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Glossary

• Boundary matrix: A term invented in this work. For a set of bounded matrices, the boundary matrix
is defined with diagonals as the lower bounds of the diagonals of the set and the off-diagonals as the
negative upper bounds of the off-diagonals of the set. See subsection 3.1.1.

• Chattering: High-frequency, sometimes dangerous, vibrations in the system. In sliding mode control
it’s caused by the high frequency of control switching. There are three distinct kinds: infinitesimal
chattering, bounded chattering and unbounded chattering [1].

• Compensator: Synonym of controller. The use of this word is in decline.

• Definite matrix: A matrix is said to be positive (or negative) definite if it’s symmetric and its quadratic
form is positive (or negative) for any nonzero vector. A positive definite matrix’s eigenvalues are all
positive real. A negative definite matrix’s eigenvalues are all negative real.

• Generalized diagonal dominance: A matrix property. A matrix is said to have generalized diagonal
dominance if there exists a positive diagonal matrix that makes the product of both matrices strictly
diagonally dominant. See section 2.4. In this work this property is only used on matrices with positive
diagonal elements.

• Matched perturbations/uncertainties: Perturbations/uncertainties that satisfy the matching condition,
that is, they can be represented as a vector times the input matrix [2].

• Order of sliding mode: A sliding mode is said to be of order r if the rth total derivative of the sliding
variable is the first total derivative which contains a discontinuity [2].

• Positive stable matrix: A matrix is said to be positive stable if the real part of all of its eigenvalues is
positive. If one multiplies a positive stable matrix times a negative scalar, a Hurwitz matrix is obtained.

• Quasi-definite matrix: A matrix is said to be quasi-definite if this matrix plus its transpose results in a
definite matrix.
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Glossary IV

• Sliding mode: System trajectory movement along the discontinuity surface, the sliding surface.

• Sliding surface: The attractive and invariant subset of the state space that we want the sliding variable
to reach to solve the control problem. Here the system must enter into sliding mode.

• Sliding variable: A measurable state variable. It is such that when this variable reaches zero, the con-
trol problem (whatever it may be) is solved. The sliding variable may be equal to the system’s output,
the tracking error or a function of the state variables.

• Strict diagonal dominance: A matrix property. A matrix has strict row (or column) diagonal dom-
inance if the absolute value of every diagonal is greater than the sum of the absolute value of the
elements of its row (or column). See section 2.4. In this work this property is only used on matrices
with positive diagonal elements.

• Symmetric part of a matrix: The symmetric part of a matrix is this matrix plus its transpose divided
by two.



Chapter 1

Introduction

1.1 State of the Art

Multi-input multi-output (MIMO) systems appear naturally in control problems and the main difference
between these systems and the scalar single-input single-output (SISO) case is the presence of directions,
which affect both vectors and matrices in MIMO cases [3].

The idea to decouple such a system into a multitude of SISO systems and control each one separately
is appealing, but there are several difficulties, mainly that: decoupling is very sensitive to modelling errors
and uncertainties, it may not be desirable for disturbance rejection and quite simply it may not be desired in
practice [3].

In the particular area of sliding mode control, the super-twisting algorithm is a classic [4, 2]. It’s been
used for SISO control [5] and robust differentiation [6]. In fact, as a control algorithm it is a popular choice
because of its unique features and advantages for systems of relative degree 1, mainly that the algorithm can
compensate matched Lipschitz perturbations and uncertainties; it forces the output and its derivative to zero
in finite-time, while only requiring knowledge of the output; and it generates a continuous control signal
[4, 2].

Because of all of this, there’s been interest in generalizing such control algorithm to the MIMO case,
especially for systems with uncertain input matrices.

Nevertheless, only a few generalizations have been made: the first one proposed in [7] can stabilize
the origin of a general nonlinear system, meaning the input matrix could be dependent on time or state
variables. However they assume no model uncertainties which would allow for perfect decoupling. Stability
is achieved by using scalar constant gains in both the integral and static feedback. In addition, they use extra
linear PI terms in their algorithm.

This approach was combined with so called Integral sliding mode control in [8], that results in a control
law consisting of a nominal control (which could be linear or nonlinear) and a sliding mode control to
compensate for perturbations and effectively stabilizes the nominal control, in this case they use the MIMO
super-twisting algorithm previously discussed. This clever combination extended its possible use to any
MIMO system.

While the proposed selection of gains could compensate for perturbations linearly bounded by the sliding
output variable and Lipschitz perturbations, a similar version presented in [9] allows for a broader class of
nonlinear perturbations to be compensated thanks to not being restricted to constant gains. This was also
the first multivariable super-twisting algorithm for uncertain systems, however they did restrict themselves
to linear time invariant systems, meaning the input matrix is constant. They also assumed this matrix is
symmetric, and in [10] they found this condition to be fragile since a nonsymmetric input matrix easily
leads to instability.

A different type of controller this time for general nonlinear systems was presented in [11] where they
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modelled an uncertain description of the input matrix, which is a uncertain term, that can be time-varying
and state dependent, and is factorized from the left of the nominal input matrix. A key restriction in their
design (although still allowing for very general systems) is that the input matrix should be positive quasi-
definite in spite of the uncertainties.

Further generalization using a gain in the integral variable itself, not in the integral injection term, was
studied in [12], where they found the proper design of this gain could help compensate a broader class of
nonlinear perturbations.

All of the previous controllers used nonsmooth Lyapunov functions for their stability analysis. They also
share the use of unit vector style or quasi-continuous style feedback injection that doesn’t require decoupling
and uses scalar gains, in fact it induces coupling into all of the subsystems whether this is desired or not.

This type of feedback injection results in a different behaviour from a collection of SISO super-twisting
controllers for a decoupled system, as it was seen in the comparisons made in [13]. Among the differences
they reported were: the unit vector style feedback makes all the states converge together with less gains to
design, whereas the SISO ones converge independently and have more gains to design, but they work better
with observers and could be endowed with different dynamical and robustness properties.

In the field of SISO super-twisting controllers we have for example [14], where they show a decoupled
design for a system that is allowed to have some model uncertainties as long as they’re not in the input
matrix, allowing them to perfectly decouple the system. Here the gains are found by solving an implicit
Lyapunov function. This last algorithm also showcases the passivity of the super-twisting algorithm.

Conversely, in [12] they allow uncertainties in the input matrix and use SISO super-twisting controllers
in systems that are already known to be diagonal or at least block diagonal with diagonal blocks. They found
that a diagonal constant gain matrix in the static feedback and a scalar matrix gain in the integral one can
stabilize the origin of the system, meaning in this case the subsystems are completely decoupled.

1.2 Contribution

Here in Chapter 3, the problem of a MIMO dynamical system represented by differential equations and
an uncertain input matrix is tackled. The input matrix is assumed to be time and state dependent, with an
uncertain but constant matrix factor.

With the objective of designing a continuous control law to robustly stabilize the origin of such a system
in spite of the uncertainties in the input matrix and in the presence of matched Lipschitz perturbations, a
new family of MIMO homogeneous controllers was developed. This family contains not only a multivari-
able super-twisting algorithm for nonlinear systems, but also a full family of continuous and homogeneous
approximations, including a linear PI-control law.

Although the new controllers use SISO style discontinuous feedback terms, they’re not restricted to
diagonal gain matrices, in contrast to the usual unit-vector-like ones of the previous MIMO algorithms or
the completely decoupled SISO ones.

The added degrees of freedom in the form of nondiagonal matrix elements in the gains enables the
designer to adjust the performance of the controller, reducing overshoot for example. This is seen in Chapter
5, which contains some illustrative examples with numerical simulations of two different real word systems
where the new control algorithms are used and their main features are highlighted.

On another note, these new controllers were developed from a smooth homogeneous Lyapunov function,
motivated by a passivity interpretation that’s already been shown in the SISO case [15], which is an approach
quite different than what’s been done in other generalizations.

On top of that, in Chapter 4 an arbitrary relative degree generalization for these controllers is presented,
although under stricter conditions than the relative degree one case.
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To complement the results, Chapter 2 contains most of the theoretical background needed for a controls
engineer to understand the results and their mathematical proofs.

Finally in Chapter 6 the effectiveness of the controllers is discussed along with how they fare against
other similar generalizations: what are the advantages and disadvantages.



Chapter 2

Theoretical Background

2.1 MIMO Sliding Mode Control Development

Sliding mode control is a well established collection of nonlinear control techniques that were developed in
five distinct generations [16]:

The first generation corresponds to the classical theory of first order sliding mode control which offers
theoretical exact compensation of bounded matched uncertainties and finite time convergence to the sliding
surface at the cost of chattering and having to design a surface of relative degree one with respect to the
control input.

The second generation was developed with the goal of reducing chattering, which is mainly caused by
unmodeled dynamics that increase the relative degree of the sliding surface. It was understood that if the
derivative of the sliding variable could be forced to converge to zero along with the sliding variable itself,
then the chattering could be adjusted. In order to do this, second order controllers were developed. In the
end, they still produced a discontinuous control signal so chattering wasn’t reduced substantially and they
required additional measurements of the sliding variable’s derivative.

The third generation was the Super-Twisting Algorithm which is a second order sliding mode controller
that uses only the measurements of the sliding variable and is capable of making both the sliding variable
and its derivative converge to zero in finite time, in turn allowing the development of a robust differentiator.
This controller also managed to significantly attenuate the chattering but not to completely eliminate it.
Nevertheless, a sliding surface design of relative degree one was still required.

The fourth and fifth generations corresponded to the arbitrary relative degree generalizations. It is safe
to say that the Quasi-continuous controller is the flagship of the fourth generation, it serves as generalized
version of the first generation controllers. On the other hand, the fifth generation has been dealing with
controllers that provide the main advantages of the Super-Twisting Algorithm for any relative degree [16].

All of this has been the development of sliding mode controllers for SISO systems, in contrast MIMO
sliding mode controllers can be considered to still be in their infancy.

MIMO controllers of first generation are already well established even for uncertain systems, mainly
the algorithm named Unit Vector Control attributed to Utkin [17]. Here, the idea of a scalar sliding surface
is extended to the multivariable case as the intersection of multiple discontinuous surfaces and the sign
function is extended as the sliding output vector divided by its norm [17].

There’s even been extensions of this algorithm to uncertain systems for decades now, for example the
ones reported in [18, 19], both from 1979. These controllers use variable gains to compensate the uncertain-
ties more effectively without overkilling with gains designed for the worst case scenario.

When reaching the third generation it becomes clear that MIMO sliding mode control has been lagging
behind the SISO developments: of all of the MIMO super-twisting controllers mentioned in the introduction,
the first reported one [7] is just from 2014. And in the case of fourth generation controllers the first MIMO

4



2.2. The Super-Twisting Algorithm 5

quasi-continuous controller developed for general uncertain systems was reported in 2018 [20]. This is just
to say that new generation MIMO sliding mode control is still a fresh and active research field.

One thing that all MIMO generalizations of sliding mode controllers share is that they must impose some
restrictions on the uncertain input matrix to be able to prove the stability of the controller, meaning that even
though the exact value of the matrix’s elements isn’t known, some matrix properties are guaranteed. The
work of [21] includes a brief summary on the matrix properties that have been assumed to be preserved under
parametric uncertainties, these are: positive definiteness, positive quasi-definiteness and positive stability,
the latter being the most general and the former the most restrictive. They also add that these conditions can
be complemented with time or state dependent perturbations with a known norm bound that multiplies the
constant input matrix. For example, in their own work they are able to prove the stability of their controller
under the restriction that the variable input matrix is positive stable for all time and any state.

2.2 The Super-Twisting Algorithm

As mentioned before, the Super-Twisting Algorithm played such a seminal role in sliding mode control
theory that it is worthy of its own generation. Its main characteristics were briefly mentioned but the theory
that explains them was not. In this section the theory behind this controller is explored.

The SISO super-twisting control law, first introduced by Levant in [5], can be expressed as:

u =−k1dxc
1
2 + v

v̇ =−k2dxc0 (2.1)

with x as the sliding variable.
A main feature of this controller is the use of an integrator, and in fact, this is what explains how it can

reject Lipschitz perturbations, provide a continuous control signal and make the derivative of the sliding
variable go to zero.

Firstly, it is known that the use of integrators in higher order sliding mode control produces a continuous
control signal. With conventional sliding mode control, this comes at the cost of artificially raising the
relative degree of the system by one. Such strategy requires taking another derivative and using a new
control variable v = u̇ a higher order sliding mode controller is proposed for v [15, 22]. As a consequence,
it is necessary to also get the rth derivative of sliding variable which involves taking the derivative of the
perturbations and uncertainties [15].

