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Resumen

Durante sus primeros 400,000 años, el Universo se encontraba en un es-
tado tan caliente y denso que los electrones, bariones y fotones formaban
un plasma. La dinámica de este plasma estuvo regida por dos componentes
contrapuestos: la gravedad, que hace colapsar a las sobredensidades; y un
desequilibrio de presión, que se opone al colapso. Como resultado, ondas
sonoras se propagaron libremente a través del plasma hasta la época de
recombinación, cuando la velocidad del sonido bajó a cero y las sobredensi-
dades se congelaron. La distancia que una sola perturbación pudo recorrer
durante este tiempo se conoce como el horizonte sonoro y es de aproximada-
mente 150Mpc. Esta escala caracteŕıstica está impresa en la estad́ıstica
de dos puntos del Fondo Cósmico de Microondas (CMB), y corresponde a
un patrón oscilatorio en el espacio de Fourier, conocido como Oscilaciones
Acústicas de Bariones (BAO). Adicionalmente, el mismo patrón se observa
en el agrupamiento de galaxias a tiempos tard́ıos, ya que las sobredensidades
que quedaron en la época de recombinación sembraron la formación de es-
tructura a gran escala durante la era dominada por la materia. El patrón
oscilatorio se traduce en un solo pico en la función de correlación de dos
puntos. De esta manera, la señal de BAO constituye una regla estándar que
puede ser utilizada para medir el parámetro de Hubble H(z) y la distancia
de diámetro angular DA(z), ya que se puede calibrar con el valor medido
con los datos del CMB. A su vez, la medición de estas cantidades para difer-
entes corrimientos al rojo resulta en una prueba poderosa para la ecuación
de estado de la enerǵıa oscura.

El proyecto Dark Energy Spectroscopic Instrument (DESI) es un experi-
mento que actualmente está realizando un sondeo espectroscópico de galax-
ias con una duración total de 5 años. Se espera que este sondeo genere el
mapa más completo del Universo jamás creado. Uno de los objetivos princi-
pales de DESI es obtener mediciones de nivel subporcentual tanto para H(z)
como para DA(z). Alcanzar este nivel de precisión requeriŕıa la mitigación
de errores sistemáticos en una medida lo suficientemente adecuada. Por lo
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tanto, se vuelve indispensable revisar la metodoloǵıa que se ha utilizado en
estudios anteriores.

Este texto se centra en revisar los aspectos principales del método de
BAO, aśı como en presentar algunos de los resultados obtenidos en el con-
texto de la Etapa 2 del BAO Mock Challenge de la Colaboración DESI.
El Mock Challenge tiene como objetivo refinar el pipeline utilizado en el
análisis cosmológico haciendo uso de catálogos de galaxias provenientes de
simulaciones. En particular, los catálogos simulados de ELG provenientes
de las simulaciones de UNIT se utilizaron como datos principales, mien-
tras que las matrices de covarianza se construyeron a partir de los catálogos
EZmock. Como parte de la Etapa 2, se llevaron a cabo ajustes de BAO
considerando distintas variaciones tales como: tipo de matriz de covarianza,
algoritmo de reconstrucción, escala de suavizado en la reconstrucción y rango
del ajuste. Nuestros resultados muestran una sensibilidad muy baja a todas
estas variaciones, lo que puede considerarse como un indicio de la fiabilidad
del método.

Nuestro fitter de BAO fue implementado en el espacio de configuración y
funciona encontrando la distribución posterior de los parámetros del modelo
a través de un método Monte Carlo basado en Cadenas de Markov (MCMC).
Se utilizó el sampler Zeus MCMC, que es una implementación en Python
del método Ensemble Slice Sampling. La información de las distancias está
contenida en los parámetros de dilatación α∥ y α⊥, paralelo y perpendicular
a la ĺınea de visión respectivamente, como consecuencia del efecto Alcock-
Paczyński. Estos parámetros son proporcionales al producto H(z)rs y al
cociente rs/DA(z), respectivamente, donde rs es el horizonte sonoro.

Fuimos capaces the probar la metodoloǵıa con la precisión requerida
para los análisis del Año 1 de DESI. Para el catálogo de UNIT utilizado, se
encontró un error que corresponde al 25% del error estad́ıstico esperado para
el Año 1. Los resultados obtenidos en este trabajo son compatibles, dentro
de 2-σ, con la distribución Gaussiana esperada para los errores. Respecto al
pronóstico del Año 5, los errores obtenidos son del mismo orden de magnitud,
lo que significa que para llevar a cabo el análisis correspondientes al Año 5
será necesario utilizar catálogos sintéticos con un mayor volumen efectivo.
Tomando en cuenta las diferentes variaciones en la metodoloǵıa, se encontró
una dispersión del 0.03% y del 0.01% para α∥ y α⊥, respectivamente; la
cual se agregó en cuadratura al error estad́ıstico. Esto significa que, para
el catálogo analizado, estas variaciones constituyen un 0.9% del error total
para α∥ y un 0.4% del error total para α⊥



Abstract

During its first 400,000 years, the Universe was in a hot, dense state, such
that its electrons, baryons and photons formed a plasma. The dynamics of
this plasma was governed by two counteracting components: gravity, which
makes the overdensities collapse; and a pressure imbalance, which opposes
the collapse. As a result, sound waves propagated freely through the plasma
until the recombination epoch, when the sound speed dropped to zero and
the overdensities froze. The distance that a single perturbation could travel
during this time is known as the sound horizon and it is approximately
150Mpc. This characteristic scale is imprinted in the two-point statistics of
the Cosmic Microwave Background (CMB), and it corresponds to an oscil-
latory pattern in Fourier space, known as the Baryon Acoustic Oscillations
(BAO). In addition, the same pattern is observed in the late-time clustering
of galaxies, as the overdensities remaining at the recombination epoch seeded
large-scale structure formation during the matter-dominated era. This os-
cillatory pattern translates into a single peak in the two-point correlation
function, where the BAO signal constitutes a standard ruler that can be
used to measure the Hubble parameter H(z) and the angular diameter dis-
tance DA(z). In turn, measuring these quantities at different redshifts can
yield a powerful probe for the dark energy equation of state.

The Dark Energy Spectroscopic Instrument (DESI) project is a ground-
based experiment that is currently conducting a 5-year spectroscopic galaxy
survey, which is expected to generate the most comprehensive map of the
Universe ever created. One major goal of DESI is to obtain subpercent level
measurements for both H(z) and DA(z). Achieving this level of precision
would require the mitigation of systematics to a sufficiently accurate extent.
Thus, it becomes paramount to revisit the methodology that has been used
in past studies.

This text focuses on reviewing the principal aspects of the BAO method,
as well as presenting some of the results obtained in the context of the Stage
2 of the BAO Mock Challenge of the DESI Collaboration. The Mock Chal-
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lenge has the objective of refining the pipeline used in the cosmological anal-
ysis by making use of mock galaxy catalogues coming from simulations. In
particular, ELG mock catalogues coming from the UNIT simulations were
used as the main data, while covariance matrices were constructed from
EZmock catalogues. As part of the Stage 2, BAO fits were performed exam-
ining distinct variations such as: type of covariance matrix, reconstruction
algorithm, smoothing scale in the reconstruction, and fitting range. Our
results show a very low sensitivity to these variations, showing the method
to be reliable.

Our BAO fitter is implemented in configuration space and it works by
finding the posterior distribution of the model parameters via a Markov
Chain Monte Carlo (MCMC) method. The Zeus MCMC sampler was made
use of, which is a Python implementation of the Ensemble Slice Sampling
method. The distance information is contained in the dilation parameters
α∥ and α⊥, parallel and perpendicular to the line of sight respectively, as a
consequence of the Alcock-Paczyński effect. These parameters are propor-
tional to the product H(z)rs and the ratio rs/DA(z), respectively, where rs
is the sound horizon.

We were able to test the methodology with the required precision for
the Year 1 analyses. For this UNIT catalogue, we found an error that corre-
sponds to 25% of the statistical error expected for DESI Year 1 data. The
results obtained in this work are compatible within 2-σ with the Gaussian
distribution expected for the errors. With respect to the Year 5 forecast,
the errors obtained are of the same order of magnitude, which means that
for Year 5 analyses mocks with greater effective volume would be required
in order to reach the required precision. Taking into account the different
variations in the methodology, a scattering of 0.03% and 0.01% was found
for α∥ and α⊥, respectively; which was added in quadrature to the statistical
error. This signifies that, for the analysed mock, these variations could only
account for 0.9% of the total error for α∥ and 0.4% of the total error for α⊥.
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Chapter 1

Introduction

Sound waves that originated in the primordial plasma left an imprint as they
stopped propagating at the recombination time. This imprint is known as
the baryon acoustic peak. The characteristic scale of this peak is well known
from Cosmic Microwave Background (CMB) and Big Bang Nucleosynthesis
(BBN) data, and it constitutes a standard ruler, which can be used to mea-
sure the expansion history of the universe. The robustness of this method
has been demonstrated (Eisenstein, Seo, and White 2007) and it relies on
the fact that the acoustic peak cannot be mimicked by systematics. Par-
ticularly, these measurements can be used to determine the nature of dark
energy, through its equation of state.

The understanding of the baryon acoustic oscillations as a possible hall-
mark in the matter power spectrum at low redshifts can be traced back
to the early 1970’s. However, it was not until the late 1990’s that it was
seriously considered as a feasible standard ruler (cf. Weinberg et al. 2013
for a more detailed chronology). The breakthrough came in 2005 when two
separate groups published convincing detections of the BAO signal in the
clustering of galaxies (Cole et al. 2005; Eisenstein, Zehavi, et al. 2005). Some
years later, the first BAO detection in the Lyman-α forest was reported as
well (Busca et al. 2013).

Soon after the first detections, the BAO method was considered of great
significance in the context of cosmological model constraints. The Dark En-
ergy Task Force (Albrecht et al. 2006) featured the BAO method as one of
the four primary methods to probe dark energy, the other three being Su-
pernovae (SN), Galaxy Cluster (CL) and Weak Lensing (WL). The method
has preserved its relevance since then, with Stage IV experiments, such as
DESI (DESI Collaboration 2016), currently taking place.
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14 CHAPTER 1. INTRODUCTION

The aim of this chapter is to give a description of the phenomena behind
the BAO feature and to establish the connection between the early universe
physics and the late-time matter clustering. Section 1.1 provides an over-
simplified overview on dark energy that should primarily serve to establish
some notation.

1.1 Dark Energy

The concept of dark energy arose from the necessity to explain the accel-
erating expansion of the universe, which was first discovered from type Ia
supernovae data (Riess et al. 1998; Perlmutter et al. 1999) 1.

According to the acceleration equation,

ä

a
= −4πG

3
(ρ+ 3p) , (1.1)

where a(t) is the scale factor, ρ is the total energy density and p is the
total pressure, a positive acceleration could only take place provided that
the total equation of state w = p

ρ is such that w < −1
3 . As matter has a

zero equation of state and radiation has a positive one, there must be an
extra energy contribution with negative w. We shall call it ρDE , and this is
precisely what we shall refer to as dark energy, regardless of what its nature
might be. That is, we should think of dark energy as a generic name for the
extra energy contributions as a whole.

The most simple explanation to account for the accelerating expansion
is a cosmological constant Λ 2, in which case ρDE = ρΛ = Λ/8πG and
w = −1. Notwithstanding, in a general sense, observational probes of dark
energy concern themselves with three possibilities: (i) w = constant, not
necessarily −1, (ii) w = w(z) and (iii) modified gravity.

Eq. (1.1) is supplemented by the Friedmann equation:

H2(z) = H2
0

(
Ωr(1 + z)4 +Ωm(1 + z)3 +Ωk(1 + z)2 +ΩDEf(z)

)
, (1.2)

where H0 is the Hubble constant, Ωi is the corresponding density parameter
for matter (m), radiation (r), curvature (k) and dark energy (DE), and

f(z) = exp

(
3

∫ z

0

1 + w(u)

1 + u
du

)
, (1.3)

1The complete story is a bit more entangled. See Weinberg et al. 2013.
2Note that the existence of a cosmological constant Λ was originally proposed by Ein-

stein more than 80 years before the accelerated expansion was discovered, but in a com-
pletely different context. Namely, he was looking for solutions for a static Universe.
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which results from integration of the fluid equation with an arbitrary equa-
tion of state.

Equations (1.1) and (1.2) completely determine the background evolu-
tion in a Universe described by the Friedmann–Lemâıtre–Robertson–Walker
metric.

When considering constraints for w, it is common practice to use the
Chevallier-Polarski-Linder (CPL) parametrisation (Chevallier and Polarski
2001; Linder 2003):

w(z) = w0 + wa
z

1 + z
, (1.4)

which gives

f(z) = (1 + z)3(1+w0+wa) exp

(
−3wa

z

1 + z

)
(1.5)

Note that this parametrisation reduces the general problem to constraining
a two-parameter space (w0, wa).

Now, the objective is to find a way to determine the correct values for
w0 and wa. Roughly speaking, what we do is look at the equations, ask
ourselves how different values of these constants would affect things we can
measure, go and measure those quantities, come back to the equations and
decide which values fit best with our measurements.

As we shall see, Baryon Acoustic Oscillations provide a way to measure
H(z) as well as the angular-diameter distance, DA(z), and that taking into
account both of them together results in strong constraints on the dark
energy equation of state.

1.2 The perturbed Universe

Our primary interest is to study the structure formation as the Universe
evolves with time. Since structures emerge from perturbations to the back-
ground densities, we shall focus on the evolution of perturbations. In order
to do so, let us consider the distribution function f(r,p, t) of a single species
(cold dark matter, neutrinos, radiation, baryons). Here r is the comoving
position vector whose dimensions remained fixed as the Universe expands, p
is the physical momentum and t is the cosmic time. The collisionless Boltz-
mann equation (also known as the Vlasov equation) states that the total
number of particles is conserved,

df(r,p, t)

dt
=

∂f(r,p, t)

∂t
+ ṙ · ∇rf(r,p, t) + ṗ · ∇pf(r,p, t) = 0. (1.6)
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Here a dot ˙ indicates the derivative with respect to the cosmic time t.
This equation applies to every single cosmological species and it is a partial
differential equation in 7 variables. The usual way to tackle this equations is
by taking its different moments in terms of the momentum. The treatment
presented in this section is based on Dodelson and Schmidt 2021 and follows
the same conventions. Note that treating the momentum involves dealing
with the geodesic equation, which in turn will depend on the perturbed
metric. Considering the conformal Newtonian gauge and taking the first
two moments for baryons and cold dark matter yields, at first order,

δ′c + ikvc = −3Φ′, (1.7)

v′c +
a′

a
vc = −ikΨ (1.8)

δ′b + ikvb = −3Φ′, (1.9)

v′b +
a′

a
vb = −ikΨ+

τ ′

R
(vb + 3iΘ1) , (1.10)

where δi and vi represent the density contrast and the peculiar velocity (i.e.,
the velocity relative to the comoving grid), respectively; the subscript c
indicates cold dark matter, while b denotes baryons. The density contrast
in each case is defined as

δ =
ρ− ρ̄

ρ̄
, (1.11)

with ρ̄. Additionally, Ψ corresponds to the Newtonian potential, while Φ
can be regarded as a perturbation to the spatial curvature3. The quantity τ
is the optical depth, Θ1 is the dipole momentum (see below) of the photon
perturbations and R is defined as

R(t) =
3ρb(t)

4ργ(t)
. (1.12)

In these equations, the prime notation ′ is used to indicate derivative
with respect to the conformal time η, defined as

η(t) =

∫
dt

a(t)
, (1.13)

where a(t) is the scale factor.
Note that the equations are written in Fourier space—with k denoting

the wavenumber. As it is customary for cosmology texts, we shall distinguish

3Under the assumption of no anisotropic stress, both potentials are equal Ψ = −Φ.
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Fourier transforms of quantities by context or by its arguments, as opposed
to making use of a special notation. Working on Fourier space has the
advantage that at first order Fourier modes evolve independently.

