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Resumen

En este trabajo se presenta un estudio teórico y numérico sobre cristales fotónico-plasmónicos
híbridos. Se desarrolla uno modelo analítico general para calcular la estructura de bandas de
cristales fotónicos dieléctricos unidimensionales y bidimensionales sobre películas delgadas de
oro y plata que soporten la propagación de plasmones polaritones de super�cie.

Este modelo es aplicado en cuatro estructuras particulares potencialmente fabricables me-
diante litografía de haz de electrones. Para cristales fotónico-plasmónicos unidimensionales,
las estructuras mencionadas son barras de polimetilmetacrilato (PMMA por sus siglas en in-
glés) apiladas en dirección al eje x. Para sistemas bidimensionales, las estructuras son arreglos
periódicos de columnas de PMMA de sección transversal rectangular y elíptica. Los arreglos
periódicos corresponden a tres redes cristalinas bidimensionales: las redes cuadrada, triangular
y rectangular.

La validez del modelo teórico propuesto es corroborada calculando la estructura de bandas
para dos fracciones de llenado distintas, es decir, para dos tamaños de sección transversal difer-
entes. Estas estructuras de bandas son equivalentes con la relación de dispersión de plasmones
polaritones de super�cie en las interfases correspondientes a tales fracciones de llenado.

Con el modelo se estudia el efecto que inducen, en la estructura de bandas, la constante de
red y el tamaño de la sección transversal. En los sistemas bidimensionales se producen bandgaps
completos en la estructura de bandas en redes cristalinas triangulares para algunas fracciones
de llenado. Por su parte, en redes cristalinas cuadradas y rectangulares, se producen bandgaps
parciales para ciertas orientaciones del cristal. Sin embargo, en la red cristalina rectangular, es
posible obtener bandgaps completos acortando la trayectoria de los puntos de alta simetría.

El modelo analítico es de gran utilidad para calcular las propiedades ópticas a través de la
estructura de bandas partiendo las propiedades cristalinas, en cambio, sintonizar la respuesta
óptica usándolo puede resultar en un proceso ine�ciente. Lo anterior se debe a la intrincada
relación entre la respuesta óptica y las propiedades estructurales del sistema.

Para sintonizar la respuesta óptica de estas estructuras, se generaron, con el modelo prop-
uesto, conjuntos de datos variando la constante de red y la fracción de llenado. Estos conjuntos
de datos se usaron para entrenar varios algoritmos de machine learning para realizar el diseño
hacia adelante, es decir, predecir la respuesta óptica en función de las características cristali-
nas, y para implementar el diseño inverso, es decir, predecir las propiedades estructurales como
función de una respuesta óptica objetivo.

Los algoritmos utilizados son capaces de realizar con una precisión alta el diseño hacia
adelante, mientras que sólo las redes neuronales arti�ciales son capaces de implementar el diseño
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inverso con una precisión alta. Los resultados obtenidos con los algoritmos de machine learning
son comparados con los obtenidos a través del modelo teórico, que a su vez son corroborados
mediante simulaciones numéricas. Todos estos resultados son compatibles entre sí, lo que in�ere
que el modelo propuesto es consistente la física estudiada.

En resumen, en el trabajo presentado se proponen herramientas teóricas y numéricas para
calcular y sintonizar la respuesta óptica de cristales fotónico-plasmónicos híbridos para aplica-
ciones potenciales en guías de onda plasmónicas, nanocavidades, espejos, entre otras.
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Abstract

In this work, a theoretical and numerical study on hybrid photonic-plasmonic crystals is pre-
sented. A general analytical model is developed to calculate the band structure of one- and
two-dimensional dielectric photonic crystals on gold and silver thin �lms supporting surface
plasmon polariton propagation.

This model is applied to four particular structures potentially manufacturable by elec-
tron beam lithography. For one-dimensional photonic-plasmonic crystals, the structures men-
tioned are Polymethyl methacrylate (PMMA) rods stacked in the x-axis direction. For two-
dimensional systems, the structures are periodic arrays of PMMA columns of a rectangular
and elliptical cross-section. The periodic arrays correspond to three two-dimensional crystal
lattices: square, triangular and rectangular lattices.

The validity of the proposed theoretical model is corroborated by calculating the band
structure for two di�erent �lling fractions, that is, for two di�erent cross-section sizes. These
band structures are equivalent to the dispersion relation of surface plasmons and polaritons in
the polariton dispersion ratio at the interfaces corresponding to such �lling fractions.

The model studies the e�ect that the lattice constant and the size of the cross-section
induce on the band structure. In two-dimensional systems, complete bandgaps occur in the
band structure in triangular crystal lattices for some �lling fractions. On the other hand, in
square and rectangular crystal lattices, partial bandgaps are produced for certain orientations
of the crystal. However, in the rectangular crystal lattice, it is possible to obtain complete
bandgaps by shortening the path of the high symmetry points.

The analytical model is very useful to calculate the optical properties through the band
structure starting from the crystalline properties, however, tuning the optical response using it
can result in an ine�cient process. This is due to the intricate relationship between the optical
response and the structural properties of the system.

To tune the optical response of these structures, data sets were generated with the proposed
model by varying the lattice constant and the �lling fraction. These data sets were used to
train various machine learning algorithms to perform forward design, that is, predict the optical
response based on crystalline features. Likewise, the generated data sets are used to implement
the inverse design, that is, to predict the structural properties as a function of a target optical
response.

The algorithms used are capable of performing forward design with high precision, while only
arti�cial neural networks are capable of implementing the inverse design with high precision.
The results obtained with the machine learning algorithms are compared with those obtained
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through the theoretical model, which in turn are corroborated through numerical simulations.
All these results are compatible with each other, which infers that the proposed model is
consistent with the studied physics.

In summary, in the presented work theoretical and numerical tools are proposed to calculate
and tune the optical response of hybrid photonic-plasmonic crystals for potential applications
in plasmonic waveguides, nanocavities, mirrors, among others.
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Chapter 1

Introduction

Surface Plasmons Polaritons (SPPs) are electromagnetic waves coupled to charge oscillation at
an dielectric-metal interface [1]. One of the main attractions for their study are the potential
applications that can be given to them in various scienti�c and technological disciplines. Among
these applications, one of the most outstanding is plasmonic circuits, since the use of light would
solve the speed limit of electronics and overcome the di�raction limit of light [1, 2].

Photonic devices are often composed of dielectric elements and their dimensions are some-
times relatively large. In contrast, plasmonic devices can be constructed with dimensions
smaller than the wavelength of light. In both cases, it is possible to tune their optical prop-
erties from their structural characteristics [3]. The combination of these elements would be a
path to a wide variety of possible applications.

The simplest structure for propagating SPPs is a metallic thin �lm [4, 5, 6, 7]. The excitation
and propagation of SPPs is explained by solving Maxwell's equations at the interface formed
between the metallic medium and the dielectric medium. At such interfaces, there is good
con�nement of the electromagnetic �eld in the direction perpendicular to the propagation but
laterally such con�nement is very weak.

To control the SPPs propagation there are various types of nanostructures such as metallic
thin �lms, nanoparticle chains, nanowires, grooves, stripes and others have been proposed to
guide SPPs [1]. The intention is to achieve the con�nement of electromagnetic energy by the
nanostructures near the interface beyond the di�raction limit of light [1].

Each of the structures designed to guide SPPs has its advantages and disadvantages, and
depending on the application a particular waveguide may be chosen. For example, nanowires
have low losses, so they can propagate SPPs over long distances, but in many cases, these
waveguides are only straight [1].

In the V-groove metallic waveguide, there are fundamental modes and "higher" modes
called channel plasmon modes (CPP). Con�nement is achieved at di�erent positions, while the
propagation distance is tuned as a function of the groove angle and depth [8, 9], as shown in
Fig. 1.1.

Like the groove guide, in wedge waveguides the propagation of SPPs is controlled by the
taper angle, where the smaller the angle the more con�ned the electromagnetic �eld is. Wedge
waveguides are similar to the groove waveguide but in this case, the electromagnetic �eld is
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Figure 1.1: Modes in wedge waveguides. Modi�ed from Bozhevolnyi, et al., 2006.

con�ned at the edge [1, 10], as shown in Fig. 1.2. On the other hand, nanoparticle chains,
although they function as waveguides, are not very e�cient since they have a high dissipative
loss due to their rough surfaces [1].

Figure 1.2: Modes in wedge waveguides. Modi�ed from Boltasseva, et al., 2008.
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Another way to laterally con�ne SPPs propagation is with a dielectric stripe over the metallic
thin �lm. These structures, called dielectric-loaded surface plasmon-polariton waveguides, work
due to the contrast of e�ective refractive indexes of the interfaces [11]. Propagation is controlled
by adjusting the width and height of the stripe, which in turn changes the e�ective refractive
index [11].

One of the disadvantages of this type of waveguide is the losses introduced by the dielectric.
The larger the refractive index and the height of the stripe, the con�nement is stronger and
the propagation length decreases, since the e�ective refractive index increases [12], which has
been experimentally demonstrated [13].

To avoid losses due to the dielectric on the metal �lm, some alternatives can be used. One of
them is to use a metal �lm of �nite height and width, which allows SPPs to propagate over long
distances, which has been studied theoretically and experimentally [14]. Using silver stripes
and with certain parameters, the propagation of SPPs over distances greater than 10 mm has
been reported [14].

The study of these straight stripes has led to the realization of passive integrated structures.
Among these elements are S-bends of varying radii of curvature, sharp angle bends stripes, Y
junctions, Mach-Zehnder interferometers, and couplers with variable spacing between the arms
[14]. Perhaps the most important contribution of these works is that they demonstrated the
possibility of creating plasmonic circuits where propagation occurs over very large extensions
compared to the wavelength.

However, these bends are sometimes limited to moderate curvatures due to radiation losses,
mainly dielectric-loaded surface plasmon-polariton waveguides since their principle of operation
is based on total internal re�ection. Photonic crystals, which are structures with a refractive
index periodically modulated in space, can modify the density of electromagnetic states inside
the structure, forming a photonic bandgap [15].

In these media, waveguides can be constructed by introducing linear defects into the struc-
ture [16, 17, 18], as shown in Fig. 1.3. Since they are capable of e�ciently re�ecting the light
incident on them without relying on internal re�ection, the defects can guide electromagnetic
waves through corners [15]. One of the advantages of this type of photonic system is that losses
can be very small over a wide frequency range, even for radios curvature of the order of the
wavelength [15].

The existence of an e�ect analogous to that of photonic bandgaps in plasmonic structures
has been demonstrated experimentally [19]. The structures studied are triangular arrays of
spaced scatters with a period of 300 nm on a silver thin �lm. From the experimental results,
it was found a bandgap centered at 634.537 nm, with a width of 29.211 nm [19].

Guidance of SPPs in defects fabricated in triangular arrays of metal cylinders on a gold
thin �lm has also been reported [20]. In this case, the authors �rst show the existence of the
photonic bandgap in these periodic arrays and then studies the propagation in linear defects.
However, no guiding of SPPs in defects is observed for the Γ − K orientation, but rather in
the Γ−M orientation [20], where Γ, K, and M are the high symmetry point of the triangular
lattice.

In the same sense, the propagation of SPPs has been studied in linear defects with curves,
where it has been observed that, as the angle increases, the losses also do [21]. Likewise, an
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Figure 1.3: Defects in a periodic array. Modi�ed from Radko, et al., 2009.

analogous phenomenon has been experimentally veri�ed in Y junctions, where, with increasing
angles, the losses are higher [15].

The problem has also been studied numerically [22]. Using FDTD calculations, the propaga-
tion of SPPs in these triangular arrays in the Γ−K and Γ−M orientations has been simulated.
The results suggest that the propagation of SPPs in the Γ − K orientation only occurs when
the defect is wide enough. The numerical analysis performed has been extended to the bent
linear defects, where SPPs guidance also occurs [22].

One of the problems with this type of structure is that complete bandgaps are not always
produced. This limits the possibility of propagating SPPs in all orientations of the structure
[23]. One of the proposed alternatives is to adiabatically bend a linear defect that propagates
SPPs so that the orientation is maintained. Figure 1.4 shows the structure describe above.
Experimental and numerical results show e�cient guiding of SPPs through the adiabatically
curved linear defect [15, 23].

The optical properties of these structures have been extensively studied. In particular,
numerical and experimental evidence highlights the in�uence of period and scatter size [24, 25].
The period is a determining factor in de�ning the center of the bandgap, which is shifted toward
shorter wavelengths for smaller periods. On the other hand, the size of the scatters signi�cantly
a�ects the bandgap width [24, 25]. These numerical and experimental results suggest that the
propagation of SPPs can be controlled through the appropriate characteristics of the scatters
array.

The metallic photonic crystals just mentioned are e�ective devices for producing bandgaps,
but this e�ect can also be achieved with dielectric photonic crystals. Numerical and experimen-
tal studies have demonstrated the possibility of using dielectric ridge stacks as one-dimensional
plasmonic crystals that produce bandgaps in the SPPs dispersion relation [26]. Through stacked
PMMA ridges it has been shown that these structures control the propagation of SPPs by re-
�ection.
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Figure 1.4: Structure adiabatically rotated. Modi�ed from Radko, et al., 2009.

Under this same concept, hybrid photonic-plasmonic crystals have been designed. The
reported numerical results show the bandgaps produced by dielectric photonic crystals in a
triangular lattice on a silver �lm [27, 28]. This suggests that they can be applied in a wide
range of plasmonic devices such as nanocavities, nanolasers, re�ectors or waveguides.

As for the theoretical aspects of the problem, several analytical studies have been imple-
mented to model the optical response of these plasmonic systems. Some of them have been
performed under the multiple scattering dipole approach [29], with which the propagation of
SPPs in a triangular array is modeled.

Another method that has been used for the theoretical study is based on the Lippmann-
Schwinger integral equation [29], which allows calculating the transmission and re�ection of
SPPs in these structures. In addition, using the homogeneous form of the reduced Rayleigh
equation, it is possible to calculate the band structure and study the formation of complete
bandgaps [30].

A technique frequently used to calculate the band structure of conventional photonic crystals
is the plane-wave expansion method. Although conventionally used for dielectric photonic
crystals, it can also be extended to hybrid photonic-plasmonic structures. This technique has
been applied to square arrays of silicon columns on an aluminum �lm, where it has been
shown theoretically and experimentally to be possible to produce broad bandgaps using a high
refractive index contrast [31].

The design of photonic-plasmonic devices considered so far only addresses the behavior
of the optical response as a function of the structural properties of the photonic-plasmonic
crystals. This approach is known as �forward design�, where the optical response is studied
from the composition of the photonic-plasmonic crystal, its crystal lattice, the lattice constant
or period, the geometry and size of the scatterers and the �lling fraction.

Another approach to designing photonic devices is �inverse design�, which consists of re-
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covering the proper structure for a desired optical response [32]. This approach is particularly
useful when one wants to tune the optical response of photonic systems. Frequently, this design
starts from random parameters and the result is compared with the target optical response, and
from this comparison, the parameters are updated [33]. This process known as optimization is
carried out iteratively until the expected result is achieved [33], however, it can consume a lot
of time and resources.

In contrast to the above, there are novel tools such as machine learning algorithms that allow
optimization of the design of photonic structures [32, 33]. These algorithms can be applied in
two di�erent ways, �rst by using the structural parameters to predict the optical response. This
is useful to avoid the optimization cycle, which can sometimes be computationally expensive
[33]. The second way to use the algorithms is through the inverse design, which would allow to
e�ciently obtain the structural properties from the objective optical response [32, 33].

This thesis is composed of di�erent sections, in addition to the introduction. In chapter
2, a theoretical model is presented to calculate the band structure and the optical response
of hybrid photonic-plasmonic crystals. It starts from the general theory of photonic crystals
in two and three dimensions to calculate the band structure using the plane wave expansion
method. Subsequently, the theoretical model is proposed to study a general structure of hybrid
photonic-plasmonic crystals consisting of a dielectric photonic crystal on a thin �lm of gold or
silver.

The third chapter describes the techniques used to carry out the research. A brief description
of the fundamentals of the machine learning algorithms implemented for both, forward and
inverse design, is made.

Chapter 4 presents the results of the investigation. First, the results obtained from the anal-
ysis of particular structures of hybrid photonic-plasmonic crystals consisting of PMMA photonic
crystals on a thin gold or silver �lm are shown. The analysis is performed for a one-dimensional
structure and three two-dimensional structures, considering scatters with two di�erent cross-
sections. The e�ect of the lattice constant and the �lling fraction on the properties of bandgap
is also studied.

The results obtained by machine learning algorithms for both forward and inverse designs
are shown below. These results are compared with those obtained with the analytical model
to corroborate its validity. To close the section, the results of the design of hybrid photonic-
plasmonic crystals tuned to a target optical response are presented. These designs are done
with machine learning algorithms and are supported by numerical simulations.

Finally, the last section presents the conclusions of the work. Also, this work includes an
appendix with the experimental techniques that would be used to experimentally corroborate
the proposed theoretical model and The the results of the implementation of the experimental
setup to perform the optical characterization.
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Objectives

General objective

� Develop an e�cient methodology to design plasmonic devices based on photonic-plasmo-
nic crystals.

Particular objectives

� Propose a theoretical model to calculate the band structure of plasmonic photonic crys-
tals.

� Study theoretically the optical properties of photonic-plasmonic crystals of di�erent two-
dimensional lattices.

� Implement machine learning algorithms to compute the optical properties of two-dimen-
sional photonic-plasmonic crystals.

� Implement machine learning algorithms to optimize the tuning of the optical properties
of two-dimensional photonic-plasmonic two-dimensional photonic-plasmonic crystals.

� Verify numerically the correct operation of the proposed plasmonic structures.

Hypothesis

� The plane-wave expansion method allows studying the bandgap structure of photonic-
plasmonic systems. Moreover, integrating it with optimization tools, such as machine
learning algorithms, allows tuning the bandgap properties in the band structure.
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Chapter 2

Theoretical model

2.1 General theory for photonic crystals

Photonic crystals are media formed by regular arrays of materials with di�erent refractive
indexes so that the dielectric function is periodically modulated in space [1, 2]. They are
characterized by a lattice constant, which is the physical dimension of the unit cells of the
crystal lattice, that is, the period of the basic stack of the structure, as shown in Fig. 2.1. In

Figure 2.1: One-dimensional, two-dimensional, and three-dimensional photonic crystals with
their respective lattice constant in each direction.

general, photonic crystals are classi�ed into one-, two- and three-dimensional crystals depending
on the stacking direction [1, 2], shown schematically in the �gure above.

It is important to keep in mind that the periodicity of the photonic crystal involves

ϵ(r+R) = ϵ(r), (2.1.1)

where R are the lattices vectors given by

R = m1a1 +m2a2 +m3a3, (2.1.2)
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ai are the elementary lattice vectors of the photonic crystal and mi are integers, with i = 1, 2, 3
[1, 2].

In these optical systems, an interesting phenomenon called photonic bandgap occurs, where
light cannot propagate in the photonic crystal in a certain frequency range, that is, �there
appears a frequency range where no electromagnetic eigenmode exists� [1]. The above is im-
portant because it opens up the possibility of controlling the propagation of light through these
structures with the proper design of the photonic crystal.

