biologists with no experience in the
Unix terminal. Snakemake (Köster & Rah-

mann, 2012) offers a complementary solution
to achieve the same goals—developing, man-
aging, and running NGS workflows—in the
Unix command-line environment. Snakemake
is currently being adopted by a growing num-
ber of bioinformaticians as well as experimen-
tal biologists willing to get one step further
in the analysis of their own data. The goal
of SnakeChunks is to facilitate the concep-
tion and use of NGS workflows by encapsu-
lating Snakemake commands in a library of
modular rules (one per tool) that can be com-
bined in various ways to build and customize
workflows (Fig. 2).

Critical Parameters

Control samples
When analyzing binding signals (ChIP-seq)

or transcription signals (RNA-seq), it is crucial
to generate appropriate control experiments, in
order to measure differences in signal against
a proper background signal, and thus avoid
the detection of false positives. This is es-
pecially important when analyzing ChIP-seq
data, since false peaks can arise from biases in
the experiments: nonhomogeneous sonication
of DNA due nonhomogeneous aperture of the
chromatin, GC biases arising during PCR am-
plification of the fragments, low-complexity
regions of the genome, and so on. Differ-
ent types of controls can be used to estimate
the background probabilities of read mapping
in the different regions of the genome, in-
cluding (1) sequencing genomic DNA with-
out immunoprecipitation; (2) using “mock
IP,” i.e., performing the immunoprecipitation
with a nonspecific antibody; or (3) artificially
knocking out the expression of the TF ofRioualen et al.
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interest. Irrespective of the method used, the
control sequences are generally denoted as
“input” for the peak-calling programs. In the
study by Myers et al. (2013), genomic DNA
was used as input. In the case of RNA-seq,
knocked-out TFs or overexpressed TFs can be
compared against WT samples. In this study,
samples with an inactivated FNR protein were
compared against WT strains.

Number of replicates
When performing biological experiments,

it is crucial to account for the unavoidable
variability intrinsic to living organisms. RNA-
seq experiments are no exception, and it has
been demonstrated that the greater the num-
ber of replicates, the more sensitive the detec-
tion of differentially expressed genes (Schurch
et al., 2016). Designing experiments with a
high number of replicates enables the analysis
to distinguish subtle but relevant changes in
expression from spurious fluctuations due to
biological variability.

Choice of a read mapper
Read mapping is generally the most time-

and resource-consuming task of RNA-seq and
ChIP-seq data analysis. For the FNR study
case developed in this article, the complete
ChIP-seq workflow runs in a few minutes,
whereas the RNA-seq workflows takes several
hours. The modularity of the SnakeChunks
library enabled us to run the same work-
flow with three alternative read-mapping tools:
BWA (Li & Durbin, 2009), bowtie2 (Lang-
mead & Salzberg, 2012), and subread-align
(Liao, Smyth, & Shi, 2013). For this partic-
ular dataset, BWA runs approximately three
times as fast as the two other algorithms, while
giving very similar mapping rates. However,
we experienced opposite rankings of tool per-
formance with other datasets and reference
genomes. The choice and parameterization of
a read mapper should thus be considered as
critical step, which has to be tuned in a case-
specific way to optimize a workflow.

Troubleshooting
The Snakemake workflow management

system is equipped with its own mechanisms
for detecting, reporting, and fixing problems.
Trouble is reported by red messages displayed
on the terminal indicating the kind of prob-
lems and—when possible—suggested ways to
fix them.

Advanced Parameters
Proper parameterization of the workflow is

the key to optimize both computing efficiency
and the biological relevance of the results.

Parameters can be changed either by mod-
ifying the YAML-formatted configuration file
in the metadata (see Support Protocol) or
with the option --config in the Snake-
make command line (see example in Basic
Protocol 1, step 3).

With the popularization of RNA-seq for
transcriptome studies, the number of sam-
ples per research project has been expand-
ing in recent publications. A crucial parameter
will be the ability to keep up with increas-
ing storage needs and to parallelize compu-
tation for large studies. The FNR case study
discussed in this unit was intentionally se-
lected for its small number of replicates per
condition, but for wider-scale studies the num-
ber of simultaneous jobs handled by Snake-
make should be adapted to the number of
CPUs of the computing system (option -j
option).

We also make a frequent use of the
Snakemake option -n, which prints out all the
commands required to complete a workflow,
without actually executing them (as a dry
run). This gives the user the ability to check
that a command is properly parameterized
before running it, which can be valuable
when applying hours-long tasks to multiple
samples.

Suggestions for Further Analysis
The main goal of the SnakeChunks library

is to ensure the reproducibility of the analyses.
This is why we recommend keeping a copy
of the library with each dataset analyzed in
order to ensure consistency between the results
and the precise version of the library used to
generate them. This is particularly crucial in
the case of publication, so that readers can
actually reproduce the analyses performed.

The use of Conda also enables the user to
keep control over the software environment,
and is in accordance with the FAIR Principles
(Wilkinson et al., 2016).

A natural extension of this work will be to
take advantage of SnakeChunks’ flexibility in
order to assess the impact of tool and parame-
ter choice on the biological relevance of the re-
sults, and to optimize workflows by evaluating
the correspondence between the lists of genes
returned by combining ChIP-seq and RNA-seq
results and those already annotated in Reg-
ulonDB for well-characterized transcription
factors.
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Köster & Rahmann (2012). See above.
Describes the Snakemake workflow engine.

Myers et al. (2013). See above.
Publication associated to the dataset used in this

protocols.

Internet Resources
Snakemake: Retrieved from http://snakemake.

readthedocs.io

SnakeChunks GitHub repository: Retrieved from
https://github.com/SnakeChunks/SnakeChunks

SnakeChunks documentation & tutorials: Retrieved
from http://snakechunks.readthedocs.io

FastQC: Retrieved from http://www.bioinfo
rmatics.babraham.ac.uk/projects/fastqc/

UCSC file format description: Retrieved from
https://genome.ucsc.edu/FAQ/FAQformat.html

Rioualen et al.

31 of 31

Current Protocols in Bioinformatics

http://doi.org/10.1073/pnas.93.3.1226
http://doi.org/10.1371/journal.pgen.1003565
http://doi.org/10.1093/nar/gky317
http://doi.org/10.1038/nmeth.1371
http://doi.org/10.1093/nar/28.8.1838
http://doi.org/10.1038/nmeth1068
http://doi.org/10.1038/nmeth1068
http://doi.org/10.1038/nbt.1754
http://doi.org/10.1093/bioinformatics/btp616
http://doi.org/10.1074/jbc.M213060200
http://doi.org/10.1038/nmeth1156
http://doi.org/10.1261/rna.053959.115
http://doi.org/10.1261/rna.053959.115
http://doi.org/10.1093/nar/gkr1104
http://doi.org/10.1093/nar/gkr1104
http://doi.org/10.1093/bib/bbs017
http://doi.org/10.3389/fimmu.2017.00876
http://doi.org/10.1093/nar/28.8.1808
https://www.nature.com/articles/sdata20161
https://www.nature.com/articles/sdata20161
http://snakemake.readthedocs.io
http://snakemake.readthedocs.io
https://github.com/SnakeChunks/SnakeChunks
http://snakechunks.readthedocs.io
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://genome.ucsc.edu/FAQ/FAQformat.html


Chapter 4

Integration of high-throughput data
within a reference framework

Problematic

E coli K is to date the best characteri ed prokar otic organism and a signi cant
portion of its transcriptional regulator net ork is kno n and available for displa and
for use through the RegulonDB portal Still it remains incomplete about a third of its
predicted transcription factors are not e perimentall proven to perform actual
regulation and most of those that do have evidence for regulation ere not studied
genome ide High throughput technologies no allo for genome ide detection of
binding sites for instance via ChIP seq ChIP e o gSELEX or DAP seq and
transcriptional pro ling is no routinel performed using RNA seq Ho ever until
recentl there as no online resource that ould allo one to consult or make use of
those data  together ith the classic data

In this chapter I present m contributions to an article that undertakes the task of
gathering standardi ing more than datasets of high throughput data that are
relevant to E coli genomic organi ation and regulation and integrating them ith the
data resulting from classic lo throughput e periments and literature curation on a
single portal  RegulonDB HT Tierrafría  Rioualen et al  

Definition of the framework

The diversit of data to be integrated and objects to be manipulated proved to be a
challenge despite the ell established standards that have been developed in
RegulonDB over the ears and have been evolving ith the constant addition of ne
biological kno ledge A lot of thought as put into a ne frame ork that ould allo



us to gather and process data from a variet of technologies and produce uniform
datasets

We de ned collections as sets of data de ning objects of distinct t pes namel
transcription start sites transcription termination sites transcription units gene
e pression and transcription factor binding Additionall e distinguished
subcollections of TF binding datasets that ere produced using di erent technologies
ChIP seq ChIP e o gSELEX and DAP seq Each collection and subcollection is

composed of a certain number of datasets Figure 

We de ned a dataset as a piece of data generated using a given technolog producing a
certain t pe of object and thus pertaining to a given collection and associated to
speci c gro th conditions as de ned b the Microbiological Condition Ontolog
Tierrafría et al   and b   additional metadata

We designed metadata tables of datasets based on a common format for each collection
and subcollection of objects Each table contains one dataset per ro and one column
per attribute of the dataset technolog used gro th conditions author and
publication information  database identi ers  and man  more

Figure 15 Data model in RegulonDB HT  Adapted from gure  Tierrafría  Rioualen et al  



Uniform datasets of genomic features

Building on the ork described in Chapter I took on the task of gathering datasets
from a number of distinct sources and publications and processing them in order to
generate uniform datasets of TSSs TUs and TTSs This presented challenges given the
variet of formats used in the original sources and the presence of obsolete
information

I updated the TSS and TU collections previousl generated Chapter ith ne
sources Con a et al Ju et al and generated datasets containing

TSSs and datasets containing transcription units I created a TTS
collection using the information available in the TU collection and generated
datasets containing TTSs Table All of these datasets ere formatted to
standard bed les Given the case genes and coordinates ere updated to the latest
genome version using the EcoliGenes librar  Chapter 

Finall I mapped the TSS collection against the original collection from RegulonDB
The set of reference used for the comparison as generated b e tracting all of
RegulonDB s promoters associated ith classic strong evidence Figure from the
article

Dataset ID Growth Condition Features Reference

Transcription Units

TU
ORGANISM Escherichia coli MEDIUM LB medium
GROWTH PHASE E ponential phase Ju et al  

TU
ORGANISM Escherichia coli MEDIUM LB medium
GROWTH PHASE Stationar  phase Ju et al  

TU
ORGANISM Escherichia coli BW  MEDIUM MOPS
OPTICAL DENSITY OD  of  GROWTH PHASE E ponential phase Con a  et al  

TU

ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND ild t pe MEDIUM M  minimal medium
GROWTH PHASE E ponential phase Yan et al  

TU

ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND ild t pe MEDIUM rich medium
GROWTH PHASE E ponential phase Yan et al  

Transcription Start Sites

DS

ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND ild t pe  MEDIUM LB
TEMPERATURE  C  OPTICAL DENSITY OD  of 
GROWTH PHASE stationar  phase

Thomason et al



Dataset ID Growth Condition Features Reference

DS

ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND ild t pe  MEDIUM M
MEDIUM SUPPLEMENTS glucose  thiamine
TEMPERATURE  C  OPTICAL DENSITY OD  of 
GROWTH PHASE e ponential phase

Thomason et al

DS

ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND ild t pe  MEDIUM LB
TEMPERATURE  C  OPTICAL DENSITY OD  of 
GROWTH PHASE e ponential phase

Thomason et al

DS

ORGANISM Escherichia coli str  K  substr  MG  MEDIUM LB
AERATION aerobic TEMPERATURE  C  pH pH 
OPTICAL DENSITY OD  from  to 
GROWTH PHASE e ponential phase Ju et al  

DS

ORGANISM Escherichia coli str  K  substr  MG  MEDIUM LB
AERATION aerobic TEMPERATURE  C  pH pH 
OPTICAL DENSITY OD  above  GROWTH PHASE stationar

phase Ju et al  

DS

ORGANISM Escherichia coli BW  GENETIC BACKGROUND ild
t pe  MEDIUM MOPS minimal medium
MEDIUM SUPPLEMENTS glucose  AERATION dissolved o gen

above  of saturation TEMPERATURE  C  pH pH 
VESSEL TYPE fermenter Con a  et al  

DS

ORGANISM Escherichia coli str  K  substr  MG  MEDIUM DSMZ
Medium  MEDIUM SUPPLEMENTS glucose 
TEMPERATURE  C  OPTICAL DENSITY OD  from  to 
GROWTH PHASE late e ponential phase Yan et al  

