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Resumen

La acreción de gas hacia objetos masivos es un problema sumamente
importante en astrofísica, debido a que se puede encontrar en una gran
variedad de escenarios, desde el nacimiento de estrellas hasta eventos de
altas energías. Diversos modelos matemáticos han sido desarrollados en
las últimas décadas para poder explicar las cada vez más refinadas ob-
servaciones, así como el funcionamiento del mecanismo interno de estos
fenómenos y su relación con los chorros de gas que estos expulsan.

En esta tesis exploramos y extendemos diferentes problemas de acreción
hacia objetos masivos. Primero, realizamos un análisis detallado de las
diferencias entre los modelos clásicos de acreción esférica, tanto en el
caso relativista como en el no-relativista, y extendemos el modelo, usan-
do simulaciones numéricas, al caso de acreción a un agujero negro en
rotación. Posteriormente, estudiamos el problema de acreción de viento,
extendiendo el modelo clásico al caso relativista, en donde el objeto central
corresponde a un agujero negro sin rotación.

Asimismo, desarrollamos y exploramos distintos regímenes de un mecan-
ismo de acreción-eyección al cual hemos llamado choked accretion, el cual
constituye un modelo completamente hidrodinámico en donde obtenemos
una solución de un gas acretado ecuatorialmente hacia un agujero negro, y
un flujo eyectado por los polos. Este modelo, que fue estudiado utilizando
tanto soluciones analíticas como simulaciones numéricas, fue estudiado en
los regímenes de potencial gravitacional no-relativista y para los casos de
agujero negro (con y sin rotación) en el caso relativista. El mecanismo
choked accretion proporciona una relación directa entre el fenómeno de
acreción y eyecciones bipolares.

Finalmente, en esta tesis presentamos la versión más reciente del código
de hidrodinámica numérica aztekas. Este código fue desarrollado a la
par de todos los estudios mencionados previamente, y fue validado por
medio de pruebas de comparación tanto con soluciones analíticas como
con simulaciones numéricas reportadas comúnmente en la literatura.





Abstract

Gas accretion towards massive objects is an extremely important prob-
lem in astrophysics, since it can be found in a wide variety of scenarios,
from the birth of stars to high-energy events. Various mathematical mod-
els have been developed over the past decades in order to explain the
increasingly refined observations, as well as the operation of the internal
mechanism of these phenomena and their relationship to the jets powered
by them.

In this thesis, we explore and extend different gas accretion problems.
First, we perform a detailed analysis of the differences between the classi-
cal spherical accretion models, both in the relativistic and non-relativistic
cases, and we extend the model, using numerical simulations, to the case
of accretion on to a rotating black hole. Subsequently, we study the wind
accretion problem, extending the classical model to the relativistic case,
where the central object corresponds to a non-rotating black hole.

Moreover, we develop and explore different regimes of an accretion-ejection
mechanism which we have called choked accretion, which constitutes a
completely hydrodynamic model in which we obtain a solution of a gas be-
ing accreted equatorially towards a black hole, and a flux ejected through
the poles. This model, which is studied using both analytical solutions and
numerical simulations, is analysed in the non-relativistic gravitational po-
tential regimes and for the black hole cases (with and without rotation)
in the relativistic case. The choked accretion mechanism provides a direct
relationship between the phenomenon of accretion and bipolar ejections.

Finally, in this thesis we also present the current version of the numerical
hydrodynamics code aztekas. This code was developed alongside all
the previously mentioned studies, and was validated through comparison
tests with both analytical solutions and numerical simulations commonly
reported in the literature.
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Chapter 1
Introduction

Gravity is the dominant force that rules the evolution of the Universe. From the
movement of planets up to the filamentary structure in which the galaxy superclus-
ters are found, gravity is the main responsible for the overall dynamics that is seen
in astrophysical scenarios. However, much of the complexity behind said phenomena
comes not just from the gravitational attraction, but from the matter and electro-
magnetic fields that forms or surrounds the astrophysical objects. At this level, it is
gas and plasma, as well as their interaction with gravitational and electromagnetic
fields, the responsible for many of the most energetic phenomena in the Universe. In
particular, when there is gas around a massive object, like a star or a black hole, the
gravitational field tends to attract all the matter to the central mass, producing a
phenomenon known in astrophysics as accretion.

Gas accretion is one of the most efficient ways of extracting energy from matter. In
fact, it is well known that accretion onto a black hole is the most efficient one (King,
2010), asides from matter-antimatter annihilation. For a rapidly rotating black hole,
the conversion from rest mass into energy by accreting gas is around 30% (Thorne,
1974). This is why the most energetic and luminous phenomena in the Universe are
often associated to the gas accretion onto a compact object.

Due to this efficiency of energy extraction, it is believed that gas accretion is in-
trinsically related with another important astrophysical phenomena, ejection, which
can be found as relativistic and non-relativistic jets, winds and outflows (King, 2010).

The study of gas accretion-ejection scenarios in astrophysics is a big challenge.
The physics behind them is extremely complex as it not only requires a macro-
scopic description of the behaviour of the gas dynamics1, but also needs to take into
account gravity fields or, in general, space-time curvature, electromagnetic fields,

1In this thesis we are going to assume the hydrodynamic limit, where the characteristic scale of
the system under study is much greater than the mean free path of the gas particles. Another limit
worth mentioning here, the so-called Vlasov limit, arises when the typical length scale of the system
is comparable to the mean free path between particle collisions, and is based on kinetic theory of
gases to describe the plasma dynamics (see e.g. Sarbach & Zannias, 2013; Acuña-Cárdenas et al.,
2022).

7



8 1.1. GAS ACCRETION

microphysics and any other external effect that could affect the behaviour of the
gas. The first approaches that attempted to study the case of gas being accreted
by a massive object, needed to simplify the problem by considering some kind of
symmetry and ignoring external effects (like magnetic fields and so on). In recent
years, by developing state-of-the-art numerical methods and numerical codes, the
scientific community has been able to perform detailed simulations considering the
most extreme scenarios (e.g. Liska et al., 2021; Mizuno, 2022).

In this work, we address different accretion problems by means of analytic solu-
tions and numerical simulations, extending well-known Newtonian models to their
relativistic counterparts, as well as presenting the choked accretion mechanism, a
purely hydrodynamic solution that connects the gas accretion phenomena with the
production of massive bipolar outflows.

The thesis is divided as follows. In Chapter 1, we briefly review some of the best
established accretion models and solutions, as well as some ejection mechanisms and
their relation to astrophysical phenomena. In Chapter 2, we present aztekas, a
GRHD numerical code developed as a part of this work. In this chapter we show the
numerical methods and algorithms used in the code, as well as a series of validation
tests. In Chapters 3 and 4 we show the relativistic extensions of two classical accretion
solutions: Bondi and BHL accretion models. Chapters 5, 6 and 7 correspond to
the choked accretion papers in the non-relativistic, Schwarzschild black hole and
Kerr black hole cases, respectively. Finally, in Chapter 8, we summarize the results
obtained in this thesis and present the conclusions.

1.1 Gas accretion

In this section, we will review some of the most important models that have been
developed for the gas accretion theory. The solutions presented here are especially
important for the content of this thesis.

1.1.1 Spherical accretion

Spherical accretion, due to its symmetry, is one of the starting points for studying
gas accretion phenomena. One of the pioneering works on this topic was presented
by Bondi (1952), in which the author found a full-hydrodynamic, steady-state an-
alytic solution of a spherically symmetric infinite gas cloud being accreted by a
Newtonian mass potential. In this seminal work, Bondi provides a prescription for
computing the rate at which mass is accreted in the vicinity of the central mass. This
model, despite its simplicity, has been used to estimate the accretion and growth rate
of the central supermassive black hole in the centre of galaxies and active galactic
nuclei (AGNs, Russell et al., 2015; Moffat, 2020), and even to study the growth of a
mini-black hole inside a neutron star (Richards et al., 2021).

One of the first studies to extend this solution was presented by Michel (1972),
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Figure 1.1: Schematic representation of the Bondi-Hoyle-Lyttleton wind accretion
problem. Figure taken from Tejeda & Aguayo-Ortiz (2019).

where the author studies the general relativistic counterpart of Bondi’s problem, find-
ing a steady-state, spherically symmetric gas accretion solution onto a Schwarzschild
black hole. Since then, this model has been widely revisited and extended by consider-
ing different physical ingredients such as fluid’s angular momentum, magnetic fields
and radiative transfer (e.g., Proga & Begelman, 2003; Igumenshchev & Narayan,
2002; McKinney et al., 2014), to name a few.

In this thesis, we revisit these classical solutions performing a detailed compari-
son between the non-relativistic and relativistic analytic models, and extending them
into the case of a rotating Kerr black hole by means of full general relativistic hy-
drodynamic simulations. This paper is presented in Chapter 3.

1.1.2 Wind accretion

In general, it is fair to assume that every massive object will be in relative motion
with respect to its surroundings. One example of this is the so-called wind accretion
problem, in which a star or compact object moves through an infinitely large gas cloud
with at a constant relative velocity. This phenomenon was first studied by Hoyle &
Lyttleton (1939) and Bondi & Hoyle (1944) (BHL, hereafter), where the authors
found an analytic solution for a supersonic wind accreting onto a massive object (see
Figure 1.1). The complexity of the problem, unlike the Bondi spherical accretion
problem, does not admit a full hydrodynamic analytic solution, so the authors use a
ballistic approximation to describe the gas moving towards the massive object.

Extensions to this model have been performed by assuming different types of
gasses or equations of state. In the seminal work by Petrich et al. (1988), the au-
thors found an exact analytic solution of a black hole moving through a medium by
considering an ultra-relativistic stiff equation of state. This solution is valid for both
rotating and non-rotating black holes, and constitutes a fully three-dimensional flow
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description.
The BHL model is often invoked to describe scenarios where a star or compact

object moves inside a larger medium. For example, authors have adopted the BHL
problem to study the motion of binary stars (Comerford et al., 2019) or star clusters
through a uniform gas medium (Kaaz et al., 2019) to study the evolution of those
systems. Other authors have studied the common envelope phase in the evolution of
a binary system where a giant star has swallowed its companion. In this scenario, a
compact object moves inside the massive star, accreting material in the way. This ac-
cretion has been described as a wind accretion problem by different authors (Moreno
Méndez et al., 2017; López-Cámara et al., 2019; Cruz-Osorio & Rezzolla, 2020).

In this thesis, we extend the BHL problem to the general relativistic case, by solv-
ing the ballistic approximation problem around a Schwarzschild black hole, obtaining
the mass accretion rate, density field and fluid streamlines, as in the Newtonian clas-
sic solution. This paper is presented in Chapter 4.

1.1.3 Accretion disks

A fundamental ingredient to take into account in the study of accretion is the angu-
lar momentum of the infalling gas, which adds an extra degree of complexity when
solving the equations of hydrodynamics. The rotation of the gas inside a gravita-
tional potential often results in, due to the conservation of angular momentum, the
formation of an equatorial disk around the central massive object.

Different solutions have been proposed to the problem of gas rotating around a
central massive object. Fishbone & Moncrief (1976) present a solution of the rela-
tivistic Euler equations for an ideal gas. This model consists of a general stationary
solution for a rotating isentropic (constant entropy) fluid disk around a Kerr black
hole. Similarly, Paczynski & Abramowicz (1982) introduce solutions for geometri-
cally thick disks. In both cases, the authors provide stable solutions in which the
disk counteracts the black hole attraction solely by centrifugal forces, nevertheless,
no accretion whatsoever is achieved in these models. These two solutions are com-
monly used, even nowadays, as initial conditions for general relativistic magneto-
hydrodynamic (GRMHD) simulations of accretion disks (e.g., Dexter et al., 2021;
Most et al., 2021; Yao et al., 2021). On the other hand, in the works of Mendoza
et al. (2009) and Tejeda et al. (2012), the authors found an analytic solution to the
finite rotating cloud accretion problem in the non-relativistic and relativistic case,
respectively. These models assume a ballistic approximation for the fluid, similar to
the one used in the BHL problem, and show the formation of a thin disk (due to the
absence of pressure) along the equatorial plane.

The first accretion disk models were proposed separately by Prendergast & Bur-
bidge (1968) and Shakura & Sunyaev (1973), the later model is often called the α
thin disk model. This solution consists of a hydrodynamic mechanism, based on di-
mensional arguments, from which an effective viscosity in the disk is responsible for
the angular momentum transfer to the outer parts of the disk, allowing the gas to
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be accreted by the central object. This viscosity is parametrized by 0 < α < 1, and
accounts for the unknown physics that may cause angular momentum transport in
the disk (e.g., magnetic fields). In order to obtain this solution, the authors inte-
grate the equations along the vertical component of the disk, in order to obtain a
thin accretion disk description. The Shakura-Sunyaev α-disk model has been widely
extended (e.g., Novikov & Thorne, 1973; Pariev et al., 2003; Penna et al., 2013) and
implemented for the study of luminous AGNs (e.g., Li et al., 2021) and soft X-ray
binary sources (e.g., Panotopoulos et al., 2021).

On the other hand, Balbus & Hawley (1991) have shown that, if a poloidal mag-
netic field is anchored to an accretion disk, the field lines are dragged by the rotation
of the disk developing a magneto-rotational instability (MRI). This instability pro-
duces the turbulence necessary to produce an effective viscosity that transport the
angular moment outwards, allowing the gas to be accreted by the central massive
object. This accretion mechanism has been observed in GRMHD simulations (e.g.,
Siegel & Metzger, 2017; Porth et al., 2019), and it is considered as the most likely
mechanism for transportation of angular momentum and dissipation of energy in hot
accretion flows, which will be briefly discussed in the next subsection.

1.1.4 Hot accretion flows

Another important ingredient to be considered in accretion flows is the radiation
emitted by the gas, which generates a radiative pressure that opposes the gravi-
tational force that accretes the fluid. A limiting value in the luminosity emitted is
achieved when both forces balance each other in a spherically symmetric setting, this
is called the Eddington luminosity (Eddington, 1925):

LEdd =
4πGMc

κ
, (1.1)

where κ is the electron scattering opacity. This limit luminosity is assumed to be
equal to a fraction of the energy rate accreted by the black hole LEdd = ηṀEddc

2,
where η is the radiative efficiency of the accretion disk and ṀEdd is the corresponding
mass accretion rate.

If the disk luminosity is below Eddington’s, a cool geometrically thin disk model
like the Shakura-Sunyaev α-model can be used to describe the dynamics of the fluid.
In this case, the heat produced by viscous dissipation is efficiently radiated away from
the disk. However, when the luminosity surpasses the Eddington limit, the radiative
efficiency decreases, trapping the radiation and eventually advecting it inwards with
the accreted gas, producing a slim optically thick disk. On the other hand, if the
gas density is low, the black hole naturally accretes at sub-Eddington rates, hence
the viscously dissipated energy is not radiated away and, instead, is used to increase
the temperature, producing a hot, geometrically thick, optically thin and radiatively
inefficient accretion disk.
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These kinds of accretion flow are often referred to as hot accretion flows. In par-
ticular, in the cases mentioned above, in which the non-dissipated energy is advected
with the accreted gas, are named advection-dominated accretion flows (ADAF, Ichi-
maru, 1977; Narayan & Yi, 1994, 1995; Abramowicz et al., 1995).

The ADAFs and, in general, the hot accretion flow solutions are of special interest
for this thesis since, among their different interesting features (see the review by Yuan
& Narayan, 2014), these models show that the Bernoulli parameter Be can become
positive in some regions of the flow, meaning that the fluid is unbounded to the central
object, as well as unstable against convection, which implies that they are related to
outflows, winds and jets. In fact, in the work by Blandford & Begelman (1999), the
authors show that, together with the advected radiation, the presence of outflows and
winds coming from the disk may help to reduce the radiative efficiency of the disk.
This is known as the advected-dominated inflow-outflow solution (ADIOS). This
association between astrophysical jets and hot accretion flows has been successfully
used to model systems as low-luminosity AGNs (e.g., Davelaar et al., 2019) and hard
or quiescent X-ray binaries (e.g., Begelman et al., 2015).

Although these models’ features suggest a connection between hot accretion flows
and jets/outflows, they do not explain the mechanism behind these ejections. In the
following section, we will briefly discuss the nature of astrophysical jets and outflows,
mentioning the astrophysical scenarios in which these phenomena are found, as well
as two of the best established jet-launching mechanisms, and some alternatives that
have been developed to explain them.

1.2 Astrophysical jets and outflows

Jets and outflows are natural processes in which matter and energy, as well as other
physical quantities (e.g., magnetic flux), are expelled out into a medium surrounding
a central massive body. They are a ubiquitous astrophysical phenomenon since they
can be found in a wide variety of astrophysical scenarios. From stellar to extragalactic
objects, ranging in velocities of around tenths of km s−1 to almost the speed of light,
and with lengths that go from a few astronomical units to kiloparsecs, they are all
believed to be related to some kind of accretion process. The difference between a jet
and a simple outflow is that the first one refers to a fast, highly collimated ejection,
whereas the latter is slower and not necessarily collimated.

Less collimated ejections, or outflows, are often found as stellar winds (cf. Vink,
2011), or ejections at the last stages of stellar evolution (luminous blue variables
and planetary nebula, Weis & Bomans, 2020; Kwitter & Henry, 2021, respectively),
however, they have been found in a wide variety of astrophysical scenarios. For ex-
ample, as molecular outflows along with highly collimated jets in young stellar ob-
jects (YSOs, Yen et al., 2019); in the galactic scales, as massive molecular outflows
that are thought to help to regulate the growth and evolution of galaxies (Spilker et
al., 2020) or as mildly relativistic bipolar ejections in fast-rising blue optical tran-
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sients (Coppejans et al., 2020). Another important type of less collimated outflows
are the disk winds, which have been found in protostellar systems (Bjerkeli et al.,
2016), as well as in accretion disks around black holes (Braito et al., 2018), and which
are usually found along with jets.

Meanwhile, highly collimated jets are found in more specific scenarios than the
less collimated counterparts. In the non-relativistic regime, jets are mostly found in
YSOs (Anglada et al., 2018), where the central massive object corresponds to a star
in its early stage of evolution. On the other hand, in the relativistic regime, jets are
powered by the accretion onto a compact object such as a neutron star or, more
commonly, a black hole, either a stellar mass, like in X-ray binaries (Espinasse et al.,
2020) or a supermassive one, like in AGNs (Blandford et al., 2019). Relativistic jets
are also found in high energy phenomena like short gamma ray bursts (GRBs, Pavan
et al., 2021), which corresponds to the collision of a binary neutron star system, and
long GRBs (Shrestha et al., 2022), which form in the collapse of a rapidly rotating
massive star in the final stages of its evolution.

Although the main ingredient in all the astrophysical scenarios where jets and
outflows are found is the presence of a massive central object and a rotating gas
accretion disk around it, a fundamental ingredient for these ejections seems to be a
magnetic field and its interaction with the whole system. This allows the formation
and stability of the disk, as well as the launching and collimation of the jet (Hawley et
al., 2015). The most accepted processes for the launching of the jet are the magneto-
centrifugal mechanisms proposed by Blandford & Znajek (1977) and Blandford &
Payne (1982), which are briefly explained in the following sections, along with some
pure hydrodynamic alternatives.

1.2.1 Blandford-Znajek mechanism

Blandford & Znajek (1977, BZ77) propose a mechanism by which rotational energy
of a Kerr black hole is efficiently extracted. If a sufficiently large amount of charged
particles are rotating around the black hole, along with a strong magnetic field (1015

G Lee et al., 2000), then, under the condition that the magnetic pressure is greater
than the gas pressure2, the field lines co-rotate along with the black hole, anchoring
them to the event horizon, and forming a toroidal component of the field that travels
along the axis of rotation (see Figure 1.2). The induced electric currents around it
feel the presence of an external magnetic field, which produces the deceleration in
the rotation of the black hole. The extracted energy from this deceleration is expelled
following the motion of the toroidal field lines and creating a Poynting flux, i.e., a
purely electromagnetic energy flux.

The maximum energy rate extracted from the black hole spin, known as the

2This is known as force-free condition. Blandford & Znajek (1977) shown that for strength
magnetic fields, vacuum is unstable against the positron-electron pair creation, which feeds the
induced currents.
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Figure 1.2: Snapshots of a simulation of a black hole-driven jet, showing the
behaviour of the magnetic field around a rotating black hole in the Blandford
& Znajek (1977) mechanism. The simulation shows the formation of a toroidal
component of the magnetic field anchored to the rotating black hole, producing a
collimated structure. Image taken from Semenov et al. (2004).

Blandford-Znajek luminosity, is

LBZ ∼
(
B2

p

4π

)
πR2

h

(
RhΩh

c

)2

c, (1.2)

where Bp is the maximum value of the poloidal magnetic field component, Rh is the
characteristic radius of the system (e.g., event horizon’s size) and Ωh is the black
hole angular velocity. For the case of an AGN, LBZ ∼ 1045 erg s−1. The maximum
theoretical energy that can be extracted from a 1 M⊙ black hole is 1054 erg (Lee et
al., 2000).

The BZ77 model is believed to be the mechanism behind most of the high energy
astrophysical scenarios in which the central engine is powered by a rotating black
hole. However, since this models depends on the black hole spin, it does not provide
an explanation for the jets that are observed in astrophysical systems in which the
central accretor is not a black hole. In these cases it is assumed that the energy
extraction comes from the accretion disk, which is addressed by the next jet-launching
mechanism.

1.2.2 Blandford-Payne mechanism

The Blandford & Payne (1982, BP82) mechanism consists of a magneto-rotational
process by which both energy and angular momentum are magnetically extracted
from the accretion disk, due to the poloidal field lines anchored to the disk, and
that extend out to great distances (see Figure 1.3). The collimated flux is obtained
due to the presence of a toroidal component of the magnetic field, as in BZ77. In
this work, the authors found an auto-similar magneto-hydrodynamic solution for the



CHAPTER 1. INTRODUCTION 15

Figure 1.3: Schematic representation of the Blandford & Payne (1982) mecha-
nism. A poloidal magnetic field is fixed into the accretion disk, co-rotating with
it, extracting angular momentum from the disk and producing a collimated flux.
Image taken from Muxlow & Garrington (1991), respectively.

axisymmetric flux. This process is invoked for systems where there exists a weak
magnetic field and the magnetic pressure is lower than the gas pressure of the disk.
The energy extraction rate is about 1043 erg s−1 for a magnetic field intensity of 103
G.

The advantage of the BP82 model, as mentioned before, is that it does not require
a rotating black hole as the central mass of the system, which makes it applicable
to a wide variety of astrophysical scenarios. Moreover, some works have shown that
the BP82 model could be found along with the BZ77 mechanism, producing winds
from the accretion disk, while the BZ77 launch a collimated jet (e.g. Dihingia et al.,
2021).

The differences between BZ77 and BP82, even though they both require magnetic
fields to extract energy and angular momentum, is that, for BP82, the magnetic field
intensity is much less than the one needed by BZ77. Moreover, in BZ77 the magnetic
field lines are fixed at the black hole’s event horizon, whereas in the BP82 model,
the lines are fixed to the accretion disk. On the other hand, in the BZ77 mechanism
the flux is purely electromagnetic, in contrast to BP82, where there is also a matter
flux.

Even though these mechanisms provide a good explanation on how energy is ex-
tracted from star/black hole-disk systems, it was until the last decade when clear
observational evidence in their support started to appear (e.g. Narayan & McClin-
tock, 2012). This motivated different authors to revisit these magneto-centrifugal
mechanisms by means of numerical simulations (see Mizuno, 2022, for a review on
the recent advances on general relativistic magneto-hydrodynamic (GRMHD) nu-
merical simulations). These simulations have extended our understanding of the jet
launching process, coupling it with other much more complex physical ingredients
and scenarios like neutrino-cooling (e.g. Siegel & Metzger, 2018), radiative trans-
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fer (e.g Bronzwaer et al., 2018) or tilted accretion disks (e.g. Liska et al., 2021), to
name a few.

1.2.3 Alternative mechanisms

Despite the great success that magneto-centrifugal mechanisms have had in explain-
ing the launch of astrophysical jets, there are still some open questions. For example,
it remains unclear what the process of particle acceleration due to black hole spin
looks like (Tchekhovskoy, 2015); lack of direct evidence of the magnetic field in jets
coming from stars or accretion disks, nor that this is the main cause of their colli-
mation (Hawley et al., 2015); the connection between the acceleration-collimation of
the jet and the process of accretion by the disk remains to be understood (Romero et
al., 2017), as well as its matter content in jets dominated by Poynting flow (Hawley
et al., 2015).

This is why it has been considered that, probably, the presence of a large-scale
magnetic field alone is not the only cause of collimation or the ejection of the jet
itself. Magnetic mechanisms such as those mentioned above are likely to be only one
part of a more complete and unified mechanism for the explanation of the origin and
collimation of astrophysical jets (Livio, 1997). Some works have tried to explain the
collimation of jets ejected from a Kerr black hole without the need for a magnetic
field, invoking latitudinal anisotropies in the geometry of spacetime (Bicak et al.,
1993), or studying geodesics of extracted particles due to the Penrose process (Gariel
et al., 2010).

Another alternative mechanism is mediated by neutrino-antineutrino annihila-
tion. In the context of long GRBs, with a typical mass accretion rate of the order
of 0.1 − 1M⊙ s−1, the density and temperature are large enough (ρ ∼ 1010 g cm−3

y T ∼ 1011 K) to emit neutrinos at the vicinity of the black hole. A fraction of
these neutrinos annihilate in the polar regions of the black hole, creating positron-
electron pairs and depositing energy in the polar region of the black hole, potentially
launching a relativistic jet (Leng & Giannios, 2014).

However, while these studies help explain jet collimation, and in some cases mat-
ter extraction, they work for relativistic scenarios. In the case of YSOs, where there
are not always direct and reliable measurements of the intensity and geometry of the
magnetic field in the jet (Hartigan, 2009), the extraction of material can probably be
obtained in another way, as studied by Hernández et al. (2014), from a completely
hydrodynamic mechanism based on latitudinal anisotropies in the density of a spher-
ical cloud. In this work, a perturbative analysis of the hydrodynamic equations is
made very close to the accreting object. The equations are solved considering an
isothermal gas cloud, with a higher density at the equator than at the poles. This
opens the possibility of studying various accretion configurations around massive ob-
jects, both in relativistic and non-relativistic cases. In the next section, we briefly
discuss a new mechanism that relates the accretion phenomena with the ejection of
material.
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1.3 Choked accretion mechanism

Motivated by the work presented by Hernández et al. (2014), the main goal of this
thesis is to present the development of an inflow-outflow model that we have called
choked accretion. This model corresponds to an extension of Bondi’s spherical accre-
tion solution in which an axisymmetric, large-scale, small-amplitude deviation in the
density field is introduced. The deviation consists of the inclusion of an equatorial-
to-polar density contrast, in which the accreted material is more concentrated on an
equatorial belt than on the polar regions.

The choked accretion mechanism shows how, by the inclusion of even a slight
density gradient, a bipolar outflow is generated from the accreted material. This
outflow is produced due to incapability of the central massive object to accrete
at rates larger than a certain threshold, hence the incoming material chokes at a
gravitational bottleneck, redirecting the excess flux throughout the polar regions,
representing a direct relation between the accretion and ejection fluxes.

We study the choked accretion model in the non-relativistic and relativistic
regimes, considering both rotating and non-rotating black holes. We analyse the
behaviour of this mechanism by using both analytic steady-state models and full-
hydrodynamic numerical simulations performed with the numerical code aztekas,
which is also presented as part of this work. In this thesis we present the three articles
where we published our results, as well as discuss the astrophysical applicability of
the model.





Chapter 2
aztekas: a GRHD numerical code

The equations that describe the gas dynamics in an astrophysical scenario are the
Euler equations. They constitute a system of not closed hyperbolic partial differential
equations that, in most cases, have no exact solutions. Usually, analytic solutions to
these equations can be found in highly idealized cases, either by assuming some kind
of symmetry or a self-similar problem (e.g., Taylor, 1950; Bondi, 1952). However, in
the general case where more complex scenarios are taken into account, these equations
have to be solved numerically.

Numerical hydrodynamics and, in general, the study of hyperbolic partial dif-
ferential equations, constitutes a full branch of physics. Some relevant introductory
literature to this topic are the books by Laney (1998), LeVeque (2002) and Toro
(2009). The continuous search for new and better algorithms to solve these set of
equations has led to the development of robust and more accurate computational
codes. These have been used to test and further extend theoretical models that con-
tinuously enrich our understanding of the Universe.

In the special case of hydrodynamics, one of the first numerical codes to be ex-
tensively used for astrophysical hydrodynamics is the ZEUS code (Stone & Norman,
1992), which uses a finite difference scheme for the discretization of the differential
equations. Even more, ZEUS has a GNU Public Licence (GPL) for its distribu-
tion which through the years has made it a starting point for many researchers.
Nowadays more accurate and efficient numerical methods have been developed, re-
ducing computational costs and leading to the development of a wide variety of
hydrodynamic numerical codes. Some examples of hydrodynamic Eulerian1 codes
are the Yguazú (Raga et al., 2000) and GUACHO (Esquivel et al., 2009) for non-
relativistic hydrodynamics, the Mezcal (De Colle et al., 2012), PLUTO (Mignone
et al., 2007) and FLASH (Fryxell et al., 2000) for the non-relativistic and special-
relativistic regimes, as well as CAFE (Lora-Clavijo et al., 2015) Athena++ (Stone et

1Another approach to solve the hydrodynamic equations are the Lagrangian algorithms used in
the smoothed particle hydrodynamics codes (e.g. Price et al., 2018), which are not addressed in this
work.
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al., 2008, 2020) and HARM (Gammie et al., 2003) for the general relativistic regime.
In this chapter, we are not aiming at presenting a new and different, state-of-the-

art code. Our intention is to present and validate our free software (open source, open
access) aztekas: a general relativistic hydrodynamic code written in C and paral-
lelized using shared memory with OpenMP. Moreover, we present an overview of the
most relevant methods and algorithms used in our code, as well as several standard
benchmark tests for validation in both relativistic and non-relativistic regimes. This
code was first used in the article Aguayo-Ortiz et al. (2018), and is the one used for
all the numerical analysis performed for this thesis.

2.1 aztekas: numerical methods

In this section, we are going to briefly discuss the methods and numerical algorithms
used in aztekas to solve the hydrodynamic equations, which constitute a system
of hyperbolic partial differential equations. We show here the discretization schemes,
interpolation methods and integration techniques implemented in our code.

2.1.1 Finite volume method

The system of partial differential equations in hydrodynamics, conforms a set of
hyperbolic equations (see LeVeque, 2002). These equations can be written in a fully
conservative (with no source terms) or balanced (with source terms) form as:

∂q(u)

∂t
+

∂f i(u)

∂xi
= s(u), (2.1)

where q are the conservative variables, f i = (f1, f2, f3)2 are the fluxes of the conser-
vative variables along the three spatial dimensions and s are the source terms related
to external forces, energy sinks or geometrical effects. The vector u represents the
primitive variables of the problem. Each one of these variables is a set of m quan-
tities, where m is the number of equations. Finding the solution to this system of
equations means to find u(t, x̄). In order to numerically integrate equations (2.1),
the finite volume method (FVM) discretization is obtained in the following way.

Let us begin by considering a three-dimensional domain described in Cartesian
coordinates3. This domain is then divided into a grid of Nx × Ny × Nz cells (or
control volumes), centred at x̄i,j,k = (xi, yj, zk), where the subindices 0 ≤ i < Nx,
0 ≤ j ≤ Ny and 0 ≤ k ≤ Nz, represent the i-th ,j-th and k-th position on the grid
along each direction. Every cell has a volume ∆V = ∆x×∆y×∆z, meaning that the
cell interfaces along, for example, the x direction, are defined at xi±1/2 = xi ±∆x/2.
Note that by using this definition of ∆V , we are assuming an uniform discretization.

2Note that the super index i represent an implicit summation.
3The specific case in cylindrical and spherical coordinates is discussed in the following sections.

https://github.com/AFD-Illinois/iharm3d
https://github.com/aztekas-code/aztekas-main
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By integrating equation (2.1) over a control volume, we can obtain its semi-
discrete form for the FVM (cf. LeVeque, 2002; Toro, 2009):

dQi,j,k

dt
=− 1

∆x

[
Fx

i+1/2,j,k − Fx
i−1/2,j,k

]
− 1

∆y

[
Fy

i,j+1/2,k − Fy
i,j−1/2,k

]
− 1

∆z

[
Fz

i,j,k+1/2 − Fz
i,j,k−1/2

]
+ Si,j,k,

(2.2)

where we have defined the cell average of q and s as

Qi,j,k :=
1

∆V

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∫ zk+1/2

zk−1/2

q(t, x̄) dV, (2.3)

Si,j,k :=
1

∆V

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∫ zk+1/2

zk−1/2

s(t, x̄) dV, (2.4)

and the average flux across the cell interfaces as:

Fx
i±1/2,j,k :=

1

∆Si±1/2

∫ yj±1/2

yj−1/2

∫ zk+1/2

zk−1/2

fx(t, x̄i±1/2,j,k) dSi±1/2,

Fy
i,j±1/2,k :=

1

∆Sj±1/2

∫ xi±1/2

xi−1/2

∫ zk+1/2

zk−1/2

fy(t, x̄i,j±1/2,k) dSj±1/2,

Fz
i,j,k±1/2 :=

1

∆Sk±1/2

∫ xi±1/2

xi−1/2

∫ yj+1/2

yj−1/2

f z(t, x̄i,j,k±1/2) dSk±1/2,

(2.5)

where ∆S{i,j,k}±1/2 is the surface normal to f{x,y,z} at xi±1/2, yj±1/2 and zk±1/2, re-
spectively. In the particular case of Cartesian coordinates, ∆Si±1/2 = ∆y ×∆z, for
example.

The average quantities Qi,j,k and Si,j,k may be approximated in a simple way as
the value of q and s at the centre of the cell (LeVeque, 2002). The numerical fluxes
Fi, on the other hand, are defined at the boundaries of each control volume, so their
evaluation must depend on the values of Q on each side of the interface in which
they are defined.

2.1.2 Approximate Riemann solver

In order to compute the fluxes across the cell interfaces, it is common to use a
Godunov-type method (Godunov, 1959), which approximates the fluxes by using the
information of the conservative variables in a cell and its neighbours. These methods
consist in solving a local Riemann problem at each cell interface.

The Riemann problem consists of an initial data of two constant states divided
by an interface. For most hyperbolic systems, this problem can be solved exactly
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Figure 2.1: Schematic representation of the evolution at the interface of a 1D
solution in an interface of a Riemann problem using the HLL scheme. Figure taken
from Aguayo-Ortiz et al. (2018).

by analysing the evolution of the solution along the characteristics4 of the equa-
tion (see Toro, 2009). If we consider a Riemann problem on the boundary between
the contiguous cells at a time tn, it is possible to solve the problem in an exact or
approximate form and, from this, obtain an expression for the numerical fluxes. This
kind of algorithms are called Riemann solvers, and are one of the most commonly
used techniques for the so-called high resolution shock capturing (HRSC) methods.
Some of the most commonly used algorithms are the HLL (Harten et al., 1983) which
gives a simple, two-characteristic velocity description of the evolution of the prob-
lem at the interface (see Figure 2.1); HLLE (Einfeldt, 1988) which extends the HLL
method to the relativistic case and HLLC (Toro et al., 1994), which uses two extra
characteristic velocities for the propagation of the solution.

In aztekas, the main Riemann solver used, for both the non-relativistic and
relativistic versions, is the HLLE formula (Harten et al., 1983; Einfeldt, 1988):

F =


fL if λL ≥ 0,

λRfL−λLf
R+λLλR(qR−qL)
λR−λL

if λL < 0 < λR,

fR if λR ≤ 0,

(2.6)

where f{L,R} and q{L,R} are the fluxes and conservative variables of the left and right
states in the Riemann problem set at the interface between two contiguous cells.
This means that, for each control volume, there are two Riemann problems along
each direction, one at each boundary.

The values λL and λR represent the characteristics with the larger velocity going
to the left and to the right, respectively. These quantities are determined by obtaining

4The characteristics, or characteristic curves, are curves along which the equation simplifies in
some particular manner (LeVeque, 2002). For example, in the case of a conservative equation (2.1),
along these curves the conservative variables q remain constant in time.
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Figure 2.2: Comparison between the piecewise linear reconstructions (Minmod,
MC and Superbee) against the piecewise constant one (Godunov). Figure taken
from Aguayo-Ortiz et al. (2018).

the eigenvalues of the Jacobian matrix B = ∂f/∂q. This scheme turns out to be
second order accurate over smooth solutions, but first-order near discontinuities like
shock waves (Toro, 2009).

The advantage of the HLLE scheme is that, in order to obtain the fluxes, only
the eigenvalues of the matrix B are needed, unlike other methods like the Mar-
quina (Marquina, 1994) or the Roe (Roe, 1981) approximate Riemann solvers, for
which the eigenvectors are also needed. The disadvantage of the HLLE method is
its dissipative nature, the reason why it does not properly resolve contact disconti-
nuities. To solve this problem, another characteristic velocity based method named
HLLC has been developed for both HD (see Toro et al., 1994) and RHD (see Mignone
& Bodo, 2005). HLLC considers two additional characteristic velocities to solve the
Riemann problem, and hence is less dissipative than HLLE and better resolves the
contact discontinuities, when present. Both algorithms for the HD case are included
in aztekas.

2.1.3 Polynomial spatial reconstruction schemes

In a piecewise-constant representation of the primitive variables at the grid cells, as
the one assumed in the approximate Riemann solver presented above, any informa-
tion about the behaviour of the quantities inside the numerical cell is lost (Rezzolla
& Zanotti, 2013). This can be solved by using spatial reconstruction techniques,
which also improve the spatial accuracy of the numerical method. As Del Zanna
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& Bucciantini (2002) pointed out, when discontinuous solutions are of main inter-
est, second-order total variation diminishing (TVD) schemes, coupled with Riemann
solvers, are probably the best choice for obtaining sharp resolution of discontinuities.
In order to do this, we implement in aztekas different types of spatial reconstruc-
tion schemes for the primitive variables. We use the Minmod (Roe, 1986), MC (van
Leer, 1977) and Superbee (Roe, 1986) linear reconstructions, which are second-order
methods. In Figure 2.2, we show a comparison of the capture of a shock wave using
the linear reconstructors mentioned before, against the piecewise constant (Godunov)
one. We can see how the discontinuity is better resolved by using any of the linear
approximations rather than the zero-order reconstruction. We also implement a fifth-
order weighted essentially non-oscillatory (WENO5) scheme (Titarev & Toro, 2004),
which uses a different approach for the reconstruction that leads to a better capture
of discontinuities and non-linear effects (see Lora-Clavijo et al., 2015).

It is not necessary to compute the spatial reconstruction of u over all the cell. The
only values required in order to compute the fluxes via a Riemann solver are the ones
that rely on the interfaces between contiguous control volumes. For each boundary,
there have to be estimated the left and right points that generate the states of the
Riemann problem.

2.1.4 Time integration

For temporal integration, we can write the FVM semi-discrete equation (2.2) as:

dQi,j,k

dt
= R(Q), (2.7)

where R(Q) is the right-hand side of equation (2.2). In this way, dividing the time
interval into subintervals [tn, tn+1], we can use an explicit time variation diminishing
Runge-Kutta method (Shu & Osher, 1988), to integrate over time. In aztekas, we
have implemented the second order:

Q∗
i,j,k = Qn

i,j,k +∆tR(Qn),

Qn+1
i,j,k =

1

2

(
Qn

i,j,k +Q∗
i,j,k +∆tR(Q∗)

)
,

(2.8)

and the third order schemes:
Q∗

i,j,k = Qn
i,j,k +∆tR(Qn),

Q∗∗
i,j,k =

1

4

(
3Qn

i,j,k +Q∗
i,j,k +∆tR(Q∗)

)
,

Qn+1
i,j,k =

1

3

(
3Qn

i,j,k + 2Q∗∗
i,j,k + 2∆tR(Q∗∗)

)
,

(2.9)

where ∆t is the time-step, that is usually computed using the standard CFL crite-
rion (Courant et al., 1928) formula:

∆t = C ×min

(
∆x

max(|λx
±|)

,
∆y

max(|λy
±|)

,
∆z

max(|λz
±|)

)
, (2.10)
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where max(|λ±|) are the maximum absolute value of the characteristic velocities
along each direction and C is the Courant number, which has a typical value less
than 1.

2.1.5 Primitive variable recovery

After the temporal evolution of the conservative variables for one time step, updated
values for the primitive variables need to be recovered. This step depends on the
functional form of q and on whether it is possible to obtain u(q) analytically. In case
there is not an analytic recovery of the primitive variables, like in the relativistic
hydrodynamics case, a transcendental algebraic equation has to be solved (Riccardi
& Durante, 2008).

As a different approach to overcome this, sometimes, thorny step, we developed,
along with aztekas, the Primitive Variable Recovery Scheme (PVRS) (see Aguayo-
Ortiz et al., 2018), in which a direct time integration over the primitive variables is
performed. The semi-discrete form of the PVRS is written as:

dUi,j,k

dt
=− 1

∆x
Ai,j,k ·

[
Fx

i+1/2,j,k − Fx
i−1/2,j,k

]
− 1

∆y
Ai,j,k ·

[
Fy

i,j+1/2,k − Fz
i,j−1/2,k

]
− 1

∆z
An

i,j,k ·
[
Fz

i,j,k+1/2 − Fz
i,j,k−1/2

]
+Ai,j,k · Si,j,k := R(U),

(2.11)

where Ui,j,k is the cell average value of the primitive variables u, Ai,j,k := (∂q/∂u)−1

and where the numerical fluxes F may be computed using an approximate Riemann
solver. This algorithm is also implemented as an alternative scheme in aztekas and
is used for some numerical tests presented in this work.

2.1.6 Ghost cells

In order to implement the boundary conditions, it is necessary to extend the numeri-
cal domain further away from the original region of interest. These extended cells are
often referred to as ghost cells (see LeVeque, 2002). The number of ghost cells needed
for a problem depends on the stencil used to reconstruct the primitive variables. For
example, for linear reconstructions as Minmod or MC, only 1 ghost cell is needed for
the boundary conditions, but for a WENO5 reconstruction, which uses three stencils
of three cells each, at least three ghost cells are needed in order to implement the
boundary conditions.
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2.2 aztekas-HD: non-relativistic hydrodynamics

2.2.1 Euler equations

The Euler equations in the non-relativistic regime can be written in a balanced form,
and using general curvilinear coordinates, as:

∂ρ

∂t
+∇j

(
ρuj
)
= 0, (2.12a)

∂E

∂t
+∇j

(
uj[E + P ]

)
= Γ− Λ + fju

j, (2.12b)

∂ (ρui)

∂t
+∇j

(
ρuiuj

)
+∇iP = f i, (2.12c)

where ∇i = γij∇j is the three-dimensional covariant derivative, γij is the inverse
three-dimensional metric tensor5, ρ is the mass density, P is the pressure, E is the
total energy density and ui is the velocity vector defined in a non-unitary basis. Γ−Λ
represents the net energy gain/loss per unit volume, and f i are the external forces
per unit of mass acting on the fluid, such as gravity. In all the simulations presented
in this work, we assume that the gains or losses in energy due to external factors are
balanced (Γ − Λ = 0), in particular, we assume Γ = Λ = 0, and hence, the fluid is
assumed to be adiabatic. Note also that we are using the Einstein’s index notation,
so the indices {i, j, k} are no longer referring to locations on a grid cell, but directions
in space. The velocity vector is defined as

ui =
dxi

dt
. (2.13)

We can define the unit velocity vector as

vi =
√
γ(ii)u

i, (2.14)

where γ(ii) are the diagonal components of the three-dimensional metric and the
parenthesis in the indices implies that no Einstein summation is assumed.

The gradient of the pressure ∇iP can be written, using the definition of covariant
derivative, as

∇iP = γij∇jP = ∇j

(
γijP

)
, (2.15)

which can be added to the ∇j (ρu
iuj) term.

On the other hand, the divergence terms can be expanded using the Christoffel
symbols as

∇j

(
ρuj
)
=

1√
γ

∂

∂xj

(√
γρuj

)
, (2.16a)

5In this case, the three-dimensional metric correspond to a flat space but in arbitrary coordinates.
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∇j

(
ρuiuj + γijP

)
=

1√
γ

∂

∂xj

(√
γ
[
ρuiuj + γijP

])
+ Γi

abρu
aub, (2.16b)

where γ = det (γij). In this way, the non-relativistic Euler equations can be written
in general curvilinear coordinates as

∂ρ

∂t
+

1√
γ

∂

∂xj

(√
γρuj

)
= 0, (2.17a)

∂E

∂t
+

1√
γ

∂

∂xj

(√
γuj[E + P ]

)
= fju

j, (2.17b)

∂

∂t

(
ρui
)
+

1√
γ

∂

∂xj

(√
γ
[
ρuiuj + γijP

])
= Γi

abρu
aub + f i, (2.17c)

These equations constitute a set of five hyperbolic partial differential equations
with six variables (ρ, P,E, ui). In order to close the system, we need an equation that
relates all the thermodynamical variables. In general,

E =
1

2
(uju

j) + ρϵ, (2.18)

where we have defined ui = γiju
j and ϵ is the specific internal energy of the fluid,

which follows an equation of state (EoS) of the form ϵ = ϵ(ρ, P ). For aztekas, we
have adopted an ideal gas equation of state:

P =
ρkBT

m̄
, (2.19)

where kB is the Boltzmann constant, m̄ is the average mass of a fluid particle and
T is the gas temperature. In order to describe a wide variety of thermodynamical
processes in the gas, we use the polytropic relation

P = Kρκ, (2.20)

where K is a constant and κ is the polytropic index. With this equation it is pos-
sible to describe different kinds of thermodynamical processes by varying a single
parameter. For example, κ = 1, following the ideal gas EoS, describes an isothermal
process. On the other hand, if κ = cP/cV , where cP/cV is the ratio between the heat
capacity at constant pressure and the heat capacity at constant volume, describes
an isentropic process, which corresponds to a reversible, adiabatic process in which
the gas does not exchange heat with its surroundings. This ratio is often referred to
as the adiabatic index γ.

By assuming an ideal gas EoS, we can write the internal energy per unit mass as

ϵ =
P

ρ(γ − 1)
. (2.21)
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The adiabatic index γ depends on the nature of the gas itself, which allow us
to study different types of gasses. For example, γ = 5/3 describes a monoatomic,
γ = 7/5 a diatomic gas and γ = 4/3 an ultra-relativistic monoatomic gas.

The polytropic equation (2.20) can be used to replace the energy equation (2.17b)
in cases where no shocks are developed. Nevertheless, in aztekas we only use this
relation explicitly to define the value of the pressure at both initial and boundary
conditions, and evolve the whole system of equations numerically.

More realistic both analytic and numerical EoS have been developed to study a
relativistic monoatomic gas (cf. Synge, 1957, which is also implemented in aztekas)
or more complex systems like neutron stars (cf. Zhu et al., 2018), nevertheless the
polytropic gas approximation results useful to describe many astrophysical phenom-
ena.

2.2.2 HD in balanced form

The Euler equations are written in balanced form as:

∂(Q(u))

∂t
+

1√
γ

∂(
√
γFi(u))

∂xi
= S(u), (2.22)

where the primitive and conservative variables, as well as the fluxes and source terms
for this system are:

u =
(
ρ, P, ui

)
, (2.23)

Q =
(
ρ, E, ρui

)
, (2.24)

Fj =
(
ρui, [E + P ]ui, ρuiuj + γijP

)
, (2.25)

S =
(
0, fju

j,Γi
abρu

aub + f i
)
. (2.26)

2.3 aztekas-HD: code validation

In this section we present a number of HD numerical tests and comparisons with
analytic solutions in the non-relativistic regime. All simulations presented here were
computed using a second order Runge-Kutta method. The specific flux calculation,
Courant number, primitive variable reconstruction and recovery scheme will be spec-
ified for each test.

2.3.1 Shock tube

One dimensional shock tube

The shock tube test, first presented by Sod (1978), consists of a Riemann problem
along the entire integration domain. The 1D problem in Cartesian coordinates has
an exact solution which is presented, for the non-relativistic case, by Toro (2009).
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Figure 2.3: Results of the 1D shock tube tests for the four sets of initial conditions
listed in Table 2.1. Each panel corresponds to a different test and compares the
density, pressure and velocity as obtained numerically against their corresponding
analytic values (Toro, 2009). In all cases the resolution is N = 400 and the evolution
time is t = 0.2.

The numerical solution was computed for various tests, changing the initial den-
sity, pressure and velocity. All the results presented for the shock tube test use the
HLLE formula, an MC limiter for the linear reconstruction of the primitive vari-
ables, a domain [0,1] with N = 400 identical cells, and a Courant number of 0.9. The
initial discontinuity is placed at x = 0.5. Unless specified otherwise, all simulations
were performed using the classical primitive variable recovery, this is, u is recovered
directly from q.

In Table 2.1 we show the initial parameters for the left (x < 0.5) and right(x ≥

Table 2.1: Initial parameters for the four tests of the 1D shock tube problem. The
labels L and R represent the initial left and right states, respectively.

Parameters Test 1 Test 2 Test 3 Test 4
ρL 1.0 10.0 1.0 5.0
pL 1.0 13.33 0.2 1.0
vL 0.0 0.0 -1.5 0.5
ρR 0.125 1.0 1.0 1.0
pR 0.1 0.01 0.2 1.0
vR 0.0 0.0 1.5 0.0
γ 5/3 5/3 5/3 1.4
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Figure 2.4: L1 − norm of the error in the density versus the resolution N for all
tests presented in Table 2.1. With a dotted line, for comparison, we present the
slope of a first order convergence.

0.5) states of the shock tube problem. These tests were selected in order to obtain
different kinds of intermediate states. In Test 1 and 2 two different types of working
surfaces with a rarefaction wave are created. In Test 3 two rarefaction waves induce a
lower density zone and in Test 4 a strong shock without a rarefaction wave is formed.
The boundary conditions are set as free outflow in both directions by copying the
value of the last evolved cell onto the adjacent ghost cells (zero order extrapolation).

In Figure 2.3 we show the density, pressure and velocity at the time t = 0.2 for
the four tests. The figure shows the results of the numerical simulations compared
against the corresponding exact, analytic values (Toro, 2009). As can be seen from
this figure, for all cases there is a good agreement between the numerical and the
analytic solutions all over the domain.

In order to determine the convergence rate of the code, we repeated the same
four tests presented in Table 2.1, using six different resolutions N1 = 100, N2 = 200,
N3 = 400, N4 = 800, N5 = 1600 and N6 = 3200. We then compute the L1-norm of
the error between the numerical and analytical solutions:

L1-norm =
1

N

N∑
i=0

|ρn − ρe|, (2.27)

where ρn and ρe are the numerical and exact values of the density.
The L1-norm is a natural metric for measuring the absolute difference between

the components of two vectors; in this case, between each point of our simulation
with its corresponding one in the analytic solution. In Figure 2.4 we show the L1-
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Figure 2.5: Comparison of the density profile in Cartesian, cylindrical and spher-
ical coordinates for the Test 1 in Table 2.1.

norm of the difference between the analytic and numerical solutions. As expected
due to the presence of discontinuities, the order of convergence is ∼ 1 for all tests.

Shock tube test in cylindrical and spherical coordinates

In addition to Cartesian coordinates, we have also implemented within aztekas
the use of cylindrical and spherical coordinate systems. Here we present the results
of the 1D shock tube test for these geometries. Each coordinate system represents
a different shock tube problem, so we should expect to get different results. This
kind of tests have been presented by other authors (eg. Radice & Rezzolla, 2012;
Lora-Clavijo et al., 2015), although it is not commonly considered as part of a test
suite because there are no known analytic solutions to this problem in cylindrical
and spherical geometries. All simulations for this case were done with the HLLE flux
calculator, the MC reconstruction, the standard primitive variable recovery and a
grid of N = 400 points.

In Figure 2.5 we show the results of the density for the cylindrical and spherical
versions of Test 1 in Table 2.1 at t = 0.25. For comparison, we also show in this figure
the result obtained with Cartesian coordinates discussed in the previous Subsection.
As can be seen, due to the geometrical source terms in the balanced equations, the
form of the density profile shows a notable difference between the different geometries.
These results show that the choice of coordinate system is really important, giving
substantial differences in the resulting simulations.
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(a) Density profile.
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Figure 2.6: Left panel: Density profile of the evolution of Test 1 with an interface
located at x + y = 1 at time t = 0.2. Right panel: Density, pressure and velocity
profile along the diagonal x = y compared with the exact solution (Marti & Muller,
1994).

Two-dimensional shock tube

We performed the shock tube problem for one of the tests of Table 2.1 along a
diagonal in a 400× 400 Cartesian grid in order to analyse the flux calculation along
two dimensions simultaneously (see Lora-Clavijo et al., 2015, where a similar study
was implemented for the relativistic case).

