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Abstract

The present Thesis compiles interesting results on different phe-
nomenology displayed by an elemental quantum system where
light and matter interact. The last type of quantum system is
the cornerstone for the emergent quantum technologies, which
promise a dream world only thought of in science fiction stories.
The considered system is the Dicke model, a spin-boson system
that represents in a simple way the interaction between a set
of atoms (matter) and an electromagnetic radiation field (light,
photons) within a cavity. Despite the simplicity of the model, a
vast extension of phenomena arises from it, ranging from chaos,
phase transitions and entanglement to equilibration and ther-
malization. Furthermore, the model also shows phenomena as
peculiar as scarring and localization. In this regard, three main
quantum phenomena were investigated in detail in this Thesis:
Chaos, scarring and localization.

Chaos was studied in the Dicke model with an unconventional
indicator called correlation hole, which captures spectral corre-
lations and can be detected in the time evolution of a quantum
observable. The correlation hole is a dynamical manifestation of
the chaotic behavior of the model, which can be confirmed with
conventional static indicators that consider spectral fluctuations.
Additional studies on classical and quantum dynamics with co-
herent states were also performed in the model. This classical-
quantum correspondence allowed to differentiate effects that are
purely quantum and categorize universal behaviors (correlations
from random matrix theory) from particular ones (scarring from
unstable periodic orbits).
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Scarring was detected for all eigenstates of the Dicke model,
an unexpected result, since scarred states were thought for long
time as small sets of states with special characteristics. Scar-
ring can be seen in a primitive way as a form of localization, in
the sense that it prevents the uniform distribution of a quantum
state in phase space for a chaotic regime. Thus, additional stud-
ies trying to differentiate both phenomena were done, leading to
a definition of quantum ergodicity only achievable as an ensem-
ble property, after temporal averages are performed. A detailed
study of the fundamental families of periodic orbits that cause
this ubiquitous scarring of the model was also performed.

Finally, localization understood as the exponential of an en-
tropy was studied under the formalism of the generalized Rényi
entropy for continuous spaces. The last allowed to define gener-
alized localization measures in the unbounded phase space of the
Dicke model that can be used to detect unstable periodic orbits,
which are the cause of quantum scarring. On the way to define
these localization measures in unbounded continuous spaces the
selection of a bounded subspace is needed, implying that there is
no universal way to define such measures in this kind of spaces.
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plane Q − P (p = 0) for a chaotic classical energy shell.

Panel c: NNS distribution (gray bars) for 22458 energy

levels contained in the energy interval ϵk ∈ [−1, 1.755] and

Wigner-Dyson surmise (3.17) (red dashed line). Panel d:

Survival probability (4.26) (gray solid curves) for an en-

semble of 500 initial random states centered at Ec = jϵ,

its ensemble average (orange solid curve), its time aver-

age (blue solid curve), and analytical survival probabil-

ity (4.36) (green solid curve), where the correlation hole

is detected. Classical energy shell: ϵ = −0.5 (chaotic).

Hamiltonian parameters: ω = ω0 = 1, γ = 2γc = 1. The

system size for panels c and d is j = 100. Figure taken

from the supplementary information of Ref. [15]. . . . . 69

6.2 Average LDoS envelope (blue dots) for an ensemble of 500

initial random states and analytical LDoS envelopes (6.1)-

(6.3) (red solid curves) for each LDoS envelope case: rect-

angular (a), bounded Gaussian (b), and Gaussian (c). Clas-

sical energy shell: ϵ = −0.5 (chaotic). Parameters: Ec =

jϵ, σR = σBG = σG = 0.1j, Emin,max = Ec ∓ 1.5σBG.

Hamiltonian parameters: ω = ω0 = 1, γ = 2γc = 1. The

system size is j = 100. Figure taken from Ref. [12]. . . . 71

XV



LIST OF FIGURES

6.3 Panels (a)-(c): Survival probability (4.26) (gray solid

curves) numerically constructed for each element of an en-

semble of 500 initial random states, ensemble average (blue

solid curve) over the latter 500 initial random states, and

analytical survival probability (4.36) (green solid curve) for

each LDoS envelope case: rectangular (a), bounded Gaus-

sian (b), and Gaussian (c). The horizontal lines represent

the asymptotic value (red dotted line) and the minimum

value (orange dashed line) of the survival probability, re-

spectively. The vertical lines represent the Thouless time

(purple dotted line) and the relaxation time (pink dashed

line), respectively. The black dotted-dashed lines repre-

sent the power-law decay for the bounded cases (a) and

(b). Panel (d): Time average over the ensemble aver-

age (blue solid curve) and analytical (green solid curve)

survival probabilities for each LDoS envelope case (a)-(c).

The time average was generated taking time intervals that

grow according to an exponential rule. Hamiltonian pa-

rameters: ω = ω0 = 1, γ = 2γc = 1. The system size is

j = 100. Figure taken from Ref. [12]. . . . . . . . . . . 73

XVI



LIST OF FIGURES

7.1 Panels (a) and (c): Poincaré section for regular (a) and
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Chapter 1

Introduction

Quantum systems have had a huge impact in recent years due
to the development of the so-called quantum technologies. The
terms quantum information and quantum computing are now
terms away from science fiction. In this regard, scientific so-
cieties and industries around the world are joining efforts to
make possible the near feature: The Quantum World. A wide
wave of promising technologies is knocking at the door to change
our world, among them, quantum cryptography, quantum com-
puting, quantum communication, quantum networks, quantum
metrology, and many others. Several communities have already
realized the relevance of quantum technologies in our daily lives
and the repercussions that they will have in society and develop-
ment of humanity. Moreover, they have realized the urgent need
to create professions related with the quantum knowledge in a
pragmatic way. Thus, universities and research centers around
the world are creating education programs based in quantum me-
chanics and its applications, as quantum engineering or photonic
engineering, such that, the future professionals can make the
scenarios outlined by the theory a reality. Nevertheless, the un-
derstanding and control of atomic-scale systems is still far from
being reached in its whole. Thereby, the fundamental and ex-
haustive study of quantum phenomena will enable this goal to
be achieved.
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One of the most important quantum systems in light of quan-
tum technologies is that where light and matter interact, be-
cause of quantum devices are based in this principle of interac-
tion. The last type of quantum systems constitutes on its own
an independent branch within quantum mechanics, known as
quantum optics, which is studied under the formalism of the
quantum electrodynamics. Many fundamental models to de-
scribe these physical systems have been proposed through the
years, which have been represented mainly with sets of atoms
interacting with electromagnetic fields inside optical cavities, a
branch known as cavity quantum electrodynamics. One of the
simplest models, which belongs to this branch, was proposed by
the American astronomer and physicist Robert Henry Dicke in
1954 [1]. The well-known Dicke model defines in a simple way
the light-matter collective interaction between a set of two-level
atoms and a single mode of radiation of an electromagnetic field
within an optical cavity. Despite the mathematical simplicity
of the Dicke model, it brought with it a plethora of associated
physical phenomena, as superradiance, phase transitions, chaos,
scarring, localization, entanglement, equilibration and thermal-
ization, among others [2–19].

In recent years, equilibration and thermalization of isolated
quantum systems in chaotic regimes have become in featured
topics, since the experimental advances in implementations of
such systems have led to longer coherence times [20–23]. Equi-
libration is reached when a given observable only shows smalls
fluctuations around an asymptotic value after a long time and
these fluctuations decrease with system size. Thermalization
implies that this asymptotic value (infinite-time average of the
given observable) is very close to the predictions from statistical
mechanics, and the difference between both approaches also de-
creases with system size. On the other hand, coherence time is a
very important parameter to quantum technologies as quantum
computing, quantum communication, and quantum metrology.
In quantum computing, the coherence time directly limits the
maximum number of quantum operations that can be performed
sequentially by quantum computers. Furthermore, a long coher-
ence time is a prerequisite for the realization of high fidelity
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quantum operations. In this way, the theoretical and experi-
mental analysis of long-time quantum dynamics is a key step to
understand the above phenomenology.

An important question raised in the last scheme is how long it
takes for isolated quantum systems to reach equilibrium. Many
studies about time scales where equilibration occurs in these sys-
tems have been developed; however, there is no consensus on the
time-scale dependence with system conditions as system size,
range of interactions, observables, and initial states [24–30]. The
behaviors of the quantum dynamics of observables prior to equi-
librium, where the discreteness of the energy spectrum is already
resolved, are determined by the properties of the eigenvalues.
For some observables, effects of correlations between eigenvalues
can be observed in the dynamics, as the correlation hole [31].
The correlation hole appears as a decay below the saturation
value of the dynamics caused by such correlations. Correlations
arise due to level repulsion between eigenvalues, which is a dis-
tinguishing feature of energy spectra of chaotic systems, where
the conventional static indicators of chaos (spectral tests with
no time evolution involved) are defined under the formalism of
the random matrix theory. Thus, this correlation hole plays the
role of an unconventional dynamical indicator of quantum chaos,
what makes it attractive and useful when the spectral informa-
tion of certain systems is not accessible.

There are many more open questions concerning equilibra-
tion for isolated quantum systems with classical limit. Classi-
cally, the mixing properties of chaotic dynamics have provided
a fundamental mechanism to explain equilibration and the er-
godic properties of physical systems. Under the quantum ap-
proach, this paradigm changes, since isolated quantum systems
are described by linear equations; nevertheless, the idea of equi-
libration remains in the sense of saturation of the dynamics for
some observables, where an asymptotic value is reached after
long times showing small fluctuations that decrease with system
size, as was exposed previously. Since the passage from the clas-
sical to the quantum domain entails the appearance of purely
quantum phenomena, such as superpositions, interferences, the
effects of universal spectral correlations, scarring, among others,
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the analysis of the correspondence between both classical and
quantum dynamics is a useful tool to understand further the
equilibration process.

Quantum scarring has caused a new wave of fascination with
the detection of the so-called quantum many-body scars, ob-
served experimentally as long-lived oscillations in chains of Ry-
dberg atoms [32–36]. The interest in quantum many-body scars
lies in their potential as resources to manipulate and store quan-
tum information. The origin of quantum scars can be traced
back to the repercussions that measure-zero structures of the
classical phase space can have in the quantum domain, which
was a striking feature of the quantum-classical correspondence
not recognized in the early days of the quantum theory. In the
classical domain, typical trajectories of chaotic systems fill com-
pletely the available phase space. Nevertheless, sets of unstable
periodic orbits of measure zero can be present in phase space
at the same time. When a parameter of the classical system is
varied and it transits from a regular to a chaotic regime, peri-
odic orbits change from stable to unstable. In the quantum do-
main, these classical unstable periodic orbits can get imprinted
in the quantum states as concentrated regions of high probability
known as quantum scars [37–39]. On the other hand, quantum
scarring has important repercussions in phase space of chaotic
systems, since it prevents the uniform distribution of the eigen-
states. For many years it was thought that the eigenstates of
quantum systems which are fully chaotic in the classical limit
will be completely delocalized in phase space, where the classi-
cal trajectories fill the phase space densely. This thought was
changed with the discovery of quantum scars, which restrict the
delocalization degree of the eigenstates concentrating them along
the regions occupied by unstable periodic orbits in phase space.

Quantum localization is an interesting topic whose origin
comes from the quantum limitation of classical diffusion [40]. Ef-
fects of quantum localization appear in many quantum systems,
being one of the most notable types of localization the celebrated
Anderson localization, which is an interference effect yielding a
drastic reduction of diffusion in the presence of strong disor-
der [41–44]. Recent studies in disordered systems of interacting
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quantum particles have shown that localization can persist in
presence of weak interactions, resulting in the formation of a new
phase of matter, the many-body localized phase [22,45–48]. This
phase shows unconventional properties that can have potential
applications in quantum technologies, as perfect zero conductiv-
ity at finite temperatures and the prevention of the system from
reaching thermal equilibrium, that is, the failure to thermalize
in spite of interactions. The effects caused by this many-body
localized phase can appear in several experimental setups, as nu-
clear spin dynamics, charge transport in amorphous materials,
cold atoms, spin-glasses, and quantum computers.

The exposed phenomena, as well as many others showed by
the Dicke model, have associated experimental quantum applica-
tions, which will contribute to build the coming quantum world.
Thus, the main objective of this Thesis is to provide to the reader
a theoretical and technical framework, which contain all the tools
to understand how these quantum phenomena behave and can
be interpreted in one of the simplest interacting spin-boson sys-
tems, the Dicke model.

Organization of the Thesis

The Thesis is organized in 6 fundamental Parts:

1. In Part I is presented the theoretical background. In Chap-
ter 2 is exposed the formulation of the Dicke model, its
integrable limits, its classical limit, and its experimental
realizations. In Chapter 3 is exposed the chaos theory in
its both approaches, as classical and quantum chaos. In
Chapter 4 are exposed the correlation functions and their
relation with the survival probability, a dynamical quantity
able to capture spectral correlations. Finally, in Chapter 5
is exposed the representation of quantum states in phase
space, introducing the coherent states and the quasiprob-
ability distributions.

2. In Part II are presented relevant results concerning chaos in
the Dicke model. In Chapter 6 is exposed a review on pre-
viously found results on classical and quantum chaos in the
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CHAPTER 1. INTRODUCTION

Dicke model. Furthermore, the results obtained with the
correlation hole as dynamical indicator of quantum chaos in
the Dicke model are also exposed. In Chapter 7 is exposed
a detailed analysis on the classical-quantum dynamics of
coherent states, where can be identified dynamical effects
of purely quantum nature related with chaos or scarring.

3. In Part III are presented relevant results concerning scar-
ring in the Dicke model. In Chapter 8 is exposed the his-
torical background on quantum scarring, as well as the re-
sults on ubiquitous scarring identified in the Dicke model.
In Chapter 9 is exposed a detailed explanation on the fun-
damental families of periodic orbits emanating from sta-
tionary points, which cause the ubiquitous scarring in the
Dicke model.

4. In Part IV are presented relevant results concerning local-
ization in the Dicke model. In Chapter 10 is exposed the
historical background on quantum localization, as well as
its relation with other forms of localization. Furthermore,
the results on localization measures of quantum states in
phase space of the Dicke model are also exposed. In Chap-
ter 11 is exposed the utility to use localization measures in
phase space to detect unstable periodic orbits that cause
the phenomenon of scarring.

5. In Part V are presented the conclusions of the Thesis.
Chapter 12 is devoted only to gather the conclusions of
the results on chaos, scarring and localization in the Dicke
model.

6. Finally, in Part VI is presented supplementary material.
In Appendixes A-R are exposed explicit derivations and
complementary information necessary to fully understand
each Chapter.
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Chapter 2

The Dicke Model

In this Chapter is exposed the formulation of the Dicke model
under conventional approximations and is introduced the Dicke
Hamiltonian, as well as a generalized version of it, which gathers
in a single expression particular cases as the Tavis-Cummings,
Rabi, and Jaynes-Cummings models. The integrable limits of
the Dicke Hamiltonian regarding the system parameters are also
shown, which provide the available diagonalization bases to solve
numerically the Hamiltonian. Furthermore, the classical limit
of the model is exposed under a mean-field semiclassical ap-
proximation with coherent states generating the classical Dicke
Hamiltonian, as well as important expressions derived from it,
as the classical ground-state energy and the semiclassical density
of states. Finally, a revision of different experimental setups of
the Dicke model through the years is shown.

2.1 Formulation of the Model

Quantum optics is a branch of physics that studies the interac-
tion between light and matter. On the one hand, light can be
understood as an electromagnetic wave; however, it can be un-
derstood also as a stream of particles (quanta of light) called pho-
tons. Photons are relevant, since many counter-intuitive predic-
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CHAPTER 2. THE DICKE MODEL

tions of quantum mechanics can be tested using them, as quan-
tum entanglement and teleportation. On the other hand, matter
refers to physical particles as atoms and molecules. In this way,
the fundamental study of this kind of systems, which are stud-
ied under the formalism of Quantum Electrodynamics (QED),
is a key step to understand the emerging quantum technologies,
among them, the quantum computing and quantum communi-
cation. Thereby, the model presented here tries to describe in
a simple way the system resulting from the interaction between
these two physical entities, particles (atoms) and electromag-
netic waves (light, photons). Typically, the system consists of a
set of N two-level atoms transiting from the ground state to an
excited state with an atomic transition frequency given by the
parameter ω0. These atoms are contained within an optical cav-
ity and interact with a single-mode electromagnetic field with a
radiation frequency given by the parameter ω. The atom-field in-
teraction within the system is modulated by a coupling strength
represented by the parameter γ. A model with the latter char-
acteristics was first proposed by the American astronomer and
physicist Robert Henry Dicke (see Fig. 2.1) in 1954 [1], and it is
known as The Dicke Model in his honor.

The formulation of the Dicke model is based on a series of
conventional approximations [49]:

1. All atoms are contained within a volume that is smaller
than the wave length of the single-mode of electromag-
netic radiation; that is, all atoms interact with the same
electromagnetic field, and as a result, the coupling strength
parameter is the same for all of them.

2. All atoms are immobile and far enough apart from each
other, and in this way, the interactions between them are
neglected.

3. An additional simplification can be taken in the model,
where the atom-field interaction is described under the Ro-
tating Wave Approximation (RWA) [50,51]. This refers to
eliminate the Hamiltonian terms that oscillate very fast in
time, such that, their temporal average goes to zero.

10



2.1. FORMULATION OF THE MODEL

Figure 2.1: American astronomer and physicist Robert Henry Dicke born
in 1916 in St. Louis, Missouri, United States of America. He made impor-
tant contributions to the fields of astrophysics, atomic physics, cosmology
and gravity.
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CHAPTER 2. THE DICKE MODEL

The Hamiltonian of the system, which represents the energy
contained within the optical cavity, is composed of three main
terms: the first term represents the field energy ĤF, the second
one represents the atomic energy ĤA, and the third one rep-
resents the atom-field interaction energy ĤI. Therefore, with
the previous approximations, the Dicke Hamiltonian takes the
simple form

ĤD = ĤF + ĤA + ĤI. (2.1)

Each of the last terms has an explicit representation through
quantum operators of field (photons) and angular momentum
(atoms). In Appendix A is presented a complete derivation of
the following terms

ĤF = ℏωâ†â, (2.2)

ĤA = ℏω0Ĵz, (2.3)

ĤI =
ℏγ√
N

(â† + â)(Ĵ+ + Ĵ−), (2.4)

where â† and â are the creation-annihilation operators that sat-
isfy the H(1) algebra (Heisenberg-Weyl algebra) of the bosonic

operators. The atomic operators Ĵx,y,z = 1
2

∑N
n=1 σ̂

(n)
x,y,z are col-

lective pseudo-spin operators that satisfy the same SU(2) alge-
bra of the spin- 12 operators given by the Pauli matrices σ̂x,y,z,

and the raising-lowering collective pseudo-spin operators Ĵ± =∑N
n=1 σ̂

(n)
± are defined as Ĵ± = Ĵx ± iĴy.

Taking the above energy terms, and setting ℏ = 1 through
the text without loss of generality, the Dicke Hamiltonian can be
written as

ĤD = ωâ†â+ ω0Ĵz +
γ√
N

(â† + â)(Ĵ+ + Ĵ−). (2.5)

2.1.1 Generalized Dicke Hamiltonian

A useful way to write a generalized version of the Dicke Hamil-
tonian is as follows

Ĥδ
D = ωâ†â+ ω0Ĵz +

γ√
N

[â†Ĵ− + âĴ+ + δ(â†Ĵ+ + âĴ−)], (2.6)
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where the case δ = 1 defines the standard Dicke Hamiltonian
Ĥδ=1

D = ĤD; while the case δ = 0 defines its integrable limit

known as the Tavis-Cummings Hamiltonian Ĥδ=0
D = ĤTC [52],

and given explicitly by

ĤTC = ωâ†â+ ω0Ĵz +
γ√
N

(â†Ĵ− + âĴ+). (2.7)

This Hamiltonian can be obtained formally when it is applied
the RWA to the Dicke Hamiltonian. In that case, the counter-
rotating terms (terms that oscillate very fast in time) â†Ĵ+ and
âĴ− are neglected. The Tavis-Cummings Hamiltonian possesses
a conserved quantity Λ̂ = â†â + Ĵz + j1̂, which designates the
number of excitations, and whose eigenvalues Λ = n + m + j
define the average number of photons n and excited atoms m+j
within the system. The parameter j defines the pseudo-spin
value associated to the eigenvalue j(j +1) of the squared collec-
tive pseudo-spin operator Ĵ2 = Ĵ2

x + Ĵ2
y + Ĵ2

z .
Other particular case of the Dicke Hamiltonian and quite

popular is the Rabi Hamiltonian, where only a single two-level
atom is considered in the system (N = 1). First proposed by I.
I. Rabi in 1936 [53,54], the explicit Hamiltonian takes the form

ĤR = ωâ†â+
ω0

2
σ̂z + γ(â† + â)(σ̂+ + σ̂−). (2.8)

Analogously, when the RWA is applied to the Rabi Hamilto-
nian, another well-known Hamiltonian is obtained, called Jaynes-
Cummings Hamiltonian [55], and given by

ĤJC = ωâ†â+
ω0

2
σ̂z + γ(â†σ̂− + âσ̂+), (2.9)

which has also a conserved quantity λ̂ = â†â+ 1
2 (σ̂z + 1̂).

2.2 Integrable Limits

The notion of integrability of a quantum system can be extended
from classical integrability [56]. A classical conservative system
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CHAPTER 2. THE DICKE MODEL

with I degrees of freedom is called integrable if there exist I
independent integrals of motion

Oi(q1, . . . , qI ; p1, . . . , pI) = Ci, (2.10)

for i = 1, . . . , I, where Ci are constants and (qi, pi) are canonical
position-momentum variables. The later statement can be put
in another form, where the system is called integrable if there
exist I independent globally functions Oi(q1, . . . , qI ; p1, . . . , pI)
for i = 1, . . . , I, whose mutual Poisson brackets vanish

{Oi, Oi′} = 0, (2.11)

for i, i′ = 1, . . . , I. Following this definition, a quantum sys-
tem with I degrees of freedom is called integrable if there exist
I globally operators Ôi(q̂1, . . . , q̂I ; p̂1, . . . , p̂I) for i = 1, . . . , I,
whose mutual commutators vanish

[Ôi, Ôi′ ] = 0̂, (2.12)

for i, i′ = 1, . . . , I.
The Dicke Hamiltonian (2.5) depends explicitly on the pa-

rameters (ω, ω0, γ) for a fixed number of atoms N . Its integrable
limits provide the available bases on which it can be diagonalized.

2.2.1 Null Coupling-Strength Limit

An exact solution of the Dicke Hamiltonian can be obtained when
the null coupling-strength limit γ → 0 is taken. In that case, the
Hamiltonian (2.5) becomes in

ĤD(ω, ω0) = lim
γ→0

ĤD(ω, ω0, γ)

= ωâ†â+ ω0Ĵz. (2.13)

A solution basis for this Hamiltonian is the tensor product be-
tween Fock states |n⟩ associated to the field and angular momen-
tum states |j,mz⟩ associated to the atoms

|n⟩ ⊗ |j,mz⟩ ≡ |n; j,mz⟩, (2.14)
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which satisfies the relations

â†â|n; j,mz⟩ = n|n; j,mz⟩, (2.15)

Ĵ2|n; j,mz⟩ = j(j + 1)|n; j,mz⟩, (2.16)

Ĵz|n; j,mz⟩ = mz|n; j,mz⟩, (2.17)

where Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z is the squared collective pseudo-spin

operator.
Thus, the Hamiltonian (2.13) is integrable, since it commutes

with both operators â†â and Ĵz, and has the same number of con-
served quantities as degrees of freedom. Therefore, its associated
eigenbasis is given by Eq. (2.14) and is known as the Fock basis.

2.2.2 Null Atomic-Transition Limit

Other exact solution of the Dicke Hamiltonian is obtained for the
null atomic-transition limit ω0 → 0. However, some previous
steps are needed to make it possible. First, a displacement is
taken over the creation-annihilation operators â† and â, given
by

Â = â+GĴx, (2.18)

where G = 2γ/(ω
√
N ). Next, a −π/2 rotation around the y axis

of the collective pseudo-spin operators is taken as

(Ĵx, Ĵy, Ĵz)→ (Ĵ ′
z, Ĵ

′
y,−Ĵ ′

x). (2.19)

Now, taking the limit ω0 → 0 with the previous transforma-
tions, the Hamiltonian (2.5) becomes in

ĤD(ω, γ) = lim
ω0→0

ĤD(ω, ω0, γ)

= ω(Â†Â−G2Ĵ ′2
z ), (2.20)

and the solution basis for the above Hamiltonian is the tensor
product between states |N⟩ (eigenstates of the operator Â†Â)
associated to the modified field and rotated angular momentum
states |j,m′

z⟩ associated to the atoms

|N⟩ ⊗ |j,m′
z⟩ ≡ |N ; j,m′

z⟩, (2.21)
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which satisfy the relations

Â†Â|N ; j,m′
z⟩ = N |N ; j,m′

z⟩, (2.22)

Ĵ′2|N ; j,m′
z⟩ = j(j + 1)|N ; j,m′

z⟩, (2.23)

Ĵ ′
z|N ; j,m′

z⟩ = m′
z|N ; j,m′

z⟩, (2.24)

where Ĵ′2 = Ĵ ′2
x + Ĵ ′2

y + Ĵ ′2
z is the collective pseudo-spin op-

erator in the rotated basis. It is important to emphasise that
the rotated collective pseudo-spin operator Ĵ ′

z = Ĵx, such that
|N ; j,m′

z⟩ = |N ; j,mx⟩.
Again, the Hamiltonian (2.20) is integrable, since it com-

mutes with both operators Â†Â and Ĵ ′
z, and its associated eigen-

basis is is given by Eq. (2.21). When the vacuum state (N = 0)
of the operator Â is defined with the equation Â|0; j,m′

z⟩ = 0, it
is found

â|0; j,m′
z⟩ = −Gm′

z|0; j,m′
z⟩, (2.25)

that is, it is an eigenstate of the annihilation operator â with
eigenvalue αm′

z
= −Gm′

z, or in other words, it is a coherent
state in the Fock basis. Due to the last result, the basis (2.21)
is known as the coherent basis.

2.2.3 Solutions of the Dicke Hamiltonian

The time-independent Schrödinger equation for the Dicke Hamil-
tonian is given by

ĤD|Ek⟩ = Ek|Ek⟩, (2.26)

where Ek and |Ek⟩ define the eigenvalues and the eigenvectors
of the Hamiltonian, respectively. This equation can be solved
numerically by diagonalizing the Hamiltonian; however, a matrix
representation of the Hamiltonian in a given basis is needed.

As was seen in the previous sections, a solution is given by the
Fock basis (2.14), a tensor product of Fock states |n⟩ represent-
ing the bosonic subspace and angular momentum states |j,mz⟩
representing the atomic subspace. Nevertheless, as the bosonic
subspace is infinite-dimensional, the resulting matrix also will
have an infinite dimension. To solve this issue, a dimension trun-
cation is proposed by choosing a truncation value of the number
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of photons nmax (eigenvalue of the number operator n̂ = â†â).
The latter procedure produces matrices with finite dimension
D2

F, where DF = (2j + 1)(nmax + 1) is the dimension of the
truncated Hilbert space.

On the other hand, convergence problems of the wave func-
tion appear for some eigenstates, when a truncation value is cho-
sen. For instance, the truncation value that ensures convergence
of the ground-state wave function depends on the number of
atoms N . For that reason, when the number of atoms increases
the truncation value also increases, and as a result, the matrix
dimension. As a consequence, the latter scenario demands more
computational resources and processing time. Previous studies
done on the Dicke model revealed that the Fock basis (2.14) is
inefficient for a complete study of the Hamiltonian (N > 40),
and that the coherent basis (2.21) is a better option [57–60]. In
Appendix B is presented a complete description of the numerical
solutions of the Dicke Hamiltonian using the coherent basis as
diagonalization basis.

2.3 Classical Limit

The operators of the Dicke Hamiltonian (2.5) obey an alge-
bra or set of commutation relations. The set of bosonic op-
erators {â†, â, 1̂} obey the H(1) algebra (Heisenberg-Weyl alge-
bra), while the set of collective pseudo-spin operators {Ĵ±, Ĵz}
obey the SU(2) algebra of spin- 12 operators. For this reason,
the Dicke Hamiltonian can be considered as an algebraic Hamil-
tonian. Moreover, the Dicke Hamiltonian commutes with the
squared collective pseudo-spin operator Ĵ2 = Ĵ2

x + Ĵ2
y + Ĵ2

z ,

[ĤD, Ĵ
2] = 0̂, and for that reason it does not mix its different

eigenvalues j(j + 1). The maximum pseudo-spin value is given
by j = N/2, which defines the set of 2j + 1 = N + 1 symmet-
ric states of the Hamiltonian including the ground state. The
latter choice is known as the symmetric representation and it is
the most commonly used, since the other representations with
0 < j < N show a degeneracy [61].
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2.3.1 Semiclassical Approximation

The algebraic nature of some Hamiltonians allows to define a
semiclassical approximation, that is, a mean-field approximation
that uses a variational wave function. The basic assumption
is that starting from an initial state, the dynamics will remain
around it as time passes [62]. Thus, a usual procedure consists
of taking the expectation value of the quantum Hamiltonian un-
der coherent states, which minimize the Heisenberg’s uncertainty
principle and can be considered in some sense as the most clas-
sically accessible quantum states [63].

Thus, the classical Dicke Hamiltonian can be obtained using
a tensor product between Glauber coherent states |α⟩ associated
to the bosonic subspace and Bloch coherent states associated to
the atomic subspace |z⟩

|α⟩ = e−|α|2/2eαâ
†
|0⟩, (2.27)

|z⟩ = 1

(1 + |z|2)j
ezĴ+ |j,−j⟩, (2.28)

where |0⟩ is the vacuum state of the field and |j,−j⟩ the state
with all atoms in their ground state. The parameters α, z ∈ C
of each coherent state can be defined as

α =

√
j

2
(q + ip), (2.29)

z =
Q+ iP√

4−Q2 − P 2
, (2.30)

and are associated with canonical variables of phase space, say,
x = (q, p;Q,P ). The bosonic variables are given by (q, p) and
the atomic ones by (Q,P ), which satisfy the Poisson brackets

{q, p} = 1, (2.31)

{Q,P} = 1. (2.32)

In this way, a Glauber-Bloch coherent state can be defined as
the tensor product

|x⟩ = |α⟩ ⊗ |z⟩
= |q, p⟩ ⊗ |Q,P ⟩. (2.33)
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Taking the expectation value of the Dicke Hamiltonian under
Glauber-Bloch coherent states, three terms are found

hD(x) =
1

j
⟨x|ĤD|x⟩

=
1

j
[⟨x|ĤF|x⟩+ ⟨x|ĤA|x⟩+ ⟨x|ĤI|x⟩]

= hF(x) + hA(x) + hI(x), (2.34)

which represent the classical field, atomic, and atom-field in-
teraction energy of the system, respectively. The scaling j of
the Hamiltonian produces a classical dynamics independent of
the system size and defines an effective Planck constant ℏeff =
j−1 [64]. Thus, the four-dimensional phase space in the coordi-
nates x = (q, p;Q,P ) associated to the latter classical Hamilto-
nian is denoted byM. In Appendix C.1 is presented a complete
derivation for the Dicke Hamiltonian (2.5) (setting ℏ = 1) of the
following terms

hF(x) =
ω

2
(q2 + p2), (2.35)

hA(x) =
ω0

2
(Q2 + P 2)− ω0, (2.36)

hI(x) = 2γqQ

√
1− Q2 + P 2

4
, (2.37)

where the classical field hF(x) and atomic hA(x) Hamiltonians
represent the energy of two classical harmonic oscillators, while
the classical atom-field interaction Hamiltonian hI(x) represents
the classical coupling energy between them.

Adding the above terms, the classical Dicke Hamiltonian can
be written in a complete expression as

hD(x) =
ω

2
(q2 + p2) +

ω0

2
(Q2 + P 2)− ω0+

+ 2γqQ

√
1− Q2 + P 2

4
, (2.38)

where the scaling j of the Hamiltonian associates a rescaled
classical energy or classical energy shell given by the parame-
ter ϵ = E/j.
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2.3.2 Quantum Phase Transition and Classical
Ground-State Energy

In 1973 several authors pointed out a quantum phase transition
for the ground state of the Dicke Hamiltonian [65–68], which
was recently confirmed [69, 70]. This quantum phase transition
occurs in the thermodynamic limit (N → ∞) at zero tempera-
ture. When the coupling strength reaches a critical value given
by γc =

√
ωω0/2, the system goes from a normal phase (γ < γc,

with zero photons and excited atoms on average), to a superradi-
ant phase (γ > γc, with a number of photons and excited atoms
of the same order of magnitude as the total number of atoms in
the system). In the latter phase, the average photon emission is
a non-zero collective emission, known as superradiance [71].

The quantum phase transition can be understood in the clas-
sical domain (thermodynamic limit N → ∞), by finding the
ground-state energy of the classical Dicke Hamiltonian, which is
given by (see Appendix C.2 for details on this derivation)

ϵgs = −ω0

 1 if γ < γc

1
2

[(
γ
γc

)2
+
(

γc

γ

)2]
if γ > γc

, (2.39)

for each normal and superradiant phase. In Fig. 2.2 is shown
the behavior of the ground-state energy as a function of the
coupling-strength parameter. In addition, in the same Fig. 2.2
is shown the quantum phase transition, which is a second order
phase transition, as a discontinuity in the second derivative of
the ground-state energy.

On the other hand, the whole energy surface of the classical
Dicke Hamiltonian (2.38) can be studied using the Hamilton’s
equations of motion to write the Hamiltonian as an exclusive
function of the atomic variables (Q,P ) (see Appendix C.2 for
details about the Hamilton’s equations of motion)

hD(Q,P ) = ω0

[
Q2 + P 2

2
− 1− 1

2

(
γ

γc

)2

Q2

(
1− Q2 + P 2

4

)]
.

(2.40)
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Figure 2.2: Classical ground-state energy (2.39) (a) and its second deriva-
tive (b) as a function of the scaled coupling-strength parameter γ/γc. The
atomic transition frequency was taken as ω0 = 1. In panel (b) the dis-
continuity in γ/γc = 1 represents the quantum phase transition for the
ground-state in the thermodynamic limit N → ∞.
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The above equation can be plotted as contour lines for different
classical energy shells. In Fig. 2.3 are shown three cases for
different values of the coupling-strength parameter, where the
quantum phase transition of the ground state can be seen as the
change from a stable point (normal phase, γ < γc) to a unstable
point (superradiant phase, γ > γc), where two global minimums
appear.

-1 0 1

-1

0

1

-1 0 1 -1 0 1

Figure 2.3: Contour lines of the classical energy surface (2.40) for different
values of the scaled coupling-strength parameter: γ/γc = 0.1 (a), γ/γc = 1
(b), and γ/γc = 2 (c). The atomic transition frequency was taken as ω0 = 1.
Darker colors define low energy values. The quantum phase transition can
be seen as the change from a stable point (normal phase, γ < γc) in panel
(a) to a unstable point (superradiant phase, γ > γc) in panel (c), where two
global minimums appear.

2.3.3 Semiclassical Approximation to the Den-
sity of States

A semiclassical approximation to the density of states of a quan-
tum system can be obtained using a particular case of the well-
known Gutzwiller trace formula [2, 72]. Computing the phase-
space volume at a classical energy shell ϵ = E/j and using
the classical Dicke Hamiltonian (2.38), the explicit expression
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is given by (see Appendix C.3 for a complete derivation)

ν(ϵ) =
2j2

ω


1
π

∫ ξ+ϵ
ξ−ϵ

dξ fϵ(ξ) if ϵ0 ≤ ϵ < −ω0

1+ϵ/ω0

2 + 1
π

∫ ξ+ϵ
ϵ/ω0

dξ fϵ(ξ) if |ϵ| ≤ ω0

1 if ϵ > ω0

,

(2.41)
where

fϵ(ξ) = cos−1

γc
γ

√
2(ξ − ϵ

ω0
)

1− ξ2

 , (2.42)

ξ±ϵ = −γc
γ

γc
γ
∓

√
2(ϵ− ϵ0)

ω0

 , (2.43)

and ϵ0 = ϵgs is the ground-state energy in the superradiant phase
(γ > γc) (see Eq. (2.39)).

In Fig. 2.4 is shown a typical case for the superradiant phase
(γ > γc), where the correspondence between the semiclassical
density of states (2.41) and the density of sates computed nu-
merically can be seen.

2.4 Experimental Realizations

An important characteristic of the Dicke model is that it is ex-
perimentally accessible. Early setups were proposed concerning
superradiance with pumped gases [73]. Through the years, dif-
ferent setups have been proposed to represent the Dicke model,
which have been improved and have become more sophisticated
with the development of the technology. Among the contempo-
rary experimental proposals can be mentioned setups with ultra-
cold atoms [74–79], trapped ions [80–82], cavity-assisted Raman
transitions [83,84], superconducting circuits [85,86], and others.
In Appendix D is shown an experimental setup realized with a
Bose-Einstein condensate, which was one of most important se-
tups proposed in recent years, since it was able to detect exper-
imentally the quantum phase transition predicted theoretically
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Figure 2.4: Semiclassical density of states (2.41) (red solid curve). His-
togram of the numerical energy levels (blue dots). Hamiltonian parameters:
ω = ω0 = 1, γ = 2γc = 1, and j = 100. The truncation value of the modi-
fied bosonic subspace was taken as Nmax = 390, obtaining a Hilbert space
dimension DC = 39296 with 24453 converged energy levels in the coherent
basis with positive parity.

by the model. A very detailed reference about the engineer-
ing involved with Bose-Einstein condensation and cavity QED
is shown in Ref. [87]. Furthermore, some setups have been pro-
posed to represent the classical limit of the Dicke model using
resonant circuits [88].

