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Chapter 1

Introduction

First passage problems find ubiquitous applications in several areas of science, as numerous
phenomena are controlled by the time taken by a process to reach for the first time a
specified site in space, or threshold, or configuration [108, 122, 61]. In biological systems,
first passage processes allow us to predict the sizes of neuronal avalanches in neocortical
circuits [12] or the search strategies adopted by foraging animals to find food [140, 75].
In chemistry, processes are often limited by reaction rates which can be understood in
terms of a mean first passage time (MFPT), such as the mean encounter time between
two diffusing molecules, or the two diffusive ends of a polymer chain in solution [134, 43],
or between remote DNA segments [147, 38].

Many search problems are modelled as a random walk or a Brownian particle and
a fixed target site to be found, such that the process ends instantaneously upon first
encounter [100]. However, in many applications, due to errors or imperfections in the
binding or detection phase, a search may be completed only after several passages on the
target region. On discrete lattices, partial absorption can be modelled by introducing an
absorption probability lower than unity each time the searcher occupies the target site
[87, 33, 27]. In the continuous limit, this rule becomes equivalent to a radiation boundary
condition, where the absorption probability flux is proportional to the probability density
at the target [108, 124, 105].

However, some systems cannot be described by partial absorption only: this is the
case when the environment of the searcher fluctuates in time, for instance, when the
target sites are subject to an internal dynamics, such as a switching process between an
active and an inactive state, or detectable and undetectable, where the target can be
hidden or inactive for long periods, and thus not available for reaction or encounter of the
searcher [16, 18, 113].

In cell biology, ion channels are targets for ions in the cell and can be modelled as
gates that stochastically open and close to control the flux of ions that cross the mem-
brane, affecting transport of material, cell signaling, or drug delivery [29, 110]. Studies
on single ion-channels have shown that opening or closing events of the pore occur over
characteristic dwell times ranging from 0.5 to hundreds of ms [76, 115]. These times are
comparable or much larger than the diffusion times of K+ or Ca2+ ions at the scale of a
cell (τD ∼ 0.1 ms) [47]. Hence, first hitting times are likely to be limited by the channel
state [84, 91].

Random switching processes between different states are also common in gene expres-
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: Protein performing 1d sliding along the DNA strands with 3d diffusion in the volume cell.
Reprinted figure with permission from [17].

sion. A transcription factor may diffuse to reach its target promoter in order to activate
the gene expression [42, 70, 73, 120], and this can be achieved by a combination of sliding
along the DNA contour, and diffusive hops within the volume of the cell (see Fig. 1.1). In
any case, gene expression is possible only if the binding target site along the DNA chain
is accessible to the transcription factors [94, 136]. When the chromatin is in the unfolded
state, the binding site is accessible and gene expression may start, however, when the
chromatin is folded, transcription is not allowed [102, 146, 48]. It has been proposed
that the accessibility of the binding sites is governed by a Poisson distributed switching
process, with fixed transition rates between the reactive and non-reactive states [102].

Switching processes are of relevance in foraging ecology as well. To prevent attacks
from predators, several organisms adopt crypsis as their primary defense [114]. Many
species may conceal by camouflaging themselves for some periods of time in their en-
vironment to make their detection more difficult [131, 137, 49]. In some cases, cryptic
prey prefer to rest for a long time in a particular area, where its background matching is
better [64, 67], in other cases, prey are able to be cryptic and undetectable for long peri-
ods of time by hiding behind an object or adopting a subterranean lifestyle, thus forcing
predators to develop different mechanisms to recognize them, either by forming a search
image or by varying their searching rate [49, 114, 62, 104].

The search of intermittent targets is also of interest in rescue operations, which are
often carried out in scenarios where a target must be located within the shortest amount of
time possible. In the case of a person lost in nature, for instance, minimizing the searching
time can be crucial for survival. However, such target may not remain always detectable
due to varying climatic conditions, or because the person is unable to call continuously
for help, or may have an emitter with limited battery. Some experiments have simulated
random search problems by using robots equipped with a receptor in search of intermittent
electromagnetic signals emitted by a fixed source [128, 127].

Despite the wide range of phenomena that we can find in nature that involve reaction
with intermittent targets, there are surprisingly few theoretical studies that have focused
on the consequences of target intermittency on first encounter statistics. The problem
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in which diffusive ligands bind to a protein that stochastically switches between two
conformational states, and it is only reactive in one state was first studied in [135]. In
this paper, target encounters are described in terms of the effective flux of ligands that
bind to the protein. A more recent extension of this work has been done in [31]. The
inclusion of the intermittent target with its own dynamics independent of the dynamics of
the searcher has been also modeled in [113], where the intermittence is taken into account
in the target state and the absorption or capture is only possible when the target is in the
active state. However, this work focuses on the mean time in which the target is found
by a set of searchers.

The time-scale associated with the own dynamics of the target introduces a new pa-
rameter, additional to the absorption probability, that markedly affects the first passage
time properties, as we will see in this work. Further, when we consider the intermittence
as an intrinsic property of the target (and not as a consequence of the walk strategy of the
searcher), this allows us to face the question of the time needed to find a target, among
a set of targets having independent internal dynamics.

Whereas the first passage properties of diffusive processes with fluctuating targets
have not been well studied, in recent years a significant interest has been dedicated to
understanding the search mechanisms that can improve target encounter. An example
is the case of intermittent search [15, 28, 17], where slow diffusive phases of search are
interspersed with fast phases of ballistic motion, during which target detection by the
searcher is not possible. It can be proven [15] that, with this strategy, the mean encounter
time can be minimized with respect to the rate at which the searcher switches between
the diffusing and the relocation or ballistic phase. Intermittent search is favorable as it
allows the searcher to explore different regions of space with little overlap between them,
which would be covered much more slowly by a simple Brownian motion.

The growing interest in non-Brownian search strategies lies in the fact that many or-
ganisms, ranging from motile cells to animals, perform non-Brownian motions in order
to efficiently explore their environment [71, 45, 123]. Special interest has been dedicated
to search processes such as Lévy flights [139, 138, 140, 83], ballistic movements [139, 10]
and run-and-tumble motion [7, 89]. Of special interest in this work is the run-and-tumble
(RT) motion, which consists of straight-line motion at constant speed (run) interspersed
with random re-orientations occurring with a constant rate (tumble). Despite of its sim-
plicity, the RT motion has served to model a wide range of non-equilibrium systems such
as self-propelled particles [51, 89], electron collisions in a Lorentz gas [90] or the motion
of bacteria such as E. coli, Salmonella or the marine bacteria P. haloplanktis [20, 132].
The motility of microswimers in diverse environments has been better understood thanks
to analytical results on the RT model. In confined environments, run-and-tumble parti-
cles (RTP) tend to accumulate near the boundaries [89, 51]. In the presence of steady
potentials, transitions between active and passive-like behaviour have been observed [46].
RTPs subject to periodic and asymmetric potentials exhibit a so-called active ratchet ef-
fect [6]. In [4] a run-and-tumble particle in the presence of imperfect boundaries has been
considered. These studies have brought evidence that run-and-tumble particles exhibit
properties that contrast with those of their Brownian counterparts.

Particularly important for the optimization of search processes is also the case of dif-
fusion with stochastic resetting, in which the motion of a searcher is randomly interrupted
and restarted from the initial position [54, 55]. Resetting allows the searcher to explore
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new paths and to cut-off those unfruitful trajectories that explore regions that are far from
the target region [59]. In search problems, restarting (or resetting) to the initial configura-
tion causes drastic effects on the behaviour of the first passage times. Under this scheme,
the mean first passage time (MFPT), which is infinite for free diffusion in infinite domains,
becomes finite; furthermore, it is found that this quantity can be minimized with respect
to the resetting rate. In Brownian diffusion under resetting, the optimal resetting rate
depends on the diffusion coefficient and the distance between the target and the starting
point. In unbounded domains and in the absence of absorbing targets, stochastic reset-
ting also generates non-equilibrium steady states. For a diffusive particle, for instance,
the probability density tends to an asymptotic distribution, in marked contrast with the
non-stationary Gaussian profiles that characterize free diffusion [54, 58].

Despite the fact that the features of diffusion with resetting are interesting, imple-
menting this process in a lab experiment with a physical particle is challenging since, at
least in its original form, it considers that the restart process occurs infinitely fast and
with perfect precision to the initial configuration, i.e., the searcher must immediately
restart from exactly the same position. Both aspects make experiments difficult (if not
impossible) to carry out. Therefore, the original model must be modified in order to take
into account physical constraints. In addition, it is worth noting that the resetting process
can be viewed as a diffusive process in fluctuating environments, in which intermittent
forces (more specifically time-dependent potentials) constrain the motion of the particle.
This last approach is the one we use in the present document. Although the two problems
are different, the methods and theoretical techniques developed for the intermittent target
problem will be useful to model a realistic resetting process.

In the present work we address several problems of search processes in intermittent
media: i) a diffusive particle searching for an intermittent target and ii) a model of
diffusion with stochastic resetting that can be implemented in lab experiments. For the
first case, the target will stochastically transit between two phases of detection, whereas
the movement of the particle will be Brownian diffusion. Extensions to other types of
diffusion such as diffusion with stochastic resetting or run-and-tumble motion will be
considered. We will focus on the full distribution of the first hitting times in this problem.
In the second problem, we will study a diffusive particle driven by the action of a confining
potential that is applied during random time intervals. We will explore all the relevant
features of this system when there is no target and when a steady target is placed at a
certain distance of the potential minimum. The present document is organized as follows:

We begin in chapter 2 with a brief background of the work and what has been done
up to now in relation with first passage processes. We start by mentioning the most well-
known works on the subject and their main results. Next, we review first passage time
problems with fluctuating boundaries. Following this, we present the model of diffusion
with stochastic resetting. In this part, we analyze the first hitting properties of this
problem and discuss the difficulties that arise when implementing in real experiments.

In Chapter 3 we expose the main objectives we are pursuing, as well as the problems
we want to cover and the results we hope to achieve in this work.

In chapter 4 we provide an introduction to the main mathematical methods that will
be needed later to carry out our research project. This chapter presents useful tools
in the area of first passage problems and defines the main relevant quantities, such as
the survival probability, the first hitting time distribution, and the mean first hitting
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time. We dedicate section 4.2 to the deduction of the backward Fokker-Planck equation
that will be essential for calculating the temporal behavior of the survival probability.
Equally important is section 4.4 where we establish the boundary conditions associated
to the Fokker-Planck equation for the most simple cases with absorbing and reflecting
boundaries. We also include the partial absorption case.

In the following two chapters we introduce the problems we are studying and present
their analysis. In chapter 5 we investigate random searches of fluctuating targets. Here
we focus on the statistical properties of the first hitting time of a diffusive particle to an
intermittent target located at a fixed position. The target dynamics are governed by a
Markov process which consists of randomly switching between two states, where target
detection is allowed only in one of the two.

We start in section 5.1 with the study of a Brownian particle in the presence of an
intermittent target. The exact first passage time distribution on the infinite line is derived.
We find that in the limit of high transition rates target intermittency has little effects on
first passage times, independently of the crypticity. In the general case, the typical first
hitting time is substantially increased due to the target dynamics. In section 5.1.5 we
analyze the shape of the first hitting time density for long times, finding a scaling regime
in t−1/2, followed by the well known asymptotic behavior in t−3/2 dependence. At the
end of this chapter, we carefully analyze the conditions that lead to the presence of this
intermediate regime as a function of the intermittency parameters.

In Section 5.2 we extend the above study to Brownian motion with stochastic resetting.
We investigate how the implementation of resetting affects the statistical properties of the
first hitting time to the intermittent target. We observe that the search time is minimum
at an optimal resetting rate that depends on the target transition rates. When the target
relaxation rate is much larger than both the resetting rate and the inverse diffusion time,
the system becomes equivalent to a partially absorbing boundary problem. In other cases,
however, the optimal resetting rate can be a non-monotonic function of the target rates,
a feature not observed in partial absorption. We compute the relative fluctuations of the
first hitting time around its mean and compare our results with the ungated case. The
usual universal behavior of these fluctuations for resetting processes at their optimum
breaks down due to the target internal dynamics.

Section 5.3 is dedicated to the run and tumble searcher. In this case, we analyze
two scenarios: the finite domain size where the particle is confined between two reflective
walls and the infinite domain. For the bounded case, the problem allows us to compute a
mean first hitting time, that we find becomes minimal when the particle performs ballistic
motion. To better comprise the behaviour of the first hitting time density, we calculate the
relative variance that it has a non-trivial dependence with the target dynamic parameters.
As in the Brownian case, in the infinite domain we found again the scaling decay t−1/2

for intermediate times before to the standard t−3/2 decaying. We interestingly found that
a persistent searcher slightly lengthens the duration of the intermediate regime and thus,
Brownian motion appears as the best option to diminish the effect of the target dynamics.

Chapter 6 is devoted to the study of random searches in fluctuating media. In Section
6.1 we explore the nonequilibrium diffusive process of a Brownian particle driven by a
piece-wise linear potential that intermittently turns on and off. We find a non monotonic
behaviour of the mean first hitting time as a function of the switched-on and switched-off
rates, and this mean time can be optimized. When the potential strength is varied, it
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is possible to observe first and second order transitions in the optimal rates. Our model
extends previous works in the literature related to stochastic resetting processes such that
several limiting cases can be recovered from it. In the absence of the absorbing barrier,
the system reaches a non-equilibrium steady state, irrespective of the switched-on and
switched-off rates and the potential strength.

In Section 6.2 we extend our study for more general potentials of the form v(x) =
k|x − x0|n/n. In particular, we focus on the harmonic potential case with n = 2. We
also recover previous results for the linear potential (n = 1). Similarly to the piece-wise
potential case, the MFPT to a fixed target can get optimized by intermittently applying a
confining potential. Again, we observe that the system undergoes a second order transition
in the optimal rates.

Finally, in chapter 7 we summarize the results of this research project and discuss our
findings.



Chapter 2

Background

In this chapter we make a brief review of the theory of first passage times from a historical
perspective, starting from the earliest works on this field up to the most recent advances
related with first passage problems in fluctuating media.

We start in Section 2.1 by presenting one of the first addressed problems that relate
with first passage times, namely, the gambler’s ruin problem. Following this, we present
the main works and achievements that have been made in order to mathematically for-
malize this type of problems.

In Section 2.2 we discuss the problem of diffusion in fluctuating media, where the
reactivity of the system boundaries varies in time and the diffusive particles are not always
absorbed upon boundary encounter. We named a few interesting cases that have been
observed in nature where this situation happens and we introduce the partial absorption
process that arises as the main way in which this phenomenon can be modeled.

Finally, Section 2.3 is devoted to presenting an interesting kind of stochastic processes
that is observed in real systems, and that finds many applications, namely, intermittent
search processes. The attention that these processes have gained in recent years surges
from the fact that they show rich features with respect to first passage properties. We focus
on instantaneous resetting processes which are a class of intermittent search. Introducing
instantaneous resetting processes is fundamental to understand our work in Chapter 6.

2.1 First passage problems
The interest in first passage time distributions has a long history. Perhaps the oldest
study that we can find related to first passage times in a random process is the well
known gambler’s ruin problem, that Pascal first proposed to Fermat in 1656 [50]. In this
problem, two gamblers play a game of chance. The gambler A starts with k units of
money, whereas the opponent B starts with N − k. In each trial of the game, the player
A wins a unit of money from B with probability p, or loses one unit to B with probability
q = 1− p. Conversely, the player B wins from A or loses to A with probability q and p,
respectively. The game ends when one player loses all his money. Pascal was interested
in the probability that the gambler A (or B) wins the game, and he could find a solution
using his knowledge of probability theory that was surging in these years.

In 1657, just a year later, Huygens announced the problem (without giving Pascal

7
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credit) in his De ratiociniis in ludo aleae, which is the first published book on probability
theory [129]. In this work, he proposed another solution that agreed with Pascal’s. The
gambler’s ruin problem rapidly gained the attention of the mathematics community and
it arose the question of determining the duration of play, i.e., the number of trials before
the gambler wins or loses. The first solutions for this question were given by Montmort,
Nicholas Bernoulli, and de Moivre, which, without rigorous proofs, were able to compute
an expression for the expected duration of play [129]. What they found was in fact the
mean first passage time for a discrete random process and it represented one of the first
important results in the theory of first passage problems.

τ
n

N

k

xn

Figure 2.1: Simulation of a gambler’s ruin problem with k = 5, N = 8 and p = q = 1/2. In this case, the
duration of play is τ = 21 steps.

Nowadays, the gambler’s ruin problem is described in terms of a random walk in
1d, where the money of the gambler represents a walker with position xn at the trial n,
starting at x0 = k ∈ (0, N). Each trial the walker jumps to the right with probability p,
or to the left with probability 1− p (see figure 2.1). When the walker reaches N for the
first time the gambler wins, and when it first reaches the origin the gambler loses. The
ruin and the win conditions represent two absorbing states of the system; once the walker
reaches one of them, it will be impossible to exit that state, and the process ends. The
time τ at which the ruin or the win occurs is the duration of the play and this number is
a random variable.

Expressing the mean duration of play 〈τ〉 in terms of a inhomogeneous differential
equation [74], one can find

〈τ〉 =


k(N − k) if p = q,

1
q−p

(
k −N 1−(q/p)k

1−(q/p)N

)
if p 6= q,

(2.1)

which has an interesting behaviour in the limit N → ∞: if q > p, the mean duration
reaches the finite value 〈τ〉 = k/(q − p), otherwise, the mean duration tends to infinity.
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Problems like the gambler ruin caused a great expectation among mathematicians,
who sought for a formal theory that proved these first results, which most of the time
came from their intuition or from combinatorial analysis, as was the case of the Fermat’s
solution of the gambler’s ruin problem (see [50]). It was not until the development of
probability theory and statistical physics, in the first decades of the 20th century, that
first passage problems began to be formally treated.

Figure 2.2: a) A molecule A (blue point) diffuses in the presence of a concentration of molecules B (red
point). When they interact for the first time a reaction occurs and a new molecule AB (green point) is
created. Lines represent the path that the diffusive particles travel. b) Potential U(X) for the Kramer’s
problem.

Particularly important are the pioneering works of E. Schrödinger [117] and Smolu-
chovsky [141] (see [122] for a brief discussion of these works), where the first passage time
problem for a continuous random process was posed and first attempts for solving it were
carried out. These works have had a great impact not only in physics and mathemat-
ics but in other areas of science such as chemistry and biology. The Smoluchovsky rate
theory allowed us to understand reactions rates between molecules using the diffusion-
controlled approach. The simplest case where two molecules A and B interact and react
to form a new complex molecule AB (see Fig. 2.2a) can be described in terms of a first
passage time problem, since reaction occurs at first encounter [39, 134, 108, 29]. As we
have mentioned in the introduction, this problem is of great interest since the principle
of diffusion-reaction underlies many other phenomena, such as animal foraging [140, 75],
in which a predator “reacts” with a prey when hunting, or proteins binding to DNA
for expressing a gene [147, 38, 135]. In the next section, we will return to this problem
for the case of fluctuating media and gated reactions, as it relates with the problem of
intermittent targets.

In a more realistic description of a chemical reaction, two nearby interacting molecules
are separated by a potential barrier, in such a way that the reaction occurs only if they
have enough energy to overcome it [61, 112]. This is the well known Kramer’s problem
after the work of Kramer in 1940 [77]. In this problem, a Brownian particle is subject to
the action of a bimodal potential U(x) that has two local minima and a local maximum,
where x is the particle position, as depicted in Fig. 2.2b. When the particle is on the left
side around x0, due to thermal fluctuations, there exists a probability that, after some
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time τ , the particle crosses the maxima at x1 for the first time, passing to the right side.
The time τ is in fact a first passage time and controls the reaction time. Certainly, once
the particle is around the minima x2 it can return to the left side in the same way by
crossing the barrier at x1. This is a problem of bistability where the process randomly
transits between two stable points around x0 and x2. Let suppose that a molecule A
is initially at x0 and other molecule B is at x2. If one assumes that the barrier height
U(x1)− U(x0) is very large, one can obtain the Arrhenius formula [61, 112]:

1
〈τ〉

= D

2πkT
√
|U ′′(x1)|U ′′(x0) exp

(
−U(x1)− U(x0)

kT

)
, (2.2)

where T is absolute temperature, D is the diffusion constant and k is the Boltzmann
constant. Eq. (2.2) gives the mean rate 1/〈τ〉 at which a reaction occurs.

With this advances, new mathematical concepts surged, such as the first passage time
distribution (the probability density of the random variable τ) and the survival probability
defined as the probability that the particle has not reached the target yet at time t, a
quantity related to the first one. Shortly after Kramer’s work, Siegert [122, 44] extended
some of the results of Schrödinger, Smoluchovsky, and others, giving a new perspective
to the diffusion processes. He also showed that the survival probability is solution of the
backward Fokker-Planck equation. We would like to mention that all these concepts will
be rigorously introduced in the following chapter, however, we emphasize the fact that
these are the most relevant quantities involved in first passage problems and contains all
the information that typically one would like to know in order to describe the first passage
properties of a system under study.

Since the gambler’s ruin problem, discrete random processes have been also extensively
studied (see references in [60, 61, 108, 109]) and the random walk model gained much
relevance for physicist, since it allowed to make an amalgamation of discrete-time processes
with continuous one. Specially important for our study is the work of Sparre Andersen
[2, 3], which gave the proof of a general result, pointing to a surprizing universality of
discrete time processes. Consider a walker such as the one in Fig. 2.1, performing at each
step random increments ` drawn from a distribution p(`). What Sparre Andersen showed
is that, no matters what kind of distribution p(`) is followed by the walker steps, as long
as it is symmetrical, p(`) = p(−`), and ` is continuous, the probability that the position
of the walker has remained always non-negative up to step n is

Q(0, n) =
(

2n
n

)
2−2n, (2.3)

which in the limit of large n decays, to leading order, as

Q(0, n) ∼ 1√
πn

. (2.4)

Q(0, n) is also called the survival probability at n when the walker starts at x = 0. As
the interpretation of this result requires some care, we will discuss it in section 4.9.

Another work that ought to be mentioned is the Montroll’s paper of 1965 [101], which
represented a significant advance in the formalization of the first passage properties of
random walks. In this work, he was able to calculate important quantities such as the
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moments of the first passage time distribution, the mean number of points visited r times,
or the probability for the walker to return to the origin for the first time after n steps. This
paper is also the cornerstone of subsequent works that initiated the field of anomalous
diffusive transport (see [121] for a brief historical review of Montroll’s work).

Currently, the theory of first passage time is a rich and constantly growing field that
comprises the analysis of many different problems in diverse areas of science such as
physics, mathematics, biology, and more recently in computer science or economy, among
others. We refer the reader to [108, 29, 61], where he or she will find a complete exposition
of the state of the art on the theory of first passage processes and applications. The
richness of this field is largely due to the fact that many phenomena rely on the time
it takes a random process to first reach a configuration. This is the case of fluctuating
media, in which sometimes a certain configuration cannot be reached immediately by the
random process. As this is a wide and interesting topic to be discussed, it deserves a
section apart.

2.2 Fluctuating media
As we have seen, the first passage theory deals with processes that randomly reach some
configuration for the first time. In the works mentioned above, it has been considered
that these configurations are always available for the random process. In the chemical
reaction theory of Smoluchovsky, for instance, a reaction occurs immediately after a first
interaction between the molecules A and B and they form a new compound AB. In
the Kramer’s problem, the particle crosses the barrier as soon as it reaches the local
maximum. In the gambler’s ruin problem, the player is ruined as soon as he loses all his
money and therefore cannot play again. All these situations are examples in which the
configurations or boundaries of the system are perfectly absorbent; the random process
ends once it reaches the boundary.

Mathematically, this condition on the system imposes a survival probability that van-
ishes at the boundaries. This means that there will be no more chances for the process
to continue when it first reaches the boundaries. However, there are many situations in
which the random process may not end upon the first encounter and needs to reach the
boundaries many times before to be absorbed. Suppose, for example, that in the gam-
bler’s problem, when the player is ruined, with some probability p′ the opponent lends
him a unit of money for playing once again. In the random walk solution, this would
mean that when the walker crosses the origin, with a probability p′ it is reflected, and the
walk continues. Strictly speaking, in this case, we do not talk of first passage time, but
first hitting time since we are measuring the time in which a first hit or reaction with the
boundaries occurs.

These scenarios are observed in natural phenomena, as is the case of oxygen molecules
diffusing in blood cells to bind hemoglobin and myoglobin. It is found that, in some cases,
the oxygen cannot bind due to the presence of other proteins that block the entrance of
the heme pockets [135]. The proteins behave as gates that stochastically open and close,
controlling the binding of oxygen. This system has been modeled as a controlled-diffusive
reaction (as in Smoluchovky theory) in which the reactive molecules A randomly switches
to an unreactive state A′ where they cannot interact with the molecules B [95, 135].
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Figure 2.3: Photomicrograph of an electrode inside a squid giant axon. This is how Hodgkin and Huxley
saw the axon in the microscope. Image taken from [72].

In a similar fashion, ion channels in the cell membrane can control the flux of K+ and
Na+ ions into and out of cell [29]. The latter was investigated by Hudgkin and Huxley
in a series of papers that eventually led them to share the Nobel prize in Physiology or
Medicine in 1963 (see [119]). In these works, they studied the squid giant axon (see Fig.
2.3) and were able to describe the mechanism that underlies ions transport. They observed
that a difference in the Sodium and Potassium ions concentration within and outside the
cell generated a voltage difference on the lipid bilayer membrane, which produced a change
in its permeability. They found out that some protein channels, that remained closed at
the rest voltage, began to open and close stochastically at a voltage-dependent rate; these
channels act as intermittent random gates [53].

One of the most important mechanisms that controls gene expression is transcriptional
regulation. This mechanism is mediated by proteins known as transcription factors, which
serve as switches that turn gene expression on and off [29]. The transcription factors that
are responsible for turning the expression off are called repressors. These proteins bind
to the promoter region along the DNA, preventing the mRNA molecule from transcribing
the gene code. Some transcription factors, such as the lac repressor of the bacterium
Escherichia coli, enhance repression by simultaneously binding to two DNA sites [133],
which causes the DNA to run into itself and form a loop. Despite the energetic cost
of deforming the DNA, the looped conformation can be sustained for long periods of
time [37], after which the DNA unwinds. In this case, a patter of intermittency can be
observed (see figure 2.4).

In a quite different context, patterns of intermittency been observed in animal foraging.
Arctic ground squirrels can alternate in phases above and below ground during a day [145].
In the phases above ground, these semi-fossorial animals spend time foraging for food and
going on excursions to mate, despite the high risk of predation. Certainly, they can reduce
this risk by remaining below ground, albeit the energy cost this may represent as they
are not foraging. They have to compensate for both dynamics, performing intermittent
patterns in their activity as depicted in Fig. 2.4. It is interesting to notice that, due
to the lactation and maternal care, females have to return more often to their burrows.
The natural predators of arctic squirrels such as the red fox (Vulpes vulpes), the grey wolf
(Canis lupus), or golden eagles (Aquila chrysaetos), have to deal with this intermittent
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behaviour when hunting.

Figure 2.4: a) Time that the DNA of the bacterium Escherichia coli spends in the looped/unlooped
state measured by tethered particle motion. Image taken from [37]. b) Time spend above/below ground
deduced from the overall dynamic body acceleration (ODBA) on 19-21 May 2015, from two females (top
panels) and two males arctic ground squirrels (bottom panels). Image taken from [145].

Systems where absorption does not occur instantaneously have been modelled by par-
tial absorption boundaries, which have the property that, with some probability, they
absorb or reflect the random process [14, 108], as in the modified gambler’s problem that
we mentioned above. For the continuum case of controlled-diffusion, the partial absorp-
tion condition is described in terms of the average difference of the flux of particles that
react and those that do not. The mathematical treatment for these boundary conditions
will be seen more in detail in chapter 4.

The partial absorption model has allowed treating many real systems and has had a
favorable acceptance in the field of first passage problems. However, as it reduces the
absorbing condition to a simple probability, it does not capture the rich features that
the dynamics of the boundaries can have [68]. One of our main aims in this work is to
face the problem of imperfect absorption from a perspective in which the dynamics of the
boundaries (or targets) are independent of those of the searching entities.

2.3 Stochastic search strategies
The first passage properties of real systems strongly depend on the strategy that the
searcher adopts in order to expedite the target encounter. This can be observed in the
search process of transcription factors in the cellular environment. As we have mentioned
in the introduction, it has been shown experimentally that these proteins perform a 3D
diffusion in the volume cell combined with a 1d sliding on the DNA strands where they
search for their specific binding site [18, 70, 73, 120, 52]. When the transcription factors
alternate between these two diffusing phases they can reduce the search duration or the
first passage time to the binding side. Nevertheless, experiments also show that changes
in the DNA conformation or a partial folding of the protein can accelerate or decelerate
target detection [126]; faster excursions (that are possible when the binding energies are
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low) cannot allow target recognition, whereas slower scanning with high binding energies
retards target encounter.

From the above example, we can see that fluctuations in real systems are not only
present at the boundaries, but also in the bulk, and this affects the dynamics of the
search and hence, the first passage properties of the search dynamics. The particular
dynamics in which target detection is allowed only in one phase of the search process is
called intermittent search [15]. Typically, in this process, target recognition is allowed
during a slow motion phase, whereas faster motion is used to relocate the searcher [17].
With this model, the behaviour of real systems (such as transcription factors) can be
emulated and very interesting properties result from these dynamics. It is worth noting
that this model bears a certain analogy with intermittent dynamic targets. But the two
problems are not equivalent, except in specific particular cases. In one case, the target
is intermittently invisible, whereas, in the other, the searcher is intermittently “blind”.
When there are many targets, the two problems are thus very different.

Let us exemplify a one-dimensional model of intermittent search [15]. Suppose that
with rate λ1 the searcher switches from the recognition phase, where it diffuses slowly with
constant diffusion D, to a ballistic phase with velocities v or −v, where v is a constant.
Conversely, with rate λ2 the searcher switches from the ballistic to the diffusive motion.
It can be found that, in a finite domain of size L with periodic boundary conditions and
with a target located at x = 0, intermittency becomes favorable for the search, at least
for L large enough, since the mean first passage time 〈τ〉 ∝ L, whereas for pure diffusion
〈τ〉 ∝ L2. Furthermore, fixing λ1, the MFPT can be minimized at the non-trivial optimal
rate λ2 given by (see [15] for more details):

λopt
2 =


(

4v2

3D

)1/3
λ

2/3
1 if λ1 � v2/D,(

2
√

2v2

D

)1/3
λ

3/5
1 if λ1 � v2/D.

(2.5)

From Eq. 2.3 we can see that when λ1 � v2/D, the optimal rate λ2 is greater than λ1,
and then the searcher spends more time scanning than moving. On the other hand, if
λ1 � v2/D, the optimal rate λ2 is less than λ1, and then the searcher spends more time
moving than scanning.

Intermittent searches can combine different types of motion (for instance, diffusive
and ballistic) can be generalized to a wide variety of models that exhibit interesting first
passage properties (see reference [17] for a review). One of the most studied intermittent
dynamics in the last years are diffusive processes with stochastic resetting. This search
protocol was first introduced in [54, 55] as an idealized intermittent search in which
relocation is infinitely fast. Processes under resetting may be viewed as the simplest
intermittent search models.

Let us consider a one-dimensional Brownian particle with position X(t), which is reset
at rate r to an initial position x0, from where it starts again (see Fig. 2.5). The probability
density p(x, t|x0) that the particle is at x at time t, given that at time t = 0 was at x0,
will evolve as [55]

∂p(x, t|x0)
∂t

= D
∂2p(x, t|x0)

∂x2 − rp(x, t|x0) + rδ(x− x0), (2.6)

where the second and third term of the right hand accounts for the loss of probability
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Figure 2.5: Representation of a diffusive search with stochastic resetting. At the times τi, randomly
generated from an exponential distribution with rate r, the Brownian particle is relocated to the initial
position x0.

flux at x due to the interruptions, and a gain of probability flux at the initial position x0
due to the reset.

This simple resetting mechanism has two strong consequences on the diffusion process:
i) in the unbounded domain, at large times, p(x, t|x0) tends to a non-zero stationary

distribution that represents a non-equilibrium steady state (NESS), given by

p(x|x0) =

√
r/D

2 e−
√
r/D|x−x0|, (2.7)

which is the solution of Eq.(2.6) when the time derivative is set to zero. By NESS it is
meant that there is a flow of probability even at long times, in contrast to an equilibrium
state where detail balance holds and probability currents vanish [55, 59].

ii) in the semi-infinite domain, the mean first passage time T to an absorbing target
that is placed at the origin is finite. This is in marked contrast with the case of simple
diffusion where it is infinite (recall the gambler’s ruin problem where we showed that the
mean duration of the play for any k > 0 is infinite for the symmetric walk). The MFPT
is given by

T (x0) = ex0
√
r/D − 1
r

, (2.8)

which has a non-monotonous dependence with the resetting rate r, since it diverges in the
limits r → 0 and r →∞. This implies that the MFPT can be minimized at the particular
rate r∗ = (z∗)2D/x2

0, where z∗ = 1.59362... (see [55] for more details). Therefore, resetting
can expedite target encounter and the search process can be optimized with respect to r.

The latter is an important feature of many resetting processes (see [59] for a review).
The qualitative explanation for the existence of an optimal mean first passage time resides
in the fact that excursions in which the particle travels far away from the target region are
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interrupted at some time and restarted from the initial position, giving a new opportunity
for more favorable trajectories.

Perhaps the main weakness of this model is its inherent nonphysical meaning since
it implies an instantaneous renewal process and an exact relocation, which in practice is
not feasible. However, modifications of the original model can be made to handle these
difficulties. In reference [56] it was considered instantaneous resetting with refractory
periods in which the particle remains immobile at the origin for some time after each
instantaneous resetting. The idea is to mimic the time it takes for the particle to return
to the origin. Recent studies [25, 24, 92] have been proposed non-instantaneous resetting,
in which the diffusive particle performs different types of motion during the return phase,
e.g. return at a constant speed, at a constant acceleration and under the action of a
harmonic force.

Figure 2.6: a) The upper figures depict an schematic representation of the Brownian particle optically
trapped in 2d, whereas the bottom figure represents the 1d trajectory with periodic resetting at each
constant time T = 0.5s. The red bars represent the time interval in which the particle is relax toward
the potential minimum. Red horizontal line represents the target position at a distance X = 1µm from
the origin. b) MFPT τ in units of D/L2 as a function of the parameter c =

√
r/DL for b = 3 (orange

curve), b = 2.3 (red curve) and b = 2 (brown curve), where b = L/σ. Symbols represent experimental
data. Images taken from [21].

Recently, an experiment with optical tweezers was carried out in order to physically
study some features of resetting processes [21]. In this experiment, a Brownian particle
with constant diffusion D is tracked in 2d and at a time T (that can be exponentially
distributed with rate r or fixed to a constant) the particle is optically trapped and relaxed
toward a potential minimum. Before releasing the particle for its following Brownian
excursion, the search process is suspended and one waits for a sufficiently long time to let
the particle equilibrate in the harmonic profile generated by the laser trap (see Fig. 2.6a).
Although the position of the particle is tracked in the (X, Y )-plane, this study focuses on
the X-component.

The first passage τ time to a target that is placed at x = L can be obtained from the
particle tracking. In order to compare experimental results with the theoretical ones, the
time spent by the particle equilibrating in the harmonic profile is not counted, in other
words, τ is the net diffusion time spent by the particle before reaching the target [21].
Despite the difficulties the experiment can present, rich behaviors were observed for the
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MFPT as a function of the resetting rate r (or period T ) and the width σ of the Gibbs-
Boltzmann distribution generated by the potential when it is on. Particularly relevant is
the metastability that the MFPT exhibits as a function of the parameter c =

√
r/DL for

different values of the constant b = L/σ, as depicted in Fig. 2.6b. For values of b below
a critical value bc ≈ 2.53, the MFPT reaches a minimum at c =∞, whereas above bc, in
addition to the minimum at c = ∞, a metastable minimum for finite c appears. In the
limit b =∞, the system reaches a single minimum at c∗ = 1.59362....

In the present work, we will propose a new model that allows us to physically reproduce
a resetting process, viewed as a diffusion in a fluctuating potential. The model will have
the advantage that it does not require to track the position X of the diffusive particle nor
waiting for its relaxation to equilibrium.