In Figure 2.6(a) we show the snapshot of the shock tube evolution at time t = 0.2
for Test 1 of Table 2.1. We use the HLLC flux formula, the MC limiter and the
standard primitive variable recovery. The left and right states are delimited by the
diagonal x+y = 1. The boundary conditions were set as outflow in all directions. For
this case we implemented a linear extrapolation to the ghost cells at the boundaries
in order to avoid spurious reflections. Nevertheless, as can be seen from Figure 2.6(a),
the solution still shows a problem at the boundaries, specifically close to the bottom-
right and upper-left corners, where a small diminishing in the density is observed.
It is likely that this is because the extrapolation was done independently for each
direction. In Figure 2.6(b) we show the density, pressure and velocity profile along
the diagonal x = y, and compare the numerical results against the analytic solu-
tion (Toro, 2009).

2.3.2 Double Mach reflection

The HRSC methods are designed not only for accurately tracking of the position and
sharpness of discontinuities, like shock waves, but also to avoid spurious numerical
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Figure 2.7: Contour density plot of the double Mach reflection test at time t =
0.25.

instabilities, as the carbuncle instability (Rodionov, 2018).6 This instability appears
when a shock wave interacts with other shocks or reflecting walls, and it manifests
as a growing protuberance ahead of the discontinuity. This spurious problem seems
to appear when a less dissipative method is used in the simulation (Woodward &
Colella, 1984).

The double Mach reflection test was first described by Woodward & Colella
(1984), and it is part of some code test suites (e.g., the Athena++ code, Stone
et al., 2008). The problem consists of a strong shock wave moving diagonally to-
ward a reflecting wall. Although there is no analytic solution for this problem, it is
a commonly used problem for testing that shocks propagate at the correct speed in
all directions (avoid the carbuncle instability) and the proper reflective boundaries’
implementation.

In order to test the stability of the solution, this test was performed using the
WENO5 reconstructor and the HLLC flux calculator, which is a less dissipative
method (compared with the HLLE). We also performed a high resolution simulation
on a Cartesian domain [0, 4]× [0, 1], with 1200×300 uniformly distributed grid cells.
The fluid is described using an ideal gas EoS under an adiabatic process with index
γ = 1.4. Finally, we use a standard primitive variable recovery and a fixed Courant
number of 0.5.

The initial and boundary conditions closely follow those proposed by Stone et al.
(2008). The domain was divided into a pre-shock and post-shock regions, delimited
by a discontinuity that forms a 60◦ angle with the x-axis, intersecting it at x0 = 1/6.
The shock front moves diagonally towards the lower boundary with a Mach number
of 10, so the initial conditions are

(ρ, p) =

{
(8, 116.5) if x < x0 + y/

√
3

(1.4, 1) if x ≥ x0 + y/
√
3,

(2.28)

6Some authors (e.g. Moschetta et al., 2001) claim that, rather to be a numerical pathology, the
carbuncle instability is intrinsically associated to the Euler equations.
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with velocity components for the post-shock zone

vx = 8.5 cos(30◦),

vy = −8.5 sin(30◦),
(2.29)

and the pre-shocked zone initially at rest.
We set free outflow conditions at the left and right boundaries and reflection at

the lower boundary for x > x0. For x < x0 we fill the ghost cells with the values of
the post-shock zone. For the upper boundary, we impose the ghost cells to follow the
movement of the diagonal shock, so we set the pre-shock conditions for x ≥ xs(t)
and the post-shock conditions for x < xs(t) where

xs(t) = x0 +
1 + 20t√

3
, (2.30)

is the position of the shock at the upper boundary. These initial conditions were
taken from Woodward & Colella (1984).

In Figure 2.7 we show the density contour levels of the double Mach reflection
for a time t = 0.25. This result is qualitatively comparable with the one presented in
other works (e.g She-Ming Lau-Chapdelaine & Radulescu, 2016): the contact surface
curly jet, that appears along the reflecting wall, does not reach the shock front,
avoiding the carbuncle instability (see Kemm, 2015, for an example of the instability
development, and further discussion on this topic).

2.3.3 Sedov-Taylor blast wave

The Sedov-Taylor blast wave (Taylor, 1950; Sedov, 1959) consists of an intense ex-
plosion caused by an enormous amount of energy deposited in a small volume at the
centre of the domain, which generates a strong spherically symmetric shock which
propagates through a homogeneous medium.

This problem was studied by Sedov (1959), finding a self-similar solution in which
the front shock radius expands in time as (Sedov, 1959; Landau, 1987):

r(t) =

(
E0

αρ0

)1/5

t2/5, (2.31)

where E0 is the initial energy injected, ρ0 is the background density and α is a
constant that depends on the equation of state. This solution is relevant in astro-
physics as it helps to understand the physics behind a supernovae explosion. The
Sedov-Taylor blast wave is a commonly used benchmark test for hydrodynamic
codes (Tasker et al., 2008).

Continuing with the 2D tests, for this simulation we implement a 2D spherically
axisymmetric grid with 400 × 20 cells uniformly distributed over a [0, 8] × [0, π/2]
domain. We use the HLLC flux calculator, the MC reconstructor and a Courant
number of 0.25, as well as the standard primitive variable recovery. We set an initial
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Figure 2.8: Comparison between numerical results and the analytic solution of
the density, pressure and velocity for the 2D spherical axisymmetric simulation of
the Sedov blast wave at time t = 0.1. We only plot the profiles along θ = π/4 as
no angular dependence was found.

explosion energy of E0 = 1.25×105 inside a radius r0 that corresponds to 8 numerical
cells near the origin. The initial pressure P0 is computed using the ideal gas EoS and
the polytropic relation for an adiabatic process (κ = γ) as

P0 =
3(γ − 1)E0

4πρ0r30
, (2.32)

where the adiabatic index corresponds to a monoatomic gas (γ = 5/3). The gas is set
initially at rest and ρ0 = 1. The explosion shock front propagates through a uniform
medium with Pm = 10−5 and ρm = ρ0.

In Figure 2.8 we show the density, pressure and velocity profiles of the Sedov
explosion at t = 0.1 along the θ = π/4 direction. For comparison, we also show the
corresponding analytic solution (Kamm, 2000). As can be seen, there is a qualitatively
good comparison between the numerical results and the analytic solution; the shock
is well resolved, as expected for the HLLC Riemann solver.

In order to determine the convergence rate for this test, we repeated the simu-
lation using different radial resolutions, maintaining the same number of cells along
θ. We compute the L1−norm using the standard primitive variable recovery and the
PVRS method (2.11). In Figure 2.9, we show that, for both methods, the order of
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Figure 2.9: L1−norm of the error between the numerical and analytic solutions
of the Sedov-Taylor blast wave for resolutions Nr = 50, 100, 200, 400 and 800. We
compare here the convergence for different schemes of primitive variable recovery:
the standard way, recovering u directly from q, and the PVRS using direct inte-
gration over the primitive variables (2.11).
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Figure 2.10: Onset of the Kelvin-Helmholtz instability. The panels show the time
evolution of the density following a one-mode perturbation on the velocity field
(see Eq 2.33). From top to bottom and left to right, the times are t = 0.0, 1.5, 2.5
and 3.5, with an amplitude perturbation η = 0.01.

convergence is 1, which is expected due to the strong shock front. For a higher resolu-
tion, the convergence rate decreases in both cases: this is the result of the truncation
error being dominated by the rounding error7.

2.3.4 Hydrodynamic instabilities

In astrophysics, the non-linear nature of the hydrodynamic equations is responsible
for the turbulence observed in different scenarios like stellar atmospheres (see Jef-
frey et al., 2018) or accretion disks (see Wienkers & Ogilvie, 2018). It is important
for a code to be able to resolve the fine structure of the turbulence in a simula-
tion, since it is in this zone where important physical process occur (eg. Duffell &
Kasen, 2016). In this subsection we analyse the behaviour of aztekas in the non-
linear regime with two classical tests: the Kelvin-Helmholtz and the Rayleigh-Taylor
instabilities (Chandrasekhar, 1981).
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Kelvin-Helmholtz instability

The Kelvin-Helmholtz (KH) instability is the result of perturbing the interface be-
tween two fluids that are moving in opposite directions. This interaction drives the
fluid to enter a non-linear regime where the turbulence starts to dominate.

The KH instability is a usual phenomenon in astrophysics. It appears at dif-
ferent scales in the Universe, from solar flares (Ruan et al., 2018) and molecular
clouds (Pandey & Vladimirov, 2019), up to relativistic jets in active galactic nu-
clei (Perucho et al., 2006) and even at cosmological scales (Malik & Matravers, 2003).

This test was performed using the HLLC Riemann solver, the WENO5 primitive
variable reconstructor, the standard primitive variable recovery, a Courant factor of
0.5 and an ideal gas under an adiabatic process with index γ = 1.4. We implemented
a Cartesian square domain [−0.5, 0.5]× [−0.5, 0.5] with a uniformly distributed grid
of 600× 600 cells and periodic conditions for all boundaries.

We divided the domain into three zones with fluids moving in opposite directions
along the x direction. The initial conditions were then set as

(ρ, p, vx, vy) =

{
(2, 2.5, 0.5v, δv) if |y| ≥ 0.25,
(1, 2.5,−0.5v, δv) if |y| < 0.25,

(2.33)

where v = 1+ δv and δv = η cos(2πx/Lx) sin(2πy/Ly) is the perturbation, with η its
amplitude that, in this case, was set to 0.01. Lx = 1 and Ly = 1 are the extensions
of the domain along each direction. This corresponds to a one-mode perturbation for
the velocity over the x− y plane.

In Figure 2.10 we show the resulting time evolution in the density field at times
t = 0.5, 1, 1.5 and 2. As can be seen from the bottom right panel of the figure, the
upper eddies are exactly the same as the ones below, only inverted left to right, i.e.
even though a full non-linear regime has been developed, the simulation keeps this
symmetry at all times. The fact that there is a clear distinction between the high and
low density regions shows the non-dissipative nature of the HLLC Riemann solver.

Rayleigh-Taylor instability

The Rayleigh-Taylor (RT) instability is the result of perturbing the interface between
a high density fluid on the top of a low density fluid with a gravitational force pointing
downward. This instability appears in astrophysical scenarios like supernovae where
a dense shell, created by the explosion, is decelerated by the external medium and
the gravity of the remnant star (Fraschetti et al., 2010). The turbulence generated
has been shown to be an important mechanism from which the magnetic field is
intensified and where the synchrotron radiation is obtained (Duffell & Kasen, 2016).

For this test we use an HLLC Riemann solver, a WENO5 reconstructor, a stan-
dard primitive variable recovery method (although we also use the PVRS scheme

7The truncation error is the difference between the exact solution and an approximation obtained
with a given numerical method. The rounding error is due to the precision of the computer (LeVeque,
2002).
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Figure 2.11: Rayleigh-Taylor instability of a one mode perturbation (left) with
an amplitude η = 0.01, and a random perturbation of the same amplitude (right).

for comparison), a Courant factor of 0.5 and an ideal gas under an adiabatic pro-
cess with index γ = 1.4. We set a 300 × 900 uniformly spaced grid in a rectangular
domain [−0.25, 0.25]× [−0.75, 0.75], using periodic conditions in both x boundaries,
and reflection in the y boundaries. We also implemented a uniform gravitational
acceleration going downward g = −1 as a source term.

The domain was divided into two zones with different density fluids. The general
initial conditions were set as

(ρ, p, vx, vy) =

{
(2.0, ph, 0.0, δv) if |y| ≥ 0,
(1.0, ph, 0.0, δv) if |y| < 0,

(2.34)

where ph = 2.5 − ρgy, with g = −1 is the pressure a fluid in hydrostatic equi-
librium, in order to balance the forces between pressure gradients and gravity. For
the velocity fluctuation δv, we use a one mode perturbation of the form −η(1 +
cos(2πx/Lx))(1 + cos(2πy/Ly))/4, similar to the one use for the KH instability, and
a random perturbation.

In Figure 2.11 we show the density evolution of the RT instability at t = 3.0
for the one mode perturbation, with an amplitude η = 0.01 (left) and a random
perturbation of the same amplitude (right). As can be seen in the left panel, the
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Figure 2.12: Comparison between the standard scheme (left) and the PVRS
method (right) for the primitive variable recovery for a one mode perturbation
with amplitude η = 0.1.

fluctuation at the interface, along with the constant gravitational field, leads the
higher density fluid to stream down without mixing with the lower density one, even
though, the KH instability shows up at the layer between both fluids. On the right
panel, the random perturbation leads to a mixing that propagates more slowly. In
both cases, the transition to non-linear turbulence is observed.

In Figure 2.12 we show the comparison between a one mode perturbation model,
with an amplitude η = 0.1, for the standard finite volume method (left) and for
the PVRS method (right), at a time t = 0.3. Due to the larger amplitude of the
fluctuation, the higher density fluid sunk deeper in less time. In both cases the non-
linear turbulence regime is reached showing similar behaviours, with slight differences
in the mixture at small scales.

2.3.5 Astrophysical jet

One of important use of a hydrodynamical code, is the simulation of relativistic and
non-relativistic astrophysical jets, which are ubiquitous structures in the Universe.

For this test we closely follow the work of Stone & Hardee (2000), for the case of
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Figure 2.13: Logarithmic numerical density map of the adiabatic over dense jet.

a not-magnetized adiabatic over-dense jet, which is consistent with detailed obser-
vations of a number of protostellar jet systems (Nagar et al., 1997). This simulation
was performed in a 200 × 2000 cylindrical axisymmetric grid of size 0 ≤ r ≤ 20 Rj

and 0 ≤ z ≤ 100 Rj, where Rj = 2.5 × 1015 cm. We use an HLLC Riemann solver
for the fluxes, an MC reconstructor, a standard primitive variable recovery scheme
and a Courant factor of 0.5.

The initial condition consists of an ideal monoatomic gas with adiabatic index γ =
5/3, a numerical density nm = 100 cm−3 and a pressure pm = 1.38×10−10 dyna cm−2.
The jet injection is set as a boundary condition where all the cells inside r ≤ 1.0Rj

and z ≤ 1.0Rj are filled with a numerical density nj = 1000 cm−1, a pressure pj = pm
and a velocity vj = 332 km s−1 along the positive z direction. For the remaining
boundaries, we set outflow conditions everywhere except for the symmetry axis r = 0,
where reflection conditions are imposed. The relation between the particle number
density and the mass density is given by ρ = mHn, where mH is the hydrogen atomic
mass.

In Figure 2.13 we show the numerical density map for the evolution of the adia-
batic over-dense jet at a time t = 289 yr. The morphology of the cocoon is in good
agreement with the one presented by Stone & Hardee (2000), showing similar fila-
mentary structures inside the cocoon, as well as the same length of the jet at 300 yr.
Due to the high resolution of the simulation, and the MC reconstructor, we are able
to see some KH instabilities developing inside the cocoon. These instabilities form
because the material entering the cocoon slows down its velocity, and interacts with
the inner part of the jet, which is moving upwards. In the inner structure of the
jet we can see re-collimation shocks, which has been suggested as one of the reasons
why astrophysical jets can remain tightly collimated over large distances (Kaye et al.,
2018). Likewise, these shocks should leave polarization signatures in the emission of
jets (Cawthorne & Cobb, 1990), which is important in order to compare simulations
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with observations.

2.3.6 Bondi spherical accretion

The Bondi (1952) analytic model is a useful analytic solution to validate a hydro-
dynamic numerical code. This problem, mentioned in Section 1.1.1, studies the ac-
cretion of an infinite spherically symmetric gas cloud onto a Newtonian massive
object of mass M . Under the assumption of steady state and by considering a per-
fect fluid, Bondi (1952) found the equations governing the accretion flow. Assuming
a transonic solution, i.e., that the fluid velocity equals the speed of sound at some
point, Bondi found that the massive object accretes at a maximum rate

ṀB = 4πλB
G2M2ρ∞

a3∞
, (2.35)

where ρ∞ and a∞ are the values of the density and speed of sound at infinity, respec-
tively; and λB is a numerical factor that depends on the adiabatic index (γ). From
this value of Ṁ and using the governing equations (see Chapter 3 for a condensed
explanation of the solution) a set of algebraic equations is obtained which can be
solved numerically in order to get ρ, P and v as a function of radius. We can use this
model to validate the addition of gravity in a hydrodynamic code, as well as to test
the implementation of spherical coordinates.

For this validation, we perform a series of 2D-spherical axisymmetric numerical
simulations of the Bondi problem. The initial conditions consist of a constant density,
static gas cloud modelled as a perfect fluid following a polytropic relation. In order to
compare our numerical results, we implement a numerical code to obtain the analytic
solution (see, Aguayo-Ortiz, Tejeda, et al., 2021), which is used at the boundary to
set the values of the density, pressure and velocity at r = 10 rB, where rB = GM/a2∞
is the Bondi radius. We perform three sets of simulations using an ideal gas EoS for
three different values of the adiabatic index γ (1, 4/3, 7/5) and different resolutions,
in order to perform a L1-norm convergence test. For these tests, we fix rB, a∞ and
ρ∞ as the units of distance, velocity and density, respectively. All simulations evolve
until a steady-state is reached, which is monitored by measuring the evolution of the
average mass accretion rate calculated as:

Ṁ = 2π

∫ π

0

ρvrr
2 sin θdθ, (2.36)

and waiting until the variations in Ṁ fall below 1 part in 104. We use a standard
primitive variable recovery scheme, a Courant factor of 0.5, an HLL Riemann solver,
as well as an MC reconstructor.

As mentioned in Aguayo-Ortiz et al. (2019), as a way to avoid numerical problems
at the inner boundary, we ensure that, for all of our simulations, the inner radius is
set inside the sonic radius. For this reason, we have not included the value γ = 5/3,
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Figure 2.14: Left panel: Mach number as a function of radius for the steady-
state, spherically symmetric Bondi model. The colour lines represent the analytic
solution for three different values of the adiabatic index γ (1, 4/3, 7/5) and the
black dashed lines show their respective numerical solution. The vertical lines mark
the location of the sonic radius for each value of γ. Taken from Aguayo-Ortiz et
al. (2019). Right panel: L1-norm of the error between the analytic solution and the
numerical simulations. The diagonal black dashed line represents an ideal second
order convergence trend.

commonly used to describe a monoatomic gas, since for this case rs = 0, meaning
that numerical fluctuations are able to travel inside the domain, hence leading to
inconsistent results.

In Figure 2.14(a), we show the steady-state solution of the Mach number

M =
v

cs
= v

√
ρ

γP
, (2.37)

for the three values of γ used for this test.8 The colour lines represent the analytic so-
lution, while black dashed lines show their respective numerical steady-state solution.
As we can see from this figure, there is a good agreement between both results, even
at small radii. As shown in Aguayo-Ortiz et al. (2019), the numerical mass accretion
rate remains within an error of less than 0.1% with the corresponding analytic value.

In Figure 2.14(b) we show the L1-norm of the error between the analytic and
numerical solutions for different resolutions in the radial component, and for the
three values of γ. Since the Bondi accretion model does not present shock waves, we
expect a second order convergence, which is represented by the black dashed line.

8We use the Mach number to compare, since this quantity carries the information of all the
primitive variables of the problem.
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Figure 2.15: Density field of the wind accretion simulation for a γ = 5/3 fluid
and supersonic wind with M = 3. The black solid lines show the fluid streamlines.

2.3.7 Wind accretion

The wind accretion problem, also known as Bondi-Hoyle-Lyttleton (BHL), can be
seen as an extension of the spherical accretion model, in which the central object
has now a relative velocity with respect to the infinite gas cloud that surrounds it.
As mentioned in Section 1.1.2, Hoyle & Lyttleton (1939) and Bondi & Hoyle (1944)
give an analytic description of the problem using the ballistic approximation, which
does not consider pressure gradients through the gas and, hence, the fluid particles
move following free-falling trajectories.

Even though this not a hydrodynamic solution, in Hoyle & Lyttleton (1939),
the authors manage to find a value for the mass accretion rate in terms of the
impact factor ζHL = 2GM/v2∞, which is the radius delimiting all the material that
is eventually accreted by the central object, the velocity of the fluid relative to the
massive object v∞ and the density at infinity ρ∞:

ṀHL = πζ2HLv∞ρ∞ =
4πG2M2ρ∞

v3∞
. (2.38)

For this test, we extend the BHL problem to the case of a perfect fluid accreted by
a Newtonian central potential by means of 2D-axisymmetric numerical simulations.
We modelled the fluid as a monoatomic ideal gas with an adiabatic index of γ = 5/3.
Following Xu & Stone (2019), we normalize our simulations units with GM = ζHL =
ρ∞ = 1. With this normalization, the wind velocity v∞ =

√
2, and all the extra

required quantities (a∞, P∞) can be computed using the Mach number M and using
the EoS. Note that, under this normalization, ṀHL =

√
2π.

Our initial conditions consist, as in the Bondi problem, of a constant density
(ρ = ρ∞) gas cloud, moving with velocity v∞ along the axis of symmetry:

vr = −v∞ cos θ,

vθ = v∞ sin(θ).
(2.39)
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Figure 2.16: Mass accretion rate (in units of ṀHL) as a function of time (in units
of tacc = ζHL/v∞) for the simulation of the wind accretion problem with M = 3.

For the boundary conditions, at the outer boundary (r = 10 ζHL), we set an
incoming wind, with the same values as the initial conditions for θ ∈ [0, π/2], and
a free-outflow condition at the remaining boundaries. We use an exponential radial
mesh grid (see Aguayo-Ortiz et al., 2019) for 256× 128 cells. For the inner boundary
(r = 0.1 ζHL), we set a non-inflow condition, which consists of filling the radial velocity
of the ghost cells, with −|vr|, in order to avoid incoming material from this region.
The steady-state of the simulation is monitored by measuring the mass accretion
rate, as in the Bondi test.

In Figure 2.15, we show the density profile of the steady-state result of a sim-
ulation with a Mach number of M = 3. The black solid lines represent the fluid
streamlines. As we can see, since the fluid is supersonic (M > 1), a bow-shock forms
in front of the massive object, increasing the density over an order of magnitude with
respect to ρ∞. In the BHL solution, the fluid streamlines finish at the symmetry axis
behind the object, thermalizing the perpendicular component of the velocity and
allowing the ones that are bounded to be accreted by the central mass (see Tejeda
& Aguayo-Ortiz, 2019). However, in this case, since we now take into account pres-
sure gradients in the fluid, the fluid streamlines follow a different path and maintain
the original direction of the wind, with exception to the ones that pass close to the
central mass.

In Figure 2.16, we show the evolution of the mass accretion rate as a function of
time. We find that the simulation relaxes in less than 30 tacc, and the numerical value
of Ṁ is of the order of magnitude of ṀBHL. These results, both the mass accretion
rate and the flow morphology are in very good agreement with other works (Edgar,
2004; Xu & Stone, 2019).
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2.4 aztekas-GRHD:
general relativistic hydrodynamics

In this section, we describe the hydrodynamic equations in general relativity i.e.,
when the fluid is moving inside a curved spacetime, for example, around a black
hole. It is important to state that aztekas-GRHD does not take into account
the dynamics of the spacetime, in other words, it does not solve the Einstein field
equations, but uses a fixed metric instead. The spacetime metrics implemented in
aztekas so far are: Minkowski, Schwarzschild and Kerr.

Before writing the general relativistic Euler equations, it is important to introduce
the formalism used to evolve the equations. In this section, we adopt geometrized
units in which G = c = 1.

2.4.1 3+1 formalism

In order to study the evolution in time of any physical system, the problem needs
to be formulated as an initial value or Cauchy problem. This means that the set
of equations describing the system must predict its evolution in time (future or
past) by means of its initial state and boundary conditions (Alcubierre, 2008). In
general relativity, the covariant formalism of the theory hinders a direct evolution in
time of the system, due to the inherent relation between space and time, and this
is a particularly important issue for numerical codes, where we seek to obtain the
evolution of the system at specific time intervals.

The 3+1 formalism, popularized by the work of Arnowitt et al. (1962) (see Gour-
goulhon, 2007, for a complete review of the development of this formalism) is one
of the many forms in which spacetime can be foliated in order to stablish an ini-
tial value problem. In this formulation, we consider that our spacetime with metric
gµν is globally hyperbolic, meaning that it can be foliated into three-dimensional
space-like hypersurfaces Σ, identified with a global function of time t, which does
not necessarily coincide with the proper time of any particular observer.

The region of spacetime contained between contiguous hypersurfaces can be de-
scribed by the following parameters (see Alcubierre, 2008):

• A three-dimensional metric γij (i, j = 1, 2, 3)9 that measures the proper dis-
tances inside the hypersurface:

dl2 = γij dx
idxj. (2.40)

• A lapse of proper time dτ between each foliated hypersurface, as measured
by the observers moving along the direction normal to the hypersurfaces (also

9Note that for three-dimensional tensors, we use Roman indices, whereas for four-dimensional
ones we use Greek letters.
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called local Eulerian observers [LEOs]):

dτ = α(t, xi) dt, (2.41)

where α is known as the lapse gauge function (Wheeler, 1964).

• And a relative velocity vector βi that measures the displacement between the
LEOs and the lines of constant spatial coordinates:

xi
t+dt = xi

t − βi(t, xj) dt, (2.42)

where βi is known as the shift gauge function (Wheeler, 1964).

Using the above ingredients, the line element of spacetime is written as:

ds2 = (−α2 + βiβ
i)dt2 + 2βidtdx

i + γijdx
idxj, (2.43)

and hence, the metric tensor gµν in the 3+1 formalism takes the form:

gµν =

(
−α2 + βkβ

k βi

βj γij

)
, (2.44a)

gµν =

(
−1/α2 βi/α2

βj/α2 γij − βiβj/α2

)
. (2.44b)

From these expressions we can show that the four-dimensional volume element in
the 3+1 formalism turns out to be given by

√−g = α
√
γ, (2.45)

where g and γ are the determinants of gµν and γij respectively.
In a more general description, we can state that the three-dimensional space in

the Σ hypersurfaces changes as a function of t, which implies that the metric is
dynamic. In our case, since we are assuming a fixed metric, this is no longer needed.
See Alcubierre (2008) for a more complete description of the 3+1 formalism.

2.4.2 General relativistic hydrodynamics

The general relativistic hydrodynamic evolution equations for a perfect fluid, written
in covariant form are

∇µ (ρU
µ) = 0, (2.46a)

∇µ (T
µν) = 0, (2.46b)

with the stress-energy tensor defined as

T µν = ρhUµUν + Pgµν , (2.47)
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where Uµ is the 4-velocity of the fluid elements and h, ρ and P are the specific
enthalpy, rest-mass density and pressure as measured in the fluid’s rest frame. The
general form of h is

h = 1 + ϵ+
P

ρ
, (2.48)

where ϵ is the specific internal energy. The rest-mass density can be written in terms
of the particle number density n as

ρ = nm, (2.49)

where m is the average baryonic rest-mass of the fluid.
The state of the fluid at any given time is given in terms of the six primitive

variables (ρ, ϵ, p, vi). The set of equations is closed assuming an equation of state
(EoS) that relates ϵ with the other thermodynamic variables (ρ, P ), e.g.,

ϵ = ϵ(ρ, P ). (2.50)

As in the non-relativistic case, by assuming an ideal gas EoS under an adia-
batic process with index γ, the specific internal energy could be written as in equa-
tion (2.21). Nevertheless, in this case, the values of γ = 4/3 and γ = 5/3 describe
a monoatomic gas in the ultra-relativistic (Θ = P/ρ ≫ 1) and non-relativistic
(Θ = P/ρ ≪ 1)10 regimes, respectively. In order to describe a monoatomic ideal
gas in the intermediate relativistic regime, we need to use a correct EoS as derived
by Synge (1957). We implemented this EoS by using the approximate form proposed
by Ryu et al. (2006).

Let us now describe the velocity (both four and three-dimensional vectors) in
terms of the gauge functions {α, βi} and the three-dimensional metric tensor γij.
Let’s define the scalar parameter Γ as

Γ := αU0, (2.51)

and the three-dimensional velocity vector

vi :=
U i

Γ
+

βi

α
. (2.52)

With this definition, vi corresponds to the velocity of a fluid element as seen by the
LEOs (Alcubierre, 2008). Notice that

U i

U0
=

dτ

dx0

dxi

dτ
=

dxi

dx0
, (2.53)

10The parameter Θ is a temperature-like variable (see for example Ryu et al., 2006; Aguayo-Ortiz,
Sarbach, & Tejeda, 2021).
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is the coordinate speed of the fluid elements, so we first need to add the shift to
convert to the Eulerian reference frame and then divide by the lapse to use the
proper time of the LEOs instead of coordinate time. Using this, we can show that

U0 =
Γ

α
, (2.54a)

U i = Γ

(
vi − βi

α

)
, (2.54b)

U0 = Γ
(
viβ

i − α
)
, (2.54c)

Ui = Γvi, (2.54d)

where vi = γijv
j. Using the fact that UµU

µ = −1, we find that Γ is equal to

Γ =
1√

1− v2
, (2.55)

where v2 = γijv
ivj. This means that Γ is the Lorentz factor as seen by the LEOs.

Now that we have all the primitive variables of the problem, as well as an equation
of state, we can write the GRHD equations in conservative form.

2.4.3 GRHD in balanced form

Following the variation of the Valencia formulation (Banyuls et al., 1997) proposed
by Del Zanna et al. (2007) (see also Porth et al., 2017) for the general relativis-
tic magneto-hydrodynamic set of equations, we can write the GRHD equations in
balanced form as

1√
γ

[
∂(
√
γQ(u))

∂t
+

∂(
√
γFi(u))

∂xi

]
= S(u), (2.56)

where the primitive variables u, the conserved variables Q, fluxes Fi and source
terms S are defined as

u =

 ρ
P
vj

 , (2.57a)

Q =

 D
ε
Sj

 , (2.57b)

Fi =

 D(αvi − βi)
α(Si − viD)− βiε

αW i
j − βiSj

 , (2.57c)

S =

 0
1
2
W ikβj∂jγik +W j

i ∂jβ
i − Sj∂jα

1
2
αW ik∂jγik + Si∂jβ

i − U∂jα

 , (2.57d)
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where D = ρΓ is the density as measure in the Eulerian frame, Sj = ρhΓ2vj is the
covariant three-momentum and ε = U−D is the re-scaled energy, with U = ρhΓ2−P
the energy density as seen by the LEOs. The remaining terms correspond to: the
purely spatial variant of the stress-energy tensor W ij = Sivj + Pγij and the spatial
derivatives ∂i = ∂/∂xi.

2.4.4 Primitive variable recovery

Contrary to the non-relativistic case, in GRHD there is no trivial way for recovering
the primitive variables from the evolved conservative ones. Instead, a transcendental
algebraic equation has to be solved numerically for the recovery. In order to obtain
the primitive variables, we define an auxiliary variable Θ = P/ρ, which can be seen
as a dimensionless temperature (see Aguayo-Ortiz, Tejeda, et al., 2021), and, using
the EoS, write the specific enthalpy as h = h(Θ). Then, we compute the Lorentz
factor as

Γ(Θ) =

√
1− S2

D2h(Θ)2
, (2.58)

where S2 = γijSiSj. Then, from the definition of ε, we obtain the following transcen-
dental algebraic equation

h(Θ)Γ(Θ)− Θ

Γ(Θ)
− ε

D
− 1 = 0, (2.59)

which is then solved for Θ using a root finder, like the Newton-Raphson method (e.g.
Porth et al., 2017). With the numerical solution Θ0, we construct the primitive
variables as follows:

ρ =
D

Γ(Θ0)
, (2.60a)

P = Dh(Θ0)Γ(Θ0)− ε−D, (2.60b)

vi =
Si

Dh(Θ0)Γ(Θ0)
. (2.60c)

We have also implemented in aztekas the PVRS method (Aguayo-Ortiz et al.,
2018) for the relativistic case. In this method, as mentioned previously, a modified
version of the conservative equations is solved in order to evolve directly the primitive
variables (see Eq. 2.11). Its performance in the special relativistic regime is tested
using the shock tube problem in Aguayo-Ortiz et al. (2018). However, in all the
GRHD numerical simulations presented in this thesis, we use the standard recovery
scheme using a Newton-Raphson technique, since we have found that, especially in
numerical simulations with shock waves and discontinuities, the time-step has to
be sufficiently small for the velocity to stay below the speed of light, which greatly
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increases the computation time. This could be solved by finding a correct Courant
condition for this method.

In the next section, we present some validation and comparison tests for the
general relativistic version of the aztekas code.

2.5 aztekas-GRHD: code validation

We now present the validation tests for the general relativistic version of the aztekas
code. For all the simulations presented in this section, we use a second order Runge-
Kutta method for time integration and a standard primitive variable recovery (2.60).
The metric, flux calculation, Courant number and reconstructor will be specified at
each test.

2.5.1 Tests in Minkowski spacetime

The spacetime used in the tests presented in this section is described by the Minkowski
metric gµν = ηµν = diag(−1, 1, 1, 1), which is also known as the special relativistic
regime. In these cases, we are not considering the curvature of spacetime, but only
velocities comparable to the speed of light.

Relativistic shock tube

The relativistic shock tube problem has, essentially, exactly the same setup as in the
non-relativistic version. However, in this case the velocity has a natural limit, which
is the speed of light, which makes it more complicated to be solved analytically. The
analytic solution for the relativistic shock tube problem was first presented by Marti
& Muller (1994) (also see Lora-Clavijo et al., 2013, for a more detailed explanation
for both the relativistic and non-relativistic cases) and, since then, became the main
numerical test for relativistic hydrodynamic code validations.

Table 2.2: Initial parameters for the four tests of the 1D relativistic shock tube
problem. The labels L and R represent the initial left and right states, respectively.

Parameters Test 1 Test 2 Test 3 Test 4
ρL 10.0 1.0 1.0 1.0
pL 13.33 10−3 103 1.0
vL 0.0 0.999999995 0.0 0.9
ρR 1.0 1.0 1.0 1.0
pR 10−8 10−3 0.01 10.0
vR 0.0 -0.999999995 0.0 0.0
γ 5/3 4/3 5/3 4/3
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Figure 2.17: Results of the 1D relativistic shock tube tests for the four sets of
initial conditions presented in Table 2.2. Each panel corresponds to a different
test and compares the density, pressure and velocity as obtained against their
corresponding analytic values (Marti & Muller, 1994). In all cases the evolution
time is t = 0.35.

For this test, as in the non-relativistic case, we perform four simulations with dif-
ferent initial configurations of the problem, in order to study a wide variety of possible
outcomes. For all the results presented here we use the HLLE Riemann solver, an
MC limiter reconstructor and a Courant factor of 0.5. The initial discontinuity is set
at x = 0.5.

In Table 2.2 we show the initial conditions for the four tests presented in this
section. Test 1 consists of a mildly relativistic shock tube, in which a gas initially
at rest in the whole box has a slightly denser and a substantially higher pressure
on the left side. In Test 2, the initial state consists of the strong ultra-relativistic
flows in a head-on collision at the interface. For Test 3 we have a strong relativistic
shock tube configuration, in which there is the same density everywhere, but there
is an important difference in pressures at each side. Finally, Test 4 consists of a fluid
coming from the left side and encountering static gas with a higher pressure. The
boundary conditions in all cases are set as free-outflow in both boundaries.

In Figure 2.17 we show the density, pressure and velocity of the four tests at time
t = 0.35 with a resolution N = 400. The black dotted lines represent the numerical
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(a) Diagonal Riemann problem.
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Figure 2.18: Left panel: Density map of the evolution of the initial configuration
for Test 1, with an interface located at x + y = 1, at time t = 0.35. Right panel:
L1-norm of the error in the density between the numerical and analytic solutions,
and different values of the resolution for the Test 1 in the 1D version and in the
2D-diagonal one. The dotted line show the slope that a first order convergence
must have.

solutions, while the red lines are the analytic solution (Marti & Muller, 1994). As can
be seen from this figure, in most cases there is a very good agreement between the
numerical and analytic solutions. In Test 3, we can see that the contact discontinuity
is not well resolved by the numerical simulation, however this problem is also found
by other authors with their own numerical codes (e.g. Lora-Clavijo et al., 2015).

We also repeat the 2D simulation of the shock tube problem along the diagonal,
but now for the relativistic version. In this case we use the Test 1 presented in
Table 2.2, setting the interface at the diagonal x + y = 1. In Figure 2.18(a) we
show the density colour-map of the numerical solution at t = 0.35. As we can see,
the contact discontinuity remains stable, showing no problem with the boundaries
x = 1 and y = 1, and the rarefaction wave shows no spurious reflection, by using a
zero-order interpolation for the ghost cells.

Regarding the convergence rate of the numerical code for these tests, since we
obtain the same first order convergence in all cases, analogous to the non-relativistic
ones, we prefer to show the convergence of the Test 1 in the 1D case and in the
2D-diagonal case. In Figure 2.18(b) we show the convergence of the L1-norm of the
error in density for different resolutions for these two tests. In the 2D-diagonal case,
we increase the resolution at both dimensions. As we can see, in both cases we obtain
a convergence close to first-order (see the dotted line which follows N−1).
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Figure 2.19: Snapshots of the evolution in the rest-mass density of the relativistic
Kelvin-Helmholtz instability. From top to bottom and left to right the times are
t = 0, 0.1, 0.2 and 0.3.

Relativistic Kelvin-Helmholtz instability

For the relativistic KH instability test we set the same initial configuration as in the
non-relativistic case (see Section 2.3.4), but now the relative velocity of the shearing
flows is near the speed of light, which may affect the dynamics of the instability. For
this test we closely follow the configuration presented in Lora-Clavijo et al. (2015),
which has the same initial configuration as in the non-relativistic version presented
in Section 2.3.4, but now the relative velocity is v = |0.5|, in units of the speed of
light. In this case we use an MC primitive variable reconstructor, a Courant factor of
0.5 and an ideal gas under an adiabatic process with index γ = 5/3. The simulation
performed in this test uses a Cartesian square domain of [−0.5, 0.5]× [−0.5, 0.5] with
a uniformly distributed grid of 400× 400 cells with periodic boundaries.

In Figure 2.19 we show different stages of the evolution of the relativistic KH
instability for times t = 0, 0.1, 0.2 and 0.3. As can be seen from these figures and,
comparing with the non-relativistic case (see Figure 2.10), this version has a less
chaotic evolution of the instability, maintaining symmetrical eddies at the shear
boundaries. This behaviour is also found in simulations by Lora-Clavijo et al. (2015).
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Relativistic astrophysical jet

For the relativistic jet test, we closely follow one of the axisymmetric cylindrical jet
configurations presented by Martí et al. (1997) (see also Lora-Clavijo et al., 2015),
in which the authors show the morphology at different states of the evolution of a
wide range of jets with different parameters.

In this case, we choose the Model C2 of Martí et al. (1997), in which the authors
injected a perfect adiabatic fluid with γ = 5/3 inside a region of size R = Rj and
z = Rj, with a velocity vj = 0.99 and density ρj = 0.01 to an ambient medium with
density ρm = 1.0 The jet is injected with a Mach number of Mm = 6, where

M =
v
√

1− c2s

cs
√
1− v2

, (2.61)

i.e., a supersonic jet, from which we can compute the jet pressure using the EoS and
the definition of the speed of sound. The numerical domain consists of a rectangular
cylindrical grid [0, 15]× [0, 50] with a high resolution of 576× 1920 cells. We use an
MC primitive variable reconstructor and a Courant factor of 0.25.

In Figure 2.20 we show the rest-mass density of the relativistic jet evolution at
time t = 115. Since this is a supersonic jet, we can see the re-collimation shocks in the
central part of the jet, covered with a mixing layer where hydrodynamic instabilities
can be spotted. Moreover, a cocoon forms between the jet and the medium. Note
that, due to the high resolution of the simulation, it is possible to see the shape of
waves bouncing back and forth inside the jet region. These results are in very good
agreement with the ones presented by different authors (cf. Martí et al., 1997; Del
Zanna & Bucciantini, 2002; Lora-Clavijo et al., 2015), showing a similar structure
and length of the jet for t ≈ 120.

2.5.2 Tests in black hole spacetimes

In this section, we test our numerical code using two different problems regarding
the accretion of gas onto a black hole: spherical accretion and wind accretion. In
aztekas we have implemented the Schwarzschild and Kerr black hole metrics using
the following coordinate systems:

• Schwarzschild coordinates (t, r, θ, φ):

These describe a Schwarzschild black hole, with non-horizon penetrating coor-
dinates, i.e., there is a divergence at the event horizon:

gµν = diag

(
−
[
1− 2M

r

]
,

[
1− 2M

r

]−1

, r2, r2 sin2 θ

)
. (2.62)

These coordinates are implemented in aztekas using the original spherical
symmetry description, as well as Cartesian and cylindrical ones.
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Figure 2.20: Snapshot of the evolution at time t = 115 of the rest-mass density
for the relativistic jet setup.
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• Eddington-Finkelstein coordinates:

These describe a Schwarzschild black hole as well, but now using horizon pen-
etrating coordinates, i.e., the solution is regular across the event horizon:

gµν =


−
[
1− 2M

r

]
2M
r

0 0
2M
r

1− 2M
r

0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 , (2.63)

which is as well implemented in a Cartesian, cylindrical and spherical descrip-
tion.

• Boyer-Lindquist coordinates (t, r, θ, φ):

These describe a rotating Kerr black hole of mass M and with spin parameter
a, with non-horizon penetrating coordinates:

gµν =


−∆−a2 sin2 θ

ϱ2
0 0 −2Mar sin2 θ

ϱ2

0 ϱ2

∆
0 0

0 0 ϱ2 0

−2Mar sin2 θ
ϱ2

0 0 Σ
ϱ2
sin2 θ

 , (2.64)

where ∆ = r2 − 2Mr + a2, ϱ2 = r2 + a2 cos2 θ and Σ = (r2 + a2)− a2∆sin2 θ.
This coordinate system reduces to the Schwarzschild one when a = 0.

• Kerr-Schild coordinates (t′, r, θ, φ′):

These describe a rotating Kerr black hole with spin parameter a, with horizon
penetrating coordinates:

gµν =


−
(
1− 2Mr

ϱ2

)
2Mr
ϱ2

0 −2Mar sin2 θ
ϱ2

2Mr
ϱ2

(
1 + 2Mr

ϱ2

)
0 −a

(
1 + 2Mr

ϱ2

)
sin2 θ

0 0 ϱ2 0

−2Mar sin2 θ
ϱ2

−a
(
1 + 2Mr

ϱ2

)
sin2 θ 0 sin2 θ

[
ϱ2 + a2

(
1 + 2Mr

ϱ2

)
sin2 θ

]

 . (2.65)

As in the previous case, this coordinate system reduces to the Eddington-
Finkelstein one when a = 0.

Since the metrics describing a rotating black hole are just an extension of the non-
rotating ones, and because the horizon-penetrating coordinates have an advantage
while dealing with numerical errors coming from the inner boundary of the numerical
domain, for all the tests presented in this section, we use the Kerr-Schild metric for
the description of the spacetime around the black hole.
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Figure 2.21: Comparison between the numerical simulations (black dashed lines)
and the Michel (1972) analytic solution (coloured lines) for the rest-mass density
(top panel) and the radial velocity (bottom panel) and two different values of γ.
Taken from Tejeda & Aguayo-Ortiz (2019).

Relativistic spherical accretion

Michel (1972) solution is the general relativistic extension of the Bondi (1952) spher-
ical accretion model. In this case, the central massive object corresponds to a non-
rotating black hole, which is responsible for the gas accretion. As in the Newtonian
case, this solution deals with the accretion of an infinite spherically symmetric gas
cloud, under the assumption of steady state and by considering a perfect fluid. In
the relativistic regime, the mass accretion rate found by Michel is given by:

ṀM = 4πλMM
2 ρ∞
C3
∞
, (2.66)

where ρ∞ is the rest-mass density of the gas at infinity, C∞ is the speed of sound at
infinity and λM is a numerical factor that depends on the adiabatic index γ and the
asymptotic state of the fluid at infinity (see Aguayo-Ortiz, Tejeda, et al., 2021).

As its non-relativistic counterpart, the Michel analytic solution is a useful model
to validate general relativistic hydrodynamic codes. To do this, we develop a numeri-
cal code that solves the algebraic equations related to this solution (see Aguayo-Ortiz,
Tejeda, et al., 2021).

For this test, we perform a series of 2D spherically axisymmetric numerical simu-
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lations of the Michel problem. We use a mesh grid of 400×400 uniformly distributed
cells over a domain [0.5M, 20M ]×[0, π/2]. The boundary conditions consist of a free-
outflow inner boundary, intentionally set inside the event horizon, in order to prevent
spurious numerical error propagation, and a fixed set of values at the outer bound-
ary. These values correspond exactly to the analytical values at that radius. For the
initial conditions, we use a constant density, static gas cloud, with the same values
of density and pressure as in the boundaries. We evolve the solution for two different
values of γ, monitoring the mass accretion rate until a steady-state is reached.

In Figure 2.21 we show the comparison between the analytic solution found
by Michel (1972) (colored lines) and the steady-state reached by the simulations
performed with aztekas (black dashed lines). As we can see, even for points inside
the event horizon, the agreement between both solutions is remarkable. We have
found that the relative error in the mass accretion rate between both solutions is be-
low 0.2%. For a convergence analysis, see the Appendix A of Tejeda & Aguayo-Ortiz
(2019).

This solution is extensively studied from the non-relativistic to the ultra-relativistic
regimes in the article presented in chapter 3 (Aguayo-Ortiz, Tejeda, et al., 2021),
where we also extend the solution, by means of numerical simulations using aztekas,
to the case of a rotating Kerr black hole.

Relativistic wind accretion

The wind accretion problem as described by Hoyle & Lyttleton (1939) and Bondi &
Hoyle (1944), corresponds to an axisymmetric accretion solution of a gas assumed
to move in ballistic trajectories towards the massive object. As shown previously in
this chapter, in the non-relativistic regime tests, even though this model is not a
hydrodynamic solution, it gives an adequate estimate for the rate at which mass is
accreted onto the moving mass. This makes the BHL model a qualitative solution to
test a hydrodynamic numerical code.

Schwarzschild black hole

The relativistic extension of the BHL, where the accretor is replaced by a non-
rotating, Schwarzschild black hole is obtained by Tejeda & Aguayo-Ortiz (2019),
which is part of this thesis (see Chapter 4). In that article, we also assume the
ballistic approximation, obtaining the description for the gas density profile, the
fluid streamlines, and the mass accretion rate. The details of the analytic solution
can be found in said article.

We use this solution to compare with full-hydrodynamic simulations performed
with aztekas. Using a similar setup as the one presented in Section 1.1.2, we perform
a series of simulations for varying the wind velocity v∞ over different percentages of
the speed of light. In Figure 2.22, we show one of the numerical results presented
in Tejeda & Aguayo-Ortiz (2019). In this figure we see the steady-state of the evo-
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Figure 2.22: Steady-state of the rest-mass density evolution for the relativistic
wind accretion problem of a fluid with γ = 5/3 and a wind velocity v∞ = 0.5. The
black line arrows show the fluid streamlines of the wind, their width is proportional
to the velocity magnitude. Figure taken from Tejeda & Aguayo-Ortiz (2019).

lution in the rest-mass density for a wind with v∞ = 0.5 and an adiabatic index of
γ = 5/3. As shown in our article, the mass accretion rate of both numerical and
analytic results show a very good agreement. We can also see that the morphology of
the bow shock is similar to the one seen in the non-relativistic case (see Figure 2.15).
All the details of this comparison, as well as self-convergence, domain extension and
validation tests can be found in the Appendix of Tejeda & Aguayo-Ortiz (2019).

Kerr black hole

In order to validate the implementation of the Kerr-Schild metric in our numerical
code, we perform a simulation of the relativistic wind accretion problem onto a
rotating, Kerr black hole. The black hole rotation drags the spacetime with it, which
breaks the axial symmetry of the problem, forcing us to perform a 3D simulation,
which is not yet implemented in the code. To overcome this problem, we use polar-
like coordinates, which use the radial and azimuthal angle (φ̂) components. This
allows us to study the evolution of a “planar” wind accreted by a rotating black hole.
Although this is a rather unlikely flow configuration to find in nature, this might
be encountered if a high degree of symmetry between the north and south poles is
presented. This particular case has been studied by different authors, which allows
us to compare our results with previous simulations. In particular, we follow closely
the study presented by Font et al. (1999).

For this test, we use a 2D-planar mesh grid with 512× 256 uniformly distributed
cells over a domain (r, φ̂ ∈ [1.1r−, 50M ]× [0, 2π], where r− = M −

√
M2 − a2 is the
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Figure 2.23: Contours of the rest-mass density at the steady-state for the planar
wind accretion onto a Kerr black hole with spin parameter a = 0.99M . The fluid
is described by an adiabatic index of γ = 2. The simulation uses Kerr-Schild
coordinates, but the azimuthal angle is converted to the Boyer-Lindquist system
to visualize the frame dragging around the rotating black hole.

inner horizon of the Kerr black hole. The wind distribution used for the initial and
boundary conditions are similar to the one presented in the previous test, the wind
velocity is v∞ = 0.5, with a Mach number M = 5 (for more detail see Font et al.,
1999). The fluid is described by a perfect fluid with an adiabatic index γ = 2, which
it is known as a stiff EoS. The black hole spin parameter is a = 0.99M .

In Figure 2.23 we show contours of the rest-mass density of the evolution of the
planar-wind accretion problem when the steady-state is reached. Even though we
use the Kerr-Schild coordinates for the space-time metric, in order to visualize the
frame dragging of the black hole, we convert the azimuthal angular coordinate to its
equivalent in the Boyer-Lindquist coordinate system. As we can see from this figure,
near the black hole the wind bow shock is dragged along with the rotating of the
black hole (clockwise rotation). Far away from the black hole, the bow shocks recover
the original motion of the wind. This result is in very good agreement with the one
presented by Font et al. (1999).





Chapter 3
Spherical accretion: Bondi, Michel,
and rotating black holes

The study presented in this chapter explores the problem of steady-state, spherically
symmetric gas accretion onto a Kerr black hole, considering all the possible regimes,
from the non-relativistic case to the ultra-relativistic one.

In the first part of the article, we perform a detailed, quantitative comparison
between the Bondi and Michel analytic solutions, exploring the models for differ-
ent values of the adiabatic index (γ) and the dimensionless asymptotic temperature
(Θ∞). We derived appropriate analytic expressions for specific limits in the param-
eters, analysing when one solution reduces to the other. We also extend the Michel
solution by considering a fully relativistic equation of state for an ideal monoatomic
gas (Synge, 1957).

Also, using the aztekas code, we extend the spherical accretion problem to the
case of a rotating Kerr black hole, by means of 2.5D general relativistic hydrodynamic
numerical simulations. We analyse the effect of the black hole spin on the mass
accretion rate, as well as on the overall flow morphology. We run over 300 simulations
for different values of the temperature, the spin parameter and two different equations
of state.

The study presented in this chapter was published in MNRAS in 2021. The details
of the paper are:
Aguayo-Ortiz A., Tejeda E., Sarbach O., López-Cámara D., 2021, MNRAS, 504,
5039. doi:10.1093/mnras/stab1127
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ABSTRACT
In this work, we revisit the steady-state, spherically symmetric gas accretion problem from the non-relativistic regime to the
ultrarelativistic one. We first perform a detailed comparison between the Bondi and Michel models, and show how the mass
accretion rate in the Michel solution approaches a constant value as the fluid temperature increases, whereas the corresponding
Bondi value continually decreases, the difference between these two predicted values becoming arbitrarily large at ultrarelativistic
temperatures. Additionally, we extend the Michel solution to the case of a fluid with an equation of state corresponding to a
monoatomic, relativistic gas. Finally, using general relativistic hydrodynamic simulations, we study spherical accretion on to
a rotating black hole, exploring the influence of the black hole spin on the mass accretion rate, the flow morphology and
characteristics, and the sonic surface. The effect of the black hole spin becomes more significant as the gas temperature increases
and as the adiabatic index γ stiffens. For an ideal gas in the ultrarelativistic limit (γ = 4/3), we find a reduction of 10 per cent
in the mass accretion rate for a maximally rotating black hole compared to a non-rotating one, while this reduction is of up to
50 per cent for a stiff fluid (γ = 2).

Key words: accretion, accretion discs – gravitation – hydrodynamics – methods: numerical.

1 IN T RO D U C T I O N

Gas accretion on to a compact gravitating object is one of the most
studied problems in astrophysics. In one of the pioneering works
of accretion theory, Bondi (1952) found an analytic solution for the
spherically symmetric, steady-state accretion flow of an infinite gas
cloud on to a Newtonian point-mass potential. This model has been
widely extended and applied in many different fields in astrophysics,
from the study of star formation to cosmology. See Armitage (2020)
for a recent historical review of this subject.