On the other hand, implementations with Bose-Einstein con-
densates were proposed for the Dicke model under the RWA [89],
that is, the well-known Tavis-Cummings model (see Eq. (2.7)).
A useful revision of this model and its experimental setups is
shown in Ref. [90]. Furthermore, complete revisions about differ-
ent experimental implementations in cavity QED are presented
in Refs. [91, 92].
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Chapter 3

Chaos Theory

In this Chapter is exposed the phenomenon of chaos in its both
classical and quantum approaches. On the one hand, the clas-
sical approach is explained as loss integrability for Hamiltonian
systems and sensitive dependence on initial conditions. More-
over, the conventional indicators of classical chaos are intro-
duced, which due to their nature can be classified as qualitative
or quantitative tests. An introduction to the theory of periodic
orbits is also exposed, which is of fundamental interest for the
phenomenon of quantum scarring explained in Chapter 8. On
the other hand, the quantum approach is motivated with the
origin of chaos in classical systems and it is studied under the
formalism of the random matrix theory, which is the traditional
method to treat quantum chaos through statistical tests of spec-
tral fluctuations. In this regard, two main groups of indicators
of quantum chaos are introduced, static (conventional) and dy-
namical (unconventional) indicators.

3.1 Classical Chaos

The chaotic behavior arises in nonlinear dynamical systems and
is characterized by a strong sensitivity to small changes in ini-
tial conditions, such that, despite the deterministic nature of the
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dynamical systems, the solutions cannot be predicted at long
times [93–95]. The phenomenon of chaos is associated with loss
of integrability, since the solutions for regular systems can be
found from integrable equations. In this way, the chaotic behav-
ior lies between regular behavior characterized by deterministic
equations of motion and a state of unpredictable stochastic be-
havior characterized by complete randomness [96].

3.1.1 Integrability of Hamiltonian Systems

For conservative Hamiltonian systems with I degrees of free-
dom there is a Hamiltonian function H(q1, . . . , qI ; p1, . . . , pI) in-
dependent of time, where (qi, pi) are the canonical position-
momentum variables which satisfy the Hamilton’s equations of
motion [56,97]

q̇i =
∂H

∂pi
, (3.1)

ṗi = −
∂H

∂qi
, (3.2)

for i = 1, . . . , I. The integrability is defined by the existence of I
integrals of motion given by Eq. (2.10), whose Poisson brackets
vanish (see Eq. (2.11)). If the last conditions are achieved by the
Hamiltonian system, then it can be reduced to quadrature and it
is called integrable, since its solutions (trajectories) can be found
in closed form by integrating the equations of motion. The inte-
grability implies that the trajectories are constrained to remain
in an I-dimensional manifold in phase space, whose geometry is
equivalent to an invariant I-dimensional torus. The torus geom-
etry allows to exactly transform the integrable system in terms
of action-angle variables, where the actions are invariants of mo-
tion. The last feature has important repercussions, since the ge-
ometric constraints and uniqueness of solutions of the equations
of motion ensure that two near initial conditions will continue
asymptotically close to each other during their time evolution,
that is, an ensemble of initial conditions located in a small region
of phase space cannot explore the whole phase space [97].
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Kolmogorov-Arnold-Moser Theorem

The loss of integrability of a perturbed Hamiltonian system is
explained with the famous Kolmogorov-Arnold-Moser (KAM)
theorem [56, 93, 96, 98]. The method of proof for this theorem
was proposed by A. N. Kolmogorov in 1954 [99]; however, the
rigorous proofs were made independently by J. Moser and V. I.
Arnold some years later [100–102].

The KAM theorem takes into account a generic Hamiltonian
system with I degrees of freedom, which can be written in terms
of action-angle variables (Ji, θi) as follows [56,93,96]

H(J1, . . . , JI ; θ1, . . . , θI) =H0(J1, . . . , JI)+

+ εV (J1, . . . , JI ; θ1, . . . , θI), (3.3)

where H0 is integrable, V is a perturbing potential that breaks
the integrability of the system, and the strength of the pertur-
bation is controlled by the parameter ε. Basically, the KAM
theorem states that the motion of the perturbed system will re-
main confined to an I-dimensional torus when the perturbation
of the system is sufficiently small ε ≪ 1 and the normal fre-
quencies of the integrable system H0 are incommensurable (irra-
tional numbers). The last can be stated in other words, as the
strength of the perturbation increases, the integrability of the
system is gradually lost, such that, the invariant torus is gradu-
ally deformed and destroyed. As a result, the whole phase space
becomes connected and filled with chaotic trajectories when all
the invariant tori are destroyed [97].

3.1.2 Qualitative and Quantitative Indicators
of Chaos

Two basic tests are widely used to determine if Hamiltonian sys-
tems are chaotic or not. Qualitative tests are used to visualize
the loss of integrability in phase space, while quantitative tests
are used to measure the sensitive dependence on initial condi-
tions, which is a singular characteristic of chaotic systems [93,96].
While the nature of the tests can vary from one to another, the
essence is to determine specific characteristics that only arise in
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the chaotic motion. Thus, the last tests are widely recognized as
conventional indicators of chaos in Hamiltonian systems.

Poincaré Section

The Poincaré section, named after French mathematician and
physicist J. H. Poincaré, is a useful tool to identify visually
in phase space chaotic behavior of Hamiltonian systems [56,
72, 93, 94, 96, 97]. The Poincaré section is a global indicator of
chaos, since involves a complete scheme of the dynamics in phase
space [97]. The construction method is based by viewing the
phase space stroboscopically, such that, the motion is observed
periodically. The idea is to reduce the I-dimensional phase space
of a given Hamiltonian system by intersecting some trajectory
of the system with a plane (surface of section), obtaining as a
result an (I − 1)-dimensional map where the motion is caught
by points distributed in accord to some pattern. If the point
distribution resembles a well organized pattern, it is said that
the system is integrable and the motion is regular. On the other
hand, if the point distribution is spread over the map with any
identified pattern, then that translates into loss of integrability
of the system and the motion is chaotic. In Fig. 3.1 is shown a
schematic representation of a Poincaré section which shows the
intersections of a given trajectory with a selected plane.

Lyapunov Exponent

The Lyapunov exponent, named after Russian mathematician
and physicist A. M. Lyapunov, is a measure of the divergence
degree in phase space between two near initial conditions under
the action of the Hamiltonian evolution [56, 93, 94, 96, 97]. The
Lyapunov exponent is a local indicator of chaos which depends
on each point of phase space, contrary to the Poincaré section
which is a global indicator of chaos [97]. Early studies using the
Lyapunov exponent in dynamical systems were performed by V.
I. Oseledts in 1968 [103].

The Hamiltonian evolution of two initial conditions x1(0) and
x2(0) yield the trajectories x1(t) and x2(t) at an arbitrary time t,
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3.1. CLASSICAL CHAOS

Figure 3.1: Schematic representation of a Poincaré section for a given tra-
jectory (black solid line). A three-dimensional phase space is considered for
a hypothetical Hamiltonian system, which is reduced to a two-dimensional
map (Poincaré section) when it is intersected with the plane K, where the
crossings of the trajectory (black dots) can be seen at different times as a
dot distribution. Figure taken from Ref. [93].
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where the separation between them at the same time is given by
∆(t) = x2(t)−x1(t). For a Hamiltonian system with I degrees of
freedom the norm of the separation between two near trajectories
provides a measure of their divergence

||∆(t)|| =

√√√√ I∑
i=1

δx2i (t), (3.4)

where δxi is the variation to first order with respect to a given
reference trajectory [97,104]. The sensitive dependence on initial
conditions is attained if the divergence between both trajectories
grows exponentially

||∆(t)|| ∼ eλt||∆(0)||, (3.5)

where λ > 0 identifies the Lyapunov exponent. In Fig. 3.2 is
shown a schematic representation of the divergence between two
near trajectories when time grows.

From the last relation can be defined the Lyapunov exponent,
taking a double limit, in the following way

λ = lim
t→+∞

lim
||∆(0)||→0

1

t
ln

(
||∆(t)||
||∆(0)||

)
. (3.6)

Nevertheless, there are 2I orthogonal directions for a Hamil-
tonian system with I degrees of freedom yielding a set of 2I
Lyapunov exponents {λ1, . . . , λ2I} corresponding to each direc-
tion, which satisfy the symmetry constraint λi = −λ2I−i+1 for
i = 1, . . . , 2I.

For regular motion, all Lyapunov exponents are zero, since
the divergence only grows linearly. Thus, a value λ = 0 implies
regular motion for systems that preserve the phase space volume,
while a value λ > 0 indicates that the motion is chaotic [56, 97,
104]. The positive Lyapunov exponent must be found everywhere
in phase space to link it with chaotic motion, since isolated unsta-
ble points also show positive Lyapunov exponent. The methods
to calculate all the Lyapunov exponents of Hamiltonian systems
numerically could be quite complicated and challenging. A detail
explanation on how to calculate Lyapunov exponents is given in
Refs. [105,106].
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Figure 3.2: Schematic representation of the divergence between two near
trajectories x1(t) and x2(t). The Hamiltonian evolution of two initial con-
ditions x1(0) and x2(0) yield the latter trajectories which separate expo-
nentially as time grows. Figure taken from Ref. [93].

KS Entropy

Another quantitative measure of chaos related with the Lya-
punov exponent is the Krylov-Kolmogorov-Sinai (KS) entropy,
which is a measure of the hyperbolic instability in the relative
motion of trajectories in phase space [56,107]. The last measure
was first used by N. S. Krylov in studies of statistical properties
of mechanical systems, later was introduced in the ergodic the-
ory by A. N. Kolmogorov, and finally it was connected with local
instability of motion by Ya. G. Sinai [107]. If the KS entropy for
a flow of trajectories in a given region of phase space is positive,
that implies chaotic motion. On the other hand, the KS entropy
of a single connected stochastic region is equal to the sum of the
positive Lyapunov exponents. The last relation was established
by Ya. B. Pesin in 1977 [108].

For a Hamiltonian system with I degrees of freedom the KS
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entropy can be is defined in the following way [56,109]

SKS(E) =

∫
ΓE

dvE s(q), (3.7)

where ΓE is a compact surface of constant energy, dvE is an
invariant volume element of the energy surface and

s(x) =

I−1∑
i=1

λi(q) (3.8)

is the KS-entropy density, where λi(q) are the Lyapunov expo-
nents defined in a region of phase space on the energy surface.

3.1.3 Theory of Periodic Orbits

Periodic orbits are solutions of the equations of motion for a
dynamical system that return to their initial conditions after a
finite time called period. J. H. Poincaré was the first to suggest
that the study of periodic orbits would clarify the overall be-
havior of mechanical systems, since they are densely distributed
among all possible classical trajectories [72]. With the birth of
quantum mechanics the study of periodic orbits became a fun-
damental topic for the understanding of the classical-quantum
correspondence or how the classical limit emerges from the quan-
tum domain as ℏ → 0 [72, 97]. Among the popular proposals
to link both domains is the Bohr-Sommerfeld quantization con-
dition used to obtain eigenvalues from integrable classical sys-
tems. Another proposal is the Einstein-Brillouin-Keller (EBK)
quantization condition, which is an improvement of the Bohr-
Sommerfeld quantization condition and also provides an estimate
of the eingevalues from integrable classical systems [110]. For a
system with I degrees of freedom with position-momentum vari-
ables (qi, pi), the EBK quantization condition consists in com-
pute the path integrals of pi over the periodic orbits of qi and is
given by ∮

dqipi = 2πℏ
(
ni +

µi

4

)
, (3.9)

32



3.1. CLASSICAL CHAOS

for i = 1, . . . , I, where ni is an integer quantum number and µi is
a Maslov index which represents the number of classical turning
points in the trajectory of qi.

Gutzwiller Trace Formula

The idea of describing non-integrable systems was suggested by
A. Einstein in 1917 [111]. Nevertheless, the formal periodic orbit
theory was developed many years later by M. C. Gutzwiller to
treat chaotic systems [72,112–116]. The treatment to reconstruct
the energy spectra of a given quantum system using only param-
eters of the classical system was achieved with the Gutzwiller
trace formula. This formula connects the density of states of
the quantum system with classical parameters of the periodic
orbits, as the stability exponent and the classical action. The
explicit formula comes from taking the trace of the classical ap-
proximation to the Green’s function G(q,q′, E), where q and q′

is a starting and an end position, respectively. The trace of the
Green’s function contains explicit information about the eigen-
values of a quantum system and can define its density of states.
Moreover, the trace is taken in the same starting and end point
q = q′ over all phase space and it is evaluated under the station-
ary phase approximation, which provides the condition p = p′

for the starting and end momentum. The last condition implies
that the trajectory is closed and it is a periodic orbit [72,116]. In
Appendix E is shown the derivation of the trace of the Green’s
function. The classical approximation of the Green’s function
G̃(q,q′, E) can be written as a sum of periodic orbits and its
trace defines approximately the density of states of the quantum
system [72,115,116]

ν(E) ≈ Tr[G̃(q,q, E)]

≈
∫
dIq G̃(q,q, E)

≈
∑
o

Aoe
i[So(E)/ℏ−πµo/2], (3.10)
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where I are the degrees of freedom of the classical system and

Ao =
T0
2iℏ

[
1

sinh(χ/2)
,

1

cosh(χ/2)

]
(3.11)

is a coefficient that depends on the primitive period of the pe-
riodic orbit T0 and the stability exponent χ (the first coefficient
defines an hyperbolic periodic orbit and the second one an in-
verse hyperbolic periodic orbit). The classical action So(E) =∫ q′

q
dq · p is taken over each periodic orbit and µo counts the

conjugate points at constant energy between q and q′.
Although the Gutzwiller trace formula seems simple at first

sight, it is quite complicated and challenging to perform the sums
in chaotic systems, since the knowledge of the classical trajecto-
ries is too poor. Nevertheless, it is expected that this formula
provides an approximate spectrum for the energy eigenvalues
of these chaotic system [72, 116]. Later studies based in the
idea of recovering quantum information from classical informa-
tion have proposed schemes to reconstruct chaotic eigenfunctions
using only few sets of periodic orbits [117].

3.2 Quantum Chaos

The concept of quantum chaos comes from its classical counter-
part, that is, the necessity to characterize the chaotic behavior
which arises in quantum systems, with respect to the chaotic
behavior in classical systems [72, 93, 95, 118, 119]. Nevertheless,
the quantum mechanical formalism implies a different treatment
of chaos in such systems. On the one hand, the fundamental
equation of quantum mechanics, the Schrödinger equation, is a
linear equation. This fact is contrary to the classical counterpart,
where the core feature is the nonlinearities of the classical equa-
tions of motion which originate the chaotic behavior [56,95,119].
In addition, the concepts of trajectory and phase space are not
well defined in quantum mechanics, since the Heisenberg’s uncer-
tainty principle says that it is impossible to know simultaneously
position and momentum of a quantum particle [56,118,120]. Al-
though a key step is to use quasiprobability distributions, which
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possess certain similarity with classical phase-space distribution
functions, in the way of expressing the quantum averages with re-
spect to the classical ones [120]. Thus, the concept of phase space
in quantum mechanics can be defined acceptably. On the other
hand, the correspondence principle demands that in the classi-
cal limit, when the de Broglie’s wavelength is smaller than the
characteristic lengths of the system, quantum mechanics should
become classical mechanics [93,119].

As a result, the chaotic behavior present in quantum sys-
tems must be studied in a different way, to such an extent that
some authors have proposed to use the term quantum chaol-
ogy instead of quantum chaos [121, 122]. For quantum systems
with discrete energy spectra, the dynamics is characterized by
quasiperiodicities or recurrences, instead of trajectories as oc-
curs in the classical dynamics. This allows to define a criterion
which can identify chaotic from regular behavior and it is based
on energy spectra or in the evolution of some observables of the
quantum system [123].

3.2.1 Random Matrix Theory

Originally, the Random Matrix Theory (RMT) was developed by
E. P. Wigner to characterize the statistical properties of energy
spectra of complex quantum many-body systems [95, 119, 123–
131]. Thus, the system Hamiltonians were replaced by ensembles
of Hamiltonians with random components, where the assumption
was the ability to describe generic properties [129, 131]. In this
way, the RTM was widely used to describe the properties of spec-
tral fluctuations of atomic nuclei, complex atoms, and complex
molecules [131–133]. Under this formalism, the basic idea is to
generate the Hamiltonian matrix components randomly. Thus,
E. P. Wigner and F. J. Dyson using some tools from group the-
ory, showed that these Hamiltonian matrices are classified in
three generic ensembles, defined by the symmetry properties of
the Hamiltonian [124–126,134]:

1. For time-reversal invariant systems with rotational symme-
try, the Hamiltonian matrix is real and symmetric Hii′ =
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Hi′i = H∗
ii′ . Time-reversal invariant systems with integer

spin and broken rotational symmetry also belong to this
ensemble.

2. For systems where the time-reversal invariance is broken,
the Hamiltonian matrix is Hermitian Hii′ = (Ĥ†)ii′ .

3. For time-reversal invariant systems with half-integer spin
and broken rotational symmetry, the Hamiltonian matrix
can be written in terms of quaternions or the Pauli matri-

ces σn with n = 1, 2, 3, that is, H
(0)
ii′ 12 − i

∑3
n=1H

(n)
ii′ σn,

where H
(0)
ii′ is real and symmetric, while H

(n)
ii′ are real and

asymmetric.

For each of the above cases a probability distribution is de-
fined with Gaussian shape

PN,β(Ĥ) ∝ e−
βN

λ2 Tr(Ĥ2), (3.12)

where N is the dimension of the Hamiltonian matrix, λ is a
dimension-independent constant which ensures that the ensem-
ble spectrum stay bounded in the limit N →∞. Moreover, the
value of the constant β (β = 1, 2, 4) defines the three possible
cases with real, complex, and quaternion elements, respectively.
In this way, the symmetry properties of the Hamiltonian matri-
ces and the probability distributions PN,β(Ĥ) in each case, stay
invariant under orthogonal, unitary, and symplectic transforma-
tions. With the latter properties in mind, the characteristic en-
sembles of random matrices are classified in three main groups
called by F. J. Dyson: Gaussian Orthogonal Ensemble (GOE),
Gaussian Unitary Ensemble (GUE), and Gaussian Symplectic
Ensemble (GSE), respectively [124–126,129].

3.2.2 Static Indicators of Chaos

In 1984 O. Bohigas, M. J. Giannoni, and C. Schmidt showed
that the spectral fluctuations of quantum systems whose classi-
cal limit is chaotic coincide with those of the GOE from RMT,
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conjecturing that these fluctuations are universal [135]. The lat-
ter is known as the Bohigas-Giannoni-Schmit conjecture. Un-
der this framework, the traditional study of quantum chaos is
performed through the statistical analysis of quantum spectral
fluctuations. Basically, there are two conventional spectral tests
which study short and long range spectral correlations. These
tests from RMT play the role of indicators of chaos in quan-
tum systems. Both short and long range spectral tests have
been widely explored in different quantum systems [136–143].
Furthermore, in Appendix F is shown the unfolding procedure,
which is an essential tool applied to the energy spectra before
performing the spectral tests.

Nearest-Neighbor Spacing Distribution

The Nearest-Neighbor Spacing (NNS) distribution identifies the
probability distribution for the energy spectra of quantum sys-
tems [95,119,123–126,129,131]. It is the standard test to study
short-range spectral correlations, since few spacings between en-
ergy levels are involved on average. In this way, a spacing be-
tween adjacent (nearest-neighbor) energy levels is given by S =
En+1−En, such that, the dimensionless variable s = S/D can be
defined, where D = ⟨S⟩ is the mean level spacing. Thus, P (s)
identifies the level-spacing probability density function, which
along with its first moment satisfy the normalization condition∫ +∞

0

dsP (s) = 1, (3.13)∫ +∞

0

ds sP (s) = 1. (3.14)

Additionally, a useful tool to verify the agreement between the
analytical function P (s) and experimental or numerical data is
the level-spacing cumulative distribution function

F (s) =

∫ s

0

ds′P (s′), (3.15)

which is independent of spacing effects.

37



CHAPTER 3. CHAOS THEORY

Typically, for integrable quantum systems whose classical
limit is regular, the NNS distribution is a Poisson distribution

PP(s) = e−s. (3.16)

On the other hand, for a great quantity of non-integrable quan-
tum systems whose Hamiltonian satisfy the time-reversal invari-
ance and whose classical limit is chaotic, the NNS distribution
shows an agreement with the GOE predictions from RMT. That
is, the typical NNS distribution is the Wigner-Dyson surmise

PWD(s) =
π

2
s e−

π
4 s2 . (3.17)

This distribution was proposed by E. P. Wigner as an approxi-
mation when the experimental evidence did not agree with the-
ory [129, 131]. Mathematically, the most general expression of
this surmise takes into account the three Gaussian ensembles
(GOE, GUE, GSE)

Pβ(s) = aβs
βe−bβs

2

, (3.18)

where

aβ = 2
Γβ+1

(
β+2
2

)
Γβ+2

(
β+1
2

) , (3.19)

bβ =
Γ2
(

β+2
2

)
Γ2
(

β+1
2

) , (3.20)

and

Γ(z) =

∫ +∞

0

dx e−xxz−1 (3.21)

is the gamma function with ℜ[z] > 0. The parameter β = 1, 2, 4
identifies the respective Gaussian ensembles (GOE, GUE, GSE),
whose explicit coefficients are given by

[(a1, a2, a4), (b1, b2, b4)] =

[(
π

2
,
32

π2
,
218

36π3

)
,

(
π

4
,
4

π
,
64

9π

)]
.

(3.22)
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In Fig. 3.3 is shown the Poisson distribution (3.16), as well as
the generalized Wigner-Dyson distribution (3.18) for the three
Gaussian ensembles (GOE, GUE, GSE).

0 1 2 3 4 5
0.0

0.6

1.2

Figure 3.3: Poisson distribution (3.16) and generalized Wigner-Dyson
distribution (3.18) for the Gaussian ensembles (GOE, GUE, GSE).

Another well-known distribution, which interpolates between
the Poisson and Wigner-Dyson distributions, was proposed by T.
A. Brody in 1973 and is known as the Brody distribution [130,
144]

Pυ(s) = A(υ)sυe−α(υ)sυ+1

, (3.23)

where

A(υ) = (υ + 1)α(υ), (3.24)

α(υ) = Γυ+1

(
υ + 2

υ + 1

)
, (3.25)

and the parameter υ quantifies the level-repulsion degree and
it is found by a least squares data fitting method. Therefore,
the boundary case υ = 0 (υ = 1) defines the Poisson (Wigner-
Dyson) distribution. Although the Brody distribution is able to
characterize the NNS distribution of an energy spectrum between
Poisson and Wigner-Dyson by varying the parameter υ, some
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authors have argued that it is just an empirical expression and
that the parameter υ has no definite physical meaning [119,145].

Level Number Variance and Spectral Rigidity

The long-range spectral correlations are typically studied using
the level number variance [95,119,123,127,131,146], given by

Σ2(L) = ⟨η2(L,Es)⟩ − ⟨η(L,Es)⟩2, (3.26)

where the function η(L,Es) counts the number of levels con-
tained within the energy interval [Es, Es + L], and ⟨•⟩ denotes
the average over the initial point Es.

For the Poisson distribution is found

Σ2
P(L) = L, (3.27)

while the Gaussian ensembles (GOE, GUE, GSE) with β = 1, 2, 4
have the following approximations valid until order L−1

Σ2
1(L) =

2

π2

[
ln(2πL) + γ + 1− π2

8

]
+O(L−1), (3.28)

Σ2
2(L) =

1

π2
[ln(2πL) + γ + 1] +O(L−1), (3.29)

Σ2
4(L) =

1

2π2

[
ln(4πL) + γ + 1 +

π2

8

]
+O(L−1), (3.30)

where

γ = lim
n→+∞

[
n∑

k=1

1

k
− ln(n)

]
≈ 0.5772 (3.31)

is the Euler-Mascheroni constant.
Another known test to study long-range spectral correla-

tions, which is closely related with the level number variance,
is the spectral rigidity, first introduced by F. J. Dyson and M. L.
Mehta [95, 119, 127, 131, 146]. The spectral rigidity is defined as
the least squares deviation of the function y = η(E) to the best
fit to a straight line y = AE +B

∆3(L) = min
A,B

〈
1

L

∫ Es+L

Es

dE [η(E)−AE −B]
2

〉
, (3.32)
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where ⟨•⟩ denotes the average over the initial point Es.
For the Poisson distribution is found

∆3,P(L) =
L

15
, (3.33)

while the Gaussian ensembles (GOE, GUE, GSE) with β =
1, 2, 4, analogously to the level number variance, have the fol-
lowing approximations valid until order L−1.

∆3,1(L) =
1

π2

[
ln(2πL) + γ − 5

4
− π2

8

]
+O(L−1), (3.34)

∆3,2(L) =
1

2π2

[
ln(2πL) + γ − 5

4

]
+O(L−1), (3.35)

∆3,4(L) =
1

4π2

[
ln(4πL) + γ − 5

4
+
π2

8

]
+O(L−1), (3.36)

where the Euler-Mascheroni constant γ is given by Eq. (3.31).
In Fig. 3.4 is shown the level number variance for the Pois-

son distribution (3.27), as well as the approximations (3.28)-
(3.30) for the Gaussian ensembles (GOE, GUE, GSE). Likewise,
in Fig. 3.4 are shown the spectral rigidity for the Poisson distribu-
tion (3.33) and the approximations (3.34)-(3.36) for the Gaussian
ensembles (GOE, GUE, GSE).

3.2.3 Dynamical Indicators of Chaos

The conventional tests of quantum chaos study the energy spec-
tra of quantum systems. Basically, with the available data a
spectral function is constructed and subsequently the short and
long-range spectral tests (NNS distribution, level number vari-
ance, and spectral rigidity) are applied. However, all these chaos
indicators are static, since any time evolution is involved. In this
regard, it has been proposed to study quantum chaos through
transformations which relate energy and time, generating this
way unconventional dynamical indicators of quantum chaos based
on spectral correlations. The observation of avoided crossings
between energy levels or level repulsion is due basically to cor-
relations between these levels [95, 119, 123, 131]. Level repulsion
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Figure 3.4: Level number variance (3.26) (a) and spectral rigidity (3.32)
(b) for the Poisson distribution and approximations of order L−1 for the
Gaussian ensembles (GOE, GUE, GSE). In panel (a) see Eqs. (3.27)-(3.30).
In panel (b) see Eqs. (3.33)-(3.36).
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was verified in a study made by E. P. Wigner where statistical
properties of nuclear spectra were analyzed [132]. Thus, there are
some quantum quantities capable of capturing effects of spectral
correlations and manifest them in its dynamics. On the other
hand, in recent years have been proposed quantifiers of quantum
chaos, that is, in a rough way has been proposed a quantum
analog of a classical Lyapunov exponent.

Correlation Hole

In 1986 L. Leviandier et al. proposed an alternative procedure
to study chaos in quantum systems [31]. The method was based
in using the Fourier transform of the available spectral data and
to generate a time-dependent function, say f(t). This procedure
was proposed arguing that the conventional spectral analysis can
be questionable, since there could be a great number of levels lost
in the noise or in unresolved mixtures. The latter affects directly
the NNS test by reducing the number of small spacings, which
is the most important difference between the Poisson (random
decoupled levels) and Wigner-Dyson (strongly coupled levels)
distributions [31,131].

Thereby, the interpretation of experimental spectral data us-
ing the Fourier transform method implies a series of steps. Typ-
ically, is calculated the average ⟨|f(t)|2⟩ for a spectral ensemble.
The average ⟨•⟩ is based in the fact that the function |f(t)|2
comes from the Fourier transform of a simple spectrum and ex-
hibits a lot of fluctuations. Thus, to recover the useful infor-
mation, these fluctuations need to be reduced by some kind of
ensemble average (several level sequences considered as equiva-
lent) or time average as well [31, 131]. Generally, the quantity
⟨|f(t)|2⟩ has two components, a “fast” component related with
the envelope of the energy spectrum, and a “slow” component
related with the system saturation. All the previous features
characterize globally the time evolution of the function ⟨|f(t)|2⟩;
however, it can capture effects related with spectral correlations
at intermediate times. Specifically, the presence of these energy
level correlations arises as a hole in the time evolution, which
is called correlation hole and works as a dynamical indicator of
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chaos in quantum systems [31]. This indicator has been widely
studied in several quantum systems, among them, random ma-
trices, quantum billiards, molecules, spin and dispersion systems,
and others [31,147–166].

Quantum Lyapunov Exponent

A controversial quantum indicator of chaos, which was very pop-
ular when it was proposed, is the Out-of-Time-Ordered Corre-
lator (OTOC) [11, 167–172]. The popularity of the OTOC was
based in the fact that it had been identified as a “quantum Lya-
punov exponent”, since in the semiclassical limit ℏ→ 0 its expo-
nential growth ratio resembles that of a classical Lyapunov expo-
nent. Nevertheless, some authors have shown that the short-time
exponential growth of the OTOC is not a universal signature of
chaos, since it can emerge also near critical points [13,173–176].
The OTOC measures the degree of non-commutativity in time
between two quantum operators

C(t) = −⟨[Ŵ (t), V̂ (0)]2⟩, (3.37)

where Ŵ (t) = eiĤtŴe−iĤt and V̂ (t) = eiĤtV̂ e−iĤt are time
evolved operators in the Heisenberg picture, and ⟨•⟩ is a thermal
average. A particular case of the OTOC is given by

CF (t) = ⟨Ŵ (t)†V̂ †Ŵ (t)V̂ ⟩
∝ σ2

O(t), (3.38)

where Ŵ = eiδϕÔ with δϕ≪ 1, Ô is an Hermitian operator with
variance σ2

O(t) = ⟨Ô2(t)⟩ − ⟨Ô(t)⟩2, and V̂ = |Ψ(0)⟩⟨Ψ(0)| is the
projector of an arbitrary initial state |Ψ(0)⟩. An OTOC with
the latter properties is known as Fidelity Out-of-Time Ordered
Correlator (FOTOC) [13,177].

44



Chapter 4

Spectral Correlations

In this Chapter are exposed the correlation functions and their
relation with the two-level form factor, which determines the be-
havior of the correlation hole exposed in Chapter 3 as an uncon-
ventional dynamical indicator of quantum chaos. Furthermore,
the survival probability is introduced as a quantum observable
able to detect spectral correlations in its time evolution, where
the correlation hole appears. The definition and properties of
this dynamical quantity are exposed, as well as its explicit rela-
tion with the two-level form factor through an analytical expres-
sion.

4.1 Correlation Functions

A spectral ensemble is defined with a probability distribution
PN (x1, . . . , xN ), where each spectrum has N energy levels xn
for n = 1, . . . , N . For the Gaussian ensembles (GOE, GUE,
GSE) with β = 1, 2, 4, the explicit probability distribution is
given by [131,146] (see Appendix G.1 for the GOE)

PN,β(x1, . . . , xN ) = CN,βe
− β

2

∑N
n=1 x2

n

∏
n<m

|xn − xm|β , (4.1)
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where

CN,β =
βN/2+βN(N−1)/4ΓN

(
1 + β

2

)
(2π)N/2

∏N
n=1 Γ

(
1 + βn

2

) , (4.2)

is a normalization constant, such that∫ +∞

−∞
. . .

∫ +∞

−∞
dx1 . . . dxNPN,β(x1, . . . , xN ) = 1, (4.3)

and Γ is the Gamma function given by Eq. (3.21).
The correlation functions describe correlations between en-

ergy levels. An n-level correlation function is defined as [124–
126,131,146]

Rn(x1, . . . , xn) =
N !

(N − n)!
Pn(x1, . . . , xn), (4.4)

which is normalized to the factor N !/(N − n)!, and where

Pn(x1, . . . , xn) =

∫ +∞

−∞
. . .

∫ +∞

−∞
dxn+1 . . . dxNPN (x1, . . . , xN ).

(4.5)
The n-level correlation function is interpreted as the probabil-
ity density to find an energy level around each of the positions
{x1, . . . , xn}, when the positions of the remaining levels are not
observed. The case n = 1 gives the generalized level density
R1(x1); however, when n > 1, each function Rn(x1, . . . , xn) con-
tains mixed terms, which describe the grouping of n levels into
several subgroups or clusters. For this reason, it is useful to de-
fine a cumulative n-level correlation function or n-level cluster
function given by

Tn(x1, . . . , xn) =
∑
m=G

(−1)n−m(m− 1)!

m∏
k=1

RGk
(xi), (4.6)

where i is contained in Gk, and G represents any division of the
indices {1, . . . , n} in m subgroups {G1, . . . , Gm}. That is

T1(x1) = R1(x1), (4.7)

T2(x1, x2) = −R2(x1, x2) +R1(x1)R1(x2), (4.8)
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and so on. Thus, the n-level correlation function (4.4) can be
written as

Rn(x1, . . . , xn) =
∑
m=G

(−1)n−m
m∏

k=1

TGk
(xi), (4.9)

with i contained in Gk.

The cluster functions are the best option for experimental
verifications [146]. In such cases, it is required to measure energy
in units of mean level spacing D, and the scaled variables yi =
xi/D can be defined when the limit N → ∞ is taken. These
scaled variables conform a statistical model for an infinite series
of energy levels whose mean level spacing is unity D = 1. Thus,
the latter scaling defines the scaled n-level cluster function

Yn(y1, . . . , yn) = lim
N→+∞

DnTn(x1, . . . , xn). (4.10)

On the other hand, an n-level form factor can be defined as
the Fourier transform of the scaled n-level cluster function

bn(k1, . . . , kn) =
Ỹn(k1, . . . , kn)

δ(k1 + . . .+ kn)
, (4.11)

where δ is the Dirac delta function given by Eq. (C.14), and

Ỹn(k1, . . . , kn) =

∫ +∞

−∞
. . .

∫ +∞

−∞
dy1 . . . dynYn(y1, . . . , yn)×

× e2πi
∑n

i=1 kiyi . (4.12)

The term Yn(y1, . . . , yn) depends only on the differences between
the variables yi, that is, rii′ = |yi − yi′ |.

4.1.1 Two-Level Form Factor

The two-level form factor plays an important role, since some
properties of the distributions of energy levels, as mean squared
values, depend explicitly on it [146]. Furthermore, for quantum
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systems which exhibit chaos using the correlation hole as dynam-
ical indicator, the analytical behavior of the correlation hole is
governed approximately by the function

c2(t) = 1− b2(t), (4.13)

where b2(t) is the two-level form factor of the GOE from RMT.
The two-level form factor is given by the Fourier transform

of the scaled two-level cluster function Y2(r)

b2(t) =

∫ +∞

−∞
dr Y2(r)e

2πirt, (4.14)

where r = |y1 − y2|. For the Poisson distribution

b2,P(t) = 0, (4.15)

and for the Gaussian ensembles (GOE, GUE, GSE) with β =
1, 2, 4, it is found (see Appendix G.2 for the GOE)

b2,1(t) =

{
1− 2|t|+ |t| ln(2|t|+ 1) if |t| ≤ 1

−1 + |t| ln
(

2|t|+1
2|t|−1

)
if |t| > 1

, (4.16)

b2,2(t) =

{
1− |t| if |t| ≤ 1
0 if |t| > 1

, (4.17)

b2,4(t) =

{
1− 1

2 |t|+
1
4 |t| ln |(|t| − 1)| if |t| ≤ 2

0 if |t| > 2
. (4.18)

In addition, the scaled two-level cluster function Y2(r) defines
the two-level correlation function as

R2(r) = 1− Y2(r), (4.19)

where r = |y1 − y2|. For the Poisson distribution the scaled
two-level cluster function is given by

Y2,P(r) = 0, (4.20)

while for the Gaussian ensembles (GOE, GUE, GSE) with β =
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1, 2, 4, is given by the following expressions

Y2,1(r) = s2(r) +
ds(r)

dr

∫ +∞

r

dr′s(r′), (4.21)

Y2,2(r) = s2(r), (4.22)

Y2,4(r) = s2(2r)− ds(2r)

dr

∫ r

0

dr′s(2r′), (4.23)

where s(r) = sin(πr)/(πr) is the sinc function.
In Fig. 4.1 is shown the correlation-hole function (4.13) and

the two-level correlation function(4.19) for the Gaussian ensem-
bles (GOE, GUE, GSE).

4.2 Survival Probability

Observables of quantum systems which evolve in time are known
as dynamical quantities. Some of these quantities can capture
signals of quantum chaos and identify the time scales where this
happens. A well-known dynamical quantity is the survival prob-
ability, first studied in the context of the decay theory of qua-
sistationary states [178]. The survival probability is also known
as fidelity or Loschmidt echo [179–185], and has been experi-
mentally verified [186–189], where the time measurement scales
are about ∼ 10−6 s (1 µs, microsecond) [186, 187]. The survival
probability is directly related with energy spectra and can be
seen as the Fourier transform of these spectra. This feature al-
lows it manifests spectral correlations in its time evolution, and
as a result, the correlation hole can be determined.

