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por el acompañamiento permanente.

A los f́ısicos Jorge y Kevin, las personas más brillantes que conozco, cálidos, comprens-
ivos y sensibles a las cosas bellas de la vida; de amistad relajada y saludable. Gracias
por creer que yo también soy eso. Gracias por sostener la realidad y por los momentos
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carrera que terminó por catapultarme a seguir mis estudios en el extranjero.
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Resumen.

Los átomos ultrafŕıos en redes ópticas han demostrado ser un excelente candidato a
simulador cuántico por el nivel de control experimental que actualmente se ha logrado
y por la gran plasticidad que un sistema aśı posee. En esta tesis partimos de la
posibilidad de incorporar teoŕıas de norma en el sistema y el acceso que esto representa
a propiedades topológicas importantes, para presentar un estudio de la respuesta en
el espacio de fases de la red óptica cuántica que incluyen el Aislante de Mott (MI), la
fase Superfluida (SF) y Ondas de Densidad de Carga (DW) en presencia de un campo
magnético artificial, y de la robustez de la conductancia de Hall cuando las interacciones
mediadas por la cavidad de alta reflectancia se vuelven importantes para el ĺımite de
bosones duros. Adicionalmente, se estudia el efecto retroactivo por medición que se
tiene en las fases preexistentes en el Hamiltoniano de Bose-Hubbard en presencia de la
misma cavidad, cuantificando las variaciones de las fluctuaciones por sitio que definen
a las fases MI y SF.
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Abstract.

Ultracold Atoms in Optical Lattices have demonstrated to be an excelent candidate to
quantum simulator due to the experimental control level achieved and the remarkable
plasticity that such a system poses. In this thesis, we start from the real posibility
of incorporate Gauge Theories to the system that give access to important topolo-
gical properties, to present a study of the response in the phase space of the Quantum
Optical Lattice that includes the Mott Insulator (MI), the Superfluid (SF), and the
Density Wave (DW) phases in the presence of an artificial magnetic field, and also of
the robustness of the Hall conductance when the high-Q-cavity-mediated interactions
become important in the hard-core bosons limit. Addicionally, we study the effects of
the measurement back action on the pre-existing phases of the Bose-Hubbard Hamilto-
nian with the presence of the cavity too, quantifying the variation of the number of
particles per site, which define the the MI and SF phases.
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Introduction.

Ultracold neutral atoms loaded in optical lattices constitute an exceptional platform
to the study of a broad range of analog physical effects from Condensed Matter mod-
els and even High Energy Physics due to their unique flexibility and the high control
level displayed in the state-of-the-art experiments [1] [2]. From synthetic dimensions
based on inner degrees of freedom (for example, [3]), to Yang-Mills lattice gauge the-
ories (for example see [4]) and SU(N) gauge fields [5], the target of the proposals for
quantum simulations are dabbling into the more exotic ideas and pushing the frontiers
of applicability of this system.

Another area of study that can be explored is Topology in Condensed Matter. The
quantum Hall effect (observed in 1980 [63]) represents the access door to the explor-
ation of Chern numbers with Ultracold atoms, meaning analogue 2D systems as the
Harper model [44] are now viewed as a quantum simulation target since they host
interesting topological phenomena that could be accessed exploiting the Berry phase
as the cornerstone [51]. Nowadays, these Berry phases can be added to the system
using various methods [6], [7], [8]. In 2014, the Chern numbers of the energy spectrum
were experimentally measured [9], and it represents one of the biggest incursions of the
Ultracold atoms in topology.

Going further the simulation capabilities, once the system actually hosts and mim-
ics physical properties from other system, it displays new physical dynamics and
characteristics that in combination with the level of control over interactions and para-
meters not available otherwise, make it an interesing system by its own. An example of
this is the light-matter interaction features and collective phenomena that can also be
addressed with detail and control through this kind of systems by placing the system
inside an optical cavity [11]; the experimental realization details can be found in [76].
We can also find novel phenomena regarding measurement back-action effects on the
system [78]. Exotic phenomena can arise from such system, just as a new control over
critical exponents of phase transitions [10].

In this thesis we take part of this efforts studying the situation of Ultracold Neutral
Atoms in a 2D lattice in the presence of an Artificial Magnetic Field inside a High
Reflectance (high-Q) Cavity distinguishing the fermionic, bosonic and hard-core bo-
sons limit cases; we examine the physics of each ingredient to better understand the
competition between them. The robustness of the topological quantity the Hall con-
ductance is also studied. Given the state-of-the-art in Ultracold atoms we consider this
work is timely and highly achievable. It is divided as follows. Chapter 1 presents the
Bose-Hubbard model for ultracold atoms, the Mott Insulator and Superfluid phases,
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INTRODUCTION. 8

the reproduction of theoretical and numerical solutions, and the limit of hard-core bo-
sons [13], [32]. Chapter 2 introduces the Haprer model and its quantum simulation
using ultracold atoms, as well as the minimal topological tools required to understand
the Hall conductance [44], [47], [57]. Chapter 3 presents the high-Q cavity and its
effects on the system, specially the new Density Wave phase, and extends it to the case
in which an artificial magnetic field is present in the system [78], finding a stabilization
of the Density Wave phase as one of its consequences and the study of the Hall con-
ductances in the presence of the cavity-mediated on-site interactions. Lastly, Chapter
4 presents the measurement backaction consequences on the already known phases of
the system, reproducing the results in [78] passing through long-range tunneling and
Zeno effects, to later add the cavity.mediated interactions.



Chapter 1: The Bose Hubbard Hamil-
tonian.

The main subject of this chapter is to introduce the Bose Hubbard Hamiltonian (BHH).
This Hamiltonian model is the cornerstone of the study of bosons moving in a dis-
crete space subject to on-site interactions at a zero temperature, including competition
between kinetic and interaction energy of the system. In particular, a system of ul-
tracold bosons confined in an optical lattice potential is usually considered as one
that meets the later description, and thus could be described by this model [12]. The
particles vibrational motion within a fixed well and tunneling to its neighbor wells
create an energy spectrum describable as band structure [14]. For big filling factors
and a far-detuned lattice it has been observed scattering times in the order of minutes
that creates a conservative potential capable of being loaded with tens of atoms per
site [15].

In this chapter, we briefly review where the BHH comes from, its main features, and the
phases we can find in it. We also determine the associated phase diagram, the general
behavior of the system for specific limits of the parameters, and delve deeper into
Mean Field (MF) and Bogoliubov approaches to solve it as well as the implementation
of Numerical Exact Diagonalization (NED) on it. The BHH constitutes the principal
ingredient for the present work. From now we will restrict our work to a system
consisting of a single species of spin-polarized neutral bosons loaded in an optical
lattice.

1.1 Derivation of BHH from the Many-Body

Quantum Field Hamiltonian.

Following the original derivation of this Hamiltonian [12], we consider the Many-Body
quantum field Hamiltonian for atoms subjected to external potentials including interac-
tions given by:

Ĥ =

∫
d3xΨ†(x)

(
−~

2∇2

2m
+ V0(x) + VT (x)

)
Ψ(x)

+

∫
d3xd3x′Ψ†(x)Ψ†(x′)V (x− x′)Ψ(x)Ψ(x′),

(1.1)

9



CHAPTER 1. THE BOSE HUBBARD HAMILTONIAN 10

where Ψ(†)(x) is the boson creation (annihilation) field operator, V0(x) is an external
but localized potential (the optical lattice potential), VT (x) stands for an additional
outer (slowly varying) potential (e. g. a magnetic trap), and V (x − x′) accounts
for the interaction potential, which assumes an explicit dependence on the distance
vector between two particles of the system. According to [16], for alkali-gases (as those
typically used to create ultracold gases experimentally) atom-atom scattering is well
described by a short-range (s-wave) contact-potential that considers two-body collisions
as the only possibility due to the very low kinetic energy of the elements of the system
when they are at an almost zero temperature. Thus, the potential acquires the form

V (x− x′) ≈ 4πas~2

m
δ(x− x′) (1.2)

with m the mass of one boson, and as the low-temperature s-wave scattering length,
which encodes the direct consequences for the scattering amplitude function of consider-
ing the very low kinetic energy bosons have at an almost zero temperature. Inserting
this in the second integral in eq. (1.1) leads to

Ĥ =

∫
d3xΨ†(x)

(
−~

2∇2

2m
+ V0(x) + VT (x)

)
Ψ(x)

+
4πas~2

m

∫
d3xΨ†(x)Ψ†(x)Ψ(x)Ψ(x).

(1.3)

A typical optical lattice consists of two counterpropagating lasers that interfere outcom-
ming in a periodical arrange. For example V0(x) =

∑3
i=1 V0i sin

2(kxj) with wave vectors
k = 2π/λ and being λ the wavelength of the laser and a = λ/2 corresponds to the
lattice period. This implies that V0(x) = V0(x + d) with d a lattice vector, and
this is the hypothesis for the Bloch theorem so we are allowed to propose a Bloch
functions basis to describe the eigenfunctions of the Hamiltonian. These functions are
of the form ψk,n(x) = eik·xuk,n(x) with uk,n(x) being real functions that approximately
satisfy the Schrödinger equation for V (x) at its minimums having the same periodicity
of the potential consequently (also known as the atomic orbitals), and k being the
quasimomentum. The energy spectrum created by the periodic potential is discrete
and collectively conform the so-called Bloch energy bands labeled by index n.

In the experiment, the lattices must be deep enough to confine particles which, in
other terms means that the chemical potential is too small to excite particles to other
than the first Bloch energy band. The confinement of the particles suggests a localized
form of the wave function, with the peaks centered around the sites of the lattice. It
is natural, then, to look for localized linear combinations of the Bloch waves to work
with. We will take the next subsection to introduce these functions and to establish
the limits for their application.

1.1.1 Wannier Functions and final BHH.

Now we introduce the Wannier functions denoted by wn(x − xi) where xi is a fixed
lattice site, and are mathematically defined as the next particular linear combination
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wn(x− xi) =
1√
N

∑
k∈BZ

e−ik·xiψk,n(x), (1.4)

a superposition of the Bloch functions where N is the total number of sites of the
lattice, and k running over all the first Brillouin Zone. Occasionally, this is called the
linear combination of atomic orbitals and is the basis for tight-binding models [17]. In
fact, the Wannier functions and the Bloch functions are related by a Fourier transform
and as such, they inherit some of their properties, the most important: they conform
a complete orthonormal basis for the Hilbert space spanned by the Bloch functions
obeying the relation

∫
d3xw∗n(x− xi)wm(x− xj) = δijδnm, (1.5)

including all the Bloch bands.

The localization of the functions is not an easy thing to find and may occur only for
a specific physical condition. A complete analytical analysis of the Wannier displayed
in [18] shows that for each Bloch band there is a unique way to choose the phases of the
Bloch functions such that the Wannier function is real, symmetric and exponentially
localized, which means an asymptotic exponential behavior of the function going to zero
in the surroundings of x = 0. For the lowest band n = 0 and also the quasimomentum
k = 0 where the Wannier function acquires a finite value the asymptotic behavior of
the localization manifest in the way [19]

|w0(x)| ∼ |x|−3/4 exp(−hn|x|), (1.6)

where hn is a constant decay and also a decreasing function of the index n. This is
typically what we will understand as the localization of the Wannier functions. In the
following we may provide another way to describe their localization with the occupation
number basis.

The creation and anihilation field operators in the original Hamiltonian (1.3) now can
be expanded in the complete Wannier basis in such a manner that anihilation (creation)

process of a single particle (labeled by typical second quantization operators b̂
(†)
i for

the lattice site i) is localized at a potential minimum:

Ψ(x) =
∑
i

w0(x− xi)b̂i (1.7)

inserting this field operator into (1.3) we note that the integrals will involve only the
potentials, the differential operator, and the Wannier functions since the operators
b̂

(†)
i do not depend explicitly on the position. The potentials V0(x) and VT (x) are

completely defined and using the property (1.5) it is straightforward that the four
sums in the second double integral reduce to a single one by (1.5). Finally

Ĥ = −
∑
ij

tij b̂
†
i b̂j +

∑
ij

εij b̂
†
i b̂j +

1

2

∑
ijkl

Uijklb̂
†
i b̂
†
j b̂kb̂l. (1.8)
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The parameters in (1.8) are given by

tij =

∫
d3xw∗0(x− xi)

(
−~

2∇2

2m
+ V0(x)

)
w0(x− xj) (1.9)

µij =

∫
d3xVT (x)w∗0(x− xi)w0(x− xj) (1.10)

Uijkl =
4πas~2

m

∑
ijkl

∫
d3xw∗0(x− xi)w

∗
0(x− xj)w0(x− xk)w0(x− xl). (1.11)

Now we take advantage of the physical meaning of the equation (1.9) which is the
probability that one state highly localized in xj evolve and change its center to xi, i. e.
a hoping from site j to site i. The simplest way this could be nontrivial is considering
hopings from one site to the immediately next sites and nothing else, which agrees with
a lattice of deep wells. Being the case, we keep only the Jij’s corresponding to pairs
of nearest neighbors (NN) and neglect the other cases. The only way (1.10) and (1.11)
are non-zero is to take all the labels to be the same; in other cases, the integrand is
an almost zero and considered negligible. Following this reasoning the new parameters
are

µi =

∫
d3xVT (x)|w0(x− xi)|2 ≈ VT (xi) (1.12)

Ui =
4πas~2

m

∑
i

∫
d3x|w0(x− xi)|4. (1.13)

In equation (1.12) we also employ the smoothness of the trapping potential VT (x)
and treat it as a constant whose value is best approximated by the centered potential
VT (xi). Assuming the system is homogenous and the kinetic energy has no privileged
directions, the latter equations holds for each of the sites and two pairs of NN, thus,
tij = t (for all pairs of NN) and µi = µ and Ui = U (for each lattice site), finding the
Bose Hubbard Hamiltonian

ĤBH = −t
∑
〈i,j〉

b̂†i b̂j +
U

2

∑
i

b̂†i b̂
†
i b̂ib̂i + µ

∑
i

b̂†i b̂i

= −t
∑
〈i,j〉

b̂†i b̂j +
U

2

∑
i

n̂i (n̂i − 1) + µ
∑
i

n̂i

(1.14)

where we used the definition for the number operator n̂i = b̂†i b̂i and the (bosonic)

commutation rule
[
b̂i, b̂

†
i

]
= 1, and the notation 〈·〉 refers to pairs of nearest neighbours.

Note that µ
∑

i n̂i, wehere µ is the chemical potential, is just an overall constant added
to the Hamiltonian if the total number N of particles is fixed.

The BHH has its origins in the serching for a model of superconductivity in restricted
geometries [20], [21] such as granular films (e.g. Vycor) and for porous media where the
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Cooper pairs behave approximately as bosons. It was until 1989 that this model arrive
to its modern form, derived by M. Fisher [22] (see [23]). In 1998, Jaksch et. al. [12]
proposed to use the Bose-Hubbard Hamiltonian to describe a BEC in an optical lat-
tice. Both works were focused on finding quantum phase transitions in the system.
The main two types of phases distinguished for the limits U/J → ∞, 0, and filling of
the lattice n are the various Mott Insulator phases (MI-n) and the Superfluid (SF)
respectively. Localization is the main distinctive factor of these two phases, the Mott
insulator is characterized by highly localized bosons in the sites of the lattices (zero
fluctuations of every site number operator) and the superfluid phase is characterized
by the delocalization of all the particles of the system; physically one may understand
this as the hopping process being intensely promoted. This will be explored in de-
tail through the next sections and the two phases and the theoretical and numerical
methods used in the analysis will also be explained.

1.2 Understanding the BHH.

Now with the final BHH, we go deeper into the physics hosted by it, in particular, we
are interested in showing the intrinsic phases of the model and their characterization
through calculations for observables of the system, and we will do it as van Oosten,
et. al. in [13]. Following the operational part of quantum mechanics, this means to
diagonalize the Hamiltonian and study the spectrum and the eigenfunctions because
everything may be derived from there, but the problem here is the part of the Hamilto-
nian that involves products of four operators, which are very difficult to deal with in
order to perform a diagonalization. The absence of a mathematical method typically
puts us in the necessity of address this problem by proposing reasonable physical ap-
proximations to develop a more friendly Hamiltonian that hopefully encodes the most
important physics of the system. Another option is to try numerical methods. Here
we show effectively three ways in which one may try to do it for the BHH. The first is
the Bogoliuvob approach followed by the Mean-Field Decoupling to explore the phase
space of the system. Then, we move to numerical methods to perform an Exact Diag-
onalization to find the ground state and its energy. This will be one of the pillars for
the rest of this thesis. All the hidden steps may be found in Appendix A.

1.2.1 Bogoliubov approach.

Starting with the Hamiltonian operator 1.14, and considering first a finite volume V ,
we apply a transformation to the momentum space of the site operators given by

b̂i =
1√
Ns

∑
k

âke
−ik·ri

b̂†i =
1√
Ns

∑
k

â†ke
ik·ri ,

(1.15)

obtaining discrete values of momenta ~k running over the first Brillouin Zone (BZ).
Later, the usual limit for V → ∞ will allow us to change the sums by integrals using
the fact that

∑
i e
i(k−k′)·ri = Mδkk′ for M the total number of sites. Calling H1,2,3 each
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of the sums in 1.14 respectively, we insert the definitions (and drop the hats above the
operators from now on) to find

H1 = −t
∑
k

∑
k’

∑
〈i,j〉

a†kak’e
i(k−k’)·rie−ik’·(rj−ri). (1.16)

Note that the sum over 〈i, j〉 involve only the vector rj−ri, with magnitud a, the lattice
spacing. Each ri has 2d neighbors at a distance a (being d the spacial dimension of the
lattice). Fixing ri and moving rj then

∑
〈i,j〉

ei(k−k’)·rie−ik’·(rj−ri) =
∑
i

ei(k−k’)·ri

(
2

d∑
j

cos(k,ja)

)
= Nsδk,k’

(
2

d∑
j

cos(k,ja)

)
.

(1.17)

This leaves the first part of the Hamiltonian as

H1 = −
∑
k

ε̄ka
†
kak (1.18)

with ε̄k = 2t
∑d

j=1 cos(k,ja). For the second and third part of the Hamiltonian the
calculation is easier, and the result is

H2 +H3 =
1

2

U

Ns

∑
k

∑
k’

∑
k”

∑
k”’

a†ka
†
k’ak”ak”’δk+k’,k”+k”’ − µ

∑
k

a†kak. (1.19)

Being the total Hamiltonian H = H1 +H2 +H3, its final expression is as

H =
∑
k

(−ε̄k − µ)a†kak +
1

2

U

Ns

∑
k

∑
k’

∑
k”

∑
k”’

a†ka
†
k’ak”ak”’δk+k’,k”+k”’. (1.20)

In a BEC the average number of atoms in the system N0 (in the least energetical state)
is much greater than 1, so if N0 = 〈a†0a0〉 and 〈a0a

†
0〉− 〈a0a

†
0〉 = 1, then 〈a0a

†
0〉 ≈ 〈a

†
0a0〉

and this allow us to see the agreement with a commutation of both operators and
conclude N0 = 〈a†0〉〈a0〉. Since 〈a0〉 and 〈a†0〉 are complex conjugates then 〈a0〉 =
〈a†0〉 =

√
N0.

The heart of Bogoliubov approach is that the creation and annihilation operators now
should be replaced by its average value plus a fluctuation

a†0 →
√
N0 + a†0

a0 →
√
N0 + a0.