One of the first studies of spherical accretion on to black holes
was the extension of the Bondi solution into the general relativistic
regime performed by Michel (1972). In this study, Michel found an
analytic solution describing the spherical accretion of a polytropic
gas on to a Schwarzschild black hole. A formal mathematical analysis
of the Michel solution for a generic equation of state (EoS) can be
found in Chaverra, Mach & Sarbach (2016). Following Michel’s
procedure, other authors have found semi-analytic generalizations
for different types of spherically symmetric (non-rotating) black
hole solutions (e.g. Chaverra & Sarbach 2015; Miller & Baumgarte
2017; Abbas & Ditta 2021; Yang et al. 2021). In a recent work,
Richards, Baumgarte & Shapiro (2021a) explore the non-relativistic
and ultrarelativistic limits of Michel’s solution, mainly focusing on
a gas with a stiff EoS (values of the adiabatic index larger than 5/3).

� E-mail: aaguayo@astro.unam.mx

In past decades, the spherical accretion Bondi model has been
revisited and extended, by including different additional physical
ingredients. For example, some authors have taken into account the
fluid’s self-gravity by solving the coupled Einstein–Euler system in
spherical symmetry, either with an analytical treatment (Malec 1999)
or by performing numerical simulations (Lora-Clavijo, Guzmán &
Cruz-Osorio 2013). Some works have considered the extension of a
Bondi-like solution by introducing a low angular momentum fluid
(Abramowicz & Zurek 1981; Proga & Begelman 2003; Mach, Piróg
& Font 2018), finding a transition between a quasi-spherical accretion
flow and the formation of a thick torus in the equatorial plane.
Similarly, there have been works studying spherical accretion in the
presence of magnetic fields, either assuming a central dipole (Toropin
et al. 1999), or by including a 3D, large-scale weak magnetic
field (e.g. Igumenshchev & Narayan 2002; Ressler et al. 2021).
Together with magnetic fields, some works have included the effects
of a radiation field, addressing the problem either with a simplified
approach (Begelman 1978, where the author considered a radiation-
dominated fluid) or with a self-consistent, radiative transfer treatment
using numerical simulations (McKinney et al. 2014; Weih, Olivares
& Rezzolla 2020). In this regard, there have also been studies that
extract the shadow of the spherically accreted, optically thin cloud
around a non-rotating black hole (Narayan, Johnson & Gammie
2019). Other studies have considered the effects of thermal conduc-
tion on magnetized spherical accretion flows (Sharma, Quataert &
Stone 2008), vorticity (Krumholz, McKee & Klein 2005), or studied
the spherical accretion of a relativistic collisionless kinetic (i.e. a
Vlasov) gas (Rioseco & Sarbach 2017a).

C© 2021 The Author(s)
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Recent works have also studied deviations away from spheri-
cal symmetry by introducing large-scale, small amplitude density
anisotropies, finding that even a slight equator-to-poles density
contrast can drastically modify Bondi’s solution, giving rise to
an inflow–outflow configuration consisting of equatorial accretion
and a bipolar outflow. The resulting steady-state configuration,
dubbed choked accretion, was studied in Aguayo-Ortiz, Tejeda &
Hernandez (2019) at the Newtonian level and, within a general
relativistic framework, in Tejeda, Aguayo-Ortiz & Hernandez (2020)
and Aguayo-Ortiz, Sarbach & Tejeda (2021) for Schwarzschild and
Kerr black holes, respectively. In these series of works, it was found
that the total mass flux that reaches the central accretor is of the order
of magnitude of the corresponding Bondi mass accretion rate, while
all the excess flux is redirected by the density gradient as outflow.
Under the conditions explored so far, the Bondi mass accretion rate
acts as a threshold value delimiting whether a given incoming flow
becomes choked and prone to the ejection of a bipolar outflow.

Among the astrophysical applications of the spherical accretion
model, we mention the study of gas accretion in an expanding
Universe (Colpi, Shapiro & Wasserman 1996), the formation and
growth of primordial black holes in the early stages of the Uni-
verse (Zel’dovich & Novikov 1967; Carr 1981; Karkowski & Malec
2013; Lora-Clavijo et al. 2013), and the accretion on to a mini
black hole from the interior of a neutron star (Kouvaris & Tinyakov
2014; Génolini, Serpico & Tinyakov 2020; Richards, Baumgarte &
Shapiro 2021b). On the other hand, the Bondi solution allows to
estimate, by providing useful characteristic scale tools, the accretion
and growth rate of the central supermassive black hole at the centre of
galaxies (Maraschi, Reina & Treves 1974; Moscibrodzka 2006; Ciotti
& Pellegrini 2017; Moffat 2020) and active galactic nuclei (Krolik &
London 1983; Russell et al. 2013, 2015), where observations provide
information only from regions far away from the central accretor.
Similarly, the Bondi prescription is often used in cosmological
simulations as a sub-grid model to estimate the accretion rate of
gas on to supermassive black holes at galactic centres (Davé et al.
2019).

On the other hand, the analytic study of accretion flows on to
rotating black holes has proven more challenging. Notably, Petrich,
Shapiro & Teukolsky (1988) found a full analytic solution that
describes the accretion of an irrotational, ultrarelativistic stiff fluid
on to a rotating Kerr black hole. However, a main caveat of this
solution is that it requires a rather specific, unphysical EoS, in which
the sound speed equals the speed of light.1 Assuming a more general
EoS, Beskin & Pidoprygora (1995) studied the problem of spherical
accretion on to a slowly rotating black hole by means of a perturbative
analysis, and Pariev (1996) extended this work to the case of a
rapidly rotating black hole. Both Beskin & Pidoprygora (1995) and
Pariev (1996) considered only small deviations away from a Bondi
background solution, in other words, these studies where limited
to the case of non-relativistic values for the gas temperature at
infinity. Even though this assumption might be reasonable in many
astrophysical settings, the determination of the effect of the black
hole spin on the accretion flow given an arbitrary gas temperature
remains an open problem.

The applications of Bondi’s model in most of the aforementioned
works consider the gas accretion in the non-relativistic regime, not to
mention that they neglect the rotation of the black hole. The reason
for this is that the Bondi scale factors are estimated and measured

1An ultrarelativistic stiff fluid corresponds to the relativistic generalization of
an incompressible fluid in Newtonian hydrodynamics (Tejeda 2018).

at distances far away from the central black hole, where it is safe
to neglect relativistic effects. Nevertheless, in order to analyse the
exact differences between the Bondi solution and the relativistic
extension performed by Michel, as well as to assess the effect of the
black hole spin, it is important to perform a quantitative study of
the consequences of having relativistic gas temperatures and strong
gravity fields in the vicinity of a rotating black hole.

In this work, we study the spherically symmetric gas accretion
problem from the non-relativistic regime to the ultrarelativistic one,
considering both rotating and non-rotating black holes.2 We first
perform a detailed comparison between the Bondi (1952) and Michel
(1972) models by studying the behaviour of the relativistic solution
across a wide range of values of the gas temperature. In particular,
we discuss in detail the isothermal, the non-relativistic, and the ul-
trarelativistic limits of the Michel solution. We then extend Michel’s
solution to the case of a monoatomic gas obeying a relativistic
EoS (Jüttner 1911; Taub 1948; Synge 1957). We also revisit Petrich
et al. (1988)’s analytic solution and apply it to the particular case of a
spherically symmetric accretion flow on to a Kerr black hole. Finally,
by means of 2D general relativistic hydrodynamic simulations, we
perform a quantitative study of the effect that the black hole spin
has on the spherical accretion problem, focusing in particular on
its effects on the mass accretion rate and on the flow morphology
for several EoS. As part of this study, we show how, under the
appropriate limits, the obtained numerical results coincide with the
analytic solutions of Michel (1972) and Petrich et al. (1988).

The paper is organized as follows. In Section 2, we discuss the
analytic solutions of Bondi (1952), Michel (1972), and Petrich et al.
(1988). In Section 3, we present our numerical study of the spherical
accretion of a perfect fluid on to a rotating black hole. Finally,
in Section 4 we present a summary of the main results found in
this article and give our conclusions. Technical details regarding
the isothermal and non-relativistic limits of the Michel solution, the
correct determination of the sonic surface for flows on rotating black
holes, and orthonormal frames are discussed in appendices.

2 A NA LY TI C SOLUTI ONS

In this section, we review three analytic solutions describing a steady-
state, spherical accretion flow on to a central massive object. We
start by revisiting the Bondi (1952) solution and perform a detailed
comparison with the relativistic extension found by Michel (1972).
Then, we extend the latter solution by considering the more realistic
EoS for a monoatomic relativistic gas introduced by Jüttner (1911).
Finally, in order to give a description of accretion on to a rotating
black hole, we also discuss the ultrarelativistic, stiff solution found
by Petrich et al. (1988) in the case of spherical symmetry.

2.1 Bondi solution

In the Bondi (1952) analytic solution, one considers an infinite,
spherically symmetric gas cloud accreting on to a Newtonian central
object of mass M. At large distances, the gas cloud is assumed to be
at rest and characterized by a homogeneous density ρ∞ and pressure
P∞. Note that, using an ideal gas EoS, we can alternatively describe

2By ‘spherically symmetric’ accretion problem on to a rotating black hole,
we refer to the gas state being spherically symmetric asymptotically far away
from the central black hole. Clearly, a rotating black hole does not admit a
spherically symmetric solution at finite radii.
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the state of the fluid in terms of the dimensionless gas temperature
� defined as

� = kB T

m̄ c2
= P

ρ c2
, (1)

where c is the speed of light, kB Boltzmann’s constant, and m̄

the average rest mass of the gas particles. As reference values,
� � T /(1013 K) for atomic hydrogen gas and � � T /(1010 K) for
an electron–positron plasma.

Under the assumptions of steady-state and spherical symmetry,
the equations governing the Bondi accretion flow are the continuity
equation and the radial Euler equation, i.e.

1

r2

d

dr

(
r2ρ v

) = 0, (2a)

v
dv

dr
+ 1

ρ

dP

dr
+ GM

r2
= 0, (2b)

where v = |dr/dt| is the radial velocity of the fluid.
Considering that, in addition to the ideal gas EoS, the fluid obeys

a polytropic relation P = Kργ , with K = const. and γ the adiabatic
index (assumed to lie in the range 1 ≤ γ ≤ 2), equations (2a) and
(2b) can be integrated:

4π r2ρ v = Ṁ = const., (3a)

v2

2
+ h− GM

r
= h∞ = const., (3b)

where

h=
(

γ

γ − 1

)
P

ρ
= γ � c2

γ − 1
= C2

γ − 1
(4)

is the specific enthalpy and C := √
∂P/∂ρ the adiabatic speed of

sound. Note that equation (4) is only valid for γ > 1. In the isothermal
case, where γ = 1 and � ≡ �∞ = C2

∞/c2, equation (4) needs to be
replaced by

h− h∞ = C2
∞ ln

(
ρ

ρ∞

)
. (5)

In addition to the steady-state and spherical symmetry conditions,
Bondi also assumed that the flow is transonic, i.e. that there exists a
radius rs at which the fluid’s radial velocity equals the local speed
of sound. From equations (2a) and (2b), it is simple to calculate that
the fluid at the sonic radius, rs, satisfies

rs = GM

2v2
s

, (6a)

vs = Cs = C∞

(
2

5 − 3γ

)1/2

. (6b)

The transonic solution found by Bondi is unique and maximises
the accretion rate on to the central object, which, in turn, is given by

ṀB = 4π λB(GM)2 ρ∞
C3∞

, (7)

where λB is a numerical factor of order one that depends only on γ

and is given by

λB = 1

4

(
2

5 − 3γ

) 5−3γ
2(γ−1)

. (8)

The accretion rate given in equation (7) is only valid for γ ≤ 5/3. In
order to discuss the γ > 5/3 case, one must necessarily account for
general relativistic effects as we shall see in Section 2.2. Particular

Figure 1. Mach number as a function of radius for the case of a γ = 4/3
polytrope and for three asymptotic temperatures. Note that the non-relativistic
limit (�∞ � 1) corresponds to the Bondi solution. The vertical dashed lines
show the location of the black hole’s event horizon for �∞ = 0.1 and �∞ 	
1. In all cases, the accretion flow has transitioned from subsonic to supersonic
before crossing the event horizon. The horizontal axis is scaled in units of the
Bondi radius rB = GM/C2∞.

values for λB in equation (8) are

λB(5/3) = 1/4,

λB(4/3) = 1/
√

2 � 0.71,

λB(1) = e3/2/4 � 1.12.

An interesting characteristic of the Bondi solution is that it can be
written in a scale-free form with respect to the mass of the central
object M and the thermodynamic state of the fluid (ρ∞, P∞) by
adopting rB = GM/C2

∞, C∞, and ρ∞ as units of length, velocity,
and density, respectively. In other words, a global solution of the
Bondi accretion problem is fully characterized once a given value
for the adiabatic index γ is provided. Once the value for the mass
accretion rate of Bondi’s solution for a given γ is known, one can go
back to equations (3a)–(4) and solve numerically the corresponding
algebraic system of non-linear equations to obtain ρ, P, and v as
a function of radius. See Fig. 1, for example, where we show the
resulting Mach number (M = v/C) as a function of radius, for the
solution with γ = 4/3 (the red line).

2.2 Michel solution

As mentioned in the introduction, a general relativistic extension of
the Bondi solution was presented by Michel (1972) who considered
a Schwarzschild black hole as central accretor. In what follows,
we review Michel’s solution and discuss its main differences with
respect to the Bondi model. It is important to remark that the Michel
solution assumes an ideal gas EoS that follows a polytropic relation
P = K ργ , where, as in the previous section, ρ is the rest-mass
density. Note, however, that this assumption is limited in general.
For example, for a monoatomic ideal gas, it is only valid at non-
relativistic temperatures (for which γ = 5/3), or at ultrarelativistic
temperatures (for which γ = 4/3). In order to study the whole
temperature domain in a consistent way, the polytropic restriction
must be dropped and a relativistic EoS (as derived, for example,
from relativistic kinetic theory, Synge 1957) must be adopted. We
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5042 A. Aguayo-Ortiz et al.

discuss the extension of the Michel solution to such a relativistic EoS
in Section 2.3.

As in the Newtonian case, the governing equations are the
conservation of mass and energy, i.e. the continuity equation and
the requirement for the energy–momentum tensor to be divergence-
free:

(ρ Uμ);μ = 0, (9a)

(T μν);μ = 0, (9b)

where the semicolon stands for covariant derivative, Uμ is the fluid
four-velocity, T μν = ρ h UμUν + p gμν is the stress–energy tensor
of a perfect fluid, h = 1 + h is the specific relativistic enthalpy,
and gμν denote the components of the inverse of the Schwarzschild
metric:

ds2 = −
(

1 − 2M

r

)
dt2 + dr2

1 − 2M
r

+ r2
(
dθ2 + sin2 θdφ2

)
. (10)

In order to ease the notation, we adopt geometrized units in which
G = c = 1.

It is useful to recall at this point that, in the relativistic regime, the
fluid’s sound speed is defined as

C2 := ρ

h

∂h

∂ρ
= γ

h

P

ρ
= γ

h
�, (11)

where, for the second equal sign, we have substituted the polytropic
relation for a perfect fluid. Also, note that equation (11) can be recast
to express h in terms of C or � as

h = 1

1 − C2/(γ − 1)
= 1 + γ

γ − 1
�. (12)

Under the conditions of steady-state and spherical symmetry,
equations (9a) and (9b) reduce to

d

dr

(
r2ρ Ur

) = 0, (13a)

d

dr

(
r2ρ h Ut Ur

) = 0, (13b)

which, upon integration, can be rewritten as

4π r2ρ u = Ṁ = const., (14a)

h

(
1 − 2M

r
+ u2

)1/2

= h∞ = const., (14b)

where u = |Ur|.
As in the Newtonian case, there exists a unique, transonic solution

where the fluid is at rest asymptotically far away from the central ob-
ject and that is regular across the black hole’s event horizon (Chaverra
& Sarbach 2015; Chaverra et al. 2016). In order to find the defining
conditions that are satisfied at the sonic point rs, it is useful to combine
equations (13a) and (13b) into the following differential equation:
[

1 − C2

u2

(
1 − 2M

r
+ u2

)]
u

du

dr

= −M

r2
+ 2

C2

r

(
1 − 2M

r
+ u2

)
. (15)

By requiring that both sides of this equation vanish simultaneously
at rs, the following conditions arise:

rs = 1

2

M

u2
s

, (16a)

u2
s = C2

s

1 + 3 C2
s

. (16b)

If we introduce V as the norm of the fluid’s three-velocity as
measured by local static observers, given in this case by

V =
(

1 − 2M

r

)−1 ∣∣∣∣
Ur

Ut

∣∣∣∣ , (17)

from equations (16a) and (16b) it follows that Vs = Cs , which justifies
calling rs the sonic radius.

On the other hand, a relationship between the fluid state at infinity
and at the sonic point can be obtained by substituting equations (16a)
and (16b) into equation (14b). Doing this results in the following
cubic equation for hs (see Tejeda et al. 2020, Appendix A)

h3
s − (3γ − 2)h2

∞hs + 3(γ − 1)h2
∞ = 0, (18)

as well as the corresponding equation for the sound speed:

C2
s = 1

3

(
h2

s

h2∞
− 1

)
. (19)

The polynomial in equation (18) has three real roots but only one
satisfies hs > 1 and thus has physical meaning.3 This root is given
by

hs = 2 h∞

√
γ − 2

3
sin

(
� + π

6

)
, (20)

where

� = 1

3
arccos

[
3(γ − 1)

2 h∞

(
γ − 2

3

)−3/2
]

. (21)

Substituting these results back into equation (14a), the mass
accretion rate can be expressed in terms of the asymptotic state
of the fluid as

ṀM = 4π λMM2 ρ∞
C3∞

, (22)

where now the numerical factor λM depends not only on γ but also
on the asymptotic state of the fluid and is given by

λM = 1

4

(
hs

h∞

) 3γ−2
γ−1

( Cs

C∞

) 5−3γ
γ−1

. (23)

In Fig. 2, we show the dependence of λM on �∞ for several
different values of the adiabatic index γ . From this figure, it is clear
that for γ ≤ 5/3 in the non-relativistic limit (�∞ � 1) λM → λB, as
expected. We stress that the mass accretion rate given in equation (22)
is only a measure for the flux of rest mass (particle number times
the average rest-mass per particle) on to the central black hole. If
interested in computing the actual growth rate of the black hole’s
mass, the total energy advected by each fluid particle should be
taken into account by computing the energy accretion rate (for further
details see Aguayo-Ortiz et al. 2021). Since for the present problem
the fluid is assumed to be at rest at infinity, one only needs to multiply
ṀM in equation (22) by h∞ to obtain this rate, i.e.

ĖM = 4π λMM2ρ∞

(
1

γ�∞
+ 1

γ − 1

)5/2

γ�∞. (24)

In contrast to the Bondi solution, where the asymptotic speed of
sound C∞ is the only characteristic velocity, the Michel solution

3As long as γ > 1 and h∞ > 1 the cubic polynomial on the left-hand side of
equation (18) is positive for hs = 0 and negative for hs = 1, which implies
that it has three real roots lying in the intervals (− ∞, 0), (0,1) and (1, ∞),
respectively. See also Chaverra et al. (2016) and Richards et al. (2021a) for
alternative ways to characterize the sonic radius using C2

s .
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Figure 2. Numerical factor λM in the definition of the mass accretion rate
of the Michel solution (equation 23) as a function of the dimensionless
temperature �∞ and for different values of γ as indicated by the labels on
top of each curve. In the non-relativistic limit �∞ � 1 and for values of
γ ≤ 5/3, the curves asymptotically approach the values corresponding to λB

(the dashed horizontal lines) of the Bondi solution in equation (7). In the
ultrarelativistic limit �∞ 	 1, the curves asymptotically approach the value
given in equation (28).

naturally features the speed of light as an additional characteristic
velocity. Consequently, the Michel solution can only be rendered
scale invariant with respect to M and ρ∞. Therefore, in addition to
the adiabatic index γ , to completely describe a given solution one
must also specify C∞ or, alternatively, �∞. In what follows, we shall
use �∞ as the dynamically relevant parameter describing the state
of the fluid asymptotically far away from the central object.

Examples of the resulting Mach number M for a γ = 4/3 poly-
trope and various asymptotic temperatures: �∞ = 10−4, 0.1, 104

are also shown in Fig. 1. Note that, in the relativistic case we have
defined

M = V
√

1 − C2

C
√

1 − V 2
. (25)

As we can see from this figure, in all cases the accretion flow tran-
sitions from being subsonic to supersonic before reaching the event
horizon (indicated by the dashed lines). Also, the non-relativistic
limit (�∞ � 1) coincides with the Bondi solution.

In Figs 3 and 4, we show, respectively, the sonic radius rs and
the mass accretion rate ṀM as functions of �∞ and for several
representative values of γ . By examining these figures, and analysing
in detail the result obtained in equation (22), three interesting limits
can be identified (isothermal, non-relativistic, and ultrarelativistic).
In what follows, we list the main conclusions that can be drawn in
each case, leaving detailed calculations to Appendix A.

2.2.1 Isothermal limit

The isothermal limit corresponds to the condition when γ → 1. From
Fig. 3 we note that, within this limit and for all temperatures �∞,
the sonic radius recedes without limit from the event horizon. As we
prove in Appendix A, the Michel solution (with a suitable rescaling)
converges to the Newtonian Bondi solution with an EoS as given
by equation (5). Thus, the isothermal case can be entirely described
within the context of Newtonian physics, even for large temperatures
that would ordinarily be associated with an ultrarelativistic regime.

Figure 3. Distance between the sonic radius rs and the black hole’s event
horizon radius r+ = 2M in the Michel solution as a function of the
dimensionless temperature �∞ and for different values of γ as indicated
by the labels on top of each curve.

Figure 4. Mass accretion rate of the Michel solution ṀM as a function of
�∞ and for several representative values of γ . The dashed lines represent
the corresponding Bondi mass accretion rate ṀB in cases with γ ≤ 5/3. The
dotted lines show the corresponding energy accretion rate (see equation 24).
Note that once �∞ � 10−2, the differences between Bondi’s and Michel’s
solutions become of order one and that this difference actually diverges as
�∞ → ∞.

2.2.2 Non-relativistic limit

This limit is described by the condition �∞ � 1 which implies
h∞ → 1. As expected, and as is already apparent from Figs 1 and
2, in this limit the Michel solution converges to the Bondi one and
expressions like the mass accretion rate (equation 22) reduce to their
non-relativistic counterparts (equation 7). Nevertheless, this is only
true for γ ≤ 5/3. When γ > 5/3 a qualitative change takes place in
Michel’s solution. From Fig. 3 it is clear that for γ < 5/3 the value
of rs grows to infinity as �−1

∞ (as in the Bondi solution), while it
converges to a finite distance from the event horizon for γ > 5/3.
This is indicative that the cases with γ > 5/3 cannot be described with
Newtonian physics, even in the low temperature limit. As shown in
Appendix A, when �∞ � 1 and γ > 5/3, one finds that rs converges
to a finite value and hs > 1, while the resulting mass accretion rate
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converges to

ṀM → πh
3γ−2
γ−1

s C
5−3γ
γ−1

s M2ρ∞ C− 2
γ−1

∞ . (26)

2.2.3 Ultrarelativistic limit

Finally, we discuss the case where �∞ 	 1. From Fig. 3, it is clear
that rs converges to a finite value strictly larger than the event horizon
radius for all values of γ , with the exception of a stiff EoS γ = 2,
in which case rs → r+ as �∞ → ∞. Moreover, within this limit
equation (20) reduces to

hs

h∞
→

√
3γ − 2, (27)

from which one also obtains Cs/C∞ → 1 and, hence,

λM → 1

4
(3γ − 2)

3γ−2
2(γ−1) . (28)

This limit value grows monotonically from e3/2 � 1.12 to 4 as γ

increases from 1 to 2 (see Fig. 2). From this result, and as is also
clear from Fig. 4, one sees that the mass accretion rate becomes
independent of �∞, rapidly approaching the constant value

ṀM → πM2ρ∞(3γ − 2)
3γ−2

2(γ−1) (γ − 1)−3/2. (29)

In comparison, the Bondi mass accretion rate steadily decreases as
�−3/2

∞ as the temperature increases. Therefore, the difference between
ṀB and ṀM becomes arbitrarily large when �∞ 	 1. Also note
that the energy accretion rate is not monotonic; it decreases for
small temperatures but increases for large ones, eventually growing
linearly in �∞ (see equation 24 and Fig. 4). A similar qualitative
behaviour has been observed for the accretion of a Vlasov gas
(Rioseco & Sarbach 2017b). This is a remarkable difference between
the Bondi and Michel solutions that, to the best of our knowledge,
had not been discussed in the literature before.4 We can track the
reason behind this behaviour by examining equations (7) and (22).
Even though the factor C−3

∞ appears in both expressions, this factor
behaves drastically differently when �∞ � 1. For a perfect fluid in
Newtonian hydrodynamics, one simply has C2 = γ � and, thus, as
the temperature increases so does the speed of sound without limit.
Consequently, and as can be seen in Fig. 4, the Bondi mass accretion
rate decreases to small values as the asymptotic gas temperature
increases. On the other hand, in relativistic hydrodynamics one has

C2 = γ (γ − 1)�

γ − 1 + γ �
,

that, in the limit �∞ 	 1, implies that the speed of sound attains a
maximum value given by C∞ → √

γ − 1. Therefore, when �∞ 	 1,
ṀM becomes independent of �∞.

2.3 Michel solution with relativistic EoS

In the previous subsection, we revisited spherical accretion of a fluid
that follows an ideal gas EoS and that is restricted to obey a polytropic
relation. As mentioned before, assuming a monoatomic gas, this
restriction is only valid in the non-relativistic limit (�∞ � 1) with

4In the comparison presented in Malec (1999) it is stated that, due to
relativistic effects, the Michel mass accretion is enhanced by, at most, a
factor of 10 compared to the Bondi value, whereas in our case this factor is
unbounded. Note, however, that the adopted EoS in that work is P = Kεγ ,
with ε the energy density.

γ = 5/3 or in the ultrarelativistic one (�∞ 	 1) with γ = 4/3.
Nevertheless, as it was shown by Taub (1948), in the relativistic case
(�∞ ∼ 1) the polytropic restriction is not physical and has to be
dropped.

In this subsection, we extend the Michel solution to the case of a
gas obeying an appropriate EoS for the relativistic regime. As derived
from relativistic kinetic theory, the EoS of an ideal, monoatomic gas
can be written as (Jüttner 1911; Synge 1957; Falle & Komissarov
1996)

h = K3(1/�)

K2(1/�)
, (30)

where, as before � = P/ρ, and Kn is the nth-order modified Bessel
function of the second kind.5

By additionally imposing the adiabatic condition (i.e. isentropic
flow), one obtains the following relation between ρ and � (see e.g.
Appendix B of Chavez Nambo & Sarbach 2020)

ρ

ρ∞
= f (�)

f (�∞)
, (31a)

f (�) = � K2(1/�) exp

[
1

�

K1(1/�)

K2(1/�)

]
. (31b)

Meanwhile, the speed of sound in this case is given by

C2 = γ̄ �

h
, (32)

where γ̄ is the effective adiabatic index, defined as

γ̄ := ρ

P

∂P

∂ρ
= h

�
C2. (33)

In contrast to the polytropic gas treatment discussed before, γ̄ is
not a constant but rather a function of the temperature that can be
calculated explicitly as

γ̄ = h′

h′ + �2
, (34)

where the prime refers to derivatives with respect to the argument
of the modified Bessel functions, i.e. h

′ = d[K3(x)/K2(x)]/dx. With
this definition of γ̄ it follows that, as expected, for non-relativistic
temperatures, γ̄ → 5/3 while, in the ultrarelativistic limit, γ̄ → 4/3.

In order to derive the appropriate governing equations in this case,
we first notice that equation (18) should be replaced with

h2
s = h2

∞(1 + 3 C2
s ) = h2

∞

[
1 + 3�s

hs

(
h′

s

h′
s + �2

s

)]
, (35)

which, in contrast to equation (18), does not allow for an analytic
solution. Nevertheless, it can be easily solved numerically using any
standard root finding algorithm.

The corresponding mass accretion rate is obtained by evaluating
equation (14a) at the sonic point, i.e.

Ṁ = 4π r2
s ρs us, (36)

and, by applying the conditions given by equations (16a) and (16b)
that, together with equation (31a), result in

Ṁ = πM2ρ∞
(1 + 3 C2

s )

C3
s

3/2
f (�s)

f (�∞)
. (37)

In practice, to calculate the resulting mass accretion rate for a given
asymptotic state (ρ∞, �∞), we numerically solve equation (35) to

5We adopt the definition of the modified Bessel function as presented in
https://dlmf.nist.gov/10.25.

MNRAS 504, 5039–5053 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/504/4/5039/6246412 by ehelpdeskebsco-unam
@

yahoo.com
 user on 02 M

ay 2022



Spherical accretion onto rotating black holes 5045

Figure 5. Mass accretion rate in Michel’s model for a gas described by
a relativistic EoS (Synge 1957). The resulting rate converges to a γ = 5/3
polytrope when �∞ � 1 while it behaves as a γ = 4/3 polytrope for �∞ 	 1.
Also shown is the result of using the approximation to the relativistic EoS
by Ryu et al. (2006).

obtain �s, from which we can compute hs and Cs via equations (30)
and (32), respectively, and then substitute these values into equa-
tion (37).

In Fig. 5, we show the resulting mass accretion rate as a function
of �∞ for the relativistic EoS and compare it with the corresponding
values for γ = 5/3, 4/3 polytropes. From this figure, we can see
that the result obtained with the relativistic EoS provides a smooth
transition between the polytropic approximations as the temperature
transitions from non-relativistic values to the ultrarelativistic regime.
We also show the approximation to the relativistic EoS proposed
by Ryu, Chattopadhyay & Choi (2006), where

h = 2
6�2 + 4� + 1

3� + 2
, (38)

and which provides an accurate estimate to the mass accretion rate
to within 2 per cent. This comparison is relevant for this work, given
that, for some of the numerical simulations presented in Section 3,
we have adopted this proxy for the implementation of the relativistic
EoS.

2.4 Ultrarelativistic, stiff fluid in Kerr space–time

The analytic solutions revisited so far consider a non-rotating black
hole as the central accretor. The inclusion of the black hole’s spin
breaks the spherical symmetry of the problem, resulting in a new
scenario for which it is not clear whether it admits a closed, analytic
solution in general.6 As mentioned in the Introduction, a notable
exception is the solution derived by Petrich et al. (1988; PST
henceforth), which we shall now briefly review. In that work, the
authors found a full analytic solution for accretion on to a Kerr
black hole that is, however, restricted to the special case of an
ultrarelativistic stiff fluid. Within this approximation, the fluid rest-
mass energy is neglected compared to its internal energy, while the

6Both Shapiro (1974) and Zanotti et al. (2005) have proposed a Michel-like
solution for spherical accretion on to a rotating Kerr black hole that is built on
the assumption that the polar angular velocity vanishes everywhere. However,
as we show in Section 3, this condition is not satisfied for a general perfect
fluid.

stiff condition means that a γ = 2 polytrope is being considered.
Under these conditions, the thermodynamic variables of the fluid are
simply related as

P = Kρ2, h = 2 K ρ. (39)

Moreover, the space–time metric is considered as fixed and corre-
sponding to a Kerr black hole of mass M and spin parameter a, in
other words, the accreting gas is assumed to be a test fluid with a
negligible self-gravity contribution. With the further assumptions of
steady-state and irrotational flow, the fluid is described as the gradient
of a scalar potential � such that

hUμ = �,μ, (40)

and, by imposing the normalization condition of the four-velocity,

h = √−�,μ�,μ. (41)

By substituting equation (40) into equation (9a), it follows that �

satisfies the linear wave equation

� ;μ
,μ = 1√−g

(√−g gμν�,μ

)
,ν

= 0, (42)

where gμν and
√−g are, respectively, the inverse and the determinant

of the Kerr metric. In what follows, we shall adopt Kerr-type
coordinates (t, r, θ, φ) in which the line element assumes the form

ds2 = −
(

1 − 2Mr

�2

)
dt2 +

(
1 + 2Mr

�2

)
dr2

+ 4Mr

�2
dt dr − 4 aMr

�2
sin2 θ dt dφ

− 2 a

(
1 + 2Mr

�2

)
sin2 θ dr dφ

+ �2dθ2 + � sin2 θ

�2
dφ2, (43)

with the functions7

�2 = r2 + a2 cos2 θ, (44a)

� = (
r2 + a2

)2 − a2� sin2 θ, (44b)

� = r2 − 2Mr + a2. (44c)

By requiring that the fluid is uniform and at rest asymptotically far
away from the central object, the solution is given by Aguayo-Ortiz
et al. (2021):

� = h∞

[
−t + 2M ln

(
r − r−
r+ − r−

)]
, (45)

where r± = M ± √
M2 − a2 are the roots of the equation �= 0, with

r+ corresponding to the event horizon and r− to the Cauchy horizon
of the Kerr black hole. It is clear that � is regular everywhere outside
the Cauchy horizon r > r−.

Substituting the velocity potential in equation (45) into equa-
tion (40), leads to

h

h∞
Ut = 1 + 2Mr

�2

(
r + r+
r − r−

)
, (46a)

7We use the same notation as Aguayo-Ortiz et al. (2021) and warn the reader
that the symbol � refers to the metric coefficient defined in equation (44a) that
should be distinguished from the similar-looking symbol ρ which denotes the
rest-mass density.
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h

h∞
Ur = −2Mr+

�2
, (46b)

h

h∞
Uθ = 0, (46c)

h

h∞
Uϕ = 2 aMr

�2(r − r−)
, (46d)

while, by combining equations (39) and (41), one obtains

ρ

ρ∞
= h

h∞
=

√
1 + 2M

�2

r(r + r+) + 2Mr+
r − r−

. (47)

Note that, although the fluid’s four-velocity has a non-vanishing
azimuthal component when a 
= 0, its angular momentum is zero
since Uμξ

μ
(φ) = Uφ = 0, where ξ

μ
(φ) = δ

μ
3 is the Killing vector field

associated with the axisymmetry of Kerr space–time. Also note that,
both the four-velocity and the fluid density, are well-defined for all
r > r− (including at the event horizon) but diverge as one approaches
the Cauchy (inner) horizon r → r−.

In the non-rotating case equation (47) reduces to

ρ = ρ∞

√
1 + 2M

r
+

(
2M

r

)2

+
(

2M

r

)3

, (48)

which agrees with the findings in Section 4.2 of Chaverra & Sarbach
(2015), with a compression rate of ρ(r+)/ρ∞ = 2 at the horizon. In
the rotating case, this compression rate can be considerably higher,
with ρ(r+)/ρ∞ → ∞ in the maximally rotating limit |a| → M.

The resulting mass accretion rate for the potential flow described
by equation (45) is given by

ṀPST = 8πMr+ρ∞ = 4π
(
r2
+ + a2

)
ρ∞. (49)

Interestingly, from equation (49) we see that, in this special case
of an ultrarelativistic stiff fluid, the resulting mass accretion rate
is proportional to the event horizon area A = 4π (r2

+ + a2) (Carroll
2003), and, consequently, for fixed M and ρ∞, ṀPST decreases as |a|
increases, having the finite limit ṀPST = 8πM2ρ∞ when |a| → M.
We also note that, for a non-rotating black hole, ṀPST = 16πM2ρ∞,
which coincides exactly with the result given in equation (29) when
γ = 2.

One inconvenience of assuming an ultrarelativistic stiff EoS, is that
the speed of sound equals the speed of light, leading to a model with
a limited applicability in astrophysics. Nevertheless, it represents a
fully hydrodynamic exact solution that is very useful as a benchmark
test for the validation of general relativistic hydrodynamic numerical
codes in a fixed Kerr space–time. In the next section we relax this
restriction on the EoS.

3 PER F EC T F LUID IN K ERR SPACE–TIME

In the previous sections we reviewed, along with the Bondi and
Michel models, the analytic PST solution. This is the only exact
solution that considers a rotating black hole as central accretor. This
solution corresponds to an upper limit in both the temperature of the
gas (�∞ 	 1) and in the adiabatic index (γ = 2). Unfortunately,
for a more general EoS, or even just a different value of γ , it is
apparently not possible to find a closed analytic solution. Therefore,
we explore the spherical accretion of a perfect fluid with a more
general EoS on to a rotating Kerr black hole by means of general

relativistic hydrodynamic numerical simulations.8 Specifically, we
shall focus on the dependence of the resulting accretion flow on
the spin parameter a, the asymptotic gas temperature �∞, and the
fluid EoS. We also compare the results with the analytic solutions
presented in Section 2.

3.1 Numerical set-up and code description

We perform a total of 311 numerical simulations using the open
source code AZTEKAS.9 This code solves the general relativistic
hydrodynamic equations, written in a conservative form using a
variation of the ‘3+1 Valencia formulation’ (Banyuls et al. 1997)
for time-independent, fixed metrics (Del Zanna et al. 2007). The
spatial integration is carried out using a grid-based, finite volume
scheme coupled with a high resolution shock capturing method
for the flux calculation, and a monotonically centred second order
spatial reconstructor. The time integration is performed using a
second order total variation diminishing Runge–Kutta method (Shu
& Osher 1988). The evolution of the equations is performed on a
Kerr background metric, using the same horizon penetrating Kerr-
type coordinates as in Section 2.4.

The set of primitive variables used in the code consists of the
rest-mass density ρ, pressure P, and the three-velocity vector vi as
measured by Local Eulerian Observers associated with the chosen
coordinate system. Both ρ and P are thermodynamic quantities
measured at the co-moving reference frame, and the vector vi is
computed as vi = γ ijv

j, where

vi = Ui

αUt
+ βi

α
, i = r, θ, φ (50)

with α, β i and γ ij the lapse, shift vector, and three-metric of the 3+1
formalism (Alcubierre 2008), respectively.

3.2 Initial and boundary conditions

For all the simulations, we adopt a spherical axisymmetric 2.5D10

domain with coordinates (r, θ ) ∈ [Rin, Rout] × [0, π/2], where Rin

and Rout are the inner and outer radial boundaries, respectively. We
use a uniform polar grid and an exponential radial grid (see Aguayo-
Ortiz et al. 2019, for details) and fix the numerical resolution to
128 × 64 grid cells, unless otherwise stated. Reflective boundaries
are set at θ = 0 and θ = π /2. The inner radial boundary, at which
we impose a free-outflow condition, is placed within the event
horizon (Rin < r+). On the other hand, the outer radial boundary
is set with the corresponding Michel solution. With this external
boundary condition, the domain size must be sufficiently large as
to avoid introducing numerical artefacts in the resulting steady-state
solution. By performing a quantitative study varying Rout, we find
that we can be confident of the independence on the domain size

8Recall that by ‘spherical accretion on to a rotating black hole’ we mean a
solution which is asymptotically spherically symmetric.
9The code can be downloaded from https://github.com/aztekas-code/azteka
s-main. See Aguayo-Ortiz, Mendoza & Olvera (2018), Tejeda & Aguayo-
Ortiz (2019), Aguayo-Ortiz et al. (2019), and Tejeda et al. (2020), for further
details regarding the characteristics, test suite and discretization method of
AZTEKAS.
10The 2.5D scheme consists in evolving the full 3D system of equations, but
imposing the condition that the fields are independent of φ, such that it is
sufficient to consider a 2D grid. The code is not precisely 2D because the
azimuthal component vφ of the three-velocity is allowed to evolve instead of
being set to zero.
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Spherical accretion onto rotating black holes 5047

Figure 6. Relative error in the mass accretion rate between the numerical
results (Ṁ) and the Michel analytic solution (ṀM), as a function of the
asymptotic temperature �∞. We plot the results for γ = 4/3, 5/3, 2 and the
relativistic EoS.

Figure 7. Mass accretion rate as a function of �∞, for a rotating black hole
with a/M = 0.99. The first three lines show the results for an ideal gas EoS
with different values of γ , and the last line represents the relativistic EoS.
The black-dashed line represents the ultrarelativistic stiff EoS lower limit.
The mass accretion rate is normalized using the corresponding value in the
non-rotating case (ṀM).

by taking Rout = 10 rB in the non-relativistic regime
(
�∞ � 10−2

)
,

and Rout = 40 rs in the relativistic one
(
�∞ � 10−2

)
, where rB and

rs are the Bondi and sonic radii, respectively. In other words, for
a given �∞, we set Rout = 10 max(rB, 4 rs). In what regards the
initial conditions, we start our simulations with a static (vi = 0) and
uniform (ρ = ρ(Rout), P = P (Rout)) gas distribution.

The mass accretion rate evolves as a function of time with periodic
and exponentially damped oscillations (in agreement with the results
from Aguayo-Ortiz et al., 2019). The numerical simulations are left
to run until the time variation of the resulting mass accretion rate
drops below 1 part in 104, a criterion that we take as signalling the
onset of the steady-state condition. We compute the mass accretion
rate according to

Ṁ = 4π

∫ π/2

0
ρ �

(
vr − βr

α

) √−g dθ, (51)

Figure 8. Mass accretion rate as a function of the spin parameter for the γ

= 2 (top panel) and the relativistic EoS (bottom panel), and different values
of the asymptotic temperature �∞. The mass accretion rate is normalized
by its value in the non-rotating case ṀM. The black-dashed line in the top
panel represents the solution obtained with the ultrarelativistic stiff EoS (PST)
model.

where � = 1/
√

1 − γij vivj is the Lorentz factor.

3.3 Code validation

In order to validate our numerical results, we exploit the known
analytic solutions discussed in Section 2 and use them as benchmark
in our test runs.

Considering first a non-rotating black hole, in Fig. 6 we show
the relative error in the steady-state mass accretion rate between
the Michel analytical solution (ṀM) and the numerical results as a
function of the asymptotic temperature �∞. We show the results for
γ = 4/3, 5/3, 2 as well as the fit to the relativistic EoS given by Ryu
et al. (2006). For simplicity, in what follows we shall refer to this
fit as the ‘relativistic EoS’. In all cases the numerical error is less
than 5 per cent in the non-relativistic regime (�∞ � 1) and less than
1 per cent in the relativistic regime (�∞ 	 1), which is consistent
with the numerical resolution being used.

We also perform additional numerical tests to validate the imple-
mentation of a non-zero spin parameter in our set-up. In order to
approximate the ultrarelativistic stiff EoS and to compare with the
PST analytic solution, we perform simulations using an adiabatic
index γ = 2 and an asymptotic temperature �∞ = 102, for different
values of a. The result of this comparison is shown in Figs 7 and 8,
from where we find an excellent agreement between both solutions,
with a relative error of less than 1 per cent. We explain these two
figures in further detail in the next subsection.
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5048 A. Aguayo-Ortiz et al.

3.4 Results

In order to quantify the spherical accretion flow on to a rotating
Kerr black hole and analyse its dependence on the black hole’s spin
parameter a, we perform a series of simulations varying both a and
�∞, both for a polytrope with γ = 4/3, 5/3, 2 as well as for the
relativistic EoS.

For the spin parameter, we take a uniformly distributed set of
values between a = 0 (non-rotating black hole) and a/M = 0.99. On
the other hand, for the temperatures we choose a list of representative
values between �∞ = 10−3 and 102, in order to study the behaviour
of the solution in the transition from the non-relativistic regime to
the ultrarelativistic one.

3.4.1 Temperature dependence: rotating black hole case

We explore the variation in the mass accretion rate for the rotating
black hole case a > 0, as compared with the non-rotating case.
We find that the larger difference is obtained for a maximally
rotating black hole, as is to be expected considering the analytic
PST solution (see equation 49).

In Fig. 7, we show the steady-state mass accretion rate as a function
of the asymptotic temperature (for γ = 4/3, 5/3, 2 and the relativistic
EoS) for the case of a rotating black hole with a spin parameter a/M
= 0.99. The mass accretion rate is normalized by the corresponding
Michel value (a = 0). As can be seen from this figure, all simulations
are bounded between the non-rotating black hole value (Ṁ/ṀM =
1) and the ultrarelativistic stiff EoS case (Ṁ/ṀM � 0.57). In the
non-relativistic regime (�∞ � 1), the mass accretion rate for all γ

values converges to the corresponding Michel solution, although this
convergence appears to be much slower in the case γ = 2. Thus, we
conclude that in this regime the effects of the spin on Ṁ are negligible
for γ ≤ 5/3. In the ultrarelativistic regime (�∞ 	 1), Ṁ decreases
by a factor of ∼10, 25, and 43 per cent for the solutions with γ =
4/3, 5/3, and 2, respectively. Note how the solution for γ = 2 in the
�∞ 	 1 limit matches the ultrarelativistic stiff analytical value.

3.4.2 Spin dependence

In order to study the dependence of the spherical accretion solution
on the spin parameter, we perform a series of simulations varying
the value of a. For these runs, we also consider three values of
the asymptotic temperature corresponding to the non-relativistic,
intermediate, and ultrarelativistic regimes. In Fig. 8, we show our
analysis of this dependence adopting two fluid models: the stiff fluid
(γ = 2, top panel) and the relativistic EoS (bottom panel). The
former case allows us to study the behaviour of the simulations
for an extreme adiabatic index (for which the spin effects are more
noticeable), while the latter constitutes a more realistic EoS. As in
Fig. 7, the γ = 2 and �∞ = 102 case matches the analytic PST
solution, providing yet another code validation, but now for a wide
range of spin values.

As can be seen in Fig. 8, the mass accretion rate decreases as the
spin parameter a increases. Moreover, the dependence on a becomes
more significant as higher temperatures are considered. In the case
of the stiff fluid (top panel), we find that the mass accretion rate is
reduced by up to a factor of 50 per cent for a maximally rotating
black hole compared to a non-rotating one. On the other hand, this
reduction is at most of ∼ 10 per cent in the case of the relativistic
EoS (bottom panel). It is interesting to note that all the numerical
results follow a qualitatively similar dependence on a as the analytic

PST solution: the accretion rate decreasing as the spin parameter
increases.11

3.4.3 Global effect of the spin

The dependence on the spin parameter has been studied so far
by considering only its effect on the mass accretion rate. This is
important since one of the most relevant results of any accretion
model is the associated mass growth of the central object. Never-
theless, it is also of interest to study the overall morphology of the
resulting accretion flow in order to understand the global effect of
the spin.

To study the effect of the spin on the velocity field, as well as on
the rest-mass density profile, we take as a representative example
one of the simulations discussed in Section 3.4.2, namely that of a
fluid obeying the relativistic EoS, with an asymptotic temperature
�∞ = 0.1, and a spin parameter a/M = 0.99.

In Fig. 9, we show the steady-state rest-mass density ρ/ρ∞ at
the equatorial plane and the spatial components of the velocity
field Ur̂ , Uθ̂ , Uφ̂ (measured in an orthonormal reference frame, see
Appendix B). The solid black arrows show the fluid streamlines, and
the solid white line represents the location of the sonic surface (see
Appendix C for its invariant determination). Note that the azimuthal
flow shown in the rest-mass density and in the Uφ̂ field, is due
exclusively to the frame dragging of the black hole.

As can be seen from Fig. 9, the polar component Uθ̂ exhibits a
quadrupolar-like morphology, which is in contrast to the non-rotating
case where Uθ̂ = 0. This is interesting since in the PST solution this
component of the four-velocity is exactly zero, independent of the
value of the spin parameter (see equation 46c). On the other hand, the
isocontours for Ur̂ depart from spherical symmetry close to the event
horizon, in particular inside the sonic surface. However, apart from
the inspiraling effect due to the frame dragging, the fluid streamlines
do not deviate significantly from those of the spherically symmetric
inflow.

In order to analyse the behaviour of the fluid velocity, we compute
the latitudinal average at each radius, defined as

〈
Uî

〉
θ

=

∫ π/2

0
Uî

√−g dθ

∫ π/2

0

√−g dθ

. (52)

In Fig. 10, we show this average for Ur̂ (upper-panel) and Uθ̂ (lower-
panel) as a function of r for a/M = 0.99 and �∞ = 0.1. We also
use two different numerical resolutions in order to show that our
results are robust with respect to the grid size. The black-dotted line
represents the non-rotating Michel solution in the radial velocity
case (top-panel), and the average numerical error that we obtain
from our simulations in the polar velocity (bottom panel). We find
that the average of Ur̂ is larger for a rotating black hole than for
a non-rotating one. Also, in the rotating case, the average of Uθ̂ is
comparable in size to Ur̂ at the horizon and decreases approximately
as 1/r3 for r > r+. The fact that Uθ̂ is different from zero is relevant

11In this regard, it is interesting to mention the recent work by Cieślik & Mach
(2020) who study the spherical accretion of a Vlasov gas on to a (charged)
Reissner-Nordström black hole which is often considered as a simpler model
for the Kerr space–time since it shares many of its qualitative properties. In
this model, the charge parameter plays the role of the spin parameter, and
similar to our findings, the authors of that study find that the mass accretion
rate decreases as the charge parameter increases.
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Spherical accretion onto rotating black holes 5049

Figure 9. Isocontour plots of the steady state of a simulation of the spherical accretion problem on to a rotating black hole with a/M = 0.99, for a gas obeying
the relativistic EoS and �∞ = 0.1. The figures show the normalized rest-mass density ρ/ρ∞ at the equatorial plane (top left) and the spatial orthonormal
components of the four-velocity [Ur̂ (top right), Uθ̂ (bottom-left), and Uφ̂ (bottom right)] projected on the R−z plane, where R = √

r2 + a2 sin θ and z =
rcos θ . The black solid arrows show the fluid streamlines, whereas the black-dashed lines the isocontour levels. The white solid line shows the location of the
sonic surface, see Fig. 11 for further details. The outer boundary in this simulation is Rout ≈ 147 M .

in view of previous work (see Shapiro 1974; Zanotti et al. 2005),
which discuss spherical accretion models in Kerr space–time based
on the assumption Uθ = 0.

Finally, we explore in more detail the effect of the black hole spin
on the sonic surface. As shown in Appendix C, this surface can be
defined in an invariant way as those points at which the magnitude of
the three-velocity as measured by zero angular momentum observers
(ZAMOs, Bardeen 1970) equals the local sound speed. In Fig. 11,
we show the shape of the sonic surface by plotting the sonic radius
as a function of the polar angle, for different values of the spin
parameter. As can be seen from this figure, for the non-rotating case
the sonic surface corresponds to the sphere rs = const., as expected
since in this case the ZAMOs reduce to static observers. As the spin
parameter increases, the sonic surface contracts unevenly giving rise
to a slightly oblate shape in the R − z plane. This flattening at
the poles is more significant as a/M → 1. For the maximum value
explored in this work (a/M = 0.99), the equator-to-poles difference
in radii is of around 5 per cent.

4 SU M M A RY A N D C O N C L U S I O N S

In this work, we have studied the spherical accretion problem
from the non-relativistic regime to the ultrarelativistic one, for both
rotating and non-rotating black holes. We have focused on steady-
state solutions for a perfect fluid obeying an ideal gas EoS and
parametrized its thermodynamic state far away from the black hole
using the dimensionless temperature �∞ = P∞/(ρ∞c2). We have
also assumed that the gravitational field is dominated by the black
hole, such that the fluid’s self-gravity can be neglected. We first
revisited the analytic solutions of Bondi (1952) and Michel (1972),
and provided a quantitative comparison between them. Next, we
extended Michel’s solution to the case of an ideal gas obeying a
relativistic EoS (Jüttner 1911; Synge 1957). Finally, we studied the
spherical accretion problem in the case of a rotating black hole,
first by writing the exact ultrarelativistic, stiff solution (Petrich et al.
1988) in the spherically symmetric case and then by performing
general relativistic hydrodynamic simulations of a general perfect
fluid.
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5050 A. Aguayo-Ortiz et al.

Figure 10. Solutions of the angular averaged values of Ur̂ (top panel) and
Uθ̂ (bottom panel) as a function of r, for a/M = 0.99 and for two different
resolutions. The parameters used in this plots are �∞ = 0.1 and the relativistic
EoS. The grey-dotted lines show the Michel’s a = 0 solution in the top panel,
and the average numerical error in the polar velocity in the bottom panel.
Note that the difference between the two resolutions in the bottom panel for
large radii is of the same order as the average numerical error. The black
dashed represents the approximate behaviour of 〈Uθ̂ 〉θ .

Concerning the comparison between the Bondi and Michel solu-
tions, we have shown rigorously that Michel’s solution reduces to the
Bondi one when the non-relativistic limit is considered (�∞ � 1)
and when γ ≤ 5/3, as expected. Importantly, when γ > 5/3, the
obtained global solution is intrinsically relativistic, even for non-
relativistic asymptotic temperatures, in accordance with Richards
et al. (2021a). Additionally, we derived appropriate analytic expres-
sions for the mass accretion rate for the Michel solution in the
ultrarelativistic limit (�∞ 	 1). Moreover, within this limit and
for a stiff EoS (γ = 2), we have shown that the resulting mass
accretion rate coincides exactly with the result obtained by Petrich
et al. (1988). Furthermore, we have shown that in the isothermal
limit, in which γ → 1, the entire accretion flow can be described in
a Newtonian way, i.e. the Michel solution reduces to the Bondi one
for all asymptotic temperatures �∞.

