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meteorological station ESOLMET-IER from which the data was obtained
since without it, this work wouldn’t be possible. To Kevin Alquicira for
his maintenance and access to the computational resources needed for the
development of this work.

To all IER-UNAM community. To the academics and professors that
guided me in this journey. To Ramón Tovar Olvera for introducing me into
the investigation field in the buildings energy group. To Maribel, Carlos,
Magali, Claudia and Miguel for your support and help when I needed it the
most.

To my roomies Zyanya and Mariana for providing me your knowledge
and wise experiences and for giving me the company that I didn’t know I
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Abstract

Missing data is a common problem when managing big amounts of data.
And meteorological data, obtained from meteorological stations is not the
exception. Imputation is defined as the methods to fill missing data with
plausible values [1], these methods can help to solve this problem to have
reliable data to be processed and used for further investigations.

The methodology is divided in two parts; training and comparison of im-
putation models, and the effect of imputation in an EnergyPlus simulation.
The first part presents the methodology of training, validation and testing
of a hybrid convolutional neural network long short term memory model
(CNN-LSTM). The methodology to determine the orders and the testing
of a seasonal auto regressive integrated moving average (SARIMA) is also
presented. Both of these models are used to impute the day ahead of global
horizontal irradiance (Ig) measurements. Also a comparison between both
models is done, where by taking into account the value of the metrics is
determined that the CNN-LSTM model outgrades SARIMA model.

The second part presents the impact of an imputation on thermal behav-
ior of a building simulated on EnergyPlus. For this purpose the Ig measure-
ments of some selected days in a year were removed, then the CNN-LSTM
model is used to impute these selected days. By using other metrics the im-
pact of these imputations on the zone mean air dry bulb temperature (Ti)
on the thermal zones of the building is evaluated. Also this part presents an
analysis of the factors that contribute to increase the impact of imputations
on Ti.

2



Resumen

Los datos faltantes son un problema común cuando se manejan grandes
cantidades de datos. Y los datos de clima, obtenidos de estaciones meteo-
rológicas, no son la excepción. La imputación se define como los métodos
para completar datos faltantes con valores estimados plausibles [1], estos
métodos pueden ayudar a solucionar el problema de datos faltantes y aśı
obtener datos confiables para ser procesados y usados en investigaciones
futuras.

La metodoloǵıa se divide en dos partes; el entrenamiento y comparación
de modelos de imputación, y el efecto de imputación en una simulación
en EnergyPlus. En la primera parte se presenta la metodoloǵıa para en-
trenar, validar y probar una red neuronal h́ıbrida convolucional long-short
term memory (CNN-LSTM por sus siglas en inglés). También se presenta
la metodoloǵıa para la determinación de órdenes e implementación de un
modelo estacional auto regresivo integrado de media móvil (SARIMA por
sus siglas en inglés). Ambos modelos se usan para imputar un d́ıa completo
de irradiancia global horizontal (Ig). Aśı también, se hizo una comparación
entre estos dos modelos, donde por medio de los valores de las métricas se
determinó que el modelo CNN-LSTM superó a el modelo SARIMA.

En la segunda parte se evalúo el efecto de la imputación en el compor-
tamiento térmico de un edificio simulado en EnergyPlus. Para este propósito
se removieron los datos de la Ig en ciertos d́ıas seleccionados del año, de-
spués se utilizó el modelo CNN-LSTM de la primera parte del trabajo para
imputar estos d́ıas seleccionados. Utilizando otras métricas se evalúo el im-
pacto de estas imputaciones en la temperatura interna (Ti) de diferentes
zonas térmicas del edificio. También se presenta un análisis de los factores
que pueden influir en que las imputaciones tengan un mayor efecto sobre la
Ti.
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Introduction

Weather data can be useful for multiple applications such as; weather fore-
casting, evaluation of solar, wind or rain sources for renewable energy in-
vesting. For the case presented in this thesis it is used for energy building
simulations. However the recording of data in weather stations and mea-
surement devices tend to fail for several reasons, such as energy shutdowns,
sensor malfunction, maintenance, etc. Therefore missing data is one of the
biggest problems when working with data sets.

Missing data can have consequences on the capacity to simulate or
validate building simulations, which leads to a sacrifice in accuracy on the
simulation, or to the repetition of experimental campaigns to ensure a val-
idated simulation. This can waste time and economic resources. An impu-
tation is defined as the process to fill missing data with plausible values [1].
Several imputation methods are used to solve this problem.

The objective of this work is to build a model to impute the day ahead
measurements of global horizontal irradiance (Ig) using a hybrid convo-
lutional neural network long-short term memory artificial neural network
(CNN-LSTM) and compare its performance with a seasonal autoregressive
moving average model (SARIMA). Another objective is to study the impact
of the imputation of Ig on the zone mean air dry bulb temperature (Ti) of
the thermal zones of a building simulated on EnergyPlus in comparison with
the Ti obtained when the building is simulated with the measured Ig.

Chapter 1 is the literature review, which presents the history of the
artificial neural networks (ANN) and the models used for predicting and
imputing weather data. Chapter 2 presents the theoretical background of
ANN and SARIMA model. Chapter 3 presents the methodology to select the
best Ig imputation model comparing a trained CNN-LSTM and a SARIMA
model. Chapter 4 shows the impact of the CNN-LSTM imputed Ig on the
interior temperature of the building thermal zones. And Chapter 5 presents
the conclusions of this work.
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Chapter 1

Literature review

This chapter presents the literature review about the history of artificial
neural networks (ANN). It also presents some of the models that are used to
forecast or to impute weather data, as well as the advantages that imputation
and forecasting of weather data can have.

Section 1.1 presents a brief history of ANN’s and some of its major
breakthroughs. Section 1.2 presents the models used to predict or impute
weather and mainly irradiance data, to get an insight on how are usually
applied and typified.

1.1 History of ANN´s

The beginnings of ANN’s can be referred to 1943, when McCulloch and
Pitts [2], one a psychologist and the other a mathematician, built a theoretical
model based on the function of neurons. This was done considering the
neuron as a functional logic device. Frank Rosenblatt [3] proposed the
Perceptron in 1958 which was a linear discriminator model based on the
McCulloch and Pitts model and that preceded the basic principle of the
current modern neural networks structure. In 1969 Minsky and Papert [4]
on its book ’Perceptrons, An Introduction to Computational Geometry’,
published the limitations that the Perceptron had. It was pointed out that
perceptrons could not solve the classification problem of two types of linear
inseparable samples. In 1984 Hinton and Sejnowsky [5] proposed the first
multi-layer network learning algorithm known as the Boltzmann machine
model. In 1984 Hopfield [6] proposed to change one of the main parts of the
neurons, the activation function, from discrete to continuous.

In 1986 based on Boltzmann machine algorithm D.E. Rumelhart et al. [7]
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Chapter 1

proposed the backpropagation algorithm to solve the weights correction of
the multi-layer neural network. Which enabled these models to solve a larger
variety of practical problems than before. This increased the attention to
the development of different neural networks variants. One of these variants
were the recurrent neural networks (RNN), first proposed by Robinson and
Fallside [8] in 1987 in which part of the output of the network feedbacks to
the input to create some sort of memory storage. In 1997 Hochreiter and
Schmidhuber [9] introduced the Long Short-Term Memory neural network
(LSTM). Which is a kind of RNN with multiplicative gate units that allows
the model to learn faster than the traditional RNN. In 2006 Hinton et al. [10]
proposed Deep Learning (DL) as a new field of machine learning (ML) which
is defined as an ANN architecture model with multiple hidden layers and
the model is trained through large scale data training.

1.2 Models for weather imputation

The presented models were on its majority used for forecasting rather than
for imputation. Imputation is defined as the process to fill missing data with
plausible values [1]. While forecasting or prediction can be defined as the
process to tell future time series data given the past values of itself or other
variables. This implies that predicted data can also be used to impute time
series data. For this reason the words to predict and to impute can be used
interchangeably.

Solar irradiance forecasting is used in order to anticipate the changes
on power output in photo voltaic (PV) plants. Solar power ouptut has a
high variability due to several weather variables, for example cloudiness,
temperature, wind speed and solar irradiance itself. This variability causes
issues on the electric grid, such as voltage surges, reverse power flows, vari-
ations in frequency harmonic distortion in current and voltage waveforms
etc [11]. Therefore a reliable PV output forecast would decrease uncertainty,
enhancing stability and improving economic viability. On the other hand
for building energy consumption, high quality data has become important
to study how to improve energy efficiency [12]. Missing data can affect the
research outcomes. Therefore a reliable data imputation can make more vi-
able to make an analysis and identification of energy consumption patterns,
for data driven decisions.

Prediction models for solar irradiance can be classified by the time hori-
zon. Which is the future time period for the output prediction or the time
duration between actual and effective time of prediction [11]. Time horizons
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are divided by: very short term, from a few seconds to one hour, short term,
from one hour to 6 hours, medium term, from six hours to twenty four hours,
and long term, for more than twenty four hours. However there is no widely
agreed classification criterion [13].

Imputation can be classified by the frequency and extension of the miss-
ing data. Where it is divided as random missing and continuous missing
data [12]. In the first case, the missing data happens with a high and ir-
regular frequency but for short periods of time. Meanwhile the continuous
missing data happens in long extensions of time. This work will be focused in
solving continuous missing data of weather, mainly on the global horizontal
irradiance.

A multi-step prediction model is necessary in order to impute continu-
ous missing data. For multi-step ahead prediction, different modeling ap-
proaches can be applied; iterated, direct and multiple input multiple output
(MIMO) approach [14]. For an iterated approach a model is trained to give
a 1 step ahead prediction, this prediction is then used as an input to give the
next step prediction. This process is iterated until reaching the desired time
horizon [15]. A direct approach consists on constructing the same amount
of models as the time steps that needs to be predicted. This approach takes
a significantly larger amount of computational time for a large number of
time steps [14]. MIMO approach consists on constructing a model able to
predict the needed amount of time steps at once, usually feeding the model
with a multi-step input. The MIMO approach has shown to be more accu-
rate to predict hourly solar irradiance for up to 1 to 12 hours ahead than
the iterated approach, and needs less computational time since it requires
to train a single model unlike the direct approach [15].

