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Abstract 

In this thesis are exposed different problems that exist in naturally fractured 

carbonate reservoirs near salt structures and its impact in well drilling such as pore-

pressure prediction in carbonates, geomechanics applied to carbonate reservoirs 

and pore-pressure and stress perturbation near salt structures.  

Two new pore-pressure prediction equations for carbonate formations were 

developed, these models are handy and use common well-log and geological field 

data. Model one is intended for over-pressured carbonate formations while model 

two is designed to account for depleted carbonate reservoirs. 

Naturally fractured carbonate reservoirs (NFCR) are complex mechanical systems, 

where solid matrix deformation, fluid flow through matrix and fractures and the 

deformation of the fracture network coexist. To describe de mechanical complex 

behavior of NFCR’s, a new model was built, this model couples the deformation of 

the solid with the fluid flow across two overlapping continua (matrix and fractures) 

that are interconnected by an inter-porosity exchange parameter and discrete 

fractures, the mechanical description of the fractures is addressed by contact theory; 

new results are shown.  

Additionally, six different salt rheology models are implemented to gain complete 

knowledge and understanding underneath the mechanical behavior of salt. A new 

analytical solution for a stress relaxation test is presented and a comparison of the 

main features of the models is shown. 

Finally, a more robust model that couples poroelasticity with viscoelasticity was 

developed. To build this model, a salt rheology, and the new model for NFCR were 

joined to mimic the mechanical interaction between rocks. This model is designed to 

reproduce pore-pressure and stress field anomalies near a salt structure where 

common calculation methods fail. The results show the close relationship between 

stress and pore-pressure in different well trajectories. 

 



 

 

Resumen 

En esta tesis se exponen diferentes problemas que surgen en yacimientos 

carbonatados naturalmente fracturados (YCNF) que se encuentran cercanos a 

estructuras de sal y su impacto en la perforación de pozos, dichos problemas son la 

predicción de la presión de poro en carbonatos, geomecánica aplicada a YCNF, así 

como la perturbación de presión y esfuerzos en las cercanías de estructuras de sal. 

Se desarrollaron dos modelos de predicción de presión de poro para carbonatos los 

cuales son prácticos de usar y requieren información básica de campo sobre 

registros geofísicos y datos geológicos. El modelo uno está diseñado para calcular 

la presión de poro en carbonatos sobre presionados y el modelo dos calcula la 

presión de poro en yacimientos carbonatados depresionados. 

Los YCNF son sistemas mecánicos complejos donde coexisten la deformación del 

sólido de la matriz, el flujo de fluidos en matriz y fracturas, y la deformación de la 

red de fracturas. Para describir el comportamiento mecánico se construyó un 

modelo acoplado de la deformación del sólido, el flujo de fluidos a través de dos 

continuos sobre puestos (matriz y fracturas) interconectados por un parámetro de 

intercambio interporoso y por fracturas discretas, dónde la mecánica de la fractura 

discreta fue modelada con teoría de mecánica de contacto. Se muestran nuevos 

resultados derivados de este modelo. 

Adicionalmente, se implementaron seis modelos reológicos de sal para obtener un 

entendimiento completo de la mecánica de la sal. Se muestra una nueva solución 

analítica para una prueba de relajación de esfuerzo, así como una comparativa de 

las características más importantes de los modelos. 

Finalmente, se desarrolló un modelo que acopla un modelo de reología de la sal con 

el nuevo modelo para YCNF con el fin de representar la interacción mecánica entre 

distintas rocas. Con este modelo se pueden reproducir anomalías de presión de 

poro y del campo de esfuerzos en las cercanías de una estructura de sal. Se 

muestran nuevos resultados a lo largo de diferentes trayectorias de pozos. 
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1. Introduction 

This research project is aimed to shed light to physical phenomena that occur in 

naturally fractured carbonate reservoirs near salt structures, and how it impacts well 

drilling.  

Some promising topics regarding the subject-matter of this thesis are discussed 

next. 

1.1. Pore-Pressure in Carbonates 

The correct prediction of pore-pressure is vital for reservoir modeling and drilling 

engineering. Pore-pressure is a production mechanism that allow hydrocarbons to 

flow out of the well, it affects petrophysical properties and has impact on the rock 

strength. The extraction of fluid leads to a decrease in pore-pressure, fluid content, 

pore volume and consequently in porosity. The main release source of stored liquid 

in the rock pores is due to porosity reduction (Bundschuh & Suárez-Arriaga, 2010; 

Suárez-Arriaga, 2022). Prediction of this physical property in carbonates is difficult; 

over-pressure generation in carbonates is originated by many factors, such as 

compaction disequilibrium, tectonics, kerogen transformation, chemical reactions 

among others, that can be presented solely or in combination.  

Commonly pore-pressure methods are intended to address over-pressure in 

different rock types, which are not meaningful when dealing with carbonates. 

There are previously known methods to compute pore-pressure in carbonates, but 

the main disadvantage is the need of special core analysis (SCAL). To obtain SCAL 

data, highly expensive laboratory tests must be performed; therefore, this type of 

information is scarce.  

For these reasons there is an opportunity area to develop a pore-pressure prediction 

method for carbonates that could be combined with common oilfield knowledge.  
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1.2. Geomechanics Applied to Carbonate Reservoirs 

The mechanical interaction of a cemented porous matrix, a network of flow channels 

such as fractures of many scales, vuggy cavities, and the fluid flow is a coupled 

physical phenomenon that occurs in naturally fractured reservoirs (NFR). 

NFR are complex and present a discontinuous nature, therefore fluid dynamics 

theory in porous media must be jointly studied with rock mechanics; this conjunction 

led to the development of poroelasticity theory (Biot, 1941). 

To improve the physical description of NFR, many conceptual models have been 

developed, that can be divided into multi-continuum models and geometrical 

representations of the fractured porous media, as shown by Fig. 1.1 (Berre et al., 

2019). 

 

Fig. 1.1 ― Different conceptions of naturally fractured porous rock (modified from Berre et al., 2019). 

Fig. 1.1 shows a graph where the representation of the porous medium and fractures 

is contrasted, the real fractured porous rock medium is the goal of every model; 
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therefore, it is located at the top right. Single-continuum poorly illustrates the 

fractures, but its porous representation is better. The multi-continuum model 

presents a good description of the porous medium, specially of fractures regarding 

the single-continuum. The discrete fracture model (DFM) increases the 

characterization of the fractures and enhances the depiction of the porous medium 

in comparison with the single-continuum. Finally, the discrete fracture network (DFN) 

is the model that best describes the fractures but flaws entirely in the description of 

the porous medium.  

The conceptual models cited in Fig. 1.1 do not consider geomechanics, hence, the 

incorporation of poroelasticity and moving towards the direction pointed by the red 

arrow in Fig. 1.1 will improve the description of naturally fractured carbonate 

reservoirs mechanically and hydraulically. 

1.3. Pore-pressure and Stress Perturbation in Carbonate 

Rocks Near Salt Structures 

Salt rocks are viscous in the geological time scale and do not behave as common 

sedimentary rocks considered as poroelastic (follows Biot’s theory), or poro-elasto-

plastic materials (behave according to Biot’s theory and include a failure criterion). 

The mechanical response of salt to stress-strain and thermal conditions depends on 

the salt rheology.  

Salt due to its viscous nature, generates relaxation of the stress field in its outer limit, 

the vicinity, leading to a zone of influence in the adjacent porous rocks, where pore-

pressure and the stress field experience a distortion, that wouldn’t be present in 

absence of the salt rock.  

Previous research projects have shown that the stress field perturbation extends 

kilometers away from the salt flank in idealized geometries, and even though some 

applications of directional drilling are to avoid geological hazards such as salt domes, 

directional well trajectories face the stress field perturbation and pore-pressure 

distortion, increasing risks and uncertainties due to the inherent complexity of this 
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physical phenomenon. Additionally, if a carbonate NFR is nearby, the physical 

complications rise sharply. 

Therefore, the study of the influence of salt in stress and pressure in NFR in a more 

realistic geometry where oilfield measured data is matched, is a promising task. 

1.4. Dissertation Outline 

Every chapter is written with its own discussion regarding the state of the art, 

development of the topic, results and applications, conclusions, nomenclature, and 

references. 

Chapter 2 Pore-Pressure for Carbonates 

This chapter presents a discussion about the main sources of over-pressure 

mechanisms and accounts for some research projects focused on carbonates.  

The goals of this chapter are to develop two new pore-pressure equations for 

carbonates:  

• Model one accounts for disequilibrium compaction as the main source of over-

pressure. 

• Model two aims to predict pore-pressure in depleted reservoirs.  

It is explained a detailed methodology to apply the new pore-pressure equations and 

several application examples show new original results.  

Chapter 3 Coupled Geomechanics and Fluid Flow in Naturally Fractured Reservoirs 

This chapter presents a discussion of the state of the art of NFR models, along with 

the geometrical representation of fractures leading to the description of discrete 

fracture models. The coupling of deformation and pore-pressure of a porous domain 

is treated with the theory of poroelasticity. A discussion is presented regarding the 

finite element method and its feasibility for solving multi-physics problems, many 

free-software libraries are accounted for, where the FEniCS project (Farrel et al., 

2013; Logg et al., 2012) stands out. 
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The goal of this chapter is: 

• The development and building of a new model named Coupled 

Geomechanics Dual Porosity/Dual Permeability Discrete Fracture Model by 

Lagrange Multipliers.  

The basic and governing equations are presented, and the developed model was 

verified through five different benchmarks previously published in the literature. 

Finally, the original results of the model are shown. 

Chapter 4 Rheology of Salt Rocks 

This chapter presents a wide discussion of salt rocks and their diverse application in 

many industries, such as the oil and gas industry; in particular, the impact of salt 

structures in well drilling.  

The main goal of this chapter is: 

• To achieve a complete understanding of salt constitutive creep theory and 

models. 

This chapter accounts for the mechanical behavior of salt rock, creep response, and 

the most meaningful deformation salt mechanisms, which are fully explained. The 

basic equations of salt mechanics for six different rheological models were studied, 

implemented, and the results are shown. A new analytical solution of stress 

relaxation for the salt Power Law Model is presented. 

Chapter 5 Coupled Poroelasticity Viscoelasticity Model 

This chapter is the result of coupling the models presented in Chapter 3 and Chapter 

4; it addresses a particular discussion about hazards of wellbore drilling near salt 

structures, how the local distorted stress field and pore-pressure anomalies near salt 

affects well drilling. The coupling condition between a porous rock and salt is fully 

explained.  

The goals of this chapter are: 
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• To couple the most representative salt rheology models (studied in Chapter 

4), with the Coupled Geomechanics Dual Porosity/Dual Permeability 

Discrete Fracture Model by Lagrange Multipliers (developed in Chapter 3) in 

a conceptual simplified problem, to study the mechanical interaction between 

models and the impact of salt deformation in pore-pressure. 

• The implementation of a more robust model that allows the simulation of 

pore-pressure anomalies, encountered during drilling of a real case study 

well near a salt structure. 

This chapter presents original results; the model calibration was performed by fitting 

the calculated pore-pressure of the model with real pore-pressure measurements 

during drilling. Then results of the pore-pressure field, vertical stress field, horizontal 

stress field and displacement field are shown. Finally, four different scenarios of well 

trajectories were proposed and evaluated. 

1.5. Applications in the Oil and Gas Industry 

The applications to the oil industry of this thesis results are evident, and can be listed 

as follows: 

• Pore-pressure for Carbonates. 

It is widely known that well drilling is the most expensive activity in the development 

of an oilfield (or gasfield). Hence, diminishing uncertainties in the phase of well 

drilling design, leads to an optimal well-construction process getting closer to the 

technical limit drilling (TLD), which results in time and money savings. Both analytical 

solutions for pore-pressure prediction in carbonates work in this direction; they 

reduce the uncertainty of such physical property in carbonate formations, allowing 

the optimization of casing seats, mud selection, collapse pressure determination, 

enhancement of the operative window and the 1D geomechanical well models, 

enabling to obtain an entire pore-pressure profile along the measured depth (MD) of 

the well. This results in reaching the TLD and getting considerable savings due to 

well drilling optimization. 
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• Coupled Geomechanics and Fluid Flow in Naturally Fractured Reservoirs. 

In reservoir management, simulation is a basic tool to estimate the performance of 

the field through various numerical tests and plan the best exploitation scenario of 

any reservoir including NFRs; it helps reservoir engineers to understand the physical 

implications of such a complex mechanical system, and in the selection of the 

optimal exploitation recovery process. Many important issues, like selecting the best 

recovery process, expenses quantification, production profiles, and risk evaluation 

calculations, can be performed with the implementation of reservoir simulations. 

Therefore, a model that best suits the physical characteristics of a NFR gives more 

realistic simulation results, allowing a wider margin for decision making, and 

permitting the best exploitation plan for the reservoir.  

• Rheology of Salt Rocks. 

Knowledge of the mechanical behavior of salt rocks in the field is rather empirical 

than scientifical.  Salt diapirs are closely related to sedimentary basins where 

hydrocarbons are found; therefore, realizing the performance of a salt rock and 

knowing which variables are most influential, is of great importance, e.g., when 

drilling through a salt formation, creep arises and the drillstring could be trapped, if 

knowledge beforehand of the behavior of the salt is available, these kind of drilling 

problems are avoided. 

• Coupled Poroelasticity-Viscoelasticity Model. 

Simulation is commonly applied in reservoir engineering, but it reaches a wider range 

of petroleum engineering branches such as, in this case drilling engineering. The 

results of this model allowed the match to real pore-pressure measurements in a 

well that exhibited abnormal over-pressure near a salt diapir, where the target 

couldn’t be reached, and it had to be abandoned. Therefore, knowing in advance the 

pore-pressure and stress field near salt formations, leads to enhancement on drilling 

design that directly impacts money savings. 
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2. Pore-Pressure for Carbonates 

Pore-pressure and stress distribution are coupled; pore fluid pressure affects the 

petrophysical properties of bulk rock and is a drive mechanism for hydrocarbon 

production. Rock pore-pressure also affects the strength of the rock (faulted, 

fractured or intact). When pore-pressure higher than the normal pressure is found 

(over-pressure), it could endanger drilling operations and narrow the operative 

window (OW), constraining the drilling mud weight. On the other hand, a low pore-

pressure (under-pressure) by depletion causes reservoir deformation, subsidence 

and compaction (Zoback, 2007), leading to underbalanced drilling (UBD), which can 

result in wellbore instability (Hawkes et al., 2002).  

Many authors have defined the phenomena that cause over-pressure in sedimentary 

basins (Law, Ulmishek et al., 1998; Mitchell and Grauls, 1998; Swarbrick and 

Osborne, 1998; Atashbari et al., 2012a, 2012b; Atashbari et al., 2012). 

The over-pressure generation mechanisms can be listed as follows (Zoback, 2007; 

Atashbari, 2012b, 2016): 

a. Compaction Disequilibrium 

b. Tectonics 

c. Hydrocarbon column heights 

d. Centroid effects 

e. Kerogen transformation 

f. Thermal pressuring 

g. Osmosis 

h. Chemical reactions (i.e., dolomitization) 

For carbonates specifically, there are several research that investigated the driving 

over-pressure mechanisms in such rocks; Gretener (1982) determined that the main 

mechanism of over-pressure generation in a Central Iranian limestone field was 

Kerogen/Hydrocarbon generation; Tabari (2010) and Morley et al. (2008) found out 

that tectonics is the main source of over-pressure; they also showed that trap timing 
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and hydrocarbon migration were other contributor mechanisms at Alborz Field, 

Central Iran.  Yefei et al. (2010), studied a limestone field named Kenkiyak at 

Kazakhstan, finding a mutual influence of compaction disequilibrium, tectonic up-

lifting and hydrocarbon generation from source rock as the main over-pressure 

generation mechanisms. Japsen (1998) studied several chalk formations at the 

North Sea and discovered that compaction disequilibrium was the main source of 

over-pressure. 

2.1.  Pore-Pressure Prediction Methods 

Pressure knowledge of the fluid trapped inside rock at depth is critical for reservoir 

modeling and drilling tasks. The most used conventional pore-pressure methods flaw 

in carbonate formations and are based in sonic-wave velocity, d   exponent (a drilling 

parameters function) and formation-resistivity factors. Many of the methods are 

based on shale compaction behavior, that shows a strong relationship between pore-

pressure and normal compaction trends.  

Hottman and Johnson (1965) published a geopressure calculation method based on 

resistivity and sonic logs. Despite its acceptance, it is only applicable to Tertiary 

rocks in the Gulf of Mexico and considered compaction disequilibrium as the main 

source of over-pressure.   

Eaton (1975) published a method to calculate shale geopressure from well-logs. He 

discovered relationships between normal trend and actual values of sonic and 

resistivity logs and established the well-known empirical relationships used 

worldwide. The method is based on Terzaghi’s (1967) and Hubbert & Rubey’s (1959) 

works. He succeeded on fitting resistivity data from Hottman and Johnson’s quite 

well with an empirical exponent of 1.5. This method also considers that the main 

source of geopressure is compaction disequilibrium.  

Bowers (1995) published a different method founded on the effective stress; this 

method uses virgin and unloading curve relations to account for fluid overpressure 

and compaction disequilibrium. His work shows that the unloading curve yields 



11 
 

higher pore-pressure estimates than the virgin curve, and he also was able to 

determine a virgin curve for shale. 

The classical used methods based on shale behavior present several restrictions in 

carbonate formations and in order to be applicable to such rocks, they must be 

subjected to considerable modifications (Green et al., 2016; Huffman, 2013; O’ 

Connor et al., 2010; Wang et al., 2013).  Therefore, the applicability and reliability of 

conventional methods is limited, and could lead to inaccurate pore-pressure 

calculations. For this reason, two new equations for pore-pressure prediction in 

carbonates were developed, based on the method of compressibilities published by 

Atashbari and Tingay (2012a, 2012b), Atashbari et al. (2012) and the later 

modification (Atashbari, 2016). Each of the equations proposed by this research, 

were designed to overcome the lack of specialized information required to apply the 

compressibility method, such as special core analysis (SCAL). The new equations 

are suitable to be applied with common knowledge and data from well-logs and 

geological environment. Model one considers disequilibrium compaction as the main 

source of overpressure; model two was developed to be applied in depleted 

carbonate reservoirs. 

2.2.  General Equations 

The considerations accounted to develop these methods also incorporated 

Zimmerman’s (1991) theory, originally designed to represent sandstone 

compressibility but the way used to describe the rock and the general definitions, are 

also suitable for carbonates. The general considerations are listed as follows: 

• The bulk rock is considered to be a solid material containing distributed voids. 

• The carbonate rock is composed of a homogeneous and isotropic elastic 

matrix, which has pores of different size and shape. 

• It is assumed that the rock matrix forms a network entirely connected, while 

the pores might be either connected or isolated voids.  

• The pores neither need to be homogeneously distributed nor be randomly 

oriented. 
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• The bulk rock behaves in accordance with the linear elasticity theory. Non-

linear terms are neglected. 

The analysis starts by the compressibility definitions stated by Zimmerman (1991): 

1

p

b
bc i

b c P

V
c

V P

 
= −  

 
, ……………………………………………………….…….. (2.1) 
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c

b
bp i

b p P

V
c

V P

 
=    

, ……………………………………………………………….. (2.2) 
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c

V P

 
= −  

 
, …………………………………………………….………. (2.3) 
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c

p

pp i

p p P

V
c

V P

 
=    

. …………………………………………………………........ (2.4) 

The notation indicates that the first subscript in the compressibilities refers to the 

changing volume, while the second subscript points out the pressure that varies.  

The superscript 𝑖 denotes initial conditions and b  and p  denote bulk and pore 

respectively.   

According to Geertsma (1957), any arbitrary change in bulk and pore volumes are 

given by 

p c

b b
b c p

c pP P

V V
dV dP dP

P P

   
= − +         

, ……………………………………………… (2.5) 

p c

p p

p c p

c pP P

V V
dV dP dP

P P

   
= − +         

. ………………………………..…………… (2.6) 

Dividing Eqs. 2.5 and 2.6 by i
bV  and i

pV  respectively, the bulk and porous strains are 

expressed as follows: 
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   
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. …………………….…………... (2.8) 

Eqs. 2.7 and 2.8 are the basis of the new two models proposed in this research. 

2.3.  Model One: A Pore-Pressure Equation for Carbonates 

This model is a new pore-pressure prediction equation for carbonates; it followed the 

compressibility method (Atashbari and Tingay, 2012a, 2012b; Atashbari et al. 2012). 

The main goal of this model was to overcome the lack of specialized information 

needed to apply such a method by using common field data. This model was 

published by Morales-Salazar et al. (2020). 

To continue with the analysis Eq. 2.7 was used. According with Berryman (1992), 

Brown and Korringa (1975) and after Chen (1997), the bulk compressibility when 

confining pressure varies denoted by Eq. 2.1 can be written as 

1 1

p p

b b
bc i i

b c b dP P

V V
c

V P V P

    
= − = −   

    
, ………………………………...……............ (2.9) 

where the differential pressure was defined as 

d c pP P P= − . ……………….………………...…………..…………...………… (2.10) 

Deriving Eq. 2.10, setting constant the pore-pressure to a reference pore-pressure 

as considered by Eq. 2.9, 

d cdP dP= . ……………….…………………………………………….............. (2.11) 

Substitution of Eqs. 2.9 and 2.11 into Eq. 2.7 results in 
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b b
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b d b pP P

V V
dP dP
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

   
= − +         

. ………………………….……………. (2.12) 

Considering that during drilling operations the bulk strain of a carbonate rock can be 

neglected ( 0b  ) and that the mud and the reservoir fluid pressures are balanced, 

expressing the pore-pressure changes in terms of the compressibilities and the 

differential pressure change, the next equation was obtained: 

bc
p d

bp

c
dP dP

c

 
=   
 

. ……………………………………………..……...………….. (2.13) 

Recalling some relationships defined by Zimmerman, introducing the rock matrix 

compressibility ( rc ) proposed by van Golf-Racht (1982), and performing some 

algebra, the next expression was obtained: 

2

1
p ddP dP





 −
=  

− 
, ……………………………...………………...…...……….. (2.14) 

then changing the variable pdP  for fdP  as dummy variable for integration and 

considering that the porosity is a function of pressure but will be measured from well 

logs (decoupling porosity form the procedure),  

( ) ( )

0 0

2
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p d
P z z

f ddP dP






 −
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− 
  , ………………...……………………...………..….. (2.15) 

it yields: 

2

1
p dP






 −
=  

− 
. ………………………………..………..……………………... (2.16) 

In accordance with Eaton (1969, 1972, 1975) and Atashbari and Tingay (2012a, 

2012b) and Atashbari et al. (2012), an empirical correlation exponent (  ) was 
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introduced for application in different carbonate formations, resulting in the new pore-

pressure equation for carbonates, as shown by Eq. 2.17.  

2

1
p dP








  −
=   

−  
. ……………………………………….....……….…...…… (2.17) 

The last mathematical expression is a direct improvement of Atashbari’s et al. 

(2012a, 2012b) equation. When fitting the pore-pressure computed by Eq. 2.17 with 

the correlation exponent, it must be done with actual bottomhole pressure (BHP) 

drilling measurements. If there are no available data, a correlation exponent can be 

proposed on the basis of field experience to obtain a starting pore-pressure profile, 

but it should be corrected based on real-time drilling data to avoid risks and decrease 

uncertainty.  Theoretically, the exponent   is between 0.9 and 1, this means that 

the closer to 1 the correlation exponent gets, the more representative this model is 

to reality. For values of the correlation exponent lower than 0.9, it is considered that 

the assumptions taken during the development of Eq. 2.17 are no longer valid.  

It is worthy to mention that the correlation exponent depends not only on the 

carbonate formation (our sample) but also on the units used to compute pressure 

and stress (psi, MPa, kg/cm2, bar, etc.), therefore, the correlation exponent could 

have different values. For that reason, the proposed range (0.9–1) for the correlation 

exponent   corresponds with psi units. A full discussion of Eq. 2.17 can be found in 

Morales-Salazar et al. (2020). 

2.4.  Model Two: Pore-Pressure Equation for Depleted 

Carbonate Reservoirs 

The method of compressibilites and all the later equations such as Eq. 2.17, were 

designed to compute the pore-pressure in over-pressured carbonate formations. 

Therefore, in order to be fitted in depleted carbonates, the correlating exponent has 

to be lowered down the permitted range (0.9–1), resulting in a poor approximation 

to reality; additionally, they take disequilibrium compaction as the main source of 

pore-pressure generation, which clearly it is not the case in a depleted carbonate 
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rock. In contrast, in a depleted carbonate reservoir that has been producing for a 

considerable amount of time, which caused the reservoir pressure to drop down 

below the normal pore-pressure, disequilibrium compaction is no longer in play, 

instead unloading originated by the reservoir drainage occurs. Therefore, the 

pressure derivative is considered negative and different than zero. 