Photons are completely characterised by its temperature contrast with
respect to the background temperature

Θ =
δT

T
. (1.14)

This quantity can be decomposed in multipole moments, defined as

Θℓ(k, η) =
1

(−1)ℓ

∫ 1

−1

dµ

2
Lℓ(µ)Θ(µ, k, η), (1.15)

where Lℓ is the Legendre polynomial of order ℓ and µ = p̂ ·k̂. This definition
is motivated by considering the expansion of Θ in configuration space in
terms of spherical harmonics evaluated at the origin (where the observer is
located) and then taking into account the Fourier transform.

Equations (1.7) and (1.8) completely describe the evolution of cold dark
matter, under the assumption of no anisotropic stress. These equations rep-
resent how overdensities tend to grow due to the presence of a gravitational
potential, but the growth is slowed down as a consequence of the background
expansion (the term proportional to vc in equation (1.8)).

Analogously, equations (1.9) and (1.10) describe the evolution of baryon
overdensities. Note that there is an additional term in (1.10), proportional
to the ratio τ ′/R, which takes into account the fact that photons are con-
stantly bouncing off electrons via Compton scattering during the radiation-
dominated era.

The Boltzmann equation for photons can be written as

Θ′ + ikµΘ = −Φ′ − ikµΨ− τ ′
(
Θ0 −Θ+ µvb −

1

2
L2(µ)Π

)
. (1.16)

This is done by taking eq. (1.6) and expanding f around a Bose-Einstein
distribution (the photon’s zeroth-order distribution). Here

Π = Θ2 +ΘP,2 +ΘP,0, (1.17)

where ΘP is the photon polarisation field.
Analogously, the equation for the neutrino temperature perturbation N

is

N ′ + ikµ
p

Eν(p)
N −Hp

∂

∂p
N = −Φ′ − ikµ

Eν(p)

p
Ψ. (1.18)
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Note that the energy Eν , where ν denotes neutrinos, appears explicitly in
this equation to account for the fact that their mass is not zero.

This system is supplemented by the Einstein’s equations for the per-
turbed metric:

k2Φ+ 3
a′

a

(
Φ′ −Ψ

a′

a

)
= 4πGa2 (ρmδm + 4ρrΘr,0) , (1.19)

k2 (Φ + Ψ) = −32πGa2ρrΘr,2. (1.20)

Here, m denotes the total matter and r the total radiation; whereas G is
the gravitational constant.

In general, equations (1.7) to (1.20) describe the evolution of overdensi-
ties at any given time at linear order. However, it is usually more convenient
to focus on specific solutions at the different epochs of interest, since the
equations simplify under various circumstances, which helps gain physical
insight. For example, in the matter-dominated era, equation (1.19) reduces
to the regular Poisson equation.

Although analytical solutions can be approximated under different cir-
cumstances, the system of Boltzmann-Einstein equations can be solved nu-
merically. There are various public codes available, among which the most
popular are CAMB and CLASS.

1.3 Baryon Acoustic Oscillations

There are two convenient ways to explain the baryon acoustic oscillations
phenomena. The first one is considering the standing wave description in
Fourier space, while the second consist of considering the travelling waves
decomposition in real space.

Le us begin by considering the description in Fourier space of the pho-
ton perturbations. During its first 400,000 years, prior to the recombination
epoch, the rate of the Compton scattering between electrons and photons
was higher than the expansion rate, causing baryons, electrons and pho-
tons to constitute a plasma, since neutral atoms were not able to form.
The Boltzmann equations take the tightly-coupled limit, under which the
evolution of Θ0 is described by

Θ′′
0 +

a′

a

R

1 +R
kΘ′

0 + k2c2sΘ0 = −k2

3
Ψ− a′

a

R

1 +R
Φ′ − Φ′′, (1.21)

where the speed of sound is given by

cs(η) =
1√

3 (1 +R(η))
. (1.22)
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This is the equation of a forced harmonic oscillator in Θ0, and thus give
rise to the oscillatory pattern observed in the CMB power spectrum (cf.
Figure 1.1). Note that the acoustic peaks (local maxima) in the CMB that
we observed today are the imprint left at the epoch of recombination, since
photons have travelled (almost) freely since then. The remarkable feature
of this signal is that it can also be detected in the matter clustering at low
redshifts, as we shall explain below.

In order to get a picture of what the baryon acoustic peak looks like in
configuration space, let us start by considering the universe prior to the re-
combination epoch and focusing on a single point where a primordial matter
density fluctuation took place. This density fluctuation produced a pressure
unbalance in the photon-baryon-electron plasma, thus creating a spherical
sound wave, much like the effect of dropping a pebble into a pond. The
sound wave travels outwards from the initial perturbation until the recom-
bination time at a speed cs. At this moment, the speed of sound drops,
causing the wave to stop propagating. As a result, the baryon overdensi-
ties at the spherical wavefront freeze in place. The (comoving) radius up
to which the sound wave travelled before stopping is known as the sound
horizon,

rs =

∫ ∞

zrec

cs(z)
dz

H(z)
, (1.23)

which, according to CMB+BBN data, has a value of rs ≈ 150 Mpc. In
contrast, while this process was occurring, the initial dark matter overdenisty
grew at the initial point and became much larger than the baryon overdensity
at the spherical shell. Consequently, both overdense regions serve to seed
large-structure formation in the matter-dominated era. The whole process
is illustrated in Figure 1.2, which follows the density profile of a density
shell.

As a consequence of this process, we would expect to observe an excess
of correlation between galaxies at the characteristic distance of the sound
horizon—since galaxies are known to form within dark matter halos. This
translates into observing a peak in the two-point correlation function (in-
troduced in the next section).
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Figure 1.1: Temperature power spectrum of the CMB. Taken from Planck
Collaboration, Aghanim, et al. 2020. The blue line represents the theoretical
ΛCDM model. The x-axis ℓ indicates the multipole moment. The y-axis
correspond to DTT

ℓ = ℓ(ℓ+1)C(ℓ)T 2
0 /2π, where T0 is the mean temperature

of the CMB, while C(ℓ) is the angular power spectrum (i.e., the variance
of the harmonic coefficients in the expansion of Θ in terms of spherical
harmonics). Computing C(ℓ) requires knowing the values for Θℓ at the
present time, which in turn can be written in terms of the monopole and
dipole at the recombination time. The oscillatory pattern comes primarily
from the monopole contribution, described by eq.(1.21).
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Figure 1.2: Evolution of the radial overdensity profile of a point-like pertur-
bation. The x-axis denotes the distance from the origin, where the initial
perturbation takes place, whereas the y-axis represents the mass profile of
the perturbations. The panels are ordered from left to right and from top to
bottom. Initially, all of the species are perturbed at the same point (assum-
ing the perturbations to be adiabatic). The spherical shell of baryons (gas)
and photons travel outwards jointly until recombination time at approxi-
mately z ∼ 1100. After that time, the photons decouple from the baryons
and begin to move freely. Meanwhile, the cold dark matter overdensity has
grown in place. Finally, during the matter-dominated era, gravity causes
the profiles of both dark matter and baryons to be almost identical. Figure
taken from Eisenstein, Seo, and White 2007.
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1.4 Two-point correlation function and power spec-
trum

When studying the galaxy distribution in the universe, we would like to have
a measure of the clustering; in other words, we would like to know, given
a radius r, what is the probability that any two galaxies stay a distance
r apart from each other. The two-point correlation function, ξ(r), can be
interpreted as the excess probability in comparison to what we would expect
if the galaxies were randomly distributed:

dP (r) = n(1 + ξ(r))dV, (1.24)

where n is the mean number density.
In practice, in order to calculate ξ(r), distances between pairs of galax-

ies are measured, and then compared with random catalogues. The most
common way to determine the two-point correlation function is using the
Landy-Szalay estimator (Landy and Szalay 1993):

ξ(r) =
1

RR(r)

[
DD(r)

(
nR

nD

)2

− 2DR(r)

(
nR

nD

)
+RR(r)

]
, (1.25)

where nD and nR are the number densities of the data and the random cat-
alogue, respectively; DD is the count of pairs of galaxies a distance r apart
in the observational data, RR is the equivalent for the random catalogue
and DR is the count between the data and the random catalogue.

In contrast, the theoretical matter two-point correlation function is de-
fined as

ξ(r) = ⟨δm(x)δm(x+ r)⟩x, (1.26)

where ⟨⟩x denotes the ensemble average. The correlation function is as-
sumed to be dependent on the magnitude of r only by virtue of statistical
homogeneity and isotropy. As we shall see in the next chapters, comparing
measurements of the 2 point statistic from a galaxy survey to those coming
from theory will play the central role in the BAO method.

As noted earlier, the acoustic peak is an expected feature of the two-
point correlation function. Recall that the power spectrum, P (k), is defined
to be the Fourier transform of ξ(r), so that the information contained in the
peak will corresponds to an oscillatory pattern in the power spectrum, which
is what we refer to as baryon acoustic oscillations. A comparison between
ξ(r) and P (k) is shown in Figure 1.3.
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Figure 1.3: Left: Two-point correlation function; the acoustic peak is lo-
cated approximately at 100h−1 Mpc. Note that it is usual to multiply by
r2 when plotting, as it makes it easier to distinguish the peak. Right: The
corresponding power spectrum, where the peak in ξ(r) translates into oscil-
latory behaviour, as shown in the inset. The power spectrum was computed
for z = 0.5 using CAMB, the two-point correlation function was computed
by Fourier transforming. The peak looks sharp (and the oscillations neat)
because non-linear effects were not included.
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Chapter 2

The BAO template

The BAO method consists in making use of the BAO signal observed in
the late-time 2-point statistics of galaxies in order to measure the angular-
diameter distance DA(z) and the Hubble parameter H(z) at the effective
redshift of a galaxy catalogue. In order to do so, data has to be compared
with theory. The BAO measurement is so robust that, generally, it is not
necessary to use a sophisticated theoretical model that accurately accounts
for broad-band modifications to the linear power spectrum/correlation func-
tion—as one would expect, for example, from a perturbation theory ap-
proach. It is sufficient to use a template that correctly describes the relevant
physics for this measurement. This chapter is concerned with introducing
the most important aspects for constructing such template.

When surveying the sky, there is direct access to angular positions and
redshift measurements, which afterwards can be converted into comoving
coordinates, thus yielding a 3D map of the corresponding patch in the sky.
When converting from redshift space to real space, a fiducial cosmology has
to be assumed. A wrong assumption will bring about a distortion in the
observed coordinates relative to the real coordinates. Moreover, redshift
measurements are contaminated by peculiar velocities, i.e. velocities rela-
tive to the comoving grid, which in turn will contaminate the real space
measurements. The former effect is known as the Alcock-Paczyński effect
(Alcock and Paczynski 1979), whereas the latter is referred to as redshift-
space distortions (RSD).

While having to deal with these effects might seem daunting at first,
they are, in fact, powerful tools to gain insight into different cosmological
information. In particular, the Alcock-Paczyński test is of prime impor-
tance in the context of the BAO method, since it allows for breaking the

25
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degeneracy between the corresponding DA(z) and H(z) measurements. In
contrast, RSD measurements comprise information concerning the growth
of structure, and analysis of this sort are often focused on constraining the
logarithmic growth rate f , which in turn can be used to test General Rela-
tivity. The proper description of how these two effects are to be taken into
account will be given in sections 2.1, 2.2 and 2.3.

As the gravitational collapse evolves with time, the BAO imprint in the
galaxy power spectrum/correlation function undergoes some degradation
due to the effects of bulk flows and non-linear collapse. We shall review how
this comes about in section 2.5. Section 2.6 will be dedicated to describing
reconstruction techniques, which roughly speaking is a method applied to
the data in order to “undo” the effects that wash out the acoustic signature.

Finally, in section 2.7 the template that takes into account all of the
above-mentioned effects will be presented, along with a number of variations
that have been used in some relevant articles.

2.1 Redshift Space distortions

In a spectroscopic survey, distances to galaxies are inferred from their red-
shift, which is determined by the Hubble flow—which reflects the actual
comoving position—plus peculiar velocities of galaxies. The Doppler effect
induced by peculiar velocities modifies the measured redshift yielding

1 + z =
1

a
(1 + v). (2.1)

Note that we simply denote v to the peculiar velocity, to be consistent with
the fact that our treatment has focused on comoving coordinates.

As a result of this contamination, the observed comoving positions of
tracers will appear shifted relative to the real ones. If we denote s to the
position in redshift space then

s = r +
v · n̂
aH

n̂, (2.2)

where n̂ is a unit vector pointing along the line of sight.
The density contrast field measured in redshift space δs(s) will differ with

respect to the real one, since peculiar velocities will make tracers system-
atically appear closer or further away from overdensities or underdensities,
depending on the observed scales. While statistical homogeneity will be
lost in redshift space, rotational symmetry will still hold around the ob-
server. Strictly speaking the two-point statistics in redshift space should be
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functions of three arguments (Hamilton 1998):

ξ(r) → ξs(s1, s2, |s1 + s2|) (2.3)

P (k) → P s(k1, k2, |k1 + k2|). (2.4)

Here and hereafter in this text, quantities with no subscript will refer to
those of tracers/galaxies, as opposed to matter, unless otherwise specified.

If the region of space dealt with is sufficiently distant from the observer,
so that it subtends a small angle on the sky, then the distortions can be
considered as happening along one of the Cartesian axes. This is commonly
refer to as the distant observer or plane parallel approximation. In this case,
the analysis simplifies, since now the power spectrum and the correlation
function reduce to functions of two arguments, such as

ξs(s1, s2, |s1 + s2|) → ξs(s∥, s⊥), (2.5)

P s(k1, k2, |k1 + k2|) → P s(k∥, k⊥), (2.6)

where s∥ and s⊥ are the components of |s1 + s2| parallel and perpendicular
to the line of sight, respectively. And analogously for k∥ and k⊥. Further-
more, under the distant observer approximation, statistical homogeneity is
recovered.