The study of light in a photonic crystal is carried out with Maxwell's equations, which in
matter are expressed by

∇ ·D = ρf (2.1.3)

∇ ·B = 0 (2.1.4)

∇× E = −∂B
∂t

(2.1.5)

∇×H = jf +
∂D

∂t
. (2.1.6)

In addition, the E andD �elds and theH and B �elds are linked through constitutive relations,
which for homogeneous, linear and isotropic materials are:

D(r, t) = ϵ0ϵ(r)E(r, t), (2.1.7)

B(r, t) = µ0µ(r)H(r, t). (2.1.8)

Assuming that there are no free charges or currents, applying the rotational operator to
equation (2.1.5), and considering that ∇× (∇× v) = ∇(∇ · v)−∇2v, the wave equations for
the electric and magnetic �elds can be obtained:

1

ϵ(r)
∇× {∇× E(r, t)} = −ω

2

c2
E(r, t), (2.1.9)

∇×
{

1

ϵ(r)
∇×H(r, t)

}
= −ω

2

c2
H(r, t), (2.1.10)

whose solutions are of the form

E(r, t) = E0(r)e
iωt, (2.1.11)

H(r, t) = H0(r)e
iωt, (2.1.12)

where E0 and H0 can be considered as eigenfunctions with an eigenvalues ω2/c2 if they satisfy
the eigenvalue equations [1, 2, 3]

LEE0(r) ≡
1

ϵ(r)
∇× {∇× E0(r)} = −ω

2

c2
E0(r), (2.1.13)

LHH0(r) ≡ ∇×
{

1

ϵ(r)
∇×H0(r)

}
= −ω

2

c2
H0(r). (2.1.14)
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It is useful to take some concepts from conventional solid state crystals and apply them
to photonic crystals. Because ϵ is periodic in space, it is possible to apply Bloch's theorem
such that E0 and H0 are characterized by a wave vector k in the �rst Brillouin zone and a
band index n [1]. With the above, it is possible to write the eigenfunctions E0(r) and H0(r) as
[1, 2, 3]

E0(r) = Ek,n(r)e
ik·r, (2.1.15)

H0(r) = Hk,n(r)e
ik·r, (2.1.16)

where Ek,n(r) and Hk,n(r) are periodic vector functions and satisfy

Ek,n(r+R) = Ek,n(r), (2.1.17)

Hk,n(r+R) = Ek,n(r), (2.1.18)

and R are the lattice vectors.
Since E0(r), H0(r) and the inverse of the dielectric function 1/ϵ(r) are periodic functions,

they can be expanded in Fourier series as follows

E0(r) =
∑
G

E(G)ei(k+G)·r, (2.1.19)

H0(r) =
∑
G

H(G)ei(k+G)·r, (2.1.20)

1

ϵ(r)
=
∑
G

ξ(G)eiG·r, (2.1.21)

where {G} are the reciprocal vectors of the lattice, and E(G), H, (G) and ξ(G) are the Fourier
coe�cients de�ned by

E(G) =
1

V

∫
V

Ek,ne
−iG·rdr, (2.1.22)

H(G) =
1

V

∫
V

Hk,ne
−iG·rdr, (2.1.23)

ξ(G) =
1

V

∫
V

1

ϵ(ω)
e−iG·rdr. (2.1.24)

On the other hand, the reciprocal vectors are given by

G = m′
1b1 +m′

2b2 +m′
3b3, (2.1.25)

where m′
i are integers, and the reciprocal elementary vectors of lattice {bi} are de�ned from

the lattice vectors {ai} by means of

b1 = 2π
a2 × a3

a1 · a2 × a3

, (2.1.26)

b2 = 2π
a3 × a1

a1 · a2 × a3

, (2.1.27)

b3 = 2π
a1 × a2

a1 · a2 × a3

, (2.1.28)

31



so that
ai · bj = δij2π, (2.1.29)

and
G ·R = m′

1b1 +m′
2b2 +m′

3b3 ·m1a1 +m2a2 +m3a3 = 2πN, (2.1.30)

with N integer [1, 2].
Inserting (2.1.19) and (2.1.21) into (2.1.13), it is obtained

∑
G′′

ξ(G′′)ei(k+G′′)·r∇×

[
∇×

∑
G′

E(G′)ei(k+G′)·r

]
=
ω2

c2

∑
G

E(G)ei(k+G)·r. (2.1.31)

On the other hand,

∇×
∑
G′

E(G′)ei(k+G′)·r =
∑
G′

∇×
[
E(G′)ei(k+G′)·r

]
, (2.1.32)

considering that

∇×
[
E(G′)ei(k+G′)·r

]
= i (k+G′)× E(G′)ei(k+G′)·r, (2.1.33)

is possible to associate the operator ∇ with the vectors k and G

∇ → i (k+G) , (2.1.34)

so that the equation (2.1.31) becomes

−
∑
G′′

ξ(G′′)ei(k+G′′)·r (k+G′)×

[
(k+G′)×

∑
G′

E(G′)ei(k+G′)·r

]
=

=
ω2

c2

∑
G

E(G)ei(k+G)·r. (2.1.35)

The above implies
G = G′ +G′′ ⇒ G′′ = G−G′, (2.1.36)

therefore, comparing the coe�cients in the exponential function, it may be obtained

−
∑
G′

ξ(G−G′)(k+G′)× {(k+G′)× E(G′)} =
ω2

c2
E(G). (2.1.37)

In an analogue way, inserting (2.1.19) and (2.1.21) into (2.1.14) and with some algebraic
manipulations, it is obtains

−
∑
G′

ξ(G−G′)(k+G)× {(k+G′)×H(G′)} =
ω2

c2
H(G) (2.1.38)

These equations are the �Master equations� of the electric and magnetic �eld respectively, and
by solving them, the eigenstates of the photonic crystal are obtained.
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2.1.1 2D photonic crystal

The geometry of two-dimensional photonic crystals is shown in Fig. 2.2. This system is a
periodic array of columns such that the dielectric function is periodically modulated in the x
and y directions. For electromagnetic waves, the propagation vector k is parallel to the two-

Figure 2.2: Dielectric photonic crystal in two-dimensions.

dimensional x − y plane, so there are two polarizations, TE or H when the Hz, Ex and Ey

components are non-zero, and TM or E when Ez, Hx and Hy are non-zero.
Thus, from equations (2.1.5) and (2.1.6), it is possible to obtain the following set of equations

for TE polarization

∂

∂y
Hz(r∥, t) = ϵ0ϵ(r∥)

∂

∂t
Ex(r∥, t), (2.1.39)

∂

∂x
Hz(r∥, t) = −ϵ0ϵ(r∥)

∂

∂t
Ey(r∥, t), (2.1.40)

∂

∂x
Ey(r∥, t)−

∂

∂y
Ex(r∥, t) = −µ0µ(r∥)

∂

∂t
Hz(r∥, t), (2.1.41)

and the following set of equations for TM polarization

∂

∂y
Ez(r∥, t) = −µ0µ(r∥)

∂

∂t
Hx(r∥, t), (2.1.42)

∂

∂x
Ez(r∥, t) = µ0µ(r∥)

∂

∂t
Hy(r∥, t), (2.1.43)

∂

∂x
Hy(r∥, t)−

∂

∂y
Hx(r∥, t) = ϵ0ϵ(r∥)

∂

∂t
Ez(r∥, t), (2.1.44)

where r∥ is a vector in the plane x− y. With the above, the eigenvalue equations (2.1.13) and
(2.1.14) are reduced to

ÔHHz(r∥) ≡ −
{
∂

∂x

1

ϵ(r∥)

∂

∂x
+

∂

∂y

1

ϵ(r∥)

∂

∂y

}
Hz(r∥) =

ω2

c2
Hz(r∥) (2.1.45)
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for TE polarization and

ÔEEz(r∥) ≡ − 1

ϵ(r∥)

{
∂2

∂x2
+

∂2

∂y2

}
Ez(r∥) =

ω2

c2
Ez(r∥), (2.1.46)

for TM polarization [1, 2].
Using Bloch's theorem for TM polarization, the z-component of the electric �eld Ez and

the inverse of the dielectric function 1/ϵ can be expressed as

Ez(r∥) =
∑
G∥

Ez(G∥)e
i(k∥+G∥)·r∥ (2.1.47)

1

ϵ(r∥)
=
∑
G′′∥

ξ(G′′
∥)e

iG′′
∥·r∥ (2.1.48)

where r∥ is a vector in the plane x− y and k∥ and G∥ are vectors parallels to the x− y plane
in reciprocal space.

Renaming the variables G∥ and r∥ as

G∥ → G and r∥ → r,

and inserting these equations into (2.1.46), it is obtained

−
∑
G′′

ξ(G′′)eiG
′′·r
∑
G′

[
(kx +G′

x)
2
+
(
ky +G′

y

)2] Ez(G′)ei(k+G′)·r =

=
ω2

c2

∑
G

Ez(G)ei(k+G)·r, (2.1.49)

but
(kx +G′

x)
2
+
(
ky +G′

y

)2
= |k+G′|2 (2.1.50)

so,

−
∑
G′′

ξ(G′′)eiG
′′·r
∑
G′

|k+G′|2Ez(G′)ei(k+G′)·r =
ω2

c2

∑
G

Ez(G)ei(k+G)·r. (2.1.51)

The equation (2.1.51) can be written as

−
∑
G′′

∑
G′

ξ(G′′)|k+G′|2Ez(G′)eiG
′′·reiG

′·reik·r =
ω2

c2

∑
G

Ez(G)eiG·reik·r. (2.1.52)

By comparing terms, the arguments of exponential functions must satisfy

G′′ +G′ = G, (2.1.53)

so that
G′′ = G−G′, (2.1.54)
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and the equation (2.1.52) can be written as

−
∑
G−G′

∑
G′

ξ(G−G′)|k+G′|2Ez(G′)eiG·r =
ω2

c2

∑
G

Ez(G)eiG·r. (2.1.55)

To make the equation (2.1.55) more transparent, summing over G from G−l to Gl

−
∑
G′

|k+G′|2Ez(G′)
[
ξ (G−l −G′) eiG−l·r + . . .+ ξ (Gl −G′) eiGl·r

]
=

=
ω2

c2
[
Ez(G−l)e

iG−l·r + . . .+ Ez(Gl)e
iGl·r

]
. (2.1.56)

Comparing terms it is obtains

−
∑
G′

|k+G′|2Ez(G′)ξ (Gm −G′) =
ω2

c2
Ez(Gm), ∀ m ∈ [−l, . . . , l] . (2.1.57)

This way, the equation (2.1.56) becomes∑
G′

ξ(G−G′)|k+G′|2Ez(G′) =
ω2

c2
Ez(G) (2.1.58)

This is the Master equation for TM polarization. Similarly, it is possible to obtain a master
equation for TE polarization, given by∑

G′
∥

ξ(G∥ −G′
∥)
(
k∥ +G∥

)
·
(
k∥ +G′

∥
)
Hz(G

′) =
ω2

c2
Hz(G) (2.1.59)

Since SPPs are electromagnetic waves with TM polarization, the analysis will focus only on
equation (2.1.58). This master equation can be written as∑

l,m

ξq−l,s−m|k+Gl,m|2Ez,l,m =
ω2

c2
Ez,q,s (2.1.60)

where l,m, q, s = −n . . . n. Thus, for n plane waves, a system of (2n+ 1)2 algebraic equations
is obtained:

ξ0,0K
2
−n,−nE−n,−n+ ξ0,−1K

2
−n,−n+1E−n,−n+1 + . . .+ ξ−2n,−2nK

2
n,nEn,n = ω2

c2
E−n,−n

ξ0,1K
2
−n,−nE−n,−n+ ξ0,0K

2
−n,−n+1E−n,−n+1 + . . .+ ξ−2n,−2n−1K

2
n,nEn,n = ω2

c2
E−n,−n+1

...
...

. . .
...

...
ξ2n,2nK

2
−n,−nE−n,−n+ ξ2n,2n−1K

2
−n,−n+1E−n,−n+1 + . . .+ ξ0,0K

2
n,nEn,n = ω2

c2
En,n
(2.1.61)
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This equations system can be written as a matrix product as
ξ0,0 ξ0,−1 · · · ξ−2n,−2n

ξ0,1 ξ0,0 · · · ξ−2n,−2n+1
...

...
. . .

...
ξ2n,2n ξ2n,2n−1 · · · ξ0,0



K2

−n,−n 0 · · · 0

0 K2
−n,−n+1 · · · 0

...
...

. . .
...

0 0 · · · K2
n,n




E−n,−n

E−n,−n+1
...

En,n

 =

=
ω2

c2


E−n,−n

E−n,−n+1
...

En,n


(2.1.62)

where K2
l,m = |k+Gl,m|2. It is possible to reformulate this equation as an eigenvalue problem:

Ξ̂K̂E = M̂E =
ω2

c2
E (2.1.63)

where Ξ̂ is a matrix constructed by the quantities ξq−l,s−m, K̂ is a diagonal matrix constructed
by the quantities K2

l,m, M̂ is the matrix representation of the operator ÔE, and ω2/c2 are the

eigenvalues. This problem can be solved by �nding the eigenvalues of the matrix M̂ for a
particular problem.

2.2 Two-dimensional hybrid photonic-plasmonic crystals

SPPs are electromagnetic excitations propagating at an interface formed by a dielectric medium
and a metallic medium. When these media have a semi-in�nite width, the dispersion relation
is [4]

β =
ω

c

√
ϵdϵm
ϵd + ϵm

, (2.2.1)

where β is the SPP propagation constant, ϵd is the dielectric function of the dielectric medium
and ϵm = ϵm(ω) is the (frequency-dependent) dielectric function of the metallic medium. From
this equation, the e�ective refractive index is de�ned as [4]

neff =

√
ϵdϵm
ϵd + ϵm

, (2.2.2)

so the e�ective dielectric function for SPPs is

ϵeff =
ϵdϵm
ϵd + ϵm

, (2.2.3)

and the inverse of the e�ective dielectric function is

1

ϵeff
=
ϵd + ϵm
ϵdϵm

. (2.2.4)
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Figure 2.3: Dielectric photonic crystal over a metal thin �lm.

It is important to consider that the quantity ϵeff (ω) is a frequency-dependent function since
ϵm is a frequency-dependent function.

The system under analysis is a dielectric photonic crystal supported on a metallic thin
�lm with permittivity ϵm, as shown in Fig. 2.3. Furthermore, the photonic crystal is formed
by a dielectric matrix with permittivity ϵa and a periodic array of columns with permittivity
ϵb embedded in the matrix mentioned above. Both dielectric functions are considered to be
frequency independent. This way, there are two interfaces, one formed by the dielectric a
(matrix with permittivity ϵa) and the metallic thin �lm, and the other formed by the dielectric
b (dielectric columns with permittivity ϵb) and the metallic thin �lm itself. With the above,
the system has two e�ective refractive indexes, so the inverse dielectric functions are given by

1

ϵ1(ω)
=
ϵa + ϵm
ϵaϵm

and
1

ϵ2(ω)
=
ϵb + ϵm
ϵbϵm

. (2.2.5)

In the description of the physical system, a �base� is the repeating element, that is, the
interface formed by the dielectric b and the metallic thin �lm. Figure 2.4 shows three rectangular
unit cells with three di�erent bases. For the interface represented by the white zone in the unit

Figure 2.4: Rectangular lattice with an arbitrary shape base (left), rectangular base (center)
and circular base (right).
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cell, the e�ective dielectric function is described by ϵ1 = ϵaϵm/(ϵa + ϵm), while for the interface
represented by the gray zone, the e�ective dielectric function is described by ϵ2 = ϵbϵm/(ϵb+ϵm).

The inverse of the dielectric function in a unit cell, as shown in Fig. 2.4, is described by
1/ϵ1(ω) in the white zone and 1/ϵ2(ω) in the gray zone. In general, the inverse of the e�ective
dielectric function over the whole unit cell is

1

ϵeff (ω)
=

1

ϵ1(ω)
+

(
1

ϵ2(ω)
− 1

ϵ1(ω)

)
F (r) =

1

ϵ1(ω)
+ ∆ξF (r), (2.2.6)

where F (r) = 1, if r is within the gray, zone and F (r) = 0 otherwise.
The inverse of the e�ective dielectric function can be expanded into a Fourier series as

1

ϵ(ω)
=
∑
G′

ξ(G′)eiG
′·r, (2.2.7)

where G′ are the reciprocal vectors and ξ(G′) are the Fourier coe�cients given by

ξ(G′) =
1

A0

∫
A0

1

ϵ(ω)
e−iG′·rdr, (2.2.8)

where A0 is the area of the unit cell. Given the above, considering that ϵa and ϵb are frequency-
independent quantities, the Fourier coe�cients, for a two-dimensional unit cell, are as follows.

ξ(G′) =
1

A0

∫
A0

[
1

ϵ1(ω)
+

(
1

ϵ2(ω)
− 1

ϵ1(ω)

)
F (r)e−iG′·r

]
dr

=
1

A0

∫
A0

1

ϵ1(ω)
dr+

∫
A0

(
1

ϵ2(ω)
− 1

ϵ1(ω)

)
F (r)e−iG′·rdr

=
1

ϵ1(ω)
δ2(G′) +

1

A0

(
1

ϵ2(ω)
− 1

ϵ1(ω)

)
F(G′), (2.2.9)

where δ2(G′) is the two-dimensional Dirac delta function and F(G′) is the Fourier transform
of F (r).

The term in parentheses is reduced to

∆ξ =
1

ϵ2(ω)
− 1

ϵ1(ω)
=
ϵb + ϵm
ϵaϵm

− ϵa + ϵm
ϵbϵm

=
ϵaϵb + ϵaϵm
ϵaϵbϵm

− ϵaϵb + ϵbϵm
ϵaϵbϵm

=
ϵaϵb + ϵaϵm − ϵaϵb − ϵbϵm

ϵaϵbϵm
=
ϵaϵm − ϵbϵm
ϵaϵbϵm

=
ϵa − ϵb
ϵaϵb

. (2.2.10)

It is important to note that this quantity is not frequency-dependent if both ϵa and ϵb are
frequency-independent. Thus, equation (2.2.9) can be expressed as

ξ(G′) =
1

ϵ1(ω)
δ2(G′) +

1

V
∆ξF(G′), (2.2.11)
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and the �rst member on the right-hand side of the equation is the only one frequency-dependent.
In terms of the labels l,m, q and s, as in equation (2.1.60), it is possible to express this quantity
as

ξq−l,s−m =


1

ϵ1(ω)
+ 1

V
∆ξF(0, 0) , if q − l = 0, s−m = 0

1
V
∆ξF(q − l, s−m) , if q − l ̸= 0, s−m ̸= 0.

(2.2.12)

Thus, the quantity ξq−l,s−m is frequency-dependent when q− l = 0 and s−m = 0, that is, only
the ξ0,0 term frequency-dependent. This will be useful in solving the eigenvalue problem.

The matrix Ξ̂′ in the equation (2.1.62) given by

Ξ̂′ =


ξ0,0 ξ0,−1 · · · ξ−2n,−2n

ξ0,1 ξ0,0 · · · ξ−2n,−2n+1
...

...
. . .

...
ξ2n,2n ξ2n,2n−1 · · · ξ0,0



=


1

ϵ1(ω)
+ 1

V ∆ξF(0, 0) 1
V ∆ξF(0,−1) · · · 1

V ∆ξF(−2n,−2n)
1
V ∆ξF(0, 1) 1

ϵ1(ω)
+ 1

V ∆ξF(0, 0) · · · 1
V ∆ξF(−2n,−2n+ 1)

...
...

. . .
...

