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F ÍSICO

P R E S E N T A :

DANIEL MAXIMILIANO PONCE CHÁVEZ
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RESUMEN

La presente tesis se sustenta en el marco de la cromodinámica cuántica (QCD) y la fı́sica de

hadrones, situando al protón como una estructura hadrónica constituida por partı́culas funda-

mentales y mediadores de la fuerza fuerte; a saber, quarks antiquarks y gluones. Esta hipótesis

es abarcada por el modelo de quarks-partones propuesto por Richard Feynman para dar una

interpretación a las observaciones en experimentos de dispersión profundamente inelástica

(DIS) desarrollados en aceleradores de partı́culas como SLAC, HERA, entre otros. Los ex-

perimentos DIS permiten sondear la estructura interna de un hadrón a través de la dispersión

de un leptón, como resultado del intercambio de un fotón virtual de longitud de onda corta. En

el régimen de altas energı́as, el leptón interactúa con los constituyentes internos. Estudiando

la sección eficaz del proceso en cuestión, surgen funciones que parametrizan la distribución

de los partones dentro de los hadrones, en términos del 4-momento fraccionario llevado por

dichos constituyentes. Estas funciones reciben el nombre de funciones de distribución de

partones (PDF) y son de suma importancia para describir la materia a un nivel fundamen-

tal, por lo que su determinación es de gran interés, sin embargo, las PDFs no pueden ser

evaluadas explı́citamente con el marco teórico mediante el cual fueron inferidas. La única

vı́a disponible para su determinación es la parametrización a través de datos experimentales,

siendo un procedimiento en la mira de esta tesis. La determinación de funciones de distribu-

ciones de partones es una tarea compleja bajo constante actualización, como resultado de los

avances continuos en el área experimental y computacional. Existen diversas colaboraciones

cientı́ficas y proyectos a cargo de la determinación de funciones de distribución de partones.

El objetivo de esta tesis es introducir el proyecto Fantômas4QCD cuyo propósito es
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parametrizar funciones de distribución de partones mediante un programa computacional

llamado Metamorph creado en C++ y Mathematica. El proyecto representa una colabo-

ración liderada por la Dra. Aurore Courtoy y el Dr. Pavel Nadolsky, entre fı́sicos de la

Universidad Nacional Autónoma de México y Southern Methodist University. El proyecto

ha progresado por etapas en las que el autor de la tesis ha participado: acercamiento a con-

ceptos de QCD y DIS, escritura y revisión de código, comparación con resultados conocidos,

redacción, etc. Fantômas4QCD busca parametrizar PDFs de manera eficiente e innovadora a

través de Metamorph, implementando un algoritmo que se basa en una herramienta flexible

perteneciente al sector de diseño gráfico: las curvas de Bézier. Con la finalidad de acercar

al lector y contextualizar el uso en la parametrización de funciones de distribución de par-

tones, se presenta una sı́ntesis sobre el origen y la aplicación de las curvas de Bézier, ası́

como las reglas y restricciones que deben cumplir las PDFs parametrizadas. Asimismo, por

medio de ejemplos concretos, se presentan los resultados obtenidos con Metamorph al re-

producir las parametrizaciones de PDFs más recientes de uno de los proyectos colaborativos

pioneros en el área: CTEQ. Después, se discuten algunos criterios para guiar a los usuarios

en la implementación de Metamorph de manera práctica y apropiada, partiendo de los resul-

tados y observaciones realizadas por el Fantômas Development Team, durante la creación del

proyecto, que tuvo sus inicios en el verano de 2021. Finalmente, se expone de manera breve

el estado actual, aplicaciones y planes a futuro para Fantômas4QCD.



ABSTRACT

This thesis is supported by the Quantum Chromodynamics (QCD) and hadronic physics

frameworks, which situate the proton as a hadronic structure constituted by fundamental

particles and strong force mediators, namely, quarks, antiquarks and gluons. This hypoth-

esis is encompassed within the quark-parton model proposed by Richard Feynman, aiming

to give an interpretation to observations made in deep inelastic scattering experiments (DIS)

developed in particle accelerators, such as SLAC, HERA, among others. DIS experiments

allow probing the inner structure of hadrons by means of a scattered lepton, as a result of a

short wavelength virtual photon exchange. In the regime of high energies, this lepton interacts

with the inner hadron constituents. By carrying out the kinetic analysis and studying the cross

section of the process under discussion, functions parametrizing the distribution of partons

within hadrons arise, in terms of the fractional 4-momentum carried by such constituents.

These functions are given the name of parton distribution functions (PDF) and they are of

substantial significance to describe matter at a fundamental level. Consequently, PDF deter-

mination is a task of great interest. Nonetheless, these functions cannot be explicitly evaluated

with the framework by which they were inferred. The only available way to determine these

objects is by means of parametrization through experimental data, being a procedure in the

aim of the present thesis. PDF determination is a complex task under constant updating, as a

result of the continuous advances attained in experimental and computational fields. Multiple

scientific collaborations and projects exist to determine parton distribution functions.

7
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The objective of this thesis is to introduce the Fantômas4QCD project, whose purpose

is to parametrize parton distribution functions by means of a program named Metamorph

created with both C++ and Mathematica. This project emerges as a collaboration lead by

Dr. Aurore Courtoy and Dr. Pavel Nadolsky, between physicists of UNAM and Southern

Methodist University. The project was developed by stages in which the author of the thesis

took part: approaching to QCD and DIS, code writing and review, comparing with known

results, writing, etc. Fantômas4QCD seeks to parametrize PDFs in an efficient and innova-

tive manner with Metamorph, implementing an algorithm based on a flexible tool belonging

to the graphic design sector: Bézier curves. With the purpose of approaching readers to the

topic and give context to the usage in parton distribution parametrization, we present a syn-

thesis of the origin and applications of Bézier curves as well as the rules and constraints that

parametrized PDFs must follow. At the same time, through concrete examples, we present

the results obtained with Metamorph by replicating the PDF parametrizations produced by

one of the pioneering projects in the field: CTEQ. Then, we discuss some criteria intended to

guide users in the implementation of Metamorph in a practical and appropriate way, arising

from the results and observations made by the Fantômas Development Team while creating

the project, which finds its beginnings in the summer of 2021. Finally, we discuss the current

state, applications and future plans for Fantômas4QCD.
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CHAPTER 1

INTRODUCTION

Curiosity is a human attribute which acts as a stimulus for knowledge flourishing and a guid-

ing light for scientific progress. Naturally, ever since early times, humankind has made high

endeavors in pursuing an extensive and thorough conception of the physical structure of the

Universe, our home, at each conceivable length scale. Being an essential questioning, through

history and still to this day, numerous scientists have done the generous duty of dedicating

their lifetime research to expand the boundaries of comprehension on this matter. Particularly,

thanks to these efforts, a theoretical-experimental physics framework has been instituted with

the purpose of exploring the structure of matter at the smallest and fundamental level. This

branch is known as particle physics. Therefore, in order to acknowledge and assimilate the

current status of particle physics and reveal the arguments motivating this thesis, it is worth-

while to chronologically revisit some of the milestones that shaped the subject as we know it

today.

The first inquiries on the structure of matter at the lowest scale were conducted by an-

cient civilizations as a result of their philosophical doctrines and meditations regarding the

place taken by living and non-living entities in the natural world. In the Indian civiliza-

tion, a primal notion of “atom” already existed since the 8th century BCE, presented by the

philosopher Uddālaka Ārun. i [3, 4]. Ārun. i stated that objects were composed of small parti-

cles, invisible to the eye. Throughout the following centuries, various atomic theories, each

with their own traits, were developed by multiple schools of thought. Take, for example, the
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16 CHAPTER 1. INTRODUCTION

atomism presented in the Vaiśes. ika-sūtra, an elemental compendium of principles written by

the philosopher Kan. āda (c. 6th ∼ 2nd century BCE) in which the characteristics and prop-

erties of atoms are detailed, asserting that such objects are simple and indivisible, but being

too small to be observed, they have to be perceived by their effects [4]. Although somewhat

naive, this inferential approach constitutes the basis for several modern high-energy physics

experiments where subatomic lengths/high resolution distances are involved. Kan. āda also

asserts that these invisible atoms are “eternal” as single particles but not as aggregates, i.e.

combined into compounds [4, 5], for they can be successively split into smaller components;

a conjecture to which we can adhere in our search for the ultimate constituents of matter.

On the other hand, the Greek atomism has its roots, at least, in the 6th century BCE,

proposed by the Milesian school [6], although its concrete founders were Leucippus and his

pupil Democritus. It is a natural philosophy intended to account for the origins of things

by means of natural causes and effects, without divine intervention [7]. By addressing the

problem of the genesis of material things and the nature of coming into being and change, put

forward by earlier schools of thought, Leucippus and Democritus proposed the existence of

atoms and their characterization following strong logical principles [8]: shapes, sizes, move-

ment, etc. These atoms cluster together to constitute larger substances, but the variation in

their arrangement accounts for the perceivable differences between these aggregates [6, 8].

Together with these properties, atoms are proposed as indivisible, considering the debate on

the outcome if material objects are divided ad infinitum.

Without deepening into ontological affairs, we must bear in mind that although these

dogmas might come across as old-fashioned, setting apart the deeply intertwined ideas lying

in the scientific domain and the ones remaining in the philosophical realm, leaves us with a

protoscientific way of thinking [3] which certainly shaped the modern embodiment of science

we rely on to a great extent. In fact, some antique conceptions are now held as fundamental

physical postulates; conservation/rearrangement/origin of matter, transmutation, etc. They

were subtly manifested throughout these philosophical discourses heavily motivated on a

natural philosophy perspective based, to a certain degree, on metaphysical backgrounds.
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By the end of the ancient era, scrutiny on the matter that concerns us suffered a sig-

nificant and prolonged hindering, primarily due to the predominance of Christianity which

firmly opposed the atomistic school of thought. During this period, religious communities

and philosophical currents took an active stand on atomism. Excepting few notable cases

(e.g. Islamic atomism), the ones who were in favor did not generally contribute to the de-

velopment of atomism at the time, but preserve it for a subsequent resurgence which took

place centuries later in the course of the Renaissance and Enlightenment periods. Some of

the greatest intellectuals of the epoch revitalized the debate on the structure of matter and put

atomism 1 back on the map with a modern view, e.g Pierre Gassendi, Giordano Bruno, Isaac

Newton, Robert Boyle and even Galileo Galilei 2, among others [8]. Not only that, but these

new manifestations of atomism adopted the mathematical perception of nature strongly put

into effect by Newton, Galileo and Kepler themselves.

It was not until several years later that the debate on the structure of matter evolved from

a merely speculative subject to a legitimate problem of experimental evidence, once the tech-

nology and the apparatus of science at the time were in a mature facet. With the joint efforts

of physicists and chemists of the 19th century, the theory of atoms regained not only strength

but also a wide acceptance by the scientific community by the end of the century. Some of the

landmarks responsible for this are John Dalton’s atomic model and the periodic table devised

by Dmitri Mendeleev. Still, the work of other scientists (omitted for scope reasons) has to be

praised as well, for it paved the way for what was to come: the end of the debate on atoms.

An accurate description of atoms remained unresolved until the early years of the 20th

century. Based on arguments from different perspectives; thermodynamics, stoichiometry,

electrochemistry, etc., the long-lasting debate on the existence of atoms and whether the

underlying theory was the correct way to describe matter seemed to be coming to an end,

tipping the balance in favor of those who supported the theory throughout all those years.

Nonetheless, such description did not turn out as expected.

