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“If I have seen further, it is by standing on the shoulders of giants.”
Sir Isaac Newton

“It followed from the special theory of relativity that mass and energy are both but different
manifestations of the same thing – a somewhat unfamiliar conception for the average mind.”

Albert Einstein



Agradecimientos

Primero que nada, quisiera agradecer a mis padres (y a todos mis ascendientes) pues ellos
fueron quienes, gracias al esfuerzo y a las decisiones que tomaron durante su vida, me otor-
garon ciertas condiciones iniciales y de frontera, así como fuerzas impulsoras y restauradoras,
para llegar a donde me encuentro.

Una clave fundamental para todos mis éxitos ha sido la compañía de mi mejor amiga y
esposa, Jessica. No solamente ha sido la principal y casi única compañía que he tenido durante
este viaje, sino que me ha motivado siempre a dar lo mejor de mí en cualquier escenario. Sin
duda alguna, su confianza en mis capacidades me ha hecho sentir seguro y me ha permitido
dar siempre pasos firmes.

También quisiera agradecer a mi amigo Ulil por acompañarme y escucharme, aunque sea
virtualmente, durante toda mi licenciatura y maestría, así como a mi amigo Víctor Knapp por
impulsarme y motivarme a ser un mejor Físico. Sin duda alguna, este es un trayecto que no
puede recorrerse solo.

Además, quisiera darle las gracias a mi asesor, el Dr. Darío Núñez, por el constante
apoyo y motivación que me ha otorgado desde que me adoptó como su estudiante antes de
iniciar mi maestría. Gracias a él pude involucrarme en el tema de esta tesis y pude conocer a
excelentes personas e investigadoræs. En particular, los resultados de esta tesis se lograron
gracias al trabajo y a las valiosas discusiones que tuve con el Dr. Darío, el Dr. Olivier Sarbach,
la Dra. Paola Domínguez y el futuro Dr. Carlos Gabarrete, a quien le estoy infinitamente
agradecido por orientarme cuando encontré algunos obstáculos durante la realización de este
trabajo.



Resumen

La acreción es un mecanismo muy importante para la astrofísica y la cosmología observacional
pues tiene un rol fundamental en la formación y evolución de planetas, estrellas, estrellas de
neutrones, agujeros negros (ANs) y galaxias debido a la naturaleza atractiva de la gravedad.
Sin embargo, entender el proceso de acreción es una tarea difícil porque requiere de diversas
ramas de la física para modelar el flujo de acreción y todas las interacciones involucradas.

Una de las primeras suposiciones que se debe hacer está relacionada con el régimen
(Newtoniano o relativista) en el que modelamos el problema de acreción. Para gases que
se mueven a muy altas velocidades y/o en fuertes campos gravitacionales, naturalmente
esperamos que una descripción relativista sea significativamente mejor. Otra suposición está
relacionada con la naturaleza del flujo acretante (hidrodinámica o cinética). En muchos
escenarios astrofísicos la aproximación hidrodinámica es la más adecuada. Sin embargo,
hay ciertos casos en los que esperamos que un tratamiento cinético daría mejores resultados,
por ejemplo, en la acreción de flujos radiativamente ineficientes y poco colisionales que se
encuentran cerca de ANs supermasivos (como Sgr A* y M87*), y en la acreción de materia
oscura hacia ANs. Combinando estas dos suposiciones acerca del régimen del modelo y
la naturaleza del flujo de acreción, se vuelve claro que necesitamos una Teoría Cinética
compatible con la Relatividad General para describir completamente la acreción de gases
cinéticos cerca de ANs.

En este sentido, estudios previos han tratado el problema de la acreción relativista de
un gas cinético sin colisiones hacia un AN especificando las condiciones de frontera en el
infinito, es decir, una nube de gas infinita que acreta hacia un AN. A primera vista, esta es una
suposición incorrecta ya que esperamos que todos los sistemas astrofísicos tengan un tamaño
finito. Sin embargo, es necesario un análisis cuidadoso para validar o refutar esta suposición.

Motivados por este problema, en este trabajo utilizaremos la Teoría Cinética compatible
con la Relatividad General para modelar, por primera vez, la acreción de un gas de partículas
sin colisiones hacia un AN desde un radio finito (los resultados presentados en este trabajo
fueron publicados en Gamboa et al. 2021). Como primera aproximación, supondremos



una acreción esférica y estática hacia un AN de Schwarzschild. Modelaremos la acreción
puramente radial en la que todas las partículas tienen momento angular nulo, y luego pasaremos
a un modelo más realista en el que las partículas tienen momento angular. Las tasas de acreción
resultantes se analizarán y compararán con modelos anteriores, incluido el modelo de Bondi
estándar para un flujo hidrodinámico. Al final, aplicaremos nuestros modelos a los flujos de
Sgr A* y M87*, y discutiremos cómo su baja luminosidad podría explicarse parcialmente
por una descripción cinética que involucre al momento angular. Nuestros resultados son
consistentes con cotas anteriores (dependientes del modelo) para la tasa de acreción impuestas
por las mediciones de la rotación de luz polarizada procedente de Sgr A* y con estimaciones
de la tasa de acreción de M87* por parte de la colaboración Event Horizon Telescope.

La estructura de esta tesis es la siguiente: En el Capítulo 1 introduciremos conceptos
básicos de Relatividad General necesarios para estudiar algunas de las propiedades de los ANs
relevantes para el problema de acreción, como la dinámica de partículas de prueba masivas
que se mueven alrededor de un AN de Schwarzschild. En el Capítulo 2 vamos a presentar los
aspectos fundamentales de la acreción astrofísica; además, nos centraremos en la comprensión
actual de los flujos de acreción de ANs, y revisaremos los modelos y métodos actuales que se
utilizan para estimar las tasas de acreción de Sgr A* y M87*. En el Capítulo 3 presentaremos
las ideas básicas de la Teoría Cinética y sus generalizaciones relativistas; nos centraremos
en la Teoría Cinética compatible con la Relatividad General y su relación con el proceso de
acreción. Al final, en el Capítulo 4 vamos a utilizar los conceptos y el formalismo desarrollado
en capítulos anteriores, para estudiar el problema de la acreción relativista desde radio finito y
su aplicación a los flujos de acreción de Sgr A* y M87*.



Abstract

Accretion is a very important mechanism for astrophysics and observational cosmology since
it has a fundamental role in the formation and evolution of planets, stars, neutron stars, black
holes (BHs) and galaxies due to the attractive nature of gravity. However, understanding the
accretion process is a difficult task because we require several branches of physics to model
the accretion flow and all the interactions involved. Depending on the astrophysical scenario,
we may use different approximations to make the problem more tractable.

One of the first assumptions that must be done is related to the regime (Newtonian or
relativistic) in which we will model the accretion problem. For gases moving at very high
velocities and/or in strong gravitational fields, we naturally expect a special or general rela-
tivistic description to be significantly better. Another assumption is related to the nature of the
accreting flow (hydrodynamic or kinetic). In many astrophysical scenarios the hydrodynamic
approximation is the most appropriate. However, there are certain cases in which we expect
that a kinetic treatment would give better results, for example, in the accretion of nearly
collisionless radiatively inefficient flows that are near supermassive BHs (such as Sgr A* and
M87*), and in the dark matter accretion onto BHs. Combining these two assumptions about
the regime of the model and the nature of the accreting flow, it becomes clear that we need
a general relativistic Kinetic Theory in order to completely describe the accretion of kinetic
gases near BHs.

In this regard, previous studies have treated the problem of relativistic accretion of a
collisionless kinetic gas onto a BH by specifying boundary conditions at infinity, that is, an
infinite gas cloud accreting onto a BH. At first glance, this is an incorrect supposition since we
expect that all astrophysical systems have a finite size. However, a careful analysis is needed
in order to validate or disprove this assumption.

Motivated by this problem, in this work we will use general relativistic kinetic the-
ory to model, for the first time, the accretion of a collisionless gas of particles onto a
BH from finite radius (the results presented in this work were published in Gamboa et al.
2021). As a first approximation, we will assume a steady, spherical accretion onto a



Schwarzschild BH. We will model the purely radial accretion in which all the particles have
zero angular momentum, and then we will move on to a more realistic model in which the
particles do have angular momentum. The resulting mass accretion rates will be analyzed
and compared with previous models, including the standard Bondi model for a hydrodynamic
flow. At the end, we will apply our models to the flows of Sgr A* and M87*, and we will
discuss how their low luminosity could be partially explained by a kinetic description involving
angular momentum. Our results are consistent with previous model-dependent bounds for the
accretion rate imposed by rotation measures of the polarized light coming from Sgr A* and
with estimations of the accretion rate of M87* from the Event Horizon Telescope collaboration.

The structure of this thesis is as follows: In Chapter 1 we will introduce basic concepts of
General Relativity needed to study some of the properties of BHs relevant to the accretion
problem, such as the dynamics of massive test particles moving around a Schwarzschild BH.
In Chapter 2 we are going to present the fundamental aspects of astrophysical accretion;
additionally, we will focus on the present understanding of BH accretion flows, and we are
going to review the current models and methods that are used to estimate the accretion rates
of Sgr A* and M87*. In Chapter 3 we will present the basic ideas of Kinetic Theory and its
relativistic generalizations; we will focus in general relativistic Kinetic Theory and its relation
to the accretion process. At the end, in Chapter 4 we are going to use the concepts and the
formalism developed in previous chapters, to study the problem of relativistic accretion from
finite radius and its application to the accretion flows of Sgr A* and M87*.
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Chapter 1

Black Holes

One of the most astonishing predictions of General Relativity (GR) is the existence of black
holes (BHs). These entities are full of exciting properties, unexpected from our daily Newto-
nian life. Time delay, gravitational redshift, a zone of no-return, spaghettification (or extreme
tidal forces) and singularities, are all phenomena associated to the presence of a BH. Usually,
these objects are not alone: they could be accreting matter from a nearby star or completely
disrupting a neutron star, or they could be in a beautiful dance with another BH emitting
gravitational waves until their coalescence. BHs and their astrophysical consequences have
been thoroughly studied over the years and several observations have been confirming our
knowledge about their properties.

In this chapter we are going to introduce basic concepts of GR needed to study some of the
properties of BHs (Sec. 1.1). Then, after reviewing a historical account of BHs (Sec. 1.2), we
are going to focus in the dynamics of massive test particles moving around a Schwarzschild
BH (Sec. 1.3). Our purpose will be to establish a connection with the phenomenon of general
relativistic astrophysical accretion.

1.1 Fundamentals of General Relativity

Einstein’s theory of GR describes gravitational phenomena from an elegant geometrical point
of view, in which the effects of gravity are explained in terms of space-time curvature induced
by the presence of energy. It is the generalization of the theory of Special Relativity (SR)
which focuses on the properties of a flat (Minkowski) space-time. GR is considered one of
the pillars of modern physics due to its completeness as a physical theory and its success
describing several observations ranging from Earth-size experiments, to Solar system tests,
and even going beyond describing the Universe as a whole (see e.g. Berti et al. 2015; Turyshev
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2008; Will 2014). In this section we will give a very brief reminder of basic GR concepts
needed in this work (we are going to assume prior basic knowledge of GR). We refer the reader
to the book of D’Inverno (1992) for concepts of SR, to the books of Nakahara (2003); Renteln
(2014) for the mathematical aspects of GR, and to the books of Carroll (2004); Straumann
(2013); Wald (1984) for a detailed presentation of GR.

In GR a space-time is characterized by a differentiable manifold M of dimension 4 (whose
elements or points are known as events) and a pseudo-Riemannian metric g which allows
us to calculate important physical quantities, such as proper distances, time lapses and the
trajectories of test particles (the geodesics of the space-time). The manifold M can be covered
with coordinate charts {xµ}, so that a point x ∈M has local coordinates (x0,xi) = (ct,xi),
where c is the speed of light in vacuum, t is the time coordinate and xi (i = 1,2,3) are the
spatial coordinates for a certain system of reference.

We can also define additional structures related to the space-time manifold (they will be
needed to formulate a General Relativistic Kinetic Theory in Chapter 3). At each x ∈M we
can define the tangent space TxM (also with dimension 4) as the set of vectors which act on
scalar functions defined over M. Since TxM is a linear vector space, we can construct its dual
space called the cotangent space T ∗x M whose elements are dual vectors. By considering tensor
products between TxM and T ∗x M we can construct the main mathematical objects in differential
geometry known as tensors. Moreover, we can associate all the points in M together with
their tangent spaces (cotangent spaces) in another manifold called the tangent bundle T M
(cotangent bundle T ∗M) of dimension 8. A more complete discussion of these geometrical
definitions can be found in Nakahara (2003); Renteln (2014).

Tensors are used to write equations in a covariant way. The covariant formulation estab-
lishes the equivalence between arbitrary systems of coordinates, which was precisely one of
Einstein’s main motivations to follow a geometrical point of view. For example, Einstein’s
field equations are written as the following combination of tensors:

Gµν := Rµν −
1
2

Rgµν =
8πG
c4 Tµν , (1.1)

where Gµν is the Einstein tensor, Rµν is the Ricci tensor, R is the Ricci scalar, gµν are
the components of the metric, G is Newton’s gravitational constant and Tµν is the energy-
momentum tensor. These equations describe the structure of space-time given a distribution of
energy, and they are equivalent for all observers since the equations are written in a covariant
manner. Furthermore, the Einstein and energy-momentum tensors satisfy a conservation law

∇
µGµν = 0 and ∇

µTµν = 0, (1.2)
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where ∇µ is the covariant derivative obtained from the Levi-Civita connection associated to
the differentiable manifold M and to the metric g. Our purpose is to solve Einstein’s field
equations for different physical configurations. However, this is a formidable task because
these equations form a coupled system of 10 non-linear partial differential equations for the
components of the metric, subject to the four constrictions ∇µGµν = 0.

There are several analytical and approximate methods to solve Einstein’s equations for
different physical scenarios. One of the main strategies to obtain simple solutions has been to
assume certain symmetries of the space-time. With this methodology, people have obtained
very interesting solutions known as black holes, which is the topic of the following section. A
particularly important solution representing a stationary, spherically symmetric space-time is
described by the following line element1 (see e.g. Wald 1984)

ds2 = gmn(r)dxmdxn + r2 (dθ
2 + sin2

θdφ
2) , (1.3)

where r is the radial coordinate,2 θ and φ are the standard angular coordinates on a 2-sphere,
and m,n ∈ {t,r}. Using Eq. (1.3) as an ansatz in the Einstein’s field equations (1.1), we can
obtain differential equations for the metric coefficients gmn.

As we mentioned earlier, with the metric we can compute several important physical
aspects of the space-time. Particularly, we can calculate the trajectories of test particles, which
are known as the geodesics of the space-time. To understand the definition of a geodesic, we
first introduce very basic notions of the movement of a particle in a given space-time. Suppose
that a particle follows a curve which is parametrized by a certain variable λ . In this way,
the local coordinates of the curve will be given by the four functions xµ = xµ(λ ), such that
x0 = ct(λ ) and xi = xi(λ ), and the tangent vector to this curve will be uµ := dxµ/dλ .

A very important property of GR is that, locally, the dynamics of particles is determined
by the principles of SR (see e.g. D’Inverno 1992). In this framework, particles with rest mass
m follow time-like curves3 to ensure that the speed of massive particles is less than the speed
of light. The proper time4 τ is a particularly important choice of the parameter λ for massive
particles; the corresponding tangent vector is known as the four-velocity and it has a constant

1Throughout this work we are going to use the signature (−,+,+,+) for the space-time metric, and we will
follow Einstein’s summation convention.

2The coordinate r is known as the areal radius because it is defined in terms of the total area A of a 2-sphere,
as r =

√
A/4π .

3A time-like curve is such that its tangent vector uµ satisfies gµν uµ uν < 0 along the curve.
4The proper time along a time-like curve represents the time as measured by a clock following that curve, and

it is independent of the choice of a coordinate system.
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length. In the formalism of GR, the constant length condition is expressed as

gµνuµuν = gµν

dxµ

dτ

dxν

dτ
=−c2, (1.4)

which is a representation of the constancy of the speed of light. Additionally, we can define
the four-momentum as

pµ := muµ , (1.5)

such that it satisfies the so-called on-shell restriction

gµν pµ pν =−m2c2. (1.6)

With these definitions that come from SR, we can proceed to explain the concept of a
geodesic. A geodesic is defined to be a curve whose tangent vectors remain parallel if they are
transported along it (the so-called parallel transport); in this way, geodesics are the straightest
trajectories that a particle can follow in a certain space-time. Naturally, in flat space-time
geodesics are straight lines, however, this is not the case when curvature is present. In the
formalism of differential geometry, the geodesic equation can be obtained by demanding that
the tangent vector uµ of an affinely parametrized curve xµ = xµ(λ ) obeys the condition5

uν
∇νuµ = 0, (1.7)

written in local coordinates. Using the coordinate expression of the covariant derivative,6 the
geodesic equation (1.7) transforms to

d2xµ

dλ 2 +Γ
µ

νρ

dxν

dλ

dxρ

dλ
= 0, (1.8)

where Γ
µ

νρ are the Christoffel symbols of the Levi-Civita connection. In practice, one solves
the four equations present in (1.8)7 for the functions xµ to obtain the parametrized trajectory.
However, we can also use Eq. (1.4) to obtain information about the dynamics of the particles

5The weaker condition uν ∇ν uµ = σuµ , where σ is an arbitrary function of the curve, is enough to ensure the
parallel transport of the vector u. However, by demanding that the vector u also maintains the same length along
the curve, one obtains Eq. (1.7). We can always re-parametrize the curve so that the geodesic equation is given
by (1.7); the corresponding parameter is known as an affine parameter and the geodesic is known as an affinely
parametrized geodesic.

6The components of the covariant derivative of a vector a are: ∇µ aν = ∂µ aν +Γν
µρ aρ .

7Eq. (1.8) represents a system of four coupled ordinary differential equations, which can be solved analytically
for simple cases.
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moving along geodesics; we will follow this procedure in Section 1.3.1 to determine the orbits
of massive test particles moving around a Schwarzschild BH.

A particularly important procedure to simplify the problem of calculating geodesics is
to find conserved quantities. In GR we can find these quantities by identifying symmetry
transformations of the metric g, also known as isometries. The basic idea is to find a vector
field ξ such that the metric does not change when it “moves” along this vector field. In
mathematical terms, the vector field ξ induces a diffeomorphism of the manifold into itself,
Φξ : M→M, such that

£ξ g = 0, (1.9)

where £ξ is the Lie derivative with respect to ξ (see e.g. Appendix C of Wald (1984) for
a discussion of the Lie derivative). The diffeomorphism Φξ carries the metric g along the
vector field ξ , and Eq. (1.9) means that Φξ is an isometry. A vector field satisfying Eq. (1.9)
is known as a Killing vector field. In local coordinates, we can rewrite this equation as

∇µξν +∇νξµ = 0, (1.10)

which is known as the Killing equation. The importance of Killing vector fields is that they
induce a conserved quantity, given by ξµuµ , along a geodesic, where uµ are the components
of the tangent vector. To prove that ξµuµ is conserved along the geodesic, we consider

uµ
∇µ(ξνuν) = uµuν

∇µξν +ξνuµ
∇µuν . (1.11)

The first term vanishes because it is a contraction of a symmetric tensor (uµuν ) with an anti-
symmetric tensor [∇µξν ; see Eq. (1.10)], and the second term vanishes due to the geodesic
equation (1.7). Therefore uµ∇µ(ξνuν) = 0 and ξµuµ is conserved along the geodesic.

There is an easy way to identify Killing vector fields given the components of the metric.
This method uses the fact that in a local coordinate system adapted to a Killing vector field
(“adapted” means that the parameter along the integral curves of ξ is chosen as one of the
coordinates, say x1, so that ξ µ = (∂/∂x1)µ ), we have

£ξ gµν =
∂gµν

∂x1 . (1.12)

Therefore, if the components gµν do not depend on a certain coordinate, then we can associate
a Killing vector field to that coordinate. This will be useful in the subsequent sections.
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1.2 Historical account of Black Holes

BHs are regions of space-time where the effects of gravity are so strong that the region itself
is causally disconnected from the rest of the Universe: events occurring inside the BH are
invisible to the outside Universe, and the frontier is commonly known as the event horizon
(see e.g. Wald 1984 for a formal mathematical definition of the concept of BH). Not even
light can escape the tremendous gravitational field of the BH, which explains its name. The
concept of BH was envisaged by Laplace as early as 1795, who noted that light (composed by
corpuscles, as Newton suggested) could not escape from a sufficiently massive and compact
object, according to Newton’s gravitational theory. However, this early idea of BHs was
forgotten due to the success of the wave theory of light. The journey of the BH concept
continued with the discovery of the first exact solution to Einstein’s field equations, found
by Schwarzschild (1916), which described the gravitational field surrounding a spherical
mass. Nevertheless, nobody knew at that time that Schwarzschild’s solution was a unique
and complete description of the external gravitational field of a spherical, electrically neutral,
stationary and non-rotating BH, as proved by Birkhoff’s theorem (Birkhoff 1923). Following
Schwarzschild’s work, people started searching for more solutions to Einstein’s field equations.
In particular, Reissner (1916) and Nordström (1918) (also Weyl 1917 and Jeffery and Filon
1921) discovered independently the electrically charged generalization of Schwarzschild’s
solution (the Reissner-Nordström metric) by solving the coupled system of Einstein’s field
equations and Maxwell’s equations in vacuum (an electrovacuum solution).

The studies on the ultimate fate of stars were crucial in the development of the BH concept.
Relativistic modeling of stars in their last stages of life shown the existence of upper mass limits
(Chandrasekhar 1931). Dying stars with greater masses than the allowed by the upper limits,
do not have enough internal pressure to counteract its own gravitational attraction. Hence,
these stars become unstable and undergo complete gravitational collapse (Chandrasekhar
1957). The endpoint of this collapse will be a BH space-time, as first shown by Oppenheimer
and Snyder (1939) with a numerical modeling. Further studies on the physical plausibility of
gravitational collapse were done by John Wheeler and his collaborators (Harrison et al. 1965);
in fact, it was Wheeler who coined the term “black hole” (Wheeler 1968). These investigations
added more and more credibility to the concept of BH as a physical entity.