Weather prediction models can be divided into three kinds of models,
which are physical, statistical and machine learning (ML) models [11]. The
most studied have been statistical and ML models [16], which are the ones
used on this work. Physical models use external variables, such as other
weather and geographical variables. An example of this kind of model is
the numerical weather prediction which uses regional or even global atmo-
spheric features to forecast up to 15 days ahead. For this approach it is
needed a larger amount of data and resources than statistical or ML mod-
els [11]. Statistical models improves the prediction accuracy by minimizing
a loss function with a linear process. Usually statistical models inputs are
endogenous, which means that these models use only the historical data
of the predicted variable [17]. Statistical models need less computational
power than ML or physical models [16]. Meanwhile ML models optimize
their loss function with a non linear process and typically use an exogenous
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input, which means that these models use the historical data of the predicted
variable as well as other external weather variables [17].

Statistical models are one of the most traditional time series prediction
methods. One of these models, the auto regressive integrated moving aver-
age (ARIMA) model has the best prediction accuracy [16]. In the case of
ML models, feed forward artificial neural networks (FFANN), also called in
some instances multi layer perceptron (MLP) has an equivalent performance
in comparison with ARIMA models for solar irradiance prediction in certain
variability conditions and time horizons [18]. Nevertheless other ANN vari-
ants such as RNNS like LSTM neural networks have a better accuracy for
predicting solar irradiance than FFANN models [19]. However the LSTM
model takes more computational resources than FFANN [15]. Other RNNs
variants like the gated recurrent unit (GRU) has a similar performance in
comparison with the LSTM [20].

Other novel variants have proven to have a better accuracy than simple
FFANN or LSTM models. One of these is a bidirectional LSTM imputation
method, used for energy building consumption data [12]. Another example
is a hybrid ARIMA-LSTM model, used for daily global horizontal irradi-
ance [21]. Lastly a hybrid convolutional neural network with LSTM, used
for PV power forecasting [22].

It is important to acknowledge that the models presented on the last
paragraph are the ones that have had the best performance just in the
specific cases exposed. This means that in other circumstances, other models
could have a better performance than them, depending on the variability of
the data, frequency of the measured data, time horizon, etc. This makes
hard to affirm which model has the best general performance, since the
mentioned variables change with each study case addressed [16].
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Models for weather
imputation theoretical
background

This chapter presents a conceptual introduction of two kinds of models.
First the artificial neural networks (ANN) which are based on machine learn-
ing (ML) models, and second, a seasonal auto regressive integrated moving
average (SARIMA), which is a statistical model. Section 2.1 presents the
way ML models are classified by its way of learning, the basic functioning
of ANN’s and multi layer perceptrons (MLP), also how they are trained
and other types of ANN’s such as recurrent neural networks (RNN) and
convolutional neural networks (CNN). Section 2.2 presents the statistical
models used in this work, some assumptions of these models, and the equa-
tions that describes auto regressive moving average (ARMA) models, non
seasonal auto regressive moving average (ARIMA) and SARIMA models, as
well as a way to determine the parameter orders of these models.

2.1 ANN models

On traditional ML models, relevant features of the data needs to be ex-
tracted so that the model learns from it [23]. However for the deep learning
(DL) models, which includes all kinds of multi layer ANN architectures,
these features are learned automatically.

ML, and so DL models can be classified by its way of learning; super-
vised, unsupervised and reinforcement learning [24]. In supervised learning,
labeled data is delivered to the model in order to be trained. This means
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Figure 2.1: Organic neuron diagram.

that the training data comes in x and y pairs, where the objective of the
model is to predict certain output (y’) given any new input (x’). This ap-
proach is used to solve classification or regression problems. Unsupervised
learning is fed with unlabeled data. This kind of learning can solve clustering
problems which consists on finding a partition on the observed data without
having explicit labels indicating a desired partition. Reinforcement learning
is considered a combination between supervised an unsupervised learning.
Instead of feeding the pairs of data with the correct desired outputs, as on
supervised learning, is fed with an indication if the done action after given
an input is correct or incorrect. If an action is incorrect, the problem of
finding the correct action remains. This kind of learning is used in control
strategy problems.

2.1.1 An inspiration on nature

As it was mentioned on the last chapter, ANN models are based on a simpli-
fied way that organic neural networks work on the brain [25]. Organic neural
networks are composed of cells called neurons, the neuron components, as
seen on Figure 2.1, can be simplified in three parts; the soma, in blue color,
is the body of the cell, dendrites, in greeen color, are the input ramifications
and the axon, in orange color has the output ramifications. Meanwhile on
Figure 2.2 is presented a diagram of neuron synapses, which are the spaces
that are between dentrites and axon terminals. The neuron receives signals
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Figure 2.2: Neuron synapses diagram.

from other neurons through the terminals of its dendrites. These signals are
summed up in the soma and if this sum surpasses certain electrical threshold
the neuron activates, transmitting an output signal through its axon until
reaching the axon terminals. This output signal is then passed to the next
layer of neurons by neurotransmitters, that passes through synapses to the
receptors of dendrite terminals of the next layer of neurons.

The neurons communicate with each other through electrical and chem-
ical signals. The impulse that travels in the neuron and through the axon is
electrical, while the signal transmitted through synapses are chemical. This
chemical signal is regulated by neurotransmitters which work by inhibiting
or reinforcing the signals on the synapses of each neuron depending on the
use or disuse of the neural pathways [26]. This is called neuroplasticity and
allows the brain to be adaptable to changes and to learn new things through
all of our lifetime.

Because ANNs are a mathematical model, signals are numerical. The
neuron or node is the basic unit that composes the ANN and can be ex-
plained by the next equations.

z =

n∑
i=1

xiwi, (2.1)

where x is a n length array of the input signals and w is a n length array of
the weights. Therefore z is the weighted sum of the node inputs. The other
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equation is,

h = f(z), (2.2)

where h is the output signal and f is the activation function.
Activation function is a non linear function that is applied to the sum of

the weighted signals received by each node. This non linearity gives ANNs
the ability to be stacked into several neurons layers so that it can fit the given
data [27]. If this function were lineal, there would be no purpose on stacking
nodes together since this would only be equal to a single equivalent linear
regression. Even if there exists a wide variety of activation functions, the
ones used in this work are the sigmoid, hyperbolic tangent and rectified linear
unit (ReLu) functions. Sigmoid function or logistic function is described by:

σ(z) =
1

(1 + e−z)
, (2.3)

where z represents the sum of the weighted inputs. The hyperbolic tangent
function is described by:

tanh(z) = 2σ(2z)− 1, (2.4)

And ReLu activation function is described by:

ReLu(z) = max(0, z), (2.5)

As shown on Figure 2.3 sigmoid and hyperbolic tangent functions are ’S’
shaped. However the sigmoid function, on Figure 2.3(a) has output values
in a range from 0 to 1. While hyperbolic tangent function, on Figure 2.3(b)
has output values in a range from -1 to 1. While on ReLu, shown on Figure
2.3(c) when z has a value that is less than zero, the function outputs a zero,
but when is bigger than zero it outputs the z value.

On Figure 2.4 is shown a representation of how information flows through
the node of a perceptron where the inputs (x1, x2, x3) are multiplied by its
correspondent weights (w1, w2, w3). These multiplications are summed (z)
and then passed through a non linear activation function (f(z)) to give an
ouput (h).

ANNs are conformed by perceptrons interconnected with each other.
In a multi layer perceptron (MLP), neurons are connected densely which
means every node’s output from one layer becomes a part of the input of
the nodes in the next layer. Figure 2.5 shows the architecture of a MLP. A
MLP is conformed by three kinds of layers, input layers, hidden layers, and
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Figure 2.3: Graph of behavior of (a)sigmoid, (b)tanh and (c) ReLu activa-
tion functions.

Figure 2.4: Graphic representation of a perceptron.
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Figure 2.5: MLP graph representation.

output layers. Input layer is the one where the data goes into the network.
This layer does not make any transformation to the data. On hidden layers
information propagates and gets transformed by the activation function of
each node until reaching the output layer. So with every additional layer
in the MLP architecture, the information passes through another activation
function of a weighted sum.

2.1.2 Gradient descent and backpropagation

The last section describes how the input data that feeds the ANN gets
transformed by it. This section explains the algorithm that is used to train
the ANN. Training is the process that is applied to the ANN so that the
inputs produce the desired outputs [25]. For this, is necessary to introduce
the concepts of the cost function, gradient descent and backpropagation.

As it was mentioned, supervised learning models needs to be trained with
labeled data so that it can learn from it. This means that, in the training
process, the ANN should have a desired output (y) to compare with the
actual output of the ANN (h) [28]. This comparison is achieved with the
cost function,

C(W ) =
1

2n

n∑
i=1

|yi − hi|2, (2.6)
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where n is the number of samples and W is the weights matrix of the ANN
architecture. This cost function is also called mean squared error (MSE).
The cost function is an indicator of the performance of the ANN, where
the main objective would be to bring C(W ) ≈ 0 or as small as possible by
adjusting W .

Gradient descent is the algorithm of numerical optimization that is used
to train several ML models. The gradient should be viewed as the vector of
maximum change rate in any function. Gradient descent works by subtract-
ing the gradient iteratively to the parameters in order to minimize the error
of the model, or in this case the cost function. This iterated subtraction
looks like this,

W = W − η∇C, (2.7)

where W is the weights matrix in the MLP architecture, ∇C is the gradient
of C(W), and η is the learning rate. This same iteration, for an specific
weight in the MLP, could be written like this,

wL
ij = wL

ij − η
dC

dwL
ij

, (2.8)

where wL
ij is the specific weight to be optimized, L is the number of layer

in which the weight is encountered, i is the node for which the weight is
connected in the next layer (N(L + 1)) and j is the node from which the
weight is connected (N(L)). Backpropagation is an algorithm that uses the
gradient descent to minimize the cost in an ANN architecture in a way that
is faster than previous learning approaches [28]. In Equation 2.6 it should
be noticed that each h can be expressed in terms of its weights and inputs
as seen on equations 2.1 and 2.2. In a MLP with one or more hidden layers
the outputs h can be expressed in terms of the outputs and weights from
the previous layers. Since MLP are nested activation functions. To calculate
the derivative of a weight that is encountered at layer (L − 1) is necessary
to use the chain rule,

dC

dwL−1
ij

=
dC

dhL
dhL

dzL
dzL

dwL−1
ij

. (2.9)

Backpropagation uses linear algebra tools such as elementwise vector mul-
tiplication to compute all the partial derivatives at once, instead of every
individual partial derivative.
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Figure 2.6: Graphic representation of a RNN node.