1 And the corpuscular philosophy as well [6].
2 Yet, some of these scientists had a Christian worldview.
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A sudden wave of previously unseen and extraordinary phenomena, mostly in the physics

domain, dethroned atoms from the revered status of fundamental constituents they were

meant to possess. A few remarkable examples are the cathode-ray experiments conducted

by Thomson leading to the discovery of the electron 3 and a subsequent model of a composite

atom, or the series of discoveries eventually giving rise to quantum mechanics, whose fath-

omless impact is irrefutable. However, there is major experimental result disproving atoms

as the smallest units of matter, consequence of the Geiger-Marsden experiments serving as

inspiration for the scattering experiments detailed further in this thesis. Directed by Ernest

Rutherford, the experiment consisted in scattering α-particles incoming from a beam aimed

at a thin foil of gold. The observed scattering pattern showed that atoms consisted mostly

of empty space and a concentration of positive charge in a nucleus at the center of the atom,

around which electrons are located 4. By studying the hydrogen atom, Rutherford reached

further and designated the positive charges in the nucleus as protons, appearing in the same

number of electrons for the atom to remain neutral. If the gold nucleus consisted only of pro-

tons, then roughly half of the atomic mass would be missing. It was determined eventually

that the rest of the mass was carried by electrically neutral particles contained in the nucleus

as well, which we now know as neutrons discovered by James Chadwick in 1932.

The outcome of an extensive dilemma lasting centuries involving remarkable scientific

and philosophical figures of all sorts was the proof of atoms not being the last level of de-

scription, but complex structures built by electrons, protons and neutrons and still, the study

of atoms comes about as a thorough branch of physics in itself, the same circumstance occur-

ring with nuclei. The idea of atoms as indivisible entities still resonates to these days, since

the name itself implies it, nonetheless, we are currently aware of the fact that they are not the

primary objects once claimed to be. As it happens, neither are the nucleons, i.e. protons and

neutrons. Yet, we must maintain the convictions which motivated the hunt for the elemen-

tary and utmost indivisible constituents of matter in the first place, regardless of the time and

space we find ourselves in, for it seems to be a desire deeply enrooted in the human intellect.

3 As we will detail in the following section, the electron is, in fact, one of the elementary units of matter.
4 Known as the Rutherford model.
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After this brief digression, we may naturally ask ourselves: where do we stand, then?

The branch of particle physics bloomed significantly throughout the previous century, due

to a sophisticated evolution in both experimental and theoretical domains, aided by techno-

logical breakthroughs. Thanks to this and to the emergence of quantum physics, scientists

have established a systematic approach to explore matter at the smallest scale by means of

high-energy scattering experiments. Consequently, in the span of a hundred and a few more

years, we have progressed from a description based on atoms to a wider and refined picture

of multiple elementary particles being the building blocks of the Universe: the quark scheme,

proposed by Murray Gell-Mann and George Zweig, following the ancient tradition of pursu-

ing the elementary units of matter; presumably quarks and leptons. Our understanding on the

structure of matter at the current accessible and smallest scale must not be limited to merely

identify such particles, but also elucidate the complex mechanism by which these constituents

interact. In response, the Standard Model offers a description of the fundamental forces of

nature in terms of exchanges of field quanta between matter constituents. Particularly, our

focus is on the strong force, disclosed by Quantum Chromodynamics, responsible for the

arrangement of quarks forming composite particles. Accessing the content of such particles,

that is, detecting individual quarks is not quite possible. In consequence, an experimental

method and a subsequent framework can be conceived to treat quarks as locally “free”: Deep

Inelastic Scattering (DIS) and the quark-parton model, respectively.

As will be further detailed, DIS experiments are the most efficient tool within our reach

to explore the quark-composite particles (collectively called hadrons), deriving in a series

of key results and observations eventually encompassed by the quark-parton model devised

by Richard Feynman, putting us on track towards our object of study: Parton Distribution

Functions (PDFs). In general terms, these functions are mathematical objects intended to

parametrize the distribution of quarks (and strong force mediators) within hadrons, although,

they cannot be evaluated by the quark-parton and QCD schemes, making the explicit deter-

mination of such objects a complex task. The aim of the present work is to introduce an inno-

vative tool to parametrize PDFs in terms of experimental data produced in DIS experiments,

named Metamorph. The collaborative project in charge of this tool is called Fantômas4QCD.
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In order to fulfill our purpose, the way of proceeding throughout this thesis will be as fol-

lows: first, we will survey some of the theoretical foundations supporting the Fantômas4QCD

project, namely the Standard Model which provides a picture of matter and fundamental in-

teractions in terms of elemental particles, the strong force responsible for holding quarks

together, its subsequent QCD framework and the Deep Inelastic Scattering experiments en-

abling to explore the inner structure of hadrons. Then, we will examine some relevant formu-

las from the kinematic analysis of such experiments from which parton distribution functions

are obtained and the reasons impeding their exact evaluation, thus leading to the task of ex-

tracting information from phenomenology and parametrizing these objects via experimental

data. Next, a brief review on the current state of PDF parametrization will be given, empha-

sizing specifically in CTEQ, a pioneering collaboration in the field. This will be followed by

the description of the innovative methodology proposed by the Fantômas4QCD project, em-

ploying a tool from Computer Aided Geometric Design (CAGD): Bézier curves. The name

of the project was inspired by the French fictional character Fantômas and his flying Citroën

DS; a car designed with the very same tool. Afterwards, we will detail how the Metamorph

program was created by the Fantômas Development Team, followed by the results obtained

intending to reproduce the parametrizations from CTEQ’s latest set of PDFs. Then, a discus-

sion on the usage of Metamorph will be presented, together with a series of guidelines and

observations made by the team during the development process. Finally, we will describe

the current stage of the Fantômas4QCD project and some applications expected to be imple-

mented in the near future.

The results and reflections encompassed in this introduction only embody a small segment

of what particle physics is all about. As of today, we find ourselves in an advanced phase of

uncovering the underlying mechanisms giving physical structure to matter. In light of recent

experimental breakthroughs, the domain of particle physics appears to be progressing at a

fast pace towards a long-awaited description of the Universe at an elemental level, putting

this branch constantly back on the map. Nonetheless, we have seen that the search for a final

theory is far from new. In a way, we are taking part in a duty lasting centuries and yet, we are

closer than ever, but there still is a long way to go.



CHAPTER 2

THEORETICAL BACKGROUND

2.1 The Standard Model

All physical events taking place in the Universe must be understood as interactions involving

matter and energy. Then, it is indispensable, yet intuitive, to classify thoroughly these entities

in terms of objects, or more precisely, particles; discerning between the ones being responsi-

ble for such interactions and the ones constituting matter. Accounting for this, the Standard

Model establishes that matter is constituted by elementary 1⁄2-spin (ℏ units) particles, follow-

ing Fermi statistics, that is, obeying the Pauli exclusion principle, giving them the name of

fermions: six leptons and six quarks, all remaining structureless at the current energy scales

[9].

Table 2.1: Chart of fermions arranged by generation (increasing mass),

each containing two types particles. [1]

21
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Leptons, commonly seen as generalizations or replicas of electrons, are comprised of

three different flavors of electrically charged particles, each paired by weak force processes

with a distinct flavor of neutral lepton, known as neutrinos. At the same time, the group of

quarks is made up of six different flavors. Ordinary matter is composed of electrons and

stable particles, i.e. protons and neutrons, made of the two lightest flavors, that is, up and

down quarks. Following quantum rules and conservation laws, the rest of quark flavors can

combine constituting composite but unstable particles, decaying into lighter particles with up

and down quarks in the same way as heavy leptons decay into electrons; both cases requiring

the weak force to intervene.

Although leptons and quarks are both classified as fermions, several attributes set them

apart. Leptons mutually interact via the weak and electromagnetic forces. Quarks, on the

other hand, interact not only by the weak and electromagnetic forces, but also by the strong

force. Furthermore, table 2.1 exhibits leptons having integer electric charges, whereas quarks

carry fractional charges, as a consequence of a fundamental property called color confine-

ment; while leptons can be found as free, isolated particles, quarks are restricted to exist in

combinations with other quarks and not individually [9, 10]. It is essential to note that these

units of matter exist along with their antiparticles (having the exact same mass and lifetime,

but opposite electric charge and magnetic moment [10]), in such a way that only two types of

combined-quark bound states can be found in nature: mesons being unstable, composite par-

ticles made of one quark and one antiquark, and baryons, being constituted solely by quarks,

with the proton as the most stable baryon, followed by the neutron. These two groups of

particles are altogether called hadrons [10, 11]. Aside from protons and neutrons, hadrons

were generally first detected in cosmic ray experiments, decades before the Standard Model

was devised. These “strange” and novel particles did not fit within the present-time model,

composed of electrons, protons, neutrons, neutrinos and photons, consequently suggesting a

broader scheme [12]. Hadrons are currently a major subject of study in modern physics, and

the technological progress achieved in recent decades has enabled us to possess an alternative

source for finding such particles: high-energy particle accelerators, such as Stanford’s Linear

Accelerator, the LHC, or the now defunct Tevatron and HERA.
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Conversely, the Standard Model provides a compelling picture regarding the fundamental

forces of nature. Preserving the approach of physics Nobel laureate Hideki Yukawa, forces

are depicted as virtual quanta exchange interactions between massive particles [9, 13]. In

accordance with the quantum scheme, discrete “mediators” transmit information about the

specific type of force corresponding to the interaction taking place. The source of such field

quanta are fermions in table 2.1, and they distinguished by being integer-spin particles (which

can be massless), following Bose-Einstein statistics, earning them the name of bosons:

Table 2.2: Bosons arranged by interaction [1].

Table 2.2 displays data of field bosons involved in each interaction; photons correspond-

ing to electromagnetism, W± and Z0 present at weak interactions and the gluon, accounting

for strong interactions. Electrically neutral bosons are their own antiparticles, i.e. photon, Z0

and the gluon, while W+ and W− are mutual antiparticles.

Each force has an effective range, with a relative magnitude compared to the rest. The

following scale, given by Griffiths [14] and Perkins [10], is rather ambiguous and should just

be taken as an overall outline:

Force Strong Electromagnetic Weak Gravity

Strength 1 10−2 ∼ 10−3 10−7 ∼ 10−14 10−39 ∼ 10−43

Table 2.3: Comparative strength of the fundamental forces at

subatomic scales, employing the strong force as reference.
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Though gravity has been formulated since Newton’s Principia in the seventeenth century,

and generally theorized by Einstein more than two centuries later, this fundamental force is

not considered within the Standard Model, due to two crucial reasons: in contrast to the other

forces, it is substantially weaker at the quantum regime and it does not have a thorough quan-

tum field theory being renormalizable, a process later described. Still, a hypothetical massless

boson has been proposed: the graviton, with spin 2 and zero electric charge, nonetheless, its

direct detection is currently far from possible [15]. Distinct theoretical frameworks have been

devised during recent decades, but a conclusive viewpoint is still under development.

Table 2.2 is organized in a way that the strong force is isolated from the two other forces,

the reason being that weak and electromagnetic interactions of both leptons and quarks can

be described by a single gauge theory where both forces are unified: the electroweak theory,

making use of the formalism of Quantum Electrodynamics (QED), motivated by observations

of both interactions having the same strength at high-energy scales in experiments realized

during the 1970s [10]. In contrast, the gauge theory describing the strong interaction between

quarks is Quantum Chromodynamics (QCD), being the framework supporting this thesis.