Defining the differential pressure as Eq. 2.10, and taking the derivative of such 

equation considering the pore-pressure derivative different than zero ( 0pP  ), it 

results 

d c pdP dP dP= − , …………………………………………..……………………. (2.18) 

substitution of Eq. 2.18 and the four compressibilities defined from Eqs. 2.1 to 2.4 

into Eqs. 2.7 and 2.8 led to 

( )b bc d p bp pc dP dP c dP = + + , ……………………………………………………. (2.19) 

( )p pc d p pp pc dP dP c dP = + + . …………………………..………………………. (2.20) 

Considering that during well drilling operations, the bulk and pore strains of a 

carbonate rock are so small that can be neglected ( 0b   , 0p  ). Expressing the 

pore-pressure derivative in terms of a compressibilites ratio times the differential 

pressure derivative, the next expressions were obtained 
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p d p
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dP dP dP

c
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− = +  

 
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( )pc

p d p
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c
dP dP dP

c

 
− = +  

 

. …………………………………………………….. (2.22) 

Assuming a negative pore-pressure derivative ( 0pdP  ) caused by the carbonate 

reservoir depletion, this results in a change of the pore-pressure derivative sign in 

Eqs, 2.21 and 2.22,  
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= −  
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. …………………………………………………........ (2.24) 

Following a similar procedure of Eq. 2.17 (Azadpour et al., 2015; Morales-Salazar et 

al., 2020), by recalling some relationships defined by Zimmerman (1991), 

bc bp rc c c= + , …………………………………………………………………… (2.25) 

pp pc rc c c= − , …………………………………………………...……………… (2.26) 

bp pcc c= . …………………………………………………………...………… (2.27) 

and substitution of Eqs. 2.25 and 2.26 into Eqs. 2.23 and 2.24 respectively results in 

Eqs. 2.28 and 2.29:  
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; …………………………………………………... (2.29) 

then using the rock-matrix compressibility rc  defined by van Golf-Racht (1982): 

1
r pcc c

 
=  

− 
; ………………………………..………..……………………... (2.30) 

substituting Eq. 2.27 into Eq. 2.28 and Eq. 2.30 into Eqs. 2.28 and 2.29, the next 

expressions were obtained 
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Factorizing pcc  form Eq. 2.31 and 
pcc  from Eq. 2.32, simplifying them and 

performing some additional algebra 
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( )
1

1 2
p d pdP dP dP

 −
= − 

− 
. ………………………….……………………….... (2.34) 

Getting the pore-pressure derivative from both expressions 
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performing some additional algebra 
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then changing the term pdP  for a dummy variable for integration ( fdP ), 
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yields 
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Like Eq. 2.17 (Atashbari and Tingay, 2012a, 2012b; Atashbari et al., 2012; Azadpour 

et al., 2015; Eaton, 1969, 1972, 1975; Morales-Salazar et al., 2020), a correlation 

exponent can be introduced to each expression ( b , p ), for application in different 

carbonate reservoirs, as indicated by Eqs. 2.43 and 2.44. 
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3 2
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=   
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  −

=   
−  

. …………………………………………………...…… (2.44) 

The main difference between Eq. 2.43 and Eq. 2.44 is that were derived from the 

bulk (defined by Eq. 2.5) and pore volumes (stated by Eq. 2.6), respectively.  

 It is true that during carbonate reservoir depletion, bulk and pore strains are 

functions of time ( ( )b f t=  , ( )p f t= ) and can’t be neglected; hence, in order for 

the assumptions made in Eqs. 2.23 and 2.24 to be valid, the porosity in Eqs. 2.43 

and 2.44 corresponds to the depleted carbonate reservoir and differ from that shown 

in Eq. 2.17 which agrees with the initial porosity of the reservoir. As can be seen, 

Eqs. 2.43 and 2.44 are expressions to compute the depleted pore-pressure of the 
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carbonate reservoir but correspond to the bulk and porous volumes respectively. 

Therefore, the election of which equation to apply uses previous knowledge of the 

depleted carbonate and the dominating changing volume (bulk or pore). If no prior 

knowledge of the changing volume in the depleted carbonate reservoir is available, 

a different approach must be chosen and is explained as follows.  

Defining the porosity related constants (PRC) expressed in Eq. 2.41 and Eq. 2.42 

as  

2
( )

3 2
bf

−
=

−
, …………………………………………………………………  (2.45) 

1
( )

2 3
pf

−
=

−
. …………………………………….………………………….. (2.46) 

Fig. 2.1 shows a plot of Eqs. 2.45 and 2.46, represented by the red and blue lines 

respectively.   

It is shown that when 0= , ( ) 2 / 3bf =   and ( ) 1/ 2pf = ,  this means that for the 

same differential stress and exponents, the result of Eq. 2.45 will be higher than that 

given by Eq. 2.46. Fig. 2.1 also shows that both expressions equalize around 

0.38 .  For porosities greater than 0.38, Eq. 2.46 results in higher values than Eq. 

2.45. The PRC expressed by Eq. 2.46 reaches 1 when 0.5= , and results in values 

above 1 when 0.5 , but gets undetermined when 2 / 3= ; for higher porosity Eq. 

2.46 results in negative values which have no physical meaning.  In contrast, the 

PRC given by Eq. 2.45 results 1 when 1= . 
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Fig. 2.1 — Porosity vs Porosity Related Constant. 

Therefore, from Fig. 2.1 it can be stated that Eq. 2.45 varies slower with porosity 

than Eq. 2.46; this means that Eq. 2.45 is more dependent from the differential stress 

than Eq. 2.46 which varies more with porosity. It can be concluded that if the 

reservoir is not greatly depleted, so that the pore-pressure is slightly lower than the 

normal pore-pressure, Eq. 2.43 is preferred. In contrast if the reservoir is greatly 

depleted, Eq. 2.44 is recommended.  

A more general expression can be obtained by adding Eqs. 2.41 and 2.42, weighing 

the PRCs, getting the pore-pressure from the resulting equation, and giving a 

general empirical coefficient to the final expression for calibration. It yields 

( )
bp

p b b p p dP w f w f = +
 

, ………………………….…………………………  (2.47) 

where bw  and pw  correspond with the weighing factors of the PRCs (their addition 

is equal to one); bp  represents the general empirical exponent for calibration. 
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2.5.  Methodology to Apply the New Pore-Pressure 

Equations 

To use the models previously discribed (Eqs. 2.17, 2.43, 2.44 and 2.47), a general 

flow diagram was designed to ease the understanding and application. The objective 

is to provide a new tool for drilling-design activities, such as the operative window 

(OW) calculations, mud weight (MW) selection and casing seats in carbonate 

formations. 

The flow diagram shown in Fig. 2.2 displays the procedure to follow for the appliction 

of the new pore-pressure equations for carbonates previously discussed. 

First it has to be decided whether carbonate formation is overpressured or not. If the 

answer is positive (Yes) the left branch must be picked, otherwise (No) the right 

branch is chosen. 

The input data for both cases are: 

• The normal pore-pressure (
npP ) shown by Eq. 2.48. 

np wP gz= . …………………………………………………………………. (2.48) 

• A porosity log ( ) 

It is importat to clarify that the porosity corresponds with the conditions presented at 

the carbonate reservoir when performing the analysis (over-pressure or depletion), 

this means that for over-pressure the porosity log agrees with the initial porosity or 

the porosity at over-pressure conditions; on the contrary at depleted contitions, the 

porosity must be measured in the low-pressured formation. Finally, it would be 

mistaken to compute the pore-pressure of a depleted formation using geophysical 

logs that correspond to the original conditions at which the formation was discovered 

when over-pressure was present.  
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• The stress tensor ( S ) 

The second rank stress tensor is defined by Eq. (2.49). When developing a 

geomechanical analisys, the maximum horizontal stress ( HS ) and the minimum 

horizontal stress ( hS ) must be computed, measured and calibrated (Zoback, 2007). 

The vertical stress ( vS ) can be computed depending on the context of the well, if the 

well is onshore Eq. 2.50a is used, otherwise (offshore well) Eq. 2.50b is applied. 

0 0

0 0

0 0

v

H

h

S

S

S

 
 

=
 
  

S , …………………………………………………………... (2.49) 

0

( )

z

v bS z gdz=  , ……………………………………….................................  (2.50a) 

( )

w

z

v w w b

z

S gz z gdz= +  . …………………………………………………….. (2.50b) 

Similarly with the porosity log, the bulk density log ( b ) corresponds also with the 

conditions presented in the formation (over-pressure, depletion). 

The differential stress ( d ) defined in Eqs. 2.17, 2.43, 2.44 and 2.47 is calculated 

by subtracting the normal pore-pressure (
npP ) from the vertical stress ( vS ) (Eq. 2.51) 

considering the overburden as the principal maximum stress in a normal faulting 

regime (Anderson, 1951).  

nd v pS P = − , ………………………………………………………………….. (2.51) 

( )
1

tr
3 nd pP = −S I , …………………………………………………………… (2.52) 

Moreover, when developing a geomechanical model, the differential stress can be 

computed as one third of the trace of the difference between the stress tensor minus 

the normal pore-pressure times the identity tensor (Eq. 2.52); the convention 

adopted in Eq. 2.52 is similar with that proposed by Gurtin et al. (2010). 
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From Fig. 2.2 (left branch, over-pressure) it follows to set a value to the empirical 

correlation exponent , and through trial-and-error procedure, compute the pore-

pressure with Eq. 2.17. 

 

Fig. 2.2 — Methodology to apply the new pore-pressure equations. 

In contrast (right branch, depletion), it must be decided if the reservoir is hardly 

depleted, if negative (no, this implies that the pore-pressure is slightly lower than the 

normal pore-pressure), the branch corresponding with the bulk volume must be 
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chosen. Once on this branch, it comes next to set  a value to the empirical exponent 

( b ), start a tiral-and-error process and compute the pore-pressure of the depleted 

formation with Eq. 2.43. If the reservoir is greatly depleted (Yes), the center branch 

which corresponds with the pore volume must be picked. Then a value for the 

correlation exponent ( p ) must be set, and start the trial-and-error process which 

corresponds to fit Eq. 2.44 to real data. If the condition of depletion is not available 

or can’t be answerd (Unknown), the right branch is chosen (Weighted average).  The 

PRC’s ( bf  , pf ) must be computed. Next the trial-and-error procedure starts by 

stablishing values to the general correlation exponent ( bp ) and bulk and pore 

wieghts ( bw  , pw ) and computing the depleted pore-pressure with Eq. 2.47.  

A criterion to decide wich equation to use are the correlation exponents, the higher 

and closer to one they get when fitting with real drilling measurements, the more 

accurate the models are to reality. Therefore, once all the models (Eqs. 2.43, 2.44 

and 2.47) are fitted with real data, the most representative is that which presents the 

higher and closer to one exponent.  

Additionally, once an equation is chosen (Eqs. 2.17, 2.43, 2.44 and 2.47), the 

resulting pore-pressure corresponding with a specific carbonate formation is 

preferred to be fitted individualy if data is available, this means that for the same 

equation the corresponding exponent could present different values at different 

carbonate formations if real data demands it. Otherwise and in absence of enough 

oilfield information, a general value for the correlation exponent is used.  

2.6.  Application Examples 

For the present chapter, three different wells form Mexico were used: the first well is 

onshore, located in the shore flat of the Gulf of Mexico (GoM), in Tabasco State, 

Mexico. The second well is offshore, located in the GoM, near Ciudad del Carmen 

in Campeche State, Mexico. The third well is located at the Northeast part of the 

country; the well is onshore placed on the outskirts of Altamira City, in Tamaulipas 

State, Mexico.   
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The first two applications correspond to exploratory wells that presented over-

pressure. In contrast, the last application is for a development well from an old oilfield 

that has been in exploitation during several decades and presents depletion. All case 

studies were performed postmortem.  

2.6.1. Model One Case Study: Well A 

Well A is onshore; the total depth of this well is 6,911 [m] true vertical depth (TVD). 

It is located NW from Villahermosa, Tabasco State, Mexico (Fig. 2.3). 

 

Fig. 2.3 — Location of Well A. 

The stratigraphic column is listed in Table 2.1. The objective of Well A was to 

incorporate Late Jurassic Kimmeridgian reserves (1P= 7 [MMBOE], 2P = 

25[MMBOE], 3P = 304.9 [MMBOE]) and it resulted producer of 45° API oil with an 

oil production rate of 1770 [BPD]. Well A was an exploratory well. Well A opened a 

new production area with particular geological characteristics, related with the 

overlapping of an Allochthonous block over an Autochthonous block, where a 

structural trap is defined with considerable structural dimensions and important in 

situ hydrocarbon volume. 
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BLOCK AGE 

TOP 

TVDBRT 

[m] 

THICKNESS 

[m] 

Allochthonous 

Pliocene 0 811 

Upper Miocene 811 1429 

Lower Miocene 2240 580 

Oligocene 2820 110 

Salt 2930 166 

Middle Eocene 3096 479 

Lower Eocene 3575 45 

Upper Paleocene 3620 90 

Lower Paleocene 3710 17 

Upper Cretaceous 3727 483 

Middle Cretaceous 4210 90 

Lower Cretaceous 4300 252 

Uppper Jurassic Tithonian 4552 356 

Upper Jurassic Kimmeridgian 4908 414 

Autochthonous 

Eocene – Paleocene 5322 173 

Cretaceous 5495 60 

Eocene –Paleocene 5555 450 

Upper Cretaceous – Mendez 

Formation 

6005 58 

Upper Cretaceous -  S. Felipe 

Formation 

6063 71 

Upper Cretaceous – Agua Nueva 

Formation 

6134 49 

Middle Cretaceous 6183 101 

Lower Cretaceous 6284 86 

Upper Jurassic Tithonian 6370 40 

Upper Jurassic – Middle Tithonian 6410 190 

Upper Jurassic Tithoniano Middle – 

Lower 

6600 15 

Upper Jurassic Kimmeridgian 6615 296 

Total Depth 6911 -6911 

Table 2.1 — Stratigraphic Column of Well A. 

Fig 2.4 shows the well-logs used to perform this analysis. Fig. 2.4a depicts the 

stratigraphic column described in Table 2.1, where two main carbonate intervals can 

be observed, the upper interval goes from the top of the Upper Cretaceous at 3700 

[m] true vertical depth bellow rotary table (TVDBRT) to the base of the Upper 
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Jurassic Kimmeridgian 5322 [m] TVDBRT, which corresponds with the 

Allochthonous block; the lower carbonate interval (Autochthonous block) goes from 

the top of the Upper Cretaceous — Mendes Formation at 6005 [m] TVDBRT to the 

total well depth (6911 [m] TVDBRT).  

 

Fig. 2.4 — Logs of Well A. Track (a) shows the stratigraphic column, (b) gamma ray, (c) transit time, (d) resistivity, (e) 

bulk density and (f) porosity. 

Fig. 2.5a shows the vertical stress (black line), Eaton’s (1965, 1972) method (green 

line), and Bowers’ (1995) method (magenta line), Eaton’s and Bowers’ methods 

were computed to obtain the pore-pressure in shales and to illustrate their unviability 

in carbonates. The three different pore pressure profiles for carbonates (Eq. 2.17) 

correspond with a correlation exponent   of 0.933 (gray line), 0.943 (light blue line) 

and 0.953 (orange line) respectively.  
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Fig. 2.5 — (a) The new pore-pressure equation (Eq. 2.17) with different correlation exponents and MW, and (b) the 

OW defined by the Pp, Pfr, and Sv calibrated with drilling events such as LOTs, fluid loss, and gas influx for Well A. 

The mud weight (MW) used for drilling well A is defined by the maroon line. The gas 

influxes that occurred during drilling are depicted by yellow circles and were used as 

a calibration parameter of pore-pressure. Casing seats are shown to the right and 
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the stratigraphic column to the left of each plot. The water density considered to 

compute the normal pore pressure was 1.07 [gr/cm3].  

To compute the pore-pressure of Tertiary rocks the sonic log (Fig 2.4c) was used in 

the two different blocks described before.  The first is the Tertiary zone of the 

Allochthonous block; the second is the structurally repeated section in the 

Autochthonous block. Eaton’s and Bowers’ methods were applied to reproduce the 

pore-pressure encountered during drilling of well A. Two different normal compaction 

trends were set in order to fit the mud weight (MW) used for drilling, one for each 

block (Allochthonous and Autochthonous). Fig. 2.5a shows that the correlation 

exponent used to fit the sonic log data in Eaton’s method was 2.2 for both blocks, 

but different normal compaction trends were used. To apply Bowers’ method 

constants A and B in the Allochthonous block took values of 0.1365 and 1.3 

respectively, and for the Autochthonous block the values were 0.38 and 1.11 

respectively. According with Table 2.1, Eaton’s and Bowers’ methods are valid from 

the top of the Miocene (811 [m] depth) to the base of the Palaeocene (3,727 [m] 

depth) in the Allochthonous block, and from the top of the Eocene-Palaeocene 

(5,322 [m] depth) to the base of the Eocene-Palaeocene (6,005 [m] depth). 

The vertical stress ( vS ) was computed with Eq. 2.50a using the bulk density (Fig. 

2.4e) as input data. The analysis followed Fig. 2.2 left, corresponding with initial or 

over-pressure conditions. In accordance with Table 2.1, Eq. 2.17 is valid from the 

top of the Cretaceous (3,727 [m] depth) to the base of the Jurassic Kimmeridgian 

(5,322 [m] depth) in the Allochthonous block, and in the Autochthonous block from 

the top of the Cretaceous (6,005 [m] depth) to the total depth of the well (6,911 [m]).It 

is also valid in the Cretaceous, which is located at 5,495 [m] depth with a thickness 

of 60 [m]. The porosity log that was used to apply Eq. (2.17) was the neutron porosity 

log (NPHI) shown by Fig. 2.4f (grey line), due to the fact that it showed better fit with 

actual pore pressure measurements. 

The point located at 1,585 [m] depth with an Equivalent Density (ED) of 1.18 [gr/cm3] 

fits better with Bowers’ method (magenta line). In the carbonates of the 
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Allochthonous block, the profile that best fits the gas influx corresponds with a 

correlation exponent   of 0.953, whereas the other two underestimate pore-

pressure. In carbonates of the Autochthonous block, the correlation exponent that 

fits better gas influx has a value of 0.933, the rest overestimate the pore-pressure. 

Fig. 2.5b shows the Operative Window (OW) which is formed by the vertical stress 

gradient (black line), pore pressure gradient (red line), fracture pressure gradient 

(blue line), mud weight, leak off tests (green squares), fluid lost (cyan triangles) and 

gas influx.  

To construct the ED pore-pressure profile of the entire well, different models were 

used where applicable. Only in the Allochthonous block at depths lower than 2895 

[m], Bowers’ method was used to model pore-pressure; at greater depths Eaton’s 

method was used. For carbonate formations Eq. 2.17 was applied in the 

Allochthonous block, and the correlation exponent   was set equal to 0.953 and for 

carbonates in the Autochthonous block the exponent   took a value of 0.933. As 

expected, Eaton’s and Bowers’ method underestimate pore-pressure in carbonates.  

Finally, the pore-pressure profiles of the different models described before were 

joined, giving as a result a “mixed pore-pressure gradient” represented by the red 

line in Fig. 2.5b. To compute fracture gradient (
frP ), Eaton’s equation (1969) was 

applied above the salt layer (2930 [m] depth), which allow a better adjustment to leak 

off tests (LOT), and below the salt Hubbert & Willis (1957) method showed a better 

fit with fluid lost reported during drilling. The average error of Eq. 2.17 for this well 

(with   equal to 0.953 and 0.933 as explained before), was around 1.71%, with a 

maximum value of 3.91% at 6584 [m] TVD and a minimum error value of 3.5E-03% 

located at 4720 [m] TVD. 
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2.6.2. Model One Case Study: Well B 

Well B is an offshore well, with total depth of 3,840 [m] true vertical depth. It is located 

146 kilometers NW form Ciudad del Carmen, Campeche State, Mexico (Fig. 2.6). 

The Mud line (ML) of well B is located 178 [m] depth. Table 2.2 shows the 

stratigraphic column of well B. 

 

Fig. 2.6 — Location of Well B. 

AGE 

TOP  

TVDBSL [m] 

THICKNESS 

[m] 

Sea 0 198 

Late Miocene 198 1722 

Middle  Miocene 1894 81 

Early Miocene 1975 70 

Middle Miocene 2045 155 

Middle Eocene 2200 20 

Early Eocene 2220 5 

Late Paleocene 2225 40 

Early Paleocene 2265 30 

K-T Boundary (Breccia) 2295 15 

Middle Cretaceous 2310 120 

Early Cretaceous 2430 145 

Upper Jurassic Tithonian 2575 502 

Upper Jurassic 

Kimmeridgian 3077 773 

Total Depth 3850 -3850 

Table 2.2 — Stratigraphic Column of Well B. 
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Well B was an exploratory well. To compute the pore-pressure in carbonates of well 

B, the same procedure of well A was followed (Fig. 2.2, left; initial or over-pressure 

conditions).  

Fig 2.7 shows the well logs available to perform this analysis. Fig.27a shows the 

stratigraphic column described in Table 2.2. From the first track of Fig. 2.7 it can be 

observed that the carbonates at Well B starts at 2295 [m] true vertical depth below 

sea level (TVDBSL), which corresponds with the top of the K - T Breccia, and a total 

depth of (3850 [m] TVDBSL). At 2295 [m] TVDBSL; a significant decrease can be 

noticed in the sonic log (Fig 2.7c) and an increase in the resistivity log, (Fig 2.7d), 

which is a common response for carbonates. 

 

Fig. 2.7 — Logs of Well B. Track (a) shows the lithology, (b) gamma ray, (c) transit time, (d) resistivity, (e) bulk 

density and (f) porosity. 
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Fig. 2.8a in agreement with Fig. 2.5a shows again the vertical stress (black line), 

Eaton’s method (green line), and Bowers’ method (magenta line). The three different 

pore-pressure profiles for carbonates (Eq. 2.17) considered in this well correspond 

with a correlation exponent   of 0.91 (gray line), 0.92 (light blue line) and 0.93 

(orange) respectively. The mud weight (MW) is illustrated by the maroon line. The 

gas influxes (reported while drilling) are depicted by the yellow circles. The mud line 

is represented by the horizontal blue line located at 198 [m] depth. 

Fig. 2.8b illustrates the final OW of well B. The vertical stress (black line), pore-

pressure gradient (red line), fracture pressure gradient (blue line), mud weight (MW, 

maroon line), LOT (green squares) and gas (yellow circles) are included in this plot. 

To compute Tertiary rocks pore-pressure, Eaton’s and Bowers’ method were used. 

According with Table 2.2, these methods are valid from the ML (198 [m] depth) to 

the base of the Early Paleocene (2,295 [m] depth). Regarding Eaton’s method, the 

correlation exponent is in accordance with the Gulf of Mexico’s exponent, which is 

equal to 3 for sonic log data. For Bowers’ method, the constants A and B took values 

equal to 1.33 and 1.35 respectively. From Fig. 2.8b, it can be seen that in shallow 

depths Eaton’s method showed higher values than Bowers’ (from the ML to around 

1,292 [m] depth). Below 1,292 [m] depth, Bowers’ method consistently computed 

higher pore-pressures.  

The pore-pressure was calculated again with Eq. 2.17. The log used for the 

evaluation of Eq. 2.17 was the density porosity log (DPHI), computed previously 

considering a matrix density of 2.72 [gr/cm3] (calcite) and average fluid density of 

1.07 [gr/cm3] (sea water). It can be noticed that the pore-pressure corresponding 

with a correlation exponent equal to 0.91 underestimate gas presence (yellow 

circles, reported from 3175 [m] to 3421 [m] TVD), meanwhile Eq. 2.17 with a 

correlation exponent equal to 0.93 overestimate pore-pressure. The best fit of Eq. 

2.17 to field measurements was achieved by an exponent   equal to 0.92.  
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Fig. 2.8 — (a) The new pore-pressure equation (Eq. 2.17) with different correlation exponents and MW, and (b) the 

OW defined by the Pp, Pfr, and Sv calibrated with drilling events, such as LOTs, and gas influx, for Well B. 

It is worth to mention that if SCAL data had existed, the method of compressibilites 

(Atashbari and Tingay, 2012a, 2012b; Atashbari et al., 2012) would have been 

applied and its result should have served as a matching point also. The average 

error that presented Eq. 2.17 (with   equal to 0.92) in this well was 2.415%, with a 
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maximum of 3.83% at 3421 [m] TVD and a minimum of 1.25% located at 3175 [m] 

TVD.  