DS

ORGANISM Escherichia coli str  K  substr  MG  MEDIUM LB
medium  Lenno  TEMPERATURE  C  pH pH 
OPTICAL DENSITY OD  from  to  GROWTH PHASE late

e ponential phase Yan et al  

DS
ORGANISM Escherichia coli str  K  substr  MG
TEMPERATURE  C

Mendo a Vargas et
al  

DS
ORGANISM Escherichia coli str  K  substr  MG
TEMPERATURE  C

Mendo a Vargas et
al  

DS
ORGANISM Escherichia coli str  K  substr  MG
TEMPERATURE  C  AGITATION SPEED  rpm Salgado et al  

DS M    gl cerol  cells gro n ith shaking at C Wade lab

DS GROWTH PHASE  E ponential phase Cho et al  

DS Glutamine as source of nitrogen Cho et al  

DS Heat shock Cho et al  

DS GROWTH PHASE Stationar  phase Cho et al  

Transcription Termination Sites

TR
ORGANISM Escherichia coli MEDIUM LB medium
GROWTH PHASE E ponential phase Ju et al  

TR
ORGANISM Escherichia coli MEDIUM LB medium
GROWTH PHASE Stationar  phase Ju et al  



Dataset ID Growth Condition Features Reference

TR
ORGANISM Escherichia coli BW  MEDIUM MOPS
OPTICAL DENSITY OD  of  GROWTH PHASE E ponential phase Con a  et al  

TR

ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND ild t pe MEDIUM M  minimal medium
GROWTH PHASE E ponential phase Yan et al  

TR

ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND ild t pe MEDIUM rich medium
GROWTH PHASE E ponential phase Yan et al  

Table 3 Summar  of the HT datasets generated and their associated gro th conditions and references

Transcription factor comparison

I performed a comparison of the transcription factors present in each subcollection of
TF binding datasets and those present in RegulonDB I used the EcoliGenes librar
Chapter in order to translate TF names and s non ms into their reference name

and properl manage hetero dimeric TFs and their subunits Figure a in the article
see belo

I integrated those TFs ith the putative TFs obtained through computational
predictions and presented in Chapter and summari ed the result b grouping all TFs
into categories con rmed TFs from RegulonDB predicted TFs from various sources
Pére Rueda et al Flores Bautista et al Kim et al and potential

TFs associated ith HT e periments Tierrafría Rioualen et al Figure ab
of the previousl predicted TFs are associated ith at least one peak in one HT dataset
bringing ne pieces of evidence to con rm their regulator role Additionall
potential TFs that ere neither con rmed RegulonDB TFs nor predicted TFs ere
associated ith HT e periments here all of them ere assigned several binding
peaks Finall predicted TFs remain ithout HT datasets that ould back up their
potential regulator role The include all of the predicted TFs from the deep
learning approach Kim et al hich remain ithout evidence to back up the
predictions



Figure 16 Comparison of TFs from RegulonDB proteins predicted or annotated as putative TFs and
putative TFs ith associated high throughput data

Considering this ne l available data ne pieces of evidence should allo to greatl
increase the collection of con rmed TFs in the near future getting closer to a total of

 TFs  a common estimate of the total number of TFs in E  coli K

Uniformly processed ChIP seq datasets

I processed datasets from the ChIP seq subcollection using the Snakechunks librar
of ork o s Chapter I built a ork o that takes no more than the ChIP seq
metadata table as an input using the follo ing attributes source database name series
ID samples replicates e periment ID samples replicates control ID librar la out and
TF name Figure a

For each dataset I e tracted the full original metadata from their source database and
given the case merged or completed them using the tools q and p rasdb Choudhar

Gálve Merchán et al Using this information I built a common director
structure for all datasets custom ork o con guration les for each and I
do nloaded all of the ra sequencing les in fastq format For each dataset I then ran
the qualit control and mapping ork o s available in SnakeChunks Rioualen et
al Chapter using cutadapt for read trimming Martin bo tie for the



alignment Langmead and Sal berg and multiQC to generate complete qualit
reports before and after the preprocessing E els et al Finall I designed a ne

ork o to perform peak calling using macs Feng et al identif sites in
peaks ith RSAT matri scan Turatsin e et al and build a dataset speci c TF
motif using the sites identi ed and the RSAT convert matri tool Santana Garcia et
al Each dataset resulted in one peak le one site le both bed formatted and
one PSSM le as ell as several graphical reports Figure b Additionall I mapped
peaks and sites ith the reference binding site set from RegulonDB Figure from the
article

The metadata table for the ChIP seq subcollection allo ed to customi e each dataset
processing depending on the TF and the librar la out used in each e periment hile
using common tools and cuto s for the di erent steps of the anal sis performed using
the SnakeChunks ork o s ensuring e ibilit as ell as congruence The output

les ere integrated into the RegulonDB HT portal and displa ed as tables as ell as in
a genome bro ser  together ith classic data for eas  comparison Figure c

Overall the ChIP seq collection includes datasets corresponding to di erent TFs
Table of hich ere processed using m pipeline one dataset does not come
ith ra data and are associated ith curated author les t o datasets are not

associated ith a publication  All of this data is available on the RegulonDB HT portal



Figure 1 Integration of the ChIP seq collection processing ithin the RegulonDB HT frame ork a
Datasets are manuall curated from literature and databases and their attributes are gathered into the
metadata table b All of the samples are automaticall do nloaded and datasets anal ses are designed
and run using their speci c properties librar la out TF chipped as ell as common tools trimming
mapping peak calling c The result les are integrated in the RegulonDB HT portal for bro sing and
do nloading



Dataset ID Growth Conditions TF Reference

BSCS ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND plasmid pT FLAG  IPTG induced CsiR  mutant
MEDIUM LB medium MEDIUM SUPPLEMENTS isoprop l

beta D thiogalactop ranoside  mM TEMPERATURE  C

GlaR Aquino et al  

BSCS ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND WT MEDIUM MOPS minimal medium
MEDIUM SUPPLEMENTS glucose  AERATION N   and CO  
TEMPERATURE  C OPTICAL DENSITY OD  of 
GROWTH PHASE mid e ponential phase

FNR M ers et al  

BSCS ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND WT MEDIUM MOPS minimal medium
MEDIUM SUPPLEMENTS glucose  iron  sulfate anh drous   M
AERATION  N   CO  and O   TEMPERATURE  C
OPTICAL DENSITY OD  from  to  GROWTH PHASE mid

e ponential phase

Fur Beauchene et al

BSCS ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND WT MEDIUM MOPS minimal medium
MEDIUM SUPPLEMENTS glucose  iron  sulfate anh drous   M
AERATION N   and CO   TEMPERATURE  C
OPTICAL DENSITY OD  from  to  GROWTH PHASE mid

e ponential phase

Fur Beauchene et al

BSCS ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND lacZ knockout mutant  tonB knockout mutant  feoA

knockout mutant  upT knockout mutant MEDIUM MOPS minimal medium
MEDIUM SUPPLEMENTS glucose  iron  sulfate anh drous   M
AERATION N   and CO   TEMPERATURE  C
OPTICAL DENSITY OD  from  to  GROWTH PHASE mid

e ponential phase

Fur Beauchene et al

BSCS ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND hns ag MEDIUM LB medium  Luria NaCl 
AERATION aerobic TEMPERATURE  C GROWTH PHASE earl  e ponential

phase

H NS Kahramanoglou
et al  

BSCS ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND hns ag MEDIUM LB medium  Luria NaCl 
AERATION aerobic TEMPERATURE  C GROWTH PHASE mid e ponential

phase

H NS Kahramanoglou
et al  

BSCS ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND hns ag MEDIUM LB medium  Luria NaCl 
AERATION aerobic TEMPERATURE  C GROWTH PHASE stationar  phase

H NS Kahramanoglou
et al  

BSCS ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND hns ag MEDIUM LB medium  Luria NaCl 
AERATION aerobic TEMPERATURE  C GROWTH PHASE transition to

stationar  phase

H NS Kahramanoglou
et al  

BSCS ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND s ag MEDIUM LB medium  Luria NaCl 
AERATION aerobic TEMPERATURE  C GROWTH PHASE earl  e ponential

phase

Fis Kahramanoglou
et al  

BSCS ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND s ag MEDIUM LB medium  Luria NaCl 
AERATION aerobic TEMPERATURE  C GROWTH PHASE mid e ponential

phase

Fis Kahramanoglou
et al  

BSCS ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND plasmid pT FLAG  IPTG induced nac

mutant MEDIUM LB medium MEDIUM SUPPLEMENTS isoprop l
beta D thiogalactop ranoside  mM TEMPERATURE  C

Nac Aquino et al  

BSCS ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND plasmid pT FLAG  IPTG induced ntrC  mutant

NtrC Aquino et al  



Dataset ID Growth Conditions TF Reference

MEDIUM LB medium MEDIUM SUPPLEMENTS isoprop l
beta D thiogalactop ranoside  mM TEMPERATURE  C

BSCS ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND glnG knockout mutant  glnG ag MEDIUM Gutnick

minimal medium MEDIUM SUPPLEMENTS Ho LE trace elements  glucose
 ammonium chloride  mM TEMPERATURE  C

AGITATION SPEED  rpms

NtrC Bro n et al  

BSCS ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND plasmid pT FLAG  IPTG induced ompR  mutant
MEDIUM LB medium MEDIUM SUPPLEMENTS isoprop l

beta D thiogalactop ranoside  mM TEMPERATURE  C

OmpR Aquino et al  

BSCS ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND WT MEDIUM MOPS minimal medium
MEDIUM SUPPLEMENTS gl cerol  leucine  isoleucine  valine

  TEMPERATURE  C OPTICAL DENSITY OD  from  to 
GROWTH PHASE e ponential phase AGITATION SPEED  rpms

Lrp Kroner et al  

BSCS ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND WT MEDIUM MOPS minimal medium
MEDIUM SUPPLEMENTS gl cerol  leucine  isoleucine  valine

  TEMPERATURE  C OPTICAL DENSITY OD  from  to 
GROWTH PHASE transition point AGITATION SPEED  rpms

Lrp Kroner et al  

BSCS ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND WT MEDIUM MOPS minimal medium
MEDIUM SUPPLEMENTS gl cerol  leucine  isoleucine  valine

  TEMPERATURE  C GROWTH PHASE stationar  phase
AGITATION SPEED  rpms

Lrp Kroner et al  

BSCS ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND WT MEDIUM MOPS minimal medium
MEDIUM SUPPLEMENTS gl cerol  ACGU  EZ TEMPERATURE  C
OPTICAL DENSITY OD  from  to  GROWTH PHASE e ponential

phase AGITATION SPEED  rpms

Lrp Kroner et al  

BSCS ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND WT MEDIUM MOPS minimal medium
MEDIUM SUPPLEMENTS gl cerol  ACGU  EZ TEMPERATURE  C
OPTICAL DENSITY OD  from  to  GROWTH PHASE transition point
AGITATION SPEED  rpms

Lrp Kroner et al  

BSCS ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND WT MEDIUM MOPS minimal medium
MEDIUM SUPPLEMENTS gl cerol  ACGU  EZ TEMPERATURE  C
GROWTH PHASE stationar  phase AGITATION SPEED  rpms

Lrp Kroner et al  

BSCS ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND WT MEDIUM MOPS minimal medium
MEDIUM SUPPLEMENTS gl cerol  TEMPERATURE  C
OPTICAL DENSITY OD  from  to  GROWTH PHASE e ponential

phase AGITATION SPEED  rpms

Lrp Kroner et al  

BSCS ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND WT MEDIUM MOPS minimal medium
MEDIUM SUPPLEMENTS gl cerol  TEMPERATURE  C
OPTICAL DENSITY OD  from  to  GROWTH PHASE transition point
AGITATION SPEED  rpms

Lrp Kroner et al  

BSCS ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND WT MEDIUM MOPS minimal medium
MEDIUM SUPPLEMENTS gl cerol  TEMPERATURE  C
GROWTH PHASE stationar  phase AGITATION SPEED  rpms

Lrp Kroner et al  

BSCS ORGANISM Escherichia coli str  K  substr  W
GENETIC BACKGROUND WT MEDIUM LB medium
MEDIUM SUPPLEMENTS ZnSO   M TEMPERATURE

ZraR Rome et al  



Dataset ID Growth Conditions TF Reference

OPTICAL DENSITY OD  of 

BSCS ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND hC ag  MEDIUM LB medium
AERATION aerobic TEMPERATURE  C OPTICAL DENSITY OD  from 

to 

FlhDC Fit gerald et al

BSCS ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND hD ag  MEDIUM LB medium
AERATION aerobic TEMPERATURE  C OPTICAL DENSITY OD  from 

to 

FlhDC Fit gerald et al

BSCS ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND phoB ag MEDIUM MOPS minimal medium
MEDIUM SUPPLEMENTS phosphate   mM