Undoubtedly, the Standard Model has been the most successful theory regarding ele-

mentary particles giving structure to matter and describing fundamental interactions between

them. Despite how elegant this framework is, certain limitations and unsolved difficulties

impede the Standard Model from being a final theory; the first of them being the dismissal of

gravity due to the arguments previously discussed. Next, this framework does not provide a

direct reasoning on why there are exactly three generations of fermions. Finally, it does not

account for further, but related, physical problems well beyond the scope of the present thesis

and the Standard Model itself, such as the asymmetry of matter and antimatter or the predic-

tion of the so called dark matter [10]. Extended frameworks commonly referred as Physics

Beyond the Standard Model intend to address these issues with alternative approaches. Re-

gardless of these adversities, the Standard Model and its inherent gauge theories have proven

multiple times that scientists are on the right path to describe matter and the fundamental

interactions at the elemental level.
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2.2 Strong Force and QCD

Sufficient evidence has already been introduced supporting the statement that neither atoms

nor nuclei are the minimal units of matter. The collection of experimental results acquired

throughout the preceding century and recent years have proven the existence of an under-

lying rich structure within nucleons and other composite particles, ruled by a sophisticated

interplay between quarks exchanging gluons due to the strong force; a process detailed by

Quantum Chromodynamics. Said interaction is not only responsible for quarks clumping to-

gether forming hadrons, but for the residual force between hadrons as well, e.g. overpowering

the electromagnetic repulsion between nucleons, allowing them to set up nuclei. As shown

in table 2.3, the strong force possesses the greatest magnitude within a short range between

interacting hadrons.

In order to give a brief QCD outline, we will examine one of the two types of hadrons:

baryons, which are bound states of three 1⁄2-spin quarks 1. Two archetypal examples of such

are protons, constituted by two up quarks and one down quark (uud) and neutrons, having two

down quarks and one up quark (udd). Alternative quark combinations are possible, namely

∆++ with three up quarks (uuu) and electric charge of 2 (elementary charge units), or ∆−

with three down quarks (ddd) and electric charge of −1. However, these two instances appear

to be problematic. The exclusion principle forbids two identical fermions from having the

same quantum numbers; a circumstance seeming unavoidable, since both Delta baryons are

composed of three quarks with the same flavor [11, 12]. This matter is solved by endowing

quarks with a new quantum number acting as an analog of electric charge for strong interac-

tions: color; a suitable abstract property relating color mixing and particle physics. By doing

this, each quark within a hadron possesses a color quantum number in such a way that the

hadronic bound state is colorless (white). This condition must be compelled for a hadron to

exist; non-neutral color states are prohibited. Quarks have the primary colors: red, green and

blue, and antiquarks have the respective complementary colors: cyan, magenta and yellow.

1 Exotic baryons with a number of quarks other than three have been observed/hypothesized,

e.g. pentaquarks, though, these objects will not be considered in this thesis.
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Therefore, quarks cannot be found as isolated particles since the color neutrality property

would be infringed, forcing them to be confined in hadronic bound states. The neutral color

hadron configurations are the following: three quarks (red, green, blue) producing baryons,

three antiquarks (cyan, magenta, yellow) constituting antibaryons, and quark/antiquark

Figure 2.1: Diagram depicting

confined colored quarks within a

neutral color proton, interacting

via gluon exchange.

combinations (primary and corresponding complemen-

tary colors) forming mesons/antimesons. This con-

straint prevents hadrons from having non-integer elec-

tric charges as well. The color scheme might appear as

just being an artifice; this is far from the truth, since it

links QCD with group theory, providing a SU(3) color

transformation symmetry, maintaining the Lagrangian

invariant under local phase transformations and mak-

ing QCD a non-Abelian 2 gauge theory. Experimental

evidence validates SU(3) as the underlying structure of

QCD [16].

Once the required framework has been established, it is appropriate to steer back towards

the experimental domain, since much of the theoretical work was motivated to account for the

observations made at particle accelerators during the 1960s and following years [17]. Sim-

ilar to Rutherford’s experiment where the angular distribution of deflected α-particles off a

nucleus implied the presence of scattering centers of positive charge within nuclei, by a proce-

dure detailed in section 2.3.1, Deep Inelastic Scattering (DIS) experiments at SLAC revealed

not only that protons have internal scattering centers, but also that such objects are struc-

tureless 3. These particles were encompassed in Murray Gell-Mann’s and George Zweig’s

proposal: the quark scheme. It is persuasive to proceed embracing the quark framework

readily, nonetheless, this hypothesis will be momentarily omitted, until the parton model and

the quark picture are reacquainted in section 2.3.3. The chronological formalism presented

by Aitchison and Hey [9], Halzen and Martin [11] and Close [17] will be followed.

2 Gluons also carry color, enabling them to interact with other gluons and self-couple.
3 At least at the probing energy scales currently accessible [9].
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2.3 Scattering and Hadronic Structure

In view of the fact that color confinement forbids having access to individual quarks, ex-

perimental techniques must be devised to acquire an insight on the structure of hadrons.

Scattering beams of leptons (electrons, commonly) off nuclear targets is the most effective

procedure to achieve so. As stated in section 2.1, hadrons are not units of matter, implying

that the process under discussion consists in scattering an electron off a charge distribution

with internal structure. The scale of description reached with these experiments depends on

the momentum carried by both the incident electron and the exchanged virtual photon prob-

ing the target. With the aim of arriving at parton distribution functions 4, the lepton-hadron

scattering process will be described and relevant formulas will be outlined.

Figure 2.2: Single-photon e−p elastic scattering. 5

Consider an incident electron with initial 4-momentum k interacting at the lowest order,

that is, via single-photon exchange with a proton carrying initial 4-momentum p and rest mass

M [9]. The virtual photon acts as a probe to explore the proton’s structure, with resolving

power wavelength [18]: 1/Q where Q is the 4-momentum transferred to the proton, as defined

in equation (2.1).

4 Still undefined to this point but they are the main concern of this thesis.
5 Figure based on [9] and [11].
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After interacting, the electron is deflected with final 4-momentum k ′ at an angle θ (between

k and k ′ 4-momenta, measured in the laboratory frame) whereas the proton carries final 4-

momentum p ′. In agreement with Halzen and Martin [11], for this process, the only available

scalar variable at the proton vertex is:

Squared 4-momentum transfer: q2 = (p − p ′)2 = −Q2 < 0 (2.1)

The invariant transition amplitude of the Feynman diagram in figure 2.2 is obtained by en-

hancing the scattering theory, implementing elements of quantum field theory together with

a perturbative approach [19]. This quantity describes the transition probability between the

initial and final states of the scattering process. Computing the transition amplitude leads to

the calculation of the differential cross section which describes the number of scattered par-

ticles coming out in a solid angle Ω. Consequently, the electron-proton scattering differential

cross section (σ) per unit solid angle (Ω) is given as the product of two terms:

(
dσ

dΩ

)
=

(
dσ

dΩ

)
P-L

× |F (q2)|2 (2.2)

where the first term on the RHS corresponds to the scattering cross section of an electron

with a point-like target (P-L). The second term corresponds to a form factor (F ), accounting

for the hadronic extended structure of the proton, dictating how this particle deviates from a

point-like behavior. Perkins intuitively describes the form factor as follows: “|F (q2)|2 mea-

sures the probability that the nucleon ‘holds together’ and recoils under the impact q.” [10].

The form factor is depicted as a ‘blob’ in figure 2.2 and it is a q2-dependent function following

two principles: Lorentz and gauge invariance. Form factors are determined experimentally

by measuring the scattering cross section and modifying known theoretical cross sections to

match the observed results. The final expression of equation (2.2) must portray the proton as

a charge distribution and the magnetic moment of the proton taking part in the interaction.

Additionally, the proton is not assumed to be infinitely massive; in the regime of low momen-

tum transfers (q2 → 0), the interaction causes the hadron to recoil or resonate while retaining

its unit structure. This implies that the final hadronic state is known, identifying this example

as an exclusive process [10].
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Changing the Ω-dependence to Q2, the explicit expression of equation (2.2) in the labo-

ratory frame is:

dσ

d(Q2)

∣∣∣
Lab

=
α2

4k2 sin4(θ/2)

π

kk′

[
G2

E + τG2
M

1 + τ
cos2

(
θ

2

)
+ 2τG2

M sin2

(
θ

2

)]
(2.3)

being an alternative expression of the Rosenbluth formula, with α as the fine structure con-

stant, τ = Q2/4M2 and GE , GM being Q2-dependent form factors related to the proton’s

charge and magnetic moment, respectively. The factor outside the brackets is related to

Rutherford scattering, i.e. an electrically charged particle interacting with a fixed Coulomb

potential. Considering the factor cos2
(
θ
2

)
alone inside the brackets of equation 2.3 accounts

for the scattering of electrons from spinless point-like particles in the relativistic regime [9].

The second factor inside the brackets accounts for the hadron’s 1⁄2-spin nature.

2.3.1 Deep Inelastic Scattering

Similarly, Deep Inelastic Scattering (DIS) consists of a beam of incoming leptons scattering

off a target hadron with the condition of being a hard process, that is, large energy loss

and momentum transfers (q2) from the incident electron are required, in order to achieve an

enhanced spatial resolution with the probing photon.

Figure 2.3: DIS as an inclusive process. 6

6 Figure based on [9] and [20]. In this regime, the probability of elastic scattering is substantially low.
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DIS represents the most straightforward way of exploring the internal structure of hadrons,

analogously to Rutherford scattering probing the nuclear structure within atoms. Upon reach-

ing such levels of momentum transfer, elastic conditions are no longer met, since the hadron

extracts some kinetic energy from the electron. Consequently, the hadron does not behave as

a point-like structure anymore, but as a composite system instead: the probing virtual photon

breaks up the hadron and interacts quasi-freely with the individual point-like constituents,

revealing an internal structure. In contrast to elastic scattering, there are two independent

variables in this process; q2 4-momentum transfer as introduced in equation (2.1) and:

Rest frame energy transfer: ν = (p · q)/M = E − E ′ (2.4)

Assuming single-photon exchange, this interaction is depicted in figure 2.3 where the

outgoing electron is detected by measuring its scattering angle and kinetic energy, since both

variables are now independent. On the other hand, the initial proton identity is not preserved;

X is an unrestricted hadronic system consisting of the sum of all possible hadronic final

states, making DIS an inclusive process. Therefore, the inclusive cross section is “a sum over

the cross sections for all the possible hadronic states” [9]. The electron mass is neglected and

the effective mass of the hadronic system is given by:

W 2 = p ′2 = (p + q)2 = M2 + 2Mν + q2

In both elastic and DIS cases, the differential cross section is proportional to the contrac-

tion between a leptonic tensor Lµν and a hadronic tensor W µν , respectively associated to the

electron and proton vertices in the DIS Feynman diagram of figure 2.3. The latter serves as

a parametrization of the unknown form of the current at the hadronic term of the propagator

for the invariant amplitude [11]. It also accounts for scattering from the electric charge and

magnetic moment of the target hadron. In DIS, W µν must enforce a momentum conservation

restriction for the sum of final states X , using both independent variables: ν and Q2. It is

parametrized via Lorentz invariance and current conservation arguments.
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The explicit forms of the leptonic and hadronic tensors are given by [9]:


Lµν = 2

(
k′
µkν + k′

νkµ +
q2

2
gµν

)
W µν =

(
−gµν +

qµqν

q2

)
W1(ν,Q

2) +
1

M2

(
pµ − p · q

q2
qµ
)(

pν − p · q
q2

qν
)
W2(ν,Q

2)

With suitable changes of variable, the corresponding unpolarized (averaged over the lepton

and hadron spins) differential cross section is given by:

d2σ

dQ2dν

∣∣∣
Lab

=
α2

4k2 sin4(θ/2)

π

kk′

[
W2(ν,Q

2) cos2
(
θ

2

)
+ 2W1(ν,Q

2) sin2

(
θ

2

)]
(2.5)

where W1 and W2 are structure functions replacing form factors from the elastic regime, de-

pending on the two DIS variables (2.1) and (2.4). These functions are derived from a hadronic

tensor accounting for strong interactions. For the same reason, it is reasonable to think that

these structure functions are complex objects, yet, James D. Bjorken rather predicted a simple

behavior for these functions at high Q2 levels, as described in section 2.3.2.