(1.21)

At the minimum of the energy, the linear terms of the fluctuations must be zero.
Keeping only with the first order terms (denoted by superscript (1))



CHAPTER 1. THE BOSE HUBBARD HAMILTONIAN 15

H(1) =

(
−ε̄0 − µ+

U

Ns

N0

)
(
√
N0(a†0 + a0)). (1.22)

Since this term must be 0 for all a†0 and a0 then:

− ε̄0 − µ+
U

Ns

N0 = −2td− µ+
U

Ns

N0 = 0 (1.23)

where ε̄0 = 2t
∑d

j=1 1 = 2td and we conclude that for the lower-order approximation

µ = Un0 − zt (1.24)

with n0 = N0/Ns the density of states in the first band and z = 2d the number of
neighbors of each site.

Continuing with the approximation to find zero and second order approximations

H(0) = (−ε̄0 − µ)N0 +
1

2

U

Ns

N0N0 = (−2td− µ+
1

2
Un0)N0

H(3) =
1

2
Un0(

∑
k

aka-k +
∑
k

4a†kak +
∑
k

a†ka
†
-k).

(1.25)

Finally the effective Hamiltonian acquires the form

Heff = −1

2
Un0N0−

1

2

∑
k

(εk+Un0)+
1

2

∑
k

(
a†k a-k

) [ εk + Un0 Un0

Un0 εk + Un0

](
ak
a†-k

)
(1.26)

using the definition of εk = zt−ε̄k and having using the facts that εk =
∑d

j=1 cos(kja) =∑d
j=1 cos(−kja) = ε-k,

∑
k aka

†
k(εk + Un0) =

∑
-k a-ka

†
−k(εk + Un0) and that we may

change the sign of the label due to the symmetric region of the Fourier space we are
dealing with.

Looking for a diagonal way to write this Hamiltonian, the Bogoliubov transformation
requires the new bosonic operators b†k and bk, designed to be an abstract rotation of

the originals b†k and bk. They must fulfill the algebraic relations for bosonic operators
too. The transformation relating the two pairs of operators is

(
bk
b†-k

)
=

[
uk vk

u∗k v∗k

](
ak
a†-k

)
(1.27)

with u’s and v’s being unknown complex scalars that awaiting to be determined. From

there, since b−k =
(
b†±k

)†
and b†−(−k) = b†k must hold, then the coefficients satisfy

uk = u-k, u∗k = u∗-k, vk = v-k, and v∗k = v∗-k. To make sure the new operators obey the
bosonic commutation rules we expand the commutation relation and request the result
to be equal to 1:
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[bk, b
†
k] = |uk|2 − |vk|2 → 1 (1.28)

which tell us the matrix has inverse and it is such that

(
ak
a†-k

)
=

[
u∗k −vk
−v∗k uk

](
bk
b†-k

)
. (1.29)

Inserting 1.29 in 1.26 yields to

Heff = −1

2
Un0N0−

1

2

∑
k

[
(εk + Un0)(|vk|2 + |uk|2)− Un0(ukv

∗
k + vku

∗
k)− (εk + Un0)

]
− 1

2

∑
k

[−2(εk + Un0)ukvk + Un0(u2
k + v2

k)]b†kb
†
-k + h. c.

+
∑
k

[(εk + Un0)(|uk|2 + |vk|2)− Un0(ukv
∗
k + vku

∗
k)].b†kbk

. (1.30)

We request this to take the next diagonal form

Heff = −1

2
Un0N0 −

1

2

∑
k

[~ωk − (εk + Un0)] +
∑
k

~ωkb
†
kbk, (1.31)

so we identify the respective coefficients, and it follows that

{
0 = −2(εk + Un0)ukvk + Un0

[
v2
k + u2

k

]
~ωk = (εk + Un0)(|uk|2 + |vk|2)− Un0(ukv

∗
k + vku

∗
k).

(1.32)

Solving these equations leads to

~ωk =
√
ε2k + 2εkUn0 (1.33)

|vk|2 = |uk|2 − 1 =
1

2

(
εk + Un0

~ωk

− 1

)
. (1.34)

Following with the general calculation, we focus in to know the density of the condens-
ate n0, which requires to know the total density n in terms of the effective Hamiltonian,

n =
1

M

∑
k

〈a†kak〉Heff , (1.35)

we separate the density of the lowest energy level n0 from the rest of the spectrum
populations since the beginning,

n = n0 +
1

M

∑
k 6=0

〈a†kak〉Heff (1.36)
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and writing this in terms of (1.27) changing the sign of k appropiately and noting that
the operators b-kbk and b†kb

†
-k are always 0, since they represent products of orthogonal

number states for all k 6= 0, we arrive to

n = n0 +
1

M

∑
k 6=0

[
(|vk|2 + |uk|2)〈b†kbk〉Heff + |vk|2

]
= n0 +

1

M

∑
k 6=0

[
εk+Un0

~ωk

〈b†kbk〉Heff +
εk + Un0 − ~ωk

2~ωk

], (1.37)

and inserting 〈b†kbk〉Heff , the Bose distribution evaluated in ~ωk it follows that

n = n0 +
1

M

∑
k 6=0

[
εk+Un0

~ωk

1

eβ~ωk − 1
+
εk+Un0−~ωk

2~ωk

]
. (1.38)

In the limit where T = 0 we have β →∞, therefore 1
eβ~ωk−1

→ 0 for all k 6= 0, finding
the density

n = n0 +
1

M

∑
k 6=0

[
εk + Un0 − ~ωk

2~ωk

]
. (1.39)

To take the continuous limit in k we must do
∑

k → V
∫ π
a

−π
a
dk/(2π)d, then

n = n0 + V

∫ π
a

−π
a

εk + Un0 − ~ωk

2~ωk

dk

(2π)d
(1.40)

taking the variable change k = 2π
a

q we find for ε̄k = 2t
∑d

j=1 cos(kja) → ε̄q =

2t
∑d

j=1 cos(2πqj), therefore, εk = zt − ε̄k → εq = zt − ε̄q and it’s clear that ~ωk =√
εk2+2εkUn0

→ ~ωq =
√
εq2+2εqUn0

remains unchanged and the integral is now

n = n0 + V

∫ 1
2

− 1
2

εq + Un0 − ~ωq

2~ωq

dq

(
2π

a

)d
1

(2π)d
(1.41)

modifying the integration limits in such a manner that kj = ±π/a and then qj = ±1/2.
Knowing that M = V/(ad) then in the end the density will be

n = n0 +
1

2

∫ 1
2

− 1
2

(
εq + Un0

~ωq

− 1

)
dq. (1.42)

Finally, in order to discover whether the new model captures the phase transition SF
to MI for large U/t, we should be able to find a finite critical value for which the
fraction of condensate n0/n has no solution, or, in other words, goes to zero. It is
desirable too that the model display different results when n is or not an integer value
since the localizations in the Mott Insulator phase physically imply that the number
of atoms is an integer multiple of M , otherwise, a fraction of the atoms will remain
spread over the filled lattice sites and thus there could not be possible to achieve the
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insulating property. In the following we explore the behavior of n0 which will provide
us a sense of whether the system is in the SF phase or not, this idea is based on the fact
that the kinetic part of the BH become the most representative and thus ground state
of the system should be Gross-Pitaevskii-type corresponding to a condensate fraction
n0/n = 1.

Given that εq = 2t
∑d

j=1[1 − cos(2πqj)] and, in general, 1 − cos(x) ≤ x2

2
then 1 −

cos(2πqj) ≤
4π2q2

j

2
, and

εq ≤ 4π2|q|2t (1.43)

εq + Un0√
~ωk + 2εqUn0

→U
t
→∞

Un0√
2εqUn0

=

√
Un0

2εq
(1.44)

and by 1.43 then

1

2π

√
Un0

2t

∫ 1
2

− 1
2

dq

|q|
≤
∫ 1

2

− 1
2

dq
εq + Un0√
~ωk + 2εqUn0

(1.45)

for these values of U/t. Calling Id to the result of the d-dimensional integral in the left
(that can be performed theoretically for d = 2 and numerically for higher dimensions)

and
∫ 1/2

−1/2
dq =

∏d
j=1

∫ 1/2

−1/2
dqj =

∏d
j=1(1/2 + 1/2) = 1 the tendence is (from above)

n→ n0 +
1

2

1

2π

√
Un0

2t
Id −

1

2
= n0 +

1

4π

√
Un0

2t
Id −

1

2
(1.46)

and if we assume we are in a regime where this tendence is a good approximation then
a new quadratic equation for

√
n0 arises:

n0 +
1

2

1

2π

√
Un0

2t
Id −

1

2
− n = 0, (1.47)

and solving for n0 from its positive solution then

n0 =

(
1

2

√
I2
d

16π2

U

2t
+ 4n+ 2− Id

8π

√
U

2t

)2

(1.48)

Knowing the behavior of the system in this limit, physically we expect that the con-
densate fraction n0/n goes to zero for some finite critial value of U/t, and note from the
last equation that n0 → 0 if U/t → ∞ which is almost the expected behavior but we
may conclude there is not a critical value with the help of (1.46, we may conclude that
Bogoliubov approach looses this information. In addition, the results do not change
regarding if the n is an integer or not.

It is very rational to question why we conclude this approach is blind to phase trans-
itions of the system, of course, it is obvious that we have assumed before the calculation
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the existence of such phases and also the kind of transition, but in fact, there is enough
numerical supporting evidence through many methods such as Monte Carlo simulations
( [24], [25], [26], [27]) and Density Matrix Renormalization Group ( [28]). Moreover,
the experimental observation of this transition (performed by Greiner, M. , et. al. [29])
is a solid proof In the next subsection, we will try another method to build a better-
simplified model that captures the BHH information about the SF and MI phases,
being congruent with the cited numerical results too.

1.2.2 Decoupling Approximation.

When dealing with quantum Many-Body systems there is a very useful tool called
the Mean Field approximation (MF), which is one of the most common methods used
when trying to find a more mathematically treatable model but preserving the physics
of the system. Essentially, MF’s initial proposal to minimize the free energy of the
system ends up leaving the Hamiltonian with the weakest possible coupled dynamics
of the system (mathematically, the physical result of the action of a quadratic operator
will be simplified to a superposition of their effects each one weighted by the scalar
expectation value of the other). This could lead to a loss of information of the system
but is not the general case and for those successful cases, both the phases and critical
curves have been well determined and coincide with results from other methods. Being
aware of this we apply MF to the BHH in order to create a simplified model able to
capture the important physics of the system.

We first introduce the superfluid parameter order ψ = 〈b̂†i〉 = 〈b̂i〉 ≈
√
ni. Secondly, we

use the MF decoupling for the quadratic operators given by

〈b̂†i b̂j〉 = 〈b̂†i〉b̂j + b̂†i〈b̂j〉 − 〈b̂
†
i〉〈b̂i〉 = ψ(b̂†i + b̂j)− ψ2 (1.49)

and insert both in 1.14 to obtain

Heff = −t
∑
〈i,j〉

ψb̂†i − t
∑
〈i,j〉

ψb̂j − t
∑
〈i,j〉

ψ2 +
U

2

∑
i

n̂i(n̂i − 1)− µ
∑
i

n̂i

= −zt
∑
i

ψb̂†i − zt
∑
j

ψb̂j − zt
∑
i

ψ2 +
U

2

∑
i

n̂i(n̂i − 1)− µ
∑
i

n̂i

(1.50)

since the sums running over 〈ij〉 maintain one index fixed and the other is one for each
NN and there are z = 2d of them when the lattice we are dealing with is cubic and
its dimensionality is d. If we consider the N total number of sites and changing j → i
then

Ĥeff = −zt
∑
i

ψ(b̂†i + b̂i)− ztNsψ
2 +

U

2

∑
i

n̂i(n̂i − 1)− µ
∑
i

n̂i (1.51)

and introducing Ū = U
zt

y µ̄ = µ
zt

and noting that the Hamiltonian is now composed of
N identical expresions for each site then we may find
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Heff

Mzt
= H i

eff = ψ(b̂†i + b̂i)− ψ2 +
Ū

2
n̂i(n̂i − 1)− µ̄n̂i (1.52)

for any of the M components (sites), so this Hamiltonian per site will be enough to
understand the physics of the whole system.

To determine whether the state is in SF phase or a MI phase one must find when
ψ is or not equal to 0, that physically means the expectation value of a creation or
annihilation operator is or not zero, and it is when there is no hoping at all: insulating
phase. we then consider a few changes of the Hamiltonian

H = xH i
eff =

1

2
n̂i(n̂i − 1̂)− µn̂i − xψ(b̂† + b̂) + ψ2 (1.53)

for x = 1/Ū and consider the matrix representation of all the operators in the Hamilto-
nian as

ni =


1 0 . . . 0
0 2 . . . 0
...

...
. . . 0

0 0 0 n

 , b̂i =


0
√

1 . . . 0
0 0 . . . 0
...

...
. . .
√
n− 1

0 0 0 0

, and b̂†i =


0 0 . . . 0√
1 0 . . . 0

...
...

. . . 0
0 0

√
n− 1 0


which allows to write Ĥ i

eff as a matrix too. Next, we’ll search by self-consistency for

an adequate ψ that satisfy simultanoeusly 1.53 and ψ = 〈G|b̂i|G〉 for G the ground
eigenstate of the site Hamiltonian. We may find useful to see H i

eff = H i
eff(ψ), and name

its ground state as |G(ψ)〉. To start the process give an adequate ψ0 (near zero by the
characterization of the phases) to later create the hopefully convergent sequence

{ψn}n∈N → ψ (1.54)

ψn+1 = 〈G(ψn)|b̂i|G(ψn)〉 (1.55)

a suitable way to cut the process close to the limit value uses the Cauchy property
of convergent sequences which states that a sequence converge if and only if ∀ε > 0,
∃N ∈ N such that |ψm−ψn| < ε ∀n,m > N ; based on it choose an ε small enough and
stop when |ψn−ψn+1| < ε. Results from this analysis are shown in figure 1.1 where the
two phases clearly distinguished, as well as the critical curve, is sharp are presented in
the function of parameters U and t, and chemical potential (which controls the filling
n). When t/U → ∞, the situation should look more like in the trivial limit U = 0
where the superfluid phase take place because the kinetic energy domains all over the
system, and its state is now made of linear combinations of spread Bloch states since
the Hamiltonian is now diagonal in this basis; the parameter ψ is positive accordingly.
The fact that every atom wants to hope from site to site is equivalent to an increased
possibility of finding more than one atom in the same site at the same moment [30].
This starts to change if U > 0 because a new gap appears for a specific value of
U in the spectrum defining two new bands being the more energetic the conductive
one. To understand the opposite situation we begin noting that the limit t/U → 0
considered effectively equivalent to take t = 0 leaves the Hamiltonian already diagonal
in the number basis. The state that minimizes the energy will be |Gt=0〉 =

∏
i |min〉i
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Figure (1.1) The phase diagram of the BHH has a SF for large t/U and several MI
phases depending on the filling of the lattice which change with chemical potential. We
have a schematic phase transition indicating the corresponding lobes to the values of
the filling [30]. This is the numerical calculation of the phase space using self-consisting
numerical approach performed by the author.

where the label min stands for the requirement that all the sites are filled with the
least possible particle number per site. The latter is a good reason to think of the
interaction as effectively repulsive since the system will always be trying to minimize
the number of particles in each site. When the filling is integer multiple of M then this
minimum is equal for all sites and it is exactly the Mott Insulator of order n = N/M ,
but if it is not the case then we may have a superposition of all possible combinations
of a minimal number of particles per site. What happens in that case is illustrated in
figure 1.1 by the dashed line for a filling n̄ = 1 + ε that is slightly greater than the case
n = 1. Given the physically inaccessibility MI phase we expect that for t/U → 0 the
system follows the dashed curve above the first MI lobe [30].

In between the two limit behavior of the system (and for integer fillings), we find the
competition between both phases that is not a simple mixture, in fact, there is a specific
critical value (t/U)c that determine if the parameters of the system correspond to SF
or MI when comparing to it. The analysis to find the critical value and the expression
for the critical line starts with MF Hamiltonian and continues applying second-order
perturbation theory. The next section addresses this task.

1.2.3 Critical Values.

Looking carefully at the Hamiltonian 1.53, since the interaction term alone is diagonal
in the number basis and we may identify the kinetic term as a perturbation of the
system modulated by the parameter ψ, it is easy to write it as Heff = H(0) +ψV where
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H(0) =
1

2
Ū n̂(n̂− 1)− µn̂− ψ2 (1.56)

V = −(b† + bi). (1.57)

Calling E
(0)
n to the non perturbed system energies for the occupation number of the

state |n〉 and E
(0)
g to the energy of the ground state then

E(0)
g = min{E(0)

i |n = 0, 1, 2, 3...}. (1.58)

if E
(0)
g is considered to be the minimum energy then it should satisfy E

(0)
g −E(0)

g+1 < 0 and

E
(0)
g −E(0)

g−1 < 0. For the energy of the eigentates we got E
(0)
n = 1

2
Ūn(n− 1)− µ̄n−ψ2.

Now, it is clear from here that if µ̄ > 0 then E
(0)
g should be zero. In other case, if µ̄ > 0

then from the above conditions one obtains that

E(0)
g =

{
0, if µ̄ < 0
1
2
Ūg(g − 1)− µ̄g + ψ2, if Ū(g − 1) < µ̄ < Ūg.

(1.59)

For the first order of the energy E
(1)
n = 〈n| − (b†+ b)|n〉 must be calculated but just to

find it is zero, which is not the case of the second order corretion:

E(2)
n =

∑
n6=m

|〈n|ψ(b† + b)|m〉|2

E
(0)
n − E(0)

m

=
n

Ū(n− 1)− µ̄
+

n+ 1

µ̄− Ūn
(1.60)

and considering this two terms of the approximation, we finally arrive for the particular
case of the ground state (n = g) to

Eg ≈ E(0)
g + E(2)

g =
1

2
Ūg(g − 1)− µ̄g +

[
g

Ū(g − 1)− µ̄
+

g + 1

µ̄− Ūg
+ 1

]
ψ2 (1.61)

Following the usual Landau’s second order phase transitions analysis we expand energy
in even potents of ψ to write

En = a0(g, Ū , µ̄) + a2(g, Ū , µ̄)ψ2 +O(ψ4) (1.62)

It is clear that whenever a2 is positive then En is a parabola that opens upward and
thus the minimum is located at its center, i. e. when ψ = 0 which corresponds to an
insulating phase. On the other hand, if a2 is negative then ψ 6= 0 since it will be the
maximum otherwise, and therefore in this regime, the superfluid takes place. These
facts imply that the change from a2 > 0→ a2 < 0 is equivalent to ψ = 0→ ψ 6= 0, in
other words, the phase transition MI-SF is now found when a2 = 0. We proceed now
to find the conditions for it doing
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Figure (1.2) Garphics of the regions belonging to the different MI phases enclosed by
µ̄ critical curves. If we inverted the axis doing x → 1/x we obtain the lobes in Fig.
1.1. The graphic is a reproduction of the results in [13].

a2(g, Ū , µ̄) =
g

Ū(g − 1)− µ̄
+

g + 1

µ̄− Ūg
+ 1 = 0, (1.63)

and from here we solve for

µ̄± =
1

2

[
Ū(2g − 1)− 1

]
± 1

2

√
Ū2 − 2Ū(2g + 1) + 1, (1.64)

which is essentially a mathematical expression for the boundary between phases in the
space µ̄ vs Ū . The superscript ± stands for the upper and lower border of the lobes for
each g = 1, 2..., corresponding to the lobes in 1.1 but shown under the variable changes
made in the beginning in figure 1.2.