2.1.3 Recurrent Neural Networks

Another name that is given to the MLP are feed forward ANN (FFANN)
because of the way the information propagates through the network without
any feedback [20]. On the other hand recurrent neural networks (RNN)
feedback the last output as an input in each node. This is useful to handle
sequential data.

The RNN consists in a recurrent state called the hidden state (hit),

hit = tanh(Uxt +Wht−1), (2.10)

where U is the weight matrix for the input and W is the weight matrix for
the previous hidden state ht−1. The first hidden state is set as hi0 = 0.
Then the output of a RNN node is defined as

ht = σ(V hit), (2.11)

where V is the output weight matrix. A graphic representation of a RNN
node is shown on Figure 2.6 where it can be seen how the information feed-
backs on the RNN. To train RNNs, W needs to be backpropagated through
all the time steps, this is called backpropagation through time (BPTT). To
visualize the necessity of this, it can help to view the RNN in an unfolded
way, as shown on Figure 2.7. Where is shown how W can be backpropagated
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Figure 2.7: Graphic representation of an unfolded RNN.

until reaching time step t = 1. Nevertheless RNNs tend to have problems in
its training process. Because of this feedback information, its gradient tend
to increase exponentially or diminish until it stops learning from data [9].
This problem is called the exploding and vanishing gradient. In 1997, Sepp
Hochreiter and Jürgen Schmidhuber [9] proposed a variety of RNN which
they called Long-Short Term Memory (LSTM) to solve this problem.

Long-Short Term Memory Networks

LSTM difference with RNN relies in an additional recurrent state, called the
cell state (Ct) [12] that works as a long term memory that keeps track of the
important information [29]. Another difference is that the information is
filtered by gates, being these the input(it), forget(ft) and output(ot) gates.
The it decides what current information is going to pass through,

it = σ(xtU
i + ht−1W

i), (2.12)

in which W i and U i are the respective weight matrix of the gate. The ft
decides the information that is no longer relevant to keep in the hidden and
cell state,

ft = σ(xtU
f + ht−1W

f ). (2.13)

The ot decides the internal state information that needs to be passed,

ot = σ(xtU
o + ht−1W

o). (2.14)
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Figure 2.8: Graphic representation of an LSTM unit [20].

Using these gates, the recurrent states are calculated. Ct is obtained in two
equations, at first is calculated a candidate for Ct (C̃t) using:

C̃t = tanh(xtU
c + ht−1W

c), (2.15)

secondly the Ct is calculated using:

Ct = σ(ft � Ct−1 + it � C̃t). (2.16)

Finally to calculate ht is used

ht = tanh(Ct)� ot. (2.17)

In contrast with the RNN hidden state hit, LSTM output and recurrent
hidden state gets the same value of ht. A graphic representation of how the
information flows into a LSTM unit is shown on Figure 2.8. Where it can
be noticed that it, ft and ot decide how much of the information passes to
the cell state. At the same time the Ct determines the output and ht of the
unit for the next time step.

2.1.4 Convolutional Neural Network

In 1982 Fukushima and Miyake [30] proposed the predecessor of CNNs which
was called ’Neocognitron’ and it was based on the responsive properties of
the visual cortical neurons. It was until 1990 were the first CNN was created
by Yann LeCun [31].
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Usually 2D CNN are used to extract local features from images [22].
However 1D CNN are mostly used and more efective to extract local fea-
tures in a time series [32]. CNN differs with a MLP because its neurons are
sparsely connected with weights between layers reducing the number of pa-
rameters that need to be trained. Also information passes through so called
filters or convolutions, which can be understood as a sum of a weighted
multiplication that slides trough the input features. This can be described
with the next equation,

hc =
N∑
i=1

xi ⊗W, (2.18)

where hc is the output of the convolution, N is the number of input features,
xi are the input features and W is the weight matrix that, when trained,
works as a feature filter. Then hc passes through an activation function to
become the output of the CNN unit (h),

h = f(hc). (2.19)

Another characteristic of CNNs is that between each convolution layer there
is a pooling layer. This layer does not have any weight or trainable pa-
rameter. However is used to reduce the size of h, reducing the computing
resources needed to train the model’s parameters on forward layers [32].

Table 2.1 shows a summary of the main characteristics of the three kinds
of ANN models presented in this section. Some common applications for
each kind of ANN model are also shown there.

2.1.5 CNN-LSTM model

The model used in this work is based on the work made by Tovar et al [22]
which is a hybrid ANN model that uses CNN layers for local feature learn-
ing and LSTM layers for temporal feature learning. This is built by just
stacking the desired amount of layers of each kind. In the mentioned article
it was proposed a model of five CNN layers, five LSTM layers and a MLP
layer to give an output. This model showed to have better performance
than a two CNN layers and two LSTM layers model , and better than five
layer LSTM model for photovoltaic power forecasting. On Chapter 3 are
tested more combinations of this hybrid architecture for global horizontal
irradiance imputation.
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ANN Model Main Characteristics Common Applications

FFANN
-Information flows forward. - General regression
-Nodes are interconnected problems.
through consecutive layers.

RNN

-Information flows through - Time series prediction.
recursive connections. -Natural language
- Each recursion is a processing.
hidden state.

CNN

-Sparsely connected layers - Image recognition
-Filters or Kernels slides and classification.
through the input features.

Table 2.1: Main characteristics and most common applications of the three
kinds of ANN models.

2.2 Statistical models

Another kind of models that are commonly used for time series are the
statistical ones, where simpler linear and non linear models are used. For
this work a model called seasonal autoregressive integrated moving average
(SARIMA) was used.

2.2.1 Time series statistical analysis

Time series in a statistical point of view can be understood as a sequential
set of data points measured typically over successive times [33]. The analysis
of time series is the procedure of fitting time series to a proper model. They
can be decompose into four parts, being these ones the trend (T (t)), cyclical
(C(t)), seasonal (S(t)) and the error or irregular (E(t)). Where T (t) is
the tendency of the time series to increase or decrease. C(t) are when the
time series presents rises and falls with a not fixed frequency [34]. S(t)
are the rises and falls that occur with a fixed frequency. E(t) component
is caused by unpredictable influences that are not regular or repeat in any
particular pattern. These components can describe time series in two ways.
An additive decomposition,

Y (t) = T (t) + C(t) + S(t) + E(t), (2.20)

or a multiplicative decomposition,

Y (t) = T (t)C(t)S(t)E(t). (2.21)
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Additive decomposition is based on the assumption that the four compo-
nents are independent of each other, while multiplicative decomposition is
based on the assumption that the four components are not necessarily inde-
pendent [33].

For statistical models it is assumed that time series follows a certain
probability model. The probability structure of the time series is termed as a
stochastic process [33]. An usual assumption is that time series variables are
independent and identically distributed following the normal distribution,
in other words that these are stationary. Stationarity for time series means
that its properties do not depend of the time in which is observed [34]. This
means that a time series with trend or seasonality is not stationary, while
white noise is defined as stationary.

2.2.2 ARMA models

ARMA models consists in a sum of two models: autoregressive model (AR)
and moving average model (MA). In an AR model, a linear combination of
past values, also called lags, is used to predict the values of a variable. An
AR(p) model or an AR model of order p is expressed as:

yt = c+ εt +

p∑
i=1

φiyt−i, (2.22)

where p is the number of lags, yt is the variable to be predicted, c is the
intercept, φ are the parameters that multiply the p lags and εt is the random
error at t time step. In an AR(p) model is assumed that every yt observation
depends on the p lagged observations. This implies that yt has an indirect
dependency with lags larger than p and back to the very first value of the
time series t0. This recursive dependency on yt lagged values makes the
AR(p) model to be considered long memory models [35]

On the other hand moving average (MA) models uses past forecasted
errors to predict the desired variable or also called error lags (εt−q). A
MA(q) model or an MA model of order q is expressed as:

yt = c+ εt +

q∑
i=1

θiεt−i, (2.23)

where q is the number of error lags and θ are the parameters that multiply
the q error lags. Since in this model there is no a recursive dependency of
yt on error lags MA models are considered short memory models [35].
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As mentioned before ARMA models is the sum of AR and MA models,
so an ARMA(p,q) model can be expressed as:

yt = c+ εt +

p∑
i=1

φiyt−i +

q∑
i=1

θiεt−i. (2.24)

It is important to acknowledge that ARMA models need to be fed with
stationary data, this would make necessary to de-trend and de-season the
time series.

2.2.3 Non-seasonal ARIMA models

Autoregressive integrated moving average (ARIMA) models introduces a
differentiation order (d) to ARMA models, with the objective to eliminate
or to reduce trend and seasonality on time series in order to make them
stationary [34]. A differentiated series is the change between consecutive
observations in the original series, a differentiated series with order d = 1
(y′t) can be described as:

y′t = yt − yt−1, (2.25)

for a differentiated series with order d = 2 (y′′) could be described as:

y′′t = y′t − y′t−1. (2.26)

This way an ARIMA(p,d,q) model equation could be described as:

y
(d)
t = c+ εt +

p∑
i=1

φpy
(d)
t−p +

q∑
i=1

θqεt−q (2.27)

where y
(d)
t is the d times differenced time series.

2.2.4 SARIMA models

Seasonal autoregressive integrated moving average (SARIMA) takes into
account seasonal data. For this another set of seasonal orders (P,D,Q)m is
added, where P , D and Q are the seasonal AR, I and MA order respectively
and m is the number of time steps between seasons. A seasonal differentiated
time series could be described as:

y′t = yt − yt−m, (2.28)

a SARIMA model is presented as SARIMA(p, d, q)(P,D,Q)m. To stablish
the optimal orders needed to model a time series is necessary to make an
analysis of the autocorrelation and partial autocorrelation functions [33].
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2.2.5 Autocorrelation and partial autocorrelation functions

Autocorrelation function (ACF) measures the relationship between the yt
and its k lagged value, yt−k [34]. Mathematically an ACF coefficient (ρk)
can be described as the rate between the covariance of yt with yt−k (γk),

γk = Cov(yt, yt− k), (2.29)

and the covariance with zero lags (γ0), which is equivalent as the time series
variance [33],

ρk =
γk
γ0
. (2.30)

On the other hand partial autocorrelation function (PACF) measures the
relationship between the yt and its k lagged value but removing the effects
of lags 1, 2, 3, · · · , k − 1 [34].