1
V ∆ξF(2n, 2n) 1

V ∆ξF(2n, 2n− 1) · · · 1
ϵ1(ω)

+ 1
V ∆ξF(0, 0)

 , (2.2.13)

can be separated into the sum of two matrices, one frequency-dependent and the other
frequency-independent, thus expressed as

Ξ̂′ = Ξ̂0 (ω) + Ξ̂ (2.2.14)

with

Ξ̂0(ω) =
1

ϵ1(ω)
1̂ =

1

ϵ1(ω)


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 (2.2.15)

where 1̂ is a unitary matrix of size (2n+ 1)2 and

Ξ̂ =


1
V ∆ξF(0, 0) 1

V ∆ξF(0,−1) · · · 1
V ∆ξF(−2n,−2n)

1
V ∆ξF(0, 1) 1

V ∆ξF(0, 0) · · · 1
V ∆ξF(−2n,−2n+ 1)

...
...

. . .
...

1
V ∆ξF(2n, 2n) 1

V ∆ξF(2n, 2n− 1) · · · 1
V ∆ξF(0, 0)

 . (2.2.16)

Then, the eigenvalue equation (2.1.63) can be written as(
1

ϵ1(ω)
1̂+ Ξ̂

)
K̂E =

ω2

c2
E (2.2.17)

In particular, Au or Ag thin �lms are considered, since the Au-dielectric or Ag-dielectric
interfaces support the propagation of SPP. The inverse of the dielectric function described
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by equation (2.2.4) for dielectric-Au or dielectric-Ag interfaces can be approximated, over a
suitable frequency range, by a function expressed as follows:

1

ϵeff (ω)
≈ 1

ϵd
+ γ1

(ω
c
− b
)−2

+ γ2

(ω
c
− b
)−1

+ γ3

(ω
c
− b
)
, (2.2.18)

where the parameters γi and b are determined as a function of the dielectric constants ϵd and
ϵm. With the change of variable α = ω/c − b, the inverses of the dielectric functions 1/ϵ1(ω)
and 1/ϵ2(ω) are.

1

ϵ1
=

1

ϵa
+ γ1α

−2 + γ2α
−1 + γ3α, (2.2.19)

1

ϵ2
=

1

ϵb
+ γ1α

−2 + γ2α
−1 + γ3α. (2.2.20)

As an example, Fig. 2.5a shows the inverse of the dielectric function data for an air-Au
interface (black circles), and a PMMA-Au interface (black squares), in the range of wavelength
range 548.6-1937 nm. Figure 2.5b shows the inverse of the dielectric function data for an air-Ag
interface (black circles) and a PMMA-Ag interface (black squares), in the wavelength range of
331.5-1937 nm. In all cases, the inverse of the dielectric function was calculated using Johnson
& Christy permittivity data for Au and Ag [5]. In addition, the solid and dashed lines are the
data �tted to equation (2.2.18).

(a) Air-Au and PMMA-Au interfaces. (b) Air-Ag and PMMA-Ag interfaces.

Figure 2.5: Inverse dielectric function and data �tting for two di�erent interfaces.

Taking into account the equations (2.2.19) and α = ω/c−b, the eigenvalue equation (2.2.17)
becomes (

γ1α
−21̂+ γ2α

−11̂+
1

ϵa
1̂+ Ξ̂+ γ3α1̂

)
K̂E =

(
b2 + 2bα + α2

)
E . (2.2.21)
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Ordering terms in the last equation[
α−2γ1K̂+ α−1γ2K̂+

(
1

ϵa
K̂+ Ξ̂K̂− b21̂

)
+ α

(
γ3K̂− 2b1̂

)]
E = α2E (2.2.22)

Let Â = γ1K̂, B̂ = γ2K̂, Ĉ = ( 1
ϵa
1̂ + Ξ̂)K̂ − b21̂ and D̂ = γ3K̂ − 2b1̂, such that the equation

(2.2.22) is rewritten as (
α−2Â+ α−1B̂+ Ĉ+ αD̂

)
E = α2E (2.2.23)

Now, the problem has become a nonlinear eigenvalue equation, however, it can be solved
with an extended matrix M̂ext to treat it as a linear eigenvalue problem [6, 7]. This extended
matrix acts on an extended vector Eext as follows

M̂extEext =


0̂ 1̂ 0̂ 0̂

0̂ 0̂ 1̂ 0̂

0̂ 0̂ 0̂ 1̂

Â B̂ Ĉ D̂



α−2E
α−1E
E
αE

 =


α−1E
E
αE(

α−2Â+ α−1B̂+ Ĉ+ αD̂
)
E

 = α


α−2E
α−1E
E
αE

 ,

(2.2.24)
where 0̂ is a square matrix of zeros of size (2n + 1)2. The eigenfrequencies for the original
problem can be obtained by �nding the eigenvalues of the matrix M̂ext.

2.2.1 Fourier coe�cients for the inverse dielectric function

In this subsection, the Fourier coe�cients ξ of the inverse of the dielectric function will be cal-
culated. Two di�erent bases will be considered, a rectangular one, which physically corresponds
to a dielectric column with a rectangular cross-section, and an elliptical one, which corresponds
to a dielectric column with an elliptical cross-section.

Rectangular base

The dielectric function is described by

ϵ (r, ω) = ϵ1 (r, ω) + [ϵ2 (r, ω)− ϵ1 (r, ω)] rect

(
x

dx

)
rect

(
y

dy

)
(2.2.25)

where the rectangule function is de�ned as [8]

rect

(
x

dx

)
rect

(
y

dy

)
=


1 if |x| < dx/2, |y| < dy
1
2

if |x| = dx, |y| = dy/2
0 if |x| > dx, |y| > dy/2

(2.2.26)

where dx is the side of the rectangle in the x-direction and dy is the side of the rectangle in the
y-direction.
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For a homogeneous medium ϵi (r, ω) = ϵi (ω), with i = 1, 2, the inverse of the dielectric
function can be written as

1

ϵ (r, ω)
=

1

ϵ1(ω)
+

[
1

ϵ2(ω)
− 1

ϵ1(ω)

]
rect

(
x

dx

)
rect

(
y

dy

)
(2.2.27)

So, the function ξ(G∥) is given by

ξ(G∥) =
1

ϵ1(ω)
δ2(G∥) +

1

A0

[
1

ϵ2(ω)
− 1

ϵ1(ω)

] ∫
A0

rect

(
x

dx

)
rect

(
y

dy

)
e−iG∥·r∥dxdy (2.2.28)

with A0 the area of the unit cell.
For G∥ = 0, the quantity ξ(0) is

ξ(0) =
1

ϵ1(ω)
+

1

A0

[
1

ϵ2(ω)
− 1

ϵ1(ω)

] ∫ dy/2

−dy/2

∫ dx/2

−dx/2

dxdy (2.2.29)

=
1

ϵ1(ω)
+

1

A0

[
1

ϵ2(ω)
− 1

ϵ2(ω)

]
dxdy

=
1

ϵ1(ω)
+
Ab

A0

[
1

ϵ2(ω)
− 1

ϵ1(ω)

]
=

1

ϵ1(ω)
+ f∆ξ (2.2.30)

where Ab = dxdy is the area of the base, f = Ab/A0 is the �lling fraction and ∆ξ is given by
the equation (2.2.10). In contrast, for G∥ ̸= 0

ξ(G∥) =
1

A0

[
1

ϵ2(ω)
− 1

ϵ2(ω)

] ∫
A0

rect

(
x

dx

)
rect

(
y

dy

)
e−iG∥·r∥dxdy

=
1

A0

[
1

ϵ2(ω)
− 1

ϵ2(ω)

] ∫ dy/2

−dy/2

∫ dx/2

−dx/2

e−iG∥·r∥dxdy. (2.2.31)

Taking into account that
G∥ · r∥ = Gxx+Gyy, (2.2.32)

the integral in equation (2.2.31) is∫ dy/2

−dy/2

∫ dx/2

−dx/2

e−iG∥·r∥dxdy =

∫ dy/2

−dy/2

∫ dx/2

−dx/2

e−iGxxe−iGyydxdy

=

∫ dx/2

−dx/2

e−iGxx

∫ dy/2

−dy/2

e−iGyydxdy

=

(
e−iGxdx/2 − eiGxdx/2

iGx

)(
e−iGydy/2 − eiGydx/2

iGy

)
. (2.2.33)

Recalling that

sin θ =
eiθ − e−iθ

2i
, (2.2.34)
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hence∫ dy/2

−dy/2

∫ dx/2

−dx/2

e−iG∥·r∥dxdy =
2

Gx

(
eiGxdx/2 − e−iGxdx/2

2i

)
2

Gy

(
eiGydy/2 − e−iGydx/2

2i

)
=

2

Gx

sin (Gxdx/2)
2

Gy

sin (Gydy/2)

= dx
1

Gxdx/2
sin (Gxdx/2) dy

1

Gydy/2
sin (Gydy/2) . (2.2.35)

De�ning the function sinc(x) as [8]

sinc(x) =
sin(x)

x
(2.2.36)

∫ dy/2

−dy/2

∫ dx/2

−dx/2

e−iG∥·r∥dxdy = dxsinc

(
Gxdx
2

)
dysinc

(
Gydy
a

)
. (2.2.37)

Thus, the equation (2.2.31) is

ξ(G∥) =
1

A0

[
1

ϵ2(ω)
− 1

ϵ2(ω)

]
dxsinc

(
Gxdx
2

)
dysinc

(
Gydy
2

)
=
Ab

A0

∆ξsinc

(
Gxdx
2

)
sinc

(
Gydy
2

)
(2.2.38)

In general, the quantity ξ is given by

ξ(G∥) =


1

ϵ1(ω)
+ f∆ξ if G∥ = 0

f∆ξsinc
(
Gxd
2

)
sinc

(
Gyd

2

)
if G∥ ̸= 0

(2.2.39)

considering f = dxdy/A0 = Ab/A0.

Elliptical base

To calculate the Fourier coe�cients of an elliptical base, �rst the Fourier coe�cients for a
circular base will be calculated. Subsequently, through the similarity theorem, the Fourier
coe�cients for an elliptic basis will be generalized.

The dielectric function is described as

ϵ (r, ω) = ϵ1 (r, ω) + [ϵ2 (r, ω)− ϵ1 (r, ω)] circ (r) , (2.2.40)

where the circle function circ (r) is de�ned by [8]

circ (r) =


1 if r < 1
1
2

if r = 1,
0 if r > 1

(2.2.41)
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where r =
√
x2 + y2.

As in the previous case, for homogeneous medium, ϵi (r, ω) = ϵi (ω), with i = 1, 2, and the
inverse of the dielectric function can be written as

1

ϵ (r, ω)
=

1

ϵ1(ω)
+

[
1

ϵ2(ω)
− 1

ϵ1(ω)

]
circ(r). (2.2.42)

Thus, the function ξ(G∥) is given by

ξ(G∥) =
1

ϵ1(ω)
δ2(G∥) +

1

A0

[
1

ϵ2(ω)
− 1

ϵ2(ω)

] ∫
A0

circ(r)e−iG∥·r∥dA (2.2.43)

with A0 = a2 the area of the unit cell.
The analysis is separated into two cases, for G∥ = 0 and G∥ ̸= 0. When G∥ = 0

ξ(0) =
1

ϵ1(ω)
+

1

A0

[
1

ϵ2(ω)
− 1

ϵ2(ω)

] ∫ 1

0

rdr

∫ 2π

0

dφ

=
1

ϵ1(ω)
+

1

A0

[
1

ϵ2(ω)
− 1

ϵ2(ω)

](
1

2

)
(2π)

=
1

ϵ1(ω)
+
Ab

A0

[
1

ϵ2(ω)
− 1

ϵ2(ω)

]
=

1

ϵ1(ω)
+ f∆ξ (2.2.44)

where Ab = π is the area of the base since the base is a circle of radius rb = 1, f = Ab/A0 is
the �lling fraction and ∆ξ is given by the equation (2.2.10).

When G∥ ̸= 0

ξ(G∥) =
1

A0

[
1

ϵ2(ω)
− 1

ϵ2(ω)

] ∫ 1

0

∫ 2π

0

e−iG∥·r∥rdrdφ (2.2.45)

In this case the integral can be evaluated as follows, considering that

G∥ · r∥ = Gr cos (θ) = −Gr sin
(
θ − π

2

)
where θ is the angle between G∥, and r∥ and G =

√
G2

x +G2
y and r =

√
x2 + y2 are the

magnitud of the vectors G∥ and r∥ respectively. It is also important having in account that
[1, 9]

eix sinϕ =
∞∑

l=−∞

Jl(x)e
ilϕ and

d

dx

[
xlJl(x)

]
= xlJl−1(x)
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where Jl(x) is the Bessel function of the lth order[1]. So, the previous integral becomes∫ d

0

∫ 2π

0

e−iG∥·r∥rdrdφ =

∫ 1

0

∫ 2π

0

eiGr sin(θ−π
2 )rdrdφ

=

∫ 1

0

dr

∫ 2π

0

r
∞∑

l=−∞

Jl(Gr)e
ilφdφ

= 2π

∫ 1

0

rJ0(Gr)dr

=
2π

G
J1(G) (2.2.46)

hence

ξ(G∥ ̸= 0) = ξo,p = 2
Ab

A0

[
1

ϵ2(ω)
− 1

ϵ2(ω)

]
J1(G)

G
= 2f∆ξ

J1(G)

G
(2.2.47)

In general, with the variable changes o→ q − l and p→ s−m, the quantity ξ is given by

ξ(G∥) =


1

ϵ1(ω)
+ f∆ξ if G∥ = 0

2f∆ξ J1(G)
G

if G∥ ̸= 0

(2.2.48)

For an elliptic basis the similarity theorem is used [8]:

Theorem 1 (Similarity). If F{g(x, y)} = G(fx, fy), where G(fx, fy) is the Fourier transform
of g(x, y) and fx and fy are the spatial frequencies, then

F{g(ax, by)} =
1

|ab|
G

(
fx
a
,
fy
b

)
(2.2.49)

with a and b constants.

For an elliptical base, the dielectric function is described as

ϵ (r, ω) = ϵ1 (r, ω) + [ϵ2 (r, ω)− ϵ1 (r, ω)] circ

(√
x2

r2x
+
y2

r2y

)
, (2.2.50)

where rx and ry are the semi-axis in x and y directions, respectively.
Considering that

F
{
circ

(√
x2 + y2

)}
=

2π

G
J1(G) = 2π

J1
(√

G2
x +G2

y

)√
G2

x +G2
y

, (2.2.51)

and using the similarity theorem, the Fourier transform for an elliptical base is

F

{
circ

(√
x2

r2x
+
y2

r2y

)}
= 2πrxry

J1
(√

r2xG
2
x + r2yG

2
y

)√
r2xG

2
x + r2yG

2
y

. (2.2.52)
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If rx = ry the Fourier coe�cients corresponds to a circular base of radius r0 = rx = ry.
This way, for an elliptical base, the Fourier coe�cients are given by

ξ(G∥) =


1

ϵ1(ω)
+ f∆ξ if G∥ = 0

2f∆ξ
J1(

√
r2xG

2
x+r2yG

2
y)√

r2xG
2
x+r2yG

2
y

, if G∥ ̸= 0

(2.2.53)

where f = Ab/A0 is the �lling fraction, Ab = πrxry is the ellipse area, and A0 is the base area.

2.2.2 Square lattice

For a square lattice, the lattice vectors are given by

a1 = aêx (2.2.54)

a2 = aêy (2.2.55)

where êx and êy are the unit vectors in x and y directions, respectively, and a is the size of the
unit cell or lattice constant.

(a) Direct lattice (b) Reciprocal lattice

Figure 2.6: Square lattice.

On the other hand, the reciprocal vectors, using the equations (2.1.26) and (2.1.27) are

b1 =
2π

a
êx (2.2.56)

b2 =
2π

a
êy (2.2.57)

so,

G∥ = G = ob1 + pb2 = o
2π

a
êx + p

2π

a
êy (2.2.58)
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with o and p integers and Gx = 2πo/a and Gy = 2πp/a. Hence

G · r =
(
o
2π

a
êx + p

2π

a
êy

)
· (xêx + yêy) = o

2π

a
x+ p

2π

a
y (2.2.59)

The reciprocal lattice of a square lattice is also another square lattice, but the dimension of the
unit cell is di�erent.

2.2.3 Triangular lattice

For a triangular lattice, the lattice vectors have a x-component and a y-component given by

a1 =
a

2
êx +

√
3

2
êy (2.2.60)

a2 =
a

2
êx −

√
3

2
êy (2.2.61)

where a is the size of the unit cell or lattice constant. These vectors are shown in Fig. 2.7a.

(a) Direct lattice. (b) Reciprocal lattice.

Figure 2.7: Triangular lattice.

Again, using the equations (2.1.26) and (2.1.27), the reciprocal vectors are

b1 =
2π

a

(
êx +

1√
3
êy

)
(2.2.62)

b2 =
2π

a

(
êx −

1√
3
êy

)
(2.2.63)

as shown in Fig. 2.7b.
In this case

G∥ = G = ob1 + pb2 =
2π(o+ p)

a
êx +

2π(o− p)√
3a

êy (2.2.64)
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with o and p integers and

|G| = G = Go,p =
2π

a

√
(o+ p)2 +

(o− p)2

3
(2.2.65)

This quantity is important to calculate the coe�cients ξ.

2.2.4 Rectangular lattice

The lattice vectors are given by

a1 = axêx (2.2.66)

a2 = ayêy (2.2.67)

where ax and ay are the rectangular sides in x and y directions respectively, as shown in Fig.
2.8a. Through the equations (2.1.26) and (2.1.27) the reciprocal vectors are

(a) Direct lattice. (b) Reciprocal lattice.

Figure 2.8: Triangular lattice.

b1 =
2π

ax
êx (2.2.68)

b2 =
2π

ay
êy (2.2.69)

and

G∥ = G = ob1 + pb2 = o
2π

ax
êx + p

2π

ay
êy (2.2.70)

where o and p are integers.
This way,

G · r =
(
o
2π

ax
êx + p

2π

ay
êy

)
· (xêx + yêy) = o

2π

ax
x+ p

2π

ay
y. (2.2.71)

In this case, the reciprocal lattice is a rectangular lattice.
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Chapter 3

Computational techniques

This chapter describes the computational techniques required to meet the established objec-
tives. Several machine learning algorithms were implemented to choose the one with the best
performance; each of them is described. Regarding the experimental techniques, in the ap-
pendix, a brief description is made of the physical fundamentals of two methods to fabricate
nanostructures, which would be adequate to synthesize the systems described in the previous
chapter.

Machine learning algorithms

Machine learning is a discipline that involves the development and evaluation of algorithms
that enable a computer �learn� that is, to extract �functions� from instances or examples
contained in a dataset. On the other hand, a function is a deterministic mapping from a set
of input values to one or more output values, that means that, for a speci�c set of inputs, a
function will always return the same outputs [1]. In mathematical language, machine learning
algorithms try to learn a function f that predict an output variable Y from an input variable
X [2]

Y = f(X). (3.0.1)

Machine learning algorithms are powerful tools to search a process designed to choose the
optimal function, from several of possible functions, with aim to extract insigths and explain
the relationships between features in a dataset. The machine learning process involves two step
processes: training and inference. In training, a machine learning algorithm processes a part of
the dataset and �nds the function that best matches the patterns in the data. That function is
translated in a computer program called �model�, and the analysis of the data to �t the dataset
to the model is often referred to as training the model [1].

When the training stage has �nished, the model is �xed and the second stage starts. In the
inference stage, the model is applied to new instances or examples, which have an unknown
output value, aiming the model to accurate predictions. One of the fundamental problem in
machine learning is to train accurate models able to do inference on new examples [1].
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The main keys to machine learning are to have a dataset of examples or historical instances,
a family of possible functions from which the algorithm will search to choose the one that best
matches the dataset, and some measured system for evaluating how well each candidate function
�ts the data [1].

