

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

POSGRADO EN CIENCIAS DE LA TIERRA INSTITUTO DE GEOFÍSICA FÍSICA DE TIERRA SÓLIDA

GEOLOGÍA VOLCÁNICA DEL ÁREA PARACHO-CHERÁN, MICHOACÁN, MÉXICO: ESTRATIGRAFÍA, GEOQUÍMICA Y PETROGRAFÍA

> **TESIS** PARA OPTAR POR EL GRADO DE: MAESTRO EN CIENCIAS DE LA TIERRA

PRESENTA: JUAN RAMÓN DE LA FUENTE RIVERA

TUTOR DR. CLAUS SIEBE GRABACH INSTITUTO DE GEOFÍSICA

COMITÉ TUTOR

DR. SERGIO RODRÍGUEZ-ELIZARRARÁS PRESIDENTE, INSTITUTO DE GEOLOGÍA

DR. PETER SCHAAF VOLCAL, INSTITUTO DE GEOFÍSICA

DR. CLAUS SIEBE GRABACH SECRETARIO, INSTITUTO DE GEOFÍSICA

DR. GERARDO AGUIRRE DÍAZ SUPLENTE, CENTRO DE GEOCIENCIAS

DRA. MARIE NOELLE GUILBAUD SUPLENTE, INSTITUTO DE GEOFÍSICA

CIUDAD UNIVERSITARIA, CIUDAD DE MÉXICO OCTUBRE DEL AÑO 2022

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Índice y figuras

- 8.1.-Volúmenes emitidos durante el Plioceno
- 8.2.-Volúmenes emitidos durante el Pleistoceno temprano
- 8.3.-Volúmenes emitidos durante el Pleistoceno medio
- 8.4.-Volúmenes emitidos durante el Pleistoceno tardío
- 8.5.-Volúmenes emitidos durante el Holoceno
- •

lo 9. Discusión

Bibliografía	69
--------------	----

Índice de Figuras

Figura 1.- Mapa de localización del Campo Volcánico Michoacán-Guanajuato (CVMG) y el Cinturón Volcánico Trans-Mexicano (CVTM).

- Figura 2.- Mapa de localización del área Paracho-Cherán (APC).
- Figura 3.-Mapa geológico del área Paracho-Cherán (APC).
- Figura 4.- Escudos del área Paracho-Cherán (APC).
- Figura 5.- Cono truncado.
- Figura 6.- Relación Wco/Hco de los conos.
- Figura 7.- Fotografías de los volcanes del área Paracho-Cherán (APC).
- Figura 8.- Diagrama "Total Alkalies vs. Silica" (TAS).
- Figura 9.- Diagramas de variación tipo Harker.
- Figura 10. Diagramas de correlación de elementos mayores, traza y tierras raras. -
- Figura 11.-Diagrama de elementos traza.
- Figura 12.- Diagrama de Sun y MacDonought 1989
- Figura 13.- Mapa que muestra las composiciones de los diferentes volcanes.
- Figura 14.- Histograma que muestra los volúmenes emitidos a lo largo del tiempo.
- Figura 15 y 16.- Fotomicrografías por composición en apéndice IV.
- Índice de Tablas.
- Tabla 1.- Escudos del área Paracho-Cherán (APC).

Tabla 2 Parámetros morfométricos vs. edades absolutas.
Tabla 3 Edades por ⁴⁰ Ar/ ³⁹ Ar.
Tabla 4 Edades por ¹⁴ C.
Tabla 5 Composiciones del área Paracho-Cherán (APC) en apéndice III.
Tabla 6 Análisis mineralógicos modales (conteo de puntos) en apéndice IV.
Apéndices
Apéndice I Morfometría.
Apéndice II Estratigrafía y granulometría.
Apéndice III Geoquímica
Apéndice IV Petrografía121
Figuras en Apéndices
Figura 1 Diagrama de clasificación.
Figura 2 Histogramas.
Figura 3 Foto-secciones de los volcanes del área Paracho-Cherán (APC).
Tablas
Tabla 1 Parámetros morfométricos considerados en este estudio.

Tabla 2.- Análisis granulométricos y fuente de emisión.

Agradecimientos

Este trabajo recibió apoyo financiero del proyecto DGAPA-PAPIIT-IN104221 y del Consejo Nacional de Ciencia y Tecnología (CONACyT). Al Dr. Claus Siebe y la Dra. Marie Noelle Guilbaud, por su apoyo incondicional, transmisión de conocimientos y por sus numerosas observaciones, comentarios y correcciones en el campo, en el aula, y a este documento. A la Dra. Magdalena Oryaelle Chevrel y al Mtro. Sergio Salinas Sánchez por todo el apoyo logístico durante las numerosas y arduas campañas en el campo en Michoacán, así como al resto del grupo de trabajo en el departamento de vulcanología. A los lectores y comité de revisión; Dr. Peter Schaaf, Dr. Sergio Rodríguez Elizarrarás y al Dr. Gerardo Aguirre Díaz por sus valiosas observaciones a este documento y finalmente al PCT-UNAM.

Agradecimientos especiales a la Dra. Mariana Patricia Jácome Paz, al Dr. Rafael Torres Orozco, al Dr. Guillermo Ontiveros Gonzáles y al Mtro.Néstor López Vladés, por sus valiosas observaciones a este documento.

A mi familia y amigos un agradecimiento profundo por su apoyo incondicional.

Geological mapping revealed that the Paracho-Cherán guadrangle contains ~144 volcanic edifices. It is located at the core of the Tarascan highlands in the central part of the Mexican Volcanic Belt, approximately 300 km north of the Middle America Trench, and comprises 3% (~1200 km²) of the surface-area of the Michoacán-Guanajuato Volcanic Field (MGVF) (~40,000 km²). Considering their size, volume, and morphology, 37 volcanoes were classified as medium-sized volcanoes (shields and domes), while 63 belong to the category of small-sized volcanoes (monogenetic cones with associated lava flows). A total of 24 shield volcanoes were dated by the ⁴⁰Ar/³⁹Ar method. The oldest (2509+/-24 ka) falls within the Pliocene period. In addition, 27 scoria cones were dated by the ¹⁴C method and are Late Pleistocene to Holocene in age (<30,000 yrs. BP), which implies that a new eruption occurs on average every 1000 years. If only the Holocene period is considered (17 eruptions) the recurrence rate is even higher (one eruption per ~625 years). Whole-rock chemical analyses of 148 samples (~68 from shields and ~80 from monogenetic cones) indicate that most are calc-alkaline with SiO₂ content ranging between 50 and 63 wt%. Major element point to fractional crystallization processes in a subduction-related tectonic environment, while trace element compositions (including rare earth elements) allowed to determine a heterogeneous mantle source. Typical mineral assemblages include olivine, augite (Cpx), hypersthene (Opx), hornblende, and plagioclase in different combinations within a glassy matrix with feldspar microlites. Accessory minerals are Cr-spinel (as inlcusions in olivine) apatite, and opaques. Volume estimates indicate that since the Pliocene a total volume (dense-rock equivalent) of $\sim 63 \text{ km}^3$ of magma has been erupted in this small area. The dominant composition is andesitic, followed by a lower percentage of basaltic andesites. Only three exotic alkaline basaltic rocks were encountered.

Resumen

El área de Paracho-Cherán (APC) forma parte del Campo Volcánico Michoacán-Guanajuato (CVMG) y se localiza en la Meseta Tarásca en la porción centro-oeste del Cinturón Volcánico Trans-Mexicano (CVTM), a ~300 km de la Trinchera Mesoamericana. El APC tiene un área de ~ $1,100 \text{ km}^2$ y representa tan sólo el 3% de los ~ $40,000 \text{ km}^2$ ocupados por todo el CVMG.

El presente trabajo se enfocó en aportar nuevos datos geológicos sobre el APC, incluyendo un mapa geológico, así como fechamientos isotópicos (¹⁴C y ⁴⁰Ar/³⁹Ar), análisis químicos de roca total, petrográficos y sedimentológicos que permitieron reconstruir la estratigrafía volcánica, así como las variaciones composicionales y volúmenes emitidos a lo largo de su historia eruptiva, que abarca desde el Plioceno (<2.5 Ma.) hasta el presente. Se identificaron 144 estructuras volcánicas diferentes, incluyendo docenas de escudos "michoacanos" y domos, así como numerosos conos de escoria, algunos de ellos con flujos de lava asociados. Estos volcanes presentan firmas químicas típicas de subducción y se relacionan a un régimen tectónico extensional, que se expresa mediante fallas normales a través de diques en dirección ENE-WSW y NE-SW, principalmente.

Los resultados, indican que durante el Holoceno (<11,000 años) ocurrieron al menos 11 erupciones (con un intervalo de ocurrencia promedio de ~625 años) que produjeron flujos de lava voluminosos, alternados con caídas de cenizas. La composición andesítica (81 vol.%) es predominante, seguida por composiciones basalto-andesíticas a andesíticas (9 vol.%), basalto-andesíticas (8 vol.%) y finalmente traqui-basálticas (2 vol.%). En total se produjo un volumen de ~15.5 km³, mismo que es mucho mayor que en otras áreas del CVMG (e.g. Tacámbaro-Pururarán, ~ 3.8 km³) durante el Holoceno.

La actividad del Pleistoceno tardío estuvo igualmente dominada por la emisión de magmas andesíticos (93 vol.%), seguidos por basalto-andesitas (5 vol.%) y finalmente por una erupción de traqui-andesita basáltica (2 vol.%). A continuación, en el Pleistoceno medio, siguen dominando los magmas andesíticos (91 vol.%) con proporciones menores de andesitas basálticas (9 vol.%). Durante el Pleistoceno temprano, los magmas dominantes fueron andesitas (52 vol. %), seguidos por las andesitas basálticas (47 vol.%), mientras que en el Plioceno la actividad magmática produjo sólo andesitas.

El análisis petrográfico y los resultados del análisis mineralógico modal de rocas producidas por estos volcanes, revela rocas de textura traquítica-pilotaxítica a vesicular, con asociaciones minerales principalmente de plagioclasa (Plg), olivino (OI), clinopiroxeno (Cpx) y ortopiroxeno (Opx), embebidos en una matriz vítrea. Ocasionalmente algunos olivinos y piroxenos en rocas

del Holoceno, presentan inclusiones de cromita, así como apatito en las plagioclasas. Estas composiciones son similares a las reportadas para otras partes del CVMG que denotan un origen en la cuña de un manto superior heterogeneo con aportaciones de fluidos provenientes de la placa oceánica subducida (flux melting) y una evolución magmática durante el ascenso mediante cristalización fraccionada principalmente con aportes mínimos por asimilación de materiales corticales.

Capítulo 1. Introducción

1.1. Antecedentes

La actividad volcánica que dio origen al Campo Volcánico Michoachán-Guanajuato (CVMG) inició en el Plioceno y ha continuado hasta el Presente. Este campo abarca un área de ~40,000 km² y se localiza en el sector central del Cinturón Volcánico Trans-Mexicano (CVTM, Fig. 1). Tectónicamente, pertenece al Bloque Michoacán e incluye a >1000 conos de escoria monogenéticos y flujos de lava asociados, >300 volcanes de tamaño mediano (escudos y domos) y alrededor de una docena de cráteres freato-magmáticos (Hasenaka y Carmichael, 1985). El CVTM es un arco volcánico cuyo origen se relaciona con la subducción de las Placas de Cocos y de Rivera, bajo la Placa de Norteamérica. En la región de Michoacán, el frente volcánico del CVMG se ubica ~300 km al norte de la Trinchera Mesoamericana. A lo largo de este segmento de la trinchera, la placa oceánica de Cocos subduce con un ángulo de ~30º bajo la placa continental de Norteamérica, cuyo espesor se estima en ~40 km (Blatter y Hammersley, 2010; Mazzarini et al., 2010; Ferrari et al., 2012). Salvo dos excepciones, los volcanes Tancítaro (3840 msnm) y Patamban (3450 msnm), la escasez de grandes estrato-volcanes andesíticos en el CVMG es notoria. En cambio, la abundancia de volcanes monogenéticos es excepcional (Fig. 2). Esto, al grado de poder afirmar que el CVMG probablemente contenga la concentración de volcanes monogenéticos (asociados a una zona de subducción) más grande del orbe. El volcán Tancítaro se cree extinto (Ownby et al., 2007), mientras que el Patamban aún no ha sido estudiado a detalle (Siebe et al., 2014). La composición química y mineralógica de las rocas que conforman a la mayoría de estos volcanes corresponde a la serie calco-alcalina, que es típica en zonas de subducción. Aunque predominan las andesitas calco-alcalinas, ocurren también composiciones que abarcan un amplio rango, desde basaltos de olivino hasta riolitas, incluyendo variedades exóticas alcalinas.

La fama del CVMG se debe principalmente al nacimiento de los volcanes de Jorullo hace ~250 años, descrito por primera vez por Humboldth y a el Paricutin, emplazado sobre una parcela de maíz en el año de 1943. Esta parcela era propiedad de Dionisio Pulido, un modesto campesino purépecha. La erupción concluyó casi 10 años después en 1952 y generó impactos severos en su transcurso, tanto en el medio ambiente natural, como en el entorno social (e.g. pérdidas agrícolas y ganaderas, los poblados de San Juan Parangaricutiro y Paricutin fueron sepultados bajo la lava, desempleo, migración, etc.). Existen numerosos testimonios al respecto (e.g. Luhr y Simkin, 1993) por lo que dichas circunstancias motivaron el interés por llevar a cabo estudios geológicos y vulcanológicos en el área, no sólo durante el tiempo que duró la erupción (e.g. Williams,1950; Foshag, 1950; Fries and Gutierrez, 1954; Wilcox, 1954), sino también en décadas posteriores, aunque muchos de ellos con un enfoque más regional (e.g. Hasenaka y Carmichael, 1985; 1987; Connor, 1987; Roggensack, 1988; Ban et al., 1992; y Hasenaka, 1994). En algunos

de estos trabajos se concluyó que el vulcanismo del CVMG ha migrado hacia el sur (es decir hacia la trinchera) durante el transcurso del tiempo. Otros trabajos recientes se han enfocado en el desarrollo paleo-climático durante el Pleistoceno Tardío y el Holoceno en esta región. Ejemplo de ellos es el de Newton et al. (2005) que identifica tefras volcánicas en núcleos de perforaciones llevadas a cabo en los depósitos lacustres de los lagos de Michoacán (e.g. las cuencas de Zirahuén, Pátzcuaro y Zacapu). Ahí se han registrado depósitos de tefra de varias erupciones que han ocurrido durante los últimos 17,000 años en la región, incluyendo las tefras de los volcanes Paricutín y El Jabalí (este último volcán ubicado en el área de Paracho-Cherán, es el motivo del presente estudio).

Entre los trabajos más recientes, destacan los de Pioli et al. (2008), quienes estudiaron la dinámica eruptiva del volcán Paricutin entre 1943 y 1952 con énfasis en las diferentes fases explosivas del volcán y una descripción detallada de los depósitos emplazados, en particular de los originados por caída de ceniza. Por otra parte, Cebriá et al. (2011) proponen un modelo de evolución de los magmas, basado en las características geoquímicas y petrológicas de las lavas emplazadas durante la erupción del Paricutin, aspecto importante para entender procesos petrogenéticos. Pérez-López et al. (2011) presentaron un análisis estadístico de la distribución y tamaño de los volcanes en el CVMG, en dónde además concluyen que el campo es consecuencia de un régimen tectónico dextral-transtensivo.

Con el fin de responder a las incógnitas de índole tectónico (evolución composicional y temporal del magmatismo en el CVMG, variación regional de las tazas eruptivas, etc.) así como las de interés social (dónde y cuándo ocurrirá probablemente la próxima erupción, qué medidas de protección civil deben tomarse, etc.), es necesario llevar a cabo una labor de cartografía geológica detallada, que incluya el fechamiento radiométrico, la determinación de los volúmenes emitidos y de las características químicas y petrográficas de la mayoría los volcanes que conforman el CVMG. Sólo así se podrán someter a prueba las hipótesis que se han presentado hasta el momento sobre su origen tectónico y relacionar el fenómeno volcánico con cambios en la geometría de la zona de subducción (e.g. ángulo de subducción, procesos de slab-tear, slabrollback, que ocurren en la placa en subducción, etc.). Lo anterior requiere de una ardua labor, que aún llevará varios años de trabajo sistemático. Algunos trabajos recientes, incluyen importantes aportaciones en esa dirección. Entre ellos destaca el de Ownby et al. (2007; 2011) quienes se enfocaron en la caracterización química y las edades mediante isótopos (⁴⁰Ar/³⁹Ar) de los depósitos del ya extinto volcán Tancítaro, así como de numerosos volcanes monogenéticos circunvecinos, que ocurren especialmente en la región de Nueva Italia (Fig. 2). En ese estudio se concluye que dicho volcán ha presentado una historia geológica compleja de crecimiento y posterior colapso de su edificio, además de una gran actividad monogenética en los alrededores (e.g. las erupciones del Paricutín, y El Jabalí). También Guilbaud et al. (2011; 2012) aplican

técnicas de fechamiento por ¹⁴C y ⁴⁰Ar/³⁹Ar y estiman los volúmenes de numerosos volcanes en dos regiones importantes del CVMG, Jorullo y Tacámbaro-Puruarán, localizadas hacia el frente del arco. Sus resultados indican que también en el frente del arco, la actividad volcánica inicia ya desde el Plioceno y que las erupciones alcanzan una alta frecuencia durante el Holoceno con composiciones basáltico-andesíticas y andesíticas principalmente. Los magmas que dieron origen a los volcanes monogenéticos de estas regiones fueron emplazados mediante diques que ascendieron a lo largo de fallas normales en la corteza superior. Más recientemente, Siebe et al. (2013) compararon las zonas de Tacámbaro-Puruarán, localizada en el frente de arco (cerca de la trinchera) con la de Zacapu, ubicada en una cuenca tectónica en el centro del arco. Este ejercicio reveló que en ambas regiones el vulcanismo del CVMG inició en el Plioceno y que por ende el vulcanismo en el CVMG no ha migrado hacia el sur, como se piensa (Siebe et al., 2014). Más bien parece que la actividad tan sólo se ha intensificado en el sur durante el transcurso del tiempo. Por otro lado, la proporción de magmas más máficos (andesitas basálticas, principalmente) es más elevada en el frente del arco (Tacámbaro-Puruarán) que en el centro del mismo (Zacapu), aunque en ambas regiones dominan los magmas de composición intermedia (andesitas).

De igual manera, el presente estudio pretende aportar datos más detallados sobre los volcanes contenidos en una zona más limitada, en este caso el cuadrángulo, donde se ubican los poblados de Paracho y Cherán, ambos en la Meseta Tarasca (Fig. 3).

1.2. Objetivos

El presente estudio se enfoca en los volcanes contenidos en el área de Paracho-Cherán, en donde se ubican los poblados de Paracho y Cherán. De manera más concreta, los objetivos del presente trabajo son los siguientes:

- Elaborar un mapa geológico detallado que refleje las distintas composiciones y edades de los volcanes en esta porción del Campo Volcánico Michoacán-Guanajuato.
- Fechar la mayor cantidad de volcanes mediante los métodos de ¹⁴C y ⁴⁰Ar/³⁹Ar y estimar las edades relativas a partir de las características morfológicas de los volcanes.
- Analizar la composición química de las rocas (elementos mayores y trazas).
- Determinar la composición mineralógica y las texturas de las rocas mediante el análisis petrográfico bajo el microscopio.
- Determinar su composición modal mediante conteo de puntos (1000 puntos por lámina).
- Estimar los volúmenes de los materiales emitidos por cada volcán y determinar las proporciones de las distintas composiciones en esta área a través del tiempo.

- Establecer las variaciones composicionales y volumétricas a través del tiempo y comparar los resultados con otras áreas (e.g. Tacámbaro) donde se han determinado estos parámetros en estudios anteriores.
- Con base en los resultados obtenidos, discutir las proposiciones que existen sobre el origen y evolución del CVMG.

Figura 1: Mapa esquemático que muestra las principales estructuras tectónicas en el sur de México. Los límites del Cinturón Volcánico Trans-Mexicano (CVTM) se indican en color azul, los del Campo Volcánico Michoacán-Guanajuato (CVMG) en amarillo y los del área Paracho-Cherán (APC) en blanco. Los principales estrato-volcanes se indican con triángulos negros: *Ch* (Chichonal), *SMT* (San Martín Tuxtla), *C* (Citlaltépetl), *CP* (Cofre de Perote), *M* (Malinche), *Izt* (Iztaccíhuatl), *P* (Popocatépetl), *NT* (Nevado de Toluca), *T* (Tancítaro), *Co* (Colima) y *Ce* (Ceboruco). Las ciudades importantes se indican con círculos rojos: V (Veracruz), P (Puebla), CM (Ciudad de México), M (Morelia) y G (Guadalajara).

Figura 2: Mapa esquemático (modelo de elevación digital) que muestra el límite del Campo Volcánico Michoacán-Guanajuato (en amarillo). Los volcanes escudo se indican con círculos verdes mientras que los conos monogenéticos de escoria con círculos lilas. Las líneas punteadas indican fallas principales: SFCO (Sistema de Fallas Chapala-Oaxaca), SFQT (Sistema de Fallas Querétaro-Taxco) y SFCT (Sistema de Fallas Chapala-Tula). ISMO (Ignimbritas de la Sierra Madre Occidental). Adicionalmente se muestran áreas rectangulares estudiadas previamente con mayor detalle: Tancítaro-Nueva Italia (en rosado) por Ownby et al. (2007; 2011); Jorullo (en naranja) y Tacámbaro-Puruarán (en azul) por Guilbaud et al. (2011; 2012), Zacapu por Siebe et al. (2014); Reyes-Guzmán et al. (2018) (en verde) y Paracho-Cherán (en rojo).

Capítulo 2. Métodos

El mapa geológico a detalle se elaboró de acuerdo a las recomendaciones del USGS (2007) con algunas modificaciones (<u>http://pubs.usgs.gov/fs/2007/3015/fs2007-3015.pdf</u>) respecto a las unidades geocronológicas. Posteriormente, se identificaron y delinearon las diferentes estructuras volcánicas (e.g. conos de escoria, flujos de lava, volcanes escudo y domos) con la ayuda de mapas vectoriales y líneas de vuelo con pares de fotografías aéreas del Instituto Nacional de Estadística, Geografía e Informática (INEGI) a escala 1:50,000 y 1:75,000 respectivamente y con curvas de nivel a cada 20 m, correspondientes a las cartas E13B29 (Paracho), E13B39 (Cherán), E14A21 (Uruapan) y E14A31 (Tingambato). Para poder procesar los datos vectoriales, se utilizó el sistema de información geográfica (SIG) ArcGis10 mediante la

elaboración de un modelo digital de elevación (MDE) y digitalización de las diferentes unidades. Las fotografías aéreas se observaron mediante un estereoscopio de espejos.

La información obtenida fue verificada en el terreno durante los años 2012-2015 en 7 salidas al campo de una semana cada una (total de 50 días). En estas campañas fui asistido por los Dres. Claus Siebe, Oryaelle Chevrel y el maestro Sergio Salinas. En campo, no sólo se reconocieron las diferentes unidades geológicas, sino que además se colectaron 137 muestras de roca (lavas, bombas y cenizas) y paleosuelos, cuyas coordenadas de obtención se precisaron mediante un aparato de posicionamiento satelital portátil (GPS). Posteriormente, las muestras fueron sometidas a análisis químico, petrográfico, sedimentológico e isotópico (fechamientos por ⁴⁰Ar/³⁹Ar y ¹⁴C) en diferentes laboratorios.

Se enviaron 129 muestras para su análisis químico (elementos mayores y traza) a Activation Laboratories LTD (Ancaster, Canadá), mediante métodos de espectrometría por emisión de plasma de acoplamiento inductivo por fusión (FUS-ICP), digestion total (TD-ICP) y activación de neutrones (INAA). Los detalles de las metodologías empleadas se pueden consultar en http://www.actlabs.com.

Del total de muestras, 95 fueron enviadas a Mann Petrographics (Ojo Caliente, New México) para confección de láminas delgadas, mismas que fueron analizadas petrográficamente. Se determinó su composición mineralógica y proporción modal (conteo de 1000 puntos por lámina) con la ayuda de los microscopios petrográficos LEICA-DMLP (para fotomicrografías) y OLYMPUS (con contador modelo BH-2), ambos disponibles en el Departamento de Vulcanología del Instituto de Geofísca, UNAM.

Por otra parte, se enviaron 30 muestras de roca para su fechamiento por ⁴⁰Ar/³⁹Ar al Geophysical Institute, Universidad de Fairbanks Alaska (UAF), donde fueron analizadas en el laboratorio a cargo del Dr. Paul Layer. Se analizó el vidrío volcánico en la matriz mediante irradiación (activación) de las muestras con neutrones (Muecke, 1980; Faure, 1986) en un reactor nuclear para convertir el ³⁹K en ³⁹Ar (Faure, 1986) con el estándar TCR de 27.87 Ma (Lanphere y Dalrymple, 2000). Para ello, las rocas fueron trituradas, envueltas en papel aluminio, montadas en recipientes de aluminio puro de 2.5 cm de diámetro por 6 cm de alto y expuestas ante un flujo de neutrones dentro del núcleo del reactor durante 20 megawatt-horas en la Universidad de MacMaster, en Hamiltón Ontario, Canada. (Merrihue y Turner, 1966; Faure, 1986; Turner et al., 1994; McDougall y Harrison, 1999; Arce et al., 2006). Posteriormente, las muestras y el estándar fueron desempacados y colocados en una bandeja de cobre dentro de orificios de 2 mm de diámetro, para ser introducidos en un sistema de extracción al ultravacío (McDougall y Harrison, 1999; Layer, 2000). Una vez limpias, las muestras fueron calentadas en pasos sucesivos junto con el estándar, utilizando un láser de iones de argón de 6 watts, de acuerdo a la técnica descrita

por York et al. (1981), Layer et al. (1987) y Layer (2000). Al fundir la muestra, una parte de su contenido de ³⁹Ar y de ⁴⁰Ar es liberada; dicho proceso recibe el nombre de desgasificación gradual (stepwise heating; Faure, 1986), ya que el gas de argón se desprende por pasos controlados y paulatinos y no en una única emisión.

Se recolectaron un total de 16 muestras de diversos paleosuelos (250 gr/muestra) procurando siempre obtener los 2 cm de la parte superior del paleosuelo, inmediatamente por debajo del depósito de ceniza o flujo de lava cuya edad se deseaba conocer. Se estableció su posición estratigráfica detallada, agregando información sobre su color y textura. Posteriormente las muestras fueron secadas en un horno a 60 °C y enviadas al laboratorio Beta Analytics Inc. (Miami, Florida) donde fueron analizados alrededor de 20 gr de cada muestra mediante el método AMS (accelerator mass spectrometry).

Para el análisis sedimentológico >20 muestras de cenizas y escorias fueron secadas en un horno a 60 °C y pesadas en seco. Posteriormente fueron tamizadas, analizadas, clasificadas y descritas en secciones estratigráficas. Con base a los resultados granulométricos, se determinaron los parámetros de Inman (1952) descritos también en Cas y Wright (1987).

Capítulo 3.- Marco tectónico y geológico

El área de Paracho-Cherán (APC) se localiza en la porción central del CVTM (Fig. 2) y cuenta con ~ $1,100 \text{ km}^2$ de extensión lo cual corresponde tan sólo al 3 % de toda el área que abarca el CVMG (~ $40,000 \text{ km}^2$). El área incluye alrededor de 140 edificios volcánicos y representa el núcleo de la Meseta Tarasca, dónde habitan al menos 52,800 personas, gran parte de ellas pertenecientes a la etnia Purépecha, según cifras del último censo de INEGI (2010) para los municipios de Paracho y Cherán (Fig. 3).

El área de estudio se encuentra a ~ 380 km de la zona de subducción en el arco medio del CVTM, dónde la corteza alcanza su mayor espesor (~45 km) y la tasa de ocurrencia de erupciones volcánicas es muy alta. Además, se encuentra inmediatamente al NE de la zona donde se localiza el Volcán Paricutin y que fue cartografiada geológicamente por Williams (1950) y más recientemente por Ownby et al (2007, 2011), quienes también incluyeron múltiples fechamientos isotópicos en su estudio. A pesar de la atención que recibieron el Paricutin y su entorno, poco se sabe sobre el APC. En sus estudios sobre el CVMG, Hasenaka y Carmichael (1985, 1986, 1987, 1994) recolectaron muestras provenientes del APC y notaron que muchos de los volcanes que ahí se encuentran son jóvenes, incluyendo El Jabalí, El Juanyan y El Metate, mismos que se fecharon por el método de radiocarbono y cuyas edades corresponden todas al Holoceno. A partir de los análisis químicos publicados por Hasenaka y Carmichael (1987) se sabe que los productos volcánicos del APC son mayoritariamente calco-alcalinos e intermedios en composición (andesitas principalmente).

Sólo recientemente se han llevado a cabo nuevamente investigaciones en el APC dentro del marco de proyectos financiados por CONACYT y DGAPA-UNAM (ambos asignado a Claus Siebe), mediante los cuales se obtuvo apoyo para el presente estudio (primeros resultados fueron presentados por Siebe et al. (2014) así como para una investigación exhaustiva del Cerro El Metate, cuya erupción en ~AD 1250 fue la de mayor volumen jamás registrada durante el Holoceno en México y que tuvo serias repercusiones en su entorno (Chevrel et al., 2015; 2016). Sin embargo, hasta la fecha no existe un mapa geológico detallado de esta zona.

El área de estudio fisiográficamente representa el núcleo de la Meseta Tarasca, un extenso alto topográfico que está ocupado en su totalidad por rocas volcánicas (lavas, depósitos piroclásticos y sus derivados) del Cuaternario que pertenecen al CVTM y que recubren las rocas que forman el basamento local. Por ello es difícil decir algo concreto con respecto a la naturaleza del basamento. Sin embargo, se pueden hacer algunas inferencias, si se mira hacia los límites del CVMG, donde afloran rocas más antiguas. El CVMG está delimitado por importantes zonas fisiográficas y tectónicas (Johnson y Harrison, 1989, 1990; Suter et al., 2001; Pasquaré et al., 1991; Garduño-Monroy et al., 2009; Guilbaud et al., 2011; 2012; Siebe et al., 2014; Guilbaud et al. 2020). Limita al este con el anticlinal o "Gap de Tzitzio" (Fig. 2), que representa una marcada irregularidad (Blatter y Hammerseley, 2010) en el frente volcánico del CVTM, donde aflora una secuencia de rocas sedimentarias con edades del Jurásico (Mennella et al., 2000), que están deformadas y sufrieron metamorfismo (esquistos micáceos). Estas rocas están cubiertas por areniscas y conglomerados del Eoceno-Oligoceno que tienen ~600 m de espesor y que a su vez están cubiertas por depósitos volcánicos del Mioceno (14.1-22.9 Ma) pertenecientes a un complejo de múltiples calderas que forman la Sierra de Mil Cumbres, así como en el área de Queréndaro en dónde también ocurre vulcanismo monogenético (Gómez-Vasconcelos et al., 2015; Gómez-Vasconcelos et al., 2020). Una situación similar fue descrita por Arce et al. (2012) más hacia el oriente en el campo geotérmico de Los Azufres, donde las rocas volcánicas jóvenes son subyacidas esencialmente por esta misma secuencia. Más al sur, cerca del Volcán Jorullo en la depresión del Río Balsas, afloran granodioritas y secuencias volcánicas Terciarias del Eoceno-Oligoceno (Damon et al., 1983; Pantoja Alor, 1986; Schaaf et al. 1995; Guilbaud et al., 2011; Ortega-Gutiérrez et al., 2014) que están asociadas a zonas de mineralización de cobre en el distrito minero de Inguarán (Sawkins, 1979; Clark et al., 1982; Osoria et al., 1991; Guilbaud et al., 2011). Por otra parte, al suroeste el CVMG limita con el "Gap de Mazamitla" (Kshirsagar et al., 2015) donde ocurren gabros y granodioritas del Cretácico-Paleoceno que intrusionan rocas sedimentarias y volcánicas del Mesozoico (D. Villanueva-Lascurain y P. Schaaf, comunicación personal), mientras que al noroeste limita con el Lago de Chapala que forma parte del sistema de rifts Colima-Chapala (Fig. 2) y se caracteriza por una depresión tectónica controlada por fallas normales con rumbo E-O. Este sistema de fallas, denominado Chapala-Tula (SFCT en Fig. 2) se

extiende hacia el este y también controla en gran medida el cauce del Río Lerma-Santiago, que drena la parte central del CVTM hacia el Pacífico. Se sobrepone a otros sistemas de fallas que incluyen el sistema de fallas NW-SE denominado Chapala-Oaxaca (SFCO en Fig. 2), el sistema Querétaro-Taxco con dirección NNW-SSE (SFOT en Fig. 2) y el sistema Morelia-Acambay (Suter et al., 2001; Garduño-Monroy et al., 2009; Kshirsagar et al., 2015; Reyes-Guzmán et al., 2018; Ramírez-Uribe et al., 2019; Gómez-Vasconcelos et al., 2020) con dirección WSW-ENE (SFMA en Fig. 2). Este último, también llamado sistema Cuitzeo (Johnson y Harrison, 1990), controla las cuencas en las que se ubican los lagos de Cuitzeo y Zacapu delimitadas por fallas normales con rumbos WSW-ENE (Kshirsagar et al., 2015; Reyes-Guzmán et al., 2018) y Ramírez-Uribe et al. (2019) (Fig. 2) que afloran ampliamente hasta desaparecer bajo la cobertura volcánica del Cuaternario de la Meseta Tarasca hacia el poniente. Este sistema de fallas ha mostrado actividad reciente con un sismo somero de gran magnitud (MS=6.7) que ocurrió en 1912 y provocó grandes daños en la zona de Acambay (e.g. Urbina y Camacho, 1913; Suter et al., 1995; Langridge et al., 2000). Muchos volcanes en la zona estudio están alineados en esta dirección (WSW-ENE) por lo que presumiblemente estas fallas recorren la zona de estudio que en consecuencia debe considerarse tectónicamente activa. Al norte, rumbo a Guanajuato, se encuentra la denominada formación de valles y cuencas (Basin and Range) donde afloran ampliamente rocas volcánicas (Williams, 1950; Echegoyen et al., 1970; Aguirre et al., 2008) del Oligoceno-Mioceno (incluyendo ignimbritas) de la Sierra Madre Occidental (ISMO en Fig. 2).

Para concluir, existen pocas evidencias concretas sobre el tipo de basamento que se encuentra por debajo del CVMG, con la excepción de xenolitos granodioríticos arrojados por los volcanes Paricutin (Wilcox, 1954; McBirney et al., 1987) en la Meseta Tarásca y Arocutin (Corona-Chávez et al., 2006), localizado en los márgenes del lago de Pátzcuaro, aunque también podrían existir rocas sedimentarias y volcánicas mesozoicas, como lo sugirió Williams (1950).

Capítulo 4. Morfometría y Geomorfología de los volcánes del área Paracho-Cherán

En el área de estudio se logró identificar un total de ~85 volcanes que se pueden clasificar por su morfología y tamaño en principalmente dos tipos: a) Volcanes de volumen intermedio (escudos y domos) y b) volcanes monogenéticos (mayoritariamente conos de escoria). Los primeros representan las cimas más altas (e.g. Paracho = 3334 msnm) y suman 22 edificios, mientras que los segundos son más abundantes (63 edificios) y se encuentran generalmente (aunque no exclusivamente) en las planicies que separan a los primeros (Fig. 3). Además, entre los volcanes monogenéticos, se distinguen 14 pequeños domos y 4 flujos de lava aislados que aparentemente fueron emitidos a partir de fisuras, algunos sin formar un edificio propiamente (ver lista completa de los volcanes en el Apéndice I). A continuación, se discuten las características morfológicas de los principales tipos de volcanes en el área de estudio.

4.1. Volcanes de volumen intermedio (escudos y domos)

Aunque casi todos los estudios anteriores realizados en la zona hacen mención de los volcanes de volumen intermedio (e.g. Williams, 1950; Hasenaka y Carmichael, 1985; 1986; 1987; Connor, 1987; Ban et al., 1992; Ownby et al., 2007; 2011; Siebe et al., 2014), sólo algunos (Roggensack, 1988; 1992; Hasenaka, 1994; Chevrel et al., 2016a; 2016b; Reyes-Guzmán et al. 2018; Ramírez-Uribe et al. 2019) se refieren directamente a ellos, por lo que aún se sabe poco sobre el origen de los enigmáticos escudos del CVMG. Por ello, en el presente estudio se intenta también contribuir a comprender la génesis y el origen de estos volcanes (e.g. las condiciones que favorecen el emplazamiento del magma y cuáles son sus edades, sus volúmenes y características composicionales y petrográficas a través del tiempo). Con el fin de aclarar algunas dudas, se formularon varias interrogantes como: ¿Qué gobierna al emplazamiento del magma para generar a los escudos? ¿Se debe al régimen estructural o al comportamiento geodinámico de la superficie? ¿Se debe al enfriamiento de la corteza continental que está relativamente más fría, fallada y en extensión? ¿Se debe al flujo magmático más caliente y menos denso que asciende a la superficie a través de fallas y fracturas en la corteza o se debe a procesos tectónicos regionales, relacionados con la placa en subducción o a una combinación de varios factores? En este sentido, son muchas las preguntas que aun pueden formularse con respecto al origen de los volcanes del CVMG. Sin embargo, con respecto a los escudos, es necesario primero resumir lo que se sabe de ellos. A raíz de la famosa erupción del volcán Paricutin y su impacto, H. Williams (1950) realizó un reconocimiento geológico del área e hizo descripciones minuciosas mediante dibujos y fotografías de la vasta zona volcánica que documentó. Notó que no todos los volcanes eran tipo Paricutín e identificó también a los volcanes escudo. También concluyó que se debía de tratar de un campo volcánico muy activo desde ya hacía mucho tiempo. Posteriormente, Connor (1987) postuló que existe una relación entre los volcanes del CVMG y la estructura de la corteza, ya que muchos volcanes ocurren a lo largo de alineamientos que deben reflejar la existencia de importantes sistemas de fallas. Identificó dos rumbos de fallas dominantes, uno con dirección NE-SW, comúnmente asociado a alineamientos de volcanes monogenéticos y otro NW-SE, que parece estar relacionado a volcanes poligenéticos. Sin embargo, no profundizó en la cuestión de los escudos y en cambio explicó, que el arreglo estructural cortical puede estar relacionado a la segmentación de la placa en subducción.

Hasenaka y Carmichael (1985; 1986; 1987) describieron y determinaron las características morfológicas, las composiciones, la petrografía y estimaron las edades de los conos de escoria principalmente, aunque también incluyeron numerosos escudos en sus estudios. Con respecto a los escudos discutieron su posible origen y formación y los definieron como volcanes de tamaño intermedio de composición andesítica con afinidades predominantemente calco-alcalinas, típicas de ambientes tectónicos de subducción. Además, notaron un incremento en los contenidos de

MgO, Cr y Ni con respecto a la cercanía de los volcanes hacia la trinchera. Roggensack (1988), Ban et al. (1992) y Hasenaka (1994) retomaron gran parte de lo recopilado por los primeros autores, aunque se enfocaron también en las características morfológicas, geoquímicas y petrográficas de los escudos, a los que clasificaron y dividieron en cuatro grupos a partir de su morfología (área base, altura y pendiente). A la mayoría los clasificaron como de tipo "*Islándico*" o de tipo "*Galápagos*". Además, identificaron a dos grandes estratovolcanes, el Tancítaro y el Cerro Grande. Este último se encuentra cerca de la ciudad de La Piedad al norte del CVMG. Posteriormente, Ownby et al. (2007) y Siebe et al. (2014) hicieron mención del Patamban, otro estratovolcán poco conocido. Con ello queda claro que el CVMG no es exclusivamente monogenético, como frecuentemente se asume.

Ban et al. (1992) estudiaron ~26 volcanes escudo del CVMG, determinaron el rango de sus pendientes que varía entre 5° y 15° y compararon sus tamaños con los de los escudos Islándicos que son de mayor tamaño. Con base en fechamientos por el método K-Ar infierieron que el vulcanismo ha migrado al sur en el CVMG durante los últimos 2.5 Ma y sugirieron que dicha migración posiblemente se deba a cambios en la geometría de la placa en subducción. Añadieron que además el vulcanismo se ha tornado más monogenético desde entonces, aduciendo que las cimas de muchos escudos se encuentran coronadas por conos de escoria. En contraste, diversos autores (Ownby et al., 2011; Guilbaud et al., 2012; Siebe et al., 2013; 2014; Kshirsagar et al., 2015; 2016; Chevrel et al., 2016b; Larrea et al. 2017; Reyes-Guzmán et al. 2018; Ramírez-Uribe et al. 2019; Larrea et al. 2019) reportaron nuevas edades y volúmenes de diversos escudos en varios sectores de campo.

Hasenaka (1994) menciona que la mayoría de los escudos se encuentran al noroeste del campo, mientras que los conos de escoria son más abundantes al suroeste. Sin embargo, su distribución pareciera ser aún más compleja. Por ejemplo, un simple ejercicio consiste en ubicar los centros de emisión, tanto de escudos como de conos, para determinar la densidad de puntos (máximas concentraciones), indica que los primeros se concentran con hasta 6-8 escudos/1000 km², mientras que los conos de escoria se concentran con hasta 21-28/1000 km² en algunas regiones del CVMG. En combinación, es posible establecer que hay zonas en donde 23 conos y 9 escudos comparten un área de 1000 km² (e.g. al norte y noroeste del área Paracho-Cherán y en el área ubicada entre los estratovolcanes Tancítaro y Patamban; ver. Fig. 2).

Por lo anterior, es posible observar, en términos generales, una mayor concentración de conos hacia el sur (Hasenaka, 1994), aunque en la región de Valle de Santiago al noreste del CVMG, también existe una pequeña área con una alta concentración de éstos. Quizás, la distribución de los escudos (que en su mayoría son de composición andesítica y andesita basáltica) y de los conos de escoria (que cubren un mayor rango composicional e incluyen tanto variedades más primitivas así como más silícicas), podría estar relacionada con la geometría de la placa de Cocos

en subducción en combinación con el espesor de la corteza continental, que es variable (~30 a 45 km) y que se encuentra en extensión (Blatter y Hammersley, 2010; Guilbaud et al., 2011; 2012; Gómez-Vasconcelos et al., 2015).

En algunas partes del CVMG se observa en superficie el arreglo estructural de la parte superior de la corteza continental, que se caracteriza por sistemas de fallas normales y fracturas conjugadas con rumbos este-oeste, noreste-suroeste, norte-sur y con extensión norte-sur predominantemente (e.g. Graben de Chapala, Cuencas de Zacapu y Cuitzeo; ver Siebe et al., 2014; Kshirsagar et al., 2015; 2016; Gómez-Vasconcelos et al., 2015 Gómez-Vasconcelos et al., 2020; Avellán et al., 2020). En las áreas con mayores concentraciones de volcanes y con mayores espesores de productos volcánicos jóvenes no es posible observar fallas ya que se encuentran cubiertas. Sin embargo, tanto escudos como conos están frecuentemente alineados y en raras ocasiones se observan diques con rumbos noreste-suroeste en el corazón del CVMG (e.g. El Gato, Fig. 3). Las zonas con mayores concentraciones de volcanes incluyen la región de Tancítaro, la Meseta Purépecha, los alrededores de Zacapu, el lago de Pátzcuaro, la zona de Tacámbaro-Puruarán, la región de Jorullo y la zona de Valle de Santiago al noreste (Fig.2). El resto del campo presenta concentraciones intermedias donde las aglomeraciones disminuyen y el espesor de los depósitos volcánicos es variable (Siebe et al., 2013; 2014; Kshirsagar et al., 2015; 2016; Gómez-Vasconcelos et al., 2015; Gómez-Vasconcelos et al., 2020; Avellán et al., 2020).

Ownby et al. (2007; 2011) estudiaron la región de Tancítaro-Nueva Italia (hacia el frente del arco volcánico) y en particular los productos del volcán Tancítaro y volcanes aledaños. Es decir, se enfocaron en analizar las andesitas y su posible origen en la corteza profunda. Recientemente, Larrea et al. (2017; 2019) y en la zona de Zacapu y Pátzcuaro; Reyes-Guzmán et al. (2018) y Ramírez-Uribe et al. (2019) presentaron trabajos sobre el origen, emplazamiento y formación de varios escudos y conos monogenéticos de escoria (e.g. Paricutín, Astillero-Pedregal, Capaxtiro, Malpaís Prieto, Rancho Seco-Mazcuta). Chevrel et al. (2016a y 2016b) presenta, un par de estudios sobre El Metate que cubre ~100 km² con 13 flujos de lava que varían composicionalmente entre 56 y 61 wt.% SiO₂. Fecharon la erupción radiométricamente en el año 1250 de nuestra era y estimaron que duró al menos 34 años y que se trata de un volcán monogenético. Debido al gran volumen de magma que emitió se puede considerar como la erupción más voluminosa de composición andesítica conocida en méxico ocurrida durante el Holoceno.

Unicamente 22 escudos en el área de estudio (Tabla 1) fueron clasificados a partir de sus pendientes (11°-21°), su diámetro basal promedio es de 5.25 km, su volumen promedio es de 2.2 km³ y sus alturas varían entre los 400 y 1200 m; corresponden a las categorías de los tipos

"Islándico" y *"Galápagos"* de la clasificación de Whitford-Stark (1975). (Tabla 1). En el presente estudio se identificaron tres grupos de escudos en el área Paracho-Cherán:

a) Los escudos de volumen pequeño (<2 km³) tienen forma y morfología variables, que ocasionalmente presentan domos.

b) Los escudos voluminosos (2-10 km³) son más extensos y representan al típico escudo con pendientes suaves. Algunos tienen domos en su cima donde forman morfologías abruptas o redondeadas.

c) Los escudos compuestos, formados por varias erupciones y representados hasta ahora sólo por un ejemplo, El Paracho (Fig. 4).

Volcán	Area Km ²	Diam. Basal (Km)	Altura (m)	S⁰	Vol. DRE Km ³	Comp. %SiO2	Edad (Ka)	
Metate***	50	11.13	993	12	9.1	56-61	1200 A.D.	
Paracho*	21.6	4.72	1034	20	1.73	59-61	60+/-10* / 63+/-3 y 12 (Ka)	
Molino	14.9	4.32	526	12	1.39	62.59	87 +/- 5	
Santísimo	32	6.42	1026	12	2.23	60.02	100 +/- 7	
Chivo	43.5	6.1	703	11	2.94	56.4	129+/-26	
El Horno	18.7	5.15	579	13	1.64	57.42	194 +/- 4	
Aracata	10	3.62	861	13	0.83	58.51	194 +/- 11	
Cuinguitapu	12.6	3.7	693	21	0.9	62.1	256 +/-4	
Zipiatiro	16	4.2	723	18	1.17	57.12	257+/-17	
Capén	42	6.8	614	12	2.34	59.35	338 +/- 6	
Hueratiro	31.6	5.52	576	12	2.2	60.42	401 +/- 10	
La Virgen	28.1	6.95	873	14	2.16	57.12	485 +/- 11	
San Marcos	10.6	3.31	840	18	0.81	61.7	764+/-12	
Gato	4	1.1	415	21	0.26	61	788+/-16	
La Cruz**	13.8	4.22	471	13	1.02	62.9	895 +/- 13 y 730+/-113	
Cumburinos	39	7.58	824	12	3.09	59.53	1007+/-29	
Zarapo	14.8	4.99	489	11	1.5 59.62 1052+/-29		1052+/-29	
Colorado	20	4.26	406	11	1.55	52.12	1189+/105	
Querenda	7.2	3.38	607	18	0.79	60.87	1446+/-18	
Horno-Sur	4.4	1.13	236	19	0.37	57.4	2509+/-24	
Las Varas**	15	5.08	552	12	1.2	60	no conocida	
Caraquitaro	37	6.08	1117	20	2.33	60.11	no conocida	
Pacaracua	23	5.39	739	15	1.88	60	no conocida	
Pilón	13.3	3.33	595	19	1.95	60.78	no conocida	
Tamapu-Juata	6.5	2.87	343	11	0.39	58.98	no conocida	
Mari-Juata	45.5	6.88	580	13	3.19	61.4	no conocida	

Tabla 1.- Escudos del área Paracho-Cherán (APC)

Principales escudos del APC, junto con otros escudos conocidos y estudiados por *** Chevrel et al., (2015), **Ownby et al., (2011) y * Ban et al., (1992). Edades obtenidas mediante Ar/Ar y radiocarbono. Los volúmenes se presentan en DRE o Densidad de Roca Equivalente.Tabla completa y otros escudos en apéndice I.

Sólo 12 escudos fueron fechados en el área mediante el método ³⁹Ar/⁴⁰Ar (Tabla 3). Varios de ellos presentan domos en su cima, incluyendo El Metate, El Paracho, San Marcos, Santísimo, Querenda, Pilón, La Virgen, El Molino y Mari Juata-Cuinguitapu (Figs. 3 y 4). A veces, es posible distinguir varios domos alineados que se presume fueron alimentados por diques (e.g. El Ziapo, El Gato; ver Fig. 3) y en otras ocasiones se encuentran pequeños domos (14 en el área Paracho-Cherán) sobre las laderas de los escudos; Estos en general tienen formas redondeadas y volúmenes pequeños con pendientes más pronunciadas, aunque algunos pueden superar en tamaño a un cono de escoria. Otros tienen formas transicionales entre escudos y conos (e.g. El Molino, Las Varas, El Mesteño, Cocucho; ver Figs. 3 y 4) y la mayoría de éstos presentan cárcavas por la erosión lineal y radial de los pequeños arroyos temporales que se generan en sus laderas; Algunos son muy jóvenes como El Metate (Chevrel et al. 2016a y 2016b) y El Paracho (Siebe et al., 2014) y muchos escudos no aparecen aislados, sino alineados formando serranías alargadas conformadas por sistemas complejos que también incluyen conos, domos y diques (e.g. complejo Mari Juata-Cuinquitapu, sistema Santísimo-Horno, que incluye también al cono de escoria Jánamo, sistema Parachito-San Marcos-Querenda, que incluye al Paracho y a los conos Sinar Juata-Caín Juata, entre otros; ver Figs. 3 y 4) por lo que su origen es aún bastante enigmático; puesto que a menudo, existen en sus cimas conos de escoria como se mencionó antes (e.g. Jánamo, sistema Paracho, Sinar Juata, Caín Juata). Todas estas observaciones indican la existencia de un sistema de fallas activas que permiten el repetido ascenso y emplazamiento de magma como es el caso del domo compuesto El Paracho (Figs. 3 y 7) (Siebe et al., 2014) que presenta edades contrastantes (Tablas 3 y 4) y que por lo tanto no es monogenético (como se pensaba), lo que hace necesario establecer una clasificación más adecuada para este tipo de estructuras volcánicas.

a) Escudos de medio volúmen

Figura 4.- Escudos del APC: a) Escudos de volumen intermedio <2 km³; b) Escudos voluminosos > 2 km³ y <10 km³; c) Domo compuesto. En promedio tienen 5.25 km de diámetro basal, y según la clasificación de Withford-Stark (1979) son de tipo Islándicos-Galapagos.

4.2. Conos de escoria monogenéticos

En décadas recientes se intentó describir con mayor exactitud la morfología y principales características que presentan los conos de escoria (e.g. Colton, 1967; Porter, 1972; Wood, 1980a, 1980b). En estos trabajos se propuso la fórmula basada en la geometría de un cono truncado (Fig. 5) que incluye los siguientes parámetros: Altura del cono (Hco), diámetro de la base (Wco), diámetro del cráter (Wcr) y ángulo de la pendiente desde la base (S°). También se estableció la relación causal que existe entre la evolución temporal de los parámetros morfológicos y los fenómenos erosivos, cuyo tipo e intensidad dependen del clima principalmente; es decir, los parámetros morfológicos reflejan el grado de degradación erosiva de un cono y por ende pueden ser utilizados como herramienta para su datación relativa. Porter (1972) determinó que los conos jóvenes en los flancos del Mauna Kea en Hawaii presentan relaciones iniciales de Hco/Wco=0.18 y Wcr/Wco=0.40 y que el ángulo de la pendiente S° (ángulo de reposo de la escoria y ceniza que conforma el cono) disminuye sistemáticamente con el paso del tiempo por acción de los agentes erosivos.

Figura 5.- Principales parámetros mofométricos y morfológicos considerados para los conos del área Paracho-Cherán, y usados por Wood (1980a, 1980b) y Hasenaka y Carmichael (1985): en dónde Hco= altura de cono, Wco= diámetro basal del cono, Wcr= diámetro del cráter, pendiente= S°; adicionalmente se considera la irregulirad de las geoformas en los parametros (e.g. Wco máximo y mínimo, Wcr máximo y mínimo), algunos presentan cárcavas y/o flujos de lava que pueden alterar su estado de equilibrio, así como otros elementos morfológicos y morfodinámicos, como los físico-mecánicos que intervienen en su desarrollo (i.e. posción topográfica, el entorno morfotectónico, y los patrones morfoclimáticos según la latitud) (e.g. Colton, 1967).

Wood (1980a, 1980b) analizó conos de escoria en varios campos volcánicos del mundo sujetos a distintas condiciones climáticas y determinó que en todos esos casos disminuye el ángulo de la pendiente y el cono pierde altura sistemáticamente; sin embargo, ocurre a diferentes velocidades dependiendo del tipo de clima y la naturaleza de los materiales que conforman al cono y por lo tanto, la utilización de los parámetros morfológicos como método de datación relativa tiene varias complicaciones que tienen que ser tomadas en cuenta. Los factores a considerar incluyen la latitud y las características geológicas y orográficas regionales, así como el microclima

y su impacto en el desarrollo de la vegetación y el uso de suelo que se combinan para determinar los procesos erosivos. Además, existen otros factores que determinan la naturaleza de los materiales que conforman el cono y su susceptibilidad a la erosión. Estos incluyen estilo eruptivo, composición del magma, contenido de volátiles, relación agua/magma, tamaño de grano dominante en los depósitos piroclásticos, espesor, distribución y posición topográfica, inclinación de la pendiente, etc. (Kereszturi y Németh, 2012; Kereszturi et al., 2012; Kereszturi et al., 2014), las cuales, nos permiten establecer una relación matemática mediante matrices de [1x1], [2x2], $[3x3], \infty, y$ por tanto, es posible obtener la determinante de dichas matrices e incluso, cuáles son las características y comportamiento (e.g. eigenvalores y eigenvectores de una matríz) para cada volcán en una situación particular, independientemente de su edad. Esto es de utilidad práctica, ya que permite elaborar un modelo más preciso para determinar los factores más importantes que se combinan y condicionan, no sólo arrojando luz sobre su origen, sino también sobre la diversidad de tipologías que presentan los volcanes monogenéticos, como es el caso de los que existen en México, como el CVMG, CVSCH y CVMX (e.g. Hasenaka y Carmichael, 1985; Siebe et al., 2004; Agustín-Flores et al., 2011; Rodríguez-Elizararrás et al., 2010; Guilbaud et al., 2011; 2012). Recientemente, Larrea et al. (2017; 2019) en la zona de Paricutín y Tancítaro, además de la zona de Zacapu y Pátzcuaro; Reyes-Guzmán et al. (2018) y Ramírez-Uribe et al. (2019) reportan algunos datos precisos (e.g. edades, geológia, petrología, petrografía y geoguímica) de varios conos monogenéticos de escoria en diferentes zonas del CVMG (e.g. Malpaís Prieto, Capaxtiro, Rancho Seco y Mazcuta). Si bien existen similitudes entre los conos que conforman a todos estos campos, cada uno presenta ciertas singularidades (e.g. la relación Hco/Wco y otros parámetros morfológicos como pendiente, diámetro de cráter, etc.) y resulta que éstos no son diagnósticos para determinar su edad, aunque en algunos casos estos parámetros guardan correlaciones consistentes.

4.3.- Aspectos generales y parámetros morfométricos

Tomando como referencia las relaciones anteriores, se establecieron los parámetros morfométricos a observar en el área de Paracho-Cherán tales como: Hco/Wco, Wcr/Wco, pendiente S^o (Fig. 5) y los volúmenes (DRE) de los conos, flujos de lava y escudos, asumiendo un porcentaje de espacio vacío para conos de escoria del 30 vol.% y para flujos de lava del 10 vol.% (Guilbaud et al., 2012). En el caso del volcán El Metate se adoptaron los porcentajes (10-15 vol.%) utilizados por Chevrel et al. (2016a) para determinar el DRE. Además, se utilizó la herramienta "*functional surface*" del programa ArcGis10 con factor de escala Z=0.004 m³ para estimar los volúmenes a partir de las cartas vectoriales con escala 1:50,000 del INEGI. De esta manera se utilizaron los parámetros anteriormente citados para el cálculo de los volúmenes. Del mismo modo se estableció la siguiente fórmula (modificada) para el volumen de un cono truncado, usada por Hasenaka y Carmichael (1985) en un sector del CVMG:

$$v = \frac{\pi.Hco}{12} \left[(Wcr^2 + Wcr)(Wco + Wco^2) - (\Sigma\%vDRE) \right]$$

En dónde v es el volumen en km³, (Hco) es la altura promedio del cono, (Wcr) es el diámetro promedio del cráter, (Wco) es el diámetro promedio de la base del cono, y (Σ %vDRE) es el porcentaje del volumen recalculado de la Densidad de Roca Equivalente. De esta forma, ambos métodos fueron comparados y relacionados para determinar el error σ (ver tabla completa en Apéndice I). Ésto se consiguió partiendo del factor de escala 0.0004 metros (4 mm, en escala 1:50,000 utilizado por INEGI) y el cuál surge del límite de escala y la metodología aplicada al levantamiento topográfico (e.g. estaciones totales, niveles, puntos de mojonera y GPS de precisión ~4 mm). De esta forma INEGI establece que para la escala 1:50,000 las curvas tienen una equidistancia de ~20 m. Posteriormente, para utilizar los datos vectoriales adecuadamente y pasarlos a un archivo "raster" con las herramientas de ArcGIS10, se establece el factor 0.0004 m como resultado del cruce de las líneas de frecuencia para los modelos GPS Pro XRS de 12 canales con antena. Es decir, el error (~4 mm), que se lleva a metros y se multiplica x 50,000, a su vez dará como resultado 20 m. Éste contará como un factor de escala y se deberá considerar siempre que se utilice la escala 1:50,000 aplicada a pixeles de 20x20 metros de un raster con el fin de evaluar algún geoproceso (en este caso los volúmenes). Lo mismo ocurre con otros parámetros como la equidistancia entre curvas, las áreas y líneas, entre otros.

4.4.- Morfología, morfometría y volúmen.

Para estimar adecuadamente las edades relativas de varios de los conos que no pudieron fecharse radiométricamente, se tomaron en cuenta las características morfológicas observadas en las fotografías aéreas (e.g. presencia de cárcavas de erosión, colapso lateral del edificio, grado de desarrollo de la vegetación y uso del suelo) con el fin de relacionarlas con los parámetros morfométricos y de esta manera aplicarlos al modelo para poder integrar la información. En el área Paracho-Cherán existen ~144 volcanes, de los cuáles ~85 fueron plenamente identificados y considerados adecuados para ser analizados. Entre ellos, 63 son conos de escoria o domos y sólo 17 resultaron útiles para hacer el análisis. El resto quedó excluido debido a que muchos presentan signos de erosión fuerte y desarrollo pronunciado de cárcavas, o flancos muy sepultados por flujos de lava de volcanes contiguos. Algunos presentan colapsos en su cráter, otros se encuentran formando grupos de conos aglomerados en una superficie muy pequeña y compartiendo sus bases, o con múltiples cráteres (e.g. Cerros El Aire y Cocucho; ver Fig. 3). Incluso aquellos que son explotados como bancos de material y han sido modificados, presentan dificultades para el análisis y por tanto tampoco fueron considerados. Sin embargo, en términos de frescura morfológica y preservación, se estableció que al menos 21 estructuras son jóvenes e incluyen a los 17 conos de escoria, 9 de éstos con flujos de lava asociado, y 4 coladas sin cono

o domo (asociadas a fisuras), un escudo voluminoso (El Metate, datado radiométricamente en 1250 AD; Chevrel et al., 2016a y 2016b) con un domo en la cima y tres más sin cono asociado.

Los resultados del análisis de los 17 conos de escoria en el área de Paracho-Cherán indicaron los siguientes promedios para los diferentes parámetros morfométricos: Hco/Wco=0.22, Hco=372 m, Wco=893 m, Wcr=310 m, volumen del cono=0.055 km³ y S°=24°. De ellos, al menos 11 corresponden a erupciones ocurridas durante el Holoceno (Tabla 2). Las restantes 6 erupciones ocurrieron <21,500 años A.P., durante el Pleistoceno Tardío y están también apoyadas con fechamientos confiables por radiocarbono y fueron evaluados a partir de las líneas de tendencia trazadas (Fig. 6). Nótese que los valores para Hco/Wco y S° a lo largo de ambos periodos eruptivos (Holoceno/Pleistoceno Tardío) no se distinguen con exactitud y por lo tanto no pueden ser usados como indicadores confiables de la edad y/o frescura morfológica. Por ejemplo, la morfología de Hoya Urutzen y San Miguel grafican en la misma línea de tendencia o correlación, aunque tienen edades contrastantes (Fig. 6). Estas inconsistencias también fueron observadas en el área de Tacámbaro-Puruarán por Guilbaud et al. (2012), quienes concluyen que estas relaciones son demasiado ambiguas, como para establecer una relación empírica confiable entre la morfometría y la edad relativa de los conos.

Tabla 2.- Principales parámetros morfométricos de algunos conos monogenéticos de escoria del área Paracho-Cherán (APC).

Cono	Latitud	Longitud	Nombre	Wco	Wcr	Нсо	S=Tan- ¹(Hco/r)	Hco/Wco	Area Km ²	Vol DREen Km³	Volúmen (m³)(Wcr²+Wcr Wco+Wco²)
1	19º41'03.6"	101°59'04.8"	Juanyan	947.5	375.5	186	21	0.20	0.69	Sin flujo	0.068
2	19°33'28.7"	102º41'64.0"	Jánamo	731.5	256	193	26	0.26	60.9	0.5	0.040
3	19°35'29.56"	102º05'33.5"	Cicapíen	592.5	310	137	24	0.23	13.1	0.38	0.020
4	19°35'32.9"	102°04'22.9"	Capastacutiro	738.5	229.5	186	25	0.25	2.46	0.23	0.040
5	19°38'13.1"	102°04'56.06"	Paracho Viejo	727.5	225	135	18	0.19	1.75	0.08	0.026
6	19°33'29.3"	101°57'00.1"	Hoya Urutzen	1049	362.5	200	21	0.19	10.89	0.09	0.080
7	19º26'58.3"	102º06'43.7"	Jabalí	893	325.5	180	22	0.20	15.77	0.08	0.050
8	19°30'59.3"	102º06'32.5"	Piruani	787.5	317.5	140	19	0.18	0.49	0.12	0.030
9	19°28'05.31"	102º04'56.9"	Cheránguaran	1013.5	350	200	21	0.20	0.8	Sin flujo	0.072
10	19°30'42.14"	102º07'26.1"	San Lorenzo	684	204	160	25	0.23	0.37	Sin flujo	0.032
11	19°36'11.9"	102°06'48.0"	Yondima	967.5	330	220	24	0.23	0.73	Sin flujo	0.080
12	19°30'07.9"	102º11'22.6"	Gusato	1305.5	373	300	24	0.23	1.34	0.29	0.220
13	19°36'47.7"	102°05'40.4"	San Miguel	1151.5	320	220	21	0.19	1.4	Sin flujo	0.100
14	19°40'34.3"	101°56'39.8"	Cucundicata	900.5	258	240	30	0.27	0.5	Sin flujo	0.055
15	19°29'05.9"	102º00'41.1"	La Alberca	868	306.5	240	28	0.28	0.59	0.5	0.053
16	19°30'02.8"	102º05'57.7"	Hiahuacuaro	885	231	160	20	0.18	0.62	Sin flujo	0.052
17	19º31'28.3"	102°05'46.8"	Snta. Cruz	1012.5	273.5	240	25	0.24	0.8	Sin flujo	0.090
18	19°29'35.9"	102º15'05.1"	Pariutín*	950	250	200	22	0.21	24.8	0.7	0.060

Wco= diámentro de la base, Wcr= Diámetro del cráter, Hco= Altura de cono, Sº= Pendiente. Paricutín* Luhr y Simkin, 1993. . Los volúmenes se presentan en DRE o Densidad de Roca Equivalente. Tabla completa y otros escudos en apéndice I.

Figura 6.- Correlación Hco/Wco vs. edades absolutas obtenidas mediante ¹⁴C (edades calibradas) para los volcanes: Hoya Urutzen, Juanyan, Cicapien y Jánamo. Para obtener mayor precisión se usaron las relaciones estratigráficas de los mismos, se incluye al Paricutín (en rojo) nacido en 1943, junto con otros volcanes no fechados en el área.

Algunas inconsistencias en el modelo de las edades relativas, exponen que algunos volcanes (e.g. en conos monogenéticos de escoria: Jánamo <2000 años) no cumplen necesariamente con la regla del cono fresco a partir de la relación Hco/Wco, por lo contrario, se observa al Juanyan (~10,000 años), más cerca de la línea del Paricutín como si se tratara de hermanos contemporáneos, esto abre una discusión con respecto a la efectividad de dicho modelo, y que parte de un cuestionamiento fundamental para una clasificación adecuada: ¿Son los volcanes monogenéticos sistemas lineales? ó ¿se expresan como entidades más complejas que dependen de varios mecanismos o interacciones con el entorno?

4.5.- Jánamo y Juanyan: dos fenómenos particulares

Los volcanes Jánamo (2,240+/-30 años A.P.) y Juanyan (~10,000 años A.P.) en el área Paracho-Cherán representaron un reto conceptual al presentar características morfológicas incongruentes con su edad. El primero es más joven, pero está más degradado y presenta cárcavas, aunque tiene una mayor pendiente (S°=26°). Además, produjo un extenso flujo de lava y se asienta sobre un sistema de escudos en un alto topográfico (Figs. 3 y 7). En contraste, el Juanyan es un cono aislado localizado en la planicie de un valle (5 km al noroeste del poblado de Cherán) que no produjo flujos de lava (Figs. 3 y 7). Aunque el Juanyan es más antiguo, aunque podrían exitir algunos errores con esta edad, está mejor conservado y tiene una pendiente con una inclinación de S°=21° (similar al Paricutin). Además, su diferencia altitudinal es de ~725 msnm por debajo del Jánamo. Este factor puede explicar las disparidades morfológicas ya que determina las diferencias climáticas y sus efectos sobre la taza de erosión (Kereszturi y Németh, 2012).