More rigorous studies of the concept of BH started in the 1960s. On the mathematical
side, Kruskal (1960) and Szekeres (1960) gave an extension of the Schwarzschild solution
which allowed us to better understand the interior of a BH, and allowed us to suspect that
the complete gravitational collapse of a spherical body always produces a Schwarzschild BH.
In fact, Penrose (1969) showed that there are mathematical reasons to believe that complete
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gravitational collapse of non-spherical configurations will also lead to the formation of a BH
space-time. At the same decade, Kerr (1963) found another vacuum solution to Einstein’s field
equations representing a rotating, stationary BH (the Kerr metric) and Newman et al. (1965)
calculated the charged generalization of the Kerr metric by solving the Einstein-Maxwell field
equations. This Kerr-Newman geometry is known to be a unique and complete description of
the external gravitational and electromagnetic fields of a stationary BH (see e.g. the review
by Adamo and Newman 2014). At sufficiently large times, one could expect that the space-
time geometry surrounding a BH should settle down into a stationary state. Therefore, the
assumption of stationarity in the aforementioned BH solutions is well supported on physical
grounds. In contrast, a charged BH in an astrophysical environment would neutralize rapidly
due to the presence of electrical charges in interstellar media. Consequently, the Kerr BH is
the most astrophysically relevant solution. However, due to its simplicity, the Schwarzschild
solution has been the preferred option for starting works and/or new ideas.

Besides the mathematical and physical motivation of the existence of BHs, people started
to collect observational evidence of BHs (see e.g. Ashtekar et al. 2015). The discovery of
compact X-ray sources (Giacconi et al. 1962; see also Chapter 13 of Shapiro and Teukolsky
1983 for an historical account of observations of compact X-ray sources), quasars (Schmidt
1963), and pulsars (Hewish et al. 1968) also motivated the thorough study of BHs. Particularly,
the binary X-ray source Cygnus X-1 discovered in 1964 was the first astronomical object widely
accepted to be a BH (see e.g. Oda 1977). Apart from these electromagnetic observations, the
recent detections of gravitational waves (ripples of space-time predicted by GR) have also
greatly contributed to our confidence of the existence of BHs.8

After all the mathematical and observational studies of the past years, today BHs are
universally recognized as real entities in our Universe. With this motivation, in the following
sections we are going to study the simplest BH: the Schwarzschild solution.

1.3 Schwarzschild space-time

As we mentioned in the previous section, the static gravitational field outside a spherical object
is uniquely described by the Schwarzschild metric. To obtain this solution, one can substitute
the ansatz (1.3) (with gtr = grt = 0 for a static solution) into the Einstein’s field equations,
and solve the resulting differential equations.9 This standard procedure can be consulted for

8See The LIGO Scientific Collaboration et al. (2021) for a catalog of the latest detections of compact binary
coalescences by LIGO, Virgo and KAGRA collaborations. Also, see https://www.ligo.org/detections.php for the
full list of GW detections.

9In fact, solving Eintein’s field equations in vacuum is easier. Contracting Eq. (1.1) in vacuum with gµν , we
obtain R = 0. Thus, the field equations simplify to Rµν = 0.

https://www.ligo.org/detections.php


1.3 Schwarzschild space-time 8

example in Wald (1984). The resulting line element is

ds2 =−α(r)2 dt2 +α(r)−2 dr2 + r2 (dθ
2 + sin2

θdφ
2) , (1.13)

with

α(r) :=
√

1− rS

r
and rS :=

2GM
c2 , (1.14)

where rS is called the Schwarzschild radius and M is an integration constant which can be
identified as the mass of the object. This metric has a coordinate singularity at r = rS (the
event horizon), which can be removed by writing the metric in other coordinates, for example,
in Eddington–Finkelstein coordinates (Wald 1984). However, we will stick to the standard
Schwarzschild coordinates because we are interested in the dynamics of particles moving
outside the event horizon.

With the Schwarzschild metric we can calculate important physical aspects, such as
conserved quantities and the geodesics of the space-time. This is a very important subject
because it allows us to study the behavior of particles surrounding the BH, and in this way
we can test the predictions of GR. For example, we can analyze the deflection of light rays
(particles with no mass) or the orbits of massive test particles (particles with sufficiently small
mass such that it does not alter significantly the space-time). The latter option will be the
topic of the next section and it will be fundamental for understanding the process of general
relativistic astrophysical accretion.

From the line element (1.13) we can immediately see that there are at least10 two Killing
vector fields in the Schwarzschild space-time, given by

(ξ
µ

(t)) = (1,0,0,0) and (ξ
µ

(φ)
) = (0,0,0,1), (1.15)

which are associated to time and azimuthal symmetry, respectively. As we saw in Section 1.1,
we can construct conserved quantities along a geodesic with the Killing vector fields. To
this end, we consider an affinely parametrized geodesic xµ = xµ(λ ) with tangent vector
uµ = dxµ/dλ . The associated conserved quantities along the geodesics are related to the
energy per unit mass11

− E
mc

:= ξ(t)µuµ = gµνξ
ν

(t)u
µ = gµtuµ =−α(r)2ut =−

(
1− rS

r

)
ut , (1.16)

10There are another two Killing fields associated to spherically symmetric space-times, see e.g. Carroll (2004).
11To identify the quantity ξ(t)µ uµ in terms of the energy E, one can analyze the flat-space limit in which

α(r)→ 1. Since ut = cdt/dτ for massive particles, then ξ(t)µ uµ must be equal to −E/mc to recover the famous
formula E = mc2 dt/dτ , where dt/dτ is identified with the Lorentz factor in flat space-time.
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and the magnitude of the angular momentum12

L
m

:= ξ(φ)µuµ = gµνξ
ν

(φ)u
µ = gµφ uµ = r2uφ , (1.17)

where in the last step we have used the conservation of angular momentum (due to the spherical
symmetry) to restrict the motion to the θ = π/2 plane, so that Lz = L, where Lz is the angular
momentum in the z-direction and L is the total angular momentum.

We can write the conserved quantities E and L in terms of the four-momentum pµ = muµ

to get rid of the mass dependence. The corresponding expressions are

E = α(r)2 c pt , (1.18)

L = r2 pφ , (1.19)

and they can be applied to particles with no mass, such as photons.
With Eq. (1.18) we can obtain the minimum possible energy that a particle can have at

radius r = R. Using the on-shell restriction (1.6) with zero spatial momenta (the minimum
possible energy will be achieved when the particle is instantaneously at rest), we get

−m2c2 = gtt(pt)2 → pt =
mc

α(R)
. (1.20)

Therefore, substituting Eq. (1.20) in (1.18) we obtain

Emin(R) = α(R)mc2. (1.21)

Note that in the limit R→∞ we recover the energy for non-relativistic particles (particles with
speed much less than the speed of light) given by E = mc2.

1.3.1 Test particle motion

Massive particles moving in geodesics parametrized by proper time obey the condition (1.4),
which can be expanded as

− c2 =−α(r)2 c2 ṫ2 +α(r)−2 ṙ2 + r2
φ̇

2, (1.22)

12By dimensional analysis, the conserved quantity ξ(φ)µ uµ will be equal to L/m.
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where we have used that the particle is moving in the θ = π/2 plane, and we have defined
ṫ := dt/dτ and φ̇ := dφ/dτ . Using Eqs. (1.18) and (1.19) in (1.22), we obtain

1
2

ṙ2 +Vclas(r) = E , (1.23)

with

Vclas(r) :=
1
2

α(r)2
(

c2 +
L2

m2r2

)
and E :=

E2

2m2c2 . (1.24)

Eq. (1.23) is precisely the equation for a classical particle of unit mass and energy E moving
under the effective potential Vclas. Note that

Vclas(r) =
c2

2
− GM

r
+

L2

2m2r2 −
GML2

m2r3 . (1.25)

In this expression the first term is a constant, the second term is the Newtonian gravitational
potential, the third term is a contribution from angular momentum which also appears in New-
tonian gravity (it is known as the centrifugal potential), and the fourth term is a contribution
solely from GR which makes a great difference with respect to the Newtonian case for small r.

We can rewrite Eq. (1.23) to obtain an effective potential with the same units as E2. The
corresponding expression is

m2c2ṙ2 +VL(r) = E2, (1.26)

where

VL(r) := c2
α(r)2

(
m2c2 +

L2

r2

)
. (1.27)

In terms of the radial momentum pr, we get

(pr)2 =
E2−VL(r)

c2 . (1.28)

As in Classical Mechanics, we can get a qualitative description of the particle dynamics by
analyzing the behavior of the potential VL(r). First, we rewrite Eq. (1.27) as

VL(r)
m2c4 =

(
1− 1

r

)(
1+

ℓ2

r2

)
, (1.29)

where
r :=

r
rS

and ℓ :=
Lc

2GM m
. (1.30)

A standard procedure to calculate the requirements for having circular orbits is to find the
maxima of the effective potential. Therefore, differentiating Eq. (1.29) with respect to r we
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find the quadratic equation for the maxima

r2−2ℓ2 r+3ℓ2 = 0, (1.31)

whose solutions are
r± = ℓ2± ℓ

√
ℓ2−3. (1.32)

We observe that for ℓ2 < 3 there are no critical points, for ℓ2 = 3 there is just one critical point,
and for ℓ2 > 3 there are two critical points. In Fig. 1.1 we show a plot of the effective potential
for different values of ℓ.

Fig. 1.1 Effective potential (1.29) for massive test particles moving in a Schwarzschild space-time as a function
of r= r/rS for different values of ℓ= Lc/2GM m [see Eq. (1.30)].

In the case ℓ2 < 3 there are no critical points and particles inevitably fall to the BH (see
Fig. 1.1) since they do not have enough angular momentum to counteract the attraction of
the BH. In the case ℓ2 ≥ 3, we can differentiate Eq. (1.29) twice and evaluate the solutions
(1.32) to find that r− is a maximum and r+ is a minimum of the effective potential (see
Fig. 1.2). Hence, we can associate stable circular orbits to r+, and unstable circular orbits
to r−. However, note that the minimum possible value of r+ is achieved when ℓ2 = 3. The
corresponding value is known as the radius of the innermost stable circular orbit (ISCO), and
its explicit expression is given by

r+,ISCO = 3 ←→ rISCO = 3rS =
6GM

c2 . (1.33)
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Fig. 1.2 Effective potential (1.29) for massive test particles moving in a Schwarzschild space-time as a function
of r= r/rS for ℓ= 2 >

√
3. In this case, we can observe with great detail the maximum and minimum of the

effective potential which are given by Eq. (1.32).

The associated angular momentum of a particle on the ISCO is

ℓISCO =
√

3 ←→ LISCO =

√
12GMm

c
, (1.34)

and the energy of a particle moving on the ISCO is

EISCO =
2
√

2mc2

3
, (1.35)

which can be obtained by substituting Eqs. (1.33) and (1.34) in (1.26) with ṙ = 0.
Observe in Eq. (1.32) that there is no upper bound to the possible values of r+. Hence, the

stable circular orbits are restricted to the interval

r+ ∈ (3,∞) ←→ r+ ∈
(

6GM
c2 ,∞

)
. (1.36)

Additionally, note that the minimum possible value of r− is achieved when ℓ→ ∞, in which
case r−→ 3/2. Therefore, the unstable circular orbits (or the radius of the maximum of the
effective potential) are restricted to the interval

r− ∈
(

3
2
,3
)

←→ r− ∈
(

3GM
c2 ,

6GM
c2

)
. (1.37)



1.3 Schwarzschild space-time 13

1.3.2 Absorbed and scattered particles

In this work we are interested in the accretion from finite radius of massive test particles onto a
Schwarzschild BH. In other words, we want to know the behavior of particles that are injected
from a sphere of radius R. To explain the dynamics of such scenario, we will apply some of
the results of the previous section. Our objective will be to characterize the possible energies
and angular momenta that are relevant to the accretion problem.

First, for L ≤ LISCO, there are no critical points of VL(r). In fact, we can see from Fig.
1.1 that, in this case, VL(r) is a monotonously increasing function of r, which means that any
infalling particle whose total angular momentum lies in this range inevitably falls into the BH
within a finite amount of its proper time.

For L > LISCO, the function VL(r) has a local maximum which is inside the interval
(3GM/c2,6GM/c2), and a local minimum lying in the interval (6GM/c2,∞). Whether or
not an infalling particle released from r = R with L > LISCO falls into the BH depends on
its energy (see Eq. (1.26) and Fig. 1.3). If E2 is larger than the maximum of the potential,
then the particle is absorbed by the BH; otherwise it bounces off the centrifugal barrier and is
reflected towards r = R.

Fig. 1.3 Effective potential (1.29) for massive test particles moving in Schwarzschild space-time as a function of
r= r/rS for ℓ= 2 > ℓISCO. An infalling particle is released from r = R. We consider three particle energies of
the infalling particle. When E = E1 the particle bounces off the centrifugal barrier, however, when E = E3 the
particle falls into the BH. The limiting case is represented by a particle with energy E = E2, whose squared value
coincides with the maximum of the effective potential.

In fact, if the particle has a fixed energy E2, we can calculate the angular momentum such
that the maximum of its effective potential coincides with E2 (see the pink horizontal dashed
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line in Fig. 1.3). We know from Eq. (1.32) that the maximum of the effective potential is at
r= r−. Therefore, the condition

VLc(r−) = E2, (1.38)

determines the critical angular momentum Lc such that the maximum of its potential is equal
to E2. In this way, substituting Eqs. (1.29) and (1.32) into Eq. (1.38), and solving for Lc with
the software Mathematica13 we find

Lc(E) =
4
√

2GMm3c3√
36m2c4E2−8m4c8−27E4 +E(9E2−8m2c4)3/2

, (1.39)

valid for E ≥ EISCO (otherwise there would be no critical points of the effective potential), with
Lc(EISCO) = LISCO. Note that as E increases from EISCO to ∞, Lc(E) increases from LISCO

to ∞, because the maximum of the potential grows with the value of the angular momentum.
Additionally, for non-relativistic particles (E = mc2) we have Lc(mc2) = 4GMm/c.

There is another particular value of the angular momentum relevant to the problem of
accretion from finite radius. From Fig. 1.1 we can see that if the angular momentum increases,
then the effective potential also increases for all the values of r. Therefore, if a particle is
injected at radius R with a fixed energy E2 (see e.g. the vertical red and the horizontal orange
dashed lines in Fig. 1.3), then there will be a maximum angular momentum such that greater
values of the angular momentum will produce an effective potential greater than E2 at R,
leading to imaginary velocities [see Eq. (1.26)]. The condition that determines this maximum
value Lmax is

VLmax(R) = E2. (1.40)

Thus, using Eq. (1.29) and solving for Lmax we find

Lmax(E,R) = mcR

√
E2

m2c4α(R)2 −1. (1.41)

In Chapter 4 we will be interested in the possible values of the angular momentum as
a function of the energy and the injection radius to calculate the accretion rate of particles
accreting onto a Schwarzschild BH. From Eq. (1.26) we can see that the possible energies for
particles released from r = R with angular momentum L satisfy

√
VL(R)≤ E < ∞. However,

since VL(R) increases as a function of L, then the minimum possible energy [cf. Eq. (1.21)] is

13The computations in this work were done with Wolfram Mathematica, version 13.0.0 (https://www.wolfram.
com/mathematica).

https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica
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obtained when there is no angular momentum. Therefore, the interval√
VL=0(R) = α(R)mc2 = Emin ≤ E < ∞, (1.42)

will be the relevant energy range for describing an accretion scenario from finite radius as we
will see in Section 4.2. Furthermore, by analyzing the behavior of Lc(E) and Lmax(E,R) as
functions of E we find

Lmax(E,R)< Lc(E) for α(R)mc2 ≤ E < Ec(R), (1.43)

Lc(E)< Lmax(E,R) for Ec(R)< E, (1.44)

where Ec(R) is a critical energy such that Lmax(Ec,R) = Lc(Ec); equating the expressions
(1.39) and (1.41), and solving for Ec, we obtain (see also Gabarrete and Sarbach, paper in
preparation)

Ec(R) = mc2 R+ rS√
R(R+3rS)

. (1.45)

With the formulae that we have developed, we can characterize the conditions under
which particles are absorbed or scattered by the BH. Basically, particles are absorbed when
the square of the particle’s energy is larger than the maximum of the effective potential. If
E = Emin = α(R)mc2, then the only possible value for the angular momentum is L = 0 (see
blue curves in Fig. 1.4). Next, if Emin < E < Ec(R), then the possible values of the angular
momentum of absorbed particles are 0≤ L≤ Lmax(E,R) (see red curves in Fig. 1.4). Finally,
if E = Ec(R), then absorbed particles satisfy 0≤ L≤ Lmax(E,R) = Lc(E) (see pink curves in
Fig. 1.4). On the other hand, particles are scattered when the square of the particle’s energy is
smaller than the maximum of the effective potential. If E = Ec(R), then scattered particles have
L = Lmax(E,R) = Lc(E) (see pink curves in Fig. 1.5), and if E > Ec(R), then the scattered
particles should have Lc(E)< L < Lmax(E,R) (see orange curves in Fig. 1.5).

Summarizing, we have the following characterization which we will use in Chapter 4:

1. Absorbed particles α(R)mc2 ≤ E < Ec(R) and 0≤ L≤ Lmax(E,R),

Ec(R)< E < ∞ and 0≤ L < Lc(E).

2. Scattered particles

Ec(R)≤ E < ∞ and Lc(E)< L < Lmax(E,R).
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Fig. 1.4 Characterization of absorbed particles. We choose three particle energies: the minimum possible energy
E2 = E2

min (dashed blue), an energy E2 = E2
1 < E2

c (dashed red), and an energy E2 = E2
c (dashed pink). We

plot the effective potentials (1.29) for a massive test particle released from r = R = 6rS with L = 0 (solid blue),
L = Lmax(E1,R)< Lc(E1) (solid red), and L = Lmax(Ec,R) = Lc(Ec) (solid pink).

Finally, for the problem of accretion we will not consider particles with energies lower
than

√
VL(R) since they correspond to bound trajectories whose turning points ri satisfy

rS < r1 < r2 < R (see Fig. 1.6), and hence they do not affect the value of the accretion rate
(because they are not absorbed by the BH), nor they contribute to the particle number density
at r = R, which will be a quantity relevant to our computations of Chapter 4.
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Fig. 1.5 Characterization of scattered particles. We choose two particle energies: an energy E2 = E2
c (dashed

pink), and an energy E2 = E2
2 > E2

c (dashed orange). We plot the effective potentials (1.29) for a massive test
particle released from r = R = 6rS with L = Lmax(Ec,R) = Lc(Ec) (solid pink) and L = Lmax(E2,R)> Lc(E2)
(solid orange).

Fig. 1.6 Particles with energy E < VL(R) (blue dashed line) give rise to bounded trajectories which do not
contribute to the accretion rate nor to the particle number density at r = R.



Chapter 2

Astrophysical accretion

Accretion is the process by which astrophysical objects gravitationally capture ambient matter
which may come from the ubiquitous interstellar gases and/or from orbital companion stars.
This mechanism has a fundamental role in the formation and development of galaxies, stars,
planets, neutron stars (NSs) and BHs due to the attractive nature of gravity.

Particularly, the accretion onto compact objects1 (COs) is an important mechanism for
astrophysics and observational cosmology, since it is a powerful and natural process for
producing detectable high-energy radiation. In fact, the accretion process has been recognized
as the principal source of power in several types of binary systems, active galactic nuclei
(AGN) and quasars (see e.g. Frank et al. 2002). Therefore, modeling the accretion mechanism
is an extremely important task needed to understand the evolution of compact objects.

In this chapter we will describe basic concepts and how can we model the accretion
process (Sec. 2.1). Then, we will briefly review the Bondi hydrodynamic spherical accretion
model which is widely used to give a crude estimation of the accretion rate (Sec. 2.2). Since
in this work we are interested in the accretion onto BHs, we will also discuss the types of
flows present in this scenario (Sec. 2.3). Furthermore, we are going to review the current
models and methods that are used to estimate the accretion rate onto the supermassive black
holes (SMBHs) Sgr A* and M87* (Sec. 2.4). Finally, we will discuss the breakdown of the
hydrodynamic approximation for certain astrophysical scenarios and motivate the need of a
kinetic approach (Sec. 2.5).

1Compact objects are bodies whose mass M is concentrated in a very small region R. The compactness can
be characterized, for example, by the parameter C = GM/Rc2. Examples of these objects are white dwarfs, NSs
and BHs (which are the most compact objects, with C = 1/2).
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2.1 Fundamentals of astrophysical accretion

The energy coming from accretion is sourced by the extraction of gravitational potential
energy of the accreting matter. Using Newtonian gravitation, we can estimate the energy that
a particle with mass m releases when it accretes onto a central object with mass M and radius
R. The change in gravitational potential energy of this particle is

∆E =
GMm

R
= Gξ m, (2.1)

where ξ := M/R is the compactness parameter of the accreting object. We thus see that the
efficiency of accretion as a source of energy is directly proportional to ξ . Hence, BHs (which
are the most compact objects) are great extractors of the energy stored in the accreting matter.

In falling through the steep gravitational potential of a CO, the gas is heated due to its
friction in a process known as viscous heating, in which the viscous forces on the gas dissipate
the kinetic energy of the particles into chaotic thermal motions. The associated densities
and temperatures of the gas surrounding the CO, transform the flow into a plasma composed
by electrons and ions. The large accelerations of the electrons cause the emission of high-
frequency electromagnetic (EM) radiation. In fact, there is a conversion of roughly 10% of
the accreted rest-mass energy into radiation and jets/outflows. Remarkably, this efficiency is
considerably larger than that obtained by other astrophysical processes (e.g. nuclear fusion)
(Frank et al. 2002; Shapiro and Teukolsky 1983).