Using the proposed analytical model in this thesis work (see section 2.2 and equation
(2.2.24), the optical response of hybrid photonic-plasmonic crystals (PhPl crystals) was calculed
for di�erent structural parameters. With the data generated from these calculations, several
machine learning algorithms were trained to predict the optical response from the structural
parameters, in what is known as "forward design". There is another approach to apply these
algorithms, in this case to predict the structural parameters from the particular desired optical
response. The latter is known as "inverse design" [3].

In this subsection, a brief description of the implemented machine learning algorithms in
this work will be presented. Since these algorithms are a tool for the purpose of the thesis, the
description is intended to explain the basic operation of these algorithms, avoiding falling into
an exhaustive explanation of the technical details.

Linear and polynomial regression

Regression is a model that assumes a linear or polynomial relation between the input variables
and the single output variable [2]. Learning or training a regression model means �nding the
values of the coe�cients used to �t the data available to a linear or polynomial relation [2].
In linear regression, there is an input x ∈ Rn and an output y ∈ R, and the linear function
h : Rn 7→ R that best approximates the relationship between the input and ouput variables is
sought [4]. The predictors in linear regression are a set o linear functions

Hreg = Ln = {x 7→ ⟨w,x⟩+ b : w ∈ Rn, b ∈ R} , (3.0.2)

where ⟨ , ⟩ denotes the inner product, while w and b are parameters of the model that are
learned [2, 4, 5].

A �loss function� is de�ned to determine if h(x) correctly predicts y, measuring the error
magnitud [4, 6]. A common way to do this is by means of the �squared loss function� de�ned
as [4]

l(h, (x, y)) = (h(x)− y)2. (3.0.3)

For a given setH of linear functions, the regression problem consists in �nding a function h ∈ H
with �small expected loss� or �generalization error� [6]. This error function is de�ned as [4, 6]

LS =
1

n

n∑
i=1

(h(xi)− yi)
2 . (3.0.4)

Finally, the optimization problem consists in �nding the parameters w and b that minimize the
loss and error functions, that is [4, 6]

min
w,b

LS(hw,b) = min
w,b

1

n

n∑
i=1

(⟨w,xi⟩+ b− yi)
2 . (3.0.5)
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This last equation is the base of the �Least squares� technique.
In other cases, a complex model is necessary to model the data available. For polynomial

regression, the predictors are polynomials of the form

p(x) = a0 + a1x+ a2x
2 + . . .+ anx

n. (3.0.6)

For simplicity, consider one-dimensional class of predictors

Hn
pol = {x 7→ p(x)} (3.0.7)

where p(x) is a polynomial of degree n parameterized by a vector of coe�cients (a0, a1, . . . , an)
[4].

The problem can be solved by reduction to the problem of linear regression. To do this, a
map ψ : R → Rn+1 is de�ned, so that ψ(x) = (1, x, x2, . . . , xn), and the problem is reduced to

p(ψ(x)) = a0 + a1x+ a2x
2 + . . .+ anx

n = ⟨a, ψ(x)⟩. (3.0.8)

Finally, using the least squares algorithm, the optimal coe�cients a can be found [4].

Decision Trees

Another machine learning algorithm used in regression, classi�cation, and clustering tasks, is
decision trees. This technique is based in the learning of a hierarchy of if/else questions, leading
to a decision [5]. Decision tree algorithm works by splitting the input space, where di�erent
split points or nodes are tried and tested using a �cost function�[2].

Usually the splitting is based in some features of input data, although it is also possible to
de�ne a set of splitting rules [4]. This way, each interior node of a decision tree corresponds
to a question about the features, where the question can be numerical as xi ⩽ a for a feature
variable xi and some threshold a ∈ R [6].

As an example, Fig. 3.1 shows a decision tree to classify a new pair (x1, x2) with two
features X1 and X2 in �ve possible labels R1, R2, R3, R4 and R5. In this example, the questions
are numerical of the form xi ⩽ aj and, depending of the result, the the pair (x1, x2) is classi�ed
in some label Rj, with j ∈ {1, . . . , 5}.

As in the regression problem, there is a cost function, and the split with the best cost, that
is, lowest cost, is selected [2]. The cost function of a decision tree used for regression, is the
sum squared error given by the equation (3.0.4) [2].

k-nearest neighbors

Unlike the previous algorithms, in k-nearest neighbors, the model stores the training dataset
to memorize it, and to predict the label of any new instance on the basis of the labels of its
closest neighbors in the training set [2, 4, 5]. This way, there is no learning required, since the
predictions for a new instance are made by searching through the entire training set for the k
most similar neighbors instances [2].
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Figure 3.1: Left: Two-dimensional diagram for two features space divided in �ve domains.
Right: Decision tree to classify a pair (x1, x2).

A distance measure is used to determine the k-nearest neighbors to a new instance, that is,
to the most similar instances in the training dataset [2]. Therefore, the training instances X
are assigned a metric function ρ. This way, the metric function ρ : X × X → R returns the
distance between any two elements of X [4]. When the training instances are real values, one
of the most popular distance measure used is Euclidean distance.

For example, for X = Rn, the Euclidean distance is de�ned as [2, 4]

ρ(x,x′) =∥ x− x′ ∥=

√√√√ n∑
i=1

(xi − x′i)
2. (3.0.9)

where x,x′ ∈ X. However, Euclidean distance is not the only possible metric function, there are
other such as Hamming distance, Manhattan distance or Minkowski distance [2]. For regression
problems, prediction is based on an average target of the k-nearest neighbors [2, 4].

Arti�cial neural networks (deep learning)

The arti�cial neural networks (ANN) are a computational model inspired by the structure of
neural networks in the brain [1, 4, 5]. Thus, an ANN is a simpli�cation of the brain, where
neurons are connected to each other in a complex communication network, giving the brain the
ability to perform quite complex tasks [1, 4].

An ANN is a network of simple information processing units, called neurons and is able to
model complex relationships from the interactions between a set of simple neurons [1]. Figure
3.2 shows an example of an ANN. It is composed by an input layer represented by squares,
and three hidden layers connected to the input one layer and an output layer connected to the
hidden layers. The input layer contains the input data X. The hidden layers are connected to
the input layer and are composed by neurons, the information processing unit, represented by
circles. Finally, the output layer connected to the hidden layers contains the output data Y .

Each neuron takes numerical values from the neurons of previous layers as an input and
maps them to a single output value. Each input to a processing neuron is either values of input
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Figure 3.2: Arti�cial neural network.

layer or the output of another processing neuron. The arrows in the diagram represents the
information �ows from the neuron in a layer to the neurons in other layers [1]. The arrows or
connections have a numerical value associated with them called �weight�, and it a�ects how a
neuron processes the receiving information along the connection. Essentially, training an ANN
involves searching for the optimal set of weights [1].

To process information, each neuron maps the input to an output by means of a �weighted
sum� of the form

z =
n∑

i=1

wixi (3.0.10)

over the input data. After that, the result of the weighted sum is passed to a second function
that maps it to the neuron �nal output value [1, 2]. For the second function is possible to
use di�erent types of functions depending on the model complexity [1]. The output is called
�activation value� so this second function is known as an �activation function� [1, 2].

Figure 3.3 shows how works a neuron in an ANN. The weighted sum is represented by Σ and
the activation function is represented by φ. The diagram illustrates the information process,

Figure 3.3: Model of an arti�cial neuron.
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where the neuron receives n inputs x1, x2, . . . xn, and each connection has an associated weight
wi, and the mathematical computation is given by the equation (3.0.10) [1, 2]. Then, the
weighted sum result z pass through the activation function φ, and the output is given by

output = activation_function

(
n∑

i=1

wixi

)
= φ

(
n∑

i=1

wixi

)
(3.0.11)

The activation function de�nes a threshold at which the neuron is activated and the strength
of the output signal [1, 2]. Some non-linear functions can be used as activation functions such
as step function, �rectifying nonlinearity� also known as recti�ed linear unit or relu, logistic
or �sigmoid�, tangens hyperbolicus [1, 2], etc. Since the weighted sum is a linear model, using
nonlinear function as an activation function enables a neural network to learn a nonlinear model
from input to output [1].

As previous algorithms, a loss function is de�ned to measure the error and search for the best
parameters. Learning a model involves several optimization processes such as data preparation,
weight updates, �stochastic gradient descent�, and others to �nd optimal parameters to have an
accurate model [2]. In general, to solve problems using ANN, each of the neurons in a network
solves one component of the larger problem, and the overall problem is solved by combining
these component solutions [1]. Finally, when the ANN is trained it is able to make predictions
for regression, classi�cation and clustering tasks.
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Chapter 4

Results

The results of the theoretical and numerical study of the proposed photonic-plasmonic systems
are presented. The chapter is divided into three sections. The �rst section presents the results
of the theoretical model, which include the bandgap formation and how its formation of the
bandgap and how its properties change as a function of the crystal parameters, such as the size
such as the lattice size, and the �lling fraction. These theoretical results are compared with
experimental results reported in the literature.

Subsequently, the results of the performance of the algorithms for predicting the desired
properties are presented. As mentioned in the previous chapter, several machine learning algo-
rithms were tested and compared to determine the one with the best performance in predicting
the target variables. Finally, the results of the design of the hybrid photonic-plasmonic crystals
are shown.

Other experimental results concerning the optical characterization method are presented in
an appendix. This is not included in the main part of the manuscript, since the system analyzed
with the leakage radiation microscopy technique is not directly related to the proposed systems
studied theoretically. However, this appendix was added as a proof of concept and to show the
operation of the device to experimentally characterize the proposed systems. In addition, the
optically studied physical system is a calibration tool of the optical device for the analysis of
other samples.

4.1 Theoretical model results

The theoretical model is used to study the particular structures composed of a dielectric pho-
tonic crystal on Au or Ag thin �lms. The photonic crystal consists of a periodic array of
PMMA columns in an air matrix. The crystal lattices analyzed are a one-dimensional stack
of interleaved PMMA and air layers, while the two- dimensional cases consist of a matrix of
PMMA columns with rectangular and elliptical cross-sections.

The refractive index of PMMA has small variations in the 550-2000 nm range, and does not
represent a signi�cant change in the PMMA-Au dispersion relation if its dielectric function is
assumed to be constant.
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Figure 4.1: SPP dispersion relation for a PMMA-Au interface.

Figure 4.1 shows the SPP dispersion relation for a PMMA-Au interface. The dashed line
is the dispersion relation considering a frequency-dependent PMMA dielectric function, as in
reference [1]. The solid gray line is the dispersion relation considering a constant PMMA
dielectric function. The values of the dielectric functions are ϵPMMA = ϵb = 2.2 for PMMA,
taking the value of PMMA dielectric function at λ = 633 nm [1]; and ϵair = ϵa = 1 for air, such
that the dielectric constants contrast is ϵb/ϵa=2.2.

As an example, Fig. 4.2 shows the inverse of dielectric function data for an air-Au interface
(black circles), and for a PMMA-Au interface (black square), in the wavelength range 548.6-
1937 nm. The black diamonds and triangles are the inverse of dielectric function data for air-Ag
and PMMA-Ag interfaces in the range of wavelengths from 331.5 to 1937 nm, respectively. For
all the interfaces, the inverse of the dielectric function is calculated using Johnson & Christy
data of permittivity for Au and Ag [2]. The solid and dashed lines are the inverse of dielectric
function data �tted to equation (2.2.18).

The wavelength ranges for data �tting were chosen to avoid the maximum value of the
e�ective refractive index since, near that value, SPP propagation is considerably attenuated.
The maximum value of the e�ective refractive for a dielectric-Au interface is located at approx-
imately 520 nm, while for a dielectric-Ag interface, it occurs approximately at 340 nm.

The data �t parameters for the dielectric-Au interface are γ1 = 0.115218, γ2 = 0.266632,
γ3 = −0.002649 and b = 12.368228. For the dielectric-Ag interface, the data �t parameters are
γ1 = 0.153906, γ2 = 0.901489, γ3 = −0.003654 and b = 19.361642.

In the case of a dielectric-Au interface, the data �t of the inverse of the e�ective dielectric
function has an asymptotic behavior at b = 12.368228, which is equivalent to a wavelength
of approximately 508 nm. For a dielectric-Ag interface, the asymptotic behavior is at b =
19.361642, corresponding to a wavelength of about 324 nm.

To solve equation (2.2.24) for the four chosen di�erent crystal lattices as a function of the
lattice length and base size for two bases with di�erent geometries, a python code was written.
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Figure 4.2: Inverse of dielectric function for four di�erent dielectric-Au and dielectric-Ag inter-
faces.

4.1.1 One-dimensional photonic-plasmonic crystal

The one-dimensional photonic-plasmonic (PhPl) crystals studied is formed by layers of PMMA
with width d and air on a Au or Ag thin �lm. The system is shown in Fig. 4.3

Figure 4.3: The one-dimensional dielectric-metallic PhPl crystal.

Figures 4.4 shows the band structure of a one-dimensional PhPl crystal with a lattice con-
stant a = 300 nm and width d = 150 nm, so the �lling fraction is f = d/a = 0.5. With
these parameters, it has a bandgap centered at λc = 787.22 nm, and with a bandgap width
∆λ = 179.74 nm for the dielectric-Au PhPl crystal. In the case of dielectric-Ag PhPl crystal,
the center and width of the bandgap are λ = 782.09 nm and ∆λ = 181.78, respectively. The
properties of both bandgaps are similar when using the same crystal parameters, since the
e�ective refractive indexes of a dielectric-Au interface and a dielectric-Ag interface are similar
in the electromagnetic spectrum where the bandgap arises.

To test the validity of the model, the band structure of a one-dimensional PhPl crystal was
calculated with two di�erent �lling fractions, and compared with the dispersion relations of
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(a) One-dimensional dielectric-Au PhPl
crystal band structure.

(b) One-dimensional dielectric-Ag PhPl
crystal band structure.

Figure 4.4: Band structures of a one-dimensional PhPl crystals.

air-Au interface and air-PMMA interface. The �rst value is f = 0, which corresponds to a pure
air-Au interface. The agreement shown in Fig. 4.5a between the PhPl crystal band structure

(a) Band structure of a 1-D dielectric-Au
PhPl crystal for f = 0.

(b) Band structure of a 1-D dielectric-Ag
PhPl crystal for f = 1.

Figure 4.5: Band structures of a one-dimensional PhPl crystals and dispersion relation for air-
Au and PMMA-Au interfaces.
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(represented by blue and red lines) for f = 0 and the dispersion relation of the SPP in an
air-Au interface (black points) is evident. On the contrary, for f = 1, the physical system is a
PMMA-Au interface, since the unit cell is completely covered by the PMMA layer. Figure 4.5b
shows the corresponding band structure. As above, the blue and red lines are the PhPl crystal
band structure, while the gray points are the dispersion relation of the SPP in a PMMA-Au
interface. Again, there is a total agreement between the band structure and the dispersion
relation.

To understand how the optical response is modi�ed as a function of crystal parameters, the
band structure was calculated for di�erent lattice constants and �lling fractions for a dielectric-
Au PhPl crystal.

(a) Bandgap center. (b) Bandgap width.

Figure 4.6: Bandgap properties for a one-dimensional dielectric-Au PhPl crystal.

Figure 4.6a shows the behavior of the bandgap center as a function of lattice constant and
�lling fraction. As it is shown in the plot, the bandgap center increases monotonically as the
lattice constant and �lling fraction do too. The above is consistent with results reported in
reference [3], where it is observed that the center of the bandgap is red shifted as the �lling
fraction increases.

On the other hand, the bandgap width as a function of the lattice constant and �lling
fraction is shown in Figure 4.6b. In this case, ∆λ increases as the lattice constant do. However,
as a function of the �lling fraction, it increases until it reaches a maximum near f = 0.44, and
then it decreases to zero. Also, an analogous result is reported in the reference [3], where it is
concluded that the maximum width of the bandgap is close to f = 0.42 for SiO2 ridges.

4.1.2 Square lattice

The �rst two-dimensional PhPl crystal studied is a square array of PMMA columns of rectan-
gular cross-section, so the system has an air-Au interface and a PMMA-Au interface, as shown
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in Fig. 4.7. The crystalline parameters are the lattice constant a and the base sides dx and dy

(a) Rectangular base. (b) Elliptical base.

Figure 4.7: Square lattice with two di�erent bases.

in the x and y directions, respectively. Thus, the �lling fractions are

frec =
dxdy
a2

and fell =
πdxdy
4a2

, (4.1.1)

for the rectangular and elliptical bases, respectively.
The white zones correspond to the interface air-Au with e�ective dielectric function

ϵ1 =
ϵaϵAu

ϵa + ϵAu

, (4.1.2)

where ϵa is dielectric constant of the air and ϵAu is the dielectric function of Au. The gray zones
are the interface PMMA-Au with e�ective dielectric function

ϵ2 =
ϵbϵAu

ϵb + ϵAu

, (4.1.3)

where ϵb is dielectric constant of the PMMA, which value is 2.2 at λ = 633 nm [1].
This PhPl crystal has a lattice constant a = 300 nm, a major axis dx = 165 nm and minor

axis dy = 132 nm. Solving the equations (2.2.24) to �nd eigenvalues α and wavenumbers ω/c
as a function of kx and ky, yields the band structure shown in Fig. 4.8a for dielectric-Au PhPl
crystal, while the band structure for dielectric-Ag PhPl Crystal shown in Fig. 4.8b.

In the band structure of the dielectric-Au PhPl crystal, there is a partial bandgap along
the Γ − X orientation centered at 696.19 nm with a width of 90.30 nm, that is, no waves are
propagating in the range 651.04 - 731.34 nm. In addition, there is another partial bandgap in
the M− Γ orientation, centered at 573.64 nm and with a width of 72.55 nm.

Note that bands 2 and 3 (black and red curves, respectively) coincide at Γ point with a value
of 0.57, which is equivalent to a wavelength of about 526.32 nm. Moreover, the upper bands
cluster near this same value, that is, close to the �tting parameter b of equations (2.2.19) and
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(a) Dielectric-Au PhPl crystal
band structure.

(b) Dielectric-Ag PhPl crystal
band structure.

Figure 4.8: Band structure of two di�erent dielectric-metallic PhPl crystals with a square lattice
and an elliptical base.

(2.2.20) for a dielectric-Au interface. This means that the bandgap is within the wavelength
range in which the data �tting was performed.

Using the same parameters as above, the bandgap structure of a dielectric-Ag PhPl crystal
is shown in Fig. 4.8b. The partial bandgap in the Γ− X orientation is centered at 689.94 nm
and has a width of 92.37 nm. The partial bandgap in the M − Γ orientation is centered at
549.22 nm and has a width of 84.26 nm.

In this case, the properties of the bandgap in the Γ−X orientation are similar to those of the
dielectric-Au PhPl crystal, because the e�ective refractive indexes are similar in this frequency
range. However, the characteristics of both bandgaps in the M− Γ orientation are remarkably
di�erent. This is due to the di�erence in the e�ective refractive indexes in that range of the
electromagnetic spectrum. As in the previous case, for a dielectric-Ag PhPl crystal, the upper
bands are clustered near the parameter b of the �tting equation for the inverse of the e�ective
dielectric function. This means that the dielectric-Ag PhPl crystal can be used over a wider
range of wavelengths.

On the other hand, the existence of two partial bandgaps is due to a low dielectric constant
contrast. For example, in a PhPl crystal with the same parameters, but with a dielectric
constant contrast of ϵb/ϵa = 9, there are two complete bandgaps, as shown in Fig. 4.9. In this
case, one of the bandgaps has a width of ∆λ = 243.76 nm and is centered at λc = 966.93. The
other bandgap has a width of ∆λ = 38.22 nm and is centered at λc = 711.9 nm. Furthermore,
as the contrast of the dielectric constants increases, the width and center of the bandgap also
increase.

