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Resumen

Conocer la aerodinámica del rotor de una turbina eólica es esencial para el correcto
diseño geométrico de sus aspas y maximizar la potencia generada. Además, el prin-
cipal problema en la optimización del diseño de un parque eólico es la dinámica de
las estelas. Un aerogenerador que opera en la estela de otro tiene una disminución en
la producción de enerǵıa y mayores cargas dinámicas. La teoŕıa de momento unidi-
mensional y la teoŕıa BEM (Blade Element Momentum) son frecuentemente utilizadas
para predecir las cargas sobre un rotor y su potencia generada. Sin embargo, ambas
teoŕıas ignoran la interacción radial que existe entre los elementos del aspa. Además, no
tiene la capacidad de visualizar el campo de flujo que ocurre alrededor del rotor. Para
resolver estas desventajas, aqúı se implementa un modelo de dinámica de fluidos com-
putacional (CFD, por sus siglas en inglés) que utiliza las ecuaciones de Navier-Stokes
en una aproximación inviscida, el modelo de disco actuador, la teoŕıa de elemento del
aspa y el método de fronteras inmersas con el fin de predecir las cargas aerodinámicas
sobre un rotor y su potencia aerodinámica.

Los resultados numéricos se contrastan contra los datos experimentales de la turbina
NREL baseline. Comparando la diferencia entre los datos experimentales de la poten-
cia y empuje con los resultados de cada método, se tiene que el error relativo mı́nimo
de la potencia es de 1.41% para el modelo CFD y 3.93% para el método BEM. De
igual forma, el error mı́nimo del empuje es de 0.40% y 4.96% para el modelo CFD y
el método BEM, respectivamente. Por lo tanto, el modelo utilizado logra predecir con
mayor precisión el empuje y potencia generada. A partir de los resultados de CFD,
se encuentra que el comportamiento de las cargas en el rotor dependen de la veloci-
dad de entrada del flujo. En general, la carga en ambas direcciones se incrementa si
la velocidad de entrada también lo hace. La carga axial aumenta a partir de donde
se encuentra la superficie de sustentación en el disco. Por otro lado, para la mayoŕıa
de pruebas, la carga tangencial se mantiene constante sobre todo el disco. Además,
para todos los casos, la carga disminuye en el borde del disco debido a la corrección de
punta que se implementa. En general, la potencia y empuje pueden ser predichos por
el modelo CFD. Sin embargo, a velocidades de entrada altas, los resultados divergen
de los valores experimentales. Esto puede deberse a que en este modelo simplificado
ningún término de turbulencia es incorporado y, a estas velocidades, el flujo turbulento
podŕıa tener un mayor impacto en el coeficiente de potencia.
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Asimismo, el modelo propuesto es capaz de predecir las caracteŕısticas esenciales del
flujo alrededor del rotor, como los vórtices de punta, el gradiente de velocidad por
delante y detrás del rotor, aśı como la expansión de la estela. Por último, se muestra
cómo la corrección de hub afecta el campo de flujo predicho por el modelo CFD y se
encuentra que esta corrección no describe correctamente la incorporación de un cuerpo
sólido en el flujo.
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Abstract

Understanding the aerodynamics of a wind turbine’s rotor is essential to properly de-
sign the blade geometry and maximize the power generation. In addition, the main
problem in a wind farm layout optimization is the dynamics of the wakes. A wind
turbine operating in the wake of another wind turbine has a power production reduc-
tion and a higher unsteady loading. The one-dimensional momentum theory and the
BEM (Blade Element Momentum) theory are frequently used to predict the loads on
a rotor and its power generation. However, both theories neglect the radial interaction
between the blade elements. Moreover, another drawback is not being able to visualize
the flow field that occurs around the rotor.

Therefore, a computational fluid dynamics (CFD) model is implemented using the
approximately inviscid Navier-Stokes equations, the actuator disc model, the blade el-
ement theory, and the immersed boundary method to predict the loads on a rotor and
its power output. The numerical results are compared against the experimental data
of the NREL baseline turbine. The widely used BEM method and the CFD model re-
sults were compared. Taking the difference of the results of the power of each method
against the experimental data, the minimum error for the CFD model is 1.41% and for
the BEM method is 3.93%. Likewise, for thrust, the minimum errors are 0.40% y 4.96%
using the CFD model and BEM method, respectively. Therefore, the CFD model can
predict more accurately the power and thrust. The CFD results show that the behavior
of the loads on the rotor depends on the inflow velocity. When the speed increases,
the load does too. The axial load grows from where the lifting surface begins. Besides,
the tangential load remains constant for most tests throughout the disc. Also, the load
decreases at the edge of the disc for all cases due to the implemented tip correction.

The power and thrust can be predicted by the CFD model. However, the results
diverge from the experimental values at high incoming speeds. This may be because
no turbulence term is incorporated in this model, and at these speeds, the turbulent
flow could have a greater impact on the power. Likewise, the proposed model can
predict some flow characteristics around the rotor, such as the tip vortices, the velocity
gradient around the rotor, and the expansion of the wake. Finally, it is shown how the
hub correction affects the flow field predicted by the CFD model, and it is found that
this correction does not properly describe the incorporation of a solid body in the flow.
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Chapter 1

Introduction

This study deals with a numerical implementation of incompressible Navier-Stokes
equations and the axisymmetric actuator disc model to describe the aerodynamics of
horizontal axis wind turbine rotors. A permeable disc represents the wind turbine rotor
and allows the flow to pass through it while the disc disturbs the flow. The finite volume
method is used to discretize the equations in the spatial and temporal dimensions. The
immersed boundary method is implemented to represent the rotor inside the domain
and to spread the force onto the fixed grid where the properties are computed.

1.1 Brief history of wind energy

A wind turbine is a device that converts the kinetic energy of the wind into electricity.
For a long time, the wind has been used as a power source, such as in sailing boats
that travelled long or mills to grind grains or pump water. The Herón of Alenxandŕıa
machine was one of the first ones recorded [1], which consisted of a windmill that pro-
vided air to a pipe organ. Most windmills appeared in Europe, and they incorporated
a horizontal axis, although some vertical axis windmills could be seen as made by the
ancient Persians (see Figure 1.1).

In Scotland, James Blyth marked the beginning of the modern wind turbines by build-
ing a wind turbine from sailcloth. The output power of the turbine was dedicated to
charging batteries whose energy was used in his house. Figure 1.2 shows the James
Blyth turbine. We can appreciate the size difference between the person and the wind
turbine.

In 1888, in Cleveland, Ohio, Charlie Brush built a wind turbine with a radius of 17
meters and 144 blades, generating 12 kW. At the same time, in Denmark, Poul La
Cour made experiments on airfoils for wind turbines and proved that wind turbines
with fewer blades are more efficient in producing electricity. Marcellus Jacob designed
smaller wind turbines. These devices were similar to the current turbines, with a hor-
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1. INTRODUCTION

Figure 1.1: Persas windmills [2].

izontal axis and three blades. During the Second World War, the interest in wind
energy raised again. This new resurgence led to the building of F.L. Smith wind tur-
bines, which used the stall regulation (reduction of lift by modifying the attack angle)
and upwind direction (namely, the front of the wind turbine is set opposite to the wind
direction).

Figure 1.2: James Blyth’s turbine [3].

As of the date of this writing, for onshore applications, the large-scale wind turbines
can produce around 2 MW of power, and their rotor diameters are a little less than 100
meters. However, the tendency is to develop bigger turbines with larger rotors. The
Haliade-X is the biggest wind turbine installed for tests, and it can produce 12 MW
with a rotor diameter of 220 meters.

2



1.2 Problem statement

1.2 Problem statement

The rotor aerodynamics of a wind turbine is a complex problem. Many factors can
affect the performance of a rotor. The turbulence intensity can increment the avail-
able power on the site but, at the same time, affect the wind turbine structure [4].
Also, the wind resource depends on the geographic location and local terrain; even
the wind turbines reside inside the atmospheric boundary layer (e.g., <300 m) [4]. In
wind farms, wake interaction between wind turbines impacts power production. The
micro-scale processes in which a wind turbine plant is involved are below one kilometer
and, generally, have grid spacing between 5 and 100 meters horizontally. This large
space to explore leads to use grids with a huge number of cells, in the order of millions
[5], requiring expensive computational efforts.

The BEM theory is a well-known tool for describing wind turbine loads and power pro-
duction. This theory is simple to apply and can describe the rotor behavior. However,
it does not provide information about the flow around the turbine. Also, the BEM the-
ory neglects the radial interaction blade to blade, which influences the performance of
each element, while CFD computations allow knowing the flow field that encompasses
the rotor and the radial interaction to be taken into account.

In this work, for the sake of simplification, an inviscid model is used to reproduce the
wind turbine performance and flow field, focusing on the general characteristics. The
forces are computed using the blade element theory and specific airfoil data for the tur-
bine. Also, the aeroelastic effects are not considered. The implementation of the forces
given by the rotor to the fixed grid are carried out employing the immersed boundary
method, which makes a smooth distribution of the force to the surroundings avoiding
numerical oscillations when implementing punctual forces.

The benefit of modeling the rotor aerodynamics is that aerodynamic properties can
be calculated with better precision since the radial interference between the blade is
taken into account. Also, it is possible to know the flow around the turbine, which is
important to know to asses the influence on the performance of the turbines behind,
as in a wind farm. Moreover, due to the simplification of the model, the fine mesh to
capture small-scale turbulent effects is unnecessary. Therefore, a coarser grid can be
used, reducing the computational time.

1.3 Background

The aerodynamics of a wind turbine has been studied for a long time. However, there
are unknowns to be resolved as the understanding of the physics of atmospheric flow,

3



1. INTRODUCTION

material and system dynamics of individual wind turbines, optimization and control
of wind plants, wind energy resource quantification, wind array turbines optimization,
and turbulent wakes, among others [6][4]. This work aims to enhance the wind turbine
arrays in wind farms. In an actual wind farm, the interaction between the flow and
structure becomes relevant since the disturbance of the wind can impact the perfor-
mance of the wind turbines around. As a first step to improving the wind turbine array,
it is fundamental to understand the behavior of an isolated wind turbine and effectively
predict its performance and interaction with the flow. After this, several add-ons can
be incorporated into the new models, such as the shear boundary layer, atmospheric
turbulence, and interaction turbine-turbine.

The methodology to know the aerodynamic load proposed by Betz [7] indicates the
maximum power that can be obtained from the wind is 59.3%. However, this method
is based on the one-dimensional theory and neglects the rotor’s rotation and the power
losses. Other analytical methods are developed by Glauert [8], Joukowsky [9] and Bur-
ton [10] where the rotational effects and the difference in pressure occurring in front
and behind the rotor are included in the analysis.

Glauert proposed the Blade Element Momentum(BEM) theory to compute the main
properties of the rotor of a wind turbine. It was based on the one-dimensional momen-
tum theory, which uses the momentum equations in just one direction, and the blade
element theory, which splits the blade into elements, and the properties are computed
for each of them. The BEM theory is widely used, and several corrections have been
used to achieve better results, such as the tip or hub correction or even employing a
dynamic wake.

The increment in computing power has led to a new Computational Fluid Dynam-
ics(CFD) approach to solve the problem. The new models describe the flow around the
rotor, the wake, and the interaction with other rotors behind. In the works made by
Sorensen and Kock [11], and Mikkelsen [12], the Vorticity-Stream functions are used to
solve the flow field. Also, the actuator disc concept is implemented to add a constant
load along with the rotor and apply it to the flow field. Several works have been made
to predict the wake behind the rotor [13][14][15] since this has a major influence on the
aerodynamic performance of a wind farm. Some corrections can be used to get a more
realistic result. Shen et al. [16] used a tip correction combined with the Navier-Stokes
equations to solve the aerodynamic properties of a rotor. Another technique applied to
the problem is the actuator line, in which the load is distributed along a line represent-
ing the blade forces, as exposed by Sorensen and Shen [14] to describe the performance
and the wake of the rotor. Mart́ınez et al. [17] presented a comparison between the
actuator disc and actuator line. The immersed boundary method results is a way to
apply the blade forces on the domain since it has the advantage of interpolating the
properties from the fixed grid where the Navier-Stokes equations are computed and the
front that describes the object, namely, the rotor. According to Yang and Sotiropoulos
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1.4 Objectives

[18], the nacelle can be modeled by a front made by points that describe it. Also, a
smooth function is used to interpolate the velocities and to spread the force applied by
the rotor.

1.4 Objectives

The main objective is

To develop a numerical fluid dynamic code based on an actuator disc concept to
simulate the aerodynamic properties of a horizontal axis wind turbine.