Alternatively, it is common practice to work with

(s, µ) =
(√

s2∥ + s2⊥, s∥/s
)
, (2.7)

(k, µk) =
(√

k2∥ + k2⊥, k∥/k
)
. (2.8)

It should be clear that µ and µk are different variables, so that when there
is no risk of confusion, we shall drop the subscript when working on Fourier
space. The µ variable in both cases is simply the cosine of the angle between
the vector in the corresponding space and the line of sight direction. One of
the advantages of working with this variables is the fact that the correlation
function and the power spectrum can be written in terms of a multipole
expansion:

ξs(s, µ) =
∞∑
ℓ=0

ξℓ(s)Lℓ(µ), (2.9)

P s(s, µ) =
∞∑
ℓ=0

Pℓ(s)Lℓ(µ), (2.10)
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Figure 2.1: Legendre polynomials of order 2 and 4 as a function of the
cosine of the angle relative to the line of sight. The line of sight lies along
the vertical direction and the centre of each figure corresponds to the centre
of reference.

with

ξℓ(s) =
2ℓ+ 1

2

∫ 1

−1
dµ ξs(s, µ)Lℓ(µ), (2.11)

Pℓ(k) =
2ℓ+ 1

2

∫ 1

−1
dµ P s(k, µ)Lℓ(µ), (2.12)

where Lℓ is the Legendre polynomial1 of order ℓ. Figure 2.1 shows the Leg-
endre polynomials of order 2 and 4 as a function of µ. In real space, the
only non-zero multipole would be the monopole (ℓ = 0). In this case, RSD
anisotropies give rise to the higher-order multipoles. Due to symmetry, the
odd-order multipoles are always zero. In addition, multipoles in configura-
tion space are related to those in Fourier space, via

ξℓ(s) = iℓ
∫

k3dlog(k)

2π2
Pℓ(k)jℓ(kr), (2.13)

where jℓ is the spherical Bessel function of order ℓ.
The multipoles of the correlation function/power spectrum will be the

central object of our study. The multipoles for a given catalogue of galaxies

1Note that in the literature Legendre polynomial are usually denoted as Pℓ. We have
avoided this notation, in order to avoid confusion with the power spectrum.
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will be the data to be fitted to the theoretical template for the multipoles
described in this chapter.

The rest of this section is devoted to the description of how clustering is
distorted in redshift-space. Phenomenologically, redshift-space distortions
(RSD) can be divided into two contributions: distortions due to coherent
motion and distortions due to incoherent velocities. The former is of linear
nature and mainly affects large scales measurements; it introduces a squash-
ing effect along the line of sight. The other type of RSD has a non-linear
behaviour, which takes place at small scales, where structure formation has
already virialised. This type of effect brings about a peculiar feature in
which overdensities seem to elongate along the line of sight at sufficiently
small scales. We shall refer to this effect as the Finger of God effect.

A brief account of linear RSD is given in the following subsection 2.1.1,
where it is shown how the amplitude of the linear redshift-space power spec-
trum differs from that of the real-space one by a factor which depends on
µ2 only, known as the Kaiser Boost term (Kaiser 1987). In subsection 2.1.2
the Finger of God effect is discussed.

2.1.1 Kaiser Boost

In the plane parallel approximation, the redshift space position vector s is
given by

s = r +
vz(r)

aH
ẑ, (2.14)

where we have arbitrarily chosen the z direction as the line-of-sight direction.
The relation between redshift space and real space is merely a change of

coordinates, which means that the number of galaxies in a given infinitesimal
volume element in redshift space should be the same number of galaxies
quantified in the corresponding infinitesimal volume element in real space.
In other words, conservation of matter implies that

(1 + δs(s)) d3s = (1 + δ(r)) d3r, (2.15)

which is equivalent to

J (1 + δs(s)) = 1 + δ(r), (2.16)

where J =
∣∣ ∂s
∂r

∣∣ is the Jacobian. Notice that

∂s

∂r
=

 1 0 0
0 1 0

∂vz
∂x /(aH) ∂vz

∂y /(aH) 1 + ∂vz
∂z /(aH)

 , (2.17)
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which yields ∣∣∣∣∂s∂r
∣∣∣∣ = 1 +

1

aH

∂vz
∂z

. (2.18)

Thus,

δs(s) =

(
1 +

1

aH

∂vz
∂z

)−1

(1 + δ(r))− 1. (2.19)

This expression is valid at every order and at any scale range, under the
plane parallel approximation. At linear order it simplifies to

δs(r) = δ(r)− 1

aH

∂vz
∂z

. (2.20)

That being said, galaxies do not constitute an unbiased tracer of the
underlying matter distribution. For example, if two sets of galaxies are se-
lected in different ways, the correlation functions computed for the different
sets will differ in amplitude but not in shape.

The linear biasing model establishes that the galaxy overdensity field
is related to the matter overdensity field by a constant factor b, while the
velocity field is assumed to be unbiased, as the galaxies follow the total
matter velocity field exceptionally well at first order:

δ(r) = bδm(r), (2.21)

v(r) = vm(r). (2.22)

Linear bias can be justified at linear order and at large scales (Dodelson and
Schmidt 2021), although it must be pointed out that, in general, b depends
on the galaxy sample considered as well as redshfit.

Recall that the linearised continuity equation for matter is

δ̇m +
1

a
∇ · vm = 0, (2.23)

which in terms of the galaxy overdensity and using the linear solution can
be rewritten as

1

b
aHfδ +∇ · v = 0. (2.24)

In Fourier space,
1

b
aHfδ + ik · v = 0. (2.25)

Assuming that the velocity is a longitudinal field (i.e., its curl is zero),

v(k) = i
k

k2
βaHδ, (2.26)
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where the linear distortion parameter is defined as

β =
f

b
. (2.27)

Replacing (2.26) into the Fourier-space version of (2.20) yields

δs(k) =
(
1 + βµ2

)
δ(k), (2.28)

where µ = kz/k is the cosine of the angle between the wavevector k and the
line of sight. This implies that the redshift-space power spectrum is related
to the real-space power spectrum through

P s(k, µ) =
(
1 + βµ2

)2
P (k), (2.29)

where the prefactor
(
1 + βµ2

)2
is known as the Kaiser Boost.

The interpretation of eq. (2.28) is straightforward. Along the line of
sight, overdensities are enhanced, for galaxies appear closer together than
they really are. The opposite is observed with underdensities.

2.1.2 Finger of God effect

At small scales, the linear analysis discussed in the previous section is no
longer valid. Thermal motions cause redshift surveys to feature an elonga-
tion along the line of sight within virialised structures; these features are
commonly known as Fingers of God (Jackson 1972). In terms of the clus-
tering, this effect introduces a damping factor in the observed galaxy power
spectrum. Clustering measurements from galaxy surveys are consistent with
P s(k, 1)/P s(k, 0) being a Lorentzian function, which in turn, corresponds
to a exponential probability distribution function for the pairwise velocities
along the line of sight (see for example Landy, Szalay, and Broadhurst 1998;
Landy 2002, or Davis and Peebles 1983 for a configuration space equivalent.)

Assuming the velocity distribution is independent of scale and neglecting
the effects of infall, the redshift-space two-point correlation function can be
written as a convolution:

ξs(s∥, s⊥) =

∫
dr∥ξ

(√
r2∥ + r2⊥

)
P
(
aH(s∥ − r∥)

)
, (2.30)

where P is the pairwise-velocity probability distribution function. This
equation illustrates how a galaxy at a distance r∥ is mapped into a sep-
aration s∥ by virtue of its peculiar velocity v∥ = aH(s∥ − r∥) with a given
probability P(vz).
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In Fourier space, the convolution can we rewritten as a product,

P s(k) = P(k)P (k). (2.31)

In principle, P should account for both small and large scales effects. As
stated above, the small scale contribution is consistent with

P(k) → D(kµσp) =
1

1 + k2µ2σ2
p/2,

(2.32)

where σp is the pairwise velocity dispersion. Measured values estimate
σp ∼ 300–400 km/s. Notice that in fact, from previous equation σp has
units of Mpc/h so that the conversion factor H0 is needed when reporting
values in velocity units. Under this phenomenological description, the total
redshift-space power spectrum is then written as

P s(k) = D(kµσp)(1 + βµ2)2P (k). (2.33)

Some authors (J. A. Peacock and Dodds 1994; Fisher et al. 1994) have
also opted for a Gaussian velocity distribution, for which

D(kµσp) = exp[−k2µ2σ2
p/2]. (2.34)

This is a good approximation, that can simplify the calculations in certain
circumstance (see for example Wang, B. Reid, and White 2013).

2.2 Alcock-Paczyński effect

In addition to the RSD corrections discussed in the previous section, the
transformation from measured redshifts into actual distances requires fur-
ther attention. In order to carry out such transformation, a fiducial cos-
mology has to be assumed (i.e. a set of cosmological parameters). The
computed distance as a function of redshift is

χ(z) =

∫ z

0

dz′

Hfid(z′)
, (2.35)

where Hfid(z) is given by eq. (1.2).
In real life, it is uncertain whether a given fiducial cosmology actually

represents the Universe we live in or not. Essentially, clustering analyses
are focused on finding constraints on one or more parameters as it would be
unatural if such parameters where known a priori with sufficient accuracy.
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As a consequence choosing the wrong parameters, the obtained comoving
3D map will be distorted. Alcock and Paczynski 1979 were the first to notice
that this effect could be used to probe the expansion history of the Universe.

In order to illustrate this effect, let us consider a hypothetical spherical
overdensity. Assuming this overdensity to be far enough from the observer,
the separation difference between its nearest and most distant point will be
measured to be

rfid∥ =
∆z

Hfid(z)
, (2.36)

where ∆z is the difference in redshift between both points, whereas z can
be taken as the redshift at the centre of the overdensity. Note that this
distance is measured entirely along the line of sight. The real separation,
however, will be given by

r∥ =
∆z

H(z)
, (2.37)

whereH(z) is the real Hubble factor, computed with the proper cosmological
parameters. Analogously, the fiducial and real transverse separation of two
diametrically opposed points, will be given by

rfid⊥ = (1 + z)Dfid
A (z)∆θ, (2.38)

r⊥ = (1 + z)DA(z)∆θ, (2.39)

where DA(z) is the angular diameter distance, whereas ∆θ is the angle
subtended in the sky between both points. In this fashion, we can define
the dilation parameters

α∥ =
Hfid(z)

H(z)
, (2.40)

α⊥ =
DA(z)

Dfid
A (z)

, (2.41)

along and transverse to the line of sight, respectively.
Notice that if the diameter of the overdensity is a known value, then

measurements of α∥ and α⊥ can turn into independent measurements of
H(z) and DA(z). In contrast, if the diameter is not known, but the over-
density is known to be spherical, then the ratio (Ballinger, J. A. Peacock,
and Heavens 1996)

F =
α∥

α⊥
(2.42)

can turn into a measurement of the product H(z)DA(z). The physical in-
terpretation of F should be clear: F > 1 (F < 1) indicates that the object
will appear elongated along (across) the line of sight.
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2.3 BAO as a standard ruler revisited

As described in the previous section, having a spherical overdensity as a
reference allows for probing the expansion history of the Universe. In real
life, however, spherical overdensities are evidently not observed in the sky.
What is observed are galaxies that are scattered following an underlying
matter distribution. Notwithstanding, the BAO signal imprinted on the
late matter 2-point statistics can serve as the characteristic scale used in
order to exploit the Alcock-Paczyński effect. This section will outline how
this is done.

Consider a number of primordial overdensities, around which a spheri-
cal wave travelled outwards up to the recombination time (cf. section 1.3).
Were these initial overdensities sufficiently rarefied, we would be able to
distinguish the spherical overdensity shells as illustrated by the schematic
model in the left panel of Fig. 2.2. This is certainly not the case for the
galaxy distribution we observe, which is more similar to what is shown in
the right panel of the same figure. The sound horizon scale, thus, should be
extracted statistically, via the 2-point correlation function (power spectrum)
where the peak (oscillatory pattern) corresponds to the characteristic scale.
As with any other distance measurement, the sound horizon measured from
a galaxy redshift survey may be distorted due to wrong assumption when
selecting the fiducial cosmology in the distance-redshift relation. Since the
real value is well known from CMB two-point statistics (at z ≈ 1100) to-
gether with BBN, this scale can be used as the reference calibration when
taking into account the Alcock-Packynski effect. We thus refer to the BAO
signal as a statistical standard ruler.

Let us now see how this is to be taken into account quantitatively. Let
us denote s to the fiducial position vector and s′ to the one calculated with
the true cosmological parameters, so that

s =

∫ z

0

dz′

Hfid(z′)
ŝ, (2.43)

s′ =

∫ z

0

dz′

H(z′)
ŝ, (2.44)

where ŝ is a unit vector determined by the two measured angles in the sky.
Notice that we have made use of the letter s to make emphasis that the
treatment is effectively in redshift space, since the z on the integral limit
contains the peculiar velocity contribution.

In principle, the dilation parameters discussed on the previous section
depend on redshift. In practice, redshifts are close enough that we can
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Figure 2.2: Schematic model of a distribution of particles in 2D where there
is a preferred length scale equal to the sound horizon. In both panels,
the number density is the same. On the left, there is a small number of
shells, each shell contains several particles; making the characteristic scale
easily distinguishable. On the right, the number of shells is 10 times larger,
and there are fewer particles per shell. The characteristic scale cannot be
determined just by looking at the distribution. This figure is inspired by a
similar one found in Bassett and Hlozek 2009.

assume the alpha parameters to be constant and evaluated at the effective
redshift of the survey (Eisenstein, Zehavi, et al. 2005). Moreover, since
the sound horizon is being used as the reference, it is common practice to
redefine

α∥ =
Hfid(z)rfids
H(z)rs

, (2.45)

α⊥ =
DA(z)r

fid
s

Dfid
A (z)rs

. (2.46)

The observed correlation function will be the same as the true one (in
redshift-space),

ξobs(s) = ξs(s′[s]), (2.47)

where each separation vector can be split into a line-of-sight component
and a transverse 2D vector, which yields

s′ = s′∥n̂+ s′⊥ = α∥s∥n̂+ α⊥s⊥, (2.48)



36 CHAPTER 2. THE BAO TEMPLATE

where n̂ is the unit vector along the line of sight.
Thus in (s, µ) coordinates the transfomation is given by

s′ = α⊥s
[
1 + µ2

(
F 2 − 1

)]1/2
, (2.49)

µ′ = Fµ
[
1 + µ2

(
F 2 − 1

)]−1/2
(2.50)

with the same definition of F as in 2.42.
In Fourier space,

P obs(k) =

∫
d3se−ik·sξs(s′[s])

=

∫
d3s′Je−ik·s[s′]ξs(s′),

(2.51)

where in this case the Jacobian is

J =

∣∣∣∣ ∂s∂s′
∣∣∣∣ =

(
(1 + z)Dfid

A (z)
)2

((1 + z)DA(z))
2

∣∣∣∣ dsds′
∣∣∣∣ = (Dfid

A (z)

DA(z)

)2
H(z)

Hfid(z)
, (2.52)

notice that in the second equality we have made use of the fact that angular
positions are not distorted, while in the third equality the derivate was
replaced by

ds

ds′
=

ds

dz

dz

ds′
=

H(z)

Hfid(z)
. (2.53)

Hence, the Jacobian can be rewriten as

J =

(
rfids
rs

)3
1

α2
⊥α∥

. (2.54)

In addition, the dot product can be explicitly expanded as

k · s = k∥
s′∥

α∥
+ k⊥ ·

s′⊥
α⊥

= k′ · s′, (2.55)

where the true wavenumber is given by

k′ =
k∥

α∥
n̂+

k⊥
α⊥

. (2.56)

Consequently, the observed power spectrum will be related to the true one
through

P obs(k) =

(
rfids
rs

)3
1

α2
⊥α∥

P s(k′[k]). (2.57)
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Analogously to the configuration space counterpart, the transformation for
(k, µ) will be

k′ =
k

α⊥

[
1 + µ2

(
1

F
− 1

)]1/2
, (2.58)

µ′ =
µ

F

[
1 + µ2

(
1

F
− 1

)]−1/2

. (2.59)

On this account, BAO analyses focus on fitting the theoretical template
to the observed two-point statistics by treating the dilation parameters as
free parameters—along with other nuisance parameters which are usually
marginalised over. Constraining both α∥ and α⊥ translate into constraints
to H(z) and DA(z).