En un simple ejercicio de análisis de criterios múltiples (e.g. de proceso analítico jerárquico) se consideran varios elementos para resolver una matriz (e.g. de [3x3]). Por lo tanto, antes que nada, es importante definir las componentes principales de la matriz y decidir cuáles factores son los implicados directos en el proceso de formación y degradación de un cono de escoria monogenético y sus diferentes variedades o combinaciones. Consideramos que al menos nueve elementos podrían estar implicados en este problema, por lo que al jerarquizar, decidimos para fines prácticos establecer como límite para las magnitudes una escala menor a 5, aunque podríamos hacer aún más específico el problema y en lugar de poner números enteros, usar fracciones. De este modo, determinamos que los principales elementos serían los siguientes:

- Tipo de volcán: Es decir, si se trata de un cono de escoria sin flujo asociado=1, si se trata de un cono de escoria con flujo de lava asociado=2, y así sucesivamente *n* veces, según el tipo y combinación morfológica de cada volcán, spatter-cone, maar, tuff-cone, etc. (Kereszturi y Németh, 2012).
- Posición topográfica: Si se encuentra emplazado en un valle (e.g. Juanyan) =1 o si se encuentra en un alto topográfico (e.g. Jánamo) =2. Así se pueden establecer rangos entre componentes longitudinales como la distancia y la elevación relativa, a los que se acoplan las variaciones climáticas locales (e.g. la precipitación, la evaporación, la humedad y el viento) con respecto a otro volcán tomando en cuenta la mínima y máxima elevación en el área.
- Composición: Considerando las variaciones composicionales en el área Paracho-Cherán para varios conos, definimos si se trata de un basalto o una variedad como la andesita basáltica (e.g. el Juanyan) =1, una andesita (e.g. Janamo) =2, una dacita =3, y así sucesivamente.

Por lo tanto para el Jánamo (1) y Juanyan (2) obtendríamos:

- 2 2 2
- $\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$
- 0 0 0
- 2)

¹⁾

 $\begin{array}{cccc} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$

Estos son los valores de las primeras componentes para cada fila. Para mejorar el análisis, es necesario considerar otros rasgos, como la pendiente que puede ser un posible indicador de la edad, la presencia o ausencia de flujo de lava (considerando su espesor), la vesicularidad (indica el contenido de gases y la fragmentación), la existencia de depósitos piroclásticos (e.g. caídas de ceniza), la temperatura del magma, etc., así como otros criterios establecidos por Schmincke (2004) y Parfitt y Wilson (2008).

Las pendientes de la mayoría de los conos en el área de estudio varían entre 15° y 33°, mientras que la relación Hco/Wco vs. S° muestra una correlación positiva y es variable de acuerdo a las edades de los volcanes. Al respecto, se establecieron 4 grupos: $15-20^\circ=1$, $20-25^\circ=2$, $25-30^\circ=3$ y > $30^\circ=4$. En el caso del Jánamo, que tiene una pendiente de 26° , su valor sería =3, mientras que el Juanyan con una pendiente de 21° tendría un valor =2. La presencia de flujos es importante en la formación de un cono y condiciona muchas de sus características morfológicas. El emplazamiento de flujos genera inestabilidad estructural de los conos como se puede observar en varios volcanes en el área Paracho-Cherán (e.g. Metate, Cicapien, Paracho Viejo, Jánamo, Capastacutiro, Guachan, Hoya Urutzen, etc.). En el presente ejercicio consideramos que el Jánamo, que tiene un flujo de lava ~10 a 15 m de espesor y 5 km de longitud, ocupa un valor jerárquico =2. En comparación, El Metate tiene un flujo con un espesor extraordinario de ~120 m y cerca de 10 km de longitud y un valor =4, mientras que el Juanyan, al no presentar flujo alguno, tiene un valor =0.

Una roca (e.g. flujo de lava o bomba), tanto en muestra de mano como bajo el microscopio, revela rasgos que indican el grado de fragmentación y vesicularidad del material. Lamentablemente, sólo sabemos algo sobre estas características (fragmentación y vesicularidad) del Juanyan, que emitió 0.07 km³ de material (escoria y ceniza) para formar su cono. Como carece de flujos de lava asociados, se puede decir que su erupción fue enteramente de tipo estromboliana-violenta, rica en gases, lo que generó columnas eruptivas que seguramente alcanzaron los ~15 km de altura sobre el cráter. El magma que es de composición basalto-andesítica (Siebe et al., 2014), rico en vidrio y con <8% de vesicularidad (muestra de mano y conteo de puntos, ver análisis cap. 9) se fragmentó de manera explosiva durante pulsaciones continuas. En contraste, suponemos que el Jánamo, al presentar un flujo de lava asociado y una edad menor que la del Juanyan, pero con un cono más erosionado, tuvo erupciones que alternaron entre explosivas y efusivas que produjeron un volumen de 0.54 km³ (DRE). De este volumen total, 0.50 km³ corresponden al flujo de lava y sólo 0.04 km³ a los materiales (escoria y ceniza) que conforman el cono. La alternancia en el estilo eruptivo (efusivo vs. explosivo) de la actividad, posiblemente debilitó la estructura del

cono. Ambos volcanes presentaron fases explosivas violentas a moderadas con variaciones en el grado de fragmentación (reflejado en la vesicularidad). Los productos del Jánamo presentan una vesicularidad entre el 8-10%, mientras que los del Juanyan tienen una del 8%. Considerando que la roca con mayor vesicularidad del área Paracho-Cherán (PAR-14280) tiene <40% (conteo de puntos, ver análisis modal en el Apéndice II) en este ejercicio se determinó que el Jánamo (vesicularidad de 8-10%) tiene un valor =2, en comparación con una lava masiva o con pocas vesículas (<8%) que tiene un valor =1. Así el Juanyán (vesicularidad de 8%) también tendría un valor=2 al encontrarse en el límite del mínimo.

Por otra parte, consideramos que también el valor Wco (Tabla 2) es un parámetro a jerarquizar en las matrices y en el caso de los conos monogenéticos del área Paracho-Cherán, le asignamos al Jánamo un valor =2, mientras que al Juanyan le asignamos un valor =4, ya que tiene un diámetro basal mayor que el del Jánamo.

En este contexto es necesario recordar que la combinación de la posición topográfica y la influencia morfoclimática local son importantes tal como observamos al principio.

Entonces se resuelven las matrices de la siguiente manera:

1) Jánamo

1[(0)-(0)] - 1[(2.4)-(4.2)] 1[(0)-(0)] = 0

La condición que cumplen ambos volcanes y que determina que morfológicamente el Jánamo parezca de mayor edad en relación al Juanyan se oberva explícitamente en las matrices anteriores y se debe principalmente a los factores que nosotros inicialmente pensábamos eran los causantes, es decir en cuanto al tipo, posición topográfica (influencia morfo-climática local), composición y viscosidad de los flujos de lava que en muchas ocasiones debilitan la estructura del cono haciéndola más endeble y susceptible al colapso de sus flancos (cráteres en forma de herradura; depósitos de avalancha con "*hummocks*") o a la erosión por lluvias para formar cárcavas y generar pequeños lahares como se observó durante las erupciones históricas del Paricutin (Luhr y Simkin, 1993) y del Jorullo (Guilbaud et al., 2009; Rasoazanamparany et al.,

2016). La longitud y espesor del flujo son también importantes, junto con la pendiente del cono y su valor Wco. Por último y en menor medida la vesicularidad como indicador del grado de fragmentación del material y el contenido en volátiles juega un rol importante.

Lamentablemente, esto sólo se ve claro en el caso del Jánamo con valor (4), mientras que el caso del Juanyan, es más complicado y posiblemente tengan que considerarse otros parámetros, ya que el valor cero (0) nos indica que se trata de un sistema indeterminado, es decir, un sistema singular. Es posible que dicho resultado indique que sus características se deben más a una combinación de otros factores y por ello es necesario considerar más variables para poder encontrar la solución al sistema.

En el campo volcánico de los Tuxtlas, por ejemplo, algunos conos presentan relaciones anómalas según Martínez y Milán (1992); De la Fuente (2012) y Sieron et al. (2014, 2021) en cuanto a la edad, ya que la morfología y la relación Hco/Wco = 0.18 se ve afectada por la acción del clima, impacto que contribuye a la degradación de un cono joven y a la que se le suman otros procesos erosivos. En este sentido dichos análisis pueden ser sujetos aún a discusión, puesto que en muchos campos como el CVMG, no se ha podido demostrar con certeza la efectividad de la datación relativa únicamente a partir de la relación Hco/Wco y en medida de lo observado en la Figura 6 existen varias inconsistencias que presentan muchos de estos volcanes (e.g. El Jánamo vs. Juanyan en relación morfométrica, morfológica vs. la edad como se confirma en la matrices 1 y 2) en tanto, el volcán Paricutín nacido recientemente en febrero de 1943, con su relación Hco/Wco =0.21 nos puede permitir tomarlo como referencia, aunque no necesariamente cumple una función determinante como se observa. Por el contrario, para estimar las edades adecuadamente, es necesario comparar con otros volcanes, tanto fechados como de edad desconocida (Fig. 6) usando además las relaciones estratigráficas de cada uno, la composición para determinar su fuente, junto con sus principales características como lo son el estilo eruptivo, su posición topografía y la influencia morfoclimática local.

Capítulo 5. Estratigrafía, sedimentología y edades (⁴⁰Ar/³⁹Ar y ¹⁴C)

Se elaboraron 28 columnas estratigráficas (Apéndice II) a partir de descripciones en campo con la finalidad de documentar el espesor de cada depósito (e.g. flujo de lava, oleada piroclástica, caída de ceniza, etc.) y sus principales características (e.g. tamaño de grano, morfología de grano, etc.). Además, siguiendo los lineamientos descritos por Cas y Wright (1987) se intentó establecer la fuente eruptiva de los distintos depósitos y lavas subyacidos por paleosuelos que fueron fechados por el método de radiocarbono. Los depósitos se clasificaron a partir de varios tamaños de grano desde φ -5 (31 mm) hasta φ >4 (>0.063 mm) y por peso (en gramos). Las muestras se pesaron en húmedo y seco, por lo que se secaron a 50 °C y posteriormente fueron tamizadas en el laboratorio de sedimentología del Departamento de Vulcanología del Instituto de Geofísica de la UNAM a cargo de la Dra. Lilia Arana Salinas.

El resultado de los análisis sedimentológicos indica que la mayoría (en total 28 muestras, ver Apéndice II) corresponde a depósitos de caída (Cas y Wright, 1987). Las fuentes fueron determinadas considerando el espesor del depósito, la granulometría, la composición de los clastos y lavas y la distancia del centro eruptivo (Guilbaud et al., 2012). La mayoría de los productos se depositaron a partir de erupciones monogenéticas cuyo estilo alternó entre explosivo del tipo estromboliano y efusivo (e.g. El Jabalí, Janamo, Hoya Urutzen, Gusato, etc., ver Fig. 3). Algunas erupciones fueron acompañadas ocasionalmente por fuertes lluvias, ya que se pueden observar estratos de ceniza de retrabajo dentro de las secuencias de caída asociadas a los volcanes en la zona de San Lorenzo y del volcán Juanyan (ver Apéndice II). Por su morfología (e.g. frentes de flujo de gran altura), la gran mayoría de las lavas se comportó de manera muy viscosa (composición intermedia) durante su emplazamiento. Una excepción notable es El Cicapien (Figs. 3 y 12) cuyos flujos muestran rasgos típicos de lavas basálticas (e.g. texturas superficiales de lavas cordadas) que son comparables a las que se observan en lavas del volcán Xitle cerca de la Ciudad de México (Siebe, 2000) por lo que se puede aseverar que se trata de un tipo de volcán poco común, no sólo en el CVMG, sino también en todo el CVTM. Los depósitos de caída presentaron valores sedimentológicos con rangos entre Md ϕ = (-2.6 a 2.4) y $\sigma\phi$ = (2.12 a 0.5) (Apéndice II) que fueron graficados en histogramas (wt.% vs Mdø, ver Apéndice II).

La estratigrafía del área de Paracho-Cherán está dominada por productos del vulcanismo reciente con erupciones de magnitud muy variable. El escudo más antiguo (2.5 Ma) se formó en el Pleistoceno reciente y su erupción fue alimentada probablemente mediante diques emplazados a lo largo de fallas con dirección SW-NE. Estas fallas son difíciles de distinguir debido a la extensa cobertura del terreno por lavas y depósitos muy recientes, similar a la situación observada en otras partes del CVMG como lo son las áreas de Tacámbaro-Puruarán y del Jorullo donde las fallas también tienen rumbos predominantes con direcciones SW-NE y NNE-SSW (Guilbaud et
al., 2011; 2012; Siebe et al., 2013; 2014). Sin embargo, dicha actividad predominantemente efusiva que dio origen a los escudos de mediano volumen, alternó con actividad monogenética de menor volumen caracterizada por el ascenso de pequeños lotes de magma que generalmente, al hacer erupción, iniciaron con fases explosivas que formaron conos de escoria y terminaron con una fase efusiva que dio origen a flujos de lava asociados. Estos conos de escoria y sus lavas se distribuyen preferentemente en las zonas bajas, es decir en las laderas de los escudos y las planicies que los separan, aunque existen excepciones ya que algunos ocurren en partes altas (e.g. Jánamo, Caín Juata, Sinar Juata y Zopilote, ver Figs. 3, 7c y 7f).

Figura 7.- Vista de 360° del APC desde el Cerro Paracho: a) Vista de noroeste a oeste, b) desde el norte, c) noreste a este, d) desde Paracho, e) desde el sur y f) al suroeste. Las imágenes representan a los principales conos de escoria, escudos, y flujos asociados de la Meseta Tarásca. De igual forma se observa a los dos principales estratovolcanes del campo. El Patamban y el Tancítaro en figuras a) y f) respectivamente.

5.1. Edades ⁴⁰Ar/³⁹Ar

Se colectaron 27 muestras de roca fresca para fechar minerales que contienen potasio mediante el método ⁴⁰Ar/³⁹Ar (Tablas 1 y 3) utilizando el estándar TCR-2 con edad de 28.619 Ma (Renne et al., 2010). Siete de las muestras no pudieron ser fechadas debido a que probablemente son demasiado jóvenes o el vidrio y algunos minerales se encontraban demasiado alterados para obtener mediciones de meseta confiables, por lo que sólo 20 fueron óptimas para el análisis. La mayoría presentaron >80% del espectro en meseta de ³⁹Ar (Faure, 1986) por lo que podrían considerarse como confiables (Tabla 3; Apéndice II; ver edades de meseta y espectro de edades de argón). Adicionalmente, dos muestras presentan bajas cantidades de ³⁹Ar; la primera con 52.2% en 3 de 3 fracciones correspondiente a la muestrea PAR-14310 del cerro Cuinguitapu (Figs. 3 y 7b; Tabla 3) y la segunda con 68.4% en 7 de 7 fracciones que corresponde a la muestra PAR-14316 del cerro Hoya de Agua (Fig. 3; Tabla 3; Apéndice II; edades de mesta y espectro de edades). Estos fechamientos permitieron establecer con mayor precisión las edades de varios de los escudos en el área, mismas que abarcan desde el Plioceno (5.3-1.8 Ma) pasando por el Pleistoceno Temprano (1.8-0.8 Ma), Pleistoceno Medio (0.8-0.125 Ma), Pleistoceno Tardío (0.125-0.011 Ma) hasta el Holoceno (0.011 Ma-Presente), subdivisiones basadas (con ciertas modificaciones) en la tabla geológica del United States Geological Survey (ver capítulo 2 "Métodos").

La lava más antigua (Plioceno) corresponde al cerro El Horno Sur (PAR-15350) con una edad de 2509+/-24 Ka. La segunda más antigua es del Cerro Querenda (PAR-14313) y fue fechada en 1446+/-18 Ka (Pleistoceno Temprano) (Tablas 1 y 3; Fig. 3; Apéndice II; espectro de edades de argón; muestras PAR-15350 y PAR-14313). Ambos volcanes tienen morfologías diferentes, pero con rasgos comunes (e.g. la presencia de domos). Cabe señalar que todos los escudos se clasificaron a partir de sus características (e.g. tipo de roca, morfología, pendientes y desarrollo de vegetación) siguiendo los lineamientos propuestos por Guilbaud et al. (2012). De acuerdo con Whitford-Stark (1975) y Chevrel et al. (2016a, 2016b) se trata de escudos tipo "Islándico" y "Galápagos" (descritos en el capítulo anterior, ver Figs. 3 y 4 del Cap. 4; Tabla 1 del Apéndice I). Por otra parte, se consideraron en el presente estudio las edades publicadas por Ownby et al. (2011) para volcanes ubicados en el sector sur que incluyen a los cerros La Alberca con una edad de 2120+/-16 Ka y La Cruz con edades de 815+/-13 Ka y 730+/-113 Ka (Figs. 3 y 7e). Los 5 escudos del Pleistoceno Temprano fechados en el presente estudio son en orden cronológico: Querenda (1446+/-18 Ka), Metate Viejo (1416+/-42 Ka), Colorado (1165+/-100 Ka), Zarapo (1060+/-29 Ka) y Cumburinos (1007+/-29 Ka) (Tabla 3; Tabla I Apéndice I; Apéndice II; espectro de edades de argón) mientras que al Pleistoceno Medio corresponden los siguientes 10 escudos; El Gato (793+/-16 Ka), San Marcos (764+/-12 Ka), La Vírgen (485+/-11 Ka), Hueratiro (401+/-10 Ka), Capén (338+/-6 Ka), Zipiatiro (257+/-17 Ka), Cuinguitapu (256+/-4 Ka), Aracata (194+/-11

Ka), El Horno de San Lorenzo (194+/-4 Ka) y El Chivo (141+/-5 Ka) (Tabla 3 y Tabla I Apéndices I y II; espectro de edades de argón) y que fueron clasificados como escudos de medio volumen, junto con los escudos voluminosos (Tabla 3; Figs. 3 y 4. ver apéndices). En apariencia, la actividad eruptiva aumentó a medida que se acercaba el Holoceno. Sin embargo, esto requiere aun de un análisis más cuidadoso como se verá más adelante. Entre las rocas del Pleistoceno Tardío sólo 4 fueron fechadas por ⁴⁰Ar/³⁹Ar e incluyen El Santísimo (100+/-7 Ka), El Molino (87+/-5 Ka), Parachito (65+/-4 Ka) y El Paracho (63+/-3 Ka) (Tabla 3) correspondientes a escudos tanto de medio volumen, como voluminosos. Se estimó que el resto de las estructuras de similar apariencia morfológica deben tener el mismo rango de edades. Adicionalmente, 7 muestras no pudieron ser fechadas de forma confiable (Tabla 3) por lo que las edades de los escudos de los que provienen estas muestras fueron estimadas también mediante criterios morfológicos.

5.1.2. Cerro Paracho (domo compuesto)

El Cerro Paracho (3340 msnm) representa la mayor elevación topográfica en el área de estudio y fue descrito por primera vez por Williams (1950) y fechado por (Ban et al., 1992) mediante el método de ⁴⁰K/³⁹Ar en 60+/-10 Ka. Su composicies andesítica y presenta un prominente domo con paredes verticales en su cima (Siebe et al., 2014). En el presente estudio una lava del Cerro Paracho fue fechada mediante ⁴⁰Ar/³⁹Ar en 63+/-3 Ka (Tablas 1 y 3; Fig. 3; Apéndice II; espectro de edades de argón) cifra que concuerda con la edad publicada anteriormente. Hacia el NE de la cima, en las faldas del Cerro Paracho y cerca del poblado del mismo nombre, se encuentran varias canteras donde se explota grava y arena para su uso como material para la construcción. Se trata de un abanico de bloques y cenizas (secuencia de flujos piroclásticos y lahares sin consolidar) de ~6 km de longitud y ~20 m de espesor que tuvo su origen durante el emplazamiento del domo que forma la cima del Paracho (Figs. 3, 4, 7b y 7d) (Siebe et al., 2014). Bajo estos depósitos se encuentra un paleosuelo con fragmentos de carbón (Chevrel et al., 2016a) que permitieron fechar al abanico por ¹⁴C en 12,280+/-40 años AP (Fig. 3; Tabla 4). El gran contraste entre esta edad y las obtenidas anteriormente sugiere que el Cerro Paracho ha presentado actividad volcánica en al menos dos ocasiones y debe ser considerado como un domo compuesto y que por ende no se trata de un volcán monogenético (Siebe et al., 2014). Por ello es de importancia profundizar en el conocimiento de este volcán para la evaluación de futuros peligros volcánicos y determinar si aun debe ser considerado como potencialmente activo.

Volcán	Muestra	Latitud (N)	Longitud (W)	Edad integrada en Ka	Edad de meseta (Ka)	% ³⁹ Ar	Ν	MSWD	Edad de Isocrona (Ka)	Int	N	MSWD
Plioceno												
El Horno (Sur)	PAR-15350	19º26'31.96"	101°55'10.00"	2484 +/- 20	2509 +/- 24	83.4	5	1.7	2506 +/-29	283.7 +/- 5.1	8	0.44
Pleistoceno Temprano												
Querenda	PAR-14313	19°37'36.9"	101°56'10.5"	1412 +/- 16	1446 +/- 18	96.5	6	1.59	1392 +/- 27	314.7 +/- 11.5	6	0.84
Metate Viejo	PAR-14301	19°30'26.01"	102°00'5.9"	1428 +/- 46	1416 +/- 42	97.6	6	0.38	1541 +/- 110	286.0 +/- 8.2	6	0.16
Colorado	PAR-15348	19º26'34.7"	101°57'50.2"	1195 +/- 105	1165 +/-100	90.4	6	0.54	1014 +/- 247	298.2 +/- 5.3	6	0.57
Zarapo	PAR-15352	19°30'34.2"	101°51'31.3"	1026 +/- 31	1060 +/- 29	94.2	7	0.43	1011 +/- 95	323.6 +/- 51.1	7	0.44
Cumburinos	PAR-15355	19°26'55.7"	101º46'27.3"	990 +/- 31	1007 +/-29	94.8	7	0.7	1069 +/- 56	277.6 +/- 23.1	7	0.56
Pleistoceno Medio												
El Gato	PAR-15341	19°40'49.2"	101°49'58.7"	788 +/- 18	793 +/-16	98	6	0.73	792+/- 15	293.4 +/- 4.0	6	0.81
San Marcos	PAR-14297	19°40'21.7"	101°59'12.61"	764 +/- 12	764 +/- 12	99.1	7	0.37	782 +/- 24	293.5 +/- 3.3	7	0.32
La Virgen	PAR-14322	19°34'01.3"	101°54'07.2"	486 +/- 12	485 +/- 11	86.8	5	1.02	515 +/- 28	287.6 +/- 7.2	5	0.98
Hueratiro	PAR-14321	19°34'03.31"	101°55'18.7"	397 +/- 7	401 +/- 10	98.2	7	2.38	424 +/- 10	288.7 +/- 3.1	7	1.39
Capen	PAR-14324	19°38'01.2"	101°54'02.8"	336 +/- 7	338 +/- 6	94.1	6	1.02	334 +/- 7	298.2 +/- 3.0	6	1.05
Zipiatiro	ZAC-13214	19°43'40.4"	101°53'54.3"	264 +/- 19	257 +/- 17	94.4	6	0.18	264 +/- 12	288.7 +/- 11.0	6	0.1
Cuinguitapu	PAR-14310	19°41'26.7"	102°03'17.5"	258 +/- 4	256 +/- 4	52.2	3	0.35	254 +/- 7	297.3 +/- 5.9	3	0.61
Aracata	PAR-14326	19°32'24.4"	102º11'54.5"	195 +/- 11	194 +/- 11	99.4	7	0.61	339 +/- 80	278.1 +/- 9.9	7	0.13
El Horno (San Lorenzo)	PAR-14291	19°32'13.3"	102°06'24.4"	202 +/- 5	194 +/- 4	96.2	6	0.66	188 +/- 7	299.7 +/- 4.4	6	0.57
El Chivo	PAR-15344	19°36'17.5"	101°50'8.28"	135 +/-5	141 +/-5	89.5	5	0.65	151 +/-8	293.5 +/- 2.1	5	0.31
Pleistoceno Tardio												
Santisimo	PAR-14294	19°37'15.7"	102°12'09.3"	104 +/- 6	100 +/- 7	99.2	7	1.42	36 +/- 27	306.9 +/- 5.2	7	0.46
El Molino	PAR-14295	19°37'56.21"	102°11'49.6"	87 +/- 5	87 +/- 5	98.6	6	1.12	87 +/- 6	295.2 +/- 1.7	6	1.39
Parachito	PAR-14317	19°34'06.2"	102°03'34.6"	67 +/- 4	65 +/- 4	95.8	7	1.72	73 +/- 6	289.4 +/- 4.7	7	1.53
Paracho	PAR-14263	19°35'23.4"	102°02'40,0"	66 +/- 3	63 +/- 3	92.1	6	0.59	61 +/- 4	296.1 +/- 4.0	6	0.7
Hoya de Agua*	PAR-14316	19°33'45.9"	102°03'36.3"	434 +/- 93	173 +/- 125	68.4	7	0.25	216 +/- 192	294.3 +/- 6.4	7	0.29
Mesteño*	PAR-15343	19°39'28.7"	101º49'38.6"	21+/-27	29+/-25	97.5	6	0.18	-21+/-117	298.4+/-8.0	6	0.15
Pilón*	ZAC-13216	19°42'30.6"	101°52'51.6"	57+/-51	24+/-108	92.8	4	4.61				
Pitorral*	ZAC-13213	19º43'39.1"	101°53'53.9"	128+/-46	11+/-54	81.4	5	1.8				
Sinar Juata*	PAR-14283	19°35'14.0"	102°00'18.0"	-146+/-34							_	
Pacaracua*	ZAC-13209	19°42'47.4"	102°00'24.0"	-33+/-47								
Caraquitaro*	PAR-14315	19°35'55.5"	101°58'02.0"	-38+/-7								

Tabla 3. Resumen de fechamientos por el método de ⁴⁰Ar/³⁹Ar

Error en 1-sigma, edad de meseta para cada muestra generada con el estandard TCR-2 con edad de 28.619 Ma (Renne et al.,2010). Tipo de muestra: vidrio volcánico y plagioclasa. N= número de pasos usados en meseta o isocrona. MSWD=desviación media de mínimos cuadrados.

*Estos volcanes fueron agregados de acuerdo a sus morfologías correspondientes (Pleistoceno Temprano y Pleistoceno Tardio) y resultados obtenidos mediante el método de Argón/Argón.

5.2. Edades por radiocarbono (¹⁴C)

Se colectaron 36 muestras (mayoritariamente paleosuelos) para fechar volcanes morfológicamente jóvenes (<40,000 años AP) por el método del radiocarbono. En la Tabla 4 se enlistan los resultados (edades convencionales y calibradas, con desviación estándar 2σ). Se procuró colectar siempre las muestras de paleosuelo de los primeros 2-4 cm directamente por debajo del contacto con los depósitos de caída de ceniza o flujos de lava suprayacentes (ver secciones estratigráficas y fotografías de afloramientos en el Apéndice II; Fig. 3.1; Tabla 4) con el objeto de obtener la edad más cercana al momento de la erupción.

Los resultados indican que durante el Pleistoceno Tardío y el Holoceno ocurrieron al menos 30 erupciones. De ellas se logró identificar la fuente exacta y con certeza 19 erupciones, basadas en las características de sus depósitos (e.g. componentes granulométricos, relaciones estratigráficas, distancia a la fuente de emisión, el espesor, la composición de elementos mayores y trazas, petrografía, morfología, etc.) como se explicó en párrafos anteriores. Los volcanes que se lograron fechar de manera más confiable fueron los siguientes: El Metate, El Jabalí, Jánamo, Cicapién, Hoya Urutzen, El Zopilote, Capastacutiro, Cono noroeste del domo compuesto de Paracho, Tzinzunzahua, El Varal, La Alberca, Santa Cruz, Cocucho, Paracho Viejo, Juanyan, Paracho, Arichán, San Miguel y Jarjten. El resto presentó dificultades para establecer un nexo confiable entre el depósito fechado y su posible fuente, esto debido al tiempo limitado para el trabajo de campo, aunque se generan adicionalmente algunas propuestas de posibles fuentes de emisión, dado que en la zona existen numerosos escudos y conos de escoria poco conocidos. Eventualmente y mediante trabajo de campo adicional se podrán seguramente conocer con mayor precisión las fuentes de varios de los demás depósitos fechados. Sin duda, el volcán más jóven en esta área es el escudo El Metate (Figs. 3 y 7e; Tabla 4) cuya erupción fue efusiva y para la cual se obtuvieron dos fechamientos de paleosuelos que arrojaron edades de 740+/-30 años AP y 840+/-30 años AP (Chevrel et al., 2016a), mismas que son congruentes con edades obtenidas mediante el método paleomagnético (Mahgoub et al., 2017). Su edad conjunta calibrada es de 1250 años DC y ocurrió en los albores del Imperio Tarasco durante el periodo Postclásico de la arqueología Mesoamericana. Como se trata de la erupción más voluminosa (~10 km³) de la que se tenga conocimiento en México durante el Holoceno, se puede aseverar que indudablemente debió tener un impacto considerable en el entorno y poblaciones aledañas (Chevrel et al., 2016a), mismo que aun requiere de una documentación y estudios más detallados. Otro de los volcanes más jóvenes en el área es el Jánamo, que nació hace 2,240+/-30 años AP (Figs. 3 y 7f; Tabla 4; sección estratigráfica en Fig. 1, Apéndice II; fotografía en Apéndice II. Fig. 3.1 C). Este se emplazó y formó un cono a través de erupciones pulsantes en la parte alta de un antiguo escudo, emitió además varios flujos de lava andesítica de al menos 15 m de espesor, mismos que recorrieron hasta 10 km de a sur a norte. La siguiente erupción reciente en la zona,

es la de El Jabalí, que ocurrió hace 2,200 años AP (Fig. 3 y Tabla 4; sección estratigráfica en Figura 1, Apéndice II; fotografía en Apéndice II; Fig. 3.1 A y B) y emitió al igual que el Janamo, varios flujos de lava geoquímicamente transicionales (basaltos a andesitas basálticas) con espesores de 10-15 m, que cubren y rodean parcialmente a otro cono llamado "El Sapien" (Fig. 3). Estos flujos se emplazaron hacia el SW y SE donde sus frentes se pueden observar en las estribaciones de San Juan Nuevo y la ciudad de Uruapán respectivamente. Por otra parte, la erupción de Hoya Urutzen ocurrida hace aproximadamente 3,700 años AP (Fig. 3; Tabla 4; sección estratigráfica en Fig. 1. Apéndice II; fotografía en Apéndice II. Fig. 3.1 E y F) formó un cono con dos cráteres y varios flujos de lava transicionales (basalto a andesita basáltica y hasta andesita); cuyas edades fueron reportadas recientemente por Chevrel et al. (2016a). Otro volcán muy particular por el tipo de sus lavas de baja viscosidad es el Cicapién, cuya erupción ocurrió hace aproximadamente 4,000 años AP (Fig. 3; Tabla 4; sección estratigráfica en Fig. 1. Apéndice II; Fig. 7a; fotografía en Apéndice II. Fig. 3.1 D). Este volcán presenta lavas cordadas, similares a las de algunos volcanes del CVTM (e.g. El Xitle y El Volcancillo) (Siebe 2000; Siebert y Carrasco-Núñez 2002; Carrásco-Núñez et al., 2009; Rodríguez-Elizarrarás et al., 2010) y está formado por lavas exóticas de composición alcalina, cuyas características petrográficas son interesantes, como se verá en el capítulo siguiente.

Estas erupciones ocurrieron en un periodo durante el cual ya había grupos humanos en la región, como lo documentó recientemente Gabany-Guerrero (2002) a través de una excavación en el cráter cercano de La Alberca (municipio de San Juan Nuevo Parangaricutiro) en donde se encontraron restos óseos humanos y otros artefactos de interés arqueológico (e.g. herramientas de hueso) con fechamientos radiométricos de hace ~4000 años AP y que hacen evidente la importancia de los asentamientos pre-Tarascos en la región y su relación con el origen de deidades relacionadas al fuego y los volcanes. Retornando al vulcanismo y su cronología, en la zona de Cocucho aparece el cono de escoria El Zopilote hace unos 5,980+/-120 años AP (Fig. 3; Tabla 4; sección estratigráfica en Fig. 1, Apéndice II) y que presenta una característica morfológica muy particular, pues se emplaza al igual que el Jánamo sobre un antiguo escudo. Cabe mencionar, que la mayoría de estos volcanes se formaron por erupciones que emitieron tanto depósitos de caída de cenizas y escorias (fases estrombolianas) como flujos de lava (fases efusivas). Desafortunadamente, varios volcanes jóvenes no se pudieron fechar directamente, aunque por sus relaciones estratigráficas, volcanes como el Capastacutiro y un pequeño cono con un cráter en forma de herradura del que emanó un pequeño flujo de lava hacia el noreste y que también se localiza en el flanco noroeste del Cerro Paracho (Figs. 3, 7a y 7b) son más jóvenes que el Cicapien y el Paracho Viejo respectivamente, es decir que sus erupciones debieron ocurrir entre los <4,000 y <9,000 años AP (Figs. 3 y 7a) (Tabla 1; Tabla 4) por lo que estratigráficamente se pueden posicionar con certeza en el Holoceno. Los conos monogenéticos con cráteres en

forma de herradura se han observado en otras partes del CVTM, como por ejemplo El Volcancillo, emplazado de manera similar en el flanco noreste del Cofre de Perote y datado en el 900 DC (Carrasco-Núñez 2002; Carrásco-Núñez et al., 2009).

Poco después del inicio del Holoceno se formaron otros volcanes como Paracho Viejo, hace 9,230+/-30 años AP con al menos dos edades (Figs 3; Tabla 4; fotografía en Apéndice II, Fig. 3.1 H) que emitió además varios flujos de lava. Mientras que, en la zona de San Lorenzo, se emplazaron el cerro Tzinzunzahua hace 9,300+/-40 años AP, seguido por el Santa Cruz, que es otro cono aislado (sin lavas), cuya erupción ocurrió hace 9,850+/-30 años AP (fotografía en Apéndice II, Figura 3.1 M). Posteriormente, la erupción del Juanyan (varias edades, ver Tabla 4) ocurrió alrededor de hace 10,000 años AP (Hasenaka y Carmichael, 1985) (Figs. 3, 7b y 7c; Tabla 4; sección estratigráfica en Fig. 1. Apéndice II; fotografía en Apéndice II, Fig. 3.1 K y L) y formó también un cono aislado. Su erupción fue exclusivamente explosiva (estromboliana) y la pluma eruptiva debió alcanzar en ocasiones más de 10 km de altura (Siebe et al., 2014) como fue el caso de otros volcanes de la zona mencionados anteriormente y que se formaron de manera similar, es decir sin emitir flujos de lava. Anteriormente, en el Pleistoceno tardío, ocurrieron varias erupciones como las del Varal y del Arichán, cerca de Capácuaro. Sus erupciones ocurrieron hace 10,110+/-40 años AP y 14,520+/-50 años AP (Fig. 3; Tabla 4; sección estratigráfica en Fig. 1, Apéndice II; fotografía en Apéndice II, Fig. 3.1 N). El Varal se construyó por erupciones pulsantes tipo estrombolianas y emitió varios flujos de lava, mismos que se localizan estratigráficamente por debajo de los flujos de El Metate. Entre tanto, el Arichán sufrió un colapso lateral del cono al final de su erupción que generó un pequeño depósito de avalancha con montículos ("hummocks"), y sobre éste se depositó a su vez un pequeño depósito lahárico que sepultó a un paleosuelo, que se puede correlacionar con depósitos en la sección PAR-14260 B (Fig. 3; Tabla 4; sección estratigráfica en Fig. 1. Apéndice II; fotografía en Apéndice II.). Este ejemplo documenta la variedad de estilos eruptivos y los distintos procesos de emplazamiento, que incluyen en ocasiones el colapso del cono y la formación de escarpes en forma de herradura como se ha descrito anteriormente en la zona de Zacapu, donde se ha registrado un depósito de avalancha con hummocks derivados de la erupción del cerro Las Cabras (Siebe et al., 2014; Guilbaud et al., 2021). Entre las tefras registradas en un afloramiento cerca de San Lorenzo, hay dos depósitos de ceniza de caída que se pueden correlacionar con el Tzinzunzauhua y el Varal, con base a sus composiciones químicas, relaciones estratigráficas, espesores y granulometrías (9,290+/-40 años AP y 10, 060 años AP) (Fig. 3; Tabla 4; Sección en Fig. 1. Apéndice II; fotografía en Apéndice II. Fig. 3.1 O). En ese mismo afloramiento se registran otras tefras que se emplazaron hace aproximadamente 11,790 años AP (Tabla 4) y que posiblemente se relacionen con alguno de los volcanes cercanos a San Lorenzo, como los son el Piruani o el Hiahuacuaro, que morfológicamente son muy similares a varios volcanes de edad conocida (e.g. Juanyan, Paracho Viejo, Tzinzunzahua, Santa Cruz, Varal). Por otra parte, la erupción más antigua registrada en ese afloramiento ocurrió hace 20,860+/-70 años AP y posiblemente esté relacionada con el Gusato, volcán morfológicamente similar a varios volcanes con edades semejantes (Fig. 3; Tabla 4; sección en Fig. 1, Apéndice II). Es importante mencionar que de las tefras registradas en las columnas PAR-14289 y PAR-14260-D (ver secciones en Apéndice II) no se hicieron análisis químicos. Sin embargo, los datos granulométricos permiten hacer inferencias con respecto a la posible distancia de la fuente, lo cual aunado a la morfología de los centros de emisión, permite proponer plausiblemente sus posibles fuentes de emisión. Para determinar la fuente de estas tefras con certeza, será necesario determinar sus composiciones en futuros trabajos en el área.

En la zona de Pomacuarán y al noreste de Cherán también se observaron y fecharon tefras de distintas erupciones. Cerca de Nurio se logró fechar una erupción en 15,780+/-50 años AP (sin fuente precisa). Además, se fecharon paleosuelos bajo tefras con edades de 21,470+/- 80 años AP y 21,570+/-80 años AP (Fig. 3; Tabla 4; Sección en Fig. 1. Apéndice II; Foto-sección en Apéndice II, Fig. 3.1 P) y se logró correlacionar estos depósitos con el volcán San Miguel. Al NE de Cherán se fecharon paleosuelos bajo tefras en 20,315+/-150 y 21,600+/-300 años AP que posiblemente provengan del Ziapo o algún otro volcán en esa zona (Fig. 3). Desafortunadamente se desconoce la composición química de estos depósitos.

Por otro lado, en la zona de Cicapién y Paracho Viejo (Fig. 3) existen varios conos de escoria jóvenes que no pudieron ser fechados (e.g. Yondima, Santa Catarina y Los Amoles cerca de Pomacuarán). De igual manera, entre Paracho y Ahuirán, están los cerros Cumbuan y Pelón (Figs. 3 y 7) que estratigráficamente son más antiguos que el Paracho Viejo y el Cicapién de edades conocidas (Tabla 4) y que morfológicamente son similares al Juanyan, (Tabla 4), aunque podemos suponer que son de menor edad que el San Miguel de ~21,500 años AP (ver Fig. 3; Tabla 4). Alguno de estos volcanes antes mencionados, podría estar relacionado con la teftra fechada en 15,780+/-50 años AP cerca de Nurio. Otra característica de estos conos, es su similitud morfológica con los volcanes de la zona de Pomacuarán (e.g. El Aire, El Varal, Santa Cruz, Tzinzunzahua, Hoya de Agua y Huinumba) y que, en su conjunto, podrían encontrarse entre este rango de edades y tiempo, puesto que se conocen las edades de varios de éstos.

Existe una brecha de tiempo de aproximadamente 3,000 años sin registro eruptivo entre los 5,800 y los 9,000 años AP en el área de estudio. Sin embargo, sabemos que hubo actividad hacia el SE en la región de Tacambaro-Puruarán donde hizo erupción el Cerro Grande hace 8,220+/-145 años AP (Guilbaud et al., 2012; Siebe et al., 2013) así como en la zona del lago de Pátzcuaro en el Mazcuta, fechado por Ramírez-Uribe et al, (2019) en 8883 AP cerca del Lago de Zacapu.

Tabla 4: Fechamientos por radiocarbon del área de Paracho-Cherán, Campo Volcanico de Michoacán-Guanajuato, México.

							Rango de edad calibrada	Edad calibrada
	Número de		Altitud	Código de	Edad convencional		2-sigma (95.4%)	(probabilidad media)
Volcán	muestra	Latitud (N)	Longitud (W (msnm)	laboratorio	(años AP)	∂ ¹³ C	(CALIB 7.1)	(CALIB 7.1)
					· · ·			· · · ·
El Metate	PAR-14286-A	19º28'27.3"	101º57'40.4" 1790 m	B-381394	740 +/-30	-25.2	cal AD 1224- 1291	cal AD 1269
El Metate	PAR-14285-A	19º28'28.0"	101º57'06.0" 1797 m	B-381393	840 +/-30	-24.3	cal AD 1059- 1063, 1154- 1264	cal AD 1203
El Jabalí	PAR-15381-A	19º27'44.5"	102º05'30.6" 1900 m	B-417611	1,180 +/-30	-21.6	cal AD 729- 736, 769- 901, 920- 953, 959- 960	cal AD 838
El Jabalí	PAR-15395-A	19º26'15.4"	102º08'56.6" 2043 m	B-422214	2,170 +/-30	-23.9	cal BC 360- 269, 264- 157, 133- 117	cal BC 262
El Jabalí	PAR-15382-A	19º27'33.7"	102º05'53.8" 1948 m	B-417612	2,270 +/-30	-23.5	cal BC 400- 351, 301- 210	cal BC 350
El Jabalí	PAR-14269-A	19°29'22.1"	102°01'24.9" 2013 m	B-378075	2,690 +/-30	-21.6	cal BC 899- 804	cal BC 841
El Jabalí	n.r.	19°26'56"	102°06'46" n.r.	Teledvne	3.830 +/-150	n.r.	cal BC 2851- 2813, 2742- 2728, 2694- 1882	cal BC 2284
				,	-,			
Janamo	PAR-15375-A	19º31'53.1"	102º07'09.4" 2140 m	B-417610	2,240 +/-30	-26.3	cal BC 390- 344, 323- 205	cal BC 280
Hoya Urutzen	PAR-15337-A	19º33'26.6"	101º56'29.0" 2479 m	B-404728	3,650 +/-30	-25.3	cal BC 2135- 2078, 2072- 2070, 2065- 1939	cal BC 2019
Hoya Urutzen	PAZ-1206	19°34'32.3"	101°58'17.7" 2309 m	A-15894	3,775 +/- 50	-23.6	cal BC 2427- 2425, 2401- 2382, 2348- 2032	cal BC 2201
Hoya Urutzen	PAR-15335-A	19°35'22.8"	101º58'18.3" 2303 m	B-404727	3,860 +/-30	-22.4	cal BC 2461- 2275, 2254- 2209	cal BC 2340
Hoya Urutzen (antes erróneamente El Metate)	n.r	19°32'20"	101°59'33" n.r	Teledyne	4,700 +/-200	n.r	cal BC 3938- 3866, 3862- 3861, 3812- 2914	cal AD 3438
Dama Damaka	DAD 44070 A	40007107.00	400000144 01 0000	D 004000	40.000 . / 40	00.0		
Domo Paracho	PAR-14278-A	19°37'27.6"	102°03'41.8" 2292 m	B-381392	12,280 +/-40	-22.0	cal BC 12502- 12092	cal BC 12243
Domo Paracho ???	PAR-14303-A	19°30'54.6"	102°00'11.7" 2338 m	B-381395	13,480 +/-50	-22.4	cal BC 14491- 14077	cal BC 14274
Cicapién	PAR-15371-A	19°34'47 7"	102º06'51.4" 2346 m	B-417606	3.190 +/-30	-24.3	cal BC 1510- 1412	cal BC 1465
Cicapian	DAD 12240	10°/3'15 3"	102°12'33 0" 2420 m	A 16267	2 945 1/ 70	27.0	cal BC 2482 2120 2086 2050	cal BC 2211
	PAR-13249	10°41'15 0"	102 12 33.9 2420 m	A-10207	5,045 +/-70	-22.0	cal BC 2462- 2130, 2000- 2030	cal DC 2311
Cocucho scoria failout	PAR-13231-D	19 41 10.9	102 10 29.0 2344 11	A-10200	5,960 +120/-115	-23.5	Cal BC 5212-4592	Cal DC 4001
Cicanien	PAR-15385-A	10036'30 3"	102%06'08 2" 2297 m	B-417614	3 830 ±/-30	-24.6	cal BC 2456- 2418 2407- 2375 2367- 2361 2351- 2198 3	21cal BC 2279
Cicapien	PAR-15383-A	19º37'21 2"	102°05'32 2" 2297 m	B-417613	4 130 +/-30	-24.0	cal BC 2871-2800 2792-2788 2780-2617 2609-2583	cal BC 2725
Cicapien	PAR-15372-A	19°37'21.5"	102°06'11 2" 2230 m	B-417607	4.330 +/-30	-22.8	cal BC 3018- 2894	cal BC 2942
oldpion	17001270	10 07 2110		5 111001	1,000 17 00	22.0		041 00 2012
La Alberca excavación pinturas rupestres		19°27'47.5"	102º11'34.4" 2517 m	n.r.	1.570+/-40	n.r.	cal AD 403- 571	AD 484
La Alberca excavación pinturas rupestres		19°27'47.5"	102º11'34.4" 2517 m	B-177073	3.940+/-40	n.r.	cal BC 2567- 2520, 2498- 2331, 2327- 2299	cal BC 2435
La Alberca excavación pinturas rupestres		19°27'47.5"	102º11'34.4" 2517 m	B-177072	3.960+/-40	n.r.	cal BC 2575- 2341	cal BC 2478
					-,			
Juanvan (El Huanillo)	n.r.	19°41'01"	101°59'04" n.r.	Teledvne	9.180 +/-250	n.r.	cal BC 9172- 9168. 9159- 7723	cal BC 8425
Juanyan (El Huanillo)	ZAC-13210	19°41'48.0"	101°58'48.1" 2230 m	A-16235	9 330 +150/-145	-21 7	cal BC 9137- 8972 8941- 8275	cal BC 8606
luanyan (El Huanillo)	D 10 10210	19º41'01"	101°59'04" p.r	Teledyne	9 410 +/-230	n.r.	cal BC 0324_8108_8100_8002_8030_8005	cal BC 8740
Juanyan (El Huanillo)	DAT 1011	10 4101	101°50'05 4" 2210 m		0,410 +/-250	10.6	cal BC 0324- 0130, 0103- 0032, 0033- 0003	cal BC 0040
Suanyan (El Huanino)	FA2-1211	10°40'27.0	101 03 00.4 22 10 11	A-15095	9,000 +/-00	-10.0	Cal BC 9206- 6/99	cal BC 9040
Juanyan (El Huanillo)	ZAC-11116	19 42 19.2	102 01 10.1 2307 m	A-15693	10,865 +110/-105	-24.3	cal BC 11067- 10654	cal BC 10826
Paracho Vieio	PAR-15388-A	19938'49 0"	102903'46 0" 2266 m	B-422212	9 230 ±/- 30	-23.7	cal BC 8551-8327	cal BC 8445
Paracho Viejo	PAR-15389-A	19937'19 5"	102°05'45 7" 2330 m	B-422212	9 230 ±/- 30	-25.4	cal BC 8551-8327	cal BC 8445
		10 01 10.0	102 00 1017 2000 111	5 122210	0,200 17 00	20.1		
Tzinzunzahua de Capacuaro	PAR-15374-C	19º31'55.3"	102º07'42.2" 2230 m	B-417609	9,300 +/-40	-25.3	cal BC 8699- 8678, 8642- 8424, 8403- 8393, 8375- 8351	cal BC 8555
Santa cruz de San Lorenzo	PAR-15374-A	19º31'55.3"	102º07'42.2" 2230 m	B-417608	9,850 +/-30	-25.1	cal BC 9357- 9350, 9343- 9256	cal BC 9294
El Varal de Capacuaro	PAR-14260-A	19°32'38.4"	102°04'06.7" 2275 m	B-378073	10,110 +/-40	-25.3	cal BC 10038- 9648, 9607- 9524, 9493- 9459	cal BC 9779
Capácuaro further below "Tzinzunzahua" from Arichán?	PAR-14260-B	19°32'38.4"	102°04'06.7" 2275 m	B-378074	14,520 +/-50	-22.6	cal BC 15948- 15570	cal BC 15750
Nurio	PAR-14279-D	19º39'14.7"	102º07'07.9" 2219 m	B-417600	15,780 +/-50	-20.8	cal BC 17236- 16938	cal BC 17073
Tzinzunzahua de Capacuaro	PAR-14289-G	19º31'57.9"	102º06'50.4" 2146 m	B-417604	9,290 +/-40	-25.1	cal BC 8636- 8421, 8407- 8388, 8382- 8349	cal BC 8538
El Varal de Capacuaro	PAR-14289-E	19°31'57.9"	102º06'50.4" 2146 m	B-417603	10,060 +/-30	-25.0	cal BC 9806- 9453	cal BC 9653
Piruani-Hiahuacuaro?	PAR-14289-C	19°31'57.9"	102º06'50.4" 2146 m	B-417602	11,790 +/-40	-23.6	cal BC 11791- 11588, 11574- 11531	cal BC 11678
Gusato?	PAR-14289-A	19º31'57.9"	102º06'50.4" 2146 m	B-417601	20,860 +/-70	-22.2	cal BC 23508- 22982	cal BC 23242
	B18 / ·····	10005	10000707.07.55.5	B //		o		100 0000-
San Miguel (Nurio)	PAR-14279-B	19°39'14.7"	102º07'07.9" 2219 m	B-417599	21,470 +/-80	-21.3	cal BC 24004- 23661	cal BC 23838
San Miguel (Pomacuarán)	PAR-14296-A	19º37'29.3"	102º05'45.7" 2330 m	B-417605	21,570 +/-80	-23.1	cal BC 24073- 23744	cal BC 23911
		400 4	101050140.07					
Ziapo ?? (NE de Cherán)	ZAC-13215	19°44'02.2"	101°53'42.3" 2734 m	A-16237	20,315 +/-150	-18.1	cal BC 22991- 22075	cal BC 22467
Ziapo ?? (NE de Cherán)	ZAC-13212	19°42'51.8"	101°54'15.3" 2614 m	A-16236	21,600 +300/-300	-19.1	cal BC 24552- 23311	cal BC 23926
		_						
Jarajten	ZAC-11159	19°43'39.2"	102°03'51.2" 2125 m	A-15853	29,895 +1975/-1585	-23.3	cal BC 36522- 28217	cal BC 31985
Cerro Pelón		19°17'52"	101°54'47"	K-Ar	0.37 +/-0.5 Ma			
Santa Teresa		20°29'50"	100°59'53"	K-Ar	2.78 +/-0.7 Ma			

Las muestras se colectaron directamente de los primeros 2 a 4 cm entre el contacto del paleosuelo y el depósito de caída o flujo, aproximadamente 300 grámos. Para ver secciones estratigráficas ir al Apéndice II. Lab No. = número de laboratorio, muestras medidas mediante la técnica AMS con desviación estándard 2 σ (95% intervalo de confianza); (?) origen no determinado de la erupción.

Muestras colectadas por *Hasenaka y Carmichael (1985); **Chevrel et al., (2015).

Tabla 4: Continuación de fechamientos por radiocarbon del área de Paracho-Cherán, Campo Volcanico de Michoacán-Guanajuato, México.

Volcán	Depósito datado	Localidad	Referencia
El Metate	Paleosuelo bajo flujo de lava	2 km al NW de San Andrés Corú	Chevrel et al. (2016a)
El Metate	Paleosuelo bajo flujo de lava	1.5 km al NW de San Andrés Corú	Chevrel et al. (2016a)
	Polossuelo hais 0.2 m de denénite de secirites (arene a lanili), aris observes	2 km al NE do El Johalí aoros do Charanguarán	Ecto octudio
El Jabalí	r areosuelo bajo 0,2 m de depósito de catada de celtazas (ateria a tapini), yns obscuto Palaceula bajo 0,9 m de depósito de catada de celtazas (ateria a tapini), yns obscuto	4 km al SW/ de El Jabalí, 2 km al NW/ de San, Juan Nuevo	Este estudio
El Jabalí	r aleostelo bajo 40 m de caída de canada de canada intera intera intera interación, porte statinicado, con mator-foncinstates de 19, one y 11A Delescuelo bajo 40 m de caída de canada de canada entres antera porte de cara de la dela de la construcción de d	2 km al NE de El Jabalí, 2 km al NW de Sali Juan Ndevo	Este estudio
El Jabalí	r aleostelo bajo 0.5 m de denésito de caída de contras vitanilis de descurso, sobrevacido por indo de lava, contencionales de Fig. Delenido bajo 0.5 m de denésito de caída de contras vitanilis de becurso.	1 km al W de Tiamba	Este estudio
El Jabalí	Paleosielo baio de canas de cafa de centras y labilit	n r	Hasepaka v Carmichael (1985)
Li oubuii			hasehaka y saimienael (1999)
Janamo	Paleosuelo bajo brecha de flujo de lava, color gris obscuro, con fenocristales de Prx <5 mm y Plg <1 mm	0.5 km al NW de San Lorenzo	Este estudio
Here United	Franzentes de serbés en estesuels bais 0.7 m de desérite de seride de series (anno l'anno a muses) bise setesificado	at two of NNE do Turíouero	Chaural at al. (2016a)
Hoya Urutzen	rragmentos de carbon en pareosuelo bajo 0.7 m de deposito de carba de carbona da fuera inmosa a gruesa), pien estratuicado		Chevrel et al. (2016a)
Hoya Urutzen	Paleosuelo bajo 2 m de deposito de catoa de cenizas (arena gruesa a tapini), bien estralincado, parciamente retrabajado	3 km al S de Arantepacua	Chevieretal. (2010a)
Hoya Urutzen (antes erréneamente El Metete)	Peleosuelo de gran espesor bajo 1.5 m de deposito de caída de cenizas (arena ima a itaplini), bien estratuicado Delosuelo bajo fítició de loros	2 km al S de Arantepacua, ladera N del Juataqueri	Este estudio
Hoya oruizen (antes erroneamente Er metate)		3 km al 3 de Alaniepacua	riasenaka y Carmichaer (1965)
Domo Paracho	Paleosuelo bajo 15 m de secuencia de flujos de bloques y cenizas y lahares	Cantera, 3 km al SW del pueblo de Paracho	Chevrel et al. (2016a)
Domo Paracho ???	Paleosuelo arriba de lava Pre-El Metate y bajo 0.7 m de depósito de caída de cenizas (limo a arena gruesa), gris claro, bien estratificado	Ladera meridional superior de El Metate	Chevrel et al. (2016a)
Cleanlán	Delegende baie 0.0 m de demánite de galde de ganizas (Isaili Ens a gruppa), bien estratificade, parsistemente alterade d-1.0::/	2.7 km al SM dal Cianzián Jadara maridianal da 51 Universi	Este estudio
Cicapion	r arcosuero vajv v.o m se usposto se cata se centra trajnim mo a gruesoj, sien estratificado, parcialmente alterado del Cicapien Delosquelo bajo A6° m de devisito de acida de contras (trajnim en os regene fina)	2.7 Milliai Swilder Grouppen, ladera meridional de El Horño 2 km al NW da Casuaba	
Cicapien	Paleoseuelo bajo 0.65 m de depósito de caída de centras (tapliu ino a arena tina)	3 km al NVV de Cocucho	Este estudio
Cocucho scoria fallout	Paleosuelo bajo 0.50 m de deposito de caida (ilaplili a arena fina)	1 km al SE de Cocucho	Este estudio
Cierrien	Delegando heir 2.0 m de denénite de colide de conizar (Ionili medie o fina), hier cotratificado, quie chaques	0.00 km al 6 da Damaguatán	Este estudio
Cicapien	Paleosuelo bajo 3.0 m de deposito de cana de centras (rapini medio a mor), bion estranicado, gris oscurio Delesavis le bio 4.2 m de dencisió de cará de cará de cará de la construcción de cará de cará de de cará de cará	0.92 km al 5 de Pomacuarán	Este estudio
Cicapien	Paleosuelo bajo 0.45 m de depósito de calda de centras (taplin medio a atenta gruesa), bien estratificado, gris doscuro, con micro-renocristales de Pig Dalosuelo bajo 1.3 m de depósito de calda de centras (taplin medio a atenta gruesa), bien estratificado.	Trinchera en la plaza de Romacuarán	Este estudio
Cicapien		minchera ema plaza de l'omacdaran	Late estudio
La Alberca excavación pinturas rupestres	Herramienta de cuerno	7.9 Km al NW de San Juan Nuevo Parangaricutiro	Gabany-Guerrero (2002)
La Alberca excavación pinturas rupestres	Colágeno de hueso humano	7.9 Km al NW de San Juan Nuevo Parangaricutiro	Gabany-Guerrero (2002)
La Alberca excavación pinturas rupestres	Colágeno de hueso humano	7.9 Km al NW de San Juan Nuevo Parangaricutiro	Gabany-Guerrero (2002)
luopuon (El Huonillo)	Delescuela baja denásita da asída da conizza u lanilli astratificada	P.C.	Hasanaka y Carmishaal (1995)
Juanyan (El Huanillo)	r alebouelo bajo 1 m do danĉej de oplita de	1	Fate estudio
Juanyan (El Huanillo)	r aleccuelo baio dancia da calda de conizas (rabini nino a grueso), pien estratuicado	n kin ai Ne dei Suanyan, canetera Cheran-Carapan	Hasapaka v Carmishaal (1095)
Juanyan (El Huanillo)	r areosuelo bajo 17 00 m de danda de cenizas y aplini, estatuinado Paleosuelo bajo 17 00 m de dandatis de conizas y laplini, estatuinado	1 1 km al S del Juanvan, carretera Paracho-Cherán	Este estudio
Juanyan (El Huanillo)	r alcostato dejo or, or m de denócito de calad de cenizas (apani mor a alcuna) bien estratificado	Carretera a Cheranástico	Este estudio
Paracho Viejo	Paleosuelo bajo 1.32 m de depósito de caída de cenizas (lapilli fino a grueso), bien estratificado, con micro cristales de Plg y Olv	2.4 km al NW del pueblo de Paracho	Este estudio
Paracho Viejo	Paleosuelo bajo 0.5 m de depósito de caída de cenizas (lapillí fino), bien estratificado, gris claro, con micro cristales de Pig y Olv	Pendiente meridional de Iglesia Vieja	Este estudio
Tzinzunzahua de Capacuaro	Paleosuelos bajo 1.3 m de depósito de caída de cenizas (lapilli fino a grueso), con estratificación cruzada en la base	1.9 km al NW de San Lorenzo	Este estudio
Santa cruz de San Lorenzo	Paleosuelo bajo 0.84 m de depósito de caída de cenizas (lapilli fino a grueso)	1.9 km al NW de San Lorenzo	Este estudio
El Varal de Canacuaro	Palaceualo baio 5.6 m de denácito de calida de cenizas (Janilli fino a grueso), bien estratificado	Cantera, 1 km al W/ de Canácularo	Este estudio
Capácuaro further below "Tzinzunzahua" from Arichán?	r alcosuelo bajo 10 m de deposito de calada de centras teplin mola grueso, funcional actualo Paleosuelo bajo 17 dm de deposito de calada de centras teplin mola grueso, funciona amarillo	Cantera, 1 km al W de Capácuaro	Este estudio
Nurio	Paleosuelo bajo 0.4 m de depósito de caída de cenizas (lapilli), alterado, gris obscuro a café amarillo	Cerca de Nurio	Este estudio
Tzinzunzahua de Canacuaro	Daleosuelo baio 1.7 m de denósito de caída de cenizas (Ianilii vesicular), bien estratificado, orie obecuro.	Límite N del nueblo de San Lorenzo	Este estudio
FI Varal de Canacuaro	 a costado de la 1.4 m de denvísti de de adá de de terizas teprim restruction, per el astinidado, gris dosocial o Palencendo hain 0.8 m de denvísti de cadá de cenizas (aprim restruction), bien estratificado, drís dosocian 	Límite N del pueblo de San Lorenzo	Este estudio
Piruani-Hiabuacuaro?	r aleosuelo bajo nº ze deposito de calda de cenzas (tajnin residual), ben sata alimento, gis obscuro	Límite N del pueblo de San Lorenzo	Este estudio
Gusato?	Paleosuelo bajo 0.8 m de denósito de caída de cenizas, interactivas tratación de caída de cenizas (anilia) bien estatíficado	Límite N del pueblo de San Lorenzo	Este estudio
San Miguel (Nurio)	Paleosuelo bajo 1.6 m de depósito de caída de cenizas, bien estratificado, gris obscuro a alterado amarillo-pardo	Cerca de Nurio	Este estudio
San Miguel (Pomacuarán)	Paleosuelo bajo 10 a 15 m de depósito de caída de cenizas (lapilli fino a grueso), bien estratificado, gris	Ladera de Iglesia Vieja	Este estudio
Ziapo ?? (NE de Cherán)	Paleosuelo bajo 0.32 m de depósito de caída de cenizas (arena media), bien estratificado	4 km al NE de El Ziapo	Este estudio
Ziapo ?? (NE de Cherán)	Paleosuelo bajo 0.70 m de depósito de caída de cenizas (lapilli fino a arena), bien estratificado	2 km al NE de El Ziapo	Este estudio
Jaraiten	Daleosuelo bajo >2 m de denósito de caída de cenizas, bien estratificado, alterado	0.5 km al SSW de El Jaraiten, camino Tanaco Paracho	Este estudio
ouraiten	י מוסטיניוס אוויס - ב ווו על עקיטוול על לפווגנאס, אופו פטעמוועמעל, מופומעל	olo iun a com de Li barajten, camino ranaco-ralacito	
Cerro Pelón	Roca entera	17 Km al S de Uruapan	Hasenaka y Carmichael (1985)
Santa Teresa	Roca entera		Hasenaka y Carmichael (1985)

Capítulo 6. Geoquímica del área de Paracho-Cherán

Los primeros análisis geoquímicos y descripciones petrográficas de rocas pertenecientes al CVMG fueron elaborados a partir de muestras colectadas en la región del volcán Paricutin por Williams (1950), Segerstrom (1950) y Wilcox (1954). Además del Paricutin, en estos trabajos se mencionan varios volcanes de la región denominados en su conjunto "Cerros de Paracho", como por ejemplo El Jabalí, El Aire, El Pario y La Alberca, entre otros. Posteriormente, Hasenaka y Carmichael (1985; 1987) y más tarde McBirney et al. (1987), Roggensack (1988; 1992), Ban et al. (1992), Luhr y Simkin (1993), Hasenaka (1994) y Hasenaka et al. (1994) aportaron análisis químicos y petrográficos de rocas de diversos sectores del CVMG acompañados de algunos fechamientos por ¹⁴C y K-Ar. Estos estudios, ocurrieron principalmente en el área de Paracho-Cherán, mientras que McBirney et al. (1987) se enfocaron en la erupción del Paricutin y sus xenolitos granodioríticos. Roggensack (1988; 1992), Hasenaka (1994), Ownby et al. (2007, 2011) y Chevrel at al. (2016a; 2016b) más tarde, prestaron particular atención a los escudos (e.g. Paracho y El Metate entre otros). Recientemente, Johnson et al. (2008; 2009), Rasoazanamparany et al. (2016), Albert et at. (2020) y Larrea et al. (2017, 2019, 2021) incluyen análisis isotópicos más detallados en sus trabajos sobre lavas del Jorullo y Paricutin, junto con otros volcanes jóvenes en la región, mientras que Darras et al. (2017) incluyen análisis petrográficos de flujos dacíticos explotados para la manufactura de herramientas líticas (raspadores) en tiempos prehispánicos.

Geoquímicamente, Hasenaka y Carmichael (1985) observaron un incremento en las concentraciones de Mg, Cr y Ni, conforme exitía una mayor cercanía con respecto a la Trinchera Mesoamericana, y argumentan así, la migración hacia el sur del volcanismo en los últimos 2.5 Ma. Ferrari (2004) explica que dicho fenómeno puede ser el resultado del "rollback" de la placa oceánica de Cocos en subducción bajo la placa norteamericana. Carmichael (2002) enfatiza la importancia de los fluidos provenientes de la placa oceánica subducida en la petrogénesis de gran parte de las andesitas generadas por el magmatismo del CVTM, así como sus implicaciones e impacto en su parte centro-oeste, área que incluye al CVMG. Entre tanto, Ownby et al. (2007; 2011) describieron las avalanchas de escombros y la morfología derivada de los derrumbes parciales del volcán Tancítaro y fecharon mediante el método istópico de ⁴⁰Ar/³⁹Ar rocas provenientes de toda la zona al sur de este volcán (región de Nueva Italia, principalmente). Además, analizan sus composiciones y proponen que el magmatismo reciente tiene su origen en la corteza continental profunda. Siebe et al. (2013; 2014), Kshirsagar et al. (2015; 2016) y Chevrel et al. (2016; 2016b) (Reyes-Guzmán et al. 2018, 2021), Larrea et al. (2019), Ramírez-Uribe et al. (2019; 2021) y Guilbaud et al. (2021) realizaron varios trabajos a detalle en sectores muy particulares del CVMG como las cuencas de Zacapu y Pátzcuaro, junto con la zona de Nueva Italia-Tancítaro (e.g. Alberca de Guadalupe, Alberca de Los Espinos, El Caracol, Malpaís Prieto,

Las Cabras, Mazcuta, Rancho Viejo, Astillero y Pedregal) y dentro del área de Paracho-Cherán (e.g. El Metate, El Paracho, Juanyan y Hoya Urutzen; Fig. 3). En el caso del Metate, Chevrel et al. (2016a) describen dos rutas de fraccionamiento del magma ascendente a partir de una fuente heterogénea en el manto litosférico, que derivaron en el emplazamiento de los flujos de lava producidos por el escudo El Metate. Además, añaden que la placa en subducción de bajo ángulo juega un papel importante en dichos procesos. Finalmente, Pola et al. (2014) describen la sucesión de avalanchas del volcán El Estribo, que es otro cono monogenético de escoria de composición andesitica emplazado en los límites del lago de Pátzcuaro, fechado en 28 mil años y que además es afectado por un sistema de fallas con rumbo este-oeste.

Por otro lado, al sur y oriente del campo, Blatter y Hammersley (2010), Guilbaud et al. (2011; 2012); Gómez-Vasconcelos et al. (2015); Gómez-Vasconcelos et al. (2020); Avellán et al. (2020) y Guilbaud et al. (2020) abordan varios procesos relacionados al vulcanismo. Las primeras explican la ausencia del vulcanismo al oriente del campo ("gap" de Tzitzio) y relacionan este enigmático fenómeno a la fractura Orozco de la placa de Cocos y explican que en esta zona existe un cambio en el ángulo de subducción. Guilbaud et al. (2011; 2012; 2020) prestan atención a los conos monogenéticos de escoria y escudos en la zona del histórico volcán Jorullo y la adyacente región de Tacámbaro-Puruarán. Reportan actividad volcánica antigua del Eoceno (55-40 Ma) y más recientemente del Neógeno (<5 Ma) que incluye escudos de diferentes edades así como conos monogenéticos muy jóvenes, algunos inclusive pertenecientes al Holoceno (e.g. Malpaís de Cutzaróndiro, El Zoyate, La Palma, La Tinaja y El Jorullo) que en su conjunto presentan diferentes variedades composicionales que van desde los basaltos y las andesitasbasálticas (incluyendo variedades alcalinas) que evolucionan hasta las andesitas y las dacitas. Recientemente, Gómez-Vasconcelos et al. (2015) estudian el sistema caldérico de Mil Cumbres, que ha producido numerosas ignimbritas y vulcanismo bimodal durante el Terciario y que se emplaza preferentemente con dirección E-W. Describen las implicaciones tectónicas e impacto en el CVMG. En trabajos subsiguientes, Gómez-Vasconcelos et al. (2020) y Avellán et al. (2020) describen el vulcanismo y sus implicaciones tectónicas en la zona de Morelia y Queréndaro, así como los sistemas Tetillas-Jamanal, donde ocurren secuencias de escudos y conos monogeneticos de esocoria de composiciones basálticas, andesitas basálticas y andesíticas.