Chapter 3

Objectives

In the previous chapter, we have presented some aspects of the theory of first passage
times and discussed how fluctuations in the environment can affect the first passage
properties of the search dynamics. We focused on those phenomena that involve the
presence of imperfect boundaries that may not absorb upon a first encounter with the
searcher. We saw that, in real systems, temporal fluctuations are also present in the
bulk, which modifies the searcher dynamics. We emphasized the fact that, in order to
expedite target encounters, searchers can combine slow reactive movements with fast
unreactive relocations. This behaviour belongs to the category of search strategies known
as intermittent search. A particular case of intermittent strategies are resetting processes,
which in general are more efficient than simple diffusion.

Now we would like to point out the objectives of the present work.

Main objective:

Our work points to the understanding of the first passage properties of stochastic processes
that evolve in environments that fluctuate in time. Since fluctuations can be present at
the system boundaries as well as in the bulk, we are interested in the search dynamics
with fluctuating targets or under the action of time-dependent potentials.

Specific objectives:

• We study the problem of a random searcher in the presence of non-instantaneous
absorbing targets, from the perspective that the targets have their own dynamics
independent of the dynamics of the searcher. To model non-instantaneous absorp-
tion, each target will have an internal state that fluctuates in time such that the
absorption or capture is only possible when the target is in the active state.

• We address the question of the time it takes the searcher to be absorbed by these
fluctuating targets, therefore, we will be mainly interested in calculating the first
passage time distribution, as well as other relevant quantities such as the survival
probability or the mean first passage time.

• As a first approach, we start by studying the case of a diffusive searcher on the
infinite line with a Markovian target placed at the origin. The internal state of the

18
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target will be characterized by a time dependent variable σ(t) which takes values 0
and 1. Capture is allowed only in the state σ = 1.

• Further we will consider other kinds of search processes with dynamical targets, such
as run-and-tumble motion and normally diffusive particles with stochastic resetting
to the origin. We will also study problems with non-Markovian targets, as well as
consider several fluctuating targets.

• We also wish to study problems in which fluctuations in the environment constrain
the motion of the searcher. These fluctuations will be modelled through time-
dependent potentials. We are interested in the mean first passage time to a steady,
absorbing target, as well as the probability distribution of the position of the random
searcher when there is no target.

• The first problem that we addressed is the case of a Brownian searcher with position
X subject to an external confining potential of the form V (X) = µ|X|, and that is
switched on and off stochastically. We wish to compute the mean first passage time
when a perfect absorbing target is placed at a distance L from the origin. We also
wish to calculate the distribution of the position of the searcher in the absence of
the target.

• Finally we extend this study to more general potentials. Particuarly, for potentials
of the form V (X) = Kn/n|X −X0|n. In this study we recover our previous results
of the linear potential (n = 1), and explore the first passage properties for potentials
with more general shapes, such as the harmonic potential.



Chapter 4

Methods and Mathematical
Techniques

From the introduction and the objectives of this work, it can be seen that all the systems
we are studying involve a diffusion process that reaches some threshold or target for the
first time. Whether the threshold intermittently changes of state to avoid detection or
the particle diffuses in the presence of an external potential, in all the problems we will
require to know the probability density that the particle reaches the target for the first
time at time t. A related quantity is the survival probability, or the probability that
the particle has not reached the target yet at time t. To achieve this goal, it will be
necessary to calculate the equation of motion for the survival probability and then, from
this quantity, to obtain the distribution of the first hitting time.

In this chapter we develop all the mathematical techniques that we will need later on
to solve the different problems we are interested in. We start by formally defining the
survival probability and we deduce the backward Fokker-Planck equation that governs it
for a simple diffusion process. We will show how to solve this differential equation and how
its solution relates with the first hitting time distribution. We briefly introduce the run-
and-tumble motion, a dynamics that is of interest to us for the subsequent chapters. At the
end of the chapter, we will briefly talk about the Sparre Andersen theorem, which shows
a universal scaling behaviour in the diffusion process with discrete jumps. Throughout
this chapter, the analysis we do is for the one-dimensional case.

4.1 Survival probability
Let some diffusing particle be initially at the position x ∈ (a, b), where a and b are some
thresholds of the system. The survival probability (SP) is defined as the probability that,
at time t, the particle remains in the interval (a, b) [61]:

Q(x, t) ≡
∫ b

a
P (x′, t|x, 0)dx′, (4.1)

where P (x′, t|x, 0)dx′ is the conditional probability that the particle is in the interval
[x′, x′ + dx′] at time t given that, at time t = 0, it was at x. We notice that this
conditional probability is in fact the distribution p(x′, t) that the particle is near to x′ at

20
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time t, with the initial condition p(x′, 0) = δ(x′−x). On the other hand, this last equality
implies that at t = 0, Q(x, 0) = 1.

The term survival comes from the fact that, in many problems, it is usual for one
or both thresholds to be an absorbing barrier, and the process ends when the particle
reaches a threshold, namely, its does not "survive" or it stops diffusing. In the context of
foraging search, for instance, when a predator (diffusive particle) hunts an immobile prey
(system threshold) the search ends, and then the term survive, which in this case refers
to the prey survival, fits well.
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Figure 4.1: Particle position as a function of time. The particle starts diffusing from x = 3. After ∆t the
particles moves to a new random position x′ = x+ ξ′. Red lines represents the thresholds at a = 0 and
b = 4.

From equation (4.1) we see that the probability Q(x, t) only depends on the initial
position x and on the time. The time evolution of this probability will be given in terms
of the variation of its initial conditions. Figure 4.1 depicts a realization of a diffusion
process in which the particle starts at x = 3 and during the time ∆t diffuses to a new
position which is closer, in this example, to the barrier located at x=4. Our intuition
could tell us that, in this case, the probability that the particle does not reach the barrier
from this new position is less than when it was at x = 3, due to the proximity of the
barrier. In the next section we will see how the SP evolves with time.

4.2 Backward Fokker-Planck equation
The Fokker-Planck equation (FPE) was first introduced in the study of Brownian motion
and was further generalized to a large class of very interesting stochastic processes [61].
Although it was first used to describe the time evolution of the probability distribution
density p(x′, t) for a particle diffusing in the presence of deterministic and stochastic
forces [112], the FPE can also be used to describe the evolution of the survival probability.
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When the FPE involves x′, the position reached by the particle at a time t larger than
the initial time (t′), then it is called forward FPE. When the variable is x, i.e., a position
reached at a previous time t′ smaller than the present time t it is called backward FPE.
In this section we derive the backward FPE equation for the survival probability using
the formalism of the Kramers-Moyal expansion [112].

Let ∆t > 0 an small time increment, then the SP at t+ ∆t can be calculated with the
Chapman-Kolmogorov equation

P (x′, t+ ∆t|x, 0) =
∫
dξP (x′, t+ ∆t|x+ ξ,∆t)P (x+ ξ,∆t|x, 0). (4.2)

The above equation indicates that the transition probability density P (x′, t+ ∆t|x, 0)
is the sum over all the possible trajectories going from x to x + ξ (where ξ is a random
displacement) during the time interval [0,∆t] and then going from x + ξ to x′ during
[∆t,∆t+ t] (see Figure 4.1).

Integrating equation 4.2 for x′ in the interval (a, b) and setting P (x + ξ,∆t|x, 0) ≡
P∆t(x, ξ), one obtains

Q(x, t+ ∆t) =
∫
dξQ(x+ ξ, t)P∆t(x, ξ). (4.3)

Note that ∆t has disappeared in Q, owing to the translational invariance of the diffusion
process.

Now, if one makes a Taylor expansion of Q(x+ ξ, t) in powers of ξ

Q(x+ ξ, t) =
∞∑
n=0

ξn

n!
∂nQ(x, t)
∂xn

, (4.4)

and inserts it in Eq. (4.3), one obtains

Q(x, t+ ∆t) = Q(x, t) +
∞∑
n=1

Mn(x,∆t)
n!

∂nQ(x, t)
∂xn

. (4.5)

where Mn(x,∆t) =
∫
dξξnP∆t(x, ξ) is the n−th moment of the distribution P∆t(x, ξ)1, as-

suming that this moments exist. This expression is general and the values of the moments
depend on the particular diffusive process under consideration.

Now, we can assume that the moments Mn(x,∆t) can be expanded in a Taylor series
with respect to ∆t, thus

Mn(x,∆t)
n! = Dn(x)∆t+ h.o.terms. (4.6)

Setting ∆t = 0, one sees that Mn(x,∆t) = 0, as P (x+ ξ, 0|x, 0) = δ(x+ ξ − x) = δ(ξ).
If one divides by ∆t 6= 0 and takes the limit ∆t → 0, one gets the Kramer-Moyal

backward expansion for the survival probability

∂Q(x, t)
∂t

=
∞∑
n=1

Dn(x)∂
nQ(x, t)
∂xn

. (4.7)

1To be precise, in general Mn(x,∆t), and the subsequent coefficient Dn(x) defined in Eq. (4.6), could
also depend on the initial time, that we have set to t = 0. For simplicity we have omitted this in the
notation.
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In order to solve the Kramer-Moyal expansion we need to compute the coefficients
Dn(x), something which at first glance appears to be an arduous task. In the following
we make use of the Pawula’s theorem, which states that for Q to be a positive definite
function, the expansion may stop either after the first term or after the second term,
otherwise it can contain an infinite number of terms [112]. We thus carry out a truncation
of the Kramel-Moyal expansion to second order, obtaining from Eq. (4.7) the expression:

∂Q(x, t)
∂t

= D1(x)∂Q(x, t)
∂x

+D2(x)∂
2Q(x, t)
∂x2 . (4.8)

This is the well known backward FPE and it will describe the time evolution of the
SP in terms of the initial position, where D1 is called the drift coefficient and D2 the
diffusion coefficient [112]. Then, in order to solve this equation we need to know D1 and
D2 that, from Eq. (4.6), can be calculated as

Dn(x) = 1
n!
∂Mn(x, t)

∂t

∣∣∣∣
t=0
. (4.9)

Evidently, the transition probability P (x′, t|x, 0) (and then the probability density
p(x′, t)) also satisfies the FPE (4.8): one can follow all the above steps without integrating
the transition probability in (a, b), to get

∂P (x′, t|x, 0)
∂t

= D1(x)∂P (x′, t|x, 0)
∂x

+D2(x)∂
2P (x′, t|x, 0)

∂x2 . (4.10)

For completeness, we contrast this expression with the forward FPE, that gives the
time evolution of P (x′, t|x, 0) as a variation of the final position x′ [112]:

∂P (x′, t|x, 0)
∂t

= − ∂

∂x′
D1(x′)P (x′, t|x, 0) + ∂2

∂x′2
D2(x′)P (x′, t|x, 0). (4.11)

This expression can be also deduced from a Chapman-Kolmogorov equation, now summing
over all the possible trajectories going from x to x′ − ξ during the time interval [0, t] and
then going from x′ − ξ to x′ during [t, t + ∆t]. As both contributions of this equation
depend on the final position x′, its expansion in series of ξ will lead to Eq.(4.11), where
the probability distribution P (x′, t) and the Kramer-Moyal coefficients Dn(x) must be
derived (see Reference [112] for more details).

We see that this equation can be written as the continuity equation

∂P (x′, t|x, 0)
∂t

+ ∂J(x′, t|x, 0)
∂x′

= 0, (4.12)

where J(x′, t|x, 0) = D1(x′)P (x′, t|x, 0)− ∂
∂x′
D2(x′)P (x′, t|x, 0) is the probability flux. This

concept will be helpful when we defined the boundary conditions of Q(x, t).

4.3 Langevin equation
In general, the coefficients Dn(x) depend on the system dynamics and are defined by the
transition probability P (x′, t|x, 0), thus, as we have said, we will need to take into account
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the presence of deterministic and random forces acting on the particle. Then, in order
to obtain the coefficients D1 and D2, we have to make assumptions on the microscopic
dynamics of the diffusing particle. For instance, one can propose a stochastic Langevin
equation for the particle motion.

The stochastic Langevin equation describes, at the microscopical level, the random
motion of a particle subject to forces. In the general case, a particle embedded in some
media will experiment friction forces, systematic forces due to external potentials and
random forces due to thermal fluctuations. If one takes into account all this forces, the
equation of moment conservation is

m
d2x

dt2
= −αdx

dt
+ Fe(x, t) + Γ(t). (4.13)

where m, α, Fe and Γ are the mass of the particle, the friction coefficient, the external
force and the fluctuating force which comes from the thermal noise, respectively.

If we assume that the friction is large we can neglect the second derivative with respect
to time, and thus we obtain the equation of motion in the over-damped limit

dx

dt
= Fe(x, t)

α
+ Γ(t), (4.14)

where the term Γ(t)/α has been re-defined as Γ(t).
Now, some reasonable assumptions can be made for the stochastic force Γ. First, we

consider that, on average, it does not produce a net force on the particle, i.e., the atoms
of the media hit the diffusing particle in all directions with the same probability. Second,
we suppose that the random force is delta-correlated in time, which means that the time
between collisions is much shorter than the characteristic time of motion of the particle,
and do not determine future collisions, thus, Γ(t) will represent a Gaussian noise with
zero mean and delta-correlations. These two assumptions will be represented as a

〈Γ(t)〉 = 0, (4.15)
〈Γ(t)Γ(t′)〉 = 2Dδ(t− t′), (4.16)

where D is the diffusion constant.
Reminding that P (x′, t|x, 0) is the distribution p(x′, t) with the initial condition p(x′, 0) =

δ(x′−x), the moments 〈(x′−x)n〉 = 〈ξn〉 =
∫
ξnP∆t(x, ξ)dξ can be calculated from solving

Eq. (4.14) to obtain the Kramer-Moyal coefficients Dn(x).
In general, the Langevin equation for a stochastic variable or position ξ could be

written more generally as
dξ

dt
= h(ξ, t) + g(ξ, t)Γ(t), (4.17)

where h(ξ, t) and g(ξ, t) are functions determined by the system.
It is important to note that Eq. (4.17) cannot be solved by the usual calculus tech-

niques, since ξ is a stochastic variable. Instead of this, it is necessary to use the formalism
of stochastic calculus. Because the introduction of these mathematics tools is far beyond
the scope of this chapter, we only show two results that can be obtained from the defi-
nition of the Stratonovich integral, and connect the Kramer-Moyal coefficients with the
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functions h(ξ, t) and g(ξ, t) [112]:

D1(x, t) = h(x, t) + g(x, t)∂g(x, t)
∂x

D, (4.18)

D2(x, t) = [g(x, t)]2D. (4.19)

Now that we have obtained the drift and the diffusion coefficient, we only need to
define boundary conditions in order to completely solve Eq. (4.8). The following section
is devoted to presenting the most common boundary conditions that are found in many
physical systems, and that we will help us to solve a variety of interesting problems.

4.4 Boundary conditions
At the beginning of this chapter, we mentioned that the term survival refers to the fact
that, in some cases, the particle could be absorbed upon the first encounter with a thresh-
old, and as we saw in the introduction, this problem is relevant to many systems in nature.
Nevertheless, the thresholds do not need to be always absorbing. In this section we in-
troduce two kind of boundaries that will be important in our work: the reflecting and
the absorbing boundary. In the following, we suppose that there is only one threshold in
the system, represented by a wall or barrier placed at x = b; the particle diffuses in the
interval (−∞, b) (in the definition of the SP we let a→ −∞).

We say that a barrier is perfectly absorbing (or absorbing for short), if any particle
that hits it is immediately absorbed, i.e., particles cannot continue to diffuse after the
first encounter, which means that any particle that starts at x = b will have a probability
p(x, t) = 0 to be at x ∈ (−∞, b) at any posterior time t > 0 [61, 108], then

Q(x = b, t) = 0. (4.20)

Formally, we may say that the SP satisfies the Dirichlet boundary condition when the
boundary is absorbing, since this function takes a specified value at the boundary [9].

On the other hand, a boundary is called reflective if, as the name suggests, the particle
reflects when it hits the barrier but continues diffusing, then the probability flux is zero
at the boundary, i.e., J(x′, t|x, 0)|x=b = 0 (see Eq. 4.12).

For a general coefficientD1(x) and supposing thatD2(x) 6= 0, we can use the backward
and the forward FPE to prove that the reflective boundary condition reduces to [61]

∂Q(x, t)
∂x

∣∣∣∣
x=b

= 0. (4.21)

Unlike an absorbing barrier, a reflecting boundary is of the Neumann boundary con-
dition type, in these cases the normal derivative of the SP takes a specified value at the
boundary [9].

We would like to remark that these are not the only boundary conditions one could
find in physical systems. In some cases, it is possible to have a boundary that partially
absorbs and partially reflects, in this case we talk of mixed, or Robin, boundary condition
(RBC), which will be given by [124]:

− J(x′ = b, t|x, 0) = κp(x′ = b, t|x, 0), (4.22)
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where κ is a positive constant. Eq. (4.22) is widely used in effective medium descriptions
of spatially heterogeneous interfaces containing both reflecting and reactive zones [148, 11,
19]. When we analyze the problem of intermittent target we will return to this boundary
condition, as it will be relevant to that problem.

4.5 Solution of the backward Fokker-Planck equation
The backward FPE belongs to the more general class of parabolic second-order differential
equations and, as we have seen, its solution will depend on the coefficients D1(x), D2(x)
and on the boundary conditions; the latter will determine a unique solution (given an
initial condition) and will characterize its behaviour, for instance, if the solution is stable
or not [112, 9].

There is no one way by which the FPE can be solved, nevertheless, one mathematical
technique that will be helpful to solve the backward FPE for the SP, and that we will use
in this work, is the Laplace transform. This mathematical tool transforms time derivatives
into a linear algebraic equation that involves the Laplace variable. The FPE reduces, in
the 1D case, to a second-order differential equation of the space variable.

The Laplace transform F̃ (s) of a function F (t) is defined by [8]

F̃ (s) = L {F (t)} =
∫ ∞

0
dt e−stF (t), (4.23)

where we notice that, the transformed F̃ (s) function depends on the conjugate variable
s. Assuming that the function F (t) satisfies certain properties so that Eq. (4.23) is well-
defined (see the more specialized texts [8, 130, 1]), we want to directly use the Laplace
transform and see how a time derivative changes under such transformation. Then, taking
the Laplace transform of the first derivative of a function F (t) one obtains

L

{
dF (t)
dt

}
=
∫ ∞

0
dt e−st

dF (t)
dt

= sL{F (t)} − F (t = 0) (4.24)

Now, we are able to convert the backward FPE (4.8) into an ordinary differential
equation (ODE), just by applying the Laplace transform on each side of the equation, to
get

sQ̃(x, s)− 1 = D1(x)∂Q̃(x, s)
∂x

+D2(x)∂
2Q̃(x, s)
∂x2 . (4.25)

where we have used the initial condition Q(x, t = 0) = 1, and Q̃(x, s) is the Laplace
transform of Q(x, t). This equation holds if x 6= b.

If the diffusion coefficient D2(x) 6= 0, Eq. (4.25) can be recast as

∂2Q̃(x, s)
∂x2 + D1(x)

D2(x)
∂Q̃(x, s)
∂x

− s

D2(x)Q̃(x, s) = − 1
D2(x) . (4.26)

Although we have reduced a partial differential equation into an inhomogeneous linear
ODE, whose solution can be given as a sum of the solution to the homogeneous part of
Eq. (4.26) and a particular one [26], the main problem will arise when we want to retrieve
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the solution Q(x, t) from the reciprocal Q̃(x, s). This means that we have to find the
inverse Laplace transform of Q̃(x, s).

The task of calculating an inverse transform of a function F̃ (s) is not always easy, and
sometimes it is not possible to find an analytical solution of the inverse transform. In
this case, one may resort to numerical methods [8]. However, in some cases the Laplace
transform can be easily found by using tables of Laplace transforms [1]. Very often,
the Laplace transform represents a useful mathematical tool to analyze the asymptotic
behaviour of Q(x, t) in the limits t→ 0 and t→∞. This point will be analysed in more
detail when we consider the problem of intermittent target.

4.6 First Hitting Time
Now that we have defined the survival probability and the equation that gives its evo-
lution, together with the boundary conditions, we can introduce the first hitting time
distribution. This distribution is of great application in many context of science, since it
gives a probability that an event occurs at a given time [108, 122, 61].

Formally, the first hitting time distribution (FHTD), that we denote as P (x, t), is
defined as the probability density of the first hitting time t, which is a random variable.
The first hitting time is the time it takes for a diffusing particle, or any other stochastic
of process, to first reach a specified site (or set of sites), from the initial position x [108].
With this definition it is easy to see that the probability that the particle has not reached
any of the target sites or thresholds at time t, namely the survival probability Q(x, t), is
equal to the probability that the particle first reaches any threshold at later time t′ > t:

Q(x, t) =
∫ ∞
t

P (x, t′)dt′, (4.27)

hence, the first hitting time distribution will be given by

P (x, t) = −∂Q(x, t)
∂t

. (4.28)

Once we know the survival probability for a given problem, we immediately can calculate
the FHTD, using (4.28).

One can prove that, defined in this way, P (x, t) is a probability distribution. First,
we see that P (x, t) ≥ 0 given that Q(x, t) cannot increase with time due to causality. On
the other hand, P (x, t) satisfies the normalization condition

∫∞
0 P (x, t)dt = Q(x, 0) = 1.

In recurrent systems, such that Q(x, t)→ 0 as t→∞, the hitting time density also tends
smoothly to 0 at large times. In non-recurrent systems, such that Q(x, t) → cst > 0 as
t→∞, P (x, t) contains a singular part at t =∞, corresponding to trajectories that never
find the target.

In the previous section we saw that the Laplace transform is useful in reducing a time
derivation into an algebraic equation, then if we transform P (x, t) and use the relation
(4.28), we obtain

P (x, s) = 1− sQ(x, s). (4.29)
Depending on the phenomena under study, sometimes one may be interested in cal-

culating the mean hitting time. This quantity corresponds to the the first moment of the
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FHTD, defined as the mean first hitting time (MFHT)

T (x) =
∫ ∞

0
tP (x, t)dt. (4.30)

In some cases this quantity is infinite. The FHTD plays an important role, as its
asymptotic behaviour at large t determines whether the first moment of the distribution
exists or not.

Integrating by parts, Eq. (4.30) can be written in the form

T (x) =
∫ ∞

0
Q(x, t)dt (4.31)

where we have used the relation given by Eq. (4.28).
If we integrate over t ∈ (0,∞) the backward FPE for the survival probability given

by Eq. (4.8), we immediately see that the MFHT satisfies

− 1 = D1(x)∂T (x)
∂x

+D2(x)∂
2T (x)
∂x2 , (4.32)

that is a inhomogeneous linear ODE. From Eq. (4.31) it is easy to see that T (x) =
Q̃(x, s = 0), therefore, the MFHT can be calculated directly from the Laplace transform
of the SP just by setting the Laplace variable s = 0.

4.7 Standard case (Brownian motion)
To exemplify the formalism exposed in the above sections we analyze the problem of a
Brownian particle with an absorbing barrier placed at x = 0 (see Fig. 4.2). The diffusive
particle has a initial position x > 0. We will call the solution of this problem as the
standard solution, in contrast with other cases with more complex configurations.

In this system, the particle movement is only caused by thermal fluctuations, i.e.,
without drift forces. Then, the Langevin equation will be given by

dx

dt
= Γ(t). (4.33)

Solving for x, from (4.33), we will have

ξ(t) = x′ − x =
∫ t

0
Γ(τ)dτ, (4.34)

and

〈ξ(t)〉 =
∫ t

0
〈Γ(τ)〉dτ = 0, (4.35)

〈ξ2(t)〉 =
∫ t

0

∫ t

0
〈Γ(τ)Γ(τ ′)〉dτdτ ′ = 2Dt. (4.36)

If one does not neglect the second derivative in (4.13), it can be found that

D = kT

α
, (4.37)
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Figure 4.2: Particle position as a function of time. The particle starts diffusing from x = 1. Red line
represents the thresholds at x = 0.

where D is the diffusion coefficient, k is the Boltzmann constant, T is the absolute tem-
perature and α is the friction coefficient. This is the well known fluctuation-dissipation
relation that was first deduced by Einstein [112, 61].

With these results we show that D1 = 0 and the diffusion coefficient D2 = D, in
complete agreement with Eqs. (4.18)-(4.19). Then, we have that the FPE obeyed by the
SP in this problem is

∂Q(x, t)
∂t

= D
∂2Q(x, t)
∂x2 . (4.38)

Now, if we use the Laplace transform, Eq. (4.38) is recast as

∂2Q̃(x, t)
∂x2 − s

D
Q̃(x, s) = − 1

D
. (4.39)

This equation admits homogeneous solutions of the formQh(x, s) = A1e
−x
√
s/D+A2e

x
√
s/D,

with the particular solution Qp = 1/s.
Next in order is to apply the boundary conditions. First, we expect that the probability

does not exponentially increase with the distance x, since it has to be bounded by 1. This
implies that A2 = 0. On the other hand, the absorbing barrier placed at x = 0 imposes
Q(x = 0, s) = 0, which is the Dirichlet boundary condition given by Eq. (4.20). Therefore,
the solution of Eq. (4.39) subject to the absorbing boundary at x = 0 is

Q̃st(x, s) = 1− e−x
√
s/D

s
, (4.40)

where the label "st" stands for the "standard case". From Eq. (4.29) we have that the
Laplace transform of the standard FHTD is

P̃ st(x, s) = e−x
√
s/D. (4.41)
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The inverse Laplace transforms of this two expressions can be found in [1] and read

Qst(x, t) = erf
(

x√
4Dt

)
, (4.42)

P st(x, t) = x√
4πDt3

e−
x2

4Dt . (4.43)

Equation (4.43) is the well known Lévy-Smirnov distribution [60, 36].
Finally, we want to analyze the asymptotic behaviour of both Qst and P st in the long

time regime, which is typical of diffusion processes in one spatial dimension. Whereas
these behaviours can be determined easily from Eqs. (4.42)-(4.43), we may choose to
derive them directly from the corresponding Laplace transforms, given by Eqs. (4.40)-
(4.41). This method will be useful in the following chapter, where the expressions in the
time domain will be less easy to handle.

The long time analysis can be carried out by noting that this regime corresponds to the
small s regime in the Laplace transform. Roughly speaking, this can be seen by noticing
that the product of the conjugate variables s and t that appears in the definition of the
Laplace transform allows to change the limit t → ∞ by s → 0. Reciprocally, the short
time regime corresponds a large s. This result is analogous to the reciprocity between
frequency and time in the Fourier transform. For more details one can consult [130, 61].
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Figure 4.3: a) Survival probability and b) first hitting time distribution as a function of time for a initial
position x = 1 and a diffusion coefficient D = 1. One can see the asymptotic behaviour of each function
for long times. Black lines indicate the exponent of the power-law decay, −1/2 for the SP and −3/2 for
the FHTD.

Let us expand Q̃(x, s) in series of s. To do this we will need to suppose that
√
s �

x/
√
D, which, in the time domain means x2/D � t, where x2/D is a characteristic time

of the diffusion process. We obtain

Q(x, s) ≈ x/
√
D√
s

, (4.44)

which can be exactly inverted as [1]

Q(x, t) ≈ x√
πDt

. (4.45)
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Further, with Eq. (4.28) we will obtain

P (x, t) ≈ x√
4πDt3

. (4.46)

Hence, we have shown that in the long time regime, the SP and the FHTD scales
with time as ∼ t−1/2 and ∼ t−3/2, respectively (see figure 4.3). This scaling behaviour is
characteristic of the one-dimensional diffusion processes and has important consequences
on the mean absorption time: the MFHT is actually infinite, as the distribution decays
more slowly than t−2.

4.8 Run-and-tumble motion
In the description of the microscopic dynamics of diffusive particles we made in Section
4.3, we have considered that the stochastic force that produces the erratic movement of
the particles is delta-correlated in time. As we mentioned, this consideration assumes that
the time between collisions is much shorter than the characteristic time of motion of the
particle, and do not determine future collisions. However, some systems in nature that
are out of equilibrium do not fulfill this assumption. One of the most common examples
is the case of the bacteria E. coli. In the searching for food, bacteria uses chemotaxis;
they direct their movement towards different sites in which the concentration of chemicals
increases [20, 132]. In a typical excursion, bacteria travel towards a specific site where they
search for food. After a short period of time in which the bacteria randomly explores the
site, they resume its excursion and move toward other possible sources of food [20]. The
preference in direction introduces correlations in their movement that cannot be described
by a delta-correlated noise. Instead, their actual movement depends on the history of the
trajectory.

The run-and-tumble (RT) motion, also called as persisting Brownian motion, is a
relatively simple model that mimics the dynamics of self-propelled particles such as the
bacteria E. coli. The motion consists in ballistic “run” phases at constant speed v, followed
by “tumble” periods, occurring with a fixed rate, say γ, and leading to a full randomization
of the direction of motion [20, 90].

In one-dimension, the RT dynamics is governed by the overdamped stochastic Langevin
equation

dx

dt
= θ(t), (4.47)

where θ(t) is a dichotomous stochastic noise that switches between the values σ = v and
σ = −v with rate γ. The run and tumble process is sometimes referred to as “telegraphic
noise” to describe the evolution of θ(t) [90, 142]. The autocorrelation function of the
telegraphic noise θ(t) is given by [90]

〈θ(t1)θ(t2)〉 = v2e−2γ|t1−t2|. (4.48)

In the limit γ →∞, v →∞, and keeping the ratio v2/(2γ) = D fixed, the noise θ(t)
becomes a white noise with correlator 〈θ(t1)θ(t2)〉 = 2Dδ(t1 − t2), that coincides with
the noise Γ(t) in Eq. (4.16) for the Brownian particle case. Therefore, under such limit
run-and-tumble leads to Brownian motion.
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The run-and-tumble motion has been extensively studied and many interesting prop-
erties of its dynamics have been observed. In confined environments, for instance, run-
and-tumble particles (RTP) tend to accumulate near the boundaries [89, 51]. When a
steady potential is applied, phases of active and passive-like behaviour appear [46]. The
first passage properties of RT particles in confinement and in the semi-infinite domain
have been studied before [89, 5]. For completeness, in the following we deduce the the
survival probability of a RT particle in the presence of a absorbing boundary at the origin
in the semi-infinite line.

We start by denoting as Q+(x, t) [and Q−(x, t)] the probability that the particle has
not reacted up to time t, given the initial particle position x > 0 and the initial velocity
+v [−v, respectively]. Now, let us suppose that, at time t = 0, the particle starts with
velocity +v. During the small time interval [0,∆t], with probability γ∆t the particle will
change its velocity to −v, or will remain with +v with probability 1 − γ∆t. If we sum
these contributions, the survival probability can be written as

Q+(x, t+ ∆t) =(1− γ∆t)Q+(x+ v∆t, t) + γ∆tQ−(x+ v∆t, t). (4.49)

Expanding the r.h.s. of (4.49) in Taylor series and retaining only the terms of order ∆t,
we obtain

∂Q+(x, t)
∂t

= v
∂Q+(x, t)

∂x
− γQ+(x, t) + γQ−(x, t), (4.50)

Similarly, one can deduce the evolution of the survival probability Q−(x, t), given the
initial velocity −v:

∂Q−(x, t)
∂t

= −v∂Q
−(x, t)
∂x

− γQ−(x, t) + γQ+(x, t). (4.51)

In order to solve the system of Eqns. (4.50)-(4.51), it is convenient to first take the
Laplace transform, to obtain

v
∂Q̃+(x, t)

∂x
− (s+ γ)Q̃+(x, t) + γQ̃−(x, t) = −1 (4.52)

−v∂Q̃
−(x, t)
∂x

− (s+ γ)Q̃−(x, t) + γQ̃+(x, t) = −1, (4.53)

whose solutions, that satisfies the absorbing boundary condition Q−(0, t) = 0, and that
do not have an exponential growing with x, are given by [57]

Q̃+(x, t) = 1
s

+ 1
γs

[v0λ− (s+ γ)] e−λx, (4.54)

Q̃−(x, t) = 1
s

[
1− e−λx

]
, (4.55)

where λ =
√
s(s+ 2γ)/v.

Assuming a symmetric velocity initial condition, that is, an equal probabilities for the
initial positive and negative particle velocities, we have

Q̃(x, s) ≡ 1
2
[
Q̃+(x, s) + Q̃−(x, s)

]
= 1
s

+ 1
2γs [v0λ− (s+ 2γ)] e−λx. (4.56)
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From this solution we can analyze the long-time behaviour of the survival probability,
and thus, of the first passage time distribution, by considering the s → 0 limit. Making
the approximation

√
s(s+ 2γ) ≈

√
2γs, in the limit s→ 0 Eq. (4.56) can be recast as

Q̃(x, s) ≈ 1− e−
√

2γsx/v

s
, (4.57)

which coincides with the expression in Eq. 4.41, with D = v2/(2γ). Thus, in the long-
time limit, the survival probability, and thus the first passage time distribution, of a
run-and-tumble particle behaves the same as for a Brownian particle.

4.9 Sparre Andersen theorem
Up to now, we have only discussed continuous random processes and we have introduced
the principal quantities involved in first passage problems, with special emphasis on the
survival probability. When we derived the backward FPE for Q(x, t) we started from the
Champan-Kolmogorov equation that is a recursive manner in which the survival probabil-
ity could be calculated. We saw the remarkable role that the transition probability plays
in the derivation of the FPE, since its moments will completely define the time evolution
of the SP through the Kramer-Moyal expansion. However, what happens if the moments
of this distribution diverge? In this case, it is clear that we will not be able to make an
expansion of the Kramer-Moyal type.

In an attempt to answer the above question, we would like to conclude the present
chapter by mentioning a relevant result that falls into an universality behaviour of the first
passage time for discrete-time random processes, namely, the Sparre Andersen theorem
[88, 86]. We will see how the survival probability for the discrete-time process is essentially
different from that of the continuous process, although under some limit both solutions
can match.

Let us start with a discrete-time random walker that jumps on a line. Each time
step the walker performs a jump, such that its position xn after n steps, with n ≥ 1 and
starting at x0, evolves following the rule

xn = xn−1 + ξn, (4.58)

where ξn is an i.i.d. random variable drawn from the distribution φ(ξ), which is normal-
ized, symmetric and with zero mean.

Due to the central limit theorem, we know that if the distribution φ(ξ) has a finite
variance σ2, for large n the discrete-time process x(n) converges to the continuous Brow-
nian motion x(t) that is ruled by the Langevin equation (4.33). We also know that the
probability that a Brownian particle does not cross the origin up to time t, starting at
x0 ≥ 0 at t = 0, behaves as Q(x0, t) ∼ x0/

√
πDt, which is zero for the initial position

x0 = 0.
The fact that the survival probability vanishes when the particle starts at the origin

can be understood from the recurrence property of Brownian trajectories in 1D, which
cross and re-cross the origin many times within a short period. However, in a discrete
process this behaviour is different, and a random walk that starts at x0 = 0 can perform
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several jumps before first crossing the origin [88]. The fraction of trajectories that do
not immediately cross the origin will account for the probability q(x0, n) that the particle
remains at the positive side before n steps.

What the Sparre Andersen theorem tells us is that, for a discrete-time random walk
with a symmetric and continuous jump distribution φ(ξ), given the initial position x0 = 0,
the survival probability is given by [88, 86]

Q(0, n) =
(

2n
n

)
2−2n. (4.59)

Surprisingly, the survival probability is independent of the jump distribution. This result
is universal and holds for several types of discrete-random walks, including Lévy flights
characterized by their infinite variance. We remark that the universality in the Sparre
Andersen theorem is only observed if the walker starts at the origin. For an initial position
x0 ≥ 0, there exists an explicit solution which is known as the Pollaczek-Spitzer formula
(see reference [86]) that in general depends on the jump distribution and reduces to Eq.
(4.59) when x0 = 0.

In the limit of large n, the survival probability in Eq. (4.59) has the scaling decay

Q(0, n) ∼ 1√
πn

. (4.60)

Despite the similarities between the 1/
√
n algebraic decay of the Sparre Andersen

theorem and the 1/
√
t decay of the survival probability in the Brownian motion, both

results are essentially different and have distinct origins. Only in the limit case in which
x0 ∼ n1/2 for large n, the discrete-time solution matches with the Brownian one and, in
both cases, the survival probability goes to zero with the starting point [86]. In general,
for Lévy flights with index µ ∈ (0, 2], a more rigorous analysis of the Pollaczek-Spitezer
solution shows that, when the initial position scales as n1/µ for large n, the discrete and
the continuous process coincide (see reference [88] for more details).