Fig. 2.8b shows the final ED pore-pressure (red line); this profile is a “mixed model.” 

To construct it (in Tertiary rocks), at depths where Eaton’s method showed higher 

values than Bowers’, Eaton’s was chosen, and vice versa. In carbonates, Eq. 2.17 

with a correlation exponent   equal to 0.92 was chosen to fit gas measurements. 

The fracture gradient ( frP ) was calculated with two different models, Matthews & 

Kelly (1967) in Tertiary rocks and Eaton’s (1969) in carbonates. The fracture gradient 

(blue line in Fig. 2.8 right) was fitted with LOT (green squares).  

2.6.3. Model Two Case Study: Well C 

Well C is a development onshore well; it is placed at the outskirts of Altamira City, 

Tamaulipas State, Mexico as shown by Fig. 2.9. Well C is placed in an old oilfield 

that has been producing for decades; it is part of a new exploitation strategy, with 

the objective to increase the recovery factor of old reservoirs, that includes the 

drilling of new development wells among other activities.  

 

Fig. 2.9 — Location of Well C. 

Table 2.3 shows the stratigraphic column found by the drilling of Well C. Fig 2.10 

shows the available well logs. 
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AGE FORMATION 

TOP  

TVDBRT [m] THICKNESS [m] 

Tertiary - 0 747 

Cretaceous Méndez 747 199 

Cretaceous San Felipe 946 141 

Cretaceous Agua Nueva 1087 78 

Cretaceous Upper Tamaulipas 1165 121 

Cretaceous Otates 1286 3 

Cretaceous Lower Tamaulipas A 1289 274 

Cretaceous Lower Tamaulipas C 1563 137 

Cretaceous Lower Tamaulipas B 1700 20 

Jurasic Pimienta 1720 61 

Jurasic San Andrés 1781 87 

Total depth 
 

1868 -1868 

Table 2.3 — Stratigraphic Column of Well C. 

 

Fig. 2.10 — Logs of Well C. Track (a) shows the lithology, (b) gamma ray, (c) transit time, (d) resistivity, (e) bulk 

density and (f) porosity. 

From Fig. 2.10 the log measurements started considerably below the ground level 

(639.7 [m] TVDBRT), due to sufficient field knowledge and that Well C consist of a 
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development well. The carbonate interval of the current well starts at 747 [m] 

TVDBRT, which is consistent with the top of the Cretaceous ─ Méndez Formation 

and extends to the total depth of the well (1868 [m] TVDBRT). Well C is a slant well 

and all computations were corrected with the respective survey. The computation of 

the pore-pressure in carbonates was performed following Fig. 2.2 right (depletion 

conditions), and all cases corresponding with the degree of depletion were 

performed. 

Fig. 2.11a shows the vertical stress (black line), Eaton’s method (green line), and 

Bowers’ method (magenta line). The three different pore-pressure profiles for 

carbonates were computed, Eq. 2.43 corresponds with the gray line and a correlation 

exponent b  of 0.9, the light blue line is the result of Eq. 2.44 with an exponent p  

equal to 0.9, finally the orange line corresponds to the calculations by means of Eq. 

2.47 with a general correlation exponent bp  equal to 0.9. The mud weight (MW) is 

illustrated by the maroon line. The reservoir pressure measurement reported by well 

testing activities is depicted by the yellow circle and was used as fitting data. The 

exponent used by Eaton’s method was equal to 3 (consistent with the GoM); in 

contrast Bowers’ method constants, A and B took values of 3e-19 and 6.7 

respectively. From Fig. 2.11a it can be noticed the existence of normal pore-pressure 

in the Tertiary (0 [m] to 747 [m] depth). Fig. 2.11a shows the results of the different 

pore-pressure equations as explained before. From Fig. 2.11a no noticeable 

difference among models is appreciated. Therefore, the red rectangle in the lower 

part of Fig. 2.11a indicates a zoom in expanded in Fig. 2.11b, showing that the model 

that best fitted the measured reservoir pressure is Eq. 2.44, which corresponds with 

high degree of reservoir depletion. From Fig. 2.11b it can be seen that the other two 

models (Eqs. 2.43 and 2.47), results in higher pore-pressure for the same value of 

the corresponding exponent.  

Fig. 2.12 illustrates the final OW of well C. The vertical stress (black line), pore-

pressure gradient (red line), fracture pressure gradient (blue line), mud weight (MW, 
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maroon line), reservoir pressure (yellow circles) and acid fracturing (cyan triangles) 

are included in this plot. 

 

Fig. 2.11 — (a) The new pore-pressure equations for depleted carbonate reservoirs (Eqs. 2.43, 2.44 and 2.47), with 

equal correlation exponent and MW, and (b) a zoom in as indicated by the red rectangle in (a), to distinguish the 

fitting with pressure data. 
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Fig. 2.12 — The OW defined by the Pp, Pfr, and Sv calibrated with drilling events such as well testing and acid 

fracturing of Well C. 

The mixed pore-pressure profile consisted of Eaton’s method in the Tertiary, the 

transition zone corresponds with Bower’s and Eq. 2.44 was chosen to compute pore-

pressure in the hardly depleted formations. It is worth to mention that if more 

pressure data in different formations had existed, the final pore-pressure in 

carbonates would have resulted in a different shape due fitting with the correlating 

exponents in each formation. The fracture gradient was computed with Matthews 

and Kelly’s method (1967) and adjusted with acid fracturing measurements. 
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2.7. Conclusions 

The conclusions of the current chapter are summarized as follows: 

1. A new pore-pressure prediction equation to compute overpressure for 

carbonates was developed (Eq. 2.17). 

2. A new system of equations to compute pore-pressure in depleted reservoirs 

was developed (Eq. 2.43, Eq. 2.44, and Eq. 2.47). 

3. It is shown the development, understanding, and applications of the new 

equations in carbonates formations, proving their applicability. 

4. A flow diagram was originated to ease the application of the developed set of 

equations. 

5. Three applications were performed, two applications regarding Eq. 2.17 and 

one of a depleted well (Eqs. 2.43, 2.44, and 2.47), all the applications were 

performed in different wells located in Mexico and demonstrated good fit with 

oilfield measured data. 

6. A “mixed pore-pressure model” was built to calculate the entire pore-pressure 

profile of the well (considering shale and carbonates), led by the applicability 

of each method  
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2.8. Nomenclature 

bcc  =  
bulk compressibility varying confining pressure; pore-pressure held 
constant, Lt2/m, psi-1 [Pa-1]. 

bpc  =  
bulk compressibility varying pore-pressure; confining pressure held 
constant, Lt2/m, psi-1 [Pa-1]. 

pcc  =  
pore compressibility varying confining pressure; pore-pressure held 
constant, Lt2/m, psi-1 [Pa-1]. 

ppc  =  
pore compressibility varying pore-pressure; confining pressure held 
constant, Lt2/m, psi-1 [Pa-1]. 

rc  =  solid rock compressibility, Lt2/m, psi-1 [Pa-1]. 

bf  =  porosity related constant to bulk volume, dimensionless. 

pf  =  porosity related constant to pore volume, dimensionless. 

g  =  gravity constant, L/t2, 9.81 m/s2 [32.2 ft/s2] 

I  =  identity tensor, dimensionless. 

LOT  =  leak off test, m/Lt2, psi [Pa]. 

cP  =  confining pressure, m/Lt2, psi [Pa]. 

dP  =  differential pressure, m/Lt2, psi [Pa]. 

fP  =  
dummy integration variable in Eqs. 2.15, 2.39 and 2.40, m/Lt2, psi 
[Pa]. 

frP  =  fracture pressure, m/Lt2, psi [Pa]. 

pP  =  pore-pressure, m/Lt2, psi [Pa]. 

npP  =  normal pore-pressure, m/Lt2, psi [Pa]. 

S  =  second rank stress tensor, m/Lt2, psi [Pa]. 

HS  =  maximum horizontal stress, m/Lt2, psi [Pa]. 



43 
 

hS  =  minimum horizontal stress, m/Lt2, psi [Pa]. 

vS  =  vertical stress, m/Lt2, psi [Pa]. 

bV  =  bulk volume, L3, m3 [ft3]. 

i

bV  =  initial bulk volume, L3, m3 [ft3]. 

pV  =  pore volume, L3, m3 [ft3]. 

i

pV  =  initial pore volume, L3, m3 [ft3]. 

bw  =  bulk weight, dimensionless. 

pw  =  pore weight, dimensionless. 

z  =  depth, L, m [ft]. 

wz  =  water depth, L, m [ft]. 

  =  correlation exponent of Eq. 2.17, dimensionless. 

b  =  correlation exponent of Eq. 2.43, dimensionless. 

p  =  correlation exponent of Eq. 2.44, dimensionless. 

bp  =  correlation exponent of Eq. 2.47, dimensionless. 

b  =  bulk strain, dimensionless. 

p  =  pore strain, dimensionless. 

b  =  bulk density (RHOB), M/L3, gr/cm3, [lb/gal]. 
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w  =  water density, M/L3, gr/cm3 [lb/gal]. 

d  =  differential stress, m/Lt2, psi [Pa]. 

  =  porosity, dimensionless. 
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3.  Coupled Geomechanics and Fluid Flow in 

Naturally Fractured Reservoirs 

Geomechanics and fluid flow in natural fractured reservoirs is so complex that 

simplified models have to be used for their conceptual representation and simulation 

(Gong, 2007). Flow in fractured rocks is simulated by a set of various models such 

as explicit fractured models (EFM), discrete fractured models (DFM), dual-

permeability, dual-porosity, multi-permeability and/or multi-porosity models 

(Barenblatt et al., 1960; Pruess and Wang, 1987; Gerke and van Genuchten, 1993; 

Gwo et al., 1995; Jarvis, 1998; Šimůnek et al., 2003; Moinfar et al., 2011). 

Additionally, there are plenty of works investigating the coupling of geomechanics 

with fluid flow in porous media (Biot, 1941; Haagenson et al., 2019; Kolesov and 

Vabishchevich, 2017; Verruijt, 2015; Zhang et al., 2015). 

A great quantity of World’s hydrocarbon reserves is trapped in natural fractured 

reservoirs (Moinfar et al., 2011). In general, reservoir’s fractures provide high 

conductive fluid flow channels while the rock matrix provides the main hydrocarbon 

storage. The permeability contrast between fractures and matrix and the high 

volumes difference makes challenging the fluid flow numerical simulation of NFR’s. 

There are four basic theoretical models for naturally fractured reservoirs (Moinfar et 

al., 2011; Nie et al., 2012), the first couple are of interest on this research which are 

formed by two overlapping continua: 

1) Dual-porosity and single-permeability models (Warren and Root, 1963; Bui et 

al., 2000) 

This kind of model assumes that flow occurs only in the fracture continua while rock 

matrix behaves as fluid storage, it is also considered an inter-porosity flow from 

matrix to fracture continua and that the fracture system constitutes the flow path to 

production and injection wells.  

2) Dual-porosity and dual-permeability models (Al-Shaalan et al., 2003; Uba et 

al., 2007) 
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On this type of models, it is considered that both continua (matrix and fracture) 

provide flow to the wells and that there exists inter-porosity flow between matrix and 

fracture continua. 

Field observations have shown that fractures vary considerably in aperture, height 

and length, connectivity and spacing. Due to the inaccuracy between reality and 

dual-continuum models, a geometrical representation of fractures was followed.    

Fractures are discontinuities in the porous medium, shaped as thin zones that are 

locally almost planar and possess different flow characteristics than the porous 

medium (Berre et al., 2018). Fractures are thin compared with their length, wider 

than a pore and their extension can be as long as the reservoir itself. In contrast, the 

fracture volume is so small compared with the encircling medium. The geometry of 

a fracture is defined by its boundaries to the medium on each side. Due to this 

features each fracture can be represented as a subdomain or inclusion of same 

dimensions in the porous medium with its own characteristics, this type of conception 

is known as Explicit Fracture Models (EFM), an advantage of this type of models is 

that high accuracy is achieved in pressure and velocity fields, one disadvantage is 

the fine gridding needed near and in the fracture compared with the porous medium 

and the excessive computational cost to solve such a model. Hence Discrete 

Fracture Models (DFM) were developed, a discrete fracture is considered as a co-

dimensional ( 1d − ) object of the domain. Therefore, in unstructured grids a DFM can 

represent realistic fracture geometry systems and no fine grid is compulsory near 

the fracture decreasing computational cost. After Martin et al. (2005), there have 

been several research works that used its formulation to represent the DFM in the 

FEM and the extended finite element method (XFEM), in special the introduction of 

a Lagrange Multiplier Space coupling fracture and matrix domains as an exchange 

parameter using an XFEM formulation (Köppel et al. 2019; 2019b).  

Contrastingly Biot (1941) demonstrated the coupling between deformation of porous 

media and pore-pressure, however the simplification of considering a constant rock 

compressibility is not recommended for rock behavior in stress-sensitive or naturally 

fractured reservoirs (Girault et al., 2015). Changes in the stress, strain and pressure 
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fields are quite important in fractured reservoirs, these changes can result in the 

sealing of a conductive fracture, or to cause a fracture re opening. This has been 

demonstrated by several authors, Lamb et al. (2010) and Lamb (2011) presented a 

FEM based numerical framework for the coupled fluid flow, deformation and fracture 

propagation in porous media. Later studies (Garipov et al., 2012; Garipov et al., 

2016) demonstrated the geomechanical effects on naturally fractured reservoirs 

response by the description of a simulation procedure for coupled flow and 

mechanics based on a DFM. Girault et al. (2015) introduced a non-planar conception 

of the fracture governed by the lubrication equation embedded in a poro-elastic 

medium which was described by Biot equations of linear poroelasticity. In a similar 

later work (Girault et al., 2016) the flow in the fracture was described by Darcy’s law.  

In recent years the FEM has been adopted as a common tool to simulate coupled 

problems such as poroelasticiy, this due to its versatility and the non-structured 

gridding capability of approximating complex geometries which is characteristic of 

such a method. For this purpose and over the last 15 years, it has been an increasing 

interest of developing scientific computing software aiming to create a general, finite 

element high-performance framework, such as the FEniCS Project (Alnæs et al., 

2015; Farrel et al., 2013; Logg et al., 2012), FreeFEM (Hecht, 2012), Feel ++ 

(Prud’Homme et al., 2012), the Firedrake Project (Rathgeber et al., 2016) and 

NGSolve (Schöberl, 2019). Sharing the design pattern is the mixing of high-level 

description of the discretized problem, low-level algorithms for problem solving, and 

automated code creation to fill the gap between. Furthermore, a number of FEM 

softwares are suitable to deal with mixed dimensional partial differential equations 

(PDE’s), implementing some mixed dimensional and mixed domain attributes, 

including COMSOL-Multiphysics (Comsol-Multiphysics, 2006; Suárez-Arriaga et al., 

2007), deal.II (Bangerth et al., 2007), FreeFEM, Feel ++, PorePy (Keilegavlen, 2017) 

or FEniCS with a recently added feature, the mixed dimensional branch (Daversin-

Catty et al., 2019) or through some extensions, for example the multiphenics Python 

library (Ballarin, 2021) or Fenics_ii (Holter et al., 2017).  Particularly, FEniCS is an 

open-source software collection, its components include the Unified Form Language 

(UFL) (Alnæs et al., 2014), the FEniCS Form Compiler (FFC) (Logg, et al., 2012a), 



53 
 

and the problem-solving environment DOLFIN (Logg and Wells, 2010; Logg et al., 

2012b). Consequently, FEniCS was chosen to set up the computational models 

developed in this research. 

Accordingly, a coupled geomechanics dual-porosity/dual-permeability discrete 

fracture model by Lagrange multipliers was built. The main goal was to construct a 

single-phase robust model that incorporates the best features of each conception of 

the reservoir and the mechanics involved, blending them together to provide a full 

and more realistic representation of NFR’s. 

3.1. Basic Equations 

This section presents the governing equations of solid deformation and fluid flow 

involved in the coupled model of geomechanics with dual-porosity/dual-permeability 

and discrete fracture by Lagrange multipliers. 

3.1.1. Momentum Balance 

The first mathematical approach of the consolidation process which led to the 

principle of effective stress was introduced by Terzaghi (1923, 1925). The total 

stresses are the sum of the effective stress and the pore-pressure. 

' pP = + . ………………………...………………………………………….. (3.1) 

Biot (1941, 1955) provided a three-dimensional formulation of Terzaghi’s theory for 

the coupling of solid skeleton deformation and pore-pressure, based on stress-strain 

relations as described by Hooke’s Law. The constitutive equation for the Cauchy 

effective stress tensor ( ' ) as the reservoir is saturated with a slightly compressible 

viscous fluid is given by, 

' pP= −   , ………………………………………………………………... (3.2) 

the dimensionless Biot coefficient   is defined as follows, 
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1 r

bc

c

c
 = − . …………………………………………..………………………... (3.3) 

From Eq. 3.2 the quasi-static momentum conservation equation for the solid porous 

matrix is: 

' f− = . ………………………………………...…………………………. (3.4) 

Considering linear elasticity in the solid matrix leads to the assumption that the stress 

is a linear function of the infinitesimal symmetric strain tensor. 

( )= C u , ……………………………………………………………………. (3.5) 

where C  is the fourth-order stiffness tensor and   is the symmetric strain tensor: 

( ) ( )
1

2

T=  + u u u . …………………………………………………………. (3.6) 

Assuming an isotropic homogeneous linear elastic solid rock matrix, Eq. 3.5 can be 

written as 

( )2 v = + u I , …………………………………………………………… (3.7) 

the volumetric strain is defined by the next expression 

( )trv = =  u . …………………..……………………………...………….. (3.8) 

The geomechanical model of the reduced dimensional fracture on ( 1)d −  can be 

performed by the fracture representation shown by Fig. 3.1. The displacements of 

the fracture can be introduced as function of the normal stresses acting on the 

fracture faces  −
,  +

 (Goodman, 1976), where the normal displacement on the 

fracture can be related to the effective normal stresses as (Levonyan, 2011): 

'n nk  = u n , ……………………………………...….…………..……….. (3.9a) 
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defining a functions’ jump across a discontinuity as (Herrera & Pinder, 2012) 

y y y+ −= − . ……………………………………...….…………..………….. (3.9b) 

 

Fig. 3.1 — Conceptual representation of the fracture (modified from Garipov et al., 2012). 

On the fracture faces in terms of effective stress requires,  

' P  = − n n , …………………………………………………...…………….. (3.9c) 

due to force balance on the fracture faces and considering the influence of the 

pressure in the discrete fracture P , 

( )'n nk P  
 = −  −u n n . ………………...……...………………….......... (3.9d) 

For shear stress, a friction model such as Mohr-Coulomb can be introduced 

n ok c = + , ………………………..………………...………………………. (3.10) 

and equilibrium on the contact fracture surface requires (Borja, 2013) 

 
  + −

= n n . ……….…………………………………………………….... (3.11) 

The fracture width can be computed as 

w = u n  or  0w w = − u n ……………………………………………….. (3.12) 

3.1.2. Mass Conservation 

The fluid flow equation and the rock mass conservation equation can be expressed 

as follows (Coussy, 2014; Verruijt, 2015): 
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( )
( )fl

fl fl
t





+ =


v q , ……………………………………………………. (3.13) 

( )
( )

1
1 0

r

r r
t

 
 

 −   + − =  
v . …………………………………………. (3.14) 

Considering that the constitutive equation of the fluid can be written as 

1 fl

fl

fl

d
c

dP




= , …………………………………………………………………. (3.15) 

assuming that the density of the solid rock particles is function of pressure and the 

isotropic stress, 

( )fl r r

P
c c c

t t t

 


  
+ − + = −

  
q , …………………………………………... (3.16) 

substituting Eqs. 3.15 and 3.16 in Eqs. 3.13 and 3.14 respectively and summing up 

these resulting equations, the next expression was gotten 

( )fl r r

P
c c c

t t t

 


  
+ − + = −

  
q , …………………...……………………… (3.17) 

by Eq. 3.2 and knowing that the isotropic effective stress can be expressed as 

function of the volumetric strain ' /v bcc = , Eq. 3.17 can be written as 

v P
S

t t



 

+ = −
 

q . …………………..…………………………………….. (3.18) 

Introducing Darcy’s law which can be written as 

( )fl

fl

P 


= −  −
K

q g , ……………………………………...………………….. (3.19) 

substitution of Eq. 3.19 into Eq. 3.18 gives 
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( )v
f

fl

P
S P b

t t


 



  
+ + −  − = 

    

K
g . …………………………………… (3.20) 

If non- Darcy flow is presented, Eq. 3.19 is not valid and a correction due to high flow 

velocity must be introduced (Lee and Wattenbarger, 1996). Eq. 3.20 couples flow in 

porous media with solid deformation. The flow in the discrete fractures can be written 

as a reduced dimensional fluid flow model on ( 1)d −  (Salimzadeh, 2017): 

( )
( )fl

fl

w
b

t
 





+ =


v , ………………………………………..………….. (3.21a) 

( )fl

fl

P


  


= −  −v
K

g , ………………………………………………………. (3.21b) 

expanding the first term of Eq. 3.21a 

( )fl fl

fl fl fl

w Pw w
w wc

t t t t t


 

 
    

= + = + 
     

, ………………….…………. (3.22) 

and considering a slightly compressible fluid in the fracture and substituting Eq. 

3.21b into 3.21a, the general equation of fluid flow in the fracture can be written as: 

( )f f

fl

Pw
wc P

t t

 

  


 
+ −   − = 

    

K
g b . ……………….…….…………… (3.23) 

Pressure continuity requires that pressure from any continua evaluated on the 

fracture faces ( ) equalize the fracture pressure (Martin et al., 2005). 

P P
= , ……………………………………………………………………… (3.24a) 

while the transmission balance is achieved when the matrix normal flux and the 

discrete fracture normal flux across the fracture faces are equalized  

  
 = vq n n . ……………………………………….……………………… (3.24b) 
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3.2. Coupled Geomechanics Dual Porosity/Dual 

Permeability Discrete Fracture Model by Lagrange 

Multipliers  

This model is intended to address the mechanics involved in NFR by the coupling of 

double-porosity/double-permeability, discrete fractures (DF) and poroelasticity. The 

next considerations were made to construct the model: 

I. There is only a one-phase fluid in the reservoir. 

II. The reservoir is formed by two overlapping continua, consisting of a 

homogeneous and isotropic fractured medium with its own characteristics and 

a homogeneous and isotropic porous matrix with its particular features 

(Kolesov and Vabishchevich, 2017). 

III. The flow in the dual-continua and in the discrete fractures is described by 

Darcy’s law in isothermal conditions; and an inter-porous exchange flow 

parameter communicates porous matrix and fractures continua. 

IV. The discrete fractures are of co-dimension one.  

V. The body forces due to gravity were neglected 

VI. The porous and fractures pressures contribute to the deformation of porous 

medium in accordance with linear poroelasticity (Biot, 1941). 

VII. A Lagrange Multiplier is introduced to allow fluid exchange between the dual-

continua and the discrete fractures (Köppel et al. 2019; 2019b). 

VIII. A Lagrange Multiplier was inserted in the discrete fracture to enforce normal 

stress continuity with the discrete fracture pressure (Borja, 2013; Garipov et 

al., 2016) and friction between fracture surfaces was neglected 

IX. For simplicity fracture width was computed from displacement of previous 

time step. 

3.2.1. Governing Equations 

A dual-continua poroelasticity problem arises when a fluid flows through a 

homogeneous and isotropic porous matrix and then through a uniformly distributed 
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small sized fracture network that can be seen as an overlapping continuum, where 

two pressure fields take place in different fluid flow processes. The dual-continua is 

also communicated by a diffusion process happening in the DF.  Consequently, by 

incorporating Biot’s theory of poroelasticity to Barenblatt’s model where matrix and 

fractures continua contribute with rock deformation, it leads to a three interconnected 

diffusion processes (matrix, fractures, and DF) coupled with the deformation of the 

solid rock structure (Fig 3.2). 

 

Fig. 3.2 — Illustration of the Dual-continua DF coupled with geomechanics. 

Considering a convex rock domain d  , 2d =  or 3 , with a surrounding set of 

boundaries   and a co-dimensional discrete fracture domain    in which there 

exist a continuous unit vector n  normal to the surface of the fracture, were it is 

assumed that the DF   is a planar surface if 3d =  or a line segment if 2d = , and 

that     as shown by Fig. 3.3. 