Finally, solving for µ̄+ = µ̄− will determmine the critical value Ūc we were originally
calculating. This gives:

Ūc = 2g + 1 +
√

(2g + 1)2 − 1 (1.65)

that for g = 1, the Mott Insulator-1 is approximately Ūc ≈ 5.83 that is also found
in [31].

1.3 Numerical Exploration: Exact Diagonalization

of the BHH.

From a few decades ago the introduction of numerical methods in physics has increased
the number of results regarding extremely difficult problems and also expanded the
physical insight in many cases, they have served as a guide in purely theoretical ap-
proaches and in some others as an alternate route to check findings or discover new
interesting aspects and research routes. In this case, we will start a numerical analysis
parallel to all the theories presented in past sections. Once both phases have been
determined as well as their boundaries in the phase diagram through MF theory, the
next step is to quantify observable properties of the system as a function of the two
parameters and compare the extracted physical information with our knowledge of the
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BHH. We will follow the Numerical Exact Diagonalization as presented by [32] and
results from [33]. Final conclusions in each calculation will validate the code developed
by the author and constitute the solid basis to continue adding new options to go
further and continue our research program.

1.3.1 The Computationl Method.

Numerical Exact Diagonalization requires the construction of the complete matrix
representation of the Hamiltonian operator to later attempt to diagonalize it through
any known numerical method. Given the size of a typical matrix involved in many-
body problems, one often calculate the ground state and the spectrum, but also more
sophisticated methods are needed, such as Lanczos Algorithm or a more general Arnoldi
Iteration which at their core try to take a general matrix to a more tractable Hessenberg
matrix form preserving the original eigenvalues [34]. The matrix representation of the
Hamiltonian operator in a given orthonormal basis {|1〉, |2〉 . . . } is

Hmn = 〈m|H BHH|n〉. (1.66)

The first task in this calculation is to determine the Number basis given by all the
configurations in which N particles can be accommodated in M sites which sums

D =
(N +M − 1)!

N !(M − 1)!
(1.67)

elements. The size of the basis grows dramatically when increasing a fixed N/M = 1.
To get a feeling of how big the basis become, the size of this basis for N = 9 is
D = 24310, for N = 12 it increases to D = 1352078 and for N = 13 it reaches D =
5200300. (Is important to mention that the state-of-the-art allows experimentalists to
build and control systems with no less than N = 100 particles and the dimension of the
corresponding Fock basis have a number of elements that is intractable by practically
any computer in the world, so the people always try to come up with an idea to get
around this problem.)

To build the basis we first define a partial order in the configurations set. Let |n1, ..., nM〉
and |n̄1, ..., n̄M〉 be basis states, if they are not the same then there must exist an in-
teger k ∈ N ∪ {0} for which nk = n̄k and nk+1 6= n̄k+1, then we shall say that the
second is greater if and only if nk+1 < n̄k+1. Expanding this relation to an structure
that takes into account the value of the k too allow us to create an algorithm to find
”the next” configuration for any given state except. Moreover, the set now has a min-
imm and maximum, they are |N, 0, ..., 0〉 and |0, ..., 0, N〉 respectively. Given the state
|n1, ..., nM〉 we may find the next one |n̄1, ..., n̄M〉 by following:

• n̄i = ni for i ≤ k − 1

• n̄k = nk − 1

• n̄k+1 = N −
∑k

i=1 n̄i

• n̄i = 0 for i ≥ k + 2
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Having built the basis and store it in a list we call B, the next step is to find the
matrix elements Hmn of the programmable operator HBH (and for any other operator)
trying to avoid an excessive number of steps. The idea is to compute the vector
HBH|m〉 ≡ |v〉 and see if there is any other vector |n〉 such that 〈n|v〉 6= 0. By the
nature of our Hamiltonian there are several vectors that satisfy that condition since
|v〉 = u1|m1〉 + u2|m2〉 + · · · + us|vs〉 for some s and one must consider whenever
|m〉 = |mi〉. Instead of trying the product one by one, we should be able to completely
determine the vectors that as a non zero result and save the time that product may
consume too. A very suitable way to achieve this is to assign a unique tag to each basis
vector and then choose a searching method to localize it within the basis and that is
exactly how we will do. Following [32] we assign the next tag to each vector Av of the
basis with

T (Av) =
M∑
i=1

(
√

100i+ 3)Avi (1.68)

where Avi is the i − th element of vector Av and we have chosen the numbers of the
form

√
100i+ 3 to assure (approximately) a unique irrational linear combination.

Now all the tags of B are saved maintaining their order in a list named Tags and
proceed to sort this new list to create a pair of lists OTags and PTags, the first one is
the sorted list, and the second one contains parallelly the position of each tag in OTag
has in Tags. We choose to work with Binary Search (BS) method to find the position
of the vector’s tag in OTag and then consult in PTag for its position in the original
basis list. With this lists, we write the final process as

1. Compute HBH|n〉 = u1|m1〉+ · · ·+ us|ms〉

2. For each i = 1, . . . , s define Ti = T (|mi〉)

3. B.S. of Ti in OTags throws opi such that Ti = OTags(opi)

4. The position of |mi〉 in B is pi = PTags(opi)

5. Matrx element Hmin = Hpin = ui

and do this for each basis element |n〉. Any other matrix element is zero. This yields
finally to the creation of a sparse matrix H and an eigensolver function for the matrix
must be applied to it to request either a specific subset of eigenvectors (e. g. ground
state) or eigenvalues (energy spectrum) using your preferred numerical method. For the
present work the code was written in C++ employing the package Armadillo [35], [36].

1.3.2 Properties and Observables.

Simple Observables.

The aim of this subsection is to display a few results for simple observable quantities
obtained using our code that may help us gain a better insight of the SF-MI main
differences, and by default, this will constitute a check for the basic code we will
further extend to reach the objectives of this work.
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We begin by introducing the eigenenergies E(ν) that arise from the diagonalization
(labeled by ν) and the corresponding eigenvectors C(ν) that stands for the linear com-
bination

|Ψν〉 =
D∑
l=1

C
(ν)
l |{n1, ..., nM}l〉 (1.69)

for |{n1, ..., nM}〉l the possible configurations of the system or, more formally, the dif-
ferent Fock states. The ν label is supposed to be in order respect to the value of the
energy, being the case ν = 0 the ground state.

The simplest observable is the average particle number per site (labeled i) given by

n̄i = 〈Ψ0|n̂i|Ψ0〉 (1.70)

but more interesting should be the fluctuation of this quantity since it gives access to
the structure of the basic states within the hole state and is given by

σi =
√
〈Ψ0|n̂2

i |Ψ0〉 − 〈Ψ0|n̂i|Ψ0〉2. (1.71)

Since the state of the system is a superposition of many possible configurations, the
possible filling of each site may vary and thus the fluctuations will increase when |Ψν〉
is a spread combination of several states that correspond to the SF phase, in contrast
to when the linear combination has a reduced number of importantly participating
basis states which is the case of an MI, and consequently, the fluctuations reduces
considerably.

Complementing this quantity, we may wish to now the module of the maximal coeffi-
cient Cν

l given for the ground state by

|C max|2 = max{|Cl|2} (1.72)

and motivated by two important situations: if it is close to 0 it indicates there should
be a large number of non-zero coefficients that finally mean an important contribution
of a big number of states. On the other hand, if it is near 1 then this participation of
any other coefficient is little enough to think the state is mainly represented by almost
one Fock state.

Another quantity enclosing relevant information is the energy gap between the ground
and the first excited state defined by

Egap = E(1) − E(0). (1.73)

The superfluidity of the system is intimately related to the capacity of the particles
to access more energetic states. A more excited state includes necessarily states with
more than one particle per site increasing the chances for hoping from one site to other,
if the gap is thin this state is accessible for the system then the superfluid phase will
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Figure (1.3) Plot of the fluctuations per site σi (a), the maximum coefficient C (b),
and the energy gap (c) for a system of N = M = 9 particles as a function of U/t.
The grey vertical line correponds to the critical value U/t ≈ 5.83 from MF decouling.
These results are a reproduction of those in [33].

take place. Contrarily, a big gap prevents particles from occupy more than one site at
a time, meaning the Mott-Insulator is favored.

To show the above quantities we also put attention to the difference between the number
of particles and sites for an integer filling N/M = 1 to see any dependence on the size
of the system. The graphics in figure 1.3 refers to the three definitions discussed above.
The fluctuations per site (1.3(a)) shows an initial value of 1 as expected but its behavior,
while interaction strength grows, does not have a significative signature near the critical
value Uc/tc ≈ 4.65 where we expected the MI (a result for the thermodynamic limit:
M →∞ while N/M = 1 is fixed, using Monte Carlo simulations, [37]). Nothing special
happens in the citical value and that has a reason: there is no transition in 1D and
we are considering a relatively small number of sites. In fact, the decreasing ratio of
the fluctuations is now even lower than before, and apparently, there is no tendency to
zero as expected revealing the fluctuations are present even in the insulating phases.
It is important to note there is not a matter of the size of the systems since the curves
do not differ too much. This quantity does not bring any information about the phase
transition.

Continuing with the maximum coefficient |Cmax|2, plotted in Fig. 1.3(b), it comes from
a nearly zero value in the ground state for a the SF phase that indicates a very spread
distribution of the probability of being in any of the basis states. When increasing the
ratio U/t the maximum starts getting close to 1 but it is never reached meaning the
MI is not a pure Fock state.

The energy gap as in Fig. 1.3(c) starts with the minimum of its value in the regime
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for the superfluid phase promoting the participation of states with more than one
particle in some sites in the ground state expression. It increases with the ratio of the
interaction-kinetic parameter finding finally a linear dependence on it for U/t ≥ 10.
This could be explained from the fact that states with a hole (and thus an extra
particle somewhere) are now a more representative subset of Fuck states in the ground
state, establishing a new signature of the insulating phase that has been explored
experimentally in [29] as well as theoretically in [38] and [39].

Condensate fraction.

In contrast to the Gross Pitaevskii equation, the BHH does not assume the system
is a BEC, and neither its presence is obvious from the Fock states form. To measure
it, we have to adopt the Penrose and Onsager [40] definition that the condensate is
present when one of the so-called natural orbitals is macroscopically occupied, which
are nothing less than the eigenvalues of the reduced one-body density matrix,

ρ
(1)
ij = 〈Ψ0|â†i âj|Ψ0〉, (1.74)

meaning the number of particles there Nc is almost N and thus the condensate fraction
defined as fc = Nc/N should remain finite and near 1, even in the thermodynamic limit.

Since Trρ
(1)
ij = N by normalization, the sum of its (positive) eigenvalues should be N ,

implying that there should be an eigenvalue larger or equal to N/M (because there are
only M eigenvalues) but also the maximum eigenvalue can not be less than 1 and thus,
fc � 1/M .

Following [41], we have that the BEC is intimate linked to nonvanishing off-diagonal
terms of the matrix in question and it is often associated with its presence in the
system. Mathematically we have

ρ
(1)
ij 9 0 for |i− j| → ∞, (1.75)

that makes this object capable of encoding the presence of the condensate in the sys-
tem. Figure 1.4 is about the condensate fraction, which in this case was obtained
by diagonalizing ρ

(1)
ij and take its greater eigenvalue to calculate fc. As expected, if

the system is in a superfluid state then it is also completely in a BEC state. When
interactions become larger, the fraction decreases, and non-condensate states grow in
population.

After carefully analyzing the above calculations that do not exhibit a critical point in
the same sense of the MFT, we have to remark that the fluctuations per site are still
above σi ≈ 0.3 and |Cmax|2 is not 1 around the critical point, which means that the
ground state is definitely not a pure Fock state. The MF decoupling ends up neglecting
this fluctuations and this is the origin of the discrepancy, due to dimensionality. Since
exact diagonalization takes into account all the couplings between Fock states and the
MI phase is experimentally achievable, the conclusion should be that the MI can still
be a superposition of some of them, arriving to a pure Fock state only in the limit
U/t→∞ where σi vanishes.



CHAPTER 1. THE BOSE HUBBARD HAMILTONIAN 29

Figure (1.4) Plot of the condensate fraction fc for a system of N = M = 9 particles
as a function of U/t. The grey vertical line corresponds to the critical value U/t ≈ 5.83
from MF decoupling. This result are a reproduction of those in [33].

1.4 Adiabatical reduction of the Fock basis.

From the past sections we learned many aspects of the SF and MI phases in the
system through taking a deeper look into the structure of the ground state and the first
excited states too, understanding the dynamics linked to the Fock states population
and whether there is a BEC hosted in the lattice. One of the highlights concerns
the fact that the superfluid phase is widely populated by most of the basic states,
contrasting with its counterpart, the MI ground state is built in a more selective fashion.
The physical situation contained in the results may also be interpreted in terms of a
competition between two dynamics: the first one, driven by the interactions term forces
the system to be in the more homogenous configuration that minimizes the energy costs
(because of the U > 0 weighting it), and the second, a kinetical term promoting hopings
from site to site that also (in this case, −t < 0). Summing up, the interaction term
prefers widespread density states (which is often viewed as a repulsive interaction) and
the kinetical term wants to keep the particles in an intense moving state.

Following this insight and the fact that the dimension D of the basis diverges rapidly
for a slowly increasing N , a natural idea is to think that for big U/t the calculations
may not need to take into account most of the possible configurations of the system,
reducing space memory and processing capacity required. The proposal will be, then,
to perform a cut-off on the basis of leaving out the more energetic states in this regime,
that correspond to those having at least one site with a number occupation above a
given integer R. This process is a simple form for an adiabatical elimination process
since we are restricting the possibilities to only a subspace and at the same time, we
are neglecting some thermal fluctuations.

If we perform a cut-off on the basis of R, then the result will be a set of all the possible
configurations in which we can save N balls in M boxes restricted to a maximum of R
balls per site. The resulting number of possible configurations is

DR =

b N
R+1c∑
i=0

(−1)i
(
M

i

)(
N +M − 1− i(K + 1)

M − 1

)
(1.76)
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where b·c means the floor function and parenthesis are binomial coefficients. This
reduction of the basis is very significant for computation efficiency and pushing a little
bit further the maximum size of an approachable system. For our case, we can reduce
the basis of N = M = 9 whose dimension is 24310 to 19855 if we keep only the states
with occupations less than R = 4. The basis for N = M = 11 may see a change from
352716 to 265233 if the same cut off is applied.

At this point, we have focused only on the transition SF-MI that implies an integer
filling n = N/M = 1, 2, ... in order for the MI phase to appear. For the case where it is
not an integer, the number of particles will be enough to completely fill the lattice an
integer number of times plus an excedent number of particles Ne. After taking the limit
U/t → ∞ we will never find an MI phase but a different configuration with all of its
sites uniformly filled but leaving the extra particles in a perpetual hoping state above
this block of particles, that finally minimizes the ground state energy. The repulsive
interaction in this limit is so intense that it is improbable that two or more excedent
particles occupy the same site, becoming an effective Pauli exclusion for fermions based
on the felt by the Ne bosons. These particles are also understood as bosons with a hard
shell that makes them behave like fermions called hard-core bosons. The Hamiltonian
for the fermionic system consists only of the kinetical part of the BHH:

Hf = −t
∑
〈i,j〉

f̂if̂j. (1.77)

To quantify this effect we propose the definition of a quantity that compares the
ground-state structure of the BHH for a non-integer filling and the ground state of
the analogous fermion system. If the bosonic system has N = nM +Ne particles, then
the analogous system should consist of only Ne fermions. The new spectrum will be
the same for both fermionic and bosonic cases, despite of the commutation rules; as
we see in the next chapters, the hard-core bosons Hamiltonian is proportional to the
fermionic Hamiltonian and only shifted by a diagonal term. We call the ideal basis
to that of the fermionic system. Having computed the ground states of both systems
|G0〉 and |Gf〉 (bosonic and fermionic respectively), and in order to compare them, we
establish relations between similar states from both the ideal and bosonic basis where
the excedent particle configuration is the same as in the fermionic case, identifying, for
example, states of the form

|1, 0, . . . , 0〉 ↔ |n+ 1, n, . . . , n〉 (1.78)

and so on. Guided by this relations we now build an idealized state from |Gf〉 given by

|GI〉 = (0, . . . , 0, CI1 , 0, . . . , 0, CI2 , 0, . . . , 0, CID̄ , 0, . . . , 0), (1.79)

of the same size as |G0〉, where D̄ is the dimension of the ideal basis, and the CIi is the
coefficient of the Ii-th fermionic state in |Gf〉 but located in the entrance belonging to
its pair given by 1.78. Fidelity can be now defined as

FG = |〈G|GI〉|2. (1.80)
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Figure (1.5) Graphic of the fidelity FG between ground states of a bosonic system of
7 bosons in 6 sites and that of a single fermion system as a function of U/t. The grey
horizontal line is the limit value for maximum agreement in their structures FG = 1.

Values of FG ≈ 1 indicate both states have almost the same contribution from the
related states and may exhibit similar properties.

To illustrate the hard-core boson limit we study a 2D bosonic system with N = M + 1
particles with M = 6 expecting the ground state structure to look much like the
ground state of a single fermion in the same lattice for the limit U/t→∞. The result
is displayed in Fig. 1.5 where the limit is practically reached for U/t ≈ 100, providing
good evidence to suggest that the study of the fermionic system may be accessed
through the bosonic system in the hard-core bosons regime where ground states share
their structures. This is an important result that will support many of the statements
presented in the following and fifth chapters.



Chapter 2: Quantum Simulation of
the Harper Model and Topological
Features.

This chapter is divided in two sections. The first is the study of the effects of a mag-
netic field over one particle constrained to a 2D lattice and the typical way in which we
model it through the Harper’s Model and the possibility of the BHH to mimic these
effects. The second part is an introduction to the topological phenomena hosted by
this model, being the Berry phase the link in between. It has been a very useful tool
and in many cases the first step to the study of important topological phenomena.
By now, we will only explore some important quantities such as topological invariants
through Streda’s Formula. Specifically, this outline is designed to introduce the feasible
Quantum Simulation (QS) of the Harper Model via ultracold neutral atoms with arti-
ficial magnetic phases [42] as a way to explore its topological properties and to survey
extended scenarios for different fillings or sizes of the system, and the possibility of
adding new interactions or changes in the nature of particles (bosons or fermions). We
understand QS as the fact a quantum system can host analogous physical conditions,
properties or nature of another quantum system [43], typically, the simulator target is
to model a more complex system or one that is not so easy to access experimentally.
In our case, the state-of-the-art of ultracold atoms bring us a high control level over all
the parameters and constrains of the BHH, making it a strong candidate for a quantum
simulator.

2.1 Hofstadter approach to the Harper Model.

The original Harper Model [44] consists of a single Bloch band crystal electron in a 2D
lattice subject to a magnetic field. In his article, Douglas Hofstadter [47] addresses the
situation by taking one Bloch band as the Hamiltonian of the system guided by the
Luttinger theorem [48] which states that the system may have a solution in the Bloch
basis of the case without the magnetic field, even when it is turned on.