2.4 Interlude: The Zeldovich approximation

Before continuing with the remaining aspects of the BAO template, this
section will serve to introduce the Lagrangian displacement field, as well as
the Zeldovich approximation; both of which will be necessary in order to
understand the following two sections. As opposed to Eulerian Perturba-
tion Theory—where the fields of interest are the density contrast and the
velocity—Lagrangian Perturbation Theory (LPT) focuses on following the
trajectories of particles. Eulerian coordinates r(t) and Lagrangian coordi-
nates q are related by

r(t) = q +Ψ(q, t), (2.60)

which defines the Lagrangian displacement field Ψ(q, t).
Zeldovich’s approach consisted on assuming that the displacement can

be separated as
Ψ(q, t) = g(t)ψ(q). (2.61)

In other words, particles are assumed to keep moving in the same direction
at any given time.

By conservation of mass, and assuming the initial density contrast field
is sufficiently uniform,

ρ(r, t)d3r = ρ(q, t)d3q, (2.62)

ρ̄(t) [1 + δ(r, t)] d3r = ρ̄(t)d3q, (2.63)

which implies
δ(r, t) = J−1 − 1, (2.64)
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with

J =

∣∣∣∣∂r∂q
∣∣∣∣ = (1 + g(t)λ1) (1 + g(t)λ2) (1 + g(t)λ3) , (2.65)

where λi are the eigenvalues of the matrix ∂ψ/∂q. From the previous equa-
tion, at linear order, the density contrast can be expressed as

δ(r, t) = −g(t) (λ1 + λ2 + λ3) = −∇q ·Ψ(q, t), (2.66)

which implies that, in fact, g(t) must be equal to the linear growth factor
D(t). Fourier transforming eq. (2.66),

δ(k, t) = −
∫

d3reik·r∇q ·Ψ(q, t)

= −
∫

d3qJeik·(q+Ψ)∇q ·Ψ(q, t)

= −
∫

d3qeik·q
(
∇q ·Ψ(q, t) +O(Ψ2)

)
.

(2.67)

Thus, at first order
δ(k, t) = −ik ·Ψ(k, t). (2.68)

If in addition the displacement field is assumed to be longitudinal, then

Ψ(k, t) = i
k

k2
δ(k, t). (2.69)

Note that this result is compatible with eq. (2.26), since the velocity and
the displacement field are related

v = aṙ = aΨ̇. (2.70)

2.5 Non-linear degradation of the BAO

While at linear order modes evolve independently, non-linearities become
more evident as the gravitational collapse evolves in time. One can think
of this as follows: the scale kNL at which the linear power spectrum differs
from the non-perturbative power spectrum decreases with time. In partic-
ular, bulk flows, mode coupling, and cluster formation degrade the acoustic
signature, making it harder to recover the scale information from a galaxy
survey. From the Fourier space perspective, the degradation presents as an
attenuation of the oscillatory pattern, more precisely in the high harmonics.
In configuration space, the effect of the non-linearities is the broadening of
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the acoustic peak at approximately 100 Mpc/h. This broadening is brought
about by the fact that tracers are moved around by ∼ 10 Mpc relative to
their initial positions as a result of velocity flows and non-linear collapse.

As argued by Eisenstein, Seo, and White 2007, the dominant non-linear
effect is the differential motion of pairs of tracers. This section will recapit-
ulate the heuristic approach they followed in order to model this effect. Let
us start by assuming that the real-space two-point correlation function can
be written as a convolution of the form

ξ(r) =

∫
d3q12d

3Ψ12 ξ(q12)P(Ψ12|q12)δ(3)(q12 +Ψ12 − r), (2.71)

where the subscripts 1 and 2 represent different points, q12 = q1 − q2 is the
separation in Lagrangian coordinates and Ψ12 = Ψ1 − Ψ2 is the pairwise
Lagrangian displacement. Here, P(Ψ12|q12) is the conditional probability
distribution function of the displacements, where the implicit assumption
has been made that it does not depend on the initial overdensities δ(q1),
δ(q2). This assumption is not the case in reality, as overdense regions tend
to move towards each other.

If one assumes the distribution to be Gaussian, then by homogeneity it
must have a zero mean, and it should be solely determined by its variance.
Furthermore, the variance should be a function of the angle between Ψ12

and q12. In redshift-space, there is an additional dependence on the angle
between Ψ12 relative to the line of sight.

Eisenstein, Seo, and White 2007 made use of the N-body simulations
presented in Seo and Eisenstein 2005 in order to test this hypothesis. They
investigated the distribution of Ψ12 for pairs separated by a representative
distance of 100 Mpc/h. They found it to be compatible with a Gaussian in
the radial and transverse directions (i.e., relative to the initial separation),
with a slight skewness towards the infall displacements. They also found
the rms value ⟨Ψ2

12,transverse⟩1/2 to be slightly smaller than ⟨Ψ2
12,radial⟩1/2. In

redshift space both values are enhanced along the line of sight as a result
of the Kaiser effect. They also found them to vary according to the linear
growth factor, as expected—recall that according to the Zeldovich approx-
imation Ψ ∝ D(t). For example, at z = 1, ⟨Ψ2

12⟩1/2 ∼ 10 Mpc/h, with the
precise value depending on cosmology.

In order to simplify the treatment, the dependence on the angle relative
to the original separations can be neglected. Whereas in redshift space
we keep the distinction between displacements along and perpendicular to
the line of sight. Hence, the power spectrum should be the product of the
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Gaussian damping term and the linear power spectrum:

P (k, µ) = exp

[
−
k2µ2σ∥ + k2(1− µ2)σ⊥

2

]
Plin(k), (2.72)

where σ∥ and σ⊥ are standard deviation of the displacements along and
transverse to the line-of-sight, respectively. Note that σ∥ is expected to be
slightly larger due to linear RSD. In real space, both values should be the
same and the angular dependence cancels out.

Given that this approach is phenomenological in nature rather than ex-
act, applying eq. (2.72) directly to the linear power spectrum yields an
artificial suppression of power at large wavenumbers. To counterbalance
this effect, it is convenient to introduce a no-wiggle power spectrum Pnw(k),
which is, in essence, a power spectrum without the BAO signal. Taking this
definition into account, the former expression can be replaced by

P (k, µ) = exp

[
−
k2µ2σ∥ + k2(1− µ2)σ⊥

2

]
(Plin(k)− Pnw(k))

+ Pnw(k),

(2.73)

where in this case, the damping only acts on the oscillatory pattern.

It must be noted that a power spectrum without the baryon oscillations
is only an implement suited for our present purposes and it holds no real
physical significance as it would only be possible for Ωb = 0, which is not
the case in our Universe. A number of methods for constructing Pnw(k)
can be found in the literature; the most popular among them is a transfer
function fitting formula developed by Eisenstein and Hu 1998. Other imple-
mentations include spline fitting (B. A. Reid et al. 2010), polynomial fitting
(Hinton et al. 2016) and fast sine transform of the correlation function after
removing the peak (Hamann et al. 2010).

It is also worth-noting that the derived damping factor is well in agree-
ment with more sophisticated treatments of infrared resummations under
different perturbation theory formalisms (cf. Matsubara 2008; Ivanov and
Sibiryakov 2018).

2.6 Reconstruction

In the context of low-redshift galaxy surveys, where non-linear effects are
particularly relevant, it becomes important to understand and mitigate these



2.6. RECONSTRUCTION 41

effects. Reconstruction refers to a family of methods concerned with amelio-
rating the acoustic scale measurement by undoing the effects of large-scale
displacements. The original idea was developed in Eisenstein, Seo, Sirko,
et al. 2007, with later studies under the LPT formalism by Padmanabhan,
White, and Cohn 2009. Since then, a number of extensions have been pro-
posed that take into account redshift-space distortions and galaxy/halo bias.
Moreover, several independent methods have been suggested, relying on ei-
ther Eulerian or Lagrangian perturbation theory.

In this text we will focus on LPT reconstruction algorithms, since they
are the ones currently being tested within the Mock Challenge project.
There are two conventions under which to treat redshift-space-distortions,
which we shall discuss in section 2.6.3.

2.6.1 A reconstruction algorithm in real space

In order to gain some insight into how the reconstruction algorithm works,
let us consider first how to tackle the problem in real space, leaving RSD and
bias corrections for later. This and the next section are strongly based on
Padmanabhan, White, and Cohn 2009. A relatively simple reconstruction
algorithm comprises the following steps:

• Fourier transform the measured density contrast field δ(x) and filter
out high-frequency modes, yielding S(k)δ(k); where S(k) is usually a
gaussian filter. Since linear theory is exceptionally valid at large scales,
S(k)δ(k) is a reasonable approximation for δL(k) for sufficiently small
k.

• Define the displacement field, according to the Zeldovich approxima-
tion:

s(k) = −i
k

k2
S(k)δ(k). (2.74)

As discussed above, this is precisely what we mean by removing large-
scale displacements. Note that the minus sign implies that the galaxies
will be displaced backwards. The Zeldovich approximation and the
smoothed field are consistent only at linear order.

• Displace all the galaxies in the original catalogue by s and recompute
the density contrast, obtaining the displaced field δd(k). As we shall
see below, the displaced field contains the short-scale (high-frequency)
information of the linear density contrast.
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• Create a reference catalogue of randomly (or uniformly) distributed
particles, shift their positions by s and compute the density contrast,
which we shall define as the shifted field δs(k). This field comprises the
large-scale (low-frequency) information of the linear density contrast.

Following these steps, the reconstructed field is defined as

δr(k) = δd(k)− δs(k). (2.75)

Contrary to what one might be tempted to conclude, δr is not the linear
density contrast. As we shall discuss in the next section, the sharpening of
the peak comes from the fact that δr contains a second order correction.

2.6.2 Reconstruction in the light of LPT

Eulerian and Lagrangian coordinates are related by

r(t) = q +Ψ(q, t), (2.76)

which defines the Lagrangian displacement field Ψ(q, t).
By conservation of mass, and assuming the initial density contrast field

is sufficiently uniform,

ρ(r, t)d3r = ρ(q, t)d3q, (2.77)

ρ̄(t) [1 + δ(r, t)] d3r = ρ̄(t)d3q, (2.78)

which is equivalent to

δ(r) =

∫
d3qδ(3)(r − q −Ψ(q))− 1, (2.79)

where time dependence is implicit, a convention we will follow hereafter. In
Fourier space,

δ(k) =

∫
d3xe−ik·xδ(x) =

∫
d3xe−ik·x

[∫
d3qδ(3)(x− q −Ψ(q))− 1

]
,

(2.80)

δ(k) =

∫
d3qe−ik·q

(
e−ik·Ψ(q) − 1

)
. (2.81)

This is the theoretical non-perturbative overdensity field.
Recall that the displaced field is computed once the original particles are

displaced by s, we can thus formally express it as

δd(k) =

∫
d3qe−ik·q

(
e−ik·(Ψ(q)+s) − 1

)
, (2.82)
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and analogously,

δs(k) =

∫
d3qe−ik·q

(
e−ik·s − 1

)
. (2.83)

We can then write

δd(k) = (1− S(k))δL(k) +O(δ2L), (2.84)

δs(k) = −S(k)δL(k) +O(δ2L), (2.85)

which confirms that δd contains restored small-scale information, whereas δs
contains restored large-scale information.

2.6.3 Reconstruction algorithms in redshift space

As discussed in Seo, Beutler, et al. 2016, there are two conventions when
it comes to treating redshift-space distortions in the reconstruction algo-
rithm. These conventions differ in whether or not they attempt to keep the
anisotropic signal, which in turns depends on how the reference catalogue
is dealt with. The original BAO reconstruction method (Eisenstein, Seo,
Sirko, et al. 2007; Seo, Siegel, et al. 2008; Seo, Eckel, et al. 2010; Mehta et
al. 2011) seeks to keep the RSD signal, which we shall refer to as anisotropic
BAO reconstruction. Whilst the convention by Padmanabhan, White, and
Cohn 2009 and Anderson et al. 2014 attempts to remove the RSD signal,
which we shall call isotropic BAO reconstruction.

Recall that under the Kaiser approximation and assuming linear galaxy
bias, we can write

δs = b
(
1 + βµ2

)
δm, (2.86)

where δs is the redshift-space galaxy overdensity field, whereas δm is the real
space matter field.

Taking this into consideration, we distinguish between both conventions
as follows:

• Anisotropic BAO reconstruction: The displacement field in real
space is computed from the density field in redshift space, considering
bias only:

s(k) = −i
k

k2
S(k)

δs(k)

b
. (2.87)

The displacement used for computing the displaced and shifted fields
in redshift space is

ss = s+
f − β

1 + β
(s · ẑ) ẑ, for δd, (2.88)
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ss = s+
f − β

1 + β
(s · ẑ) ẑ, for δs. (2.89)

• Isotropic BAO reconstruction: The displacement field in real
space is computed from the density field in redshift space, considering
bias as well as the Kaiser boost:

sr(k) = −i
k

k2
S(k)

δs(k)

b (1 + βµ2)
. (2.90)

The displacement used for computing the displaced and shifted fields
in redshift space is

ss = sr + f (sr · ẑ) ẑ, for δd, (2.91)

ss = sr, for δs. (2.92)

2.7 Modelling examples

In this section we will outline how the BAO-fitter implementation was per-
formed in some relevant articles. The main idea is to get a picture of how
subtle the choices can be during the analysis. The treatment is instructive
rather than exhaustive.

Beutler 2017

Beutler et al. 2017 performed the analysis in Fourier space. They followed
the analysis described above, with the template given by

Pt(k, µ) = b2D(kµΣs)
(
1 + βµ2R

)2
Pdw(k, µ), (2.93)

where the dewiggled power spectrum is defined as

Pdw(k, µ) = exp

[
−
k2µ2Σ∥ + k2(1− µ2)Σ⊥

2

]
(Plin(k)− Pnw(k))

+ Pnw(k),

(2.94)

which corresponds to eq. (2.73). Note that there is a slight change of
notation, uppercase sigmas are used in this case. This convention will be
followed hereafter, since lowercase sigmas will be reserved for errors.

They used a Finger of God term of the form

D(kµΣs) =
1

(1 + k2µ2Σ2
s/2)

2 . (2.95)
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Note that this is similar to eq. (2.32), but the denominator is squared. This
is because in this case a Gaussian distribution is assumed in the velocities
instead of in the pairwise velocities.

As for the Kaiser term, there is an extra factor R multiplying βµ2. This
convention follows that of Seo, Beutler, et al. 2016,

R =

{
1 for isotropic reconstruction,

1− exp (−k2Σ2
smooth/2) for anisotropic reconstruction.

