

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA EN EXPLORACIÓN Y EXPLOTACIÓN DE RECURSOS NATURALES-YACIMIENTOS

NUEVA PERSPECTIVA DEL FENÓMENO DE ADSORCIÓN EN UN SISTEMA DE QUÍNTUPLE POROSIDAD EN SHALE-GAS: APLICACIÓN A LA ECUACIÓN DE BALANCE DE MATERIA

TESIS QUE PARA OPTAR POR EL GRADO DE: MAESTRO EN INGENIERÍA

> PRESENTA: DÍAZ LÓPEZ RICARDO FÉLIX

COMITÉ TUTOR: Dr. BRUNO ARMANDO LÓPEZ JIMENEZ FACULTAD DE INGENIERÍA Dr. RODOLFO GABRIEL CAMACHO VELÁZQUEZ PROGAMA DE MAESTRIA Y DOCTORADO EN INGENIERÍA

CIUDAD UNIVERSITARIA, CIUDAD DE MÉXICO, JUNIO 2022

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

- Presidente: Dr. Samaniego Verduzco Fernando
- Secretario: Dr. Camacho Velázquez Rodolfo Gabriel
- 1^{er} Vocal: Dr. López Jiménez Bruno Armando
- 2^{do} Vocal: Dr. Berumen Campos Sergio
- 3 ^{er} Vocal: Dr. Fuentes Cruz Gorgonio

Lugar donde se realizó la tesis: Ciudad Universitaria, Ciudad de México, México

Tutores de Tesis:

Dr. López Jiménez Bruno Armando

Bank

FIRMA

Dr. Camacho Velázquez Rodolfo Gabriel

FIRMA

DEDICATORIA

Cuando inicie esta aventura llamada maestría, no tenía idea de todo lo que eso iba a significar en mi vida, no era consciente del reto al cual me enfrentaría, todo el esfuerzo, constancia, tiempo y momentos que esta me pediría.

Conforme me adaptaba a ritmo de la ciudad, comenzaba a entender el contexto de la maestría, hacia amigos y estudiaba. me di cuenta de que jamás le dique tiempo a cosas como

organizar, planear, registrar avances, ganar contexto acerca del tema de investigación, aprender a investigar, aprender a usar el teclado de una computadora, usar el formato APA, aprender a buscar información en una base de datos, trabajar en la nube, escribir un mail, hacerse preguntas mientras se gana más contexto, hacer bitácoras de búsqueda, adaptarse a las circunstancias de una realidad inesperada como lo fue la pandemia, dudar constantemente sobre si seguir con el camino hacia Itaca, hacerse amigo del que lee y escribe lento, darse el permiso de fallar, entre muchas cosas que consideraba inútiles, pero que conforme avanzaba, esas cosas que consideraba prescindibles me cambiaron de perspectiva y me permitieron terminar.

Este humilde esfuerzo plasmado en este trabajo de investigación se los dedico a mi Padre Ricardo Díaz Villanueva, a mi Madre Annel Olivia López Arteaga, Hermana Annel Olivia Díaz López, abuela Olivia Arteaga Valdes, tíos José Alberto López Arteaga, Julia López Arteaga y a Dios.

AGRADECIMIENTO

En una sociedad que le exige al maestro ser un burócrata, obligándolo a gastar su tiempo en reunionés de la academia, papeleo interminable, dar clases desde en línea sin la oportunidad de que este tenga un mal día. Quizás algunas de estas condiciones expliquen el por qué ahora los maestros están más enfocados en el problema del quantitas y desechan el problema del quálitas, provocando que sea extraño encontrar un maestro que le dedique tiempo a sus estudiantes, que se esfuerce por preparar sus clases, y que motive a sus alumnos a esforzarse.

Felicito y agradezco al **Dr. Bruno Armando** por ser ese profesor extraño, que le dedica tiempo a sus estudiantes. Haber trabajado con un profesor así fue un privilegio, se preocupó por darme las herramientas necesarias para desarrollar el presente trabajo de investigación, busco la oportunidad de contactarme con referentes, pero creo que una de las cosas que más valoro fue que durante todo el proceso se ocupó de ver mis avances para poder darme una retroalimentación rápida y efectiva evitando incontables veces que me desviara del tema de tesis.

Le agradezco al **Dr. Camacho** que al conocer la situación urgente que se presentó por el camino, dio toda su disposición, tiempo y guía para poder finalizar este proceso.

Finalmente tengo que agradecer a la UNAM, jamás creí que una universidad me fuera dar tanto, me dio estabilidad financiera con su increíble programa de becas, profesores increíbles, me dejo disfrutar por unos 8 meses sus espectaculares instalaciones, teniendo a disposición sus bibliotecas todo el tiempo, me dio la oportunidad de hacer amigos, de disfrutar pequeños ritos como comer unos tacos de canasta los lunes en la mañana después de la clase del Dr. Camacho acompañado de amigos **Fernando, Omar, Luis y Jess**. Me habría encantado poder hacer toda la maestría en físico más por la pandemia fue imposible, pero quizás esa es la razón por la que valoro y agradezco todas las cosas que la UNAM me ha brindado.

INDICE

1.	Ca	pítul	o I: Introducción1
	1.1.	Pot	encial de los shales en el mundo2
	1.2.	Pot	encial de los shales en México4
	1.3.	Sist	tema de quíntuple porosidad6
	1.4.	Obj	jetivos de la tesis9
	1.5.	Org	ganización de la tesis9
2.	Ca	pítul	o II: Estado del arte11
	2.1.	Ad	sorción y modelos de isotermas11
	2.2.	Fur	nciones de error16
	2.3.	Car	nbios de la porosidad y permeabilidad de las fracturas naturales en función de los
	esfue	rzos	
	2.4.	Sol	ubilidad del metano en el querógeno19
	2.5.	Ant	tecedentes de la EBM: de yacimientos convencionales a shales20
	2.5	5.1.	EBM para un yacimiento de gas seco convencional20
	2.5	5.2.	EBM para yacimientos de gas en capas de carbón (CBM) y shales21
	2.5	5.3.	EBM para yacimientos naturalmente fracturados (Aguilera, 2008)22
	2.5	5.4.	EBM para shales sensibles a los esfuerzos (Cabrapán Duarte et al., 2014)24
	2.5	5.5.	EBM para shales con la presencia de gas libre, gas adsorbido, y gas disuelto
	(0	rozco	o y Aguilera, 2015)26
3.	Ca	pítul	o III: Metodología29

	3.1.	Presentación de la EBM para yacimientos tipo shale-gas de quíntuple porosidad
	adapt	ada para que sea compatible con cualquier modelo de adsorción
	3.2.	Semillas empleadas para iniciar el proceso de optimización de los parámetros omegas31
	3.3.	Fuentes empleadas para recopilación de data
	3.4.	Flujo de trabajo
4.	Caj	pítulo IV: Resultados
	4.1.	Pozo No.6630
	4.2.	Pozo No.6654
	4.3.	Discusión de resultados50
5.	Caj	pítulo V: Conclusiones y recomendaciones
	5.1.	Futuro de la investigación56
6.	Bił	bliografia57
7.	AP	ÉNDICE A63
8.	Lis	ta de símbolos, abreviaciones y Nomenclatura74

INDICE DE TABLAS

Tabla 1 Los 10 de países con los mayores recursos técnicamente recuperables de aceite en
lutitas
Tabla 2 Los 10 de países con los mayores recursos técnicamente recuperables de gas en lutitas.4
Tabla 3 Recursos de aceite y gas en shales estimados por PEMEX y EIA.
Tabla 4 Modelos de isotermas para representar el fenómeno de adsorción: modelos monocapa,
multicapa e híbridos
Tabla 5 Funciones de error usadas para determinar la isoterma que brinda el mejor ajuste a los
datos de campo (presión y producción acumulada)17
Tabla 6 Datos pertenecientes a los pozos No.6630 y No.6654
Tabla 7 Historia de producción de el pozo No.6630. 37
Tabla 8 Constantes de los mejores prospectos de solución (isotermas) para el pozo No. 663039
Tabla 9 Resultados del análisis estadístico para el pozo No.6630.
Tabla 10 Historia de producción de el pozo No.6654.
Tabla 11 Constantes de los mejores prospectos de solución (isotermas) para pozos No.665446
Tabla 12 Resultados del análisis estadístico para el pozo 6654.
Tabla 13 Constantes de la isoterma de Langmuir para pozo No.6654.
Tabla 14 Constantes de la isoterma de Langmuir para pozo No.6630. 54

INDICE DE FIGURAS

Figura 1 Volumen recuperable de gas tipo shale para las cuencas de Burgos, Sabinas, Tampico,
Tuxpan (plataforma) y Veracruz5
Figura 2 Volumen recuperable de aceite tipo shale para las cuencas de Burgos, Sabinas,
Tampico, Tuxpan (plataforma) y Veracruz6
Figura 3 Esquema representativo del sistema de quíntuple porosidad en shales utilizado en este
estudio7
Figura 4 Radio efectivo de poro orgánico mostrando los cambios del radio del poro orgánico
como consecuencia de la explotación del yacimiento y la interacción continua entre la adsorción
y la difusión del gas8
Figura 5 Proceso de adsorción y desorción de moléculas de una sustancia a una superficie11
Figura 6 Esquema representativo de la adsorción en monocapa (A) y multicapa (B)12
Figura 7 Comportamiento tipo de un yacimiento volumétrico de gas en un gráfico P/Z vs. G _{p.}
Figura 8 Gráfica P/Z vs Gp para yacimientos naturalmente fracturados donde se muestra la
sensibilidad del sistema fracturado a los esfuerzos, así como su efecto en la determinación del
OGIP. De no ser considerados dichos efectos, el OGIP sería sobre estimado. Fuente: Aguilera
(2008)
Figura 9 Comparación de la respuesta del comportamiento dinámico de un yacimiento que
experimenta el proceso de adsorción/desorción vs. el correspondiente a un yacimiento
volumétrico de gas26

Figura 10 Gráfica de balance de materia mostrando las contribuciones de gas libre, adsorbido y
de gas disuelto para la determinación del OGIP para el pozo No.6654 ubicado en la cuenta
Appalachian de los EUA
Figura 11 P/Z vs producción de gas acumulada del pozo No.6630 modelado con diferentes
isotermas
Figura 12 P/Z vs producción de gas acumulada para pozo 6654 modelado con diferentes
isotermas46
Figura 13 P/Z vs producción de gas acumulado para el pozo No.6630, Lincoln county, WV52
Figura 14 P/Z vs producción de gas acumulado para el pozo No.6654, Lincoln county, WV53

Capítulo I: Introducción

La ecuación de balance de materia (EBM) es una herramienta que tiene como finalidad la estimación del volumen original de hidrocarburos in situ. Para el caso particular de yacimientos de gas, dicha estimación corresponde al volumen original de gas in situ (OGIP) (Dake, 1978).

En la literatura, existen modelos de la EBM para la determinación del OGIP en diferentes tipos de yacimientos como volumétricos, con entrada de agua, y formaciones con presiones anormales. Actualmente, debido a la gran importancia de los yacimientos no convencionales (YNC) como fuente de suministro de la creciente demanda mundial de energía, diversos autores han investigado el uso de la EBM en este tipo de yacimientos, en particular, la aplicación de la EBM en los yacimientos de roca generadora conocidos como "shales".

Algunos de los estudios disponible en la literatura se han enfocado en el análisis de yacimientos sensibles a los esfuerzos (Aguilera, 2008), el desarrollo de una EBM para shales con presencia de gas libre y adsorbido mediante el uso de un sistema de doble porosidad (Cabrapán Duarte et al., 2014), o una EBM para shales modelados por un sistema de porosidad quíntuple que permita cuantificar las contribuciones del gas libre, adsorbido y disuelto en el OGIP (Orozco & Aguilera, 2015).

En los trabajos de Cabrapán Duarte et al. (2014) y Orozco & Aguilera (2015), el gas adsorbido es modelado mediante la isoterma de Langmuir (Langmuir, 1916).

Cabrapán Duarte et al. (2014) afirma: "El volumen de gas adsorbido depende de la temperatura, la presión y las características de la roca (como la composición y la capacidad de adsorción). Para un sistema dado de gas-roca, teniendo en cuenta una temperatura constante, la cantidad de gas adsorbido es solo una función de la presión, que se modela mediante una isoterma

de adsorción. Uno de los modelos más utilizados para describir los mecanismos de adsorción es la isoterma de adsorción de Langmuir".

Es importante mencionar que a pesar de que la isoterma de Langmuir es el método más utilizado para modelar el proceso de adsorción en los shales, la correcta aplicación de dicha isoterma se enfoca en el análisis de otro tipo de yacimientos no convencionales como los son las capas de metano (CBM), por lo que no necesariamente un shale es propiamente modelado mediante dicha isoterma. Por lo tanto, la adsorción en los shales no siempre es explicada mediante el modelo de Langmuir, en el cual se asume que las tasas de adsorción y desorción son iguales, así como una adsorción en una sola capa (monocapa). Existen modelos multicapa que pueden ser utilizados para representar propiamente el proceso de adsorción en shales, tal como el modelo de Freundlich (1906) utilizado recientemente por Al-Arfaj (2020).

El propósito principal de este trabajo es ver el impacto en la estimación del OGIP, al modificar la EBM de tal forma que sea posible someter la predicción del OGIP a diferentes modelos de adsorción y no estar limitados a la adsorción ideal en monocapa.

1.1. Potencial de los shales en el mundo

La Administración de Información de la Energía (EIA, 2013) afirma que a nivel global el 32% de las reservas estimadas de gas natural se encuentran en formaciones tipo shale, mientras que el 10 % de las reservas de aceite (ambos tipos de reservas se refieren a barriles técnicamente recuperables y no recuperables) están en formaciones tipo "tight" (formaciones apretadas) o shale. En la **Tabla 1** se muestran los 10 países con mayor potencial en recursos recuperables de aceite tipo shale mientras que en la **Tabla 2** se muestran los correspondientes al gas en shales. Con base a la EIA (2013), un recurso técnicamente recuperable representa el volumen de gas y aceite que

pueden ser producidos con la tecnología actual, sin considerar los precios del gas y aceite ni los costos de producción.

Es importante mencionar que de los 41 países que la EIA (2013) evaluó su potencial en shales, dos terceras partes de los recursos técnicamente recuperables de gas en shales se concentran en Estados Unidos de America (EUA), China, Argentina, Algeria, Canadá y México. Por otra parte, las dos terceras partes de los recursos técnicamente recuperables de aceite tipo shale se concentran en Rusia, EUA, China, Argentina, Libia y Australia.

Tabla 1

Los 10 de países con los mayores recursos técnicamente recuperables de aceite en

lutitas.

Ranking	Países	Aceite (billones de barriles)
1	Rusia	75
2	EUA	58
3	China	32
4	Argentina	27
5	Libia	26
6	Australia	18
7	Venezuela	13
8	México	13
9	Pakistán	9
10	Canadá	9
	Total global	345

Nota: Tabla adaptada de EIA (2013).

Tabla 2

Ranking	Países	Gas (trillones de pies cúbicos)
1	China	1,115
2	Argentina	802
3	Algeria	707
4	EUA	665
5	Canadá	573
6	México	545
7	Australia	437
8	Sudáfrica	390
9	Rusia	285
10	Brasil	245
	Total global	7,299

Los 10 de países con los mayores recursos técnicamente recuperables de gas en lutitas.

Nota: Tabla adaptada de EIA (2013).

1.2. Potencial de los shales en México

En el caso de México, se han realizado diferentes estudios para evaluar el potencial de los shales. Las estimaciones realizadas por Petróleos Mexicanos (PEMEX) y la EIA se resumen en la **Tabla 3**. Por su parte, Luque et al. (2018), mediante el uso de las denominadas curvas de disponibilidad, muestran los grandes volúmenes de hidrocarburos que pueden ser recuperados de los shales en función de los costos de producción asociados a su explotación. Dichos volúmenes recuperables fueron estimados mediante el modelo de distribución de forma variable (VSD), los cuales se presentan en las **Figura 1** y **Figura 2**.

Con base a los trabajos anteriormente mencionados, es posible concluir que en México se tiene un gran potencial de recursos técnicamente recuperables tipo shale.

Tabla 3

Recursos de aceite y gas en shales estimados por PEMEX y EIA.

Cuenca		Recursos pr	ospectivos	PEMEX	Recursos té	cnicamente re	ecuperables E	EIA/ARI
Burgos	Aceite (billion bbl)	Gas humedo (Tcf)	Gas seco (Tcf)	Barriles de petroleo equivanlentes (MM bpce)	Aceite (billion bbl)	Gas asociado (Tcf)	Gas húmedo (Tcf)	Gas seco (Tcf)
Sabinas- Burro- Picachos	0.0	9.5	44.3	10.8	6.34	0.90	111.60	280.60
Tampico- Misantla	0.6	6.6	60.4	14.0	0.00	-	-	123.80
Tuxpan	-	-	-	-	0.97	1.50	-	-
Veracruz	0.6	0.0	0.0	0.6	0.28	0.50	-	2.90
Chihuahua		Er	n estudio		-	-	-	-
Total	31.9	36.8	104.7	60.2	13.11	7.60	121.10	416.30

Nota: Tabla tomada de Luque et al. (2018).

Figura 1

Volumen recuperable de gas tipo shale para las cuencas de Burgos, Sabinas, Tampico,

Tuxpan (plataforma) y Veracruz.

Nota: Figura tomada de Luque et al. (2018).

Figura 2

Volumen recuperable de aceite tipo shale para las cuencas de Burgos, Sabinas, Tampico, Tuxpan (plataforma) y Veracruz.

Nota: Figura tomada de Luque et al. (2018).

1.3. Sistema de quíntuple porosidad

Diversos autores (Aguilera, 2010; Civan, 2010) han establecido que los "shales" deben ser representados por sistemas de al menos cuatro porosidades. Por su parte, Lopez Jimenez & Aguilera (2013) demostraron que un sistema quíntuple de porosidad es necesario para considerar toda la física asociada a este tipo de yacimientos.