In contrast, in the super-twisting case, the additional dynamic equation does not alter the relative degree
with respect to u since instead of using the derivative of the control law, it goes in the other direction, using
an integral control law. Still, the discontinuous part of the control law is behind an integrator, making the
result a continuous signal. This makes it a second order sliding mode controller even though it is made for
relative degree 1 control problems.

Secondly, the derivative of the sliding variable can go to zero thanks to the control signal being continu-
ous, in turn allowing the derivative of the sliding variable to be continuous, therefore the sliding variable is
continuously differentiable finally implying that when the sliding variable is zero, its derivative must be zero
too. To see these properties more clearly consider a relative degree one system with a constant coefficient
controlled by a super-twisting controller:

ẋ = b
[
−k1dxc

1
2 + v

]
v̇ =−k2dxc0 (2.2)
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where x is the scalar output, b > 0 is the control coefficient and the input has been substituted by the super-
twisting in (2.1).

There is a discontinuous part in v̇ that can be seen as a conventional sliding mode controller, but as we’ve
seen, due to the integrator, v is a continuous signal. This added to the other term in ẋ results in the derivative
of x being continuous, which is what we wanted to show.

Finally, the complete rejection of Lipschitz perturbations is explained by the internal model interpreta-
tion of this control law. The internal model principle was introduced into linear control theory as a viable
tool to design servocompensators [23, 24, 25]. In general, the servocompensator is incorporated as an ex-
osystem and its dynamics are designed such that they describe the class of signals corresponding to the
references to be tracked or the perturbations to be rejected [26]. Under this lens, v̇ in equation (2.1) is the
internal model of Lipschitz signals, this is, signals with bounded derivatives [26].

To see this better, the multivalued interpretation of the signum function is used, this means the servo-
compensator is given by the differential inclusion v̇ ∈ k2[−1,1], therefore the signal v is allowed to be any
absolutely continuous signal with a derivative, where it exists, bounded by k2 [26].

Given that the construction of a proper internal model is the main problem when designing a servocom-
pensator for a nonlinear system, the fact that this Lipschitz internal model is so simple yet very general is
a great property [26]. So the invariance of the super-twisting algorithm against Lipschitz signals has been
explained, in turn explaining why this algorithm has found so many different applications.

On that note, a servocompensator can be unstable on its own, so an additional controller is needed to
guarantee stability [24, 26]. And this is what the other term of the super-twisting controller does. The
stability of the super-twisting algorithm has been demonstrated in a variety of different ways, first by ge-
ometric means, then via homogeneity properties, and at the end using Lyapunov methods [27, 7, 28]. It’s
been shown that in the unperturbed case, it is sufficient that k1,k2 > 0 to have stability [28, 27], nevertheless
the performance and robustness of the controller will be affected by the choice of these gains, for example
in [29] frequency domain analysis was used to find gains that adjust chattering, minimizing the amplitude
of the oscillations or the average power lost to chattering.

The stability proof for the multivariable extension of the super-twisting that will be presented in Chapter
3 shares a similarity with the ones for the SISO case in [28] and [27], there they’ve proposed a Lyapunov
function for the unperturbed case, and based on this the analysis for the perturbed case gives the conditions
for the stability of the controller in spite of the perturbations. In fact one of the authors of these papers has
confirmed that the idea of passivity was in their mind when designing the Lyapunov functions. Nevertheless,
for many reasons this wasn’t shown explicitly until [15].

2.2.1 Passivity interpretation

A passivity based stability analysis of the generalized super-twisting algorithm has been reported in [15]
and will be presented here. But firstly a reminder of what passivity means in this context.

Definition 1. [30, Definition 6.3] A dynamical system represented by a state model

ẋ = f (x,u)

y = h(x,u)

with output y ∈ Rn and input u ∈ Rn is passive if there exists a continuously differentiable positive semi-
definite scalar function V (x) such that

〈u,y〉 ≥ V̇ (2.3)
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With that out of the way, consider again the unperturbed SISO dynamical system of relative degree one
and constant coefficient controlled by the super-twisting algorithm in (2.2) and consider the scalar function:

V = |x| (2.4)

This is not continuously differentiable at x = 0, so it isn’t a true storage function, however it is Lipschitz
continuous, so in some sense it preserves the spirit of the definition. This is enough to show where the
main idea of the passivity based design comes from. A more rigorous analysis could be made with passivity
generalizations that allow for nonsmooth storage functions, but this is not done here.

Taking the derivative (wherever the derivative exists) the following is obtained

V̇ = ẋ sign(x) = b
[
−k1dxc

1
2 + v

]
dxc0

= −bk1|x|
1
2 +bvdxc0

≤ vbdxc0

with respect to the output y= bdxc0 and the input v, this system is passive and V is their storage function.
The passivity of the complete system can then be deduced form the passive interconnection of the

previous subsystem with the integrator, which is known to be passive.
In addition, the passivity interpretation of a whole family of generalized SISO super-twisting homoge-

neous controllers is shown in [15], they include more homogeneity degrees and arbitrary relative degrees.
Here only the discontinuous case of relative degree one was shown to illustrate the main idea. The passivity
of the generalized MIMO controllers will be shown in later chapters.

2.3 Homogeneous Dynamical Systems

First of all, the mathematical property known as homogeneity is a dilation symmetry first described by none
other than Leonhard Euler in the 18th century. However, it was Vladimir Zubov who used a generalized
version of homogeneity to study nonlinear systems [31]. In particular, the generalization known as weighted
homogeneity allows us to define the concept of weighted-homogeneous functions.

Definition 2. [32, 15] For a fix set of coordinates x = [x1, . . . ,xn]
> ∈ Rn, and the coordinate weights r ,

[r1, ...,rn]
> ∈ Rn

>0. Define the family of dilations ∆r
ε such that

∆
r
εx , [εr1x1, ...,ε

rnxn]
> (2.5)

Now, a scalar function V : Rn→R is said to be r-homogeneous of degree l ∈R, commonly abbreviated
to (r, l)-homogeneous, if for all ε > 0 and all x ∈ Rn the equality V (∆r

εx) = ε lV (x) holds.
A vector field f : Rn→ Rn is said to be r-homogeneous of degree l ∈ R if for all ε > 0 and all x ∈ Rn

the equality f (∆r
εx) = ε l∆r

ε f (x) holds.

With this, a dynamical system
ẋ = f (x) (2.6)

is a homogeneous dynamical system if f (x) is a homogeneous vector field [2].
It’s been established that this concept can simplify the stability and robustness analysis of control sys-

tems as well as the design of nonlinear controllers and observers. In fact, the homogeneity degree together
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with the weights specifies the type of convergence rate of any asymptotically stable homogeneous system,
and under some restrictions homogeneous systems can even be finite time stable [31].

An unofficial convention in sliding mode control, that’ll be used here too, is to set the weight of the
last coordinate (state variable) and of the time variable to be equal to 1, for the second to last coordinate
the weight is 1− l, then 1−2l and so on. With this selection the homogeneous degree of linear systems is
pegged to l = 0 and discontinuous systems to l =−1. Such convention is useful given that the degree of this
type of functions would be different if the weights were selected in another manner. This is similar to how
a musical melody can be transposed into a different key, changing all of its notes but still having the same
melodic meaning. By this analogy sliding mode control is always played starting on the same note.

In summary, although homogeneity isn’t required to understand, design or analyse nonlinear systems
(like sliding mode controllers) it provides many useful tools to this. In particular a key homogeneity property
and a mathematical lemma for this work were the following.

Definition 3. [15] Given a dialation ∆r
ε and for p≥ 1 the homogeneous norm is defined as

‖ x ‖rp:=

(
n

∑
i=1
|xi|

p
ri

) 1
p

, ∀x ∈ Rn (2.7)

The homogeneous norm is an r-homogeneous function of degree 1. In the following work, no ambiguity
of weight vectors may arise, so when the homogeneous norm is presented and p could be any number, it’ll
simply be presented as ‖ x ‖. In any other case the full form would be used. And when talking about a
conventional p-norm, ‖ x ‖p will be used.

Finally, sometimes called unofficially the Homogeneous Domination Lemma, we have:

Lemma 1. [33, 15]Let η : Rn → R and γ : Rn → R+ be two continuous homogeneous functions, with
weights r = (r1, ...,rn) and degrees m, with γ(x)≥ 0, such that the following holds

{x ∈ Rn \{0} : γ(x) = 0} ⊆ {x ∈ Rn \{0} : η(x)< 0}.

then, there exists a real number λ ∗ such that, for all λ > λ ∗, for all x ∈ Rn \ {0} and some c > 0, the
following inequality is true

η(x)−λγ(x)<−c‖x‖m

2.4 On Diagonal Dominance

Surprisingly enough, a key matrix property that was found to be necessary (for the method used) to prove
the stability of the MIMO super-twisting algorithm, presented in the following chapters, was the so called
strict diagonal dominance. For this reason some mathematical properties associated with matrix diagonal
dominance are presented in this section. But first of all, the main definition of diagonal dominance is
presented.

Definition 4. [34, 35] A matrix A = [αi, j] ∈ Cn×n is said to be strictly row diagonally dominant if the
inequality

|αi,i|> ∑
j 6=i
|αi, j| (2.8)

is true ∀i = 1,2, ...,n.
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In addition to that, a matrix A = [αi, j] ∈ Cn×n is said to be strictly column diagonally dominant if the
inequality

|αi,i|> ∑
i6= j
|αi, j| (2.9)

is true ∀i = 1,2, ...,n.
Notice that the two last inequalities are exactly the same except for the subscript of the sum operator: in

column diagonal dominance i (which indicates the rows) changes and can’t be equal to j (which indicates
the column). This is reversed in the row diagonal dominance case.

The set of Z-matrices is denoted as:

Zn×n = {A = [αi, j] ∈ Rn×n|αi, j ≤ 0, i 6= j} (2.10)

A Z-matrix can be represented as
A ∈ Zn×n = sIn−B (2.11)

where s is a positive scalar, In is the identity matrix of dimension n× n and B is a matrix whose elements
are all nonnegative [35].

M-matrices are the subset of Z-matrices for which s is greater or equal to the spectral radius of B, and
nonsingular M-matrices occur when s is strictly greater than the spectral radius of B [35]. Nonsingular
M-matrices have many special characteristics, those of greater importance for the research at hand are
summarized in the next lemma:

Lemma 2. [35, Theorem 2.3 (M35, H24, G20, A1, A5, N38)] For a nonsingular M-matrix A ∈ Zn×n the
following are equivalent. Moreover for a general A ∈ Rn×n the first one implies the rest:

1. A has all positive diagonal elements and there exist a positive diagonal matrix D such that AD is
strictly row diagonally dominant.

2. There is a positive diagonal matrix D such that DA+AT D is positive definite.

3. A is positive stable; that is, the real part of each eigenvalue of A is positive.

4. All leading principal minors of A are positive.

5. A is inverse positive; that is, A−1 exists and all of its elements are nonnegative

Throughout the following, the first property will be simply referred to as generalized diagonal domi-
nance, because only matrices with positive real diagonals were needed to prove the main result. This is
compatible but less general than other better established forms of generalized diagonal dominance, such as
the one that defines H-matrices (see [34, 35]) where the diagonals are not required to be positive and could
be complex numbers.

There are many consequences of the previous properties that are important to understand the contents of
the next chapters. For example, any matrix with positive diagonals and strict diagonal dominance also has
generalized diagonal dominance.

More importantly, an M-matrix multiplied by a positive diagonal matrix results in another M-matrix.
The proof for this is very simple but not obvious: suppose AD has strict diagonal dominance for a general A
and a diagonal D, if A were to be multiplied by a diagonal B, the generalized diagonal dominance condition
for AB asks us to find a diagonal C such that ABC has strict diagonal dominance, choose C = B−1D to solve
the generalized diagonal dominance condition, and by equivalence AB is an M-matrix.
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Another thing is that the transpose of an M-matrix is also an M-matrix, this can be deduced from Lemma
2 and the fact that square matrices and its transposes share the same eigenvalues and determinants. A direct
consequence of this is that any matrix with generalized row diagonal dominance must also have generalized
column diagonal dominance.

We can further deduce that for an M-matrix A there exists a positive diagonal D such that DA is strictly
column diagonally dominant, since the transpose of a strictly row diagonally square matrix must be strictly
column diagonally dominant.