Take the Bloch band function given by

W (~k) = 2t[cos(kxa) + cos(kya)], (2.1)

for a square lattice with spacing a and t > 0. Following the reasoning of the author, we

32
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now promote momentum variables to momentum operators and then assume the Peierls
substitution: ~k̂ → −i~p̂ − (e/c)Â(~x) where Â is the magnetic vectorial potential
operator [49] (motivated in turn by the changes of the canonic momentum due to the

presence of a magnetic field ~A in a classical Hamiltonian), leaving

Ĥ = 2t cos
[(
p̂x −

e

c
Âx

) a
~

]
+ 2t cos

[(
p̂y −

e

c
Ây

) a
~

]
. (2.2)

Expanding the cosen in a potents series we identify the exponentials and write

Ĥ = t[e
i
~ (p̂x− ec Âx)a + e−

i
~ (p̂x− ec Âx)a] + t[e

i
~ (p̂y− ec Ây)a + e−

i
~ (p̂y− ec Ây)a] (2.3)

Now, if we consider a magnetic field orthogonal to the 2D lattice then it shuold be
of the form ~B = (0, 0, 1)B with B its intensity. The simplest vectorial potential is

for a Landau potential of the form ~̂A = (0, Bx̂, 0) with x̂ the position operator in
the x-direction. Since this implies that [pj, Aj] = 0 the Baker-Campbell-Hausdorff
theorem applies, producing translation operators exp(apx,y/~), arriving to the next
energy equation for a bidimensional wave function ψ(x, y)

t[ψ(x+a, y) +ψ(x−a, y) + e−i
Bea2

c~ xψ(x, y+a) + e−i
Bea2

c~ ψ(x, y−a)] = Eψ(x, y). (2.4)

which is known as the Harper equation [47], [44]. Note that the energy of the state
now depends on the wave function centered at the neighbors sites weighted by a new
phase produced by the only presence of the magnetic field. Since the lattice spacing
is a, then for a square lattice each site is of the form (ma, na) = (x, y). Considering
the Luttinger theorem [48], we take the Bloch ansatz given by ψ(x, y) = eiνng(ma)
obtaining the following

(
g(m+ 1)
g(m)

)
=

(
ε− cos(2πmα− ν) −1

1 0

)(
g(m)

g(m− 1)

)
, (2.5)

where we named α = Bea2/ch = Ba2/2π(~c/e): the phase arising from the magnetic
field presence, which is in fact the ratio between the magnetic flux in a cell of the
lattice and a quantum flux. We call Mn to the matrix of the system for an integer in
the argument of the cosine. The previous equation relate g(m) with g(m+ 1), so it is
possible to compose this recursive equation to connect (g(m + 1g(m)) to (g(1), g(0))
through a product of matrices M . Now, we must impose on g the physical condition of
being bounded, which translates into the requirement of the product of the matrices to
be bounded. Suppose from the cosine that the matrces Mn are periodic in n for some
period q which leads to the fact that the product of those matrices are composed of
periodic bloques of the form

Q = MqMq−1 · · ·M1 (2.6)

then the condition for this periodicity should be
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2πmα− ν = 2π(m+ q)α + 2πp− ν (2.7)

for some integer p. Solving for α we find that

α =
p

q
(2.8)

and this last result shows the equivalence of being periodic and the rationality of the
magnetic flux per plaquette α.

Since det(Mn) = 1 for all n then detQ = 1 which means that the product of its
eigenvalues is such that λ1λ2 = 1, so they should be of the form e±iθ since they are
complex conjugates and hence

|Tr(Q)| = |
∑
i

λi| ≤ 2. (2.9)

Since Q includes a product of the form
∏q

k=1(ε − cos(2πkα − ν)) in its first element
then the trace should be a polynomial in ε of order q. From eq. (2.9), the geometrical
interpretation is that the allowed energies of the system are those lying in a neighbour-
hood of any of the q roots of the trace and it happens for each α = p/q.

To deal with the phase ν we can always pick a block Q inside a product and displace
it by some arbitrary m0 just to see that

Tr(Q) = Tr(

q∏
i=1

Mi) = Tr(

q+m0 mod q∏
i=m0

Mi) (2.10)

Since the trace is the same after changing 2πmα − ν by 2πmα − (ν − 2πm0α) or
equivalently changing ν by −2πm0α = (2π/q)(−m0p) we may propose that the trace is
periodical in ν by 2π/q, allowing the usage of a Fourier transform with period T = 2π/q.
The coefficients fo this expansion

ak =
2

T

∫ T
2

−T
2

f(ν) cos(kqν)dν bk =
2

T

∫ T
2

−T
2

f(ν) sin(kqν)dν (2.11)

will be non-zero only for k = −1, 0, 1. The term cos(qν) in f(ν) is independent of ε so
the term that includes ε explicitly is k = 0, a constant respect ν. With this separation
we may write

Tr(Q(ε, ν)) = Tr(Q(ε, ν0)) + f(ν) (2.12)

where f(ν) has a coefficient q
π

∫ π
q

−π
q

cos2(qν)dν = 1 and it happens for k = −1 too,

giving a total of f(ν) = 2 cos(qν). Taking ν0 as a convenient constant π/2q that reduce
many terms in the equation to zero, the final inequality will be
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Figure (2.1) Numerical calculation of the allowed energies for a given magnetic flux
in the eq. (2.13). This graph is composed of horizontal layers with q line segments
according to the corresponding value of α = p/q. This is a reproduction of the famous
Hofstadter’s result [47].

|Tr(Q(ε))| ≤ 4. (2.13)

In figure (2.1) we can see a plot of a numerical calculation of all the energies that
satisfy (2.13) for a rational value of α between 0 and 1. This interesting spectrum is
conformed by line segments in each value of the magnetic field; for each non reductible
value of α = p/q there are q segments, i.e. the energy breaks into q Bloch bands with a
well studied structure [47]. When we get close to α = 0, 1 we will find infinite segments
which is the origin of its fractal behavior. In the same reference, it is shown from
a topological point of view that when α is irrational the spectrum is a set of energy
points with a structure homeomorphic to a Cantor set, something that also explains
the weird sense of non-compatibility when we pick two close rationals one with a bigger
number of bands than the other. Due to its peculiar form, the spectrum is known as
the Hofstadter Butterfly.

Since the intensity of the magnetic field changes the band structure of the system
abruptly, it is a natural question to ask more about the topological nature of this
changes, a question that we will be reviewing in part during the rest of this work.

2.2 Gauge symmetry of the Many-Body Hamilto-

nian.

Suppose a homogenous magnetic field present in the optical lattice directed parallel
to its orthogonal surface vector. We impose the following: it would be considered to
be a classic field, implying zero quantum fluctuations and it does not depend on a
dynamical variable, and we will neglect any back influence from the induced field.
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2.2.1 Gauge invariance of non-Abelian gauge fields: continuum
case.

The Many-Body Hamiltonian including the magnetic field (leaving out the confinement
potentials) reads

Ĥ =
1

2m

∫
d3xψ̂†(x)(−i~∇− e

c
Â(x))2ψ̂(x) + g

∫
d3xψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x) (2.14)

where the term −i~∇ − e
c
Â(x) is the result of the Peierls substitution. Now, after

applying a U(1) gauge transformation as

ψ̂(x)→ eiφ(x)ψ̂(x) (2.15)

and

Â(x)→ Â(x) +
e

c
∇φ(x) (2.16)

we will find for the interaction term that after rearranging the operators using the
commutation rules that

ψ̂†(x)ψ̂(x)→ ψ̂†(x)e−iφ(x)eiφ(x)ψ̂(x) = ψ̂†(x)ψ̂(x), (2.17)

and in the kinetical term we should make explicit that

(
−i~∇− e

c
A(x)

)
− ~∇φ(x))eiφ(x)ψ(x) = eiφ(x)

(
−i~∇− e

c
A(x)

)
ψ(x). (2.18)

Analogously, using the hermiticity of the operators,

ψ†(x)e−iφ(x)
(
−i~∇− e

c
A(x)

)
− ~∇φ(x) = ψ†(x)

(
−i~∇− e

c
A(x)

)
e−iφ(x) (2.19)

leading to the invariance of the hole Hamiltonian. In this context, the B = ∇ × A
defines a U(1) gauge-invariant field. The confinement potentials would not change
anything in this calculation if included.

2.3 Simulation of electrons in 2D crystal lattice:

the Hofstadter-Harper Model.

Given the similarity of the electron in the crystal lattice and atoms in an optical lattice
we could expect similar physical effects in both systems. In this section we attempt to
capture the physics of a Bloch electron in the Harper Model through the BHH.
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Both systems are tight-binding models and both should include the effects of the mag-
netic field. Since the particles of the BHH and also the FHM are neutral we must
direct the look deeper in the magnetic field nature. From a quantum point of view, the
Aharonov-Bohm phase acquired by the wave function of a particle crossing a magnetic
field in a closed path is one of its most profound signatures, it captures the magnetic
flux meaning the complete action of the magnetic field on the system.

Observing the Harper equation (ec. 2.4 ) the phase acquired by the displaced wave
function is also the phase that one particle acquires by Aharonov-Bohm effect if it
moves from one lattice elementary square plaquette (the minimum closed path). From
a classical point of view, the AB phase attached to a Bloch electron should be

ΦAB =
e

c~

∮
�

A · dl. (2.20)

The Landau gauge we selected, parallel to two of the sides of the square and orthogonal
to the others, leaves

ΦAB =
e

c~

[∫ 2

1

(0, Bma, 0) · ŷdy +

∫ 4

3

(0, B(m+ 1)a, 0) · (−ŷ)dy

]
=
Bea2

c~
= 2πα.

(2.21)

with the numbers indicating a counterclockwise labeling of the sites in the corners.
The geometrical arange of the square suggests that the phase acquired by the neutral
atoms in the optical lattice should be of the form

θij =


2παm for displacements to the right in the row m
−2παm for displacements to the left in the row m
0 otherwise

, (2.22)

in order to imprint the same magnetic flux to every elementary plaquette. The proposed
Hamiltonian that simulates the electron dynamycs in the optical lattice looks like

HHHM = −t
∑
〈i,j〉

eiθij f̂if̂j, (2.23)

also known as the Hofstadter-Harper Model [51]. The system equiped with the phases
create an artifitial magnetic field for neutral atoms. The Hamiltonian in qe. 2.23 can
be exactly solved with the same exact diagonalization technique. Solving the for the
energies of the system, we may build the graphic in Fig. 2.2 taking into account the
density of states given by [52]:

ρ(E) = − 1

πNxNy

∑
n

J
1

E − εn + iη
(2.24)

where Nx y Ny are the dimensions of the lattice and η is an adjusting parameter. There
are minor differences with the Hofstadter butterfly since that is the case of a continuum
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Figure (2.2) Density of states of the Hofstadter-Harper model energy spectrum as a
function of the magnetic flux α, obtained by exact diagonalization. The size of the
optical lattice is 40x40. We used η ≈ 0.01.

variable of energy. Exact diagonalization provides as many energy dots as the size of
the basis, which means that a more defined spectrum requires of a big number of sites.

Asuming the phases carry all the physics of the magnetic field, the natural proposal
for the Hamiltonian for bosons with artificial magnetic field is

Ĥ = −t
∑
〈i,j〉

[eiθij b̂†i b̂j] +
U

2

∑
i

n̂i(n̂i − 1), (2.25)

without considering any source of magnetic effects from the sites with one or more
bosons [45].

2.3.1 Gauge invariance of Abelian gauge fields: the lattice
case.

The concept of gauge invariance can be extended to the case of a discrete space as the
lattice as it has been done for Lattice Gauge Theories [45]. There, the transformation
is defined for on-site field operators ad for the case of a U(1) it is defined as

b̂j → eiφj b̂j. (2.26)

After applying it to the kinetic operators as an on-site U(1) gauge transformation we
will find

θij → θij − φi + φj = iθij + ∆φ (2.27)
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that is a discretized form of equation (2.16). Taking the circulation of the plaquette
so that the vertices 1,2,3 and 4 are in order, the total acquired phase that express the
Aharonov-Bohm effect, transforms as

θ′12 + θ′23 + θ′34 + θ′41 = θ12 + φ1 − φ2 + θ23 + φ2 − φ3 + θ34 + φ3 − φ4 + θ41 + φ4 − φ1

= θ12 + θ23 + θ34 + θ41,
(2.28)

which means it is an invariant and is often called the Wilson Loop [45]. Given a set of
Wilson Loops in the lattice (or fluxes) denoted as {W (�i)}, there are many families
of transformation phases {φi} that lead to the same physics produced by the Wilson
Loops when open boundary conditions are taken (a torus geometry).

2.4 Berry Phase.

A more powerful concept that generalizes the AB phase is that of the Berry phase, or as
M. Berry originally called it [55], the geometric phase since it arises from the adiabatic
evolution of the state of the system driven by continuum changes in the parameter
space of the system in time. The geometry of the followed path is highly related to
the physics of the system, specially the closed paths, suggesting the presence of a more
powerful and not so obvious topological structure that is itself a new interesting and
fertil area of study [46], [51]. We will define the Berry phase from [55] and later make
the connection to the topological side which follows closely [57].

2.4.1 General formula for the phase factor.

For a general Hamiltonian Ĥ(R) that depends on a set of real parameters R = (X, Y, ...)
we may propose an evolution path in the parameters space given by R(t) that satisfies
R(T ) = R(0), being a closed curve C. the state of the system |ψ(t)〉 must satisfy for
every t the Schrödinger equation

Ĥ(R(t))|ψ(t)〉 = i~|ψ̇(t)〉. (2.29)

At any instant, the parameters configuration has a corresponding eigenbasis consisting
of the family of states {n(R)} that is assumed discrete. They must satisfy

Ĥ(R(t))|n(R(t))〉 = En(R(t))|n(R(t))〉 (2.30)

with En the energies. If the system evolves adiabatically, the state |n(R(t))〉 will evolve
with Ĥ leaving only one freedom level to change in time: a new phase could be added
to the state still satisfying the eigenenergy equation. The adiabatic evolution of the
state that solves the eq. 2.29 reads

|ψ(t)〉 = e
−i
~

∫ t
0 En(R(t′))dt′eiγn(t)|n(R(t))〉. (2.31)
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where the first phase is the dynamical phase factor and the second arises from the
adiabatic evolution of the system. Inserting eq. (2.31) in eq. (2.29) and multiplying it
in the left by 〈n(R(t))| yields

γ̇n(t) = i〈n(R(t))| ∂
∂R
|n(R(t))〉 · Ṙ(t). (2.32)

whose solution for the closed path C is given by integration over time and changing
variable to find

γn = i

∮
C

〈n(R(t))| ∂
∂R
|n(R(t))〉 · dR (2.33)

We should advertise from here that γn will not be easy to expressed as a explicit
function of R. We must note that there is no guarantee neither that the condition
γn(T ) = γn(0) holds, in fact this function is in most of the cases not single valued.
The quantity γn is known as the Berry phase or geometric phase. From the fact that
∂R|n(R(t)) = 0 it is easy to check that 〈n(R(t))|∂R|n(R(t))〉 is a real number, so the
Berry phase is completely complex.

It is useful to define the quantity An = i〈n(R(t))|∂R|n(R(t))〉 often called the Berry
connection or the Berry vector potential. Making a gauge transformation on the states
taken as

|n(R(t))〉 → eχ(R(t))|n(R(t))〉 (2.34)

then it is only a step away that

An → An −
∂

∂R
χ(R(t)) (2.35)

consequently, the integral for γn will be change by

γn → γn + [χ(R(0))− χ(R(T ))] (2.36)

In 1924, V. Fock claimed that we can always find a transformation capable of cancel
the geometric phase via this new summand [56], [57]. It was until 1984 that M. Berry
challenged this statement to find that that is not the case of a closed path. Given the
nature of the gauge transformation it is required that

χ(R(0)) = χ(R(0)) + 2πm (2.37)

for some m ∈ Z. This means that γn can only be changed by an integer multiple of
2π for any of the gauge transformations, making it impossible to cancel the complete
phase.

Lastly, we can see that the Berry phase of a closed path defined as
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γn = i

∮
C

An · dR (2.38)

depends only on the shape of the path R, not on the time it takes to complete it, so it
can be dropped from now.

2.4.2 Berry curvature.

There is a quantity built from the Berry vector potential that is defined as the gauge-
field tensor

Ωn
µν(R) =

∂

∂Rµ
Anν (R)− ∂

∂Rν
Anµ(R) = i

[〈
∂n(R)

∂Rµ

∂n(R)

∂Rν

〉
−
〈
∂n(R)

∂Rν

∂n(R)

∂Rµ

〉]
(2.39)

(by analogy with electrodynamics). The name of this field is the Berry curvature. If we
consider a three dimensional parameter space then we are able to rearange the elements
of the field to find

γn =

∫
S

Ωn(R) · dS (2.40)

Ωn(R) = ∇R ×An(R) (2.41)

where the Berry curvature is related to the vector Ω by Ωn(R) = εµνξ(Ωn)ξ with εµνε
the Levi-Civita tensor. An intuitive interpretation of the Berry curvature in this space
comes from eq. (2.41): is a sort of magnetic field in the parameter space. Its main
feature is that is a gauge invariant and thus observable, also it is a local quantity that
provides a local description of the geometry of the parameter space in contrast with
the Berry phase that needs a closed path, otherwise it is not a gauge-invariant with a
physical significance.

2.4.3 Berry phase in the Bloch bands and the optical lattice.

Considering a general Hamiltonian for which the Bloch theoreom applies, it would look
like

Ĥ =
p̂

2m
+ V (r) (2.42)

with the periodical condition V (r + a) = V (r), so the eigenstates satisfy ψnq(r + a) =
eiq·aψnq(r) for q the crystal momentum of the lattice, a member of the Birllouin Zone
(BZ). After applying a unitary transformation to the Hamiltonian to find

H(q) = e−iq·rHeiq·r + V (r) (2.43)
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and the transformed eigenstates are unq = e−iq·r that now satisfy the condition unq(r+
a) = unq(r). This boundary condition implies that the eigenstates are in the same
Hilbert space characterized by a parameter q confined to the BZ, defining the parameter
space of the H(q). Taking the states in the reciprocal space, we define the Berry phase
as

γn =

∮
C

〈un(q)|i ∂
∂q
|un(q)〉 · dq (2.44)

and the Berry curvature for a three dimensional case should be

Ωn(q) = ∇q × 〈un(q)|i ∂
∂q
|un(q)〉. (2.45)

One way to produce a closed path in the momentum space of such a system is to impose
a magnetic field that produces cyclic trajectories. This way, the Berry phase manifest
in several effects [58–60].

When adding this new effect as in the case of artificial magnetic fields, we are imposing
a linear variation in q. In that case a closed path is realized when q sweeps the entire
BZ since whenever a path reaches the edge of the BZ, the path automatically closes [61].
The explanation is as follows. Given that the topology of the BZ is that of a torus,
there are two points q and q + G (with G being the reciprocal lattice vector) that
can be understood as equal. The Bloch boundary conditions let us conclude that the
states |ψn(q)〉 and |ψn(q + G)〉 may differ only by a phase and it can by selected in
order to satisfy the torus geometrical condition |ψn(q)〉 = |ψn(q+G)〉, which has as a
consequence that

unq(r) = eiG·runq+G(r). (2.46)

The Berry phase that crosses the BZ is known as the Zak’s phase:

γn =

∫
BZ

〈un(q)|i ∂
∂q
|un(q)〉 · dq. (2.47)

It is remarkable that the Zak phase comes from the torus topology of the BZ. In the
one dimensional case is the only closed path in the system, and as Zak showed, if the
system has inversion symmetry then this phase is either 0 or π, but when it is broken
then it may acquires any value [61].