Considerando los trabajos anteriores y basados en los trabajos propios en el campo y en el laboratorio, en los siguientes apartados se presentan las principales características geoquímicas y petrográficas de los productos emitidos por conos monogenéticos de escoria y escudos en el área de Paracho-Cherán (Plioceno-Holoceno) de acuerdo a sus grupos composicionales.

Para el análisis químico de roca total (elementos mayores y trazas) se colectaron un total de 148 muestras, de las cuales 80 pertenecen a los conos monogenéticos de escoria y 68 a los volcanes

escudo (Tabla 5). Las muestras fueron enviadas a Activation Laboratories en Ancaster (Canadá) para su análisis. Además, se consideraron 16 análisis químicos reportados por Ownby et al. (2007) y todos los análisis se presentan en las tablas completas en repositario digital. Un total de 97 muestras de roca fueron seleccionadas y enviadas para la elaboración de láminas delgadas a Mann-Petrographics en Ojo Caliente, Nuevo México. Posteriormente fueron observadas bajo el microscopio petrográfico y los análisis mineralógicos modales realizados mediante el conteo de puntos (*point counting*) que se presentan en el siguiente capítulo.

6.1. Geoquímica de elementos mayores

Los análisis originales reportan el contenido de H₂O y otros volatiles de las muestras determinado mediante la pérdida por ignición (LOI=*loss on ignition*). Por ello los análisis se normalizaron al 100% con base anhidra mediante hojas de cálculo de Excel y los valores obtenidos se graficaron mediante el programa IGPET-2007. Los resultados indican un rango composicional de 50 a 63 wt.% SiO₂ para todas las rocas de los volcanes del área de Paracho-Cherán y se graficaron en el diagrama por tipo de estructura, por composición y por edad (Figs. 8 a,b y c) denominado *Total Alkalies vs. Silica* (TAS; Na₂O+K₂O vs. SiO₂) de Le Bas et al. (1986); (ver también las tablas completas en Repositario digital).

La mayoría de los volcanes del APC son conos monogenéticos de escoria y del tipo escudo (Fig. 8a), como se menciona en capítulos anteriores. La mayoría de ellos presenta composiciones pertenecientes a la serie calcoalcalina, relacionada a zonas de subducción y los procesos de la cristalización fraccionada, que producen principalmente rocas andesíticas, seguidas de andesitas basálticas y basaltos (Fig. 8). Algunos conos monogenéticos de escoria son del Holoceno y el Pleistoceno tardío (e.g. El Jabalí, Varal, Las Varas, Paracho Viejo, Sinar Juata y Hoya Urutzen) y presentan dicha típica tendencia calcoalcalina (Fig. 8b). Sin embargo, existe una excepción, El Cicapién (varios fechamientos, ver Fig. 3; Tabla 4; Tabla 5), que es un cono monogenético de escoria del Holoceno. Su firma geoquímica es muy distinta y su composición alcalina es similar a la de otros dos conos más antiguos, Gusato y Cucundicata, ambos también en el APC (Fig. 8b). Su existencia tiene importantes implicaciones con respecto a los procesos petrogenéticos relacionados con la subducción bajo el CVMG.

En la (Fig 8c) se observa con claridad, que la actividad monogenética, se concentra en el Holoceno, se extiende al Pleistoceno Tardío y decrece hacia el Pleistoceno Medio, hasta prácticamente desaparecer en el Pleistoceno Temprano y el Plioceno.

De algunos de estos volcanes se obtuvieron varias muestras para su análisis químico. Fueron colectadas de las partes más proximales al cono, así como de zonas intermedias y distales de lavas, principalmente. Una mayor cantidad de muestras permite un análisis más completo de cada volcán, mientras que pocas muestras son generalmente insuficientes para conocer su

evolución magmática con mayor detalle, así como precisar su fuente. La Tabla 5 incluye un listado de las muestras representativas del área (escudos y conos).

Figura 8.-Diagrama *Total Alkalis vs. Sílica* (TAS; Na₂O+K₂O vs. SiO₂) de Le Bas et al. (1986). Linea divisoria Alcalina-Sub-Alcalina de Myashiro (1978). 129 análisis químicos de rocas del APC en su mayoría con tendencia Sub-Alcalina.

6.2.- Andesitas (SiO₂ = 57-63 wt.%)

De las 144 muestras de roca, 99 corresponden a andesitas (Figs. 8, 13, 14; Tabla 5 apéndice III;), es decir ésta es la composición predominante en el APC e incluye principalmente a los escudos, aunque también a varios conos de escoria, como se verá en los siguientes apartados. En grado de evolución se presentan los siguientes escudos: Horno Sur, Tumbiscatillo, Hueratiro, Capén, Cumburinos, Paracho, Santísimo, San Marcos, Molino, y La Cruz. Los conos de escoria andesíticos incluyen a los siguientes: Varas, Hoya Urutzen, Jabalí, Cajete-Puerto y Janamo entre otros (Tablas 1 y 5; Figs. 3, 8b y 13). En este grupo de volcanes se observan concentraciones intermedias y bajas de Al₂O₃, Fe₂O₃, MgO, TiO₂, CaO que tienden a tener una mayor dispersión con un empobrecimiento progresivo conforme aumenta el contenido en SiO₂. En este sentido el empobrecimiento es muy acentuado en Cr y Ni (Figs. 9a, b, c; d; 9.2a y b).

Estos elementos forman minerales como el clinopiroxeno, ortopiroxeno y anfíboles. Mientras tanto, las concentraciones de Na₂O y K₂O en estas rocas (Figs. 9.1b y c) muestran un enriquecimiento conforme evolucionan y aumenta el contenido en SiO₂, que va a la par con la formación de minerales como la plagioclasa, mineral presente en la mayoría de las muestras. En general los elementos mayores muestran contenidos muy característicos para andesitas asociadas a zonas de subducció

6.2.1. Andesitas basálticas (SiO₂ = 52-57 wt.%)

51 muestras son andesitas basálticas y provienen de escudos como El Colorado, Sinar Juata, Cain Juata, Metate, Chivo, Zindio y Varas (Figs. 3, 8b, 13 y 14; Tablas 1 y 5.1 apéndice III) pero también de conos de escoria que en orden de evolución incluyen al Paracho Viejo, Janamo, Jabalí, Santa Cruz, Capastacutiro, Juanyan, Varal, Hoya Urutzen y Tzinzunzahua, entre otros (Tabla 5.1; Figs. 3, 8b y 12). En su conjunto, este grupo de volcanes presenta un mayor enriquecimiento en Al₂O₃, Fe₂O₃, MgO, TiO₂, Cr y Ni (Figs. 9.1a, b, c, d; 9.3a y b) lo que resalta sus afinidades basálticas conforme el contenido en SiO₂ decrece. Por lo que las muestras, se distinguen por la formación y presencia de olivino, clinopiroxeno, ortopiroxeno, anfíbol, cromita y otros opácos. En el caso del Al₂O₃, además de tener mayor dispersión, baja su contenido, debido a la fraccionación de las plagioclasas.

Con respecto a las concentraciones de CaO, Na₂O y K₂O (Figs. 9.2a, b y c) se observa un ligero enriquecimiento en CaO con respecto a las andesitas, las cuales son más pobres en este elemento. Este elemento también podría disminuir, debido al fraccionamiento al formar parte de los piroxenos, paricularmente si son ricas en Ca. Los alcalies Na₂O y K₂O normalmente se incorporan en los feldespatos alcalinos (sanidino), mismos que no fueron observados porque presuntamente su cristalización fue inhibida por el enfriamiento rápido durante la erupción. Es decir, estos elementos se encuentran en el vidrio intersticial. El origen de estos magmas primitivos

se encuentra en el manto litosférico (Yoder y Tilley, 1962) en la cuña del manto, presumiblemente formado por peridotita hidratada por fluidos provenientes de la placa subducida.

6.2.2. Basaltos (SiO₂=50-52 wt.%)

Existen únicamente 20 muestras de roca de composición basáltica. En su mayoría provienen de conos de escoria, entre los que se incluyen el Yondima, Jabalí, Sapién, Cicapién, San Miguél y Santa Cruz. Estos volcanes presentan un enriquecimiento en elementos compatibles Fe_2O_3 , MgO, TiO₂, Cr y Ni (Figs. 8b; 9a,b,c, d; 9.2a y b; Tablas 4 y 5.2 apéndice III) que es característico de los basaltos de zonas de subducción y principalmente participan en la formación de espinela y otros óxidos, olivino, y piroxenos. Con respecto a las concentraciones de Al₂O₃, CaO, Na₂O y K₂O (Figs. 9.1a, b y c) se observan valores altos de CaO, elemento que participa en la formación y fraccionamiento de augitas. Además, el CaO junto con el Al₂O₃, entran en la estructura de las plagioclasas y los piroxenos.

6.2.3. Variedades exóticas alcalinas, erupciones que transicionan de basaltos a andesibasálticas y andesitas

Las muestras de tres conos de escoria (Cicapien, Gusato y Cucundicata) presentan un alto contenido de K₂O (PAR-13257; PAR-15368; PAR-15397) y conforman un grupo de variedades de roca exóticas alcalinas, similares a las que se han observado en otros lados del CVMG como las zonas de Jorullo y Paricutín (e.g., Gómez-Tuena et al., 2007; Guilbaud et al., 2012). Representan sólo una pequeña proporción de las rocas del área de estudio (Figs. 3, 8b, 12; Tabla 5.2 apéndice III). En estos volcanes, la correlación de P₂O₅ vs. SiO₂ es muy marcada (Fig. 9.1d), lo que es consitente con la existencia de apatito en forma de inclusiones minerales contenidas en las plagioclasas principalmente.

Varios conos de escoria abarcan un amplio espectro composicional, es decir, se trata de volcanes que evolucionaron de basalto a andesita basáltica y finalmente terminaron produciendo andesitas durante una sola erupción. Estos volcanes incluyen al Paracho Viejo, Jabalí, Hoya Urutzen, Sinar Juata, El Varal y Las Varas (Figs. 8b, 13; Tablas 5.1 y 5.2 apéndice III) y presentan una evolución similar a la observada en los casos históricos del Paricutin y el Jorullo, ya que, conforme avanzaron sus erupciones, su evolución geoquímica también se vio reflejada en paulatinos aumentos en el contenido de SiO₂. Otros ejemplos documentados son El Jabalí, Paracho Viejo, Hoya Urutzen, Janamo y El Metate, que muestran un decremento en Fe₂O₃, MgO, TiO₂, Cr, Ni y CaO (Figs. 9a, b, c, d; 9.1a; 9.2a y b) que se puede explicar por la formación y el fraccionamiento de espinelas (cromitas), olivinos, clinopiroxenos, ortopiroxenos y plagioclasas cálcicas, (+/- hornblendas). Además, conforme aumenta el contenido en SiO₂, las concentraciones de Na₂O y K₂O (Figs. 9.2b y c) en el magma aumentan y también se enriquecen progresivamente en elementos incompatibles.

6.3. Comparación de resultados y estudios previos en el área

El número de magnesio (#Mg) promedio para las andesitas de la serie es de #Mg=47.60, mientras que para las variedades de basaltos y andesitas basálticas es de #Mg=66.36. De acuerdo con Williams (1950) las composiciones reportadas para el campo varían entre 50 y 61 wt.% SiO₂. Sin embargo, Hasenaka y Carmichael (1985, 1987) encuentran una variación más amplia con tendencia calco-alcalina que incluye algunas variedades exóticas alcalinas, cuyos rangos varían entre 50 y 70 wt.% SiO₂ y observan un incremento de Mg, Ni y Cr con respecto a su cercanía a la Trinchera Mesoamericana (MAT). Nosotros observamos que el comportamiento en las relaciones de MgO vs SiO₂, Cr vs SiO₂ y Ni vs SiO₂ (Figs. 9c; 9.2a y b) presentan una correlación negativa y que estos elementos se concentran en los conos de escoria, que frecuentemente son de composición más primitiva y en los que se pueden observar olivinos con inclusiones de espinela (cromita). Pero también existen escudos con estas características composicionales, como es el caso de "El Colorado" (Figs. 9b,c, 9.1a y 9.2). Las inclusiones de espinela de Cr también coexisten en otros minerales como los clinopiroxenos, aunque a veces, también se encuentran diseminadas dentro de la matriz como se describe en el capítulo siguiente.

Roggensack (1988) encuentra rangos de 53 a 63 wt.% SiO₂ para varios de los escudos que también incluyen a El Metate, mientras que Hasenaka (1990) y Ban et al. (1992) reportan composiciones de 53 a 61 wt.% SiO₂ para varios escudos que incluyen al Cerro Paracho y El Metate (entre otros). Carmichael (2002) describe composiciones de 52 a 62 wt.% SiO₂ y Ownby et al. (2007, 2011) encuentran una gama aún más amplia de 51 a 64 wt.% SiO₂. Nosotros observamos una distribución muy similar a la reportada por estos autores, incluyendo las cantidades de elementos como MgO, TiO₂, CaO, K₂O, Na₂O y Ni.

Las concentraciones de Ni reportadas por los autores antes mencionados varían entre 90 y 230 ppm, mientras que nosotros observamos valores de Ni entre 50 y 210 ppm (Fig. 9.2b). Al respecto, Ownby et al. (2007; 2011) postulan mediante un modelo de cristalización de dos piroxenos \leq 30% (D_{Ni} =~6 en: Rollinson, 1993), que las altas concentraciones de Ni en las andesitas basálticas y andesitas bajas en SiO₂ no pueden ser explicadas únicamente desde la cristalización fraccionada y la fusión parcial del manto. Proponen que esto puede deberse a la coexistencia y mezcla de dos líquidos ("end-members"), uno que contiene dos piroxenos y el otro de composición gabronorítica. La distribución de los elementos en la mayoría de los diagramas Harker (Fig. 9) puede explicarse por el proceso de la cristalización fraccionada, que posiblemente ocurre en reservorios magmáticos someros (7-15 km de profundidad) como lo explican Luhr y Simkin (1993) y Chevrel et al. (2016b) en los casos del Paricutin y El Metate, respectivamente.

Por otra parte, Carmichael (2002) explica que en muchas ocasiones rocas con valores de MgO>5% son los mejores candidatos para magmas primarios con fuente en el manto como se

observa en muchos de los conos de escoria y en el diagrama de Harker (Fig. 9c; MgO vs SiO₂) y varios volcanes (e.g., Cicapien, Gusato, Cucundicata, Jabalí, Yondima, Janamo, etc.). Un alto contenido de MgO en los magmas primarios favorece la formación del olivino y los piroxenos, mientras que altos valores de Fe₂O (Fig. 9.1b), además de favorecer la formación de olivinos y piroxenos, también propicia la cristalización de la hornblenda, que junto con la desgasificación permite la formación de óxidos de hierro (e.g. magnetita) como se observa en las lavas que se emplazaron durante la erupción de El Metate y en las lavas de El Colorado, El Cajete, El Zarapo y Ziquicio-Huinumba (Figs 11, 12, 15). Progresivamente las lavas empobrecieron en TiO₂ (Fig. 9.1d). Roggensack (1988) explica que la relación FeO*/MgO>1 y valores de TiO₂ >1.1 wt.%. Nosotros observamos valores entre 0.5 wt.% a <2.0 wt.% en toda la serie.

La graficación de Na₂O vs SiO₂ y K₂O vs SiO₂ (Figs. 9.2b y c) muestra una correlación positiva, mientras que la correlación es negativa en el diagrama CaO vs SiO₂ (Fig. 9.2a); aunadas revelan la formación de plagioclasas. Ca se incorpora también en otros minerales como los clinopiroxenos (augitas) y las hornblendas, cristales que están presentes en los escudos, aunque en algunos conos de escoria también se encontraron. Finalmente, la relación Al₂O₃ vs SiO₂ (Fig. 9a) tiene una distribución mucho más amplia y difusa, que no refleja mucho fraccionamiento y varía entre 15 y 19 wt.%. Por ello, posiblemente se relacione más con la formación de clinopiroxenos, aunque también podría fraccionarse en las plagioclasas y las hornblendas.

Figura 9.-Diagramas Harker.

Figura 9.1.-Diagramas Harker.

Figura 9.2.-Diagramas Harker.

6.4.-Geoquímica de elementos traza

Los elementos se presentan mediante los diagramas del manto primitivo (Sun y McDonough, 1989) y datos de una condrita (Nakamura, 1974) por periodos de tiempo y por volcán, incluido el número de muestras colectadas para cada uno (Figs. 11 y 12). Como se puede observar, la mayoría de las muestras provienen de volcanes que se formaron en el Holoceno, seguidos por los del Pleistoceno Tardío, Medio y Temprano, hasta el Plioceno. Como se mencionó anteriormente, la mayoría de los volcanes presentan una firma típica relacionada con el proceso de subducción (Rollinson, 1993) por lo que éste, es el entorno tectónico que condiciona los mecanismos petrogenéticos. La cristalización fraccionada, actúa durante el ascenso de los magmas y propicia su evolución a través de su paso por la corteza continental (Sun y McDonough, 1989). Por lo que, la tendencia predominantemente calco-alcalina (Figs. 8, 11 y 12) refuerza esta hipótesis. Dentro de los LILE (Large-Ion Litophile Elements) es importante la abundancia de Ba, que entre los conos de escoria varía entre 200 y 750 ppm, mientras que en los escudos varía entre 300 y 800 ppm. Volcanes del Holoceno como El Metate, Hoya Urutzen o Janamo muestran un mayor enriquecimiento en este elemento, mientras que el contenido en Cs alcanza hasta 150 ppm. En estos mismos volcanes los contenidos del mismo son altos (Fig. 11). Por otra parte, varias de las muestras presentan un enriquecimiento en Sr (e.g., en los conos varía entre 300 y 650 ppm). En volcanes como El Metate, Jabalí, Janamo, Hoya Urutzen, Yondima y Paracho Viejo, etc., se puede notar esta tendencia (Figs. 11 y 12); y cabe resaltar que, en la mayoría, incluyendo los escudos, estos valores varían entre 300 y 800 ppm. En las rocas del volcán El Metate los valores de Sr se disparan hasta alcanzar 1500 ppm. Chevrel et al. (2016a y 2016b; Fig. 10e) explican que esto ocurre debido a una asimilación de las rocas de la corteza continental superior y subrayan que durante el ascenso de los magmas operaron dos rutas distintas de diferenciación, cuya fuente es el manto heterogéneo. Por otro lado, el análisis isotópico de Sr, Nd y Pb de las lavas de El Metate (Chevrel et al., 2016b) revela que las lavas tardías son mucho más radiogénicas y mayormente enriquecidas en SiO₂ (Fig. 8) que las lavas tempranas. Además, la mayoría de las muestras presentan un enriquecimiento en Pb, posiblemente relacionado al acarreo por fluidos provenientes de sedimentos de la placa subducida (Rollinson, 1993).

La graficación de los elementos REE (*Rare Earth Elements*) normalizados contra los valores de la condrita (Nakamura, 1974) de volcanes del Holoceno como El Metate, Cicapien, Paracho Viejo, Jabalí, Janamo, Hoya Urutzen y Yondima (Figs. 11 y 12) presentan altas concentraciones de tierras raras ligeras, principalmente de La, Ce y Pr. Los diferentes comportamientos a detalle por periodo de tiempo en otros volcanes del Pleistoceno Tardío y del Pleistoceno Medio donde se puede observar que varias muestras de algunos volcanes del Holoceno (e.g., El Metate, Cicapien y Hoya Urutzen) son más radiogénicas. Según la clasificación de Pearce y Norry (1979) y Rollinson (1993) la graficación de la relación Zr/Y vs Zr permite determinar si se trata de rocas de

un arco volcánico continental con una ligera componente de la fuente mantélica enriquecida en los elementos incompatibles también llamados HFSE (*High Field Strenght Elements*) (ver figuras 11 y 12) a la vez que las rocas se encuentran empobrecidas en elementos compatibles. Esto indica que además de la cristalización fraccionada, por obvias razones también contribuye la fusión parcial de un manto litosférico heterogéneo, a la distribución de elementos observada; además, en la gráfica que muestra los REE en las lavas tardías emitidas por el volcán El Metate (Figs. 11 y 12) se observa una forma similar a una "cuchara" que sugiere la existencia de granate en la fuente (Peter Schaaf, comentario personal) (Rollinson, 1993). Chevrel et al. (2016) mencionan también a la fusión parcial del manto hidratado que en conjunción con un bajo ángulo de subducción de la placa oceánica genera a los magmas a >40 km de profundidad.

Finalmente, Hasenaka y Carmichael (1987) observan que los conos de escoria frecuentemente son composicionalmente más primitivos que la mayoría de los escudos, aunque en el APC existen escudos que también muestran afinidades primitivas (Figs.1, 3 y 13), entre basaltos y andesitas basálticas (e.g., Colorado, Zindio, El Chivo, Sinar Juata, Cain Juata y Metate). En la cuenca de Zacapu, los escudos Brinco del Diablo y La Huaracha (Reyes-Guzmán et al., 2018; 2020 y Ramírez-Uribe et al., 2019) también presentan afinidades primitivas. Por otra parte, cabe señalar, que en varios conos de esocoria (e.g., El Jabalí, Yondima, Sinar Juata, Tumbiscatillo, Hoya Urutzen, Paracho Viejo; Tabla 4) se observaron cambios composicionales muy similares al Paricutín (Luhr y Simkin,1993; Larrea et al., 2019), el Jorullo (Guilbaud et al., 2011), El Metate (Chevrel et al., 2016b), y Rancho Seco (Ramírez-Uribe et al., 2019) con tendencias de basalto a andesita basáltica o de andesita basáltica a andesita.

Desafortunadamente, sólo de tres escudos (El Paracho, El Metate y El Capen) se obtuvieron más de dos muestras (Tabla 1 en Cap. 4; Figs. 3 y 13). Los escudos más primitivos (El Colorado, Sinar Juata, Tejocote, El Metate, El Chivo, Las Varas y Zipiatiro; Figs. 3 y 8b) tienen composiciones que varían entre basalto y andesita basáltica (52-57 wt.% SiO₂), mientras que el resto tienen una composición más andesítica (57-62 wt.% SiO₂) que incluye la serie completa de análisis de El Metate (56-61 wt.% SiO₂) reportada por Chevrel et al. (2016b) y El Paracho (59-61 wt.% SiO₂) mencionado por Siebe et al. (2014). Con respecto a los conos de escoria, éstos aparecen en toda la serie (50-62 wt.% SiO₂) con sólo tres miembros traquíticos (Cicapien, Gusato y Cucundicata) como variedades exóticas alcalinas (Figs. 3 y 13). En orden de evolución magmática aparecen Yondima, Cicapien, Jabalí, Paracho Viejo, Hoya Urutzen y Jánamo.

La relación V/CaO (Fig. 10) inidica que posiblemente se trate de líquidos magmáticos basálticos provenientes de un manto litosférico heterogéneo, generados entre la corteza continental inferior y la placa subducida que reflejan la incorporación de fluidos y que producen rocas ricas en V, mientras que el Ca se relaciona con la generación de magmas ricos en olivino, piroxeno y

plagioclasa. La fusión parcial del manto, la cristalización fraccionada y la incorporación de H₂O, gases y otros fluidos juegan un rol muy importante.

Figura 10. Diagramas de correlación de elementos mayores y traza con tierras raras. 10a: Ni vs MgO; 10b: Cr vs MgO; 10c: V vs CaO; 10d: Nb vs TiO₂; 10e: Sr vs P₂O₅; 10f: Ba vs SiO₂; 10g: La/Sm vs SiO₂, 11h: Ba/Nb vs K₂O.

Figura 11.-Diagramas de elemento traza por volcán de Sun y McDonough, (1989) y de la Condrita de Nakamura (1974) Se presentan de manera individual debido al número de muestras y porque de esta manera fue más fácil establecer las fuentes y grupos en todo el conjunto

Figura 12. Diagrama con los valores normalizados (Sun y McDonough, 1989) en dónde se observa un comportamiento típico de rocas volcánicas asociadas a zonas de subducción; conos de escoria (rojo), los escudos (verde-blanco), la serie de rocas de El Metate (negro) y las correspondientes a El Paracho (en negro con blanco)..

Figura. 13.- Mapa de composiciones del área Paracho-Cherán. Se pueden distinguir las diferentes composiciones y estructuras de 160 edificios volcánicos, así como la ubicación de las muestras recolectadas.

7.- Petrografía del APC.

En los siguientes apartados se decriben con mayor detalle las caraterísticas petrográficas de las rocas obtenidas de los distintos volcanes de acuerdo a su composición de roca total (andesitas, andesitas basálticas, basaltos y composiciones transicionales).

Se analizaron un total de 92 láminas delgadas y se determinaron los arreglos minerales de las rocas de la zona de Paracho-Cherán mediante el conteo de puntos bajo el microscopio petrográfico (ver análisis mineralógicos modales en Tablas 5 y 6 apéndices III y IV). El ensamble mineral de toda la serie se conforma principalmente de Olvino, Plagiclasa, Clinopiroxeno, Ortopiroxeno y Horblenda; además de inclusiones de espinela (cromita), otros opacos y apatitos (Fig. 15). En su mayoría, estas rocas presentan texturas traquíticas a pilotaxíticas seriadas (MacKenzie, 1982; Kerr 1977) y contienen hasta 40 Vol.% de vesículas. Los fenocristales (<2 mm) se encuentran embebidos en una matriz vítrea que contiene microfenocristales de plagioclasa, clinopiroxeno (augita) y ortopiroxeno (hiperstena). La matriz en raras ocasiones contiene opacos y otras inclusiones como cromitas y apatito (ver Fig. 11, muestras PAR-14273 y PAR-13257 provenientes de los conos de Cicapien y El Aire).

Se pueden observar formas euhedrales a sub-euhedrales en casi toda la serie de fenocristales desde los olivinos y plagioclasas, hasta los clinopiroxenos (augita), ortopiroxenos (hiperstena) y hornblendas. Adicionalmente, estos cristales también se encuentran en glomeropórfidos y coexisten en varias de las series y en diferentes combinaciones. Los volcanes se pueden diferenciar en tres grupos principalmente, según las faces minerales: 1) conos de escoria y escudos de composición basáltica y de andesita basáltica, con variedades que contienen olivino, clinopiroxeno, ortopiroxeno y plagioclasa; 2) escudos y conos de composición andesítica que contienen ortopiroxeno, plagioclasa y hornblenda; y 3) el domo compuesto de Paracho que es de andesita con clinopiroxeno, ortopiroxeno y plagioclasa (ver tabla 6 con análisis mineralógicos modales).

Por lo tanto, las series de lavas del área de Paracho-Cherán se categorizan en varios grupos típicos composicionales y minerales. Entre éstos se encuentran los conos de escoria con algunas series transicionales de basaltos traquíticos y traqui-andesíticos con olivino (e.g., Cicapién y Gusato), andesitas basálticas de olivino y andesitas con olivino y sin olivino (e.g., Janamo y Hoya Urutzen), además de escudos de andesitas con olivino y clinopiroxeno (e.g., Colorado y Tejocote) y por otro lado las andesitas sin olivino, pero con piroxeno (principalmente ortopiroxeno) (e.g., El Santisimo, La Virgén, y San Marcos; Figs. 3; 15.1, 15.2, 15.3; en apéndices III y IV; Tablas 5 y 6).

7.1. Andesitas (escudos y conos de escoria)

La gran mayoría de las rocas del área de Paracho-Cherán se distinguen por una composición andesítica, típica de los arcos volcánicos asociados a la subducción (Tarbuck and Lutgens, 2005; Siebe et al., 2014). Únicamente 42 láminas delgadas de los volcanes del APC presentan rangos que geoquímicamente varían entre 57 y 63 wt.% SiO₂ (Cap. 6; Tabla 6; Figs. 13, 14 y 15). Varios escudos, incluyendo algunos conos de escoria (e.g., Hoya Urutzen y Janamo; PAR-14320 y PAR-15392), presentan esta composición. Ejemplos conocidos en la literatura son El Metate, escudo andesítico estudiado recientemente por Chevrel et al. (2016a, 2016b) y las andesitas del domo compuesto de Paracho (59-61 wt.% SiO₂; Ownby et al., 2010; Siebe et al., 2014). Existen otros escudos voluminosos con esta composición (e.g., Cumburinos, El Santísimo, El Horno, Zarapo, La Virgen y San Marcos), los cuáles son típicos en el CVMG (Fig. 4).

7.2. Andesitas basálticas de olivino, piroxenos y plagioclasas

Estas rocas se presentan principalmente en los conos de escoria (52-57 wt.% SiO₂) y se formaron durante tres periodos de tiempo geológico (Fig. 13) desde el Pleistoceno temprano hasta el Pleistoceno tardío y Holoceno, lo que implica una constante generación de magmas con estas composiciones. Al menos 13 volcanes son de esta composición e incluyen a varios conos de escoria y cuatro escudos (e.g., PAR-13252, PAR-13253, PAR-13254, PAR-13256, PAR-14271, PAR-14273, PAR-15344, PAR-15348, PAR-15373; Figs. 2 y 3; Apéndice III) que pertenecen a los volcanes de Juanyan, Capastacutiro, Varal, El Aire, Paracho Viejo y un pequeño cono tipo "rafted" al NW del domo Paracho (Figs. 3, 10, 13; Tablas 5, 6). El arreglo mineral de su matriz por lo geneal varía y contiene distintas proporciones de microlitos de feldespato y otros microfenocristales de clinopiroxeno y ortopiroxeno principalmente (Fig. 15). Típicamente sus rocas contienen fenocristales de olivino con formas euhedrales a sub-euhedrales y esqueletales, que usualmente contienen inclusiones de espinela (cromita) y otros opacos. Existen casos particulares como El Colorado, uno de los únicos cuatro escudos de andesita basáltica (Figs. 3 y 12) en el área, y en donde los olivinos presentan coronas de reacción de idigginsita, mientras que EL Chivo presenta abundante olivino, cromita y clinopiroxenos. En general, la textura de las rocas de este grupo es traquítica a pilotaxítica tipo seriada, ocasionalmente con vesículas. En ocasiones se observan también fenocristales de plagioclasa, que son de forma euhedral a subeuhedral y acicular, muchos de estos cristales presentan zoneamiento, maclas típicas tipo Carlsbad y polisintéticas. Las variaciones composicionales de las plagioclasas de varios volcanes (e.g., Cicapién) pudieron identificarse por el método óptico de Michel-Levy.

7.3. Basaltos

Los basaltos son las rocas que ocurren en menor proporción dentro del APC. Sus composiciones varían entre 50.17 y 52.00 wt.% SiO₂ y aunque representan sólo un pequeño volumen, nos permiten conocer con mayor detalle los procesos magmáticos que han dado origen al CVMG. Guilbaud et al. (2011, 2012, 2020) describen basaltos con características similares en algunos volcanes al sur del CVMG en la zona de Jorullo y Tacámbaro. La mayoría de los basaltos en el APC fueron eruptados por conos de escoria (e.g. Yondima, Jabalí, Cicapien, Sapien y Paracho Viejo) y generalmente tienen características típicas de los basaltos asociados a zonas de subducción. Presentan un arreglo mineral conformado por una matríz, generalmente vítrea con textura traquítica a pilotaxítica y fenocristales de olivino, piroxeno y plagioclasa que se han formado siguiendo la secuencia típica de la cristalización fraccionada (OI, Opx, Cpx, Plag). Sin embargo, la evolución de los productos del cono de escoria Cicapien siguió una ruta de cristalización distinta, que parece reflejar más bien una secuencia de fusión parcial del manto (Figs. 8, 9, 10, 13).

7.4.-Erupciones transicionales de basalto a andesitas basálticas y andesitas de olivino (y sin olivino)

Únicamente tres volcanes presentaron una evolución claramente definida por un amplio abanico composicional que abarca desde basaltos a andesitas basálticas y andesitas. Éste es el caso del Hoya Urutzen, volcán fechado por Chevrel et al. (2016a y 2016b), pero también del Jabalí y del Jánamo. Los tres volcanes son muy jóvenes y disponemos de varias muestras (ver Cap. 5; Figs. 3, 11, 12; Tabla 5), sin embargo, hay varios volcanes (e.g. Paracho Viejo, Las Varas, El Varal y El Aire) que tal vez también presenten un amplio abanico composicional, pero de los cuales no tenemos suficientes análisis químicos para poder documentarlo (Fig. 8).

Capítulo 8. Volúmenes y composición de los volcanes del área Paracho-Cherán a través del tiempo

Las más de 160 estructuras volcánicas que existen en el APC forman sólo una pequeña parte (3%) de todo el CVMG (Fig. 3) y desde los primeros trabajos de Segerstrom (1950), Williams (1950) y Wilcox (1954) sobre la morfología, geología, geoquímica y petrografía del volcán Paricutín y los volcanes de sus alrededores, se constataron sus dimensiones y su relativa importancia e impacto regional en el CVTM, puesto que todo el CVMG, es muy activo. En cuanto a los volúmenes, varias decenas de kilómetros cúbicos de magma fueron emitidos en el área, aunque estos estudios sólo se enfocaron con precisión en los volúmenes del Paricutin. Más tarde, Hasenaka y Carmichael (1985) y Roggensack (1988) reportaron 30.5 km³ y 540 km³ respectivamente, eruptados por una variedad de volcanes escudo y conos de escoria en diferentes sectores del CVMG. En cuanto a las composiciones se observa un amplio dominio de las andesitas, aunque coexisten con otras variedades basálticas, transicionales y exóticas alcalinas dentro de la serie como se describe en capítulos anteriores. En años recientes, Ownby et al. (2007), Guilbaud et al. (2011, 2012, 2021), Siebe et al. (2013, 2014), Kishirsagar et al. (2016a, 2016b), Chevrel et al. (2016a, 2016b), Reyes-Guzmán et al. (2018, 2021), Larrea et al. (2019) y Ramírez-Uribe et al. (2019) prestaron mayor importancia a los volúmenes emitidos y a las variaciones composicionales a lo largo del tiempo, así como a la historia eruptiva de algunos volcanes particulares (e.g., la evolución del Tancítaro y el magmatismo en la zona de Nueva Italia, el inicio de la actividad volcánica en el área de Tacámbaro-Puruarán hace ~2 a 5 Ma, y la región de Jorullo desde el Oligoceno, así como también la actividad freato-magmatica en la cuenca de Zacapu y la gran erupción del escudo El Metate), lo que permitió, entender mejor los mecanismos y procesos eruptivos en diversas partes del CVMG. Por último, Hasenaka y Carmichael (1987) sugieren que la baja tasa de suministro de magma desde el manto, representa un factor fundamental en el emplazamiento de conos de escoria. Además, explican que los periodos cortos de actividad monogenética se deben particularmente a la ausencia de reservorios magmáticos de gran volumen.

En el APC, desde el Plioceno y hasta el Pleistoceno, la actividad volcánica ha ocurrido en algunos lapsos de tiempo intermitentes. Aunque los rasgos mas visibles del magmatismo son los escudos (Cap. 4, Fig. 4), cabe destacar que en cantidad predominan los conos de escoria y sus variantes de pequeño volumen, como lo son los maars y anillos de toba en la cuenca de Zacapu (Siebe et al., 2013, 2014; Kishirsagar et al., 2016a, 2016b), y erupciones freato-magmáticas en la zona NE del CVMG, en Valle de Santiago; e.g., volcanes Rincón de Parangueo y Hoya de Estrada (Cano-Crúz y Carrasco-Núñez et al., 2008; Aranda-Gómez et al., 2013).

Por otra parte, Guilbaud et al. (2011, 2012, 2020, 2021) y Siebe et al. (2013, 2014) observaron que la actividad de composición andesítica es la predominante. Además, explican que, para

entender mejor la supuesta migración del magmatismo, es imperante conocer las edades de los volcanes y sus rasgos morfológicos a fin de poder hacer mejores inferencias sobre los procesos complejos que ocurren en las zonas de subducción (e.g., Gill,2010; Green, 2015), así como su geometría (e.g., ángulo de la placa oeceánica subducida).

En el área de Tacámbaro-Pururuarán los volúmenes emitidos según Guilbaud et al. (2012) son de ~22 km³ en el Cuaternario y de ~.3.8 km³ durante el Holoceno. En el APC se observa que también predominan las andesitas (Fig. 11), pero también se generan pequeños volúmenes de variedades de magmas de diferentes composiciones, desde la basáltica a la andesita basáltica con valores medios de K₂O. Sólo tres de las muestras en el APC presentan un valor alto de K₂O (Fig. 8). Según nuestras estimaciones, en total en esta área se han emitido ~63 km³ (DRE) como se explica en el apartado 4.3 del capítulo 4 y en la tabla 1 del Apéndice I. Las erupciones efusivas de gran volumen son evidentes, e.g. los ~10 km³ de magma emplazado durante la erupción de El Metate (Chevrel et al., 2016a; 2016b) y de otros grandes escudos (Fig. 4) en periodos de tiempo diferentes.

8.1. Volúmenes emitidos durante el Plioceno según su composición

El registro del vulcanísmo más antiguo en esta área es muy escaso. La roca más antigua proviene de El Horno localizado al sur del área de estudio, que fue fechada en ~2.5 Ma. Otros edificios con razgos morfológicos similares y que pudiesen ser igualmente antiguos por su grado de erosión y alteración de las rocas son El Gato, Angaruen y la Mojonera (Tabla 1 del Apéndice I; Figs. 3 y 12). Todas las demás rocas de este periodo posiblemente se encuentran sepultadas por productos más jóvenes.

8.2. Volúmenes emitidos durante el Pleistoceno Temprano según su composición

Durante este lapso de tiempo, la distribución de la composición del magma varió muy poco con respecto al periodo anterior. Cabe resaltar que varios de los escudos cuya formación hemos asignado por analogía morfológica a este periodo (a excepción del Querenda), no han sido fechados aún. Domina la andesita con 52 vol.% que forma a varios escudos (e.g., Querenda, Cumburinos, El Zarapo y El Mesteño) mientras que las rocas que le siguen en proporción son las andesitas basálticas con 47 vol.% (e.g., La Cantera-Tejocote, El Colorado y El Chivo; Tabla 1 del Apéndice I; Tabla 1; Figura 12.

8.3. Volúmenes emitidos durante el Pleistoceno Medio según su composición

En el Pleistoceno medio ocurrieron varias erupciones importantes y se formaron varios escudos. Nuevamente, muchas de estas erupciones (e.g., El Parcho, El Parachito, El Molino y El Santísimo) fueron asignadas a este periodo por analogía morfológica (Tabla 3). Las andesitas durante este periodo alcanzan practicamente el 100% (Figs. 3, 12; Tabla 3), aunque es posible que las composiciones de algunas erupciones abarquen un abanico más amplio si tuviésemos más análisis como se ha observado en otros sectores del campo como en el área de Jorullo y Tacámbaro-Puruarán (Guilbaud et al., 2011; 2012; 2020).

8.4. Volúmenes emitidos durante el Pleistoceno Tardío según su composición

Durante el Pleistoceno tardío una vez más se observa que la composición predominante es la andesita (93 vol.%) seguida de la andesita basáltica (5 vol.%) y una traqui-andesita basáltica (2 vol.%). En este periodo ocurrieron varias erupciones en las zonas de San Lorenzo, Paracho, Nurio y Ziapo, donde se observan afloramientos con intercalaciones de múltiples tefras y paleosuelos. En el caso de algunas tefras fue difícil determinar sus fuentes.

8.5. Volúmenes emitidos durante el Holoceno según su composición

Como se menciona anteriormente, durante el Holoceno la andesita predomina con 78 vol.% (Figs. 11 y 12) y se caracteriza por la ocurrencia de al menos 9 erupciones monogenéticas. Las andesitas incluyen a la gran erupción de El Metate (~1250 d.C.) y la Hoya Urutzen (Chevrel et al., 2016a y 2016b) y la de El Jánamo. Les siguen las andesitas basálticas (14 vol.%) que conforman a los volcanes Paracho, Capastacutiro, cono NW del Cerro Paracho y Juanyan, y las que transicionan de andesita basáltica a andesita (5 vol.%) que sólo fueron observadas en el Jabalí y Hoya Urutzen (Figs. 3, 12; Tabla 4). Finalmente, una roca alcalina de traqui-basalto (2 vol.%) se produjo durante la erupción del Cicapien. Los magmas emitidos durante el Holoceno, si bien son predominantemente de composición andesítica, en general son diversos, aunque podría existir un posible sesgo, debido a que de algunos volcanes se tomó más de una muestra, puesto que varios de estos volcanes tienen edades, así como composiciones diferentes (ver capítulos 5 y 6). Por ejemplo, la erupción más cercana a la de El Metate en cuanto a la edad; es la del Jabalí y si se considera también a las erupciones del Paricutin (Wilcox, 1954; McBirney et al., 1987; Luhr y Simkin, 1993) y la del Jorullo (Guilbaud et al., 2011, 2012) se observa que no existe un patrón bien definido del comportamiento del magmatismo durante este periodo de tiempo, y que en cambio han ocurrido erupciones en diferentes intervalos de tiempo en donde la composición es diversa, aunque predominan las andesitas como también se reporta recientemente (Larrea et al., 2019) en la zona del Tancítaro (Fig. 12).

Figura. 14. Histograma que muestra los volúmenes y composiciones de productos volcánicos emitidos en el APC a través del tiempo geológico. Se observa que, desde el Plioceno, el magmatismo es de acuerdo con los datos colectados; es de composición andesítica, seguido de andesita basáltica a partir del Pleistoceno Temprano. También se generan pequeñas cantidades de otras variedades de magma, incluyendo andesitas basálticas, transicionales y traqui-basaltos, particularmente durante el Holoceno

Capítulo 9.-Discusión

Como se explicó en los apartados anteriores, los escudos y conos de escoria del APC abarcan un amplio rango geoquímico; por lo que pueden establecerse grupos composicionales según sus características geoquímicas y petrográficas. Se establecieron así, las fuentes de emisión de cada volcán (ver capítulos 5 y 6). Una vez corroboradas en campo y establecidas mediante el mapeo geológico (Fig. 3), se obtuvo un mapa de composiciones a través del tiempo (Fig. 13). Como resultado principal, se puede afirmar que las lavas que predominan en el área de Paracho-Cherán son las andesitas (e.g. Cumburinos, Santísimo, Metate, Paracho), seguidas por las andesitas basálticas (e.g. Colorado, Chivo, Paracho Viejo) y algunas lavas transicionales de andesita basáltica a andesita (e.g. Jabalí, Hoya Urutzen). Existen pocos basaltos y sólo dos variedades exóticas alcalinas. Todas estas composiciones se pueden encontrar tanto en los escudos, como en los conos de escoria. Por lo que, la coexistencia de diversas variedades composicionales en este sector del CVMG guarda cierta similitud con lo observado en otros campos de arcos volcánicos en ambientes de subducción como por ejemplo; en los campos volcánicos de Auckland y de Taupo (Nueva Zelanda), los campos volcánicos Llancanelo, Payun Matru y Peyenia (Argentina), la zona volcánica de Carrán-Los Venados (Chile), en México, el campo volcánico de la Sierra de Chichinautzin y en las zonas de Jorullo, Tacámbaro-Puruarán, Zacapu y Pátzcuaro, en el CVMG (López y Moreno, 1981; Llambías et al., 2010; Hernando et al., 2012; Guilbaud et al., 2011; Guilbaud et al., 2012; Kereszturi y Németh, 2013; Siebe et al., 2004; 2014; Lorenzo-Merino et al., 2018; Reyes-Guzmán et al., 2018; Larrea et al., 2019; Ramírez-Uribe et al., 2019).

Por otra parte, únicamente tres conos de escoria presentaron un mayor rango geoquímico que tiende a la cristalización fraccionada, como es el caso de El Jabalí, Hoya Urutzen y El Jánamo, aunque de este último es necesario colectar más muestras, y cuyas composiciones abarcan desde el basálto a la andesita basáltica y hasta la andesita (Fig. 13). Estas rocas, son ricas en fenocristales de olivino, piroxeno y plagioclasa; por lo que petrográficamente se pueden diferenciar, así como apreciar sus cambios composicionales (Fig. 9) y mineralógicos (e.g., olivinos con bordes de reacción de clinopiroxeno, generación de clinopiroxeno y ortopiroxeno). La matríz es de textura traquítica a pilotaxítica con microlitos de feldespato e inclusiones de espinela (cromita), apatito y otros opácos; éstos también pueden aparecer en asociaciones de glomeropórfidos, mientras evolucionan geoquímicamente. Una breve historia eruptiva de cada volcán se describe en el capítulo 5, y se combinan con la transición geoquímica de sus lavas y depósitos de caida, los cuáles también fueron observados bajo el microscopio petrográfico. Puesto que son volcanes distintos que geoquímicamente siguieron rutas evolutivas individuales; los tres conos de escoria antes mencionados, pudieron haber iniciado sus erupciones de manera similar a la del Paricutin o del Jorullo (e.g., Wilcox, 1954; Guilbaud et al., 2011; 2020), aunque son necesarios trabajos a detalle como los realizados recientemene en los volcanes El AstilleroEl Pedregal, Larrea et al. (2019), en el agrupamiento del Malpaís de Zacapu (Reyes-Guzmán et al., 2021) y en el volcán Las Cabras (Guilbaud et al., 2021) para poder conocer con mayor detalle su origen y evolución eruptiva. Adicionalmente, existen algunos conos y escudos de composiciones intermedias, entre los que se encuentran Paracho Viejo, Las Varas, Varal, Sinar Juata y Tubiscatillo que tienden al fraccionamiento. Lamentablemente, debido a que sólo se colectaron entre 2 y 4 muestras de estos volcanes, puede solo inferirse su posible amplia gama composiciones exóticas alcalinas (i.e. de basalto traqui-andesítico y un traqui-basalto, Figs. 8 y 9) fueron identificados y corresponden a los volcanes Cicapien, Gusato y Cucundicata (Figs. 8 y 13) y en al menos uno, se observa una fuerte tendencia tipo escalera (e.g. Cicapien) que tiende a la fusión parcial del manto heterogeneo, por lo que es posible que los otros dos volcanes, sigan la misma tendencia; lamentablemente es necesario colectar más muestras de los mismos para poder afirmarlo.

Los pocos basaltos y variedades existen en el APC y ocurren indistintamente del tipo de edificio volcánico, tanto formando escudos como conos de escoria, aunque son más frecuentes en los conos de escoria. Típicamente son ricos en olivino, escasamente contienen clinopiroxeno, ortopiroxeno y plagioclasa y los cristales se encuentran embebidos en una matriz vítrea. Estas rocas también contienen vesículas de diferentes tamaños y formas. Sus texturas regularmente son traquíticas a pilotaxíticas seriadas, ricas en microlítos de feldespato, contienen otros minerales accesorios (e.g., espinelas, apatitos y otros minerales opacos) como inclusiones en los olivinos y algunas veces en clinopiroxenos, así como en las plagioclasas y la matriz. Dos grandes escudos son de andesita basáltica y tienen un arreglo mineral (e.g. olivino, clinopiroxeno y plagioclasa) correspondiente a lavas más primitivas como es el caso de El Chivo y El Colorado. (Figs. 4 a y b), los cuales, presentan lavas de andesita-basáltica ricas en olivino, iddiginsita y plagioclasa. Este último contiene además inclusiones de espinela (cromita) y otros minerales opacos. El resto de los escudos y conos presenta una composición típica andesítica. En este sentido, Williams (1950), en sus primeros estudios, agrupa varios de los volcanes que describe con sus nombres locales "Cerros de Paracho y Angahuan" en la región de Paricutín, misma que también incluye las rocas de la formación Zumpinito, las tobas riolíticas de Caltzontzin, lavas andesíticas, depósitos laharicos de Peribán y Los Reyes, basaltos de Los Cerros, Colorado, Cutzato, Copitiro y Prieto, entre otros. Menciona también rocas de la formación post-Zumpinito incluyendo las andesitas sin olivino del Tancítaro, San Marcos, zona de Paracho, El Águila, Angahuan, Los Hornos, y las andesitas con hornblendas de Mesa de Zirimondiro, Mesa de Huanárucua, la andesita vitrea de la zona de Capacuaro, las andesitas con olivino y andesitas basálticas con olivino que incluyen algunos conos de escoria como El Aire. El Jabalí y las variedades de flujos de lava y basaltos de olivino, como El Capastacutiro y otros en la zona de El Jabalí.

Hasenaka y Carmichael (1987), Rogensack (1988) y Guilbaud et al. (2011), basados en el trabajo de Williams (1950), describen las características petrográficas de algunos conos de escoria y escudos en el CVMG (dentro y fuera del área de Paracho-Cherán). Todas las descripciones de estos autores son muy similares a lo que nosotros observamos, es decir; en general se observa el mismo arreglo mineral en los productos de los volcanes del área de Paracho-Cherán. También Ownby et al. (2011) describen algunos minerales y encuentran algunas diferencias en el arreglo mineral, en particular cierta heterogeneidad en las proporciones de los cristales en las diferentes andesitas de la zona, las cuales clasifican según el tipo de estructura que les dió origen, desde las andesitas del Táncitaro, hasta los conos y escudos de sus alrededores.

Dentro del APC, el volcán El Metate presenta dos composiciones: una andesita basáltica y otra andesítica (Chevrel et al, 2016a; 2016b). Sus lavas eruptadas en un período de ~35 años son extensas y voluminosas, sus rocas contienen fenocristales de olivino, clinopiroxeno, ortopiroxeno, hornblenda y plagioclasa, embebidos en una matriz vítrea de textura traquítica seriada. Recientemente, Larrea et al. (2019) estudiaron la pequeña y joven (~400-700 d.C.) agrupación de volcanes monogenéticos El Astillero y El Pedregal, al SW del volcán Táncitaro y cercana también al poblado que lleva el mismo nombre. Ambos volcanes son ricos en plagioclasa, clinopiroxeno, ortopiroxeno y olivino. Larrea et al. (2017, 2019) también estudiaron a detalle los productos del volcán Paricutin, determinando los volúmenes eruptados y la secuencia exacta de sus lavas.

Por otra parte, al NE y E del APC se encuentran las cuencas de Zacapu y Pátzcuaro, respectivamente, donde Kshirsagar et al. (2015: 2016), Reyes-Guzmán et al. (2018) y Ramírez-Uribe et al. (2019) describen varios conos de escoria y escudos. Entre los volcanes estudiados se encuentran La Alberca de los Espinos, El Caracol, La Alberca de Guadalupe, Malpaís Prieto, El Capaxtiro, Las Víboras, Rancho Seco y Mazcuta. Describen andesitas basálticas y andesitas con fenocristales de olivino, clinopiroxeno y plagioclasa, embebidos en una matriz vítrea, que contiene vesículas, es rica en plagioclasas y frecuentemente presentan zoneamiento. Los olivinos tienen formas euhedrales a sub-euhedrales y esqueletales, al igual que los piroxenos, mientras que la matriz es traquítica a pilotaxítica rica en vidrio y otras inclusiones. Reyes-Guzman et al. (2018, 2021) estudian ~50 volcanes (escudos, conos de escoria y lavas) en la parte occidental de la cuenca de Zacapu y reportan sus volúmenes y tasas eruptivas, así como sus composiciones que también guardan similitud con los volcanes del área de Paracho-Cherán y donde también predominan las andesitas a través del tiempo geológico.
Durante el último millón de años, la tasa eruptiva promedio en el APC fue de 0.0637 km³/ka y durante el Holoceno 1.38 km³/ka en dónde se produjeron mayormente andesitas, seguidas de las andesitas basálticas y algunos basaltos alcalinos (Fig. 12) por procesos petrogenéticos asociados a la subducción y su peculiar configuración bajo el CVMG. El origen de los magmas se encuentra en la cuña de un manto superior heterogéneo con aportaciones de fluidos provenientes de la placa oceánica subducida (flux-melting) y una evolución magmática durante el ascenso mediante cristalización fraccionada principalmente, con aportes mínimos por asimilación de materiales corticales. Es decir, que durante su ascenso los magmas sufrieron cambios por efecto de la cristalización fraccionada, y/o contaminatción en la corteza continental, que en el área podría alcanzar ~45 km de espesor (Blatter y Hammersley., 2010; Guilbaud et al., 2012).

Capítulo 10.- Conclusiones

El vulcanísmo en el APC ocupa un área de ~1100 km², inició hace ~5 Ma en el Plioceno (Fig. 3), y está relacionado a la subducción de la Placa de Cocos bajo la Placa Norteamericana. Tiene su origen en la cuña del manto, donde los magmas se forman por procesos de fusión parcial y subsiguientemente ascienden a la superficie evolucionando por cristalización fraccionada, principalmente. Los productos eruptivos son predominantemente andesitas y andesitas basálticas, aunque las variedades exóticas alcalinas con afinidades más primitivas (e.g. Cicapien) también ocurren, aunque en menor volumen y frecuencia. Las erupciones a menudo se distribuyen en agrupaciones o clusters de grandes escudos y conos monogenéticos de escoria, como también ocurre en áreas contiguas como las de Jorullo y Tacambaro-Puruarán (Guilbaud et al., 2011; 2012) en donde la actividad también inició en el Plioceno. La relativa intrusión de magmas es evidente en el APC y otras áreas aledañas como la de Tancitaro-Nueva Italia, y la cuenca de Zacapu con las conocidas erupciones de El Astillero-Pedregal 500-700 AD (Larrea et al., 2019), y el Malpaís Prieto (Reyes-Guzmán et al., 2017), así como la de Paricutín (Foshag, 1950; Williams, 1950; Wilcox, 1954). En el APC las erupciones más recientes fueron las del Metate 1200 d.C. y Hoya-Urutzen (Chevrel et al., 2015), así como las del Juanyan, Santa Cruz, Paracho Viejo, Yondima, Amoles, Capastacutiro, Janamo y el Jabalí, etc; indican que por lo menos durante el Holoceno ocurrieron 11 erupciones fechadas y al menos 15.5 km³ de magma fueron emitidos para formar edificios volcánicos, flujos de lava y grandes cantidades de depósitos de caída de cenizas. Por lo tanto; el APC más allá de sus dimensiones o lo limites teóricoconceptuales con los que podamos significarle o definirle, ~1100 km² representan las tasas más altas registradas en el campo con 1.38 km³/kyr, mucho mayores comparadas con la zona de Jorullo y Tacámbaro-Puruarán de 0.34-0.39 km³/ky y probablemente una de las más altas en todo el orbe. La frecuencia indica una erupción cada ~625 años desde los incios del Holoceno.

Considerar estas observaciones, podría ser de gran utilidad como indicadores de erupciones próximas en el APC y aunque los mecanismos poco se conocen, en concecuencia, es importante e imperante reforzar los esquemas de Protección Civil y de emergencias, reforzar la Gestión Integral del Riesgo, en coordinación con el CENAPRED, PC Estatal y las PC Municipales, regionales y demás autoridades competentes. Procurar incentivar a la solución de conflictos territoriales locales, así como:

1).-Revisión de protocolos de Protección Civil y mejorar sistemas de alertamiento temprano (e.g. medios de comunicación, divulgación científica, implementación de alertas volcánicas).

2).-La revisión y habilitación de las rutas de evacuación posibles (e.g. caminos, veredas).

3).-Evaluación de peligros, vulnerabilidad, mapas de ordenamiento del territorio, cartografía participativa, divulagación científica.

4).-Socializar los peligros inherentes a los campos volcánicos monogenéticos.

En el Holoceno al menos entre 11 y 15 erupciones fueron fechadas con un promedio de recurrencia de 625 años; de las observaciones de campo en el APC y las conocidas erupciones históricas (Jorullo y Paricutin) y en las tasas eruptivas se pueden vislumbrar 5 posibles escenarios eruptivos en el futuro:

1).- Formación de conos monogeneticos de escoria (actividad estromboleana) acompañados de caídas de cenizas, y sin flujos de lava asociados. Ejemplo: Juanyan.

2).- Formación de conos monogeneticos de escoria con flujos de lava asociados, con emisión y caída de cenizas. Ejemplos: Hoya Urutzen, Cicapien, Jabalí, Paricutín.

3).-Emplazamiento de conos monogenéticos de escoria sobre antiguos escudos con flujos de lava asociados, y emisión y caída de cenizas. Ejemplos: Jánamo y Cocucho.

4).- Formación y emplazamiento de escudos de mediano a gran volumen, con emisión de grandes y extensos flujos lava. Ejemplo: El Metate.

5).- Reactivación de un domo compuesto con formación y emplazamiento de domos, emisión de cenizas y flujos piroclásticos. Ejemplo: Paracho.

Posiblemente el arreglo estructural y la distribución de algunos diques que alimentan el vulcanismo y a los que se asocia su alta frecuencia, son apenas visibles en la zona del volcán El Gato (Fig. 3) por lo que aparentemente, la intrusión y el ascenso de magma, están ampliamente relacionados con la alimentación y reactivación de dichos diques como principales mecanismos de control y ascenso por decompresión, que permiten la liberación y emplazamiento de los fluidos magmáticos

Bibliografía

- Aguirre-Díaz, G.J., Labarthe-Hernández, G., Tristán-González, Nieto-Obregón J., Gutiérrez-Palomares, I., 2008. The Ignimbrite flare-up and graben calderas of the Sierra Madre Occidental, Mexico. Develoments in Volcanology. Vol. 10. Elsevier B.V.
- Agustín-Flores, J., Siebe, C., Guilbaud, M. N., 2011. Geology and geochemistry of Pelagatos, Cerro del Agua, and Dos Cerros monogenetic volcanoes in the Sierra Chichinautzin Volcanic Field, south of México City. Journal of Volcanology and Geothernal Research 201: 143-162.
- Aranda-Gómez, J., Levresse, G., Pacheco Martínez, J., Ramós-Leal, J.A., Carrasco-Núñez, G., Chacón-Baca, E., Gonzáles-Nasranjo, G., Chávez-Cabello, G., Vega-Gonzáles, M., Origel, G., Noyola-Medrano, C., 2013. Active sinking at the botton of Rincón de Parangueo Maar (Guanajuato, México) and its probable relation with subsidence fauls at Salamanca and Celaya. Boletín de la Sociedad Geológica Mexicana. Vol. 65. Num 1. p. 169-188.
- Arce, J.L., Macías, J.L., Gardner, J.E., Layer, P.W., 2006. A 2.5 ka history of dacitic magmatism at Nevado de Toluca, Mexico: petrological, 40Ar/39Ar dating, and experimental constraints on petrogenesis. Journal of Petrology, 47(3): 457-479.
- Arce, J.L., Macías, J.L., Rangel, E., Layer, P., Garduño-Monroy, V.H., Saucedo, R., García, F., Castro, R., Pérez-Esquivias, H., 2012. Late Pleistocene rhyolitic explosive volcanism at Los Azufres Volcanic Field, central Mexico. The Geological Society of America. Field Guide. 25. pp 45-82.
- Avellán D., Cisneros-Máximo, G., Macías, J.L, Gómez-Vasconcelos, M.G., Layer, P., Sosa-Ceballos, G., Robles-Camacho, J., 2020. Eruptive chronology of monogenetic volcanoes northwestern of Morelia-Insights into volcvano-tectonic interactions in the central-esastern Michoacán-Guanajuato Volcanic Field. Journal of South American Earth Sciences. 100.
- Ban, M., Hasenaka, T., Delgado-Granados, H., Takaoka, N., 1992. K-Ar ages of lavas from shield volcanoes in the Michoacán-Guanajuato Volcanic Field. Geofisica Internacional 31(4): 467-463.
- Blatter, D. L., Hammersley, L., 2010. Impact of the Orozco fracture zone on the central Mexican Volcanic Belt. Journal of Volcanology and Geothermal Research 197(1), 67-84.
- Cano-Cruz, J., Carrasco-Núñez, G., 2008. Evolución de un cráter de explosión (maar) riolítico: Hoya de Estrada, campo volcánico Valle de Santiago, Guanajuato, México. Revista Mexicana de Ciencias Geológicas, v. 25, núm. 3.p. 549-564.
- Carmichael, I.S.E., 2002. The andesite aqueduct: perspectives on the evolution of intermediate magmatism in west-central (105°-99°) Mexico. Contributions to Mineralalogy and Petrology 143: 641-663.
- Carrasco-Núñez, G., Siebert, L., Diáz-Castellón, R., Vásquez-Selem, L., Capra, L., 2010. Evolution and hazards of a long-quiescent compound shield-like volcano: Cofre de Perote, Eastern Trans-Mexican Volcanic Belt. Journal of Volcanology and Geothermal Research 197, 209-224.

- Cas, R.A.F., and Wright, J.V. 1987. Volcanic Sucessions Modern and Ancient. A geological approach to processes products and sucessions. Alen and Unwin (Publishers) Ltd, 40 Museum Street, London WCA1, 1LU, UK. pp. 485.
- Clark, K. F., Foster, C. T., Damon, P. E., 1982. Cenozoic mineral deposits and subduction-related magmatic arcs in Mexico. Geological Society of America Bulletin 93 (6), 533-544.
- Cebriá, J.M., Martín-Escorsa, C., López-Ruíz, J., Morán-Zenteno, D.J., Martiny, B, M., 2011. Numerical recognition of alignements in monogenetic volcanic areas: Examples of Michoacán-Guanajuato Volcanic Field in México and Calatrava in Spain. Journal of Volcanology and Geothermal Research. 201. Issues 1-4: 73-82.
- Chevrel, M.O., Siebe, C., Guilbaud, M.N., Salinas, S., 2016a. The AD 1250 El Metate shield volcano (Michoacán): México's most voluminous Holocene eruption and its significance for archaeology and hazards. The Holocene 26 (3): 471-488.
- Chevrel, M.O., Guilbaud, M.N., Siebe, C., 2016b. The ~AD 1250 effusive eruption of El Metate shield volcano (Michoacán, Mexico): Magma source, crustal storage, eruptive dynamics, and lava rheology. Bulletin of Volcanology 78 (4): 32.
- Chew, D.M., Spikings, R., 2015. Geochronology and Thermochronology and Temperature Lower Crust Surface. Elements. 11 (3): 189-194.
- Colton, H.S., 1967. The basaltic cinder cones and lava flows of the San Francisco Mountain volcanic field. Museum of Northern Arizona Bulletin 10 (revised edition): 1-58.
- Connor, C.B., 1987. Structure of the Michoacán-Guanajuato Volcanic Field, México. Journal of Volcanology and Geothermal Research 33:191-200.
- Corona-Chávez, P., Reyes-Salas, M., Garduño-Monroy, V. H., Israde-Alcántara, I., Lozano-Santa Cruz, R., Morton-Bermea, O., Hernández-Álvarez, E., 2006. Asimilación de xenolitos graníticos en el Campo Volcánico Michoacán-Guanajuato: el caso de Arócutin Michoacán, México. Revista Mexicana de Ciencias Geológicas 23, 233-245.
- Damon, P.E., Shafiqullah, M., Clark, K.F., 1983. Geochronology of the porpyry copper deposits and related mineralization of México.Canadian Journal of Earth Sciencesn 20, 1052-1071.
- Darras, V., Mireles, C., Siebe, C., Quezada, O., Castañeda, A., Reyes-Guzmán, N., 2017. The other stone: Dacite quarries and workshops in the Tarascan prehispanic territory, Michoacán, México. Journal of Archaeological Science Reports 12: 219-231.
- De la Fuente-Rivera, J.R., 2012. Análisis geomorfológico del sector noreste del Campo Volcánico de Los Tuxtlas, Veracruz, México. Tesis de Licenciatura en Geografía, Centro de Ciencias de la Tierra, Universidad Veracruzana, Jalapa, Veracruz, 135 p.
- Echegoyen, J., Romero, R., Velázques, S., 1970. Geología y yacimientos minerales de la parte central del distrito minero de Guanajuato. Consejo de Recursos Naturales no renovables. Instituto de Geología UNAM.
- Faure, G., 1986. Principles of isotope geology. John Wiley & Sons, 589 pp.
- Ferrari, L., 2004. Slab detachment control on mafic volcanic pulse and mantle heterogeneity in central Mexico. Geology 32: 77–80.

- Foshag, W.F., 1950. The aqueous emanation from Paricutín Volcano. U.S. National Museum. Whasington, D.C. American Mineralogist. 35. (9-10): 749-755.
- Fries, C., Gutierrez, C., 1954. Activity of Paricutín Volcano during the year 1952. American Geophysical Union. U.S. Geological Survey. Vol.35.Núm 3.
- Gabany-Guerrero, T., 2002. Cliff paintings of La Alberca, San Juan Nuevo Parangaricutiro, Michoacán, México. Final Report to the Foundation for the Advancement of Mesoamerican Studies Inc., FAMSI-91503, 20 pp.
- Garduño-Monroy, V. H., Pérez-López, R., Israde-Alcantara, I., Rodríguez-Pascua, M. A., Szynkaruk, E., Hernández-Madrigal, V. M., García-Zepeda, M. L., Corona-Chávez, P., Ostroumov, M., Medina-Vega, V. H., García-Estrada, G., Carranza, O., López-Granados, E., Mora-Chaparro, J. C., 2009. Paleoseismology of the southwestern Morelia–Acambay fault system, central Mexico. Geofísica Internacional 48(3), 319-335.
- Gill., R., 2010. Igeneous rocks and processes. Willey-Blackwell. First edition. Oxford UK. 415 pp.
- Gómez-Tuena, A., Orozco-Esquivel. M.T., Ferrari.L. 2007. Igneous Petrogenesis of the Tranmexican Volcanic-Belt. Geological Scociety od America. Especial papper. No. 422. 53 pp.
- Gómez-Vasconcelos, M.G., Garduño-Monroy, V.H., Macías, J.L., Layer, P.W., Benowitz, J.A., 2015. The Sierra de Mil Cumbres, Michoacán, México: Transitional Volcanism between the Sierra Madre Occidental and the Trans-Mexican Volcanic Belt. Journal of Volcanology and Geothermal Research 301, 128-147.
- Gómez-Vasconecelos, M.G., Macías, J.L., Avellán, D.R., Sosa-Ceballos, G., Garduño-monroy, V.H., Cisneros-Máximo, G., Layer, P. W., Benowitz, J., López-Loera, H., Mendiola-López, F., Perton, M., 2020. The control preexisting on the distribution, morphology, and volumen of monogenetic volcanism in the Michoacán-Guanajuato Volcanic Field. The Geological Society of America Bulletin.
- Guilbaud, M. N., Siebe, C., Layer, P., Salinas, S., Castro-Govea, R., Garduño-Monroy, V. H., Corvec, N. L., 2011. Geology, geochronology, and tectonic setting of the Jorullo Volcano region, Michoacán, México. Journal of Volcanology and Geothermal Research 201, 97-112.

Guilbaud, M. N., Siebe, C., Layer, P., Salinas, S., 2012. Reconstruction of the volcanic history of the Tacámbaro-Puruarán area (Michoacán, México) reveals high frequency of Holocene monogenetic eruptions. Bulletin of Volcanology 74(5), 1187-1211.