The survival probability is defined as the probability to find
a quantum system in its initial state at a later time. The initial
state |Ψ⟩ = |Ψ(0)⟩ can be expanded in terms of the eigenbasis
{|ϕn⟩} with dimension N of a given Hamiltonian Ĥ

|Ψ(0)⟩ =
N∑

n=1

cn|ϕn⟩, (4.24)

such that, the eigenvalue equation Ĥ|ϕn⟩ = En|ϕn⟩ is satisfied
and the coefficients are given by cn = ⟨ϕn|Ψ(0)⟩. Moreover,
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Figure 4.1: Correlation-hole function (4.13) (a) and two-level correlation
function (4.19) (b) for the Gaussian ensembles (GOE, GUE, GSE).
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the time evolution of the initial state can be found from the
expression

|Ψ(t)⟩ = Û(t)|Ψ(0)⟩

= e−iĤt|Ψ(0)⟩, (4.25)

where Û(t) = e−iĤt (setting ℏ = 1) defines the unitary time evo-
lution operator. Thus, the survival probability can be expressed
as

SP (t) = |⟨Ψ(0)|Ψ(t)⟩|2

= |⟨Ψ(0)|e−iĤt|Ψ(0)⟩|2

= |C0(t)|2, (4.26)

where its amplitude is given by

C0(t) =

N∑
n=1

|cn|2e−iEnt

= F{ρ0(E)}

=

∫ +∞

−∞
dE ρ0(E)e−iEt, (4.27)

and from them, is recognized the function

ρ0(E) =

N∑
n=1

|cn|2δ(E − En), (4.28)

known as the Local Density of States (LDoS) or strength func-
tion, which is the energy distribution weighted by the squared
absolute value of the coefficients |cn|2. The term δ is the Dirac
delta function given by Eq. (C.14). Thus, the survival probabil-
ity is interpreted as the squared norm of the Fourier transform of
the LDoS, or in other words, the Fourier transform of a spectral
function. The LDoS structure affects the dynamics of the sur-
vival probability at different time scales [163, 166, 190, 191], and
for that reason, a smoothed version of the LDoS helps to reveal
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such effects. A typical procedure consists of defining a smoothed
LDoS through a finite time resolution function given by

ρT (E) =
T

π

N∑
n=1

|cn|2sinc[T (E − En)], (4.29)

where sinc(x) = sin(x)/x is the sinc function and the time reso-
lution T = π/∆ reflects LDoS aspects of order ∆ in energy.

An alternative way to write the survival probability is sepa-
rating the diagonal from the non-diagonal terms, as follows

SP (t) =

N∑
n ̸=n′=1

|cn|2|cn′ |2e−i(En−En′ )t +

N∑
n=1

|cn|4, (4.30)

where the inverse of the last term, taking |Ψ⟩ = |Ψ(0)⟩, defines
the generalized expression

PR =

(
N∑

n=1

|⟨ϕn|Ψ⟩|4
)−1

∈ [1, N ], (4.31)

known as participation ratio. This quantity is a localization mea-
sure of an arbitrary quantum state |Ψ⟩ in a given orthonormal
basis {|ϕn⟩} with dimension N , which can be an eigenbasis or
any arbitrary orthonormal basis. The term |⟨ϕn|Ψ⟩|2 defines
the probability to find the arbitrary state |Ψ⟩ in the basis state
|ϕn⟩. The limit value PR = 1 implies that the arbitrary state is
identical to a single basis state |Ψ⟩ = |ϕn⟩ and defines a max-
imally localized state in the orthonormal basis, while the other
one PR = N implies that the arbitrary state is equally spread
in all basis states |⟨ϕn|Ψ⟩| = 1/

√
N and defines a maximally

delocalized or spread state in the orthonormal basis.
The survival probability shows characteristic behaviors in its

dynamics at different time scales. At very short times t≪ σ−1
0 ,

is found a universal quadratic behavior [187] given by

SP (t≪ σ−1
0 ) ≈ 1− σ2

0t
2, (4.32)

where σ0 is the standard deviation of the Hamiltonian Ĥ under
the initial state |Ψ(0)⟩ (see Appendix H.1 for a full derivation of
the last expression).
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At short times, the survival probability shows an initial decay,
which is determined by the LDoS envelope, say ρ(E) [192–194].
Thus, taking the approximation ρ0(E) ≈ ρ(E) in Eq. (4.26), is
found

Sst
P (t) = |C(t)|2, (4.33)

where the amplitude is given by

C(t) = F{ρ(E)}

=

∫ +∞

−∞
dE ρ(E)e−iEt. (4.34)

After the initial decay, the survival probability can develop a
power law decay, which is associated to border effects of the
LDoS envelope [190,191].

At long times, the survival probability saturates to an asymp-
totic value, given by its infinite time average

S∞
P = lim

t→+∞

1

t

∫ t

0

dt′SP (t
′), (4.35)

which equals the inverse of the participation ratio, S∞
P = P−1

R ,
when there are no degeneracies in the energy spectrum.

4.2.1 Correlation Hole

Generally, the correlation hole arises in the time evolution of the
survival probability at intermediate times. Its analytical behav-
ior is well described by Eq. (4.13), which incorporates the two-
level form factor of the GOE from RMT. The explicit relation
between the GOE and the survival probability implies universal
behaviors coming from RMT, which will develop from intermedi-
ate times to long times in its time evolution. On the other hand,
at short times the time evolution shows specific behaviors, since
the initial decay depends on the choice of the initial state.

In Appendix H.2 is shown a complete derivation of the sur-
vival probability which incorporate the two-level form factor of
the GOE, and which is valid in the whole time scale. The explicit
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expression is given by

⟨SP (t)⟩ =
1−

〈
1
PR

〉
η − 1

[
ηSst

P (t)− b2
(
Dt

2π

)]
+

〈
1

PR

〉
, (4.36)

where ⟨•⟩ defines an ensemble average, η is an effective dimension
that depends on the ensemble of initial states, the two-level form
factor of the GOE is given by Eq. (4.16) and was renamed as b2,
D is the mean level spacing, the PR and survival probability at
short times are given by Eqs. (4.31) and (4.33), respectively.
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Chapter 5

Phase Space
Representation

In this Chapter is exposed the use of coherent states to cre-
ate a connection between classical and quantum mechanics, be-
ing these the states that minimize the Heisenberg’s uncertainty
principle. The definitions and properties of the Glauber (field)
coherent states and their extension, the Bloch (spin) coherent
states, are reviewed. On the other hand, the phase space repre-
sentation of quantum states is exposed through the quasiproba-
bility distributions based in the overcomplete basis of coherent
states. Three main quasiprobability distributions are exposed,
the Glauber-Sudarshan, Wigner, and Husimi functions, as well
as their representation using characteristic functions.

5.1 Coherent States

The coherent states were first introduced by E. Schrödinger in
1926 [63,195,196] without a defined name, while he was searching
solutions that satisfy the Heisenberg’s uncertainty principle. In
1963, these states were studied by R. J. Glauber and E. C. G.
Sudarshan [196–201], and later popularized by R. J. Glauber
as coherent states. Because of this, they are commonly known
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as Glauber coherent states or field coherent states, since they
are states of the quantum harmonic oscillator whose dynamics
resembles the behavior of the classical harmonic oscillator. In
this sense, the coherent states were thought as a special kind
of quantum states that can create connections between classical
and quantum mechanics.

5.1.1 Glauber Coherent States

The Glauber coherent states can be defined as normalized eigen-
states of the annihilation operator

â|α⟩ = α|α⟩, (5.1)

where α ∈ C is the coherent state parameter. Thus, the expec-
tation values of the creation-annihilation operators under these
coherent states can be easily obtained as

⟨α|â†|α⟩ = α∗, (5.2)

⟨α|â|α⟩ = α. (5.3)

In addition, these coherent states has an explicit representation
in the Fock basis {|n⟩} as

|α⟩ = e−|α|2/2
∞∑

n=0

αn

√
n!
|n⟩. (5.4)

The last feature suggests that the Glauber coherent states can
be considered as generating functions of Fock sates

|n⟩ = 1√
n!

dn(e|α|
2/2|α⟩)

dαn

∣∣∣∣∣
α=0

. (5.5)

Another way to define the Glauber coherent states is through
a displacement operator

|α⟩ = D̂(α)|0⟩, (5.6)

where |0⟩ is the vacuum of the field and

D̂(α) = eαâ
†−α∗â (5.7)
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is the displacement operator with D̂−1(α) = D̂†(α) = D̂(−α).
The Glauber coherent states form a basis in the space of Fock

states given by the closure relation

1

π

∫ ∫
d2α|α⟩⟨α| =

∞∑
n=0

|n⟩⟨n| = 1̂, (5.8)

where d2α = d[ℜ(α)]d[ℑ(α)] and the integration is computed
over the complex plane, which is the analogous space of the phase
space of the field. In addition, the basis spanned by these coher-
ent states is an overcomplete basis

|α⟩ = 1

π

∫ ∫
d2α′|α′⟩⟨α′|α⟩

=
1

π

∫ ∫
d2α′|α′⟩e−|α′|2/2−|α|2/2+(α′)∗α. (5.9)

The Glauber coherent states are normalized states, but they
are non-orthogonal, such that, their overlap is a Gaussian func-
tion

⟨α|α′⟩ = e−|α|2/2−|α′|2/2+α∗α′
, (5.10)

with probability

|⟨α|α′⟩|2 = e−|α−α′|2 . (5.11)

The most important feature of the Glauber coherent states
is that they minimize the Heisenberg’s uncertainty principle and
can be considered as the quantum states most classically avail-
able [49]. In Appendix I.1 is shown the demonstration of this
property for Glauber coherent states.

5.1.2 Bloch Coherent States

The atomic or spin coherent states are an extension of the Glauber
coherent states [196,201–204]. They are commonly known as the
Bloch coherent states and can be defined through a rotation op-
erator

|τ⟩ = Ω̂(τ)|j,−j⟩, (5.12)
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where τ ∈ C is the coherent state parameter, |j,−j⟩ is the ex-
treme eigenstate of the collective pseudo-spin operator Ĵz, and

Ω̂(τ) = e−iθ[sin(ϕ)Ĵx−cos(ϕ)Ĵy ]

= eτĴ+−τ∗Ĵ− (5.13)

is the rotation operator with Ω̂−1(τ) = Ω̂†(τ) = Ω̂(−τ) and the
explicit parameter τ = (θ/2)e−iϕ. The angular variables (ϕ, θ)
are the azimuthal and zenith angles of the spherical coordinates,
measuring the θ angle from the negative z axis. The rotation
operator takes the form of a displacement operator and using
the Baker-Campbell-Hausdorff formula can be written as

Ω̂(z) = ezĴ+eln(1+|z|2)Ĵze−z∗Ĵ− , (5.14)

where the new parameter z = tan (θ/2) e−iϕ is related with τ
through a stereographic projection of the Bloch sphere [203]. In
this way, the Bloch coherent state can be written using the new
parameter as

|z⟩ = Ω̂(z)|j,−j⟩. (5.15)

The Bloch coherent states can be expressed using the basis of
angular momentum states {|j,mz⟩} (also known as Dicke basis)
as

|z⟩ = 1

(1 + |z|2)j
j∑

mz=−j

√(
2j

j +mz

)
zj+mz |j,mz⟩, (5.16)

which form an overcomplete basis in the space of Dicke states us-
ing a specific normalization condition [202], given by the closure
relation

2j + 1

π

∫ ∫
d2z

|z⟩⟨z|
(1 + |z|2)2

=

j∑
mz=−j

|j,mz⟩⟨j,mz| = 1̂, (5.17)

where d2z = d[ℜ(z)]d[ℑ(z)].
The Bloch coherent states are normalized states and non-

orthogonal

⟨z|z′⟩ = (1 + z∗z′)2j

(1 + |z|2)j(1 + |z′|2)j
, (5.18)
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where their overlap has probability

|⟨z|z′⟩|2 =

[
1− |z − z′|2

(1 + |z|2)(1 + |z′|2)

]2j
. (5.19)

The Bloch coherent states are not eigenstates of the collec-
tive pseudo-spin operators and for that reason their expectation
values under such coherent states must be developed. In Ap-
pendix I.2 is shown the complete derivation of the expectation
values of the collective pseudo-spin operators under Bloch coher-
ent states.

5.2 Quasiprobability Distributions

The way to represent an arbitrary mixed quantum state com-
posed of a set of pure states {|Ψ1⟩, . . . , |ΨN ⟩} (ensemble of states)
with dimension N is using the density matrix given by [205]

ρ̂ =

N∑
n=1

pn|Ψn⟩⟨Ψn|, (5.20)

where the weights pn represent the probability to find the system
in the member |Ψn⟩ of the ensemble and satisfy the relation

Tr(ρ̂) =

N∑
n=1

pn = 1. (5.21)

The density matrix for pure states |Ψ⟩ is given simply by the
projector ρ̂ = |Ψ⟩⟨Ψ|.

The representation of an arbitrary quantum state in phase
space can be achieved through the use of coherent states (states
of minimum uncertainty, see Appendix I.1), which can create
a connection between classical and quantum mechanics. Early
studies that investigated the representation of quantum states
in phase space were made by J. R. Klauder in 1963 [206, 207].
Thereby, the common way to represent a quantum state in phase
space is through the use of quasiprobability distributions defined
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in the overcomplete basis of coherent states [120, 208–214]. As
the name indicates, these functions are not probability distri-
butions properly, since some of them can show negative values
for certain regions of phase space, which results in nonclassical
quantum states [205]. Formally, the properties that a probability
distribution must satisfy are [209]:

1. It must be bilinear.

2. It must be real.

3. It must be nonnegative.

4. It must be complete and orthonormal.

5. Its marginal distributions must be satisfied correctly.

5.2.1 Glauber-Sudarshan Function

One of the well-known quasiprobability distributions that allows
to represent a quantum state in phase space is the Glauber-
Sudarshan function, proposed independently by R. J. Glauber
and E. C. G. Sudarshan in 1963 [198, 200]. The explicit repre-
sentation of the quantum state in phase space is given by

ρ̂ =

∫ ∫
d2αP(α)|α⟩⟨α|, (5.22)

where

P(α) = e|α|
2

π2

∫ ∫
d2α′e|α

′|2⟨−α′|ρ̂|α′⟩eα(α
′)∗−α∗α′

(5.23)

is the Glauber-Sudarshan function, which can take negative val-
ues for some states and satisfies the normalization condition

Tr(ρ̂) =

∫ ∫
d2αP(α) = 1. (5.24)
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5.2.2 Wigner Function

The first known quasiprobability distribution was the Wigner
function, proposed by E. Wigner in 1932 [215]. The standard
representation of the Wigner function is expressed in position-
momentum coordinates (q, p) of the phase space

W(q, p) =
1

2πℏ

∫ +∞

−∞
dq′⟨(q + q′/2)|ρ̂|(q − q′/2)⟩eipq

′/ℏ. (5.25)

However, it can be defined from the Glauber-Sudarshan function
P(α) in the following way

W(α) =
2

π

∫ ∫
d2α′P(α′)e−2|α−α′|2 . (5.26)

Moreover, the Wigner function satisfies the normalization con-
dition

Tr(ρ̂) =

∫ ∫
d2αW(α) = 1, (5.27)

and can take negative values for some states. As a particular
case, in Appendix J.1 is shown the Wigner function for Glauber
and Bloch coherent states.

5.2.3 Husimi Function

Other well-known quasiprobability distribution is the Husimi
function, proposed by K. Husimi in 1940 [216]. This function
can be defined as the expectation value of a quantum state un-
der coherent states

Q(α) = 1

π
⟨α|ρ̂|α⟩

=
1

π

∫ ∫
d2α′P(α′)e−|α−α′|2

=
2

π

∫ ∫
d2α′W(α′)e−2|α−α′|2 , (5.28)

and can be further defined from the Glauber-Sudarshan P(α)
and Wigner W(α) function, respectively. The Husimi function
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satisfies the normalization condition

Tr(ρ̂) =

∫ ∫
d2αQ(α) = 1. (5.29)

The singularity of the Husimi function is that never takes
negative values, which makes it a better candidate to be consid-
ered as a probability distribution. Nevertheless, their marginal
distributions are not satisfied correctly, which is one of the neces-
sary properties to be considered as a probability distribution. As
a particular case, in Appendix J.2 is shown the Husimi function
for Glauber and Bloch coherent states.

5.2.4 Characteristic Functions

A useful way to represent the quasiprobability distributions is
using the concept of characteristic functions. Given a probability
distribution P (α) ≥ 0 which satisfies the relations∫

dαP (α) = 1, (5.30)∫
dααkP (α) = ⟨αk⟩, (5.31)

a characteristic function can be defined as the Fourier transform
of the given probability distribution [205]

C(α) = F{P (α′)}

=

∫
dα′P (α′)eiαα

′

= ⟨eiαα
′
⟩

=

∞∑
k=0

(iα)k

k!
⟨(α′)k⟩. (5.32)

If all the moments ⟨(α′)k⟩ are known the characteristic function is
completely determined. From Eq. (5.32) is clearly seen that the
probability distribution is given by the inverse Fourier transform
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of the characteristic function

P (α) = F−1{C(α′)}

=
1

2π

∫
dα′C(α′)e−iαα′

. (5.33)

On the other hand, given a characteristic function the moments
can be found using the expression

⟨(α′)k⟩ = 1

ik
dkC(α)

dαk

∣∣∣∣
α=0

. (5.34)

For the three exposed quasiprobability distributions a char-
acteristic function can be defined based in the order of creation-
annihilation operators as normal order (Glauber-Sudarshan func-
tion), symmetric order (Wigner function), and antinormal order
(Husimi function) [205]. The explicit expressions are given by

CP(α) = Tr(ρ̂eαâ
†
e−α∗â)

=

∫ ∫
d2α′P(α′)⟨α′|eαâ

†
e−α∗â|α′⟩

=

∫ ∫
d2α′P(α′)eα(α

′)∗−α∗α′
, (5.35)

CW(α) = Tr(ρ̂eαâ
†−α∗â)

=
1

π

∫ ∫
d2α′⟨α′|ρ̂eαâ

†−α∗â|α′⟩

=

∫ ∫
d2α′W(α′)eα(α

′)∗−α∗α′
, (5.36)

CQ(α) = Tr(ρ̂e−α∗âeαâ
†
)

=
1

π

∫ ∫
d2α′⟨α′|eαâ

†
ρ̂e−α∗â|α′⟩

=

∫ ∫
d2α′Q(α′)eα(α

′)∗−α∗α′
. (5.37)

Moreover, using the Baker-Campbell-Hausdorff formula all the
characteristic functions can be related through the expression

CP(α) = CW(α)e|α|
2/2 = CQ(α)e

|α|2 . (5.38)
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Now, as was exposed initially, the probability distribution can
be found as the inverse Fourier transform of the given charac-
teristic function. For the considered characteristic functions the
corresponding quasiprobability distributions are found as follows

P(α) = 1

π2

∫ ∫
d2α′CP(α

′)eα(α
′)∗−α∗α′

, (5.39)

W(α) =
1

π2

∫ ∫
d2α′CW(α′)eα(α

′)∗−α∗α′
, (5.40)

Q(α) = 1

π2

∫ ∫
d2α′CQ(α

′)eα(α
′)∗−α∗α′

. (5.41)
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Chaos in the Dicke
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Chapter 6

Signs of Classical and
Quantum Chaos

In this Chapter is exposed a complete revision of results on clas-
sical and quantum chaos previously found in the Dicke model.
Furthermore, results obtained with the correlation hole as un-
conventional dynamical indicator of quantum chaos in the Dicke
model are presented. Particularly, results on the correlation hole
detected in the time evolution of the survival probability taking
random states as initial states are shown, as well as a revision
on time scales derived from the quantum dynamics.

6.1 Previously Found Results of Clas-
sical and Quantum Chaos

The Dicke model shows chaotic behavior in both classical and
quantum counterparts. On the one hand, for the classical model
have been applied the qualitative and quantitative conventional
tests, that is, the study of Poincaré sections and Lyapunov ex-
ponents of the classical trajectories. The computation of the
Lyapunov exponent for a set of trajectories in phase space al-
lows to generate a map of percentage of chaos as a function of

67



CHAPTER 6. SIGNS OF CLASSICAL AND QUANTUM
CHAOS

the classical energy shell and the Hamiltonian parameters, which
can serve as a guide to study the quantum model in the param-
eter region where classical chaos is sure to be found. The main
idea is to choose a set of initial conditions in phase space for
a given classical energy shell and fixed Hamiltonian parameters.
These initial conditions are evolved in time and later are selected
those with Lyapunov exponent different from zero. The fraction
of chaotic trajectories to the total number of initial trajecto-
ries gives a chaos percentage value. This procedure is computed
for different values of energy shells and Hamiltonian parameters.
The result is a map of percentage of chaos in the parameter space
of the classical Dicke model.

On the other hand, for the quantum model have been ap-
plied the conventional tests of energy spectrum fluctuations, that
is, the NNS distribution and its verification via the Anderson-
Darling parameter. The Anderson-Darling parameter quantifies
the deviation degree of a data set from a given probability dis-
tribution [217]. Furthermore, another less popular test known as
the Peres lattice has been applied to the Dicke model. A Peres
lattice represents the expectation value of a given operator un-
der the eigenstates of a quantum system and can be interpreted
as the quantum analog of a Poincaré section, in the sense that
the loss of integrability of the quantum system is captured by it
visually [218]. Additionally, recent studies with other quantum
indicators have been applied in the same way to the model. In
particular, the study of the correlation hole as a dynamical in-
dicator of chaos in the time evolution of the survival probability
and the study of the OTOC considered recently as the quantum
analog of the Lyapunov exponent.

A series of studies performed in the Dicke model with the
previous described classical and quantum indicators are shown
in detail in Refs. [3–13]. In Fig. 6.1 are shown some of these
classical and quantum indicators confirming the chaotic behavior
of the Dicke model.

68



6.1. PREVIOUSLY FOUND RESULTS OF CLASSICAL
AND QUANTUM CHAOS

% Chaos

0
20
40
60
80
100

a

0 1 2 3γ /γc

-2

-1

ϵ

1

2 b

-1 Q 1

-1

P

1

c

0 1 2 3s

0.1

0.3

0.5

0.7
d

1 103t

10-3

SP

10-1

1

Figure 6.1: Panel a: Map of percentage of chaos as a function of the
classical energy shell ϵ and the scaled coupling-strength parameter γ/γc.
Panel b: Poincaré section in atomic plane Q−P (p = 0) for a chaotic clas-
sical energy shell. Panel c: NNS distribution (gray bars) for 22458 energy
levels contained in the energy interval ϵk ∈ [−1, 1.755] and Wigner-Dyson
surmise (3.17) (red dashed line). Panel d: Survival probability (4.26)
(gray solid curves) for an ensemble of 500 initial random states centered at
Ec = jϵ, its ensemble average (orange solid curve), its time average (blue
solid curve), and analytical survival probability (4.36) (green solid curve),
where the correlation hole is detected. Classical energy shell: ϵ = −0.5
(chaotic). Hamiltonian parameters: ω = ω0 = 1, γ = 2γc = 1. The system
size for panels c and d is j = 100. Figure taken from the supplementary
information of Ref. [15].
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6.2 Correlation Hole

The chaotic behavior of the Dicke model is well known for certain
parameter regions of the Hamiltonian [3]. As different indicators
confirm this phenomenon in both classical and quantum realms,
an initial goal in this Thesis was to study the unconventional
dynamical indicators of quantum chaos. In particular, the first
objective was to detect the correlation hole in the time evolution
of the survival probability for some kind of initial states. Since
the survival probability is defined around an arbitrary quantum
state, some initial states are able to detect spectral correlations
better than some others. The latter gives some freedom in choos-
ing the initial states.

6.2.1 Random States as Initial States

A special quantum state is a state randomly constructed, that
is, the components of its wave function are randomly sampled
in an interval of the energy spectrum. Particularly, these ran-
dom states are able to detect spectral correlations between the
energy levels contained in the selected energy interval. In Ap-
pendix K.1 is presented the construction method for this kind
of states. An advantage of the latter method is that the LDoS
envelope associated to the random state can be arbitrarily im-
posed, that is, explicit mathematical functions can be chosen as
LDoS envelopes.

As a case study, three known mathematical functions were
selected as LDoS envelopes, a rectangular, bounded Gaussian,
and Gaussian function, respectively [12]

ρR(E) =

{
1

2σR
if Ec − σR ≤ E ≤ Ec + σR

0 otherwise
, (6.1)

ρBG(E) =

{
e−(E−Ec)

2/(2σ2
BG)

C
√
2πσBG

if Emin ≤ E ≤ Emax

0 otherwise
, (6.2)

ρG(E) =
e−(E−Ec)

2/(2σ2
G)

√
2πσG

, (6.3)
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where

C = 1

2

[
erf

(
Ec − Emin√

2σBG

)
− erf

(
Ec − Emax√

2σBG

)]
, (6.4)

and

erf(z) =
2√
π

∫ z

0

dx e−x2

(6.5)

is the error function. Thus, an ensemble of initial random states
was constructed generating their coefficients ck from a real num-
ber uniform distribution through the weights rk ∈ [0, 1], whose
moments are given by ⟨rnk ⟩ = (n+1)−1. In Fig. 6.2 is shown the
average LDoS envelope for this ensemble of initial random states
considering the three later LDoS envelope cases for a chaotic
energy regime.
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Figure 6.2: Average LDoS envelope (blue dots) for an ensemble of 500
initial random states and analytical LDoS envelopes (6.1)-(6.3) (red solid
curves) for each LDoS envelope case: rectangular (a), bounded Gaussian (b),
and Gaussian (c). Classical energy shell: ϵ = −0.5 (chaotic). Parameters:
Ec = jϵ, σR = σBG = σG = 0.1j, Emin,max = Ec ∓ 1.5σBG. Hamiltonian
parameters: ω = ω0 = 1, γ = 2γc = 1. The system size is j = 100. Figure
taken from Ref. [12].

The Fourier transform of the analytical LDoS envelope de-
scribes the behavior of the survival probability at short times (see
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Eq. (4.33)). For the three later LDoS envelope cases is found [12]

Sst
P,R(t) = |F{ρR(E)}|2

=
sin2(σRt)

σ2
Rt

2
, (6.6)

Sst
P,BG(t) = |F{ρBG(E)}|2

=
e−σ2

BGt2

4C2
F(t), (6.7)

Sst
P,G(t) = |F{ρG(E)}|2

= e−σ2
Gt2 , (6.8)

where

F(t) =
∣∣∣∣erf [ 1√

2σBG

fEmin
(t)

]
− erf

[
1√
2σBG

fEmax
(t)

]∣∣∣∣2 , (6.9)

and fE(t) = Ec−E− iσ2
BGt. Nevertheless, to study the survival

probability completely an analysis at long times is needed. In
this way, for each element of the corresponding ensemble the sur-
vival probability can be constructed numerically using Eq. (4.26),
and it can be compared with the analytical expression (4.36) us-
ing the relations η = (4/3)⟨P−1

R ⟩−1, D ≈ ν−1
c , and νc = ν(Ec)/2.

In Appendix K.2 is shown the derivation of the ensemble effective
dimension η.

In Fig. 6.3 is shown the comparison between the numerical
survival probability (4.26) and the analytical expression (4.36)
for the three LDoS envelope cases. As can be seen, the analytical
expression is able to describe accurately the numerical survival
probability at all times for the three cases. At short times, for the
rectangular and bounded Gaussian LDoS envelope cases arises
a power-law decay related with border effects (discontinuities at
the ends) in the LDoS envelope. At intermediate times, the cor-
relation hole is detected for the three cases, which confirms the
presence of spectral correlations between the energy levels con-
tained within the chosen intervals of the energy spectrum. At
long times, the saturation of the system fluctuates indefinitely
around its asymptotic value. Also, in the same Fig. 6.3 is shown
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a time average for both numerical and analytical survival prob-
abilities for the three LDoS envelope cases. The utility of the
latter time average is that it can erase remaining strong fluctua-
tions present in the dynamics obtaining smoothed curves, which
show the agreement between curves more clearly.
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Figure 6.3: Panels (a)-(c): Survival probability (4.26) (gray solid curves)
numerically constructed for each element of an ensemble of 500 initial ran-
dom states, ensemble average (blue solid curve) over the latter 500 initial
random states, and analytical survival probability (4.36) (green solid curve)
for each LDoS envelope case: rectangular (a), bounded Gaussian (b), and
Gaussian (c). The horizontal lines represent the asymptotic value (red dot-
ted line) and the minimum value (orange dashed line) of the survival prob-
ability, respectively. The vertical lines represent the Thouless time (purple
dotted line) and the relaxation time (pink dashed line), respectively. The
black dotted-dashed lines represent the power-law decay for the bounded
cases (a) and (b). Panel (d): Time average over the ensemble average
(blue solid curve) and analytical (green solid curve) survival probabilities
for each LDoS envelope case (a)-(c). The time average was generated tak-
ing time intervals that grow according to an exponential rule. Hamiltonian
parameters: ω = ω0 = 1, γ = 2γc = 1. The system size is j = 100. Figure
taken from Ref. [12].
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6.2.2 Time Scales

Time scales of some time-evolved observables provide informa-
tion about the regimes where occur changes in the dynamics of
quantum systems. Thus, the time scale where the correspon-
dence between the classical and quantum dynamics breaks down
is known as the Ehrenfest time, say tE. The latter name arises be-
cause, according to the Ehrenfest theorem [219], the time evolu-
tion of a quantum wave packet at short times is well described by
classical equations of motion [220–222]. For systems with chaotic
dynamics it has been found that the Ehrenfest time is given by
tE ∝ (1/λ) ln(S/ℏ), where λ is the classical Lyapunov exponent
given by Eq. (3.6) and S is a characteristic action [223,224]. An-
other time scale due to dynamical localization, where the quan-
tum diffusion ends and the classical and quantum dynamics are
equivalent, has an explicit relation with the Ehrenfest time given
by td ∝ ℏ−2 > tE [221, 222]. On the other hand, the time scale
where the quantum fluctuations remain in the dynamics around
an asymptotic value is known as the Heisenberg time, say tH.
The Ehrenfest and Heisenberg times are the most popular time
scales studied in time-evolved observables, however, the are oth-
ers less popular time scales which determine specific dynamical
behaviors in some systems.

Particularly, two time scales have been found in the time
evolution of the survival probability. The first time scale is the
Thouless time, say tTh, which is the time where the survival
probability attains its minimum value and defines the depth of
the correlation hole [166]. Before this time, the behavior of the
survival probability is governed by the selected initial state, that
is, it is a specific behavior. After this time, the behavior of the
survival probability is universal, that is, generalized behaviors
independent of the initial state govern the dynamics until the
system saturation. The second time scale is known as the relax-
ation time, say tr, which is just the time where the system sat-
urates fluctuating indefinitely around its asymptotic value [166].
In Ref. [12] is shown a complete derivation of the Thouless and
relaxation times for the survival probability of random states in
the Dicke model, where was found that both time scales are di-
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rectly proportional to the system size. The later time scales are
shown in Fig. 6.3 for the three LDoS envelope cases previously
exposed.

6.3 Conclusions of Chapter 5

The detection of the correlation hole in the time evolution of the
survival probability was successfully achieved for initial random
states located in a chaotic energy regime. The spectral corre-
lations related with the correlation hole are associated with the
GOE, since the two-level form factor that reproduces the be-
havior of the correlation hole was derived from such ensemble.
In this way, the detection of the correlation hole in the time
evolution of the survival probability confirms its validity as a
dynamical indicator of quantum chaos in the Dicke model.

On the other hand, it was found that, at short times, the
time evolution of the survival probability is governed by the se-
lection of the initial state showing particular behaviors. On the
other hand, at long times, the dynamics is governed by uni-
versal behaviors, where the spectral GOE correlations manifest
themselves until saturation. Two time scales were identified in
the time evolution of the survival probability, the Thouless time
that defines the depth of the correlation hole, and the relaxation
time where the dynamics saturates. It was found that both time
scales are directly proportional to the system size.

The results exposed in this Chapter are shown in more detail
in Ref. [12].

75





Chapter 7

Classical and
Quantum Dynamic
Effects

In this Chapter is exposed a comparison between the classical
and quantum dynamics of coherent states in the Dicke model.
Results on the classical-quantum correspondence for these coher-
ent states are shown, which determine dynamical effects of purely
quantum nature that can be associated with chaos or scarring.
The classical dynamics is generated defining the classical limit of
the survival probability. The method to generate this classical
limit is shown, as well as the criterion to select initial coherent
states.

7.1 Coherent States as Initial States

Glauber-Bloch coherent states have been previously studied in
the Dicke model [9, 10]. They allow to obtain the classical limit
of the Dicke model and are considered as the most classically
accessible quantum states. Since these states can create a link
between the classical and quantum realms, they are good candi-
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dates to further explore the quantum-classical correspondence in
the Dicke model. In this way, a second goal in this Thesis was to
compare the classical and quantum dynamics of Glauber-Bloch
coherent states identifying generic behaviors in each counterpart,
as those who only appear in the quantum domain and can be
caused by chaotic behavior.

7.1.1 Classical Limit of the Survival Probabil-
ity for Coherent States

The classical limit of the survival probability can be obtained by
employing a method known as the Truncated Wigner Approxi-
mation (TWA) [225–229]. This method takes into account the
time evolution of the Wigner function and can establish a link
between both classical and quantum realms. In Appendix L is
shown the complete derivation of the classical limit of the sur-
vival probability, which can be defined as follows [14]

SP (t) =

(
2π

j

)2 ∫
M
dxWΨ(x)WΨ[φ

−t(x)], (7.1)

whereWΨ(x) is the Wigner function of an arbitrary state |Ψ⟩ de-
fined in the overcomplete basis of Glauber-Bloch coherent states
{|x⟩}. The Wigner function defined in the latter basis is the
product of the Wigner functions of the same state associated to
each Glauber {|α⟩} and Bloch {|z⟩} coherent state basis

WΨ(x) =WΨ(α)WΨ(z)

=WΨ(q, p)WΨ(Q,P ), (7.2)

where x = (q, p;Q,P ) are the coordinates of the four-dimensional
phase spaceM of the Dicke model.

The asymptotic value of the classical limit of the survival
probability S∞

P can be obtained with Eq. (4.35), analogously
to the quantum case. For initial Glauber-Bloch coherent states
|Ψ⟩ = |x0⟩ the explicit Wigner function is given by Eq. (J.5).
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7.1.2 Selection Criterion of Coherent States

Glauber-Bloch coherent states were selected as initial states to
study their survival probability as in the case of random states.
The selection criterion was based initially in Poincaré sections
of the classical trajectories to identify visually regular regions
from chaotic ones. The Poincaré sections have a correspondence
with the participation ratio of coherent states, since a map of
participation ratio can be generated for a set of initial coherent
states located in phase space. On the one hand, for regular
energy shells (low energy surfaces) the states located far from
a separatrix have a correspondence with low participation ratio,
while the states located near a separatrix have a correspondence
with high participation ratio. On the other hand, for chaotic
energy shells (high energy surfaces) all trajectories fill densely
the phase space. For that reason, the map of participation ratio
is a useful tool in the selection of coherent states located in the
chaotic energy regime, since it shows specific structures which
are missing in the Poincaré section [14].

Thus, as a case study based in the last criterion were se-
lected initial Glauber-Bloch coherent states in both regular and
chaotic energy regimes. Specifically, two coherent states were
selected in the regular energy regime, one located far from a sep-
aratrix (stable center) (identified as state I) and another one lo-
cated close to a separatrix (identified as state II). For the chaotic
energy regime were selected also two coherent states based in
their participation ratio, one with low participation ratio (iden-
tified as state III) and another one with high participation ra-
tio (identified as state IV). The Glauber-Bloch coherent states
can be expanded in the energy eigenbasis of the Dicke Hamil-
tonian having an explicit representation (see Appendix M for
a complete description of this representation using the coher-
ent basis), and for that reason, their LDoS is completely de-
termined showing approximately a Gaussian LDoS envelope for
all energy regimes and sets of coordinates in phase space (see
Eq. (6.3)). The last feature of the LDoS envelope determines
the survival probability at short times, which is also a Gaussian
function (see Eq. (6.8)). The explicit parameters for the initial
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coherent states in phase space are given by the initial conditions
x0 = (q+(ϵR,C), 0;Q0, P0), where q+ is the positive root of the
second-degree equation hD(x)− ϵR,C = 0, and ϵR,C identifies the
classical energy shell of each regular and chaotic regime, respec-
tively. In Fig. 7.1 are shown the Poincaré section and the map of
participation ratio for both regular and chaotic energy regimes,
as well as the initial coherent states selected in each case.