Some of these properties are also expressed in the following lemma:

Lemma 3. [36, Theorem 2.5.3 item 2.5.3.15] If Γ is an M-matrix with diagonal positive entries, there
exist positive diagonal matrices B and D such that BΓD , and also DΓT B, are both strictly row diagonally
dominant and strictly column diagonally dominant.

Apart from that, a symmetric matrix with generalized diagonal dominance is also positive definite. This
comes from the fact that the eigenvalues of a symmetric matrix have no imaginary part, and from Lemma
2 we see that generalized diagonal dominance implies that the eigenvalues of the matrix have positive real
part, ergo a symmetric matrix with generalized diagonal dominance has only positive real eigenvalues so it
is positive definite.

2.4.1 Calculating matrix D

Given the definitions and theory presented so far, a natural question is how can one determine matrix D for
a given M-matrix A such that AD is strictly diagonally dominant.

For small systems this isn’t really an issue, since the inverse of an M-matrix is nonnegative (and couldn’t
possibly have a row of all zeros), then for some positive vector y ∈ Rn the vector x = A−1y is positive, this
means D = diag(x) is a matrix D that solves the condition. In conclusion, solving the linear system

Ax = y, y > 0 (2.12)

for some M-matrix A, returns the values x of the diagonal matrix D = diag(x) that makes AD strictly diago-
nally dominant. This is also reported in [37].

However, this requires that we previously know that A is an M-matrix, which again for small systems is
easy since checking its eigenvalues, for example, gives us an answer immediately.

For larger systems determining if A were an M-matrix is a task in and of itself. If we know A ∈ Zn×n

then we can use some of the algorithms developed for identifying H-matrices, because an H-matrix in Zn×n

is an M-matrix.
Many such methods have been developed [37, 38, 39, 40, 41, 42]. The so-called algorithm H [37, 38] is

of particular interest for it returns the matrix D we’re after, in contrast, other algorithms use other H-matrix
criteria to identify them, leaving the calculation of D to the side.

This algorithm can be more efficient (in terms of calculations required) than solving the linear equation
(2.12) if the number of iterations required is smaller than one third of the dimension of the matrix [37]. As
we can see, this will only be advantageous in really large matrices, so it will probably not be required in
the majority of control applications, the important thing is to be aware that this algorithm exists and is very
efficient if one is presented with a really large matrix.



Chapter 3

Homogeneous MIMO PI Controllers

"I warn the reader that this chapter requires careful reading, for I do not know the art of making myself clear
to those that will not be attentive." - J. J. Rousseau ([43], book 3.1)

3.1 Relative Degree 1 Systems

Suppose an uncertain MIMO system is given by the differential equation

ẋ = G(t,x)u+δ (t) , (3.1)

where x ∈ Rm is the state, u ∈ Rm is the control input, δ (t) ∈ Rm is a matched perturbation and G(t,x) ∈
Rm×m is the uncertain input matrix.

The control objective is to robustly stabilize the origin of the system despite uncertainties and perturba-
tions.

The perturbation vector signal δ (t) is supposed to be a Lipschitz function of time, so there is a constant
C ≥ 0 such that its derivative (where it exists) is bounded

‖ δ̇ (t) ‖p≤C, ∀t ≥ 0 (3.2)

3.1.1 Description of the Uncertain Input Matrix

The following uncertain representation for the input matrix was proposed:

G(x, t) = ϒG0(x, t) (3.3)

where G0(x, t) ∈ Rm×m is regular, and is the nominal and known part of the matrix, while ϒ ∈ Rm×m is
constant and regular but uncertain. This implies that detG(t,x) 6= 0 for all (t,x). We also assume that
0 < c1 ≤ ‖G0 (t,x)‖p ≤ c2 for all (t,x), for some positive constants.

It is assumed that the sign of the elements of ϒ is only known for its diagonals, and that the magnitude
of its elements falls under the following bounds:

υii ≥ υ ii > 0, ∀i = 1, ...,m (3.4)

|υi j| ≤ ῡi j, ∀i = 1, ...,m, ∀ j = 1, ...,m (3.5)

Additionally, the set Y is the set that contains all the matrices ϒ that fall under these conditions. Finally, the
boundary matrix is defined as B(ϒ) = [υb,i j] ∈ Zm×m

υb,ii = υ i,i υb,i j =−ῡi j, i 6= j (3.6)

11



3.2. Passive Homogeneous PI Controllers 12

3.2 Passive Homogeneous PI Controllers

The control law can be described as

u = −K(t,x)dxc
1

1−l +B(t,x)v (3.7)

v̇ = −KI(t,x)dxc
1+l
1−l (3.8)

with l ∈ [−1,0] being the selectable homogeneous degree of the controller. The gains K (t,x) ∈ Rm×m,
KI (t,x) ∈ Rm×m, and B(t,x) ∈ Rm×m are continuous and regular gain matrices to be designed.

Remark 1. The feedback injection functions use a multivariable generalization of the scalar d·c function.
This function and the absolute value function are applied element wise to a vector z ∈ Rn

dzca =
[
dz1ca · · · dznca

]T
, |z|a =

[
|z1|a · · · |zn|a

]T
Where dz1ca = |z1|asign(z1).

An additional requirement is that the gain matrices are bounded: 0 < c3 ≤ ‖A(t,x)‖p ≤ c4 for all (t,x),
for some positive constants, with A ∈ {K,KI,B}.

The controller described previously can stabilize the origin of the extended system for xE ∈R2m =

[
x
xI

]
with

xI ∈ Rm = v+(GB)−1
δ (t) (3.9)

are the added integral variables. The closed loop system is

ẋE =

[
ẋ
ẋI

]
=

[
G(t,x)[−K(t,x)dxc

1
1−l +B(t,x)xI]

−KI(t,x)dxc
1+l
1−l +∆

]
(3.10)

where

∆(t,x, ẋ) =
d
dt

(
B−1 (t,x)G−1 (t,x)δ (t)

)
(3.11)

Remark 2. The definition of ∆ in (3.11) raises immediately the issue, that in general ∆ depends on (t,x) and
ẋ, even when δ (t) is assumed only to be a function of time. Since ẋ depends on the control law, an algebraic
loop appears. In order to avoid this, an additional requirement is that G(t,x)B(t,x) has to be constant, that
is,

G(t,x)B(t,x) = N , (3.12)

where N ∈ Rm×m is a constant and regular matrix. If (3.12) is satisfied, then

∆ =
d
dt

(
N −1

δ (t)
)
= N −1

δ̇ (t) . (3.13)

In this case, the boundedness of δ̇ (t) (3.2) implies the boundedness of ∆.

Remark 3. Note that for l =−1 the closed-loop system (3.10) has a discontinuous right-hand side. In this
case the solutions are understood in the sense of Filippov [44]. In the scalar discontinuous case, the classic
Super-Twisting Algorithm [5] is obtained, proving (3.8) is a MIMO generalization.

Besides that, (3.10) has a switching surface at x = 0, in contrast to the quasi-continuous MIMO versions
in [7, 9, 12, 11], having a discontinuity only at xE = 0. For l ∈ (−1,0] (3.8) can be seen as a family of
continuous approximations of the discontinuous Super-Twisting Algorithm. For l = 0 it becomes a linear
PI-controller. Hence why it’s been called a family of homogeneous PI controllers.
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3.2.1 Gain design

Theorem 1. Consider the system in (3.10) and suppose that all of the restrictions (3.3), (3.5) and (3.2)
presented previously are satisfied. Now, if the uncertain matrix ϒ is such that its boundary matrix is an
M-matrix, then there exists gain matrices K (t,x), B(t,x) and KI (t,x) such that the control problem can be
solved. In particular:

1. If C = 0 and l = 0 then the linear controller makes the origin xE = 0 a exponentially stable equilibrium
point.

2. If C = 0 then the origin xE = 0 is a finite-time stable equilibrium point for all homogeneity degrees
l ∈ (−1,0).

3. If C > 0 then for the continuous homogeneous controllers of degree l ∈ (−1,0] provide input to state
stability from ∆ to xE .

4. If C ≥ 0 and l =−1 the discontinuous controller makes xE = 0 finite-time stable.

A constructive proof of Theorem 1 is given in section 3.3 of this same chapter.
When the conditions of the theorem are met, a particular but still very general selection of gains is:

• B(t,x) = G−1
0 (x, t)D with a diagonal D > 0

• K(t,x) = G−1
0 (x, t)KOKD

• The columns of KO satisfy the following inequality for all i:

2kiiqi >

〈
|ki|,

m

∑
j=1

|ŷ j|
υ j j

q j

〉
(3.14)

where ŷ j are the rows of B(ϒ) and ki are the columns of KO

– if l ∈ (−1,0) then KD must be such that B(ϒKO)KD is strictly row diagonally dominant

– if l =−1∨ l = 0 then KD is an arbitrary positive diagonal matrix

• KI(t,x) = KI is constant and positive quasi-definite

In other words, both the gains B(t,x) and K(t,x) contain a time varying term to decouple the nominal
part of the uncertain control matrix after which additional constant gain matrices appear. The constant gain
KO contains the off-diagonal terms of the static gain, which are restricted under 3.14 to not disturb the
generalized diagonal dominance of ϒ, while KD is positive diagonal matrix whose job is to appropriately
scale the gain KO, because of this, matrix KO can always have its diagonal elements equal to one.

Similarly, the positive diagonal gain D can be used for gain scaling but it could also be seen as a part of
the integral gain KI and moved to the integral part of the controller.

Finally, the integral gain KI is free to be any constant positive quasi-definite matrix so, together with KO,
it allows the design of full gain matrices that can be used to adjust the interaction between subsystems.

Although these conditions can look intimidating, there are several cases where the gain design is sim-
plified. As an example, when diagonal gain matrices are desired, KO can be equal to the identity matrix,
and choosing the linear (l = 0) or discontinuous (l = −1) controller the design of KD is also simplified.
Additionally, the gain D can always be the identity matrix. All of this reduces the gain design to selecting
two positive diagonal gains KD and KI , just like a PI controller.

Some other special cases are presented in section 3.4.
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3.2.2 Gain scaling

For a given set of appropriate gains and perturbation (K,B,KI,∆) stabilizing the closed-loop system, it is
possible to obtain a new stabilizing set by introducing a gain scaling. First select time and perturbation scal-
ing factors T > 0 and κ > 0, respectively. Then, two possible gain and perturbation scalings are considered:

(K,B,KI,∆)→
(
LK,B,L2KI,κ∆

)
(3.15)

where L =
(
κ−lT (1+l)

) 1
1−l , and

(K,B,KI,∆)→ (LK,LB,LKI,κ∆) (3.16)

where L = κ−lT (1+l).
The change of coordinates in state and time, given by

x→ T 2

κ
x, xI →

T
κ

xI, t→ Tt,

for (3.15), and

x→
(

T
κ

)1−l

x, xI →
T
κ

xI, t→ Tt,

for (3.16), transform the gain scaled system into (3.10), so that they are equivalent.
And therefore, the gain scaled system can compensate a perturbation κ times larger, and it accelerates

the convergence by T . For (3.15) the selected T and κ have to be constant, while for (3.16) they can
be functions of (t,x). In particular, if κ (t,x) ≥ κ̄ > 0 is a continuous function, uniformly bounded by a
constant κ̄ > 0, and if T (t,x) = T̄ κ (t,x)> 0 with a constant T̄ > 0, then the transformation above is valid.
The gain scaling becomes L(t,x) = κ (t,x) T̄ (1+l). This allows, for example, to deal with a perturbation ∆

with a time and/or state dependent but known upper bound.

3.3 Stability Analysis

To prove Theorem 1, a Lyapunov function candidate is presented in four steps:

1. A weak Lyapunov function candidate is proposed for the unperturbed system.

2. The weak Lyapunov function is shown to also be the storage function that proves the passivity of the
controller.

3. Adding a cross-term, a strong Lyapunov function candidate that accounts for perturbation is derived.

4. Conditions to make the candidate functions into true Lyapunov functions are described.

These functions were constructed by adding pondered SISO Lyaponov functions designed in [15]. For
simplicity’s sake, the arguments of the functions may be omitted.