(2.96)

Recall that in Fourier space, the map between real and fiducial wavenum-
bers is given by

k′∥ = k∥/α∥, (2.97)

k′⊥ = k⊥/α⊥, (2.98)

which implies

k′ =
k

α⊥

[
1 + µ2

(
α2
⊥

α2
∥
− 1

)]1/2
, (2.99)

µ′ =
µα⊥
α∥

[
1 + µ2

(
α2
⊥

α2
∥
− 1

)]−1/2

. (2.100)

As opposed to what happens in configuration space, where the corre-
lation function in fiducial coordinates has the same numerical value as the
correlation function in real coordinates, in Fourier space the volume element
gets rescaled by virtue of the former relations. Thus, the multipoles were
calculated as

Pℓ(k) =

(
rfids
rs

)3
2ℓ+ 1

2α2
⊥α∥

∫ 1

−1
dµPt[k

′(k, µ), µ′(µ)]Lℓ(µ) +Aℓ(k), (2.101)

where Aℓ(k) accounts for broad-band corrections. The authors distinguished
between pre-reconstruction and post-reconstruction data:

Apre-recon
ℓ (k) =

aℓ,1
k3

+
aℓ,2
k2

+
aℓ,3
k

+ aℓ,4 + aℓ,5k, (2.102)

Apost-recon
ℓ (k) =

aℓ,1
k3

+
aℓ,2
k2

+
aℓ,3
k

+ aℓ,4 + aℓ,5k
2. (2.103)

The only difference being the fact that for post-reconstructed data, k → k2

in the last term. The authors claim this choice to optimise convergence,
without any further explanation.
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Xu 2013

Xu et al. 2013 worked with the dilation and warp parameters, defined as

α =

[
D2

A(z)

(Dfid
A (z))2

Hfid(z)

H(z)

]1/3
rfids
rs

(2.104)

ϵ =

[
Hfid(z)

H(z)

Dfid
A (z)

DA(z)

]1/3
− 1, (2.105)

respectively. Which, in turn, are related to the alpha parameters through

α = α
1/3
∥ α

2/3
⊥ , (2.106)

ϵ =

(
α∥

α⊥

)1/3

− 1. (2.107)

They carried out a first order approximation, in order to write the two-
point correlation function multipoles in fiducial coordinates in terms of the
multipoles in real coordinates and their derivatives:

ξ0(r) = B2
0ξ0,t(αr) +

2

5
ϵ

(
3ξ2,t(αr) +

dξ2,t(αr)

d log(r)

)
+A0(r), (2.108)

ξ2(r) = 2B2
0ϵ
dξ0,t(αr)

d log(r)
+

(
1 +

6

7
ϵ

)
ξ2,t(αr) +

4

7
ϵ
dξ2,t(αr)

d log(r)
+

4

7
ϵ

(
5ξ4,t(αr) +

dξ4,t(αr)

d log(r)

)
+A2(r),

(2.109)

where
Aℓ =

aℓ,1
r2

+
aℓ,2
r

+ aℓ,3. (2.110)

Note that this involves having to compute numerical derivatives for every
chosen value of α.

In addition, they opted for normalising the measured multipoles by tak-
ing 50 Mpc/h as the pivot scale, which forces B0 to be close to 1. Ad-
ditionally, note that B0 allows for a separate treatment of the monopole
amplitude, in contrast to the bias parameter b originally introduced above,
which multiplies the full power spectrum.

They worked with two sets of data: pre and post-reconstruction. In
terms of the fit, the only difference being the treatment of redshift-space dis-
tortions. For pre-reconstructed data, the linear Kaiser boost was included,
as described above, whereas for post-reconstructed data no prefactor was
taken into account.



2.7. MODELLING EXAMPLES 47

Ross 2017

A configuration space analysis can be found in Ross et al. 2017, which differs
significantly from the approach taken by Xu et al. 2013. In this case, the
parametrisation is chosen over α∥ and α⊥. Although one might be tempted
to think of it as the configuration space counterpart of the Fourier space
analysis from Beutler et al. 2017, it is in fact not the case. The difference
comes about from the Alcock-Paczyński effect implementation:

ξmod
0 (s) = B0ξ0(s, α⊥, α∥) +A0(s), (2.111)

ξmod
2 (s) =

5

2

(
B2ξµ2(s, α⊥, α∥)−B0ξ0(s, α⊥, α∥)

)
+A2(s), (2.112)

with

ξµ2(s, α⊥, α∥) =

∫ 1

0
dµ 3µ2ξ(s′, µ′). (2.113)

Note that the essential feature of this choice is the fact that the amplitude
of the monopole (in real space coordinates) is allowed to vary independently.
In other words, the two terms of the second degree Legendre polynomial
L2(µ) =

1
2(3µ

2−1) are separated when computing ξ2(s), thus distinguishing
between the contributions from ξ0(s) and ξµ2(s).

Broad band terms are the same as described in eq. (2.110).
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Chapter 3

The DESI Mock Challenge

The work presented in this text was developed within the context of the BAO
Mock Challenge of the DESI collaboration. Several tests were run in order
to asses the methodology of the BAO method, by making use of clustering
measurements coming from mock galaxy catalogues, which are catalogues
constructed based upon cosmological simulations. The precise implementa-
tion we followed will be described in Chapter 4. The present chapter will
serve as an introduction to the Mock Challenge as well as the simulations
from which the catalogues employed in the analyses were constructed from.

This chapter is structured as follows. Section 3.1 provides a brief de-
scription of the DESI project, followed by an introduction to the Mock
Challenge, given in section 3.2. N-body simulations and fast simulations
will be discussed in 3.3, giving particular attention to UNIT and EZmock
mock catalogues. Finally, section 3.4 presents a preamble to the tests de-
scribed in the following chapter.

3.1 The DESI experiment

The Dark Energy Spectroscopic Instrument (DESI) is installed in the Nicholas
U. Mayall 4-meter telescope located in Arizona as part of the Kitt Peak Na-
tional Observatory, and it consists of 5000 robotic positioners containing an
optical fibre each, which together feed a set of 10 spectrographs. By gather-
ing the light of more than 30 million preselected tracers, over a wavelength
range from 359 nm to 980 nm (i.e., all the visible spectrum plus part of
the near-infrared) and covering an area in the sky of around 14, 000 deg2,
the DESI experiment is expected to yield the largest and most comprehen-
sive map of the Universe ever created (DESI Collaboration 2016). The main

49
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goal of the DESI collaboration is to measure the BAO signal to a subpercent
level, which will permit a better understanding of the nature of Dark En-
ergy. Additionally, measuring the growth of structure via RSD will provide
an opportunity to test the validity of General Relativity at large scales.

Achieving the goals of DESI is a collaborative effort, with scientists from
more than 60 institutions from 13 countries working together. It is primarily
funded by the Science Office of the US Department of Energy (DOE) and
managed by the Lawrence Berkeley National Laboratory (Berkeley Lab).
In particular, the Instituto de F́ısica, UNAM forms part of the Mexico Re-
gional Participation Group, supported by the National Council of Science
and Technology (CONACYT).

The main survey began in May 17th 2021; with more than 12.8 million
redshifts measured one year later. The four primary targets are:

i) Luminous Red Galaxies (LRGs) up to z = 1.0. LRGs are massive
elliptical galaxies with featureless spectra. The redshift is measured
from the position of the 4000 Å break.

ii) Emission Line Galaxies (ELGs) up to z = 1.7. This type of galaxies
are spiral or irregular star-forming galaxies. The redshift is measured
from the [OII] line. They correspond to the largest sample of tracers
observed by DESI.

iii) Quasars, also known as quasi-stellar objects (QSOs), up to z = 2.1 as
direct tracers of the underlying matter density. Quasars are extremely
luminous sources asocciated with active galactic nuclei (AGN).

iv) QSOs as tracers of the distribution of neutral hydrogen via the Lyman-α
forest, between 2.1 < z < 3.5.

In addition, when moon conditions do not allow for observing the main
targets listed above, a magnitude-limited bright galaxy survey (BGS) is
being conducted with an effective redshift z ≈ 2; as well as a survey of
Milky Way stars.

DESI will build on previous work by its predecessors, namely the Baryon
Oscillation Spectroscopic Survey (BOSS) (Dawson et al. 2013), part of the
Sloan Digital Sky Survey (SDSS) III project, as well as the SDSS-IV ex-
tended BOSS (eBOSS) (Alam, Aubert, et al. 2021). By studying the BAO,
constraints will be placed to the expansion history of the universe, which in
turn can be used as a probe of the Dark Energy equation of state. More-
over, DESI will allow for additional scientific objectives, such as measuring
the sum of neutrino masses along with constraining modified gravity models
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and theories of inflation. The DESI experiment is classified as a Stage-IV
experiment, according to the requirements stated by the Dark Energy Task
Force (Albrecht et al. 2006)

3.2 The BAO Mock Challenge

The Mock Challenge (MC) project started operations in 2019 (Chuang,
Vargas-Magaña, and Alam 2020) with the main goal of constructing the
cosmological analysis pipeline that will ultimately be used by the DESI col-
laboration. In order to test and validate the pipeline several mock galaxy
catalogues are being used. To satisfy the precision requirements for the cos-
mological constraints and build a robust, efficient, and optimised pipeline,
codes from different groups are being collected and depurated.

Mock catalogues coming from simulations have been (or will be) prepared
for the various DESI tracers. In general, two types of simulations will be
distinguished: (i) high resolution N-body simulations, which include UNIT,
AbacusSummit, SLICS, and Planck Millennium simulations; and (ii) fast
simulations, such as EZmocks, BAM, and FastPM.

MC development has been planned considering different stages with the
aim of increasing how realistic the catalogues are with every stage. The
first stage consisted of using small cubic-box catalogues, with a side length
of 1 Gpc/h. This was followed by a second stage, the subject of this text,
utilising large cubic boxes, of 3 Gpc/h. The third stage will consist of
considering the mask of the survey: cubic boxes corresponding to a given
redshift are repeated and then cut out considering the survey geometry;
these are referred to as cut-sky mocks. Subsequently, the pipeline will be
tested with light-cone mocks, which are constructed similarly to cut-sky
mocks, but considering redshift evolution. Basically, shells from cut-sky
mocks at the different redshifts are put together. In the fourth and final
stage, observational systematics will be added.

The pipeline testing comprises several components:

• Validation of different codes for computing the 2-point statistics from
the data: power spectrum, correlation function, cross-power spectrum,
cross-correlation function.

• Comparison of different methods for constructing covariance matri-
ces to associate to the clustering measurements, such as: analytical
methods, jackknife computation, making use of high resolution or fast
simulations.
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• Comparison of different reconstruction codes and algorithms.

• Cross-validation of codes from different groups to fit the theoretical
template for BAO measurements, which we shall refer to as the BAO
fitter.

• Cross-validation of codes from different groups to fit the theoretical
template for the RSD measurements.

The work addressed in this text corresponds a specific part of the post-
reconstruction BAO pipeline, the BAO fitter, shown in Fig. 3.1. Our imple-
mentation of the BAO fitter was also tested along with those of other MC
participants.

Figure 3.1: Flowchart of the BAO pipeline. Taken from Chuang, Vargas-
Magaña, and Alam 2020.

3.3 Mock Catalogues

Galaxy mock catalogues can be produced from either N-body simulations
or fast simulations. N-body are more accurate but require greater compu-
tational time and resources. Fast simulations are appropriately named as
they quickly produce the catalogue but at the expense of accuracy.

In this section, a brief account of how this is done is given. In subsection
3.3.1, a generic algorithm for N-body simulations is described. In subsection
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3.3.2, the UNIT N-body simulations are introduced. They are of particular
interest in this work, as the galaxy catalogues used for the tests presented
in Ch. 4 come from the these simulations. A particular instance of fast
simulations, namely the EZmocks method, is presented in subsection 3.3.3.
These simulations where employed to produce the covariance matrices made
used of in the analysis herein considered.

In the case of N-body simulations, the raw output is the dark matter
density field at a given time, as described in section 3.3.1. Given this dark
matter density field, the next issue is how to populate the underlying den-
sity field with points representing galaxies. Usually, the first step consists in
identifying dark matter halos. Halos are gravitationally bound structures,
where galaxies are known to reside. Given a density field, halos can be de-
termined by identifying which dark matter particles are bound together as
they are bound if their velocity is not sufficiently high to overcome the grav-
itational potential. This can be done with algorithms such as the friends-
of-friends algorithm or the spherical overdensity algorithm. At this point a
halo catalogue is obtained. The following step is to relate each halo with
a galaxy population. The galaxy distribution is biased with respect to the
halo distribution, since galaxy formation requires non-gravitational interac-
tions. One approach to address this is using a halo occupation distribution
(HOD) model, in which a probability distribution P(Ng|Mh) is assumed for
finding Ng galaxies in halo of mass Mh. This probability usually includes
many free parameters, that are to be calibrated in order to match the de-
sired statistics of a given population of tracers (for example, the ELG, LRG
or QSO samples of the DESI survey).

In contrast, fast simulations are aimed at reproducing the clustering
measurements of N-body simulations in a significantly shorter amount of
time, although at expense of accuracy at small scales and/or physical insight
of the associated distribution. Furthermore, they generate tracer catalogues
directly, instead of going through the process discussed above.

3.3.1 N-body simulations in a nutshell

N-body simulations focus on the gravity-induced time evolution of phase-
space elements of the dark matter distribution. Those phase-space elements
are commonly referred to as dark matter particles, although they do not
represent actual physical particles. Cubic boxes are generally used, imposing
periodic boundary conditions (i.e., if a particle moves out of the box from
one side it must reenter the box on the opposite side). The resolution of a
simulation depends on the number of particles within the box. Given a value
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for Ωm and the box volume, the total mass within the box is distributed
among all particles, thus the particle mass quantifies the resolution—the
lower the mass, the higher the resolution.

Recall that for cold, collisionless dark matter, the geodesic equations
take a Newtonian form:

ṙ =
p

am
, (3.1)

ṗ = −Hp− m

a
∇Φ, (3.2)

where Φ is the gravitational potential. The scale factor a(t) appears as a
consequence of the fact that we are using comoving coordinates. The term
proportional to H represents the drag due to the expanding background.
These equations are supplemented by the Poisson equation,

∇2Φ = 4πGaρ̄mδm. (3.3)

The idea is to follow the evolution of r(t) and p(t) for each particle by
updating their values at different snapshots of time.

The first aspect to take into account is the initial conditions. N-body sim-
ulations are initiated at sufficiently early times during the matter-dominated
era, where the effects of non-linearities are negligible at most scales. In this
fashion, Gaussian initial conditions are commonly used. The variance of
the amplitude of the Fourier modes δm(k) is given directly from the linear
power spectrum Plin(k) obtained from a Boltzmann code for a given set of
cosmological parameters.

Now let us describe how the system of equations is solved at every step of
time ti. First, the Poisson equation is solved at the position of each particle.
In other words, the gravitational force applied on each particle by to the
rest of the particles is calculated. The simplest algorithm is the Particle-
Particle (PP) method, which consists in directly summing pairwise forces.
It has the disadvantage of been very CPU-time consuming as it scales as
O(N2), where N is the total number of particles. Another alternative is the
Particle-Mesh (PM) method (e.g., Hockney and Eastwood 1988), in which
the cubic box is divided into a grid, the density contrast in each grid cell is
computed and then a Fast Fourier Transform (FFT) is applied, so that the
Poisson equation can be solved for Φ directly in Fourier space

Φ(k, ti) = −k24πGaρ̄mδm(k). (3.4)

Subsequently, Φ is transformed back into configuration space, where it is
interpolated into the positions of the different particles. This method scales
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as O(N) +O(Ng logNg), where Ng is the total number of grid cells. More-
over, since the force obtained from the PM algorithm depends on the grid
size, it can be supplemented with the force from nearby particles calculated
directly with the PP method; this hybrid algorithm is known as P3M (e.g.,
Efstathiou et al. 1985). An alternative and popular approach is the tree
algorithm (e.g., Barnes and Hut 1986), which divides space recursively into
a hierarchy of cells; for cells sufficiently small and far apart from the point
of interest, the particles inside are treated as a single particle located at the
centre of mass. This method scales as O(N logN).