El sistema de quíntuple porosidad contempla el almacenamiento como se muestra en la

Figura 3, y descrito como se enlista a continuación,

- Gas adsorbido a las paredes de los poros orgánicos (porosidad adsorbida no asociada a ningún tipo de poro),
- 2. Gas libre en las fracturas naturales (porosidad de microfracturas/porosidad "slot"),
- 3. Gas libre en la matriz inorgánica (porosidad intergranular de matriz),

- 4. Gas libre en la matriz orgánica (porosidad intra-partícula de matriz),
- Gas libre en las fracturas hidráulicas generadas de la estimulación del yacimiento (porosidad de fracturas hidráulicas no asociada a ningún tipo de poro).

Adicionalmente a los cinco mecanismos mencionados anteriormente, existe gas disuelto en la parte sólida de la materia orgánica (**Figura 3**), el cual es producido mediante un proceso de difusión.

Figura 3

Esquema representativo del sistema de quíntuple porosidad en shales utilizado en este estudio.

Fuente: Lopez Jimenez & Aguilera (2018).

Las caídas de presión que experimenta un shale debido a su explotación favorece la interacción entre los mecanismos de adsorción (en las paredes de los poros orgánicos) y difusión del gas en la parte sólida de la materia orgánica (querógeno). Lo anterior, conlleva a un dinamismo en el radio de los poros orgánicos que almacenan gas libre. La forma de cuantificar dicha

interacción y por consecuente, dinamismo del radio de los poros, es a través del concepto de radio efectivo de poro orgánico (r_{eff}) , el cual es definido matemáticamente como la diferencia entre el radio de poro orgánico $[r_{op}]$ (medido a partir de alguna técnica de distribución de tamaños de poro) y el espesor de la capa de gas adsorbida a las paredes de los poros orgánicos (h_{ads}) . La **Figura 4** muestra un esquema representativo de los cambios de radio que experimentan los poros orgánicos debido a la continua interacción de la desorción del gas y la difusión del gas disuelto hacia las paredes de dichos poros.

Figura 4

Radio efectivo de poro orgánico mostrando los cambios del radio del poro orgánico como consecuencia de la explotación del yacimiento y la interacción continua entre la adsorción y la difusión del gas.

Fuente: Lopez Jimenez (2017).

1.4. Objetivos de la tesis

El presente trabajo se enfoca en la inclusión de un sistema de 5 porosidades a la EBM para la estimación del OGIP en yacimientos de gas tipo shale, mediante el uso de varios modelos de adsorción alternativos a la isoterma de Langmuir, la cual considera adsorción en monocapa.

Por lo tanto, la EBM introducida en este estudio es robusta en el sentido de que puede ser utilizada para cualquier tipo de isoterma (monocapa o multicapa), de tal forma que sea posible obtener mejores predicciones del OGIP.

Los objetivos de este trabajo se dividen en los siguientes aspectos:

- 1. Establecer modelos alternativos a la isoterma de Langmuir para modelar el fenómeno de adsorción en shales.
- Adaptar la EBM, de tal forma que no esté restringida al uso exclusivo adsorción en monocapa.
- Comparar el comportamiento de los diferentes modelos de adsorción en la EBM mediante el ajuste de los resultados obtenidos a datos de presión y producción acumulada, haciendo uso del concepto de "funciones de error".

1.5. Organización de la tesis

Este trabajo está conformado por cinco capítulos, los cuales están organizados de la siguiente manera:

Capítulo 1 (este capítulo) presenta una introducción general al concepto de EBM, el potencial de los shales en el mundo y específicamente en México, el sistema de quíntuple

porosidad, el concepto de radio efectivo de poro orgánico, los objetivos de la investigación, así como la organización de la tesis.

Capítulo 2 hace referencia al estado del arte correspondiente a cada uno de los aspectos a ser considerados en el desarrollo de la nueva EBM para shales, los cuales incluyen los modelos de adsorción en monocapa, multicapa e híbridos; modelos existentes en la literatura de la EBM para diferentes tipos de yacimientos, así como también las funciones de error que son usadas para la determinación de las apropiadas isotermas.

Capítulo 3 introduce la nueva EBM para shales que se adapta a cualquier modelo de adsorción, asimismo, se presentan los datos utilizados en este trabajo y se muestra el flujo de trabajo.

Capítulo 4 muestra el impacto del uso de diferentes modelos de adsorción en el compartimiento de la EBM y sus correspondientes valores de OGIP. De igual manera, se explica el análisis estadístico realizado para determinar la isoterma (s) que mejor se ajustan a los datos de campo.

Capítulo 5 establece las principales conclusiones obtenidas a partir del presente estudio, así como también se presentan recomendaciones derivadas del desarrollo de esta tesis que pudieran ser analizadas en futuras investigaciones.

Capítulo II: Estado del arte

2.1. Adsorción y modelos de isotermas

La adsorción es un proceso exotérmico en el cual las moléculas de un componente en estado gaseoso o líquido son atrapados en una superficie que actúa como adsorbente (Francoise Rouquerol, 1998). Las moléculas que son adsorbidas en el adsorbente se llama adsorbato. Este proceso se muestra en la **Figura 5**.

Figura 5

Proceso de adsorción y desorción de moléculas de una sustancia a una superficie.

Fuente: Kecili & Hussain (2018).

En la naturaleza, la adsorción se puede manifestar de las siguientes dos maneras: i) la adsorción física relacionada regularmente con la adsorción en multicapas, y ii) la quimi-adsorción, la cual normalmente se manifiesta en forma de monocapa. En la **Figura 6** se muestran de forma gráfica tanto la adsorción en monocapa como multicapa (Kecili & Hussain, 2018).

Figura 6

Esquema representativo de la adsorción en monocapa (A) y multicapa (B)

Fuente: Kecili & Hussain (2018)

Otra forma de definir a la adsorción es la siguiente (Al-Arfaj, 2020):

"La adsorción es la adhesión de átomos, iones y moléculas de una fase a una superficie. Una o más de una capa de hidrato puede adherirse a una superficie que tenga una deficiencia de adherencia".

La forma de modelar este fenómeno de adsorción es a través del uso de isotermas de adsorción. La **Tabla 4** muestra diferentes modelos de isotermas, incluyendo la adsorción en monocapa (Langmuir, 1916), multicapa (Freundlich, 1906), así como un modelo híbrido (Sips, 1948).

Tabla 4

Modelos de isotermas para representar el fenómeno de adsorción: modelos monocapa, multicapa e híbridos.

Isoterma	Consideraciones teóricas	Modelo	Referencia
		Un parámetro	
Ley de Henry	Las concentraciones del adsorbato la fase líquida en	$q_e = HC_e$	(Piccin et al., 2012)

Isoterma	Consideraciones teóricas	Modelo	Referencia
	equilibrio y las fases absorbentes están relacionadas por una ecuación lineal.	q_e =cantidad de moléculas adsorbidas en condiciones de equilibrio (en la industria petrolera es conocida como cantidad de sustancia adsorbida en pies cúbicos en condiciones estándar por tonelada de adsorbente V_{ads}) (mg/g); C_e =concentración de moléculas en equilibro (en la industria petrolera se trabaja esta como presión P) (mg/g); H=constante de absorción de Henry. (L/g).	
		Dos parámetros	
		$q_e = \frac{q_{mL}K_LC_e}{1 + K_LC_e}$	
Langmuir	La isoterma de Langmuir asume un estado de equilibrio dinámico (temperatura y presión constante) entre las especies adsorbidas y no adsorbidas, así como también adsorción en monocapa (Quimi-adsorción). (Murillo et al.,2015)	q_{mL} =máxima capacidad de absorción de la monocapa o constante de volumen de Langmuir (En la industria petrolera es conocida como la representación de la máxima capacidad del gas V_L) (mg/g). K_L = constante de absorción o constante de presión de Langmuir (En la industria petrolera es conocida como la presión a la cual se ha absorbido la mitad de la máxima capacidad de adsorción P_L) (L/mg)	(Langmuir, 1916)
		$q_e = K_F(C_e)^{\frac{1}{nF}}$	
Freundlich	Es un modelo de absorción multicapa en una superficie heterogénea con energía uniforme.	K_F =constante de Freundlich referente a la capacidad de adsorción.	(Freundlich.1906)
		$\frac{1}{nF}$ = Factor de neterogeneidad. La magnitud de $\frac{1}{nF}$ ronda entre 0 y 1, indicando adsorción favorable.	· · · /
Temkin	Este modelo considera interacciones entre el adsorbato y la superficie de adsorción.	$q_e = B_{TE} ln(K_{TE}C_e)$ $B_{TE} = \frac{RT}{b_{TE}}$ $b_{TE} = \text{Constante de la isoterma de Temkin. (J/mol);}$ $K_{TE} = \text{constante de unión de equilibrio}(L/mg);$ $R = \text{constante de universal de los gases (8.314 J/mol/K);}$ $T = \text{temperatura absoluta (K).}$ $q_n = q_{min} \{1 - exp(K_{HV}C_e)\}$	(Temkin & Pyzhey 1940)
Jovanovic	Asume adsorción en monocapa y no considera interacciones laterales y toma en consideración postulados similares a Langmuir.	K_{JV} =constante de la isoterma de Jovanovic(L/mg); q_{mJV} =Maxima capacidad de absorción en el modelo de Jovanovic (mg/g). A altas concentraciones de adsorbato, el modelo se transforma en la isoterma de Langmuir.	(Jovanović, 1969)
Halsey	Este modelo es apropiado para un proceso de adsorción en multicapa.	$q_e = exp\left(\frac{lnk_H - lnC_e}{n_H}\right)$ k_H =Constante de la isoterma de Halsey. n_H =exponente de la ecuación de Halsey Tres parámetros	(Halsey, 1948)
Redlich- Peterson	Este es un modelo híbrido que toma características de Langmuir y Freundlich, aplicable a sistemas homogéneos y heterogéneos. Se puede usar en un alto rango de concentraciones. El modelo de adsorción fue propuesto y no obedece una adsorción monocapa ideal.	$q_e = \frac{K_{RP}C_e}{1 + \alpha_{RP} (C_e)^{\beta_{RP}}}$ $K_{RP} = \text{Constante de la isoterma de Redlich-Peterson}(L/g);$ $\alpha_{RP} = \text{Constante de Redlich-Peterson} (mg/L)^{\beta_{RP}};$ $\beta_{RP} = \text{Exponente del modelo de Redlich-Peterson, varia entre 0 y 1.}$	(Redlich & Peterson, 1959)

Isoterma	Consideraciones teóricas	Modelo	Referencia
		A altas concentraciones la se transforma en la isoterma de Freundlich a bajas concentraciones se tiende a la ley de Henry. $q_e = \frac{q_T K_T C_e}{\{1 + (K_T C_e)^{n_T}\}^{\frac{1}{n_T}}}$	
Toth	Es un modelo empírico del modelo de Langmuir el cual reduce el error entre la data del experimento y los valores predichos, aplicable en sistemas de adsorción heterogéneo.	q_T =Maxima capacidad de adsorción de la isoterma de Toth (mg/g) ; K_T =Constante de equilibrio de Toth (L/mg) n_T =Exponente del modelo de Toth. El parámetro n_T representa la heterogeneidad del sistema de adsorción, el cual varia entre 0 y 1. En el caso de n_T =1 el modelo es homogéneo en la naturaleza y por lo tanto se reduce a la isoterma de Langmuir.	(Toth, 2000)
	To uno instanto bibeido con	$q_e = \frac{q_{ms}K_S(C_e)\overline{ms}}{1 + K_S(C_e)\overline{ms}}$	
Sips	Es una isoternia hibrido con características de Langmuir y Freundlich, aplicable a superficies heterogéneas.	q_{ms} =Máxima capacidad de Sips (mg/g) . K_S =Constante de equilibrio de Sips $(L/mg)^{\frac{1}{ms}}$ m_S = Exponente del modelo de Sips. A bajas concentraciones del adsorbato, este modelo se reduce a la Isoterma de Freundlich. A altas concentraciones, el modelo se tiende a la adsorción monocapa de Langmuir.	(Sips, 1948)
Unilan	Este modelo asume las características de la Isoterma de Langmuir y la distribución la energía está distribuida uniformemente, aplicable a una superficie de un adsorbente heterogéneo.	$q_e = \frac{q_{mu}}{2s} ln \left\{ \frac{1 + K_U C_e exp(s)}{1 + K_U C_e exp(-s)} \right\}$ q_{mu} =Maxima capacidad de adsorción de Unilan $(mg/g);$ K_U =Constante de Unilan s =Constante de pendiente de la diferencia entre la maxima y mínima de energía de adsorción. Si s=0, el modelo se reduce a Langmuir.	(Valenzuela & Myers, 1989)
Jossens	Derivado sobre la base de la distribución de energía de las interacciones adsorbato- adsorbente que tienen lugar en los sitios de adsorción, asumiendo que la superficie del adsorbente es de naturaleza heterogénea.	$q_e = \frac{K_J C_e}{1 + J C_e^{b_J}}$ $K_J, J \text{ and } b_J \text{=son los parámetros de la isoterma de Jossens}$ A bajas concentraciones se reduce a la ley de Henry. $q_e = \frac{q_{mLF} (K_{LF} C_e)^{m_{LF}}}{1 + (K_{LF} C_e)^{m_{LF}}}$	(McKay & Al Duri, 1987)
Langmuir- Freundlich	Es una isoterma hibrida que combina las características de la isoterma de Langmuir y Freundlich, asume que los sitios activos del absorbente no pueden tener la misma energía.	K_{LF} =constante de equilibrio de Langmuir- Freundlich (L/mg). m_{LF} =exponente del modelo de Langmuir- Freundlich o parámetro de heterogeneidad, el cual varía entre 0 y 1. q_{mLF} =Maxima capacidad de adsorción de Langmuir-Freundlich (mg/g). A bajas concentraciones de adsorbato, el modelo se reduce al modelo de Freundlich, mientras que altas concentraciones tiende a la isoterma de Langmuir. Si el valor de m_{LF} es 1 es un material homogéneo si el valor es menor de 1 es beterogéneo	(Sips, 1948)
Koble- Corrigan	Isoterma híbrida con características de Freundlich y Langmuir para examinar los datos de adsorción en equilibrio, también aplicable a superficies adsorbentes heterogéneas.	$q_e = \frac{A_{KC}(C_e)^{n_{KC}}}{1 + B_{KC}(C_e)^{n_{KC}}}$ Donde A_{KC} $(L^{n_{KC}}mg^{1-n_{KC}}/g), B_{KC}$ $(L/mg)^{n_{KC}}$, and n_{KC} =Parámetros de Koble-Corrigan. a altas concentraciones la isoterma de Koble-Corrigan se	(Koble & Corrigan, 1952)

Isoterma	Consideraciones teóricas	Modelo	Referencia
		reduce a la isoterma de Freundlich. La isoterma solo es válida si n_{KC} mayor que 1. $q_e = \frac{q_{m_k} b_K C_e}{(1 + b_K C_e)^{n_k}}$	
Khan	Modelo híbrido con características de isoterma de Freundlich y Langmuir, propuesto para sistemas de adsorción de uno y varios componentes.	q_{m_k} =Maxima capacidad de adsorción de Khan (mg/g); b_k = Constante de la isoterma de Khan (L/mg); n_k =Exponente del modelo de Khan. Cuando n_k =1, la isoterma se transforma a la isoterma de Langmuir, pero a altas concentraciones se reduce Freundlich.	(Khan et al., 1996)
Hill	Supone que el proceso de adsorción es un fenómeno cooperativo en el que la capacidad de unión del sitio de un adsorbente puede afectar a diferentes sitios de unión del mismo adsorbente	$q_e = \frac{q_{m_{HI}}(C_e)^{n_{HI}}}{K_{HI} + (C_e)^{n_{HI}}}$ Donde K_{HI}, n_{HI} , y $q_{m_{HI}}$ = Parámetros de la isoterma de Hill.	(Hill, 1910)
Fritz- Schlunder- III	Es una ecuación empírica que se puede ajustar a una amplia gama de datos experimentales debido a la disponibilidad de enormes parámetros en la isoterma.	$q_e = \frac{q_{m_{FS}}K_{FS}C_e}{1 + q_{m_{FS}}(C_e)^{n_{FS}}}$ $q_{m_{FS}}$ =Maxima capacidad de adsorción de Fritz-Schlunder (mg/g); K_{FS} =Constante de equilibrio de Fritz-Schlunder (L/mg); y n_{FS} =Exponente del modelo de Fritz-Schlunder.	(Fritz & Schluender, 1974)
Vieth- Sladek	Es una isoterma que representa una combinación de componentes lineales (es decir, la ley de Henry) y no lineales (isoterma de Langmuir).	$q_e = K_{VS}C_e + \frac{q_{m_{vs}}p_{VS}C_e}{1 + \beta_{VS}C_e}$ En donde K_{VS} (L/g) y β_{VS} (L/mg) =constante de Vieth-Sladek; $q_{m_{vs}}$ =maxima capacidad de adsorción predicha por la isoterma de Vieth-Sladek (ma/a)	(Vieth & Sladek, 1965)
Brouers- Sotolongo	Derivado de una isoterma exponencial para analizar el proceso de adsorción en una superficie heterogénea, asumiendo que los sitios activos del adsorbente no pueden adquirir la misma energía.	$q_e = q_{m_{BS}} \{1 - exp[-K_{BS}(C_e)^{\alpha_{BS}}]\}$ Donde $K_{BS} (L/mg)^{\alpha_{BS}}$ y α_{BS} = son las constantes de Brouers-Sotolongo; $q_{m_{BS}}$ = maxima capacidad de adsorción (mg/g) . $q_e = \frac{q_{m_{HI}}(C_e)^{n_{HK}}}{1 + K_e(C_e)^{n_{HK}}}$	(Brouers et al., 2005)
Holl-Krich	Modelo híbrido con características de isotermas de Freundlich y Langmuir.	Donde n_{HK} y K_{HK} = Son el exponente y la constante de equilibrio respectivamente; q_{mHI} = maxima capacidad de adsorción Holl-Krich (mg/g) . A bajas concentraciones se reduce a Freundlich, mientras a altas concentraciones se compara a la isoterma de Langmuir. Cuatro parámetros	(Parker, 1995)
Parker	Desarrolló una isoterma exponencial a partir de la ecuación de Freundlich incorporando parámetros.	$q_e = q_{m_P} exp \left[-a_P \left\{ RTln \left(\frac{c_s}{C_e} \right) \right\} \right]$ $q_{m_P} = Maxima capacidad de adsorción predicha por la isoterma de Parker (mg/g); C_s = \text{Concentración requerida para cubrir la superficie (mg/L); a_P = Constate de equilibrio de Parker; b_P = Exponente del modelo de Parker.$	(Parker, 1995)
Marczewski- Jaroniec	Se desarrollo teniendo en cuenta los supuestos de la isoterma de Langmuir y la distribución de las energías de adsorción en los sitios activos del absorbente.	$q_e = q_{m_{MJ}} \left\{ \frac{\left(K_{MJ}C_e\right)^{n_{MJ}}}{1 + \left(K_{MJ}C_e\right)^{n_{MJ}}} \right\}^{\frac{m_{MJ}}{n_{MJ}}}$ $q_{m_{MJ}} = \text{Maxima capacidad de adsorción predicho por la isoterma Marczewski-Jaroniec (mg/g);} K_{MJ} = \text{constante de equiliberio de Marczewski-Jaroniec added}$	(Parker, 1995)