2.1.1 Eddington and accretion luminosities

In general, the emitted radiation will transfer its momentum to the accreting material by
scattering and absorption processes. Thus, in principle, the net rate at which matter is accreted
(i.e. the mass accretion rate) will depend on the radiation field, which is naturally related to
the luminosity (the measure of the EM power radiated by a light-emitting object over time) of
the accreting object.2

Under specific circumstances, the luminosity has a maximum value for a given mass of
the accreting object. This bound is known as the Eddington limit or Eddington luminosity,
and it basically represents the balance between the radiation pressure and the gravitational
pull (exerted by the central object) affecting the ions in the accreting plasma. To obtain an
order-of-magnitude estimation of this limit, we consider the steady, spherically symmetrical
accretion of a fully ionized hydrogen gas (composed of protons and electrons with masses mp

2We are referring here to the light emitted by the accreting material (or accreting flow). In this sense, we can
talk about the luminosity of a BH (which does not emit light by itself).
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and me, respectively) onto a central object of mass M. The radiation pressure (average force
per unit area) is given by Prad = S/c, where S is the average of the Poynting vector which
represents the energy flux density (energy per unit area, per unit time) transported by the EM
fields (Griffiths 2013). If we use the non-relativistic approximation, the radiation pressure
will affect mainly the free electrons in the gas through Thomson scattering.3 Therefore, if
σT = 6.7×10−25 cm2 is the Thomson cross-section for electrons, then the radial force exerted
in these particles will be Frad = σTPrad = σTS/c. The spherical symmetry and the definitions
of L and S imply that S = L/(4πr2), where r is the radial distance from M to the electron.
Hence, the final expression for the radial force exerted by the radiation on the electrons will
be Frad = LσT/(4πr2c).4 On the other hand, the gravitational force on a electron-proton pair
is simply given by Fg = GM(mp +me)/r2 ≈ GMmp/r2. In this way, the condition Frad = Fg

allows us to calculate the Eddington luminosity for this idealized system,

LEdd =
4πGMmpc

σT
≈ 1.3×1038(M/M⊙)ergs−1. (2.2)

If there would be a greater luminosity (that is, a greater radiation pressure) then the accretion
would be halted in this system.

Despite the employed assumptions in this highly idealized case, the Eddington luminosity
is of great astrophysical importance because there are systems which behave as standard
candles, whose luminosities are close to their Eddington limits. Therefore, we can extract
information about the properties of these systems just by studying their luminosities.

Another important concept is the accretion luminosity Lacc, which is the emitted power if
all the kinetic energy of the infalling matter would be transformed to radiation at the stellar
surface R. We can calculate the accretion luminosity by analyzing the change in time of
Eq. (2.1) applied to a collection of particles. In this way, we obtain

Lacc =
GMṀ

R
, (2.3)

since the absorption of particles represents a gain of mass of the accreting object.
In the case of BH accretion, much of the accretion energy could disappear into the BH’s

event horizon, rather than be radiated. To account for this uncertainty in the amount of emitted
radiation, we introduce a dimensionless parameter η , called the efficiency, on the right hand

3The radiation scattering cross-section σ of a charged free particle of mass m satisfies σ ∼ 1/m2 (Jackson
1998). Therefore, compared with protons, the electrons have a larger probability of scattering the radiation since
mp≫ me.

4The radiation mainly pushes the electrons, nevertheless the attractive Coulomb force between the electrons
and protons makes the electrons to drag the protons with them.



2.1 Fundamentals of astrophysical accretion 21

side of Eq. (2.3)

Lacc =
2ηGMṀ

R
= ηṀc2, (2.4)

where we have introduced a factor of 2 associated with the definition of η , and we have used
the expression of the Schwarzschild radius R = rS = 2GM/c2. Eq. (2.4) measures how much
of the accreted rest-mass energy is converted into radiation, and as we mentioned earlier, for
several cases we have η ∼ 0.1 = 10% (Frank et al. 2002).

2.1.2 Modeling the accretion process

From the previous discussions we can see that the accretion mechanism can be regarded as
a highly important process in astrophysics, so how could we describe in detail the flow of
accreting matter? To model an accretion flow, we must take into account several ingredients:

1. The type of accreting object and the boundary conditions.
The accreting object could be a star, a NS or a BH, in a wide range of different masses.
Each object has a distinct inner boundary condition at or near its surface associated to
the matter and the atmosphere at those regions; in the case of BHs, there is a “vacuum
cleaner” boundary condition due to the nature of the event horizon. In contrast, the
outer boundary condition is determined by the properties of the accreting matter at large
distances. See, for example, the treatment of accretion onto BHs, NSs and white dwarfs
in Shapiro and Teukolsky (1983).

2. The nature of the flow.
If the effective mean free path λ of the particles is sufficiently short with respect to the
length ℓ over which macroscopic quantities (such as the temperature, the particle number
density or the bulk velocity) vary in a significant way, then thermal equilibrium is ob-
tained locally and we are dealing with a flow which can be treated with the hydrodynamic
or fluid approximation. The behavior of this system is studied in terms of fluid variables
(velocity, temperature, density, pressure, etc.) as functions of position and time, and
the evolution is obtained by imposing the laws of conservation of mass, momentum
and energy. In the opposite limit (λ ≫ ℓ) we need to use a kinetic approximation in
which the macroscopic properties of the flow are calculated directly from the statistical
behavior of many particles. This framework is known as Kinetic Theory and its core
concept is the distribution function which evolves through the Boltzmann equation. An
intermediate scenario (λ ∼ ℓ) can be modeled with the fluid approximation but needs to
take into account effects from micro-physics. The choice between the hydrodynamic or
kinetic approximation is usually made with regard to the physical properties of interest
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for the system or with regard to numerical considerations. See e.g. Belmont et al. (2013)
for a discussion of the fluid and kinetic approximations.

3. The flow geometry.
The configuration that accreting matter acquires over time is highly dependent on the
specific scenario. In general, the flow geometry depends on the flow symmetries and the
angular momentum of the gas, which may produce a 2 or 3-dimensional flow. One of
the most studied cases is when the matter spirals into the accreting object, developing an
accretion disk around it (an axisymmetric flow); this flow can be geometrically thin if the
typical scale height H of the disk in the axial direction is much less than the radial scale
of the disk R (i.e. H≪ R), it can be a slim disk if H ≲ R, or it can be a geometrically
thick disk if H ≫ R (see e.g. Frank et al. 2002). Another case is the spherical flow,
which arise when there is no mean motion of the gas in a certain direction.

4. The effects of radiation.
Depending on the properties of the radiation field the flow may be optically thick
(corresponding to an optical depth τ ≫ 1, so that photons are absorbed or scattered
many times by the gas before escaping to infinity) or optically thin (with τ ≪ 1, so that
radiation is scarcely reabsorbed by the gas and escapes almost freely once produced).
Radiation processes (such as synchrotron emission, bremsstrahlung radiation and inverse
Compton scattering) cool the accretion flow because they extract energy from the
electrons and send it out from the system (see e.g. Rybicki and Lightman 1985 for a
discussion of radiative processes in astrophysics). For optically thin plasmas (such as
those present in hot flows; see Section 2.3), the impact of radiative cooling in the flow
becomes less important. Nevertheless, for other kinds of flow the accretion modeling
needs to include radiation effects self-consistently. In fact, the radiation field affects the
transport processes, discussed next.

5. The transport processes.
The microscopic structure of a plasma affects its macroscopic properties through trans-
port processes (Zank 2014), such as thermal conductivity and viscosity. Generally,
these processes become important when there are large gradients (e.g. of temperature or
velocity) in the plasma. In particular, the dominant heating (viscous and compressional
heating) and cooling (escaping of radiation) mechanisms determine the gas dynamics.

6. The presence of magnetic fields.
Plasmas are electrically conducting gases, so they are susceptible to magnetic fields.
Depending on the intensity, these fields may affect the dynamics of the flow, the transport
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processes and the transfer of radiation (see e.g. Frank et al. 2002). The magnetic fields
may originate from the accreting object itself (in the case of stars or NSs), or may come
from external sources (such as orbital star companions).

7. The existence of outflows and jets.
Some accretion flows have strong winds (matter outflows) and/or are related to astro-
physical jets (Blandford and Begelman 1999; Narayan and Yi 1994; Yuan and Narayan
2014). The former are associated with a convective inward transport of angular momen-
tum (see Section 2.3) and the latter are associated to the extraction of rotational energy
from a central BH (Blandford and Znajek 1977) or from the accretion flow (Blandford
and Payne 1982).

It should be clear by now that modeling the accretion process is a titanic task since there is
a lot of complicated physics that needs to be included. In this work, we will treat very simple
accretion scenarios in order to focus on the novel approach of modeling a kinetic accretion
from finite radius. Particularly, in Chapter 4 we will consider the spherically symmetric
accretion of a collisionless kinetic gas onto a Schwarzschild BH, with boundary conditions
given at the Schwarzschild radius and at an external injection sphere. We are going to neglect
the radiation field, transport processes, magnetic fields, outflows and jets. Furthermore, we
will assume a gas composed only by ions since they have a much larger mass than electrons.

In the following, we will describe various models of hydrodynamical accretion and then
we will briefly present their application to the SMBHs Sgr A* and M87*.

2.2 Bondi hydrodynamic spherical accretion

In some cases, Coulomb collisions between charged particles are not enough to couple the
plasma particles effectively. Nevertheless, the presence of macroscopically weak magnetic
fields and/or plasma collective effects, ensure that local equilibrium is attained with an effective
mean free path that satisfies the hydrodynamic approximation, λ ≪ ℓ (Belmont et al. 2013). In
this way, the fluid description is well-suited for a variety of common astrophysical scenarios
(such as the accretion of interstellar gases or the matter exchange between binary stars) where
magnetic fields or plasma effects are significant.

The first treatment of the hydrodynamic accretion problem was done by Hoyle and Lyttleton
(1939) who considered the accretion by a star moving at a steady speed through an infinite
gas cloud; later on, Bondi and Hoyle (1944) extended this analysis (see e.g. Edgar 2004 for a
review of this models). However, it was Bondi (1952) who first studied the hydrodynamic,
spherical and steady flow of an infinite gas cloud accreting onto a point-like distribution
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of mass M described by a Newtonian potential. Under this assumptions, one can use the
continuity equation (∇ · (ρu) = 0, where ρ and u are the density and velocity of the gas cloud,
respectively) in spherical coordinates to obtain the accretion rate

Ṁ = 4πr2
ρu = constant. (2.5)

To identify this constant we must use the Euler equation and specify boundary conditions.
Particularly, for a polytropic gas (which satisfies P = Kρ

γ
a , where P is the gas pressure, K is a

constant and γa is the adiabatic index) at rest at infinity (where the density is ρ∞, the pressure
is P∞ and the sound speed,5 defined by a := (dP/dρ)1/2 = (γaP/ρ)1/2 , is a∞), it can be shown
that the integration of the Euler equation, together with the requirement that the flow does
not have singularities, gives the Bondi mass accretion rate (Bondi 1952; see also Korol et al.
2016),

ṀB = 4πλar2
Bρ∞a∞, (2.6)

where λa is a function of the adiabatic index (for example, a monoatomic adiabatic process
has γ = 5/3 and λa = 1/4), and rB is the Bondi radius defined by

rB =
GM
a2

∞

. (2.7)

Assuming the equation of state for an ideal gas (P = nkBT , where n is the numerical density
of the gas and kB is the Boltzmann constant), we obtain

a∞ =

√
γkBT∞

m
, (2.8)

where T∞ is the temperature of the gas at infinity. Therefore, the accretion rate in this model is
related to the mass of the accreting object, the temperature of the flow (which is measured
through EM observations) and the microscopic structure of the gas (which is contained in γ).

Strictly speaking, if the accreting object is a BH, then the accretion rate should be computed
by means of a general relativistic calculation (see Appendix G of Shapiro and Teukolsky
1983). This was first done by Michel (1972) who studied the steady, spherical, hydrodynamical
accretion of simple polytropic gases onto a Schwarzschild BH. However, if the gas is mainly
composed by ionized hydrogen atoms with mass mp (the proton mass) so that γa ≤ 5/3, and
the gas is at non-relativistic temperatures (such that kBT∞≪ mpc2), the Newtonian calculation
yields a very good approximation to the general relativistic case even if the central BH is

5The sound speed is the speed at which pressure disturbances travel through the gas. The sound speed limits
the gas response to pressure changes.
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rotating (see Aguayo-Ortiz et al. 2021 for the rotating case and other generalizations of the
hydrodynamic solutions due Bondi and Michel). Therefore, the Bondi accretion model is a
reasonable approximation to the accretion of a compact object provided that the bulk motion
of the accreting matter (with respect to the compact object), the angular momentum and the
magnetic fields can be neglected (Frank et al. 2002).

2.3 Radiatively inefficient accretion flows

Observations show that BH accretion flows can be divided into two broad classes (Yuan and
Narayan 2014):

1. Cold flows: When the sources are very bright (with luminosities ∼ 10%LEdd), the
accretion flow is an optically thick, geometrically thin accretion disk (Pringle and Rees
1972; Shakura and Sunyaev 1973), with an energy spectrum dominated by black-body
radiation that peaks at soft X-rays (for some stellar mass BHs and also for NSs) or
hard ultraviolet energies (for some SMBHs) (D’Angelo et al. 2015). Depending on
the BH mass, the gas temperature lies in the range 104−107 K, which is relatively low
compared to the virial temperature.6 Quasars observed at high redshifts are examples of
sources with a cold flow (Di Matteo et al. 2012).

2. Hot flows: For lower gas densities the accreting gas can no longer cool efficiently.
The gas temperature becomes much higher, approaching virial, and the flow becomes
optically thin (Yuan and Narayan 2014). Under these conditions, there are various mech-
anisms (described below) which retain the accretion energy causing a lower radiative
efficiency. These radiatively inefficient accretion flows (RIAFs) are conventionally used
to model the accretion onto low-luminosity sources whose bolometric luminosity7 is
many orders of magnitude below the Eddington limit. Examples of these underluminous
sources are the SMBHs Sgr A* and M87* (see Section 2.4).

We are going to focus in RIAFs since, as we will see later in this chapter, their lower
gas densities suggest that a proper modeling of these flows requires Kinetic Theory, which is
one of the main topics in this work. In the following, we are going to describe the operating
physical mechanisms in the RIAFs and two well-known examples of this kind of flow.

6The virial theorem provides us with an estimation of the temperature of an astrophysical object. For an
ionized hydrogen gas held together by its self-gravity within a length scale R, the virial temperature is given
by Tvir ≃ GMmp

6kBR ∼ 1012

r∗ K, where r∗ ≡ R/rS and rS is the Schwarzschild radius associated to a mass M (see e.g.
Maoz 2016; Yuan and Narayan 2014).

7The bolometric luminosity is the total power output emitted by an astrophysical object across the whole
electromagnetic spectrum.
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2.3.1 Physics of the RIAFs

It is widely believed that a RIAF is composed by a two-temperature plasma: one temperature
for the electrons and another for the ions. This property is not an assumption, but rather
a generic consequence of the physics of the associated flow. To see why, we consider the
following facts:

• Radiation is produced primarily by electrons. Larmor’s formula tells us that the total
power emitted by a charged particle is proportional to the square of its acceleration
(Jackson 1998). Hence, the radiation emitted by the accreting flow is mainly due to the
electrons because their masses me are much smaller (easier to accelerate) than those of
the ions, mi.

• Ions are heated more easily than electrons. Gravitational energy is converted into
thermal energy via viscous heating and compressional heating. On one hand, by numeri-
cally modeling astrophysical scenarios of hot accretion flows, researchers have found
that the fraction of the viscously dissipated energy that directly heats the electrons is
around 10−50%, thus ions receive most of the energy coming from viscous heating. On
the other hand, at regions close to the BH, the compressional heating of the electrons is
less than the compressional heating of the ions because the electrons become relativistic
(kBTe > mec2) more easily due to their smaller mass, which causes a change in their
adiabatic index. (See e.g. Yuan and Narayan (2014) for a discussion of these effects.)
Thus, ions receive more heat than electrons.

• Coulomb collisions between electrons and ions is highly inefficient. Assuming elastic
collisions and using the conservation of linear momentum, we can infer that the transfer
of kinetic energy between electrons and ions takes mi/me ∼ 1836 times longer than
the transfer of kinetic energy between electrons (Frank et al. 2002). Therefore, the
low densities present in the RIAFs and the poor coupling between these particles via
Coulomb collisions, make this process highly inefficient.

In this way, we see that: 1) electrons cool more than ions, 2) ions heat more than elec-
trons, and 3) there is no efficient coupling mechanism between these particles. Hence, the
development of a two-temperature plasma over appreciable timescales is naturally expected
(Mahadevan 1999; Mahadevan and Quataert 1997).

There is no unique dynamic model of a RIAF. The difference between distinct models is
basically in the origin of the low radiative efficiency. The most popular and studied class is the
advection-dominated accretion flow (ADAF). In this model, most of the viscously generated
energy stored in the ions is advected onto the central object (Abramowicz et al. 1988; Narayan
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and Yi 1994; Quataert and Narayan 1999). Since only a small fraction of the ions’ energy is
transferred to the electrons, the total energy radiated is much less than the generated energy,
causing a low radiative efficiency. The popularity of the ADAF models is due to their ability
to predict accurately the observed radio-to-γ-ray spectrum from a number of accreting stellar
mass and supermassive BH systems (see e.g. Narayan et al. 1998).

Other RIAF solutions propose a reduced mass accretion rate close to the accreting object.
For example, the adiabatic inflow–outflow solution (ADIOS) assumes that most of the accretion
energy is advected outwards in the form of strong matter outflows at the outer parts of the
accretion flow (Blandford and Begelman 1999). Another solution is given by the convection-
dominated accretion flow (CDAF) in which the inner particles of the flow acquire angular
momentum due to convection currents. The increase in angular momentum prevents the infall
of particles and, thus, a smaller net accretion rate is obtained (Quataert and Gruzinov 2000b).

In the past years, analytical and semi-analytical approaches of the RIAF solutions have
successfully reproduced the main features of the EM spectra of underluminous sources
(see e.g. Yuan et al. 2003). Nevertheless, the richness and complexity of the physical
mechanisms present in the accretion process (see Section 2.1.2) require the implementation
of magnetohydrodynamic (MHD) or general-relativistic magnetohydrodynamic (GRMHD)
simulations in the regime of the RIAFs to capture all the relevant physics (see e.g. Goddi et al.
2017; Porth et al. 2017 and references therein).

2.3.2 The flows of Sgr A* and M87*

Sgr A* is the nearest SMBH at only ∼ 8.35kpc from us, situated at the center of our galaxy,
with a typical observed bolometric luminosity of Lobserved ∼ 1035 erg s−1 (Falcke and Markoff
2013; Ghez et al. 2003; Gillessen et al. 2009). However, the estimated luminosity of Sgr A* is
Lestimated = %10ṀBondi c2 ∼ 1041 erg s−1 (corresponding to a process with %10 of efficiency
and an accretion rate of Ṁ = Ṁ(rB) ∼ 10−5 M⊙ yr−1 at the Bondi radius rB ∼ 0.06pc; see
more details on Section 2.4.1). Furthermore, the Eddington luminosity, Eq. (2.2), of Sgr A* is
LEdd ∼ 1044 for a mass M = 4.3×106 M⊙ (Ghez et al. 2003; Gillessen et al. 2009). The six
orders of difference between Lobserved and Lestimated, the eleven orders of difference between
Lobserved and LEdd, as well as the low densities around Sgr A* inferred from radio (Marrone et al.
2006, 2007) and X-ray (Wang et al. 2013) observations, are clear indicators that the accreting
flow of Sgr A* is radiatively inefficient (see also Event Horizon Telescope Collaboration
2022a).

M87* is another SMBH situated at the center of the galaxy Messier 87 (NGC 4486)
at ∼ 16.8Mpc (Event Horizon Telescope Collaboration 2019f; Gebhardt et al. 2011; Mac-
chetto et al. 1997; Walsh et al. 2013). It is another underluminous source with a bolometric
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luminosity of Lobserved ∼ 1042 erg s−1 (Prieto et al. 2016) and an estimated luminosity of
Lestimated = %10ṀBondi c2 ∼ 1045 erg s−1 (corresponding to a process with %10 of efficiency
and an accretion rate of Ṁ = Ṁ(rB)∼ 0.3M⊙ yr−1 at the Bondi radius rB ∼ 0.19kpc; see Sec-
tion 2.4.1). The Eddington luminosity, Eq. (2.2), of M87* is LEdd∼ 1047 for M = 6.2×109 M⊙
(Event Horizon Telescope Collaboration 2019e). As in the case of Sgr A*, the difference in
several orders of magnitude of these luminosities, and the low densities and high temperatures
of the accreting flow of M87* (Matteo et al. 2003), strongly suggest the existence of a RIAF
(Kuo et al. 2014).

The proximity of Sgr A* and the large mass of M87* have made these sources the main
objective of several analytical and numerical studies of accretion. Particularly, they are the
principal targets of the Event Horizon Telescope (EHT) collaboration.8 We will present a brief
summary of the well-known methods used to estimate the accretion rates of these SMBHs.

2.4 The accretion rates of Sgr A* and M87*

As a first guess, the luminosity of the BH accretion flow can be used to estimate its accretion
rate. However, this approximation becomes less appropriate for RIAFs due to the various
physical mechanisms (advection, convection, outflows and jets) that alter the accretion flow. In
particular, these mechanisms allow the possibility of having an accretion rate which depends
on the distance from the BH (Yuan and Narayan 2014).

For scales of the order of the Bondi radius, the estimations of the accretion rate come from
observations of the properties of the surrounding gas (see Section 2.4.1). For inner regions
of the flow, the best constraints we have on the accretion rate come from radio polarization
measurements (see Section 2.4.2). Nevertheless, these estimations are highly model-dependent.
One of the purposes of MHD and GRMHD simulations is to obtain more general values of the
accretion rate, and to test the validity of the aforementioned constraints. In the following, we
will discuss the models used to constrain the accretion rates of the SMBHs Sgr A* and M87*,
and their relation to current numerical simulations. It is important to mention that all of these
estimations are done under the hydrodynamical approximation.