Since ACF and PACF bring us the relations of any yt with its lagged
value. Plotting these functions on several lags can bring us information of
the optimal ARIMA(p, q, d)(P,Q,D)m orders to be used [36]. These plots
are called corrrelograms. Certain behaviors on these correlograms could
indicate specific signs to use different orders on the ARIMA model. For
example if ACF and PACF coefficients are critical (larger than 1.96√

N
, where

N is the number of observations) through most of the observed lags, is an
indication to add a differentiation d order. After differentiating the time
series, an ARIMA(p,d,0) sign would happen when critical values on ACF
decays slowly, while there is a critical spike in the p lag on PACF. An
ARIMA(0,d,q) sign would happen when critical values on PACF decays
slowly, and ACF shows a critical spike in the q lag. These same signs can
determine SARIMA seasonal orders (P,D,Q)m, but in this case the spikes
on the correlograms are presented on multiples of m lags. This is applied
on Section 3.4 where a SARIMA(p, d, q)(P,D,Q)m orders are determined.
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Models training and
comparison

This chapter presents the methodology to select the best global horizontal
irradiance imputation model. Section 3.1 describes the data used to feed
the models. Section 3.2 shows the metrics used to evaluate and compare the
models. Section 3.3 presents the methodology to explore the hyperparame-
ters for a Convolutional Long-Short Term Memory Neural Network (CNN-
LSTM) model. Section 3.4 presents the methodology to find the optimal
orders for a Seasonal Autoregressive Integrated Moving Average (SARIMA)
model. Section 3.5 shows a comparison of the performance between CNN-
LSTM and SARIMA.

3.1 Data description

The data used for this work is obtained from the Solarimetric and Meteoro-
logical Station in the Renewable Energies Institute (ESOLMET-IER) that is
located in Temixco, Morelos in Mexico with a latitude 18°50’25.62”N, and
longitude 99°14’10.49”W. The ESOLMET-IER measures the global hori-
zontal irradiance (Ig) [ W

m2 ], direct normal irradiance (Ib) [ W
m2 ], diffuse solar

irradiance (Id) [ W
m2 ] and solar ultraviolet-A irradiance [ W

m2 ], as well as some
common meteorological variables such as air dry bulb temperature (To) [oC],
relative humidity (rh) [%], wind speed [ms ] and barometric pressure [mbar].
However not all variables were used for this work as stated on Section 3.3.1.

The station reports every 10 minutes and has been working since 2010,
this data can be seen on the ESOLMET-IER website with a previous reg-
istration. For this work years 2019, 2018 and a typical meteorological year
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(TMY) has been used [37]. A TMY is a year built with measured data from
the weather’s most representative months of different years. These months
are selected using a statistical analysis. Nevertheless, with every change of
month, the TMY presents discontinuous data on meteorological variables,
with exception on the irradiance variables. However the impact of these
discontinuities are assumed as negligible for the purposes of this work.

3.1.1 Data split

Data of three different years is selected for training, validation and testing
purposes respectively. The training year contains the data from which the
model learns. Therefore for the CNN-LSTM this year was used to train
the model. While for SARIMA, training year was used to determine the
optimal model orders. Training data must be statistically representative,
so the CNN-LSTM and the SARIMA model can generalize its predictions
when new data is given. For this purpose the TMY of Temixco, presented
in [37] was used. This TMY contains the typical solar irradiance months
from 2010 to 2015.

The validation year is used for tuning the hyperparameter of the CNN-
LSTM model. In contrast with training data, the CNN-LSTM model does
not learn from it but is only for evaluating the performance of the model with
data that the model has not been trained for. To accomplish this purpose
the year 2019 was chosen, since it had fewer missing data spots than other
years. Since several hyperparameters are being adjusted to decrease the
error metrics on the validation year, is necessary to use another data set to
confirm that the model is really generalizing on new data.

Testing data, as its name suggest is used to test the model once is already
trained and tuned. The year 2018 was chosen for this purpose. However it
should be cleared that 2018 has missing data, mainly in May. The data from
May of year 2019 is used to impute this missing data, some other isolated
missing days are imputed by pasting the previous days. Year 2018 is also
used to create the weather file (epw) for the EnergyPlus simulations to be
implemented, and to evaluate the impact of the imputations on Chapter 4.

3.2 Metrics

The next metrics are used to evaluate the performance of the models: The
irradiance absolute error,

Ierrg = |Ipg − Ig|, (3.1)
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where Ipg is the predicted Ig. Which is used as the main metric to choose
the best CNN-LSTM hyperparameter tuning model, seen on Section 3.3.2.
As well as to compare the performance between CNN-LSTM and SARIMA
models.

To view this error in daily energy terms the models are evaluated with
the next metrics: The daily energy absolute error,

Eerr
d = |Ep

d − Ed|, (3.2)

expressed on [Wh
m2 ], where Ep

d is the daily predicted solar energy and Ed is
the real daily solar energy. And the daily energy absolute percentage error

E%err
d =

|Ep
d − Ed|
Ed

× 100. (3.3)

3.3 CNN-LSTM training and tuning

The CNN-LSTM model was programmed using the high level application
programming interface Keras and TensorFlow. The CNN-LSTM model is
based on the model shown in [22]. However the model built in this work
differs from the based model in its architecture, the data feeding process, as
well as the output and some input variables.

3.3.1 Data feeding preparation

Before feeding the CNN-LSTM model it is necessary to prepare the data.
The way to feed the model for its training is by setting our independent
variable, or input data, as the present value. And setting our dependent
variable, or target, in this case Ig, as the variable we want to predict but
forward in time on any desired time horizon.

It was established to set a prediction time horizon of 1 day ahead. In
the used weather data, there are 144 time steps per day, or 6 time steps per
hour. The model would predict 6 time steps at once using the input data
from 6 time steps in the day before. This process is iterated until the entire
day is predicted. In comparison with training the model to predict 144 time
steps at once, it was found that the proposed approach reduced significantly
the computational time of training.

Input data on the CNN-LSTM model is exogenous, this means that it
does not consist only on the past measurements of the target variable Ig,
but also on the past values of other correlated variables, such as Ib, To
and rh as well as temporal data that was added using solar altitude (α)
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Figure 3.1: Graphic representation of Ig input and target in the CNN-LSTM
model.

and azimuth (γ) angles, so the model could recognize the seasonal changes
around the year. In other words, in order to predict Ig at any hour of
tomorrow, the model should be fed with the weather and temporal data of
the same hour from today as portrayed on Figure 3.1. Where the green
dotted line represents the input of the Ig values, while the red dotted line
is the target Ig values forward in time for 1 day. Even if is not represented
on the figure, it should be remembered that input data contains also Ib, To,
rh, α and γ values.

3.3.2 Hyperparameter tuning

Every Machine Learning (ML) based model, such as the CNN-LSTM model,
has a large amount of possible hyperparameters that can be tuned. For
this work a grid search was used. A grid search consists on trying every
possible combination of hyperparameters to be tuned in order to find the best
combination. As it can be seen on Table 3.1, three hyperparameters were
chosen to be tuned: the number of CNN, LSTM and Feed Forward layers
(CNN-LSTM-FFL), the learning rate (η), and the batch size (BS). By the
end of this grid search, twenty seven different hyperparameters combinations
were evaluated, then the best of this options can be selected.

The metrics, shown on Section 3.2, were evaluated on all the validation
year by calculating the annual mean value of them. However the annual
mean value of Ierrg was used to determine the best and the worst model
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CNN-LSTM-FFL η BS
# of layers [-] [-]

3-3-1

1e-7
6

12
24

1e-5
6

12
24

1e-4
6

12
24

2-2-1

1e-7
6

12
24

1e-5
6

12
24

1e-4
6

12
24

1-1-1

1e-7
6

12
24

1e-5
6

12
24

1e-4
6

12
24

Table 3.1: Hyperparameter grid search with the CNN, LSTM and feed for-
ward layers on the ANN architecture, CNN-LSTM-FFL, learning rate, η,
and batch size, BS, combinations.
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CNN-LSTM-FFL η BS Eerr
d E%err

d Ierrg

[-] [-] [Wh
m2 ] [%] [ W

m2 ]

2-2-1 1e−4 12 539.5 10.2 80.1

1-1-1 1e−7 24 720.3 12.2 98.4

Table 3.2: Table of the best and worst performance model, with their
training hyper parameters; number of layers, learning rate, η, and batch size,
BS, and their respective metrics values annual mean daily energy absolute
error, Eerr

d , annual mean daily energy absolute percentage error, E%err
d , and

the irradiance mean absolute error, Ierrg .

on the grid search. Also it was determined that the night values, when α
has a negative value, would be discarded since this would underestimate the
metric and giving the impression that the error of the model was smaller
than it actually was. The best grid search model, with the smallest Ierrg , had

a value of 80.1 W
m2 , an Eerr

d of 539.5 Wh
m2 and a E%err

d of 10.2%. The worst

model, with the largest Ierrg , had a value of 98.4 W
m2 , an Eerr

d of 720.3Wh
m2

and a E%err
d of 12.2%. The reason for E%err

d value being so close in both
models, with a difference of only 2%, can be explained because the best
grid search model tend to overestimate the Ep

d with a greater magnitude
than the worst grid search model when Ed has low values. On Table 3.2
are presented the hyperparameters of these models and its metrics values
for each of them. On Table 3.3 is presented the detailed architecture of the
best CNN-LSTM model with their correspondent number of filters on CNN
layers, hidden states on LSTM and nodes on Dense layers, as well as the
activation function that was used on each layer.

