

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA

MAESTRÍA EN INGENIERIA CIVIL – ÁREA ESTRUCTURAS

ESTUDIO DE AEROESTABILIZADORES EN TABLEROS DE PUENTES DE SECCIÓN COMPUESTA

TESIS PARA OPTAR POR EL GRADO DE: MAESTRO EN INGENIERÍA

PRESENTA: DAVID ALEXIS BERMÚDEZ MONTAÑA

TUTOR PRINCIPAL DR. ROBERTO GÓMEZ MARTÍNEZ INSTITUTO DE INGENIERÍA UNAM

CIUDAD UNIVERSITARIA, CD. MX, OCTUBRE 2022

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

Presidente:	Dr. Escobar Sánchez José Alberto
Secretario:	Dr. Sánchez García Raúl
Vocal:	Dr. Gómez Martínez Roberto
1 ^{er} . Suplente:	Dr. Pozos Estrada Adrián
2 ^{do} . Suplente:	Dr. Guerrero Bobadilla Héctor

Lugar o lugares donde se realizó la tesis: Instituto de Ingeniería, UNAM.

TUTOR DE TESIS:

Dr. Roberto Gómez Martínez

FIRMA

DEDICATORIA

A quienes me han apoyado en los momentos que más he necesitado y en especial a mi hermana Marisol.

AGRADECIMIENTOS

Dr. Raúl Sánchez, por su ayuda y siempre buena disposición que me motivaron a seguir con el desarrollo de este trabajo.

Dr. Roberto Gómez, por permitirme desarrollar este trabajo y por sus constantes comentarios y recomendaciones los cuales fueron de mucha ayuda.

Al CONACYT por el apoyo económico brindado.

A la educación pública y a la UNAM por permitirme realizar una maestría de calidad.

RESUMEN

El análisis de las variables aerodinámicas en puentes surgió luego del colapso del puente Tacoma Narrows. La comunidad científica quiso comprender la naturaleza de las vibraciones y movimientos torsionales que se presentaron en dicho puente [Boberg, 2016]. El estudio de estos fenómenos condujo a desarrollos importantes como los túneles de viento para puentes con modelos a escala que permiten analizar el comportamiento aerodinámico. Por otra parte, los desarrollos computacionales han dejado herramientas poderosas como los modelos dinámicos de fluidos computacional (CFD), que, junto a los estudios en túneles de viento, son análisis obligatorios para el diseño de puentes con grandes claros en la actualidad. Estos puentes son el objeto de estudio de este documento.

La solución a la ecuación de Navier Stokes es la ecuación que describe el fenómeno de la turbulencia. Gracias a los recientes desarrollos computacionales y el aumento en la capacidad de cómputo [Versteeg & Malalasekera, 2007], se han desarrollado métodos que consideran los fenómenos de turbulencia. Uno de ellos es el método de volumen finito y es el método usado para los análisis desarrollados en este documento. La estrategia es usar CFD con métodos numéricos para obtener la solución a los problemas de turbulencia en puentes. El objetivo es determinar si el uso de aeroestabilizadores es una buena manera para reducir vibraciones y torsión. El uso de aeroestabilizadores tiene entonces dos objetivos: 1) Reducir la carga aerodinámica reduciendo las fuerzas de arrastre y sustentación, y 2) incrementar la velocidad crítica para reducir la generación de vórtices y evitar el daño por fatiga a largo plazo.

Esta tesis plantea un dimensionamiento de aeroestabilizadores de viento a partir de variables como el ancho del tablero en sección compuesta, el peralte de las vigas laterales y la velocidad del viento en el sitio del puente. Estos parámetros se usarán en puentes atirantados de grandes claros, mediante el uso de CFD con el método RANS (Reynolds averaged Navier Stokes) con el software ANSYS FLUENT. Para establecer las características de diseño se consideran los puentes "Deer Island Bridge" y "Bronx Whitestone Bridge", ubicados en Estados Unidos y construidos en 1940 [Cai et al., 1999; Lee, 2003]. Estos puentes son un excelente punto de partida, ya que han sido modificados usando aeroestabilizadores de viento triangulares laterales con el objetivo mejorar su comportamiento aerodinámico, este tipo de aeroestabilizador es el que se analiza en este trabajo. Para calibrar los modelos se usan los datos experimentales y de CFD del puente La Concordia ubicado en México, reproduciendo las mismas condiciones empleadas por Sánchez, [2020] para obtener los coeficientes aerodinámicos y evaluar si el modelo propuesto conduce a resultados similares. También se usan los modelos de aeroestabilizadores del puente Baluarte como referencia de los modelos. La metodología consiste en construir una sección estándar del puente La Concordia y probar diferentes aeroestabilizadores con geometrías diferentes, luego se define cual tuvo un mejor comportamiento aerodinámico y se establece un aeroestabilizador final el cual será también modelado en el puente Kessock para concluir si se mejora su comportamiento. El objetivo es determinar cuáles son las dimensiones del aeroestabilizador que dejan a los coeficientes aerodinámicos en valores mínimos, ya que esto determina el mejor comportamiento aerodinámico. Para establecer la pertinencia del uso de los aeroestabilizadores se hace una comparación sin ellos y se comprueba su efecto en el comportamiento aerodinámico de los puentes y la prevención de daños a largo plazo. Los resultados obtenidos a partir del aeroestabilizador usado para el mejoramiento del puente "The Deer Isle Bridge", mostraron un mejor comportamiento respecto a coeficiente de arrastre y velocidad críticas, por lo que es el aeroestabilizador que se propone usar para futuros proyectos de puentes de sección compuesta de grandes claros.

ABSTRACT

The analysis of aerodynamic variables in bridges emerged after the Tacoma Narrows Bridge's collapse. The scientific community was interested in the nature of the vibration and torsional movements observed on this bridge [Boberg, 2016]. The study of these phenomena led to important developments such as the use of wind tunnels in small models of the bridges allowing the analysis of its aerodynamic behavior. On the other hand, computational developments have left powerful tools such as the CFD (Computational Fluid Dynamics) models, which together with studies in wind tunnels, are currently mandatory analyzes for the design of bridges with large spans. These bridges are the object of study of this document.

The Navier Stokes solution is the equation that describes the phenomenon of turbulence. Thanks to the recent computational developments and the increase in computing power [Versteeg & amp; Malalasekera, 2007], it has been possible to develop methods that allows describe the turbulence phenomena in a cheaper way without the needed to use a wind tunnel. One of these methods is the finite volume method which is the method used for the analyzes performed in this document. The strategy is using the CFD numerical methods to obtain the Navier Stokes solution in bridges with turbulence problems. The goal is determined if the use of wind stabilizers can be a good strategy to improve their vibration and torsional behavior. The use of wind stabilizers has two objectives: 1) to reduce the downforce by reducing drag and lift forces, and 2) to increase the crítical speed to reduce the generation of vortices and avoid fatigue damage to long term.

The proposal of this thesis project is to determine the dimensions of wind stabilizers, based on variables such as the width of the composite section deck, the cant of the side beams and the wind speed at the site of the bridge. These parameters will be used in CFDs models with the RANS method (Reynolds averaged Navier Stokes) on the ANSYS FLUENT software, to study cable-stayed bridges with large spans. The "Deer Island Bridge" and "Bronx Whitestone Bridge", both located in the United States and built-in 1940 [Cai et al., 1999; Lee, 2003], are considered to establish the design characteristics. These bridges are an excellent starting point since they have been modified using lateral triangular wind stabilizers with the aim of improving their aerodynamic behavior. This type of wind fairing is one of the types analyzed in this work. The experimental and CFD data of the "La Concordia" bridge located in Mexico are used to calibrate the proposed models. The goal is to reproduce the same conditions used by [Sánchez, 2020] to obtain the aerodynamic coefficients and evaluate if the proposed model leads to similar results. The Baluarte bridge is also used as a reference to standardize the models. The methodology consists of building a standard section of "La Concordia" bridge and testing different wind fairings with different geometries. Then, it is defined which one had better aerodynamic behavior. The wind fairing selected is modeled on the "Kessock" bridge to evaluate if the use of this design improves its behavior. The objective is to determine which are the dimensions of the stabilizer leaving the minimum values of aerodynamic coefficients with the aim to determine the best aerodynamic behavior. To establish the relevance of the use of aero stabilizers, the aerodynamic behavior of the bridges is studied with and without the wind fairings as well as it is verified the prevention of long-term damage. The results obtained from the wind fairing used on "The Deer Isle Bridge", showed a better behavior with respect to drag coefficient and crítical speed. This wind fairing is proposed to be used for future projects of composite section bridges of large span

TABLA DE CONTENIDO

Res	sum	en	. 5			
Abs	Abstract7					
1	INT	RODUCCIÓN	17			
2 SEI	EFE NSIE	ECTOS DEL VIENTO EN PUENTES DE GRAN LONGITUD O BLES AL VIENTO	19			
2.	1	Desprendimiento de vórtices	19			
2.	2	Aleteo	19			
2.	3	Bataneo	22			
2.	4	Colapso del puente Tacoma Narrows	22			
3 CLA	TIP ARO	OS DE SECCIONES TRANSVERSALES DE PUENTES DE GRANDES	23			
3. cl	1 aros	Comportamiento aerodinámico del tablero de puentes de grandes	31			
3.	2	Uso de estabilizadores en puentes de sección compuesta	33			
	3.2.1	Second Severn Crossing Bridge. (Reino Unido)	33 35			
3	3	Uso de estabilizadores en nuentes de sección abierta	37			
0.	3.3.1	The Bronx Whitestone bridge (Estados Unidos)	37			
•	3.3.2	The Deer isle-Sedgwick bridge (Estados Unidos)	38			
3.	. 4 3.4.1	estudios en tunei de viento de puentes sensibles al viento	41 41			
	3.4.2	2 Modelo "taut strip model"	41 41			
	3.4.4	Uso de modelos numéricos con CFD en el estudio de puentes sensibles al viento.	42			
3.	5	Objetivo:	43			
3.	6	Alcances	43			
3.	7	Justificación	43			
4	ΜÉ	TODO DE CFD	45			
4.	1	Discretización de las ecuaciones gobernantes	47			
	4.1.1	Ecuación de Navier Stokes	47 51			
4.	2	Dominio computacional v grid	55			
4.	3	Modelado de la turbulencia.	57			
4.	4	Simulaciones BANS y UBANS	57			
	4.4.1	Modelo K-e	59			
	4.4.2 4.4.3	Modelo SST de transición	60 60			
4.	5	Modelado del flujo cerca de la pared	62			

	4.6	Condiciones de frontera	63
5	SIM	IULACIONES DE CALIBRACIÓN	65
	5.1	Introducción	65
	5.2	Valores de entrada	65
:	5.3 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5	Cilindro circular Dominio y malla Condiciones de frontera Configuración del solucionador CFD Sensibilidad de la malla Resultados	67 . 67 . 67 . 68 . 68 . 69
	5.4	Cilindro rectangular	72
	5.4.1 5.4.2 5.4.3 5.4.4	Dominio y malla. Condiciones de frontera. Configuración del solucionador. Resultados.	. 72 . 73 . 74 . 74
6	SIM	IULACIONES EN TABLEROS DE PUENTES	76
	6.1	Introducción	76
	6.2	Puente Kessock	76
	6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7	 Descripción puente Kessock Sección del tablero Dominio Malla Condiciones de frontera Parámetros computacionales Resultados y comparación 	. 76 . 76 . 77 . 77 . 78 . 78 . 78
	6.3	puente La concordia	81
	6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.3.6	Descripción del puente La Concordia Sección del puente La Concordia escala 1:25 Dominio Malla Condiciones de frontera Parámetros computacionales. Resultados y comparaciones.	. 81 . 81 . 81 . 82 . 82 . 83 . 83
7	SIM	IULACIONES DE LAS SECCIÓNES CON AEROESTABILIZADORES	. 86
	7.1	Descripción de los tipos de aeroestabilizadores a estudiar	86
	7.2	Dominio y malla	88
	7.3	Modelos y parámetros computacionales	90
	7.4	Identificación del fenómeno del desprendimiento de vórtices v	-
	veloc	idades críticas	90
	7.4.1 7.4.2	Puente la Concordia Puente Kessock	. 90 . 97
	7.5	Cálculo del número de strouhal	98
	7.6	Comparativa entre los modelos con y sin aeroestabilizadores, puer	nte
	la cor	ncordia1	101

	7.7	Comparativa entre el modelo con aeroestabilizador 4 y sin	104
	7 8	Conclusión del aeroestabilizador con meior comportamiento	104
8	·	ONCLUSIONES	103
-	8.1	Recomendaciones y estudios futuros	107
9	RE	EFERENCIAS	108