PhoB Fit gerald et al
not published

BSCS ORGANISM Escherichia coli str  K  substr  MG
GENETIC BACKGROUND phoB ag MEDIUM MOPS minimal medium
MEDIUM SUPPLEMENTS phosphate   mM

PhoB Fit gerald et al
not published

Table 4 Summar  of the ChIP seq datasets  and their associated gro th conditions and references

Reference  availability

Data

The full collection of HT datasets can be consulted from the RegulonDB portal
http regulondb ccg unam m

The RegulonDB HT documentation is available at github
https github com PGC CCG RegulonDB HT

Publication

This ork as published in the follo ing article

RegulonDB Comprehensive high throughput datasets on transcriptional
regulation in Escherichia coli K  

M main personal contributions to this article include methodolog and soft are
development for the conception of the frame ork the generation of standardi ed TSS
TU and TTS datasets and the complete processing of the ChIP seq collection
Additional contributions include the riting editing and revie ing of the article
manuscript the production of three complete gures the conception and or
formatting of three others  and the nal submission

http://regulondb.ccg.unam.mx/menu/integrated_views_and_tools/regulondb-ht_datasets/index.jsp
https://github.com/PGC-CCG/RegulonDB-HT
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Abstract

Genomics has set the basis for a variety of methodologies that produce high- throughput datasets identifying the di"erent 
players that define gene regulation, particularly regulation of transcription initiation and operon organization. These datasets 
are available in public repositories, such as the Gene Expression Omnibus, or ArrayExpress. However, accessing and navigating 
such a wealth of data is not straightforward. No resource currently exists that o"ers all available high and low- throughput data 
on transcriptional regulation in Escherichia coli K- 12 to easily use both as whole datasets, or as individual interactions and regu-
latory elements. RegulonDB (https://regulondb.ccg.unam.mx) began gathering high- throughput dataset collections in 2009, 
starting with transcription start sites, then adding ChIP- seq and gSELEX in 2012, with up to 99 di"erent experimental high- 
throughput datasets available in 2019. In this paper we present a radical upgrade to more than 2000 high- throughput datasets, 
processed to facilitate their comparison, introducing up- to- date collections of transcription termination sites, transcription 
units, as well as transcription factor binding interactions derived from ChIP- seq, ChIP- exo, gSELEX and DAP- seq experiments, 
besides expression profiles derived from RNA- seq experiments. For ChIP- seq experiments we o"er both the data as presented 
by the authors, as well as data uniformly processed in- house, enhancing their comparability, as well as the traceability of the 
methods and reproducibility of the results. Furthermore, we have expanded the tools available for browsing and visualiza-
tion across and within datasets. We include comparisons against previously existing knowledge in RegulonDB from classic 
experiments, a nucleotide- resolution genome viewer, and an interface that enables users to browse datasets by querying their 
metadata. A particular e"ort was made to automatically extract detailed experimental growth conditions by implementing an 
assisted curation strategy applying Natural language processing and machine learning. We provide summaries with the total 
number of interactions found in each experiment, as well as tools to identify common results among di"erent experiments. 
This is a long- awaited resource to make use of such wealth of knowledge and advance our understanding of the biology of the 
model bacterium E. coli K- 12.
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ACCESS
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DATA SUMMARY
All the data are available on the RegulonDB portal (https://regulondb.ccg.unam.mx/). We also provide all the code and docu-
mentation associated with these new collections:
RegulonDB so!ware project (https://github.com/regulondbunam/). Database, web services, and web interface.
RegulonDB- HT documentation (https://github.com/PGC-CCG/RegulonDB-HT). Programs used to generate uniform collections 
of HT objects, mapping them to low- throughput (LT) data, and a manual describing the associated processes and formats.
RegulonDB- HT dataset docker (https://doi.org/10.5281/zenodo.6376425). From Zenodo, the users can !nd a link to this docker 
container with the dataset collections in MongoDB, the web services in GraphQL, and the web interface in React.
ChIP- seq pipeline (https://github.com/PGC-CCG/SnakeChunks). A library based on the snakemake work"ow management 
system, which was used to design a generalizable work"ow to perform reproducible ChIP- seq analyses [1].
EcoliGenes library (https://github.com/PGC-CCG/EcoliGenes). #is R- based library was developed to e$ciently deal with 
frequent and all too- o%en fastidious tasks related to the programmatic manipulation and comparison of genes and TFs. #is 
library was used in multiple scripts and pipelines mentioned in this article to identify the wide variety of names and IDs used to 
report genes and TFs in databases and literature, the existence of multiple synonyms, spellings, and outdated bnumbers, and to 
convert them all into the most up- to- date symbols and bnumbers. It also includes a variety of functions that allow to e$ciently get 
additional information on genes (coordinates, length, product, etc.) or speci!c genome coordinates (type of region, closest gene) 
directly into R  data. frames, and to convert genomic coordinates from E. coli K- 12 genome version NC_000913.2 to NC_000913.3.
#e authors con!rm all supporting data, code, and protocols have been provided within the article or through supplementary 
data !les.

INTRODUCTION
Genomics has enabled a variety of technologies for the genome- wide identi!cation of di&erent elements de!ning transcription 
initiation, gene regulation, and transcription unit organization in any organism, provided its genome has been sequenced. In 
bacteria, these elements include TFs, TF binding sites (TFBS) that show speci!c binding of TFs, out of which we distinguish TF 
regulatory sites (TFRS; de!ned as TFBSs that are involved in transcription regulation) [2]. Moreover, genes can be transcribed 
either individually, or in polycistronic units, de!ning transcription units (TUs), which are delimited by transcription start sites 
(TSSs) and transcription termination sites (TTSs). As reported recently, with the development of technologies and the extension 
of our knowledge of transcriptional regulation, several classic de!nitions had to be extended. For instance, both promoters and 
terminators can have multiple TSSs and TTSs, respectively [2]. #ese updated de!nitions have been timely incorporated in 
RegulonDB [3] and in EcoCyc [4], another major resource containing information on transcriptional regulation of E. coli K- 12.
Genome- scale technologies allow for the identi!cation of several types of elements, such as TFBSs, gene expression pro!les, and 
genomic elements including TUs, promoters and terminators. Approaches for TFBS identi!cation include in vivo chromatin 
immunoprecipitation sequencing (ChIP- seq) [5, 6], its higher- resolution variant ChIP- exo [7], in addition to in vitro approaches, 
such as biotin- DNA a$nity puri!cation sequencing (DAP- seq) [8] and genomic systematic evolution of ligands by exponential 
enrichment (gSELEX) [9]. Note that given the binding evidence, it is not certain that proteins considered as TFs in these HT 
binding experiments are bona "de TFs, since many of them lack evidence of change in gene expression. Gene expression pro!les 
are obtained using RNA- seq. Higher- resolution variants of RNA- seq, protecting the 5ƍ-end of transcripts, allow for TSS identi!ca-
tion at single- nucleotide resolution [10–12], and more recently, for the determination of full- length transcripts, along with their 
TSSs and TTSs [13, 14].
Publications reporting these experiments frequently describe a subset of regulatory objects, either spread along the main text [15] 
or compiled in tables [16–19]. Authors also provide processed datasets as supplementary material [20, 21], whereas the raw data 
are deposited in public repositories, such as NCBI’s Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/gds), the Sequence 
Read Archive (https://www.ncbi.nlm.nih.gov/sra), and the EMBL- EBI’s ArrayExpress (https://www.ebi.ac.uk/arrayexpress/). 
Extracting and processing such datasets can be challenging. Gathering these types of data in a single resource, such as RegulonDB, 
saves a lot of work and accelerates research facilitating data comparison with the accumulated existing knowledge based on classic 
molecular biology experiments, as well as comparisons with future novel knowledge.
E. coli K- 12 is the prokaryote with the largest number of regulatory systems studied by classic experimental methods of molecular 
biology. Our laboratory at UNAM has gathered this rich, classic low- throughput (LT) knowledge for more than two decades, 
feeding both RegulonDB and EcoCyc [3, 4]. With the publication of large collections resulting from HT sequencing methods, 
we were concerned by the potential dilution of the LT classic corpus, historically considered as the gold standard, with larger 
collections identi!ed by novel approaches that involve a large number of processing steps in the !nal identi!cation of regulatory 
objects. We therefore considered o&ering users HT results as separate collections, the way we were o&ering a few genome- wide 

https://regulondb.ccg.unam.mx/
https://github.com/regulondbunam/
https://github.com/PGC-CCG/RegulonDB-HT
https://doi.org/10.5281/zenodo.6376425
https://github.com/PGC-CCG/SnakeChunks
https://github.com/PGC-CCG/EcoliGenes
https://www.ncbi.nlm.nih.gov/gds
https://www.ncbi.nlm.nih.gov/sra
https://www.ebi.ac.uk/arrayexpress/
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datasets of TSSs generated by our collaborators back in 2009 [22]. We thus gathered datasets of TFBSs obtained by ChIP- seq 
and gSELEX in versions 8.0 [10] and 9.0 of RegulonDB [23]. Detailed manual curation has been devoted to extract TFRSs 
from those publications, for which additional evidence showing a change in expression of a nearby target gene [24] supports a 
regulatory interaction. #ose have been uploaded into EcoCyc and RegulonDB with a clear HT evidence type along with those 
identi!ed by classic LT methods. In addition to COLOMBOS with expression data [25], the Transcription Pro!le of Escherichia 
coli (TEC) database [26], released in 2016, o&ers gSELEX data in E. coli and the PROkaryotic Chromatin ImmunoPrecipitation 
database (proChIPdb, [27]), recently released, o&ers ChIP- seq and ChIP- exo datasets. However, to our knowledge, there is no 
comprehensive resource facilitating access in a single place to the diverse wealth of data of di&erent types of objects relevant to 
the regulation of gene expression in E. coli K- 12.
In this article we present a radical upgrade of RegulonDB, o&ering up- to- date collections of TFBSs identi!ed from ChIP- seq, 
ChIP- exo, gSELEX, and biotin- modi!ed DAP- seq approaches, as well as TSSs, TTSs, TUs and a large collection of RNA- seq expres-
sion pro!les. For most of them we o&er the data published by the authors, extracted either from publications or from dedicated 
databases. We also processed some collections from available raw data using uniform pipelines reducing their methodological 
di&erences or batch e&ects.
Knowing the biological conditions and genetic background supporting a binding site, an expression pro!le, the mapping of 
transcription initiation, or a transcription unit, is crucial to compare them and locate them in the wider context of additional 
knowledge. We used the Microbial Conditions Ontology (MCO) [28] as our theoretical framework to organize this knowledge, 
and, as explained below, we also implemented an assisted curation strategy applying Natural language processing (NLP) and 
machine learning (jointly named: NLP method) to automatically extract this knowledge. #is assisted curation strategy consists 
in curating the automatically extracted growth conditions instead of curating conditions from the sources of this knowledge, 
saving human e&ort. Additionally, we added search capabilities, besides reorganizing displays in a way that should considerably 
improve the browsing and visualization of the di&erent datasets and collections.

METHODS
RegulonDB-HT data model and definitions
In this work, we o&er facilitated access to HT collections. Each collection comprises the curated datasets resulting in a speci!c type 
of object (Fig. 1); and a metadata table containing the complete list of datasets and their curated properties. #e speci!c collection 
of TF binding objects has several subcollections based on the type of technology. We conceive a dataset as a set of data from a given 
experiment and its growth conditions as detailed in the MCO (culture medium, medium supplements, aeration, temperature, 
pH, agitation, growth phase, optical density, genetic background). Metadata tables also include additional information such 
as the genome version, features associated with the publications (author list, year of publication, PMID), as well as reported 
database identi!ers, and any additional pertinent information. Datasets contain data !les provided in the original publications 
(referred to as ‘author !les’), data !les with results from our in- house processing pipelines (referred to as ‘uniformized !les’), or 
both types of !les.
A new repository was designed to store the di&erent types of datasets. #e classes representing the organization of informa-
tion within RegulonDB- HT, and the types of datasets processed, include TFbindingPeak, TFbindingSite, TranscriptionUnit, 
TranscriptionStartSite, TranscriptionTerminationSite and GeneExpression. Each of these are accompanied by their metadata 
and growth conditions, and at least one author data !le or uniformized data !le (Fig. 1). Growth conditions in the GeneEx-
pression collection were obtained using the NLP method explained below.