Isoterma	Consideraciones teóricas	Modelo	Referencia
		Marczewski-Jaroniec que caracterizan la heterogeneidad de la superficie del adsorbente.	
	La isoterma se desarrolló con base en la observación de los coeficientes de Langmuir	$q_{e} = \frac{q_{m_{B}}b_{B}(C_{e})^{(1+x+y)}}{1+b_{B}}$	
Baudu	$(K_L y q_{mL})$, se determinan mediante la medición de tangentes a diferentes concentraciones de equilibrio, lo que significa que no son constantes en un amplio rango de concentraciones.	b_B =constante de equilibrio de Baudu; $x \& y$ =parámetros de Baudu; q_{m_B} =maxima capacidad de adsorción de Baudu (mg/g) .El modelo de Baudu solo es aplicable si $(1 + x + y) \& (1 + x)$ sea menor que 1. Para bajas concentraciones se transforma en la ecuación de Freundlich. $Arca(C_{a})^{\alpha_{FS}}$	(Baudu 1990)
		$q_e = \frac{A_{FS}(G_e)}{1 + B_{FS}(G_e)^{\beta_{FS}}}$	
Fritz- Schlunder- IV	Desarrolló una ecuación que puede correlacionarse con una amplia gama de datos experimentales debido a la disponibilidad de una gran cantidad de coeficientes del modelo.	Donde A_{FS} y B_{FS} = parámetros de Fritz-Schlunder; α_{FS} and β_{FS} = Exponente de la isoterma de Fritz- Schlunder. Esta isoterma es aplicable solo si α_{FS} y β_{FS} son menor o igual a 1. Si $\alpha_{FS} = \beta_{FS} = 1$, entonces modelo de Fritz-Schlunder se transforma en la isoterma de Langmuir. Mientras que altas concentraciones se transforma en la isoterma de Freundlich. Cinco parámetros $\alpha_{rs} = \frac{q_{m_{FSS}}K_1(C_e)^{m_1}}{q_{rss}}$	(Fritz & Schluender, 1974)
	Derivó una ecuación empírica que demostró excelentes	$q_e = \frac{1}{1+K_2(C_e)^{m_2}}$ $q_{m_{FSS}}$ =maxima capacidad de adsorción de Fritz-	
Fritz- Schlunder-V	resultados en la simulación de variaciones del modelo en una amplia gama de datos experimentales.	Schlunder; K_1 , K_2 , m_1 y m_2 =parametros de Fritz Schlunder.la isoterma es valida solo si m_1 y m_2 ,sean menor a 1. Si m_1 = m_2 =1, entonces la ecuación se aproxima a Langmuir, mientras que a altas concentraciones se reduce a la isoterma de Freundlich.	(Fritz & Schluender, 1974)

2.2. Funciones de error

Existen diferentes métodos para la obtención de los parámetros de ajuste de un modelo de adsorción, como lo son el método de regresión lineal y regresión no lineal. El primer método mencionado consiste en tomar un modelo de adsorción, y aplicarle una transformación lineal, graficar el set de datos en una gráfica especializada para aplicar la regresión lineal y obtener los parámetros de ajuste. Pero tiene como punto débil tiene que los ejes son influenciados, ya que estos cambian dependiendo del tipo de transformación lineal, lo que termina por crear una distorsión que se distribuye por todo el set de datos, además que es difícil extender este método a isotermas de más de dos parámetros de ajuste.(Boulinguiez et al., 2008; Chowdhury et al., 2009);El método de regresión no lineal tiene como ventaja que no transforma el set de datos, por lo tanto no crea

17

distorsión, además de ser fácilmente implementado en isotermas de más de dos parámetros, y una de las parte más importantes de este método es que necesita de una función de pérdida o error.

En la **Tabla 5** se muestran cada una de las funciones utilizadas en este estudio para determinar la isoterma que mejor se ajusta a los datos de campo (presión y producción acumulada). Cada una de las métricas listadas en la **Tabla 5** han sido ampliamente usados por diferentes autores como (Marquardt, 1963; Kapoor & Yang, 1989; Ng et al., 2003; Kumar & Sivanesan, 2006;Boulinguiez et al., 2008; Brdar et al., 2012; Chieng et al., 2014; Hokkanen et al., 2018;) para predecir los paramétrons de ajuste del modelo de adsorción.

Tabla 5

Funciones de error usadas para determinar la isoterma que brinda el mejor ajuste a los datos de campo (presión y producción acumulada).

Funciones de error o perdida	Abreviación	Expresión	Referencia
Coeficiente de determinación	R^2	$\frac{\sum_{i=1}^{N} (q_{e,cal} - \overline{q_{e,meas}})_{i}^{2}}{\sum_{i=1}^{N} \left[(q_{e,cal} - \overline{q_{e,meas}})_{i}^{2} + (q_{e,cal} - q_{e,meas})_{i}^{2} \right]}$	(Boulinguiez et al., 2008)
Desviación estándar de los errores relativos	S _{RE}	$\sqrt{\frac{\sum_{i=1}^{N} \left[\left(q_{e,meas} - q_{e,cal} \right)_{i} - ARE \right]_{i}^{2}}{N-1}}$	(Boulinguiez et al., 2008)
Desviación media ponderada al cuadrado	Reduced x^2	$\frac{1}{N-p} \sum_{i=1}^{N} \left[\frac{\left(q_{e,meas} - q_{e,cal} \right)^2}{q_{e,cal}} \right]_i$	(Hokkanen et al., 2018)
Desviación estándar porcentual o de Marquardt	MPSD	$100 \sqrt{\frac{1}{N-p} \sum_{i=1}^{N} \left(\frac{q_{e,meas} - q_{e,cal}}{q_{e,meas}}\right)_{i}^{2}}$	(Marquardt, 1963)
Error relativo medio	ARE	$\frac{100}{N} \sum_{i=1}^{N} \left \frac{q_{e,meas} - q_{e,cal}}{q_{e,meas}} \right _{i}$	(Kapoor & Yang, 1989)

Funciones de error o perdida	Abreviación	Expresión	Referencia
Función fraccional de error híbrida	HYBRID	$\frac{100}{N-p} \sum_{i=1}^{N} \left[\frac{\left(q_{e,meas} - q_{e,cal} \right)^2}{q_{e,meas}} \right]_i$	(Chieng et al., 2014)
Suma de los errores de los cuadrados	ERRSQ	$\sum_{i=1}^{N} (q_{e,meas} - q_{e,cal})_{i}^{2}$	(Kumar & Sivanesan, 2006)
Error cuadrático medio	RMSE	$\sqrt{\frac{1}{N-2}\sum_{i=1}^{N}(q_{e,meas}-q_{e,cal})_{i}^{2}}$	(Brdar et al., 2012)
Suma de los errores absolutos	EABS	$\sum_{i=1}^{N} \left q_{e,meas} - q_{e,cal} \right _{i}$	(Ng et al., 2003)

Nota: $q_{e,meas}$ =concentración de la fase solida en equilibrio del experimento (mg/g); $\overline{q_{e,meas}}$ =concentración

de la fase solida promedio (mg/g); $q_{e,cal}$ =concentración de la fase solida en equilibrio calculada del modelo

Nota: Tabla modificada de Nayak & Pal (2020)

2.3. Cambios de la porosidad y permeabilidad de las fracturas naturales en función de los esfuerzos

Cuando un yacimiento es explotado, el esfuerzo efectivo en el yacimiento se incrementa debido a que la presión dentro de los poros disminuye. En el caso de las fracturas naturales, este aumento en el esfuerzo efectivo puede resultar en el cierre de las mismas.

El esfuerzo efectivo vertical (o de sobrecarga) está matemáticamente definido como la diferencia entre el esfuerzo de sobrecarga y la presión de poro, asumiendo un valor de la constante de Biot igual a 1, tal como se expresa en la Ecuación (1) :

$$p_k = \sigma_v - P \tag{1}$$

Donde p_k es el esfuerzo efectivo, σ_v es el esfuerzo de sobrecarga, y P es la presión de poro.

El cierre de las fracturas naturales debido al incremento en el esfuerzo normal efectivo genera a su vez una reducción en la porosidad y permeabilidad del sistema de fracturas. La dependencia de estos dos parámetros en función del esfuerzo normal efectivo puede ser representada mediante el modelo propuesto por Jones (1975), el cual matemáticamente está expresado por la Ecuación

(2)

$$\frac{\phi_{2i+1}}{\phi_{2i}} = \left(\frac{k_{2i+1}}{k_{2i}}\right)^{\frac{1}{3}} = \frac{\log p_{ki+1} - \log p_h}{\log p_{ki} - \log p_h}$$
(2)

Donde p_h es la presión a la cual la apertura de la fractura es igual a cero y estaría completamente cerrada, ϕ_2 es la porosidad de la fractura natural a la presión i o i+1, y k_2 es la permeabilidad de la fractura hidráulica a la presión i o i+1. Esta expresión supone una morfología de fractura abierta.

2.4. Solubilidad del metano en el querógeno

La concentración del metano en el querógeno sólido $(c_{(p)})$, es fundamental para contabilizar la cantidad de gas que se encuentra disuelto en la parte sólida de la materia orgánica, el cual es producido mediante un proceso de difusión. De acuerdo a Swami et al. (2013) la concentración de gas en el querógeno solido está en función de la presión (*P*) y temperatura (*T*) del yacimiento, tal como lo expresa la Ecuación (3), la cual asume que la solubilidad del metano en el querógeno es la misma que la del bitumen, dado que el bitumen y el querógeno presentan características físicas similares.

$$c_{(p)} = b_1 + b_2 P + b_3 \frac{P}{T} + b_4 \left(\frac{P}{T}\right)^2$$
(3)

Donde b_{1,b_2}, b_3, b_4 son las constantes utilizadas en el trabajo de Swami et al. (2013) y tienen valores de -0.018931, -0.85048, 827.26 y -635.26 respectivamente, los valores expuestos anteriormente van acompañados de la presión P en MPa, la temperatura T se expresa en grados Kelvin, y finalmente es la solubilidad del metano $c_{(p)}$ se expresa en $m^3 de \ gas \ a \ NTP/m^3 de \ querógeno$.

2.5. Antecedentes de la EBM: de yacimientos convencionales a shales

A continuación se presentaran las EBM que fueron relevantes para la modificación de la EBM propuesta en este trabajo, sin embargo existen otros esfuerzos que no se visitaran en el presente trabajo como las propuestas hechas por (Santos, 2018), en donde propone dos EBM para yacimientos de tres porosidades y dos permeabilidades, que son resultado de extender las formulaciones de Alejandro Sandoval y Abel Chacon.

2.5.1. EBM para un yacimiento de gas seco convencional

Para el caso de un yacimiento convencional volumétrico de gas, la relación entre la presión y la producción acumulada resulta en una línea recta en un gráfico de P/Z vs G_p (

Figura 7). La ecuación que gobierna el comportamiento de este tipo de yacimiento está dada por la siguiente expresión (Dake, 1978).

$$\frac{G_P}{G_t} = 1 - \frac{P/Z}{\frac{P_i}{Z_i}} \tag{4}$$

En donde G_P es el gas producido, G_t es el gas original in situ, Z factor de desviacion del gas, Z_i factor de desviación del gas a condiciones de presión inicial, P_i presión a condiciones iniciales.

Figura 7

Comportamiento tipo de un yacimiento volumétrico de gas en un gráfico P/Z vs. Gp.

Nota: Datos obtenidos de Craft & Hawkins (1991).

El *OGIP* es obtenido en el ejemplo anterior es de 5.1 MMscf y se obtuvo a partir de la extrapolación de la línea recta a un valor de P/Z = 0.

2.5.2. EBM para yacimientos de gas en capas de carbón (CBM) y shales

King (1990) y King et al. (1993) generaron una EBM para yacimientos CBM, la cual considera el aporte del gas adsorbido al cálculo del *OGIP* total (gas libre más gas adsorbido). La adsorción fue modelada mediante la isoterma de Langmuir; sin embargo, King (1990) formuló la

EBM de tal forma que cualquier otro modelo de adsorción pudiese ser empleado. La expresión que representa esta EBM está dada por la Ecuación (5).

$$G_{p} = \frac{V_{b2} \phi_{i} Z_{sc} T_{SC}}{P_{sc} T} \left\{ \frac{P}{Z_{i}^{*}} - \frac{P}{Z^{*}} \right\}$$
(5)

Donde V_{b2} es el volumen de la porosidad secundaria, ϕ_i es la porosidad inicial, P_{sc} presión a condiciones estándar @ 14.7 psia, T_{sc} temperatura a condiciones estandar @ 60 F, Z_{sc} factor de desviación del gas a condiciones de presión y temperatura estándar, y Z* representa la nueva definición del factor de compresibilidad del gas que considera la presencia de gas adsorbido dada de la siguiente manera,

$$Z^* = \frac{Z}{(1 - S_{wi}) + \frac{ZRTC_{VE}}{\phi_i P}}$$
(6)

Donde S_{wi} es la saturación de agua inicial, R es la constante universal de los gases que tiene un valor de 10.73, y el equilibrio volumétrico de la isoterma es C_{VE} .

2.5.3. EBM para yacimientos naturalmente fracturados (Aguilera, 2008)

Aguilera (2008) generó una EBM para yacimientos naturalmente fracturados sensibles a los esfuerzos, para los cuales el cálculo del *OGIP* es menor que para el caso de yacimientos en donde las propiedades petrofísicas del medio no varían en función de los esfuerzos, tal como se observa en la **Figura 8**.

Aguilera (2008) consideró que la compresibilidad de las fracturas naturales juega un papel importante en el comportamiento dinámico de este tipo de yacimientos, por lo que su efecto en la determinación del *OGIP* no debe ser despreciado, ya que esto pudiese conducir a estimaciones incorrectas del *OGIP*. La EBM desarrollada por Aguilera (2008) se expresa matemáticamente como la Ecuación (7).

Figura 8

Gráfica P/Z vs Gp para yacimientos naturalmente fracturados donde se muestra la sensibilidad del sistema fracturado a los esfuerzos, así como su efecto en la determinación del OGIP. De no ser considerados dichos efectos, el OGIP sería sobre estimado. Fuente: Aguilera (2008).

$$\frac{G_P}{G_t} = 1 - \frac{P/Z}{P_i/Z_i} \left\{ 1 - \left[(1-\omega) \frac{C'B_{gi}}{B_g} + \omega \frac{C'B_{gi}}{B_g} \right] \Delta P \right\}$$
(7)

Donde ΔP es la diferencia de presión condiciones iniciales menos la presión a condiciones dadas o actuales, B_g factor de volumen del gas a condiciones dadas o actuales, B_{gi} factor de volumen del gas a condiciones iniciales, ω corresponde a la fracción del OGIP total que se encuentra almacenado en las fracturas, C' es la compresibilidad efectiva de la matriz, C' se define como la compresibilidad efectiva en la fractura.

Las compresibilidades efectivas de la matriz y de la fractura están definidas por la Ecuación (8) y Ecuación (9) respectivamente:

$$C' = \left(\frac{C_w S_{wm} + C_m}{S_{wm}}\right) \tag{8}$$

Donde C_w es la compresibilidad de agua de la formación, S_{wm} es la saturación de agua en la matriz y C_m es la compresibilidad de la formación.

$$C^{"} = \left(\frac{C_w S_{wf} + C_f}{S_{wf}}\right)$$
(9)

Donde S_{wf} es la saturación del agua en la fractura y C_f es la compresibilidad de la fractura.

2.5.4. EBM para shales sensibles a los esfuerzos (Cabrapán Duarte et al., 2014)

Cabrapán Duarte et al. (2014) presentó una EBM para yacimientos de gas tipo shale, la cual considera un sistema de doble porosidad (matriz y fracturas) en donde se almacena el gas de forma libre y gas adsorbido. Este último fue modelado mediante la isoterma de Langmuir. La naturaleza sensible a los esfuerzos de las fracturas naturales también fue incluida en su modelo mediante el uso de las modificaciones desarrolladas por Aguilera (2008).

La Ecuación (10) contempla cada uno de los aspectos anteriormente mencionados se expresa de la siguiente manera.

$$\frac{G_p}{G_t} = 1 - \frac{P_{Z_c}}{P_{i/Z_i}}$$
(10)

En donde Z_c está definida como:

$$Z_{c} = Z \left\{ 1 - \omega_{a} + \left(\omega_{m} C' + \omega C'' \right) \Delta P - \omega_{m} \frac{B_{g} V_{L} \rho_{b}}{35.315 \phi (1 - S_{wm})} \left(\frac{P}{P_{L} + P} \right) \right\}^{-1}$$
(11)

 V_L es el volumen de Langmuir, P_L es la presión de Langmuir, ρ_b es la densidad del shale, ω corresponde a la fracción del OGIP total que se encuentra almacenado en las fracturas, ω_a es la fracción del OGIP total almacenado como gas adsorbido, y ω_m hace referencia a la fracción del OGIP total almacenado de forma libre en la matriz.

Por su parte, ω_a se expresa como.

$$\omega_a = \frac{OGIP_a}{G_t} \tag{12}$$

 G_t es el volumen de gas original total in situ (conformado por gas libre y gas adsorbido), $OGIP_a$ hace referencia al volumen de gas adsorbido y ω_a es la fracción del volumen gas adsorbido respecto al volumen de gas original total in situ.

Mientras que ω_m está expresado matemáticamente en la Ecuación (13).

$$\omega_m = \frac{OGIP_m}{G_t} \tag{13}$$

 $OGIP_m$ hace referencia al volumen de gas libre almacenado en la matriz.