INDICE DE FIGURAS

Figura 3-1 Construcción de puentes de grandes claros con sección compuesta [Oliveira Pedro & 23 Figura 3-2 Sección transversal típica de un puente atirantado con sección compuesta [Oliveira Pedro & 24 Figura 3-2 Strömsund Bridge, Suecia, fotografía tomada por Lars Falkdalen Lindahl [Oliveira Pedro & 24 Figura 3-3 Strömsund Bridge, Suecia, sección transversal con dos trabes principales y 9 trabes 26 Figura 3-6 Alex Fraser Bridge, Suecia [Ferries, 2016] 25 Figura 3-6 Alex Fraser Bridge, sección transversal con dos trabes [Oliveira Pedro & Reis, 2016] 26 Figura 3-6 Alex Fraser Bridge, sección transversal con dos trabes [Oliveira Pedro & Reis, 2016] 26 Figura 3-7 Rio-Antrio bridge, Gread (Bohann, 2006] 27 Figura 3-10 Ting Kau Bridge, sección transversal con dos trabes [Oliveira Pedro & Reis, 2016] 27 Figura 3-11 Second Severn Crossing Reino Unido [Second Severn Crossing, 2006] 27 Figura 3-12 Second Severn Crossing bridge, sección transversal vigas tipo cajón [Oliveira Pedro & Reis, 2016] 28 Figura 3-13 Comparativa de uso de puentes de sección compuesta [Oliveira Pedro & Reis, 2016] 28 Figura 3-16 Tipos de sección transversal en puentes de grandes claros [Haque, 2015] 29 Figura 3-16 Tipos de sección transversal en puentes de grandes claros [Haque, 2015] 29 Figura 3-16 Tipos de sección transversal en puentes de gr	Figura 2-1 Fuerzas aeroelásticas actuando en una sección de un puente.	_20
Figura 3-2 Sección transversal típica de un puente atirantado con sección compuesta [Oliveira Pedro & Reis, 2016]. 24 Tigura 3-3 Strömsund Bridge, Suecia, fotografía tomada por Lars Falkdalen Lindahl [Oliveira Pedro & Reis, 2016]. 24 Tigura 3-4 Strömsund Bridge, Suecia, sección transversal con dos trabes principales y 9 trabes secundarios [Oliveira Pedro & Reis, 2016]. 25 Figura 3-6 Alex Fraser Bridge, sección transversal con dos trabes [Oliveira Pedro & Reis, 2016]. 26 Figura 3-6 Alex Fraser Bridge, sección transversal con dos trabes [Oliveira Pedro & Reis, 2016]. 26 Figura 3-7 Ric-Antirio bridge, sección transversal con dos trabes [Oliveira Pedro & Reis, 2016]. 27 Figura 3-10 Ting Kau Bridge, Hong Kong [Ting Kau Bridge, 2007]. 27 Figura 3-11 Second Severm Crossing, Reino Unido [Second Severm Crossing, 2006] 27 Figura 3-12 Second Severm Crossing bridge, Escocia [Tony Hisgett from Birmingham, 2017] 28 Figura 3-13 Quennsfery Crossing bridge, Escocia [Tony Hisgett from Birmingham, 2017] 28 Figura 3-16 Tipos de sección transversal en puentes de grandes claros [Haque, 2015]. 29 Figura 3-16 Tipos de sección transversal en puentes de grandes claros [Haque, 2015]. 29 Figura 3-16 Tipos de sección transversal de puente [Haque, 2015]. 29 Figura 3-16 Tipos de sección transversal de puente se resultados de coeficiente de arr	Figura 3-1 Construcción de puentes de grandes claros con sección compuesta [Oliveira Pedro & Reis. 2016].	, 23
Figura 3-3 Strömsund Bridge, Suecia, fotografia tomada por Lars Falkdalen Lindahl [Oliveira Pedro & Reis, 2016] 24 Figura 3-4 Strömsund Bridge, Suecia, sección transversal con dos trabes principales y 9 trabes 25 Figura 3-4 Strömsund Bridge, Suecia, sección transversal con dos trabes principales y 9 trabes 25 Figura 3-5 Alex Frase Bridge, canadá (Bobanny, 2006] 25 Figura 3-5 Alex Fraser Bridge, Sección transversal con dos trabes [Oliveira Pedro & Reis, 2016]. 26 Figura 3-5 Alex Fraser Bridge, sección transversal con dos trabes [Oliveira Pedro & Reis, 2016]. 26 Figura 3-10 Ting Kau Bridge, Hong Kong [Ting Kau Bridge, 2007]. 26 Figura 3-11 Second Sevem Crossing Bridge, sección transversal con dos trabes principales y tipo 27 Figura 3-12 Second Sevem Crossing Bridge, sección transversal con dos trabes principales y tipo 27 Figura 3-13 Comparativa de uso de puentes de sección compuesta [Oliveira Pedro & Reis, 2016]. 27 Figura 3-16 Comparativa de uso de puentes de sección compuesta [Oliveira Pedro & Reis, 2016]. 28 Figura 3-16 Valores de referencia. 30 Figura 3-16 Valores de referencia. 30 Figura 3-16 Tipos de sección transversal en puentes de grandes claros [Haque, 2015]. 29 Figura 3-16 Valores de referencia. 30 Figura 3-16 Tipos de sección transversal del puente	Figura 3-2 Sección transversal típica de un puente atirantado con sección compuesta [Oliveira Pedro & Reis, 2016].	24
Figura 3-4 Sirömsund Bridge, Suecia, sección transversal con dos trabes principales y 9 trabes 25 Figura 3-5 Alex Fraser Bridge, Canadá [Bobanny, 2006] 25 Figura 3-6 Alex Fraser Bridge, Sección transversal con dos trabes [Oliveira Pedro & Reis, 2016]. 26 Figura 3-7 Alex Fraser Bridge, Sección transversal con dos trabes [Oliveira Pedro & Reis, 2016]. 26 Figura 3-8 Rio-Antirio bridge, sección transversal con dos trabes [Oliveira Pedro & Reis, 2016]. 26 Figura 3-10 Ting Kau Bridge, sección transversal con cuator trabes [Oliveira Pedro & Reis, 2016]. 27 Figura 3-11 Second Severn Crossing, Reino Unido [Second Severn Crossing, 2006]. 27 Figura 3-12 Second Severn Crossing Bridge, Escocia [Tony Hisgett from Birmingham, 2017] 27 Figura 3-13 Quennsferry crossing bridge, Sección transversal vigas tipo cajón [Oliveira Pedro & Reis, 2016]. 28 Figura 3-15 Comparativa de uso de puentes de sección compuesta [Oliveira Pedro & Reis, 2016]. 29 Figura 3-16 Tipos de sección transversal en puentes de grandes claros [Haque, 2015]. 30 Figura 3-17 Representación de los tipos de puentes [Haque, 2015]. 30 Figura 3-20 En la parte izquierda se muestran los resultados de coeficiente de arrastre, sustentación y momento en el puente Akashi para diferentes ángulos de ataque. En la parte izquierda se muestra la sección transversal del puente en escala 1:1.1 Todas las medidas en mm Brown John et al., 1994]. 32 <td>Figura 3-3 Strömsund Bridge, Suecia, fotografía tomada por Lars Falkdalen Lindahl [Oliveira Pec & Reis. 2016]</td> <td>dro 24</td>	Figura 3-3 Strömsund Bridge, Suecia, fotografía tomada por Lars Falkdalen Lindahl [Oliveira Pec & Reis. 2016]	dro 24
ingura 3-5 Alex Fraser Bridge, Canadá [Bobanny, 2006] 25 ingura 3-5 Alex Fraser Bridge, Sección transversal con dos trabes [Oliveira Pedro & Reis, 2016]. 26 ingura 3-6 Alex Fraser Bridge, Sección transversal con dos trabes [Oliveira Pedro & Reis, 2016]. 26 ingura 3-8 Rio-Antirio bridge, sección transversal con dos trabes [Oliveira Pedro & Reis, 2016]. 26 ingura 3-9 Ting Kau Bridge, sección transversal con cuatro trabes [Oliveira Pedro & Reis, 2016]. 27 ingura 3-10 Ting Kau Bridge, sección transversal con dos trabes principales y tipo 27 ingura 3-11 Second Severn Crossing Bridge, sección transversal con dos trabes principales y tipo 27 ingura 3-12 Second Severn Crossing bridge, Escocia [Tony Hisgett from Birmingham, 2017] 28 ingura 3-14 Quennsferry Crossing bridge, sección transversal vigas tipo cajón [Oliveira Pedro & Reis, 2016]. 29 ingura 3-15 Comparativa de uso de puentes de sección compuesta [Oliveira Pedro & Reis, 2016]. 29 igura 3-17 Representación de los tipos de puentes [Haque, 2015]. 30 igura 3-18 Valores de referencia. 30 igura 3-20 En la parte izquierda se muestra los resultados de coeficiente de arrastre, sustentación y momento en el puente Atashi para diferentes ángulos de ataque. En la parte targuierda se muestra los resultados de coeficiente de arrastre, sustentación y momento en el puente Tacoma Narrows para diferentes ángulos de ataque. En la parte targuierda se muestra los resultados de	Figura 3-4 Strömsund Bridge, Suecia, sección transversal con dos trabes principales y 9 trabes	- 25
Instruction Substantiant Substant	Figura 3-5 Alex Fraser Bridge, Canadá (Bohanny, 2006)	25
Sigura 3-7 Rio-Antirio bridge, Grecia [Ferries, 2015] 2015] Figura 3-8 Rio-Antirio bridge, Grecia [Ferries, 2015] 26 Figura 3-8 Rio-Antirio bridge, Hong Kong [Ting Kau Bridge, 2007]. 26 Figura 3-10 Ting Kau Bridge, sección transversal con dos trabes [Oliveira Pedro & Reis, 2016]. 27 Figura 3-11 Second Severn Crossing, Reino Unido [Second Severn Crossing, 2006] 27 Figura 3-12 Second Severn Crossing Bridge, sección transversal con dos trabes principales y tipo selosia [Oliveira Pedro & Reis, 2016]. 27 Figura 3-13 Quennsferry crossing bridge, escción transversal vigas tipo cajón [Oliveira Pedro & Reis, 2016]. 28 Figura 3-15 Comparativa de uso de puentes de sección compuesta [Oliveira Pedro & Reis, 2016]. 28 Figura 3-16 Tipos de sección transversal en puentes de grandes claros [Haque, 2015]. 30 Figura 3-17 Representación de los tipos de puentes [Haque, 2015]. 30 Figura 3-18 Valores de referencia. 30 Figura 3-20 En la parte izquierda se muestran los resultados de coeficiente de arrastre, sustentación y momento en el puente Humber para diferentes ángulos de ataque. En la parte ferencha se muestra la sección transversal del puente [Baracaleoni et al., 2010]. 32 Figura 3-22 En la parte izquierda se muestran los resultados de coeficiente de arrastre, sustentación y momento en el puente Hamber para diferentes ángulos de ataque. En la parte ferencha se muestra la sección transversal del puente en escala 1:1. Todas	Figura 3-6 Alex Fraser Bridge, Schladd [Bosdinity, 2000]	25
Figura 3-8 Rio-Antirio bridge, sección transversal con dos trabes [Oliveira Pedro & Reis, 2016]. 26 Figura 3-9 Ting Kau Bridge, Hong Kong [Ting Kau Bridge, 2007]. 26 Figura 3-10 Ting Kau Bridge, sección transversal con outro trabes [Oliveira Pedro & Reis, 2016]. 27 Figura 3-11 Second Severn Crossing Bridge, sección transversal con dos trabes principales y tipo 27 Figura 3-13 Quennsferry crossing bridge, sección transversal con dos trabes principales y tipo 27 Figura 3-14 Quennsferry crossing bridge, sección transversal vigas tipo cajón [Oliveira Pedro & 28 Figura 3-14 Quennsferry crossing bridge, sección transversal (gliveira Pedro & Reis, 2016]. 28 Figura 3-15 Comparativa de uso de puentes de sección compuesta [Oliveira Pedro & Reis, 2016]. 29 Figura 3-16 Valores de sección transversal en puentes (Haque, 2015]. 30 Figura 3-17 Representación de los tipos de puentes [Haque, 2015]. 30 Figura 3-18 Valores de referencia. 30 Figura 3-20 En la parte izquierda se muestran los resultados de coeficiente de arrastre, sustentación y momento en el puente Akashi para diferentes ángulos de ataque. En la parte terecha se muestra la sección transversal del puente Brancaleoni et al., 2010]. 32 Figura 3-21 En la parte izquierda se muestra, los resultados de coeficiente de arrastre, sustentación y momento en el puente Humber para diferentes ángulos de ataque. En la parte terecha se muestra la sección transversal del puente	Figura 3-7 Rio-Antirio bridge, Grecia [Ferries, 2015]	26
Figura 3-9 Ting Kau Bridge, Hong Kong [Ting Kau Bridge, 2007]. 26 Figura 3-10 Ting Kau Bridge, sección transversal con cuatro trabes [Oliveira Pedro & Reis, 2016]. 27 Figura 3-11 Second Severn Crossing Bridge, sección transversal con dos trabes principales y tipo pelosía [Oliveira Pedro & Reis, 2016]. 27 Figura 3-12 Second Severn Crossing Bridge, sección transversal con dos trabes principales y tipo pelosía [Oliveira Pedro & Reis, 2016]. 27 Figura 3-14 Quennsferry Crossing bridge, escción transversal vigas tipo cajón [Oliveira Pedro & Reis, 2016]. 28 Figura 3-15 Comparativa de uso de puentes de sección compuesta [Oliveira Pedro & Reis, 2016]. 29 Figura 3-16 Tipos de sección transversal en puentes de grandes claros [Haque, 2015]. 29 Figura 3-17 Representación de los tipos de puentes [Haque, 2015]. 30 Figura 3-20 En la parte izquierda se muestran los resultados de coeficiente de arastre, usustantación y momento en el puente Akashi para diferentes ángulos de ataque. En la parte terecha se muestra la sección transversal del puente [Brancaleoni et al., 2010]. 32 Figura 3-21 En la parte izquierda se muestra, los resultados de coeficiente de arastre, usustantación y momento en el puente Humber para diferentes ángulos de ataque. En la parte terecha se muestra la sección transversal del puente en escala 1:1. Todas las medidas en mm Brown John et al., 1994]. 32 Figura 3-22 En la parte izquierda se muestra, los resultados de coeficiente de arastre, sustentación nomento en el puente Acond Severn Crossing [«Secon	Figura 3-8 Rio-Antirio bridge, sección transversal con dos trabes [Oliveira Pedro & Reis. 2016].	26
Tigura 3-10 Ting Kau Bridge, sección transversal con cuatro trabes [Oliveira Pedro & Reis, 2016]. 27 Tigura 3-11 Second Severn Crossing, Reino Unido [Second Severn Crossing, 2006] 27 Tigura 3-12 Second Severn Crossing Bridge, sección transversal con dos trabes principales y tipo 27 Tigura 3-13 Quennsferry crossing bridge, Esccia [Tony Hisgett from Birmingham, 2017] 28 Tigura 3-14 Quennsferry crossing bridge, sección transversal vigas tipo cajón [Oliveira Pedro & Reis, 2016]. 28 Tigura 3-15 Comparativa de uso de puentes de sección compuesta [Oliveira Pedro & Reis, 2015]. 29 Tigura 3-16 Tipos de sección transversal en puentes de grandes claros [Haque, 2015]. 29 Tigura 3-17 Representación de los tipos de puentes [Haque, 2015]. 30 Tigura 3-18 Valores de referencia. 30 Tigura 3-19 Representación gráfica de las fuerzas de arrastre (Fuerza X) y fuerza de sustentación Fuerza Y). 32 Tigura 3-20 En la parte izquierda se muestran los resultados de coeficiente de arrastre, sustentación y momento en el puente Akashi para diferentes ángulos de ataque. En la parte izquierda se muestra los resultados de coeficiente de arrastre, sustentación y momento en el puente Humber para diferentes ángulos de ataque. En la parte izquierda se muestra, los resultados de coeficiente de arrastre, sustentación y momento en el puente Acoma Narrows para diferentes ángulos de ataque. En la parte izquierda se muestra, los resultados de coeficiente de arrastre, sustentación y momento en el puente Second Severn Crossing [«Second Severn Cro	Figura 3-9 Ting Kau Bridge, Hong Kong [Ting Kau Bridge, 2007].	26
Figura 3-11 Second Severn Crossing, Reino Unido [Second Severn Crossing, 2006] 27 Figura 3-12 Second Severn Crossing Bridge, sección transversal con dos trabes principales y tipo 27 Figura 3-13 Quennsferry crossing bridge, Escocia [Tony Hisgett from Birmingham, 2017] 28 Figura 3-14 Quennsferry Crossing bridge, sección transversal vigas tipo cajón [Oliveira Pedro & 28 Figura 3-15 Comparativa de uso de puentes de sección compuesta [Oliveira Pedro & Reis, 2016]. 29 Figura 3-16 Tipos de sección transversal en puentes (Haque, 2015]. 29 Figura 3-17 Representación de los tipos de puentes [Haque, 2015]. 30 Figura 3-17 Representación gráfica de las fuerzas de arrastre (Fuerza X) y fuerza de sustentación 30 Figura 3-20 En la parte izquierda se muestran los resultados de coeficiente de arrastre, sustentación y momento en el puente Akashi para diferentes ángulos de ataque. En la parte terecha se muestra la sección transversal del puente Brancaleoni et al., 2010]. 32 Figura 3-22 En la parte izquierda se muestra, los resultados de coeficiente de arrastre, sustentación y momento en el puente Humber para diferentes ángulos de ataque. En la parte terecha se muestra la sección transversal del puente en escala 1:4.0 [Matsumoto,2003]. 33 Figura 3-23 Fotográfica del puente Bracoma Narrows para diferentes ángulos de ataque. En la parte derecha se muestra la sección transversal del puente en escala 1:4.0 [Matsumoto,2003]. 33 Figura 3-24 Sección transversa	Figura 3-10 Ting Kau Bridge, sección transversal con cuatro trabes [Oliveira Pedro & Reis, 2016]]. 27
Figura 3-12 Second Severn Crossing Bridge, sección transversal con dos trabes principales y tipo 27 pelosía [Oliveira Pedro & Reis, 2016]. 27 Figura 3-13 Quennsferry crossing bridge, Escocia [Tony Hisgett from Birmingham, 2017] 28 Figura 3-14 Quennsferry crossing bridge, sección transversal vigas tipo cajón [Oliveira Pedro & 28 Figura 3-14 Quennsferry crossing bridge, sección transversal vigas tipo cajón [Oliveira Pedro & 29 Figura 3-16 Tipos de sección transversal en puentes de grandes claros [Haque, 2015]. 29 Figura 3-17 Representación de los tipos de puentes [Haque, 2015]. 30 Figura 3-17 Representación de los tipos de puentes [Haque, 2015]. 30 Figura 3-17 Representación gráfica de las fuerzas de arrastre (Fuerza X) y fuerza de sustentación Fuerza Y). 32 Figura 3-20 En la parte izquierda se muestran los resultados de coeficiente de arrastre, sustentación y momento en el puente Akashi para diferentes ángulos de ataque. En la parte derecha se muestra la sección transversal del puente en escala 1:1. Todas las medidas en mm Brown John et al., 1994]. 32 Figura 3-22 En la parte izquierda se muestra, los resultados de coeficiente de arrastre, sustentación y momento en el puente Tacoma Narrows para diferentes ángulos de ataque. En la parte derecha se muestra la sección transversal del puente en escala 1:40. [Matsumoto,2003]. 33 Figura 3-23 Fotográfica del puente Second Severn Crossing [Macdonald et al., 2002]. 34	Figura 3-11 Second Severn Crossing, Reino Unido [Second Severn Crossing, 2006]	_27
Figura 3-13 Quennsferry crossing bridge, Escocia [Tony Hisgett from Birmingham, 2017] 28 Figura 3-14 Quennsferry Crossing bridge, sección transversal vigas tipo cajón [Oliveira Pedro & Reis, 2016]. 28 Figura 3-15 Comparativa de uso de puentes de sección compuesta [Oliveira Pedro & Reis, 2016]. 29 Figura 3-16 Tipos de sección transversal en puentes de grandes claros [Haque, 2015]. 29 Figura 3-17 Representación de los tipos de puentes [Haque, 2015]. 30 Figura 3-17 Representación gráfica de las fuerzas de arrastre (Fuerza X) y fuerza de sustentación Fuerza Y). 32 Figura 3-10 Representación gráfica de las fuerzas de arrastre (Fuerza X) y fuerza de sustentación Fuerza Y). 32 Figura 3-20 En la parte izquierda se muestran los resultados de coeficiente de arrastre, sustentación y momento en el puente Akashi para diferentes ángulos de ataque. En la parte terecha se muestra la sección transversal del puente [Brancaleoni et al., 2010]. 32 Figura 3-21 En la parte izquierda se muestra, los resultados de coeficiente de arrastre, sustentación y momento en el puente Humber para diferentes ángulos de ataque. En la parte terecha se muestra la sección transversal del puente en escala 1:1. Todas las medidas en mm 32 Brown John et al., 1994]. 32 32 32 Figura 3-24 Sección transversal del puente en escala 1:40. [Matsumoto,2003]. 33 33 Figura 3-25 Sección transversal del puente Second Severm Crossing (Macdonald et al., 2002].	Figura 3-12 Second Severn Crossing Bridge, sección transversal con dos trabes principales y tip celosía [Oliveira Pedro & Reis, 2016].)0 _27
Figura 3-14 Quennsferry Crossing bridge, sección transversal vigas tipo cajón [Oliveira Pedro & Reis, 2016]. 28 Figura 3-15 Comparativa de uso de puentes de sección compuesta [Oliveira Pedro & Reis, 2016]. 29 Figura 3-16 Tipos de sección transversal en puentes de grandes claros [Haque, 2015]. 29 Figura 3-17 Representación de los tipos de puentes [Haque, 2015]. 30 Figura 3-19 Representación de los tipos de puentes [Haque, 2015]. 30 Figura 3-19 Representación gráfica de las fuerzas de arrastre (Fuerza X) y fuerza de sustentación fuerza Y). 32 Figura 3-20 En la parte izquierda se muestran los resultados de coeficiente de arrastre, sustentación y momento en el puente Akashi para diferentes ángulos de ataque. En la parte ferecha se muestra la sección transversal del puente [Brancaleoni et al., 2010]. 32 Figura 3-21 En la parte izquierda se muestran los resultados de coeficiente de arrastre, sustentación y momento en el puente Humber para diferentes ángulos de ataque. En la parte ferecha se muestra la sección transversal del puente en escala 1:1. Todas las medidas en mm Brown John et al., 1994]. 32 32 32 Figura 3-23 En la parte izquierda se muestra, los resultados de coeficiente de arrastre, sustentación y momento en el puente Tacoma Narrows para diferentes ángulos de ataque. En la parte derecha se muestra la sección transversal del puente en escala 1:40. [Matsumoto,2003]. 33	Figura 3-13 Quennsferry crossing bridge, Escocia [Tony Hisgett from Birmingham, 2017]	_28
Figura 3-15 Comparativa de uso de puentes de sección compuesta [Oliveira Pedro & Reis, 2016]. 29 Figura 3-16 Tipos de sección transversal en puentes de grandes claros [Haque, 2015]. 29 Figura 3-17 Representación de los tipos de puentes [Haque, 2015]. 30 Figura 3-18 Valores de referencia. 30 Figura 3-19 Representación gráfica de las fuerzas de arrastre (Fuerza X) y fuerza de sustentación Fuerza Y). 32 Figura 3-20 En la parte izquierda se muestran los resultados de coeficiente de arrastre, sustentación y momento en el puente Akashi para diferentes ángulos de ataque. En la parte derecha se muestra la sección transversal del puente [Brancaleoni et al., 2010]. 32 Figura 3-21 En la parte izquierda se muestran los resultados de coeficiente de arrastre, sustentación y momento en el puente Humber para diferentes ángulos de ataque. En la parte ferecha se muestra la sección transversal del puente en escala 1:1. Todas las medidas en mm Brown John et al., 1994]. 32 Figura 3-22 En la parte izquierda se muestra, los resultados de coeficiente de arrastre, sustentación y momento en el puente Tacoma Narrows para diferentes ángulos de ataque. En la parte izquierda se muestra los Second Severn Crossing[«Second Severn Crossing]. 33 Figura 3-24 Sección transversal del puente Second Severn Crossing [Macdonald et al., 2002]. 34 Figura 3-25 Sección transversal del puente Second Severn Crossing con los baffles instalados Macdonad et al., 2002]. 35	Figura 3-14 Quennsferry Crossing bridge, sección transversal vigas tipo cajón [Oliveira Pedro & Reis, 2016].	_28
Figura 3-16 Tipos de sección transversal en puentes de grandes claros [Haque, 2015]	Figura 3-15 Comparativa de uso de puentes de sección compuesta [Oliveira Pedro & Reis, 2016	6]. 29
Figura 3-17 Representación de los tipos de puentes [Haque, 2015]	Figura 3-16 Tipos de sección transversal en puentes de grandes claros [Haque, 2015]	_29
Figura 3-18 Valores de referencia. 30 rigura 3-19 Representación gráfica de las fuerzas de arrastre (Fuerza X) y fuerza de sustentación 32 Fuerza Y). 32 Figura 3-20 En la parte izquierda se muestran los resultados de coeficiente de arrastre, 32 sustentación y momento en el puente Akashi para diferentes ángulos de ataque. En la parte 32 Figura 3-21 En la parte izquierda se muestran los resultados de coeficiente de arrastre, 32 sustentación y momento en el puente Humber para diferentes ángulos de ataque. En la parte 32 ferecha se muestra la sección transversal del puente en escala 1:1. Todas las medidas en mm 32 Brown John et al., 1994]. 32 Figura 3-22 En la parte izquierda se muestra, los resultados de coeficiente de arrastre, 32 sustentación y momento en el puente Tacoma Narrows para diferentes ángulos de ataque. En la parte derecha se muestra la sección transversal del puente en escala 1:40. [Matsumoto,2003]. 33 Figura 3-23 Fotográfica del puente atirantado Second Severn Crossing (Second Severn Crossing), 2021]. 33 Figura 3-24 Sección tongitudinal del puente Second Severn Crossing [Macdonald et al., 2002]. 34 Figura 3-25 Sección transversal del puente Second Severn Crossing (Macdonald et al., 2002]. 34 Figura 3-26 Sección transversal del puente Second Severn Crossing con los baffles instalados <t< td=""><td>Figura 3-17 Representación de los tipos de puentes [Haque, 2015]</td><td>_ 30</td></t<>	Figura 3-17 Representación de los tipos de puentes [Haque, 2015]	_ 30
Figura 3-19 Representación gráfica de las fuerzas de arrastre (Fuerza X) y fuerza de sustentación Fuerza Y). 32 Figura 3-20 En la parte izquierda se muestran los resultados de coeficiente de arrastre, sustentación y momento en el puente Akashi para diferentes ángulos de ataque. En la parte 32 Figura 3-21 En la parte izquierda se muestran los resultados de coeficiente de arrastre, 32 Figura 3-21 En la parte izquierda se muestran los resultados de coeficiente de arrastre, 32 Sustentación y momento en el puente Humber para diferentes ángulos de ataque. En la parte 4erecha se muestra la sección transversal del puente en escala 1:1. Todas las medidas en mm Brown John et al., 1994]. 32 Figura 3-22 En la parte izquierda se muestra, los resultados de coeficiente de arrastre, sustentación y momento en el puente Tacoma Narrows para diferentes ángulos de ataque. En la parte derecha se muestra la sección transversal del puente en escala 1:40. [Matsumoto,2003]. 33 Figura 3-23 Fotográfica del puente atirantado Second Severn Crossing («Second Severn 33 Figura 3-24 Sección transversal del puente Second Severn Crossing [Macdonald et al., 2002]. 34 Figura 3-25 Sección transversal del puente Second Severn Crossing con los baffles instalados 35 Figura 3-26 <	Figura 3-18 Valores de referencia	_ 30
Fuerza Y). 32 Figura 3-20 En la parte izquierda se muestran los resultados de coeficiente de arrastre, 32 sustentación y momento en el puente Akashi para diferentes ángulos de ataque. En la parte 32 Figura 3-21 En la parte izquierda se muestran los resultados de coeficiente de arrastre, 32 sustentación y momento en el puente Humber para diferentes ángulos de ataque. En la parte 32 Figura 3-21 En la parte izquierda se muestran los resultados de coeficiente de arrastre, 32 sustentación y momento en el puente Humber para diferentes ángulos de ataque. En la parte 32 Figura 3-22 En la parte izquierda se muestra, los resultados de coeficiente de arrastre, 32 Figura 3-23 Fotográfica del puente Tacoma Narrows para diferentes ángulos de ataque. En la 32 Sigura 3-23 Fotográfica del puente atirantado Second Severn Crossing[«Second Severn Crossing, 2021]. 33 Figura 3-24 Sección transversal del puente Second Severn Crossing [Macdonald et al., 2002]. 34 Figura 3-25 Sección transversal del puente Second Severn Crossing con los baffles instalados 35 Figura 3-26 Sección transversal del puente Second Severn Crossing IMacdonald et al., 2002]. 35 Figura 3-27 En la gráfica izquierda se muestran los resultados obtenidos de desplazamientos vs. la velocidad del viento por vórtices con la instalación de lo baffles. En la gráfica de la parte derecha se muestran los resultados de de	Figura 3-19 Representación gráfica de las fuerzas de arrastre (Fuerza X) y fuerza de sustentaci	ón
Figura 3-20 En la parte izquierda se muestran los resultados de coeficiente de arrastre, sustentación y momento en el puente Akashi para diferentes ángulos de ataque. En la parte derecha se muestra la sección transversal del puente [Brancaleoni et al., 2010]. 32 Figura 3-21 En la parte izquierda se muestran los resultados de coeficiente de arrastre, 32 sustentación y momento en el puente Humber para diferentes ángulos de ataque. En la parte 32 derecha se muestra la sección transversal del puente en escala 1:1. Todas las medidas en mm 32 Brown John et al., 1994]. 32 Figura 3-22 En la parte izquierda se muestra, los resultados de coeficiente de arrastre, 32 sustentación y momento en el puente Tacoma Narrows para diferentes ángulos de ataque. En la 32 Figura 3-23 Fotográfica del puente atirantado Second Severn Crossing[«Second Severn 33 Figura 3-24 Sección longitudinal del puente Second Severn Crossing [Macdonald et al., 2002]. 33 Figura 3-25 Sección transversal del puente Second Severn Crossing [Macdonald et al., 2002]. 34 Figura 3-27 En la gráfica izquierda se muestran los resultados obtenidos de desplazamientos vs. la 35 Figura 3-26 Sección transversal del puente Second Severn Crossing [Macdonald et al., 2002]. 35 Figura 3-27 En la gráfica izquierda se muestran los resultados obtenidos de desplazamientos vs. la velocidad del viento por vórtices con la inst	(Fuerza Y)	_ 32
sustentación y momento en el puente Akashi para diferentes ángulos de ataque. En la parte derecha se muestra la sección transversal del puente [Brancaleoni et al., 2010]32 Figura 3-21 En la parte izquierda se muestran los resultados de coeficiente de arrastre, sustentación y momento en el puente Humber para diferentes ángulos de ataque. En la parte derecha se muestra la sección transversal del puente en escala 1:1. Todas las medidas en mm Brown John et al., 1994]	Figura 3-20 En la parte izquierda se muestran los resultados de coeficiente de arrastre,	
derecha se muestra la sección transversal del puente [Brancaleoni et al., 2010]. 32 Figura 3-21 En la parte izquierda se muestran los resultados de coeficiente de arrastre, sustentación y momento en el puente Humber para diferentes ángulos de ataque. En la parte barecha se muestra la sección transversal del puente en escala 1:1. Todas las medidas en mm 32 Figura 3-22 En la parte izquierda se muestra, los resultados de coeficiente de arrastre, 32 sustentación y momento en el puente Tacoma Narrows para diferentes ángulos de ataque. En la 33 Figura 3-23 Fotográfica del puente atirantado Second Severn Crossing[«Second Severn 33 Figura 3-24 Sección longitudinal del puente Second Severn Crossing [Macdonald et al., 2002]. 33 Figura 3-25 Sección transversal del puente Second Severn Crossing [Macdonald et al., 2002]. 33 Figura 3-26 Sección transversal del puente Second Severn Crossing [Macdonald et al., 2002]. 33 Figura 3-27 En la gráfica izquierda se muestran los resultados obtenidos de desplazamientos vs. la 35 Figura 3-27 En la gráfica izquierda se muestran los resultados obtenidos de desplazamientos vs. la 35 Figura 3-27 En la gráfica izquierda se muestran los resultados obtenidos de desplazamientos vs. la 35 Figura 3-27 En la gráfica izquierda se muestran los resultados obtenidos de desplazamientos vs. la 35 Figura 3-28 Vista del puente Vasgo da Gama en Lisboa	sustentación y momento en el puente Akashi para diferentes ángulos de ataque. En la parte	~~
	derecha se muestra la seccion transversal del puente [Brancaleoni et al., 2010].	_ 32
Sustentación y momento en el puente Humber para diferentes angulos de ataque. En la parte 32 derecha se muestra la sección transversal del puente en escala 1:1. Todas las medidas en mm 32 Figura 3-22 En la parte izquierda se muestra, los resultados de coeficiente de arrastre, sustentación y momento en el puente Tacoma Narrows para diferentes ángulos de ataque. En la parte derecha se muestra la sección transversal del puente en escala 1:40. [Matsumoto,2003] 33 Figura 3-23 Fotográfica del puente atirantado Second Severn Crossing[«Second Severn Crossing», 2021]	Figura 3-21 En la parte izquierda se muestran los resultados de coeficiente de arrastre,	
Brown John et al., 1994]	sustentacion y momento en el puente Humber para diferentes angulos de ataque. En la parte	
Biowin John et al., 1994]	lerecha se muestra la sección transversal del puente en escala 1.1. Todas las medidas en mm	22
In a parte izquierda se muestra, ios resultados de coenciente de anastre, sustentación y momento en el puente Tacoma Narrows para diferentes ángulos de ataque. En la parte derecha se muestra la sección transversal del puente en escala 1:40. [Matsumoto,2003] 33 Figura 3-23 Fotográfica del puente atirantado Second Severn Crossing[«Second Severn Crossing», 2021]	[DIOWI] JOIIII et al., 1994] Figure 2.22, En la parte izquiarde se muestre, les resultades de sosficiente de arrestre	_ 32
baste derecha se muestra la sección transversal del puente en escala 1:40. [Matsumoto,2003] 33 Figura 3-23 Fotográfica del puente atirantado Second Severn Crossing[«Second Severn Crossing», 2021]	sustentación y momento en el nuente Tacoma Narrows para diferentes ángulos de ataque. En la	2
33 Figura 3-24 Sección longitudinal del puente Second Severn Crossing, medidas en mm [Macdonald et al., 2002]	parte derecha se muestra la sección transversal del puente en escala 1:40. [Matsumoto,2003] Figura 3-23 Fotográfica del puente atirantado Second Severn Crossing[«Second Severn Crossing» 2021]	, 33 32
Figura 3-24 Sección forigituaria del puente Second Severn Crossing, medidas en film [Macdonald et al., 2002]	UIUSSIIIY", 2021]	_ 33 ad
-igura 3-25 Seccion transversal del puente Second Severn Crossing [Macdonald et al., 2002]34 Figura 3-26 Sección transversal del puente Second Severn Crossing con los baffles instalados Macdonad et al., 2002]35 Figura 3-27 En la gráfica izquierda se muestran los resultados obtenidos de desplazamientos vs. la velocidad del viento por vórtices con la instalación de lo baffles. En la gráfica de la parte derecha se muestran los resultados de desplazamiento vs. la velocidad del viento por vórtice antes de la nstalación de los baffles.[Macdonald et al., 2002]35 Figura 3-28 Vista del puente Vasgo da Gama en Lisboa [«Ponte Vasco da Gama», 2021]36 Figura 3-29 Contorno de velocidad en la sección transversal del puente Vasco Da Gama sin Baffles36 Figura 3-30 Contorno de velocidad en la sección transversal del puente Vasco Da Gama con Baffles36	et al., 2002]	_ 33
Figura 3-20 Sección transversal del puente Second Severn Crossing con los ballies Instalados Macdonad et al., 2002]35 Figura 3-27 En la gráfica izquierda se muestran los resultados obtenidos de desplazamientos vs. la velocidad del viento por vórtices con la instalación de lo baffles. En la gráfica de la parte derecha se muestran los resultados de desplazamiento vs. la velocidad del viento por vórtice antes de la instalación de los baffles.[Macdonald et al., 2002]35 Figura 3-28 Vista del puente Vasgo da Gama en Lisboa [«Ponte Vasco da Gama», 2021]36 Figura 3-29 Contorno de velocidad en la sección transversal del puente Vasco Da Gama sin 3affles	Figura 3-25 Seccion transversal del puente Second Severn Crossing [Macdonald et al., 2002].	_ 34
35 Figura 3-27 En la gráfica izquierda se muestran los resultados obtenidos de desplazamientos vs. la velocidad del viento por vórtices con la instalación de lo baffles. En la gráfica de la parte derecha se muestran los resultados de desplazamiento vs. la velocidad del viento por vórtice antes de la nstalación de los baffles.[Macdonald et al., 2002]35 Figura 3-28 Vista del puente Vasgo da Gama en Lisboa [«Ponte Vasco da Gama», 2021]36 Figura 3-29 Contorno de velocidad en la sección transversal del puente Vasco Da Gama sin 36 Saffles. Grigura 3-30 Contorno de velocidad en la sección transversal del puente Vasco Da Gama con 36	Figura 3-26 Seccion transversal del puente Second Severn Crossing con los patiles instalados	25
rigura 3-27 Em la granca izquierda se muestramos resultados obtenidos de desplazamientos vs. la velocidad del viento por vórtices con la instalación de lo baffles. En la gráfica de la parte derecha se muestran los resultados de desplazamiento vs. la velocidad del viento por vórtice antes de la nstalación de los baffles.[Macdonald et al., 2002]35 Figura 3-28 Vista del puente Vasgo da Gama en Lisboa [«Ponte Vasco da Gama», 2021]36 Figura 3-29 Contorno de velocidad en la sección transversal del puente Vasco Da Gama sin Baffles36 Figura 3-30 Contorno de velocidad en la sección transversal del puente Vasco Da Gama con Baffles36	[Macuonau et al., 2002]	_ 30 . In
nstalación de los baffles.[Macdonald et al., 2002] 35 Figura 3-28 Vista del puente Vasgo da Gama en Lisboa [«Ponte Vasco da Gama», 2021]. 36 Figura 3-29 Contorno de velocidad en la sección transversal del puente Vasco Da Gama sin 36 Baffles. 36 Figura 3-30 Contorno de velocidad en la sección transversal del puente Vasco Da Gama con 36 Saffles. 36	velocidad del viento por vórtices con la instalación de lo baffles. En la gráfica de la parte derecha se muestran los resultados de desplazamiento vs. la velocidad del viento por vórtice antes de la	. <i>I</i> а Я
Figura 3-28 Vista del puente Vasgo da Gama en Lisboa [«Ponte Vasco da Gama», 2021] 36 Figura 3-29 Contorno de velocidad en la sección transversal del puente Vasco Da Gama sin Baffles 36 Figura 3-30 Contorno de velocidad en la sección transversal del puente Vasco Da Gama con Baffles 36	instalación de los baffles.[Macdonald et al 2002]	35
Figura 3-29 Contorno de velocidad en la sección transversal del puente Vasco Da Gama sin Baffles	Figura 3-28 Vista del puente Vasgo da Gama en Lisboa [«Ponte Vasco da Gama», 2021].	36
Baffles	Figura 3-29 Contorno de velocidad en la sección transversal del puente Vasco Da Gama sin	_
Figura 3-30 Contorno de velocidad en la sección transversal del puente Vasco Da Gama con Baffles. 36	Baffles.	_ 36
	Figura 3-30 Contorno de velocidad en la sección transversal del puente Vasco Da Gama con Baffles.	_ 36