 

Fig. 3.3 — Domain with a discrete fracture. 
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Thus, the set of equations acting in   are 

( )( )m m f fP P − − − = u I I f , in  , ………………....…………………. (3.25a) 

( ) ( ) ( , )v m m
m m m m f m m

fl

P
S P P P b t

t t


  



  
+ + −  + − − = 

    

K
x , in  , …….. (3.25b) 

( ) ( ) ( , )
f fv

f f f f m f f

fl

P
S P P P b t

t t


  



 
+ + −  + − − = 

    

K
x , in  , …….. (3.25c) 

( ) ( , )m f

fl

P
S P b t

t

   

   


 
+ −  + + = 

   

K
x , in  , ………………….……… (3.25d) 

0 
= n , in  , ....…………………………………………………………. (3.25e) 

fP P
= , on  , ……………………..…………………………..………..… (3.25f) 

mP P
= , on  , ............................………………..………………………. (3.25g) 

'n P n  = − , on  , ………………………………..………………………… (3.25h) 

= 0u  on D ,  ……………………………………………………………….. (3.25i) 

n = t  on N ,  ………………………………………...…………….……. (3.25j) 

0mP =  on 
D , ……………………………………………………………… (3.25k) 

( , 0)m iP t P= =x , in  , ……………………………………………………….. (3.25l) 

( , 0)f iP t P= =x , in  , ……………………………………………………….. (3.25m) 

0( , 0)t = =u x u , in  . …………………………………………………………. (3.25n) 

Eq. 3.25a is an extension of Eq. 3.2 and considers that the dual-continua contribute 

with the deformation of the porous solid matrix. The Lagrange multipliers m

  and f

  
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in Eqs. 3.25b to 3.25d. are introduced as source/sink terms, that allows fluid 

exchange between matrix and fractures continua with the discrete fracture, and 

actually represent the jump across the fracture of the Darcy velocity in the normal 

direction (Köppel et al., 2017), i.e. ( )( / )m m fl mP

 =  K n ,   works as an inter-

porosity exchange parameter between matrix and fractures continua where 

D N =   . 

3.2.2. Variational Formulation 

Defining the spaces of test and trial functions in d : 

( ) ( ) 1 : ,
d

D DH   =  V = v v x v x , …………………………….……... 

(3.26a) 

( ) ( ) 1

,: ,m m m m D DQ q H q q=   = x x , ………………………………….. 

( ) ( ) 1

,: ,f f f f D DQ q H q q=   = x x , …………………………….……. 

( ) ( ) 1

,: ,D DQ q H q q    =  = x x , ……………………………….…… 

( ) ( ) 1 : ,m m m m Dl H l l  

  =  = x x , …………………………..………… 

( ) ( ) 1 : ,f f f f Dl H l l  

  =  = x x , ……………………………………... 

( ) ( ) 1 : ,u u u u Dl H l l  

  =  = x x . …………………………..…………. 

And defining a mixed-dimensional function space as 

  m f m f uQ Q Q        =  VW . ………………………………………... (3.26b) 

To numerically solve the problem (Eqs. 2.25), it has to come to a variational 

formulation by multiplying Eqs. 3.25a to 3.25h by test functions v , mq , fq , q , m

 , 

f

  and u

  respectively and integrating by parts to eliminate second order derivatives. 

It is important to remark that the sub and super scripts in the Lagrange multipliers 

depict the coupling of different equations, i.e. m

  shows the coupling between matrix 

continua and the discrete fracture  . 
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Find ( , , , , , , )m f m f uP P P   

    u W such that 

( ) ( )
( )

( )

:

N

m m f f u

t

t

P P d n d

f d d







   


 

 −  −  −  = 

 +  

 

 

 u v v v v

v t v
, ………………. (3.27a) 

( ) ( )
( )

( )

v m m
m m m m m m m f m

flt

m m m m

t

d P
q S q P q P P q d

dt t

q d b q d





 



 





 
+ −   + −  

  

− = 



 

K

, ………..... (3.27b) 

( ) ( )
( )

( )

f fv
f f f f f f f m f

flt

f f f f

t

Pd
q S q P q P P q d

dt t

q d b q d





 



 





 
+ −   + −  

  

− = 



 

K

, …………... (3.27c) 

( ) m f

fl

P
S q P q d q d b q d

t

   

      

  

    


 
 −   + + =     

  
K

,……………… (3.27d) 

( ) 0m mP P d




 − = , …………..………………………………….……….…. 
(3.27e) 

( ) 0f fP P d




 − = , …………………………………………………….….... 
(3.27f) 

( ) 0n uk P d 



  + = u n , ………………………………………...…………. 
(3.27g) 

,( , , , , , )m f m f uq q q W  

    v  
 

The Lagrange multiplier u

  is introduced in the integral on   in Eq. 3.27a to enforce 

stress continuity across the fracture according with Borja (2013). The second integral 

in Eqs. 3.27b to 3.27d denotes de coupling of the matrix and fractures continua with 

the discrete fracture. Eqs 3.27e and 3.27f show the pressure equalization between 

continua and the discrete fracture as indicated by Eqs. 3.25f and 3.25g. 
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3.2.3. Discrete problem 

Restricting the variational problem (Eqs. 3.27) to pairs of discrete spaces of test and 

trial functions (Haga et al., 2012; Kolesov et al., 2014), the discrete problem is 

obtained.  

Find , , , , , ,( , , , , , , )h h m h f h h m h f h u hP P P   

    u W  such that 

( ) ( ) , , ,

( )

( )

:

N

h h m h m h f h f h h u h

t

h h

t

P P d n d

f d d







   


 

 −  −  −  = 

 +  

 

 

 u v v v v

v t v
, ..…… (3.28a) 

( ) ( ), ,

, , , , , , ,

( )

, , ,

( )

v h h m m
m h m m h m h m h m h m h f h m

flt

h m h m m h m

t

d P
q S q P q P P q d

dt t

q d b q d





 



 





 
+ −   + −  

  

− = 



 

K

, .  (3.28b) 

( ) ( ),,

, , , , , , ,

( )

, , ,

( )

h f fv h

f h f f h f h f h f h f h m h f

flt

h f h f f h f

t

Pd
q S q P q P P q d

dt t

q d b q d





 



 





 
+ −   + −  

  

− = 



 

K

, ..  (3.28c) 

( ),

, , , , , , ,

h

h h h h m h f h h

fl

P
S q P q d q d b q d

t

   

      

  

    


 
 −   + + =     

  
K

, … (3.28d) 

( ), , , 0h m h m hP P d




 − = , ……..……………………………………………….. (3.28e) 

( ), , , 0h f h f hP P d




 − = , ……………………………………………………… (3.28f) 

( ), , 0n h h h uk P d

 



  + = u n , ……………………………………...………… 
(3.28g) 

, , , , , , ,( , , , , , )h h m h f h h m h f h u hq q q W  

    v   
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3.2.4. Discretization in time 

To simplify the set of Eqs. 3.28, the next bilinear and linear forms over the domain 

  were defined: 

( ) ( )
( )

( , ) :
t

a d


=   r s r s , …………………………………………………… 
(3.29a) 

( )

( , )k k k k k

t

b p q p q d


=   , ………………………………………………….. 
(3.29b) 

( )
( )

( , )k k k

t

c q q d


=  r r , ………………………………………………….. 
(3.29c) 

( )

( , )k k k k k

t

d p q S p q d


=  , …………………………………………………….. 
(3.29d) 

( )
( )

( , ) k
k k k k

flt

e p q p q d




=   
K

, …………………………………………….. (3.29e) 

( )
( )

( , ; )k l k k l k

t

f p p q p p q d


= −  , ………………………………………… 
(3.29f) 

( , )l l l l lg p q S p q d


=  , …………………………………………………………. 
(3.29g) 

( )( , )l l l l

fl

h p q p q d







=  
K

, ………………………………………………… (3.29h) 

( , )i n d


  = s s , ………………………………………………………… 
(3.29i) 

( , )k kj q q d




  =  , ………………………………………………………….. 
(3.29j) 

 ( , ; )k l k lk l ld


    = + , …………………………………………………… 
(3.29k) 

( )( , ; )k l l k l ll p p w p p w d




= − , ………………………………………..…….. (3.29l) 

( )( , ; )l n lm p l k n p ld



=  +r r , …………………………………………….. 
(3.29m) 

( )

( , )
t

n d


=  r s r s , ……………………...……………………………………. 
(3.29n) 
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( , )

N

o d


=  r s r s , …………………………………………………………. 
(3.29o) 

( )

( , )k k k k

t

p c q c q d


=  , ………………………………………………………… 
(3.29p) 

( , )l l l lq c p c p d


=  . …………………………………………………………… 
(3.29q) 

Let ( , )i

it=u u x , ( , )i

m m iP P t= x , ( , )i

f f iP P t= x , ( , )i

iP P t = x , where the term ( )it i t=  ,  

0,1,2,... ti N=  and 0t  . With a backward-Euler formulation in time, the problem is:  

Find , , , , , ,( , , , , , , )h h m h f h h m h f h u hP P P   

    u W  such that 

( ) ( ) ( ) ( ) ( ) ( )1 1 1

, , ,, , , , , ,i i i

h h h m h h f h h u h h ha b P b P i o+ + +− − − = +u v v v v f v t v , …...…….. (3.30a) 

( ) ( )

( ) ( ) ( )

1

, ,1 1

, , , ,

1 1

, , , , , ,

, , ,

, ; , ,

i i

h m h mi i

h h m h m h m h m

i i

h m h f h m h m h m m h m

P P
c q d q e P q

t

f P P q j q p b q

+

+ +

+ +

 −
+ − + 

 

− =

u
, ………………………...…. 

(3.30b) 

( ) ( )

( ) ( ) ( )

1

, ,1 1

, , , ,

1 1

, , , , , ,

, , ,

, ; , ,

i i

h f h fi i

h h f h f h f h f

i i

h f h m h f h f h f f h f

P P
c q d q e P q

t

f P P q j q p b q

+

+ +

+ +

 −
+ − +   

− =

u
, …………………………… 

(3.30c) 

( ) ( ) ( )
1

, , 1

, , , , , , ,, , , ; ,

i i

h f h f i

h f h f h f h m h f h f f h f

P P
d q e P q k q p b q

t

  
+

+
 −

− + =   
, …...……. 

(3.30d) 

( )1 1

, , ,, ; 0i i

h m h h ml P P 

 + + = , …………………………………………………………... (3.30e) 

( )1 1

, , ,, ; 0i i

h f h h ml P P 

 + + = , …………………………………………………………... (3.30f) 

1 1

, ,( , ; ) 0i i

h h h um P 

 + + =u . …………………………………………………………... (3.30g) 

, , , , , , ,( , , , , , )h h m h f h h m h f h u hq q q W  

    v   
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The unicity solution proof of the problem is out of the scope of this research, but the 

reader is referred to Garipov et al. (2012), Garipov et al. (2016), Girault et al. (2014), 

Kolesov et al. (2012), Köppel et al. (2018).  

3.3. Code Verification 

To validate the model, five different benchmarks were used, from classical 

poroelasticity to a fully coupled geomechanics-fracture problem. 

Terzaghi’s and Cryers’ problems have well-known analytical solutions which have 

been extensively used to verify poroelasticity problems. The comparison between 

EFM and DFM was performed to show the viability of applying DF’s and to illustrate 

the advantage of no fine gridding near the fracture, in this case it corresponds to a 

new proposed benchmark problem developed in this research. The next step was to 

build a DF network and make a comparison with previously known benchmark 

results. The last benchmark corresponds with a fully coupled geomechanics-DF 

problem widely used. 

3.3.1. One-dimensional Terzaghi’s Problem 

The first followed benchmark example to verify the model involves the consolidation 

problem proposed by Terzaghi (1925) illustrated by Fig. 3.4. Consider a 1D vertical, 

homogeneous and completely saturated porous rock column with height zL  

neglecting body forces such as gravity. The bottom boundary is fixed, and a natural 

boundary condition of no flux is set. The left and right boundaries are impervious and 

slip conditions are placed (only displacement in z -direction is allowed). The top 

boundary is fully drained and at time 0t t= , a compressive (negative) constant load 

( F− ) is applied. It was considered an undisturbed domain as initial conditions 

(pressure is zero throughout the domain). The boundary conditions are: 

 = −n F  on Top , ……………………………………………………… (3.31a) 

( , ) 0zP L t = on Top , ……………………………………………………….. (3.31b) 

(0, )t = 0u  on Bottom . ……………………………………………………… (3.31c) 
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Fig. 3.4 — Terzaghi’s one-dimensional consolidation problem. 

The parameters used in this benchmark are listed in Table 3.1.  

Parameter Value Units 

E  5 [MPa] 

  0.35 [dimensionless] 

m f =  1 [dimensionless] 

m f = =K K K  1e-15 [m2] 

fl  0.1 [cP] 

flc  4.4e-10 [Pa-1] 

rc  1e-11 [Pa-1] 

  0.1 [dimensionless] 

zL  15 [m] 

F  1 [MPa] 

  1 [(Pa s)-1] 

                                                Table 3.1 — Input parameters for Terzaghi’s problem. 

The normalized analytical solutions were given by Verruijt (2015) applying Laplace 

transformation. 
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( ) ( )
1 2

2

1

4 ( 1)
cos 2 1 exp 2 1

2 1 2 4

k

k

p k z k t
k

 



−

=

 −  
= − − −  −    

 , …………..……… (3.32) 

( )
( )

2
2

22
1

8 1
1 exp 2 1

42 1k

u k t
k







=

 
= − − − 

−  
 . ……………………………..... (3.33) 

Where t  is the normalized time 
2( ) /v zc t L ,  z  is the normalized height / zz L , p  is 

the normalized pressure 0/P P  and u  is the normalized consolidation 0

0

zu u

u u

−

−
. The 

parameter vc  is the consolidation coefficient, 

2

m
v

fl m

c

S
M




=
 

+ 
 

K
, ………………………………………………………….. 

(3.34a) 

 
4

3
M K = + . ……………………………………………………………….. (3.34b) 

In Fig. 3.5 and Fig.3.6 are observed the agreement between the numerical results 

and the analytical solutions. Fig. 3.5 shows that at time 0t =  there is an increase in 

pore-pressure in the entire sample due to the sudden constant load application on 

the top boundary of the domain  . Then the pore-pressure gradually decreases 

until it vanishes due to the fully drained top boundary. The dissipation time is directly 

related to permeability. Fig. 3.6 depicts that for short periods of time, the normalized 

consolidation is small due to small strain in the sample, then it increases in an 

exponential fashion as described by Eq. 3.33, until an asymptotical behaviour to 1 is 

displayed by the normalized consolidation (steady state), approaching the 

dimensionless time 2t  . 
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Fig. 3.5 — Comparison of pore-pressure analytical and numerical solutions of Terzaghi’s problem. 

 

Fig. 3.6 — Comparison of normalized consolidation analytical and numerical solutions of Terzaghi’s problem. 
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3.3.2. Three-dimensional Cryer’s Problem 

The Cryer’s problem (1963) arises when a spherical homogenous and fully saturated 

porous rock whit radius R  is subjected to load. At first, the sample is at equilibrium 

conditions with pressure equal to zero in the entire domain. At time 0t t= , it is applied 

an instantaneous compressive traction ( F ) is applied on the entire boundary  ; 

Fig. 3.7 shows a three-dimensional representation of Cryer’s problem. 

The boundary conditions in Fig. 3.7 are: 

 =n F  on  , ……………………………………………………….….. (3.35a) 

( , ) 0P R t= =r  on  . ……………………………………………….…….. (3.35b) 

  

Fig. 3.7 — Spherical consolidation Cryer’s problem. 

The same input parameters listed in Table 3.1 were used. The instantaneous 

undrained pore-pressure is 
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The normalized transient analytical solution for the fluid pore-pressure was obtained 

via Laplace transforms (Verruijt, 2015), can be expressed as 
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In Eq. 3.37 the dimensionless pressure p  in the centre is defined as ( ) 00, /mP t P=r

. In contrast to Terzaghi’s problem, in Cryer’s the pore-pressure increases as the 

drainage begins and not instantly, then the pressure decreases until reaching zero 

when the dimensionless time is around one (Fig. 3.8). Using ParaView for 

visualization (Aherns et al., 2005), the three-dimensional solution (in an eight of the 

spherical domain) can be seen in Fig. 3.9, which corresponds with the maximum 

pore-pressure around 0.0524807t = . The pore-pressure field was normalized as 

( )

0

,
* mP t

p
P

=
r

 according with Haagenson et al. (2019).  
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             Fig. 3.8 — Comparison of normalized pressure and numerical solutions of Cryer’s problem 

 

Fig. 3.9 — Dimensionless pore-pressure for Cryer’s problem at dimensionless time of 0.0524807. 
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3.3.3. Explicit Fracture Model vs Discrete Fracture Model 

This benchmark was conceived to compare the diffusive flux in the matrix domain in 

presence of a highly conductive horizontal fracture only, so that it is uncoupled from 

poroelasticity. The main goal was to compare the results of two different 

implementations of the fracture, similar to that performed by Moinfar et al. (2011). In 

Fig. 3.10 shows the conceptual description of the models. Both models share not 

only geometrical characteristics but also the same input data (Table 3.2), on the 

lower-left corners are placed boundaries of the Newmann type and the upper-right 

corners correspond with boundaries of the Dirichlet type. 

 

Fig. 3.10 — a) The explicit fracture model (EFM) and b) The discrete fracture model (DFM) for this benchmark. 
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Fig. 3.10a shows the domain is split in two subdomains, the fracture and the matrix 

with m fr=  . On the contrary, Fig. 3.10b shows the fracture is an embedded 

line segment in the domain,   .  

Parameter Value Units 

H  3.28084 [ft] 

xL  20 [ft] 

yL  10 [ft] 

frL  10 [ft] 

w  0.01 [ft] 

pbl  1 [ft] 

mK  10 [mD] 

fK  1000 [mD] 

fl  1.06 [cP] 

flc  1e-6 [psi-1] 

rc  4e-6 [psi-1] 

frc  20e-6 [psi-1] 

  0.2 [dimensionless] 

fr  0.02 [dimensionless] 

wfP  300 [psi] 

wsP  250 [psi] 

iq  2.6e-11 [STB/d] 

maxt  500 [s] 

t  1 [s] 

                                               Table 3.2 — Input parameters for EFM vs DFM benchmark. 

The boundary conditions are shown in Fig. 3.10. 
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 m wfP P=  on D . ……………………………………………….……….….. (3.41b) 

Fig. 3.11 shows the pore-pressure solution for both models at the end of the 

computational time ( maxt ). As it can be appreciated, both solutions match in pressure 

contours, and the DFM represents appropriately the EFM. The fracture is illustrated 

by a horizontal thin rectangle (EFM) or horizontal line (DFM), in withe color. 

 

Fig. 3.11 — EFM-DFM pore-pressure solution at tmax. 

Fig. 3.12 and Fig. 3.13 show a comparison of the dimensionless pore-pressure of 

both models at the end of the computational time in two different lines across the 

domains, the shaded area depicts the fracture length and width respectively. Fig. 
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3.12 corresponds with a horizontal line at 0.5y = (red circles), and Fig. 3.13 coincide 

with a vertical line at 0.5x = (blue circles).  

 

Fig. 3.12 — EFM-DFM dimensionless pore-pressure of a line 0.5y = . 

 

Fig. 3.13 — EFM-DFM dimensionless pore-pressure of a line 0.5x = . 



77 
 

3.3.4. A Discrete Fracture Network 

In this case the flow model is compared with a more complex test case with a regular 

network of fractures (Flemisch et al. 2018; Geiger et al. 2013; Köppel et al., 2018). 

The domain is a unit square [0,1] [0,1] =   with length L  as illustrated by Fig. 3.14 

and the input data is listed in Table 3.3. In this research was considered only a 

conductive fracture network consisting of six discrete fractures, all the fractures were 

implemented with the same aperture. Top and bottom boundaries are sealed, on left 

boundary a constant flux exists and on the right boundary, is set a constant pressure. 

The boundary conditions are: 

( )m m mP q  =K n  on N , …………………………………………..……... (3.42a) 

 mP p=  on D . ……………………………………………….…..…….….. (3.42b) 

( )P q     =K n  on 1,N  , …………………………………………..…… (3.42c) 

 P p =  on 1,D  and 3,D ………………………….………………..….… (3.42d) 

 

Fig. 3.14 — Discrete fracture network benchmark. 
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Parameter Value Units 

mK  I  [dimensionless] 

K  1e4 [dimensionless] 

L  1 [dimensionless] 

w  1e-4 [dimensionless] 

p  1 [dimensionless] 

mq  1 [dimensionless] 

q  1e-4 [dimensionless] 

Table 3.3 — Input parameters for the discrete fracture network benchmark. 

This benchmark is in steady sate conditions; hence the time derivative vanishes. 

Fig. 3.15 shows the color contours of the dimensionless pressure. The fractures are 

depicted by white straight lines.  

Fig. 3.15 — Dimensionless pore-pressure distribution in the fracture network benchmark. 
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Available data from Flemisch et al. (2018) were gathered [*] to compare the results, 

Fig. 3.16 displays this comparison.  

The results for this benchmark in this research, are identical to those obtained by 

Köppel et al. (2018), the main difference is that they used a XFEM-LM formulation. 

Fig. 3.15a shows the dimensionless pressure distribution on a line at 0.7y =  and 

Fig. 3.15b coincide with  0.5x = , the method of this work is denoted by LM-DFM. 

 

Fig. 3.16 — Comparison with different methods at a) 0.7y = and b) 0.5x =  (modified from Köppel et al, 2018). 

3.3.5. Lamb’s Problem 

The next benchmark corresponds with a single-phase single fracture coupled with 

geomechanics (Lamb et al., 2010, Lamb, 2011). As shown by Fig. 3.17, this example 

considers free drainage at the top and the other boundaries are sealed. A constant 

compressive load is applied at the top boundary at ( 0t t= ), Table 3.4 displays the 

input data. From Fig. 3.16 the boundary conditions are as follows: 

 = −n F on Top , ………………………………………………………… (3.43a) 

( ,0) 0yP L =  on Top , ………………………………………………………. (3.43b) 

(0, )t = 0u  on Bottom . ………………………………………………………. (3.43c) 

 
* https://git.iws.uni-stuttgart.de/benchmarks/fracture-flow 
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Fig. 3.17 — Sematic of the single fracture benchmark (modified from Lamb, 2011). 

Parameter Value Units 

E  40 [MPa] 

  0.3 [dimensionless] 

m f =  1 [dimensionless] 

/ /m fl f fl =K K  1e-11 [m2/(Pa s)] 

/ fl K  1e-1 [m2/(Pa s)] 

  0.1 [dimensionless] 

f  =  0.05 [dimensionless] 

xL  10 [m] 

yL  16 [m] 

w  0.005 [m] 

nk  1 [MPa] 

F  10 [kPa] 

  1 [(Pa s)-1] 

Table 3.4 — Input parameters for the single fracture benchmark. 



81 
 

Fig. 3.18 depicts the comparison of displacement between Lamb’s solution (2011) 

(Fig. 3.18a) and this research solution (Fig. 3.18b). The color contours do not exactly 

match, this can be explained with the fact that the color mapping is not the same, 

but the maximum and minimum values match. In Fig. 3.17b the values are rounded; 

therefore, the maximum value of the color bar is 4.8.  

 

Fig. 3.18 — a) The reference solution (Lamb, 2011) and b) this research. 

3.4. Model Results 

Once that the model has been considered correct trough a validation process, it is 

implemented a new example that shows the response of the dual-continua 

implementation along with poroelasticity and the DFM with Lagrange multipliers.  

In Fig. 3.19 is displayed the schematic of the domain   for this test, which is similar 

to Lamb’s benchmark. From Fig. 3.19 it can be seen that the matrix continuum is 

entirely sealed on its boundaries, the fracture continuum is drainage free on the top 

boundary only, so that the other boundaries are sealed. For displacement the bottom 

boundary is fixed and on the left and right boundaries only vertical displacement is 

allowed. At time ( 0t t= ), a static compressive load ( F ) is suddenly applied on the 

top boundary and held constant throughout the computational time. Table 3.5 lists 

the input data used on this model. The computational time was 20 days. In this model 
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the matrix continuum is closed on its boundaries, this implies that the flow in the 

matrix is towards the fracture continuum due to the inter-porosity exchange 

parameter   and both continua are also communicated by the discrete fracture       

 

Fig. 3.19 — Schematic of the computational domain for the new model. 

The initial conditions considered the domain as undisturbed ( ( , 0)t = = 0u x ) and 

pressures were set to a reference value ( ( , 0) ( , 0) 10000m fP t P t= = = =x x  [Pa]).  