Chapter 5

Random searches of fluctuating
targets

In this chapter we address the problem of random searches of fluctuating targets. We are
mainly interested in the statistical properties of the first hitting time of diffusive searchers
to an intermittent target. For the target dynamics we consider the two-state model; the
target switches between a reactive state and a non-reactive one. For the motion of the
searcher we consider three different strategies: Brownian motion, diffusion with stochastic
resetting and run-and-tumble motion. The chapter is organized as follows:

We start in Section 5.1 by considering a Brownian searcher. We deduce the governing
equation for the survival probability and obtain the first hitting time. We analyze the
behavior of this distribution for short and long times. At high crypticity, that is, when the
target spends most of the time in the inactive state, an unexpected rate limited power-
law regime emerges for the first hitting time density, which markedly differs from the
classic t−3/2 scaling for steady targets. Our problem admits an asymptotic mapping onto
a mixed, or Robin, boundary condition.

In Section 5.2, we extend our analysis by examining a Brownian particle under the
action of stochastic resetting. As is usual in resetting processes, the mean first hitting
time (MFHT) can be optimized by a suitable choice of the resetting rate. We study the
behaviour of the optimal resetting rate as a function of the target dynamical parameters.
From our analysis emerges a strong connection between our model and the problem of
diffusion with stochastic resetting in the presence of a partially absorbing target. We show
how the two problems actually become equivalent in the limit of high transition rates,
or when the target is in the non-reactive state most of the time. We also analyse the
relative variance of the first hitting time around the mean and study its dependence with
respect to the target rates and the resetting rate. The relative fluctuations are no longer
unity at the optimal resetting rate, and can take much larger values instead. This is due
to the fact that the dynamics of the target state is independent of the resetting process
itself. The problem therefore differs from the one considered in [30], where the search of
a gated target by diffusion under resetting was studied through a renewal approach, that
assumed that the resetting process also acted on the target state.

Finally, in Section 5.3 we investigate the one-dimensional run-and-tumble dynamics.
Here we analyze the RT motion in several geometries: (i) the finite domain, with the
particle bounded by two reflective walls symmetrically placed around the target, (ii) the

35



infinite line, as a special case in which the walls are infinitely far away. In the first case,
quantities of primary interest are the mean first hitting time (MFHT) and the standard
deviation of the hitting time around this mean. We find that the global MFHT averaged
over the particle initial positions is always minimal for a ballistic particle, whereas less
persistent searchers are suboptimal. However, the relative variance of the first hitting time
can take very large values and exhibits a non-monotonic behaviour with respect to the
parameters that control the intermittent dynamics of the target. In the unbounded case,
the MFHT diverges and we study the asymptotic behaviour of the full first hitting time
distribution (FHTD). The decay of the distribution at large hitting times t is decomposed
into two scaling regimes: a t−3/2 asymptotic regime that is characteristic of unbiased
motion, and an intermediate regime varying as t−1/2, which represents a much slower
decay and whose range can be varied depending on the target and particle rates.

5.1 Simple diffusion
In this section we study the dynamics of a one-dimensional Brownian particle hitting
an intermittent target located at the origin of the system. The target internal state is
characterized by a time dependent variable σ(t) which can take two values: σ = 1 when
the target is visible, which means that the Brownian particle can detect it upon encounter,
and σ = 0 when the target is invisible, meaning that it cannot be detected even if the
Brownian searcher crosses the origin. The target visibility randomly switches between
these two states, which last for time intervals that are exponentially distributed. Then,
the target in state σ = 0 changes to state σ = 1 at rate α, whereas the transition from
state σ = 1 to state σ = 0 occurs at rate β. Therefore, the mean duration of the visible
(invisible) phase is 1/β (1/α, respectively) and the overall probability to find the target
in the visible state is α/(α + β).

5.1.1 Governing equations
The searcher starts at time t = 0 from a positive position x. As shown in Fig. 5.1, during
a trajectory the walker may cross the origin and perform several excursions on the positive
and negative sides before hitting the target for the first time.

To calculate some first passage quantities in this problem, one needs to specify, in
addition to the initial position of the particle, the initial target state. Let us define
Qσ(x, t) as the probability that the particle has survived up to time t given that it started
at t = 0 from x and with the target in state σ (0 or 1). Averaging over the initial target
states yields the average survival probability, denoted as Qav(t):

Qav(x, t) = β

α + β
Q0(x, t) + α

α + β
Q1(x, t). (5.1)

The first passage time distribution Pi(x, t) is obtained from the usual identity Qi(x, t) =∫∞
t dτPi(x, τ) or

Pi(x, t) = −∂Qi(x, t)
∂t

, (5.2)
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Figure 5.1: Brownian trajectory in the presence of an intermittent target located at the origin. The red
segments represent the target in the visible state, separated by time intervals in the hidden state. The
Brownian particle is absorbed when it reaches the target in the visible state for the first time.

where i ∈ {0, 1, av}. The survival probabilities Qσ=0,1(x, t) satisfy two coupled backward
Fokker-Planck equations, which read:

∂Q0(x, t)
∂t

= D
∂2Q0(x, t)

∂x2 + α[Q1(x, t)−Q0(x, t)] (5.3)

∂Q1(x, t)
∂t

= D
∂2Q1(x, t)

∂x2 + β[Q0(x, t)−Q1(x, t)] (5.4)

To derive Eq. (5.3) for Q0, one follows the method used in chapter 4. We notice that dur-
ing a small time interval [0,∆t], the target can switch to the state σ = 1 with probability
α∆t or remain in σ = 0 with probability 1−α∆t. Summing these two contributions, one
obtains a relation for the quantity Q0(x0, t+ ∆t):

Q0(x, t+∆t) = α∆t
∫ ∞
−∞

dξP∆t(ξ)Q1(x+ξ, t)+(1−α∆t)
∫ ∞
−∞

dξP∆t(ξ)Q0(x+ξ, t). (5.5)

At time ∆t, the particle position is x + ξ (where ξ is a small random increment), which
serves as a new initial condition for the rest of the trajectory comprised in the time
interval [∆t, t+ ∆t], of duration t. In (5.5) we have used the fact that the process is time
translational invariant. The random displacement ξ of the Brownian particle is drawn
from the Gaussian distribution P∆t(ξ) with zero mean and variance 〈ξ2〉 = 2D∆t (see
section 4.7). As we have done in 4.2, a Taylor expansion of the probabilities Qσ(x+ ξ, t)
in powers of ξ up to second order (the first non-zero average contribution) leads to Eq.
(5.3), after grouping the terms of order ∆t and taking the limit ∆t → 0. We obtain Eq.
(5.4) from a similar reasoning.

This coupled system of PDEs must satisfy the boundary conditions

Q1(x = 0, t) = 0, (5.6)
∂Q0(x, t)

∂x

∣∣∣∣
x=0

= 0, (5.7)
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and the initial conditions Q0(t = 0) = Q1(t = 0) = 1.
Whereas Eq. (5.6) simply asserts that the target is absorbing in the visible state,

relation (5.7) is a bit more subtle. It can be understood, for instance, by considering the
case β = 0, which corresponds to a target in state 0 at t = 0 and that irreversibly transits
to the visible state at rate α. The calculation of Q0 is performed in the following section
by using simple probabilistic arguments and one checks that the solution actually fulfills
condition (5.7). For β 6= 0 the particle is less visible, or more often reflecting, therefore
Eq. (5.7) must be valid as well.

5.1.2 Boundary condition for Q0(x, t)
In this section, we solve the problem for the particular case β = 0 and examine from there
the boundary conditions.

We suppose that at t = 0, the target site at x = 0 is in the dormant state σ(t = 0) = 0.
The probability that the target switches to the active state σ(t′) = 1 for the first time at
time t′ is given by the exponential distribution with rate α. If we choose β = 0, once the
target has switched to the active state, it will remain active for ever. Since the Brownian
particle starts at x > 0 at t = 0 and diffuses in the unbounded free space, it will be located
at a Gaussianly distributed position x′ at time t′. This position x′ represents a new initial
position for the standard first passage problem with a permanent target. Therefore, when
β = 0, the survival probability at time t is given by

Q0(x, t) =
∫ ∞

0
dt′αe−αt

′
∫ ∞
−∞

dx′
e−

(x′−x)2
4Dt′

√
4πDt′

1, if t′ > t,

Qst(x′, t− t′), if t′ < t,
(5.8)

where Qst(x, t) stands for the standard survival probability with a steady target. In
Eq. (5.8), we have used the fact that the particle cannot be absorbed while the target
is inactive (t < t′), and the averages over x′ and t′ are taken. Let us further take the
Laplace transform of Eq. (5.8), denoted as Q̃0(x, s) =

∫∞
0 dt e−stQ0(x, t). After changing

the order of the integrals, we obtain

Q̃0(x, s) = α
∫ ∞

0
dt′e−αt

′
∫ ∞
−∞

dx′
e−

(x′−x)2
4Dt′

√
4πDt′

(∫ t′

0
dt e−st +

∫ ∞
t′

dt e−stQst(x′, t− t′)
)

(5.9)

The first integral of the term between parenthesis in Eq. (5.9) is simply 1−e−st′

s
and does

not depend on x′, thus, the integral over x′ gives unity. For the second integral, we make
a change of variable u = t − t′ and obtain the Laplace transform of Qst(x, u) multiplied
by a factor e−st′ . Therefore:

Q̃0(x, s) =α
∫ ∞

0
dt′e−αt

′

1− e−st′

s
+ e−st

′
∫ ∞
−∞

dx′
e−

(x′−x)2
4Dt′

√
4πDt′

Q̃st(x′, s)


= 1
s+ α

+ α
∫ ∞
−∞

dx′
e−|x

′−x|
√

(s+α)/D√
4D(s+ α)

Q̃st(x′, s).
(5.10)
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Given that Q̃st(x′, s) = 1−e−|x′|
√
s/D

s
(see Eq. 4.40) we substitute this expression into Eq.

(5.10) and obtain

Q̃0(x, s) = 1
s+ α

+ α

2s
√
D(s+ α)

∫ ∞
−∞

dx′e−|x
′−x|
√

(s+α)/D
(

1− e−|x′|
√
s/D

)
(5.11)

After integrating in Eq. (5.11), we obtain

Q̃0(x, s) = 1
s

+
√
se−x
√

(s+α)/D −
√
s+ αe−x

√
s/D

s
√
s+ α

. (5.12)

Further we will see that this result coincides with the full solution given by Eq. (5.27)
and with β = 0. It is also easy to see that Eq. (5.12) satisfies the boundary condition

∂Q̃0(x, s)
∂x

∣∣∣∣
x=0

= 0, (5.13)

for any s, which implies that
∂Q0(x, t)

∂x

∣∣∣∣
x=0

= 0, (5.14)

for any t. Hence, it is “as if ” the boundary in x = 0 was always reflective, given its initial
reflecting state σ = 0. This may look surprizing, since the target is actually reactive
(absorbing) any time after the switch-on time t′.

In the general case, one can derive a relation between Q0 and Q1 to show that the
boundary condition (5.14) for Q0 still holds. As before, we suppose that the initial target
state is σ0 = 0. The particle starts from the position x > 0 and freely diffuses until
the first transition to the state σ = 1 occurs, at a time t′. During the interval [0, t′] the
particle has reached the Gaussianly distributed position x′. At this point, the deduction
departs from the case of β = 0; now, the survival probability function for times t > t′

is no longer the standard survival probability but Q1(x′, t− t′), since a renewed diffusion
process starts from x′ with σ0 = 1 at time t′. Thus, the survival probability at time t will
be

Q0(x, t) =
∫ ∞

0
dt′αe−αt

′
∫ ∞
−∞

dx′
e−

(x′−x)2
4Dt′

√
4πDt′

1, if t′ > t,

Q1(x′, t− t′), if t′ < t.
(5.15)

In Eq. (5.15), Q1 does not depend on the initial position x, thus, if one takes the derivative
with respect to x, it will only apply to the exponential term in the integral. Evaluating
∂Q0(x, t)/∂x in x = 0 gives

∂Q0(x, t)
∂x

∣∣∣∣
x=0

=
∫ ∞

0
dt′αe−αt

′
∫ ∞
−∞

dx′
x′e−

x′2
4Dt′

2Dt′
√

4πDt′

1, if t′ > t,

Q1(x′, t− t′), if t′ < t.
(5.16)

From the parity of the Gaussian function and of Q1 with respect to x′, namely, Q1(−x′, t−
t′) = Q1(x′, t− t′), we see that the integral over x′ in Eq. (5.16) vanishes. Hence, we have
shown that the boundary condition in Eq. (6) in the main text is valid for any β.
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5.1.3 Solution in Laplace space
We use the Laplace transform defined by Q̃σ(x, s) =

∫∞
0 Qσ(x, t)e−stdt and obtain from

Eqs. (5.3)-(5.4) the following system:

D
∂2Q̃0(x, s)

∂x2 + αQ̃1(x, s)− (α + s)Q̃0(x, s) = −1 (5.17)

D
∂2Q̃1(x, s)

∂x2 + βQ̃0x, s)− (β + s)Q̃1(x, s) = −1, (5.18)

where the initial condition Qσ(x, t = 0) = 1 has been used. The homogeneous part of
Eqs. (5.17)-(5.18) admits solutions of the form eλx that satisfy(

Dλ2 − (α + s) α
β Dλ2 − (β + s)

)(
Q̃0
Q̃1

)
= 0. (5.19)

The eigenvalues are

λ1 = ±
√
s

D
, λ2 = ±

√
s+ α + β

D
, (5.20)

with their corresponding eigenstates:

v1 =
(

1
1

)
, v2 =

(
−α
β

1

)
. (5.21)

The inhomogeneous part of both Q0 and Q1 is independent of the starting position x and
simply given by 1/s. Setting x > 0, one notices that Q̃σ(x, s) must tend to 1/s as x→∞,
since Qσ(x, t) remains equal to unity when the particle is very far from the target. Hence,
only the negative eigenvalues are acceptable. One deduces

Q̃0(x, s) = Ae−
√

s
D
x − α

β
Be−
√

s+α+β
D

x + 1
s
, (5.22)

Q̃1(x, s) = Ae−
√

s
D
x +Be−

√
s+α+β
D

x + 1
s
, (5.23)

with A and B two constants. In the following, employ the notation
a = x/

√
D. (5.24)

Thus, τD ≡ a2 is the typical diffusion time to reach the target region.
Enforcing the boundary conditions (5.6)-(5.7) yields

A = − α
√
s+ α + β

s
(
α
√
s+ α + β + β

√
s
) , (5.25)

B = − β
√
s
(
α
√
s+ α + β + β

√
s
) . (5.26)

The solutions are thus given by

Q̃0(x, s) = − α
√
s+ α + β

√
s
(
α
√
s+ α + β + β

√
s
)
e−a√s√

s
− e−a

√
s+α+β

√
s+ α + β

+ 1
s
, (5.27)

Q̃1(x, s) = − α
√
s+ α + β

√
s
(
α
√
s+ α + β + β

√
s
)
e−a√s√

s
+ β

α

e−a
√
s+α+β

√
s+ α + β

+ 1
s
. (5.28)
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The average survival probability is obtained from Eq. (5.1):

Q̃av(x, s) = − α
√
s+ α + β

α
√
s+ α + β + β

√
s

(
e−a
√
s

s

)
+ 1
s
. (5.29)

Alternately, equations (5.27)-(5.29) can be recast under the form

Q̃i(x, s) = − α
√
s+ α + β

√
s
(
α
√
s+ α + β + β

√
s
)
e−a√s√

s
− Ci

e−a
√
s+α+β

√
s+ α + β

+ 1
s
, (5.30)

where i = {0, 1, av} and the constants Ci take the values: C0 = 1, C1 = −β
α
and Cav = 0.

The Laplace transform of the first passage time distribution is deduced from the general
relation P̃i(x, s) = 1 − sQ̃i(x, s), which stems from taking the Laplace transform of Eq.
(5.2). Hence,

P̃i(x, s) = α
√
s+ α + β

√
s

α
√
s+ α + β + β

√
s

e−a√s√
s
− Ci

e−a
√
s+α+β

√
s+ α + β

 , (5.31)

which in the case of Pav is simply

P̃av(x, s) = α
√
s+ α + β

α
√
s+ α + β + β

√
s
e−a
√
s. (5.32)

With the above expressions at hand, several comments are in order.

Limit β = 0.

For Qav or Pav, this case corresponds to a target always in the visible state. As expected,
one recovers from Eqs. (5.29) and (5.32) the well known results of the standard case
shown in 4.7, see Eq.(4.40)-(4.41):

Q̃av(x, s) = Q̃st(x, s) ≡ 1− e−a
√
s

s
, (5.33)

P̃av(x, s) = P̃ st(x, s) ≡ e−a
√
s, (5.34)

where the label ”st” stands for the standard case of a target without intermittent dynam-
ics. The inversion of Eq. (5.34) yields

P st(a, t) = a√
4πt3

e−
a2
4t ' a√

4π
t−

3
2 for t� τD. (5.35)

Limit α, β � 1/a2.

For very large values of the two transition rates compared to the inverse diffusion time,
but keeping β/α constant, it is easy to see from Eq. (5.30) or (5.31) that the three first
passage quantities tend to those of the standard problem, too:

Q̃i(x, s)→ Q̃st(x, s). (5.36)
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This result seems intriguing, as it implies that at very high transition rates, the target
is always detectable by the Brownian particle, even if it is actually invisible most of the
time, i.e., with β/α� 1. This property is in marked contrast with the radiation boundary
condition problem, where the standard case is recovered only when the boundary is mostly
absorbing. The fast absorption can be understood here by the recurrence of Brownian
trajectories in 1d: a particle crossing the origin will cross it many times within a short
amount of time. If, in the meantime, the target transits very rapidly from one state to
the other, as soon as it becomes visible it will be hit by the nearby particle. Hence, the
duration of the visible state with respect to the invisible one is not a key factor. As
a corollary, if the particle starts very far away from the target (a2 � α, β), the target
dynamics and initial state will play minor roles on the first passage statistics as well (see
further Section 5.1.5).

Diffusion limited and intermittency limited survivals

The analytical expression of the survival probability allows us to discuss an important
property of the first passage statistics which is not met by the standard case nor radiation
boundary problems. Let us consider the limit of infinitely fast diffusion D → ∞, which
corresponds to taking a → 0 from the definition (5.24). In the standard case, the target
is found immediately if diffusion is infinitely fast, or Qst(a = 0, t) = 0 for t > 0, see Eq.
(5.33). However, when the target is intermittent, Qav and Q0 admit non-trivial limits.
If one defines QI(t) ≡ Qav(a = 0, t), the survival probability for any value of a can be
decomposed into two parts:

Qav(a, t) = QI(t) +QD(a, t). (5.37)

By construction, the contribution QD(a, t) vanishes as a → 0 and it therefore repre-
sents the diffusion limited part of the overall survival probability. Conversely, QI(t) is
independent of the diffusion coefficient or starting position, but depends only on α and
β. Therefore, it represents the part of Qav limited by the on/off dynamics of the tar-
get. Owing to Eq. (5.2), Pav(a, t) obviously admits the same type of decomposition
P I(t) + PD(a, t). From Eq. (5.29), one obtains in the Laplace domain

Q̃I(s) = β√
s(α
√
s+ α + β + β

√
s) , (5.38)

Q̃D(a, s) = α
√
s+ α + β

α
√
s+ α + β + β

√
s

(
1− e−a

√
s

s

)
. (5.39)

The intermittent part arises from the fact that the target can be initially invisible and
therefore undetectable while it remains in such state, no matter how fast diffusion occurs.
A decomposition like in Eq. (5.37) can be performed for Q0 as well. From Eq. (5.30),

Q̃I
0(s) = α + β√

s(α
√
s+ α + β + β

√
s) , (5.40)

Q̃D
0 (a, s) = α

√
s+ α + β

α
√
s+ α + β + β

√
s

1− e−a
√
s

s
− 1− e−a

√
s+α+β

√
s
√
s+ α + β

 . (5.41)
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One notice that QI
0(t) = α+β

β
QI(t). This quantity represents the probability that the

particle starting right at the target position, with the target initially invisible, has still
not hit the target at time t. One can also notice that the average survival probability can
be expressed from Q̃I and Q̃st:

Q̃av(a, s) = Q̃st(a, s) + e−a
√
sQ̃I(s). (5.42)

5.1.4 Exact Laplace inversion
The general expression (5.30) does not seem to admit an exact Laplace inverse transform
in terms of elementary functions. Instead, we obtain Qi(a, t) by using the convolution
theorem. To this end, we write Eq. (5.30) in terms of two functions of s (Eqs. 5.43-5.44)
and then, we calculate its convolution. We define the following functions:

f(s) =
√
s− β

α

√
s+ α + β + α+β√

s

(α− β)s+ α2 (5.43)

gσ(a, s) = e−a
√
s

√
s
− Cσ

e−a
√
s+α+β

√
s+ α + β

(5.44)

Once defining these functions, we are able to write Qσ(a, s) = 1/s− α2

α+βf(s)gσ(a, s).
If we denote the inverse Laplace transform of f(s) and gσ(a, s) as F (t) and Gσ(a, t),
respectively, we will have:

Qσ(a, t) = 1− α2

α + β

∫ t

0
F (u)Gσ(a, t− u)du. (5.45)

Gσ(a, t) and F (t) are calculated below.
To obtain the FPTD of the state σ as a function of time (P = −dQ/dt), we need to

calculate the time derivative of Eq. (5.45):

Pσ(a, t) = α2

α + β

∫ t

0
F (u)∂Gσ(a, t− u)

∂t
du, (5.46)

where we have use the fact that F (t)G(0+) = 0, which can be shown from the definitions
of G and F in Eqs. (5.47)-(5.48).

The first function Gσ(a, t) can be found by direct inversion:

Gσ(a, t) = 1√
πt
e−

a2
4t
(
1− Cσe−(α+β)t

)
. (5.47)

For F (t) it is necessary to divide the problem into two cases, α = β and α 6= β. One
finds:

F (t) =



e−2αt − 1
2α2
√
πt3

+ 2
α
√
πt
, for α = β,

β2

α
√

(α− β)3
e−

α2
α−β t

[
erfi

(√
β2

α− β
t

)
− erfi

(√
α2

α− β
t

)]
+ α− βe−(α+β)t

α(α− β)
√
πt
, for α 6= β,

(5.48)
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Figure 5.2: Average survival probability for the values α = 1, β = 1, 104 with x = 1 and D = 1. One can
appreciate how fast the probability decays with β = α compared to β = 104α.

where erfi(z) = −i erf(iz), with the error function defined by

erf(x) = 2
π

∫ x

0
dτe−τ

2
. (5.49)

Figure (5.2) depicts the survival probability for two different values of β and constant
α. One can see how this probability decays slower and remains close to unity for a long
time when β increases. On the other hand, the exact solution for Pav obtained above is
checked successfully with Monte Carlo simulations in Figure 5.4, for several values of β.
At large times (> 105), we can observe the scaling decay ∼ t−3/2 as in the standard case
(see Eq. (4.46)), however, when the target is cryptic with β/α � 1, in which case the
target is invisible most of the time, a new scaling regime ∼ t−1/2 emerges. This will be
explain more in detail in Section 5.1.5.

Mean first passage time and search efficiency.

The mean search time (also averaged over initial target states) is given by the general
relation 〈T 〉av =

∫∞
0 dt tPav(x, t) = Q̃av(x, s = 0). It is easy to see from Eq. (5.30) that

〈T 〉av = 〈T 〉0 = 〈T 〉1 = ∞. One can nevertheless define a search efficiency based on the
mean inverse time 〈1/T 〉 =

∫∞
0 dt Pav(x, t)/t =

∫∞
0 ds P̃ (x, s), which is a finite quantity.

One has: 〈 1
T

〉
av

=
∫ ∞

0
ds

α
√
s+ α + β

α
√
s+ α + β + β

√
s
e−a
√
s. (5.50)

The search efficiency is obviously less than in the non-intermittent case β = 0. Opposite
to this standard case is that of targets with long periods of visibility and invisibility
compared to the diffusion time (β and α both � 1/a2). In this case

√
s+ α + β '

√
s

when the decaying exponential contribute most in (5.50), therefore〈 1
T

〉
av
' α

α + β

∫ ∞
0

ds e−a
√
s = α

α + β

( 2
a2

)
. (5.51)
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Figure 5.3: Average FHTD for α = 10−4 and varying β with a diffusion constant D = 1/2. Symbols
represent simulation results and lines the exact solution.

Hence, compared to the standard case, the efficiency is degraded by a factor α/(α + β),
which is also the probability that the target is found in the visible state.

5.1.5 Asymptotic behavior of Qav(a, t)
Though we have already found the exact solution of the survival probability, it is given in
an integral form that makes it cumbersome to analyze its dependence with the diffusion
coefficient and the intermittency parameters. To overcome this difficulty, we can study
the behaviour of Qav(x, t) for long and short times, using the properties of the Laplace
transform that we have seen in Section 4.5. With this we can obtain an approximation
of the behaviour of a function F (t) for long (short) times if we evaluate its corresponding
Laplace transform f(s) at the limit s→ 0 (s→∞).

Before of making the asymptotic analysis, we notice that there are two basic time
scales involved in the system. The first time scale that we have already mentioned is
given by τD = a2, this is the typical diffusion time to reach the target region from the
starting position. On the other hand, the target intermittency sets another time scale
defined as τta = 1/(α+β); this is the mean time in which a target state transition occurs.
In addition to these two time scales, in the following we will see that a third one emerge,
that will divide the asymptotic behaviour of the survival probability into two regimes.

Long times.

From the above discussion, the long time regime is reached when max(τD, τta) � t. In
Laplace space this is satisfied if s � α + β and s � a−2. The first assumption allow us
to write

√
s+ α + β ≈

√
α + β, and then Eq. (5.29) becomes

Q̃av(a, s) = 1
s

(
1− e−a

√
s

1 +K
√
s

)
, (5.52)
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where we have defined
K = β

α
√
α + β

. (5.53)

Eq. (5.52) can be directly inverted [1] to obtain the survival probability

Qav(a, t) = erfc
(√

t

K
+ a

2
√
t

)
exp

(
a

K
+ t

K2

)
+ erf

(
a

2
√
t

)
, (5.54)

and the FPTD

Pav(a, t) = 1
K
√
πt

exp
(
−a

2

4t

)
− 1
K2 erfc

(√
t

K
+ a

2
√
t

)
exp

(
a

K
+ t

K2

)
, (5.55)

where erfc(·) = 1− erf(·) is the complement of the error function, defined in Eq. (5.49).
Although these expressions are still complex, we now can directly analyze their be-

haviour at large times as a function of the intermittent parameters. Nevertheless, another
calculation allows us to carry out this analysis in a simpler way. Let us take the assump-
tion s � a−2 and write e−a

√
s ≈ 1 − a

√
s. Hence, from Eq. (5.52) we find two possible

scenarios:

(i) If K
√
s � 1, we can make a series expansion of the term 1/(1 + K

√
s) to obtain

Q̃av ' (a+K)/
√
s. By inversion, this yields Qav(a, t) ' (a+K)/

√
πt and the first

passage probability will approximate to

Pav(a, t) '
a+K

2
√
πt3

. (5.56)

Hence, at large times, when the first term of (5.55) dominates, the long time be-
haviour is the same as in the standard case, except that the prefactor of the power-
law t−3/2 depends on the target visibility dynamic through the constant K.
Following orders in Eq. (5.56) can be obtained if we expand Eq. (5.52) for small s.
In this case, we will have that

Qav(s) '
a+K√

s
−
(
a+ aK +K2

)
+ a3 + 3a2K + 6aK2 + 6K3

6
√
s+ h.o.terms,

(5.57)
Whereas the leading order in Eq. (5.57) leads to (5.56), the Laplace transform of
the constant term does not contribute for long times. The third term of the right
side in Eq. (5.57) must be treated apart. As this term does not diverges when
s → 0, we cannot invert it directly. Instead, we can use the following result that
holds for the Laplace transform F̃ (s) of a function f(t) [78]:

− dF̃ (s)
ds

= − d

ds

∫ ∞
0

f(t)e−stdt =
∫ ∞

0
tf(t)e−stdt. (5.58)

If F (s) =
√
s, it follows that

∫∞
0 tf(t)e−stdt = −1/(2

√
s), i.e., the Laplace transform

of tf(t) is 1/(2
√
s). Therefore, by simple inversion we have that tf(t) = −1/(2

√
πt),

that leads to f(t) = −1/(2
√
πt3). Now we can invert Eq. (5.57) and use the relation

P = −dQ/dt to obtain the FHTD

Pav(a, t) '
a+K

2
√
πt3
− a3 + 3a2K + 6aK2 + 6K3

8
√
πt5

+O
(
t−7/2

)
. (5.59)
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(ii) There exists a second case, where we have at the same time s� a−2, s� α+β and
K
√
s� 1 for a wide range of values of s. This is possible if a = 0 or very small, and

if K is sufficiently large compared to 1/
√
α + β. In this case, Q̃av ' 1

s
(1− 1/K

√
s)

and immediately we will have P̃av = 1 − sQ̃av = 1/K
√
s. This form allows us to

derive an important result: in an intermediate time interval, we thus have

Pav(t) '
1

K
√
πt
. (5.60)

From the above analysis we see that the asymptotic behaviour of the FHTD drastically
changes at the time scale

τc ≡ K2 = β2

α2(α + β) , (5.61)

which sets a crossover time that separates the standard scaling t−3/2 modified by the
prefactor (a + K), from a new regime t−1/2 that holds in the range max(τD, τta) � t �
τc. It is worth noting that the crossover time only depends on the target intermittent
dynamics and will be observed only if

τc
τta

=
(
β

α

)2

� 1, (5.62)

which is satisfied for high cryptic targets with β � α. Interestingly, this regime can be
sustained for several decades. Summarizing, we have found that

Pav(a, t) '

1/(K
√
πt), if max(τD, τta)� t� τc,

(a+K)/(2
√
πt3), if τc � t.

(5.63)

In figure (5.4) we plot Pav(a, t) for an extreme case in which β � α. We include the
curve given by the complete solution given in section 5.1.4. It can be appreciated that at
time τc = K2 the slope of the curve changes from t−1/2 to t−3/2.

Short times

As we have done before, to analyze the behaviour of the FPTD for short times we calculate
the Laplace transform of the function Q̃av(a, s) in the corresponding limit s→∞. To do
this, we rewrite Eq. (5.29) as

Q̃av = 1− e−a
√
s

s
+ 1

1 + α
β

√
(s+ α + β)/s

(
e−a
√
s

s

)
(5.64)

and we make the series expansion
√

(s+ α + β)/s ≈ 1 + α+β
2s −O(s−2) to obtain

Q̃(a, s) = 1
s
− α

α + β

e−a
√
s

s
− αβ

2(α + β)
e−a
√
s

s2 + β(3α2 + αβ)
8(α + β)

e−a
√
s

s3 +O(s−4) (5.65)

and the FPTD in the Laplace space will be
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P̃ (a, s) = α

α + β
e−a
√
s

[
1 + β

2s −
β(3α + β)

8s2 +O(s−3)
]

(5.66)

From this equation we immediately see one important result that departs from the
standard case: when a→ 0 there will be a non vanishing contribution to the FPTD given
by the intermittency behaviour of the target as we discussed in section 5.1.3. Then, if we
invert Eq. (5.66) in this limit (a = 0) we will have

Pav(t) = α

α + β

[
δ(t) + β

2 −
β(3α + β)

8 t+O(t2)
]

(5.67)

The total FPTD will be given by

Pav(a, t) = α

α + β

[
a√
4πt3

e−
a2
4t + β

2 erfc
(

a

2
√
t

)
−O(t)

]
(5.68)

We observe that at short times, the first passage time behaves as the standard case
weighted by the probability α/(α + β).

5.1.6 Relation with mixed boundary condition problems
Since the target switches between absorbing and reflecting phases (the latter being equiv-
alent to hidden in the present geometry), one may wonder about a possible connection
with diffusion in the presence of a mixed, or Robin, boundary condition (RBC) introduced
at section 4.4. For a Brownian particle, the general mixed boundary condition Eq. 4.22
reduces to [124]:

D
∂p

∂z

∣∣∣∣∣
z=0

= κp(z = 0, t), (5.69)



where κ is a positive constant and p(z, t) is the probability density of the position z ∈
[0,∞). The exact survival probability in 1d of a particle starting at z = x and obeying a
RBC [116, 105] actually coincides with our Eq. (5.52) or (5.55) for all t, where K must
be replaced by

√
D/κ. Since these Eqs. (5.52) or (5.55) are valid for t� 1/(α+ β), both

problems become equivalent for times larger than the target time. We deduce the formula

κ = α

β

√
α + β

√
D. (5.70)

As one may expect, the boundary is absorbing (κ → ∞) when β → 0 and reflecting
(κ → 0) when α → 0. Non trivially, it is also absorbing as α, β → ∞, β/α being
fixed, as mentioned earlier. The two-state process thus provides a new, rigorous example
of application of the RBC (5.69), extending the relevance of the latter to the study of
fluctuating biophysical systems. Both problems differ for t smaller than the target time-
scale, though, as the RBC does not involve such a time-scale. A similar asymptotic
analogy with the RBC was shown some time ago for diffusion into a partially absorbing
medium [14].

5.2 Diffusion with resetting
In this section, we study the first hitting time statistics between a particle, which stochas-
tically resets to its initial position on the semi-infinite line, and a gated target that inter-
mittently switches between two states: a reactive state that absorbs the diffusive particle
upon encounter, and a non-reactive one which reflects the particle. We calculate the sur-
vival probabilities of the particle at time t, and further deduce quantities of interest such
as the first two moments of the hitting time distribution. This section is organized as
follows: we begin in Section 5.2.1 by introducing the model and deduce the equations of
motion that govern the survival probabilities, which are solved in the Laplace space. With
these solutions, in Section 5.2.2 we find an exact expression for the MFHT and analyze its
behaviour as a function of the target transition rates and of the resetting rate. In Section
5.2.3 we discuss the connection between our model and the partial absorption problem.
Section 5.2.4 is devoted to the analysis of the relative variance of the first hitting times.
A comparison between our findings and those of [30] is discussed in more details in 5.2.5.

5.2.1 The problem and its solution
Let us consider on the semi-infinite line a Brownian particle with diffusion coefficient D,
starting at t = 0 from a position x0 > 0, and which is subject to a stochastic Poissonian
resetting process of rate r. The resetting position is denoted as xr > 0. At the origin,
a stochastically gated target is placed. The dynamics of the target will be characterized
by the time-dependent binary variable σ(t), which takes the value σ = 0 when the target
is non-reactive, and σ = 1 when it is reactive. The target stochastically switches from
the state 0 to 1 with rate α, whereas it switches from the state 1 to 0 with rate β (see
Fig. 5.5). The diffusing particle is absorbed upon its first encounter with the target in
the reactive state.

We define Q0(x0, t) as the probability that the particle has not hit the target up to
time t, given the initial position x0 and initial target state σ(t = 0) = 0 [the variable
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Figure 5.5: Trajectory of a diffusive particle (blue line) in 1D, in the presence of an intermittent target
placed at the origin. The periods of time during which the target is reactive (or absorbing) are represented
by red segments, whereas the gray intervals represent the target in the non-reactive (or reflective) state.
At exponentially distributed time intervals with mean 1/r, the particle is reset to the position xr (orange
line), which coincides in this example with the initial position x0.

xr is implicit]. Similarly, we define Q1(x0, t) for the initial target state σ(t = 0) = 1.
In Appendix A.2 we show that these probabilities satisfy the coupled backward Fokker-
Planck equations

∂Q0(x0, t)
∂t

= D
∂2Q0(x0, t)

∂x2
0

+ α(Q1(x0, t)−Q0(x0, t)) + r(Q0(xr, t)−Q0(x0, t)), (5.71)

∂Q1(x0, t)
∂t

= D
∂2Q1(x0, t)

∂x2
0

+ β(Q0(x0, t)−Q1(x0, t)) + r(Q1(xr, t)−Q1(x0, t)). (5.72)

The system of equations (5.71) and (5.72) will satisfy the following boundary conditions:

Q1(x0 = 0, t) = 0, (5.73)
∂Q0(x0, t)

∂x0

∣∣∣∣
x0=0

= 0. (5.74)

Eq. (5.73) enforces the absorbing condition of the target in the reactive state, whereas
Eq. (5.74) asserts that the target in the non-reactive state will reflect the diffusive particle
upon encounter (see Section 5.1 for a detailed derivation of the latter condition).