2.4.1 The Bondi estimation of the accretion rate

A crude estimation of the accretion rate onto a BH can be made with the Bondi hydrodynamical
spherical accretion (see Section 2.2). Various observations indicate that Sgr A* has a mass of
∼ 4.3×106 M⊙ (Ghez et al. 2003; Gillessen et al. 2009). Additionally, the Chandra X-ray

8https://eventhorizontelescope.org/

https://eventhorizontelescope.org/
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Observatory discovered a flow with a temperature of ∼ 2.2×107 K (1.9 keV) and an electron
number density of ∼160 cm−3 measured at ∼ 0.06 pc from Sgr A* (Baganoff et al. 2003;
Eatough et al. 2013). For a fully ionized hydrogen gas (in which the number densities of the
electrons and protons are equal, ne = np), this temperature gives a sound speed of 550 km s−1

(which is estimated with Eq. (2.8) using m≈ mp, since me≪ mp), which yields a consistent
value of the Bondi radius of rB ∼ 0.06pc, calculated with Eq. (2.7). Using these values in the
Bondi accretion rate formula (2.6), we obtain

|ṀB| ∼ 10−5 M⊙yr−1
(

M
4.3×106M⊙

)2( ne

160cm−3

)
×
(

kBT
1.9keV

)− 3
2

, (2.9)

where an adiabatic index γa = 5/3 was assumed as in Falcke and Markoff (2013)9. In this case,
it is implicit that one assumes the selected finite radius∼ 0.06 pc to be a good approximation for
the values n∞ and T∞.10 In the past years, accretion models based on numerical hydrodynamical
simulations have estimated a mass accretion rate of order ∼ 10−6M⊙ yr−1 at the Bondi radius
scales, calculated from the rate of gas capture from massive stellar winds in the galactic center
(Cuadra and Nayakshin 2006; Cuadra et al. 2008; Cuadra et al. 2015; Quataert and Gruzinov
2000b).

The Chandra X-ray Observatory also measured the properties of the interstellar medium
of M87* (Matteo et al. 2003; Russell et al. 2015). The surrounding flow has a temperature
of ∼ 1.06× 107 K (0.91 keV) and an electron number density of ∼ 0.31 cm−3 measured at
∼ 0.12 – 0.22 kpc from M87*, which is consistent with a Bondi radius of rB ∼ 0.19 kpc. Using
the same assumptions as in the Bondi estimation of Sgr A* accretion rate, we obtain

|ṀB| ∼ 0.3M⊙yr−1
(

M
6.5×109M⊙

)2( ne

0.31cm−3

)
×
(

kBT
0.91keV

)− 3
2

, (2.10)

where we have used the recent estimation of the mass of M87* of ∼ 6.5×109 M⊙, by Event
Horizon Telescope Collaboration (2019f). This estimation of the accretion rate seems to match
fairly well with the overall energetic output of the relativistic jet present in M87* (Kuo et al.
2014; Matteo et al. 2003).

9In Falcke and Markoff (2013) it was obtained an accretion rate of |ṀB| ∼ 10−4, since they did not use
λa = 1/4 in Eq. (2.6), which corresponds to γa = 5/3 (see e.g. Frank et al. 2002).

10This assumption can lead to an overestimation of the actual mass accretion rate under certain conditions
(Korol et al. 2016).
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2.4.2 Polarization constraints to the accretion rate

The detection of linearly polarized light at∼ 230 GHz coming from Sgr A* and M87* (Aitken
et al. 2000; Bower et al. 2003; Event Horizon Telescope Collaboration 2021a,b; Kuo et al.
2014) suggested another plausible way to estimate the accretion rate through the analysis
of rotation measures (RMs) of the incoming polarized emission (Agol 2000; Quataert and
Gruzinov 2000b).

It is believed that the linearly polarized light comes from the synchrotron radiation emitted
by relativistic electrons at regions close to the event horizon (Bower et al. 2018, 2003).
Particularly, for Sgr A* the linearly polarized light originates within distances of ∼ 10rS

(Johnson et al. 2015), and for M87* the emission is produced within distances of ∼ 5rS

(Event Horizon Telescope Collaboration 2019e). When the linearly polarized EM wave passes
through a magnetized medium (such as those present in the accretion flows), the polarization
angle φ changes due to a phenomenon known as Faraday rotation. The observed φ varies as a
function of the wavelength λ according to (Rybicki and Lightman 1985)

φ −φ0

λ 2 = RM = 0.81
∫ observer

source
frel(Θe)ne B∥ dl radm−2, (2.11)

where φ0 is the intrinsic position angle, RM is the rotation measure in units of radm−2,
Θe := kBTe/mec2 with Te the electron temperature, frel is a correction term suppressing
Faraday rotation at relativistic temperatures,11 ne is the free-electron number density in units
of cm−3, B∥ is the line-of-sight magnetic field in units of µG and l is the path length along
the line-of-sight through the medium in units of pc. Since φ varies with λ for the same
line-of-sight, we can estimate the value of φ0 and RM by making measurements of φ at
several wavelengths and using Eq. (2.11) (see e.g. Marrone et al. 2007). This procedure
requires assumptions of the electron temperature, electron density and the radial magnetic
field profile, and it has been applied to obtain model-dependent constraints on the accretion
rate, as we will see below. Studies have shown that the Faraday rotation takes place mainly
at the inner parts of the accretion flow at the radii ∼ (103 – 105)rS

12 for Sgr A* and M87*
(Bower et al. 2018; Park et al. 2019).

Using Eq. (2.11) with various RIAF accretion models in combination with certain assump-
tions on the magnetic field (such as equipartition between the magnetic and gravitational
energy), the polarimetry observations have made possible to restrict the accretion rate of

11At relativistically hot temperatures (Θe≫ 1), we have frel(Θe)≈ log(Θe)/(2Θ2
e), whereas for subrelativistic

temperatures (Θe≪ 1), we have frel(Θe)≈ 1 (Gardner and Whiteoak 1966; Jones and O’Dell 1977).
12This interval is estimated with the variability of the RMs over time. The variability can be translated into a

specific radius from which the RM originates. See more details in Bower et al. (2018)
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Sgr A* to the range of (10−9 – 10−7)M⊙yr−1 (or even lower depending on the assumed
inner and outer radii enclosing the polarized emission; see Fig. 4 in Marrone et al. 2006)
within a radius of r ≲ 100rS (Bower et al. 2003; Macquart et al. 2006; Marrone et al. 2007).
For M87*, the accretion rate must be less than 9.2×10−4 M⊙yr−1 at a distance of r ∼ 21rS

(Kuo et al. 2014). Note that the accretion rate has a smaller value at event-horizon-scales
compared with the estimations at Bondi radius scales (see Section 2.4.1). This is a necessary
condition because a greater accretion rate at the inner regions of the flow would depolarize the
light through extreme Faraday rotation gradients (see e.g. Jiménez-Rosales and Dexter 2018;
Quataert and Gruzinov 2000a).

As we emphasized before, the constraints on the accretion rate obtained with polarimetry
observations are highly model-dependent. In fact, there are many important effects that are
not taken into account in Eq. (2.11). For example, not all photons are Faraday rotated by the
same amount of material, the polarization properties of photons can be affected by parallel
transport, and neither the emission nor the Faraday rotation can be assumed to behave in a
spatially uniform way due to the presence of turbulence in the accretion flow (see e.g. Ricarte
et al. 2020 and references therein). Therefore, there is an intrinsic uncertainty in the obtained
accretion rates which is confronted with polarized radiative transfer calculations in GRMHD
simulations (see e.g. Jiménez-Rosales and Dexter 2018; Ricarte et al. 2020).

Summarizing: the accretion rates of Sgr A* and M87* are constrained in both directions
(inner and outer scales) by radio polarization observations and X-ray imaging. The accretions
rates have a lower value at regions close to the BH’s event horizon and a greater value for
larger scales. Thus, the accretion rate increases with radius. As we saw in Section 2.3, this is
a behavior consistent with the possible physical mechanisms present in a RIAF. In fact, for
Sgr A* the change in the accretion rate with radius is supported by measurements of the radio
of H-like to He-like Fe lines (Falcke and Markoff 2013; Shcherbakov and Baganoff 2010).

2.5 The breakdown of the hydrodynamic approximation

The continuous improvement of astrophysical observations make clear that, someday, we
will be able to capture certain features of the accretion process with unprecedented quality
[see, for example, the reconstructed image of M87* (Event Horizon Telescope Collaboration
2019a,b,c,d,e,f, 2021a,b) and the very recent reconstructed image of Sgr A* (Event Horizon
Telescope Collaboration 2022a,b,c,d,e,f)]. These observations will serve as a test-bed for
our most complete models of accretion, which include realistic non-symmetrical and un-
steady flows, radiative processes, magnetic fields, matter outflows, convection currents and
astrophysical jets.
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As we mentioned in Section 2.3.1, all of these physical phenomena present in the accretion
process are currently modeled with highly-complex GRMHD simulations (see e.g. Porth et al.
2017). Nevertheless, the accreting plasma of a RIAF is effectively collisionless because is in
a high-temperature and low-density regime (Baganoff et al. 2003; Event Horizon Telescope
Collaboration 2019e; Harris et al. 1998; Mahadevan and Quataert 1997), so the problem of
the accuracy of the hydrodynamic simulations of RIAFs must be assessed; a kinetic approach
would seem to be the most appropriate in this kind of flows. Furthermore, the GRMHD
simulations coupled to radiative transfer equations assume that the radiation is mainly emitted
by electrons described with a certain distribution function (which is a concept from Kinetic
Theory; see Chapter 3), so our physical inferences based on the GRMHD models are intimately
tied to the understanding of the electron distribution function (see e.g. Event Horizon Telescope
Collaboration 2019e; Ryan et al. 2018).

We expect that a fully 3D kinetic simulation of a RIAF would capture all the relevant
physics. However, kinetic simulations are extremely complex due to the high computational
effort of calculating the evolution of the 6D distribution functions of ions and electrons in
the accreting plasma (see e.g. Kunz et al. 2016 and references therein). To overcome this
difficulty, researchers have developed numerical models of collisionless (or weakly collisional)
plasmas which include some kinetic effects into the equations of GRMHD flow (Chandra
et al. 2015; Foucart et al. 2017; Sharma et al. 2006). However, if we want to model the kinetic
accretion onto a BH, then it is natural to expect the inclusion of GR (particularly for regions
close to the event horizon). This inclusion is studied in the formalism of General Relativistic
Kinetic Theory, a subject which has been treated only in the analytical regime, and to which
the Chapter 3 is entirely devoted. Naturally, using this theory to model the RIAFs would give
us the most complete picture of the problem.

Apart from the RIAF of underluminous sources, another scenario which demands a kinetic
treatment is the accretion of dark matter (DM), an exotic entity which is expected to have a
collisionless nature (see e.g. Ma and Bertschinger 2004; Salucci et al. 2020). The relativistic
Bondi accretion of DM onto a Schwarzschild BH has been assessed e.g. in Feng et al. (2021),
however they do not work directly under the kinetic approximation. In contrast, the recent study
by Mach and Odrzywołek (2021a) successfully incorporates general relativistic Kinetic Theory
to the problem of accretion of DM onto a moving Schwarzschild BH and its consequences to
the growth of primordial BHs in the early Universe. The kinetic modeling of the DM accretion
scenario is important since there are future detection prospects which require very precise
predictions (for example, it has been recognized in Coogan et al. 2022; Kavanagh et al. 2020;
Li et al. 2021 that a DM distribution around a BH binary may produce a small detectable
change in its gravitational wave signal). Furthermore, it has been suggested that the accretion
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of DM plays a prominent role in the formation of SMBHs (Argüelles et al. 2021; Choquette
et al. 2019; Read and Gilmore 2003), so a complete understanding of the origin of SMBHs
may require a fully general-relativistic treatment of the subject

Overall, we can see that General Relativistic Kinetic Theory (the topic of the following
chapter) is necessary to apprehend all the relevant physics when we are dealing with a
collisionless flow in a strong gravitational regime, such as those present near BHs.



Chapter 3

General Relativistic Kinetic Theory

The main purpose of Kinetic Theory (KT) is to model the statistical evolution of a system
with a very large number of particles and to obtain a handful of averaged properties which
completely describe the system. The nature of this particles and their interactions depend on
the specific system under consideration. For example, the particles could be molecules in a
gas, electrons and ions in a plasma, stars, galaxies or even clusters of galaxies, and they could
be affected by long- and/or short-range interactions.

To model these phenomena, the standard non-relativistic KT employs Newtonian physics
and the formalism of Classical Mechanics (Lagrangian or Hamiltonian mechanics). However,
we can also formulate a relativistic KT by incorporating the principles of Special Relativity
(special relativistic KT) or the formalism of General Relativity (general relativistic KT), with
the corresponding increase in complexity. These generalizations are of great relevance to
Cosmology and Astrophysics since they give us an appropriate framework for modeling
plasmas with relativistic velocities (such as those present at the early Universe), and for
modeling the dynamics of gases in strong gravitational fields (such as those in the vicinities of
black holes).

In this chapter we will introduce the basic concepts of KT, such as the phase-space and
the distribution function, and we will discuss the main changes needed to formulate a KT
compatible with the postulates of Special Relativity and a KT consistent with the ideas of
General Relativity (Section 3.1). Then, we will focus on the basic mathematical aspects needed
to formulate a general relativistic KT (Section 3.2). In particular, we are going to concentrate
on a formulation on the cotangent bundle of the space-time, and we will derive the relativistic
Boltzmann equation and its collisionless limit, known as the relativistic Vlasov equation
(Section 3.2.1). We will also connect the mathematical definitions with their macroscopical
physical counterparts (Section 3.2.2). At the end of this chapter, we will discuss the application
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of general relativistic KT to the problem of astrophysical accretion with a fixed spherical
symmetric space-time geometry (Section 3.2.3).

3.1 Kinetic Theory formulations

Our objective in this section is to present the core concepts that are common in all KT
formulations and that will be useful for the following chapter. We refer the reader to the
book of Pathria and Beale (2021) for a complete presentation of non-Relativistic KT, to the
books of Cercignani and Kremer (2002); Vereshchagin and Aksenov (2017) for a discussion
of the Special Relativistic KT, and to the articles of Acuña Cárdenas et al. (2022); Debbasch
and van Leeuwen (2009a,b); Sarbach and Zannias (2013, 2014, 2015) for a presentation of
General Relativistic KT in a modern differential geometric language, with excellent historical
accounts.

Let us consider a system of N ≫ 1 classical (non-quantum) particles.1 If we would
want to know exactly the dynamics of the complete system, then we would need to solve
a correspondingly huge number of equations. For example, in Classical (non-relativistic)
Hamiltonian Mechanics, a system of N particles in three dimensions is, in general, completely
described by 6N coupled differential equations for the positions and momenta of particles,
involving the internal and external influences acting on the system. Clearly, solving these
equations is a great endeavor for large N, even numerically. For this reason, KT uses an
statistical approach to formulate the problem.

Each possible configuration of the system, that is each particular choice of the 6N degrees
of freedom (positions and momenta),2 is known as a microstate. The set of 6N-dimensions
containing all the microstates is known as the phase-space. A certain macroscopic state of
the system is realized by different possible contiguous microstates in the phase-space. In
KT we do not expect to calculate the specific microstate in which the system is, but rather
the probability that the system is in a certain volume of the phase-space which physically
represents the same macroscopic state.

The probabilistic description of the complete system is given by the distribution function
(DF) F , which represents the probability density of the system of being in a certain microstate

1By incorporating the principles of Quantum Mechanics, we can obtain a formulation of a Quantum KT (see
e.g. Pathria and Beale 2021). In this work, we will stick to the classical (non-quantum) formulations of KT.

2We are not including internal degrees of freedom, such as the spin of particles.
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at time t. The DF is not a directly observable quantity, however, with this function we can
calculate macroscopic quantities of the system through an averaging procedure.3

The DF obeys an evolution equation which represents the conservation of the probability
density during the evolution of the system, or equivalently, that the flow of the microstates in
the phase-space is incompressible. This equation is known as the Liouville equation, and in
the non-relativistic formulation looks like

dF

dt
= 0. (3.1)

For large N, one can formulate an equivalent description of the system in terms of the
one-particle distribution function f . This function is defined such that the product

f (t,x,p)d3xd3 p, (3.2)

represents the average number of particles in the volume element d3x about x, with momenta
in a range d3 p about p, at time t. The evolution equation for this function is known as the
Boltzmann equation,

d f
dt

=C[ f ], (3.3)

where C[ f ] is the collision operator or collision term containing the information of the
interactions between particles. When the probability of finding a particle near any phase-space
point is unaffected by the other particles we have C[ f ]≡ 0, and we obtain the collisionless
Boltzmann equation or Vlasov equation.

The previous ideas constitute the basic concepts appearing in KT. However, to model
kinetic flows in non-Newtonian scenarios (such as plasmas moving at relativistic velocities or
gases in strong gravitational fields), we need to formulate a description consistent with the
relativistic framework. This will be our task in the following sections.

3.1.1 Special Relativistic Kinetic Theory

The first extension of KT was made by Jüttner (1911a,b) who generalized the Maxwell-
Boltzmann DF in a form consistent with the existence of the limiting speed c imposed
by Special Relativity (SR). In the next years, the theory was further developed to include
consistently all the principles of SR (see e.g. De Groot et al. 1980; Debbasch et al. 2001;
Vereshchagin and Aksenov 2017 and references therein). In this way, the resultant framework

3Experiments and observations deal with space- and time-averaged quantities. Nevertheless, statistical theory
usually works with ensemble-averages calculated with the DF. (An ensemble is a large set of macroscopically
equal systems (but with possibly different microstates), and an ensemble average is an average over this set.)
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maintains the same ideas and concepts of the non-relativistic formulation, but introduces three
necessary conditions: 1) the momentum of the particles must satisfy the on-shell restriction
(1.6) in Minkowski space-time, 2) the DF must be a Lorentz scalar (an invariant under Lorentz
transformations), and 3) the equations must appear in a covariant way to manifest the equal
treatment of space and time, and the equivalence between different inertial systems. Also,
the meaning of initial data has to be reconsidered due to the reformulation of the concepts of
space and time in SR.

A priori, the special relativistic one-particle DF depends on the points (xµ , pµ) of the
phase-space. Nevertheless, the requirement that physical particles should obey the on-shell
condition restricts the DF to the points (xµ , pi) since, conventionally, we can obtain the time
component of the momentum from its spatial components using Eq. (1.6) with the Minkowski
metric, thus obtaining pt =

√
p+m2c2. The points in phase-space which satisfy the on-shell

restriction form a set known as the mass shell.
The special relativistic one-particle DF is defined in an analogous way as in Eq. (3.2). It

follows from the transformation properties of vectors under Lorentz transformations and the
on-shell condition, that the volume element d3xd3 p is a Lorentz scalar. Moreover, since the
number of particles in the volume element d3xd3 p is also a Lorentz scalar (all observers will
count the same particles), we conclude from the special relativistic version of Eq. (3.2) that
the DF is a Lorentz scalar (Cercignani and Kremer 2002; Vereshchagin and Aksenov 2017).

The evolution equation for the one-particle DF has the same structure as Eq. (3.3). The
left-hand side is substituted by an operator acting on f , called the Liouville operator, which
contains information about the dynamics of the DF and the external forces acting on the
system. Analogously, the right-hand side is associated to the interactions between particles,
but considering the universal limit in the propagation of interactions imposed by the speed c.

3.1.2 General Relativistic Kinetic Theory

In the previous KT formulations, the dynamical physical entities are the particles and the
internal or external fields acting on them. In the special relativistic formulation we had to
incorporate the principles and ideas of SR. However, in a general relativistic KT (GRKT) the
space-time itself is a dynamical entity which is influenced by the presence of particles and
fields through the Einstein’s field equations, so we need to take into account self-consistently
the back reaction of particle kinetics on the background metric. Besides the difficulty of
having an extra dynamical object, the problem per se is mathematically more challenging
due to the complexity of differential geometry and the non-trivial nature of Einstein’s field
equations. So, how can we formulate a GRKT?
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A crude procedure to obtain a fully GRKT is 1) write the KT definitions and equations in
a way consistent with the framework of GR, and 2) couple the KT equations to the Einstein’s
field equations. The first step can be done within the formalism of differential geometry (see
e.g. Acuña Cárdenas et al. 2022; Andreasson 2011; Debbasch and van Leeuwen 2009a,b;
Sarbach and Zannias 2013, 2014, 2015). In Section 3.2 we outline a procedure to obtain
a generalization of KT with a cotangent bundle formulation; in particular, we obtain the
relativistic Boltzmann equation in this formalism. The second step requires the construction of
an energy-momentum tensor from the DF (see Section 3.2.2), and the insertion of this tensor
into the Einstein’s field equations (1.1). The resulting system of equations (the relativistic
Boltzmann equation for the DF + the Einstein’s field equations for the space-time metric) is
known as the Einstein-Boltzmann system.

Due to the complexity of the Einstein-Boltzmann system, it has been studied scarcely in
the literature. To solve this complicated system one has to rely on different approximations,
for example, assuming a background metric. Particularly, the Einstein-Boltzmann system has
been studied in the context of Cosmology (see e.g. Lee 2013; Lee and Nungesser 2017, 2018;
Lee et al. 2020), with the greatest application being to the early Universe: the inhomogeneities
present at the early Universe can be analyzed by solving the Einstein-Boltzmann equations for
different particle species in a perturbed Friedmann-Lemaître-Robertson-Walker space-time
(see e.g. Dodelson and Schmidt 2020). On the mathematical side, Bancel and Choquet-Bruhat
(1973) proved the (local in time) well-posedness for the Cauchy problem of the Einstein-
Maxwell-Boltzmann system, which is an extension of the Einstein-Boltzmann system that
includes the Maxwell equations. Following the latter work, Mucha (1998) studied the Cauchy
problem for the Einstein-Boltzmann system with improved regularity assumptions on the
initial data. We refer the reader to the references in Andreasson (2011) and Lee and Rendall
(2013) for other mathematical works on the Einstein-Boltzmann system.