Regarding the relativistic regime, we have found that the difference
between the mass accretion rates as obtained in the Bondi and Michel
solutions grows arbitrarily as the asymptotic temperature increases.
The reason behind this relies in the fact that, at ultrarelativistic
temperatures (�∞ 	 1), the Michel mass accretion rate reaches a
minimum constant value, whereas the Bondi one decreases without
limit (Fig. 4). The discrepancy between these two values is already
noticeable (of order one) for �∞ ∼ 0.1. Moreover, we have extended
the Michel solution by considering the relativistic EoS of an ideal,

Figure 11. Resulting sonic surface as a function of the polar angle, for
different values of the spin parameter a/M (as indicated by the label on top
of each curve). All cases correspond to the relativistic EoS with �∞ = 0.1.
This figure shows that, for a rotating black hole, the sonic surface contracts
to smaller radii and ceases to be characterized by a constant radius.

monoatomic gas (Jüttner 1911; Synge 1957), which is a more
accurate description for a perfect fluid in this regime (Fig. 5).

We have also extended, by means of numerical simulations, the
Michel solution to the case of a rotating Kerr black hole. The main
purpose of this numerical exploration was to analyse the effect of the
black hole spin on the mass accretion rate and the flow morphology.
We ran a series of 2.5D general relativistic hydrodynamic simulations
varying different parameters including the asymptotic temperature
�∞, the gas EoS, and the spin parameter of the black hole. We have
validated our results by comparing them with the known analytic
solutions, as well as by performing a series of careful resolution and
domain-size convergence tests.

The numerical results show that the influence of the black
hole’s rotation is only larger than a few percent in the relativistic
regime (�∞ � 0.1) or for γ > 5/3 (Fig. 7). As the spin parameter
increases, the mass accretion rate decreases as compared with the
non-rotating case. This effect is stronger for larger values of �∞
and γ . Nevertheless, even in the most extreme case (�∞ 	 1
and γ = 2), the reduction in the accretion rate is no larger than
50 per cent (Fig. 8). The simulations in this work allowed us to study
the morphology of the fluid’s density profile and velocity field near
the event horizon, showing in the latter a behaviour considerably
different from the non-rotating black hole case, even for mildly
relativistic temperatures. We have shown that the black hole rotation
induces an azimuthal velocity component (entirely due to relativistic
frame-dragging), a non-zero polar angular velocity component, as
well as a non-spherically symmetric radial component (Figs 9 and
10). Furthermore, the sonic surface ceases to be characterized by a
constant radial coordinate (Fig. 11).

Our results imply that the relativistic features of a black hole can
be safely neglected when considering the spherical accretion of a
fluid with a non-relativistic asymptotic temperature (�∞ � 1) and
γ ≤ 5/3. However, this is not true for relativistic and ultrarelativistic
values of the asymptotic temperature (�∞ � 0.1). In this regime, a
proper relativistic description must be used in order to compute the
mass accretion rate, as the Bondi and Michel solutions lead to com-
pletely different values. On the other hand, the black hole’s rotation,
even in the ultrarelativistic case and for a close-to-maximally rotating
black hole, does not change the resulting mass accretion rate by more
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Spherical accretion onto rotating black holes 5051

than 50 per cent (for γ ≤ 2) with respect to the non-rotating case.
For a more realistic EoS (γ = 4/3) this change is even smaller and
lies below 10 per cent. Thus, it is safe to neglect the black hole spin
when considering an order of magnitude estimation, but it should be
taken into account when performing a more accurate calculation.

The results presented in this work could be useful for studying
spherical accretion on to rotating and non-rotating black holes in
extreme environments where the ambient gas approaches relativistic
temperatures (�∞ ∼ 1), or that are well approximated by a stiff EoS
(γ > 5/3). Examples of such scenarios might range from primordial
black holes accreting during the radiation era in the early universe
evolution (especially between the quark and lepton epochs when
1010 K < T < 1015 K; Jedamzik 1997; Lora-Clavijo et al. 2013), to
mini black holes accreting from within a neutron star (whose core
can be modelled, as a first approximation, with a γ = 2 polytrope;
Capela, Pshirkov & Tinyakov 2013; Génolini et al. 2020).
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APPENDIX A : LIMITS OF THE MICHEL
SOLUTION

In this appendix, we make a few remarks regarding the following
two limits of the Michel solution: the isothermal limit for which the
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adiabatic index γ → 1 and the non-relativistic limit for which the
asymptotic temperature is �∞ � 1.

(i) Isothermal limit

In the limit when γ → 1, we show that the Michel solution
approaches the Newtonian (Bondi) flow solution with an EoS given
by equation (5). To this end, we first use the cubic equation (18) and
find, for small values of δ := γ − 1 > 0,

hs

h∞
= 1 + 3

2
δ −

(
9

8
+ 3

2�∞

)
δ2 + O(δ3), (A1a)

C2
∞ = δ

[
1 − δ

�∞
+ O(δ2)

]
, (A1b)

Cs

C∞
= 1 + O(δ)2, (A1c)

from which

ṀM

4πM2ρ∞C−3∞
→ 1

4
e3/2, (A2)

which coincides with the Bondi solution in equation (7).
Next, we introduce the dimensionless quantities

x := r

M
C2

∞, z := ρ

ρ∞
, ν := u

c
, λ := ṀM

4πM2

C3
∞

ρ∞
. (A3)

in terms of which equations (14a,14b) can be rewritten as

x2νz
γ+1

2 = λ

(
h

h∞

)1/2

, (A4a)

− 2

x
+ h∞

h
zγ−1ν2 = 1

C2∞

[(
h∞
h

)2

− 1

]
. (A4b)

For small values of δ, one finds, using h = 1 + γ ρδ /δ,

h

h∞
= 1 + δ log(z) + O(δ2). (A5)

Introduced into equations (A4a) and (A4b), using equation (A1b)
and taking the limit δ → 0 yields (assuming that x, z and ν have
finite values in this limit)

x2νz = λ, − 1

x
+ 1

2
ν2 = − log z, (A6)

which agrees precisely with the Newtonian equations (3a,3b) with the
EoS (5), for x, z and λ defined as in equation (A3) and ν = v/C∞ (note
that c/C∞ → 1 in the limit δ → 0). Taking into account the limit (A2)
this yields the transonic flow solution discussed in subsection 2.1,
which has been shown in Chaverra & Sarbach (2016) to be the correct
γ → 1 limit of the Bondi flow.

(ii) Non-relativistic limit

In the low-temperature limit �∞ → 0 one has h∞ → 1, and in this
limit equation (18) has two positive roots

hs = 1, hs = 1

2

(√
12γ − 11 − 1

)
, (A7)

the third one being negative and hence unphysical. For γ < 5/3, the
second positive root is smaller than one, and hence unphysical as well
and the correct limit is hs = 1. Computing the first-order correction
in �∞ one finds

hs

h∞
= 1 + 3γ

5 − 3γ
�∞ + O(�∞)2, (A8)

from which

C2
s

C2∞
= 2

5 − 3γ
+ O(�∞), (A9)

and substituting into equation (22) it follows that ṀM → ṀB when
�∞ → 0 and γ < 5/3. When γ > 5/3 it turns out the correct root is
the second one in equation (A7), see Chaverra et al. (2016), and the
corresponding squared sound speed and radius at the sonic point are

C2
s = 1

3
(h2

s − 1) > 0, rs = 3M

2

h2
s

h2
s − 1

. (A10)

It follows from equation (22) that

ṀM → πh
3γ−2
γ−1

s C
5−3γ
γ−1

s M2ρ∞ C− 2
γ−1

∞ , (A11)

and the mass accretion rate decays slower than C−3
∞. Note that hs > 1

and Cs > 0 imply that the flow does not lie in the Newtonian regime
close to the sonic point when γ > 5/3.

A P P E N D I X B: O RTH O N O R M A L FR A M E
ADAPTED TO THE K ERR-TYPE COORDINATES

The orthonormal frame adapted to the constant time slices in the
Kerr-type coordinates (t, φ, r, θ ) used in this article is given by

et̂ =
√

1 + 2Mr

�2

(
∂

∂t
− 2Mr

�2 + 2Mr

∂

∂r

)
, (B1a)

er̂ = 1√
1 + 2Mr

�2

∂

∂r
, (B1b)

eθ̂ = 1

�

∂

∂θ
, (B1c)

eφ̂ = 1

� sin θ

(
∂

∂φ
+ a sin2 θ

∂

∂r

)
, (B1d)

and it is well defined for all r > 0. The corresponding components
of the four-velocity vector field, such that

Uμ ∂

∂xμ
= Ut̂et̂ + Ur̂er̂ + Uθ̂eθ̂ + Uφ̂eφ̂ (B2)

are given by

Ut̂ = 1√
1 + 2Mr

�2

Ut, (B3a)

Ur̂ =
√

1 + 2Mr

�2

(
Ur + 2Mr

�2 + 2Mr
Ut − a sin2 θUφ

)
, (B3b)

Uθ̂ = �Uθ , (B3c)

Uφ̂ = � sin θUφ. (B3d)

APPENDI X C : INVARIANT D ETERMINAT I O N
O F T H E SO N I C S U R FAC E

In relativistic fluids, it is not immediately obvious how to determine
the sonic surfaces, that is, the boundary separating the events at which
the flow is subsonic from those at which it is supersonic. Indeed, the
fluid’s sound speed C is a scalar, while the velocity Uμ of the fluid is
a four-vector. One could consider instead of Uμ the magnitude of the
three-velocity V with respect to a specific family of observers and
define the sonic surface by those events for which V = C, but this
definition would clearly be observer dependent.
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A definition that does provide an invariant characterization of the
sonic surface is based on the sonic metric:

Gμν := ρ

h

1

C
[
gμν + (

1 − C2
)
UμUν

]
, (C1)

first introduced by Moncrief (1980), for the purpose of analysing
the propagation linearised, acoustic perturbations of an isentropic,
vorticity-free flow on a background space–time with metric gμν . The
sonic metric (C1) is a Lorentzian metric whose set of null vectors
at a given space–time event e form a cone (the sound cone) that can
be shown to lie inside the light-cone at e provided C2 < 1. Another
useful property of the sonic metric is that it inherits the symmetries
of the space–time and the flow configuration: if X is a Killing vector
field, such that the Lie derivative £X of gμν , Uμ, ρ and h vanish, then
it follows that £XGμν = 0, that is, the sonic metric is invariant with
respect to X.

For the solutions described in this article, where both the space–
time metric and the flow are steady-state and axisymmetric, it
follows that equation (C1) describes a steady-state and axisymmetric
geometry that is asymptotically flat since the flow’s four-velocity is
constant at infinity. A sonic surface corresponds to the ‘event horizon’
of this geometry, that is, the surface that separates those events that
can send an acoustic signal to infinity from those that cannot. Due to
the aforementioned symmetries of the sonic geometry, this surface
must be a Killing horizon, i.e. a null surface of the form (see, e.g.
Heusler 1996)

H := {x : Gμν(x)XμXν = 0}, (C2)

whose normal vector,

Xμ = δμ
t + �Hδμ

φ, (C3)

is a superposition of the Killing vector fields of the Kerr met-
ric, where here the constant �H describes the angular veloc-
ity of the horizon. The requirement of H being a null surface
(with respect to the sonic metric) with normal Xμ implies the
condition

∇α
[
Gμν(x)XμXν

] = −2κXα, (C4)

the proportionality factor κ describing the ‘surface gravity’ associ-
ated with the horizon. Assuming a regular horizon, such that κ 
= 0,
the four equations (C4) imply

Gt t + �HGtφ = 0, (C5a)

Gtφ + �HGφφ = 0, (C5b)

Gtr + �HGφr = − 1

2κ

∂N

∂r
, (C5c)

Gtθ + �HGφθ = − 1

2κ

∂N

∂θ
(C5d)

with N := GμνX
μXν = Gt t + 2�HGtφ + �2

HGφφ . Note that the
first two conditions (C5a,C5b) imply that Xμ is null on H, i.e. N
= 0, as required. They determine the location of the sonic surface
H through the requirement that the determinant of the 2 × 2 matrix
(Gab)a,b=t,φ vanishes. In view of definition (C1), this yields

det
[
gab + (1 − C2)UaUb

] = 0. (C6)

In turn, either equation (C5c) or equation (C5d) can be used to
determine the surface gravity κ , but this will not be needed here.12

In terms of the Kerr-type coordinates (t, φ, r, θ ) used in this article,
the determinant condition (C6), together with the property Uφ = 0
satisfied by the flow, leads to the condition

gtt − gtφ2

gφφ

+ (1 − C2)U 2
t = 0, (C7)

which yields an implicit relation between r and θ . This condition
acquires a much clearer interpretation when rewriting it in terms of
the flow’s Lorentz factor � measured by a ZAMO, which gives

(1 − C2)�2 = 1, (C8)

i.e. the sonic surface is determined by those events for which the flow,
as measured by ZAMOs, changes from sub- to supersonic. From
equation (C5b) and Uφ = 0 it also follows that �H = −gtφ/gφφ =
�ZAMO, i.e. the angular velocity of the sonic horizon is equal to the
angular velocity of the ZAMO at H.

12Note that the condition N = 0 on H implies that equation (C4), when
contracted with a tangent vector to H is automatically satisfied, such that
only one of the two equations (C5c,C5d) needs to be considered.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Chapter 4
Relativistic wind accretion on to a
Schwarzschild black hole

In this chapter, we present a general relativistic extension of the Bondi, Hoyle and
Lyttleton (BHL, Hoyle & Lyttleton, 1939; Bondi & Hoyle, 1944) classical wind ac-
cretion solution. The model presented in this article, as in BHL, is based on the
assumption of steady state, axisymmetry and ballistic motion, but in this case the
central mass corresponds to a Schwarzschild black hole, substantially modifying the
computing and final expressions for the density field, the fluid streamlines and the
mass accretion rate.

We start by giving a brief introduction to the BHL problem in which we establish
the conditions and setup of the problem, and then summarize the expressions of
the density field, fluid streamlines, and mass accretion rate for the non-relativistic
case. Then, we introduce the BHL relativistic extension by writing the equations
of motion for a test particle and its conserved quantities, which corresponds to the
ballistic approximation. From these equations, we obtain both the fluid streamlines
and density field expressions. Finally, using these results, we numerically compute
the mass accretion rate as a function of the wind velocity at infinity. From theses
three physical quantities, we make a comparison between the relativistic and non-
relativistic cases, finding that, for the relativistic model, the total accretion rate is
greater than the corresponding Newtonian value.

In the second part of the article, we show a comparison between the previously
mentioned relativistic wind accretion ballistic model and numerical simulations per-
formed with the numerical code aztekas. The numerical experiments consist of
a 2D-axisymmetric setup of the wind accretion problem, in which we run general
relativistic hydrodynamic simulations of a perfect fluid evolving on top a fixed
Schwarzschild background metric. For these simulations, we consider that the gas
follows a polytropic relation, and use two different adiabatic indices (4/3 and 5/3).
Moreover, we run different simulations for a wide range of values of the wind velocity
at infinity, and two Mach numbers. Even though the analytic model is ballistic, which

79
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is not a hydrodynamic solution, the numerical results found with aztekas show a
good agreement for the fluid streamlines in the upstream region of the flow and for
the corresponding accretion rates. Furthermore, in the appendix of this article, we
show some relevant validation tests for the aztekas code.

The study presented in this chapter was published in MNRAS in 2019. The details
of the paper are:
Tejeda E., Aguayo-Ortiz A., 2019, MNRAS, 487, 3607. doi:10.1093/mnras/stz1513

https://doi.org/10.1093/mnras/stz1513
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ABSTRACT
We present a novel analytic model of relativistic wind accretion on to a Schwarzschild black
hole. This model constitutes a general relativistic extension of the classical model of wind
accretion by Bondi, Hoyle, and Lyttleton (BHL). As in BHL, this model is based on the
assumptions of steady state, axisymmetry, and ballistic motion. Analytic expressions are
provided for the wind streamlines while simple numerical schemes are presented for calculating
the corresponding accretion rate and density field. The resulting accretion rate is greater in
the relativistic model when compared to the Newtonian BHL one. Indeed, it is two times
greater for asymptotic wind speeds v∞ ≥ 0.4 c and more than an order of magnitude greater
for v∞ ≥ 0.8 c. We have compared this full relativistic model versus numerical simulations
performed with the free GNU Public Licensed hydrodynamics code aztekas and found a good
agreement for the streamlines in the upstream region of the flow and also, to within 10 per cent,
for the corresponding accretion rates.

Key words: accretion, accretion discs – black hole physics – gravitation – hydrodynamics –
methods: analytical.

1 IN T RO D U C T I O N

Accretion physics has become a basic tenet of astrophysics ever
since it was recognized that the process of accretion, especially
when compact objects are involved, is one of the most efficient
mechanisms for converting rest mass energy into luminosity at work
in our Universe (Frank, King & Raine 2002). Indeed, it has been
established that a thin accretion disc around a non-rotating black
hole can reprocess as much as. 10 per cent of the accreted gas rest
mass into electromagnetic radiation, while for a maximally rotating
black hole this figure can reach up to 46 per cent (see e.g. Longair
2011).

The simplest accretion scenario consists of the stationary, spher-
ically symmetric solution first discussed by Bondi (1952), where
he considered an infinitely large homogeneous gas cloud steadily
accreting on to a central gravitational object. The general relativistic
extension of this model was developed by Michel (1972) who took
a Schwarzschild black hole as the central accretor.

In the so-called wind accretion scenario, the spherical symmetry
approximation is relaxed by considering a non-zero relative velocity
between the central object and the accreted medium (cf. Edgar
2004; Romero & Vila 2014). As it turns out, even after assuming a
steady state and axial symmetry, the problem becomes sufficiently

� E-mail: emilio.tejeda@conacyt.mx (ET); aaguayo@astro.unam.mx
(AA-O)

complex as not to admit a full analytic solution in general. In the
pioneering work of Hoyle & Lyttleton (1939) and Bondi & Hoyle
(1944) (BHL hereafter), the authors provided an analytic model
for supersonic wind accretion by adopting the so-called ballistic
approximation, i.e. by neglecting pressure gradients and assuming
that the fluid’s dynamics is solely dictated by the central object’s
gravitational field. This approximation is well suited to describe
highly supersonic flows given that, within this regime, incoming
fluid elements cannot oppose pressure gradients readily, effectively
following nearly free-fall trajectories.

Further analytic solutions to wind accretion problems have
been found for a perfect fluid with a stiff equation of state in
general relativity (Petrich, Shapiro & Teukolsky 1988) and for
the corresponding non-relativistic case of an incompressible fluid
(Tejeda 2018).

The problem of wind accretion has also been the focus of various
numerical studies, from both a Newtonian perspective (Hunt 1971;
Shima et al. 1985; Ruffert & Arnett 1994; El Mellah & Casse 2015;
El Mellah, Sundqvist & Keppens 2018) and in general relativity
(Petrich et al. 1989; Font & Ibáñez 1998; Zanotti et al. 2011; Lora-
Clavijo & Guzmán 2013; Gracia-Linares & Guzmán 2015; Cruz-
Osorio & Lora-Clavijo 2016; Cruz-Osorio, Sánchez-Salcedo &
Lora-Clavijo 2017).

In this article we introduce a simple, analytic model for a super-
sonic wind accreting on to a non-rotating black hole (Schwarzschild
spacetime). This model is a general relativistic extension of the
BHL model and follows closely the methodology outlined in

C© 2019 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/487/3/3607/5510420 by ehelpdeskebsco-unam
@

yahoo.com
 user on 02 M

ay 2022



3608 E. Tejeda and A. Aguayo-Ortiz

Mendoza, Tejeda & Nagel (2009), Tejeda, Mendoza & Miller
(2012), and Tejeda, Taylor & Miller (2013). In that series of works,
we presented an analytic model of the accretion flow of a rotating
dust cloud infalling towards a central object, first in a Newtonian
regime (Mendoza et al. 2009) and then in general relativity for a
Schwarzschild black hole (Tejeda et al. 2012) and for a Kerr black
hole (Tejeda et al. 2013). See Schroven, Hackmann & Lämmerzahl
(2017) for a recent extension of this model considering the case of
charged dust particles accreting on to a Kerr–Newman black hole.

The article is organized as follows: in Section 2 we give a brief
review of the BHL model. In Section 3 we introduce the new
relativistic wind model, and in Section 4 we present the comparison
against relativistic hydrodynamic numerical simulations performed
with the free GNU Public Licensed (GPL) hydrodynamics code
aztekas (Olvera & Mendoza 2008; Aguayo-Ortiz, Mendoza &
Olvera 2018).1 Finally, in Section 5 we summarize the work and
present our conclusions. The Appendix A presents the results of
the benchmark test of aztekas against Michel’s analytic model, as
well as self-convergence and various resolution tests relevant to this
study.

2 BO N D I – H OY L E – LY T T L E TO N M O D E L

In this section we give a brief overview of the BHL accretion model
as its general relativistic extension constitutes the scope of this work.
The BHL model deals with a steady, supersonic wind accreting on
to a gravitational object of mass M. Considering that the accretor
is held fixed at the centre of coordinates, infinitely far away from
the central object, the wind is homogeneous and characterized by a
uniform density ρ∞ and wind speed v∞.

Under the ballistic approximation, expressions for the stream-
lines, velocity field, and density for this model are given by
(Bisnovatyi-Kogan et al. 1979)

r = b2v2
∞

GM(1 − cos θ ) + b v2∞ sin θ
, (1)

ṙ = −
√

v2∞ + 2GM

r
− b2v2∞

r2
, (2)

θ̇ = b v∞
r2

, (3)

ρ = ρ∞ b2

r sin θ (2 b − r sin θ )
, (4)

where b is the impact parameter of a given incoming fluid element.
Note that we are taking here a reference frame in spherical
coordinates such that the polar axis is aligned with the incoming
wind direction. The wind comes asymptotically from the direction
of the θ = 0 axis. Fig. 1 shows a schematic representation of the
model set-up and streamlines.

Given the uniform wind condition at infinity, all of the incoming
trajectories have initially a common specific total energy E = v2

∞/2.
In other words, the wind fluid elements follow energetically un-
bound (hyperbolic) trajectories. From equations (1) and (2) we
see that the incoming trajectories reach the downstream axis at
r(π) = b2v2

∞/(2GM) with radial velocity ṙ = v∞. It is expected

1aztekas.org C©2008 Sergio Mendoza & Daniel Olvera and C©2018 Alejandro
Aguayo-Ortiz & Sergio Mendoza.

Figure 1. Schematic representation of the BHL model. The incoming wind
comes from an infinite distance to the right, corresponding to a polar angle
θ = 0. Under the ballistic approximation, fluid streamlines correspond
to free-fall trajectories. At their arrival at the so-called accretion axis
θ = π, mirror symmetric streamlines collide against each other. The kinetic
energy corresponding to the normal component of the velocity is efficiently
thermalized and lost from the system. After this energy redistribution,
streamlines with negative mechanical energy are left bound to the central
object and constitute the accretion basin (shaded blue area). The stagnation
point, i.e. the point along the accretion axis marking this transition, is marked
with a red cross, and the corresponding streamline is characterized by the
critical impact parameter bc. The black circle shows the location of the
central accretor. The axes correspond to the usual cylindrical coordinates
R = r sin θ , z = r cos θ .

that streamlines coming from mirror-reflected points with respect
to the symmetry axis will collide with one another along this axis
(see Fig. 1). Following this collision, the BHL model envisages that
the component of the velocity perpendicular to the axis is instantly
transformed into thermal energy and, eventually, lost as radiation.2

After this loss of kinetic energy, each fluid element is left with a
new specific total energy

E′ = 1

2
ṙ(π)2 − GM

r(π)
= 1

2
v2

∞ − 2(GM)2

b2v2∞
. (5)

By equating this energy to zero, the following critical value for the
impact parameter is found

bc = 2GM

v2∞
, (6)

such that any fluid element following a streamline with b < bc

is energetically bound to the central object and, hence, eventually
accreted. On the other hand, any fluid element following a stream-
line with b > bc is energetically unbound to the central object and
therefore ultimately escapes to infinity. Following this argument,
and accounting for all of the material within the cylinder of radius
bc, the total accretion rate on to the central object in the BHL model

2More precisely, in the Hoyle & Lyttleton (1939) model the fluid streamlines
are assumed to focus downstream on to the symmetry axis leading to an
infinite density there. The accretion then proceeds along this line. Instead,
Bondi & Hoyle (1944) envisioned an accretion flow that spreads out on to a
finite density region that they referred to as accretion column. In this work
we are adopting the former description.
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Relativistic wind accretion 3609

is given by

ṀBHL = π b2
c ρ∞ v∞ = 4 π ρ∞

(GM)2

v3∞
. (7)

Subsequent numerical studies of this problem have found stationary
accretion rates that agree remarkably well with those predicted
by the simple BHL model (see e.g. Hunt 1971). The resulting
flows obtained in full-hydrodynamic simulations of supersonic wind
accretion show the development a bow shock around the central
accretor at which the incoming wind streamlines abruptly decelerate
and become subsonic. Clearly, the simple analytic description of the
streamlines provided by the BHL model is no longer valid inside the
bow shock, nevertheless, it provides a qualitatively good description
of the streamlines in the supersonic, upwind region.

3 R ELATIV ISTIC WIND MODEL

In this section we present the extension of the BHL wind model to
the case in which the central accretor is a non-rotating black hole
of mass M. We shall assume that the mass–energy content of the
accreting gas is negligible as compared to the mass of the central
black hole and, thus, the overall spacetime metric corresponds to the
Schwarzschild solution. For constructing this model we are closely
following the methodology described in Tejeda et al. (2012). For
the remainder of this work we adopt a geometrized system of units
for which G = c = 1.

3.1 Velocity field

Adopting the ballistic approximation for test particles in general
relativity amounts to describe the incoming streamlines as geodesic
trajectories. Due to the symmetries of Schwarzschild spacetime, the
trajectory of a test particle is restricted to a plane and governed by
the equations of motion (Frolov & Novikov 1998)

dt

dτ
= E

(
1 − 2M

r

)−1

, (8)

dr

dτ
= −

[
E2 −

(
1 − 2M

r

) (
1 + h2

r2

)]1/2

, (9)

dθ

dτ
= h

r2
, (10)

where E is the conserved specific (relativistic) total energy and h
is the conserved specific angular momentum. Assuming a uniform
wind velocity at infinity v∞, these conserved quantities for a given
streamline with impact parameter b are given by

E = 1√
1 − v2∞

= γ∞, (11)

h = b v∞√
1 − v2∞

= b V∞, (12)

where γ ∞ is the wind’s Lorentz factor at infinity and where we have
introduced the shorthand notation V∞ = γ∞ v∞.

In order for the velocity field in equations (8)–(10) to be useful
in practice, we need to provide an expression for the streamlines of
the form r(θ , b) as we discuss in the next subsection.

3.2 Streamlines

An expression for the streamlines can be obtained by combining
equations (9) and (10) as

dr

dθ
=

√R(r)

h
, (13)

where

R(r) = r
[
V 2

∞ r3 + 2Mr2 − b2V 2
∞(r − 2M)

]
. (14)

As discussed in detail in Tejeda et al. (2012), equation (13) can
be solved in terms of elliptic integrals. For the problem at hand, we
need to distinguish between two types of trajectories: (1) unbound
trajectories that reach a minimum distance in their descent towards
the central object before turning back to infinity and (2) trapped
trajectories that plunge on to the black hole’s event horizon (located
at r = 2M). Specifically, streamlines with b ≥ b0 belong to type (1)
while those with b < b0 belong to type (2) where

b0 =
M

√
27 V 4∞ + 18 V 2∞ + γ∞

(
1 + 9 V 2∞

)3/2 − 1
√

2 V 2∞
. (15)

In case (1), the polynomial in equation (14) has three non-
trivial real roots. For the particular boundary condition that we have
adopted here, it can be proved that one of these roots is negative
and the other two are positive. We call them r1, r2, and r3, such that
r1 < 0 < r2 < r3. These roots can be explicitly given in terms of the
constants of motion, see e.g. Tejeda et al. (2012). In terms of these
roots, the equation for the streamlines is given by

r = r1(r3 − r2) − r2(r3 − r1)cn2 (ξ, k)

r3 − r2 − (r3 − r1)cn2 (ξ, k)
, (16)

ξ =
√

r3(r3 − r2)

2 b
(θ + θ∞), (17)

where cn (ξ, k) is a Jacobi elliptic function with modulus (Lawden
1989)

k =
√

r2(r3 − r1)

r3(r2 − r1)
, (18)

and

θ∞ = 2 b√
r3(r3 − r2)

cn−1

√
r3 − r2

r3 − r1
, (19)

is the polar phase setting θ = 0 as the incoming wind direction, i.e.
r(θ = 0) → ∞.

In case (2) the polynomial in equation (14) has as roots a negative
real number r1 and a complex conjugate pair r2 = r∗

3 . In this case
the equation for the streamlines can be written as

r = δ r1[1 − cn(ξ̃ , k̃)]

δ − η − (η + δ)cn(ξ̃ , k̃)
, (20)

ξ̃ =
√

η δ

b
(θ + θ̃∞), (21)

where

η =
√

(r2 − r1)(r3 − r1), (22)

δ = √
r2r3, (23)
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3610 E. Tejeda and A. Aguayo-Ortiz

Figure 2. Schematic illustration of the grid used for numerically evaluating
the partial derivative involved in the calculation of the density field
(equation 30). The shaded area represents one of the streamline tubes used
as integration volume for calculating the density field in equation (27).

k̃2 = (η + δ)2 − r2
1

4 η δ
, (24)

and

θ̃∞ = b√
η δ

cn−1

[
δ − η

η + δ
, k̃

]
. (25)

Equations (16) and (20) constitute the required expressions for
the streamlines. As demonstrated by Tejeda et al. (2012), these
expressions for the streamlines reduce to the usual Newtonian conic-
sections in the non-relativistic limit, i.e. for v∞ 	 1 equation (16)
reduces to equation (1), while the velocity field in equations (9) and
(10) reduce to equations (2) and (3), respectively.

3.3 Density field

For calculating the density field we follow here a similar strategy as
in Tejeda et al. (2012, 2013). We start from the continuity equation3

∇μ(ρ Uμ) = 0, (26)

where Uμ = dxμ/dτ is the four-velocity, ρ is the rest mass density,
and ∇ stands for the covariant derivative.

Writing equation (26) for a Schwarzschild spacetime and adopt-
ing the stationary condition results in

∂

∂xi
(r2 sin θ ρ Ui) = 0. (27)

Let us now integrate equation (27) over the spatial volume element
delimited by a sufficiently small set of streamlines that start from
an area element S∞ = 2π b db located at infinity and that end at the
intersection with the conic surface defined by θ = const., i.e. Sθ =
2π r sin θ dr , as shown in Fig. 2. By construction, fluid elements
enter the integration volume only across S∞ and leave across Sθ .
Therefore, by means of Gauss’s theorem, it follows that

ρ r Uθ Sθ = ρ∞ γ∞ v∞ S∞, (28)

from where

ρ r2Uθ sin θ dr = ρ∞ γ∞ v∞ b db. (29)

Finally, substituting Uθ from equation (10) into equation (29) results
in

ρ = ρ∞
sin θ

(
∂r

∂b

)−1

. (30)

3Here and in what follows Greek indices run over spacetime components,
Latin indices run over spatial components only, and Einstein’s summation
convention over repeated indices is adopted.

Figure 3. Analytic model of a relativistic wind accreting at v∞ = 0.5 on to
a Schwarzschild black hole. Accretion flow streamlines are represented as
grey, solid lines, while colour contours correspond to the density field level
set.

Calculating explicitly the partial derivative in equation (30) is
something trivial to do in the Newtonian case. Indeed, this calcula-
tion is the step leading from equation (1) to equation (4). However,
this same calculation in the relativistic case represents a complex
procedure involving the derivative of an elliptic function with
respect to its argument and modulus. Following Tejeda et al. (2012),
we do not attempt here to calculate this derivative analytically but
rather use a finite difference scheme to compute it numerically. A
suitable grid for performing this calculation can be constructed as
follows: start from a collection of streamlines separated by uniform
intervals of �b at infinity. Follow these streamlines from θ = 0 to
θ = π storing the different values of r at uniform steps of �θ . Use
these grid values for estimating ∂r/∂b as a finite difference of the
radial coordinate between neighbouring streamlines. Such a grid is
schematically represented in Fig. 2.

In Fig. 3 we show an example of a wind accreting at v∞ = 0.5 on
to a Schwarzschild black hole. The figure shows the flow streamlines
as expressed analytically by equations (16) and (20) together with
the density field as calculated numerically from equation (30).

In Fig. 4 we compare the resulting streamlines in Schwarzschild
spacetime with those coming from the Newtonian BHL model for
different values of the asymptotic wind speed. From this figure it is
clear that the accretion cylinder, and thus the total accretion rate, in
the relativistic model is greater than the corresponding Newtonian
value. In the next subsection we discuss this in further detail.

3.4 Accretion rate

Just as for the density field, the procedure described in Section 2
to compute the total accretion rate in the Newtonian case (BHL
model) is not as simple to implement for the relativistic problem.
However, the logic behind this calculation remains the same: when
the collision of mirror-reflected streamlines along the symmetry
axis (θ = π) occurs, the flow’s kinetic energy associated to the
normal component of the velocity (Uθ in this case) is lost from
the system as thermal energy and/or radiation. The remaining
relativistic energy E ′ of a given streamline with impact parameter
b will determine whether the gas travelling along the streamline
is accreted (E ′ < 1) on to the central black hole or lost to infinity
(E ′ > 1). The streamline that is left marginally bound with E ′ = 1
is characterized by the critical impact parameter bc. Using the
normalization condition UμUμ = −1, together with Uθ = 0 and
equation (9), it is simple to show that the condition E ′ = 1 is
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Relativistic wind accretion 3611

Figure 4. Comparison of the ballistic streamlines as obtained in the BHL model (left-hand column) and in Schwarzschild spacetime (right-hand column).
The shaded area in each panel corresponds to the accretion cylinder, i.e. to those streamlines with impact parameter b less than the critical value bc that end up
accreting on to the central object. The wind speed at infinity v∞ is indicated at the top left of each panel.

equivalent to

r(π)3 + [2M − r(π)] b2
c = 0. (31)

Unfortunately, after substituting r(π)from either equations (16) or
(20), the resulting equation is highly non-linear in bc and it does
not seem possible to solve it for bc explicitly. None the less, it is
straightforward to solve equation (31) numerically using a root-
finding algorithm. We have done this using the bisection method
for 1000 values of v∞ uniformly distributed between 0.001 and
0.999 to a precision of 10−8. Now, based on these numerically
calculated values, we found the following fit that approximates bc

to an accuracy better than 3 per cent for v∞ < 0.999 and to within

0.5 per cent for v∞ < 0.98:

bfit
c = 2M

v2∞

(
1 + c1 v∞ + c2 v2

∞ + c3 v3
∞

)
, (32)

with c1 = 0.081135, c2 = 3.452826, and c3 = −1.758438.
All of the streamlines within the cylinder b ≤ bc contribute

to the total accretion rate. According to the right-hand side of
equation (29), we can therefore express Ṁ as

Ṁ = π b2
c ρ∞v∞γ∞. (33)

In Fig. 5 we show the resulting accretion rate as a function of the
wind speed at infinity and compare it to the Newtonian value found
in the BHL model (equation 7). As can be seen from this figure,
the relativistic accretion rate is greater than the corresponding BHL
one for all values of v∞, with the difference being more than double
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3612 E. Tejeda and A. Aguayo-Ortiz

Figure 5. Mass accretion rate as a function of the wind speed at infinity
v∞. The blue line corresponds to the (fitted) relativistic model as given by
equation (32), while the yellow line corresponds to the Newtonian BHL
model (equation 7). In both cases the accretion rate is expressed in units of
Ṁ0 = 4πM2ρ∞.

for v∞ � 0.4 and more than 10 times larger for v∞ � 0.8. As
expected, the relativistic accretion rate converges to the Newtonian
value in the non-relativistic limit, i.e. for v∞ 	 1. Contrary to the
Newtonian case in which the accretion rate was a monotonically
decreasing function of v∞, the relativistic result has an inflection
point at around v∞ � 0.8 and becomes arbitrarily large as v∞ →
1. The culprit behind this behaviour is the special relativistic effect
of Lorentz contraction that compresses the fluid volume elements
along the direction of the wind and is represented by the Lorentz
factor in equation (33).

4 C O M PA R I S O N W I T H N U M E R I C A L
S IMU LATION S

In this section we compare the analytic wind accretion model
presented in the previous section against numerical hydrodynamic
simulations performed with aztekas, a free GPL code for solving any
conservative set of equations, in particular, relativistic (with a non-
trivial fixed metric) and non-relativistic hydrodynamic equations.
Some aspects of aztekas, together with numerical and convergence
tests relevant to this work are discussed in the Appendix A. Further
details and tests of the aztekas code will be presented elsewhere.

For all of the simulations discussed in this work, we considered
a perfect fluid evolving on top a fixed Schwarzschild background
metric described in terms of the horizon-penetrating, Kerr–Schild
coordinates. Since the problem under study presents axial sym-
metry, all of the simulations were performed in 2D using polar
coordinates r and θ . All of the results presented below were obtained
after the numerical simulations had evolved in time from a uniform
initial state condition until a relaxed stationary state was reached.

The relativistic hydrodynamic equations consist of the continuity
equation (26) together with the local conservation of energy–
momentum

∇μT μν = 0, (34)

where we take the energy–momentum tensor Tμν corresponding to
a perfect fluid (Landau & Lifshitz 1975)

T μν = ρ h UμUν + p gμν, (35)

with rest mass density ρ, pressure p, specific internal energy ε,
and specific enthalpy h = 1 + ε + p/ρ. Moreover, we adopt a
Bondi–Wheeler equation of state (Tooper 1965) of the form

ε = p

ρ (� − 1)
, (36)

where � is the polytropic index.
In order to integrate numerically equations (26) and (34) with

aztekas, we recast them in a conservative form based on the 3 + 1
formalism (see e.g. Font 2000; Alcubierre 2008), as follows

1√−g

∂
(√

γ Q
)

∂t
+ 1√−g

∂
(√−g Fi

)

∂xi
= S, (37)

where γ and g are the determinants of the spatial 3-metric γ ij and the
spacetime 4-metric gμν , respectively. Q is the conservative variable
vector, Fi = {

Fr , Fθ
}

are the fluxes along the r and θ coordinates,
and S is the source vector. All of these quantities depend on the
primitive variables U. The functional form of these vectors are
presented below:

U = [
ρ, vj , p

]T
, (38)

Q = [
D, Sj , τ

] = [
ρW, ρ h W 2vj , ρ h W 2 − p − D

]T
, (39)

Fi =
[
D

(
vi − βi

α

)
, Sj

(
vi − βi

α

)
+ p δi

j ,

τ

(
vi − βi

α

)
+ p vi

]T

, (40)

S =
[

0, T μν

(
∂gνj

∂xμ
− �σ

νμgσj

)
,

α

(
T μ0 ∂ ln α

∂xμ
− T μν�0

νμ

)]T

, (41)

where �λ
μν are the usual Christoffel symbols, vi is the three-velocity

as measured by local Eulerian observers, W = (1 − γ ijv
ivj)−1/2 is

the associated Lorentz factor, and

α =
(

1 + 2M

r

)−1/2

, (42)

βi =
(

2M

r

(
1 + 2M

r

)−1

, 0 , 0

)
, (43)

are the lapse function and the shift vector, respectively, and corre-
spond to the 3 + 1 decomposition of Schwarzschild spacetime in
Kerr–Schild coordinates.

For the numerical flux calculation, we use in aztekas a high-
resolution shock capturing method with an HLLE approximate Rie-
mann solver (Harten, Lax & Leer 1983), combined with a monotoni-
cally centred (MC) second-order reconstructor at cell interfaces. For
the time integration, we use a second-order Runge–Kutta method of
lines in the total variation diminishing version (Shu & Osher 1988).
Finally, we adopt a constant time step defined through the Courant-
Friedrichs-Lewy (CFL) condition �t = C min (�r, r �θ ), with
C = 0.1.

For the relativistic wind simulations, we ran two sets of simula-
tions exploring asymptotic wind speeds from v∞ = 0.1 to 0.9 for two
different polytropic indices: � = 4/3 and 5/3. We took as numerical
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Relativistic wind accretion 3613

domain [rmin, rmax] × [0, π], with rmin = 0.5 racc, rmax = 10 racc,
and

racc = M

v2∞ + a2∞
, (44)

where a∞ is the asymptotic speed of sound. The radius racc is
commonly used in the literature (cf. Font, Ibáñez & Papadopoulos
1999; Cruz-Osorio, Lora-Clavijo & Guzmán 2012), as a good
estimate for the extension of the numerical domain necessary for
numerical convergence.4 Our choice of this numerical domain is
based on the convergence and resolution tests discussed in detail in
the Appendix A.

For most of these simulations we used a fixed Mach number
M = v∞/a∞ = 5 in order to ensure that we were considering the
same supersonic conditions in all cases. As a sanity check, we also
considered M = 10 for a reduced number of cases. We used a
uniform grid of 400 × 400 cells except for the cases v∞ = 0.1, 0.8,
and 0.9, where we had to use a larger grid of 1000 × 1000 in order
to find converged solutions.

As external boundary condition at the sphere r = rmax, we
enforced a constant, uniform inflow from the northern hemisphere
θ ∈ [0, π/2) and free outflow from the southern one θ ∈ [π/2,
π]. As internal boundary condition, we set free outflow across the
sphere at r = rmin. The incoming wind at the external boundary
has uniform thermodynamical variables ρ∞ and p∞. We set ρ∞ =
10−10 in arbitrary units and take p∞ consistent with the chosen
Mach number M and the equation of state, as in Cruz-Osorio et al.
(2012):

p∞ = a2
∞ρ∞(� − 1)

�(� − 1) − a2∞�
. (45)

For the velocity field, we set an incoming wind with a constant
velocity

√
vi vi = v∞, and components:

vr = −√
grr v∞ cos θ, (46)

vθ = √
gθθ v∞ sin θ, (47)

where grr and gθθ are the radial and polar components of the metric,
respectively. As for the initial conditions of the simulation, we set
them equal to the constant boundary values over all the numerical
domain.

The simulations were left to run until a stationary state was
reached. This was monitored by keeping track of the mass accretion
rate, which was computed on the fly by integrating the relativistic
radial mass flux across a control sphere of radius r according to
(Petrich et al. 1989)

Ṁ = 2π

∫ π

0
D

(
vr − βr

α

)
r2 sin θdθ. (48)

It is important to remark that, once the stationary state is reached
across all the numerical domain, the mass accretion rate as calcu-
lated from equation (48) has to have a constant value (to within
numerical precision) independently of where the control radius r is
located (see Fig. A3).

4Note that with our choice of rmin, simulations with v∞ ≥ 0.5 are such that
rmin < 2M, which aztekas can handle without any problem due to our choice
of horizon-penetrating coordinates. On the other hand, for those simulations
with rmin > 2M, we performed trial tests to make sure that the resulting
steady-state accretion rate was unchanged independently of whether the
black hole event horizon (2M) was part of the numerical domain or not.

Figure 6. Mass accretion rate as a function of time for two wind simulations
with asymptotic velocity v∞ = 0.5 and � = 4/3, 5/3. As a reference, the
horizontal dashed line shows the corresponding value from the relativistic
model (equation 33). The stationary state is reached after t ≈ 600M. The mass
accretion rate has been scaled using the BHL result ṀBHL = 4πM2ρ∞/v3∞
(equation 7).

The typical simulation time at which steady state was reached
depends on the wind velocity at infinity and the domain extension
roughly as tc ≈ racc/v∞. As an example, in Fig. 6 we show the mass
accretion rate as a function of time for v∞ = 0.5 and � = 4/3, 5/3,
measuring it at the event horizon r = 2M.

In Fig. 7, we show the steady-state of the density field and
streamlines of a wind accretion flow with v∞ = 0.5 and polytropic
index � = 4/3 on the left-hand panel and � = 5/3 on the right-hand
panel. As expected for a supersonic flow, a bow shock is formed
downstream around the accretor, with a smaller shock cone for � =
4/3 than for � = 5/3.

In Fig. 8, we compare the streamlines as obtained from the two
simulations discussed in the previous paragraph against the ones
from the analytic model. As can be seen from this figure, the
ballistic approximation provides a qualitatively good description
of the resulting streamlines upstream of the flow and in the region
outside the bow shock, while inside the shock cone the streamline
behaviour is notably different.

We can also notice from both Figs 6 and 8 that there is a better
agreement between the analytic model and the � = 4/3 case than for
the � = 5/3 one. This is related to the fact that the relative degree
of incompressibility or stiffness of a polytropic fluid is directly
proportional to the adiabatic index and, thus, a � = 5/3 fluid resists
more effectively the compression due to the gravitational field of
the central object (geodesic focusing) than a fluid with � = 4/3.

In order to compare the numerical mass accretion rate with the
ballistic model (equation 31), we computed the mean value of
equation (48) across all the radial domain. In Fig. 9 we show the
comparison between the analytic model presented in the previous
section and the simulations for both � = 4/3 and 5/3.

Moreover, we also explored the dependence of the mass accretion
rate on the Mach number by performing 10 additional simulations
with M = 10. In Fig. 9, the square marks show the mass accretion
rate for these simulations. Note that these results overlay with the
M = 5 cases (the relative difference between both results is less
than 0.7 per cent). The resulting bow shocks are also very similar in
both cases, with slightly smaller cones for the M = 10 case.

As can be seen in Fig. 9, the resulting accretion rate from the
numerical simulations is consistently slightly larger for the � = 4/3

MNRAS 487, 3607–3617 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/487/3/3607/5510420 by ehelpdeskebsco-unam
@

yahoo.com
 user on 02 M

ay 2022



3614 E. Tejeda and A. Aguayo-Ortiz

Figure 7. Numerical simulations performed with aztekas of a relativistic wind accreting on to a Schwarzschild black hole. The chosen polytropic index is � =
4/3 for the left-hand panel and � = 5/3 for the right-hand one, while the asymptotic wind velocity is v∞ = 0.5. The plot shows the stationary-state streamlines
and in colour isocontour levels of the corresponding density field. The width of the streamlines is proportional to the velocity magnitude v =

√
vi vi .

Figure 8. Comparison of the streamlines of the analytic model against the
corresponding ones extracted from the numerical simulations for v∞ = 0.5,
M = 5, and � = 4/3, 5/3.

Figure 9. Comparison of the mass accretion rate as obtained from the rel-
ativistic model (equation 33) versus the numerical values obtained from the
aztekas simulations. The colour marks show the results of the 28 simulations
discussed in this work for asymptotic wind speeds v∞ = 0.1, 0.2, . . . , 0.9,
two polytropic indices � = 4/3, 5/3, and two Mach numbers M = 5, 10.
The mass accretion rate is expressed in units of Ṁ0 = 4πM2ρ∞.

simulations than for the � = 5/3 ones. Moreover, a good agreement
is found between the accretion rate as predicted by the relativistic
model and the one obtained from the aztekas simulations, with a

relative error less than 10 per cent for all of the 28 simulations
presented in this work.

5 SU M M A RY

We have presented a full relativistic, analytic model of a supersonic
wind accreting on to a Schwarzschild black hole. In addition to
the assumptions of stationarity and axisymmetry, the model is
based on the ballistic approximation in which the streamlines
of the accretion flow correspond to geodesic trajectories of a
Schwarzschild spacetime. Following the methodology presented
in Tejeda et al. (2012), the streamlines of the model were described
analytically in terms of Jacobi elliptic functions. The density field
of the resulting accretion flow and the corresponding accretion rate
were calculated using simple numerical schemes.

The model presented in this paper constitutes the relativistic
generalization of the Newtonian wind accretion model by Bondi–
Hoyle–Lyttleton (BHL). Naturally, the relativistic model recovers
the BHL model in the non-relativistic limit v∞ 	 c. The enhanced
gravitational field of the accreting object in general relativity,
together with the special relativistic effect of Lorentz contraction,
contribute to a larger accretion rate as compared to that of the BHL
model (see Fig. 5). This difference becomes substantial (by a factor
of 10–100) for asymptotic wind speeds v∞ close to the speed of light
c. Although these large velocities are not expected to be common
in astrophysical settings, they can appear in extreme cases such as
the velocity kick imparted on to a newborn black hole following an
asymmetrical supernova explosion (Janka 2013) or after the merger
of two rotating black holes (Gerosa & Moore 2016).

We have compared the new relativistic model against numerical
simulations performed with the aztekas code. This code solves
numerically the full hydrodynamic evolution of a perfect fluid in
Schwarzschild spacetime starting off from a uniform condition until
a stationary state is reached. We have used two different polytropic
equations of state (� = 4/3 and � = 5/3) and asymptotic wind
speeds from v∞ = 0.1 c to v∞ = 0.9 c. We have considered two
different values for the asymptotic Mach number, M = 5 and
10, finding virtually no difference between these two values. We
have found a good agreement (to within 10 per cent) between the
accretion rate predicted by the relativistic model and the aztekas
simulations (see Fig. 9). As expected for these supersonic flows, the
ballistic streamlines of the analytic model agree quite well with the
resulting streamlines of the numerical simulations in the upwind
region outside the bow shock.
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A P P E N D I X : VA L I DAT I O N O F TH E
N U M E R I C A L H Y D RO DY NA M I C C O D E
AZTEKAS

In this appendix we present several numerical tests intended to
validate our use of aztekas in this work.

A1 Spherical accretion

In order to test aztekas in the general relativistic hydrodynamic
regime, it is important to compare with a benchmark solution. For
this, we employ the analytic model of spherical accretion developed
by Michel (1972).

In Fig. A1, we compare the outcome of numerical simulations
performed with aztekas against Michel’s analytic solution for the
same values of polytropic index used in the wind accretion problem
(� = 4/3, 5/3) and for an asymptotic sound speed of a∞ = 0.01.

For these simulations, we took a 2D spherical axisymmetric grid
of 400 × 400 uniformly distributed radial bins r ∈ [0.5M, 20M]
and polar bins θ ∈ [0, π/2]. We set the boundary conditions at r =
20M by imposing Michel’s solution there. As initial conditions we
populate the entire numerical domain with the boundary constant
value and let the system evolve until a stationary regime is reached
for t � 100M. As can be seen from Fig. A1, an excellent agreement is
found between Michel’s analytic solution and the aztekas simulation
results. We compute the mass accretion rate and the relative error
between both solutions is below 0.2 per cent.

Also using this benchmark solution, we looked at the convergence
rate of aztekas by computing the L1 norm of the density error for

Figure A1. Comparison of the numerical hydrodynamic simulations per-
formed with aztekas against the relativistic spherical accretion model of
Michel (1972). The top panel shows the density as a function of radius
while the bottom panel shows the radial velocity for two different values of
the polytropic index � = 4/3, 5/3 and an asymptotic sound speed of a∞ =
0.01.
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Figure A2. L1 norm of the density error for the Michel test, using
resolutions Nr = 100, 200, 400, and 800. The dashed line shows the slope
that corresponds to a second-order convergence rate.

Figure A3. Comparison of the mass accretion rate for different domain
extensions. In all cases v∞ = 0.5, � = 5/3, and the simulation time is t =
1000M.

different numerical resolutions Nr,5 i.e.

L1(ρnum, ρexact) = 1

Nr

Nr∑

i=1

|ρnum(ri) − ρexact(ri)|, (A1)

where ρnum and ρexact are the numerical and exact values of the
density, respectively. In Fig. A2, we show the result of this test from
where we obtain a convergence rate consistent with a second order,
which is to be expected for smooth solutions and for our use of the
MC reconstructor.

A2 Dependence on domain extension and resolution

We also want to make sure that the numerical solutions obtained with
aztekas have converged to physical values and that the results are
independent from both numerical resolution and domain extension.

Due to the finite extension of the numerical domain rmax, the total
accretion rate calculated from the numerical simulations shows
a small dependence on rmax that gets weaker as larger domain

5Since no angular dependence is found for this spherically symmetric test,
we only varied the radial resolution while keeping a constant Nθ = 400.

Figure A4. Same as in Fig. A3, but now measuring the mass accretion rate
across r = 2M as a function of time.

Figure A5. Comparison between the mass accretion rate for different
resolutions R1 = 200 × 200, R2 = 300 × 300, R3 = 400 × 400, R4 =
500 × 500, and R5 = 600 × 600, for v∞ = 0.5, � = 5/3, and t = 1000M.

extensions are considered. For example, in Fig. A3 we show the
resulting mass accretion rate for simulations with v∞ = 0.5, � = 5/3,
and seven different domain extensions, at t = 1000M. As can be seen
from this figure, our choice of a domain extension of rmax = 10 racc

leads to an overestimation of the mass accretion rate of the order of
∼5 per cent, which is an acceptable margin of error for us in this
work. We expect the rest of the simulations to behave in a similar
way.

Similarly, we also looked at this same domain extension de-
pendence but now by monitoring the mass accretion rate across a
fixed radius (in this case across the event horizon at r = 2M) as
a function of time. As can be seen from Fig. A4, the difference
between a domain extension of 10 racc and of 25 racc maintains the
same margin error of ∼5 per cent along time.