- Guilbaud, M. N., Siebe, C., Rasoazanamparani, C., Widom, E., Salinas, S., Castro-Geova, R.,2020. Petrographic, Geochemical and Isotopic (Sr–Nd–Pb–Os) Study of Plio-Quaternary Volcanics and the Tertiary Basement in the Jorullo-Taca´mbaro Area, Michoacán-Guanajuato Volcanic Field, Mexico. Journal of Petrology. Vol. 60. No. 12, 2317-2338.
- Guilbaud, M. N., Hernández-Jiménez, A., Siebe, C., Salinas, S., 2021. Las Cabras volcano, Michocán-Guanajuato Volcanic Field, México: Topographic, climatic and shallow magmatic crontols on scoria cone eruptions. Revista Mexicana de Ciencias Geológicas.v 38, núm 2, p. 101-121.

Harlov, D.E., 2015. Apatite: A fingerprint for metasomatic processes. Elements 11 (3): 153-224.

- Hasenaka, T., Carmichael, I. S. E., 1985. The cinder cones of Michoacán-Guanajuato, central Mexico: their age, volume and distribution, and magma discharge rate. *Journal of Volcanology and Geothermal Research* 25:105–124.
- Hasenaka, T., Carmichael, I. S. E., 1986. El Metate and other shield volcanoes of the Michoacán-Guanajuato, Mexico. Transaction of the American Geoscience Union 67:44.
- Hasenaka, T., Carmichael, I. S. E., 1987. The cinder cones of Michoacán-Guanajuato, central Mexico: petrology and chemistry. Journal of Petrology 28, 241-269.
- Hasenaka, T. (1990). Contrasting monogenetic volcanism in Michoacán-Guanajuato, Mexico: Cinder cone group vs. shield volcano group. (Abstr.) EOS, Transactions of the American Geophysical Union 71: 968.
- Hasenaka, T., 1994. Size, distribution and magma output rates for shield volcanoes of the Michoacán-Guanajuato volcanic field, Central Mexico. *Journal of Volcanology and Geothermal Research* 63, 13–31.
- Hernando, I.R., Llambías, J.E., González, P.D., Sato, K., 2012. Volcanic stratigraphy and evidence of magma mixing in the Quaternary Payún Matrú volcano, andean backarc in western Argentina. Andean Geology. 39 (I): 158-179.
- Johnson, C. A., Harrison, C. G. A., 1989. Tectonics and volcanism in Central Mexico: a Landsat Thematic Mapper Perspective. Remote Sensing of Environment 28, 273-286.
- Johnson, C. A., Harrison, C. G. A., 1990. Neotectonics in Central Mexico. Physics of the Earth and Planetary Interiors 64, 187-210.
- Johnson, E.R., Wallace, P.J., Cashman, K.V., Delgado-Granados, H., Kent, A.J.R., 2008. Magmatic volatile contents and degassing induced crystallization at Volcán Jorullo, Mexico: implications for melt evolution and the plumbing systems of monogenetic volcanoes. Earth and Planetary Science Letters 269: 477–486.
- Johnson, E.R., Wallace, P.J., Granados, H.D., Manea, V.C., Kent, A.J.R., Bindeman, I.N., Donegan, C.S., 2009. Subduction-related volatile recycling and magma generation beneath central Mexico: insights from melt inclusions, oxygen isotopes and geodynamic models. Journal of Petrology 50: 1729–1764.
- Kereszturi, G., Nemeth, K., 2012. Monogenetic basaltic volcanoes: Genetic classification, growth, geomorphology and degradation. INTECH. New advances in understandig volcanic sistems. 88 pp.
- Kereszturi, G., Procter, J., Cronin, J.S., Nemeth, K., Bebbington, M., Lindsay, J., 2012. LIDARbased quantification of lava flow susceptibility in the city of Auckland (New Zealand). Remote Sensing of Environment 125: 198-213.
- Kereszturi, G., Nemeth, K., Cronin, S. J., Procter, J., Agustin-Flores, J., 2014. Influences on the variability of eruption sequences and style transitions in the Auckland Volcanic Field, New Zealand. Journal of Volcanology and Geothermal Research 186: 101-135.
- Kerr, P.F., 1977. Optical Mineralogy. McGraw-Hill Inc. 492 pp.
- Kshirsagar, P., Siebe, C., Guilbaud, M.N., Salinas, S., Layer, P.W., 2015. Late Pleistocene Alberca de Guadalupe maar volcano (Zacapu basin, Michoacán): Stratigraphy, tectonic setting, and paleo-hydrological environment. Journal of Volcanology and Geothermal. Research 304, 214-236.

- Kshirsagar, P., Siebe, C., Guilbaud, M.N., Salinas, S., 2016. Geological and environmental controls on the change of eruptive style (phreatomagmatic to Strombolian-effusive) of Late Pleistocene El Caracol tuff cone and its comparison with adjacent volcanoes around the Zacapu basin (Michoacán, México). Journal of Volcanology and Geothermal Research 318: 114-133.
- Langridge, R. M., Weldon, R. J., Moya, J. C., Suárez, G., 2000. Paleoseismology of the 1912 Acambay earthquake and the Acambay-Tixmadejé fault, Trans-Mexican Volcanic Belt. Journal of Geophysical Research 105(B2), 3019-3037.
- Lanphere, M.A., Dalrymple, G.B., 2000. First-principles calibration of 38Ar tracers: Implications for the ages of 40Ar/39Ar fluence monitors. U.S. Geological Survey Professional Paper, 1621: 10 pp.
- Larrea, P., Salinas S., Widom E., Siebe, C., Robbyn, J.F.A., 2017. Compositional and volumetric development of a monogenetic lava flows field: The historical case of Paricutin (Michocán, México). Journal of Volcanology and Geothermal Research. 348. 36-48.
- Larrea, P., Widom, E., Siebe, C., Salinas, S., Kuentz, D., 2019. A re-interpretation of the petrogenesis of Paricutin Volcano: Distinguishing crustal contamination from mantle heterogeneity. Chemical Geology. 504. 66-82.
- Larrea, P., Siebe, C., Juárez-Arriaga, E., Salinas, S., Ibarra, E., Bohnel, H., 2019. The AD 500-700 (Late Classic) El Astillero and El pedregal volcanoes (Michoacán, México): a new monogenetic cluster in the making? Bulletin of Volcanology. 81:59.
- Layer, P.W., Hall, C.M., York, D., 1987. The derivation of 40Ar/39Ar age spectra of single grains of hornblende and biotite by laser step-heating. Geophysical Research Letters, 14: 757-760.
- Layer, P.W., 2000. Argon-40/argon-39 age of the El'gygytgyn impact event, Chukotka, Russia. Meteoritics and Planetary Sciences, 35: 591-599.
- Llambías, J.E., Bernotto, G., Risso, C., Hernando, R.I., 2010. El Volcanismo cuaternario del retroarco de Payenia: una revisión. Revista de la Asociación Geologica Argentina. 67 (2): 278-300.
- Le Bas, M.J., Le Maitre, R.W., Streckeinsen, A., Zanettin, B., 1986. Chemical classification of volcanic rocks based on the total alcali-silica diagram. Journal of Petrology 27: 745-750.
- Lorenzo-Merino, A., Guilbaud, M.N., Roberge, J., 2018. The violent Strombolian eruption of 10 ka Pelado shield volcano, Sierra Chichinautzin, Central Mexico. Bulletin of Volcanology. 80 (3).
- López, L., Moreno, H., 1981; Erupción de 1979 del volcán Mirador, Andes del Sur 40°21'S: características geoquímicas de las lavas y xenolitos graníticos: Revista Geológica de Chile, no. 13-14, p.17-33.
- Luhr, J., Carmichael, I., 1985. Jorullo Volcano, Michoacán, Mexico (1759–1774): the earliest stages of fractionation in calc-alkaline magmas. Contributions to Mineralogy and Petrology 90: 142–161.
- Luhr, J. F., Simkin, T., 1993. Parícutin: The Volcano Born in a Mexican Cornfield. Geoscience Press, Phoenix, Arizona. 427 pp.

- Mac Kenzie, W.S., Donaldson, C.H., Guilford, C., 1982. Atlas of igneous rocks and their textures. Wiley. University of Minesota. 148 pp.
- Mahgoub, N.A., Bohnel H., Siebe, C., Chevrel, M.O., 2017. Paleomagnetic Study of El Metate shield volcano (Michoacán, México) confirms its monogenetic nature and young age (~1250 CE). Journal of Volcanology and Geothermal Research. 336. 209-218.
- Martínez, B., Milán, M., 1992. Análisis morfométrico de conos cineríticos en el Campo Volcánico de los Tuxtlas, Veracruz, México. (Eds) Actas Facultad de Ciencias de la Tierra, UANL, Linares, No 7: 237-242.
- Mazzarini, F., Ferrari, L., Isola I., 2010. Self-Similar clustering of cinder cones and crust thickcness in the Michoacán-Guanajuato and Sierra de Chichinautzin volcanic fields, Trans-Mexican Volcanic Belt. Tectonophysics. Vol. 486. Isues 1-4, 55-64.

McBirney, A. R., Taylor, H. P., Armstrong, R. L., 1987. Paricutin re-examined: a classic example of crustal assimilation in calc-alkaline magma. Contributions to Mineralogy and Petrology 95 (1), 4-20.

- McDougall, I., Harrison, T.M., 1999. Geochronology and Thermochronology by the 40Ar/39Ar method. 2a Edición. Oxford University Press, 269 pp.
- Merrihue, C.M., Turner, S., 1966. Potassium-argon dating by activation with fast neutrons. Journal of Geophysical Eauch, 71 (11).
- Muecke, G.K., 1980. Short course in Neutron Activation Analysis in the Geosciences. Mineralogical Association of Canada, Halifax, Nova Scotia.
- Mennella, L., Garduño, V. H., Bonassi, O., 2000. Fault-slip analysis in the basal units of the Mexican Volcanic Belt on the eastern flank of the Tzitzio anticline, Michoacán, México. In: Delgado-Granados, H., Aguirre-Díaz, G., Stock, J.M. (Eds.): Cenozoic tectonics and volcanism of Mexico. Geological Society of America Special Paper 334, 237-246.
- Morán-Zenteno, D., Tolson, G., Martínez-Serrano, R.G., Martiny, B., Schaaf, P., Silva-Romo, G., Macias-Romo, C., Alba-Aldave, L., Hernández-Bernal, M.S., Solís-Pichardo, G.N., 1999. Tertiary arc-magmatism of the Sierra Madre del Sur, Mexico, and its transition to the volcanic activity of the Trans-Mexican Volcanic Belt. Journal of South American Earth Sciences 12, 513-535.
- Ortega-Gutiérrez, J., Elías-Herrera, M., Morán-Zenteno, D.J., Solari, L., Gonzáles-Luna, L., Schaaf, P., 2014. A review of batholiths and other plutonic intrusions of México. Gondwana Research 26, 834-868.
- Osoria, H., Leija, V. N., Esquivel, R., 1991. Economic geology of the Inguarán mining district, Michoacán. In: Salas, G.P. (Ed.), The Geology of North America: Economic Geology of Mexico. Geological Society of America, DNAG Project P-3, 365-368.
- Ownby, S.E., Delgado-Granados, H., Lange, R.A., Hall, C.M., 2007. Volcán Tancítaro, Michoacán, México. ⁴⁰Ar/³⁹Ar constraints on its history of sector collapse. Journal of Volcanology and Geothermal Research 161, 1-14.
- Ownby, S.E., Lange, R.A., Hall, C.M., Delgado-Granados, H., 2011. Origin of andesite in the deep crust and eruption rates in the Tancítaro-Nueva Italia region of the central Mexican arc. Geological Society of America. Bulletin 123(1-2), 274-294.

- Pantoja-Alor, J., 1986. Siete edades geocronométricas Cenozoicas de la cuenca media del Río Balsas. Universidad Nacional Autonoma de México. Instituto de Geología. México D.F., Primer Simposio Geología Regional de México 60-61.
- Parfitt, E.A., Wilson L., 2008. Fundamentals of Physical Volcanology. Blackwell Science Ltd. UK, 230 pp.
- Pasquaré, G., Ferrari, L., Garduño, V. H., Tibaldi, A., Vezzoli, L., 1991. Geology of the central sector of the Mexican Volcanic Belt, States of Guanajuato and Michoacán. Geological Society of America, Maps and Chart Series MCH072, scale 1:300000, 1 sheet, 22 p text.
- Pearce, J.A., Norry, M.J., 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic roicks. Contributions to Mineralogy and Petrology 69: 33-47.
- Perez-López, R., Legrand, D., Garduño-Monrroy, V.H., Rodríguez-Pascua, M.A., 2011. Scaling laws of the size-distributions of monogenetic volcanoes within Michoacán-Guanajuato Volcanic Field. Journal of Volcanology and Geothermal Research. 201 (1): 65-72.
- Pola, A., Macías, J.L., Garduño-Monrroy, V.H., Osorio-Ocampo, S., Cardona-Melchor, S. 2014. Successive Collapses of the El Estribo volcanic complex in The Pátzcuaro Lake, Michoacán, México. Journal of Volcanology and Geothermal Research. 289: 41–50.
- Porter, S.C., 1972. Distribution morphology and size frecuency of cinder cones on Mauna Kea volcano, Hawaii. Bulletin of the Geological Society of America 83: 3607-3612.
- Rasoazanamparany, C., Widom, E., Siebe, C., Guilbaud, M.N., Spicuzza, M.J., Valley, J.W., Valdez, G., Salinas, S., 2016. Temporal and compositional evolution of Jorullo volcano, Mexico: Implications for magmatic processes associated with a monogenetic eruption. Chemical Geology 434: 62-80.
- Ramírez-Uribe, I., Siebe, C., Salinas, S., Guilbaud, M.N., Layer, P., Benowitz J., 2019. ¹⁴C and ⁴⁰Ar/³⁹Ar radiometric dating and geologic setting of young lavas of Rancho Seco and Mazcuta volcanoes hosting archaeological sites at the margins of Pátzcuaro and Zacupa lake basins (central Michocán, México). Journal of Volcanology and Geothermal Research. <u>https://doi.org/10.1016/j.jolgeores.2019.106674</u>
- Reyes-Guzman, N., Siebe, C., Chevrel, M.O., Guilbaud, M.N., Salinas, S., Layer, P., (2018. Geology and radiometric dating of Quaternary monogenetic volcanism in the western Zacapu lacustrine basin (Michoacan, México): implications for archeology and future hazard evaluations. Bulletin of Volcanology. 80:18.
- Reyes-Guzman, N., Siebe, C., Chevrel, M.O., Pereira, G., 2021. Late Holocene Malpais de Zacapu (Michoacán, México) andesitic lava flows: rheology and eruption properties based on LiDAR image. Bulletin of Volcanology. 83:28.
- Rodríguez-Elizararrás, S. R., Morales-Barrera, W., Layer, P., González-Mercado, E., 2010. A Quaternary monogenetic volcanic field in the Xalapa region, eastern Trans-Mexican volcanic belt: geology, distribution and morphology of the volcanic vents. Journal of Volcanology and Geothermal Research 197(1): 149-166.
- Roggensack, K., 1988. Morphology, distibution, and chemistry of shields volcanoes of the central Transmexican Volcanic Belt. Master's thesis, Darthmout College. Hanover, New Hampshire, USA, 122 pp.

- Roggensack, K., 1992. Petrology and geochemistry of shield volcanoes in the central Mexican Volcanic Belt. PhD Thesis, Dartmouth College, Hanover, New Hampshire, USA, 179 pp.
- Rollinson, H. R., 1993. Using geochemical data: evaluation, interpretation, presentation, interpretation. Longman Scientific & Technical, New York. 351 pp.
- Sawkins, F. J., 1979. Fluid inclusion studies of the Inguarán copper-bearing breccia pipes, Michoacán, México. Economic Geology 74, 924-927.
- Servicio Sismológico Nacional. 2020. Secuencia Sísmica Servicio Sismológico Nacional. 2021. Secuencia Sísmica
- Segerstrom, K. 1950. Erosion an related phenomena at Paricutin in 1957: Geologic Investigations in México. *United-States Geological Survey Bulletin* 1104 A: 1-18.

Schaff, P., Morán-Zenteno, D.J, Hernández-Bernal, M.S., Solís-Pichardo, G., Tolson, G., Koller, H., 1995. Paloegenal continental margin truncation in southwest México; Geochronogical evidence. Tectonics 14, 1339-1350.

Schmincke, H.U., 2004. Volcanism. Springer Verlag Berlin. 324 pp.

- Siebe, C., 2000. Age and archaeological implications of Xitle volcano, southwestern basin of México City. Journal of Volcanology and Geothermal Research 104, 45-64.
- Siebe, C., Rodríguez-Lara, V., Schaaf, P., Abrams, M., 2004. Radiocarbon ages of Holocene Pelado, Gespalapa, and Chichinautzin scoria cones, south of México City: implications for archeology and hazards. Bulletin of Volcanology 66: 203-225.
- Siebe, C., Guilbaud M.N., Salinas S., Layer P., 2013. Comparison of the volcanic geology of the Tacámbaro-Puruarán (arc front) and the Zacapu (arc inland) areas in the Michoacán Guanajuato Volcanic Field, Mexico. IAVCEI General Assembly, Kagoshima, Japan, July 20-24, 2013.
- Siebe, C., Guilbaud, M.N., Salinas, S., Kshirsagar, P., Chevrel, M.O., De la Fuente, J.R., Hernández-Jiménez, A., Godinez, L., 2014. Monogenetic volcanism of the Michoacán-Guanajuato Volcanic Field: Maar craters of the Zacapu basin and domes, shields, and scoria cones of the Tarascan highlands (Paracho-Paricutin region). Pre-meeting fieldtrip (November 13-17), 5th International Maar Conference (5IMC-IAVCEI), Querétaro, Mexico, November 17-22, 2014.
- Siebert, L., Carrasco-Núñez, G., 2002. Late-Pleistocene to precolumbian behind-the-arc mafic volcanism in the eastern Mexican Volcanic Belt; implications for future hazards. Journal of Volcanology and Geothermal Research 115, 179–205.
- Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle compositions and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins: Geological Society of London Special Publication 42: 313-345.
- Suter, M., Quintero-Legorreta, O., López-Martinez, M., Aguirre-Díaz, G., Farrar, E., 1995. The Acambay graben: Active intraarc extension in the trans-Mexican volcanic belt, Mexico. Tectonics 14(6), 1245-1262.

- Turner, S., Regelous, M., Kelley, S., Hawkesworth, C., Mantovani, M., 1994. Magmatism and continental break-up in the South Atlantic: high precision 40Ar-39Ar geochronology. Earth and planetary science letters, 121 (3-4): 333-348.
- Urbina, F., Camacho, H., 1913. Zona mega sismica de Acambay-Tixmadeje. Instituto Geológico de México. Boletín Núm. 32.
- Webster, J.D., Picolli, P.M., 2015. Magmatic Apatite: A Powerful, yet Deceptive, Mineral. Elements. 11 (3): 177-182.
- Whitford-Stark, J.L., 1975. Shield Volcanoes. In: G. Fielder and L. Wilson (eds): Volcanoes of the Earth, moon and mars, St. Martins Press, New York, NY, p. 66-74.
- Wood, C.A., 1980a. Morphometric evolution of cinder cones. Journal of Volcanology and Geothermal Research 7: 387-413.
- Wood, C.A., 1980b. Morphometric analysis of cinder cone degradation. Journal of Volcanology and Geothermal Research 8: 137-160.
- Wilcox, R.E., 1954. Petrology of Paricutin Volcano, México. United-States Geological Survey Bulletin 965-C: 281-351.
- Williams H., 1950. Volcanoes of the Paricutin region, México: Geologic investigations in the Paricutin area, México. United-States Geological Survey Bulletin 965-B: 165-279.
- Yoder, H.S. Jr., Tilley, C.E., 1962. Origin of basaltic magmas: An experimental study of natural and synthetic rock systems. Journal of Petrology 3: 342-355.
- York, D., Hall, C.M., Yanase, Y., Hanes, J.A., Kenyon, W.J., 1981. 40Ar/39Ar dating of terrestrial minerals with a continuous laser. Geophysical Research Letters, 8: 1136-1138.

Apéndice I (Morfometría)

Volcán	Тіро	Wco/Màx	Wco/Min	Wco	Wcr/Má	áx Wcr/Mîn	Wcr	H co	r	S=Tan- 1(Hco/r)	Hco/Wco	Wco/Hco	Area K m^2	V total Km3	Vol. flujo	Error	Volúmen (m³)(W cr²+W cr	DRE*(-%Vecs)	Composición	Wt% SiO2	Edad
Holoceno																	VV CO + VV CO*)				
Pariutín*	Cone	990	626	950	247	236	250	200	475	22	0.21	4.75	24.8	0.7	0.64	0.01	0.06	0.50	Ba a Andesita	54-60	71 años
Jorulio***	Cone	1365	987	1176	428	341	448	385	588	33	0.33	3.05	10.8	0.45	0.35*	0.01	0.10	0.45	B. a Andesita B.	51-56	250 años
M etate**	Shield/Dome	979	894	936.5	0	0	0	260	468	29	0.28	3.60	50	10	10	0.01	0.04	9.10	Andesita	56-61	840+/-30 años. AP
Jabalí	Cone	915	881	898	368	359	363	160	449	19	0.18	5.61	4.9	0.53	80.0	0.01	0.06	0.42	Ba a Andesita	50-56	2,170+/-30 años AP
Jánamo	Cone	750	713	731.5	267	245	256	193	370	26	0.26	3.79	37.6	0.54	0.50	0.05	0.04	0.37	Andesita B.	53-60	2,500+/-30 años AP
Cono NW de Pracho	Cone	851	681	771	283	273	278	160	385	22	0.21	4.82	2.4	0.31	0.26	0.04	0.04	0.28	Andesita B.	54.66	<3,190 años AP
Capastacutiro	Cone	844	633	738.5	246	213	230	186	390	25	0.25	3.97	2.46	0.26	0.23	0.03	0.04	0.24	Andesita B.	54.18	<3,190 anos AP
Hova Urutzen	Cone	1150	948	10/0	376	349	363	200	520	24	0.23	4.32	10.89	0.40	0.00	0.07	0.05	0.34	Ra a Andecita	51.58	3 755 ± / 50 años AP
Amoles	Cone	810	750	767	240	220	231	120	375	18	0.15	6.39	0.4	0.4	Sin fluin	0.002	0.04	0.28	Andesita B	53 39	3.830+/-30 años AP
Yondima	Cone	976	963	970	343	306	324	220	301	24	0.23	4.40	0.73	0.73	Sin fluio	0.002	0.07	0.51	Andesita B.	50-51	4.330+/-30 años AP
Paracho Vieio	Cone	826	629	727.5	230	220	225	135	420	18	0.19	5.39	1.01	0.12	0.08	0.06	0.04	0.09	An desita B.	52-56	9.230+/-30 años AP
Santa Cruz	Cone	1020	839	1012	300	259	273	240	506	25	0.24	4.22	0.08	0.07	Sin fluio	0.01	0.07	0.05	An desita B.	53.72	9.300+/-40 años. AP
Juanyan	Cone	984	911	947.5	396	355	376	186	470	21	0.20	5.09	0.65	0.07	Sin flujo	0.002	0.07	0.07	An de sita B.	54.82	<10,000 años AP
Ziquicio	Coulee	0	0	0	0	0	0	0	0	0	0.00	0	7.11	2.1	2.1	0.01	0.00	1.99	Andesita	sin dato	<11,000 años. AP
Chimilpa	Coulee	0	0	0	0	0	0	0	0	0	0.00	0	4.84	0.54	0.54	0.01	0.00	0.51	Andesita	57.00	<11,000 años. AP
Pomacuarán	Cone/Rafted	0	0	0	0	0	0	0	0	0	0.00	0	1.24	0.11	0.11	0.01	0.00	0.07	An de sita B.	sin dato	<11,000 años. AP
Pleistoceno tardio	0			44.05	040	0.05	007	0.00		04	0.40	6.00		0.007		0.000	0.00	0.00	An de cite D	54.04	04 570 / 00 - H A D
San Miguei	Cone	5/5	550	1125	310	305	307	220	5/5	21	0.19	5.23	1.4	0.087	Sin tujo	0.003	0.09	0.06	Andesita B.	51-64	21,570+7-80 anos A.P.
GUSATO	Cone	1402	1284	1343	360	303	3/1	340	701 516	25	0.25	3.95	19.6	0.29	0.17	0.06	0.12	0.21	Dalla- a Andesita Andesita B	1 53.46	>11,000-125,000 anos. AP
Conitim	Cone	955	800	832	340	220	314	160	427	24	0.23	5.20	1.0	0.16	0.03	0.04	0.05	0.10	Andesita D.	59.10	>11,000-125,000 allos. AP
Puerto	Cone	890	709	799	322	311	316	140	399	19	0.13	5.71	2.1	0.15	0.11	0.03	0.05	0.10	Andesita	sin dato	>11,000-125,000 años AP
Cajete	Cone	633	590	611	316	246	281	140	305	24	0.23	4.36	3.1	0.26	0.23	0.04	0.03	0.25	Andesita	58-59	>11 000-125 000 años AP
La Alberca	Cone	917	865	891	339	294	316	240	445	28	0.27	371	6.8	0.56	0.5	0.04	0.06	0.41	Andesita	52-62	>11 000-125 000 años AP
Pario	Cone	1493	1473	1483	505	326	415	280	741	20	0.19	5.30	32.5	0.43	0.28	0.04	0.15	0.30	Andesita B.	58.00	>11,000-125,000 años. AP
Tumbiscatillo	Cone	878	645	761	331	249	290	210	380	28	0.28	3.62	0	0.04	Sin flujo	0	0.04	0.02	Andesita	58.00	>11,000-125,000 años. AP
Zindio	Cone	568	498	533	238	182	210	120	266	24	0.23	4.44	3.5	0.04	0.02	0.02	0.02	0.03	Andesita	56.00	>11,000-125,000 años. AP
Piruani	Cone	807	698	752	348	285	316	120	376	17	0.16	6.27	0.99	0.08	0.12	0.03	0.04	0.06	An de sita B.	55.00	>11,000-125,000 años. AP
Guachan	Cone	1371	1222	1296	492	454	473	180	648	15	0.14	7.20	2.2	0.23	0.11	0.02	0.12	0.20	Andesita	60.00	>11,000-125,000 años. AP
Agnatzin	Shield/Dome	0	0	0	0	0	0	0	0	0	0.00	0.00	4.2	0.44	0.21	0	0.00	0.30	Andesita B.	52.67	>11,000-125,000 años. AP
Cheranástico	Coulee	0	0	0	0	0	0	0	0	0	0.00	0.00	5.7	0.71	0.71	0.08	0.00	0.49	Andesita	sin dato	>11,000-125,000 años. AP
Mari-Juata	Shield/Dome	786	647	716	254	184	219	100	358	15	0.14	7.16	46.5	3.5	3.47	0.01	0.03	3.22	Andesita	61.40	>11,000-125,000 años. AP
Pilon	Shield/Dome	511	433	472	164	146	155	100	236	22	0.21	4.72	13.3	1.97	1.95	0.01	0.02	1.97	Andesita	60.78	>11,000-125,000 anos. AP
Arichan	Cone/Hummuck	0	0	0	0	0	0	0	0	0	0 04	0.00	0	0	0 40	0	0.00	0.00	Andesita	sin dato	>11,000-125,000 anos. AP
Pitorrai Coio Juoto	Shield/Dome	750	710	720	204	200	247	240	260	20	0.21	4.07	3.0	0.5	0.19	0.01	0.11	1.25	Andesita P	57.30	>11,000-125,000 allos. AP
Carin-Juaia Caraquítam	Shield/Dome	1083	1036	1059	234	152	247	120	529	15	0.22	9.02	37	2.2	2.10	0.02	0.04	2.35	Andesita D.	60.11	>11,000-125,000 allos. AP
Paracho*	Shield/Dome	560	522	541	234	180	207	140	270	27	0.26	3.86	21.6	1.88	1.86	0.01	0.02	1.73	Andesita	59.61	60 000+/-3 000 Ar-Ar/12 00 a AP
Parachito	Shield/Cone	583	470	526	192	150	171	100	263	20	0.19	5.26	6.7	0.38	0.36	0.001	0.02	0.28	Andesita	61.26	65.000+/-4.000 Ar-Ar
Molino	Shield/Dome	805	677	741	322	229	275	100	370	15	0.13	7.41	14.9	1.84	1.8	0.01	0.04	1.42	Andesita	62.59	87.000+/-5.000 Ar-Ar
Santísimo	Shield/Dome	1828	1433	1630	245	238	241	240	815	16	0.15	6.79	32.6	2.19	2.04	0.01	0.15	2.19	Andesita	60.02	100,000+/-7,000 Ar-Ar
Pleistoceno medio																					
Cocucho	Shield/Cone	1519	1399	1459	292	266	279	240	729	18	0.16	6.08	62.5	5	4.87	0.02	0.13	4.00	Andesita	sin dato	125,000-800,000 a. AP.
Las Varas	Shield/Dome	787	645	716	330	189	259	140	358	21	0.20	5.11	15	1.2	1.16	0.02	0.04	1.02	Andesita	57-60	125,000-800,000 a. AP.
Tamapu-Juata	Shield	0	0	0	0	0	0	0	0	0	0.00	0.00	6.5	0.44	0.44	0.02	0.00	0.39	Andesita	58.98	125,000-800,000 a. AP.
Aracata	Shield/Dome	330	307	318	181	140	160	120	159	37	0.38	2.65	10	0.92	0.91	0.02	0.01	0.83	Andesita	58-62	194,000+/- 11,000 Ar-Ar
Cuinquitanu	Shield/Dome	704	431	0	231	100	199	0	203	20	0.25	4.05	12.4	0.02	1.0	0.02	0.02	1.02	Andesita	62.74	256 0.00+/ 4 000 Ar Ar
Zinistiro	Shield/Dome	591	333	462	288	133	210	100	231	23	0.00	4.62	16	1 38	1.36	0.02	0.02	1.17	Andesita	57.12	257 000+/-17 000 Ar-Ar
Canén	Shield	0	0	0	0	0	0	0	0	0	0.00	0.00	42	2.9	2.9	0.02	0.02	2.34	Andesita	59.00	338 000+/- 6 000 Ar-Ar
Hueratiro	Shield	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	0.00	0.00	31.6	2.59	2.59	0.02	0.00	2.20	Andesita	58-60	401.000+/- 10.000 Ar-Ar
La Virgen	Shield/Dome	1020	545	782	455	231	343	160	391	22	0.20	4.89	28.1	2.26	2.21	0.02	0.05	2.09	Andesita	60.85	485.000+/- 11.000 Ar-Ar
La Crúz	Shield	0	0	0	0	0	0	0	0	0	0.00	0.00	13.8	1.21	1.21	0.02	0.00	1.02	Andesita	62.00	730,000+/-113,000 Ar-Ar
San Marcos	Shield	0	0	0	0	0	0	0	0	0	0.00	0.00	10.6	0.81	0.81	0.02	0.00	0.81	Andesita	61.70	764,000+/-12,000 Ar-Ar
Pleistoceno temprano	D										0.00	0.00									
La Cantera-Tejocote	Shield/Dome	549	519	534	308	255	281	180	267	33	0.34	2.97	17.5	1	0.97	0.02	0.03	0.82	Andesita B.	60.00	800,000 años a 1.6 M a
Colorado	Shield	0	0	0	0	0	0	0	0	0	0.00	0.00	20	1.6	1.6	0.02	0.00	1.55	An de sita B.	51.12	800,000 años a 1.6 M a
Cumburinos	Shield	0	0	0	0	0	0	0	0	0	0.00	0.00	39	3.1	3.1	0.02	0.00	3.10	Andesita	59.53	800,000 años a 1.6 M a
E I Chivo	Shield	U	U	0	0	0	0	0	0	0	0.00	0.00	43.5	3.3	3.3	0.02	0.00	2.73	Andesita B.	56.40	800,000 años a 1.6 M a
∠arapo	Shield	0	0	0	0	0	0	0	0	0	0.00	0.00	14.8	1.5	1.5	0.02	0.00	1.50	Andesita	59.62	500,000 anos a 1.6 M a
M esteño	Snield/Cone	000	132	794	279	238	258	160	382	22	0.20	4.96	9.5	0.74	0.74	0.02	0.04	0.70	Andesita	56.98 aia data	000,000 años a 1.6 M a
Ouerenda	Shield	0	035	100	3/10	215	295	0	350	14	0.11	0.75	5.5 7.2	0.22	0.18	0.02	0.04	0.15	Andesita	sin dâto 60.87	ουυ, υυυ anos a 1.6 M a 1446+/-18 Δr-Δr
Plinceno tardío	on and	•	•		5	•			•	v	0.00	0.00	1.2	0.13	0.13	0.02	0.00	0.70	- au arta	00.01	
La Moionera	Shield	0	0	0	0	0	0	0	0	0	0.00	0.00	1.5	0.11	0.11	0.02	0.00	0.09	Andesita	58.00	1.6-2.5 Ma
Angarúen cono	Shield/Dome	540	530	535	344	254	299	200	267	36	0.37	2.68	1.4	0.1	0.07	0.02	0.03	0.10	Andesita	61.54	1.6-2.5 Ma
Angarúen domo	Shield/Dome	652	413	532	293	146	219	280	266	46	0.53	1.90	2.5	0.22	0.2	0.01	0.02	0.22	Andesita	61.54	1.6-2.5 Ma
El Horno (sur)	Shield	0	0	0	0	0	0	0	0	0	0.00	0.00	4.4	0.37	0.37	0	0	0.37	An de sita	57.47	1.6-2.5 Ma
								Volú	ímenes	totales c	alculados	enArcGis	v en DRE	72.52	68.18	1.39	2.53	63.74			

Tabla 1.- Parámetros morfométricos en conos de escoria y escudos del área de Paracho, Michoacán. Datados mediante C14, Ar-Ar y por datación relativa. En gris datos calculados del DRE aplicando criterios de ** Guilbaud et al. (2011;2012) mientras que la edad para El Metate fue tomada de ** Chevrel et al. (2016a) junto con el volúmen DRE, criterios de DRE aplicados y recalculados para al menos 14 escudos del APC. Volúmen del Paricutín *Luhr y Sinkin (1993).

Apéndice II (Sedimentología)

Mediante el muestreo en campo y los resultados de los diferentes análisis se elaboró un catálogo con los detalles (e.g., espesor, granulometría, etc.) observados en los diferentes depósitos que conforman las secciones estratigráficas del APC. Este catálogo también incluye los fechamientos por ¹⁴C y la composición química. Esto con el propósito de localizar la fuente de emisión. No obstante, dicha tarea fue en ocasiones complicada debido a la naturaleza de este campo volcánico, donde han ocurrido numerosas erupciones en los últimos 2.5 Ma (Tabla 3) y cuya topografía y estructura también son complejas. Este ejercicio también se hizo con el propósito de sentar una base que sirva de apoyo a futuros trabajos tefro-cronológicos enfocados al reconocimiento de las fuentes de los diferentes depósitos de tefra que se encuentran en el área de Paracho-Cherán, así como en las cuencas lacustres vecinas. Esto es necesario dada la amplia tarea que recién inicia por conocer los alcances y frecuencia de las erupciones en el CVMG y que será útil en la evaluación de peligros volcánicos en esta zona densamente poblada.

Según lo descrito por Cas y Wright (1987) y en el capítulo 2 (metodología, apartado de sedimentología), se tomaron muestras de tefra en campo (~1,500 gramos por muestra), que posteriormente fueron secadas en un horno a 60 °C, tamizadas y clasificadas (ver Capítulo 5). Para determinar su posible fuente, fue importante reconocer las características de las diferentes tefras de caída in situ. La clasificación también se basó en las curvas granulométricas de los depósitos (ver anexos) que se elaboraron mediante hojas de cálculo Excel y se graficaron en histogramas. Para ello se usaron las siguientes fórmulas:

 $Md\Phi = 50$

$$\sigma \varphi = \frac{(\varphi 84 - \varphi 16)}{2}$$
$$\sigma \alpha = \frac{(\varphi 84 + \varphi 16) - (Md\varphi)}{\sigma \varphi}$$

Muestra y (fuente de emisión)	σΦ	MdΦ
15337 (Urutzen)	0.85	0.8
14269 (Jabalí)	0.7	0.8
15335 (Urutzen)	1	2.4
13252 (Juanayan)	1.3	-1.8
14274 (Aire)	1.2	-0.8
14267 (La Alberca)	1.15	-2.6
14296 (San Miguel)	1.25	0.9
14258 (Hoya de Agua)	1.18	0.8
14260 (Tzinzunzahua)	2.15	-1.3
14312 (San Miguel)	1.25	0.8
13210A (Juanyan)	2	0.3
13210B (Juanyan)	2.5	1.2
14289B (Gusato?)	1.6	-0.4
A. de Espinos Siebe et al., 2014	1.38	-4.7
A. de Espinos Siebe et al., 2014	3.88	3.5
Surge de Cas y Wright, 1988.	1.85	2.8
Flow de Cas y Wright, 1988.	2.8	0.8
14289D (Varal)	2.7	0.6
14289F (Hoya de Agua)	1	0.6
14289H (Tzinzunzahua)	1.4	-1
15360B (Cicapien)	1.15	-1
15371B (Cicapien)	1.5	0.4
15372B (Yondima)	1.35	0.6
15374B (San Lorenzo)	0.9	0.4
15374D (Piruani)	0.5	0.4
15382C(Jabalí)	1.6	-1.6
15385B (Amoles)	1.25	1
15383B (Yondima)	2.12	1.5
15381B (Jabalí)	1.8	1
15395B (Jabalí)	1.05	-0.2
15388B (Paracho Viejo)	1.2	-0.8
15389B (Paracho Viejo)	1.45	0

Tabla con los resultados de los análisis granulométricos de los depósitos de tefra de caída y su fuente de emisión, que fue determinada usando los criterios de Cas y Wrigth (1987).

Figura 1. Diagrama de clasificación para las muestras del APC. También se graficaron como referencia 4 depósitos adicionales: Dos provienen de la Alberca de Los Espinos, también en el CVMG (Siebe et al., 2014) y dos más de la literatura (Cas y Wright, 1987). Se puede observar que tres de las muestras grafican en el traslape de los dos campos (e.g. Varal, Yondima y Gusato)

Figura 2. Histográmas de los 28 diferentes análisis granulométricos en el área Paracho-Cherán. Se observa que la mayoría de los depósitos son de caída a excepción de tres muestras, que probablemente se formaron durante lluvias que derivaron en pequeños flujos y/o lahares u otrod procesos gravitacionales

Figura 3.1. Fotografías que muestran los diferentes paleosuelos (p) fechados por radiocarbono y su contexto estratigráfico. (b) Caídas de ceniza y (f) flujos de lava (ver también secciones en Apéndice II; Figs. 3 y 4): A) PAR-15382 y B) PAR-15395 correspondientes a El Jabalí. C) PAR-15375 que muestra el flujo de lava del Janamo con brecha basal que sepulta al paleosuelo. D) PAR-15371 corresponde al Cicapién. E) PAR-15337 y F) ZAC-1206 correspondientes a Hoya Urutzen, descritas también por Hasenaka y Carmichael (1985) y Chevrel et al. (2016a) corroboradas en este estudio. G) PAR-15385 donde se observan depósitos de caída de ceniza probablemente relacionadas al Yondima cerca de Pomacuarán y H) PAR-15388 correspondiente al Paracho Viejo cerca de la ciudad de Paracho.

Figura 3.1.- (Continuación) I) PAR-15383 y J) PAR-15372 corresponden a Los Amoles. K) PAR-13210 sección del Juanyan descrita también por Hasenaka y Carmichael (1985) L) PAR-1211 también corresponde al Juanyan cerca de Cherán. M) PAR-15374 sección que muestra depósitos de dos erupciones cerca de la zona del Janamo que corresponden al San Lorenzo y El Aire (Fig. 3). N) PAR-14260 depósitos de caída de ceniza del Arichán. O) PAR-14289 (escala ~15 cm) secuencia con múltiples depósitos de caída de ceniza subyacidos por paleosuelos en la zona de San Lorenzo. P) PAR-14296 correspondiente al volcán San Miguel.

Apéndice II (secciones estratigráficas y fechamientos por radiocarbono)

El Jabalí

(Lat: 19°26'58.9"N, Long: 102°06'44.7"O, 2232 msnm)

Jánamo

(Lat: 19°33'27.9"N, Long: 102°09'42.0"O, 3007 msnm)

Hoya Urutzen

(Lat: 19°33'30.73"N, Long: 101°57'0.61"O, 2610 msnm)

Cicapien

(Lat: 19°35'27.44"N, Long: 102°05'33.23"O, 2499 msnm)

Paracho Viejo

(Lat: 19°38'14.8"N, Long: 102°04'51.0"O, 2412 msnm)

Juanyan

(Lat: 19°41'3.31"N, Long: 101°59'5.48"O, 2357 msnm)

San Miguel

(Lat: 19°36'45.58"N, Long: 102°05'41.97"O, 2559 msnm)

Tzinzunzahua

(Lat: 19°32'39.05"N, Long: 102°04'55.89"O, 2457 msnm)

Santa Cruz

(Lat: 19°31'25.6"N, Long: 102°05'49.4"O, 2315 msnm)

Varal

(Lat: 19°31'33.6"N, Long: 102°03'39.2"O, 2446 msnm)

Ziapo

(Lat: 19°41'58.65"N, Long: 101°55'23.54"O, 2575 msnm)

Pitorral

(Lat: 19°43'09.5"N, Long: 101°52'33.14"O, 3098 msnm)

(Edades de meseta de Argón)

Ages spectra (edades de meseta de argón) permitieron conocer las edades de la mayoría de los escudos fechados en el área de Paracho-Cherán. Se colectaron 27 muestras de roca fresca para fechar a través de minerales que contienen potasio (en este caso mayoritariamente vidrio) mediante el método ⁴⁰Ar/³⁹Ar (Tablas 1 y 3) utilizando el estándar TCR-2 con edad de 28.619 Ma (Renne et al., 2010). Siete de las muestras no se pudieron fechar debido a que probablemente son demasiado jóvenes o el vidrio y algunos minerales se encontraban demasiado alterados para obtener mediciones de meseta confiables, por lo que sólo 20 fueron óptimas para el análisis. La mayoría presentaron >80% de espectro en meseta de ³⁹Ar (Faure, 1986) por lo que podrían considerarse como confiables (Tabla 3; Apéndice II; ver edades de meseta y espectro de edades de argón). Adicionalmente, dos muestras presentan un porcentaje mínimo; la primera con 52.2% en 3 de 3 fracciones correspondiente a la muestra PAR-14310 del Cerro Cuinguitapu (Figs. 3 y 7b; Tabla 3) y la segunda con 68.4% en 7 de 7 fracciones que corresponde a la muestra PAR-14316 del Cerro Hoya de Agua (Fig. 3; Tabla 3; Apéndice II; edades de meseta y espectro de edades) mientras que las 7 muestras restantes, presentaron dificultades para obtener edades confiables, ya sea porque los minerales se encontraban muy alterados, o quizás porque se trata de rocas más jóvenes. Estos fechamientos además permitieron establecer con mayor precisión las edades de varios de los escudos en el área, mismas que abarcan desde el Plioceno (5.3-1.8 Ma) pasando por el Pleistoceno Temprano (1.8-0.8 Ma), Pleistoceno Medio (0.8-0.125 Ma), Pleistoceno Tardío (0.125-0.011 Ma) hasta el Holoceno (0.011Ma-Presente), subdivisiones basadas (con ciertas modificaciones) en la tabla geológica del United States Geological Survey (ver capítulo 2, Métodos).

Apéndice III (Geoquímica)

Andesitas

Tabla 5.-Andesitas

Inverse Mol Do Dot Dot <thdot< th=""> <thdot< t<="" th=""><th>Nombre</th><th></th><th></th><th>Zipiatiro</th><th>Tzinzunzagua</th><th>Las Varas</th><th>Metate</th><th>Hoya del Pitorral</th><th>Metate</th><th>Metate</th><th>El Horno sur</th><th>Metate</th><th>Hoya Urutzen ?</th></thdot<></thdot<>	Nombre			Zipiatiro	Tzinzunzagua	Las Varas	Metate	Hoya del Pitorral	Metate	Metate	El Horno sur	Metate	Hoya Urutzen ?
The density Link link Link link <thlink< th=""> Link link Li</thlink<>	Tipo			MSV	SC	SC	Shield	SC	Shield	Shield	MSV	Shield	SC
International bits Light is an analysis of the start is a s	Tipo de muestra			Lava	Lava	Lava	Lava	Lava	Lava	Brecha basal	Lava	Lava	Escoria
Instruments Implement	Referencias			Este trabajo	Este trabajo	Ownby, 2011.	Este trabajo	Este trabajo	Este trabajo	Este trabajo	Este trabajo	Este trabajo	Este trabajo
Lineya juncha juncha<	Numero de muestra			10°/3'/0 /"	14270	10°27.66	14200-D	2AC-13213 10°/3'30 1"	14305	14200-D	10006'06.0"	14307	10000-D
Image Image <th< td=""><td>Longitud</td><td></td><td></td><td>101°53'54 3"</td><td>102°04'33 3"</td><td>102°06.47</td><td>101°57'06"</td><td>101°53'53 9"</td><td>102°00'06.4"</td><td>101°57'40.4"</td><td>101955'10 00"</td><td>101°58'15"</td><td>101°58'18 3"</td></th<>	Longitud			101°53'54 3"	102°04'33 3"	102°06.47	101°57'06"	101°53'53 9"	102°00'06.4"	101°57'40.4"	101955'10 00"	101°58'15"	101°58'18 3"
Write Amplical method Descent into T< T< T< T <tht< th=""> T T <</tht<>	Altitud (msnm)			2727	2325	102 00.47	1797	2713	2127	1790	1496	2507	2303
SIGC PLA-DP 0.01 17.12 17.21 17.23 17.24 17.42 17.43 17.43 17.44 <th1< td=""><td>Wt%</td><td>Analytical methods</td><td>Detection limits</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1<>	Wt%	Analytical methods	Detection limits										
ABCS PIS-PP 0.01 1122 1124 113	SiO2	FUS-ICP	0.01	57.12	57.17	57.2	57.38	57.38	57.42	57.45	57.47	57.63	57.65
PADD(1) PAS-PP 001 6.59 7.64 7.59 7.54 7.51 6 7.11 Mach PAS-PP 001 6.50 7.54 7.50 7.54 7.51 6.50	AI2O3	FUS-ICP	0.01	17.62	16.84	17.1	17.29	18.66	18.23	17.06	17.6	17.76	17.02
MADQ FLS-EP 0.01 0.01 0.037 0.027 0.02 0.02 0.027 0.0	Fe2O3 (T)	FUS-ICP	0.01	6.52	7.06	6.3	7.19	6.46	5.95	7.34	7.31	6	7.1
Mach PAS-CP DO1 3.30 4.84 6.97 5.79 3.44 3.22 5.1 4.00 3.19 4.45 MACD FUB-CP DO1 1.19 1.32 0.44 1.44 1.32 1.42 1.77 1.73 1.44 NCO FUB-CP DO1 0.77 0.22 0.44 1.44 1.82 1.42 1.77 1.73 1.44 FUD-CP DO1 0.66 0.29 0.29 0.407 0.49 0.44 0.41 1.42 1.72 1.75 0.76 0.77 0.75 0.75 0.78 0.022 0.46 0.77 0.77 0.75 0.72 1.06 9.29 9.44 1.01 1 </td <td>MnO</td> <td>FUS-ICP</td> <td>0.01</td> <td>0.101</td> <td>0.11</td> <td>0.11</td> <td>0.12</td> <td>0.103</td> <td>0.097</td> <td>0.12</td> <td>0.12</td> <td>0.10</td> <td>0.11</td>	MnO	FUS-ICP	0.01	0.101	0.11	0.11	0.12	0.103	0.097	0.12	0.12	0.10	0.11
Code FIB-CP 0.01 B-BB 7.10 7.20 7.10 7.10 7.20 7.10 7.10 7.20 7.10 7.20 7.10 7.20 7.10 7.20 7.10 7.20 7.10 7.20 7.10 7.20 7.10 7.20 <	MgO	FUS-ICP	0.01	3.63	5.85	6.07	5.19	3.44	3.62	5.1	4.05	3.18	4.5
NBC PAGLO Dial 3.10 <th< td=""><td>CaO</td><td>FUS-ICP</td><td>0.01</td><td>6.84</td><td>7.1</td><td>7.29</td><td>7.19</td><td>7.1</td><td>7.82</td><td>7</td><td>6.93</td><td>7.17</td><td>6.76</td></th<>	CaO	FUS-ICP	0.01	6.84	7.1	7.29	7.19	7.1	7.82	7	6.93	7.17	6.76
NOC PRACE D01 D07 D08 D03 D03 <thd13< t<="" td=""><td>Na2O Kao</td><td>FUS-ICP</td><td>0.01</td><td>3.69</td><td>3.72</td><td>4.01</td><td>3.80</td><td>3.94</td><td>4.04</td><td>3.8</td><td>3.5</td><td>3.95</td><td>3.0</td></thd13<>	Na2O Kao	FUS-ICP	0.01	3.69	3.72	4.01	3.80	3.94	4.04	3.8	3.5	3.95	3.0
PACA DCI PACA PARA PARA PARA PARA PARA PARA PARA	K20	FUS-ICP	0.01	0.707	1.32	0.94	1.4	1.20	0 756	1.42	1.//	1./3	1.45
Loi Los Los <thlos< th=""> <thlos< th=""> <thlos< th=""></thlos<></thlos<></thlos<>	P205	FUS-ICP	0.01	0.10	0.00	0.0	0.30	0.22	0.730	0.30	0.00	0.73	0.70
Trad 100.2 100.2 90.73 100.8 99.4 100.4 1	101	100101	0.01	0.65	0.23	0.29	-0.07	0.48	1.01	0.52	0.49	0.00	0.97
Implement Figure 1 -1	Total			97.5	100.3	99.73	100.8	99.3	99.4	100.4	100.4	98.6	99.2
phile Life.CP 101 0.01 0.01 0.03 0.03 0.04 0.05 0.035 0.05 0.05 0.05 <td></td>													
Be FUR-DP 1 -41 1	ppm												
S TbA/P 0.001 0.01 0.031 0.031 0.032 0.023 0.025 0.025 0.045 0.045 V PACPP 01 16.9 14.4 14.7 15.3 15.8 15.9 14.4 14.4 14.4 15.9 14.4 14.4 14.4 14.8 14.8 14.4 14.8 14.4 14.8 14.4 14.8 14.4 14.8 14.4 14.8 14.4 14.8 14.4 14.8 14.4 14.8 14.4 <td< td=""><td>Be</td><td>FUS-ICP</td><td>1</td><td>< 1</td><td>1</td><td></td><td>1</td><td>< 1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td></td<>	Be	FUS-ICP	1	< 1	1		1	< 1	1	1	1	1	1
Sc MAA Do Disc B2 B4 B4 <thb< td=""><td>S</td><td>TD-ICP</td><td>0.001</td><td>0.031</td><td>0.031</td><td></td><td>0.03</td><td>0.028</td><td>0.005</td><td>0.026</td><td>0.002</td><td>0.046</td><td>0.002</td></thb<>	S	TD-ICP	0.001	0.031	0.031		0.03	0.028	0.005	0.026	0.002	0.046	0.002
v rbxA 5 130 138 120 130 120	Sc	INAA FUO IOB	0.01	16.2	18.7		18.1	14.2	13.5	17.8	17.9	13.9	12.6
Lo MM O1 218 237 0.47 0.418 184 221 222 0.42 170 NI TD-CP 1 27 163 146 88 33 23 30 47 27 161 Cu TD-CP 1 28 26 46 73 53 23 30 47 27 161 Cu TD-CP 1 19 19 18 20 23 18 20 21 12 14 Cu TD-CP 1 19 19 16 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 12 14	V Cr	FUS-ICP	5	139	146	147	153	134	128	149	140	128	118
Dup 1 D2P 1 27 143 148 153 23 144 141 145 157 Cu TD-CP 1 28 68 64 87 55 23 0 47 27 16 Ca FUSAKS 1 19 9 18 20 23 18 20 17 0.9 17 14 Ga FUSAKS 0.5 1.4 1.6 19 12 1.7 0.9 1.7 1.4 Si MAA 0.5 <1.6	Co	ΝΑΑ	0.5	21.8	200	223	24.7	21.8	18.4	26.1	22.5	40.1	45.0
Cu TDLEP 1 28 20 46 37 35 23 30 47 27 16 Ca RUSAK 1 19 19 18 20 23 18 20 21 23 Ga RUSAK 0.5 1.4 10 19 12 12 17 0.0 17 14 As NAM 1.5 -0.5 +0.5 -0.5 +0.5	Ni	TD-ICP	1	21.0	143	148	24.7	33	23	84	51	25	21
DALT MULT MULT MULT MULT No 67 64 76 64 62 72 71 88 Ge RUS-MS 0.5 1.4 1.6 1.9 1.2 1.2 1.2 1.7 1.03 1.7 1.4 Ge RUA 0.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5 <.6.5	Cu	TD-ICP	1	28	26	46	37	35	23	30	47	27	16
Ga FUS-MS 0 1 9 19 10 22 23 26 27 14 As NVA 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1<	Zn	MULT INAA / TD-ICP	1	80	67		64	76	64	62	72	71	68
Ge FUS-MG 0.5 1.4 1.6 1.7 1.2 1.2 1.7 1.0 1.7 1.4 Se NVA 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	Ga	FUS-MS	1	19	19		18	20	23	18	20	21	23
As NAA 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1<	Ge	FUS-MS	0.5	1.4	1.6		1.9	1.2	1.2	1.7	0.9	1.7	1.4
Se NAA 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5<	As	INAA	1	< 1	< 1		< 1	< 1	< 1	< 1	2.2	< 1	< 1
Br NAA 0.5 < < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 </td <td>Se</td> <td>INAA</td> <td>0.5</td> <td>< 0.5</td> <td>< 0.5</td> <td></td> <td>< 0.5</td> <td>< 0.5</td> <td>< 0.5</td> <td>< 0.5</td> <td>< 1</td> <td>< 0.5</td> <td>< 0.5</td>	Se	INAA	0.5	< 0.5	< 0.5		< 0.5	< 0.5	< 0.5	< 0.5	< 1	< 0.5	< 0.5
HD FLSA.PP 1 18 19 21 17 18 22 <0.5 29 17 Y FLSA.PP 1 12 15 17 11 12 19 698 12 11 Z FLSA.PP 1 12 15 77 11 12 19 698 12 11 NM FLSA.PP 1 66 125 87 142 112 114 149 19 157 100 NM FLSA.MS 0.2 3 6.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	Br	NAA	0.5	< 0.5	< 0.5		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
S)PISALP200 </td <td>Rb</td> <td>FUS-MS</td> <td>1</td> <td>18</td> <td>19</td> <td>C10</td> <td>21</td> <td>1/</td> <td>18</td> <td>22</td> <td>< 0.5</td> <td>28</td> <td>1/</td>	Rb	FUS-MS	1	18	19	C10	21	1/	18	22	< 0.5	28	1/
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	sr	FUS-ICP	2	61/	5/6	619	502	1044	1561	504	29	1581	1384
Lb Closes C2 C3 C6 C4 C2 C3 C7 C4 C2 C3 C7 C4 C2 C3 C4 C4 <th< td=""><td>7</td><td>FUS-ICP</td><td>1</td><td>12</td><td>125</td><td>87</td><td>1/2</td><td>112</td><td>114</td><td>1/0</td><td>10</td><td>12</td><td>100</td></th<>	7	FUS-ICP	1	12	125	87	1/2	112	114	1/0	10	12	100
No FUS-MS 2 - </td <td>Nh</td> <td>FUS-MS</td> <td>0.2</td> <td>30</td> <td>67</td> <td></td> <td>64</td> <td>32</td> <td>37</td> <td>7 1</td> <td>162</td> <td>15/</td> <td>3</td>	Nh	FUS-MS	0.2	30	67		64	32	37	7 1	162	15/	3
AgMLT PNA/TD-ICP0.5<0.6<0.5<0.6<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1 <td>Mo</td> <td>FUS-MS</td> <td>2</td> <td>< 2</td> <td>< 2</td> <td></td> <td>< 2</td> <td>< 2</td> <td>< 2</td> <td>< 2</td> <td>6.8</td> <td>< 2</td> <td>< 2</td>	Mo	FUS-MS	2	< 2	< 2		< 2	< 2	< 2	< 2	6.8	< 2	< 2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ag	MULT INAA / TD-ICP	0.5	< 0.5	< 0.5		0.6	< 0.5	< 0.5	0.6	< 2	< 0.5	0.6
nFUS-MS0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.	Cď	TD-ICP	0.5	< 0.5	< 0.5		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
SnFUS-MS1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1	In	FUS-MS	0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	< 0.1	< 0.1
Sb NAA 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 1 1 1 1 0 Cs FUS-RP 1 454 449 343 483 384 377 476 538 504 384 Ba FUS-RS 0.05 1.1 454 449 343 483 384 377 476 538 504 384 Ce FUS-RS 0.05 27.4 33.4 28.1 34.6 33.2 46.2 377 42.5 52.9 39.1 Nd FUS-RS 0.05 14.3 177 15.6 17.8 17.4 22.2 19.8 20.7 27.6 18.9 Sm FUS-RS 0.01 32.1 36.2 34.3 34.5 33.4 43.5 36.4 37.7 42.5 489 37.7 Eu FUS-RS 0.01 32.1 36.2 37.8 33.4 34.4 34.5 34.4 34.5 36.4 38.5 36.5 36.5 <th< td=""><td>Sn</td><td>FUS-MS</td><td>1</td><td>< 1</td><td>< 1</td><td></td><td>2</td><td>< 1</td><td>< 1</td><td>< 1</td><td>< 0.1</td><td>< 1</td><td>< 1</td></th<>	Sn	FUS-MS	1	< 1	< 1		2	< 1	< 1	< 1	< 0.1	< 1	< 1
Cs FUS-NC 0.1 0.6 0.4 0.5 0.5 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.6 0.8 0.6 0.6 0.6 0.4 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 </td <td>Sb</td> <td>INAA</td> <td>0.1</td> <td>< 0.1</td> <td>< 0.1</td> <td></td> <td>< 0.1</td> <td>< 0.1</td> <td>< 0.1</td> <td>< 0.1</td> <td>1</td> <td>1</td> <td>< 0.1</td>	Sb	INAA	0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1	1	1	< 0.1
Dat PIGS-LP 1 499 449 343 463 364 377 470 363 944 954 La FUS-MS 0.05 141 172 127 17.1 157 21.4 19 21 24.6 181 Ce FUS-MS 0.05 27.4 33.4 28.1 34.6 33.2 46.2 37.7 42.5 52.9 39.1 Nd FUS-MS 0.01 3.21 3.62 3.4 3.88 3.45 3.34 42.5 4.5 4.89 3.7 Eu FUS-MS 0.01 2.5 3.05 3.2 3.22 2.84 2.86 3.55 3.65	Cs D-	FUS-MS	0.1	0.6	0.4		0.5	0.5	0.4	0.5	0.4	0.7	0.3
La POHNS 0.03 H-1 1/2 L2 1/1 <td>Ba</td> <td>FUS-ICP</td> <td>1</td> <td>454</td> <td>449</td> <td>343</td> <td>483</td> <td>384</td> <td>3//</td> <td>4/6</td> <td>538</td> <td>504</td> <td>384</td>	Ba	FUS-ICP	1	454	449	343	483	384	3//	4/6	538	504	384
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ce	FUS-MS	0.05	27.4	33.4	28.1	34.6	33.2	/62	37.7	42.5	24.0	30.1
Nd FUS-MS 0.05 14.3 17.7 15.6 17.8 17.4 22.2 19.8 20.7 27.6 18.9 Eu FUS-MS 0.01 3.21 3.62 3.4 3.88 3.45 3.94 4.25 4.5 4.89 3.7 Eu FUS-MS 0.005 1.05 1.1 1.12 1.19 1.13 1.24 1.27 1.33 1.44 1.09 Gd FUS-MS 0.01 2.65 3.05 0.53 0.43 0.44 0.57 0.59 0.5 0.39 Dy FUS-MS 0.01 0.46 2.89 2.5 3.28 2.5 2.48 3.44 3.45 2.44 2.18 Dy FUS-MS 0.01 0.46 0.57 0.5 0.62 0.48 0.47 0.66 0.45 0.43 Tm FUS-MS 0.01 1.38 1.41 1.88 1.36 1.29 1.91 1.79 1.26 0.	Pr	FUS-MS	0.01	3.58	4.35	3.6	4.46	4.3	5.83	4.87	5.19	6.97	4.91
Sm FUS-MS 0.01 3.21 3.62 3.4 3.88 3.45 3.94 4.25 4.5 4.89 3.37 Gd FUS-MS 0.005 1.05 1.1 1.12 1.19 1.13 1.24 1.27 1.33 1.44 1.09 Gd FUS-MS 0.01 2.65 3.05 3.22 2.24 2.86 3.55 3.65 2.48 Tb FUS-MS 0.01 2.46 2.95 3.22 2.44 0.44 0.57 0.59 0.5 0.32 Dy FUS-MS 0.01 2.46 2.95 0.28 0.44 0.47 0.67 0.63 0.45 0.43 Ho FUS-MS 0.01 1.36 1.58 1.4 1.8 1.36 1.29 1.9 1.79 1.62 1.43 Tm FUS-MS 0.001 1.31 1.9 1.33 1.3 1.82 1.73 1.1 1.16 Lu FUS-MS </td <td>Nd</td> <td>FUS-MS</td> <td>0.05</td> <td>14.3</td> <td>17.7</td> <td>15.6</td> <td>17.8</td> <td>17.4</td> <td>22.2</td> <td>19.8</td> <td>20.7</td> <td>27.6</td> <td>18.9</td>	Nd	FUS-MS	0.05	14.3	17.7	15.6	17.8	17.4	22.2	19.8	20.7	27.6	18.9
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sm	FUS-MS	0.01	3.21	3.62	3.4	3.88	3.45	3.94	4.25	4.5	4.89	3.37
Gd FUS-MS 0.01 2.26 3.05 3.22 2.24 2.86 3.55 3.65 2.48 Tb FUS-MS 0.01 0.42 0.53 0.5 0.53 0.43 0.44 0.57 0.59 0.5 0.59 Dy FUS-MS 0.01 2.46 2.89 2.5 3.28 2.5 2.48 3.44 3.45 2.44 2.18 Ho FUS-MS 0.01 0.48 0.57 0.5 0.62 0.48 0.47 0.67 0.63 0.45 0.43 Tm FUS-MS 0.01 1.36 1.58 1.4 1.8 1.68 0.129 1.9 1.3 1.13 1.82 1.73 1.14 1.16 Lu FUS-MS 0.001 1.35 1.57 1.3 1.9 1.33 1.3 1.82 1.73 1.14 1.16 Lu FUS-MS 0.01 0.27 0.37 0.53 0.21 0.21 0.33<	Eu	FUS-MS	0.005	1.05	1.1	1.12	1.19	1.13	1.24	1.27	1.33	1.44	1.09
Tb FUS-MS 0.01 0.42 0.53 0.5 0.53 0.43 0.44 0.57 0.59 0.5 0.59 Dy FUS-MS 0.01 2.46 2.89 2.5 3.28 2.5 2.48 3.44 3.45 2.44 2.18 Ho FUS-MS 0.01 1.36 1.58 1.4 1.8 1.29 1.9 1.9 1.63 0.43 Tm FUS-MS 0.001 1.33 1.57 1.3 1.9 1.33 1.3 1.82 1.73 1.1 1.16 Lu FUS-MS 0.01 2.25 3 0.19 0.25 0.215 0.203 0.16 0.129 0.295 0.265 0.162 0.18 Lu FUS-MS 0.01 0.27 0.3 0.1 2.26 0.16 0.295 0.265 0.162 0.13 M FUS-MS 0.1 2.7 0.37 0.53 0.25 0.066 0.51 0.47	Gd	FUS-MS	0.01	2.65	3.05	3.2	3.22	2.84	2.86	3.55	3.65	3.65	2.48
Dy FUS-MS 0.01 2.46 2.89 2.5 3.28 2.5 2.48 3.44 3.45 2.44 2.18 Ho FUS-MS 0.01 0.48 0.57 0.5 0.62 0.48 0.47 0.63 0.45 0.43 Er FUS-MS 0.01 1.36 1.58 1.4 1.8 1.36 1.29 1.9 1.79 1.26 1.23 Tm FUS-MS 0.005 0.2 0.243 0.21 0.284 0.198 0.195 0.294 0.263 0.173 0.18 Yo FUS-MS 0.01 1.33 1.57 1.3 1.9 1.33 1.3 1.82 1.73 1.1 1.16 Lu FUS-MS 0.01 0.25 3 3 3.1 2.7 3.3 3.7 3.8 2.44 MA 1 <1	Tb	FUS-MS	0.01	0.42	0.53	0.5	0.53	0.43	0.44	0.57	0.59	0.5	0.39
HO FUS-MS 0.01 0.48 0.57 0.5 0.62 0.48 0.47 0.05 0.03 0.49 0.43 Tm FUS-MS 0.01 1.36 1.58 1.4 1.8 1.36 1.29 1.9 1.79 1.26 1.23 Tm FUS-MS 0.001 1.33 1.57 1.3 1.9 1.33 1.3 1.82 1.73 1.1 1.16 Lu FUS-MS 0.001 2.25 0.23 0.19 0.25 0.215 0.265 0.162 0.183 HT FUS-MS 0.01 2.25 3 0.3 3.1 2.7 3.3 3.7 3.8 2.44 Ta FUS-MS 0.01 0.27 0.37 0.53 0.25 0.06 0.51 0.47 0.2 0.03 W NAA 1 <1	Dy	FUS-MS	0.01	2.46	2.89	2.5	3.28	2.5	2.48	3.44	3.45	2.44	2.18
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	HO	FUS-MS	0.01	0.48	0.57	0.5	0.62	0.48	0.47	0.67	0.63	0.45	0.43
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Tm	FUS-MS	0.005	1.30	0.243	0.21	0.284	0.109	0 105	0.204	0.263	0.173	0.18
Lu FUS-MS 0.002 0.215 0.233 0.19 0.25 0.215 0.219 0.295 0.285 0.162 0.193 H1 FUS-MS 0.11 2.5 3 3 3.1 2.7 3.3 3.7 3.8 2.4 Ta FUS-MS 0.01 0.27 0.37 0.53 0.25 0.06 0.51 0.47 0.2 0.03 W NAA 1 <1	Yb	FUS-MS	0.01	1.33	1.57	1.3	1.9	1.33	13	1.82	1.73	11	1.16
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Lu	FUS-MS	0.002	0.215	0.233	0.19	0.25	0.215	0.219	0.295	0.265	0.162	0.193
Ta FUS-MS 0.01 0.27 0.37 0.53 0.25 0.06 0.51 0.47 0.2 0.03 W NAA 1 <1	Hf	FUS-MS	0.1	2.5	3		3	3.1	2.7	3.3	3.7	3.8	2.4
	Та	FUS-MS	0.01	0.27	0.37		0.53	0.25	0.06	0.51	0.47	0.2	0.03
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	W	INAA	1	< 1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	lr -	INAA	1	< 1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Au	INAA	1	< 1	< 1		2	< 1	< 1	< 1	< 1	< 1	< 1
In Pos-mos u.us u.us <thu.us< th=""> u.us u.us <th< td=""><td>Hg</td><td>INAA FUIS MIS</td><td>1</td><td>< 1</td><td>< 1</td><td></td><td>< 1</td><td>< 1</td><td>< 1</td><td>< 1</td><td>< 1</td><td>< 1</td><td>< 1</td></th<></thu.us<>	Hg	INAA FUIS MIS	1	< 1	< 1		< 1	< 1	< 1	< 1	< 1	< 1	< 1
FU Horse S <td>11 Dh</td> <td>FUS-MS</td> <td>0.05</td> <td>0.07</td> <td>0.08</td> <td></td> <td>< 0.05</td> <td>0.05</td> <td>< 0.05</td> <td>< 0.05</td> <td>0.11</td> <td>< 0.05</td> <td>< 0.05</td>	11 Dh	FUS-MS	0.05	0.07	0.08		< 0.05	0.05	< 0.05	< 0.05	0.11	< 0.05	< 0.05
Th FUS-MIS 0.01 0.1	Ri	FUS-MS	01	5	< 5		< 5	< 5		< 5		< 5	< 5
U FUS-WS 0.01 0.47 0.55 0.58 0.5 0.73 0.58 0.8 1.06 0.68	Th	FUS-MS	0.05	1 54	1.53		< 0.1 1 AS	1 50	< 0.1 2.07	< U. I 1 88	2.47	< U.I 2.97	~ U.I 1 QR
	U	FUS-MS	0.01	0.47	0.55		0.58	0.5	0.73	0.58	0.8	1.06	0.68

Tabla 5.- Andesitas. MSV (Medium Sized Volcanoes) en español; volcánes de medio volumen. (Shield) volcanes escudo. SC (Scoria Cone), conos de escoria.