Once the gravitational potential is known, the equations for the positions
and momenta are solved with a time integrator. The most popular among
them is the leapfrog integrator, which we shall describe briefly. But before
going into detail, let us note that the system of equations can be simplified
if we define pc = ap (Dodelson and Schmidt 2021), yielding

ṙ =
pc
a2m

, (3.5)

ṗc = −m∇Φ. (3.6)

In the leapfrog algorithm, positions and momenta are evaluated at slightly
different times r(ti), pc(ti − ∆t/2), where ∆t is the time step. Thus, by
means of eqs. (3.5) and (3.6), the position and momentum of the jth parti-
cle at time ti+1 = ti +∆t is updated as

p(j)c (ti+1 −∆t/2) = p(j)c (ti −∆t/2)−m∇Φ(r(j)(ti))∆t (3.7)

r(j)(ti+1) = r
(j)(ti) +

p
(j)
c (ti+1 −∆t/2)

a2(ti+1 −∆t/2)m
∆t. (3.8)

The algorithm is iterated until the desired time t is reached.

3.3.2 UNIT simulations

The N-body simulations from the UNIT project (Chuang, Yepes, et al. 2019)
were constructed following the variance suppression method proposed by
Angulo and Pontzen 2016, which consists of pairing simulations with ini-
tial Fourier modes out of phase, while fixing their amplitude to that of the
ensemble-averaged power spectrum. This method has been proven to signifi-
cantly reduce the variance, without introducing bias to the 2-point statistics
measurements.

The UNIT team used a non-public version of the N-body simulation
code GADGET (Springel 2005) in order to produce a paired couple of
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1 (h−1Gpc)3 boxes. The pair of boxes contain 409633 particles each, with a
particle mass of ∼ 1.2×109 h−1M⊙. They also generated larger boxes, with
side lengths of 2 h−1Gpc and 3 h−1Gpc, but lower resolution ∼ 1010 h−1M⊙.
The paired initial conditions where generated with FastPM (Feng et al.
2016), which makes use of second order Lagrangian perturbation theory. The
cosmological parameters for this simulations are: Ωm = 0.3089, h = 0.6774,
ns = 0.9667 and σ8 = 0.8147 (from Planck Collaboration, Ade, et al. 2016),
where ns is the scalar spectral index and σ8 is the variance of the the
smoothed matter density field with a smoothing scale of 8h−1Mpc . Dark
matter halos were identified with the Rockstar code (Behroozi, Wechsler,
and Wu 2013).

3.3.3 EZmocks

N-body simulations have the disadvantage of being highly resource consum-
ing. When studying the large-scale structure of the universe and especially
in the context of large galaxy surveys, it is imperative to have access to
hundreds or even thousands of simulations. Producing such a number of full
N-body simulations in a reasonable time is not feasible even with the cur-
rent high-end computational resources available. On this account, several
methods have been developed in order to produce reliable fast simulations
that reproduce 2-point or even 3-point statistics of the N-body simulations
to acceptable accuracy.

Chuang, Kitaura, et al. 2015 introduced a novel methodology to gen-
erate mock halo/galaxy catalogues, which they called effective Zeldovich
mock catalogues (EZmocks). The procedure is based upon the Zeldovich
approximation (cf. 2.4) and incorporates a practical description of stochas-
tic scale-dependent, non-local and non-linear biasing. This effective bias
model allows for directly generating tracer catalogues from the dark matter
density field, as opposed to the regular approach followed with N-body sim-
ulations, which consists in using a halo finder algorithm in order to generate
the halo catalogue and then populating those halos with galaxies by making
use of an Halo Occupation Distribution (HOD) model.

The EZmock method was revised in Zhao et al. 2021, in this subsection
we shall follow the description therein presented. The algorithm starts by
generating the initial density contrast δm(q) in Fourier space from a Gaus-
sian realisation with variance equal to a given linear power spectrum, and
random phases. The displacement field in Fourier space is then generated
according to the Zeldovich approximation (eq. 2.69), and then a inverse Fast
Fourier Transform (FFT) is applied in order to obtain the displacements in
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configuration space. The dark matter particles are displaced accordingly
and the density field ρm(r, t) is computed using the Cloud-in-Cell assign-
ment scheme.

So far, the method is equivalent to a single-step N-body algorithm. The
next step comprises the population of the box with tracers via the biasing
model. The tracer density ρt is modelled as (Baumgarten and Chuang 2018)

ρt = θ(ρm − ρc)ρsat [1− exp(−ρm/ρexp)]Bs, (3.9)

where θ is the Heaviside step function

θ(x) =

{
0, x < 0,

1, x ≥ 0,
(3.10)

with ρc, ρsat and ρexp as free parameters. The parameter ρc represents a
critical density as for bound systems to form, a minimal density is required
in order to overcome the background expansion. The quantity ρsat is a
saturation density, meaning that above this density every value of ρm should
be treated equivalently. Whereas ρexp introduces an exponential cut-off.

The factor Bs in eq. (3.9) accounts for the stochasticity of tracers and
it is given by

Bs =

{
1 +G(λ), G(λ) ≥ 0,

exp(G(λ)), G(λ) < 0,
(3.11)

where G(λ) is a random number coming from a Gaussian realisation with
mean equal to zero and standard deviation equal to λ.

The probability distribution function of the tracers is modelled as a
power law

P(nt) = Abnt , (3.12)

where nt is the number of tracers per grid cell. The normalisation factor
A is determined by the total number of tracers, since it is one of the input
parameters, whereas b is a free parameter with the condition 0 < b < 1.

The number of cells nc(nt) with exactly nt tracers will be given by

nc(nt) = ⌊NcP(nt)⌉, (3.13)

where Nc is the total number of tracers and ⌊·⌉ is the round-up to the
nearest integer operator. Note that since P(nt) is a monotonically decreasing
function, then the maximum number of particles that a cell could contain
would be

nt,max = min {nt|NcP (nt) < 0.5} . (3.14)
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In order to map nc to the analytical density in eq. (3.9), the cells are ranked
by their ρt value. In this way, the first nc(nt,max) with the largest density
are assigned nt,max tracers, the following nc(nt,max − 1) cells are assigned
nt,max − 1 tracers and so on. The tracers are finally assigned randomly to
the positions of the dark matter particles.

In addition to the bias model discussed above, the EZmock method also
takes into account the non-linear random motion of tracers with respect to
the dark matter velocity field. This effect will only modify redshift-space
measurements. Recall that according to eq. (2.70), the peculiar velocity can
be written in terms of the Zeldovich displacement field as

v = aΨ̇ = aHfΨ, (3.15)

since Ψ ∝ D(t). Then, velocities of the tracers are modelled as

vt = aHfΨ+G(ν), (3.16)

where G(ν) is drawn from an isotropic three-dimensional Gaussian distri-
bution, centred at zero with width ν. Note that this term is related to the
Finger-of-God effect discussed in section 2.1.2.

Parameter Description Effect on clustering measurements

b PDF base Tunes small-scale clustering.
λ Stochasticity Modifies bias almost linearly.
ν Random motion Adjusts the quadrupole at small scales.
δc Density cut Tweaks bispectrum.

Table 3.1: Free parameters of the EZmock methodology; specifically the
version corresponding to the pyEZmock wrapper.

All of the parameters introduced above are in principle free, but since
some of them are degenerate, Zhao et al. 2021 decided to fix ρsat = 10 and
λ = 10. However, the EZmocks for the Mock Challenge were generated
following the python wrapper of the EZmock code, pyEZmock 1. In this
code, the fixed parameters are ρsat = 100 and ρexp = 0. This python wrapper
allows for measuring the two-point correlation function, power spectrum
and bispectrum of the EZmocks in order to compare and thus calibrate
with a given reference. The fine tuning of the parameters has to be done
manually. Once a suitable set of parameters is found, it has to be validated
by producing a couple of dozens of EZmocks with different random seeds to

1https://github.com/cheng-zhao/pyEZmock developed by Cheng Zhao.

https://github.com/cheng-zhao/pyEZmock
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Figure 3.2: Calibration of the EZmocks parameters with a given reference.

account for cosmic variance. The wrapper also has a convenient feature for
mass production of EZmocks after the callibration has been done. In Table
3.1 the four free parameters are listed along with their effective impact on
the clustering measurements. In the GitHub repository for pyEZmock, a
cheatsheet can be found that shows a visual representation of how varying
the parameters affects the clustering. Figure 3.2 is an example of how the
calibration works. It involves deciding the best parameters “by eye” by
recomputing the EZmock catalogue at every step during the tuning process.
The clustering measurements in the figure are shown for illustrative purposes
only and do not correspond to the EZmocks used for the covariance matrices
discussed in this work. Incidentally, our group at UNAM was involved in
the mass production of thousands of EZmocks calibrated with the Survey
Validation 3 (SV3) data of the DESI collaboration.

3.4 Stage 2 BAO MC

In Stage 2 of the BAO Mock Challenge, several groups where asked to per-
form BAO fits with their own implementation of the BAO fitter following
the model by Beutler et al. 2017. The fits were done on the clustering
measurements from two sets of post-reconstruction ELG mock catalogues
corresponding to a UNIT cubic box of 3 Gpc/h at z = 0.9873. Each post-
reconstruction set of mocks corresponding to one of the two reconstruc-
tion conventions (isotropic and anisotropic) with different smoothing scales:
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5 Mpc/h, 10 Mpc/h and 15 Mpc/h. The original pre-reconstruction ELG
mock catalogue was previously prepared by the Cosmological Simulations
Working Group (CosmoSims WG), using the HOD model from Alam, John
A Peacock, et al. 2020.

The covariance matrices for the power spectrum and correlation func-
tion were prepared by rescaling the covariance matrices previously used in
Stage 1 of the Mock Challenge, where mock catalogues of 1 Gpc/h were used

(i.e., C → (1 Gpc/h)3

(3 Gpc/h)3
C = 1

27C.) In order to calculate the original covariance

matrices, two sets of 1000 EZmocks were produced by the CosmoSims WG.
The first set consisted of EZmocks to which the same amplitude suppression
technique described in 3.3.2 was applied (fixed amplitude covariance), while
the second set consisted of regular EZmocks (non-fixed amplitude covari-
ance). In each set, covariance matrices were calculated post-reconstruction
following the two different conventions. For fixed amplitude, only the covari-
ances for the post-reconstruction EZmocks with a smoothing of 15 Mpc/h
were made available, whereas for non-fixed amplitude, covariances were pre-
pared for all of the smoothing cases; however, for the official Stage 2 tasks,
only covariances for Σsmooth = 15Mpc/h were used. Figure 3.3 displays the
correlation matrices for the different types of reconstruction with both the
fixed amplitude method and the standard method (non-fixed amplitude).
Recall that the correlation matrix is defined as

ρij =
σij√
σiiσjj

, (3.17)

where σ is the covariance matrix. Correlation matrices are preferred when
it comes to plotting, since the normalisation allows for a better compari-
son—recall that −1 ≤ ρij ≤ 1.

Each participant was requested to report the obtained values for the
dilation parameters as well as their respective error (α∥, α⊥, σα∥ , σα⊥). By
using a linear power spectrum with the same cosmological parameters as
the UNIT simulations (Planck Collaboration, Ade, et al. 2016), an unbiased
fitter should be consistent with α∥ = α⊥ = 1. The aim of Stage 2, and of
this work, was to test how sensitive the BAO fitter can be in terms of the
smoothing scale, reconstruction convention, and fit range. The methodology
and results from our fitter will be discussed in the next chapter. In addition
to the official tests required for the BAO MC, three additional tests are
included in this work.
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Figure 3.3: Correlation matrices calculated from the post-reconstruction
EZmocks with Σsmooth = 15Mpc/h.
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Chapter 4

BAO tests, analysis and
results

The BAO tests performed with our implementation of the BAO fitter will
be presented in this chapter.

4.1 Implementation of the BAO fitter

We used the template from Beutler et al. 2017 for the power spectrum:

Pt(k, µ) = b2D(kµΣs)
(
1 + βµ2R

)2
Pdw(k, µ) (4.1)

with the dewiggled power spectrum given by

Pdw(k, µ) = exp

[
−
k2µ2Σ∥ + k2(1− µ2)Σ⊥

2

]
(Plin(k)− Pnw(k))

+ Pnw(k),

(4.2)

where the linear power spectrum Plin(k) was generated with CAMB (Lewis,
Challinor, and Lasenby 2000) making use of the cosmological parameters
from Planck Collaboration, Ade, et al. 2016 (in consistency with the UNIT
simulations) , while the no-wiggle power spectrum Pnw(k) was constructed
using the polynomial fitting approach introduced by Hinton et al. 2016. The
dispersion term accounting for the finger of God effect is

D(kµΣs) =
1

(1 + k2µ2Σ2
s/2)

2 ; (4.3)

63
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and recall that

R =

{
1 for isotropic reconstruction,

1− exp (−k2Σ2
smooth/2) for anisotropic reconstruction.

(4.4)

As our fitter works in configuration space, the multipoles from the tem-
plate (eq. 4.1) were transformed into multipoles of the 2-point correlation
function by means of eq. 2.13. Formally, the multipoles from the data ξℓ,d(s)
were fitted to the template as

ξℓ,d(s) =
2ℓ+ 1

2

∫ 1

−1
dµ ξt(s

′[s, µ], µ′[s, µ])Lℓ(µ), (4.5)

where (s, µ) are the fiducial coordinates, while the prime coordinates (s′, µ′)
are the real coordinates, with the transformation given by eqs. (2.49) and
(2.50), namely

s′[s, µ] = α⊥s
[
1 + µ2

(
F 2 − 1

)]1/2
, (4.6)

µ′[s, µ] = Fµ
[
1 + µ2

(
F 2 − 1

)]−1/2
, (4.7)

where F = α∥/α⊥.

In practice, we constructed the correlation function in 2D by interpo-
lating the first three non-zero multipoles from the template (monopole,
quadrupole and hexadecapole) to the real coordinates and adding their con-
tributions together:

ξt(s
′, µ′) =

∞∑
ℓ=0

ξℓ,t(s
′)Lℓ(µ

′) ≈
4∑

ℓ=0

ξℓ,t(s
′)Lℓ(µ

′). (4.8)

As we were mainly interested in fitting monopole and quadrupole from
the data, note that in theory the approximation in this equation should be
sufficiently accurate. Furthermore, contributions from ℓ > 4 are so minimal,
that they have rarely been used in the literature. Additionally, recall that
at linear order, the only non-zero multipoles due to the Kaiser boost are
monopole, quadrupole and hexadecapole.

In order to account for broad-band shape discrepancies due to non-linear
bias or poorly modelled redshift-space distortions, three polynomial terms
per mulitpole were included as

ξ0,d(s) =
2ℓ+ 1

2

∫ 1

−1
dµ ξt(s

′[s, µ], µ′[s, µ]) +A0(s), (4.9)
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ξ2,d(s) =
2ℓ+ 1

2

∫ 1

−1
dµ ξt(s

′[s, µ], µ′[s, µ])L2(µ) +A2(s), (4.10)

with

Aℓ(s) =
aℓ,1
s2

+
aℓ,2
s

+ aℓ,3, (4.11)

analogously to Xu et al. 2013.