It remains yet to be detailed, but it will be assumed in advance that the point-like con-

stituents within the proton involved in DIS are Dirac 1⁄2-spin particles and the incident electron

scatters elastically off them. Therefore, it is natural to construct a cross section similar to that

of electron-point-like fermion scattering, where the ith constituent has charge ei and mass mi:

d2σi

dQ2dν

∣∣∣
Lab

=
α2

4k2 sin4(θ/2)

π

kk′

[
e2i cos

2

(
θ

2

)
+ 2e2i

Q2

4m2
i

sin2

(
θ

2

)]
δ

(
ν − Q2

2mi

)
(2.6)

Because hadrons contain multiple constituent particles, direct comparison with DIS cross

section in (2.5) and (2.6), shows that structure functions corresponding to the ith constituent

are [9]:


W i

1 = e2i
Q2

4m2
i

δ

(
ν − Q2

2mi

)
(2.7)

W i
2 = e2i δ

(
ν − Q2

2mi

)
(2.8)
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Although structure functions represent scattering of an electron off the fundamental par-

ticles constituting a proton, these functions cannot be directly implemented. Structure func-

tions must be weighed by functions accounting for different contributions the constituents

may have to the hadronic bound state, bringing us closer to parton distribution functions.

2.3.2 Bjorken Scaling

As previously stated, DIS occurs in the regime of high-Q2 and high-ν, nonetheless, when

both variables are progressively increased towards Bjorken’s limit (Q2, ν → ∞), a particular

property is observed: W1 and W2 structure functions within the DIS cross section (equation

(2.5)) scale to single variable functions as follows:MW1(ν,Q
2) → F1(x)

νW2(ν,Q
2) → F2(x)

(2.9)

Both F1(x) and F2(x) are finite and Q2 scale invariant. Bjorken remarkably predicted this

precise behavior on the structure functions based on Gell-Mann’s quark model and DIS data

originated at SLAC [9, 21]. Consequently, the scaling phenomenon was named after him. It

is now imperative to give the definition of the scaling variable before proceeding. While Q2

and ν tend to infinity in Bjorken’s limit, their ratio remains finite. By employing the two DIS

independent variables, Bjorken’s dimensionless scaling variable is defined as:

x ≡ Q2

2Mν
(2.10)

The x variable 7 corresponds to the fraction of the hadron’s total momentum momentum

carried away by an individual point-like hadron constituent. This interpretation relies strongly

on the hypothesis that, with sufficient resolution power, the exchanged virtual photon interacts

with point-like scattering centers behaving as structureless Dirac particles which constitute

the proton. The interaction takes place at short distance and time scales, causing the impacted

constituents to appear being free, i.e. not interacting via strong force. This, in fact, brings us

back to an elastic scattering regime within the proton.

7 This variable will be of great significance throughout the following chapters.
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2.3.3 The Quark-Parton Model

Throughout the preceding DIS kinematic analysis, various presuppositions were made. Richard

Feynman encompassed these assumptions in a single framework based on Bjorken scaling:

the quark-parton model, which justifies the single exchange virtual photon interaction at a

short time and distance scale, making point-like hadron constituents to behave as free. These

constituents were given the name of partons by Feynman [22] and they move collectively in a

direction parallel to that of the proton, each carrying an x-fraction of the proton’s momentum.

Naturally, an inevitable question arises along with this proposal: physically speaking, what

exactly are partons?

Figure 2.4: Short wavelength virtual photon resolving

the quark structure within a hadron. 8

Before presenting equation (2.6), we assumed that 1⁄2-spin particles constitute the proton

(and hadrons in general). It would be futile to introduce the Standard Model in section 2.1

without establishing an explicit link between DIS phenomena and Gell-Mann’s quark picture.

With extensive experimental evidence 9 it is confirmed that, in fact, partons are fermions

having the same quantum numbers as quarks. Since antiquarks are also fermions, they are

included in the quark-parton model as well. Then, hadrons are made of quarks and antiquarks

8 Figure based on [11].
9 The following texts give brief treatments on data supporting this assertion: [9, 10, 12, 17, 23].



34 CHAPTER 2. THEORETICAL BACKGROUND

with individual flavors and quantum numbers. Recalling from section 2.1, distinct parton

combinations produce distinct hadrons: baryons, having multiples of 1⁄2-spin, are built with

three quarks while mesons, having integer-spin, are built with quarks and antiquarks. In

the particular case under analysis, protons are baryons composed by two up quarks and one

down quark (uud), whose electric charges add up to the elementary electric charge. The

collection of quarks and antiquarks dictating hadrons’ quantum numbers are also known as

valence quarks. However, valence quarks given by the quark-parton model do not reconstruct

faithfully the DIS picture by themselves.

2.3.4 Parton Distribution Functions and Non-Perturbative QCD

Figure 2.5: Experimental data of proton’s F2(x) at different Q2 scales. 10

The quark-parton model serves as a naive, but intuitive approach detailing the internal

structure of hadrons. Despite possessing a simple description of parton “arrangement” within

hadrons, sensible care must be taken regarding the approximations considered in the previ-

ous sections. As stated in section 2.3.2, specific conditions are assumed for DIS to occur:

at Bjorken’s limit, according to the quark-parton model, quarks behave “freely”, i.e. mu-

tual strong interactions are ignored. Similarly, final-state interactions are assumed to occur

10 Figure extracted from [24].
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at much larger distances and time scales, so they can be ignored as well. Of course, these

circumstances do not fully embody how quarks interact, since they are not free particles, but

objects forced to be confined within hadrons. As a consequence, QCD must surface once

again to describe how quarks interact by means of strong force.

An evidence of this is that, if the quark-parton model holds true, then, for the F2(x)

proton structure function (equation (2.9)) a peak would be expected for x ≈ 1/3, implying

a roughly uniform distribution of the hadron’s total momentum between the three valence

quarks, but DIS experiments reveal a different behavior, depicted in figure 2.5, reflecting that

quarks contain not only valence quarks but also a “sea” of virtual quark-antiquark pairs where

valence quarks exist, produced by gluons. The desired behavior shows up if only valence

quarks are accounted for, which is observed when plotting the subtraction of the proton and

neutron F2 structure functions, canceling sea quark contributions: F p
2 (x)− F n

2 (x)

Figure 2.6: Valence quarks F2(x) structure function.

The peak is located near x ≈ 0.35. 11

The quark-parton model is then generalized to include valence quarks, gluons and sea

quarks, all carrying an individual fraction of the hadron’s momentum. Once the parton

scheme has been fully situated, the main matter of this thesis can be ultimately defined.

Understanding that partons contribute differently to the hadron, it is necessary to introduce a

function reckoning the contribution of each parton in order to gain a complete description.

11 Figure extracted from [25].
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Following Bjorken scaling, Parton Distribution Functions (PDFs) are defined as func-

tions describing the probability of a hadron containing an i-parton carrying an x-fraction of

the hadron’s momentum p, at the energy scale Q2 [11]:

fi(x) =
dPi

dx
(2.11)

where the i-index denotes the distinct parton types within the hadron. Being probability func-

tions, PDFs serve as weights tempering individual parton contributions within the variables

shown in section 2.3.1 at each x-value, similar to statistical probability density functions. Ac-

counting all parton contributions for an individual hadron, parton distribution functions must

satisfy a normalization condition 12:

∑
i

∫ 1

0

x fi(x) dx = 1

This condition is known as the momentum sum rule, indicating that momenta of all partons

must add up to the hadron’s total momentum. Once PDFs are defined, the overall ν and

Q2 dependent Wj structure functions consist of the weighted sum of the corresponding ith-

parton W i
j structure functions in equations (2.7) and (2.8). Expressing the ith-parton mass as

an overly simplified approximation (mi = xM ) gives:
W1(ν,Q

2) =
∑
i

∫ 1

0

fi(x
′)W i

1 dx
′ =
∑
i

∫ 1

0

Q2

4M2x′2 fi(x
′) e2i δ

(
ν − Q2

2Mx′

)
dx′ (2.12)

W2(ν,Q
2) =

∑
i

∫ 1

0

fi(x
′)W i

2 dx
′ =
∑
i

∫ 1

0

fi(x
′) e2i δ

(
ν − Q2

2Mx′

)
dx′ (2.13)

If we employ the Dirac delta function composition identity,

δ (g(x)) =
δ(x− x0)

|g′(x0)|

where x0 satisfies g(x0) = 0, factors in equations (2.12) and (2.13) transform into:

δ

(
ν − Q2

2Mx′

)
=

Q2

2Mν
δ

(
x′ − Q2

2Mν

)
=

x

ν
δ

(
x′ − Q2

2Mν

)
=

x

ν
δ (x′ − x)

12 It is the first moment of the Mellin integral transform.
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The previous result allows to simplify W1(ν,Q
2) and W2(ν,Q

2) into single variable functions

by computing the integrals:
W1(x) =

∑
i

x

ν

∫ 1

0

Q2

4M2x′2 fi(x
′) e2i δ (x

′ − x) dx′ =
1

2M

∑
i

fi(x) e
2
i (2.14)

W2(x) =
∑
i

x

ν

∫ 1

0

fi(x
′) e2i δ (x

′ − x) dx′ =
∑
i

x

ν
fi(x) e

2
i (2.15)

We then proceed to define scaling functions Fj(x):

F1(x) ≡ MW1(ν,Q
2) =

1

2

∑
i

fi(x) e
2
i (2.16)

F2(x) ≡ νW2(ν,Q
2) =

∑
i

xfi(x) e
2
i (2.17)

being the exact same functions from section 2.3.2. From equations (2.16) and (2.17), it is

shown that scaling functions satisfy the property:

F1(x) =
1

2x
F2(x)

known as the Callan-Gross relation, which is a consequence of the fact that quarks are 1⁄2-spin

particles [16, 17]. Revisiting the proton example, the corresponding structure functions are:
F p
1 (x) =

1

2

{
4

9
[u(x) + ū(x)] +

1

9

[
d(x) + d̄(x) + s(x) + s̄(x)

]
+ . . .

}
(2.18)

F p
2 (x) = x

{
4

9
[u(x) + ū(x)] +

1

9

[
d(x) + d̄(x) + s(x) + s̄(x)

]
+ . . .

}
(2.19)

where u(x), ū(x), d(x), d̄(x), s(x), s̄(x) denote up, down and strange quarks and antiquarks

parton distribution functions; a notation that will be subsequently followed when referring

to a PDF of a specific parton. The ellipsis in equations (2.18) and (2.19) denote possible

contributions from additional partons.

Meanwhile, parton distribution functions have to comply with physical constraints. Let

fi(x) denote a parton distribution function:

• Positivity: PDFs can be restricted with bounds, guaranteeing a positive cross section.

fi(x) ≥ 0
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• Domain: provided that x represents the parton’s fractional momentum (equation (2.10)),

then fi(x) must be defined for x ∈ [0, 1].

• Valence sum rule: integrals of contributing valence quarks PDFs must give the quan-

tum numbers. Particularly, for protons:∫ 1

0

uv(x) dx =

∫ 1

0

[u(x)− ū(x)] dx = 2∫ 1

0

dv(x) dx =

∫ 1

0

[d(x)− d̄(x)] dx = 1∫ 1

0

sv(x) dx =

∫ 1

0

[s(x)− s̄(x)] dx = 0

Therefore: ∫ 1

0

[u(x)− ū(x)]− [d(x)− d̄(x)] dx = 1

• Momentum sum rule: momenta of all contributing quarks, antiquarks, sea quarks and

gluons must add up to the total momentum:∑
i

∫ 1

0

x fi(x) dx = 1

To satisfy both valence and momentum sum rules, PDFs must be integrable. This, together

with additional theoretical arguments, leads to restrictions on the behavior of PDFs:

• Small-x behavior: in the region of x → 0, sea-quark contributions domain. fi(x)

must fall as a power law:

lim
x→0

f(x) −→ Axa

• Large-x behavior: known as the elastic limit, in the region of x → 1 where valence

quarks predominate by carrying most of the proton’s the momentum, valence PDFs

must fall as a power law:

lim
x→1

f(x) −→ B(1− x)b

Allowed values of a and b are such that the integrability condition is satisfied.
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Before moving forward, it is timely to summarize briefly the situation where we currently

stand: DIS enables exploring the underlying structure of hadrons in the most direct way.