In what regards the numerical resolution, we found that the grid
size does not affect as directly the value of the resulting accretion
rate. However, it does contribute to the smoothness of the solution,
with larger resolutions leading to less numerical noise. In Fig. A5
we show an example of this again for the case v∞ = 0.5, � = 5/3 and
five different numerical resolutions: R1 = 200 × 200, R2 = 300 ×
300, R3 = 400 × 400, R4 = 500 × 500, and R5 = 600 × 600. As
discussed in the Section 4, for most of the simulations presented in
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Figure A6. Self-convergence of the wind simulations (see equation A2)
for two sets of simulations with a ratio of k = 1.5 and 2 between successive
resolutions. In both cases the convergence rate Q stays between 1.5 and 2
in the steady-state region, as required for this test due to the presence of
shocks.

this work we settled for R3 as a good compromise between accuracy
and performance.

Finally, in order to estimate the convergence rate of the simu-
lations, and given that there is no analytical solution for the full
hydrodynamic wind accretion, we follow Lora-Clavijo & Guzmán
(2013) and measure the self-convergence rate using different reso-
lutions. To this purpose, we ran two sets of three simulations each,

with resolutions

R1 = 200 × 200, R2 = 300 × 300, and R3 = 450 × 450,

and

R1 = 200 × 200, R2 = 400 × 400, and R3 = 800 × 800.

Note that, for each set separately, there is a factor of k = 1.5 and
k = 2 between successive resolutions. With the simulation results
at hand, we compute the self-convergence factor Q according to

kQ = L1(ρ1, ρ2)

L1(ρ2, ρ3)
, (A2)

with L1(ρ i, ρ j) as defined in equation (A1) and where ρ1, ρ2, and
ρ3 are the densities along the accretion axis (θ = π) for each of the
employed resolutions. The results for this test are shown in Fig. A6.
As can be seen from this figure, for both set of resolutions we
find an order of convergence between 1.5 and 2 in the steady-state
region, which is to be expected for this kind of algorithms due to
the presence of shocks.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Chapter 5
Choked accretion: from radial infall
to bipolar outflows by breaking
spherical symmetry

In this chapter, we present the choked accretion model. The latter consists of an
inflow-outflow mechanism obtained by considering deviations from spherical symme-
try in an initially, radial gas inflow. Specifically, this non-relativistic model considers
axisymmetric, large-scale, small amplitude deviations in the density field in such a
way that the equatorial region is over dense as compared with the polar regions.
This density gradient breaks the spherical symmetry of the inflow, giving rise to a
steady-state solutions characterized by an equatorial inflow and a bipolar outflow.

The first part of the article focuses on the derivation of a simple analytic model
that motivates the physical processes involved in the choked accretion mechanism.
This analytic solution describes an incompressible fluid from which, under the as-
sumption of irrotational flow, we obtain the potential flow equation that gives us a
general solution for the velocity potential that describes both accretion onto a central
object and a bipolar outflow.

In the second part of the study, we extend the previous analytic solution to
the case of an ideal gas using full-hydrodynamic numerical simulations using the
aztekas code. The initial setup for these simulations consists of a uniform density,
spherical gas cloud. In order to break the spherical symmetry, we impose a density
profile as boundary condition at the injection sphere of the domain. We perform
different simulations of an ideal gas under two different thermodynamical processes:
isothermal (κ = 1) and adiabatic (κ = γ), using two values of the adiabatic index.
We also explore four values of the density contrast. From these numerical simulations
we compute the accretion rate and find that, independently of the density contrasts
at the boundary (as well as the adiabatic index), the mass accretion rate remains
constant and corresponds to Bondi’s value. These results suggest that, given that the
material is choking at a fixed value, the injected and ejected material are balanced,
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providing a direct link between accretion and ejection.

The study presented in this chapter was published in MNRAS in 2019. The details
of the paper are:
Aguayo-Ortiz A., Tejeda E., Hernandez X., 2019, MNRAS, 490, 5078.
doi:10.1093/mnras/stz2989

https://doi.org/10.1093/mnras/stz2989
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ABSTRACT
Steady-state, spherically symmetric accretion flows are well understood in terms of the
Bondi solution. Spherical symmetry, however, is necessarily an idealized approximation to
reality. Here we explore the consequences of deviations away from spherical symmetry,
first through a simple analytic model to motivate the physical processes involved, and
then through hydrodynamical, numerical simulations of an ideal fluid accreting on to a
Newtonian gravitating object. Specifically, we consider axisymmetric, large-scale, small-
amplitude deviations in the density field such that the equatorial plane is overdense as compared
to the polar regions. We find that the resulting polar density gradient dramatically alters the
Bondi result and gives rise to steady-state solutions presenting bipolar outflows. As the density
contrast increases, more and more material is ejected from the system, attaining speeds larger
than the local escape velocities for even modest density contrasts. Interestingly, interior to the
outflow region, the flow tends locally towards the Bondi solution, with a resulting total mass
accretion rate through the inner boundary choking at a value very close to the corresponding
Bondi one. Thus, the numerical experiments performed suggest the appearance of a maximum
achievable accretion rate, with any extra material being ejected, even for very small departures
from spherical symmetry.

Key words: accretion, accretion discs – gravitation – hydrodynamics – methods: numerical.

1 IN T RO D U C T I O N

The accretion of fluids towards gravitational objects is a topic of
general interest in astrophysics, as such phenomena underpin the
physics of large classes of systems (Hawley et al. 2015). Notably,
the ubiquitous jets observed from young stellar objects (YSOs) to
gamma-ray bursts (GRBs) and active galactic nuclei (AGNs) are
fuelled by the accretion of gas on to massive objects. Although the
detailed physics of accretion problems is complex, including the
effects of rotation, magnetic fields, non-ideal fluids, and mixing,
to name a few (Pudritz et al. 2007; Tchekhovskoy 2015; Jafari
2019), the availability of simplified analytic solutions where the
salient physical ingredients can be transparently traced has always
provided valuable insights and well-understood limiting cases for
the analysis of these systems.

The first analytic solution to such an accretion problem was the
Newtonian spherically symmetric model of Bondi (1952), with the

� E-mail: aaguayo@astro.unam.mx, (AA-O); emilio.ciencias@conacyt.mx,
(ET); xavier@astro.unam.mx (XH)

corresponding extension to general relativity by Michel (1972).
In both the cases, the authors assumed stationariness, spherical
symmetry, and zero angular momentum for the infalling material,
which was in turn described as an ideal fluid.

On the other hand, the origin of jets is typically understood
in connection with accretion disc models, where the geometry
very strongly deviates from spherical symmetry. In these, rotation
and small-scale magnetic fields are considered as fundamental for
the stability and evolution of the disc (Shakura & Sunyaev 1973;
Balbus & Hawley 1991), while the interplay of these with a large-
scale magnetic field is thought to be responsible for the launching
and subsequent collimation of the jet (Hawley et al. 2015). This
so-called magneto-rotational mechanism has been studied both at
a Newtonian level (Blandford 1976; Lovelace 1976; Blandford &
Payne 1982) and in general relativity when a central black hole is
involved (Blandford & Znajek 1977).

The viability of the magneto-rotational mechanism for launching
powerful jets has been successfully demonstrated by means of
magnetohydrodynamic (MHD) numerical simulations. This has
been done at a non-relativistic level for jets associated with
YSOs (Casse & Keppens 2002), as well as with comprehensive,

C© 2019 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society
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general relativistic-MHD simulations of accretion discs around
spinning black holes (Semenov, Dyadechkin & Punsly 2004; Qian,
Fendt & Vourellis 2018; Sheikhnezami & Fendt 2018; Liska et al.
2019).

The similarity of jets across a vast range of astrophysical scales,
from quasars to micro-quasars (e.g. Mirabel & Rodrı́guez 1994),
along with open questions regarding the matter content of relativistic
jets (Hawley et al. 2015) or the link between the accretion disc and
the acceleration process (Romero et al. 2017), might hint towards
the presence in some cases of more simple outflow-producing
mechanisms based on hydrodynamical physics. Moreover, it is clear
that if some kind of universal mechanism underlies all astrophysical
jets, then it cannot rely on the central accretor being a black hole.

Hydrodynamical models have been introduced for collimating
and accelerating jets, in the context of AGNs (Blandford & Rees
1974) and of YSOs (specifically H–H objects as studied by Canto &
Rodriguez 1980). On the other hand, a purely hydrodynamical
mechanism, where a small-amplitude density gradient on the
inflow boundary conditions yields to an inflow/outflow steady-state
solution, was introduced by Hernandez et al. (2014) based on an
analytic perturbation analysis of the hydrodynamic equations for an
isothermal fluid.

In Hernandez et al. (2014), the authors consider an originally
radial accretion flow that becomes increasingly dense as the fluid
approaches the central accretor. As the authors assume that this
flow originates from the inner walls of a disc-like configuration,
there is a certain degree of inhomogeneity in the density field,
with the polar regions being less dense than the disc plane. As
a result of this density inhomogeneity, on approaching the central
regions the geometrical focusing of the accreted material results in a
pressure gradient that deviates some of the fluid elements from their
infall trajectories and expels them from the central region along a
bipolar outflow.1 Within this scenario, the resulting bipolar outflow
is neither accelerated to large Mach numbers nor collimated as a
proper jet.

Following on from Hernandez et al. (2014), in this work we
extend the previous results by considering more realistic adiabatic
indices for the infalling material. The problem can no longer
be treated analytically, so we implement full hydrodynamical
numerical simulations using the free GPL hydrodynamical code
aztekas (Olvera & Mendoza 2008; Aguayo-Ortiz, Mendoza &
Olvera 2018).2

We have found with these simulations a flux-limited accretion
mode, in which the total mass infall rate on to the central accretor is
limited by a fixed value. This value coincides very closely with the
mass accretion rate of the spherically symmetric Bondi solution.
Whenever the incoming accretion flow surpasses this threshold
value, the excess flow is redirected by a density gradient and
expelled through the poles. Since the incoming accretion flow is
jamming at a gravitational bottleneck, we refer to this ejection
mechanism as choked accretion.

With the numerical simulations presented in this work, we recover
the main result of Hernandez et al. (2014) that a large-scale,
small-amplitude inhomogeneity in the density field can lead to

1A similar deviation process by a pressure gradient is incorporated in the
circulation model presented by Lery et al. (2002) in the context of molecular
outflows in YSOs.
2aztekas.org C©2008 Sergio Mendoza & Daniel Olvera and C©2018 Alejandro
Aguayo-Ortiz & Sergio Mendoza. The code can be downloaded from gith
ub.com/aztekas-code/aztekas-main.

the onset of a bipolar outflow as a generic result. The choked
accretion model can then be viewed as a transition bridge between
the spherically symmetric condition treated by Bondi and Michel,
where no outflows appear, and the disc geometries of the jet-
generating models mentioned above.

In a separate work, Tejeda, Aguayo-Ortiz & Hernandez (2019),
we are proposing a full-analytic, general relativistic model of the
choked accretion mechanism. This analytic model describes an
ultra-relativistic gas with a stiff equation of state (see Petrich,
Shapiro & Teukolsky 1988) and is based on the conditions of steady-
state, axisymmetry, and irrotational flow. As shown by Tejeda
(2018), the non-relativistic limit of such a model corresponds to
an incompressible fluid in Newtonian hydrodynamics. With this
motivation in mind, we present in this article a simple analytic
model of an incompressible fluid.

The remainder of the paper is organized as follows. In Section 2,
we present a simple analytic model of the choked accretion that
leads to an inflow/outflow configuration. Section 3 presents the hy-
drodynamical simulations used to extend this model to more general
conditions, allowing for a range of plausible adiabatic indices. The
code is validated and tested in the spherically symmetric case, where
steady-state solutions accurately tracing the corresponding Bondi
ones are recovered. In Section 4, we analyse the results obtained
and discuss the applicability of the choked accretion mechanism
in astrophysical settings. Finally, in Section 5, we present our
conclusions.

2 A NA LY TIC MO D EL

In order to present a simple model where the physics leading from
the breakage of spherical symmetry to the establishing of an outflow
can be traced transparently, in this section we discuss an analytic
model of choked accretion. Following Tejeda (2018), this model
is based on an incompressible fluid under the approximations of
steady-state, axisymmetry, and irrotational flow.

This model can be considered as complementary to the perturba-
tion analysis presented in Hernandez et al. (2014), where isothermal
conditions were assumed, and which shows that a spherically
symmetric flow on to a point mass is in fact unstable towards the
development of the outflow phenomenology discussed here, as soon
as a slight perturbation to spherical symmetry is introduced in the
inflow conditions.

Under the irrotational flow condition, the fluid’s velocity field can
be obtained as the gradient of a velocity potential � (i.e. �v = ∇�).
For an incompressible fluid, this means that � has to be a solution
to the Laplace equation ∇2� = 0. Adopting spherical coordinates
and imposing the axisymmetry condition, we know that a general
solution for � is given by (Currie 2003)

� =
∞∑

n=0

(
An rn + Bn r−(n+1)

)
Pn(cos θ ), (1)

where An and Bn are the constant coefficients and Pn(cos θ ) is the
Legendre polynomial of degree n.

The lowest order solution that describes both accretion on to a
central object and an axisymmetric, bipolar outflow has only non-
vanishing coefficients B0 and A2.3 Let us re-parametrize these two

3A scenario of wind accretion can be studied by taking instead only B0 and
A1 different from zero, as has been done by Petrich et al. (1988) and Tejeda
(2018). More complex geometries can be described by considering higher
order multipoles of An.
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Figure 1. Streamlines of the incompressible analytic model showing an
inner quasi-spherical accretion region, and polar stagnation points beyond
which a polar outflow solution results. The red dots indicate the location of
the stagnation points along the symmetry axis. The axes correspond to the
usual cylindrical coordinates R = r sin θ , z = r cos θ .

coefficients as B0 = α, A2 = α/(2 S3), and write the solution as

� = α

r

[
1 + r3

4 S3
(3 cos2 θ − 1)

]
, (2)

which leads to the velocity field

dr

dt
= − α

r2

[
1 − r3

2 S3

(
3 cos2 θ − 1

)]
, (3)

dθ

dt
= −3 α sin θ cos θ

2 S3
. (4)

This velocity profile has the same dependence on the polar angle
as the one obtained for the isothermal hydrodynamic solutions of
Hernandez et al. (2014), which are also given in terms of Legendre
polynomials.

The parameter S is related to the location of the stagnation point,
as from equations (3) and (4) we see that the points (r = S, θ = 0)
and (r = S, θ = π ) correspond to the stagnation points of the flow.
In Fig. 1, we show an example of the resulting streamlines.

On the other hand, the parameter α is related to the total accretion
rate on to the central object in the following way:

Ṁ = −2π

∫ π

0
ρ

dr

dt
r2 sin θ dθ = 4πρ α, (5)

that is

α = Ṁ

4πρ
. (6)

At this point, Ṁ can have any arbitrary value. For the choked
accretion model, we shall assume that Ṁ is given by the Bondi
accretion rate, i.e.

α = ṀB

4πρ
= 1

4

(GM)2

a3∞

(
2

5 − 3 γ

) 5−3 γ
2(γ−1)

, (7)

where M is the mass of the central accretor, γ is the adiabatic index
of the fluid, and a ∞ is the speed of sound far away from the central
object.

Let us consider that the flow is continuously being injected from
a sphere of radius R that we shall refer to as the injection sphere.
Provided that S < R, from equation (3) we see that the radial
velocity changes sign at

cos θ0 =
√

1

3

(
1 + 2

S3

R3

)
. (8)

More specifically, the flow is characterized by an inflow/outflow
geometry, with inflow (ṙ < 0) across the equatorial belt defined by
θ0 < θ < π − θ0 and outflow (ṙ > 0) across the polar caps defined
by θ < θ0 and θ > π − θ0.

We can calculate now the mass injection rate across the sphere
of radius R as

Ṁin = −4π

∫ π/2

θ0

ρ
dr

dt
R2 sin θ dθ,

= 4πρ α
R3

S3

[
1

3

(
1 + 2

S3

R3

)]3/2

. (9)

Similarly, we define the mass ejection rate leaving this same sphere
as

Ṁej = 4π

∫ θ0

0
ρ

dr

dt
R2 sin θ dθ,

= Ṁin − Ṁ. (10)

Note that if S ≥ R then Ṁin = Ṁ and Ṁej = 0.
Finally, an expression for the streamlines can be found by

combining equations (3) and (4) as

dr

dθ
= 2 S3 − r3

(
3 cos2 θ − 1

)

3 r2 sin θ cos θ
, (11)

which can be integrated to give

r = S

(
2

	 − cos θ

cos θ sin2 θ

)1/3

, (12)

where 	 is an integration constant (stream function). From this
expression, we see that the streamlines corresponding to 	 = ±1
are the only ones that arrive at the stagnation points located at (S, 0)
and (S, π ), respectively. On the other hand, all of the streamlines
with |	| < 1 accrete on to the central object while those with |	|
> 1 escape along the bipolar outflow.

3 N U M E R I C A L S I M U L AT I O N S

The simple toy model presented in the previous section is clearly
limited by the assumption of an incompressible fluid. In this
section, we relax this condition and use instead full-hydrodynamic
numerical simulations of a polytropic fluid obeying

P = K ργ , (13)

where P is the fluid pressure and K = const. In this work, we
consider three different values for the adiabatic index, namely γ =
1 corresponding to an isothermal fluid, γ = 4/3 describing a gas
composed of relativistic particles,4 and γ = 7/5 corresponding to
the adiabatic index of a diatomic gas.

4This value is relevant not only for relativistic particles, but is also commonly
used in astrophysical situations, e.g. for optically thick material where the
internal energy is dominated by radiation pressure (e.g. Awe et al. 2011).

MNRAS 490, 5078–5087 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/490/4/5078/5603761 by ehelpdeskebsco-unam
@

yahoo.com
 user on 02 M

ay 2022



Choked accretion 5081

In order to capture the basic premise on which the mechanism
of choked accretion operates, i.e. breaking spherical symmetry
by introducing a small density contrast between the equator and
the poles, here we parametrize this anisotropy by imposing the
following density profile as boundary condition at the injection
sphere (r = R)

ρ(θ ) = ρ0

(
1 − δ cos2 θ

)
, (14)

where ρ0 is an arbitrary value that we set as the density unit and δ is
the density contrast between the equator and the poles defined as

δ = 1 − ρ(0)

ρ(π/2)
. (15)

We study this problem by means of numerical simulations
performed with the hydrodynamical code AZTEKAS. This code numer-
ically solves the inviscid Euler equations in a conservative form,

∂ρ

∂t
+ ∇ · (ρv) = 0, (16)

∂ (ρv)

∂t
+ ∇ · (ρv ⊗ v) + ∇P = −ρ

GM

r2
r̂ , (17)

∂E

∂t
+ ∇ · [v (E + P )] = −ρ

GM

r2
v · r̂ , (18)

with v the fluid velocity vector and E the total energy density defined
as

E = 1

2
ρ|v|2 + ε, (19)

where ε is the internal energy density. From equation (13), together
with the first law of thermodynamics for an ideal gas, we can close
this system of equations with the following equation of state that
relates the pressure to the internal energy density

ε = P

γ − 1
. (20)

The equations (16)–(20) are spatially discretized using a finite-
volume scheme together with a high-resolution shock capturing
(HRSC) method that uses a second-order piecewise linear recon-
structor (MC) and the HLL (Harten, Lax & Leer 1983) approximate
Riemann solver to compute the numerical fluxes. The time evolution
of these equations is calculated using a second-order total variation
diminishing Runge–Kutta time integrator (RK2) (Shu & Osher
1988), with a Courant factor of 0.25.

Since the density profile in equation (14) is independent of the
azimuthal angle, we assume that the problem retains symmetry with
respect to both the polar axis (axisymmetry) and the equatorial plane
(north–south symmetry). Hence, for the numerical simulations, we
adopt a two-dimensional spherical domain consisting of a uniform
polar grid on θ ∈ [0, π /2] and an exponential radial grid with
r ∈ [Racc, R], computed as

ri = Racc + exp

(
ln(R − Racc)i

Nr

)
, (21)

where Racc is the radius of the inner boundary. As fiducial values
for the numerical resolution, we adopt Nr = Nθ = 150, while for
the radial boundaries we take Racc = 0.1 rB and R = 10 rB, where
rB = GM/a2

∞ is the Bondi radius. The code uses rB, a ∞, and
tB = rB/a ∞ as units of length, velocity, and time, respectively.

3.1 Initial and boundary conditions

We performed different simulations using three values of the
adiabatic index γ = 1, 4/3, and 7/5, and four values of the den-
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Figure 2. Mass accretion rate as a function of time for the four values of the
density contrast δ in the case γ = 4/3 (similar results were obtained for the
other two values of γ ). There is a clear convergence towards a steady-state
solution.

sity contrast δ = 0, 0.1 per cent, 1 per cent, and 10 per cent. As
boundary conditions, we set free outflow5 from the grid at Racc

(i.e. free inflow towards the central object) and reflection conditions
at both polar boundaries. At the outer boundary, at R = 10 rB, we
impose the density profile described in equation (14) and compute
the pressure as P(θ ) = ρ(θ )γ /γ , but allow free (as free-outflow
condition) evolution on both velocity components. For all the
simulations, we set the fluid initially at rest (zero velocities) and
uniform initial conditions (constant density and pressure interior to
the outer boundary).

We have adopted the free-outflow condition at the inner radial
boundary as we are treating the accretor as a featureless Keplerian
potential. For alternative assumptions on the accretor, e.g. modelling
it as a star, appropriate boundary conditions should be imposed. See,
for example, the treatment of a hard inner boundary employed by
Velli (1994) and Del Zanna, Velli & Londrillo (1998) for studying
time-dependent, inflow/outflow solutions in the context of stellar
atmospheres and their interaction with the interstellar medium.

All simulations were run until a stationary state was reached
throughout the domain. This was estimated by monitoring the
behaviour of the mass accretion rate Ṁ , with a steady state assumed
once the relative temporal fluctuations in this parameter fell below
one part in 105. See Fig. 2 for an example of the time evolution
of Ṁ for the case γ = 4/3. The steady state was reached at times
2000 tB, 4500 tB, and 7500 tB for γ = 1, 4/3, and 7/5, respectively.

3.2 Code validation

As a validation of the AZTEKAS code in this work, we start by
considering δ = 0, in which case spherical symmetry is recovered
and the resulting accretion flow should coincide with the Bondi
solution. In Fig. 3, we show the results for the Mach number
M = v/a as a function of the radial distance to the central object, as
obtained from the three simulations with γ = 1, 4/3, and 7/5 and
compared to the corresponding analytic solutions. We find a very
good agreement with the Bondi solution, with an error of less than
1 per cent in the three cases (see Table 1). Further tests of aztekas

5The free-outflow condition is implemented by assigning to each ghost cell
the value of the nearest active cell.
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Figure 3. Comparison of the spherically symmetric numerical simulations
performed with aztekas and the Bondi accretion solution corresponding to
the adiabatic indices γ = 1, 4/3, and 7/5. The figure shows the Mach num-
ber versus radius for the three cases. The solid, coloured lines correspond to
the Bondi solution while the dashed, black lines correspond to the numerical
results. The vertical dashed lines indicate the position of the sonic radius for
each γ .

Table 1. Simulations summary. In this table, we give the accretion, injec-
tion, and ejection rates in units of the corresponding Bondi rates (equation
7), ratio between ejection and injection, the position of the stagnation point
along the vertical axis, as well as the ratio of the maximum ejection velocity
to the local escape velocity and to the local speed of sound a.

γ = 1

δ (%) Ṁ

ṀB

Ṁin
ṀB

Ṁej

ṀB

Ṁej

Ṁin

S
rB

vmax
vesc

vmax
a

0.0 0.99 0.99 0 0 – – –
0.1 0.99 1.95 0.94 0.48 5.10 0.130 0.057
1.0 1.02 4.18 3.16 0.75 3.35 0.373 0.164
10.0 1.05 9.99 8.94 0.89 2.55 1.182 0.520

γ = 4/3

δ (%) Ṁ

ṀB

Ṁin
ṀB

Ṁej

ṀB

Ṁej

Ṁin

S
rB

vmax
vesc

vmax
a

0.0 1.00 1.00 0 0 – – –
0.1 1.00 2.55 1.55 0.61 4.50 0.130 0.057
1.0 1.01 5.60 4.59 0.82 3.29 0.376 0.166
10.0 1.04 15.44 14.40 0.93 2.16 1.186 0.522

γ = 7/5

δ (%) Ṁ

ṀB

Ṁin
ṀB

Ṁej

ṀB

Ṁej

Ṁin

S
rB

vmax
vesc

vmax
a

0.0 0.99 0.99 0 0 – – –
0.1 1.00 2.76 1.76 0.63 4.34 0.130 0.057
1.0 1.01 6.23 5.22 0.83 3.17 0.376 0.166
10.0 1.04 17.41 16.37 0.94 2.05 1.188 0.523

against other analytic solutions and astrophysical problems can be
found in Aguayo-Ortiz et al. (2018) and Tejeda & Aguayo-Ortiz
(2019).

The treatment of the inner boundary is crucial for solving
numerically the spherical accretion problem. One important point
being whether the sonic surface is well resolved in the numerical

domain or not. In the Bondi problem, the sonic surface appears at

rs = 5 − 3γ

4
rB. (22)

As mentioned above, in all the simulations we placed the inner
boundary at Racc = 0.1 rB and, thus, the sonic surface is well
resolved for all values of γ .

Note that we have not included the commonly used adiabatic
index for a monoatomic gas γ = 5/3, as in this case the sonic radius
vanishes altogether. This makes a simulation that does not include
artificial viscosity unstable to numerical fluctuations appearing at
the inner boundary. We prefer not to include any such artificial
effects so as to retain confidence in that the results obtained are a
robust consequence of the physics being modelled.

3.3 Results

We now present the results for numerical simulations where the
assumption of spherical symmetry for the infalling flow is relaxed,
and parametrized through the density contrast δ as in equation (15).

To explore the relation between total infall and total outflow in
the resulting steady-state configurations, for each simulation we
compute the mass accretion rate using equation (5). We apply this
formula at each radial grid point and then take the average rate for
all the domain. Likewise, we measure the injected and ejected mass
rates across R using equations (9) and (10).

A summary of all of the simulations is shown in Table 1 where,
for the various adiabatic indices and equatorial-to-polar density
contrasts probed, we report the different accretion, injection, and
ejection rates, the ratio between ejection and injection, together
with the location of the stagnation point and the maximum velocity
attained by the outflowing material.

In order to validate these results, we performed a self-convergence
test of the numerical solutions by increasing by a factor of 1.5 the
resolution in both radial and angular coordinates. We obtained a
second-order convergence as expected for a stationary shockless
solution with an HRSC method (Lora-Clavijo & Guzmán 2013).

In Fig. 4, we show the resulting flow configurations for γ = 1
and the four density contrasts. The figure shows the streamlines of
the fluid together with isocontours of the density field. Figs 5 and 6
give the results for γ = 4/3 and 7/5, respectively. In these figures,
clear semicircles in the inner region of the numerical domain show
the locations of the sonic surfaces in the Bondi solution, which can
be seen to be resolved in all cases, as our domains start at 0.1 rB in
all the cases.

In Fig. 7, we show a close-up of the inner region in the case of
δ = 10 per cent. Here we show the analytic value of the sonic radius
(equation 22), as well as the one extracted from our simulations. As
can be seen, there is a very good agreement between both surfaces,
even though the numerical ones do not correspond to a spherically
symmetric accretion flow. This illustrate the strong convergence of
the solutions found towards the Bondi solution for small radii.

Moreover, we have analysed the distribution of the entropy and
of the values of the Bernoulli constant among different streamlines.
As expected for a perfect fluid in the absence of shocks, and due to
our choice of the boundary conditions, the entropy remains constant
throughout the entire numerical domain. On the other hand, for the
Bernoulli constant, although it has a small variation from streamline
to streamline, the mean value remains within 1 part in 104 to the
corresponding Bondi one, which agrees with the fact that Ṁ ≈ ṀB.
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Choked accretion 5083

Figure 4. Resulting steady-state flow configurations for the numerical simulations for a fluid with equation of state γ = 1 accreting on to a point mass. The
different values of the density contrast δ used in each case are indicated on the top-left corner of each panel. The first panel gives the spherically symmetric
case, which, as expected, recovers the Bondi solution. As soon as δ 
= 0, we see a qualitative change in the flow morphology, with even marginal departures
from sphericity resulting in polar outflows. As the density contrast increases, the stagnation point reaches deeper into the accretion flow while the outflow
region expands towards the equator. Streamlines are shown as black solid arrows. The grey scale gives the density profile, with some isodensity curves shown
as black dashed lines (colour version online). The axes correspond to the usual cylindrical coordinates R = r sin θ , z = r cos θ . The clear semicircles at small
radii identify the position of the Bondi sonic surface, in all cases located within the numerical domain, which begins at 0.1 rB.

Figure 5. Resulting steady-state flow configurations for the numerical simulations with γ = 4/3. The meaning of the different lines is the same as in Fig. 4.
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5084 A. Aguayo-Ortiz, E. Tejeda and X. Hernandez

Figure 6. Resulting steady-state flow configurations for the numerical simulations with γ = 7/5. The meaning of the different lines is the same as in Fig. 4.

4 D ISCUSSION

Based on the hydrodynamical numerical simulations presented
in the previous section, we have explored the consequences of
breaking spherical symmetry by imposing an axisymmetric, polar
density contrast δ in the accretion flow. Naturally, when δ = 0, the
spherically symmetric Bondi solution is recovered, as can be seen
from Fig. 3 and the top-left panel in Figs 4–6. However, as soon as
there is a non-zero density contrast between the equatorial plane and
the polar regions, the flow morphology changes qualitatively into
an inflow/outflow configuration. The onset of even a quite marginal
density contrast of δ = 0.1 per cent results in the appearance of
flow patterns highly resembling the analytic toy model discussed
in Section 2 as well as the inflow/outflow configurations of the
perturbative results of Hernandez et al. (2014) for an isothermal
model.

As can be seen from the results reported in Table 1, as we take
progressively larger values for the density contrast, the magnitude of
the ejection velocities increases, and the position of the stagnation
point moves towards smaller radii as the outflow region expands to
occupy a larger fraction of the simulation domain. Note from Figs 4–
6 that for δ = 10 per cent, the density contours appear slightly
oblate, with the departure from spherical symmetry becoming
more apparent. Moreover, for this same density contrast, we obtain
ejection velocities larger than the local escape velocity, while, at
the same time, the ratio of mass ejection and mass injection rates
reaches values as high as 94 per cent.

We have presented simulation results for three different values of
the adiabatic index: γ = 1, 4/3, and 7/5. Although we also explored
intermediate values of γ , we do not include any further results,
as they are all very similar and show a continuous progression
between the cases presented. Indeed, we see that the three cases
already considered are qualitatively very similar, as could have

been anticipated from the qualitative similarities of the analytic
solution of the highly simplified incompressible model presented
in Section 2 and the slightly more realistic streamlines of the
isothermal perturbative solutions of Hernandez et al. (2014). It is
clear that breaking spherical symmetry with a polar density gradient
in hydrodynamical accretion models leads to the same qualitative
solutions with a morphology as shown in Figs 4–6.

In Fig. 8, we show, for all of the simulations reported in this work,
the ratio of the ejected and injected mass rates (Ṁej/Ṁin) versus
the injected mass rate in units of the corresponding Bondi value
(Ṁin/ṀB). The solid line represents the points where the injection
and ejection of material are such that the total mass accretion rate
equals the Bondi value, i.e.

Ṁ = Ṁin − Ṁej ≡ ṀB. (23)

From this figure, we see that for Ṁin/ṀB = 1, the ejected mass
is zero, while as Ṁin/ṀB increases, the ratio Ṁej/Ṁin tends to
unity. It is remarkable that this dependence between injection and
accretion holds quite accurately across the adiabatic index range
sampled. Differences between Ṁ and ṀB remain beyond numerical
resolution, but in all cases below a 5 per cent level. Thus, regardless
of how large the injected mass rate is at the outer boundary, the
central object only accretes at a maximum critical rate, closely
corresponding to the Bondi mass accretion rate. This justifies our
choice in equation (7) for the mass accretion rate of the analytic
model of choked accretion.

The bipolar boundary density distribution adopted in equa-
tion (14) is not intended as a physical model corresponding
to any specific situation, but rather as a convenient first-order
parametrization of departure from spherical symmetry. However, in-
fall processes originating from accretion disc phenomena will quite
probably be characterized by axisymmetric density profiles denser
towards the equator than the poles. The details of the flow patterns
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Choked accretion 5085

Figure 7. A close-up of the inner region of the simulations with δ =
10 per cent for the three values of γ . In the three panels, we show the
location of the sonic surface as extracted from the numerical simulations
(dashed lines) together with the one corresponding to the Bondi solution
(solid line).
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Ṁin /ṀB
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Figure 8. Ratio between the ejected and injected mass rates versus the
injected mass rate in units of ṀB (see equation 7) for all of the simulations
reported in this work. The solid line represents the case where the accretion
rate on to the central object Ṁ is equal to the Bondi mass accretion rate.

resulting from particular situations will surely differ from the results
presented here, although the clear convergence towards spherical
accretion seen at small radii implies robustness in our conclusions
with respect to this point. Indeed, the overall flow patterns obtained
persist even when changing the particular parametrization used.
Other similar density profiles were explored, obtaining consistent
results, although very distinct boundary conditions may very well
lead to substantially different solutions.

Although the imposed geometry of the inflow boundary con-
ditions necessarily leads to final configurations sharing the same
symmetry, the resulting inflow/outflow morphology is by no means
the only configuration sharing this symmetry, e.g. a pure infall
configuration with oblate isodensity contours would have also
satisfied the symmetry conditions alone. Further, the resulting limit
on the accretion rate saturating close to the Bondi value is in no way
evident simply from the assumption of a polar density gradient on
the boundary conditions.

Let us explore now the viability of the choked accretion model to
contribute towards the launching of a jet in different astrophysical
settings. For this model, we have neglected the effects of fluid
rotation, which is a valid approximation just for the innermost part
of an accretion disc where, through viscous transport mechanisms
(e.g. Balbus & Hawley 1991), the disc material has lost most of its
angular momentum. It is then natural to ask for the whole choked
accretion machinery to fit within the inner walls of the disc. In other
words, we require S, the characteristic length-scale of the choked
accretion model, to be comparable to the physical size of this inner
region.

Our simulation results show that S sinks deeper into the central
region as we consider both larger density contrasts δ and larger
adiabatic indices γ . We note, however, that for the parameters
explored in this work S is always larger than the Bondi radius
rB = GM/a2

∞. Assuming that this result holds in general, and
considering an ideal gas composed of monoatomic hydrogen, we
can write

a∞ =
√

γ kB T∞
mH

� 3 × 105

(
T

103 K

)1/2

cm s−1, (24)

and, consequently, we have

S � 100

(
M

M


) (
T

103 K

)−1

au, (25)

or, in units of the gravitational radius rg = GM/c2

S � 5 × 106

(
T

106 K

)−1

rg. (26)

These expressions should be considered as upper limits for S.
Additional physical ingredients that have been left out from this
simple model can contribute to reduce this characteristic length-
scale. For example, we have neglected the necessary presence of
radiation and magnetic fields in the system, both of which will result
in an enhanced effective temperature, which will in turn result in
smaller values of S.

Let us consider the accretion discs behind X-ray binaries or
AGNs. For these systems, the inner border of the disc is expected
to have a radius of the order of 1–10 rg and a temperature of around
T ∼ 106 K (Czerny et al. 2003; Kaaret, Feng & Roberts 2017).
From equation (26), we have S � 106 rg and we can then conclude
that these systems are too cold for choked accretion on its own to
be responsible for the ejection.
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On the other hand, for a Keplerian protoplanetary disc around a
YSO, we have inner radii of the order of 0.1–1.0 au and temperatures
that can reach up to 103 K (Mori, Bai & Okuzumi 2019). In this
case from equation (25) we obtain S � 100 au, which is two to
three orders of magnitude larger than the presumed physical size
of the system. Nevertheless, choked accretion might contribute to
the ejection of molecular outflows associated with YSOs (Bachiller
1996), as these outflows are driven by infalling matter and orig-
inate from regions farther than several 100 au from the central
accretor.

Lastly, if we consider the central progenitors of long GRBs within
the so-called collapsar scenario (Woosley & Bloom 2006), we have
again inner radii of the order of 1–10 rg but temperatures that can
now reach up to 1011 K. From equation (26) for this temperature
we obtain S � 50 rg, which is now within the expected order of
magnitude for the mechanism presented to become relevant.

From these examples, it might seem that the length-scale S on
which the choked accretion mechanism operates is too large to
contribute towards the ejection mechanism behind most astrophys-
ical jets. It is important to keep in mind, however, that relaxing
some of the simplifying assumptions behind the present model
will necessarily lead to smaller values of S. In addition to the
already mentioned role played by radiation and magnetic fields,
we have also seen a clear trend for diminishing values of S as the
equatorial-to-polar density contrast increases. Hence, we can expect
the applicability of the choked accretion mechanism to increase
once larger density contrasts are considered.

In connection to the previous point, a non-zero angular mo-
mentum will naturally contribute to increase the density contrast
between the material in the disc with respect to the polar regions (see
e.g. Mendoza, Tejeda & Nagel 2009). We were not able to explore
this regime in this work since from our numerical experiments
we have found that taking larger values of δ or outer boundaries
smaller than rB leads to rather unstable, highly dynamic accretion
flows that do not seem to relax to steady-state configurations.
We plan, however, to study both the effect of rotation and the
dynamic regime resulting from steeper density gradients in future
work.

There are additional physical processes, particularly non-
adiabatic effects such as radiative cooling, heat transfer, and shock
formation, that can in principle modify our results. However, it is
not clear a priori whether the inclusion of these effects will enhance
or hamper the applicability of the choked accretion mechanism.
We leave addressing these important points as the focus of future
investigations, whereas the current simple model can be seen as
presenting an underlying phenomenon that might be an important
factor within a more general scheme.

5 C O N C L U S I O N S

Through simple analytic considerations for an idealized incom-
pressible fluid, and axisymmetric numerical simulations for hydro-
dynamical accretion in a central Newtonian potential spanning a
range of adiabatic indices, we have shown that large-scale, small-
amplitude departures from spherical symmetry, where the polar
regions are underdense with respect to the equatorial plane, result in
substantial qualitative and quantitative modifications in the resulting
flow morphology.

Although the details depend on the particular choice of phys-
ical parameters, for the continuous bipolar boundary conditions
explored, the resulting flow patterns are no longer the classical
radial accretion ones, but have a consistent morphology comprising

a central quasi-spherical accretion region, and an outer zone of
equatorial infall and polar outflows.

We have seen that as the density contrast increases, a larger
fraction of the mass injection rate is reversed and expelled along
a bipolar outflow. Moreover, the maximum velocity attained by
this ejected material can reach values larger than the local escape
velocity.

As the accretion flow tends towards spherical symmetry at small
radii, we find the interesting result that the total mass accretion
rate is limited at a few per cent above the Bondi value of the
corresponding spherically symmetric case. Thus, hydrodynamical
accretion towards central objects appears to choke at a maximum
value, with any extra input material fuelling the bipolar outflow.

In conclusion, we have presented compelling evidence for the
existence of a choked accretion phenomenon in hydrodynamical
flows on to gravitating objects. Furthermore, we have shown
that choked accretion works as a hydrodynamical mechanism
for ejecting axisymmetric outflows, thus constituting a transition
bridge between purely radial accretion flows and jet-generating
systems.
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Chapter 6
Choked accretion onto a
Schwarzschild black hole: a
hydrodynamical jet-launching
mechanism

In this chapter, we present the relativistic extension of the choked accretion model.
We consider the same choked accretion setup as in Chapter 5, in which we assume
that the spherical symmetry is broken by considering a large amplitude, small scale
density gradient where the accreted material is more concentrated at the equator
than in the polar regions. In this case, the central massive object corresponds to a
Schwarzschild black hole.

As discussed in Chapter 5, the first part of the work focuses on the development
of an analytic model of the choked accretion mechanism. For this solution we use
the ultra-relativistic stiff equation of state for modelling a fluid that is accreted by
a Schwarzschild black hole. With this kind of description for the gas, we are able to
obtain a hydrodynamic analytic solution, with the restriction that the sound speed
is constant everywhere and equal to the speed of light. By assuming an irrotational
condition, we obtain the relativistic extension of the incompressible-Newtonian po-
tential fluid description, from which we obtain not only the velocity field, but also
the density field and the mass accretion rate. This analytic model provides a more
general understanding of the physics behind in the choked accretion mechanism.

In the next part of the paper, we extend the relativistic version of the choked
accretion mechanism by relaxing the assumption of the equation of state, and con-
sidering an ideal gas following a polytropic relation. We perform this by running a
set of full-hydrodynamic simulations with the aztekas code. In this case, taking ad-
vantage of the fact that our analytic model represents a full-hydrodynamic solution,
we use it as a benchmark test to validate our simulations. The numerical experiments
regard the exploration of different parameters: density contrast of the density profile
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at the boundary, adiabatic index and speed of sound of the fluid. The steady state
solutions allow us to compute the ejected and injected mass, as well as the total mass
accretion rate, showing the viability of the choked accretion model to preserve its
flux-limited accretion regime in the relativistic regime.

The study presented in this chapter was published in ApJ in 2020. The details of the
paper are:
Tejeda E., Aguayo-Ortiz A., Hernandez X., 2020, ApJ, 893, 81. doi:10.3847/1538-
4357/ab7ffe

https://iopscience.iop.org/article/10.3847/1538-4357/ab7ffe
https://iopscience.iop.org/article/10.3847/1538-4357/ab7ffe
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Abstract

We present a novel, relativistic accretion model for accretion onto a Schwarzschild black hole. This consists of a
purely hydrodynamical mechanism in which, by breaking spherical symmetry, a radially accreting flow transitions
into an inflow-outflow configuration. The spherical symmetry is broken by considering that the accreted material is
more concentrated on an equatorial belt, leaving the polar regions relatively under-dense. What we have found is a
flux-limited accretion regime in which, for a sufficiently large accretion rate, the incoming material chokes at a
gravitational bottleneck and the excess flux is redirected by the density gradient as a bipolar outflow. The threshold
value at which the accreting material chokes is of the order of the mass-accretion rate found in the spherically
symmetric case studied by Bondi and Michel. We describe the choked accretion mechanism first in terms of a
general relativistic, analytic toy model based on the assumption of an ultrarelativistic stiff fluid. We then relax this
approximation and, by means of numerical simulations, show that this mechanism can operate also for general
polytropic fluids. Interestingly, the qualitative inflow-outflow morphology obtained appears as a generic result of
the proposed symmetry break, across analytic and numeric results covering both the Newtonian and relativistic
regimes. The qualitative change in the resulting steady-state flow configuration appears even for a very small
equatorial-to-polar-density contrast (∼0.1%) in the accretion profile. Finally, we discuss the applicability of this
model as a jet-launching mechanism in different astrophysical settings.

Unified Astronomy Thesaurus concepts: Black hole physics (159); Astrophysical black holes (98); Accretion (14);
Bondi accretion (174); Hydrodynamical simulations (767); Analytical mathematics (38); Relativistic fluid
dynamics (1389); General relativity (641); Jets (870)

1. Introduction

Astrophysical jets are found in vastly different scenarios:
from the parsec scales of the H-H objects associated with
young stellar systems (Hartigan 2009), to the megaparsec
scales of the radio lobes that accompany some radio galaxies
and other active galactic nuclei (AGNs; Beckmann &
Shrader 2012). They are also inferred in connection with
high-energy phenomena such as long gamma ray bursts
(GRBs) following the collapse of a massive star (Woosley &
Bloom 2006), jetted emission associated with microquasars in
some X-ray binaries (Mirabel & Rodríguez 1994), X-ray flares
after a stellar tidal disruption event (Burrows et al. 2011), and
short GRBs accompanying the kilonova explosion after the
merger of two neutron stars (Abbott et al. 2017).

In recent decades, substantial progress has been made in
understanding different aspects of astrophysical jets, particu-
larly in relation to their acceleration and collimation (see, e.g.,
Qian et al. 2018; Liska et al. 2019). However, open questions
remain concerning the process of launching the jet in the first
place, as well as the details connecting the accreted and ejected
flows (Romero et al. 2017).

Several mechanisms have been proposed to address these
issues. The most widely accepted ones are the mechanisms
introduced by Blandford & Payne (1982, hereafter BP) and
Blandford & Znajek (1977, hereafter BZ). The BP mechanism
consists of the extraction of energy and angular momentum
from an accretion disk via a magneto-centrifugal process. The
main ingredient is a global, poloidal magnetic field threading

an accretion disk that rotates with Keplerian velocity. This
mechanism is mostly used to explain the origin of jets in
AGNs(e.g., Hawley et al. 2015; Blandford et al. 2019) and in
young stellar objects (YSOs; e.g., Ouyed et al. 2003; Pudritz
et al. 2007; Fendt 2018). On the other hand, the BZ mechanism
shows an efficient way of extracting rotational energy from the
spin of a Kerr black hole, provided a sufficiently strong
magnetic field threads its event horizon. This mechanism has
been used to explain the jets associated with GRBs(Lloyd-
Ronning et al. 2019; Zhong et al. 2019) and radio jets in
AGNs(Komissarov et al. 2007). Both mechanisms have been
successfully tested under broad physical conditions using
general relativistic, magneto-hydrodynamic simulations (e.g.,
Semenov et al. 2004; McKinney 2006; Qian et al. 2018; Liska
et al. 2019).
On the other hand, a purely hydrodynamical mechanism has

been proposed by Hernandez et al. (2014) in which an
axisymmetric, polar-density gradient is responsible for deflect-
ing part of the material accreting from an equatorially over-
dense inflow and redirecting it along a bipolar outflow. The
main advantage of this jet-launching mechanism is that for it to
work, one does not need to invoke the presence of magnetic
fields that might lack the necessary strength or geometry in
some systems (Hawley et al. 2015), or processes taking place in
the vicinity of a rotating event horizon and that, thus, can only
account for jets associated with systems having a Kerr black
hole as central accretor.
In this work, we revisit the jet-launching model of

Hernandez et al. (2014) and study it in the general relativistic
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© 2020. The American Astronomical Society. All rights reserved.

1



regime of an accreting, nonrotating black hole (Schwarzschild
spacetime). Based on the general solution derived by Petrich
et al. (1988) for a relativistic potential flow with a stiff equation
of state, we construct an analytic model corresponding to an
inflow-outflow configuration around a Schwarzschild black
hole. We propose that this analytic solution can be used as a toy
model for the inner engine of a jet-launching system.

The physical setting of this model is shown schematically in
Figure 1 and consists of the innermost region of an accretion
disk–jet system around a central black hole. Specifically, we
will confine our study to a finite, spherical region of radius 
with the black hole at its center. We will refer to the surface of
this domain as the injection sphere and consider it as the outer
boundary of this system. Moreover, for the analytic model
presented, in addition to considering a perfect fluid described
by a stiff equation of state, we will assume stationarity,
axisymmetry, and an irrotational flow, i.e., we consider that the
gas entering the injection sphere from the inner edge of an
accretion disk has lost all of its angular momentum through
some kind of viscous dissipation mechanism (e.g Shakura &
Sunyaev 1973; Balbus & Hawley 1991).

Even though for constructing the present model we did not
explicitly include fluid rotation, it is important to remark that we
have accounted for it indirectly by assuming that the flow
configuration has a well-defined symmetry axis, possibly as an
inherited property of a rotation axis at larger scales. Furthermore,
our assumption of a density anisotropy with the equatorial region
having a higher density than the poles is a natural consequence
of fluid rotation.

On the other hand, demanding a regular solution across the
black-hole event horizon implies that, for the present model
with an ultrarelativistic stiff fluid, the total mass-accretion rate
onto the central black hole is fixed at a specific value (Petrich
et al. 1988). This value corresponds closely to that found in the
spherically symmetric case discussed by Michel (1972) for a

Schwarzschild spacetime and by Bondi (1952) in the
nonrelativistic regime.
This important characteristic of the analytic model implies

that the mass flux onto the central black hole is limited by a
fixed value and that any additional mass flux crossing the
injection sphere has to be redirected and ejected from the
system. In the present case, we show that the assumed
anisotropic density field at the injection sphere translates into
the bipolar outflow shown in Figure 1. Given that the incoming
mass-accretion rate is choking at a fixed value, we refer to this
ejection mechanism as choked accretion.
With the aim of studying this accretion scenario under

more general conditions, we also present the results of
numerical simulations performed with the free GNU General
Public License hydrodynamics code aztekas3 (Olvera &
Mendoza 2008; Aguayo-Ortiz et al. 2018; and Tejeda &
Aguayo-Ortiz 2019). By means of this numerical exploration,
we are able to show that the choked accretion mechanism
can operate for more realistic equations of state.
The basic idea behind the choked accretion model relies on a

purely hydrodynamical mechanism and, thus, is not restricted
to a relativistic regime. We presented the nonrelativistic limit of
the choked accretion model in Aguayo-Ortiz et al. (2019). In
that work, we also introduced the Newtonian counterpart of the
ultrarelativistic stiff fluid studied by Petrich et al. (1988) that, as
discussed in Tejeda (2018), corresponds to the incompressible
flow approximation.
With the present model, we intend to draw attention to a

potentially relevant phenomenon in which an accretion flow
can become choked at a gravitational bottleneck, with the
excess material being launched from the central region by a
pure hydrodynamical mechanism. The present model is not
intended as a substitute for other well-established jet-launching

Figure 1. Schematic representation of the astrophysical setting under study: the inner region of an accretion disk–jet system around a central black hole. The analytic
solution presented in this work constitutes a toy model of the inner engine behind a jet-launching process in which, through the action of hydrodynamical forces only,
an accretion flow can be transformed into an inflow-outflow bipolar structure. Subsequent numerical simulations relaxing the assumptions included in the analytic
solution validate and extend the qualitative aspects of the solution found to more general cases. The blue arrows show, schematically, the streamlines of the
resulting flow.

3 The code can be downloaded from github.com/aztekas-code/aztekas-main.
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mechanisms, but rather as a further process based on simple
physics that can operate alongside them.

The rest of this article is organized as follows. In Section 2,
we present the analytic toy model of choked accretion. In
Section 3, we explore numerically the feasibility of this model
for fluids described by more realistic equations of state, where
the constraint of potential flow imposed on the analytical model
is dropped. There we find that the qualitative results of the
analytic model also apply. We discuss possible astrophysical
applications of the choked accretion model in Section 4.
Finally, in Section 5, we summarize our results. Throughout
this work, we adopt geometrized units for which G=c=1.
Greek indices denote spacetime components, and we adopt the
Einstein summation convention over repeated indices.

2. Analytic Model

In this section, we present an analytic model of an inflow-
outflow configuration around a Schwarzschild black hole. The
model is based on the assumptions of a stationary, axisym-
metric, and irrotational flow. Moreover, we shall assume that
the accreted gas corresponds to an ultrarelativistic gas
described by a stiff equation of state of the form

r=P K , 12 ( )
where =K const., P is the pressure, and ρ is the rest-mass
density.4

With the possible exception of the dense interior of a neutron
star, the assumed stiff equation of state has a rather limited
applicability in astrophysics (Lattimer & Prakash 2007). We
have adopted this equation of state, however, as it allows us to
carry out a full analytic treatment of the problem. The general
relativistic solution obtained in this way, gives us a direct
insight into the physics behind the proposed mechanism as well
as the possibility to analyze in detail the dependence of the
solution on the different model parameters. It is important to
stress that this limiting assumption is relaxed in Section 3
where, by means of full-hydrodynamic simulations, we show
that very similar results are obtained as steady-state solutions
for a more general equation of state and, thus, that the model
here presented has a wider applicability in astrophysics.

For an ultrarelativistic gas, one has that its internal energy u
is much larger than its rest-mass energy, i.e., u?1. This
allows us to approximate the corresponding specific enthalpy as

r r= + + +h u P u P1  . From the first law of thermo-
dynamics together with the equation of state in Equation (1), it
follows that u=P/ρ and, hence,

r=h K2 . 2( )
From Equation (2) it follows that, in the case of a stiff fluid, the
sound speed a is constant everywhere and equal to the speed of
light, i.e.,5

r
º

¶
¶

=a
hln

ln
1. 3

s

⎛
⎝⎜

⎞
⎠⎟ ( )

This result implies that the corresponding flow will be subsonic
at every point and that shock fronts cannot develop.