3.3.1 A weak Lyapunov function

Consider the positive definite scalar function

W (xE) =
1− l

2
⌈
xT⌋ 1

1−l Pdxc
1

1−l +
1
2

xT
I ΓxI , (3.17)
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where P ∈ Rm×m is a positive diagonal matrix and Γ ∈ Rm×m is a constant and positive quasi-definite
matrix. Notice that this scalar function is a sum of two quadratic forms, therefore it is not necessary for
the matrix P to be diagonal to make it a positive definite function, it would be sufficient that P was also a
positive quasi-definite matrix. Nonetheless, in the following sections a diagonal P is used, an alternative
form will only be considered in section 3.4.4.

This is a homogeneous function of dW = 2 with weight vectors following the sliding mode control con-
vention: r1 = (1− l)1m and r2 = 1m for vectors x and xI , respectively. It is also continuously differentiable
for l ∈ (−1,0] and Lipschitz continuous for l =−1.

In the case that l =−1 and m = 1 (SISO super-twisting algorithm case) then the storage function from
2.4 is obtained, and in fact this is a generalized storage function too.

The derivative of W along the trajectories of the closed loop in the absence of perturbations is

Ẇ =
⌈
xT⌋ 1+l

1−l Pẋ+
1
2

ẋT
I ΓxI +

1
2

xT
I ΓẋI

expanding the terms gets

Ẇ =
⌈
xT⌋ 1+l

1−l PG
[
−Kdxc

1
1−l +BxI

]
+

1
2

[
−KIdxT c

1+l
1−l

]T
ΓxI +

1
2

xT
I Γ [−KI]dxc

1+l
1−l

splitting the terms with the gain B and rearranging them results in

Ẇ =−
⌈
xT⌋ 1+l

1−l PGKdxc
1

1−l +
1
2
dxT c

1+l
1−l
[
PGB−KT

I Γ
]

xI +
1
2

xT
I
[
BT GT P−ΓKI

]
dxc

1+l
1−l

This is because we can transpose our terms without problem since they’re all scalar functions.
Finally, choosing KT

I Γ = PGB cancels all terms that depend on integral variables. Doing so, and again,
in the absence of perturbations, will only leave

Ẇ =−
⌈
xT⌋ 1+l

1−l PGK dxc
1

1−l

Although function Ẇ itself is not assured to be homogeneous (due to the dependence on time and x of
G, and the matrix gains), it can be bounded by a homogeneous function of degree dẆ = 2+ l. For now,
it is only assumed that the first term of the function expressed above can always be made negative ∀x 6= 0,
leading to the following bound:

Ẇ ≤−ε ‖ x ‖2+l

This means that W is a weak Lyapunov function. If the closed-loop system is time-invariant, then
Lasalle’s invariance principle will imply asymptotic stability, but not in the general case.

3.3.2 Passivity interpretation

When the assumption that the form −
⌈
xT
⌋ 1+l

1−l PGK dxc
1

1−l is negative definite holds, then the same thing as
in section 2.2.1 can be done:

ν(x) :=
1− l

2
⌈
xT⌋ 1

1−l Pdxc
1

1−l

ν̇(x) = −
⌈
xT⌋ 1+l

1−l PGKdxc
1

1−l +
⌈
xT⌋ 1+l

1−l PGBxI

≤
⌈
xT⌋ 1+l

1−l PGBxI
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so for the output yT =
⌈
xT
⌋ 1+l

1−l PGB and input xI = v (for the unperturbed case) this system is passive
with the storage function ν(x). And by the same argument as for the SISO case, the interconnection with
the passive integrator with storage function 1

2 xT
I ΓxI results in the total system being a true passive system

for l ∈ (−1,0] and passive-like in l =−1.

3.3.3 A strong Lyapunov function

A cross-term is added to the weak Lyapunov function W to render it strong:

U (xE) = µ
2

2− l
W

2−l
2 − xT

I Mx (3.18)

where M ∈ Rm×m is a constant regular matrix and µ ∈ R+ is a constant positive scalar. Since 2−l
2 ≥ 1, U is

continuously differentiable for l ∈ (−1,0] and Lipschitz continuous for l =−1. U is also homogeneous of
degree dU = 2− l. To render U positive definite it is necessary to select µ > 0 sufficiently large, what can
be shown using the homogeneous domination lemma (Lemma 1).

The derivative is

U̇ = µW
−l
2 (xE)Ẇ (xE)n− xT

I Mẋn + dxT c
1+l
1−l KT

I Mx+ρ (xE)∆

where
ρ (xE),

µ

2
W

−l
2 (xE)xT

I
[
Γ+Γ

T ]− xT MT

Using the knowledge gained previously, we see it’s possible to bound the first term of U̇ with a ho-
mogeneous function, this time with homogeneous degree dU̇ = 2, while each component of the row vector
ρ (xE) is homogeneous of degree dρ = 1− l. This leads to

U̇ ≤−µε ‖ x ‖2 −ẋT
I Mx− xT

I MG[−Kdxc
1

1−l +BxI]+ρ (xE)∆

That being said, first the analysis for the unperturbed case (when ∆ = 0) is presented.
Due to the assumption that the weak Lyaponov function is already of a defined sign for x 6= 0, the first

term of U can be used to dominate the sign of the whole function if the rest of the function is positive
on the set S =

{
xE ∈ R2m|x = 0

}
, then using Lemma 11 the whole function could be rendered positive.

Incidentally, in this set and without perturbations the function is

U̇
∣∣
S
=−xT

I MG(t,0)B(t,0)xI

which is positive for xI 6= 0 if MG(t,x)B(t,x) is positive quasi-definite.
For the perturbed case, when δ (t) 6= 0, condition (3.2) together with (3.13) implies that ∆ is bounded

‖∆‖p ≤ C̃

for some constant C̃ ≥ 0. Thus, there is a constant ρ ≥ 0 such that

ρ (xE)∆≤ ρC̃U
1−l
2−l (xE) .

When l ∈ (−1,0], dρ < dU̇ , and therefore near xE = 0 the term ρ (t,x) dominates and U̇ cannot be rendered
negative near zero. However, for large values of (xE) it becomes negative. And using standard Lyapunov

1Note that this Lemma has to be applied not directly to function W but to its homogeneous bounding function. This lack of
precision is justified for simplicity of the presentation.
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arguments, we conclude that the system (3.10) is input to state stable with respect to the input ∆. Or,
equivalently, that the trajectories of the closed-loop system are ultimately and uniformly bounded [30].

When l =−1, then dρ = dU̇ and U̇ is negative definite for C̃ sufficiently small. This can be shown again
using Lemma 1 (see again footnote 1). This proves item 4) of Theorem 1. Note that the previous argument
assures stability only for a perturbation bound C̃ sufficiently small. Using the scaling of the gains, either
(3.15) or (3.16), an arbitrary size of the perturbation can be accommodated. Even a perturbation which
grows with time and the state, when (3.16) is used.

3.3.4 Stability requirements and a feasible solution

In sum, the conditions to have a true Lyaponov function and prove the stability of the controllers are the
following:

Γ+Γ
T > 0, (3.19)

PG(t,x)B(t,x) = KT
I (t,x)Γ (3.20)

dxT c1+lPG(t,x)K (t,x)x > 0, ∀x 6= 0 (3.21)

zT MG(t,x)B(t,x)z > 0, ∀x, t ,∀z 6= 0 (3.22)

An important reminder: only B,K and KI need to be known explicitly for the design problem. In contrast,
showing that the other matrices exist even if they’re unknown is enough, in other words, we may select them
dependent on the uncertain matrix ϒ. With this insight, a particular admissible solution of these relations is
given by

B(t,x) = G−1
0 (t,x)D (3.23)

K (t,x) = G−1
0 (t,x)KOKD (3.24)

KI (t,x) = KI, KI +KT
I > 0 (3.25)

with positive diagonal D, M = DϒT to solve (3.22), N = ϒD, and Γ as the solution to the algebraic Lya-
punov equation below

[PϒD]Γ−1 +
[
Γ
−1]T [PϒD]T = KT

I +KI (3.26)

Said equation is obtained by solving for the integral gain in (3.20) getting PϒDΓ−1 = KT
I , thus writing the

symmetric part of KI results in a Lyapunov equation.
For conditions (3.19) and (3.20) to be solved simultaneously, assume a symmetric Γ. Now, from classic

results we know a positive definite solution to (3.26) exists if PϒD is always positive stable and KI +KT
I is

positive definite.
On that topic, Lemma 2 shows generalized diagonal dominance implies stability, we also know mul-

tiplying by a positive diagonal matrix won’t affect this condition. So demonstrating that all ϒ ∈ Y have
generalized diagonal dominance will prove the stability of the whole set.

Lemma 4. All ϒ ∈ Y have generalized diagonal dominance if and only if B (ϒ) has generalized diagonal
dominance.

Proof. Necessity. B (ϒ) belongs to the set Y .
Sufficiency. Since B (ϒ) has generalized diagonal dominance then ∃D ∈ Rm×m > 0 = diag{d1, ...,dm}

such that
υ i,idi > ∑

j 6=i
|− ῡi, j|d j, i = 1, ...,m
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And given the restrictions of the set Y we know:

υi,idi ≥ υ i,idi ∧ |υi, j|d j ≤ ῡi, jd j = |− ῡi, j|d j

From the inequalities presented it is possible to get that

υi,idi ≥ υ i,idi > ∑
j 6=i

ῡi, jd j ≥∑
j 6=i
|υi, j|d j

Therefore, all ϒ ∈ Y have generalized diagonal dominance with the same D.

In conclusion, if the boundary matrix B (ϒ) is an M-matrix, selecting KI positive quasi-definite ensures
that conditions (3.19) and (3.20) are simultaneously satisfied.

Finally, condition (3.21) becomes

dxT c1+lPϒKOKDx > 0, ∀x 6= 0 (3.27)

where KD ∈ Rm×m is the diagonal part of the static gain matrix, it is a positive diagonal matrix. Meanwhile
KO ∈Rm×m is a general matrix with diagonals equal to one and represents the off-diagonal part of the static
gain. This representation can be interpreted as KO containing the columns of the total gain matrix in terms
of its diagonals, and KD being the one who sets the magnitude of these columns.

In the next Lemma, sufficient conditions to satisfy the inequality are presented.

Lemma 5. Suppose that B (ϒKO) is an M-matrix and that l ∈ [−1,0]. Then there is a positive diagonal
matrices P,KD ∈ Rm×m, such that (3.21) is satisfied.

Proof. Define:
Ω := PϒKOKD

This is a matrix with arbitrary elements, given that all of the matrices being multiplied are of full rank.

1. Discontinuous case

When l =−1 the whole function can be expressed as:

dxT c1+l
Ωx =

m

∑
i=1

f (xi) =
m

∑
i=1

(
ω1,idx1c0xi + · · ·+ωi,i|xi|

)
Given that dxic0 ∈ [−1,1] ,∀xi,∀i one can take into account all of the possible values of these feedback
injection terms at once by substituting with this multivalued set. So now we have for each term in the
sum operator

f (xi) = ω1,i[−1,1]xi + · · ·+ωi,i|xi| (3.28)

which is always positive if and only if ωi,i > ∑ j 6=i |ω j,i|
If this column diagonal dominance is met, it turns the function in question into a sum of positive
numbers, ergo it is always positive.
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2. nonlinear continuous case

First we see that the cross product terms can be bounded by its absolute value:

−|xi|1+l|x j| ≤ dxic1+lx j ≤ |xi|1+l|x j|

Then, using Young’s inequality with q = 2+ l and p = 2+l
1+l we can write

dxic1+lx j ≥−
1+ l
2+ l
|xi|2+l− 1

2+ l
|x j|2+l

and multiplying by their associated coeficient

|ωi, j|dxic1+lx j ≥−|ωi, j|
1+ l
2+ l
|xi|2+l−|ωi, j|

1
2+ l
|x j|2+l

Notice how the terms have been separated into row terms and column terms because the variables are
no longer mixed. We can now rearrange the terms as

dxT c1+l
Ωx≥

m

∑
i=1

f (xi)

this time defining f (xi) as

f (xi) :=

(
ωii−

1+ l
2+ l ∑

j 6=i
|ωi, j|−

1
2+ l ∑

j 6=i
|ω j,i|

)
|xi|2+l

Furthermore, since 1+l
2+l +

1
2+l = 1 we can give the diagonal terms the same treatment and separate the

function according to these coeficients too. This is

f (xi) =
1+ l
2+ l

(
ωii−∑

j 6=i
|ωi, j|

)
|xi|2+l +

1
2+ l

(
ωii−∑

i6= j
|ωi, j|

)
|xi|2+l (3.29)

Finally we make a similar argument as in the previous case and declare that if Ω were to have not
only column but also row diagonally dominant then these functions would all be positive and the total
function would be a sum of positive real numbers, thus fulfilling the condition.