Thus, our implementation includes 13 parameters in total: α∥, α⊥, b,
β, Σ∥, Σ⊥, Σs , {a0,i}3i=1 and {a2,i}3i=1. The two parameters of interest
are α∥ and α⊥, for which the best-fit values are to be found. The rest of
the parameters are treated as nuisance parameters, to be marginalised over.
In particular, analytical marginalisation was performed on the broad-band
coefficients as described in section 4.3, and hence strictly speaking they do
not count as free parameters.

4.2 A brief overview on parameter inference

Bayesian statistics is the preferred tool to make parameter inferences in
modern cosmology. It is based on the premise that probabilities can be
updated in the light of new information available. Given a model charac-
terised by a set of parameters θ = (θ1, . . . , θn), and a measured data vector
d = (d1, . . . , dm), we would like to determine the probability distribution of
the parameters given the data P(θ|d), in order to find the preferred values
for the model. Bayes theorem states that

P(θ|d) = P(d|θ)P(θ)

P(d)
, (4.12)

where P(θ) is referred to as the prior, P(d|θ) is the likelihood and P(d)
is known as the evidence. Hence, the posterior P(θ|d) is essentially the
updated probability.

The likelihood is the probability of the data given a set of parameters,
and it is often denoted as

L(θ|d) ≡ P(d|θ). (4.13)

Note that it is a PDF in d, but not in θ.

In general, the model will include parameters of interest which are aimed
to be constrained, as well nuisance parameters, whose probabilities do not
provide any insight into the model. Let us say that in this case, θ1, θ2, are
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the parameters of interest. Their probability density, can be obtained by
marginalising over the rest of the parameters:

P(θ1, θ2|d) =
∫

P(θ|d)dθ3 · · · dθn. (4.14)

Now, let us come back to how the posterior is to be determined. Suppose
that there are reasons to believe, either from previous measurements or
theoretical arguments, that the parameters should be constrained between
certain values or centred at a specific value. In that case, the prior can
be chosen to be flat within a given boundary or Gaussian. Additionally,
for the purposes of parameter inference, the evidence will act merely as
a normalisation factor. Therefore, the central role in the analysis will be
played by the likelihood function.

Under the assumption of Gaussianly-distributed data, the likelihood is
given by a multi-variate Gaussian:

L(θ|d) = 1

(2π)m/2 |detC|1/2
exp

−1

2

∑
ij

(d− y)iC−1
ij (d− y)j

 , (4.15)

here y is the theoretical data vector predicted by the model and therefore
depends on θ, while C is the covariance matrix, defined as

Cij = ⟨(d− y)i(d− y)j⟩. (4.16)

The argument of the exponential in eq. (4.15) is proportional to the
quantity

χ2 =
∑
ij

(d− y)iC−1
ij (d− y)j , (4.17)

which will in fact follow a χ2 (chi squared) distribution if the data is Gaus-
sianly distributed. In the case of a flat prior, for instance, finding the best-fit
values by maximising the posterior is equivalent to maximising the likeli-
hood, which in turn will be equivalent to minimising the chi squared.

Despite the fact that the likelihood is Gaussian in the data, it is in general
not Gaussian in the parameters θ, since both y and C might depend on the
model in a non-trivial way.

One way to sample the posterior distribution is with the help of a Markov
Chain Monte Carlo (MCMC) method. The aim of an MCMC algorithm is
to yield a sequence of points in the parameter space {θ(1), ...,θ(N)} with a
number density that is asymptotically proportional to the target probability
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density—the posterior in this case. The sequence of points is constructed
such that the probability of the i-th element only depends on the (i− 1)-th
element, plus random numbers. Each step in the sequence is determined
by a conditional probability K(θ|θ′) that must satisfy the detailed balance
condition

Ptarget(θ)

Ptarget(θ
′)

=
K(θ|θ′)
K(θ′|θ)

. (4.18)

The exact form of K will be subject to the specific MCMC algorithm. Pop-
ular MCMC algorithms include Metropolis-Hastings algorithm, Gibbs sam-
pling, slice sampling, among others.

There are two significant issues to tackle when working with an MCMC
sampler. The first is that it takes time for the sample to reach an equilibrium
distribution, known as the burn-in period. In consequence, about 30-50%
of the initial points should be discarded.

The second aspect is determining the convergence, where one knows
whether the number of points in the chain is large enough to assure that
the equilibrium state has been reached. There are a few diagnostic tools
that can be used to determine convergence but by far, the most common
and most relevant is the Gelman-Rubin (GR) convergence criterion. Given
a model with an arbitrary number of parameters, let us focus on a single
parameter θ. Suppose we haveM independent chains of N points each (after

burn-in has been discarded), and let θ
(i)
j represent the i-th value in the j-th

chain. The mean value of each chain is given by

⟨θ⟩j =
1

N

N∑
i=1

θ
(i)
j , (4.19)

while the overall mean will be

⟨θ⟩ = 1

M

M∑
j=1

⟨θ⟩j =
1

NM

N∑
i=1

M∑
j=1

θ
(i)
j . (4.20)

By definition, the variance of each chain is

σ2
j =

1

N − 1

N∑
i=1

(
θ
(i)
j − ⟨θ⟩j

)2
, (4.21)

which means that the mean of the variances can be written as

W =
1

M

M∑
j=1

σ2
j =

1

M(N − 1)

M∑
j=1

N∑
i=1

(
θ
(i)
j − ⟨θ⟩j

)2
. (4.22)
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This quantity can be compared to the variance of the chain means,

B =
1

M − 1

M∑
j=1

(⟨θ⟩j − ⟨θ⟩)2 . (4.23)

The ratio

R =
N−1
N W + M+1

M B

W
(4.24)

is expected to asymptotically approach unity and accordingly can be re-
garded as a measure of convergence. The value to be met can be set some-
what arbitrarily, depending on the specific situation.

In the previous description, only one parameter was taken into account.
In general, convergence will be reached when R ≈ 1 individually for each of
the parameters of the model.

4.3 Methodology

With the model described in section 4.1, the set of parameters is

θ = (α∥, α⊥, b, β,Σ∥,Σ⊥,Σs, a0,1, a0,2, a0,3, a2,1, a2,2, a2,3), (4.25)

with the data vector given by the multipoles from the UNIT ELG post-
reconstruction catalogues,

d = (ξ0(smin), . . . , ξ0(smax), ξ2(smin), . . . , ξ2(smax)) , (4.26)

where the upper bound of the fitting range was fixed to smax = 160h−1Mpc,
while the lower bound smin was varied as part of the tests described below.

In our fitter, the total number of free parameters is reduced by solving
analytically for the broad-band coefficients in the following manner. Notice
that the predicted vector can be decomposed into two contributions

y = ỹ + ybb, (4.27)

where ỹ corresponds to the model without the broad-band correction and
ybb corresponds to the broad-band polynomials and therefore depends only
on the set of parameters ν = (a0,1, a0,2, a0,3, a2,1, a2,2, a2,3). For a fixed value
for the rest of the parameters, the chi-squared function can be thought of
only in terms of ν as

χ2(ν) =
∑
ij

(d− y)iC−1
ij (d− y)j =

∑
ij

(d̃− ybb)iC−1
ij (d̃− ybb)j . (4.28)
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Here the new data vector is defined as d̃ = d− ỹ. In this case, the elements
of ybb depend linearly on the elements of ν, as

ybbi =
∑
j

νjfj(si), (4.29)

where fj(s) = s−2, s−1, s, depending on j in consistency with eq. (4.11).
Since these functions are linearly independent, χ2 is minimised by setting

ν =
(
AC−1AT

)−1
AC−1d̃, (4.30)

where
Aij = fi(xj). (4.31)

In this way, for any given value of the remaining parameters, the chi
squared is analytically minimised with respect to the broad-band coefficients
and we are left with a set of 7 free parameters

θ = (α∥, α⊥, b, β,Σ∥,Σ⊥,Σs). (4.32)

The posterior of this set of parameters was sampled by making use of
the Zeus MCMC sampler by Karamanis and Beutler 2020. Zeus is an im-
plementation of a recently developed algorithm, ensemble slice sampling,
introduced in the same paper. We set a flat prior, and a Gaussian likelihood
L ∝ exp (−1

2χ
2), where the χ2 is calculated with the analytical broad-band

coefficients discussed above. To be specific, at the i-th step, chi squared is
minimised with respect to the broad-band coefficients by fixing the rest of
the parameters to θ(i).

Instead of having one sampler at a time, Zeus works with an ensemble of
walkers that explore the parameter space. We set the number of walkers to
14 (two times the number of parameters) and ran 8 independent ensembles
in parallel. For each ensemble, we combined the chains of the 14 walkers.
In this fashion, the Gelman-Rubin diagnostic test was assessed with the 8
ensemble chains. The convergence criterion was set to R = 1.01, with a
burn-in of 30%. Lastly, the 8 chains were merged and the statistics are
reported for the merged chain.

Our code will be publicly available on a GitHub repository 1. It is written
in Python 3 and works by taking the model of section 4.1 and producing
the corresponding script for the Zeus sampler.

The sampler was run on the Cori supercomputer that forms part of
the National Energy Research Scientific Computing Center (NERSC) of the

1https://github.com/alexzpi/BAO_fitter/

https://github.com/alexzpi/BAO_fitter/
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DOE. Specifically, the Haswell compute nodes of Cori were used. They
comprise two sockets populated with a 2.3 GHz 16-core Intel Xeon Processor
each and have a memory of 128 GB DDR4 2133 MHz.

The main objective of this work was to test the performance of the BAO
fitter under different conditions. The BAO fits were done with the following
variations, in accordance with the Stage 2 of the BAO Mock Challenge (cf.
section 3.4):

• Covariance matrix: Fixed amplitude vs. non-fixed amplitude. In both
cases, the covariance matrices come from the post-reconstruction EZ-
mocks with a smoothing scale of 15h−1Mpc, regardless of the smooth-
ing scale of the UNIT catalogues.

• Reconstruction convention: Anisotropic reconstruction vs. isotropic
reconstruction. For both types of covariance matrices.

• Scale of smoothing: Σsmooth = 5h−1Mpc, 10h−1Mpc, 15h−1Mpc. For
all of the cases specified above.

• Fitting range: smin = 35h−1Mpc, 45h−1Mpc, 55h−1Mpc. For all of
the cases specified above.

For the purpose of this work, the following additional tests were run:

• Fixing sigmas: We tested the effect of having only 4 free parameters
instead of 7, by fixing Σ∥,Σ⊥,Σs to their best-fit values, determined
by numerically minimising χ2.

• Covariance matrix smoothing: Given that the original tests were run
with a covariance matrix corresponding to a single smoothing scale, in
this case we made use of the non-fixed amplitude covariance matrices
constructed from the post-reconstruction EZmocks with the proper
smoothing scale corresponding to their UNIT counterpart.

• Multipole calculation: We had access to two sets of correlation func-
tion multipoles for each case: (i) one calculated with the LS estima-
tor by counting pairs and (ii) a second set calculated by fast Fourier
transforming the power spectrum multipoles. This test consisted in
determining how sensitive the fit is to the use of this approximate
multipoles.
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4.4 Results and Discussion

This section is divided as follows. Before delving into the details of the
results, the convergence of the chains is discussed in subsection 4.4.1. Sub-
sections 4.4.3 and 4.4.4 are dedicated to the interpretation of the results
corresponding to fixed amplitude and non-fixed amplitude covariances, re-
spectively, including the different subcases.

4.4.1 Convergence test

As explained above, we set R− 1 = 0.01 for the Gelman-Rubin convergence
criterion. More precisely, the built-in Gelman-Rubin implementation of the
Zeus sampler was used. It has the advantage of calculating R at every
given number of steps and stopping the sampling once the criterion has
been reached. We set the configuration such that the criterion was checked
every 100 steps. All of the fits stopped either at 400 or 500 steps. Note that
although it may seem like a low number at first, the fact that we are using
8 independent chains of 14 walkers each compensates for this. If the total
number of steps is Ns, the total number of points in the resultant posterior
distribution sample will be

Np = ⌊0.7× 14× 8×Ns⌋ = ⌊78.4Ns⌋, (4.33)

where the 0.7 factor accounts for the burn-in. Therefore, for Ns = 500 the
total number of points in the sample is Np = 39, 200.

Formally, the Gelman-Rubin criterion should suffice to argue that our
chains converged successfully. Notwithstanding, it is always good practice
to have a visual confirmation. Figure 4.1 is a corner plot that illustrates
how the confidence levels, along with the 1-D distributions, evolve with
the number of points. The confidence levels (CL) shown correspond to
68% (1-σ) and 95 (2-σ). Only the subspace (α∥, α⊥, b, β) is plotted for
clarity. This plot corresponds specifically to the fit with fixed amplitude
covariance, anisotropic reconstruction, Σsmooth = 15h−1Mpc and smin =
45h−1Mpc; and was chosen arbitrarily. It must be mentioned that this
particular example represents the general behaviour of the fits. The figure
suggest that the posterior in this subspace convergences to a multivariate
Gaussian-like distribution. Notice that the confidence levels for the 50% of
the points are very close to the ones for the 100%, which can lead us to
conclude that R = 0.01 exceeds the needs of our present purposes.

On the other hand, it is important to keep in mind that the convergence
test was applied to the 8 independent chains, meaning that it ensures the
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convergence of the merged chain, but not necessarily the convergence of the
individual chains. This is depicted in Figure 4.2, where confidence levels
are plotted for the results obtained from the same fit as in Figure 4.1. The
distribution from the 8 independent chains is shown along with the one from
the merged chain. Note that the contours from the independent chains are
less well-defined than the contours from the merged chain. Another inter-
esting feature on this plot is the fact that the 2-D projections that involve
any of the parameters Σ∥, Σ⊥ and Σs do not seem to follow a Gaussian
distribution.
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Figure 4.1: Corner plot for the subspace (α∥, α⊥, b, β) showing the evolution
of the distribution with the number of points. Different colours represent
different percentages of the total number of points: 10%, 20%, 50% and
100%.
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Figure 4.2: Results obtained from individual chains are compared with the
merged chain.



4.4. RESULTS AND DISCUSSION 75

4.4.2 On how the results are reported

In the following subsections, the values for α∥ and α⊥ that are presented cor-
respond to the average of the distribution from the merged chains, whereas
the errors correspond to the standard deviation

σθ =

√
1

N − 1

∑
i

(
θ(i) − ⟨θ⟩

)2
, (4.34)

where θ can be either α∥ or α⊥ and ⟨θ⟩ indicates the mean, as usual.
When reporting the mean of the different subcases, the calculation is

carried out by weighting each value with the inverse of their respective vari-
ance 1/σ2, as follows. Given N subcases, with a reported value θj ± σj , the
mean is given by

⟨θ⟩ = C
N∑
j=1

θj
σ2
j

. (4.35)

Here, the normalisation factor is

C =

 N∑
j=1

1

σ2
j

−1

. (4.36)

Concerning the error, the weighted mean of the variances is

⟨σ2⟩ = C
N∑
j=1

σ2
j

σ2
j

= NC, (4.37)

while the variance of the results is given by

σ2
scatter =

1

N − 1
C

N∑
j=1

(θj − ⟨θ⟩)2

σ2
j

. (4.38)

Hence, the total error is estimated by adding up both quantities in quadra-
ture,

σtotal =
√
⟨σ2⟩+ σ2

scatter. (4.39)

4.4.3 Fixed amplitude covariance

Figure 4.3 shows the results obtained for α∥ and α⊥ corresponding to the
fixed amplitude covariance matrix with the different variations. The two
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most important features of this figure are: (i) All the individual measure-
ments are consistent, within less than 2 standard deviations (2-σ), with the
expected values for the fiducial cosmology (α∥ = α⊥ = 1), which gives a
reasonable estimate of the expected precision of our fitter. (ii) The errors
are below the forecast errors for both Year 1 and even Year 5 of the DESI
experiment.