2.1. Potential Flow

The evolution of a perfect fluid in general relativity is
dictated by local conservation equations, namely, the con-
servation of rest mass as expressed by the continuity equation

r =m
mU 0 4;( ) ( )

and local conservation of energy–momentum

r d= + =n
m

m
m

n n
m

mT h U U P 0, 5; ;( ) ( ) ( )
where t=m mU dx d is the fluid four-velocity, Tμν is the stress-
energy tensor of a perfect fluid, dn

m is the Kronecker delta, and
the semicolon stands for covariant differentiation. Since, for a
perfect fluid r=dh dP , together with the continuity equation,
Equation (5) can be rewritten as

+ =m
n m nU h U h 0. 6; ,( ) ( )

An irrotational flow is characterized by zero vorticity. In
general relativity, vorticity is defined in terms of the tensor
(Moncrief 1980)

w = -mn m
a

n
b

a b b aP P h U h U , 7; ;[( ) ( ) ] ( )
where d= +n

m m
n n

mP U U is the projection tensor onto the
hypersurface orthogonal to mU .
Expanding Equation (7) and using Equation (6) to simplify

the resulting expression, we arrive at

w = -mn m n n mh U h U . 8; ;( ) ( ) ( )
From Equation (8), we can see that a vanishing vorticity
implies that h Uμ can be written as the gradient of a scalar
velocity potential Φ, i.e.,

= Fm mh U . 9, ( )
Substituting Equation (9) into Equation (4) leads to

r F =m
mh 0. 10,

;( ) ( )
In general, we will have that ρ is related to h through an

equation of state while, from the normalization condition of mU ,
h is related to Φ as = -F Fm mh ,

, . It is clear then that, in
general, Equation (10) will be a nonlinear differential equation
in Φ (see, e.g., Beskin & Pidoprygora 1995). Nevertheless, by
taking an ultrarelativistic fluid with a stiff equation of state (see
Equation (2)), Equation (10) reduces to the simple wave
equation

F =m
m 0. 11;

, ( )
In the case of Schwarzschild spacetime with spherical

coordinates q ft r, , ,( ), Equation (11) has as general solution
(Petrich et al. 1988)

å x x q fF = - + +e t A P B Q Y , , 12
l m

lm l lm l lm
,

[ ( ) ( )] ( ) ( )

where Ylm are spherical harmonics, Plm, Qlm are Legendre
functions on ξ=r/M−1, and e is a constant related to the
boundary conditions as we will show later on. Petrich et al.
(1988) showed that requiring a regular solution across the black
horizon necessarily implies that all Blm vanish identically
except for B00, which is in turn fixed as =B Me400 .

4 In relativistic hydrodynamics, it is customary to use the baryon number
density n instead of the rest-mass density ρ. Introducing an average baryonic
rest mass m, n and ρ are simply related as r = mn.
5 Note that this definition of the sound speed is equivalent to the more
common expression = ¶ ¶a P e , where e=ρ(1+u) is the relativistic
energy density.
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On the other hand, the coefficients Alm can be freely
specified in order to match some given boundary conditions. In
the present case, the assumption of axisymmetry leads us to
consider only the m=0 modes, while demanding reflection
symmetry with respect to the equatorial plane, leaves us only
with even-l multipoles different from zero. The lowest-order
model featuring both inflow and outflow regions can then be
obtained from a velocity potential as in Equation (12) with all
Alm=0 except for A20, i.e.,

q

F =- + -

- - + -

e t M
M

r

A r Mr M

2 ln 1
2

3 6 2 3 cos 1 , 132 2 2

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥( )( ) ( )

where p=A A e4 5 20 .
Note that a different choice of the coefficients Alm will result

in quite different flow configurations. For instance, Petrich
et al. (1988) and Tejeda (2018) adopt the dipole l=1 to study
the scenario of wind accretion.

With the velocity potential as given in Equation (13), we
have specified the dependence of the fluid properties on the
polar angle θ at the outer boundary, i.e., at the injection sphere
= r . Nonetheless, we are still free to specify the overall

magnitude (scale) of the fluid properties at this boundary. In
order to do this, we can specify values for the fluid velocity,
density, and pressure (or any other pair of thermodynamical
variables) at a reference point on the injection sphere. For this
work, we shall take as reference the point q p= =r , 2( ),
i.e., the equator of the injection sphere. Let us call r0 and P0 the
values of the density and pressure at this point as measured by a
co-moving observer. Clearly, from these reference values, we
can write r=K P0 0

2 and r=h P20 0 0. On the other hand, we
parameterize the fluid velocity at this point using V0, defined as
the magnitude of the three-velocity vector measured by a local
Eulerian observer (LEO).6 In terms of V0, the four-velocity of
the fluid at the equator of the injection sphere is given by

a a= G -mU V1 , , 0, 0 , 140 0 0 0( ) ( )
with a a= 0 ( ), where

a = -
M

r
1

2
15( )

is the lapse function associated with the 3+1 decomposition
of the four-metric and

G = - -V1 160 0
2 1 2( ) ( )

is the Lorentz factor between the fluid element and the LEO. As
V0 corresponds to the magnitude of a physical three-velocity
vector, it is naturally bounded as V0<1. Also note that in
Equation (14), we have explicitly considered that the radial
velocity is negative at the reference point as we are interested in
a scenario with equatorial inflow. The velocity potential in
Equation (13) should also be useful to describe a very different
scenario with polar inflow and equatorial outflow (akin to a

wall jet) by allowing for a positive radial velocity at the
reference point. We shall only focus on the former case for the
remainder of this work.
It is worth noticing at this point that the present analytic

model is scale-free with respect to the specific values of M, r0,
and P0. On the other hand, as we shall see below, the
parameters dictating the overall morphology of the resulting
accretion flow are V0 and  M .

2.2. Velocity Field

Substituting the velocity potential Φ given in Equation (13)
into Equation (9) leads to the velocity field

t
= -

-h

e

dt

d

M

r
1

2
, 17

1
⎜ ⎟⎛
⎝

⎞
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By evaluating Equations (17) and (18) at the reference
point q p= =r , 2( ) and comparing the result with
Equation (14), we arrive at the following expressions for the
constants e and A in terms of the boundary conditions:

a= Ge h , 200 0 0 ( )

=
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6 2
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Note that, since we have assumed inflow across the equatorial
region, the velocity field described by Equations (18) and (19) is
characterized by the existence of a pair of stagnation points
(points at which the spatial components of the velocity field
vanish) located along the polar axis (q p= 0, ) at mirror points
with respect to the origin. Calling  their radial distance to the
origin, from Equation (18), we obtain the following relationship
between V0, , and 

= +
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Alternatively, Equation (22) can be inverted to express  as a
function of V0 and 
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
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Note that we can also use  to rewrite the coefficient A as

=
- -  

A
M

M M3 2
. 25

2

( )( ) ( )

Using Equation (25), together with Equation (17) to get rid
of the dependence on h, we can rewrite the spatial components

6 These are static observers carrying a local tetrad with respect to which they
can perform local measurements, thus describing physical properties of the
fluid. This family of observers can be introduced in a covariant (coordinate-
independent) way by noticing that their four-velocity corresponds to the time
isometry of Schwarzschild spacetime as encoded by the time-like Killing
vector d=m mt t .
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of the velocity with respect to the coordinate time t as
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Furthermore, we can also express the velocity field in terms

of the physical, locally measured components of the three-
velocity defined by LEOs and given by
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as well as its corresponding (squared) magnitude
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Note that for a sufficiently large radius r, the physical three-

velocity magnitude V as given in Equation (30) will grow like
V∝r, eventually becoming superluminal.7 To prevent this
from happening, we need to consider the preset model as a
local solution that is only properly defined within a finite
spatial domain. For simplicity, we will restrict this work to the
spherical domain r , where is the radius of the injection
sphere.

By examining Equation (30), we can see that, for a radius
>  , V reaches its maximum at the polar axis, which is

given by
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where we have used Equation (22) to arrive at the last equal
sign. From this last expression, we obtain the following upper
bound on V0 in order to guarantee V to be subluminal within

the domain8 < M r2

< +


V
M1

2
6 . 320
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2
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Based on Equation (31) and taking into account the sign of
the radial velocity in Equation (26), we define the ejection
velocity at the poles of the shell = r as

º -


V V
M

2
12

. 33ej 0

2

2
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From this expression, we note that, in order to actually have
polar outflow at = r (i.e., >V 0ej ), we require

>


V
M

6 . 340

2

2
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Moreover, note that when < <


V0 6 M
0

2

2 , the stagnation point

lies outside the injection sphere ( > ) and the flow is
everywhere radially inwards although not spherically
symmetric.
Summarizing the previous results, only for values of V0

within the range

< < +
 

M
V

M
6

1

2
6 , 35

2

2 0

2

2
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we find flow configurations characterized by equatorial inflow and
bipolar outflows within the domain of interest < M r2 .
See Figure 2 for three examples of the streamlines resulting

from the velocity field in Equations (26) and (27) for
= M10 . In the left and right panels, V0=0.06, 0.56, which

correspond to the lower and upper bounds of the interval in
Equation (35). For the central panel, we have taken =V 0.10 as
a representative middle value for V0.
In the top panel of Figure 3, we show the magnitude of the

three-velocity V as function of the polar angle θ evaluated at the
injection sphere for the particular case = M10 and several
values of V0.

2.3. Density Field

We can now recover the density field by substituting
Equations (17)–(19) into the normalization condition of the
four-velocity Uμ Uμ=−1 and then using Equation (20); the
result is

r
r

a
a

=
G
G

=
- -
- -





r M V

r M V

2 1

2 1
, 36

0

0 0
2

0
2

( )( )
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with qV r,2 ( ) as given in Equation (30).
Recalling that the local density measured by an LEO is given

by r= GD , from Equation (36), we obtain the interesting
result that the density field as described by LEOs is spherically
symmetric, i.e., D is only a function of r.
Note that the same criterion introduced in Equation (32) in

order to guarantee a subluminal three-velocity within
< M r2 also guarantees that the density field, as

expressed in Equation (36), is a well-defined, real quantity
within the same spatial domain.

7 In terms of the velocity potential Φ, this translates into the gradient F m,
transitioning from being time-like to space-like.

8 Note that at the event horizon =V M2 1( ) , although, this is only due to the
fact the Eulerian observers become ill-defined at this radius. The fluid velocity
as described by Uμ is completely regular across the horizon.
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From Equation (36), we obtain the following simple relation
for the ratio between the density at the pole and the equator of
the injection sphere:

r
r p
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In the following, we shall use the contrast δ between the

polar and equatorial densities at the injection sphere defined as

d
r

r
= -


1

, 0
. 38

0

( ) ( )

From Equations (37) and (38), we can see that an arbitrarily
small density contrast suffices not only to produce the inflow-
outflow configuration shown in the central and right panels of
Figure 2 but also to guarantee that Vej>V0. Furthermore,
notice that, as the density contrast approaches unity, the
ejection velocity approaches the speed of light. Indeed, for the
present case of an ultrarelativistic stiff fluid, as d  1, we can
obtain arbitrarily large Lorentz factors for the ejected flow.

Complementary to the top panel of Figure 3, where we see
that the magnitude of the velocity field at the injection sphere
increases as V0 increases, in the bottom panel of this figure, we
show the angular density profile r q( ) evaluated at the injection
sphere. From this figure, we see that, as V0 increases, the polar
to equatorial density contrast increases. Moreover, we can also
see that as the velocity at the poles becomes luminal for

= + V M1 2 60
2 2, the corresponding value of the density

field becomes zero.

2.4. Equation for the Streamlines

An equation for the streamlines can be found by combining
Equations (26) and (27) to obtain

q

q

q q
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which, in turn, can be integrated as
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where Ψ is an integration constant. Equation (40) constitutes an
implicit equation for the streamlines, where, for every constant
value of Ψ, one has a different streamline. Note, in particular,

Figure 2. Streamlines of the accretion flow resulting from the velocity field in Equations (26) and (27). We have taken = M10 as radius of the injection sphere
while, from left to right, V0=0.06, 0.1, 0.56. Note that the first and third values of V0 correspond to the lower and upper limits in Equation (35), respectively. The
stagnation points in each case are shown as red crosses. The outer boundary of the model = r( ) as well as the event horizon of the central black hole =r M2( ) are
shown as circles drawn with thick, solid lines. The axes correspond to the usual cylindrical coordinates q=R r sin , q=z r cos .

Figure 3. Magnitude of the three-velocity V (Equation (30)) and density ρ
(Equation (36)) of the analytic model for an ultrarelativistic stiff fluid. Both
quantities are shown as functions of the polar angle θ evaluated at the injection
sphere for the particular case = M10 and six different values of the velocity
V0. In this case, from Equation (32), we have that V0 is limited as V0<0.56 in
order to guarantee that the whole solution is well defined within the spatial
domain r . Note that for V0=0.56, Vej=1 while the corresponding value
of ρ goes to zero.
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that Ψ=±1 corresponds to the streamlines reaching the
stagnation points located at q= =r , 0( ) for the plus sign
and q p= =r ,( ) for the minus sign. Streamlines with
Y < 1∣ ∣ end up accreting onto the central black hole, while
those with Y > 1∣ ∣ escape along the bipolar outflow.

In Figure 4, we show the resulting density, velocity, and
streamlines of the analytic model of choked accretion for the
particular values of = M10 , V0=0.16. For this choice of
boundary conditions, the stagnation points are located
at = M6 .

2.5. Mass-accretion, Injection, and Ejection Rates

The total mass-accretion rate onto the central black hole can
be calculated as the flux of mass density integrated over any
closed surface σ enclosing it, i.e.,

ò r= - -
s

m
mM U g dS , 41( )

where q- =g r sin2 and mdS is a differential area element
orthogonal to the surface σ. Taking any sphere of radius r as
the integration surface, together with the conditions of
axisymmetry and stationarity, we obtain

òp r q q

p a r

=-

= G

p
M U r d

M

2 sin

16 . 42

r

0

2

2
0 0 0 ( )



The result of Equation (42) holds even if higher multipoles are
considered in the velocity potential (see Equation (12)): by virtue
of the orthogonality of the spherical harmonics, the contribution
of any multipole (l,m) to the integral in Equation (42) identically
vanishes except for the spherically symmetric monopole l=0,
m=0. Note however that, in the spherically symmetric case, V0

is not a free parameter. In accordance with Equation (30), in this
case, = V M40

2 2. Therefore, in the spherically symmetric
case, the mass-accretion rate as given by Equation (42) can

be written as

p a r= -
-


M M

M
16 1 16 . 43M

2
0 0

4

4

1 2⎛
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⎞
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This value corresponds to the Michel (1972) solution as applied
to a stiff equation of state, as shown by Chaverra & Sarbach
(2015). See Appendix A for a brief overview of the Michel
(1972) model in the case of a general polytrope.
We can express the general result for the mass-accretion rate

as given in Equation (42) in units of MM as

h=M M , 44M ( ) 

where
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1
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4 4
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Note that, in most cases of interest, η1. For instance,
taking = M10 , from the allowed range of velocities in
Equation (35), we obtain 1<η1.2, while for  M , we
have 1<η1.15.
On the other hand, we can also define the mass-injection rate

Min as the inward flux of mass across the injection sphere of
radius, i.e., by considering an integration analogous to the one
in Equation (42) but in which we consider only the fluid
elements with a negative radial velocity Ur. From Equation (18),
we obtain that q <U , 0r ( ) for q q p q< < -c c, where θc is
such that q =U , 0r

c( ) and is given by

q = +
- -
- -
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We can thus calculate Min as

òp r q q= - = L
q

p
M U r d M4 sin , 47r

in

2
2

c

( ) 

Figure 4. Example of the analytic model of choked accretion for the values = M10 and V0=0.16. The figure shows isocontours of the fluid’s density as given by
Equation (36) (left panel) as well as the magnitude of the three-velocity as given by Equation (30) (right panel). Note that the stagnation points are located at = M6 .
Fluid streamlines are indicated by thick, solid lines with an arrow. The axes correspond to the usual cylindrical coordinates q=R r sin , z=r cos θ.
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where, for the second step, we have used the Taylor series
expansion assuming M V2

0
2 .

From Equation (46), we have that when = V M60
2 2 (or,

equivalently = ) then θc=0 and, hence, =M Min  . On the
other hand, when < V M60

2 2, we have that Ur<0 for all θ
and again =M Min  . We can then write
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Similarly, we define the mass-ejection rate Mej as the
outward flux of mass across the sphere of radius = r .
Clearly,
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Note that for a fixed injection radius, it can be shown that
the upper bound for V0 found in Equation (32) implies the
following upper bound for the mass-injection rate:

p r<
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The Equations (49) and (50) encapsulate the concept of
choked accretion described in the introduction: the central
black hole accretes at an essentially fixed rate M MM   .
Whenever the mass-injection rate surpasses this limit, the
excess flux is ejected from the system as a bipolar outflow at
the rate Mej . Note, in particular, that from Equation (50), we can
write

= - = -
L

M

M

M

M
1 1

1
. 52

ej

in in
( )





This simple functional dependence of the ratio of ejected-to-
injected-mass fluxes on the injection-mass rate is shown in
Figure 14 to compare the analytic model against the results of
hydrodynamic numerical simulations.

Finally, it is interesting to explore the behavior of the
analytic model as a function of the parameters  and

h= LM Min M  . Note that, as shown in Equation (48), h L is
essentially a linear re-parameterization of V0 for most of the
domain of interest. In Figure 5, we show the dependence on
these parameters of the location of the stagnation point  (see
Equation (23)), the maximum velocity attained by the ejected
material Vej (see Equation (33)), and the contrast δ between the
polar and equatorial densities at the injection sphere (see
Equation (38)).

From this figure, we see that as M Min M  increases, the
stagnation point sinks closer to the central accretor, while
at the same time, the velocity of the ejected material approaches
the speed of light and the density contrast increases. From
Equation (52) and Figure 14, it is also clear that as the injection
rate increases, more and more material is expelled from the
system as a bipolar outflow. Moreover, the restrictions on the
model parameters, as established in Equations (32) and (51),

are also apparent in Figure 5: as soon as these limits are
exceeded, the model ceases to be well-defined within the whole
domain < r .
The nonrelativistic limit of an ultrarelativistic, stiff fluid

corresponds to an incompressible fluid (Tejeda 2018). This
Newtonian counterpart of the present analytic model is
discussed in Aguayo-Ortiz et al. (2019). Indeed, it is simple
to verify that, in the limit in which V0=1 and M , all of
the equations derived in this section for the velocity field, the
streamlines, and the different mass fluxes reduce to the
expressions presented in Aguayo-Ortiz et al. (2019).
The analytic model that we have presented allows for a

transparent understanding of the physics involved in the

Figure 5. Dependence of different properties of the analytic model of choked
accretion on the parameters  M and M Min M  . From top to bottom, each
panel shows: the location of the stagnation point  , the maximum velocity
attained by the ejected material Vej (Equation (31)), and the density contrast
between the pole and the equator of the injection sphere δ (Equation (38)). The
dashed lines in the top panel indicate regions in the parameter space for which
the model is not well defined within the whole domain < r (see discussion
in the main text).
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choked accretion mechanism. However, generalizing this
model to accommodate a more realistic equation of state
becomes analytically intractable. We explore this general-
ization in the next section by means of numerical simulations.

3. Numerical Simulations

The main limitation of the analytic model for choked
accretion discussed in the previous section is that it is based on
the assumption of an ultrarelativistic gas with a stiff equation of
state, an assumption with a rather restricted applicability in
astrophysics. In this section, we want to explore whether the
phenomenon of choked accretion might also arise when
considering more general equations of state, thus relaxing the
associated assumption of a potential flow. This exploration will
be based on full-hydrodynamic, numerical simulations per-
formed with the open-source code aztekas.

The general relativistic hydrodynamic equations are solved
numerically with aztekas by recasting them in a conservative
form using the Valencia formulation (Banyuls et al. 1997). The
aztekas code uses a grid-based finite volume scheme, a High-
Resolution Shock Capturing method with an approximate
Riemann solver for the flux calculation, and a monotonically
centered second-order reconstructor at cell interfaces. The code
adopts a second-order total variation diminishing Runge–Kutta
method (Shu & Osher 1988) for the time integration. See
Tejeda & Aguayo-Ortiz (2019) for further details about the
discretization used in aztekas. Code validation through
comparisons to standard analytical solutions in the Newtonian
and relativistic regimes can be found in Aguayo-Ortiz et al.
(2018, 2019) and Tejeda & Aguayo-Ortiz (2019), while a
number of standard shock tube tests successfully reproduced by
the code are included in Appendix B.

The simulations presented in this section were performed for
a perfect fluid evolving in a fixed, background metric
corresponding to a Schwarzschild black hole of mass M. We
adopt horizon-penetrating, Kerr–Schild coordinates and,
imposing axisymmetry, we consider only 2D spatial domains
with spherical coordinates r and θ.

Furthermore, by assuming symmetry with respect to the
equatorial plane located at θ=π/2 (north–south symmetry), we
restrict the numerical domain as q pÎ ´ r, , 0, 2acc( ) [ ] [ ],
whereacc is the radius of the inner boundary at which we adopt
a free outflow condition (i.e., free inflow onto the central black
hole) and  is the radius of the injection sphere at which we
impose a given profile for the physical parameters of the injected
fluid. At both polar boundaries θ=0, π/2, we adopt reflection
conditions.

As initial conditions, we populate the whole numerical
domain with the same values as those used at the outer
boundary. For the code, we adopt geometrized units and take
M=1 as unit of length and time.

3.1. Stiff Fluid

An analytic model can be useful as a benchmark solution for
testing the ability of a numerical code to recover certain
behavior under appropriate conditions. Here, we use the exact
analytic solution presented in the previous section as a
benchmark test for aztekas. Specifically, we will consider the
values of = M10 for the radius of the injection sphere and

V0=0.16 for the magnitude of the three-velocity at the equator
of the injection sphere.
For this test, we take as radial boundaries = Macc and
= M10 and use three different resolutions (grid points)

100×100, 200×200, and 300×300 for the radial and polar
ranges. We adopt the approximation of an ultrarelativistic gas
with a stiff equation of state as described in Section 2. At the
injection sphere, we impose the analytic value for the density as
given in Equation (36) and the velocity components corresp-
onding to the transformation from Schwarzschild coordinates
to Kerr–Schild coordinates.9

We let the simulations run until a steady-state condition is
reached. This is monitored by calculating the mass-accretion
rate M across acc. In Figure 6, we show the time evolution of
the numerically calculated M as compared to the analytically
expected value of p a r= GM M16M

2
0 0 0 for the three adopted

resolutions. As can be seen from this figure, the value of M
rapidly stabilizes to a constant value that agrees with MM to
within 0.001% for the largest resolution considered.
In Figure 7, we show the density and velocity fields of the

aztekas simulation at t=650M. The stagnation point in the
numerical simulation is located at = M6.0175 , which is
consistent with the analytically exact value of = M6 , taking
into account the radial grid size of Δr=0.045M.

Figure 6. Benchmark test of aztekas with the analytic model of choked
accretion described in Section 2. In this case, we took = M10 as radius of
the injection sphere and V0=0.16 at the equator. The figure shows the time
evolution of the relative error between the numerically calculated accretion rate
M and the exact value of p a r= GM M16M

2
0 0 0 for three resolutions (grid

points) 100×100, 200×200, and 300×300. Note that the sharp falls
observed in this figure correspond to changes in sign of the relative error being
plotted. Moreover, the apparent periodicity observed at the beginning of the
curve corresponds to an initial transient mode reflecting back and forth
throughout the numerical domain at the speed of sound (in this case, the sound
crossing time is ~t M10 ).

9 The transformation between Schwarzschild (t, r, θ, f) and Kerr–Schild
coordinates (T, r, θ, f) is given by

= +
-

dT dt
M

r M
dr

2

2
,

while the spatial components remain unchanged. The radial and polar
components of the four-velocity in Kerr–Schild coordinates are then given by
Equations (18) and (19), whereas the time component is now given by

t t
= - +

-h

e

dT

d

M

r

M

r

h

e

dr

d
1

2
1

2
.

1
⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
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We have also tried this benchmark test with different values
of  and V0, and we consistently found that the numerical
results recover the analytic solution in this limit case of a stiff
equation of state, thus validating our numerical setup.

3.2. Polytropic Fluids

In this section, we relax the stiff-fluid condition and consider
perfect fluids described by a polytropic equation of state of the
form

r= gP K , 53( )
with ρ the rest-mass density, γ the adiabatic index, and

=K const. From Equation (3), the sound speed corresponding
to this equation of state is given by

g
r

=a
h

P
, 542 ( )

where h is the relativistic specific enthalpy. For a perfect fluid
described by Equation (53), h is related to the other
thermodynamical variables through

g
g r

= +
-

h
P

1
1

, 55( )

or, by combining Equations (54) and (55), we can also write

g
=

- -
h

a

1

1 1
. 56

2 ( ) ( )
The expected requirement for the appearance of choked

accretion is that there should exist a small contrast between the
density at the equator and that at the poles of the injection
sphere. Here, we impose this density contrast by adopting the
following density profile as a boundary condition at the
injection radius 

r q r d q= -1 cos , 570
2( ) ( ) ( )

where ρ0 is the value of the density at the equator of the
injection sphere, i.e,ρ0=ρ(π/2), and δ is the same density
contrast between the equator and the poles as defined in
Equation (38).

The specific functional form of the boundary condition in
Equation (57) was chosen as a convenient first-order

parameterization of a bipolar deviation from spherical sym-
metry. This profile is qualitatively similar to the one of the
analytic model presented above (see bottom panel of Figure 4).
We have explored with other similar boundary profiles and
obtained consistent results.
For the simulations reported in this work, we have taken

r = -100
10, although we have found that taking any other

value of r0 results in the same flow structure but with the
density re-scaled by this new factor. In other words, the value
of ρ0 can be set arbitrarily, thus defining a unit scale for
the density and related thermodynamical quantities, provided
the fluid considered remains a negligible perturbation on the
background metric. On the other hand, the resulting steady-
state solution depends strongly on the value of the sound speed
a0 imposed at the equator of the injection sphere. Note, in
particular, that, from Equation (56) and for a fixed adiabatic
index γ, a0 is limited as

g< < -a0 1 . 580 ( )
Once we have adopted a given γ, setup values for ρ0 and a0

at the equator of the injection sphere, and a density contrast δ,
we use the equation of state in Equation (53) to find the
corresponding pressure profile at the injection boundary as

q
g g

r q
r

=
- -

g

g-P
a

a

1

1 1
. 590

2

0
2

0
1

⎡
⎣⎢

⎤
⎦⎥( ) ( )

( ) ( )

Since we do not know the structure of the accretion flow
beforehand (on which no a priori restrictions are imposed), we
cannot prescribe specific values for the velocity components at
the injection radius. For this reason, we adopt free-boundary
conditions for the radial and polar components of the velocity
field and let the simulation evolve starting off from an initial
state at rest (zero initial velocities), until an equilibrium state is
reached throughout the numerical domain. Note that this means
that we cannot use the same parameterization that we had
adopted for the analytic model of Section 2 (i.e.,  M , ρ0, P0,
and V0), but instead, now we shall replace V0 by the density
contrast δ.

3.2.1. Dependence on the Density Contrast δ

Based on the analytic results of Section 2, we expect ejection
rates and velocities to strongly correlate with the density

Figure 7. Benchmark test of aztekas with the analytic model of choked accretion described in Section 2. In this case, we took = M10 as radius of the injection
sphere and V0=0.16 at the equator. The left panel shows isocontour levels of the density field with the scale indicated by the color bar. The right panel shows
isocontour levels of the magnitude of the three-velocity. Fluid streamlines are indicated by thick, solid lines with an arrow. The simulation time is =t M650 . An
excellent agreement is found between this figure and its analytic counterpart in Figure 4.
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contrast at the injection surface. Here, we study the role of the
density contrast as parameterized by δ in Equation (57). In
Figure 8, we show the steady-state results for four numerical
simulations with γ=4/3, a0=0.5, = M10 , and density
contrasts d = 0, 0.1, 0.3, and 0.9. The results of these four
simulations, also including the δ=0.5 case, are reported in
Table 1. We can see that, as soon as the equatorial region
becomes over-dense with respect to the polar regions, i.e.,
δ>0, a strong qualitative change ensues with an inflow-
outflow configuration appearing across the numerical domain.
The resulting streamlines closely resemble the flow morph-
ology of the analytic model presented in the previous section.10

We can also see that as the density contrast increases, both
M and Min increase. Note however, that Min increases faster
than M , with the net result that the ratio between ejection and
injection also increases with increasing δ.

As a further positive test of our numerical scheme, when
d = 0, the simulation recovers the analytic solution of
spherically symmetric accretion discussed by Michel (1972).

The sixth column in Table 1 reports the ratio M MM  , i.e., the
numerically found mass-accretion rate in units of the mass-
accretion rate of Michel’s solution MM (an analytic expression
for MM is derived in Appendix A). Note that, as also occurs in
the analytic model discussed in the previous section, this ratio
does not remain strictly equal to one as δ increases; although,
the mass-accretion rate remains of the order of MM .
This first exploration confirms that the basic principle behind

the choked accretion model presented in Section 2 also works for
fluids described by more general equations of state, where the
resulting flow pattern is no longer assumed to be a potential flow.

Figure 8. Resulting steady-state-flow configuration for the numerical simulations for a polytropic fluid with γ=4/3 accreting onto a Schwarzschild black hole. The
value of the density contrast δ used in each case is indicated on the top-left corner of each panel and increases gradually from δ=0 in the first panel (isotropic case
where the Michel solution is recovered) to the highly anisotropic δ=0.9 case in the fourth panel.

Table 1
Dependence on the Density Contrast δ

δ M Min Mej
M

M

ej

in




M

MM


  Vej

0.0 9.08 9.08 0.0 0.0 1.0 L L
0.1 9.55 11.16 1.61 0.14 1.05 6.63 0.25
0.3 10.35 14.10 3.75 0.27 1.14 5.91 0.43
0.5 11.14 16.24 5.10 0.31 1.23 5.64 0.46
0.9 12.81 19.77 6.96 0.35 1.41 5.46 0.47

Note. The simulation parameters are fixed as = M10 , γ=4/3, and
a0=0.5. All of the accretion rates are expressed in units of r=M M0

2
0

 , and
the stagnation point in units of M. The velocity Vej is defined as the magnitude
of the three-velocity at the poles of the injection sphere. According to
Equation (A15), the Michel mass-accretion rate in this case is given
by =M M9.08M 0  .

10 We note that since the posting of the initial version of this paper, a couple of
relevant independent results have appeared: Waters et al. (2020) present a
numerical scheme using the ATHENA++ code simulating accretion onto a
black hole, modeled using a pseudo-Newtonian potential, which yields very
similar results to what we obtain, for the same angular accretion density profile
that we present. Zahra Zeraatgari et al. (2020) explore a similar scenario
through an approximate semi-analytic approach, including the additional
physical ingredients of rotation, viscosity, and radiation pressure, to again
obtain flow patterns highly resembling our results, provided an equatorial-to-
polar-accretion-density profile is present.
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3.2.2. Dependence on the Adiabatic Index γ

Here, we examine the behavior of the steady-state, numerical
solution as a function of the adiabatic index γ. We keep as fixed
parameters = M10 , δ=0.3, and a0=0.5 while consider-
ing four different values of g = 4 3, 3 2, 5 3, and 2. In
Table 2, we summarize the results of these simulations, while
in Figure 9, we plot the ratios M MM  , M Min M  , and M Mej M 
as functions of γ. The resulting density field and fluid
streamlines for these four simulations are qualitatively similar
to those shown in the bottom left panel of Figure 8.

From these results, we see a weak dependence on the
adiabatic index γ. As we consider increasing values of γ, the
values of M , Min ,  , and Vej slightly decrease while both Mej
and the ratio M Mej in  increase.

3.2.3. Dependence on the Sound Speed a0

Now, we turn our attention to the role played by the sound
speed as defined at the equator of the injection sphere, a0. We
will also consider a larger injection radius than in the previous
sections in order to probe a different regime with smaller
density contrasts and larger mass-injection rates. Specifically,
we take = M100 , γ=5/3, four density contrasts:
δ=0.1%, 0.5%, 1.0%, and 5.0%, and four different values
for the sound speed: a0=0.2, 0.4, 0.6, and 0.8. Note that, from
Equation (58) for γ=5/3, the maximum possible value for
this parameter is a0=0.816.

In Tables 3–6, we present a summary of the results obtained
in this case. In Figure 10, we show the dependence of the ratio
M Min M  on a0 for the four values of the density contrast δ.
Figure 11 shows the dependence of the location of the
stagnation point  on a0, while Figure 12 shows the
dependence of the maximum velocity of the ejected material
Vej on a0.

It is interesting to notice from Figure 11 that, at least for the
parameter space explored for this figure,  follows a
dependence on a0 similar to the one followed by the critical
radius rc as defined in Appendix A for the accretion flow in the
spherically symmetric case.

In Figure 13, we show the resulting steady-state-flow
configurations for the four values of a0 in Tables 3–6 and
d = 0.5%. The corresponding configurations for the other

values of δ are qualitatively similar to the ones presented in
this figure.
From these results, we see that the final steady-state

configuration depends strongly on the value of the sound speed
a0. In general, we see that as a0 increases, the stagnation point
 sinks deeper into the accretion flow, as more material is
expelled from the system along the bipolar outflow at
increasingly larger speeds Vej. Moreover, we also see that as
the influx asymmetry increases, even for a small 5% density
contrast, the ejection velocities become larger, reaching values
of Vej>0.25 for the sound speed values probed.

Table 2
Dependence on the Adiabatic Index γ

γ M Min Mej
M

M

ej

in




M

MM


  Vej

4/3 10.35 14.10 3.75 0.27 1.14 5.91 0.43
3/2 9.75 13.61 3.86 0.28 1.12 5.82 0.42
5/3 9.15 13.12 3.96 0.30 1.10 5.73 0.41
2 8.01 12.16 4.15 0.34 1.07 5.55 0.40

Note. The simulation parameters are = M10 , =a 0.50 , and d = 0.3. From
top to bottom, the values of M MM 0  are 9.08, 8.70, 8.28, and 7.47.

Table 3
Dependence on the Density Contrast δ for a0=0.2

d %( ) M Min Mej
M

M

ej

in




M

MM


  Vej

0.1 63.12 70.50 7.37 0.10 0.98 66.28 0.014
0.5 63.93 89.90 25.97 0.29 0.99 56.78 0.025
1.0 64.13 97.61 33.49 0.34 1.00 51.08 0.031
5.0 64.78 159.93 95.15 0.59 1.01 39.68 0.071

Note. The sound speed a0 is given at the equator of the injection sphere. The
simulation parameters are = M100 and γ=5/3. In this
case, =M M64.39M 0  .

Table 4
Dependence on the Density Contrast δ for a0=0.4

d %( ) M Min Mej
M

M

ej

in




M

MM


  Vej

0.1 17.49 43.25 25.76 0.60 1.10 42.53 0.019
0.5 17.14 79.47 62.33 0.78 1.08 33.03 0.043
1.0 16.49 106.08 89.60 0.84 1.04 29.23 0.061
5.0 17.74 222.67 204.93 0.92 1.11 22.58 0.136

Note. The sound speed a0 is given at the equator of the injection sphere. The
simulation parameters are = M100 and γ=5/3. In this
case, =M M15.93M 0  .

Table 5
Dependence on the Density Contrast δ for a0=0.6

d %( ) M Min Mej
M

M

ej

in




M

MM


  Vej

0.1 10.82 52.63 41.81 0.79 1.32 33.03 0.029
0.5 11.35 108.20 96.85 0.90 1.39 25.43 0.064
1.0 10.37 147.74 137.37 0.93 1.27 22.58 0.091
5.0 10.76 318.85 308.09 0.97 1.32 17.83 0.202

Note. The sound speed a0 is given at the equator of the injection sphere. The
simulation parameters are = M100 and γ=5/3. In this
case, =M M8.17M 0  .

Figure 9. Dependence of the different mass flux rates (in units of the
corresponding Michel value MM ) on the polytropic index γ.
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4. Discussion

4.1. Comparison between the Numerical Simulations and the
Analytic Model

Even though the physics of the analytic model of Section 2
differs from the one included in the simulations of Section 3, it
is illustrative to compare the results of these two sections. For
this comparison, we will consider only the case of the γ=5/3
polytrope and injection radius = M100 presented in
Tables 3–6, as this large injection radius allowed us to explore
a broader range of mass-injection rates.

In Figure 14, we show the ratio of ejected over injected-mass
rates M Mej in  as a function of the mass-injection rate. From this
figure, we find a very good agreement between the numerical
data and the analytic model. This agreement is remarkable if we
take into account that the latter is based on the assumption of an
ultrarelativistic stiff fluid, γ=2, while the former involves a
more realistic γ=5/3 polytrope. We have also found this same
agreement for different polytropic indices in the nonrelativistic
regime, as can be seen in Figure7 of Aguayo-Ortiz et al. (2019).

In Figure 15, we show the location of the stagnation point 
as a function of the injection-mass rate M Min M  . Note that as
Min increases,  descends toward the central accretor, just as
occurred for the analytic model (see Figure 5). We find, again,
a good agreement between the numerical data and the analytic
model.
In Figure 16, we show the maximum velocity attained by the

ejected material Vej as a function of the injection-mass rate
M Min M  . We compare the numerical results against the
analytic value for Vej given in Equation (31). In contrast to
what happens for the two parameters discussed above, here, we
find a large difference among the numerical results for each
value of the sound speed a0, as well as between these results
and the analytic model. Note, however, that for each value of
a0, the numerically obtained values of Vej follow a linear
dependence on M Min M  with a slope inversely proportional to
a0. Also, as a0 increases, the numerical data approaches the
analytic model, for which a=1 everywhere in the fluid.

4.2. Applicability in Astrophysics

We discuss now the viability of the choked accretion
phenomenon presented here for operating as the inner engine
behind a given jet-launching astrophysical system. Given that
the characteristic length scale of this mechanism is given by  ,
we can expect the physical size of the inner accretion disk (that
we have associated with ) to be larger than  . In general, for
an accretion disk around a black hole, we will have

= - M1 10 (the actual value will be a function of both
the disk model and the black-hole spin). On the other hand,

Table 6
Dependence on the Density Contrast δ for a0=0.8

d %( ) M Min Mej
M

M

ej

in




M

MM


  Vej

0.1 7.77 64.80 57.04 0.88 1.41 28.28 0.038
0.5 9.20 139.98 130.78 0.93 1.67 21.63 0.085
1.0 9.20 194.61 185.40 0.95 1.67 19.73 0.120
5.0 8.14 422.31 414.17 0.98 1.48 14.98 0.268

Note. The sound speed a0 is given at the equator of the injection sphere. The
simulation parameters are = M100 and γ=5/3. In this case, =M M5.50M 0  .

Figure 10. Dependence of the ratio M Min M  on the sound speed a0 as given at
the equator of the injection sphere. Clearly, this ratio is a monotonically
increasing function of a0 with a steeper growth with increasing δ.

Figure 11. Dependence of the location of the stagnation point  on a0. Here,
we see that  is inversely proportional to both a0 and δ. Note that  shows a
dependence on a0 that resembles the one followed by the critical radius rc on
this same parameter.

Figure 12. Dependence of the maximum velocity of the ejected material Vej on
a0. Here, we see that Vej grows more or less linearly with a0.
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from all of the simulations presented in this work, as well as
those in Aguayo-Ortiz et al. (2019) for the nonrelativistic case,
we see that a robust lower limit for  is given by the
corresponding Bondi radius = ¥r M aB

2 . Moreover, provided
that > rB, we have ¥a a0  , and then we can write

> M a . 600
2 ( )

At this point, it is useful to recall that, assuming an ideal gas,
we can relate the sound speed a and the fluid temperature T by

g
g g

=
-

- -
T

T

a

a

1

1
, 61

i

2

2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )

where Ti=mi/kB is the temperature corresponding to the rest-
mass energy of the average gas particle of mass mi. For a gas
composed of ionized hydrogen, we have = ´T 1.08 10 KH

13 ,
while for an electron–positron plasma = ´T 5.93 10 Ke

9 .
Then, from Equations (60) and (61), we have

g g
> +

-


M

T

T

1 1

1
. 62i ( )

A regular plasma dominated by radiation pressure and
consisting of protons and electrons can be modeled, in a first
approximation, as a γ=4/3 polytrope with an average particle
mass m mi H and, thus, Ti;TH. As discussed in Aguayo-Ortiz
et al. (2019), taking =T 10 K7 as the temperature at the inner
edge of the disk in an X-ray binary (Kaaret et al. 2017), from
Equation (62), we have > M105 . In the case of an AGN,
instead of taking the gas in the inner disk (at a temperature of

around T=105 K), we can consider the ionized plasma in the hot
corona above the disk with a temperature of up to =T 10 K9

(Czerny et al. 2003). Nevertheless, even for this large temperature,
from Equation (62), we obtain > M103 . Even in the case of the
accretion disk associated with a long GRB, where the gas
temperature can reach up to 10 K11 (Woosley 1993), from

Figure 13. Resulting steady-state configurations for a polytropic fluid with γ=5/3 and δ=0.5%. The value of the sound speed a0 used in each case is indicated on
the top-left corner of each panel.

Figure 14. Ratio of ejected- to injected-mass rates M Mej in  as a function of the
injection-mass rate in units of the Michel value MM . The injection radius is

= M100 . The different symbols correspond to the numerical results reported
in Tables 3–6 for γ=5/3 and sound speeds as labeled. The solid line
corresponds to the analytic model of an ultrarelativistic γ=2 stiff fluid
presented in Section 2 (see Equation (52)).
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Equation (62), we have > M80 , which is still a factor of 10
larger than the expected size of the inner engine.

The above analysis implies that, for the choked accretion
mechanism to work for a regular plasma, the temperature of the
infalling gas is required to be substantially higher than that of
the inferred values at the inner edge of the disk (or disk
corona). These higher temperatures could result from highly
localized heating processes such as magnetic reconnection,
shock heating, or viscous friction at the point of transition
between the disk and the radial-infall domains.

On the other hand, the extreme conditions at the innermost
parts of these systems give rise to a different kind of plasma
composed of relativistic electron–positron pairs (Wardle et al.
1998; Beloborodov 1999; Siegert et al. 2016). Considering that
at least a fraction of this plasma has a thermal component, the
pair production mechanism implies temperatures in excess of
10 K11 . If we consider this gas as the accreted material, then for
this temperature and substituting Ti=Te in Equation (62), we

get > M . We obtain then that, under these circumstances, the
choked accretion mechanism might become relevant for the
ejection of this pair plasma.
Contrary to the analytic model presented in Section 2, we do

not have direct control on the mass-injection rate crossing the
outer boundary of our numerical simulations, as it is indirectly
determined by the values of , a0, and δ. Nevertheless, it is
clear that in an astrophysical scenario, this mass rate will be
imposed by external, possibly time-varying conditions. For
example, in the context of low-mass X-ray binaries, stellar
oscillations or orbital variations can modulate the total mass
transfer across the Roche lobe from the regular star to the
compact companion (Tauris & van den Heuvel 2006). More
dramatic time-varying conditions will be found for jets
launched during a common-envelope phase as studied by
López-Cámara et al. (2019), or for long GRBs as studied by,
e.g., López-Cámara et al. (2010) and Taylor et al. (2011).
The strong dependence that we have found between the ratio

of ejected-to-injected material and the incoming mass-accretion
rate, leads us to suggest that the choked accretion mechanism
could offer a compelling, simple connection between the
external mass flux feeding an accretion disk and the jet activity.
Whenever the mass-injection rate surpasses the threshold value
MM , the excess flux is prone to being ejected from the system
as a bipolar outflow. This could be of relevance for studying
the time variability of the jet emission.
Once a tight connection appears between accretion rates and

geometry on the one hand, and ejection rates and velocities on the
other, we have the potential to correlate the time variability in the
mass flux across the accretion disk to the resulting ejection rates
and velocities. This, in turn, naturally leads to the appearance of
internal shocks in the ensuing jets, such as those typically
assumed to be associated with the GRB phenomenology.
As already implied by the above discussion, a proper

exploration of the role played by choked accretion in launching
relativistic jets, demands accounting for additional physics,
such as the effect of rotation, magnetic fields, and radiative
transport. Indeed, these factors are considered as crucial for the
acceleration and collimation of the resulting jets (Semenov
et al. 2004; McKinney 2006). Moreover, as discussed in
Aguayo-Ortiz et al. (2019), some of these ingredients might
actually improve the applicability of choked accretion by
increasing both the effective temperature and the polar-density
contrast, thus, bringing  closer to the central accretor. It
should also be interesting to study the possible interplay of
choked accretion with the well-established Blandford & Znajek
(1977) mechanism. We intend to address these points in
future work.

5. Summary

We have presented the choked accretion phenomenon as a
purely hydrodynamical outflow-generating mechanism. Choked
accretion operates under two basic premises: a sufficiently large
mass flux accreting onto a central object, and an anisotropic
density field in which an equatorial belt has a higher density than
the polar regions. These two ingredients are plausibly met in
several jet-launching astrophysical scenarios involving accretion
disks around massive objects. We suggest that choked accretion
constitutes a relevant ingredient for studying some of these
systems.
Moreover, we have shown that breaking spherical symmetry

by imposing a polar-density gradient in the accretion flow onto

Figure 16. Maximum velocity attained by the ejected material Vej as a function
of the injection-mass rate. The injection radius is = M100 . The different
symbols correspond to the numerical results reported in Tables 3–6 for γ=5/3
and sound speeds as labeled. The solid line corresponds to the analytic model of
an ultrarelativistic γ=2 stiff fluid presented in Section 2.

Figure 15. Location of the stagnation point  as a function of the injection-
mass rate. The injection radius is = M100 . The different symbols
correspond to the numerical results reported in Tables 3–6 for γ=5/3 and
sound speeds as labeled. The solid line corresponds to the analytic model of an
ultrarelativistic γ=2 stiff fluid presented in Section 2.
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a central object qualitatively changes the resulting steady-state
configurations from the purely radial accretion models
(Bondi 1952; Michel 1972) to the infall-outflow morphology
that characterizes the choked accretion model. Thus, choked
accretion provides a natural transition between spherical
accretion and systems characterized by bipolar outflows.

We have studied this phenomenon by introducing first a
general relativistic analytic model of choked accretion onto a
Schwarzschild black hole. This model is based on the
approximations of steady-state, axisymmetry, and irrotational
flow and assumes an ultrarelativistic stiff fluid. We then relaxed
this last assumption, together with the associated potential flow
condition, and studied more general fluids by means of full-
hydrodynamic simulations performed with the numerical code
aztekas.

Both for an ultrarelativistic stiff fluid as for a regular
polytrope, the limiting value for the total mass-accretion rate
corresponds quite closely to the one found in the spherically
symmetric case (Michel 1972). We have thus found that, within
the assumptions underlying this work, hydrodynamical accre-
tion flows onto massive objects choke at this threshold value
and any extra infalling material is deflected into a bipolar
outflow.

The analytic solution presented here allowed us to study in
detail the basic physical principle behind the choked accretion
phenomenon. Moreover, we have also demonstrated the
usefulness of this exact analytic solution as a benchmark test
for validating numerical hydrodynamic codes in general. The
nonrelativistic limit of this analytic solution is presented in
Aguayo-Ortiz et al. (2019).

Considering together: (i) the perturbative Newtonian solu-
tions for isothermal fluids of Hernandez et al. (2014); (ii) the
exact Newtonian solution for incompressible fluids and the
numerical Newtonian experiments for polytropic equations of
state in Aguayo-Ortiz et al. (2019); and (iii) the present exact
analytic relativistic model for a stiff fluid and the numerical
experiments presented for polytropic fluids; we can conclude
that the inflow-outflow steady-state configurations presented
here are an extremely general and robust consequence of
breaking spherical symmetry with a polar-density gradient in
an accretion flow onto a central object. Similarly, we see that
the choked accretion character of these configurations extends
across the Newtonian and relativistic regimes.

We thank Olivier Sarbach and John Miller for insightful
discussions and critical comments on the manuscript. We also
thank Fabio de Colle and Diego López-Cámara for useful
comments and suggestions. This work was supported by
DGAPA-UNAM (IN112616 and IN112019) and CONACyT
(CB-2014-01 No. 240512; No. 290941; No. 291113) grants. A.
A.O. and E.T. acknowledge economic support from CON-
ACyT (788898, 673583). X.H. acknowledges support from
DGAPA-UNAM PAPIIT IN104517 and CONACyT.

Appendix A
Relativistic, Spherically Symmetric Accretion Flow

In this Appendix Section, we give a brief overview of
Michel’s (1972) analytic model of a spherically symmetric
accretion flow onto a Schwarzschild black hole. In particular,
we derive an analytic expression for the resulting mass-
accretion rate in a form that is useful for the present work (see
Beskin & Pidoprygora 1995, for an alternative derivation).

Here, we will consider only the case of a perfect fluid
described by a polytropic equation of state as in Equation (53).
See Chaverra & Sarbach (2015) for a recent extension of
Michel’s (1972) model to a general class of static, spherically
symmetric background metrics, as well as for more general
equations of state.
Under the assumptions of stationary state and spherical

symmetry, the equations governing the accretion flow are the
continuity equation and the radial component of the relativistic
Euler equation (Equations (4) and 5, respectively), i.e.,

r =
d

dr
r U 0, A1r2( ) ( )

=
d

dr
r T 0, A2t

r2( ) ( )
where t= =v U dr dr and r=T h U Ut

r
t

r. Direct integra-
tion of these two equations gives

p r p l= = =r v M4 4 const ., A32
M ( )

r m= =h U v r const. A4t
2 ( )

We can simplify Equation (A4) by dividing it by Equation (A3)
and taking its square; the result is

m
l
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M
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2
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2
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Following Michel (1972), we can combine Equations (A1)
and (A2) into the following differential equation
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From Equation (A6), we obtain that the condition of having a
critical point, i.e., a radius r=rc at which both sides of this
equation vanish simultaneously, translates into

=v
M
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1

2
, A7c

c

2 ( )
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v1 3
. A8c

c

c

2
2

2
( )

Substituting Equations (A7) and (A8) into Equation (A5)
results in

- + - =¥n h h n h3 3 0, A9c c
3 2 [( ) ] ( )

where g= -n 1 1( ). This polynomial has three real roots for
hc, but only one satisfies hc>1 and, thus, has physical
meaning. This root is given by
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We can now find an expression for the accretion rate in terms
of M, the equation of state of the fluid, and its asymptotic
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conditions (expressed in terms of r¥ and ¥h ). Let us start by
substituting Equation (A7) into the continuity Equation (A3),
which results in

l r r= = -r v M v
1

4
. A12c c c c c

2 2 3 ( )
Now, using Equations (53) and (55), we can rewrite the

equation of state as

r r=
-
-¥

¥

h

h

1

1
, A13c

c
n⎛

⎝⎜
⎞
⎠⎟ ( )

on the other hand, by combining Equations (56), (A8), and
(A10) we obtain
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Then, substituting Equations (A13) and (A14) into
Equation (A12), we obtain
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Note that MM as expressed in Equation (A15) is given in
terms of thermodynamical quantities measured asymptotically
far away from the central object (r¥ and either ¥a or ¥h ). In
order to compare the results presented in Section 2 with
Michel’s solution, one needs first to find the asymptotic values
r¥ and ¥a resulting in a solution such that r r= 0∣
and =a a0∣ .

Appendix B
Validation of the Numerical Code

In this Appendix Section, we present a series of standard
tests in order to validate the results using aztekas. This section
is complementary to the test already presented in Section 3.1 as
well as the Appendix presented in Tejeda & Aguayo-Ortiz
(2019), where the code is tested using the relativistic spherical
accretion problem(Michel 1972).

B.1. One-dimensional Shock Tube Tests

The one-dimensional shock tube test(Sod 1978) is a
standard problem to solve for code validation, as it is easy to
implement, and the exact solution can be computed. It consists
of a perfect fluid at two different initial states with parameters
r P v, ,L L L( ) and r P v, ,R R R( ) (where subscripts L and R refer to
the left and right sides, respectively) separated by an interface
at =x x0. At t=0, the interface is removed, and the two states
are left to interact with each other. The evolution of this
configuration depends only on the initial values and on the
equation of state. Here, we present a set of four one-
dimensional shock tube tests, along with a two-dimensional
version of the problem. For the former case, we compare the
results with the analytic solution.

We reproduce four of the shock tube tests presented by Lora-
Clavijo et al. (2015). The tests were performed in a Cartesian
1D domain Îx 0, 1[ ] with a resolution N=800 and a Courant
number of 0.5. The initial conditions of each test are presented
in Table B1. Test 1 and Test 2 correspond to a mild and strong
relativistic blast-wave explosion, respectively. The initial
conditions for Test 3 produce a highly relativistic symmetric
head-on stream collision, with a Lorentz factor Γ=1000.