Figura 3-31 Fotografía del puente Bronx-Whitesonte [«Bronx–Whitestone Bridge», 2021] Figura 3-32 Sección transversal, donde D=57.2mm basado en la escala 1:60 [Lee, 2003] Figura 3-33 Sección transversal con el deflector triangular, donde D=57.2mm basado en la esca	_ 37 _ 37 la						
1:60 [Lee. 2003].	37						
Figura 3-34 Comparación entre el modelo del puente Bronx-Whitestone con deflectores laterales	<u>s</u> v						
el tablero modificado vs el modelo sin deflectores v con el tablero normal [Lee. 2003].	- , 38						
Figura 3-35 Fotografía del puente [«Deer Isle Bridge», 2021]							
distribución original.[Cai et al., 1999].	_ 39						
Figura 3-37 Seccion transversal del puente con los deflectores triangulares cerrados [Cai et al., 1999].	_ 39						
Figura 3-38 Coeficiente de sustentación del puente Deer-Island con y sin deflector[Bosch, 1990]	. 40						
Figura 3-39 Coeficiente de arrastre del puente Deer-Island con y sin deflector [Bosch, 1990].	_ 40						
Figura 3-40 Dominio para la simulación del tablero con aeroestabilizadores en el puente The							
Bronx-Whitestone [Lee, 2003]	_ 42						
Figura 3-41 Dominio y malla para la simulación del tablero en el puente Great Belt [Malveira et a 2015].	il., 42						
Figura 3-42 Mallado estructurado puente Kessock [Liaw, 2005].	43						
Figura 4-1 Ejemplo de preprocesamiento de un automóvil. cuvo análisis por el método CFD es	-						
fundamental debido a que hacer un prototipo para el análisis en el túnel de viento es costoso y complejo [Streamline Pre-Processing, Meshing and Materials Selection with Ansys 2019 R2, s. f	.].						
	_ 46 _ 47						
Figura 4-2 Ejempio de uso de CFD en aviación[«Computational Fluid Dynamics (CFD)», s. I.j	_41 do						
Figura 4-3 Relacion entre volumenes de control para velocidades y para presión, en la imagen (Je						
la parte izquierda en dos dimensiones y en la imagen de la parte derecha en una dimension	50						
[Femilandez 010, 2012]	_ 02 _ EC						
Figura 4-4 Ejemplo de maia estructurada [Sanchez, 2020].	_ 30						
Figura 4-5 Ejempio malla no estructurada [Sanchez, 2020].	_ 56						
Figura 4-6 Granca de ley de la pared.	-03						
Figura 5-1 Tamano dei dominio y condiciones de frontera[Liaw, 2005].	_ 67						
Figura 5-2 Malla cilindro circular. Figura 5-2 Nalarse de confision (contento de como de contento de lo concetto den obtenidos como real	_ 67						
Figura 5-3 valores de coeliciente de arrastre con el metodo k- w estandar obtenidos, comparad	os						
con valores de coeficiente de arrastre con el metodo k-ɛ (Primer orden) y experimentales [Liaw, 2005]	_ 70						
Figura 5-4 Valores de coeficiente de arrastre con el método k-ω estándar obtenidos, comparado	วร						
con valores de coeficiente de arrastre con el método k-ε (Segundo orden) y experimentales [Liav 2005]	N, _71						
Figura 5-5 Valores calculados de coeficiente de arrastre con el método k-ω estándar vs número	C						
elementos de la malla	_ 72						
Figura 5-6 Dominio	_ 73						
Figura 5-7 Malla (31470 elementos).	_ 73						
Figura 6-1 Puente Kessock y ubicación en el reino unido [Brock, 2006]	_ 76						
Figura 6-2 Vista en perfil puente Kessock.[Liaw, 2005].	_ 76						
Figura 6-3 Sección transversal del puente Kessock[Liaw, 2005].	_ 77						
Figura 6-4 Sección transversal puente Kessock, escala 1:40.	_ 77						
Figura 6-5 Dominio puente Kessock.	77						
Figura 6-6 Malla puente Kessock, vista en detalle	78						
Figura 6-7 vista de perfil y sección transversal del puente La Concordia [Sánchez & Gómez, 20	15] 81						
Figura 6-8 Sección transversal escala 1:25 puente La concordia [Sánchez & Gómez 2015]	81						
Figura 6-9 Dominio, puente La concordia	- 82						
Figura 6-10 Malla puente La Concordia	- 82						
Figura 7-1 Sección transversal del puente "La Concordia" escala 1:25[Sánchez & Gómez 201	5186						
Figura 7-2 Sección transversal del puente "La Concordia". Aeroestabilizador 1	88						
Figura 7-3. Sección transversal del puente "La Concordia". Aeroestabilizador 2	87						
	-						

Figura 7-4. Sección transversal del puente "La Concordia", Aeroestabilizador 3	_ 87
Figura 7-5. Sección transversal del puente "La Concordia", Aeroestabilizador 4	_ 87
Figura 7-6. Sección transversal del puente "La Concordia", Aeroestabilizador 5	_ 87
Figura 7-7. Sección transversal del puente "La Concordia", Aeroestabilizador 6	_ 88
Figura 7-8. Malla del puente "La Concordia", Aeroestabilizador 1	_ 88
Figura 7-9. Malla del puente "La Concordia", Aeroestabilizador 2	_ 88
Figura 7-10. Malla del puente "La Concordia", Aeroestabilizador 3	_ 89
Figura 7-11. Malla del puente "La Concordia", Aeroestabilizador 4	_ 89
Figura 7-12. Malla del puente "La Concordia", Aeroestabilizador 5	_ 89
Figura 7-13. Malla del puente "La Concordia", Aeroestabilizador 6	_ 89
Figura 7-14. Dominio puente "La Concordia".	_ 90
Figura 7-15. Velocidad crítica sección sin aeroestabilizadores, puente La Concordia	_ 90
Figura 7-16. Velocidad crítica aeroestabilizador 1, puente La Concordia	_ 91
Figura 7-17. Velocidad crítica aeroestabilizador 2, puente La Concordia	_ 91
Figura 7-18. Velocidad crítica aeroestabilizador 3, puente La Concordia	_ 91
Figura 7-19. Velocidad crítica aeroestabilizador 4, puente La Concordia	_ 92
Figura 7-20. Velocidad crítica aeroestabilizador 5, puente La Concordia	_ 92
Figura 7-21. Velocidad crítica aeroestabilizador 6, puente La Concordia	_ 92
Figura 7-22. Comparación de coeficiente de arrastre en el puente la Concordia con	
aeroestabilizador y sin aeroestabilizador para una velocidad de 6.5 m/s con distintos ángulos d	е
ataque	_ 95
Figura 7-23. Comparación de coeficiente de sustentación en el puente La Concordia con	
aeroestabilizador y sin aeroestabilizador para una velocidad de 6.5 m/s con distintos ángulos de	Э
ataque	_ 96
Figura 7-24. Velocidad crítica sección sin aeroestabilizador, puente Kessock	_ 97
Figura 7-25. Velocidad crítica sección con aeroestabilizador 4, puente Kessock	_ 97
Figura 7-26. Puente "La Concordia", Coeficiente de sustentación vs tiempo (s)	_ 98
Figura 7-27. Puente Kessock, coeficiente de sustentación vs tiempo (s)	_ 99
Figura 7-28. Puente La Concordia, coeficiente de sustentación vs tiempo (s) con aeroestabiliz	ador
	_ 100
Figura 7-29. Puente Kessock, coeficiente de sustentación vs tiempo (s) con aeroestabilizador	100
Figura 7-30. Comparación de velocidades críticas	106
Figura 7-31. Comparación de coeficientes de sustentación	106

INDICE DE TABLAS

Tabla 3-1 Propiedades de puentes de grandes claros [Haque, 2015]	_ 30
Tabla 3-2 Comparativa de coeficientes aerodinámicos con y sin Baffles en el puente Vaso Da	
Gama.	_ 36
Tabla 5-1 Velocidad y numero de Reynolds usados en el análisis	_ 68
Tabla 5-2 Número de elementos por malla	_ 68
Tabla 5-3 Comparación de los valores de coeficiente de arrastre respecto al número de elemen	tos
por malla	_ 68
Tabla 5-4 Valores de referencia del coeficiente de arrastre	_ 68
Tabla 5-5 Comparación de valores de coeficiente de arrastre para un número de Reynolds de	
10000	_ 69
Tabla 5-6 Comparación de valores de coeficiente de arrastre para un número de Reynolds de 2	:500
	_ 69
Tabla 5-7 Comparación de valores de coeficiente de arrastre para un número de Reynolds de 1	000
	_ 69
Tabla 5-8 Valores de coeficiente de arrastre para diferentes mallas y diferentes velocidades	_ 70
Tabla 5-9 Comparación de valores de coeficiente de arrastre con las dos mallas propuestas $_$	_ 74
Tabla 5-10 Valores calculados por diferentes autores para un cilindro rectangular de relación	
4:1[Liaw, 2005]	_ 74
Tabla 5-11 Comparación de valores de coeficiente de arrastre de diversos autores y los calcula	dos.
	_ 75
Tabla 6-1 Malla con número de elementos y coeficientes aerodinámicos CD y CL calculados	_ 79
Tabla 6-2 Valores calculados por [Liaw, 2005] para coeficiente arrastre y sustentación con	
diferentes tipos de mallas	_ 79
Tabla 6-3 Comparación del coeficiente de sustentación calculado vs coeficientes de sustentacio	Śn
de referencia para el puente Kessock	_ 79
Tabla 6-4 Comparación el coeficiente de arrastre, Puente Kessock	_ 80
Tabla 6-5 Enumeración de la malla por número de elementos	_ 82
Tabla 6-6 Valores de referencia calculados del coeficiente de arrastre y sustentación Sánchez 8	3
Gómez, [2015] para una velocidad de 6.5 m/s.	_ 83
Tabla 6-7 Comparación de valores de coeficiente de arrastre calculados vs coeficiente de arras	tre
de referencia de Sánchez y Gómez, [2015] calculados por CFD	_ 83
Tabla 6-8 Comparación de valores de coeficiente de arrastre calculados vs coeficiente de	
sustentación de referencia de [Sánchez & Gómez, 2015]	_ 84
Tabla 6-9 Comparación de valores de coeficiente de arrastre calculados vs coeficiente de arras	tre
de referencia de Sanchez y Gomez, [2015] calculados en el tunel de viento.	_84
Tabla 6-10 Comparación de valores de coeficiente de arrastre calculados vs coeficiente de arra	stre
de referencia de [Sanchez & Gomez, 2015] calculados por Tunel de viento.	_ 84
Tabla /-1 Resultados sin aeroestabilizador	_ 86
Tabla 7-2 Numero de celdas por malla para los estabilizadores	_ 88
Tabla 7-3 Cambio en la velocidad crítica segun el tipo de aeroestabilizador, puente La Concord	ia 93
Tabla 7-4 Valores de coeficiente de arrastre y coeficiente de sustentación para el puente Conco	ordia
sin aeroestabilizador con velocidad de 6.5 m/s en diferentes angulos de ataque	_ 94
Tabla 7-5 Valores de coeficiente de arrastre y coeficiente de sustentación para el puente Conco	ordia
con aeroestabilizador 4 con velocidad de 6.5 m/s en diferentes angulos de ataque	_ 94
Tabla 7-6 Cambio en la velocidad crítica según el tipo de aeroestabilizador puente Kessock	_97
Tabla /-/ Resultados de coeficientes aerodinamicos sin aeroestabilizador	101
Tabla 7-8 Resultados de coeficientes aerodinamicos con aeroestabilizador 1	101
Tabla 7-9 Resultados de coeficientes aerodinámicos con aeroestabilizador 2	. 102
Tabla /-10 Resultados de coeticientes aerodinámicos con aeroestabilizador 3	. 102
Tabla /-11 Resultados de coeticientes aerodinamicos con aeroestabilizador 4	102
Tabla 7-12 Resultados de coeticientes aerodinamicos aeroestabilizador 5	103
Tabla 7-13 Resultados de coeticientes aerodinamicos aeroestabilizador 6	103
Tabla 7-14 Comparacion del coeficiente de arrastre en los 6 tipos de aeroestabilizador con áng	ulo
de ataque de U°	104

 Tabla 7-15 Comparación del coeficiente de sustentación en los 6 tipos de aeroestabilizador ángulo
 104

 de ataque de 0°
 104

 Tabla 7-16 Comparación de resultados del cálculo del número de Strouhal
 104

 Tabla 7-17 Resultados de coeficientes aerodinámicos sin aeroestabilizador
 104

 Tabla 7-18 Resultados de coeficientes aerodinámicos aeroestabilizador
 104

 Tabla 7-19 Resultados de coeficientes aerodinámicos, puente La Concordia
 105

 Tabla 7-20 Resultados de coeficientes aerodinámicos, puente Kessock
 105

1 INTRODUCCIÓN

Gracias al aumento de la capacidad de cómputo y el desarrollo de métodos numéricos para la solución de problemas en la Ingeniería de Viento, como la solución de la ecuación de Navier Stokes, se han logrado estudiar los efectos de la fuerza de viento en estructuras civiles. En las últimas décadas a la par con el desarrollo de la capacidad de cómputo y las unidades de procesamiento, se ha implementado el método CFD, por sus siglas en inglés, que significan, *"Computational Fluid Dynamics"*, que consiste en el desarrollo de modelos teóricos, usando algoritmos que usan métodos numéricos, con los cuales se obtienen soluciones aproximadas de fenómenos físicos como el de la turbulencia, descrito matemáticamente por la ecuación de Navier Stokes. [Sánchez, 2020; Versteeg & Malalasekera, 2007].

El método CFD tiene como principal virtud proporcionar información detallada de las variables importantes en todo el dominio de cálculo, contrario al modelo experimental de túnel de viento. No obstante, para la validación de los resultados por el método CFD es necesario que estos resultados sean comparados con resultados de modelos de túnel de viento, en los cuales se requiere de mediciones con una buena calidad. Ambos métodos el teórico, CFD y el experimental, túnel de viento, necesitan tener datos de entrada precisos como lo son las variables atmosféricas, variables meteorológicas y las características del sitio entre otros.

Respecto a los puentes atirantados, este tipo de estructuras tienen la particularidad de ser muy flexibles y con claros de gran longitud, lo que las hace vulnerables a la fuerza del viento. Los fenómenos producidos por la fuerza que produce el viento en este tipo de estructuras incluyen flexión y torsión en el tablero. Estos movimientos son una consecuencia del fenómeno de aleteo, así como movimientos verticales producido por vórtices. [Holmes, 2007; A. Larsen, 1992; Strømmen, 2006].

En este trabajo se presenta el estudio de aeroestabilizadores laterales de viento mediante simulaciones de dinámica de fluidos computacional CFD, se pretende modelar la respuesta aerodinámica del tablero y las ventajas que este tipo de dispositivos ofrecen para disminuir la carga de arrastre, fatiga, generación de vórtices a bajas velocidades e inestabilidades en puentes atirantados de sección compuesta de grandes claros.

La manera de determinar si la instalación de aeroestabilizadores mejora la capacidad aerodinámica del puente consiste en proponer y evaluar las variables aerodinámicas de los puentes Kessock y La Concordia mediante (CFD) con diferentes tipos de aeroestabilizadores, comparar su comportamiento y determinar si hay una mejora en las cargas aerodinámicas.

Los fenómenos inducidos por el viento en estructuras flexibles, como los puentes de grandes claros, son comunes y ocurren en diferentes rangos de velocidad del viento. Los criterios de diseño para puentes de grandes claros implican la consideración de fenómenos producidos por el viento, así como las oscilaciones

inducidas por vórtices e inestabilidades aeroelásticas, como el aleteo. Las oscilaciones inducidas por vórtices no causan un colapso inmediato, pero deben tenerse en cuenta en el diseño, ya que pueden causar grandes efectos visuales, desplazamientos e incomodidad para los usuarios del puente, y daño por fatiga a largo plazo. Una falla más rápida se puede producir cuando se alcanza la velocidad del viento límite de aleteo. Cuando esta velocidad se alcanza la amplitud de la vibración puede aumentar sin límite por resonancia hasta que el puente falla. Este fue el caso del puente Tacoma Narrows (EE. UU.), cuyo tramo principal era de 854m de largo, y el cual fue construido en al año 1940 (una estructura con sección tipo placa-viga). A raíz del colapso del puente Tacoma Narrows, se inició el estudio aerodinámico de puentes, buscando una explicación a su colapso, lo que también condujo al inició de los estudios de puentes en el túnel de viento. Hoy las pruebas de túnel de viento constituyen la base para el diseño de puentes con grandes claros [Frandsen, 2000].

El comportamiento de puentes a escala real es aún poco conocido debido a que no es frecuente medir los coeficientes aerodinámicos en puentes cuando ya han sido construidos. En varios puentes modernos con grandes claros se han identificado problemas inducidos por vórtices y oscilaciones. A menudo se han experimentado desplazamientos graves a gran escala, y en algunos casos, han sido necesarias soluciones como el uso de deflectores en el puente como en el puente colgante Little Belt de 600 m (luz principal) en Dinamarca y el puente colgante Osterøy de 600 m en Noruega. Otros ejemplos son los *baffles* instalados en el puente atirantado Vasco da Gama de 420 m en Portugal y el puente atirantado Second-Severn de 456 m en Gran Bretaña de los cuales se hablará en detalle en el inciso 3.1 [Frandsen, 2000].

2 EFECTOS DEL VIENTO EN PUENTES DE GRAN LONGITUD O SENSIBLES AL VIENTO.

2.1 DESPRENDIMIENTO DE VÓRTICES

El ejemplo clásico del fenómeno de desprendimiento de vórtices es el de un cilindro circular inmerso en una corriente de aire. Este fenómeno se caracteriza por el desprendimiento alternado y periódico de vórtices y se conoce como calle de vórtices de Von Karman. El desprendimiento de vórtices genera sobre el cilindro fuerzas periódicas que causan vibraciones laterales y es un fenómeno presente mayormente en estructuras esbeltas como lo tableros de los puentes (objeto de estudio de este documento), las pilas de los puentes y los cables en puentes atirantados y colgantes. El parámetro que define la frecuencia principal de los vórtices es conocido como número de Strouhal y se define como:

$$S_t = \frac{f * D}{U} \tag{2.1}$$

donde f es la frecuencia de desprendimiento de vórtices, D es la longitud característica de la sección y U la velocidad media de la corriente de aire.

El número de Strouhal varia con el número de Reynolds, el cual es un número adimensional que se utiliza para caracterizar el movimiento de un fluido y su valor indica si el fluido sigue el modelo laminar o turbulento. En puentes es importante determinar el número de Strouhal debido a que, si la frecuencia de desprendimiento de vórtices coincide con alguna de las frecuencias del puente, se puede presentar el fenómeno de resonancia y ocasionar un colapso. [Rodrigo, 2005].

2.2 ALETEO

Desde la caída del puente Tacoma Narrows, las instabilidades aerodinámicas han despertado el interés del diseño de puentes con grandes claros. El fenómeno más peligroso es el aleteo, un fenómeno de inestabilidad dinámica al alcanzarse la velocidad crítica, si esto ocurre el puente oscila de una manera descontrolada. Como consecuencia del fenómeno del aleteo es obligatorio que durante la vida de servicio del puente nunca se exceda la velocidad crítica del mismo.

Las fuerzas del viento sobre el tablero se pueden agrupar en las tres siguientes variables: D(t), que es la fuerza de arrastre asociada a la dirección X, (D arrastre por su sigla en inglés Drag), L(t), que es la fuerza de sustentación asociada a la dirección Y, (L viene de la sigla en inglés Lift) y por último (M), que es la fuerza que produce momento alrededor del eje Z, ver Figura 2-1.[Venegas, 2016].El desarrollo de las tres fuerzas mencionadas se presenta en las ecuaciones a continuación:

$$D(t) = D_s + D_b(t) + D_{ae}(t)$$
(2.2)

$$L(t) = L_s + L_b(t) + L_{ae}(t)$$
(2.3)

$$M(t) = M_s + M_b(t) + M_{ae}(t)$$
(2.4)

Los subíndices *s*, *b y ae* representan las fuerzas estáticas, de golpeteo y aeroelásticas respectivamente.

Figura 2-1 Fuerzas aeroelásticas actuando en una sección de un puente.

Para el cálculo de las fuerzas elásticas se tienen las siguientes ecuaciones:

$$D_s = \frac{1}{2} \rho B C_D U^2 \tag{2.5}$$

$$L_{s} = \frac{1}{2} \rho B C_{L} U^{2}$$

$$M_{s} = \frac{1}{2} \rho B^{2} C_{M} U^{2}$$
(2.6)
(2.7)

donde ρ es la densidad del aire, *U* es la velocidad media del viento, C_D , $C_L y C_m$ son los coeficientes de arrastre, de sustentación y de momento, respectivamente los cuales están en función del ángulo de ataque α . Estos coeficientes son obtenidos a partir de pruebas en el túnel de viento o mediante el método CFD. En este documento se presentará el cálculo de dichos coeficientes usando el método CFD y se obtendrán a partir de las ecuaciones (2.5),(2.6) y (2.7). Para ello los coeficientes aerodinámicos serán obtenidos por el método CFD, y se calcularán a partir de las ecuaciones de fuerzas elásticas anteriormente descritas.

Tomando el modelo cuasi-estacionario propuesto por Davenport (1966), donde la interacción fluido-estructura se ignora, y las fuerzas son originadas por los vientos fluctuantes, las fuerzas de golpeteo pueden expresarse con las siguientes ecuaciones:

$$D_{b}(t) = \frac{1}{2}\rho U^{2}B\left[C_{D}\frac{2u(t)}{U} + C'_{D}\frac{w(t)}{U}\right]$$
(2.8)

$$L_{b}(t) = \frac{1}{2}\rho U^{2}B \left[C_{L} \frac{2u(t)}{U} + (C'_{L} + C_{D}) \frac{w(t)}{U} \right]$$
(2.9)
$$M_{b}(t) = \frac{1}{2}\rho U^{2}B^{2} \left[C_{M} \frac{2u(t)}{U} + C'_{M} \frac{w(t)}{U} \right]$$
(2.10)

donde $u(t) \ y \ w(t)$ se define como la velocidad del viento fluctuante en la misma dirección que la media del viento, y ortogonal a la dirección media del viento. $C'_D, C'_L y \ C'_m$ son las derivadas de los coeficientes aerodinámicos respecto a α .

Las fuerzas aeroelásticas actuando por unidad de longitud en la superficie del puente pueden ser descritas como se muestra en las siguientes ecuaciones [Scanlan 1978, Jain, *et al.* 1996]:

$$L_{ae} = \frac{1}{2}\rho U^{2}(2B) \left[KH_{1}^{*}\frac{\dot{h}}{U} + KH_{2}^{*}\frac{B\dot{\alpha}}{U} + K^{2}H_{3}^{*}\alpha + k^{2}H_{4}^{*}\frac{h}{B} + KH_{5}^{*}\frac{\dot{p}}{U} + K^{2}H_{6}^{*}\frac{p}{B} \right]$$
(2.11)

$$D_{ae} = \frac{1}{2}\rho U^{2}(2B) \left[KP_{1}^{*}\frac{\dot{p}}{U} + KP_{2}^{*}\frac{B\dot{\alpha}}{U} + K^{2}P_{3}^{*}\alpha + k^{2}P_{4}^{*}\frac{p}{B} + KH_{5}^{*}\frac{\dot{h}}{U} + K^{2}P_{6}^{*}\frac{h}{B} \right]$$
(2.12)

$$M_{ae} = \frac{1}{2}\rho U^{2}(2B) \left[KA_{1}^{*}\frac{\dot{h}}{U} + KA_{2}^{*}\frac{B\dot{\alpha}}{U} + K^{2}A_{3}^{*}\alpha + k^{2}A_{4}^{*}\frac{h}{B} + KA_{5}^{*}\frac{\dot{p}}{U} + K^{2}A_{6}^{*}\frac{p}{U} \right]$$
(2.13)

donde ρ es la densidad del aire y *U* la velocidad media del viento; *B* es el ancho del tablero, $K = \omega B/U$, es la frecuencia circular reducida. *H*, *p* y α son el desplazamiento vertical, lateral y torsional, respectivamente. Cada punto denota la diferencial respecto al tiempo de A_i^* , H_i^* y P_i^* (*i* variando de 1 a 6. Estas funciones dependen de la frecuencia reducida y son derivadas adimensionales del aleteo. Se determinan a partir de ensayos en el túnel de viento [Hua et al., 2007]. Las ecuaciones (2.11) y (2.13) representan las fuerzas aeroelásticas distribuidas en la unidad de longitud del tablero

Para encontrar la inestabilidad y la frecuencia por aleteo en un sistema, se considera un sistema de dos grados de libertad mecánicamente simétrico, representando una sección del puente con un ancho B. De manera matricial la ecuación de movimiento puede expresarse como: [Hua et al., 2007]:

$$M\ddot{X} + C\dot{X} + KX = F_{se} \tag{2.14}$$

donde las matrices de masa, amortiguamiento y rigidez están definidas por:

$$M = \begin{bmatrix} m & 0 \\ 0 & I \end{bmatrix}; \quad C = \begin{bmatrix} c_x & 0 \\ 0 & c_\alpha \end{bmatrix}; \quad K = \begin{bmatrix} k_x & 0 \\ 0 & k_\alpha \end{bmatrix}; \quad X = \begin{bmatrix} x(t) \\ \alpha(t) \end{bmatrix}; F_{se} = \begin{bmatrix} L_{se}(t) \\ M_{se}(t) \end{bmatrix}$$
(2.15)

donde:

m es la masa, I el momento de inercia, k_x es la rigidez del sistema vertical, k_α es la rigidez del sistema rotacional, c_x es el amortiguamiento del sistema vertical, c_α es el amortiguamiento del sistema rotacional, x(t) es el desplazamiento del sistema vertical, $\alpha(t)$ es el desplazamiento rotacional, L_{se} (t) es la fuerza de sustentación externa restringida por la acción del viento y M_{ae} (t) es el momento de torsión externa restringida por la acción del viento [Venegas, 2016].

2.3 BATANEO

El bataneo se define como una vibración aleatoria con desplazamientos limitados. Los efectos del bataneo y del desprendimiento de vórtices difieren en que en el bataneo las vibraciones son aleatorias, mientras que en el fenómeno de desprendimiento de vórtices las vibraciones son periódicas. Al igual que los vórtices, el bataneo produce daño por fatiga a largo plazo. Usando el túnel de viento, la respuesta al bataneo puede ser medida usando un modelo aerodinámico del puente completo, o también puede ser calculado usando fuerzas promedio aerodinámicas medidas en este, usando un modelo rígido seccional [Gamez, 2013].

2.4 COLAPSO DEL PUENTE TACOMA NARROWS

El 7 de noviembre de 1940 el puente colgante Tacoma Narrows construido en el estado de Washington en EE. UU. falló durante una tormenta con velocidades de viento que alcanzaron los 19 m/s. El colapso del puente ocurrió después de 70 minutos de grandes movimientos oscilatorios del tablero, durante estos movimientos las secciones transversales se torcieron con amplitudes de aproximadamente ± 35°. El movimiento de torsión que destruyó el puente de Tacoma Narrows no tenía precedentes en el puente, pero las oscilaciones verticales del tablero ya se habían producido a menudo desde su apertura el 1 de julio de 1940, fenómeno que se apreciaba incluso con vientos suaves que generaban ondulaciones verticales. Estos movimientos fueron de gran preocupación para los ingenieros, quienes monitorearon los patrones de vibración hasta su colapso final [Allan Larsen, 2000].

3 TIPOS DE SECCIONES TRANSVERSALES DE PUENTES DE GRANDES CLAROS

Se muestra en la Figura 3-1 la gráfica que relaciona la longitud del claro principal en puentes con sección compuesta en función del año de entrada en servicio.