2.4.4 Adiabatic current and the Quantized adiabatic particle
transport.

Now consider a one-dimensional periodical Hamiltonian H(t) subjected to a slowly
varying time-dependent perturbation (such as a time dependent magnetic vecor po-
tential). The period of the Hamiltonian is T . Since the translational symmetry of
the crystal is preserved through all the evolution, the instantaneous basis has a Bloch
hform eiqx|un(q, t)〉 with a time dependance, and it will be useful to pick this basis.
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The objective is to study the current induced by the variation in external portentials.
After expanding the state |ψn(q, t)〉 in terms of the eigenbasis un(q, t), evolve with
time-dependent coefficients following [57], imposing the condition of parallel transport
〈un(q, t)|∂t|un(q, t)〉 and performing a first-order approximation, one is able to obtain

|ψ(t)〉 = e−
i
~
∫ t
0 dt
′εn(t′)

{
|un(q, t)〉 −

∑
n′ 6=n

|un′(q, t)〉
〈un′(q, t)|∂/∂t|un′(q, t)〉

εn − εn′

}
. (2.48)

where the ε are the corresponding energies. The velocity operator is defined by v ≡ ṙ =
(i/~)[H, r], then after the unitary transformation it becomes v(q) = e−iq·r[r, H]eiq·r =
∂H(q, t)/∂(~q). Taking its average value 〈v(q)〉 ≡ vn(q) leads to

vn(q) =
∂εn(q)

~∂q
− i

∑
n′ 6=n

{
〈un(q, t)|∂H/∂q|un′(q, t)〉〈un(q, t)|∂/∂t|un′(q, t)〉

εn − εn′
− c.c.

}
,

(2.49)

where c. c. means complex conjugate. Now, if we calculate for 〈un|∂H/∂qun′〉 = (εn−
εn′)〈∂un/∂t|un′〉, we can instert this result in 2.49 and use the identity

∑
n |un〉〈un| = 1

to obtain

vn(q) =
εn(q)

~∂q
− i
[〈

∂un
∂q

∂un
∂t

〉
−
〈
∂un
∂t

∂un
∂q

〉]
. (2.50)

Then we can identify the second term as the Berry curvature Ωn
νµ for a parameter space

(q, t). That allow us to write

vn(q) =
∂εn(q)

~∂q
− Ωn

qt. (2.51)

Finally, the induced adiabatic current is obtained by integration of the velocity over
all the Brillouin Zone. The first term will vanish since εn(q) is preiodical in the closed
path, the only term that contribute is the Berry curvature, leaving

j = −
∑
n

∫
BZ

dq

2π
Ωn
qt (2.52)

which is the adiabatical current induced by a time-dependent perturbation in a band,
that is equal, thus, to the q integral of the Berry curvature [62].

2.4.5 Anomalous velocity.

Consider the same problem as the Harper model but instead of a magnetic field, there
is a weak electric field E that we include as part of the Peierls substitution including
a time dependence in the vector potential. In the q-space that Hamiltonian is
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H(q, t) = H
(
q +

e

~
A(t)

)
(2.53)

and we introduce the gauge-invariant crystal momentum k = q + e
~A(t). Since A(t)

preserves the translational symmetry, q is a constant of motion. It follows that

k̇ = − e
~
E. (2.54)

Starting from the generalization of eq. 2.51 up to three dimensions, and the fact that
under this new variable introduction then ∂/∂qα = ∂/∂kα and ∂/∂t = −(e/~)Eα∂/∂kα,
we arrive to

vn(k) =
∂εn(k)

~∂k
− e

~
E ×Ωn(k), (2.55)

where Ωn(k) = i〈∇kun(k)| × |∇kun(k)〉 is the Berry curvature of the nth band.

In equation 2.55, the first term refers to the already known dispersion relation that
do no includes the dynamics imprinted on the electrons by the action of the electric
field. The second term is accounts for that effects and it is interesting that they are a
manifestation of the Berry curvature. This term is the reason why eq. 2.55 is known
as the anomalous velocity. The new velocity is transverse to the electric field, which
will give rise to a Hall current.

2.4.6 The quantum Hall effect.

As it is well known, the classical Hall effect in an almost two dimensional (xy) rect-
angular conductor occurs after the appliance of a uniform magnetic field Bz, when a
current I flows through it. The Lorentz force initially discriminates between the two
type of charge carriers: holes and ions, leading to the accumulation of each type of
carrier in opposite sides of the conductor. It creates two opposite charge plates that
establishes a new potential between them (VH). The arising electric field increases
until both opposite forces (electric and magnetic) acting on the carriers cancel. The
resulting expresion for VH in the equilibrium is

VH =
IB

ned
(2.56)

where n is the charge carriers density and d is the thickness of the conductor. The Hall
resistance is given by

Rxy =
VH
I
, (2.57)

and thus the Hall conductance is

σxy =
Ne

B
. (2.58)
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where N is the carrier concentration.

In contrast, the quantum Hall effect first observed in 1980 by Klitzing et. al. [63], was
the name given to the fact that the Hall resistance (and thus the Hall conductance) is
exactly quantized in units of e2/h when the magnetic field is in the range in the tens
of Teslas. A new explanation of this phenomenon requires the Landau quantization of
motion [63]. The number of states NL within each Landau level is

NL =
eB

h
. (2.59)

When the Landau levels are fully occupied N = NLν with ν ∈ Z. Combining equations
2.58 and 2.59 yields

σxy =
e2

h
ν (2.60)

Now, recovering the developed formalism of the Berry curvature, we may take equations
2.52 and 2.55 to find that the Hall conductance in a 2D lattice in the momentum space
(kx, ky) can be written as

σxy =
e2

~

∫
BZ

d2k

(2π)2
Ωkxky . (2.61)

The integral is equal to an integer times 2π [57], and thus, the quantization of the Hall
conductance can be explained through this formalism.

2.5 Streda’s Formula.

The quantization of the Hall conductance can also be approached by the study of the
electron transport in the same Harper Model directly in terms of the general conduct-
ance tensor σ in the general Ohm law I = σE that links linearly the electric field E
and the electric current I [64,65] and linking it to the density of states in the spectrum
by the formula:

σH =
e2

~
∂Nψ(E)

∂ψ
(2.62)

where σH is the Hall conductance (σxy) and Nψ(E) is defined as the numer of states
whose energy is below certain E in the spectrum. This formula is known as the Streda’s
formula and it operates in the spectrum (ε, α), as the Butterfly. From there, we can
see that the number Nψ(E) should be of the form z ∈ Z since q is the total number of
accesible states for that magnetic field. To see this we write

σH =
e2

~
Nψ2(E)−Nψ1(E)

ψ2 − ψ1

=
z2 − z1

q

q

1

e2

~
= (z2 − z1)

e2

~
(2.63)
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Figure (2.3) The Butterfly topological numbers calculated following Streda’s formula.
Near E = ±2 the extremer values of the field display the so called Landau levels [66].
This figure was reproduced by the author and agrees with results in [67].

which means that the Hall conductance in a region of the Butterfly is equal difference
between the number of states with energy below E for the value ψ1 of the magnetic
flux and the next ψ2, which is an integer.

In the Hofstadter Model we can find the Hall conductances in the energy spectrum
applying this formula. Computationally, we can think of a discrete set of energies Ei
and for each discrete value of the field ψj we count the number of states whose energies
are lower than that energy to finally apply 2.63. In Figure 2.3 we can find the values
of the Hall conductances for different sectors of the Butterfly, which agrees with [68].



Chapter 3: Strong interactions, Or-
der, and Topological Properties of
the Cavity-Harper-Hofstadter-Mott
model.

In this chapter we introduce a new interaction within the system that consist of an
environment created by a pumping haze of photons to the system which will be now en-
closed by two parallel high reflectance mirrors that impose new confinement conditions
on the captured light inside it. The new cavity maintains one or more photon modes
that couple to the geometry of the lattice following an interference pattern created
by the pump laser and the haze captured by the mirrors. We will review some of the
interesting novel phenomena that arises when a system described by the Bose-Hubbard
Hamiltonian and photon mediated interactions, this leads to self-organization and the
emergence of Density Wave phase [80].

We also discuss the effect on the system when a measurment based on light detection
is performed. In this situation, the system can be considered as on with photon dis-
sipation and, thus, as an open quantum system. The problem is addressed using the
quantum trajectories method and we explore the changes in the pre existing MI and
SF, and DCM phases after performing a γ weighted measurement, paying attention to
some other effects as the long-range tunnelling and Zeno effect [78].

3.1 High-Q Cavity dynamics.

Inside the cavity, the photons are absorbed and emitted by the atoms and in many cases
they promote kinetic and on-site interactions and incorporate them in the Hamiltonian
is quite complicated [80]. Following Caballero-Benitez, et al., we may focus on the
effective light-matter interaction where the quantum fluctuations can be neglected in
the same manner that in mean-field theory regarding the bond order. We consider
a single pump and cavity beam making an arbitray angle. The cavity light-induced
matter interactions is usually encoded in the effective Hamiltonian [80]

Ĥeff = ĤBH +
geff

Ns

[J2
BB̂

2
− + J2

DD̂
2
− + JDJB(B̂−D̂− + D̂−B̂−)] (3.1)

47
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where ĤBH is the Bose-Hubbard Hamiltonian and we have

B̂− =
∑
〈i,j〉∈OL

(Jij b̂
†
i b̂j + h.c.) (3.2)

D̂− =
∑
i∈OL

Jiin̂i (3.3)

where the Jij factors are light structure parameters attached to the bonds B̂ and

densities D̂. In the particular case of a 90 degree angle between the two beams, they
acquire the values Jii = (−1)‖~ri‖1 both, where ~ri = (mi, ni) are the integer coordinates
of the site i and ‖~ri‖1 = mi + ni is the norm-1. The coupling parameters for bond
JB and densities JD. From here we will focus only on the JB = 0, JD = 1 case
corresponding to a lattice with deep enough wells at its sites, then

Ĥeff = ĤBH +
geff

N2
s

D̂2
− (3.4)

To see the new dynamics offered by the cavity term it is useful to explore the ground
state in the limit where the Hamiltonian is composed only by it. For a negative geff,
the Hamiltonian is diagonal in the number basis, so it is easy to see that the states
with a maximum ocupation in odd sites only (or the symmetric case, the even sites)
minimze the energy of the state, so we expect a linear combination of those states to
mainly participate in the ground state. Spacially this means a checkerboard density
distribution, a self-organized phase known as the Density Wave (DW) phase. Naturally,
when the tunneling and on-site interactions are turned up, a competition starts between
all the three dynamics and one may ask for a transition point. In figure 3.1 the diagram
for the presence of the DW in the system through the parameter

O2
MW =

〈D̂2
−〉

M2
, (3.5)

and a simple panel for the density distibution of the system. The diagram shows the
presence of DW phase near the MI regime for geff below the critical value geff = −0.5U ,
which start decreasing when the tunneling is strong in the system. This competence
takes place in fact near the Mott lobes zones we explored in previous chapters. The
tunneling term is still strong for t/U above the critical value tc/Uc. At the same time,
the panels shows the corresponding density distribution, the MI and SF phases have a
uniform distribution but it is not the defining feature. When the DW take place, the
bosons in the lattice undergo a self organization phase in the form of a checkerboard.
The results coincide with reference [80].

3.2 The Cavity-Harper-Hofstadter-Mott Model.

(New Results).

After the previous introduction of the BHH model, its extension to the quantum simu-
lation of the Harper Model through added Berry phases, and the rich physics provided
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Figure (3.1) Left figure. A panel arrange with the density profiles of a system with 10
particles in a 3x3 lattice. The left down zone corresonding to the SF-MI are homogen-
eous while the rest of the panels have the checkerboard distribution. Right figure is the
diagram that shows the presence of the DW phase in the system in the (geff/U, t0/U)
dominion.

by cavity-mediated interaction, we are ready to put all these elements together. The
physical situation that we have in mind now consists of ultracold neutral atoms in the
presence of an artificial magnetic field, loaded in a periodical 2D optical lattice inside
a high-Q cavity (the QOL presented in the previous chapter). As we assumed in the
past, the wells of the QOL are considered to be too deep that the only interaction
mediated by the light is the on-site interaction. The final Hamiltonian is given by

Ĥ = −t
∑
〈i,j〉

eθij b̂†i b̂j +
U

2

∑
i

n̂i (n̂i − 1) +
geff

M
D̂2
− (3.6)

θij =

{
±2πiαn for i and j lying in the row n

0 otherwise
(3.7)

D̂− =
∑
i

(−1)‖ri‖1n̂i (3.8)

where we have the three competing terms of kinetic energy with translation symmetry
breaking Berry phase, the on-site interaction, and the cavity mediated on-site interac-
tion. The ± sign in the phase corresponds to the two opposite directions of the hopping.
This is our new Cavity-Harper-Hofstadter-Mott Hamiltonian. Mixing these elements
and the artificial gauge field leads to changes in the pre-existing self-organized phase
diagram, directly related to the action of magnetic effects on the kinetical term and
will be discussed in the following sections.

On the other hand, we are also searching for changes in the self-organized phase ori-
ginated by the magnetic field for the system filled with neutral bosons, and later we
simulate the fermionic case through hard-core bosons limit to check the robustness
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of the topological number, the Hall current when the system is altered by the cavity
mediated on-site interactions.

We find it useful to first introduce the computational argument of the previously revised
hard-core bosons limit. Even when this limit is not always the case in the following
calculations, the visualization of this limit is itself an argument supporting that for
some values of U/t we may cut-off the basis and leave the more energetic basis vectors
out of the diagonalization, independently of the presence of an artificial magnetic field
or the cavity.

3.3 Hard-core bosons limit.

3.3.1 The fidelity.

The fidelity FG(α, geff, U, t) as defined in Chapter 1, is roughly speaking a measurement
of how big is the participation of an arbitrary subset of the basis in the ground state.
Particularly, we proposed the ideal basis mainly conformed by states with minimal
occupation (fermionic number states for a density n < 1) in each of the sites, and in
figure 1.5 have been shown that the ground state structure is mostly composed by these
states. Now we explore the fidelity for several values of the parameters α, geff for the
fidelity when the magnetic field and the cavity are present; the graphics are displayed
in figure 3.2.

Figure (3.2) Fidelity FG(α, geff, U, t) for different magnetic field and cavity parameters.
It is a comparison between a 2x3 lattice filled with 7 bosons, and a single fermion basis.
Gray line is the limit constant value 1.

The first thing we note is the fidelity goes to 1 for U/t→∞ including the cases where
the artificial magnetic field and the cavity effects are present, finding the last value
plotted in the graphics above 0.994 for all the cases (but still growing), as expected,



CHAPTER 3. STRONG INT., ORDER, TOP. PROP., AND CAVITY HHMM. 51

which allows us to perform a cut-off on the basis leaving out the most energetic states
when studying the ground state, for values of U/t & 10. Moreover, the limit limU/t→∞
in all the cases makes the particle behave as hard-core bosons in the ideal basis, opening
the door to explore fermionic dynamics through hard-core bosons, since the Hamilto-
nian will carry essentially the same physics as we will see in the next chapter from a
more mathematical point of view. It is important to remark from now that this will be
true as long as we work with nearest neighbor hopping, otherwise, the Jordan-Wigner
transformation for the commutation rules would not be so simple [73], [74].

In the case with zero magnetic field (up and left in Fig. (3.2) ), the fidelity starts
growing since U/t > 0, which gives us an idea of how strong is the restriction that
interactions impose on the ground state structure. Note that there is a regime where
this restriction loses strength and goes to 0 for a present magnetic field and cavity
effects. It is not the cavity on-site interaction or the magnetic field separately that
causes this restriction to lose strength and delays the increase of the fidelity to U/t ≈
Uc/tc, but the combination of both effects. For α = 0.25, 0.5 when the cavity field is
more intense geff = −0.5 the ideal basis still has null participation in the ground state
meaning the superfluid phase we expect from the BHH alone seems favored under these
conditions. Physically, the artificial magnetic field establishes a preferred direction of
movement given by the artificial Lorenz force, and hence, kinetical dynamics is still
intense but density distribution changed as explained in Chapter 2, and the basic states
required to describe it are not those of the ideal basis. At the same time, operator D̂2

−
tries to constrain the particles in even or odd sites only, and such configurations are
not taken into account for this fidelity.

3.4 Stabilization of the Self-organized phase. (New

Results.)

The self-organized phase produced by the density coupling through cavity-mediated
interactions acquires a checkerboard distribution over the 2D lattice. DW order also
breaks this symmetry and signals a new Z2 symmetry between even and odd states that
corresponds to phases ± in the operator D̂− competing too with MI phases creating
this peculiar density distribution. A ground state with this density wave order deserves
special attention after the incorporation of the magnetic field since it produces changes
in the structure of the ground state by the translational symmetry breaking of the
lattice as we saw in the previous subsection. To measure the DM order we use the
structure factor

O2
MW =

〈D̂2
−〉

M2
. (3.9)

as stated in [80], [81], to create the DW order parameter. We calculate using exact
diagonalization the order O2

MW for a domain (t/U, geff/U) and for different intensities
of the magnetic field finding the diagrams in Fig. 3.3. The first diagram shows the
already known [80] and experimentally verified self-organization phase [76], in colors
red and yellow. Increasing the magnetic field parameter to α = 0.25, where the kinetic
term is a pure complex operator we find there is an expansion of the region where
the self-organization occurs, confirming a stabilization of this pre-existing phase. For
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Figure (3.3) Diagrams of the DW order O2
MW for different intensities of the magnetic

field in α and competing parameters t, U and geff. The lattice size is 3x3 for 9 bosons
and a cut-off of the basis for occupancy numbers above R = 6.

α = 0.5 we find the maximum expression of the stabilization, where the system takes
advantage of the increasing kinetical dynamics prompted by the gauge field.

3.5 Particle-Hole symmetry in the Hard-core bo-

sons limit.

In this section, we will review some calculations to mathematically support the idea
presented in the construction of the fidelity. Along the following two sections we will be
working with the complete model in eq. (3.6) but assuming the limit of the hard-core
bosons, something that may be expressed as

ĤCHHM = −t
∑
〈i,j〉

eθij b̂†i b̂j + lim
U→∞

U

2

∑
i

n̂i (n̂i − 1) +
geff

M2
D̂2
− (3.10)

where the two terms correspond to the so-called Harper-Hofstadter-Mott model (HHMm)
[82] and the C in label CHHM stands for the modes adding the high-Q cavity term.