Finally, Test 4 follows the evolution of a shock traveling at
v=0.9, as seen from the rest frame of the shock front.
In Figure B1, we show the evolution of all four tests at

t=0.35 and the comparison between the numerical simula-
tions performed with aztekas and the analytic solution. The
latter was computed using a code written by Martí & Müller
(1999). In the first two tests, a contact discontinuity and a
rarefaction wave are formed. In Test 1, where the Lorentz
factor is Γ≈1, the analytic solution is well resolved. In Test 2,
where the Lorentz factor is Γ≈6, we obtain an overall
satisfactory result, although a higher resolution should lead to a
better defined contact discontinuity. Test 3 shows the evolution
of a strong head-on collision between two shock waves. A
stationary high-density, high-pressure shell is formed, and we
see, again, a good match with the analytic solution. Finally, in
Test 4, we can see the formation of a stationary contact
discontinuity. In this case, small oscillations are developed
right behind the shock. These oscillations are damped with
higher resolution. All of the results presented here agree with
previous works that use similar schemes (e.g., Lucas-Serrano
et al. 2004; De Colle et al. 2012; Lora-Clavijo et al. 2015).

B.2. Two-dimensional Riemann Problem

For this test, we follow closely the initial setup proposed by
Del Zanna & Bucciantini (2002) for the two-dimensional
Riemann problem, which is the relativistic extension of the
case presented by Lax & Liu (1998). The problem consists of a
square domain subdivided into four regions with different
initial states

r =

> >
>

>



 

P v v

x y
x y
x y
x y

, , ,

0.1, 0.01, 0, 0 if 0.5, 0.
0.1, 1, 0.99, 0 if 0.5, 0.

0.5, 1, 0, 0 if 0.5, 0.
0.1, 1, 0, 0.99 if 0.5, 0.

B1

x y

⎧
⎨
⎪⎪

⎩
⎪⎪

( )
( )
( )

( )
( )

( )
The test was performed in a 2D Cartesian domain

Î ´x y, 0, 1 0, 1( ) [ ] [ ] with a 400×400 resolution and a
Courant number of 0.25. In Figure B2, we show the evolution
of the rest-mass density at a time t=0.4. The morphology of
the solution shows a stationary high-density contact disconti-
nuity along the diagonal of the domain and a jet-like structure
propagating into the initially over-dense region. These results
are qualitatively similar to the ones obtained by Del Zanna &
Bucciantini (2002), De Colle et al. (2012), and Lora-Clavijo
et al. (2015).

Table B1
Initial Conditions for the Left (L) and Right (R) States of the Set of One-

dimensional Shock Tube Tests

Test 1 Test 2 Test 3 Test 4

ρL 10 1 1 1
PL 13.33 1000 0.001 1
vL 0 0 0.999999995 0.9

ρR 1 1 1 1
PR 10−8 0.001 0.001 10
vR 0 0 −0.999999995 0

γ 5/3 5/3 4/3 4/3
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Chapter 7
Choked accretion onto a Kerr black
hole

Continuing the extension of the choked accretion model, in this chapter we explore
the behaviour of the choked accretion mechanism in the case when the central object
is a rotating black hole. This study generalizes the previous articles by including an
extra parameter to analyse, which is the spin of the black hole.

In this paper, we extend our steady-state, irrotational analytic solution of an
ultra-relativistic, perfect fluid for the case when the metric describes a rotating Kerr
black hole. By assuming a stiff equation of state, we derive the general potential fluid
solution using horizon-penetrating coordinates, from which we derive the expressions
for the density and velocity fields. From this solution, we focus on the axisymmetric
quadrupolar flow solution, which contains the physics related to the choked accretion
mechanism. We find that, not only a bipolar outflow solution is obtained, but also
an equatorial outflow one, in which the fluid escapes from the equatorial region and
is accreted through the poles. Likewise, we analyse the case when the bipolar outflow
is not align with the spin of the black hole.

As in the previous papers, we extend our analytic model by relaxing the as-
sumption on the equation of state and performing general relativistic hydrodynamic
numerical simulations of the choked accretion model for an ideal gas accreted by
a Kerr black hole. We use the aztekas code for these numerical experiments, for
which we develop the algorithms and methods necessary for the program to allow
more general metrics and coordinates, as the Kerr-Schild one. Moreover, we use our
analytic solution as a benchmark test for validating our numerical results. Our sim-
ulations use a numerical setup similar to the one used in our previous works, but
now we focus on the dependence of the solution on the spin parameter, finding that
the overall solution and properties of the choked accretion model persists largely
unaffected by the rotation of the black hole.
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The choked accretion model consists of a purely hydrodynamical mechanism in which, by setting an
equatorial to polar density contrast, a spherically symmetric accretion flow transitions to an inflow-outflow
configuration. This scenario has been studied in the case of a (nonrotating) Schwarzschild black hole as
central accretor, as well as in the nonrelativistic limit. In this article, we generalize these previous works by
studying the accretion of a perfect fluid onto a (rotating) Kerr black hole. We first describe the mechanism
by using a steady-state, irrotational analytic solution of an ultrarelativistic perfect fluid, obeying a stiff
equation of state. We then use hydrodynamical numerical simulations in order to explore a more general
equation of state. Analyzing the effects of the black hole’s rotation on the flow, we find in particular that the
choked accretion inflow-outflow morphology prevails for all possible values of the black hole’s spin
parameter, showing the robustness of the model.
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I. INTRODUCTION

Black hole accretion theory has been an important build-
ing-block of our current understanding of high-energy
astrophysical phenomena such as x-ray binaries, gamma
ray bursts, and active galactic nuclei [1]. In recent years, this
field of knowledge has gone through a revolution led by the
observational breakthrough of gravitationalwave astronomy,
that has allowed a systematic analysis of close to fifty binary
black hole mergers to date [2,3], as well as the extreme-
resolution imaging of the immediate environment of astro-
physical black holes achieved by the Event Horizon
Telescope [4].
Since the pioneering work of Bondi [5], the introduction

of exact, analytic solutions for modeling different astro-
physical scenarios has been instrumental in the continuous
development of accretion theory. Analytic models, by
transparently highlighting the role played by different
physical ingredients, are key in cementing our understand-
ing and building our intuition around the studied phenom-
ena. Moreover, analytic solutions are crucial tools as
benchmark tests for numerical codes [6].
Within the regime of Newtonian gravity, the Bondi

solution describes the stationary flow of a spherically
symmetric gas cloud accreting onto a gravitational object.

This solution was extended by Michel [7] to a relativistic
regime by considering a Schwarzschild black hole as central
accretor. On the other hand, analytic solutions to the
so-called wind accretion scenario have been introduced
by Bondi and Hoyle [8] and Hoyle and Littleton [9] in the
Newtonian context as well as by Tejeda and Aguayo-Ortiz
[10] in the relativistic context of a Schwarzschild black
hole.1 Several analytic and numerical investigations have
further extended the study of spherical accretion, e.g.,
[14–24], as well as of wind accretion, e.g., [25–30].
It is important to note, however, that although astrophysi-

cal black holes are expected to rotate in general, very few
analytic solutions exist for rotating black holes as described
by the Kerr metric. A notable exception is the analytic
solution introduced by Petrich, Shapiro and Teukolsky [31]
that describes, under the assumptions of steady-state and
irrotational flow, an ultrarelativistic stiff fluid accreting onto
a Kerr black hole.
Based on the general solution presented in [31], and

following on the work of [32,33], Tejeda, Aguayo-Ortiz
and Hernandez [34] presented a simple, hydrodynamical
mechanism for launching bipolar outflows from a choked
accretion flow onto a Schwarzschild black hole. This
model starts from a spherically symmetric accretion flow
onto a central massive object and introduces a deviation

*Corresponding author.
aaguayo@astro.unam.mx

1Also see [11–13] for a related, analytic model of a rotating
dust cloud accreting onto a rotating or a nonrotating black hole.
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away from spherical symmetry by considering a small-
amplitude, large-scale density gradient in such a way that
the equatorial region of the accreting material is over dense
as compared to the polar regions. This anisotropic density
field translates into a pressure-driven force that, provided a
sufficiently large mass accretion rate, can deflect a fraction
of the originally radial accretion flow onto a bipolar
outflow. The threshold value for the accretion rate deter-
mining whether the inflow chokes and the launching
mechanism is successful or not is found to be of the order
of the mass accretion rate corresponding to the spherically
symmetric cases discussed by Bondi and Michel.
Even though the approximation of a stiff fluid has a rather

limited applicability in astrophysics, the mechanism pre-
sented in [34] was shown to be valid for more general
equations of state by means of full hydrodynamic numerical
simulations.Moreover, as discussed in [33], this mechanism
is also valid in the context of Newtonian gravity.
In this work, we present an extension of the choked

accretion model introduced in [33,34] to the case of a
rotating central black hole as described by the Kerr metric.
We study this problem using both an analytic solution for
an ultrarelativistic stiff fluid as well as full hydrodynamic
numerical simulations for fluids described by more general
equations of state. In addition to demonstrating that the
choked accretion mechanism can successfully operate with
a central rotating black hole, we also analyze the effects of
the black hole rotation on the accretion flow.
We focus mostly on the case in which the axis of the

bipolar outflow is aligned with the black hole’s rotation
axis, although we also briefly discuss the case of a possible
misalignment between these two. Considering that the
infalling gas might come from the inner edge of an
accretion disk, we believe that the restriction of alignment
is well justified in view of the Bardeen-Petterson effect
[35,36], which foresees that the inner part of an accretion
disk around a rotating black hole will be aligned with the
equatorial plane of the central black hole.
The choked accretion mechanism introduced in [33,34]

can be considered as a hydrodynamic toymodel of the central
engine in astrophysical scenarios involving both equatorial
accretion flows and bipolar outflows. These scenarios can
range from the jets and winds associated with some young
stellar objects to the accretiondisk-jet systemsassociatedwith
stellar mass black holes (such as x-ray binaries and gamma-
ray bursts) as well as with supermassive black holes (such as
radio loud galaxies and other active galactic nuclei).
Even though the choked accretion model does not

account directly for fluid rotation, the assumption of an
anisotropic density field is motivated precisely as a way to
introduce indirectly one of the effects of fluid rotation and
angular momentum conservation, namely, the existence of
a well-defined symmetry axis (the rotation axis) and the
accompanying flattening of the accreting fluid that results
in an equator-to-poles density gradient (see, e.g., [37,38]).

Several works in the literature have studied before different
accretion scenarios featuring both equatorial inflows and
bipolar outflows, particularly within the regime of hot
accretion flows [39,40], that correspond to geometrically
thick, optically thin, and radiatively inefficient accretion
flows. These studies have been both analytic, with models
such as advection dominated accretion flows (ADAF) [41,42]
or adiabatic inflow-outflow solutions (ADIOS) [43–45], as
well as based on numerical simulations [46–51]. From the
point of view of the incorporated physical ingredients, these
models are more realistic than the choked accretion scenario
discussed here as they account for effects such as fluid
rotation, viscousdissipationof energy and transport of angular
momentum, interaction with a radiation field, magnetic
fields, among others. Nevertheless, we believe that, given
its simplicity and reliance on pure hydrodynamics, the choked
accretion mechanism might be already at work in some of
those systems, acting alongside more complex processes.
Also note that the choked accretion model shares some

broad, qualitative features with some versions of hot
accretion flows [40], namely, an accreting, quasispherical
gas distribution, with sub-Keplerian rotation, and with such
a large internal energy that parcels of it become gravita-
tionally unbound from the central object and can be ejected
as bipolar outflows.
The paper is organized as follows. Based on the approx-

imations of steady-state and irrotational flow, in Sec. II we
present the general solution of an ultrarelativistic stiff fluid in
Kerr spacetime. In contrast to [31], who adopted the Boyer-
Lindquist coordinates for this derivation, we shall employ
horizon-penetrating coordinateswhich are regular across the
black hole’s event horizon and allow for a clearer and, in fact,
simpler derivation of the solution. In Sec. III we restrict our
discussion on the axisymmetric, quadrupolar solution and
discuss its most salient properties. Based on this solution,
in Sec. IV we introduce and discuss the analytic model
describing choked accretion in a Kerr spacetime. In Sec. V
we complement this study by means of hydrodynamic
simulations for a more general equation of state. Finally,
in Sec. VI, we present a summary of the model and give our
conclusions. Technical details regarding the region of
validity of the analytic solution, a nonaxisymmetric exact
solution, and convergence tests of our numerical results are
discussed in three appendixes. Throughout this article we
use the signature convention ð−;þ;þ;þÞ for the spacetime
metric and work in geometrized units for whichG ¼ c ¼ 1.

II. STEADY-STATE, IRROTATIONAL SOLUTIONS
FOR AN ULTRARELATIVISTIC STIFF EQUATION

OF STATE ON A KERR BACKGROUND
SPACETIME

In this section, we review the analytic approach of [31]
for obtaining exact, irrotational, steady-state solutions of
the relativistic Euler equations on a Kerr black hole
background with an ultrarelativistic stiff equation of state.
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We start in Sec. II A with the derivation of the Petrich-
Shapiro-Teukolsky solution [31] in horizon-penetrating
coordinates. Next, in Sec. II B we compute the components
of the three-velocity of the fluid with respect to the
reference frame associated with zero angular momentum
observers (ZAMOs), which are naturally adapted to the
Killing symmetries of the Kerr geometry and reduce to the
usual static observers in the non-rotating limit. Finally, in
Sec. II C we discuss the conserved quantities obeyed by the
fluid field, such as the (rest) mass and energy accretion
rates which are important for the physical interpretation of
our model, as well as the angular momentum accretion rate.
An ultrarelativistic stiff equation of state is characterized

by the fluid’s pressure P ¼ Kρ2 being proportional to the
square of the rest-mass density ρ and the internal energy
dominating the rest mass energy. For a perfect fluid in
local thermodynamical equilibrium obeying the first law
dh ¼ dP=ρ, this implies that its specific enthalpy h ¼ 2Kρ
is proportional to ρ. Together with the irrotational condition
such a fluid can be described by a scalar potential Φ
satisfying the linear wave equation

∇μ∇μΦ ¼ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΦÞ ¼ 0: ð1Þ

The potentialΦ determines the fluid’s specific enthalpy and
four-velocity Uμ according to

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð∇μΦÞð∇μΦÞ

q
; Uμ ¼ 1

h
∇μΦ; ð2Þ

from which the rest-mass density and the pressure can also
be obtained. An important point to notice is that not every
solution of the wave equation (1) yields a valid solution for
the fluid; indeed, for h to be well-defined the gradient ∇μΦ
of Φ needs to be timelike.
The key observation in [31] is that for a steady-state

configuration on a Kerr background, Eq. (1) can be
decoupled into standard spherical harmonics (even though
the Kerr spacetime is not spherically symmetric), leading to
a general solution which can be expressed in terms of well-
known special functions. In the following, we briefly repeat
the arguments leading to this expression. However, unlike
the Boyer-Lindquist coordinates used in [31], we base our
calculations on the Kerr-type coordinates2 ðt;ϕ; r; θÞ. This

has at least two advantages. First, as we will see, the
derivation and final expression for the analytic solution of
Eq. (1) is clearer and simpler in terms of these coordinates.
Second, and most importantly, it greatly facilitates the under-
standing of the properties of the flow at the horizon, since
these coordinates cover the (future) event horizon r ¼ rþ in
addition to the outside region r > rþ (whereas the Boyer-
Lindquist coordinates are ill-defined at the horizon).

A. Derivation of the Petrich-Shapiro-Teukolsky
solution in the Kerr-type coordinates

In terms of the coordinates ðt;ϕ; r; θÞ, the Kerr metric
components have determinant g ≔ detðgμνÞ ¼ −ϱ4 sin2 θ
and the components of the inverse metric are

ðgμνÞ ¼ 1

ϱ2

0
BBB@

−ðϱ2 þ 2MrÞ 0 2Mr 0

0 1
sin2 θ a 0

2Mr a Δ 0

0 0 0 1

1
CCCA; ð4Þ

where we use the standard abbreviations3

ϱ2 ¼ r2 þ a2cos2θ; Δ ¼ r2 − 2Mrþ a2:

Here, M and a are the mass and rotation parameter of the
Kerr spacetime, and we assume that a2 < M2 such that this
spacetime describes a nonextremal black hole with angular
momentum J ¼ aM.
With these coordinates, the wave equation (1) assumes

the following explicit form:

ðϱ2 þ 2MrÞΦ;tt − 2MrΦ;tr − ð2MrΦ;tÞ;r − 2aΦ;rϕ

− ðΔΦ;rÞ;r −
1

sin θ
ðsin θΦ;θÞ;θ −

1

sin2 θ
Φ;ϕϕ ¼ 0; ð5Þ

where, here and in what follows, subindices following a
coma refer to partial derivatives; for instanceΦ;tr ¼ ∂r∂tΦ.
For a stationary solution (such that h and Uμ are

independent of t), the scalar potential has the form

Φ ¼ e½−tþ ψðr; θ;ϕÞ�; ð6Þ
with a new function ψ which does not depend on t, and
where the positive constant e corresponds to the Bernoulli
constant (per unit mass), defined as

e ¼ −hUμKμ ¼ −hUt ¼ −Φ;t; ð7Þ

where K ¼ ∂t is the Killing vector field associated with the
time symmetry of Kerr spacetime.

2These coordinates are related to the Kerr coordinates
ðv;ϕ; r; θÞ found in standard textbooks [52,53] by the trans-
formation v ¼ tþ r, and they are related to the standard Boyer-
Lindquist coordinates ðtBL;ϕBL; rBL; θBLÞ through the transfor-
mation r ¼ rBL, θ ¼ θBL, while

t ¼ tBL þ
2M

rþ − r−

�
rþ ln

�
r − rþ
rþ

�
− r− ln

�
r − r−
r−

��
; ð3aÞ

ϕ ¼ ϕBL þ
a

rþ − r−
ln

�
r − rþ
r − r−

�
: ð3bÞ

3We warn the reader that throughout this work we follow the
convention of Ref. [1] where the similar-looking symbols ρ and ϱ
denote the rest-mass density and the metric coefficient
ϱ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2 cos2 θ

p
, respectively.
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Introducing the ansatz (6) into Eq. (5) yields

ðΔψ ;rÞ;r þ
1

sin θ
ðsin θψ ;θÞ;θ þ

1

sin2 θ
ψ ;ϕϕ þ 2aψ ;rϕ ¼ 2M:

ð8Þ

Despite of the presence of the rotation parameter a, this
equation can be separated into radial and angular parts by
means of a decomposition in terms of the standard spherical
harmonics Ylmðθ;ϕÞ:

ψðr; θ;ϕÞ ¼
X
lm

RlmðrÞYlmðθ;ϕÞ; ð9Þ

with the functions Rlm to be determined. Introduced into
Eq. (8) this gives4

d
dr

�
Δ
dR00

dr

�
¼ 2M; ð10Þ

for l ¼ 0, and

d
dr

�
Δ
dRlm

dr

�
þ 2i m a

dRlm

dr
− lðlþ 1ÞRlm ¼ 0; ð11Þ

for l ≥ 1. Integrating Eq. (10) once gives

dR00

dr
¼ 2Mrþ c0

ðr − rþÞðr − r−Þ
;

for some constant c0, where r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
denote

the roots of Δ. In order for R00 to be regular at the event
horizon r ¼ rþ, one needs to choose c0 ¼ −2Mrþ, such
that the factor r − rþ in the denominator is canceled. This
yields

R00 ¼ 2M ln

�
r − r−
rþ − r−

�
ð12Þ

plus a constant which is irrelevant since the flow only
depends on the gradient ofΦ. Note that R00 is regular for all
r > r−, but diverges at the Cauchy horizon r ¼ r−.

5

Therefore, the “spherical” (l ¼ 0) piece of ψ is fixed to
the specific function (12) by the requirement of regularity at
the horizon.
Equation (11) describes the “nonspherical” (l ≥ 1)

contributions to ψ and can be brought into the hyper-
geometric differential equation by introducing the dimen-
sionless coordinate

x ≔
r − rþ
rþ − r−

; ð13Þ

which ranges from −1 to∞ as r varies from r− to∞ and is
zero at the event horizon r ¼ rþ. In terms of this, Eq. (11)
reads

xð1þ xÞ d
2Rlm

dx2
þ
�
1þ 2xþ 2i m a

rþ − r−

�
dRlm

dx

− lðlþ 1ÞRlm ¼ 0; ð14Þ

which, after the further substitution x ¼ −y, yields the
standard form of the hypergeometric differential equation
(see, for example [54], Sec. 15). The solutions which are
regular at the event horizon x ¼ 0 can be written in terms of
Gauss’ hypergeometric function F (as defined in [54],
Sec. 15):

RlmðrÞ ¼ AlmFð−l;lþ 1; 1þ i m α;−xÞ; ð15Þ

where Alm is a free (complex) constant and where we have
introduced the dimensionless quantity

α ≔
2a

rþ − r−
¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − a2
p :

Note that Eq. (15) is actually a polynomial in r of order l,6

since for any complex number c ≠ 0;−1;−2;…,

Fð−l;lþ 1; c;−xÞ ¼
Xl
n¼0

ðlþ nÞ!
ðl − nÞ!

1

ðcÞn
xn

n!
; ð16Þ

with ðcÞn ≔ cðcþ 1Þðcþ 2Þ � � � ðcþ n − 1Þ for n ≥ 1 and
ðcÞ0 ≔ 1. A few examples relevant for this article are

[l ¼ 0]: Fð0; 1; c;−xÞ ¼ 1 (“spherical” Bondi-Michel-
type accretion which will be discussed in a future
work)

[l ¼ 1]: Fð−1; 2; c;−xÞ ¼ 1þ 2x
c (wind accretion dis-

cussed in [31,55,56])
[l ¼ 2]: Fð−2; 3; c;−xÞ ¼ 1þ 6x

c þ 12x2
cðcþ1Þ (choked ac-

cretion, discussed in the Schwarzschild limit in [34],
and in the present paper for arbitrary rotation)

Summarizing, the general solution describing a steady-
state, irrotational flow on a Kerr background which is
regular at the horizon and which has an ultrarelativistic stiff
equation of state is characterized by the potential

Φ ¼ e½−tþ 2M lnð1þ xÞ þ F ðr; θ;ϕÞ�; ð17Þ

with
4For simplicity, we assume that Y00 ¼ 1 while for l > 0 the

spherical harmonics Ylm are defined with the usual normaliza-
tion.

5Note also that R00 and its gradient diverge at the horizon in the
extremal case a ¼ �M, when rþ ¼ r− ¼ M.

6These polynomials are related to the associated Legendre
functions of the first kind, see [31,54]. For the special case c ¼ 1
these polynomials are also related to the shifted Legendre
polynomials.
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F ðr; θ;ϕÞ ≔
X∞
l¼1

Xl
m¼−l

AlmFð−l;lþ 1; c;−xÞYlmðθ;ϕÞ;

ð18Þ

where we recall that Alm ∈ C, x ¼ ðr − rþÞ=ðrþ − r−Þ,
c ¼ 1þ i m α, and α ¼ 2a=ðrþ − r−Þ.
Except for the addition of an irrelevant constant, the

expression for the potential in Eq. (17) agrees with Eq. (30)
in [31], taking into account the relations (3a), (3b) between
the Kerr-type coordinates and the Boyer-Lindquist coor-
dinates used in that reference.
ForΦ as given in Eq. (17) to be real, the coefficients Alm

need to satisfy the reality conditions

Al−m ¼ ð−1ÞmA�
lm; ð19Þ

so that there are 2lþ 1 independent real constants for each
l. Note also that Fð−l;lþ 1; 1þ i m α; 0Þ ¼ 1 on the
event horizon; hence the coefficients Alm describe the lm
contributions of the fluid potentialΦwhen evaluated on the
horizon cross section.
The specific enthalpy and four-velocity are obtained

from substituting Eq. (17) into Eq. (2), which yields

h2

e2
¼ 1þ 2M

ϱ2
rðrþ rþÞ þ 2Mrþ

r − r−

þ 4M
ϱ2

�
rþF ;r −

a
r − r−

F ;ϕ

�

−
1

ϱ2

�
ΔF 2

;r þ 2aF ;rF ;ϕ þ F 2
;θ þ

F 2
;ϕ

sin2 θ

�
; ð20Þ

and

h
e
Ut ¼ 1þ 2Mr

ϱ2
rþ rþ
r − r−

þ 2Mr
ϱ2

F ;r; ð21aÞ

h
e
Ur ¼ 1

ϱ2
ð−2Mrþ þ ΔF ;r þ aF ;ϕÞ; ð21bÞ

h
e
Uθ ¼ 1

ϱ2
F ;θ; ð21cÞ

h
e
Uϕ ¼ 1

ϱ2

�
2Ma
r − r−

þ aF ;r þ
1

sin2 θ
F ;ϕ

�
: ð21dÞ

Recall that the gradient of Φ needs to be timelike for the
solution to be well-defined, which is equivalent to the
requirement that the right-hand side of Eq. (20) be positive.
In general, this condition cannot be satisfied everywhere
outside the horizon. Since Fð−l;lþ 1; 1þ i m α;−xÞ
grows like rl at large distances, the right-hand side of
Eq. (20) is dominated by the term −ΔF 2

;r=ϱ2 ∼ −r2l−2 for a
solution containing multipoles up to a given l and hence

will eventually become negative, for a sufficiently large
radius, if l ≥ 2. However, since h2=e2 > 1 when F ¼ 0,
one can always choose the coefficients Alm small enough
such that the right-hand side of Eq. (20) is positive (and
hence h well-defined) within a finite spherical shell of the
form rþ ≤ r ≤ R containing the horizon.
A further restriction comes from the requirement that the

fluid should fall into the black hole at the horizon, such that
the four-velocity satisfies the inequality

Uμ∇μr ¼ Ur ¼ e
h
1

ϱ2
½−2Mrþ þ aF ;ϕ� < 0 ð22Þ

at the horizon r ¼ rþ, which is equivalent to the bound
aF ;ϕ < 2Mrþ at r ¼ rþ. We will show shortly that this is,
as expected, a consequence of the requirement for ∇μΦ to
be future-directed timelike.

B. ZAMO frame and three-velocity

For the results and calculations that follow, it is con-
venient to express the four-velocity in terms of an ortho-
normal frame instead of local coordinates. A very
convenient frame in the Kerr exterior spacetime is the
one associated with ZAMOs [57,58], that is, observers
whose world lines are tangent to a linear combination of the
Killing vector fields,

∂
∂tþ Ω

∂
∂ϕ ; with Ω ¼ 2Mar

Σ
; ð23Þ

and

Σ¼ðr2þa2Þ2−a2Δsin2θ¼Δϱ2þ2Mrðr2þa2Þ: ð24Þ

The ZAMO’s angular velocity Ω is singled out by the
requirement of zero angular momentum. These observers’
tangent vectors are also orthogonal to the tBL ¼ const.
Boyer-Lindquist time slices, and in this sense they general-
ize the “local Eulerian observers” used in [34] to discuss the
quadrupolar flow in a Schwarzschild background.
A natural orthonormal frame associated with the

ZAMOs is given by the following basis vectors (see
[57,58])7:

et̂ ¼
1

ϱ

ffiffiffiffi
Σ
Δ

r � ∂
∂tþ Ω

∂
∂ϕ

�
; ð25aÞ

er̂ ¼
ffiffiffiffi
Δ

p

ϱ

� ∂
∂rþ

2Mr
Δ

∂
∂tþ

a
Δ

∂
∂ϕ

�
; ð25bÞ

7Here and in the following, hatted indices refer to labels for
this orthonormal frame.
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eθ̂ ¼
1

ϱ

∂
∂θ ; ð25cÞ

eϕ̂ ¼ ϱffiffiffi
Σ

p
sin θ

∂
∂ϕ : ð25dÞ

The orthonormal components of the four-velocity are
given by

h
e
Ut̂ ¼ 1

ϱ

ffiffiffiffi
Σ
Δ

r
ð1 −ΩF ;ϕÞ; ð26aÞ

h
e
Ur̂ ¼ 1

ϱ
ffiffiffiffi
Δ

p ð−2Mrþ þ ΔF ;r þ aF ;ϕÞ; ð26bÞ

h
e
Uθ̂ ¼ 1

ϱ
F ;θ; ð26cÞ

h
e
Uϕ̂ ¼ ϱffiffiffi

Σ
p

sin θ
F ;ϕ: ð26dÞ

On the other hand, the components of the three-velocity are
defined as

Vr̂ ¼ Ur̂

Ut̂
¼ −2Mrþ þ ΔF ;r þ aF ;ϕffiffiffi

Σ
p ð1 − ΩF ;ϕÞ

; ð27aÞ

V θ̂ ¼ Uθ̂

Ut̂
¼

ffiffiffiffi
Δ
Σ

r
F ;θ

1 −ΩF ;ϕ
; ð27bÞ

Vϕ̂ ¼ Uϕ̂

Ut̂
¼ ϱ2

ffiffiffiffi
Δ

p

Σ sin θ

F ;ϕ

1 −ΩF ;ϕ
; ð27cÞ

with the corresponding Lorentz factor

Γ ¼ Ut̂ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p ; ð28Þ

where

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVr̂Þ2 þ ðV θ̂Þ2 þ ðVϕ̂Þ2

q
: ð29Þ

A number of interesting conclusions can be drawn from
these representations of the four- and three-velocities. First,
the four-velocity vector is future-directed timelike outside
the horizon if and only ifUt̂ > 0 and if the magnitude of the
three-velocity V is smaller than one. This is equivalent to
the two conditions

ΩF ;ϕ < 1 ð30Þ

and

V2 ¼ 1

Σð1 −ΩF ;ϕÞ2
�
ð−2Mrþ þ ΔF ;r þ aF ;ϕÞ2

þ Δ
�
F 2

;θ þ
ϱ4

Σsin2θ
F 2

;ϕ

��
< 1: ð31Þ

In the axisymmetric case, when F ;ϕ ¼ 0, the first inequal-
ity is automatically satisfied and the second one simplifies
considerably:

V2 ¼ ð2Mrþ − ΔF ;rÞ2 þ ΔF 2
;θ

Σ
< 1: ð32Þ

Since Σ ≥ ð2MrþÞ2 þ Δϱ2 for r ≥ rþ, one can always
satisfy this inequality for small enough values of the
gradient of F . The restrictions implied by the inequalities

)30,31 ) for a quadrupolar solution (l ¼ 2) will be analyzed
in more detail in the next two sections.
The next property that can be inferred from Eqs. (30) and

(31) is obtained by taking the limit r → rþ. In this limit,
the inequality (30) yields ΩþF ;ϕjr¼rþ

≤ 1, where Ωþ ¼
a=ð2MrþÞ is the angular velocity of the event horizon. This
provides a bound for the value of F ;ϕ at the horizon, and
comparison with Eq. (22) reveals the meaning of this
bound: the fluid cannot flow out of the black hole, a
property that is, of course, expected on physical grounds.
By requiring that the four-velocity Uμ is everywhere
timelike on the horizon, one can further eliminate the
possibility that ΩþF ;ϕ ¼ 1 somewhere on the horizon;
otherwise Eq. (22) would imply that Uμ is tangent to
the horizon and thus cannot be timelike. Summarizing, the
requirement for Uμ to be future-directed timelike at the
horizon yields the strict inequality,

ΩþF ;ϕjr¼rþ
< 1 ð33Þ

which implies that the flow can only cross inwards the
event horizon.
Another point to notice from the expressions for the

three-velocity of the fluid in Eqs. (27a)–(27c) is that
the fluid is at rest with respect to a ZAMO if and only
if the function F satisfies

ΔF ;r þ aF ;ϕ ¼ 2Mrþ; F ;θ ¼ F ;ϕ ¼ 0: ð34Þ

Finally, we note that, even though the ZAMO frame is
very useful in many situations, this frame is not well
defined at the event horizon nor in the region inside the
black hole between the two horizons r− and rþ, where
Δ ≤ 0. In case one is interested in analyzing the flow at or
inside the horizon, one may use instead the orthonormal
frame adapted to local Eulerian observers relative to the
t ¼ const. Kerr-type coordinates.
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C. Conserved quantities

Due to the presence of the Killing vector fields K ¼ ∂t
and L ¼ ∂ϕ of the Kerr spacetime, the following four-
currents are divergence-free:

Jμ ¼ ρUμ; ð35aÞ

JμE ¼ −Tμ
νKν; ð35bÞ

JμL ¼ Tμ
νLν; ð35cÞ

corresponding to the rest-mass, energy, and angular
momentum current densities, respectively.
For an ultrarelativistic stiff fluid, the specific enthalpy

h ¼ 2Kρ is proportional to the particle density and
P ¼ ρh=2, such that

Jμ ¼ ρUμ ¼ ρ

h
∇μΦ; ð36aÞ

Tμ
ν ¼ ρhUμUν þ Pδμν

¼ ρ

h

�
ð∇μΦÞð∇νΦÞ − 1

2
δμνð∇αΦÞð∇αΦÞ

�
: ð36bÞ

In particular, using Eqs. (17) and (21b) we find

Jr ¼ ρe
h

1

ϱ2
½−2Mrþ þ ΔF ;r þ aF ;ϕ�; ð37aÞ

JrE ¼ eJr; ð37bÞ

JrL ¼ eF ;ϕJr: ð37cÞ

Since the flow is stationary, the equation∇μJμ ¼ 0 gives

ðϱ2 sin θJrÞ;r þ ðϱ2 sin θJθÞ;θ þ ðϱ2 sin θJϕÞ;ϕ ¼ 0: ð38Þ

Therefore, the mass accretion rate (current flux) associated
with J through a two-surface S is given by

_M ¼ −
Z
S
ðJrNr þ JθNθ þ JϕNϕÞϱ2 sin θdS; ð39Þ

with ðNr; Nθ; NϕÞ the unit outward normal field and dS a
differential area element of S. If S is closed, then _M is
independent of any deformations of S, since Jμ is con-
served. For example, if S is a constant-r surface, then

_M ¼ −
Z
S
Jrϱ2 sin θdθdϕ; ð40Þ

which is independent of r. Using now the orthogonality
relations of the spherical harmonics we can integrate
Eq. (40) as

_M ¼ 8πMrþ
ρe
h

¼ 4πðr2þ þ a2Þ ρe
h
; ð41Þ

which is constant since ρ=h ¼ 1=ð2KÞ.
Similarly, for the energy accretion rate we have

_E ¼ −
Z
S
JrEϱ

2 sin θdθdϕ ¼ 4πðr2þ þ a2Þ ρe
2

h
¼ e _M; ð42Þ

while, for the angular momentum accretion rate

_J ¼ −
Z
S
JrLϱ

2 sin θdθdϕ

¼ −a
ρe2

h

Z
r¼rþ

F 2
;ϕ sin θdθdϕ

¼ −a
ρe2

h

X∞
l¼1

Xl
m¼−l

m2jAlmj2: ð43Þ

Notice that the mass and energy accretion rates are
uniquely determined by the l ¼ 0 part of the solution
(they are independent of the coefficients Alm), which in
turn was determined by the regularity requirement at the
event horizon. In contrast to this, the angular momentum
accretion rate is solely determined by the l > 0 part of
the solution. Interestingly, the sign of _J indicates that the
accreted material always slows down the spin of the
black hole (unless the flow is perfectly axisymmetric in
which case _J ¼ 0). Therefore, the accretion flow described
by (17) always drives the Kerr black hole away from
extremality (jJj decreases, M increases, such that J=M2

decreases).

III. THE AXISYMMETRIC QUADRUPOLAR FLOW

In this section we shall focus on the axisymmetric
quadrupolar solution, i.e., the velocity potential Φ in
Eq. (17) for which all of the coefficients Alm vanish except
for the ðl; mÞ ¼ ð2; 0Þ contribution, which results in

Φ ¼ e

�
−tþ 2M ln

�
r − r−
rþ − r−

�
þ AFðr; θ;ϕÞ

�
; ð44Þ

with

Fðr;θ;ϕÞ ¼ ð3r2 − 6Mrþ 2M2 þ a2Þð3 cos2 θ− 1Þ; ð45Þ

where, as we shall see below, e can be identified as a
scaling factor for the gas’ thermodynamic state while A
determines the overall flow morphology.
We can now exploit all of the results derived in the

previous section. In particular, from Eqs. (27a)–(27c), we
obtain the following expressions for the spatial components
of the three-velocity as described by the ZAMOs
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Vr̂ ¼ −2Mrþ þ AΔF;rffiffiffi
Σ

p ; ð46aÞ

V θ̂ ¼
ffiffiffiffi
Δ
Σ

r
AF;θ; ð46bÞ

Vϕ̂ ¼ 0; ð46cÞ

where

F;r ¼ 6ðr −MÞð3cos2θ − 1Þ; ð47aÞ

F;θ ¼ −6ð3r2 − 6Mrþ 2M2 þ a2Þ cos θ sin θ: ð47bÞ

The value for the constant e can be set by specifying a
reference point at which the fluid state is known. Calling h0
the specific enthalpy and V0 the magnitude of the three-
velocity at this reference point, from Eq. (26), we have

e ¼ Γ0h0ϱ0

ffiffiffiffiffiffi
Δ0

Σ0

s
; ð48Þ

where Γ0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

0

p
.

Using Eqs. (20) and (26a) we find that the specific
enthalpy in this case is given by

h2

e2
¼ Σð1 − V2Þ

Δϱ2

¼ 1þ 2Mr
ϱ2

þ 4M2

ϱ2
rþ rþ
r − r−

þ 4Mrþ
ϱ2

AF;r −
A2

ϱ2
ðΔF2

;r þ F2
;θÞ: ð49Þ

On the other hand, denoting by ρ0 the rest-mass density
at the reference point, from the equation of state we have
ρ=ρ0 ¼ h=h0. Using this, and substituting Eq. (48) back
into Eq. (26), we obtain

ρ

ρ0
¼ h

h0
¼ Γ0ϱ0

Γϱ

ffiffiffiffiffiffiffiffiffiffiffiffi
Σ
Σ0

Δ0

Δ

s
: ð50Þ

From Eq. (50), we note that the following combination of
variables

ρΓϱ
ffiffiffiffi
Δ
Σ

r
¼ const: ð51Þ

yields a global constant that characterizes the resulting
flow. Indeed, as follows from Eqs. (41) and (26a), this
constant is proportional to the total mass accretion rate.
Also note that, from Eq. (49), it is clear that both h and ρ are
completely regular (finite) quantities at the event horizon

(r ¼ rþ),
8 although they do become infinite at the Cauchy

horizon (r ¼ r−).
Provided that A ≠ 0, the flow structure described by

Eqs. (46a)–(46c) consists of an inflow-outflow morphol-
ogy. We can characterize this morphology in terms of the
location of the stagnation points, i.e., points at which the
three-velocity vanishes. From Eqs. (46b), (47b) we see that
V θ̂ vanishes only at points along the polar axis (θ ¼ 0; π)
and on the equatorial plane (θ ¼ π=2). Now it only remains
examining the points at which Vr̂ ¼ 0 restricted to either
θ ¼ 0; π or θ ¼ π=2. From Eqs. (46a), (47a) we can
distinguish two qualitatively different cases:
Case 1: When A > 0, the resulting structure consists of

inflow across an equatorial region and outflow confined to
the polar regions (bipolar outflow). In this case, Vr̂ vanishes
at two points along the polar axis symmetrically located
with respect to the origin at a coordinate distance r ¼ S that
satisfies

A ¼ Mrþ
6ðS − r−ÞðS − rþÞðS −MÞ : ð52Þ

See Fig. 1 for an example of the resulting flow for AM ¼
0.01 (which corresponds to S ≃ 4.24M) and a Kerr black
hole with a ¼ 0.5M.
Case 2: When A < 0, the scenario is reversed and one

has two bipolar inflow regions and outflow across the
equatorial region. In this case, we have that Vr̂ vanishes
now at an infinite number of points located on an equatorial
ring of radius r ¼ S satisfying

A ¼ −
Mrþ

3ðS − r−ÞðS − rþÞðS −MÞ : ð53Þ

In Fig. 2, we show an example of the resulting flow for
AM ¼ −0.01 (which corresponds to S ≃ 5M) and a Kerr
black hole with a ¼ 0.5M.
In both examples shown in Figs. 1 and 2, it is apparent

that V becomes luminal at two surfaces. From Eqs. (46a)–
(46c), and as discussed in the previous section, it is simple
to see that one such surface is the black hole’s event horizon
located at r ¼ rþ. This behavior is, however, a coordinate
effect related to the fact that the ZAMOs become ill defined
at this radius. Indeed, using Eqs. (21a)–(21b), it can be seen
that the fluid’s four-velocity is completely regular across
the event horizon.
On the other hand, the outer surface at which V ¼ 1

signals an unavoidable characteristic of the quadrupolar
solution. This surface, that in what follows we shall refer to
as E, marks the transition of the gradient Φ;μ from being
timelike (for points inner to E) to becoming spacelike (for

8Provided that jAj remains sufficiently small. See the dis-
cussion below Eq. (56) for conditions on A that guarantee that
h2=e2 > 0 near the horizon.
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points outside E). Moreover, from Eq. (50) we see that, at
this surface, the density ρ becomes zero and, for points
outside E, ρ ceases to be a real quantity. For these reasons,
we have to consider E as the outermost boundary delimiting
the spatial domain of applicability of the quadrupolar
solution.
An expression for E can be obtained by combining

Eqs. (49) and (50), and rewrite the condition V2 ¼ 1 as the
following second order polynomial in cos2 θ:

c2ðrÞcos4θ þ c1ðrÞcos2θ þ c0ðrÞ ¼ 0; ð54Þ

where

c0ðrÞ ¼ r2 þ 2Mrþ 4M2

�
rþ rþ
r − r−

�
− 24AMrþðr −MÞ − 36A2Δðr −MÞ2; ð55aÞ

c1ðrÞ ¼ a2 þ 72Aðr −MÞMrþ
− 36A2½ð3r2 − 6Mrþ 2M2 þ a2Þ2
− 6ðr −MÞ2Δ�; ð55bÞ

c2ðrÞ ¼ 36A2ðM2 − a2Þð3r2 − 6Mrþ 4M2 − a2Þ: ð55cÞ

From Eq. (54), one can show that, in the limit AM ≪ 1
(which necessarily implies S ≫ M and r ≫ M), E reduces
to the simple ellipsoid of revolution described by

r2ð1þ 3cos2θÞ ¼ x2 þ y2 þ 4z2 ¼ 1

ð6AÞ2 ; ð56Þ

where, within this same limit, from Eq. (52) in Case 1 we
have A ¼ M2=ð3S3Þ while, from Eq. (53) in Case 2 it
follows that A ¼ −2M2=ð3S3Þ.
On the other hand, by examining Eq. (54), it becomes

apparent that, for a sufficiently large value of jAj, the surface
E actually pierces through the event horizon.WhenA > 0, E
first touches the horizon at θ ¼ π=2 while, when A < 0, E
starts mergingwith the horizon at θ ¼ 0. This means that the
coefficient jAj cannot be arbitrarily large or, in other words,
that there is a minimum possible value Smin for S such that
Smin > rþ. In order to find the maximum value Amax, let us
first substitute θ ¼ π=2 in Eq. (54) and then evaluate the
result at r ¼ rþ. Doing this gives the condition c0ðrþÞ ¼ 0,
which can be solved explicitly for A as

Amax ¼
5M2 − a2 þ 3M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p

24MðM2 − a2Þ : ð57Þ

Similarly, for finding theminimumvalueAmin, we substitute
θ ¼ 0 in Eq. (54) and then evaluate the result at r ¼ rþ. This
results in the condition c2ðrþÞ þ c1ðrþÞ þ c0ðrþÞ ¼ 0
which can be solved for A as

Amin ¼ −
M2 þM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p

12MðM2 − a2Þ : ð58Þ

For a Schwarzschild black hole, Amax ¼ 1=3
(S ≃ 2.32M) and Amin ¼ −1=6 (S ≃ 2.80M). On the other
hand, for a Kerr black hole with a ¼ 0.5M, we have Amax ≃
0.41 (S ≃ 2.18M) and Amin ¼ −0.21 (S ≃ 2.61M). Finally,
note that in the extremal limit a → M, A actually becomes
unbounded, i.e., ðAmin; AmaxÞ → ð−∞;∞Þ. In Fig. 3 we

FIG. 1. Example of the axisymmetric quadrupolar flow with
AM ¼ 0.01 and a central Kerr black hole with a ¼ 0.5. The
stagnation points in this case are located along the polar axis at a
coordinate distance r ¼ S ≃ 4.2M. The figure shows isocontours
of the three-velocity’s magnitude V. Note that V becomes luminal
at the event horizon (r ¼ rþ) and at the outer ellipsoid indicated
by a black, thick line. Fluid streamlines are indicated by thick,
solid lines with an arrow. The axes correspond to the cylindrical-
like coordinates R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ, z ¼ r cos θ.

FIG. 2. Same as in Fig. 1, except that AM ¼ −0.01 is negative.
The stagnation points in this case are located on an equatorial ring
at a coordinate distance r ¼ S ≃ 5M.
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show examples of the boundary E for different values of A
for a Kerr black hole with a ¼ 0.5M.
We conclude this section with some words regarding the

case in which there is a misalignment between the accretion
flowmorphology and the black hole spin axis.Aswe show in
further detail in the Appendix A, this case still allows for the

same kind of inflow-outflow solutions. However, the result-
ing expressions become more involved as lack of axisym-
metry forces us to consider, in addition to the ðl; mÞ ¼ ð2; 0Þ
mode, the contributions from the m ¼ −2;−1, 1, 2 modes.
As an example of the resulting accretion flow, in Fig. 4
we show the result of considering a misalignment angle of
θ0 ¼ 30° for the same flow parameters as in Fig. 1.

IV. CHOKED ACCRETION

Here we apply the results obtained in the previous
section to the choked accretion scenario discussed in
[34] for a Schwarzschild spacetime. The idea is the
following: a gas flow is injected radially inwards from
points lying close to the equator of a sphere of certain
coordinate radius r ¼ R > rþ (the “injection sphere”)
toward the black hole. Part of this flow will be accreted
by the black hole and disappears through the event horizon.
However, when the injection rate is sufficiently large, it has
been shown in [34] that (due to an anisotropic density field)
part of the flow is diverted and ejected toward the poles.
Under these conditions, the resulting flow is characterized
by an inflow region originating from an equatorial belt in
the injection sphere and a bipolar outflow region (Case 1
discussed in the previous section).
For the reasons mentioned in the introduction, we shall

limit the rest of this work to the case in which the black
hole’s angular momentum is perpendicular to the injection
plane, that is, the equator of the injection sphere lies inside
the equatorial plane θ ¼ π=2 of the Kerr spacetime.
For given values of the black hole parameters ðM; aÞ, we

characterize the resulting flow by specifying the fluid
properties at the equator of the injection sphere, i.e., at
r ¼ R; θ ¼ π=2. At this reference point, we prescribe the
thermodynamic variables ρ0 ¼ ρðR; π=2Þ, h0 ¼ hðR; π=2Þ,
and the magnitude of the fluid’s three-velocity V0 as
measured by a ZAMO at this location. See Fig. 5 for a
schematic representation of the setup.
By imposing these boundary conditions in Eqs. (46a)

and (48), it follows that

e ¼ Γ0h0R

ffiffiffiffiffiffi
Δ0

Σ0

s
; ð59aÞ

A ¼
ffiffiffiffiffi
Σ0

p
V0 − 2Mrþ

6ðR −MÞΔ0

; ð59bÞ

where

Δ0 ¼ ðR − r−ÞðR − rþÞ; ð60aÞ

Σ0 ¼ðR2 þ a2ÞR2 þ 2MRa2; ð60bÞ

Γ0 ¼ð1 − V2
0Þ−1=2: ð60cÞ

FIG. 3. Outermost boundary E of the axisymmetric, quadru-
polar flow for several values of the coefficient A. Solid, colored
lines represent cases with A > 0, while dashed colored lines
correspond to A < 0. The central black hole has a spin parameter
a ¼ 0.5M. The event horizon is indicated by a solid black line.
Note that the curves E corresponding to A ¼ Amax ≃ 0.41 and
A ¼ Amin ≃ −0.21 touch the event horizon at the equator and
pole, respectively. Curves with A > Amax or A < Amin actually
pierce through the horizon. The axes correspond to the cylin-
drical-like coordinates R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ, z ¼ r cos θ.

FIG. 4. Same as in Fig. 1, except that now we consider an
inclination angle θ0 ¼ 30°. In order to show the stagnation points,
the plot corresponds to the plane ϕ ¼ ϕðϵÞ ¼ −0.15882 (see
Table II and accompanying discussion).
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With the values for the model parameters in Eqs. (59a)
and (59b), all of the results derived in the previous section
can be directly adopted. In particular, the velocity field of
the corresponding solution is given by Eqs. (46a)–(46c),
the fluid enthalpy by Eq. (49), and the density field by
Eq. (50). Also note that the location of the stagnation points
in this case follows by combining Eq. (52) and Eq. (59b),
which results in

ffiffiffiffiffi
Σ0

p
V0

Mrþ
− 2 ¼ ðR − r−ÞðR − rþÞðR −MÞ

ðS − r−ÞðS − rþÞðS −MÞ : ð61Þ

This equation can be explicitly solved for S as

S ¼ M þ
�
ξþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 −

ðM2 − a2Þ3
27

r �1=3

þ
�
ξ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 −

ðM2 − a2Þ3
27

r �1=3

; ð62Þ

where

ξ ¼ ðR − r−ÞðR − rþÞðR −MÞMrþ
2ð ffiffiffiffiffi

Σ0

p
V0 − 2MrþÞ

: ð63Þ

Finally note that, following a procedure analogous to that
described in [34], one can obtain an expression for the
projection of a streamline onto the r − θ plane given by

Ψ ¼ cos θ

�
1þ ðr − r−Þðr − rþÞðr −MÞ

ðS − r−ÞðS − rþÞðS −MÞ
sin2θ
2

�
; ð64Þ

where Ψ is an integration constant. Streamlines with
jΨj < 1 accrete onto the central black hole, those with
jΨj > 1 escape along the bipolar outflow, while those
with Ψ ¼ 1 (Ψ ¼ −1) are connected to the stagnation
point at θ ¼ 0 (θ ¼ π).

A. Parameter range

The solution described by Eq. (44) with e and A as given
in Eqs. (59a)–(59b) is characterized by six parameters: M
and a describing the black hole, and R, ρ0, h0 and V0

specifying the boundary conditions at the injection sphere.
As discussed in [34], the obtained solution is actually scale-
free with respect to the model parameters M (that sets the
overall length scale), ρ0, and h0 (that set the thermody-
namic state of the fluid).
Once a Kerr background metric has been fixed with M

and a (satisfying jaj < M), our next goal is to determine the
range for the parametersR and V0 leading to solutions that:
(1) Are well-defined within the domain r ∈ ½rþ;R�.
(2) Present the inflow-outflow morphology of the

choked accretion mechanism.
To this end, it is convenient to examine the ejection velocity
defined as

Vej ≡ Vr̂ðR; 0Þ ¼ 2V0

ffiffiffiffiffi
Σ0

p
− 6Mrþ

R2 þ a2
; ð65Þ

where we have used Eqs. (46a) and (59b).
Condition 1 is satisfied by requiring that the gradient of

the potential function remains timelike within the domain
of interest, which is equivalent to the condition that the
right-hand side of Eq. (49) is positive for all r ∈ ½rþ;R�
and all θ ∈ ½0; π�. In Appendix B we prove that this can be
guaranteed by requiring

R ≥ 3M þ rþ ð66Þ
and demanding that Vej < 1. From Eq. (65), this last
condition in turn is equivalent to

V0 <
R2 þ a2 þ 6Mrþ

2
ffiffiffiffiffi
Σ0

p : ð67Þ

On the other hand, since we have already assumed inflow
across the equator of the injection sphere, condition 2 is
satisfied by requiring Vej > 0. Again, from Eq. (65), this
condition translates as

V0 >
3Mrþffiffiffiffiffi

Σ0

p : ð68Þ

Therefore, the injection velocity parameter is restricted as

V0 ∈ ðVmin; VmaxÞ; ð69Þ

FIG. 5. Schematic representation of the choked accretion model
in the polar plane. Shown are the black hole region (r < rþ), the
location of the injection sphere (r ¼ RÞ, the location of the
reference point ðr ¼ R; θ ¼ π=2Þ where the data ðρ0; h0; V0Þ
characterizing the solution are specified, the location of the
stagnation point at r ¼ S and the critical angle θc which separates
the inflow from the outflow regions on the injection sphere.
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with

Vmin ¼
3Mrþffiffiffiffiffi

Σ0

p ; Vmax ¼
R2 þ a2

2
ffiffiffiffiffi
Σ0

p þ Vmin: ð70Þ

B. Mass accretion, injection, and ejection rates

The accretion rate follows by substituting Eq. (59a) into
Eq. (41), which results in

_M ¼ 8πMrþ
ρe
h

¼ 8πMrþΓ0ρ0R

ffiffiffiffiffiffi
Δ0

Σ0

s
: ð71Þ

By considering the flux of mass across the injection
sphere, we can distinguish between the inflow and outflow
fluxes, _Min and _Mej, respectively, defined in such a way that

_Min − _Mej ¼ _M: ð72Þ

We can calculate both fluxes explicitly by examining the
radial component of the fluid velocity at the injection
sphere. From Eq. (46a), it follows the existence of a critical
angle θc given by

θc ¼ arccos

�
3

�
1 −

2Mrþffiffiffiffiffi
Σ0

p
V0

��
−1=2

; ð73Þ

such that there is inflow (Vr̂ < 0) for the equatorial belt
defined by θ ∈ ðθc; π − θcÞ and outflow (Vr̂ > 0) for the
polar regions θ ∈ ð0; θcÞ and θ ∈ ðπ − θc; πÞ.