Figura 3-1 Construcción de puentes de grandes claros con sección compuesta [Oliveira Pedro & Reis, 2016].

De la Figura 3-1 se puede concluir que a partir de la década del 90 se incrementó el uso de puentes de sección compuesta, así como el vano principal se ha mantenido en su mayoría por debajo de los 500m. Se observa que en la década del 2010 al 2020 el uso de puentes de sección compuesta disminuyó considerablemente.

Se considera un puente de sección compuesta si se tiene alguna de las siguientes propiedades:

- Las secciones compuestas tienen una losa de hormigón en la parte superior, y una estructura inferior de acero.
- Cubiertas híbridas que generalmente están formadas por una sección totalmente de acero sin tablero en el vano principal, con tablero de hormigón pretensado en los tramos de alrededor.
- Secciones del tablero de hormigón pretensado con vigas transversales de acero u otros elementos transversales de acero. De manera ilustrativa se presenta en la Figura 3-2 una sección transversal típica de un puente atirantado con sección compuesta.

Figura 3-2 Sección transversal típica de un puente atirantado con sección compuesta [Oliveira Pedro & Reis, 2016].

Estos puentes se pueden clasificar en cuatro categorías, las cuales son: puentes con dos trabes, puentes con cuatro trabes, puentes tipo cajón y puentes tipo cercha. A continuación, se muestran ejemplos de puentes atirantados con sección compuesta:

Figura 3-3 Strömsund Bridge, Suecia, fotografía tomada por Lars Falkdalen Lindahl [Oliveira Pedro & Reis, 2016]

El puente Strömsund (Figura 3-3), es un puente atirantado de sección compuesta con una longitud total de 332m y un claro principal de 182m, ver Figura 3-4. Fue

abierto en el año 1956 y es considerado el primer puente atirantado moderno del mundo.

Figura 3-4 Strömsund Bridge, Suecia, sección transversal con dos trabes principales y 9 trabes secundarios [Oliveira Pedro & Reis, 2016]

Figura 3-5 Alex Fraser Bridge, Canadá [Bobanny, 2006]

El puente Alex Fraser (Figura 3-5), fue el puente atirantado más largo del mundo cuando fue abierto en el año 1986. Tiene una longitud total de 2525m y un vano principal de 465m. El detalle de la sección transversal se encuentra en la Figura 3-6.

Figura 3-6 Alex Fraser Bridge, sección transversal con dos trabes [Oliveira Pedro & Reis, 2016].

Figura 3-7 Rio-Antirio bridge, Grecia [Ferries, 2015]

El puente de Río-Antirio (Figura 3-7), tiene una longitud total de 2252m, un ancho de 28m y vanos de 560m, fue abierto en el año 2004. En la Figura 3-8 se puede apreciar el detalle de la sección transversal de este con sus respectivas dimensiones con un tablero soportado en dos vigas. El puente "La Concordia" y el puente "Kessock" son de este tipo de puente.

Figura 3-8 Rio-Antirio bridge, sección transversal con dos trabes [Oliveira Pedro & Reis, 2016].

Figura 3-9 Ting Kau Bridge, Hong Kong [*Ting Kau Bridge*, 2007].

El puente Ting Kau Bridge (Figura 3-9), tiene una longitud total de 1177m con dos vanos de 448m y 475m. Fue inaugurado en el año 1998. En la Figura 3-10 se aprecia el detalle de su sección transversal caracterizada por tener cuatro trabes.

Figura 3-10 Ting Kau Bridge, sección transversal con cuatro trabes [Oliveira Pedro & Reis, 2016].

Figura 3-11 Second Severn Crossing, Reino Unido [Second Severn Crossing, 2006]

El puente Second Severn (Figura 3-11), está ubicado entre Gales e Inglaterra, tiene una longitud total de 5128m, un ancho de 34.6m y un vano principal de 456m, fue inaugurado en el año 1996. En la Figura 3-12 se observa la sección transversal del puente con el tablero en tipo celosía.

Figura 3-12 Second Severn Crossing Bridge, sección transversal con dos trabes principales y tipo celosía [Oliveira Pedro & Reis, 2016].

Figura 3-13 Quennsferry crossing bridge, Escocia [Tony Hisgett from Birmingham, 2017]

El puente Quennsferry (Figura 3-13), tiene una longitud total de 2700m y un vano principal de 650m, fue inaugurado en el año 2017. En la Figura 3-14 se observan las dimensiones del tablero para el puente tipo cajón.

Figura 3-14 Quennsferry Crossing bridge, sección transversal vigas tipo cajón [Oliveira Pedro & Reis, 2016].

Figura 3-15 Comparativa de uso de puentes de sección compuesta [Oliveira Pedro & Reis, 2016].

En la Figura 3-15 se observa una gráfica comparativa entre la esbeltez contra el largo del vano principal. Para el caso de puentes de sección compuesta con dos trabes existe una relación creciente entre el largo del vano principal con la esbeltez, mientras que en los puentes tipo cajón se tiene una mucho menor relación de esbeltez.

En la Figura 3-16 se aprecia el uso de los diferentes tipos de secciones transversales en puentes de grandes claros, en su mayoría, con un 47%, son puentes tipo cajón con sección transversal aerodinámica, mientras que el 28% son puentes con secciones transversales trapezoidales y hexagonales sin aeroestabilizadores, como se ilustra en la Figura 3-17.

Los datos mostrados a continuación están referidos a las geometrías que se usan en puentes de grandes claros, y no son necesariamente puentes de sección compuesta.

Figura 3-16 Tipos de sección transversal en puentes de grandes claros [Haque, 2015].

Figura 3-17 Representación de los tipos de puentes [Haque, 2015]

En la Tabla 3-1 se exponen las propiedades geométricas de algunos puentes con grandes claros, donde en su mayoría son puentes con sección transversal aerodinámica de un solo cajón. Los valores de referencia de la tabla son determinados como se muestra en la Figura 3-18.

donde:

Figura 3-18 Valores de referencia.

Tabla 3-1	Propiedades	de puentes	de grandes	claros	[Haque,	2015].
-----------	-------------	------------	------------	--------	---------	--------

Nombre del	Longitud del	Relación	Relación de	Pendiente placa	Pendiente placa
puente	claro (m)	lateral(R)	ancho(W)	superior $\theta_{B}(^{\circ})$	inferior θ⊤ (°)
Great Belt Bridge, Dinamarca	1642	6.75	0.7	33.7	26.6
Nanjin-4 Bridge, China	1418	10.2	0.62	57.4	15.5
Tasing Ma Bridge, China	1377	4.6	0.8	36	31.2
Huga Kuston Bridge, Suecia	1210	4.45	0.55	35.5	22.6
Halogaland Bridge, Dinamarca	1145	5	0.53	41.4	15.8
Sutong Bridge, China	1088	9.5	0.6	49.1	15.5

Nombre del	Longitud del claro (m)	Relación lateral(R)	Relación de ancho(W)	Pendiente placa superior θ _B (°)	Pendiente placa inferior θ _T (°)
Taizhou Bridge, China	1080	10.5	0.58	30.72	17.35
Edong Bridge, China	926	10.3	0.69	33.69	19.44
Jingyue Bridge, China	816	9.55	0.73	45	24.22
Incheon Bridge, Corea	800	11	0.5	55.3	11.25
Shanghai Bridge, China	730	12.5	0.67	59	17.08
Nanjin-3 Bridge, China	648	10.7	0.63	33.7	15.8
Nanjin-2 Bridge, China	628	8.6	0.73	45	28.5
Osteroy Bridge, Noruega	595	5.3	0.63	62.85	29.5
Meikou Chuoo Bridge, Japón	590	10	0.72	26.7	21
Tsurumi Tsubasa Bridge, Japon	510	8.75	0.5	33.7	16.3
Miekou Higashi Bridge, Japon	410	9.9	0.72	25.3	22
Meikou Nishi Bridge, Japón	405	6.35	0.55	35.8	23.45
Japan-Egypt Bridge, Egipto	404	8	0.53	42	16.07
Oshima bridge, Japón	350	3.8	0.67	15.7	22.62
Shinonomichi Bridge, Japón	215	9.9	0.65	43.53	15.43
Cantho Bridge, Vietnam	210	9.3	0.5	60.25	16.39
Takeshima Ohashi, Japón	400	5.85	0.45	90	15.8
Shintenmom Bridge, Japón	264	5.2	0.21	90	14.96
Oshima Bridge, Japón	226	5.5	0.23	90	11.95
Kesennuma Bridge, Japón	360	7.81	0.47	90	12.18

3.1 COMPORTAMIENTO AERODINÁMICO DEL TABLERO DE PUENTES DE GRANDES CLAROS

Como consideración general aplicable a todos los puentes sensibles a los efectos dinámicos del viento, los criterios de diseño de los aeroestabilizadores se centran en la determinación de la velocidad crítica de viento, el coeficiente de arrastre, el coeficiente de sustentación y el número de Strouhal [Abrahm Sanchez Corriols, 2015].

Con el fin de comparar las fuerzas aerodinámicas principales (coeficiente de arrastre, coeficiente de sustentación y coeficiente de momento), se muestran gráficamente los resultados de los puentes Akashi (Figura 3-20), Humber (Figura 3-21) y Tacoma (Figura 3-22). [Brancaleoni *et al.*, 2010].

Figura 3-19 Representación gráfica de las fuerzas de arrastre (Fuerza X) y fuerza de sustentación (Fuerza Y).

Figura 3-20 En la parte izquierda se muestran los resultados de coeficiente de arrastre, sustentación y momento en el puente Akashi para diferentes ángulos de ataque. En la parte derecha se muestra la sección transversal del puente [Brancaleoni *et al.*, 2010].

Figura 3-21 En la parte izquierda se muestran los resultados de coeficiente de arrastre, sustentación y momento en el puente Humber para diferentes ángulos de ataque. En la parte derecha se muestra la sección transversal del puente en escala 1:1. Todas las medidas en mm [Brown John *et al.*, 1994].

Figura 3-22 En la parte izquierda se muestra, los resultados de coeficiente de arrastre, sustentación y momento en el puente Tacoma Narrows para diferentes ángulos de ataque. En la parte derecha se muestra la sección transversal del puente en escala 1:40. [Matsumoto,2003].

3.2 USO DE ESTABILIZADORES EN PUENTES DE SECCIÓN COMPUESTA

3.2.1 Second Severn Crossing Bridge. (Reino Unido)

El puente Second Severn es un puente atirantado cuyo claro principal es de 456 m, tiene una sección transversal con sección compuesta que comprende dos vigas de acero longitudinal, el tablero tiene armaduras de acero transversales con un espaciamiento de 3.65m, una losa de hormigón armado de 200mm. En la Figura 3-23 se aprecia el puente construido mientras que en la Figura 3-24 se aprecian las características de los vanos principales. En la Figura 3-25 se muestra la sección transversal del tablero del puente con sus dimensiones principales.[Macdonald et al., 2002].

Figura 3-23 Fotográfica del puente atirantado Second Severn Crossing[«Second Severn Crossing», 2021].

Figura 3-24 Sección longitudinal del puente Second Severn Crossing, medidas en mm [Macdonald *et al.*, 2002]

Figura 3-25 Sección transversal del puente Second Severn Crossing [Macdonald *et al.*, 2002].

Debido a que en el primer invierno después de la apertura del puente se tuvieron vórtices ocasionales que generaban oscilaciones verticales, se decidió iniciar un estudio aerodinámico detallado en busca de las causas. La excitación de los vórtices fue detectada por las pruebas de túnel de viento en modelos de sección durante la etapa de diseño y se propuso una solución aerodinámica, sin embargo, con base en el amortiguamiento y la turbulencia de los códigos de diseño, se concluyó que la probabilidad de que grandes vibraciones ocurrieran era pequeña por lo que se decidió no usar la solución aerodinámica.

El monitoreo a gran escala de vientos y la respuesta estructural permitió observar las oscilaciones después de su construcción. Se encontró que el amortiguamiento y la turbulencia del viento diferían significativamente de los valores que fueron tomados en el diseño Las pruebas de túnel de viento se llevaron a cabo utilizando la escala completa con miras a replicar el comportamiento real y la implementación de una solución que tuviera en cuenta el amortiguamiento y la turbulencia. Se quería incluir también un factor para corregir la forma modal a escala completa que a menudo se ignora. Esto condujo a una buena concordancia entre el modelo y las mediciones reales. A partir de la buena correlación de los resultados en el modelo con el puente real, se probaron soluciones aerodinámicas al problema de vórtices. Se evaluaron las placas de baffles y se demostró que eran una solución efectiva para un ángulo de ataque 0° pero no en ángulos positivos de 2.5° y 5.0°. Ya que todas las excitaciones de vórtices observadas a gran escala alcanzaron su pico máximo a 17-18 m/s, velocidad en la que se producen los vórtices con un ángulo de 0°, y ningún pico se había visto a 22 m/s, (velocidad que produce excitación para ángulos mayores a 1.25°), se concluyó que los baffles eran una buena solución.[Macdonald et al., 2002]. Como resultado de estos estudios se instalaron placas deflectoras conocidas como baffles debajo del tablero del puente. Desde su instalación. detectado no se han vórtices que produzcan grandes oscilaciones.[Macdonald et al., 2002]

En la Figura 3-26 se aprecia la ubicación de los baffles que se instalaron en el puente para reducir los desplazamientos. En la Figura 3-27 se muestra la comparación de los desplazamientos verticales, en la parte izquierda de la figura se

aprecia el desplazamiento vertical con el uso de los baffles mientras en la parte derecha el desplazamiento vertical sin la presencia de estos.

Figura 3-26 Sección transversal del puente Second Severn Crossing con los baffles instalados [Macdonad *et al.*, 2002].

Figura 3-27 En la gráfica izquierda se muestran los resultados obtenidos de desplazamientos vs. la velocidad del viento por vórtices con la instalación de lo baffles. En la gráfica de la parte derecha se muestran los resultados de desplazamiento vs. la velocidad del viento por vórtice antes de la instalación de los baffles.[Macdonald *et al.*, 2002]

3.2.2 Puente Vasco da Gama (Portugal)

El Puente Vasco da Gama es un puente atirantado formado por dos trabes de concreto pretensado de 2.65m de alto. El puente se encuentra en el cruce del río Tajo en Lisboa, Figura 3-28. El puente tiene una luz central de 420m y un ancho de tablero de 31.25m sobre el canal de navegación principal. Las autoridades portuguesas exigieron que el puente fuera capaz de resistir condiciones de velocidades de viento de hasta 250 km/h. Los modelos hechos para evaluar la respuesta del puente para condiciones de altas velocidades mostraron que el puente tenía inestabilidad a velocidades cercanas a los 170 km/h. Esto llevo a plantear el uso de baffles por debajo del tablero del puente las cuales fueron evaluadas mediante el túnel de viento y CFD. Se evidenció una respuesta positiva en el comportamiento del puente a velocidades altas, por lo que se optó por su instalación. En la Figura 3-29 y Figura 3-30 se observa el cambio en el perfil de velocidades, con y sin baffles [Mendes & Branco, 1998].

Figura 3-28 Vista del puente Vasgo da Gama en Lisboa [«Ponte Vasco da Gama», 2021].

Figura 3-29 Contorno de velocidad en la sección transversal del puente Vasco Da Gama sin Baffles.

Figura 3-30 Contorno de velocidad en la sección transversal del puente Vasco Da Gama con Baffles.

Tabla 3-2 Comparativa de coeficientes aerodinámicos con y sin Baffles en el puente Vaso Da Gama.

Sección	CD	CL	СМ
Con Baffles	0.144	-0.037	0.015
Sin Baffles	0.158	-0.055	0.035

3.3 USO DE ESTABILIZADORES EN PUENTES DE SECCIÓN ABIERTA

3.3.1 The Bronx Whitestone bridge (Estados Unidos)

El puente Bronx Whitestone se encuentra en la ciudad de Nueva York. Cuenta con una claro principal de 701 m, tiene una sección transversal en forma de H similar a la del puente Tacoma Narrows (Figura 3-31 y Figura 3-32). El puente fue inaugurado el 30 de abril de 1939. En el 2005 tuvo una importante modernización en la que se buscó que el puente tenga una mejor respuesta aerodinámica. Ensayos en el túnel de viento fueron ejecutados para examinar las diferentes formas aerodinámicas, los cuales condujeron a la decisión de unir deflectores triangulares cerrados a las vigas de borde para aumentar su estabilidad aerodinámica (Figura 3-33) y reducir el movimiento vertical [Lee, 2003].

Figura 3-31 Fotografía del puente Bronx-Whitesonte [«Bronx–Whitestone Bridge», 2021].

Figura 3-33 Sección transversal con el deflector triangular, donde D=57.2mm basado en la escala 1:60 [Lee, 2003].

Los deflectores triangulares miden 2.7m de largo, 3.4m de alto y 2.1m en la parte más ancha en el centro de las trabes laterales del puente. El objetivo de la modernización de este puente y la instalación de los aeroestabilizadores fue la de

reducir la carga aerodinámica de 744 kg/m a 253 kg/m. Cuando el puente fue construido se diseñó para soportar cuatro carriles de tráfico, pero posteriormente fue ampliado a seis carriles por lo que el peso adicional debió ser compensado. Esto se logró reduciendo el peso del tablero del puente entre un 15% y 20%. El puente antes de la instalación de los deflectores era capaz de resistir una velocidad de viento de hasta 80 km/h y con los deflectores y el tablero aligerado puede resistir velocidades de viento mayores a los 161 km/h.[Landers, 2002]. En la Figura 3-34 se muestran gráficas que comparan los valores de coeficiente de arrastre y sustentación para diferentes ángulos de ataque con y sin deflectores probados de manera experimental y con el método CFD. Con este tipo de aeroestabilizador es posible observar un ligero aumento en los valores de coeficiente de sustentación, con este tipo de deflector, pero una notable reducción del coeficiente de arrastre. Este tipo de deflector se evaluará más adelante en este documento en el puente La Concordia.

Figura 3-34 Comparación entre el modelo del puente Bronx-Whitestone con deflectores laterales y el tablero modificado vs el modelo sin deflectores y con el tablero normal [Lee, 2003].

3.3.2 The Deer isle-Sedgwick bridge (Estados Unidos)

El puente de The Deer isle-Sedgwick, Figura 3-35 y Figura 3-36 bridge se encuentra en la autopista 15, entre las ciudades de Sedgwick y Deer Island en la

costa de Maine de Estados Unidos. Este puente colgante fue construido en el año 1939, tiene sección tipo H y un claro central de 329.2 m. Es un puente contemporáneo al puente Tacoma Narrows y al igual que este, no se evaluó su resistencia al viento al momento de ser construido. Después de construido el puente mostró ser muy flexible, razón por la cual se le hicieron mejoras en su estructura con el fin de hacerlo más rígido. El puente fue objeto de estudios aerodinámicos en busca de meiorar su respuesta ante el viento. Estos estudios consistieron en evaluar diferentes tipos de aeroestabilizadores y ver la respuesta aerodinámica del puente con diferentes tipos de estos dispositivos, un análisis similar al que se realiza en la presente tesis. Dichos estudios concluyeron que la instalación de aeroestabilizadores triangulares cerrados con diferentes ángulos de inclinación (ver Figura 3-37) eran los aeroestabilizadores que presentaban una mejor respuesta aerodinámica del puente [Cai et al., 1999].

Figura 3-35 Fotografía del puente [«Deer Isle Bridge», 2021].

Figura 3-36 Puente Deer Island (Todas las unidades en metros), en la parte izquierda se observan las modificaciones que se hicieron para darle más rigidez, mientras que a la derecha se observa la distribución original.[Cai *et al.*, 1999].

Figura 3-37 Sección transversal del puente con los deflectores triangulares cerrados [Cai et al., 1999].

La Figura 3-38 muestra la diferencia en el coeficiente de sustentación para diferentes ángulos de ataque de viento. Se observa que respecto al coeficiente de

arrastre hay un aumento en la magnitud de este. Por otra parte, en la Figura 3-39 se muestra el valor del coeficiente de arrastre para distintos ángulos de ataque y se compara el puente con y sin aeroestabilizador, se aprecia una reducción importante en el coeficiente de arrastre.

Figura 3-38 Coeficiente de sustentación del puente Deer-Island con y sin deflector[Bosch, 1990].

Figura 3-39 Coeficiente de arrastre del puente Deer-Island con y sin deflector [Bosch, 1990].

El uso de aeroestabilizadores en puentes atirantados, como lo son el puente Bronx Whitestone y el puente The Deer isle-Sedgwick, son ejemplos claros del mejoramiento del comportamiento de las estructuras ante el viento usando estos dispositivos. A largo plazo implica una reducción en el mantenimiento debido a que los desplazamientos verticales se disminuyen al igual que la fatiga, además de la disminución de la carga de arrastre. Para el puente Bronx Whitestone la instalación de aeroestabilizadores fue una solución simple y no tuvo un impacto significativo en la apariencia del puente.

3.4 ESTUDIOS EN TÚNEL DE VIENTO DE PUENTES SENSIBLES AL VIENTO

Actualmente, existen 3 métodos de estudiar el comportamiento de los tableros de puentes ante efectos del viento en un túnel de viento: modelo de sección, modelo Taut-Strip o tira tensada y modelo aeroelástico.

3.4.1 Modelo seccional

El modelo seccional es el más usado [Farquharson 1949-54, Wardlaw 1978, Scanlan 1975]. Consiste en modelar en el túnel de viento únicamente una pequeña sección del claro principal; la longitud del modelo a escala debe ser al menos cuatro veces el ancho a escala del tablero. El modelo es rígido y usualmente esta sostenido por placas o muros laterales que restringen la torsión y traslación del tablero. El modelo seccional se usa principalmente para determinar el fenómeno de desprendimiento de vórtices en el tablero, la instabilidad torsional y el aleteo. Con este método se pueden obtener las velocidades de desprendimiento de vórtices y velocidades críticas, así como también las fuerzas aerodinámicas promedio y coeficientes de momento en el tablero con un ángulo de ataque de viento. [Gamez, 2013]

3.4.2 Modelo "taut strip model"

El modelo "taut strip model", es un tipo de modelado en el cual el prototipo a escala del puente es apoyado sobre dos cuerdas longitudinales en los extremos del prototipo y tiene como objeto el simular mejor el comportamiento aeroelástico haciendo el modelo menos rígido. Tiene la ventaja sobre el modelo seccional ya que puede ser probado en turbulencia atmosférica escalada y los movimientos en tres dimensiones del modelo pueden ser incluidos. [Gamez, 2013].

3.4.3 Modelo aeroelástico completo

El modelo completo sirve para determinar la respuesta al galope y la velocidad de viento crítica para inestabilidad torsional y aleteo. El modelo completo es el único que incluye todos los parámetros relevantes como rigidez, masa y amortiguamiento, es el más complejo, siendo más costoso y complejo, pero no es un buen método para la simulación de únicamente un tramo de la superestructura. Para el uso del modelo completo se aconseja primero realizar simulaciones con modelos seccionales y posteriormente usar el modelo de escala completa [Gamez, 2013].

3.4.4 Uso de modelos numéricos con CFD en el estudio de puentes sensibles al viento.

El uso de modelos numéricos en el estudio de puentes de grandes claros ha tenido un gran desarrollo de la mano con los adelantos en la capacidad de cómputo, principalmente son usados para ser comparados con los resultados que se realizan en el túnel de viento, por lo que ambos métodos se complementan.

El dominio de simulación y la sección de tablero elegidos para los análisis de CFD y túnel de viento para estudiar el puente "The Bronx-Whitestone bridge" con deflectores, se muestra en la Figura 3-40. Además, se observan las proporciones que definen el tamaño del dominio a partir de la sección transversal del puente.

Figura 3-40 Dominio para la simulación del tablero con aeroestabilizadores en el puente The Bronx-Whitestone [Lee, 2003].

En la Figura 3-41 se muestra el mallado con 150000 nodos elegido para el puente Great Belt east bridge (Dinamarca) mediante el programa ANSYS Fluent 14 en el año 2002.

Figura 3-41 Dominio y malla para la simulación del tablero en el puente Great Belt [Malveira et al., 2015].

En la Figura 3-42 se muestra el mallado del puente Kessock (Escocia), el cual será presentado en los siguientes capítulos y al cual se le obtuvo el valor del número de Strouhal por el método CFD.

3.5 OBJETIVO:

- Mediante la técnica de CFD se estudiará el efecto de diferentes aeroestabilizadores, para puentes atirantados de sección compuesta.
- Estudiar diferentes tipos de aeroestabilizadores utilizando modelos dinámicos de fluidos para diferentes puentes atirantados con un gran claro y de sección transversal compuesta.
- Proponer criterios y/o recomendaciones de diseño para dichos puentes. Los modelos numéricos se calibrarán con resultados de pruebas en túnel de viento de análisis hechos por otros autores.
- Establecer cual aeroestabilizador tiene un, mejor comportamiento aerodinámico y compararlo para concluir que beneficios puede generar y si es justificable su instalación.

3.6 ALCANCES

Se planteará un dimensionamiento del aeroestabilizador teniendo en cuenta las características geométricas de la sección transversal del puente atirantado de sección compuesta las cuales son el peralte y el ancho del tablero. Además, se evaluarán diferentes tipos de aeroestabilizadores y se concluirá acerca de cuál presenta un mejor comportamiento aerodinámico con un ángulo de ataque de cero grados y mediante el programa de CFD ANSYS Fluent. Esto se evaluará mediante los coeficientes aerodinámicos de arrastre y sustentación, así como la velocidad crítica. Debido a que no fue posible la utilización del túnel de viento por motivo de la pandemia, todos los análisis se harán por el método CFD y los resultados se comparan con estudios previos hecho en el túnel de viento.

3.7 JUSTIFICACIÓN

Debido al incremento de construcción de puentes atirantados con grandes claros en México, como el puente Baluarte y el puente La Concordia, hay la necesidad de la implementación de dispositivos que mejoren su comportamiento aerodinámico, dado que en la actualidad no hay un criterio de diseño para los aeroestabilizadores. La propuesta es estandarizar el uso de un aeroestabilizador para futuros proyectos y presentar un pre-dimensionamiento que sirva de punto de partida para los análisis aerodinámicos de puentes. La instalación de los aeroestabilizadores mejorará en el comportamiento aerodinámico de los puentes, tanto en desplazamientos verticales como en cargas de arrastre, por lo que además a largo plazo se evitan daños por fatiga y a corto plazo se evitan movimientos indeseados.