We also define the average survival probability Qav(x0, t) for the particle starting at
x0 that results from averaging over the initial target states generated by the steady-state
distribution of the two-state Markov chain:

Qav(x0, t) = β

α + β
Q0(x0, t) + α

α + β
Q1(x0, t). (5.75)

The probability distributions of the first hitting time t are denoted as P0(x0, t) and
P1(x0, t), with the same notations as before for the initial conditions. These first hitting
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time densities (FHTDs) are deduced from the survival probabilities through the usual
relation [108]:

P0,1(x0, t) = −∂Q0,1(x0, t)
∂t

. (5.76)

Introducing the Laplace transforms Q̃0,1(x0, s) =
∫∞

0 e−stQ0,1(x0, t)dt and using the
initial condition Q0,1(x0, t = 0) = 1 for x0 > 0, Eqs. (5.71) and (5.72) become

D
∂2Q̃0(x0, s)

∂x2
0

+ αQ̃1(x0, s)− (s+ α + r)Q̃0(x0, s) = −1− rQ̃0(xr, s), (5.77)

D
∂2Q̃1(x0, s)

∂x2
0

+ βQ̃0(x0, s)− (s+ β + r)Q̃1(x0, s) = −1− rQ̃1(xr, s), (5.78)

and the boundary conditions (5.73) and (5.74) read

Q̃1(x0 = 0, s) = 0, (5.79)
∂Q̃0(x0, s)

∂x0

∣∣∣∣
x0=0

= 0. (5.80)

By using Eq. (5.76) and integrating by parts, the Laplace transform of the FHTD will be
simply given by

P̃0(x0, s) = 1− sQ̃0(x0, s) and P̃1(x0, s) = 1− sQ̃1(x0, s). (5.81)

We consider Q0(xr, s) and Q1(xr, s) as unknown inhomogeneous terms in the differential
equations (5.77) and (5.78). The homogeneous part of this system is solved with the
ansatz ξeλx0 , where the vector ξ and λ are determined from solving(

Dλ2 − (α + r + s) α
β Dλ2 − (β + r + s)

)
ξ = 0. (5.82)

After straightforward algebra, the general solution Q̃ =
(
Q̃0 Q̃1

)T
is given by the

following linear combination

Q̃ = A1ξ1e
−λ1x0 + A2ξ1e

λ1x0 + A3ξ2e
−λ2x0 + A4ξ2e

λ2x0 + Q̃inh, (5.83)

where Q̃inh =
(
Q̃inh

0 Q̃inh
1

)T
is the constant solution given by

Q̃inh
0 = 1 + rQ̃0(xr, s)

Dλ2
1

+
rα
[
Q̃1(xr, s)− Q̃0(xr, s)

]
Dλ2

1λ
2
2

, (5.84)

Q̃inh
1 = 1 + rQ̃1(xr, s)

Dλ2
1

+
rβ
[
Q̃0(xr, s)− Q̃1(xr, s)

]
D2λ2

1λ
2
2

. (5.85)

The factors Ak are determined from the boundary conditions and the no-divergence of
the probabilities Q0,1 as x0 → ∞. The roots λ1 and λ2 in Eqs. (5.83)–(5.85) are given
from (5.82) by

λ1 =
√
s+ r

D
, λ2 =

√
s+ α + β + r

D
, (5.86)
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whereas the vectors ξ1 and ξ2 are

ξ1 =
(

1
1

)
, ξ2 =

(
−α
β

1

)
.

To avoid infinite solutions at x0 →∞, we must set A2 = A4 = 0 in Eq. (5.83). From the
boundary conditions (5.79)-(5.80) we obtain the remaining constants,

A1 = − αλ2Q̃
inh
1

αλ2 + βλ1
, (5.87)

and A3 = βλ1
αλ2

A1. Substituting these factors into Eq. (5.83),

Q̃0(x0, s) = − αλ2
αλ2+βλ1

(
e−λ1x0 − λ1

λ2
e−λ2x0

)
Q̃inh

1 + Q̃inh
0 , (5.88)

Q̃1(x0, s) = − αλ2
αλ2+βλ1

(
e−λ1x0 + βλ1

αλ2
e−λ2x0

)
Q̃inh

1 + Q̃inh
1 . (5.89)

The average survival probability takes a slightly simpler form:

Q̃av(x0, s) = − αλ2Q̃
inh
1

αλ2 + βλ1
e−λ1x + 1 + rQ̃av(xr, s)

Dλ2
1

. (5.90)

Substituting Eqs. (5.84)-(5.85) into Eqs. (5.88)-(5.89), and then setting xr = x0,
one obtains in a self-consistent way the survival probabilities Q̃0(x0, s) and Q̃1(x0, s), i.e.,
when the initial position is the resetting position:

Q̃0(x0, s) = αλ2(eλ1x0−1)+λ1(β+(α+r)e−λ2x0)eλ1x0− sλ1r
α+β+s e

(λ1−λ2)x0

αλ2r+seλ1x0 [(βλ1+αλ2)+ βλ1r
α+β+s e

−λ2x0 ] , (5.91)

Q̃1(x0, s) = αλ2(eλ1x0−1)+βλ1(1−e−λ2x0)eλ1x0

αλ2r+seλ1x0 [(βλ1+αλ2)+ βλ1r
α+β+s e

−λ2x0 ] . (5.92)

whereas the average survival probability is

Q̃av(x0, s) =
αλ2

(
1− e−λ1x0

)
(s+ α + β) + βλ1

(
re−λ2x0 + s+ α + β

)
αλ2 (re−λ1x0 + s) (s+ α + β) + sβλ1 (re−λ2x0 + s+ α + β) . (5.93)

5.2.2 Mean first hitting time
In the following we keep considering xr = x0 (resetting to the starting position) and define
the mean first hitting time given the initial target condition σ = 0 (σ = 1, respectively)
as T0(x0) (T1(x0), respectively). These quantities are obtained from the usual relation
T0,1(x0) =

∫∞
0 Q0,1(x0, t)dt = Q̃0,1(x0, s = 0). Setting s = 0 in Eqs. (5.91) and (5.92), one

deduces

T0(x0) = e
√

r
D
x0 − 1
r

+ β + (r + α)e−
√

r+α+β
D

x0

α
√
r(r + α + β)

e
√

r
D
x0 , (5.94)

T1(x0) = e
√

r
D
x0 − 1
r

+ β

α

1− e−
√

r+α+β
D

x0√
r(r + α + β)

 e√ r
D
x0 . (5.95)
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From Eq. (5.93), the average mean first hitting time reads

Tav(x0) = e
√

r
D
x0 − 1
r

+ βe
√

r
D
x0(α + β + re−

√
r+α+β
D

x0)
α(α + β)

√
r(r + α + β)

. (5.96)

As well-known for the case of perfectly absorbing targets [55, 54], one of the main con-
sequence of introducing resetting in the dynamics of the diffusive particle is to make the
mean of the FHTD finite, unlike in free diffusion, where it diverges. Furthermore, the
different MFHTs here can be minimized by a suitable choice of the resetting rate.

The solution of the mean first hitting time of the gated problem calls for several
comments. As expected, if we set β = 0 in Eq. (5.94) or (5.95), we recover the expression
of the MFHT for the ungated case, denoted as Tr(x0) here:

Tav(x0, β = 0) = Tr(x0) = e
√

r
D
x0 − 1
r

. (5.97)

Tr is a non-monotonic function of r that is minimum at the optimal resetting rate r∗(β =
0) = 2.53963...D/x2

0, a result first deduced in [55].
The solution for the average MFHT in Eq. (5.96) also exhibits a non-monotonic

behaviour with a single minimum (Fig. 5.6a), for all parameter values α, β > 0 of the
intermittent target. The optimal resetting rate r∗ that minimizes the MFHT varies with
the switching parameters α and β. Increasing the parameter β makes the target less
reactive, which causes an increase of the MFHT. As shown by Fig. 5.6b, at a fixed resetting
rate, the MFHT increases monotonically with β. Even when the switching parameter β
is high, an optimal resetting rate r = r∗(β) can always be found. Therefore, fixing α,
it is possible to draw a minimal curve for the MFHT as a function of β. As depicted
in Fig. 5.6b, any MFHT with another value of r will lie above the curve corresponding
to r∗(β). One can also notice the non-monotonic variations of the MFTH with r: the
MFHT first decreases with r until it reaches its minimal value at r∗(β), which is of order
one. For r > r∗(β), the MFPT increases with r. A very good agreement with numerical
simulations is obtained.

In Eq. (5.96), the dependence of the MFHT with respect to the target rates is not
as simple as one would wish and obtaining an analytical expression for r∗ seems beyond
reach. Below, we derive a simplified expression in the limiting case when the target rapidly
switches between the reactive and non-reactive states, and compare the results with the
numerical minimization of the exact solution (5.96).

In the limit of large α and β compared to r, we approximate
√
r + α + β ≈

√
α + β

in Eq. (5.96) and can always neglect the term proportional to e−x0
√

r+α+β
D to obtain

Tav(x0) ≈ e
√

r
D
x0 − 1
r

+ βe
√

r
D
x0

α
√
r(α + β)

. (5.98)

Defining the dimensionless parameters

z = x0
√

r
D
, (5.99)

w = β
√
r

2α
√
α+β

, (5.100)



CHAPTER 5. RANDOM SEARCHES OF FLUCTUATING TARGETS 54

a



              
    



          
 














     
























   





























  




























β=0 β=1 β=2

β=3 β=4

0 5 10 15 20
0

5

10

15

20

r

T
av
(x
0
=
1
,α
=
1
)

b














 
  

 





 


 
                  

                    

    
 

     
   

  


                    

r=r*(β)r=.01 r=.1

r=10 r=20

0.0 0.5 1.0 1.5 2.0
0

5

10

15

20

25

β

T
av
(x
0
=
1
,α
=
1
)

Figure 5.6: (a) Mean first hitting time Tav as a function of r for several values of β (x0 = 1, D = 1 and
α = 1). (b) Same quantity as a function of β for several values of r. Symbols represent simulation results
obtained with the Gillespie algorithm [63].

the approximate optimal resetting rate obeys the transcendental equation
z

2 − 1 + e−z + w(z − 1) = 0. (5.101)

The solution of Eq. (5.101) as a function of β is shown in Fig. 5.7a (dashed lines), together
with the exact optimal parameter obtained from numerical minimization of Eq. (5.96).
Clearly, the two solutions show a good agreement for all β only if α� r∗. Otherwise, the
differences are significant in the intermediate regime of β.
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Figure 5.7: a) Optimal resetting rate r∗ as a function of β and several values of α (fixing x0 = 1 and
D = 1). The continuous lines are obtained from numerical minimization of the exact result (5.96),
whereas the dashed lines represent the solution of the approximate Eq. (5.101). b) Optimal resetting
rates obtained from the minimizations of the functions T0, T1 and Tav, respectively, see Eqs. (5.94), (5.95)
and (5.96), for a small value of α (10−5). In both figures, the upper horizontal dotted line represents the
maximum value 2.72033...D/x2

0 that r∗ can reach, which is given by minimizing Eq. (5.103).

In the high transition rates regime, if the target is mostly non-reactive (r � α � β,
such that w � 1), the first three terms of the left hand side of Eq. (5.101) can be neglected
and we arrive at the simple solution z = 1. From Eq. (5.99), the optimal resetting rate
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in the limit β =∞ is therefore given by

r∗(β =∞) = D/x2
0, (5.102)

which is substantially lower than the optimal rate r∗(β = 0) = 2.53963...D/x2
0 for the

ungated target (see Fig. 5.7a). Therefore, to optimize the search process of a poorly
reactive target, one must opt for less frequent resetting compared with the perfectly
reactive case, at a rate exactly given by the inverse diffusion time D/x2

0. It is also worth
noting that, even though the expression (5.101) is obtained in the high transition rates
limit, we can recover the solution for the ungated case: setting β = 0, it reduces to
the transcendental equation z∗

2 − 1 + e−z
∗ = 0, whose solution is z∗ = 1.59362... or

r∗(β = 0) = 2.53963...D/x2
0.

As shown by Fig. 5.7a, r∗ always remains of the order of the inverse diffusion time
D/x2

0. Nevertheless, the (exact) optimal resetting rate does not always decrease as the
target becomes less reactive. At odds with the solution given by Eq. (5.101), r∗ can
exhibit a clear non-monotonic shape with respect to β, with a maximum at a value above
2.53963...D/x2

0. This occurs when the parameter α is fixed to a small value (compared to
the inverse diffusion time), a regime where the approximation (5.98) is no longer valid.
In this case, r∗ is maximum for a value of β which is larger than α, namely, in a situation
where the target is most of the time inactive.

This non-monotonic shape of the optimal resetting rate stems from properties ex-
hibited by the two MFHTs T0 and T1. As depicted in Fig. 5.7b, the resetting rates
that minimize T0 and T1 taken separately are different. If the target is initially reactive,
it remains so during a random time of mean 1/β until it switches to the non-reactive
state. For a small transition rate β, the initial reactive phase can thus be very long
and the target is considered as practically ungated: r∗ coincides with the optimal rate
r∗(β = 0) = 2.53963...D/x2

0. On the contrary, if the target is initially non-reactive, the
searcher will diffuse and reset without being absorbed during a random time of mean
1/α until the target becomes reactive. If this first transition happens after a long time
(α small), the searcher will have a random position approximately distributed along the
non-equilibrium steady state in the presence of the reflecting boundary. If in addition the
transition rate β is small, once the target activates, it can be considered as practically
ungated and the problem becomes analogous to the standard one, but with a distribution
of starting positions. As a consequence, the value of the optimal resetting rate is larger,
as shown in Fig. 5.7b (see also Eq. (5.103) below).

Since Tav represents the average over the initial target states in Eq. (5.75), for values
of β much smaller than α, the target is likely to be initially reactive, and the main
contribution to Tav comes from T1. Conversely, when β becomes greater than α (but still
� r∗), the contribution of T0 is dominant. Therefore the resetting rate that minimizes Tav
increases and reaches the value that minimizes T0. Eventually, in the regime β � r∗ the
resetting rate drops to the value D/x2

0 discussed previously. These considerations explain
the non-monotonic behaviour of r∗ at small α seen in Figs. 5.7a-b.

The upper bound reached by the optimal resetting rate r∗ in our problem can be
calculated as follows. With β = 0, the value of r that minimize T0 becomes independent
of α at small α. This can be noticed by setting β = 0 and expanding Eq. (5.94) around
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α = 0:

T0(x0, α, β = 0) ≈ e
√

r
D
x0 − 1
r

+
1−

√
r
D
x0

2r + 1
α

+O(α). (5.103)

In the limit α → 0, all the terms of order α or higher can be neglected. Therefore, the
minimization of Eq. (5.103) with respect to r will only involve the first two terms of the
right hand side, leading to an optimal resetting rate of 2.72033...D/x2

0, independent of α.
This is the maximum value that the optimal resetting rate r∗ can reach here, over all the
possible values of the parameters α and β, as illustrated in Figs. 5.7a-b.

5.2.3 The regime α, β � r and the partial absorption problem
We comment that the same expression (5.101) was deduced in reference [143] for diffusion
under resetting with partial absorption: in that case, the dimensionless parameter w was
given by w =

√
rD/2κ, where κ is the absorption velocity of the target.

The physical meaning of the approximation (5.98) can therefore be traced back to the
problem of diffusion under resetting in the presence of a partially absorbing target [143]. In
that problem, a searcher performs diffusion with stochastic resetting to the initial position
whereas a partially absorbing target is located at the origin (see Section 4.4). Upon
target encounters, the searcher will not be necessarily absorbed at the target boundary
but instead reflected at some rate, such that the probability density p(x, t) of the position
x will satisfy the so-called radiation boundary condition

D
∂p(x, t)
∂y

∣∣∣∣
x=0

= κp(x = 0, t), (5.104)

where the absorption velocity κ is the rate at which the searcher is absorbed at the target
boundary. A different interpretation of κ can be found in Ref. [118] , where the searcher
can diffuse inside the target, which is considered to have a certain thickness. In this
configuration, κ is proportional to the rate at which the searcher is absorbed while it is
in the target region. Both interpretations lead to the same results when the target size
tends to zero, which is the case of interest here.

It is found that the mean time at which the searcher reacts with the target is given
by [143]

Tp(x0) = e
√

r
D
x0 − 1
r

+ e
√

r
D
x0

κ
√
r/D

, (5.105)

where the other parameters r, x0 and D are the same as in our model.
By simple inspection, one can notice that Eq. (5.105) has the same form as the

approximation (5.98) of Tav in the limit of high transition rates (α, β). Although the
radiation boundary condition does not assume any internal target dynamics, we can make
a mapping between the parameters α and β and an absorption velocity κ through the
equation

κ = α

β

√
α + β

√
D. (5.106)

In other words, the optimal resetting rate in the problem of partial absorption is given
by solving Eq. (5.101) with w =

√
rD/2κ [143]. Therefore, the solution r∗(β = ∞) =
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D/x2
0 of Eq. (5.102) coincides with the optimal rate in the case of weak absorption,

κ �
√
Dr [143, 118]. However, this mapping between the two models is not valid for

intermediate values of the transition rates. With the radiation boundary condition (5.104),
the behaviour of the optimal resetting rate r∗ is monotonic with respect to the absorption
velocity κ, whereas the gating dynamics on time-scales comparable or longer than the
diffusion time give rise to a new non-monotonic behaviour with respect to the target
reactivity (Fig. 5.7).

These findings point out a close connection between partially absorbing and inter-
mittent boundaries, a connection that has been revealed before in the context of simple
diffusion (see Sec. 5.1.6). Eq. (5.106) is independent of the resetting rate and actually co-
incides with the expression found in Eq. (5.70) for a free Brownian particle. Furthermore,
in [80], it was proved that the mean solution of the diffusion equation with a boundary
condition switching infinitely fast between Dirichlet and Neumann conditions and with
the boundary being in the Neumann condition most of the time, satisfies the Robin con-
dition in a form equivalent to Eq. (5.106) above. Similar homogenization methods have
been applied for the solutions of parabolic partial differential equations with intermittent
boundaries [81].

5.2.4 Coefficient of variation
In this section we analyze the coefficient of variation defined as Cav = 〈(t − Tav)2〉/T 2

av.
This quantity represents the relative fluctuations of the first hitting time t, distributed
according to the density Pav(x, t), around its mean Tav. With the help of the relation
(5.76), the coefficient of variation can be easily calculated:

Cav = − 2
T 2
av

∂Q̃av(x0, s)
∂s

∣∣∣∣
s=0
− 1. (5.107)

Given the expression of the survival probability Q̃av(x0, s) in Eq. (5.93), we can obtain
the coefficient of variation in a straightforward manner after some algebraic manipulations.
However, it is convenient here to rewrite Eq. (5.93) in terms of the survival probability
Q̃r(x0, s) for the ungated case, given by [55]

Q̃r(x0, s) = 1− e−x0
√

s+r
D

re−x0
√

s+r
D + s

. (5.108)

Let us introduce the function

F̃r(x0, s) = re−
√

s+r
D
x0 + s√

s+ r
. (5.109)

With these definitions, the average survival probability is

Q̃av(x0, s) = αF̃r(x0, s)Q̃r(x0, s) + βF̃r(x0, s+ α + β)/(s+ α + β)
αF̃r(x0, s) + sβF̃r(x0, s+ α + β)/(s+ α + β)

. (5.110)



CHAPTER 5. RANDOM SEARCHES OF FLUCTUATING TARGETS 58

After taking the derivative with respect to s, we obtain

∂Q̃av(x0, s)
∂s

∣∣∣∣
s=0

= ∂Q̃r(x0,s)
∂s

∣∣∣∣
s=0
− [Tav(x0)− Tr(x0)]

[
Tav(x0) + 1

α+β

]
(5.111)

+ β
α(α+β)

∂
∂s

(
F̃r(x0,s+α+β)

F̃r(x0,s)

) ∣∣∣∣
s=0

,

where Tr(x0) is the MFPT for the ungated case given by Eq. (5.97). From the above
expression, Cav is obtained in terms of the coefficient of variation Cr in the ungated case,
which is calculated from an equation equivalent to Eq. (5.107), namely

Cr = − 2
T 2
r

∂Q̃r(x0, s)
∂s

∣∣∣∣
s=0
− 1. (5.112)

Substituting the partial derivative of Q̃r(x0, s) with respect to s into Eq. (5.112), one gets

Cav =
(
Tr(x0)
Tav(x0)

)2
(Cr + 1) + 2

[
1− Tr(x0)

Tav(x0)

] [
1 + 1

(α+β)Tav(x0)

]
(5.113)

− 2β
α(α+β)[Tav(x0)]2

∂
∂s

(
F̃r(x0,s+α+β)

F̃r(x0,s)

) ∣∣∣∣
s=0
− 1.

The advantage of expressing the coefficient of variation Cav in terms of Cr is to eluci-
date how different the fluctuations of the FHT for a dynamical target are from those of a
simple target. Specially important to us is to see whether a generic feature of processes
under resetting at the optimal rate also holds in our model. It is known that search
processes under stochastic resetting which are optimal at a non-zero resetting rate, which
is the case here, have a coefficient of variation equal to unity at optimality [111, 107, 13].
This property holds true if the process is brought to the same initial state after each reset.
In our case, this condition is not fulfilled, as resetting only acts on the particle and not
on the target: after resetting the particle position, the target may not be in the state it
occupied at t = 0 (we compare in 5.2.5 our results with the case where both the particle
and the target are subject to resetting, as studied in [30]). In the following, we see that
the aforementioned generic property holds in the limits β → 0 and β →∞, but is violated
in the more general intermediate regime.

It is straightforward to notice that when β = 0, we recover from Eq. (5.113) the
coefficient of variation for the ungated case, or Cav(β = 0) = Cr [recall that Tav(β = 0) =
Tr]. In the limit β →∞, the first hitting times diverges as Tav ∝

√
β (see Eq. 5.98), and

it is not difficult to see from the definition of F̃r(x0, s) that, in the limit of large β and at
the optimal resetting rate r∗(β =∞) = D/x2

0,

∂

∂s

(
F̃r(x0, s+ α + β)

F̃r(x0, s)

) ∣∣∣∣
s=0
∝
√
β. (5.114)

One deduces from Eq. (5.113) that Cav(r∗, β → ∞) → 1. These limiting behaviours are
checked in Fig. 5.8b with the exact solution.

Whereas the relative fluctuations of the first hitting times are unity at optimality in
the cases β = 0 and β =∞, this property is not general. The intricate way in which Eq.
(5.113) depends on the target intermittency parameters does not allow an explicit analysis
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Figure 5.8: a) Coefficient of variation Cav as a function of r/r∗ for fixed x0 = 1, D = 1, α = 1 and several
values of β. b) Same quantity as a function of β at the optimal rate r∗ (for x0 = 1, D = 1).

at finite α and β. Nevertheless, we performed a numerical evaluation of Eq. (5.113) in
a wide range of values of β and α at the corresponding optimal resetting rate r∗. The
results are shown in Figs. 5.8a-b, where the coefficient of variation takes values different
from unity. As displayed in Fig. 5.8b, when the target spends long periods of time in the
two states, i.e., when α, β � D/x2

0, the quantity Cav can take values much larger than 1
at optimality, even when the target is reactive most of the time (β � α).

5.2.5 Comparison with the Bressloff’s model
In this section we compare our expression for the MFHT, Eq. (5.96), with the analogous
quantity deduced by Bressloff in [30]. In this work, a one dimensional Brownian particle
diffuses in the interval [0, L] and is subject to stochastic resetting to the initial position
x0, with 0 < x0 < L. A dynamic target placed at the origin switches between an active
absorbing state and a reflecting state which prevents absorption. The MFHT for this
model is given by equation (4.19) in [30], from which we can obtain the MFHT in the
semi-infinite domain by taking the limit L→∞:

TB(x0) = e

√
r
D
x0−1
r

+ βe

√
r
D
x0

α
√
r(r+α+β)

, (5.115)

with the same notation for the switching rates α and β than ours. Although the model
studied in [30] is very similar, it bears an important difference. In [30], when the particle is
reset to x0, the state of the target is also re-initialised to the state σ = 0 [with probability
β/(α+β)] or σ = 1 [with probability α/(α+β)]. Conversely, in our model, the dynamics
of the intermittent target is completely independent of the particle dynamics and not
subject to resetting. This leads to quite different results for the behaviour of the mean
time to absorption.

Eq. (5.115) can be rewritten in terms of Tav(x0) here as

TB(x0) = Tav(x0)− β
√
re

(√
r
D
−
√

r+α+β
D

)
x0

α(α + β)
√
r + α + β

, (5.116)



which implies that TB is lower than Tav for all non-zero values of the parameters α, β and
r. It is easy to notice that the difference between both quantities can become very large
for cases in which α and β are � r (see Figs. 5.9a-c).
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Figure 5.9: (a) Mean first hitting times Tav/TB as a function of α and several values of β at r = 1. (b)
Same quantity as a function of β for several values of α. (c) Tav/TB as a function of r for several values
of α (and β = α). In all cases, x0 = 1 and D = 1.

To further contrast between these results, let us analyse the limiting case in which the
particle resets to the origin (x0 = 0) at infinite rate (r = ∞). In this scenario, once the
search process has started the particle immediately returns to the origin, with the target
still being in its initial state. If the target is initially in the reactive state (σ = 1), the
particle will be immediately absorbed, yielding to T1 = 0. If the target is initially in the
non-reactive state (σ = 0), the particle will remain at the origin (due to the infinitely
frequent resetting) until the target switches to the reactive state with rate α, in this case
T0 = 1/α. Therefore, from the definition of Tav, one obtains

Tav(x0 = 0, r =∞) = β

α(α + β) , (5.117)

which in fact coincides with Eq. (5.96). Conversely, from Eq. (5.115) one can easily see
that

TB(x0 = 0, r =∞) = 0, (5.118)

i.e., in [30] the particle is immediately absorbed irrespective the initial target state. This is
a consequence of the resetting process which, being infinitely frequent, makes the target
rapidly active, even if α

α+β � 1. In this model, stochastic resetting enhances target
detection not only by means of the particle motion but also by promoting target activation.

We notice in Fig. 5.9 that Tav approaches TB in the limit of high switching rates,
i.e., when α, β � r. This can be seen directly from Eq. (5.116), where the second term
of the right-hand-side approaches zero in this limit. Furthermore, when β → 0, the two
solutions Tav(x0) and TB(x0) tend to that of the ungated case, given by Tr(x0) in Eq.
(5.97).
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5.3 Run-and-tumble
In this section we study the first hitting time statistics between a one-dimensional run-
and-tumble particle and a target site that switches intermittently between visible and
invisible phases. The two-state dynamics of the target is independent of the motion of
the particle, which can be absorbed by the target only in its visible phase. This section
is organized as follows: we begin in Section 5.3.1 by introducing the model and deduce
the governing equations for the survival probabilities, which are solved in the Laplace
domain in the general case. With the help of these results, in Section 5.3.2 we compute
the MFHT and analyze this quantity for several limiting cases of the intermittent dynamic
parameters and of the particle motion. Subsequently, in Section 5.3.3 we calculate the
relative variance of the first hitting times. Section 5.3.4 is devoted to analyzing the FHTD
in the unbounded case.

5.3.1 General setup and solution
We start by defining a time-dependent binary variable σ(t) that describes the state of a
target placed at the origin of a one-dimensional space, and that takes the value σ = 1
when it is visible (or active) and σ = 0 when it is hidden (or inactive). The target state
switches at exponentially distributed times, with rate a for the transition 0→ 1 and with
rate b for the transition 1→ 0. Therefore, the mean duration of the active (inactive) phase
is 1/b (1/a, respectively) and the overall probability to find the target in the active state
is a/(a+ b). We then consider a run-and-tumble particle that moves at constant speed v
and changes its direction at a rate γ. Thus, the motion is governed by the equation

dx

dt
= Γ(t) (5.119)

where Γ(t) is a dichotomous noise which takes constant values, +v or −v, during exponen-
tially distributed time intervals of mean duration 1/γ. Two reflective barriers are placed
at the positions ±L, constraining the movement of the particle to the interval (−L,L).

Fig. 5.10 depicts an example of first encounter in which the RTP (blue line) starts
from x(t = 0) = L/2 and with the initial velocity +v, whereas the target is initially in
the visible state (in red). During the search process, the particle reverses its direction of
motion randomly through tumble events or by reflections against the walls. If the particle
crosses the origin while the target is hidden (white line), there is no encounter and the
RTP simply follows its way; however, if the target is visible, it is detected and the process
ends at the first hitting/encounter time t′.

In order to analyze the statistics of t′ in this system, let us denote as Q+
0 (x, t) [and

Q−0 (x, t)] the probability that the particle has not reacted up to time t, given the initial
target state σ(t = 0) = 0, the initial particle position x ∈ (−L,L) and the initial velocity
+v [−v, respectively]. Similarly, we denote as Q+

1 (x, t) and Q−1 (x, t) the survival proba-
bilities when the target initial state is σ(t = 0) = 1. We show in Appendix A.3 that these
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Figure 5.10: Run-and-tumble motion (blue line) in 1D in the presence of an intermittent target placed
at the origin. The periods of the target in the visible state are represented by red segments, whereas the
white intervals represent the target in its hidden state. The gray lines represent the reflective boundaries
located at L and −L, with L = 2.

four probabilities satisfy the backward Fokker-Planck equations

∂Q+
0

∂t
= v

∂Q+
0

∂x
− γ(Q+

0 −Q−0 )− a(Q+
0 −Q+

1 ),

∂Q−0
∂t

= −v∂Q
−
0

∂x
− γ(Q−0 −Q+

0 )− a(Q−0 −Q−1 ),

∂Q+
1

∂t
= v

∂Q+
1

∂x
− γ(Q+

1 −Q−1 )− b(Q+
1 −Q+

0 ),

∂Q−1
∂t

= −v∂Q
−
1

∂x
− γ(Q−1 −Q+

1 )− b(Q−1 −Q−0 ).

(5.120)

For the initial particle position x > 0, the system (5.120) will satisfy the following bound-
ary conditions:

Q−1 (x = 0+, t) = 0, (5.121)
Q+

0 (x = 0, t) = Q−0 (x = 0, t), (5.122)
Q+

0 (x = L, t) = Q−0 (x = L, t), (5.123)
Q+

1 (x = L, t) = Q−1 (x = L, t). (5.124)

The first condition asserts that the particle detects the target in state σ = 1 when it goes
leftward from its immediate vicinity on the right. Eq. (5.122) stems from symmetry, as
the target is placed in the middle of the domain. Eqs. (5.123)-(5.124) set the reflective
condition on the wall placed at x = L.

We can also average over the initial target states and assume equal probabilities for the
initial positive and negative particle velocities. The resulting average survival probability
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is thus:

Qav(x, t) = b

a+ b

(
Q+

0 (x, t) +Q−0 (x, t)
2

)

+ a

a+ b

(
Q+

1 (x, t) +Q−1 (x, t)
2

)
. (5.125)

The probability distributions of the first hitting time (t) are denoted as P+
0 (x, t),

P−0 (x, t), P+
1 (x, t) and P−0 (x, t) with the same notations as before for the initial conditions.

These first hitting time densities (FHTD) are deduced from the survival probabilities
through the usual relation [108]:

P±0,1(x, t) = −
∂Q±0,1(x, t)

∂t
. (5.126)

In the following, it is convenient to set γ−1 as the unit of time and vγ−1 as the unit
of length, so that the system (5.120) can be recast, in the dimensionless variables τ = tγ
and z = xγ/v, as

∂Q+
0

∂τ
= ∂Q+

0
∂z
− (Q+

0 −Q−0 )− α(Q+
0 −Q+

1 ),

∂Q−0
∂τ

= −∂Q
−
0

∂z
− (Q−0 −Q+

0 )− α(Q−0 −Q−1 ),

∂Q+
1

∂τ
= ∂Q+

1
∂z
− (Q+

1 −Q−1 )− β(Q+
1 −Q+

0 ),

∂Q−1
∂τ

= −∂Q
−
1

∂z
− (Q−1 −Q+

1 )− β(Q−1 −Q−0 ).

(5.127)

which only depends on two parameters, the dimensionless rates:

α = aγ−1, (5.128)
β = bγ−1. (5.129)

In these dimensionless units, the particle is thus restricted to z ∈ (−`, `), where ` is the
re-scaled domain size

` = Lγ/v. (5.130)
Introducing the Laplace transform Q̃(z, s) =

∫∞
0 e−sτQ(z, τ)dτ and using the initial

condition Q(z, τ = 0) = 1 for 0 < z < `, the Laplace transform of Eqs. (5.127) gives

∂

∂z


Q̃+

0
Q̃−0
Q̃+

1
Q̃−1

 = A


Q̃+

0
Q̃−0
Q̃+

1
Q̃−1

−


1
−1
1
−1

 (5.131)

where

A =


1 + s+ α −1 −α 0

1 −1− s− α 0 α
−β 0 1 + s+ β −1
0 β 1 −1− s− β

 (5.132)
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The homogeneous part of Eq. (5.131) can be solved with the ansatz ξeλz, where λ and
the vector ξ must be determined by diagonalizing (5.132), whereas the inhomogeneous
solution is simply Q̃±0,1 = 1/s. After straightforward algebra, the general solution Q̃ =(
Q̃+

0 Q̃−0 Q̃+
1 Q̃−1

)T
is given by the following linear combination of terms

Q̃ = A1ξ1e
−λ1z + A2ξ2e

λ1z + A3ξ3e
−λ2z + A4ξ4e

λ2z + Q̃inh, (5.133)

where the factors Ak are determined by the boundary conditions and Q̃inh is the inhomo-
geneous solution with each entry equal to 1/s. In Eq. (5.133), the eigenvalues λ1 and λ2
are positive and given by

λ1 =
√
s
√

2 + s, λ2 =
√
α + β + s

√
2 + α + β + s, (5.134)

whereas the eingenvectors are

ξ1 =


1 + s− λ1

1
1 + s− λ1

1

 , ξ2 =


1 + s+ λ1

1
1 + s+ λ1

1

 ,

ξ3 =


−α(1+s+α+β−λ2)

β

−α
β

1 + s+ α + β − λ2
1

 , ξ4 =


−α(1+s+α+β+λ2)

β

−α
β

1 + s+ α + β + λ2
1

 .
From Eq. (5.125), the average survival probability takes a simpler form:

Q̃av(z, s) = s+ 2− λ1

2 A1e
−λ1z + s+ 2 + λ1

2 A2e
λ1z + 1

s
. (5.135)

The boundary conditions in the Laplace domain are recast as

Q̃−1 (z = 0+, s) = 0, (5.136)
Q̃+

0 (z = 0, s) = Q̃−0 (z = 0, s), (5.137)
Q̃+

0 (z = `, s) = Q̃−0 (z = `, s), (5.138)
Q̃+

1 (z = `, s) = Q̃−1 (z = `, s). (5.139)

With these conditions, the general solution in Eq. (5.133) admits a unique solution with
the factors Ak given by

A1 = − eλ1` (s+ λ1) csch (λ1`)
2s
(
λ1 coth (λ1l) + s

α

(
α + β + βλ2 coth(λ2`)

α+β+s

)) , (5.140)

A2 = e−λ1` (s− λ1) csch (λ1`)
2s
(
λ1 coth (λ1l) + s

α

(
α + β + βλ2 coth(λ2`)

α+β+s

)) , (5.141)

A3 = − βeλ2` (s+ α + β + λ2) (s+ α + β)−1csch (λ2`)
2α
√
s
(
λ1 coth (λ1l) + s

α

(
α + β + βλ2 coth(λ2`)

α+β+s

)) , (5.142)

A4 = βe−λ2` (s+ α + β − λ2) (s+ α + β)−1csch (λ2`)
2α
√
s
(
λ1 coth (λ1l) + s

α

(
α + β + βλ2 coth(λ2`)

α+β+s

)) . (5.143)
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Inserting these expressions into the average survival probability (5.135) yields

Q̃av(z, s) = 1
s
− λ1csch (λ1`) cosh (λ1(z − `))
sλ1 cothλ1`+ s2

α

(
α + β + βλ2 coth(λ2`)

α+β+s

) . (5.144)

The FHTD can be obtained from relation (5.126) and the fact that, in the Laplace domain,
∂Q(z, τ)/∂τ transforms into −1 + sQ̃(z, s). Therefore, we have

P̃av(z, s) = λ1csch (λ1`) cosh (λ1(z − `))
λ1 cothλ1`+ s

α

(
α + β + βλ2 coth(λ2`)

α+β+s

) . (5.145)

Seeking for an inversion of Eqs. (5.144) or (5.145) does not look as simple as we would
wish. However, one can exactly obtain from the above solution the mean first hitting
time (MFHT), the second moment of the first hitting time distribution, as well as the
behaviors of the tails of the full distribution. In the following sections we calculate the
MFHT and the variance. We leave for section 5.3.4 the analysis of the FHTD in the limit
`→∞.