Impact Statement

RegulonDB has been the main resource for knowledge about transcriptional regulation and organization in E. coli K- 12, and has 
been accessed intensively since its first publication in 1998 [52]. For instance, in the last 4 years, RegulonDB was accessed an 
average of ~16300 times per year, and citations to RegulonDB articles quickly count in the hundreds. This curated database 
started more than 20 years ago, before the advent of high- throughput (HT) experimentation, gathering data obtained by tradi-
tional methods, with some HT data added later on. Here we present a major undertaking in ensuring high coverage of the latest 
HT experimental data in RegulonDB, by incorporating more than 500 HT datasets for transcription factor (TF) DNA- binding, in 
addition to 1864 RNA- seq datasets generated under di"erent growth conditions and/or genetic backgrounds. Another novelty 
in this BioResource is the curation e"ort to associate each dataset with its corresponding detailed metadata that is key for 
its utilization. The value of having the derived genomic features, or objects, from di"erent kinds of experiments, available in a 
single repository, will add to the already acknowledged value of RegulonDB to the scientific community.
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The data repository was implemented in MongoDB v4.4.5 (https://www.mongodb.com/), a document- oriented database 
manager that provides the flexibility to deal with the variety of information of each type of dataset and collection. The 
package for processing the authors' and uniformized data files, and to extract, transform, and load data, was developed 
under python 3.9. The ChIP- seq workflows were implemented in snakemake 6.10.0 [29]. Access to data was implemented 
through web services that use Node v16.13.0 (https://nodejs.org/es/), the query language GraphQL v15.5.0 (https://graphql. 
org/), and Apollo Server Express v2.21.0. A component- based web interface was developed using React v17.0.2 (https:// 
es.reactjs.org/). The tracks display uses  igv. js, an embeddable JavaScript implementation of the Integrative Genomics 
Viewer (IGV) [30]. The software and applications related to the database are available at GitHub (https://github.com/ 
regulondbunam/).

Gathering and processing of the HT data collections
To implement this new framework, we carefully coordinated the di&erent steps involved: manual curation and annotation of 
literature, data uniformization, computational mapping and display of the HT collections (Fig. 2).

Data gathering
Original scienti!c papers about transcriptional regulation in E. coli K- 12 are monthly searched in PubMed (https://pubmed. 
ncbi.nlm.nih.gov/). #en, articles are selected and curated as described previously [3]. For this work, databases associated 
with the publications were also explored, these include: Gene Expression Omnibus (GEO https://www.ncbi.nlm.nih.gov/gds) 
and the Sequence Read Archive (SRA https://www.ncbi.nlm.nih.gov/sra) from the NCBI, ArrayExpress (https://www.ebi. 
ac.uk/arrayexpress/) from EMBL- EBI, Digital Expression Explorer 2 (DEE2 http://dee2.io/), proChIPdb (https://prochipdb. 
org/), and TEC (https://shigen.nig.ac.jp/ecoli/tec/top/).

Curation and annotation
#e information provided within the original publications was carefully collected and organized into custom metadata tables 
(one per collection, or one per subcollection in the case of TF- binding), with metadata and growth conditions for each 
dataset. #e datasets constructed from authors sources were annotated and organized into the RegulonDB- HT repository.

Normalization and uniformization
To facilitate processing, display and analysis of these datasets, several strategies were used to uniformize and/or normalize certain 
datasets.

Fig. 1. Data model for HT dataset collections represented as a Unified Modelling Language (UML) class diagram. The links represent bidirectional 
associations between two classes, and the numbers 1, 0.*, 1.* represent the multiplicity value. For example, the class Dataset can have 0 or 1 Author 
DataFile. The components of datasets are the Metadata, defined as properties in the Dataset class, the Growth Conditions, curated manually or using the 
NLP method, and related data files, either gathered from authors or processed for uniformity.

https://www.mongodb.com/
https://nodejs.org/es/
https://graphql.org/
https://graphql.org/
https://es.reactjs.org/
https://es.reactjs.org/
https://github.com/regulondbunam/
https://github.com/regulondbunam/
https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/gds
https://www.ncbi.nlm.nih.gov/sra
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
http://dee2.io/
https://prochipdb.org/
https://prochipdb.org/
https://shigen.nig.ac.jp/ecoli/tec/top/


5

Tierrafría et al., Microbial Genomics 2022;8:000833

Mapping and integration
#e resulting uniform HT objects were mapped to reference datasets from LT experiments as curated in RegulonDB. As already 
mentioned, growth conditions were mapped to the MCO terms and annotated, when available, according to the annotation 
framework reported in [28].

TF binding datasets
Data gathering
We are including binding data from four HT technologies: ChIP- seq, ChIP- exo, gSELEX and DAP- seq. #e ChIP- seq datasets 
encompass two types of data contained in two di&erent tables: data as reported by the authors, and data generated from our 
in- house processing of the raw data reported by the same authors. #e TFBSs and/or peaks reported by authors were obtained 
mostly from supplementary material and the associated information described in the main text of their publications. ChIP- seq 
raw samples and metadata were downloaded systematically from the SRA. #e ChIP- exo subcollection was retrieved from the 
recently published proChIPdb [27]. #is subcollection includes datasets tagged in proChIPdb as ‘curated’, as well as TF binding 
information for OxyR, SoxR, SoxS, and UvrY, from [31, 32].

#e gSELEX datasets were extracted from the TEC database [26]. Each TF was searched in the Tab ‘Gene/TF search’ with a selected 
cut- o& (indicated in the metadata). #e data were obtained by copy and paste since it was not possible to download it otherwise. 
#e datasets contain the TF name, peak center coordinates, target gene, peak location relative to the target, and binding intensity 
(%) relative to the highest peak intensity in the experiment. We built 63 datasets for 41 TFs using a de!ned threshold either 
indicated in the corresponding references, or, in their absence, inferred by us to include all targets indicated in the publications. 
Ninety- four gSELEX datasets (corresponding to 74 di&erent TFs) were not analysed by the authors, they were only listed in 
one publication [26]; for these we took the forty targets with the top binding intensities, and the lowest binding intensity was 
registered in the metadata as the cut- o& for each dataset. To allow comparisons with data derived from other methodologies, we 
o&er complete datasets from gSELEX, i.e. with no cut- o&, for the nucleoid- associated proteins H- NS, Fis, IHF and HU, as well as 
Dps and Dan which have also been proposed as nucleoid- associated proteins [26, 33–36]. Overall, a total of 164 TFBS datasets 
(corresponding to 121 di&erent TFs) derived from gSELEX were generated.

Fig. 2. Overview of the RegulonDB HT framework. This diagram summarizes the three types of dataset collections built in RegulonDB HT: i) genomic 
features (TUs, TSSs, and TTSs), ii) TF binding and iii) gene expression, displayed as grayscale background columns; and the steps implemented to 
generate them: i) data gathering, ii) curation, iii) normalization and iv) integration, displayed as horizontal lanes. Further details are described in 
Methods sections regarding datasets.
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Finally, we obtained the collection of experiments and metadata for 215 TFs in E. coli using biotin DAP- seq from the supple-
mentary material available in [37].

Curation and annotation
To build the dataset component with data as reported by authors (Fig. 2, Curation and Annotation lane), we retrieved the 
following features when available: TF name, peak and TFBS features, such as start- and end genomic coordinates, genomic 
sequence, statistical values from peak calling or motif prediction, experimental or computational evidence, and the closest gene, 
considered as the target gene. #e associated metadata, including growth conditions, were also extracted from the publications 
and databases mentioned above. Finally, when ChIP- seq experiments were linked to gene expression in the same publication, 
we "agged target genes which showed changes in expression and a signi!cant p- value for di&erential expression, annotating the 
resulting TF function as either activator or repressor. #ese TFRSs support regulatory interactions which are in the process of 
being uploaded into EcoCyc and RegulonDB.

Uniformization
We gathered a total of 185 raw data !les from 28 ChIP- seq datasets associated with 11 TFs. We processed them in a uniform and 
reproducible way using the SnakeChunks library of work"ows for HT analysis [1, 29]. #is framework ensures the consistency of 
analyses, keeps track of the tools and versions used, while also allowing parameter customization. Adapter and quality trimming 
were performed using cutadapt with a quality and length threshold of 20 [38]. Read alignment was performed using Bowtie 2 [39] 
in local alignment mode against the E. coli K- 12 MG1655 genome (version NC_000913.3). Overall sample quality was checked 
using FastQC [40] (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and multiQC [41]. Peak calling was performed 
using the latest version of Macs 3 [42], with a q- val threshold of 1.10–3 and the following options: --nomodel --shi! 0 --extsize 200. 
#en, TFBSs were identi!ed from the peak sequences via pattern- matching using RSAT matrix- scan [43] and the reference TF 
motifs built from RegulonDB 10.5 [3], and motif- speci!c thresholds de!ned by RSAT matrix- quality [44]. Two exceptions were 
made with GlaR and Nac, where a putative binding motif was obtained through de novo motif search using RSAT peak- motifs 
with a signi!cance threshold of 0 [45], in order to detect binding sites. A new motif was generated for each individual dataset, 
using TFBS sequences and the RSAT tool convert- matrix [46]. For the other types of binding datasets, we retrieved the data as 
reported by the authors, in particular: start- and end positions, intensity, and the closest gene to each peak.

Fig. 3. Steps for growth conditions extraction using our NLP method.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


7

Tierrafría et al., Microbial Genomics 2022;8:000833

Mapping and integration
With the aim of comparing the TF binding data derived from HT technologies with the knowledge derived from LT studies, we 
performed the mapping of TFBS datasets to the RegulonDB subset of TFRSs with classical evidence. We mapped our in- house 
processed ChIP- seq datasets at the level of peaks and sites: a peak is considered a match when a known binding site falls within 
its coordinates, and a site matches when its centre position is at most 30 bp away from a known site (in average, motifs are 20 bp 
long, and a 10- bp distance may be close enough for protein interaction). Mapping datasets from authors proved to be more 
di$cult since not all of them were generated using the same version of the genome, and the precise location of peaks or motifs is 

Fig. 4. RegulonDB- HT search tool. This tool gives access to all types of HT datasets retrieved so far, but an example of access to a TF binding HT dataset 
is shown. (a) RegulonDB portal. (b) RegulonDB HT collections. (c) Content of a TF binding dataset, from the ChIP- seq subcollection.
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not always available in publications. #us, the datasets processed by authors were mapped at the level of the TF- gene interactions. 
For each TF binding dataset, target genes were compared against the known regulatory interactions from RegulonDB, taking into 
account the evidence they are associated with (Table S1). Positive mapping results display the type of evidence (classical strong 
or weak, or computational prediction) of the corresponding interaction in RegulonDB.

TU, TSS, and TTS datasets
Data gathering
Datasets of TUs, TSSs and TTSs came from di&erent sources, though their growth conditions were not always consistently docu-
mented. TSS datasets generated by the group of Enrique Morett [10, 22], as well as those from the laboratory of Gisela Storz [47], 
were already available in RegulonDB [23]. Four collections are from Cho, B. K., et al. [48], with additional collections obtained 
from publications that implemented the identi!cation of TUs using di&erent approaches, which concomitantly identi!ed TSSs and 
TTSs as TU boundaries [11, 13, 14]. A dataset not- yet- published of more than 5000 TSSs was kindly provided by Joseph T. Wade.

Curation and annotation
Given that transcriptional regulation involves a machinery that deals with di&erent growth conditions, we gathered the precise 
growing conditions under which these di&erent elements were identi!ed, directly requesting authors for the information when it 
was not detailed in the publications. Key growth conditions obtained through personal communication include culture medium, 
either minimal or rich, and growth phase, either exponential or stationary phase.

Uniformization
When necessary, we updated object coordinates to the current genome version NC_000913.3. While the original datasets came in 
a variety of formats, we extracted the most relevant features for each type of collection, and generated uniform bed !les for each 
dataset to allow their visualization in our genome browser. Objects that shared the same start, stop and strand information were 
considered duplicates and merged as single objects. Finally, when objects provided in a single !le by the author were associated 
with distinct growth conditions, they were separated in distinct datasets (see dataset de!nition in the Methods section).

Mapping and integration
#e uniform TSS datasets were mapped against RegulonDB promoters, and were considered a match when they fell within a 
5- bp distance of a known TSS. TUs and TTSs will also be mapped in the near future. #ose three uniformized collections were 

Table 1. Number and content of RegulonDB HT datasets

Object Strategy No. of datasets No. of objects Additional information

Curated from papers Identi!ed from raw data

EXPRESSION PROFILES

Gene expression RNA- seq 1864a nd 4618b   

TF BINDING

TF Binding ChIP- seq 29c 6585 peaks 13167 peaks
5108 sites

Table S2

ChIP- exo 94 23170 peaks nd Table S3

gSELEX 164 35022 peaks nd Table S4

DAP- seq 215 19540 peaks nd Table S5

TUs, TSSs and TTSs

TUs RNA- seq 5 12347d nd Table S6

TSSs RNA- seq 16 68049d nd Table S7

TTSs RNA- seq 5 5326d nd Table S8

a, The total of SRRs retrieved, which include 575 only in DEE2, 914 (820 GSMs) only in GEO, and 375 (337 GSMs) in both DEE2 and GEO
b, Average number of genes per dataset.
c, Including 27 processed by authors and 28 processed in house.
d, The number of these objects may be higher from the original publications as they were calculated per dataset, after our uniformization 
process. nd. Object identification not determined by the RegulonDB Team.
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integrated into our genome viewer. #e original author datasets were not mapped nor integrated into the genome viewer, since 
they come in a variety of formats and genome versions.