The simpler system composed by the collisionless Boltzmann equation coupled to the
Einstein’s field equation (called the Einstein-Vlasov system) has received more attention (see
e.g. the review by Andreasson 2011). This system has been studied mathematically (see, for
example, the proof of local existence of solutions to the Einstein-Vlasov system given smooth
initial data by Choquet-Bruhat 1971, or Rein and Rendall 1992 for the existence of global
asymptotically flat singularity-free solutions of the spherically symmetric Einstein-Vlasov
system), and it has been used to analyze several problems related to Cosmology (such as the
global existence of solutions for the future stability of the Universe, see e.g. Andersson and
Fajman 2020; Andréasson and Ringström 2013; Barzegar and Fajman 2020; Fajman 2016;
Joudioux et al. 2021; Ringström 2013) and Gravitation [such as gravitational collapse (An-
dreasson 2012; Andréasson 2014; Rendall and Velazquez 2011), the presence of singularities
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in the space-time (Rendall and Velázquez 2017), the existence of solutions with spherical
(Andréasson et al. 2014; Andreasson and Rein 2007; Rein 1994) and axisymmetrical symme-
tries (Andreasson et al. 2011, 2014), and the non-linear stability of Minkowski space-time
(Bigorgne et al. 2021; Lindblad and Taylor 2020; Taylor 2016)].

Another simplification that can be made for the study of a GRKT is that, when the
densities and energies of the particles are relatively low, we can ignore the self-gravity of the
collection of particles. In this way, one selects a fixed background geometry (for example, a
Schwarzschild or a Kerr space-time) and solve the Boltzmann or Vlasov equation for the DF.
In this way, we obtain a GRKT in a fixed curved space-time geometry. Within this framework,
people have studied, for example, the mixing of a gas of massive particles (Rioseco and
Sarbach 2018, 2020),4 the decay of massless particles (Andersson et al. 2018; Bigorgne 2020),
and the astrophysical accretion onto a BH (Cieślik and Mach 2020; Gamboa et al. 2021; Mach
and Odrzywołek 2021a,b, 2022; Rioseco and Sarbach 2017a,b), which is the main topic of
this work. In Section 3.2.3 and Chapter 4, we are going to restrict to the fixed-background
approach.

3.2 Kinetic Theory in curved space-times

Our first task is to introduce a covariant generalization of KT. In order to do this, we will work
with a space-time (M,g), where M is a differentiable manifold and g is a pseudo-Riemannian
metric (see Section 1.1 for a very brief introduction of these and subsequent mathematical
objects; also see e.g. Nakahara 2003; Renteln 2014 for the complete definitions and physical
interpretations of these entities). Physically, we associate positions of particles to the space-
time points x ∈M, and the velocities (or momenta) of particles at x to elements in TxM. Since
there exists an isomorphism between TxM and T ∗x M (given by the metric g), is equally valid
to associate the velocities (or momenta) of particles to T ∗x M. The main difference between
these two points of view is the type of tensor we are dealing with; namely, the elements in
TxM are tensors of type (1,0) (one upper index) called vectors and those of T ∗x M are of type
(0,1) (one lower index) called covectors.

We consider a gas of identical particles with mass m,5 such that the one-particle DF f
can be restricted on the future mass shell Γ+

m ( f ∈ F (Γ+
m) in the notation of differential

4A collisionless, relativistic kinetic gas propagating in the equatorial plane of a Kerr BH undergoes a relaxation
process due to phase-space mixing, in which the kinetic gas eventually settles down to a stationary, axisymmetric
configuration surrounding the BH. In this way, the final state of the gas is described by an effective DF depending
only on the system’s integrals of motion. See more details in Rioseco and Sarbach (2018, 2020).

5A gas composed by different species of particles would need a different DF for each species, besides a
distinct evolution equation (a relativistic Boltzmann equation) for each DF.
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geometry6), which is a seven-dimensional submanifold of T ∗M consisting of those points
(xµ , pµ) for which the on-shell restriction (1.6) is satisfied, and we require pµ = gµν pν to be
future-directed.7 Therefore,

Γ
+
m := {(x, p) ∈ T ∗M : g−1

x (p, p) =−m2, p is future-directed}, (3.4)

where we have used the inverse metric g−1 at x, since p∈ T ∗x M. Notice that we can parametrize
the future mass shell with the coordinates (xµ , pi), i = 1,2,3, since we can get the time
component of the momentum from the mass-shell constraint (1.6). The future mass shell Γ+

m

represents the relativistic phase-space for a simple kinetic gas. It is important to mention
that the relativistic phase-space can also be associated to definitions on the tangent bundle
T M. However, we are going to focus on the cotangent bundle formulation because it is
more naturally adapted to the Hamiltonian formalism used in this work. Of course, both
formulations are equivalent since T M and T ∗M are isomorphic to each other through the
metric g.

Finally, we can define the future mass hyperboloid as the set of covectors that satisfy the
on-shell restriction and are future-directed,

P+
x (m) := {p ∈ T ∗x M : g−1

x (p, p) =−m2, p is future-directed}. (3.5)

Note that in the first definition we are dealing with points (x, p) and in the second definition
we are dealing just with the covectors p. We will employ the definition (3.5) to specify the
domain of integration of quantities that appear in the macroscopic description of the kinetic
gas (see Section 3.2.2).

We refer the reader to the references Acuña Cárdenas et al. (2022); Andreasson (2011);
Debbasch and van Leeuwen (2009a,b); Sarbach and Zannias (2013, 2014, 2015) for a compre-
hensive introduction to the geometry of the relativistic phase-space.

3.2.1 The relativistic Boltzmann equation

In the cotangent bundle formulation we can use a symplectic form and the Hamiltonian
formalism to arrive at the relativistic Boltzmann equation, which is the evolution equation
for the DF. For the sake of completeness, we will present very basic concepts required to

6We will use modern differential geometry notation, so that F (N) and X (N) refer to the class of C∞-
differentiable real scalar functions and vector fields, respectively, on a C∞-differentiable manifold N.

7We assume that M is time orientable, so that we can make a continuous designation of “past” and “future”
as we move on M (Wald 1984).
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understand the derivation of the relativistic Boltzmann equation in curved space-times. A
more detailed and pedagogical presentation can be found e.g. in Acuña Cárdenas et al. (2022).

Given a smooth function H ∈F (T ∗M) on the cotangent bundle (H will be the Hamilto-
nian function) and the symplectic form Ωs := dΘ = d pµ ∧dxµ (which is the differential of
the Poincaré one-form Θ = pµdxµ ), we can construct the associated Hamiltonian vector field
XH ∈X (T ∗M) as

XH =
∂H

∂ pµ

∂

∂xµ
− ∂H

∂xµ

∂

∂ pµ

, (3.6)

whose integral curves are determined by Hamilton’s equation of motion.
In the Hamiltonian formulation we can compute the change of a function G ∈F (T ∗M)

along the Hamiltonian flow generated by XH , through the Poisson brackets. These brackets
are defined using the symplectic form Ωs, so that for two smooth functions H ,G ∈F (T ∗M)

with associated vector fields XH ,XG ∈X (T ∗M), their Poisson bracket is given by

{H ,G } := Ωs(XH ,XG ) =
∂H

∂ pµ

∂G

∂xµ
− ∂H

∂xµ

∂G

∂ pµ

, (3.7)

where, in the last equality, we have written the expression of the Poisson brackets in local
adapted coordinates. The importance of these concepts is that the integrals of motion (those
quantities which are invariant under the Hamiltonian flow) of the system have a well defined
property with respect to the Poisson brackets, namely,

G is an integral of motion if and only if {H ,G }= 0.

Furthermore, with the chain rule, it can be proven that any function g of the integrals of motion,
is also an integral of motion, i.e. {H ,g(G )}= 0. This property will be particularly important
when we discuss the Vlasov equation.

The associated vector field of the free one-particle Hamiltonian H1p,

H1p(x, p) =
1
2

gµν(x)pµ pν , (3.8)

is known as the Liouville vector field L , and it is explicitly given by

L := XH1p = gµν pν

∂

∂xµ
− 1

2
∂gαβ

∂xµ
pα pβ

∂

∂ pµ

, (3.9)

which can be calculated inserting Eq. (3.8) in (3.6). It can be shown that L is also a vector
field on the future mass shell Γ+

m , i.e. L ∈X (Γ+
m) (Acuña Cárdenas et al. 2022). Therefore,

when the integral curves of L are projected onto the space-time manifold, we obtain the
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affinely parametrized geodesics of test particles with mass m. In other words, the world lines
of the gas particles are described by the integral curves of the Liouville vector field L .

In order to give a physical interpretation of the mathematical machinery presented so far,
we consider a 3-dimensional hypersurface S in (M,g) representing a certain volume at a given
time. We define the set

Σ := {(x, p) : x ∈ S and p ∈ P+
x (m)}, (3.10)

and we define N (Σ) as the averaged number of occupied trajectories in Γ+
m crossing Σ. If

the hypersurface Σ evolves into a new hypersurface Σ′, then one can show that the net change
in the averaged number of occupied trajectories, N (Σ′)−N (Σ), is directly related to the
application of the Liouville operator onto the one-particle DF, L [ f ].

In particular, for a gas of collisionless particles we have N (Σ′) = N (Σ), which implies
the Liouville equation (also known as Vlasov or collisionless Boltzmann equation)

L [ f ] = gµν pµ

∂ f
∂xν
− 1

2
∂gαβ

∂xµ
pα pβ

∂ f
∂ pµ

= 0. (3.11)

Note that, from Eqs. (3.7), (3.8) and (3.11), the Vlasov equation can be written as

L [ f ] = {H1p, f}= 0. (3.12)

On the other hand, if there are collisions between particles (with these interactions being
of a binary, elastic and point-like nature), and the molecular chaos hypothesis (which asserts
that just before collisions, the particles are uncorrelated) is satisfied, then we can obtain the
relativistic Boltzmann equation,

L [ f ] =CW [ f , f ], (3.13)

where W is the transition probability density for the binary collisions, and CW [ f , f ] is the
associated collision term which depends quadratically on f . The details of this derivation can
be found e.g. in Acuña Cárdenas et al. (2022).

A final point regarding the integrals of motion can be made here. Following the discussion
after Eq. (3.7), we can see that if there are n conserved quantities Gi (i = 1,2, ...,n) in the
system (such that {H1p,Gi} = 0), and if f is a function only of these conserved quantities,
f = f (Gi), then this DF must be a solution of the Vlasov equation (3.12). This remark will be
extremely important in this work, since we are going to consider DFs which only depend on
the energy and angular momentum, due to the symmetries of the studied systems.
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3.2.2 Macroscopic description

The macroscopic description of the gas is based on the moments of the one-particle DF. The
first moment is known as the particle four-flow or particle current density, and is defined as a
vector field over TxM. In an adapted local coordinate system, its components are given by

Jµ(x) := c
∫

P+
x (m)

pµ f (x, p)dvolx(p), (3.14)

where dvolx(p) is the Lorentz-invariant volume element on the future mass hyperboloid
P+

x (m), defined as

dvolx(p) :=
1√−g

d3 p∗
pt , (3.15)

with
√−g the square root of the metric’s determinant and where p∗ = (pi) refer to the spatial

components of the covariant linear momentum (Debbasch and van Leeuwen 2009a).
The second moment of the DF is also of particular relevance because it represents the

energy-momentum tensor of the gas. Its components are given by

T µν(x) := c
∫

P+
x (m)

pµ pν f (x, p)dvolx(p). (3.16)

(Note that, if we were to consider the complete Einstein-Boltzmann or Einstein-Vlasov system,
then we would need to insert the energy-momentum tensor (3.16) in the Einstein’s field
equations (1.1) to obtain the evolution equation for the space-time metric.) For the following,
we will omit the notation referring to P+

x (m) in the integrals for briefness.
In the accretion process we are mainly interested in the first moment of f because it is

physically associated with the flow of particles. In particular, an expression for an invariant
particle number density n (independent of coordinates) shall be useful to quantify the accretion
rate. To find such expression, we choose coordinates comoving with the flow of particles, such
that locally the time component of Eq. (3.14) is

Jt(x) = c
∫

pt f (x, p)dvolx(p) = c
∫

f (x, p)d3 p∗. (3.17)

Identifying
∫

f (x, p)d3 p∗ as the particle number density in the comoving frame, we see that
Jt(x) = cn(x), for these coordinates. In this way, n(x) = 1

c

√
(Jt(x))2. Since in the comoving

frame there is no net flow of particles in the spatial directions (Ji = 0), then we can propose
the following generalized equation for the scalar particle number density,

n(x) :=
1
c

√
−Jµ(x)Jµ(x). (3.18)
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Following these ideas, we define the mean four-velocity of the particles as (Eckart 1940)

uµ(x) :=
Jµ(x)
n(x)

. (3.19)

Note that the units of the particle current density Jµ are 1/(length2× time).
An important property of the particle current density is that it has zero divergence, provided

that the relativistic Vlasov equation (3.12) is satisfied. This property is known as the continuity
equation and it expresses the conservation of the number of particles. The short proof relies
on choosing a Gaussian coordinate system, so that gµν(x) = ηµν(x) and ∂σ gµν(x) = 0 at a
certain point x ∈M. In this way,

∇
µJµ

∣∣
x = η

µν
∂νJµ

∣∣
x = η

µν
∂ν

∫
pµ f (x, p)dvolx(p) = η

µν

∫
pµ∂ν

[
f (x, p)

1√−g
d3 p∗

pt

]
=

∫
η

µν pµ∂ν f dvolx(p) =
∫

gµν pµ∂ν f dvolx(p)

=
∫

L[ f ]dvolx(p), (3.20)

where, in the first line, we have calculated the four-divergence in Gaussian coordinates, we
have used the definition of the particle current density (3.14) and the expression of the volume
element (3.15); from the first to the second line we have used that ∂νgµσ (x) = 0, and then
we have used that gµν(x) = ηµν(x); and from the second to the third line we have employed
Eq. (3.9), so that

L [ f ] = gµν pµ∂ν f − 1
2

∂µgαβ pα pβ

∂ f
∂ pµ

= gµν pµ∂ν f , (3.21)

since ∂µgαβ = 0. Therefore, if L [ f ] = 0, then

∇
µJµ = 0. (3.22)

The energy-momentum tensor (3.16) also satisfies the conservation equation ∇µTµν = 0
for a Vlasov gas. However, in this work, we will just need Eq. (3.22).

3.2.3 Spherically symmetric accretion

A very interesting application of the GRKT is the relativistic kinetic accretion onto a BH,
which is a natural scenario with a highly astrophysical relevance. For the following, we assume
that the self-gravity of the kinetic gas can be neglected, and that the gravitational background
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is given by the stationary, spherically symmetric space-time metric (1.3). Furthermore, we
will assume that the gas has acquired a configuration with the same symmetries of the metric
(1.3). Thus, the one-particle DF f will be spherically symmetric and time independent.

As we saw in Sections 1.1 and 1.3, the symmetries of the metric (1.3) are related to the
existence of four Killing vectors: one associated with the invariance under time translations
and three with the invariance under spatial rotations. Therefore, the integrals of motion in this
case consist of the energy E and the angular momentum vector L associated with the spherical
symmetry.

Now, we will show that the continuity equation (3.22) applied to the spherically symmetric
space-time metric (1.3), conduces to a mass accretion rate Ṁ independent of time and radius.
We begin with the well-known coordinate expression for the divergence of a vector field (see
e.g. Hartle 2003),

∇µJµ =
1√−g

∂µ

(√−gJµ
)
. (3.23)

Using the continuity equation (3.22) and the time-independence of the components of the
metric and of the DF, we get

∂i
(√−gJi)= 0. (3.24)

Next, we note from Eqs. (3.14) and (3.15) that

√−gJi = c
∫

pi f (x, p)
d3 p∗

pt . (3.25)

Since f does not depend on the angular variables (it is spherically symmetric), then Eqs. (3.24)
and (3.25) imply

∂r
(√−gJr)= 0 → √−gJr ≡ h(θ ,φ), (3.26)

where h(θ ,φ) is a function that appears after integration. To determine this unknown function,
we compute the determinant of the metric (1.3), obtaining

√−g = r2 sinθ

√
[gtr(r)]2−gtt(r)grr(r). (3.27)

Therefore, Eqs. (3.26) and (3.27) give us

r2Jr
√

[gtr(r)]2−gtt(r)grr(r) =
h(θ ,φ)

sinθ
. (3.28)



3.2 Kinetic Theory in curved space-times 46

Eq. (3.28) is an equality between expressions that depend on different independent coordinates,
hence it must be equal to a constant,

r2Jr
√

[gtr(r)]2−gtt(r)grr(r) = const. (3.29)

For the Schwarzschild metric (1.13) which has gtr(r) = 0 and gtt(r) =−1/grr(r), we obtain

r2Jr = const. (3.30)

Since Jr is the particle current density (with dimensions of length−2× time−1) in the radial
direction, then the flux of particles with mass m through a sphere of constant areal radius will
be 4πr2 mJr. Thus, we conclude that the accretion rate for the Schwarzschild metric is

Ṁ = 4πr2 mJr = const. (3.31)

This definition is coordinate-independent since it is defined in terms of the areal radius r and
the contravariant r-component of the current density vector field, Jr = dr(J). Also note that
Eq. (3.31) can be evaluated at different radii, however, the combination r2Jr is independent of
this choice. Thus, the expression in (3.31) does not depend on radius nor in time.

3.2.4 Newtonian limit

In the Newtonian approximation (non-relativistic limit) the speed of the particles is much
smaller than the speed of light, |ui| ≪ c, and the time component of the four-momentum
satisfies p0 = mcdt/dτ ≈ mc. Furthermore, the space-time is not curved, so that gµν = ηµν ,
and thus

√−g = 1. With these approximations, we will recover standard formulae for the
particle number density, the average velocity and the mass accretion rate, that can be verified,
for example, with Shapiro and Teukolsky (1983).

We begin using the previous approximations with Eqs. (3.14) and (3.15). We get

Jt(x) = c
∫

mc f (x, p)
d3 p∗
mc

= c
∫

f (x, p)d3 p∗, (3.32)

Ji(x) = c
∫

pi f (x, p)
d3 p∗
mc

=
∫ pi

m
f (x, p)d3 p∗. (3.33)

Next, from Eq. (3.18) we get

n(x) =
1
c

√
[Jt(x)]2− Ji(x)Ji(x)≈

∫
f (x, p)d3 p∗, (3.34)
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which is the classical equation for the particle number density and where we have used that
Jt ∼ O(c) and Ji ∼ O(1). Then, employing Eq. (3.19) and (3.33), we obtain

ui(x) =
1

n(x)

∫ pi

m
f (x, p)d3 p∗, (3.35)

which is the non-relativistic average velocity in the i-direction. Finally, using Eqs. (3.19),
(3.31) and (3.33), we arrive at

Ṁ = 4πr2 mn(x)ur(x) = 4πr2
∫

pr f (x, p)d3 p∗, (3.36)

which is also the expected result for the Newtonian spherically symmetric accretion.



Chapter 4

Relativistic kinetic accretion from finite
radius

A very important application of Kinetic Theory is to the problem of astrophysical accretion.
Depending on the collisional nature of the kinetic gas and on the gravitational regime, we may
describe the accretion scenario with the Boltzmann or Vlasov equation coupled to the Poisson
or Einstein equations. However, as we saw in the past chapter, the formulation of Kinetic
Theory per se changes depending on the physical conditions of the system. In this way, the
more general formalism to study the accretion of kinetic gases would be one described by the
general relativistic Boltzmann equation coupled to the Einstein’s field equations. Nevertheless,
this system of equations is highly complex, so one has to rely on different assumptions to
obtain analytical or numerical solutions.

In the context of accretion onto BHs, a particularly useful simplification is to assume that
the space-time background is fixed and that the gas is collisionless. Under this assumption,
Rioseco and Sarbach (2017a,b) developed a systematic study for the kinetic accretion of a
collisionless gas onto a Schwarzschild BH. This systematic framework has been generalized in
order to describe the kinetic accretion of a collisionless gas onto a moving Schwarzschild BH
(Mach and Odrzywołek 2021a,b, 2022) and onto a Reissner-Nordström BH (Cieślik and Mach
2020). Very recently, this framework has also been used to study stationary and axisymmetric
gas configurations surrounding a Schwarzschild BH (Gabarrete and Sarbach 2022). However,
a common assumption of these kinetic models is that the gas is distributed in an infinite cloud,
so that the external boundary conditions are given at infinity. At first glance, this is an incorrect
supposition since we expect that all astrophysical systems have a finite extension.

To investigate the consequences of this latter assumption, in this chapter we will apply
general relativistic Kinetic Theory to study the accretion of a collisionless kinetic gas from
finite radius onto a Schwarzschild BH, a scenario which is more physically realistic than the
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infinite distribution. We will analyze both the non-relativistic and relativistic limits, and we
will specialize our results to a mono-energetic and Maxwell-Jüttner distribution functions, for
a purely radial accretion (Section 4.1) and an accretion with angular momentum (Section 4.2).
We will provide expressions for the accretion rate which generalize previous known solutions.
At the end, we will present a summary of our relativistic analytic models (Section 4.3), and
we will use them to analyze the accretion rates of Sgr A* and M87* at Bondi radius and event
horizon scales (Section 4.4).

In the computations presented in this chapter, we assume that particles of mass m are
being accreted from an injection sphere fixed at a finite areal radius R, where they have a
specific numerical density and an energy or temperature which provide the external boundary
conditions for the problem. Moreover, the one-particle DF is assumed to depend on (x, p) only
through the integrals of motion of each particle, E (the energy) and L (the magnitude of the
angular momentum), which arise from the static, spherical symmetry. Due to dispersion and
mixing, it is in fact expected that any gas configuration relaxes in time to one described by such
a DF, provided the boundary conditions specified at the injection sphere are compatible with it
(see footnote 4 in Chapter 3). We shall use the capital letter F to denote the DF expressed in
terms of E and L.