4 MÉTODO DE CFD

El CFD o en español dinámica de fluidos computacional, consiste en la solución de fenómenos físicos relacionados al movimiento de fluidos. El fenómeno que se estudia en el documento es la turbulencia que además es el fenómeno físico principal de análisis del CFD. El CFD resuelve la ecuación de Navier Stokes mediante el uso de algoritmos y métodos numéricos debido a que esta contiene un sistema acoplado de ecuaciones del que no es posible obtener una solución analítica única, por lo que su análisis debe ir en su mayoría acompañado de un estudio experimental. Debido a la complejidad del cálculo es necesario hacer suposiciones, como que el fluido es isotérmico, incompresible y newtoniano que para el tipo de análisis y la precisión esperada son suposiciones que no afectan los resultados y simplifican el cálculo. El CFD se originó por la necesidad de resolver ecuaciones mediante métodos iterativos y el cual tuvo un avance importante con el desarrollo de las máquinas de cómputo, ya que hasta antes de su invención los cálculos hechos por personas podrían tardar semanas y tener una capacidad muy limitada. De la mano al desarrollo de la computadora el CFD se ha implementado en la industria, como lo es en el diseño de aeronaves o simulaciones de autos de fórmula uno. A partir de la década de 1970 en el Imperial College de Londres se desarrolla el algoritmo SIMPLE, que consiste en una formulación implícita basada en el método de acoplamiento lo que presentó una ventaja debido a que tiene una mejor estabilidad numérica. Una de las ventajas que ha ofrecido el desarrollo del CFD es que para el análisis de estructuras como aviones son necesarios menos modelos experimentales, lo que se traduce en una reducción de costos. Otros beneficios que brinda es que se pueden simular condiciones irreales y difíciles de recrear experimentalmente, como los son velocidades hipersónicas, temperaturas muy altas o bajas entre otras. Se puede realizar a un análisis en condiciones límites y obtener resultados de toda la superficie del modelo sin tener que implementar dispositivos de medición. Las desventajas son que se debe tener una capacidad de cómputo robusta, la cual es costosa, se necesitan licencias de programas, no siempre se tiene resultados precisos y se necesita igual la recreación de un modelo para contrastar los resultados [Fernández Oro, 2012]. Algunos de los usos del CFD se muestran a continuación:

- Aerodinámica de aviones y vehículos: sustentación y arrastre.
- Hidrodinámica de barcos.
- Turbomáquinas: flujo dentro de conductos giratorios, difusores, etc.
- Ingeniería eléctrica y electrónica: refrigeración de equipos, incluido microcircuitos.
- Entorno externo e interno de los edificios: carga de viento y calefacción/ventilación.
- Ingeniería naval: cargas en estructuras marinas.
- Ingeniería ambiental: distribución de contaminantes y efluentes.
- Hidrología y oceanografía: caudales en ríos, estuarios, océanos.
- Meteorología: predicción del tiempo.

La técnica CFD tiene la siguiente estructura:

El dominio se divide en un gran número de celdas que representan los volúmenes de control, se plantean en cada celda las ecuaciones generales de conservación de la masa, conservación del momento, la cantidad de movimiento, la energía entre otras. Las ecuaciones se discretizan y linealizan para obtener un sistema algebraico de ecuaciones. Se resuelve numéricamente de forma iterativa el sistema algebraico para obtener la solución final del campo fluidodinámico [Fernández Oro, 2012]

Los programas de solución CFD como ANSYS Fluent usado en esta tesis tienen los siguientes elementos principales:

• Preprocesador

El preprocesamiento consiste en ser la interfaz para el ingreso los datos de un problema de flujo. Estos datos posteriormente serán los que utilice el solucionador para desarrollar el método de solución. Las variables que se definen para un preprocesamiento implican la definición de la geometría, que para el caso de estudio consiste en la sección transversal del puente, la definición del dominio, y la generación de la malla que es la subdivisión del dominio en un número de subdominios más pequeños. El estudio del dominio se detalla en el inciso 4.2. El fenómeno que se quiere evaluar es la turbulencia. La definición de propiedades del fluido, como densidad y viscosidad se encuentran en el inciso 5.2.

Figura 4-1 Ejemplo de preprocesamiento de un automóvil, cuyo análisis por el método CFD es fundamental debido a que hacer un prototipo para el análisis en el túnel de viento es costoso y complejo [*Streamline Pre-Processing, Meshing and Materials Selection with Ansys 2019 R2*, s. f.].

• Solucionador

Hay tres técnicas de solución numérica: diferencias finitas, elemento finito y métodos espectrales. Para el caso de estudio se usará el método de volumen finito, el cual es una formulación especial del método de diferencias finitas, fundamental para los códigos CFD. Alguno son el CFX/ANSYS, PHOENICS, STAR-CD y FLUENT, que es el usado para este trabajo [Versteeg & Malalasekera, 2007].

• Posprocesador.

Con el aumento de la capacidad de cómputo, y las mejoras en las capacidades gráficas de los posprocesadores de datos, los programas de cálculo ahora tienen una mejor interacción gráfica con los resultados. Esta interacción gráfica incluye:

- Geometría de dominio y visualización de cuadrícula.
- Gráficas vectoriales.
- Gráficos de contorno de líneas y sombreados.
- Gráficos de superficie 2D y 3D.
- Seguimiento de partículas.
- Visualización de la manipulación (traslación, rotación, escalado, etc.)[Versteeg & Malalasekera, 2007].

La Figura 4-2 muestra un ejemplo de una salida grafica de un pos-procesamiento de la interacción del viento con un avión de combate.

Figura 4-2 Ejemplo de uso de CFD en aviación [«Computational Fluid Dynamics (CFD)», s. f.].

4.1 DISCRETIZACIÓN DE LAS ECUACIONES GOBERNANTES

4.1.1 Ecuación de Navier Stokes

La ecuación que representa el fenómeno de la turbulencia es la ecuación de Navier Stokes, la cual es una ecuación de derivadas parciales que puede ser obtenida a partir de la ley de conservación de masa, momento y energía. [Çengel & Cimbala, 2014].

Para resolver la ecuación de Navier Stokes se deben conocer seis variables independientes del tensor de esfuerzos. Así, en adición además de la densidad y los tres componentes de la velocidad resulta en un total de 10 variables desconocidas que en coordenadas cartesianas son; (ρ , u, v, w, σ_{xx} , σ_{xy} , σ_{yy} , σ_{yz} , σ_{xz} y σ_{zz}). Debido a que se tiene 6 variables desconocidas se necesitan la misma cantidad de ecuaciones para ser resueltas. Estas ecuaciones son llamadas ecuaciones constitutivas, y permiten escribir los componentes del tensor de esfuerzos en términos del campo de velocidad y del campo de presión. Lo primero que se debe hacer es separar los esfuerzos debidos a la presión y la viscosidad. Cuando un fluido se encuentra en reposo, el único esfuerzo actuando sobre la

superficie es la presión local hidrostática *P*, la cual siempre actúa hacia adentro y normal a la superficie. Así, sin tener en cuenta la orientación de los ejes de sistema de coordenadas, para un fluido en reposo el tensor de esfuerzos se reduce a:

$$\sigma_{ij} = \begin{pmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{pmatrix} = \begin{pmatrix} -P & 0 & 0 \\ 0 & -P & 0 \\ 0 & 0 & -P \end{pmatrix}$$
(4.1)

La presión hidrostática *P*, es la igual a la presión termodinámica. *P* está relacionada con la temperatura y la densidad a través de algunas ecuaciones de estado como la ley de los gases ideales. Esta característica que relaciona la temperatura con la presión dificulta el análisis en flujos compresibles, ya que se tiene la temperatura como una variable adicional. La temperatura requiere otra ecuación diferencial con forma de ecuación de energía la cual no será discutida en el documento ya que para los análisis hechos en el documento se considera que el aire es isotérmico.[Çengel & Cimbala, 2014]

Cuando el fluido está en movimiento, la presión es aún normal y hacia adentro, pero los esfuerzos viscosos pueden existir. Para fluidos en movimiento se tiene la siguiente expresión:

$$\sigma_{ij} = \begin{pmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{pmatrix} = \begin{pmatrix} -P & 0 & 0 \\ 0 & -P & 0 \\ 0 & 0 & -P \end{pmatrix} + \begin{pmatrix} \tau_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \tau_{yy} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \tau_{zz} \end{pmatrix}$$
(4.2)

Donde se tiene un nuevo tensor τ_{ij} , llamado el tensor de esfuerzos viscoso. Matemáticamente, el incluir el nuevo tensor no ayuda a resolver la ecuación, porque se reemplazan seis variables desconocidas de σ_{ij} por otras seis desconocidas τ_{ij} y además se agrega otra viable desconocida *P*. Sin embargo, las ecuaciones constitutivas expresan τ_{ij} en términos del campo de velocidad, además de propiedades físicas medibles como la viscosidad. La forma de las relaciones constitutivas depende del tipo de fluido. Si el fluido es incompresible como se considera para los análisis hechos en el documento, no se tiene la ecuación de cambio de estado entonces, $\rho = Constante$, y *P* se puede definir como la presión mecánica *P*_m:

$$P_m = -\frac{1}{3} \left(\sigma_{xx} + \sigma_{yy} + \sigma zz \right)$$
(4.3)

Cuando se trata con fluidos incompresibles, que es lo que se asume para el caso de estudio, P es siempre asumida como la presión mecánica P_m [Çengel & Cimbala, 2014].

El fluido de interés en esta tesis es el aire, que se comporta como un fluido Newtoniano donde por definición el tensor de esfuerzos es linealmente proporcional al cambio del tensor de deformación. Por lo tanto, al asumir un flujo incompresible e isotérmico, se elimina la necesidad de la ecuación diferencial de la energía. Un beneficio adicional de hacer estas suposiciones es que la viscosidad dinámica μ y la viscosidad cinemática ϑ , son constantes. Con estos supuestos el tensor de esfuerzos se reduce a:

$$\tau_{ij} = 2 \,\mu \,\varepsilon_{ij} \tag{4.4}$$

Donde ε_{ij} es el tensor de deformación y es linealmente proporcional al esfuerzo. En coordenadas cartesianas, las nueve componentes del tensor de esfuerzos viscosos se muestran a continuación, y solo seis de la cuales son independientes debido a la simetría [Çengel & Cimbala, 2014]:

$$\tau_{ij} = \begin{pmatrix} \tau_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \tau_{yy} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \tau_{zz} \end{pmatrix} = \begin{pmatrix} 2 \mu \frac{\partial u}{\partial x} & \mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) & \mu \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) \\ \mu \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) & 2 \mu \frac{\partial v}{\partial y} & \mu \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right) \\ \mu \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right) & \mu \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right) & 2 \mu \frac{\partial w}{\partial z} \end{pmatrix}$$
(4.5)

En coordenadas cartesianas el tensor de esfuerzos se convierte en:

$$\sigma_{ij} = \begin{pmatrix} -P & 0 & 0 \\ 0 & -P & 0 \\ 0 & 0 & -P \end{pmatrix} + \begin{pmatrix} 2\mu \frac{\partial u}{\partial x} & \mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) & \mu \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) \\ \mu \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) & 2\mu \frac{\partial v}{\partial y} & \mu \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right) \\ \mu \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right) & \mu \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right) & 2\mu \frac{\partial w}{\partial z} \end{pmatrix}$$
(4.6)

A partir de la ecuación de Cauchy, que es la ecuación que describe el transporte no relativista de momentum en cualquier medio continuo, se tiene [Çengel & Cimbala, 2014]:

$$\frac{\partial}{\partial t} \left(\rho \, \vec{V} \right) + \nabla \cdot \left(\rho \, \vec{V} \, \vec{V} \right) = \rho \, \vec{g} + \vec{\nabla} \cdot \sigma_{ij} \tag{4.7}$$

La ecuación de Cauchy en coordenadas cartesianas en las tres componentes es:

En X:

$$\rho \frac{Du}{Dt} = \rho g_x + \frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{yx}}{\partial y} + \frac{\partial \sigma_{zx}}{\partial z}$$
(4.8)

En Y:

$$\rho \frac{Dv}{Dt} = \rho g_{y} + \frac{\partial \sigma_{xy}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} + \frac{\partial \sigma_{zy}}{\partial z}$$
(4.9)

En *Z*:

$$\rho \frac{Dw}{Dt} = \rho g_z + \frac{\partial \sigma_{xz}}{\partial x} + \frac{\partial \sigma_{yz}}{\partial y} + \frac{\partial \sigma_{zz}}{\partial z}$$
(4.10)

donde:

$$\rho \frac{D\vec{V}}{Dt} = \rho \vec{g} + \vec{\nabla} \sigma_{ij} \tag{4.11}$$

Posteriormente se reemplazan los valores de la ecuación de Cauchy con los de la ecuación de Navier Stokes para flujos isotérmicos e incompresibles y se tiene [Çengel & Cimbala, 2014]:

Para la componente X

$$\rho \frac{Du}{Dt} = -\frac{\partial P}{\partial x} + \rho g_x + 2 \mu \frac{\partial^2 u}{\partial x^2} + \mu \frac{\partial}{\partial y} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) + \mu \frac{\partial}{\partial z} \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right)$$
(4.12)

Debido a que los componentes de la velocidad en X, Yy Z son funciones suaves, el orden de diferenciación es irrelevante, por lo que la ecuación puede reescribirse de la siguiente manera [Çengel & Cimbala, 2014]:

$$\rho \frac{Du}{Dt} = -\frac{\partial P}{\partial x} + \rho g_x + \mu \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial}{\partial x} \frac{\partial u}{\partial x} + \frac{\partial}{\partial x} \frac{\partial v}{\partial y} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial}{\partial x} \frac{\partial w}{\partial z} + \frac{\partial^2 u}{\partial z^2} \right]$$
(4.13)

$$\rho \frac{Du}{Dt} = -\frac{\partial P}{\partial x} + \rho g_x + \mu \left[\frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) + \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right]$$
(4.14)

donde el termino dentro de los paréntesis redondos es cero debido a la ecuación de continuidad para flujos incompresibles. Se pueden reconocer los últimos tres términos dentro de los paréntesis cuadrados que corresponden al laplaciano del componente de la velocidad u en coordenadas cartesianas. Así se puede reescribir la ecuación para la componente *X* como sigue [Çengel & Cimbala, 2014]:

$$\rho \frac{Du}{Dt} = -\frac{\partial P}{\partial x} + \rho g_x + \mu \nabla^2 u$$
(4.15)

Se hace el mismo análisis para las demás componentes Y y Z:

$$\rho \frac{Dv}{Dt} = -\frac{\partial P}{\partial y} + \rho g_y + \mu \nabla^2 v$$
(4.16)

$$\rho \frac{Dw}{Dt} = -\frac{\partial P}{\partial z} + \rho g_z + \mu \nabla^2 w$$
(4.17)

Combinando las tres componentes resulta la ecuación de Navier Stokes para flujo incompresible:

$$\rho \frac{D\vec{V}}{Dt} = -\nabla P + p\vec{g} + \mu \nabla^2 \vec{\nabla}$$
(4.18)

Posterior a desarrollar la ecuación de Navier Stokes se debe escoger un sistema de referencia que para coordenadas cartesianas es (x, y, z) y (u, v, w): Asumiendo flujo incompresible se tiene:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$
(4.19)

La componente en X de la ecuación de Navier Stokes en coordenadas cartesianas entonces será:

$$\rho\left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z}\right) = -\frac{\partial P}{\partial x} + \rho g_x + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right)$$
(4.20)

Para la componente Y se tiene:

$$\rho\left(\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} + w\frac{\partial v}{\partial z}\right) = -\frac{\partial P}{\partial y} + \rho g_y + \mu\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2}\right)$$
(4.21)

Para la componente Z se tiene:

$$\rho\left(\frac{\partial w}{\partial t} + u\frac{\partial w}{\partial x} + v\frac{\partial w}{\partial y} + w\frac{\partial w}{\partial z}\right) = -\frac{\partial P}{\partial y} + \rho g_z + \mu \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2}\right)$$
(4.22)

De manera vectorial la ecuación de Navier Stokes se puede representar como:

$$\rho \left[\frac{\partial \vec{V}}{\partial t} + (\vec{V} \nabla) \vec{V} \right] = -\nabla P + \rho \vec{g} + \mu \nabla^2 \vec{V}$$
(4.23)

4.1.2 Algoritmo SIMPLE

La Figura 4-3 tiene como finalidad representar la correspondencia entre volúmenes de control para velocidades y presión en dos dimensiones. Se presenta en dos dimensiones por facilidad en su representación gráfica, en tres dimensiones se cumple el mismo principio. Se aprecian las caras N, W, E y S que corresponden a

los puntos cardinales en el volumen de control y los cuales sirven como notación para las ecuaciones que se expondrán a continuación.

Figura 4-3 Relación entre volúmenes de control para velocidades y para presión, en la imagen de la parte izquierda en dos dimensiones y en la imagen de la parte derecha en una dimensión [Fernández Oro, 2012].

En la ecuación (4.24) se presenta la ecuación de momento en x

$$a_{p}u_{p} = \sum_{c.v.} a_{c.v.}u_{cv} + (p_{w} - p_{e})\Delta y + b$$
(4.24)

En la ecuación (4.25) se presenta la ecuación de momento en y (4.25)

$$a_p v_p = \sum_{c.v.} a_{c.v.} v_{c.v.} + (p_s - p_n) \Delta x + b$$

donde:

 a_p : Es el coeficiente de la ecuación algebraica de transporte. p hace referencia al nodo actual como se aprecia en la Figura 4-3

 p_w , p_s , p_n y p_e : Se definen como la presión en las diferentes caras Δx y Δy : Tamaño de la celda b: Termino fuente

El algoritmo SIMPLE inicia con un campo de presiones supuesto denominado p*, con el que se resuelven las ecuaciones de momento en X Ecuación (4.24) y momento en Y Ecuación (4.25). Debido a que el campo de presiones es supuesto el resultado será un campo de velocidades tentativo[Fernández Oro, 2012].

$$a_{p}u_{p}^{*} = \sum_{c.v.} a_{c.v.}u_{c.v.}^{*} + (p_{w}^{*} - p_{e}^{*})\Delta y + b$$
(4.26)

$$a_p v_p^* = \sum_{c.v.} a_{c.v.} v_{c.v.}^* + (p_s^* - p_n^*) \Delta x + b$$
(4.27)

donde

 $u_p^*v_p^*$, : Velocidades supuestas en p

 $p_{w}^{*}, p_{e}^{*}, p_{s}^{*}, p_{n}^{*}$: Presiones supuestas en cada cara

c.v. hace referencia a las celdas vecinas. Como el campo de presiones y el campo de velocidades obtenidos están basados en suposiciones, no son los campos que se buscan por lo que se debe definir un valor de corrección que aproxime la solución real de la solución supuesta. Esta corrección viene dada por las variables primadas que se muestran a continuación y que se definen como la diferencia del valor real menos el valor supuesto [Fernández Oro, 2012]:

$$p = p^* + p'$$
 (4.28)

.....

$$u = u^* + u'$$
 (4.29)

$$v = v^* + v'$$
 (4.30)

Utilizando el campo de presiones correcto en las ecuaciones de conservación del momento se obtiene el cambio de velocidades correcto. Entonces restando los valores supuestos de las ecuaciones exactas se tiene [Fernández Oro, 2012]:

$$a_p(u_p - u_p^*) = \sum_{c.v.} a_{c.v.} (u_{c.v} - u_{c.v.}^*) + [(p_w - p_w^*) - (p_e - p_e^*)] \Delta y$$
(4.31)

$$a_p(v_p - v_p^*) = \sum_{c.v.} a_{c.v.} (v_{c.v} - v_{c.v.}^*) + [(p_s - p_s^*) - (p_n - p_n^*)]\Delta x$$
(4.32)

Al hacer los reemplazos se tiene:

$$a_{p}u'_{p} = \sum_{c.v.} a_{c.v.}u'_{c.v.} + (p'_{w} - p'_{e})\Delta y$$
(4.33)

$$a_{p}v_{p}' = \sum_{c.v.} a_{c.v.}v_{c.v.}' + (p'_{s} - p'_{n})\Delta x$$
(4.34)

Si se elimina la contribución de las celdas vecinas se tienen como resultados las siguientes ecuaciones [Fernández Oro, 2012]:

$$a_p u'_p \approx (p'_w - p'_e) \bigtriangleup y \tag{4.35}$$

$$a_p v'_p \approx (p'_s - p'_n) \bigtriangleup x$$
 (4.36)

Si se renombran los coeficientes como $d_p = \Delta y/a_p$ y $d_p = \Delta x/a_p$ que corresponden a cada componente de u y v, y despejando las velocidades y reemplazando las expresiones se tiene [Fernández Oro, 2012]:

$$u_p = u_p^* + d_p (p'_w - p'_e) \bigtriangleup y$$
 (4.37)

$$v_p = v_p^* + d_p (p'_s - p'_n) \bigtriangleup x$$
 (4.38)

$$u_e = u_e^* + d_e (p'_p - p'_E) \bigtriangleup y$$
 (4.39)

$$v_n = v_n^* + d_n (p_p' - p_N') \bigtriangleup x \tag{4.40}$$

Las expresiones anteriores tienen una notación que está definida para celdas centradas en vectores. A continuación, se reescriben las ecuaciones de continuidad sobre la celda escalar P haciendo el punto P el punto central de volumen de control escalar [Fernández Oro, 2012].

$$u_e = u_e^* + d_e (p'_p - p'_E) \bigtriangleup y$$
 (4.41)

$$v_n = v_n^* + d_n (p'_p - p'_N) \bigtriangleup x$$
 (4.42)

También se pueden calcular los flujos másicos que se definen como el movimiento de la masa por unidad de tiempo en las distintas caras con los valores supuestos y sus correcciones según las siguientes ecuaciones:

$$F_e = \rho_e \, u_e \, \Delta y = \rho_e u_e^* \, \Delta \, y + \rho_e d_e \, \Delta \, y \big(p_p' - p_E' \big) \tag{4.43}$$

$$F_n = \rho_n u_n \Delta x = \rho_n u_n^* \Delta y + \rho_n d_n \Delta x (p_p' - p_N')$$
(4.44)

$$F_w = \rho_w u_w \Delta y = \rho_w u_w^* \Delta y + \rho_w d_w \Delta y (p'_w - p'_p)$$
(4.45)

$$F_s = \rho_s u_s \Delta x = \rho_s u_s^* \Delta x + \rho_s d_s \Delta x (p_s' - p_p')$$
(4.46)

(.

Introduciendo las ecuaciones se plantea que:

$$F_{e} - F_{w} + F_{n} - F_{s}$$

$$= \rho_{e}u_{e}^{*} \bigtriangleup y + \rho_{e}d_{e} \bigtriangleup y(p_{p}' - p_{E}') - \rho_{w}u_{w}^{*} \bigtriangleup y - \rho_{w}d_{w}$$

$$\bigtriangleup y(p_{w}' - p_{p}') + p_{n}v_{n}^{*} \bigtriangleup x + \rho_{d}d_{n} \bigtriangleup x(p_{p}' - p_{N}') - \rho_{s}v_{s}^{*}$$

$$\bigtriangleup x - \rho_{s}d_{s} \bigtriangleup x(p_{s}' - p_{p}') = 0$$

$$(4.47)$$

Se obtiene la ecuación de corrección de la presión p'p:

$$\underbrace{\underbrace{(\rho_e d_e \bigtriangleup y + \rho_w d_w \bigtriangleup y + \rho_s d_s \bigtriangleup x)}_{a_p} p'_p}_{- \underbrace{(\rho_w d_w \bigtriangleup y)}_{a_w} p'_w} p'_p = \underbrace{(\rho_e d_e \bigtriangleup y)}_{a_E} p'_E}_{- \underbrace{(\rho_w d_w \bigtriangleup y)}_{a_w} p'_w} + \underbrace{(\rho_n d_n \bigtriangleup x)}_{a_N} p'_N + \underbrace{(\rho_n d_n \bigtriangleup x)}_{a_s} p'_s}_{- \underbrace{(\rho_e u^*_e \bigtriangleup y - \rho_w u^*_w \varDelta y + \rho_n v^*_n \varDelta x - \rho_s v_s \varDelta)}_{F^*_e - F^*_w + F^*_n - F^*_s}} = 0$$

$$(4.48)$$

Que puede ser expresada como:

$$a_p p'_p = \sum_{c.v.} a_{c.v.} p'_{c.v.} + b$$
 (4.49)

Donde $a_E = \rho_e d_e \triangle y$, $a_w = \rho_w d_w \triangle y$, $a_N = \rho_s d_s \triangle x$ y el termino fuente es la suma de los flujos masicos de los campos de velocidad sin corregir $b = F_e^* - F_w^* + F_n^* - F_s^*$

La ecuación de corrección de presión es la manera que se utiliza para acoplar los campos de presión con los campos de velocidad y estos además satisfagan la ecuación de continuidad y de conservación de momento. Como el método se basa en un campo de presión supuesto y que este se utilice para resolver la ecuación de momento, el campo de velocidades no cumplirá la ecuación de continuidad. El termino b usado en la ecuación de corrección de presión representa el desequilibrio en la continuidad que aparece al utilizar campos de velocidad supuestos u* y v* incorrectos. La ecuación de corrección corrige la presión y los campos de velocidad para que el campo resultante cumpla la ecuación de continuidad. Esto implica que la ecuación de momento deje de cumplir por lo que el proceso resulta iterativo hasta que los campos de velocidad y presión cumplan ambas ecuaciones y converjan [Fernández Oro, 2012].

4.2 DOMINIO COMPUTACIONAL Y GRID

Para el modelado por el método CFD, lo primero que se debe definir es el tamaño del dominio numérico. Las dimensiones están sujetas considerando que las fronteras estén lo suficientemente lejanas al modelo para no provocar interferencia al flujo ni alteraciones en los resultados, además, se debe generar un dominio que no tenga un tamaño excesivo para que no implique un gran costo computacional. Las fronteras del dominio se clasifican según su función, las usadas en ANSYS

FLUENT se conocen como: de entrada (inlet), salida (outlet), paredes (wall) y simétricas (symmetry).

Después de establecer los límites del dominio y clasificar las fronteras se requiere que este se divida en varias partes llamados volúmenes finitos, sobre los cuales se imponen las ecuaciones a ser resueltas, a esto se le conoce como malla o grid.

Respecto a la malla, cerca de las paredes se requiere una malla más refinada debido a que en éstas existen variaciones fuertes de las propiedades del fluido. La altura de la primera celda está relacionada con el parámetro Y⁺ (Y plus) de la ley de la pared (que se presenta en el inciso 4.5) y está relacionado con qué parte de la capa límite se quiere simular, por ejemplo, para modelar la capa viscosa se recomienda un valor de Y⁺ menor a 5. Además, se recomienda que la malla esté alineada con el sentido del flujo y el cambio de tamaños de las celdas sea suave para evitar problemas de difusión.

Existen diferentes tipos de mallas, como las estructuradas y no estructuradas de las Figura 4-4 y Figura 4-5 respectivamente. La malla estructurada es útil cuando se tienen modelos con formas rectas, simples y con pocos elementos, lo que en pocas ocasiones sucede. Por el contrario, la malla no estructurada tiene la cualidad de adaptarse a cualquier forma, aunque suele ser menos estética.