Additionally, the quark-parton model characterizes this structure in terms of the fundamen-

tal particles described by the Standard Model. On the other hand, the kinematic analysis

provides formulas that have been well verified with DIS experiments and the frameworks

mentioned before are proven to be successful. Simultaneously, parton distribution func-

tions are objects of great relevance, since they are intimately related to the inner structure

of hadrons, revealing how partons are “distributed” within. It appears that we are on the right

track to describe matter at the fundamental level, nonetheless, there still is one major con-

cern which has not been discussed yet: how are parton distribution functions determined?

It occurs that parton distribution functions cannot be evaluated by the theory derived from the

frameworks that we have presented so far.

To completely address this problem and search for viable solutions, we have to briefly

detour towards QCD’s domain once more. As stated in section 2.2, Quantum Chromody-

namics is a non-Abelian gauge field theory, whose associated Lagrangian remains invariant

under local gauge transformations of the color SU(3) group. The QCD Lagrangian is given

by [16]:

LClassical =
∑
Flavors

q̄j(x)(i��D −m)jk qk(x)−
1

4
FA
αβF

αβ
A (2.20)

where q̄(x) and q(x) are quark and antiquark spacetime dependent fields, m is the quark mass,

��D = γµD
µ is the gauge covariant derivative and FA

αβ is the field strength tensor assembled

with the gluon field AA
α :

FA
αβ = ∂αAA

β − ∂βAA
α − gfABCAB

αAC
β

Focusing on the current issue, we will only analyze the term g in the last factor on the RHS;

the gauge coupling constant determining the strength of interaction between quarks, anti-

quarks and gluons with color, being the charge of QCD. In quantum field theories, divergent

integrals of 4-momenta appear frequently when observable quantities are calculated. The

procedure dealing with such integrals is called renormalization. Renormalization allows ex-

pressing formulas with physical parameters, rather than with the original terms [9].
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Figure 2.7: Sets of experimental measurements

of the running coupling constant. 13

After renormalization, the coupling constant in QCD becomes free of divergences for the

price of becoming scale dependent instead, that is, Q-dependent [16, 18]. As an alternative

to the coupling constant g, the running coupling constant is rather used, defined as:

αs =
g2

4π

being also a function of Q, acting as an effective parameter analogous to effective charges

in nuclear physics. The plot in figure 2.7 depicts how the running coupling constant be-

haves in terms of Q. As Q-energy levels progressively increase (implying shorter length and

time scales), the strong coupling between partons becomes weaker, in contrast to electromag-

netic interactions becoming weaker at larger distances instead; a behavior called asymptotic

freedom, present in large momentum transfer processes, corresponding to the smooth and

monotonic decreasing region in the plot of figure 2.7. Asymptotic freedom was discovered

in 1973 by physicists David Gross and Frank Wilczek while working at Princeton and David

Politzer who was a PhD student as well, at Harvard. Thanks to their contributions in QCD,

they were awarded with the Nobel prize in physics in 2004 [26].
13 Figure extracted from [1].
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Taking advantage of this behavior and employing the only tool within our current reach,

perturbation theory, power series in αs are deployed to perform necessary calculations. This

scheme constitutes what is known as Perturbative QCD, whereas the regime of strong cou-

pling constant (low-Q) is described by Non-Perturbative QCD. There is a major issue: the

hadronic structure belongs to regions of low-Q where power series in the coupling constant

αs do not converge, whereas perturbative QCD domains in regions of high-Q momentum

transfer, implying that structure functions and parton distribution functions cannot be pre-

dicted with a perturbative approach. It is not fully understood yet how the QCD Lagrangian

in equation (2.20) incorporates information regarding the hadronic bound state describing the

binding of partons within the hadron.

In conclusion, the explicit x-dependence of parton distribution functions is not known

and the formalism of perturbative QCD cannot be employed for this matter. Nonetheless,

this framework can still be suitable, since once PDFs are determined independently, pertur-

bative QCD gives the evolution of these functions at distinct Q2 squared energy orders, by

means of the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations in the pertur-

bative regime: αs(Q
2) << 1 [27]. The arguments just exhibited should convince the reader

that a fundamental task must be carried out: determination of parton distribution functions

through parametrization.





CHAPTER 3

METHODOLOGY

The preceding chapter served for two main purposes: set the grounds for parton distribution

functions and also present the theoretical barriers that impede a direct evaluation of PDFs

from first principles coming from the models examined until now. Still, given the relevance

of parton distribution functions, a method of accessing these objects must be devised, giving

rise to PDF parametrization, which is the general objective of the present thesis.

PDF parametrization must be understood as the elemental procedure of acquiring ana-

lytical expressions of parton distribution functions from sets of finite data using global QCD

analysis [28, 29]. Fits are produced with cross section data produced at high-energy scattering

experiments with different x-values and Q energy levels, taking place in particle accelerators

such as the Hadron-Electron Ring Accelerator, SLAC National Accelerator Laboratory or the

Large Hadron Collider, among others.

3.1 State of the Art: PDF Parametrization

Dating from the early 1980s [29], PDF parametrization is not a novel duty, however, the

sustained improvements attained in the experimental and computational fields keep this sub-

ject constantly renewed. In addition to this, PDF parametrization is further diversified by

evolving these functions at different approximation orders of the DGLAP equations in terms

of powers of the running coupling constant αs(Q
2) [27]; NLO (Next-to-Leading-Order) and

43
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NNLO (Next-to-Next-to-Leading-Order) are the most widely used orders. At the same time,

PDF parametrization is conducted by different groups around the world. Some collaborations

endeavoring on this task are: ABM, HERAPDF, CT, MSHT and NNPDF [29], each of them

following a different procedure and uncertainty assessment. Going into details, there are two

main fitting methods currently, contemplating QCD constraints and predictions:

• An analytical functional form is proposed. The objective is to find a the best fit by de-

termining the set of parameters which globally minimize some version of the statistical

goodness-of-fit χ2 function, comparing the produced model with experimental data and

addressing additional possible sources of uncertainty [29].

• PDFs are proposed as the product of a fixed and a free function. The latter is determined

with artificial neural networks as interpolating tools and Monte Carlo methods. Only

continuity is assumed in order to avoid biases from full functional forms, yielding an

arbitrarily large number of parameters. An error is minimized as well [30].

Since PDFs cannot be explicitly derived from theory, along with parametrizations, the

associated uncertainties have to be determined and assessed as well. The CT collaboration

has classified PDF’s uncertainties with the following contributions: experimental, theoretical,

parametrization and methodological [29]. Each method has its strengths and weaknesses, e.g.

the analytical method possesses the disadvantage of adding a source of bias by proposing

a specific functional form, which might be restrictive, while the second one does not. At

the same time, the neural network approach has a cost drawback for being computationally

expensive. The analytical method is rather uncomplicated in this aspect, offering simpler

algorithms. We will focus on this approach.

3.1.1 CTEQ and CT18

PDF parametrization is accomplished thanks to collaborative efforts made by research teams

from all over the world; the Coordinate Theoretical-Experimental Project on QCD (CTEQ) is

one of them. Founded in 1990, CTEQ is currently comprised of theoretical and experimental

scientists from twenty three universities and six national laboratories.
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CTEQ has a wide program regarding Quantum Chromodynamics, its issues and implica-

tions. PDF fitting has been in this project’s agenda for the last three decades, with improving

results as more experimental data becomes available. Naturally, CTEQ has become one of

the pioneering projects in this field. Furthermore, CTEQ produces sets of PDFs periodically

by analyzing experimental DIS data; the latest set of PDFs being CT18. CT (CTEQ-Tung et.

Al) is a branch of CTEQ, established by Professor and founding member Wu-Ki Tung [31].

In CT18, a few hundred different parametrization forms were tested [29], keeping two

principal goals in mind: functional forms must fit experimental data without overfitting and

the uncertainty associated to the parametrization of choice must be understood [2]. CT18’s

general PDF functional form is as follows:

fi(x,Q0) = a0x
a1−1(1− x)a2 × Pi(y; a3, a4, . . .) (3.1)

where ai are free parameters to be determined, Pi is a function identified as modulator, con-

stituted by a sum of Bernstein polynomials which depend on y = g(x), an argument known

as scaling function. CT18 quantifies uncertainties with the goodness-of-fit functions, given

by:

χ2(a, λ) =

Np∑
k=1

1

s2k

(
Dk − Tk(a)−

Nλ∑
α=1

λαβkα

)2

+

Nλ∑
α=1

λ2
α (3.2)

with Np the number of experimental data values, sk the total uncorrelated error comprised

of uncorrelated statistical and systematic errors, on the central measurement Dk. Tk is the

theoretical value produced by the model, corresponding to the value Dk, depending on the

set of free parameters {a1, a2, . . .} as shown in equation (3.2). Lastly, each Dk central value

can depend on a set of Nλ systematic uncertainties, which may be correlated over the con-

sidered data points. Accounting for this, CTEQ evaluates these uncertainties with a nuisance

parameter λα sampled from a standard normal distribution actually estimated with its change

λαβkα. Additional treatment on this function can be found in CT18’s article [2].
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Figure 3.1: Set of CT18’s weighed PDFs for different partons at two

different energy scales Q = 2 GeV and Q = 100 GeV, respectively. 1

Figure (3.1) presents gluon’s and different quark flavors’ central PDFs, along with re-

spective error bands accounting for PDF uncertainties. These fits correspond to the lowest

χ2 value, considering CTEQ’s parametrization in equation (3.1) and they were produced em-

ploying NLO and NNLO analysis from HERA and LHC data sets, which are selected by

meeting statistical criteria to give promising results.

With the purpose of fitting PDFs, we developed a new program: Fantômas4QCD. In our

results, some of CT18 PDFs are reproduced, following a specific procedure detailed in the

next section. Consider two PDF examples: up valence quarks (uv) and the gluon (g). In

CT18’s article, ai free parameters are given for a particular non-perturbative initial energy

scale: Q0 = 1.3 GeV.

Best-fit
Parameters

a0 a1 a2 a3 a4 a5 a6

uv 3.385 0.763 3.036 sinh(1.502) sinh(−0.147) sinh(1.671) 1 + a1
2

g 2.690 0.531 3.148 sinh(3.032) sinh(−1.705) 1 + 2a1
3

-

Table 3.1: CT18’s best-fit parameters for up valence quarks and gluons at Q0 = 1.3 GeV. a0 for uv

is obtained by normalizing the PDF with the valence sum rule, given in 2.3.4, while the gluon is

normalized using benchmark values of the first Mellin moment: <x>g, from previous PDF sets [2].