The equations considered for change in porosity and permeability with time were 

( )( )
( ) ( ),

1
i i v v i

dry

P P
K

  
    

− −
= + − + − , ………………………………. (3.43) 

 

m

i

=




 
 
 

K K , ……………………….………………..….………………….. (3.44) 

change of DF fracture width was conceived as 

 0w w = + u n . ……………………………………………………………. 
(3.45) 

 



83 
 

Parameter Value Units 

E  40 [MPa] 

  0.3 [dimensionless] 

m  0.99 [dimensionless] 

f  0.8 [dimensionless] 

fl  1 [Pa s] 

mK  10 [mD] 

fK  100 [mD] 

K  1000 [mD] 

m  0.1 [dimensionless] 

f  0.05 [dimensionless] 

  2.5e-4 [dimensionless] 

xL  10 [m] 

yL  16 [m] 

L  8 [m] 

w  0.005 [m] 

  1e-12 [(Pa s)-1] 

nk  2.864 [MPa] 

m  3 [dimensionless] 

maxt  20 [d] 

t  0.1 [d] 

Table 3.5 — Input parameters for the new model. 

The Fig. 3.20 shows the displacement solution for the new model through time. At 

early times ( 0.1t =  [d]) the fracture experiences an increment in displacement due 

to the sudden application of the load. At time 2.5t =  [d], the sample starts 

compaction in which the top side of the fracture moves downwards towards the 
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fracture, leading to a jump in displacement across the fracture. When the time 

reaches 5t =  [d], the rock sample continues compaction, and the displacement 

jump continues evolving, displacement values around 1.5 [mm] are reaching the 

bottom tip of the fracture. By 10t =  [d], the sample compaction is almost fully 

developed, which suggests that on the remaining computational time, displacement 

will barely vary. At 20t =  [d] compaction is fully developed, and displacement 

reaches a steady state condition. From Fig. 3.21 and Fig. 3.22, are observed the 

time dependent pressure distributions on the matrix and fractures continua. It can be 

noticed that fractures continuum drains faster than matrix, this is due to the higher 

permeability.   

 

Fig. 3.20 — Time dependent displacement solution of the new model. 

 

Fig. 3.21 — Time dependent matrix continuum pressure solution of the new model. 
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Fig. 3.22 — Time dependent fracture continuum pressure solution of the new model. 

Fig. 4.23 shows the time evolution of porosity and permeability computed with Eq. 

3.43 and Eq. 3.44 respectively, for matrix and fractures continua. 

 

Fig. 3.23 — Time dependent porosity and permeability. 

It can be observed from Fig. 3.23 that the fractures continuum showed a major 

variation in porosity and permeability, where permeability loss was around 10 [mD] 

with a slight porosity loss. In contrast, the matrix continuum behaved steadily 

throughout the simulation time where almost no variations in porosity and 

permeability are appreciated. 
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Fig. 3.24 and Fig. 3.25 are linked. Fig 3.24 shows a sensitivity analysis for the 

parameter   measured at point A, where 1.0m =  and 1.0f =  remained constant; 

Fig. 3.25, presents two cases for   values with 1m f = = .  

 

Fig. 3.24 — Pressure difference at point A with different inter-porosity exchange coefficient.  

 

Fig. 3.25 — Time dependent pressures at point A due to varying inter-porosity exchange coefficient. 
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Fig. 3.24 exhibits that when 1 →  [(Pa s)-1], the pressure difference is neglectable, 

presenting a mirroring behavior between both continua, this is represented by the 

continuous lines of Fig. 3.25, while for 1 14e  −  [(Pa s)-1] the lines converge, 

resulting in a low limit due to flux between continua across the discrete fracture   

(the DF is the only flow connection between continua). Fig. 3.25 also shows that the 

nearest to one the inter-porosity exchange parameter is, the lower the difference 

between pressures continua (the dual-continua behaves identically, continuous lines 

get closer). Contrarily, the lower the value of   the greater the pressure difference 

(again, discontinuous lines separate from each other). Additionally, for time t  

approaching maxt , both continua are completely drained. 

In Fig. 3.26 is shown a sensitivity analysis for a varying fractures Biot’s coefficient 

f  measured at point A but 1 15e = −  [(Pa s)-1]; the value of   was chosen to 

exacerbate the pressure change between continua following Fig. 3.24. It can be 

observed that the main difference between continua happens when 1f = , 

corresponding with the cyan colored line placed above all of the lines.  

 

Fig. 3.26 — Pressure difference at point A with different Biot’s coefficient of fractures continuum. 
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Fig. 3.27 shows the time depending pressure at point A for the specific cases of 

0.1f =  and 0.3f = , where blue lines stand for matrix pressure and red lines depict 

fractures pressure, the continuous/discontinuous character of the lines correspond 

with the specific cases of f  (0.1 or 0.3) for the same value of m  (1.0). In Fig. 3.27 

is distinguished that the farther the value of f  is from m , the lower the difference 

between pressure continua (matrix/fracture) for a fixed   (the continuous lines 

become closer). On the contrary, when f  presents closer values to m , the 

difference becomes grater (the noncontinuous lines separate from each other). It 

can be noticed that when time t  tends to maxt , both continua are fully drained, and 

pressures decrease towards zero. 

 

Fig. 3.27 — Time dependent pressures at point A due to varying fractures Biot’s coefficient. 
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3.5. Conclusions 

Conclusions of this chapter are listed as follows: 

1. It was developed the new Coupled Geomechanics Dual Porosity/Dual 

Permeability Explicit Fracture Model by Lagrange Multipliers. 

2. Laminar Darcy flow is considered in the matrix and fractures continua as well 

as in the discrete fracture, if there exist non-Darcy flow a different approach 

must be followed. 

3. This model treats the pore domain as two overlapping continua accounting 

for matrix and fractures which are communicated by the inter porosity 

exchange parameter. 

4. The discrete fractures are implemented via Lagrange Multipliers and plugged 

to the matrix and fractures continua. 

5. The model is coupled with the solid deformation following the theory of 

poroelasticity. 

6. Geomechanics is applied in the discrete fracture by contact theory. 

7. Five benchmarks were followed to validate the model. 

8. Special results of the model were displayed along with a sensitivity analysis. 
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3.6. Nomenclature 

b  =  source/sink term of pressure equation, t-1, s-1. 

fb  =  fracture continuum source/sink term of pressure equation, t-1, s-1. 

mb  =  matrix continuum source/sink term of pressure equation, t-1, s-1. 

b  =  discrete fracture source/sink term of pressure equation, t-1, s-1. 

C  =  fourth rank stiffness tensor, m/Lt2, psi [Pa]. 

bcc  =  
bulk compressibility varying confining pressure; pore-pressure held 
constant, Lt2/m, psi-1 [Pa-1]. 

flc  =  fluid compressibility, Lt2/m, psi-1 [Pa-1]. 

oc  =  cohesion parameter, m/Lt2, psi [Pa]. 

rc  =  solid rock compressibility, Lt2/m, psi-1 [Pa-1]. 

vc  =  consolidation coefficient, L2/t, ft2/s [m2/s]. 

E  =  Young’s modulus, m/Lt2, psi [Pa]. 

F  =  compressibe load, m/Lt2, psi [Pa]. 

f  =  body forces, mL/t2, lbm ft/s2 [kg m/s2]. 

H  =  height of the domain, L, ft [m]. 

I  =  identity tensor, dimensionless. 

K  =  bulk modulus, m/Lt2, psi [Pa]. 

dryK  =  modulus in drained conditions, m/Lt2, psi [Pa]. 

K  =  permeability tensor, L2, mD [D]. 

fK  =  fractures continuum permeability tensor, L2, mD [D]. 
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mK  =  matrix continuum permeability tensor, L2, mD [D]. 

K  =  discrete fracture permeability tensor, L2, mD [D]. 

nk  =  fracture normal stiffness parameter, m/Lt2, psi [Pa]. 

k  =  fracture tangential or shear stiffness parameter, m/Lt2, psi [Pa]. 

frL  =  length of the fracture, L, ft [m]. 

xL  =  length of the domain in x -direction, L, ft [m]. 

yL  =  length of the domain in y -direction, L, ft [m]. 

zL  =  height of the domain in z -direction, L, ft [m]. 

M  =  Biot modulus, m/Lt2, psi [Pa]. 

m  =  power for evolutive permeability, dimensionless.  

tN  =  total number of time increments, dimensionless. 

n  =  counter of time, dimensionless. 

n  =  discrete fracture normal vector, dimensionless. 

n  =  domain normal vector, dimensionless. 

P  =  pressure, m/Lt2, psi [Pa]. 

fP  =  fractures continuum pressure field, m/Lt2, psi [Pa]. 

iP  =  initial pressure field of any continua, m/Lt2, psi [Pa]. 

mP  =  matrix continuum pressure field, m/Lt2, psi [Pa]. 

pP  =  pore-pressure, m/Lt2, psi [Pa]. 

wfP  =  flowing well pressure, m/Lt2, psi [Pa]. 
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wsP  =  static well pressure, m/Lt2, psi [Pa]. 

P  =  discrete fracture pressure field, m/Lt2, psi [Pa]. 

0P  =  undrained referece pore-pressure, m/Lt2, psi [Pa]. 

pbl  =  pressure boundary length, L, ft [m]. 

*p  =  dimensionless pressure. 

p  =  dimensionless pressure. 

q  =  Darcy velocity, L/t, ft/s [m/s]. 

fQ  =  fractures pressure function space, m/Lt2, psi [Pa]. 

mQ  =  matrix pressure function space, m/Lt2, psi [Pa]. 

Q  =  discrete fracture pressure function space, m/Lt2, psi [Pa]. 

fq  =  test function of fQ . 

mq  =  test function of mQ . 

q  =  test funtion of Q . 

R  =  radius, L, ft, [m]. 

S  =  storage coefficient, Lt2/m, psi-1 [Pa-1]. 

fS  =  fracture continuum storage coefficient, Lt2/m, psi-1 [Pa-1]. 

mS  =  matrix continuum storage coefficient, Lt2/m, psi-1 [Pa-1]. 

S  =  discrete fracture storage coefficient, Lt2/m, psi-1 [Pa-1]. 

t  =  traction on the domain boundary, m/Lt2, psi [Pa]. 

t  =  time, t, s [d]. 

maxt  =  maximum computational time, t, s [d]. 



93 
 

t  =  dimensionless time. 

u  =  displacement, ft [m]. 

zu  =  vertical displacement, L, ft [m]. 

0u  =  undrained referece vertical displacement, L, ft [m]. 

u  =  maximum vertical displacement, L, ft [m]. 

u  =  dimensionless displacement. 

v  =  test function of V . 

flv  =  fluid velocity, L/t, ft/s [m/s]. 

V  =  displacement vector function space, L, ft [m]. 

W  =  mixed dimensional function space. 

w  =  fracture width, L, ft [m]. 

0w  =  maximum fracture width, L, ft [m]. 

x  =  dimensionless length in x -direction. 

y  =  dimensionless length in y -direction. 

z  =  height position, L, ft [m]. 

z  =  dimensinless height. 

  =  Biot’s coefficient, dimensionless. 

f  =  fractures continuum Biot’s coefficient, dimensionless. 

m  =  matrix continuum Biot’s coefficient, dimensionless. 

  =  inter porosity exchange parameter, Lt/m, (psi s)-1 [Pa s]-1. 

  =  discrete fracture faces of codimension one. 

  =  discrete fracture, dimensionless. 
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t  =  time increment, t, s [d]. 

  =  second rank strain tensor, dimensionless. 

v  =  volumetric strain, dimensionless. 

,v i  =  initial volumetric strain, dimensionless. 

  =  additional compressibility parameter, dimensionless. 

f

  =  test function of f   

m

  =  test function of m . 

u

  =  test function of u . 

f   =  
Lagrange multiplier space from fractures to the discrete fracture, t-1, 
s-1. 

m  =  Lagrange multiplier space from matrix to the discrete fracture, t-1, s-1. 

u  =  
Lagrange multiplier space for stress coupling on the discrete fracture, 
m/Lt2, psi [Pa]. 

  =  Lame’s first parameter, m/Lt2, psi [Pa]. 

  =  shear modulus (Lame’s second parameter), m/Lt2, psi [Pa]. 

fl  =  dynamic viscosity fluid, m/Lt, cP [Pa s]. 

  =  Poisson’s ratio, dimensionless 

i  =  thi  positive root, dimensionless. 

fl  =  fluid density, m/L3, lbm/gal [kg/m3]. 

r  =  solid rock density, m/L3, lbm/gal [kg/m3]. 

  =  second rank stress tensor, m/Lt2, psi [Pa]. 

  =  stress, m/Lt2, psi [Pa]. 
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'  =  second rank effective stress tensor, m/Lt2, psi [Pa]. 

'  =  effective stress, m/Lt2, psi [Pa]. 

'n  =  '  n , normal stress, m/Lt2, psi [Pa]. 

  =  shear stress, m/Lt2, psi [Pa]. 

  =  porosity, L3/L3, porous volume over bulk rock volume, dimensionless. 

i  =  
initial porosity, L3/L3, initial porous volume over rock bulk volume, 
dimensionless. 

f

  =  Lagrange multiplier from fractures to the discrete fracture, t-1, s-1. 

m

  =  Lagrange multiplier from matrix to the discrete fracture, t-1, s-1. 

  =  computational domain, L2 or L3, ft2 [m2] or ft3 [m3]. 

  =  domain boundary, L or L2, ft [m] or ft2 [m2]. 

D  =  domain boundary of the Drichlet type, L or L2, ft [m] or ft2 [m2]. 

N  =  domain boundary of the Newmann type, L or L2, ft [m] or ft2 [m2]. 
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4.  Rheology of Salt Rocks 

Salt is an effective impermeable seal for trapped fluids, it is a viscous ductile material 

at pressure and temperature conditions. It can flow, deform, and move across 

neighboring sediments. Plenty of the Gulf of Mexico (GoM) hydrocarbon reserves 

(as well as on-shore locations in Mexico) are related to salt structures and in other 

places worldwide (Farmer et al., 1996; Wang et al., 2016). Due to salt rock 

impermeability, it has been used as strategic hydrocarbon storage and as nuclear 

waste storage (Costa et al., 2012; Munson and Dawson, 1979). 

In means of nuclear waste disposal, salt structures and bedded salt layers have been 

also employed due to its intrinsic creep capability which encapsulates the radioactive 

material (Bérest et al., 2007; Wang et al., 2015; Mahmoudi et al., 2016). For 

example, there is the Waste Isolation Pilot Plant (WIPP) from the Americas’ Energy 

Department (Munson and DeVries, 1991; Munson, 1999) where was developed the 

Multi Mechanism Deformation Model, this model was later used to model the stability 

of pre-salt wellbores subjected to creep in Campos Basin, Brazil (Firme et al., 2014; 

Firme et al., 2016). Because of its impermeability, openings made in salt rocks have 

been used as strategic storage for hydrocarbons (Costa et al., 2012), for example 

the Strategic Petroleum Reserve (Office of fossil energy, 2021).  

When drilling for reaching pre-salt reservoirs and mostly through long salt sections, 

the transient creep behavior exhibited by salt rocks under in situ stress and 

temperature conditions can result in a reduction of the wellbore diameter, causing 

trapped drilling string and even casing collapse (Barker et al., 1994; Carter and 

Hansen, 1982; Fuenkajorn and Daemen, 1988). Water-based drilling fluids with low 

salinity can dissolve salt, leading to hole enlargement which can result in poor casing 

cementation. Various geological risks expected during drilling of salt formations 

include also, salt sutures, inclusions (lens of country rock), tar and rubble zone (Amer 

et al., 2016).  
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Salt rocks have been extensively studied worldwide. Some efforts have succeeded 

on the detailed introduction of new concepts and terms regarding salt tectonics, 

giving a complete conceptual framework to name different salt structures and 

distinguish its specific features as well as providing a creep law and other 

meaningfully mechanical expressions for salt rocks (Jackson and Talbot, 1991). 

The main goal was to achieve complete understanding underneath salt constitutive 

creep theory and models, compare the results against analytical solutions and 

expand them for application in 2D and 3D problems. 

4.1. Behavior of Salt Rock 

Salt is a viscoelastic rock; viscoelasticity is the feature that some materials have of 

acting as a solid and as a viscous fluid simultaneously (e. g., glass, human skin, 

polymers). Salt mineralogical composition depends on the environment of 

deposition, Table 4.1 shows several salt types, physical properties, chemical formula 

and mobility (Amer et al., 2016; API RP 96). 

Salt 
Chemical 

Formula 

Relative 

Mobility 

Squeezing 

Salt 

(Y/N) 

Bulk 

Density 

(gr/cm3) 

Bischofite MgCl2 • 6H2O 

(Decreasing) 

Yes 1.54 

Carnalite 
KCl, MgCl2 • 

6H2O 
Yes 1.57 

Sylvite KCl Yes 1.86 

Halite NaCl No 2.04 

Gypsum/Anhydrite CaSO4 • H2O No 2.35 

Dolomite CaCO3MgCO3 No 2.87 

       Table 4.1 — Properties and composition of several salts (modified from API PR 96; Amer et al., 2016). 

From Table 4.1 it can be concluded that Dolomite, Gypsum/Anhydrite are the 

practically immobile, Halite is more mobile but less than Bischofite and Carnalite. 

Problematic salt rocks with elevated creep rates arise due to clay impurities, high 
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moisture content of different salt minerals or interbedded shale sheets. Therefore, 

the probability of a salt to develop creep over time is affected by pressure, 

temperature and mineralogy. Creep rate in salt rocks depends on many factors (API 

PR 96): 

• Pressure 

• Impurities and mineralogy 

• Temperature 

• Moisture content 

• Vertical Stress (Overburden) 

• Local and regional stresses 

Generally, creep of salt rock develops three stages as illustrated by Fig. 4.1, which 

include the transient creep (primary stage), steady-state creep (secondary stage) 

and accelerative creep (tertiary stage), at a given temperature and differential stress. 

 

Fig. 4.1 — Typical creep curve response for salt rock (Betten, 2008; Firme et al., 2014; Poiate, 2012). 

The left vertical axis in Fig. 4.1, corresponds with strain ( cr ) and the right axis with 

the strain rate (the upper dot means time derivative, cr ), time ( t ) is in the horizontal 
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axis. It can be observed that right after the application of the differential stress in a 

rock sample, an instantaneous strain ( 0 ) is generated, in the transient creep stage 

the strain increases with time while the strain rate decreases, both in a non-linear 

fashion; once the steady-state creep stage is reached the strain increases linearly 

with time showing a constant slope represented by the constant creep strain rate, 

finally in the accelerated stage both the creep strain and the creep strain rate 

increase with time until failure is reached. In the context of drilling (wellbore closure) 

and completion, accelerative creep (tertiary stage) is unlikely to occur due to the 

large time needed to reach failure and the constrained in situ strain.  

Various conditions for creep occurrence are addressed in a deformation-mechanism 

map, as shown by Fig. 4.2 (Munson, 1979).  

 

Fig. 4.2 ― Deformation-mechanism map for salt (Munson, 1979; Firme et al., 2016) 
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Fig. 4.2 shows the conditions at which salt creep occurs and are depicted as a 

deformation-mechanism map.  In accordance with Fig. 4.2, salt creep depends on 

the differential stress ( d ) and temperature (T ); where mT  is the salt melting 

temperature (1077 [K]) and   corresponds with the elastic shear modulus. At the 

microscale of a crystal structure, dislocations are linear defects in the crystal lattice, 

which can be explained assuming that the occurring slip is the result of consecutive 

atoms row slip along the slip plane (Ranalli, 1995). According with Ranalli “a 

dislocation may be defined as the line marking the boundary between slipped and 

unslipped parts on the slip plane.” The majority of salt deformation mechanisms are 

linked with dislocation-based movements (Pouya, 2000). In accordance with the 

map depicted by Fig. 4.2, creep is governed by dislocation, diffusion, defect-less flow 

and an undefined mechanism. In general, for geomechanical applications, the 

mechanisms of interest are dislocation (climb and glide) and the undefined 

mechanism.  

• Dislocation Glide (DGL) 

This mechanism is triggered when a critical deviatoric (or shear) stress is reached. 

Dislocation glide is a creep deformation-mechanism at a microscopic scale, which 

arises from many slip modes in the lattice of the crystal material (Fig. 4.3). Glide is 

a thermally activated process. 

 

Fig. 4.3 ― Dislocation glide (modified from Ranalli, 1995).  



108 
 

The sequential crystal grain migration through slip planes generates dislocation 

angles, leading to an increase in density and the number of dislocations at the grain 

boundaries, resulting in an obstruction of the motion of the dislocation ― hardening 

(Firme et al., 2016; Jeremic, 1994). 

• Dislocation Climb (DCL) 

This mechanism is a thermally activated process at high temperatures ( 0.5 mT T ), 

which involves the diffusion of empty spaces (vacancies) away or towards the 

dislocation, originated by the movement out of the slip plane of a dislocation edge 

by climb (Fig. 4.4). Climb needs the addition or removal of a row of atoms from the 

extra half-plane related with the dislocation (Firme et al., 2016; Ranalli, 1995). 

 

Fig. 4.4 ― Climb of an edge dislocation (a) from plane P
A

 to plane P
B

by adding a row of atoms or (b) from plane 

P
A

 to plane P
C

 by subtracting a row of atoms (modified from Ranalli, 1995). 

• Undefined Mechanism (UMC) 

Undefined mechanisms also contribute to creep, while are expected to be different 

than the dislocation-based mechanisms (glide and climb).  The physicochemical 
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phenomenon of the UMC, has been attributed to a pressure solution mechanism 

acting on the salt grains contact edges (Costa et al. 2005), transfer of mass by 

precipitation and solution in the viscoelastic regime (Dusseault et al., 1987; 

Dusseault, 1989) and more recently, was associated to the Dislocation Cross-Slip 

mechanism (Hansen, 2014).  

4.2. General Governing Equations 

Recalling the momentum balance equation for a linear elastic solid, 

( ) f− = u , ………………………….….………………………………….. (4.1) 

( ) ( )= u C u . ……………………………………………………..…..…….. (4.2) 

Eqs. 4.1 and 4.2 form the momentum balance equations which are complemented 

by an additional expression to compute the creep strain. The transient creep strain 

is function of time, temperature, and internal variables of the chosen salt constitutive 

rheological model. The internal variables of a salt rheological model are parameters 

to fit experimental data. In total, six rheological models were studied. 

All of the rheological models for salt creep were implemented using FEniCS (Alnæs 

et al., 2015; Daversin-Catty et al., 2019; Farrel et al., 2013; Logg et al., 2012) 

following Fig. 4.5, where the real domain ( salt ) is observed, consisting of a 3D 

cylindrical salt specimen and, the computational domain ( ) formed by a 2D 

rectangle, considering two symmetry planes (bottom and left) and symmetry with 

respect to the angle of the cylindrical coordinates. Fig. 4.6 shows the confining (a) 

and the transient (b) stages that were applied in the subsequent numerical models. 

During the confining stage the same stress at the top and right boundaries was 

applied ( c ); during the transient stage a differential stress ( d ) was added at the 

top and held constant throughout the simulation time.  
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Fig. 4.5 ― Real and computational domains for a salt sample (modified from Wang et al., 2018). 

 

Fig. 4.6 ― Procedure followed in the model, (a) the confining stage and (b) the transient stage. 

4.3. Linear Viscoelasticity 

A characteristic feature of a linear viscoelastic material is that the strain history and 

stress are linearly proportional. Linear viscoelasticity is mainly applicable for small 

deformations and/or linear materials. Therefore, the small strain theory is applicable. 
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To develop the constitutive equations, the Boltzmann superposition principle or 

mechanical analogs can be implemented (Banks et al., 2011). This research follows 

the mechanical analogs and is based on Bleyer (2018), following his first approach 

(backward-Euler scheme to approximate the viscous strain evolutive equation).  

4.3.1.  Standard Linear Solid 

The model was built based on a Standard Linear Solid Model (SLS Model) 

represented by Fig. 4.7, where Maxwell and Kelvin-Voigt Models are special cases, 

as described by Bleyer.  

 

Fig. 4.7 ― Schematic of the SLS Model. 

For 2D and 3D, two elastic moduli (one for each spring, 0E  and 1E ) and a dashpot 

(viscous element with viscosity  ) were considered; the same Poisson ratio for all 

springs was assumed. Considering a convex salt rock domain 
d  , 2d =  or 3  

as illustrated by Fig. 4.6, with a surrounding set of boundaries  . Recalling Eqs. 

4.1 and 4.2 and neglecting body forces, the set of equations acting in   are: 

( , ) 0cr− = u u , ……………………………………………………..………. (4.3a) 

( ) ( ) ( )1
cr cr


= −    

C
u u u , …………………………………………………. (4.3b) 

0xu =  on D left =  , ……………………………………………………….. (4.3c) 
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0yu =  on D bottom =  , …………………………………………………….. (4.3d) 

c = − n  on N right top =    for the confining stage, ……………… (4.3e) 

( )c d = − +  n  on top  for the transient stage. ………………….……... (4.3f) 

where the stress-strain relation is defined as 

( ) ( ) ( ) ( )0 1, cr cr= + −    u u C u C u u . ………………….……………….. (4.3g) 

Defining the spaces of test and trial functions in d . 