5.3.2 Mean first hitting time
The mean first hitting time is given by t1(x) =

∫∞
0 tPav(x, t)dt, which, in units of γ−1,

can be written as τ1(z) =
∫∞

0 τPav(z, τ)dτ . It is obtained from the Laplace transform
of the survival probability if we use the relation (5.126) and integrate by parts to get
τ1(z) = Q̃av(z, s = 0). Evaluating Eq. (5.144) in the limit s → 0, we thus obtain the
dimensionless MFHT

τ1(z) =(2`− z)z + `+ β`

α

+ β`

α

√
α + β + 2
α + β

coth `
√
α + β

√
α + β + 2. (5.146)

It is convenient to define the global MFHT (in units of γ−1), τG, which is obtained
by averaging τ1(z) over z, which corresponds to having a uniform distribution of starting
positions:

τG = 1
`

∫ `

0
τ1(z)dz, (5.147)

or, from Eq. (5.147),

τG =`+ 2
3`

2 + β`

α

+ β`

α

√
α + β + 2
α + β

coth `
√
α + β

√
α + β + 2. (5.148)

The global MFPT is split into two contributions: one part corresponding to the case
of a perfectly absorbing target (setting β = 0), and another which depends on both the
parameters of the RTP (through ` = Lγ/v) and on the re-scaled target switching rates.
In fact, one can see that τ1(z) and τG are strictly increasing with β: the longer the target
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is found in the hidden state, the longer it takes for the RTP to be absorbed. Figures
5.11a-b depict the mean global time given by Eq. (5.148) as a function of β for several
values of α. It is interesting to notice that due to the hyperbolic function, the global
MFPT abruptly increase at small β, as depicted in figure 5.11b. We successfully compare
the analytic results with simulations that use the Gillespie algorithm [63].
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Figure 5.11: Global mean first hitting time as a function of β for ` = 1. a) α = {1, 5, 10} and b)
α = {.001, .005, .01}. Symbols represent the results from an average of 50, 000 Gillespie simulations.

Defining
ε = α

α + β + β
√

α+β+2
α+β coth `

√
α + β

√
α + β + 2

, (5.149)

equation (5.146) can be recast as

τG = `

ε
+ 2

3`
2. (5.150)

With this notation, we notice that τG takes the same expression as for a RTP confined on
one side by a partially reflecting boundary at the origin, with absorption coefficient ε, and
on the other side by a totally reflecting boundary placed at ` [4]. In such model there is
no target dynamics: at each passage at the origin, the RTP is absorbed with probability
η ≡ 2ε/(1 + ε) and reflected with probability 1− η [4, 93]. In our problem, yet, due to the
temporal variations of the target state, η is not simply given by α/(α+β), the probability
that the target is found in the visible state, but depends in a more intricate way on the
target rates and the effective turning rate `. The effective absorption probability in our
problem is thus affected by the relative time scales associated with target switching (with
respect to the turning time of the RTP) and by the relative time needed by a ballistic
particle to cross the whole domain (`).

In physical units, the global MFHT is given by

tG = γ−1τG, (5.151)

and can be expressed from Eqs. (5.149)-(5.150) using the dimensional parameters as

tG = L

κ
+ 2L2γ

3v2 . (5.152)
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where κ = vε is given by

κ = va

a+ b+ b
√

a+b+2γ
a+b coth L

√
a+b
√
a+b+2γ

v

. (5.153)

Several limiting cases ought to be mentioned:
(i) Perfect absorption, β = 0: From Eq. (5.149), one obtains ε = 1, i.e., the perfect

absorption boundary condition. Hence, we recover the global mean first passage time

τG(β = 0) = `+ 2
3`

2, (5.154)

which was previously derived in [7].
(ii) High transition rates α � 1 and β � 1: In this scenario, the target transitions

are so fast that the RTP only “sees” a partial absorbing boundary with an absorption
coefficient ε ≈ α

α+2β . This leads to η ≈ α/(α + β), i.e., the probability that the particle
is absorbed is equal to the probability that the target is found in the visible state. The
global mean first passage time reads

τG ≈
α + 2β
α

`+ 2
3`

2. (5.155)

(iii) Low transition rates α � 1 and β � 1: In this case the absorption coefficient
approaches

ε ≈ α

α + β + β
√

2
α+β coth `

√
2
√
α + β

. (5.156)

(iv) Ballistic particle γ = 0: The other parameters being fixed, from Eq. (5.152) one
can notice that tG reaches a minimum at γ = 0 and

tG(γ = 0) =
(
a+ b

av
+ b

av
coth L(a+ b)

v

)
L. (5.157)

As in the stationary target case, the optimal strategy to react quickly with the dynamical
target is ballistic motion. In this scenario, the particle performs straight line movements
and only flips its direction when reflecting at the walls, crossing the origin periodically
until it coincides with the target in the active state. On average, less persistent searchers
waste time in fruitless excursions, not returning to the origin often enough to detect
the target. In Appendix B we deduce Eq. (5.157) by another method, from purely
probabilistic arguments.

(v) Brownian limit, v →∞, γ →∞ and v2/γ fixed: Taking the limit of large v and γ
with v2/(2γ) ≡ D, the stochastic noise Γ(t) in Eq. (5.119) becomes a white noise, leading
to a Brownian motion with diffusion constant D [89, 125, 46]. In this limit, Eq. (5.152)
becomes [134]

tG = L

κ
+ L2

3D, (5.158)

with the effective reactivity coefficient given by

κ = a

b

√
D(a+ b) tanhL

√
a+ b

D
. (5.159)
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Eq. (5.158) coincides with the expression for a bounded Brownian particle with a partially
absorbing boundary on one side, obeying the Robin boundary condition:

D
dρ

dx

∣∣∣∣
x=0

= κρ(x = 0) (5.160)

where ρ is the particle probability density. We remark that, when L −→∞, one recovers
the reactivity coefficient κ = a

b

√
D(a+ b) that was first deduced in Section 5.1 for an

unbounded Brownian particle. Therefore, Eq. (5.159) generalizes the connection that
exists between partially absorbing and intermittent boundaries for Brownian particles.

5.3.3 Coefficient of variation
The Laplace transform of the FHTD given by Eq. (5.145) seem rather difficult to invert,
however we can obtain from this expression the second moment of the distribution. Let
us define the coefficient of variation of the first hitting time as

Cv = 〈[τ
′ − τG]2〉z
τ 2
G

, (5.161)

where the average 〈·〉z runs over both the realizations of the process and the starting
position z. We use this quantity to assess the global fluctuations of τ ′ around its global
mean, re-scaled by τ 2

G. Therefore,

Cv =
1
`

∫ `
0 dz

∫∞
0 dτ ′Pav(z, τ ′)(τ ′ − τG)2

τ 2
G

(5.162)

Integrating by parts and using the relation (5.126), the coefficient of variation can be
written as

Cv = − 2
`τ 2
G

∫ `

0
dz
∂Q̃av(z, s)

∂s

∣∣∣
s=0
− 1. (5.163)

Using Eq. (5.144), one obtains

Cv =1 + 2`2

τ 2
G

4`2

45 −
1
3

+ β(1 + α + β)
α(α + β)

(
csch2X + cothX

(1 + α + β)X

), (5.164)

where X is defined as
X = `

√
α + β

√
α + β + 2. (5.165)

In the limit β →∞, τG diverges (the target is always invisible) and Cv → 1, whereas
for β = 0 (the target is always visible) the coefficient of variation only depends on `. From
Eq. (5.154) one gets

Cv(β = 0) = 15 + 4`(15 + 7`)
5(3 + 2`)2 . (5.166)
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To the best of our knowledge, this expression has not been derived in the literature on
RTPs.

Eq. (5.166) tells us that Cv(β = 0) increases monotonically with the dimensionless
length `, which can be varied by moving the reflective walls further apart, or by changing
the particle velocity v, or the turning rate γ. The coefficient of variation for a non-gated
target is restricted to the interval 1/3 ≤ Cv(β = 0, `) < 7/5 (see Fig. 5.12). However,
for the more general case with β > 0 and α > 0, the full expression of the coefficient
of variation suggests a more intricate dependence with `. From numerical evaluations of
Eq. (5.164) we observe that Cv can take values � 1 and also reaches a minimum at a
non-trivial length `∗(α, β), as depicted in Fig. 5.12. Given α and β, the searcher can
thus minimise the uncertainty on the first hitting time by adjusting its velocity to reach
`∗(α, β).
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Figure 5.12: Relative variance as a function of ` for several values of β at fixed α = 1. Symbols represent
simulation results obtained with the Gillespie algorithm.

The curves of Fig. 5.12 also show a rather unexpected behaviour of the coefficient of
variation: at fixed ` and α, Cv varies non-monotonically with β. As shown in Figures
5.13a-b and numerical evaluations of Eq. (5.164), Cv reaches a maximum as the switching
rates β or α are varied at fixed `. This maximum indicates that the distribution suddenly
widens around its mean for a particular value of the target rate. In those situations, the
first hitting times become less predictable and the MFHT less meaningful. Notably, the
coefficient of variation can reach values much larger than unity when the re-scaled rates
become small (α, β � 1). Fixing α � 1 and ` = 1, we observe in Fig. 5.13a that Cv
peaks at a value β∗ which is much smaller than α, i.e., when the inactive phases of the
target are relatively brief compared to the active phases. This finding is paradoxical: the
reaction time becomes widely unpredictable due to the target dynamics, but the target is
most of the time reactive! On the other hand, when one fixes β � 1 and ` = 1, one finds
that Cv peaks at a value α∗ which is of the same order as β (see Fig.5.13b), that is, when
the target spends on average the same time in the active phase as in the inactive phase.
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Figure 5.13: a) Coefficient of variation as a function of β for several values of α at fixed ` = 1, b) Same
quantity as a function of α for several values of β. In both cases, ` = 1. Symbols represent simulation
results obtained with the Gillespie algorithm.

5.3.4 Infinite domain
In this section, we study the RTP and the intermittent target in the limit of infinite
domain size. In this case, the asymptotic forms of the survival probability can be obtained
explicitly. For convenience, in the following analysis we will work with the dimensional
variables {x, t, γ, a, b} and use the Laplace transform Q̃(x, u) =

∫∞
0 e−utQ(x, t)dt, which is

equivalent to take Q̃(x, u) = γ−1Q̃(z, s) in Eq. (5.144), with u = sγ. By taking the limit
`→∞ in Eq. (5.144), we get

Q̃av(x, u) = 1
u
− e−

x
v

√
u(u+2γ)

u+ u
a

√
u

u+2γ

(
a+ b+ b

√
u+a+b+2γ
u+a+b

) . (5.167)

Despite the fact that this expression has not a simple form allowing an exact inversion
from the Laplace domain, it is possible to analyze the long time behaviour of the survival
probability and the associated first hitting time distribution. The long time regime can
be extracted from the small u expansion of the image function Q̃av(x, u). Making the
approximations

√
u(u+ 2γ) ≈

√
2γu,

√
u/(u+ 2γ) ≈

√
u/(2γ) and

√
a+ b+ u ≈

√
a+ b,

Eq. (5.167) becomes

Q̃av(x, u) ' 1
u

(
1− e−

x
v

√
2γu

1 +R
√
u

)
(5.168)

where we have defined R = 1√
2γa

(
a+ b+ b

√
a+b+2γ
a+b

)
. The above expression can be exactly

inverted [1] to yield

Qav(x, t) ' erfc
(√

t

R
+ x

v

√
γ

2t

)
exp

(
x
√

2γ
vR

+ t

R2

)

+ erf
(
x

v

√
γ

2t

)
, (5.169)
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and, from Eq. (5.126),

Pav(x, t) '
1

R
√
πt

exp
(
− γx

2

2tv2

)

− 1
R2 erfc

(√
t

R
+ x

v

√
γ

2t

)
exp

(
x
√

2γ
vR

+ t

R2

)
, (5.170)

where erf(z) = 2√
π

∫ z
0 e
−ξ2

dξ is the error function and erfc(z) = 1 − erf(z) the comple-
mentary error function. Due to the approximations made, Eqs. (5.169)-(5.170) hold
for t larger than both the target relaxation time tta ≡ (a + b)−1 and the tumble time
ttb ≡ (2γ)−1.

From the above equations one can see that the first hitting time distribution (and also
the survival probability) is determined by two characteristic timescales: a diffusive time
tD = x2γ/(2v2), which is the typical time needed for the particle to reach the origin, and
the time

tc = R2 = 1
2γa2

a+ b+ b

√
a+ b+ 2γ
a+ b

2

, (5.171)

that sets a crossover time that separates two different scaling regimes in the asymptotic
behaviour of the FHTD. These regimes are deduced from Eq. (5.170) as follows (the
analysis can also be done directly from the image function Q̃av(x, u) in Eq. (5.168), see
Section 5.1):

• The true asymptotic limit t � tc: in this limit we can use the approximation
erfc(x) ≈ e−x

2
√
πx

(
1− 1

2x2 + . . .
)
to get

Pav(x, t) '
x
√

2γ/v +R

2
√
πt3

, t� tc, (5.172)

which is the tail of the Lévy-Smirnov distribution typical of Brownian motion and
random walks [60], but with a different prefactor. The modification of this prefac-
tor is a phenomenon that has also been observed in random search problems with
fluctuating targets on networks, including the case of non-Markovian switching dy-
namics [34, 32].

• The intermediate regime: if tc is much larger than all the other characteristic times,
or tc � max(tD, tta, ttb), the arguments in the exponential and the complementary
error functions are small and we notice that, before the true asymptotic regime, an
intermediate time regime appears:

Pav(x, t) '
1

R
√
πt
, max(tD, tta, ttb)� t� tc. (5.173)

Eq.(5.173) represents a much slower decay than the standard t−3/2 scaling. For simplicity,
in the following we will assume tD � tta, ttb, a condition which is easily enforced by
choosing x = 0, i.e., by initially placing the particle right on the target. As we have done
in Section 5.3.2, we analyze below different limiting cases.



(i) Perfect absorption, b = 0: From Eq. (5.171) one obtains tc = ttb, therefore the
conditions for the existence of the intermediate regime are not fulfilled and we find the
asymptotic decay [89]

Pav(x, t) '
(
x
√

2γ/v + 1/
√

2γ
)
/
√

4πt3. (5.174)

(ii) High transition rates a, b � γ: In this case max(tta, ttb) = ttb and tc '
(
a+2b√

2γa

)2
,

therefore
tc
ttb
'
(
a+ 2b
a

)2

. (5.175)

(iii) Low transition rates a, b� γ: Here, max(tta, ttb) = tta and tc ' b2

a2(a+b) , then

tc
tta
' b2

a2 . (5.176)

(iv) Ballistic particle γ = 0: From the inversion of Eq. (5.167), one obtains that, for
the ballistic searcher, Pav(x, t) = aδ(t−x/v)

2(a+b) for t > 0, which is the condition for the particle
to start at x > 0 and move, with probability 1/2, in a straight line towards the origin and
then, with probability a/(a+ b), hit the target.

(v) Brownian limit, v →∞, γ →∞ and v2/γ fixed: In this case we recover the result

tc
tta

= b2

a2 (5.177)

deduced in Section 5.1 for a Brownian particle, and which actually coincides with Eq.
(5.176).
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Figure 5.14: a) FHTD for a run-and-tumble particle that start at x = 0, with a = 1, γ = 1 and
b = {1, 103}. b) Same quantity for b = 103 and γ = {1, 102}. Lines are the analytical solution given by
Eq. (5.170) and symbols represents simulation results.

From Eqs. (5.175)-(5.177), we conclude that the intermediate scaling regime ∼ t−1/2

of the FHTD emerges when the target is cryptic, i.e., when b � a (see Fig. 5.14a). We
also see that the crossover time becomes longer as β increases. In addition to this, the
result in Eq. (5.177) is interesting since it implies that the Brownian motion becomes
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the best strategy that the searcher can opt in order to reduce (as much as possible) the
slow decay range (∼ t−1/2) in the FHTD. This is owing to the recurrence property of the
Brownian motion, that ensures that the particle recrosses the origin many times within a
short period of time.



Chapter 6

Random searches in the presence of
fluctuating media

In this chapter we address the problem of random searches in the presence of fluctuat-
ing media. Here a Brownian particle will be embedded in a media that fluctuates in
time. These fluctuations will be modeled through the application of external intermittent
potentials. The chapter is organized as follows:

We start in Section 6.1 by studying the non-equilibrium steady states and first passage
properties of a Brownian particle with position X subject to an external confining poten-
tial of the form V (X) = µ|X|, and that is switched on and off stochastically. Applying the
potential intermittently generates a physically realistic diffusion process with stochastic
resetting toward the origin, a topic which has recently attracted a considerable interest
in a variety of theoretical contexts but has remained challenging to implement in lab ex-
periments. The present system exhibits rich features, not observed in previous resetting
models. The mean time needed by a particle starting from the potential minimum to
reach an absorbing target located at a certain distance can be minimized with respect to
the switch-on and switch-off rates. The optimal rates undergo continuous or discontinuous
transitions as the potential strength µ is varied across non-trivial values. A discontinuous
transition with metastable behavior is also observed for the optimal strength at fixed
rates.

In section 6.2 we extend our study to more general intermittent potentials. In partic-
ular, we analyze the case of a potential of the form V (X) = K|X − X0|n/n. We focus
on the mean first passage time to a fixed absorbing target, and analyze its behaviour
as a function of the potential stiffness K and the rates that governs the switch-on and
switch-off rates. Similarly to the piece-wise potential case, the MFPT to a fixed target
can get optimized by intermittently applying a confining potential. Again, we observe
that the system undergoes order transitions in the optimal rates. We particularly focus
on the harmonic potential case with n = 2, and recover previous results for the linear
potential (n = 1).
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6.1 Intermittent piecewise linear potential
In this section, we study another first passage problem for a particle in a fluctuating
environment. We consider a Brownian particle in one dimension with diffusion constant
D and friction coefficient α, driven by the action of an intermittent external potential.
The state of the potential is described by a time dependent binary variable σ(t), where
σ(t) = 0 means that the potential is switched off and σ(t) = 1 that it is applied. In the
“on” state, the potential has a V-shape, given by V (X) = f |X| with X the position
and f > 0, whereas V (X) = 0 in the “off” state. The two-state process σ is Markovian
and characterized by constant transition rates, R0 (for the transition 0→ 1) and R1 (for
1→ 0).

Due to the action of the external potential that confines the particle diffusion, we
expect a non-equilibrium stationary density for the particle position (irrespective of the
potential state), on the unbounded line. Further, when an absorbing target is placed at
a fixed position, we whish to calculate the mean first passage time (MFPT), if it is finite.
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Figure 6.1: a) Trajectory of a diffusive particle with diffusion constant D = 1, in an intermittent resetting
potential (µ = 0.1). The shaded zones represent the time intervals when the potential is turned on
(R0 = R1 = 0.005). An absorbing boundary is placed at X = −10. b) 3D representation of a particle
trajectory in the time-dependent potential (µ = 1).

Figure 6.1 depicts trajectories in the presence of an absorbing boundary (target) at the
position −L = −10. Free diffusion is interspersed with random periods of potential reset,
during which the particle it is attracted toward the origin. This dynamics is somehow
similar to diffusion with a non-instantaneous resetting protocol for the particle, with three
important differences compared to recent studies on this subject: 1) the return toward
the origin is not deterministic but stochastic, owing to diffusion; 2) the particle is not
necessarily at the potential minimum X = 0 when the potential is switched off, as the
dynamics of σ(t) is independent of the particle position; 3) the target at −L is always
detectable, i.e., it can be found when the potential state is either 0 or 1. Therefore
the search process is not suspended during the “on” phase, an often assumed. This
assumption will have important consequences, as seen further.
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In the following we introduce the Langevin equation for the particle motion. Like
in the previous sections, we first develop the backward Fokker-Planck equation for the
survival probability, which is a preliminary step to find the MFPT. Recall that in the
previous problem of free diffusion with intermittent targets, the MFPT was infinite. After
analysing the MFPTs, we will turn to the calculation of the probability density of the
particle position in an unbounded 1d domain, without absorbing target.

6.1.1 Langevin equation
When we introduced the Langevin equation in Section 4.3, we mentioned that, in order to
determine the backward Fokker-Planck equation we would have to calculate the Kramer-
Moyal coefficients. For Brownian motion, inertia is neglected and diffusion is due to the
friction forces (the Stokes’ force) and thermal fluctuations. When an external potential
is applied, one has to add the external force to the Langevin equation.

Then, the evolution of the particle position X(t) in the time-varying potential V (X) =
f |X| will be given by the Langevin equation

m
d2X

dt2
= Ffriction + Fext + Frandom (6.1)

where Ffriction = −αdX/dt is the Stokes’ force, Frandom is the random force due to thermal
fluctuations, and Fext = − (dV/dx)σ(t) = −f sgn(X)σ(t) is the force owing to the ex-
ternal potential that is applied according to the two state stochastic process σ(t) defined
previously (the term sgn(X) comes from the derivative of the potential). If we neglect
the left hand side (inertia), we obtain

dX

dt
= −µ sgn(X)σ(t) + Γ(t), (6.2)

with µ = f/α and Γ(t) a Gaussian white noise with zero mean and correlations 〈Γ(t)Γ(t′)〉 =
2Dδ(t− t′). The V-shaped potential is convenient for analytical calculations, but we ex-
pect other confining potentials to yield qualitatively similar results.

For convenience, we introduce the dimensionless space and time variables x = X/L and
t/(L2/D) (which we renote as t). The problem is fully described by three dimensionless
parameters:

r0 = R0L
2/D, (6.3)

r1 = R1L
2/D, (6.4)

γ = µL/D, (6.5)

namely, the re-scaled “on” and “off” rates, and the re-scaled potential strength, respec-
tively.

Before to proceed to the next section, we would like to briefly mention several limiting
cases that we will be important for the understanding of the model. In the limit r1 = 0 and
if σ(t = 0) = 1, the potential is stationary and, in the unbounded domain, x(t) follows the
Boltzmann-Gibbs equilibrium distribution ∝ exp (−γ|x|) at long times. Another limit is
that of infinite strength, more specifically γ →∞, which corresponds to an instantaneous
resetting to the origin, followed by a refractory time (exponentially distributed and of
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mean 1/r1) during which the particle stays immobile (see [56]). If γ = ∞ and r1 → ∞,
one recovers the standard diffusion problem with stochastic resetting at rate r0 to the
origin, where the particle is released immediately after resetting [55].

6.1.2 Survival probability
Let us consider an absorbing boundary placed at −1 in dimensionless units and define
Q0(x, t) as the probability that the particle has not hit the boundary up to time t, given
the initial position x and the potential initially in the off state σ(t = 0) = 0. Similarly,
Q1(x, t) when the potential is initially on, or σ(t = 0) = 1. These two survival probabilities
satisfy the backward Fokker-Planck equations

∂Q0

∂t
= ∂2Q0

∂x2 + r0(Q1 −Q0), (6.6)

∂Q1

∂t
= ∂2Q1

∂x2 − v
′(x)∂Q1

∂x
+ r1(Q0 −Q1), (6.7)

where v(x) = γ|x| is the dimensionless potential. To derive this system of equations, one
first notices that x(t) obeys the adimensionalised version of Eq. (6.2):

dx

dt
= −σ(t)γ sgn(x) + η(t), (6.8)

where η(t) is now a dimensionless Gaussian noise with zero mean and correlations 〈η(t)η(t′)〉 =
2δ(t− t′).

Let us consider that the particle starts from x at time t = 0, whereas the potential is
in the state σ(t = 0) = 0. During the interval [0,∆t] the particle travels from x to x+ ξ,
where ξ is a random displacement and ∆t is an small time increment. When the particle
is at x+ ξ, with probability r0∆t the potential turns on and then, the particle will driven
by the external potential and the thermal fluctuations from x+ξ to x′ during [∆t, t+∆t],
otherwise, with probability 1 − r0∆t the particle will diffuse from x + ξ to x′ with the
potential turned off. This can be expressed by the Chapman-Kolmogorov equation

Q0(x, t+ ∆t) = (1− r0∆t)
∫
dξP∆t(ξ)Q0(x+ ξ, t) + r0∆t

∫
dξP∆t(ξ)Q1(x+ ξ, t), (6.9)

where P∆t(ξ) is the transition probability density of the random displacement ξ (see
Section 4.2). Similarly, for the initial state σ(t = 0) = 1 we obtain

Q1(x, t+ ∆t) = r1∆t
∫ ∞
−∞

dξP∆t(ξ)Q0(x+ ξ, t) + (1− r1∆t)
∫ ∞
−∞

dξP∆t(ξ)Q1(x+ ξ, t).
(6.10)

Performing a Taylor series of Qσ(x+ ξ, t) in powers of ξ up to second order, we get

Qσ(x, t+ ∆t) =(1− rσ∆t)
∫
dξP (ξ)

{
Qσ(x, t) + ∂Qσ(x, t)

∂x
ξ + 1

2
∂2Qσ(x, t)

∂x2 ξ2
}

+ rσ∆t
∫
dξP (ξ)

{
Q1−σ(x, t) + ∂Q1−σ(x, t)

∂x
ξ + 1

2
∂2Q1−σ(x, t)

∂x2 ξ2
}
,

(6.11)
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which allows us to carry out of the integral terms that do not depend on ξ, namely, the
survival probability Qσ(x, t) and its derivatives. With this, the right hand side of Eq.
(6.11) can be expressed in terms of the moments 〈ξn〉.

From Eq. 6.8 we have that, if the potential is switched off (σ = 0), the particle freely
diffuses, hence integration gives 〈ξ〉 = 0 and 〈ξ2〉 = 2∆t. On the other hand, if the
potential is switched on (σ = 1), 〈ξ〉 = −γ sgn(x)∆t whereas the term 〈ξ2〉 produces a
contribution of order ∆t2, which is neglectable.

Let us denote Q+
0 (x) = Q0(x) with x > 0 and Q−0 (x) = Q0(x) with x < 0. Similarly,

Q+
1 (x) = Q1(x) with x > 0 and Q−1 (x) = Q1(x) with x < 0. Keeping terms only up to
O(∆t), Eq. (6.11) becomes

Q+
0 (x, t+ ∆t) =(1− r0∆t)

{
Q+

0 (x, t) + ∂2Q+
0 (x, t)
∂x2 ∆t

}
(6.12)

+ r0∆t
{
Q+

1 (x, t)− ∂Q+
1 (x, t)
∂x

γ∆t+ ∂2Q1(x, t)
∂x2 ∆t

}
,

Q−0 (x, t+ ∆t) =(1− r0∆t)
{
Q−0 (x, t) + ∂2Q−0 (x, t)

∂x2 ∆t
}

(6.13)

+ r0∆t
{
Q−1 (x, t) + ∂Q−1 (x, t)

∂x
γ∆t+ ∂2Q−1 (x, t)

∂x2 ∆t
}
,

Q+
1 (x, t+ ∆t) =(1− r1∆t)

{
Q+

1 (x, t)− ∂Q+
1 (x, t)
∂x

γ∆t+ ∂2Q+
1 (x, t)
∂x2 ∆t

}
(6.14)

+ r1∆t
{
Q+

0 (x, t) + ∂2Q+
0 (x, t)
∂x2 ∆t

}
.

Q−1 (x, t+ ∆t) =(1− r1∆t)
{
Q−1 (x, t) + ∂Q−1 (x, t)

∂x
γ∆t+ ∂2Q−1 (x, t)

∂x2 ∆t
}

(6.15)

+ r1∆t
{
Q−0 (x, t) + ∂2Q−0 (x, t)

∂x2 ∆t
}
.

In the limit ∆t→ 0 we obtain Eqs. (6.6)-(6.7).
Using the Laplace transform, Q̃(x, s) =

∫∞
0 dte−stQ(x, t), the system (6.6)-(6.7) can

be written in the Laplace domain as

∂2Q̃+
0

∂x2 + r0Q̃
+
1 − (r0 + s)Q̃+

0 = −1, (6.16)

∂2Q̃+
1

∂x2 − γ
∂Q̃+

1
∂x

+ r1Q̃
+
0 − (r1 + s)Q̃+

1 = −1, (6.17)

where we have used the initial condition Q+
0,1(x, t = 0) = 1. We notice at this point that a

system like (6.16)-(6.17) is difficult to solve exactly a priori. Whereas the inhomogeneous
solution is given by Q̃+

0 = Q̃+
1 = 1/s, seeking for homogeneous solutions of the form eλx

yields the equation ∣∣∣∣∣λ2 − (r0 + s) r0
r1 λ2 − γλ− (r1 + s)

∣∣∣∣∣ = 0. (6.18)

This determinant yields a 4th order polynomial for the eigenvalues λ, which seems
arduous to solve. The same system is obtained for Q̃−, with a change in the sign in front
of γ.
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In the following we are interested in the mean first passage time t0(x) (in units of
L2/D) given the initial particle position x and the initial potential state σ = 0 (with the
target at the dimensionless position −1), which is given by

t0(x) =
∫ ∞

0
tP0(x, t)dt =

∫ ∞
0

t
∂Q0(x, t)

∂t
dt =

∫ ∞
0

Q0(x, t)dt = Q̃0(x, s = 0). (6.19)

Anagolously, for the initial potential state σ = 1, the MFPT t1(x) = Q̃1(x, s = 0). With
s = 0, Eq. (6.18) simplifies, as one eigenvalue is always 0 and the remaining three are the
roots of a cubic polynomial.

The system (6.16)-(6.17) with s = 0 gives the equations satisfied by the re-scaled
MFPTs t0(x) and t1(x). By denoting t+0 (x) and t+1 (x) as the MFPTs for x > 0, we have:

∂2t+0 (x)
∂x2 + r0[t+1 (x)− t+0 (x)] = −1, (6.20)

∂2t+1 (x)
∂x2 − γ ∂t

+
1 (x)
∂x

+ r1[t+0 (x)− t+1 (x)] = −1. (6.21)

whereas on the negative side (−1 ≤ x < 0) we have

∂2t−0 (x)
∂x2 + r0[t−1 (x)− t−0 (x)] = −1, (6.22)

∂2t−1 (x)
∂x2 + γ

∂t−1 (x)
∂x

+ r1[t−0 (x)− t−1 (x)] = −1. (6.23)

These equations need to be solved on each side and matched at x = 0, through the
continuity of the MFPTs and their derivatives. Hence, there are six boundary conditions
(BCs):

t+σ (x = 0) = t−σ (x = 0) (6.24)
∂t+σ (x)
∂x

∣∣∣
x=0

= ∂t−σ (x)
∂x

∣∣∣
x=0

(6.25)

t−σ (x = −1) = 0, (6.26)

with σ = {0, 1} and where the last condition enforces absorption at x = −1. We can also
obtain a MFPT averaged over the initial conditions of the potential with their respective
weights:

tav(x) = r0

r0 + r1
t1(x) + r1

r0 + r1
t0(x). (6.27)

6.1.3 Exact solution of the MFPT
From Eqs. (6.23)-(6.21), we note that we can write t+0 (t−0 ) in terms of t+1 (t−1 , respectively):

t+0 (x) = − 1
r1

∂2t+1 (x)
∂x2 + γ

r1

∂t+1 (x)
∂x

+ t+1 (x)− 1
r1
, (6.28)

t−0 (x) = − 1
r1

∂2t−1 (x)
∂x2 − γ

r1

∂t−1 (x)
∂x

+ t−1 (x)− 1
r1
, (6.29)
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and then substitute these expressions into Eqs. (6.20)-(6.22) to obtain a fourth-order
differential equation for t+1 (x) and t−1 (x):

∂4t+1 (x)
∂x4 − γ ∂

3t+1 (x)
∂x3 − (r1 + r0)∂

2t+1 (x)
∂x2 + r0γ

∂t+1 (x)
∂x

= r1 + r0, (6.30)

∂4t−1 (x)
∂x4 + γ

∂3t−1 (x)
∂x3 − (r1 + r0)∂

2t−1 (x)
∂x2 − r0γ

∂t−1 (x)
∂x

= r1 + r0. (6.31)

Let us focus on t+1 first, the solution with x > 0. It is clear that t+1 admits the
inhomogeneous solution (r0 +r1)x/r0γ, whereas the homogeneous part can be solved with
the anzats eλx, which leads to the characteristic polynomial

λ
[
λ3 − λ2γ − λ(r1 + r0) + r0γ

]
= 0. (6.32)

This polynomial also follows from Eq. (6.18) with s = 0.
In addition to the simple root λ0 = 0, there are three other roots to this polynomial [1]:

λk = 1
3

[
γ + 2b cos θ + 2(k − 1)π

3

]
(6.33)

where k = {1, 2, 3} and

b =
√

3(r0 + r1) + γ2 (6.34)

θ = arccos
[

9γ(r1 − 2r0) + 2γ3

2(3(r0 + r1) + γ2)3/2

]
. (6.35)

It is relatively straightforward to show that the argument in Eq. (6.35) is comprised
in the interval [−1, 1] for any non-zero positive γ, r0 and r1; therefore the three roots λk
are real. We next wish to determine their sign and retain only those that are negative
to avoid exponential divergences of the MFPT as x → +∞. The polynomial P (λ) =
λ3 − λ2γ − λ(r1 + r0) + r0γ has P (0) = r0γ > 0 and P ′(0) = −r1 − r0 < 0. Combined
to the fact that P (λ) decreases over a single finite interval (since it is of degree 3), these
inequalities imply that one root must be negative and the other two positive. To find
which root is negative, we notice that 2(k−1)π

3 ≤ θ+2(k−1)π
3 ≤ (2k−1)π

3 , since 0 ≤ θ ≤ π.
With k = 2 the argument of the cosine in Eq. (6.33) is thus in the interval [2π

3 , π] and
consequently the cosine smaller than −1/2. Since b > γ by definition, we conclude that
λ2 < 0. In summary,

λ1 > 0, λ3 > 0, λ2 < 0. (6.36)

Then, the admissible roots are λ0 = 0 and λ2, as they avoid exponential divergence at
x→ +∞, and t+1 takes the form::

t+1 (x) = A+
0 + A+

2 e
λ2x + r1 + r0

r0γ
x, (6.37)

with A+
0,2 two constants. Similarly, in the interval −1 ≤ x < 0, the inhomogeneous

solution of Eq. (6.60) for t−1 (x) is −x(r1 + r0)/(r0γ), and the homogeneous solutions take
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the form e−λx, with λ a root of the same polynomial (6.32). In this case all the roots are
admissible, since −1 ≤ x < 0. Therefore

t−1 (x) = A−0 +
3∑

k=1
A−k e

−λkx − r1 + r0

r0γ
x. (6.38)

Thus we have a total of 6 constants to determine, from the 6 boundary conditions (6.24)-
(6.26). Using Eqs. (6.28)-(6.29), t0 is deduced from t1 on each side as:

t+0 (x) = A+
0 + 1

r0
+ A+

2

[
1 + λ2(λ1 + λ3)

r1

]
eλ2x + r1 + r0

r0γ
x (6.39)

and
t−0 (x) = A−0 + 1

r0
+

3∑
k=1

A−k

[
1 + λk(λi + λj)

r1

]
e−λkx − r1 + r0

r0γ
x, (6.40)

where we have used the identity λ1 +λ2 +λ3 = γ and where i, j represent the two indices
different from k. The boundary conditions (6.24)-(6.26) lead to the system:


1 −1 −1 −1 1 −1
λ2(λ1 + λ3) −λ3(λ1 + λ2) −λ2(λ1 + λ3) −λ1(λ2 + λ3) 0 0

λ2 λ3 λ2 λ1 0 0
λ2

2(λ1 + λ3) λ2
3(λ1 + λ2) λ2

2(λ1 + λ3) λ2
1(λ2 + λ3) 0 0

0 eλ3 eλ2 eλ1 0 1
0 λ3(λ1 + λ2)eλ3 λ2(λ1 + λ3)eλ2 λ1(λ2 + λ3)eλ1 0 0





A+
2

A−3
A−2
A−1
A+

0
A−0


=



0
0

−2 r1+r0
r0γ

0
− r1+r0

r0γ

− r1
r0


.