1.4.1 Specific objectives

The specific objectives are

• To implement the finite volume and immersed boundary methods to determine
the velocity and force field.

• To determine the power production.

• To determine the axial and tangential momentum acting on the rotor.

• To validate the results from the numerical code by comparing them against ex-
perimental data.

1.5 Scope of work

Due to the difficulties of simulating a complete wind turbine and the atmospheric
conditions that affect it, this work aims to generate a simple computational model
to predict the power generation, loads, and flow field around the rotor of an isolated
wind turbine. In the proposed model, an actuator disc represents the rotor. The
forces are computed from the actual geometry of the blades, which are imposed on
the computational domain using the immersed boundary method. The scope of the
work is limited to the rotor, without including the nacelle or the tower. Moreover, the
atmospheric boundary layer and the turbulent effects are not considered. Since the
rotor is included as a force that perturbs the flow, the boundary layer between fluid
and structure is not solved.

5





Chapter 2

Mathematical formulation

2.1 Actuator disc

The Actuator Disc concept is an idealized representation of a rotor, consisting of a per-
meable disc that allows the flow to pass while imposing force. In this concept, there is a
pressure difference on the rotor plane without a discontinuity on the axial velocity [19].
Froude [20] introduced the actuator disc concept based on the work of Rankine [21] on
the momentum theory of propellers. One of the fundamental results was presented for
the actuator disc plane velocity, which equals one half of the upstream and far wake
wind speed sum. The analysis by Betz [7] showed that the maximum extraction of
energy possible from a wind turbine rotor is 59.3 % of the incoming kinetic energy.

A major step forward in modeling flow through rotors came with developing the gener-
alized momentum theory and the introduction of the Blade Element Momentum (BEM)
method by Glauert [8]. The BEM theory is computationally inexpensive because each
blade element is considered a two-dimensional airfoil [22]. Moreover, additional correc-
tions have to be made, such as tip and hub losses, heavily loaded rotors, yaw correction,
or dynamic wake can be done to model the more complex unsteady aerodynamic phe-
nomena [19], keeping the low computational time. In industry, it is widely used to
design a simpler optimum blade. This first approach can be used as the beginning of a
general blade design analysis [23].

2.1.1 One-dimensional axial momentum theory

The one-dimensional axial momentum theory [19] assumes an incompressible uniform
flow with a constant velocity passing an actuator disc. The flow velocity is the same
on the whole disc, which means that axial symmetry exists. The flow can not cross the
control volume given by the stream tube encompassing the actuator disc (see Figure
2.1). Also, the flow is treated as inviscid, so no loss inside the control volume is
happening. Consider an axial flow with speed U∞, which moves through an actuator
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2. MATHEMATICAL FORMULATION

Figure 2.1: Control volume given by the stream tube encompassing the actuator disc for

one-dimensional. Adapted from Sorensen [19].

disc of area A and constant axial load T, where uR is the velocity on the rotor plane
and u1 the velocity on the ultimate wake. Remember that the pressure at the entrance
is the same as on the ultimate wake without disturbance, namely, p1 = p0, and ρ is
the air density. In Figure 2.1, A0 and A1 are the areas upstream and downstream,
respectively.

From mass conservation, the mass flow ratio, ṁ, must be constant on each section of
the stream tube. Thus,

ṁ =

∫
ρudA = ρU∞A0 = ρuRA = ρu1A1. (2.1)

Axial momentum balance results on the next equation for the stream tube shown in
Figure 2.1.

T = ṁ(U∞ − u1) = ρuRA(U∞ − u1). (2.2)

Assuming the pressure in the wake is equal to the pressure upstream, p1 = p0, and that
the lateral pressure acting on the stream tube is zero, and then applying the Bernoulli
equation in front and behind the rotor, we obtain

∆p =
1

2
ρ(U2

∞ − u21), (2.3)

where the pressure difference represents the thrust T = A∆p. Combining equations 2.2
and 2.3, we get

uR =
1

2
(U∞ + u1). (2.4)

Introducing the axial interference factor

8



2.2 Body forces

aa =
U∞ − uR

U∞
, (2.5)

we get

uR = (1− aa)U∞. (2.6)

Combining equations 2.4 and 2.6

u1 = (1− 2aa)U∞. (2.7)

Inserting equations 2.6 and 2.7 in Eq. 2.2, we can obtain

T = 2ρAU2
∞aa(1− aa) (2.8)

and

P = uRT = 2ρAU3
∞aa(1− aa)

2. (2.9)

Introducing the dimensionless coefficients for thrust and power, respectively

CT =
T

1
2ρAU

2
∞
, CP =

P
1
2ρAU

3
∞
, (2.10)

we get

CT = 4aa(1− aa), CP = 4aa(1− aa)
2. (2.11)

Obtaining the derivative of the power coefficient with respect to the axial interference
factor, we can get the maximum obtainable power as

CP,max =
16

27
= 0.593, with aa =

1

3
. (2.12)

This result is known as the Betz limit and declares the maximum power extracted,
namely, the 59.3%. This result does not include the losses because of the wake rotation.
Therefore, it means a conservative upper maximum. It should be noted that the One-
dimensional theory is only valid for values of aa between 0 and 0.5. For higher values,
results of u1 are negative (see Eq. 2.7).

2.2 Body forces

We recall the Navier-Stokes momentum equation

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ µ∇2u+ fb, (2.13)

9



2. MATHEMATICAL FORMULATION

where the first term on the left-hand side is the change in velocity over time, and the
second one is the convective term. The first term on the right-hand side is the pressure
gradient, and the second one is the viscous term. The last term, fb, represents the body
forces acting on the rotor and they are obtained by an approach to the blade element
theory and two-dimensional tabulated airfoil data. Figure 2.2 shows a blade element
on the plane (x, θ), fixed at a distance r on the blade.

Figure 2.2: Cross-section of a blade element located at radius r. Adapted from Behrouz-

ifar and Darbandi [13].

The process of computing the force that takes place on the rotor is similar as presented
by Behrouzifar and Darbandi [13]. The axial and tangential factors are

aa = 1− uR
U∞

, aθ =
wR

rΩ
, (2.14)

where uR and wR are the axial and tangential velocities on the rotor plane, respec-
tively. U∞ being the incoming velocity far away and rΩ the tangential velocity of the
chosen blade section. The tangential and axial components are described in the inertial
reference frame by

vθ = (1 + aθ)rΩ = wR + rΩ, vx = (1− aa)U∞. (2.15)

Thus, the local velocity relative to the rotating blade is

Vrel = (vθ, vx). (2.16)

As it is shown in Figure 2.2, the angle between the rotor plane and Vrel, flow angle,
can be computed from the equation

ϕ = tan−1(vx/vθ), (2.17)

which is called flow angle. Therefore, the angle of attack is obtained following the
relation

10



2.2 Body forces

α = ϕ− γ − θp, (2.18)

where γ is the twist angle, which is the angle of deformation of each section along the
blade. On the other hand, θp is the pitch angle of the wind turbine, this angle is at
which the entire blade moves and it is set by the wind turbine control system. After
knowing the relative velocity Vrel, we can compute the blade force per unit span-wise
length as

dF

dr
=

1

2
ρV 2

relc(CLêL + CDêD), (2.19)

where c refers to the airfoil chord, namely, the straight line joining the edges of the
airfoil (see dashed green line in Figure 2.2). CL and CD are the lift and drag coefficients
obtained using two-dimensional airfoil data. Moreover, êL and êD are the unit vectors
in the lift and drag directions, respectively. Also, dr is a differential length along the
r-direction.

In order to simplify the blade geometry inside the computational domain, we can assume
a blade with a constant thickness dx. Thus, each element has the same differential
volume dV = 2πrdrdx. Combining this with the Eq. 2.19, the force per volume for a
total number of B blades can be calculated using the following equation

fb = B
dF

dV
=

1

4πrdx
BρV 2

relc(CLêL + CDêD). (2.20)

The aerodynamic loads should be implemented as source and sink terms in the cor-
responding equations that will be shown later. Therefore, the force is decomposed in
different directions for the cylindrical coordinates. Thus, the distribution of the force
per volume for the axial, radial and tangential components can be computed by the
following equations, respectively

fx =
1

4πrdx
BρV 2

relc(CLcosϕ+ CDsinϕ), (2.21)

fr = 0, (2.22)

fθ =
1

4πrdx
BρV 2

relc(CLsinϕ− CDcosϕ). (2.23)

Since we are dealing with a two-dimensional airfoil in the x − θ plane, the resultant
forces are only projected in these two directions. In the simplified model presented in
this work, the three-dimensional effects occurring on the airfoils with a large spanwise
are neglected. The thrust and power can be calculated by integrating the lift and drag
forces in the radial direction, which yields the following equations

11



2. MATHEMATICAL FORMULATION

Thrust = T =
1

2
ρB

k=N∑
k=1

V 2
relk

ck(CLkcosϕk + CDksinϕk)drk, (2.24)

Power = P =
1

2
ρBΩ

k=N∑
k=1

rkV
2
relk

ck(CLkcosϕk + CDksinϕk)drk, (2.25)

where k is the indexing variable of the section and N is the total number of sections
that compose the blade.

2.3 Blade element/momentum theory

Glauert developed the Blade Element Momentum (BEM) theory to describe the aero-
dynamics of the rotor of a propeller and wind turbine. Moreover, the BEM theory is
also implemented to design and optimize wind turbine rotor blades. The BEM theory
combines two theories, the first one is the blade-element theory, and the second one
is the one-dimensional momentum theory. It is possible to obtain a closed system of
equations to compute the induced velocities and the loads acting on the rotor if both
methods are combined.

We use the general derivation of the equation exposed in literature with some cor-
rections for loaded rotors [19][24][23]. The axial load and torque defined from the
blade-element theory are as follows

dT

dr
= BFx =

1

2
ρcBV 2

relCa, (2.26)

dQ

dr
= BrFθ =

1

2
ρcBrV 2

relCt, (2.27)

where c is the chord, B is the total number of blades, and Vrel is the relative velocity
of the flow with respect to the azimuthal direction, as it can be seen in Figure 2.2. The
loads are represented by Fx and Fθ in the axial and tangential directions, respectively.
Ca and Ct correspond to the two-dimensional force coefficients, defined as

Ca =
Fx

1/2ρcV 2
rel

, (2.28)

Ct =
Fθ

1/2ρcV 2
rel

. (2.29)

Projecting the lift and drag coefficients, we can build the force coefficients as

Ca = CLcosϕ+ CDsinϕ, (2.30)
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2.3 Blade element/momentum theory

Ct = CLsinϕ− CDcosϕ, (2.31)

where ϕ is the flow angle, the angle formed between the relative velocity and the rotor
plane, CL and CD are the lift and drag coefficients, which are obtained using two-
dimensional airfoil data tabulated that depend on the angle of attack and Reynolds
number. The angle of attack α is given as follows

α = ϕ− γ − θp, (2.32)

being γ the twist angle and θp the pitch angle. Remembering axial and tangential
coefficients given in Eq. 2.14 and using Figure 2.2, we can deduce that

sinϕ =
U∞(1− aa)

Vrel
, cosϕ =

Ωr(1 + aθ)

Vrel
. (2.33)

From these two relations, we get

V 2
rel =

U2
∞(1− aa)

2

sin2ϕ
=

U∞(1− a)Ωr(1 + aθ)

sinϕcosϕ
. (2.34)

Combining these relations with Eqs. 2.26 and 2.27, we can get

dT

dr
=

ρBcU2
∞(1− aa)

2

2sin2ϕ
· Ca, (2.35)

dQ

dr
=

ρBcU∞(1− aa)Ωr
2(1 + aθ)

2sinϕcosϕ
· Ct. (2.36)

Now, from the axial momentum theory, we can compute the axial load as

dT

dr
= ρ(U∞ − u1)2πruR = 4πρrU2

∞aa(1− aa), (2.37)

where uR is the axial velocity in the rotor plane given as

uR = U∞(1− aa), (2.38)

and u1 is the axial velocity in the ultimate wake calculated as

u1 = U∞(1− 2aa). (2.39)

As a result of the One-dimensional momentum theory, the induced velocity in the wake
is twice that in the plane of the rotor. Also, it is assumed that pressure is recovered in
the far wake. Thus, the pressure upstream and downstream of the rotor are equal.