We can thus calculate _Min in terms of θc as

_Min ¼ −4π
Z

π=2

θc

ρUrϱ2 sin θdθ ¼ Λ _M ð74Þ

where

Λ ¼ 2cos3θc
3cos2θc − 1

¼
ffiffiffiffiffi
Σ0

p
V0

3
ffiffiffi
3

p
Mrþ

�
1 −

2Mrþffiffiffiffiffi
Σ0

p
V0

�
−1=2

: ð75Þ

Clearly, in view of Eq. (72), it follows that

_Mej ¼ ðΛ − 1Þ _M: ð76Þ

In Fig. 6 we show the isocontour levels of the rest-mass
density field, as well as the magnitude of the three-velocity
V, and the resulting fluid streamlines (black solid arrows) for
a representative case with model parameters a ¼ 0.99M,
R ¼ 10M, and V0 ¼ 0.2.
In Fig. 7 we represent the regions in the parameter space

ða; V0Þ that lead to the choked accretion solution as
discussed in Sec. IVA. The plotted isocontours correspond
to the mass accretion rate _M expressed in units of
_M0 ¼ 8πM2ρ0. Each panel corresponds to a different value
of the injection radiusR, from top to bottom R=M ¼ 4, 8,
100. The boundary lines delimiting each region correspond
to theVmin andVmax limits given inEq. (70). From this figure
we can see a general trend for increasing values of _M as the
value of V0 increases, while _M decreases as the spin
parameter a=M grows from zero to 1. Also note that the
dependence on a of the limits Vmin and Vmax becomes less
noticeable as increasingly larger values ofR are considered.

FIG. 6. Analytic model of choked accretion for a Kerr black hole with a ¼ 0.99M and flow parametersR ¼ 10M and V0 ¼ 0.2. The
figure shows isocontours of the fluid’s normalized rest-mass density (left panel) as well as the magnitude of the three-velocity (right
panel). The stagnation points are located on the symmetry axis with radius S ≃ 4.6011M. Fluid streamlines are indicated by thick, solid
lines with an arrow. The axes correspond to the cylindrical-like coordinates R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ and z ¼ r cos θ.
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In Fig. 8 we show three different properties of the choked
accretionmodel as a function of the spin parameter a=M, for
an injection sphere atR ¼ 10M. Each color line represents a
different value of the injection velocity. The quantities
correspond to: the mass accretion rate _M (in units of _M0)
in the top panel, the location of the stagnation pointsS in the
middle panel, and the ejection-to-injection mass rate ratio
η ¼ _Mej= _Min in the bottompanel. For comparison, in the top

FIG. 7. Mass accretion rate as a function of the model
parameters (a, V0) in units of _M0 ¼ 8πM2ρ0. The value of the
injection radius R in each case is indicated by a central label
on each panel. The solid, black lines in each panel indicate the
range of validity of the model parameters according to
V0 ∈ ðVmin; VmaxÞ, with the lower boundary corresponding to
Vmin and the upper one to Vmax.

FIG. 8. Dependence of different properties of the choked
accretion model on the spin parameter a=M and the injection
velocity V0, for an injection sphere at R ¼ 10M. From top to
bottom, each panel shows: the mass accretion rate _M in units of
_M0 ¼ 8πM2ρ0, the location of the stagnation points S=M, and
the ejection-to-injection mass rate ratio η ¼ _Mej= _Min. The black
line in the first panel corresponds to the “spherical” case
ðl; mÞ ¼ ð0; 0Þ, for which V0 ¼ 2Mrþ=

ffiffiffiffiffi
Σ0

p
≃ 0.0003.
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panel we also show, in a black solid line, the accretion rate
for the “spherically symmetric” case ðl; mÞ ¼ ð0; 0Þ corre-
sponding to A ¼ 0 and V0 ¼ 2Mrþ=

ffiffiffiffiffi
Σ0

p
(note that there is

no ejection for V0 in the range between this value and Vmin).
From the previous discussion we note that, as the

injection velocity grows from Vmin to Vmax, we have:
(i) The radii of the stagnation points decrease from S ¼

R to Smin.
(ii) The critical angle increases from θc ¼ 0 to

θmax ¼ arccos

�
3

�
R2 þ a2 þ 2Mrþ
R2 þ a2 þ 6Mrþ

��−1=2
; ð77Þ

that, in the limit R ≫ M, converges to θmax ¼
arccosð1= ffiffiffi

3
p Þ ≃ 54.7°.

(iii) The mass injection rate increases from _Min ¼ _M to

_Min ¼
½1
3
ð1þ 4Mrþ

ðR−rþÞðR−r−ÞÞ�
3=2

2Mrþ
ðR−rþÞðR−r−Þ

_M: ð78Þ

On the other hand, from Figs. 7 and 8, we note that, as
the spin parameter a=M increases from zero to 1, the mass
accretion rate onto the central black hole decreases down to
∼50%, the location of the stagnation point S decreases by a
factor of ∼10%, while the ejection-to-injection mass rate
ratio η increases by up to ∼30%.
The analyticmodel studied in the previous sections allows

us to explore in detail the effect of the black holes’s rotation
on the choked accretion mechanism. Unfortunately, this
model cannot easily be extended to perform a more general
study including a more realistic equation of state. Keeping
the irrotational assumption one can still formulate the
problem in terms of a scalar potential; however, this potential
satisfies a wave equation which is nonlinear for a realistic
equation of state. Clearly, this makes it much harder to find
an analytic treatment. For this reason, in the next section, we
extend our study to the case of a general polytropic fluid by
performing numerical simulations of the choked accretion
scenario.

V. NUMERICAL SIMULATIONS

The general solution presented by Petrich, Shapiro and
Teukolsky [31] revisited in Sec. II and, in particular, the
choked accretion scenario discussed in Sec. IV, are limited
by the assumption of an ultrarelativistic gas with a stiff
equation of state, which leads to an unphysical speed of
sound. In this section we show, by means of full hydro-
dynamic numerical simulations, that the main features of
the choked accretion model are maintained when the
adopted equation of state is extended to consider a general
polytropic gas. Moreover, we make use of the analytical
solution presented above as a 2D benchmark test for the
validation of the code.

We perform full hydrodynamic numerical simulations
with the open source code AZTEKAS

9 [10,60], which solves
the general relativistic hydrodynamic equations using a grid
based finite volume scheme, with a high resolution shock
capturing (HRSC) method.10 The set of equations are
written in a conservative form using a variation of the
“3þ 1 Valencia formulation” [61] for time independent,
fixed metrics [62]. The time integration is achieved by
adopting a second order total variation diminishing Runge-
Kutta method [63]. The fluid evolution is performed in a
fixed background metric corresponding to a Kerr black hole
using the same (horizon-penetrating) Kerr-type coordinates
adopted in Sec. II. The code uses as primitive variables the
rest-mass density, pressure and the locally measured three-
velocity vector ðρ; P; viÞ, where vi ¼ γijvj and

vi ¼ Ui

αUt þ
βi

α
; i ¼ r; θ;ϕ; ð79Þ

with α, βi and γij the lapse, shift vector and three-metric of
the 3þ 1 formalism [64], written in these coordinates. See
[10,33,34,60], for more details about the characteristics,
test suite, and discretization method of AZTEKAS.
For all the simulations presented in this section, we adopt

an axisymmetric 2D numerical domain ðr; θÞ ∈ ½Racc;R�×
½0; π=2�, with a uniform polar grid and an exponential radial
grid (see [33] for details), whereR is the radius of the outer
boundary at which we implement a free outflow condition
for the velocities and a fixed profile for the density and
pressure. The inner boundary, set at Racc ¼ 1.1M, for
which we impose free outflow in all the variables, is chosen
such that r− < Racc < rþ for all the explored values of a.
We fix reflection conditions at both polar boundaries. A
dissipative, second-order piecewise linear reconstruction
for the primitive variables is used in order to avoid spurious
oscillations due to these fixed boundary conditions.
In all the simulations, we evolve the equations from an

initial state consisting of a constant density and pressure
gas cloud, with zero initial three-velocity vi ¼ 0. The
convergence to a steady-state is monitored by computing
the mean mass accretion rate _M all over the domain, until
its variation drops below 1 part in 104.

A. Benchmark test

Taking advantage of the exact analytic description
presented in the previous sections, we use the solution
in Eq. (44) as a benchmark test to prove the convergence
and stability of the AZTEKAS code for this type of problems.
Moreover, this test is important in order to validate the

9The code can be downloaded from Ref. [59].
10Note that, even though we may expect smooth steady state

solutions based on the analytical results, we are exploring an
a priori unknown scenario in which shock fronts might develop
during the evolution, or even persist in the stationary state.
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subsequent simulations discussed in this article. For these
tests we implement the ultrarelativistic stiff equation of
state in the numerical code.
We reproduce the analytic solution corresponding to the

choked accretion model with R ¼ 10M, V0 ¼ 0.2 and a
black hole spin a ¼ 0.99M. We run the simulations in units
such that M ¼ 1 and set the value ρ0 ¼ 1 for the density at
the reference point, although we remark here that, just as in
the analytic case, the resulting steady-state solution is scale-
free with respect to this specific value of ρ0. We perform
four tests varying the spatial resolution by a factor of 2 each
time (with number of grid points in the radial and polar
directions 64 × 64, 128 × 128, 256 × 256, 512 × 512,
respectively). The values for ðρ; P; viÞ from the analytic
solution are imposed at the injection sphere as the boundary
condition, and these values are extended into the whole
numerical domain as the initial condition.
In Fig. 9 we show the isocontour levels of the density

field and of the magnitude of the three-velocity V (as
measured by a ZAMO) of the AZTEKAS simulations when
the steady-state is reached at t ¼ 180M. Likewise, the
streamlines of the stationary flow are shown in both figures.
From these simulations we obtain the stagnation point at
S ≃ 4.6015M which coincides with the analytical value
within the resolution uncertainty (see Fig. 6).
In Fig. 10 we show the evolution in time of the relative

error between the numerical mass accretion rate _M and the
analytic value _MA, for all of the resolutions considered
here. As expected, the relative error decreases for larger
resolutions. Indeed, as further shown in Appendix C, from
this benchmark test we confirm a second order convergence
rate, as expected from the adopted numerical scheme.

B. Polytropic fluid

In order to explore the behavior of the choked accretion
mechanism for a gas with a less restrictive equation of state,
we perform numerical simulations of an ideal gas with a
polytropic relation P ¼ Kργ , where γ is the adiabatic index.

We run experiments using a 256 × 256 grid resolution, for a
wide range of values of the spin parameter a=M ∈ ½0; 1Þ and
two different values of the adiabatic index γ ∈ f4=3; 5=3g.
The main feature of the choked accretion mechanism

relies on the existence of a density contrast at the external
boundary. Following closely the boundary treatment of
[33,34], we fix the gas rest-mass density at the outer
boundary as

ρbðθÞ ¼ ρ0ð1 − δ cos2 θÞ; ð80Þ

where ρ0 is the rest-mass density at the reference point
ðR; π=2Þ and δ is the density contrast defined as

FIG. 9. Validation test of the AZTEKAS code. In this figure we show the steady state of numerical simulation for the benchmark test,
which corresponds to the analytic solution presented in Sec. IV, with parameters R ¼ 10M, V0 ¼ 0.2, and a ¼ 0.99M (compare with
Fig 6). The figure shows the isocontour levels of the normalized rest-mass density ρ=ρ0 (left panel) and the magnitude of the three-
velocity (right panel) V, as measured by a ZAMO at this location. The fluid streamlines are indicated with black solid arrows. The
simulation reached the stationary state at t ¼ 180M, showing a good agreement with the analytic solution.

FIG. 10. Validation test for the AZTEKAS code. In this figure we
show the evolution in time of the relative error between the
numerical mass accretion rate _M and analytic value _MA for the
solution with parameters R ¼ 10M, V0 ¼ 0.2, and a ¼ 0.99M.
The four different resolutions used for this benchmark test are
represented with different dashed lines, showing a diminishing of
the error as the resolution increases which, as shown in
Appendix C, is consistent with second order convergence.
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δ ¼ 1 −
ρbð0Þ
ρ0

: ð81Þ

As mentioned in Sec. I, this density profile is motivated
as a way to introduce the axisymmetric anisotropy asso-
ciated with fluid rotation. In particular, it has been shown
that low angular momentum fluids accreting onto a central
massive object give rise to a quasispherical, oblate density
distribution, as long as the angular momentum is suffi-
ciently low as to avoid encountering the centrifugal
barrier [37,38].
The pressure at this boundary is then determined by

the polytropic relation P ¼ Kργ, where K is computed
as [10]

K ¼ 1

ργ−10

�
c20ðγ − 1Þ

γðγ − 1Þ − c20

�
ð82Þ

with c0 the speed of sound at the reference point.
An extensive exploration of the choked accretion mech-

anism’s dependence on R, δ and c0 can be found in [33]
for the nonrelativistic regime and in [34] for the case
of a Schwarzschild black hole. We performed a quick
exploration of these three parameters, for a rotating black
hole with a ¼ 0.99M, and found essentially the same
results as reported in those previous works. Moreover,
we noticed that it is more intuitive, in order to compare with
possible astrophysical settings, to use the dimensionless

temperature11 Θ0 ¼ P0=ρ0 rather than specifying c0. For
this reason, in what follows, we shall take as representative
values R ¼ 10M for the domain size, δ ¼ 0.5 for the
density contrast and Θ0 ¼ 1 for the temperature of the gas
at the reference point. This value of the dimensionless
temperature corresponds to c0 ≈ 0.52 and c0 ≈ 0.69, for
γ ¼ 4=3 and 5=3, respectively. Furthermore, in order to
have an appropriate baseline reference for each combina-
tion of the γ and a parameters, we also run simulations
corresponding to “spherical” accretion in each case (i.e.,
same values for γ and a but a δ ¼ 0 density contrast).
We evolve all the simulations until the stationary state

has been reached (within the previously mentioned limit of
accuracy in which variations in the mean accretion rate
drop below 1 part in 104). The relaxation time depends on
γ, as well as on the value of a, but in all cases it is found to
conform to 500M < t < 1500M. We also perform a self-
convergence test which is presented in Appendix C.
In Fig. 11 we show the resulting steady-state, rest-

mass density field and magnitude of the three-velocity V
for the a ¼ 0.99M case. The top panels show the results

FIG. 11. Stationary state of the numerical simulations of the choked accretion mechanism for a rotating black hole with a ¼ 0.99M, an
injection radius of R ¼ 10M, a dimensionless temperature of Θ0 ¼ 1 at the equator of the injection sphere, and a polytropic fluid with
γ ¼ 4=3 (top panels) and 5=3 (bottom panels). On the left panels of this figure we show the isocontour levels of the normalized rest-mass
density ρ=ρ0 while, on the right panels, the magnitude of the three-velocity V as measured by the ZAMO. The fluid streamlines are
indicated with black solid arrows, while a white solid line shows the location of the event horizon rþ.

11Note that our definition of the dimensionless temperature is
only valid for an ideal gas equation of state. In terms of natural
units, the general definition of the dimensionless temperature [1]
is Θ ¼ kBT=mbc2, with T the fluid temperature, c the speed of
light, kB Boltzmann’s constant, and mb the average baryonic
mass.
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corresponding to γ ¼ 4=3while the bottom panels those for
γ ¼ 5=3. The black solid arrows represent the fluid stream-
lines and the solid white line the location of the outer
horizon rþ. As we can see from these figures, there is not a
strong qualitative difference in the flow morphology for
different values of γ, neither for the one presented in the
nonrotating black hole case [34]. Moreover, although the
streamlines configuration are similar to the analytical case,
the ejection velocity at the polar region is larger for the
polytropic fluid (see Fig. 6).
In Fig. 12 we show the dependence of the mean mass

accretion rate _M on the spin parameter a, for all the
simulations performed in this study. The blue dots corre-
spond to γ ¼ 4=3, while the red crosses to γ ¼ 5=3. The
points joined by the dashed lines represent the correspond-
ing “spherical” accretion case (δ ¼ 0). It is interesting to
notice from this figure that, for each value of γ, the
dependence on a remains the same regardless of the value
of δ (except for a re-scaling factor that depends on γ). This
suggest that the change in the mass accretion rate with the
spin parameter is an intrinsic characteristic of the accretion

onto a Kerr black hole, and not of the choked accretion
mechanism. A more complete study of the “spherical”
accretion case onto a rotating black hole will be explored
elsewhere.
In addition to the mass accretion rate, we compute the

mass injection rate _Min and the mass ejection rate _Mej at the
injection sphere (as defined in Sec. IV B). We also extract

FIG. 12. Mass accretion rate as a function of the spin parameter.
The blue and red dotted lines correspond to γ ¼ 4=3 and 5=3,
respectively. The black dashed lines represent their respective
“spherical” accretion values, i.e., δ ¼ 0.

TABLE I. Results for our simulations with parameters
R ¼ 10M, δ ¼ 0.5 and Θ0 ¼ 1.

γ ¼ 4=3 γ ¼ 5=3

a=M S=M _M _Mej
_Min S=M _M _Mej

_Min

0.0 5.781 5.052 2.195 7.246 5.247 2.919 2.768 5.687
0.25 5.770 5.033 2.201 7.234 5.231 2.892 2.777 5.670
0.5 5.734 4.977 2.220 7.197 5.179 2.808 2.805 5.614
0.75 5.672 4.876 2.256 7.132 5.083 2.647 2.857 5.504
0.99 5.581 4.725 2.308 7.032 4.905 2.343 2.947 5.289

NOTE—The quantities _M, _Min and _Mej are given in units
of _M0 ¼ 8πM2ρ0.

FIG. 13. Dependence of different properties of the choked
accretion simulations on the spin parameter a=M and γ. From top
to bottom, each panel shows: the mass accretion rate _M, the
location of the stagnation point S=M, and the ejection-to-
injection mass rate ratio η ¼ _Mej= _Min. Each panel is normalized
by its corresponding nonrotating case value, which is denoted
with the subscript S. The black solid line represents the analytic
solution presented in Sec. IV for an ultrarelativistic stiff fluid.
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from the simulation’s results the location of the stagnation
point S. In Table I we present a summary of these results for
a representative set of the performed simulations. We also
measure the magnitude of the three-velocity at the equator
V0 and at the pole Vej, which do not present a significative
dependence on the spin parameter, maintaining a value
around V0 ¼ 0.30 and Vej ¼ 0.54, for γ ¼ 4=3; and
V0 ¼ 0.29 and Vej ¼ 0.48, for γ ¼ 5=3.
In Fig. 13 we show the dependence on a for the mass

accretion rate _M (top panel), the location of the stagnation
point S (middle panel), and the ejection-to-injection mass
rate η (bottom panel), for both values of γ. In order to
clearly see the change with a for these quantities, we
normalize them by _MS, SS and ηS, respectively, which
correspond to the values obtained in the non-rotating case
(a ¼ 0). Moreover, we also include the stiff analytic
solution obtained in Sec. IV, using as the V0 parameter
the value found for γ ¼ 5=3.
As we can see from Fig. 13, the mass accretion rate

decreases with the spin parameter down to a factor of∼10%
(20%) for the γ ¼ 4=3 (γ ¼ 5=3) case as the spin parameter
increases to its maximum value. On the other hand, the
location of the stagnation point only decreases down to a
factor of ∼5% for both values of γ. In contrast, the ejection-
to-injection mass rate (η) increases up to a factor of 10 to
15% as a → M.
Even though it is not possible to make a direct com-

parison of the numerical simulations with the analytic
model of an ultrarelativistic stiff fluid, since in each case we
are using different equations of state and the boundary
conditions are not exactly the same, there are still some
observations that can be drawn from Fig. 13. First of all,
there is a shared, qualitatively consistent dependence of the
different quantities shown in this figure on the spin
parameter a, both for the polytropic gas and the stiff fluid.
Moreover, it is also clear that there is a stronger response
from the stiff fluid to the black hole rotation. Indeed, from
this figure we see that the analytic solution presented in
Sec. IV can be used as a lower limit for the mass accretion
rate and for the location of the stagnation point that would
follow for a polytropic gas, whereas it can be used as an
upper limit for the ejection-to-injection mass rate ratio.
Finally, we note that there is a clear trend for a stronger
dependence on the spin parameter a as the fluid stiff-
ens (γ → 2).

VI. SUMMARY AND CONCLUSIONS

The choked accretion model is a purely hydrodynamical
mechanism with which it is possible to obtain a bipolar
outflow by perturbing an originally radial inflow. The
necessary conditions for this mechanism to operate consist
of a sufficiently large mass accretion rate onto a central
massive object (as compared to the Bondi accretion rate),
and an anisotropic density field in which the equatorial

region is at a higher density than at the poles. Potential
astrophysical applications of this model for outflow-gen-
erating phenomena are mentioned in the introduction and
have been discussed in further detail in [33,34].
In this article we have presented a generalization of the

choked accretion mechanism for the case of a rotating Kerr
black hole, extending the perturbative study initiated by
Hernandez et al. [32] and the subsequent analytical and
numerical studies at the nonrelativistic level [33] and in the
Schwarzschild case [34]. Here we have shown, using both
analytic solutions and numerical simulations, that the
choked accretion’s main features are recovered in the
presence of a rotating black hole, regardless of the value
of the spin parameter.
Our analytic model is based on the steady-state, irrota-

tional solution for an ultrarelativistic stiff fluid presented by
Petrich, Shapiro and Teukolsky [31]. We have derived the
general equations of the model using horizon-penetrating
Kerr-type coordinates and then mostly focused on the
axisymmetric quadrupolar case, studying the dependence
of the flow morphology on the unique parameter A that
remains free (we have also briefly discussed the misaligned
quadrupolar case at the end of Sec. III and in Appendix A).
Depending on the sign of this parameter, the flow describes
an equatorial inflow-bipolar outflow solution (A > 0) or an
equatorial outflow-polar inflow solution (A < 0). Given
that it has a wider applicability in an astrophysical context
and corresponds to the choked accretion scenario discussed
in this article, we have mainly focused on the case A > 0
and discussed the physical properties of the choked
accretion model, including its mass accretion rate, location
of the stagnation points and ejection-to-injection mass rate
ratio. We have also extended the present study to a perfect
fluid obeying a polytropic relation with adiabatic index
γ ¼ 4=3 and 5=3, by performing full hydrodynamic,
relativistic numerical simulations of an ideal gas in a
Kerr background metric.
In previous works, it was found that the total mass

accretion rate in the choked accretion model has a threshold
value close to the one found in the spherical accretion
scenario. In this study, based on both analytic and numeri-
cal analysis, we have extended this result to the case of a
rotating black hole and shown that the accretion rate
obtained from the “spherically symmetric” case, in which
the density contrast is set to zero at the injection sphere, still
yields a lower limit for the threshold value for the choking
mechanism to work (see Figs. 8 and 12). Note, however,
that in the case of the Kerr spacetime there is no analytic
equivalent to Michel’s solution in the Schwarzschild case.
Therefore, this problem has to be studied by numerical
means as we have briefly discussed here and will further
address in a future work.
Most of the configurations analyzed in this article have

focused on the aligned case, in which the axis of the bipolar
outflow coincides with the rotation axis of the black hole, in
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which case the fluid elements have zero angular momentum
and hence would not affect the black hole’s spin during
their accretion. However, in Appendix A we have also
analyzed a misaligned configuration, and it is interesting to
note that such an accretion flow would slow down the black
hole’s rotation, as the results in Sec. II C show.
This work continues a series of analytic and numerical

studies of the choked accretion model as a purely hydro-
dynamical mechanism for generating axisymmetric out-
flows. In future work we intend to expand the ingredients
involved in this model, by including additional physics
such as fluid angular momentum, viscous transport, and
magnetic fields, in order to explore the applicability of the
model in outflow-generating astrophysical systems.
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APPENDIX A: THE MISALIGNED
QUADRUPOLAR FLOW

In Sec. III we discussed the axisymmetric quadrupolar
flow solution and some important properties regarding its
morphology, and in Sec. IV this solution was applied to the
choked accretion scenario. This flow has the property of
being reflection-symmetric about the equatorial plane of
the Kerr black hole, such that the bipolar outflow regions
are aligned with the symmetry axis. In this appendix, we
discuss an example in which the flow discussed in Secs. III
and IV is “rotated” by an angle θ0 about an axis within the
plane θ ¼ π=2 (in a sense made precise below).
When the black hole is nonrotating, the aforementioned

rotation can be carried out exactly and is simply a rigid
rotation of the (spherically symmetric) Schwarzschild
geometry the Kerr metric reduces to in the limit a ¼ 0.
We may construct this rotated solution explicitly by writing
the angular dependency in the axisymmetric quadrupolar
flow solution (45) in the form

3 cos2 θ − 1 ¼ 2P2ðcos θÞ ¼ 2P2ðx0 · xÞ; ðA1Þ

with P2 denoting the Legendre polynomial Pl with l ¼ 2
and x ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ and x0 ≔ ð0; 0; 1Þ.
Applying a rotation by the angle θ0 about the y axis is
equivalent to replacing the vector x0 ¼ ð0; 0; 1Þ with the
vector x0 ¼ ðsin θ0; 0; cos θ0Þ in the right-hand side of
Eq. (A1). Recalling the addition theorem for spherical
harmonics (see, for instance, chapter 3.6 in Ref. [65])

Plðx0 · xÞ ¼ 4π

2lþ 1

Xl
m¼−l

ðYlmÞ�ðθ0;ϕ0ÞYlmðθ;ϕÞ; ðA2Þ

we can write the rotated quadrupolar flow solution on a
Schwarzschild background as in Eq. (44) with a ¼ 0 and
Fðr; θ;ϕÞ given by

Fðr; θ;ϕÞ ¼ 8π

5
ð3r2 − 6Mrþ 2M2Þ

Xl
m¼−l

dmYlmðθ;ϕÞ

ðA3Þ

with the coefficients dm ≔ ðYlmÞ�ðθ0; 0Þ. This has again
the form of the general solution in Eq. (17) when a ¼ 0,
and hence it describes a solution of the potential flow
equation (1). However, it bears exactly the same physical
content as the original axisymmetric quadrupolar flow
solution discussed in Secs. III and IV, since it is obtained
from it by an isometry.
When a ≠ 0, the method we have just described cannot

be performed, since merely replacing x0 ¼ ð0; 0; 1Þ ↦
x0 ¼ ðsin θ0; 0; cos θ0Þ in the right-hand side of Eq. (A1)
would not yield a solution of Eq. (1). This is due to the
m-dependency in the radial functions appearing in the
expansion (18) which, in turn, arises because of the lack of
spherical symmetry of the Kerr metric when a ≠ 0. On the
other hand, we still have the freedom of choosing the five
complex constants A2m in Eq. (18), as long as they satisfy
the reality conditions (19). In particular, we can choose
these coefficients such that the function Fðr; θ;ϕÞ has the
same weights dm as in Eq. (A3) on some particular
constant r surface. This is equivalent to applying the
rotation x0 ¼ ð0; 0; 1Þ ↦ x0 ¼ ðsin θ0; 0; cos θ0Þ on this
particular surface only, which yields

Fðr; θ;ϕÞ ¼ 4π

5
ðrþ − r−Þ2Fð−2; 3; 1;−x�Þ

×
X2
m¼−2

Fð−2; 3; 1þ i m α;−xÞ
Fð−2; 3; 1þ i m α;−x�Þ

dmY2mðθ;ϕÞ;

ðA4Þ

where we recall that α ¼ 2a=ðrþ − r−Þ and x ¼
ðr − rþÞ=ðrþ − r−Þ and x� is the value of x corresponding
to the location of the surface where the rotation is applied.
Note that for x ¼ x� the weight functions are the same as in
Eq. (A3), as required. Notice also that when θ0 ¼ 0 (in
which case only the m ¼ 0 mode contributes and
ðY20Þ�ð0; 0ÞY20ðθ;ϕÞ ¼ 5P2ðcos θÞ=ð4πÞ), the function F
in Eq. (A4) reduces to the function F in Eq. (45) in the
aligned case.
To determine uniquely the solution it remains to choose

the value for x�. One possibility is to choose it such that it
corresponds to the radius of the injection sphere r ¼ R.
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However, note that for finite r, the two-surfaces ðt; rÞ ¼
const are not strict metric spheres in the Kerr geometry, so
we argue that only in the asymptotic limit r → ∞ does it
make sense to apply the rotation in a sensible way. Hence,
even though the flow is only well defined inside a finite
region, we exploit the fact that the potential Φ itself is well
defined for all r > r− and thus we take the limit x� → ∞ in
Eq. (A4). This finally yields

Fðr;θ;ϕÞ¼ 4π

5

X2
m¼−2

½6r2−6ð2M− imaÞr

þ4M2þ2a2−2m2a2−6imaM�dmY2mðθ;ϕÞ:
ðA5Þ

Using the explicit representation of the spherical harmonics
one can write the result in the form

Fðr; θ;ϕÞ ¼ 1

4
a0ðrÞð3cos2θ0 − 1Þð3cos2θ − 1Þ

þ 3½a1ðrÞ cosϕþ b1ðrÞ sinϕ�
× cos θ0 sin θ0 cos θ sin θ

þ 3

4
½a2ðrÞ cosð2ϕÞ þ b2ðrÞ

× sinð2ϕÞ�sin2θ0sin2θ; ðA6Þ
with the radial functions

amðrÞ ¼ 6r2 − 12Mrþ 4M2 þ 2ð1 −m2Þa2; ðA7Þ
bmðrÞ ¼ −6maðr −MÞ: ðA8Þ

Another useful representation of the solution is obtained
by writing it in terms of the “rotated” Cartesian coordinates
ðrξ; rη; rζÞ, where0
B@

ξ

η

ζ

1
CA ¼

0
B@

cos θ0 0 − sin θ0
0 1 0

sin θ0 0 cos θ0

1
CA
0
B@

sin θ cosϕ

sin θ sinϕ

cos θ

1
CA: ðA9Þ

This gives

Fðr; θ;ϕÞ ¼ 2ð3r2 − 6Mrþ 2M2 þ a2ÞP2ðζÞ
− 6ε½3ðr −MÞηþ a cos θ0ξ�ζ þ 6ε2ðη2 − ζ2Þ;

ðA10Þ
with ε ≔ a sin θ0. Note that for ε ¼ 0 (which is the case if
the black hole is nonrotating or the inclination angle θ0
vanishes), the second line in Eq. (A10) vanishes and one
recovers the axisymmetric quadrupolar flow solution (45)
with the rotated symmetry axis rζ.
We conclude this appendix by showing that for small

values of jεj the solution Eq. (44) with A > 0 and F as in
Eq. (A10) still has two stagnation points whose location
can be determined by a perturbative method. To this

purpose we introduce the vector-valued function Hðε;wÞ
with w ¼ ðr; ξ; ηÞ, defined as

Hðε;wÞ ≔
�
Δ
∂F
∂r −

2Mrþ
A

;
∂F
∂ξ ;

∂F
∂η

�
; ðA11Þ

where the constraint ζ2 ¼ 1 − ξ2 − η2 should be taken into
account (since the function F is symmetric with respect to
ðξ; η; ζÞ ↦ −ðξ; η; ζÞ it is sufficient to perform the analysis
for the case ζ > 0). The location of the stagnation points
(for a given value of ε) is characterized by a zero of the
function Hðε; ·Þ, see Eq. (34). For ε ¼ 0 one can check that
the zero lies at

w ¼ w0 ¼ ðr0; 0; 0Þ; ðA12Þ

with r0 ¼ S as in Eq. (52). To determine the location wðεÞ
of the zero for small values of jεj one can differentiate both
sides of the equation Hðε;wðεÞÞ ¼ 0 with respect to ε,
which gives

DHðε;wðεÞÞ dw
dε

ðεÞ þ ∂H
∂ε ðε;wðεÞÞ ¼ 0; ðA13Þ

where DH refers to the Jacobi matrix of H with respect to
w. Evaluating at ε ¼ 0 yields

DHð0;w0Þw1 ¼ −
∂H
∂ε ð0;w0Þ; w1 ≔

dw
dε

ð0Þ: ðA14Þ

Since DHð0;w0Þ ¼ 6Kdiagð2;−1;−1Þ with K ≔ 3r20−
6Mr0 þ 2M2 þ a2 > 0, the first-order correction w1 is
uniquely determined by this equation (and according to
the implicit function theorem, the function Hðε; ·Þ has a
unique zero for small enough values of jεj). By further
differentiation of Eq. (A13) one can compute the higher-
order corrections of wðεÞ. Up to terms of order ε3 this gives

rðεÞ ¼ r0 þ
Mrþ
4AK2

ð3M2 − 2a2Þε2 þOðε3Þ; ðA15Þ

ξðεÞ ¼ −
a
K
εþOðε3Þ; ðA16Þ

ηðεÞ ¼ −
3ðr0 −MÞ

K
εþOðε3Þ: ðA17Þ

A few numerical examples for the case AM ¼ 0.01 and
a=M ¼ 0.5 are given in Table II. The particular entry
corresponding to θ0 ¼ 30° corresponds to the flow shown
in Fig. 4.
Finally, we point out that the characterization of the

stagnation point we have used so far, based on the
vanishing of the ZAMO’s three-velocity, might not be
the most adequate definition from a conceptual point of
view when ε ≠ 0. This is due to the fact that a ZAMO
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rotates around the black hole with angular frequencyΩ [see
Eq. (23)], and hence such an observer which is located at
r ¼ rðεÞ and θ ¼ θðεÞ only sees the fluid at rest in its frame
at the moments it crosses the plane ϕ ¼ ϕðεÞ. In other
words, the world line of the stagnation point defined in this
way does not agree with the one of the ZAMO. An
alternative definition of the stagnation point which does
not suffer from this problem can be given by requiring the
fluid’s three-velocity of a static observer (as opposed to a
ZAMO) to vanish. The location of this point can be
determined perturbatively by the same method as the
one we have just described; however we adopt the former
definition in view of the compatibility with Fig. 4 in which
the ZAMO’s three-velocity is shown.

APPENDIX B: BOUNDS ON THE PARAMETER A

In this appendix we prove that for sufficiently large radii
R of the injection sphere, the maximum range A−ðRÞ <
A < AþðRÞ for the parameter A in the axisymmetric
quadrupolar potential Φ in Eq. (44) to yield a well-defined
flow on the domain rþ ≤ r ≤ R is determined by the
requirement for the magnitude of the three-velocity V to be
subluminal at the poles of the injection sphere. That is, we
show that for any large enough value of R, V < 1 at the
poles of the sphere r ¼ R guarantees that the gradient of Φ
is everywhere timelike on the domain rþ ≤ r ≤ R.
To prove this claim, we go back to the investigation

toward the end of Sec. III, from which it follows that the
gradient ∇μΦ is timelike if and only if

ϱ2
h2

e2
¼ c2ðrÞ cos4 θ þ c1ðrÞ cos2 θ þ c0ðrÞ > 0: ðB1Þ

In the limit AM ≪ 1 it was shown that the outer boundary
of the region for which (B1) holds describes a large
ellipsoid of revolution with semi-axes equal to 1=ð6jAjÞ,
1=ð6jAjÞ, 1=ð12jAjÞ in the x, y, z-directions, respectively. It

is then clear that for R large enough, the outer boundary
first intersects the sphere r ¼ R at the poles θ ¼ 0; π. The
corresponding values for A can be determined by evalu-
ating the condition c2ðRÞ þ c1ðRÞ þ c0ðRÞ ¼ 0, which
yields

A�ðRÞ ¼ � 1

12ðR −MÞ
�
1þ 2MðR� rþÞ

ðR − rþÞðR − r−Þ
�
; ðB2Þ

and hence for large R the gradient ∇μΦ is timelike on the
sphere r ¼ R if A−ðRÞ < A < AþðRÞ. We now prove the
following statements, which show that these conditions are
also sufficient for the flow to be everywhere well defined in
the shell delimited by the event horizon and the injection
sphere.
Theorem 1

(a) Suppose R > rþ is large enough such that
12rþAþðRÞ ≤ 1, and let 0 ≤ A < AþðRÞ. Then the
right-hand side of Eq. (B1) is strictly positive for all
rþ ≤ r ≤ R and all 0 ≤ θ ≤ π.

(b) SupposeR > rþ and A−ðRÞ < A ≤ 0. Then the right-
hand side of Eq. (B1) is strictly positive for all rþ ≤
r ≤ R and all 0 ≤ θ ≤ π.

Proof. For the proof it is convenient to rewrite the right-
hand side of Eq. (B1) in the following form:

EAðr; ξÞ ≔ d2ðrÞξ2 þ d1ðrÞξþ d0ðrÞ; ðB3Þ
where ξ ≔ sin2 θ and the coefficients d0ðrÞ ≔ c0ðrÞþ
c1ðrÞ þ c2ðrÞ, d1ðrÞ ≔ −c1ðrÞ − 2c2ðrÞ and d2ðrÞ ≔
c2ðrÞ are explicitly given by

d0ðrÞ ¼ −144A2ΔðΔþ b2Þ þ 48AMrþðr −MÞ
þ Δþ 4Mrþ 4M2

rþ rþ
r − r−

; ðB4aÞ

d1ðrÞ ¼ 36A2ð3Δ2 − 4b4Þ − 72AMrþðr −MÞ − a2;

ðB4bÞ

TABLE II. Location of the stagnation point for the parameter values AM ¼ 0.01 and a=M ¼ 0.5. Five significant figures are shown.
The perturbative calculation refers to the expansion (A15)–(A17), truncating the Oðε3Þ terms and translated back to the angle
coordinates θðεÞ and ϕðεÞ by means of Eq. (A9). The numerical calculation is based on the fsolve routine in MAPLE, using 15 digits of
precision and the seed values provided by the perturbative calculation. As can be appreciated from the table, the values provided by the
quadratic expansion (A15)–(A17) give a very good approximation [less than 1% relative error in the quantities ðrðεÞ; θðεÞ;ϕðεÞÞ].

Perturbative calculation Numerical calculation

θ0 rðεÞ=M θðεÞ − θ0 ϕðεÞ rðεÞ=M θðεÞ − θ0 ϕðεÞ
0° 4.2242 0.0 (undefined) 4.2242 0.0 (undefined)
10° 4.2243 0.00073719 −0.15890 4.2243 0.00075882 −0.15886
20° 4.2244 0.0012597 −0.15902 4.2244 0.0014289 −0.15884
30° 4.2245 0.0013812 −0.15919 4.2245 0.0019307 −0.15882
40° 4.2247 0.00096893 −0.15939 4.2247 0.0022033 −0.15879
50° 4.2249 −0.000035935 −0.15959 4.2249 0.0022116 −0.15875
60° 4.2250 −0.0016067 −0.15972 4.2251 0.0019516 −0.15872
70° 4.2252 −0.0036296 −0.15979 4.2253 0.0014526 −0.15870
80° 4.2253 −0.0059139 −0.15974 4.2254 0.00077429 −0.15868
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d2ðrÞ ¼ 36A2b2ð3Δþ 4b2Þ: ðB4cÞ

In order to shorten the notation we have also introduced
the quantity b ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
> 0 (remember that we are

excluding the extremal case from our analysis).
It is simple to verify that EAðr; ξÞ > 0 for all r ≥ rþ and

all 0 ≤ ξ ≤ 1 when A ¼ 0. Therefore, in the following we
assume A ≠ 0 which implies d2ðrÞ > 0 for all r ≥ rþ. The
strategy of the proof is to provide a positive lower bound for
the quantity

fAðrÞ ≔ min
0≤ξ≤1

EAðr; ξÞ ðB5Þ

for each rþ ≤ r ≤ R. For this, we distinguish between the
following three cases:

Case A: d1ðrÞ ≥ 0: In this case the minimum (B5) occurs
at the poles ξ ¼ 0:

fAðrÞ ¼ EAðr; 0Þ ¼ d0ðrÞ: ðB6Þ

Case B: −2d2ðrÞ < d1ðrÞ < 0: The minimum occurs at
ξ ¼ ξ� ¼ −d1ðrÞ=ð2d2ðrÞÞ; hence

fAðrÞ ¼ EAðr; ξ�Þ ¼ d0ðrÞ −
d1ðrÞ2
4d2ðrÞ

: ðB7Þ

Case C: d1ðrÞ ≤ −2d2ðrÞ: The minimum occurs at the
equator ξ ¼ 1; thus

fAðrÞ ¼ EAðr; 1Þ ¼ d0ðrÞ þ d1ðrÞ þ d2ðrÞ: ðB8Þ

We start with case A, for which EAðr; ξÞ ≥ d0ðrÞ.
Denoting by A�ðrÞ the same function as the one defined
in Eq. (B2) with R replaced with r, one has

d0ðrÞ ¼ 144Δðr −MÞ2½AþðrÞ − A�½A − A−ðrÞ�: ðB9Þ

As one can easily verify, A−ðrÞ is an increasing function of
r while AþðrÞ is a decreasing function of r. Therefore,
A−ðrÞ ≤ A−ðRÞ < A < AþðRÞ ≤ AþðrÞ for all rþ ≤ r ≤
R, which implies that d0ðrÞ > 0 for all rþ < r ≤ R. At the
horizon,

d0ðrþÞ ¼ 48AMrþbþ 4Mrþ þ 8M2
rþ
b
; ðB10Þ

which is obviously positive when A > 0. When A < 0 we
use the fact that

jA−ðRÞj ≤ jA−ðrþÞj ¼
1

12b

�
1þM

b

�
ðB11Þ

to conclude that d0ðrþÞ ≥ 4M2rþ=b > 0.

Next, we analyze case B for which 0 < −d1ðrÞ <
2d2ðrÞ. This allows us to estimate

fAðrÞ ¼ d0ðrÞ þ
d1ðrÞ
2

ð−d1ðrÞÞ
2d2ðrÞ

≥ d0ðrÞ þ
1

2
d1ðrÞ ≥ d0ðrÞ þ

4

3
d1ðrÞ: ðB12Þ

Explicitly, this yields

fAðrÞ ≥ −144A2b2
�
Δþ 4

3
b2
�
− 48AMrþðr −MÞ

þ Δþ 4Mrþ 4M2
rþ rþ
r − r−

−
4

3
a2: ðB13Þ

For positive A we have the bounds 12A ≤ 1=rþ ≤ 1=b
which yields the estimate

fAðrÞ ≥ −Δ −
4

3
b2 − 4Mðr −MÞ þ Δþ 4Mr

þ 4M2 −
4

3
a2 ¼ 16

3
M2 > 0: ðB14Þ

This bound still holds for negative A, provided
12jA−ðRÞjb ≤ 1 which is the case if R ≥ Mþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðbþ 2MÞp

. If rþ < R ≤ M þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðbþ 2MÞp

we use
instead the bound (B11) and the fact that rþ ≤ r ≤ R
implies Δ ≤ 2Mb to conclude

fAðrÞ ≥ −
�
1þM

b

��
Δþ 4

3
b2
�
þ Δþ 4Mr

þ 4M2
rþ rþ
r − r−

−
4

3
a2

≥ −
M
b
Δþ 4Mrþ 4

3
M2 −

4

3
Mb

≥ 2Mð2r −MÞ > 0:

Finally, in case C the condition 2d2ðrÞ þ d1ðrÞ ≤ 0
yields

108A2ΔðΔþ b2Þ ≤ 108A2

�
ðΔþ b2Þ2 þ 1

3
b4
�

≤ 72AMrþðr −MÞ þ a2: ðB15Þ

Therefore,
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fAðrÞ ¼ d0ðrÞ þ d1ðrÞ þ d2ðrÞ
¼ −36A2ΔðΔþ b2Þ − 24AMrþðr −MÞ þ r2

þ 2Mrþ 4M2
rþ rþ
r − r−

≥ −48AMrþðr −MÞ − a2

3
þ r2 þ 2Mr

þ 4M2
rþ rþ
r − r−

;

which is clearly positive when A < 0. For A > 0 we use the
bound 12Arþ ≤ 1 and obtain for all r ≥ rþ

fAðrÞ ≥ −4Mðr −MÞ − a2

3
þ r2 þ 2Mrþ 4M2

¼ Δþ 8M2 −
4

3
a2 > 0: ðB16Þ

This concludes the proof of the theorem. ▪
One can verify that the required hypothesis

12rþAþðRÞ ≤ 1 is always satisfied for R ≥ 3M þ rþ ¼
4M þ b. Although this bound is not optimal, the condition
A < AþðRÞ ceases to be sufficient for small R − rþ, as
can be understood from the plots in Fig. 3 which show that
in this case, the upper bound on A comes from the equator
(case C in the proof) instead of the poles.

APPENDIX C: NUMERICAL
CONVERGENCE TESTS

In this appendix we present the convergence and self-
convergence tests that are necessary to validate our
numerical results.
For the benchmark test presented in Sec. VA we

compute, for each resolution studied, the relative error
between the numerical and analytic values of the mass
accretion rate, once the steady state has been reached. In
Fig. 14 we present the results of these values as a function
of the radial resolution Nr, from which we obtain second
order convergence, as expected for smooth solutions
considering the numerical methods used in AZTEKAS.
On the other hand, in order to validate the numerical results

of the polytropic fluid simulations reported in Sec. V B, we
perform a series of self-convergence tests in which, using
three different consecutive resolutions, we compute the
convergence rate of the solution.We carry out the simulations
using resolutions R1 ¼ 64 × 64, R2 ¼ 128 × 128, and
R3 ¼ 256 × 256, for each studied value of the adiabatic
index γ and three different values of the spin parameter
a=M ¼ 0, 0.5, 0.99.
In Fig. 15 we show the evolution in time of the

convergence rate Q, which is computed as

2Q ¼ j _M1 − _M2j
j _M2 − _M3j

; ðC1Þ

FIG. 14. L1-norm of the error in the mass accretion rate, for the
benchmark test presented in Sec. VA. The test is performed using
the radial resolutions Nr ¼ 64, 128, 256, 512. The black dashed
lines represent the expected tendency for a first (top) and second
order (bottom) convergence.

FIG. 15. Self-convergence tests of the polytropic fluid simu-
lations, for both values of γ: 4=3 (top panel) and 5=3 (bottom
panel). In this figure we show the evolution in time of the
convergence rate Q for three different values of the spin
parameter a. The gray stripe shows the expected convergence
zone (given the numerical methods used in AZTEKAS).
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where _M1, _M2, and _M3 are the values of the mass
accretion rate as obtained from resolutions R1, R2, and
R3, respectively. As can be seen from this figure, the
time evolution of the simulations’ convergence rate
rapidly becomes confined within the gray stripe. Note
that in this case, since we have set free-outflow boundary

conditions for the velocity field, the simulations develop
sharp global oscillations throughout the domain during
their evolution, causing the convergence rate to be less
than second order, which would have been otherwise
expected since we obtain a smooth final steady state
solution.
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Chapter 8
Conclusions

In this work, we studied different accretion problems in astrophysics, extending
two classical solutions into the general relativistic regime, and presenting an inflow-
outflow hydrodynamic solution, the choked accretion mechanism. Moreover, we pre-
sented aztekas, the code used for the numerical studies presented in this thesis.

In Chapter 2, we presented the algorithms and validation tests of aztekas, a
general relativistic hydrodynamic numerical code. We showed the specific numerical
methods used to solve a general system of hyperbolic, partial differential equations
in conservative form, and applied them to solve the inviscid-Euler hydrodynamic
equations in both non-relativistic and relativistic regimes. For the non-relativistic
case, we presented the set of equations in a three-dimensional covariant form, which
facilitates their implementation in a numerical code. On the other hand, for the rela-
tivistic case, we wrote the set of equations in full covariant form following a variation
of the “Valencia” formulation, using the 3+1 formalism. For both cases, we presented
different numerical problems used to test and validate our code, either comparing
with analytic solutions and models, and with simulations reported previously in the
literature.

In Chapters 3 and 4, we presented the extension into the general relativistic
regime of two gas accretion analytic models: Bondi spherical accretion and Bondi-
Hoyle-Lyttleton wind accretion. These two studies complemented the main study of
this thesis, allowing not only to extend two classical solutions to their relativistic
counterparts, but also to prepare and validate the aztekas code.

In the first study (Chapter 3), we revisited, from the non-relativistic to the
ultra-relativistic regimes, the spherically symmetric gas accretion problem presented
by Bondi (1952) and Michel (1972). We performed a detailed comparison between
these two models, studying their differences for ultra-relativistic values of the tem-
perature, and showing how both solutions match each other in the non-relativistic
regime. We also extended the relativistic Michel solution by considering an equa-
tion of state corresponding to a relativistic, monoatomic gas. Then, we extended the
spherical accretion problem to the case of a rotating Kerr black hole, by means of
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general relativistic hydrodynamic simulations performed with aztekas. We studied
the influence of the spin parameter on the flow morphology, sonic surface and mass
accretion rate, finding that its effect is more significant for larger values of the black
hole rotation.

In the second study (Chapter 4), we presented the relativistic extension of the
Bondi-Hoyle-Lyttleton (Hoyle & Lyttleton, 1939; Bondi & Hoyle, 1944) wind accre-
tion problem, by considering the accretion onto a Schwarzschild black hole. We used
the ballistic motion approximation for the gas description, allowing us to obtain the
wind streamlines, the density field and its corresponding mass accretion rate. We
compared this solution with the classical BHL problem, finding that the mass ac-
cretion rate is greater in our model, when the wind velocity approaches the speed
of light. We completed this study by comparing the analytic model with full hydro-
dynamic simulations performed with the aztekas code, finding a good agreement
between both solutions.

In Chapters 5, 6 and 7 we presented three studies regarding choked accretion: an
inflow-outflow hydrodynamical mechanism. These show the behaviour and charac-
teristics of this accretion mechanism in the non-relativistic, Schwarzschild black hole
and Kerr black hole cases, respectively. The main features of the choked accretion
model are summarized next:

• Steady-state, two-dimensional solution that results from breaking the spherical
symmetry in the density profile of Bondi’s accretion solution.

• The model considers an axisymmetric, large-scale, small-amplitude deviation
in the density field in which the equatorial belt is denser than the polar regions.

• This equatorial-to-polar density contrast is assumed to come from the rotation
of the fluid, either from the inner part of an accretion disk or by the flattening
of a rotating spherical gas cloud.

• This model is studied by means of both analytic solutions and numerical sim-
ulations. The analytic models consider a potential fluid solution which in the
non-relativistic regime leads to an incompressible fluid description, whereas in
the relativistic regimes corresponds to an ultra-relativistic stiff fluid.

• The numerical experiments allow us to study the behaviour of the choked
accretion mechanism with a perfect fluid that follows a polytropic process. By
means of numerical simulations performed with the aztekas code, we analyse
the model dependence on different variables such as adiabatic index γ, spin
parameter a and speed of sound C.

• The steady-state flow configurations show an inflow coming from the equato-
rial region and a bipolar outflow expelled through the less dense poles. This
morphology is due to a flux-limited accretion regime in which the incoming
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material chokes at a certain mass accretion rate threshold, forcing the exceed-
ing non-accreted material to escape through the poles. The threshold value at
which the accreting material chokes is of the order of the value found for the
spherically symmetric classical solutions.

• We find a strong dependence between the ratio of ejected to injected material
and the injected mass accretion rate, suggesting that this mechanism gives a
simple connection between accretion and ejection phenomena.

• The choked accretion mechanism shows the same qualitative behaviour and
features in all the regimes, from the non-relativistic to the ultra-relativistic
cases, either around non-rotating or rotating black holes.

• Regarding the astrophysical applicability of our model, we find that in order
for the choked accretion mechanism to work at length scales close to the black
hole horizon, it requires high temperature values (∼ 1011K), which suggests
that this solution could be related with the hot accretion flows discussed in
Chapter 1. In particular, in the ADAFs solutions, the gas is unstable against
convection which could be triggered in the choked accretion mechanism by
the density contrast δ at the boundary, explaining why the bipolar outflow
configuration is found even for small values of δ.

Even though the choked accretion mechanism requires high temperature values
to work, the density contrast, which is one of the main characteristic of the model,
seems to be a reasonable feature to be found in different astrophysical phenomena;
particularly in those with gas rotation along the equator. Different authors have
reported the existence of winds and outflows in rotating systems such as supergiants
stars (Curé et al., 2005) or in fast-rising blue optical transients (Coppejans et al.,
2020). In this kind of scenarios, the choked accretion model could be useful to explain
the relation between the ejected and the accreted gas, as well as the nature of the
central engine which gives rise to the bipolar outflow configuration.

On the other hand, the applicability of the choked accretion model might be
improved by including some additional physical ingredients that could reduce the
effective temperature and increase the polar density contrast. Some of these ingre-
dients can be: the inclusion of fluid rotation, which might give raise to a natural
equatorial-to-polar density gradient; radiative transfer, which could reduce the effec-
tive temperature that give raise to an inflow-outflow configuration; magnetic fields,
which could give rise, along with the fluid rotation, to a possible interplay between
our model and the well-established magneto-centrifugal launching mechanisms.
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