As we know, the ground state |G〉 is composed mainly of states with n particles per
site except one with n+ 1 particles, as predicted by the previously fidelity calculation.
In this regime we can restrict our analysis to (and define) an effective basis (+)n: {|n+
1, n, . . . , n〉 ≡ |1〉, . . . , |n, n, . . . , n + 1〉 ≡ |M〉}. We denote the matrix representation
of the Hamiltonian in this basis as Hn+1

n = −tK+1
n + 0.5UI+1

n + geffD
+1
n for the matrix

representations of the Kinetic, Interaction and Cavity operators respectively, which
is a special case of the interpretation of ” +1 particles in a homogeneous filling of n
particles per site”. The only non-vanishing terms belonging to the kinetic term are
those arising from applying that operator to states with n+1 particles in sites (i+1, j)
or (i, j + 1):

e−iᾱj b̂†(i,j)b̂(i+1,j)| . . . , n, n+ 1, . . . 〉=b = e−iᾱj(n+ 1)| . . . , n+ 1, n, . . . 〉=a (3.11)

b̂†(i,j)b̂(i,j+1)| . . . , n, . . . , n+ 1, . . . 〉=b = (n+ 1)| . . . , n+ 1, . . . , n, . . . 〉=c (3.12)
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Comparing these matrix elements with those of the Hamiltonian with n = 0 (single
fermion) then we will find that

K+1
n = (n+ 1)K1

0 (3.13)

Now, consider a similar effective basis consisting of states (−)n: {|n− 1, n, . . . , n〉, . . . ,
|n, n . . . , n − 1〉} with same labels. This corresponds to a system with an extra hole
module M instead of an extra fermion. By analogy, the matrx operators for this
situation will be denoted asH−1

n = −tK−1
n +0.5UI−1

n +geffD
−1
n , interpreting the notation

as ”an extra hole (-1) in a homogenous filling of n”. The analogous non-vanishing
situations for the same pair of states (in the h.c. part of the Hamiltonian) are:

eiᾱj b̂†(i+1,j)b̂(i,j)| . . . , n, n− 1, . . . 〉=b = eiᾱj(n)| . . . , n− 1, n, . . . 〉=a (3.14)

b̂†(i,j+1)b̂(i,j)| . . . , n, . . . , n− 1, . . . 〉=b = (n)| . . . , n− 1, . . . , n, . . . 〉=c. (3.15)

Again, if we compare with the case n = 1, which represents a hole in a system of nM
particles in M sites (nM − 1 particles in M sites physically) then we will find that

K−1
n = nK0

1 (3.16)

and it is easy to see from the equations (9) and (10) taking n = 0 and equation (12)
and (13) taking n = 1 that

K1
0 =

(
K0

1

)∗
(3.17)

From relations (3.13), (3.16) and (3.17) we can derive that

K−1
n = n

(
K1

0

)∗
(3.18)

K+1
n =

(
K−1
n

)∗
(3.19)

K+1
n =

n+ 1

n
K−1
n (3.20)

Recall that for every Hermitian matrix its eigenvalues and those of its conjugate are
the same. Expression (3.20) may be understood as a special particle-hole symmetry
that makes easier all our calculations and also it offers more accessible experimental
conditions.

The interaction term with this two basis only adds a the same contribution to all
diagonal elements which is a constant Un(±) = (1/2)(M − 1)(n)(n − 1) + c± with
cn± = (n+1)n or (n−1)(n−2) for basis (+) and (−) respectively. In order to find the
eigenvalues of total Hamiltonian without interactions (U = 0) we must find the roots
of Det[Hkin − λId] = Pol(λ) polinomial. To solve the case with interactions (U > 0)
we determine the roots of Det[Hkin + Un(±)Id − λId] = Det[Hkin − λ̄Id] = Pol(λ̄)
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which is the same polinomial, thus the eigenvalues λm = λ̄m + Un(±) will be shifted by
the constant Un(±).

For the cavity term we will find that

D+1
n = I

{
(n+ 1)2 for odd M

1 for even M
(3.21)

D−1
n+1 = I

{
n2 for odd M

1 for even M
(3.22)

where I is the identity matrix. Again, the spectrum will be shifted by a constant. All
the expressions above have been verified numerically.

3.5.1 Several hard-core bosons in the lattice.

Extending the analysis to two non overlapping bosons, we may find for the Kinetical
term that writing eqs. 3.11, 3.12, 3.14, and 3.15 the same effect from the one particle
case occur to each of the matrix elements, which causes again a particle symmetry
between a system with 2 particles and N − 2 particles. In fact, it is easy to see from
there that P particles produce the complex conjugate Hamiltonian of the one produced
by N − P particles in the lattice, which comletes the analogue fermionic particle-hole
symmetry over all the possible fillings of the lattice. The Interaction term remains
unchanged for any of the basis states too.

For the Cavity term the situation is not the same. When there are 2 or more extra
hard-core bosons in the system, the cavity-mediated on-site interactions has various
possible eigenvalues and many configuration can lead to one of them. For example,
when M > 4, any configuration of a 2 particles state after been applyed D̂−, may
throw only −2,0 or 2 as a possible eigenvalue for any and an extra term equal ±n or
0 depending on wether the number of sites is even, or odd with an extra negative or
positive number operator, as in eq. (3.22). The case for 3 particles and M > 6, has as
possible eigenvalues −3, −1, 1, and 3. Using this, we find that the general eigenvalue
for D̂2

− is

D+P
n = I

{
(n+ EP )2 for odd M

E2
P for even M

(3.23)

D−Pn+1 = I

{
(n+ EP )2 for odd M

E2
P for even M

(3.24)

where the values that EP can take are

EP =

{
−P,−P + 2, · · · , P − 2, P for 0 ≤ P ≤

⌈
M
2

⌉
EM−P for M ≥ P >

⌈
M
2

⌉
.

(3.25)
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which tell us that for a large geff the spectrum reduces to the set of eigenvalues {P 2, (P−
2)2, · · · , 1(0)} (the last value depends on whether P is even or odd). Note that for a
fixed geff the biggest contribution of this term is for the half filling in the extra hard-core
bosons or extra holes. The fact that the contribution of the cavity is not a diagonal
term and produces a change in the spectrum provides a glue to look for changes (or
robustness) in the topological numbers of the system, that is the subject of the next
section.

3.6 Density distribution of the bosonic case.

Searching for more physical insight of the dynamics of the system, we noted that the
distribution of the bosons is sensible to the presence of the magnetic field as well as
to the cavity induced interactions. Also, it is notable that the particle-hole symmetry
produce a symmetric distribution effect as well. We first consider the system of 9
particles in 9 sites (3x3 lattice) inside the cavity and in the presence of the magnetic
field.

Figure 3.4 shows three values for the magnetic field producing interesting distributions.
In the absence of magnetic field (subfigure 3.4.a)) the transition between the phases
MI/SF to the self-organised phase take place as expected in the phase diagram of Fig.
3.3, we can see the checkerboard distribution in the ordered phase region. Increasing
the intensity of the magnetic field but without the cavity (final column in subfigure
3.4.a)), the particles start feeling its effects and tend to localize in the ”upper” part
of the lattice scheme. To explain this, first let’s notice that there is a region in the
lattice where the magnetic flux that can be achieved per plaquette is ±α depending on
whether the particle is undergoing a clockwise or anticlockwise trajectory, respectively.
The other region is the one composed by the plaquettes between the first row and the
last one (only possible for pbc). Since they assign the phases 0 and ∓α(n−1) for n−1
rows (clockwise and anticlockwise respectively). The change in the sign of the magnetic
flux creates a magnetic barrier in the periodic boundary conditions between the first
and the last row for the same type of circulation. On the other hand, if the particle is
moving in such a trajectory picking up a positive (negative) magnetic flux then there
will be a Lorentz force directed to the left (right) of the motion of the bosons, directing
all the particles upward accumulating right before the magnetic barrier. When we
take into account the cavity interactions then we will see a competition between the
corresponding two distribution and the presence of the checkerboard in the stabilized
zone.

When α = 0.5 the maximum effect of the magnetic field appears and the striped phase
appears. Mathematically, the complex phases in the kinetic part for this case are 1
and -1 for even and odd rows, which implies a higher energy cost for the states whose
particles are moving in the even rows, leading to the appearance of these density
strips [75]. We can see how the presence of the self-organised phase is broader as
expected too.

In figures 3.5, 3.6, and 3.7 we compare the fillings 8/9 and 10/9, where we do not have
an MI phase, as argued in past sections. In general, we can find for the filling 10/9 the
same dynamics as in the case 9/9 but is notable that in these figures we can observe
the particle-hole symmetry, expected for low values of t/U . The panels in Fig 3.6 show
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a) b)

c)

Figure (3.4) Panels for the density distribution of the system inside the cavity without
the Magnetic Field (α = 0.0) acting on it. On the left, we find the case for 8 particles
in 9 sites, and on the right, the case for 10 particles in 9 sites.

how the particles in the 10/9 case feel the Lorentz force toward the same direction as
the case 9/9 and for the case 8/9 we have that the particles accumulate in the ”lower”
part of the lattice. Since for this case we have a hole in the lattice, we can consider
it as a moving particle that picks up a phase with sign opposite to the 9/9 and 10/9,
that is the holes feel the Lorentz force as if they had ”opposite charge” (remember
that they are electrically neutral). Note that the symmetry is lost when the values of
t/U start growing. In that limit, we expected this since the particles will not longer
be considered hard-core bosons.

The situations in Fig. 3.7 let us confirm a symmetry even in the Striped phase that
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is originated by the same change of sign in the phase that holes acquire while moving
within the lattice. In this case, the phases run as -1 and 1 for even and odd rows,
making more probable the states with more particles in the odd rows. Again this
symmetry is lost out of the hard-core bosons limit.

All of the cases have the same effects as in 9/9 when the cavity-induced interactions
become larger, but now there are sections near the boundary of the self-organised phase
where the orders compete.

Figure (3.5) Panels for the density distribution of the system inside the cavity without
the Magnetic Field (α = 0.0) acting on it. To the left, we find the case for 8 particles
in 9 sites, and to the right, the case for 10 particles in 9 sites.
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Figure (3.6) Panels for the density distribution of the system inside the cavity without
the Magnetic Field (α = 0.0) acting on it. To the left, we find the case for 8 particles
in 9 sites, and to the right, the case for 10 particles in 9 sites.

Figure (3.7) Panels for the density distribution of the system inside the cavity without
the Magnetic Field (α = 0.0) acting on it. To the left, we find the case for 8 particles
in 9 sites, and to the right, the case for 10 particles in 9 sites.

3.7 Scales of Energy.

Given all of the dynamics having part in the model, it is important to show that
such an experiment is feasible under the state-of-the-art conditions. In this section
we provide a short review on what is possible to do in the lab and how can it be
combined to physically create our system. Specifically, we aim to show that the scales
of energy that all of the ingredients manage can coexist without interfering: the lasers
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Figure (3.8) (a) Schematic of the experiment. Two Raman pump beams (red and
blue arrows), polarized along the cavity axis, counterpropagate through a BEC of
Rb (purple) inside a high-Q cavity. The cavity emission (green arrow) is detected
by a singlephoton counter. (b) Level diagram illustrating the cavity-assisted Raman
coupling between two hyperfine levels of 87Rb acting as the spin states. Figure taken
from [8].

required to create the lattice, the Rabi transitions involved in the interactions and
the creation of the artificial magnetic field, the detunings with resonance modes of
the cavity and atoms and the orders of magnitudes of the potential depth and other
thresholds involved in the transitions of the matter; which is what we understand as
the scales of energy of the processes.

Our proposal assumes a quantum gas of 87Rb loaded in a 2D optical lattice inside a
high-Q cavity, which defines the Quantum Optical Lattice (QOL). We take advantage of
two experimental techniques: the first one regarding the creation of artificial magnetic
phases via Spin Orbit Coupling and the second one is to take as a plot the already
successful setups that allows to create spin textures in a QOL. Now we discus the
details and the compatibility between them.

In order to create artificial magnetic phases, there had appeared several and successful
attempts exploiting the Spin Orbit Coupling (SOC), being the the one in [8] (a dynam-
ical SOC) the one who captured our attention. In these two experiments, the main
idea is to link jumps between a couple of atomic inner states of the atom to imprints
of momentum arising from recoil after photons emission, resulting in a change of the
state of the photon (acquiring a space dependent phase in the process that can follow
the one needed in our system) after it moves in a specific direction. Following this idea,
and taking advantage of the presence of the cavity, we take as a good possible setup
for our desired system the one achieved by Benjamin Lev’s group [8], which utilises
a specific cavity mode macroscopically populated (involving a superradiant Dicke-like
phase) to create the dynamical SOC.
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Briefly, the experiment considers the ultracold atoms inside the cavity and there are
two cunterpropagating laser pumps perpendicular to the cavity axis. This lasers will
couple the jumps between states |F,mF 〉 = |1,−1〉 ≡ | ↓〉 and |2,−2〉 ≡ | ↑〉 of 87Rb,
their wavelengths are selected in such a way that the probability of Rabi transitions
between inner states is favored, and such that the spinor effective Hamiltonian is given
by

ĤSOC =

[
(p̂+~kr/2ex)2

2m
+ D̂+ − ~δ̃ ~Ω̂SOC cos kry

H. c. (p̂−~kr/2ex)2

2m
+ D̂−

]
(3.26)

where kr is the recoil momentum after photon emission and δ̃ is the effective two-level
spin splitting set by the Raman detuning δ minus a small ac light shift. We have
that D± = (g2(x, z)/∆±) cos2(kry)â†â is the dispersive shift and the dynamical Raman
coupling strength is

Ω̂SOC =
g(x, z)Ω+

8
√

2∆+

â† +
g(x, z)Ω−

8
√

2∆−
â (3.27)

where g(x,z) is a given function, and from Figure 3.8 where these parameters are pic-
tured, we can see that the laser amplitudes are Ω±. For experimental purposes the
important quantities here are the detunings between lasers and the atomic resonance
ωa, related by ∆+ = ∆−+ωHF and ∆− ≈ 112.2 GHz, ωHF ≈ 6.829 GHz. In order to pro-
duce the massive photon emission via the superradiant state, the pumps must be such
that a threshold ηD ≡

√
Ng(x, z)Ω+/8

√
2∆+ =

√
Ng(x, z)Ω−/8

√
2∆− is overcome.

This value is around ηD = 128(4)kHz. such is the energy scale for the SOC to occur
and achieve the desired artificial phases required to create the gauge in the system.
The Raman coupling strength rises from zero to 〈Ω̂SOC 〉 = 2.2(1)Er for Er the recoil
energy for this transition, Er ≈ h×3.7kHz [69]. After getting a recoil momentum, the
atoms will gather in spacial regions depending on their spin projection.

Since this experiment considers manipulation of spin states, we consider in parallel
successful experiments to create spin textures as the second technique we mentioned
before. To build a bridge between these two ideas, we follow the proposal in [70] based
on the existent parameters for the experiments in ETH Zurich [71], [72] that have
demonstrated the feasibility of these spin textures and control on the gap between
both spin bands, having by default a recoil momentum during the Rabi transitions
that can be exploited as the one in [8]. Their setup consists of the same QOL, a laser
pump, and additionally an external magnetic field. A model for the coupled spin states
with light that contemplate all of the parameters in this experiment is given in [70] as

Ĥab = ~g
∑
i

(
JzΩz,pψz,i

∆a

â† +
J∗zΩ

∗
z,pψ

∗
z,i

∆a

â

)
Ŝz,i (3.28)

taking the sum over all of the sites, Ωz,p( ~B) the Rabi frequency dependent on the

applied magnetic field ~B = Bẑ. The parameter Jz stands for the amplitude of the
cavity light in the z direction and φz,i encodes the structure of the light over the lattice
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(it can be particularized to the case of a pumping angle of 90 degrees). ∆a = ωc − ωa
is the detuning between the light and the atomic resonance. the operator Ŝz,i is the
spin projection in the z direction on each site. Comparing to Hamiltonian 3.26, the
term in parenthesis of the last equation is equivalent to 3.27 relating the detunings ∆a

to ∆±, the laser amplitudes Jz to Ω±, and considering function g(x, z) to be equal to
light structure factors φz,i. In table 3.1 we can see the comparison between the order
of magnitude of the relevant experimental parameters.

∆±, ∆a ∆c Er Spin Bandgap
Lev’s Group 110− 120GHz 10MHz h× 3.7kHz 2.2Er

Esslinger’s Group 10− 100GHz ≈MHz h× 4kHz 2− 10Er

Table (3.1) Comparison between orders of the experimental parameters in Lev’s and
Esslinger’s experiments [8], [71], [72], [70]

From the comparison of models 3.26 and 3.28 build for experiments in Lev and Esslinger
Groups respectively and Table 3.1 we aim to give a light on the experimental possibility
of using any of the setups to integrate the others capabilities to create a final setup that
couples spin states and produce artificial magnetic phases that may lead to physical
observations of the effects predicted in this theoretical work.



Chapter 4: High-Q Cavity and Mea-
surement Back-Action.

4.1 Measurement Backaction.

In general, when adding an extra term to the Hamiltonian, by mere intuition from
perturbation theory, one expects a competition between ground states of each part of
the Hamiltonian and vice-verse. When dealing with measurement the reality is beyond
this idea since the competition comes from the measurement itself. In the following we
will study what happens when a scattered photon is detected out of the system [78].
The photons come from an intense interaction with the system that actually couples
them, when a photon is annihilated by the detector, the system should ”notice” this
absence enough to change its internal state.

Physically, we are placing the bosons system inside a cavity which has an optical axis
along the two mirrors. It is in this direction that the detected photons travel. By now
we are not considering the effects of such a cavity, it is only to collect the photons. The
photon is detected if and only if it came out of one of the mirrors. There is a pumping
beam that introduces the light in the system and also inside the cavity a new beam
is created by default (see fig. 4.1). Both beams stablish an interference pattern that
finally enlight in a different way the lattice spaces, associating thus certain phases to
the particles and their interactions, something that is refered to as the light structure.

Figure (4.1) Scheme of the physical situation of the BHH system inside a cavity.
There is a pump beam coming from the outside and an beam inside the cavity that
creates the lght structure. The image is taken from [78].
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4.1.1 Quantum Trajectories.

Now, the method we will use is called quantum trajectories [77] (this is an alternative
numerical approach to arrive to the results that the Master equation of this open system
should give us). The method proposes an ensemble composed by many evolution
processes from a starting state of the system involving measurment processes. We
define the operator ĉ =

√
2κâ to represent the photon detection (and anihilation) with

κ the photon decay rate. The proposed Hamiltonian that accounts the leakeage of
photons by measurment is given in [78] as

Heff = HBHH − i
~
2
ĉ†ĉ = HBHH − i~κâ†â, (4.1)

where â(†) is the photon annihilation (creation) operator. Since one photon is coupled
to the rest of the system and also it mediates interactions, it is possible to derive an
identity between the interaction operators and the photon detection:

â ∼= C(B̂ + D̂) (4.2)

where

B̂ =
∑
〈j,i〉

Jij b̂
†
i b̂j (4.3) D̂ =

L∑
i=1

Jjjn̂j (4.4)

for Jij complex scalars standing for the phases acquired due to the light strutcure medi-

ation, the number operator is nj = b†jbj which are proportional to on-site interactions.
The constant C is the Rayleigh scattering constant

C =
iΩ10a0

i∆p − κ
(4.5)

where ∆p = ωp − ωa is the detuning frecuanty, the difference between the pumpin
frecuency and the atom resonance frecuency, and Ω10 = g1g0/δa involves the atom-
light coupling constants gi, for the pump beam and the scattered light. These are
experimental parameters that we are not going to deal with directly, instead we will
resume their relationship in the parameter

γ = |C|2κ, (4.6)

so

Heff = HBHH − i~γ(B̂ + D̂)2. (4.7)

The light structure is taking into account in the coefficients Jij. We focus on the
physical content and will consider only two possible configurations. The first one is
when the beam inside the cavity and the pumping beam have such an angle that the
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nodes of the pattern match with the even sites of the lattice and light have a phase
1 in the other sites. In that point the light does not produce any scattered photons
and the coefficients are Jeven = 0 and Jodd = 1. On the other hand, if we take the two
beams forming a 90 degrees angle, we are able to find a moment when even and odd
sites have opposite polarization, obtaining Jjj = (−1)j. In general we can consider

several configurations arising from the form of the operator D̂ =
∑N

i=1 e
2πl/Rn̂l where

2πl = (~kin − ~kout) · rl for the direction of the pumping and cavity beam and the l
position of the lattice.

Recalling the supposition we made earlier for the lattice sites to be deep enough to allow
only on-site photon mediated interactions then the kinetic part B̂ does not contribute
and consequently â ∝ D̂, the Hamiltonian would reduce to

Heff = HBHH − i~γD̂2 (4.8)

and we now take units convention ~ = 1.