As in the one-dimensional case, the center and width of the bandgap were calculated for a
square crystal with rectangular and elliptical bases. As it is could be veri�ed, the geometry of
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Figure 4.9: Band structure of a square lattice with an elliptical base. This band structure
corresponds to a lattice constant of a = 300 nm, dx = 165 nm and dy = 132 nm, but with a
dielectric constants contrast of ϵb/ϵa = 9.

the base cross-section does not represent a signi�cant di�erence in the band structure, the key
parameter is the �lling fraction.

It is important to note that this range of forbidden frequencies can be tuned by changing the
ratio dx/a and dy/a, that is, changing the base size concerning the unit cell size. This was done
from dx/a = 0 to dx/a = 1 and dy/a = 0 to dy/a = 1, and for di�erent lattice constants, from
a = 200 nm to a = 700 nm. With this, the center and width of the bandgap were calculated
as a function of the parameters a and f . This is shown in Fig. 4.10.

As it is shown in the heat map 4.10a, the center of the bandgap is an increasing function of
the lattice constant and the �lling fraction. Respect to the bandgap width, it is a monotonically
increasing function of the lattice constant, however as a function of the �lling fraction f =
dxdy/a, as f increases, the bandgap width also increases until it reaches a maximum near
f = 0.38, and then decreases to a minimum value at f = 1.

Considering the above, to tune the center and width of the bandgap for a square lattice, it
is necessary to adjust the lattice constant and the �lling fraction. In addition, it is possible to
obtain a complete bandgap by varying the contrast of the dielectric constants.

4.1.3 Triangular lattice

The same bases used in the square lattice, rectangular and elliptical, were also studied for the
triangular lattice. As de�ned above, the white zone is the air-Au interface, while the gray zone
is the PMMA-Au interface, as shown in Figure 4.11. Solving the eigenvalue equation, unlike
the square lattice, the triangular lattice exhibits a complete bandgap even at low dielectric
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(a) Bandgap center. (b) Bandgap width.

Figure 4.10: Bandgap properties for a dielectric-Au PhPl crystal with a square lattice and an
elliptical base.

(a) Rectangular base. (b) Elliptical base.

Figure 4.11: Triangular lattice with two di�erent bases.

constant contrast, as shown in the photonic band structure of a dielectric-Au and dielectric-Ag
PhPl crystals in Fig. 4.12.

The band structures were calculated with a lattice constant a = 330 nm, a major axis
dx = 130 nm and a minor axis dx = 100 nm. With these parameters, for the dielectric-Au PhPl
crystal, there is a complete bandgap centered at λc = 631.33 nm with a width of ∆λ = 42.82
nm. For the dielectric-Ag PhPl crystal, the bandgap is centered at λc = 620.16 nm with a
width of ∆λ = 40.98 nm. Comparing both band structures, the signi�cant change is in the
bandgap center. The di�erence between both bandgap centers is about 11 nm.

The results provided by the model are compared with experimental results reported in
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(a) Dielectric-Au PhPl crystal
band structure

(b) Dielectric-Ag PhPl crystal
band structure

Figure 4.12: Band structure of two di�erent dielectric-metallic PhPl crystals with a triangular
lattice and an elliptical base.

reference [4]. In that case, the base is a circular Au structure of diameter d = 200 nm in a
triangular lattice with a lattice constant a = 400 nm. In the experimental data of Bozhevolnyi
et al., a high re�ectivity is reported at λ = 782 nm, suggesting that this wavelength is within
the bandgap. Furthermore, it is mentioned that the intensity of the re�ected SPPs practically
vanishes at λ = 815 nm, that is, this wavelength does not belong to the bandgap.

Using that parameters in the analytical model, it calculates a bandgap centered at λc =
774.041 nm with a width of ∆λ = 52.141 nm. Although it is not the same physical system, the
results are consistent.

Regarding the dielectric-Ag systems, the theoretical results are compared with the experi-
mental one reported in reference [5]. That case, the triangular lattice has a period a = 300 nm
and the base have a diameter d = 200 nm. With he experimental results, a bandgap centered
at λc = 634.527 nm and with a width ∆λ = 29.211 nm is reported.

With the same parameters, the theoretical model calculates a bandgap centered at λc =
638.626 nm with a width ∆λ = 41.285 nm. Although the bases are di�erent in composition,
the calculated theoretical result is consistent with that reported experimentally in reference [5],
showing that the lattice constant and the size of the base are determining parameters in the
properties of the bandgap.

As in the previous case, the bandgap properties,λc and ∆λ, were calculated for various
lattice constants a, in the range from 300 nm to 800 nm, and for di�erent �lling fractions f ,
in the range from 0 to π/2

√
3. Figure 4.13 shows the center and width of the bandgap as a

function of lattice size and �lling fraction.
The bandgap center, as in the previous cases, is an increasing function of the lattice constant

and the �lling fraction, that is, the bandgap is red shifted when the lattice constant and the
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(a) Bandgap center. (b) Bandgap width.

Figure 4.13: Bandgap properties for a dielectric-Au PhPl crystal with a triangular lattice and
an elliptical base.

�lling fraction are increased. On the other hand, a complete bandgap is produced when f
is larger than 0.3 and less than 0.85, where the bandgap width reaches its maximum near
f = 0.44 and then decreases to a minimum. Furthermore, the bandgap width is a monotonically
increasing function of the lattice constant. For the wavelength interval used, the maximum
width is ∆λ = 99.56 nm.

This behavior of the bandgap properties is consistent with the results reported in references
[6, 7]. In that case, the PhPl crystals consist of Au columns in a triangular array on a thin
�lm of the same material, and it is experimentally veri�ed that the bandgap broadens and is
red-shifted when the �lling fraction increases.

4.1.4 Rectangular lattice

In this case, the theoretical model was used to analyze the band structures of dielectric-Au
and dielectric-Ag PhPl crystals in a rectangular lattice, with elliptical and rectangular bases.
The interfaces are shown in Fig. 4.14 and, as in the previous cases, the white zones are the
air-metal interface and the gray zones are the PMMA-metal interface.

Figure 4.15b shows the photonic band structure of a dielectric-Au PhPl in a rectangular
lattice with a circular base, where this base is considered a particular case of an elliptical base.
The lattice constant in the x-direction is ax = 300 nm, in the y-direction is a ay = 480 nm,
and the diameter of the cross-section is d = 235 nm. Using the same parameters, the band
structure of a dielectric-Ag PhPl crystal was calculated, as shown in Fig. 4.15a.

In both cases, there are two partial bandgaps in the �tting range, one on the Γ−X orientation
and the other on the Y − Γ orientation. The former is centered at λc = 747.09 nm and has a
width of ∆λ = 90.95 nm, while the latter is centered at λc = 1242.28.09 nm and has a width
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(a) Rectangular base. (b) Elliptical base.

Figure 4.14: Rectangular lattice with two bases di�erents.

(a) Dielectric-Ag PhPl crystal
band structure

(b) Dielectric-Au PhPl crystal
band structure

Figure 4.15: Band structure of two di�erent dielectric-metallic PhPl crystals with a rectangular
lattice and an elliptical base.

of ∆λ = 222.11 nm.
In addition, the �rst band of the band structure of both PhPl crystals is similar because

the e�ective refractive indexes are similar in that frequency range. The above means that
the dielectric-Au and dielectric-Ag PhPl crystals have almost the same optical response in
that range of the electromagnetic spectrum. However, the third band presents signi�cant
di�erences, since the inverse of the e�ective refractive index has a wider �tting range. Besides,
the dielectric-Ag PhPl crystal can operate over a wider frequency range.

On the other hand, as shown above, for a square lattice with a low contrast of dielectric
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constants (in particular ϵb/ϵa =2.2), complete bandgaps are not formed. However, using the
theoretical model to analyze a rectangular lattice, and considering an analogous path to the
square lattice, (in this case Γ− X− S− Γ), a complete bandgap can be found for some ay/ax
ratios and �lling fractions f .

Figure 4.16 shows the photonic bandgap structure of a rectangular PhPl crystal with ax =

Figure 4.16: Band structure of a rectangular plasmonic crystal with ax = 300 nm, ay = 465
nm and d = 230 nm.

300 nm, ay = 465 nm and d = 230 nm. For these parameters, the center and width of the
bandgap are λc = 714.12 nm and ∆λ = 36.49 nm, respectively. With this lattice, it is possible
to have a complete bandgap even with a small refractive index contrast, by considering a path
Γ − X − S − Γ. With the same parameters, for a dielectric-Ag PhPl crystal, the bandgap is
centered at λc = 707.63 nm and has a width ∆λ = 36.06 nm.

To get a clearer picture of bandgap formation, a heat map of bandgap width as a function of
lattice side ratio ra = ay/ax and �lling fraction f is shown in Fig. 4.17. This plot corresponds
to a lattice constant of ax = 300 nm, with a variation of the lattice constant ay. This variation
was between 20% and 180% of the lattice constant ax.

From the heat map, it can be seen that the bandgap appears when the ratio ra = ay/ax is
between 1.6 and 1.8. Furthermore, to have a complete bandgap, the �lling fraction must have
values between 0.1 and 0.6. In this particular case, the maximum width, ∆λ = 59.79 nm, is
obtained for ra = 1.5 and f = 0.33.
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Figure 4.17: Bandgap width as a function of ra = ay/ax and f , for rectangular lattice with an
elliptical base.

4.2 Machine learning algorithms

Several machine learning algorithms were used for forward design, i.e., predicting the optical
response from the crystal parameters. In addition, these same algorithms were used for inverse
design, that is, predicting the structural parameters for a target optical response. The algo-
rithms used were linear and polynomial regression, k-nearest neighbors (KNN), decision trees
and arti�cial neural networks (ANN).

The data set used to train the algorithms was built through the analytical model, where the
optical properties of the PhPl crystal, that is, the center λc and the width ∆λ, were calculated
from the structural parameters of the crystal. These structural parameters were varied as
reported in Table 4.1.

These parameters were chosen so that the center of the bandgap is consistent with the
frequency range established for the �t of the inverse of the e�ective dielectric function. The
parameters fx = dx/a and fy = dy/a are the �lling fraction in the x and y directions, respec-
tively, for the square and triangular lattice; and fx = dx/ax, fy = dy/ay for the rectangular
lattice.

In the rectangular lattice, the size ay was varied from 1.2ax to 1.8ax for each ax. This means
that the size in the y-direction is larger than the size in the x-direction. These parameters
were chosen because, in that range, a complete bandgap for the rectangular lattice arises in a
shortened path (Γ− X− S− Γ).

To train the algorithms for forward design, the input data used were the crystal parameters
a, dx and dy for square and triangular lattice, while for rectangular lattice the input data
used were the crystal parameters ax, ay, dx and dy. For the three lattices, the output data
or objective variable were the optical response of interest, that is, the bandgap center λc and
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Crystal Lattice
parameters Square Triangular Rectangular

a 200 - 700 nm 300 - 700 nm -

ax - - 200 - 700 nm

ay - - 1.2ax - 1.8ax

fx
Rectangular 0 - 1 0 - (

√
3 - 1) 0 - 1

Elliptical 0 - 1 0 - 1 0 - 1

fy
Rectangular 0 - 1 0 - (

√
3 - 1) 0 - 1

Elliptical 0 - 1 0 - 1 0 - 1

Table 4.1: Parameters to generate data

bandgap width ∆λ.
For the inverse design, the input data were the bandgap properties (optical response), λc

and ∆λ for the three lattices. The output or target variables were the structural parameters,
that is the lattice constant a and �lling fraction f for the square and triangular lattices, and
lattice constants ax, ay and �lling fraction f for rectangular one.

The �lling fraction f was chosen instead of the base sizes dx and dy because, with this
parameter, the algorithms perform better in predicting structural features. Finally, to avoid
redundant data, for the inverse design only square and circular bases were used for the square
and triangular lattices, and elliptical bases for the rectangular lattice. This was done because
a �lling fraction can have several dx and dy values associated with it.

4.2.1 Square lattice

Linear and polynomial regression

For this crystal lattice, a data set with 16800 instances was used to train the model that predicts
the optical response from the crystal parameters. The lattice constant a and the basis sizes dx
and dy were used as input data, and the optical response λc and ∆λ were used as output data
or target variables. The data set was splitted into 75% of the data to train the model and 25%
to test or validate the model.

Polynomial regression from 1 to 15 degrees was used, as shown in Fig. 4.18a. The accuracy
of the model in predicting the optical response as a function of a, dx annd dy is very similar in
both the training and test data sets. As the model becomes more complex, that is, when the
degree is higher, the accuracy is higher, close to 1.

In the case of linear regression, the accuracy of the train model is 0.8098 and the test is
0.8052. However, both accuracies increase rapidly and for a 4-degree polynomial, the accuracy
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(a) Forward design (b) Inverse design

Figure 4.18: Polynomial regression accuracy.

is up to 0.99. When a 6-degree polynomial is used for regression, the accuracy of the training
set is 0.9982, while the accuracy of the test set is 0.9983. For higher degrees the accuracy
increases, for example, for a polynomial of 15-degree, the test accuracy is 0.9998.

Thus, a polynomial regression of degree 4 is a suitable model for predicting optical response
as a function of crystal parameters, but a higher degree will have higher accuracy for predicting
optical response as a function of crystal parameters.

Concerning the inverse design, polynomial regression is not a suitable model for predicting
structural parameters as a function of the optical response. For the regression, polynomials
of degrees 1 to 30 were used and the accuracy of the training and test set was measured.
Figure4.18b shows the training accuracy and as a function of degree. Both accuracies increase
as the model becomes more complex, and reach their maximum for a model of degree 13, where
the training and test accuracies are 0.7457 and 0.7505, respectively.

K-nearest neighbors

The K-nearest neighbors algorithm was used for the direct and the inverse designs, varying the
number of nearest neighbors from 1 to 30. Figure 4.19a shows the accuracy from 1 to 15 nearest
neighbors. For K=1, the training and test accuracy is 1 and 0.9782 respectively, suggesting that
the model is over�tted. When K is increased, both training and testing accuracy increase to
a maximum with 5 nearest neighbors for training accuracy and 4 nearest neighbors for testing
accuracy. The accuracy with K=4 is 0.9984 for training and 0.9976 for testing.

Using the same algorithm, a model for the inverse design was trained, where the accuracy
for the training and test is shown in Fig. 4.19b. As in the previous design, the model is
over�tted for K=1, and when the number of nearest neighbors is increased, the test accuracy
also increases, while the training accuracy decreases. The best performance obtained was for
30 nearest neighbors, where the accuracy for the training data set is 0.7722, and for the test
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(a) Forward design. (b) Inverse design

Figure 4.19: Accuracy of K-nearest neighbors algorithm as a funtion of nearest neighbor num-
ber.

data set is 0.7612.
Similar to polynomial regression, the best accuracy achieved with the studied parameters

is up to 0.75, however, K-nearest neighbors is not the best model to achieve predictions with
high accuracy for inverse design.

Decision trees

(a) Forward design. (b) Inverse design.

Figure 4.20: Accuracy of decision tree algorithm as a funtion of max depth number.
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The decision tree algorithm was used to have a maximum depth from 1 to 30. As shown
in Fig. 4.20a, for the forward design, the accuracy increases from 0.4270 and 0.4151 in the
training and test data sets, when the maximum depth is 1, to reach accuracies above 0.96 when
the maximum depth is 8. For a maximum depth equal to 15, the accuracy of the training and
test data is 0.9999 and 0.9944, respectively.

In the case of the inverse design, the maximum depth used was from 1 to 15, since from a
maximum depth of 8 the model is over�tted. The test accuracy increases up to a maximum at
the maximum depth equal to 7 and then decreases, while the training accuracy increases with
increasing maximum depth.

The best performance for generalizing occurs when the maximum depth equals 7, for which
the training accuracy is 0.7605 while the testing accuracy is 0.7363. As in the previous algo-
rithms, the accuracy for predicting the structural parameters for a target optical response is
less than 0.8.

Table 4.2 shows the results of the machine learning algorithms for the square lattice. The

Table 4.2: Machine learning algorithms results for square lattice

Forward design Inverse design
Algorithm Train accuracy Test accuracy Train accuracy Test accuracy

Polynomial regression 0.9982 0.9983 0.7457 0.7505

K-nearest neighbors 0.9984 0.9976 0.7722 0.7612

Decision tree 0.9999 0.9944 0.7605 0.7363

accuracy indicated in the table is the best performance of each algorithm in both the direct and
inverse design. All three algorithms used are adequate for predicting the optical response as a
function of crystal parameters, but fail to predict with high accuracy the structural parameters
for a target optical response.

4.2.2 Triangular lattice

Linear and polynomial regression

For the triangular lattice, the data set consists of 12486 instances to predict the optical response
from the crystal parameters. As in the previous lattice, the input parameters are the lattice
constant a, and the base sizes dx and dy, while the output variables are the optical response λc
and ∆λ. Again, the data set was splitted into 75% of the data to train the model and 25% to
test or validate the model.

For polynomial regression, the training data set was �tted using degrees from 1 to 15, as
shown in Fig. 4.21a. The accuracy of the prediction of the optical response as a function of a,
dx and dy increases as the degree of the polynomial increases, and the accuracy of the training
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and test data sets is very similar. Also, as in the previous case, for a more complex model, the
accuracy increases, approaching 1.

(a) Forward design (b) Inverse design

Figure 4.21: Polynomial regression accuracy.

In this case, using linear regression, the train accuracy is 0.6956 and the test accuracy is
0.6914. For higher degrees the accuracy increases rapidly, for example, for a 2-degree polynomial
the accuracy is about 0.90 and for a 3-degree polynomial, the accuracy is up to 0.99. The
accuracy of 5-degree polynomial regression algorithm is 0.9992, while the test accuracy is 0.9993.
The polynomial regression algorithm is a suitable model for predicting the optical response as
a function of crystal parameters when the polynomial degree is greater than 4.

Figure 4.21b shows the train and test accuracy for predicting structural parameters as a
function of the optical response. Polynomials of degrees 1 to 15 were used to �t the data set
where it can be seen that the accuracy is less than 0.8 for both train and test. The best accuracy
is 0.7712 for train and 0.7715 for test, when using a polynomial of degree 7. For the range of
degrees used, polynomial regression is not the best model for predicting structural features as
a function of the optical response.

K-nearest neighbors

As for the square lattice, the K-nearest neighbors algorithm was implemented for the direct
and inverse design, using a range of nearest neighbors from 1 to 30. Figure 4.22a shows the
accuracy of the forward design as a function of nearest neighbors. When K=1, the training
and test accuracies is 1 and 0.9968 respectively, although both values are similar, the model
is over�tted. As K increases, the training accuracy decreases, while the test accuracy tends to
increase up to K=6. The minimum di�erence between train and test accuracy is for 6 nearest
neighbors, where train accuracy is 0.9983 and test accuracy is 0.9981.

With the same parameters, but for the inverse design, the training and test accuracies are
shown in Fig. 4.22b. The model is over�tted for K=1, since the training accuracy is 1.0 and
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(a) Forward design. (b) Inverse design

Figure 4.22: Accuracy of K-nearest neighbors algorithm as a funtion of nearest neighbor num-
ber.

the test accuracy is 0.3747; however, the training accuracy tends to decrease as K increases,
and the test accuracy increases as K increases. For an algorithm with 13 nearest neighbors,
the training and test accuracies are 0.8317 and 0.8017, respectively, and both do not exhibit
signi�cant changes as K increases.