La representación gráfica de la Ecuación (11) se observa en la Figura 9. Es importante mencionar que Cabrapán Duarte et al. (2014) no especifica el tipo de medio matricial: inorgánico u orgánico, por lo que se asume que la matriz modelada en su EBM corresponde a la materia orgánica dado que en ella es donde se lleva a cabo principalmente el fenómeno de adsorción.

Figura 9

Comparación de la respuesta del comportamiento dinámico de un yacimiento que experimenta el proceso de adsorción/desorción vs. el correspondiente a un yacimiento volumétrico de gas.

Nota: Fuente Cabrapán Duarte et al. (2014).
2.5.5. EBM para shales con la presencia de gas libre, gas adsorbido, y gas disuelto (Orozco y Aguilera, 2015)

(Orozco & Aguilera 2015) introdujeron una EBM para shales haciendo uso de un sistema quíntuple de porosidad (matriz inorgánica, matriz orgánica, fracturas naturales, fracturas hidráulicas, y porosidad adsorbida). Asimismo, consideran el almacenamiento de gas en forma disuelta en la parte sólida del querógeno, el cual es producido mediante un mecanismo de difusión. Por lo tanto, la EBM de (Orozco & Aguilera 2015) contabiliza la cantidad de gas libre, adsorbido y disuelto presentes en un yacimiento de gas tipo shale. Al igual que en el caso de (Cabrapán Duarte et al., 2014) la adsorción/desorción del gas se modela en términos de la isoterma de Langmuir, la sensibilidad de las fracturas naturales a los esfuerzos es modelada con las expresiones desarrolladas por (Aguilera, 2008).

La EBM desarrollada por (Orozco & Aguilera 2015) para cuantificar el OGIP de un shale está expresada en la Ecuación (14).

$$\frac{G_p}{G_t} = 1 - \frac{P/Z'}{P_i/Z_i}$$
(14)

Z'presentan una nueva definición del factor de compresibilidad de gas (Z) que incluye cada uno de los aspectos anteriormente citados: sensibilidad de las fracturas naturales a los esfuerzos, gas libre en la matriz orgánica e inorgánica, gas libre en las fracturas naturales e hidráulicas, gas adsorbido, y gas disuelto, tal como se muestra en la Ecuación (15).

$$Z' = Z \left\{ 1 - \omega_a - \omega_d - \left[\omega_m C' + \omega C' \right] \Delta p + \left[\frac{\omega_m \rho_b V_L B_g}{35.315 \phi_{mt} (1 - S_{wm})} \frac{P}{P_L + P} \right] + \left[\frac{1.057 \omega_m C(p) B_g}{\phi_{mt} (1 - S_{wm})} \left(\frac{TOC}{100 \rho_r} - \phi_{ads_c} - \phi_{org} \right) \right] \right\}^{-1}$$
(15)

Donde TOC es carbono orgánico total, ϕ_{ads_c} es la porosidad adsorbida asociada al sistema compuesto, ϕ_{org} es la porosidad orgánica asociada al sistema compuesto, ϕ_{mt} es la porosidad total de la matriz que está conformada por la porosidad inorgánica de la matriz (ϕ_m) y la porosidad orgánica ϕ_{org} , ρ_r es la densidad relativa que está definida como la relación de densidad del querógeno solido ρ_{ko} y densidad del shale ρ_b , P_L constante de presión de Langmuir, V_L constate de volumen de Langmuir y ω_d es la fracción del OGIP total que se encuentra almacenado como gas disuelto, definido matemáticamente de la siguiente manera.

$$\omega_d = \frac{OGIP_d}{G_t} \tag{16}$$

 G_t es el volumen de gas original total in situ (conformado por gas libre, gas adsorbido y gas disuelto), $OGIP_d$ hace referencia al volumen de gas disuelto. Los parámetros omegas $(\omega_a, \omega_m, \omega)$ están definidos de cómo se plantean en los trabajos de (Aguilera, 2008; Cabrapán Duarte et al., 2014) con la diferencia de que G_t que es el volumen de gas original total in situ está conformado por gas libre, gas adsorbido y gas disuelto.

El comportamiento tipo de la EBM propuesta por (Orozco & Aguilera 2015) se muestra en la Figura 10.

Figura 10

Gráfica de balance de materia mostrando las contribuciones de gas libre, adsorbido y de gas disuelto para la determinación del OGIP para el pozo No.6654 ubicado en la cuenta Appalachian de los EUA.

Nota: figura tomada de (Orozco & Aguilera, 2015).

Capítulo III: Metodología

En este capítulo se muestra la metodología empleada en este trabajó. Se presenta la EBM para un yacimiento tipo shale-gas adaptada a cualquier sistema de adsorción, se explica cómo asignar valores semilla a los parámetros omega, se dan a conocer las fuentes empleadas para la recopilación de la data empleada y finalmente se explica el flujo de trabajo empleada en el presente trabajo de investigación.

3.1. Presentación de la EBM para yacimientos tipo shale-gas de quíntuple porosidad adaptada para que sea compatible con cualquier modelo de adsorción.

El modelo matemático propuesto en este trabajo se basa en la EBM de (Orozco & Aguilera, 2015), en donde los autores consideran un sistema de matriz total, conformado por una matriz orgánica e inorgánica para adaptarse a la física de un shale-gas y que al mismo tiempo es alimentado por gas libre, adsorbido y disuelto; la suposición de considerar adsorción en monocapa tipo ideal es el motivo por el cual en el presente trabajo se modifica esta EBM para que sea posible utilizar cualquier modelo de adsorción, ya sea tratando con adsorción monocapa tipo no ideal, multicapa o inclusive modelos de adsorción híbridos. La Ecuación (17) es la nueva EBM presentada en el presente trabajo.

$$\frac{G_p}{G_t} = 1 - \frac{P/Z'}{P_i/Z_i}$$
(17)

En donde el factor Z' está definido en la

$$Z' = Z \left\{ 1 - \omega_a - \omega_d - \left[\omega_m C' + \omega C'' \right] \Delta p + \left[\frac{\omega_m \rho_b B_g}{35.315 \phi_{mt} (1 - S_{wm})} CVE \right] + \left[\frac{1.057 \omega_m C(p) B_g}{\phi_{mt} (1 - S_{wm})} \left(\frac{TOC}{100 \rho_r} - \phi_{ads_c} - \phi_{org} \right) \right] \right\}^{-1}$$
(18)

En donde CVE es el modelo de adsorción a emplear.

El sistema de matriz total (ϕ_{mt}) está conformado por la matriz orgánica (ϕ_{org}) e inorgánica (ϕ_m) como se muestra en la Ecuación (19).

$$\phi_{mt} = \phi_m + \phi_{org} \tag{19}$$

La compresibilidad efectiva del sistema de matriz total C se presenta en la Ecuación (20) y la compresibilidad efectiva de las fracturas C se muestra en la Ecuación (21).

•

$$C' = \left(\frac{C_w S_{wm} + C_m}{1 - S_{wm}}\right) \tag{20}$$

$$C^{-} = \left(\frac{C_w S_{wf} + C_f}{1 - S_{wf}}\right) \tag{21}$$

La derivación y lógica de la Ecuación (17) propuesta en el presente trabajo de investigación se encuentra en el apéndice A, los símbolos usados en la Ecuación (17) junto con sus ecuaciones anexas se encuentran en la nomenclatura.

3.2. Semillas empleadas para iniciar el proceso de optimización de los parámetros omegas

Para lograr un ajuste entre la EBM del presente trabajo con algún modelo de adsorción asignado y los datos del caso real, se requiere optimizar los parámetros omegas (ω , ω_m , $\omega_a y \omega_d$), existen dos formas de asignarles estos valores semilla. La primera forma pasa por asignarle los valores semilla de forma subjetiva a los parámetros ω , ω_m , $\omega_a y \omega_d$. Al trabajar de esta forma en el presente trabajo no fue posible optimizar estos parámetros de la EBM a los datos del caso real.

La segunda forma consiste en utilizar las Ecuaciones propuestas por (Orozco & Aguilera, 2018) las cuales se presentan a continuación.

$$G_m^* = \frac{43560Ah\phi_{mt}(1 - S_{wf})}{B_{gi}}$$
(22)

 G_m^* =Volumen de gas que inicialmente es almacenado en la matriz asociado al valor semilla, A=Area y h=Espesor del yacimiento, \emptyset_{mt} = porosidad del sistema total de la matriz, S_{wm} =saturación de agua asociada a la porosidad del sistema total de la matriz, B_{gi} =factor de volumen a condiciones de presión inicial.

$$G_f^* = \frac{43560Ah(\phi_2 + \phi_{hf})(1 - S_{wf})}{B_{gi}}$$
(23)

 G_f^* = Volumen de gas que inicialmente es almacenado en las fracturas asociado al valor semilla y ϕ_{hf} =Porosidad de la fractura hidráulica asociada a un sistema compuesto, ϕ_2 =Porosidad de la fractura natural, S_{wf} =saturación de agua asociada al sistema de fracturas, B_{qi} =factor de volumen a condiciones de presión inicial.

$$G_a^* = 1359.7h\rho_b \left(\frac{V_L P_i}{P_L + P_i}\right)$$
(24)

 $G_a^* =$ Volumen de gas que inicialmente es adsorbido en la materia orgánica asociado al valor semilla, *h*=Espesor del yacimiento, ρ_b =Densidad del shale, P_i =Presión inicial del yacimiento, P_L =Constante de presión de Langmuir, V_L =Constante de volumen de Langmuir.

$$G_{d}^{*} = 46043AhC_{(P_{i})} \left(\frac{TOC}{100\rho_{r}} - \phi_{ads_c} - \phi_{org} \right)$$
(25)

 $G_d^* =$ Volumen de gas que inicialmente se encuentra disuelto en el querógeno sólido asociado al valor semilla, A=Area, h=Espesor del yacimiento, ρ_r =densidad relativa, \emptyset_{ads_c} =porosidad del gas adsorbido, \emptyset_{org} =Porosidad orgánica, TOC=Carbon orgánico total, $C_{(p_i)}$ =Concentración de metano en el querógeno solido a condición de presión inicial.

$$G_t^* = G_f^* + G_m^* + G_a^* + G_d^*$$
(26)

 G_t^* =Volumen original de gas in situ de todo el sistema asociado al valor semilla.

$$\frac{G_f^*}{G_t^*} = \omega^*; \frac{G_m^*}{G_t^*} = \omega_m^*; \frac{G_a^*}{G_t^*} = \omega_a^*; \frac{G_d^*}{G_t^*} = \omega_d^*$$
(27)

 $\omega^* =$ Fracción de volumen del OGIP total que inicialmente se encuentra almacenado en las fracturas asociado a un valor semilla, $\omega_m^* =$ Fracción de volumen del OGIP total que inicialmente se encuentra almacenado en el sistema de matriz total asociado a un valor semilla, $\omega_a^* =$ Fracción de volumen del OGIP total que inicialmente se encuentra almacenado como gas adsorbido asociado a un valor semilla y $\omega_a^* =$ Fracción de volumen del OGIP total que inicialmente se encuentra almacenado como gas adsorbido asociado a un valor semilla y $\omega_a^* =$ Fracción de volumen del OGIP total que inicialmente se encuentra almacenado como gas disuelto en el querógeno solido asociado a un valor semilla.

3.3. Fuentes empleadas para recopilación de data.

Los datos pertenecientes a los pozos No.6630 y No.6654 de la cuenca Appalachian Basin (Lincoln County,WV) fueron obtenidos de la literatura, La fuente original de los datos proviene de "Reservoir Engineering Aspects and Resource Assessment Methodology of Eastern Devonian Shales" (Kucuk et al., 1978).Posteriormente la información original fue filtrada por (Orozco & Aguilera, 2015).

3.4. Flujo de trabajo

El flujo de trabajo propuesto se explica en los puntos siguientes.

Recopilar información: Consiste en obtener la información necesaria para alimentar la EBM propuesta en el presente trabajo. En el capítulo 4 se muestran la información para alimentar esta ecuación, como el histórico de producción vs presión de los pozos No.6630 y No.6654 entre otra data necesaria como input.

Asignar los valores semillas a parámetros omegas: Para asignar los valores semilla a los parámetros omegas, se hace uso de las ecuaciones de la sección 3.2 del presente trabajo.

Seleccionar modelo de adsorción: Se selecciona un modelo de adsorción como los que se muestran en la Tabla 4.

Regresión no lineal: El proceso de regresión no lineal es para optimizar la EBM propuesta en este trabajo con el historial de P/Z vs GP. La herramienta con la que se trabajó la optimización de parámetros fue con el complemento "Solver" de Microsoft Excel con la función error ERRSQ (Kumar & Sivanesan, 2006). Nota hay que respetar las limitaciones marcadas por el mismo modelo la EBM propuesta como que la suma de los parámetros omegas no puede superar la unidad, y las respectivas limitaciones de cada modelo de adsorción, estas se encuentran en la **Tabla 4**.

Regresar a seleccionar un modelo de adsorción: se repite el proceso con todos los modelos de la **Tabla 4** hasta que estén probados todos los modelos de adsorción.

Filtrar: verificar que las predicciones converjan, que se respeten las limitantes impuestas por el modelo de adsorción y la EBM, que la solución tenga un buen ajuste con la data. Si la solución no cumple con algunos de los criterios mencionados se le etiquetara como que la solución no tiene sentido físico.

Análisis estadístico: El análisis estadístico es para verificar cual de todas las posibles predicciones es la que mejor se adapta a los datos. El proceso consiste en analizar todas las posibles soluciones, con ayuda de las funciones de pérdida o error las cuales se muestran en la **Tabla 5**.con esto se realiza una tabla en donde se muestra el modelo más exitoso (obtuvo un ajuste) respecto a alguna función de error, el modelo que se imponga en la mayoría de las funciones de error es el criterio que se toma como solución al problema. Nótese que se le da más importancia a las funciones de error que consideran el número de parámetros del modelo de adsorción.

Capítulo IV: Resultados

En este capítulo se presentan los resultados del presente trabajo de investigación, los casos de estudio con los que se trabajó pertenecen a los Pozos No.6630 y No.6654 del Devonian shale pertenecientes a la cuenca Appalachian Basin los cuales se ubican en Lincoln, West Virginia, EUA.En la **Tabla 6** se muestran los datos pertenecientes a estos Pozos.

Tabla 6

Parámetros	símbolos	Valor	Unidades
Saturación media del agua en la matriz	S _{wm}	0.1	Fraction
Saturación del agua fractura	S_{wf}	0	Fraction
Compresibilidad del agua	C_w	3.00E-06	1/psi
Compresibilidad de la matriz	C_m	4.00E-12	1/psi
Esfuerzo total en la fractura	σ_t	1500.00	psi
Presión en la fractura	P_h	10000.00	psi
Porosidad orgánica	ϕ_{org}	0.1	Fracción
Porosidad adsorbida	ϕ_{ads_c}	0.002	Fracción
Porosidad SEM	Ø _{SEM}	0.012	Fracción
Porosidad inicial en la fractura natural	Ø ₂	0.001	Fracción
Porosidad inicial en la fractura hidráulica	ϕ_{hf}	0.002	Fracción
Porosidad total inicial de la matriz	ϕ_{mt}	0.1	Fracción
Porosidad total inicial del Shale	ϕ_{sh}	0.105	Fracción
Porosidad inorgánica de la matriz ligada al sistema de la matriz	Ø _b	0.10033	Fracción
Carbón orgánico total	ТОС	5	%peso
Densidad del shale	$ ho_b$	2.65	gr/cm ³
Densidad relativa del shale	$ ho_r$	0.5	_
Temperatura del yacimiento	Т	554.69	°R
Espesor del yacimiento	h	150	ft
Gravedad específica del das	SG	0.5540 (pure	_
Gravedad especifica del gas	50	methane)	
Área de drene del pozo	Α	40	Acres

Datos pertenecientes a los pozos No.6630 y No.6654

Parámetros	símbolos	Valor	Unidades			
Longitud de media ala de la fractura	x_f	100	ft			
Exponent of the back-pressure equation	n	0.75	_			
Factor de daño	S	0	_			
Permeabilidad de las fracturas naturales	<i>x</i> ₂	4	md			
Permeabilidad de la fractura hidráulica	x_{hf}	10	md			
Presión de fondo fluyente	P_{wf}	50	psi			
Presión de abandono	P_{ab}	65-75*	psi			
*El primer valor corresponde al pozo No.6630 y el Segundo valor corresponde al						

pozo No.6654

Fuente: tabla modificada de (Orozco & Aguilera, 2015).

4.1. Pozo No.6630

La data que se usó como input para la EBM propuesta en este trabajo proviene de la **Tabla 6**, la asignación de los valores semilla a los parámetros omegas (ω , ω_m , $\omega_a y \omega_d$) se realizó con las ecuaciones de la sección 3.2, la regresión no lineal se trabajó con la función de perdida ERRSQ (Kumar & Sivanesan, 2006), el complemento "Solver" de Microsoft Excel y la data con la que se ajustó el modelo proviene de la **Tabla 7** (la data que se muestra no está trabajada para ser usada en la Ecuación (17)).

Tabla 7

Presión, P	Producción
	acumulada del gas,
	G _P
Psia	MMscf
540.00	0
478.00	12.47
407.00	30.61
357.00	46.72
346.00	61.98

Historia de producción de el pozo No.6630.

330.00	73.71
307.00	83.97
251.00	100.66
226.00	115.61
222.00	122.95
211.00	151.14
206.00	191.66
205.00	196.06

Fuente: (Orozco & Aguilera, 2015).

El método de regresión no lineal se realizó con las 24 isotermas presentadas en la **Tabla 4**, después todas las predicciones fueron pasadas por el filtro (este se explica en la sección 3.4), los modelos que pasaron el filtro en el Pozo No.6630 son Fritz-Schlunder IV, Fritz-Schlunder V, Hill, Holl-Krich, Jossens, Khan, Koble-Corrigan, Langmuir, Langmuir-Freundlich, Redlich-Peterson, Sips, Toth y Vieth-Sladek. Las predicciones hechas por los modelos enlistados se muestran en la **Figura 11**, los parámetros de estos modelos se muestran en la **Tabla 8**.

Figura 11

P/Z vs producción de gas acumulada del pozo No.6630 modelado con diferentes isotermas.

Nota: Elaboracion propia.