Gene expression datasets
Data gathering
We collected RNA- seq experiments from two di&erent sources, GEO and DEE2. A total of 1429 experiments were retrieved from 
GEO using ‘RNA- seq’ and E. coli’s taxon id (txid562) as a query. We also obtained 1255 experiments from DEE2 that were not 
found in our initial GEO query.

Curation and annotation
We !ltered these datasets based on the type of experiment and sequencing format used, retaining only RNA- seq experiments, and 
removing those performed with SOLiD sequencing, as our pipeline is tailored towards Illumina. We also !ltered out the datasets 
that were associated with strains other than K- 12. Of the 2684 total samples, we uploaded into RegulonDB the 1864 that could be 
processed by our pipeline (see Normalization subsection below). #is collection is up- to- date as of the end of October 2021. #e 
metadata were also retrieved from the corresponding database. We used the NLP method to extract growth conditions from the 
metadata !les provided by the authors to complement the datasets obtained from GEO. For experiments only found in the SRA 
(retrieved from DEE2), we used NCBI’s Entrez tool, along with custom so%ware, to gather the metadata. In particular, when the 
metadata were missing or scarce, we used the python package Beautiful Soup four to perform web- scraping.
To gather training data for our NLP method, we selected GEO SOFT !les containing metadata of studies performed with di&erent 
technologies such as RNA- seq, ChIP- seq, and ChIP- exo, available in previous versions of RegulonDB. In total, the SOFT !les of 228 
GEO samples from 27 GEO series were gathered (Fig. 3). We automatized SOFT !les download using the R package GEOquery. 
We manually curated and tagged the following features describing growth conditions: organism, genetic background, culture 
medium, medium supplements, growth phase, OD, temperature, pH, aeration, agitation, and genome version.
Manually tagged contexts from 228 SOFT !les were used to train and test a linear chain Conditional Random Field (CRF): 
70 % for training and cross- validation, and 30 % for testing. In addition, we manually obtained lists of keywords related to 
some types of growth conditions. A CRF is a probabilistic framework for tagging and segmenting sequence data based on the 
conditional probability  1

(
Z]Y

)
  of a sequence of tags  Z � Z����ZO  given a sequence of observations  Y � Y���� YO  [49]. In this case, 

 Y  is the sequence of words of contexts from the SOFT !les, and  Z  is the sequence either of tagged growth conditions (‘Air’, 
‘Phase’, etc.), or the label ‘Other’ in other cases. #e CRF probabilities are based on feature functions which may consider any 
feature of  YJ  (e.g. the part- of- speech tag, the lemma, if it contains the symbol ‘°’, if it appears in a list of keywords) and the 
transition  ZJ−� → ZJ  (e.g. ‘Phase’ before ‘Air’). For the !nal output, the consecutive words with the same label were collapsed 

Fig. 5. TFs with binding identified by ChIP- exo, ChIP- seq, DAP- seq and/or gSELEX. (a) Comparison of TFs studied with LT approaches available in 
RegulonDB, with TFs examined with HT technologies. In RegulonDB, 222 TFs have been confirmed by classical LT evidence with at least one regulatory 
interaction (displayed as a horizontal blue bar). Each vertical bar represents a group of TFs associated with LT and/or HT experiments, as displayed by 
the black dots in the bottom rows. (b) Average percentage of TF- gene interactions with classical evidence in RegulonDB, identified in data processed 
by authors.
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into a fragment of text, while the probabilities were summarized as the mean. #is approach has been successfully applied 
previously for information extraction and it does not require a lot of training data [50].

Normalization
We downloaded the fastq !les from the SRA for all datasets to be homogeneously processed by our sequence analysis 
pipeline. We aligned all samples to the E. coli reference genome NC_000913.3 using HISAT2. Our alignments are always 
run as unpaired; and when the metadata allow determination of the library preparation kit used, we provide the appropriate 
strandedness parameters, which indicate whether reads are to be expected on the same, or opposite strand of the mRNA 
transcript. We performed DEseq- normalization to facilitate comparisons across di&erent datasets. Shortly, we created a 
‘pseudo- reference’ sample, where we obtained the geometric mean of each gene’s expression, measured in counts, FPKM/
RPKM (depending if the experiment is paired- end or single- end, respectively), and TPM. Each gene in a given sample was 
divided by its pseudo- reference value, and a scaling factor for each sample was obtained by taking the median of these values. 
#e !nal DEseq- normalized values were obtained by dividing each sample’s expression by the sample scaling factor. In total, 
1864 samples were processed without errors by our pipeline.

Mapping and integration
We took two approaches for mapping the automatically extracted growth conditions to MCO identi!ers comparing the extracted 
term with the MCO term: (i) exact term matching and (ii) string similarity. String similarity was implemented using the python 
library fuzzywuzzy v0.18.0 (https://pypi.org/project/fuzzywuzzy/) taking into account string length di&erences calculated as 
Levenshtein distances, i.e. the minimum number of edits of one character (insertions, deletions or substitutions) required to 
change one word into the other. String similarity allowed us to match, for example, the extracted term ‘W2 minimal medium’ 
with the MCO term ‘W2 minimal media’ (ID: MCO000003317).

RESULTS
General overview of HT datasets and objects
As mentioned above, we report several collections of HT datasets that hold distinct types of objects (genomic features, TF binding 
sites, gene expression pro!les) from distinct types of HT experiments (RNA- seq, ChIP- seq, gSELEX, DAP- seq, ChIP- exo). Some 

Fig. 6. Number of TFRSs from classic RegulonDB (blue bars), those found in in- house processed ChIP- seq peaks (yellow bars), and those identified in 
peaks through pattern- matching, using RegulonDB TF motifs (grey bars).

https://pypi.org/project/fuzzywuzzy/
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collections contain two dataset tables: data as reported by the authors, and data uniformized and/or normalized in- house. Data as 
reported by authors were obtained from publications curated by us, or from the authors’ databases, such as TEC and proChIPdb, 
generated by the Ishihama and Palsson groups respectively (Fig. 2, lane 1). Data processed by other authors frequently vary in 
reference genome used and/or format, so we processed the author datasets to map TUs, TSSs, and TTSs with the latest reference 
genome and to display them in the same format (Fig. 2, lane 3). Finally, we integrated (i) data !les, (ii) metadata, and (iii) growth 
conditions to build the RegulonDB HT datasets (Fig. 2, lane 4 and Fig. 4).
We generated three classes of RegulonDB HT datasets, roughly grouped by type of objects (described in more detail in the 
following sections). For example, gene expression datasets comprise the largest collection of datasets and objects, as expected, 
but are associated with only one object type and strategy, i.e. RNA- seq. In contrast, TF binding datasets were produced using 
several strategies, i.e., ChIP- seq, ChIP- exo, gSELEX, and DAP- seq. Lastly, TU, TSS, and TTS datasets include di&erent objects 
identi!ed using variations of one strategy, i.e. RNA- seq (Table 1).

Browsing the data
All the curated and annotated information, as well as the standardized data, can be found in the RegulonDB portal  
(https://regulondb.ccg.unam.mx/). From the menu ‘Integrated Views and Tools’, in the ‘Browse RegulonDB’ section, the 
option ‘RegulonDB- HT datasets’ is available (Fig. 4a).

Fig. 7. High- throughput TSS datasets collected and mapped to RegulonDB classic TSSs. (a) Number of TSSs per HT dataset. (b) Number of HT TSSs 
that match with at least one classic TSS. (c) Number of classic TSSs that match with at least one HT TSS, for each HT dataset.

https://regulondb.ccg.unam.mx/
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An initial page allows the user to select from all types of RegulonDB collections (Fig. 4b). #e search builder, which is the 
subsequently displayed page, allows users to choose search !lters associated with the RegulonDB collections’ metadata. Any 
dataset that meets the search criteria will be displayed in a list ordered according to the number of terms found in it. #e user 
will be able to select the desired RegulonDB dataset by clicking its link in the results list. #e content of the selected dataset looks 
as shown in Fig. 4c), and is composed of three main components: (i) metadata, (ii) growth conditions, and iii) related data !les. 
In the Data Files section, users can navigate through two tabs, one to access data as reported by authors, and the other one to 
access the standardized data produced by the RegulonDB Team.
When uniformized data are available, it is possible to visualize them in the IGV Tool, where the genes, peaks, TFBSs found in 
peaks, and TFRSs of the TF already stored in RegulonDB (RegulonDB TFRSs) are displayed as tracks. In the RegulonDB TFRSs 
track, the colour of sites is associated with the function of the TF in line with the current EcoCyc and RegulonDB TFRSs colour 
code, i.e. green for activators and red for repressors (Fig. 4c).

Table 2. F1- score in testing for types of growth condition

Growth condition Precision Recall F1- score Support*

Optical density 1.00 1.00 1.00 21

pH 1.00 1.00 1.00 10

Technique 1.00 1.00 1.00 33

Culture medium 1.00 0.80 0.89 56

Temperature 0.86 0.80 0.83 15

Agitation 1.00 0.29 0.44 7

Growth phase 0.94 0.76 0.84 21

Aeration 0.63 0.59 0.61 88

Genetic background 0.89 0.86 0.88 78

Medium supplements 0.88 0.84 0.86 136

Genome version 1 0.5 0.667 6

*Support stands for the number of growth conditions available in testing data for evaluation.

Fig. 8. Foreground bar plot: fraction of SRRs for each type of growth condition. GC term types retrieved for RNA- seq datasets from GEO (1289 SRRs, 
1157 GSMs, 95 GSEs), 3224 extracted GC terms: 2680 were mapped and 544 non- mapped with MCO entities. Background bar plot: fraction of GSMs for 
each type of growth condition in the training data (228 GSMs from 27 GSEs).
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HT data content details
In every uniformized RegulonDB HT dataset (Table 1 and Fig. 2, bottom lane), we provide the precise genomic coordinates of 
objects together with additionally processed information, such as the closest downstream gene(s) in the case of TFBSs and TSSs, 
and the gene content, in the case of TUs. Another column indicates the list of objects that match previously known objects identi-
!ed by LT methods as indicated in the evidence type in RegulonDB. #is pre- processed column should be highly valuable for users 
performing comparative analyses. In a future version we will pre- process the comparisons across the multiple HT collections.
In datasets with information provided by the authors, the con!dence may vary. For instance, of the TUs identi!ed by Yan, B. et al. 
using SMRT- Cappable- seq, some have a well- identi!ed terminator either by sequence structure or because a signi!cant fraction 
of transcripts that start at a given TSS terminate at a well de!ned TTS position. #ese TUs have a higher con!dence level than 
the other TUs, de!ned by the end of one or very few long transcripts [13]. In the case of TFBSs, users can identify sites matching 
previously known sites stored in RegulonDB LT and/or additional evidence supporting change in expression of downstream genes.