( ) ( ) 1 : ,
d

D DH   =  V = v v x v x , ……………………………………. (4.4) 

( ) ( ) 1 : ,
d

cr D DH   =  V = v v x v x , ………………………………...… (4.5) 

Multiplying Eq 4.3a by a test function v  and Eq. 4.3b by a test function crv  and 

performing integration by parts, the variational problem is: 

Find u V and cr cru V such that 

( ) ( )
( )

:

N

cr c

t

, d d
 

= −      u u v , ………………………………………. (4.6) 

 v V   

( ) ( ) ( )1

( ) ( )

: :cr cr cr cr

t t

d d


 

  = −       
C

u v u u v . ……………………….. (4.7) 

cr cr v V   

The discrete problem is obtained by restricting Eq. 4.6 and Eq. 4.7 to discrete spaces 

of test and trial functions. Find h hu V and , ,cr h cr hu V such that 

( ) ( ),

( )

:

N

h cr h h c h

t

, d d
 

   = −      u u v v , ………………………………… (4.8) 

h h v V   
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( ) ( ) ( )1
, , , ,

( ) ( )

: :cr h cr h h cr h cr h

t t

d d


 

   = −      
C

u v u u v . ………………… (4.9) 

, ,cr h cr h v V   

For time discretization let ( , )i

it=u u x and ( , )i i

cr cr it=u u x  where ( )it i t=  , 0,1,2,... ti N=  

and  
1i it t t+ = − . The problems can be reformulated as follows with an implicit 

backward-Euler outline in time (Bleyer, 2018). 

( ) ( )1

,

( )

:

N

i i

h cr h h c h

t

, d d+

 

   = −  
    u u v v , ……………………………….. (4.10) 

h h v V   

( ) ( )
( ) ( )

1

, , 1 11
, , ,

( ) ( )

: :

i i

cr h cr h i i

cr h h cr h cr h

t t

d d
t 

+

+ +

 

 −
   = −   
   

 
 

 
u u C

v u u v . …... (4.11) 

, ,cr h cr h v V   

Using Eq. 4.3g and making some algebra with Eqs. 4.10 and 4.11 leads to 

( ) ( )1

,

( )

:

N

i i

h cr h h c h

t

, d d+

 

= −     u u v v  for 0t t= , ……………………… (4.12a) 

( ) ( ) ( )1

,

( )

:

right top

i i

h cr h h c h c d h

t

, d d d+

  

 = −  − +        u u v v v  for it t=  
(4.12b) 

h h v V   

( ) ( ) ( )1 1

, , 1 , , ,

( ) ( ) ( )

: : :i i i

cr h cr h v v h cr h v cr h cr h

t t t

d d d+ +

  

 =  +      u v C C u v C u v . . (4.13) 

, ,cr h cr h v V   

where the stress-strain relation given by Eq. 4.3g is rewritten as 

( )   ( )   ( )1 1

, 0 1 1 1 1 ,

i i i i

h cr h v v h v cr h,+ += + − −  u u C C C C C u C C u . ………………… (4.14) 

To obtain the final solution, Eq. 4.12a is solved first (confining stage), to obtain an 

instantaneous strain, then Eq. 4.12b and 4.13 are solved systematically until the 

maximum simulation time is reached (transient stage). Eqs. 4.3 can also be solved 
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with mixed finite element. To verify the model and from Fig. 4.7, the 1D stress-strain 

partial differential equation is given by 

( )0E      + = + , ……………………………………………………… (4.15) 

where 

0 1

0 1

E E

E E
 

+
=  and 

1E



 =  

Solutions of Eq. 4.15 are well known (Banks et al., 2011). Eq. 4.16 corresponds with 

the relaxation stress solution while Eq. 4.17 agrees with the transient creep solution.  

0
0 0 1 0( ) exp ( )

t t
t E E H t t



 


  −
= + − −  

  
, ……………………………………. (4.16) 

0 0
0

1

( ) 1 1 exp ( )
t t

t H t t
E



 

 


 

    −
= + − − −    

    
, ……………………………….. (4.17) 

Table 4.2 shows the input data for this solution. From Fig. 4.8 and Fig. 4.9 is noticed 

that the fitting among numerical and analytical solutions are in agreement (Bleyer, 

2018). Fig. 4.8 corresponds with a stress relaxation test while Fig. 4.9 agrees with a 

creep test of the SLS Model. 

Parameter Value Units 

0E  8.5e9 [Pa] 

1E  2.25e9 [Pa] 

  0.0 [dimensionless] 

  1e16 [Pa s] 

0  100 [MPa] 

0  1e-2 [dimensionless] 

Table 4.2 ― Input data for the SLS Model. 
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The results are evaluated at Point A of Fig. 4.6, which correspond with the axial 

strain ( y ) and axial stress ( y ) on the vertical axis, the horizontal axis represents 

time in years. 

 

Fig. 4.8 ― Relaxation test for the SLS Model (modified from Bleyer, 2018). 

 

 

Fig. 4.9 ― Creep test for the SLS Model (modified from Bleyer, 2018). 
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4.3.2.  Maxwell Model 

The Maxwell model is represented by a dashpot (a viscous element) and an elastic 

spring, connected in series (Fig. 4.10). The connection in series leads the dashpot 

and the spring to be subjected to the same stress, showed by Eq. 4.18. 

1

1

E


 


+ = . ………………………………………………………………..… (4.18) 

 

Fig. 4.10 ― Schematic of the Maxwell Model. 

The solutions of Eq. 4.18 are well known and can be obtained by Laplace 

transformation. Eq. 4.19 is the solution for stress relaxation and Eq. 4.20 is the 

solution for creep.  

( ) ( )1
0 0 0( ) exp

E
t E t t H t t 



 
= − − − 

 
, …………………………...…………... (4.19) 

( )
( )0

0 0

1

1
( )

t t
t H t t

E
 



− 
= + − 

 
. …………………………………….……..... (4.20) 

The input data used in this model are listed in Table 4.3. Fig. 4.11 and Fig. 4.12 

correspond with a stress relaxation test and a creep test respectively. 

Parameter Value Units 

0E  0.0 [Pa] 

1E  2.25e9 [Pa] 

  0.0 [dimensionless] 

  1e16 [Pa s] 
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0  100 [MPa] 

0  1e-2 [dimensionless] 

Table 4.3 ― Input data for the Maxwell Model. 

 

Fig 4.11 ― Relaxation test for the Maxwell Model (modified from Bleyer, 2018). 

 

 

Fig 4.12 ― Creep test for the Maxwell Model (modified from Bleyer, 2018). 
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4.3.3.  Kelvin-Voigt Model 

This model consists of a Hookean elastic spring connected in parallel with a 

Newtonian dashpot, as shown by Fig. 4.13.  

 

Fig. 4.13 ― Schematic of Kelvin-Voigt Model. 

The total stress is the sum of the stresses in both elements, therefore 

0E  = + . ………………………………………………………………….. (4.21) 

The stress relaxation and creep solutions are given by Eqs. 4.22 and 4.23: 

 0 0 0 0( ) ( ) ( )t E H t t t t  = − + − , ……………………………………………. (4.22) 

0 0
0 0

0

( ) 1 exp ( ) ( )
E

t t t H t t
E






  
= − − − −  

  
. ……………………………………. (4.23) 

Table 4.4 lists the required input data. From Fig. 4.14 (stress relaxation test) and 

Fig. 4.15 (creep test) is observed agreement between numerical and analytical 

solutions. 

Parameter Value Units 

0E  5e9 [Pa] 

1E  20e20 [Pa] 
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  0.0 [dimensionless] 

  1e16 [Pa s] 

0  100 [MPa] 

0  1e-2 [dimensionless] 

Table 4.4 ― Input data for the Kelvin-Voigt Model. 

 

Fig. 4.14 ― Relaxation test for the Kelvin-Voigt Model (modified from Bleyer, 2018). 

 

Fig. 4.15 ― Creep test for the Kelvin-Voigt Model (modified from Bleyer, 2018). 
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4.4. Non-Linear Viscoelasticity 

Powerful constitutive equations have been employed to model salt rock mechanics; 

for instance, Fig. 4.16 shows widely used non-linear viscoelastic constitutive 

equations for salt rock creep.  

 

Fig. 4.16 ― Creep models, Multi-Mechanism Deformation Model (MD Model), Double Mechanism Creep Law (DM 

Model) and the Norton’s Power Law (PL Model) vs. Experimental results (modified from Firme et al., 2016). 

Form Fig. 4.16, some experimental results have shown (Firme et al., 2014; Firme et 

al., 2016) that the DM Model (orange line) presents adequate representation of the 

steady-state creep rate but lacks in the representation of the transient stage. In 

contrast the PL Model (green line) does not model the steady-state creep rate stage, 

because it tends to become horizontal with time. The MD Model (blue line) fits fairly 

good the experimental data during transient and steady-state creep rate stages. 

Tertiary stage of accelerative creep is not considered by these models, due to in situ 

strain constraints and the excessive time needed to reach such a stage, which is not 

meaningful in drilling conditions.  For these reasons the DM Model, PL Model and 

the MD Model were considered and implemented by this research. 
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4.4.1.  Double Mechanism Creep Law (DM) 

In this model is assumed that the overall creep strain rate corresponds with the 

steady-state strain rate, because the transient creep happens soon after drilling of 

the well and lasts shortly, therefore, it is neglected (Jin and Cristescu, 1998; Wang 

et al. 2016).  The Double Mechanism Creep Law (Munson, 2004), considers that the 

salt rock creep behavior is hardly dependent on the differential stress and 

temperature:  

0 exp

DMn

d

ref ref

Q Q

RT RT


 



  
= −    

  

, …………………………………………… (4.24) 

where if 1d ref DMn c  → =  else 2d ref DMn c  → =   

To determine the power values 1c  and 2c  of Eq. 4.24, laboratory creep tests are 

executed on salt rock specimens. Fig. 4.17 depicts experimental results of creep 

tests for halite. The red and blue lines correspond with different fitting power values 

( DMn ) that are applied if the differential stress ( d ) is greater or lower than a 

reference stress value ( ref ). 

 

Fig. 4.17 ― Steady-state creep rate experimental results for Halite (modified from Costa et al., 2010) 
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This model was built assuming again a convex salt rock domain 
d  , 2d =  or 3  

with boundaries  .To generalize Eq. 4.24 to tensorial notation, we introduce the 

stress deviator definition as (Gurtin et al., 2010): 

1
dev( ) tr( )

d
= = −  S I . …………………………………………………… (4.25) 

In Eq.4.25 d  stands for the dimension of the problem, and I  is the corresponding 

dimensional identity tensor. 

The only non-vanishing invariants of the stress deviator are (Betten, 2008): 

'

2

1

2
=J SS , …………………………………………………………………….. (4.26a) 

'

3 det=J S ; …………………………………………………………………….. (4.26a) 

using Eq.4.26a to define an effective or equivalent shear stress, it leads to 

'

2eq =S J , …………………………………………………………………….. (4.27) 

assuming that the strain rate is function of the stress deviator and accounting for the 

case of uniaxial stress as described by Ranalli (1995), it implies that Eq.4.24 can be 

expressed as 

( )
( )

1

2 1
03

exp
2

DM

DM

DM

n

n

eqn

refref

Q Q

RT RT





+

−
 

  = −   
   
 

 S S . ………………………… (4.28) 

For convenience, Eq. 4.28 was rewritten as 

( )
1DMn

DM eqA
−

= S S . ………………………………………………………….. (4.29) 

Eq. 4.29 is non-linear since the equivalent shear stress and the stress deviator are 

in terms of the elastic displacement.  
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Considering that the total strain is the sum of the elastic and the creep strains, 

( ) ( ) ( )e cr= +  u u u , ………………………………………………………….. (4.30) 

substitution of Eq. 4.30 into Eq. 4.2 leads to an equivalent expression for stress 

 ( ) ( ) ( )cr cr = − u,u C u u . …………………………………………...……... (4.31) 

Finally, the set of equations acting in  , neglecting body forces are (Fig 4.6): 

( ) 0cr− = u,u , ………………………...………………………..………….. (4.32a) 

( ) ( ) ( )e cr= −  u u u , ………………………………………………………….. (4.32b) 

( ) ( ) ( )
1DMn

cr DM eq e eA
−

 =   u S u S u , ……………………….………………….. (4.32c) 

0xu =  on D left =  , ……………………………………………………….. (4.32d) 

0yu =  on D bottom =  , ……………………………………………………... (4.32e) 

c = − n  on N right top =    for the confining stage, ……………… (4.32f) 

( )c d = − +  n  on top  for the transient stage. ………………….……... (4.32g) 

The function spaces of test and trial functions in d  for the total displacement, creep 

displacement and elastic displacement are respectively 

( ) ( ) 1 : ,
d

D DH   =  V = v v x v x , ……………………………………. (4.33) 

( ) ( ) 1 : ,
d

cr cr cr D DH   =  V = v v x v x , ………………………...…...… (4.34) 

( ) ( ) 1 : ,
d

e e e D DH   =  V = v v x v x , ………………………………..... (4.35) 

Multiplying Eq 4.32a by the test function v , Eq. 4.32b by the test function ev  and Eq. 

4.32c by the test function crv  and integrating by parts, the variational problem is:  
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Find u V , e eu V , cr cru V such that 

( )

( ) : ( )

N

cr c

t

d d
 

= −     u,u v v , ………………………...…………….. (4.36) 

 v V   

 
( ) ( )

( ) : ( ) ( ) :e e cr e

t t

d d
 

  = −     u v u u v , ……………………………….. (4.37) 

e e v V   

( ) ( ) ( ) 1

( ) ( )

: :
DMn

cr cr DM eq e e cr

t t

d A d
−

 

   =     u v S u S u v . ……………… (4.38) 

cr cr v V   

The complete discrete problem is obtained by restricting Eq. 4.36, Eq. 4.37 and Eq. 

4.38 to discrete spaces of test and trial functions, while for the time discretization, let 

( , )i

it=u u x , ( , )i i

e e it=u u x  and ( , )i i

cr cr it=u u x , where ( )it i t=  ,  0,1,2,... ti N= , 0t   

and approximating Eq.38  with an implicit backward-Euler scheme. Find h hu V , 

, ,e h e hu V  and , ,cr h cr hu V such that 

1 1

,

( )

( ) : ( )

N

i i

h cr h h c h

t

d d+ +

 

= −     u ,u v v  for 0t t= , …………………….… (4.39a) 

( ) ( ) ( )1 1

,

( )

:

right top

i i

h cr h h c h c d h

t

, d d d+ +

  

 = −  − +        u u v v v  for it t= ,  
(4.39b) 

h h v V   

1 1 1

, , , ,

( ) ( )

( ) : ( ) ( ) :i i i

e h e h h cr h e h

t t

d d+ + +

 

   = −      u v u u v , ………………………. (4.40) 

, ,e h e h v V   

( ) ( ) ( ) ( ) 
1

1

, , , , , ,

( ) ( )

: :
DMn

i i i i

cr h cr h DM eq e h e h cr h cr h

t t

d A t d
−

+

 

   = +  
   u v S u S u u v  (4.41) 

, ,cr h cr h v V   
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The adopted strategy to solve the DM Model is shown in Fig. 4.18, characterized by 

Picard iterations and the introduction of a relaxation parameter  . Table 4.5 shows 

the input data to feed the model. 

 

Fig. 4.18 ― Flow diagram to solve DM Model. 

For the relaxation test of the DM Model (Fig. 4.19) no stress analytical solution exists 

(right); Fig.4.20 illustrates a creep test where numerical and analytical solutions 

agree. 
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Parameter Value Units 

E  5e9 [Pa] 

  0.36 [dimensionless] 

T  86 [°C] 

R  8.314 [J/(mol K)] 

Q  50208 [J/mol] 

refT  359.15 [K] 

ref  9.91 [MPa] 

tN  500 [dimensionless] 

maxt  1800 [h] 

tolu  1e-16 [m] 

maxite  100 [dimensionless] 

  0.01 [dimensionless] 

DMn  

d ref   3.36 

[dimensionless] 

d ref   7.55 

0  5.244e-10 [h-1] 

d  17 [MPa] 

0  1e-3 [dimensionless] 

Table 4.5 ― Input data for DM Model (taken from Firme et al., 2014). 
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Fig. 4.19 ― Relaxation test of DM Model. 

 

 

Fig. 4.20 ― Creep test of DM Model. 
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4.4.2.  Generalized Norton’s Power-Law Model (PL) 

The power-law (PL) model was developed for creep behavior characterization of salt 

rock (Lomenick & Bradshaw). The aim of this equation was to predict rock salt flow 

for applications, such as disposal of radioactive wastes in mined openings in salt 

structures and to evaluate mine stability problems that could occur with elevated 

temperatures and stress. In Fig. 4.21 it is observed the corresponding fitting curves 

to experimental data, for different temperature and stress conditions. 

 

Fig. 4.21 ― PL Model at various temperature and stress (modified from Lomenick & Bradshaw, 1969). 

The Generalized Norton’s Power-Law (Firme et al., 2014; Lomenick & Bradshaw, 

1969) represents adequately the transient creep stage and is a direct function of the 

power of temperature, time and the differential stress 

( ) PL PL PLn m v

dt A t T = , ………………………………………………………….. (4.42) 

where the creep-strain rate is obtained by applying the time derivative of Eq. 4.42 

( 1)( ) PL PL PLn m v

PL dt m A t T  −= , …………………………………………………… (4.43) 

The stress relaxation equation can be obtained from Eq. 4.42 as the interconversion 

between the creep compliance and the relaxation modulus, which led to (Dacol et 

al., 2020; Park and Kim, 1999) 
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1

0( )
PL

PL

n

PL m
t E

t




 
=  
 

, …………………………………………………………… (4.44) 

sin( )
PL

PL
PL v

PL

m
E

m AT




= . …………………………………………………………….. (4.45) 

Considering a convex salt rock domain 
d  , 2d =  or 3 , with boundaries  . To 

generalize Eq. 4.42 to tensorial notation and using the definitions stated by Eqs. 4.25 

to 4.27, we get, 

 

1

2
13

( )
2

PL

PL PL PL

n

m v n

cr eqA t T

+

−

 
 =
 
 
 

 u S S , …………………………...………........... (4.46) 

reducing Eq. 4.46 to 

1
( ) PL PLm n

cr PL eqA t
−

= u S S , …………………………...……………………......... (4.47) 

Applying the definitions outlined by Eq. 4.30 and Eq. 4.31, the set of equations acting 

in   neglecting body forces are: 

( ) 0cr− = u,u , ………………………...………………………..………….. (4.48a) 

( ) ( ) ( )e cr= −  u u u , ………………………………………………………….. (4.48b) 

( ) ( ) ( )
1DM

PL
nm

cr PL eq e eA t
−

 =   u S u S u , ……………………….……………….. (4.48c) 

0xu =  on D left =  , ……………………………………………………….. (4.48d) 

0yu =  on D bottom =  , ……………………………………………………... (4.48e) 

c = − n  on N right top =    for the confining stage, ……………… (4.48f) 

( )c d = − +  n  on top  for the transient stage. ………………….……... (4.48g) 

The tensorial expression of PL creep, Eq. 4.48c, can be substituted into Eqs. 4.48a 

and 4.48b leading to a non-linear problem which only depends on the total 

displacement vector field u  and the elastic displacement vector field eu . It is 

important to remark that from Eq. 4.48c, the creep strain tensor field is directly 
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proportional to the power of time and its not in terms of the time derivative (hence it 

is well defined on each time step), simplifying the model. The function spaces of test 

and trial functions in d  for the total displacement and elastic displacement are 

respectively 

( ) ( ) 1 : ,
d

D DH   =  V = v v x v x , ……………………………………. 

(4.49a) 

( ) ( ) 1 : ,
d

e e e D DH   =  V = v v x v x . ………………………………..... 

And defining a mixed-dimensional function space as 

  e=W V V . ……………………………………………………………………. (4.49b) 

To solve the stated problem by Eqs. 4.48, first Eq. 4.48c is substituted into Eqs. 

4.48a and 4.48b, then it results in a variational formulation by multiplying Eqs. 4.48a 

and 4.48b by test functions v  and 
ev  respectively that were defined by the vector 

function spaces of Eq. 4.49a, that are later integrated by parts to eliminate high order 

derivatives. The variational problem reads, find ( , )e u u W such that 

( )

( ) : ( )

N

e c

t

d d
 

= −     u,u v v , ………………………...……………... (4.50a) 

( ) ( ) 1

( ) ( )

( ) : ( ) ( ) : ( )
DM

PL
nm

e e PL eq e e e

t t

d A t d
−

 

  = −      u v u S u S u v . ……. (4.50b) 

( , )e W v v   

Restricting Eqs. 4.50  to a mixed-variational discrete functional space, while for the 

time discretization, let ( , )i

it=u u x , ( , )i i

e e it=u u x  and ( )it i t=  ,  0,1,2,... ti N= , 0t  , 

the full problem is: 

 Find ,( , )h e h hu u V  such that 

,

( )

( ) : ( )

N

i i

h e h h c h

t

d d
 

= −     u ,u v v  for 0t t= , …………………….… (4.51a) 
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( ) ( ) ( ),

( )

:

right top

i i

h e h h c h c d h

t

, d d d
  

 = −  − +        u u v v v  for it t= , . 
(4.51b) 

( ) ( ) 
1

, , , , ,

( ) ( )

( ) : ( ) ( ) : ( )
DM

PL

n
mn i i i

e h e h h PL n eq e h e h e h

t t

d A t d
−

 

  = − 
     u v u S u S u v . (4.51c) 

,( , )h e h hW v v   

To solve the discrete problem of the PL Model stated by Eqs. 4.51, first Eq.4.51a 

and 4.51c are solved in a linear mixed fashion, knowing that no creep strain exists 

within the confining stage. Then Eqs. 4.51b and 4.51c are solved in a non-linear 

mixed procedure by the Newton method. Table 4.6 lists the input data used to solve 

Eqs.4.51. Fig. 4.22 shows a relaxation test and Fig.4.23 illustrates a creep test, 

where numerical and analytical results agree for both figures. 

Parameter Value Units 

E  25.37 [GPa] 

  0.36 [dimensionless] 

A  3.40029e-50 [Pa·h] 

T  86 [°C] 

PLn  3.0 [dimensionless] 

PLm  0.3 [dimensionless] 

PLv  9.5 [dimensionless] 

tN  100 [dimensionless] 

maxt  1800 [h] 

d  17 [MPa] 

0  1e-3 [dimensionless] 

Table 4.6 ― Input data for PL Model (taken from Firme et al., 2014). 
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Fig. 4.22 ― Relaxation test of PL Model. 

 

 

 

Fig. 4.23 ― Creep test of PL Model. 
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4.4.3.  Multi Mechanism Deformation Model (MD) 

The Multi Mechanism Deformation Model (MD Model) was developed to analyze 

transient creep databases of salt (Munson, 1999), to juxtapose the measured cavern 

creep closure rates to results of the model and use it to domal salt analysis. A 

schematic of such a model is illustrated by Fig. 4.24, where the x-axis corresponds 

with time ( t ) in hours and the y-axis depicts the axial strain of a sample ( y ). The 

black dots belong to creep test results where a salt rock specimen is heated to a 

constant temperature and loaded at constant stress where axial strain is registered 

as function of time.  

 

Fig. 4.24 ― MD Model, transient creep and steady-state creep separation (modified from Mudson, 1999).  

The blue line in Fig. 4.24 belongs to the MD Model where good fitting with the 

experimental data is observed. It is also shown that the total strain is artificially 

separated into the steady-state strain (green shaded area) and the transient creep 

strain (gray shaded area).  The steady-state strain is characterized by the 

convergence between the steady-state strain line (green dashed line) and the MD 

Model, where the slope corresponds with the steady-state strain rate ( s ). In 
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contrast, in the transient strain area, the strain rate is decreasing until reaching a 

minimum and constant strain rate, this is illustrated by the decreasing separation of 

the MD Model and the steady-state strain line towards the steady-state. When 

extending the steady-state line until reaching the y-axis, it is given an initial maximum 

strain limiting value ( *

t ) which is used in the MD Model to describe the transient 

strain behavior. 

Fig. 4.25 shows additional useful information to describe the complex transient 

behavior. All the curves of Fig. 4.25 have as y  axis the logarithm of the ratio between 

the instantaneous strain rate and the steady-state strain rate against the transient 

strain, expressed in terms of the internal state parameter ( ). 

 

Fig. 4.25 ― Behavior of the internal state parameter (modified from Mudson, 1999; Mudson and Dawson, 1982). 

Each of the curves in Fig. 4.25, correspond to incremental differential stress 

conditions and constant temperature that were imposed on the same salt rock 

specimen for various time intervals. To every increment corresponds a transient 

behavior that is accounted by the model with the evolution of the state parameter. 