Decision trees

Concerning the decision tree algorithm, the maximum depth range used was from 1 to 30. For
the forward design, the accuracy increases as the maximum depth increases, reaching values
close to 1 for a maximum depth up to 11, as shown in Fig. 4.23a. The accuracy of the training
and test data set for a maximum depth equal to 15 are 0.9999 and 0.9836, respectively.

For the inverse design, the train accuracy increases as the maximum depth increases, as
shown in Fig. 4.23b, however, the test accuracy reaches a maximum at the maximum depth
equal to 7 and then decreases. The optimal maximum depth parameter is 7 when the training
and test accuracies are 0.8402 and 0.8239, respectively. When this parameter is larger, the
model is over�tted.

As in the previous cases, this algorithm is accurate in predicting the optical response as a
function of the crystalline parameters. However, for predicting structural features for a target
optical response, it is not the optimal model.

Arti�cial neural networks

Since complete bandgaps are produced for this network, a fourth algorithm, arti�cial neural
networks (ANNs), was used. Several architectures were tested, and the best performance was
obtained with �ve hidden layers in which, the �rst layer has 100 neurons, the second 200, the
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(a) Forward design. (b) Inverse design.

Figure 4.23: Accuracy of decision tree algorithm as a funtion of max depth number.

Figure 4.24: ANN architecture used for forward design.

third 300, the fourth 200, and the �fth 100 neurons. A diagram of the architecture is shown in
Fig. 4.24.

Also, several hyperparameters were tested, where the optimal performance was obtained
with 200 epochs, �adam optimizer� with a �learning rate� of 0.004, guillemotleft mean squared
error� was used as loss function, �accuracy� was for metrics, and the activation function used
was ReLU. In Fig. 4.25a, the loss function as epochs function is shown. As it can be seen,
the loss function decays rapidly, and for a few epochs is near to zero. So, a high accuracy is
obtained for a few epochs, as it can be seen in 4.25b.

For the inverse design, several ANN architectures and hyperparameters were tested. For
this lattice, the best performance was obtained with 15 hidden layers of 500 neurons each. The
optical response λc and ∆λ were used as input data, and the structural parameters a and f as
output data. The architecture diagram is shown in Fig. 4.26.
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(a) Loss function. (b) Accuracy

Figure 4.25: Arti�cial neural networks algorithms performance for forward design.

Figure 4.26: ANN architecture used for inverse design.

The optimal performance was obtained with 200 epochs, an adam optimizer with a learning
rate of 0.003, as loss function the mean square error was used, as metric the �cosine similarity�
was used, and as activation function the ReLU function. The loss function and accuracy are
shown in Fig. 4.27 as a function of the number of epochs.

In Fig. 4.27a, it is possible to see the rapid decay of the loss function, and for 100 epochs the
loss function is less than 0.01. Concerning the accuracy, it increases as the number of epochs
increases, reaching a cosine similarity of 0.9853 for the training accuracy, and 0.9848 for the
test or validation accuracy, as shown in Fig. 4.27b.

Table 4.3 shows the performance results of the machine learning algorithms for the triangular
lattice. As in the previous lattice, for the accuracy reported in the table, the algorithms are
more accurate for the direct design than in the inverse design

ANN, like polynomial regression, K-nearest neighbors, and decision tree, predict the optical
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(a) Loss function. (b) Accuracy

Figure 4.27: Arti�cial neural networks algorithms performance for inverse design.

Table 4.3: Machine learning algorithms results for triangular lattice

Forward design Inverse design
Algorithm Train accuracy Test accuracy Train accuracy Test accuracy

Polynomial regression 0.9992 0.9993 0.7712 0.7715

K-nearest neighbors 0.9983 0.9981 0.8317 0.8017

Decision tree 0.9999 0.9836 0.8402 0.8239

ANN 1 1 0.9853 0.9848

response as crystal parameters with high accuracy, close to 1. However, unlike the other
algorithms, ANN predicts the structural parameters for a target optical response with high
accuracy, which makes this algorithm optimal for the inverse design tasks for this particular
photonic system.

4.2.3 Rectangular lattice

The dataset used to train the forward design model has 10416 instances, of which 75% were used
in the training dataset and 25% in the test or validation dataset. In this case, the input data
consist of the lattice constants ax, ay and the base sizes dx and dy, while the optical response λc
and ∆λ were used as output data. On the other hand, for the inverse design model, the dataset
has 262600 instances, where 90% was used as a training dataset and 10% as test dataset. As
input data, the optical response λc and ∆λ were used, while the structural parameters ax, ay
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and f are the output data.

Linear and polynomial regression

As in the previous lattices, several algorithms were used for the forward and inverse design.
Starting with polynomial regression with the same degree range, from 1 to 15, the accuracy is
shown in Fig. 4.28a

(a) Forward design (b) Inverse design

Figure 4.28: Polynomial regression accuracy.

For linear regression, the train accuracy is 0.6223 and the test accuracy is 0.6141. For a
higher polynomial degree, the accuracy in predicting the optical response increases, reaching an
accuracy of 0.99 for a polynomial of degree 6. As it can be seen, the model has a high accuracy
for a polynomial regression of degree 12, where the values are 0.9993 for the training set and
0.9986 for the test set.

As for the inverse design, both the train and test accuracies are below 0.64 for the degree
range used, as shown in Fig. 4.28b. The highest accuracy is obtained when the grade is 14,
where it is 0.6390 for the train data set and 0.6375 for the test data set. From both results, it can
be inferred that polynomial regression is a suitable model for predicting the optical response
as a function of crystal parameters, but it is not the most suitable for predicting structural
features as a function of the optical response.

K-nearest neighbors

As in the previous cases, the k-nearest neighbor algorithm was used in a range from 1 to 30
nearest neighbors.

Figure 4.29a shows the accuracy as a function of the number of nearest neighbors. For K=1,
the training and testing accuracies are 1 and 0.8261 respectively. The model reaches its optimal
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(a) Forward design. (b) Inverse design

Figure 4.29: Accuracy of K-nearest neighbors algorithm as a funtion of nearest neighbor num-
ber.

generalization with 3 nearest neighbors, where the training accuracy is 0.9688 and the testing
accuracy is 0.9430, and, after that, when increasing K, both training and testing accuracy also
decrease.

With the same range of nearest neighbors, the accuracy of the inverse design is shown in
4.29b. As in the forward design, the model is over�tted for K=1, and when the number of
nearest neighbors increases, the train accuracy decreases, while the test accuracy increases. In
this case, the best performance in the evaluated range is obtained for 30 nearest neighbors,
where the accuracy for the training data set is 0.6947, and for the test data set is 0.6702.

Decision trees

Figure 4.30a shows the accuracy obtained for the forward design using the decision tree al-
gorithm. The accuracy increases from 0.4771 and 0.4619, for the training and test, when the
maximum depth is 1, to values above 0.96 when the maximum depth is 20. The training and
test accuracies reach their maximum values, 0.9679, when the maximum depth is 23.

With respect to the inverse design, the train accuracy increases as the maximum depth
parameter does, reaching an accuracy of 0.8972 when the maximum depth equals 30, however,
at this point the model is over�tted since the test accuracy is 0.4412. As for the test accuracy,
it increases until it reaches a maximum value of 0.6589 when the maximum depth is equal to
10, and then decreases monotonically.

Arti�cial neural networks

For the forward design, the architecture was the same as used for the triangular lattice: �ve
hidden layers with 100, 200, 300, 200, and 100 neurons respectively, as shown in Fig. 4.24.
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(a) Forward design. (b) Inverse design.

Figure 4.30: Accuracy of decision tree algorithm as a funtion of max depth number.

From the search of the optimal parameters and hyperparameters, the optimal performance was

(a) Loss function. (b) Accuracy

Figure 4.31: Arti�cial neural networks algorithms performance for forward design.

obtained with 200 epochs, adam optimizer with a learning rate of 0.009, as a loss function the
mean square error was used, the metric used precision, and the activation function was used
ReLU.

Figure 4.31a shows the loss function as a function of epochs, where it can be seen how the
function decays rapidly tending to zero. For the test accuracy, it quickly reaches a value of 1,
giving a high accuracy with few epochs, as shown in Fig.4.31b.

On the other hand, the architecture used for the inverse design is shown in 4.32. This ANN
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Figure 4.32: ANN architecture used for inverse design.

(a) Loss function. (b) Accuracy

Figure 4.33: Arti�cial neural networks algorithms performance for inverse design.

has 15 hidden layers with 500 neurons each, the number of epochs used was 100, the optimizer
was adam with a learning rate of 0.0015, the loss function was mean squared error, cosine
similarity was used as metric, and the ReLU function as activation function.

As it can be seen in Fig. 4.33a, the loss function decreases rapidly as a function of the
number of epochs, stabilizing near the value 0.025 for both training and test accuracies. On
the other hand, the accuracy increases as the epochs increase, reaching a value of 0.9546 for
the training accuracy and 0.9540 for the test accuracy.

Table 4.4 shows the results of the machine learning algorithms for the rectangular lattice.
The accuracy indicated in the table is the best performance of each algorithm, both in the
direct and inverse designs.

In summary, the algorithms used for all lattices can predict, with an accuracy better than
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Table 4.4: Machine learning algorithms results for rectangular lattice

Forward design Inverse design
Algorithm Train accuracy Test accuracy Train accuracy Test accuracy

Polynomial regression 0.9993 0.9986 0.6390 0.6375

K-nearest neighbors 0.9668 0.9430 0.6947 0.6702

Decision tree 1 0.9679 0.6713 0.6589

ANN 1 1 0.9546 0.9540

0.9, the optical response from the PhPl crystal characteristics. In other words, all algorithms
used for forward design are suitable models for generalizing predictions from the data used for
training. However, some perform better than others, where the accuracy is better than 0.99.

On the other hand, only ANNs adequately predict, with an accuracy better than 0.95,
the structural features as a function of the optical response. From the results, ANNs are the
appropriate model to perform the inverse design of these studied photonic-plasmonic systems.
In general, machine learning algorithms can be a very useful tool in the design of photonic
devices, both to optimize the theoretical study and the fabrication process.

4.3 Hybrid photonic-plasmonic crystals design

The algorithms were tested using various crystal parameters and compared with the theoretical
model. In the case of the forward design, the input data are the lattice constant a and the base
sizes dx and dy for the square and triangular lattices. In the case of the rectangular lattice, the
input data are the lattice constants ax and ay and the base sizes dx and dy. For all lattices, the
optical properties λc and ∆λ were used as output variables.

For the inverse design, the parameters λc and ∆λ were used as input for the triangular and
rectangular lattices. For the triangular lattice, the output data were the lattice constant a and
the �lling fraction f , while the output data for the rectangular lattice were the lattice constants
ax and ay and the �lling fraction f . Finally, from the �lling fraction, the base sizes dx and dy
were calculated.

4.3.1 Square lattice

The algorithms results were tested using a lattice constant a = 300, and base sizes dx = 100 nm
and dy = 150 nm. With this parameters the partial bandgap in Γ − X orientation is centered
at λc = 674.446 nm and has a width of ∆λ = 82.113 nm. The results obtained with machine
learning algorithms are shown in table 4.5. As it can be seen, the machine learning algorithms
predict correctly the optical properties as a function of crystal parameters, where the minimum
discrepancy among results is obtained with k-nearest neighbors, for both bandgap center and
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Table 4.5: Results comparison between theoretical model and machine learning algorithms for
square lattice and forward design.

Bandgap Theoretical Polynomial regression K-nearest neighbors Decision tree
properties model 12 degree 4 nearest neighbors max depth = 15

Center (λc) [nm] 674.446 672.876 673.241 676.822
Porcentual error - 0.233% 0.179% 1.397%

Width (∆λ) [nm] 82.113 84.104 80.503 84.930
Porcentual error - 2.424% 1.961% 3.431%

bandgap width. Quantitatively, this can be veri�ed from the percent errors, among which the
smallest is for the K-nearest neighbors algorithm. However, for the rest, the percent errors do
not reach 4

4.3.2 Triangular lattice

For triangular lattices, the optical response was calculated using the same crystal parameters:
a lattice constant a = 300 nm and a base with major axis dx = 100 nm and minor axis
dy = 150 nm. The analytical model with these parameters predicts a bandgap centered at

Table 4.6: Results comparison between theoretical model and machine learning algorithms for
triangular lattice and forward design.

Bandgap Theoretical Regression K-NN Decision tree ANN
properties model 5 degree polynomial 2 NN max depth = 15

Center (λc) [nm] 588.724 587.060 595.989 588.613 586.659
Percent error - 0.283% 1.234% 0.019% 0.351%

Width (∆λ) [nm] 25.198 27.745 24.181 25.130 24.846
Percent error - 10.108% 4.036% 0.270% 1.397%

588.724 nm and with a width of 25.198 nm. The prediction and comparison of the machine
learning algorithms are in table 4.6. As it can be seen, the prediction of the optical response
for all the algorithms is close to the calculations using the analytical model, as shown by the
percent errors. Of the four algorithms used, the lowest percent errors were obtained for the
decision tree and ANN algorithms., which is consistent with the accuracy reported above.

On the other hand, in table (4.7) are the inverse design results. The structural parameters
predicted correspond to an target bandgap centered at λc = 633 nm and with a width ∆λ = 20
nm. With these predicted parameters, the optical response was calculated using the analytical
model. The lattice constant a predicted is within the range 322.365 to 343.333 nm, while the
base size is within 124.007 and 155.267 nm.
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Table 4.7: Predicted parameters and their respective optical response calculated with the ana-
lytical model.

Algorithm
Structural parameters Calculated optical response
(a) [nm] d [nm] (λc) [nm] (∆λ) [nm]

Regression
322.365 155.267 637.423 42.868

7 degree polynomial
Percent error - - 0.699% 114.34%

K-NN
337.833 128.130 635.456 22.428

K = 30
Percent error - - 0.388% 10%

Decision Tree
343.333 124.007 639.395 16.953

max depth = 10
Percent error - - 1.010% 15.235%

ANN 329.968 126.149 620.884 19.505
Percent error - - 1.914% 2.475%

The correspondig bandgap properties are in the range 620.884 to 639.395 nm for bandgap
center, and 16.953 to 42.868 nm for bandgap width. As expected, the bandgap width is larger
for a larger base size, as observed with the polynomial regression and decision tree predictions.
In addition, the most accurate predictions for bandgap width were obtained using K-nearest
neighbors, decision tree and ANN, where the base diameter is between 124.007 and 128.130 nm.
However, ANNs have, in general, a better performance, since their percent errors are 1.914%
for the center and 2.475% for the width of the bandgap.

To corroborate the results obtained from the machine learning results and the theoretical
model, numerical simulations were performed as shown in Fig. 4.35. Based on the machine
learning algorithm predictions and theoretical model calculations, the simulated system is a
triangular lattice with lattice constant a = 330 nm and a circular PMMA base of diameter
d = 130 nm on a Au thin �lm, so, this way, the system has two interfaces, an air-Au interface
and a PMMA-Au interface. Using these parameters, the analytical model calculates a bandgap
centered at λc = 627.184, with a width of ∆λ = 26.439 nm. The band structure is shown in
Fig. 4.34.

Figure 4.35a shows the SPPs incidence on a PhPl crystal in Γ − M orientation, while the
Fig. 4.35b shows the SPPs incidence on Γ− K crystal orientation. In both con�gurations the
SPPs does not propagate deeply in the PhPl crystal, but they are re�ected and interfere with
the incident SPPs.

The above can be seen clearly in Fig. 4.36, where the SPPs propagating in free space are
compared with SPP propagating in PhPl crystal. The SPPs in free space decay exponentially,
as shown by dashed line, while the SPPs in PhPl crystal are attenuated, as show by the solid
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Figure 4.34: Band structure of a triangular lattice with a circular base. This band structure
corresponds to a lattice constant a = 330 nm and diameter base d = dx = dy = 130 nm.

(a) Γ−M orientation. (b) Γ−K orientation

Figure 4.35: Numerical simulation.

line. In this case, it arises an interference pattern due multiple re�ections in the crystal.
Experimentally it is not straightforward to measure the transmittance through the PhPl

crystal, however, an indirect way to quantify such quantity is through the optical signal that
passes through it. This was done by implementing numerical simulations of the physical systems
and the pro�le of the electric �eld along the y-axis was recorded at speci�c points on the x-axis
for di�erent wavelengths. That pro�le is compared with the pro�le of the SPP electric �eld
propagating freely.
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(a) Γ−M orientation. (b) Γ−K orientation

Figure 4.36: SPPs intensity in free space and PhPl crystal.

(a) Γ−M orientation with a cutline at x = 5 µm. (b) Electric �eld pro�le

Figure 4.37: Electric �eld pro�le along y-axis at x = 5 µm.

As example, Fig. 4.37 shows the numerical simulation of the above system in which the
intensity pro�le along the y-axis at x = 5 was recorded. As can be seen in the Fig. 4.37b, the
electric �eld attenuates markedly for the wavelength within the bandgap (λ = 633 nm, solid
curves), while for wavelength outside the bandgap (λ = 690 nm, dashed curves), the electric
�eld magnitude undergoes slight variations.

In the same way, the �gure shows the electric �eld pro�le at x = 5 µm for the G −
K orientation. As for the previous orientation, the electric �eld attenuates when the SPP
frequency is within the bandgap. As expected, for frequencies outside the bandgap, the electric
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(a) Γ−K orientation with a cutline at x = 5 µm. (b) Electric �eld pro�le

Figure 4.38: Electric �eld pro�le along y-axis at x = 5 µm.

�eld pro�le undergoes variations without signi�cant losses.
In both cases, the electric �eld at the frequency inside the bandgap is considerably atten-

uated, while for the frequency studied outside the bandgap the electric �eld does not su�er
signi�cant losses and propagates like free space. This is predicted from the theoretical model.

4.3.3 Rectangular lattice

Table 4.8: Results comparison among theoretical model and machine learning algorithms

Bandgap Theoretical Regression K-NN Decision tree
ANN

properties model 11 degree polynomial 3 NN max depth = 15

Center (λc) [nm] 655.245 652.154 655.653 651.866 652.340
Porcentual error - 0.472% 0.062% 0.516% 0.433%

Width (∆λ) [nm] 26.011 34.872 24.594 33.859 21.678
Porcentual error - 34.066% 5.448% 30.172% 16.658%

For the rectangular lattice, the parameters used were ax = 300 nm, ay = 480 nm, dx = 100
nm and dy = 240 nm. With these parameters, the theoretical model calculates a bandgap
centered at λc = 655.245 nm with a width ∆λ = 26.011 nm. These parameters were used in
the algorithms and the results are shown in table 4.8.

All algorithms predict the center of the bandgap with a discrepancy of less than 4 nm and
a percent error of less than 1%. On the other hand, the width discrepancy is less than 9 nm,
which represents a percent error of approximately 34%. In this particular case, the algorithms
predict the bandgap center better than the bandgap width.
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Regarding the inverse design, the predicted parameters for a bandgap center λc = 633 nm
and width ∆λ = 20 nm are shown in table 4.9. The best performance to predict the lattice
constants was obtained with polynomial regression, k-nearest neighbors and ANN, where the
range of lattice constant ax is between 256.403 and 258.906 and a lattice constant ay in a range
of 383.173 to 391.840, while decision tree predicts a lattice constants ax = 271.527 nm and
ay = 407.885 nm.

Table 4.9: Predicted parameters and their respective optical response calculated with the ana-
lytical model.