After applying the momentum theory, we can obtain

dQ

dr
= ρruθ2πruR = 4πρr3ΩU∞aθ(1− aa), (2.40)
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2. MATHEMATICAL FORMULATION

where uθ = 2Ωraθ is the induced tangential velocity downstream of the rotor. Putting
together the Eqs. 2.35 with 2.37 and the Eqs. 2.36 with 2.40, we can get

aa =
1

4sin2ϕ/(σCa) + 1
, (2.41)

aθ =
1

4sinϕcosϕ/(σCt)− 1
, (2.42)

where σ = Bc/2πr is the local solidity. The two last equations are the most important
expressions in the BEM theory.

The total system of equations is nonlinear and implicit, thus, we need to use an iterative
technique to solve it. A solution procedure to follow is

1. Divide the rotor into a sufficient number of blade elements. The current procedure
will be applied for each element.

2. Assume an initial value for aa and aθ. It could be based on the last value obtained
for the last element solved, or simply setting aa = 1/3 and aθ = 0.

3. Obtain the flow angle using the expression: ϕ = tan−1

(
1−aa

λr(1+aθ)

)
, with λr =

λ(r/R), where λ = ΩR
U∞

is the tip speed ratio and R is the rotor radius.

4. Calculate the angle of attack, α = ϕ − γ − θp, and from this and the Reynolds
number (Re = Urelc

ν ), determine CL and CD from tabulated aerodynamic data of
the airfoil.

5. Compute Ca and Ct.

6. Compute the new factors aa and aθ. Continue the procedure until convergence
and move to the next element.

As seen in the solution procedure, aa and aθ are forced to converge to a specific value.
Thus we ensure a physically representative value. After calculating the induced veloc-
ities, the thrust and power are computed by the Eqs. 2.24 and 2.25, respectively.

The axial symmetry assumption implies that the induced velocities on the blade are
not dependent on the number of blades of the rotor. Therefore, the vortex shed from
the ends of the rotor form a constant stream surface. However, the pressure difference
in front and behind the blade should decrease on the tip because of the crossed flow
effects. To consider this effect, the load is modified by a tip correction.
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2.3 Blade element/momentum theory

2.3.1 Tip correction

There are different equations to make the tip correction, some of them are discussed
by Clifton-Smith [25] and Shen et al. [26]. One of the most popular equations is the
one derived by Glauert from the equation for Prandtl loss, given by

Ftip =
2

π
cos−1

[
exp

(
−B

R− r

2rsinϕ

)]
, (2.43)

where B is the number of blades, R the radius of the rotor, r the local radius and ϕ
the flow angle.

Other equation to correct the tip loss is the one proposed and applied by Shen et al.
[27][28]. Which is given by

Ftip =
2

π
cos−1

[
exp

(
− g

B(R− r)

2rsinϕ

)]
, (2.44)

where the variables are similar to the equation proposed by Glauert. However, the new
factor g depends on the number of blades, TSR, and chord distribution, although for
simplicity, the function will only depend on the variable BΩR/U∞, so g is computed
as

g = exp(−c1(BΩR/U∞ − c2)) + c3, (2.45)

here c1, c2 and c3 are the correction coefficients, and their values are 0.125, 21 and 0.1,
respectively.

2.3.2 Hub correction

Similar to tip loss correction, the hub correction works to correct the induced velocity
resulting from a vortex shed near the rotor’s hub. An equation to apply this correction
is much like the Prandtl tip loss model, and it is given by

Fhub =
2

π
cos−1

[
exp

(
−B

r −Rhub

2rsinϕ

)]
. (2.46)

Other way to account for the influence of the hub and the effects of the non-lifting parts
of the rotor is to introduce a vortex core of size δ [29], by the equation

Fhub = 1− exp

[
− a

(
x

δ̄

)b]
, (2.47)

where δ̄ = δ
R is the dimensionless radial distance to the point where the maximum

azimuthal velocity is achieved, this point commonly corresponds to the point where
the lifting surface starts on the rotor. The local radius is represented by x = r

R . The
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2. MATHEMATICAL FORMULATION

two parameters, a and b, are introduced to fit the inner viscous core of a vortex, in this
work a = 2.335 and b = 4, according to Sorensen et al. [29].

In the blade element theory, the corrections can be applied just multiplying the tip
corrections by the drag and lift coefficients as

CDcorr = CDFtipFhub, (2.48)

CLcorr = CLFtipFhub. (2.49)

And CD and CL should be replaced by CDcorr and CLcorr , respectively.

The Actuator disc theory involves a constant surface resulting in a circular uniform
vortex shed on the wake. However, in an actual wind turbine, the vortex is shed from
the tip of each blade, resulting in a different vortex system. Also, close to the tip, the
circulation must decrease because of the compensation between the lower and upper
side of an airfoil, which is not taken into account in the Actuator disc theory. To
incorporate this effect, a tip correction is included. Also, the hub presence as a solid
rigid affects the velocity on the center of the rotor; therefore, it is convenient to use a
hub correction. When the tip and hub corrections are implemented, the Eqs. 2.41 and
2.42 should be modified as follows

aa =
1

4F sin2ϕ/(σCa) + 1
, (2.50)

aθ =
1

4F sinϕcosϕ/(σCt)− 1
, (2.51)

where F is the product of the tip and hub corrections if there were both corrections.
However, when the rotor is overloaded, Eq. 2.50 gives incorrect predictions, as it is
discussed by Manwell et al. [23] and Buhl [30]. Figure 2.3 depicts different corrections
for overloaded rotors found in literature against empirical data. After a > 0.4, the
results of the one-dimensional theory begin to deviate from the empirical data and it
becomes necessary to incorporate a correction for this region. Therefore, we introduce
an empirical expression to take into account the overload condition. When the local
thrust coefficient is greater that 0.96 (CTr > 0.96), the Eq. 2.50 is replaced by

aa =
1

F
[0.143 +

√
0.0203− 0.6427(0.889− CTr)], (2.52)

where F = Ftip Fhub and

CTr =
σ(1− aa)

2(CLcosϕ+ CDsinϕ)

sin2ϕ
. (2.53)

The Eq. 2.52 replaces the equation without the overloaded rotor correction (Eq. 2.50).
This new equation is solved iteratively as described above.
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Figure 2.3: Different corrections for overloaded rotors against empirical data [30].

2.4 Model formulation

First, we obtain a new set of dimensionless variables given as

u∗ =
u

U∞
, p∗ =

p

ρU∞
, x∗ =

x

R
, t∗ =

t

R/U∞
. (2.54)

We replace the new set of dimensionless variables on the Navier-Stokes equation (Eq.
2.13) and from now on, we omit the symbol ∗ on the dimensionless variables in order to
have a simpler notation. Remembering that it refers to them unless otherwise clarified.
Thus, assuming incompressible, unsteady and using the cylindrical coordinates given by
(x, r, θ) with the velocities (u, v, w), respectively, and using the dimensionless variables
given previously, the Navier-Stokes equations are

Momentum on x

∂u

∂t
+ (u · ∇)u = −∂p

∂x
+

1

Re
∇2u− fx. (2.55)

Momentum on r

∂v

∂t
+ (u · ∇)v − w2

r
= −∂p

∂r
+

1

Re

(
∇2v − v

r2

)
+ fr. (2.56)

Momentum on θ

∂w

∂t
+ (u · ∇)w +

vw

r
=

1

Re

(
∇2w − w

r2

)
+ fθ. (2.57)

Mass conservation
∂u

∂x
+

1

r

∂vr

∂r
= 0. (2.58)
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(a) Actual domain. (b) Computational domain.

Figure 2.4: Actual domain (a) and computational domain (b).

The previous body forces, fb, should be multiplied by a new factor becoming in
f = (fx, fr, fθ) = fbR/ρU2

∞. Also,the actuator disc method considers the flow as
axisymmetric, therefore ∂/∂θ = 0 but w ̸= 0. Moreover, the viscous force term remains
in the momentum equations because of numerical stability in the computational pro-
cess; however, the viscous force term is kept it small as possible to be treated as an
inviscid flow.

Figure 2.4 shows the actual domain and the model domain. As it is seen in Figure 2.4a,
the computational domain encompasses the upper half of the rotor, and the red line
represents the actuator disc. In the computational domain (see Figure 2.4b), Lr and
Lx are the lengths of the domain in the radial and axial directions, respectively. LD is
the position of the actuator disc.

We apply a Dirichlet boundary condition at the inlet and lateral boundaries. Besides,
a Newmann condition was implemented at the outflow and symmetry line. Thus, the
boundary conditions are

Symmetry axis

v = 0,
∂u

∂r
= 0, w = 0. (2.59)

Lateral boundary
u = U0, v = 0, w = 0. (2.60)

In-flow
u = U0, v = 0, w = 0. (2.61)

Out-flow
∂ur

∂x
= 0,

∂vr

∂r
= 0,

∂w

∂x
= 0. (2.62)

18



Chapter 3

Numerical Implementation

3.1 Numerical solution of the momentum equations

This section describes how the numerical solution for the Navier-Stokes equations is
implemented. Using the Finite Volume Method (FVM), the discretization process is
described in rectangular bidimensional coordinates. However, the real domain is in
cylindrical coordinates, but the process is similar. We assume incompressible and
unsteady flow; therefore, the velocity could change over time. Using the dimensionless
variables described in section 2.4, the transport equation is given as

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u+ f , (3.1)

where Re refers to the Reynolds number, which is Re = U∞L/ν, although this work is
set to a fixed value to approach an inviscid flow; f represents the body force acting on
the fluid, for this case, obtained by the blade element and airfoil data.

In a two-dimensional form, the Eq. 3.1 consists of two equations, but it involves three
unknowns, namely, the velocity components, u and v, and the pressure, p. To achieve
a closed equations system to have the same amount of equations as unknowns, we use
the mass conservation equation for an incompressible fluid given as

∇ · u = 0. (3.2)

With this equation, the system is closed. However, there is no equation to describe
the pressure or the boundary conditions for this variable. Therefore, we need to use a
method to separate the velocity from the pressure. This method assumes a value for
the pressure and then computing the velocities. If the convergence is not achieved, the
pressure is corrected, and new velocities are calculated. These steps are repeated until
convergence is reached.
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Figure 3.1: Regular grid.

The SIMPLE (Semi-Implicit Method for Pressure Linked Equations) [31] is used to
solve the equations. This method uses a fourth equation that describes the pressure.
The discretized equation for the u component is

aPuP = aEuE + aWuW + aNuN + aSuS + SP , (3.3)

using a central scheme in a regular grid (see Figure 3.1), the ath coefficients of Eq. 3.3
are defined as follows

aE =
ΓeSe

∆x
− ueSe

2
, aW =

ΓwSw

∆x
+

uwSw

2
, (3.4)

aN =
ΓnSn

∆y
− unSn

2
, aS =

ΓsSs

∆y
+

usSs

2
. (3.5)

However, in this work, an upwind method is applied to the convective term while a
central difference is kept in the diffusion term of the momentum equation. Therefore,
the coefficients are given as

aE =
ΓeSe

∆x
−min(ueSe, 0), aW =

ΓwSw

∆x
+max(uwSw, 0), (3.6)

aN =
ΓnSn

∆y
−min(unSn, 0), aS =

ΓsSs

∆y
+max(usSs, 0), (3.7)

using the directions of the fluid from left to right and from bottom to top as positives.
The central coefficient is

aP = aE + aW + aN + aS +
∆V

∆t
, (3.8)

SP = S̄P∆V −
(
∂p

∂x

)
P

∆V + u0P
∆V

∆t
= S̄P − (pE − pP )

∆x
∆V + u0P

∆V

∆t
. (3.9)
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Here Γ refers to the generalized diffusion coefficient, which means Γ = 1/Re; S is the
surface of the cross-section of the side of the cell, V is the volume and t the time.

Using the Eq. 3.9, Eq. 3.3 can be rewritten as

aPuP =
∑
nb

anbunb + b− (pE − pP )Ae, (3.10)

with

b = S̄P∆V + u0P
∆V

∆t
, Ae =

∆V

∆x
= ∆y = Se, (3.11)

where the subindex nb indicates that all the close neighbors should be added.

From equation 3.10, we might notice that the velocity and pressure field must be known
a priori. But one strategy to solve the problem is to assume a pressure p∗; then, we can
estimate a velocity field u∗, whose components u∗ and v∗ are found using the modified
momentum equations as

aPu
∗
P =

∑
nb

anbu
∗
nb + b− (p∗E − p∗P )Ae, (3.12)

aP v
∗
P =

∑
nb

anbv
∗
nb + b− (p∗N − p∗P )An. (3.13)

The solution of the velocity field u∗ might not satisfy the mass conservation; hence,
in order to obtain a correct velocity field, corrections to the pressure and velocity field
can be made through

u = u∗ + u′, p = p∗ + p′, (3.14)

where u′ y p′ are corrections to the velocity field and pressure, respectively. These cor-
rections are added to the last value obtained on each iteration to achieve convergence.