4.1.2 Numerical method for the quantum trajectories.

The method with which we model the evolution of the system is as follows [77], [78]:

• Define a non hermitian Hamiltonian taking into account that the photon detection-
annihilation process by the operator i~ĉ†ĉ/2 and assume that the state of the
system |ψ(t)〉 evolves obeying the Schrödinger equation for

Ĥeff = ĤBH − i~ĉ†ĉ/2 (4.9)

• Define a random variable r ∈ (0, 1) representing the unkown moment when of
the photon detection

• Define the unitary evolution operator

Û(t) = e−iĤefft/~ (4.10)

• Stop the evolution in tj, when happens 〈ψ(t0)|ψ(tj)〉 = r

• Assume the previous step as the detection moment and apply the corresponding
operator ĉ to the state and renormalize to starte the proces again

|ψ(tj)〉 →
ĉ|ψ(tj)〉√

〈ψ(tj)|ĉ†ĉ|ψ(tj)〉
. (4.11)

Understanding the evolution operator

Û(t, t0) = exp (−iHeff (t− t0)/~)

= exp
(
−iHBHH − γD̂2

) (4.12)

we interpret the measurement term wieghted by γ as a dissipation term that will reduce
the norm of the state.
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When applying the method, we evolve the state in M steps of ∆t in time until t→∞,
that means the change in the value of 〈σ2

D〉 is not significant anymore. Making this
process N times, we keep only the final points of each trajectory to create the ensemble
and average all of them. For the operator D̂ this is denoted as

〈D̂〉traj (4.13)

The fluctuations of this operator are taken to be

〈σ2
D〉traj = 〈D̂2〉traj − 〈D̂〉2traj. (4.14)

4.1.3 Numerical process.

Evolution Operator.

We denote the matrix representation of the evolution operator as A. From Linear
Algebra is possible to write it as

A = SMS−1 (4.15)

where S = (V1, V2, . . . , Vn) with Vi the i-th eigenvector ofA andM = Diagmat(v1, v2, . . . , vn)
with vi el i-ésimo eigenvalor. Expanding the Taylor series we find that

eA = SeMS−1 (4.16)

with eM = Diagmat(ev1 , ev2 , . . . , evn).

Calculating one quantum trajectory.

We define Û(t − t0) ≡ Evol as a constant and start with the state G(0) in a SF state
obtaining the ground state of Bose Hubbard Hamiltonian without interactions. The
pseudo code is

• Set initial G

• r = Rand(0,1) (random number)

• for( i = 1; i < P ; i+ + ) {

• if( ‖G‖2 < r ){G = D*G

• G = G/‖G‖2 and save

• r = Rand(0,1) (new random number) }

• else{

• save G/‖G‖2 }

• G = EvolutionOperator*G }

where P is the number of steps.
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4.1.4 Competition between kinetical and on-site interactions,
and measurement.

When solving the master equation for a system like this, the uncertainity on the meas-
urement operator is usually big, what makes it difficult to work with it [78]. In the
method of quantum trajectories we can access the variance of any operator by analyz-
ing the complete ensemble of trajectories. We can calculate 〈σ2

D〉 whose value give us
an idea of how different from the ground state of the operator D̂ = N̂odd (which is the
sum of the particles in odd sites) is the ground state of the complete system. Following
this reasoning we are able to calculate the results in fig. 4.2

Figure (4.2) Graphic of the variance of the measurement operator as a function of
U/J for different measurement strenghts. We used a system of N = M = 6 and 1000
trajectories. This result agrees qualitatively with the original calculation from [78].

that coincide qualitatively with the results in [78]. What this image basically tells
us is how much the original fluctuations per site function vary after performing a
measurement. The value γ = 0 for the no measurement case agrees with the already
function 〈σi〉 that shows the SF on small values of U/J and the MI for U/J → ∞.
After performing a weak measurement we note that the state is squeezed below the
ground state until it reaches its maximum to later fall to the MI phase for bigger values
of U/J . When we have a strong measurement, both the superfluid and Mott Insulator
are impossible to reach for any value of U/J .

Evolution of a single trajectory.

To get a deeper view of what is happening in the system, we analyze a specific trajectory
under weak and strong measurement to see its evolution. We define a cummulative
density function for the posibility that the odd sites host Nodd number of particle in
any configuration as

p(Nodd) =
∑

states i with Nodd bosons in odd sites.

|ci|2 (4.17)

where the |ci|’s are the participation that the states i have in the ground states of the
system. We plot this evolution in fig. 4.3.
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Figure (4.3) Subfigures a) and b) in that order. Time evolution of the probability of an
occupation of Nodd particule sin the odd sites of a single trajectory. Subfigure a) represent the
weak interaction and measurement case U/J = 0.1 y γ/J = 0.1. Subfigure b) corresponds to
strong interactions and weak measurement U/J = 10. The system has N = M = 6. These
results qualitatively agree with the original calculation from [78].

Subfigure 4.3.a) that considers the case of weak interaction and measurement regime.
Right at the beginning of the trajectory we note there are 3 bosons in the 3 odd sites
that corresponds to the SF phase. As the time goes on, the measurement breaks the SF
phase moving the bosons out of the odd sites, since the kinetic energy is still important,
they do not stay longer in that configuration and start oscilating but staying away
from the SF phase. Note that the probability profiles get squeezed as time increase,
producing 〈σ2

D〉 to get smaller. Subfigure 4.3b) shows the case of strong interactions.
We can see the MI from the begining with 3 bosons in 3 odd sites. In contrast with the
previous case, the probability profile is very localized, but eventually the measurement
breaks the MI phase.

We may interpret from this that the measurement is projecting the state of the system
into its own space of eigenstates and it is getting stonger with time, so eventually the
SF or MI will be lost.

4.1.5 Long-range tunneling and Zeno Effect.

In addition to the dynamics of of the system it can produce unusual effects in it; effects
that are not taken into account by the BH Hamiltonian such as tunneling from one site
to other that is not a neighbour and the Zeno effect that mantains the system in such
a state the exhibits the same eigenvalue of the measurement operator. In our case, if
the measurement strenght is strong enough we may observe these phenomena as it is
showed in Fig. 4.4.

The case of subfigure 4.4.a) was designed to see the Zeno effect. A system of 7 bosons
and 7 sites under and a measurement operator D̂ = n̂3 + n̂4 + n̂5. Given the giant
value of γ, when the measurement is performed the state will be projected into the
state that corresponds to the eigenvalue of 3 in it. What the evolution shows is that
the state of the system can change but it has to be in the eigenspace for that value.
The space is now divided into three zones, two exterior that preserve the two particles
in each one, and the central one that preserves the three particles inside (in the image
there is a problem with the initial condition that will be solved). We can say that the
number of particles in the three central sites is frozen by the Zeno effect.

In subfigure 4.4.b) the attempt is to show the long-range tunneling. Starting with
the configuration (0, 1, 2, 1, 0) and evolving under the light structure J = (0, 1, 0, 1, 0),



CHAPTER 4. HIGH-Q CAVITY AND MEASUREMENT BACK-ACTION. 68

Figure (4.4) Subfigures a), b) y c) in that order. Results for the calculation of density by
site over one quantum trajectory for different initial conditions and light structures. In a) the
system is has N = M = 7, initial state is |1, 1, 1, 1, 1, 1, 1〈 and the phases of the light structure
are J = (0, 0, 1, 1, 1, 0, 0), what indicates that only three sites scatter photons. In b) we have
N = 4, M = 5 and a initial state of (0, 1, 2, 1, 0) with light structure of J = (0, 1, 0, 1, 0).
Lastly, in c) the system size is N = M = 4, initial state is (0, 2, 2, 0) and light structure is
J = (0,−1, 1, 0). For all the cases: γ/J = 1000 y U/J = 0. These results qualitatively agree
with the original calculation from [78].

we expect by Zeno effect that site one and three preserve the cummulative number of
particles frozen which is true. The interesting thing is that the 2 particles in the middle
site decrease but the number of particles in the endings increase. Since there was no
moment in which the number of particles in sites 1 or 3 was not 1, we can conclude a
long-range tunneling induced by the measurement.

Lastly, subfigure 4.4.c) shows what happens for an initial configuration (0, 2, 2, 0) with
the phases being J = (0,−1, 1, 0). By Zeno effect the measurement D̂ = n̂3 − n̂2 tries
to keep the difference of the particles in sites 1 and 2 (equal to 0) frozen. The system
evolve freely tunneling particles from the central zone to the endings but keeping that
difference unchanged.

4.2 High-Q Cavity interactions and Back-Action.

In this chapter we incorporate the cavity mediated interactions into the measurement
back-action study presented in Chapter 4, in fact we are completing the model: this
term was neglected in that section. The new effective Hamiltonian will be

Heff = HBHH −
geff

M2
D̂2
− − i~γD̂2

−. (4.18)

We follow the calculations of the variance 〈σ2
D〉 through the quantum trajectories

method to compare the changes for weak and strong measurement regimes.
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4.3 Measurement back-action enhancement by

cavity-mediated interactions (New Results).

After considering the effects of the cavity into the system, we proceed to calculate the
variance of the measurement operator using the quantum trajectories method. The
results are present in figure 4.5 for weak (left) and strong (right) measurements. We
picked a value of geff = −2.5U which is well below the installation of the DW phase at
least for the plotted values of U/t above 1, after the SF phase. The results are presented
in fig. 4.5, where we can see that the cavity effects. In the case of no measurement
at all, the change is evident and it is something due to the fact that in this regime
the system is mostly in the DW regime, the MI and SF behaviors are not expected.
We note also that for weak measurements the new variance decrease with a lower rate
to the MI. On the other hand, a strong measurement do not change significantly the
dynamics.

Figure (4.5) Numerical calculation of 〈σ2
D〉 for a system with cavity mediated in-

teractions and size N = M = 4 for over 10000 trajectories. To the left the weak
measurement and to the right, the strong measurement.



Chapter 5: Conclusions.

In this thesis we have reviewed and reproduced most of the required theory to under-
stand the dynamics of ultracold neutral bosons both in the presence of an artificial
magnetic field and when they are placed inside a high-Q cavity. Evidence that the
hard-core bosons limit impose an alike fermions interaction through the fidelity of the
ground state and a more general approach with the energy spectrum reduction have
been provided. In particular, the reduction of the spectrum allows us to study the
topological properties quantities of the system and the useful symmetry particle-hole
was also showed, which offers an easy access to the dynamics of one or two fermions in
the lattice by producing one or two holes in it.

The introduction of the artificial magnetic field as calculated here is compatible with
already known effects such as the artificial Lorentz force for charge carriers and the
stripped phase. When these behavior are combined with the cavity we found an inter-
esting result: the stabilization of the self organized DW phase in the presence of the
artificial magnetic field. It has been shown the gauge field affects the movement of the
particles having consequences in the superfluid phase making it weaker in competence
with the DW phase, something that we referd to as the DW phase stabilization. This
is an original result.

Finally, after studying the interesting phenomena that measurement backaction pro-
duces on the preexisting phases we encountered an enhancement on the backaction
effects such as the destruction of the MI and SF for weak and strong measurements
and the inaccessibility to the MI for large values of U/t.
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Appendixes.

6.1 Appendix A: Calculations from Chapter 1.

Starting with the Hamiltonian operator 1.14 we apply a transformation to the mo-
mentum space of the site operators given by

b̂i =
1√
Ns

∑
k

âke
−ik·ri

b̂†i =
1√
Ns

∑
k

â†ke
ik·ri ,

(6.1)

taking only a finite volume V , obtaining discrete values of momenta ~k running over
the first Brillouin Zone (BZ). Later, the usual limit for V →∞ will allow us to change
the sums by integrals using the fact that

∑
i e
i(k−k′)·ri = Mδkk′ for M the total number

of sites. Calling H(1),(2),(3) each of the sums in 1.14 respectively, we insert the definitions
to find

H(1) = −t 1

Ns

∑
<i,j>

∑
k

a†ke
ik·ri

∑
k’

ak’e
−ik’·rj

(6.2)

= −t
∑
k

∑
k’

∑
<i,j>

a†kak’e
i(k·ri−k’·rj)

= −t
∑
k

∑
k’

∑
<i,j>

a†kak’e
i(k·ri−k’·(rj+ri−ri))

= −t
∑
k

∑
k’

∑
<i,j>

a†kak’e
i(k−k’)·rie−ik’·(rj−ri)

= −t
∑
k

∑
k’

∑
<i,j>

a†kak’e
i(k−k’)·rie−ik’·(rj−ri)

Note that the sum over 〈i, j〉 involve only the vector rj − ri = (0, ..., a, ..., 0) for NN,
where a es the lattice spacing, equal for all directions. Each ri has 2d vectors ām (being
d the spacial dimension of the lattice). Fixing ri and moving rj then
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∑
<i,j>

ei(k−k’)·rie−ik’·(rj−ri)

=
∑
i

ei(k−k’)·ri(e−ik’·(a,...,0) + e−ik’·(−a,...,0) + · · ·+ e−ik’·(0,...,a) + e−ik’·(0,...,−a))

=
∑
i

ei(k−k’)·ri((eik
′
1a + e−ik

′
1a) + · · ·+ (eik

′
da + e−ik

′
da))

=
∑
i

ei(k−k’)·ri(2 cos(k′1a) + 2 cos(k′2a) + · · ·+ 2 cos(k′da))

=
∑
i

ei(k−k’)·ri(2
d∑
j

cos(k′ja))

= Nsδk,k’(2
d∑
j

cos(k′ja))

since ri acquires again the value rj, for that case ām is now opposite.

This leaves the first part of the Hamiltonian as

H(1) = −t 1

Ns

Ns

∑
k

∑
k’

a†kak’δk,k’(2
d∑
j

cos(k′ja)) (6.3)

=
∑
k

a†kak(−2t
d∑
j

cos(k′ja))

=
∑
k

a†kak(−ε̄k)

with ε̄k = 2t
∑d

j=1 cos(k′ja). For the second part of the Hamiltonian we have

H(2) =
1

2
U
∑
i

(
1√
Ns

∑
k

a†ke
ik·ri)(

1√
Ns

∑
k’

a†k’e
ik’·ri)(

1√
Ns

∑
k”

ak”e
−ik”·ri)(

1√
Ns

∑
k”’

ak”’e
−ik”’·ri)

(6.4)

=
1

2

U

N2
s

∑
k

∑
k’

∑
k”

∑
k”’

a†ka
†
k’ak”ak”’

∑
i

ei(k+k’−k”−k”’)

=
1

2

U

Ns

∑
k

∑
k’

∑
k”

∑
k”’

a†ka
†
k’ak”ak”’δk+k’,k”+k”’

Lastly, for the third part of the Hamiltonian:



APPENDIXES. 73

H(3) = −µ
∑
i

(
∑
k

a†ke
ik·ri)(

∑
k’

ak’e
−ik’·ri) (6.5)

= −µ 1

Ns

∑
i

∑
k

∑
k’

a†kak’e
i(k−k’)·ri

= −µNs

Ns

∑
k

∑
k’

a†kak’δk,k’

= −µ
∑
k

a†kak

Being the total Hamiltonian H = H(1) +H(2) +H(3), its final expression is as

H =
∑
k

(−ε̄k − µ)a†kak +
1

2

U

Ns

∑
k

∑
k’

∑
k”

∑
k”’

a†ka
†
k’ak”ak”’δk+k’,k”+k”’ (6.6)

In a BEC the average number of atoms in the system N0 (in the least energetical state)
is much greater than 1, so if N0 = 〈a†0a0〉 and 〈a0a

†
0〉− 〈a0a

†
0〉 = 1, then 〈a0a

†
0〉 ≈ 〈a

†
0a0〉

and this allow us to see the agreement with a commutation of both operators and
conclude N0 = 〈a†0〉〈a0〉. Since 〈a0〉 and 〈a†0〉 are complex conjugates then 〈a0〉 =
〈a†0〉 =

√
N0.

The heart of Bogoliubov approach is that the creation and anihilation operators now
shall be replaced by its average value plus a fluctuation

a†0 →
√
N0 + a†0

a0 →
√
N0 + a0.

(6.7)

Each time k = 0 this sustitution applies then. There are many combinations in the
sums so this must be done carefully by parts. NWhenever the fluctiation terms multiply
the product is effectively zero. To find the terms with only one operator note that in
the sum for a†ka

†
k when k = 0 there will be terms of first order. Let’s consider only this

term:

(−ε̄0−µ)(
√
N0 + a†0)(

√
N0 + a0) +

1

2

U

Ns

(
√
N0 + a†0)(

√
N0 + a†0)(

√
N0 + a0)(

√
N0 + a0)

Doing only the products for terms including only one operator we will have that

H(1) = (−ε̄0−µ)(
√
N0(a†0+a0))+

1

2

U

Ns

(a†0(
√
N0)3)+a†0(

√
N0)3)+a0(

√
N0)3)+a0(

√
N0)3)

(6.8)
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= (−ε̄0 − µ)(
√
N0(a†0 + a0)) +

1

2

U

Ns

(2a†0(
√
N0)3) + 2a0(

√
N0)3)

= (−ε̄0 − µ)(
√
N0(a†0 + a0)) +

U

Ns

(a†0(
√
N0)3) + a0(

√
N0)3)

= (−ε̄0 − µ+
U

Ns

N0)(
√
N0(a†0 + a0))

Since this term must be 0 for each a†0 and a0 then:

−ε̄0 − µ+
U

Ns

N0 = 0

Given that ε̄0 = 2t
∑d

j cos(kja) with k = 0̄ then ε̄0 = 2t
∑d

j=1 1 = 2td and so

−2td− µ+
U

Ns

N0 = 0

and

µ = Un0 − zt

where n0 = N0

Ns
y z = 2d.