1 Figure extracted from [2].
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Following the functional form in equation (3.1), coefficients a1 and a2 are assumed to be

the same for up and down valence quarks, since they dictate the asymptotic behavior in the

PDF, as discussed in section 2.3.4. A similar condition is imposed for up, down and strange

antiquarks 2. These assumptions will be preserved in our procedure. At the same time, the

scaling function is chosen to be y =
√
x for both uv and g, due to its flexibility across the

whole interval 0 < x < 1. The parametrized PDF expressions are: fuv(x) = uv(x) = a0x
a1−1(1− x)a2 × P v

{a}(y)

fg(x) = g(x) = a0x
a1−1(1− x)a2 × P g

{a}(y)

(3.3)

with explicit modulation functions:P v
{a}(y) = a3(1− y)4 + 4a4(1− y)3y + 6a5(1− y)2y2 + 4a6(1− y)y3 + y4

P g
{a}(y) = a3(1− y)3 + 3a4(1− y)2y + 3a5(1− y)y2 + y3

(3.4)

Substituting the best-fit parameters in table 3.1 into expressions in (3.3) and (3.4) gives

the following plots:

Figure 3.2: CT18’s weighed parametrized PDFs at Q = 1.3 GeV. 3

2 Coefficients of the remaining partons are given in Appendix C of [2].
3 This plot was reproduced with Mathematica, which was fundamental for the development of our program.
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3.2 Fantômas4QCD

Fantômas4QCD is a novel project seeking to parametrize parton distribution functions in a

different way, following CT’s scheme. The Fantômas4QCD project consist of a program,

named Metamorph, made up of a universal C++ module and a Mathematica notebook built

by the Fantômas Development Team, comprised of physicists from UNAM and Southern

Methodist University, lead by Dr. Aurore Courtoy and Dr. Pavel Nadolsky. Fantômas4QCD

represents an innovative and efficient approach compared to current parametrization methods,

such as neural networks, etc. Via Bézier curve fitting, this alternative procedure employs a

simple but powerful algorithm offering certain advantages, such as low number of parameters

and required computing power.

3.2.1 Why Fantômas?

Fantômas is a famous and renowned French fictional character, or more precisely, “anti-

hero”, created in 1911, prior to World War I; fruit of the intellects of writers Marcel Al-

lain and Pierre Souvestre. Surrounded by elusiveness, anonymity and enigma, “Fantômas

comes to the public as a sinister and shocking incarnation of wickedness” [32], being the

material and intellectual author of terrible, but elegant unsolved crimes, earning him various

Figure 3.3: Film poster of 1965

Hunebelle’s Fantômas se déchaı̂ne.

nicknames such as the Lord of Terror, the Genius of Evil,

etc [32]. Fantômas’ legacy was born with thirty two nov-

els written by both authors, published between 1911 and

1913. Souvestre died in 1914, but Allain carried on with

eleven more novels. Naturally, the amorphous criminal

and his exploits became an international source of cre-

ation, inspiring several pieces of media: films, comic

books, television shows, etc. In particular, created in

1960’s México, Fantômas had its own comic book series:

“Fantomas, La Amenaza Elegante”: the ruthless criminal

was re-adapted as an avenging, but still elegant hero, help-

ing to spread Fantômas’ fame throughout Latin America.
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Figure 3.4: Flying DS replica.

Back in Europe, in the 1965 film “Fantômas se

déchaı̂ne” directed by André Hunebelle, the villain

is seen making an escape in his flying vehicle; a

winged Citroën DS. This was a french car produced

from 1955 to 1975, distinguished by being innova-

tive and futuristic. Among all the things that make

Citroën DS a relevant invention, its design and the

technological progress which stands for are the most

important of all. Its influence is of such extent that it earned the third position in the Car of

the Century ranking [33]. The DS model was designed by means of Bézier curves; a de-

sign tool having its origin in Computer Aided Geometric Design (CAGD). Gerald Farin, an

expert on the topic, defined CAGD as “a discipline dealing with computational aspects of

geometric objects” encompassing free-form curves, surfaces and volumes. This subject has

numerous applications such as design and manufacturing, digital animation and scientific vi-

sualization [34, 35]. Due to its versatility, CAGD becomes suitable for parton distribution

function parametrization, which is attained by means of one the major breakthroughs in this

field: the theory of Bézier curves and surfaces. Thus, the Fantômas4QCD project finds its

name and methodology inspired by both french icons: Fantômas and his flying Citroën DS.

Figure 3.5: Citroën DS sketch by the acclaimed designer Flaminio Bertoni. 4

4 Extracted from Citroën Origins website: https://www.citroenorigins.co.uk/en/cars/ds

https://www.citroenorigins.co.uk/en/cars/ds
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3.2.2 Bézier Curves and Bernstein Polynomials

Bézier curves are parametric curves acting as a flexible designing method and a commonly

used tool in vector graphics programs due to being “well-suited for design work” [36]. This

method was invented in 1959 by the physicist and mathematician Paul de Casteljau while

working, in fact, at Citroën. De Casteljau devised a technique, presently known as De Castel-

jau’s algorithm, to draw smooth curves by doing recursive linear interpolations. The algo-

rithm is rather simple; consider the following example:

(a) Second order Bézier function. (b) Third order Bézier function.

Figure 3.6: Bézier curves depicted as successive linear interpolations.

• Take three R3-points: p0, p1, p2. Link successive points with straight segments, re-

sulting in an open polygon called Bézier polygon.

• Generate parametric linear interpolations between points p0 → p1 and p1 → p2 with

parameter t ∈ [0, 1]:

B(1)
0 = (1− t) p0 + t p1

B(1)
1 = (1− t) p1 + t p2

• Create a second order interpolation between points p0 → p2, iterating with B(1)
0 and

B(1)
1 interpolations:

B(2)
0 = (1− t) B(1)

0 + t B(1)
1 = (1− t)2 p0 + 2t(1− t) p1 + t2 p2 (3.5)
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• While t varies from 0 to 1, a curve starting at p0, ending in p2 is drawn (figure 3.6a).

Splitting equation 3.5 coordinate-wise:
(B(2)

0 )x = (1− t)2 x0 + 2t(1− t) x1 + t2 x2

(B(2)
0 )y = (1− t)2 y0 + 2t(1− t) y1 + t2 y2

(B(2)
0 )z = (1− t)2 z0 + 2t(1− t) z1 + t2 z2

(3.6)

where pl has coordinates (xl, yl, zl). Stripping coordinate values from equations in (3.6) re-

veals a perfect square trinomial structure, where coordinate values are seen as weights mod-

ulating the curvature along the line. De Casteljau’s algorithm is then generalized to produce

interpolations of higher orders, following the same powered-binomial structure. Figure 3.6b

depicts an example of a third order Bézier interpolation. Thus, it is convenient to make use

of Bernstein’s polynomial basis, defined as:

Bn,l(t) =

(
n

l

)
tl(1− t)n−l (3.7)

such that a nth order interpolation is given by:

B(n)(t) =
n∑

l=0

pl Bn,l(t) =
n∑

l=0

pl

(
n

l

)
tl(1− t)n−l (3.8)

Therefore, the curvature along the line is determined by the position of pl control points

and the resulting curve is called Bernstein-Bézier approximation, since it is expressed as

a linear combination of Bernstein basis polynomials. Although de Casteljau’s method was

invented first, later and independently, engineer Pierre Bézier conceived the same idea when

working at Renault. Since de Casteljau’s work was not published until years after, the theory

of polynomial curves and surfaces with Bernstein basis was consequently named after Pierre

Bézier [34].

Bézier curves were a groundbreaking advance in industrial design in the 1960s and re-

mained as significant during the following decades. Therefore, the fact that Bézier curves

have evolved into essential elements in each branch of modern-day computational design

should be of no surprise. They are the central principle of operation of Metamorph.
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3.2.3 Fitting with Bézier Curves

Though control points in ordinary Bézier curve design modulate the curvature along the line,

in Fantômas4QCD’s approach, control points are used for curve fitting instead, which is ap-

plicable to determine parton distribution functions. By polynomial interpolation, a curve

passing along k-control points of the form (xi, fi) is created. Control points are originated

from given data, such as DIS experiments. Constructed by means of the Bernstein basis,

Fantômas4QCD’s fits are flexible polynomials which can mimic a variety of behaviors of par-

ton distribution functions and their uncertainties. These parametrizations must be adjustable

enough to reach agreement with experimental data, while avoiding random fluctuations. At

the same time, parametrized PDFs must satisfy the physical QCD-based constraints in 2.3.4.

3.2.3.1 Functional Form

The functional form of a parton distribution function with support in x ∈ [0, 1] consists in

the product of two components: a fixed carrier function Fc reflecting QCD constraints, and a

modulator P, as specified in 3.1.1:

f(x) = Fc (x; {a})×P (g(x); {c}) (3.9)

Following CT18’s functional form, the modulator is chosen to be a Bézier curve of degree n:

P(g(x); {c}) ≡ B(n) (g(x)) =
n∑

l=0

cl Bn,l (g(x))

Rewriting y ≡ g(x) = xf yields:

P(y; {c}) =
n∑

l=0

cl Bn,l (y) (3.10)

with {c} = {cl}nl=0 the set of coefficients for the Bernstein basis Bn,l(y). The argument-

scaling function is chosen to be g(x) = xf , f being a real and positive power. The carrier

function reflects the small and large-x behavior near the end points through the shape:

Fc (x; {a}) = a0 x
a1−1(1− x)a2 (3.11)
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3.2.3.2 The Bézier Curve Matrix Method

Bézier curves, together with the arguments motivating their application in PDF parametriza-

tion were presented already. Now, we will introduce the algorithm that fits modulation func-

tions in equation (3.9) with Metamorph: a Bézier curve of degree n

B(n)(y) =
n∑

l=0

cl Bn,l(y), (3.12)

is constructed from Bernstein basis polynomials:

Bn,l(y) ≡
(
n

l

)
yl(1− y)n−l

The polynomial B(n)(y) (now denoted as B) can be expressed as a vector in matrix form, in

various symmetric ways [34, 36]:

B = T ·M ·C, (3.13)

T being the 1× (n+1) row matrix with entries {xp}np=0. If y = x, the argument in Bernstein

basis is kept non-scaled. If, on the other hand, y = xf (f ̸= 1), the scaling of the argument

of the Bézier curve translates into the T -matrix being expressed in terms of y:

T =
(
1 y y2 . . . yp . . . yn−1 yn

)
To obtain equation (3.13), use has been made of the binomial expansion of (1− y)n−l. M is

the square matrix of dimensions (n + 1 )× (n + 1 ), whose elements run over indices p and

l for the binomial coefficients:

M =

(
n

l

)(
n− l

n− p

)
(−1)p−l (3.14)

or, equivalently, using the symmetries of the binomial coefficient p ↔ n − p. It is also a

triangular matrix, reflecting the limits on the sum from the binomial expansion:

M =



(
n
l

)(
n−l
n−p

)
(−1)p−l|p=0,l=0 0 0 · · · 0

· · · . . .
...

...
...(

n
l

)(
n−l
n−p

)
(−1)p−l|p,l=0 · · ·

(
n
l

)(
n−l
n−p

)
(−1)p−l|p,l

... 0

· · · · · · · · · . . .
...(

n
l

)(
n−l
n−p

)
(−1)p−l|p=n,l=0 · · ·

(
n
l

)(
n−l
n−p

)
(−1)p−l|p=n,l · · ·

(
n
l

)(
n−l
n−p

)
(−1)p−l|p=n,l=n
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C is the column matrix of coefficients {cl}nl=0 in equation (3.12), of dimensions (n + 1 )× 1 ,

which must be computed from given data to completely determine the Bézier fit.

C = (c0 c1 . . . cl . . . cn)
T

To proceed, a known column vector P = {fi}ki=1 of coordinates fi at control points xi

must be given. C is determined by minimizing the distance between vectors P and B,

with B = {B(xi)}ki=1 the Bézier polynomial vector evaluated at control points. Once P is

provided, the matrix T hence becomes a k × (n+ 1)-matrix:

T =



1 y1 y21 . . . yp1 . . . yn−1
1 yn1

...
...

...
...

...
...

...
...

1 yi y2i . . . ypi . . . yn−1
i yni

...
...

...
...

...
...

...
...