TF binding datasets
#e ChIP- seq subcollection is conformed by 29 datasets corresponding to 12 di&erent TFs, of which 28 were processed using 
our dedicated pipeline (one dataset does not come with raw data), and 27 are associated with author !les (two datasets are not 
associated with a publication). Overall, besides those exceptions, 26 datasets associated with ten TFs are provided with two tables: 
one with data processed by authors and built from the publications, and one with data uniformly processed in- house from raw 
data (Table S2).
#e ChIP- exo subcollection consists of 94 datasets built with data processed by authors, which include 87 datasets corresponding 
to 73 di&erent TFs assayed independently, and seven datasets derived from assays of a mixture of various TFs (Table S3).
#e gSELEX subcollection consists of 164 datasets built with data processed by authors and extracted from the TEC database, 
corresponding to the binding of 121 di&erent TFs assayed in vitro in presence or absence of e&ector molecules (Table S4). However, 
as mentioned in methods, this is a heterogeneous collection given the limitations in their extraction: 63 datasets for 41 TFs had 
thresholds de!ned by the authors, for 94 datasets of 74 TFs we arbitrarily included the top 40 sites, and for seven datasets we 
included all interactions with no threshold (see Methods section).
Finally, the DAP- seq subcollection comprises 215 datasets of data processed by authors and built from the supplementary material 
of a single publication [37], which corresponds to the binding of 211 di&erent TFs assayed in vitro. Some datasets correspond 
to the same TF because their di&erent subunits were assayed independently (Table S5). Some TFs have been studied by more 
than one of these methodologies. For example, H- NS, Fur, Fis, OmpR, ZraR and PhoB are represented in all four subcollections. 
Moreover, some TFs without classical evidence of regulatory interactions have been studied exclusively by one of these four 
HT strategies, this is the case for 26 and 15 TFs from ChIP- exo and gSELEX, respectively. Six TFs with at least one regulatory 
interaction with classical evidence have no data in any HT binding dataset. Fig. 5a shows the total number of TFs present in the 
di&erent subcollections and their comparison with classic data from RegulonDB.
We estimated the proportion of TF- gene classic interactions present in RegulonDB that were recovered in the datasets that we 
constructed from author data. #is percentage for every dataset is shown in Tables S2–S5 (available in the online version of this 
article), Fig. 5b displays the average of such percentages for all datasets within each methodology. However, these numbers have 
to be taken with a grain of salt, !rst because the TFs shared by the di&erent methodologies are quite variable, as shown in Fig. 5a, 
second the recovery is quite variable for di&erent datasets provoking a large standard deviation. Furthermore, this was done 
only for 63 datasets from 41 TFs of the gSELEX collection since only those have a cut- o& de!ned by the authors. #e recovery of 
known sites is an index frequently reported in HT publications. Note that in spite of the fact that classic evidence is mostly in vitro 
binding, there is not a clear cut tendency of HT in vitro methods to recover more classic interactions than the in vivo methods.
As mentioned already, for 28 ChIP- seq experiments we also used a uniform bioinformatics pipeline to identify TF binding sites 
from raw data. In such cases we provide in the same dataset two tables, one with the data as extracted from authors, and one with 
the results of our in- house pipeline. We generated position weight matrices (PWMs) based on the in- house obtained sites for 
each dataset in addition to those existing in RegulonDB, and provide the distribution of sites in relation to the start of genes or 
promoters. Fig. 6 shows the number of classic TFRSs in RegulonDB that are found in the peak sequences as well as those found 
in peaks by motif matching. #e results are quite variable depending on the TF studied. In particular, the Lrp and H- NS datasets 
show a low rate of recovery, which can be explained by the poor speci!city of their PWMs in RegulonDB.

TSS, TU and TTS datasets
We gathered a collection of 16 TSS datasets from seven articles and one unpublished dataset (see Methods section), for a total 
of 68049 objects (Fig. 7). #e TU and TTS collections each comprise !ve datasets from three articles, for a total of 12347 and 
5326 objects respectively (see Tables S6–S8). #e original data processed by the authors as well as our uniform datasets were 
compared with the RegulonDB classic collection. HT TSSs were mapped to classic TSSs when located within !ve bases on the 
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same strand. It is interesting to note that even though the total number of TSSs varies from 12000 to slightly less than 300 in the 
di&erent datasets (Fig. 7a), the number of HT TSSs that match with LT TSSs is much less variable (Fig. 7b), just like the numbers 
of classic TSSs that match with HT datasets (Fig. 7c). It should be noted that those matches, although similar in number, are not 
symmetrical, as a result of the window- based mapping.

Gene expression datasets
To ensure high- quality comparisons of expression data, we assessed RNA- seq samples based on sequence read alignment metrics. 
We tagged as ‘PASS’ those samples with more than !ve million raw reads, more than 90 % of their reads aligned to the E. coli 
reference genome, and more than 90 % of genes with non- zero coverage. Out of 1864 total experiments, 648 were tagged as PASS. 
#is collection o&ers processed expression values at the gene level. #e expression values (counts, RPKM/FPKM, and TPM) from 
all 1864 experiments were normalized using the DEseq method described above, allowing users to make comparisons among 
any desired combination of experiments, whether or not they are tagged as ‘PASS’.
#e growth conditions for the GEO collection were extracted by our NLP method as mentioned in the Methods section. #e 
trained predictive model (CRF) was used to automatically extract the growth conditions from the SOFT !les associated with 
RNA- seq data (Fig. 3). #e F1- score (the harmonic mean of precision and recall) of our predictive model was 0.81 in a !ve- fold 
cross- validation, and 0.83 in testing. Precision, also known as positive predictive value, was the proportion of true positive growth 
conditions among all conditions classi!ed as positive by the model. Recall, also known as sensitivity, was the proportion of known 
positive growth conditions classi!ed as positive by the model. Most growth conditions attained F1- scores above 0.80 (Table 2).
Following our assisted curation strategy, the most accurately predicted NLP- extracted growth conditions terms (probability >0.7) 
were manually reviewed. Only the correctly predicted terms were uploaded to the searching tool for RNA- seq datasets. #ese 
correct terms of growth conditions were mapped to MCO IDs before uploading to RegulonDB.
Our NLP method was applied to 1289 SOFT RNA- seq !les, associated with 95 GSEs, 1289 SRRs (SRA accession IDs) for a total 
of 1157 GSMs or samples. We mapped to MCO IDs ~83 % of terms (15 % by exact matching, and ~68 % by string similarity). #e 
unmapped terms were also included in the RNA- seq searching tool of RegulonDB.
In summary, our NLP method provided 3224 terms supporting queries for 84 GSEs, 1131 SRRs for a total of 1001 GSMs. #e 
percentage of SRRs (coverage) with any type of growth condition was di&erent for each type (foreground bar plot in Fig. 8). For 
instance, temperature, medium and genetic background are reported in more than 35 % of the 1001 (100 %) SRRs. In spite of our 
good F- scores, we know from the training set that a large fraction of data is simply missing (background bar plot in Fig. 8). A 
lack of data for pH, agitation speed and optical density in the training set is shown, as in the NLP- extracted data. #is is a pity 
since it limits the comparability and usability of the data, a well- known problem in database e&orts in genomics [51].
On the other hand, we gathered metadata for 575 SRRs that were not found in GEO and had no available SOFT RNA- seq !les. 
Using NCBI’s Entrez tool we were able to retrieve at least one attribute for 520 SRRs. Genetic background and medium supple-
ments were o%en recovered (520 and 506 SRRs, respectively). Culture medium and growth phase were recovered for only 91 and 
80 SRRs, respectively (Table S9). #us, we have metadata that allow datasets to be searched for 928 out of 1157 RNA- seq datasets 
from GEO, and for 520 out of 575, SRA experiments that could not be found in GEO.
All expression data is linked to a speci!c SRR ID. One GEO sample (GSM ID) could include more than one SRR ID and some 
SRRs are not found in GEO. We processed 1289 SRRs (1157 GEO samples) by the NLP method described earlier and the remaining 
575 by the NCBI’s Entrez tool strategy. We were able to retrieve at least one metadata attribute for 1131 (out of 1289) and 520 
SRRs (out of 575), respectively. #is implies that we do not have any metadata associated with 416 SRRs. All these experiments 
can only be searched based on their SRR ID in RegulonDB HT.

DISCUSSION
As mentioned before, gathering all publicly available HT data from E. coli K- 12 in a single place would be of great bene!t to 
advance research. In this work we present RegulonDB version 11.0, a major upgrade that o&ers the largest variety of publicly 
available HT data relevant to transcriptional regulation of E. coli K- 12. We did not however update our ChIP- chip nor microarray 
datasets, and we did not include any Hi- C data.
Most HT data are deposited in repositories like GEO and ArrayExpress. Although GEO requires users to complete major !elds to 
upload genomic datasets in a uniform way, there is a lack of guidelines, or !nal supervision, to guarantee standardized annotations. 
#e lack of essential information allowing the reproducibility of experiments in the literature about transcriptional regulation 
became evident when we curated 600 papers in high detail to build the MCO, and found none that described the growth rate, and 
less than 100 provided the pH, among other properties [28] #is represents a major known bottleneck for proper identi!cation 
and use of HT datasets in downstream analyses [51], requiring manual curation of metadata prior to choosing a !nal collection 
to work with. Our application of a method combining Natural language processing and machine learning for the automatic 
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extraction of growth conditions from GEO !les may greatly facilitate re- analysis of these datasets. We are working on improving 
the predictive model for growth condition extraction.
Another recurrent issue with HT datasets is that there is no standard way of processing the raw data, and a wide variety of 
tools and approaches can be used, depending on the original publications. Curation has been historically limited to re"ect, 
as precisely as possible, what authors publish and report. A major novelty in RegulonDB 11.0 is the addition of in- house 
processed collections. #e normalized RNA- seq collection standardizes analyses across individual datasets, in principle 
setting the basis for future tools that would allow users to select their ‘control’ and ‘experimental’ RNA- seq datasets and 
obtain the relative expression of novel comparisons. #e uniformized ChIP- seq subcollection was generated using our 
publicly- available pipeline (see Methods and Data summary sections for details). #is ensures its reproducibility, which is a 
frequent concern when analysing published datasets from numerous sources [1, 29]. Finally, we also o&er uniformized TSS, 
TTS and TU collections. #ese data were all updated to the current annotated version of the E. coli K- 12 genome. As updates 
occur, traceability will be supported by the corresponding versions in GitHub, keeping all details of the tools, parameters 
and thresholds at hand. #e diversity of information and formats provided by authors makes it di$cult to compare in a 
comprehensive way the results of our in- house processing with those provided originally, so we leave users with the liberty 
of choosing which dataset to use. In a future version we will add comparisons between them.
In the current version we are o&ering comparisons of some HT datasets with classic LT data from RegulonDB, considered as 
a gold standard. #is way, users can easily evaluate how each HT dataset reproduces known data from classical experiments, 
which is the !rst question to arise when applying HT strategies. In the future we will compare as many HT datasets as possible 
with their corresponding classic corpus, and we plan also to provide comparisons across HT datasets. #is information should 
be highly valuable for users to compare results from di&erent sources and technologies.
Finally, we designed a new integrated web interface, including a genome viewer and increased search capabilities. Previous 
RegulonDB searching capabilities were limited to TF and object type. We now allow searching for many other !elds like, 
author, PMID, TF, growth conditions, and many more. #ese metadata are valuable for search and re- analysis of more than 
two thousand HT datasets gathered in this version.
Besides the technical aspects of the management of HT datasets we described above, we have been revisiting fundamental 
biological concepts. An important conceptual distinction that HT methods require for their precise description is the one 
between the ability to bind to speci!c DNA operator sites, and the capacity to alter the activity of a given promoter. Current 
HT publications frequently combine a binding experiment like ChIP- seq for instance, with a global expression experiment 
(i.e. RNA- seq) performed in the same experimental conditions. In this way it is possible to identify those sites that bind, 
de!ning TFBSs, and those that bind and modify the expression of a downstream gene, de!ning TFRSs. #e distinction 
between TFBSs and TFRSs was proposed in the recent update of concepts of gene regulation [2], motivated in fact by the 
type of data generated with novel post- genomic technologies. By the same token, there are many potential TFs that have 
been assayed for instance with DAP- seq and gSELEX but have no evidence yet of any concomitant change of expression for a 
target gene, and therefore, as mentioned before, they do not satisfy the requirements to be fully identi!ed yet as TFs. Lastly, 
we formally distinguished promoters from TSSs and terminators from TTSs, terms that are frequently used interchangeably 
in publications.
#e version 11.0 of RegulonDB, presented here, represents an important quantitative and qualitative upgrade, o&ering novel 
features that make our repository the most comprehensive resource to utilize the wealth of HT data available, together with 
knowledge accumulated through decades of research with classic molecular biology approaches. We expect this unique 
resource will help advance research in E. coli K- 12.
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Chapter 5

An alternative collection of binding
motifs

Problematic

As mentioned before transcription factors can bind DNA via speci c sequences called
transcription factor binding sites Each TF has its o n speci c binding motif based on
the DNA patterns its binding domain has a nit ith Ho ever most of these motifs
are still unkno n about of E coli TFs still have unkno n binding patterns and
some have no binding sites identi ed at all Moreover some of the available
motifs are some hat fu  for the re built on fe  DNA sequences

In this chapter I e plain ho I used RegulonDB s carefull curated binding sites
Tierrafría Rioualen et al together ith a pattern discover strateg in order

to propose an alternative collection of TF binding matrices for E coli K Additionall
I produced matrices using public ChIP seq datasets processed using m o n
frame ork Chapter  Chapter 

Motifs and matrices of E  c li K 12

All transcription factors comprise a DNA binding domain and therefore the abilit to
bind to speci c locations of the DNA B aligning the set of DNA binding sequences of a
given TF and computing nucleotide frequencies one can represent its binding motif in
the form of a degenerated consensus sequence position speci c scoring matri
Stormo et al or a logo image Figure A motif should allo to distinguish a

binding site from the background genomic sequence and illustrate the speci cit of
the binding TF Its discriminative po er can be measured using the information



content IC hich denotes ho much a given matri di ers from the background
nucleotidic composition