Algorithm
Structural parameters Calculated optical response

(ax) [nm] (ay) [nm] dx [nm] dy [nm] (λc) [nm] (∆λ) [nm]

Regression
256.403 383.173 179.228 267.842 636.673 41.391

10 degree polynomial
Porcentual error - - - - 0.580% 106.955%

K-NN
257 391.840 176.082 268.467 636.406 46.064

K = 30
Porcentual error - - - - 0.539% 130.320%

Decision Tree
271.527 407.885 178.480 268.111 656.410 49.051

max depth = 15
Porcentual error - - - - 3.698% 145.255%

ANN 258.906 388.033 171.963 257.729 633.919 45.964
Porcentual error - - - - 0.145% 129.820%

The base size predicted for all algorithms is in the range 171.963 to 179.228 nm for dx, and
257.729 nm to 268.467 nm for dy. With the trained algorithms, for the predicted structural
parameters, the bandgap width calculated with the analytical model is approximately twice
as large as the target. However, the information is useful for outlining the target parameters.
The bandgap center and width were calculated with the analytical model, using the parameters
ax = 260 nm, ay = 390 nm, dx = 170 nm, dy = 250 nm, in the paths Γ − X − S − Y − Γ and
Γ− X− S− Γ. Both photonic band structures are shown in Fig. 4.39.

For the former path, there are two partial bandgaps, one for Γ − X orientation, centered
at λc = 660.844 nm and with a width ∆λ = 102.971 nm. The other bandgap is centered at
λc = 938.830 nm and has a width ∆λ = 152.377 nm. For the second path, a complete bandgap
arises, centered at λc = 632.728 nm and has a width ∆λ = 46.739 nm. These last results are
consistent with the ANN prediction.

In Fig. 4.40, the numerical simulation is shown for two orientations. These simulations
were performed using the parameters mentioned above with a wavelenght λ = 633 nm. Figure
4.40a corresponds to a SPPs incident on a PhPl crystal for the Γ − X orientation, where it
is possible to observe the inhibition of propagation into the PhPl crystal, as suggested by the
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(a) Γ−X− S−Y − Γ path. (b) Γ−X− S− Γ path

Figure 4.39: Band structure of rectangular lattice with an elliptical base.

(a) Γ−X orientation. (b) Γ−Y orientation

Figure 4.40: Numerical simulation.

band structures shown in Fig. 4.39.
In contrast, for Γ − X orientation, the SPPs propagate as shown in Fig. 4.40b. Although

there is interference, it does not signi�cantly a�ect the propagation of SPPs, as it can be seen
in Fig. 4.40b, SPPs propagate in this orientation in a similar way as in an air-Au interface.

Figure 4.41a shows the comparison of the intensity of SPPs in the PhPl crystal in the Γ−X
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(a) Γ−X orientation. (b) Γ−Y orientation

Figure 4.41: SPPs intensity in free space and PhPl crystal.

orientation, while Fig. 4.41b shows the intensity in the Γ−Y orientation. Both are compared
with the intensity of SPPs at an air-Au interface. As it can be seen, the intensity decreases
faster for SPPs propagating in the PhPl crystal in the Γ−X orientation, as expected from the
band structure. On the other hand, for SPPs propagating in the PhPl crystal in the Γ − Y
orientation, the intensity is quantitatively similar to that of SPPs propagating at the air-Au
interface, which is also supported by the band structure showed in Fig. 4.39a.

(a) Γ−X orientation with a cutline at x = 5 µm. (b) Electric �eld pro�le

Figure 4.42: Electric �eld pro�le along y-axis at x = 5 µm.

As in the previous lattice, the electric �eld pro�les are shown in the �gure. In this case,
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the electric �eld pro�les correspond to SPP excited at 633 nm, and are compared for the two
crystal orientations. As expected, for the Γ−X orientation there is an inhibition of the electric
�eld, (solid curve). On the other hand, for the Γ − Y orientation, although not signi�cant,
there is a slight attenuation, as represented by the dashed line. Again, these numerical results
are predicted from the theoretical model
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Chapter 5

Conclusions

This thesis deals with the study of hybrid photonic-plasmonic crystals. A general theoretical
model is presented to calculate the band structure of dielectric photonic crystals on a thin �lm
of Au or Ag. However, the model can be extended to other metals by approximating the inverse
of the dielectric function to a suitable analytic function.

The proposed model is adjusted for an optical response in the wavelength range of 548.6-
1937 nm for the case of Au, while for Ag the range is 331.5-1937 nm. These adjustment ranges
are adequate for SPP propagation since in both cases the optical response is far from the
maximum value of the e�ective refractive index, where the losses are greater.

It was veri�ed that the model was consistent with the studied physics. This was done
for two di�erent �lling fractions, and the calculated band structure was compared with the
dispersion relation of the physical system. For both types of crystals, the band structure and
the dispersion relation match perfectly.

The dielectric-Au and dielectric-Ag PhPl crystals respond very similarly in the 600-1937
nm range because the e�ective dielectric functions are very similar. However, dielectric-Ag
PhPl crystals o�er a wider range of performance, practically throughout the entire visible and
near-infrared spectrum.

Of the three two-dimensional structures studied, only the triangular lattice produces com-
plete bandgaps with the contrast of refractive indices used, while the square and rectangular
lattices shows partial bandgaps for certain orientations. The bandgap can be made complete
by increasing the contrast of refractive indices, so the properties of the bandgap are also de-
termined by this quantity. Furthermore, for the rectangular lattice, it is possible to generate a
complete bandgap by shortening the path of the points of maximum symmetry, in particular
for a trajectory analogous to that of the square lattice.

From the theoretical studies, it was observed that the base geometry has no signi�cant
in�uence on the bandgap properties. Such properties are mainly determined by the lattice
constant, the base size and the combination of both parameters. The results show that the
center of the bandgap is a monotonically increasing function of the lattice constant and the
�lling fraction. The width of the bandgap, on the other hand, is a monotonically increasing
function of the lattice constant but, as a function of the �lling fraction, it reaches a maximum
and then decreases as the �lling fraction approaches 1.
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The relationship between the lattice constant and the �lling fraction that determines the
bandgap properties is not obvious, so machine learning algorithms were used to tune the optical
response. These algorithms are polynomial regression, nearest neighbors, decision trees and
arti�cial neural networks. All of them are quite e�cient to calculate the optical response from
the structural properties with accuracies close to 100% for the three two-dimensional crystal
lattices.

Regarding the inverse design, that is, predicting the structural properties from the optical
response, only the the arti�cial neural networks performed adequately, with an accuracy above
98% in the case of the triangular lattice, and above 95% for the rectangular lattice.

The results obtained from the arti�cial neural networks for a target optical response were
compared with the theoretical model calculations showing percent errors of less than 2.5%.
From the above it can be concluded that ANNs perform better than the rest of the algorithms
when implemented in the inverse design. To corroborate the results, numerical simulations
were performed that reveal the correct performance of the hybrid PhPl crystals to inhibit the
propagation of SPPs in them.

As for the experimental results, the stage reached in this work was the excitation of SPPs.
Using FIB, a slit was fabricated in an Au thin �lm to scatter light and excite SPPs. Such a
structure fabricated on the Au �lm surface is a source of evanescent moments to excite SPPs.

This work contributes to the integration of theoretical tools and optimization algorithms to
make the design of photonic and plasmonic elements more e�cient. It includes mathematical
tools to solve an electromagnetism problem, as well as computational algorithms to make the
design of the studied physical systems more e�cient. It is important to mention that the
algorithms do not replace the analytical work, but complement it, allowing it to approach
experimental problems and integrate them with their theoretical aspect.

In general terms, a theoretical-numerical tool is presented to calculate the optical response
of PhPl hybrid crystals of Au and Ag. In addition, with this tool, it is possible to de�ne the
structural properties of these photonic-plasmonic systems to tune their optical response. These
physical systems can be applied in various devices such as plasmonic waveguides, re�ectors,
cavities, sensors, among others.
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Appendix A

Experimental techniques

This appendix describes the operation of the experimental techniques used in this work. These
experimental methods refer to the samples fabrication using lithography techniques, in addition
to the optical technique for sample characterization. The most detailed explanation is about the
fundamentals on which the Leakage Radiation Microscopy (LRM) is based for its experimental
implementation, since it is the main detection technique that will be used, due to the fact that it
allows acquiring more information than other conventionally used techniques. The importance
of this characterization method lies in its versatility to excite SPPs locally, in addition to the
fact that it is possible to �visualize� the propagation in the direct space and in the Fourier
space.

Samples fabrication

Sample fabrication by mean of lithography techniques are versatile method to obtain nanos-
tructures with complex and detailed geometrical shapes. Also, with these techniques, a wide
materials variety can be used to synthesize the samples.

In this subsection, a qualitative description of two di�erent lithography techniques is ex-
posed. These lithography techniques are �focus ion beam lithography� (FIBL) and �electron
beam lithography� (EBL). As in the algorithms, the description of the samples fabrication will
be brief, avoiding falling into an exhaustive explanation of the technical details [1].

Focus ion beam lithography (FIBL)

The focus ion beam (FIB) is a high resolution microscopy technique that allows the sample
preparation and the analysis of particular zones of the sample [2]. One of the most used
microscopy technique is the scanning electron microscopy (SEM), however, has limitations that
FIB can overcome, especially when it comes to resolution limitations [2].

Ions are more massive that electrons, so they can be cause damage in the sample when
it is analyzed. From the interaction of the ion beam with the the sample atoms, an amount
of material is removed from the specimen, but the above can be an advantage to modify the
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sample in a controlled way [2]. This process, known as �sputtering�, is useful to create very
varied patterns on the surface of the sample.

In general, a FIB system is made up of some basic components such as a system and vacuum
camera, a liquid metal ion source (LMIS), an ions column where are the �optical� elements such
as electromagnetic lenses, aperture, the platform to control the sample, the detectors and a
computer to integrate all components as a whole system [3].

For a good performance of the FIB system, the preassure must be lesser than 1× 10−4 torr.
In particular, the sample camera works approximately at 1 × 10−6 torr. On the other hand,
to avoid the source contamination and the interaction between the ions with some molecules
within the ions column, the operation preassure is about 1× 10−8 torr [3].

In most of the cases, ions are obtained from a liquid galium (Ga) source although, another
sources can be used. Using Ga has advantages over other materials since it minimizes reactions
among liquid and tungsten (W) constructed parts, plus its low melting point volatility provides
long source life, and its low vapor pressure ensures that the Ga is in its pure form [3, 4].

Figure A.1: Liquid metal ion source

The ion source is in a container that is in contact with a W needle, and the liquid metal
�ows through the needle. To extract ions, a strong electric �eld is applied to e�ciently ionize
Ga, as it shown in Fig. A.1.

The extracted ions are accelerated through the ions column applying a voltage towards
several optical elements. Typically, the FIB systems, in ions column, has a condenser lens to
de�nes the beam and an objective lens to focus it on the sample. In addition to the lenses,
another optical elements such as apertures are used to de�ne the beam. In Fig. A.2, a diagram
of FIB system is shown.

One of the most important elements in a FIB system is the sample platform, and its im-
portance lies in the accuracy control of the specimen position. Generally, this platform has �ve
movement axis, three for X, Y and Z positions, one for rotation and one for tilt [3], and the
resolution is, usually, about 0.1 µm.

When the ion beam interacts with the sample atoms, several physical processes arises.
Some of these are re�ection and backscattering of ions, secondary electron emission, atomic
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Figure A.2: FIB system diagram

�sputtering�, and ion emission and damage in the sample [4]. From the interaction, there are
elastic and inelastics collisions, and, �nally ions are implanted in the sample, [3, 4].

For elastic collisions, the ion energy is transferred to the sample atoms, which in turn causes
another collisions between the atoms [3, 4]. For a enough energy and, if this collisions occur
near to the sample surface, the atoms can be ejected from it [5]. This above process is known
as sputtering and o�er one of the most useful capabilities of FIB system, milling. If the ion
beam characteristics are controlled, the FIB are a useful tool to modify the sample surface and
fabricate nanostructures [6].

One of the advantages of nanofabrication by milling is that it is a mask-free process, the
patterns are transferred directly to the surface sample from the interaction with the ion beam
[5]. This process can be controlled in an accurate way, with a high resolution, and in a wide
variety of materials [5]. The above shows the great versatility of FIB systems for both analysis
and sample fabrication [4, 5, 6].

Electron beam lithography

The electron beam lithography (EBL) is an widely used technique to fabricate nanostructures.
Basically, it consists of exposing an electrically sensitive materials to an electron beam with
the aim to induce changes in its chemical properties [6].

In general, the EBL is made up of an electron gun, a vacuum system and a control system
[1, 6]. The electron gun source generates the electron beam, it is accelerated, focused, and
projected to the sample by lenses and a de�ection system [1, 6]. The vacuum system establishes
the optimal conditions for high vacuum in the electron gun column and in the working chamber.
Finally, the control system coordinates the electron beam properties and the sample position.
With this, the pattern transfer to the sample can be successful [6].
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There are two ways to produce electrons. The thermionic emission consists in heating up
the material emission until a su�ciently high temperature. This method is widely used since
it has a higher e�ciency to produce electrons a lower cost. The other method is by �eld
emission, where the electrons are extracted by applying an intense electric �eld [6]. Basically,
the electron source consists of three electrodes: a cathode, an electrode to focus known as
�Wehnelt electrode�, and an anode [6].

In thermionic emission, the material is heated su�ciently for the electrons to obtain the
energy necessary to overcome the work function, and these electrons can be extracted applying
an electric �eld [6]. However, the emission material must have a low work function, so the most
used materials in both sources types are Tungsten (W) and Tantalum (Ta) [1, 6].

Once the electrons are extracted from the cathode by applying an electric �eld, the potencial
between the Wehnel electrode and the anode shapes the beam to converge to the focal point
[6]. The beam is characterized by several parameters such as diameter, focal point distance,
current density, etc. These parameters are tuned by a de�ection system depending on the
desired particular aplications [6].

The lenses in the electron gun are electromagnetic and, with that, it is possible to de�ect
and focus the beam and, forming the images. These lenses, which function as convex lenses
to magnify the object image, commonly are made up by permanent magnets or coils. Their
design is based on fundamental electromagnetic laws such as the Lorentz force law; however,
it is important to consider e�ects analogous to those found in light optics, such as aberration
and astigmatism [6].

The pattern transfer depends mainly on the sample materials, which are used as recording
and transfer media in the lithography process. This material is a resist, that is, a polymeric
solution deposited on the substrate surface. From the interaction with the beam, the molecules
that constitute the material are ionized or excited, resulting in chemical reactions, which cause
the resist to modify its structural characteristics [6].

Subsequently, during the developing process, the resist is treated with a solution. Depending
on the nature of the resist, some parts of it will be removed. If the resist is positive, the exposed
parts are removed, and if it is negative, the parts not exposed to the beam are removed [1, 6].

For a positive resist, the beam breaks the bonds of the polymer, the exposed areas remain
with a low molecular weight and are eliminated by the developer, while the rest of the resist
remains practically intact. For a negative resist, the process is based on crosslinking of the
exposed zone, which is insoluble after exposure to the beam [1, 7].

One of the most commonly used materials is polymethyl methacrylate (PMMA), which
can be used as a positive or negative resist depending on the dose of the electron beam. The
resolution presented in this material can be as high as 10 nm, when it is positive, and 50
nm, when it behaves as a negative resist [1, 6, 7]. Other materials that are used in positive
resistors are the copolymer methyl methacrylate and methacrylic Acid (P(MMA-MAA)) and,
Polybutene Sulfone (PBS), which present high sensitivity [7]

Regarding negative resins, among the materials used are the copolymer of glycidyl metha-
crylate and ethylacrylate P(GMA-co-EA), known as COP, which have an advantage when high
speed synthesis is required, but have a low resolution of approximately 1 µm [6].

Once the pattern on the resist surface is written, it is necessary to transfer it to the substrate.
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There are two types of transfer methods, the additive in which there are two processes, lift-o�
and plating, and the subtractive method [6].

In the lift-o� process, after the beam passes through the resist, it remains soluble even
though other material is deposited on the surface. Subsequently, the sample is developed and
the soluble part of the resist is lifted o�, leaving the desired structure on the surface [6]. Figure

(a) Lifto� process. (b) Plating process. (c) Sustractive process.

Figure A.3: Transfer process.Modi�ed from Yao and Wang, 2005.

A.3a shows schematically the lift-o� process. In the other additive process, the plating process,
a metallic �lm is deposited directly on the areas where the resist has been removed after the
development [6], as shown in Fig. A.3b.

In the subtractive process the patterned resist works as a mask. The layer on which the
lithography is to be performed is deposited directly on a substrate, and on it, it is deposited the
resist, which is exposed to the electron beam to produce the desired pattern, and is subsequently
developed. After development, the parts of the layer that were not protected by the resist are
removed by immersing them in a liquid or exposing them to a plasma reactor, resulting in the
lithography on the layer. The �rst removal method is known as �wet etching� and the second
is known as �dry etching� [6].

Leakage radiation microscopy

Since the Surface Plasmons Polaritons (SPPs) are an electromagnetic phenomenon, they can
be studied through the classical electrodynamics. From the Maxwell equations, the problem
can be approached by solving the wave equation for the TM-polarized electromagnetic wave
and applying the appropriate boundary conditions for an interface formed between two semi-
in�nite media, one dielectric and the other conducting. This way, it is possible to determine
the dispersion relation of the SPPs [8, 9, 10, 11] in a dielectric-conductor interface.
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From the dispersion relation, it is known that the real part of the SPPs wavenumber at
such an interface (Re{β}) is larger than the wavenumber of light propagating in the air or in
vacuum (k0) [8, 9, 10]

Re{β} =
ω

c
Re

{√
ϵcϵd
ϵc + ϵd

}
>
ω

c
= k0, (A.0.1)

where ω is the frequency of the incident light, c the velocity of light in vacuum, ϵc the dielectric
function of the conductor and ϵd the dielectric function of the dielectric. Physically, equation
(A.0.1) means that it is not possible to excite SPPs by simply illuminating the interface, which
implies the need to use special optical techniques to increase the wavenumber of the light to
achieve phase matching [8].

Figure A.4: SPPs dispersion relations for two di�erent interfaces compared to light propagation
in air and in PMMA.

To illustrate the above, Fig. A.4 compares four dispersion relations: SPPs propagating at an
air-gold interface (continuos black line), SPPs propagating at an PMMA-gold interface (dashed
black line), the light propagating in the air (continuos gray line) and the light propagating in
PMMA (dashed gray line). However, in practice, metallic media of �nite thickness are used, so
that the problem corresponds to that of a conductive �lm of thickness d, where its dielectric
function is given by ϵ2(ω) = ϵ′2 + iϵ′′2.

De�ning the system geometry, the thin �lm is in the positive part of the z-axis, between
two dielectric media with dielectric functions ϵ1 and ϵ3, respectively. This way, the thin �lm
lies between z = 0 and z = d, where the component normal to the surface coincides with the
z-axis. Assuming, without loss of generality, that the SPPs propagation is along the x-axis, the
y component of the magnetic �eld of a TM-polarized wave in each of the media are [8, 10, 12]

a) Hy1(r⃗, t) = Aeiβxe−k1ze−iωt z ≥ d

b) Hy2(r⃗, t) = eiβx
[
Bek2z + Ce−k2z

]
e−iωt 0 < z < d (A.0.2)

c) Hy3(r⃗, t) = Deiβxek3ze−iωt z ≤ 0,
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where

kj = kz,j =

√
β2 −

(ω
c

)2
ϵj (A.0.3)

is the z component of the wave vector, with j = 1, 2, 3 corresponding to each medium and β is
the wavenumber of SPPs.