This is consistent with previous results given that, although Young’s inequality doesn’t hold for l =
−1 since that would imply q ≤ 1, the limit of condition (3.29) when l → −1 is column diagonal
dominance.

3. Linear case

When l = 0 the function turns into an all too familiar quadratic form

dxT c1+l
Ωx = xT

Ωx

It is known that to make this function positive ∀x 6= 0 it’s both necessary and sufficient for Ω to be
positive quasi-definite, this is:

Ω+Ω
T > 0 (3.30)

This is also consistent with the previous result, for it is known that a symmetric strictly diagonal
dominant matrix with positive diagonals is always positive definite. So if Ω were strictly diagonally
dominant in rows and columns, then the sum of Ω+ΩT would be symmetric and strictly diagonally
dominant.
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For all of the cases presented it is sufficient that B (ϒKO) is an M-matrix since by Lemma 2 there exists
positive diagonal matrices that can make the M-matrix strictly diagonally dominant, and it is also possible
to choose them such that the M-matrix is positive quasi-definite.

In summary, under the hypothesis of the Lemma:

• For l =−1, there always exists P can make PB (ϒKO)KD strictly column diagonally dominant.

• For l ∈ (−1,0) there always exists P and KD that make PB (ϒKO)KD strictly diagonally dominant in
columns and rows respectively.

• And for l = 0 there always exists P that makes PB (ϒKO)KD positive quasi-definite.

Notice that there is a gap in the conditions between homogeneity degrees. In the linear and discontinuous
case, necessary conditions have been found for the form in question to always be positive, nevertheless, these
conditions are completely different (though they may be satisfied at the same time).

It would be expected that the conditions exists in a spectrum and that if one were to go from l =−1 to
l = 0 column diagonal dominance slowly loses to positive definiteness, however this is not confirmed.

Apart from that, from the previous proof a natural question arises: How can we choose KO to preserve
the M-matrix condition for B (ϒKO) ?

To solve this query, Lemma 4 is key, since it shows that it’s possible to find a diagonal matrix that makes
a whole set of bounded matrices strictly diagonally dominant by only studying their boundary matrix. To
find the bounds of the elements of ϒKO, the matrices in question are written in the form of vectors:

KO :=
[
k1 · · · km

]
, ϒ :=

yT
1
...

yT
m

 (3.31)

And Λ = [λi j] ∈ Rm×m is defined as
[λi j] := 〈yi,k j〉 (3.32)

where 〈·,〉 denotes the inner product.
For the diagonals, we want them to be positive, and the worse case scenario would be that all of the

off-diagonal terms collude with each other to become negative, this is:

λii ≥ kiiυii−∑
j 6=i
|ki j||υ ji|= 2kiiυii−〈|yi|, |ki|〉 (3.33)

and if we allow kii = 1 to simplify the analysis and let KD scale the diagonals later we get:

λii ≥ 2υii−〈|yi|, |ki|〉 (3.34)

For the off-diagonal terms, the worse case scenario is that all of the terms of the inner product have the
same sign:

|λi j| ≤ 〈|yi|, |k j|〉 (3.35)

We could now write the condition for generalized diagonal dominance and see what’s needed to satisfy
the M-matrix condition. Here, the inequality for column diagonal dominance is used:

(2υii−〈|yi|, |ki|〉)pi > ∑
i6= j
〈|y j|, |ki|〉p j (3.36)
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Moving the second term to the righthand side, and defining pi =
qi

υii
gives us:

2qi >

〈
|ki|,

m

∑
j=1

|y j|
υ j j

q j

〉
(3.37)

where |ki| has been factorized.
Having the inequality in this form allows us to see that the worst case scenario for Λ is indeed when the

diagonals of ϒ are equal to their lower bounds, since the smallest diagonal elements will lead to the biggest
value of each term in the sum above; and without a question the biggest off diagonal elements are the most
problematic ones.

All of this implies that the vectors of B (ϒ) are sufficient to calculate the bounds of Λ and find its
boundary matrix, no additional bounds or other information needs to be known. This last fact is how we get
the inequality:

2qi >

〈
|ki|,

m

∑
j=1

|ŷ j|
υ j j

q j

〉
(3.38)

where qi > 0 are the elements of an arbitrary positive diagonal matrix Q ∈ Rm×m and ŷT
j ∈ Rm are the rows

of B (ϒ).
Under the hypothesis that B (ϒ) is an M-matrix then it’s always possible to select KO equal to the

identity matrix to solve the inequalities and an appropriate Q will exist and is no longer required to be
known explicitly to design the gains, most importantly this selection allows the selection of arbitrary KD for
the linear and discontinuous cases, where strict row diagonal dominances is not necessary.

One may think it is possible to choose KO to make B (ϒKO) into an M-matrix even when B (ϒ) didn’t
already fulfil the condition. Unfortunately, it seems this is only possible if ϒ were a known matrix.

Proof. Contradiction: Suppose an KO that turns Λ = ϒKO into M-matrices ∀ϒ ∈ Y . Now from Lemma 2
we know that all of the principal minors of Λ are positive, this implies that their determinant is det(Λ)> 0
and thus sign(det(KO)) = sign(det(ϒ)).

Now suppose B (ϒ) is not an M-matrix, then there is a subset Y − ⊂ Y = {ϒ ∈ Y |det(ϒ)< 0} and its
complementary subset Y + ⊂ Y = {ϒ ∈ Y |det(ϒ)> 0}.

If sign of det(KO) is constant, then there exists some Λ with negative determinant⇒⇐
If the sign of det(KO) is always equal to the sign of det(ϒ), then the restriction that the gains can only

be dependent on the bounds of ϒ is violated, KO would be designed as a function of the uncertain matrix
⇒⇐

Notice that none of the restrictions presented lock KO or KD into being constant, but if they were time
varying, they’d need to preserve the bounds for KO and the direction of KD for all time.

It is inferred that, when the off-diagonal terms of B (ϒ) are smaller, the off-diagonals of KO can be
bigger. Indeed, in the extreme case that B (ϒ) is a diagonal matrix (3.38) turns into the generalized diagonal
dominance condition for KO, this implicitly tells us that it must always be generalized diagonal dominance.

3.4 Special Cases

3.4.1 Systems with decoupled uncertainties or no uncertainties

When one has a good understanding of the systems and the model has no uncertainties, then the matrix
ϒ = Im. On top of that, if one could be sure that the uncertainties of the model are decoupled, meaning ϒ is
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a diagonal matrix, then the matrix P can completely compensate for the model uncertainties since

P = Qϒ
−1 (3.39)

with an arbitrary positive diagonal Q still makes P a positive diagonal matrix, so no conditions are broken.
With that out of the way, to satisfy the design restrictions one can select the gains KI , K(t,x) and B(t,x)

the same way as in the general case (see equations (3.23) to (3.25)) and then design D with generalized
diagonal dominance, and KO as an arbitrary strictly diagonally dominant matrix in both rows and columns
and positive diagonals with KD = Im. In other words, it is not necessary to solve the inequalities in (3.14)
even if a coupled gain matrices are required.

Please notice that this set of solutions includes any arbitrary positive diagonal gains KI,KO and KD for
any homogeneity degree.

Besides that, in the linear case K(t,x) = GT
0 (t,x) always achieves the positive definite condition thus

satisfying (3.21).

3.4.2 Time invariant known input matrix

When there are no uncertainties (or they’re decoupled, see 3.4.1) and G(t,x) =G is a constant known matrix,
the control algorithm proposed really shines. The gains can be designed as

• B(t,x) = Im

• KI(t,x) = KI is constant and positive quasi-definite

• K(t,x) = KOKD

• KO is such that GKO has generalized diagonal dominance

– if l ∈ (−1,0) then KD must be such that GKOKD is strictly row diagonally dominant

– if l =−1∨ l = 0 then KD is an arbitrary positive diagonal matrix

With this selection the matrix P exists such that condition (3.21) is satisfied, since by Lemma 2 it could
make the whole form strictly column diagonally dominant for l ∈ [−1,0) or positive quasi-definite for l = 0.

Notice that in this nominal case no decoupling of any kind is required.

3.4.3 Time invariant unknown input matrix

When the matrix G(t,x) = G is a time invariant matrix, the system doesn’t really need to be decoupled. Not
much knowledge of the system is required and the uncertain description could be

G0 ∈ Rm×m = diag{sign(gii)}, ϒ = GG−1
0 (3.40)

in other words, only the sign of the diagonals of G are assumed to be known.
With that selection an ϒ with positive diagonal elements is obtained and if the boundary matrix, defined

in (3.6), is an M-matrix then the rest of the general solution with (3.23) to (3.25) can be designed with no
more knowledge than the bounds of G.

If this selection of G0 doesn’t lead to a stable family of ϒ ∈ Y then it may still be possible to find a
different G0 that cancels the instability of the input matrix, then the general solution can be used. However,
this is not guaranteed.
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3.4.4 Symmetric uncertainties

If in addition to knowing that ϒ is an M-matrix it is known that this matrix is symmetric, then it is possible
to show that uncertainties can be completely compensated. Recalling the weak Lyaponov function in (3.17),
it was mentioned that the matrix P wasn’t locked into being a positive diagonal matrix. Here a symmetric
positive definite P is considered.

If for some reason it is possible to guarantee that all ϒ ∈ Y are symmetric and the main hypothesis that
the boundary matrix defined in (3.6) is an M-matrix holds, then by Lemma 4 the whole set Y is composed
of generalized diagonally dominant matrices, and by hypothesis they are also symmetric.

What is more, a symmetric generalized diagonally dominant matrix is also positive definite so in fact,
under the hypothesis of symmetry, all ϒ ∈ Y are positive definite matrices. Finally since the inverse of a
positive definite matrix is also positive definite, it is possible to then define

P = ϒ
−1 (3.41)

In conclusion, the matrix P is capable of completely compensating positive definite uncertainties. How-
ever, contrary to all of the other cases presented previously, here P cannot be used to achieve the column
diagonal dominance condition, since in general a positive diagonal matrix times a positive definite matrix is
not positive definite, so adding an extra positive diagonal matrix to P (like in (3.39)) is not possible.

In this case to satisfy the design restrictions (3.19), (3.20), (3.21) and (3.22) with the general solution in
equations (3.23), (3.24) and (3.25) the matrix D could be any matrix with generalized diagonal dominance,
KO must be strictly column diagonally dominant, KD arbitrary for l =−1∨ l = 0 or such that KOKD is strictly
row diagonally dominant for l ∈ (−1,0), and finally KI can be any positive quasi-definite matrix.

Although this case seems more general than the case for diagonal uncertainties presented previously in
section 3.4.1, a similar extension into linear time invariant systems like the one done in section 3.4.2 is more
restrictive. In fact, even if G0 is constant and known but it isn’t already strictly column diagonally dominant
it is not possible to satisfy the restriction (3.21) for l 6= 0 without decoupling, for here the matrix P cannot
be used to make G strictly column diagonally dominant.

Even so, decoupling shouldn’t be a problem in this case since the uncertainties of the input matrix are
cancelled and even if interaction between subsystems is a design requirement, the proposed control scheme
enables the designer to choose the strength of these interactions via the off-diagonal terms of gain matrices.



Chapter 4

An Arbitrary Relative Degree Generalization

4.1 General MIMO Normal From

Consider a coupled m×m MIMO system with the outputs vector y ∈ Rm being

y1 = x11, ... ,ym = xm,1 (4.1)

each output has a well defined relative degree ni and the dynamics of each subsystem xi ∈Rni = [xi1, ...,xi,ni ]
T

are given by

ẋi =

 ẋi,1 = xi,2
...

ẋi,ni = gT
i (t,x)u

 (4.2)

where gT
i (t,x) ∈ R1×m is the coupled input matrix for each subsystem.

For the vector x = [x1, ...,xm]
T the dynamics can be written as

ẋ = Ax+ γ(t,x)u (4.3)

where the matrix A ∈ Rn×n is a block diagonal with m blocks Ai ∈ Rni×ni

Ai =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 (4.4)

While matrix γ(t,x) ∈ Rn×m is expressed as

γ(t,x) ∈ Rn×m =

γ1
...