Tabla 8

		Temperatura °R			Temperatura °R
Isoterma	Parámetros	554.69	Isoterma	Parámetros	554.69
Redlich-Peterson	R ²	0.9247	Sips	R^2	0.9392
	Reduced X ²	2.8150		Reduced X ²	2.5506
	$G_t(MMscf)$	882.41		G_t (MMscf)	1067.9127
	ω	0.0113		ω	0.4543
	ω_m	0.0497		ω_m	0.1410
	ω_d	0.6891		ω_d	0.2453
	ω_a	0.2498		ω _a	0.1592
	K _{RP}	1666.0891		q_{ms}	1073.5976
	\propto_{RP}	0.0089		K _S	1.979E-07
	β_{RP}	1		ms	0.3039
Koble-Corrigan	R ²	0.9249	Toth	<i>R</i> ²	0.9247
	Reduced X ²	2.8147		Reduced X ²	2.8160
	$G_t(MMscf)$	865.4328		G_t (MMscf)	882.3730
	ω	0.0113		ω	0.1129
	ω_m	0.0497		ω_m	0.0498
	ω_d	0.6891		ω_d	0.6890
	ω_a	0.2498		ω _a	0.2498
	A_{KC}	1725.7235		q_T	405383.59
	B _{KC}	0.0081		K_T	0.0089

Constantes de los mejores prospectos de solución (isotermas) para el pozo No. 6630

ootorm-	Denferration	Temperatura °R		Derámatica	Temperatura °R
soterma	Parametros	554.69	Isoterma	Parametros	554.69
	n_{KC}	1.0135		n_T	1
Jossens	R ²	0.9249	Langmuir- Freundlich	R^2	0.8482
	Reduced X ²	2.8329		Reduced X ²	3.3390
	G _t (MMscf)	911.5678		$G_t(MMscf)$	881.8862
	ω	0.0113		ω	0.0113
	ω_m	0.0497		ω_m	0.0498
	ω_d	0.6891		ω_d	0.6893
	ω _a	0.2498		ω_a	0.2495
	K _J	1683.5444		q_{mLF}	4174937.4
	J	0.0101		K_{LF}	0.0089
	b_J	0.9905		m_{LF}	1
Khan	<i>R</i> ²	0.9249	Vieth-Sladek	<i>R</i> ²	0.7625
	Reduced X ²	2.8147		Reduced X ²	10.0117
	G_t (MMscf)	527.4150		G_t (MMscf)	238.7529
	ω	0.0114		ω	0.0111
	ω_m	0.0491		ω_m	0.0501
	ω_d	0.6895		ω_d	0.6884
	ω_a	0.2498		ω_a	0.2497
	q_{m_k}	9237.2384		K _{VS}	1701.3869
	b_K	0.0005		β_{VS}	0.1999
	n_k	3.5696		$q_{m_{vs}}$	1.0001
Holl-Krich	<i>R</i> ²	0.9270	Hill	R^2	0.9289

		Temperatura °R			Temperatura °R
Isoterma	Parámetros	554.69	Isoterma	Parámetros	554.69
	Reduced X ²	2.7968		Reduced X ²	2.7714
	G _t (MMscf)	544.6122		G _t (MMscf)	1155.3718
	ω	0.0113		ω	0.01368
	ω_m	0.0497		ω_m	4.754E-05
	ω_d	0.6891		ω_d	0.9778
	ω_a	0.2498		ω_a	0.0084
	$q_{m_{HI}}$	73041.428		K _{HI}	126417.08
	K _{HK}	0.0002		n_{HI}	1.6969
	n _{HK}	1.5955	Fritz-Schlunder V	<i>R</i> ²	0.9233
Fritz-Schlunder IV	R ²	0.9245		Reduced X ²	3.6377
	Reduced X ²	3.1170		$G_t(MMscf)$	1147.5624
	G_t (MMscf)	872.4604		ω	0.2206
	ω	0.4183		ω_m	0.2774
	ω_m	0.0877		ω_d	0.2812
	ω_d	0.0178		ω_a	0.2206
	ω_a	0.4760		$q_{m_{FS5}}$	26918.706
	A_{FS}	648.3557		<i>K</i> ₁	53219.106
	B_{FS}	0.0083		<i>K</i> ₂	0.0263
	α_{FS}	0.9864		m_1	1
	β_{FS}	1		<i>m</i> ₂	0.9345

Nota: Elaboración propia.

La forma de comparar las predicciones expuestas anteriormente pasa por realizar un análisis estadístico, este análisis contiene métricas de éxito que consideran que tan bien se adaptan las predicciones a la data del Pozo No.6630, así como también el número de parámetros de cada modelo de adsorción. Las funciones de error presentadas en la **Tabla 5** son las métricas de éxito implementadas en el análisis estadístico del Pozo No.6630, los resultados de este análisis se muestran en la **Tabla 9**, El modelo que se impuso sobre todos los modelos fue el modelo de Sips el cual predice un OGIP de 1067 MMscf.

Tabla 9

Resultados del análisis estadístico para el pozo No.6630.

EABS	RMSE	ERRSQ	HYBRID	ARE	MPSD	Reduced	S _{RE}	R ²
Sips	Sips	Sips	Sips	Langmuir (Orozco)	Langmuir (Orozco)	Sips	Sips	Sips
Holl-Krich	Hill	Hill	Langmuir (this work)	Langmuir- Freundlich	Langmuir- Freundlich	Langmuir (this work)	Hill	Hill
Hill	*Baudu	*Baudu	Hill	Holl-Krich	Langmuir (this work)	Hill	Holl-Krich	Holl-Krich
Langmuir (Orozco)	Holl-Krich	Holl-Krich	Holl-Krich	Fritz- Schlunder -IV	Holl-Krich	Holl-Krich	Fritz- Schlunder -IV	*Baudu
Langmuir-	Koble-	Koble-	Koble-	Koble-	Koble-	Koble-	Koble-	Koble-
Freundlich	Corrigan	Corrigan	Corrigan	Corrigan	Corrigan	Corrigan	Corrigan	Corrigan
Fritz- Schlunder -IV	Khan	Koble- Corrigan	Khan	Khan	Khan	Khan	Khan	Khan
Koble- Corrigan	Fritz- Schlunder -IV	Fritz- Schlunder -IV	Redlich- Peterson	Langmuir (this work)	Redlich- Peterson	Redlich- Peterson	Redlich- Peterson	Jossens
Khan	Redlich- Peterson	Redlich- Peterson	Toth	Redlich- Peterson	Toth	Toth	Toth	Langmuir (this work)

EABS	RMSE	ERRSQ	HYBRID	ARE	MPSD	x^2	S_{RE}	R ²
Redlich- Peterson	Toth	Toth	Jossens	Toth	Jossens	Jossens	Langmuir (Orozco)	Fritz- Schlunder -IV
Langmuir (this work)	Langmuir (this work)	Langmuir (this work)	*Freundlic h	Jossens	Fritz- Schlunder -IV	*Freundlic h	Jossens	Redlich- Peterson
Toth	Jossens	Jossens	Langmuir (Orozco)	Fritz- Schlunder -V	Hill	Langmuir (Orozco)	Langmuir (Orozco)	Fritz- Schlunder -IV
Jossens	Fritz- Schlunder -V	Fritz- Schlunder -V	Fritz- Schlunder -IV	Sips	Fritz- Schlunder -V	Fritz- Schlunder -IV	Langmuir- Freundlich	Fritz- Schlunder -V
Fritz- Schlunder -V	*Freundlic h	*Freundlic h	Langmuir- Freundlich	Hill	Sips	Langmuir- Freundlich	Fritz- Schlunder -V	*Freundlic h
	Fritz-	Fritz-	Fritz-			Fritz-		Fritz-
*Baudu	Schlunder	Schlunder	Schlunder	*Baudu	Freundlich	Schlunder	*Baudu	Schlunder
	-111	-111	-111			-111		-111
Fritz- Schlunder -III	Langmuir (Orozco)	Langmuir (Orozco)	*Baudu	Fritz- Schlunder -III	Fritz- Schlunder -III	*Baudu	Fritz- Schlunder -III	Langmuir (Orozco)
*Freundlic h	Langmuir- Freundlich	Langmuir- Freundlich	Fritz- Schlunder -V	*Freundlic h	Baudu	Fritz- Schlunder -V	*Freundlic h	Langmuir- Freundlich
Vieth-	*Henry's	*Henry's	*Henry's	Vieth-	Henry's	*Henry's	Vieth-	*Henry's
Sladek	law	law	law	Sladek	law	law	Sladek	law
*Henry's	Vieth-	Vieth-	Vieth-	*Henry's	Vieth-	Vieth-	*Henry's	Vieth-
law	Sladek	Sladek	Sladek	law	Sladek	Sladek	law	Sladek
*Halsey	*Halsey	*Halsey	*Halsey	*Halsey	Halsey	*Halsey	*Halsey	*Halsey
*Temkin	*Temkin	*Temkin	*Temkin	*Temkin	Temkin	*Temkin	*Temkin	*Temkin

EABS	RMSE	ERRSQ	HYBRID	ARE	MPSD	Reduced	S _{RE}	R ²
*Brouers-	*Brouers-	*Brouers-	*Brouers-	*Brouers-	Brouers-	*Brouers-	*Brouers-	*Brouers- *Sotolong
Sotolongo	0							
*Parker	*Parker	*Parker	*Parker	*Parker	Parker	*Parker	*Parker	*Parker
*Marczew	*Marczew							
ski-	ski-							
Jaroniec	Jaroniec							

Nota: Elaboración propia.

Nota: El * significa que al modelo se le asigno la etiqueta "no tiene sentido físico"

Nota: el significado de la etiqueta se presentó en la sección 3.4

4.2. Pozo No.6654

La información con la que se alimentó la EBM propuesta proviene de la **Tabla 6**, la asignación de los valores semilla a los parámetros omegas (ω , ω_m , $\omega_a y \omega_d$) se realizó con las ecuaciones de la sección 3.2, la regresión no lineal se trabajó con la función ERRSQ (Kumar & Sivanesan, 2006), el complemento "Solver" de Microsoft Excel y la data con la que se ajustó el modelo proviene de la **Tabla 10** (La data que se muestra no está trabajada para la Ecuación (17)).

Tabla 10

Historia de producción de el pozo No.6654.

Presión, P	Producción acumulada del gas, G _P
Psia	MMscf
501.00	0.00
447.0	15.80
283.00	30.83
280.00	42.29
250.00	51.46
234.00	65.22

Presión, P	Producción acumulada del gas, G _P
219.00	81.02
192.00	86.11
189.00	91.46
172.00	96.31
171.00	100.38
162.00	111.34
157.00	114.65
152.00	118.22
147.00	121.13
146.00	127.13
140.00	135.54
131.00	138.09
129.00	143.69

Fuente: (Orozco & Aguilera, 2015).

El método de regresión no lineal se realizó con las 24 isotermas presentadas en la **Tabla** *4*, después todas las predicciones fueron pasadas por el filtro, los modelos que pasaron para el Pozo No.6654 son Baudu, Fritz-Schlunder IV, Fritz-Schlunder V, Holl-Krich, Jossens, Khan, Koble-Corrigan, Langmuir, Langmuir-Freundlich, Redlich-Peterson, Sips, Toth y Vieth-Sladek. Las predicciones hechas por los modelos enlistados se muestran en la **Figura** *12*, los parámetros de estos modelos se muestran en la **Tabla** *11*.

Figura 12

P/Z vs producción de gas acumulada para pozo 6654 modelado con diferentes isotermas.

Nota: Elaboración propia

Tabla 11

Constantes de los mejores prospectos de solución (isotermas) para pozos No.6654.

Isoterma	Parámetros	Temperatura °R	Isoterma	Parámetros	Temperatura °R
		554.69			554.69
Redlich-	R^2	0.9866	Sips	R^2	0.9872
Peterson					
	Reduced X^2	0.8026		Reduced X^2	0.7819
	$G_t(MMscf)$	683.3468		$G_t(MMscf)$	318.7810
	ω	0.0192		ω	0.1573
	ω_m	0.0394		ω_m	0.0779
	ω_d	0.6917		ω_d	0.4511
	ω_a	0.2495		ω_a	0.3135
	K _{RP}	1676.1619		q_{ms}	6294.1722
	$\propto_{_{RP}}$	0.0236		K _S	0.0004
	β_{RP}	0.9638		ms	0.6301

	Destautos	Temperatura °R			Temperatura °R
Isoterma	Parametros	554.69	Isoterma	Parametros	554.69
Koble-Corrigan	R^2	0.9868	Toth	R^2	0.9868
	Reduced X^2	0.8022		Reduced X^2	0.8012
	G_t (MMscf)	541.9689		G_t (MMscf)	551.1467
	ω	0.0190		ω	0.1166
	ω_m	0.0397		ω_m	0.0947
	ω_d	0.6915		ω_d	0.2096
	ω_a	0.2495		ω_a	0.5789
	A_{KC}	1728.3211		q_T	405367.48
	B_{KC}	0.0112		K_T	0.0119
	n_{KC}	1.0094		n_T	1
Jossens	R ²	0.9866	Langmuir- Freundlich	R^2	0.9868
	Reduced X ²	0.8044		Reduced X ²	0.8013
	G_t (MMscf)	675.1749		$G_t(MMscf)$	550.5777
	ω	0.0192		ω	0.0176
	ω_m	0.0395		ω_m	0.0429
	ω_d	0.6916		ω_d	0.6900
	ω_a	0.2495		ω_a	0.2495
	K _J	1960.147		q_{mLF}	4175206.4
	J	0.0232		K_{LF}	0.01197
	b_J	0.9637		m_{LF}	1
Khan	<i>R</i> ²	0.9876	Vieth-Sladek	R^2	0.7841
	Reduced X^2	0.7034		Reduced X^2	6.2530
	G_t (MMscf)	393.8687		$G_t(MMscf)$	162.2353
	ω	0.1992		ω	0.0192
	ω_m	0.0182		ω_m	0.0394
	ω_d	0.7733		ω_d	0.6917
	ω_a	0.0091		ω_a	0.2495
	q_{m_k}	9949.6864		K_{VS}	1676.0025
	b_K	0.0008574		β_{VS}	0.2
	n_k	4.7696		$q_{m_{vs}}$	1.000001
Holl-Krich	<i>R</i> ²	0.9872	Baudu	R^2	0.9868

		Temperatura °R			Temperatura °R
Isoterma	Parametros	554.69	Isoterma	Parametros	554.69
	Reduced X ²	0.7938		Reduced X ²	0.8563
	G_t (MMscf)	297.05		G_t (MMscf)	724.1436
	ω	8.493E-13		ω	1.263E-05
	ω_m	0.0800		ω_m	0.0757
	ω_d	9.817E-13		ω_d	0.3858
	ω_a	0.9199		ω_a	0.5383
	$q_{m_{HI}}$	73310.114		b_B	0.01937
	V	0.0002	x y Fritz-Schlunder V Reduced X ²	x	-0.2300
	R _{HK}	0.0002		-0.1544	
	n_{HK}	1.6381		R ²	0.9866
Fritz-Schlunder IV	R^2	0.9870		Reduced X ²	0.9404
	Reduced X ²	0.8726		G_t (MMscf)	890.2204
	G_t (MMscf)	469.5388		ω	0.2206
	ω	0.3789		ω_m	0.2774
	ω_m	0.0984		ω_d	0.2812
	ω_d	0.0178		ω_a	0.2206
	ω_a	0.5047		$q_{m_{FS5}}$	26918.707
	A_{FS}	744.2740		K_1	53219.104
	B_{FS}	0.0045		<i>K</i> ₂	0.0610
	α_{FS}	0.8331		m_1	0.5381
	β_{FS}	0.9999		m_2	0.6005

Nota: Elaboración propia.

El análisis estadístico del pozo No.6654 muestra que el modelo que mejor se adapta es el modelo de Khan, el cual predice un OGIP de 394 MMscf. El análisis estadístico se muestra en la **Tabla 12**.

Tabla 12

Resultados del análisis estadístico para el pozo 6654.