Figura 4-4 Ejemplo de malla estructurada [Sánchez, 2020].

Figura 4-5 Ejemplo malla no estructurada [Sánchez, 2020].

Se debe garantizar la independencia de los resultados en relación con la malla, esto se logra si los resultados no se alteran de forma considerable al momento de que la malla este más refinada, de ahí la necesidad de requerir tres mallados distintos, con diferente número de celdas y los tres deben converger aproximadamente al mismo valor, así se garantiza que el resultado es independiente del mallado.

Condiciones de frontera usuales:

- Inlet: Es por donde el flujo ingresa al dominio, por lo cual se deben proporcionar los valores de velocidad del viento y porcentaje de intensidad de la turbulencia.
- Outlet: Son las condiciones de salida del flujo, para los casos de estudio el fluido tendrá una presión de salida de cero.
- Wall: La condición wall, en el dominio define los limites por donde va a transitar el fluido. Cerca de las paredes las fuerzas viscosas son dominantes, por lo que se aconseja que las paredes estén lejos del modelo, para no interferir en los cálculos.

4.3 MODELADO DE LA TURBULENCIA.

La turbulencia es el fenómeno producido por un fluido en el que se generan vórtices individuales, los cuales son aleatorios por lo que no pueden ser representados por modelos matemáticos y deben ser modelados con métodos aproximados, que dependiendo de la precisión que se necesite será su costo computacional.

Los métodos actuales de solución para el modelado de la turbulencia son, el método (DNS) que es el método de solución directa por sus siglas en inglés, (DES) Detached Eddy Simulation, (LES), Large Eddie Solution y la solución que se usará para el caso de estudio que es (RANS) por sus siglas en inglés, Reynols Averaged Navier Stokes. [Sánchez, 2020]

4.4 SIMULACIONES RANS Y URANS

A pesar de las limitaciones del enfoque RANS por no ser el más preciso, este método es el que más se ha utilizado en aplicaciones de ingeniería debido al bajo costo computacional y al desarrollo y mejora de modelos de turbulencia. Los modelos de turbulencia más comunes se clasifican en función del número de ecuaciones de transporte adicionales que se deben resolver junto con las ecuaciones de flujo. El enfoque RANS se basa en la suposición hecha por Boussinesq (1877) en la que los esfuerzos de Reynolds pueden ser proporcionales a las tasas medias de deformación (similar a la ley de viscosidad de Newton) [Sánchez, 2020].

Para las simulaciones por el método RANS las variables del flujo, velocidad (U) y presión (p) de las ecuaciones de Navier Stokes se descomponen:

$$U(x,t) = \overline{U}(x) + U'(x,t)$$
(4.50)

$$p(x,t) = \bar{p}(x) + p'(x,t)$$
 (4.51)

donde $\overline{U}(x)$ es la media de la velocidad y U'(x, t) la parte fluctuante de la velocidad. $\overline{U}(x)$ puede ser obtenido por el promedio en el tiempo, como se muestra en las ecuaciones siguientes.

$$\overline{U}(x) = \lim_{T \to \infty} \frac{1}{T} \int_{t}^{t+T} U(x,t) dt$$
(4.52)

$$\overline{U}(x) = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} U(x, t)$$
(4.53)

donde *t* es el tiempo, *T* es el intervalo promedio y *N* es el número de celdas que debe ser lo suficientemente grande para eliminar los efectos de las fluctuaciones [Haque, 2015]. La ecuación de RANS para flujo estacionario se puede obtener como sigue:

$$\nabla \cdot \overline{U} = 0 \tag{4.54}$$

$$\frac{\partial \overline{U}}{\partial t} + \nabla \cdot (\overline{U}\overline{U}) = -\frac{1}{\rho}\nabla \overline{p} + \vartheta \nabla^2 \overline{U} - \frac{1}{\rho}\nabla \cdot \tau^R$$
(4.55)

La que es similar a la ecuación de Navier Stokes, con excepción del nuevo termino τ^{R} , que es conocido como el tensor de esfuerzos de Reynolds.

$$\tau^{\mathrm{R}} = -\rho(\overline{U'U'}) = -\begin{pmatrix} \rho \,\overline{u'u'} & \rho \,\overline{u'v'} & \rho \,\overline{u'w'} \\ \rho \,\overline{v'u'} & \rho \,\overline{v'v'} & \rho \,\overline{v'w'} \\ \rho \,\overline{w'u'} & \rho \,\overline{w'v'} & \rho \,\overline{w'w'} \end{pmatrix}$$
(4.56)

Al resolver el sistema se determinan las tres componentes de la velocidad (u, v, w), la presión y las seis componentes del tensor de tensión de Reynolds ($-\rho (\overline{U'U'})$). Sin embargo, se tiene una ecuación continuidad y tres ecuaciones de momento para resolver, por tanto, el sistema no tiene solución. Se requieren seis ecuaciones más para solucionar el sistema por lo que se recurre al modelado de turbulencias. Este número de incógnitas se puede reducir de seis a uno mediante la hipótesis de Boussinesq. En 1877 Boussinesq propuso que los esfuerzos de Reynolds podrían ser proporcionales a las tasas medias de deformación, se presumió que existe una relación o analogía entre los elementos moleculares y viscosidad turbulenta [Haque, 2015]. Desde entonces, se pueden encontrar enormes aplicaciones de esta hipótesis en varios campos de CFD lo que arroja resultados razonables para un gran número de flujos. En el enfoque de la viscosidad parásita de Boussinesq, el tensor de tensión de Reynolds se puede relacionar con la velocidad media gradiente de la siguiente manera:

$$\tau^{R} = -\rho(\overline{U'U'}) = \mu_{T}[\nabla\overline{U} + (\nabla\overline{U})^{T}] - \frac{2}{3}\rho k I$$
(4.57)
(4.58)

$$k = \frac{1}{2}\overline{U'\cdot U'}$$

donde $\frac{1}{2}(\nabla \overline{U} + (\nabla \overline{U})^T)$ es el tensor promedio de velocidad y se denota en forma matricial, *I* es la matriz identidad, *K* es la energía turbulenta por unidad de masa y μ_T es la viscosidad turbulenta de vórtices. Esta última se requiere para hacer que la ecuación de flujo estacionario U-RANS tenga una solución. [Haque, 2015]

4.4.1 Modelo K-ε

Es un modelo de dos ecuaciones, donde *K* es la energía cinética y ε es la tasa de disipación; son históricamente los modelos de turbulencia más utilizados en aplicaciones industriales de CFD. Se resuelven dos ecuaciones de transporte y se modelan las tensiones de Reynolds utilizando el enfoque de viscosidad de vórtices. El modelo *k*- ε estándar en ANSYS Fluent, es de este tipo y se ha convertido en el más usado para los cálculos prácticos de flujo en ingeniería, desde la época en que fue propuesto [Launder & Spalding, 1972]. La robustez, la economía y su precisión razonable, para una amplia gama de flujos turbulentos, explican su popularidad en simulaciones de transferencia de calor y flujo industrial.

El inconveniente de algunos modelos k- ε es poca su sensibilidad a gradientes de presión adversos. Por lo general, predicen una separación retardada y reducida en relación con las observaciones. Esto puede resultar en evaluaciones de diseño demasiado optimistas para los flujos que se separan de las superficies lisas. Por lo que el modelo k- ε no se utiliza mucho en aerodinámica externa. Se recomienda utilizar el modelo k- ε en combinación con el tratamiento de pared mejorado (EWT). Por lo general, para casos donde el flujo se separa bajo gradientes de presión adversos de superficies lisas, no se recomiendan los modelos k- ε .[Ahmad *et al.*, 2013]

La energía cinética de la turbulencia, y su tasa de disipación, se obtienen de las siguientes ecuaciones de transporte:

$$\frac{\partial}{\partial t}(\rho k) + \frac{\partial}{\partial x_i}(\rho k u_i) = \frac{\partial}{\partial x_j} \left(\left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_j} \right) + G_k + G_b - \rho \varepsilon - Y_M + S_k$$

$$\frac{\partial}{\partial t}(\rho \varepsilon) + \frac{\partial}{\partial x_i}(\rho \varepsilon u_j)$$
(4.60)

$$= \frac{\partial}{\partial x_j} \left(\left(\mu + \frac{\mu_t}{\sigma_{\varepsilon}} \right) \frac{\partial \varepsilon}{\partial x_j} \right) + \rho \ C_{1\varepsilon} \ S_e - \rho C_{2\varepsilon} \ \frac{\varepsilon^2}{k + \sqrt{\nu \ \varepsilon}} + \ C_{1\varepsilon} \ \frac{\varepsilon}{k} C_{3\varepsilon} G_b + S_{\varepsilon}$$

donde:

 G_k es la generación de energía cinética turbulenta debida a el promedio de los gradientes de velocidad.

 G_b es la generación de energía cinética turbulenta debido a la flotabilidad Y_M es la contribución de la dilatación fluctuante en turbulencia compresible a la tasa de disipación total.

$C_{1\varepsilon}, C_{2\varepsilon}, C_{3\varepsilon}$ son constantes

 S_k y S_{ϵ} : son términos definidos por el usuario.

4.4.2 Modelo *K*-ω

Kolmogorov, [1942] fue quien propuso el primer modelo de turbulencia de dos ecuaciones. Kolmogorov eligió la energía cinética de la turbulencia como uno de sus parámetros de turbulencia y Prandtl, [1945], modeló la ecuación diferencial que gobierna su comportamiento. El segundo parámetro fue la disipación por unidad de energía cinética de turbulencia, ω . En su modelo *k-w*, ω satisface una ecuación diferencial similar a la ecuación para *k*.

El modelo $k\omega$, donde ω es la tasa específica de disipación, ofrece varias ventajas si se compara con el modelo k- ε . La más destacada es que la ecuación puede ser integrada sin términos adicionales a través de la subcapa viscosa. Esto hace que la formulación de Y⁺ sea más robusta y se haga con el tratamiento de pared mejorado (EWT). Además, los modelos k- ω suelen ser mejores en predecir gradientes de presión en la capa límite del flujo y separaciones [Ahmad *et al.*, 2013].

La desventaja del modelo estándar k- ω , es que tiene una gran sensibilidad en la solución, esto dependiendo de los valores de flujo libre de k y ω fuera de la capa de corte. Por este motivo el uso del modelo k- ω estándar es generalmente no recomendado.[Ahmad *et al.*, 2013]

Las ecuaciones de transporte para el modelo k- ω vienen dadas por las siguientes dos ecuaciones:

$$\frac{\partial}{\partial t}(\rho k) + \frac{\partial}{\partial x_i}(\rho k u_i) = \frac{\partial}{\partial x_j} \left(\Gamma_k \frac{\partial k}{\partial x_j}\right) + G_k - Y_k + S_k$$
(4.61)

$$\frac{\partial}{\partial t}(\rho\omega) + \frac{\partial}{\partial x_i}(\rho\omega u_i) = \frac{\partial}{\partial x_j}\left(\Gamma_\omega \frac{\partial\omega}{\partial x_j}\right) + G_\omega - Y_\omega + S_\omega$$
(4.62)

En estas ecuaciones, G_k representa la generación de energía cinética de turbulencia debido a la media de los gradientes de velocidad; Gw representa la generación de ω ; Γ_k y Γ_ω representan la difusividad efectiva de K y ω , respectivamente; Y_k y Y_ω representan la disipación de K y ω debido a la turbulencia; y S_k y S_ω son términos definidos por quien utiliza el modelo.

4.4.3 Modelo SST de transición

El modelo de transición shear-stress transport (SST) por sus siglas en ingles que significan, modelo de transporte de esfuerzo cortante, fue desarrollado por Menter.

El modelo SST k- ω busca combinar la formulación robusta y precisa del modelo k- ω en la región cercana a la pared con la independencia del flujo del modelo k- ε lejos de la pared. Para lograr esto, el modelo k- ε es convertido con la formulación de un

modelo $k-\omega$. El modelo SST $k-\omega$ es similar a el modelo estándar $k-\omega$ pero incluye las siguientes diferencias [Ahmad *et al.*, 2013]:

- El modelo estándar k-ω y la transformación del modelo k-ε son multiplicadas por una función que combina ambos modelos y son agregados juntos. La función que combina los modelos es diseñada para ser un cerca de la región próxima a la pared, en esta condición se usa el modelo k-ω estándar, y sobre la superficie se usa el modelo k-ε.
- El modelo SST incorpora la difusión cruzada amortiguada, termino derivado en la ecuación de ω.
- La definición de la viscosidad turbulenta es modificada para tener en cuenta el transporte del esfuerzo cortante turbulento.
- Las constantes del modelo son diferentes[Ahmad et al., 2013].

Está basado en el acoplamiento de las ecuaciones de transporte con otras dos ecuaciones, una de la intermitencia y otra del comienzo del criterio de transición. En términos de la ecuación del número de Reynolds, se eligió el modelo SST de 4 ecuaciones para el modelado de los diferentes aeroestabilizadores debido a que presenta una buena precisión en los datos y un costo computacional bajo[Ahmad *et al.*, 2013].

$$\frac{\partial}{\partial t}(\rho k) + \frac{\partial}{\partial x_i}(\rho k u_i) = \frac{\partial}{\partial x_j} \left(\Gamma_k \frac{\partial k}{\partial x_j}\right) + G_k - Y_k + S_k$$

$$\frac{\partial}{\partial t}(\rho \omega) + \frac{\partial}{\partial x_i}(\rho \omega u_i) = \frac{\partial}{\partial x_j} \left(\Gamma_\omega \frac{\partial \omega}{\partial x_j}\right) + G_\omega - Y_\omega + D_{\omega +} S_\omega$$
(4.63)
(4.64)

En estas ecuaciones, G_k representa la generación de energía cinética de turbulencia debido a los gradientes de velocidad media. Gw representa la generación de ω . Γ_k y Γ_{ω} representan la difusividad efectiva de K y ω , respectivamente. Y_k y Y_{ω} representan la disipación de K y ω debido, a la turbulencia. S_k y S_{ω} son términos definidos por el usuario. D_{ω} representa el termino de difusión cruzada.

$$\Gamma_{k} = \mu + \frac{\mu_{t}}{\sigma_{k}}$$
(4.65)
$$\Gamma_{\omega} = \mu + \frac{\mu_{t}}{\sigma_{\omega}}$$
(4.66)

donde $\sigma_k y \sigma_w$ son los números turbulentos de Prandtt para $k y \omega$, respectivamente, μ_t es la viscosidad turbulenta y se calcula de la siguiente manera:

$$\mu_t = \frac{\rho k}{\omega} \frac{1}{\max\left[\frac{1}{a^*}, \frac{SF_2}{a_1\omega}\right]}$$
(4.67)

donde S es la magnitud del rango de tensión.

$$\sigma_{k} = \frac{1}{\frac{F_{1}}{\sigma_{k,1}} + \frac{1 - F_{1}}{\sigma_{k,2}}}$$
(4.68)

$$\sigma_{w} = \frac{1}{\frac{F_{1}}{\sigma_{w,1}} + \frac{1 - F_{1}}{\sigma_{w,2}}}$$
(4.69)

$$F_1 = \tanh(\phi_1^4)$$
 (4.70)

$$\phi_1 = min\left[max\left(\frac{\sqrt{k}}{0.09 \ \omega \ y}, \frac{500 \ \mu}{\rho \ y^2 \omega}\right), \frac{4\rho k}{\sigma_{\omega,2} D_{\omega}^{+} y^2}\right]$$
(4.71)

$$D^{+}_{\omega} = \max\left[2\rho \frac{1}{\sigma_{\varpi,2}} \frac{1}{\omega} \frac{\partial k}{\partial x_j} \frac{\partial \omega}{\partial x_j}, 10^{-10}\right]$$
(4.72)

$$F_2 = tanh(\phi_2^2)$$
 (4.73)

$$\phi_2 = \max\left[2 \frac{\sqrt{k}}{0.09\omega y}, \frac{500\mu}{\rho y^2 \omega}\right]$$
(4.74)

donde "y" es la distancia a la siguiente superficie.

4.5 MODELADO DEL FLUJO CERCA DE LA PARED

La ley de la pared sirve para modelar el comportamiento del flujo cerca de paredes (o fronteras de no deslizamiento) de la capa límite turbulenta en ausencia de una malla extremadamente densa. Con esta ley, se puede determinar la distancia necesaria de la primera celda del mallado para un valor de Y⁺ que se encuentre en la zona donde dominan las fuerzas viscosas y el fluido permanece estacionario (Y⁺ tiene un valor menor de 5). Esto es importante debido a que en esta zona los resultados son estables y el esfuerzo cortante permanece mayormente constante en toda su extensión y los esfuerzos viscosos son muy superiores a los esfuerzos turbulentos. En la Figura 4-6 se muestra la ley universal de la pared, dónde se pueden observar los rangos de Y⁺ para la subcapa viscosa, la capa de transición y la capa turbulenta. En los modelos numéricos presentados en este trabajo, se usaron valores de Y⁺ de ~2 (menor a 5), para garantizar que se simule en la región viscosa. En la ecuación (4.75) se presenta la formulación para determinar la altura de la primera celda adyacente a la pared en función de un Y⁺ dado.

 $Y = \frac{Y^{+} \mu}{\rho \, u_{*}}$ (4.75)

donde Y es la distancia a la primera celda, μ es la viscosidad dinámica del fluido, ρ es la densidad del fluido, u_* es la velocidad de fricción que está en función del esfuerzo cortante τ_w como

$$u_* = \sqrt{\frac{\tau_w}{\rho}} \tag{4.76}$$

donde

$$\tau_w = 0.5 C_f \rho V^2$$
 (4.77)

$$C_f = [2\log(Re) - 0.65]^{-2.3}$$
 (4.78)

$$Re = \frac{\rho V D}{\mu} \tag{4.79}$$

4.6 CONDICIONES DE FRONTERA

En general, se recomienda que la frontera superior debe estar lo más alejada posible del campo de flujo de interés para minimizar sus efectos en la solución. Frank *et al.*, [2007] recomiendan que la altura del dominio debe ser al menos cinco veces la altura del obstáculo más grande. Se recomienda establecer las fronteras laterales del tipo simétricas para mantener el flujo paralelo a los lados. Una condición de simetría significa que las velocidades normales a las fronteras se establecen en cero y se considera que los valores de todas las demás propiedades fuera del dominio son iguales a los valores en el nodo más cercano dentro del dominio [Versteeg y Malalasekera, 2007]. Para los casos de este estudio, se

tomarán como tipo pared debido a que la distancia de la frontera está lo suficientemente alejada del modelo y no afecta en los resultados. Finalmente, se recomienda establecer la frontera de salida (outlet) del tipo "outflow", para que el flujo de salida este completamente desarrollado (flujo difusivo normal de cero para todas las variables de flujo) [ANSYS, 2013].

5 SIMULACIONES DE CALIBRACIÓN

5.1 INTRODUCCIÓN

Cómo se ha mencionado, los modelos numéricos requieren generar un dominio y una malla apropiada, y configurar correctamente los parámetros del método de solución. Pero, además, para establecer un buen uso del método CFD, es necesario calibrar los modelos con estudios experimentales o con ensayos en túnel de viento y poder aplicarlos al estudio de los aeroestabilizadores. En este estudio, primero se estudiaron secciones simples (cilindros) y se compararon sus resultados con los obtenidos experimentalmente en el túnel de viento [Liaw, 2005]. Posteriormente se estudian con el método CFD las secciones de dos puentes atirantados: El Puente Kessock (Reino unido) y el puente La Concordia (México), y también los resultados se comparan con los de estudios experimentales y del túnel de viento. Finalmente, se usan estos modelos calibrados para estudiar el efecto de diferentes tipos estabilizadores.

El objetivo de la tesis es establecer parámetros de diseño para aeroestabilizadores laterales, a partir de encontrar las medidas optimas del deflector teniendo como variables el ancho del tablero, el alto de la sección y la geometría del aeroestabilizador. Con la elaboración de los modelos del cilindro circular, el cilindro cuadrado con una relación 4:1 y el puente Kessock en escala 1:40 [Liaw, 2005], y del puente La Concordia [Sánchez & Gómez, 2015], se busca adquirir la sensibilidad necesaria para hacer un correcto análisis de los coeficientes aerodinámicos. Después, con los modelos calibrados, se simulan diferentes dimensionamientos del deflector hasta encontrar el óptimo.

5.2 VALORES DE ENTRADA

Para los análisis realizados se establece un valor de densidad del aire

$$\rho = 1.225 \ kg/m^3$$
 (5.1)

y de la viscosidad dinámica

$$\mu = 1.7894 * 10^{-5} \frac{kg}{ms} \tag{5.2}$$

Para la fabricación de los modelos a escala es necesario usar parámetros adimensionales, como lo son el número de Reynolds y el número de Froude (Fr). El número de Froude se usa principalmente para escalar la velocidad real, y se define como:

$$Fr = \frac{V}{\sqrt{g * L}}$$
(5.3)

donde:

- V: velocidad
- g: Aceleración de la gravedad
- L: Longitud

Debido a que el número de Froude es adimensional, se puede relacionar directamente su valor a escala con el real (prototipo) mediante:

$$\frac{VR}{\sqrt{g * LR}} = \frac{VE}{\sqrt{g * LE}}$$
(5.4)

donde:

VR: Velocidad escala real

- VE: Velocidad a escala
- LR: Longitud real
- LE: Longitud a escala

Despejando:

$$\frac{LE}{LR} = \left(\frac{VE}{VR}\right)^2 \tag{5.5}$$

Despejando la velocidad real:

$$VR = VE * \left(\frac{LR}{LE}\right)^{0.5}$$
(5.6)

5.3 CILINDRO CIRCULAR

En este apartado se presenta la simulación de flujo en un cilindro circular de diámetro de 0.1m, con fines de calibración del método de CFD en dos dimensiones.

5.3.1 Dominio y malla

Se generó un dominio de un dominio bidimensional de 4m de ancho por 2m de alto, como se representa en la Figura 5-1. Se construyó una malla con 28399 elementos rectangulares y una densidad alta de elementos, cerca de la superficie de estudio, con el fin de garantizar el valor de Y⁺ de 2 para simular adecuadamente la región viscosa del fluido, como se explicó en el inciso 4.5.

Figura 5-1 Tamaño del dominio y condiciones de frontera[Liaw, 2005].

Figura 5-2 Malla cilindro circular.

5.3.2 Condiciones de frontera

Para este ejemplo los valores de entrada se definieron con velocidades de 0.365 m/s, 0.730m/s y 1.46m/s, que igualan a los valores empleados en el estudio de referencia [Liaw, 2005] en cuanto al número de Reynolds y así los resultados de las variables aerodinámicas sean comparadas con los resultados obtenidos por el autor. La turbulencia del flujo en la entrada se definió mediante los parámetros de intensidad de turbulencia y radio hidráulico, que para los casos de análisis fueron de 1% y 0.33m, respectivamente.

5.3.3 Configuración del solucionador CFD

Se usó el código ANSYS-FLUENT para resolver las ecuaciones 2D-RANS (Reynolds Averaged Navier Stokes, mediante el método de control de volumen). Para las ecuaciones de cierre se utilizó el modelo *k-w* estándar. Con el fin de poder comparar los resultados con los obtenidos por Liaw, [2005] se usaron esquemas de discretización espacial de segundo orden para las ecuaciones de momento, energía cinética y disipación turbulenta y una convergencia en los valores de 10⁻⁶. Se utilizaron los valores de Reynolds de 2500, 5000 y 10000.

Tabla 5-1 Velocidad y numero de Reynolds usados en el análisis

Re	V (m/s)
2500	0.365
5000	0.730
10000	1.460

5.3.4 Sensibilidad de la malla.

Para el análisis de sensibilidad de la malla, se analiza la variación del coeficiente de arrastre considerando tres refinados de malla (Tabla 5-2). En la Tabla 5-3 se muestra una comparación porcentual entre los coeficientes de arrastre de las mallas, las cuales no exceden el 5%. Se puede concluir que, para un caso práctico, con la malla 1 de 21494 elementos, se tendrá una buena aproximación al valor de coeficiente de arrastre

Tabla 5-2 Número de elementos por malla

Malla	Elementos
1	21494
2	28399
3	74447

Tabla 5-3 Comparación de los valores de coeficiente de arrastre respecto al número deelementos por malla

Re	Dif. malla 1-2	Dif. malla 1-3	Dif. malla 2-3
2500	0.35%	3.05%	3.41%
5000	4.98%	3.71%	1.23%
10000	1.52%	2.20%	0.67%

En la Tabla 5-4 se presenta la comparación con los valores de referencia de coeficiente de arrastre.

Tabla 5-4 Valores de referencia del coeficiente de arrastre

	CD (k-ε) Re 10000	CD (k-ε) Re 2500	CD (k-ε) Re 1000	Discretización
170000 elementos [Liaw, 2005]	1.42	1.54	2.05	Primer orden
300000 elementos [Liaw, 2005]	1.07	1.27	1.85	Primer orden

600000 elementos [Liaw, 2005]	1.03	1.24	1.83	Primer orden
Experimental (Zdravkovich, 1997)	1.1	0.9	1.03	Primer orden

En la Tabla 5-5 se comparan los valores de coeficiente de arrastre con los resultados obtenidos para la malla 3 que es la que tiene más elementos.

Tabla 5-5 Comparación de valores de coeficiente de arrastre para un número de Reynolds de10000

Elementos malla	CD Referencia	CD Calculado (k-ω) malla 3	Diferencia
170000	1.42		27%
300000	1.07	1 0227	3%
600000	1.03	1.0337	0%
Experimental	1.1		6%

Tabla 5-6 Comparación de valores de coeficiente de arrastre para un número de Reynolds de2500

Elementos malla	CD Referencia	CD Calculado (k-ω) malla 3	Diferencia
170000	1.54		31%
300000	1.27	1 0564	17%
600000	1.24	1.0504	15%
Experimental	0.9		-17%

Tabla 5-7 Comparación de valores de coeficiente de arrastre para un número de Reynolds de1000

Elementos malla	CD Referencia	CD Calculado (k-ω) malla 3	Diferencia
170000	2.05		47%
300000	1.85	1 0050	41%
600000	1.83	1.0959	40%
Experimental	1.03		-6%

De las tablas anteriores se puede concluir que con el método k- ω , para el cálculo del coeficiente de arrastre se tiene una buena aproximación a los datos experimentales, para números de Reynolds de 1000, 2500 y 10000, presentando una máxima diferencia del 17%, por lo que se puede concluir que el modelo ha sido bien calibrado.

5.3.5 Resultados

Se presentan los valores de coeficiente de arrastre para las diferentes mallas y diferentes velocidades empleados en la Tabla 5-8.