γm

 γi ∈ Rni×m =

 0T
m
...

gT
i (t,x)

 (4.5)

Defining the vector

xn =


x1,n
x2,n

...
xm,n

 :=


x1,n1

x2,n2
...

xm,nm

 (4.6)

24
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and focusing on its dynamics, it is possible to write

ẋn = G(x, t)u+δ , G(x, t) =

gT
1 (t,x)

...
gT

m(t,x)

 (4.7)

where G(x, t) ∈ Rm×m is the input matrix and is assumed to have the property of det G(x, t) 6= 0 ,∀t,x, and
δ ∈ Rm is the perturbations vector.

The perturbation vector signal δ (t) is supposed to be a Lipschitz function of time, so there is a constant
C ≥ 0 such that its derivative (where it exists) is bounded∥∥∥δ̇ (t)

∥∥∥
p
≤C, ∀t ≥ 0 . (4.8)

Note that the rest of the state variables’ dynamics are integrator chains.
The control objective is to design a control law for u, such that u(t) is a continuous function of time and

renders x = 0 robustly asymptotically stable, in spite of the perturbations δ (t) and the uncertainties in the
input matrix.

4.2 Uncertain Description of the Input Matrix

Consider the following uncertain representation for our input matrix:

G(x, t) = ϒG0(x, t) (4.9)

where G0(x, t) ∈ Rm×m is regular, and is the nominal and known part of the matrix, while ϒ ∈ Rm×m is
constant and regular but uncertain under the bounds:

υii ≥ υ ii > 0, ∀i = 1, ...,m (4.10)

|υi j| ≤ 0, ∀i = 1, ...,m, ∀ j = 1, ...,m (4.11)

And the set Y is the set that contains all the matrices ϒ that fall under these conditions. Finally, the boundary
matrix is defined as B(ϒ) = [υb,i j] ∈ Zm×m

υb,ii = υ i,i υb,i j =−ῡi j, i 6= j (4.12)

4.3 Passive Homogeneous Controllers

The control law can be described as

u = −K(t,x)σn(x)+B(t,x)v (4.13)

v̇ = −KI(t,x)ιn(x) (4.14)

These are MIMO generalizations for the SISO passivity based controller in [15].This means that

σn(x) ∈ Rm =


dσn1(x1)c

1
r11

...

dσnm(xm)c
1

rm1

 , ιn(x) ∈ Rm =

 ιn1(x1)
...

ιnm(xm)

 (4.15)
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The iota functions are composed of functions from the original work:

ιni(xi) =V
2

1+r1
−1

ni W
1+r1

1+ri,ni
−1

ni σni(xi) (4.16)

These functions are described in detain in the next section 4.3.1.
The controller is homogeneous in nature (for time varying gains that preserve this property) and the

weights are defined as

rS ∈ Rn =

r1
...

rm

 ri ∈ Rni =


ri1
ri2
...

rni

 :=


1−ni× l

...
1−2l
1− l

 (4.17)

with l ∈ [−1,0] being the selectable homogeneous degree of the controller.
The controller is also dynamic, since an integral variable is added for each subsystem, the weights

assigned to these variables are
rI ∈ Rm = 1m (4.18)

This way the weights for the first variables are the largest and decrease until 1 for the added integral
variable. Moreover, the weight of every xi,n is rni = 1− l.

Additionally, the iota functions now always have an homogeneous degree of 1 + l while the sigma
functions always have a homogeneous degree of 1.

The coupled controller described previously can stabilize the origin of the extended system for xE ∈

Rn+m =

[
x
xI

]
where xI ∈ Rm = v+(GB)−1δ (t) are the added integral variables. The closed loop system is

ẋE =

[
ẋ
ẋI

]
=

[
Ax+ γ(t,x)[−Kσn(x)+BxI]

−KIιn(x)+∆

]
(4.19)

where

∆(t,x, ẋ) =
d
dt

(
B−1 (t,x)G−1 (t,x)δ (t)

)
. (4.20)

In particular, the closed loop of xn is

ẋn = G(x, t)[−Kσn(x)+BxI] (4.21)

and the rest of the dynamics of the original states are integrator chains.
Recalling remark 2, B is restricted to being such that GB = N is a constant matrix, so ∆ := N −1δ̇ (t).
Again, for l = −1 the closed-loop system (4.19) has a discontinuous right-hand side. In this case the

solutions are understood in the sense of Filippov [44].
In the relative degree one case, the classic homogeneous PI controllers of the previous chapter are

obtained, and thus (4.14) is an arbitrary relative degree generalization.
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4.3.1 Auxiliary functions

First of all, the auxiliary functions will be defined in terms of the arbitrary vector z ∈ Rni that is used to
represent any vector xi ∈ Rni with i = 1,2, ...,m with the same homogeneous weights ri. This is only to
simplify the presentation, avoiding the use of more subscripts.

If one were to read the original work for the SISO case, one would notice that the functions were
presented in a way that allowed for polynomial generalizations, here we’ve presented only the case when
αi = r1 ,∀i and m = 2r1.

The sigma function is defined as

σ1(z1) = z1 , j = 1 (4.22)

σ j(z) = dz jc
r1
r j +β

r1
r j
j−1σ j−1(z) , j = 2,3, ...,ni (4.23)

and the gains β j−1 > 0 will be referred as internal gains of the sigma function.
To define the iota functions we must define each of their components. For all j ≥ 2 we define

Wj(z) =
r j

r1 + r j
|z j|

r1+r j
r j +β

r1
r j
j−1σ j−1(z)z j +

r j

r1 + r j
β

r1+r j
r j |σ j−1(z)|

r1+r j
r j (4.24)

and finally with this we define

V1(z1) =
1
2
|z1|2 , j = 1 (4.25)

Vj(z) =
r1 + r j

2r1
W

2r1
r1+r j
j (z)+ν j−1Vj−1(z) , j = 2,3, ...,ni (4.26)

(4.27)

with an arbitrary ν j > 0.
The derivative along the trajectories of these last functions will be required for the stability analysis, it’s

written in terms of more auxiliary functions that will be also defined here.

V̇ni(z) =W
2r1

r1+rni
−1

ni (z)Ẇni(z)+νni−1Hni−1(z)+νni−1∂zni−1Vni−1(z)sni(z) (4.28)

where functions H and s are defined as follows:

s j(z) = z j +β j−1dσ j−1(z)c
r j
r1 (4.29)

H1(z1) = −β1∂z1V1(z1)dσ j−1(z)c
r2
r1 (4.30)

H j(z j) =
j−1

∑
q=1

(
∂zqVj(z j)zq+1

)
−β j∂z jVj(z j)dσ j(z)c

r j+1
r1 (4.31)

and also

Ẇni(z) = σni(z)żni +β

r1
rni

ni−1|σni−1(z)|0sn(z)σ̇ni−1(z) (4.32)

4.3.2 Gain design

Theorem 2. Consider the system in (4.19) and suppose that all of the restrictions presented previously are
satisfied. Now, if the uncertain matrix ϒ is such that its boundary matrix is a diagonal matrix, then there
exists gains such that the control problem can be solved.
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1. If C = 0 and l = 0 then the linear controller makes the origin xE = 0 a exponentially stable equilibrium
point.

2. If C = 0 then the origin xE = 0 is a finite-time stable equilibrium point for all homogeneity degrees
l ∈ (−1,0).

3. If C > 0 then for the continuous homogeneous controllers of degree l ∈ (−1,0] provide input to state
stability from ∆ to xE .

4. If C ≥ 0 and l =−1 the discontinuous controller makes xE = 0 finite-time stable.

A constructive proof of Theorem 2 is given in section 4.4 of this same chapter.
When the conditions of the theorem are met, a particular but still very general selection of gains is:

• B(t,x) = G−1
0 (x, t)D with a generalized diagonally dominant D

• K(t,x) = G−1
0 (x, t)KO

• KI(t,x) = KI is constant and positive quasi-definite

One may notice that this is a generalization of the special case presented in 3.4.1, where only diagonal
uncertainty matrices are considered. Woefully, sufficient conditions for a more general case haven’t been
found, so the arbitrary degree generalization was limited to this special case.

4.3.3 Gain scaling

The same gain scaling proposed before can be done here.
For a given set of appropriate gains and perturbation (K,B,KI,∆) stabilizing the closed-loop system,

it is possible to obtain a new stabilizing set by introducing a gain scaling. First select time and perturba-
tion scaling factors T > 0 and κ > 0, respectively. Then, two possible gain and perturbation scalings are
considered:

(K,B,KI,∆)→
(
LK,B,L2KI,κ∆

)
(4.33)

where L =
(
κ−lT (1+l)

) 1
1−l , and

(K,B,KI,∆)→ (LK,LB,LKI,κ∆) (4.34)

where L = κ−lT (1+l).
The change of coordinates in state and time, given by

x→ T 2

κ
x, xI →

T
κ

xI, t→ Tt,

for (4.33), and

x→
(

T
κ

)1−l

x, xI →
T
κ

xI, t→ Tt,

for (4.34), transform the gain scaled system into (4.19), so that they are equivalent.
And therefore, the gain scaled system can compensate a perturbation κ times larger, and it accelerates

the convergence by T . For (4.33) the selected T and κ have to be constant, while for (4.34) they can
be functions of (t,x). In particular, if κ (t,x) ≥ κ̄ > 0 is a continuous function, uniformly bounded by a
constant κ̄ > 0, and if T (t,x) = T̄ κ (t,x)> 0 with a constant T̄ > 0, then the transformation above is valid.
The gain scaling becomes L(t,x) = κ (t,x) T̄ (1+l). This allows, for example, to deal with a perturbation ∆

with a time and/or state dependent but known upper bound.
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4.4 Stability Analysis

To prove Theorem 2, a Lyapunov function candidate is presented in three steps:

1. A weak Lyapunov function candidate is proposed.

2. Adding a cross-term, a strong Lyapunov function candidate is derived.

3. Conditions to make the candidate functions into true Lyapunov functions are derived

These functions were constructed by adding pondered SISO Lyaponov functions designed in [15].

4.4.1 A weak Lyapunov function

Consider the positive definite scalar function

W =
m

∑
i=1

(
piri1V

1
ri1

ni (xi)

)
+

1
2

xT
I ΓxI (4.35)

Where pi > 0, ∀i and Γ ∈ Rm×m is symmetric and positive definite. This function can be bounded by a
homogeneous function of degree dW = 2.

The derivative of the fist terms is

d
dt

(
ri1V

1
ri1

ni (xi)

)
=V

1
ri1
−1

ni (xi)V̇ni(xi)

From the analysis in [15] we know that completely expanding the terms then gets

V̇ni(xi) = W
2ri1

ri1+rni
−1

ni (xi)σni(xi)ẋi,n

+ W
2ri1

ri1+rni
−1

ni (xi)β

ri1
rni

ni−1|σni−1(xi)|0sn(xi)σ̇ni−1(xi)

+ νni−1Hni−1(xi)+νni−1∂xni−1Vni−1(xi)sni(xi)

Except for when ẋi,n appears, no other term depends on variables from the other subsystems, only on vari-
ables of their own system. Additionally, those terms are of homogeneous degree 2+ l.

Contrary to the SISO analysis where the whole function is bounded by a negative scalar and the homo-
geneous norm to the 2+ l power, here instead only the decoupled terms are bounded resulting in

V
1

ri1
−1

ni (xi)V̇ni(xi)≤V
1

ri1
−1

ni (xi)W
2ri1

ri1+rni
−1

ni (xi)σni(xi)ẋi,n +ηi ‖ xi ‖2+l

And using the definition of ιni(xi) in (4.16), simple substitution results in

V
1

ri1
−1

ni (xi)V̇ni(xi)≤ ιni(xi)ẋi,n +ηi ‖ xi ‖2+l (4.36)

Returning to the full Lyapunov function, it will be clearer now that its derivative is

Ẇ ≤ ι
T
n (x)Pẋn + 〈p,η(x)〉+ xT

I ΓẋI
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where P = diag{p1, · · · , pm} is a diagonal matrix with elements pi and

p =

 p1
...

pm

 , η(x) =

η1 ‖ x1 ‖2+l

...
ηm ‖ xm ‖2+l


This then leads to

Ẇ ≤ −ιT
n (x)PGKσn(x)+ ιT

n (x)PGBxI + 〈p,η(x)〉− xT
I ΓKIιn(x)

Just as in the relative degree one case, choosing KT
I ΓT = PGB cancels all terms that depend on integral

variables, only leaving

Ẇ =−ι
T
n (x)PGKσn(x)+ 〈p,η(x)〉

Through the proper selection of K the sign of the first term can dominate the sign of the second term,
since both are homogeneous functions of degree dẆ = 2+ l, what’s not clear yet is if the first term has a
definite sign. For now, it is only assumed that the first term of the function expressed above can always be
made negative ∀x 6= 0 and can then be used to homogeneously dominate the second term, leading to the
following bound:

Ẇ ≤−ε ‖ x ‖2+l

This means that W is a weak Lyapunov function. If the closed-loop system is time-invariant, then
Lasalle’s invariance principle will imply asymptotic stability, but not in the general case.