Subtracting the Eq. 3.12 from Eq. 3.10 is obtained

aP (uP − u∗P )︸ ︷︷ ︸
u′
p

=
∑
nb

anb (unb − u∗nb)︸ ︷︷ ︸
u′
nb

−
(
(pE − p∗E)︸ ︷︷ ︸

p′E

− pP − p∗P )︸ ︷︷ ︸
p′P

)
Ae (3.15)

or as well given by

aPu
′
P =

∑
nb

anbu
′
nb − (p′E − p′P )Ae. (3.16)

By subtracting the term
∑

anbu
′
P from both sides of Eq. 3.16 and reordering, we get
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(
aP −

∑
anb

)
u′P =

∑
anb(u

′
nb − u′P )− (p′E − p′P )Ae. (3.17)

Based on the simplification made on the first term on the right-hand side, it is possible
to obtain a set of different algorithms with a modified form of the SIMPLE algorithm;
such as SIMPLEC, SIMPLER, or PISO. Now considering a small difference between
the velocity in the center of the volume and the neighbors, we can neglect the first term
on the right-hand side and order the equation to obtain the correction for the velocity
u, this is given by

u′P = − Ae

aP −
∑

anb
(p′E − p′P ) = de(p′P − p′E), (3.18)

where

de = − Ae

aP −
∑

anb
. (3.19)

Applying the same for the v component, we can get

v′P = − An

aP −
∑

anb
(p′N − p′P ) = dn(p′P − p′N ), (3.20)

with

dn = − An

aP −
∑

anb
. (3.21)

The consideration taken of the difference in the correction of the velocity leads to the
SIMPLEC method (Semi-Implicit Method for Pressure Linked Equations Corrected).
Now, remembering from Eq. 3.14 that the correction of the component u is given by
uP = u∗P + u′P then we can incorporate the Eq. 3.18 to obtain

uP = u∗P + de(p′P − p′E). (3.22)

Dealing in the same way with the component v given by vP = v∗P + v′P and introducing
the Eq. 3.20, we can get

vP = v∗P + dn(p′P − p′N ). (3.23)

To correct the velocities is necessary to know the pressure field p′. Therefore, we can
use the discretized continuity equation, which is

ueSe − uwSw + vnSn − vsSs = 0. (3.24)

The divergence of u is calculated at the center of the volumes for the pressure. Thus,
using a staggered grid, like the one shown in Fig. 3.2, and using the Eqs. 3.22 and
3.23, the velocities on the faces of the control volume for the pressure are computed as
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3.1 Numerical solution of the momentum equations

Figure 3.2: Velocities locations and pressure corrections on the staggered grid.

ue = (uP )e = (u∗P )e + (de)e(p
′
P − p′E)e = u∗e + (de)e(p

′
P − p′E), (3.25)

uw = (uP )w = (u∗P )w + (de)w(p
′
P − p′W )w = u∗w + (de)w(p

′
W − p′P ), (3.26)

un = (uP )n = (u∗P )n + (dn)n(p
′
P − p′N )n = u∗n + (dn)n(p

′
P − p′N ), (3.27)

us = (uP )s = (u∗P )s + (dn)s(p
′
P − p′N )s = u∗s + (dn)s(p

′
S − p′P ). (3.28)

By replacing the upper equations and inserting them in the continuity equation and
simplifying, we get

u∗eSe + (de)eSep
′
P − (de)eSep

′
E − u∗wSw − (de)wSwp

′
W + (de)wSwp

′
P

+v∗nSn + (dn)nSnp
′
P − (dn)nSnp

′
N − v∗sSs − (dn)sSsp

′
S + (dn)sSsp

′
P = 0, (3.29)

reordering it is obtained

[(de)eSe + (de)wSw + (dn)nSn + (dn)sSs]p
′
P = (de)eSep

′
E + (de)wSwp

′
W

+(dn)nSnp
′
N + (dn)sSsp

′
S − (u∗eSe − u∗wSw + v∗vSn − v∗sSs). (3.30)

Which could be written in the better-known way as

aP p
′
P = aEp

′
E + aW p′W + aNp′N + aSp

′
S + SP , (3.31)

where the coeffcients are

aE = (de)eSe, aW = (de)wSw, aN = (dn)nSn, aS = (dn)sSs, (3.32)
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3. NUMERICAL IMPLEMENTATION

aP = aE+aW +aN +aS , SP = −∇·u∗ = −(u∗eSe−u∗wSw+v∗nSn−v∗sSs). (3.33)

We obtained all the equations needed to know the pressure field as well as the velocity
field. Thus, the methodology to apply the SIMPLEC method could be summarized on
the next steps:

1. Assume a pressure field p∗.

2. Obtain the velocity field u from the pressure field assumed and using the Eqs.
3.12 and 3.13.

3. After knowimg u∗, compute the source term (−∇ · u∗) for the correction of the
pressure and to solve the Eq. 3.31, thus, p′ could be known.

4. Correct the pressure field from p = p∗ + p′.

5. Correct the velocities from the Eqs. 3.22 and 3.23.

6. The process is repeated until convergence is achieved, so that from the solution
of Eqs. 3.12 and 3.13 a velocity field with zero divergence is obtained.

3.2 Immersed boundary

3.2.1 Structure of the front

The Immersed Boundary Method [32] is a numerical method used in computational
fluid dynamics. Unlike other methods, the boundary is immersed in the grid, and it
does not coincide with the domain boundaries. Therefore, it is necessary to apply a
special treatment to consider the boundary on the grid solution.

The front of the object consists of points, which are connected by elements (see Figure
3.3). These points contain the coordinates of the immersed object. The main purpose
of the points is to describe the obstacle or the immersed object, thus transferring
information between the regular grid, where the properties are computed, and the
front. First, to transfer information, we must identify the closest point on the fixed
grid to the given point of the front. In one dimension, we can denote the total number
of grid points as NX and the length of the domain as Lx, then the grid point, which
is to the left of a point at x, is given by

i = int(x ·NX/Lx). (3.34)
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3.2 Immersed boundary

Figure 3.3: Front sketch [33].

3.2.2 Interpolating the front properties onto the fixed grid

Since the points representing the actuator surface do not coincide with any background
nodes, it is necessary to use a function to interpolate the information between the fixed
grid and the points. The function should gather the information on the velocity of the
neighbors of a point to spread the force of the point to the nodes of the fixed grid. To
convert the velocity from the fixed grid to the points, we use the expression

u(X) =
∑
x∈gx

u(x)δ(x−X), (3.35)

where gx is the set of the background cells, X and x are the coordinates of the points
of the actuator disc and the centers of the fixed grid, respectively. The discrete delta
function can be written as a product of one-dimensional functions, and the weight on
the grid point (i, j) of the smoothing of Xp = (xp, yp) is calculated as

δ(x−X) = d(xp − ihx)d(yp − jhy), (3.36)

where hx and hy are the grid spacings in the x and y directions, respectively. We
employ a weight function similar to the one developed by Peskin [34]

d(r) =

{
(1/4)(1+cos(πr/2h), |r| < 2h,

0, |r| ≥ 2h.
(3.37)

The Figure 3.4 shows the geometric interpretation of the interpolation using Eq. 3.37.
The point xP gathers information from the nodes on the fixed grid that are around it.
However, it gets only a fraction determined by the weights w, so, the node (i, j) gives
a fraction wi,j of information, the node (i, j+1) gives a fraction wi,j+1, and so on. For
the Eq. 3.37 it is necessary to transfer the value of the quantity from two nodes around
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3. NUMERICAL IMPLEMENTATION

in each direction. Therefore, in a two-dimensional domain, sixteen points of the volume
grid are taken into account to give information.

Figure 3.4: Area of weighting to interpolate properties from the fixed grid to the front.

After computing the forces acting on the actuator disc, these are spread on the fixed
grid using the following equation

f(x) =
∑
x∈gx

f(X)δ(x−X) (3.38)

where gx is the set of the actuator disc points. The same delta functions as in Eqs.
3.36 and 3.37 are employed to interpolate the forces from the points to the fixed grid.

3.3 Numerical procedure

The numerical procedure to solve the model for an actual wind turbine is shown in
Figure 3.5. It depicts the steps to achieve one iteration on the flow field. The blade
element theory is solved after computing the velocity field and interpolating to the
points. The difference between the last value of the induction factor and the current
one must be less than the error proposed, ϵ. Then the power and thrust are calculated,
and the forces are applied to the Navier-Stokes equations. The time step is fixed during
the simulation, namely, dt∗ = 0.005. The cycle continues until the maximum time, tmax,
is reached.

26



3.3 Numerical procedure

Start

Initialize aa, aθ=0.

Power=0 , Thrust=0. tnew=0

Compute velocity field. Use Eqs. 2.58-2.57.

Interpolate velocity from fixed

grid to points. Use Eq. 3.35.

Compute ϕ. Use Eq. 2.17.

Compute α. Use Eq. 2.18.

Compute CL and CD from

tabulated airfoil data.

Compute fx,fr and fθ. Use Eqs. 2.21-

Compute aa and aθ. Use Eq. 2.14.

|aa − (aa)
new| > ϵ

|aθ − (aθ)
new| > ϵ

Compute power and thrust.

Use Eqs. 2.24 and 2.25.

Apply sink/source terms in

Eqs. 2.55-2.57. Use Eq. 3.38.

aa = (aa)
new.

aθ = (aθ)
new.

tnew = tmax

t = tnew

tnew = t+dt

End

No

Yes

No

Yes

Figure 3.5: Flowchart describing the numerical steps to solve the model used.
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Chapter 4

Results

This chapter presents the results of the numerical simulations for different rotor fea-
tures. First, the airfoil data are obtained from the XFOIL program, and we compare
them against experimental results. Thus, we expose the viability of using the XFOIL
program when the experimental data are unavailable without losing reliability.

4.1 Airfoil data

Both BEM theory and CFD simulations use airfoil data to compute the rotor aero-
dynamic properties. However, the experimental data is not always available, and we
should obtain the drag and lift coefficient from other sources. The XFOIL program is
a tool to compute the airfoil characteristics. This program uses a panel method (where
several points describe the airfoil shape) and the potential fluid. The XFOIL results
might be used on CFD simulations, resulting in a source of information on aerodynamic
tabulated data.

Later on in this work, an assessment of the baseline turbine from NREL is given. Be-
cause of that, we show a comparison of the coefficients for the S809 airfoil, which is used
on the turbine. The shape of the airfoil is shown in Figure 4.1. The chord normalizes
the airfoil coordinates, and we can note the large thickness, which is t = 0.21c. The
airfoil characteristics can be found in Somers’ work [35].

Using more than one profile along the blade is common in wind turbines. However, the
NREL baseline wind turbine uses only one. This airfoil, S809, was specifically designed
for wind turbines. Previously, most airfoils used in wind turbines were developed for
airplanes. However, the purposes are significantly different between the two sets of air-
foils. For wind turbines, a high lift-to-drag ratio is wanted to improve the aerodynamic
performance. Also, a high relative thickness helps to reduce blade weight. The drag
should remain low over a wide range of lift coefficients. On the other hand, according
to Timmer and Bak [36], the addition of roughness to the leading edge must have little
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influence on the boundary-layer development.

Figure 4.1: S809 airfoil coordinates.

The lift and drag coefficients are presented in Figure 4.2. Three different sources are
displayed; the experimental data (found in Hand’s work [37]) from Delft University
of Technology (DUT) and Ohio State University (OSU), and an approximation from
XFOIL using as interface QBlade program. The angles of attack range from -5 to 15
degrees for Re = 1, 000, 000. The Reynolds number was selected according to the one
expected on the simulation results. We can see a good prediction made by XFOIL,
where the lifting behavior is similar for all data. The drag coefficient has a minor dif-
ference after 10 degrees for the DUT experimental data; however, it agrees in all the
remaining ranges.

For the S809 airfoil, the airfoil data obtained by XFOIL agree with the experimental
sets. Therefore, the XFOIL set is used for the calculations in the next sections, extrap-

(a) Lift coefficient. (b) Drag coefficient.

Figure 4.2: Lift (a) and drag (b) coefficients for S809 airfoil.

30



4.2 The constant loaded rotor disc

olating them through a Montgomerie method [38]. This data set is found in Appendix
A.1. When the whole empirical airfoil data are not available, this procedure can solve
the lack of information.