Models performance

On Figure 3.2 is presented the comparison of Ipg , Ig and instantaneous Ierrg

for (a) the worst performance day and (b) the best performance day of
the best model in the validation year. It can be observed that the worst
performance day seems to be a cloudy and probably a rainy day due to
irregular and small Ig that results into the model overestimating its Ipg . On
this day the model reaches a day mean Ierrg = 175.1 W

m2 , an Eerr
d = 4194.9Wh

m2

and a E%err
d = 200.2%. Meanwhile the best performance day seems to

be a clear sky day due to the large Ig values and results into the model
having a very good performance. On this day the model reaches a day mean
Ierrg = 7.2 W

m2 , an Eerr
d = 84.7Wh

m2 and a E%err
d = 1.2%.
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Layer Filters/Hidden states/Nodes Activation function

Input 6 None

1D-CNN 64 Relu

Pooling - None

1D-CNN 64 Relu

Pooling - None

LSTM 128 Tanh

LSTM 64 Tanh

Dense 6 Sigmoid

Table 3.3: Best grid search architecture, where each row represents a layer,
with its correspondent number of filters, hidden states or nodes and its
activation function.

On Figure 3.3 is presented the comparison of Ipg and Ig for (a) the worst
performance day and (b) the best performance day of the worst model in the
validation year. It can be observed that the worst performance day is the
same day as on Figure 3.2(a) and it seems that the model also overestimates
the value of the Ig. On this day the model reaches a day mean Ierrg =

145.9 W
m2 , an Eerr

d = 3500.9Wh
m2 and a E%err

d = 166.9%. Meanwhile the best
performance day although it seems also as a cloudy day the relatively good
performance can be explained due to the similar conditions that the prior
day had, and the lack of sudden changes of Ig. On this day the model reaches
a day mean Ierrg = 16.5 W

m2 , an Eerr
d = 229.4Wh

m2 and a E%err
d = 5.4%.

To give an insight of the performance of the selected models across the
different seasons of the year, as well as to acknowledge the conditions in
which these models performed the best and the worst a Ierrg daily mean
calendar heatmap is shown on Figure 3.4 for (a) the best and (b) the worst
CNN-LSTM model on the search grid. And on 3.4(c) is shown the calendar
heatmap of the Ed. Each square of these calendar heatmaps, divided by
white lines, represents a day in the year. Each section divided by black lines
represents a month. Every column of squares represents a week starting
by Monday in the upper square and ending on Sunday in the lower square
of the column. By comparing these three figures is clear to see how both
models seems to decrease its performance between the months of June and
October. It can also be observed that the worst performance days coincide
with days with a low Ed that are preceded with higher Ed days. As it can
be seen in the beginnings of June and ending of September.
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Figure 3.2: Best model comparison of Ipg , Ig and instantaneous Ierrg for
(a) the worst performance day and (b) the best performance day, in the
validation year.

3.4 SARIMA model order determination

SARIMA models, in contrast with CNN-LSTM model, is usually used with
less frequent measurements (annual or monthly time steps) and does not
need to be trained with the data of an entire year. Since this would take
a lot of computational time and does not guarantee the model to be more
accurate. For this reason, the so called training year was only used to
make the analysis to determine the orders of the model. However SARIMA
model needs to be trained before each predicted day with the previous five
days. SARIMA model orders can be determined via interpretation of Auto
Correlation Function (ACF), and Partial Auto Correlation Function (PACF)
correlograms [36]. The first step is to identify the differentiation order (d)
and the seasonal differentiation order (D). As mentioned on Section 2.2.3
differentiation consists on subtracting the lagged value of the time series
with a lag of one, for a non seasonal differentiation, and a lag of m for a
seasonal differentiation, where m is the number of time steps of the season.
By plotting the PACF, on Figure 3.5 (a), and ACF on Figure 3.5(b) of the
Ig with the training year, it can be observed that there are consistent spikes
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Figure 3.3: Worst model comparison of Ipg , Ig and instantaneous Ierrg for
(a) the worst performance day and (b) the best performance day, in the
validation year.

on the ACF plot. This indicates that it should be used at least one order of
non seasonal differentiation (d).

After non seasonal differentiating, PACF and ACF are plotted again,
shown on Figure 3.6(a) and Figure 3.6(b) respectively. It can be observed
on ACF that there are critical spikes every 144 lags. Which indicates it
needs at least one seasonal differentiation order (D).

The next step is to identify the number of SAR (P) and SMA (Q) or-
ders. By looking at the seasonal and non seasonal differentiated correlo-
grams: PACF on Figure 3.7(a) and ACF on Figure 3.7(b). On PACF graph
can be seen there are several spikes in every 144 lag that decays slowly.
On the other hand, on ACF graph can be seen a single significant spike
on lag 144. These characteristics indicates to add one SMA (Q) order.
Since is not recommended to have both SMA(Q) and SAR(P) orders at the
same time to avoid overfitting. The orders of the model to be used were
SARIMA(0, 1, 0)(0, 1, 1)144. This model would then be used to predict the
test year and compare its performance against the CNN-LSTM model on
Section 3.5. The model will be trained using the previous five days of each
predicted day.
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Figure 3.4: Irradiance daily mean absolute error Ierrg calendar heatmap for
(a) The best CNN-LSTM model. (b) The worst CNN-LSTM model. Also
it is shown (c) the daily solar global radiation calendar heatmap.
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Figure 3.5: (a) PACF graph and (b) ACF graph of training year Ig.
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Figure 3.6: (a)PACF graph and (b)ACF graph of training year Ig, after a
non seasonal differentiating.
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Figure 3.7: (a)PACF graph and (b)ACF graph of training year Ig, after non
seasonal and seasonal differentiation.
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Figure 3.8: Linear adjustment of the Ig and Ipg obtained from (a) the CNN-
LSTM model, and (b) SARIMA model. Where the red line is the line that
resulted from the linear regression, while the black line represents the linear
regression for a perfect match.

3.5 Models comparison

After getting SARIMA orders, and training CNN-LSTM model the test
year was taken to compare the performance of both of these models. The
comparison was carried out by the year mean value of Eerr

d , E%err
d and Ierrg

to determine which model has a better performance to impute. Also the
values of the slope (m) and the intercept (b) of a linear adjustment that
corresponds with the equation Ipg = mIg + b , and the correlation coefficient
(R2) of the same linear adjustment were used as additional metrics for this
comparison.

On Figure 3.8 is presented the linear fit of the comparison between
Ig and Ipg for (a) the CNN-LSTM model and (b) the SARIMA model.
Where it can be observed that the CNN-LSTM model gets closer to the
perfect match, in comparison with SARIMA model in which can be ob-
served that Ipg reaches lower values than the CNN-LSTM model, indicating
that there is a slight tendency of SARIMA model to underestimate its pre-
dictions. However, CNN-LSTM model seems to overestimate its predictions.
Nevertheless, quantitatively R2 values for both models are very close to each
other. SARIMA presents a R2 = 0.93 while CNN-LSTM model presents a
R2 = 0.94 which may indicate that both models has a similar performance.
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Figure 3.9: Calendar heatmap of the daily Ierrg of the test year for (a) the
CNN-LSTM model, and (b) the SARIMA model.

The calendar heatmap of the daily mean Ierrg is shown on Figure 3.9 for
(a) the CNN-LSTM model and (b) the SARIMA model to get an overview of
the performance of each model. On these calendar heatmaps can be noticed
that CNN-LSTM model presents more critical high Ierrg days. However the
error propagates for fewer days than in SARIMA model. Which results in
the CNN-LSTM having lower Ierrg days than SARIMA model. The larger
propagation of error of SARIMA model in comparison with CNN-LSTM
model is caused by the need of SARIMA model to be trained with the last
five days before prediction. While CNN-LSTM model only needs a prior
day to make the prediction. This affirmation is more noticeable on June
and November.

On Table 3.4 are shown the metrics. Where is confirmed that the per-
formance of both models is similar. Nevertheless the CNN-LSTM model
outgrades the SARIMA model in all metrics, with an exception on b. For
this reason the CNN-LSTM model is used on Chapter 4 to evaluate its
impact on a building simulation made on EnergyPlus.
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Model Eerr
d E%err

d Ierrg m b R2

[Wh
m2 ] [%] [ W

m2 ] [-] [ W
m2 ] [-]

CNN-LSTM 530.0 11.2 76.3 0.95 16.5 0.94

SARIMA 606.6 12.3 86.4 0.94 14.5 0.93

Table 3.4: Comparison of CNN-LSTM and SARIMA model performance
with the established metrics annual mean daily energy absolute error, Eerr

d ,
annual mean daily energy absolute percentage error, E%err

d , and the annual
mean irradiance absolute error, Ierrg , as well as the linear regression slope,
m,the linear regression intercept, b, and the correlation of determination,
R2, metrics.
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Impact of imputations on the
thermal behavior of a
building

On the last chapter was selected the best model to impute the global hori-
zontal irradiance based on several metrics, the selected model was the Con-
volutional Long-Short Term Memory (CNN-LSTM), which proved to have
a better performance than the Seasonal Autoregressive Integrated Moving
Average model (SARIMA). In this chapter is presented the impact of the
imputed global horizontal irradiance on the zone mean air temperature of
the thermal zones of a building simulation on EnergyPlus.

On Section 4.1 are described the characteristics of the simulated building
using EnergyPlus. On Section 4.2 is presented the criteria used to choose
the critical days when global horizontal irradiance is imputed. On Section
4.3 are described the metrics used to evaluate the impact of imputed global
horizontal irradiance in comparison with measured global horizontal irradi-
ance on the zone mean air dry bulb temperature of the thermal zones of a
building simulated with EnergyPlus. This last section ends with an analysis
of the behavior of the metrics.

4.1 Building EnergyPlus simulation

The model of the building is built on Sketchup, and was developed by the
energy in buildings investigation group in the Renewable Energies Institute,
UNAM. The simulated building is located at Temixco Morelos, in a latitude
18.84o N and a longitude 99.26o W less than one kilometer away from the
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(a)

(b)

Figure 4.1: NELIER realistic render view of (a) the South façade and (b)
the North façade.
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Solarimetric and Meteorological Station from the Renewable Energies Insti-
tute (ESOLMET-IER). The study case is on construction and incorporates
bioclimatic strategies. In this thesis it will be called NELIER (Nuevo Edi-
ficio de la LIER). Figures 4.1(a) and 4.1(b) show the South and the North
façade respectively. NELIER consists on three floors and a subterranean
parking site, it has two staircases one on the East side of the building and
another one at the center which divides the building into two sections. The
South façade of the West and the East section are shown on Figure 4.2(a)
and (b) respectively. West section has five thermal zones conformed by lab-
oratories and a dining room. East section has twenty five thermal zones,
mostly conformed by classrooms and offices.