4.1 Purely radial accretion

In this section we treat both the non-relativistic and relativistic limits of the steady, spherically
symmetric radial infall of a Vlasov gas onto a central object from finite radius, assuming that
each individual particle has zero angular momentum. The distribution function describing this
scenario depends only on the radial coordinate r and its momentum pr, and the corresponding
observables only on r. The definitions given in Section 3.2.2 are specialized in order to
describe adequately the radial accretion process.

4.1.1 Non-relativistic limit

In this limit the particles are under the effect of a Newtonian gravitational central potential
Φ(r) generated by a mass M (in the case of a point mass we have Φ(r) =−GMm/r), and the
injection sphere of the particles is at radius R, where we specify the particle number density
nR. We ignore interactions with the surface of the central object since we are interested in
a scenario analogous to a Schwarzschild BH, where there is no physical surface. To obtain
the scalar number density, the average radial velocity and the accretion rate we will use
Eqs. (3.34-3.36).
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We start by writing the momentum volume element (3.15) in flat space described by
spherical coordinates (r,θ ,φ),

dvolx(p) =
1√−g

d3 p∗
pt =

1
r2 sinθ

d pr d pθ d pφ

pt . (4.1)

Under spherical symmetry, the observables of the system [e.g. the scalar particle density
(3.18)] do not have any dependence on the angular variables (θ , φ ). Since the observables are
constructed by taking moments of the distribution function [see e.g. (3.14)], the integrand
f (x, p)dvolx(p) must be independent of the angular variables. Therefore, if there is spherical
symmetry and the particles have zero angular momentum (pθ = 0, pφ = 0), Eq. (4.1) suggest
us that the complete distribution function f ∗ = f ∗(t,r,θ ,φ , pr, pθ , pφ ) must satisfy

f ∗(t,r,θ ,φ , pr, pθ , pφ ) = f (t,r, pr)δ (pθ )δ (pφ )sinθ , (4.2)

where f = f (t,r, pr) is the radial one-particle distribution function. In this way, there will be
no angular dependence in the observables.

To obtain the integration limits in Eqs. (3.34-3.36), we need to obtain the minimum
value for |pr| (the maximum value of |pr| is not bounded). In order to do this, we see that
at the injection radius r = R, the minimum possible energy of a particle is Emin = Φ(R),
corresponding to a particle falling radially from rest, since its total mechanical energy is

E =
p2

r
2m

+Φ(r), (4.3)

and an energy satisfying E < Φ(R) would require an imaginary momentum. The conservation
of energy, E = Emin, give us the radial momentum with the minimum possible magnitude

pm(r,R) :=−
√

2m[Φ(R)−Φ(r)], (4.4)

where we have used the negative root since the particles are infalling.
Consequently, from Eqs. (3.34-3.36) and Eqs. (4.2- 4.4), we find that

n(r) =
1
r2

∫ pm(r,R)

−∞

f (r, pr)d pr, (4.5)

ur(r) =
1

r2 mn(r)

∫ pm(r,R)

−∞

pr f (r, pr)d pr, (4.6)

Ṁ = 4πr2 mn(r)ur(r) = 4π

∫ pm(r,R)

−∞

pr f (r, pr)d pr. (4.7)
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where pr = pr, since we are in flat space. Note that if R→ ∞, then n(r→ ∞) = 0 (which is
consistent with the fact that the distribution function vanishes at infinite radius), and thus we
cannot apply the boundary condition n(R) = nR.

This set of equations can be applied to any steady, spherically symmetric distribution
function describing a radial infall of particles from finite radius onto a central object with
no surface, described by a Newtonian potential Φ(r). In the following, we will use these
equations to describe the accretion of mono-energetic particles and the accretion of particles
following a Maxwell-Boltzmann distribution.

Mono-energetic distribution

We consider the radial infall of mono-energetic particles with energy E0 ≥ Emin = Φ(R). Since
there is no angular momentum in this case, the distribution function is

F(E) = f0 δ (E−E0) = f0 δ

(
p2

r
2m

+Φ(r)−E0

)
, (4.8)

where f0 is a constant with units of [time]−1 (because the radial distribution function, f =
f (r, pr), has units of [length × momentum]−1) which is related to nR [see Eq. (4.13)]. Next,
we can use the properties of the Dirac delta distribution1 to rewrite the distribution function as:

f (r, pr) = f0

√
m
2

δ

(
pr +

√
2m[E0−Φ(r)]

)
√

E0−Φ(r)
, (4.9)

where we have used the fact that all particles are infalling and hence they can only have a
negative momentum. According to Eqs. (4.5-4.7) and the boundary condition n(R) = nR, the
particle density, the average radial velocity and the accretion rate are, respectively:

n(r) =
f0

r2

√
m

2[E0−Φ(r)]
, (4.10)

ur(r) =−
√

2[E0−Φ(r)]
m

, (4.11)

|Ṁ|= 4πr2 mn(r)|ur(r)|= 4πm f0, (4.12)

where

f0 = R2nR

√
2[E0−Φ(R)]

m
, (4.13)

1The composition of the Dirac delta distribution with a smooth function g(x), is given by δ (g(x)) = ∑i
δ (x−xi)
|g′(xi)| ,

where the sum goes over all the different roots xi of g.



4.1 Purely radial accretion 52

which yields
|Ṁ|
mnR

= 4πR2

√
2 [E0−Φ(R)]

m
, (4.14)

valid for r ≤ R.
If E0 = 0 and the gravitational potential is due to a central mass such that Φ(r) ∼ 1/r,

Eq. (4.11) is easily recognized as the free-fall velocity. Furthermore, we see from Eqs. (4.10)
and (4.11) that the particle number density and velocity are proportional to r−3/2 and r−1/2,
respectively, which is the expected behaviour for the fluid limit (Shapiro and Teukolsky 1983).

Finally, note that if we set E0 = Φ(R) + 1
2mv2

R, where vR = ur(R) is the speed of the
particles at the injection radius with respect to the central object, then Eq. (4.14) can be written
as the well-known expression

|Ṁ|
mnRvR

= 4πR2. (4.15)

Maxwell-Boltzmann distribution

Another scenario consists of the radial infall of a stationary cloud of particles described by a
Maxwell-Boltzmann distribution function (see e.g. Binney and Tremaine 2008),

f (r, pr) = A exp
[
−β

(
p2

r
2m

+Φ(r)
)]

, (4.16)

where as usual β = 1/kBT , with kB = 1.38 × 10−23 m2 kgK−1 s−2 the Boltzmann constant, T
the temperature of the cloud and A is a constant with units of [length × momentum]−1. In this
case, using Eqs. (4.5-4.7) and the boundary condition n(R) = nR, the particle number density,
the average radial velocity and the accretion rate for r ≤ R are, respectively:

n(r) =
A
r2

√
mπ

2β
e−βΦ(r)

×
[
1−Erf

(√
β [Φ(R)−Φ(r)]

)]
, (4.17)

ur(r) =−
√

2
βmπ

e−β [Φ(R)−Φ(r)]

×
[
1−Erf

(√
β [Φ(R)−Φ(r)]

)]−1
, (4.18)

|Ṁ|= 4πr2 mn(r)|ur(r)|= 4πm
A
β

e−βΦ(R), (4.19)
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where Erf(x) denotes the error function, and

A = nR R2

√
2β

mπ
eβΦ(R), (4.20)

which yields
|Ṁ|
mnR

= 4πR2

√
2

πmβ
= 4πR2

√
2
π

kBT
m

. (4.21)

4.1.2 Relativistic limit

In the relativistic case, we consider a Vlasov gas on a Schwarzschild background (1.13), whose
temporal and radial metric components are characterized by the function

α(r)2 := 1− rS

r
, (4.22)

with rS = 2GM/c2 the Schwarzschild radius. The volume element in momentum space takes
the same form as in Eq. (4.1), but now pt is related to the relativistic energy E through [see
Eq. (1.18)]

E = α(r)2c pt . (4.23)

Combining the on-shell condition (1.6) for radial infall (pθ = pφ = 0) with Eq. (4.23), we can
obtain another expression for the relativistic energy:

E =
√

[α(r)2 pr c]2 +α(r)2 m2c4. (4.24)

The minimum possible energy of a particle at radius r = R is achieved when it has zero
momentum, so that Emin(R) = α(R)mc2 [cf. Eq. (1.21)]. Setting E = Emin in Eq. (4.24), give
us the minimum magnitude of radial momentum possible for infalling particles as a function
of the radius r,

pm(r,R) :=− mc
α(r)2

√
α(R)2−α(r)2. (4.25)

Naturally, this definition reduces to Eq. (4.4) in the non-relativistic limit.
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Additionally, the spherical symmetry and the zero angular momentum of the particles
imply a distribution function of the form (4.2). Therefore, using Eqs. (3.14) and (3.18) we find

Jt(r) =
c
r2

∫ pm(r,R)

−∞

f (r, pr)d pr , (4.26)

Jr(r) =
c
r2

∫ pm(r,R)

−∞

f (r, pr)
pr

pt d pr, (4.27)

n(r) =
1
c

√
[α(r)Jt(r)]2− [Jr(r)/α(r)]2. (4.28)

The boundary conditions are given by the particle number density at the injection sphere
n(R) = nR, and the energy or temperature as before. As in the non-relativistic case, this set of
equations can be applied to any steady, spherically symmetric distribution function describing
a radial infall of particles onto a Schwarzschild BH from finite radius. In the following, we
will use these equations to describe the accretion of mono-energetic particles and the accretion
of particles following a Maxwell-Jüttner-type distribution.

Mono-energetic distribution

We reconsider a Vlasov gas of mono-energetic particles with relativistic energy E0 ≥ Emin =

α(R)mc2. The expected distribution function is:

F(E) = f0 δ (E−E0), (4.29)

where, again, f0 is a constant with units of [time]−1 and is related to nR [see Eq. (4.34)]. Using
Eq. (4.24), we can rewrite the distribution function (4.29) as:

f (r, pr) = f0 δ

(√
[α(r)2 pr c]2 +α(r)2 m2c4−E0

)

=

f0 δ

(
pr +

mc
α(r)2

√(
E0

mc2

)2
−α(r)2

)

cα(r)2

√
1−α(r)2

(
mc2

E0

)2
, (4.30)

where we have used the fact that all the particles have negative radial momentum. With this
distribution function and the boundary condition n(R) = nR, we can calculate the invariant
particle number density, the average radial velocity and the mass accretion rate with Eqs. (3.31,
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4.26-4.28),

n(r) =
f0

r2c

[(
E0

mc2

)2

−α(r)2

]−1/2

, (4.31)

ur(r) =−c

[(
E0

mc2

)2

−α(r)2

]1/2

, (4.32)

|Ṁ|= 4πm f0, (4.33)

valid for r ≤ R, and with f0 given by

f0 = nR cR2

√(
E0

mc2

)2

−α(R)2, (4.34)

which yields

|Ṁ|
mcnR

= 4πR2

√(
E0

mc2

)2

−α(R)2. (4.35)

Note that, employing Eq. (4.32), we get the familiar result

|Ṁ|
mnRur(R)

= 4πR2, (4.36)

as follows directly from integrating the continuity equation for radially infalling dust in which
case ρ = mn.

Nevertheless, for our purposes it is convenient to express the accretion rate in terms of the
3-velocity vR of the gas particles calculated by a static observer at the shell r = R, rather than
the radial component of the four velocity ur(R), because the injection sphere is static with
respect to the black hole. The relation between vR and ur(R) is given by (see e.g. Crawford
and Tereno 2002)

ur(R) = α(R)vR γ, (4.37)

where γ := (1− v2
R/c2)−1/2 is the Lorentz factor associated with vR. In this way, the accretion

rate is
|Ṁ|

mnRvR
= 4πR2

α(R)γ. (4.38)

In the non-relativistic limit, with vR ≪ c and rS ≪ R, the previous equations reduce to
Eqs. (4.10-4.15), as expected.
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Maxwell-Jüttner-type distribution

We now consider a distribution function of the Maxwell-Jüttner-type,2

F(E) = Ae−βE , (4.39)

where A is a constant with units of [length × momentum]−1, β = 1/kBT , T is the temperature
of the gas at the injection sphere and E is the relativistic energy.3

Applying Eqs. (4.26-4.28) with E given by Eq. (4.24) in terms of the variables (r, pr), the
resulting integrals have no analytical closed form. Nevertheless, we can make a change of
integration variable from pr to E through Eq. (4.24), which will result in closed solutions. In
this way, for the Schwarzschild metric we get

J0(r) =
1

α(r)2r2

∫
∞

α(R)mc2
F(E)

E√
E2−α(r)2m2c4

dE, (4.40)

Jr(r) =
1
r2

∫
∞

α(R)mc2
F(E)dE. (4.41)

(This set of equations can also be applied to the distribution function in Eq. (4.29) and the
resulting expressions are again Eqs. (4.31-4.35).) For the distribution function in Eq. (4.39),
we obtain

nR =
Amc
R2

√
K1(z)2e2z− z−2

ez , (4.42)

ur(R) =− 1
βmc

1√
K1(z)2e2z− z−2

, (4.43)

|Ṁ|= 4πm
A
β

e−z, (4.44)

where z := mc2α(R)β and K1(z) is the modified Bessel function of the second kind and of
first order (see e.g. Abramowitz and Stegun 1964). Note that the previous expressions are
evaluated at r = R; this was necessary to get the analytical closed form (the accretion rate is
not affected since it is a constant). Eliminating A, we get an expression for the accretion rate

|Ṁ|
mcnR

=
4πR2α(R)√
[K1(z)zez]2−1

. (4.45)

2As we mentioned in Section 3.1.1, the Maxwell-Jüttner distribution function is the relativistic generalization
of the Maxwell-Boltzmann distribution.

3Strictly speaking, the distribution function described by (4.39) does not describe a configuration in thermo-
dynamical equilibrium since in this section we restrict all the particles to have zero angular momentum.
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Finally, considering the non-relativistic limit mc2≫ kBT , so that z≫ 1, we obtain:

|Ṁ|
mcnR

≈ 4πR2
α(R)

√
2

πz
= 4πR2

√
2α(R)

π

kBT
mc2 , (4.46)

which reduces to the expression in Eq. (4.21) when R≫ rS.
A final remark can be done with respect to the purely radial infall from finite radius. For

both the non-relativistic and relativistic limits, the accretion rate is proportional to R2, hence
it diverges as R→ ∞. This means that these models do not have a well-defined Bondi-type
formula which relates the mass accretion rate to the properties of the gas at infinity (cf. with
Eq. (2.6) which is defined in terms of variables at infinity). This is analogous to the case
of accretion of pure dust in spherical symmetry, in which the only steady-state solution has
vanishing mass density at infinity (Chaverra and Sarbach 2015). In fact, our mono-energetic
model with purely radial infall does correspond precisely to this simple dust model, since its
velocity dispersion is exactly zero (because all the particles are falling radially from the same
radius with equal conditions).

4.2 Accretion with angular momentum

In this section we allow for the individual gas particles to have angular momentum. However,
we assume that the averaged quantities describing the gas (i.e. the space-time observables) still
have spherical symmetry. For simplicity, we shall assume a uniform distribution in the total
angular momentum L. To apply our derived formulae, we employ the same mono-energetic
and Maxwell-Jüttner-type distribution functions as considered in the previous section. In
contrast to Section 4.1, we will derive the non-relativistic limits of accretion from finite radius
by using approximations in the analytical results obtained for the relativistic limit.

4.2.1 Relativistic and non-relativistic limits

We consider the Schwarzschild metric (1.13) associated with a BH of mass M. We assume
that the injection sphere is located at a radius R greater than the radius of the innermost stable
circular orbit rISCO (see Section 1.3.1), that is R > rISCO = 6GM/c2 (it will become clear in a
moment why this restriction is required). As in Section 4.1, we impose the particle number
density nR on the injection sphere, and we compute the accretion rate satisfying this boundary
condition.
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For the following, it is convenient to express the four-momentum pµ in terms of orthonor-
mal components pµ̂ (µ̂ = 0,1,2,3), defined by

p0 = α(r)pt , p1 =
pr

α(r)
, p2 = r pθ , p3 = r sinθ pφ , (4.47)

with α(r)2 = 1− rS

r
as before, and such that

−m2c2 = p · p = gµν pµ pν = ηµν pµ̂ pν̂ , (4.48)

where in the last step we have used the Schwarzschild metric (1.13) and Eqs. (4.47). In terms
of these orthonormal components, the volume element (3.15) is

dvolx(p) =
d p1d p2d p3√

m2c2 +(p1)2 +(p2)2 +(p3)2
. (4.49)

Since the spherical symmetry and the steady assumption allow us to write the distribution
function as a function of the integrals of motion (E,L), it is convenient to write the volume
element (4.49) in terms of these variables. To proceed in this direction, we start by noting
from Eqs. (4.23) and (4.47) that

p0 =
E

cα(r)
. (4.50)

Next, from Eqs. (1.28) and (4.47) we find

p1 =±
√

E2−VL(r)
cα(r)

, (4.51)

where the ± sign in p1 determines whether the particle is outgoing or infalling, respectively,
and VL(r) is the effective potential (1.27) describing the radial motion. For the angular
variables, we remember from Hamiltonian mechanics that the total angular momentum L is
given by

L2 = p2
θ +

p2
φ

sin2
θ
, (4.52)

which suggests a parametrization of the (pθ , pφ )–space in terms of the variables (χ,L), defined
by

pθ = Lcos χ, pφ = Lsinθ sin χ, (4.53)
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with χ ∈ [0,2π). Using Eqs. (4.47) and (4.53), we find

p2 =
Lcos χ

r
, p3 =

Lsin χ

r
. (4.54)

In this way, the orthonormal components of the four-momentum and the volume element
expressed in terms of the integrals of motion (E,L) and the angle χ , are given by

(pµ̂

±) =

(
E

cα(r)
,±
√

E2−VL(r)
cα(r)

,
Lcos χ

r
,
Lsin χ

r

)
, (4.55)

dvolx(p) =
LdE dLdχ

r2
√

E2−VL(r)
, (4.56)

where the new expression for the volume element is obtained with the Jacobian of the transfor-
mation (p1, p2, p3)→ (E,L,χ).

The energy and angular momentum of the particles determine if they are going to be
absorbed by the BH or scattered by the centrifugal barrier (see Section 1.3.2 for a discussion
of the dynamics of massive test particles in Schwarzschild space-time). Absorbed particles
necessarily have incoming trajectories (particles with momentum pµ̂

−), but scattered particles
have both incoming and outgoing trajectories (particles with momentum pµ̂

±). This behavior
is illustrated in Fig. 4.1, where we can see that if the particle’s energy E2 exceeds the local
maximum of VL, then we will only have incoming absorbed particles with momentum pµ̂

−, and
values of E2 less than this maximum give rise to incoming and outgoing scattered particles
with momenta pµ̂

±.
In this way, the particle current density J is composed by absorbed and scattered particles,

J = Jabs + Jsca, (4.57)

where, again, the particle current density Jabs is associated to particles with pµ̂

−, and Jsca

contains particles with both pµ̂

±. To determine explicitly these currents we must use Eqs. (3.14),
(4.55) and (4.56). However, first we need to know the integration limits associated to E, L and
χ for particles coming from the injection sphere at radius R. The range for χ is [0,2π) due to
the spherical symmetry. The ranges for E and L were discussed in Section 1.3.2, where we
obtained the following characterization of the parameter space (E,L) of massive test particles
orbiting a Schwarzschild BH:
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Dispersed trajectories; outgoing particles with momentum pµ̂+

→

Fig. 4.1 Plot of the Schwarzschild effective potential VL(r) vs r (with r in units of rS) and L = 4.5GMm/c. We
have identified for the absorbed trajectories the incoming moments by pµ̂

−, while for the scattered trajectories the
incoming moments are pµ̂

− and the outgoing moments are pµ̂

+ [see Eq. (4.55)]. For more details on the effective
potential of Schwarzschild space-time and the dynamics of massive test particles see Section 1.3.2. [Adapted
plot from a previous version made by Carlos Gabarrete.]

1. Absorbed particles α(R)mc2 ≤ E < Ec(R) and 0≤ L≤ Lmax(E,R),

Ec(R)< E < ∞ and 0≤ L < Lc(E).

2. Scattered particles

Ec(R)≤ E < ∞ and Lc(E)< L < Lmax(E,R).