4.2 The constant loaded rotor disc

We imposed a uniform constant force on the whole rotor surface in an one-dimensional
analysis. It is an idealized case and comes from the one-dimensional momentum theory
already presented, in which the main result is that the maximum power is obtained for
aa = 1/3, where the thrust and power coefficients can be computed as CT = 4aa(1−aa)
and CP = 4aa(1 − aa)

2, respectively. To validate this theory, several values for aa are
given and the thrust imposed is calculated by Eq. 2.10. The force is implemented in a
two-dimensional domain following the methodology exposed in chapter 3.

4.2.1 Numerical tests

Several tests were made for the loaded rotor (CT = 0.8) case to analyze the influence
of the domain size and grid resolution on the aerodynamic performance results. The
latter will help us to optimize and save computational resources. The domain tests are
divided in two cases. In the first one, we vary the radial length and fix the axial length
in Lx = 13R. This value is chosen to have enough space behind the rotor, so the wake
can develop. In the second case, taking advantage of the previous result, the radial
length is fixed and the axial length changes.

The number of control volumes is modified in every test to keep the thickness of the
grid constant regardless of the length. Thus, 15 and 20 cells are used per radius in the
axial and radial directions, respectively. This results in a cell with sides dx = 0.06 and
dy = 0.05. Also, the dimensionless time, t∗, is fixed t∗ = 100. The rotor is located
three radii downstream from the inlet, and two points that describe the rotor are set
per cell.

We calculate the averaged axial factor, āa, along the blade to compare the results. This
computation is made by taking the sum of the axial factor of each section and dividing
it by the total number of sections. Figure 4.3 shows the averaged axial factor along
the blade for several lengths in the radial direction keeping Lx = 13R. For four radii,
the axial factor is out of the range of numerical stability. The difference between the
values obtained begins to decrease after six radii. From this point, the results oscillate
from 0.34 to 0.36 without reaching a fixed value. Therefore, we can assume that, since
Lr = 6R, any of the radial lengths shown lead to similar results that remain in the
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Figure 4.3: Averaged axial factor for different radial lengths

range of stability.

Table 4.1 depicts the averaged axial factors and the relative error, ϵ, of each one against
Lr = 25R, which is the longest length. The relative error found for Lr > 6R is less
than 2 %. Also, we can see a small variation, less than one percent, of the factor while
we increase the radial length, except for 18 and 20 radii. It is notorious that the axial
value oscillates between 0.34 and 0.36. Therefore, we decided to fix the radial length
to Lr = 6R for all the following simulations since ϵ < 2 % is within the range where
the axial value varies. Thus, we can guarantee less computational time.

Table 4.1: Averaged axial factor and relative error, ϵ, for several Lr.

Lr[R] Averaged axial factor ϵ [%]

25 0.35 0

20 0.359 1.884

18 0.362 2.824

16 0.354 0.545

14 0.351 0.539

12 0.355 0.768

10 0.354 0.325

8 0.350 0.751

6 0.346 1.784

4 0.304 13.737
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4.2 The constant loaded rotor disc

Figure 4.4: Averaged axial factor for different axial lengths

Figure 4.4 displays the averaged axial factor for several axial lengths. As a conclusion
of the previous test, the simulations were made keeping Lr = 6R. The variation for
the radius configurations is small, namely, 0.342 < āa < 0.348. Only an important
variation out of this range is seen for Lx = 23. However, its relative error is just 2.12%
against the averaged axial factor for Lx = 43R, as Table 4.2 shows. Most configurations
of the axial lengths have a minor impact on the averaged axial factor, remaining around
āa = 0.34.

In Table 4.2 the most relative errors are less than one percent against the largest axial
length. Hence, the axial length is set as Lx = 13, which means there are ten radii be-
tween the rotor and the outlet. So, we keep the accuracy and reduce the computational
time.

Table 4.2: Averaged axial factor and relative error, ϵ, for several Lx.

Lx[R] Averaged axial factor ϵ [%]

43 0.3434 0

38 0.3437 0.0613

33 0.3425 0.2629

28 0.3441 0.1906

23 0.3361 2.1263

18 0.3444 0.2739

13 0.3462 0.7984
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Figure 4.5: Averaged axial factor through the dimensionless time for CT = 0.8.

From the above numerical tests results, the simulations in this work have been made in
a domain with 13 radii in the axial direction and six radii in the radial direction. The
grid points are 200 and 120 in the axial and radial directions, respectively. The rotor is
set at 3 radii from the inlet and is built by 40 points, corresponding to the points used
on the immersed boundary method. Thus, there are two rotor points for each cell in
the fixed grid. As it is commented by Sørensen et al. [39], the Reynolds number has a
minor effect on the results of this kind of model. Thus, it is set Re = 10000 for all the
simulations.

To know when numerical stability is reached, the averaged axial factor for the rotor was
computed and plotted through time. Figure 4.5 displays the averaged axial factor along
the time. In the first time steps the value increases up to nearly āa = 0.35, where after
t∗ = 20, it remains almost constant with some negligible variations. Since we evaluate
a flow that changes with time, the first steps represent the flow entering the domain,
moving to the rotor, and passing through it. After the flow travels all the domains, it
tends to a stationary state, where the averaged axial factor is reached. Up to t∗ = 50,
we can see the transition of the flow field to a steady-state without expending a large
computational time.

4.2.2 Numerical results

Here, we present the results from one-dimensional theory and the two-dimensional CFD
model results considering the axial and radial directions but no wake rotation. A con-
stant load is imposed on the CFD model using CT = 0.4, which results in an axial
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4.2 The constant loaded rotor disc

Figure 4.6: Dimensionless axial force for CT = 0.4.

factor aa = 0.1127. The dimensionless force that perturbs the velocity field is shown
in Figure 4.6. The rotor is set at x/R = 3, and because of the implementation of
the smooth function in the immersed boundary method to distribute the force on the
fixed grid, there is a force gradient around the rotor location. The maximum force oc-
curs at the rotor plane location, but the flow can feel the presence in the space around it.

Figure 4.7 shows the axial velocity and the axial interference factor throughout the
radius. The axial velocity seems constant up to near the rotor’s tip, where it decreases
(see Figure 4.7a). Thrust coefficients lower than 0.4 reach constant values for both
variables. When the thrust coefficient is greater than 0.4, the decrease in axial velocity

(a) Axial velocity. (b) Axial factor.

Figure 4.7: Axial velocity (a) and axial factor (b) along the radius for several thrust

coefficients.
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Figure 4.8: Pressure along the axial direction for r/R=0.5.

and interference factor at the tip is more notorious. Figure 4.7b shows that the axial
interference factor is greater at the edge of the rotor, which means that despite impos-
ing a constant load, the velocity is not the same in the radial direction on the rotor.

Figure 4.8 shows the normalized pressure jump at rotor position, x/R = 3. This figure
helps to illustrate the actuator disc method, which introduces a pressure discontinuity
that acts against the flow and imposes a force that decelerates the flow. The pressure
decreases some radii from the front and attains a greater value right where the rotor is.
Since a pressure jump is at the disc position, the axial and radial velocity must change
in the front and behind the rotor. Some radii downstream, the pressure tends to recover.

Figure 4.9 displays the axial and radial velocity upstream to downstream at r/R = 0.5
for the constant loaded rotor. The axial velocity begins to decrease almost two radii in
front of the rotor and continues reducing downstream the rotor (see Figure 4.9a). Thus,
we can see that the perturbation caused by the rotor impacts the flow field some radii
around and, even behind the rotor, the flow slows down. Also, Figure 4.9b depicts that
the radial velocity is affected some radii around the rotor, reaching the maximum value
at the rotor location, even though the one-dimensional momentum theory does not in-
clude the radial velocity inside its analysis. However, the radial velocity is modified on
the flow field using the CFD model. Because of the linkage of the velocity variables on
the Navier-Stokes equations, the change of the radial velocity can affect the velocities
in other directions. Therefore, this can impact the rotor performance.

The flow field is shown in Figure 4.10. We can see the velocity transition around one
rotor radius, reaching the smallest velocity behind it. The flow is accelerated beyond
the tip, but it tends to recover some radius far away from the rotor. Behind the rotor,
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the velocity decreases up to 0.676, which agrees with the axial factor (a = 0.173) found
on the most rotor spanwise and shown in Figure 4.7.

Figure 4.11 depicts the tip vorticity and the streamlines for CT = 0.4. Positive vorticity
values indicate a clockwise rotation, and negative values indicate counter-clockwise ro-
tation. Tip vorticity is shed from the edge of the actuator disc, and it tends to dissipate
and expand downstream (see Figure 4.11a). The vortex generation at the tip is because
of the velocity change at the tip. Near the edge, the flow tends to incorporate to re-
cover the upstream velocity driving a greater velocity gradient in this region. Thus, the
change of the axial velocity in the radial direction prevails. Therefore, the flow starts
to rotate. Figure 4.11b shows the wake expansion occurring behind the rotor, where
the velocity increases to the sides of the rotor. The wake expansion shown agrees with
the one-dimensional analysis presented previously. The general behavior of the wake is
to have a larger expansion while the load grows.

In summary, the contrast between the one-dimensional momentum theory and the CFD
model is presented. The drop of the pressure on the rotor plane agrees with the theory.
However, the CFD model does not achieve the constant axial factor on the rotor plane.
At the tip, a decrease in the axial velocity is shown. This decrease induces a velocity
gradient and a vortex shed on the wake. Also, contrary to the assumptions of the one-
dimensional theory, the CFD model shows a change in the radial velocity on the rotor
plane, which can affect the axial velocity on the rotor plane because of the connection
of both velocities in the Navier-Stokes equations.

(a) Axial velocity. (b) Radial velocity.

Figure 4.9: Axial (a) and radial (b) velocity upstream and downstream for CT = 0.4 at

r/R = 0.5.
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Figure 4.10: Velocity field for CT = 0.4. The disc is represented by a straight line.

(a) Tip vorticity. (b) Streamlines.

Figure 4.11: Tip vorticity (a) and streamlines (b) for a constant loaded rotor disc with

CT = 0.4. The disc is represented by a straight line.

4.3 Simulation on NREL baseline wind turbine

The implementation of the numerical code was made using the NREL baseline turbine,
which is described by Giguere and Selig [40]. This turbine is stall regulated with three
blades of 5.03 m each one. The blade sections consist of NREL S809 airfoil, and the
rotor rotates at 72 RPM. The blade was divided into 40 sections and its geometry is
found in Appendix A.2. For all the simulations, Re = 10000 was set. We obtained the
forces and the aerodynamic properties following the methodology exposed in Section
2.2.
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Figure 4.12: Axial velocity for several inflow values.

Various simulations were conducted to analyze the rotor performance at different inflow
velocities. Figure 4.12 depicts the normalized axial velocity throughout the rotor for
several inflow values. For all inflow values, the axial velocity increases at the center
of the rotor, which might occur because of the hub correction; this will be discussed
later in this work. The smallest inflow value results in small values along with the
rotor. For U∞ = 15 m/s the velocity tends to remains constant after r/R = 0.2, the
same happens for U∞ = 10 m/s after r/R = 0.4. For all the inflow values, the axial
velocities start to recover after r/R = 0.8. Thus, for higher incoming values, the rotor
plane’s normalized axial velocities are greater, resulting in lower axial induction factors.

The radial velocity along the rotor is shown in Figure 4.13. The general behavior of

Figure 4.13: Radial velocity for several inflow values.
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Figure 4.14: Tangential velocity for several inflow values.

the velocity is to take negative values near the root of the rotor and increase up to
the tip. The higher the inflow velocity, the lower the slope of the curve. For all the
upstream velocities, the radial velocity changes its sign around the mid-plane of the
rotor. The latter indicates that the wake expands in both directions but faster in the
positive radial direction.

Figure 4.14 illustrates the tangential velocity for several inflow values. For U∞ = 5
m/s, negative values are near the root and the maximum tangential velocity is reached
close to r/R = 0.4. For U∞ = 15 m/s, the tangential velocity remains constant from
r/R = 0.5 to r/R = 0.8. The maximum velocity is attained close to r/R = 0.2, which
corresponds to the point where the lifting surface of the rotor starts. After r/R = 0.8,
the tangential velocity decreases to recover its original value. Like the radial velocity,
some negative values are obtained at the center of the rotor plane; it is notorious for
the smallest velocity, which might affect the rotor’s power generation since it depends
on the tangential velocities reached throughout the blade.