EABS	RMSE	ERRSQ	HYBRID	ARE	MPSD	Reduced x^2	S _{RE}	R^2
Khan	Khan	Khan	Khan	Khan	Khan	Khan	Khan	Khan
Sips	Holl-Krich	Holl-Krich	Langmuir (this work)	Sips	Langmuir (this work)	Langmuir (this work)	Sips	Holl-Krich
Fritz-					Lanamuir		Fritz-	
Schlunder-	Sips	Sips	Sips	Holl-Krich	(Orozoo)	Sips	Schlunder-	Sips
IV					(010200)		IV	
	Fritz-	Fritz-		Fritz-	Padliah			Fritz-
Holl-Krich	Schlunder-	Schlunder-	Holl-Krich	Schlunder-	Realich-	Holl-Krich	Holl-Krich	Schlunder-
	IV	IV		IV	Feleison			IV
Langmuir-	Koble-	Koble-	Tath	Langmuir-	lassana	Tath	Langmuir-	Langmuir-
Freundlich	Corrigan	Corrigan	Tour	Freundlich	JUSSEIIS	Tour	Freundlich	Freundlich
Lanı Toth Freu	Langmuir-	Langmuir-	Langmuir-	Tath	Sinc	Langmuir- Freundlich	Toth	Tath
	Freundlich	Freundlich	Freundlich	Tour	Sips			Tour
Koble-	Toth	Toth	Koble-	Baudu	Koble-	Koble-	Koble-	Koble-
Corrigan	Tour	Tour	Corrigan	Daudu	Corrigan	Corrigan	Corrigan	Corrigan
Baudu	Baudu	Baudu	Redlich-	Langmuir	Toth	Redlich-	Baudu	Baudu
Daudu	Baudu		Peterson	(this work)	1011	Peterson	Bautu	
Redlich-				Koble-	Lanomuir-		Fritz-	Fritz-
Peterson	Jossens	Jossens	Jossens	Corrigan	Ereundlich	Jossens	Schlunder-	Schlunder-
1 cloison				Comgan	ricultulien		V	V
lossons	Redlich-	Redlich-	*Freundlich	Redlich-	Holl-Krich	* E	Redlich-	Redlich-
J0556115	Peterson	Peterson	Freuhalich	Peterson	Holl-Kitch	Freundlich	Peterson	Peterson
Fritz-	Fritz-	Fritz-						
Schlunder-	Schlunder-	Schlunder-	Baudu	Jossens	Baudu	Baudu	Jossens	Jossens
V	V	V						
Langmuir (this work)	Langmuir (this work)	Langmuir (this work)	Fritz- Schlunder- IV	Fritz- Schlunder- V	*Freundlich	Fritz- Schlunder- IV	Langmuir (this work)	Langmuir (this work)

EABS	RMSE	ERRSQ	HYBRID	ARE	MPSD	Reduced	S _{RE}	R ²
			Fritz-		Fritz-	Fritz-		
*Freundlich	*Freundlich	*Freundlich	Schlunder-	*Freundlich	Schlunder-	Schlunder-	*Freundlich	*Freundlich
			V		IV	V		
Langmuir (Orozco)	Langmuir (Orozco)	Langmuir (Orozco)	Langmuir (Orozco)	Langmuir (Orozco)	Fritz- Schlunder- V	Langmuir (Orozco)	Langmuir (Orozco)	Langmuir (Orozco)
Vieth-	Vieth-	Vieth-	*Henry's	*Henry's	*Henry's	*Henry's	Vieth-	Vieth-
Sladek	Sladek	Sladek	law	law	law	law	Sladek	Sladek
*Henry's	*Henry's	*Henry's	Vieth-	Vieth-	Vieth-	Vieth-	*Henry's	*Henry's
law	law	law	Sladek	Sladek	Sladek	Sladek	law	law
*Halsey	*Halsey	*Halsey	*Halsey	*Halsey	*Halsey	*Halsey	*Halsey	*Halsey
*Temkin	*Temkin	*Temkin	*Temkin	*Temkin	*Temkin	*Temkin	*Temkin	*Temkin
*Unilan	*Unilan	*Unilan	*Unilan	*Unilan	*Unilan	*Unilan	*Unilan	*Unilan
*Hill	*Hill	*Hill	*Hill	*Hill	*Hill	*Hill	*Hill	*Hill
*Fritz-	*Fritz-	*Fritz-	*Fritz-	*Fritz-	*Fritz-	*Fritz-	*Fritz-	*Fritz-
*Schlunder	Schlunder-	Schlunder-	Schlunder-	Schlunder-	Schlunder-	Schlunder-	Schlunder-	Schlunder-
-111	111	Ш	III	III	111	Ш	Ш	III
*Brouers-	*Brouers-	*Brouers-	*Brouers-	*Brouers-	*Brouers-	*Brouers-	*Brouers-	*Brouers-
Sotolongo	Sotolongo	Sotolongo	Sotolongo	Sotolongo	Sotolongo	Sotolongo	Sotolongo	Sotolongo
*Parker	*Parker	*Parker	*Parker	*Parker	*Parker	*Parker	*Parker	*Parker
*Marczews	*Marczews	*Marczews	*Marczews	*Marczews	*Marczews	*Marczews	*Marczews	*Marczews
ki-Jaroniec	ki-Jaroniec	ki-Jaroniec	ki-Jaroniec	ki-Jaroniec	ki-Jaroniec	ki-Jaroniec	ki-Jaroniec	ki-Jaroniec

Nota: Elaboración propia.

Nota: El * significa que al modelo se le asigno la etiqueta "no tiene sentido físico"

Nota: el significado de la etiqueta se presentó en la sección 3.4

4.3. Discusión de resultados

La idea de poner a competir un modelo matemático fuera de las condiciones para las cuales fueron creadas es una práctica común, este patrón se presenta en los trabajos de (Aguilera, 2008; Cabrapán Duarte et al., 2014; Orozco & Aguilera, 2015), esta práctica es necesaria ya que es una forma de tener un marco de referencia. Es probable que, debido a esta práctica mencionada anteriormente, sea la causa de omisión de las métricas de éxito necesarias para la optimización de parámetros del modelo matemático, ya que en ninguno de los trabajos mencionados anteriormente hace referencia a estas para cuantificar el ajuste realizado.

Al comparar las predicciones hechas por (Orozco & Aguilera, 2015) vs las predicciones hechas en el presente trabajo con el modelo de Langmuir, como se muestra en la **Figura** *13* y

Figura 14, junto con sus respectivos parámetros de ajustes que se muestran en las **Tabla 13** y **Tabla 14**, se observan diferencias debido a la optimización de parámetros, mientras que las predicciones realizadas en el presente trabajo se construyeron en función del flujo de trabajo expuesto anteriormente, en donde se detallan las métricas de éxito que se usaron como guía para la optimización de parámetros. con la isoterma de Langmuir se predice un OGIP en el Pozo No.6630 de 1000 MMscf y No.6654 de 778 MMscf; mientras que en el trabajo de (Orozco & Aguilera, 2015) se predice un OGIP para los pozos No.6630 de 1000 MMscf y No.6654 de 550 MMscf, al desconocer la métrica u métricas de éxito en la que se basó, y suponiendo por el análisis estadístico que probablemente la métrica de éxito que utilizo sea la función de perdida MSDP, ya que en esta se nota un gran desempeño de sus predicciones.

Seria inapropiado solo tomar esta métrica de éxito en el presente trabajo ya que se usaron modelos con más de dos parámetros de ajuste en los modelos de adsorción. Trabajando con los estándares expuestos anteriormente en la tesis, el análisis estadístico mostro que para el pozo No.6654, el modelo de Khan es el que muestra un mejor desempeño en las funciones de perdida EABS, RMSE, ERRSQ, HYBRID, ARE, MPSD, Reduced x^2 , S_{RE} y R^2 prediciendo un OGIP de 394 MMscf, el parámetro n_k de 4.7696 al alejarse de la unidad muestra que se aleja de una adsorción en monocapa tipo ideal.

En el caso del pozo No.6630, el análisis estadístico mostro que el modelo de Sips tiene un mejor desempeño en las funciones de perdida EABS, RMSE, ERRSQ, HYBRID, Reduced x^2 , S_{RE} y R^2 mientras que en las funciones de perdida ARE y MPSD (Orozco & Aguilera, 2015) es la predicción que mejor se desempeñó. el modelo que mejor se ajusta a los datos del pozo en comparación a los demás modelos de adsorción puestos a competir es el modelo de Sips el cual predice un OGIP de 1067 MMscf.

Figura 13

P/Z vs producción de gas acumulado para el pozo No.6630, Lincoln county, WV

Nota: Elaboracion propia.

Figura 14

P/Z vs producción de gas acumulado para el pozo No.6654, Lincoln county, WV

Nota: Elaboración propia.

Tabla 13

Constantes de la isoterma de Langmuir para pozo No.6654.

Isoterma	parámetros	Temperatura °R	Isoterma	parámetros	Temperatura °R
	P	554.69	lootonna	parametro	554.69
Langmuir			Langmuir		
(Orozco 2015)	R^2	0.9605	(Presente	R^2	0.9864
(010200 2013)			estudio)		
	Reduced X ²	1.0710		Reduced X^2	0.7412
	G_t (MMscf)	550		G_t (MMscf)	778.99
	ω	0.0176		ω	0.0192
	ω_m	0.0429		ω_m	0.0394
	ω_d	0.6900		ω_d	0.6917
	ω_a	0.2495		ω_a	0.2495
	q_{mL}	967.43		q_{mL}	1676.5348
	K_L	48.67		K_L	0.0216

Nota: Elaboración propia.

Tabla 14

Constantes de la isoterma de Langmuir para pozo No.6630.

Isoterma	parámetros	Temperatura °R	Isoterma	parámetros	Temperatura °R
	parametro	554.69		parametro	554.69
Lanomuir			Langmuir		
(Orozco 2015)	R^2	0.8482	(Presente	R^2	0.9247
(,			estudio)		
	Reduced X ²	3.0355		Reduced X^2	2.5600
	G _t (MMscf)	1000		$G_t(MMscf)$	1000.6
	ω	0.0113		ω	0.0075
	ω_m	0.0498		ω_m	0.0598
	ω_d	0.6891		ω_d	0.4699
	ω_a	0.2498		ω_a	0.4626
	q_{mL}	913.45		q_{mL}	2150.9521
	K_L	60.24		K_L	0.01

Nota: Elaboración propia.

Nota: Se descubrió que los valores de ω_d y ω_a se pueden intercambiar debido a como está construida la EBM, por lo que es muy importante poner en duda la asignación de valores de estas incógnitas ya que el programa de cómputo o complemento, le es indiferente los valores de estas incógnitas, por lo que se recomienda tratar de cotejar los resultados finales con una fuente de información externa.

Capítulo V: Conclusiones y recomendaciones

En trabajos anteriores referentes a las EBM para yacimientos tipo shele-gas o CBM, la isoterma de Langmuir siempre fue una constate para describir el fenómeno de adsorción, lo que repercute directamente en las predicciones del OGIP y el comportamiento de estos, por lo que en este trabajo se buscaron formas alternativas para describir la adsorción.

La EBM para yacimientos tipo shales gas de 5 porosidades se adaptó para ser compatible con cualquier tipo de isoterma, sin importar si tiene un abordaje de tipo monocapa, multicapa o hibrido; inclusive tampoco es afectada si estas son conformadas por 1,2,3,4 o 5 parámetros de ajuste.

Se importaron modelos de adsorción que son usados para describir la adsorción en otras industrias, para poder aplicarlos a la EBM para yacimiento de tipo shale-gas de cinco porosidades.

Por primera vez se mostró una metodología en donde se detallan las métricas de éxito necesarias para la optimización de parámetros, este rubro ha sido subestimado de tal forma que este patrón se repite en los trabajos de (Aguilera, 2008; Cabrapán Duarte et al., 2014; Orozco & Aguilera, 2015) en donde se omiten estas, inclusive métricas fundamentales como R^2 .

Al comparar las predicciones hechas en el trabajo de (Orozco & Aguilera, 2015) vs las propuestas en el presente trabajo, el análisis estadístico mostro que el modelo de Langmuir el cual considera adsorción ideal en monocapa no es el que mejor se ajusta a los datos, los modelos que mostraron un mejor rendimiento fueron los modelos de Sips y Khan los cuales son modelos de adsorción híbridos. El modelo de adsorción multicapa de Freundlich mostró un pobre desempeño para los casos de estudio de los Pozos No.6630 y No. 6654, en ninguna de los dos casos este modelo paso el filtro.

Como se mencionó en la nota al pie de la **Tabla 14** al tratar de obtener ajustes similares con la ecuación propuesta con respecto al Trabajo (Orozco & Aguilera, 2015) y tener un registro de todos los intentos fallidos, se descubrió que los valores omegas ω_a y ω_d se pueden intercambiar valores entre estos y no afectar a la solución final, esto es debido a como se construyó la EBM para yacimientos tipo shale-gas de cinco porosidades; debido a esto, no se recomienda fiarse de estos valores, al programa de cómputo o complemento "Solver" le es indiferente los valores que les asigna a estos parámetros.

5.1. Futuro de la investigación

Trabajando de forma convencional en la EBM propuesta se puede analizar el rubro referente a la cuantificación del gas disuelto, el cual se apoya en el trabajo de (Swami et al., 2013), en donde se cuantifica la concentración del querógeno sólido, empleando la suposición de que la densidad del querógeno solido es la misma que la del betumen; en relación al rubro referente a las fracturas hidráulicas, estas se describieron con la correlación de (Jones, 1975), por lo que no se consideraron aspectos como el material apuntalante; también sería pertinente plantear índices de producción para conocer qué porcentaje la producción es gas libre, adsorbido o disuelto.

Si se planteara trabajar con técnicas de machine learning (ML), se propondría construir una base de datos y aplicar métodos de ensamble, los cuales consisten en combinar diferentes métodos de (ML) como Linear model trained via stochastic gradient descent (Lasso), support vector machine (SVM), random forest, decision tree entre otros modelos matemáticos con diferentes configuraciones, en donde se usarían estrategias como lo son Bootstrap o AGGgragation (Bagging) para lograr un consenso.

La técnica de Baggin se basa en poner a trabajar diferentes algoritmos en paralelo, y la segunda estrategia Boosting consiste en implementar algoritmos bajos en complejidad reducidad de forma secuencial, para que finalmente al seguir alguna de las estrategias mencionadas se obtenga una herramienta similar a la EBM, la cual se esperaría que permitiera predecir el comportamiento de los yacimientos tipo shale-gas expuestos en el trabajo presente.

Bibliografía

- Aguilera, R. (2008). Effect of Fracture Compressibility on Gas-in-Place Calculations of Stress-Sensitive Naturally Fractured Reservoirs. SPE Reservoir Evaluation and Engineering, 11(2), 307–310. https://doi.org/10.2118/100451-PA
- Aguilera, R. (2010). Flow units: From Conventional to Tight Gas to Shale Gas Reservoirs.
 Society of Petroleum Engineers SPE Western Regional / Pacific Section AAPG Joint
 Technical Conference 2013: Energy and the Environment Working Together for the Future,
 June, 1–16. https://doi.org/10.2523/132845-MS
- Al-Arfaj, M. K. (2020). Adsorption Potential Analysis for Shale and Pure Clay Samples: An Experimental Study. URTeC, 1–10. https://doi.org/10.15530/urtec-2020-2436
- Boulinguiez, B., Le Cloirec, P., & Wolbert, D. (2008). Revisiting the determination of langmuir parameters-application to tetrahydrothiophene adsorption onto activated carbon. *Langmuir*, *24*(13), 6420–6424. https://doi.org/10.1021/la800725s
- Brdar, M. M., Takači, A. A., Šćiban, M. B., & Rakić, D. Z. (2012). Isotherms for the adsorption of Cu(II) onto lignin Comparison of linear and non-linear methods. *Hemijska Industrija*,

66(4), 497-503. https://doi.org/10.2298/HEMIND111114003B

- Brouers, F., Sotolongo, O., Marquez, F., & Pirard, J. P. (2005). Microporous and heterogeneous surface adsorption isotherms arising from Levy distributions. *Physica A: Statistical Mechanics and Its Applications*, 349(1–2), 271–282.
 https://doi.org/10.1016/j.physa.2004.10.032
- Cabrapán Duarte, J., Cáliz Viñas, E., & Ciancaglini, M. (2014). Material Balance Analysis of Naturally or Artificially Fractured Shale Gas Reservoirs to Maximize Final Recovery. SPE Latin American and Caribbean Petroleum Engineering Conference Proceedings, 3, 1–17. https://doi.org/10.2118/169480-MS
- Chieng, H. I., Zehra, T., Lim, L. B. L., Priyantha, N., & Tennakoon, D. T. B. (2014). Sorption characteristics of peat of Brunei Darussalam IV: equilibrium, thermodynamics and kinetics of adsorption of methylene blue and malachite green dyes from aqueous solution. *Environmental Earth Sciences*, *72*(7), 2263–2277. https://doi.org/10.1007/s12665-014-3135-7
- Chowdhury, A. K., Sarkar, A. D., & Bandyopadhyay, A. (2009). Rice husk ash as a low cost adsorbent for the removal of Methylene Blue and Congo Red in aqueous phases. *Clean -Soil, Air, Water*, 37(7), 581–591. https://doi.org/10.1002/clen.200900051
- Civan, F. (2010). A review of approaches for describing gas transfer through extremely tight porous media. AIP Conference Proceedings, 1254, 53–58. https://doi.org/10.1063/1.3453838
- Craft, B. C., & Hawkins, M. F. (1991). Applied Petroleum Reservoir Engineering Second Edition. In *Prentice Hall PTR*.

Dake, L. P. (1978). Fundamentals of Reservoir Engineering. Elsevier.

Francoise Rouquerol, I. R. and K. S. (1998). Adsortion by Powders and Porous Solids.

- Fritz, W., & Schluender, E. U. (1974). Simultaneous adsorption equilibria of organic solutes in dilute aqueous solutions on activated carbon. *Chemical Engineering Science*, 29(5), 1279– 1282. https://doi.org/10.1016/0009-2509(74)80128-4
- Halsey, G. (1948). Physical adsorption on non-uniform surfaces. *The Journal of Chemical Physics*, *16*(10), 931–937. https://doi.org/10.1063/1.1746689
- Hokkanen, S., Bhatnagar, A., Koistinen, A., Kangas, T., Lassi, U., & Sillanpää, M. (2018).
 Comparison of adsorption equilibrium models and error functions for the study of sulfate removal by calcium hydroxyapatite microfibrillated cellulose composite. *Environmental Technology (United Kingdom)*, 39(8), 952–966.

https://doi.org/10.1080/09593330.2017.1317839

- Jones, F. O. (1975). Laboratory Study of the Effects of Confining Pressure on Fracture Flow and Storage Capacity in Carbonate Rocks. *JPT, Journal of Petroleum Technology*, 27, 21–27. https://doi.org/10.2118/4569-PA
- Jovanović, D. S. (1969). Physical adsorption of gases I: Isotherms for monolayer and multilayer adsorption. *Kolloid-Zeitschrift & Zeitschrift Für Polymere*, *235*(1), 1203–1213. https://doi.org/10.1007/BF01542530
- Kapoor, A., & Yang, R. T. (1989). Correlation of equilibrium adsorption data of condensible vapours on porous adsorbents. *Gas Separation and Purification*, 3(4), 187–192. https://doi.org/10.1016/0950-4214(89)80004-0
- Kecili, R., & Hussain, C. M. (2018). Mechanism of adsorption on nanomaterials. In Nanomaterials in Chromatography: Current Trends in Chromatographic Research Technology and Techniques. Elsevier Inc. https://doi.org/10.1016/B978-0-12-812792-

6.00004-2

- Khan, A. R., Al-Waheab, I. R., & Al-Haddad, A. (1996). A generalized equation for adsorption isotherms for multi-component organic pollutants in dilute aqueous solution. *Environmental Technology (United Kingdom)*, 17(1), 13–23. https://doi.org/10.1080/09593331708616356
- King, G. R. (1990). Material Balance Techniques for Coal Seam and Devonian Shale Gas Reservoirs. *Proceedings - SPE Annual Technical Conference and Exhibition, Sigma*, 181– 192. https://doi.org/10.2118/20730-MS
- King, G. R., Chevron E&P Services Co, & SPE. (1993). Material-Balance Techniques for Coal-Seam and Devonian Shale Gas Reservoirs With Limited Water Influx. SPE Reservoir Engineering (Society of Petroleum Engineers), 8(1), 67–72. https://doi.org/10.2118/20730-PA
- Koble, R. A., & Corrigan, T. E. (1952). Adsorption Isotherms for Pure Hydrocarbons. *Industrial*& Engineering Chemistry, 44(2), 383–387.