(6.41)
Although the MFPTs can be determined for all x > −1 by this method, in the following

we will present the results corresponding to the case x = 0, i.e., for a particle starting at
the potential minimum. This case is typical of experiments using optical tweezers. The
MFPTs we are interested in are:

t+1 (x = 0) = A+
0 + A+

2 , (6.42)

t+0 (x = 0) = A+
0 + 1

r0
+ A+

2

[
1 + λ2(λ1 + λ3)

r1

]
. (6.43)

For convenience we use the notation

Λ−1 = λ1 − λ2, Λ+
1 = λ1 + λ2, (6.44)

Λ−2 = λ2 − λ3, Λ+
2 = λ2 + λ3, (6.45)

Λ−3 = λ3 − λ1, Λ+
3 = λ3 + λ1. (6.46)
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Solving the system (6.41) with the help of Mathematica, yields

A+
0 =−

(
r0 + r1

γr0

)2λ2
2e

Λ+
3 Λ+

3 Λ−3
λ1λ3Λ+

1 Λ+
2

+ λ3e
Λ+

1 Λ−1
λ1λ2

+
eλ3Λ−1

((
2
λ1

+ 1
)
λ3 − γr1

Λ+
1 (r0+r1)

)
Λ+

2

+
eλ1Λ−2

(
λ1
(

2
λ3

+ 1
)
− γr1

Λ+
2 (r0+r1)

)
Λ+

1
+
eλ2Λ−3

(
−2((γ+1)r0+r1)

λ1λ3
− γr1

Λ+
3 (r0+r1) − 4

)
2λ2

+ λ1e
Λ+

2 Λ−2
λ3λ2

− γΛ−1 Λ−2 Λ−3 r1

λ2Λ+
1 Λ+

2 Λ+
3 (r0 + r1)

(eλ3λ3Λ−1
Λ+

2
+ eλ1λ1Λ−2

Λ+
1

+ 1
2e

λ2Λ−3
)−1

.

(6.47)
and

A+
2 =−

Λ−1 eλ3 + Λ−3 eλ2 + Λ−2 eλ1 + r1γ
2(r0+r1)

Λ−1 Λ−2 Λ−3
Λ+

1 Λ+
2 Λ+

3

r0γλ2
r0+r1

(
λ3Λ−1
Λ+

2
eλ3 + 1

2Λ−3 eλ2 + λ1Λ−2
Λ+

1
eλ1

) (6.48)

Although the constants A+
0 and A+

2 do not take a simple form, making difficult to
analytically analyze the MFPT as a function of the dimensionless parameters r0, r1 and
γ, it is easy to evaluate the expressions of the MFPTs numerically to study their behaviors.
In the following section we start by analyzing the MFPT t1(x = 0) in the (r0, r1)-plane
for a fixed strength potential γ, seeking the rates that minimize this function. We recall
that we will be mainly interested in the results that correspond to x = 0, i.e., when the
particle starts at the minimum of the potential. We will drop the x dependence in when
it is clear from the context. Due to the contrasting behaviour that we observe between
t1 and t0, we present the analysis of each function in separate sections. Regardless of
this numerical analysis, we will seek, when it is possible, to re-derive the results in some
particular limits in order to better understand the behaviors of the MFPTs.

6.1.4 Optimal MFPT t∗1

Taking x = 0, fixing the strength (γ) and varying the rates, let us define

t∗1(γ) = min
r0,r1

t1(γ, r0, r1), (6.49)

whereas r∗0(γ) adn r∗1(γ) as the corresponding optimal rates. The optimal mean first
passage time t∗1 = t1(r∗0, r∗1) only depends on the scaled strength γ. Its variations are
shown in Figure 6.2a, from very weak to very confining potentials. Figures 6.2b and 6.2c
reports the pairs of optimal rates [r∗1(γ), r∗0(γ)] as a function of γ.

The optimal MFPT t∗1 exhibits a “second-order”, continuous transition at a non-trivial
critical potential slope

γc = 1.228780... (6.50)

For γ ≤ γc, the resetting protocol that optimizes t1 consists in keeping the potential
always turned on, or

r∗1(γ) = 0, (6.51)

while r0 is irrelevant.
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The optimal MFPT is thus given in this regime by the equilibrium Kramers’ time
(solving Eqs. (6.21) and (6.23) with r1 = 0 [58]):

t∗1(γ) = teq(γ) = 2
γ2 (eγ − 1)− 1

γ
. (6.52)

The curve of teq(γ) is represented by the orange line in Fig. 6.2a: it first decreases with
γ and reaches a minimum at γ∗eq = 1.244678..., which is slightly larger than γc, as clear
from the inset.
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Figure 6.2: (a) Minimal MFPT t∗1 as a function of γ (green line), obtained from numerical minimization
of the exact solution. The orange line represents t1 for a particle in a steady potential (r1 = 0), and the
aqua line the analytical expression (6.53) for γ > γc = 1.2287.... The lower horizontal dotted line denotes
the limit γ → ∞. Inset: zoom of the transition region (γ ∼ γc). The corresponding optimal rates r∗1(γ)
and r∗0(γ) are shown in (b) and (c), respectively. For γ ≤ γc, the optimal choice consists in keeping the
potential steady, or r∗1 = 0, whereas above γc, r∗0 and r∗1 are non-zero.

For γ > γc, t1(γ) can be improved compared to teq(γ) by applying a non-trivial reset-
ting protocol. As shown by the inset of Fig. 6.2a, t∗1 start to deviate from the equilibrium
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line when it reaches the value teq(γc) = 2.387797..., strikingly close but definitely above
the equilibrium minimum t∗eq = 2.387619... For potentials of slope above but close to γc,

t∗1(γ) = teq(γc)− 0.0225432... (γ − γc)− 0.00103404... (γ − γc)2 + h. o. terms, (6.53)

a relation which remains quite accurate up to γ − γc ∼ 10 (Fig. 6.2a). Above the critical
point, r∗1 increases in a linear fashion from zero:

r∗1(γ) = 32.91301557...(γ − γc) + h. o. terms, (6.54)

as shown in Fig. 6.2b (dotted line). In contrast, the optimal switch-on rate r∗0(γ) decreases
with γ. Right at the transition, it is finite and surprisingly large:

r∗0(γc) = 41.969027... (6.55)

At large potential strength, the particle rapidly returns to x = 0 when the potential
is on. The process thus becomes closer to the well-known problem of diffusion with
instantaneous resetting to the origin with the dimensionless rate r0. In the limit γ →∞,
as expected, the optimal protocol corresponds to r1 →∞ (the potential is applied for very
short periods of time) and r0 = 2.539638..., which is the optimal rate of instantaneous
resetting [58].

a) Perturbative analysis

Some of the results described above can be obtained exactly from a perturbation theory,
considering r1 � r0 and γ in the vicinity of γc. Before going into the details, we first
present a simple heuristic argument which can explain qualitatively the origin of the
equilibrium-non-equilibrium transition for t∗1, i.e., between a zero and non-zero optimal
rate r∗1. It consists in approximating the problem by a particle diffusing in a steady
potential, given by the mean potential felt by the original particle, i.e. veff (x) = γeff |x|
with γeff = r0γ/(r0 + r1) ≤ γ. The MFPT in this effective description satisfies the
equation

∂2teff
∂x2 −

∂veff (x)
∂x

∂teff
∂x

= −1, (6.56)

The solution of Eq. (6.56) evaluated at x = 0 is given by Eq. (6.52), where γ has to be
replaced by γeff :

teff (x = 0) = teq(γeff ). (6.57)
As mentioned earlier, the equilibrium time teq is a non-monotonous function of its argu-
ment and reaches a minimum at γ∗eq = 1.244678.... Hence, at fixed γ there are two ways
of minimizing T (x = 0) in Eq. (6.56): If γ < γ∗eq, on the decreasing side of the curve,
the argument γe should be as large as possible, i.e., γe = γ, which implies r∗1 = 0. But if
γ > γ∗eq, γe can be tuned to match the optimal parameter γ∗eq by choosing the rates such
that:

γ∗eq = r∗0(γ)
r∗0(γ) + r∗1(γ)γ. (6.58)

The above relation implies r∗1(γ) 6= 0, since γ∗eq < γ. Hence, a transition would occur
when γ crosses γ∗eq, between optimal protocols with zero and non-zero switch-off rate. It
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is reasonable to think that when the potential is very confining, one needs to switch it off
from time to time to let the particle find the target.

Nevertheless, the above argument is not correct, as the true critical point γc is lower
that γ∗eq, albeit by less than two percents, a feature suggestive of a more complex transition
mechanism. In addition, this argument does not predicts that, after the transition, t∗1(γ)
can be lower than (and not equal to) the optimal equilibrium time t∗eq.

b) Calculation of γc and r∗0(γc)

We retake the exact fourth-order differential equations for t+1 (x) and t−1 (x), obtained from
combining Eqs. (6.20)-(6.23) 1:

∂4t+1 (x)
∂x4 − γ ∂

3t+1 (x)
∂x3 − (r1 + r0)∂

2t+1 (x)
∂x2 + r0γ

∂t+1 (x)
∂x

= r1 + r0, (6.59)

∂4t−1 (x)
∂x4 + γ

∂3t−1 (x)
∂x3 − (r1 + r0)∂

2t−1 (x)
∂x2 − r0γ

∂t−1 (x)
∂x

= r1 + r0 (6.60)

By defining the operator Lγ ≡ ∂2

∂x2 − sgn γ ∂
∂x

and dividing by r0, Eqs. (6.59)-(6.60) read[
1
r0

∂2

∂x2 − 1
]
Lγt

+
1 −

r1

r0

∂2t+1
∂x2 = 1 + r1

r0
, (6.61)[

1
r0

∂2

∂x2 − 1
]
L−γt

−
1 −

r1

r0

∂2t−1
∂x2 = 1 + r1

r0
. (6.62)

We introduce the small parameter ε = r1
r0
� 1, hence Eqs. (6.61)-(6.62) are recast as[

1
r0

∂2

∂x2 − 1
]
Lγt

+
1 − ε

∂2t+1
∂x2 = 1 + ε, (6.63)[

1
r0

∂2

∂x2 − 1
]
L−−γt

−
1 − ε

∂2t−1
∂x2 = 1 + ε. (6.64)

To solve this PDEs we write the general solution as a series expansion in ε, or t1(x) =
t
(0)
1 (x)+εt(1)

1 (x)+ε2t(2)
1 (x)+. . . , where the t(i)1 are functions of order unity to be determined

for x > 0 and −1 < x < 0.
In the following, let us define t+(i)

1 (x) = t
(i)
1 (x) with x > 0 and t−(i)

1 (x) = t
(i)
1 (x) with

−1 < x < 0. Hence, at leading order one has:[
1
r0

∂2

∂x2 − 1
]
Lγt

+(0)
1 (x) =1, (6.65)[

1
r0

∂2

∂x2 − 1
]
L−γt

−(0)
1 (x) =1, (6.66)

a relation which is satisfied if L±γt±(0)
1 (x) = −1. We recover at this order the equilibrium

time teq in a potential γ|x|. Its expression is obtained by applying the boundary conditions
1It is easy to see that the effective description of Eq. (6.56) becomes exact when r0 and r1 tend to

∞, the ratio r1/r0 being fixed.



CHAPTER 6. RANDOM SEARCHES IN FLUCTUATING MEDIA 86

(6.24)-(6.26), and was calculated in [58]:

t
+(0)
1 (x) = t+eq(x, γ) = 2(eγ − 1)− (1− x)γ

γ2 , (6.67)

t
−(0)
1 (x) = t−eq(x, γ) = 2(eγ − e−γx)− (x+ 1)γ

γ2 , (6.68)

A relation allowing the exact determination of the critical point γc can be obtained at the
following order ε. From Eqs. (6.63)-(6.64), one get[

1
r0

∂2

∂x2 − 1
]
Lγt

+(1)
1 = 1 + ∂2t

+(0)
1

∂x2 , (6.69)[
1
r0

∂2

∂x2 − 1
]
L−γt

−(1)
1 = 1 + ∂2t

−(0)
1

∂x2 . (6.70)

Solving for t+(1)
1 , the homogeneous part of (6.69) is given by a constant plus a linear

combination of e−
√
r0x, e

√
r0x and eγx, where the coefficient of the last two terms must

be 0 to avoid divergence at x = ∞. From Eq. (6.67), the right-hand-side of (6.69) for
t
+(1)
1 is 1, which yields x/γ for the inhomogeneous solution. Similarly, t−(1)

1 is a linear
combination of a constant, e−

√
r0x, e

√
r0x and e−γx, which are all acceptable (−1 < x < 0).

The right-hand-side of (6.69) for t−(1)
1 is obtained from Eq. (6.68) as 1 − 2e−γx, which

yields the inhomogeneous solution −[2r0xe
−γx/(r0 − γ2) + x]/γ. To sum up, t(1)

1 (x) takes
the form

t
+(1)
1 (x) = C+ + A+e−

√
r0x + x

γ
(6.71)

t
−(1)
1 (x) = C− + A−e−

√
r0x +B−e

√
r0x +D−e−γx − 2r0xe

−γx

γ (r0 − γ2) −
x

γ
. (6.72)

Three relations between the six unknown coefficients above are given by the BCs: t+(1)
1 (0) =

t
−(1)
1 (0), dt+(1)

1 (0)/dx = dt
−(1)
1 (0)/dx and t

−(1)
1 (−1) = 0. The remaining three relations

stem from the same conditions applied to t±(0)
0 (x) in the ε-expansion of t0(x) = t

(0)
0 +εt(1)

0 ....
From Eqs. (6.21) and (6.23), t0 is related to t1 through the exact relation

t±0 = t±1 −
1
r1

(
L±γt

±
1 + 1

)
. (6.73)

At order 1/ε, one recovers L±γt±(0)
1 (x) = −1, which was already solved. At order ε0,

t
±(0)
0 = t

±(0)
1 − 1

r0
L±γt

±(1)
1 . (6.74)

When applying the BCs to t(0)
0 above, we obtain 3 new relations that involve only A+,

A− and B−, which are easily solved and substituted into the other 3 relations for the
remaining coefficients. At x = 0 one has t(1)

1 = C+ +A+, which gives after some algebra:

t
(1)
1 (γ, r0) = −γ ∂t

(0)
1
∂γ

+
√
r0e
−√r0

[
2 (eγ − 1)

(
e−
√
r0 + γ√

r0

)
+ 4eγ − 1 + γ2

r0

]
(
γ +√r0

)
(r0 − γ2)

(6.75)

+
2 (eγ − 1)− 2eγγ − γ√

r0
+ e−2√r0

r0 − γ2 +
4r0e

γ
(

γ√
r0
− eγ−

√
r0
)

(r0 − γ2)2 .
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The complete expressions of t(1)
1 for x ≥ 0 and x ≤ 0 are shown in the Appendix C.

t
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Figure 6.3: “Dispersion relation” t
(1)
1 given by Eq. (6.75) as a function of r0. At γc = 1.228780..., the

correction is non-negative but vanishes at r0 = rc.

The critical potential γc is determined from Eq. (6.75) as follows. At fixed γ, if t(1)
1 is

positive for all r0, then applying a resetting protocol with a small r1 will always produce
an increase in t1, as the first correction will be positive (recall that ε ≥ 0). On the other
hand, if at fixed γ there exist a range of r0 such that t(1)

1 < 0, then the MFPT can
be decreased by applying the potential intermittently. In such case, the non-equilibrium
search process becomes more efficient than the equilibrium one. The critical γc is given by
the marginal situation between these two cases. Figure 6.3 shows t(1)

1 given by expression
(6.75) as a function of r0 for a few values of γ. This quantity plays the role of a “dispersion
relation”, in analogy with instabilities in pattern formation problems: it is non monotonic
and positive for γ below a threshold, whereas for γ = γc ≡ 1.228780..., t(1)

1 is non-negative
but tangent to the line t(1)

1 = 0 at some point rc. This special point is given numerically
by rc ≡ 41.969027..., which is the value taken by the optimal rate r∗0 for γ = γc, as given
by our previous analysis of the full exact solution in Eq. (6.55). Setting a small γ−γc > 0,
the curve will present negative values over a small interval centered around rc, and one
thus must choose r0 ' rc to minimize the MFPT at ε fixed. A similar reasoning is used
to find the fastest growing mode in pattern formation problems.

c) Behaviour of t∗1 and r∗1 near γc

To summarize, the exact series expansion of the MFPT in powers of ε = r1/r0,

t1(γ, ε, r0) = teq(γ) + εt
(1)
1 (γ, r0) + ε2t

(2)
1 (γ, r0) + . . . , (6.76)

allows us to identify a continuous transition when t(1)
1 changes sign, i.e., when the effect

of a small ε is to decrease t1 compared with the equilibrium case. If t(1)
1 < 0 and if the

next order term t
(2)
1 is > 0 and � |t(1)

1 |, one can determine the value of ε that minimizes
the MFPT, while the terms of order ε3 or higher can be neglected. In the spirit of the



CHAPTER 6. RANDOM SEARCHES IN FLUCTUATING MEDIA 88

Ginzburg-Landau theory of phase transitions, we expand teq and the coefficients t(i)1 by
taking γ near γc (with 0 < γ − γc � 1) and r0 near rc. As the critical point fulfills
t
(1)
1 (γc, rc) = 0 and ∂r0t

(1)
1 |γc,rc = 0, Eq. (6.76) becomes

t1(γ, ε, r0) = teq(γc) + (γ − γc)
∂teq
∂γ

∣∣∣∣∣
γc

+ ε(γ − γc)
∂t

(1)
1
∂γ

∣∣∣∣∣∣
γc,rc

+ ε2t
(2)
1 (γc, rc) + ... (6.77)

at order γ − γc. Minimization of the last two terms at fixed γ gives ε∗, or:

r∗1(γ) = −(γ − γc)rc

∂t
(1)
1
∂γ

∣∣∣∣
γc,rc

2t(2)
1 (γc, rc)

+O
(
(γ − γc)2

)
, (6.78)

where we have replaced r0 by rc at leading order in γ − γc. The calculation of t(2)
1 can

be performed as in Section 6.1.4, from the knowledge of t(1)
1 for all x. With the help of

Mathematica, we obtained the expression given in the Appendix C, for x = 0. Numerical
evaluation of (6.78) gives,

r∗1(γ) = 32.91301557...(γ − γc) + ... (6.79)

which is the result (6.54) that we obtained from the numerical analysis of the full exact
solution. Eq. (6.78) shows that the “order parameter” r∗1 grows linearly and very rapidly
near γc. Renoting ε∗ = c(γ − γc), c = −∂t

(1)
1
∂γ

∣∣∣∣
γc,rc

/2t(2)
1 (γc, rc) and substituting into Eq.

(6.77), we obtain

t∗1(γ) = teq(γc) + (γ − γc)
∂teq
∂γ

∣∣∣∣
γc

+ (γ − γc)2

1
2
∂2teq
∂γ2

∣∣∣∣∣
γc

+ c
∂t

(1)
1
∂γ

∣∣∣∣∣∣
γc,rc

+ c2t
(2)
1 (γc, rc)

+ ...

(6.80)
where teq has been expanded further. Numerical evaluation of the prefactors leads to Eq.
(6.53), in very good agreement with the exact solution near γc. It is clear from (6.80) that
the first derivative of t∗1 is continuous across the transition, whereas the second derivative
is discontinuous.

6.1.5 Optimal MFPT t∗0

For the MFPT t0 of the particle starting with free diffusion phase, one observes a different
behaviour, that contrasts with t1. In this case, the optimal time

t∗0(γ) = min
r0,r1

t0(γ, r0, r1) (6.81)

undergoes a “first-order” transition at a potential steepness γ′c = 1.698768..., larger than γc
(see Figure 6.4a). By “first-order”, we mean that the corresponding corresponding optimal
rates r∗0 and r∗1 (Figs. 6.4b and 6.4c) are discontinuous at γ′c. Below, we summarize the
results, based on analyzing the exact solution and on the perturbative theory, and refer
the reader to the end of this section for some derivations.
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For γ < γ′c, r∗1(γ) = 0 and r∗0(γ) is finite and given by the minimum of the function

fγ(r0) = 1− e−
√
r0

r0
−

2e−
√
r0
(
cosh√r0 + γ√

r0
sinh√r0 − eγ

)
r0 − γ2 , (6.82)

whereas the optimal MFPT reads

t∗0(γ) = teq(γ) + fγ(r∗0(γ)) < teq(γ), (6.83)

where r∗0(γ) is the parameter r0 that minimizes Eq. (6.82) at fixed gamma. It is clear
from Fig. 6.4a that t∗0 is non-monotonic with γ, unlike t∗1.
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Figure 6.4: a) Minimal MFPT t∗0 (in blue) at fixed γ, and (b and c) their corresponding optimal rates r∗0
and r∗1 for t∗1. For γ ≤ γ′c = 1.683762..., the optimal t∗0 is reached at r∗1 = 0, whereas above γc, r∗1 > 0.
The yellow line in (a) is given by Eq. (6.83). Again, the optimal MFPT of the instantaneous resetting
problem (red dotted line) is reached as γ →∞.

For γ > γ′c, r∗1 becomes positive and t∗0 closely follows the curve of t∗1 displayed in
Fig. 6.2. Strikingly, despite of leading to similar MFPTs, the optimal protocols with and
without potential at t = 0 differ widely in the transition region: for instance, from Eq.
(6.82) one finds that r∗0(γ′c) = 1.795904... for the potential off at t = 0, a value smaller
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than the one in Eq. 6.55 for the potential on at t = 0. Interestingly, we find that, at any
potential strength, t∗0 slightly outperforms t∗1: the target can be found faster if one lets
the particle diffuse freely initially, instead of starting with the potential on. The former
initial condition is actually that of usual resetting processes, which start with a diffusing
phase.

The discontinuous transition of the intermittency rates we observed in Figs. 6.4b
and 6.4c arises from the fact that t0, unlike t1, admits two local minima in the (r0, r1)-
plane when γ is close to γ′c. These minima are clear from Figure 6.5, which displays
minr1 t0(γ, r0, r1) as a function of r0. For γ < γ′c, one notices the existence of a metastable
minimum at a larger r0, which becomes the absolute minimum when γ > γ′c, causing a
discontinuity for r∗0. Similarly, the function minr0 t0(γ, r0, r1) admits a metastable mini-
mum at a positive r1 when γ is close to and below γ′c, and causing a discontinuity in r∗1,
too.

At large gamma, both t∗0(γ) and t∗1(γ) tend to the optimum value of the standard
resetting problem of [55], which is given by t∗ = 1.544138..., see Fig. 6.2a-c and 6.4a-c.
The time t∗ is the global minimum of t0 and t1 in parameter space: here, no resetting pro-
tocol or potential slope can produce a MFPT lower than the optimal MFPT of stochastic
resetting to the origin, which therefore represents a limiting case of a more general class
of non-equilibrium searches.
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MFPT in the absence of potential at t = 0 and with r1 = 0

To derive the expressions (6.82)-(6.83), we can We can further insert the solution (6.71)-
(6.72) for t±(1)

1 into Eq. (6.74), which gives the exact expression of t0(x) with r1 = 0
(ε = 0). This is the MFPT of an initially free particle where the potential is applied once
at rate r0 and is never switched off again afterwards. For x > 0 we get:

t+0 (x, γ, r0, r1 = 0) =2(eγ − 1)− (1− x)γ
γ2 + 1− e−

√
r0(x+1)

r0
(6.84)

−
2e−

√
r0(x+1)

(
γ√
r0

sinh√r0 + cosh√r0 − eγ
)

r0 − γ2 ,
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and for −1 ≤ x < 0,

t−0 (x, γ, r0, r1 = 0) =2 (eγ − e−xγ)− (1 + x)γ
γ2 + 1− e−

√
r0(x+1)

r0
(6.85)

−
2e−

√
r0
[(

γ√
r0
− 1

)
sinh√r0(x+ 1) + e−xγ+√r0 − eγ−

√
r0x
]

r0 − γ2 .

At x = 0, the above relations reduce to

t0(γ, r0, r1 = 0) = teq(γ) + 1− e−
√
r0

r0
−

2e−
√
r0
(

γ√
r0

sinh√r0 + cosh√r0 − eγ
)

r0 − γ2 . (6.86)

This result shows that t0 deviates from the equilibrium case. At fixed γ, the above
expression can be minimized with respect to r0, see Eq. (6.82)-(6.83). The corresponding
t∗0 and r∗0 are shown in Figs. 6.4a and c, for γ < γ′c. In its present form, the perturbative
theory does not allow to predict the first order transition in t∗0, though, and so far we
have not found a simple way to address this problem.

6.1.6 Optimal potentials at fixed rates
Up to this section we have been mainly interested in the optimal mean first passage time
that can be reached only by varying the transition rates, thinking that these parameters
can be well controlled in an experimental device. Equally interesting is to notice that
the MFPT exhibits a non-monotonous behaviour with γ for some values of r0 and r1,
arising the question of how weak or strong the strength potential must be tuned in order
to optimize the MFPT once one has fixed the intermittentcy rates.

To address this question, let us define the optimal MFPT

t?1(r0, r1) = min
γ
t1(γ, r0, r1), (6.87)

where r0 and r1 are fixed and γ?(r0, r1) is the corresponding optimal strength. Minimizing
the exact solution of the MFPT with Mathematica, we numerically find a remarkable
result, depicted in figure 6.6a: when r1 is small enough, the mean time t1(γ, r0, r1) admits
an absolute minimum at a finite value of γ. This minimum becomes metastable and
further disappears as r1 increases. In this second regime, the MFPT reaches its minimum
at γ =∞. The optimal γ? (or the potential width 1/γ?) is thus discontinuous at a critical
value of r1 which depends on r0 and that we denote as rc1(r0), see Fig. 6.6b. In Figure 6.6a
one can see this metastable state for the particular case in which r0 = 0.1, and where we
find that rc1(r0 = 0.1) = 0.7852182.... This figure clearly illustrates the abrupt transition
of the global minima from γ? <∞ to γ? =∞ when r1 passes from r1 < rc1 to r1 > rc1. The
analytical curves are compared with MC simulations, finding a great agreement between
them.

By varying the intermittent dynamical rates in the (r0, r1)-plane one can construct the
phase diagram in which the optimal strength change from finite to infinite values. This
diagram is depicted in Figure 6.7a, whereas Figure 6.7b shows the variations of t?1.

The phase transition can be understood from the fact that, in the diffusion process
with intermittent potential, two distinct effects are competing: at fixed r0, a finite poten-
tial minimizes the MFPT when r1 < rc1(r0), meaning that applying a weak confinement
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for long times (∼ 1/r1) benefits target encounters. In this situation, if we increase the
potential strength, the particle will remain close to the origin and won’t be able to ade-
quately explore the target region, and in the limiting case γ = ∞, the particle will stay
immobile at each resetting during a time of mean duration 1/r1, without searching. How-
ever, when r1 is higher that rc1, since the potential is not applied for a long time, it is
better to bring back the particle to the origin as rapidly as possible (with gamma=infty),
which cuts off the diffusive excursions that explore regions of space far from the target.

A surprising result is the existence of a critical rate r∞0 = 5.539492..., such that
rc1(r∞0 ) = ∞ (Fig. 6.7a). If r0 > r∞0 , only a finite potential strength minimizes the
MFPT, and the phase γ∗ =∞ disappears.
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Figure 6.7: (a) Phase diagram in the (r0, r1)-plane. The yellow line represents the approximation given
by (6.100). (b) Optimized MFPT as a function of (r0, r1).

The results discussed above were obtained from the numerical minimization of the
exact expression for t1(γ, r0, r1, x = 0) exposed in Section 6.1.3. Although it represents a
great advance in the light of a better understanding the behaviour of the MFPT, we want
to go further in our characterization of the system dynamics and seek for an analytical
description for the metastability phenomenon and the discontinuous transition in the
optimal potential strength that we observe.



CHAPTER 6. RANDOM SEARCHES IN FLUCTUATING MEDIA 93

To achieved this goal we notice from Figure 6.7a that r1 is often� r0 at the transition,
especially in the small rate region. This suggests a way in which the analysis can be done.
In the following we will use this property to obtain an approximate expression of the
MFPT. We start by deducing the MFPT with γ = ∞ (at any rates) from a backward
Fokker-Planck equation, and check the agreement with the full exact expression in the
limit γ → ∞. In a second step, we take γ finite (of order 1) and obtain from the full
solution a simplified expression for t1 within the assumption √r0 � r1 � 1, showing
explicitly the existence of a local minimum at a finite strength. Finally, the two mean
times are compared to obtain the absolute minimum and the transition line in the small
r0 regime.

If the potential has infinite strength, the diffusive particle returns to the origin in-
finitely fast once the potential is turned on, and remains still during a random time of
mean 1/r1 until the next restart. Hence, the MFPT with the initial condition σ(t = 0) = 1
is independent of x, and longer by an amount 1/r1 than the MFPT with σ(t = 0) = 0
and x = 0:

t1(γ =∞, x) = t0(γ =∞, x = 0) + 1
r1
, (6.88)

Substituting this expression in Eq. (6.20) one obtains

∂2t+0 (γ =∞, x)
∂x2 − r0t

+
0 (γ =∞, x) = −r0 + r1

r1
− r0t

+
0 (γ =∞, x = 0). (6.89)

as well as a similar equation for t−0 (γ =∞, x). In Eq. (6.89), we notice that the function
r1

r0+r1
t+0 (γ =∞, x) satisfies the same backward equation than the MFPT in diffusion with

resetting at rate r0 without refractory period, whose expression reads (e
√
r0−1)/r0 in our

dimensionless units and for x = 0 [54]. We deduce

t0(γ =∞, x = 0) = r0 + r1

r0r1

(
e
√
r0 − 1

)
, (6.90)

and, from Eq. (6.88),

t1(γ =∞) = e
√
r0

r1
+ e

√
r0 − 1
r0

. (6.91)

This expression agrees with the findings of [56]. It can also be recovered from the limit
γ =∞ of the exact solution exposed in Section 6.1.3. When we take the limit γ →∞ in
Eqs. (6.33)-(6.35), the λ’s take the simple form

λ1 ' γ, λ2 ' −
√
r0, λ3 '

√
r0. (6.92)

Therefore, given that at x = 0 the exact solution writes t+1 = A+
0 +A+

2 , where A0 and A2
read from Eqs. (6.47)-(6.48). The exponential terms with λ1 become dominant in both
factors, and one finds A+

2 ' (r0 + r1)/[γ(r0)3/2]→ 0 and

A+
0 '

(r0 + r1)e
√
r0 − r1

r0r1
, (6.93)

which is Eq. (6.91).
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We now turn to the case of a γ of order unity and r0 � r1 � 1. In the expressions
for the roots given by Eq. (6.33)-(6.35), we set r0 = 0 and expand at first order in r1 to
obtain the approximations

λ1 '
r1

γ
+ γ, λ2 ' −

r1

γ
, λ3 ' 0. (6.94)

Replacing these values into Eqs. (6.47)-(6.48) but keeping r0 6= 0 elsewhere, one obtains

t1 '
r0 + r1

γr0
+ γ2 (γ2 + 2r1)
r0r1 (γ2 + r1)

r0 + r1 − (2r0 + r1) e
r1
γ

γ2 + 2r1e
γ+ 2r1

γ

+ r0

γ2 + 2r1

 . (6.95)

We notice that the terms proportional to 1/r0 are dominant compared to those propor-
tional to 1/r1. Eq. (6.95) further simplifies to

t1 '
1
r0

r1

γ
−

γ2
(
e
r1
γ − 1

)
(γ2 + 2r1)

(γ2 + r1)
(
γ2 + 2r1e

γ+ 2r1
γ

)
 . (6.96)

As illustrated in Figure 6.8 where r0 � r1, Eq. (6.96) agrees very well with the exact
solution at intermediate γ, where a local minimum exists. We next expand the expression
(6.96) at small r1, assuming r1 � γ, r1 � γ2 and r1e

γ/γ2 � 1; these three inequalities
are fulfilled if γ is O(1) and r1 � 1. The first non-zero term turns out to be of second
order in r1, and we get the simple expression:

t1 '
r2

1
r0

(
4eγ − γ − 2

2γ3

)
. (6.97)

At fixed rates, the above expression is non-monotonic with γ and reaches a minimum
at a value of γ independent of (r0, r1), and such that 2eγ(γ − 3) + γ + 3 = 0. A unique
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solution γmin = 2.827641... is found, and the local minimum of the MFPT is given by

t1(γmin) ' 1.388733...r
2
1
r0
. (6.98)

One can then compare this expression to the MFPT at γ =∞ to find the transition line
separating γ? = ∞ from γ? < ∞. We further assume that √r0 � r1 near the transition
(an assumption to be verified a posteriori), hence Eq. (6.91) reduces to t1(γ = ∞) '
1/√r0. Therefore,

t1(γmin)
t1(γ =∞) ' 1.388733... r

2
1√
r0
, for √r0 � r1 � 1. (6.99)

At the transition this ratio is exactly unity, which gives the critical switch-off rate:

rc1(r0) = 0.848575...r1/4
0 . (6.100)

One checks from Eq. (6.100) that √r0 � rc1(r0). Summarizing, we have found the
analytical criteria that explains the phenomenon of metastability and the discontinuous
transition of the global minimum γ?. We obtained a relation between the rates r0 and
r1 of the intermittent dynamics at the transition in the small rates regime, namely, for
r0 � 1. If one chooses a rate r1 below rc1(r0), the optimal strength will be γ? ' 2.827641,
while above this point the minimum becomes metastable and γ? =∞.

6.1.7 Monte Carlo simulations
We would like to conclude the part concerning the MFPT by showing some results from
Monte Carlo simulations that are in an excellent agreement with the theoretical ones, in
addition to Fig. 6.6 that was shown above. Figures 6.9a depicts the average MFPT tav as
a function of r0 and r1, for a fixed γ. Particularly interesting is to notice the minima that
this function reaches and the good agreement between theory and simulations. Similar
results are observed for t0(x = 0) and t1(x = 0) separately (not shown).

Figure 6.9b shows t1(x = 0), as a function of r1 when r0 and γ are fixed. A minimum
is reached at a finite r1, and the curves with different r0 reach the same value at r1 = 0, as
they should: this point corresponds to the equilibrium case where the potential is always
present and thus r0 plays no role for t1.

6.1.8 Non-equilibrium steady states
Finally, in this section we calculate the stationary density of the particle position on
the infinite line and in the absence of the absorbing barrier. We recall that, when we
introduced in Section 2 the model of free diffusion with stochastic resetting to the origin,
we saw that in the absence of the absorbing barrier, the system reaches a non-equilibrium
steady state (NESS) [55], in which the particle position X follows the probability density
distribution

P (X) =

√
r/D

2 e−
√
r/D|X|, (6.101)
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where r is the resetting rate and D the diffusion constant. In contrast, when the diffusing
particle is in the present of a stationary confining potential of the form V (X) = µ|X|
(without resetting), the system reaches an equilibrium steady state where the particle
position follows the Gibbs-Boltzmann equilibrium distribution

P (X) = µ

2De
−µ|X|/D. (6.102)

We will see that, in the limit of large γ, the stationary density can be written as an
average of the equilibrium and the NESS of diffusion with instantaneous resetting.

Let us start the analysis using the original dimensional variables and parameters. We
define Pσ(X, t) as the probability density that the particle is around X and the potential
in the state σ (with σ = 0 or 1) at time t. These two densities satisfy the forward
Fokker-Planck equation

∂

∂t
P0(X, t) = D

∂2

∂X2P0(X, t)−R0P0(X, t) +R1P1(X, t), (6.103)

∂

∂t
P1(X, t) = D

∂2

∂X2P1(X, t) + ∂

∂X

( 1
α
V ′(X)P1(X, t)

)
−R1P1(X, t) +R0P0(X, t).