Tabla 5Continuad	ción												
Nombre			Sapien-Jabali	Chimilpa	Metate	Tumbiscatillo	Pario	Sapien-Ja	abali	Copitiro??	Metate	Metate	Metate
Tipo			SC	Flow	Shield	SC	MSV	SC		SC	Shield	Shield	MSV
Tipo de muestra			Lava	Lava	Lava	Lava	Lava	Bomba		Bomba	Lava	Lava	Lava
Referencias			Ownby, 2011.	Este trabajo	Este trabajo	Ownby, 2011.	Ownby, 2011.	Ownby, 2	011.	Ownby, 2011.	Este trabajo	Este trabajo	Este trabajo
Número de muestra	1		U-44	15345	14287	U-11	U-7b	U-45a		U-40	14268-A	14288	PAZ-1203
Latitud			19°26.30	19º34'18.7"	19°28'09.7"	19°26.75	19°27.97	19°26.49		19°22.14	19°29'21.6"	19°27'38.8"	19º27'16.3"
Longitud			102°05.08	101°49'24.00"	101°57'46.9"	102°10.44	102°10.77	102°05.5	2	102°38.53	102°00'49.8"	101°59'34.9"	101°58'35.8"
Altitud (msnm)				2409	9 1777	3	?	??	??	?	206	64 11	868 1860
Wt%	Analytical methods	Detection limits											
SiO2	FUS-ICP	0.01	57	7 57.78	57.99	f	8	58	58	58	582	23 58	34 58.38
AI2O3	FUS-ICP	0.01	17	2 16.8	18.33	1	7 1	7.2	17.7	17 3	178	39 18	34 17.85
Fe2O3 (T)	FUS-ICP	0.01	6	17 684	1 5.79	6.0		87	5.97	5.8	7 58	31 5	86 5.78
MnO	FUS-ICP	0.01	0.	1 0.00	0.09	0.0	1	0.1	0.01	0.0	I 0.0	n n	10 0.096
MnO	FUSICP	0.01	5.	19 5.14	1 3.12	5.3	4 5	73	5.21	5.7	3 3 -	18 3	09 31
C3O	FUSICE	0.01		2 70/	1 7.10	7.6		10	6.84	7.10	, 0. . 74	55	73 711
Na2O	FUSICE	0.01		M 35	2 41	3.6	и 9 И	165	3.00	3.6	5 30	5 A	11 3.08
14820		0.01		14 0.02		1.0		0.00	1 16	1.0	5 0.0		04 4.9
T:00	FUSHOF	0.01	1.	1.12	2 1.13	1.0	2 1	.20	0.77	1.20			.24 1.3
1102	FUS-ICP	0.01	0.	0.70	0.09	0.7	o u	0.74	0.77	0.0		14 U	0.707
P205	FU3-IGP	0.01	0	21 0.17	0.23	0.2		1.21	0.22	0.2	I U.4	20 U	0.22 0.24
LOI			0.	14 0.42	2 0.22	0.6	3 ().27	-0.3	0.2	0.4	12	0.1 0.19
I Otal			99.	99.79 99.79	9 98.7				100.27	99.84	+ 99	.2 9	98.5
ppm	5110.100												
De	FU3-ICP	1			1 1								1 1
5	TD-ICP	0.001		0.002	2 0.002						0.03	54 0.1	J45 0.034
Sc	INAA	0.01		19.3	3 12.6						13	.4 1	3.6 13
V	FUS-ICP	5	1:	36 136	5 118	15	4	140	129	14	5 12	25	118 121
Cr	INAA	0.5	1	55 160) 49.8	10	1	119	141	140) 49	.2	36 29.6
Co	INAA	0.1		55 25.6	6 17.6	3	5	45	37	33	2 16	.4 1	6.6 15.4
Ni	TD-ICP	1	1:	22 97	7 21	8	2	130	108	90) 2	24	22 23
Cu	TD-ICP	1		38 33	3 16	3	4	30	27	3	5 3	32	29 26
Zn	MULT INAA / TD-ICP	1		60) 68						6	35	67 69
Ga	FUS-MS	1		19	23						2	22	21 20
Ge	FUS-MS	0.5		0.4	1.4						1	.2	1.7 2.4
As	INAA	1		2.7	7 < 1						<	1	<1 <1
Se	INAA	0.5		< 1	I < 0.5						< 0	.5 <	0.5 < 0.5
Br	INAA	0.5		< 0.5	5 < 0.5						< 0	.5 <	0.5 2.1
Rb	FUS-MS	1		3.7	7 17						1	24	16 18
Sr	FUS-ICP	2	6	03 17	7 1384	62	7	717	631	523	2 157	79 14	493 1530
Y	FUS-ICP	1		644	1 11							12	11 11
Zr	FUS-ICP	1		99 15	5 100	11	6	107	94	11-	¥ 13	31	111 123
Nb	FUS-MS	0.2		109) 3						3	.9	1.2 4.1
Mo	FUS-MS	2		3.5	5 < 2						<	2	< 2 < 2
Aq	MULT INAA / TD-ICP	0.5		< 2	2 0.6						0	.7 <	0.5 < 0.5
Cd	TD-ICP	0.5		< 0.5	5 < 0.5						< 0	.5 <	0.5 < 0.5
In	FUS-MS	0.1		< 0.5	5 < 0.1						< 0	.1 <	0.1 < 0.1
Sn	FUS-MS	1		< 0.1	<1						<	1	< 1 1
Sb	INAA	0.1		< 1	I < 0.1						< 0	.1	0.8 < 0.1
Cs	FUS-MS	0.1		< 0.1	I 0.3						0	.5	0.3 0.5
Ва	FUS-ICP	1	3	56 340) 384	42	2 4	422	396	351	3 45	50 :	377 370
La	FUS-MS	0.05	14	.2 12.1	18	15	3 1	4.7	14.5	15.3	2 23	.2 1	8.3 20.5
Ce	FUS-MS	0.05		31 26.5	5 39.1	32	9 3	31.1	30.6	33.0	6 49	.3	39 45
Pr	FUS-MS	0.01	3.	3.36	6 4.91	3.9	4 3	8.76	3.76	4.0	6.5	58 5	.05 5.37
Nd	FUS-MS	0.05	16	.3 13.9	9 18.9	16	5 1	6.2	16.6	16.8	3 26	.2 1	9.8 21.4
Sm	FUS-MS	0.01	3	.5 3.02	2 3.37	3	6	3.4	3.6	3.3	4.4	18 3	.57 3.55
Eu	FUS-MS	0.005	1.	15 1.11	I 1.09	1.1	3	1.1	1.19	1.2	I 1.3	35 1	.13 1.16
Gd	FUS-MS	0.01	3	.3 2.99	2.48	3	3	3.2	3.2	3.3	7 3.2	24 2	.86 3.14
Tb	FUS-MS	0.01	C	.5 0.47	0.39	0	5	0.5	0.5	0.0	6 0.4	45 C	.43 0.46
Dy	FUS-MS	0.01	2	.6 2.93	3 2.18	2	8	2.6	2.6	3.1	2 2.3	31 2	.13 2.39
Ho	FUS-MS	0.01	C	.5 0.61	0.43	0	6	0.5	0.5	0.0	6 0.4	43 C	.42 0.43
Er	FUS-MS	0.01	1	.5 1.66	5 1.23	1	7	1.4	1.4	1.9) 1.2	22 1	.19 1.21
Tm	FUS-MS	0.005	0.1	21 0.234	4 0.18	0.2	6 C).23	0.21	0.2	3 0.17	77 0.1	173 0.176
Yb	FUS-MS	0.01	1	.3 1.53	3 1.16	1	5	1.3	1.4	1.3	7 1	.1 1	.13 1.13
Lu	FUS-MS	0.002	0.	19 0.24 ⁴	0.193	0.2	3 0).19	0.2	0.2	5 0.15	59 0.1	165 0.185
Hf	FUS-MS	0.1		28	3 24						3	.5	2.8 2.8
Та	FUS-MS	0.01		0.23	3 0.03						ñ	.2	0.2 0.31
w	INAA	1		< 1	< 1						<	1	<1 <1
lr.	INAA	1		< 1	<1						<	1	<1 <1
Au	INAA	1		< 1	<1						<	1	<1 2
Hg	INAA	1		< 1	۱ <1						<	1	<1 <1
тĭ	FUS-MS	0.05		0.08	3 < 0.05						0.0	06 < C	.05 < 0.05
Pb	TD-ICP	5		< !	5 < 5						<	5	< 5 < 5
Bi	FUS-MS	0.1		< 0.1	< 0.1						< 0	.1 <	0.1 < 0.1
Th	FUS-MS	0.05		1.53	3 1.98						21	33 1	.97 2.23
U	FUS-MS	0.01		0.45	5 0.68						0	.9 C	.67 0.69

Tabla 5Continuad	ción											
Nombre			Mojonera	Metate	Metate	Hueratiro	Aracata	Hoya Urutzen	Las Cruces	El Rosario	Cajete	Metate
Tipo			SC	MSV	Shield	MSV	MSV	SC	Dome	SC	SC	Shield
Tipo de muestra			Bomba	Lava	Lava	Lava	Lava	Lava	Lava	Lava	Lava	Lava
Referencias			Este trabajo	Este trabajo	Este trabajo	Este trabajo	Este trabajo	Este trabajo	Este trabajo	Ownby, 2011.	Ownby, 2011.	Este trabajo
Numero de muestra	1		15339	PAZ-1205	14298	14319	14292	14320	14318	U-13 10°26 20	U-34	15334
Longitud			101%0'50 //"	101958'12 6"	101°50'47"	101°56'24 1"	102°12'27 5"	101°56'31.8"	101°56'24 6"	102°09.60	102°01 23	19 24 30.2 101°57'04 4"
Altitud (msnm)			2626	2298	2571	256	259	2388	2557	2 20.00	7 7	2 1401
Wt%	Analytical methods	Detection limits										
SiO2	FUS-ICP	0.01	58.4	58.43	58.45	58.48	58.5	1 58.51	58.68	58.	8 58.8	3 58.95
AI2O3	FUS-ICP	0.01	16.42	2 17.06	17.9	16.74	17.8	7 17.19	18.02	16.	9 17.4	4 18.06
Fe2O3 (T)	FUS-ICP	0.01	8.06	6.02	5.96	6.16	6.18	8 6.17	5.09	5.8	2 6.08	3 5.67
MnO	FUS-ICP	0.01	0.16	0.099	0.10	0.10	0.10	0.10	0.09	0.	1 0.1	1 0.09
MgO	FUS-ICP	0.01	3.95	3.89	3.19	3.69	3.39	3.67	2.24	5.5	3 4.4	2 3.03
CaU N=20	FUS-ICP	0.01	6.0	5 5.55	7.39	6.4	0.4	9 0.0/	4.24	6./	1 6.8	5 6.99
K2O	FUS-ICP	0.01	3.0	3.00	3.99	3.0	1.6	+ 3./c 2 1./7	3.0) 3.0 / 1.4	2 3.7	4.09 3 1.28
TiO2	FUS-ICP	0.01	1.00	0.674	0.77	0.79	0.8	1 0.73	0.61	0.7	7 0.4	0.67
P205	FUS-ICP	0.01	0.3	0.19	0.26	0.23	0.0	2 0.21	0.2	0.2	2 0.2	5 0.24
LOI			0.44	-0.18	0.23	1.72	1.10	6 0.93	4.38	0.5	9 0.74	4 0.74
Total			100.6	98.4	99.4	98.0	98.	7 98.5	94.2	99.3	4 99.2	7 99.1
ppm Ro		1			1							1
S	TDJCP	0.001	0.00	0.037	0.020	0.03	0.02	3 0.04	0.025			0.002
Sc	INAA	0.01	17.3	14.8	13.4	14.8	15.0	5 14.2	7.88			12.7
V	FUS-ICP	5	130) 135	125	13	124	4 125	81	13	1 129	9 118
Cr	INAA	0.5	88.5	5 74.1	41	56.6	53.4	4 71.5	< 0.5	i 13	4 67	7 34.7
Co	INAA	0.1	21.5	5 18	18.3	16.7	20) 18.8	10.2	: 3	4 21	7 16
Ni	TD-ICP	1	42	2 48	25	47	49	9 45	2	13	2 62	2 22
Cu	TD-ICP	1	23	3 48	27	27	21	3 31	5	i 4	1 23	3 25
Zn O-	MULTINAA/TD-ICP	1	8	80	64	/(9	+ 6/	68			65
Ga	FUS-MS	0.5	20	20	18	2.4	11	2 19	1.8			12
As	INAA	1	3.1	1	< 1	< '	< '	1 <1	< 1			< 1
Se	INAA	0.5	< '	< 0.5	< 0.5	< 0.5	< 0.5	5 < 0.5	< 0.5	;		< 0.5
Br	INAA	0.5	< 0.5	5 2.6	< 0.5	< 0.5	< 0.5	5 < 0.5	< 0.5	;		< 0.5
Rb	FUS-MS	1	< 0.5	5 28	18	30	21	3 20	23	1		19
Sr	FUS-ICP	2	31	733	1617	501	541	7 600	591	66	1 598	3 1357
Y	FUS-ICP	1	494	15	13	27	1	7 14	13			11
Zr	FUS-ICP	1	20	5 131 5 4.2	13/	15	1/	1 12/	10/	11	9 13.	/ 105
Mo	FUS-MS	2	10.0) 4.3) <2	< 2		<	2.1		,		< 2
Aq	MULT INAA / TD-ICP	0.5	1	- 3 < 0.5	0.8	< 0.5	0.0	5 < 0.5	< 0.5			< 0.5
Cď	TD-ICP	0.5	< 0.5	5 < 0.5	< 0.5	< 0.5	< 0.5	5 < 0.5	< 0.5	;		< 0.5
In	FUS-MS	0.1	< 0.5	5 < 0.1	< 0.1	< 0.1	< 0.1	1 < 0.1	< 0.1			< 0.1
Sn	FUS-MS	1	< 0.1	<1	< 1	2		1 <1	2			3
SD C-		0.1		< 0.1	< 0.1	0.0	< 0.1	1 < 0.1	0.5			< 0.1
Ba	FUS-ICP	1	< 0. 573	537	395	615	65	5 507	547	49	R 494	1 397
La	FUS-MS	0.05	38.2	2 18.8	23.1	32.2	22.6	5 16	18.1	18.	2 19	9 17.8
Ce	FUS-MS	0.05	90	38.7	49	45.8	42.4	4 31.3	34.4	36.	7 39.8	3 38.3
Pr	FUS-MS	0.01	12	4.93	6.39	6.08	5.4	1 3.99	4.47	4.3	4 4.76	6 4.8
Nd	FUS-MS	0.05	51.2	2 20.2	24.4	24.2	20.4	4 16.3	17	18.	4 18.9	9 18.4
Sm	FUS-MS	0.01	11.1	4.06	4.21	4.63	4.0	5 3.25	3.5	3.	8 3.8	3 3.39
Eu Gd	FUS-MS	0.005	3.10	278	3.02	3.8	3.2	1 1.01	2.64	. 3.	9 1.24 4 3.7	+ 1.14 7 2.49
Tb	FUS-MS	0.01	1.23	0.43	0.42	0.6	0.54	4 0.48	0.4	0.	5 0.6	6 0.4
Dy	FUS-MS	0.01	6.24	2.51	2.16	3.32	3.00	3 2.69	2.25	2.	9 3.1	1 2.3
Ho	FUS-MS	0.01	1.1	0.47	0.42	0.66	0.59	0.52	0.44	0.	5 0.6	6 0.44
Er	FUS-MS	0.01	2.83	3 1.31	1.21	1.9	1.1	7 1.49	1.28	1.	6 1.1	7 1.22
Tm	FUS-MS	0.005	0.387	0.195	0.184	0.278	0.264	4 0.213	0.182	0.2	4 0.25	5 0.176
Yb	FUS-MS	0.01	2.28	3 1.29	1.17	1.84	1.	/ 1.42	1.22	. 1.	5 1.6	5 1.14
LU	FUS-MS	0.002	0.348	5 U.213	0.1/1	0.28	0.23	3 0.216	0.19	0.2	2 0.2.	3 U.183
Та	FUS-MS	0.01	4.0	, J 3 03	0.35	0.5	. 0.6	0.26 0.26	0.26			0.03
w	INAA	1	< 1	< 1	< 1	< '	< 1	1 <1	< 1			< 1
Ir	INAA	1	< '	< 1	< 1	< *	< 1	1 <1	< 1			< 1
Au	INAA	1	< '	< 1	< 1	< 1	< 1	1 < 1	< 1			< 1
Hg	INAA	1	< '	<1	< 1	< '	< 1	1 <1	< 1			< 1
II Ph	FUS-MS	0.05	0.15	0.11	< 0.05	0.23	0.0	o 0.06	0.19			< 0.05
Bi	FUS-MS	01	10	, b <01	< 0 1	< 0.4	< 0 -	, t 1 <01	< 1	,		< 0 1
 Th	FUS-MS	0.05	- 0. 17.8	2.87	2.38	2.7	2.76	5 1.61	2.12	2		2.05
U	FUS-MS	0.01	0.83	0.92	0.85	0.88	0.89	0.59	0.71			0.7

Tabla 5Continua	ción											
Nombre			Mesteño	Tamapu Juata	C. Tzipan	Metate	Paracho	Unnamed	Metate	Capen	Capen	Janamo
Tipo			MSV	MSV	Dome	Shield	Dome	SC	Shield	MSV	MSV	SC
Tipo de muestra			Lava	Lava	Lava	Lava	Lava	Lava	Lava	Lava	Lava	Lava
Referencias			Este trabajo	Este trabajo	Este trabajo	Este trabajo	Este trabajo	Este trabajo	Este trabajo	Este trabajo	Este trabajo	Este trabajo
Número de muestra	1		15343	14311	ZAC-13207	14277	14262-C	ZAC-13208	15333	14324	15342	15367
Latitud			19°39'28.7"	19°41'59.3"	19°43'23.2"	19°32'45.0"	19°35'21.8"	19°42'34.8"	19°26'20.2"	19°38'01.2"	19°40'50.3"	19°31'03.9"
Longitud			101°49'38.6"	102°03'02.0"	102°01'50.7"	102°02'50.8"	102°02'25.4"	102°00'16.9"	101°56'15.9"	101°54'02.8"	101°49'59.4"	102°06'50.1"
Altitud (msnm)			2751	2347	2142	2252	3347	2293	1471	2422	2680	2124
Wt%	Analytical methods	Detection limits										
SiO2	FUS-ICP	0.01	58.98	58.98	59.07	59.17	59.19	59.24	59.27	59.35	59.36	59.42
AI2O3	FUS-ICP	0.01	16.67	/ 17.2	16.99	17.69	17.64	17.61	17.48	16.08	17.53	17.64
Fe2O3 (T)	FUS-ICP	0.01	6.65	5 6.1	6.35	5.5	5.87	6.44	5.79	5.99	7.11	6.61
MnO	FUS-ICP	0.01	0.11	0.10	0.1	0.09	0.09	0.1	0.097	0.10	0.11	0.10
MgO	FUS-ICP	0.01	3.38	3.31	3.63	3.05	2.95	3.94	3.15	3.32	3.42	4.32
CaO	FUS-ICP	0.01	5.87	6.16	6.37	6.55	6.2	6.86	7.3	5.8	5.88	6.46
Na2O	FUS-ICP	0.01	3.79	3.85	3.89	3.97	3.61	3.67	3.94	3.48	3.83	3.81
K20	FUS-ICP	0.01	1.65	1.6/	1.61	1.44	1.61	1.55	1.33	2.14	1.49	1.47
1102	FUS-ICP	0.01	0.78	S U.76	0.851	0.66	0.74	0.713	0.691	0.78	0.88	0.68
P205	FUS-ICP	0.01	0.20	0.27	0.3	0.2	0.19	0.19	0.25	0.24	0.28	0.2
LUI			0.0	0.25	-0.10	-0.10	0.99	0.56	0.53	1.1	0.62	-0.25
TOtal			90.0	5 50.4	55.2	90.0	50.1	100.3	55.5	57.3	100.7	100.5
nnm												
Be	EUS-ICP	1		, 1	1	1	1	<i>c</i> 1	1	1	2	2
S	TD-ICP	0.001	0.004	0.052	0.023	0.027	0.026	0.029	0.002	0.033	0.005	0.003
Sc	INAA	0.01	15.1	14	15.1	13.8	14.9	15.8	13.5	13.8	14.9	15.3
V	FUS-ICP	5	113	116	128	117	129	130	123	120	120	119
Cr	INAA	0.5	63.2	71.7	77.7	46.4	14.8	83.4	45.1	66.1	53.3	142
Co	INAA	0.1	17.6	22.3	21.4	17.9	17.2	21.3	17.9	16.7	19.8	20.4
Ni	TD-ICP	1	38	3 41	52	24	27	49	22	40	39	83
Cu	TD-ICP	1	27	25	42	21	29	31	22	25	28	25
Zn	MULT INAA / TD-ICP	1	72	64	73	61	62	73	66	67	73	75
Ga	FUS-MS	1	20) 19	18	21	20	18	23	18	20	19
Ge	FUS-MS	0.5	0.6	6 1.7	1.3	1.4	1.4	1.1	1.4	1.8	0.7	0.6
As	INAA	1	3.1	1	2	< 1	< 1	1	< 1	< 1	2.9	1.3
Se	INAA	0.5	< 1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1	< 1
Br	INAA	0.5	< 0.5	5 < 0.5	4.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Rb	FUS-MS	1	< 0.5	5 24	24	21	28	28	19	40	< 0.5	< 0.5
Sr	FUS-ICP	2	25	5 615	635	1155	497	529	1369	459	24	26
Y	FUS-ICP	1	497	7 16	16	11	15	13	13	18	525	551
Zr	FUS-ICP	1	20) 147	164	104	135	130	123	181	19	18
ND	FUS-MS	0.2	165	8.2	9.2	3.3	6	5.2	3.5	5	183	135
MO A =	FUS-MS	2	6./	< 2	2	< 2	< 2	< 2	< 2	< 2	7.5	4.9
AG	TD ICD	0.5		< 0.5	< 0.5	0.0	< 0.5	< 0.5	< 0.5	< 0.5		- 2
Cu In	ELIC MC	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Sn Sn	FUS-MS	1	< 0.0) - 0.1 <1	< 0.1	< 0.1	< 0.1 1	< 0.1 < 1	< 0.1	< 0.1	< 0.0	< 0.5
Sh	INAA	0.1	- 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.6	- 0.1	< 1
Cs	FUS-MS	0.1	< 0.1	0.5	0.4	0.4	0.6	0.6	0.5	0.0	< 0.1	0.5
Ba	FUS-ICP	1	575	560	528	415	672	555	384	673	591	549
La	FUS-MS	0.05	23.5	19.8	20.4	16.9	22.8	16.6	18.9	23	23.6	18.1
Ce	FUS-MS	0.05	45.6	38.6	41	34.7	41.2	32.3	40.2	43.6	47.4	36.2
Pr	FUS-MS	0.01	5.55	4.84	5.19	4.45	4.94	4.07	5.12	5.43	6	4.3
Nd	FUS-MS	0.05	22.9	9 19.3	20.7	18.5	19.7	16.3	19.4	20.8	23.4	17.4
Sm	FUS-MS	0.01	4.45	5 3.98	4.13	3.19	4.11	3.25	3.61	4.34	4.72	3.43
Eu	FUS-MS	0.005	1.26	5 1.13	1.2	1.11	1.05	1.01	1.17	1.15	1.35	1.03
Gd	FUS-MS	0.01	4.19	3.34	3.72	2.65	3.35	2.88	2.66	3.68	4.24	2.99
Tb	FUS-MS	0.01	0.61	0.51	0.6	0.36	0.5	0.45	0.43	0.55	0.64	0.5
Dy	FUS-MS	0.01	3.5	5 2.97	3.45	2	2.81	2.67	2.37	3.14	3.65	2.85
Ho	FUS-MS	0.01	0.68	3 0.57	0.66	0.39	0.53	0.52	0.46	0.61	0.69	0.55
Er	FUS-MS	0.01	1.89) 1.64	1.87	1.11	1.5	1.48	1.32	1.79	1.93	1.57
Im	FUS-MS	0.005	0.282	2 0.239	0.274	0.162	0.213	0.215	0.192	0.269	0.3	0.236
Yb	FUS-MS	0.01	1.88	3 1.54	1.78	1.11	1.34	1.41	1.28	1.78	1.94	1.52
LU	FUS-MS	0.002	0.287	0.232	0.279	0.171	U.199	0.225	0.214	0.256	0.294	0.231
	FUS-MS	0.1	4	+ 3.3	4	2.8	3.4	3.3	2.5	4.1	4.2	3.4
1 di W/	r ug-Mg	4	0.43	0.48	0.9	0.2	. 0.41	0.42	0.05	0.55	0.49	0.37
rv Ir	INAA NAA	1	< 1	<1	<1	< 1	<1	< 1	< 1	< 1	< 1	< 1
- Au	INAA	1	~ 1		21	- 1	- 1	~ 1	~ 1	- 1	- 1	- 1
На	INAA		< 1	<1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
TI	FUS-MS	0.05	0.11	0.05	0.06	0.07	0.09	0.06	< 0.05	0.13	0.11	< 0.05
Pb	TD-ICP	5	< f	5 5	< 5	< 5	7	< 5	< 5	< 5	< 5	< 5
Bi	FUS-MS	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Th	FUS-MS	0.05	2.25	5 2.07	2.05	2.03	2.87	2.05	2.13	2.92	2.58	1.87
U	FUS-MS	0.01	0.58	0.7	0.71	0.66	0.89	0.65	0.7	0.95	0.65	0.6

									= :	_	-	
Nombre			Metate	Metate	Huinumba	Hoya Urutzen	Cumburinos	Los Duraznos	Paracho	Durazno	Zarapo	Metate
l ipo			MSV	MSV	sc	sc	MSV	SC	Dome	SC	MSV	Shield
l ipo de muestra			Lava	Lava	Lava	Lava	Lava	Lava	Lava	Lava	Lava	Lava
Referencias			Este trabajo	Este trabajo	Este trabajo	Este trabajo	Este trabajo					
Numero de muestra	1		PAZ-1209	PAZ-1210	10000104 7	14330	10300	10332	14202-D	15349	10302	14309
Laulud			19-34 19.9	19-33 22.3	19-30 34.7	19 33 30.0	19-20 00.7	19 20 30.0	19 3321.0	19-26 25.9	19-30 34.2	19 32 40.0
Altitud (menone)			102-00 49.9	102-02 05.6	101-50 10.3	101 57 33.2	101-40 27.3	101 50 07.2	102 02 25.4	101-55 59.4	101-51 31.3	101 36 09.1
Milliou (ITISTITT)	Apolytical mothodo	Dotostion limits	2332	2 2303	2100	2400	2100) 14/3	3047	1/90	1990	2040
SiO2	FUSICE	0.01	50.42	50.44	50.52	50.52	50.5	50.55	50 F	50.62	50.63	50.6
A12O2	FUS-ICF	0.01	35.40	3 39.44	17.00	17.02	16.0	1770	17.15	16.02	16 50	17.6
A203 (T)	FUSICE	0.01	6.0	5 54	5.86	634	7.0	608	5.62	0.24	6.50	17.0
MnΩ	FUSICP	0.01	0.00	0.089	0.093	0.01	0.11	0.00	0.02	0.00	0.00	0.0
MaQ	FUSICP	0.01	3.34	1 2.08	3 34	3.85	3.5	3 37	2.86	331	3.54	32
CaO	FUS-ICP	0.01	6.75	5 6.43	6.86	6.77	6.34	6.41	6.07	5.85	6.05	7.0
Na2O	FUS-ICP	0.01	4.22	386	3.95	3.86	3.8	4 14	3.63	3.75	3.65	40
K20	FUS-ICP	0.01	1.7	7 141	1.28	1.36	1.7	2 163	1.81	1.75	1.75	17
TiO2	FUS-ICP	0.01	0.736	0.658	0.735	0 786	0.869	0 743	0.74	0.73	0.87	0.7
P205	FUS-ICP	0.01	0.3	3 0.19	0.21	0.21	0.26	0.27	0.18	0.26	0.28	0.3
LOI			-0.13	3 0.07	0.77	0.62	0.3	0.51	0.91	0.83	0.46	0.3
Total			100.7	98.0	99.7	100.1	100.4	100.0	97.7	98.5	99.5	i 100.
ppm												
ве	FUS-ICP	1		1	1	1		· 1	1	. 1	2	
5	ID-ICP	0.001	0.032	2 0.026	0.003	0.002	0.00	2 0.001	0.026	0.004	0.004	0.04
30		0.01	13.1	12	13.7	15.8	16.9	13.9	15.2	: 14.2	17.4	14
v 0-	FUS-ICP	5	127	117	114	143	130	132	131	114	130	13
0-	INAA	0.5	41.8	30.1	40	80.1	56.2	2 79	33	65	80.9	46.
CO Ni		U. I 1	16.1	14.9	17.5	21.6	18	21.7	14.6	18.8	18.6	1
NI Cu	TD-ICP	1	30	20	20	40	30	2 21	20) 38) 34	40	2
70		1	23	9 20 1 65		22	20	7 21	30	24	7	2
21 Ga	FUS-MS	1	10	+ 00	02	22	2	22	204	· /0	20	
Ga	FUS-MS	0.5	21	20	. 03	13	2	1 13	20	0.6		/ <u>2</u>
Δe	INIAA	1	2.4	1 1.0	0.3	1.3	2.	I I.J	1.4		24	· ·
Se .	INAA	0.5	- 0.	5 < 0.5		< 0.5	2.	< 0.5	< 0.5		. 2.	
Br	INAA	0.5	- 0.	3 - 0.5	< 0.5	< 0.5	- 0.	<0.5 < 0.5	< 0.5	<pre></pre>	< 0.5	< 0.
Rh	FUS-MS	1	2.0	3 20	15	20	< 0.1	5 - 0.5	40.0	1 5	< 0.5	2
Sr	FUS-ICP	2	1410	1084	13	636	29	742	492	27	34	158
Y	FUS-ICP	1	1:	3 12	1244	14	590	3 14	14	663	539	1.
Zr	FUS-ICP	1	173	2 116	12	126	34	124	133	16	59	14
Nb	FUS-MS	0.2	4.2	2 4	110	4.4	16	3 4.3	5.8	150	187	3.
Mo	FUS-MS	2	< 2	2 < 2	3.6	< 2	8.	< 2	3	5.5	9.7	<
Aq	MULT INAA / TD-ICP	0.5	< 0.5	5 < 0.5	< 2	< 0.5		2 < 0.5	0.7	< 2	< 2	2 < 0.
Cd	TD-ICP	0.5	< 0.5	5 < 0.5	< 0.5	< 0.5	< 0.5	5 < 0.5	< 0.5	< 0.5	< 0.5	i < 0.
ln	FUS-MS	0.1	< 0.1	1 < 0.1	< 0.5	< 0.1	< 0.5	5 < 0.1	< 0.1	< 0.5	< 0.5	i < 0.
Sn	FUS-MS	1		< ۱ < ۱	< 0.1	< 1	< 0.1	< 1	1	< 0.1	< 0.1	
Sb	INAA	0.1	0.1	1 < 0.1	< 1	0.3		0.1	< 0.1	< 1	1	2.
Cs	FUS-MS	0.1	0.9	9 0.5	< 0.1	0.4	< 0.1	0.6	1.2	< 0.1	< 0.1	0.
Ba	FUS-ICP	1	525	5 426	334	489	590	3 550	678	580	589	51
La	FUS-MS	0.05	23.2	2 17	17.5	17.3	32.2	2 20	21.6	20.8	55.5	25.
Ce	FUS-MS	0.05	50.1	1 35.7	36.5	34.8	44.6	6 40	40.7	42.5	62.7	55.
Pr	FUS-MS	0.01	5.91	1 4.4	4.59	4.4	6.3	5.11	4.91	5.14	- 13	5 7.
Nd	FUS-MS	0.05	24	1 18	18.7	17.5	27.4	l 19.9	19.9) 19.4	54.2	28.
Sm	FUS-MS	0.01	4.38	3 3.46	3.5	3.63	5.53	3.82	4.01	4.01	11.4	5.2
Eu	FUS-MS	0.005	1.26	6 0.993	1.13	1.09	1.6	1.18	1.09	1.16	3.41	1.5
Gd	FUS-MS	0.01	3.52	2 2.3	2.85	2.99	6.03	3.05	2.98	3.48	12.4	3.4
Ib	FUS-MS	0.01	0.47	0.34	0.42	0.48	0.88	3 0.49	0.5	0.54	1.84	0.4
Dy	FUS-MS	0.01	2.27	2.03	2.3	2.88	4.98	3 2.79	2.7	2.94	10.5	2.4
Ho	FUS-MS	0.01	0.44	4 0.38	0.43	0.57	0.99	0.56	0.52	0.56	2.08	0.4
Er	FUS-MS	0.01	1.26	o 1.05	1.17	1.62	2.75	1.57	1.54	1.59	5.66	i 1.
Im	FUS-MS	0.005	0.186	o 0.155	0.164	0.238	0.396	i 0.218	0.222	0.222	0.777	0.17
YD	FUS-MS	0.01	1.26	0.98	1.03	1.55	2.4	1.37	1.44	1.55	4.84	1.1
LU	FUS-MS	0.002	0.203	s 0.157	0.167	0.252	0.404	0.228	0.214	0.224	0.765	0.1
HT T-	FUS-MS	U.1		+ 2.7	2.9	2.7		2.8	3.4	3.3	4.5	3.
1.01	FUS-IND	0.01	0.29	0.24	0.19	0.12	0.56	0.12	0.43	0.39	0.57	0.2
vv Ir	INPA-	4	< 1	1 1	< 1	< 1	< 1		< 1	< 1	< 1	<
а А.,	INPA-	4	< 1	1 1	< 1	< 1	< 1		< 1	< 1	< 1	<
Au Ha	INPA-	4	< 1	1 1	< 1	< 1	< 1		< 1	< 1	< 1	<
пу ті	ELIC MC	0.05	< .	. <1	< 1	< 1	< .	<1	< 1	< 1	< 1	<
II Dh		U.UD	0.0	0.05	< 0.05	< 0.05	0.1	< 0.05	0.12	0.09	0.12	. 0.2
ru D:		0.1	< :	. <5	. <5	< 5	< :	5		< 5	· · · · ·	, <
DI	FUG-IND	0.05	< 0.1	· < 0.1	< 0.1	< 0.1	< 0.1	× 0.1	< 0.1	< 0.1	< 0.1	< 0.
Th	C111-2#062	V VD	2.94	+ 2.25	1./6	1.63	2.4.	1.80	2.85	2.24	2.8/	2.8

Tabla 5Continuad	ión														
Nombre			???	Cajete	Metate		Vietate	L	a Cantera	Las Varas		Santísimo	Guachan	Metate	Metate
Тіро			SC	SC	Shield		Shield	[Dome	SC		MSV	SC	Shield	Shield
l ipo de muestra			Lava	Lava	Lava		ava		ava	Lava		Lava	Lava	Lava	Lava
Referencias			Ownby, 2011.	Este trabajo	Este trat	ajo	Este trabajo	-	ste trabajo	Ownby, 201	1.	Este trabajo	Este trabajo	Este trabajo	Este trabajo
I atitud			10°25 //7	10926'30 5"	14320	2"	14302 10°31'33 6"		10034145 6"	10°27 58		14294 10°37'15 7"	10°38'27 8"	10°32'10 3"	19270
Longitud			102°08 14	102º01'18.3"	101°59'0	2.2"	102°00'17 7"	1	01°56'10 7"	102°05.67		102°12'09.3"	101°55'30.0"	101°58'46.6"	102°01'56.0"
Altitud (msnm)				?? 17	63	2740	2	2443	2347		??	2224	239	3 264	5 2066
Wt%	Analytical methods	Detection limits													
SiO2	FUS-ICP	0.01	5	9.7 59	.85	59.7	5	9.97	59.59		60	60.02	60.0	3 60.0	07 60.08
AI2O3	FUS-ICP	0.01	1	7.2 18	.04	17.64	1	7.71	18.88		17	16.67	17.1	6 17.6	51 17.68
Fe2O3 (T)	FUS-ICP	0.01	5	.57	5.8	5.32		5.61	5.47		5.51	5.78	6.1	8 5.1	5 5.49
MnO M=O	FUS-ICP	0.01		0.1 0.0	96	0.08		0.09	0.09		0.09	0.093	0.1	0 0.0	18 0.09
iwgO CaO	FUS-ICP	0.01	F	4.4 3	66	5.04		6.82	2.70		6.50	5.04	5.0	4 2.7	1 2.55
Na2O	FUS-ICP	0.01	3	95	4 1	4 12		4 04	3.83		3.88	3.58	3.6	5 41	2 3.94
K2O	FUS-ICP	0.01	1	.53	1.4	1.36		1.47	0.99		1.43	1.78	1.7	3 1.5	51 1.46
TiO2	FUS-ICP	0.01	C	.79 0.6	65	0.58		0.68	0.66		0.78	0.707	0.8	0 0.5	0.64
P2O5	FUS-ICP	0.01	C	.22 0	24	0.17		0.24	0.17		0.22	0.24	0.	2 0.1	5 0.21
LOI			C	.39 0	19	0.71		0.29	0.8	_	0.19	0.89	0.6	6 0.6	6 0.03
Total				10	D.1	98.5		99.6	99.4	- -	99.84	98.2	99.	9 98.	.0 99.3
ppm															
Be	FUS-ICP	1			1	1	_	1	1			1		1	1 1
S C-	ID-ICP	0.001		0.0	02	0.002	0	1027	0.003			0.022	0.0	4 0.03	0.03
SC V		5		125	2.9 08	11.9		116	12.0		120	14.3	10.	9 II. 8 10	.9 13.5
Cr	INAA	0.5		70 3	86	42.5		51.3	20.4		100	78	77	7 26	8 51
Co	INAA	0.1		27 1	5.2	17.4		15.9	14.1		34	19.3	20.	4 18.	.1 16.1
Ni	TD-ICP	1		80	23	25		23	14		91	45	5	1 2	4 25
Cu	TD-ICP	1		34	24	26		18	12		36	22	2	8 2	27 33
Zn	MULT INAA / TD-ICP	1			64	64		62	57			60	6	6 6	67
Ga G-	FUS-MS	1			21	22		21	23			18	1	8 2	20 21
Ge As	FUS-INS INAA	0.5			2.5	1.2		1.9	1.3			< 0.5	I.	0 I. 1 r	.0 I./ 1 <1
Se	INAA	0.5			< 1	< 0.5		< 0.5	< 0.5			< 0.5	< 0.	5 < 0.	.5 < 0.5
Br	INAA	0.5		<	0.5	< 0.5		2.5	< 0.5			2.9	< 0.	5 < 0.	.5 < 0.5
Rb	FUS-MS	1		<	0.5	19		20	7			31	3	5 2	24
Sr	FUS-ICP	2	:	520	20	778		1205	1113		530	571	49	1 80	1138
ř Zr	FUS-ICP	1		124	12	11		10	11		120	15	14	o 4 o	9 10
Nb	FUS-MS	0.2			12	22		3.3	1.8		130	5.8	5	7 2	2 38
Mo	FUS-MS	2			3.5	< 2		< 2	< 2			< 2	<	2 <	2 < 2
Ag	MULT INAA / TD-ICP	0.5			< 2	< 0.5		0.6	< 0.5			0.6	< 0.	5 < 0.	.5 0.6
Cd	TD-ICP	0.5		<	0.5	< 0.5		< 0.5	< 0.5			< 0.5	< 0.	5 < 0.	.5 < 0.5
In	FUS-MS	0.1		<	0.5	< 0.1		< 0.1	< 0.1			< 0.1	< 0.	1 < 0.	.1 < 0.1
Sn	FUS-MS	1		<	D.1	< 1		< 1	< 1			1	<	1	2 <1
Cs	FUS-MS	0.1		<	5 I D 1	0.1		0.5	< 0.1 0.2			0.2	0.	4 0. 1 0.	6 06
Ba	FUS-ICP	1		557 4	29	458		433	280		496	538	60	7 46	9 436
La	FUS-MS	0.05		19 1	9.1	14		19.2	11		18.9	20.8	19.	4 13.	.8 17.5
Ce	FUS-MS	0.05	3	9.8 4	1.4	27.9		39.1	23.6		39.2	41.1	37.	1 27.	.6 35.2
Pr	FUS-MS	0.01		4.6 5	.13	3.53		4.98	3.22		4.64	5.02	4.6	6 3.4	4 4.6
Nd	FUS-MS	0.05	1	8.3 Z	J.1 02	13.8		19.8	13.3		18.4	19.7	18.	b 14. c 20	.1 18.4
Fu	FUS-MS	0.005	1	.16 1	13	0.933		1.06	2.73		1 18	1.01	1.0	7 0.87	4 1
Gd	FUS-MS	0.01		3.5 2	.94	2.22		2.56	2.39		3.6	3.58	3.3	4 2.1	5 2.49
Tb	FUS-MS	0.01		0.6 0	.42	0.35		0.38	0.36		0.5	0.56	0.5	2 0.3	2 0.37
Dy	FUS-MS	0.01		3 2	.31	1.92		2.14	2.07		2.9	3.08	2.8	7 1.7	2 2.04
Ho E-	FUS-MS	0.01		0.6 0	44	0.38		0.4	0.43		0.6	0.61	0.5	5 0.3	3 0.41
Tm	FUS-INS FUS-MS	0.005		1.0 1	73	0.155	0	1.2	0.171		0.24	0.256	0.23	0 U.0 8 0.13	0 1.10
Yb	FUS-MS	0.003		1.6 1.	.08	0.100	0	1.12	1.1		1.5	1.63	1.4	9 0.15	19 1.1
Lu	FUS-MS	0.002	C	.23 0.1	62	0.16	0	.168	0.18		0.22	0.248	0.23	4 0.13	0.155
Hf	FUS-MS	0.1			3	2		2.9	2.1			3.5	3.	3 2.	.3 3
Та	FUS-MS	0.01		0	23	< 0.01		0.3	< 0.01			0.56	0.4	6 0.1	6 0.24
W	INAA	1			< 1	< 1		< 1	< 1			< 1	<	1 <	1 <1
и Ан	INAA	1			< 1 c 1	<1		< 1	< 1			< 1	< .	· <	1 <1
Hg	INAA	1			< 1	<1		< 1	<1			< 1	<	. ` 1 <	1 <1
TĬ	FUS-MS	0.05		0	.06	< 0.05	<	0.05	< 0.05			0.09	0.1	1 0.2	.0.07
Pb	TD-ICP	5			< 5	< 5		< 5	< 5			< 5		6 <	5 < 5
Bi	FUS-MS	0.1		<	D.1	< 0.1	•	< 0.1	< 0.1			< 0.1	< 0.	1 < 0.	.1 < 0.1
in Li	FUS-MS FUS-MS	0.05		2	43 72	1.79		2.22	1.37			2.44	2.5	4 1. 4 0.6	.9 2.14 31 0.73
-				0		0.00			0.41			0.3	0.0	. 0.0	0.75

Tabla 5Continuad	ción											
Nombre			Caraquitaro	Irepu	Paracho	Pacaracua	Paracho	Hueratiro	Paracho	Paracho	Paracho	Metate
Tipo Tipo			MSV	SC	Dome	MSV	Dome	MSV	Dome	Dome	Dome	Shield
Referencias			Este trabaio	Eate trabaio	Lava Este trabaio	Eate trabaio	Lava Este trabaio	Este trabaio	Este trabaio	Eate trabaio	Lava Este trabaio	Este trabaio
Número de muestra	1		14315	14323	14262-A	ZAC-13209	14261-C	14321	14261-A	13261-B	14263	14282
Latitud			19°35'55.5"	19°37'05.4"	19°35'21.8"	19°42'05.7"	19°35'11.5"	19°34'03.31"	19°35'11.5"	19°35'11.5"	19°35'23.4"	19°34'33.9"
Longitud			101°58'02.00"	101°54'22.7"	102°02'25.4"	101°59'52.0"	102°02'17.1"	101°55'18.7"	102°02'17.1"	102°02'17.1"	102°02'40.0"	101°59'01.6"
Altitud (msnm)			2336	5 2417	3347	2250	3116	2469	3116	3116	3249	2314
Wt%	Analytical methods	Detection limits	co 4	co.40	C0 47	60.47	c0.04	co 40	CO 47	CO 40	CO 54	co co
5IU2 AI2O3	FUS-ICP	0.01	16	1 00.12	17	17 35	17.03	17.27	16 74	00.40	17.28	16.7
Fe2O3 (T)	FUS-ICP	0.01	5.6	2 5.76	5.62	5.66	5.71	5.94	5.66	5.67	5.62	5.54
MnO	FUS-ICP	0.01	0.09	0.09	0.09	0.098	0.09	0.09	0.08	0.08	0.09	0.09
MgO	FUS-ICP	0.01	3.1	2.64	2.92	2.53	2.94	2.78	2.92	2.87	2.85	2.98
CaO	FUS-ICP	0.01	6.02	2 5.87	6.1	5.41	6.12	6	6.23	6.12	6.08	5.96
Na2O Kao	FUS-ICP	0.01	3.74	3.85	3.64	4.29	3.64	3.59	3.69	3.75	3.66	3.78
TiO2	FUS-ICP	0.01	0.6	3 0.74	0.73	0.769	0.74	2.07	0.61	0.73	0.74	0.65
P205	FUS-ICP	0.01	0.22	0.22	0.19	0.25	0.2	0.25	0.19	0.2	0.2	0.22
LOI			0.4	5 0.53	0.76	1.04	0.82	1.1	1.01	0.5	0.74	1.74
Total			98.0	98.6	98.3	98.4	98.7	99.2	98.4	99.4	98.9	98.2
ppm Be	ELIS-ICP	1		. 1	1	1	1	1	1	1	1	1
S	TD-ICP	0.001	0.046	0.035	0.031	0.022	0.028	0.035	0.026	0.026	0.026	0.036
Sc	INAA	0.01	13.9) 13.1	15.3	12.5	15	13.6	14.4	14.5	14.3	13.3
V	FUS-ICP	5	111	122	129	116	129	123	128	128	127	111
Cr	INAA	0.5	67.4	23	17.2	13.9	30	16.8	12.4	15.9	30.6	70.6
Co		0.1	19) 14.9	15.9	14	16.5	15.5	16.2	16.5	17.6	18
Cu	TD-ICP	1) 10) 18	25	26	20	23	27	20	20	27
Zn	MULT INAA / TD-ICP	1	6	67	65	77	60	66	58	63	64	62
Ga	FUS-MS	1	18	3 19	19	19	19	19	19	20	19	20
Ge	FUS-MS	0.5	1.6	6 1.8	1.3	1.4	1.5	1.6	1.3	1.4	1.3	1.1
As	INAA	1	< 1	<1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Se	INAA	0.5	< 0.5	> < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Rb	FUS-MS	1	- 0.	32	42	2.7	< 0.5	< 0.5	< 0.5	42	42	4.0
Sr	FUS-ICP	2	644	628	490	568	486	502	472	487	495	672
Y	FUS-ICP	1	10	3 16	13	15	13	18	14	13	14	14
Zr	FUS-ICP	1	133	3 153	132	176	132	167	132	127	133	140
ND Mo	FUS-MS FUS-MS	0.2	3.	2.9	5.5	0.5	5.5	4.2	5.7	5.4	5./	5.6
An	MULT INAA / TD-ICP	0.5	< 0.5	5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.8	< 0.5	0.5
Cd	TD-ICP	0.5	< 0.5	5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
In	FUS-MS	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Sn	FUS-MS	1	< '	1	1	1	1	1	1	1	1	< 1
Sb	INAA ELIS MS	0.1	0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.5	< 0.1	< 0.1	< 0.1	0.3
Ba	FUS-ICP	1	604	5 0.0 I 544	655	591	661	657	654	660	677	566
La	FUS-MS	0.05	19.3	18.7	20.1	21.4	20	26.3	20	20.6	20.8	20.9
Ce	FUS-MS	0.05	38	3 35.8	37.8	43	38.5	43.7	37.5	38.4	38.7	41.8
Pr	FUS-MS	0.01	4.8	4.71	4.82	5.45	4.81	5.62	4.63	4.75	4.87	5.2
Nd	FUS-MS	0.05	19	9 19.2	18.7	20.5	19	21.8	18.5	17.9	18.2	20.1
Eu	FUS-MS	0.005	3.0	5 4.01	0.995	4.00	0.996	4.21	3.57	1.02	1.03	1.16
Gd	FUS-MS	0.01	3.02	3.29	3.07	3.47	3.01	3.82	2.75	3.11	2.93	3.3
Tb	FUS-MS	0.01	0.45	5 0.53	0.44	0.53	0.46	0.58	0.45	0.47	0.46	0.54
Dy	FUS-MS	0.01	2.58	3 2.86	2.4	3.06	2.54	3.22	2.64	2.63	2.68	2.82
Ho	FUS-MS	0.01	0.4	3 0.56	0.47	0.59	0.49	0.62	0.5	0.5	0.52	0.51
Tm	FUS-MS	0.005	0.20	0.246	0.211	0.258	0.218	0.244	0.205	0.209	0.219	0.227
Yb	FUS-MS	0.01	1.30	5 1.62	1.44	1.7	1.47	1.63	1.34	1.27	1.37	1.47
Lu	FUS-MS	0.002	0.189	0.239	0.216	0.278	0.221	0.244	0.208	0.188	0.207	0.226
Hf	FUS-MS	0.1	3.1	3.3	3.2	4.2	3.4	3.7	3.2	3	3.1	3.3
18	FUS-MS	0.01	0.34	0.37	0.41	0.52	0.5	0.44	0.41	0.39	0.4	0.44
vv Ir	INAA	1	~ ~ ~	<1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Au	INAA	1	<.	<1	< 1	<1	< 1	< 1	<1	< 1	<1	<1
Hg	INAA	1	< *	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
TI	FUS-MS	0.05	0.1	0.1	0.14	0.13	0.19	0.13	0.12	0.17	0.17	0.09
Pb	TD-ICP	5	< :	5 5	7	6	8	7	7	5	7	10
Ві	FUS-MS	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
U	FUS-MS	0.05	2.64	► 2.81) 0.85	2.79	3.3	2.82	2.65	2.76	2.83	0.92	2.81
-			0.00	5.00	2.00		2.00	0.0	2.00	0.0		2.00

Tabla 5Continuad	ción											
Nombre			Angammuco	Metate	Molcajete	Pilón	Las Varas	Janamo	La Virgen	Querenda	Metate	???
Tipo			Sitio Arqueológico	Snield	50	MSV	MSV	50	MSV	MBV	Snield	Coulee
ripo de muestra Referencias			LaVa Este trabaio	Lava Este trabaio	Lava Este trabaio	Lava Este trabaio	Lava Ownby 2011	Lava Este trabaio				
Número de muestra			PAZ-1501	14299	15354	ZAC-13216	Uk51a	15392	14322	14313	14266	15346
Latitud			19°34'06.5"	19°32'1.0"	19°29'55.3"	19°42'30.6"	19°27.67	19°34'49.1"	19°34'01.3"	19°37'31.5"	19°29'24.9"	19°33'58.5"
Lonaitud			101°30'00.5"	101°59'40.9"	101°48'43.3"	101°52'51.6"	102°07.50	102°07'56.2"	101°54'07.2"	101°56'12.7"	102°01'55.7"	101°50'27.4"
Altitud (msnm)			2103	3 2645	2154	2760	??	2345	2635	2440	2004	2515
Wt%	Analytical methods	Detection limits										
SiO2	FUS-ICP	0.01	60.64	4 60.73	60.76	60.78	60.8	60.82	60.85	60.87	60.92	60.94
AI2O3	FUS-ICP	0.01	17.5	5 18.15	16.57	16.75	16.9	17.19	18.01	18.54	17.09	17.67
Fe2O3 (T)	FUS-ICP	0.01	6.08	3 5.69	5.69	5.62	5.33	5.72	5.5	5.83	5.53	5.9
MnO	FUS-ICP	0.01	0.05	9 0.09	0.09	0.091	0.09	0.094	0.09	0.05	0.09	0.093
Nigo CaO	FUS-ICP	0.01	5.50	3 5.01	5.57	5.00	5.83	5.05	2.27	2.30	6.04	5.32
Na2O	FUS-ICP	0.01	3.6	3 4.02	3.85	3.5	3.87	3.85	3.85	4 15	3.93	3.9
K20	FUS-ICP	0.01	1.59	1.45	1.76	2.03	1.54	1.75	1.83	1.55	2.09	1.36
TiO2	FUS-ICP	0.01	0.76	6 0.66	0.65	0.684	0.76	0.685	0.63	0.68	0.67	0.652
P2O5	FUS-ICP	0.01	0.17	7 0.21	0.2	0.21	0.21	0.21	0.22	0.15	0.29	0.17
LOI			-0.06	6 0.24	0.87	0.81	0.25	0.05	1.38	0.56	0.32	0.18
Total			100.5	5 100.7	99.3	98.6	98.76	100	98.9	100.3	99.4	100.4
0000												
Be	FUSJCP	1		1 1	1	1		1	1	1	2	1
s	TD-ICP	0.001	0.002	. 0.026	0.005	0.025		0.003	0.029	0.052	0.027	0.003
Sc	INAA	0.01	14.8	3 12.2	13.4	14.3		15.2	10.2	13.4	12.7	13.7
V	FUS-ICP	5	131	1 114	105	121	125	117	113	131	110	113
Cr	INAA	0.5	86.1	1 48.9	75.7	58.8	53	118	< 0.5	< 0.5	44.2	67.7
Co	INAA	0.1	20.1	1 18.5	17.1	17.7	32	20.2	14.2	16.8	15.3	16.6
Ni	TD-ICP	1	34	1 23	51	32	77	56	5	17	31	36
Cu Zo	ID-ICP MULTINAA / TD ICD	1	2.	3 49 1 63	29	24	40	2/	19	30	29	19
Ga	FUS-MS	1	2	1 02	10	12		18	20	102	. 08	21
Ge	FUS-MS	0.5	1.3	2 1.9	1.1	1.3		0.7	1.6	1.5	1.5	0.4
As	INAA	1	< '	<1	2.8	2		1.1	< 1	< 1	< 1	2.2
Se	INAA	0.5	< 0.5	5 < 0.5	< 1	< 0.5		< 1	< 0.5	< 0.5	< 0.5	< 1
Br	INAA	0.5	< 0.5	5 4.7	< 0.5	< 0.5	i i i	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Rb	FUS-MS	1	33	3 20	< 0.5	37		< 0.5	23	30	42	4.2
Sr	FUS-ICP	2	551	1 1083	35	474	484	36	663	570	772	17
Ŷ	FUS-ICP	1	14	1 11	529	14		559	16	13	16	761
∠r Nb	FUS-ICP FUS-MS	1	125	5 125	15	153	136	10	132	102	100	12
Mo	FUS-MS	2	< 2	> 5.5	5	< 2		53	< 2	< 2	< 2	3.2
Aq	MULT INAA / TD-ICP	0.5	< 0.5	5 0.6	2	< 0.5		< 2	< 0.5	< 0.5	0.5	< 2
Cď	TD-ICP	0.5	< 0.5	5 < 0.5	< 0.5	< 0.5		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
In	FUS-MS	0.1	< 0.1	1 < 0.1	< 0.5	< 0.1		< 0.5	< 0.1	< 0.1	< 0.1	< 0.5
Sn	FUS-MS	1		1 2	< 0.1	< 1		< 0.1	< 1	< 1	1	< 0.1
Sb	INAA	0.1	< 0.1	1 < 0.1	< 1	< 0.1		< 1	0.4	0.7	< 0.1	< 1
Cs	FUS-MS	0.1	0.8	3 0.5	< 0.1	0.8		0.5	0.5	1.1	1	< 0.1
Ba	FUS-ICP	1	562	2 436	657	685	5/4	633	583	602	786	432
Ce	FUS-MS	0.05	36.1	1 361	38.6	38.6	42.3	39.3	20.8	26.1	59	27.7
Pr	FUS-MS	0.01	4.32	2 4.8	4.6	4.85	4.9	4.79	4.59	3.43	7.57	3.56
Nd	FUS-MS	0.05	16.7	7 18.3	17.8	18.7	19.3	17.9	18.3	14.1	29.1	14.4
Sm	FUS-MS	0.01	3.69	3.57	3.41	3.62	3.9	3.61	3.71	3.08	5.36	2.85
Eu	FUS-MS	0.005	1.04	¥ 1.07	1.06	1.09	1.15	1.05	0.969	0.94	1.47	1
Gd	FUS-MS	0.01	2.86	6 2.42	2.96	3.16	3.5	3.42	3.04	2.69	4	2.49
ть	FUS-MS	0.01	0.46	5 0.37	0.48	0.49	0.6	0.51	0.47	0.43	0.58	0.39
Dy	FUS-MS	0.01	2.73	3 2.08	2.66	2.8/	3	2.80	2.62	2.42	3.09	2.25
Fr	FUS-INS FUS-MS	0.01	0.50	0.39	0.49	0.55	17	0.57	0.49	0.47	0.50	0.42
Tm	FUS-MS	0.005	0.22	0 151	0.196	0.226	0.25	0.244	0.213	0.19	0.223	0 155
Yb	FUS-MS	0.01	1.4	0.97	1.25	1.49	1.6	1.53	1.39	1.29	1.46	1.03
Lu	FUS-MS	0.002	0.225	5 0.152	0.194	0.247	0.23	0.222	0.212	0.191	0.218	0.191
Hf	FUS-MS	0.1	2.8	3 3	3.4	4		3.8	3.1	2.5	4	2.4
Та	FUS-MS	0.01	0.22	2 0.29	0.34	0.45	i i	0.36	0.24	0.22	0.64	0.22
w	INAA	1	< 1	<1	< 1	< 1		< 1	< 1	< 1	< 1	< 1
lr Au	INAA	1	< 1	1 <1	< 1	< 1		< 1	< 1	< 1	< 1	< 1
AU	INAA	1	< -	· <1	< 1	< 1		< 1	<1	< 1	< 1	<1
riy Ti	EUS-MS	0.05	~ ~	i <1 S ∠0.05	< 1	< 1 0.42		< 1 0.40	< 1	< 1 0.00	< 1	< 1
Pb	TD-ICP	5	0.00	5 7	< 5	U.12		0.12	< 5	0.00	U.17	< 5
Bi	FUS-MS	0.1	< 0.1	, I < 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Th	FUS-MS	0.05	2.3	1 2.02	2.63	2.68		2.08	1.72	2.15	3.26	1.61
U	FUS-MS	0.01	0.76	0.66	0.8	0.78		0.73	0.61	0.72	1.2	0.49