Coherent States Located Far and Close to a Separatrix

The initial step for study the selected initial coherent states lo-
cated in the regular energy regime was to know their LDoS. As
the LDoS structure affects the dynamics of the survival prob-
ability at different time scales, the smoothed LDoS (4.29) was
considered for study these coherent states. In Fig. 7.2 is shown
the smoothed LDoS at finite time resolution for states I and II,
as well as the LDoS at infinite time resolution. As can be seen,
both states I and II show a Gaussian LDoS envelope clearly de-
fined at finite time resolution. At infinite time resolution, state
I has only few energy components well described by a Gaussian
LDoS envelope, while state II has more energy components and
shows a contribution of multiple Gaussian LDoS envelopes.

The survival probability and its classical limit can be numer-
ically constructed for states I and II using Eqs. (4.26) and (7.1),
respectively. For the regular energy regime there is an explicit
analytical expression of the survival probability, which is able to
reproduce its behavior at all times and is given by (the complete
derivation of the following expression is shown in Ref. [10])

SP (t) ≈
ω1

2σ0
√
π
Θ3[x(t), y(t)], (7.3)

where
Θ3(x, y) = 1 + 2

∑
n

yn
2

cos(2nx) (7.4)

is the Jacobi theta function with arguments

x(t) =
ω1t

2
, (7.5)

y(t) = e−(1/4)(ω1/σ0)
2−(t/tD)2 , (7.6)
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III

IV

(a) (b)

(c) (d)

Figure 7.1: Panels (a) and (c): Poincaré section for regular (a) and
chaotic (c) energy regimes. The black dots in panel (a) represent a separa-
trix. Panels (b) and (d): Map of participation ratio of coherent states for
the same regular (b) and chaotic (d) energy regimes. In panel (a) are shown
the selected initial coherent states for the regular energy regime: state I far
from a separatrix (stable center, blue dot) and state II close to a separatrix
(red dot). In panel (d) are shown the selected initial coherent states for
the chaotic energy regime: state III (low participation ratio, PR = 1066,
cyan dot) and state IV (high participation ratio, PR = 5743, red dot).
Classical energy shells: ϵR = −1.8 (regular) and ϵC = −0.5 (chaotic). Ini-
tial conditions: (Q0, P0) = (1, 0) (state I), (Q0, P0) = (1.2, 0) (state II),
(Q0, P0) = (1.75, 0) (state III), (Q0, P0) = (−1.25, 0.75) (state IV). Hamil-
tonian parameters: ω = ω0 = 1, γ = 2γc = 1. The system size for panels
(b) and (d) is j = 100. Figure taken from Ref. [14].
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and n is the index that determines the distance between two ad-
jacent energies ω

(n)
k = Ek+n − Ek. Moreover, tD = ω1/(σ0|e2|)

is a decay time, ω1 ≈ Ekmax+1 − Ekmax is the fundamental fre-
quency restricted to the energy interval (Ekmax < E0 < Ekmax+1),
and e2 = 1

2 (Ekmax+1 +Ekmax−1)−Ekmax
is known as the anhar-

monicity, which measures the deviation of an energy spectrum
whose energies are equally spaced [10]. The energy center E0

and energy width σ0 come from a Gaussian approximation to
the coefficient distribution

|ck|2 ≈
∆E1√
2πσ0

e−(Ek−E0)
2/(2σ2

0), (7.7)

where ∆E1 = ⟨Ek+1 − Ek⟩ is the mean spacing between the
energies that conform the Gaussian function.

In Figs. 7.3 and 7.4 are shown the survival probability (4.26)
and its classical limit (7.1) for both initial states I and II, respec-
tively. The comparison between the numerical survival probabil-
ity (4.26) and the analytical expression (7.3) is shown for state I
only. For state II is shown a time average for the survival prob-
ability and its classical limit. On the other hand, in the same
Figs. 7.3 and 7.4 is shown the time evolved Wigner function pro-
jected in the atomicQ−P and bosonic q−p planes for both states
I and II, respectively. The time evolution of the Wigner function
in phase space can help in understanding some features of the
classical survival probability. As can be seen, for state I there is
a complete agreement between the numerical survival probabil-
ity and the analytical expression until a decay time, where the
quantum fluctuations remain in the dynamics and the analytical
expression is unable to reproduce them. Additionally, periodic
revivals arise for state I related with a regular dynamics. At
short times, the validity of the TWA is clearly seen for both
states I and II, since the survival probability and its classical
limit match each other. The values near to zero of the survival
probability and its classical limit can be explained with the time
evolved Wigner function. The Wigner function is localized in an
initial region of phase space, when this function evolves there is
a time interval where the distribution never crosses the initial
region where was localized. The latter implies that the classical
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survival probability is identically zero. Moreover, the correlation
hole is not detected at intermediate times implying that the en-
ergy levels are uncorrelated as is expected for the regular energy
regime.

ω
0 T =

 0.5
ω

0 T →
 ∞

Figure 7.2: Panels (a)-(b): Smoothed LDoS (4.29) (blue solid curve)
of states I (a) and II (b) at finite time resolution, and Gaussian LDoS
envelope (6.3) (red thin curve) for the regular energy regime. Panels (c)-
(d): LDoS (blue dots) of the same states I (c) and II (d) at infinite time
resolution. The states I and II are shown in Fig. 7.1 (a). Classical energy
shell: ϵR = −1.8 (regular). Parameters: Ec = jϵR, σG = 0.048j (state I),
σG = 0.062j (state II). Hamiltonian parameters: ω = ω0 = 1, γ = 2γc = 1.
The system size is j = 100. Figure taken from Ref. [14].

Coherent States with Low and High Participation Ratio

For coherent states located in the chaotic energy regime with
high participation ratio, it was found that the correct ensem-
ble of random states which can reproduce the behavior of their
survival probability until saturation is an ensemble of initial ran-
dom states whose weights rk are generated within an exponential
distribution P (rk) = υe−υrk and whose moments are given by
⟨rnk ⟩ = n!/υn. The wave function of the coherent states in the
energy eigenbasis of the Dicke Hamiltonian has a defined shape,
that is, the sampling of the coefficients occurs in a structured
way. In this way, the main finding is that random states whose
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Figure 7.3: Top panels: Time evolved Wigner function of state I for
different finite times. The projection in phase space is shown in each atomic
Q− P and bosonic q− p plane. The inner small circle represents the initial
volume occupied by the Wigner function, while the outer big circle repre-
sents the available phase space. Bottom panel: Survival probability (4.26)
(light gray solid curve) and its classical limit (7.1) (dark gray solid curve)
numerically constructed for state I. Analytical survival probability (7.3) (or-
ange dashed curve) for the regular energy regime. The horizontal red dotted
line represents the asymptotic value of the survival probability and its clas-
sical limit. The vertical purple dashed line represents the decay time. Clas-
sical energy shell: ϵR = −1.8 (regular). Parameters: E0 = jϵR, σ0 = 4.79,
ω1 = 0.94, e2 = −4.88 × 10−4. Hamiltonian parameters: ω = ω0 = 1,
γ = 2γc = 1. The system size is j = 100. Figure taken from Ref. [14].
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Figure 7.4: Top panels: Time evolved Wigner function of state II for
different finite times. The projection in phase space is shown in each atomic
Q − P and bosonic q − p plane. The inner small circle represents the ini-
tial volume occupied by the Wigner function, while the outer big circle
represents the available phase space. Bottom panel: Survival probabil-
ity (4.26) (light gray solid curve) and its classical limit (7.1) (dark gray
solid curve) numerically constructed for state II. A time average over the
survival probability (light blue solid curve) and its classical limit (light red
solid curve) is shown, which was generated with exponential time intervals.
The horizontal lines represent the asymptotic value of the survival proba-
bility (dark blue dotted line) and its classical limit (dark red dashed line),
respectively. Classical energy shell: ϵR = −1.8 (regular). Hamiltonian pa-
rameters: ω = ω0 = 1, γ = 2γc = 1. The system size is j = 100. Figure
taken from Ref. [14].
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coefficients ck come from an exponential distribution through the
weights rk resemble the dynamics of coherent states with high
participation ratio in the chaotic energy regime [14].

For the selected initial coherent states located in the chaotic
energy regime the same procedure as in the regular energy regime
was applied. In Fig. 7.5 is shown the smoothed LDoS for dif-
ferent finite time resolutions for states III and IV, as well as
the LDoS at infinite time resolution. Additionally, to under-
stand the connection between coherent states and random states
whose coefficients come from an exponential distribution, an ini-
tial random state was constructed as described by Eqs. (K.1)
and (K.2). As can be seen, state III shows a finite time resolu-
tion where the Gaussian LDoS envelope breaks down. At infinite
time resolution the energy components are bunched around spe-
cific energy levels resembling a periodicity in energy. State IV
has the Gaussian LDoS envelope for all finite time resolutions,
while at infinite time resolution contribute the most energy com-
ponents. The Gaussian LDoS envelope of the random state at
finite time resolution breaks down earlier and at infinite time
resolution the LDoS resembles that of the state IV.

For states III and IV the survival probability and its clas-
sical limit can be also constructed using Eqs. (4.26) and (7.1),
respectively. For the chaotic energy regime are considered some
changes in the analytical expression (4.36) due to the nature
of coherent states. Since the ensemble fluctuations for random
states are due to the random sampling method in an energy inter-
val, the ensemble average ⟨•⟩ is not needed to study the survival
probability of coherent states, which have a structured LDoS.
For this kind of states the following relations are considered in
Eq. (4.36) η = 2PR, D ≈ 2/νc, and νc = ν(Ec). Following Ap-
pendix K.2 the effective dimension for an ensemble of random
states can be found for this case as η = 2⟨P−1

R ⟩−1.
In Figs. 7.6 and 7.7 are shown the survival probability (4.26)

and its classical limit (7.1) for both initial states III and IV, re-
spectively. For state IV is shown the comparison between the
numerical survival probability (4.26) and the analytical expres-
sion (4.36). For both states III and IV is shown a time average
for the survival probability and its classical limit. Moreover, in
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the same Figs. 7.6 and 7.7 is shown the time evolved Wigner
function projected in the atomic Q−P and bosonic q− p planes
for states III and IV, respectively. As can be seen, the analytical
expression describes accurately almost all the time interval of the
numerical survival probability for state IV, except for the zone
where the survival probability goes to zero at short times. Again,
the validity of the TWA is confirmed for both states III and IV at
short times, where the survival probability and its classical limit
match each other. The zone where the survival probability goes
to zero is newly understood by the time evolved Wigner func-
tion. At intermediate times, the correlation hole is detected only
for state IV, confirming the presence of spectral correlations of
the GOE as is expected for the chaotic energy regime. The cor-
relation hole is nonexistent in the classical survival probability,
confirming that it is a quantum feature. Moreover, for state IV
can be obtained a relaxation time as described in Refs. [12,166].
For state III is detected an unusual behavior at short times where
arise periodic revivals, which resembles a regular dynamics. The
last effect is associated with quantum scarring, where unstable
periodic orbits of the classical realm affect the dynamics of the
quantum realm [14]. The phenomenon of quantum scarring is
exposed in Chapter 8.

A useful quantity to detect coherent states that show dynam-
ical effects as quantum scarring or spectral correlations is based
in the ratio between their quantum and classical asymptotic val-
ues, given by the factor [14]

R = 2
S∞

P

S∞
P

∈ [0, 1], (7.8)

where a value R = 0 defines a coherent state whose dynamics is
affected mainly by quantum scarring, while a value R = 1 defines
a coherent state where spectral correlations (correlation hole) of
the GOE arise in its dynamics. In Fig. 7.8 is shown a map of
factor R for a set of initial coherent states located in phase space
for a chaotic energy regime.
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Figure 7.5: Panels (a)-(i): Smoothed LDoS (4.29) (blue solid curve) of
states III (a), (d), (g) and IV (b), (e), (h), and random state (c), (f), (i)
for different finite time resolutions, and Gaussian LDoS envelope (6.3) (red
thin curve) for the chaotic energy regime. Panels (j)-(l): LDoS (blue dots)
of the same states III (j) and IV (k), and random state (l) at infinite time
resolution. The states III and IV are shown in Fig. 7.1 (d). Panel (m):
Histogram (gray bars) of the weights rk, which constitutes the coefficients
of the state IV. The red dashed curve represents an analytical fit to an
exponential distribution P (rk) = υe−υrk . Classical energy shell: ϵC = −0.5
(chaotic). Parameters: Ec = jϵC, σG = 0.136j (state III), σG = 0.259j
(state IV and random state), υ = 0.91. Hamiltonian parameters: ω = ω0 =
1, γ = 2γc = 1. The system size is j = 100. Figure taken from Ref. [14].
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Figure 7.6: Top panels: Time evolved Wigner function of state III for
different finite times. The projection in phase space is shown in each atomic
Q− P and bosonic q− p plane. The inner small circle represents the initial
volume occupied by the Wigner function, while the outer big circle repre-
sents the available phase space. The black arrow at the last time indicates
the presence of an unstable periodic orbit. Bottom panel: Survival prob-
ability (4.26) (light gray solid curve) and its classical limit (7.1) (dark gray
solid curve) numerically constructed for state III. A time average over the
survival probability (light blue solid curve) and its classical limit (light red
solid curve) is shown, which was generated with exponential time intervals.
The horizontal lines represent the asymptotic value of the survival proba-
bility (dark blue dotted line) and its classical limit (dark red dashed line),
respectively. The inset shows the classical limit of the survival probability
in a linear time scale where the periodicities can be seen better. Classical
energy shell: ϵC = −0.5 (chaotic). Hamiltonian parameters: ω = ω0 = 1,
γ = 2γc = 1. The system size is j = 100. Figure taken from Ref. [14].
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Figure 7.7: Top panels: Time evolved Wigner function of state IV for
different finite times. The projection in phase space is shown in each atomic
Q− P and bosonic q− p plane. The inner small circle represents the initial
volume occupied by the Wigner function, while the outer big circle repre-
sents the available phase space. Bottom panel: Survival probability (4.26)
(light gray solid curve) and its classical limit (7.1) (dark gray solid curve)
numerically constructed for state IV. Analytical survival probability (4.36)
(orange solid curve) for the chaotic energy regime, where the ensemble av-
erage ⟨•⟩ was not considered. A time average over the survival probability
(light blue solid curve) and its classical limit (light red solid curve) is shown,
which was generated with exponential time intervals. The horizontal lines
represent the asymptotic value of the survival probability (dark blue dotted
line) and its classical limit (dark red dashed line), respectively. The verti-
cal pink dashed line represents the relaxation time. Classical energy shell:
ϵC = −0.5 (chaotic). Hamiltonian parameters: ω = ω0 = 1, γ = 2γc = 1.
The system size is j = 100. Figure taken from Ref. [14].
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Figure 7.8: Central panel: Map of factor R (7.8) of coherent states
for the chaotic energy regime. Panels (a)-(h): Survival probability (4.26)
(blue solid line) and its classical limit (7.1) (red solid line) averaged in
time for a set of initial coherent states. Analytical survival probabil-
ity (4.36) (orange solid curve) for the chaotic energy regime. The horizon-
tal gray dashed line represents the asymptotic value of the survival prob-
ability. Classical energy shell: ϵC = −0.5 (chaotic). Initial conditions:
(Q0, P0) = (−0.75, 0.5) (a), (Q0, P0) = (0.75, 0.5) (b), (Q0, P0) = (1.75, 0)
(c), (Q0, P0) = (−1.25, 0.75) (d), (Q0, P0) = (1.25,−0.25) (e), (Q0, P0) =
(−1.25,−1) (f), (Q0, P0) = (0.25,−0.75) (g), (Q0, P0) = (0.5,−0.75) (h).
Hamiltonian parameters: ω = ω0 = 1, γ = 2γc = 1. The system size is
j = 100. Figure taken from Ref. [14].
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7.2 Conclusions of Chapter 6

Generic behaviors in each classical and quantum counterpart
were identified in the dynamics of the cases presented. On the
one hand, for coherent states located in the regular energy regime
are found two generic behaviors: 1) If the initial state is located
far from a separatrix in phase space, the survival probability and
its classical limit match each other until saturation, where the
classical dynamics saturates to an asymptotic value, while the
quantum dynamics fluctuates around it due to the discreteness
of the energy spectrum. 2) If the initial state is located close to
a separatrix in phase space, the survival probability and its clas-
sical limit match each other until a time where arise tunnelling
effects between classically disconnected phase-space regions (sta-
ble centers) affecting the quantum dynamics only. The latter
causes that the quantum and classical asymptotic values do not
match each other, being the quantum asymptotic value slightly
lower than the classical one.

On the other hand. for coherent states located in the chaotic
energy regime are found two generic behaviors: 1) If the initial
state has low participation ratio, the survival probability and its
classical limit match each other until a time where the quantum
dynamics saturates faster than the classical one. As the num-
ber of eigenstates which participate in the quantum evolution
is small, the phase space available for the quantum evolution
shrinks and the saturation occurs faster. 2) If the initial state
has high participation ratio, the survival probability and its clas-
sical limit match each other until a time where arise spectral
correlations and the quantum dynamics saturates slower than
the classical one. For a state highly delocalized in the energy
eigenbasis the correlation hole is detected affecting the quantum
dynamics only. The saturation occurs after the correlation hole
appears and is slower. In both cases, the quantum and classical
asymptotic values do not match each other, being the quantum
asymptotic value higher than the classical one. Summarizing,
the spectral correlations, scarring and tunneling are considered
as purely quantum effects, manifesting themselves in the dynam-
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ics in particular ways.
The results exposed in this Chapter are shown in more detail

in Ref. [14].
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Part III

Scarring in the Dicke
Model
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Chapter 8

Quantum Scarring and
Unstable Periodic
Orbits

In this Chapter is exposed a historical review on the phenomenon
of quantum scarring. The origin, first studies and theoretical
explanations of this singular phenomenon are also exposed, as
well as the revision of the systems where it appears and the
motivation to study it in recent years. Furthermore, results on
the ubiquitous quantum scarring found in the Dicke model are
shown. The projection method of the Husimi function to iden-
tify visually the quantum scars is explained, as well as the rela-
tion between scarring and localization, introducing a localization
measure defined in the phase space of the Dicke model. The con-
cept of dynamical scarring is also exposed and its relation with
a proposed definition of quantum ergodicity.

8.1 Quantum Scarring

In 1983 M. V. Berry formulated the semiclassical eigenfunction
hypothesis, which says that semiclassical states are associated
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with minimal generic classical invariant sets [230,231]. A special
case of the last hypothesis is formulated for quantum eigenstates
in the semiclassical limit ℏ → 0. In this case, when the orbits
of a classical system are chaotic, it is conjectured that quantum
eigenstates are associated with the whole energy shell explored
ergodically by the classical orbits [231]. In phase space, the last
statement implies that the phase-space distribution function of
the eigenstate is a Dirac delta function centered at the shell
with the same energy as the energy of the eigenstate. The last is
supported by the well-known Shnirelman theorem [232], which
says that the quantum expectation value of a smooth operator
equals the classical microcanonical average for almost all states.
Surprisingly, thanks to the computational work and theoretical
explanations of several authors, it was found that eigenstates
are not only influenced by the energy surface, but by individ-
ual unstable periodic orbits, which are invariant sets of measure
zero in phase space. The imprints left by the unstable peri-
odic orbits in the quantum realm could affect many states and
could survive in the classical limit [231]. These imprints manifest
themselves as enhanced regions of high probability around the
unstable periodic orbits and were denominated as quantum scars
by E. J. Heller in 1984 [37–39]. Although the term was coined
later, the first evidence of quantum scars was found by S. W. Mc-
Donald in the Bunimovich stadium billiard [233]. Early numer-
ical studies performed in the same system concerning quantum
stochasticity were determinant to reach the discovery of quan-
tum scars [234]. Subsequent numerical studies also confirmed
the phenomenon [235,236].

Common studies about quantum scarring have focused mainly
in one-body systems [237–249]. Early studies in the Dicke model
were also performed [250–252]. Recent studies have considered
two-dimensional harmonic oscillators [253, 254], as well as time-
dependent systems [255,256], where the dynamical scarring takes
place. Furthermore, the recent experimental observation of long-
lived oscillations in chains of Rydberg atoms [32], associated with
what is now called quantum many-body scars, has caused a new
wave of fascination with this singular phenomenon [33–36].
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8.2 Ubiquitous Quantum Scarring

As was seen in Chapter 7, unusual behaviors arise in the quan-
tum dynamics for states that are affected by the phenomenon of
quantum scarring. This phenomenon emerges in regimes where
the chaotic behavior proliferates classically. In this way, a third
goal in this Thesis was to detect the onset of quantum scarring
in the Dicke model, the sources that originate it, and the con-
nections with the sets of unstable periodic orbits which causes
this singular phenomenon.

8.2.1 Scarring and Husimi Function

The unnormalized Husimi function of an arbitrary state ρ̂ (see
Eq. (5.20)) pure or mixed (for a pure state |Ψ⟩ the density ma-
trix is given by the projector ρ̂ = |Ψ⟩⟨Ψ|) in the overcomplete
Glauber-Bloch coherent state basis {|x⟩} is the product of the
Husimi functions of the same state associated to each Glauber
{|α⟩} and Bloch {|z⟩} coherent state basis

Qρ̂(x) = ⟨x|ρ̂|x⟩
= Qρ̂(α)Qρ̂(z)

= Qρ̂(q, p)Qρ̂(Q,P ), (8.1)

where x = (q, p;Q,P ) are the coordinates of the four-dimensional
phase spaceM of the Dicke model. As quantum scars are con-
centrated around unstable periodic orbits in phase space, a way
to visualize them is through a projection of the Husimi function.
Specifically, the projection over the atomic plane Q − P at a
given classical energy shell allows to visualize clearly the quan-
tum scars in the phase space of the Dicke model. In this way,
the projected Husimi function at a classical energy shell ϵ = E/j
is defined as [15]

Q̃ϵ,ρ̂(Q,P ) =

∫ ∫
dq dp δ[hD(x)− ϵ]Qρ̂(x). (8.2)

where δ is the Dirac delta function given by Eq. (C.14) and hD(x)
is the classical Dicke Hamiltonian (2.38).
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The identification of unstable periodic orbits, which scar the
eigenstates of a quantum system, is a challenging task, since
they are a set of measure zero in phase space. Thus, only two
fundamental families of periodic orbits can be identified in the
Dicke model [15, 16]. The last families arise in the superradiant
phase (γ > γc) and emanate from the two normal modes around
a stable stationary point at the ground-state energy. These fam-
ilies are called family A (with the shortest period) and family
B, respectively, and are exposed in Chapter 9. Because of the
invariance of the classical Dicke Hamiltonian (2.38) under the
transformation (q, p;Q,P ) → (−q, p;−Q,P ) they have comple-

mentary families Ã and B̃, which causes that every periodic orbit
has a mirrored image.

The first step to identify quantum scarring in the Dicke model
was to study the projected Husimi function of some eigenstates
and in the same way to detect the unstable periodic orbits which
scar them. In Appendix N.1 is shown the numerical procedure to
construct the Husimi function of eigenstates of the Dicke model.
In the same way, the numerical procedure to compute the Husimi
function projected in the atomic phase space is explained in Ap-
pendix N.2.

In Fig. 8.1 is shown the projected Husimi function (8.2) for
some eigenstates of the Dicke model and their correspondence
with periodic orbits of families A and B. The eigenstates sample
the energy spectrum from regular (where the periodic orbits are
stable) to chaotic (where the periodic orbits become unstable)
energy regimes. As can be seen, the confirmation of quantum
scarring in the Dicke model is clearly visible in all projections,
since the eigenstates are highly concentrated around these peri-
odic orbits of each family A and B. Nevertheless, some eigen-
states show unusual behaviors where the concentration region is
not confined exclusively to the periodic orbits. The last behav-
ior is attributed to the scarring caused by some other unidenti-
fied periodic orbits, such that, each eigenstate can have different
scarring degree [15]. The latter has important repercussions in
phase space, since scarring can be seen as a source of localization
of quantum states in phase space.
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Figure 8.1: Projected Husimi function (8.2) for selected eigenstates which
cover the energy spectrum from regular to chaotic (ϵ > −0.8) energy
regimes. Lighter colors indicate higher concentrations, while black corre-
sponds to zero. Periodic orbits from family A (blue solid curve) (a1-a6) and
family B (red solid curve) (b1-b6), and their corresponding mirrored images

from family Ã (blue dashed curve) (a1-a6) and family B̃ (red dashed curve)
(b1-b6). The values of the classical energy shell ϵk and the phase-space
localization measure (8.3) for each eigenstate are indicated in each panel.
Hamiltonian parameters: ω = ω0 = 1, γ = 2γc = 1. The system size is
j = 30. Figure taken from Ref. [15].

8.2.2 Scarring and Localization in Phase Space

Typically, localization (delocalization) of a quantum state de-
fines the region where the state is concentrated (spread) in a
given orthonormal basis. The well-known measure that quanti-
fies this is the participation ratio (4.31). However, the concept
can be extended to continuous spaces, such that, quantum local-
ization in phase space can be established through the use of the
overcomplete coherent-state basis. The phenomenon of quantum
localization is exposed in Chapter 10. The basic idea is to re-
place the probability to find an arbitrary state in a basis state
with a quasiprobability distribution in phase space (Wigner or
Husimi function). Thus, a simple localization measure of a state
ρ̂ in the phase space M of the Dicke model can be defined for
a single classical energy shell ϵ = E/j. The proposed measure
takes the explicit form [15]

Lϵ,ρ̂ =
C2

ϵ

Vϵ

[∫
Mϵ

dsQ2
ρ̂(x)

]−1

∈ (0, 1], (8.3)
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where x = (q, p;Q,P ) are the coordinates of the four-dimensional
phase space M of the Dicke model, ds = δ[hD(x) − ϵ]dx is a
surface element, the constant

Cϵ =

∫
Mϵ

dsQρ̂(x) (8.4)

ensures normalization of the Husimi function, and

Mϵ = {x = (q, p;Q,P )|hD(x) = ϵ} (8.5)

defines the subspace associated to the classical energy shell. The
scaling by the phase-space volume of the classical energy shell

Vϵ =
∫
Mϵ

ds

=

∫
M
dx δ[hD(x)− ϵ]

= (2πℏeff)2ν(ϵ), (8.6)

where ℏeff = j−1 and the term ν(ϵ) is the semiclassical density of
states (2.41), which allows to obtain a measure bounded to the
interval (0, 1]. The limit value L → 0 defines a state maximally
localized in phase space, while the other one L = 1 defines a state
maximally delocalized or spread in the whole classical energy
shell. In this way, the phase-space localization measure (8.3)
can be considered as the analog of the participation ratio (4.31)
for a continuous basis.

To understand the relation between scarring and localization,
the phase-space localization measure (8.3) was computed for the
eigenstates shown in Fig. 8.1. This measure can be numerically
constructed with the same method exposed in Appendix N.2,
where the integral over the remaining atomic variables (Q,P )
is computed with an standard Riemann sum. The value for
each eigenstate is shown in the same Fig. 8.1. As can be seen,
all eigenstates show different localization degree in phase space,
which has an intrinsic relation with quantum scarring. Thus, the
best way to understand this relation is by further studying both
phenomena for the eigenstates of the Dicke model.
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In Fig. 8.2 is shown a Peres lattice of the phase-space localiza-
tion measure (8.3) for all eigenstates of the Dicke model, which
go from the ground-state energy to a chaotic energy regime. In
Fig. 8.2 is shown also the projected Husimi function (8.2) for
some eigenstates located exclusively in the chaotic energy regime
(ϵ > −0.8) and their comparison with pure random states (K.1)
centered at a chaotic classical energy shell. In the same Fig. 8.2
is shown the probability distribution of the phase-space local-
ization measure for an ensemble of random states centered at a
chaotic classical energy shell and for the eigenstates contained
in the chaotic energy regime for different system sizes. As can
be seen, all eigenstates of the Dicke model in the chaotic energy
regime are scarred by unstable periodic orbits, since all projected
Husimi functions show structures that resemble closed periodic
orbits. The same is not true for random states, whose projected
Husimi functions show a granular pattern. The eigenstates of
the Dicke model show different degrees of localization in phase
space. At low energies (regular energy regime) the lattice is
organized along lines associated to quasi-integrals of motion re-
lated to classical periodic orbits [15]. However, at high energies
(chaotic energy regime) the lattice becomes dense and losses or-
der grouping the eigenstates around a mean value L ∼ 1/2. The
last result is associated with an upper limit on the spreading of
any pure state at chaotic energy regimes [15]. Furthermore, the
probability distribution of the phase-space localization measure
of random states is centered at this upper limit and becomes
thinner when the system size increases. On the other hand, for
eigenstates in the chaotic energy regime the probability distri-
bution is skewed and broader, where there is always a fraction
of eigenstates highly localized when the system size increases,
while the fraction of eigenstates highly delocalized decreases.

8.2.3 Dynamical Scarring and Quantum Ergod-
icity

The concept of quantum ergodicity can be extended from classi-
cal ergodicity, where the trajectories of an ergodic system cover
its phase space homogeneously. In this way, quantum ergodicity
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Figure 8.2: Panel a: Peres lattice (black dots) of phase-space localization
measure (8.3) for selected eigenstates contained in the energy interval ϵk ∈
[ϵgs = −2.125, 0.1]. Panels s1-s22: Projected Husimi function (8.2) for
different selected eigenstates which cover the energy spectrum in the chaotic
regime. Lighter colors define higher concentrations, while black corresponds
to zero. Panels r1-r4: Projected Husimi function for random states (K.1)
centered at different classical energy shells Ec = jϵ with energy width jσ.
Panel b: Probability distribution of phase-space localization measure for
20000 random states centered at Ec = jϵ with energy width jσ. Panel c:
Probability distribution of phase-space localization measure for eigenstates
contained in the chaotic energy interval ϵk ∈ [−0.8, 0]. Parameters: ϵ = −0.6
(r1), ϵ = −0.4 (r2), ϵ = −0.2 (r3), ϵ = −0.1 (r4), ϵ = −0.5 (b), σ = 0.3
(r1-r4 and b). Hamiltonian parameters: ω = ω0 = 1, γ = 2γc = 1. The
system size for panels a, s1-s22, and r1-r4 is j = 100. The system size for
panels b and c is indicated in each panel. Figure taken from Ref. [15].
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can be defined through the time-averaged ensemble [15,257,258]

ρ = lim
t→+∞

1

t

∫ t

0

dt′ρ̂(t′), (8.7)

where
ρ̂(t) = e−iĤDtρ̂eiĤDt (8.8)

is the time evolved density matrix. Thus, an arbitrary quan-
tum state ρ̂ is called ergodic if the phase-space localization mea-
sure (8.3) of its time-averaged ensemble (8.7) is unity, Lϵ,ρ̂ ≡
Lϵ,ρ = 1, which implies that the whole classical energy shell is
homogeneously visited by the state. A projected Husimi func-
tion for some time-averaged ensembles can show structures re-
sembling periodic orbits as occurs with single eigenstates. In this
case, the scarring phenomenon is identified as dynamical scarring
of the time-averaged ensemble [15].

An upper limit of spreading was found for chaotic energy
regimes, which means that any pure state can only cover a half
of the available phase space. The latter result implies that any
pure state is a non-ergodic state, since they never cover the clas-
sical energy shell completely. To understand what kind of states
can reach ergodicity in the quantum sense, some time-averaged
ensembles of states are considered.

In Fig. 8.3 is shown the LDoS of initial coherent states located
in the chaotic energy regime, whose explicit parameters in phase
space are given by the initial conditions x0 = (q+(ϵ), 0;Q0, P0),
where q+ is the positive root of the second-degree equation hD(x)−
ϵ = 0. Moreover, is shown the LDoS of a random state (K.1)
centered at the same chaotic classical energy shell as the initial
coherent states. In addition, in Fig. 8.3 are shown the survival
probability (4.26) and its time average for the last states, as well
as the projected Husimi function (8.2) for the time-average en-
semble (8.7) of the same states. In the same Fig. 8.2 is shown
the probability distribution of the phase-space localization mea-
sure (8.3) of the time-averaged ensemble for coherent states and
random states located in a chaotic energy regime for different
system sizes. As can be seen, the LDoS of coherent states shows
generic behaviors, those states with low participation ratio show
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an LDoS with the energy components bunched around specific
energy levels, while those with high participation ratio show an
LDoS more similar to that of the random state, where the most
energy components participate. The survival probability con-
firms these generic behaviors, where states with low participation
ratio (states strongly scarred) show periodicities before satura-
tion, while those with high participation ratio (states with differ-
ent scarring degrees) show the correlation hole before saturation
as occurs with the random state. The projected Husimi func-
tions show the dynamical scarring for the time-average ensem-
bles of coherent states, since clear structures resembling periodic
orbits can be seen, while the random state does not show these
structures. On the other hand, the phase-space localization mea-
sure of the time-averaged ensembles for the last states show also
generic behaviors in light of quantum ergodicity. The random
state shows a phase-space localization measure L ∼ 1, which im-
plies that this state can be considered as an ergodic state, while
coherent states show a direct relation between the phase-space
localization measure and the participation ratio. When the par-
ticipation ratio grows, the phase-space localization measure also
grows, but it never reaches unity as the random state. This is
shown in the probability distribution of the phase-space local-
ization measure for both type of states. On the one hand, for
coherent states the broad distribution becomes thinner when the
system size increases, but the fraction of states with phase-space
localization measure near unity is small. On the other hand,
for random states the distribution becomes thinner and better
centered at unity when the system size increases, ensuring their
ergodic behavior.

8.3 Conclusions of Chapter 7

The ubiquitous quantum scarring of the Dicke model was con-
firmed for all eigenstates in the chaotic energy regime. This
feature of the Dicke model was a counter intuitive result, since
for many years it was thought that the eigenstates of quantum
systems affected by scarring were a few ones with specific char-
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Figure 8.3: Panels a1-g1: LDoS of coherent states centered at the clas-
sical energy shell ϵ. The selected states a1-g1 are shown in Fig. 7.8: a1 (c),
b1 (h), c1 (b), d1 (e), e1 (f), f1 (d), g1 (a). Panel h1: LDoS of random
state (K.1) centered at Ec = jϵ with energy width jσ. The participation
ratio of each state a1-h2 is indicated in each panel. Panels a2-h2: Sur-
vival probability (4.26) (gray solid curve) numerically constructed, its time
average (blue solid curve) with exponential time intervals, and its asymp-
totic value (horizontal black dashed line) for states a1-h1. Panels a3-h3:
Projected Husimi function (8.2) of time-averaged ensemble (8.7) for states
a1-h1. Lighter colors define higher concentrations. The value of the phase-
space localization measure (8.3) for each state a1-h2 is indicated in each
panel. Panel i: Probability distribution of phase-space localization mea-
sure of time-averaged ensemble (8.7) for 1551 coherent states distributed
equally in the atomic plane Q − P . Panel j: Probability distribution of
phase-space localization measure of time-averaged ensemble for 500 random
states centered at Ec = jϵ with energy width jσ. Parameters: ϵ = −0.5
(h1 and j), σ = 0.3 (h1 and j). Hamiltonian parameters: ω = ω0 = 1,
γ = 2γc = 1. The system size for panels a1-h1, a2-h2, and a3-h3 is j = 100.
The system size for panels i and j is indicated in each panel. Figure taken
from Ref. [15].
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acteristics. The eigenstates show different scarring degree and at
the same time different localization degree in phase space. An
eigenstate strongly scarred is also highly localized in phase space;
however, an eigenstate can be scarred by different unstable pe-
riodic orbits and reach values of delocalization comparable to a
random state. The initial coherent states strongly scarred by
unstable periodic orbits cause the breaking of ergodicity arising
the periodic revivals in their survival probability.

On the other hand, any pure state (scarred or unscarred) is
localized in phase space, since an upper limit of spreading was
found. This limit is related with quantum interferences of the
wave function and not with quantum scarring, and the only way
to achieve quantum ergodicity is through time averages, that is,
quantum ergodicity is an ensemble property. Thus, the three
main concepts investigated, scarring, localization, and lack of
ergodicity are related to each other, but they do not mean the
same. In this way, the ubiquitous quantum scarring displayed
by the Dicke model does not mean directly breaking of quantum
ergodicity. Any pure state, including eigenstates, coherent states
and random states, is a non-ergodic state, since it never reaches
complete delocalization in phase space. The only type of states
considered as ergodic states are non-stationary states as time-
averaged ensembles of random states and some time-averaged
ensembles of coherent states which reach values of delocalization
near to those of random states.

The results exposed in this Chapter are shown in more detail
in Ref. [15].
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Chapter 9

Fundamental Families
of Periodic Orbits

In this Chapter are exposed the fundamental families of periodic
orbits emanating from a stationary point in the Dicke model,
which cause the ubiquitous quantum scarring detected in the
model. Results on the identification of these families of peri-
odic orbits are shown, as well as the perturbing method to find
well-converged periodic orbits. Furthermore, a scarring measure
is introduced to quantify the scarring degree of quantum states
caused by such families of periodic orbits. An analysis of dy-
namical scarring for coherent states is also shown.

9.1 Families of Periodic Orbits that Em-
anate from Stationary Points

In Chapter 8 were introduced two fundamental families of pe-
riodic orbits in the Dicke model that emanate from a station-
ary point. At low energies these periodic orbits are stable, but
when energy increases reaching high energy regions where clas-
sical chaos appears, these periodic orbits become unstable and
cause the scarring of the eigenstates. In this way, a fourth goal
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in this Thesis was to detect these families of periodic orbits,
identifying the generic effects over the eigenstates they produce.