The overall means of these measurements are:

α∥ = 0.9983± 0.0029, (4.40)

α⊥ = 0.9989± 0.0016. (4.41)

There are several worth-mentioning factors in figure 4.3. Firstly, both
α∥ and α⊥ are in general underestimated, resulting in the underestimated
means given above. This can be most likely attributed to cosmic variance.
Additionally, results appear to be virtually insensitive to the fitting range,
while the smoothing scale seems to play a significant role in determining
both parameters. Now, let us discuss the tendencies for both parameters
separately:

• For α∥: Values tend to to increase with Σsmooth for the anisotropic re-
construction convention. Measurements corresponding to the isotropic
convention are always shifted towards lower values with respect to
their anisotropic counterpart; for Σsmooth = 10, 15h−1Mpc this dif-
ference is slightly less than 1-σ, although the difference is smaller for
Σsmooth = 5h−1Mpc, causing the isotropic case with smoothing scale
Σsmooth = 10h−1Mpc to yield the smallest value for α∥. Note that a
smoothing scale Σsmooth = 5h−1Mpc tends to give peculiarly larger
errors for the isotropic convention.

• For α⊥: For a given smoothing scale, values for both reconstruction
conventions are in well agreement, differing by less than 0.03%. The
less biased estimates are obtained with smoothing scale Σsmooth =
10h−1Mpc, while the most biased results correspond to Σsmooth =
15h−1Mpc. In this case, all of the errors are consistent with each
other.
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Note that it would not make sense to try to conclude, from this data
alone, that there is a preferred configuration for the fitting. In particular,
just by looking at figure 4.3 one could argue that the optimal settings for α∥
are: anisotropic convention, Σsmooth = 15h−1Mpc and smin = 35h−1Mpc;
while at the same time asserting that for α⊥ the best settings are: isotropic
convention, Σsmooth = 10h−1Mpc and smin = 45h−1Mpc. Which are, of
course, non-compatible conclusions. Furthermore, recall that these tests
were performed with only one ELG catalogue. An analysis where the sys-
tematics associated to our fitter could be studied thoroughly, as well as
determining the best overall configuration for the fitting, would require the
use of several simulations.

So far, we have been considering the results obtained from the chains,
without considering what the actual fits look like. Figures 4.4, 4.5 and 4.6
show the data points with the respective theoretical template evaluated at
the best-fit values. To be precise, we took the mean from the sample for
b, β, α∥, α⊥, while for Σ∥, Σ⊥, and Σs the median value was used, as their
distribution is far from Gaussian. Error bars were calculated by taking the
square root of the diagonal of the covariance matrix. Each plot shows the
list of values in addition to the value of the reduced chi squared χ2/ν, where
ν is the number of degrees of freedom (in this case, the length of the data
vector minus the number of free parameters). Recall that this quantity can
be used to measure the goodness of fit, and the rule of thumb indicates
that ideally χ2/ν ∼ 1. It can be noted that for Σsmooth = 5h−1Mpc the
criteria is met in general (except for the anisotropic reconstruction with
smin = 35h−1Mpc), while for the other two cases the reduced chi-squared
tends to be closer to 2. However, “by eye” the fitting appears to be fairly
reasonable, while at the same time error bars are so small that they are not
appreciable in most cases. Hence, the high values of chi squared may be
due to these small errors (in comparison to the errors corresponding to the
non-fixed amplitude covariance). Moreover, there appears to be a tendency
for the isotropic reconstruction results to yield lower values of chi squared
than their anisotropic counterpart, and thus presumably better fits.
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Figure 4.4: Fits corresponding to Σsmooth = 5h−1Mpc with a fixed ampli-
tude covariance matrix. Blue lines represent the monopole, while red lines
represent the quadrupole.
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Figure 4.5: Fits corresponding to Σsmooth = 10h−1Mpc with a fixed ampli-
tude covariance matrix. Blue lines represent the monopole, while red lines
represent the quadrupole.
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Figure 4.6: Fits corresponding to Σsmooth = 15h−1Mpc with a fixed ampli-
tude covariance matrix. Blue lines represent the monopole, while red lines
represent the quadrupole.
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4.4.4 Non-fixed amplitude covariance

For non-fixed amplitude covariance (Figure 4.7), the tendencies are practi-
cally the same as in the previous case, with the noticeable difference that
now the error bars have increased by about 60% and 40% for α∥ and α⊥,
respectively. Note that despite these larger errors, they remain significantly
smaller than the forecasted error for the Year 1 of DESI. With respect to
the Year 5 forecast, errors for α⊥ still exceed the precision, while errors for
α∥ are only just in agreement. Moreover, the former finding with regard to
the 2-σ intervals remains valid. The overall means are

α∥ = 1.0004± 0.0047, (4.42)

α⊥ = 0.9988± 0.0023. (4.43)

The errors are 162% and 143% of the respective values for the fixed ampli-
tude covariance matrix.

Note that this measurement for α⊥ seems to have the same accuracy as
the one in the previous section. In contrast, the value for α∥ obtained in
this case is more accurate than the one for fixed amplitude covariance. This
is due to the fact that, as opposed to the behaviour shown in Figure 4.3,
where all values of α∥ are underestimated, in Figure 4.7 there is a balance
between underestimated and overestimated values. Comparing each subcase
individually, it can be seen that for non-fixed amplitude covariance values
are systematically shifted towards higher values by 15-30%.

Figures 4.8, 4.9 and 4.10 show the data points in comparison with the
model evaluated at the best-fit values. The reduced chi-squared values have
decreased with respect to those obtained with the fixed-amplitude covariance
matrix by virtue of the larger error bars, as one would naturally expect.
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convention for the non-fixed amplitude covariance case.
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Figure 4.8: Fits corresponding to Σsmooth = 5h−1Mpc with a non-fixed
amplitude covariance matrix. Blue lines represent the monopole, while red
lines represent the quadrupole.
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Figure 4.9: Fits corresponding to Σsmooth = 10h−1Mpc with a non-fixed
amplitude covariance matrix. Blue lines represent the monopole, while red
lines represent the quadrupole.
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Figure 4.10: Fits corresponding to Σsmooth = 15h−1Mpc with a non-fixed
amplitude covariance matrix. Blue lines represent the monopole, while red
lines represent the quadrupole.
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4.4.5 Additional tests

Fixing sigmas

Figure 4.11 compares the values measured with our standard methodology
with those obtained by reducing the number of free parameters (cf. 4.3),
where Σ∥,Σ⊥ and Σs were kept fixed to the values obtained by minimising
χ2 a priori. The differences are negligible in the main: between 0.0015%
and 0.012%.

Even though these sigmas are treated as nuisance parameters in our fit-
ter, recall that they have actual physical meaning (cf. 2.1.2, 2.5), unlike
the broad-band correction terms. Thus, dispensing with them as free pa-
rameters should not be a trivial matter, especially considering that their
marginalised posterior is not Gaussian-like, but rather a spread distribu-
tion with no clear centre. The following explanation may account for the
fact that practically the same measurements are recovered as with the regu-
lar methodology: when minimising χ2, the numerical optimisation method
(namely, the scipy implementation of the BFGS algorithm) converges to one
of the values enclosed withing the 68% confidence level for (Σ∥,Σ⊥,Σs), not
necessarily the mean or the median of the posterior; this value is kept fixed
during the MCMC, causing the broad-band coefficients to be the only pa-
rameters to modulate the non-linearities. Hence, the fitter “compensates”
for the lack of free sigmas by tuning the broad-band coefficients accordingly,
since they are analytically solved for, as opposed to the rest of the parame-
ters. This behaviour can be regarded as a reassurance of the robustness of
our methodology.

Covariance and smoothing scale

As stated above, the official results of the BAO Mock Challenge were calcu-
lated using the same covariance matrix corresponding to a single smoothing
scale Σsmooth = 15h−1Mpc with all of the multipoles sets, regardless of the
smoothing scale of the catalogues. In Figure 4.12, the effect of this simpli-
fication is illustrated for the case of non-fixed amplitude covariance. Only
results for Σsmooth = 5h−1Mpc and Σsmooth = 10h−1Mpc are shown, as the
results for Σsmooth = 15h−1Mpc do not suffer from this additional bias.

For α∥, measurements with the respective covariance (filled markers)
show a tendency towards lower values, with a mean shift of 0.14% with
respect to the previously reported numbers (unfilled markers). Errors do
not vary significantly, although there is special case: isotropic reconstruction
with smoothing scale of 5h−1Mpc, where the previously anomalous large
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error has been reduced.
The differences in α⊥ exhibit a slightly different behaviour. For the

smoothing scale Σsmooth = 10h−1Mpc, the new values are moderately smaller
than the original ones, while for Σsmooth = 5h−1Mpc, they are generally
larger, albeit barely appreciably. Standard deviations remain virtually the
same.

Multipoles (FFT vs. pair counts)

In Figure 4.13 a general upward trend can be discerned for α∥ values obtained
with the FFT multipoles with respect to the original measurements, with
values shifting up to 0.15%. In general, the shift is more pronounced for the
anisotropic convention and there are cases, corresponding to the isotropic
convention, where the shift is actually towards lower values, for example
for a smoothing scale of 15h−1Mpc with smin = 45h−1Mpc and smin =
55h−1Mpc. There is no significant impact on the errors; although some

values of
α∥−1

σα∥
are slightly improved as a result of the upward shift. This

may be misleading, however, since the results for this particular realisation
tend to systematically underestimate α∥, as discussed in 4.4.3.

Conversely, values for α⊥ are modified in such a way that their mag-
nitude is moderately smaller than the previous ones calculated by making
use of the pair-counts multipoles. The tendency is clear regardless of the
reconstruction type; although it can be seen that for Σsmooth = 5h−1Mpc
the anisotropic reconstruction results are less sensitive to the change. As a
result of the original underestimation of the parameters, the opposite effect
takes place to the one observed for α∥; namely α⊥−1

σα⊥
is slightly worsened,

yet it remains within the 2-σ range.
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Figure 4.11: Comparison of the regular fit methodology (unfilled markers)
vs. fits with fixed Σ∥,Σ⊥ and Σs (filled markers).
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Figure 4.12: Tests of the effect of using the wrong smoothing scale in the
covariance matrix, as opposed of using the respective smoothing.
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Figure 4.13: Comparison of the results obtained by using the LS estimator
for the multipoles (unfilled markers) vs. using approximate multipoles by
Hankel transforming the power spectrum multipoles (filled markers).
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Chapter 5

Summary and Conclusions

In this thesis, the generalities of the BAO method were presented following
an instructive approach rather than a comprehensive one. Emphasis was
placed on the physics concerning the observed large-scale structure clus-
tering measurements at low z. The sound waves that propagated in the
baryon-photon plasma during the early Universe froze in place at the epoch
of recombination, yielding a resonant wavelength in the two-point statistics
of the matter distribution. This preferred scale has a comoving value of
100h−1Mpc. The resultant overdensities served as seeds to the large-scale
structure formation that took place during the matter dominated era. The
galaxies we observe today are used as tracers of the underlying matter dis-
tribution. However, several effects must be taken into account if one wants
to be able to recover cosmological information from a galaxy survey.

In particular, the anisotropic signal due to RSD was introduced along
with the multipoles of the two-point statistics. They represent the central
objects of our study, as in order to find constrains for the parameters of
interest, multipoles measurements for the data contrasted with those coming
from theory. In addition, the degradation of the BAO peak due to non-
linear gravitational collapse was thoroughly discussed and it was argued
how it can be modelled by an anisotropic Gaussian damping. Reconstruction
algorithms were reviewed as well; they re applied to galaxy catalogues with
the objective of sharpening the BAO peak by decreasing the effects of linear
bulk-flows. Most importantly, the role of the Alcock-Paczyński with regard
to distance measurements was stressed. The information is comprised in
the dilation parameters α∥ and α⊥, which are directly related to H(z) and
DA(z), respectively.

The methodology was tested in the context of Stage 2 of the BAO Mock

93
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Challenge as part of the DESI Collaboration. Briefly, the Mock Challenge
consists of testing and perfecting the BAO analysis pipeline by making use
of galaxy mock catalogues. Namely, the ELG mocks derived from UNIT
simulations were used as the main data, whereas covariance matrices were
computed by making use of EZmock catalogues. Additionally, cubic boxes
of side length of 3h1Gpc were used in this stage. UNIT simulations are an
instance of full N-body simulations, but with a special variance reduction
feature in the initial conditions. In contrast, EZmocks are fast simulations
with the implementation of a effective biasing model. The general aspects
of both N-body simulations and EZmocks were outlined in the text.

The implementation of the BAO fitter herein presented follows the mod-
ern Bayesian approach in combination with a Markov Chain Monte Carlo
method. Specifically, the brand-new Zeus sampler was made use of, which
is an implementation of the ensemble slice sampling algorithm. Our fitter
works in configuration space and analytically solves for the broad-band cor-
rection terms, so that it effectively works in a 7-dimensional parameter space
θ = (b, β, α∥, α⊥,Σ∥,Σ⊥,Σs). The dilation alpha parameters are the param-
eters of interest, while the remaining parameters act as nuisance parameters
and are marginalised over.

In order to test the performance of the BAO fitter, as part of the official
tasks of the Stage 2 of the Mock Challenge; variations in the type of covari-
ance matrix, reconstruction algorithm, smoothing scale, and fitting range
were considered. Our fitter exhibits an extraordinarily low sensitivity to all
of these differences, apart from the expected increase in errors for the non-
fixed amplitude covariance with respect to the fixed one. Fitting range seems
to play a negligible role in general, whereas differences are easily perceived
when varying the smoothing scale. Values corresponding to the different re-
construction conventions differ from each other in a systematic way. Values
for α∥ and α⊥ tend to be underestimated in general for the fixed-amplitude
covariance cases, which can be attributed to cosmic variance. In turn, α∥
measurements are slightly more accurate for the non-amplitude covariance
case, as a result of an upward shift trend. The most important attribute of
these results is the following: for the fixed-amplitude covariance matrix, we
were able to test the methodology with the required precision for the Year
1 analyses. For this UNIT catalogue, we found an error that corresponds
to 25% of the statistical error expected for DESI Year 1 data. The results
obtained in this work are compatible within 2-σ with the Gaussian distribu-
tion expected for the errors. With respect to the Year 5 forecast, the errors
obtained are of the same order of magnitude, which means that for Year 5
analyses mocks with greater effective volume would be required in order to
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reach the required precision. Taking into account the different variations in
the methodology, a scattering of 0.03% and 0.01% was found for α∥ and α⊥,
respectively; which was added in quadrature to the statistical error. This
signifies that, for the analysed mock, these variations could only account for
0.9% of the total error for α∥ and 0.4% of the total error for α⊥.
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