(6.104)

The first term of the right hand side (r.h.s.) of Eq. (6.103) accounts for the free
diffusion of the particle without any external force, whereas the second and third terms
represent, respectively, the negative flux of probability out of the state σ = 0 at rate r0
and the positive flux into the same state at rate r1. On the other hand, the first two terms
in the r.h.s. of Eq. (6.104) represent the diffusion of the particle with an advection term
caused by the external force, the third and fourth terms are, again, probability fluxes
between the states σ = 0 and σ = 1.

Like in the previous sections, we employ the dimensionless parameter x = X/L, where
L is an arbitrary length. We do the same for the intermittent parameters r0 and r1 and
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the strength potential γ, defined by Eqs. 6.3-6.5. The densities of x = X/L are p0(x, t)
and p1(x, t). Denoting p+

σ (x, t) ≡ pσ(x, t) with x > 0, Eqs. (6.103)-(6.104) become

∂p+
0

∂t
= ∂2p+

0
∂x2 − r0p

+
0 + r1p

+
1 , (6.105)

∂p+
1

∂t
= ∂2p+

1
∂x2 + γ

∂p+
1

∂x
− r1p

+
1 + r0p

+
0 . (6.106)

The densities p−0 (x, t) and p−1 (x, t) for x < 0 obey the same equations, except that γ is
substituted by −γ in (6.106).

At the beginning of section 6.1 we said that, due to the action of the external potential
that confines the movement of the particle, we expect to find a non-equilibrium steady
state for the position density. This assertion can be proven by seeking stationary solutions
of the system (6.105)-(6.106). By symmetry, in the steady state we have that pσ(x) =
pσ(−x), then we solve only for x > 0. Setting the time derivatives to zero and looking
for solutions p0(x) and p1(x) proportional to exp(−λx), we find from Eqs. (6.105)-(6.106)
that λ must be the root of the polynomial (6.32) already found in the context of the mean
first passage times. The roots are λ0 = 0 and λk given by Eq. (6.33), with k = {1, 2, 3}.

Seeking for solutions that do not diverge exponentially as x→∞, we deduce that the
coefficient of exp(−λ2x) must be zero, since we have already proven that λ2 is the only
negative root [see Eq. (6.36)]. For the densities to be normalized, we also require that
there are no constant terms. Therefore, the acceptable solutions for p+

1 take the form

p+
1 (x) = A1e

−λ1x + A3e
−λ3x, (6.107)

while p+
0 follows from Eq. (6.106) with ∂/∂t = 0:

p+
0 (x) = r1 + λ1 (γ − λ1)

r0
A1e

−λ1x + r1 + λ3 (γ − λ3)
r0

A3e
−λ3x. (6.108)

Constants A+
1 , A+

3 will be determined from normalization

2
∫ ∞

0
dx[p+

0 (x) + p+
1 (x)] = 1, (6.109)

where p(x) = p0(x) + p1(x) is the total density, and from the boundary condition

∂p+
1

∂x

∣∣∣∣
x=0

= −γp+
1 (x = 0). (6.110)

The latter boundary condition asserts that in a vicinity around x = 0, the slope of
p1(x) at x = 0 is discontinuous. This can be seen directly from taking the integral

∫ ε
−ε dx

of Eq. (6.104), noticing that by symmetry one has ∂xp+
1 (ε) = −∂xp−1 (−ε), p+

1 (ε) = p−1 (−ε)
and p+

0 (ε) = p−0 (−ε), to then use continuity of the densities and take the limit ε→ 0.
The conditions (6.109) and (6.110) yield two equations for A1 and A3, that are solved

as:

A1 = λ1λ3 (γ − λ3) r0

2λ2 (λ3 − λ1) (r0 + r1) , (6.111)

A3 = − λ1λ3 (γ − λ1) r0

2λ2 (λ3 − λ1) (r0 + r1) , (6.112)
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Figure 6.10: Non-equilibrium steady states. The dots represent Monte Carlo simulations and the solid
lines Eq. (6.113).

where λ2 appears as we have used the identity λ1 + λ2 + λ3 = γ. The total density
p0(x) + p1(x) reads

p(x) = r0γ

2(r0 + r1)

(
λ3(γ − λ3)
λ2(λ3 − λ1)e

−λ1|x| − λ1(γ − λ1)
λ2(λ3 − λ1)e

−λ3|x|
)

(6.113)

for x ∈ R. It is displayed in Figure 6.10 in a few examples and compared with numerical
simulations of the Langevin equation (6.2). The agreement is very good.

One can analyze the behavior of the distribution in the limit of large γ, where λ1 '
γ + r1

γ
, λ2 ' −

√
r0 − r1

2γ and λ3 '
√
r0 − r1

2γ . Inserting these expressions into Eq. (6.113)
we have

p(x) ' r0γ

2(r0 + r1)e
−γ|x| +

√
r0r1

2(r0 + r1)e
−√r0|x|, (6.114)

which is an average of the NESS of free diffusion with instantaneous resetting at rate r0
(first term of the r.h.s) and the Gibbs-Boltzmann equilibrium distribution (second term
of the r.h.s).

In the limit γ =∞, this expression becomes

pγ=∞(x) = r0

r0 + r1
δ(x) +

√
r0r1

2(r0 + r1)e
−√r0|x|. (6.115)

We recover with this expression the NESS of a resetting process with refractory peri-
ods, where the particle remains at the origin for some time after each resetting [58]. If
we then take the limit r1 → ∞, corresponding to a fast switch-off of the potential after
attracting the particle back to the origin, the refractory period disappears and the above
expression becomes

pγ=∞,r1=∞(x) =
√
r0

2 e−
√
r0|x|, (6.116)

which coincides with the NESS of a particle with unit diffusion constant and resetting
rate r0 to the origin [55].
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6.2 General potentials
In this section we extend our analysis of the MFPT to an absorbing target by a Brownian
particle in the presence of a general external intermittent potential. The work is orgenized
as follows: in Section 6.2.1 we introduce the model and write down the equations of motion
that govern the dynamics of two quantities that characterize the statistical properties of
the first passage time to a target site, namely, the survival probability in the Laplace
domain and the MFPT. These equations are deduced for a general external potential
v(x). Due to the difficulty of exactly solving the problem in the general case, in section
6.2.2 we present a perturbative method that allows us to establish when an intermittent
potential improves the mean search time. Section 6.2.4 is devoted to the analysis of the
particular case in which v(x) = k|x − x0|n/n. This includes the harmonic case (n = 2)
and the linear potential (n = 1). Both cases are treated separately in Sections 6.2.5 and
6.2.6, respectively. In Section 6.2.7 we analyze the NESS that the system reaches in the
absent of the absorbing target.

6.2.1 Governing equations
In the domain, an external potential V (X) is applied intermittently in time, and the state
of the potential is characterized by a binary function σ(t) which takes the value σ = 0
when the potential is switched off and σ = 1 when it is applied. The two-state process
σ(t) is characterized by two constant transition rates, R0 (for the transition 0 → 1) and
R1 (for 1 → 0). A reflecting wall is placed at the position X = C, with C > 0. The
unbounded domain case can be simply obtained by taking the limit C →∞.

The evolution of the particle position X(t) in the potential σ(t)V (X) is given by the
over-damped Langevin equation:

dX(t)
dt

= − 1
Γσ(t)V ′[X(t)] + ξ(t), (6.117)

where Γ is the friction coefficient of the particle and ξ(t) a Gaussian white noise of zero
mean and correlations 〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′), with D the diffusion coefficient.

In the following, it is convenient to introduce the dimensionless space and time vari-
ables x = X/L and t/(L2/D) (which we re-note as t), where L is an arbitrary length.
If V (X) has a single minimum, L can be chosen as the distance between the potential
minimum and the target placed at X = 0. Let us define the dimensionaless parameters:

r0 = R0L
2/D, (6.118)

r1 = R1L
2/D, (6.119)

the re-scaled “on” and “off” rates, respectively. The re-scaled potential is given by
v(x) = V (xL)/(ΓD) = V (xL)/(kBT ). The reflecting wall is placed at x = c with c = C/L.

Let us define Q0(x, t) as the probability that the particle has not hit the boundary up
to time t, given an initial position x > 0 and initial potential state σ(t = 0) = 0. Similarly,
Q1(x, t) corresponds to a potential initially on. These survival probabilities satisfy the
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Figure 6.11: a) Trajectory of a diffusive particle with diffusion constant D = 1, in an intermittent
harmonic potential of the form V (X) = K(X−5)2

2 with K = 5. The shaded zones represent the time
intervals when the potential is turned on (here R0 = R1 = 0.02). An absorbing boundary is placed at
X = 0 (red line) and a reflective wall at X = 10 (green line). b) 3D view of a particle trajectory and the
same harmonic potential.

backward Fokker–Planck equations

∂Q1

∂t
= ∂2Q1

∂x2 − v
′(x)∂Q1

∂x
+ r1(Q0 −Q1), (6.120)

∂Q0

∂t
= ∂2Q0

∂x2 + r0(Q1 −Q0). (6.121)

Defining the Laplace transform Q̃(x, s) =
∫∞

0 e−stQ(x, t)dt, Eqs. (6.120)-(6.121) become

−1 = ∂2Q̃1

∂x2 − v
′(x)∂Q̃1

∂x
− (s+ r1)Q̃1 + r1Q̃0, (6.122)

−1 = ∂2Q̃0

∂x2 − (s+ r0)Q̃0 + r0Q̃1, (6.123)

from which we deduce the relations for the corresponding MFPTs t0(x) and t1(x):

−1 = ∂2t1(x)
∂x2 − v′(x)∂t1(x)

∂x
− r1 [t1(x)− t0(x)] , (6.124)

−1 = ∂2t0(x)
∂x2 − r0 [t0(x)− t1(x)] , (6.125)

where we have used the fact that ti(x) = Q̃i(x, s = 0).
The functions t0(x) and t1(x) will satisfy the following boundary conditions

tσ(x = 0) = 0, (6.126)
∂tσ(x)
∂x

∣∣∣∣
x=c

= 0, (6.127)



CHAPTER 6. RANDOM SEARCHES IN FLUCTUATING MEDIA 101

where the initial state of the potential is σ = {0, 1}. The first relation enforces the
absorption at x = 0, whereas the second one follows from imposing a zero flux through
the reflective wall placed at x = c [61].

6.2.2 Perturbative method for a general potential
Although the system of differential equations (6.124)-(6.125) may not be solvable in the
general case, we develop here an exact perturbative theory by expanding the solutions
t0 and t1 in powers of ε ≡ r1/r0, assuming r1 � r0. Let us define the function S(x) =
t0(x) − t1(x) and write Eqs. (6.124)-(6.125) in terms of t1(x), S(x) and the parameter ε
as

∂2t1(x)
∂x2 − v′(x)∂t1(x)

∂x
=− 1− εr0S(x), (6.128)

∂2S(x)
∂x2 − r0S(x) =− 1− ∂2t1(x)

∂x2 . (6.129)

We look for solutions of the form:

t1(x) = t
(0)
1 (x) + εt

(1)
1 (x) + . . . . (6.130)

S(x) = S(0)(x) + εS(1)(x) + . . . . (6.131)

at small ε. The function t(0)
1 is related to the classic Kramers’ problem of first passage over

a steady potential barrier. The functions t(1)
1 , . . . , S(0), S(1), . . . , depend on the potential

shape and r0, and can be determined recursively. We will particularly focus on the the
first order coefficient t(1)

1 (x), the so-called “dispersion relation", as it is directly linked to
a new phenomenon exhibited by flashing potentials: when this coefficient changes sign, a
phase transition between two types of behaviors occurs for t1. Given a potential initially
“on" and a starting position x for the Brownian particle, if

t
(1)
1 (x) > 0 for any r0, (6.132)

then switching the potential off and on back and forth (i.e., setting ε > 0) will always
result in delaying target encounter on average compared to the case with the potential
permanently applied, or ε = 0. Conversely, if

t
(1)
1 (x) < 0 for some values of r0, (6.133)

then the intermittent dynamics of the potential can help to shorten the mean search time.
By construction, the function S(x) satisfies the boundary conditions

S(x = 0) = 0, (6.134)
∂S(x)
∂x

∣∣∣∣
x=c

= 0. (6.135)

Eqs. (6.128)-(6.129) can be rewritten in the following form

ev(x) ∂

∂x

(
e−v(x) ∂

∂x
t1(x)

)
=− 1− εr0S(x), (6.136)

e
√
r0x

∂

∂x

(
e−2√r0x

∂

∂x
e
√
r0xS(x)

)
=− 1− ∂2t1(x)

∂x2 , (6.137)
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which allows to integrate directly each equation and obtain the coupled general solutions
t1(x) and S(x):

t1(x) =C1

∫ x

0
dτ ev(τ) + C2 −

∫ x

0
dy ev(y)

∫ y

0
dz e−v(z) [1 + εr0S(z)] , (6.138)

S(x) =C3e
−√r0x + C4e

√
r0x + 1

r0
− e−

√
r0x
∫ x

0
dy e2√r0y

∫ y

0
dz e−

√
r0z
∂2t1(z)
∂z2 (6.139)

where the constants Ci are determined from the boundary conditions. Integrating by
parts, we can simplify the double integral in Eq. (6.139) to a single integral:

S(x) =C3e
−√r0x + C4e

√
r0x + 1

r0
−
∫ x

0
dy

∂t1(y)
∂y

cosh√r0(x− y). (6.140)

The integral of the r.h.s. can be integrated by parts again and written in terms of t1
instead of its derivative. However, for the numerical evaluation of these expressions, it is
more convenient to keep Eq. (6.140), as we will see later.

Imposing the boundary conditions (6.126)-(6.127) and (6.134)-(6.135) we obtain

t1(x) =
∫ x

0
dy ev(y)

∫ c

y
dz e−v(z) + εr0

∫ x

0
dy ev(y)

∫ c

y
dz e−v(z)S(z), (6.141)

S(x) = 1
r0
−

cosh√r0(c− x)
r0 cosh√r0c

+ sinh√r0x
∫ c

0
dy
∂t1(y)
∂y

sinh√r0(c− y)
cosh√r0c

−
∫ x

0
dy
∂t1(y)
∂y

cosh√r0(x− y). (6.142)

Up to this point we have not made any approximation. Although we have obtained
a formal solution of the system (6.128)-(6.129), the expressions are still coupled and
difficult to write explicitly. However, one can insert the expansions (6.130)-(6.131) into
(6.141)-(6.142) and obtain the sought coefficients.

a) Leading order in ε

At leading order we have

t
(0)
1 (x) =

∫ x

0
dy
∫ c

y
dz ev(y)−v(z), (6.143)

S(0)(x) = 1
r0
−

cosh√r0(c− x)
r0 cosh√r0c

+ sinh√r0x
∫ c

0
dy
∫ c

y
dz ev(y)−v(z) sinh√r0(c− y)

cosh√r0c

−
∫ x

0
dy
∫ c

y
dz ev(y)−v(z) cosh√r0(x− y). (6.144)

The solution of t(0)
1 (x) in Eq. (6.143) corresponds to the MFPT of the standard problem

for a particle in a potential v(x) [61]. It is related to the the Kramers escape problem
in equilibrium. Eqs. (6.143)-(6.144) yields t(0)

0 (x), which corresponds physically to the
MFPT at the origin of the particle starting at x, with the potential initially “off" and
which transits only once to the “on" state at a rate r0.
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b) Higher orders in ε

At linear order in ε, one obtains the aforementioned dispersion relation, one of the main
results of this paper:

t
(1)
1 (x) =t(0)

1 (x)−
∫ x

0
dy
∫ c

y
dz ev(y)−v(z) cosh√r0(c− z)

cosh√r0c

+ r0

[∫ c

0
dy
∫ c

y
dz ev(y)−v(z) sinh√r0(c− y)

cosh√r0c

] [∫ x

0
dy
∫ c

y
dz ev(y)−v(z) sinh√r0z

]
− r0

∫ x

0
dy
∫ c

y
dz
∫ z

0
du
∫ c

u
dw ev(y)−v(z)+v(u)−v(w) cosh√r0(z − u), (6.145)

and

S(1)(x) = sinh√r0x
∫ c

0
dy

∂t
(1)
1 (y)
∂y

sinh√r0(c− y)
cosh√r0c

−
∫ x

0
dy

∂t
(1)
1 (y)
∂y

cosh√r0(x− y).

(6.146)

At order εn, with n an integer greater than one, Eqs. (6.141)-(6.142) lead to

t
(n)
1 (x) =r0

∫ x

0
dy ev(y)

∫ c

y
dz e−v(z)S(n−1)(z), (6.147)

S(n)(x) = sinh√r0x
∫ c

0
dy

∂t
(n)
1 (y)
∂y

sinh√r0(c− y)
cosh√r0c

−
∫ x

0
dy

∂t
(n)
1 (y)
∂y

cosh√r0(x− y),

(6.148)

Hence, there exists a “simple” relation between the functions t(n)
1 and S(n−1)

1 which allows
us to recursively compute any n-th order term in principle. As the expressions rapidly
become complicated, we will limit our analysis to the terms of order ε, which are sufficient
for our purpose.

6.2.3 Semi-infinite line
Before proceeding to the analysis of different potentials, we write the above expressions
for the case of the semi-infinite line. This can be achieved by letting the position c of the
reflective wall tend to infinity. The expressions (6.143)-(6.144) become

t
(0)
1 (x) =

∫ x

0
dy

∫ ∞
y

dz ev(y)−v(z), (6.149)

S(0)(x) =1− e−
√
r0x

r0
+ sinh√r0x

∫ ∞
0

dy
∫ ∞
y

dz ev(y)−v(z)e−
√
r0y

−
∫ x

0
dy
∫ ∞
y

dz ev(y)−v(z) cosh√r0(x− y), (6.150)
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whereas at order one

t
(1)
1 (x) =t(0)

1 (x)−
∫ x

0
dy
∫ ∞
y

dz ev(y)−v(z)−√r0z

+ r0

[∫ ∞
0

dy
∫ ∞
y

dz ev(y)−√r0y−v(z)
] [∫ x

0
dy
∫ ∞
y

dz ev(y)−v(z) sinh√r0z
]

− r0

∫ x

0
dy
∫ ∞
y

dz
∫ z

0
du
∫ ∞
u

dw ev(y)−v(z)+v(u)−v(w) cosh√r0(z − u), (6.151)

S(1)(x) = sinh√r0x
∫ ∞

0
dy

∂t
(1)
1 (y)
∂y

e−
√
r0y −

∫ x

0
dy

∂t
(1)
1 (y)
∂y

cosh√r0(x− y), (6.152)

In the following we compute these expressions [and Eqs. (6.143)-(6.146) at finite c]
for different potential shapes.

6.2.4 Potential of the type v(x) = k|x− 1|n/n
Let us consider symmetric confining potentials of the form v(x) = k|x − 1|n/n, with
n > 0 and k a dimensionless potential stiffness. As the target is located at the origin, the
minimum of this potential is at a distance unity from the target. Although we obtained
expressions for any value of the starting position x, we will focus on the case x = 1, i.e.,
the particle starting at the minimum of the potential. The particular case with n = 1
for the semi-infinite line has been already analyzed in Section 6.1 by direct resolution of
the first passage equations. Here we extend our results to more general potentials and to
confined domains (1 ≤ c <∞).

For the following, let us define the function

Gn(x, c) = e
k
n
|x−1|n

∫ c

x
dy e−

k
n
|y−1|n = e

k
n
|x−1|n

γ 1
n

(
k
n
(c− 1)n

)
− |x−1|

x−1 γ 1
n

(
k
n
|x− 1|n

)
n1− 1

nk
1
n

,

(6.153)
where γa(x) =

∫ x
0 dz z

a−1e−z is the lower incomplete gamma function. With this notation,
inserting v(x) = k|x− 1|n/n into Eq. (6.143), one gets

t
(0)
1 (x) =

∫ x

0
dy Gn(y, c). (6.154)

Substituting the above expression into Eq. (6.144) we obtain

S(0)(x) = 1
r0
−

cosh√r0(c− x)
r0 cosh√r0c

−
∫ x

0
dy Gn(y, c) cosh√r0(x− y)

+ sinh√r0x
∫ c

0
dy Gn(y, c)sinh√r0(c− y)

cosh√r0c
. (6.155)

From Eq. (6.145), the dispersion relation reads

t
(1)
1 (x) =t(0)

1 (x)− r0

∫ x

0
dy
∫ c

y
dz
∫ z

0
du
∫ c

u
dw e

k
n

(|y−1|n−|z−1|n+|u−1|n−|w−1|n) cosh√r0(z − u)

−
∫ x

0
dy
∫ c

y
dz e

k
n
|y−1|n− k

n
|z−1|n

(cosh√r0(c− z)
cosh√r0c

− r0 sinh√r0z

[∫ c

0
du Gn(u, c)sinh√r0(c− u)

cosh√r0c

] )
. (6.156)
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6.2.5 Harmonic potentials
In this section we consider the generic case n = 2, in which the switching potential is
harmonic, or v(x) = k(x− 1)2/2, with k the re-scaled stiffness. The latter is given by

k = KL2

ΓD , (6.157)

with K the stiffness in physical units. When the potential is permanently applied, the
particle follows an Orstein-Uhlenbeck (OU) process of unit mean [112], and the MFPT
from x to the origin is given by

t
(0)
1 (x) =

∫ x

0
dy e

k
2 (y−1)2

∫ c

y
dz e−

k
2 (z−1)2

. (6.158)

As mentioned earlier, all the numerical results below correspond to the starting position
x = 1.

Before discussing the effects of the on-off potential dynamics, one can deduce from
the above expression that t(0)

1 (x = 1) increases monotonically with k when the position
of the reflecting wall c is below a particular value c0. In this case, the MFPT is minimal
at k = 0, i.e., without any external force and t(0)

1 (k = 0, c) = c − 1
2 . On the other hand,

when c > c0, the MFPT t
(0)
1 exhibits a non-monotonic behaviour with k and reaches a

minimum at a certain kOU > 0, see further the blue curve of Fig. 6.13a. The exact
value of c0 corresponds to the point in which the slope of t(0)

1 (k, c) at k = 0 changes from
positive to negative values, i.e.,

∂t
(0)
1 (k, c0)
∂k

∣∣∣∣∣∣
k=0

= 0. (6.159)

Solving the above relation for c0 using Eq. (6.158) we obtain

c0 = 2.19148 . . . (6.160)

Here, we will first assume that the domain size is sufficiently large, or c > c0, and will
discuss the case c < c0 afterwards. Taking n = 2 in Eq. (6.153), the function G2(x, c) can
be recast as

G2(x, c) = e
k
2 (x−1)2

√
π

2k

[
erf

(√
k/2(c− 1)

)
− erf

(√
k/2(x− 1)

)]
, (6.161)

where erf(x) = 2√
π

∫ z
0 dz e

−z2 is the error function. Now we can replace the form of G2(x, c)
into Eq. (6.156) and then compute t(1)

1 (x). We show below the main results obtained from
numerical evaluations of the integrals.

Figure 6.12a displays the dispersion relation as a function of r0, obtained from evalu-
ating t(1)

1 (x) at x = 1, c = 3 and fixing k. We notice that this function is non-monotonic.
When the potential stiffness is below a certain critical value, or k < kc(c) = 1.49823 . . .
for c = 3, the function t(1)

1 always stays positive. This means that turning alternatively
the potential off (at a small rate r1) and on (at any rate r0) will always increase the mean
search time compared with the Kramers’ case r1 = 0 (or t1 > t

(0)
1 ). At the marginal
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Figure 6.12: Searches starting from x = 1 and with the harmonic potential on at t = 0. (a) Coefficient
of the first correction in the series expansion of t1 near r1 = 0 (the “dispertion relation”) as a function
of r0 and at the fixed value c = 3, for various k near kc(c = 3) = 1.49819 . . . . The points represent the
results from numerically solving Eqs. (6.124)-(6.125) by using a finite differences scheme. (b) and (c):
Critical potential stiffness kc (next to kOU shown with the dotted line) and optimal switch-off rate rc as
a function of the domain size c, respectively.

case k = kc, the curve of t(1)
1 becomes tangent to the x−axis, at a critical resetting rate

r0 = rc. For the case c = 3, one finds rc = 56.66926 . . . . If the potential stiffness is above
kc, there exists a window of values of r0 around rc for which t(1)

1 is negative. Therefore,
setting r0 ' rc and r1 small but > 0 will shorten the mean search time (or t1 < t

(0)
1 ). The

agreement between the theory and a direct numerical solution of Eqs. (6.124)-(6.125) [see
AppendixD] is excellent.

In figures 6.12b-c are displayed the behaviour of kc and rc as a function of the domain
size c. The variations of kOU are also shown. It is quite remarkable that kc is lower than
kOU but always very close to it. For instance, for c = 3, we find kOU = 1.51603 . . . , to be
compared to the value kc = 1.49823 . . . mentioned above. Another surprising property is
that rc is� 1: in dimensional units, the value of r0 that minimizes t1 is thus much larger
than the inverse diffusion time.

For c < c0, one has kOU = 0 and a marginal dispersion relation cannot be found,
therefore the pair (kc, rc) cannot be defined. Numerical investigations indicate that t(1)

1 is
negative for all values of k and r0 in this case.

The results of Fig. 6.12a demonstrate the existence in large enough domains of a phase
transition in the optimal parameters (r∗0, r∗1), i.e., the parameters (r0, r1) that minimize
the MFPT t1, at a non-trivial value kc of the potential stiffness. For k < kc, we have
r∗1 = 0; whereas r∗1 > 0 for k > kc. Likewise, r∗0 is not defined below kc, while r∗0 ' rc
for k in the vicinity of kc from above. Determining the behavior of r∗1(k) slightly above
kc would require an expansion at the following order ε2 in Eqs. (6.130)-(6.131). We can
alternatively solve Eqs. (6.124)-(6.125) numerically by using an implicit finite difference
scheme (see Appendix D for details). From this numerical solution, one obtains in Fig.
6.13b-c the optimal rates r∗0 and r∗1, for x = 1, as a function of the potential stiffness k. Fig.
6.13a shows the corresponding minimum MFPT reached, t∗1(k), which decreases with k.



CHAPTER 6. RANDOM SEARCHES IN FLUCTUATING MEDIA 107

a
tOU

t1(r0
*,r1

*)

kc1 10 100 103

1.6

1.7

1.8

1.9

2.0

k

M
FP

T
(x
=
1)

b

r 0*

kc1 10 100 103
0

10
20
30
40
50

kc

r 1*

kc1 10 100 103
0

50

100

150

r 1*

kc 1.6 1.8 2 2.2
0
5

10
15
20

k

k

Figure 6.13: Searches starting from x = 1 and with the harmonic potential on at t = 0 and with c = 3. (a)
Minimal MFPT t∗1 as a function of the potential stiffness k. The orange line is obtained from numerical
minimization of the numerical solution with respect to (r0, r1). The blue line represents t1 for a particle
in a steady potential (r1 = 0). (b) and (c): optimal rates r∗1(k) and r∗0(k).

Above kc, this time becomes much smaller than tOU(k), which typically keeps increasing
exponentially with k. In the limit k → ∞, one recovers the problem of diffusion with
instantaneous stochastic resetting to the origin, where t∗1 → 1.5451 . . . and r∗0 → 2.5396 . . .
[55].

6.2.6 Piecewise linear potential
In the case n = 1, the switching potential is of the form v(x) = k|x − 1|, with k the
re-scaled potential strength, given by

k = KL

ΓD , (6.162)

where K is the strength in physical units. The results are qualitatively similar to the
harmonic case, see Fig. 6.14. We have addressed this problem in Section 6.1 for the
semi-infinite line case. Setting n = 1 in the expression for Gn(x, c) in (6.153) we get

G1(x, c) = ek|x−1|

k

(
1− e−k(c−1) − |x− 1|

x− 1
(
1− e−k|x−1|

))
. (6.163)

In the following we denote as t(0)
1 (x,−) the solution in the range 0 ≤ x < 1 and t(0)

1 (x,+)
the solution in 1 < x < c. Replacing the expression of G1(x, c) in Eq. (6.154) we obtain

t
(0)
1 (x,−) =

(
2− e−k(c−1)

) (
ek − e−k(x−1)

)
− xk

k2 , (6.164)

t
(0)
1 (x,+) =2(ek − 1) + (x− 2)k + e−k(c−1)(2− ek)− e−k(c−x)

k2 . (6.165)
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Figure 6.14: Searches starting from x = 1 and with the potential on at t = 0. (a) Coefficient of the first
correction in the series expansion of t1 near r1 = 0 (the “dispertion relation”) as a function of r0 and at
the fixed value c = 3, for various k near kc(c = 3) = 0.806777 . . . . (b) and (c): Critical potential stiffness
kc (next to kOU shown with the dotted line) and optimal switch-off rate rc as a function of the domains
size c, respectively.

It is easy to check the continuity of the MFPT in x = 1, or t(0)
1 (1,−) = t

(0)
1 (1,+).

The complete expressions of S(0)(x) and t
(1)
1 (x) are somehow intricate and we do not

write them here. Again, in the following we show the main results from the numerical
analysis of these quantities for the special case in which the particle starts diffusing at
the minimum of the potential (x = 1).

Taking x = 1 in Eq. (6.164) one gets

t
(0)
1 (k, c) =

(
2− e−k(c−1)

) (
ek − 1

)
− k

k2 , (6.166)

where we have made explicit the dependency of the MFPT t1 with the variables k and c.
As in the case of the harmonic potential, there exists a critical value c0 such that (i) if

c < c0 the minimum of the MFPT t
(0)
1 is achieved only at k = 0 and, (ii) if c > c0, there

is a finite potential strength k at which the MFPT t
(0)
1 is minimum. The value c0 satisfies

∂t
(0)
1 (k, c0)
∂k

∣∣∣∣∣∣
k=0

= 0. (6.167)

Solving the above relation for c0 and using Eq. (6.166) we obtain

c0 = 2.26376 . . . (6.168)

If we let c→∞, the equations (6.164)-(6.165) reduce to the simple form

t
(0)
1 (x,−) =

2ek
(
1− e−kx

)
− xk

k2 , (6.169)

t
(0)
1 (x,+) =2(ek − 1) + (x− 2)k

k2 . (6.170)
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With the above result and using Eq. (6.150) we can calculate the leading order S(0) for
the semi-infinite line. After some algebra we get

S(0)(x,−) =1− e−
√
r0x

r0
+

2ek
(
e−kx − e−

√
r0x
)

k2 − r0
+ 2e−

√
r0 sinh√r0x√
r0(k +√r0) , (6.171)

S(0)(x,+) =1− e−
√
r0x

r0
+

2e−
√
r0x
(

k√
r0

sinh√r0 + cosh√r0 − ek
)

k2 − r0
. (6.172)

Recalling that t0(x) = S(x)+ t1(x), we can compute the first passage time with the initial
condition σ(t = 0) = 0:

t
(0)
0 (x,−) =1− e−

√
r0x

r0
+

2ek
(
1− e−kx

)
− xk

k2 +
2ek

(
e−kx − e−

√
r0x
)

k2 − r0
+ 2e−

√
r0 sinh√r0x√
r0(k +√r0) ,

(6.173)

t
(0)
0 (x,+) =1− e−

√
r0x

r0
+ 2(ek − 1) + (x− 2)k

k2 +
2e−

√
r0x
(

k√
r0

sinh√r0 + cosh√r0 − ek
)

k2 − r0
.

(6.174)

The above results agree with those computed in Section 6.1 for the piecewise linear po-
tential.

6.2.7 Stationary density with an intermittent harmonic poten-
tial

In this section we now study the probability density P (X, t) of the position X of the
Brownian particle on the infinite line. We present the full result for the non-equilibrium
steady state limt→∞ P (X, t) when the intermittent potential is harmonic.

Let us introduce Pσ(X, t), the joint probability that the particle is around X and the
potential in state σ = {0, 1} at time t, the initial conditions being implicit. For a general
intermittent potential V (X), these densities satisfy the forward Fokker-Planck equations

∂

∂t
P0(X, t) = D

∂2

∂X2P0(X, t)−R0P0(X, t) +R1P1(X, t), (6.175)

∂

∂t
P1(X, t) = D

∂2

∂X2P1(X, t) + 1
Γ
∂

∂X
[V ′(X)P1(X, t)]−R1P1(X, t) +R0P0(X, t).