Since the distribution functions considered in this work depend only on E, this characterization
is very appropriate because one can fix a value of E and perform the integrals over L explicitly.
Thus, considering this characterization, the orthonormal components of the particle current
densities are

J µ̂

abs

∣∣∣
r=R

= c

Ec(R)∫
α(R)mc2

Lmax(E,R)∫
0

2π∫
0

pµ̂

−F(E)LdE dLdχ

R2
√

E2−VL(R)
+ c

+∞∫
Ec(R)

Lc(E)∫
0

2π∫
0

pµ̂

−F(E)LdE dLdχ

R2
√

E2−VL(R)
,

(4.58)
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J µ̂
sca

∣∣∣
r=R

= c∑
±

+∞∫
Ec(R)

Lmax(E,R)∫
Lc(E)

2π∫
0

pµ̂

±F(E)LdE dLdχ

R2
√

E2−VL(R)
, (4.59)

with pµ̂

± given by Eq. (4.55). From Eqs. (3.14) and (4.47) we note that the orthonormal
components of the particle current density (J0,Ji) are related to the usual spherical components
(Jt ,Jr,Jθ ,Jφ ) in the following way

J0 = α(r)Jt , J1 =
Jr

α(r)
, J2 = r Jθ , J3 = r sinθ Jφ . (4.60)

Now, we note from Eq. (4.59) that
J1

sca
∣∣
r=R = 0, (4.61)

because the terms p1
+ and p1

− cancel each other out in Eq. (4.59). Therefore, only the
absorbed trajectories contribute to the mass accretion rate since Ṁ = 4πr2 mα(r)J1(r) [cf.
Eqs. (3.31) and (4.60); also see Eq. (4.65)]. In contrast to this, all the trajectories (absorbed
and scattered) contribute to the particle number density nR. To see this, we compute the rest of
the orthonormal components of the particle current density. The non-vanishing terms yield

J0
abs
∣∣
r=R =

2π

α(R)3c2


+∞∫

mc2α(R)

E
√

E2−m2c4α(R)2 F(E)dE −
+∞∫

Ec(R)

E
√

E2−Vc(E,R)F(E)dE

 ,

(4.62)

J1
abs
∣∣
r=R =− π

R2α(R)


Ec(R)∫

mc2α(R)

Lmax(E,R)2 F(E)dE +

+∞∫
Ec(R)

Lc(E)2 F(E)dE

 , (4.63)

J0
sca
∣∣
r=R =

4π

α(R)3c2

+∞∫
Ec(R)

E
√

E2−Vc(E,R)F(E)dE, (4.64)

where we have introduced the shorthand notation Vc(E,R) := VLc(E)(R). Note that, when
R→ ∞, then VLc(E)(R)→ m2c4 and Ec(R)→ mc2 [see Eqs. (1.27), (1.45) and (1.39)]; hence
only the scattered particles yield a non-vanishing contribution to Jµ |r=R when R→ ∞, since
in Eq. (4.62) both integrals cancel each other out and the R2 in the denominator of Eq. (4.63)
makes J1

abs

∣∣
r=R→∞

= 0.
Finally, using

Jr|r=R = α(R) (J1
abs + J1

sca)
∣∣
r=R = α(R) J1

abs
∣∣
r=R , (4.65)
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and employing Eqs. (3.31) and (4.62)–(4.64), we obtain the mass accretion rate

Ṁ = 4πmR2 Jr|r=R =−4π
2m


Ec(R)∫

mc2α(R)

Lmax(E,R)2F(E)dE +

+∞∫
Ec(R)

Lc(E)2F(E)dE

 ,

(4.66)
and the particle number density at r = R,

nR =
1
c

√[
J0

abs(R)+ J0
sca(R)

]2− [J1
abs(R)

]2
, (4.67)

which is composed by both absorbed and scattered particles, as we said earlier.
To compute these expressions we need an explicit form of the distribution function F(E)

and the expressions for Lc(E) and Lmax(E,R), given by Eqs. (1.39) and (1.41). In the following,
we further analyze these results for the mono-energetic and Maxwell-Jüttner-type distributions
in the energy.

Mono-energetic distribution

First, it is convenient to obtain an expression for the energy E0 of a gas particle measured by
a static observer at the injection sphere (see the radial analogue in Section 4.1.2). At r = R
we expect that, locally, p0 = mγc and pi = mγui, where we recall that γ = (1− v2

R/c2)−1/2 is
the Lorentz factor associated with the 3-velocity of the gas particles measured by the static
observer at R. Hence,

|p⃗|2
(p0)2 =

m2γ2|⃗vR|2
m2γ2c2 =

|⃗vR|2
c2 , (4.68)

with |p⃗|2≡ (p1)2+(p2)2+(p3)2. Substituting the orthonormal components of the momentum
given in Eq. (4.55), we get

E0 = mc2
α(R)γ. (4.69)

This is a relation between the energy and the Lorentz factor, which we will use to express our
results.
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Now, for the mono-energetic model F(E) = f0 δ (E−E0), one obtains from Eqs. (4.66),
(4.67) and (4.69)

|Ṁ|
mcnR

= 4πR2
α(R)×



√
γ2−1
3γ2 +1

for 1 < γ < γc(R), (4.70a)

h(R,γ)[
4γ2
(√

γ2−1+
√

γ2−1−h(R,γ)
)2
−h(R,γ)2

]1/2 (4.70b)

for γ > γc(R),

where γc(R) := Ec(R)/[mc2α(R)] and h denotes the function

h(R,γ) :=
[

Lc(E0)

mcR

]2

=
8r2

S
R2

1
36α2γ2−8−27α4γ4 +αγ [9α2γ2−8]3/2 . (4.71)

Eqs. (4.70a) and (4.70b) generalize the Bondi-type formula (which can be found, for instance
in Chapter 14, Section 2 of Shapiro and Teukolsky 1983) to the accretion of a mono-energetic
gas of arbitrary energy E0 > mc2α(R) accreting from a sphere of finite radius R > rISCO.

In the limit R→ ∞, it follows that Ec(R)→ mc2 [see Eq. (1.45)] so that γc(R)→ 1 and
Eq. (4.70b) reduces to

|Ṁ|
mcn∞

=
πL2

c(mc2γ∞)

m2c2γ∞

√
γ2

∞−1
=

16πG2M2

c3v∞

[
1+

v2
∞

c2 −
v4

∞

c4 +O

(
v6

∞

c6

)]
, (4.72)

where n∞ := lim
R→∞

nR, v∞ := lim
R→∞

vR, and γ∞ := lim
R→∞

γR.

The leading-order term of Eq. (4.72) in v∞/c, agrees with the Zeldovich-Novikov accretion
rate for mono-energetic particles [Eq.(13.2.2) of Zeldovich and Novikov 1971] given by4

Ṁ =
16πG2M2

c2
ρ∞

v∞

, (4.73)

which represents the relativistic accretion of a collisionless kinetic gas onto a Schwarzschild
BH from R→ ∞.

Using the fact that for E = Ec(R) one has Lc(Ec) = Lmax(Ec,R), it is simple to verify that
|Ṁ| given by Eqs. (4.70a) and (4.70b) is continuous at the transition point γ = γc(R), where it

4The standard derivation of this result with an emphasis on Kinetic Theory can be found in the book of
Shapiro and Teukolsky (1983), particularly Eq. (14.2.20).
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has the value
|Ṁ|

mcnR
=

4πrSRα(R)√
1+ 2rS

R

. (4.74)

In fact, for fixed R, |Ṁ| is a monotonically increasing function of γ in the interval 1< γ < γc(R),
while it decreases monotonically for γ > γc(R). Thus, Eq. (4.74) is the maximum accretion
rate for the mono-energetic model with angular momentum.

Comparing Eq. (4.70a) with the corresponding expression for the mass accretion rate in
the absence of angular momentum (4.35), the difference relies in the factor (3γ2 +1)−1/2 ≤ 1
which implies that for γ < γc(R) the accretion rate is smaller when angular momentum
is considered. This is expected since the tangential movement of particles with angular
momentum reduces the net infall of particles. Note that in the non-relativistic limit γ → 1 for
fixed R one obtains half the value given in Eq. (4.38) computed for the purely radial infall. In
other words, by setting vR→ 0 one does not recover the same accretion rate for purely radial
infall; it appears an extra factor of 1/2. As further analyzed in Appendix A, this is due to the
fact that when angular momentum is present, the three-velocity contains non-trivial angular
components.

A simplified form of Eqs. (4.70a, 4.70b) can be obtained in the limit when the injection
sphere is far from the horizon (R≫ rS) and for non-relativistic energies, such that vR≪ c. For
this, one notices that

γc(R)−1 = 2
(rS

R

)2
+O

(rS

R

)3
, (4.75)

and that the denominator of the second factor on the right-hand side of (4.71) converges to 2
when α(R)→ 1 and γ → 1. Using this, one finds to leading order,

|Ṁ|
mcnR

= 4πR2×


vR

2c
for

vR

2c
<

rS

R
, (4.76a)

2c
vR

(rS

R

)2 1

1+

√
1−
(

2c
vR

rS
R

)2
for

vR

2c
>

rS

R
, (4.76b)

which is valid for R≫ rS and vR ≪ c. Therefore, Eqs. (4.76a) and (4.76b) represent the
non-relativistic limit of the accretion of a collisionless mono-energetic kinetic gas onto a
Schwarzschild BH from finite radius.

In Fig. 4.2 we show the behaviour of the dimensionless quantity Γ= |Ṁ|/(4πR2α(R)mcnR)

as a function of γ for different values of R (or, equivalently, Γ as a function of the velocity vR).
As can be observed from this figure, |Ṁ| increases for small values of γ (or small velocities
vR), the quantity Γ being independent of R, as follows from Eq. (4.70a). Hence, in this regime
the qualitative behavior of the accretion rate as a function of vR is similar to the case of
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purely radial infall (Eq. (4.38); the only difference consisting of the factor (3γ2 +1)−1/2, as
explained above) in which |Ṁ| increases linearly with γ . However, as soon as γ reaches the
critical value γc(R), |Ṁ| starts decreasing, converging to a finite (R-dependent value) in the
limit γ → ∞. This can be understood as follows: when γ < γc(R), all the particles have their
energy below the critical value Ec(R) and thus all of them are absorbed by the BH. This leads
to an accretion rate which increases with vR. However, when γ > γc(R), the particles have
their energy lying above Ec(R) and hence a fraction of them (namely, those with angular
momentum larger than Lc(E)) are scattered off the effective potential, leading to a smaller
accretion rate. As vR increases this fraction becomes larger which leads to a smaller mass
accretion rate (see Rioseco and Sarbach 2017b for a more extended discussion regarding this
effect for a similar model with R→ ∞).
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Fig. 4.2 The dimensionless quantity Γ = |Ṁ|/(4πR2α(R)mcnR) as a function of the Lorentz factor γ = (1−
v2

R/c2)−1/2 for some fixed values of the injection sphere’s radius R. The solid lines are computed from Eqs. (4.70a,
4.70b) for different values of R. The black dashed line shows the same quantity Γ for the case R = 10rS, using
the approximation from Eqs. (4.76a, 4.76b) which is valid for R≫ rS and non-relativistic velocities vR≪ c.
[Plot made by Carlos Gabarrete.]

Maxwell-Jüttner-type distribution

Next, we analyze the Maxwell-Jüttner-type distribution (4.39) which was also considered in
Rioseco and Sarbach (2017a,b).5 To understand this case, we define z(R,T ) := z = mc2βα(R),

5Again, one should be careful with associating T with temperature. Although in this section the gas particles
are not restricted to zero angular momentum, the gas is still not in strict thermodynamic equilibrium at finite R
because we are not considering hypothetical incoming particles emanating from the white hole. However, in the
collisionless case, the Maxwell-Jüttner-type distribution (4.39) has physical sense. See the discussion in Section
4 of Rioseco and Sarbach (2017b).
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and we perform the variable substitutions E = mc2α(R)(1+ x/z) and E = Ec(R)(1+ y/z) in
the integrals shown in Eqs. (4.62, 4.63, 4.64). This yields

J0 =
(
J0

abs + J0
sca
)∣∣

r=R =
2πAm3c4

z3/2 e−zI1(R,z), (4.77)

J1 = J1
abs
∣∣
r=R =−πAm3c4

z2 e−zI2(R,z), (4.78)

where I1(R,z) and I2(R,z) are given by

I1(R,z) =
∞∫

0

(
1+

x
z

)√
2x+

x2

z
e−xdx

+ γc(R)3e−Λ(R,z)
∞∫

0

(
1+

y
z

)
e−γc(R)y

√√√√z

[
1−

Vc
[
Ec(R)

(
1+ y

z

)
,R
]

Ec(R)2

]
+2y+

y2

z
dy,

(4.79)

I2(R,z) =

Λ(R,z)∫
0

(
2x+

x2

z

)
e−xdx+

γc(R)
R2 ze−Λ(R,z)

∞∫
0

Lc
[
Ec(R)

(
1+ y

z

)]2
m2c2 e−γc(R)ydy,

(4.80)
where we recall the shorthand notation γc(R) := Ec(R)/(mc2α(R)) and where we have set
Λ(R,z) := (γc(R)−1)z.

In this way, from Eqs. (4.66, 4.67, 4.77, 4.78) one obtains

|Ṁ|
mcnR

=
4πR2α(R)√

4z
[

I1(R,z)
I2(R,z)

]2
−1

. (4.81)

This equation, together with the integrals defined in Eqs. (4.79, 4.80), provides an exact
expression for the mass accretion rate as a function of the injection radius R and the temperature
T . Unfortunately, the integrals involved are rather complicated and for this reason it is
advantageous to obtain simplified expressions for certain limits. One such expression can be
obtained assuming that the gas temperature is low, such that kBT ≪ mc2, and that R≫ rS. In
order to discuss this limit, we first note that

1−
Vc
[
Ec(R)

(
1+ y

z

)
,R
]

E2
c (R)

=− 16r2
S

R2− r2
S

y
z
+O

(
y2

z2

)
, (4.82)
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and hence for z≫ 1 one obtains

I1(R,z)≈
∞∫

0

√
2xe−xdx+ γc(R)3e−Λ(R,z)

∞∫
0

√
2y

1− (3rS/R)2

1− (rS/R)2 e−γc(R)ydy. (4.83)

Now, the integrals in Eq. (4.83) can be evaluated explicitly which yields, for z≫ 1,

I1(R,z)≈
√

π

2

[
1+ γc(R)3/2e−Λ(R,z)

√
1− (3rS/R)2

1− (rS/R)2

]
. (4.84)

Similarly,

I2(R,z)≈ 2−2[1+Λ(R,z)]e−Λ(R,z)+
4r2

S
R2[γc(R)−1]

Λ(R,z)e−Λ(R,z)

α(R)2 (1+3rS/R)
, (4.85)

for z≫ 1, where we have used that

Lc [Ec(R)]
2

(mc)2 =
4r2

S
α(R)2 (1+3rS/R)

, (4.86)

which can be deduced from Eqs. (1.39) and (1.45). The expressions (4.84) and (4.85) are valid
when z≫ 1, independent of the value of R.

When R≫ rS one can use the expansion (4.75) to show that

Λ(R,z)≈ 2
(rS

R

)2
z. (4.87)

Therefore, Λ(R,z) depends on the ratio between the two large quantities z and R2, implying
that it varies over the whole range (0,∞). Assuming that R≫ rS in Eqs. (4.84) and (4.85)
leads to a further simplification,

I1(R,z)≈
√

π

2

[
1+ e−Λ(R,z)

]
, (4.88)

I2(R,z)≈ 2
[
1− e−Λ(R,z)

]
, (4.89)

which can be introduced into Eq. (4.81). In this way, one obtains the simple expression

|Ṁ|
mcnR

≈ R2
α(R) tanh

(
r2

S
R2 z

)√
32π

z
, (4.90)
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which is valid for arbitrary values of R≫ rS and z = mc2/(kBT )≫ 1. Eq. (4.90) represents
the non-relativistic limit of the accretion of a collisionless kinetic gas described by a Maxwell-
Boltzmann distribution6 onto a Schwarzschild BH from finite radius.

In the limit R→ ∞, Eq. (4.90) gives

|Ṁ|
mcn∞

≈
√

32πz∞ r2
S, (4.91)

where z∞ := lim
R→∞

z, which agrees with Eq. (87) in Rioseco and Sarbach (2017a).

In Fig. 4.3 we show the dimensionless quantity Γ = |Ṁ|/(4πR2α(R)mcnR) as a function
of z−1 (or, equivalently, Γ as a function of the temperature T ) for different values of R. The
behavior is very similar to the one of the mono-energetic model, except that the function is
smooth at the maximum value of the accretion rate, which is due to the non-trivial velocity
dispersion in the distribution function.
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Fig. 4.3 The dimensionless quantity Γ = |Ṁ|/(4πR2α(R)mcnR) as a function of z−1 = kBT/(mc2α(R)) for some
fixed values of the radius R of the injection sphere. The solid lines are computed from Eq. (4.81) for different
values of R. The black dashed line shows the same quantity Γ for the case R = 10rS, using the approximation
from Eq. (4.90) which is valid for R≫ rS and non-relativistic temperatures z−1 ≪ 1. [Plot made by Carlos
Gabarrete.]

6When the temperatures are non-relativistic (mc2≫ kBT ), the Maxwell-Jüttner distribution reduces to the
Maxwell-Boltzmann distribution.
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4.3 Summary of analytic models

In this section we provide a summary of the relativistic expressions that we have obtained
for the steady, spherical accretion of a collisionless kinetic gas from finite radius onto a
Schwarzschild BH for the different models presented in Sections 4.1 and 4.2. In all these
models, the mass accretion rate can be written in the following general form:

|Ṁ|= 4πR2
α(R)mcnRΓ, (4.92)

where R is the areal radius of the injection sphere, α(R) =
√

1− rS/R, with rS = 2GM/c2 the
Schwarzschild radius of the black hole, m is the mass of the particles and nR is the particle
density at the injection sphere. Here, Γ is a model-dependent dimensionless factor which is
defined as follows.

1. Purely radial mono-energetic model:

Γ =
vR

c
1√

1− v2
R

c2

, (4.93)

where vR is the magnitude of the three-velocity measured by static observers at the
injection sphere.

2. Purely radial Maxwell-Jüttner-type model:

Γ =
1√

[K1(z)zez]2−1
, (4.94)

where z = mc2α(R)/kBT with T the gas temperature at the injection sphere and where
K1(z) is the modified Bessel function of the second kind of first order. In the low-
temperature limit z≫ 1, this factor reduces to Γ≈

√
2/(πz).

3. Mono-energetic model with angular momentum:

Γ =



√
γ2−1

3γ2 +1
for 1 < γ < γc(R), (4.95a)

h(R,γ)[
4γ2
(√

γ2−1+
√

γ2−1−h(R,γ)
)2
−h(R,γ)2

]1/2 for γ > γc(R), (4.95b)
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where γ = (1− v2
R/c2)−1/2 is the Lorentz factor, γc(R) = Ec(R)/[mc2α(R)] with Ec(R)

given by Eq. (1.45), and

h(R,γ) =
8r2

S
R2

1
36α2γ2−8−27α4γ4 +αγ [9α2γ2−8]3/2 . (4.96)

In the (non-relativistic) limit R≫ rS and vR≪ c, these expressions simplify to

Γ≈



vR

2c
, for

vR

2c
<

rS

R
, (4.97a)

2c
vR

( rS
R

)2

1+

√
1−
(

2c
vR

rS
R

)2
, for

vR

2c
>

rS

R
. (4.97b)

4. Maxwell-Jüttner-type model with angular momentum:

Γ =
1√

4z
[

I1(R,z)
I2(R,z)

]2
−1

, (4.98)

where the integrals I1 and I2 are defined in Eqs. (4.79, 4.80). In the (non-relativistic)
limit R≫ rS and z≫ 1, this expression simplifies to

Γ≈
√

2
πz

tanh
(

r2
S

R2 z
)
. (4.99)

Note that in the limit z≫ R2/r2
S one obtains precisely the same result as the low-

temperature limit of the purely radial Maxwell-Jüttner-type model, Γ≈
√

2/(πz). This
shows that at very low temperatures the angular momentum is unimportant, which is
expected since at low temperatures most of the particles have low energy and hence
must have low angular momentum as well.7

4.4 Applications to Sgr A* and M87*

In this section we apply our models to the flows of Sgr A* and M87*, and we compare the
results with those obtained from hydrodynamical considerations (see Section 2.4). We compute
the accretion rate at scales of the order of the Bondi radius (in which the hydrodynamical
treatment is expected to be a good approximation) and at the scales of the Schwarzschild

7See Eq. (1.41): Lmax is small if E is close to its minimum value α(R)mc2.
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radius (in which the kinetic analysis should become the best approximation). In our models
we use the same temperature T for the cases described by a Maxwell-Boltzmann or Maxwell-
Jüttner-type distribution, whereas in the mono-energetic cases we convert T to a velocity by
choosing the velocity of the particles at the injection radius vR such that

1
2

mpv2
R = kBT, (4.100)

in a first approximation.8

4.4.1 Accretion at Bondi radius scales

For Sgr A*, which has T ∼ 2.2× 107 K (or kBT ∼ 1.9keV) at R = rB ∼ 0.06 pc (see
Section 2.4.1), we obtain vR = 600 km s−1, which lies within the velocity range of stellar
winds (see footnote 8), suggesting that the approximation (4.100) is acceptable. In the case of
M87*, we have T ∼ 1.06×107 K (or kBT ∼ 0.91keV) at R∼ 0.19 kpc (see also Section 2.4.1),
which gives us vR = 420 km s−1. We also use these values of vR to compute the mass accretion
rate for the Zeldovich-Novikov model for mono-energetic particles (Eq. (4.73) in this work,
or Eq. (14.2.20) in Shapiro and Teukolsky 1983) and we use the same temperature for the
Rioseco-Sarbach model (Eq. (4.91) in this work, or Eq. (87) in Rioseco and Sarbach 2017a).9

We show the comparisons in Tables 4.1 and 4.2. In all of these models, we have considered the
observational approach and assumed that the values of nR correspond to the measured electron
number density ne at R, as is regularly done when applying the Bondi model. Furthermore, we
assume a fully ionized hydrogen gas, so ne = np, and since mp≫ me, then the mass accretion
rate will be determined mainly by the protons, thus we take m = mp.

We see from Tables 4.1 and 4.2 that our models predict significantly different mass
accretion rates depending on whether or not the infalling particles have angular momentum.
The results from the purely radial infall in the kinetic description, both in the relativistic and
non-relativistic cases, agree in order of magnitude with those of the hydrodynamical Bondi
model. In contrast to this, the models with angular momentum predict a significantly lower
mass accretion rate (by about ∼ 4–5 orders of magnitude) than the Bondi formula, and have

8Although vR is not known a priori, it is reasonable to suppose that it is of the order of the fluid sound speed
or to assume that its value is of the order of the wind velocity from known massive stars that are embedded
within the dilute accretion flow. For example, the stellar winds surrounding Sgr A* have velocities of the order
of ∼ 450–3000 km s−1 depending if the winds are composed by O-type stars (Allen et al. 1990; Puls et al.
1996; Repolust et al. 2004) or Wolf-Rayet stars (Martins et al. 2007; Paumard et al. 2006). Through numerical
hydrodynamical simulations of wind-fed accretion, this range of velocities has been shown to be consistent with
observational constraints from X-ray luminosities and Faraday rotation measures (Calderón et al. 2020; Cuadra
and Nayakshin 2006; Cuadra et al. 2008; Ressler et al. 2018, 2020; see also Section 2.4).