1 yk y2k . . . ypk . . . yn−1
k ynk


3.2.3.3 Error Function Minimization

The fitting method just introduced is derived from Mike “Pomax” Kamerman’s Primer on

Bézier Curves [36]; a helpful and extensive guide to learn about the topic. However, this

manual is based on a graphic design approach and not directly linked QCD. Still, similar to

the assessment of the χ2 function, by minimizing an error function, a useful expression is

obtained to determine the best fitting parameters:

E(C) = (P − T ·M ·C)2 = (P − T ·M ·C)T · (P − T ·M ·C) (3.15)

Known data is compared with output data from the proposed model, i.e. points com-

puted by means of a Bézier curve employing the set of cl coefficients (equation (3.12)), thus,

the aimed task is to find the set of coefficients minimizing the error function. Taking the

derivative of the error function and equating to zero gives:

∂E(C)

∂C
= −2 T T (P − T ·M ·Cmin) = 0

Expanding and solving for Cmin leads to the general expression:

Cmin = M−1 · (T T · T )−1 · T T · P
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The previous expression applies for non-square matrices, that is, if n+ 1 < k. In that case, a

curve passing through all considered points might not exist, but rather minimizes the distance

to such points. However, if k = n+ 1, i.e. all points are considered in the interpolation, T is

a square matrix, therefore the minimization of the error function E(C) leads to:

Cmin = M−1 · T−1 · (T T )−1 · T T · P = M−1 · T−1 · P (3.16)

Substituting Cmin in equation (3.12) gives a squared difference equal to zero at known con-

trol points. This method was first introduced for parton distribution function fitting by Dr.

Courtoy and Dr. Nadolsky [37].





CHAPTER 4

RESULTS

4.1 Metamorph Mathematica Notebook

The Metamorph program was created in both Mathematica and C++, but we will focus on the

former. Metamorph was built remotely from Mexico City and Dallas, Texas, throughout the

second half of 2021 by the Fantômas Development Team from UNAM and SMU, working

in parallel on several tasks. Mathematica’s and C++’s code is kept under constant improve-

ment. The algorithm previously shown is implemented within the code of both versions.

Metamorph takes (xi, fi) control points and the Bézier fit degree as inputs from a steering

.card file. Next, required matrices and the C matrix coefficients are computed, then returned

together with the Bézier fit and given control points plots.

Figure 4.1: Input .card file example for Metamorph. These files can be written

manually, or taken from C++’s and Mathematica’s Metamorph output.

57
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The Mathematica notebook is structured by modules carrying out different tasks:

• ReadOptions: imports .card text files with all required parameters to create a Bézier

PDF fit, provided that files follow certain format (figure 4.1), which can be interpreted

by both implementations to make back-to-back comparisons. The first two lines contain

labels and information about the parton under treatment and the data set where values

are taken from. The third line contains a0, a1 and a2 carrier function parameters in

equation (3.11), since Metamorph was employed to parametrize modulation functions

in (3.9), fixing the carrier function with values given in CT18 [2]. The next line contains

two parameters: Mapping Mode and xPower; the first one corresponding to the three

possible methods of reading si values in the second column (Sm) starting at the fifth

line:

– Mapping Mode = 0: si values are passed directly as fi PDF values, belonging to

control points of the form (xi, fi)

fi = si

Now, let f(x) denote a parametrized PDF and xmin = 0, xmax = 1 initial and end

points, respectively. f(x) must satisfy the following condition: it is bounded between

an upper (f+) and a lower (f−) known functions for x ∈ [xmin, xmax] enforcing the

positivity condition in section 2.3.4: f-(x) ≤ f(x) ≤ f+(x). Respective f+i and f-i

boundary values are given in the fourth and fifth column of the .card file, linked to

each xi-control point on the first column. The two remaining mapping modes compute

fi between the boundary values contemplating the positivity constraint:

– Mapping Mode = 1: fi values are computed by means of a linear bounded scaling

activation function

fi =
f+i + f-i

2
+

f+i − f-i

2
× si , with − 0 ≤ si ≤ 1

– Mapping Mode = 2: fi values are computed by means of the softsign activation

function

fi =
f+i + f-i

2
+

f+i − f-i

2
× si

1 + |si|
, with −∞ < si < ∞
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The behavior of both functions is depicted in figure 4.2. The xPower parameter corre-

sponds to the value of the scaling function’s f power, as described in subsection 3.2.3.1.

Lastly, the third column (C) on the fifth line corresponds to the computed output cl co-

efficients for the Bernstein basis in equation (3.12). ReadOptions module creates the

required arrays to create a Bézier fit of PDFs or modulation functions.

• Bezier: takes arrays acquired in ReadOptions and computes the coefficients matrix

C by means of matrices T , P and M , following the method explained in 3.2.3.3. This

module takes as parameters the number of control points k and the degree of the fitting

polynomial n, with n+ 1 ≤ k. To reach C++’s Metamorph results and hold numerical

precision, an additional command was implemented within matrix operations where

precision should not be disregarded: Rationalize, converting numbers to nearby rational

forms within a specified tolerance.

• BezierOutput : returns the plot of the Bézier fit together with control points and the list

of computed cl Bernstein basis coefficients. BezierOutput exports a .card file with the

same format as the input file. C++’s Metamorph can take as input files Mathematica’s

Metamorph output and vice versa. Multiple bugs from both implementations were

discovered by running the same examples in a parallel way.

Figure 4.2: Softsign and linear bounded scaling functions, approaching

the boundary values towards the domain endpoints.
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4.1.1 Examples

As a practical application, Metamorph was employed to parametrize modulation functions in

equation (3.9), based on CT18’s results by taking their PDFs parametrizations and fixing the

carrier function with parameters a0, a1 and a2, given in [2]. Because values inside .card files

are directly related to PDFs instead of modulators, si values must be divided by the known

carrier functions evaluated at the respective x-control points to obtain modulator fi values.

4.1.1.1 Up Valence

Figure 4.3: Plots of CT18’s and Metamorph’s fit for the up valence

modulation function with evenly spaced control points.

A Bézier fit of CT18’s up valence modulator was produced with Metamorph, consider-

ing five evenly distributed control points. A y =
√
x scaling was used as well, yielding a

Bernstein polynomial of fourth degree:

P uv
4,Met

(√
x
)
= c0

(
1−

√
x
)4

+ 4c1
(
1−

√
x
)3 (√

x
)
+

6c2
(
1−

√
x
)2 (√

x
)2

+ 4c3
(
1−

√
x
) (√

x
)3

+ c4
(√

x
)4 (4.1)
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Because x represents Bjorken’s fractional momentum, physical end points are xmin = 0

and xmax = 1, although, in order to avoid divisions by zero, the initial point was set as

xmin = 10−6 and the final point as xmax = 0.99, while Mapping Mode was set to 0, passing si

values in figure 4.1 as fi values, discarding f±i boundary values in this example. The {cl}4l=0

output coefficients computed by Metamorph are shown in the following table, together with

CT18’s best fit parameters:

Up Valence Coefficients

c0 c1 c2 c3 c4
Metamorph

2.134 −0.1472 2.565 1.382 1

CT18 2.134 −0.1472 2.565 1.382 1

Relative Error (%) < 1.6× 10−4 < 4.9× 10−3 < 2.9× 10−4 < 5.7× 10−4 < 3× 10−5

Table 4.1: Metamorph’s and CT18’s fitting coefficients for the up valence modulator.

The up valence modulator fit was the first example worked out by the Fantômas Development

Team with promising results, showing that the project was moving on the right track. Com-

paring both sets of coefficients, the induced error in this example is of, at most, 0.0049%,

implying that results obtained with Metamorph are, indeed, reliable. Figure 4.4 shows the

ratio between CT18’s and Metamorph’s up valence modulators, depicting a precise perfor-

mance since the quotient lies on the constant unit line from xmin to xmax.

Figure 4.4: Ratio plot between CT18’s and Metamorph’s up valence

modulators, remaining close to 1 throughout the entire domain.
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As mentioned in section 2.3.4, valence parton distribution functions must comply the

valence sum rule, stating that their integrals give the quantum numbers. Multiplying the

modulator in equation (4.1) by the modulator with corresponding parameters and integrating

numerically with Mathematica gives the result:∫ 1

0

3.385 x0.763−1(1− x)3.036 × P uv
4,Met(

√
x) dx = 1.999

as expected, since protons contain two valence quarks.

4.1.1.2 Down Valence

Figure 4.5: Plots of CT18’s and Metamorph’s fit for the down valence

modulation function with unevenly spaced control points.

Created with seven unevenly distributed control points (four of them clustered towards

the low-x zone as a consequence of a power law distribution, detailed in section 4.2), this

Bézier fit yields a Bernstein polynomial of sixth degree:

P dv
6,Met

(
3
√
x
)
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√
x
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+ 6c1
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The {cl}6l=0 output coefficients computed by Metamorph are shown in the following table:

Down-Valence Coefficients

c0 c1 c2 c3 c4 c5 c6
Metamorph

6.799 6.401 4.097 4.669 6.899 1.397 0.9991

Table 4.2: Metamorph’s fitting coefficients for the down valence modulator.

This fit was produced with different settings than those given by CT18, aiming to show

that Metamorph is a versatile and powerful tool. The main changes for this example are the

degree of the Bézier fitting polynomial and the scaling function, chosen to be y = 3
√
x. This

implies that not only CT18’s
√
x scaling function is appropriate since adequate results were

achieved, which is depicted by the modulators ratio plot in figure 4.6:

Figure 4.6: Ratio plot between CT18’s and Metamorph’s down valence

modulators, remaining close to 1 throughout the entire domain.

If we multiply the down valence modulation function in equation (4.2) by the respective

carrier function, we can test again the PDF valence sum rule by integrating numerically with

Mathematica, giving the result:∫ 1

0

0.490 x0.763−1(1− x)3.036 × P dv
6,Met

(
3
√
x
)
dx = 1.001

which approaches to one; the number of down valence quarks confined within a single proton.
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4.1.1.3 Gluon

Figure 4.7: Plots of CT18’s and Metamorph’s fit for the gluon

modulation function with evenly spaced control points.

This Bézier fit was produced with six evenly spaced control points, yielding a fifth degree

Bernstein polynomial with scaling function
√
x:

P g
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and {cl}5l=0 output coefficients computed by Metamorph:

Gluon Coefficients

c0 c1 c2 c3 c4 c5
Metamorph

10.34 2.542 −0.1551 0.1144 1.212 1

Table 4.3: Metamorph’s fitting coefficients for the gluon modulator.

Similar to the previous example, a back-to-back coefficient comparison with CT18’s co-

efficients cannot be performed, since settings were chosen to be different for this example.

However, the ratio plot between CT18’s and Metamorph’s gluon modulators exhibiting an

adequate behavior over x ∈ [0, 1] as depicted in figure 4.9a.



4.1. METAMORPH MATHEMATICA NOTEBOOK 65

4.1.1.4 Strange (Antistrange)

Figure 4.8: Plots of CT18’s and Metamorph’s fit for the strange

modulation function with unevenly spaced control points.

CT18 provides parameters for sea quarks modulator fits as well, employing a different

argument for a modulation fifth degree Bernstein polynomial:

y = 1− (1−
√
x)a3

fixing a3 = 4. Now, we reproduce the fit for strange quarks, whose parton distribution func-

tion is assumed to be the same as antistrange quarks, with Metamorph using the same scaling

function as the down valence fit: y = 3
√
x.