(6.176)

For a harmonic potential V (X) = K
2 X

2 (we now place the minimum of the potential at
the origin), Eqs. (6.175)-(6.176) read

∂

∂t
P0(X, t) = D

∂2

∂X2P0(X, t)−R0P0(X, t) +R1P1(X, t), (6.177)

∂

∂t
P1(X, t) = D

∂2

∂X2P1(X, t) + K

Γ
∂

∂X
(XP1(X, t))−R1P1(X, t) +R0P0(X, t). (6.178)
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We again employ the dimensionless space and time variables x = X/L and t/(L2/D)
(re-noted as t), and the dimensionless “on" and “off" rates r0 and r1. The re-scaled
potential stiffness k reads

k = KL2

ΓD , (6.179)

The joint densities associated to x = X/L are denoted as p0(x, t) and p1(x, t). In the
steady state limit, we set the time derivatives to zero in Eqs. (6.177)-(6.178) to obtain,
in adimensional units,

∂2p0(x)
∂x2 − r0p0(x) + r1p1(x) = 0, (6.180)

∂2p1(x)
∂x2 + k

∂

∂x
(xp1(x))− r1p1(x) + r0p0(x) = 0. (6.181)

Let us take the space Fourier transform f̃(ν) =
∫∞
−∞ dx e

−iνxf(x) of Eqs. (6.180)-(6.181),

−
(
ν2 + r0

)
p̃0(ν) + r1p̃1(ν) = 0, (6.182)

−
(
ν2 + r1

)
p̃1(ν)− kν ∂

∂ν
p̃1(ν) + r0p̃0(ν) = 0, (6.183)

where we have use the identities ∂̃f(x)
∂x

= iνf̃(ν) and x̃f(x) = i∂f̃(ν)
∂ν

. Combining Eqs.
(6.182)-(6.183) gives

∂p̃1(ν)
∂ν

+ ν (ν2 + r0 + r1)
k (ν2 + r0) p̃1(ν) = 0, (6.184)

which is solved as
p̃1(ν) = Ae−

∫ ν
a(τ)dτ , (6.185)

where
a(τ) = τ (τ 2 + r0 + r1)

k (τ 2 + r0) , (6.186)

and A is a constant to be determined from the normalization condition. We therefore
obtain

p̃1(ν) = Ae−
ν2+r1 ln (ν2+r0)

2k = Ae−
ν2
2k

(ν2 + r0)
r1
2k
. (6.187)

From Eq. (6.182) one deduce the density p0(ν),

p̃0(ν) = r1

ν2 + r0
p̃1(ν) = Ar1e

− ν
2

2k

(ν2 + r0)
r1
2k+1 . (6.188)

The normalization condition imposes

p̃0(ν = 0) + p̃1(ν = 0) =
∫ ∞
−∞

dx [p0(x) + p1(x)] = 1, (6.189)

from which we deduce

A = r
r1
2k+1
0

r0 + r1
. (6.190)
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The full position density p̃(ν) = p̃0(ν) + p̃1(ν) therefore reads

p̃(ν) = r
r1
2k+1
0 (ν2 + r0 + r1) e− ν

2
2k

(r0 + r1) (ν2 + r0)
r1
2k+1 . (6.191)

In the following we consider a few limiting cases, where this expression simplifies.

a) Limits r0 =∞ and r1 = 0

In this limit, the potential always stays in the “on" state. Setting r0 =∞ and r1 = 0, Eq.
(6.191) becomes

p̃(ν, r0 =∞, r1 = 0) = e−
ν2
2k , (6.192)

which is easily inverted as

p(x, r0 =∞, r1 = 0) = pOU(x) =
√
k

2πe
− kx

2
2 . (6.193)

One recovers the equilibrium distribution pOU(x) for the Ornstein-Uhlenbeck process [112].

b) Limit r1 � k

In the steep potential limit, or r1/k ≈ 0, the probabilities p̃0 and p̃1 in Eqs. (6.187)-(6.188)
can be approximated by

p̃1(ν) = r0

r0 + r1
e−

ν2
2k , (6.194)

p̃0(ν) = r1

r0 + r1

 r0e
− ν

2
2k

ν2 + r0

 . (6.195)

The inverse Fourier transform of Eq. (6.194) reduces to the Ornstein-Uhlenbeck distri-
bution (6.193), weighted by the probability that the potential is turned on. On the other
hand, the inverse transform of Eq. (6.195) can be obtained from the convolution theorem
if we notice that the inverse Fourier transform of r0/(ν2 + r0) is

√
r0
2 e−

√
r0|x|, whereas the

inverse transform of e−ν2/2k is again given by Eq. (6.193). Therefore

p0(x) = r1

r0 + r1

∫ ∞
−∞

√ k

2πe
− ky

2
2

 √r0

2 e−
√
r0|x−y|dy. (6.196)

One recognizes in this result the probability distribution of an instantaneous resetting
process with rate r0, averaged over a equilibrium Orstein-Uhlenbeck distribution of re-
setting points, pOU(y) =

√
k

2πe
− ky

2
2 , which is itself weighted by the probability that the

potential is turned off [55]. Then, in this steep potential limit, the total probability density
p(x) = p0(x) + p1(x) reads

p(x) = r0

r0 + r1

√
k

2πe
− kx

2
2 + r1

r0 + r1

∫ ∞
−∞

√ k

2πe
− ky

2
2

 √r0

2 e−
√
r0|x−y|dy. (6.197)
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We rewrite the integral in Eq. (6.196) as

p0(x) = r1

2(r0 + r1)

√
r0k

2π

(∫ x

−∞
e−

ky2
2 −
√
r0(x−y)dy +

∫ ∞
x

e−
ky2

2 −
√
r0(y−x)dy

)

= r1e
r0
2k

2(r0 + r1)

√
r0k

2π

(
e−
√
r0x
∫ x

−∞
e−

k(y−√r0/k)2

2 dy + e
√
r0x
∫ ∞
x

e−
k(y+√r0/k)2

2 dy
)

= r1
√
r0e

r0
2k

4(r0 + r1)

(
e−
√
r0x erfc

(√
r0 − kx√

2k

)
+ e

√
r0x erfc

(√
r0 + kx√

2k

))
. (6.198)

At large z, we use erfc(z) ≈ e−z
2
/
√
πz and erfc(-z) ≈ 2 − e−z

2
/
√
πz. This allow us to

obtain the large x behavior

p0(x) ≈ r1
√
r0e

r0
2k

2(r0 + r1)

e−√r0x −
√

2r0ke
− kx

2
2 −

r0
2k

√
π(k2x2 − r0)

 ≈ r1e
r0
2k

r0 + r1

(√
r0e
−√r0x

2

)
. (6.199)

This expression is exponential in x and dominant over the Gaussian OU distribution
p1(x). Hence, the total probability density p(x) at large x is also given by

p(x) ≈ r1
√
r0e

r0
2k−
√
r0x

2(r0 + r1) . (6.200)

c) General case

To tackle the general case for arbitrary rates r0 and r1, we take advantage of the con-
volution theorem again, noticing that the inverse Fourier transform of the (ν2 + r0)−a
is [1]

1
2π

∫ ∞
−∞

eiνxdν

(ν2 + r0)a = 1
π

∫ ∞
0

cos (νx)dν
(ν2 + r0)a =

(
2√r0|x|−1

) 1
2−a

√
πΓ(a) K

(
a− 1

2 ,
√
r0|x|

)
, (6.201)

where K(α, x) is the modified Bessel function of the second kind and Γ(·) the Gamma
function. From Eq. (6.191) we obtain

p(x) = r1

r0 + r1

 2−
r1+k

2k r
r1+3k

4k
0√

πΓ( r1
2k + 1)

 ∫ ∞
−∞

√ k

2πe
− ky

2
2

 |x− y| r1+k
2k K

(
r1 + k

2k ,
√
r0|x− y|

)
dy

+ r0

r0 + r1

2−
r1−k

2k r
r1+k

4k
0√

πΓ( r1
2k )

 ∫ ∞
−∞

√ k

2πe
− ky

2
2

 |x− y| r1−k
2k K

(
r1 − k

2k ,
√
r0|x− y|

)
dy.

(6.202)

The large x behavior can be obtained by using K(α, z) ≈
√
πe−z/

√
2z at large z, or
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Figure 6.15: Particle density for an intermittent potential of the form v(x) = k
2x

2, with fixed rate
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∫ ∞
−∞

√ k

2πe
− ky

2
2

 |x− y| r1+k
2k K

(
r1 + k

2k ,
√
r0|x− y|

)
dy

≈
∫ ∞
−∞

√ke− ky2
2

2

 r− 1
4

0 (x− y)
r1
2k e−

√
r0(x−y)dy

≈ r
− 1

4
0 x

r1
2k e

r0
2k−
√
r0x
∫ ∞
−∞


√
ke−

k(y−√r0/k)2

2

2

 dy = r
− 1

4
0 x

r1
2k e

r0
2k−
√
r0x
√
π

2 , (6.203)

similarly,

∫ ∞
−∞

√ k

2πe
− y

2
2

 |x− y| r1−k
2k K

(
r1 − k

2k ,
√
r0|x− y|

)
dy ≈ r

− 1
4

0 x
r1
2k−1e

r0
2k−
√
r0x
√
π

2 .

(6.204)

Combining the expressions (6.203)-(6.204) one obtains

p(x) ≈ r
r1+2k

4k
0 x

r1
2k e

r0
2k−
√
r0x

2
r1
2kΓ( r1

2k )(r0 + r1)

(
k +
√
r0

x

)
≈ r

r1+2k
4k

0 kx
r1
2k e

r0
2k−
√
r0x

2
r1
2kΓ( r1

2k )(r0 + r1)
. (6.205)

We conclude that the exponential tail of the non-equilibrium steady state distribution
now exhibits an algebraic prefactor, or p(x) ∼ x

r1
2k e−

√
r0x. Notice that in the limit r1 ≈ 0,

Γ( r1
2k ) ≈ 2k

r1
and Eq. (6.205) reduces to Eq. (6.200). Our results are in very good agreement

with numerical simulations, as displayed in Fig. 6.15.



Chapter 7

Conclusions

The content of the present manuscript is part of the research work that we have done
during the Ph.D. program in physics. In the following we point out the main conclusions
of our work and discuss the scope of its content, as well as possible extensions and ap-
plications. The content of our work is divided in two topics: in Chapter 5 we study the
first hitting time properties of a diffusive search to a target that intermittently switches
between a reactive and a non-reactive state; In Chapter 6 we have investigated the dy-
namics of a diffusive particle in the presence of an external potential that intermittently
is turned on and off.

In Section 5.1 we addressed the problem of a particle diffusing on the infinite line
and hitting an intermittent target placed at the origin. We have deduced the Fokker-
Planck equations that govern the evolution of the survival probabilities, from which we
calculated the exact first hitting time distribution. We analyzed the asymptotic behaviour
of the FHTD for large times, finding a new time regime that appears when the target
is mostly inactive. This asymptotic time scales as ∼ t−1/2, in addition to the standard
decay ∼ t−3/2, characteristic of symmetric diffusive processes. The crossover time τc that
separates the two regimes depends on the rates of the target dynamics α and β, and is
given by Eq. (5.61). On time scales smaller than τc, the search process is slow in the
sense that the survival probability decays much more slowly than in the standard case of
a perfectly reactive target.

In Section 5.2 we have studied the statistical properties of the first hitting time be-
tween a diffusing particle undergoing stochastic resetting to the initial position and an
intermittent target. We have calculated the mean time it takes for the particle to hit the
target for the first time in its reactive state, and have shown that this quantity can be
minimized with respect to the resetting rate. This feature is also characteristic of many
resetting processes with perfectly absorbing targets. The MFHT increases due to the
intermittent dynamics of the target. The minimal MFHT can thus be very high when the
target is mostly non-reactive, which is intuitive since the task of searching an intermittent
target is much more challenging.

It is also worth noting that the coefficient of variation of the search time is not unity
at optimality, in contrast with resetting problems that have a complete renewal structure.
Here, the coefficient of variation can reach values much larger than one at the optimal
resetting rate, specially for targets that spend a moderate fraction of time in the inactive
state but long periods of time in each state. Other situations are analogous to the different
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resetting protocols of the stochastic gate. For instance, a run-and-tumble particle can be
stochastically reset to its initial position, or may also have its velocity reset according to
a given distribution [57]. In continuous time random walks, both the position and the
waiting time may be subject to reset, or only the position [79]. The scaled Brownian
motion model has also been studied under complete [23] or incomplete [22] resetting
protocols.

Section 5.3 is devoted to the study of the first hitting time statistics between a run-
and-tumble particle and an intermittent target. When the system is confined between two
reflective walls, we have focused our attention on the mean first hitting time, which can
be calculated exactly. For any values of the rates a and b of the intermittent dynamics,
the particle should opt for a ballistic motion (γ = 0) in order to minimize the mean
search time. Less persistent motion not only increases, on average, the time of first target
encounter, but also makes this time less predictable, i.e., with larger relative fluctuations
around the mean. According to the results of section 5.3.3, the relative variance of the
first hitting time exhibits a non-monotonic behaviour with respect to the intermittent
parameters and the turning rate. When the transition rates become slow compared to
the tumbling rate (a, b � γ), the coefficient of variation takes larger values compared
with the steady target case.

When the particle motion is unbounded, our findings extend the results of Section 5.1
on Brownian motion and an intermittent target on the infinite line. We have found that
the target dynamics drastically affect the scaling of the first hitting times distribution,
whose most unusual feature is an extended intermediate regime in t−1/2, previous to the
standard t−3/2 asymptotic decay.

Regarding simple diffusion or diffusion with stochastic resetting, we found that, when
the target becomes highly intermittent, i.e., when the transitions between the reactive and
the non-reactive state occur over a time-scale much smaller than the diffusion time, the
model of intermittent targets is equivalent to the problem of a partially absorbing target.
We could establish a relationship between the target rates, the diffusion coefficient and
the effective absorption velocity of the radiation boundary condition. Such equivalence
between partially absorbing and dynamical boundaries has been observed in other search
processes [80, 81], but it does not hold in general. For instance, in the problem of diffusion
with stochastic resetting when the target transition rates are comparable to the inverse
diffusion time, the optimal resetting rate exhibits distinctive features, such as a non-
monotonic behaviours.

For the run-and-tumble dynamics, the expression of the global MFPT in bounded
domains in our problem takes the same form as for the RT with partial absorption, al-
though the two problems are clearly different. Particularly interesting is to notice that
the crossover time tc can be recast under a simple form as tc = 2γε−2, where ε is the
absorption coefficient given by Eq. (5.149) it the limit ` = ∞. Therefore, the crossover
time can be redefined in terms of the tumble rate and the effective absorption coefficient.
As soon as t is� than tta and ttb (the target relaxation and particle turning times, respec-
tively), the scaling behaviour of the first hitting time distribution and all the subsequent
conclusions remain valid for the problem of partial absorption.

We have also addressed the problem of random searches in fluctuating media. In
Section 6.1 we study the dynamics of a diffusive particle in one dimension under the
action of an intermittent potential. We first study the implementation of a piecewise linear
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potential with a minimum at the origin and that is turned on and off intermittently. This
problem extends well-known models of diffusion with stochastic resetting to the origin,
which are recovered in some limits. Its implementation in experiments employing optical
tweezers is possible, and would not require specific micro-manipulations such as bringing
the particle back to the origin. In Section 6.2 we extend the scope of our work to more
general potentials, particularly for potentials of the form v(x) = k|x− x0|n/n. With this,
we were able to generalize our results, finding that the first passage properties of the
system with a general potential power n > 0 behaves as similar as the linear potential
(n = 1) in Section 6.1. Therefore, the following conclusions are valid in the general case
with v(x) = k|x− x0|n/n:

We have shown that the presence of the potential, although intermittent in time,
always leads to a non-equilibrium steady state and renders the mean first passage time
to a target finite. The MFPT can be further minimized with respect to the re-scaled
switch-on (r0) and switch-off (r1) rates. Since the problem involves two rates instead of
one as usual in resetting processes, we have found a rather rich phenomenology.

If the particle starts at the potential minimum, below a critical potential strength,
the protocol that minimizes the MFPT to a target located at a certain distance consists
in always keeping the potential on (r1 = 0), whereas for stronger potentials the two
optimal rates are non-zero. In the latter case, the dynamics are fully out-of-equilibrium
and the trajectories a succession of free and biased diffusive phases. The transition in the
optimal rates is continuous or discontinuous at the critical potential strength, depending
on whether the potential is initially on or off. Above threshold, the optimal MFPT is
nearly always lower than the lowest Kramers’ time, a result that generalizes previous
comparisons between the efficiency of equilibrium and non-equilibrium searches [58, 65].
Likewise, when one seeks to minimize the MFPT with respect to the potential strength
at fixed rates, another discontinuous transition occurs and a phase diagram can be drawn
in the (r0, r1)-plane.

Near the continuous transition mentioned above, a perturbative theory allows to
decompose the MFPT into an equilibrium part (which depends only on the potential
strength) and a rate dependent part. The latter is non-monotonous with respect to r0
and reaches a minimum at a value � 1 which contrasts with the optimal re-scaled rates
of order unity found in usual resetting problems. Importantly, this contribution to the
MFPT can take negative values above the critical strength, a regime where minimiza-
tion leads to non-trivial rates in a way analogous to a second order Ginzburg-Landau
transition.

In the vicinity of the discontinuous transitions, we have unveiled metastable behaviors
as the rates or the strength are varied. Metastability in a resetting process was recently
reported and confirmed experimentally with optical traps in [21] using a quite different
setup and protocol. Hence, this new property is likely to be generic in resetting processes.

In summary, for the problem of random searches of fluctuating targets, we have shown
that diffusive search processes can be severely affected by the intermittent switching dy-
namics of a target site, a situation often met in noisy complex media. A new, rate
controlled scaling regime with exponent −1/2 emerges at high target crypticity, and the
problem can be mapped onto a radiation boundary problem at large times. These results
can be readily extended to higher spatial dimensions with the same formalism. Further
study should consider other transport processes, as well as non-exponential distributions
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of activity times. Interestingly, biological on-off processes such as DNA looping and ion
channel dynamics often exhibit substantial non-Markov effects [40, 85, 66]. We also men-
tion that the decay of the survival probability in unconfined space plays an important
role for the large volume scaling of the FHT distribution in confined environments [82].
The intermediate regime for cryptic targets should thus have important consequences for
confined walks [41].

In the context of resetting processes, our results highlight how target internal dy-
namics, a widely observed feature in natural systems, affect the optimisation of random
searches by resetting. The scope of this work can be extended to the study of non-
Poissonian resetting/target switching, as well as to anomalous diffusion processes. Al-
though we have considered here the resetting of a single particle in the presence of an
intermittent target, our results can be generalized to extended systems that can be reset
to a specific configuration. An illustrative example is the growth of an interface which
is stochastically interrupted by resetting to a certain profile, as occurring in mammalian
tumors that are reduced to their initial size when a chemical is applied [69]. It would
be interesting to study interface growth under resetting when the system is surrounded
by fluctuating boundaries. Our study brings further understanding on non-equilibrium
particles diffusing in fluctuating environments, where target encounters depend on both
internal noises and fluctuations external to the particle dynamics.

Our findings point toward intermittent dynamics as a way of regulating first passage
processes in the cell. They can also have implications in foraging ecology, where animals
are able to be cryptic and undetectable by predators for long period of times by camou-
flaging themselves [131], or adopting a subterranean lifestyle [49, 114, 62, 104]. According
to Eq. (5.70), to avoid predators and fulfill the constraint of spending a certain fraction
of time outside, animals should space out consecutive exits in time, a behaviour actually
observed in female ground squirrels [144, 145]. Macroscopic search experiments with dy-
namical targets can be achieved by means of mobile robots with a limited sensing range
and fixed sources emitting intermittent electromagnetic signals [128, 127].

Regarding our work on random searches in fluctuating media, our study shows that
incorporating physical constraints into idealized resetting models (which often assume
instantaneous relocations, for instance) can lead to new phenomena. Our calculations
were performed with a linear potential as well as for more general potentials. We got
a similar conclusions with harmonic or other confining potentials, at least qualitatively.
The distribution of the first passage times remains unknown and could be investigated
through the calculation of higher moments. A first-passage distribution with spectacular
spikes was found and explained theoretically in optical trap experiments with periodic
resetting [21]. Resetting protocols at periodic times [106, 35, 103] that act on a potential
deserve further study.

Although we have advanced in the understanding of the first passage properties of
diffusing systems in fluctuating media, many questions remain unanswered. One of these
questions concerns the study of anomalous diffusion particles hitting intermittent targets.
The interest in these systems is motivated by the universality of the Sparre Andersen
theorem, which is valid for 1d random walks with symmetric and continuous step length
distributions [60]. We would like to check whether the scaling behaviour ∼ t−1/2 of the
first hitting time distribution observed in the Brownian case and for cryptic targets can
also emerge in anomalous diffusion or if another scaling law depending on the step length



CHAPTER 7. CONCLUSIONS 118

distribution appears.
Systems in which searching particles perform anomalous diffusion, such as Lévy flight

[139, 138, 140] have been widely studied and observed in natural phenomena. Non-
Brownian diffusion in fluctuating environments has been studied as well [17, 52, 7, 4].
In addition to this, we want to extent our results to targets that fluctuate with a non-
Markovian internal dynamics, as has been observed in DNA looping or ion channel dy-
namics [40, 85, 66].

We are also interested in extending our results of the problem of diffusion in fluctuating
environments to more general time-dependent potentials with different shapes. We would
also like to combine the two problems, the intermittent target and intermittent potentials,
with the aim of modeling more complex systems.

Finally, we would like to mention that most of the work presented in the current
manuscript has been published in different scientific journals [96, 99, 97, 98], as well as
in national and international schools such as the “2019 Arnold Sommerfeld School: The
Physics of Life” at the Arnold Sommerfeld Center for Theoretical Physics in Munich, Ger-
many, and in the “2019 Mexican School of Statistical Physics and Complex System”, at
the National Autonomous University of Mexico. In the latter school, the presented poster
was prized as one of the three best posters. In addition, the study on the linear intermit-
tent potential was developed in collaboration with the researchers Satya N. Majumdar
and Grégory Schehr. This collaboration gave rise to an article that has been accepted for
publication in the “Journal of Statistical Mechanics: theory and experiment” [99].



Appendix A

Governing equations of the survival
probabilities

A.1 Simple diffusion
To derive the set of equations (5.120), let us first suppose that at time t = 0 the particle
starts with velocity +v and the target is in the invisible state or σ(t = 0) = 0. During
the small time interval [0,∆t] there is a probability a∆t for the target to change to the
state σ = 1 and a probability 1− a∆t to remain in the state σ = 0. On the other hand,
with a probability γ∆t the particle will change its velocity to −v, or will remain with +v
with probability 1− γ∆t. If we sum these contributions, the survival probability can be
written as

Q+
0 (x, t+ ∆t) =(1− a∆t)(1− γ∆t)Q+

0 (x+ v∆t, t)
+ a∆t(1− γ∆t)Q+

1 (x+ v∆t, t)
+ γ∆t(1− a∆t)Q−0 (x+ v∆t, t)
+ aγ∆t2Q−1 (x+ v∆t, t).

(A.1)

Expanding the r.h.s. of (A.1) in Taylor series and retaining only the terms of order ∆t,
we obtain

∂Q+
0

∂t
= v

∂Q+
0

∂x
− a(Q+

0 −Q+
1 )− γ(Q+

0 −Q−0 ), (A.2)

which is the first equation in (5.120). The other three equations for Q−0 , Q+
1 and Q−1 can

be deduced in a similar way.

A.2 Diffusion with resetting
In this section we derive Eqs. (5.71) and (5.72), for a particle located at x0 at t = 0. Let us
first suppose that the target is initially non-reactive. In a realization of the search process,
during a small time interval [0,∆t], with probability α∆t the target will switch to the
reactive state, and with probability 1−α∆t it will remain non-reactive. Meanwhile, with
probability r∆t, the particle will reset to the position xr and with probability 1− r∆t, it
will diffuse and reach a new position x0 + ξ, where ξ is a small random displacement due
to Brownian diffusion during ∆t. The position at ∆t (xr or x0 + ξ) is considered as a new
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starting position, from which the particle may survive during the interval [∆t, t + ∆t],
which is of length t. Summing the contributions of the various eventualities, we obtain
the evolution of the survival probability at t+ ∆t, starting from x0:

Q0(x0, t+ ∆t) = (1− r∆t) [α∆t
∫
dξQ1(x0 + ξ, t)P∆t(ξ) + (1− α∆t)

∫
dξQ0(x0 + ξ, t)P∆t(ξ)] ,(A.3)

+r∆t [α∆tQ1(xr, t) + (1− α∆t)Q0(xr, t)]

where P∆t(ξ) is the density of ξ.
We expand the survival probabilities in the right-hand-side in series of ξ, which is

Gaussian distributed with first moment 〈ξ〉 = 0 and second moment 〈ξ2〉 = 2D∆t, with
D the diffusion coefficient. The integrals in Eq. (A.4) are 〈Q(x0 + ξ, t)〉ξ ≈ Q(x0, t) +
D∆t∂

2Q(x0,t)
∂x2

0
. Neglecting the terms of order higher than ∆t, one obtains

Q0(x0, t+ ∆t) = Q0(x0, t) + ∆t
{
D
∂2Q0(x0, t)

∂x2
0

+ αQ1(x0, t)− (r + α)Q0(x0, t) + rQ0(xr, t)
}
.(A.4)

Similarly, for the initial target state σ = 1, we have

Q1(x0, t+ ∆t) = Q1(x0, t) + ∆t
{
D
∂2Q1(x0, t)

∂x2
0

+ βQ0(x0, t)− (r + β)Q1(x0, t) + rQ1(xr, t)
}
.(A.5)

In the limit ∆t→ 0, Eqs. (A.4) and (A.4) become (5.71) and (5.72), repectively.

A.3 Run-and-tumble
To derive the set of equations (5.120), let us first suppose that at time t = 0 the particle
starts with velocity +v and the target is in the invisible state or σ(t = 0) = 0. During
the small time interval [0,∆t] there is a probability a∆t for the target to change to the
state σ = 1 and a probability 1− a∆t to remain in the state σ = 0. On the other hand,
with a probability γ∆t the particle will change its velocity to −v, or will remain with +v
with probability 1− γ∆t. If we sum these contributions, the survival probability can be
written as

Q+
0 (x, t+ ∆t) =(1− a∆t)(1− γ∆t)Q+

0 (x+ v∆t, t)
+ a∆t(1− γ∆t)Q+

1 (x+ v∆t, t)
+ γ∆t(1− a∆t)Q−0 (x+ v∆t, t)
+ aγ∆t2Q−1 (x+ v∆t, t).

(A.6)

Expanding the r.h.s. of (A.6) in Taylor series and retaining only the terms of order ∆t,
we obtain

∂Q+
0

∂t
= v

∂Q+
0

∂x
− a(Q+

0 −Q+
1 )− γ(Q+

0 −Q−0 ), (A.7)

which is the first equation in (5.120). The other three equations for Q−0 , Q+
1 and Q−1 can

be deduced in a similar way.



Appendix B

MFHT for a ballistic particle

In the ballistic limit γ = 0, the motion of the RTP becomes deterministic; once the
particle starts moving, it will cross the origin periodically, with period T = 2L/v, until
it coincides with the target in the visible state. Then, in order to compute the survival
probability it is enough to find the probability that the target is hidden at a succession
of times periodically spaced. We also set x = 0, as we can see from Eq. (5.146) for a
searcher with γ > 0 that tG = t(x = 0). For a ballistic particle starting at x > 0, the first
crossing of the origin occurs at time x/v for the initial velocity −v and (2L−x)/v for the
initial velocity +v, which gives the average time of 2L/v, independent of x. We therefore
choose x = 0. With this initial condition the contribution to the survival probability for
the initial velocity −v is zero when the target initial state is σ0 = 1, i.e., Q−1 = 0. Also
by symmetry one has that Q+

0 = Q−0 . In the following we focus on the calculation of Q+
0

and Q+
1 .

Let us consider a Poisson point process Πa+b with rate a+ b in dimensional units. The
probability that an a-event is followed by a b-event is p = a/(a+ b), whereas q = b/(a+ b)
is the probability that the b-event is followed by an a-event. We can take each case as
a Bernoulli realization with probability of success p and failure q, and the number of
realizations will be distributed in time as Πa+b. The probability that at time t the target
is invisible given the initial target state σ(t = 0) = σ0 is

P [σ(t) = 0|σ0] = b

a+ b

(
1 + Cσ0e

−(a+b)t
)
, (B.1)

where C0 = a/b and C1 = −1. For σ0 = 0, Eq. (B.1) is the probability that the last event
occurred is not a, whereas for σ0 = 1 it is the probability that the last event occurred is
b.

Similarly, the probability that the target is visible at time t given the initial state σ0
is

P [σ(t) = 1|σ0] = a

a+ b

(
1 +Bσ0e

−(a+b)t
)

(B.2)

where B0 = −1 and B1 = a/b.
As mentioned, the searcher will cross the origin at times tn = nT for n ∈ {1, 2, . . . }

and from Eq. (B.1) the survival probability at time tn given the initial velocity +v and
the initial target state σ0 = 0 is P [σ(t) = 0|σ0 = 0]n or

Q+
0 =

(
b

a+ b
+ ae−(a+b)T

a+ b

)n
(B.3)
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For the initial condition σ0 = 1 one has

Q+
1 = b

a+ b

(
1− e−(a+b)T

)( b

a+ b
+ ae−(a+b)T

a+ b

)n−1

(B.4)

which is the probability that the target has switched to invisible at the first passage of
the particle and is invisible at the following n− 1 passages.

Averaging over the initial velocities and target initial conditions, with Q−1 = 0 and
Q+

0 = Q−0 , the average survival probability up to time tn = nT will be

Qav(n) = ab

(a+ b)2

[
b

a
+ e−(a+b)T/2 cosh (a+ b)T

2

]

×
(

b

a+ b
+ ae−(a+b)T

a+ b

)n−1 (B.5)

where n ∈ {1, 2, . . . }.
As expected, for n = 0 the survival probability is Qav(n = 0) = b

a+b + a
2(a+b) , since

there is a probability b/(a+ b) that at time t = 0 the target is invisible, and a probability
a/(2(a + b)) that at time t = 0 the target is visible but the searcher starts moving with
velocity +v.

From Eq. (B.5), the global MFHT will be

tG =
∞∑
n=0

tnPav(tn) = T
∞∑
n=0

nPav(n) = T
∞∑
n=0

Qav(n)

=
(
a+ b+ b coth L(a+ b)

v

)
L

av
,

(B.6)

and Eq. (5.157) is recovered.



Appendix C

Expressions for t(1)
1 and t

(2)
1 for the

piece-wise linear potential

The solution t(1)
1 (x) for x ∈ [0,∞) is given by

t
(1)
1 (x,+) =

√r0e
−√r0

(
1− 2eγ − γ2

r0

)
+ γ +√r0(√

r0 − γ
) (√

r0 + γ
)2 + e−2√r0(√

r0 + γ
)2

(e−√r0x − 1
)

(C.1)

− γ ∂t
+(0)
1 (x)
∂γ

+
r0γ

2
[

4eγ√
r0γ
−
(

2eγ−1
γ

+ γ
r0

) (
2eγ−1
γ

+ 1√
r0

)
e−
√
r0
]

(r0 − γ2) 2

+
γ
√
r0
(

2eγ−1
γ
− 2e

√
r0−1√
r0

)
e−2√r0(

γ +√r0
)

(r0 − γ2)
−

2eγ(γ − 1) + γ√
r0

+ 2
r0 − γ2 ,

and the solution in the interval x ∈ [−1, 0] is:

t
(1)
1 (x,−) =

 4r0e
γ−√r0

(r0 − γ2) 2 −
2
(
e−
√
r0 + 1

) (
γ +√r0e

−√r0
)

(√
r0 + γ

)
(r0 − γ2)

(e−γx − 1
)
− e

√
r0x − 1(

γ +√r0
)

2

−
e−2√r0

√
r0
(
γ2

r0
e
√
r0 + γ√

r0
+ 1− (1− 2eγ) e

√
r0
) (
e−
√
r0x − 1

)
(√

r0 − γ
)

2
(
γ +√r0

) − 2γxe−xγ
r0 − γ2

− γ ∂t
−(0)
1 (x)
∂γ

+
r0γ

2
[

4eγ√
r0γ
−
(

2eγ−1
γ

+ γ
r0

) (
2eγ−1
γ

+ 1√
r0

)
e−
√
r0
]

(r0 − γ2) 2

+
γ
√
r0
(

2eγ−1
γ
− 2e

√
r0−1√
r0

)
e−2√r0(

γ +√r0
)

(r0 − γ2)
−

2eγ(γ − 1) + γ√
r0

+ 2
r0 − γ2 .

(C.2)
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(1)
1 AND T

(2)
1 WITH LINEAR POTENTIAL124

For the coefficient of the term of order ε2, at x = 0, we obtain:

t
(2)
1 (γ, r0) =

γ5r2
0e
−3√r0

(
1
r2

0
+ 2 eγ−2

r
3/2
0 γ

+ 4 eγ+1
r0γ2 + 2 e

γ(6eγ−5)√
r0γ3 − (1−2eγ)2

γ4

)
2
(
γ −√r0

)
3
(
γ +√r0

)
4

+
e−4√r0r0γ

2
(

1−2eγ
γ
− 1√

r0

)
2
(√

r0 − γ
) (
γ +√r0

)
4

+ r2
0γ

2e−2√r0

(r0 − γ2) 2

4e2γ
(
γ2

r0
+ γ√

r0
− 2

)
+ 8e3γ

(r0 − γ2) 2

− 2eγ
(

3
r0

+ 2
γ

+ γ − 1
γ
√
r0

+
√
r0 + 1
γ2

)
− 2γ2

r2
0
− γ

2r3/2
0

+ 3
r0
− 2γ + 7

2γ√r0

+ 1 +√r0

γ2

+ γ6r3
0e
−√r0

(r0 − γ2) 4

(1− 2eγ)2
(√

r0 + 2
)

2γ6 −
√
r0 − 4
2r3

0
+ 3eγ + 1

γr2
0

+
eγ
(
9 sinh(γ) + 11 cosh(γ)− 5 + 7−4 sinh(γ)√

r0

)
γ5 − 5eγ + 2

γr
5/2
0

−
2
(
eγ
(
5eγ

(√
r0 + 1

)
− 4√r0 − 5

)
− 6

)
γ3r

3/2
0

−
2eγ

(
2eγ−1√

r0
+ 2

)
− 7

2

(
1− 2√

r0

)
γ2√r0

−
2eγ

(
eγ
(√

r0 − 10
)
− 3√r0 + 5

)
+ 7

2
√
r0 + 8

γ4r0

+ γ6r4
0

(r0 − γ2) 4

8eγ + 1
2γr7/2

0

− 2 (eγ((γ − 5)γ + 5)− 5)
γ6r0

− 4eγ(2γ + 5)− 5
2γ5r

3/2
0

+ 2eγ((γ − 10)γ + 10)− 21
2γ4r2

0

+ 2eγ(2γ − 7)− 3
γ3r

5/2
0

+ 2eγ(γ + 1) + 3
γ2r3

0
+ eγ((γ − 2)γ + 2)− 2

γ8 − 1
2r4

0

. (C.3)



Appendix D

Numerical solution of the MFHTs t0
and t1 for a general potential

In this section we present the method we followed to obtain the numerical solution of the
system of equations (6.125)-(6.124), which is based on a finite difference scheme for the
two-point boundary value problem.

First, we discretize the interval [0, c] into N equal parts, where n is a positive integer.
Let h = c/N be the step-size of the grid given by the points xi = ih, where 0 ≤ i ≤ N .
For the numerical approximation of the MFHT t0 and t1 we use the notation yi = t0(xi)
and zi = t1(xi), with 0 ≤ i ≤ N .

For the derivatives of t0 in x we will use the following scheme:

t′0(xi) = yi+1 − yi−1

2h +O(h2), (D.1)

t′′0(xi) = yi+1 − 2yi + yi−1

h2 +O(h2), (D.2)

Similarly for t1 we write

t′1(xi) = zi+1 − zi−1

2h +O(h2), (D.3)

t′′1(xi) = zi+1 − 2zi + zi−1

h2 +O(h2). (D.4)

With the above definitions and dropping the terms O(h2), the system of equations
(6.124)-(6.125) becomes, with the harmonic potential v(x) = k(x− 1)2/2:

−1 = yi+1 − 2yi + yi−1

h2 − r0 [yi − zi] , (D.5)

−1 = zi+1 − 2zi + zi−1

h2 − k(xi − 1)zi+1 − zi−1

2h − r1 [zi − yi] , (D.6)

for 1 ≤ i ≤ N − 1. Rearranging the above expression we get

−h2 = yi+1 −
(
2 + h2r0

)
yi + yi−1 + h2r0zi, (D.7)

−h2 =
(

1− hk(xi − 1)
2

)
zi+1 −

(
2 + h2r1

)
zi +

(
1 + hk(xi − 1)

2

)
zi−1 + h2r1yi, (D.8)
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Imposing the absorbing boundary conditions y0 = 0 and z0 = 0 at i = 0, we have, from
Eqs. (D.7)-(D.8),

−h2 = y2 −
(
2 + h2r0

)
y1 + h2r0z1, (D.9)

−h2 =
(

1− hk(x1 − 1)
2

)
z2 −

(
2 + h2r1

)
z1 + h2r1y1. (D.10)

The reflecting boundary conditions at x = c can be set in a finite difference scheme of
second-order accuracy as

t′0(c) = 3yN − 4yN−1 + yN−2

2h = 0, (D.11)

t′1(c) = 3zN − 4zN−1 + zN−2

2h = 0, (D.12)

which leads to

yN = 4yN−1 − yN−2

3 , (D.13)

zN = 4zN−1 − zN−2

3 . (D.14)

With the above results and setting i = N − 1 into Eqs. (D.7)-(D.8),

−h2 = −
(2

3 + h2r0

)
yN−1 + 2

3yN−2 + h2r0zN−1, (D.15)

−h2 = −
(

2
3 + 2hk(xN−1 − 1)

3 + h2r1

)
zN−1 + 2

3 [1 + hk(xN−1 − 1)] zN−2 + h2r1yN−1.

(D.16)

Finally, we get the finite difference system

Aw = b, (D.17)

where the numerical solution vector is defined as

wT = (y1, y2, . . . , yN−1, z1, z2, . . . , zN−1) (D.18)

and the constant vector given by

bT = −h2 (1, 1, . . . , 1) , (D.19)

and the coefficient matrix A with its entries given by the coefficients in Eqs. (D.7)-(D.8),
together with the special cases for i = 1 and i = N − 1, given by the Eqs. (D.9)-(D.10)
and Eqs. (D.15)-(D.16):
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A =



−(2 + h2r0) 1 0 · · · 0 0
1 −(2 + h2r0) 1 · · · 0 0
... ... ... . . . ... ...
0 0 0 · · · 2

3 −
(

2
3 + h2r0

)
h2r1 0 0 · · · 0 0

0 h2r1 0 · · · 0 0
... ... ... . . . ... ...
0 0 0 · · · 0 h2r1

h2r0 0 0
0 h2r0 0
... ... ...
0 0 0

−(2 + h2r1) 1− hk(x1−1)
2 0

1 + hk(x1−1)
2 −(2 + h2r1) 1− hk(x1−1)

2... ... ...
0 0 0

· · · 0 0
· · · 0 0
· · · ... ...
· · · 0 h2r0
· · · 0 0
· · · 0 0
· · · ... ...
· · · 2

3 (1 + hk(xN−1 − 1)) −
(

2
3 + 2hk(xN−1−1)

3 + h2r1
)


(D.20)

Now we can find the solution w by numerically inverting the system (D.17):

w = A−1b. (D.21)

From this vector w we obtain the numerical solution of the MFPTs t0 and t1 at any
specified starting point x. It is straightforward to generalize the matrix A−1 to an arbitrary
external potential.
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