For the purposes of this work it was considered to use the East section
of NELIER for the evaluation of its thermal zones, since it is in this section
where people will be most of the time. Four thermal zones were discarded to
evaluate since these were on its majority not used for large amounts of time
as is the case of a hallway on the second floor. Or are totally inaccessible
for people, as is the case of three thermal zones that will have tubes passing
between the ground floor and the first floor. The mentioned staircases at
the center and on the East side of the building are represented with shading
surfaces. The subterranean parking site will be represented on the simulation
by setting an outdoor boundary condition at the floor, with no sun exposure.

The simulation takes into account an air infiltration of 0.5 air changes
per hour, with no air conditioning and it has thermal loads from people
depending on the expected occupation schedules. Solar protections are not
implemented in the SketchUp model. Two simulations were done. The
first simulation was done using the weather data of the test year (2018),
described in Section 3.1.1, and is named the base simulation (BS). The
second simulation was done by selecting specific days in this same year and
imputing the horizontal global irradiance (Ig)[ W

m2 ] using the CNN-LSTM
model. This one is named the imputed simulation (IS). The specific selected
days, as well as the followed methodology is on Section 4.2.

4.2 Methodology for imputed days selection.

CNN-LSTM can make a day ahead prediction of Ig, by using weather data
of the day before. This makes possible to build a year made only with
predicted Ig (Ipg )[Wh

m2 ] by using each day of the measured data year. This
enables a comparison between Ig and Ipg , that are used to select the critical
imputed days and its impact on the building simulation. For this procedure
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(a)

(b)

Figure 4.2: NELIER building Sketchup model South façade of (a) West
section and (b) East section.
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the test year is used.

1. The CNN-LSTM model is used to make a daily prediction of all the
year, this year was called the imputed year, since all the Ig were re-
placed by Ipg values, by removing one day at a time.

2. The values of the test year and the imputed year are evaluated using
the daily mean of the irradiance absolute error Ierrg using the Equation
3.1.

3. The daily Ierrg values of all the year are then separated into four
parts, each one of 3 months long (January-March, April-June, July-
September, October-December). The days with the largest and small-
est daily mean Ierrg for each of the year’s parts were chosen to be
deleted from the test year and replaced with Ipg values from the im-
puted year.

This procedure resulted into the test year having eight imputed days,
four with the worst, largest Ierrg and four with the best, smallest Ierrg days.
On Table 4.1 are shown the days that had the largest or worst Ierrg for the
four parts of the year. As well as the metrics used on Chapter 3, like the
the daily energy absolute error (Eerr

d ), the daily energy absolute percentage
error (E%err

d ), determined by Equations 3.2 and 3.3 respectively, as well as
the linear regression slope (m), bias (b) and correlation of determination
(R2). The largest Ierrg reached a value of 165.4 W

m2 on 2018-11-14. As it
was anticipated on the last chapter the days with largest Ierrg were also the
ones with the smallest daily solar energy (Ed) on the season, which could
indicate that the model performance tend to be worse on sudden cloudy and
probably rainy days.

On the other hand the days with the smallest Ierrg tend to happen when
there is a similar Ed in both the input and the target day. On Table 4.2
are presented the days with the smallest or best Ierrg for the imputation
with the CNN-LSTM model for the four parts of the year. As well as the
other metrics previously mentioned Eerr

d , E%err
d , m, b and R2 in which the

smallest Ierrg was 5 W
m2 on 2018-01-12.

4.3 Impact evaluation of the imputation

To evaluate the impact that imputation has on a thermal simulation, the
zone mean air temperature (Ti) [oC] is compared between the BS and the
IS. To quantitatively evaluate this impact the next metrics are used.
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Date Eerr
d E%err

d Ierrg m b R2

[Wh
m2 ] [%] [ W

m2 ] [-] [ W
m2 ] [-]

2018-01-30 1388.9 36.2 70.7 1.2 27.6 0.84

2018-06-15 3560.6 110.4 149.3 1.6 69.9 0.76

2018-08-12 3423.8 102.7 142.6 1.4 89.0 0.76

2018-11-14 3917.8 405.4 165.4 4.4 26.3 0.75

Table 4.1: Selected days with the worst metrics; daily energy absolute error,
Eerr

d , daily energy absolute percentage error, E%err
d , irradiance absolute er-

ror , Ierrg , linear regression slope, m, linear regression intercept, b, and linear
regression coefficient of determination, R2.

Date Eerr
d E%err

d Ierrg m b R2

[Wh
m2 ] [%] [ W

m2 ] [-] [ W
m2 ] [-]

2018-01-12 14.2 0.2 5.0 1.0 -1.4 0.99

2018-04-17 128.2 1.8 13.5 1.0 5.9 0.99

2018-07-19 291.1 3.7 17.1 0.9 2.1 0.99

2018-12-21 23.0 0.4 5.57 1.0 0.4 0.99

Table 4.2: Selected days with the best metrics; daily energy absolute er-
ror, Eerr

d , daily energy absolute percentage error, E%err
d , irradiance absolute

error , Ierrg , linear regression slope, m, linear regression intercept , b, and
linear regression coefficient of determination, R2.
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Temperature absolute error,

T err
i = |T p

i − Ti|, (4.1)

where T p
i is the temperature reported by IS, while Ti is the temperature re-

ported by BS. Where the instantaneous T err
i values are used to be evaluated

by the next metrics.
Vanishing time,

Vt = t(threshold)− t(imputation), (4.2)

where t(imputation) is the time when imputation is started, at sunrise, and
t(threshold) is the time when T err

i is less or equal a determined threshold,
which was set to 0.1oC. Vt is expressed on days hh:mm and measures the
time that the effect of the imputation lasts on Ti until reaching a negligible
impact.

Maximum temperature absolute error,

Tmax
err = max(T err

i ), (4.3)

where Tmax
err is the maximum value that T err

i reaches after the imputation.
Only one value of Tmax

err is obtained for each imputation. Tmax
err is expressed

on oC and measures the magnitude of the maximum T err
i that is reached in

each imputation. Tmax
err is useful to know the expected maximum error that

an imputation can have when using the CNN-LSTM model on a simulation.
Maximum error time,

maxt = t(Tmax
err )− t(imputation), (4.4)

where t(Tmax
err ) is the time when Tmax

err occurs. maxt is expressed on days
hh:mm and measures the time that T err

i takes to reach Tmax
err .

To summarize, the three metrics Vt, T
max
err and maxt are helpful to know

the nature of the impact of the imputation on Ti. Vt measures the length of
time that the imputation has on Ti. T

max
err measures the maximum magni-

tude that T err
i reaches. maxt measures the point in time where Tmax

err occurs.

For every thermal zone of NELIER, eight Tmax
err are calculated using the

imputed days presented on Table 4.1 and 4.2. The mean value for these
eight days of Tmax

err are calculated for all thermal zones. The thermal zones
with the largest and smallest mean Tmax

err of each floor were chosen for a
more detailed evaluation.
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Figure 4.3: Thermal zones sorted by its eight imputations averaged Tmax
err

value in descending order.
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On Figure 4.3 are shown the thermal zones sorted by the mean value
of its Tmax

err for the eight imputed days. The prefix in the name of thermal
zones indicates the floor in which this is encountered. PB for the ground
floor, N1 for the first floor and N2 for the second floor. As it is stated with
more detail on Section 4.3.3 the magnitude of Tmax

err is determined by the
thermal zone oscilation of Ti.

4.3.1 Largest Tmax
err thermal zones.

The thermal zones with the largest mean Tmax
err per floor were N2STR,

N1AU403 and PBVESTIBULO showed on Figures 4.4(a), 4.4(b) and 4.4(c)
respectively, viewed from a South East perspective on NELIER SketchUp
model.

Since Ig values are corrected to zero on the night time, the beginning
of the imputing data is not started until sunrise just at the hour that is
reported on the Date imputed column of the next tables.

On Table 4.3 are presented the metrics Vt, T
max
err and maxt for the worst

imputations on N2STR. The largest Tmax
err was 2.8 oC on 2018-06-15. The

maximum Vt was 6 days 11:40h on a different day on 2018-11-14. The largest
maxt was 10:40 h after the imputation on 2018-08-12. The smallest Tmax

err

was 0.8 oC on 2018-01-30. The minimum Vt was 4 days 01:00 on the same
day on 2018-01-30. The smallest maxt was 08:30h after the imputation on
2018-11-14.

On Table 4.4 are presented the metrics Vt, T
max
err and maxt for the best

imputations on N2STR. Where three out of four days had a Vt of 0 days
00:00 since Tmax

err never was larger than the threshold of 0.1 oC on these days
with the exception of day 2018-07-19 where Tmax

err was 0.1 oC.
On Table 4.5 are presented the metrics Vt, T

max
err and maxt for the worst

imputations on N1AU403. The largest Tmax
err was 2.0 oC on 2018-11-14. The

maximum Vt was 6 days 11:40h on a the same day on 2018-11-14. The
largest maxt was 10:30 h after the imputation on 2018-08-12. The smallest
Tmax
err was 0.8 oC on 2018-01-30. The minimum Vt was 4 days 05:10 on the

same day on 2018-01-30. The smallest maxt was 09:10h after the imputation
on 2018-11-14.

On Table 4.6 are presented the metrics Vt, T
max
err and maxt for the best

imputations on N1AU403. Where two out of four days had a Vt of 0 days
00:00 since Tmax

err never was larger than the threshold of 0.1 oC, the largest
Tmax
err was 0.2 oC on 2018-07-19.

On Table 4.7 are presented the metrics Vt, T
max
err and maxt for the worst

imputations on PBVESTIBULO. The largest Tmax
err was 8.4 oC on 2018-11-
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(a)

(b)

(c)

Figure 4.4: Thermal zones with the largest Tmax
err of the year for each floor,

view from a South East perspective (a) N2STR, (b) N1AU403 and (c) PB-
VESTIBULO.
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Date imputed Vt Tmax
err maxt

[days hh:mm] [oC] [days hh:mm]

2018-01-30 07:20 4 days 01:00 0.8 0 days 09:40

2018-06-15 06:10 6 days 03:00 2.8 0 days 09:10

2018-08-12 06:30 5 days 15:20 1.3 0 days 10:40

2018-11-14 06:50 6 days 11:40 2.1 0 days 08:30

Table 4.3: Worst imputation days for thermal zone N2STR and its metrics;
vanishing time, Vt, maximum error, Tmax

err and maximum error time, maxt.