Figure 1 Example LexA binding sites and motif a A subset of the Le A TFBSs available in
RegulonDB are aligned b The corresponding consensus sequence based on the IUPAC code c The
complete position speci c scoring matri built from TFBSs d The logo representation Adapted from
Medina Rivera et al  

As of toda it is considered that Escherichia coli K has about transcription
factors although not all of them are formall identi ed as such Chapter In
RegulonDB a TF is considered con rmed hen it has at least one strong regulator
interaction characteri ed based on e perimental evidence As of RegulonDB version

released in Feb a total of binding sites are associated ith TFs
and TFs have a matri built from a minimum of distinct binding sites sequences



using the program MEME Baile et al to build matrices from sequences and
RSAT matri qualit to select the best matri for each TF Medina Rivera et al
Most of this kno ledge comes from lo throughput in vitro e periments and has been
manuall curated from the literature into the RegulonDB database While it is
frequentl actuali ed ith ne binding sites the collection of matrices has not been
updated on a regular basis mostl due to the di cult of automati ing its construction
and validation Overall a comparison of the last three versions of the collection sho s
little evolution Figure While the number of binding sites has increased as ell as
the total information content of the matrices the length of the matrices has also
increased and the binding information as atered do n hich ultimatel results in
a decreased information content per column or average information content per
position Figure c



Figure 1 Statistics from the RegulonDB motif collection and its past versions a Summar of the last
three versions of the collection b Comparison of the TFs included in each version and the TFs that
currentl have at least or binding sites in the database c Evolution of the distribution of several matri
parameters over time number of sites used to build each matri total information content matri length
and information content per column Note from version the TF RelB RelE is annotated as RelB Both
are considered as the same TF in subsequent anal ses

A visual inspection of RegulonDB s updated matrices sho s that a handful of TFs
indeed seem to have eak motifs On one hand matrices made of too fe site
sequences might not reach a high resolution Figure a ho ever on the other hand
a high number of sequences might actuall dilute the core motif Figure b Some
motifs have a poor nucleotidic comple it Figure c and subsequentl have a lo
discriminative po er Due to the fact that man TFs form multimers in their active
form and some of them have various binding sites in the same vicinit there might
also be larger spurious motifs as a result Figure d Lastl most TFs don t have a
matri  at all  for their binding sites are mostl  or completel  unkno n



Figure 20 E amples of motifs from the RegulonDB collection version a TrpR has a rather
ell de ned motif but sho s lo con dence due to a limited number of sequences available b O R has

site sequences available but ver little information sho s in the logo c IclR has an AT rich motif that
sho s poor speci cit d MarA has a ver large motif but most of its positions hold little to no
information

Extraction of motifs through pattern discovery

Obtaining robust motifs is not a straightfor ard process A matri is basicall a
representation of the binding information contained in a collection of TFBS ho ever
it can ful ll several purposes It should accuratel represent the speci cit of a given
TF allo ing it to identif and distinguish said TF binding sites from the genomic
background as ell as from other TFs binding sites A collection of motifs allo s one
to classif TFs according to their binding pro les similarit A good motif can also be
used to quantif the a nit of a given site to observe variations bet een several
binding sequences or even predict novel binding sites from larger genomic sequences
Furthermore at a multi species level the anal sis of motifs and binding sites



conservation can give further insights into distinct TF conformations and regulator
mechanisms Oliver et al  

In bacteria most transcription factors are kno n to possess HTH motifs in their DBD
and to be active in a dimeric form and at times in tetrameric or he americ
conformations Consequentl the tend to have d adic motifs a pair of short
sequences bp separated b a less conserved sequence hich length is variable
and depends on each TF These sequences are generall reverse palindromes and in
fe er cases direct repeats or distinct ords in the case of heterodimeric TFs
separated b non speci c AT rich segments that provide DNA e ibilit In order to
build an alternative collection of motifs I used pattern discover algorithms that take
advantage of those properties

The algorithm d ad anal sis van Helden et al from the Regulator Sequence
Anal sis Tools suite Santana Garcia et al as speci call developed to identif
d adic motifs  It assumes that such motifs can be modeled as follo s

𝐷 𝑤
1

𝑛
𝑠

𝑤
2

Where
●  sequence of a d ad𝐷
● and  rst and second ords of the d ad𝑤

1
𝑤

2

●  an  sequence of unspeci ed nucleotides𝑛
𝑠

𝑠

Although most TFs bind to some kind of d adic pattern these are not al a s full
conserved and in some cases one of t o ords is hardl detectable hich is h I also
used the algorithm oligo anal sis van Helden et al that identi es signi cantl
over represented oligonucleotides given a background model Indeed it has been
sho n that less conserved motifs can be just as biologicall relevant as conserved
motifs Oliver et al Furthermore some of bacterial transcription factors
are believed to present non canonical binding domains Flores Bautista et al
thus their binding sites could present distinct patterns

I ran both algorithms for transcription factors that had at least distinct binding
sites currentl inde ed in RegulonDB Table A manual selection of motifs as made
based on those results Some motifs ere found b both algorithms in hich case the



version found ith d ad anal sis as kept some ere found onl b one algorithm
and in a fe  cases  no algorithm could nd a signi cant pattern

Overall a collection of motifs as built motifs ere produced for TFs that didn t
have one et motifs ere updated and TF motifs ere kept in their original
version since neither algorithm detected signi cant patterns among their binding
sequences Figure 

Figure 21 Overview of the alternative collection of motifs a Number of motifs ne l created updated
or unchanged b T pe of algorithm used to produce the ne  and updated motifs

The alternative motif collection

The pattern discover strateg I designed has t o signi cant di erences compared to
the original strateg used to build the RegulonDB collection it doesn t necessaril use
all of the input site sequences to build the matri and it can use a given sequence
several times should there be a duplicated pattern It is also orth noting that the
RegulonDB v collection as built on RegulonDB Jul total TFBS

hile I built the alternative collection on RegulonDB Februar TFBS
Still overall the total number of sequences used to build the ne matrices is

lo er despite the total information content being signi cantl higher Since the
pattern discover strateg allo s to leave out poorl conserved sequences and trim
out the lo information positions from both ends of the patterns identi ed the
alternative matrices have a smaller length and the information content per column is
much higher Figure 



Figure 22 Comparison of the RegulonDB collection and the alternative collection Beige bo es represent
the current RegulonDB collection version hile purple bo es represent the alternative collection
The statistical signi cance of the comparisons as computed for TFs using paired Wilco on tests
leaving out the  TFs that have a ne l generated motif

I produced e haustive graphical reports allo ing to visuali e and quantif the changes
bet een the current motif collection from RegulonDB and the ne alternative
collection Although the ne matrices are built ith fe er sites the pattern discover
strateg produced motifs that sho a better resolution as ell as a clear s mmetr
While these motifs ma not represent the complete set of binding sites underneath in
particular those that are less conserved the o er a clear visuali ation of the core
d adic motifs Figure 

As for the ne l built matrices although some are rather eak given the fe
sequences used as an input most do give an idea of the possible pattern behind Figure

 The full list of matrices and their parameters are summari ed in Table 



Figure 23 Updated motifs and their basic statistics a The TrpR motif gained in resolution hile
shortening in length b The O R alternative motif as built using just a subset of its kno n sites but its
pattern is much clearer c A s mmetric pattern as identi ed in most of Iclr binding sites hich is a lot
more speci c d The MarA motif as trimmed to of its si e  but sho s a ell de ned d adic pattern

Figure 24 Some of the ne l generated matrices



RegulonDB matrices v4 0 Alternative matrices

TF name IC total IC average Num TFBS IC total IC average Num seq

new Ada
AscG
BtsR
FeaR
FliZ
H NS
HipB
RcsB BglJ
SdiA

unchanged ArgP
CsgD
C sB
QseB
RcsB
RhaS
Rob

updated AcrR
AgaR
AraC
ArcA
ArgR
AsnC
BaeR
BasR
CaiF
Cp R
Cra
CRP
C tR
Dan
DcuR
DeoR
DnaA
EvgA
E uR
FadR
FhlA
Fis
FlhDC
FNR
Fur
GadE



RegulonDB matrices v4 0 Alternative matrices

TF name IC total IC average Num TFBS IC total IC average Num seq
GadW
GadX
GalR
GalS
GcvA
GlpR
GlrR
GntR
HipAB
IclR
IHF
IscR
LeuO
Le A
Lrp
MalT
MarA
MelR
MetJ
MetR
Mlc
MlrA
MntR
ModE
MqsA
MraZ
Nac
NagC
NanR
NarL
NarP
NhaR
NrdR
NsrR
NtrC
OmpR
O R
PdhR
PhoB
PhoP
PurR
PutA
PuuR



RegulonDB matrices v4 0 Alternative matrices

TF name IC total IC average Num TFBS IC total IC average Num seq
RcdA
RcsAB
RelB RelE
RstA
RutR
Sl A
So R
So S
TorR
TrpR
T rR
UlaR
U uR
X lR
YdeO
YjjQ

Table  5 The complete list of matrices and associated parameters for  TFs

Evaluation of motifs quality

As mentioned above a motif should represent the speci cit of a TF binding pattern
and allo to distinguish potential binding sites from the genomic background
Although there is no single metric that could formall quantif the qualit of a motif
several criteria can be e plored that sho an overall tendenc For one the visual
inspection of logos gives a quick impression of the precision and speci cit of a motif
as ell as its shape in the particular case of d adic motifs The speci cit can also be
quanti ed b calculating the information content IC of the matri Since it is highl
dependent on the length of the matri the average IC per position shall also be taken
into account

Ho ever all of these criteria are some hat imperfect thus the RSAT tool
matrix qualit as developed in order to assess the qualit of matrices Medina Rivera
et al It combines theoretical and empirical score distributions for sets of
genomic sequences given a PSSM in order to estimate its predictive capacit It is based
on the RSAT program matrix scan Turatsin e et al Matri scan as developed



to scan genome sequences and detect potential transcription factor binding sites and
cis regulator modules b computing eight score distributions at each position of
the input sequences Figure ello bo It uses a background model and a𝐵
reference matri and calculates for each sequence segment if it s likel to be an𝑀 𝑆
instance of the motif rather than an instance of the background

𝑊
𝑆  

 𝑙𝑜𝑔 𝑃 𝑆/𝑀
𝑃 𝑆/𝐵

Where

●  eight score of sequence segment𝑊
𝑆  

𝑆

●  probabilit  of sequence according to motif M𝑃 𝑆/𝑀 𝑆
●  probabilit  of sequence according to background B𝑃 𝑆/𝐵 𝑆

The eight score is also prone to inaccurac for it depends on the matri length𝑊
𝑆  

and IC hich is h matri qualit combines it ith theoretical and empirical score
distributions Theoretical distributions of scores generated given a speci c PSSM allo
estimating the p value associated ith a given sequence and its eight score as
computed as sho n in the above formula taking into account the genomic
background Empirical distributions of scores computed from collections of sequences
such as TFBSs should signi cantl diverge from the theoretical distributions if the
PSSM used is speci c enough of the TF considered This can be visuali ed using a
decreasing cumulative distribution function dCDF hich depicts the probabilit
ordinate to obtain randoml a eight score higher than or equal to a given𝑊

𝑆  
𝑊

𝑆  

value abscissa  Figure 





Figure 25 Theoretical and empirical probability distributions using matrix quality Distributions ere
generated using FNR MarA Nac and O R PSSMs from RegulonDB and the alternative collection a
FNR Green curves represent the probabilities of observing b chance a sequence of score equal to or
higher that Ws given the RegulonDB PSSM light green and the alternative PSSM dark green computed
for all non coding upstream regions of E coli K For instance observing b chance a sequence scoring
higher than has a lo probabilit of e considering the RegulonDB PSSM ho ever taking into
account the multiple testing of all possible positions from the upstream regions it is associated ith an
e value of false positives and in the case of the alternative PSSM false positives Overall the
distribution from the alternative PSSM includes a larger range of possible scores consistent ith the fact
that it has a higher IC Table but a lo er FDR for scores lo er than Blue curves represent the
observed distribution of scores in all non coding upstream sequences It sho s that sites scoring



higher than can be predicted ith RegulonDB PSSM and sites using the alternative PSSM The
di erence observed compared to the theoretical distribution as ell as a permuted set of upstream
sequences purple curves demonstrate the relevance of the PSSM in predicting potential TFBSs Finall
the red curves sho the distribution of scores observed in FNR TFBS sequences from RegulonDB The are
both ell above the theoretical distributions and the upstream sequences distributions as ell as the
binding sites permuted sequences orange curves denoting the speci cit of the PSSM for FNR binding
sites b MarA The alternative PSSM predicts fe er sites of score higher than compared to the v
PSSM consistent ith the theoretical distributions and the fact that the ne matri is smaller and has a
lo er total IC c Nac The alternative matri predicts more sites of score higher than than the RegulonDB
matri hile having a ver similar background distribution p val e e val sites Both PSSMs
have a rather lo IC and fail at predicting sites of scores higher than d OxyR The RegulonDB PSSM
predicts more sites than the alternative one considering a score threshold at but the tendenc is reverted
around scores of and above The predictive capacit of the RegulonDB matri pale red drops
signi cativel  hile that of the alternative matri  is maintained