Nember Nember Name	Tabla 5Continuad	ción											
Tep Data Data <thd< th=""><th>Nombre</th><th></th><th></th><th>Gato</th><th>Metate</th><th>Paracho</th><th>Paracho</th><th>Parachito</th><th>Metate</th><th>Mari Juata</th><th>Hoya de Agua</th><th>Angaruen</th><th>San Marcos</th></thd<>	Nombre			Gato	Metate	Paracho	Paracho	Parachito	Metate	Mari Juata	Hoya de Agua	Angaruen	San Marcos
Interview <	Tipo			Dome	Shield	Dome	Dome	MSV	Shield	MSV	sc	MSV	MSV
Numericanses Statist	lipo de muestra			Dique	Lava	Lava	Lava	Lava	Lava	Lava	Bomp	Lava	Lava
Linkar Linkar <thlinkar< th=""> <thlinkar< th=""> <thlinkar< td="" th<=""><td>Número de muestra</td><td></td><td></td><td>15341</td><td>15331</td><td>14264</td><td>14278_R</td><td>14317</td><td>14281</td><td>14279_A</td><td>14316</td><td>15340</td><td>14297</td></thlinkar<></thlinkar<></thlinkar<>	Número de muestra			15341	15331	14264	14278_R	14317	14281	14279_A	14316	15340	14297
Line product Line product<	Latitud			19°40'49.2"	19°32'19 7"	19°35'44 8"	19°37'27.6"	19°34'06.2"	19°33'29.3"	19°39'14 7"	19°33'45 9"	19941'10.1"	19°40'21 7"
Mind registry Note Application to Description Part of the second sec	Longitud			101°49'58.7"	101°59'34.2"	102°01'48.1"	102°03'41.8"	102°03'34.6"	102°01'22.5"	102°07'16.9"	102°03'36.3"	101°50'04.2"	101°59'12.61"
NND. Amplical model Control model <td>Altitud (msnm)</td> <td></td> <td></td> <td>2688</td> <td>3 2910</td> <td>2810</td> <td>2292</td> <td>2466</td> <td>2298</td> <td>2219</td> <td>2470</td> <td>) 2617</td> <td>2212</td>	Altitud (msnm)			2688	3 2910	2810	2292	2466	2298	2219	2470) 2617	2212
SAC PLS-DP DD1 61 61.01 61.30 61.23 61.41 61.36 62.42 61.37 61.4 61.46 61.34<	Wt%	Analytical methods	Detection limits										
ACCOLON HOSEOP BUD Statu HOSE	SiO2	FUS-ICP	0.01	61	61	61.01	61.03	61.26	61.37	61.4	61.46	61.54	61.7
NDO FUSCP CO1 DO09 CO00 CO00 <thc< td=""><td>AI2O3</td><td>FUS-ICP</td><td>0.01</td><td>16.33</td><td>5 17.61</td><td>16.72</td><td>17.04</td><td>17.33</td><td>17.17</td><td>17.33</td><td>17.02</td><td>2 16.74</td><td>17.83</td></thc<>	AI2O3	FUS-ICP	0.01	16.33	5 17.61	16.72	17.04	17.33	17.17	17.33	17.02	2 16.74	17.83
mpd rest res rest rest r	MnO	FUS-ICP	0.01	0.099	0.083	0.02	0.09	0.09	0.09	0.09	0.00	0.00	0.08
ChO PUS-PP 0.01 5.88 6.33 5.81 5.91 6 6.44 5.23 5.94 5.42 5.94 NOZ FUS-PP 0.01 77 3.80 7.77 3.80 3.87 3.80 3.89 3.84 3.87 3.80 3.89<	MaO	FUS-ICP	0.01	3.26	2.92	2.92	2.66	2.92	3.2	2.81	2.98	2.72	2.55
NACC PLS-CP 0.01 3.70 4.07 3.66 3.73 3.67 3.69 3.66 3.14 3.17 3.69 3.66 3.14 3.17 3.67 3.69 3.64 3.78 3.67 3.69 3.64 3.78 3.67 3.69 3.64 3.64 0.79 0.60 0.64 <	CaO	FUS-ICP	0.01	5.88	6.33	5.81	5.91	6	6.14	6.32	5.99	5.42	5.94
KCO FIS-SCP 0.01 1.73 1.45 1.77 1.95 1.72 1.86 1.77 1.78 1.77 1.78 1.77 1.78 1.77 1.78 1.77 1.78 1.77 1.78 1.77 1.78 1.77 1.78 1.77 1.78 1.77 1.78 1.77 1.78 1.77 1.78 1.78 <	Na2O	FUS-ICP	0.01	3.73	4.07	3.65	3.73	3.67	3.89	3.69	3.64	3.78	3.87
IACC PIS-CP Diff Diff <thdiff< th=""> Diff Diff <t< td=""><td>K20</td><td>FUS-ICP</td><td>0.01</td><td>1.79</td><td>1.45</td><td>1.97</td><td>1.95</td><td>1.87</td><td>1.9</td><td>1.72</td><td>1.89</td><td>) 1.7</td><td>1.98</td></t<></thdiff<>	K20	FUS-ICP	0.01	1.79	1.45	1.97	1.95	1.87	1.9	1.72	1.89) 1.7	1.98
PACH Pach Doi Cold Doi Cold Doi Cold Doi Doi Dois Cold Dois Dois Cold Dois Dois Cold Dois	102	FUS-ICP	0.01	0.75	0.592	0.72	0.74	0.74	0.66	0.66	0.71	0.63	0.60
Triang 1000 <	101	FU3-ICP	0.01	0.21	0.17	0.19	0.19	0.16	0.24	0.19	0.10	0.17	0.16
pm s	Total			99.6	99.6	98.6	98.9	99.9	100.3	99.6	99.6	i 99.5	100.0
IPI USACP I I I I <td></td>													
Throp 0.001 0.003 0.002 0.003 0.004 0.001 0.001 0.001 V FUR-CP 5 119 115 112 119 115 112 113 116 113 116 112 118 V FUR-A 0.5 62 305 225 56.3 66.1 64.6 65.2 27 CN FUR-A 0.1 18 20.5 22.5 56.3 66.1 65.5 7.7 12.8 27 29 20.5 27.2 20.5 21.2 29 39 15 21 37 2.2 27 2.4 14 19 19 19 20 20 17 1.4 1.4 2.5 2.4 1.5 1.1 1.4 1.4 1.4 1.5 2.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 <td< td=""><td>Be</td><td>FUS-ICP</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td> 1</td><td>1</td></td<>	Be	FUS-ICP	1	1	1	1	1	1	1	1	1	1	1
Sec NNA 0.01 15.2 12.2 14.3 19.7 13.1 12.6 14.4 14.8 12.8 CA NNA 0.5 15.2 13.2 13.7 13.7 13.5 13.5 14.6 14.2 13.8 CA NNA 0.5 1.2	S	TD-ICP	0.001	0.003	0.005	0.025	0.023	0.053	0.164	0.024	0.051	0.003	0.021
V Fusis.CP 5 119 115 122 119 117 115 113 116 112 118 C NAA 0.1 16 202 205 25 326 181 181 181 171 152 151 Co TDACP 1 28 181	Sc	INAA	0.01	15.2	12.2	14.3	13.7	13.7	13.1	12.6	14	14.8	12.8
Cr NAA 0.5 62 90.2 9.5 9.5 9.3 96.1 46.6 9.1 10.4 10.3	V	FUS-ICP	5	119) 115	122	119	117	115	113	116	5 112	118
Co MAA 0.1 16 20.5 14.3 16.5 18 15.1 17.1 13.9 16 No TD/CP 1 33 24 33 27 33 46 23 37 84 45 37 17 173 173 Ca FUSANS 1 20 22 17 18 17 173 174 174 174 174 174 174 174 174 175 174 174 175 174 174 175 174 174 175 174 174 175 175 174 175 175 174 175 175 174 175 175 174 175 175 174 175 175 174 175 175 174 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 <td>Cr</td> <td>INAA</td> <td>0.5</td> <td>62</td> <td>39.2</td> <td>30.5</td> <td>25</td> <td>36.3</td> <td>68.1</td> <td>46.6</td> <td>53.1</td> <td>52.8</td> <td>21</td>	Cr	INAA	0.5	62	39.2	30.5	25	36.3	68.1	46.6	53.1	52.8	21
m Duce i 32 32 21 83 46 21 83 24 12 MALTNAV/TOXP 1 68 63 76 64 66 61 Ga FUSANS 0.5 0.8 1.3 1.2 1.6 1.7 1.9 1.8 1.7 0.5 Ga FUSANS 0.5 0.8 1.3 1.4 1.4 2.2 7 4.1 4.1 2.9 4.1 AN NA 1 3.1 4.1 4.1 2.2 7 4.1 4.1 2.9 4.1 Se NAA 0.5 4.15 4.05 4.	Co	INAA TD. ICD	0.1	16	20.5	14.3	16.6	18	18	15.1	17.1	13.9	16
Date MLT NUMCP 1 66 63 62 66 66 67 64 66 61 Ge FUSANS 1 20 20 10 10 20 20 16 19 20 20 16 19 19 Ge FUSANS 0.5 0.8 1.3 1.2 1.6 1.7 1.9 1.8 1.7 0.5 1.2 1.5 Se NAA 0.5 4.1 4.5 4.05<	NI	TD-ICP	1	31	24	33	27	36	40	25	30	7 22	17
RUSANG 1 20 22 19 19 19 20 20 18 19 19 Ge FUSANS 0.5 0.6 1.1	Zn	MULT INAA / TD-ICP	1	69	63	62	68	66	63	76	64	L 66	61
Ge FUS-MS 0.5 0.8 1.3 1.2 1.6 1.7 1.8 1.7 0.5 1.9 Se NAA 0.5 <1.1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	Ga	FUS-MS	1	20) 22	19	19	19	20	20	18	3 19	19
Ae INAA 1 3.1 < 1 < 1 < 2 2 7 < 1 < 1 2.9 < 1 Br INAA 0.5 < c.05	Ge	FUS-MS	0.5	0.8	1.3	1.2	1.6	1.7	1.9	1.8	1.7	0.5	1.9
Se NAA 0.5 < 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 2 < 0.5 RD NAA 0.5 < 0.5	As	INAA	1	3.1	< 1	< 1	2	2	7	< 1	< 1	2.9	< 1
Br NVA 0.5 < < 0.5 2 < < 0.5 < < 0.5 < < 0.5 < 2.0 < < 0.5 < 2.0 < < 0.5 < 2.0 < < 0.5 < 2.0 < < 0.5 < 2.0 < < 0.5 < 2.0 < < 0.5 < 2.0 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.	Se	INAA	0.5	< 1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5 2	< 0.5
PLOS PCD 1 C 03 2 2 4 40 4 75 3 4 25 3 9 C 2 3 9 C 2 3 2 2 32 SY FUS/CP 1 605 00 140 615 139 141 66 119 Mb FUS/AS 2 65 2 2 2 2 2 2 2 2 3 3 3 3 4 6 10 Mb FUS/AS 2 65 2 <th2< th=""> 2 2</th2<>	Br	INAA FUG MG	0.5	< 0.5) 2	< 0.5	< 0.5	< 0.5	< 0.5	4	< 0.5	< 0.5	2.4
vFUSACP15051010131416161614145091127FUSACP1169214214615016513914716119NbFUSANS0.21512.56.854.96.43.74.61123.9MoFUSANS26.6 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 <	Sr	FUS-INS FUS-ICP	2	< 0.5	22	40	40	40	689	792	472	9 50.5	52
PLS-MS 1 16 92 146 150 165 139 147 16 139 Mo FUS-MS 2 66 -22 -2	Y	FUS-ICP	1	505	10	13	14	16	16	14	14	509	11
Nb FUS-MS 0.2 151 2.5 6.8 5 4.9 6.4 3.7 4.6 122 3.9 Ag MLLT NAV, TD-CP 0.5 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 <2 <2 <2 <2 <2 <2 <2 <2 <td>Zr</td> <td>FUS-ICP</td> <td>1</td> <td>16</td> <td>92</td> <td>142</td> <td>146</td> <td>150</td> <td>165</td> <td>139</td> <td>147</td> <td>16</td> <td>119</td>	Zr	FUS-ICP	1	16	92	142	146	150	165	139	147	16	119
Mo FUS-MS 2 66 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	Nb	FUS-MS	0.2	151	2.5	6.8	5	4.9	6.4	3.7	4.6	6 122	3.9
Ag MLT NNA/TD-KDP 0.5 < 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 <0.6 1 < 0.1 < 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Mo	FUS-MS	2	6.6	i < 2	< 2	< 2	2	< 2	< 2	< 2	2 5.1	< 2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ag	MULT INAA / TD-ICP	0.5	< 2	< 0.5	< 0.5	0.5	< 0.5	0.8	0.5	< 0.5	< 2	< 0.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ca	TD-ICP	0.5	< 0.5	> < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
NA0.1 $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$	Sn	FUS-MS	1	< 0.0	< 1	- 0.1	< 1	- 0.1	- 0.1	< 1	< 1	< 0.1	< 1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sb	INAA	0.1	< 1	< 0.1	< 0.1	0.4	0.4	2.1	< 0.1	0.8	3 1	< 0.1
Ba FUS-NCP 1 662 467 674 669 655 629 490 663 703 883 La FUS-NS 0.05 222 14.3 21.3 20.1 25.1 17.6 19.3 25 19.5 Ce FUS-NS 0.01 5.44.8 28.5 39.6 40.4 38.1 48.6 34.6 36.7 43.3 34.4 Nd FUS-NS 0.01 4.46 20.5 13.8 20 18.9 18.6 23.7 17.7 17.9 21.5 16.5 Sm FUS-NS 0.01 4.46 0.89 1.02 1.05 1.02 1.34 1.07 1 121 0.93 Gd FUS-NS 0.01 0.56 2.09 3.11 2.21 3.28 3.62 2.77 2.98 2.03 Dy FUS-NS 0.01 0.65 0.29 0.55 0.56 0.49 0.63 0.58 0.049	Cs	FUS-MS	0.1	< 0.1	0.6	1.3	1.2	1.2	0.5	0.6	1.2	2 0.4	1
La FUS-MS 0.05 222 14.3 21.3 21.3 20.1 25.1 17.6 19.3 25 19.5 Ce FUS-MS 0.05 44.8 25.5 39.6 40.4 38.1 48.6 34.6 34.5 54.3 34.4 Pr FUS-MS 0.01 5.44 36.3 4.95 4.88 4.86 6.21 4.51 4.55 5.49 4.34 Md FUS-MS 0.01 4.46 2.9 3.76 3.71 3.84 4.48 3.49 3.62 4.16 2.93 Gd FUS-MS 0.005 1.23 0.899 1.02 1.05 1.02 1.34 1.07 1 1.21 0.93 Gd FUS-MS 0.01 0.56 2.09 3.11 2.91 3.28 3.62 2.77 2.98 2.36 Dy FUS-MS 0.01 0.50 0.246 0.55 0.45 0.49 0.53 0.48 <td< td=""><td>Ba</td><td>FUS-ICP</td><td>1</td><td>652</td><td>2 467</td><td>674</td><td>669</td><td>655</td><td>629</td><td>490</td><td>663</td><td>3 703</td><td>683</td></td<>	Ba	FUS-ICP	1	652	2 467	674	669	655	629	490	663	3 703	683
Ce FUS-MS 0.05 44.8 22.5 33.5 40.4 38.1 48.0 38.6 36.7 43.3 34.4 Nd FUS-MS 0.01 54.4 36.3 4.95 4.84 86.8 6.21 4.51 4.55 5.49 4.34 Nd FUS-MS 0.01 4.66 2.9 3.76 3.71 3.84 4.48 3.49 3.62 4.16 2.9 Eu FUS-MS 0.001 3.65 2.09 3.11 2.91 3.28 3.62 2.72 3.01 3.67 2.86 Cd FUS-MS 0.01 0.54 0.34 0.46 0.55 0.45 0.49 0.53 0.55 Dy FUS-MS 0.01 0.66 0.38 0.51 0.52 0.55 0.49 0.53 0.54 0.33 0.58 0.44 0.53 0.58 0.49 0.53 0.58 0.44 0.53 0.58 0.44 0.53 0.58	La	FUS-MS	0.05	22.2	2 14.3	21.3	21.3	20.1	25.1	17.6	19.3	3 25	19.5
Ind FUS MS 0.01 0.03 4.03 4.03 4.03 0.02 4.03 4.04 3.03 4.04 2.03 7.03 4.04 4.48 3.49 3.62 4.16 2.93 Gd FUS-MS 0.01 3.65 2.09 3.11 2.91 3.28 3.62 2.77 2.301 3.67 2.35 Dy FUS-MS 0.01 0.54 0.34 0.48 0.46 0.55 0.45 0.49 0.53 0.35 0.45 0.49 0.53 0.35 0.45 0.49 0.53 0.58 0.04 0.53 0.58 0.04 0.53 0.58 0.04 0.53 0.58 0.04 0.53 0.58 0.04 0.53 0.58 0.04 0.53 0.5	Dr	FUS-INS FUS-MS	0.05	44.c	20.0	39.0	40.4	30.1	40.0	34.0	30.7	43.3	34.4 4 34
Sm FUS-MS 0.01 4.46 2.9 3.76 3.71 3.84 4.48 3.49 3.62 4.16 2.9 Eu FUS-MS 0.005 1.23 0.899 1.02 1.05 1.02 1.34 1.07 1 1.21 0.933 Gd FUS-MS 0.01 3.65 2.09 3.11 2.91 3.28 3.62 2.72 3.01 3.67 2.36 Dy FUS-MS 0.01 3.054 0.44 0.46 0.5 0.55 0.45 0.49 0.53 0.58 0.43 Ho FUS-MS 0.01 1.66 0.38 0.51 0.52 0.55 0.56 0.49 0.53 0.58 0.44 Tm FUS-MS 0.001 1.66 0.212 0.214 0.23 0.26 0.13 1.41 1.62 1.33 1.31 1.37 1.06 Lu FUS-MS 0.01 1.66 1.42 1.36 1.31	Nd	FUS-MS	0.05	20.5	13.8	4.33	18.9	18.6	23.7	17.7	17.9	21.5	16.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sm	FUS-MS	0.01	4.46	5 2.9	3.76	3.71	3.84	4.48	3.49	3.62	4.16	2.9
Gd FUS-MS 0.01 3.65 2.09 3.11 2.91 3.28 3.62 2.72 3.01 3.67 2.36 Dy FUS-MS 0.01 0.54 0.34 0.48 0.66 0.55 0.45 0.49 0.61 0.35 Dy FUS-MS 0.01 3.03 1.98 2.65 2.67 2.84 2.92 2.55 2.7 2.98 2.03 Ho FUS-MS 0.01 1.64 1.07 1.45 1.46 1.56 0.46 1.3 1.45 1.53 1.14 Tm FUS-MS 0.01 1.66 1.03 1.42 1.36 1.41 1.62 1.33 1.31 1.37 1.06 Lu FUS-MS 0.01 1.66 1.03 1.42 1.36 1.41 1.62 1.33 1.31 1.37 1.06 Lu FUS-MS 0.01 3.05 2.2 3.4 3.2 3.5 3.7 3.1 3.5	Eu	FUS-MS	0.005	1.23	0.899	1.02	1.05	1.02	1.34	1.07	1	1.21	0.933
Ib FUS-MS 0.01 0.54 0.34 0.48 0.46 0.5 0.55 0.45 0.49 0.51 0.33 Dy FUS-MS 0.01 3.03 1.98 2.65 2.67 2.84 2.92 2.55 2.7 2.98 2.03 Ho FUS-MS 0.01 1.66 0.38 0.51 0.52 0.55 0.56 0.49 0.53 0.58 0.44 Tm FUS-MS 0.001 1.66 1.03 1.42 1.36 1.41 1.62 1.35 1.3 1.37 1.06 Lu FUS-MS 0.002 0.252 0.17 0.212 0.214 0.208 0.223 0.181 0.202 0.166 Lu FUS-MS 0.01 0.45 2.22 3.4 3.2 3.5 3.7 3.1 3.5 3.1 2.26 0.17 Ta FUS-MS 0.01 0.42 <01	Gd	FUS-MS	0.01	3.65	2.09	3.11	2.91	3.28	3.62	2.72	3.01	3.67	2.36
Dy FUS-MS 0.01 3.03 1.39 2.65 2.67 2.64 2.92 2.55 2.7 2.39 2.03 Ho FUS-MS 0.01 0.66 0.38 0.51 0.52 0.55 0.56 0.49 0.53 0.58 0.04 Er FUS-MS 0.01 1.64 1.07 1.45 1.46 1.56 1.66 1.3 1.45 1.53 1.14 Tm FUS-MS 0.005 0.244 0.21 0.214 0.223 0.193 0.198 0.202 0.168 Yb FUS-MS 0.01 1.66 1.03 1.42 1.36 1.41 1.62 1.35 1.3 1.37 1.00 Lu FUS-MS 0.01 0.42 -2.01 0.56 0.52 0.53 0.35 0.44 0.203 0.225 0.167 Hf FUS-MS 0.01 0.42 <0.01	1b Du	FUS-MS	0.01	0.54	0.34	0.48	0.46	0.5	0.55	0.45	0.49	0.51	0.35
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ho	FUS-INS FUS-MS	0.01	3.03	0.38	2.00	2.07	2.04	2.92	2.55	2.7	2.96	2.03
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fr	FUS-MS	0.01	1.64	107	1.45	1.46	1.56	1.66	1.3	1.45	5 0.50 5 1.53	1 14
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tm	FUS-MS	0.005	0.246	0.16	0.212	0.214	0.23	0.26	0.193	0.198	0.202	0.166
Lu FUS-MS 0.002 0.252 0.17 0.212 0.214 0.208 0.223 0.181 0.203 0.225 0.167 Ta FUS-MS 0.01 3.5 2.2 3.4 3.2 3.5 3.7 3.1 3.5 3.7 3.1 3.5 3.7 3.1 3.5 3.7 3.1 3.5 3.7 3.1 3.5 3.7 3.1 3.5 3.7 3.1 3.5 3.7 3.1 3.5 3.7 3.1 3.5 3.7 3.1 3.5 3.7 3.1 3.5 3.7 3.1 3.5 3.7 3.1 3.5 3.7 3.1 3.5 3.7 3.1 3.5 3.7 3.1 3.5 3.7 3.1 3.5 3.7 3.1 3.5 3.7 3.1 3.1 3.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1<	Yb	FUS-MS	0.01	1.66	i 1.03	1.42	1.36	1.41	1.62	1.35	1.3	3 1.37	1.06
Hf FUS-MS 0.1 3.5 2.2 3.4 3.2 3.5 3.7 3.1 3.5 3.1 2.6 Ta FUS-MS 0.01 0.42 <0.01	Lu	FUS-MS	0.002	0.252	. 0.17	0.212	0.214	0.208	0.223	0.181	0.203	0.225	0.167
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hf T-	FUS-MS	0.1	3.5	2.2	3.4	3.2	3.5	3.7	3.1	3.5	3.1	2.6
IF INVA 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	ia w	FUS-MS	0.01	0.42	< 0.01	0.56	0.54	0.52	0.53	0.35	0.44	0.34	0.43
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ir	INAA	1	< 1	<1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Hg INVA 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Au	INAA	1	< 1	<1	< 1	< 1	< 1	< 1	< 1	< 1	<1	< 1
TI FUS-MS 0.05 0.1 < 0.05 0.17 0.11 0.13 0.05 0.06 0.12 0.11 0.08 Pb TD-ICP 5 8 < 5	Hg	INAA	1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Pb TD-ICP 5 8 <5 7 10 8 32 6 9 10 7 Bi FUS-MS 0.1 <0.1	TI	FUS-MS	0.05	0.1	< 0.05	0.17	0.11	0.13	0.05	0.06	0.12	2 0.11	0.08
bi PUS-NNS 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Pb	TD-ICP	5	8	\$ < 5	7	10	8	32	6	ç	9 10	7
ini ruo≖mia uuo 3./4 2 2.30 2./8 2.61 3.32 1.96 2.61 5.04 2.31 U FUS-MS 0.01 0.74 0.67 0.99 1.23 0.96 0.9 0.64 0.88 0.63 0.70	ы	FUS-MS	U.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	U.	FUS-MS	0.01	0.74	0.67	0.99	1.23	0.96	0.9	0.64	2.8	3 0.63	0.79

Tabla 5Continuad	ión											
Nombre			Cuinguitapu	La Alberca	La Alberca	Metate Viejo		Remolino	Molino	El Horno	Aracata	La Cruz
Tipo Tino de esterator			MSV	SC	SC	MSV	_	MSV	MSV	MSV	MSV	WSV
npo de muestra			Lava	Lava	Lava	Lava	_	Lava Cata techaia	Lava	Lava	Lava	ava
Número de muestro			Este trabajo	UWIDY, 2011.	UWIDY, 2011.	Este trabajo		Este trabajo	1420E	Este trabajo	14226	JWIIDY, 2011.
I atitud			14310	10°28.83	19°29 32	10°31'/0 1"		10°38'14 5"	14233	14231	10°32'24 /"	19°27 01
Longitud			102°03'17.5"	102°02 03	102°01.66	102°00'13 7"		101°19'35 6"	102°11'51 1"	102°06'24.4"	102°11'54 5"	102°01 33
Altitud (msnm)			230	1 27		102 00 10.1	2439	2163	2222	2174	2385	27
Wt%	Analytical methods	Detection limits						2.00				
SiO2	FUS-ICP	0.01	62.	62.63	62	.4 €	62.44	62.55	62.59	62.74	62.82	62.9
AI2O3	FUS-ICP	0.01	17.7	5 17.7	16	.7 1	7.85	16.53	16.79	16.69	16.87	16.9
Fe2O3 (T)	FUS-ICP	0.01	5.2	2 4.97	4.9	15	4.98	5.19	5.42	5.21	5.24	4.6
MnO	FUS-ICP	0.01	0.0	3 0.07	0.0	19	80.0	0.08	0.09	0.09	0.09	0.08
MgO	FUS-ICP	0.01	2.3	6 2.53	3.0	16	2.31	2.9	2.73	2.58	2.46	3.16
CaO	FUS-ICP	0.01	5.8	4 5.71	5.8	8	5.78	5.62	5.33	5.62	5.65	5.88
Na2O	FUS-ICP	0.01	3.6	2 3.92	3.9	11	3.77	3.35	3.78	3.72	3.66	3.59
K2O	FUS-ICP	0.01	2.1	3 1.63	2.0	19	2.03	2.32	2.24	2.06	2.27	2.07
TiO2	FUS-ICP	0.01	0.6	1 0.65	0.6	7	0.56	0.65	0.73	0.63	0.65	0.66
P205	FUS-ICP	0.01	0.1	5 0.18	0.2	18	0.13	0.13	0.23	0.2	0.2	0.15
LOI			1.1	2 1.36	0.5	12	0.88	0.35	1	0.86	0.88	1.08
lotal			99.	9	99.5	1	99.9	99.3	99.9	99.5	99.9	98.91
ppm												
Be	FUS-ICP	1		1			1	2	1	1	1	
S	TD-ICP	0.001	0.03	1		C	0.031	0.003	0.019	0.021	0.034	
Sc	INAA	0.01	13.	1			11.6	13.9	12.4	13	12.7	
V	FUS-ICP	5	11	6 115	10	14	112	114	104	106	114	95
Cr	INAA	0.5	7.	7 n.d	4	4	6.6	55.4	61.5	48.6	21.1	46
Co	INAA	0.1	15.	5 17		i6	14.6	15.9	16.4	12.9	16.6	44
Ni	TD-ICP	1	2) 21	:	10	14	31	30	28	21	24
Cu	TD-ICP	1	2	3 n.d	2	4	27	18	20	22	30	16
Zn	MULT INAA / TD-ICP	1	5	6			68	56	60	60	61	
Ga	FUS-MS	1	1	3			19	20	19	18	18	
Ge	FUS-MS	0.5	1.	,			1.7	1.4	2	2.1	1.8	
AS	INAA	1		-			< 1	< 1	2	< 1	< 1	
Se	INAA	0.5	< 0.	5			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
Bh Rh	ELIS-MS	1	< U. 3	2			3/1	< 0.5 58	< 0.5	40.5	< 0.5	
Sr	FUS-IND	5	53	. 600	6	6	536	437	41	40	41	481
Y	FUSICP	1	1	1 002			10		16	15	-12	401
Zr	FUS-ICP	1	13	3 119	16	4	110	134	171	180	151	118
Nb	FUS-MS	0.2	11	5			27	5.1	7.7	56	2.6	110
Mo	FUS-MS	2	<	,			< 2	< 2	2	2	< 2	
Aq	MULT INAA / TD-ICP	0.5	< 0.	5			< 0.5	< 0.5	< 0.5	0.7	< 0.5	
Cď	TD-ICP	0.5	< 0.	5			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
In	FUS-MS	0.1	< 0.	1			< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Sn	FUS-MS	1	<	1			1	1	< 1	1	< 1	
Sb	INAA	0.1	1.	1			< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Cs	FUS-MS	0.1	0.	7			1.3	2	1.1	1.1	1.1	
Ba	FUS-ICP	1	69	9 510	76	19	591	700	713	760	729	597
La	FUS-MS	0.05	18.	1 23.3	31	2	18	25.3	23.6	23.6	20.9	19.9
Ce	FUS-MS	0.05	33.	4 33.8		12	27.6	45.5	44.5	43.8	38.8	35.7
Pr	FUS-MS	0.01	4.0	9 5.4	7.1	4	3.76	5.4	5.49	5.37	4.72	3.97
Nd	FUS-MS	0.05	15.	3 22.6	28	2	14.9	20	21.2	19.1	18.1	15.5
Sm	FUS-MS	0.01	3.2	9 4.5	5	.3	2.77	3.82	3.97	3.89	3.8	3.1
Eu	FUS-MS	0.005	0.86	2 1.5	1.4	6 0	0.893	1.01	1.13	1.08	0.945	0.98
Ga	FUS-MS	0.01	2.7	4.3	4	.3	2.21	3.15	3.38	2.97	3.3	3.1
ID Du	FUS-MS	0.01	0.4	5 U./	0	.6	0.35	0.53	0.53	0.47	0.48	0.5
Dy	FUS-INS	0.01	2.4	+ 3.0		.1	2.00	3.19	2.93	2.12	2.74	2.5
H0	FUS-INS	0.01	0.4	5 0.7	0	.0	0.41	0.01	0.50	0.53	0.55	0.5
El Ten	FUS-INS	0.005	1.3	2 02		./	1.17	0.255	1.00	1.01	1.0	0.21
Vb	FUS-INS	0.005	0.20	0.0	0.2	.4 U	1 00	1.69	0.237	1.40	1.50	1.21
10	FUS-MS	0.002	0.18	5 0.2		.0 13 0	1.09	0.266	0.242	0.207	0.237	0.18
Hf	FUS-MS	0.002	2	3 0.2	0.1		2.6	0.200	3.0	37	3.4	0.10
Та	FUS-MS	0.01	0.3	í			0.28	0.28	0.0	0.54	0.39	
w	INAA	1	<				< 1	< 1	< 1	< 1	< 1	
ir.	INAA	1	~				< 1	< 1	< 1	< 1	< 1	
Au	INAA	1	, Z				< 1	< 1	< 1	< 1	< 1	
Ha	INAA	1	<	1			< 1	< 1	< 1	< 1	< 1	
тı	FUS-MS	0.05	0	1			0.13	0.16	0.12	0.1	0.11	
Pb	TD-ICP	5	0.	5			6	7	6	8	6	
Bi	FUS-MS	0.1	< 0.	1			< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Th	FUS-MS	0.05	2.4	1			2.27	4.18	3.04	2.85	2.7	
U	FUS-MS	0.01	0.7	5			0.79	1.26	1	0.95	0.9	

Tabla 5.1-Andesitas	s-Basálticas																	
Nombre			Colorado	Sapien	L	a Alberca	Cerro Chino		Paranguitiro	Ci	capién		Sinar Juata	Agnatzin	C	icapién	Parache	o Viejo
Tipo			MSV	SC	S	SC	SC		SC	SC	0	5	SC	SC	S	С	SC	
Tipo de muestra			Lava	Bomba	E	Bomba	Bomba		Lava	La	iva	5	Scoria	Lava	Lá	ava	Escoria	
Referencias			Este trabaio	Ownby 2011		Wnby 2011	Ownby 201	1	Este trabaio	Es	ste trabaio	F	ste trabaio	Este trabaio	E	ste trabaio	Este tra	ibaio
Número de muestra			15348	11.46		136	U-1a		15351	13	255		4265	ZAC-13211	13	3254	15389-	
Latitud			19°26'37.4"	19°27.67	1	9°28.75	19°24.86		19º27'33.7"	19	°36'49.1"	-	9°36'21.0"	19°42'04.1"	19	9°37'11.7"	19°37'2	9.5"
			-															
Lonaitud			101°57'50.2"	102°07.50	1	02°00.45	102°06.56		101°51'58.1"	10	2°04'44.0"	1	02°01'52.1"	101°56'39.4"	10	02°04'18.9"	102°05'	45.7"
Altitud (msnm)			1	742	77	1	77	22	1	798		2304	2754	24	442	229	4	2330
Wt%	Analytical methods	Detection limits																
SiO2	FUSICE	0.01	52	12	52.2	52	3	52.3	50	2 35		52.36	52.4	52	67	52.6	8	52.69
41202	FUEICE	0.01	19	E0	16.7	17	1	17.2	14	E 40		16.00	16.06	17	00	17.1	0	17.90
Fe002 (T)	FUE ICD	0.01	10	79	7 20	7.7	. 1	7 75		0.40		0.30	0.30		200	0.0	0	0.02
16203(1)		0.01			0.40	7.1	0	0.44	, ,	445		0.00	0.15		105	0.0	0	0.20
MIO	FUS-ICP	0.01	0.	100	0.13	0.	13	0.14	U.	. 145		0.13	0.14	U.	135	0.1	3	0.133
MgO	FUS-ICP	0.01	5	.32	9.38	8.5	52	8.77		9.94		7.93	7.84	6	.//	7.8	2	7.12
CaO	FUS-ICP	0.01	8	.96	9.26	8	.7	8.77	ç	9.06		9.46	8.43	7	.97	9.4	9	7.8
Na2O	FUS-ICP	0.01	3	.62	3.37	3.5	52	3.32	2	2.88		3.23	3.56	3	1.52	3.2	6	3.31
K2O	FUS-ICP	0.01		0.6	0.56	0.7	79	0.59	(0.75		0.62	0.91		0.9	0.6	2	0.96
TiO2	FUS-ICP	0.01	1.:	179	0.8	0.9	96	0.92	0.	.734		0.81	1.12	0.9	935	0.	8	0.953
P2O5	FUS-ICP	0.01	C	.18	0.14	0.1	14	0.17	(0.15		0.14	0.28	0	.26	0.1	6	0.22
LOI			C	.15	-0.16	-0.1	15	0.09	-(0.15		0.24	-0.05	0	.22	0.2	8	0.77
Total			10	0.6 1	00.09	100.0	07	99.94	10	00.3		100.1	100.4	9	8.5	100.	5	100.0
ppm																		
Be	FUS-ICP	1		1						< 1		< 1	1		< 1	<	1	1
S	TD-ICP	0.001	0.0	002					0.	.004		0.04	0.034	0.0	028	0.0	4	0.001
Sc	INAA	0.01		27					3	31.4		29.9	25.1	2	2.8	28.	9	24.7
V	FUS-ICP	5		185	188	18	31	181		193		217	186		176	21	7	160
Cr	INAA	0.5		115	512	26	67	379		582		332	325	2	267	31	4	328
Co	INAA	0.1		35	52	4	14	49	4	41.3		35.3	36.1	3	5.8	34.	9	33
Ni	TD-ICP	1		39	231	14	15	192		215		100	167		137	9	8	148
Cu	TD-ICP	1		35	64		13	48		50		47	51		58	4	- 6	47
Zn	MULTINAA / TDUCP	1		68	01			-10		62		60	63		78	-	n n	67
Ga	EUS.MS	1		20						17		18	18		17	1	7	18
Co	FUE ME	0.5		0.1						0.4		1.6	1.6		1 4		, c	0.2
Ge A-	FUG-IVIO	0.5		0.1						0.4		1.0	1.0		1.4	1.	4	0.3
AS C-	INAVA	0.5		3						2.5		- 0.5	1		51		-	1.5
50	INAVA	0.5		< 1 0.5						51		< 0.5	< 0.5	· · ·	0.5	< 0.	5	51
Br	INAA	0.5	<	0.5					<	0.5		< 0.5	< 0.5		2	< 0.	5	< 0.5
Rb	FUS-MS	1	<	0.5					<	0.5		6	12		12		6	< 0.5
Sr	FUS-ICP	2		7	446	49	98	521		13		470	490		501	47	2	16
Y	FUS-ICP	1		599						345		13	17		17	1	3	508
Zr	FUS-ICP	1		32	59	8	38	87		15		65	112		113	6	6	17
Nb	FUS-MS	0.2		105						87		3.1	7.4		5	3.	2	113
Mo	FUS-MS	2		3.1						2.8		< 2	< 2		< 2	<	2	5.8
Aq	MULT INAA / TD-ICP	0.5		< 2						< 2		< 0.5	< 0.5	<	0.5	< 0.	5	< 2
Cd	TD-ICP	0.5	<	0.5					<	0.5		< 0.5	< 0.5	<	0.5	< 0.	5	< 0.5
In	FUS-MS	0.1	<	0.5					<	0.5		< 0.1	< 0.1	<	0.1	< 0.	1	< 0.5
Sn	FUS-MS	1	<	0.1					<	0.1		< 1	1		< 1	<	1	< 0.1
Sb	INAA	0.1		< 1						< 1		< 0.1	< 0.1	<	0.1	< 0.	1	< 1
Cs	FUS-MS	0.1	~	0.1					~	0.1		0.2	0.3		0.5	0	2	< 0.1
Ba	FUS-ICP	1		188	185	2	19	234		257		208	270		321	21	3	361
la	FUS-MS	0.05	1	16		9	8	10.7		10.4		6.83	13.7	1	29	67	-	13.6
Ce	EUS-MS	0.05		3.2	187	22	0	23.4		22.8		15 1	28.8	2	7.6	14	7	28.0
Br	FUE ME	0.03	-	24	2 55	22		2.0.4		2 00		2.27	20.0	-	60	0.1	7	2 7 2
FI Nd	FUG-ING	0.01	4	5.4	2.00	2.3	24 C	12.00	-	2.99		2.27	3.03	1	E 2	2.1	/ c	3.72
Nu Car	FUG-ING	0.00	1	75	0.0	12	.0	10.4		12.0		9.94	10.0	1	0.0	9.0	4	13.7
Sm	FUS-INS	0.01	3	./5	2.0	3	. 1	3.1		3		2.43	3.00	3	0.52	2.3		3.52
Eu	FUS-MS	0.005	1	.37	0.99	1.0	19	1.15	0.	.899		0.854	1.19	1	.09	0.87	3	1.1/
Gd	FUS-MS	0.01	4	.38	3	3	.3	3.3	2	3.02		2.44	3.29	3	1.17	2.3	4	3.38
Tb	FUS-MS	0.01	C	.71	0.5	0	.5	0.6	(0.47		0.41	0.54	0	1.54	0.3	9	0.54
Dy	FUS-MS	0.01	4	.32	2.8	3	.1	3.1	2	2.82		2.48	3.2	3	.22	2.3	5	3.33
Ho	FUS-MS	0.01	C	.91	0.6	0	.6	0.6	(0.57		0.48	0.64	0	1.64	0.4	8	0.66
Er	FUS-MS	0.01	2	.69	1.7	1	.9	1.9	1	1.69		1.39	1.83	1	.88	1.4	4	1.86
Tm	FUS-MS	0.005	0.3	383	0.26	0.2	27	0.28	0.	.249		0.204	0.274	0.2	272	0.20	9	0.267
Yb	FUS-MS	0.01	2	.45	1.6	1	.7	1.7	1	1.61		1.35	1.77	1	.77	1.3	8	1.74
Lu	FUS-MS	0.002	0.4	113	0.24	0.2	24	0.25	0.	263		0.206	0.263	0.3	288	0.21	1	0.28
Hf	FUS-MS	0.1		2.5						2.2		1.7	2.7		2.9	1.	5	3.1
Та	FUS-MS	0.01	c	.18					(0.15		0.13	0.56	n	.37	0.2	5	0.36
W	INAA	1	-	< 1						< 1		< 1	< 1	-	< 1	<	1	< 1
lr.	INAA	1		< 1						< 1		< 1	< 1		< 1	<	1	< 1
Δ.,	INAA	1		< 1						< 1		< 1	- 1		< 1	2	1	< 1
Ha	INAA	1		<1						21		21			21	2	1	21
TI	EUS-MS	0.05	- 0	05					- 1	0.05		0.05	< 1 2 0 0E		05	~ ^ ^	5	0.07
Db	TDICD	0.00 E	< 0	.00					< (0.00 - E		J.UJ	< 0.05	U	- 5	< 0.0	5	0.07
1.U D:		5		~ J						- 0		~ 0 4	< 5		- 0	<	4	< D
	FUS-MS	U. I	<	0.1					<	0.1		< U.1	< 0.1	<	U.1	< 0.		< 0.1
in	FUS-MS	0.05	0	.94						1.25		0.56	1.16	1	.14	0.	0	1
U	rua-M3	0.01	C	.23					(0.32		0.2	0.42	0	1.38	0.2	1	0.36

Andesitas basálticas

Tabla 5.1.-Andesitas basálticas. MSV (Medium Sized Volcanoes) en español; volcánes de medio volumen. (Shield) volcanes escudo. SC (Scoria Cone), conos de escoria.

Tabla 5.1-Continua	ación											
Nombre			Cucundicata	Sapien??	Cain Juata	Paracho Viejo	Amoles	Gusato	Janamo	Jabalí	Hoya de Agua??	Santa Cruz
Tipo			SC	SC	MSV	SC	SC	SC	SC	SC	SC	SC
Tipo de muestra			Escoria	Lava	Lava	Escoria	Escoria	Lava	Lava	Lava	Escoria	Escoria
Referencias			Este trabajo	Ownby, 2011.	Este trabajo	Este trabajo	Este trabajo	Este trabajo	Este trabajo	Este trabajo	Este trabajo	Este trabajo
Número de muestra	1		15397	U-47	14283	15388-B	15393	15368	15363	15379	14258-B	15374-D
Latitud			19°40'20.9"	19°10.66	19°35'14.0"	19°38'49.0"	19°35'12.5"	19°30'28.4"	19°37'11.5"	19°26'20.9"	19°33'07.1"	19°31'55.3"
Longitud			101°56'46.1"	102°25.18	102°00'18.07"	102°03'46.0"	102º07'41.7"	102°09'15.3"	102°08'23.6	102°05'09.0"	102°03'13.5"	102º07'42.2"
Altitud (msnm)			2422	??	2314	2266	2354	2217	2173	1805	5 2302	2230
Wt%	Analytical methods	Detection limits										
SiO2	FUS-ICP	0.01	52.91	53.2	53.22	53.34	53.39	53.46	53.49	53.64	1 53.66	53.72
AI2O3	FUS-ICP	0.01	18.09	17.3	17.73	17.12	17	16.57	17.19	17.65	5 17.21	17.5
Fe2O3 (T)	FUS-ICP	0.01	8.5	7.52	8.62	8.14	7.77	8.05	7.92	8.08	8 8.24	8.58
MnO	FUS-ICP	0.01	0.128	0.13	0.14	0.13	0.13	0.12	0.13	0.12	2 0.13	0.148
MgO	FUS-ICP	0.01	6.37	7.69	6.84	7.43	6.61	6.11	7.76	6.86	5 7.19	4.78
CaO	FUS-ICP	0.01	7.59	8.68	8.23	8.08	8.83	7.49	8.82	8.31	8 8	7.28
Na2O	FUS-ICP	0.01	4.05	3.59	3.56	3.42	3.3	3.87	3.54	3.69	3.52	3.27
K2O	FUS-ICP	0.01	1.28	0.75	0.85	0.96	0.91	1.88	0.8	0.86	6 0.81	0.74
TiO2	FUS-ICP	0.01	1.013	0.93	1.06	0.92	0.86	1.13	0.78	0.94	1 0.94	1.015
P2O5	FUS-ICP	0.01	0.29	0.17	0.27	0.21	0.22	0.58	0.18	0.2	2 0.21	0.25
LOI			-0.41	-0.07	0.39	-0.02	0.18	0.25	0.02	-0.17	-0.06	1.71
Total			99.8	l .	100.5	99.7	99.2	99.5	100.6	100.2	2 99.9	99.0
ppm												
Be	FUS-ICP	1	1		1	1	1	2	1	1	I 1	1
S	TD-ICP	0.001	0.015		0.027	0.002	0.003	0.004	0.002	0.005	5 0.034	0.002
Sc	INAA	0.01	21.6	i	22.6	26	26.9	19.1	25.2	21.8	3 21.5	20.5
V	FUS-ICP	5	169	173	182	176	175	155	185	181	I 177	145
Cr	INAA	0.5	379	297	240	383	362	197	337	224	1 217	132
Co	INAA	0.1	29.9	53	34.7	34.1	31.5	25.2	32.1	32.4	4 30	28.7
Ni	TD-ICP	1	124	156	116	156	101	130	120	130) 142	76
Cu	TD-ICP	1	43	55	37	47	40	29	47	41	I 47	34
Zn	MULT INAA / TD-ICP	1	71		59	69	66	90	65	67	63	80
Ga	FUS-MS	1	17		18	18	18	20	18	17	7 18	19
Ge	FUS-MS	0.5	0.4		2.2	0.3	0.3	0.5	0.2	0.3	3 1.2	0.3
As	INAA	1	1.4		< 1	1.5	1.3	1.3	1.3	1.4	4 < 1	1.4
Se	INAA	0.5	1		< 0.5	< 1	< 1	< 1	< 1	< 1	I < 0.5	< 1
Br	INAA	0.5	< 0.5		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5 < 0.5	< 0.5
Rb	FUS-MS	1	< 0.5		9	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5 11	< 0.5
Sr	FUS-ICP	2	20	503	515	15	15	26	10	11	1 536	11
Y	FUS-ICP	1	574		17	493	824	1026	477	620) 15	539
Zr	FUS-ICP	1	19	75	127	18	17	22	16	16	6 89	18
Nb	FUS-MS	0.2	124		6.1	107	97	177	91	81	1 5	113
Mo	FUS-MS	2	6.8		< 2	5.5	5.2	10.8	3.1	3.2	2 < 2	4.6
Ag	MULT INAA / TD-ICP	0.5	2		< 0.5	< 2	< 2	< 2	< 2	< 2	2 < 0.5	< 2
Cd	TD-ICP	0.5	< 0.5		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5 < 0.5	< 0.5
In	FUS-MS	0.1	< 0.5		< 0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5 < 0.1	< 0.5
Sn	FUS-MS	1	< 0.1		< 1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<1	< 0.1
Sb	INAA	0.1	< 1		< 0.1	1	< 1	1	< 1	< 1	< 0.1	< 1
CS	FUS-MS	0.1	< 0.1		0.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.3	0.3
ва	FUS-ICP	1	411	249	309	335	299	/45	264	2/5	2/5	361
La C-	FUS-MS	0.05	16.8	10.5	14	13.8	15./	39	10.6	9.93	3 11.6	13.6
Ce D-	FUS-INS	0.05	34.4	23./	29.4	29.3	33.0	02.9	22.7	21.8	9 24.0	20.7
PI	FUS-INS	0.01	4.43	3.1	3.92	3.11	4.43	10.5	3.02	3.13	3.3	3.04
nu Sm		0.05	18	13.5	10.0	15./	1/./	43.1	12.9	13.2	14.9	10.1
- Sin Eu	FUG-IND FUS-MS	0.01	3.84	3.2	3.52	3.43	3.53	8.62	3.19	3.01	i 3.43 I 4.43	3.67
Cd	FUG-ING	0.005	1.20	1.05	1.2	1.14	2.40	2.41	0.8/7	0.904	+ 1.13 : 0.04	1.32
Gu Th	FUG-ING	0.01	3.07	. 0.6	0.52	3.28	0.49	0.10	2.53	0.40	0 46	0.61
Dv	FUG-ING	0.01	0.00	0.0	0.00	0.00	0.03	4.29	0.40	0.45	0.40	2.54
Dy Ho	FUG-ING	0.01	3.35		3.18	3.32		4.20	2.50	2.54	2.70	0.67
Fr.	FUG-ING	0.01	1.09	0.0	1.70	1.00	1.02	0.75	1.09	1.70	0.30	1.00
El Tro	FUG-ING	0.005	0.205	0.00	0.079	0.206	0.0	2.10	0.051	0.254	. 1.7	0.39
Vh	FUG-ING	0.005	0.283	0.20	1.74	1.280	1.66	1.09	1.59	1.61	+ 0.27	1.05
10	FUG-ING	0.002	0.272	0.24	0.240	0.271	0.00	0.304	0.00	0.00	0.05	0.205
LU	FUS-MS	0.002	0.272	0.24	0.249	0.271	0.234	0.294	0.243	0.238	0.23	0.303
Ta	FUS-MS	0.01	0.4		2.0 0 E1	0.00	0.1	4.3	0.10	0.04	, 2.2 דר ח	0.0
w	NAA	1	0.4		0.01	0.32	. 0.32	0.00	0.19	0.21	. U.2/	0.25
e.	NAA	1			~ 1	- 1	~ 1	~ 1	~ 1	~ 1		- 1
 Δι	NAA	1			~ 1	- 1	~ 1	~ 1	~ 1	~ 1		~ 1
Ha	INAA	1			~ 1	- 1	~ 1	~ 1	~ 1	~ 1		- 1
rig Ti	ELIS_MS	0.05	< I 0.00		< 0.0E	< I 0.02	< 0.0E	< 0.05	< 0.0E	~ 0.05		0.07
Ph	TDJCP	5	0.00		< 0.05	0.00	< 0.05 2 E	< 0.05	< 0.05	< 0.05	· · · · · · · · · · · · · · · · · · ·	0.07
Bi	FUS-MS	0.1	< 0	,	< 0 4	< 0.1		< 0 4	< 0	~ 0 1	,	
Th	FUS-MS	0.05	< U. I 1 /19		< 0.1	< U. I 1 //	< 0.1	< 0.1	< 0.1	< U.I 1 03	, <0.1	~ U.I 0.87
U	FUS-MS	0.01	0.56		0.37	0.38	0.44	0.97	0.03	0.34	1 0.33	0.27
						0.00						

Tabla 5.1-Continu	ación											
Nombre			Jabalí	Santa Cruz	Sn Lorenzo ??	Capastacutiro	Tejocote Ancho	Alberca	Janamo?	Paracho Viejo	Arichán	NW-Paracho
Tipo			SC	SC	SC	SC	MSV	SC	SC	SC	SC	SC
Tipo de muestra			Bomba	Escoria	Bomba	Lava	Lava	Bomba	Lava	Bomba	Lava	Lava
Referencies			Este trabaio	Esto trabaio	Eata trabaia	Eata trabaia	Eata trabaia	Esta trabaia	Eata trabaia	Esta trabaia	Eato trabaio	Eato trabaio
Neierencias	-		LSIC II ADAJO	LSte trabajo	LSIE II ADAJO	LSIE liabajo	LSIE II ADAJO	LSIE II ADAJO	LSIC II ADAJO	AFORE	LSte trabajo	400F0
Numero de muestra	a		103/6	14290	14200-0	13230	14325	14207-D	10091	15365	142/0	13253
Latitud			19°26'45.0"	19*31*45.7*	19"32'38.4"	19"36'35.7"	19'36'47.8	19 2920.5	19°35'08.5"	19°38'25.5"	19"33"32.8"	19'37'08.6"
Longitud			102°06'37.2"	102°05'52.5"	102°04'06.7"	102°05'00.7"	101°56'04.2"	102*00'49.8"	102º07'33.9"	102°06'45.0"	102°04'12.4"	102°04'24.0"
Altitud (msnm)			2002	2157	2275	2318	2321	2072	2340	2141	2413	2312
Wt%	Analytical methods	Detection limits										
SiO2	FUS-ICP	0.01	54.05	54.07	54.1	54.18	54.21	54.41	54.43	54.53	54.55	54.66
AI2O3	FUS-ICP	0.01	17.64	17.81	17.07	17.05	17.53	17.75	17.59	16.71	17.47	16.58
Fe2O3 (T)	FUS-ICP	0.01	7.85	8.66	5 7.7	7.82	8.37	8.04	7.35	8.15	5 7.8	7.8
MnO	FUS-ICP	0.01	0.123	0.14	0.11	0.12	0.141	0.13	0.12	0.13	3 0.12	0.12
MgO	FUS-ICP	0.01	6.83	6.2	5.91	6.95	6.07	6.17	5.7	7.05	6.82	6.27
CaO	FUS-ICP	0.01	8.35	8.05	5 7.91	8.74	8.09	7.89	7.82	7.88	3 7.86	7.53
Na2O	FUS-ICP	0.01	3.68	3.63	3.58	3.54	3.67	3.58	3.89	3.47	3.57	3.42
K2O	FUS-ICP	0.01	0.9	0.77	0.97	0.79	0.93	0.9	0.95	1.19	0.97	1.25
TiO2	FUS-ICP	0.01	0.923	1.03	0.86	0.84	0.939	0.97	0.82	1.01	0.93	0.96
P205	FUS-ICP	0.01	0.19	0.2	0.19	0.18	0.25	0.22	0.22	0.26	6 0.22	0.26
101			-0.08	0.21	1.41	-0.14	0.35	0.6	0.09	0.14	0.26	0.06
Total			100.5	100.6	08.4	100 5	100.2	100.1	0.00	100 6	100.3	08.0
Total			100.5	100.0	, 30. 4	100.2	100.2	100.1	33.0	100.0	100.0	30.3
ppin D-												
De	FUS-ICP	1	1		1	0.000		1	1	0.000		1
s	ID-ICP	0.001	0.012	0.026	0.033	0.038	0.041	0.032	0.002	0.002	0.031	0.035
SC	INAA	0.01	20.1	20.9	20.9	25.8	21.5	20.9	21.9	22.1	22.9	21.7
V	FUS-ICP	5	177	1/1	170	201	176	173	160	161	1/2	160
Cr	INAA	0.5	217	208	105	251	182	232	1/6	2/3	325	243
Co	INAA	0.1	26.9	32.8	28.6	30.6	30.6	29.5	24.6	32.4	33.2	29.1
Ni	TD-ICP	1	130	95	i 96	92	89	112	81	147	′ 140	136
Cu	TD-ICP	1	40	36	5 38	42	42	47	37	39) 34	38
Zn	MULT INAA / TD-ICP	1	66	62	2 62	68	70	66	68	66	65	69
Ga	FUS-MS	1	17	18	18	19	18	19	18	17	18	18
Ge	FUS-MS	0.5	0.3	2.1	1.7	1.6	1.9	1.6	0.3	0.2	2 1.6	1.7
As	INAA	1	1.2	< 1	< 1	< 1	< 1	< 1	1.2	1.3	3 < 1	< 1
Se	INAA	0.5	< 1	< 0.5	i < 0.5	< 0.5	< 0.5	< 0.5	< 1	< 1	< 0.5	< 0.5
Br	INAA	0.5	< 0.5	< 0.5	i < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5 < 0.5	< 0.5
Rb	FUS-MS	1	< 0.5	9) 11	10	13	13	< 0.5	< 0.5	i 12	19
Sr	FUS-ICP	2	12	520	574	524	502	582	13	17	546	487
Y	FUS-ICP	1	611	16	6 14	14	19	15	595	501	15	18
Zr	FUS-ICP	1	15	112	98	85	113	95	16	18	3 104	147
Nb	EUS-MS	0.2	84	31	41	4	22	41	96	139	9 5	99
Mo	FUS-MS	2	3.6	< 2	< 2	< 2	< 2	2	37	8.8		< 2
Aq	MULTINAA / TD-ICP	0.5	< 2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2	< 2		< 0.5
Cd Cd		0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
ln l	EUS-MS	0.0	< 0.5	< 0.1	< 0.0	< 0.1	< 0.1	< 0.1	< 0.5	< 0.6	< 0.1	< 0.1
Sn	FUS-MS	1	< 0.1	< 1	3	< 1	< 1	2	< 0.1	< 0.1	< 1	1
Sh	INAA	0.1	- 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	- 1		< 0.1	< 0.1
Ce	EUS-MS	0.1	0.2	- 0.1	0.1	- 0.1	- 0.1	- 0.1	< 0.1	< 0.1	- 0.1	- 0.1
Bo Bo	EUS IOD	1	200	201	270	0.0	211	0.4	- 0.1	200		420
Da		0.05	200	291	312	2/3	40.0	323	320	395	330	429
La C-	FUS-MS	0.05	10.0	11.0	12.0	9.33	12.3	12.0	12.4	17.4	10.0	10.5
Ce	FUS-MS	0.05	23.3	24.3	20.0	20.3	20.3	20.1	20.0	35.4	27.5	33.5
Pr	FUS-MS	0.01	3.2	3.42	3.54	2.84	3.63	3.52	3.53	4.47	3.68	4.45
Nd	FUS-MS	0.05	14	14.2	14.4	12.3	15.8	15.9	15.1	18.8	3 15.4	17.8
Sm	FUS-MS	0.01	3.28	3.37	3.37	2.78	3.74	3.25	3.37	3.77	3.7	3.7
Eu	FUS-MS	0.005	1.13	1.23	1.06	0.979	1.2	1.13	1.12	1.29) 1.14	1.2
Gd	FUS-MS	0.01	3.24	3.01	2.74	2.78	3.46	3.01	3.36	3.71	3.01	3.66
Tb	FUS-MS	0.01	0.52	0.5	5 0.45	0.44	0.56	0.49	0.5	0.6	6 0.49	0.56
Dy	FUS-MS	0.01	2.94	2.94	2.56	2.64	3.25	2.94	2.98	3.42	2.88	3.3
Ho	FUS-MS	0.01	0.62	0.6	6 0.51	0.53	0.64	0.58	0.59	0.68	8 0.55	0.65
Er	FUS-MS	0.01	1.79	1.68	1.49	1.51	1.92	1.63	1.74	1.93	3 1.59	1.82
Tm	FUS-MS	0.005	0.262	0.273	0.23	0.231	0.284	0.231	0.255	0.284	0.241	0.283
Yb	FUS-MS	0.01	1.68	1.75	5 1.54	1.47	1.82	1.51	1.77	1.81	1.55	1.87
Lu	FUS-MS	0.002	0.251	0.243	0.23	0.213	0.272	0.232	0.275	0.268	0.226	0.283
Hf	FUS-MS	0.1	2.5	2.4	2.3	2	2.6	2.1	2.9	3.3	3 2.7	3.2
Та	FUS-MS	0.01	0.2	0.28	0.21	0.52	0.26	0.19	0.22	0.53	0.29	0.63
W	INAA	1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	<1	< 1
Ir	INAA	1	< 1	< 1	<1	< 1	< 1	< 1	< 1	< 1	<1	< 1
Au	INAA	1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	<1	< 1
Ha	INAA	1	- 1	~ 1	21	- 1	~ 1	~ 1	21	~ 1	21	- 1
9 TI	EUS-MS	0.05	0.07		20.05	< 0.06	2005		0.00	< 0.04		0.06
Dh		5.00 E	0.07	< 0.05	< 0.05	< 0.05	< 0.05	0.06	0.00	< 0.0c	. 0.05	0.06
. U Di		0.1	< 5		, <5	< 5	. <5	< 5	< 5	< 5	, <5	. 5
ть	FUS-MO	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	ELIC MC	0.00	1.12	0.73	· I.II	0.05	0.93	1.13	0.00	1.30	1.14	1.00
0	FU3-M3	0.01	0.39	0.2/	0.4	0.25	0.30	0.41	0.33	0.51	0.41	0.52