The rotor aerodynamic performance is described by the axial and tangential factors,
which are shown in Figure 4.15. This figure shows both interference factors at different
inflow conditions: 5, 10, and 15 m/s. In Figure 4.15a, it is noted that the axial factor
remains constant for U∞ ≥ 10 m/s in some sections on the rotor. For the highest inflow
value, from r/R = 0.2 to r/R = 0.8, the axial factor is constant taking a value around
a = 0.1. For U∞ = 10 m/s, the constant factor is reached after r/R = 0.4. When the
inflow velocity is 5 m/s, different behavior is found. The axial factor increases up to
a maximum value, after which it decreases. All the behaviors coincide with a decrease
in the same point, namely, after r/R = 0.8. The negative values of the axial factor
(aa = 1 − uR/U∞) near the root indicate that the axial velocity on the rotor plane is
increasing, as well as the reduction close to the tip is due to the flow trying to recover
its original velocity. This agrees with the exposed in Figure 4.12. The differences found
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(a) Axial factor. (b) Tangential factor.

Figure 4.15: Axial (a) and tangential (a) factor along the rotor.

for the three cases are because the velocities occurring at the rotor plane are greater
for higher inflow values. Thus, the term uR/U∞ in the axial factor equation increases
while the inflow velocity does.

Figure 4.15b shows that the tangential factor, for 10 and 15 m/s, reaches the maximum
at r/R = 0.2 and decreases to about zero at the tip. However, for U∞ = 5 m/s, the
increment of the tangential factor is not as much as the previous ones. Moreover, for
this small inflow value, there is a very lower tangential velocity across the rotor and
the peak is small. For all the inflow values, the tangential factor is negative in the first
sections, which leads to negative tangential velocities, as it is exposed in Figure 4.14.

Figure 4.16: Corrections product.
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(a) Axial force. (b) Tangential force.

Figure 4.17: Axial (a) and tangential (b) forces along the rotor.

The tip and hub corrections greatly influence the force distribution on the blades. The
tip and hub corrections used in the present research work are the Eqs. 2.44 and 2.47,
respectively. As we can see in Figure 4.16, the hub correction reduces the forces to
zero on the center of the rotor. Besides, the force drops at the tip because of the tip
correction. In Eq. 2.44 it is clear that the value of the tip corrections depends on the
flow angle, ϕ, which changes with the velocity. Therefore, we can appreciate a different
form of tip correction curves for every incoming velocity.

The axial and tangential forces per blade span are given in Figure 4.17 for inflow val-
ues of 5, 10 and 15 m/s. The axial and tangential forces reach greater values when
the inflow velocity increases. Therefore, it might generate more power. Figure 4.17a
depicts that the axial forces for 10 and 15 m/s cases are close, achieving a maximum
after 80% of the radius. Near the tip, both forces go down because the pressure on this
region tends to be equal at the upper and lower surface of the wind turbine blade; this
results from tip correction implementation. The tangential force is negative for all the
cases near the root and goes up to where the lifting surface of the rotor blade starts
(see Figure 4.17b). For an entry of 10 m/s the tangential force is constant roughly
from r/R = 0.3 to r/R = 0.9, after this point it tends to reduce. The tangential force
produced by an inflow of 15 m/s shows a great variation throughout the rotor, having
a decrease where the force commonly is constant; however, the peak of the force after
r/R = 0.8 is noticeably greater than for the other inflow values.

Following the formulation exposed in Section 2.3, a BEM method computational code
was made in order to compare results against the actuator disc model presented in
the current research thesis. BEM theory is widely used in wind turbine design and
the description of the forces acting on the rotor. CFD simulations and BEM theory
are the two most popular approaches to describe wind turbine performance. Figure
4.18 depicts the thrust and torque along the rotor. We can see how thrust and torque
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4.3 Simulation on NREL baseline wind turbine

(a) Thrust. (b) Torque.

Figure 4.18: Thrust (a) and torque (b) calculated by BEM and CFD at different inflow

velocities.

increase with a higher inflow velocity. The BEM theory follows the trend given by the
CFD simulations. However, almost all the cases (except U∞ = 15 m/s) overpredict
the load on the rotor, as the dashed lines show. In Figure 4.18a, we can see that the
thrust for any inflow value tends to increase throughout the rotor. Near the tip, it de-
creases because of the tip correction. For U∞ = 15 m/s, both thrust predictions agree
very well; however, BEM theory seems incapable of incorporating the load drop on edge.

Power is proportional to torque, so we can notice that the most power is generated
outboard. As shown in Figure 4.18b, near the center the thrust is almost zero. Thus,
no power is generated, which indicates that incorporating the hub correction has more
impact on the flow field than on the turbine performance. For the lowest inflow value,
the torque is small, which results in a smaller generated power amount. For U∞ = 10
m/s, BEM theory predicts a larger torque over the rotor after r/R = 0.4. When the
U∞ = 15m/s, BEM theory predicts a smaller torque and does not consider the decrease
close to the tip. For greater upstream velocities, the BEM theory can not reproduce
the tip effect, resulting in an overprediction of the output power produced in this region.

To evaluate the accuracy of the results, in Figure 4.19 the power and thrust are given
by several inflow velocities. The results from BEM theory and CFD are compared to
experimental data. The CFD computations seem to agree better with the experiments
than the BEM theory for both graphs. The power computed by CFD follows close
to the actual power curve up to U∞ = 12.5 m/s, where the power predicted is higher
than the measured. The power calculated using the BEM theory behaves more linearly,
although, at U∞ = 12.5 m/s, it starts to decrease just as the CFD results do. In order
to compare the results, a polynomial function was fitted to the experimental data, thus,
obtaining the results for the same velocities used in the simulations. After that, we can
compute the relative error, ϵ, between the three data sets for each velocity value. For
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(a) Power. (b) Thrust.

Figure 4.19: Power (a) and thrust (b) calculated by CFD and BEM theory, compared

with experimental data.

U∞ = 2.5 m/s, in the cut-in speed region (0 < U∞ ≤ 3), the relative error by CFD is
43.73 %, whilst by BEM method is 674.80 %. In this region, the BEM method predicts
smaller angles of attack than the CFD model. Therefore, minor power production is
obtained. Within the transition zone (3 < U∞ ≤ 14), for U∞ = 7.5 m/s, ϵ = 16.37
for CFD computation and ϵ = 21.18 for BEM method. Finally, in the rated output
region (14 < U∞ ≤ 18), for a wind speed U∞ = 15 m/s, the relative errors are 3.94 %
and 3.94 %, by CFD and BEM results, respectively. We can conclude that the relative
error reached by CFD computations is lower than the BEM results for several points
in each region of the power curve.

The thrust predicted by CFD follows closer to the thrust curve than the BEM theory
does. The load is greater for large inflow velocities, and both methods properly cap-
ture this. However, the results are overpredicted even if the BEM theory can drive the
thrust correctly. The relative error, ϵ, was calculated for the thrust values. In the cut-in
speed zone, for U∞ = 2.5 m/s, the thrust predicted by CFD achieves a relative error
equals to ϵ = 74.54, whilst the BEM method gets an error ϵ = 266.74. For U∞ = 7.5
m/s, within the transition zone, the CFD computation results ϵ = 2.94 and the BEM
method results ϵ = 21.76. In the rated output region, for a wind speed U∞ = 15 m/s,
ϵ = 0.41 is obtained using CFD model and ϵ = 4.96 using the BEM theory. Thus, in
general, we can conclude that the CFD model proposed gives better predictions of the
thrust than the well-known BEM theory.

The power predicted at high velocities does not completely agree with the experimental
measurements. Even the numerical models reach a local maximum around U∞ = 12.5
m/s. Different reasons can cause this disagreement, such as the difference between the
coefficients given by XFOIL and the experimental ones. Also, in the experiments, there
might be other uncertainties like the instrumentation system’s accuracy or the support
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(a) Reynolds number. (b) Attack angle.

Figure 4.20: Reynolds number (a) and attack angle (b) calculated by BEM and CFD at

different inflow velocities.

structure’s effect. Besides, this inaccuracy could be due to high Reynolds numbers and
the attack angles occurring on the blades. In order to understand the discrepancy,
Figure 4.20 illustrates the Reynolds numbers and the attack angles occurring on the
rotor in the radial direction calculated by the CFD model and the BEM theory. Both
methods tend to coincide. The Reynolds number grows with the inflow velocity. The
angle of attack is almost constant after r/R = 0.2 for all the upstream velocities, and
it increases with the incoming velocity. In general, when the airfoils are under a large
Reynolds number and have high attack angles, the flow on the upper surface starts to
detach, driving to the stall region, which results in a turbulent flow that affects the
wind turbine rotor performance. Therefore, it is important to have reliable airfoil data
incorporating the turbulent effect. Moreover, the result errors for large inflow velocities
could be due to the lack of a turbulent term in the model. It would be necessary to
explore the application of a turbulent model to predict this region where the dissipation
can be more important than the current flow.

In conclusion, the CFD model can predict the loads and interference factors through-
out the rotor. The velocities behavior on the rotor varies depending on the incoming
speeds. Besides, the axial loads tend to increase to the tip and then fall because of tip
correction. The tangential loads remain constant on the most rotor for U0 ≤ 10 and
decrease at the tip. In the cut-in speed and the transition zone, the power and thrust
predicted by CFD have a smaller error than the BEM method results . In the rated
output region, the power error resulting from the CFD model becomes higher.
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(a) Axial dimensionless force. (b) Tangential dimensionless force.

Figure 4.21: Axial (a) and tangential (b) dimensionless forces imposed for the baseline

turbine for U∞ = 10 m/s.

4.3.1 Flow field properties

One of the advantages of applying the CFD analysis is to visualize the flow around the
rotor, the wake expansion, and the recovered velocity. Here, we present some flow field
properties for U∞ = 10 m/s as a general view of the flow. To show the difference in the
force imposed on the flow field considering a constant load on the rotor and an actual
wind turbine rotor aerodynamics. Figure 4.21 displays the dimensionless forces in the
axial and tangential directions. We can see that no force is imposed near the root of
the rotor in both directions because of the hub correction. The axial force seems to be
constant from where the lifting surface on the rotor begins up to the tip (see Figure
4.21a). The implementation of the hub correction constrains the axial force to be zero
on the center of the rotor, which could not be completely correct since the hub presence
must impose a force on the flow. Moreover, the tangential force changes along the radial
direction. The maximum is obtained on the inboard sections, and then it decreases as
it gets closer to the tip (see Figure 4.21b). We must highlight that negative values of
the tangential forces are achieved near the root, which might be produced because of
using a cylinder on the representation of the hub and the hub correction itself.

The complete velocity field for the whole domain is shown in Figure 4.22. The rotor
is set at x = 3R, and the free stream normalizes the velocity. We can see how the
velocity decreases about one radius in front of the rotor, and then a velocity transition
zone begins up to the rotor plane. This zone consists of a velocity gradient because of
the forces imposed on the rotor plane. The shape of this region depends on the way
to interpolate the forces occurring on the rotor, for this case given by Eq. 3.37. The
hub correction is more relevant near the center at r/R = 0; thus, the forces take a
small value on this area. It causes a gap between the symmetry axis and the first force
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imposed, for which the flow tries to pass, increasing its velocity. After this zone, the
force starts to be imposed, and the flow is decelerated. The velocity decreases through-
out the rotor to the tip, where a fast transition zone occurs. Off the rotor, the flow is
accelerated in the radial direction, and it tries slowly to recover its original value while
it gets away from the rotor. In this model, the presence of the rotor can disturb the
flow of several radii around, which indicates that if more wind turbines were behind,
their performance would be affected.

The streamlines for U∞ = 10 m/s are displayed in Figure 4.23. It is easy to note the
wake expansion behind the rotor and the flow increment above it. Close to the rotor
plane, the streamlines change their direction, becoming more sloped on the edge.

We examine the vorticity field in Figure 4.24. We can see the opposite sign of the
vorticity within the inner root layer and outer tip layer. The increment in velocity near
the symmetry axis line, as shown in 4.22, results in a vortex shed in the inner region.
The tip sheds a second vortex, and it expands and gets smoother while it travels behind
the rotor. The dissipation of the vorticity is not completely captured in the model pre-
sented in this work because of the lack of a turbulent term; however, the most relevant
phenomenon is predicted as the tip vortex.

The velocity must be recovered some radii downstream in an actual real flow passing
a wind turbine rotor. The latter has an important impact on the performance of the
turbines located inside the wake of another rotor. To know how the flow recovery
is, Figure 4.25 shows the distribution of the axial, radial, and tangential velocities at
various downstream locations using three different inflow values. The axial velocity
along the rotor is notably constant for U∞ = 15 m/s, but this constant value is lost

Figure 4.22: Velocity field for U∞ = 10 m/s. The disc is represented by a straight line.
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Figure 4.23: Streamlines for U∞ = 10 m/s. The disc is represented by a straight line.