9.1.1 Perturbation of Stationary Points

A periodic orbit is a subset of phase space and can be defined as

Oϵ = {x(t)|t ∈ [0, T ]}, (9.1)

where ϵ is the energy of the periodic orbit and T defines its
normal period, which satisfies the condition x(0) = x(T ), and
x = (q, p;Q,P ) are the coordinates of the four-dimensional phase
spaceM of the Dicke model. The simplest periodic orbit comes
from a single stationary point xsp, such that, xsp(0) = xsp(t)
for all times. For the superradiant phase (γ > γc) of the Dicke
model, the stationary point xgs associated with the ground-state
energy ϵgs can be found by minimizing the classical Dicke Hamil-
tonian (2.38), and is given by Eq. (C.12). There is another sta-
tionary point x̃gs where the variables q and Q have opposite sign
to those of xgs. By considering small displacements around the
stationary point xgs its normal modes can be obtained. That is,
two normal angular frequencies can be obtained [16]

ΩA,B
ϵgs =

1

ω

√
1

2

(
ω4 + 16γ4 ±

√
(ω4 − 16γ4)2 + 4ω6ω2

0

)
, (9.2)

as well as their normal periods TA,B
ϵgs = 2π/ΩA,B

ϵgs . Thus, for
the latter periods their fundamental periodic orbits are given by
OA,B

ϵgs = {xgs}. Using a method known as monodromy method
to guarantee convergence [251, 259–261], these periodic orbits

can be perturbed to find new periodic orbits OA,B
ϵ′ with energy

ϵ′ = ϵgs + δϵ and period TA,B
ϵ′ = TA,B

gs + δT . This process can be
done iteratively for increasing energies until the chaotic regime
ϵ > −0.8, where the periodic orbits become unstable. In Ap-
pendix O.1 is shown the monodromy method to find periodic
orbits in the phase space of the Dicke model. Two fundamental
families of periodic orbits are found in the Dicke model and are
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given by [16]

A = {OA
ϵ |ϵgs ≤ ϵ}, (9.3)

B = {OB
ϵ |ϵgs ≤ ϵ}. (9.4)

The parity conservation of the Dicke Hamiltonian (2.5) is
manifested in the classical Dicke Hamiltonian (2.38) as invariance
under the transformation (q, p;Q,P )→ (−q, p;−Q,P ). The last
feature allows to find mirrored images of each periodic orbit as
Oϵ → Õϵ, which have the same energy and period than the orig-
inal ones. Thus, the complementary families of periodic orbits
that emanate from the stationary point x̃gs can be defined as

Ã = {ÕA
ϵ |OA

ϵ ∈ A}, (9.5)

B̃ = {ÕB
ϵ |OB

ϵ ∈ B}. (9.6)

Analyzing the properties of the fundamental families of peri-
odic orbits A and B can help to understand the way they cause
the ubiquitous scarring for the eigenstates of the Dicke model.
The study of the period and maximum Lyapunov exponent as
a function of the energy can give some insight on how these pe-
riodic orbits, stable at low energies, become unstable at high
energies. In Appendix O.2 is shown the numerical procedure to
compute the Lyapunov exponent for periodic orbits.

In Fig. 9.1 is shown a set of periodic orbits from family A
and family B projected in both bosonic q− p and atomic Q− P
planes. The period an the maximum Lyapunov exponent of the
orbits for both families as a function of the energy is also shown.
The stationary point from where emanate both families of peri-
odic orbits is marked with blue (family A) and red (family B)
arrows in each plane. As can be seen, the period of family A
grows linearly and softly, while the period of family B shows a
maximum near the energy value ϵ ∼ 1, where an exited-state
quantum phase transition appears in the model. On the other
hand, the Lyapunov exponent of family A shows clearly the en-
ergy where orbits become unstable (ϵ ∼ −0.8) taking positive
values. Nevertheless, for family B appears a characteristic be-
havior, since there is a region at high energies where the orbits
can be stable near the energy value ϵ ∼ −0.1.
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Figure 9.1: Panels (a1)-(b2): Periodic orbits (solid curves) from family
A and B projected in the bosonic q−p [(a1) and (b1)] and atomic Q−P [(a2)
and (b2)] plane, respectively. The dashed curves represent the available
phase space for different classical energy shells. Darker colors define low
energy values. The blue and red arrows define the stationary point xgs

at the ground-state energy. Panels (c)-(d): Period (c) and maximum
Lyapunov exponent (d) of the periodic orbits from family A (blue solid
curve) and family B (red solid curve) as a function of the energy. In panels
(a1)-(b2) are shown the selected initial coherent states for the chaotic energy
regime: state i (near family A), state ii (near family B), and state iii (far
from families A and B). Classical energy shell: ϵ = −0.5 (chaotic). Initial
conditions: (Q0, P0) = (1.75, 0) (state i), (Q0, P0) = (0.9, 0.7) (state ii),
(Q0, P0) = (−0.2, 1) (state iii). Hamiltonian parameters: ω = ω0 = 1,
γ = 2γc = 1. The system size is j = 30. Figure taken from Ref. [16].
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9.1.2 Scarring of Periodic Orbits

To quantify how much an arbitrary state ρ̂ is scarred by a given
periodic orbit Oϵ with energy ϵ and period T , a scarring measure
can be defined as [16]

P(Oϵ, ρ̂) =
Tr(ρ̂ρ̂Oϵ

)

Tr(ρ̂ϵρ̂Oϵ
)
, (9.7)

where ρ̂Oϵ
represents a tubular Gaussian distribution around the

periodic orbit Oϵ and ρ̂ϵ represents a state composed of all coher-
ent states within the classical energy shell ϵ = hD(Oϵ), which is
completely delocalized. In appendix O.3 is shown the complete
derivation of the proposed scarring measure. In this way, a scar-
ring measure of an arbitrary state ρ̂ caused by the fundamental
families A and B, as well as the complementary families Ã and
B̃, is defined as

PA(ϵ, ρ̂) = P(OA
ϵ , ρ̂) + P(ÕA

ϵ , ρ̂), (9.8)

PB(ϵ, ρ̂) = P(OB
ϵ , ρ̂) + P(ÕB

ϵ , ρ̂), (9.9)

where a value P = 1 indicates that the overlap between the
state ρ̂ and the periodic orbit Oϵ is the same of a completely
delocalized state ρ̂ϵ. Values P > 1 indicate a state ρ̂ scarred by
the periodic orbit Oϵ, while values P < 1 indicate a state ρ̂ is less
likely to be found near the periodic orbit Oϵ than a completely
delocalized state ρ̂ϵ.

A graphic way to condensate the effects caused by the families
A and B over the eigenstates is through a Peres lattice of a given
operator. A known an previously studied operator is the angular
momentum operator Ĵz, whose scaled expectation value can be
represented classically using an average over periodic orbits of
the classical variable jz = (Q2 + P 2)/2− 1 [16]

⟨jz⟩OA,B
ϵ

=
1

TA,B
ϵ

∫ TA,B
ϵ

0

dt jz[x(t)], (9.10)

where TA,B
ϵ are the normal periods of families A and B, which

can be obtained from the normal frequencies (9.2). Moreover,
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using the Bohr-Sommerfeld quantization condition, the energies
of the families A and B can be semiclassically quantized as [16]∫ εA,B

i

εA,B
i−1

dϵ TA,B
ϵ = 2πℏeff, (9.11)

where ℏeff = j−1, and both families begin from the ground-state
energy εA0 = εB0 = ϵgs. The last procedure allows to visualize
the exact energies which conform each fundamental family of
periodic orbits.

In Fig. 9.2 is shown a Peres lattice of operator Ĵz/j for all
eigenstates of the Dicke model, which go from the ground-state
energy to a chaotic energy regime. For all eigenstates was com-
puted the scarring measure of family A (9.8) and family B (9.9),
and is represented as the intensity of color of each eigenstate.
Moreover, the classical expectation value (9.10) and the semi-
classically quantized energies given by Eq. (9.11) are also shown
for both families. In the same Fig. 9.2 is shown the projected
Husimi function (8.2) for the same eigenstates of the Dicke model
presented in Fig. 8.1 and their correspondence with periodic or-
bits of families A and B. The eigenstates sample the energy
spectrum from regular (where the periodic orbits are stable)
to chaotic (where the periodic orbits become unstable) energy
regimes. The scarring measure for family A (9.8) and family
B (9.9) was computed for these eigenstates. The value for each
eigenstate is shown in the same Fig. 9.2, confirming that the
selected eigenstates are effectively scarred by each fundamental
family A and B. As can be seen, all eigenstates show different
scarring degree caused by each family A and B in accord with
the color bars. At low energies, the strongly scarred eigenstates
are ordered in a lattice-like shape and coincide perfectly with
the semiclassical quantized energies for each family. However, as
energy increases the order losses and the strongly scarred states
are bunched around the semiclassical quantized energies forming
cluster-like shapes. For both families, the classical expectation
value (9.10) for each family A and B shows an agreement with
the Peres lattice of the quantum operator Ĵz/j, since the eigen-
states scarred by each family are grouping around it.
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Figure 9.2: Panels (a)-(b): Peres lattice (circles) of operator Ĵz/j for
eigenstates contained in the energy interval ϵk ∈ [ϵgs = −2.125, 0]. The
intensity of color for each circle represents the scarring measure of family
A (9.8) (blue) (a) and family B (9.9) (red) (b) indicated with the right
bar. The vertical lines represent the Bohr-Sommerfeld quantization condi-
tion (9.11) for energies of family A (blue thin lines) (a) and family B (red
thin lines) (b). The black arrows represent the selected eigenstates presented
in panels A1-B6. Panels A1-B6: Projected Husimi function (8.2) for se-
lected eigenstates which cover the energy spectrum from regular to chaotic
(ϵ > −0.8) energy regimes. Darker colors indicate higher concentrations,
while white corresponds to zero. Periodic orbits from family A (blue solid
curve) (A1-A6) and family B (red solid curve) (B1-B6), and their corre-

sponding mirrored images from family Ã (blue dashed curve) (A1-A6) and

family B̃ (red dashed curve) (B1-B6). The values of the classical energy shell
ϵk and the scarring measure of family A and family B for each eigenstate are
indicated in each panel. Hamiltonian parameters: ω = ω0 = 1, γ = 2γc = 1.
The system size is j = 30. Figure taken from Ref. [16].
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9.1.3 Dynamical Scarring of Periodic Orbits

Two fundamental families of periodic orbits that emanate from
a stationary point cause the ubiquitous quantum scarring of the
eigenstates of the Dicke model at high energies were identified.
A next step was to study how these families of periodic orbits
affect the dynamics of non-stationary states. In particular, ini-
tial Glauber-Bloch coherent states located in a chaotic energy
regime were selected to study the survival probability and the
connections with the last families of periodic orbits. Three co-
herent states were selected, one located in a point of a periodic
orbit of family A (identified as state i), another one located in a
point of a periodic orbit of family B (identified as state ii), and
the last one located far from both families A and B, as well as
from the complementary families Ã and B̃. The explicit parame-
ters of the initial coherent states in phase space are given by the
initial conditions x0 = (q+(ϵ), 0;Q0, P0), where q+ is the positive
root of the second-degree equation hD(x)− ϵ = 0. These initial
coherent states are shown in Fig. 9.1.

The selected Glauber-Bloch coherent states can be numeri-
cally constructed in the eigenbasis of the Dicke Hamiltonian (see
Appendix M). To understand the connection between eigenstates
scarred by each family of periodic orbits and the latter states,
the LDoS needs to be analysed. In Fig. 9.3 is shown the LDoS
of states i, ii, and iii, where each eigenstate is colored with the
scarring measure for family A (9.8) and family B (9.9). More-
over, the semiclassically quantized energies given by Eq. (9.11)
are also shown for both families. In the same Fig. 9.3 is shown
a Peres lattice of operator Ĵz/j for states i, ii, and iii, where the
contribution to the LDoS of each eigenstate is represented by
the intensity of color. As can be seen, state i is strongly scarred
by family A, since the energy components which contribute to
the LDoS have large values of the scarring measure of family A.
The eigenstates with the highest contribution to the LDoS are
identified as i1-i6. The same scenario occurs for state ii with
family B, where the eigenstates with the highest contribution
to the LDoS are identified as ii1-ii6. For state iii the scenario
is different, since any family scar the eigenstates significantly.
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For this sate the eigenstates with the highest contribution to the
LDoS are identified as iii1-iii6. The last results are confirmed
with the corresponding Peres lattice for states i, ii, and iii. For
state i, the eigenstates with high contribution to the LDoS tend
to be located near the classical expectation value of family A,
while the same occurs for state ii with family B. For state iii is
unclear which family has a dominant effect on the eigenstates.
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Figure 9.3: Panels (ai)-(biii): LDoS (circles) of states i, ii, and iii. The
intensity of color for each circle represents the scarring measure of family
A (9.8) (blue) (ai)-(aiii) and family B (9.9) (red) (bi)-(biii) indicated with
the right bar. The vertical lines represent the Bohr-Sommerfeld quantization
condition (9.11) for energies of family A (blue thin lines) (ai)-(aiii) and
family B (red thin lines) (bi)-(biii). Selected eigenstates with the highest
contribution to the LDoS of state i (i1-i6), state ii (ii1-ii6), and state iii (iii1-

iii6). Panels (ci)-(ciii): Peres lattice (circles) of operator Ĵz for eigenstates
contained in the energy interval ϵk ∈ [ϵgs = −2.125, 0]. The intensity of color
for each circle represents the participation degree of the eigenstates (green)
in the LDoS of each state i, ii, and iii indicated with the right bar. The
states i, ii, and iii are shown in Fig. 9.1 (a1)-(b2). Classical energy shell:
ϵ = −0.5 (chaotic). Hamiltonian parameters: ω = ω0 = 1, γ = 2γc = 1.
The system size is j = 30. Figure taken from Ref. [16].
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To confirm the quantum scarring due to families A and B
present in states i, ii, and iii, the projected Husimi function was
computed for the eigenstates with the highest contribution to the
LDoS. In Fig. 9.4 is shown the projected Husimi function (8.2)
for each set of states i1-i6, ii1-ii6, and iii1-iii6. In the same
Fig. 9.4 is shown a projected Husimi function computed over
all available classical energy shells. In Appendix N.3 is shown
the explicit expression for this kind of projection. As can be
seen, both sets of eigenstates i1-i6 and ii1-ii6 show clearly the
concentration of probability around regions which resemble both
sets of families of periodic orbits from family A and family B.
For the set of eigenstates iii1-iii6 there is no agreement with the
known families, but the projections seem to suggest that a third
unidentified family of periodic orbits cause their scarring. On the
other hand, the projections computed over all available classical
energy shells allow to identify also the known families of periodic
orbits, however they erase some finite structures captured by the
projections at a single classical energy shell.

In order to study the dynamical effects associated with the
fundamental families A and B, an analysis of frequencies was
done for the states i, ii, and iii. The survival probability can
be defined as the Fourier transform of a spectral autocorrelation
function (see Eq. (H.6)). In this way, the inverse Fourier trans-
form of the survival probability allows to obtain such spectral
function as [16]

S(E) = F−1{SP (t)}

=
1

2πℏeff

∫ +∞

0

dt SP (t)e
iEt, (9.12)

where ℏeff = j−1. This function allows to study the time effects
of the survival probability in the energy domain.

In Fig. 9.5 are shown the survival probability (4.26) and its
time average for states i, ii, and iii. For state iii is shown the com-
parison with the analytical survival probability (4.36). Moreover,
the normal periods of families A and B obtained with Eq. (9.2)
are superposed for states i and ii, while for state iii is shown
the time region where the correlation hole appears until satura-
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Figure 9.4: Projected Husimi function (8.2) (green color scale) for selected
eigenstates with the highest contribution to the LDoS of state i (i1-i6), state
ii (ii1-ii6), and state iii (iii1-iii6). Darker colors indicate higher concentra-
tions, while white corresponds to zero. The selected eigenstates (i1-iii6) are
shown in Fig. 9.1 (ai)-(biii). Projected Husimi function (N.4) (orange color
scale) for the same selected eigenstates, whose projection takes all the clas-
sical energy shells. The value of the spectrum label k for each eigenstate is
indicated in each panel. Hamiltonian parameters: ω = ω0 = 1, γ = 2γc = 1.
The system size is j = 30. Figure taken from Ref. [16].

119



CHAPTER 9. FUNDAMENTAL FAMILIES OF PERIODIC
ORBITS

0.1 1 10 100 1000

10
-4

0.001

0.010

0.100

1

State i

0.1 1 10 100 1000

State ii

0.1 1 10 100 1000

State iii

5 15

10
-4

0.001

0.010

0.100

1

10 20 30 40 20 40 60 80

1

2

3

0.1 0.3 0.7 0.9
0

1

2

3

4

5

6

1

2

0.1 0.3 0.7 0.9 0.1 0.3 0.7 0.9

1-1

0.8

-0.8

1-1 1-1

Figure 9.5: Panels (ai)-(aiii): Survival probability (4.26) (orange solid
curve) and its time average (purple solid curve) with exponential time in-
tervals numerically constructed for states i, ii, and iii. The horizontal black
dashed line represents the asymptotic value of the survival probability. In
panel (aiii) is shown the analytical survival probability (4.36) (green solid
curve). Panels (bi)-(biii): Survival probability of the same states i, ii, and
iii in a linear time scale. The vertical lines represent the periods of family
A (blue dashed line) (bi) and family B (red dashed line) (bii) for states i
and ii. In panel (biii) is shown the time average of the survival probabil-
ity (purple solid curve) and the analytical survival probability (green solid
curve), where the correlation hole appears for state iii. Panels (ci)-(ciii):
Analysis of angular frequencies (black thin bars) for states i, ii, and iii. The
vertical lines represent the periodic angular frequencies of family A (blue
solid lines) (ci) and family B (red solid lines) (cii). Panels (di)-(diii):
Projected Husimi function (8.2) of time-averaged ensemble (8.7) for states
i, ii, and iii. Darker colors define higher concentrations. Periodic orbits from
family A (blue solid curve) (di) and family B (red solid curve) (dii), and

their corresponding mirrored images from family Ã (blue dashed curve) (di)

and family B̃ (red dashed curve) (dii). The value of the scarring measure of
family A (9.8) and family B (9.9) for each state i, ii, and iii is indicated in
each panel. Classical energy shell: ϵ = −0.5 (chaotic). Hamiltonian param-
eters: ω = ω0 = 1, γ = 2γc = 1. The system size is j = 30. Figure taken
from Ref. [16].
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tion. Furthermore, the analysis of angular frequencies given by
Eq. (9.12) is presented for states i, ii, and iii. In the same Fig. 9.5
is shown the projected Husimi function (8.2) for the time-average
ensemble (8.7) of the same states and the scarring measure for
family A (9.8) and family B (9.9). The correspondence with pe-
riodic orbits of families A and B is shown only for states i and ii.
As can be seen, the survival probability of states i and ii shows
clear revivals associated with quantum scarring, while for state
iii shows the correlation hole, typical of an ergodic state which
captures the spectral correlations of the GOE. Moreover, the pe-
riods of each family A and B describe accurately the revivals in
the survival probability of states i and ii. The analysis of the an-
gular frequencies for states i and ii show clear periodic structures
around the periods of families A and B, while for state iii there is
no clear identified pattern. Furthermore, the projected Husimi
functions for the latter states show an agreement with periodic
orbits from families A and B for states i and ii, and that is cor-
roborated with the scarring measure of each family. For state
iii, the scarring measure of each family indicates that this state
is unscarred by them; nevertheless, it shows a concentration re-
gion, which can be associated with an unknown periodic orbit
from an unidentified family of periodic orbits.

9.2 Conclusions of Chapter 8

Two fundamental families of periodic orbits were identified in
the Dicke model for the supperradiant phase (γ > γc), which
emanate from a stationary point at the ground-state energy and
which scar the eigenstates of the Dicke model. The proposed
scarring measure of arbitrary states caused by these families of
periodic orbits allows to identify the sets of eigenstates scarred
by each family of periodic orbits. The analysis of the periods
and Lyapunov exponents of the periodic orbits from both fami-
lies allows to characterize the distribution of eigenstates scarred
by each family. The semiclassical quantization of the energies
using the Bohr-Sommerfeld quantization condition for the nor-
mal periods of each family of periodic orbits identify the eigen-
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states scarred by such families, since they are exactly distributed
around the corresponding semiclassical quantized energies. At
low energies the eigenstates are ordered in lattice-like shapes,
while at high energies they lose such order and form cluster-like
shapes. The width of these clusters is associated with the Lya-
punov exponent of the corresponding periodic orbits.

Three general behaviors about dynamical scarring are found
for initial coherent states located in a chaotic energy regime: 1)
If the initial state is located near a periodic orbit of family A,
it is strongly scarred by this family and its survival probability
shows clear revivals associated with eigenstates scarred by this
family. 2) If the initial state is located near a periodic orbit
of family B, the same behavior described for the previous case
occurs. 3) If the initial state is far enough from both families
of periodic orbits A and B, it is unscarred by such families and
show any revivals in the survival probability. In this case, the
survival probability shows the correlation hole as occurs with a
random state. The last behavior does not mean that the state
is unscarred at all, since it can be scarred by unknown periodic
orbits from unidentified families of periodic orbits.

The results exposed in this Chapter are shown in more detail
in Ref. [16].
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Localization in the
Dicke Model
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Chapter 10

Localization Measures
in Phase Space

In this Chapter is exposed a historical review on the phenomenon
of quantum localization. The origin, first studies and its relation
with other types of localization are reviewed and is exposed the
revision of the common systems where this phenomenon is de-
tected. Furthermore, results on localization of quantum states in
the unbounded phase space of the Dicke model are shown. Gen-
eralized localization measures defined in continuous spaces and
based in the generalized Rényi entropy are introduced. When
the continuous space is unbounded the selection of a bounded
subspace is needed. Thus, two bounded subspaces of the Dicke
model are studied in detail and the implications they have.

10.1 Quantum Localization

Quantum localization has its origin in dynamical localization, a
term coined to denote the quantum limitation of classical dif-
fusion in the chaotic regime [40, 142]. Dynamical localization
has been related to the well-known Anderson localization, which
refers to the suppression of the classical diffusion of particles in
real space due to quantum interferences and is present in one-
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dimensional disordered systems [41–44]. The first systems where
dynamical localization was observed were periodically kicked ro-
tors [40, 42, 142], later it was also found in different systems,
as the hydrogen atom in a monochromatic field and Rydberg
atoms [262–264]. The phenomenon was also observed in con-
servative systems, such as the bandrandom-matrix model and
quantum billiards [265–271]. The most recent studies have fo-
cused its onset on quantum many-body systems because of the
increasing interest in the many-body localized phase, which is a
state of matter that prevents thermalization [22, 45–48]. Other
studies cover the dynamical many-body localization [272–275].

Quantum scarring and quantum localization are not syn-
onyms, but both carry the idea of confined eigenstates [15]. The
mathematical way to measure delocalization is through the expo-
nential of an entropy [276]. Under different names this measure
is widely used throughout many areas of science. In ecology,
the diversity indices are used to count the number of species in
a population [277]. In information science and linguistics, the
perplexity quantifies how well a probabilistic model fits some
data [278,279]. In physics, delocalization is defined with respect
to a given space. In finite spaces, the degree of delocalization of a
quantum state is based on how much it spreads on a chosen finite
basis representation, as quantified by the participation ratio and
the Rényi entropy [142,280–282]. The concept of delocalization
can be extended to continuous spaces; however, in unbounded
continuous spaces, the measures can reach arbitrarily large val-
ues. To investigate maximally delocalized states in this kind of
unbounded spaces, a finite region must be selected as a reference
volume to define the measures appropriately.

Using the phase space, a connection between the structures
of classical dynamics and those of the quantum realm can be out-
lined [283]. The exponential of the generalized Rényi-Wehrl en-
tropy can be used to measure the localization of quantum states
in phase space [284,285]. Quantum states may be represented in
the phase space through quasiprobability distributions [120,209].

126



10.2. LOCALIZATION IN PHASE SPACE

10.2 Localization in Phase Space

In Chapter 8 was introduced a localization measure in phase
space to explain the connection with the ubiquitous quantum
scarring of the Dicke model. This measure can be considered as
the analog of the participation ratio for a continuous basis. Nev-
ertheless, the concept of localization in continuous basis can lead
to misinterpretations when the continuous space is unbounded.
The last has important repercussions, since there is no unique
way to define localization measures in such spaces. In this way,
a fifth goal in this Thesis was to propose a general scheme to de-
fine localization measures of quantum states in the phase space
of the Dicke model.

10.2.1 Rényi Occupation

A generalized localization measure in continuous spaces can be
defined as [17]

Lα,1(N,Φ) =
Vα,1(N,Φ)
VN

∈ (0, 1], (10.1)

where N defines the continuous space with volume VN and Φ(υ)
defines a probability distribution which depends on a parame-
ter υ defined in the latter space υ ∈ N. The last measure is
called Rényi occupation of order α. The name comes from the
well-known generalized Rényi entropy which allows to define the
Rényi volume Vα,1(N,Φ). In Appendix P is shown the proce-
dure to define the Rényi occupation of order α, its relation with
the generalized Rényi entropy, and the derivation of the Rényi
volume.

To establish a connection with the phase space M of the
Dicke model the over complete coherent-state basis {|x⟩} is used,
where x = (q, p;Q,P ) are the coordinates of the four-dimensional
phase space. The phase space of the Dicke model is an un-
bounded space with volume VM =

∫
M dV(x) = ∞. The last

issue causes that the probability distribution Φ(x) is arbitrarily
delocalized and the Rényi occupation (10.1) is not well defined.
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A way to fix this issue is to define the Rényi occupation as follows

Lα,1(S,Φ) =
Vα,1(S,Φ)
VS

∈ (0, 1], (10.2)

where S ⊂ M is a bounded subspace with finite volume VS <
VM (see Appendix P). The selection of this kind of bounded
subspaces is not universal and different choices can lead to dif-
ferent interpretations about localization of quantum states in
phase space.

10.2.2 Rényi Occupation in Bounded Subspaces

As was explained previously, the phase space M of the Dicke
model is unbounded and the Rényi occupation must be defined
within bounded subspaces. The selection of this bounded sub-
spaces is arbitrary in principle. For this reason, to understand
the way localization of quantum states in phase space must be
interpreted, two subspaces are studied in the Dicke model.

The phase space M of the Dicke model is conformed by a
bounded atomic subspace and an unbounded bosonic subspace.
Thus, the natural choice of a bounded subspace is given by the
atomic subspace, such that, the following Rényi occupations of
order α can be defined as follows [17,286]

Lα(A, ρ̂) =
C

α/(α−1)
A

VA

[∫
A
dQdP Q̃α

ρ̂ (Q,P )

]1/(1−α)

, (10.3)

L1(A, ρ̂) =
CA

VA
e−(1/CA)

∫
A dQdP Q̃ρ̂(Q,P ) ln[Q̃ρ̂(Q,P )], (10.4)

where
A = {(Q,P )|Q2 + P 2 ≤ 4} (10.5)

represents the bounded atomic subspace of the Dicke model with
phase-space volume VA and the constant CA ensures the normal-
ization of the projected Husimi function (N.4). In Appendix Q.1
is shown the complete derivation of the Rényi occupation of order
α defined in the atomic subspace A of the Dicke model.

On the other hand, the second selected subspace corresponds
to that of a classical energy shell Mϵ given by Eq. (8.5) with
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phase-space volume Vϵ, such that, can be defined the following
Rényi occupations [17]

Lα(ϵ, ρ̂) =
C

α/(α−1)
ϵ

Vϵ

[∫
Mϵ

dsQα
ρ̂ (x)

]1/(1−α)

, (10.6)

L1(ϵ, ρ̂) =
Cϵ

Vϵ
e−(1/Cϵ)

∫
Mϵ

dsQρ̂(x) ln[Qρ̂(x)], (10.7)

where x = (q, p;Q,P ) are the coordinates of the four-dimensional
phase spaceM of the Dicke model, the constant Cϵ ensures the
normalization of the Husimi function within the phase space of
the classical energy shell, and ds = δ[hD(x) − ϵ]dx is a surface
element. In Appendix Q.2 is shown the derivation of the Rényi
occupation of order α defined at a classical energy shell.

To compare the latter Rényi occupations an order α must
be selected. The order selected as a case study is α = 2, since
it corresponds with the order of the well-known participation
ratio (4.31) coming from the generalized participation ratios of
order α (see Appendix P). Moreover, the Rényi occupation of
order α = 2 defined at a classical energy shell was previously
introduced in Chapter 8 to understand the relation with quan-
tum scarring and was considered as the analog of the partici-
pation ratio for a continuous basis. The explicit expression is
given by Eq. (8.3), where can be seen that it is a particular case
of Eq. (10.6) for α = 2. Some inconveniences can arise when
comparing both Rényi occupations, since the Rényi occupation
defined in the atomic subspace does not depend explicitly on en-
ergy, while the Rényi occupation at a classical energy shell does.
However, a peculiarity of the latter Rényi occupation is that it
remains almost constant around energies close to the classical
energy shell. The last is proved for selected eigenstates of the
Dicke model. In Fig. 10.1 are shown the energy profile of the
Husimi function (8.4) and the Rényi occupation at a classical
energy shell (10.6) (α = 2) for such eigenstates. The first eigen-
state is located in the mixed energy regime where regularity and
chaos coexist, while the remaining ones are located in a chaotic
energy regime (ϵ > −0.8). As can be seen, the profiles of the
Husimi function are well described by Gaussian functions, while
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the Rényi occupations remain almost constant around the corre-
sponding classical energy shells. The last implies that the Rényi
occupation at a classical energy shell is well defined even when
energy changes.
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Figure 10.1: Top panels: Energy profile of the Husimi function (8.4)
(orange solid curve) for selected eigenstates located in the chaotic energy
interval ϵk ∈ [−1.2,−0.43]. The vertical dashed line represents the eigenen-
ergy of each eigenstate. The values of the spectrum label k and the eigenen-
ergy ϵk for each eigenstate are indicated on top of each panel. Bottom
panels: Energy distribution of the Rényi occupation at a classical energy
shell (10.6) (green solid curve) (order α = 2) for the same selected eigen-
states. Hamiltonian parameters: ω = ω0 = 1, γ = 2γc = 1. The system size
is j = 30. Figure taken from Ref. [17].

Localization of Eigenstates

In order to understand further the latter Rényi occupations, the
phase-space localization of eigenstates was first studied. Both
Rényi occupations (10.3) and (10.6) (α = 2) were computed for
a set of eigenstates located in the chaotic energy regime.

In Fig. 10.2 is shown the probability distribution of each
Rényi occupation (10.3) and (10.6) (α = 2) for eigenstates lo-
cated in the chaotic energy regime (ϵ > −0.8). As can be
seen, two different interpretations arise with each Rényi occu-
pation. On the one hand, the mean value of Rényi occupation
in the atomic subspace is located near unity L2 ∼ 0.9, which im-
plies that the most eigenstates are completely delocalized in the
atomic Bloch sphere. On the other hand, the mean value of the
Rényi occupation at a classical energy shell is given by L2 ∼ 0.4,
whose interpretation is that the most eigensates occupy less than
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half of the phase space of the classical energy shell.
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Figure 10.2: Probability distribution of the Rényi occupation at classical
energy shell (10.6) (green bars) and in the atomic subspace (10.3) (blue
bars) (order α = 2) for eigenstates contained in the chaotic energy interval
ϵk ∈ (1, 1.274). The inset shows the cumulative probability distribution
of each probability distribution. Hamiltonian parameters: ω = ω0 = 1,
γ = 2γc = 1. The system size is j = 30. Figure taken from Ref. [17].

In order to elucidate the latter discrepancies between both
Rényi occupations other kind of states are considered. In partic-
ular, time evolved Glauber-Bloch coherent states are considered,
as well as initial Glauber-Bloch coherent states mixed in phase
space.

Localization of Time Evolved Coherent States

The initial Glauber-Bloch coherent states can be evolved in time
using Eq. (8.8), whose parameters are given by the initial con-
ditions x0 = (q+(ϵ), 0;Q0, P0), where q+ is the positive root of
the second-degree equation hD(x) − ϵ = 0. Moreover, a time-
averaged ensemble for these coherent states can be defined as [17]

ρx =
1

T

∫ T

0

dt ρ̂x(t), (10.8)

where ρ̂x(t) is the time evolved Glauber-Bloch coherent state.
In Fig. 10.3 are shown the Rényi occupations (10.3) and (10.6)

(α = 2) for a time evolved coherent state located in the chaotic
energy regime (ϵ > −0.8) and for the time-average ensemble (10.8)
of the same state. In the same Fig. 10.3 is shown the time evolved
Husimi function of the selected coherent state projected in each
atomic (N.4) and bosonic (N.3) plane. As can be seen, the Rényi
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occupation in the atomic subspace for the time evolved coherent
state saturates immediately to unity, indicating that the coher-
ent state is completely delocalized over the phase space of the
Bloch sphere. Furthermore, the Rényi occupation at the classi-
cal energy shell saturates to the limit value L ∼ 1/2, indicating
that the coherent state never occupies more than half of the
available phase space of the classical energy shell. This limit
was previously found in Chapter 8 and is fulfilled for any pure
state, since quantum interferences of the wave function prevent
the complete delocalization of these kind of states over the clas-
sical energy shell. On the other hand, the Rényi occupation in
the atomic subspace of the time-averaged ensemble for coherent
states has a similar behavior like the instantaneous occupation
reaching unity. However, the Rényi occupation at a classical en-
ergy shell for the same time-averaged ensemble of coherent states
shows a characteristic behavior, since it also reaches unity mani-
festing that quantum ergodicity is only achievable as an ensemble
property when temporal averages are performed. By inspecting
the time evolved Husimi functions of the time-average ensemble
of coherent states can be identified the dynamical scarring at
long times.

Localization of Coherent States Mixed in Phase Space

Another test to understand the differences between the exposed
Rényi occupations takes into account Glauber-Bloch coherent
states mixed in phase space. Two types of mixed states are
considered. The first type is a mixed state composed of two
Glauber-Bloch coherent states, such that, one state is fixed in
phase space, while the second one is separated from it gradually
in the atomic or bosonic plane. The second type is a mixed
state composed of a set of Glauber-Bloch coherent states which
are added gradually until saturate completely the atomic plane.
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(a) Instantaneous Time (b) Time Average
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Figure 10.3: Top panels: Time evolved Husimi function of a coherent
state (a) and a time-averaged ensemble of coherent states (b) for different
finite times. The projection in phase space is shown in each atomicQ−P and
bosonic q−p plane. Bottom panel: Rényi occupation at a classical energy
shell (10.6) (dark green solid curve) and in the atomic subspace (10.3) (dark
blue solid curve) (order α = 2) for a time evolved coherent state (a) and a
time-averaged ensemble of coherent states (10.8) (b). The horizontal lines
represent the asymptotic value of the Rényi occupation for a classical energy
shell (light green dashed line) and the atomic subspace (light blue dashed
line). The vertical lines represent the time values where the projections are
shown. The values of each Rényi occupation for each time are indicated on
top of the squared panels. Classical energy shell: ϵ = 1 (chaotic). Initial
condition: (Q0, P0) = (−0.4, 0). Hamiltonian parameters: ω = ω0 = 1,
γ = 2γc = 1. The system size is j = 30. Figure taken from Ref. [17].
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The last mixed coherent states are given by [17]

ρ̂M(DM) =
1

2
(ρ̂x0

+ ρ̂x), (10.9)

ρ̂M(n) =
1

n

n∑
i=1

ρ̂xi , (10.10)

where DM is the phase-space separation given by Eq. (J.6) and
n designs the number of added coherent states in the atomic
plane.

In Fig. 10.4 are shown the Rényi occupations (10.3) and (10.6)
(α = 2) for a mixed coherent state gradually separated in the
atomic Q − P and the bosonic q − p planes and located in the
chaotic energy regime (ϵ > −0.8). In the same Fig. 10.3 is shown
the Husimi function of the mixed state at different phase-space
separations projected in each atomic (N.4) and bosonic (N.3)
plane. As can be seen, both Rényi occupations are sensible to
changes in the atomic plane Q− P increasing their initial value
twice and saturating. Nevertheless, the situation is different for
changes in the bosonic plane q − p, since only the Rényi occu-
pation at a classical energy shell behaves as before increasing its
initial value twice and saturating. The Rényi occupation in the
atomic subspace is unable to detect changes in the bosonic plane
because of the projection of the probability distribution (Q.2),
where the integration over the bosonic variables (q, p) erase in-
formation about delocalization in the bosonic plane.