Figure 4.8 shows Metamorph’s Bézier fit with eleven unevenly distributed control points,

with the set of lowest suitable input parameters as follows: power law distribution ϕ = 3

(detailed in the following section), scaling power f = 1/3, number of control points k = 11

and degree n = 10. This figure should capture the readers’ attention due to the amount of

required points to produce the fit, reasonably higher than previous examples. In the same

way as the down valence modulator, most points are clustered towards low-x regions where
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slope variations are significantly noticeable. By focusing on low-x points, care must be taken

not forgetting to place sufficient control points towards high-x zones to faithfully reconstruct

CT18’s modulator over the entire domain as shown in the ratio plot in figure 4.9b, that being

the reason of such high amount of control points. Simultaneously, the additional constraint

on the scaling function had an evident impact when producing Metamorph’s fit, since fixing

input parameters with similar values to those of the previous examples did not return satisfac-

tory results, at least, near the low-x zone. Thus, the two distinct scaling argument functions

are not precisely compatible, but they can reach an agreement by increasing the degree of

the polynomial with power scaling and identifying the correct way of distributing control

points. The ratio plot is shown in figure 4.9b. The explicit fitting polynomial of the strange

modulation function is omitted due to being of high degree.

(a) Gluon. (b) Strange.

Figure 4.9: Ratio plot between CT18’s and Metamorph’s gluon and strange

modulators respectively, remaining close to 1 throughout the entire domain.

4.2 Scaling and Control Point Selection

As seen from chapters 3 and 4, Metamorph is quite flexible when it comes to parameters.

All of them have a fundamental role within the algorithm producing Bézier fits, nonetheless,

two parameters stand out due to their influence and sensitivity on the output and results: the

scaling function y = g(x) in 3.2.3.1 and x-control points; specifically, the amount considered,

the distribution along the domain and the degree of the Bernstein polynomial generated.
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Consequently, it is convenient to assess the selection of analytical parameters to use Meta-

morph’s flexibility to our advantage, in order to get the best possible output.

The results just presented required dozens of test runs. It may appear that the sets of pa-

rameters giving the best fits are merely determined by trial and error. This is not completely

true, since proceeding that way is only helpful when it comes to fine tuning of the results.

Consequently, by conceiving general usage criteria, fitting with Metamorph becomes more

practical. Once the code was correctly developed, the subsequent months were assigned to

the task of finding a strategy to determine the set of parameters giving the best output by an-

alyzing the behavior of results for distinct parameter combinations, using the up valence and

gluon illustrative examples as prototypes. The outcome of such analysis is a set of guidelines

on how to implement Metamorph appropriately. These guidelines should be solely taken as

suggestions, allowing the final user to play around with values to find the most suitable set of

parameters, according to their particular needs.

Figure 4.10: CT18’s and Metamorph’s Up-Valence modulator,

with 11 evenly distributed control points and f = 1.
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First, through the dozens of test runs, it was determined that the best way to produce

Bézier fits is by employing all available control points by means of equation (3.16). There-

fore, the Bernstein polynomial’s degree n must be equal to k − 1, with k the amount of

control points. At the same time, the user might be enticed to generate high degree fits with

several control points, aiming to recover as many attributes as possible, so that the output

polynomial resembles the intended behavior “accurately”. This, in fact, is generally not true,

since Runge’s phenomenon can take place, producing unwanted oscillations between control

points as depicted in figure 4.10. Thus, more control points does not necessarily imply more

accuracy. It is then suggested to keep n low, as long as the desired behavior is still displayed.

At the same time, the distribution of control points is more than relevant. It is reasonable

to think that a partition of evenly distributed control points along the domain is enough to

cover all regions within the objective curve. While this is partly true, it does not depict the

whole context thoroughly. Control point distribution can obey different rules, though it is

essential to still include some as near as possible to the physical end points xmin = 0 and

xmax = 1. For even spacing, points are given by an ordinary grid:

xi = xmin +
xmax − xmin

n
× i , for i = 0, . . . , n

being useful when the objective plot is not monotonic over all regions in the domain, like the

gluon example. Conversely, control points can follow a power law as well:

xi =

(
xmin +

xmax − xmin

n
× i

)ϕ

, for i = 0, . . . , n

where ϕ is called distribution power (ϕ > 0), applying when the objective curve is actively

changing towards regions of low-x (down valence and strange examples in section 4.1.1).

Early versions of Metamorph had the feature of control point computing with power law dis-

tributions within the Bézier module, however, this feature was removed in the final versions.

Still, notes on how to create control points with both rules are given in recent versions. Then,

the distribution criteria is actually broader: besides from end points, control points should

be clustered near non-uniform zones where the function has pronounced slope variations, i.e.

around local maxima and minima, etc.; a notion the user should constantly bear in mind.
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Secondly, the behavior of the Bézier fit is determined by the scaling function y = f(x).

For a power scaling, according to CT18 [2] and the examples shown previously, it is found

that scaling the argument as xf in the modulator with f = 1/2 provides a smooth behavior due

to being “very flexible across the whole interval 0 < x < 1” [2], though, different powers

might be as suitable and give great results, like the down valence and strange modulator fits,

shown in figures 4.5 and 4.8, where a ϕ = 3 power was used to distribute control points along

the domain. Nonetheless, power scaling is not the only available option to adjust the Bern-

stein polynomial’s argument. Moderately complex custom expressions can be applied, like

the strange modulator’s scaling in 4.1.1.4. The final user should examine in advance whether

similar expressions are suitable, or if, on the other hand, it is more convenient to maintain

power scaling thanks to its smoothness and versatility, as with the previous examples. Both

choices can be easily implemented in Metamorph’s code, inside the Bezier module.

Power scaling was, in general, useful when producing fits by setting the right f power

value and keeping low n degrees, in contrast to not scaling the argument at all, i.e. f = 1. It is

seen, from figure 4.10, that the up valence modulator Bézier fit of tenth degree with no scaled

argument returns poor results. While developing this example, with scaling f = 1/2, it was

observed that the polynomial degree could be considerably increased employing more control

points and simultaneously, keeping the desired behavior. This is, of course, excessive, since

high precision was reached with polynomials of lower degrees and no noticeable changes

could be detected with complex polynomials of higher degrees, but this, in fact, proves how

scaling with rational powers has clear advantages over no scaling. Therefore, scaling could

be set as a standard criteria when producing fits with Metamorph.

4.2.1 Supplementary Discussion

We have just argued that analytical parameters usage has a central role in performance and

accuracy, determining whether Metamorph succeeds or fails when producing a fit display-

ing the intended behavior, however, there is still an independent setting which has not been

discussed in depth: the mapping mode.
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All of the examples previously shown have Mapping Mode set as 0, designating si val-

ues read from .card files directly as fi-control point coordinates, giving appropriate outputs.

Still, there was no allusion to mapping modes 1 and 2 in any of the results. Examples with

these settings were omitted as a consequence unsatisfactory outputs with the implementation

of Metamorph considered in section 4.1.1; parametrization of modulators in equation (3.9).

A question may naturally raise: what is the purpose of using mapping modes 1 and 2, then?

Recalling from the structure of Metamorph in section 4.1, by setting the mapping mode

to 1, fi-control point coordinates are computed by means of a linear bound scaling acti-

vation function, whereas mapping mode 2 makes use of the softsign function. Both in-

stances have the purpose of imposing penalties and constraints (such as positivity) on fi

values, linked to uncertainties as described in sections 2.3.4 and 4. Our examples have the

defect of lacking a treatment of uncertainties, because the input control points produced from

CT18’s parametrizations were assumed to be error-free; a condition which does not reflect

true experimental/theoretical circumstances, since “modern PDF parametrizations are pro-

vided with families of ‘error PDF sets”’ [29]. These parametrizations allow to locate parton

distribution functions between error bands accounting for all uncertainties considered within

the model; an example of such is shown in figure 3.1. The analysis of uncertainties in Meta-

morph was out of the scope of this thesis, but it is certainly under implementation now, as the

Fantômas4QCD project is still progressing.
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CONCLUSIONS

The methodology and results encompassed in this thesis constitute the first phase of the

Fantômas4QCD project, which concluded in the late 2021. During this stage, the devel-

opment team had to become familiar with DIS phenomena, essential notions of QCD and

PDFs before getting into coding. This goal was achieved with the aid of Dr. Aurore Courtoy

and Dr. Pavel Nadolsky, both being experts on these topics, through various lectures given

during June, 2021. Once these concepts were grasped, the development team then moved

onto the tasks of writing, testing and debugging the code and reaching optimal numerical

precision with both Mathematica and C++. The project is currently in its second phase, con-

sisting on the implementation of the program to relevant physical problems such as the pion

PDF and, in addition to CT18’s results, setting up illustrative examples in order to distribute

the program and final users to assimilate Metamorph’s structure and functioning.

Both versions of Fantômas4QCD’s Metamorph are expected to be publicly released in the

following months, together with an extensive report. At the same time, major advances have

been made recently on C++’s Metamorph end, but there is still a way to go. The Fantômas

Development Team is currently working on the task of implementing Metamorph together

with the latest version of xFitter (formerly HERAFitter): 2.2.0 FutureFreeze. xFitter is a

PDF fitting program commonly used by CTEQ, described as “an open-source package that

provides a framework for the determination of the parton distribution functions of the proton

and for many different kinds of analyses in Quantum Chromodynamics.”[38].

71
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In retrospect, we can describe the course of action of this work as follows: with a perspec-

tive based on theoretical and experimental grounds, namely, the quark-parton model, QCD

and DIS, the foundations of parton distribution functions were given, accompanied by their

relevance for describing how matter is structured at a fundamental level and the underly-

ing difficulties in their determination, setting PDF parametrization as a complex major task

currently under performance. Consequently, the Fantômas4QCD project introduced in this

thesis, emerged as an alternative to current PDF parametrization methods by offering a prac-

tical and innovative approach, supported by one of the cornerstones of graphic design: Bézier

curves. Through illustrative examples, we showed that the Metamorph program written by

the Fantômas Development Team is able to produce accurate fits with experimental data in

an efficient and powerful way, based on CT18’s PDF parametrizations. Not only a fitting

program is provided, but the team also offers guidelines on how to implement their program

properly in order to meet the needs of final users, making Metamorph a promising tool for

PDF fitting at larger experimental projects.

Building the Fantômas4QCD project throughout the preceding months has been fruitful

not only in the sense of providing an efficient, helpful and practical program for PDF fitting,

but also for serving as a first approach for the students in the development team to Quantum

Chromodynamics and high-energy physics, opening the door for them to professionally move

forward towards programming-oriented fields, as well as theoretical projects, or expand their

career paths and work on different branches of physics.
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Noz and Y. S. Kim, eds., pp. 289–304. Springer Netherlands, Dordrecht, 1988.

https://doi.org/10.1007/978-94-009-3051-3_25.

[23] K. Gottfried and V. F. Weisskopf, Concepts of Particle Physics, vol. II. Oxford

University Press, 1986.

[24] W. B. Atwood, “LEPTON NUCLEON SCATTERING,” Prog. Math. Phys. 4 (11,

1979) 1–114.

[25] A. Bodek, M. Breidenbach, D. L. Dubin, J. E. Elias, J. I. Friedman, H. W. Kendall,

J. S. Poucher, E. M. Riordan, M. R. Sogard, and D. H. Coward, “Comparisons of

deep-inelastic e− p and e− n cross sections,” Phys. Rev. Lett. 30 (May, 1973)

1087–1091.

https://link.aps.org/doi/10.1103/PhysRevLett.30.1087.

[26] D. J. Gross, “The discovery of asymptotic freedom and the emergence of QCD,”

Proceedings of the National Academy of Sciences 102 no. 26, (2005) 9099–9108,

https://www.pnas.org/doi/pdf/10.1073/pnas.0503831102.

https://www.pnas.org/doi/abs/10.1073/pnas.0503831102.

[27] J. Feltesse, “Introduction to Parton Distribution Functions,” Scholarpedia 5 no. 11,

(2010) 10160.

[28] V. Barone and E. Pedrazzi, High Energy Particle Diffraction. Springer, 2002.
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