Date imputed Vt Tmax
err maxt

[days hh:mm] [oC] [days hh:mm]

2018-01-12 07:20 0 days 00:00 0.0 0 days 01:00

2018-04-17 06:30 0 days 00:00 0.0 0 days 10:30

2018-07-19 06:20 0 days 18:00 0.1 0 days 08:00

2018-12-21 07:10 0 days 00:00 0.0 0 days 11:10

Table 4.4: Best imputation days for thermal zone N2STR metrics; vanishing
time, Vt, maximum error, Tmax

err and maximum error time, maxt.

14, the maximum Vt was 3 days 23:50h on a the same day on 2018-11-14.
This Vt was shorter than the thermal zones of upper floor on the same day.
The largest maxt was 09:50 h after the imputation on 2018-06-15. The
smallest Tmax

err was 3.7 oC on 2018-01-30. The minimum Vt was 2 days 18:30
on the same day on 2018-01-30. The smallest maxt was 04:40h after the
imputation on 2018-11-14.

On Table 4.8 is presented the metrics Vt, T
max
err and maxt for the best

imputations on PBVESTIBULO. Where none of the four days had a Vt of 0
days 00:00. The largest Tmax

err was of 0.4 oC on 2018-04-17 and 2018-07-19.
As it can be noticed Vt is larger on N1AU403 and N2STR in compar-

Date imputed Vt Tmax
err maxt

[days hh:mm] [oC] [days hh:mm]

2018-01-30 07:20 4 days 05:10 0.8 0 days 09:50

2018-06-15 06:10 6 days 08:40 1.6 0 days 10:30

2018-08-12 06:30 5 days 22:50 1.4 0 days 10:30

2018-11-14 06:50 6 days 14:30 2.0 0 days 09:10

Table 4.5: Worst imputation days for thermal zone N1AU403 metrics; van-
ishing time, Vt, maximum error, Tmax

err and maximum error time, maxt.
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Date imputed Vt Tmax
err maxt

[days hh:mm] [oC] [days hh:mm]

2018-01-12 07:20 0 days 00:00 0.0 0 days 01:00

2018-04-17 06:30 0 days 00:00 0.0 0 days 10:40

2018-07-19 06:20 0 days 15:50 0.2 0 days 07:50

2018-12-21 07:10 0 days 18:20 0.1 0 days 11:10

Table 4.6: Best imputation days for thermal zone N1AU403 metrics; van-
ishing time, Vt, maximum error, Tmax

err , and maximum error time, maxt, on
the 1st floor.

Date imputed Vt Tmax
err maxt

[days hh:mm] [oC] [days hh:mm]

2018-01-30 07:20 2 days 18:30 3.7 0 days 09:00

2018-06-15 06:10 3 days 17:10 4.5 0 days 09:50

2018-08-12 06:30 3 days 12:20 3.8 0 days 04:40

2018-11-14 06:50 3 days 23:50 8.4 0 days 06:50

Table 4.7: Worst imputation days for thermal zone PBVESTIBULO metrics;
vanishing time, Vt, maximum error, Tmax

err and maximum error time, maxt,
on the ground floor.

Date imputed Vt Tmax
err maxt

[days hh:mm] [oC] [days hh:mm]

2018-01-12 07:20 0 days 19:10 0.2 0 days 11:00

2018-04-17 06:30 0 days 20:20 0.4 0 days 10:30

2018-07-19 06:20 0 days 18:00 0.4 0 days 07:20

2018-12-21 07:10 0 days 19:00 0.3 0 days 01:00

Table 4.8: Best imputation days for thermal zone PBVESTIBULO metrics;
vanishing time, Vt, maximum error, Tmax

err , and maximum error time, maxt,
on the ground floor.
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ison with PBVESTIBULO. On the other side Tmax
err tends to be larger on

PBVESTIBULO, in comparison with N1AU403 and N2STR.
On Figure 4.5(a),(b) and (c) is shown the comparison of Ti of the IS and

BS for the evaluated thermal zones N2STR, N1AU403 and PBVESTIBULO
respectively. On Figure 4.5(d) is presented a visualization of the T err

i evo-
lution at each time step during the Vt of each thermal zone where it can
be seen the behavior of the metrics previously mentioned. These graphs
belongs to the same day, 2018-11-14, since this is the day that presented the
worst Ierrg .

4.3.2 Smallest Tmax
err thermal zones

The thermal zones with the smallest Tmax
err per floor were N2AU203, N1AU404

and PBATENCIONCOFI showed on Figures 4.6(a), 4.6(b) viewed from a
North West perspective and 4.6(c) viewed from South West perspective. On
Table 4.9 are presented the metrics Vt, T

max
err and maxt for the worst im-

putations on N2AU203. The largest Tmax
err was 1.5 oC on 2018-11-14. The

maximum Vt was 7 days 14:20h on a the same day on 2018-11-14. The
largest maxt was 10:30 h after the imputation on 2018-08-12. The smallest
Tmax
err was 1.0 oC on 2018-01-30. The minimum Vt was 4 days 23:10 on the

same day on 2018-01-30. The smallest maxt was 09:10h after the imputation
on 2018-11-14.

On Table 4.10 are presented the metrics Vt, T
max
err and maxt for the best

imputations on N2AU203. Where three out of four days had a Vt of 0 days
00:00 since Tmax

err never was larger than the threshold of 0.1 oC, the largest
Tmax
err was of 0.1 oC on 2018-07-19.

On Table 4.11 are presented the metrics Vt, T
max
err and maxt for the worst

imputations on N1AU404. The largest Tmax
err was 1.8 oC on 2018-11-14. The

maximum Vt was 6 days 04:20h on a the same day on 2018-11-14. The largest
maxt was 10:40 h on 2018-08-12. The smallest Tmax

err was 0.7 oC on 2018-
01-30. The minimum Vt was 3 days 22:30 on the same day on 2018-01-30.
The smallest maxt was 09:10h after the imputation on 2018-11-14.

On Table 4.12 are presented the metrics Vt, T
max
err and maxt for the best

imputations on N1AU404. Where three out of four days had a Vt of 0 days
00:00 since Tmax

err never was larger than the threshold of 0.1 oC, the largest
Tmax
err was of 0.1 oC on 2018-07-19.

On Table 4.13 are presented the metrics Vt, T
max
err and maxt for the

worst imputations on PBATENCIONCOFI. The largest Tmax
err was 1.2 oC

on 2018-11-14. The maximum Vt was 4 days 04:30h on a the same day on
2018-11-14. The largest maxt was 11:30 h on 2018-08-12. The smallest Tmax

err
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Figure 4.5: Comparison of the IS and BS Ti of (a) N2STR, (b) N1AU403
and (c) PBVESTIBULO. Also (d) T err

i for the three thermal zones.

64



Chapter 4

Date imputed Vt Tmax
err maxt

[days hh:mm] [oC] [ days hh:mm]

2018-01-30 07:20 4 days 23:10 1.0 2 days 03:00

2018-06-15 06:10 7 days 05:20 1.5 0 days 10:30

2018-08-12 06:30 6 days 22:10 1.2 0 days 10:30

2018-11-14 06:50 7 days 14:20 1.5 0 days 09:10

Table 4.9: Worst imputation days for thermal zone N2AU203 metrics; van-
ishing time, Vt, maximum error, Tmax

err , and maximum error time, maxt.

Date imputed Vt Tmax
err maxt

[days hh:mm] [oC] [ days hh:mm]

2018-01-12 07:20 0 days 00:00 0.0 0 days 01:00

2018-04-17 06:30 0 days 00:00 0.0 0 days 10:30

2018-07-19 06:20 0 days 18:00 0.1 0 days 07:50

2018-12-21 07:10 0 days 00:00 0.0 0 days 11:10

Table 4.10: Best imputation days for thermal zone N2AU203 metrics; van-
ishing time, Vt, maximum error, Tmax

err , and maximum error time, maxt.

was 0.5 oC on 2018-01-30. The minimum Vt was 2 days 13:40 on the same
day on 2018-01-30. The smallest maxt was 09:10h after the imputation on
2018-06-15.

On Table 4.14 are presented the metrics Vt, T
max
err and maxt for the best

imputations on PBATENCIONCOFI. Where four out of four days had a Vt
of 0 days 00:00 since Tmax

err never was larger than the threshold of 0.1 oC.
On Figures 4.7 (a), (b) and (c) is shown a comparison between the BS

and IS Ti for N2AU203, N1AU404 and PBATENCIONCOFI respectively.
As well on Figure 4.7(d) is presented a visualization of T err

i evolution at
each time step during the Vt of each thermal zone. These graphs belongs

Date imputed Vt Tmax
err maxt

[days hh:mm] [oC] [days hh:mm]

2018-01-30 07:20 3 days 22:30 0.7 0 days 09:50

2018-06-15 06:10 5 days 22:40 1.5 0 days 10:20

2018-08-12 06:30 5 days 08:40 1.3 0 days 10:40

2018-11-14 06:50 6 days 04:20 1.8 0 days 09:10

Table 4.11: Worst imputation days for thermal zone N1AU404 metrics; van-
ishing time, Vt, maximum error, Tmax

err , and maximum error time, maxt.

65



Chapter 4

(a)

(b)

(c)

Figure 4.6: Thermal zones with the smallest Tmax
err of the year for each floor

(a) N2AU203 and (b) N1AU404 viewed from a North East perspective. And
(c)PBATENCIONCOFI viewed from a South West perspective.
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Date imputed Vt Tmax
err maxt

[days hh:mm] [oC] [days hh:mm]

2018-01-12 07:20 0 days 00:00 0.0 0 days 01:00

2018-04-17 06:30 0 days 00:00 0.0 0 days 10:30

2018-07-19 06:20 0 days 18:10 0.1 0 days 07:50

2018-12-21 07:10 0 days 00:00 0.0 0 days 11:10

Table 4.12: Best imputation days for thermal zone N1AU404 metrics; van-
ishing time, Vt, maximum error, Tmax

err , and maximum error time, maxt.