Malla Numero	Número de celdas por malla	CD (Re 1000)	CD (Re 2500)	CD (Re 5000)	CD (Re 10000)
1	21494	1.0437	0.9421	0.9388	0.9708
2	28399	1.0350	0.9520	0.9994	0.9873
3	74447	1.0959	1.0564	1.0406	1.0337

Tabla 5-8 Valores de coeficiente de arrastre para diferentes mallas y diferentes velocidades

En la Figura 5-3 y Figura 5-4 se muestran el coeficiente de arrastre calculado y se compara con los resultados obtenidos por Liaw, [2005] para coeficientes de arrastre CFD usando el método k- ε de primer orden (Los valores de coeficiente de arrastre y sustentación obtenidos por Liaw, [2005], fueron obtenidos por el método k- ε , mientras que, para los datos experimentales, estos fueron obtenidos por Zdravkovich, [1997]. Se observa en la gráfica que, para los valores calculados en este documento con el método k- ω resulta más preciso, ya que se obtienen resultados cercanos a los resultados experimentales, sobre todo para números de Reynolds altos. Esto se debe a que a valores altos del número de Reynolds el valor del coeficiente de arrastre tiende a converger.

Figura 5-3 Valores de coeficiente de arrastre con el método k- ω estándar obtenidos, comparados con valores de coeficiente de arrastre con el método k- ϵ (Primer orden) y experimentales [Liaw, 2005].

Figura 5-4 Valores de coeficiente de arrastre con el método k- ω estándar obtenidos, comparados con valores de coeficiente de arrastre con el método k- ϵ (Segundo orden) y experimentales [Liaw, 2005].

En las gráficas de la Figura 5-5, se muestra que, a partir de un valor determinado de elementos, el coeficiente de arrastre tiende a mantenerse constante, por lo que se garantiza que el número de elementos de la malla satisface la convergencia de los coeficientes.

Figura 5-5 Valores calculados de coeficiente de arrastre con el método k-ω estándar vs número elementos de la malla

Se concluye que, para el caso, los valores obtenidos en este trabajo se aproximan más a los resultados experimentales que los usados en la tesis de referencia, teniendo en cuenta que para esta se usó el modelo k- ε mientras que en nuestro caso se usó el modelo k- ω .

5.4 CILINDRO RECTANGULAR

Para continuar con la validación del método, se reprodujo el flujo en un modelo de un cilindro rectangular con relación 4:1 entre la base y la altura. Se calculó su coeficiente de arrastre y se comparó con el calculado por diferentes autores.

5.4.1 Dominio y malla.

Las paredes del dominio que se muestra en la Figura 5-6 se encuentra lo suficiente alejadas del modelo para garantizar la no interferencia con los resultados.

Figura 5-6 Dominio.

Se utiliza una malla con una alta densidad de celdas cerca del modelo como se aprecia en la Figura 5-7. La malla es del tipo no estructurada, con una menor densidad de celdas lejos del modelo.

Figura 5-7 Malla (31470 elementos).

5.4.2 Condiciones de frontera.

Se establecen como valores entrada las velocidades que generan los mismos números de Reynolds que se usan en los documentos de referencia con el fin de ser comparados con los valores calculados en este documento. El cálculo del número de Reynolds se hizo de la siguiente manera:

$$V = \frac{Re \ \mu}{\rho \ D} \tag{5.7}$$

Para las paredes del dominio se usa la condición Wall del programa y para la salida se usa una presión de 0. Se usa una intensidad de turbulencia de 1% y un radio hidráulico de 0.375m, como se muestra en el siguiente calculo:

$$R_H = \frac{Am}{Pm} = \frac{1m * 3m}{1m + 1m + 3m + 3m} = 0.375m$$
(5.8)

donde:

A_m: Área mojada

P_m: Perímetro mojado

5.4.3 Configuración del solucionador.

Para resolver las ecuaciones de turbulencia se utilizó el modelo k- ω estándar. Para las ecuaciones de momento, energía cinética y disipación turbulenta se usaron esquemas de discretización espacial de segundo orden con el método SIMPLE, y una convergencia en los valores de 10⁻⁶.

5.4.4 Resultados.

Los resultados obtenidos con diferentes velocidades y dos mallas con diferente número de elementos se aprecian en la Tabla 5-9, que además comparan los valores de CD con el fin de demostrar que con una malla con cerca de 31000 elementos se puede tener una buena aproximación a los valores esperados.

	Velocidad	Número de elementos en la malla				
Reynolds	(m/s)	CD (31470)	CD (49118)	CD (100911)	Dif. Max.	
2500	0.365	1.1976	1.2041	1.1631	3.53%	
5000	0.73	1.1621	1.1748	1.3025	12.08%	
10000	1.46	1.1529	1.1677	1.1133	4.89%	
22000	3.2129	1.1011	1.1538	1.1559	4.98%	
42800	6.2505	1.1029	1.1461	1.1577	4.97%	
60000	8.7624	1.1066	1.1443	1.1582	4.66%	

Tabla 5-9 Comparación de valores de coeficiente de arrastre con las dos mallas propuestas

Se aprecia en la tabla que la diferencia máxima entre el valor máximo de CD contra el valor mínimo de CD, para los diferentes números de Reynolds en las tres mallas, es de 12%, por lo que una malla con pocos elementos dependiendo del análisis que se requiera puede tener una buena aproximación con el beneficio de tener menos consumo de recursos computacionales. Además, con este cálculo se garantiza la independencia de los resultados respecto a la malla. La Tabla 5-10 muestra los resultados obtenidos por diferentes autores para un cilindro rectangular con una relación 4:1, que es igual al que se analizó.

Tabla 5-10 Valores calculados por diferentes autores para un cilindro rectangular de relación4:1[Liaw, 2005]

Número de Reynolds	Coeficiente de arrastre	Análisis	Autor
100000	1.30	Numérico	Yu 1998
60000	1.21	Experimental	Nakaguchi 1968
42800	1.15	Experimental	Otsuki 1978
22000	1.10	Numérico	Shimada 2002
10000	1.23	Numérico	Tamura 1996

A partir de los valores de la Tabla 5-10 se procede a hacer una comparación con los valores obtenidos en este documento Tabla 5-11. La comparación se hace únicamente con la malla de 100911 debido a que es la que más celdas tiene y por lo tanto se espera que sea la más precisa.

Re	CD Referencia (Tabla 5-10)	CD calculado (malla 100911)	Diferencia CD Referencia vs CD calculado (malla 100911)
10000	1.23	1.11	10%
22000	1.10	1.16	-5%
42800	1.15	1.16	-1%
60000	1.21	1.16	4%

Tabla 5-11 Comparación de valores de coeficiente de arrastre de diversos autores y loscalculados.

Se puede concluir que, para el cilindro rectangular, con diferentes números de Reynolds se tiene una buena aproximación al valor del coeficiente de arrastre comparándolo con el obtenido por otros autores, además, se comprueba que los valores calculados por el método CFD para los coeficientes aerodinámicos son fiables y no representan variaciones considerables.

6 SIMULACIONES EN TABLEROS DE PUENTES

6.1 INTRODUCCIÓN

Con el objeto de validar las simulaciones de CFD en tableros de puentes, se presenta la simulación de dos puentes atirantados que tienen sección compuesta. En primer lugar, se presenta el análisis hecho al tablero del puente Kessock [Liaw, 2005], y luego se presenta el análisis del puente La Concordia [Sánchez & Gómez, 2015]. Ambas simulaciones se comparan con resultados obtenidos de estudios en túnel de viento

6.2 PUENTE KESSOCK

6.2.1 Descripción puente Kessock

El Puente Kessock es un Puente atirantado localizado en el norte de Escocia (Figura 6-1 y Figura 6-2). La longitud total del puente es de 105.2m, su claro principal es de 240 m y el ancho del tablero es de 21.9 m con sección compuesta. El claro principal es soportado por 64 cables en disposición de arpa que se extienden desde cuatro pilones principales, de 45 m de alto, de hormigón armado. Su ubicación geográfica lo hace vulnerable al viento[Liaw, 2005].

Figura 6-1 Puente Kessock y ubicación en el reino unido [Brock, 2006].

Figura 6-2 Vista en perfil puente Kessock.[Liaw, 2005].

6.2.2 Sección del tablero

En busca de realizar una calibración con un modelo más aproximado, a la sección transversal del puente, se utilizó el análisis hecho por Liaw, [2005] al puente Kessock, donde se aplica el método CFD, y se hicieron comparaciones con el estudio en un túnel de viento y mediante el método CFD. En la Figura 6-3 se muestra

la sección real tablero del puente, y en la Figura 6-4 la sección simplificada y usada para el análisis por el método CFD, en escala 1:40.

Figura 6-4 Sección transversal puente Kessock, escala 1:40.

6.2.3 Dominio

En la Figura 6-5 se muestra el dominio generado para el estudio del tablero del puente Kessock a escala de 1:40. Las dimensiones del dominio computacional son de 2m de ancho por 4m de largo.

Figura 6-5 Dominio puente Kessock.

6.2.4 Malla

La malla es no estructurada con 444688 celdas con una resolución mayor en las paredes. Esta malla o grid se generó siguiendo las recomendaciones hechas por Frenke, [2007] y Tominaga, [2008] para simulaciones de este tipo. De esta manera se garantiza que el dominio no tenga incidencia en los resultados y a su vez se puedan ver los vórtices producidos por la sección. En la Figura 6-6 se muestra una vista general de la malla generada.

Para la modelación del puente Kessock, se usaron 3 mallas, la 1 con 139032 elementos, la 2 con 324692 y la 3 con 444688 elementos.

6.2.5 Condiciones de frontera

Para los valores de entrada (inlet), se agregó una velocidad de entrada respecto al eje X, de 6.5 m/s y respecto al eje Y, de 0, condiciones usadas para un ángulo de ataque de 0°, una intensidad de turbulencia de 1% y un radio hidráulico de 0.33 m. Las paredes del dominio se definen como tipo Wall, las cuales son estacionarias y se modelan sin deslizamiento, lo que implica que la velocidad en la pared es de 0. Las condiciones de salida se simulan con una presión barométrica de 0. Se elige el modelo de turbulencia de cuatro ecuaciones SST, con el método de solución SIMPLE de segundo orden. Se hace un refinado mayor de las celdas en la zona cercana a la sección que se está modelando, con el fin de garantizar un Y+ menor a 5, para que el análisis sobre la superficie esté en la región donde el fluido se comporta como un fluido viscoso y con esto tener mejores resultados.

6.2.6 Parámetros computacionales

Las ecuaciones del campo fluido se resolvieron mediante las ecuaciones de Navier-Stokes con promedios de Reynolds (3D-RANS) mediante el método de control de volumen. Para las ecuaciones de cierre se utilizó el modelo k-ɛ realizable [Shih, 1994]. Se usaron esquemas de discretización espacial de segundo orden para las ecuaciones de momento, energía cinética y disipación turbulenta. Se utiliza el algoritmo SIMPLE [Patankar and Spalding, 1972] para el acoplamiento presión-velocidad entre las ecuaciones de momento y continuidad. De acuerdo con las recomendaciones de las guías del COST [Frenke *et al.*, 2007], los residuales escalados se establecieron en valores de 10⁻⁶.

6.2.7 Resultados y comparación

En nuestra simulación del puente Kessock se usó un modelo a escala 1:40 de la sección transversal; la simulación se hizo usando el método SST de 4 ecuaciones y una discretización de segundo orden con la longitud representativa tomada igual al ancho del modelo proyectado en el eje X. Se analizó el modelo con una velocidad de 6.5 m/s misma que la utilizada por Sánchez & Gómez, [2015]. Se usa la misma velocidad con la finalidad de poder comparar los resultados fácilmente y adicional a esto, esta velocidad garantiza un flujo turbulento.

En la Tabla 6-1 se muestran los números de elementos usados en cada malla, para determinar la sensibilidad de la misma.

Numero de malla	Número de elementos por malla	CD	CL
1	139032	0.1623	-0.2618
2	324692	0.1621	-0.2332
3	444688	0.1595	-0.2488

Tabla 6-1 Malla con número de elementos y coeficientes aerodinámicos CD y CL calculados.

En la Tabla 6-1 se muestran los resultados de coeficiente de arrastre (CD) y coeficiente de sustentación (CL), obtenidos a partir de las diferentes simulaciones con mallas. Se aprecia que, a pesar de la diferencia de más de tres veces entre el número de elementos entre la malla 1 y la malla 3, los resultados no varían significativamente, por lo que se demuestra la independencia de los resultados.

En la Tabla 6-2 se presentan los coeficientes de sustentación y arrastre obtenidos por Liaw, [2005] con diferente refinamiento de malla, y se compara con los de un estudio en túnel de viento. Se puede observar que para el CL hay una apreciable diferencia entre el túnel y los modelos de CFD, sin embargo, en otro estudio se reportó para el puente Kessock un coeficiente de sustentación de -0.25, el cual es más parecido a las simulaciones de CFD [Hay, 1992]. Las mallas de referencia usadas por Liaw, en las cuales para la malla 1, malla 2 y malla 3, tienen 1.9 millones, 2.7 millones y 3.1 millones de elementos, respectivamente.

Tabla 6-2 Valores calculados por [Liaw, 2005] para coeficiente arrastre y sustentación con diferentes tipos de mallas

	CL	CD
Túnel de viento [Liaw, 2005]	-0.0525	0.1813
Malla 1 Referencia [Liaw, 2005]	-0.3075	0.1510
Malla 2 Referencia [Liaw, 2005]	-0.2982	0.1505
Malla 3 Referencia[Liaw, 2005]	-0.3006	0.1501

La Tabla 6-3 muestra la comparación del valor de CL calculado en el presente estudio con la malla 3, contra el valor de CL calculado por Liaw, [2005] y Hay, [1992], donde se aprecia una diferencia porcentual menor al 24% en las diferentes configuraciones de malla por CFD, mientras que, para el caso del túnel de viento, se presenta una gran diferencia de 374%. Por otra parte, se observa una buena aproximación con los valores calculados por Hay (1992), con una diferencia menor al 1%, por lo que se considera que el valor calculado tiene una buena precisión.

 Tabla 6-3 Comparación del coeficiente de sustentación calculado vs coeficientes de sustentación de referencia para el puente Kessock

	CL (valor de referencia)	CL (malla 3, calculado)	Diferencia
Túnel de viento [Liaw, 2005]	-0.0525	0.0400	-374%
Malla 1 Referencia [Liaw, 2005]	-0.3075	-0.2400	19%

Malla 2 Referencia [Liaw, 2005]	-0.2982	17%
Malla 3 Referencia[Liaw, 2005]	-0.3006	17%
Referencia [Hay, 1992]	-0.2500	0.5%

La Tabla 6-4 muestra la comparación del coeficiente de arrastre CD, calculados por el autor para la malla 3, contra los valores de CD, calculados por Liaw, [2005]. A diferencia de los resultados obtenidos para el coeficiente de sustentación, los valores de coeficiente de arrastre tienen menos divergencia, y se puede ver una diferencia máxima del 8%, en el valor de CD para los valores obtenidos por CFD, mientras que, para el valor de túnel de viento, se obtiene una diferencia de 10%, lo que es una buena aproximación. Solo se comparan los valores con la malla 3 que es la de más elementos y por lo tanto de la que más precisión se espera.

Se puede concluir que los cálculos hechos por el autor para calibrar el modelo usando el tablero del puente Kessock comparados con los hechos por Liaw, [2015] tienen una buena aproximación.

	CD (valor de referencia)	CD (malla 3, calculado)	Diferencia
Túnel de viento [Liaw, 2005]	0.1813		10%
Malla 1 Referencia [Liaw, 2005]	0.1510	0.1623	-7%
Malla 2 Referencia [Liaw, 2005]	0.1505		-8%
Malla 3 Referencia[Liaw, 2005]	0.1501		-8%

Tabla 6-4 Comparación el coeficiente de arrastre, Puente Kessock

6.3 PUENTE LA CONCORDIA

6.3.1 Descripción del puente La Concordia

El puente atirantado "La Concordia" se encuentra actualmente en construcción en el sur de México en el estado de Chiapas. Tiene una longitud total de 703 m distribuidos en 7 claros; uno de 31 m, cuatro más de 48 m, otro de 35 m y un claro principal de 348 m. Tiene dos carriles de 3.50 m de ancho cada uno y un tablero de ancho de 13 m con sección

compuesta.[Sánchez & Gómez, 2015]

Figura 6-7 vista de perfil y sección transversal del puente La Concordia [Sánchez & Gómez, 2015]

6.3.2 Sección del puente La Concordia escala 1:25.

Los coeficientes de sustentación y arrastre se comparan con valores obtenidos en túnel de viento y simulaciones de CFD [Sánchez & Gómez, 2015]. En la Figura 6-7 se muestra la sección transversal y un corte longitudinal con las dimensiones principales del puente; se aprecia que el puente es de sección compuesta con dos trabes principales con un peralte de 183 cm. En la Figura 6-8 se aprecian las dimensiones del modelo usado, tanto para el modelo CFD como para el túnel de viento.

Figura 6-8 Sección transversal escala 1:25 puente La concordia [Sánchez & Gómez, 2015]

6.3.3 Dominio

Para las simulaciones se propone el dominio que se muestra en la Figura 6-9 con el objetivo de que los vórtices generados en las paredes no afecten los valores esperados.

Figura 6-9 Dominio, puente La concordia

6.3.4 Malla.

Se elaboran mallas con celdas formadas por cuadriláteros, con un mayor número de elementos cerca de la superficie de estudio con el fin de cumplir los valores del Y⁺ y garantizar trabajar en la región viscosa. La Tabla 6-7 muestra la diferencia porcentual entre los valores de coeficiente de arrastre CD calculados por el autor, contra los calculados por Sánchez y Gómez, [2015] los cuales para la malla 3, que es la que más elementos tiene, presenta una diferencia de solo el 8%, por lo que se considera que el modelo está bien calibrado y los resultados son coherentes.

Tabla 6-5 Enumeración de la malla por número de elementos

Numero de malla	Número de elementos por malla
1	115604
2	190678
3	393191

La Tabla 6-5 muestra el número de elementos usados por el autor para cada número de malla, eso con la finalidad de determinar la sensibilidad de esta.

6.3.5 Condiciones de frontera

Para los valores de entrada (inlet), se consideró una velocidad de entrada respecto al eje X, de 6.5 m/s y respecto al eje Y de 0, condiciones usadas para un ángulo de ataque de 0°, una intensidad de turbulencia de 5% y un radio hidráulico de 0.27 m. Las paredes del dominio se definen como tipo Wall, las cuales son estacionarias y se modelan sin deslizamiento, por lo que la velocidad en la pared es de 0. Las condiciones de salida se consideran con una presión barométrica de 0.

Se elige el modelo de turbulencia de cuatro ecuaciones SST, con el método de solución SIMPLE de segundo orden. Con el fin de garantizar un Y⁺ menor a 5, que el análisis este en la zona viscosa y tener mejores resultados se hace un refinado mayor en la zona cercana al tablero.

6.3.6 Parámetros computacionales.

Se calcula con una velocidad de 6.5m/s, que es una magnitud suficiente para representar un comportamiento turbulento. Para el caso de estudio se usa el método de transición SST de cuatro ecuaciones, y se usaron esquemas de discretización espacial de segundo orden para las ecuaciones de momento, energía cinética y disipación turbulenta, así como el algoritmo SIMPLE. Además, para una buena precisión en los resultados se propuso una convergencia en los valores de 10⁻⁶.

6.3.7 Resultados y comparaciones.

Debido a que el puente La Concordia será el puente con el cual se evaluará el aeroestabilizador que tenga un mejor desempeño, es importante obtener los valores de coeficiente de arrastre y coeficiente de sustentación sin los aeroestabilizadores, para que sean comparados al momento de usar los aeroestabilizadores. En Tabla 6-6 se muestran los valores obtenidos por Sánchez y Gómez, [2015], los cuales corresponden a una velocidad de 6.5m/s con un modelo escala 1:25.

Tabla 6-6 Valores de referencia calculados del coeficiente de arrastre y sustentaciónSánchez & Gómez, [2015] para una velocidad de 6.5 m/s.

Estudio o referencia	CD	CL
Modelo CFD de 160000 elementos [Sánchez & Gómez, 2015]	0.192	-0.145
Túnel de viento [Sánchez & Gómez, 2015]	0.199	-0.095

Tabla 6-7 Comparación de valores de coeficiente de arrastre calculados vs coeficiente de arrastre de referencia de Sánchez y Gómez, [2015] calculados por CFD

Numero de malla	CD calculado	CD (CFD) Referencia Tabla 6-6	Diferencia
1	0.2091		8%
2	0.2088	0.192	8%
3	0.2066		7%

La Tabla 6-8 muestra los resultados del coeficiente de sustentación (CL) que tienen una diferencia de 23% para la malla 3 respectos a los valores obtenidos por Sánchez y Gómez, [2015].

Numero de malla	CL calculado	CL (CFD) Referencia Tabla 6-6	Diferencia
1	-0.1894		23%
2	-0.1832	-0.145	21%
3	-0.1773		18%

Tabla 6-8 Comparación de valores de coeficiente de arrastre calculados vs coeficiente de sustentación de referencia de [Sánchez & Gómez, 2015]

Respecto a los valores de la Tabla 6-9, para valores obtenidos mediante el túnel de viento, contra los valores por CFD calculados por el autor, hay una buena aproximación, y una diferencia de máximo 5%, por lo que se obtuvo valores más cercanos a los calculados mediante de CFD por Sánchez y Gómez, [2015].

Tabla 6-9 Comparación de valores de coeficiente de arrastre calculados vs coeficiente de
arrastre de referencia de Sánchez y Gómez, [2015] calculados en el túnel de viento.

Numero de malla	CD calculado	CD (Túnel de viento) Tabla 6-6	Diferencia
1	0.2091		5%
2	0.2088	0.199	5%
3	0.2066		4%

Para el caso del coeficiente de arrastre en el túnel de viento, (ver Tabla 6-10) contra los calculados por CFD, la diferencia máxima es de 50%, por lo que es una diferencia grande, entonces se puede determinar que no hay una buena correlación entre el coeficiente de arrastre calculado por CFD contra el calculado en el túnel de viento para el puente Kessock.

Tabla 6-10 Comparación de valores de coeficiente de arrastre calculados vs coeficiente de
arrastre de referencia de [Sánchez & Gómez, 2015] calculados por Túnel de viento.

Numero de malla	CL calculado	CL (Túnel de viento) Tabla 6-6	Diferencia
1	-0.1894		50%
2	-0.1832	-0.095	48%
3	-0.1773		46%

Se concluye que las simulaciones hechas en el presente estudio replican los resultados presentados por otros autores tanto de modelos CFD como modelos de túnel de viento, y por lo tanto se puede asumir que los modelos están bien calibrados. En el capítulo siguiente se emplean como base estos modelos calibrados para el estudio de las secciones trasversales con deflectores de los puentes La Concordia y Kessock.

7 SIMULACIONES DE LAS SECCIÓNES CON AEROESTABILIZADORES

7.1 DESCRIPCIÓN DE LOS TIPOS DE AEROESTABILIZADORES A ESTUDIAR

Para la simulación de diferentes tipos de estabilizadores, se utilizó el modelo del puente "La Concordia" presentado en el capítulo anterior. Las variables que se buscan optimizar con los estabilizadores son: la velocidad crítica del desprendimiento de vórtices y los coeficientes de arrastre y sustentación.

En la Figura 7-1 se muestra la sección transversal del puente modelada por CFD en escala 1:25.

Figura 7-1. Sección transversal del puente "La Concordia", escala 1:25[Sánchez & Gómez, 2015]

La Tabla 7-1 se presentan los resultados obtenidos de los coeficientes de arrastre y sustentación calculados por el autor para el puente La Concordia, dichos valores son a los que se le busca reducir su magnitud mediante el uso de aeroestabilizadores.

	Sin Aeroestabilizador			
	Malla CD CL			
1	115604	0.20910	-0.18940	
2	190678	0.20880	-0.18320	
3	393191	0.20660	-0.17730	

Tabla 7-1 Resulta	dos sin	aeroestabilizador
-------------------	---------	-------------------

Para la simulación del puente La Concordia se propone inicialmente un modelo con un aeroestabilizador con un ancho de 100mm, lo que equivale a escala real a un ancho de 2.5m, poco práctico para su implementación, pero de utilidad para establecer que parámetros dependen de esta dimensión.

Figura 7-2. Sección transversal del puente "La Concordia", Aeroestabilizador 1

El segundo modelo de aeroestabilizador, busca tener como parámetro principal que el ancho del dispositivo sea igual al peralte del mismo.

Figura 7-3. Sección transversal del puente "La Concordia", Aeroestabilizador 2

El tercer modelo busca un ancho de deflector más pequeño, el cual a escala real será de 1.25m, lo que resulta práctico para su instalación.

Figura 7-4. Sección transversal del puente "La Concordia", Aeroestabilizador 3

El cuarto modelo de estudio considera los resultados que se obtuvieron en el puente "The Deer isle-Sedgwick bridge", el cual se dimensionó con los ángulos producidos en el vértice como se muestra en la siguiente figura.

Figura 7-5. Sección transversal del puente "La Concordia", Aeroestabilizador 4

Para el quinto y sexto caso de estudio se muestran las propuestas que se hicieron para el puente "La Concordia".

Figura 7-6. Sección transversal del puente "La Concordia", Aeroestabilizador 5

Figura 7-7. Sección transversal del puente "La Concordia", Aeroestabilizador 6

7.2 DOMINIO Y MALLA

En la Tabla 7-2 se presentan las diferentes mallas y número de celdas usadas para el análisis de los 6 distintos tipos de aeroestabilizadores

Tabla 7-2 Numero d	e celdas p	or malla	para los	estabilizadores
	o oonaao p	o mana	para 100	

	Aeroestabilizador 1	Aeroestabilizador 2	Aeroestabilizador 3	Aeroestabilizador 4	Aeroestabilizador 5	Aeroestabilizador 6
Número de malla		N	lúmero de eler	nentos por ma	lla	
1	109607	45612	67509	72165	96833	66188
2	182045	172459	150889	163937	377611	259326
3	341633	298820	313348	337950	483549	438171

En las siguientes figuras se muestra el detalle del mallado usado para cada uno los diferentes tipos de aeroestabilizadores

Figura 7-8. Malla del puente "La Concordia", Aeroestabilizador 1

Figura 7-9. Malla del puente "La Concordia", Aeroestabilizador 2

Figura 7-10. Malla del puente "La Concordia", Aeroestabilizador 3

Figura 7-11. Malla del puente "La Concordia", Aeroestabilizador 4

Figura 7-12. Malla del puente "La Concordia", Aeroestabilizador 5

Figura 7-13. Malla del puente "La Concordia", Aeroestabilizador 6

Debido a que solo se hará el análisis en el puente "La Concordia", se propone el mismo dominio para todos los tipos de aeroestabilizador, como se muestra a continuación en la Figura 7-14:

7.3 MODELOS Y PARÁMETROS COMPUTACIONALES

Para el modelado computacional de las diferentes secciones del puente Concordia y Kessock, los parámetros usados fueron, el uso del método CFD, el modelo de turbulencia SST de cuatro ecuaciones, algoritmo de solución SIMPLE, y discretización espacial de segundo orden. La densidad del aire fue de 1.225 kg/m³ y una velocidad para hallar los coeficientes aerodinámicos de 6.5 m/s. Una intensidad de turbulencia de 5%.