Continuing with the approximation to find zero and second order terms that form part
of the effective Hamiltonian Ĥ i

eff substitute all operators with
√
N0 because in this case

there is no operator in any of addends. Then

H(0) = (−ε̄0 − µ)N0 +
1

2

U

Ns

N0N0 (6.9)

= (−ε̄0 − µ+
1

2
Un0)N0

= (−2td− µ+
1

2
Un0)N0

For the terms of second order, we will only keep the terms with two operators labeled
with k = 0, otherwise the resulting terms will be dropped. Terms including three
operators for k being 0 have been already counted by second order terms or will be
part of third order terms. Selecting the term using these rules the result is

1

2

U

Ns

(
∑
k”

∑
k”’

√
N0

√
N0ak”ak”’δ0,k”+k”’ +

∑
k’

∑
k”’

√
N0a

†
k’

√
N0ak”’δk’,k”+
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∑
k’

∑
k”

√
N0a

†
k’ak”

√
N0δk’,k” +

∑
k

∑
k”’

a†k
√
N0

√
N0ak”’δk,k”’

+
∑
k

∑
k”

a†k
√
N0ak”

√
N0δk,k” +

∑
k

∑
k”’

a†ka
†
k’

√
N0

√
N0δk+k’,0)

=
1

2

U

Ns

N0(
∑
k

aka-k +
∑
k

a†kak +
∑
k

a†kak +
∑
k

a†kak +
∑
k

a†kak +
∑
k

a†-ka
†
k

=
1

2
Un0(

∑
k

aka-k +
∑
k

4a†kak +
∑
k

a†ka
†
-k).

with n0 = N0/Ns. Finally the effective hamiltonion acquires the next form

H i
eff = (−2td−µ+

1

2
Un0)N0+

∑
k

(−ε̄k−µ)a†kak+
1

2
Un0(

∑
k

aka-k+
∑
k

4a†kak+
∑
k

a†ka
†
-k)

(6.10)

= (−2td−(Un0−2td)+
1

2
Un0)N0 +

∑
k

(−ε̄k−µ+2Un0)a†kak+
1

2
Un0(

∑
k

aka-k+a†-ka
†
k)

= −1

2
Un0)N0 +

∑
k

(−ε̄k − Un0 + 2dt+ 2Un0)a†kak +
1

2
Un0(

∑
k

aka-k + a†-ka
†
k)

Defining εk = zt− ε̄k:

= −1

2
Un0N0 +

∑
k

(εk + Un0)a†kak +
1

2
Un0(

∑
k

aka-k + a†-ka
†
k)

= −1

2
Un0N0 +

1

2

∑
k

(εk +Un0)a†kak +
1

2

∑
k

(εk +Un0)a†kak +
1

2
Un0(

∑
k

aka-k + a†-ka
†
k)

= −1

2
Un0N0+

1

2

∑
k

(εk+Un0)(aka
†
k−1)+

1

2

∑
k

(εk+Un0)a†kak+
1

2
Un0(

∑
k

aka-k+a†-ka
†
k)

= −1

2
Un0N0−

1

2

∑
k

(εk+Un0)+
1

2
(
∑
k

(εk+Un0)aka
†
k+
∑
k

(εk+Un0)a†kak+Un0

∑
k

(aka-k+a†-ka
†
k))

= −1

2
Un0N0−

1

2

∑
k

(εk+Un0)+
1

2
(
∑
k

aka
†
k(εk+Un0)+a†kak(εk+Un0)+Un0a-kak+Un0a

†
-ka
†
k)
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= −1

2
Un0N0−

1

2

∑
k

(εk+Un0)+
1

2
(
∑
k

a-ka
†
-k(εk+Un0)+a†kak(εk+Un0)+Un0a-kak+Un0a

†
ka
†
-k)

= −1

2
Un0N0−

1

2

∑
k

(εk+Un0)+
1

2

∑
k

(a†k, a-k)·((εk+Un0)ak+Un0a
†
-k, Un0ak+(εk+Un0)a†-k)

= −1

2
Un0N0 −

1

2

∑
k

(εk + Un0) +
1

2

∑
k

(
a†k a-k

) [ εk + Un0 Un0

Un0 εk + Un0

](
ak
a†-k

)
(6.11)

Observe that from 7th to 8th step we used the following facts:

εk =
d∑
j=1

cos(kja) =
d∑
j=1

cos(−kja) = ε-k (6.12)

∑
k

aka
†
k(εk + Un0) =

∑
-k

a-ka
†
k(εk + Un0) (6.13)

becuase of the last identity and the fact that the sum runs over all possible k in a
symmetric region of the Fourier space, we may change the sign of the label

∑
k

Un0a
†
-ka
†
k =

∑
k

Un0a
†
ka
†
-k (6.14)

We now introduce the new operators b†k y bk, for which the Bogoliubov transformation
will be applied. The old operators relate with the news through

(
bk
b†-k

)
=

[
uk vk

u∗k v∗k

](
ak
a†-k

)
(6.15)

with u’s and v’s being complex. From there,

bk = ukak + vka
†
-k

b†-k = v∗kak + u∗ka
†
-k

and so

b-k = u-ka-k + v-ka
†
k

b†k = v∗-ka-k + u∗-ka
†
k
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.

on the other hand

b-k = (b†-k)† = (v∗kak + u∗ka
†
-k)† = vka

†
k + uka-k

b†k = (ukak + vka
†
-k)† = u∗ka

†
k + v∗ka-k

Making both expressions equal for operators b-k y b†k it is immediate that uk = u-k,
u∗k = u∗-k, vk = v-k y v∗k = v∗-k.

In order to assure the new operators obey the bosonic commutation rules:

[bk, b
†
k] = bkb

†
k − b

†
kbk = (ukak + vka

†
-k)(u∗ka

†
k + v∗ka-k)− (u∗ka

†
k + v∗ka-k)(ukak + vka

†
-k)

= |uk|2aka†k+ukv
∗
kaka-k+vku

∗
ka
†
-ka
†
k+|vk|2a†-ka-k−(|uk|2a†kak+ukv

∗
ka-kak+vku

∗
ka
†
ka
†
-k+|vk|2a†-ka-k)

= |uk|2(aka
†
k − a

†
kak) + |vk|2(a†-ka-k − a-ka

†
-k)

= |uk|2 − |vk|2

thanks to the commutation rule [ak, a
†
s] = δk,s. As a result, it must be true that

|uk|2 − |vk|2 = 1, (6.16)

and as a consequence, the matrix has inverse and so

(
ak , a†-k

)
=

[
u∗k −vk
−v∗k uk

](
bk
b†-k

)
or equally

ak = u∗kbk − vkb
†
-k

a-k = u∗kb-k − vkb
†
k

a†-k = −v∗kbk + ukb
†
-k

a†k = −v∗kb-k + ukb
†
k.
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Inserting 6.15 in 6.11 yields to

= −1

2
Un0N0 −

1

2

∑
k

(εk + Un0)

+
1

2

∑
k

(
−v∗kb-k + ukb

†
k , u∗kb-k − vkb

†
k

) [ εk + Un0 Un0

Un0 εk + Un0

](
u∗kbk − vkb

†
-k

−v∗kbk + ukb
†
-k

)

the matrix part is equal to

= A[(−v∗kb-k + ukb
†
k)(u∗kbk − vkb

†
-k) + (u∗kb-k − vkb

†
k)(−v∗kbk + ukb

†
-k)]

+B[(−v∗kb-k + ukb
†
k)(−v∗kbk + ukb

†
-k)] + (u∗kb-k − vkb

†
k)(u∗kbk − vkb

†
-k)

A[−b-kbkv∗ku∗k+b-kb
†
-kv
∗
kvk+b†kbkuku

∗
k−b

†
kb
†
-kukvk−b-kbkukv

∗
k+b-kb

†
-kukuk+b†kbkvkv

∗
k−b

†
kb
†
-kvkuk]

+B[−b-kbkv∗kv∗k+b-kb
†
-kv
∗
kuk+b†kbkukv

∗
k−b

†
kb
†
-kukuk−b-kbku

∗
ku
∗
k+b-kb

†
-ku
∗
kvk+b†kbkvku

∗
k−b

†
kb
†
-kv
∗
ku
∗
k]

= −b-kbk[−A(v∗ku
∗
k+u∗kv

∗
k)+B(v∗kv

∗
k+u∗ku

∗
k)]+b†kb

†
-k[−A(ukvk+vkuk)+B(ukuk+vkvk)]

+b†kbk[A(uku
∗
k + vkv

∗
k)−B(ukv

∗
k + vku

∗
k)] + b-kb

†
-k[A(v∗kvk + u∗kuk)−B(v∗kuk) + u∗kvk]

= −b-kbk[−A(2u∗kv
∗
k) +B((v∗k)2 + (u∗k)2)] + b†kb

†
-k[−A(2ukvk) +B((uk)2 + (vk)2)]

+b†kbk[A(|uk|2 + |vk|2)−B(ukv
∗
k + vku

∗
k)] + b-kb

†
-k[A(|vk|2 + |u∗k|2)−B(ukv

∗
k + vk)u∗k]

being A = εk + Un0 and B = Un0. Introducing the sum

= −1

2
Un0N0 −

1

2

∑
k

(εk + Un0)+

1

2

∑
k

−b-kbk[−A(2u∗kv
∗
k) +B((v∗k)2 + (u∗k)2)] + b†kb

†
-k[−A(2ukvk) +B((uk)2 + (vk)2)]

+b†kbk[A(|uk|2 + |vk|2)−B(ukv
∗
k + vku

∗
k)] + b-kb

†
-k[A(|vk|2 + |u∗k|2)−B(ukv

∗
k + vk)u∗k]
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= −1

2
Un0N0 −

1

2

∑
k

(εk + Un0)+

1

2

∑
k

−b-kbk[−A(2u∗kv
∗
k) +B((v∗k)2 + (u∗k)2)] + b†kb

†
-k[−A(2ukvk) +B((uk)2 + (vk)2)]

+b†kbk[A(|uk|2 + |vk|2)−B(ukv
∗
k + vku

∗
k)]+

bkb
†
k[A(|vk|2 + |u∗k|2)−B(ukv

∗
k + vk)u∗k]

= −1

2
Un0N0 −

1

2

∑
k

(εk + Un0)+

1

2

∑
k

−b-kbk[−A(2u∗kv
∗
k) +B((v∗k)2 + (u∗k)2)] + b†kb

†
-k[−A(2ukvk) +B((uk)2 + (vk)2)]

+b†kbk[A(|uk|2 + |vk|2)−B(ukv
∗
k + vku

∗
k)]+

(1 + b†kbk)[A(|vk|2 + |u∗k|2)−B(ukv
∗
k + vk)u∗k]

= −1

2
Un0N0 −

1

2

∑
k

(εk + Un0)+

1

2

∑
k

−b-kbk[−A(2u∗kv
∗
k) +B((v∗k)2 + (u∗k)2)] + b†kb

†
-k[−A(2ukvk) +B((uk)2 + (vk)2)]

+2b†kbk[A(|uk|2 + |vk|2)−B(ukv
∗
k + vku

∗
k)]

+[A(|vk|2 + |u∗k|2)−B(ukv
∗
k + vk)u∗k]

= −1

2
Un0N0 −

1

2

∑
k

(εk + Un0)+

1

2

∑
k

−b-kbk[−A(2u∗kv
∗
k) +B((v∗k)2 + (u∗k)2)] + b†kb

†
-k[−A(2ukvk) +B((uk)2 + (vk)2)]

+[A(|vk|2 + |u∗k|2)−B(ukv
∗
k + vk)u∗k] +

∑
k

b†kbk[A(|uk|2 + |vk|2)−B(ukv
∗
k + vku

∗
k)].

Requesting this to be equal to

− 1

2
Un0N0 −

1

2

∑
k

[~ωk − (εk + Un0)] +
∑
k

~ωkb
†
kbk (6.17)

is to request the coefficients of each pair of operators to be equal, and is straight that

A(−2u∗kv
∗
k) +B((v∗k)2 + (u∗k)2) = 0 (6.18)

A(−2ukvk) +B((vk)2 + (uk)2) = 0 (6.19)
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A(|uk|2 + |vk|2)−B(ukv
∗
k + vku

∗
k) = ~ωk (6.20)

Note that 6.18 and 6.19 are complex conjugates which leaves an equation system for
A and B

A(−2ukvk) +B((vk)2 + (uk)2) = 0

A(2|vk|2 + 1)−B(ukv
∗
k + vku

∗
k) = ~ωk

A(−2ukvk) +B((vk)2 + (uk)2) = 0

A(2|vk|2)−B(ukv
∗
k + vku

∗
k) = ~ωk − A

substituting A and B

(εk + Un0)(−2ukvk) + Un0((vk)2 + (uk)2) = 0

(εk + Un0)(2|vk|2)− Un0(ukv
∗
k + vku

∗
k) = ~ωk − (εk + Un0)

The determinant of the associated matrix is

∆ = (2ukvk)(ukv
∗
k + vku

∗
k)− ((uk)2 + (vk)2)(2|vk|2)

= 2(uk)2|vk|2 + 2(vk)2|uk|2 − 2|vk|2(uk)2 − 2|vk|2(vk)2

= 2(vk)2(|uk|2 − |vk|2) = 2(vk)2

and one obtains

Un0 =
(−2ukvk)(~ωk − (εk + Un0)))

2(vk)2)
(6.21)

so

vk = −~ωk − (εk + Un0)

Un0

uk (6.22)

For the other variable we have

εk + Un0 = −((uk)2 + (vk)2)(~ωk − (εk + Un0))

2(vk)2)
(6.23)

then

−2(vk)2)(εk + Un0) = ((uk)2 + (vk)2)(~ωk − (εk + Un0))
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and

0 = (uk)2(~ωk − (εk + Un0)) + (vk)2(~ωk + (εk + Un0))

using 6.22,

0 = (uk)2(~ωk − (εk + Un0)) + (uk)2 (~ωk − (εk + Un0))2

(Un0)2
(~ωk + (εk + Un0))

then

0 = (Un0)2 + (~ωk − (εk + Un0))(~ωk + (εk + Un0))

Next, we divide by (~ωk − (εk + Un0)) 6= 0

0 = (Un0)2 + (~ωk)2 − (εk + Un0)2

to find

0 = (Un0)2 + (~ωk)2 +−(εk)2 − 2εkUn0 − (Un0)2

and finally,

~ωk =
√
ε2k + 2εkUn0 (6.24)

Lastly, note that we have the equation

(εk + Un0)(2|vk|2)− Un0(ukv
∗
k + vku

∗
k) = ~ωk − (εk + Un0)

= 2(εk + Un0)(|vk|2 − 1) + Un0(uku
∗
k

(~ωk − (εk + Un0))

Un0

+ u∗kuk
(~ωk − (εk + Un0))

Un0

)

2(εk + Un0)(|uk|2 − 1) + 2|uk|2(~ωk − (εk + Un0)) = ~ωk − (εk + Un0)

2|uk|2(~ωk − (εk + Un0) + (εk + Un0))− 2(εk + Un0) = ~ωk − εk + Un0

so

2|uk|2~ωk = ~ωk + εk + Un0

thus

|uk|2 =
1

2
(1 +

εk + Un0

~ωk

)
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|vk|2 = |uk|2 − 1 =
1

2
(
εk + Un0

~ωk

− 1)

Following with the general calculation, we focus in to know the density of the condens-
ate n0, which requires to know the total density n in terms of the effective Hamiltonian

n =
1

Ns

∑
k

〈
a†kak

〉
Heff

(6.25)

we separate n0 since the beginning

= n0 +
1

Ns

∑
k 6=0

〈
a†kak

〉
Heff

and writing this in terms of 6.15 then

= n0 +
1

Ns

∑
k 6=0

〈
(−v∗kb-k + ukb

†
k)(u∗kbk − vkb

†
-k)
〉
Heff

= n0 +
∑
k 6=0

〈−v∗ku∗kb-kbk〉Heff +
〈
v∗kvkb-kb

†
-k

〉
Heff

+
〈
uku

∗
kbkb

†
k

〉
Heff

+
〈
ukvkb

†
kb
†
-k

〉
Heff

where the operatores b-kbk and b†kb
†
-k are always 0, since they lead to products of

orthogonal states for all k 6= 0, obtaining then

n = n0 +
∑
k 6=0

〈
|vk|2b-kb†-k

〉
Heff

+
〈
|uk|2bkb†k

〉
Heff

= n0 +
∑
k 6=0

〈
|vk|2bkb†k

〉
Heff

+
〈
|uk|2bkb†k

〉
Heff

= n0 +
∑
k 6=0

|vk|2
〈
bkb
†
k

〉
Heff

+ |uk|2
〈
bkb
†
k

〉
Heff

= n0 +
∑
k 6=0

|vk|2
〈

1 + b†kbk

〉
Heff

+ |uk|2
〈
bkb
†
k

〉
Heff

and so

n = n0 +
∑
k 6=0

[(|vk|2 + |uk|2)
〈
b†kbk

〉
Heff

+ |vk|2]

inserting the values of |uk|2 y |vk|2
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n = n0 +
∑
k 6=0

[(
1

2

εk+Un0

~ωk

+ 1 +
1

2

εk+Un0

~ωk

− 1)
〈
b†kbk

〉
Heff

+
1

2

εk+Un0

~ωk

− 1]

and inserting
〈
b†kbk

〉
Heff

, the Bose distribution evaluated in ~ωk it follows that

n = n0 +
∑
k 6=0

[(
εk+Un0

~ωk

)(
1

eβ~ωk − 1
) +

εk+Un0−~ωk

2~ωk

] (6.26)

In the limit where T = 0 we have β →∞, therefore 1
eβ~ωk−1

→ 0 for all k 6= 0, finding
the density

n = n0 +
∑
k 6=0

[
εk + Un0 − ~ωk

2~ωk

] (6.27)

and for the continuous limit for k we must do
∑

k → V
∫ π
a

−π
a
dk/(2π)d, then

n = n0 + V

∫ π
a

−π
a

εk + Un0 − ~ωk

2~ωk

dk

(2π)d
(6.28)

taking the variable change k = 2π
a

q we find for ε̄k = 2t
∑d

j=1 cos(kja) → ε̄q =

2t
∑d

j=1 cos(2πqj), hence εk = zt − 2t
∑d

j=1 cos(kja) = 2t(d − 2t
∑d

j=1 cos(kja)) =

2t
∑d

j=1[1−cos(kja)]→ εq = 2t
∑d

j=1[1−cos(2πqj)] and it’s clear that ~ωk =
√
εk2+2εkUn0

→
~ωq =

√
εq2+2εqUn0

remains unchanged and the integral is now

n = n0 + V

∫ 1
2

− 1
2

εq + Un0 − ~ωq

2~ωq

dq(
2π

a
)d

1

(2π)d

modifying the integration limits in such a manner that kj = ±π/a and then qj = ±1/2.
Knowing that Ns = V/(ad) then in the end the density will be

n = n0 +
Ns

2

∫ 1
2

− 1
2

(
εq + Un0

~ωq

− 1)dq (6.29)

Given that εq = 2t
∑d

j=1[1 − cos(2πqj)] and, in general, 1 − cos(x) ≤ x2

2
then 1 −

cos(2πqj) ≤
4π2q2

j

2
, and εq ≤ 2t

∑d
j=1 4π2q2

j = 4π2t
∑d

j=1 q
2
j = 4π2|q|2t.

Now, if we take the limit U/t → ∞ the more weighted terms in εq+Un0

~ωk+2εqUn0
are those

including U so

εq + Un0√
~ωk + 2εqUn0

→U
t
→∞

Un0√
2εqUn0

=

√
Un0

2εq

and taking into account that
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εq ≤ 4π2|q|2t

then

√
1

4π2|q|2t
≤

√
1

εq

therfore,

1

2π|q|

√
Un0

2t
≤ εq + Un0√

~ωk + 2εqUn0

.

From this is clear that

1

2π

√
Un0

2t

∫ 1
2

− 1
2

dq

|q|
≤
∫ 1

2

− 1
2

εq + Un0√
~ωk + 2εqUn0

(6.30)

for this tendence of U/t. Calling Id to the result of the integral in the left for d

dimensions and considering that
∫ 1/2

−1/2
dq =

∏d
j=1

∫ 1/2

−1/2
dqj =

∏d
j=1(1/2 + 1/2) = 1 one

may arrive to

n ≈ n0 +
1

2

1

2π

√
Un0

2t
Id −

1

2
= n0 +

1

4π

√
Un0

2t
Id −

1

2
(6.31)

which is a quadratic equation for
√
n0

0 = n0 +
1

2

1

2π

√
Un0

2t
Id −

1

2
− n

whose solution is

√
n0 =

− 1
4π

√
U
2t
Id +

√
1

16π2
U
2t
I2
d + 4(1

2
+ n)

2
,

thus,

n0 =

(
1

2

√
I2
d

16π2

U

2t
+ 4n+ 2− Id

8π

√
U

2t

)2

And note that n0 → 0 if U/t→∞ which is almost the expected behavior. When this
limit is taken it is equivalent to drop the hopping parameter and thus, physically we
expect that the condensate fraction n0/n go to zero for some finite critial value of U/t
since Mott Insulator is a real phase, but judging by equation
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