9To apply the Zeldovich-Novikov and Rioseco-Sarbach models, we have assumed that n∞ = nR
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Accretion model Approximation Distribution function |Ṁ| [M⊙ yr−1] Reference
Bondi non-rel (Perfect fluid) ∼ 10−5 Falcke and Markoff (2013)

Zeldovich-Novikov non-rel Mono-energetic ∼ 1.29×10−9 Zeldovich and Novikov (1971)
Rioseco-Sarbach rel Maxwell-Jüttner ∼ 1.45×10−9 Rioseco and Sarbach (2017a)

Radial infall non-rel Mono-energetic ∼ 1.09×10−4 This work, Eq. (4.15)
Radial infall non-rel Maxwell-Boltzmann ∼ 6.22×10−5 This work, Eq. (4.21)
Radial infall rel Mono-energetic ∼ 1.09×10−4 This work, Eq. (4.35)
Radial infall rel Maxwell-Jüttner ∼ 6.22×10−5 This work, Eq. (4.46)

Infall with angular momentum rel Mono-energetic ∼ 1.29 ×10−9 This work, Eq. (4.76b)
Infall with angular momentum rel Maxwell-Jüttner ∼ 1.45×10−9 This work, Eq. (4.90)

Table 4.1 Mass accretion rate inferred for Sgr A* at R = 0.06pc, for the models studied in this work and
for other models from the literature. We assume m = mp = 1.67 × 10−27 kg, and the characteristic values
of M = 4.3× 106 M⊙, T = 2.2 × 107 K and nR = 160cm−3, as mentioned in the text. We consider an infall
velocity of vR = 600 km s−1 at the radius R for the mono-energetic models. The Bondi model result is taken
from Eq. (2.9). In the mono-energetic models we have used E0 =

1
2 mpv2

R−GMmp/R for the non-relativistic
case and E0 = mc2α(R)γ for the relativistic case. Note that in the latter case with angular momentum it turns
out that γ > γc(R), and since both conditions R≫ rS and vR ≪ c are met, one can use the corresponding
approximation (4.76b). ‘Non-rel’ and ‘rel’ stand for the kinetic non-relativistic and relativistic cases, respectively.

rates very similar to the ones from the Zeldovich-Novikov and Rioseco-Sarbach models, where
the infall is assumed to start from infinity, clearly indicating that the angular momentum is a
decisive parameter in determining the magnitude of the mass accretion rate.

To shed some light on these results, we first note that in the scenario considered in
Table 4.1, the parameter z = mc2α(R)/kBT ≈ mc2/kBT ≈ 5× 105 is still smaller than the

ratio
(

R
rS

)2
≈ 2.1× 1010, that is z≪

(
R
rS

)2
, and thus the results for the Maxwell-Jüttner

model with or without angular momentum differ significantly [see the discussion below
Eq. (4.99)].10 On the other hand, for the scenario considered in Table 4.2, we have z≈ 106

and
(

R
rS

)2
≈ 9.3×1010, so we still have z≪

(
R
rS

)2
, and the same analysis applies.

Furthermore, we observe that the models describing a purely radial infall can be written in
the form [see Eqs. (4.92), (4.93) and (4.94)]

|Ṁ|
mnRvR

= 4πλL=0 R2, (4.101)

with λL=0 := α(R)Γc/vR = O(1) for both Sgr A* and M87* cases.11 This has the same form
as the Bondi formula (2.6) with the Bondi radius rB replaced with R and the sound speed

10The only way the role of the angular momentum could be neglected is to have z≫
(

R
rS

)2
. This means that

only at very low temperatures (of the order of the Cosmic Microwave background, T ∼ 2.73 K or lower), the
models with and without angular momentum yield comparable mass accretion rates for the ratio between R and
rS considered in our example.

11The fact that λL=0 =O(1) can be seen directly from Eq. (4.93) for the radial case, but for the Maxwell-Jütner
case we need to use that vR/c≈

√
2/z which can be seen from Eq. (4.100) and the definition of z.
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Accretion model Approximation Distribution function |Ṁ| [M⊙ yr−1] Reference
Bondi non-rel (Perfect fluid) ∼ 0.3 This work, Eq. (2.10)

Zeldovich-Novikov non-rel Mono-energetic ∼ 8.15×10−6 Zeldovich and Novikov (1971)
Rioseco-Sarbach rel Maxwell-Jüttner ∼ 9.24×10−6 Rioseco and Sarbach (2017a)

Radial infall non-rel Mono-energetic ∼ 1.49 This work, Eq. (4.15)
Radial infall non-rel Maxwell-Boltzmann ∼ 0.84 This work, Eq. (4.21)
Radial infall rel Mono-energetic ∼ 1.49 This work, Eq. (4.35)
Radial infall rel Maxwell-Jüttner ∼ 0.84 This work, Eq. (4.46)

Infall with angular momentum rel Mono-energetic ∼ 8.15 ×10−6 This work, Eq. (4.76b)
Infall with angular momentum rel Maxwell-Jüttner ∼ 9.24×10−6 This work, Eq. (4.90)

Table 4.2 Mass accretion rate inferred for M87* at R = 0.19kpc, for the models studied in this work and
for other models from the literature. We assume m = mp = 1.67 × 10−27 kg, and the characteristic values of
M = 6.5× 109 M⊙, T = 1.06 × 107 K and nR = 0.31cm−3, as mentioned in the text. We consider an infall
velocity of vR = 420 km s−1 at the radius R for the mono-energetic models. In the mono-energetic models we
have used E0 = 1

2 mpv2
R−GMmp/R for the non-relativistic case and E0 = mc2α(R)γ for the relativistic case.

Note that in the latter case with angular momentum it turns out that γ > γc(R), and since both conditions R≫ rS
and vR≪ c are met, one can use the corresponding approximation (4.76b). ‘Non-rel’ and ‘rel’ stand for the
kinetic non-relativistic and relativistic cases, respectively.

c∞ replaced with vR. Since in our example R≈ rB and vR is comparable with c∞, it follows
that the accretion rates for the purely radial infall yield similar results to the Bondi model. In
contrast, the models with angular momentum [Eqs. (4.97) and (4.99)] in the limit z≪ (R/rS)

2

relevant for our example, give us

|Ṁ|
mnRvR

= 4πλL>0 r2
Sz = 4πλL>0 r2

B

(
r2

S

r2
B

z
)
, (4.102)

with λL>0 := R2α(R)Γc/(vRr2
Sz) = O(1) for both Sgr A* and M87* cases. Accordingly, the

mass accretion rate is suppressed by a factor of (rS/rB)
2z∼ 10−5 for both cases, compared to

the Bondi accretion rate.
As mentioned in Section 2.3.2, a long standing problem in astrophysics is that the measured

luminosity of Sgr A* (and other underluminous sources such as M87*) is way lower than
that expected from the Eddington luminosity. Since the luminosity of the accreting flow of
BHs is proportional to the mass accretion rate, there have been mainly two proposed solutions
to explain the observed low luminosity: 1) a Bondi accretion rate with a very low radiative
efficiency or 2) a much lower mass accretion rate than the Bondi rate. In the literature, various
RIAF models have been proposed to solve this problem by taking into account one or both of
these solutions (see Section 2.3). Comparing the results from Tables 4.1 and 4.2, we conclude
that part of the solution to the low luminosity problem of Sgr A* and M87* could be that the
mass accretion rate should be inferred from the accretion of a kinetic gas at a finite radius,
taking into account the angular momentum of the individual particles. In this case, our mass
accretion rate estimates for the models with angular momentum are of the order of the mass
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accretion rates bounds inferred from rotation measures (see Section 2.4.2). Note, however,
that these bounds are supposed to be for the vicinity of the BH horizon. Therefore, there is
a significant difference in the results of the hydrodynamical and kinetic approaches for the
wind accretion at R∼ rB, at least for our simplified models with angular momentum. A more
complete theoretical kinetic treatment and future kinetic simulations of this accretion scenario
could explain this difference, by confirming the important disparity between the accretion rates,
or by endowing the kinetic flow with an accretion rate-reduction mechanism as a consequence
of the more complex modelling of the problem. Finally, note that our explanation of the
low luminosity problem relies solely in the assumption that the luminosity is proportional to
the accretion rate. In contrast, the RIAF solutions rely in the mechanism of radiation of the
accretion flow to explain the low luminosity (see Section 2.3). In our simplified models, we
did not take into account the radiation properties of the collisionless kinetic gas.

4.4.2 Accretion at event horizon scales

At the scales of the Schwarzschild radius, the values of temperature and density of the flow
near the BH are estimated from the results of GRMHD simulations for a two-temperature
plasma of electrons and ions (see Section 2.3). The accretion in these simulations proceeds
through a geometrically thick, optically thin hydrodynamical flow, coming initially from
a weakly magnetized torus in hydrodynamic equilibrium, orbiting a Kerr BH. Despite the
significant physical differences with the more realistic case studied in the GRMHD simulations,
we apply our models of the Maxwell-Jüttner-type distribution function as an illustrative first
approximation for the kinetic scenario.12

For Sgr A* we take the values of density and temperature at event horizon scales of a
two-temperature radial inflow–outflow hydrodynamical model with self-consistent feeding
and conduction presented in Shcherbakov and Baganoff (2010); we assume a fully ionized
plasma so that there is an equality between electron and proton densities, ne = np, and we take
R = 5rS, nR = ne = 2×106 cm−3 and T = Tp = 30Te = 1.2×1012 K. We also take m = mp

since mp≫ me. The accretion rates calculated are shown in Table 4.3. We found consistency
with the values of the RM constraints for the vicinity of Sgr A* (see Section 2.4.2).13 Moreover,
the radial infall in our models produces a greater mass accretion rate by a factor of∼ 3.3. Thus,
in these models the role of angular momentum is not highly significant close to the BH horizon
(in contrast, at the Bondi radius scales, we found a difference of ∼ 4–5 orders of magnitude

12In this case, we do not consider the mono-energetic models due to their more idealized (non-physical) nature.
13Very recently, the Event Horizon Telescope collaboration estimated Sgr A*’s accretion rate to be around

Ṁ ∼ 10−9−10−8 M⊙ yr−1 with their GRMHD simulations (Event Horizon Telescope Collaboration 2022e). Our
kinetic model with angular momentum predicts an accretion rate inside this range.
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between the radial infall and the infall with angular momentum, as we discussed earlier).
This is consistent with the well-known fact that particles fall almost radially as they approach
to the ISCO (see e.g. Chandrasekhar 1983; Núñez and Degollado 2005). It is important to
note that we took values of temperature and densities from hydrodynamical models as a first
approximation, due to the lack of model-independent estimations of the conditions near the
SMBHs.

Accretion model Distribution function |Ṁ| [M⊙ yr−1] Reference

Radial infall Maxwell-Jüttner ∼ 2×10−7 This work, Eq. (4.45)
Infall with angular momentum Maxwell-Jüttner ∼ 6.04×10−8 This work, Eq. (4.81)

Table 4.3 Mass accretion rate inferred for Sgr A* at R = 5rS, for the Maxwell-Jüttner models. We have used
m = mp = 1.67 × 10−27 kg, M = 4.3×106 M⊙, T = 1.2×1012 K and nR = 2×106 cm−3 (see Shcherbakov and
Baganoff 2010).

With the same caveats as in the Sgr A* case, we apply our Maxwell-Jüttner-type models
to M87*. Recently, the EHT collaboration has provided results for the mass accretion rate
due to the plasma around M87*. They report an estimated average number density range
of ne ∼ 2.9× 104–7 cm−3, an electron temperature Te ∼ (1–12) ×1010 K, and an inferred
mass accretion rate for M87* of (3 – 20)×10−4 M⊙ yr−1 from a simple one-zone emission
model (Event Horizon Telescope Collaboration 2019e, 2021a,b). For the specific isothermal
sphere model, they estimate the plasma number density ne ≃ 2.9×104 cm−3 and the electron
temperature Te ≃ 6.25×1010 K, at an emission radius r ≃ 5rS/2. In Table 4.4 we present the
mass accretion rates obtained from these values, assuming a fully ionized hydrogen plasma
(nions = ne) and assuming thermal equilibrium between the ions and electrons (Tions = Te) as a
first approximation. Furthermore, we impose these values at radius R∼ 5rS, as in the example
of Sgr A*.14 In this case, we also got similar mass accretion rates for the models with and
without angular momentum. Therefore, we confirm again that the angular momentum does
not play an important role at event horizon scales. Despite our crude approximation for the
accretion flow of M87*, the inferred mass accretion rates are consistent with the reported
bounds by the Event Horizon Telescope Collaboration (2021b) (see Section 2.4.2).

14The reason for not choosing R = 5rS/2 is that this value is smaller than the ISCO radius of a Schwarzschild
BH assumed in our model.
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Accretion model Distribution function |Ṁ| [M⊙ yr−1] Reference

Radial infall Maxwell-Jüttner ∼ 1.53×10−3 This work, Eq. (4.45)
Infall with angular momentum Maxwell-Jüttner ∼ 1.52×10−3 This work, Eq. (4.81)

Table 4.4 Mass accretion rate inferred for M87* at R = 5rS, for the Maxwell-Jüttner models. We have used
m = mp = 1.67× 10−27 kg, M = 6.5×109 M⊙, T = 6.25×1010 K and nR = 2.9×104 cm−3 (see Event Horizon
Telescope Collaboration 2019f, 2021b).



Conclusions

Low collisionality is a general property expected in underluminous flows near black holes
(BHs) due to the conditions of high temperatures and low densities; it is also an expected
property of dark matter. Remarkably, this kind of flows could be immersed in a strong
gravitational background and/or in a high-velocity/high-temperature state. Therefore, we
expect that the appropriate treatment of these scenarios should be done with general relativistic
Kinetic Theory. Previous analytic studies treat the problem of kinetic relativistic accretion
onto BHs by specifying boundary conditions at infinity, whereas in a realistic situation the gas
is accreted from a region of finite radius.

In this work we presented several analytic models and their corresponding steady-state
solutions for the accretion of a spherically symmetric, collisionless kinetic gas cloud onto
a Schwarzschild BH. The novelty of this work consists in specifying the properties of the
kinetic gas (its particle density nR and mean velocity or temperature) at an injection sphere
of finite radius R. The models we have discussed (both in non-relativistic and relativistic
regimes) include the simple case of purely radial infall (in which all the particles have zero
angular momentum) and the case of a kinetic gas with a uniform distribution in the angular
momentum, such that individual gas particles may rotate about the BH, but maintaining the
spherical symmetry of the gas configuration as a whole. We considered two particular models:
1) a mono-energetic distribution in energy in which all particles have the same energy (or
the same three-velocity vR at the injection sphere), and 2) a Maxwell-Jüttner distribution (a
generalization of the Maxwell-Boltzmann distribution) with corresponding temperature T ,
assuming that the gas is accreted from a reservoir of particles in thermodynamic equilibrium.
In each model, the mass accretion rate depends linearly on nR which is a direct consequence
of our test field approximation (we have neglected the self-gravity of the kinetic gas) while its
dependency on R and vR or T is more intricate and is summarized in Section 4.3. We have
checked that for fixed values of nR, vR and T , the accretion rates of our models converge to
the corresponding expressions of previously known results in the limit R→ ∞.



We used our models to calculate the mass accretion rate onto the SMBHs Sgr A* and
M87*, estimating the conditions of the gas at Bondi radius and event horizon scales. Our
results, which are summarized in Tables 4.1– 4.4, are of the order of the model-dependent
bounds for the mass accretion rate of Sgr A* and the bounds estimated for M87* by the
Event Horizon Telescope collaboration. Overall, our kinetic models can predict lower mass
accretion rates than the Bondi fluid model (see the following paragraphs). This suggests
that a complete kinetic treatment to the accretion problem could explain some of the current
questions associated with underluminous sources such as Sgr A* or M87*.

We have shown that, for boundary conditions corresponding to non-relativistic velocities
or temperatures, the mass accretion rates predicted by the purely radial infall models and by
the well-known Bondi model for a hydrodynamic flow, yield comparable results, provided R is
of the same order as the Bondi radius. This has physical sense since the presence of collisions
between particles in the Bondi hydrodynamical model restricts tangential motion and funnels
particles effectively in the radial direction. Therefore, in this work we obtained the kinetic
relativistic analogue of the Bondi model.

Regarding our models with angular momentum, we have found that the kinetic accretion
rate differs significantly (is much lesser) from the Bondi estimation (this was previously
known for models with R→ ∞). This is a consequence of having a collisionless gas, since
the collisions in the hydrodynamic model channel the particles into the BH, as we mentioned
before. Moreover, we have showed that the predictions of kinetic models with R ∼ RB are
very similar to those with R→ ∞.

When the injection sphere is close to the event horizon, R∼ rS, we have found that the
kinetic accretion rates predicted by the models with and without angular momentum yield
very similar results. This is consistent with the fact that the particles fall almost radially as
they approach to the radius of the innermost stable circular orbit.

Furthermore, we showed that the accretion rate of the models with angular momentum
behaves qualitatively similarly to the purely radial infall models (it increases with increasing
values of vR or T ) as long as vR or T lie below a critical value. However, above this critical
value, the accretion rate reverses its behavior and decreases with increasing vR or T until
it reaches a finite value. As we have explained, this reversal is due to the fact that as the
particle’s energy increases above a certain threshold, not all the particles are absorbed by the
BH, and the fraction of absorbed particles becomes smaller as the energy increases, leading to
a diminishing mass accretion rate.

There are several ingredients which, for simplicity, we did not take into account in our mod-
els. In particular, we restricted ourselves to spherical, steady accretion onto a Schwarzschild
BH, instead of the more realistic non-spherical (possibly disk-like) and unsteady accretion



onto a Kerr BH. Furthermore, we did not included the effects of radiative processes, magnetic
fields, the consequences of outflows, convection currents or jets.

Despite its simplicity, the presented models could serve as reference for more generic
kinetic models, and they could be useful as a starting point to describe other physical scenarios
where the assumptions of very low collisionality or quasi-spherical symmetry are approxi-
mately satisfied. This is the case, for example, in the BH accretion of dark matter, which is
expected to be very weakly interactive, or in the accretion of low-luminosity active galactic
nuclei whose corresponding flows are in a hot and low-density state. Future generalizations of
the presented formalism could be a key step in understanding the accretion process.
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Appendix A

Fixed-L-models

The purpose of this appendix is to shed some light on the difference between the accretion
rates predicted by the mono-energetic model in the purely radial case, Eq. (4.38), and the
same model in the presence of angular momentum, Eq. (4.70a). As we have discussed below
Eq. (4.74), in the non-relativistic limit vR≪ c the latter case yields an accretion rate that is
smaller (by a factor of 2) compared to the purely radial case. In contrast, there is not such
difference for the Maxwell-Jüttner type model when the low temperature limit is taken [cf. the
comments below Eq. (4.99)].

To illustrate the role played by the angular momentum in this behavior, we consider the
following simple model

F(E,L) = f (E)
δ (L−L0)

L0
, (A.1)

in which all the particles have the same angular momentum L0 > 0 and are subject to the
energy distribution f (E) which we specify later. Assuming that L0 is small enough such
that L0 < Lc(E) for all E > mc2α(R) (which is guaranteed to be the case if L0 < LISCO), one
obtains from Eqs. (4.58) and (4.59) the expressions

J µ̂

abs

∣∣∣
r=R

= c
∞∫

√
VL0(R)

2π∫
0

pµ̂

− f (E)dEdχ

R2
√

E2−VL0(R)
, (A.2)

J µ̂
sca

∣∣∣
r=R

= 0, (A.3)
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from which one immediately obtains

J0
abs
∣∣
r=R =

2π

α(R)R2

∞∫
√

VL0(R)

f (E)EdE√
E2−VL0(R)

, (A.4)

J1
abs
∣∣
r=R =− 2π

α(R)R2

∞∫
√

VL0(R)

f (E)dE, (A.5)

and J2
abs

∣∣
r=R = J3

abs

∣∣
r=R = 0, where we have introduced the shorthand notation

VL0(r) :=VL(r)|L→L0
.

For the mono-energetic model with f (E) = f0δ (E−E0) and E0 = mc2αγ [see Eq. (4.69)],
this yields (assuming VL0(R)< E2

0 or, equivalently, L0 < Lmax(E0,R))

|Ṁ|
mcnR

= 4πR2
α(R)

√
γ2

1+κ2 −1, (A.6)

where we have defined κ := L0/(Rmc). In the limit L0 → 0 one recovers the result from
Eq. (4.38) which has been derived directly with the assumption that all the gas particles have
vanishing angular momentum. If instead of L0→ 0 one sets L0 = R|v⊥| with v⊥ the angular
components of the velocity, one obtains in the limit |vR| ≪ c,

|Ṁ|
mcnR

≈ 4πR2
α(R)

vrad

c
, (A.7)

where vrad =
√

v2
R−|v⊥|2 denotes the radial component of the three-velocity of the particles.

For purely radial infall vrad = vR and this result agrees precisely with Eq. (4.15). However,
when angular momentum is present, the accretion rate is suppressed by a factor of vrad/vR.
This illustrates why the accretion rate is smaller for models with angular momentum when nR

and vR are fixed at the injection sphere.
It is also interesting to apply the model described in Eq. (A.1) to the Maxwell-Jüttner-

type distribution function. Inserting f (E) = Ae−βE into Eqs. (A.4, A.5) yields the following
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non-vanish components of the current density

J0
abs
∣∣
r=R =

2πA
α(R)R2β

zκK1 (zκ) , (A.8)

J1
abs
∣∣
r=R =− 2πA

α(R)R2β
e−zκ , (A.9)

where we have set zκ :=
√

1+κ2z and z = mc2α(R)β , as defined below Eq. (4.44). This in
turn leads to the mass accretion rate

|Ṁ|
mcnR

=
4πα(R)R2√

[K1 (zκ)zκezκ ]2−1
, (A.10)

which converges to the same expression as in Eq. (4.45) in the limit L0→ 0. Whereas the
leading-order behavior of the mass accretion rate given in Eq. (A.6) for vR≪ c and κ ≪ 1
depends on the relation between vR/c and κ , the limit of the right-hand side of Eq. (A.10)
for z≫ 1 and κ ≪ 1 always yields 4α(R)R2

√
2π/z, regardless of the relation between z and

κ . This explains why in the Maxwell-Jüttner case the accretion rate for the models with and
without angular momentum agree with each other in the low temperature limit.
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