Figure 4.24: Vorticty field for U∞ = 10 m/s. The disc is represented by a straight line.

when the inflow velocity decreases (see Figure 4.25a). Any remarkable change in the
axial velocity is found downstream. In Figure 4.25b, we can see that the rotor presence
perturbs the radial velocity five radii downstream, mostly on the tip region. However,
it reduces its value by some radii until it achieves approximately zero at x = 12.9R.
Figure 4.25c shows that the tangential velocity can reach negative values in the inner
section for a small inflow. The flow decrease is more remarkable on the maximum of
each plot, e.g., for U∞ = 15 m/s, the maximum near r/R = 0.2 is above 0.3, but some
radii downstream, it decreases below this value. All the downstream velocities seem to
be unable to recover the original values completely. Only the radial velocity regains
the upstream velocity; however, this is hardly perturbed by the rotor.
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As seen, the presented model can reproduce the characteristics of the flow around the
rotor. It is appreciated how the wake expands and the speed increases outside the
rotor. Also, about one radius ahead of the rotor, the flow decelerates. On the other
hand, a vortex shed is seen at the edge of the rotor, which expands and fades several
radii behind. This vortex is caused by the velocity gradient generated near the edge,
where the flow over the rotor joins the freestream flow. All these elements are essential
to evaluate the performance of turbines interacting with each other and optimize the
array of wind turbines.
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(a) Axial velocity.

(b) Radial velocity.

(c) Tangential velocity.

Figure 4.25: Distributions of axial (a), radial (b) and tangential (c) velocities at various

downstream locations for three inflow values (red: U∞ = 5 m/s, green: U∞ = 10 m/s,

blue: U∞ = 15 m/s).
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4.3.2 Hub correction assessment

The hub and nacelle have an impact on the downstream wake behind the rotor, as is
investigated by Naderi and Torabi [41]. These two parts represent a solid body that
imposes a force on the fluid, which should stop it. However, the hub’s influence on
the CFD models is usually not taken into account since the power generation on the
blades’ inner region is minimal. In this model, the actual hub geometry is not consid-
ered; however, to get over this obstacle, a hub correction is implemented to consider the
behavior of the center of the rotor of the flow field. Nevertheless, the hub correction is
applied in both force directions, which could not completely represent the interaction
between the rotor and the flow since the maximum axial force should be in the center
of the rotor due to the presence of the rigid body of the hub. Besides, the tangential
force should decrease because of the small force implemented by the hub rotation.

A similar need for having an independent tip loss factor for each force has been studied
by Pirrung et al. [42]. To evaluate the hub loss factor for each force direction, this was
implemented for U∞ = 10 m/s in three different ways: in both force directions, in the
axial force direction only, and without hub correction. Applying the hub loss function
just in the axial direction is not necessary to follow the Eqs. 2.48 and 2.49. Instead of
implementing the correction on the lift and drag coefficients, it is incorporated directly
into the equations for forces as

fx =
1

4πrdx
BρV 2

relc(CLcosϕ+ CDsinϕ)Ftip (4.1)

fr = 0 (4.2)

fθ =
1

4πrdx
BρV 2

relc(CLsinϕ− CDcosϕ)FhubFtip (4.3)

And the thrust and power are computed following

Thrust = T =
1

2
ρB

k=N∑
k=1

V 2
relk

ck(CLkcosϕk + CDksinϕk)drkFtip (4.4)

Power = P =
1

2
ρBΩ

k=N∑
k=1

rkV
2
relk

ck(CLkcosϕk + CDksinϕk)drkFhubFtip (4.5)

The forces acting on the rotor should be different from those presented previously,
except for the one corrected in both directions. The comparison between the force
distribution is shown in Figure 4.26. The main difference is around the root, up to
r/R = 0.15. Applying the hub correction makes the axial force lower in the region
where the hub should be (see Figure 4.26a). Opposite to this, without hub correction,
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(a) Axial force. (b) Tangential force.

Figure 4.26: Axial (a) and tangential (b) force in the radial direction. (B-HC: Both

force directions corrected; T-HC: Just tangential direction corrected; W-HC: Both force

directions without correction).

the axial force is greater, which corresponds more with the presence of the hub. As seen
in Figure 4.26b, the tangential force reduces to zero at the center, considering the less
force that the hub should impose. The tangential force is lower in the inner spanwise
when the hub correction is not applied.

A comparison between the velocities obtained is shown in Figure 4.27. The velocity
near r/R = 0 applying the correction in both directions is greater than the others (see

(a) Axial velocity. (b) Tangential velocity.

Figure 4.27: Axial (a) and tangential (b) velocity in the radial direction. (B-HC: Both

force directions corrected; T-HC: Just tangential direction corrected; W-HC: Both force

directions without correction).

52



4.3 Simulation on NREL baseline wind turbine

Figure 4.27a). As was mentioned, the velocity must decrease in this region because
of the rotor presence. Around r/R = 0.1, the axial velocity tends to increase, almost
reaching the upstream velocity. Out of the hub region, the behavior for all the cases
is similar. On the other hand, in Figure 4.27b, the tangential velocity is affected when
no correction is applied; therefore, it achieves lower values in this region, which means
that the force is less there. The hub correction reduces the tangential force on the hub,
so the tangential velocity is not incremented. Besides, not applying the hub correction
in the axial direction increases the force in this direction, so the axial velocity decreases.

The axial velocity flow field imposing the several configurations of the tip correction
can be appreciated in Figure 4.28. The flow fields are similar when the hub loss factor
is set for just the tangential direction and with no correction. Figure 4.28a shows that
the velocity in the center of the rotor is incremented when the hub correction is applied
in the axial direction; this corresponds to the fact that no solid body stands in the
way of the flow. Moreover, the flow is disrupted when the hub correction is missing,
reducing the velocity of the center. There is a need to incorporate a new hub correction
that analytically can reproduce the actual presence of the hub. Otherwise, considering
the real geometry of the hub and nacelle, although it requires a more complex model.
According to Yang and Sotiropoulos [18] and Naderi and Torabi [41], when the hub and
nacelle are incorporated into the model, it is noted the reduction of the velocity on the
center of the rotor. This reduction is alike to the behavior found by not implementing
the hub correction in the axial direction, as seen in Figures 4.28b and 4.28c. Both the
hub and the nacelle represent an obstacle to the fluid and affect the flow field behind
the rotor.
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(a) Hub correction in both directions.

(b) Hub correction just in tangential direction.

(c) Without hub correction.

Figure 4.28: Axial velocity applying hub correction in both directions (a), just tangential

direction (b) and without correction (c). The flow field is mirrored to appreciate the hub

interaction. The disc is represented by a straight line.
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Chapter 5

Conclusions

This thesis presents the numerical simulation of the rotor’s aerodynamics of a hori-
zontal axis wind turbine. The study is based on the actuator disc concept, the blade
element theory, the immersed boundary method, and the Navier-Stokes equations for
an incompressible and approximately inviscid fluid with axial symmetry.

First, a study of the numerical domain is researched to reduce the time of the simu-
lations. The results showed that the radial length is more important than the axial
length. The axial factor taken as the test parameter oscillates inside a small range of
values from a certain radial length, namely, LR = 6R. Besides, varying the axial length
beyond ten radii behind the rotor has no major effect on the results. The computa-
tional time is studied to know when the steady-state is obtained. The results showed
that the flow gets stable at t∗ = 20. After this value, the results are roughly similar.
Thus, the computational time can be constrained to save computational time.

In order to assess the CFD model, this was compared against the one-dimensional mo-
mentum theory results, taking the same initial conditions. The results showed that
the axial factor is constant in almost all tests, but near the tip, it increases, and the
velocity tends to recover the upstream velocity. The velocity gradient occurring on
the tip induces a vortex shed, which expands and dissipates behind the rotor. The
vortex shed should be deeper studied to understand the interaction with other rotors
in a wind farm. Moreover, we found that the velocity decreases behind the rotor while
the wake expands. The one-dimensional momentum theory neglects the radial velocity
variation on the rotor plane. However, the study shows that the radial velocity changes
on the rotor plane. Inside the Navier-Stokes equations, the radial change can modify
the velocity in other directions. Thus, the general flow field on each blade element is
disturbed. As a result, the blade element properties change, and the wind turbine’s
general performance is affected. Therefore, we can conclude that the one-dimensional
theory does not completely consider the actual flow behavior occurring on the rotor.

A CFD model is proposed to simulate the wind turbine rotor aerodynamic performance
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under several incoming velocities. The actual geometry of the baseline NREL wind tur-
bine was used. The axial velocity remains constant on most of the rotor for velocities
above 10 m/s. Near the tip, the axial velocity tends to recover the upstream inflow
speed. For all the different upstream velocities, the tangential velocity shows an incre-
ment until where the lifting surface is, then it starts to decrease to zero. The maximum
tangential velocity occurs roughly on the transition from the cylinder to the airfoil.
The computed axial forces show an increment throughout the rotor, but these declines
close to the tip. Besides, the tangential forces remain constant throughout the rotor for
lower incoming velocities. On the other hand, the tangential force tends to be unstable
throughout the rotor when the upstream speed grows. Thus, the proposed model pro-
vides information about the loads on the rotor and can be used to optimize the blade
geometry. The power production and the thrust predicted are compared against BEM
results and experimental data. The power predicted by the CFD model agrees better
than the BEM results. CFD model achieves up to a relative error of 43.73% in the cut-
in speed region, while the BEM method results in a relative error of 674.80%. In the
transition zone, for U∞ = 7.5 m/s, the relative errors are 16.37% and 21.18% for the
CFD model and the BEM method, respectively. In the rated output region, the power
is similar in both results. The minimum error within the entire thrust curve obtained
for the CFD model is 74.54%, while for the BEM method is 266.74%. Therefore, the
computational model presented becomes a tool more reliable than the BEM method
commonly used to predict the performance of a wind turbine rotor. Nevertheless, both
power and thrust resulting from the CFD model deviate for larger inflow velocities than
12 m/s. In this last region of larger inflow speeds, the turbulent effects can be more
important in the flow behavior and, therefore, rotor performance. Because of that, it
becomes necessary to explore a turbulence model to incorporate the actual physics of
the flow.

An assessment of the hub correction is presented. Incorporating the hub correction
into the force equations increases the axial velocity in the zone near the rotor cen-
ter. However, the axial velocity decreases when the hub correction is missing, which
agrees with the lower velocity expected due to the presence of a solid body such as
the hub. Although the power generated in the center of the rotor is minimal, the flow
field prediction can be affected by the correct modeling of the hub. Therefore, deeper
incorporation of the hub should be studied.

There are still unsolved problems with the dynamic of a wind turbine rotor. The numer-
ical tool developed in this work aims to predict the rotor performance and understand
the main phenomena occurring in the flow field. This work is the first step to modeling
the interaction of wind turbines in wind farms. The complexity of the problem, such
as the turbulence, demands new approaches to understanding the physics behind the
flow to adapt solutions to actual applications.

56



Appendix A

Supplementary data

A.1 Airfoil data

Table A.1: S809 airfoil data.