In Fig. 10.5 are shown the Rényi occupations (10.3) and (10.6)
(α = 2) for a mixed coherent state composed of n added coherent
states which saturate gradually the atomic Q − P plane. This
mixed state is located in the chaotic energy regime (ϵ > −0.8).
In the same Fig. 10.3 is shown the Husimi function of the mixed
state at different number of added coherent states projected in
each atomic (N.4) and bosonic (N.3) plane. As can be seen, the
Rényi occupation in the atomic subspace linearly grows until
reach unity as the number of added coherent states increases, in-
dicating that the mixed state is completely delocalized over the
available phase space of the Bloch sphere, filling it uniformly.
On the other hand, the Rényi occupation at a classical energy
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(a) Atomic Separation (b) Bosonic Separation
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Figure 10.4: Top panels: Husimi function of a mixed coherent state for
different finite phase-space separations in the atomic Q−P (a) and bosonic
q−p (b) plane. The projection in phase space is shown in each atomic Q−P
and bosonic q − p plane. Bottom panel: Rényi occupation at a classical
energy shell (10.6) (dark green solid curve) and in the atomic subspace (10.3)
(dark blue solid curve) (order α = 2) scaled to their initial value at DM = 0
for a mixed coherent state (10.9) gradually separated in the atomic Q − P
(a) and bosonic q − p (b) plane. The vertical lines represent the values of
the phase-space separation where the projections are shown. The values of
each Rényi occupation for each time are indicated on top of the squared
panels. Classical energy shell: ϵ = 1 (chaotic). Hamiltonian parameters:
ω = ω0 = 1, γ = 2γc = 1. The system size is j = 30. Figure taken from
Ref. [17].
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shell only covers a fraction L2 ∼ 0.1 of the available phase space
of the classical energy shell. The last is clearly visible in the
Husimi projections over the bosonic plane q− p, since the mixed
state never covers completely the bosonic phase space as occurs
with the atomic one.

= 0.033 0.058 0.124 0.218 0.332 0.458 0.588 0.711 0.822 1.000

= 0.001 0.002 0.006 0.010 0.016 0.022 0.028 0.035 0.041 0.067

-1 0 1

-1
0
1

-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1

-3 0 3

-2

0

2

-3 0 3 -3 0 3 -3 0 3 -3 0 3 -3 0 3 -3 0 3 -3 0 3 -3 0 3 -3 0 3

1 100 200 300 400 500 600 700

0.2

0.6

1.0

Figure 10.5: Top panels: Husimi function of a mixed coherent state for
different number of added coherent states, which saturate the atomic plane
Q − P . The projection in phase space is shown in each atomic Q − P and
bosonic q−p plane. Bottom panel: Rényi occupation at a classical energy
shell (10.6) (dark green solid curve) and in the atomic subspace (10.3) (dark
blue solid curve) (order α = 2) for a mixed coherent state (10.10) composed
of n added coherent states which saturate the atomic plane Q − P . The
vertical lines represent the values of the phase-space separation where the
projections are shown. The values of each Rényi occupation for each time
are indicated on top of the squared panels. Classical energy shell: ϵ = 1
(chaotic). Hamiltonian parameters: ω = ω0 = 1, γ = 2γc = 1. The system
size is j = 30. Figure taken from Ref. [17].

10.3 Conclusions of Chapter 9

A general framework to define localization measures defined over
continuous spaces was presented. It was shown that these local-
ization measures are not well defined for unbounded continuous
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spaces and the selection of bounded subspaces must be done.
The selection criterion for these bounded subspaces is not uni-
versal and different choices could lead to different interpretations
about localization of quantum states in phase space.

The localization measure presented was called Rényi occupa-
tion of order α because of their similarity with the generalized
Rényi entropy of order α. Two particular bounded subspaces
were selected to study localization of quantum states in the phase
space of the Dicke model. One that is defined in the bounded
atomic subspace and other one defined at a classical energy shell.
It was shown that the Rényi occupation in the atomic subspace
can miss information about localization in the bosonic plane and
the Rényi occupation at a classical energy shell is more appropri-
ate for states well localized in energy as eigenstates or coherent
states. The selected order of the Rényi occupation was α = 2
because of their connection with the well-known participation ra-
tio. Nevertheless, other orders can reveal different aspects about
localization of quantum states that the selected order cannot.

The results exposed in this Chapter are shown in more detail
in Ref. [17].
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Chapter 11

Localization in Phase
Space and Quantum
Scarring

In this Chapter is exposed one of the localization measures in
phase space introduced in Chapter 10 as a tool to identify un-
stable periodic orbits based on the order of the measure. The
selected localization measure is the Rényi occupation defined at
a classical energy shell of the Dicke model. Moreover, a new lo-
calization measure is introduced, which is a scaling of the usual
Rényi occupation by the Rényi occupation of maximally delo-
calized sates. The identification of unstable periodic orbits is
achieved qualitatively with the projections for different moments
of the Husimi function and quantitatively using the perturbing
method introduced in Chapter 9. An analysis of the dynamics
of the detected periodic orbits that can clarify some behaviors
of quantum localization is also exposed.
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11.1 Rényi Occupation and Quantum
Scars

In Chapter 10 was introduced the Rényi occupation of order α to
measure localization of quantum states in continuous spaces. It
was shown that when the continuous space is unbounded, to take
bounded subspaces is needed in order to define the Rényi occu-
pation correctly. Thus, to study localization in the phase space
of the Dicke model two bounded subspaces were selected. The
first one defined in the bounded atomic subspace and the second
one defined at a classical energy shell. The order of the Rényi
occupation was selected as α = 2. It was found that the first
Rényi occupation losses information about quantum localization
in the bosonic subspace, such that, the second Rényi occupation
is more adequate for states well localized in energy. Nevertheless,
the last results have a functionality with the selected order of the
Rényi occupation and different aspects related to quantum scar-
ring can be revealed when different orders are studied. In this
way, a sixth goal in this Thesis was to understand the connec-
tion between different orders of the Rényi occupation defined at
a classical energy shell and the ubiquitous quantum scarring pre-
sented by the Dicke model, such that, the Rényi occupation can
serve as a tool to identify unstable periodic orbits which causes
such scarring.

11.1.1 Maximally Delocalized States

An alternative localization measure in phase space can be de-
fined taking into account the value of the Rényi occupation of
maximally delocalized states as are the random states. Contrary
to the Rényi occupation which formally measures delocalization,
the following expression measures localization properly [18]

Λα,1(ϵ, ρ̂) =
Lmax
α,1

Lα,1(ϵ, ρ̂)
∈ [1,∞), (11.1)

where the limit value Λα,1 = 1 defines a state delocalized as a
random state, while a finite value Λα,1 = L defines a state L
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times more localized as a random state. The Rényi occupation
for maximally delocalized states is given by [18]

Lmax
α = Γ1/(1−α)(α+ 1), (11.2)

Lmax
1 = lim

α→1
Lmax
α

= eγ−1, (11.3)

where γ is the Euler-Mascheroni constant given by Eq. (3.31).
The last expressions are formally developed for systems with
finite dimension of the Hilbert space; however, they can be ex-
trapolated to systems with infinite-dimensional Hilbert space as
the Dicke model. The bounded phase space of the classical en-
ergy shells induces a finite effective dimension which allows to use
the Rényi occupation for states maximally delocalized in Hilbert
spaces with finite dimension as a benchmark to compare the
delocalization degree of generic states [18, 19]. In Appendix R
is shown the derivation of the Rényi occupation for maximally
delocalized states in Hilbert spaces with finite dimension.

In order to reveal some features about the order α of the
Rényi occupation in light of quantum scarring, the localization
measure (11.1) was computed for eigenstates of the Dicke model
for different orders. In Fig. 11.1 is shown the localization mea-
sure (A.17) as a function of the order α for eigenstates of the
Dicke model located in a chaotic energy regime. As can be seen,
different behaviors arise with the different orders. Most eigen-
states cluster around a value Λ ∼ 1, indicating they behave as
random states for all orders. Nevertheless, some eigestates reach
high localization values for high orders. The relation is not clear,
since some eigenstates which have the highest localization at the
highest order show lower localization at lower orders, such that,
multiple crossings appear between these eigenstates. The high
localization of such eigenstates is due to strong quantum scar-
ring [18]. In this way, the further analysis of different orders can
reveal important aspects in this regard.
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Figure 11.1: Localization measure (11.1) as a function of the order α
(gray thin lines) for eigenstates contained in the chaotic energy interval
ϵk ∈ [−0.6,−0.4]. The colored curves represent the selected eigenstates A-
H. Hamiltonian parameters: ω = ω0 = 1, γ = 2γc = 1. The system size is
j = 100. Figure taken from Ref. [18].
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11.1.2 Identification of Unstable Periodic Or-
bits

The order α of Rényi occupation at a classical energy shell (10.6)
defines the moments or powers of the unnormalized Husimi func-
tion of a state ρ̂ as follows [18]

Qα
ρ̂ (x) = ⟨x|ρ̂|x⟩α. (11.4)

The study of the moments of the Husimi function are a useful
tool to reveal unstable periodic orbits that scar strongly some
eigenstates of the Dicke model. In general, low moments α < 1
tend to homogenize the projection of the Husimi function looking
blurrier, while high moments α > 1 tend to erase small contri-
butions in the projection of the Husimi function and enhance
the high concentration regions where the periodic orbits lie. The
last feature allows to determine regions with high concentration
which can be used as initial conditions to find unstable periodic
orbits with the monodromy method exposed in Appendix O.1.

In Fig. 11.2 is shown the projected Husimi function (N.2) at
different moments α for selected eigenstates A-H highly local-
ized and for random states centered at a chaotic classical energy
shell. As can be seen, all projections of the eigenstates show
structures resembling periodic orbits in contrast with those of
random states, which show granular structures. The projected
Husimi functions look more homogeneous for low moments α < 1
and for high moments α > 1 they delimit better the high concen-
tration regions where the unstable periodic orbits lie. The last
correspondence can be seen for some eigenstates whose corre-
sponding unstable periodic orbits were identified taking as initial
conditions the high concentration regions of the Husimi function
for the highest moment, and whose trajectories were found ex-
plicitly with the monodromy method (see Appendix O.1). The
last periodic orbits do not correspond to the fundamental fami-
lies of periodic orbits A and B that emanate from a stationary
point, since those orbits are well known and can be traced back.
Thus, the identified periodic orbits through the high moments of
the Husimi function can belong to other unidentified families of
periodic orbits [18]. Moreover, the scarring measure (9.7) can be
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used to confirm the scarring degree of the eigenstates caused by
these identified unstable periodic orbits. On the other hand, ex-
amining all projections of the Husimi function for high moments
is clearly understood why grows the localization value with the
order α for eigenstates strongly scarred, since the regions with
high concentration decrease in the available phase space indicat-
ing high localization degree.

11.1.3 Dynamics of Unstable Periodic Orbits

The dynamics of the unstable periodic orbits can be used to clar-
ify the localization effects saw in the projections of the Husimi
function at high moments for eigenstates strongly scarred. The
last is achieved by considering a tubular state ρ̂Oϵ

which resem-
bles the corresponding classical unstable periodic orbit Oϵ with
energy ϵ and period T . The tubular state is composed of coher-
ent states |x⟩ centered at x(t) ∈ Oϵ, it was introduced in Chap-
ter 9 to define the scarring measure of periodic orbits (9.7) and
is given by Eq. (O.16). Its Husimi function given by Eq. (O.17)
can be projected using Eq. (N.2) at the classical energy shell
ϵ = hD(Oϵ), such that, their classical dynamics can be studied.

In Fig. 11.3 is shown the projected Husimi function (8.2)
for tubular states which represent the corresponding unstable
periodic orbits that scar strongly eigenstates A-D. In the same
Fig. 11.3 is shown the three-dimensional representation of these
unstable periodic orbits. As can be seen, all projections of the
Husimi function for tubular states show an agreement with those
of eigenstates the unstable periodic orbits scar. Regions where
the dynamics is slow are associated with regions of high con-
centration of the Husimi function, while regions where the dy-
namics is fast are associated with regions of low concentration of
the Husimi function. The last is confirmed when the high mo-
ments of the Husimi function for the eigenstates are analyzed in
Fig 11.2. On the one hand, the high concentrations regions of the
Husimi function remain in regions with slow dynamics. On the
other hand, the low concentration regions of the Husimi function
tend to disappear in regions with fast dynamics. Furthermore,
an analysis of the three-dimensional representations shows that
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Figure 11.2: Panels (A0)-(H4): Projected Husimi function (N.2) for
selected eigenstates located in a chaotic energy regime (ϵ > −0.8). The pro-
jections are show for different moments α of the Husimi function. Lighter
colors indicate higher concentrations, while black corresponds to zero. Un-
stable periodic orbits (red solid curve) (A2),(B2),(C2),(D2). In panel (D2)
is shown the mirrored image (red dashed curve) of the periodic orbit. The
selected eigenstates A-H are shown in Fig. 11.1. The values of the spectrum
label k and the moment α of the Husimi function for each eigenstate are
indicated in each panel. Panels (R0)-(R4): Projected Husimi function
for random states centered at a chaotic energy shell. Classical energy shell:
−0.5 (chaotic). Hamiltonian parameters: ω = ω0 = 1, γ = 2γc = 1. The
system size is j = 100. Figure taken from Ref. [18].
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the unstable periodic orbits are quite complex in phase space.
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Figure 11.3: Panels (A1)-(D1): Projected Husimi function (8.2) for
tubular states (O.16) centered at a chaotic energy shell. The projections
are show for different moments α of the Husimi function. Lighter colors
indicate higher concentrations, while black corresponds to zero. The red ar-
rows represent the dynamics of the unstable periodic orbits and are placed at
constant time intervals. Panels (A2)-(D2): Three-dimensional unstable
periodic orbits. The intensity of color represents the value of the coordi-
nate q indicated with the right bar. Classical energy shell: −0.5 (chaotic).
Hamiltonian parameters: ω = ω0 = 1, γ = 2γc = 1. The system size is
j = 100. Figure taken from Ref. [18].

11.2 Conclusions of Chapter 10

The Rényi occupation of order α for maximally delocalized states
(random states) in Hilbert spaces with finite dimension is an ex-
clusive function of that order. The last result can be extrapo-
lated to systems with infinite-dimensional Hilbert space as the
Dicke model. When the Rényi occupation is defined at a classi-
cal energy shell, the bounded phase space of the classical energy
shell induces a finite effective dimension and the Rényi occupa-
tion for maximally delocalized states in this subspace has the
same functional form. The last result can be used as a bench-
mark to characterize the delocalization degree of generic states,
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such that, an alternative localization measure in phase space can
be defined. It was found that generally the localization degree
grows with the order of the latter measure for strongly scarred
eigenstates of the Dicke model.

The moments of the Husimi function are determined by the
order α of the Rényi occupation defined at a classical energy
shell. It was shown that the analysis of the moments of the
Husimi function are a useful tool to identify visually unstable
periodic orbits which scar strongly some eigenstates of the Dicke
model. Furthermore, the explicit trajectories can be found us-
ing the monodromy method for periodic orbits. It was found
that the identified orbits do not correspond with the well-known
fundamental families of periodic orbits that emanate from a sta-
tionary point introduced in Chapter 8 and widely exposed in
Chapter 9. It is conjectured that these periodic orbits belong to
unidentified families of periodic orbits which scar the eigenstates
of the Dicke model.

The results exposed in this Chapter are shown in more detail
in Refs. [18, 19].
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Chapter 12

Conclusions of the
Thesis

The results exposed in this Thesis show the relevance and ver-
satility of the Dicke model as a paradigmatic model in quantum
mechanics, specifically in the field of quantum optics. This fun-
damental interacting radiation-matter system allows to analyze
a plethora of interesting phenomenology. The main topics inves-
tigated in this work, chaos, scarring and localization, seemed to
be disconnected at first sight; nevertheless, a close bond unites
them indicating that nature cannot be described under an ab-
solute theory or point of view. The intricate behavior of nature
forces us to use all available tools to try to understand it and
predict it.

The study of quantum chaos in the Dicke model with the cor-
relation hole showed that spectral correlations can be successfully
identified in the time evolution of a quantum observable, which
makes it attractive in the experimental field when spectral infor-
mation is not accessible. The spectral correlations were identified
as GOE correlations from RMT with the derivation of an analyt-
ical expression developed from this ensemble, which verified the
numerical studies. GOE correlations arise typically in quantum
systems whose classical limit is chaotic and support the validity
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of the correlation hole as dynamical indicator of quantum chaos.
Moreover, the study of the classical and quantum dynamics of
coherent states allowed to identify quantum dynamical effects
which have their origin in chaos or scarring. Thus, states in-
fluenced by chaotic behavior capture spectral GOE correlations
and show the correlation hole in their dynamics. On the other
hand, states affected by scarring show typically no correlation
hole and instead show clearly revivals associated with unstable
periodic orbits. In this way, the absence of the correlation hole
can be used as a tool to identify scarred states in chaotic regimes.

Scarring is a peculiar phenomenon were structures of the clas-
sical domain affect the quantum one. The discovery of an om-
nipresent scarring in all eigenstates of the Dicke model changed
the landscape about this phenomenon, originally attributed to
some sets of particular states. The scarring can be seen as a
source of localization, and for that reason, it was thought ini-
tially that states strongly scarred were highly localized. This
pictured changed when the ubiquitous scarring saw the light,
since some scarred states can be as delocalized as maximally de-
localized states. Nevertheless, an upper bound of the spreading
of quantum sates was found when studying quantum localization
in phase space, implying that quantum pure states are localized
in some extent. The last result lead us to propose a definition of
quantum ergodicity as an ensemble property, where the complete
distribution of states in phase space is only achievable when time
averages are performed. The intrinsic relation between scarring
and localization is far from being understood completely and
constitutes a topic for further study.

Localization in phase space was formulated mathematically
as the exponential of the generalized Rényi entropy. A general
scheme to define localization measures in continuous spaces was
proposed, which produced peculiarities for unbounded spaces
where these measures cannot be defined appropriately. This is-
sue was resolved by selecting bounded subspaces, implying that
there is no absolute way to define localization in such spaces.
Furthermore, the applicability of these measures was based in
their potential ability to detect unstable periodic orbits.

Thereby, it can be seen that the latter phenomenology is
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correlated and the particularity of this this work is that it can be
studied with one simple and interesting model, the ever reliable
Dicke model.

The initial motivation of this Thesis was exposed as the ne-
cessity to provide a general theoretical framework to understand
and develop quantum technologies, which are revolutionizing our
daily world. Nevertheless, another personal motivation is based
in the simple pleasure to understand nature and its implications.
Future studies that can be outlined following this line of research
are to extend the developed analyses to open quantum systems,
where the dissipative effects make them more realistic. I hope
this Thesis serves as a guide for future scientists interested in
this kind of phenomenology.
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Appendix A

Derivation of the
Dicke Hamiltonian

In this Appendix is exposed the complete derivation of the Dicke
Hamiltonian, obtaining explicitly each one of the energy terms
that compose it under a set of conventional approximations.

A.1 Quantization of the Electromag-
netic Field

The classical energy or Hamiltonian H of an electromagnetic
field, in SI units, is given by

HF(t) =
1

2

∫
dV

[
ε0|E(q, t)|2 + 1

µ0
|B(q, t)|2

]
, (A.1)

where E and B represent the electric and magnetic fields, respec-
tively, q and t are variables of position and time, ε0 and µ0 are
the permittivity and permeability of free space, and V identifies
an effective or reference volume.

Without loss of generality, a simple scenario can be consid-
ered, where an electromagnetic field is confined within an optical
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cavity of volume V , the electric field E(q, t) = Ex(z, t)i propa-
gates only in the z direction and is polarized in the x direction,
the cavity has perfect conducting walls at the ends z = 0 and
z = L, and there are no charges, currents or dielectric media in-
side the cavity [205]. The latter system is represented in Fig. A.1.

Figure A.1: Optical cavity of volume V with perfect conducting walls
at the ends z = 0 and z = L. The electric field propagates only in the z
direction and is polarized in the x direction. Figure taken from Ref. [205].

The Maxwell equations for electromagnetic fields in vacuum,
in SI units, which represent the system described within the
cavity are given by

∇×E(q, t) = −∂B(q, t)

∂t
, (A.2)

∇×B(q, t) = µ0ε0
∂E(q, t)

∂t
, (A.3)

∇ ·E(q, t) = 0, (A.4)

∇ ·B(q, t) = 0. (A.5)

From these equations and the boundary conditions Ex(0, t) =
Ex(L, t) = 0, it is possible to find a solution for the electric field

Ex(z, t) =

√
2ω2

V ε0
q(t) sin(kz), (A.6)
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where the boundary condition z = L gives the allowed radiation
frequencies ωn = c(nπ/L), which are function of an integer n =
1, 2, . . . and c = 1/

√
ε0µ0 is the speed of light. In this case,

only one radiation frequency (single mode) is considered and
denoted by the parameter ω. The parameter k identifies the wave
number associated with the frequency through the expression
k = ω/c. The term q(t) is a function of time only and has length
dimensions.

On the other hand, a solution for the magnetic field can be ob-
tained also fromMaxwell equations, such thatB(q, t) = By(z, t)j
with

By(z, t) =
µ0ε0
k

√
2ω2

V ε0
q̇(t) cos(kz), (A.7)

where q̇(t) is a function of time too. If the function q(t) is con-
sidered as a canonical position variable, then its corresponding
canonical momentum variable can be obtained as p(t) = q̇(t).
Using the previous results (A.6) and (A.7) in Eq. (A.1), it is
found

HF(t) =
1

2
[p2(t) + ω2q2(t)], (A.8)

that is, the classical energy of a single-mode electromagnetic field
is equivalent to the energy of a harmonic oscillator with unitary
mass.

Now, to obtain a quantum analog of Eq. (A.8), we apply the
quantization procedure proposed by P. A. M. Dirac in 1927 [287].
Basically, the procedure consists of substituting the conjugate
canonical variables (q, p) of the classical system by the equiva-
lent operators q̂ and p̂ of the quantum system, which satisfy the
commutation relation [q̂, p̂] = iℏ1̂. In this way, the Hamiltonian
can be written as an operator ĤF, and in a similar way the elec-
tric and magnetic fields Ê and B̂. Nevertheless, it is useful to
introduce the non-Hermitian creation-annihilation operators â†

and â, which are defined by the expression

â =
1√
2ℏω

(ωq̂ + ip̂). (A.9)

Thus, the set of bosonic operators {â†, â, 1̂} satisfy the H(1) al-
gebra (Heisenberg-Weyl algebra), which is defined by the com-
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mutation relations

[â, â†] = 1̂, (A.10)

[â, 1̂] = [â†, 1̂] = 0̂. (A.11)

Taking into account the latter considerations, the electric and
magnetic fields can be written as the operators

Êx(z, t) = E0 sin(kz)[â†(t) + â(t)], (A.12)

B̂y(z, t) = iB0 cos(kz)[â†(t)− â(t)], (A.13)

where E0 =
√
ℏω/(V ε0) and B0 = (µ0/k)

√
ε0ℏω3/V . Finally,

the quantum Hamiltonian of the electromagnetic field is given
by

ĤF(t) =
1

2
[p̂2(t) + ω2q̂2(t)]

= ℏω
[
â†(t)â(t) +

1

2
1̂

]
. (A.14)

A.2 Atom-Field Interaction

The classical interaction energy between an atom (N = 1) with a
single interacting electron and an external electromagnetic field
is described with the minimal-coupling Hamiltonian [51]

Ha-f(q, t) =
1

2m
[p− eA(q, t)]2 + eU(q, t) + V (q), (A.15)

where e and m are the charge and mass of the electron, p is
the canonical momentum, A(q, t) and U(q, t) are the vector and
scalar potentials of the external field, respectively, and V (q) is
an electrostatic potential that binds the electron to the atomic
nucleus.

On the other hand, the motion of a free electron (V (q) = 0)
can be described by the time-dependent Schrödinger equation

iℏ
∂ψ(q, t)

∂t
= − ℏ2

2m
∇2ψ(q, t), (A.16)
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where ψ(q, t) is the wave function of the electron and ρ(q, t) =
|ψ(q, t)|2 represents the probability density to find it at the po-
sition q and time t. Now, if a solution ψ(q, t) → ψ(q, t)eiχ is
considered, where χ defines a constant phase, then ρ(q, t) re-
mains unchanged, since two wave functions differing by only a
constant phase represent the same physical state. Nevertheless,
if this phase varies locally, that is, it is a function of position an
time χ(q, t), then

ψ(q, t)→ ψ(q, t)eiχ(q,t), (A.17)

and ρ(q, t) remains unchanged again, but in order to satisfy local
gauge (phase) invariance, the time-dependent Schrödinger equa-
tion must become in

iℏ
∂ψ(q, t)

∂t
=

[
− ℏ2

2m

[
∇− i e

ℏ
A(q, t)

]2
+ eU(q, t)

]
ψ(q, t),

(A.18)
where the potentials A(q, t) and U(q, t) are given by

A(q, t)→ A(q, t) +
ℏ
e
∇χ(q, t), (A.19)

U(q, t)→ U(q, t)− ℏ
e

∂χ(q, t)

∂t
, (A.20)

to make possible the transformation (A.17). Moreover, it is im-
portant to emphasise that these potentials A(q, t) and U(q, t)
are gauge-dependent; however, at the same time they define the
gauge-independent electric and magnetic fields

E(q, t) = −∇U(q, t)− ∂A(q, t)

∂t
, (A.21)

B(q, t) = ∇×A(q, t). (A.22)

With the previous development, the natural extension of the
minimal-coupling Hamiltonian (A.15) to its quantum analog is
given by

Ĥa-f(q, t) =
1

2m
[p̂− eÂ(q, t)]2 + eÛ(q, t) + V̂ (q), (A.23)

where p̂ = −iℏ∇ is the momentum operator.
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A.2.1 Dipole Approximation

A typical simplification of the Hamiltonian (A.23) consists in
apply the dipole approximation [51]. To do that, an electron
bound by an electrostatic potential V (q) to a nucleus located
at q0 is considered. The atom is immersed in an electromag-
netic plane wave described by a vector potential A(q0 + q, t) =
A(t)eik·(q0+q), which can be written in the dipole approximation
(k · q≪ 1) as

A(q0 + q, t) = A(t)eik·q0(1 + ik · q+ . . .)

≃ A(t)eik·q0 . (A.24)

Taking this approximation, the time-dependent Schrödinger equa-
tion with the condition A(q, t) ≡ A(q0, t), can be written as

iℏ
∂ψ(q, t)

∂t
=

[
− ℏ2

2m

[
∇− i e

ℏ
A(q0, t)

]2
+ V (q)

]
ψ(q, t),

(A.25)
where the radiation gauge was considered

U(q, t) = 0, (A.26)

∇ ·A(q, t) = 0. (A.27)

Now, using the transformation (A.17) with the local phase given
by χ(q, t) = (e/ℏ)q · A(q0, t), the time-dependent Schrödinger
equation takes the form

iℏ
∂ψ(q, t)

∂t
=

[
− ℏ2

2m
∇2 + V (q)− eq ·E(q0, t)

]
ψ(q, t), (A.28)

where the relation E(q, t) = −∂A(q, t)/∂t was used.
At this point, the atom-field Hamiltonian Ĥa-f can be written

as a sum of two contributions, one that represents the atomic en-
ergy Ĥa, and other one that represents the atom-field interaction
energy Ĥi

Ĥa-f(q, t) = Ĥa(q) + Ĥi(q, t), (A.29)

Ĥa(q) =
p̂2

2m
+ V̂ (q), (A.30)

Ĥi(q, t) = −eq̂ · Ê(q0, t). (A.31)
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The last Hamiltonians can be represented in terms of the atomic
transition operators given by σ̂nn′ = |n⟩⟨n′|. The basis {|n⟩}
represents a complete set of atomic energy eigenstates with clo-
sure relation

∑
n |n⟩⟨n| = 1̂. From the eigenvalue equation

Ĥa|n⟩ = En|n⟩, the representation of the atomic Hamiltonian
Ĥa can be found directly. However, for the interaction Hamilto-
nian Ĥi, some steps need to be developed. The interaction term
can be found as eq̂ = e

∑
n,n′ |n⟩⟨n|q̂|n′⟩⟨n′| =

∑
n,n′ ℘nn′ σ̂nn′ ,

where ℘nn′ = e⟨n|q̂|n′⟩ is the matrix element of the electric
dipole transition. The electric field operator (A.12) is evalu-
ated in the dipole approximation placing the atom just at the
center of the cavity q0 = (0, 0, L/2), and from the allowed ra-
diation frequency relation it is found that sin(kL/2) = 1, such
that Ê(L/2, t) = E0[â†(t) + â(t)]i with E0 =

√
ℏω/(V ε0). Fol-

lowing all the previous steps, the explicit Hamiltonians take the
position-independent form

Ĥa =
∑
n

En|n⟩⟨n| =
∑
n

Enσ̂nn, (A.32)

Ĥi(t) = ℏ[â†(t) + â(t)]
∑
n,n′

gnn′ σ̂nn′ , (A.33)

where gnn′ = −℘nn′ ·E0i/ℏ defines a coupling parameter, and the
term ℘nn′ is taken as a real quantity without loss of generality.

A.2.2 Two-Level Atom Approximation

Another typical simplification taken in the model is the two-level
atom approximation [50,51]. The basic idea is to consider atoms
that transit from the ground state to an excited state only. For
this case, the coupling parameter is g = g01 = g10 because of
℘ = ℘01 = ℘10 = e⟨0|q̂|1⟩ = e⟨1|q̂|0⟩. Thus, the atomic and
interaction Hamiltonians can be written as

Ĥa = E0σ̂00 + E1σ̂11

=
ℏω0

2
(σ̂11 − σ̂00) +

E0 + E1

2
1̂, (A.34)

Ĥi(t) = ℏg[â†(t) + â(t)](σ̂01 + σ̂10), (A.35)
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where ℏω0 = E1 − E0 and σ̂00 + σ̂11 = 1̂. Moreover, when the
atomic transition operators σ̂nn′ are written in the atomic energy
eigenbasis

σ̂x = σ̂01 + σ̂10 = |0⟩⟨1|+ |1⟩⟨0|, (A.36)

σ̂y = i (σ̂01 − σ̂10) = i(|0⟩⟨1| − |1⟩⟨0|), (A.37)

σ̂z = σ̂11 − σ̂00 = |1⟩⟨1| − |0⟩⟨0|, (A.38)

are identified the Pauli matrices

σx,y,z =

[(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)]
. (A.39)

Similarly, the raising-lowering spin operators σ̂± = 1
2 (σ̂x ± iσ̂y)

σ̂+ = σ̂10 = |1⟩⟨0|, (A.40)

σ̂− = σ̂01 = |0⟩⟨1|, (A.41)

with the matrices

σ± =

[(
0 1
0 0

)
,

(
0 0
1 0

)]
. (A.42)

Now, from the identity [σ̂nn′ , σ̂mm′ ] = σ̂nm′δn′m − σ̂mn′δnm′ it
follows that the set of spin- 12 operators {σ̂±, σ̂z} satisfy the SU(2)
algebra, defined by the commutation relations

[σ̂+, σ̂−] = σ̂z, (A.43)

[σ̂z, σ̂±] = ±2σ̂±. (A.44)

Taking into account all the previous developments, the atomic
and interaction Hamiltonians for a single atom are given by

Ĥa =
ℏω0

2
σ̂z, (A.45)

Ĥi(t) = ℏg[â†(t) + â(t)](σ̂+ + σ̂−), (A.46)

where the constant energy term 1
2 (E0 + E1) can be neglected,

since it is only a displacement term in the whole Hamiltonian.
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A.3 Dicke Hamiltonian

Equations (A.45) and (A.46) represent the atomic and inter-
action terms of the Dicke Hamiltonian (2.5) for a single atom.
However, as the Dicke Hamiltonian describes a set of N two-level
atoms, a superposition of all atomic contributions is considered

explicitly in the atom-field term ĤA-F =
∑N

n=1 Ĥ
(n)
a-f . Using the

atomic density ρ = N/V , the coupling parameter g can be writ-
ten as g = γ/

√
N , where the new coupling parameter is given

by γ = −℘ ·
√
ωρ/(ℏε0)i. Thus, all the terms that compose the

Dicke Hamiltonian are given by the expressions

ĤF = ℏωâ†â, (A.47)

ĤA =

N∑
n=1

Ĥ(n)
a =

ℏω0

2

N∑
n=1

σ̂(n)
z , (A.48)

ĤI =

N∑
n=1

Ĥ
(n)
i =

ℏγ√
N

(â† + â)

N∑
n=1

[
σ̂
(n)
+ + σ̂

(n)
−

]
, (A.49)

where the constant energy displacement ℏω/2 of the field Hamil-
tonian (A.14) was neglected, and we moved to the Schrödinger
picture, such that, the explicit time dependence of the creation-
annihilation operators â† and â is removed.

An additional consideration in the terms ĤA and ĤI is taken
into account, where the superposition of all atomic contributions
is represented as collective pseudo-spin operators of the form

Ĵx,y,z =
1

2

N∑
n=1

σ̂(n)
x,y,z, (A.50)

Ĵ± =

N∑
n=1

σ̂
(n)
± , (A.51)

where the raising-lowering collective pseudo-spin operators are
defined as Ĵ± = Ĵx ± iĴy. With these definitions it follows that

the set of collective pseudo-spin operators {Ĵ±, Ĵz} satisfy the
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same SU(2) algebra of spin- 12 operators

[Ĵ+, Ĵ−] = 2Ĵz, (A.52)

[Ĵz, Ĵ±] = ±Ĵ±. (A.53)

Using the collective pseudo-spin operators explicitly in the terms
ĤA and ĤI, the Dicke Hamiltonian can be written as in Eq. (2.5).
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Numerical Solutions of
the Dicke Hamiltonian

In this Appendix is exposed the coherent basis as a diagonal-
ization basis of the Dicke Hamiltonian, as well as its alternate
representation when the parity symmetry of the Hamiltonian is
taken into account.

B.1 Coherent Basis

In 2008, Q.-H. Chen et al. [288] proposed an alternate numer-
ical solution of the Dicke Hamiltonian using the coherent ba-
sis (2.21). Applying the transformations (2.18) and (2.19) to the
Dicke Hamiltonian (2.5), it can be written as

ĤD = ω(Â†Â−G2Ĵ ′2
z )− ω0Ĵ

′
x, (B.1)

with G = 2γ/(ω
√
N ). Using the coherent basis and the recalling

that the operator Ĵ ′
z = Ĵx, such that the rotated eigenvalue

m′
z = mx, the matrix elements of the above Hamiltonian are
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given by

⟨N ′; j,m′
x|ĤD|N ; j,mx⟩ =ω(N −G2m2

x)δN ′,Nδm′
x,mx+

− ω0

2
C+(N

′, N ; j,m′
x,mx)δm′

x,mx+1+

− ω0

2
C−(N

′, N ; j,m′
x,mx)δm′

x,mx−1,

(B.2)

where

C±(N
′, N ; j,m′

x,mx) =
√
j(j + 1)−mx(mx ± 1)×
× ⟨N ′; j,m′

x|N ; j,mx ± 1⟩ (B.3)

contains the coherent basis overlap, which has explicit form

⟨N ′; j,m′
x|N ; j,mx⟩ =


(−1)NDN ′,N if mx > m′

x

(−1)N ′
DN ′,N if mx < m′

x

δN ′,N if mx = m′
x

, (B.4)

where

DN ′,N = e−G2/2

min(N ′,N)∑
k=0

√
N ′!N !(−1)−kGN ′+N−2k

(N ′ − k)!(N − k)!k!
. (B.5)

A truncation value can be defined in the coherent basis in a
similar way as in the Fock basis, and is given byNmax (eigenvalue
of the operator N̂ = Â†Â). Thus, the resulting matrices will
have finite dimension D2

C, where DC = (2j+1)(Nmax +1) is the
dimension of the truncated modified Hilbert space.

B.2 Coherent Basis with Well-Defined
Parity

The Dicke Hamiltonian (2.5) has a well-defined parity, that is,

it commutes with the parity operator defined by Π̂ = eiπΛ̂,
[ĤD, Π̂] = 0̂, where Λ̂ = â†â + Ĵz + j1̂. In some cases it is
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useful to separate the parity sectors (eigenvalues and eigenvec-
tors) of the numerical diagonalization. To do that, the action of
the parity operator is calculated over the coherent basis states
given by

|N ; j,mx⟩ =
(Â†)N√
N !
|0; j,mx⟩

=
(â† − αmx

)N√
N !

|αmx ; j,mx⟩, (B.6)

where αmx
= −Gmx. The result is given by

Π̂|N ; j,mx⟩ = (−1)N |N ; j,−mx⟩, (B.7)

where the parity operator Π̂ can be represented in the subspace
{|N ; j,mx⟩, |N ; j,−mx⟩}

Π̂ = (−1)N
(

0 1
1 0

)
, (B.8)

and by diagonalizing it, its eigenvectors can be found as

|N ; j,mx; p⟩ =
|N ; j,mx⟩+ p(−1)N |N ; j,−mx⟩√

2(1 + δmx,0)
, (B.9)

where p = ±1 defines its eigenvalues, such that the eigenvalue
equation Π̂|N ; j,mx; p⟩ = p|N ; j,mx; p⟩ is satisfied. The ba-
sis (B.9) is called coherent basis with well-defined parity.
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Classical Expressions
of the Dicke Model

In this Appendix is exposed the complete derivation of the clas-
sical Dicke Hamiltonian, as well as useful classical expressions
derived from it, as the classical ground-state energy and the
semiclassical density of states.