Kumar, K. V., & Sivanesan, S. (2006). Pseudo second order kinetics and pseudo isotherms for malachite green onto activated carbon: Comparison of linear and non-linear regression methods. *Journal of Hazardous Materials*, *136*(3), 721–726. https://doi.org/10.1016/j.jhazmat.2006.01.003

- Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part II.-Liquids. *Journal of the Franklin Institute*, *184*(5), 721. https://doi.org/10.1016/s0016-0032(17)90088-2
- Lopez Jimenez, B. A. (2017). Characterization and Construction of 3D Numerical Simulators for Oil and Liquids-Rich Multi-Porosity Shale Reservoirs [University of Calgary]. https://doi.org/10.11575/PRISM/25260

Lopez Jimenez, B. A., & Aguilera, R. (2013). Evaluation of quintuple porosity in shale petroleum reservoirs. SPE Eastern Regional Meeting, August, 164–191. https://doi.org/10.2118/165681-MS

- Lopez Jimenez, B. A., & Aguilera, R. (2018). Petrophysical quantification of multiple porosities in shale-petroleum reservoirs with the use of modified pickett plots. *SPE Reservoir Evaluation and Engineering*, *21*(1), 187–201. https://doi.org/10.2118/171638-PA
- Luque, M. M. C., Urban-Rascon, E., Aguilera, R. F., Aguilera, R., University of Calgary, & Curtin University. (2018). Mexican unconventional plays: Geoscience, endowment, and economic considerations. *SPE Reservoir Evaluation and Engineering*, *21*(3), 533–549. https://doi.org/10.2118/189438-PA
- Marquardt, D. W. (1963). AN ALGORITHM FOR LEAST-SQUARES ESTIMATION OF NONLINIEAR PARAMETERS. *Nederlands Tijdschrift Voor Geneeskunde*, 11, 431–441.
- McKay, G., & Al Duri, B. (1987). Simplified model for the equilibrium adsorption of dyes from mixtures using activated carbon. *Chemical Engineering and Processing*, 22(3), 145–156. https://doi.org/10.1016/0255-2701(87)80041-7
- Nayak, A. K., & Pal, A. (2020). Utilization of Lignocellulosic Waste for Acridine Orange
 Uptake: Insights into Multiparameter Isotherms Modeling with ANN-Aimed Formulation. *Journal of Environmental Engineering (United States)*, 146(9).
 https://doi.org/10.1061/(ASCE)EE.1943-7870.0001762
- Ng, J. C. Y., Cheung, W. H., & McKay, G. (2003). Equilibrium studies for the sorption of lead from effluents using chitosan. *Chemosphere*, 52(6), 1021–1030. https://doi.org/10.1016/S0045-6535(03)00223-6

Orozco, D., & Aguilera, R. (2015). A Material Balance Equation for Stress-Sensitive Shale Gas
Reservoirs Considering the Contribution of free, Adsorbed and Dissolved Gas. Society of Petroleum Engineers - SPE/CSUR Unconventional Resources Conference.

https://doi.org/10.2118/175964-MS

- Orozco, D., & Aguilera, R. (2018). Use of Dynamic Data and a New Material-Balance Equation for Estimating Average Reservoir Pressure, Original Gas in Place, and Optimal Well
 Spacing in Shale Gas Reservoirs. SPE Reservoir Evaluation and Engineering, 21(4), 1035– 1044. https://doi.org/10.2118/185598-PA
- Parker, G. R. (1995). Optimum isotherm equation and thermodynamic interpretation for aqueous 1,1,2-trichloroethene adsorption isotherms on three adsorbents. *Adsorption*, 1(2), 113–132. https://doi.org/10.1007/BF00705000
- Piccin, J. S., Gomes, C. S., Feris, L. A., & Gutterres, M. (2012). Kinetics and isotherms of leather dye adsorption by tannery solid waste. *Chemical Engineering Journal*, 183, 30–38. https://doi.org/10.1016/j.cej.2011.12.013
- Redlich, & Peterson. (1959). hydrochloric acid was then filtered through the fritted glass. Following this a 9.3. *Notes*, *63*(1955), 1958.
- Santos, S. P. B. (2018). *Validación de ecuaciones de balance de materia para sistemas de doble porosidad una permeabilidad*. Instituto Politécnico Nacional.
- Sips, R. (1948). On the structure of a catalyst surface. *The Journal of Chemical Physics*, *16*(5), 490–495. https://doi.org/10.1063/1.1746922
- Swami, V., Settari, A., & Javadpour, F. (2013). A numerical model for multi-mechanism flow in shale gas reservoirs with application to laboratory scale testing. 75th European Association of Geoscientists and Engineers Conference and Exhibition 2013 Incorporating SPE EUROPEC 2013: Changing Frontiers, i, 1274–1293. https://doi.org/10.2118/164840-ms

- Toth, J. (2000). Calculation of the BET-compatible surface area from any Type I isotherms measured above the critical temperature. *Journal of Colloid and Interface Science*, 225(2), 378–383. https://doi.org/10.1006/jcis.2000.6723
- Vieth, W. R., & Sladek, K. J. (1965). A model for diffusion in a glassy polymer. Journal of Colloid Science, 20(9), 1014–1033. https://doi.org/10.1016/0095-8522(65)90071-1

APÉNDICE A

DERIVACIÓN DE LA ECUACIÓN DE BALANCE DE MATERIA PARA UN YACIMIENTO TIPO SHALE-GAS QUE CONSIDERA LA CONTRIBUCIÓN DE GAS LIBRE, ADSORBIDO Y DISUELTO DE (OROZCO 2015) MODIFICADA PARA QUE SEA COMPATIBLE CON CUALQUIER ISOTERMA DE ADSORCIÓN.

Se toma como punto de partida la EBM de un yacimiento de gas (Ecuación A-1).

$$OGIP(B_g - B_{gi}) + \Delta V_m + \Delta V_w + we = G_p B_g + W_p B_w$$
 Ecuación A-1

Sabiendo que:

$$C_m = \frac{1}{V_p} \frac{\Delta V_m}{\Delta p}; C_w = \frac{1}{V_w} \frac{\Delta V_w}{\Delta p}$$

La Ecuación A-1 se transforma en la Ecuación A-2

$$OGIP(B_g - B_{gi}) + C_m V_p \Delta p + C_w V_w \Delta p + we = G_p B_g + W_p B_w$$
 Ecuación A- 2

Suponiendo que es un yacimiento volumétrico $W_p B_w = 0$; we = 0 y jugando con las definiciones de OGIP, V_p y V_w en la Ecuación A- 2. Se obtiene la Ecuación A- 3

$$OGIP = \frac{V_p(1 - S_{wm})}{B_{gi}}; V_p = \frac{OGIPB_{gi}}{1 - S_{wm}}$$

$$V_w = V_p S_{wm}; V_w = \frac{OGIPB_{gi}S_{wm}}{1 - S_{wm}}$$

$$OGIP(B_g - B_{gi}) + C_m \frac{OGIPB_{gi}}{1 - S_{wm}} \Delta p + C_w \frac{OGIPB_{gi}S_{wm}}{1 - S_{wm}} \Delta p = G_p B_g$$
 Ecuación A- 3

Factorizando la Ecuación A-3.

$$OGIP(B_g - B_{gi}) + \frac{OGIPB_{gi}}{1 - S_{wm}}(C_m + C_w S_{wm})\Delta p = G_p B_g$$
 Ecuación A-4

La Ecuación A- *4* es una EBM de yacimiento gas volumétrico que considera la compresibilidad de la formación, esta Ecuación A- *4* solo considera el gas almacenado en la matriz. por lo que hay que diferenciar el gas libre, adsorbido y disuelto en la matriz.

$$OGIP_{matriz} = G_m + G_a + G_d$$

Una vez que el volumen de gas original almacenado en la matriz $(OGIP_{matriz})$ es alimentado por el gas libre, adsorbido y disuelto. Debido a que se hablado inicialmente de la EBM para un yacimiento de gas en donde el gas se almacena en el volumen poroso de la formación, se necesita cambiarlo para que se adapte a la física de un shale, razón por la cual se considerara un sistema de porosidad total (\emptyset_{mt}) conformado por la porosidad orgánica (\emptyset_{org}) e inorgánica (\emptyset_m).

La Ecuación A- 6 fue modificada para que considere que el gas adsorbido y disuelto en la matriz. También hay que hacer notar que ahora se habla de la porosidad del sistema de matriz total (ϕ_{mt}) , por lo que S_{wm} está ligada a la saturación media del sistema de porosidad total (ϕ_{mt}) .

$$G_m (B_g - B_{gi}) + \frac{G_m B_{gi}}{1 - S_{wm}} (C_m + C_w S_{wm}) \Delta p + G_{ap} B_g + G_{dp} B_g = G_{pm} B_g$$
 Ecuación A- 6

Para lograr que el volumen original de gas in-situ total $(OGIP_{total})$ considere el gas libre que se almacena en el sistema de fracturas (fracturas naturales e hidráulicas).

$$OGIP_{total} = G_t = OGIP_f + OGIP_{matriz}$$

Se toma como referencia la Ecuación A- 4, con la diferencia de que ahora el tanque de almacén es la fractura.

$$G_f(B_g - B_{gi}) + \frac{G_f B_{gi}}{1 - S_{wf}} (C_f + C_w S_{wf}) \Delta p = G_{pf} B_g$$
 Ecuación A- 7

Sumando la Ecuación A- 6 y Ecuación A- 7 se obtiene la Ecuación A- 8.

$$(G_{pf} + G_{pm})B_g = (G_f + G_m)(B_g - B_{gi}) + G_m \left(\frac{C_m + C_w S_{wm}}{1 - S_{wm}}\right)B_{gi}\Delta p \qquad \text{Ecuación A- 8}$$
$$+ G_f \left(\frac{C_f + C_w S_{wf}}{1 - S_{wf}}\right)B_{gi}\Delta p + G_{ap}B_g + G_{dp}B_g$$

Definiendo $(G_{pf} + G_{pm}) = G_p$ la Ecuación A-8 se transforma en la Ecuación A-9.

$$G_p B_g = (G_f + G_m) (B_g - B_{gi}) + G_m \left(\frac{C_m + C_w S_{wm}}{1 - S_{wm}}\right) B_{gi} \Delta p$$
 Ecuación A- 9
+ $G_f \left(\frac{C_f + C_w S_{wf}}{1 - S_{wf}}\right) B_{gi} \Delta p + G_{ap} B_g + G_{dp} B_g$

La Ecuación A- 9 es una EBM que considera la contribución de la fractura y la matriz, con sus respectivas modificaciones en la matriz.

El gas original in-situ total G_t es la suma del gas libre almacenado en la matriz (orgánica e inorgánica), fracturas (naturales e hidráulicas), gas adsorbido y gas disuelto.

$$OGIP_{matriz} = G_m + G_a + G_d$$

 $OGIP_{total} = G_t = OGIP_f + OGIP_{matrix}$

 $G_t = G_f + G_m + G_a + G_d$ Ecuación A- 10

Dividiendo la Ecuación A- 10 entre G_t .

$$1 = \omega + \omega_m + \omega_a + \omega_d$$
 Ecuación A- 11

Trabajando con el gas adsorbido G_{ap} , el cual se expresa como la Ecuación A-12.

$$G_{ap} = G_a(P_i) - G_a(P)$$
 Ecuación A- 12

El volumen de gas adsorbido a condiciones de presión inicial es igual al volumen de gas del OGIP del gas adsorbido.

$$G_a(P_i) = G_a$$
 Ecuación A-13

Asumiendo que G_a se almacena en la matriz, pero no ocupa volumen poroso, por lo que el gas adsorbido no afecta el gas libre in-situ.

El volumen de gas a condiciones presión media se puede expresar como:

$$G_a(P) = \frac{V_{rock}}{35.315} \rho_b CVE$$
 Ecuación A- 14

El V_{rock} se puede escribir en función de porosidad total de la matriz (orgánica e inorgánica).

$$V_{rock} = \frac{G_m B_{gi}}{\phi_{mt}(1 - S_{wm})}$$
 Ecuación A- 15

En dónde.

La Ecuación A- 14 se puede escribir como la Ecuación A- 16 al considerar la Ecuación A-15.

$$G_a(P) = \frac{G_m B_{gi} \rho_b}{35.315 \phi_{mt} (1 - S_{wm})} CVE$$
 Ecuación A-16

Sustituyendo la Ecuación A-13 y Ecuación A-16 en la Ecuación A-12.

$$G_{ap} = G_a - \frac{G_m B_{gi} \rho_b}{35.315 \phi_{mt} (1 - S_{wm})} CVE$$
 Ecuación A- 17

Trabajando con el volumen de gas producido proveniente del gas disuelto, G_{dp} , se puede expresar como:

$$G_{dp} = G_d(P_i) - G_d(P)$$
 Ecuación A-18

El volumen de gas a condiciones de presión inicial es, $G_d(P_i)$ se puede igualar al volumen del OGIP del gas disuelto.

$$G_d(P_i) = G_d$$
 Ecuación A- 19

El volumen de gas disuelto a condiciones de presión media del yacimiento $G_a(P)$, sería el producto de la concentración del querógeno solido en el metano C(p) y el volumen total del querógeno solido (V_{sk}) .

$$G_d(P) = C(p)V_{sk}$$
 Ecuación A- 20

La forma en cómo se modela la concentración de querógeno solido en el metano C(p), es a través del estudio de (Swami et al 2013). En donde se modela en función de la presión, temperatura del yacimiento y supone que la solubilidad del querógeno solido es la misma que la del betumen.

$$C(p) = b_1 + b_2 P + b_3 \frac{P}{T} + b_4 \left(\frac{P}{T}\right)^2$$
 Ecuación A-21

Donde b1=-0.018931, b2=-0.85048, b3=827.26, b4=-635.26.la presión P en MPa Las unidades C(p) estan en NTP/m3 de querógeno.por lo que se requiere cambiar de condiciones normales a condiciones estándar. Motivo por la cual se requiere de la ley de Charles para hacer la conversión.

$$V_{sc} = V_{NTP} \frac{T_{sc}}{T_{NTP}}$$
 Ecuación A- 22

$$V_{sc} = \left(\frac{288.5^{\circ}K}{273^{\circ}K}\right) V_{NTP}$$
 Ecuación A- 23

$$V_{sc} \approx 1.057 V_{NTP}$$
 Ecuación A- 24

El volumen total de querógeno solido V_{sk} , se puede escribir como producto de volumen de roca (V_{rock}) por la fracción de volumen querógeno sólido, (V_{diff}) .

$$V_{sk} = V_{rock} V_{diff}$$
 Ecuación A- 25

Sabiendo que (Lopez y Aguilera 2014) definieron la fracción del volumen total de querógeno V_{tker} , como la suma de porosidad adsorbida ϕ_{ads_c} , porosidad orgánica ϕ_{org} y la fracción de volumen del querógeno sólido.

$$V_{tker} = \phi_{ads_c} + \phi_{org} + V_{diff}$$
 Ecuación A- 26

Despejando la fracción de volumen del querógeno sólido, (V_{diff}) .

$$V_{diff} = V_{tker} - \phi_{ads_c} - \phi_{org}$$
 Ecuación A- 27

Sustituyendo la Ecuación A-15 y Ecuación A-27 en la Ecuación A-25.

$$V_{sk} = \frac{G_m B_{gi}}{\phi_{mt}(1 - S_{wm})} \left(V_{tker} - \phi_{ads_c} - \phi_{org} \right)$$
 Ecuación A- 28

(Wu & Aguilera 2012) definieron la fracción del volumen total de querógeno V_{tker} en función del carbón total orgánico (TOC) del shale y la densidad relativa.

$$V_{tker} = \frac{TOC}{100\rho_r}$$
 Ecuación A- 29

En donde la densidad relativa está definida como:

$$\rho_r = \frac{\rho_{ko}}{\rho_b}$$

En donde ρ_{ko} es la densidad del querógeno y ρ_b es la densidad del shale.