7.4 IDENTIFICACIÓN DEL FENÓMENO DEL DESPRENDIMIENTO DE VÓRTICES Y VELOCIDADES CRÍTICAS

El análisis de aeroestabilizadores en velocidades críticas se realiza variando las velocidades de entrada, con un ángulo de ataque de 0° hasta que se generan los vórtices bien definidos lo que significa que se inicia la capa turbulenta.

7.4.1 Puente la Concordia

En las Figura 7-15, Figura 7-16, Figura 7-17, Figura 7-18, Figura 7-19, Figura 7-20 y la Figura 7-21 se aprecia la velocidad crítica de la sección transversal sin el uso de aeroestabilizadores.

Se muestra en la Figura 7-15 una velocidad crítica de 9 m/s

Figura 7-17. Velocidad crítica aeroestabilizador 2, puente La Concordia

Figura 7-18. Velocidad crítica aeroestabilizador 3, puente La Concordia

Para los aeroestabilizadores 1, 2 y 3, se muestra una velocidad crítica de 40 m/s

Para el aeroestabilizador 4 se muestra una velocidad crítica de 40m/s.

Para el aeroestabilizador 5 la velocidad crítica es de 12 m/s

La velocidad crítica para el aeroestabilizador 6 es alrededor de 24 m/s

En la Tabla 7-3 se aprecia un aumento de la velocidad crítica en todos los aeroestabilizadores, siendo más alta en aquéllos que tienen sección triangular cerrada.

Puente La Concordia				
Тіро	Vel. (m/s) crítica con aeroestabilizador	Vel. (m/s) crítica sin aeroestabilizador	Aumento	
1	40		344%	
2	40		344%	
3	40	0	344%	
4	40	9	344%	
5	12		33%	
6	24		167%	

Tabla 7-3 Cambio en la velocidad crítica según el tipo de aeroestabilizador, p	ouente La
Concordia	

Las Tabla 7-4 y Tabla 7-5 muestran los resultados obtenidos de coeficientes de arrastre y sustentación en el puente La Concordia para una velocidad de 6.5 m/s por medio de CFD. Se hace el análisis sin aeroestabilizador y con aeroestabilizador respectivamente. Este análisis se hizo con el fin de comparar la respuesta de la estructura con el aeroestabilizador a diferentes ángulos de ataque y gráficamente se observan los resultados en la Figura 7-22. Comparación de coeficiente de arrastre en el puente la Concordia con aeroestabilizador y sin aeroestabilizador para una velocidad de 6.5 m/s con distintos ángulos de ataque

Concordia sin aeroestabilizador		
А	CD	CL
-10	0.48	1.72
-8	0.36	0.72
-6	0.29	0.19
-4	0.24	0.05
-2	0.21	-0.07
0	0.21	-0.18
2	0.22	-0.24
4	0.24	-0.26
6	0.28	-0.33
8	0.34	-0.49
10	0.46	-1.38

Tabla 7-4 Valores de coeficiente de arrastre y coeficiente de sustentación para el puente Concordia sin aeroestabilizador con velocidad de 6.5 m/s en diferentes ángulos de ataque

Tabla 7-5 Valores de coeficiente de arrastre y coeficiente de sustentación para el puente Concordia con aeroestabilizador 4 con velocidad de 6.5 m/s en diferentes ángulos de ataque

Concordia con aeroestabilizador 4		
Α	CD	CL
-10	0.39	1.37
-8	0.24	0.75
-6	0.17	0.72
-4	0.11	0.50
-2	0.09	0.14
0	0.09	-0.17
2	0.10	-0.31
4	0.12	-0.31
6	0.15	-0.39
8	0.18	-0.42
10	0.20	-0.44

Se observa en la Figura 7-22, como era de esperarse, debido a que con el aeroestabilizador número 4 se tiene una mejor aerodinámica, el coeficiente de arrastre disminuye en alrededor de un 50% respecto a la sección sin aeroestabilizador, lo que implica una mejor respuesta del puente con la reducción de las fuerzas en *X* para los ángulos de ataque evaluados.

Figura 7-22. Comparación de coeficiente de arrastre en el puente la Concordia con aeroestabilizador y sin aeroestabilizador para una velocidad de 6.5 m/s con distintos ángulos de ataque

Con base en la Figura 7-23 se puede concluir que con el aeroestabilizador número 4 para ángulos de ataque positivos, el valor absoluto del coeficiente de arrastre disminuye y se mantiene casi igual, mientras que para ángulos de ataque negativos el valor del coeficiente de arrastre aumenta para ángulos de ataque de -2°, -4° y - 6°. Es de resaltar que el coeficiente de arrastre no aumenta de manera considerable, siendo mayores los beneficios, ya que se tiene un aumento en la velocidad crítica y reducción del número de Strouhal, como se muestra en el inciso 7.5. Para ángulos de ataque de -8 y -10 se observa que el uso del aeroestabilizador disminuye en gran medida el coeficiente de arrastre.

Figura 7-23. Comparación de coeficiente de sustentación en el puente La Concordia con aeroestabilizador y sin aeroestabilizador para una velocidad de 6.5 m/s con distintos ángulos de ataque

7.4.2 Puente Kessock

La Figura 7-24 se muestra que la velocidad crítica del puente Kessock sin aeroestabilizadores es de 9 m/s mientras que la Figura 7-25 muestra que la velocidad crítica es cercana a los 40 m/s con aeroestabilizadores.

Figura 7-24. Velocidad crítica sección sin aeroestabilizador, puente Kessock

La Tabla 7-6 ilustra el cambio en la velocidad crítica al implementar aeroestabilizadores.

	Puente Kessock			
Tipo	Vel. (m/s) crítica con aeroestabilizador	Vel. (m/s) crítica Sin aeroestabilizador	Aumento	
4	40	9	444%	

7.5 CÁLCULO DEL NÚMERO DE STROUHAL

Para el cálculo del número de Strouhal en los puentes "La Concordia" y "Kessock" se evaluó la condición con deflectores y sin deflectores y los resultados se muestran a continuación.

Para el cálculo del número de Strouhal se tiene:

$$St = \frac{f L}{U_0} \tag{7.1}$$

dónde S_t es el número de Strouhal, f es la frecuencia en (Hz), L es la longitud característica (m) y U_0 es la velocidad media en m/s

donde para el caso de estudio los valores obtenidos son

$$T = \frac{5.005s - 2.9s}{21} = 0.1s$$
(7.2)

Se tiene que el número de Strouhal St=0.101

Figura 7-27. Puente Kessock, coeficiente de sustentación vs tiempo (s)

Donde para el caso de estudio

$$T = \frac{5.035s - 1.99s}{22} = 0.138$$
 (2.7.3)

Se tiene que el número de Strouhal St=0.066. El valor del número de Strouhal a escala real fue de 0.084, mientras que en Liaw, [2005] el valor por del número de strouhal por el método CFD fue de 0.097. Para Owen, [2003] el valor del número de Strouhal con un Re= 3.5×10^6 es St ≈ 0.07 , el que es una buena aproximación con el valor calculado.

donde para el caso de estudio

$$T = \frac{3.51s - 1.50s}{28} = 0.0718$$
 (2.7.4)

 $\begin{array}{ll} f= & T^{-1} \\ L= & 0.086m \\ U_0= & 50 \text{ m/s} \\ Re= & 3.42^* 10^6 \end{array}$

Se tiene que el número de Strouhal St=0.024

Figura 7-29. Puente Kessock, coeficiente de sustentación vs tiempo (s) con aeroestabilizador

donde para el caso de estudio

$$T = \frac{3.84s - 2.2 s}{30} = 0.0547$$
 (2.7.5)

 $f= T^{-1}$ L= 0.082m $U_0= 40 m/s$ $Re= 2.74*10^6$

Se tiene que el número de Strouhal St=0.038

7.6 COMPARATIVA ENTRE LOS MODELOS CON Y SIN AEROESTABILIZADORES, PUENTE LA CONCORDIA

Para poder comparar la eficacia de los deflectores es necesario obtener los coeficientes aerodinámicos de arrastre y sustentación, y así poder concluir cuál tuvo mejor comportamiento.

La Tabla 7-7 muestra los valores de coeficiente de arrastre y sustentación en la sección transversal del puente "La Concordia", sin los deflectores. Estos son los coeficientes que se busca reducir, así como la velocidad crítica, la cual se pretende aumentar.

Sin Aeroestabilizador			
Número de malla	CD	CL	
1	0.2091	-0.1894	
2	0.2088	-0.1832	
3	0.2066	-0.1773	

Tabla 7-7	Resultados	de coeficientes	aerodinámicos	sin aeroestabilizador
	Resultant		uci vainannoo3	Sin aci ocstasinzadoi

La Tabla 7-8 ilustra los valores diferentes valores obtenidos para coeficiente de arrastre y coeficiente de sustentación con tres diferentes refinados de malla.

Aeroestabilizador 1			
Número de malla CD CL			
1	0.0701	-0.2125	
2	0.0693	-0.2286	
3	0.0680	-0.1938	

Se observa que el coeficiente de arrastre disminuye cerca de un 50%, mientras que el valor absoluto del coeficiente de sustentación aumenta casi en un 200%, por lo que para el objetivo que se plantó, que es la reducción de ambos coeficientes, no

resulta muy útil, además de que las dimensiones propuestas constructivamente implican una gran complejidad.

Para el aeroestabilizador 2, en el que el peralte de la viga coincide con el ancho del aeroestabilizador, se observan resultados similares que en el aeroestabilizador 1 (Tabla 7-9), como era de esperarse, esto debido a que sus dimensiones no cambiaron en forma considerable, aun así, se muestra un coeficiente de arrastre más grande, por lo que tampoco es una buena opción.

Tabla 7-9 Resultados d	le coeficientes	aerodinámicos	con aeroestabilizador 2

Aeroestabilizador 2			
Número de malla CD CL			
1	0.0779	-0.2707	
2	0.0759	-0.2744	
3	0.0751	-0.2791	

El aeroestabilizador 3 cuyos resultados de coeficientes aerodinámicos se observan en la

Tabla 7-10, es el que presenta un tamaño más pequeño de los de tipo triangular, lo que implica que constructivamente es más fácil de construir. Presenta coeficientes de arrastre más pequeños pero el valor absoluto del coeficiente de sustentación es más grande. Entonces, se puede concluir que para un caso especial en el que interese reducir el arrastre y el coeficiente de sustentación no interese tanto se puede implementar esta opción.

Tabla 7-10 Resultados de	e coeficientes	aerodinámicos	con aeroestabilizador 3
--------------------------	----------------	---------------	-------------------------

Aeroestabilizador 3			
Número de malla	CD	CL	
1	0.11007	-0.27019	
2	0.10789	-0.29668	
3	0.10683	-0.30516	

El aeroestabilizador 4, que fue el propuesto para el puente "The Deer isle-Sedgwick bridge" y modelado en este, muestra un mejor comportamiento, tanto en coeficiente de arrastre como en coeficiente de sustentación como se muestra en la Tabla 7-11, si se compara con los anteriores aeroestabilizadores, donde redujo el coeficiente de arrastre casi a la mitad y el coeficiente de sustentación varió cerca de un 17%.

Tabla 7-11 Resultados de coeficientes aerodinámicos con aeroestabilizador 4

Aeroestabilizador 4			
Número de malla	CD	CL	
1	0.0920	-0.1426	
2	0.0910	-0.1547	

3 0.0898 -0.1732

Los aeroestabilizadores propuestos para el puente "La Concordia" presentaron beneficios en el aumento de la velocidad crítica, pero el aumento del coeficiente de arrastre y sustentación es muy alto (ver Tabla 7-12), por lo que para el caso del aeroestabilizador 5 su instalación acarrearía fuerzas de arrastre y sustentación muy altas. Estos aeroestabilizadores posiblemente no podrían soportar estas cargas y una vida útil corta.

Aeroestabilizador 5			
Número de malla	CD	CL	
1	5.9048	-9.3188	
2	5.8440	-9.9758	
3	5.8414	-9.7342	

El aeroestabilizador 6 de los propuestos en el puente "La Concordia", presenta un buen comportamiento en cuanto a la reducción del coeficiente de arrastre, pero presenta un valor alto en el coeficiente de sustentación por lo que no resulta práctico (ver Tabla 7-13).

6
•

Aeroestabilizador 6				
Número de malla CD CL				
1	0.1161	-0.3322		
2	0.1156	-0.3502		
3	0.1160	-0.3645		

De la Tabla 7-14 se interpreta que todos los aeroestabilizadores ofrecen una mejora en el coeficiente de arrastre para un ángulo de ataque de 0°, con excepción del aeroestabilizador 5. De la Tabla 7-15 se puede concluir que el único aeroestabilizador que ofrece una reducción en el coeficiente de sustentación es el número 4, siendo esta reducción del 2.31%, además de una reducción en el coeficiente de arrastre del 56%. Por estos motivos se considera que el aeroestabilizador 4 es la mejor opción.

Se hace la comparativa del número de Strouhal con aeroestabilizador y sin este, en los puentes "La Concordia y Kessock", como se muestra en la Tabla 7-16.

	CD	CD (Sin aeroestabilizador)	
Aeroestabilizador 1	0.068		-67.09%
Aeroestabilizador 2	0.0751		-63.65%
Aeroestabilizador 3	0.10683	0.2066	-48.29%
Aeroestabilizador 4	0.0898		-56.53%
Aeroestabilizador 5	5.8414		2727.40%
Aeroestabilizador 6	0.116		-43.85%

Tabla 7-14 Comparación del coeficiente de arrastre en los 6 tipos de aeroestabilizador con ángulo de ataque de 0°

Tabla 7-15 Comparación del coeficiente de sustentación en los 6 tipos de aeroestabilizador ángulo de ataque de 0°

	CL	CL (Sin aeroestabilizador)	
Aeroestabilizador 1	-0.1938		9.31%
Aeroestabilizador 2	-0.2791		57.42%
Aeroestabilizador 3	-0.30516	0 1770	72.12%
Aeroestabilizador 4	-0.1732	-0.1773	-2.31%
Aeroestabilizador 5	-9.7342		5390.24%
Aeroestabilizador 6	-0.3645		105.58%

Tabla 7-16 Comparación de resultados del cálculo del número de Strouhal

	Número de Strouhal		
	Concordia Kessock		
Sin aeroestabilizador	0.101	0.066	
Con aeroestabilizador	0.024	0.038	
Diferencia	76.24%	42.42%	

7.7 COMPARATIVA ENTRE EL MODELO CON AEROESTABILIZADOR 4 Y SIN AEROESTABILIZADORES PUENTE KESSOCK

En la Tabla 7-17 se muestran los valores de coeficiente de arrastre y sustentación sin aeroestabilizadores del puente Kessock

Tabla 7-17 Resultados de c	oeficientes aerodinámicos	sin aeroestabilizador
----------------------------	---------------------------	-----------------------

	Sin Aeroestabilizador			
	Malla CD Malla			
1	139032	0.1623	-0.2618	
2	324692	0.1621	-0.2332	
3	444688	0.1595	-0.2488	

En la tabla se muestran los valores del coeficiente de arrastre y sustentación del puente Kessock con el uso del aeroestabilizador 4

	Aeroestabilizador 4			
	Malla CD CL			
1	269073	0.0800	-0.1524	
2	316753	0.0784	-0.1610	
3	364862	0.0801	-0.1482	

Tabla 7-18 Resultados de coeficientes aerodinámicos aeroestabilizador 4

7.8 CONCLUSIÓN DEL AEROESTABILIZADOR CON MEJOR COMPORTAMIENTO

Se concluye que el mejor aeroestabilizador es el 4, Figura 7-5, el cual fue propuesto en el puente "The Deer isle-Sedgwick bridge", considerando que el aumento en la velocidad crítica fue más de 4 veces si se compara con la velocidad sin el aeroestabilizador, y este aumento es de 31 m/s. La velocidad crítica de 40 m/s es una velocidad alta y con una probabilidad baja de ocurrencia, además, el coeficiente de arrastre se redujo y el coeficiente de sustentación aumentó poco, resultados que se muestran a continuación en la Tabla 7-19 y Tabla 7-20.

Resultados puente "La concordia"

Tabla 7-19 Resultados de coeficientes aerodinámicos, puente La Concordia

	CD	Dif %
Sin Aeroestabilizador	0.2066	EC E20/
Aeroestabilizador 4	0.0898	50.53%

	CL	Dif %
Sin Aeroestabilizador	-0.1773	2 2 2 0/
Aeroestabilizador 4	-0.1732	2.32%

Resultados puente "Kessock"

Tabla 7-20 Resultados de coeficientes aerodinámicos, puente Kessock

	CD	Dif %
Sin Aeroestabilizador	0.1595	49.78%
Aeroestabilizador 4	0.0801	
	CL	Dif %
Sin Aeroestabilizador	-0.2488	40.45%
Aeroestabilizador 4	-0.1482	

Figura 7-30. Comparación de velocidades críticas

Como se puede apreciar en la Figura 7-30, el uso de aeroestabilizadores aumenta en más de 4 veces la velocidad crítica si se compara con la velocidad crítica sin deflectores.

Figura 7-31. Comparación de coeficientes de sustentación

8 CONCLUSIONES

Mediante el análisis de las seis diferentes geometrías de aeroestabilizadores en el puente con sección compuesta "La Concordia" y su posterior comparación tanto en coeficientes aerodinámicos como en la velocidad crítica y el número de Strouhal, se puede concluir que al igual que en el puente "The Deer Island bridge", el aeroestabilizador triangular con ángulos de 45° respecto al punto más bajo del tablero y 18.5° respecto al vértice intermedio como se muestra en la Figura 7-5, el aeroestabilizador tipo 4 es el que tiene un mejor comportamiento aerodinámico. Se considera que es el mejor debido a que presenta una reducción del coeficiente de arrastre, también una reducción del coeficiente de sustentación para ángulos de ataque positivos y un aumento de la velocidad crítica de más de cuatro veces. Su uso representa además un menor número de Strouhal, lo que implica que se tendrá un periodo más largo, así como menos oscilaciones, lo que significa menos daños por fatiga a largo plazo y menor probabilidad de resonancia. Debido a que el puente La Concordia se encuentra en fase constructiva sería aconsejable que se haga la instalación de los aeroestabilizadores ya que se comprobaron los beneficios que produce su uso. Se confirmo además el buen comportamiento del aeroestabilizador tipo 4 al ser modelado en el puente Kessock también de sección compuesta, esto se hizo para tener información del comportamiento del aeroestabilizador en un puente con otras dimensiones y geometría de tablero.

8.1 RECOMENDACIONES Y ESTUDIOS FUTUROS

Para una mejor estimación en los resultados obtenidos por el método CFD es aconsejable reproducir el modelo del aeroestabilizador en el túnel de viento, así como establecer el material óptimo y detalles de su instalación. Generar planos con detalles de su armado, además se recomienda que el aeroestabilizador sea de un material polimérico y sea fijado de tal manera que se evite su desprendimiento. Se recomienda extender el análisis del aeroestabilizador a otros tipos de puentes distintos a los de sección compuesta y evaluar su comportamiento.
9 **REFERENCIAS**

Abrahm Sanchez Corriols. (2015). Vortex-induced vibrations on bridges The interaction mechanism in complex sections and a new proposed semiempirical model. 192.

Ahmad, T., Plee, S. L., & Myers, J. P. (2013). Fluent Theory Guide. 814.

Archivo:Ting Kau Bridge-1.jpg—Wikipedia, la enciclopedia libre. (2007).

https://commons.wikimedia.org/wiki/File:Ting_Kau_Bridge-1.jpg

Bobanny. (2006). Archivo:AlexFraserBridge.jpg—Wikipedia, la enciclopedia libre. https://commons.wikimedia.org/wiki/File:AlexFraserBridge.jpg

Bosch, H. R. (1990). SECTION MODEL STUDIES OF THE DEER ISLE-SEDGWICK SUSPENSION BRIDGE. 10.

- Brancaleoni, F., Diana, G., Faccioli, E., Fiammenghi, G., Firth, I. P. T., Gimsing, N.J., & Jam, M. (2010). The Messina Strait Bridge A Challenge and a Dream.Stretto di Messina.
- Brock, V. (2006). Kessock bridge and snow on hills [Photo]. https://www.flickr.com/photos/vickyb/300190786/
- Bronx–Whitestone Bridge. (2021). En Wikipedia. https://en.wikipedia.org/w/index.php?title=Bronx%E2%80%93Whitestone_B ridge&oldid=1017246344
- Brown John, J. M. W., Bocciolone, M., Curami, A., Falco, M., & Zasso, A. (1994).
 Humber bridge full-scale measurement campaigns 1990–1991. Journal of
 Wind Engineering and Industrial Aerodynamics, 52, 185-218.
 https://doi.org/10.1016/0167-6105(94)90047-7

- Cai, C. S., Albrecht, P., & Bosch, H. R. (1999). Flutter and Buffeting Analysis. II: Luling and Deer Isle Bridges. Journal of Bridge Engineering, 4(3), 181-188. https://doi.org/10.1061/(ASCE)1084-0702(1999)4:3(181)
- Çengel, Y. A., & Cimbala, J. M. (2014). Fluid mechanics: Fundamentals and applications (Third edition). McGraw Hill.

Computational Fluid Dynamics (CFD). (s. f.). Device Analytics, LLC. Recuperado 6 de julio de 2021, de https://deviceanalytics.com/fea-consultingservices/computational-fluid-dynamics-cfd/

Deer Isle Bridge. (2021). En Wikipedia.

https://en.wikipedia.org/w/index.php?title=Deer_Isle_Bridge&oldid=1016711 015

Fernández Oro, J. M. (2012). Técnicas numéricas en ingeniería de fluidos: Introducción a la dinámica de fluidos computacional (CFD) por el método de volúmenes finitos. Revert.

Ferries, R.-A. (2015). Rio-Antirrio Ferries.

https://web.archive.org/web/20161101052024/http://www.panoramio.com/ph oto/123728887. https://commons.wikimedia.org/wiki/File:Rio-

Antirrio_Ferries_-_panoramio_(70).jpg

File:SecondSevernCrossing Jan2006.jpg—Wikimedia Commons. (2006).

https://commons.wikimedia.org/wiki/File:SecondSevernCrossing_Jan2006.jp

g

Frandsen, J. B. (2000). Simultaneous pressures and accelerations measured fullscale on the Great Belt East suspension bridge. Journal of Wind Engineering and Industrial Aerodynamics, 89(1), 95-129.

https://doi.org/10.1016/S0167-6105(00)00059-3

- Gamez, J. L. G. (2013). ANALISIS DE LA INESTABILIDAD AEROELASTICA DE PUENTES ATIRANTADOS. 195.
- Haque, N. (2015). Shaping Effects on Aerodynamics of Long-Span Cable-Supported Bridge Deck by Unsteady RANS. 188.

Hay, J. (1992). Response of Bridges to Wind (Vol. 5). Department of Transport.

Holmes, J. (2007). Wind Loading of Structures (Second Edition). Taylo & Francis.

- Hua, X. G., Chen, Z. Q., Ni, Y. Q., & Ko, J. M. (2007). Flutter analysis of long-span bridges using ANSYS. Wind and Structures, 10(1), 61-82. https://doi.org/10.12989/WAS.2007.10.1.061
- Landers, J. (2002, enero). Civil engineering news. Wind Fairings Will Streamline and strengthen New York Span, 20.
- Larsen, A. (1992). Aerodynamics of Large Bridges. Balkema, Rotterdam.
- Larsen, A. (2000). Aerodynamics of the Tacoma Narrows Bridge—60 Years Later. Structural Engineering International, 10(4), 243-248. https://doi.org/10.2749/101686600780481356
- Launder, B. E., & Spalding, D. B. (1972). Lectures in Mathematical Models of Turbulence. Academic Press.
- Lee, J. (2003). Aerodynamic Simulation of the Bronx-W hitestone Suspension Bridge using Computational Fluid D yn am ics. 197.
- Liaw, K. F. (2005). Simulation of Flow around Bluff Bodies and Bridge Deck Sections using CFD. 269.

- Macdonald, J. H. G., Irwin, P. A., & Fletcher, M. S. (2002). Vortex-induced vibrations of the Second Severn Crossing cable-stayed bridge—Full-scale and wind tunnel measurements. 2, 12.
- Malveira, L., Kurokawa, F. A., & Nakao, O. S. (2015). Wind Effects on the Cross Section of a Suspension Bridge by CFD Analysis. 14.
- Mendes, P. A., & Branco, F. A. (1998). Numerical Wind Studies for the Vasco da Gama Bridge, Portugal. Structural Engineering International, 8(2), 124-128. https://doi.org/10.2749/101686698780489252
- Oliveira Pedro, J. J., & Reis, A. J. (2016). Composite cable-stayed bridges: State of the art. Proceedings of the Institution of Civil Engineers - Bridge Engineering, 169(1), 13-38. https://doi.org/10.1680/bren.14.00005
- Ponte Vasco da Gama. (2021). En Wikipédia, a enciclopédia livre. https://pt.wikipedia.org/w/index.php?title=Ponte_Vasco_da_Gama&oldid=61 056380
- Rodrigo, G. A. (2005). FENÓMENOS DE GALOPE EN OBSTÁCULOS DE SECCIÓN NO RECTANGULAR [Tesis]. Universidad Politécnica de Madrid. Sánchez, R. (2020). SIMULACIÓN DE LA CAPA LÍMITE ATMOSFÉRICA

NEUTRALMENTE ESTABLE. 145.

Sánchez, R., & Gómez, R. (2015). Wind Analysis of the Deck of a Cable-Stayed Bridge by Numerical Simulation and Wind Tunnel Test. 6.

Second Severn Crossing. (2021). En Wikipedia. https://en.wikipedia.org/w/index.php?title=Second_Severn_Crossing&oldid= 1019413084 Streamline Pre-Processing, Meshing and Materials Selection with Ansys 2019 R2.

(s. f.). Recuperado 6 de julio de 2021, de

https://www.ansys.com/blog/ansys-2019-r2-release

- Strømmen, E. N. (2006). Theory of Bridge Aerodynamics. Heidelberg: Springer-Verlag.
- Tony Hisgett from Birmingham. (2017). Queensferry Bridge 2. Queensferry Bridge. https://commons.wikimedia.org/wiki/File:Queensferry_Bridge_2_(367660362 34).jpg
- Venegas, R. (2016). Análisis paramétricos de un puente flexible para identificar velocidades críticas [Tesis]. UNAM.
- Versteeg, H. K., & Malalasekera, W. (2007). An introduction to computational fluid dynamics: The finite volume method (2nd ed). Pearson Education Ltd.