C.1 Classical Dicke Hamiltonian

Taking the expectation value of the Dicke Hamiltonian (2.5) un-
der Glauber-Bloch coherent states |x⟩ = |α⟩⊗|z⟩ (see Eq. (2.33)),
and scaling it by j, it is found

hD(x) =
1

j
⟨x|ĤD|x⟩

=
1

j

[
ω|α|2 − jω0

1− |z|2

1 + |z|2
+ γ
√
2j

z + z∗

1 + |z|2
(α+ α∗)

]
,

(C.1)

where x = (q, p;Q,P ) are the coordinates of the four-dimensional
phase spaceM of the Dicke model, and the parameters of each
coherent state α and z and have an specific representation in

171



APPENDIX C. CLASSICAL EXPRESSIONS OF THE
DICKE MODEL

phase space through bosonic (q, p) and atomic (Q,P ) variables
(see Eqs. (2.29) and (2.30)).

At this point, the mapping given by Eqs. (2.29) and (2.30)
gives directly the classical Dicke Hamiltonian (2.38). Neverthe-
less, the natural way to reach that mapping needs to be ex-
plained. It is known that the bosonic parameter is associated
with the position-momentum canonical variables of the classical
harmonic oscillator α→ α(q, p), but the same thing is not clear
for the atomic parameter z → z(Q,P ). The natural connec-
tion between the atomic parameter and some kind of canonical
variables comes from the Bloch sphere. The classical angular
momentum vector represented in the Bloch sphere is given by

j⃗ = j(jx,y,z)

= j[cos(ϕ) sin(θ), sin(ϕ) sin(θ),− cos(θ)], (C.2)

whose magnitude is given by |⃗j| = j, and the angular variables
(ϕ, θ) correspond to the azimuthal and zenith angles of the spher-
ical coordinates, respectively, measuring the θ angle from the
negative z axis. In addition, through a stereographic projection
of the Bloch sphere, the atomic parameter can be written as

z = tan

(
θ

2

)
e−iϕ

=

√
1 + jz
1− jz

e−iϕ, (C.3)

where was used its squared absolute value

|z|2 = tan2
(
θ

2

)
=

1− cos(θ)

1 + cos(θ)
, (C.4)

and from where are identified the action-angle canonical variables

(ϕ, jz) =

[
tan−1

(
jy
jx

)
,− cos(θ)

]
, (C.5)
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which satisfy the Poisson bracket {ϕ, jz} = 1. Now, defining a
canonical transformation of the form

(Q,P ) =
√
2(1 + jz)[cos(ϕ),− sin(ϕ)], (C.6)

whose Poisson bracket satisfies {Q,P} = 1, the atomic param-
eter can be transformed and the mapping (2.30) is reached. In
this way, the classical Dicke Hamiltonian (2.38) can be found as
before.

C.2 Classical Ground-State Energy

The Hamilton’s equations of motion for the classical Dicke Hamil-
tonian (2.38) are given by the expressions

∂hD(x)

∂p
= q̇ = ωp, (C.7)

−∂hD(x)
∂q

= ṗ = −ωq − 2γQF (Q,P ), (C.8)

∂hD(x)

∂P
= Q̇ = ω0P −

γ

2

qQP

F (Q,P )
, (C.9)

−∂hD(x)
∂Q

= Ṗ = −ω0Q− 2γqF (Q,P ) +
γ

2

qQ2

F (Q,P )
, (C.10)

where F (Q,P ) =
√
1− (Q2 + P 2)/4.

By minimizing the classical energy surface hD(x) = ϵ = E/j
can be found the set of coordinates xgs = (qgs, pgs;Qgs, Pgs), for
which this surface takes the minimum value and represents the
classical ground-state energy ϵgs

hD(xgs) = ϵgs. (C.11)

The minimization procedure consists in setting equal to zero the
Hamilton’s equations of motion and determine the coordinates
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xgs. Two solutions are found

xgs =


(0, 0; 0, 0) if γ < γc(
− 2γ

ω

√
1−

(
γc

γ

)4
, 0;

√
2

[
1−

(
γc

γ

)2]
, 0

)
if γ > γc

,

(C.12)
which represent the classical separation between phases.

By substituting the coordinates xgs in the classical Dicke
Hamiltonian Eq. (2.38), the classical ground-state energy (2.39)
can be found for both normal and superradiant phases.

C.3 Semiclassical Density of States

Following a particular case of the Gutzwiller trace formula [2,72],
the density of states of a quantum system can be approximated
classically by computing the available phase-space volume at a
given classical energy shell ϵ = E/j

ν(ϵ) ≈ 1

(2πℏeff)2

∫
M
dx δ[hD(x)− ϵ], (C.13)

where

δ(z − z0) =
1

2π

∫ +∞

−∞
dx eix(z−z0) (C.14)

is the Dirac delta function, ℏeff = j−1, and hD(x) is the classical
Dicke Hamiltonian (2.38) with four-dimensional phase spaceM
in the coordinates x = (q, p;Q,P ).

The Dirac delta function can be written as

δ [hD(x)− ϵ] =
δ(q − q+)∣∣∣∂hD(x)

∂q

∣∣∣
q+

+
δ(q − q−)∣∣∣∂hD(x)

∂q

∣∣∣
q−

, (C.15)

where q± are the two solutions of the second degree equation
hD(x)− ϵ = 0, given by

q± = −2γ

ω
QF (Q,P )± 1

ω

√
∆ϵ(p,Q, P ), (C.16)
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where
∆ϵ(p,Q, P ) = Aϵ(Q,P )− ω2p2, (C.17)

and

Aϵ(Q,P ) = 4γ2Q2F 2(Q,P ) + 2ω

[
ϵ+ ω0

(
1− Q2 + P 2

2

)]
,

(C.18)
with F (Q,P ) =

√
1− (Q2 + P 2)/4.

On the other hand, using Eq. (C.8), the following term can
be obtained ∣∣∣∣∂hD(x)∂q

∣∣∣∣
q±

=
√
∆ϵ(p,Q, P ), (C.19)

and the integral over q can be computed, such that

ν(ϵ) = 2

(
j

2π

)2 ∫ ∫ ∫
dp dQdP

1√
∆ϵ(p,Q, P )

. (C.20)

Now, from the second degree equation ∆ϵ(p,Q, P ) = 0, two
solutions p± = ±

√
Aϵ(Q,P )/ω are found, such that it can be

written as ∆ϵ(p,Q, P ) = ω2(p+ − p)(p− p−). Through a change
of variable given by u = [p − (p+ + p−)/2]/[(p+ − p−)/2], the
integral over p can be evaluated∫ p+

p−

dp
1√

∆ϵ(p,Q, P )
=
π

ω
, (C.21)

and the inequality 4ω2Aϵ(Q,P ) ≥ 0 must be satisfied, in order
to ensure that the solutions p± are real.

At this point, the better option to compute the remaining in-
tegral over the atomic variables (Q,P ), is by transforming them
to the action-angle variables, (Q,P )→ (ϕ, jz). Using the canon-
ical transformation given by Eq. (C.6), it can be found the Jaco-
bian of the transformation dQdP = J(ϕ, jz)dϕ djz (in this case
J(ϕ.jz) = 1), such that, the integral takes the form

ν(ϵ) =
j2

2πω

∫ ∫
dQdP

=
j2

2πω

∫ ∫
dϕ djz. (C.22)
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Now, from the relation 4ω2Aϵ(ϕ, jz) ≥ 0, is found the condition

cos2(ϕ) ≥ 2

(
γc
γ

)2
jz − ϵ/ω0

1− j2z
, (C.23)

which restricts the values of the variables (ϕ, jz) in the following
way

ϕ± = cos−1

(
±γc
γ

√
2(jz − ϵ/ω0)

1− j2z

)
, (C.24)

j±z = −γc
γ

γc
γ
∓

√
2(ϵ− ϵ0)

ω0

 , (C.25)

where ϵ0 = ϵgs of the superradiant phase (γ > γc) (see Eq. (2.39)).
Three main energy regions are identified

1. If ϵ0 ≤ ϵ < −ω0, then jz ∈ [j−z , j
+
z ] and ϕ = 0, π. This

energy region only appears in the superradiant phase.

2. If |ϵ| ≤ ω0, then jz ∈ [−1, j+z ], but appears the restriction
over ϕ. On the one hand, if jz ∈ [−1, ϵ], then ϕ ∈ [0, 2π).
On the other hand, if jz ∈ [ϵ, j+z ], then ϕ = 0, π.

3. If ϵ > ω0, then jz ∈ [−1, 1] and ϕ ∈ [0, 2π).

By computing the integral (C.22) over each energy region, the
Eq. (2.41) can be recovered.
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Appendix D

Experimental Setups
of the Dicke Model

In this Appendix is exposed one of the most relevant contempo-
rary experimental setups of the Dicke model, which allowed to
verify experimentally the quantum phase transition predicted by
the theoretical model.

D.1 Experimental Setup with a Bose-
Einstein Condensate

In 2010 K. Baumann et al. implemented the Dicke model with
a Bose-Einstein condensate within an optical cavity [74]. The
proposed setup was successful in reproducing experimentally the
quantum phase transition predicted theoretically by the Dicke
model for the superradiant phase. The basic procedure con-
sist of trapping a Bose-Einstein condensate of rubidium atoms
87Rb within an optical cavity, which is driven through a pumped
laser. The laser can be modulated and this modifies the effective
coupling strength within the system. When the laser exceeds a
critical pump power given by the parameter Pc, an atomic self-
organization takes place within the cavity, where the rubidium
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atoms take the odd or even places of a checkerboard pattern. The
last collective effect manifest the appearance of the superradiant
phase in the system and verifies the validity of the theoretical
quantum phase transition. In Fig. D.1 is shown the theoretical
concept of the latter experimental setup.

Although superradiance was verified many years before in
the Dicke model [73], the proposed setup was able to show the
agreement between the experimental realization and the theoret-
ical model by a mapping of the corresponding parameters [75].
The explicit mapping between both approaches is given by the
theoretical parameters defined as

ω = −∆c +
NU0

2
, (D.1)

ω0 = 2ωr, (D.2)

γ =
η
√
N
2

, (D.3)

where the experimental-setup parameters are given by

U0 =
g20
∆a

, (D.4)

ωr =
√
ω2
x + ω2

y + ω2
z

=
ℏk2

2m
, (D.5)

η =
g0Ωp

∆a
, (D.6)

with ∆c = ωp − ωc, ∆a = ωp − ωa, and Ωp = µ12Bmw/ℏ. In the
last expressions N represents the number of atoms within the
system, U0 is the light shift of a maximally coupled atom, ωr is
the recoil frequency, η is the two-photon Rabi frequency, ωp is the
pump laser frequency, ωc is the cavity resonance frequency, ωa is
the atomic transition frequency, g0 is the atom-cavity coupling
strength, k is the magnitude of the wave number vector, m is
the mass of a rubidium atom, Ωp is the maximum pump Rabi
frequency, µ12 is the magnetic dipole matrix element between two
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CONDENSATE

Figure D.1: Experimental setup of the Dicke model realized with a Bose-
Einstein condensate of rubidium atoms 87Rb driven with a pump laser
within an optical cavity. Panel a: Case P < Pc, where the build-up of
a coherent cavity field for a homogeneous atomic density distribution along
the cavity axis is suppressed by the destructive interference effect between
the individual scatterers. Single-Photon Counting Module (SPCM). Panel
b: Case P > Pc, where the self-organization of the rubidium atoms is
induced, maximizing the cooperative scattering and originating the appear-
ance of the superradiant phase. Panel c: Checkerboard pattern where the
rubidium atoms are self-organized on the odd or even places. Figure taken
from Ref. [74].
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coupled states, and Bmw is the magnetic field of the microwave
radiation.

The theoretical parameters of the Dicke model can be esti-
mated by mapping the experimental-setup parameters given in
Refs. [74, 87], where the relation NU0 = 6.5κ is considered with
κ representing the cavity decay ratio. In Table D.1 is shown the
corresponding mapping.

Experimental-Setup Parameters

N (atoms) ∆c (MHz) κ (MHz)

1.53× 105 −2π × 14.92 2π × 1.3

ωx (Hz) ωy (Hz) ωz (Hz)

2π × 252 2π × 48 2π × 238

g0 (MHz) ∆a (MHz) µ12 (J/T)

2π × 10.4 ≈ 2π × (30− 40) 6.95× 10−24

Bmw (T)

10−5

Estimated Theoretical Parameters

ω (MHz) ω0 (Hz) γ (MHz)

120.29 4397.4 38.31

γc (MHz)

0.3636

Table D.1: Experimental-setup parameters of the Dicke model realized
with a Bose-Einstein condensate of rubidium atoms 87Rb driven with a
pump laser within an optical cavity [74, 87], and estimated theoretical pa-
rameters.
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Appendix E

Trace of the Green’s
Function

In this Appendix is exposed the trace of the Green’s function,
which determines the density of states of a quantum system.

E.1 Green’s Function and Density of
States

The Green’s function is a special solution of the inhomogeneous
time-independent Schrödinger equation [39][

E −
[
− ℏ2

2m
∇2 + V (q′)

]]
G(q,q′, E) = δ(q′ − q), (E.1)

where q and q′ define a starting and an end position, respec-
tively, and δ is the Dirac delta function given by Eq. (C.14).
The Green’s function is given explicitly by

G(q,q′, E) =
1

iℏ

∫ +∞

0

dtK(q,q′, E)eiEt/ℏ

=

N∑
n=1

ϕn(q
′)ϕ∗n(q)

E − En
, (E.2)
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where

K(q,q′, E) =

N∑
n=1

ϕn(q
′)ϕ∗n(q)e

−iEnt/ℏ (E.3)

is the propagator and the eigenstates ϕn(q) satisfy the eigenvalue
equation [

− ℏ2

2m
∇2 + V (q)

]
ϕn(q) = Enϕn(q) (E.4)

for a Hilbert space with dimension N . Taking the trace of the
Green’s function in the same starting and end point q = q′ is
found the expression

g(E) = Tr[G(q,q, E)]

=

∫
dIqG(q,q, E)

=

N∑
n=1

1

E − En
. (E.5)

where I defines the degrees of freedom of the classical system.
The last expression contains the eigenvalues explicitly. In this
way, the trace of the Green’s function defines the density of states
of a quantum system as follows

ν(E) = − 1

π
lim
ε→0
ℑ[g(E + iε)]

=
1

π
lim
ε→0

N∑
n=1

ε

(E − En)2 + ε2

=

N∑
n=1

δ(E − En), (E.6)

where δ is the Dirac delta function given by Eq. (C.14).
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Appendix F

Static Tests of
Quantum Chaos

In this Appendix is exposed the unfolding procedure of the en-
ergy spectrum, which is a necessary step to develop before com-
puting the short and long range spectral tests.

F.1 Unfolding Procedure

An important procedure to perform the short and long-range
spectral tests consists of unfolding the energy spectrum [95,123,
131]. The idea is to delete the global tendencies of the spec-
tral fluctuations, which are specific to each system. Thereby, an
ordered set of energy levels {E1, . . . , EN} of a given quantum
system originate a spectral function, level density, or density of
states ν(E) given by Eq. (E.6). However, a cumulative spectral
function can be defined as

η(E) =

∫ E

−∞
dE′ν(E′)

=

N∑
n=1

Θ(E − En), (F.1)
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where

Θ(z) =

∫ z

−∞
dx δ(x) (F.2)

is the Heaviside step function, which counts the number of lev-
els with energy less than or equal to E, and it is known also as
staircase function. In the last expression, δ is the Dirac delta
function defined in Eq. (C.14). In general, the cumulative spec-
tral function can be separated into two parts

η(E) = ξ(E) + ξf(E), (F.3)

that is, a smooth term ξ(E) which determines the global ten-
dencies of the system, and a fluctuating term ξf(E) which rep-
resents the local fluctuations [95,131]. The relevant information
is contained in local fluctuations only, for that reason, the un-
folding procedure consists of mapping the set of energy levels
{E1, . . . , EN} to another set {ξ1, . . . , ξN} scaled by the smooth
term ξn = ξ(En) with n = 1, . . . , N . As a result, the latter pro-
cedure allows the mean level density to remain constant over the
whole energy spectrum

⟨ν(ξ)⟩ = 1

∆ξ

∫ ξ1+∆ξ/2

ξ1−∆ξ/2

dξ ν(ξ) ≈ 1, (F.4)

where ν(ξ) =
∑N

n=1 δ(ξ − ξn).
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Appendix G

Gaussian Orthogonal
Ensemble

In this Appendix is exposed the complete derivation of the joint
probability density function and the two-level form factor for the
GOE.

G.1 Joint Probability Density Function

The most general form of the probability density function of the
Gaussian ensembles is given by the expression [146]

P (Ĥ) = e−aTr(Ĥ2)+bTr(Ĥ)+c, (G.1)

where a, b, c ∈ R, and a > 0. For this function, the components
of Ĥ can be expressed in terms of N eigenvalues θn, such that

Tr(Ĥ) =

N∑
n=1

θn, (G.2)

Tr(Ĥ2) =

N∑
n=1

θ2n, (G.3)
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and also in terms of pl mutually independent variables, such that
{θn, pl} form a complete set. For the GOE, the matrix is real and
symmetric with dimension N2, and the number of parameters
which determine the components Hnm is 1

2N(N + 1), that is
Hnm with n ≤ m ; so that, the number of extra parameters is
L = 1

2N(N+1)−N = 1
2N(N−1). Following this, the probability

distribution can be written as

PN,L(θ1, . . . , θN ; p1, . . . , pL) = J(θ, p)e−a
∑N

n=1 θ2
n+b

∑N
n=1 θn+c,

(G.4)
where

J(θ, p) =

∣∣∣∣ ∂(H11, H12, . . . ,HNN )

∂(θ1, . . . , θN ; p1, . . . , pL)

∣∣∣∣ (G.5)

is the Jacobian. Moreover, an orthogonal real matrix Û can
diagonalize any symmetric real matrix Ĥ through the expressions

Ĥ = ÛΘ̂Û−1 = ÛΘ̂ÛT , (G.6)

1 = Û ÛT = ÛT Û , (G.7)

where Θ̂ is a diagonal real matrix with elements {θ1, . . . , θN}.
By differentiating the latter expressions with respect to pl, are
found the expressions

∂Ĥ

∂pl
=
∂Û

∂pl
Θ̂ÛT + ÛΘ̂

∂ÛT

∂pl
, (G.8)

0 =
∂ÛT

∂pl
Û + ÛT ∂Û

∂pl
, (G.9)

and the results

ÛT ∂Û

∂pl
= −∂Û

T

∂pl
Û = Ŝl, (G.10)

ÛT ∂Ĥ

∂pl
Û = ŜlΘ̂− Θ̂Ŝl, (G.11)
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such that∑
n,m

∂Hnm

∂pl
UnαUmβ = Sl

αβ(θβ − θα), (G.12)

∑
n,m

∂Hnm

∂θk
UnαUmβ =

∂Θαβ

∂θk
= δαβδαk, (G.13)

where the last expression was found by differentiating with re-
spect to θk. Using the latter relations, the Jacobian can be
written in partitioned form as

[J(θ, p)] =

[
∂Hnn

∂θk
∂Hnm

∂θk
∂Hnn

∂pl

∂Hnm

∂pl

]
, (G.14)

where 1 ≤ n < m ≤ N , k = 1, . . . , N , and l = 1, . . . , L, re-
spectively. Multiplying the Jacobian by the partitioned matrix
[V ]

[J(θ, p)][V ] =

[
δαβδαk

Sl
αβ(θβ − θα)

]
, (G.15)

where

[V ] =

[
UnαUnβ

2UnαUmβ

]
, (G.16)

and 1 ≤ α < β ≤ N . Thus, the determinant can be written as

J(θ, p)|V | =
∏
α<β

(θβ − θα)
∣∣∣∣ δαβδαkSl

αβ

∣∣∣∣ , (G.17)

where
J(θ, p) =

∏
α<β

|θβ − θα|f(p), (G.18)

and f(p) is an exclusively function of the variables pl. Thus, the
probability distribution takes the form

PN,L(θ1, . . . , θN ; p1, . . . , pL) =e
−a

∑N
n=1 θ2

n+b
∑N

n=1 θn+c×

×
∏
n<m

|θm − θn|f(p), (G.19)
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and integrating over the variables pl is found

PN (θ1, . . . , θN ) =

∫ +∞

−∞
. . .

∫ +∞

−∞
dp1 . . . dpL×

× PN,L(θ1, . . . , θN ; p1, . . . , pL)

=Ae−a
∑N

n=1 θ2
n+b

∑N
n=1 θn+c

∏
n<m

|θm − θn|,

(G.20)

where

A =

∫ +∞

−∞
. . .

∫ +∞

−∞
dp1 . . . dpL f(p1, . . . , pL) (G.21)

is a constant. Now, by proposing the change of variable θn =
xn/
√
2a+b/(2a), is found the probability density function of the

GOE

PN,1(θ1, . . . , θN ) = CN,1e
− 1

2

∑N
n=1 x2

n

∏
n<m

|xn − xm|, (G.22)

where

CN,1 =
A√
2a
e

b2

4aN+c

=
1

23N/2
∏N

n=1 Γ
(
1 + n

2

) , (G.23)

which is Eq. (4.1) with β = 1.

G.2 Two-Level Form Factor

The two-level form factor is given by the Fourier transform of
the two-level cluster function

b2(t) = F{Y2(r)}, (G.24)

which for the GOE is given by Eq. (4.21) (the explicit derivation
of this function is very extensive and will not be presented here,
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however, it can be reviewed in Ref. [146]), and can be written as

Y2,1(r) = s2(r) +
1

2

ds(r)

dr
− ds(r)

dr

∫ r

0

dr′s(r′). (G.25)

The function s(r), its first derivative ds(r)/dr, and its inte-
gral

∫ r

0
dr′s(r′), where s(r) = sin(πr)/(πr) is the sinc function,

are defined for r > 0. For negative values, it is stated that these
functions are even functions, and as a result, the Fourier trans-
form of the function s(r) can be expressed as the Fourier cosine
transform [146]

F{s(r)} =
∫ +∞

−∞
dr s(r)e2πirt

= 2

∫ +∞

0

dr s(r) cos(2π|t|r). (G.26)

In this way, for the function s2(r) is found

F
{
s2(r)

}
=2

∫ +∞

0

dr
sin2(πr)

π2r2
cos(2π|t|r)

=

∫ +∞

0

dr
1− cos(2πr)

π2r2
cos(2π|t|r)

=

∫ +∞

0

dr
1

2π2r2
[2 cos(2π|t|r)+

− cos[2π(|t|+ 1)r]− cos[2π(|t| − 1)r)]], (G.27)

where were used the identities

cos(2θ) = 1− 2 sin2(θ), (G.28)

2 cos(θ) cos(ϕ) = cos(θ − ϕ) + cos(θ + ϕ). (G.29)

Now, considering the integral∫ +∞

0

dx
cos(ax)− cos(bx)

x2
=

∫ b

a

dξ

∫ +∞

0

dx
sin(ξx)

x

=
π

2
(|b| − |a|), (G.30)
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where was used the integral∫ +∞

0

dx
sin(ξx)

x
=
π

2

 −1 if ξ < 0
0 if ξ = 0
1 if ξ > 0

, (G.31)

the Fourier cosine transform of the function s2(r) can be found
as

F
{
s2(r)

}
=

1

2
(1− |t|+ |(|t| − 1)|) =

{
1− |t| if |t| ≤ 1
0 if |t| > 1

.

(G.32)
For the function ds(r)/dr is found

F

{
ds(r)

dr

}
=2

∫ +∞

0

dr
d

dr

[
sin(πr)

πr

]
cos(2π|t|r)

= 2
sin(πr)

πr
cos(2π|t|r)

∣∣∣∣+∞

0

+

+ 4π|t|
∫ +∞

0

dr
sin(πr)

πr
sin(2π|t|r)

=− 2 + 2|t|
∫ +∞

0

dr
1

r
[cos[π(2|t| − 1)r]+

− cos[π(2|t|+ 1)r]], (G.33)

where were used the limits

lim
r→+∞

s(r) cos(2π|t|r) = 0, (G.34)

lim
r→0

s(r) cos(2π|t|r) = 1, (G.35)

and the identity

2 sin(θ) sin(ϕ) = cos(θ − ϕ)− cos(θ + ϕ). (G.36)

Now, considering the integral∫ +∞

0

dx
cos(ax)− cos(bx)

x
=

∫ b

a

dξ

∫ +∞

0

dx sin(ξx)

= ln

(
b

a

)
, (G.37)
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where were used the integrals∫ +∞

0

dx e−αr sin(ξx) =
ξ

α2 + ξ2
, (G.38)∫ +∞

0

dx sin(ξx) = lim
α→0

∫ +∞

0

dx e−αr sin(ξx)

=
1

ξ
, (G.39)

the Fourier cosine transform of the function ds(r)/dr can be
found as

F

{
ds(r)

dr

}
= 2

[
−1 + |t| ln

(
2|t|+ 1

2|t| − 1

)]
. (G.40)

For the function f(r) = [ds(r)/dr]
∫ r

0
dr′s(r′) is found

F {f(r)} =2

∫ +∞

0

dr
d

dr

[
sin(πr)

πr

] [∫ r

0

dr′
sin(πr′)

πr′

]
×

× cos(2π|t|r)

= 2
sin(πr)

πr

[∫ r

0

dr′
sin(πr′)

πr′

]
cos(2π|t|r)

∣∣∣∣+∞

0

+

− 2

∫ +∞

0

dr
sin2(πr)

π2r2
cos(2π|t|r)+

+ 4π|t|
∫ +∞

0

dr
sin(πr)

πr

[∫ r

0

dr′
sin(πr′)

πr′

]
sin(2π|t|r)

=− F{s2(r)}+ 2|t|
∫ +∞

0

dr
1

r
[cos[π(2|t| − 1)r]+

− cos[π(2|t|+ 1)r]]

[∫ r

0

dr′
sin(πr′)

πr′

]
, (G.41)

where were used the limits

lim
r→+∞

s(r)

[∫ r

0

dr′s(r′)

]
cos(2π|t|r) = 0, (G.42)

lim
r→0

s(r)

[∫ r

0

dr′s(r′)

]
cos(2π|t|r) = 0, (G.43)
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and the identity (G.36). Now, considering the integral

I(a, b) =

∫ +∞

0

dx
cos(ax)− cos(bx)

x

∫ x

0

dy
sin(πy)

πy

=

∫ b

a

dξ

∫ +∞

0

dx sin(ξx)

∫ x

0

dy
sin(πy)

πy

= −
∫ b

a

dξ
cos(ξx)

ξ

∫ x

0

dy
sin(πy)

πy

∣∣∣∣∣
+∞

0

+

+

∫ b

a

dξ

∫ +∞

0

dx
sin(πx)

πx

cos(ξx)

ξ

=

∫ b

a

dξ
1

2πξ

∫ +∞

0

dx
sin((π + ξ)x) + sin((π − ξ)x)

x

=

{
− 1

2 ln
∣∣ a
π

∣∣ if |t| ≤ 1
0 if |t| > 1

, (G.44)

where were used the limits

lim
x→+∞

cos(ξx)

∫ x

0

dy s(y) = 0, (G.45)

lim
x→0

cos(ξx)

∫ x

0

dy s(y) = 0, (G.46)

the values ξ = a = π(2|t| − 1) and ξ = b = π(2|t|+ 1) for which
limx→+∞ cos(ξx) = 0, the identity

2 sin(θ) cos(ϕ) = sin(θ + ϕ) + sin(θ − ϕ), (G.47)

and the integral∫ +∞

0

dx
sin((π ± ξ)x)

x
=
π

2

 −1 if ± ξ < −π
0 if ξ = ∓π
1 if ± ξ > −π

, (G.48)

the Fourier cosine transform of the function [ds(r)/dr]
∫ r

0
dr′s(r′)

can be found as

F

{
ds(r)

dr

∫ r

0

dr′s(r′)

}
=

{
−1 + |t| − |t| ln |2|t| − 1| if |t| ≤ 1
0 if |t| > 1

.

(G.49)
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In this way, using Eqs. (G.32), (G.40), and (G.49) is found
the two-level form factor of the GOE given by Eq. (4.16).
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Appendix H

Behavior of the
Survival Probability

In this Appendix is exposed the universal behavior of the survival
probability at short times, as well as the complete derivation of
the analytical expression that reproduces the correlation hole.

H.1 Universal Quadratic Behavior

The survival probability shows a universal quadratic behavior at
very short times [187], which can be derived analytically for a
given Hamiltonian Ĥ with eigenvalue equation Ĥ|ϕn⟩ = En|ϕn⟩
and dimensionN of the Hilbert space, using its expectation value
E0 and variance σ2

0 under the initial state (4.24),

E0 = ⟨Ψ(0)|Ĥ|Ψ(0)⟩

=

N∑
n=1

|cn|2En, (H.1)

σ2
0 = ⟨Ψ(0)|Ĥ2|Ψ(0)⟩ − ⟨Ψ(0)|Ĥ|Ψ(0)⟩2

=

N∑
n=1

|cn|2(En − E0)
2. (H.2)
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In this way, Eq. (4.26) can be written as

SP (t) = |⟨Ψ(0)|e−iĤt|Ψ(0)⟩|2

= |e−iE0t⟨Ψ(0)|e−i(Ĥ−E0)t|Ψ(0)⟩|2

=

(
1− σ2

0

2
t2
)2

+ . . .

= 1− σ2
0t

2 +
σ4
0

4
t4 + . . . , (H.3)

where the term

e−i(Ĥ−E0)t = 1− i(Ĥ − E0)t−
1

2!
(Ĥ − E0)

2t2 + . . . (H.4)

was Taylor expanded, such that, by evaluating the survival prob-
ability at very short times SP (t ≪ σ−1

0 ) is found the universal
quadratic behavior given by Eq. (4.32).

H.2 Correlation Hole

The representation of the survival probability in diagonal and
non-diagonal terms (see Eq. (4.30)) defines a spectral autocorre-
lation function [152,161,162,166], given by

S(E) =
∑
n ̸=n′

|cn|2|cn′ |2δ[E− (En−En′)] +
∑
n

|cn|4δ(E), (H.5)

δ is the Dirac delta function given by Eq. (C.14). In this way, the
survival probability can be expressed as the Fourier transform of
this spectral autocorrelation function as

SP (t) = F{S(E)}

=

∫ +∞

−∞
dE S(E)e−iEt. (H.6)
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Taking an ensemble average over the above equation is found

⟨SP (t)⟩ =
〈∫ +∞

−∞
dE S(E)e−iEt

〉
=

∫ +∞

−∞
dE⟨S(E)⟩e−iEt, (H.7)

where the ensemble average and the integral were interchanged.
For the second term of Eq. (H.5) is found directly

〈∑
n

|cn|4δ(E)

〉
=

〈∑
n

|cn|4
〉
δ(E)

=

〈
1

PR

〉
δ(E), (H.8)

where PR is given by Eq. (4.31). On the other hand, for the
first term of Eq. (H.5), it is considered that the eigenenergies
are statistically independent of the eigenstates, such that, the
following factorization is possible

〈∑
n̸=n′

|cn|2|cn′ |2δ[E − (En − En′)]

〉
=

〈∑
n ̸=n′

|cn|2|cn′ |2
〉
×

× ⟨δ[E − (En − En′)]⟩.
(H.9)

The first term of the product is given by

〈∑
n ̸=n′

|cn|2|cn′ |2
〉

= 1−

〈∑
n

|cn|4
〉

= 1−
〈

1

PR

〉
, (H.10)
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while the second one can be written as

⟨δ[E − (En − En′)]⟩ =
∫ +∞

−∞
. . .

∫ +∞

−∞
dE1 . . . dEη×

× δ[E − (En − En′)]Pη(E1, . . . , Eη)

=

∫ +∞

−∞

∫ +∞

−∞
dEn dEn′×

× δ[E − (En − En′)]P2(En, En′)

=
(η − 2)!

η!

∫ +∞

−∞

∫ +∞

−∞
dEn dEn′×

× δ[E − (En − En′)]R2(En, En′),
(H.11)

where En and En′ are two energy levels contained in the effective
set of eigenenergies {E1, . . . , Eη}, and R2(En, En′) is the two-
level correlation function, which can be expressed through the
two-level cluster function T2(En, En′) (see Eqs. (4.4) and (4.6)
for 2 energy levels) as

R2(En, En′) =
η!

(η − 2)!
P2(En, En′)

= R1(En)R1(En′)− T2(En, En′). (H.12)

The previous result can be inserted in Eq. (H.11) renaming the
energy levels as En = E1 and En′ = E2. Taking this result
and Eqs. (H.8) and (H.10), the ensemble average of the survival
probability (H.7) takes the form

⟨SP (t)⟩ =
[
1−

〈
1

PR

〉]
F (t) +

〈
1

PR

〉
, (H.13)

where the time-dependent term can be divided into two terms

F (t) =

∫ +∞

−∞
dE⟨δ[E − (E1 − E2)]⟩e−iEt,

= f1(t) + f2(t). (H.14)
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For the first term is found

f1(t) =
1

η(η − 1)

∫ +∞

−∞

∫ +∞

−∞
dE1dE2R1(E1)R1(E2)e

−i(E1−E2)t

=
1

η(η − 1)

∣∣∣∣∫ +∞

−∞
dE R1(E)e−iEt

∣∣∣∣2
≈ η

η − 1

∣∣∣∣∫ +∞

−∞
dE ρ(E)e−iEt

∣∣∣∣2
≈ η

η − 1
Sst
P (t), (H.15)

where was considered

R1(E)

η
= ν(E) =

∑
n

δ(E − En)

≈ ρ0(E) =
∑
n

|cn|2δ(E − En)

≈ ρ(E), (H.16)

that is, the generalized level density R1(E) normalized to the
total number of effective levels η was approximated to the enve-
lope of the LDoS ρ(E). On the other hand, for the second term
is found

f2(t) = −
1

η(η − 1)

∫ +∞

−∞

∫ +∞

−∞
dE1dE2T2(E1, E2)e

−i(E1−E2)t

= − 1

η − 1

∫ +∞

−∞

∫ +∞

−∞
dy1dy2Ỹ2(y1, y2)e

−i(y1−y2)Dt

= − 1

η − 1

∫ +∞

−∞
dr Ỹ2(r)e

2πir[Dt/(2π)]

= − 1

η − 1
b2

(
Dt

2π

)
, (H.17)

where the two-level cluster function T2(E1, E2) was also normal-
ized to the total number of effective levels η

T̃2(E1, E2) =
T2(E1, E2)

η
, (H.18)
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and was considered the rescaled two-level cluster function

Ỹ2(y1, y2) = lim
η→+∞

D2T̃2(E1, E2) (H.19)

to the rescaled variables yi = Ei/D, such that Ỹ2(r) = Ỹ2(y1, y2)
with r = |y1 − y2|.

Using Eqs. (H.15) and (H.17) in Eq. (H.14) is found the result

F (t) =
1

η − 1

[
ηSst

P (t)− b2
(
Dt

2π

)]
, (H.20)

such that, by inserting it in Eq. (H.13) gives Eq. (4.36).
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Appendix I

Properties of
Coherent States

In this Appendix is exposed the property of the Glauber coherent
states as states of minimum uncertainty. Furthermore, the ex-
pectation values of collective pseudo-spin operators under Bloch
coherent states are developed.

I.1 States of Minimum Uncertainty

The creation-annihilation operators â† and â can be expressed in
terms of the position and momentum operators of the quantum
harmonic oscillator with unitary mass as

q̂ =

√
ℏ
2ω

(
â† + â

)
, (I.1)

p̂ = i

√
ℏω
2

(
â† − â

)
, (I.2)

which satisfy the commutation relation [q̂, p̂] = iℏ1̂. Under these
variables, the generalized uncertainty principle, known as the

201



APPENDIX I. PROPERTIES OF COHERENT STATES

Schrödinger-Robertson uncertainty principle [49], takes the form

σ2
qσ

2
p − σ4

pq ≥
ℏ2

4
, (I.3)

where each term is given by

σ2
q = ⟨α|q̂2|α⟩ − ⟨α|q̂|α⟩2

=
ℏ
2ω
, (I.4)

σ2
p = ⟨α|p̂2|α⟩ − ⟨α|p̂|α⟩2

=
ℏω
2
, (I.5)

σ2
pq =

1

2
⟨α|p̂q̂ + q̂p̂|α⟩ − ⟨α|p̂|α⟩⟨α|q̂|α⟩

= 0. (I.6)

Using the latter explicit results, the Schrödinger-Robertson un-
certainty principle becomes the Heisenberg’s uncertainty princi-
ple and at the same time becomes an equality

σqσp =
ℏ
2
, (I.7)

which implies that the Glauber coherent states are states of min-
imum uncertainty.

I.2 Expectation Values of the Collec-
tive Pseudo-Spin Operators

The expectation values of the collective pseudo-spin operators
Ĵx,y,z and their corresponding raising-lowering operators Ĵ± =
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Ĵx ± iĴy are given by

⟨z|Ĵx,y,z|z⟩ = j[cos(ϕ) sin(θ), sin(ϕ) sin(θ),− cos(θ)]

= j

(
2ℜ[z]
1 + |z|2

,− 2ℑ[z]
1 + |z|2

,
|z|2 − 1

1 + |z|2

)
, (I.8)

⟨z|Ĵ±|z⟩ = j sin(θ)e±iϕ

= j

(
2z∗

1 + |z|2
,

2z

1 + |z|2

)
, (I.9)

where the angular variables (ϕ, θ) are the azimuthal and zenith
angles of the spherical coordinates, measuring the θ angle from
the negative z axis. Moreover, were used the expressions

[sin(θ), cos(θ)] =

(
2|z|

1 + |z|2
,
1− |z|2

1 + |z|2

)
, (I.10)

which can be found from Eq. (C.4).