Note that in the passivity interpretation, W is a storage function for the interconnected system. This can
be deduced by performing a similar analysis as in 3.3.2, here the passive output would be yT

p = ιT
n (x)PGB.

4.4.2 A strong Lyapunov function

A cross-term is added to the weak Lyapunov function W to render it strong:

U = µ
2

2− l
W

2−l
2 − xT

I Mxn (4.37)

where M ∈ Rm×m is a constant regular matrix and µ ∈ R+ is a constant positive scalar. Since 2−l
2 ≥ 1, U

is continuously differentiable for l ∈ (−1,0] and Lipschitz continuous for l =−1. U is also bounded by a
homogeneous function, in this case of degree dU = 2− l. To render U positive definite it is necessary to
select µ > 0 sufficiently large, what can be shown using the homogeneous domination lemma.

The derivative is

U̇ = µW
−l
2 (xE)Ẇ (xE)− xT

I Mẋn + ι
T
n (x)K

T
I Mxn +ρ (xE)∆

where
ρ (xE), µW

−l
2 (xE)xT

I Γ− xT
n MT

Using the knowledge gained previously, we see it’s possible to bound the first term with a homogeneous
function, this time with homogeneous degree dU̇ = 2, while each component of the row vector ρ (xE) is
homogeneous of degree dρ = 1− l. This leads to

U̇ ≤−µε ‖ x ‖2 −ẋT
I Mxn− xT

I MG[−Kσn(x)+BxI]+ρ (xE)∆
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That being said, first the analysis for the unperturbed case (when ∆ = 0) is presented.
Due to the assumption that the weak Lyaponov function is already of a defined sign for x 6= 0, the first

term of U can be used to dominate the sign of the whole function if the rest of the function is negative
on the set S = {xE ∈ Rn+m|x = 0}, then using Lemma 1 the whole function could be rendered negative.
Incidentally, in this set and without perturbations the function is

U |S =−xT
I MG(t,0)B(t,0)xI

which is positive for xI 6= 0 if MG(t,x)B(t,x) is positive quasi-definite.
For the perturbed case, when δ (t) 6= 0, condition (3.2) together with (3.13) implies that ∆ is bounded

‖∆‖p ≤ C̃

for some constant C̃ ≥ 0. Thus, there is a constant ρ ≥ 0 such that

ρ (xE)∆≤ ρC̃U
1−l
2−l (xE) .

When l ∈ (−1,0], dρ < dW , and therefore near xE = 0 the term ρ (t,x) dominates and U̇ cannot be rendered
negative near zero. However, for large values of xE it becomes negative. And using standard Lyapunov
arguments, we conclude that the system (4.19) is input to state stable with respect to the input ∆. Or,
equivalently, that the trajectories of the closed-loop system are ultimately and uniformly bounded [30].

When l = −1, then dρ = dU̇ and U̇ is negative definite for C̃ sufficiently small. This can be shown
again using Lemma 1 (see again footnote 1). This proves item 4) of Theorem 2.

Using the scaling of the gains, either (4.33) or (4.34), an arbitrary size of the perturbation can be accom-
modated. Even a perturbation which grows with time and the state, when (4.34) is used.

4.4.3 Stability requirements and a feasible solution

In sum, the conditions to have a true Lyaponov function and prove the stability of the controllers are the
following:

Γ+Γ
T > 0 , (4.38)

PG(t,x)B(t,x) = KT
I (t,x)Γ , (4.39)

−ι
T
n (x)PG(t,x)K (t,x)σn(x)+ 〈p,η(x)〉< 0, ∀x 6= 0 , (4.40)

zT MG(t,x)B(t,x)z > 0, ∀x, t ,∀z 6= 0 . (4.41)

Also, since the uncertain matrix is assumed to be diagonal, the selection of P from (3.39) can be used to
cancel the uncertainties. Together with the general solution

B(t,x) = G−1
0 (t,x)D,

K (t,x) = G−1
0 (t,x)KO, (4.42)

KI (t,x) = KI

the conditions become

Γ+Γ
T > 0 , (4.43)

QD = KT
I Γ , (4.44)

−ι
T
n (x)QKOσn(x)+ 〈p,η(x)〉< 0, ∀x 6= 0 , (4.45)

zT MϒDz > 0, ∀x, t ,∀z 6= 0 . (4.46)



4.4. Stability Analysis 32

with the new arbitrary positive diagonal Q matrix.
The last one is easy, for M = DT ϒT always solves the condition.
To solve (4.43) and (4.44) simultaneously, the same trick as in the relative degree one case can be used.

The symmetric part of KI is
QDΓ

−1 +Γ
−1DQ = KI +KT

I (4.47)

a positive definite solution for Γ−1 (and therefore for Γ) exists if QD is always positive stable and KI +KT
I

is positive definite.
If D is selected with generalized diagonal dominance, then the positive diagonal Q won’t affect this

property, and from Lemma 2 it is concluded that QD is positive stable.
Finally, for condition (4.45) a sufficient condition to satisfy the inequality is presented in the next lemma.

Lemma 6. Suppose that B (ϒ) is a diagonal matrix and that l ∈ [−1,0]. Then there is a positive diagonal
matrix P = diag{p1, · · · , pm}, pi > 0, and a matrix KO = [ki j] ∈ Rm×m, with positive diagonal elements
kii > 0, such that (4.45) is satisfied.

Proof. Before we start the proof proper, some properties of the functions in question are recalled: From the
SISO analysis we know that when a ιni and a dσnic

1
ri1 function depend on the same nonzero variable, their

product is always positive; we also know that the sigma functions are always zero when their argument is
zero, but in the discontinuous cases this is not true for the iota functions; finally, the whole function is of the
same homogeneous degree dẆ = 2+1.

With that out of the way, define:
Ω := PϒKO (4.48)

This is a matrix with arbitrary elements, given that all of the matrices being multiplied are of full rank.
With this, all of the conditions to apply the homogeneous domination lemma are met. In order to use

this lemma define without loss of generality

d(x) :=
m−1

∑
i=1

ωi,iιni(xi)dσni(xi)c
1

ri1

h(x) := ι
T
n (x)Ωσn(x)−〈p,η(x)〉−d(x)

When d(x) = 0⇒ x ∈Xm = {x = (0, ...,0,xm)
T} we get

h(x)|Xm = dσnm(xm)c
1

rm1

[
ωm,mιnm(xm)+ ∑

j 6=m
ω j,mιn j(0)

]
− pmηm ‖ xm ‖2+l

for l =−1 it is positive if ωm,m > ηm +∑ j 6=m |ω j,m|. For the rest of homogeneous degrees l ∈ (−1,0] it
is positive if ωm,m > ηm.

All of this is sufficient to claim that a big enough selection of the diagonal elements ωii gives the whole
function a definite sign, fulfilling the inequality in (4.46).

What’s not clear from this proof so far is under what uncertainty conditions for the matrices ϒ ∈ Y is it
possible to find feasible gains that make the diagonals of Ω reach this condition.

If all ϒ ∈ Y then after choosing P = Qϒ−1 the gain KO can be freely chosen with diagonal elements of
sufficient magnitude to reach stability.

In this case Q could be the identity matrix or some scalar matrix, for example.
Therefore, under the hypothesis of Theorem 2, it is possible to find gains that satisfy (4.45).
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To add to what’s been in the proof above, if the off-diagonal elements of ϒ were really big and we don’t
know their direction, then how could we find a matrix KO that makes the diagonals of PϒKO of sufficient
magnitude to achieve stability for all ϒ∈Y ? In the relative degree one case, it was found that strict diagonal
dominance was sufficient to achieve stability, but here there is no proof that this condition is sufficient.

The difference is mainly due to the fact that the magnitude of ιn(x) and σn(x) is altered not only by the
matrices of the function PϒKO, but also by other terms and internal gains of these feedback injection func-
tions. In contrast, in the relative degree one case the feedback injection functions are dxc

1
1−l and dxc

1+l
1−l , here

the magnitude of one function with respect to the other is altered only by the exponents and the coefficients
of the function’s matrices, therefore it was easier to find clear conditions for the stability of the controllers.

Nevertheless it is expected that, if B (ϒ) weren’t diagonal but its off-diagonals were small enough,
stability would be preserved, but after a certain magnitude, it would become impossible to find stabilizing
gains.



Chapter 5

Case Studies

In this chapter, two real systems are simulated and the controllers described in the previous sections are
implemented to illustrate their properties.

In the first example, a distillation process of two outputs and relative degree one is presented with the
control objective of making the closed loop more robust to perturbations and uncertainties. For this, integral
sliding modes are used, with a nominal linear controller and a homogeneous PI controller as the sliding
mode control.

In the second example, a decoupled omnidirectional robot of relative degree 2 and three outputs is
presented. Nondiagonal gains are designed for the multivariable super-twisting controller to show how
coupling two subsystems can modify the performance of the closed loop.

5.1 LV Distillation Process

Consider the idealized model of an LV distillation process with an output gain uncertainty from [3] converted
to a state variable model:

ẋ = Ax+ϒG0u (5.1)

where x ∈R2 = [yD xB]
T are the top composition and bottom composition respectively, and u ∈R2 = [L V ]T

with L as the reflux and V the boilup, hence this is an LV configuration. The system’s matrices are

A = − 1
75

I2 (5.2)

ϒ = diag{1+ ε̂i} (5.3)

G0 =
1
75

[
87.8 −86.4
108.2 −109.6

]
(5.4)

where ε̂i >−1 are the output gain errors.
This is a subsystem of a larger model of 5 outputs and 5 inputs, but the first 3 states are normally

controlled in independent SISO loops.
There are two main problems when controlling this system: First of all, the system is nominally stable

but its poles are very near to the imaginary axis, therefore some stabilization is required. Secondly, the effect
of disturbances and uncertainties on the output must be reduced.

These objectives must be achieved with a plant that is strongly interactive even at steady state, so true
MIMO tools are required to control it. On top of that, in [3] it’s been shown that decoupling can easily lead
to instability under some model uncertainties, so that isn’t an option either.

34
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Figure 5.1: Bottom concentration output chattering. D for the super-twisting algorithm with diagonal gains,
ND for the one with nondiagonal gains and UV for the unit-vector like super-twisting algorithm

Figure 5.2: Top concentration output chattering. Same key as before.

Linear controllers can be used to move the poles of the system, and a linear servomechanism can be
designed to improve disturbance rejection. However, here the use of integral sliding mode control is pro-
posed to handle uncertainties and perturbations, with a nominal linear control to place the poles in a more
favourable position.

The nominal control was obtained solving an algebraic Riccati equation with an added degree of stability
of α = 0.1. The matrices used in the equation were: Aricc = A+αI2, G0 unchanged, R = I2 and the matrix
Q was

Q =

[
2 1
1 2

]
(5.5)

this results in a constant gain matrix Kn that will make the real part of the poles of the closed loop system
no more than −0.1. The robustness properties of this nominal control law won’t be discussed here.

For the integral sliding mode the projection matrix was the identity:

s = x(t)− x0(t)−
∫ t

0
(A−G0Kn)xdτ (5.6)

where the nominal control law has been substituted in. The dynamics of this sliding surface can be reduced
to:

ṡ = ϒG0uc +δ (5.7)

where δ ∈ Rm is a perturbations vector that accounts for other model uncertainties and unknown inputs.
Now the task is to design a controller uc that can deal with these perturbations.
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Figure 5.3: Reflux input chattering. Same key as before.

Figure 5.4: Boilup input chattering. Same key as before.

A possible choice would be the super-twisting algorithm. Since the output uncertainty proposed in
[3] is diagonal, the matrix P can completely compensate it and it’s possible to design as if there were no
uncertainties in G.