For strain rate values greater than the steady-state strain rate, the specimen is in 
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workhardening (low values of the state parameter). On the contrary, for strain rates 

lower than the steady-state strain rate, the sample is in recovery (high values of the 

internal state parameter), where the abscissa axis corresponds with the steady-

state.  When the sample is in workhardening state, the natural trend of the internal 

state parameter is to decrease towards the steady-state ( x -axis). In contrast, the 

state parameter increases until reaching the steady-state, in the recovery process. 

The MD Model aimed for WIPP, is a linear combination of three different 

micromechanical mechanisms in steady-state creep. The mechanisms are 

conformed by dislocation climb, dislocation glide and an undefined micromechanical 

mechanism. The transient strain is approximated by the evolution of the internal state 

parameter and the adjustment of the steady state creep rate with fitting parameters 

(Firme et al., 2014; Firme et al., 2016).  

The creep rate in the MD Model is given by 

cr sF = , …………………………...…………………………...………........ (4.52) 

where the steady-state creep rate is formulated as the sum of the dislocation climb 

mechanism, 

1

1
1 exp

n

d
DCL

Q
A

RT






  
= −  

  
, …………………………...……....………......... (4.53) 

the undefined mechanism, is generally expressed by an Arrhenius equation, similar 

to the dislocation climb: 

2

2
2 exp

n

d
UM

Q
A

RT






  
= −  

  
, …………………………...……....………......... (4.54) 

and the dislocation glide mechanism 

( )
1 2

1 2exp exp sinh
d ref

DGL d ref

qQ Q
H B B

RT RT

 
  



 −    
= − − + −       

        

. …  (4.55) 
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Finally, the steady-state creep rate is  

s DCL UM DGL   = + + . …………………………...………………………….... (4.56) 

The transient function F  is in terms of the internal state parameter   and the initial 

maximum limiting strain *

t . 

2

*

*

*

2

*

*

exp 1 ,

1,

exp 1 ,

t

t

t

t

t

F


 



 


 



   
   −  
    


= =


  
 − −  
    

, ………………………….......................... (4.57) 

where the evolutionary equation for   is 

( 1) sF = − , …………………………...…………………………................. (4.58) 

and the initial maximum limiting strain is given by 

*

0 exp( )

m

d
t K cT






 
=  

 
. …………………………...………………………….. (4.59) 

The generalization of the MD Model to 2D or 3D is straightforward by applying Eq. 

4.30 and Eq. 4.31.  

The set of equations acting in   neglecting body forces are 

( ) 0cr− = u,u , ………………………...………………………..………….. (4.60a) 

( ) ( ) ( )e cr= −  u u u , ………………………………………………………….. (4.60b) 

( ) ( )cr s eF= u u , ……………………….……………………………………. (4.60c) 

1 1

( ) ( ) ( )
n

DCL e DCL eq e eA
−

 =   u S u S u , …………………………………………… (4.60d) 

2 1

( ) ( ) ( )
n

UM e UM eq e eA
−

 =   u S u S u , ……………………….............................. (4.60e) 
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( ) 1( )
( ) ( ) sinh ( ) ( )

e ref

DGL e DLG e ref eq e e

q
A H






− −
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  


S u

u S u S u S u , …… (4.60f) 

( ) ( ) ( ) ( )s e DCL e UM e DGL e= + +   u u u u , ……………………………………….. (4.60g) 

( 1) ( )s eF = −  u , ……………………………………………………………. (4.60h) 

1
*

0( ) exp( ) ( ) ( )
m

t e eq e eK cT
−

 =   u S u S u , ………………………………………. (4.60i) 
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    − 
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

= =


   
   − − 

     









u
u

u

u
u

, ………………………………….. (4.60j) 

0xu =  on D left =  , ……………………………………………………….. (4.60k) 

0yu =  on D bottom =  , ……………………………………………………... (4.60l) 

c = − n  on N right top =    for the confining stage, ……………… (4.60m) 

( )c d = − +  n  on top  for the transient stage, ………………….……... (4.60n) 

( 0) 0t = = . …………………………………………………………………… (4.60o) 

Where the magnitude of a generic tensor ( Z ) is defined as (Gurtin et al., 2010) 

( )T: tr= =Z Z Z ZZ . …………………………...………………………… (4.61) 

The functional spaces of the test and trial functions in d  for the total displacement, 

creep displacement, elastic displacement and the internal state parameter are 

respectively 

( ) ( ) 1 : ,
d

D DH   =  V = v v x v x , ……………………………………. (4.62) 

( ) ( ) 1 : ,
d

cr cr cr D DH   =  V = v v x v x , ………………………...…...… (4.63) 

( ) ( ) 1 : ,
d

e e e D DH   =  V = v v x v x , ………………………………..... (4.64) 
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( ) ( ) 1 : ,D DH      =  = x x , …………………………………..… (4.65) 

To solve Eqs. 4.60 it has to result in a variational formulation by multiplying Eqs. 4.60 

by test functions v , crv ,  ev  and   respectively, and integrating by parts, the 

variational problem is as follows: 

Find u V , e eu V , cr cru V and    such that 

( )

( ) : ( )

N

cr c

t

d d
 

= −     u,u v v , ……………………...……………...... (4.66) 

 v V   
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t t
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 

 = −     u v u u v , ………………………………. (4.67a) 
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d F d
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 
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(4.67c) 
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−

 =   u S u S u , ………………………………………. (4.67g) 
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e e v V   
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 

 = −     u v u u v , ……………………………… (4.68) 

cr cr v V   
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d F d 
 

=  −      u , ………………………………………... (4.69) 

     

Restricting Eqs. 4.66 to 4.69 to test and trial functions of discrete function spaces, 

while for the time discretization. Let ( , )i

it=u u x , ( , )i i

e e it=u u x , ( , )i i

cr cr nt=u u x , 

( , )i i

it = x , 
1i it t t+ = − ,  0,1,2,... ti N= , the full problem by approximation in time 

with an implicit backward-Euler scheme is:  
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h h     

Eqs. 4.70 to 4.73 constitute the MD Model in a variational, discrete problem in space 

and time. This problem is highly non-linear due to the three deformation mechanisms 

(Eqs. 4.71) and the evolutionary creep strain expression (Eq. 4.72) that is coupled 

with Eq. 4.73, which accounts for the transient behavior of the internal state 

parameter. 

Therefore, the chosen strategy to overcome highly non-linearity of the DM Model is 

shown in Fig. 4.26, with Picard iterations and the introduction of a relaxation 

parameter  . Table 4.7 shows the input data to solve the model. 
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Fig. 4.26 ― Flow diagram to solve MD Model. 
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Parameter Value Units Parameter Value Units 

E  25.37 [GPa] 
2A  1.924e6 [s-1] 

  0.36 [dimensionless] 
2Q  41800.0 [J/mol] 

T  86 [°C] 
2n  3.2 [dimensionless] 

1A  1.638e27 [s-1] 
ref  20.57 [GPa] 

1Q  10500.0 [J/mol] q  5335 [dimensionless] 

1n  7.2 [dimensionless] m  3.0 [dimensionless] 

1B  9.981e6 [s-1] 
2B  4.976e-2 [s-1] 

0K  7.750e4 [dimensionless] c  9.198e-3 [K-1] 

  5.609937 [dimensionless]   0.58 [dimensionless] 

tN  100 [dimensionless] 
maxt  1800 [h] 

maxite  100 [dimensionless] 
tolu  1e-16 [dimensionless] 

  0.01 [dimensionless] 
0  1e-3 [dimensionless] 

Table 4.7― Input data for MD Model (taken from Firme et al., 2014). 

Fig. 4.27 depicts a relaxation test and Fig. 4.28 illustrates a creep test for the MD 

Model. From Fig. 4.26 (right) it is appreciated the missing analytical solution for 

stress relaxation (black solid line) meaning that no analytical solution could be 

obtained, following the procedure of interconversion between the creep compliance 

and the relaxation modulus previously applied in the PL Model, due to the complexity 

of the MD Model. Fig. 4.27 shows that for a creep test the analytical and numerical 

solutions agree. 
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Fig. 4.27 ― Relaxation test of MD Model. 

 

 

Fig. 4.28 ― Creep test of MD Model. 
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4.5. Salt Models Comparison 

Once the six salt rheological models were studied and implemented, the main 

characteristic features of the models are summarized in Table 4.8. 

Salt 

rheology 

Type of 

model 

Transient 

creep rate            

( )cr f t =  

Steady-state 

creep rate 

cr s =  

Complexity of 

computational 

implementation Convergence 

Maxwell 

Model 
Linear No Yes Low High 

Kelvin-Voigt 

Model 
Linear Yes No Low High 

SLS Model Linear Yes No Low High 

DM Model Non-linear No Yes High Low 

PL Model Non-linear Yes No Low High 

MD Model 
Highly 

non-linear 
Yes Yes High Low 

Table 4.8 ― Comparison of the salt rheology models. 
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4.6. Conclusions 

The conclusions of this chapter are as follows: 

1. It was discussed the state of the art, deformation mechanisms and the 

mechanical behavior of salt rocks. 

2. Six salt rheological models were implemented to evaluate salt behavior in 

creep and relaxation conditions. 

3. The most representative salt rheology models reviewed in this work are the 

SLS Model, the MD Model, the DM Model, and the PL Model. 

4. An analytical solution of the PL Model in relaxation conditions was obtained. 

5. A flow diagram to solve each model is shown. 

6. A comparison of the main features of the salt models was made (Table 4.8). 
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4.7. Nomenclature 

A  =  PL Model constant, (L3t5.7)/(m3T9.5), psi3 hr0.3 K9.5 [Pa3 h0.3 K9.5]. 

DCLA  =  

1 1

2
1

1

3
exp

2

n

Q
A

RT

+ 
   −     

 

, temperature dependent constant of the 

dislocation climb mechanism in the MD Model, dimensionless. 

DGLA  =  
1 2

1 2

3
exp exp

2

Q Q
B B

RT RT

    
− + −    
    

, temperature dependent constant of 

the dislocation glide mechanism in the MD Model, dimensionless. 

PLA  =  

1

23

2

PL

PL

n

vA T

+ 
 
 
 
 

, temperature dependent constant of the PL Model, 

(L3t5.3)/(m3), psi3 h0.3 [Pa3 hr0.3]. 

UMA  =  

2 1

2
2

2

3
exp

2

n

Q
A

RT

+ 
   −     

 

, temperature dependent constant of the 

undefined mechanism in the MD Model, dimensionless. 

1A  =  first structural factor for dislocation climb, t-1, s-1. 

2A  =  second structural factor for the undefined mechanism, t-1, s-1. 

DMA  =  ( )

1

2
03

exp
2

DM

DM

n

n

refref

a Q Q

RT RT





+ 
   −    

   
 

, reduction constant of the DM Model 

Lt2/m, psi-1 [Pa-1]. 

1B  =  first structural factor for dislocation glide, t-1, s-1. 

2B  =  second structural factor for dislocation glide, t-1, s-1. 

C  =  

1

(1 )(1 2 ) 1
E



  

 
 + 

+ − + 
I I , fourth rank stiffness tensor related to 

E , m/Lt2, psi [Pa]. 
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0C  =  
0

1

(1 )(1 2 ) 1
E



  

 
 + 

+ − + 
I I , fourth rank stiffness tensor related to

0E , m/Lt2, psi [Pa]. 

1C  =  
1

1

(1 )(1 2 ) 1
E



  

 
 + 

+ − + 
I I , fourth rank stiffness tensor related to

1E , m/Lt2, psi [Pa]. 

vC  =   
1

1v

−
+C  fourth rank tensor, dimensionless. 

1vC  =  
1 1

(1 )(1 2 ) 1

E t 

   

 
 + 

+ − + 
I I  fourth rank tensor related to 

1E t




, 

dimensionless. 

c  =  constant related to activation process, T-1, R-1 [K-1]. 

PLE  =  relaxation modulus of PL Model, (m3/L3 t5.7), psi·h [Pa·h]. 

E  =  Youngs modulus of the salt rock specimen, m/Lt2, psi [Pa]. 

0E  =  Youngs modulus of spring 0 , m/Lt2, psi [Pa]. 

1E  =  Youngs modulus of spring 1, m/Lt2, psi [Pa]. 

F  =  transient function of the MD Model. 

f  =  body forces, mL/t2, lbm ft/s2 [kg m/s2]. 

H  =  Heaviside function, dimensionless 

I  =  2nd order identity tensor, dimensionless. 

 =  4th order identity tensor, dimensionless. 

i  =  time step discretization. 

0K  =  limiting factor of transient creep, dimensionless. 

m  =  stress theoretical power in MD Model, dimensionless. 

PLm  =  time power for PL Model.  
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DMn  =  stress power of the DM Model.  

PLn  =  stress power of the PL Model.  

n  =  outer normal vector to  , dimensionless. 

1n  =  
stress power of dislocation climb mechanism in the MD Model, 
dimensionless.  

2n  =  
stress power of undefined mechanism in the MD Model, 
dimensionless. 

Q  =  thermal activation energy, M L2 t-2 / mol, kcal/mol [J/mol]. 

1Q  =  
thermal activation energy related to dislocation climb, M L2 t-2 / mol, 
kcal/mol [J/mol]. 

2Q  =  
thermal activation energy related to the undefined mechanism, M L2 t-
2 / mol, kcal/mol [J/mol]. 

q  =  stress constant, dimensionless. 

R  =  universal gas constant, M L2 t-2 T-1, kcal/mol R [J/mol K]. 

T  =  temperature, T, R [K] 

0T  =  reference temperature, T, R [K]. 

t  =  time, t, s. 

0t  =  initial time, t, s. 

u  =  displacement vector or displacement trial function of V , L, ft [m]. 

cru  =  
creep or viscous displacement vector or creep displacement trial 

function of crV , L, ft [m]. 

eu  =  elastic displacement vector, L, ft [m]. 

v  =  test function of V , L, ft [m]. 

crv  =  test function of crV , L, ft [m]. 

PLv  =  temperature power of the PL Model. 
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V  =  test and trial vector function space of total displacement, L, ft [m]. 

crV  =  test and trial vector function space of creep displacement, L, ft [m]. 

eV  =  test and trial vector function space of elastic displacement, L, ft [m]. 

W  =  mixed functional space, L, ft [m]. 

  =  workhardening parameter in MD Model, dimensionless. 

t  =  time step increment, t, s. 

  =  Dirac delta function, dimensionless.  

  =  recovery parameter in MD Model, dimensionless. 

  =  ( )T1
( )

2
=  + u u u , strain tensor, dimensionless. 

cr  =  ( )cr u , creep or viscous strain tensor, dimensionless. 

e  =  ( )e u , elastic strain tensor, dimensionless. 

*

t  =  initial maximum limiting strain, dimensionless. 

y  =  axial strain in y -direction, dimensionless. 

0  =  
initial strain (imposed strain in relaxation tests or instantaneous strain 
in creep tests), dimensionless. 

  =  strain rate tensor, t-1, s-1. 

cr  =  ( )cr u , viscous or creep strain rate tensor, t-1, s-1. 

DCL  =  steady-state creep rate of the dislocation climb mechanism, t-1, s-1. 

DGL  =  steady-state creep rate of the dislocation glide mechanism, t-1, s-1. 

s  =  steady-state creep rate, t-1, s-1. 

UM  =  steady-state creep rate of the undefined mechanism, t-1, s-1. 

  =  internal state parameter of MD Model, dimensionless. 
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  =  dashpot viscosity, cP, [Pa·s] 

  =  Poisson’s ratio, dimensionless. 

  =  second rank stress tensor, m/Lt2, psi [Pa]. 

c  =  confining stress, m/Lt2, psi [Pa].  

d  =  differential stress, m/Lt2, psi [Pa]. 

ref  =  reference stress, m/Lt2, psi [Pa]. 

y  =  axial stress, m/Lt2, psi [Pa]. 

0  =  imposed stress in creep tests, m/Lt2, psi [Pa]. 

  =  
1E


, characteristic relaxation time for the SLS Model, t, s. 

  =  
0 1

0 1

E E

E E


+
, characteristic creep time for the SLS Model, t, s. 

  =  computational domain, with dimension d = 2 or 3, Ld, ftd [md] 

salt  =  salt specimen domain, L3, ft3 [m3] 

  =  domain boundaries, with dimension d = 2 or 3, Ld-1, ftd-1 [md-1] 

D  =  
domain boundaries of the Dirichlet type, with dimension d = 2 or 3, Ld-

1, ftd-1 [md-1] 

N  =  
domain boundaries of the Newman type, with dimension d = 2 or 3, Ld-

1, ftd-1 [md-1] 
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5.  Coupled Poroelasticity-Viscoelasticity 

Model  

Drilling through or near salt formations could be a dangerous, expensive, and a 

challenging task (Rholeder et al., 2003; Whitson and McFayden, 2001; Willson and 

Fredrich, 2005). Some challenges of drilling through a salt formation are radial stress 

relaxation, trapped drillstring because of salt creep, weakening of the borehole by 

leaching of gas, oil or water, wellbore enlargement due to dissolution and poor hole 

cleaning and cutting transport (Wang and Samuel, 2016). When drilling around salt 

structures the pore-pressure and stress fields are hugely disturbed in comparison 

with undisturbed values (regional stresses), and those anomalies are difficult to 

predict. Additionally, the locally distorted stress field owing to salt is impossible to 

predict by common geomechanical procedures and more sophisticated models must 

be implemented to give insight to over pressure generation and stress field 

anomalies. For better understanding of pore-pressure and stress anomalies near 

salt formations, two types of models can be implemented (Luo et al., 2012a): 

1) Long time scale models  

These types of models simulate evolving salt basins during geologic time periods at 

geologic basin scales, taking into account the driving forces of salt tectonics that 

cause folds and faults, using poroelastic viscoplastic, elastoplastic, 

poroelastoplastic, frictional-plastic constitutive models to account for the surrounding 

salt sediments, viscoelastic rheology to model salt behavior (Daudré and Cloetingh, 

1994; Gil and Jurado, 1998) and coupled pore-pressure evolution (Nikolinakou et al. 

2018). These implementations are conceived as transient, evolutionary, large strain 

geomechanical models.  
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2) Short time scale models 

These types of models are of interest on this research; they simulate a single salt 

structure along short time periods, where the adjacent salt sediments are modelled 

by elastic or elastoplastic constitutive models. Though some models ignore pore-

pressure and can be thought as uncoupled models (Fredich et al., 2007; Sanz and 

Dasari, 2010), there are others that fully consider coupled models which include 

interaction between fluid flow and the solid matrix (Luo et al., 2012a). These kinds 

of implementations are formulated as transient, pseudo steady or small strain 

geomechanical models. 

The main goal of this chapter is to couple the most representative salt rheology 

models of Chapter 4 with the Coupled Geomechanics Dual Porosity/Dual 

Permeability Discrete Fracture Model by Lagrange Multipliers of Chapter 3. As a 

result, one salt rheology was chosen to construct a more robust model, that allowed 

the simulation of pore-pressure anomalies encountered during the drilling of a case 

study well, near a salt structure in Veracruz, Mexico.  

5.1. General Equations 

The general equations of this model have been previously shown in this research 

(Chapters 3 and 4); therefore, the equations are not rewritten, but the coupling 

between the sets of equations, is fully explained.  

To pose the coupled model, there is a missing term that binds the momentum 

balance Eq. of the poroelastic dual-continua with the momentum balance Eq. of the 

salt rheology. 

Consider a computational domain which is formed by two interacting subdomains 

(Fig. 5.1), one subdomain is the salt (
s ) that behaves according to a rheology 

model; the other is a porous subdomain ( p ) which is formed by two overlapping 

continua consisting of matrix and fractures ( p m f =  ). There is an interface 
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boundary (
Interface ) that couples the mechanical interaction between domains. 

Considering that there is no interpenetration between domains and there is 

displacement continuity along the interface, it results: 

s =u u  on 
Interface . ………………………….…………………………..... (5.1) 

The mechanical coupling on the boundary 
Interface  of Eq. 5.1 (Fig. 5.1), is performed 

with Vector Lagrange Multipliers to enforce displacement continuity. 

 

Fig. 5.1 Displacement continuity on the interface boundary between domains. 

Defining a function space of Vector Lagrange Multipliers as: 

( ) ( ) 1 : ,u u Interface u u DH=   =  l l x l x , ………………………………. (5.2) 

The variational formulation of Eq. 5.1 is: 

( )

Interface

u s d


 −   v v , ………………………………………………………… 
(5.3a) 

( )

Interface

u s d


 −   u u . …………………………………………………………. 
(5.3b) 

The dual-continua model is expressed by the set of Eqs. 3.30 (Chapter 3), while the 

salt rheology depends on the chosen model (Chapter 4). For the standard lineal solid 

(SLS) Model Eqs. 4.3 are accounted, the double mechanism creep law (DM) Model 
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is described by the set of Eqs. 4.39 to 4.41, the Norton’s power law (PL) Model is 

depicted by Eqs. 4.51 while Eqs. 4.70 to 4.73 constitute the multi-mechanism 

deformation (MD) Model. The Coupled Poroelasticity Viscoelasticity Model is built by 

gathering Eqs. 3.30 along with the salt rheology model and Eqs. (5.3).  

Finally, the same procedure for the salt rheological model is applied to solve the 

Coupled Poroelasticity Viscoelasticity Model in a mixed dimensional fashion, using 

FEniCS (Alnæs et al., 2015; Daversin-Catty et al., 2019; Farrel et al., 2013; Logg et 

al., 2012). 

5.2. Proposed Problem for the Dual Continua/Salt 

Rheology Coupled Model 

This problem relates on the mechanical interaction of the Coupled Geomechanics 

Dual Porosity/Dual Permeability Discrete Fracture Model by Lagrange Multipliers 

(Dual Continua Model, DCM), with an adjacent salt block as shown by Fig. 5.2. In 

Fig. 5.2 left is represented the porous domain with a picture of a brown rock formation 

while Fig. 5.2 right depicts the salt domain with a pink salt picture. 

This problem is equivalent to a Terzaghi’s (1925) consolidation problem of the DCM 

(as shown on Fig. 3.18 of Chapter 3), adding a body of salt on the right boundary, 

with the respective mechanical interaction between rocks. 

The hole domain   consists of a rectangular body which is divided in two 

subdomains, 
p  for the DCM and 

s  for the salt body (
p s=  ). Each 

subdomain has 10xL =  [m] length and 16yL =  [m] height. On the top boundary of    

is applied a normal load vS− , slip conditions ( 0xu = ) are set on the right and left 

boundaries, while only displacement on x -direction ( 0yu = ) on the bottom boundary 

is allowed. Additionally, pressure on the top boundary of the fractures continua 
p  

is set to a prescribed constant pressure ( 0fP = ) throughout the simulation time t  

(full drainage), while the other boundaries are impervious. Moreover, the matrix 
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continua of 
p  is closed to flow on its boundaries, meaning that it behaves as a 

storage media for the fractures continua, communicated by the discrete fracture (DF) 

  and the inter-porosity exchange parameter  . 

 

Fig. 5.2 Problem of the mechanical interaction between the dual continua model with a salt block. 

Finally, on the interface between both subdomains, displacement is equalized (as 

shown in Fig. 5.2). It is worth to mention that body forces such as gravitational effects 

and the impact of temperature, were neglected. The boundary conditions of this 

problem are: 

vS = −n  on Top  of  , ………………………………………………... (5.4a) 

0xu =  on Left  and Right  of  , ………………………………………..... (5.4b) 

0yu =  on Bottom  of  , ……………………………………………………... (5.4c) 
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0xu =  on 
Left  of  , …………………………………………………...…… (5.4d) 

(( , ), ) 0f yP x L t =  on 
Top  of  

p , ………………...……………………...….. (5.4e) 

while the initial conditions are: 

( , 0) 0fP t = =X  in 
p , ………………...……………………….………..……. (5.5a) 

( , 0) 0mP t = =X  in 
p , ………………...……………………….………..……. (5.5b) 

( , 0)t = = 0u X  in 
p , …………………………………………………………. (5.5c) 

( , 0)s t = = 0u X  in 
s . ………………………………………………………… (5.5d) 

The simulation time was set to 10 days due to the short consolidation time in 
p . All 

the subsequent results were measured in points of Fig. 5.2, point A (red dot at the 

bottom of 
p ) is used to measure pressure in both continua ( mP  and 

fP ), 

concordantly, the axial displacement (
yu ) is measured in point B (red dot on top of 

p , Fig. 5.2). In contrast, point C (red dot on top of 
s , Fig. 5.2) was employed to 

record the total displacement ( Tu ), the viscous or creep displacement ( cru ) and the 

elastic displacement ( eu ) of the salt body. 