Date imputed Vt Tmax
err maxt

[days hh:mm] [oC] [days hh:mm]

2018-01-30 07:20 2 days 13:40 0.5 0 days 09:50

2018-06-15 06:10 3 days 17:50 1.0 0 days 09:10

2018-08-12 06:30 3 days 12:50 0.8 0 days 11:30

2018-11-14 06:50 4 days 02:30 1.2 0 days 09:30

Table 4.13: Worst imputation days for thermal zone PBATENCIONCOFI
metrics; vanishing time, Vt, maximum error, Tmax

err and maximum error time,
maxt.

Date imputed Vt Tmax
err maxt

[days hh:mm] [oC] [days hh:mm]

2018-01-12 07:20 0 days 00:00 0.0 0 days 09:50

2018-04-17 06:30 0 days 00:00 0.0 0 days 10:30

2018-07-19 06:20 0 days 00:00 0.0 0 days 08:00

2018-12-21 07:10 0 days 00:00 0.0 0 days 06:50

Table 4.14: Best imputation days for thermal zone PBATENCIONCOFI
metrics; vanishing time, Vt, maximum error, Tmax

err and maximum error time,
maxt.
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Figure 4.7: Comparison of imputed and base simulation Ti of (a) N2AU203,
(b) N1AU404 and (c) PBATENCIONCOFI. Also (d) T err

i for the three
thermal zones.
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Figure 4.8: Thermal zones sorted by the eight imputations averaged Vt value
in descending order.

to the same day, 2018-11-14, since this is the day that presented the worst
Ierrg .

4.3.3 Metrics analysis

From the previous figures and metrics tables presented on the last section
surged some observations and tendencies. The first one is the tendency of
the ground floor thermal zones to show a smaller Vt than the ones of higher
floors. On Figure 4.8 thermal zones are sorted by its averaged Vt and can
be confirmed that, in most cases, the ground floor thermal zones has the
smallest Vt, followed by the ones on the first floor and being the ones of
the second floor with the largest Vt. This can be explained due to the Ig
independent energy transfer that the ground floor has in comparison with
higher floors. Which causes the imputation to have a less lasting disturbance
than the higher floors, after the imputed day has ended.

The other observation comes from maxt values. The majority of the
evaluated thermal zones had frequent values between 0 days 07:00 h and 0
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days 11:30 h. There were two outliers of 01:00 h, that happened when Tmax
err

had a very small value on N2AU203 and N1AU403. And a large outlier of
2 days 03:00 h on N2AU203. However the frequent value of maxt indicates
that Tmax

err tends to occur around 16:00 and 18:00 hours of the day, which
would be the same time when the maximum temperature of the thermal
zone occurs if there was not any thermal load on it. This happens because
of the tendency of the CNN-LSTM model to overestimate the Ig on cloudy
days.

Lastly it was noticed that there is a slight tendency from Tmax
err to get

larger, when the yearly mean Ti oscillation (Tosc) is larger too. Tosc is given
by,

Tosc =< Td max − Td min >, (4.5)

where Td max is the maximum daily temperature and Td min is the minimum
daily temperature reached at the interior of the thermal zone of the BS. Some
factors, such as the volume and thermal isolation of thermal zones affects
the magnitude of Tmax

err . Nevertheless Tmax
err is mainly determined by the

incidence of Ig inside the thermal zone, and by how much this incident Ig
affects Ti, affecting Tosc as well. This can explain the reason for PB thermal
zones being in the highest and lowest positions on Figure 4.3. For example
PBATENCIONCOFI, the lowest Tmax

err thermal zone shown on Figure 4.4(c),
is covered almost completely from Ig. While PBVESTIBULO, the highest
Tmax
err thermal zone shown on Figure 4.6(c), is a small thermal zone, with a

window on the South façade which makes it being exposed to Ig. However
the linear correlation between Tosc and Tmax

err ,

Tmax
err = 0.19Tosc − 0.16oC, (4.6)

for the evaluated thermal zones on the given days begins to disperse after
Tosc exceeds 7oC. On Figure 4.9 is shown the linear correlation model where
each dot represents a thermal zone, the resulting coefficient of determination
R2 was of 0.42.
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Figure 4.9: Linear correlation between Tosc and Tmax
err .
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Conclusions

This chapter presents the conclusions obtained from the two main parts in
which the work is divided. Section 5.1 presents a summary and conclusions
from the comparison in the performance of imputation of global horizontal
irradiance (Ig) between two models. Being these models a Convolutional
Long Short Term Memory Artificial Neural Network (CNN-LSTM) and a
Seasonal Autoregressive Integrated Moving Average (SARIMA). Section 5.2
presents the conclusions from the evaluation of the impact that CNN-LSTM
model imputation has on the thermal behavior of a building simulated on
EnergyPlus.

5.1 Models comparison

The CNN-LSTM model is set to predict the day ahead Ig using the previous
day of metereological data as an input. Input meterological data includes
variables such as direct normal irradiance (Ib), air drybulb temperature (To),
relative humidity (rh) and Ig, as well as some temporal data variables where
the solar altitude (α) and azimuth (γ) angles are used. SARIMA model is
also set to predict the day ahead Ig. However SARIMA needs the previous
five days of Ig values as an input.

The comparison is done using the metrics on Section 3.2. The annual
mean absolute error in global horizontal irradiance (Ierrg ) is the absolute dif-
ference between measured Ig and predicted Ig (Ipg ). Ierrg is used as the main
metric to choose the best model. The annual mean of the daily irradiance
energy error (Eerr

d ) is the absolute difference between the measured daily
solar energy (Ed) and the predicted daily solar energy (Ep

d). Eerr
d is used to

express the prediction error in daily energy terms. The annual mean per-
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centage error of the daily solar energy (E%err
d ) is also used to evaluate the

models error. Also the slope (m), bias (b) and correlation of determination
(R2) of a linear regression with Ig as the independent variable and Ig as the
dependent variable are also used to evaluate the error.

The evaluated metrics of the CNN-LSTM model are Ierrg = 76.3 W
m2 ,

Eerr
d = 530.0Wh

m2 , E%err
d = 11.2%, m = 0.95, b = 16.5 W

m2 and R2 =

0.94. While the evaluated metrics of SARIMA are Ierrg = 86.4 W
m2 , Eerr

d =

606.0Wh
m2 , E%err

d = 12.3%, m = 0.94, b = 14.5 W
m2 and R2 = 0.93. It is

noticed with these metrics that CNN-LSTM outgrades SARIMA model in
all metrics except on b. However quantitatively the values are close to each
other. This indicates that performance of both models is similar. Taking
these characteristics into account some conclusions are made.

Even if CNN-LSTM outgrades SARIMA in almost all metrics, the quan-
titative advantage of CNN-LSTM is barely better than SARIMA. Consid-
ering the time needed to implement both models, SARIMA can be more
advantageous than CNN-LSTM if the imputation model needs to be build
from the ground up. However, when imputations need to be done repeat-
edly, CNN-LSTM can be more advantageous than SARIMA, because of the
time it takes each model to achieve one day imputation. While CNN-LSTM
can make an imputation almost instantaneously, SARIMA can take around
five minutes for each imputation. Table 5.1 summarizes the advantages and
disadvantages identified in this work when both models are compared with
each other.

Future research works can focus on measuring the performance that mod-
els SARIMA and CNN-LSTM have when trying to predict for more than 1
day ahead time horizon. CNN-LSTM might have a significantly better per-
formance for being a non-linear model. While SARIMA performance might
decay sharply for being a linear model.

5.2 Impact of imputations on thermal behavior of
a building

Solely taking into account the evaluated metrics on the last section, CNN-
LSTM model is selected to evaluate the impact of its imputations on the
thermal behavior of a building simulated on EnergyPlus. To evaluate this
impact, Ig values from eight days of a year are purposely deleted so then
they can be replaced with CNN-LSTM imputed Ig values. A simulation
is done with the testing year (BS), and other simulation is done with the
testing year but with these eight imputed days (IS). Then the zone mean air
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Model Advantages Disadvantages

CNN-LSTM

- Needs only the previous day - More time-intensive
data to make the imputation. to build the model.
- Has a slightly better - Needs more data to
performance. train, validate and
- Each imputation is done testing.
almost instantaneously. - Requires several

weather variables as
an input.

SARIMA

- Less time-intensive to build - Needs the previous five
the model. days data to make the
- Needs less data for orders imputation.
determination and testing. - Has a slightly worse
- Only requires Ig data as performance.
an input. - Each imputation takes

around five minutes
to be done.

Table 5.1: Advantages and disadvantages of models compared with the
other.

temperature of the thermal zones (Ti) for both simulations are compared.
The metrics used to evaluate the impact of imputations are presented

on Section 4.3. The behavior of the absolute error of Ti (T err
i ) between IS

and BS is evaluated using three metrics. The vanishing time (Vt) is the
metric that measures the time for the T err

i to become negligible for the
simulation, when T err

i < 0.1oC. The maximum temperature absolute error
( Tmax

err ) measures the maximum T err
i that is reached as a consequence of

the imputation. Tmax
err brings a magnitude of the error that can be expected

when imputing with the CNN-LSTM model. The maximum error time
(maxt) measures the time from when the imputation is started until Tmax

err

occurs. maxt brings us the location of time in which Tmax
err is encountered.

Quantitatively, the metrics are shown with an average value of the eight
imputed days. The largest averaged Vt has a value of 3.7 days and is en-
countered on N2AU202. While the smallest average Vt has a value of 1.8
days on PBCOORCOFI. The largest averaged Tmax

err has a value of 2.7oC on
PBVESTIBULO. While the smallest averaged Tmax

err has a value of 0.5oC on
PBATENCIONCOFI.

The values of Vt are the ones that shows the main advantages of this
work. Commonly, when a day of data is missing the simulation needs around
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15 days to reestablish itself. When this missing data is imputed using the
CNN-LSTM it would take approximately a maximum of 3.7 days on this
study case.

Additionally it was found a slight correlation between the daily Ti oscil-
lation (Tosc) and Tmax

err of thermal zones. This could help to estimate Tmax
err

when the measured data is not available.
Recommendations for future research works could be a more deepened

analysis of the thermal behavior of the building. Also a replication of the
methodology of Chapter 4, but now using SARIMA model imputations can
be done. As well as the impact of imputations when time horizon of the
models are increased for more than one day.

Finally, the Python scripts used for the development of this work can
be encountered on the repository found in https://github.com/alejgdr/

meteorological_data_imputation.
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