203





Appendix J

Quasiprobability
Distributions of
Coherent States

In this Appendix are exposed the explicit expressions for some
quasiprobability distributions (Wigner and Husimi functions) of
Glauber and Bloch coherent states.

J.1 Wigner Function of Coherent States

For an initial Glauber coherent state |α0⟩ with parameter α0 =
α(q0, p0) (see Eq. (2.29)), the Wigner function is given by a nor-
mal distribution

Wα0
(α) =

j

π
e−2|α−α0|2

=
j

π
e−j∆2

, (J.1)

where
∆ =

√
(q − q0)2 + (p− p0)2. (J.2)

For an initial Bloch coherent state |z0⟩ with parameter z0 =
z(ϕ0, θ0) (see Eq. (2.30), the atomic angle variables can be mapped
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to the atomic position-momentum variables (ϕ, θ) → (Q,P ) us-
ing the transformation (C.6)), the Wigner function can be writ-
ten as a sum of Legendre polynomials Pk(x) [289]

Wz0(z) =
(2j)!

4π

2j∑
k=0

√
2k + 1

(2j − k)!(2j + k + 1)!
Pk[cos(Θ)]

≈ j

π
e−jΘ2

, (J.3)

where Θ is the angle between two points (ϕ0, θ0) and (ϕ, θ) ob-
tained from the relation

cos(Θ) = cos(θ) cos(θ0) + sin(θ) sin(θ0) cos(ϕ− ϕ0), (J.4)

and furthermore, the Wigner function is very well approximated
by a normal distribution on the Bloch sphere for large values of
the system size j.

Thus, the Wigner function for initial Glauber-Bloch coher-
ent states |x0⟩ = |α0⟩ ⊗ |z0⟩ is just the product of the Wigner
functions (J.1) and (J.3)

Wx0
(x) =Wα0

(α)Wz0(z)

≈
(
j

π

)2

e−jD2
M(x,x0), (J.5)

where

DM(x,x0) =
√
∆2(α, α0) + Θ2(z, z0)

=
√
(q − q0)2 + (p− p0)2 +Θ2 (J.6)

is the phase-space separation.

J.2 Husimi Function of Coherent States

The unnormalized Husimi function for an initial Glauber coher-
ent state |α0⟩ with parameter α0 = α(q0, p0) (see Eq. (2.29)) and
an initial Bloch coherent state |z0⟩ with parameter z0 = z(ϕ0, θ0)
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(see Eq. (2.30), the atomic angle variables can be mapped to the
atomic position-momentum variables (ϕ, θ) → (Q,P ) using the
transformation (C.6)) is given by Eqs. (5.11) and (5.19)

Qα0
(α) = e−|α−α0|2

= e−(j/2)∆2

, (J.7)

Qz0(z) =

[
1− |z − z0|2

(1 + |z|2)(1 + |z0|2)

]2j
≈ e−(j/2)Θ2

, (J.8)

where the Husimi function of the Bloch coherent state is well
fitted by a normal distribution for large j, and the parameters
∆ and Θ are given by Eqs. (J.2) and (J.4), respectively.

In this way, the unnormalized Husimi function for initial
Glauber-Bloch coherent states ρ̂x0

= |x0⟩⟨x0| with |x0⟩ = |α0⟩⊗
|z0⟩ is given by the product of the Husimi functions (J.7) and (J.8)

Qx0
(x) = ⟨x|ρ̂x0

|x⟩
= Qα0

(α)Qz0(z)

≈ e−(j/2)D2
M(x,x0), (J.9)

where DM(x,x0) is given by Eq. (J.6).
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Appendix K

Random States in the
Dicke Model

In this Appendix is exposed the general method to construct
random states within energy intervals of the spectrum of the
Dicke model, as well as the ensemble effective dimension related
with the participation ratio.

K.1 Random States within an Energy
Interval

A random state can be expanded in the energy eigenbasis of the
Dicke Hamiltonian {|Ek⟩} (see Eq. (2.26)) as

|ΨR⟩ =
∑
k

ck|Ek⟩, (K.1)

where the coefficients ck = ⟨Ek|ΨR⟩ can be defined as

ck =

√
rkρ(Ek)

Mν(Ek)
eiθk , (K.2)

where the weights rk are sampled from an arbitrary distribution
and the phases θk from a uniform distribution defined in the
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interval [0, π). The term ρ(E) defines the envelope of the coeffi-
cient distribution (LDoS envelope of the initial state) contained
within a selected interval of the energy spectrum, ν(E) = ν(ϵ)/j
is the semiclassical density of sates given by Eq. (2.41), and
M =

∑
k rkρ(Ek)/ν(Ek) is a normalization constant.

K.2 Ensemble Effective Dimension

For initial random states whose coefficients are defined by Eq. (K.2),
the ensemble average of the inverse of the PR takes the form

〈
1

PR

〉
=

〈∑
k

|ck|4
〉

=

〈∑
k

r2kρ
2(Ek)

M2ν2(Ek)

〉

=

〈
r2k
M2

〉∑
k

ρ2(Ek)

ν2(Ek)

≈ ⟨r
2
k⟩

⟨rk⟩2
1

η
, (K.3)

where was considered that the eigenenergies are statistically in-
dependent of the eigenstates, and the ensemble average was ap-
proximated as

〈
r2k
M2

〉
≈ ⟨r

2
k⟩

⟨M2⟩

≈ ⟨r2k⟩
⟨rk⟩2[

∑
k ρ(Ek)/ν(Ek)]2

. (K.4)
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Using the above expression the ensemble effective dimension can
be defined as

η =
[
∑

k ρ(Ek)/ν(Ek)]
2∑

k ρ
2(Ek)/ν2(Ek)

≈ νc∫ +∞
−∞ dE ρ2(E)

≈ ⟨r
2
k⟩

⟨rk⟩2

〈
1

PR

〉−1

, (K.5)

where the sum was changed for an integral
∑

k • →
∫
dE ν(E)•,

the normalization condition of the LDoS envelope was used, and
the semiclassical density of states was evaluated at the energy
center of the LDoS envelope νc = ν(Ec).
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Appendix L

Classical Limit of the
Survival Probability

In this Appendix is exposed the complete derivation of the clas-
sical limit of the survival probability constructed with the trun-
cated Wigner approximation.

L.1 Truncated Wigner Approximation

The Moyal bracket for two functions F and F ′ is defined as [290]

{F, F ′}M =
2

ℏ
F sin

[
ℏ
2

(←−
∂q
−→
∂p −

←−
∂p
−→
∂q

)]
F ′

= {F, F ′}+O(ℏ2), (L.1)

where the sine was Taylor expanded, such that, the first term
is a Poisson bracket. Using this feature, the so-called Moyal
equation [291], which governs the time evolution of the Wigner
function, can be written as

∂WΨ(x, t)

∂t
= {WΨ(x, t), hD(x)}M
= {WΨ(x, t), hD(x)}+O(j−2), (L.2)
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where WΨ(x, t) is the time-dependent Wigner function of an ar-
bitrary state |Ψ⟩, hD(x) is the classical Dicke Hamiltonian (2.38).
By ignoring the j−2 order terms in this expression, the remaining
equation is the classical Liouville equation. The latter choice de-
fines the truncated Wigner approximation and yields the correct
quantum evolution for small times.

Within this approximation, the Wigner function remains con-
stant along classical trajectories in phase space, so its time de-
pendence can be written in terms of the Hamiltonian flow φt :
M→M, which describes the time evolution of an initial condi-
tion x0 ∈M as

x(t) = φt(x0), (L.3)

and satisfies the one-parameter group identities φ0 = Id, φ−t =
(φt)−1, and φt1+t2 = φt2 ◦ φt1 . Thus, the Wigner function for
any pair of times t1 and t2 satisfies the next relation

WΨ[φ
t1(x0), t1] =WΨ[φ

t2(x0), t2]. (L.4)

In particular, taking t1 = 0 and t2 = t is found

WΨ(x, t) =WΨ[φ
−t(x), 0]. (L.5)

L.2 Survival Probability and Wigner
Function

The basic idea to write the survival probability in terms of their
Wigner functions is to use the overlap property between two
arbitrary quantum states |Ψ⟩ and |Ψ′⟩ [227]

|⟨Ψ|Ψ′⟩|2 = (2πℏ)I
∫
dαWΨ(α)WΨ′(α), (L.6)

whereWΨ(α) is the Wigner function of the arbitrary state |Ψ⟩ in
the overcomplete basis of coherent states {|α⟩}, and I represents
the degrees of freedom of the system.

The Wigner functionWΨ(x) of an arbitrary state |Ψ⟩ defined
in the overcomplete basis of Glauber-Bloch coherent states {|x⟩}

214



L.2. SURVIVAL PROBABILITY AND WIGNER FUNCTION

is given by Eq. (7.2), where x = (q, p;Q,P ) are the coordinates
of the four-dimensional phase space M of the Dicke model. In
this way, the survival probability (4.26) can be written as

SP (t) = (2πℏeff)2
∫
M
dxWΨ(x, 0)WΨ(x, t), (L.7)

where ℏeff = j−1. Using the TWA, the short-time dependence
of the Wigner function can be written in terms of the Hamil-
tonian flow φt : M → M and the relation (L.5) for short
times is found. Using the definitions WΨ(x, 0) ≡ WΨ(x) and
WΨ(x, t) = WΨ[φ

−t(x), 0] ≡ WΨ[φ
−t(x)] in the above expres-

sion the Eq. (7.1) is found.
On the other hand, the classical limit of survival probabil-

ity (7.1) can be rewritten as

SP (t) =
〈
WΨ[φ

−t(x)]
〉
WΨ

≈ 1

M

M∑
i=1

WΨ[φ
−t(xi)], (L.8)

where the expectation value can be efficiently approximated us-
ing a Monte Carlo method provided that WΨ is everywhere
positive and defined for initial Glauber-Bloch coherent states
|Ψ⟩ = |x0⟩ (see Eq. (J.5)). The points xi ∈ M are randomly
sampled from the initial distribution Wx0(x), and M is a suffi-
ciently large, albeit computationally accessible, integer.
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Appendix M

Coherent States in the
Dicke Model

In this Appendix is exposed the representation of the Glauber-
Bloch coherent states in the energy eigenbasis of the Dicke Hamil-
tonian using the coherent basis.

M.1 Coherent States and the Coher-
ent Basis

The coherent basis {|N ; j,mx⟩} allows to diagonalize the Dicke
Hamiltonian and to find the eigenenergies and eigenstates. In
this way, such eigenstates are represented in the coherent basis
as

|Ek⟩ =
∑
N,mx

Ck
N,mx

|N ; j,mx⟩, (M.1)

where the coefficients Ck
N,mx

= ⟨N ; j,mx|Ek⟩ are found numeri-
cally [6].

On the other hand, the Glauber-Bloch coherent states |x⟩ =
|α⟩ ⊗ |z⟩ have a representation in the energy eigenbasis of the
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Dicke Hamiltonian {|Ek⟩} (see Eq. (2.26)) given by

|x⟩ =
∑
k

Ck(x)|Ek⟩, (M.2)

where x = (q, p;Q,P ) are the coordinates of the four-dimensional
phase spaceM of the Dicke model, and the coefficients Ck(x) =
⟨Ek|x⟩ can be represented at the same time in the coherent basis
as

Ck(x) =
∑
N,mx

(Ck
N,mx

)∗CN,mx
(x), (M.3)

and the coefficients CN,mx(x) = ⟨N ; j,mx|x⟩ are found using
Eq. (B.6)

CN,mx
(x) =

(α− αmx)
N

√
N !

⟨αmx
|α⟩⟨j,mx|z⟩, (M.4)

where αmx = −Gmx and G = 2γ/(ω
√
N ). Moreover, Eq. (5.10)

gives directly the bosonic overlap ⟨αmx |α⟩, while Eq. (5.16) gives
the atomic overlap

⟨j,mx|w(z)⟩ =

√(
2j

j +mx

)
wj+mx(z)

(1 + |w(z)|2)j
, (M.5)

where w(z) = (1 + z)/(1 − z) is the rotated atomic parameter
with z = tan(θ/2)e−iϕ. In this way, using the latter results the
Glauber-Bloch coherent states have an explicit representation
in the energy eigenbasis using the coherent basis through the
coefficients (M.3)

An analogous procedure can be derived using the coherent
basis with well-defined parity {|N ; j,mx; p⟩}, which gives the
following coefficients

Ck,p(x) =
∑
N,mx

(Ck,p
N,mx

)∗Cp
N,mx

(x), (M.6)

where

Cp
N,mx

(x) =
CN,mx(x) + p(−1)NCN,−mx(x)√

2(1 + δmx,0)
. (M.7)
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Appendix N

Husimi Function in
the Dicke Model

In this Appendix is exposed the Husimi function for eigenstates
of the Dicke Hamiltonian. On the other hand, two methods of
projection of the Husimi function are developed, one defined at
a classical energy shell, and other one defined over all classical
energy shells, such that, exact projections can be found using
the Fock basis.

N.1 Husimi Function of Eigenstates

The unnormalized Husimi function for eigenstates ρ̂k = |Ek⟩⟨Ek|
of the Dicke model can be written as

Qk(x) = ⟨x|ρ̂k|x⟩
= |⟨Ek|x⟩|2

= |Ck(x)|2, (N.1)

where Ck(x) are the coefficients of the Glauber-Bloch coherent
states given by Eq. (M.3), which can be constructed numerically
by diagonalizing the Dicke Hamiltonian (2.5) with the coherent
basis {|N ; j,mx⟩}.
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N.2 Projection at a Classical Energy
Shell

An arbitrary function F (x), which depends on the coordinates
x = (q, p;Q,P ) of the four-dimensional phase space M of the
Dicke model, can be projected in the atomic plane Q − P at a
classical energy shell ϵ = E/j as

F̃ϵ(Q,P ) =

∫ ∫
dq dp δ[hD(x)− ϵ]F (x)

=

∫ p+

p−

dp

∑
q±
F (q±, p;Q,P )√
∆ϵ(p,Q, P )

, (N.2)

where δ is the Dirac delta function given by Eq. (C.14) and were
used its properties (C.15), q± are the two solutions of the second
degree equation hD(x)−ϵ = 0, and p± are the two solutions of the
second degree equation ∆ϵ(p,Q, P ) = 0. The term ∆ϵ(p,Q, P ) is
specified by Eqs. (C.17) and (C.18). With the latter definitions,
the integral (N.2) over p can be computed with a Chebyshev-
Gauss quadrature method [15].

N.3 Exact Projections of the Husimi
Function

An advantage of using the Fock basis {|n,mz⟩} to construct the
Husimi function of an arbitrary state ρ̂ is that closed expressions
for the projected Husimi function can be found [250, 252]. The
last property is equivalent to project the Husimi function over
all available classical energy shells, since any trace of energy is
erased from the projection. The Husimi functions projected in
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both bosonic q − p and atomic Q− P planes are given by

Q̃ρ̂(q, p) =
1

CA

∫ ∫
dQdP Q(x)

=B(q, p)

nmax∑
n=0

nmax∑
n′=0

j∑
mz=−j

(C ρ̂
n,mz

)∗C ρ̂
n′,mz

×

× FB
n (q, p)[FB

n′(q, p)]∗, (N.3)

Q̃ρ̂(Q,P ) =
1

CB

∫ ∫
dq dpQ(x)

=A(Q,P )

nmax∑
n=0

j∑
mz=−j

j∑
m′

z=−j

(C ρ̂
n,mz

)∗C ρ̂
n,m′

z
×

× FA
mz

(Q,P )[FA
m′

z
(Q,P )]∗, (N.4)

where the constants CA = 4π/(2j+1) and CB = 2π/j normalize
the atomic and bosonic subspace, respectively. Moreover

FB
n (q, p) =

1√
n!

[√
j

2
(q + ip)

]n
, (N.5)

FA
mz

(Q,P ) =

√(
2j

j +mz

)(
Q+ iP√

4−Q2 − P 2

)j+mz

, (N.6)

and the amplitudes are given by B(q, p) = e−(j/2)(q2+p2) and
A(Q,P ) = [1 − (Q2 + P 2)/4]2j , respectively. The coefficients
C ρ̂

n,mz
of the state ρ̂ are found numerically by diagonalizing the

Dicke Hamiltonian (2.5) with the Fock basis.
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Appendix O

Periodic Orbits in the
Dicke Model

In this Appendix is exposed the monodromy method to find well-
converged periodic orbits in the Dicke model, as well as the pro-
cedure to compute their Lyapunov exponent. Moreover, a scar-
ring measure of quantum states caused by these periodic orbits
is also exposed.

O.1 Monodromy Method for Periodic
Orbits

The monodromy method is a Newton-Raphson-type algorithm
that converges towards a periodic orbit given an initial guess for
an initial condition and period [259,260]. This type of algorithm
has been extensively studied in several systems [251,261].

The procedure begins with the guesses for an initial condition
x̌ and period Ť of a given periodic orbit. Now, the objective is to
obtain the initial condition x = x̌+∆x and period T = Ť +∆T
of a periodic orbit in the same energy shell as x̌. Considering
the fundamental matrix Φx(t) associated to the classical Dicke
Hamiltonian hD(x) (2.38) and the Hamiltonian flow φt(x) which
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satisfies x(t) = φt(x) [292], the following approximations to first
order, where ||∆x|| and |∆T | are small, can be made

φŤ (x̌+∆x) ≈ φŤ (x̌) +Φx̌(Ť )∆x, (O.1)

φ∆T (x) ≈ x+∆T Σ∇hD(x), (O.2)

where

Σ =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , (O.3)

and ∇hD(x) is the gradient of the classical Dicke Hamiltonian.
Thus, the Hamiltonian flow takes the form

φT (x) = φŤ+∆T (x)

= φ∆T [φŤ (x̌+∆x)]

≈ φŤ (x̌+∆x) + ∆T Σ∇hD[φŤ (x̌+∆x)]

≈ φŤ (x̌) +Φx̌(Ť )∆x+∆T Σ∇hD(x̌′), (O.4)

where x̌′ = φŤ (x̌). The last equation allows to approximate the
periodicity constriction x = φT (x) to first order as

x̌+∆x = φŤ (x̌) +Φx̌(Ť )∆x+∆T Σ∇hD(x̌′), (O.5)

and in the same way the energy constriction hD(x) = hD(x̌) as

∇hD(x̌′) ·∆x = 0. (O.6)

Therefore, the constriction to stay in the same Poincaré section
of constant variable P is given by

Ξ ·∆x = 0, (O.7)

where Ξ = (q = 0, p = 0;Q = 0, P = 1)⊤. The last constric-
tion eliminates the movement along the Hamiltonian flow and
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increases the stability of the algorithm. The previous linear con-
strictions (O.5), (O.6), and (O.7) can be written in matrix form
as  1−Φx̌(Ť ) −Σ∇hD(x̌′)

∇hD(x̌′)⊤ 0
Ξ⊤ 0

 · ( ∆x
∆T

)
=

 x̌′ − x̌
0
0

 .

(O.8)
This overdetermined system of linear equations may be approxi-
mately solved by least squares using Moore-Penrose pseudoinver-
sion. The solution for ∆x and ∆T is not exact, but the process
may be iterated with new guesses x̌+∆x and Ť +∆T that will
converge to x and T if the initial guesses were good enough.

Given a stable stationary point xgs ∈ M with energy ϵgs =
hD(xgs) and normal period Tgs, a continuous family of periodic
orbits Oϵ can be found iteratively, whose existence is guaran-
teed [293]. Therefore, given Oϵ the objective is to find Oϵ′ with
ϵ′ = ϵ + δϵ close to ϵ. Thus, x ∈ Oϵ is selected and the pertur-
bation defined as δx = a∇hD(x), where a is a scalar such that
hD(x+ δx) = ϵ+ δϵ. For the first step, ∇hD(xgs) = 0, in which
case any direction can be selected (the q direction is used here),
and the stability of the initial stationary point will guarantee
that the algorithm converges. Now, setting

x̌′ = x+ δx, (O.9)

Ť ′ = T + δT, (O.10)

where

δTk =

{
0 if it is the first step

(ϵ′ − ϵ)T−Tprev

ϵ−ϵprev
otherwise

, (O.11)

and ϵprev and Tprev are the energy and period of the closest pre-
viously calculated orbit. Thus, Ť ′ is linear extrapolation based
on the behavior of the previous orbits.

Using the monodromy method the guesses x̌′ and Ť ′ can be
corrected to obtain actual solutions x′ and T ′, so that the desired
periodic orbit is given by

Oϵ′ = {x′(t) | t ∈ [0, T ′]} . (O.12)
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Although energy is constrained in the monodromy method, this
is only to first order, so ϵ′ = hD(x

′) may not be exactly equal
to ϵ+ δϵ. This is easily fixed by performing additional iterations
with smaller |δϵ| which converge to the desired energy.

O.2 Lyapunov Exponent of Periodic Or-
bits

For any point x in phase space, the associated maximum Lya-
punov exponent can be calculated with the spectral norm of the
fundamental matrix Φx(t), which is the square root of the maxi-
mum eigenvalue of the symmetric matrix Φ†

x(t)Φx(t) [11,13,292]

λ = lim
t→+∞

1

t
ln ||Φx(t)||. (O.13)

If x corresponds to a periodic condition with period T , then
Eq. (O.13) is greatly simplified. The so-called monodromy ma-
trix associated to x is M = Φx(T ). Then Φx(nT ) =Mn for all
positive integers n [292]. In this way, the Lyapunov exponent
takes the form

λ = lim
n→+∞

1

nT
ln ||Φx(nT )||

=
1

T
lim

n→+∞

1

n
ln ||Mn||

=
1

T
lim

n→+∞

1

n
ln ||enA||

=
1

T
max

i
(ln |mi|), (O.14)

where A = ln(M) and the limit is equal to maxi[ℜ(ai)] [13].
That is, the maximum real part of the eigenvalues ai = log(mi)
of the matrix A, where mi are the eigenvalues of the matrix M .

Therefore, finding the maximum Lyapunov exponent of a pe-
riodic orbit Oϵ with period T reduces to computing the mon-
odromy matrix M , which is done by simple numeric integration,
and then taking the greatest of the norms of its eigenvalues di-
vided by the period T .
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O.3 Scarring Measure of Periodic Or-
bits

The scarring of an arbitrary state ρ̂, caused by a given periodic
orbit Oϵ with energy ϵ and period T , can be quantified defining
the average

⟨Qρ̂(x)⟩Oϵ
=

1

T

∫ T

0

dtQρ̂[x(t)]

= Tr(ρ̂ρ̂Oϵ), (O.15)

where

ρ̂Oϵ =
1

T

∫ T

0

dt |x(t)⟩⟨x(t)| (O.16)

is a tubular Gaussian distribution around the periodic orbit Oϵ

and the coherent state |x(t)⟩ is centered at x(t) ∈ Oϵ. The
Husimi function of the state ρ̂Oϵ

is described by the Husimi func-
tion (J.9)

QOϵ
(x) = ⟨x|ρ̂Oϵ

|x⟩

=
1

T

∫ T

0

dt e−(j/2)D2
M[x,x0(t)], (O.17)

for any initial state |x0(t)⟩ with x0(t) ∈ Oϵ.
The way to compare the average (J.9) with a benchmark is

to consider a completely delocalized state of the form

ρ̂ϵ =
1

Vϵ

∫
Mϵ

ds |x⟩⟨x|

=
1

Vϵ

∫
M
dx δ[hD(x)− ϵ]|x⟩⟨x|, (O.18)

which is composed of all coherent states within the classical en-
ergy shell ϵ = hD(Oϵ), where Vϵ is given by Eq. (8.6), and δ
is the Dirac delta function given by Eq. (C.14). The ratio be-
tween the average (O.15) for states ρ̂ and ρ̂ϵ defines the scarring
measure (9.7).
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Appendix P

Localization Measures
in Continuous Spaces

In this Appendix is exposed a scheme to define generalized local-
ization measures in continuous spaces based in the generalized
Rényi entropy.

P.1 Rényi Volume

The way to define a generalized localization measure in contin-
uous spaces comes from the Rényi entropy of order α defined in
a discrete basis {|ϕn⟩} with dimension N , whose explicit expres-
sion is given by

Sα =
1

1− α
ln

(
N∑

n=1

pαn

)
, (P.1)

S1 = lim
α→1

Sα

= −
N∑

n=1

pn ln(pn), (P.2)

where α ≥ 0 (α ̸= 1) and the term pn = |⟨ϕn|Ψ⟩|2 defines the
probability to find an arbitrary state |Ψ⟩ in an basis state |ϕn⟩
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and satisfies the relation
∑

n pn = 1. The limit case α = 1
designs the well-known Shannon entropy. The exponential of
the latter entropies define generalized localization measures in
discrete spaces in the following form

eSα =

(
N∑

n=1

pαn

)1/(1−α)

∈ [1, N ], (P.3)

eS1 = e−
∑N

n=1 pn ln(pn) ∈ [1, N ], (P.4)

which are known as generalized participation ratios of order
α [93, 294]. The particular case α = 2 gives the well-known
participation ratio PR = eS2 (see Eq. (4.31)).

The concept of localization in discrete bases can be extended
to continuous bases which depend explicitly on a given parameter
υ defined in a continuous space N with volume

VN =

∫
N

dV(υ). (P.5)

The procedure consists of replace the discrete probabilities by
a distribution of probability pn → Φ(υ) which is normalized∫
N
dV(υ) Φ(υ) = 1 and the sums by integrals

∑
n • →

∫
dV(υ)•.

Taking the latter considerations can be found the Rényi volumes

Vα(N,Φ) =
[∫

N

dV(υ) Φα(υ)

]1/(1−α)

∈ (0,VN], (P.6)

V1(N,Φ) = e−
∫
N

dV(υ) Φ(υ) ln[Φ(υ)] ∈ (0,VN]. (P.7)

If the latter Rényi volumes are scaled by the volume of the con-
tinuous space (P.5), the Rényi occupation (10.1) bounded to the
interval (0, 1] is found.

When the continuous space N is unbounded, its volume is
infinite (VN =∞) and the probability distribution Φ(υ) is arbi-
trarily delocalized. For such cases, the Rényi occupation (10.1)
must be defined within bounded subspaces S ⊂ N with finite
volume VS < VN.
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Rényi Occupation in
the Dicke Model

In this Appendix are exposed two Rényi occupations defined in
different bounded subspaces of the Dicke model, one defined in
the atomic subspace, and other one defined at a classical energy
shell.

Q.1 Rényi Occupation in the Atomic
Subspace

The bounded atomic subspace A of the Dicke model is given by
Eq. (10.5), and its phase-space volume is given by

VA =

∫
A
dQdP

= 4π. (Q.1)

231
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The selected probability distribution defined in the latter sub-
space is given by the exact projected Husimi function (N.4)

Φρ̂(Q,P ) =
1

CA
Q̃ρ̂(Q,P )

=
1

C

∫ ∫
dq dpQρ̂(x), (Q.2)

where the constant

C =

∫
M
dxQρ̂(x)

= CACB (Q.3)

ensures the normalization of the Husimi function in all phase
space M of the Dicke model with coordinates x = (q, p;Q,P ),
where CA = 4π/(2j + 1) and CB = 2π/j. Using the probability
distribution (Q.2) in Eq. (10.2) the Rényi occupations (10.3)
and (10.4) can be found.

Q.2 Rényi Occupation at a Classical
Energy Shell

The subspace of a classical energy shellMϵ is given by Eq. (8.5)
and its phase-space volume Vϵ is given by Eq. (8.6). The selected
probability distribution defined in the latter subspace is given by
the Husimi function normalized to the subspace of the classical
energy shell ϵ = E/j

Φϵ,ρ̂(x) =
1

Cϵ
Qρ̂(x), (Q.4)

where the constant Cϵ is given by Eq. (8.4). Using the probability
distribution (Q.4) in Eq. (10.2) the Rényi occupations (10.6)
and (10.7) can be found.

On the other hand, a useful way to represent the Rényi oc-
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cupations (10.6) and (10.7) is as follows

Lα(ϵ, ρ̂) =

[ ⟨Qα
ρ̂ (x)⟩ϵ

⟨Qρ̂(x)⟩αϵ

]1/(1−α)

, (Q.5)

L1(ϵ, ρ̂) = ⟨Qρ̂(x)⟩ϵe−⟨Qρ̂(x) ln[Qρ̂(x)]⟩ϵ/⟨Qρ̂(x)⟩ϵ , (Q.6)

where the average is defined in the available phase space of the
classical energy shellMϵ and is given explicitly by

⟨F (x)⟩ϵ =
1

Vϵ

∫
Mϵ

dsF (x)

=
1

Vϵ

∫
M
dx δ[hD(x)− ϵ]F (x), (Q.7)

where F (x) is an arbitrary function which depends on the coor-
dinates x = (q, p;Q,P ) of the four-dimensional phase space M
of the Dicke model, Vϵ is given by Eq. (8.6), and δ is the Dirac
delta function given by Eq. (C.14).
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Appendix R

Rényi Occupation of
Maximally Delocalized
States

In this Appendix is exposed a procedure to find the Rényi oc-
cupation of maximally delocalized states in Hilbert spaces with
finite dimension.

R.1 Delocalization in Hilbert Spaces
with Finite Dimension

In a Hilbert space with finite dimension D, the average of the
overlap of order α between to arbitrary states |Ψ⟩ and |Ψ′⟩ is
given by [285,295,296]

⟨|⟨Ψ|Ψ′⟩|2α⟩Ψ =
Γ(D)Γ(α+ 1)

Γ(D + α)
, (R.1)

where Γ is the gamma function given by Eq. (3.21) and the av-
erage is taken over all possible (normalized) states |Ψ⟩.

Maximum delocalization in Hilbert spaces with finite dimen-
sion D is attained by random pure states. Thus, applying the
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latter average to an ensemble of random sates |Ψ⟩ = |ΨR⟩ and
using Glauber-Bloch coherent states |Ψ′⟩ = |x⟩ averaged in the
bounded phase spaceMD associated to the finite Hilbert space,
the relation takes the form

⟨⟨|⟨ΨR|x⟩|2α⟩x∈MD ⟩ΨR
=

Γ(D)Γ(α+ 1)

Γ(D + α)

≈ ⟨|⟨ΨR|x⟩|2α⟩x∈MD , (R.2)

where the approximation is taken considering that the variance
of the average over the random states decreases when the finite
dimension D grows.

In this way, when the dimension D is large enough, but
remains finite, the Rényi occupation of a random state ρ̂R =
|ΨR⟩⟨ΨR| defined in the bounded phase spaceMD is given by

Lα(MD, ρ̂R) =

[
⟨|⟨ΨR|x⟩|2α⟩x∈MD

⟨|⟨ΨR|x⟩|2⟩αx∈MD

]1/(1−α)

≈ Γ1/(1−α)(α+ 1), (R.3)

which is independent of the dimension D and only depends on
the order α. The last expression resembles the Rényi occupation
of a random state defined at a classical energy shell given by
Eq. (Q.5).
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Bastarrachea-Magnani, B. López-del-Carpio, and J.
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M Gärttner, K A Gilmore, J E Jordan, A M Rey, J J
Bollinger, and J K Freericks, Bang-bang shortcut to adia-
baticity in the Dicke model as realized in a Penning trap
experiment, New J. Phys. 20, 055013 (2018).

[82] A. Safavi-Naini, R. J. Lewis-Swan, J. G. Bohnet, M.
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Aragón, Jorge G. Hirsch, and Roberto de J. León-Montiel,
Experimental realization of the classical Dicke model, Phys.
Rev. Research 2, 033169 (2020).

[89] Ferdinand Brennecke, Tobias Donner, Stephan Ritter,
Thomas Bourdel, Michael Köhl, and Tilman Esslinger,
Cavity QED with a Bose–Einstein condensate, Nature
450, 268 (2007).

[90] Barry M. Garraway, The Dicke model in quantum optics:
Dicke model revisited, Phil. Trans. R. Soc. A 369, 1137
(2011).

[91] Anton Frisk Kockum, Adam Miranowicz, Simone De Lib-
erato, Salvatore Savasta, and Franco Nori, Ultrastrong cou-
pling between light and matter, Nat. Rev. Phys. 1, 19
(2019).

[92] P. Forn-Dı́az, L. Lamata, E. Rico, J. Kono, and E. Solano,
Ultrastrong coupling regimes of light-matter interaction,
Rev. Mod. Phys. 91, 025005 (2019).

[93] Edward Ott, Chaos in dynamical systems, (Cambridge
University Press, New York, 1993).

[94] G. L. Baker and J. P. Gollub, Chaotic Dynamics: an intro-
duction, (Cambridge University Press, New York, 1996).

[95] Sandro Wimberger, Nonlinear Dynamics and Quantum
Chaos: An Introduction, (Springer International Publish-
ing, Switzerland, 2014).

[96] Herbert Goldstein, Charles Poole, and John Safko, Classi-
cal Mechanics, (Addison-Wesley, San Francisco, 2002).

[97] M. S. Santhanam, Sanku Paul, and J. Bharathi Kannan,
Quantum kicked rotor and its variants: Chaos, localization
and beyond, Phys. Rep. 956, 1 (2022).

[98] L. Chierchia and J. N. Mather, Kolmogorov-Arnold-Moser
theory, Scholarpedia 5, 2123 (2010).

247



BIBLIOGRAPHY

[99] A. N. Kolmogorov, On the conservation of conditionally
periodic motions under small perturbation of the Hamilto-
nian, Dokl. Akad. Nauk SSR 98, 527 (1954).

[100] J. Moser, On invariant curves of area-preserving mappings
of an annulus, Nachr. Akad. Wiss. Göttingen, Math.-Phys.
Kl. II 1, 1 (1962).

[101] V. I. Arnold, Proof of a theorem of A. N. Kolmogorov on
the invariance of quasi-periodic motions under small per-
turbations of the Hamiltonian, Russ. Math. Surv. 18, 9
(1963).

[102] V. I. Arnold, Small denominators and problems of stability
of motion in classical and celestial mechanics, Russ. Math.
Surv. 18, 85 (1963).

[103] V. I. Oseledets, A multiplicative ergodic theorem. Charac-
teristic Ljapunov, exponents of dynamical systems, Trans.
Moscow Math. Soc. 19, 197 (1968).

[104] Michael Tabor, Chaos and Integrability in Nonlinear Dy-
namics: An Introduction, (John Wiley & Sons, New York,
1988).

[105] Giancarlo Benettin, Luigi Galgani, Antonio Giorgilli, and
Jean-Marie Strelcyn, Lyapunov Characteristic Exponents
for smooth dynamical systems and for hamiltonian sys-
tems; a method for computing all of them. Part 1: Theory,
Meccanica 15, 9 (1980).

[106] Giancarlo Benettin, Luigi Galgani, Antonio Giorgilli, and
Jean-Marie Strelcyn, Lyapunov Characteristic Exponents
for smooth dynamical systems and for hamiltonian sys-
tems; A method for computing all of them. Part 2: Nu-
merical application, Meccanica 15, 21 (1980).

[107] Boris. V. Chirikov, A universal instability of many-
dimensional oscillator systems, Phys. Rep. 52, 263 (1979).

[108] Ya. B. Pesin, Characteristic Lyapunov exponents and
smooth ergodic theory, Russ. Math. Surv. 32, 55 (1977).

248



BIBLIOGRAPHY

[109] G. Benettin, C. Froeschle, and J. P. Scheidecker, Kol-
mogorov entropy of a dynamical system with an increas-
ing number of degrees of freedom, Phys. Rev. A 19, 2454
(1979).

[110] Joseph B. Keller, Corrected Bohr-Bommerfeld Quantum
Conditions for Nonseparable systems, Ann. Phys. 4, 180
(1958).

[111] A. Einstein, Zum Quantensatz von Sommerfeld und Ep-
stein, Deut. Phys. Gesell. Verhandl. 19, 82 (1917).

[112] Martin C. Gutzwiller, Phase-Integral Approximation in
Momentum Space and the Bound States of an Atom, J.
Math. Phys. 8, 1979 (1967).

[113] Martin C. Gutzwiller, Phase-Integral Approximation in
Momentum Space and the Bound States of an Atom. II,
J. Math. Phys. 10, 1004 (1969).

[114] Martin C. Gutzwiller, Energy Spectrum According to Clas-
sical Mechanics, J. Math. Phys. 11, 1791 (1970).

[115] Martin C. Gutzwiller, Periodic Orbits and Classical Quan-
tization Conditions, J. Math. Phys. 12, 343 (1971).

[116] Martin C. Gutzwiller, The Semi-classical quantization of
chaotic Hamiltonian systems. In Les Houches, Session LII,
1989. Chaos et Physique Quantique / Chaos and Quan-
tum Physics (eds. M.-J. Giannoni, A. Voros, and J. Zinn-
Justin) (North-Holland, Amsterdam, 1991).

[117] F. Revuelta, E. Vergini, R. M. Benito, and F. Borondo,
Short-periodic-orbit method for excited chaotic eigenfunc-
tions, Phys. Rev. E 102, 042210 (2020).

[118] Giulio Casati and Boris Chirikov, Quantum chaos: Be-
tween order and disorder, (Cambridge University Press,
New York, 1995).
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