According to the boundary conditions, the following must be satis�ed [10]

Hy1(z = d) = Hy2(z = d) ,
1

ϵ1

∂Hy1

∂z
|z=d =

1

ϵ2

∂Hy2

∂z
|z=d

Hy2(z = 0) = Hy3(z = 0) ,
1

ϵ2

∂Hy2

∂z
|z=0 =

1

ϵ3

∂Hy3

∂z
|z=0.

From the above equations, and with the corresponding algebraic manipulations, the following
implicit equation is obtained(

ϵ2k1
ϵ1k2

+ 1

)(
ϵ2k3
ϵ3k2

+ 1

)
=

(
ϵ2k1
ϵ1k2

− 1

)(
ϵ2k3
ϵ3k2

− 1

)
e−2k2d, (A.0.4)

which reduces to the equation (A.0.1) when d → ∞. It is possible to obtain the dispersion
relation of the SPPs by solving the equation numerically, as shown in Fig. A.5.

Figure A.5: Dispersion relations of SPPs for thin �lms with di�erent thicknesses between two
semi-in�nite media.

The image shows the SPPs dispersion relations in an interface formed between air and gold
thin �lms of 30, 50, and 75 nm thickness, and it is compared with the SPPs dispersion relation in
an interface formed by air and gold of semi-in�nite thickness. These dispersion relations were
calculated numerically through Python code, and the gold permittivity data were extracted
from reference [13].
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The curves plotted show a good agreement among the dispersion relation of SPPs prop-
agating in an interface formed between two semi-in�nite media, and the dispersion relations
for a 50 nm and 75 nm thin �lms. Therefore, it is a good approximation to consider them as
equivalent, at least in the area of the spectrum that is of interest.

Respect to the imaginary part of the propagation constant β, it is related to the propagation
length of the SPPs. This quantity is de�ned as the distance at which the intensity decays to
1/e [10, 14], that is, when

I(x)

I0
= e−2β′′LSPP =

1

e
, (A.0.5)

where I0 is the initial intensity, β′′ is the imaginary part of the propagation constant β, and
LSPP is the propagation length of SPPs. This way, the propagation length is de�ned as

LSPP =
1

2β′′ . (A.0.6)

Figure A.6 shows the SPPs propagation lengths at an air-gold interface and at an PMMA-gold

Figure A.6: SPPs propagation length at an air-gold interface and at a PMMA-gold interface.

one.
As mentioned above, it is necessary to achieve phase matching to excite SPPs using light.

One of the most used optical techniques is the prism coupler. In this method, also known
as �Atenued total re�ection� (ATR), the sample is placed on one side of the prism in what
is known as the �Kretschman-Raether con�guration�. There is another con�guration of this
coupler, called the �Otto con�guration�, where the nanostructure is separated by about one
wavelength from one of the prism faces [8, 9, 10]. Both con�gurations are illustrated in Fig.
A.7.
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Figure A.7: Prism coupler. Kretschman-Raether con�guration (left) and Otto con�guration
(right). Modi�ed from reference Zayats, 2005.

Experimentally, this SPPs excitation technique is accessible, where, in the simplest case,
the sample adheres to one of the prism faces and its re�ectance is measured as a function of the
angle of incidence and/or wavelength. The excitation of SPPs is identi�ed, conventionally, by a
decrease in the intensity of the re�ected beam at angles larger than the total internal re�ection.

However, this method has limitations, for example when it comes to studying the local
excitation of SPPs. The main di�culty is that the spot size can signi�cantly a�ect the exper-
imental data. In addition, it is not always easy to identify the nanostructures on the surface
and illuminate them and illuminate them from the prism. Furthermore, there are another tech-
niques to obtain more complete information about the propagation, even, �visualize� it, such
as near-�eld microscopy [15, 16].

Another optical method to excite SPPs is by di�raction of the light interacting with elements
on the interface [10]. Even excitation can be achieved by light scattered by small defects in a
�at metal �lm [9, 17], which are works as a source of evanescent moments to match the light
dispersion relation to that of the SPPs [12]. Considering the above, it is possible to design
elements with well-de�ned sizes and geometric shapes to take advantage of light scattering and
achieve local excitation.

Once SPPs are excited and propagate at the dielectric-conductor interface, it is necessary
to have the right tools to extract as much information as possible. �Leakage Radiation Mi-
croscopy� (LRM) is a method based on the far-�eld detection of radiation caused by propagating
SPPs. One of the advantages of this technique is that it is possible to obtain images that allow
quantitative analysis of SPPs propagation [12].

In this technique, to excite SPPs, the light beam is focused at a nanostructure on the
interface with a lens or a microscope objective. Since the nanostructure works as a source of
evanescent momentum, the light is scattered by it, resulting in phase matching and partial
coupling of light in SPPs [12]. These propagate along the interface and their electromagnetic
�eld decay exponentially. By conservation of momentum, the SPPs are detected as emitted
leaky radiation, at a certain angle, towards the medium with the largest refractive index [12, 18],
which in this case is the substrate, as shown schematically in Fig. A.8.

The above is supported by the dispersion relation shown in Fig. A.9. As an example, the
image shows several dispersion relation of SPPs for di�erent systems. The gray curve with
triangles is the dispersion relation of SPPs propagating at an interface formed between air and
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Figure A.8: The physical mechanism of excitation and decay of SPPs.

Figure A.9: SPPs dispersion relations for a 50 nm thin �lm and for an interface formed by
semi-in�nite media.

a 50 nm thin �lm. The solid black curve is the dispersion relation of SPPs propagating at the
interface formed between two semi-in�nite media. Both curves intersects with the dispersion
relation of a light beam propagating at an angle of θ = 43.39° in BK7 glass medium, represented
by the solid gray line.

Respect to the above, the parallel component of the wavevector of this emitted light is given
by

kx = n3k0senθ, (A.0.7)

where n3 substrate refractive index, and k0 = ω/c is the wavenumber in free space. This way,
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the intersection of both dispersion relations mathematically means

Re{β} = k0Re

{√
ϵ1ϵ2
ϵ1 + ϵ2

}
= n3k0senθSPPs, (A.0.8)

where θSPPs is the angle at which the radiation emits toward the substrate when the SPPs
propagate at the interface.

An experimental setup for the implementation of LRM technique is shown in the following
�gure. The diagram shows the di�erent elements for excitation, in this case a �rst microscope

Figure A.10: Experimental setup of LRM

objective focusing the light on a nanostructure on the conductor surface. For detection and
visualization, a second microscope objective is used with a the lens array and a CCD camera.

To infer the information about SPPs, the radiation leaked from the interface through the
substrate is collected with a �large numerical aperture� microscope objective (NA>1), since
the emission angle is larger than the critical one for the total internal re�ection for a air-glass
interface. The light collected by the second objective of the microscope and transferred through
it, is directed to a CCD camera and, depending on the lens array, it is possible to access the
direct plane or the Fourier plane.

The most important element in the LRM setup is the microscope objective. It is char-
acterized by di�erent properties, one of the most relevant is the numerical aperture. This
dimensionless quantity de�nes a range of angles in which the optical system can accept or emit
light [19]. This parameter is de�ned as

NA = nsenθ, (A.0.9)

where n is the refractive index and θ is the emission or incidence angle of the light. Relating
this equation to the equation (A.0.8), it is obtained

Re {β} = k0AN ⇒ Re

{
β

k0

}
=
β′

k0
= AN = n3senθ. (A.0.10)

This quantity is known as �efective refractive index �[8, 18, 20], since

β

k0
=

√
ϵ1ϵ2
ϵ1 + ϵ2

= neff (A.0.11)
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In practice, a larger numerical aperture is obtained when the refractive index is increased in
equation (A.0.9), by applying an immersion oil or water. As an example, for an oil microscope
objective with a numerical aperture of 1.3, the angle of acceptance is 59°.

On the other hand, a microscope objective is an arrangement of optical elements that
together works as a lens. So, it is well known that these systems are capable of performing two-
dimensional Fourier transforms in the back focal plane. In this way, the microscope objective
develops exactly the Fourier transform of the image placed in its front focal plane [21].

Typically the back focal plane, also known as �Fourier plane�, is within the lens system
of the microscope objective, so the information it provides is not easily accessible. Taking
advantage of the lenses' ability to perform Fourier transforms, the information contained in the
Fourier plane within the microscope objective is extracted by means of a �4f� system or �4f
correlator�.

The 4f system is an indispensable tool for extracting the information contained in the
Fourier plane within the objective. Lens 1 of the system is placed at a distance f1 from the
Fourier planeΞ, where f1 is the focal length of the lens. It, in turn, performs the Fourier
transform of the information contained in Ξ but in the focal plane Σ′, that is, the second
Fourier transform of the radiation at the air-metal interface, resulting in the inverted image
found in the image plane Σ.

The second lens of the system 4f , which has a focal length f2, is placed at a distance f1+f2
from the �rst lens f1, that is, at a distance f2 from the plane Σ′. This lens performs the Fourier
transform of the image in the Σ′ plane, that is, the Fourier transform of the inverted image in
the Σ plane, resulting in an image of the intensity in the space of moments.

To access and project the Fourier plane, the experimental setup is shown in Fig. A.11. The
image plane of the system, Σ, is at the sample surface, that is, at the air-metal interface. Then,
to excite SPPs, the �rst microscope objective focus the light at the structure. In order to detect
the leakage radiation, the second microscope objective focused at the interface performs the
Fourier transform in the back focal plane Ξ to collect the radiation emitted by the propagating
SPPs.

Figure A.11: Experimental setup to access to the Fourier plane.

To obtain the information of the image plane, a third lens is added so that the 4f system
is formed by the lenses 2 and 3. This lens system projects the inverted image of the Σ′ plane
on the CCD camera, as shown in Fig. A.12. For this 4f system, lens 2 is placed so that its
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Figure A.12: Experimental setup to access to the image plane.

focus coincides with the Σ′ plane, and performs the Fourier transform in the plane Ξ′, as in
the previous con�guration. The third lens is placed at a distance f3 from the Fourier plane Ξ′,
collects the information of this plane, and performs the Fourier transform, resulting the inverted
image of the Σ′ plane, or the image of the interface in the Σ plane. In this way, it is possible
to obtain information on the propagation and characteristics of the PPS at the interface.

The information and the image obtained from the direct plane through the intensity of the
detected radiation is useful to determine the direction, to calculate the imaginary part of the
e�ective refractive index and to quantify the propagation distance of the SPPs [20]. It is also
possible to measure the imaginary part of the wavenumber. As for the Fourier plane, the image
obtained provides information on the distribution of the wave vectors of the PPS, its angular
distribution [20], the direction of propagation and the e�ective refractive index.

Figure A.13: Statistical distribution of wavevectors.

In the analytical problem, the SPPs propagating at the air-conductor interface are described
by the equation (A.0.2). These are represented as a TM-polarized wave packet in a Fourier
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basis, so that in the far-�eld, the Fourier transform of this radiation is detected [12]. At the
interface, the magnetic �eld is

Hy(r⃗, t) = Aeiβxe−k1de−iωt, (A.0.12)

and its Fourier transform is

F {Hy} = H ∝ 1

i(kx − β′) + (β′′)
(A.0.13)

with β = β′ + iβ′′. From the above, a statistical distribution of wavevector is obtained

I(kx) =
cte

(kx − β′)2 + (β′′)2
(A.0.14)

where 2β′′ de�nes the full width at half the maximum [12]. As an example, in Fig. A.13, the

Figure A.14: SPPs at Fourier plane.

statistical distribution (A.0.14) is presented as a function of the parameter kx/k0, by introducing
the corresponding values of ϵ2 for gold into the corresponding equation (A.0.1) for kx/k0 = 655
nm.

In the image, the pro�le along the variable kx is shown, taking into account that the
SPPs propagation is in the positive x-direction. On the other hand, Fig. A.14 shows a two-
dimensional plane of the statistical distribution of wavevectors. This image corresponds to the
two-dimensional extension of the equation (A.0.14), or, alternatively, to the squared module of
the two-dimensional Fourier transform of the equation (A.0.12), approximating the Dirac delta
function as a Gaussian function.

As it can be seen, the image in the Fourier plane of excited SPPs with light polarization
parallel to the x-axis, and freely propagating, corresponds to a circumferential segment of radius
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k0. The maximum of the intensity coincides with the direction of polarization, as expected,
since the charge densities move in that direction.

In the experimental part, the techniques described above were put into practice to support
the analytical results.
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Appendix B

Experimental setup implementation

The experimental setup for optical characterization was tested on a 50 nm thick Au thin �lm
that was subjected to a FIBL process to fabricate a slit. This thin �lm was deposited on a
conventional glass coverslip in the Photophysics Laboratory of ICAT-UNAM in collaboration
with Dr. Citlali Sánchez Aké. The FIBL process was carried out at the Nanosciences and Micro
and Nanotechnologies Center (CNMN) of the IPN, in collaboration with Dr. Adrián Martínez
Rivas.

The experimental study of the nanostructures was performed at excitation beam wave-
lengths of 633 nm and 655 nm, so the samples were designed and fabricated to have their
optimum performance at these wavelengths. The wavenumbers of the SPPs excited with these
beams is equal to β633 = (10.371+0.051i) µm−1 and β655 = (9.972+0.032i) µm−1, which trans-
lates to a wavelength of SPPs equal to λ633 = 605.769 nm and λ655 = 630.076 nm, respectively.

(a) Slit in thin �lm. (b) Excitation beam at slit.

Figure B.1: Comsol Multyphysics Simulation scheme.

The FIBL parameters were adjusted such that the slit had a width of 300 nm. This value
was chosen to achieve the optimal SPPs excitation at the mentioned wavelengths, and was
determined by numerical simulations using Comsol Multiphysics® software. The physical
system designed is a 50 nm thick gold (Au) thin �lm, in which a slit was fabricated that
works as a coupler to excite SPPs. This coupler has a rectangular shape, where the numerical
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simulations were performed by changing the slit width to �nd the maximum excited electric
�eld. Figure B.1 illustrates the simulated system.

The excitation beam has a Gaussian shape, with a wavelength of λ0 = 655 nm, a 4 µm
waist, the polarization is parallel to the x-axis and perpendicular to the slit axis, as shown
in Fig. B.1b. As the beam interacts with the slit, the light is scattered and two plasmonic
beams are excited, one on each side of the coupler in the light polarization direction as shown
in Fig. B.2a. From the numerical data, the z component of the electric �eld was extracted,
since this corresponds to an excited component of the SPP electric �eld. Then, the slit width
was varied from 100 nm to 500 nm in 50 nm intervals in search of the optimum width, which
was determined by �nding the most intense Ez component.

(a) Ez component of SPPs excited at thin �lm. (b) Intensity of Ez for di�erent slit widths.

Figure B.2: Ez component of SPPs excited.

Figure B.2b presents the numerical results of the magnitude of the z component of the
electric �eld for seven di�erent slit widths. For the sake of clarity, only the data for some of
them are presented. The comparison shows that Ez component magnitude is larger for w = 300
and w = 350 nm than for the rest, so a 300 nm wide slit was chosen as the experimental
parameter.

The numerical data obtained were �tted to determine the Ez propagation constant. This
constant was determined with a value of β′

num = (9.977 ± 0.016) µm−1, equivalent to an SPP
wavelength equal to λnum = (633.6±1) nm. Although the numerical results are not conclusive,
they provide an outline of the system response. In this particular case, the discrepancy between
the theoretical value and the numerical result is small, less than 4 nm.

Based on the numerical results, a 300 nm wide and 20 µm long aperture with the SPP
coupler function was planned to be fabricated. However, experimentally the structure obtained
has a width of 347 nm and length of 10 µm. Figure B.3 shows a photograph of the nanostructure
obtained by FIBL taken by the experimental setup. In addition to the coupler, two 190 nm
wide and 5 µm long slits were fabricated on one side of the coupler.

As mentioned above, the optical tests performed on this sample were at wavelengths of
633 nm and 655 nm, where images of the leakage radiation were obtained both in the image

111



Figure B.3: Nanostructure fabricated by FIBL.

plane and in the Fourier plane. Theoretically, the e�ective refractive indexes for an interface
formed by air and an Au thin �lm with no surface defects, for the wavelengths mentioned, are
neff−633 = 1.045 + 0.005i and neff−655 = 1.040 + 0.003i, respectively.

(a) Image of LRM. (b) Intensity pro�le of SPPs excited.

Figure B.4: Leakage radiation microscopy (LRM) in the image plane of SPPs excited at λ = 633
nm.

Figure B.4 shows the intensity in the image plane of the leakage radiation of SPPs excited
at a wavelength of 633 nm. Figure B.4a is the two-dimensional image acquired with the CCD
camera, while plot B.4b is the intensity pro�le along the x-axis at y = 0. In the two-dimensional
image, the two excited plasmonic beams are visible, one on each side of the coupler.
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The electromagnetic �eld strength of SPPs decays exponentially as e−2βx, then the experi-
mental data in Fig. B.4 were �tted to a function of the form

I(x) = Ae−2Bx + C. (B.0.1)

Data analysis yields A = 0.982± 0.064, B = 0.258± 0.013 and C = 0.103± 0.011. With these
�tting parameters, it is obtained that β′′/k0 = 0.026± 0.001 and the SPP propagation length
is LSPP = (1.937± 0.098)µm.

(a) Image of LRM. (b) Intensity pro�le os SPPs excited.

Figure B.5: LRM in the Fourier plane of SPPs excited at λ = 633 nm.

Accessing the Fourier plane, the image shown in Fig. B.5a was acquired, while the intensity
pro�le in that plane is shown in Fig. B.5b along the kx/k0 axis at ky/k0 = 0 with its respective
�t. From the parameters obtained from the data �t, for the propagating SPPs on the right-
hand side, the e�ective refractive index is β/k0 = (1.100±0.001)+(0.031±0.003)i, and for the
SPPs on the left-hand side, the obtained result is β/k0 = (1.100± 0.001) + (0.021± 0.003)i.

Considering both values, the average e�ective refractive index is neff−633 = β/k0 = (1.100±
0.001) + (0.026± 0.003)i. This implies that the imaginary part of the propagation constant is
β′′ = (0.258± 0.030) µm−1, which corresponds to a propagation length LSPP = (1.937± 0.225)
µm .

Between the real part of the theoretical and experimental e�ective refractive index, there is
a di�erence of 0.05868, which translates into a di�erence in angle of 2.22 °in the Kretschmann
con�guration. Also, the discrepancy in the imaginary part of the e�ective refractive index
between the theoretical and experimental values is remarkable. The above may be a product
of SPPs scattering due to the natural surface roughness of the Au thin �lm surface, in addition
to the damage it su�ered from being subjected to the ion beam during the lithography process.

On the other hand, it is important to highlight the consistency between the experimental
values obtained for the imaginary part of the e�ective refractive index obtained both in the
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image plane and in the Fourier plane. From the information acquired in the image plane, it was
determined that β′′/k0 = 0.026 = 0.001, while from the information acquired from the Fourier
plane, the result is β′′/k0 = 0.026± 0.003.

The propagation length, experimentally determined from the quantity β′′, is LSPP = 1.937
µm, while the theoretical value is 9.804 µm. It is pertinent to clarify that the theoretical values
mentioned above are only used as a reference, since the experimental system is far from being
an ideal system as the one studied theoretically.

In the experimental results, the propagation length of the SPPs is a�ected by the defects on
the thin �lm surface, resulting in a decrease of the propagation length, in addition to causing a
broadening of the peaks in the intensity pro�le of the SPP in the Fourier plane. However, the
experimental setup is a tool that allows extracting information about the plasmonic properties
of the physical systems mentioned above.
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