Nehnsensensensensensensensensensensensensen	Tabla 5.1-Continua	ición											
The metric is the set of the set	Nombre		Paracho Viejo	Juanyan	Metate	Piruani	Paracho Viejo	Aire	Jabali	Varal	Varal	Hoya Urutzen	
Pipeland Participant International Participant Intern	Tipo			SC	SC	Shield	SC	SC	SC	SC	SC	SC	SC
Network Introde Introde <t< td=""><td>Tipo de muestra</td><td></td><td></td><td>Lava</td><td>Bomba</td><td>Lava</td><td>Lava</td><td>Lava</td><td>Lava</td><td>Lava</td><td>Lava</td><td>Lava</td><td>Bomba</td></t<>	Tipo de muestra			Lava	Bomba	Lava	Lava	Lava	Lava	Lava	Lava	Lava	Bomba
Nume Nume Isso Isso <th< td=""><td>Referencias</td><td></td><td></td><td>Este trabaio</td><td>Este trabaio</td><td>Este trabaio</td><td>Este trabaio</td><td>Este trabaio</td><td>Este trabaio</td><td>Este trabaio</td><td>Este trabaio</td><td>Este trabaio</td><td>Este trabaio</td></th<>	Referencias			Este trabaio	Este trabaio	Este trabaio	Este trabaio	Este trabaio	Este trabaio	Este trabaio	Este trabaio	Este trabaio	Este trabaio
Linka Linka <th< td=""><td>Número de muestra</td><td></td><td></td><td>15362</td><td>13252</td><td>14300</td><td>15370</td><td>15366</td><td>14273</td><td>15394</td><td>14272</td><td>14271</td><td>15357-A</td></th<>	Número de muestra			15362	13252	14300	15370	15366	14273	15394	14272	14271	15357-A
Longelity Normality Normality <t< td=""><td>Latitud</td><td></td><td></td><td>10002</td><td>10202</td><td>10°31'50"</td><td>10010</td><td>10930'20 2"</td><td>10°30'58 6"</td><td>10026'15.0"</td><td>10°31'13.6"</td><td>10°31'02.2"</td><td>10933'46 3"</td></t<>	Latitud			10002	10202	10°31'50"	10010	10930'20 2"	10°30'58 6"	10026'15.0"	10°31'13.6"	10°31'02.2"	10933'46 3"
International International Solutional 200 2	Longitud			102905'11.2"	101°58'48 9"	101°50'55 6"	102906'58.2"	102905'39.7"	102°03'36.0"	102010.0	102°03'11 2"	102°02'50 1"	101956'46 7"
Ample market market Description CPU CPU<	Altitud (monm)			102 00 11.2	101 30 40.3	2550	102 00 30.2	102 00 00.1	102 03 30.0	102 07 41.7	102 03 11.2	102 02 30.1	2450
PRD-CP PRD-CP PARAPP PARAPP PARAPP PARAPP <td>Autua (msnin)</td> <td>An als dia al an atle a da</td> <td>Data atian limita</td> <td>2232</td> <td>23/4</td> <td>2000</td> <td>2114</td> <td>2239</td> <td>2100</td> <td>2004</td> <td>2230</td> <td>2100</td> <td>2400</td>	Autua (msnin)	An als dia al an atle a da	Data atian limita	2232	23/4	2000	2114	2239	2100	2004	2230	2100	2400
mach mach <th< td=""><td>000</td><td>Analyucal methods</td><td>Detection limits</td><td>54.70</td><td>54.00</td><td>54.02</td><td></td><td>55.00</td><td>55.44</td><td>55.24</td><td>FF F0</td><td>CC 77</td><td>55.70</td></th<>	000	Analyucal methods	Detection limits	54.70	54.00	54.02		55.00	55.44	55.24	FF F 0	CC 77	55.70
ACCONT() LGALP 0.01 10.91 <	SIU2	FUS-ICP	0.01	54.78	54.82	54.93	55	55.03	55.11	55.34	55.58	55.77	55.78
FaceDa (1) FileStep 081 740 740 740 770	AI2O3	FUS-ICP	0.01	16.81	17.15	17.37	16.63	17.2	17.96	18.06	17.78	17.34	17.55
MACO FUS-DP 0.01 0.27 0.13 0.286 0.17 0.12 <th0.12< th=""> 0.12 0.12 <</th0.12<>	Fe2O3 (T)	FUS-ICP	0.01	7.83	7.91	5.9	7.9	7.49	7.71	7.57	7.56	7.28	7.51
Mode FLGSEP 0.01 0.27 6.60 4.20 5.50 5.60 5.70 4.44 5.77 4.44 5.77 4.44 5.77 4.44 5.77 4.44 5.77 4.44 5.77 4.44 5.77 4.44 5.77 <	MnO	FUS-ICP	0.01	0.127	0.13	0.095	0.127	0.121	0.12	0.12	0.13	0.12	0.12
CAO FUS-EP 0.01 7.75 7.62 8.83 7.22 7.23 8.31 7.18 8.44 7.73 7.73 TO2 FUS-EP 0.01 0.32 0.14 0.33 0.34 0.34 0.35 0.37 0.33 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.30 0.32 0.30 0.32 0.30 0.32 0.30 0.32 0.32 0.31 0.32 0.30 0.32 0.30 0.32 0.30 0.32 0.32 0.30 0.32 0.30 0.32 0.30 0.32 0.30 0.32 0.30 0.32 0.30 0.32 0.30 0.32 0.30 0.32 0.30 0.32 0.30 0.32 0.30 0.32 0.30 0.32 0.30 0.32 0.30 0.32 0.30 0.33 0.32 0.30 0.32 0.30 0.33 0.32 0.30 0.32 0.30 0.32	MgO	FUS-ICP	0.01	6.27	6.61	4.2	5.19	5.89	5.12	5.57	4.94	5.27	4.82
NADC PLS-CP 0.01 3.38 3.74 3.96 3.36 3.67 4.09 3.72 3.84 3.3 PACO PLS-CP 0.01 0.25 0.19 0.35 0.13 0.32 0.26 0.05 0.25 0.25 0.21 0.25 0.25 0.21 0.25 0.21 0.25 0.21 0.25 0.21 0.25 0.21 0.25 0.21 0.25 0.21 0.25 0.21 0.25 0.21 0.25 0.21 0.25 0.21 0.25 0.21 0.25 0.21 0.25 0.21 0.25 0.21 0.25 0.21 0.25 0.21 0.25 0.25 0.21 0.25 0.21 0.25 0.21 0.25 0.21 0.25 0.21 0.25 0.21 0.25 0.21 0.25 0.21 0.25 0.21 0.25 0.21 0.25 0.25 0.21 0.25 0.21 0.25 0.21 0.25 0.21 0.25 <td< td=""><td>CaO</td><td>FUS-ICP</td><td>0.01</td><td>7.75</td><td>7.62</td><td>8.38</td><td>7.22</td><td>7.25</td><td>8.31</td><td>7.18</td><td>8.41</td><td>7.73</td><td>7.6</td></td<>	CaO	FUS-ICP	0.01	7.75	7.62	8.38	7.22	7.25	8.31	7.18	8.41	7.73	7.6
HZO FUS-DP 0.01 1.25 1.14 1.54 1.39 1.34 0.22 0.07 0.08 0.02 0.03 0.04 0.05 0.03 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.03 0.03 0.06 0.07 0.03 0.06 0.07 0.03 0.05 0.07 0.03 0.05 0.07 0.03 0.03 0.06 0.07 0.02 0.05 0.00 0.03 0.03 0.03 0.03 0.03 0.05 0.03 0.05 0.03 0.03 0.05 0.03 0.03 0.05 0.03 <t< td=""><td>Na2O</td><td>FUS-ICP</td><td>0.01</td><td>3.39</td><td>3.74</td><td>3.9</td><td>3.66</td><td>3.53</td><td>3.67</td><td>4.09</td><td>3.72</td><td>3.64</td><td>3.78</td></t<>	Na2O	FUS-ICP	0.01	3.39	3.74	3.9	3.66	3.53	3.67	4.09	3.72	3.64	3.78
TO2 FUSAPP 0.01 0.05 0.97 0.24 10.98 0.91 0.85 0.97 0.83 0.24 0.03 0.24 0.03 0.24 0.03 0.24 0.03 0.24 0.03 0.24 0.03 0.24 0.03 0.24 0.03 0.24 0.03 0.24 0.03 0.05 0.05 0.03 0.04 0.00 0.03 0.034 0.03 0.034 0.031 0.034 0.03 0.031	K2O	FUS-ICP	0.01	1.25	1.14	1.54	1.39	1.34	0.92	0.97	0.95	1.2	1.32
P2O5 PLSACP 0.01 0.27 0.28 0.33 0.32 0.38 0.19 0.22 0.20 0.21 0.21 0.22 0.21 0.21 0.22 0.21 0.21 0.22 0.21 0.21 0.22 0.21 0.21 0.22 0.21 0.21 0.22 0.21 0.21 0.22 0.21 0.22 0.21 0.22 0.21 0.22 0.21 0.22 0.21 0.22 0.21 <th0.21< th=""> 0.21 0.21 <t< td=""><td>TiO2</td><td>FUS-ICP</td><td>0.01</td><td>0.95</td><td>0.97</td><td>0.744</td><td>1.039</td><td>0.91</td><td>0.96</td><td>0.85</td><td>0.97</td><td>0.93</td><td>0.95</td></t<></th0.21<>	TiO2	FUS-ICP	0.01	0.95	0.97	0.744	1.039	0.91	0.96	0.85	0.97	0.93	0.95
Long Dot Dot <thdot< th=""> <thdot< th=""></thdot<></thdot<>	P205	FUS-ICP	0.01	0.27	0.26	0.3	0.32	0.26	0.19	0.2	0.2	0.22	0.28
Total 986 1003 974 987 982 1001 1000 1002 985 1003 pm 1 0 <td< td=""><td>101</td><td></td><td></td><td>0.2</td><td>-0.16</td><td>25</td><td>0.21</td><td>0.13</td><td>0.03</td><td>0.02</td><td></td><td>0.21</td><td>0.54</td></td<>	101			0.2	-0.16	25	0.21	0.13	0.03	0.02		0.21	0.54
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Total			00.6	100.3	07.4	08.7	00.2	100.1	100.0	100.2	00.5	100.2
penn Be FUSACP 0 1 <th1< td=""><td>rotai</td><td></td><td></td><td>33.0</td><td>100.5</td><td>51.4</td><td>30.7</td><td>33.L</td><td>100.1</td><td>100.0</td><td>100.2</td><td>33.5</td><td>100.2</td></th1<>	rotai			33.0	100.5	51.4	30.7	33.L	100.1	100.0	100.2	33.5	100.2
pm pic. 1 1 2 1 1 1 1 1 8 TD-CP 0.001 0.002 0.008 0.008 0.003 0.004 0.001 0.004 0.001 0.004 0.001 0.004 0.001 0.004 0.001 0.004 0.001 0.004 0.001 0.004 0.001 0.004 0.001 0.004 0.001 0.004 0.001 0.004 0.001 0.004 0.001 0.004 0.001 <													
BB PTD-CP ODD ODD </td <td>ppm</td> <td>5110.105</td> <td></td>	ppm	5110.105											
S. IBAP D001 D002 D003 D	ве	FUS-ICP	1	1	1	1	2	1	1	1	1	1	1
Sc NAA Do1 22 21.1 13 21.1 23.8 22.5 16.6 22.4 20.9 16.8 C/ CNA 5.5 100 17.7 14.4 14.0 11.9 12.9 22.6	S	ID-ICP	0.001	0.002	0.036	0.008	0.003	0.003	0.034	0.001	0.034	0.031	0.007
V FUS-CP S 150 174 126 143 144 171 159 172 157 144 Co MA 01 200 275 463 201 28 248 201 28 248 201 28 248 201	Sc	INAA	0.01	22	21.1	13	21.1	20.8	22.5	18.6	22.9	20.9	18.8
Cr NAA 0.5 2.20 2.71 4.34 160 2.13 88 2.48 7.02 1.69 1.30 1.30 2.15 1.62 2.25 <th2.25< th=""> <th2.25< th=""> <th2.25< th=""></th2.25<></th2.25<></th2.25<>	V	FUS-ICP	5	150	174	126	143	144	171	159	178	157	149
Co NAA 0.1 30 255 162 256 28.6 28.2 28.9 28.9 28.6 28.6 Ch TLACPA 1 30 37 24 32 30 46 33 50 40 33 Ch TLACPANA 0.5 0.3 1.6 12 0.4 0.3 1.5 0.3 1.6 1.2 0.4 0.3 1.5 0.3 1.6 1.2 0.4 0.3 1.5 0.3 1.6 1.2 0.4 0.3 1.5 0.3 1.6 1.2 0.4 0.5	Cr	INAA	0.5	230	271	43.4	160	213	88	248	70.2	115	134
N TD-CP 1 130 139 25 91 120 62 121 121 153 100 7 Cu TD-CP 1 38 71 65 69 68 68 74 68 68 74 68 68 74 68 68 74 68 68 74 68 68 74 68 68 74 68 68 74 68 74 68 74 68 74 68 74 65 75 74 74 74 74 74 74 75	Co	INAA	0.1	30	25.5	16.2	25.6	29.8	26.2	25.9	26	26.6	25.3
Ch TD-ICP 1 39 37 24 32 36 46 38 50 40 57 Ca FUS-MS 1 18 11 22 17 18 19 19 19 20 19 17 Ca FUS-MS 1 18 12 17 18 19 19 19 20 19 17 Ca FUS-MS 1 18 12 10 14 10 14 10 14 10	Ni	TD-ICP	1	130	139	25	91	120	62	121	53	100	75
DALT MAUT TOUCP 1 68 71 65 69 68 68 74 66 67 74 Ge FUSANS 1 18 19 19 20 19 20 Ge FUSANS 0.5 0.3 1.6 1.2 0.4 0.3 1.5 0.3 1.6 1.2 0.1 Add NAM 0.5	Cu	TD-ICP	1	39	37	24	32	36	46	38	50	40	37
Russes 1 18 12 17 18 19 19 20 19 20 Ge FUSANS 0.5 0.3 1.6 1.2 4.4 1.2 1 4.1 1.2 4.1 4.1 1.2 4.1 4.1 1.2 4.1 4.1 1.2 4.1 4.1 1.2 4.1	Zn	MULT INAA / TD-ICP	1	68	71	65	69	68	68	74	66	66	71
PUSARS 0.5 0.3 1.6 1.2 0.4 0.3 1.6 0.3 1.6 1.2 0 As NAA 0.5 0.1 0.5	Ga	FUS-MS	1		18	22	17	18	19	19	20	19	19
See NAM D1 D2 D1 1 D2 D1 D3 D1 C1 C1 <thc1< th=""> C1 C1 <thc1< <="" td=""><td>Co</td><td>EUR MR</td><td>0.5</td><td>0.2</td><td>16</td><td>10</td><td>0.4</td><td>0.2</td><td>1.6</td><td>0.2</td><td>1.6</td><td>1.0</td><td>0.4</td></thc1<></thc1<>	Co	EUR MR	0.5	0.2	16	10	0.4	0.2	1.6	0.2	1.6	1.0	0.4
NAM 1.5 L.1 < < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <td>de A-</td> <td>FUG-IVIG</td> <td>0.5</td> <td>0.3</td> <td>1.0</td> <td>1.2</td> <td>0.4</td> <td>0.3</td> <td>1.0</td> <td>0.3</td> <td>1.0</td> <td>1.2</td> <td>0.4</td>	de A-	FUG-IVIG	0.5	0.3	1.0	1.2	0.4	0.3	1.0	0.3	1.0	1.2	0.4
SB NMA 0.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.2 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5<	AS	INAA	1	1.2			1.2		51	1.2	51	51	1.3
Br PWA U.5 < < U.5 < < < U.5 < < < < < < < <	Se	INAA	0.5	< 1	< 0.5	< 0.5	< 1	< 1	< 0.5	1	< 0.5	< 0.5	< 1
Rb FUS-RP 1 <0.5 16 27 <0.5 <0.5 13 <0.5 13 <0.5 13 <0.5 13 <0.5 13 <0.5 13 <0.5 13 <0.5 13 <0.5 13 <0.5 13 <0.5 13 <0.5 13 <0.5 13 <0.5 13 <0.5 13 <0.5 13 <0.5 13 <0.5 13 <0.5 13 <0.5 13 <0.5 13 <0.5 13 <0.5 13 <0.5 13 <0.5 16 17 16 55 13 <0.5 14 14 14 14 14 16 16 17 16 15 14 14 14 16 16 16 17 16	BL	INAA	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Sr FUS-ICP 2 19 511 1478 22 21 500 12 494 602 22 ZY FUS-ICP 1 19 125 130 20 20 103 14 105 120 11 Nb FUS-KS 0.2 8.3 4.2 -2.2 107 7.8 -2.2 3.3 -2.2 -2.2 7.7 144 Mo FUS-KS 0.5 <0.5	Rb	FUS-MS	1	< 0.5	16	27	< 0.5	< 0.5	13	< 0.5	13	18	< 0.5
Y FUS-CP 1 446 16 12 491 476 17 600 17 16 55 Nb FUS-KP 1 19 125 130 20 20 103 14 405 120 11 Nb FUS-MS 0.2 144 8.4 3.3 165 148 4.3 8.3 3.6 7.3 14 Mo FUS-MS 0.5 <2.2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	Sr	FUS-ICP	2	19	511	1478	22	21	500	12	494	502	20
Zr FUS-MS 1 19 125 130 20 20 103 14 105 120 11 No FUS-MS 2 83 <2 <2 105 148 43 83 358 7.3 14 Mo FUS-MS 2 <3 <2 <2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	Y	FUS-ICP	1	466	16	12	491	476	17	690	17	16	559
Nb FUS-MS 0.2 144 8.4 3.3 165 148 4.3 8.3 3.6 7.3 4.2 Ag MLIT NAVITD-ICP 0.5 < 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 <	Zr	FUS-ICP	1	19	125	130	20	20	103	14	105	120	18
Mo FUS-MS 2 8.3 < 2 < 2 107 7.8 < 2 3.3 < 2 < 2 2.5 Ag MULT NAV/TDCP 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 <0.7 <0.6 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5<	Nb	FUS-MS	0.2	144	8.4	3.3	165	148	4.3	83	3.6	7.3	141
Aq MLIT NAM/TD-/CP 0.5 < 2 < 2 < 2 < 2 < 2 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.1 < 6.5 < 6.5 < 6.5 < 6.1 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.	Mo	FUS-MS	2	8.3	< 2	< 2	10.7	7.8	< 2	3.3	< 2	< 2	7.4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Aq	MULT INAA / TD-ICP	0.5	< 2	< 0.5	< 0.5	< 2	< 2	< 0.5	< 2	< 0.5	< 0.5	< 2
nFUS-MS FUS-MS0.1< 0.0 < 0.1< 0.0 < 0.5 	Cď	TD-ICP	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
N ShFUS-MS IV1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1	ln l	FUS-MS	0.1	< 0.5	< 0.1	< 0.1	< 0.5	< 0.5	< 0.1	< 0.5	< 0.1	< 0.1	< 0.5
NMA O.1 Cl. O.1 O.1 <tho.1< th=""> <tho.1< th=""> <tho.1< th=""></tho.1<></tho.1<></tho.1<>	Sn	FUS-MS	1	< 0.1	< 1	< 1	< 0.1	< 0.1	< 1	< 0.1	< 1	< 1	< 0.1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sh	INAA	0.1	- 0.1	< 0.1	< 0.1	1 1	1 1	< 0.1	- 0.1	< 0.1	< 0.1	1
Cos FUS-ICP 1 418 30 472 464 452 313 350 319 400 464 La FUS-NK 0.05 17.1 14.9 24.7 19.6 18.3 12 11.5 12.3 15.8 18.8 Ce FUS-NK 0.05 35.9 30.2 53.1 41.7 37.9 25.4 24.3 28 31.8 33 Pr FUS-NK 0.05 18.7 16.6 26 21.1 19 15.5 14.5 16 16.7 2 Sm FUS-NK 0.01 3.99 3.49 4.56 4.62 4.4 3.47 3.17 3.54 3.72 4.3 Gd FUS-NK 0.01 3.54 3.83 3.35 4.19 3.66 3.25 3.19 3.21 3.23 3.5 Dy FUS-NK 0.01 3.59 0.54 0.47 0.53 0.63 0.56 0.64 0.5	00	ELIC MC	0.1	< 0.1	- 0.1	- 0.1	- 0 1	0.1	- 0.1	0.1	- 0.1	- 0.1	< 0.1
Bai PUS-LP I 410 300 4/2 404 432 313 300 319 400 408 La FUS-MS 0.05 17.1 14.9 24.7 18.6 18.3 12 11.5 12.3 26.4 24.3 26 31.8 18.8 Ce FUS-MS 0.01 45.7 3.99 6.84 50.7 4.62 35.7 3.31 3.6 4.21 4.7 Nd FUS-MS 0.01 4.87 16.6 26 21.1 19 15.5 14.5 16 16.7 2.2 3.3 Eu FUS-MS 0.01 3.99 4.84 2.44 3.47 13.6 14.4 1.21 1.2 4.3 Eu FUS-MS 0.01 3.68 3.53 4.19 3.66 3.25 3.19 3.23 3.63 0.53 Dy FUS-MS 0.01 0.68 0.47 0.65 0.66 0.64 0	CS D-	FUG-ING	0.1	< 0.1	0.4	0.0	< 0.1	0.1	0.3	0.1	0.3	0.4	< 0.1
La PUS-MS U05 1.1 14.9 24.7 18.6 16.3 12 11.5 12.3 15.8 16.8 Ce FUS-MS 0.05 35.7 3.99 6.84 5.07 4.62 3.57 3.31 3.6 4.21 4.7 Sm FUS-MS 0.01 3.99 3.49 4.56 4.62 4.4 3.47 3.17 3.54 3.72 4.33 Sm FUS-MS 0.005 1.28 1.11 1.31 1.37 1.31 1.15 1.08 1.14 1.21 1.2 Gd FUS-MS 0.01 3.54 3.38 3.35 4.19 3.66 3.25 3.19 3.21 3.23 3.3 Dy FUS-MS 0.01 3.59 0.51 0.47 0.65 0.64 0.47 0.53 0.53 0.53 0.53 0.38 0.34 0.44 0.47 0.53 0.58 0.54 0.47 0.53 0.53	Ба	FUS-ICP	1	410	300	4/2	404	452	313	350	319	400	400
Ce FUSANS 0.05 35.9 30.2 53.1 41.7 37.9 25.4 24.3 26 31.8 32 Pr FUSANS 0.01 45.7 3.99 6.84 507 4.62 357 3.31 3.6 4.21 4.7 Nd FUSANS 0.01 3.99 6.84 507 4.62 357 3.31 3.6 4.21 4.7 Sm FUSANS 0.01 3.99 4.56 4.62 4.4 3.47 3.17 3.54 3.72 4.3 Eu FUSANS 0.01 3.54 1.38 3.35 4.19 3.66 3.25 3.19 3.21 3.23 3.3 0.5 0.04 0.43 0.56 0.64 0.47 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.56 0.64 0.59 0.68 0.54 0.47 0.53 0.58 0.53 0.59 0.56 0.57 0.56 0.66<	La	FUS-MS	0.05	17.1	14.9	24.7	19.6	18.3	12	11.5	12.3	15.8	18.4
Pr FUS-MS 0.01 4.57 3.99 6.84 5.07 4.62 3.57 3.31 3.6 4.21 4.7 Nd FUS-MS 0.05 18.7 16.6 26. 21.1 19 15.5 14.5 16 16.7 2 Sm FUS-MS 0.005 1.28 1.11 1.31 1.37 1.31 1.15 1.08 1.14 1.21 1.2 Gd FUS-MS 0.01 3.54 3.38 3.35 4.19 3.66 3.25 3.19 3.21 3.23 3.3 Dy FUS-MS 0.01 3.59 3.12 2.52 3.71 3.51 3.15 2.78 3.26 3.08 3.4 Ho FUS-MS 0.01 1.39 0.42 2.52 3.71 3.51 3.16 2.78 3.26 3.08 3.4 Tm FUS-MS 0.01 1.89 1.89 1.32 1.18 1.32 1.28 1.42 <td>Ce</td> <td>FUS-MS</td> <td>0.05</td> <td>35.9</td> <td>30.2</td> <td>53.1</td> <td>41.7</td> <td>37.9</td> <td>25.4</td> <td>24.3</td> <td>26</td> <td>31.8</td> <td>38</td>	Ce	FUS-MS	0.05	35.9	30.2	53.1	41.7	37.9	25.4	24.3	26	31.8	38
Nd FUS-MS 0.05 18.7 16.6 26 21.1 19 15.5 14.5 16 16.7 2 Sm FUS-MS 0.01 3.99 4.56 4.62 4.4 3.47 3.17 3.54 3.72 4.3 Eu FUS-MS 0.005 1.28 1.11 1.31 1.37 1.31 1.15 1.08 1.14 1.21 1.22 3.3 To FUS-MS 0.01 3.68 0.54 0.47 0.65 0.66 0.54 0.47 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.54 0.66 0.54 0.47 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.54 0.66 0.54 0.47 0.53 0.53 0.56 0.66 0.54 0.66 0.54 0.50 0.57 0.57 0.57 0.57 0.57 0.57 <	Pr	FUS-MS	0.01	4.57	3.99	6.84	5.07	4.62	3.57	3.31	3.6	4.21	4.75
Sm FUS-MS 0.01 3.99 3.49 4.56 4.62 4.4 3.47 3.17 3.54 3.72 4.3 Eu FUS-MS 0.005 1.28 1.11 1.31 1.15 1.08 1.14 1.21 1.2 Gd FUS-MS 0.01 3.54 3.38 3.35 4.19 3.66 3.25 3.19 3.21 3.23 3.3 Tb FUS-MS 0.01 0.58 0.64 0.47 0.65 0.6 0.54 0.47 0.53 0.58 0.54 0.47 0.55 0.6 0.54 0.47 0.53 0.58 0.54 0.47 0.55 0.6 0.54 0.47 0.53 0.56 0.64 0.99 0.68 0.63 0.56 0.64 0.99 0.68 0.63 0.56 0.64 0.99 0.68 0.63 0.56 0.266 0.265 0.27 0.52 0.26 0.266 0.265 0.27 0.51 0.16	Nd	FUS-MS	0.05	18.7	16.6	26	21.1	19	15.5	14.5	16	16.7	20
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sm	FUS-MS	0.01	3.99	3.49	4.56	4.62	4.4	3.47	3.17	3.54	3.72	4.31
Cd FUS-MS 0.01 3.54 3.38 3.35 4.19 3.66 3.25 3.19 3.21 3.23 3.35 Dy FUS-MS 0.01 0.58 0.64 0.47 0.65 0.64 0.47 0.53 3.03 0.5 Dy FUS-MS 0.01 3.39 3.12 2.52 3.71 3.51 3.15 2.78 3.26 3.08 3.44 Ho FUS-MS 0.01 0.69 0.61 0.48 0.76 0.68 0.63 0.56 0.64 0.99 0.65 Er FUS-MS 0.01 1.18 1.17 1.14 2 1.92 1.62 1.38 1.81 1.7 1.8 Lu FUS-MS 0.01 1.87 1.7 1.14 2 1.92 1.62 1.38 1.81 1.68 1.84 1.88 1.86 1.88 1.86 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	Eu	FUS-MS	0.005	1.28	1.11	1.31	1.37	1.31	1.15	1.08	1.14	1.21	1.28
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gd	FUS-MS	0.01	3.54	3.38	3.35	4.19	3.66	3.25	3.19	3.21	3.23	3.7
Dy FUS-MS 0.01 3.39 3.12 2.52 3.71 3.51 3.15 2.78 3.26 3.08 3.48 Ho FUS-MS 0.01 0.69 0.61 0.48 0.76 0.68 0.63 0.56 0.64 0.59 0.68 Er FUS-MS 0.01 1.88 1.69 1.32 2.18 1.92 1.74 1.62 1.78 1.7 1.8 Tm FUS-MS 0.01 1.87 1.7 1.14 2 1.92 0.62 0.286	Tb	FUS-MS	0.01	0.58	0.54	0.47	0.65	0.6	0.54	0.47	0.53	0.53	0.57
Ho FUS-MIS 0.01 0.69 0.61 0.48 0.76 0.68 0.63 0.64 0.59 0.68 Er FUS-MIS 0.01 1.98 1.69 0.48 0.76 0.68 0.63 0.64 0.59 0.68 Tm FUS-MIS 0.005 0.294 0.224 0.183 0.31 0.287 0.252 0.226 0.286 <td>Dv</td> <td>FUS-MS</td> <td>0.01</td> <td>3 39</td> <td>3.12</td> <td>2.52</td> <td>3.71</td> <td>3.51</td> <td>3 15</td> <td>2.78</td> <td>3.26</td> <td>3.08</td> <td>3 42</td>	Dv	FUS-MS	0.01	3 39	3.12	2.52	3.71	3.51	3 15	2.78	3.26	3.08	3 42
FUS-MR 0.01 1.08 0.05 0.02 0.03 0.03 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.024 0.024 0.083 0.01 0.287 0.252 0.226 0.26 0.26 0.	Ho	FUS-MS	0.01	0.69	0.61	0.48	0.76	0.68	0.63	0.56	0.64	0.59	0.66
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Er	EUS-MS	0.01	1 08	1.60	132	2.18	1.02	1.74	1.62	1 78	17	1.85
Init POSMS 0.000 0.294 0.294 0.001 0.294 0.294 0.297 <th0< td=""><td>Tm</td><td>ELIC MC</td><td>0.005</td><td>0.004</td><td>0.054</td><td>0.102</td><td>2.10</td><td>0.997</td><td>0.050</td><td>0.026</td><td>0.200</td><td>0.965</td><td>0.074</td></th0<>	Tm	ELIC MC	0.005	0.004	0.054	0.102	2.10	0.997	0.050	0.026	0.200	0.965	0.074
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1111	FUG-ING	0.000	0.234	0.234	0.103	0.31	0.287	0.232	0.220	0.200	0.200	0.2/4
LU FUS-MS 0.002 0.206 0.205 0.187 0.336 0.202 0.253 0.199 0.224 0.208 0.298 0.199 0.424 0.249 0.237 Ta FUS-MS 0.11 3.5 3.1 2.9 3.9 3.4 2.5 2.7 2.7 3 3.3 Ta FUS-MS 0.01 0.54 0.5 0.07 0.67 0.51 0.16 0.19 0.19 0.4 0.4 W NAA 1 <1	10	FUS-INS	0.01	1.0/	1.7	1.14	2	1.92	1.02	1.30	1.01	1.00	1.0/
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lu	FUS-MS	0.002	0.296	0.255	0.187	0.336	0.292	0.253	0.199	0.254	0.249	0.297
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	HT	FUS-MS	U.1	3.5	3.1	2.9	3.9	3.4	2.5	2.7	2.7	3	3.3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	la	FUS-MS	0.01	0.54	0.5	0.07	0.67	0.51	0.16	0.19	0.19	0.4	0.49
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	W	INAA	1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	lr .	INAA	1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Au	INAA	1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Ti FUS-MIS 0.05 <0.05 0.05 <0.05 <0.05 <0.05 <0.07 0.1 Pb TD-ICP 5 <5	Hg	INAA	1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Pb TD-ICP 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 <td>т</td> <td>FUS-MS</td> <td>0.05</td> <td>< 0.05</td> <td>0.05</td> <td>< 0.05</td> <td>0.08</td> <td>< 0.05</td> <td>< 0.05</td> <td>< 0.05</td> <td>< 0.05</td> <td>0.07</td> <td>0.11</td>	т	FUS-MS	0.05	< 0.05	0.05	< 0.05	0.08	< 0.05	< 0.05	< 0.05	< 0.05	0.07	0.11
Bit FUS-MS 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 <	Pb	TD-ICP	5	- 5	- 5	- 5	- 5	- 5	- 5	- 5	- 5	- 5	< 5
Th FUS-MS 0.05 1.5 1.36 2.8 1.62 1.67 0.96 0.95 1.12 1.44 1.5 U FUS-MS 0.01 0.53 0.43 1.06 0.56 0.55 0.36 0.33 0.33 0.44 0.5	Bi	FUS-MS	- 01	- 0.1	201	- 0 1	201	- 0.1	- 0 1	- 0.1	201	- 0 1	-01
	Th	FUS-MS	0.05	< 0.1 4 E	1 20		1 60	1 47	0.1	~ U.I	1 4 7	1 44	- 0.1
G FOU-ING U.UI U.UU U.UU U.DO U.DO U.DO U.DO U.DO U.DO		ELIS-MS	0.01	0.00	0.40	1.00	1.02	1.07	0.90	0.80	0.00	0.44	1.07
	<u> </u>	1.00-1410	0.01	0.55	0.43	1.00	0.50	0.55	0.30	0.33	0.33	0.44	0.00

Tabla 5.1-Continua	ición											
Nombre			Cono-Nurio	Zindio	Hoya Urutzen	Paracho Viejo	Jabalí	Hoya Urutzen	El Chivo	Jabalí	Metate	Varas
Tipo			SC	SC	SC	SC	SC	SC	MSV	SC	Shield	Shield
Tipo de muestra			Lava	Lava	Lava	Bomb	Lava	Bomb	Lava	Lava	Lava	Lava
Referencias			Este trabajo	Este trabajo	Este trabajo	Este trabajo	Este trabajo	Este trabajo	Este trabajo	Este trabajo	Este trabajo	Este trabajo
Número de muestra			14280	15369	15358	15373	15382-D	15357-B	15344	15377	14286-C	15376
Latitud			19°38'48.5"	19º31'42.6"	19°33'09.0"	19°38'27.9"	19º27'33.7"	19°33'46.3"	19°36'09.4"	19°26'24.5"	19°28'27.3"	19°28'20.6"
Longitud			102°07"14.8"	102º11'27.2"	101°56'49.3"	102°04'50.2"	102°05'53.8"	101°56'46.7"	101°50'18.8"	102°05'50.5"	101°57'40.4"	102°07'05.1"
Altitud (msnm)			2162	2402	2469	2274	1948	2450	2548	1854	1790	2035
Wt%	Analytical methods	Detection limits										
SiO2	FUS-ICP	0.01	55.81	55.93	56.16	56.19	56.2	56.32	56.4	56.45	56.52	56.81
AI2O3	FUS-ICP	0.01	17.46	17.66	17.78	16.61	17.45	17.81	17.39	17.35	17.16	16.54
Fe2O3 (T)	FUS-ICP	0.01	7.23	7.25	7.2	7.72	7.3	7.31	7.52	6.94	7.22	7.02
MnO	FUS-ICP	0.01	0.11	0.12	0.11	0.12	0.11	0.11	0.12	0.11	0.12	0.11
MqO	FUS-ICP	0.01	5.28	4.76	4.16	5.68	5.82	4.67	5.04	5.13	5.07	5.31
CaO	FUS-ICP	0.01	8.23	7.45	7.05	7.59	7.4	7.27	6.94	7.21	7.05	6.96
Na2O	FUS-ICP	0.01	3.46	3.64	3.79	3.37	3.89	3.78	3.78	3.91	3.83	3.6
K2O	FUS-ICP	0.01	1.54	1.28	1.27	1.26	1.06	1.21	3.78	1.1	1.41	1.38
TiO2	FUS-ICP	0.01	0.96	0.98	0.87	0.92	0.82	0.86	3.78	0.80	0.89	0.85
P205	FUS-ICP	0.01	0.28	0.28	0.22	0.22	0.22	0.24	3.78	0.25	0.24	0.26
101			0.56	0.49	0.68	0.48	-0.23	0.71	3.78	0.22	0.21	0.18
Total			100.4	99.8	99.3	100.2	100.0	100.3	3.78	99.5	99.5	99.0
ppm												
Be	FUS-ICP	1	1	1	1	1	1	1	1	1	1	1
s	TDJCP	0.001	0.028	0.003	0.002	0.002	0.005	0.005	0.003	0.014	0.025	0.001
50 50	INAA	0.01	20.1	21.5	16.5	21.0	16.0	17.7	18.5	15.6	17.0	17.7
V	EUS-ICP	5	165	147	1/1	154	155	1/3	146	140	1/0	145
Cr	INAA	0.5	132	125	89.2	215	185	140	140	140	143	143
Co	ΙΝΑΑ	0.0	20.2	21.4	21.0	27.1	25.6	22.4	25.2	25	25.0	26
Ni	TDJCP	1	23.2	21.4	21.3	116	124	55	23.2	106	20.0	1/1
Cu	TD ICP	1	41	20		110	24	30	30	21	24	24
Zo		1	41	29	24	23	30	29	30			04 60
0-		1	10	10	75	10	10	/0	11	/4	02	09
Ga C-	FUS-MS	1	19	19	20	10	19	19	19	10	10	10
Ge	FUS-INS	0.5	1.7	0.3	0.4	0.4	0.4	0.4	0.4	0.4	2.4	0.5
As	INAA	1	< 1	1.2	1.3	1.3	1.3	1.1	2.4	1.3	< 1	1.4
Se	INAA	0.5	< 0.5	< 1	< 1	2	< 1	< 1	< 1	< 1	< 0.5	< 1
Br	INAA	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	2.2	< 0.5
RD	FUS-MS	1	1/	< 0.5	< 0.5	< 0.5	2.6	< 0.5	< 0.5	< 0.5	22	< 0.5
Sr	FUS-ICP	2	1044	20	20	24	15	19	15	16	502	26
Y	FUS-ICP	1	16	488	612	4/5	683	566	526	677	18	569
Źr	FUS-ICP	1	146	21	17	19	14	17	17	15	138	16
Nb	FUS-MS	0.2	3.7	156	122	131	86	126	133	96	6.1	118
Mo	FUS-MS	2	< 2	8.2	5.6	7.8	3.1	5.6	5	3.9	< 2	6.5
Ag	MULT INAA / TD-ICP	0.5	< 0.5	< 2	< 2	2	< 2	< 2	< 2	< 2	0.5	< 2
Cd	TD-ICP	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
In	FUS-MS	0.1	< 0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.1	< 0.5
Sn	FUS-MS	1	< 1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	2	< 0.1
Sb	INAA	0.1	0.1	1	< 1	< 1	< 1	< 1	< 1	< 1	< 0.1	< 1
Cs	FUS-MS	0.1	0.3	0.2	< 0.1	< 0.1	0.4	< 0.1	< 0.1	0.3	0.5	< 0.1
Ba	FUS-ICP	1	429	468	445	418	365	428	454	393	478	470
La	FUS-MS	0.05	22.3	19	17.5	16.4	12.1	16	16.1	12.9	17.9	17.3
Ce	FUS-MS	0.05	48.5	39.2	36.2	33.3	25.7	33	34.1	27.3	35.3	34.6
Pr	FUS-MS	0.01	6.61	4.86	4.45	4.29	3.47	4.23	4.37	3.58	4.58	4.44
Nd	FUS-MS	0.05	27.3	19.7	18.4	17.1	14.7	18.1	18.5	15.4	18.4	17.4
Sm	FUS-MS	0.01	5.01	4.52	4.23	3.74	3.3	3.9	3.99	3.44	4.04	3.46
Eu	FUS-MS	0.005	1.66	1.37	1.18	1.23	1.1	1.19	1.26	1.04	1.18	1.24
Gd	FUS-MS	0.01	3.64	4.17	3.64	3.93	3.08	3.35	3.46	3.04	3.49	3.49
Tb	FUS-MS	0.01	0.54	0.64	0.54	0.62	0.47	0.51	0.54	0.44	0.56	0.54
Dy	FUS-MS	0.01	2.81	3.78	3.01	3.56	2.72	2.85	3.35	2.61	3.15	3.14
Ho	FUS-MS	0.01	0.56	0.77	0.57	0.7	0.52	0.55	0.65	0.51	0.59	0.6
Er	FUS-MS	0.01	1.58	2.17	1.65	2	1.41	1.56	1.72	1.41	1.74	1.72
Tm	FUS-MS	0.005	0.241	0.318	0.239	0.295	0.204	0.231	0.257	0.196	0.277	0.241
Yb	FUS-MS	0.01	1.42	2.09	1.54	1.99	1.33	1.46	1.67	1.28	1.82	1.58
Lu	FUS-MS	0.002	0.223	0.318	0.229	0.315	0.215	0.215	0.269	0.202	0.258	0.249
Hf	FUS-MS	0.1	3.2	4	3.2	3.5	2.9	3.3	3.4	2.7	3	3.3
Та	FUS-MS	0.01	0.36	0.53	0.41	0.43	0.24	0.36	0.29	0.21	0.52	0.37
W	INAA	1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Ir	INAA	1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Au	INAA	1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Hg	INAA	1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
TI	FUS-MS	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	< 0.05	0.09	0.07	< 0.05	0.07
Pb	ID-ICP	5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
BI	FUS-MS	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
in 	FUS-MS	0.05	2.26	1.62	1.51	1.5	1.1	1.4	1.49	1.29	1.7	1.71
U	rus-MS	0.01	0.75	0.53	0.49	0.56	0.41	0.47	0.41	0.44	0.54	0.55

Tabla 5.1-Continua	ción		
Nombre			Jabali
Tipo			SC
Tipo de muestra			Lava
Referencias			Ownby, 2011.
Latitud			19°24.94
Longitud			102°06.64
Altitud (msnm)			??
Wt%	Analytical methods	Detection limits	
SiO2	FUS-ICP	0.01	56.9
AI2O3	FUS-ICP	0.01	17.7
MnO	FUS-ICP	0.01	0.30
MaO	FUS-ICP	0.01	5.87
CaO	FUS-ICP	0.01	7.12
Na2O	FUS-ICP	0.01	3.95
K2O	FUS-ICP	0.01	0.97
TiO2	FUS-ICP	0.01	0.78
101	FU3-ICF	0.01	0.2
Total			99.8
ppm			
Be	FUS-ICP	1	
S	TD-ICP	0.001	
SC V	ELIS-ICP	5	147
Cr	INAA	0.5	166
Co	INAA	0.1	54
Ni	TD-ICP	1	122
Cu	TD-ICP	1	40
Zn C-	MULT INAA / TD-ICP	1	
Ga	FUS-MS FUS-MS	1	
As	INAA	1	
Se	INAA	0.5	
Br	INAA	0.5	
Rb	FUS-MS	1	
Sr	FUS-ICP	2	656
T 7r	FUS-ICP	1	90
Nb	FUS-MS	0.2	30
Mo	FUS-MS	2	
Ag	MULT INAA / TD-ICP	0.5	
Cd	TD-ICP	0.5	
in Se	FUS-MS	0.1	
Sh	INAA	01	
Cs	FUS-MS	0.1	
Ba	FUS-ICP	1	370
La	FUS-MS	0.05	13
Ce	FUS-MS	0.05	27.4
PT Nd	FUS-MS	0.01	3.42
Sm	FUS-MS	0.05	10.1
Eu	FUS-MS	0.005	1.11
Gd	FUS-MS	0.01	3.1
Tb	FUS-MS	0.01	0.5
Dy	FUS-MS	0.01	2.5
Ho E-	FUS-MS	0.01	0.5
Tm	FUS-MS	0.01	0.21
Yb	FUS-MS	0.01	1.3
Lu	FUS-MS	0.002	0.1
Hf	FUS-MS	0.1	
Та	FUS-MS	0.01	
VV Ir	INAA	1	
а. Ан	INAA	1	
Hg	INAA	1	
TÎ	FUS-MS	0.05	
Pb	TD-ICP	5	
Bi	FUS-MS	0.1	
U	FUS-MS	0.05	

Basáltos

Tabla5.2-Basáltos												
Nombre		Metate Viejo??	Yondima	Jabalí	Cicapien	Jabalí	Yondima	Cicapien	Cicapien	Rafted	Cicapien	
l ipo			MSV	SC								
Tipo de mu	lestra		Escoria	Escoria	Escoria	Escoria	Escoria	Escoria	Lava	Escoria	Lava	Lava
Referencia	IS		Este trabajo	Este trabajo	Este trabajo	Este trabajo	Este trabajo	Este trabajo	Este trabajo	Este trabajo	Este trabajo	Este trabajo
Numero de	muestra		14303-D 10°21'02 E"	10027124 2	10006'15 0"	10024147 7	10007102 7	10027/2-D	10026120.2	10924'40 1"	10026142.0"	10024/45 5"
Longitud			101°59'59 3"	102905'32.2"	102908'59.6"	102906'51.4"	102908'30.6"	102906'11 2"	102906'08.2"	102905'53.4"	102906'27 7"	102905'53.3"
Altitud (ms	nm)		2292	2297	2043	2376	1900	2230	2297	2372	2277	2366
Wt%	Analytical methods	Detection limits										
SiO ₂	FUS-ICP	0.01	42.27	50.17	50.79	50.88	50.96	51.03	51.04	51.06	51.28	51.44
Al ₂ O ₃	FUS-ICP	0.01	19.07	16.86	17.87	16.87	16.91	16.9	17.16	16.57	16.55	17.82
Fe ₂ O ₃ (T)	FUS-ICP	0.01	9.85	9.06	9.5	8.75	8.99	8.72	9.05	8.95	8.8	8.8
MnO	FUS-ICP	0.01	0.15	0.146	0.147	0.145	0.145	0.171	0.144	0.14	0.14	0.14
MgO	FUS-ICP	0.01	9.86	8.52	7.74	7.73	9.21	7.55	5.6	9.35	9.26	5.71
CaO	FUS-ICP	0.01	5.12	8.24	8.09	8.41	8.71	8.47	9.01	8.5	9.15	9.39
Na₂O	FUS-ICP	0.01	1.34	2.8	2.97	2.95	3.09	2.93	3.59	3.04	3.16	3.66
K₂O	FUS-ICP	0.01	0.14	0.62	0.52	0.6	0.56	0.67	1.33	0.66	0.79	1.07
110 ²	FUS-ICP	0.01	0.86	0.986	0.93	0.959	0.824	0.964	1.696	0.91	0.84	1.45
P205	FUS-ICP	0.01	0.15	0.19	0.17	0.18	0.14	0.21	0.44	0.17	0.19	0.33
Total			88.8	00.18	1.03	08.83	0.04	0.93	-0.41	0.33	-0.03	-0.14
TULdi			00.0	39.10	100.0	90.03	55.50	50.04	50.04	55.7	100.1	55.7
nom												
Be	FUS-ICP	1	< 1	1	1	1	< 1	1	2	1	1	1
s	TD-ICP	0.001	0.018	0.002	0.003	0.003	0.004	0.002	0.004	0.003	0.002	0.004
Sc	INAA	0.01	27.5	28.4	27	27.9	28.9	27.4	28.3	26	31.4	27
V	FUS-ICP	5	197	163	168	173	196	177	210	176	182	210
Cr	INAA	0.5	630	453	473	409	514	365	123	449	452	113
Co	INAA	0.1	45.2	41.7	39.7	37.2	42.3	39.6	31.9	40.7	40	29.2
Ni	TD-ICP	1	265	189	158	152	213	150	65	215	202	51
Cu	TD-ICP	1	69	49	55	53	59	50	51	47	52	47
Zn	MULT INAA / TD-ICP	1	61	66	/4	65	68	/1	70	65	67	69
Ga	FUS-MS	1	19	16	1/	16	1/	16	19	16	16	19
Ge Ae	FUS-INS INAA	0.5	2.2	. 0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.3	0.2
Se	INAA	0.5	< 0.5	< 1	< 1	< 1	< 1	1.5	< 1	< 1	< 1	< 1
Br	INAA	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Rb	FUS-MS	1	2	< 0.5	1.7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Sr	FUS-ICP	2	331	10	8	10	8	12	21	9	13	14
Y	FUS-ICP	1	15	447	567	455	476	443	570	452	870	525
Zr	FUS-ICP	1	75	18	14	17	14	17	24	16	16	22
Nb	FUS-MS	0.2	1.4	96	70	95	61	94	164	94	91	144
Mo	FUS-MS	2	< 2	5.3	2.7	4.9	2.1	5.4	20.3	4.3	3.7	14.2
Ag	MULT INAA / TD-ICP	0.5	< 0.5	< 2	< 2	< 2	< 2	< 2	2	< 2	< 2	< 2
Cd	TD-ICP	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
in C-	FUS-MS	0.1	< 0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Sh	FUS-INS	0.1	- 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Cs	FUS-MS	0.1	- 0.1	< 0.1	02	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	03
Ba	FUS-ICP	1	153	264	253	246	188	246	369	236	261	309
La	FUS-MS	0.05	9.08	11.9	9.75	14.5	6.78	10.8	24.1	10.4	13.4	19
Ce	FUS-MS	0.05	18.2	25.7	21	28.8	16.3	24	50.4	22.9	29.9	40.5
Pr	FUS-MS	0.01	2.77	3.5	2.95	3.81	2.33	3.22	6.3	3.11	4.05	5.1
Nd	FUS-MS	0.05	11.9	15	12.8	15.8	10.3	13.9	26.1	13.2	16.4	21.5
Sm	FUS-MS	0.01	2.9	3.31	2.91	3.6	2.6	3.33	5.51	3.23	3.25	4.91
Eu	FUS-MS	0.005	0.979	1.19	0.957	1.2	0.956	1.12	1.83	1.04	1.21	1.58
Gd	FUS-MS	0.01	2.73	3.48	2.93	3.81	2.69	3.55	5.26	3	3.25	4.59
Ib	FUS-MS	0.01	0.46	0.57	0.43	0.58	0.45	0.58	0.83	0.5	0.48	0.76
Dy	FUS-MS	0.01	2.76	3.43	2.46	3.5	2./3	3.42	4.92	3.07	2.91	4.42
nu Er	FUS-INS	0.01	0.00	0.09	0.5	0.71	0.55	0.09	0.90	0.62	1.79	0.63
Tm	FUS-MS	0.005	0.253	0.319	0.203	0.305	0.223	0.273	0.421	0.263	0.263	0.329
Yb	FUS-MS	0.01	17	2.09	1.26	2.05	1.42	1.79	2.76	1.75	1.7	2.2
Lu	FUS-MS	0.002	0.238	0.311	0.194	0.318	0.219	0.282	0.406	0.279	0.257	0.364
Hf	FUS-MS	0.1	1.9	2.8	2.1	2.9	2	2.8	4.2	2.4	2.8	3.5
Та	FUS-MS	0.01	0.15	0.31	0.14	0.26	0.09	0.32	1.2	0.28	0.22	0.95
W	INAA	1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
lr -	INAA	1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Au	INAA	1	< 1	< 1	7	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Hg	INAA	1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
11	FUS-MS	0.05	< 0.05	0.07	< 0.05	0.06	0.05	0.07	< 0.05	< 0.05	< 0.05	< 0.05
PD Di	TU-ICP	5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
DI Th	FUS-MS	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	FLIS_MS	0.00	U.83 0.36	1.4	0.51	2.24	0.54	0.89	0.75	0.77	1.1	0.51
~		2.01	0.30	0.00	0.19	0.00	0.21	0.32	0.75	0.21	0.43	0.01

Tabla 5.2.-Basáltos. MSV (Medium Sized Volcanoes) en español; volcánes de medio volumen. (Shield) volcanes escudo. SC (Scoria Cone), conos de escoria.

Tabla5.2	-Continuación											
Nombre			Cicapien?	Sapien	Hoya Urutzen ?	Hoya Urutzen ?	San Miguel	Cicapién	Sta. Cruz?	Cicapien	Cicapien	rondima
Tipo			SC	SC	SC	SC	SC	SC	SC	SC	SC	SC
Tipo de mi	Jestra		Scoria	Lava	Scoria	Scoria	Scoria	Lava	Scoria	Lava	Lava	Bomb
Referencia	is		This Study	This Study	This Study	This Study	This Study	This Study	This Study	This Study	This Study	This Study
Número de	- muestra		15385-B	15380	15337-B	1206-B	14296-B	13257	15374-B	15364	15390	15386
Latitud	sinucaua		10936'30 3"	10926'51 1"	10°33'26.6"	10 24/22 2"	19230-D	10237	10931'55 3"	109371/11 8*	10935'20 7"	10936'20 1"
Lancitud			400000100.08	10/2007150 08	13 33 20.0	19 34 32.3	400805145 7	400805100.08	400007140.08	400007147.08	400000150.08	000000000
Longitud	,		102*06 06.2	102-05 53.0	101 50 29	101*5817.7	102 05 45.7	102 05 26.9	102-07 42.2	102-07 17.8	102-00 53.3	102-06 36.0
Altitud (ms	snm)		2297	1910	2479	2309	2330	2361	2230	2133	2320	2317
Wt%	Analytical methods	Detection limits										
SIO2	FUS-ICP	0.01	51.48	51.5	51.53	51.54	51.64	51.71	51.73	51.8	51.96	51.98
Al ₂ O ₃	FUS-ICP	0.01	17.08	16.87	18.27	18.05	17.37	18.04	17.13	17.16	17.47	16.51
Fe ₂ O ₃ (T)	FUS-ICP	0.01	9.09	8.56	9	9.12	8.28	8.9	8.67	8.88	8.72	8.65
MnO	FUS-ICP	0.01	0.15	0.14	0.137	0.14	0.13	0.14	0.138	0.144	0.141	0.137
MaQ	EUS-ICP	0.01	8.91	84	6.65	7 09	7.26	5.52	7 64	7.9	8.05	8.91
CaO	FUS-ICP	0.01	8.64	8 94	8 24	7.85	8.43	9.03	8.12	9.08	8.9	9.11
Na-O	FUSICE	0.01	3.10	3.25	3.45	3.28	3 31	3.81	3	3.4	3.47	3.08
KO		0.01	0.13	0.20	0.40	0.20	0.01	4.07	0.50	0.00	0.97	0.04
TiO		0.01	0.71	0.02	0.07	0.7	0.00	1.27	0.09	0.00	0.87	0.04
1102	FUS-ICP	0.01	0.95	0.64	1.001	1.06	0.93	1.71	0.942	1.100	1.067	0.639
P2O5	FUS-ICP	0.01	0.21	0.16	0.25	0.21	0.26	0.43	0.19	0.25	0.22	0.2
LOI			-0.04	-0.21	0.73	1.53	0.05	-0.36	1.4	-0.09	-0.18	-0.04
Total			100.4	99.1	99.3	99.1	98.6	100.6	99.5	100.5	100.7	100.2
ppm												
Be	FUS-ICP	1	1	< 1	1	1	1	2	1	1	1	1
s	TDJCP	0.001	0.002	0.004	0.002	0.027	0.041	0.041	0.002	0.002	0.003	0.002
	IN IA A	0.04	0.002	0.004	0.002	0.027	0.041	0.041	0.002	0.002	0.000	0.002
SC	INAA	0.01	27.6	25.5	23.3	21.5	24.1	27.5	24.7	20.0	20.4	30.6
v	FUS-ICP	5	189	197	188	160	183	231	170	196	195	183
Cr	INAA	0.5	433	396	313	234	307	88.6	412	305	339	439
Co	INAA	0.1	37.4	35.9	34.6	34.3	39.3	32.3	36.4	33.1	35.8	40.1
Ni	TD-ICP	1	186	169	105	128	142	48	169	130	147	195
Cu	TD-ICP	1	51	47	38	45	51	45	47	42	45	53
70	MULTINAA / TDUCP	1	65	68	63	65	60	70	65	63	-10	67
0-		-	00	47	00	10	40	10	47	47	40	40
Ga	FUS-MS	1	10	17	20	10	10	19	17	17	10	10
Ge	FUS-MS	0.5	0.3	0.3	1.4	2	1.9	1.6	0.3	0.1	0.3	0.3
As	INAA	1	1.3	1.4	< 1	< 0	< 1	< 1	1.4	1.2	1.4	1.4
Se	INAA	0.5	< 1	3	< 0.5	< 0.5	< 0.5	< 0.5	< 1	< 1	< 1	< 1
Br	INAA	0.5	< 0.5	< 0.5	< 0.5	2.7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Rh.	EUS-MS	1	< 0.5	< 0.5	10	10	16	17	< 0.5	< 0.5	< 0.5	< 0.5
ND			- 0.5	- 0.5	10	F10	10		- 0.5	- 0.5	- 0.5	- 0.5
Sr	FUS-ICP	2		9	520	510	596	000	10		14	15
Y	FUS-ICP	1	472	495	16	17	15	23	477	462	510	851
Zr	FUS-ICP	1	17	15	96	109	103	166	16	19	18	16
Nb	FUS-MS	0.2	91	63	4.9	5.4	3	20.9	83	115	100	90
Mo	EUS-MS	2	4.4	22	< 2	<2	< 2	< 2	4.6	94	6.8	4 1
Aa	MULTINAA / TDUCP	0.5	2 2		< 0.5	< 0.5	< 0.5	< 0.5	- 2	6.2	2 2	· · ·
AU	TD IOD	0.5	- 2	- 2	- 0.5	- 0.5	- 0.5	- 0.5	- 2		- 2	- 2
Ca	TD-IGP	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
In	FUS-MS	0.1	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	< 0.5	< 0.5	< 0.5
Sn	FUS-MS	1	< 0.1	< 0.1	< 1	12	< 1	1	< 0.1	< 0.1	< 0.1	< 0.1
Sb	INAA	0.1	< 1	< 1	< 0.1	< 0.1	0.6	< 0.1	< 1	< 1	< 1	< 1
Cs	FUS-MS	0.1	< 0.1	< 0.1	0.3	0.4	0.4	0.3	< 0.1	< 0.1	< 0.1	< 0.1
Ba	EUS-ICP	1	239	204	278	271	339	356	221	275	273	254
La	ELIC MC	0.05	0.07	7.56	10.0	12.4	15.6	20.0	11.6	12.6	10.0	12.6
0-	FUO MO	0.05	0.07	1.50	12.0	12.4	10.0	20.3	11.0	10.0	12.5	10.0
Ce	FUS-MS	0.05	22.1	17.4	20.0	20.3	32.4	42.0	24.9	29.2	21.2	30.4
Pr	FUS-MS	0.01	3.03	2.39	3.63	3.7	4.3	5.71	3.37	3.76	3.59	3.99
Nd	FUS-MS	0.05	13.2	11	14.9	16.4	17.4	23.5	14	15.7	15.7	16.8
Sm	FUS-MS	0.01	3.04	2.9	3.75	3.67	3.72	5.06	3.56	3.52	3.58	3.32
Eu	FUS-MS	0.005	1.16	0.998	1.18	1.21	1.15	1.66	1.07	1.23	1.27	1.15
Gd	EUS-MS	0.01	3.36	2 74	3 15	3.27	3 11	4 77	3.47	3 55	3 64	3 16
Th	EUR MR	0.01	0.52	0.47	0.57	0.52	0.40	0.72	0.55	0.56	0.50	0.51
10	FU3-W6	0.01	0.03	0.47	0.37	0.00	0.49	0.73	0.00	0.00	0.39	0.01
Dy	FUS-MS	0.01	3.25	2.86	3.47	3.35	2.84	4.19	3.29	3.44	3.45	3.02
Ho	FUS-MS	0.01	0.67	0.57	0.71	0.64	0.57	0.8	0.63	0.68	0.71	0.61
Er	FUS-MS	0.01	1.92	1.63	2.04	1.86	1.56	2.31	1.79	1.97	2.1	1.79
Tm	FUS-MS	0.005	0.285	0.226	0.29	0.289	0.226	0.364	0.255	0.298	0.32	0.267
Yb	FUS-MS	0.01	1.86	1.46	1.85	1.88	1.52	2.3	1.63	1 95	2 07	1 77
Lu .	FUS-MS	0.002	0.292	0.226	0.291	0 284	0 232	0.312	0 257	0.296	0.312	0 277
LIF	EUS-MS	0.1	0.202	0.220	0.201	0.204	0.4	0.012	0.201	0.230	0.012	0.211
-	T UO-WO	0.1	2.0	2	2.1	2.0	- 2.4	3.0	2.3	2.0	2.0	2.0
Ia	FUS-MS	0.01	0.23	0.1	0.13	0.5	0.32	1.57	0.25	0.61	0.44	0.23
W	INAA	1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Ir	INAA	1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Au	INAA	1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Ha	INAA	1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
TI	FUS-MS	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.07
Db.	TDICD	5.55 E	- 0.03	- 0.03	- 0.05	- 0.00	- 0.03	- 0.03	- 0.05	- 0.03	- 0.05	0.07
F 0	TU-IOP	5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
ы	FUS-MS	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Th	FUS-MS	0.05	0.75	0.67	0.86	0.85	1.33	1.76	1.56	1.13	1.08	1.15
11	FUS-MS	0.01	0.29	0.25	0.34	0.32	0.53	0.61	0.33	0.41	0.36	0.42

Andesitas

Horno Sur

Es un pequeño escudo de medio volumen (57.47 wt.% SiO₂) emplazado al sur del APC (PAR-15350; Tablas 1, 3, 5, 6; Figs. 3, 4, 13, 15a). Presenta rocas densas, color gris (muestra de mano) con matriz vítrea, fenocristales de olivino (<2 mm) y piroxenos alterados (<2 mm) con microlitos de plagioclasa. Bajo el microscopio, presenta textura tráquitica a pilotaxítica seriada, contiene fenocristales de olivino (0.8 vol.%) de formas subeuhedrales con coronas de iddiginsita y plagioclasa (3.5 vol.%) con formas aciculares con macla polisintética tipo Carlsbad. En la matríz vítrea (62.9 vol.%) presenta microfenocristales de clinopiroxeno (0.2 vol.%) y principalmente de plagioclasa (32.4 vol.%), así como minerales opacos (0.4 vol.%).

Hoya Urutzen

El cono de escoria Hoya Urutzen de edad holocénica y composición andesítica (57.65-59.52 wt.% SiO₂) (PAR-15358, PAR-15357-B, PAR-15335, PAR-14320, PAR-14330; Tablas 2, 4, 5, 6; Figs. 3, 8, 13, 15b) fue descrito por Hasenaka y Carmichael et al. (1987); Siebe et al. (2014) y Chevrel et al. (2016a, 2016b). Presenta rocas de color gris obscuro en muestra de mano con vesiculas de forma elongada, matriz vítrea, con fenocristales de plagioclasa (<1.5 mm) y microfenocristales de piroxeno (<1 mm). Bajo el microscopio presenta textura traquitica con fenocritales de clinopiroxeno (augita) (0.2 a 0.6 vol.%) con formas anhedrales (Tabla 6; PAR-14319 y PAR-14320) así como ortopiroxeno (enstatita) (0.1 vol.%) y abundante plagioclasa. Este escudo presenta una composición más amplia, por lo que puede observarse su evolución geoquímica derivada de la cristalización fraccionada.

Chimilpa

La colada de lava Chimilpa (57.58 wt.% SiO₂; PAR-15345; Tablas 5, 6; Figs. 3, 8, 13, 15c) es un flujo de lava del Holoceno de menor volumen, que presenta rocas color gris claro (muestra de mano) con matriz vítrea y microlitos de olivino, piroxeno y plagioclasa (<1 mm). Bajo el microcopio se obesrva una textura traquítica, contiene fenocristales de olivino (2.6 vol.%) de formas euhedrales a subeuhedrales y esqueletales, clinopiroxeno (augita) (0.3 vol.%) con formas anhedrales, asi como ortopiroxeno (enstatita) (0.9 vol.%) euhedral a subeuhedral y plagioclasa (5.7 vol.%) con formas aciculares y zoneamiento, así como maclas polisintéticas, que a su vez contienen inclusiones de apatito (0.6 vol.%). En la matriz no presenta olivino, en cambio, aumenta la presencia de clinopiroxeno y ortopiroxeno, así como de la plagioclasa.

Aracata

Este escudo de volumen intermedio (58.51-62.82 wt.% SiO₂; PAR-14292 y PAR-14326; Tablas 1, 3, 5, 6; Figs. 3, 4, 13, 15d) ubicado cerca de la localidad de Angahuan, presenta rocas de color gris (muestra de mano), con vesículas, matriz vítrea y textura microcristalina. Contiene cristales de piroxeno en forma de glomeropórfidos verde obscuro (<1 cm) y vesículas irregulares (<2 mm). Algunos microlitos de plagioclasa se observan en la muestra de mano. Bajo el microscopio contiene fenocristales de clinopiroxeno (augita) (1.5 vol.%) de formas euhedrales a subeuherales y macla lamelar, asi como ortopiroxeno (enstatita) (1.7 vol.%) de formas euhedrales y subeuhedrales y plagioclasa (2.9 vol.%) con fomras aciculares, zoneamiento y maclas polisintéticas tipo Carlsbad. La matriz es principalmente vítrea y presenta abundante plagioclasa (20.4 vol.%).

Mesteño

Este escudo de volumen intermedio (58.98 wt.% SiO₂; PAR-15343; Tablas 3, 5; Figs. 3, 13, 15.4a) está localizado en las inmediaciones de la localidad de San Isidro, contiene rocas gris obscuro (muestra de mano) densas, de matriz vítrea con microlitos de feldespato y cristales de piroxeno (<1 mm). Bajo el microscopio el arreglo mineral principal se conforma de una textura traquítica a pilotaxítica, con fenocristales de ortopiroxeno (enstatita) (0.2 vol.%) de formas euhedrales a subeuhedrales y plagioclasa (1.8 vol.%) de formas aciculares con zoneamiento, principalmente. La matriz es mayormente vítrea y contiene microfenocristales de clinopiroxeno (augita) (0.1 vol.%), ortopiroxeno (8.5 vol.%) y plagioclasa (35.7 vol.%) (Tabla 6).

Tamapu Juata

Este escudo de volumen intermedio (58.98 wt.% SiO₂; PAR-14311; Tablas 1, 5; Figs. 3, 4, 13, 15.4b) está ubicado cerca de la localidad de Cheranástico. Presenta rocas de color gris obscuro (muestra de mano), matriz vítrea con vesículas (<3 mm) y textura fluidal. Además, contiene microlitos de feldespato con algunos cristales de plagioclasa (<1.5 mm). Bajo el microscopio contiene princincipalmente ortopiroxeno (0.1 vol.%) y plagioclasa (0.1 vol.%), mientras que la matríz es más vítrea con microfenocristales de ortopiroxeno (8.6 vol.%) y plagioclasa (12.7 vol.%) (Tabla 6).

El Metate

El escudo voluminoso El Metate (57.38-61.37 wt.% SiO₂) descrito por Hasenaka y Carmichael et al. (1987), Siebe et al. (2014) y Chevrel et al. (2016a, 2016b) es de edad histórica (Tablas 1, 5, 6; Figs. 3, 4, 7, 8, 13, 15e). Las muestras presentan una matriz vítrea (muestras de mano) con cristales de olivino (<1.5 mm), piroxeno (<2 mm) y abundante plagioclasa (<1.5 mm). Bajo el microscopio contiene olivino (0.2 vol.%), clinopiroxeno (0.2 vol.%), ortopiroxeno (0.2 vol.%) y plagioclasa (2.4 vol.%). La matriz es principalmente vítrea y contiene clinopiroxeno (2.3 vol.%), ortopiroxeno (1.9 vol.%) y plagioclasa (19.9 vol.%).

Capen

El escudo voluminoso Capen (59.35-59.36 wt.% SiO₂; PAR-14324 y PAR-15342; Tablas 1, 3, 5, 6; Figs. 3, 4, 8, 15f, 13) presenta rocas gris obscuro (muestra de mano) con vesículas elongadas de hasta (<4 mm), matriz vítrea con microfenocristales de olivino (<1 mm) y plagioclasa (<1 mm). Bajo el microscopio se observan fenocristales de clinopiroxeno (0.1 vol.%) con formas euhedrales a subeuhedrales con maclas lamelares, ortopiroxeno (0.4-1.7 vol.%) de formas euhedrales a subeuhedrales y plagioclasa (1.8-6.7 vol.%) de formas aciculares y zoneamiento. La matriz es mayoritariamente vítrea, contiene microfenocristales de clinopiroxeno (0.4 vol.%), ortopiroxeno (3.8-8.3 vol.%) y plagioclasa (17.5-23.2 vol.%) (Tabla 6).

Ziquicio-Huinumba

Esta pequeña agrupación de conos y flujos (59.52 wt.% SiO₂; PAR-15353; Tabla 5; Figs. 3, 13, 15.4c) presenta rocas color gris (muestra de mano), densas con fenocristales de plagioclasa (<5 mm), piroxeno (<4 mm), así como hornblenda (<5 mm). En esta roca se encontró un xenolito de hornblenda con piroxenos. Bajo el microscopio se obervan fenocritales de hornblenda (1.6 vol.%), clinopiroxeno (0.3 vol.%), ortopiroxeno (0.3 vol.%) y plagioclasa (1.2 vol.%). La matriz es mayormente vítrea con microfenocritales de hornblenda (1.6%), clinopiroxeno (0.3 vol.%) y plagioclasa (26.1 vol.%) (Tabla 6).

Cumburinos

El Cumburinos (59.53 wt.% SiO₂) es otro volcán escudo de composición andesítica (PAR-15355; Tablas 1, 3, 5, 6; Figs. 3, 4, 8, 13, 15.1a). Sus rocas son de color gris claro (muestra de mano), densas y de textura porfirítica, que contienen fenocristales de plagioclasa y piroxeno (< 2 mm) embebidos en una matriz vítrea rica en microlitos de feldespato. Bajo el microscopio estas rocas son de textura traquítica a pilotaxítica con fenocristales de olivino (0.6 vol.%) de formas euhedrales a subeuhedrales. Además contiene plagioclasas (29.6 vol%) aciculares y con zoneamiento y clinopiroxenos (0.7 vol.%), los cuales presentan maclas lamelares. La matriz es

vítrea (30.5 vol.%) y contiene un arreglo mineral similar, sólo que de menor tamaño con microfenocristales y microlitos de feldespato.

Domo Paracho

El Cerro Paracho, también conocido como Cerro del Aguila, es un escudo de volumen intermedio coronado por un domo (59.19-61.03 wt.% SiO₂); (Tablas 1, 3, 5, 6; Figs. 4, 7, 8, 13, 15.1b) que presenta rocas con características texturales muy interesantes. Por lo general, sus rocas son de color gris claro (muestra de mano) con textura porfirítica y que denota mezcla "*mingling*". Además contiene fenocristales de plagioclasa (<4 mm) y piroxeno (<2 mm) embebidos en una matriz vítrea rica en microlitos de feldespato. Sus rocas petrográficamente son de textura traquítica a pilotaxítica seriada y contienen fenocristales de plagioclasa con formas aciculares y macla albítica a polisintética, contiene también clinopiroxeno y ortopiroxeno con formas euhedrales a subeuhedrales que en ocasiones aparecen como glomeropórfidos. La matriz es vítrea y por lo general presenta microlitos de feldespato, aunque también se observan clinopiroxenos.

La Cantera

Este escudo de volúmen intermedio (59.59 wt.% SiO₂; PAR-15338; Tablas 5, 6; Figs. 3, 15.1c, 13) presenta rocas de color gris (muestra mano) con una matriz vítrea, fenocristales de hornblenda (<3 mm) y microlitos de plagioclasa (<0.5 mm). Bajo el microscopio se observa la típica textura traquítica presente en muchas rocas del área, contiene mayormente una matriz vítrea, rica en fenocristales de hornblenda (6.3 vol.%) y plagioclasa (0.3 vol.%). Los microfenocristales usualmente presentan un arreglo rico en hornblenda (5.6 vol.%) y plagioclasa (18.9 vol.%).

Durazno

Es un cono de escoria de composción andesitica con flujos de lava asociados, que se localiza en las estribaciones meridionales de los escudos de volumen intermedio Hueratiro y Cerros Cuates (59.55-59.62 wt.% SiO₂; PAR-15332, PAR-15349; Tabla 5; Figs. 3, 13, 15.4d). Presenta rocas color gris claro (muestra de mano), matriz vítrea, vesículas (<1 mm), con microfenocristales de olivino (<1 mm), plagioclasa (<1 mm), piroxeno (<1 mm) y microlitos de feldespato. Bajo el microscopio presenta una textura traquítica a pilotaxítica seriada con fenocristales de olivino (0.6 vol.%) de formas euhedrales con formas esqueletales, así como clinopiroxeno (0.2-1.1 vol.%), ortopiroxeno (0.9-1.3 vol.%) y plagioclasa (1-10.3 vol.%) con formas aciculares y maclas polisintéticas (Tabla 6).

Zarapo

Es un escudo de volúmen intermedio (59.62 wt.% SiO₂; PAR-15352; Tablas 1, 3, 5, 6; Figs. 3, 4, 13, 15.1d) que presenta rocas color gris (muestra de mano) densas, con matriz vítrea y cristales

de olivino (<0.5 mm), piroxeno (<0.5 mm) y hornblenda (<1 mm). Bajo el microscopio se observa una textura traquítica con fenocristales de ortopiroxeno (0.9 vol.%) y plagioclasa (2.5 vol.%) de formas aciculares a euhedrales con zoneamiento. Estas rocas también contienen clinopiroxeno (1.5 vol.%), ortopiroxeno (2.4 vol.%) y plagioclasa (31.9 vol%).

Santísimo

Aracata-Santísimo (58.51 y 60.02 wt.% SiO₂; PAR-14292 y PAR-14293; Tablas 1, 3, 5, 6; Figs. 3, 4, 7, 8, 13, 15.1e) es otra estructura compuesta, voluminosa y prominente que está emplazada al norte del histórico Paricutin (Fig. 4). En sus faldas meridionales se encuentra la población de Angahuan. Estas rocas color gris (muestra de mano) son de textura porfirítica, presentan fenocristales de plagioclasa y piroxeno (< 2 mm) que en ocasiones aparecen como glomeropórfidos (< 2 mm). La matriz es vítrea con vesículas (1 mm) y es rica en microlitos de feldespato. Petrográficamente su rocas son de textura vítrea a traquítica-pilotaxítica con fenocristales de clinopiroxeno (augita) (0.5-1.5 vol.%) con maclas típicas lamelares, así como ortopiroxeno (enstatita) (1.7-3.1 vol.%). Además contiene plagioclasas (2.9-10.7 vol.%) con formas aciculares a euhedrales con zoneamiento que frecuentemente presentan maclas polisintéticas y albíticas. La matríz es mayormente vítrea y contiene microfenocristales de olivino (0.1%), clinopiroxeno (0.1%), ortopiroxeno (0.3-1%) y plagioclasa (20.4-23.1%).

Guachan

El Guachan (60.03 wt.% SiO₂; PAR-14314; Tablas 5 y 6; Figs. 3, 13, 15.1f) es un cono de escoria con un pequeño flujo de lava asociado que se ubica al sur de la localidad de Nahuatzen. Presenta rocas color gris claro con vesículas elongadas (<1 cm), matriz vítrea con fenocristales de olivino (<2 mm) y microlitos de plagioclasa. Bajo el microscopio, su textura es traquítica, se observan fenocristales de olivino (0.2 vol.%) de formas euhedrales y esqueletales, que en ocasiones contienen inclusiones de espinela (cromita) (0.1 vol.%) y plagioclasa (2.9 vol.%) con formas aciculares a euhedrales con zoneamiento, así como maclas polisintéticas y albíticas. La matriz es rica en microfenocristales euhedrales de olivino (0.9 vol.%), clinopiroxeno con típica macla lamelar (0.4 vol.%), ortopiroxeno (1.1 vol.%) y plagioclasa de formas aciculares con maclas polisintéticas (38.8 vol.%).

Caraquitaro

Se trata de un escudo de medio volumen (60.11 wt.% SiO₂; PAR-14315; Tablas 1, 3, 5, 6; Figs. 3, 4, 13, 15.2a) que presenta rocas color gris obscuro con matriz vítrea, microvesicular, con microfenocristales de piroxeno (<1 mm) y plagioclasa (<1 mm). Bajo el microscopio presenta una matriz vítrea y la típica textura traquítica con fenocristales de clinopiroxeno (0.4 vol.%) de formas ehuedrales a subeuhedrales, ortopiroxeno (1.4 vol.%) de formas euhedrales a subeuhedrales, y

plagioclasa (2.7 vol.%) con formas aciculares a euhedrales con zoneamiento, así como maclas polisintéticas y albíticas. La matriz, mayormente vítrea, contiene microfenocristales de clinopiroxeno (0.6 vol.%), ortopiroxeno (3.8 vol.%) y plagioclasa (25.9 vol.%) principalmente de formas aciculares.

Irepu

El Irepu (60.12 wt.% SiO₂; PAR-14323; Tabla 5; Figs. 3, 13, 15.2b) es un pequeño cono de escoria, localizado al sur del poblado de Sevina. Presenta rocas color gris claro (muestra de mano), densas, matriz vítrea con cristales de piroxeno (<3 mm) y plagioclasa (<1 mm). Bajo el microscopio presentan textura traquítica con fenocristales de clinopiroxeno (1.1 vol.%), ortopiroxeno (0.2 vol.%) y plagioclasa (7.6 vol.%) con formas aciculares a euhedrales con zoneamiento, así como maclas polisintéticas y albíticas. La matriz en su mayoría es vítrea y contiene microfenocristales de ortopiroxeno (0.2 vol.%) y plagioclasa (34.6 vol.%).

Hueratiro

Se trata de un escudo de volumen intermedio (58.48-60.42 wt.% SiO₂; PAR-14319 y PAR14221; Tablas 1, 3, 5, 6; Figs. 3, 4, 13, 15.2c) que presenta rocas gris obscuro (muestra de mano) con vesículas elongadas, de textura fluidal con cristales de plagioclasa (<3 mm) y piroxeno (<2 mm). Bajo el microscopio presenta un arreglo mineral de clinopiroxeno (1.7 vol.%), ortopiroxeno (1.9 vol.%) y plagioclasa (25.9 vol.%) con formas aciculares a euhedrales con zoneamiento, así como maclas polisintéticas y albíticas. La matriz, mayormente vítrea, presenta un arreglo de clinopiroxeno (0.1 vol.%), ortopiroxeno (2.5 vol.%) y plagioclasa (15.1 vol.%).

El Molcajete

El Molcajete (60.76 wt.% SiO₂; PAR-15354; Tablas 1, 3, 5, 6; Figs. 3, 13, 15.2d) es un pequeño cono de escoria localizado al SW del poblado de Tingambato. Presenta rocas color gris claro (muestra de mano) densas con matriz vítrea y microfenocristrales de piroxeno (<1 mm) y plagioclasa (<1 mm). Bajo el microspio contiene fenocristales de clinopiroxeno (0.3 vol.%), ortopiroxeno (1 vol.%) y plagioclasa (0.6 vol.%) con formas aciculares a euhedrales con zoneamiento, así como maclas polisintéticas y albíticas. La matriz contiene microfenocristales de clinopiroxeno (1.6 vol.%), ortopiroxeno (4.3 vol.%) y plagioclasa (22.1 vol.%).

Janamo

Este volcán (59.42 -60.82 wt.% SiO₂; PAR15391, PAR15367, PAR15392; Tablas 2, 4, 6; Figs. 3, 6, 7, 8, 13, 15.2e) es un cono de escoria con flujos de lava asociados, localizado sobre un escudo prominente al NW del poblado de San Lorenzo. Presenta rocas color gris (muestra de mano), matriz vítrea, con vesículas elongadas (<2 mm), microfenocristales de olivino (<1 mm) y microlitos

de feldespato. Bajo el microscopio presenta una textura traquítica, con fenocristales de olivino (2.3 vol.%) con formas euhedrales a subeuhedrales, algunos con formas esqueletales e inclusiones de espinela (cromita) (0.3 vol.%), ortopiroxeno (0.7 vol.%) y plagioclasa (1.5 vol.%) con formas aciculares a euhedrales con zoneamiento, así como maclas polisintéticas y albíticas. La matriz mayormente es vítrea con microfenocistales de olivino (3.7 vol.%), clinopiroxeno (0.2 vol.%), ortopiroxeno (0.8 vol.%) y plagioclasa (16.3 vol.%).

La Virgen

La Virgen (60.85 wt.% SiO₂; PAR-14322; Tablas 1, 3, 5, 6; Figs. 3, 4, 13, 15.2f) presenta rocas color gris obscuro (muestra de mano) y textura porfirítica vesicular con fenocristales de plagioclasa (<2 mm) y piroxeno (<2 mm). La matriz es vítrea con microlitos de feldespato. Petrográficamente esta roca es de textura traquítica y contiene fenocristales de plagioclasa con formas aciculares y euhedrales con zoneamiento y maclas polisintéticas y tipo Carlsbad; contiene a la vez fenocristales de ortopiroxeno con formas euhedrales a subeuhedrales. La matriz es vítrea con vesículas (6.4 vol.%) y contiene microfenocristales de plagioclasa con formas aciculares, clinopiroxeno y ortopiroxeno.

Querenda

Es un escudo de volumen intermedio (60.87 wt.% SiO₂; PAR-14313; Tablas 1, 3, 5, 6; Figs. 3, 4, 11.3a y 13) que presenta rocas de color gris claro (muestra de mano) densas con matriz vítrea y con fenocristales de plagioclasa (<2 mm) y microfenocristales de clinopiroxeno (<1 mm). Bajo el microscopio se observan fenocristales de clinopiroxeno (0.4 vol.%) de formas subeuhedrales, ortopiroxeno (1.2 vol.%) y plagioclasa (28.8 vol.%) con formas aciculares y euhedrales con zoneamiento y maclas polisintéticas y tipo Carlsbad. La matriz es mayormente vítrea y contiene microfenocristales de clinopiroxeno (0.2 vol.%), ortopiroxeno (1.9 vol.%) y plagioclasa (22 vol.%).