The input parameters of the dual continua model are the same of Table 3.5 of 

Chapter 3, except the Young’s modulus ( E = 84.48 [GPa]) and the Poisson’s ratio (

 =0.32 [dimensionless]), which were chosen to better describe a carbonate rock 

(Mavko et al., 2020).  

5.2.1. SLS Model with Poroelasticity Dual-

Continua 

In this example the SLS Model was used to describe the salt rheology of 
s . The 

input data are the same of Table 4.2 of Chapter 4. Fig. 5.3 shows the results of this 

example. From Fig. 5.3 left, it is observed an instantaneous pressure decrease in 

matrix and fractures continua (black and blue lines, respectively) at the beginning of 

the simulation time, then the pressure is constant in both continua. In Fig. 5.3 left, 
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the axial displacement 
yu  increases at the beginning and reaches a constant 

behavior near 0.0025 [m] throughout the simulation time. Fig. 5.3 right, shows a 

slight relaxation of the axial stress 
y  on the salt top (brown solid line).  

 

Fig. 5.3 Results of the Coupled Dual-Continua Model (left) with the SLS Model (right). 

In Fig. 5.3 right is shown a steady increase of the total displacement (purple solid 

line), reflecting an equivalent increase of the creep displacement (gray solid line), 

while the elastic displacement (red solid line) presents a slight decrease to the end 

of the computational time. It is worth to notice that the total and elastic displacement 

start with the same value at t =  0 [d], this is because the SLS Model exhibits an 

instantaneous deformation when applying a load by the springs (elastic components) 

of the model. 

5.2.2. DM Model with Poroelasticity Dual-Continua 

In this section the DM Model was chosen to characterize the rheology of the salt 

block. Fig. 5.4 left shows a sudden decrease in pressure near t =  0 [d], then 

pressure ( mP  and 
fP ) decreases in a curvy smoothly fashion from 1e2 to 1e1 [Pa] 

on the end of the simulation time. In axial displacement yu  on top of p , is shown 

an instantaneous response of 0.0022 [m] at the beginning, then, instead of 
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increasing the axial displacement with time, there is a slight decrease to 0.0018 [m] 

near 10 [d]; this can be explained with the fact that the total displacement ( Tu )  and 

the creep displacement ( cru ) of the salt block increases (Fig. 5.4 right, purple and 

gray solid lines), meaning that the salt is creeping through the porous domain 
p  

and this creep is also supporting the pressure depletion, impeding it from a sudden 

decrease. 

 

Fig. 5.4 Results of the Coupled Dual-Continua Model (left) with the DM Model (right). 

5.2.3. PL Model with Poroelasticity Dual-Continua 

This example was performed with the PL Model to depict the salt rheological 

behavior, as shown by Fig. 5.5. 

The PL Model is intended to describe the transient strain stage of salt creep. Fig. 5.5 

left shows a smooth pressure depletion in matrix and fractures continua throughout 

the simulation time while axial displacement starts with a curvy decrease and is held 

constant until the end of the simulation. The smooth pressure depletion is explained 

by the transient creep developed in s , where the total displacement and the creep 

displacement are increasing while the elastic displacement is decreasing, meaning 

that the viscous behavior of salt is driving the deformation. 
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Fig. 5.5 Results of the Coupled Dual-Continua Model (left) with the PL Model (right). 

5.2.4. MD Model with Poroelasticity Dual-Continua 

The last example corresponds with the MD Model. This model accounts for the 

transient and the steady-state creep rate of the salt. Fig. 5.6 left, shows similar result 

to that of the PL Model, but the pressure depletion is slightly minor. The axial 

displacement at 10 [d] is closer to 0.002 [m] than the valuer for the PL Model.  

 

Fig. 5.6 Results of the Coupled Dual-Continua Model (left) with the MD Model (right). 
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The total salt displacement (Fig. 5.6 right) starts at the position of the elastic 

displacement; Tu  shows an increase with time while eu  decreases, due to a 

sustained increase of cru . 

5.3. Application Example 

In this chapter a real well data is presented, this well was chosen because of the 

difficulties presented during drilling, such as high pore-pressure and the presence of 

a salt diapir that distorted the in-situ stress field. 

The exploratory well was abandoned before reaching all the targeted strata due to 

high water cut and low wellhead pressure after down hole nitrogen injection was 

carried out. 

5.3.1. Case Study: Well D 

Well D is an onshore vertical well; the targeted true vertical depth (TVD) was 6600 

[m]. It is located SE from Las Choapas, Veracruz State, Mexico (Fig. 5.7). 

 

Fig. 5.7 — Location of Well D. 

The stratigraphic column is listed in Table 5.1. The objective of Well D was to 

evaluate and incorporate super light oil reserves in the Cretaceous and Late Jurassic 

Kimmeridgian.   
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AGE 

TOP  

TVDBSL [m] 

THICKNESS 

[m] 

Oligocene (OLI) 0 1150 

Eocene-Paleocene (E-P) 1150 3050 

Late Cretaceous (LCRTC) 4200 100 

Middle-Early Cretaceous (MCRTC-ECRTC) 4300 600 

Late Jurassic Tithonian (LJT) 4900 600 

Late Jurassic Kimmeridgian (LJK) 5500 1100 

Total Depth 6600 -6600 

           Table 5.1 — Stratigraphic Column of Well D. 

To build the model one seismic line with direction SW-NE was chosen. Fig. 5.8 

shows the structural geology in the localization of Well D.  

 

Fig. 5.8 — Structural geology of Well D. 

Based on Fig. 5.8, Fig. 5.9 illustrates the computational domain   of Well D, 

showing a rectangular domain   with length xL =  6 [km] and depth 
yL =  9 [km], in 
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five different subdomains, 
s  (the salt subdomain) and four porous subdomains with 

superscripts from 0 to 3, hence 0 1 2 3

s p p p p =     . The porous subdomain 

0

p  correspond with the carbonate formations LJK, LJT, MCRTC-ECRTC, LCRTC 

(see Table 5.1). 

 

Fig. 5.9 — Problem of Well D. 

To the left of Fault 2 (Fig. 5.8) 1

p  is located, this porous subdomain is formed by E-

P, OLI and MIO. The porous subdomains 2

p  and 3

p  are made up by the same 

formations E-P and OLI, the difference is that 2

p  is located between Fault 1 and 

Fault 2 and 3

p  is situated to the right of Fault 1 (see Fig. 5.8). The subscripts and 

superscripts of the interfaces   are written to indicate between which formations are 

located. In all salt interfaces k

s  (with 0,1,2,3k = ), the salt displacement is equalized 
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to the porous displacement of each subdomain, as shown by Eqs. 5.3. Additionally, 

in interfaces 1

0 , 2

1  and 3

2  displacement and matrix pressure continuity were set. 

The right and left boundaries (
Right  and 

Left ) are impervious, while on the top 

boundary (
Top ) a pressure boundary condition of the Dirichlet type was prescribed 

( 0mP = ). On 
Left  a normal compressive horizontal stress HS  is applied which is 

95% of the vertical stress vS . The SLS Model was chosen to describe the salt 

rheology of the subdomain 
s ; its input data are listed in Table 4.2 of Chapter 4. For 

simplicity and due to the lack of information, the same rock density ( r =  2.71 

[gr/cm3]), porosity ( =  0.1 [dimensionless]) and elastic constants ( E =  84.48 [GPa] 

and  =  0.32 [dimensionless]) were assigned to all of the porous subdomains. 

Moreover, gravitational effects are accounted, the gravitational constant was 

considered g =  9.81 [m/s2] and temperature effects were neglected due to the 

additional unknowns (such as the thermal expansion coefficient) incorporated to the 

model for which there was no available information. Therefore, only the Biot’s 

coefficient and permeability were used to fit the model. Table 5.2 shows the input 

data to fit the model; it can be observed that to fit pore-pressure data, the fractures 

continuum was practically uncoupled from geomechanics and from the flow 

exchange to the matrix continuum. 

Formation 

m  f  
mK  fK    

[dimensionless] [dimensionless] [mD] [mD] [(Pa s)-1] 

LJK 0.12 1e-20 10 100 1e-50 

LJT 0.12 1e-20 1 100 1e-50 

MCRTC-ECRTC 0.12 1e-20 2 100 1e-50 

LCRTC 0.12 1e-20 10 100 1e-50 

E-P 0.11 - 3.95 - - 

OLI 0.11 - 8 - - 

MIO 0.11 - 100 - - 

            Table 5.2 — Input data to Well D problem. 
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Fig. 5.10 shows the fitting of the measured pore-pressure and the resulting model 

pore-pressure. The model results are represented by dashed color lines while solid 

color lines stand for field data. 

 

Fig. 5.10 — Pore-pressure fitting of Well D. 

In Fig. 5.10 the normal pore-pressure (with water density w =  1.07 [g/cm3]) is 

represented by the solid cyan line; the measured pore-pressure is described by the 

solid red line; the magenta solid line represents the vertical stress computed with the 

standard integral equation (Eq. 2.50a, Chapter 2) approach to estimate the vertical 

stress or overburden. The green dashed line depicts the resulting pore-pressure of 

the model; the dashed blue line illustrates the computed horizontal stress, and the 

dashed black line portrays the calculated vertical stress.  
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The measured pore-pressure indicates a normal trend for shallow depths, at about 

1648 [m] depth the pore-pressure moves apart from the normal pore-pressure, 

indicating over pressure. From 1648 [m] to 3000 [m] depth, an increasing pore-

pressure gradient is observed. In contrast, the modeled pore-pressure (dashed 

green line) shows a normal trend for depths lower than 1000 [m], changing to a 

matching steady increase of the actual pore-pressure at 2360 [m] depth; from there 

the modeled pore-pressure gets higher than the real pore-pressure. At around 3000 

[m] and until 4000 [m], both pore-pressure presented an accurate matching. From 

4000 [m] to 5000 [m] (when entering the LCRTC), the real pore-pressure presents a 

slight reduction in the increase trend; on the contrary, the computed pore-pressure 

showed a similar, but delayed, behavior in the reduction of the increase trend of 

pressure. By 4950 [m] depth, both curves joined and showed a similar behavior for 

greater depths.  

On the other hand, the vertical stress vS  (represented by the magenta line) which 

was computed by the common approach (Eq. 2.50a) and the computed vertical 

stress (dashed black line), showed a similar behavior for lower than 2000 [m] depths. 

Additionally, the horizontal stress HS  also presented a steady increase of stress at 

depths lower than 2000 [m]; for deeper depths to approximately  2500 [m], both 

computed stresses presented a fluctuation originated by the salt flank; vS  showed 

an anomalous increase, while HS  showed an abnormal decrease. Passing the salt 

flank interference, the modeled vertical stress matched the magenta line vertical 

stress; to the total depth of the well, the vertical stress of the model presented a 

lower value from the other vertical stress (magenta line). Passing the salt flank, the 

horizontal and vertical stresses computed by the model increased similarly, getting 

closer one another; nearly at the bottom of the well, HS  presented higher values 

than vS , explained by the fact that the well was starting to approach to the salt root 

(the base of the salt), leading to a stress perturbation. 

Fig. 5.11 shows the pore-pressure field computed from the model; the color scale 

goes from 0 to 150 [MPa]; the salt structure outlined by the gray line, displays that 
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for shallow depths, the drainage is hydrostatical, meaning that the iso-pressure 

contours (color scale of Fig. 5.11) match the normal pore-pressure (see Fig. 5.10); 

it illustrates that the pore-pressure on the left boundary increases hydrostatically; for 

depths greater than 6000 [m], an abrupt increase of pressure is shown (from 95 

[MPa] to 130 [MPa] within 500 [m]), originated by the contrast in permeability (see 

Table 5.2), consistent with the top of the Late Jurassic Tithonian (LJT), with low 

permeability (1 [mD], Table 5.2) value needed to fit the pore-pressure of the model 

(Fig. 5.10). Fig. 5.11 indicates a pressure disturbance near to the right boundary, 

approaching to the salt diapir, depicted by the bending of the iso-pressure contours 

near the salt structure, indicated by the convergence of the pressure contours on the 

salt flank at around 2500[m] depth and 4200 [m] distance; below the salt bulb the 

pressure contours bent upwards, near the salt stem (slim part of the salt structure). 

For deeper depths near the salt stem, the pressure iso-contours still bent upwards 

for around 500 [m] with respect to the left boundary, considered a no influenced zone 

of the salt diapir. 
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Fig. 5.11 — Computed pore-pressure field. 

Fig. 5.12 displays the resulting vertical stress field of the model; the color scale goes 

from 0 to 350 [MPa] (in geomechanics the convention considers that positive values 

are for compression); it can be observed that on the left boundary (0 [m] distance) 

the vertical stress vS  increases hydrostatically which is outside of the salt influence 

zone. When approaching to the salt stem, the iso-stress contours bent downwards 

with respect to the left boundary, because the salt is relaxing the stress affecting the 

nearby zones. It is also shown (Fig. 5.12) a discontinuity of the vertical stress on the 

interface of the salt (gray line) at any given depth, because the salt experiences a 

fixed displacement process (the salt movement is limited by the surrounding 

formations and boundaries), leading to stress relaxation. 
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Fig. 5.12 — Computed vertical stress field. 

 Fig. 5.13 displays the horizontal stress field of the model; the color scale goes from 

0 to 190 [MPa]. Fig. 5.13 shows a hydrostatical increase of HS  at 0 [m] distance (left 

boundary). At the total distance (6000 [m]), the horizontal iso-stress contours exhibit 

a slight inclination; it can be noticed that the horizontal stress is not highly affected 

by the salt relaxation (there are no horizontal iso-stress discontinuities) nearby the 

salt bulb and stem. In contrast, in the salt a horizontal stress discontinuity is found, 

where the salt relaxation is acting due to the high horizontal stress encountered at 

depths greater than 6500 [m]. 
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Fig. 5.13 — Computed horizontal stress field. 

Fig. 5.14 displays the displacement field computed by the model; the color scale 

goes from 0 to 8 [m]; there are no displacement discontinuities because Eqs. 5.3 

were implemented on the porous-salt interface which indicate continuity of 

displacement. On the bottom right corner, it is practically no displacement, this result 

is common due to the imposed slip boundary conditions on the right and bottom 

boundaries of the domain (see Fig. 5.9). 
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Fig. 5.14 — Computed displacement field. 

Fig. 5.15 displays four new well locations to evaluate different scenarios of the 

operative window (OW), encountered in these trajectories; the magenta line 

represents Well D used to calibrate the model (Fig. 5.10); well V1 corresponds to a 

vertical well located at 1000 [m] distance and 6500 [m] TVD; well J1 shows a slant 

trajectory, located at 3200 [m] distance, the kick-off point (KOP) is at 1500 [m] TVD, 

with a build-up rate (BUR) of 1.0 [°/30 m]; the horizontal displacement (HD) is 800 

[m], the total TVD of the well is 5500 [m] and 5581.56 [m] of total measured depth 

(MD). 
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Fig. 5.15 — New well trajectories and locations. 

Regarding Fig. 5.15, well V2 is a vertical, located at 5385 [m] distance and 5500 [m] 

TVD, drilled through the salt bulb, placed next to the salt stem; finally, well J2 is a 

slant well located at 5900 [m] distance, the HD was -1100 [m], with KOP at 1500 [m] 

TVD and BUR of 1.5 [°/30 m], total depth of 5500 [m] and 5652.39 [m] total MD; this 

well enters on the top of the salt bulb, builds angle inside the salt diapir and exits 

below the salt bulb, in the salt stem. 

The OW of the new trajectories shown in Fig. 5.15 are displayed in Fig. 5.16. The 

vertical axis of the plots corresponds with the TVD of each well. Fig. 5.16a shows 

the OW of well V1, it displays over pressure and a Normal Faulting Stress Regime (

H vS S ) but no influence of the salt is detected; well J1 (Fig. 5.16b) exhibits a normal 

pore-pressure trend on shallow depths and slight overpressure when entering to the 



177 
 

E-P, when getting close to the target TVD (total depth), the vS  and HS  intersect, 

indicating salt stress perturbation. 

 

Fig. 5.16 — OW of different Well trajectories. 

Fig. 5.16c portrays the results of well V2; for shallow depths, the pore-pressure 

behaves as the normal pore-pressure (hydrostatically); once inside the salt, there is 

no pore-pressure and the stresses present a discontinuity, inside the salt the vertical 

stress is greater than the horizontal stress in the entire salt section. For drilling 

conditions out of the salt (around 2200 [m] TVD), the pore-pressure and stresses 

converge at 50 [MPa]; for depths aside the salt stem the pore-pressure exhibits an 

anomalous gradient, and the magnitude of the stresses are almost equivalent. When 

reaching near 3900 [m] depth, the stresses separate with H vS S  and then crosses 

around 4800 [m] depth, this behavior corresponds with depths where the “belly” of 

the salt stem is present (see Fig. 5.15, well V2). For greater depths the vertical stress 

is lower than the horizonal stress. Finally, Fig. 5.16d shows the OW computed for 

the scenario of well J2; this well enters on the top of the salt and leaves the salt on 

the salt stem. For lower depths than the salt top, the pore-pressure behaves normally 

but the stresses are in an Inverse Faulting Stress Regime ( v HS S ); when entering 

the salt the vertical stress becomes the principal stress but just before the leaving 

the salt (TVD lower than 2400 [m]), the stresses cross and the horizontal stress 
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becomes the principal stress due to a reduction on the vertical stress.  When exiting 

the salt, the pore-pressure displayed anomalous over-pressure (due to the upward 

bending of the iso-pressure contours shown in Fig. 5.11), with values slightly greater 

than 50 [MPa], these pore-pressure values are encountered in well V1 farther located 

from the salt, nearly 1000 [m] bellow; the stresses are almost equivalent, but the 

vertical stress is greater. Once the drilling of this well is out of the salt, the pore-

pressure slope is steeper (anomalous behavior), and the stresses are almost 

equivalent. When the well trajectory is near the salt stem belly smoother stress 

behaviors similarly to well V2 are shown. For depths near the total TVD, the stresses 

intersect and HS  becomes the principal stress.   
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5.4. Conclusions 

The conclusions of the current chapter are presented as follows. 

1. It is presented the mechanical coupling condition in the interface between 

porous and salt subdomains. 

2. A simplified conceptual problem was conceived and implemented to assess 

the mechanical interaction between porous and salt domains, and the 

influence of salt deformation in pore-pressure, in which the most 

representative salt rheology models were evaluated.  

3. It was built a more robust model to simulate pore-pressure and stress 

anomalies near a salt structure. 

4. The chosen salt rheological model to simulate the mechanical behavior of the 

salt structure in the robust model was the SLS Model.   

5. The robust model was applied to a real case study well located in Mexico 

which was influenced by the presence of a salt structure, where the measured 

pore-pressure during drilling was used to fit the model. 

6. Results of the pore-pressure field, stress field and displacement field are 

shown, in which anomalies near the salt structure are observed. 

7. Four different scenarios of well trajectories are displayed in which distinct 

pore-pressure and stress conditions in the OW are evident when approaching 

to the salt diapir. 
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5.5. Nomenclature 

E  =  Young’s modulus, m/Lt2, psi [Pa]. 

fK  =  fractures continuum permeability tensor, L2, mD [D].  

mK  =  matrix continuum permeability tensor, L2, mD [D].  

xL  =  length of the domain in  x -direction, L, ft [m]. 

yL  =  length of the domain in  y -direction, L, ft [m]. 

P  =  pressure, m/Lt2, psi [Pa]. 

fP  =  pressure of fractures continuum, m/Lt2, psi [Pa]. 

mP  =  pressure of matrix continuum, m/Lt2, psi [Pa]. 

HS  =  horizontal stress, m/Lt2, psi [Pa]. 

vS  =  vertical stress, m/Lt2, psi [Pa]. 

cru  =  creep or viscous displacement in the salt body, ft [m]. 

eu  =  elastic displacement in the salt body, ft [m]. 

u  =  dual-continua displacement, ft [m]. 

su  =  salt displacement, ft [m]. 

Tu  =  total displacement in the salt body, ft [m]. 

yu  =  axial displacement in y -direction, ft [m]. 

X  =  position in space ( , )x y , ft [m]. 
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f  =  fractures continuum Biot’s coefficient, dimensionless. 

m  =  matrix continuum Biot’s coefficient, dimensionless. 

  =  inter porosity exchange parameter, Lt/m, (psi s)-1 [Pa s]-1. 

  =  Poisson’s ratio, dimensionless 

r  =  rock matrix density, M/L3, gr/cm3, [lb/gal]. 

y  =  axial stress in  y -direction, m/Lt2, psi [Pa]. 

  =  porosity, L3/L3, porous volume over bulk rock volume, dimensionless. 

  =  computational domain, L2 or L3, ft2 [m2] or ft3 [m3]. 

p  =  
computational domain of the dual-continua, L2 or L3, ft2 [m2] or ft3 
[m3]. 

0

p  =  porous subdomain of the dual-continua, L2 or L3, ft2 [m2] or ft3 [m3]. 

1

p  =  porous subdomain 1, L2 or L3, ft2 [m2] or ft3 [m3]. 

2

p  =  porous subdomain 2, L2 or L3, ft2 [m2] or ft3 [m3]. 

3

p  =  porous subdomain 3, L2 or L3, ft2 [m2] or ft3 [m3]. 

s  =  subdomain of salt, L2 or L3, ft2 [m2] or ft3 [m3]. 

  =  domain boundary, L or L2, ft [m] or ft2 [m2]. 
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6. Conclusions 

This dissertation addresses the phenomena of pore-pressure in carbonate 

formations near salt structures. This chapter presents general conclusions of the 

work presented by this thesis, some recommendations and future research work. 

From the results of this dissertation, the main conclusions are as follows: 

1. Two equations corresponding to two different mathematical models were 

developed to predict pore-pressure in carbonates; these equations are easy 

to use. A methodology was also developed to facilitate the application of these 

equations. Three case study wells drilled through carbonates located in 

Mexico were used to demonstrate their applicability. 

2. A Geomechanics Dual Porosity/Dual Permeability Discrete Fracture Model by 

Lagrange Multipliers was built, to tackle the highly complex mechanical 

behavior of carbonate rocks as naturally fractured systems. This model 

combines the conception of dual continua of the fractured rock, with the 

geometrical description of fractures in terms of explicit fractures, and the 

geomechanical interaction among matrix and fractures continua and the 

explicit fractures. 

3. Six salt rheological models were studied to describe the mechanical behavior 

of salt rock. The salt models were fully explained, and their corresponding 

solving methodology is displayed. All the models were subjected to the same 

test where different results are appreciated. A new analytical solution of salt 

Norton’s Power Law was developed to fit numerical data. 

4. Through the combination of the Geomechanics Dual Porosity/Dual 

Permeability Discrete Fracture Model by Lagrange Multipliers with the 

Standard Linear Solid Model, a more robust model was implemented to 

simulate pore-pressure conditions, encountered during the drilling of a real 

case study well near a salt diapir located in Mexico. The resulting pore-
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pressure of the numerical model was fitted to field pore-pressure 

measurements, and different well trajectories scenarios were evaluated. 

6.1. Recommendations 

When applying the new pore-pressure prediction equations developed in Chapter 2, 

it is advised to use the porosity log according to the conditions encountered in situ, 

over-pressure or depletion. A first approach when using the new equations can be 

carried out using the density porosity log, due to the pressure fitting improvement 

provided by this log. 

The evaluation of the inter-porosity exchange parameter and Biot’s coefficients is 

commended while using the dual continua model, due to the impact that such 

parameters present in porous-media displacement and pore-pressure estimations. 

It is advised to match the salt rheology models to laboratory tests of samples from 

different formations, in order to define which of the models better describe salt 

mechanical behaviour and to calibrate the model parameters. 

When building a more robust model such as porous rock-salt mechanical interaction, 

it is recommended to gather as much information as possible, with the objective of 

minimizing uncertainties and increasing the representativeness of the model. This 

will lead to better results and a minimum of considerations that constrain the model. 

6.2. Future Research Work 

There is an area of opportunity to develop a pore-pressure prediction equation for 

carbonates due to chemical interactions, such as dolomitization. Such expression 

could complement the work performed in this research work. 

The expansion to two-phase flow and multi-phase flow, of the Geomechanics Dual 

Porosity/Dual Permeability Discrete Fracture Model by Lagrange Multipliers is a 

promising task.  
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The development of laboratory creep tests of salt formations located in Mexico to 

better describe the mechanical behavior of salt rocks, implementing studies of 

synthetic salt cores to correlate real salt specimens results to different mixtures of 

synthetic salt, making a comparison of their rheology for matching purposes, that if 

achieved would provide samples for detailed experimentation. 

Gathering more field data for the coupled poroelasticity-viscoelasticity model, 

accounting for temperature effects and anisotropy in the porous rock, working with 

different salt rheology models in the salt subdomain, would be another possible goal. 
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