Sustituyendo la Ecuación A-29 en la Ecuación A-28 se obtiene la Ecuación A-30.

$$V_{sk} = \frac{G_m B_{gi}}{\phi_{mt} (1 - S_{wm})} \left(\frac{TOC}{100\rho_r} - \phi_{ads_c} - \phi_{org} \right)$$
 Ecuación A- 30

Sustituyendo la Ecuación A- 30 en la Ecuación A- 20, y haciendo el cambio de condiciones normales a condiciones estándar en la concentración del metano C(p).

$$G_d(P) = 1.057C(p) \left[\frac{G_m B_{gi}}{\phi_{mt}(1 - S_{wm})} \left(\frac{TOC}{100\rho_r} - \phi_{ads_c} - \phi_{org} \right) \right]$$
 Ecuación A- 31

Sustituyendo la Ecuación A- 31 y Ecuación A- 19 en la Ecuación A- 18.

$$G_{dp} = G_d - 1.057C(p) \left[\frac{G_m B_{gi}}{\phi_{mt}(1 - S_{wm})} \left(\frac{TOC}{100\rho_r} - \phi_{ads_c} - \phi_{org} \right) \right]$$
Ecuación A- 32

Trabajando con la Ecuación A- 32 y Ecuación A- 17 en la Ecuación A- 9.

$$\begin{aligned} G_{p}B_{g} &= \left(G_{f} + G_{m}\right)\left(B_{g} - B_{gi}\right) + G_{f}\frac{\left(C_{f} + C_{w}S_{wf}\right)}{1 - S_{wf}}B_{gi}\Delta p + G_{m}\frac{\left(C_{m} + C_{w}S_{wm}\right)}{1 - S_{wm}}B_{gi}\Delta p \end{aligned}$$
 Ecuación A- 33

$$&+ \left\{G_{a} - \frac{G_{m}\rho_{b}B_{gi}}{35.315\phi_{mt}(1 - S_{wm})}CVE\right\}B_{g} + \left\{G_{d} - 1.057C(p)\left[\frac{G_{m}B_{gi}}{\phi_{mt}(1 - S_{wm})}\left(\frac{TOC}{100\rho_{r}} - \phi_{ads_c} - \phi_{org}\right)\right]\right\}B_{g} \end{aligned}$$

Dividiendo entre $G_t y B_g$ en la Ecuación A- 33.

$$\begin{aligned} \frac{G_p}{G_t} &= \left(\frac{G_f + G_m}{G_t}\right) - \left[\left(\frac{B_{gi}}{B_g}\right)\left(\frac{G_f + G_m}{G_t}\right)\right] + \left[\left(\frac{B_{gi}}{B_g}\right)\left(\frac{G_m}{G_t}\right)\left(\frac{C_m + C_w S_{wm}}{1 - S_{wm}}\right)\Delta p\right] & \text{Ecuación A- 34} \\ \left[\left(\frac{B_{gi}}{B_g}\right)\left(\frac{G_f}{G_t}\right)\left(\frac{C_f + C_w S_{wf}}{1 - S_{wf}}\right)\Delta p\right] + \frac{G_a}{G_t} - \left\{\frac{G_m}{G_t}\frac{\rho_b B_{gi}}{35.315\phi_{mt}(1 - S_{wm})}\frac{B_g}{B_g}CVE\right\} + \frac{G_d}{G_t} \\ &- \left\{\left[\left(\frac{G_m}{G_t}\right)\frac{1.057C(p)B_{gi}}{\phi_{mt}(1 - S_{wm})}\frac{B_g}{B_g}\left(\frac{TOC}{100\rho_r} - \phi_{ads_c} - \phi_{org}\right)\right]\right\}\end{aligned}$$

Sabiendo que la compresibilidad efectiva de la matriz C' y la compresibilidad efectiva de la fractura C' como:

$$C' = \left(\frac{C_w S_{wm} + C_m}{1 - S_{wm}}\right)$$
 Ecuación A- 35

$$C^{-} = \left(\frac{C_w S_{wf} + C_f}{1 - S_{wf}}\right)$$
 Ecuación A- 36

Sabiendo también que la relación de volúmenes puede expresarse en función de la presión y recurriendo a las definiciones de la Ecuación A- *10* y Ecuación A- *11*.

$$\frac{B_{gi}}{B_g} = \frac{P/Z}{\frac{P_i}{Z_i}}$$
Ecuación A- 37

$$\omega_m + \omega = 1 - \omega_a - \omega_d$$
 Ecuación A- 38

Trabajando con la Ecuación A-35 a la Ecuación A-38 en la Ecuación A-34.

$$\frac{G_p}{G_t} = 1 - \omega_a - \omega_d - \left[\left(\frac{P/Z}{P_i/Z_i} \right) (1 - \omega_a - \omega_d) \right] + \left[\left(\frac{P/Z}{P_i/Z_i} \right) \omega_m C' \Delta p \right]$$
Ecuación A- 39
$$\left[\left(\frac{P/Z}{P_i/Z_i} \right) \omega C' \Delta p \right] + \omega_a - \left\{ \omega_m \left(\frac{P/Z}{P_i/Z_i} \right) \frac{\rho_b B_g}{35.315 \phi_{mt} (1 - S_{wm})} CVE \right\} + \omega_d$$
$$- \left\{ \left[\omega_m \left(\frac{P/Z}{P_i/Z_i} \right) \frac{1.057C(p)B_g}{\phi_{mt} (1 - S_{wm})} \left(\frac{TOC}{100\rho_r} - \phi_{ads_c} - \phi_{org} \right) \right] \right\}$$

Factorizando y reduciendo términos en la Ecuación A- 39.

$$\frac{G_p}{G_t} = 1 - \frac{P/Z}{P_i/Z_i} \left\{ 1 - \omega_a - \omega_d - \left[\omega_m C' + \omega C'' \right] \Delta p + \left[\frac{\omega_m \rho_b B_g}{35.315 \phi_{mt} (1 - S_{wm})} CVE \right] + \left[\frac{1.057 \omega_m C(p) B_g}{\phi_{mt} (1 - S_{wm})} \left(\frac{TOC}{100 \rho_r} - \phi_{ads_c} - \phi_{org} \right) \right] \right\}$$
Ecuación A- 40

A partir de la Ecuación A- 40, se puede definir el nuevo factor de compresibilidad de gas (Z') que considera un sistema de quíntuple porosidad donde el gas esta almacenado como gas libre, gas adsorbido, y gas disuelto, además de ser válido para cualquier modelo de adsorción (monocapa, multicapa, e hibrido).

$$Z' = Z \left\{ 1 - \omega_a - \omega_d - \left[\omega_m C' + \omega C'' \right] \Delta p + \left[\frac{\omega_m \rho_b B_g}{35.315 \phi_{mt} (1 - S_{wm})} CVE \right] + \left[\frac{1.057 \omega_m C(p) B_g}{\phi_{mt} (1 - S_{wm})} \left(\frac{TOC}{100 \rho_r} - \phi_{ads_c} - \phi_{org} \right) \right] \right\}^{-1}$$
Ecuación A- 41

$$\frac{G_p}{G_t} = 1 - \frac{P/Z'}{P_i/Z_i}$$
 Ecuación A- 42

La Ecuación A- 42 es una EBM para el yacimiento de gas alimentado por el gas libre, adsorbido y disuelto, modificada a la física de un shale y tiene la ventaja de ser adaptable a cualquier modelo de adsorción.

Al usar la isoterma de Langmuir para describir la adsorción obtengo la EBM de (Orozco 2015).

$$\frac{G_p}{G_t} = 1 - \frac{P/Z'}{\frac{P_i}{Z_i}}$$
 Ecuación A- 43

$$Z' = Z \left\{ 1 - \omega_a - \omega_d - \left[\omega_m C' + \omega C' \right] \Delta p + \left[\frac{\omega_m \rho_b B_g}{35.315 \phi_{mt} (1 - S_{wm})} \frac{V_L P}{P_L + P} \right]$$
 Ecuación A- 44
+ $\left[\frac{1.057 \omega_m C(p) B_g}{\phi_{mt} (1 - S_{wm})} \left(\frac{TOC}{100 \rho_r} - \phi_{ads_c} - \phi_{org} \right) \right] \right\}^{-1}$

Con la modificación hecha, no es necesario limitarse a la adsorción en monocapa tipo ideal como se ha hecho con la isoterma de Langmuir, se tiene la opción de explorar diferentes modelos de adsorción, como la isoterma de Langmuir-Freundlich que es hibrido entre las isotermas de Langmuir y Freundlich, Este modelo tiene la capacidad de considerar adsorción en monocapa y multicapa.

$$\frac{G_p}{G_t} = 1 - \frac{P/Z'}{\frac{P_i}{Z_i}}$$
 Ecuación A- 45

$$Z' = Z \left\{ 1 - \omega_a - \omega_d - \left[\omega_m C' + \omega C' \right] \Delta p + \left[\frac{\omega_m \rho_b B_g}{35.315 \phi_{mt} (1 - S_{wm})} \frac{q_{MLF} (K_{LF} P)^{MLF}}{1 + (K_{LF} P)^{MLF}} \right]$$
 Ecuación A- 46
+
$$\left[\frac{1.057 \omega_m C(p) B_g}{\phi_{mt} (1 - S_{wm})} \left(\frac{TOC}{100 \rho_r} - \phi_{ads_c} - \phi_{org} \right) \right] \right\}^{-1}$$

Lista de símbolos, abreviaciones y Nomenclatura

Acrónimos	Definición
CVE	Modelo de adsorción
EBM	Ecuación de balance de materia
NTP	Presión y temperatura a condiciones normales (1.01325
	× 10 ⁵ Pa y 273 °K)
OGIP	Volumen original de gas in situ
OGIP _a	Volumen original de gas adsorbido in situ
OGIP _d	Volumen original de gas disuelto in situ
OGIP _f	Volumen original de gas in situ en las fracturas
OGIP _m	Volumen original de gas in situ en la matriz
<i>OGIP_{matriz}</i>	Volumen original de gas in situ en el sistema de matriz
	alimentado por gas libre, adsorbido y disuelto
<i>OGIP_{total}</i>	Volumen original de gas in situ de todo el sistema

Nomenclatura	Definición
A_{FS}	Parámetro de Fritz-Schlunder-IV, SCF/ton
A_{KC}	Parámetro de Koble- Corrigan, SCF/ton
b_1 , b_2 , b_3 , b_4	Constantes utilizadas por (Swami et al, 2013)
b_B	Constate de equilibrio de Baudu, psi
b_J	Parámetro de la isoterma de Jossens, adimesional
b_K	Constante del modelo de Khan, <i>psi</i>
B_{FS}	Parámetro de Fritz-Schlunder-IV, psi
B_g	Factor de volumen del gas, RCF/SCF
B_{gi}	Factor de volumen del gas a condiciones iniciales, RCF/SCF
B _{KC}	Parámetro de Koble- Corrigan, psi
B _w	Factor de volumen del agua de formación, bbl/STB
C_{VE}	Constante volumétrica de la isoterma SCF/ft^3
Ċ	Compresibilidad efectiva de la matriz, psi^{-1}
C	Compresibilidad efectiva en la fractura, psi ⁻¹
C_f	Compresibilidad de la fractura, <i>psi</i> ⁻¹
C_m	Compresibilidad de la formación, psi ⁻¹
$c_{(p)}$	Concentración del metano en el querógeno sólido,
	m³de gas a NTP/m³de querógeno o ft³de gas a NTP/
	ft^3
C _s	Concentración requerida para una cobertura completa de la
	superficie del modelo de Parker, <i>psi</i>
C _w	Compresibilidad del agua de la formación, psi ⁻¹

G _a	Volumen de gas que inicialmente se encuentra adsorbido en
	la materia orgánica,MMSCF
G_a^*	Volumen de gas que inicialmente se encuentro adsorbido en
	la materia orgánica asociado a un valor semilla, MMSCF
$G_a(P)$	Volumen de gas adsorbido a condiciones de
	yacimiento, MMSCF
$G_a(P_i)$	Volumen de gas adsorbido a condiciones iniciales
	$(G_a), MMSCF$
G _{ap}	Diferencien entre $G_a(P_i)$ menos $G_a(P)$, MMSCF
G _d	Volumen de gas que inicialmente se encuentra disuelto en el
	querógeno sólido, MMSCF
G_d^*	Volumen de gas que inicialmente se encuentra disuelto en el
	querógeno sólido asociado a un valor semilla, MMSCF
G_{dp}	Diferencia entre $G_d(P_i)$ menos $G_d(P_i)$, MMSCF
$G_d(P)$	Volumen de gas disuelto a condiciones de presión del
	yacimiento, MMSCF
$G_d(P_i)$	Volumen de gas disuelto a condiciones iniciales
	$(G_d), MMSCF$
G_{f}^{*}	Volumen de gas que inicialmente se encuentra almacenado
	en las fracturas asociado a un valor semilla, MMSCF
G_f	Volumen de gas que inicialmente se encuentra almacenado
	en las fracturas, MMSCF

G_m	Volumen de gas que inicialmente se encuentra almacenado
	en la matriz, MMSCF
G_m^*	Volumen de gas que inicialmente se encuentra almacenado
	en la matriz asociado a un valor semilla, MMSCF
G _P	Gas acumulado producido, MMSCF
G_t	Volumen original de gas in situ de todo el sistema, MMSCF
hads	Espesor de la capa de gas adsorbida a las paredes de los
	poros orgánicos, <i>ft</i>
h	Espesor del yacimiento, <i>ft</i>
J	Parámetro de la isoterma de Jossens, psi
<i>K</i> ₁	Parámetro de Fritz-Schlunder-V, psi
<i>K</i> ₂	Parámetro de Fritz-Schlunder-V, psi
k _{2i}	Permeabilidad de las fracturas naturales asociada a todo el
	sistema compuesto, md
K _{HI}	Parámetro de Hill, psi
K _{HK}	Constate de equilibrio de Holl-Krich, psi
K _J	Parámetro de la isoterma de Jossens, SCF/ton
K _L	Presión de Langmuir (conocido también como P _L), psi
K _{LF}	Constante de Langmuir-Freundlich, psi
K _{RP}	Constante de la isoterma de Redlich-Peterson, SCF/ton
K _S	Constante de equilibrio de Sips, psi
K _T	Constante de equilibrio de Toth, <i>psi</i>
m_1	Parámetro de Fritz-Schlunder-V, adimensional

<i>m</i> ₂	Parámetro de Fritz-Schlunder-V, adimensional
m_{LF}	Exponente del modelo de Langmuir-
	Freundlich, adimensional
ms	Exponente de Sips, adimensional
nF	Factor de heterogeneidad, adimensional
n_{FS}	Exponente de Fritz-Schlunder, adimensional
n _{HI}	Parámetro de Hill, adimensional
n_{HK}	Exponente de Holl-Krich, adimensional
n_k	Exponente del modelo de Khan, adimensional
n _{KC}	Parámetro de Koble- Corrigan, adimesional
n_T	Exponente de modelo de Toth, adimensional
Р	Presión promedio del yacimiento, psi
p_h	Presión a la cual la apertura de la fractura es igual a cero, psi
P _i	Presión inicial del yacimiento, psi
p_k	Esfuerzo neto, <i>psi</i>
p_L	Constante de presión del modelo de Langmuir (nombre
	comúnmente usado en la industria petrolera), psi
q_{m_B}	Máxima capacidad de adsorción de Baudu, SCF/ton
$q_{m_{FS5}}$	Máxima capacidad de adsorción de Fritz-Schlunder-V,
	SCF/ton
$q_{m_{HI}}$	Parámetro de Hill, SCF/ton
$q_{m_{HK}}$	Máxima capacidad de adsorción de Holl-Krich, SCF/ton

q_{m_k}	Máxima capacidad de adsorción del modelo de
	Khan, SCF/ton
q_{mL}	Volumen de Langmuir (conocido como V_L), SCF/ton
q_{mLF}	Máxima capacidad de adsorción de gas, modelo de
	Langmuir-Freundlich, SCF/ton
q_{ms}	Máxima capacidad de adsorción de Sips, SCF/ton
q_{mu}	Máxima capacidad de adsorción, SCF/ton
$q_{m_{vs}}$	Máxima capacidad de adsorción de Vieth-Sladek, SCF/ton
q_{mT}	Máxima capacidad adsorción del modelo de
	Toth, SCF/ton
r _e	Radio de drene, ft
Γ _W	Radio del pozo, ft
r _{eff}	Radio efectivo de poro orgánico, ft
<i>Г</i> _{ор}	Radio de poro orgánico, ft
R	Constante Universal de los gases 10.73 psia- $ft^3/$
	(lbm mol - °R)
S_{wf}	Saturación de agua en las fracturas, fracción
S _{wi}	Saturación de agua inicial, fracción
S _{wm}	Saturación de agua en la matriz, fracción
t	Tiempo, años
Т	Temperatura del yacimiento, °K o ° R
T _{NTP}	Temperatura a condiciones normales (273°K)
TOC	Carbono orgánico total, % peso

T _{sc}	Temperatura a condiciones estándar (60 °F)
V_L	Constante de volumen del modelo de Langmuir (nombre
	comúnmente usado en la industria petrolera), SCF
V _{NtP}	Volumen de gas a condiciones normales, ft^3
V _{sc}	Volumen de gas a condiciones estándar, SCF
V _p	Volumen poroso del yacimiento, ft^3
V _w	Volumen original de agua del yacimiento, ft^3
we	Entrada de agua, bbl
W_p	Agua producida, STB
x	Parámetro de Baudu, adimensional
у	Parámetro de Baudu, adimensional
Ζ	Factor de desviación del gas, adimensional
Z	Factor de deviación del gas modificado para cualquier
	modelo de adsorción, adimensional
Z_i	Factor de desviación del gas a condiciones iniciales de
	presión, adimensional
Símbolos	Definición
α_{FS}	Exponente de Fritz-Schlunder-IV, adimensional
\propto_{RP}	Constante del modelo de Redlich-Peterson, adimensional
β_{FS}	Exponente de Fritz-Schlunder-IV, adimensional
β_{RP}	Exponente del modelo de Redlich-
	Peterson, adimenesional
β_{VS}	Constate de Vieth-Sladek, psi

ΔP	Diferencia de presión entre la presión inicial del
	yacimiento y la presión promedio del yacimiento, psi
ΔV_m	Cambio de volumen de la matriz, MMscf
ΔV_w	Expansión de agua de formación, MMscf
$ ho_b$	Densidad del shale, g/cm^3
$ ho_{ko}$	Densidad del querógeno sólido, g/cm^3
$ ho_r$	Densidad relativa del querógeno, adimensional
μ_g	Viscosidad del gas, cp
μο	Viscosidad del condesado, cp
σ_v	presión de sobrecarga, psi
ϕ_2	Porosidad de las facturas naturales asociada al sistema
	compuesto, adimensional
ϕ_{ads_c}	Porosidad adsorbida asociada al sistema compuesto,
	adimensional
ϕ_b	Porosidad de la matriz inorgánica asociada al volumen
	únicamente de la matriz, adimensional
ϕ_{hf}	Porosidad de la fractura hidráulica asociada al sistema
	compuesto, adimensional
ϕ_m	Porosidad de la matriz inorgánica asociada al sistema
	compuesto, adimensional
ϕ_{mt}	Porosidad total de la matriz, adimensional
ϕ_{org}	Porosidad orgánica asociada al sistema compuesto, fracción
ϕ_{sh}	Porosidad total del shale, adimensional

ω	Fracción de volumen de gas del OGIP total que inicialmente
	se encuentra almacenado en las fracturas, adimensional
ω^*	Fracción de volumen de gas del OGIP total que inicialmente
	se encuentra almacenado en las fracturas asociado a un valor
	semilla, adimensional
ω_a	Fracción de volumen de gas del OGIP total que inicialmente
	se encuentra almacenado como gas adsorbido, adimensional
ω_a^*	Fracción de volumen de gas del OGIP total que inicialmente
	se encuentra almacenado como gas adsorbido asociado a un
	valor semilla, adimensional
ω_d	Fracción de volumen de gas del OGIP total que inicialmente
	se encuentra almacenado como gas disuelto en el querógeno
	sólido, adimensional
ω_d^*	Fracción de volumen de gas del OGIP total que inicialmente
	se encuentra almacenado como gas disuelto en el querógeno
	solido asociado a un valor semilla, adimensional
ω_m	Fracción de volumen de gas del OGIP total que inicialmente
	se encuentra almacenado de forma libre en la matriz,
	adimensional
ω_m^*	Fracción de volumen de gas del OGIP total que inicialmente
	se encuentra almacenado de forma libre en la matriz asociado
	a un valor semilla, adimensional