Overall the results produced b matri qualit for the TF compared sho
disparities Some of the alternative matrices predict more high scoring sites
congruent ith the fact that the generall have a higher information content The
ma be associated ith higher FDR around high scores but generall have a lo er FDR
than the RegulonDB collection hen considering lo er scores High scoring matrices
are usuall better at predicting high scoring sites but ma lter out more false
negative sites of lo er scores Yet those binding sites of lo sequence conservation can
be just as relevant to regulation and can even be necessar for some regulator
mechanisms that rel on TF cooperation Oliver et al For this reason it ma be
relevant to have TFs associated ith several alternative PSSMs allo ing one to ful ll
distinct purposes  from visuali ation and TFBS prediction to TFs classi cation

Classification of transcription factor motifs

Matrices can be used to classif TFs based on their motif similarit Matri clustering
Castro Mondragón et al is a tool that clusters similar transcription factor

binding motifs b computing a matri of similarit bet een all pairs of input matrices
and performing hierarchical clustering to build a motif tree The tree can then be
partitioned into clusters  using a variet  of similarit  metrics

I performed the clustering of PSSM from the alternative collection using the
normali ed correlation coe cient Ncor in order to compute pair ise similarit
bet een all PSSMs ith the average linkage method Since some matrices lack
precision I used a lo threshold for the tree partitioning step Ncor A total of



clusters ere generated Table Their si es range from meaning a given PSSM
did not cluster at all clusters to C sB MalT NtrC PutA RhaS to matrices
cluster 

The complete tree is presented in Figure a alongside TF famil information their
kno n e ects and their reported class local or global regulator Interestingl some
of the largest families seem to be clustered together hile others are more scattered Of
the PSSMs in the collection are associated ith TFs from the prominent L sR
famil involved in amino acid s nthesis and evolutionar related Pére Rueda et al

Ho ever those motifs are part of di erent clusters Another major famil
described in E coli is AraC X lS involved in carbon source assimilation hich accounts
for matrices in this collection These are scattered bet een di erent clusters but
of them are grouped in the same cluster cluster In particular three TFs share a
close motif similarit MarA Rob and So S Those TFs are kno n to form part of a
regulon involved in antibiotics and supero ide resistance Pére Rueda et al In
the same cluster another TFs are also closel related together OmpR Cp R and
RstA from the OmpR famil involved in particular in bio lm formation and response
to acidic stress Ogasa ara et al Aquino et al Among the families that
sho a more consistent clustering e can cite GntR and GalR LacI All PSSMs from
TFs that are part of the GntR famil ere grouped together in cluster ith onl one
outsider TrpR As for the GalR LacI famil PSSMs out of are clustered together in
cluster of hich a detailed vie is sho n in Figure b The onl TF in the cluster
that is not part of the GalR LacI famil speciali ed in sugar metabolism is a repressor
of the gl o late b pass operon  Iclr

Overall TFs that are part of the same evolutionar families do not signi cantl cluster
together despite a lo clustering threshold Still man TFs remain poorl
characteri ed and their motifs lack precision hich e plains h their clustering
remains di cult Several global regulators are found in the same cluster ArcA H NS
IHF Lrp A similar tendenc as reported in a previous stud here TFs ere
clustered based on corregulation Pére Rueda et al but the opposite behavior

as observed hen stud ing topological modules of the E coli TRN Resendis Antonio
et al Ho ever it is di cult to dra conclusions as global regulators tend to
have rather degenerated motifs despite having numerous kno n binding sites





Figure 26 Clustering of the 101 PSSM from the alternative collection a The complete tree of clustered
matrices and associated parameters for TFs Proportionate tree branches ere manuall t itched to
enhance readabilit b Detailed subtree for cluster and its closest relative c Color legend and associated
TF numbers TF famil and e ect annotations ere retrieved from RegulonDB and in some cases
completed ith recent annotations from Flores Bautista et al   annotations separated b  a pipe 



Cluster TF name Cluster size

Cra C tR GalR GalS IclR PurR

DnaA HipAB HipB

E uR FadR NanR PdhR TrpR U uR

AgaR AraC ArgR Cp R MarA MetR OmpR RcdA Rob RstA So S TorR UlaR

EvgA NarL NarP RelB RelE

BaeR Dan Fis GadE IscR MlrA ModE NagC YdeO

AcrR ArcA ArgP AsnC BasR BtsR CsgD DcuR GadW H NS IHF LeuO Lrp Nac
NsrR PhoP QseB RcsB Sl A So R YjjQ

CRP DeoR FNR GntR PhoB

Ada AscG CaiF FhlA FliZ GadX X lR

MqsA PuuR RutR

MraZ RcsAB RcsB BglJ

GlpR Mlc NhaR O R

GlrR T rR

FlhDC NrdR

Le A MetJ

Fur GcvA

FeaR MntR

MelR SdiA

PutA

NtrC

MalT

RhaS

C sB

Table  6 The complete list of  clusters for PSSMs

ChIP seq based motifs

As mentioned the main issue for PSSM construction is a lack of binding data Binding
datasets from genome ide e periments are ver helpful in that regard Using
ChIP seq datasets Chapter I built matrices targeting TFs Table The motifs
generall sho a better accurac than the alternative collection but man fail at
detecting d ads particularl for TFs that have a lot of binding sites Figure Indeed
man TFBSs are poorl conserved that end up diluting the pattern although their
regulator role is relevant under speci c conditions Oliver et al It is also
reasonable to assume that the set of binding sites previousl identi ed and based on
lo throughput e periments actuall represent a ver small proportion of the actual
binding sites in E  coli  and could be biased to ards better conserved sequences



Figure 2 ChIP seq motifs a FNR The ChIP seq motif is shorter and sho s a ver conserved d adic
pattern b Nac The ChIP seq dataset provides a fold pool of binding sequences to build on ho ever
the nal motif is ver similar to the alternative motif ith the addition of signi cant nucleotides giving
it a higher speci cit c NtrC T o datasets ere combined totaling a number of sequences The motif
produced has a high resolution but onl a half d ad is conserved d OmpR Similar to NtrC the ChIP seq
based motif for OmpR is ell de ned but onl  includes half of its kno n motif



RegulonDB v4 0 ChIP seq matrices

TF Sites IC avg Consensus Peaks Sites IC avg Consensus
Fis  Gb r tttttvasCra  bstTGCTGGCGatsk

FlhDC  aA sGsskGA t rGsGsc

FNR  TTGAtrt ratCaa  tTGAtstasaTCAa

Fur  tRAtAAtsaTtmtCAtT bca  grATGATAAtsa

GlaR  raAATGGCGA r

H NS

Lrp  km t tt t CtK  a TATTCTgc

Nac  kratt k T atrkssr  kmCATAagma tkcttATGkm

NtrC  r tGCaCsaTkktgGkGCam  gsTGGTGCAss

OmpR  a atGtaaCcaar gt ma  tTTGTTACatrt

PhoB  trtkaCAkhttTrtg cAg  m tTGTCATatk

Table  Summar  of the matrices built from ChIP seq datasets and their original version in RegulonDB

The anal sis of ChIP seq data sho s that as e pected man more binding sites are
discovered than hat is currentl described in the literature Most of this curated
kno ledge stems from in vitro lo throughput e periments hile high throughput
e periments like ChIP seq allo ing a genome ide characteri ation has barel been
applied to Escherichia coli K  despite being a idel studied model organism

As observed in the alternative collection of matrices the ChIP seq based matri
collection demonstrates the variabilit observed among transcription factor binding
sites Although TFBS are generall evolutionar conserved the sho a diversit of
pro les that can be equall relevant to transcriptional regulation Besides some
binding sites have been observed that displa ed a spacing distinct from the e pected
one although it is supposed to be a conserved TF speci c characteristic This further
supports the idea that TFs could be associated ith a set of alternative matrices rather
than a single one



Discussion

Results

During this PhD I orked to ards the goal of e haustivel characteri ing Escherichia
coli K s regulator net orks I started b tackling several facets of this challenge
separatel

Upon manipulating a variet of data from di erent sources I quickl noticed ho a
lack of congruence in such basic information as gene names and coordinates as going
to be a recurrent bottleneck This triggered the EcoliGenes project a soft are librar

hich I then used in most of m subsequent orks and kept developing and updating
to t the needs of m  goals

Concomitantl I built an e haustive set of E coli genomic features b combining
long established data from the literature and numerous datasets generated through
ne t generation sequencing technologies and published in recent ears I processed
the data so as to homogeni e their respective formats and formall de ned di erent
t pes of objects to t a common frame ork

In order to integrate binding and e pression data I developed SnakeChunks a librar of
ork o s and rules based on snakemake These ork o s allo automated anal ses

of ChIP seq and RNA seq data from ra samples to nal results such as transcription
factor binding sites motifs and di erentiall e pressed genes This ork culminated
in the publication of a protocol Rioualen et al  

I used these founding elements in order to pursue m main goal the characteri ation
of the transcriptional regulator net ork of Escherichia coli K Together ith the
team from the Program of Computational Genomics and our collaborators from Boston
Universit and the Wads orth Center at SUNY Alban e conceived a ne frame ork
to integrate thousands of high throughput datasets in RegulonDB b articulating



together three facets of the project and the respective elds of e pertise of our team i
the gathering and curation of relevant datasets led b biocurators ii the
standardi ation and or processing of the data led b bioinformaticians and iii the
integration and visual displa of the results via the RegulonDB HT portal led and
reali ed b  the computational team

Finall I investigated an alternative strateg to generate a collection of transcription
factor binding matrices b using pattern discover approaches While it produced
high resolution motifs it also raised a thought as to the relevance of keeping several
alternative matrices for certain transcription factors that displa a variet of binding
pro les

Conclusion

Escherichia coli K despite being the single best characteri ed organism on Earth
still o ers m steries to solve While its genome is relativel small and its genes count

onl in the thousands it has ver comple and rami ed regulator net orks from
signaling path a s to metabolic reactions The transcriptional regulator net ork is
ke to articulating and coordinating cellular responses to environmental stimuli
Numerous promoters and terminators o er endless possibilities of transcription
initiation and termination nel regulated through e ternal signals triggered b
gro th conditions and subsequent activation or repression of gene e pression b
transcription factors

Biological paradigms are permanentl challenged b the ever increasing amount of
kno ledge acquired and an exhaustive characteri ation of the regulator net orks of E
coli K ma never actuall be achieved Ho ever through this PhD project I as able
to contribute to this ambitious perspective in a signi cant a b gathering and
formatting numerous high throughput datasets developing tools and ork o s for
their reproducible anal sis and integration ith classic kno ledge and generating TF
binding motifs ith a higher resolution

Perspectives

The transcriptional regulator net ork is a ke component of Escherichia coli s
regulator circuits for it coordinates metabolic responses in the cell upon sensing



intra and e tracellular signals o ering an e tremel high adaptabilit to
environmental changes E panding the kno n TRN from E coli opens a gate to better
understanding its biolog but also that of other species Being a model organism E coli
has consistentl been used to investigate and describe fundamental biological
mechanisms that could be applied to other organisms later on as ell as identif
genes  proteins and other features from related bacteria b  homolog

In particular it can help greatl to uncover the transcriptional regulator net ork of
one of its close relatives Salmonella enterica Both species have ver similar genomes
and lifest les but the latter is pathogenic hile E coli is mostl a commensal bacteria
S enterica is commonl studied b scientists but its TRN is much less kno n than that
of E  coli

During m PhD I had the opportunit of taking part in a project hich aims at
characteri ing the S enterica regulator net ork b taking advantage of the kno ledge
acquired of the E coli net ork and combining it ith computational approaches This
strateg o ers the perspective of gathering signi cant amounts of regulator data for
Salmonella as ell as other bacteria in a much more e cient a than before B
combining once again the e pertise of biocurators and computational scientists from
the PGC e are hoping to e pand RegulonDB to cover multiple organisms and make
the decades of manual curation of a single organism performed in the past become

ears of combined approaches to characteri e multiple organisms
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