α CL CD α CL CD α CL CD

-180 -0.0361 0.0060 -158 0.5495 0.2363 -136 0.7014 0.7958
-179 0.0577 0.0065 -157 0.5657 0.2566 -135 0.6974 0.8243
-178 0.1474 0.0080 -156 0.5812 0.2775 -134 0.6925 0.8528
-177 0.2257 0.0105 -155 0.5959 0.2990 -133 0.6867 0.8812
-176 0.2837 0.0140 -154 0.6099 0.3212 -132 0.6800 0.9095
-175 0.3176 0.0185 -153 0.6229 0.3441 -131 0.6725 0.9378
-174 0.3322 0.0240 -152 0.6352 0.3675 -130 0.6641 0.9659
-173 0.3367 0.0304 -151 0.6465 0.3914 -129 0.6548 0.9938
-172 0.3388 0.0379 -150 0.6569 0.4159 -128 0.6448 1.0215
-171 0.3429 0.0462 -149 0.6663 0.4409 -127 0.6340 1.0490
-170 0.3502 0.0556 -148 0.6748 0.4663 -126 0.6224 1.0762
-169 0.3607 0.0659 -147 0.6824 0.4922 -125 0.6100 1.1031
-168 0.3740 0.0771 -146 0.6890 0.5184 -124 0.5969 1.1296
-167 0.3893 0.0892 -145 0.6946 0.5451 -123 0.5831 1.1558
-166 0.4061 0.1022 -144 0.6992 0.5720 -122 0.5687 1.1816
-165 0.4238 0.1161 -143 0.7029 0.5993 -121 0.5535 1.2069
-164 0.4421 0.1308 -142 0.7055 0.6268 -120 0.5378 1.2317
-163 0.4606 0.1464 -141 0.7072 0.6546 -119 0.5214 1.2561
-162 0.4790 0.1628 -140 0.7080 0.6826 -118 0.5044 1.2799
-161 0.4973 0.1801 -139 0.7078 0.7107 -117 0.4869 1.3032
-160 0.5152 0.1981 -138 0.7066 0.7390 -116 0.4688 1.3259
-159 0.5326 0.2168 -137 0.7044 0.7674 -115 0.4502 1.3479

Continued on next page
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α CL CD α CL CD α CL CD

-114 0.4312 1.3694 -73 -0.4508 1.4994 -32 -0.6174 0.4654
-113 0.4117 1.3901 -72 -0.4677 1.4831 -31 -0.6069 0.4399
-112 0.3917 1.4102 -71 -0.4841 1.4660 -30 -0.5959 0.4148
-111 0.3706 1.4296 -70 -0.5000 1.4481 -29 -0.5843 0.3902
-110 0.3499 1.4482 -69 -0.5153 1.4295 -28 -0.5723 0.3661
-109 0.3288 1.4661 -68 -0.5301 1.4101 -27 -0.5598 0.3425
-108 0.3074 1.4831 -67 -0.5443 1.3901 -26 -0.5471 0.3195
-107 0.2857 1.4994 -66 -0.5579 1.3693 -25 -0.5341 0.2971
-106 0.2638 1.5149 -65 -0.5710 1.3478 -24 -0.5211 0.2752
-105 0.2415 1.5295 -64 -0.5834 1.3258 -23 -0.5082 0.2540
-104 0.2191 1.5432 -63 -0.5952 1.3031 -22 -0.4958 0.2333
-103 0.1965 1.5561 -62 -0.6064 1.2798 -21 -0.4842 0.2132
-102 0.1737 1.5681 -61 -0.6170 1.2560 -20 -0.4741 0.1938
-101 0.1507 1.5792 -60 -0.6269 1.2316 -19 -0.4663 0.1749
-100 0.1277 1.5894 -59 -0.6362 1.2068 -18 -0.4622 0.1565
-99 0.1045 1.5986 -58 -0.6448 1.1814 -17 -0.4637 0.1385
-98 0.0813 1.6069 -57 -0.6527 1.1557 -16 -0.4739 0.1208
-97 0.0581 1.6142 -56 -0.6599 1.1295 -15 -0.4974 0.1032
-96 0.0348 1.6206 -55 -0.6664 1.1029 -14 -0.5407 0.0855
-95 0.0116 1.6260 -54 -0.6722 1.0760 -13 -0.6104 0.0676
-94 -0.0117 1.6305 -53 -0.6774 1.0488 -12 -0.7073 0.0500
-93 -0.0348 1.6339 -52 -0.6818 1.0213 -11 -0.8124 0.0341
-92 -0.0579 1.6364 -51 -0.6854 0.9936 -10 -0.8796 0.0227
-91 -0.0808 1.6379 -50 -0.6884 0.9657 -9 -0.8691 0.0167
-90 -0.1037 1.6384 -49 -0.6906 0.9376 -8 -0.7897 0.0147
-89 -0.1264 1.6379 -48 -0.6921 0.9093 -7 -0.6785 0.0141
-88 -0.1489 1.6364 -47 -0.6929 0.8809 -6 -0.5607 0.0138
-87 -0.1712 1.6339 -46 -0.6929 0.8525 -5 -0.4437 0.0085
-86 -0.1932 1.6304 -45 -0.6922 0.8240 -4.5 -0.3806 0.0096
-85 -0.2151 1.6260 -44 -0.6908 0.7955 -4 -0.3230 0.0098
-84 -0.2367 1.6206 -43 -0.6886 0.7670 -3.5 -0.2646 0.0102
-83 -0.2579 1.6142 -42 -0.6857 0.7386 -3 -0.2056 0.0103
-82 -0.2789 1.6069 -41 -0.6820 0.7103 -2.5 -0.1466 0.0103
-81 -0.2996 1.5986 -40 -0.6776 0.6821 -2 -0.0878 0.0104
-80 -0.3199 1.5893 -39 -0.6725 0.6541 -1 0.0302 0.0104
-79 -0.3398 1.5792 -38 -0.6667 0.6263 -0.5 0.0888 0.0105
-78 -0.3594 1.5681 -37 -0.6602 0.5987 0 0.1473 0.0106
-77 -0.3786 1.5561 -36 -0.6530 0.5714 0.5 0.2058 0.0107
-76 -0.3973 1.5432 -35 -0.6450 0.5444 1 0.2650 0.0107
-75 -0.4156 1.5294 -34 -0.6365 0.5177 1.5 0.3234 0.0109
-74 -0.4335 1.5148 -33 -0.6272 0.4914 2 0.3817 0.0111
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A.1 Airfoil data

α CL CD α CL CD α CL CD

2.5 0.4416 0.0109 32 0.8830 0.4594 73 0.6733 1.5235
3 0.5023 0.0106 33 0.8917 0.4864 74 0.6486 1.5394
3.5 0.5634 0.0102 34 0.9005 0.5138 75 0.6231 1.5544
4 0.6242 0.0097 35 0.9093 0.5415 76 0.5968 1.5686
4.5 0.6847 0.0093 36 0.9180 0.5695 77 0.5698 1.5818
5 0.7433 0.0091 37 0.9263 0.5978 78 0.5420 1.5942
5.5 0.8010 0.0089 38 0.9343 0.6263 79 0.5135 1.6056
6 0.8469 0.0093 39 0.9418 0.6550 80 0.4844 1.6161
6.5 0.8728 0.0113 40 0.9487 0.6839 81 0.4546 1.6256
7 0.9015 0.0128 41 0.9551 0.7129 82 0.4242 1.6341
7.5 0.9292 0.0139 42 0.9608 0.7420 83 0.3932 1.6417
8 0.9525 0.0148 43 0.9657 0.7713 84 0.3618 1.6483
8.5 0.9753 0.0160 44 0.9699 0.8005 85 0.3298 1.6539
9 0.9944 0.0175 45 0.9732 0.8298 86 0.2974 1.6584
9.5 1.0100 0.0196 46 0.9758 0.8591 87 0.2646 1.6620
10.5 1.0580 0.0237 47 0.9774 0.8883 88 0.2314 1.6646
11 1.0782 0.0263 48 0.9782 0.9174 89 0.1979 1.6661
11.5 1.0864 0.0299 49 0.9780 0.9465 90 0.1641 1.6667
12 1.0981 0.0333 50 0.9769 0.9753 91 0.1300 1.6662
12.5 1.1032 0.0374 51 0.9748 1.0040 92 0.0958 1.6647
13 1.1106 0.0412 52 0.9717 1.0325 93 0.0614 1.6622
13.5 1.1108 0.0461 53 0.9676 1.0607 94 0.0269 1.6586
14 1.1174 0.0506 54 0.9625 1.0886 95 -0.0076 1.6541
14.5 1.1255 0.0551 55 0.9564 1.1162 96 -0.0422 1.6486
15 1.1295 0.0602 56 0.9492 1.1435 97 -0.0768 1.6420
16 1.0746 0.0868 57 0.9411 1.1704 98 -0.1112 1.6345
17 1.0224 0.1053 58 0.9319 1.1968 99 -0.1455 1.6260
18 0.9764 0.1250 59 0.9216 1.2228 100 -0.1797 1.6165
19 0.9380 0.1456 60 0.9104 1.2484 101 -0.2137 1.6061
20 0.9074 0.1668 61 0.8981 1.2734 102 -0.2473 1.5948
21 0.8841 0.1887 62 0.8847 1.2978 103 -0.2807 1.5825
22 0.8673 0.2111 63 0.8704 1.3218 104 -0.3137 1.5693
23 0.8560 0.2339 64 0.8550 1.3451 105 -0.3463 1.5552
24 0.8493 0.2572 65 0.8386 1.3677 106 -0.3784 1.5402
25 0.8464 0.2810 66 0.8213 1.3898 107 -0.4101 1.5244
26 0.8465 0.3052 67 0.8029 1.4111 108 -0.4412 1.5077
27 0.8491 0.3299 68 0.7836 1.4317 109 -0.4717 1.4902
28 0.8537 0.3549 69 0.7634 1.4516 110 -0.5016 1.4719
29 0.8596 0.3805 70 0.7422 1.4708 108 -0.4412 1.5077
30 0.8667 0.4064 71 0.7201 1.4892 109 -0.4717 1.4902
31 0.8746 0.4327 72 0.6971 1.5067 110 -0.5016 1.4719
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A. SUPPLEMENTARY DATA

α CL CD α CL CD α CL CD

111 -0.5309 1.4528 135 -0.9432 0.8344 159 -0.6713 0.2181
112 -0.5594 1.4330 136 -0.9455 0.8054 160 -0.6481 0.1992
113 -0.5871 1.4124 137 -0.9465 0.7765 161 -0.6245 0.1810
114 -0.6141 1.3912 138 -0.9462 0.7476 162 -0.6005 0.1637
115 -0.6430 1.3692 139 -0.9446 0.7188 163 -0.5762 0.1471
116 -0.6682 1.3466 140 -0.9417 0.6902 164 -0.5518 0.1314
117 -0.6926 1.3234 141 -0.9376 0.6618 165 -0.5273 0.1166
118 -0.7160 1.2996 142 -0.9322 0.6335 166 -0.5030 0.1026
119 -0.7384 1.2752 143 -0.9256 0.6055 167 -0.4790 0.0895
120 -0.7598 1.2503 144 -0.9177 0.5778 168 -0.4555 0.0773
121 -0.7802 1.2249 145 -0.9086 0.5505 169 -0.4328 0.0661
122 -0.7995 1.1990 146 -0.8984 0.5234 170 -0.4110 0.0557
123 -0.8177 1.1727 147 -0.8870 0.4968 171 -0.3903 0.0464
124 -0.8348 1.1459 148 -0.8744 0.4706 172 -0.3708 0.0379
125 -0.8508 1.1188 149 -0.8607 0.4448 173 -0.3520 0.0305
126 -0.8656 1.0914 150 -0.8460 0.4195 174 -0.3330 0.0240
127 -0.8792 1.0636 151 -0.8302 0.3947 175 -0.3116 0.0185
128 -0.8916 1.0356 152 -0.8134 0.3704 176 -0.2842 0.0140
129 -0.9027 1.0073 153 -0.7956 0.3467 177 -0.2457 0.0105
130 -0.9126 0.9788 154 -0.7769 0.3237 178 -0.1917 0.0080
131 -0.9213 0.9501 155 -0.7573 0.3012 179 -0.1208 0.0065
132 -0.9287 0.9213 156 -0.7369 0.2794 180 -0.0361 0.0060
133 -0.9348 0.8924 157 -0.7157 0.2583
134 -0.9396 0.8634 158 -0.6938 0.2378
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A.2 Blade geometry

A.2 Blade geometry

Table A.2: Blade geometry of NREL Baseline.

Radius (m) Chord (m) Twist (◦) Radius (m) Chord (m) Twist (◦)

0.096 0.218 0.000 2.606 0.600 3.574
0.221 0.218 0.000 2.732 0.588 3.048
0.347 0.218 0.000 2.857 0.575 2.569
0.472 0.218 0.000 2.983 0.562 2.131
0.598 0.218 0.000 3.109 0.549 1.729
0.723 0.218 0.000 3.234 0.537 1.359
0.849 0.340 29.822 3.360 0.524 1.015
0.974 0.461 27.457 3.485 0.511 0.691
1.100 0.583 24.538 3.611 0.499 0.383
1.225 0.705 21.049 3.736 0.486 0.084
1.351 0.730 17.395 3.862 0.474 -0.208
1.477 0.715 14.899 3.987 0.461 -0.493
1.602 0.702 12.615 4.113 0.449 -0.765
1.728 0.689 10.637 4.238 0.436 -1.020
1.853 0.676 8.982 4.364 0.423 -1.249
1.979 0.664 7.622 4.489 0.411 -1.446
2.104 0.651 6.510 4.615 0.398 -1.610
2.230 0.638 5.593 4.741 0.385 -1.746
2.355 0.626 4.822 4.866 0.372 -1.863
2.481 0.613 4.159 4.992 0.360 -1.970
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