For the passive super-twisting algorithm the gains found by trial and error were:

KO =

[
0.85 −0.425
0.425 −0.85

]
(5.8)

KI =

[
0.25 0.05
0.05 0.25

]
(5.9)

B =

[
1 0
0 −1

]
(5.10)

B is only used to make the diagonals of GB positive, a similar thing happens with the sign of the diagonals
of KO which also preserve the row diagonal dominance of G0. Notice that no decoupling of any kind was
performed and even then the design conditions are met.

Additionally, a controller that uses only the diagonal part of the previous matrices was tested too. The
controllers are also compared with the nominal control working alone, and a unit-vector-like super-twisting
algorithm with no linear gains. This is [7] [8]:

uc = B

[
−k1

s

‖ s ‖ 1
2
+ v− k2s

]
(5.11)

v̇ = −k3
s
‖ s ‖

− k4s
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Figure 5.5: Top concentration output. DH for the homogeneous controller with diagonal gains, NDH for
the homogeneous controller with nondiagonal gains, UV for the unit-vector like super-twisting al-
gorithm, and LN for the nominal control acting alone.

Figure 5.6: Bottom concentration output, same key as before.

with k2 = k4 = 0 and B as in (5.10). The other gains k1 = 0.85 and k3 = 0.25 were chosen similarly to the
other controller.

For the simulation, the value of the output gain errors were ε̂1 = 0.5 and ε̂2 = 1.4 and the matched
perturbations were:

δ =

[
0.5sin τc

60 +0.1
−0.25sin τc

20 −0.1

]
(5.12)

with the circle constant τc = 2π . Finally, the initial conditions chosen were x0 = [−1 1]T .
As expected the discontinuous controller produces chattering in the input as seen in figures 5.1 to 5.4.

Lets say the additional stress on the actuators caused by the chattering effect outweigh the benefits of com-
plete Lipschitz perturbation rejection, in this case, a homogeneous approximation is proposed, that is, a
controller from (3.8) with l =−0.8, for example. The results of using this degree of homogeneity are shown
in figures 5.5, 5.6, 5.7 and 5.8.

All simulations were preformed with the ode1 Euler solver in Simulink with a fixed step of 1×10−2.
The integrated square error was calculated over 160 s and the results are summarized in Table 5.1. The

ideal control was the nominal control without perturbations or uncertainties.
In terms of the error comparisons, although all of the controllers preformed similarly, the one with non-

diagonal gains was the best one, what’s surprising is that with similar gain magnitudes both homogeneous
controllers of degree l =−0.8 outperformed the unit-vector like STA. To be fair, the unit-vector-like super-
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Figure 5.7: Reflux input, same key as before.

Figure 5.8: Boilup input, same key as before.

Table 5.1: Distillation Process Integrated Square Error

Output DH NDH UV LN Ideal

yD 2.1877 2.0342 2.2486 3.4731 1.6217

xB 1.9941 1.8718 1.9975 5.4362 1.3671

Total 4.1818 3.9060 4.2461 8.9093 2.9888

twisting controller proposed in the other papers allows for the selection of some linear feedback injection
gains that were ignored here to make an even comparison, nevertheless it is possible that the use of these
additional terms would improve the performance of this controller.

5.2 Omnidirectional Robot

Consider the dynamics of a omnidirectional mobile robot in the inertial frame, taking into account the
actuator dynamics with identical motors [45]:

Mξ̈ +C(ξ̇ )ξ̇ +Dξ̇ = τ +ρ (5.13)

where ξ = [x y θ ]T is the state vector and the states are the coordinates of the robot on the plane (x,y)
and the angle θ where it’s facing. The input τ ∈ R3 is a vector of generalized forces, ρ ∈ R3 contains
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Lipschitz continuous disturbance forces. M, C(ξ̇ ), D ∈ R3×3 are given by

M = MR +(J2 + Jmr2
e)EET

C(ξ̇ ) = 4θ̇

r2 (J2 + Jmr2
e)

 0 1 0
−1 0 0
0 0 0


D = r2

e

(
kakb
Ra

+ kv

)
EET

(5.14)

with MR = diag{m,m,4m2(l2
1 + l2

2)+ J1 +4J3}, and m = m1 +4m2 where m1 is the mass of the body, m2 is
the mass of each wheel, J1 is the inertia of the body, J2 is the inertia of the wheels over the motor’s shaft, J3
is the inertia of the wheels perpendicular to the motor’s shaft, l1 is the robot’s width of the robot and l2 is the
robot’s length, r is the radius of the wheels. The other parameters come from the actuator motors: Jm is the
inertia of the shaft of the motors, kb is the back EMF constant, ka is the torque constant, Ra is the armature
resistance, kv is the viscous friction of the motor and re is the gear ratio.

The matrix E ∈ R3×4 is defined as

E =
1
r

1 1 1 1
1 −1 1 −1
l1 −l1 −l1 l1


A more detailed explanation of the model is described in [45] and the same numerical values for them

were used for the following simulation, except for the gear ratio that was changed from 64 to 6.4 to improve
numerical conditioning. One key property of the mass matrix M is that it’s diagonal and constant.

In order not to distract from this dissertation’s subject, the following assumptions are made: position
tracking is the control problem; velocity is available as an output; the unknown parameters are in M and the
rest have no uncertainties; the control law is required in generalized forces.

If velocity wasn’t available, an exact differentiator could be used to obtain it, and the control law in
generalized forces can be easily converted into armature voltages using a pseudo-inverse transformation
matrix as it’s shown in [45], so these two assumptions aren’t very restrictive.

That being said, to solve a tracking problem for the reference ξd ∈ R3, the error dynamics ep = ξ −ξd
are written as

ëp = M−1[τ +ρ−C(ξ̇ )ξ̇ −Dξ̇ ]− ξ̈d (5.15)

Since we assumed no uncertainties in C(ξ̇ ) and D they can be cancelled using

τ =C(ξ̇ )ξ̇ +Dξ̇ +u (5.16)

where u is a new free control law. Moreover, defining δ := M−1ρ− ξ̈d leaves us with

ëp = M−1u+δ (5.17)

The uncertainty description means that M−1 = ϒG0, assuming that only the fact that M is diagonal, positive
and constant is known thus setting G0 = I3 and M−1 = ϒ, now the control algorithm can be applied.

The reference to track and the perturbations for the simulation were

xd =

sinωt
cosωt
−ωt

 , ρ =

 2.5sin τc
15 +0.1

−2.5sin τc
20 +0.1

2.5sin τc
25 +0.1

 (5.18)



5.2. Omnidirectional Robot 40

with ω = τc
20 and the circle constant τc = 2π . What is more, the total parameters of the system used in the

simulation were:

M =

4.8809 0 0
0 4.8809 0
0 0 0.1445

 (5.19)

C(ξ̇ ) =

 0 0.5609 0
−0.5609 0 0

0 0 0

 θ̇ (5.20)

D =

101.3319 0 0
0 101.3319 0
0 0 2.3535

 (5.21)

Since ϒ is a diagonal matrix, the controllers proposed are insensitive to the uncertainties therefore it’s
possible to find a suitable gain matrix KO with sufficiently big diagonal elements. For KI a positive quasi-
definite matrix was tuned to provide good convergence and reduce oscillations, similarly to how the integral
part of classic PI-controllers has to be tuned.

Given that a method to finding these gains is not known, they were find via simulation trial and error
without perturbations and then they were scaled to provide stability in spite of these perturbations.

Something that was kept in mind while doing this was the desire to couple the x and y subsystems using
the off-diagonal gains, and to couple the third subsystem only in one direction, meaning it would be affected
by the other subsystems but at the same time this subsystem couldn’t affect the others. This was mainly to
showcase the unique ways the proposed control structure can alter the interaction between subsystems, for
other MIMO super-twisting controllers have no freedom in this category.

By trial and error, a set of good gains was found:

KO =

 4.2750 2.1375 0
−2.1375 4.2750 0
−1.7100 −1.7100 3.2250

 , KI =

1.25 −0.5 0
0.5 1.25 0
0.4 0.4 0.7


This selection of gains was compared with gains corresponding to the diagonals of these matrices to see

the effect of the coupled dynamics that were introduced.
The internal gains of the sigma function where all the same β1 = 1.25 for all subsystems and both

simulations.
All simulations were preformed with the ode1 Euler solver in Simulink with a fixed step of 1×10−4.
Both controllers solved the tracking problem in a satisfactory manner, but the nondiagonal gains changed

the performance of the controller and coupled two outputs of a decoupled system, this is better seen in figures
5.10, 5.11 and 5.12 where the differences between the two controllers is due to the added nondiagonal gains.
From the behaviour in figure 5.12, it is undeniable that coupled dynamics were induced.

In the (x,y) plane of figure 5.9 the trajectory followed looks very different for each controller, and here
the benefits of coupling are more clear: the decoupled controller suffers from more overshoot and undershoot
after the initial spike, it even crosses the reference several times before converging, in contrast, the coupled
controller goes straight to the reference.

Disclaimer: the initial conditions were chosen deliberately to make the effect of nondiagonal gains more
noticeable, I’m not claiming this selection of gains always outperforms a diagonal selection.



5.2. Omnidirectional Robot 41

Figure 5.9: Position tracking in the (x,y) plane. Green for the reference to track, blue for the controller with
diagonal gains and red for the one with nondiagonal gains.

Figure 5.10: Position error in x. Blue for the controller with diagonal gains and red for the one with nondi-
agonal gains.
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Figure 5.11: Position error in y. Same key as before.

Figure 5.12: Orientation error. Same key as before.

Figure 5.13: Control signal 1. Same key as before.
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Figure 5.14: Control signal 2. Same key as before.

Figure 5.15: Control signal 3. Same key as before.



Chapter 6

Discussion

In Chapter 3 a new kind of multivariable super-twisting algorithm has been presented as part of a family of
homogeneous controllers also including a linear case. The stability theory behind this new controller lead
to the discovery of its main features that set this controller apart from other similar works.

There are two main restrictions for the new controllers, a very strong one and a very general one:

• The strong one is that the uncertain matrix factor of the input matrix must be constant so, in general,
the time or state varying nominal input matrix can be decoupled.

• The general one is that the whole set of possible uncertain matrix factors must have generalized
diagonal dominance.

Even so, if decoupling is not desired, another feature of this family of controllers is the ability to select
nondiagonal gain matrices, so the strength of the interactions between subsystems can be adjusted to some
degree. This is something that has never been done before for the super-twisting algorithm, for there have
been generalizations that either force all of the outputs to converge at the same time or completely decouples
all of the subsystems. Still, some of the other generalizations allow for other types of uncertainties in the
input matrix that this controller has no ability to compensate.

Be that as it may, in the case of a time invariant input matrix the stronger restriction is always satis-
fied and the controller gains can be designed without any kind of decoupling. This special case has been
presented in 3.4.2 for known input matrices and in 3.4.3 for unknown ones. Since in this case the main
restriction of the controller is effectively negated, it should be here where more applications could be found,
some of which were presented in Chapter 5 where two real systems were simulated to illustrate the use of
the new controllers. Those simulations also showed that the new controllers are comparable in performance
to other MIMO generalizations that had been proposed previously.

Another interesting characteristic is that, after decoupling the nominal part, positive diagonal gain ma-
trices can be designed in spite of the uncertainties, and in the linear and discontinuous case these gains can
even be arbitrary.

Additionally, it was shown that the whole family of controllers is insensitive not only to constant pertur-
bations (which was widely known before) but they’re all also insensitive to diagonal uncertain matrix factors,
this fact enabled an arbitrary relative degree generalization, even if its only for this more restricted set of
unknown nonlinear systems. It was designed for a system in normal form and stability was proven just for
the case when the whole set of possible uncertain matrix factors are diagonal. Another disadvantage of this
generalization is that the integral controller is more complex than what similar controllers have proposed.
Nevertheless, this generalization inherited the main property of allowing nondiagonal gain matrices.

In summary, the new homogeneous super-twisting controller is comparable to other multivariable gen-
eralizations, and under some restrictions of the uncertain input matrix, it allows for tuning the interaction
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between subsystems with the use of nondiagonal gain matrices. This is also true for the rest of the homo-
geneity degrees presented, moreover the homogeneity degree is designable and can be used to change the
convergence type and speed or to approximate either a super-twisting controller or a linear one hopefully re-
taining some of their advantages. The controllers can also be interpreted as a homogeneous generalization of
MIMO linear controllers, since many linear design techniques make use of the off-diagonal gains to modify
the performance of the controller, a behaviour that was also observed in the nonlinear controllers proposed,
unfortunately a theory on how to design these gains in the nonlinear case to get a desired performance has
not been developed yet.
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