El Gato

El Gato es un escudo de volumen intermedio (61 wt.% SiO₂; PAR-15341; Tablas 1, 3, 5; Figs. 3, 13 y 15.4e) que presenta rocas de color gris claro, densas, con matriz vítrea y fenocristales de plagioclasa (<2 mm) y piroxeno (<2 mm). Bajo el microscopio su arreglo mineral incluye fenocristales de clinopiroxeno (0.3 vol.%), ortopiroxeno (0.8 vol.%) y plagioclasa (3.1 vol.%) con formas aciculares y euhedrales con zoneamiento y maclas polisintéticas y tipo Carlsbad. La matriz es mayormente vítrea y contiene microfenocristales de clinopiroxeno (0.8 vol.%), ortopiroxeno (1.9 vol.%) y plagioclasa (23.2 vol.%) (Tabla 6).

Parachito

Es un cono de escoria (61.26 wt.% SiO₂; PAR-14317; Tablas 3, 5, 6; Figs 3; 13, 15.3b) localizado en la ladera NE del cerro Paracho, que presenta rocas color gris obscuro (muestra de mano) matriz vítrea y alterada, con fenocristales de plagioclasa (<2 mm) y piroxeno (<1.5 mm). Bajo el microscopio se observan fenocristales de clinopiroxeno (0.4 vol.%), ortopiroxeno (1.3 vol.%) y plagioclasa (16.1 vol.%) con formas aciculares y euhedrales con zoneamiento y maclas polisintéticas y tipo Carlsbad. La matriz, mayormente vítrea, presenta microfenocristales de clinopiroxeno (0.5 vol.%), ortopiroxeno (2.5 vol.%) y plagioclasa (14 vol.%) (Tabla 6).

Mari Juata

Este escudo de volumen intermedio se encuentra emplazado al NE de la localidad de Nurio (61.4 wt.% SiO₂; PAR-14279A; Tablas 1, 5; Figs. 3, 4, 7, 13, 15.4f). Presenta rocas gris claro (muestra de mano) con matriz vítrea y microvesiculares con fenocristales de olivino (<1 mm), piroxeno (<1 mm) y plagioclasa (<1 mm). Bajo el microscopio se observa olivino (0.1-1.7 vol.%), clinopiroxeno (0.9 vol.%), ortopiroxeno (1.3 vol.%) y plagioclasa (16.1 vol.%) con formas aciculares y euhedrales con zoneamiento y maclas polisintéticas y tipo Carlsbad. La matriz, mayormente vítrea, presenta microfenocristales de olivino (0.1-1.1 vol.%), clinopiroxeno (0.3 vol.%), ortopiroxeno (0.1 vol.%) y plagioclasa (29.1-56.14 vol.%) (Tabla 6).

Angaruén

Este domo está emplazado al sur de la localidad de La Mojonera (61.54 wt.% SiO₂; PAR-15340; Tablas 5, 6; Figs. 3, 13, 15.3c) y presenta rocas color gris claro (muestra de mano) y matriz vítrea con fenocristales de plagioclasa (<3 mm), piroxeno (<2 mm) y hornblenda (<2 mm). Su composición modal incluye clinopiroxeno (1 vol.%), ortopiroexno (1.8 vol.%) y plagioclasa (9.9 vol.%) con formas aciculares y euhedrales con zoneamiento y maclas polisintéticas y tipo Carlsbad. La matriz, mayormente vítrea, contiene microfenocristales de olivino (0.1 vol.%), clinopiroxeno (0.1 vol.%), ortopiroxeno (3.1 vol.%) y plagioclasa (30.5 vol.%).

San Marcos

El cerro San Marcos (61.7 wt.% SiO₂; PAR-14297; Tablas 1, 3, 5, 6; Figs. 3, 4;13, 15.3d) está conformado por rocas color gris claro (muestra de mano) de textura porfirítica con fenocristales de plagioclasa con formas euhedrales a subeuhedrales y aciculares, que presentan zoneamioento y maclas típicas (<3 mm). Contiene también olivino y piroxeno (<2 mm) con formas euhedrales a subeuhedrales a subeuhedrales. La matríz es vítrea con microlitos de feldespato. Petrográficamente esta roca es de textura traquítica a pilotaxítica seriada con fenocristales de plagiocalsa (30.8 vol.%) con formas euhedrales a subeuhedrales y aciculares, con zoneamiento y maclas típicas según su forma. También contiene clinopiroxenos (2.2 vol.%) con formas euhedrales a

subeuhedrales y con maclas lamelares. La matriz es vítrea (54.2 vol.%) con microfenocritales de ortopiroxeno (2.5 vol.%) y plagioclasa (7.3 vol.%) de formas aciculares y con zoneamiento.

Cuinguitapu

Es un escudo de volumen intermedio (62.1 wt.% SiO₂; PAR-14310; Tablas 1, 3, 5, 6; Figs. 3, 13, 15.3e) que presenta rocas color gris claro (muestra de mano) con matriz vítrea y fenocristales de plagioclasa (<3 mm) y piroxeno (<1 mm) que en ocasiones aparecen asociados como glomeropórfidos (<4 mm). Bajo el microscopio presenta una textura vítrea, con fenocristales de clinopiroxeno (0.6 vol.%), ortopiroxeno (2.1 vol.%) y plagioclasa (28.1 vol.%) con formas aciculares y euhedrales con zoneamiento y maclas polisintéticas y tipo Carlsbad. La matriz, mayormente vítrea, contiene microfenocristales de clinopiroxeno (0.2 vol.%), ortopiroxeno (1.4 vol.%) y plagioclasa (9.2 vol.%).

El Molino

Se trata de un escudo de volumen intermedio (62.59 wt.% SiO₂; PAR-14295; Tablas 1, 3, 5, 6; Figs. 3, 4, 7, 8) que presenta rocas de color gris claro (muestra de mano) con matriz vítrea, textura microcristalina y con fenocristales de piroxeno (<1 mm), hornblenda (<1 mm) y microlitos de plagioclasa. Bajo el microscopio presenta fenocristales de ortopiroxeno (1.4 vol.%) y plagioclasa (1.4 vol.%) con formas aciculares y euhedrales con zoneamiento y maclas polisintéticas y tipo Carlsbad. La matriz es mayormente vítrea y presenta microfenocristales de ortopiroxeno (1.3 vol.%) y plagioclasas (20.1 vol.%) (Tabla 6).

El Horno

Este escudo de volumen intermedio (62.74 wt.% SiO₂, PAR-14291; Tablas 1, 3; Figs. 3, 4, 13, 15.3f) presenta rocas color gris claro (muestra de mano), matriz vítrea, densa, con fenocristales de piroxeno (<2 mm) y hornblenda (<2 mm). La matriz vítrea contiene microlitos de feldesptato. Bajo el microscopio, su arreglo mineral es de fenocristales de clinopiroxeno (0.1 vol.%) y ortopiroxeno (0.6 vol.%) con formas euhedrales a subeuhedrales y plagioclasa (8.8 vol.%) con formas aciculares y euhedrales con zoneamiento y maclas polisintéticas y tipo Carlsbad. La matriz, mayormente vítrea (68.9 vol.%), presenta microfenocristales de clinopiroxeno (0.1 vol.%), ortopiroxeno (0.9 vol.%) y plagioclasa (19.6 vol.%).

Tabla 6 Cont	teo de puntos (Andesitas)			2 3	3 4	Ļ	5	6	7 8	3 9) 10
	Muestra	PAR-15350	PAR-14319	PAR-14320	PAR-15345	PAR-14292	PAR-15343	PAR-14311	PAR-15333	PAR-15342	PAR-14324
	Localidad	Horno (Sur)	Hoya Urutzen	Hoya Urutzen	Chimilpa	Aracata	Mesteño	Tamapu Juata	Metate Sur	Capen	Capen
	Тіро	Lava	Lava	Lava	Lava	Lava	Lava	Lava	Lava	Lava	Lava
	Composición	Basalto	Andesita	Andesita	Andesita	Andesita	Andesita	Andesita	Andesita	Andesita	Andesita
Fenocristales	OI	0.8	3 () () 2.6	6	0	0	0 0.2	2 () 0
	Hrb	() () C) ()	0	0	0 0) () 0
	Срх	(0.0	6 0.2	2 0.3	3	1.5	0	0 0.2	2 (0.1
	Sp en Ol	() () () ()	0	0	0 0) () 0
	Ap en Plg	() () C	0.0	6	0	0	0 0) () 0
	Орх	() 1.1	1 0.9	0.1		1.7	0.2 0.	1 0.2	2 0.4	l 1.7
	Plg	3.5	5 12.3	7 12.3	3 0.9)	2.9	1.8 0.	1 2.4	4 1.8	6.7
Matríz	OI	() () C) 5.7	,	0.1	0	0 2.2	2 () 0
	Hrb	() () C) ()	0	0	0 () () 0
	Срх	(0.0	6 0.4	1.8	3	0.1	0.1	0 2.3	3 0.4	+ O
	Орх	() 3.1	1 2.7	0.4	L I	0.3	8.5 8.	6 1.9	9 8.3	3.8
	Plg	32.4	l 19.4	4 31.8	3 26.4	2	0.4 3	5.7 12	7 19.9	23.2	2 17.5
	Vidrio	62.9	9 46.2	2 41.2	2 56.5	5 6	3.3 4	9.4 67.	8 70.	5 33.	5 50.9
	Opac.	0.4	ł 0.0	6 C) ()	0	0	0 () () 0
	Ves	() 15.	7 10.5	5 4.7	· .	9.7	4.3 10	7 0.2	2 32.4	l 19.3
Total		100) 100) 100) 100) 1	100	100 10	0 100) 100) 100
% Fenocristale	s	4.3	3 14.4	4 13.4	6.6	6	6.1	6.6 0.	2 3	3 6.0	8.5
% Vesículas		() 15.	7 10.5	5 4.7	,	9.7	4.3 10	7 0.2	2 32.4	l 19.3

Acrónimos en Tabla: Sp= Espinela; Olv=Olivino; Cpx=Augita; Opx =Ortopiroxeno; Plg=Plagioclasa; Vd=Vidrio; Ves=Vescícula; Hrb= Hornblenda; Opac= Opácos.

Tabla 6Cont	inuación (Andesitas)	11	· ·	12 1	3 1	l 1	5	16	17	18 1	9 20
	Muestra	PAR-15353	PAR-15355	PAR-14262-B	PAR-14262-C	PAR-15338	PAR-15332	PAR-15349	PAR-15352	PAR-14293	PAR-14294
	Localidad	Ziquicio-Huinumba	Cumburinos	Paracho	Paracho	La Cantera	Duraznos	Duraznos	Zarapo	El Santísimo	El Santísimo
	Тіро	Lava	Lava	Bloque	Bloque	Domo	Lava	Lava	Lava	Lava	Lava
	Composición	Andesita	Andesita	Andesita	Andesita	Andesita	Andesita	Andesita	Andesita	Andesita	Andesita
Fenocristales	OI	() C	.6	0)	0 (0.6	0	0	0 0
	Hrb	1.6	6	0	0) 6.	3	0	0	0	0 0
	Срх	0.3	3 C	.7 0	.8 1.	9	0	1.1	0.2	0 0	5 0.3
	Sp en Ol	() C	.5	0)	0	0	0	0	0 0
	Ap en Plg	()	0)	0	0	0 0	.1	0 0
	Орх	0.3	3	0 2	.1 0.	9	0 [,]	1.3	0.9 0	.9 3	1 2.3
	Plg	1.2	2 29	.6 29	.4 23.	3 0.	3 10	0.3	1 2	.5 10	7 3.1
Matríz	OI	() C	.1	0)	0	0	0 0	.3	0 0
	Hrb	1.6	6	0	0) 5.	6	0	0	0	0 0
	Срх	0.3	3 1	.9 0	.2 0.	2 0.	3 3	3.2	0.7 1	.5	0 0.1
	Орх	0.3	3	0	3 2.	2	0 [,]	1.6	5.1 2	4	1 0.4
	Plg	26.1	36	.1 8	.7 8.4	l 18.	9 22	2.8 3	0.4 31	.9 23	1 20.4
	Vidrio	63.2	2 30	.5 55	.7 61.	5 68.	6 59	9.1 4	0.2 59	.7 61	6 73.3
	Opac.	()	0	0)	0	0	0 0	.7	0 0
	Ves	5.1	l	0 0	.1 1.		0	0 2	1.5	0	0 0.1
Total		100) 1(00 10	0 10) 10	0 1	00	100 1	00 10	0 100
% Fenocristale	es	3.4	31	.4 32	.3 26.	6.	6 13	3.3	2.1 3	.5 14	3 5.7
% Vesículas		5.1		0 0	.1 1.		0	0 2	1.5	0	0 0.1

Tabla 6Cont	inuación (Andesitas)	21	22	23	24	Ļ	25	26	27	28	29	30
	Muestra	PAR-14314	PAR-14315	PAR-14323	PAR-14262-A	PAR-14262	1-C PAR-1432	PAR-1426	1 PAR-142	61-A PAR-142	61 - B	PAR-15354
	Localidad	Guachán	Caraquítaro	lrepu	Paracho	Paracho	Hueratiro	Paracho	Paracho	Paracho		Volcajete
	Тіро	Lava	Lava	Lava	Bloque	Bloque	Lava	Bloque	Bloque	Bloque		_ava
	Composición	Andesita	Andesita	Andesita	Andesita	Andesita	Andesita	Andesita	Andesita	Andesita		Andesita
Fenocristales	OI	5.2	. 0	C) ()	0	0	0	0.1	0	0
	Hrb	0	0	C) ()	0	0	0	0	0	0
	Срх	0	0.5	1.1	1.1		0.8	1.7	0.2	0.4	0.6	0.2
	Sp en Ol	0.1	0	C) ()	0	0	0	0	0	0
	Ap en Plg	0	0	C) ()	0	0	0	0	0	0
	Орх	0	1.4	0.2	3.1		1.4	1.9	0.5	1.1	0.8	1
	Plg	2.9	2.7	7.6	25.6	6	20.2	25.9	9.4	19.2	9.7	0.6
Matríz	OI	0.9	0	C) ()	0	0	0	0.1	0.5	0
	Hrb	0	0	C) ()	0	0	0	0	0	0
	Срх	0.4	0.6	C) ()	0.4	0.1	0.5	0.4	0.4	1.3
	Орх	1.1	3.8	0.2	1.9)	1.5	2.5	0.8	1.5	2.1	4.3
	Plg	39.8	24.9	34.6	5 10)	14.7	15.1	13.5	15.4	24.4	22.1
	Vidrio	38.2	50.1	56.3	58.3	3	61	52.8	43.7	60.7	61.1	29.3
	Opac.	0	0	C) ()	0	0	0	0	0	0
	Ves	11.4	16	C) ()	0	0	31.4	1.1	0.4	41.2
Total		100	100	100	100)	100	100	100	100	100	100
% Fenocristale	es	8.2	4.6	8.9	29.8	3	22.4	29.5	10.1	20.8	11.1	1.8
% Vesículas		11.4	16	C) ()	0	0	31.4	1.1	0.4	41.2

Tabla 6Cont	nuacion (Andesitas)	31	3	2 3	3	34	35	36	37	3	8 3	y 4	0	41	42
	Muestra	PAR-15367	PAR-14322	PAR-14313	PAR-15341	PAR-14317	7 PAR-1427	79-A PA	R-14280	PAR-15340	PAR-14297	PAR-14310	PAR-14295	PAR-1429	1
	Localidad	Janamo	La Virgen	Querenda	El Gato	Parachito	Mari Juata	a Mai	ri Juata	Angaruen	San Marcos	Cuinguitapu	Molino	El Horno	
	Тіро	Lava	Lava	Lava	Lava	Lava	Lava	Lav	a	Domo	Lava	Lava	Lava	Lava	
	Composición	Andesita	Andesita	Andesita	Andesita	Andesita	Andesita	And	desita	Andesita	Andesita	Amdesita	Andesita	Andesita	
Fenocristales	OI	2.3	3	0	0	0	0	0.1	1.7		0	C	0	0	0
	Hrb	()	0	0	0	0	0	0		0	0	D	0	0
	Срх	()	0 0.	.4	0.3	0.4	0.9	0		1 2.	2 0.	5	0	0.1
	Sp en Ol	0.3	3	0	0	0	0	0	0		0	0	0	0	0
	Ap en Plg	()	0	0	0	0	0	0		0	0	D	0	0
	Орх	0.7	7 0.	4 1.	.2	0.8	1.3	1.3	0	1.	8 :	3 2.	1	1.4	1.6
	Plg	1.5	5 26.	7 28.	.8	3.5	16.1	7	0	9	9 30.	8 28.	1	1.4	8.8
Matríz	OI	3.7	7	0	0	0	0	0.1	1.1	0	1	0	D	0	0
	Hrb	()	0	0	0	0	0	0		0	0	D	0	0
	Срх	0.2	2 0.	1 0.	.2	0.8	0.5	0.3	0	0	1	.0 C	2	0	0.1
	Орх	3.0	3 4.	6 1.	.9	1.9	2.5	0.1	0	3	1 2.	5 1.	4	1.3	0.9
	Plg	16.3	3 19.	3 2	2 2	3.2	14	29	15.6	30	5 7.	3 9.	2 2	0.1	19.6
	Vidrio	74	42.	5 45.	.5 6	9.5	37.6	52.8	43.4	53	5 54.	2 53.	1 5	2.7	68.9
	Opac.	()	0	0	0	0	0	0		0	C	0	0	0
	Ves	0.2	2 6.	4	0	0	27.6	8.4	38.2		0	0 5.	4 2	3.1	0
Total		100) 10	0 10	0	100	100	100	100	10	0 10	0 10	0 1	100	100
% Fenocristale	s	4.8	3 27.	1 30.	.4	6.6	17.8	9.3	1.7	12	7 3	3 0.	7	2.8	10.5
% Vesículas		0.2	2 6.	4	0	0	27.6	8.4	38.2		0	0 5.	4 2	3.1	0

Figura 15. Fotografías a través del microscopio petrográfico de andesitas del área de Paracho-Cherán: a) PAR-15350, Horno-Sur; b) PAR-14320, Hoya Urutzen; c) PAR-15345, Chimilpa; d) PAR-14292, Aracata; e) PAR-15333, Metate Sur; y f) PAR-14324, Capén. Olv=Olivino; Cpx=Augita; Opx =Ortopiroxeno; Plg=Plagioclasa; Vd=Vidrio; Vesc=Vescícula.

Figura 15.1. Fotografías a través del microscopio petrográfico de andesitas del área de Paracho-Cherán: a) PAR-15355, Cumburinos; b) PAR-14262-C, Paracho; c) PAR-15338, Cantera; d) PAR-15352, Zarapo; e) PAR-14293, Santisimo; y f) PAR-14314, Guachán. Olv=Olivino; Cpx=Augita; Opx =Ortopiroxeno; Plg=Plagioclasa; Hrb=Hornblenda; Vd=Vidrio; Vesc=Vescícula.

Figura 15.2. Fotografías a través del microscopio petrográfico de andesitas del área de Paracho-Cherán: a) PAR-14315, Caraquitaro; b) PAR-14323, Irepu; c) PAR-14321, Hueratiro; d) PAR-15354, Molcajete; e) PAR-15367, Janamo; y f) PAR-14322, La Virgen. Olv=Olivino; Cpx=Augita; Opx =Ortopiroxeno; PIg=Plagioclasa; Vd=Vidrio; Vesc=Vescícula.

Figura 15.3. Fotografías a través del microscopio petrográfico de andesitas del área de Paracho-Cherán: a) PAR-14313, Querenda; b) PAR-14317, Parachito; c) PAR-15340, Angaruen; d) PAR-14297, San Marcos; e) PAR-14310, Cuinguitapu; y f) PAR-14291, El Horno. Olv=Olivino; Cpx=Augita; Opx =Ortopiroxeno; Plg=Plagioclasa; Vd=Vidrio; Vesc=Vescícula.

Figura 15.4. Fotografías a través del microscopio petrográfico de andesitas del área de Paracho-Cherán: a) PAR-15343, Mesteño; b) PAR-14311, Tamapu-Juata; c) PAR-15353, Ziquicio-Huinumba; d) PAR-15349, Duraznos; e) PAR-15341, Gato; y f) PAR-14279A, Mari Juata. Olv=Olivino; Cpx=Augita; Opx =Ortopiroxeno; Plg=Plagioclasa; Vd=Vidrio; Vesc=Vescícula

Andesitas basálticas

El Colorado

Es junto con El Chivo uno de los dos escudos de volumen intermedio de composición basáltica en la zona que pudo ser fechado por el método de Ar/Ar (52.12 wt.% SiO₂; PAR-15348; Tablas 1, 3; 5.1, 6.1; Figs. 3, 4, 8, 15.5a,). Presenta rocas color gris claro (muestra de mano) vesiculares con matriz vítrea y fenocristales de olivino (<1 mm) y microlitos de feldespato. Bajo el microscopio contiene fenocristales de olivino (8.1 vol.%) con formas eudrales a subeuhedrales, coronas de reacción de iddingsita, bahías de corrosión y formas esqueletales, e inclusiones de espinela (cromita) y otros opacos. Contiene también plagioclasa (35 vol.%) de formas aciculares y euhedrales con zoneamiento y maclas polisintéticas y tipo Carlsbad. La matriz, presenta microfenocristales de olivino (5 vol.%) y abundante plagioclasa (41.8 vol.%).

La Alberca

Se trata de un cono de escoria con flujos de lava asociados (52.3-54.41 wt.% SiO₂; U-36, PAR-14267-B; Tablas 5.1, 6.1; Figs. 3, 13, 15.9a) mencionado también por Ownby et al. (2007) y Chevrel et al. (2016a, 2016b), que presenta rocas color gris obscuro (muestra de mano, depósitos de caída) con matriz vítrea y vesículas (<3 mm), así como fenocristales de olivino (<1 mm) y microlitos de plagioclasa. Bajo el microscopio el arreglo mineral se constituye de olivino (3.3 vol.%) con formas euhedrales a subeuhedrales e inclusiones de espinela (cromita) (0.2 vol.%), plagioclasa (0.6 vol.%) con formas aciculares y euhedrales con zoneamiento y maclas polisintéticas y tipo Carlsbad. La matriz, mayormente vítrea, presenta microfenocristales de olivino (0.5 vol.%) y plagioclasa (26 vol.%) (Tabla 6.1).

Paranguitiro

Es un escudo de volumen intermedio (52.35 wt.% SiO₂; PAR-15351; Tablas 1, 5.1, 6.1; Figs. 3, 13, 15.5b) que presenta rocas color gris obscuro (muestra de mano) con matriz vítrea y fenocristales de olivino (<2 mm) y microlitos de plagioclasa. Bajo el microscopio presenta fenocristales de olivino (11.1 vol.%) y plagioclasa (0.4 vol.%) con formas aciculares y euhedrales con zoneamiento y maclas polisintéticas y tipo Carlsbad. La matriz presenta microfenocristales de olivino (6.5 vol.%), clinopiroxeno (1.3 vol.%), ortopiroxeno (0.3 vol.%) y plagioclasa (20.1 vol.%).

Sinar Juata

Se trata de un escudo de volumen intermedio con un cono de escoria en la cima (52.4 wt.% SiO₂; PAR-14265, PAR-14283; Tablas 1, 3, 5.1; Figs. 3 y 15.9b) que presenta rocas color gris claro (muestra de mano) con matriz vítrea y vesículas (<2 mm), así como fenocristales de piroxeno (<1 mm) y microlitos de plagioclasa. Bajo el microscopio se observan fenocristales de

olivino (5.4-7.2 vol.%) con formas euhedrales a subeuhedrales que en ocasiones presentan inclusiones de espinela (cromita) (0.2 vol.%) y plagioclasa (3.3-5.7 vol.%). La matriz, mayormente vítrea, contiene microfenocristales de olivino (0.4-2.2 vol.%) y plagioclasa (11.1-18.6 vol.%) (Tabla 6.1).

Paracho Viejo

Es un típico cono de escoria con flujos de lava asociados y de composición variable de basalto a andesita basáltica (52.68-56.19 wt.% SiO₂; PAR-13255, PAR-13254, PAR-15362, PAR-15366, PAR-15365; Tablas 2, 4, 5.1, 6.1; Figs. 3, 8, 15.5c, 15.5d, 15.5e, 15.6f) aunque la mayoría de las muestras corresponden a andesitas basálticas. Presenta rocas color gris obscuro (muestra de mano) con matriz vítrea y vesicular, con microfenocristales de piroxeno (<1 mm) y plagioclasa (<1 mm). Bajo el microscopio se observan fenocristales de olivino (2-5.6 vol.%) con formas euhedrales a subeuhedrales que en ocasiones presentan inclusiones de espinela (cromita) (0.3-0.7 vol.%) y plagioclasa (1.1 vol.%) con formas aciculares y euhedrales con zoneamiento y maclas polisintéticas y tipo Carlsbad. La matriz, mayormente vítrea, contiene microfenocristales de olivno (4.3-4.7 vol.%), clinopiroxeno (6.4 vol.%), ortopiroxeno (0.5 vol.%) y plagioclasa (28.7-40.7 vol.%).

Amoles

Es un cono de escoria (53.39 wt.% SiO₂; PAR-15393; Tablas 2, 5.1, 6.1; Figs. 3; 13, 15.5f) que presenta rocas color gris obscuro (muestra de mano) y vesiculares con matriz vítrea y microfenocristales de olivino (<1 mm) y plagioclasa (<1 mm). El arreglo mineral que se observa bajo el microscopio incluye fenocristales de olivino (4 vol.%) con formas euhedrales a subeuhedrales con inclusiones de espinela (cromita) (0.7 vol.%) y plagioclasa (0.2 vol.%) con formas aciculares y euhedrales con zoneamiento y maclas polisintéticas y tipo Carlsbad. La matriz, mayormente vítrea, contiene microfenocristales de olivino (2.3 vol.%) y plagioclasa (10.3 vol.%).

Gusato

Este cono de escoria (53.46 wt.% SiO₂; PAR-15368; Cap. 5; Tablas 5, 6.1; Figs. 3, 13, 15.6a) presenta el único basalto traqui-andesítico de la zona. Es de color gris obscuro (muestra de mano) con matriz vítrea y vesiculas (<3 mm) y contiene microfenocristales de olivino y piroxeno (<2.5 mm), asi como plagioclasa (<1 mm). Bajo el microscopio se observan fenocristales de olivino (4.3 vol.%) que por lo general presentan formas subeuhedrales con bahías de corrosión e inclusiones de espinela (cromita) (1.3 vol.%). Además contiene clinopiroxeno (0.2 vol.%) y plagioclasa (0.2 vol.%) con formas aciculares y euhedrales con zoneamiento y maclas polisintéticas y tipo Carlsbad. La matriz, mayormente vítrea (24 vol.%), contiene opacos,

microfenocristales de olivino (4.2 vol.%), clinopiroxeno (0.1 vol.%), ortopiroxeno (0.1 vol.%) y plagioclasa (31.6 vol.%).

Janamo

Este cono de escoria con flujos de lava asociados y de edad reciente (53.49-60.82 wt.% SiO₂; PAR-15363, PAR-15391, PAR-15367, PAR-15392; Tablas 2, 4, 5.1, 6, 6.1; Figs. 3, 8, 13, 15.6b) se localiza al NW del poblado de San Lorenzo y sus rocas andesíticas ya se describieron en el apartado anterior. Sus andesitas basálticas son rocas color gris claro con matriz vítrea y fenocristales de olivino (<2 mm), así como abundantes microlitos de feldespato. Bajo el microscopio, el arreglo mineral se constituye por fenocristales de olivino (2.6 vol.%) y plagioclasa (0.8 vol.%). La matriz es mayormente vítrea y contiene microfenocristales de olivino (3 vol.%), clinopiroxeno (0.1 vol.%) y plagioclasa (23.6 vol.%).

El Jabalí

Este cono de escoria con flujos de lava asociados se localiza al NE de la ciudad de Uruapan y también es de edad reciente (53.64-56.45 wt.% SiO₂; PAR-15379, PAR-PAR-15377, PAR-15378, PAR-15379, PAR-15394, PAR-15395; Tablas 2, 4, 5.1, 6.1; Figs. 3, 8, 13, 15.6c, 15.6e). Presenta rocas color gris claro (muestra de mano) y matriz vítrea con fenocristales de olivino (<1 mm), piroxeno (<2 mm), así como plagioclasa (<1 mm). Bajo el microscopio se observa un ensamble mineral constituido por fenocirstales de olivino (4-4.8 vol.%) con formas euhedrales a subeuhedrales, que presentan fracturas y en ocasiones también inclusiones de espinela (cromita) (0.3-0.7 vol.%) y coronas de reacción de clinopiroxeno y bahías de corrosión. Además tiene fenocristales de clinopiroxeno (0.1 vol.%) y plagioclasa (1.4-3.1 vol.%) de formas aciculares con zoneamiento, maclas polisintéticas y tipo Carlsbad. La matriz, mayormente vítrea, contiene microfenocristales de olivino (4.6-8.9 vol.%) y plagioclasa (25.1-28.1 vol.%).

Hoya de Agua

Es un cono de escoria con dos cráteres que se localiza al NE del poblado de Capacuaro (53.66 wt.% SiO₂; PAR-14258B, PAR-14316; Tablas 2, 4, 5.1, 6.1; Figs. 3, 13, 15.6d) y que presenta rocas color gris obscuro (muestra de mano) con textura vítrea y con vesículas elongadas (<3 mm). Contiene fenocristales de piroxeno (<3 mm) y plagioclasa (<2 mm). Bajo el microscopio se observan fenocristales de clinopiroxeno (augita) (0.4 vol.%), ortopiroxeno (enstatita) (2 vol.%) y plagioclasa (12.1 vol.%) aciculares con zoneamiento y maclas polisintéticas. La matriz, mayormente vítrea, contiene microfenocristales de clinopiroxeno (0.1 vol.%), ortopiroxeno (1.6 vol.%) y plagioclasa (19.9%).

Tzinzunzahua-Santa Cruz

Este cono de escoria se localiza al NE de la ciudad de Uruapan (54.1 wt.% SiO₂; PAR-14260B, PAR-14260C; Tablas 2, 4, 5.1; Figs. 3, 13,15.9c) y presenta rocas color gris (muestra de mano) con matriz vítrea y fenocristales de olivino (<2 mm) y plagioclasa (<1 mm). Bajo el microscopio contiene fenocristales de olivino (4.3-4.6 vol.%) con formas euhedrales a subeuhedrales, y de plagioclasa (0.1-0.5 vol.%) con formas aciculares y con zoneamiento y maclas polisintéticas. Ocasionalmente se observan inclusiones de apatito (0.1 vol.%) en las plagioclasas. La matriz vítrea en su mayoría contiene microfenocirstales de plagioclasa (20 vol.%) que por lo general presentan formas aciculares y las típicas maclas polisintéticas y de tipo Carlsbad (Tabla 6.1).

Capastacutiro

Es un cono de escoria con flujos de lava asociados de edad reciente, al SW de la localidad de Pomacuarán (54.18 wt.% SiO₂; PAR-13256; Tablas 2, 5.1; Figs. 3, 13,15.9d) que presenta rocas color gris claro (muestra de mano) con matriz vítrea y fenocristales de olivino (<1 mm), piroxeno (<1 mm) y plagioclasa (<2 mm). Bajo el microscopio se observan fenocristales de olivino (4.3 vol.%) con formas ehuedrales a subeuhedrales, algunos con formas esqueletales e inclusiones de espinela (cromita) (0.8 vol.%), y plagioclasa (0.2 vol.%) con zoneamiento y formas aciculares. La matriz, mayormente vítrea, presenta microfenocristales de olivino (1.7 vol.%), clinopiroxeno (augita) (0.3 vol.%) con típica forma y maclas lamelares, y plagioclasa (62.2 vol.%) con formas aciculares y típicas maclas polisintéticas y tipo Carlsbad (Tabla 6.1).

Tejocote

Se trata de un cono de escoria con flujos de lava asociados (54.21 wt.% SiO₂; PAR-14325; Tabla 5.1; Figs. 3, 13, 15.9e) que presenta rocas color gris obscuro (muestra de mano) con vesículas y fenocristales de olivino (<1.5 mm), piroxeno (<1 mm) y microlitos de plagioclasa. Bajo el microscopio contiene fenocristales de olivino (5.6 vol.%) con formas subeuhedrales y coronas de reacción de clinopiroxeno e inclusiones de espinela (cromita) (0.1 vol.%); además de fenocritales de clinopiroxeno (augita) (0.3 vol.%), y plagioclasa (6.7 vol.%) con zoneamiento y maclas polisintéticas. La matriz, mayormente vítrea, presenta microfenocristales de olivino (0.3 vol.%), ortopiroxeno (0.1 vol.%) y plagioclasa (19.8 vol.%) (Tabla 6.1).

Arichán

Es un cono de escoria con flujos de lava asociados (54.55 wt.% SiO₂; PAR-14276; Tabla 5.1; Figs. 3, 13) que presenta rocas color gris obscuro (muestra de mano) con fenocristales de olivino (<2 mm) y plagioclasa (<1 mm). Bajo el microscopio se observan fenocristales de olivino (3.4 vol.%) con formas euhedrales a subeuhedrales y esqueletales, plagioclasa (13.3 vol.%) con formas aciculares y zoneamiento, así como maclas polisintéticas y tipo Carlsbad. La matriz,

mayormente vítrea, contiene microfenocristales de olivino (1.9 vol.%) y plagioclasa (19.3 vol.%) (Tabla 6.1).

Paracho NW

Se trata de un cono de escoria con flujo de lava asociado (54.66 wt.% SiO₂; PAR-13253; Tablas 5.1, 6.1; Figs. 3, 13, 15.7a) que presenta rocas color gris claro (muestra de mano) con vesículas (<1 mm), fenocristales de olivino (<2 mm) y plagioclasa (<1 mm). Bajo el microscopio se observan fenocristales de olivino (4.2 vol.%) con formas euhedrales a subeuhedrales y esqueletales, que presentan ocasionalmente inclusiones de espinela (cromita) (1.2 vol.%) y plagioclasa (1.4 vol.%) con zoneamiento y formas aciculares y maclas polisintéticas y tipo Carlsbad. La matriz vítrea contiene olivino (2.3 vol.%), clinopiroxeno (augita) (0.5 vol.%) y mayormente plagioclasa (48.1 vol.%).

Juanyan

Este cono de escoria de extraordinaria simetría es de edad reciente y no produjo flujos de lava (54.82 wt.% SiO₂; PAR-13252; Tablas 2, 4, 5.1, 6.1; Figs. 3, 8, 13, 15.7b). Fue mencionado por primera vez por Williams (1954), posteriormente por Hasenaka et al. (1987) y recientemente por Siebe et al. (2014). Presenta rocas color gris obscuro (muestra de mano) con vesículas y contiene mayormente fenocristales de olivino (<2 mm) y plagioclasa (<1 mm) en una matriz mayormente vítrea, que contiene microlitos de plagioclasa. Bajo el microscopio el ensamble mineral es de textura traquítica a pilotaxítica y presenta olivino (5.5 vol.%) con formas euhedrales a subeuhedrales y esqueletales, bahías de corrosión y otras características que documentan desequilibrio. Ocasionalmente, algunos olivinos presentan inclusiones de espinela (cromita) (0.7 vol.%). Los fenocristales de plagioclasa (0.3 vol.%) tienen formas aciculares, zoneamiento y maclas polisintéticas y tipo Carlsbad. La matriz, mayormente vítrea, presenta microlitos de olivino (2.7 vol.%) y plagioclasa (21.2 vol.%).

Piruani

Se trata de un cono de escoria con flujos de lava asociados (55 wt.% SiO₂; PAR-15370; Tablas 5.1, 6.1; Figs. 3, 13, 15.7c) emplazado al sur de la localidad de San Lorenzo, que presenta rocas color gris (muestra de mano) con vesículas de formas elongadas (<4 mm), fenocristales de olivino (<2 mm) y microlitas de plagioclasa. Bajo el microscopio se observa una textura traquítica a pilotaxítica seriada, así como fenocristales de olivino (3.5 vol.%) con formas euhedrales a subeuhedrales y esqueletales, que en ocasiones presentan inclusiones de espinela (cromita) (0.8 vol.%). Además, se observaron fenocristales de plagioclasa (0.2 vol.%) con fromas aciculares con zoneamiento y maclas polisintéticas. La matriz, mayormente vítrea, contiene microfenocristales de olivino (2.4 vol.%) y plagioclasa (28.4 vol.%).

El Aire

Es un cono de escoria sin flujos de lava asociados y con un triple cráter (55.11 wt.% SiO₂; PAR-14273; Tablas 5.1, 6.1; Figs. 3, 8, 13, 15.7d) mencionado por primera vez por Williams (1954). Presenta rocas color gris claro con matriz vítrea, vesiculares (<6 mm) con fenocristales de olivino (<2 mm), piroxeno (<1 mm) y plagioclasa (<3 mm). Bajo el microscopio se observan fenocristales de olivino (2.8 vol.%) con formas euhedrales a subeuhedrales y esqueletales, así como de clinopiroxeno (0.7 vol.%) con sus típicas maclas lamelares. Además presenta plagioclasa (8.6%) de formas aciculares y con zoneamiento, maclas polisintéticas y tipo Carlsbad. La matriz, mayormente vítrea, contiene microfenocristales de olivino (1.2 vol.%), clinopiroxeno (0.6 vol.%), ortopiroxeno (0.1 vol.%) y plagioclasa (37 vol.%).

El Varal

Se trata de un cono de escoria con flujos de lava asociados (55.57-55.58 wt.% SiO₂; PAR-14271, PAR-14272; Tablas 5.1, 6.1; Figs. 3, 8, 13, 15.7f), emplazado al sur de la localidad de Capacuaro que presenta rocas color gris claro con matriz vítrea y vesículas elongadas (<9 mm). Además contiene fenocristales de olivino (<2 mm), piroxeno (<2 mm) y plagioclasa (<2 mm). Bajo el microscopio se observan fenocristales de olivino (2.4-3 vol.%) con formas euhedrales a subeuhedrales y esqueletales con bahías de corrosión. También presenta clinopiroxeno (augita) (0.3-0.9 vol.%) con sus típicas maclas lamelares, ortopiroxeno (0.1 vol.%) y plagioclasa (0.7-8.5 vol.%) con formas aciculares, zoneamiento y maclas polisintéticas y tipo Carlsbad. La matriz vítrea engloba micrfenocristales de olivino (0.3-1.5 vol.%), clinopiroxeno (0.4 vol.%) y en mayor porcentaje plagioclasas (41.2-41.6 vol.%).

Zindío

Es un cono de escoria con flujos de lava asociados (55.93 wt.% SiO₂; PAR-15369; Tablas 5.1, 6.1; Figs. 3, 13, 15.8a) que presenta rocas color gris con matriz vítrea, y vesículas elongadas (<3 mm), así como fenocristales de olivino (<2 mm) y piroxeno (<2 mm) y glomeropórfidos de plagioclasa (<2 mm) y microlitos de feldespato. Bajo el microscoipio se observan fenocristales de olivino (2.9 vol.%) con formas euhedrales a subeuhedrales y con coronas de reacción de clinopiroxeno y ortopiroxeno, que ocasionalmente presentan inclusiones de espinela (cromita) (0.2 vol.%). Además contiene clinopiroxeno (augita) (0.2 vol.%) con maclas lamelares y glomeropórfidos de plagioclasa (1.5 vol.%) con formas aciculares, zoneamiento, maclas polisintéticas y de tipo Carlsbad. La matriz, mayormente vítrea, contiene microfenocristales de olivino (2.2 vol.%), clinopiroxeno (1 vol.%), ortopiroxeno (0.2 vol.%) y plagioclasa (27.7 vol.%).

El Chivo

Este escudo de volumen intermedio (56.4 wt.% SiO₂; PAR-15344; Tablas 1, 3, 5.1; Figs. 3, 4, 8, 13, 15.8b) presenta rocas color gris claro (muestra de mano), densas y con matriz vítrea con fenocristales de olivino (<2 mm), piroxeno (<1 mm) y plagioclasa (<1 mm). Bajo el microscopio se observa una textura traquítica a vesicular (17 vol.%) con fenocristales de olivino (3.3 vol.%) que presentan formas euhedrales a subeuhedrales y esqueletales con coronas de reacción de clinopiroxeno y ortopiroxeno. Ocasionalmente los olivinos tienen inclusiones de espinela (cromita) (0.4 vol.%). Otros fenocristeles incluyen el clinopiroxeno (augita) (0.2 vol.%) con sus típicas maclas y la plagioclasa (0.5 vol.%) de formas aciculares con zoneamiento y maclas polisintéticas. La matriz es mayormente vítrea y contiene microfenocristales de olivino (5.1 vol.%), clinopiroxeno (2.4 vol.%) y es rica en microlitos de plagioclasa (21.8 vol.%).

Las Varas

Se trata de un cono de escoria con flujos de lava asociados (55.93 wt.% SiO₂; PAR-15376; Tablas 5.1, 6.1; Figs. 3, 8, 13, 15.8c) mencionado por primera vez por Williams (1954), posteriormente por Hasenaka et al. (1987) y Ownby et al. (2007). Presenta rocas color gris (muestra de mano) con vesículas elongadas (<1 cm) y fenocristales de olivino (<5 mm) y plagioclasa (<1 mm) con microfenocristales de piroxeno. Bajo el microscopio presenta fenocristales de olivino (3.1 vol.%) con formas euhedrales a subeuhedrales y esqueletales, y coronas de reacción de piroxeno y bahías de corrosión. Los olivinos contienen ocasionalmente inclusiones de espinela (cromita) (0.3 vol.%). También hay fenocristales de plagioclasa (1 vol.%) con formas aciculares y con zoneamiento, maclas polisintéticas y tipo Carlsbad. La matriz, mayormente vítrea, contiene microfenocristales de olivino (4.3 vol.%), clinopiroxeno (augita) (0.9 vol.%), ortopiroxeno (enstatita) (0.2 vol.%) y plagioclasa (23 vol.%).

Tabla 6.1- Andesitas Basálticas		1	2	2 3	3 4	5		5 7	, 8	ç) 10
	Muestra	PAR-15348	PAR-14267-B	PAR-15351	PAR-13255	PAR-14283	PAR-14265	PAR-13254	PAR-15366	PAR-15393	PAR-15368
	Localidad	Colorado	La alberca	Paranguitiro	Par-Viejo	Sinar Juata	Sinar Juata	Par-Viejo	Par-Viejo	Amoles	Gusato
	Тіро	Lava	Bomba	Bomba	Lava	Lava	Bomba	Lava	Lava	Lava	Lava
	Composición	Andesita-Bas	Andesita-Bas	Andesita-Bas	Andesita-Bas	Andesita-Bas	Andesita-Bas	Andesita-Bas	Andesita-Bas	Andesita-Bas	B. Traq. And
Fenocristales	OI	8.1	3.3	3 11. ⁻	1 5	5.4	7.2	2. 5.6	6 2	4	4.3
	Hrb	0	0) (0 0	C) () (0 0	C) 0
	Срх	0	0) (0 0	C) () (0 0	C	0.2
	Sp en Ol	5	0.2	2 (0.2	0.2	. 0.2	2 0.7	0.3	0.7	' 1.3
	Ap en Plg	0	0) (0 0	C) () (0 0	C) 0
	Орх	0	C) () (C) () (0 0	C) 0
	Plg	35	0.6	6 O.4	4 7.5	5.7	3.3	3 1.1	0	0.2	2 0.2
Matríz	OI	5	0.5	6.5	5 4.7	2.2	. 0.4	4.3	4.7	2.3	4.2
	Hrb	0	0) (0 0	0) () () 0	C) 0
	Срх	0	0) 1.3	3 1.7	с С) (6.4	0	C	0.1
	Орх	0	0	0.3	3 0	0) (0.5	5 0	C	0.1
	Plg	41.8	26	5 20. ⁻	1 46.2	18.6	i 11.1	40.7	28.7	10.3	31.6
	Vidrio	0	42	35.6	6 17.9	47.9	67.8	34.5	6 41.5	51.9	33.7
	Opac.	2.6	0) (0.6	C) (3.6	6 0	C) 0
	Ves	2.5	27.4	24.7	7 16.2	20	10) 2.6	5 22.8	30.6	24.3
Total		100	100) 100) 100	100	100) 100) 100	100	100
% Fenocristale	S	48.1	4.1	11.5	5 12.7	11.3	10.7	7.4	2.3	4.9	6
% Vesículas		2.5	27.4	24.7	7 16.2	20) 10) 2.6	22.8	30.6	24.3

Acrónimos en Tabla: Sp= Espinela; Olv=Olivino; Cpx=Augita; Opx =Ortopiroxeno; Plg=Plagioclasa; Vd=Vidrio; Ves=Vescícula; Hrb= Hornblenda; Opac= Opácos.

Tabla 6.1- Con	tinuación	11	12	13	14	15	16	17	18	19	20
	Muestra	PAR-15391	PAR-15377	PAR-14316	PAR-15378	PAR-14260-C	PAR-13256	PAR-14325	PAR-15365	PAR-14276	PAR-13253
	Localidad	Janamo	Jabalí	Hoya de Agua	Jabalí	San Lorenzo	Capastacutiro	Tejocote	Par.Viejo	Arichán	NW-Paracho
	Тіро	Lava	Lava	Bomba	Bomba	Bomba	Lava	Lava	Lava	Hummuck	Lava
	Composición	Andesita-Bas	Andesita-Bas	Andesita-Bas	Andesita-Bas	Andesita-Bas	Andesita-Bas	Andesita-Bas	Andesita-Bas	Andesita-Bas	Andesita-Bas
Fenocristales	OI	2.6	6 4.8	0	4	1.4	4.3	5.6	4.1	3.4	4.2
	Hrb	() 0	0	0	0	0	0	0	0	0
	Срх	() 0.1	0.4	0	0	0	0.3	0	0	0
	Sp en Ol	(0.3	0	0.7	0	0.8	0.1	0.1	0	1.2
	Ap en Plg	() 0	0	0	0	0	0	0	0	0
	Орх	() 0	2	0	0	0	0	0	0	0
	Plg	3.0	3 1.4	12.1	3.1	0	0.2	6.7	0.1	0.1	1.4
Matríz	OI	3	3 4.6	0	8.9	2.9	1.7	0.3	4.3	1.9	2.3
	Hrb	() ()	0	0	0	0	0	0	0	0
	Срх	0.1	0	0.1	0	0.4	0.3	0	0	0	0.5
	Орх	() ()	1.6	0	0.1	0	0.1	0	0	0
	Plg	23.6	3 28.1	19.9	25.1	23.2	62.2	19.8	13.9	19.3	48.1
	Vidrio	54.6	60.5	45.9	47.3	30.9	21.7	48.7	53.5	72.6	32.3
	Opac.	() ()	0	0	0	0.7	0	0	0	0
	Ves	15.3	3 0.2	18	10.9	41.1	8.1	18.4	24	2.7	10
Total		100) 100	100	100	100	100	100	100	100	100
% Fenocristales	;	3.4	6.6	14.5	7.8	1.4	5.3	12.7	4.3	3.5	6.8
% Vesículas		15.3	3 0.2	18	10.9	41.1	8.1	18.4	24	2.7	10

Tabla 6.1- Continuación		2	1 22	23	24	25	26	27	28	29	30
	Muestra	PAR-15362	PAR-13252	PAR-15370	PAR-14273	PAR-15394	PAR-14271	PAR-14272	PAR-15369	PAR-15344	PAR-15376
	Localidad	Par. Viejo	Juanyan	Piruani	El Aire	Jabalí	El Varal	El Varal	Zindio	El Chivo	Varas
	Тіро	Lava	Bomba	Lava							
	Composición	Andesita-Bas									
Fenocristales	OI	7.6	5.5	3.5	2.8	3.2	3	2.4	2.9	3.3	3.1
	Hrb	() (0	0	0	0	0	0	0	0
	Срх	() (0	0.7	0	0.3	0.9	0.2	0.2	0
	Sp en Ol	0.7	7 0.7	0.8	0	0.2	0	0	0.2	0.4	0.3
	Ap en Plg	() (0	0	0	0	0	0	0	0
	Орх	(0 0	0	0	0	0	0.1	0	0	0
	Plg	2.7	7 0.3	0.3	8.6	1.2	0.7	8.5	1.5	0.5	1
Matríz	OI	4	4 2.7	2.4	1.2	5.3	0.3	1.5	2.2	5.1	4.3
	Hrb	(0 0	0	0	0	0	0	0	0	0
	Срх	0.4	4 C	0	0.6	0	0	0.4	1	2.4	0.9
	Орх	0.4	4 C	0	0.1	0	0	0	0.2	0	0.2
	Plg	23.5	5 21.2	28.4	37	15.4	41.6	41.2	27.7	21.8	23
	Vidrio	40) 68.1	46.7	37.5	66.4	33.1	34.6	52.8	49.3	62.4
	Opac.	0.1	1 0.1	0	0	0	0	0	0	0	0
	Ves	20.6	6 1.4	17.9	11.5	8.3	21	10.4	11.3	17	4.8
Total		100) 100	100	100	100	100	100	100	100	100
% Fenocristale	S	1	1 6.5	4.6	12.1	4.6	4	11.9	4.8	4.4	4.4
% Vesículas		20.6	6 1.4	17.9	11.5	8.3	21	10.4	11.3	17	4.8

Figura 15.5. Fotografías a través del microscopio petrográfico de andesitas basálticas del área de Paracho-Cherán. a) PAR-15348, Colorado; b) PAR-15351, Paranguitiro; c) PAR-13255, Paracho Viejo; d) PAR-13254, Paracho Viejo; e) PAR- 15366, Paracho Viejo; f) PAR-15393, Amoles. Olv=Olivino; Cpx=Augita; Opx =Ortopiroxeno; Plg=Plagioclasa; Cr=Espinela (Cromita); Vd=Vidrio; Vesc=Vescícula.

Figura 15.6. Fotografías a través del microscopio petrográfico de andesitas basálticas del área de Paracho-Cherán. a) PAR-15368, Gusato; b) PAR-15391, Janamo; c) PAR-15377, Jabalí; d) PAR-14316, Hoya de Agua; e) PAR-15378, Jabalí; y f) PAR-15365, Paracho Viejo. Olv=Olivino; Cpx=Augita; Opx =Ortopiroxeno; Plg=Plagioclasa; Cr=Espinela (Cromita); Vd=Vidrio; Vesc=Vescícula.

Figura 15.7. Fotografías a través del microscopio petrográfico de andesitas basálticas del área de Paracho-Cherán. a) PAR-13253, NE-Paracho; b) PAR-15362, Paracho Viejo; c) PAR-13252, Juanyan; d) PAR-15370, Piruani; e) PAR-14273, El Aire; f) PAR-15394, Jabalí. Olv=Olivino; Cpx=Augita; Opx =Ortopiroxeno; Plg=Plagioclasa; Cr=Espinela (Cromita); Vd=Vidrio; Vesc=Vescícula.

Figura 15.8. Fotografías a través del microscopio petrográfico de andesitas basálticas del área Paracho-Cherán. a) PAR-14271, Varal; b) PAR-15369, Zindio; c) PAR-15344, El Chivo; y d) PAR-15376, Las Varas. Olv=Olivino; Cpx=Augita; Opx =Ortopiroxeno; Plg=Plagioclasa; Vd=Vidrio; Vesc=Vescícula.

Figura 15.9. Fotografías a través del microscopio petrográfico de andesitas basálticas del área Paracho-Cherán. a) PAR-14267B, La Alberca; b) PAR-14265, Sinar Juata; c) PAR-14260B, San Lorenzo; d) PAR-13256, Capastacutiro; e) PAR-14325, Tecojote. Olv=Olivino; Cpx=Augita; Opx =Ortopiroxeno; Plg=Plagioclasa; Vd=Vidrio; Vesc=Vescícula.

Basaltos

Yondima

Es un cono monogenetico de escoria (50.17-51.98 wt.% SiO₂; PAR-15383, PAR 15372-B, PAR-15386; Tablas 2, 4, 5.2, 6.2, 6.3; Figs. 3, 8, 13, 16a) localizado en el sector NW del APC, donde forma parte de la agrupación holocénica de los volcanes Cicapien, Capastacutiro, Paracho Viejo y Janamo. Presenta rocas color gris (muestra de mano) con vesículas (<2 cm), fenocristales de plagioclasa (<5 mm) y olivino (<2 mm) contenidos en una matriz vítrea con microlitos de plagioclasa. Bajo el microscopio se observan fenocristales de olivino (6.5 vol.%) con formas euhedrales, bahías de corrosión y coronas de reacción, con opacos, clinopiroxeno (0.1 vol.%) con formas euhedrales y maclas lamelares, así como plagioclasa (28.1 vol.%) con formas aciculares, zoneamiento y maclas polisitéticas. La matriz consta de microfenocristales de olivino (3.6 vol.%), clinopiroxeno (1 vol.%), plagioclasas (21.3%) y vidrio (30.4 vol.%).

Jabalí

Se trata de un cono de escoria con flujos de lava asociados y de edad reciente (50.79-50.96 wt.% SiO₂; PAR-15395-B, PAR-15382-C; Tablas 2, 4; 5.1; Figs. 3, 8, 13, 16b) que se localiza al NW de la ciudad de Uruapan. El cono está constituido principalmente de ceniza y lapilli grueso a fino (<5 mm a <0.5 mm) de color gris claro con cristales de plagioclasa (<1 mm), olivino (<1 mm) y piroxeno (<1 mm). Bajo el microscopio se observan fenocristales de olivino (6.8%) con formas euhedrales a subeuhedrales e inclusiones de espinela (cromita) (0.2%), que presentan coronas de reacción de clinopiroxeno. También contiene fenocristales de clinopiroxeno (augita) (<0.1 vol.%), así como plagioclasas (19.6 vol.%) con zoneamiento, formas aciculares y textura de tamíz en una matriz de vidrio (54.6 vol.%).

Cicapien (traqui-basalto de olivino)

Este volcán es uno de los dos conos de escoria que produjeron rocas exóticas alcalinas (51-52 wt.% SiO₂; PAR-13257, PAR-15361, PAR-15384, PAR-15390; Tablas 2, 4, 5.2, 6.2; Figs. 3, 8, 13, 16c,16d y 16e). El Cicapien es un volcán jóven que se formó en el Holoceno (Cap.4) y cuyas lavas presentan características morfológicas típicas de los basaltos hawaianos (e.g., lavas cordadas). El flujo más proximal al cono, es de color gris obscuro (muestra de mano), tiene una textura porfirítica a vesicular y contiene fenocristales de plagioclasa (<2.5 mm) y olivino (<1 mm). La matriz también contiene micro-fenocristales de feldespato y ocasionalmente piroxeno. El flujo intermedio que se emplazó entre los volcanes Yondima y San Miguel (Fig. 3) es color gris obscuro (muestra de mano) y tiene una textura porfirítica a vesicular con glomeropórfidos de plagioclasa (<5 mm) y olivino. Bajo el microscopio se observan fenocristales de olivino (Tabla 6.2; láminas 6 a 9) con formas euhedrales a subeuhedrales y esqueletales. Los olivinos esqueletales se generan

normalmente durante el rápido ascenso del magma y también presentan bahías de reacción (Fig. 11.6). También se observan dos familias de plagioclasas, que son los cristales más abundantes en esta roca y que se pudieron distinguir mediante el método óptico de Michel-Levy. En la matriz vítrea, que es de textura traquítica a pilotaxítica, coexisten micro-fenocristales de olivino y clinopiroxeno, además de microlitos de feldespato. Curiosamente, las inclusiones de espinela (cromita) en los olivinos y clinopiroxenos son muy escasas (Fig. 16.). Otras inclusiones interesantes son los apatitos, que por lo general se encuentran dentro de las plagioclasas (Tabla 6; Fig. 11.6). Pueden estar relacionados con procesos magmáticos como minerales secundarios; además son buenos trazadores para conocer los procesos de metasomatismo (Harlov, 2015; Webster y Picolli, 2015) e incluso pueden ser usados para conocer la termocronología de los sistemas magmáticos (Chew y Spikings, 2015). Las espinelas (cromitas) aparecen también en menor proporción (e.g., PAR-15390, PAR-15361).

Sapién

Este cono de escoria (51.5-53.2 wt.% SiO₂; PAR-15380, U-46; Tablas 2, 5.2, 6.2; Figs. 3, 8,13, 16f) se localiza también en el pequeño agrupamiento de volcanes al NW de la ciudad de Uruapan, junto al volcán Jabalí. Su mutua cercanía y relaciones estratigráficas sugieren que son casi contemporáneos. Presenta rocas color gris obscuro (muestra de mano), densas, con vesículas, que contienen fenocristales de olivino y piroxeno (<4 mm) junto con plagioclasa (<5 mm) y microlitos de plagioclasa. Bajo el microscopio se observa textura traquítica a pilotaxítica, con fenocristales de olivino (2.5 vol.%) y formas euhedrales a subeuhedrales que ocasionalmente contienen inclusiones de espinela (cromita) (0.5 vol.%). También presenta plagioclasas (0.3 vol.%) con zoneamiento, formas aciculares y maclas polisintéticas

Erupciones de basalto a andesitas basálticas y andesitas de olivino (y sin olivino)

Hoya Urutzen

Hoya Urutzen (51.5- 58.5 wt.% SiO₂; PAR-14319, PAR-14320, PAR-15337, PAR15357-A, PAR-15357-B, PAR-15358 y PAZ 1206-B) se formó hace ~4,000 años (Chevrel et al 2016a) y sus lavas muestran una variación geoquímica de basalto a andesita basáltica hasta andesita, poniendo en evidencia su amplia trayectoria evolutiva. Las rocas más primitivas son basaltos (e.g., las bombas del cono) de color gris obscuro que presentan vesículas (<1.5 mm) y una matriz vítrea con microfenocristales de plagioclasa (<1 mm) y piroxeno (<0.5 mm), ambos aunados en ocasiones en glomeropórfidos. Las lavas de andesita basáltica son de color gris obscuro con vesículas (<2 mm) y una matriz vítrea con microfenocristales de plagioclasa (<1 mm) y en menor proporción olivino y piroxeno (<0.5 mm). Las lavas más andesíticas, en general son de color gris obscuro con vesículas (<1 mm) y micro-fenocristales de plagioclasa (<1 mm) y piroxeno (<1 mm). Petrográficamente, las lavas andesíticas son de textura traquítica a pilotaxítica, contienen vesículas (10.5 vol.%) y fenocristales de plagioclasa con formas euhedrales a aciculares, que presentan maclas típicas y zoneamiento, además de clinopiroxeno y ortopiroxeno (Tablas 5 y 6).

El Jabalí

El Jabalí (50.7-56.5 wt.% SiO₂; PAR-15395-B, PAR-15382-C, PAR-15379, PAR-15377, PAR-15394, PAR-15378, PAR-15384, PAR-15382-D), descrito en un apartado anterior (andesitasbasálticas), también emitió basaltos (Fig. 8) de color gris obscuro (muestra de mano) de textura porfirítica a vesicular; en ocasiones estas rocas son densas. Principalmente contienen fenocristales de olivino, piroxeno y plagioclsa (<2 mm) embebidos en una matriz vítrea que contiene microlitos de feldespato (<1 mm). Petrográficamente, las plagioclasas presentan formas euhedrales a subeuhedrales con zoneamiento (Fig. 15.6c y 15.6e) y la matriz es vítrea con textura traquítica a pilotaxítica con micro-fenocristales de olivino y plagioclasa.

Paracho Viejo

No es muy evidente su transición hacia andesita, ya que este cono de escoria es principalmente de composición andesita-basáltica (52.68-56.19 wt.% SiO₂, PAR-15388B, PAR-15389B, PAR-15362, PAR-15365, PAR-15366, PAR-15373; Tablas 5.2; 6.2; 6.3; Figs. 3, 8, 13, 15.5c, 15.5d, 15.5e). Está emplazado en las estribaciones septentrionales del domo compuesto Paracho. Presenta rocas color gris claro a obscuro (muestra de mano), densas o con vesículas que varían entre 2 mm y 1 cm en diámetro. Contiene olivinos (<2 mm) y piroxenos (<1 mm) que en ocasiones aparecen a manera de glomeropórfidos (<5 mm), además de plagioclasas (<2 mm). Bajo el microscopio presenta textura traquítica con fenocristales de olivino (2 a 7.6 vol.%) de formas euhedrales a subeuhedrales y esqueletales con bahías de corrosión. Los olivinos en ocasiones contienen inclusiones de espinela (cromita) (0.1-0.7 vol.%).

Janamo

Se trata de un cono de escoria con flujos de lava asociados y de edad reciente que se localiza al NW del poblado de San Lorenzo (53.49-60.82 wt.% SiO₂; PAR-15363, PAR-15391, PAR-15364, PAR-15367, PAR-15392; Tablas 2, 4, 5.1; Figs. 3, 15.6b). Presenta rocas color gris claro, matriz vítrea con fenocristales de olivino (<2 mm) y abundantes microlitos de feldespato. Bajo el microscopio, el arreglo mineral incluye fenocristales de olivino (2.6 vol.%) y plagioclasa (0.8 vol.%). La matriz es mayormente vítrea y contiene microfenocristales de olivino (3 vol.%), clinopiroxeno (0.1 vol.%) y plagioclasa (23.6 vol.%) (Tabla 6.1). Su porción más andesítica (59.42 -60.82 wt.% SiO₂; PAR-15391, PAR-15367, PAR-15392; Tablas 2 y 5; Fig. 15.2e) presenta rocas color gris (muestra de mano), matriz vítrea con vesículas elongadas (<2 mm) y microfenocristales de olivino (<1 mm) con microlitos de feldespato. Bajo el microscopio presenta unas textura traquítica con fenocristales de olivino (2.3 vol.%) con formas euhedrales a subeuhedrales,

algunos con formas esqueletales e inclusiones de espinela (cromita) (0.3 vol.%), ortopiroxeno (0.7 vol.%) y plagioclasa (1.5 vol.%) con formas aciculares a euhedrales con zoneamiento, así como maclas polisintéticas y albíticas. La matriz mayormente es vítrea con microfenocistales de olivino (3.7 vol.%), clinopiroxeno (0.2 vol.%), ortopiroxeno (0.8 vol.%) y plagioclasa (16.3 vol.%) (Tabla 6).

Tabla 6.2- Basaltos		1	2	2 3	5	6	7	' 8	3 9) 10
	Muestra	PAR-15384	PAR-15382-D	PAR-15361	PAR-15380	PAR-13254	PAR-13257	PAR-15364	PAR-15390	PAR-15386
	Localidad	Yondima	Jabalí	Cicapien	Sapien	Cicapien	Cicapien	Cicapien	Cicapien	Yondima
	Tipo	Lava	Lava	Lava	Lava	Lava	Lava	Lava	Lava	Lava
	Composición	Basalto	Basalto	Basalto	Basalto	Traqui-Basalto	Traqui-Basalto	Basalto	Basalto	Basalto
Fenocristales	OI	6.5	6.8	3.5	2.6	5.6	2.2	2 5.2	2 8.2	2 6
	Hrb	C	1	0	0	0	C) () () 0
	Срх	0.1	0.1	0.1	0	0	0.4	+ C) () 0.5
	Sp en Ol	C	0.2	2 0	0.5	0.7	C) 0.2	2	0.1
	Ap en Plg	C	0	0.6	0	0	0.2	2 () () 0
	Орх	C	0	0 0	0	0	C) () () 0
	Plg	28.1	19.2	! 11	0.3	1.1	15.4	2.9) 3.3	3 1.3
Matríz	OI	3.6	6.8	6.7	12.1	4.3	3.2	2. 3.5	5 6	i 1.1
	Hrb	C	0	0 0	0	0	C) () () 0
	Срх	1	1.1	1	0	6.4	1.5	5 () () 4
	Орх	C	0	0.4	0	0.5	C) () () 0
	Plg	21.3	51.1	31.3	17.9	40.7	27.1	20.4	23	3 17.8
	Vidrio	30.4	14.1	35.9	55.9	34.5	39.4	54.6	31.5	i 31.6
	Opac.	C) C	0	0	3.6	C) () () 0.1
	Ves	g	0.6	9.5	10.7	2.6	10.6	5 13.2	2 27	37.5
Total		100	100	100	100	100	100) 100) 100) 100
% Fenocristales		34.7	26.3	15.2	3.4	7.4	18.2	8.3	3 12.5	i 7.9
% Vesículas		g	0.6	9.5	10.7	2.6	10.6	6 13.2	2 27	37.5

Acrónimos en Tabla: Sp= Espinela; Olv=Olivino; Cpx=Augita; Opx =Ortopiroxeno; Plg=Plagioclasa; Vd=Vidrio; Ves=Vescícula; Hrb= Hornblenda; Opac= Opácos.

Tabla 6.3 Transicionales			1	2	3	4	5	6	7	8	9	10
	Muestra	PAR-14319	PAR-14320	PAR-15377	PAR-15378	PAR-15394	4 PAR-15391	PAR-15367	PAR-15362	PAR-15365	PAR-15366	
	Localidad	Hoya Urutzen	Hoya Urutzen	Jabalí	Jabalí	Jabalí	Janamo	Janamo	Par. Viejo	Par.Viejo	Par-Viejo	
	Tipo	Lava	Lava	Lava	Bomba	Lava	Lava	Lava	Lava	Lava	Lava	
	Composición	Andesita	Andesita	Andesita-Bas	Andesita-Ba	s Andesita-E	Bas Andesita-Ba	as Andesita	Basalto	Andes-Bas	Andes-Bas	
Fenocristales	01		0	0	4.8	4	3.2	2.6	2.3	7.6	4.1	2
	Hrb		0	0	0	0	0	0	0	0	0	0
	Срх	0.	6 0	.2	0.1	0	0	0	0	0	0	0
	Sp en Ol		0	0	0.3	0.7	0.2	0	0.3	0.7	0.1	0.3
	Ap en Plg		0	0	0	0	0	0	0	0	0	0
	Орх	1.	1 0	.9	0	0	0	0	0.7	0	0	0
	Plg	12.	7 12	.3	1.4	3.1	1.2	0.8	1.5	2.7	0.1	0
Matríz	OI		0	0	4.6	8.9	5.3	3	3.7	4	4.3	4.7
	Hrb		0	0	0	0	0	0	0	0	0	0
	Срх	0.	6 0	.4	0	0	0	0.1	0.2	0.4	0	0
	Орх	3.	1 2	.7	0	0	0	0	0.8	0.4	0	0
	Plg	19.	4 31	.8 2	8.1	25.1	15.4	23.6	16.3	23.5	13.9	28.7
	Vidrio	46.	2 41	.2 6	0.5	47.3	66.4	54.6	74	40	53.5	41.5
	Opac.	0.	6	0	0	0	0	0	0	0.1	0	0
	Ves	15.	7 10	.5	0.2	10.9	8.3	15.3	0.2	20.6	24	22.8
Total		10	0 10	00	100	100	100	100	100	100	100	100
% Fenocristales		14.	4 13	.4	6.6	7.8	4.6	3.4	4.8	11	4.3	2.3
% Vesículas		15.	7 10	.5	0.2	10.9	8.3	15.3	0.2	20.6	24	22.8

Figura 16. Fotografías a través del microscopio petrográfico de basaltos del área de Paracho-Cherán. a) PAR-15386, Yondima; b) PAR-15382-C, Jabalí; c) PAR-13257, Cicapien; d) PAR-15361, Cicapien; e) PAR-15284, Cicapien; f) PAR-15380, Sapién. Olv=Olivino; Cpx=Augita; Opx =Ortopiroxeno; Plg=Plagioclasa; Cr=Espinela (Cromita); Vd=Vidrio; Vesc=Vescícula.