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Introduction

Differentiable manifolds are the object of study of differential geometry. We can think of
these objects as subsets of Rn smoothly glued together by homeomorphisms. Differentiable
manifolds are generalizations to higher dimensions of curves and surfaces.

To classify differentiable manifolds (and mathematical objects in general) we use equiva-
lence relations. In the case of differentiable manifolds, the equivalence relations can be given
by homeomorphism or diffeomorphisms. Note that diffeomorphic differentiable manifolds
imply that they are homeomorphic. However, having homeomorphic differentiable manifolds
does not imply that they are diffeomorphic. For example, there exist differentiable manifolds
that are homeomorphic to the 7–sphere but not diffeomorphic, these manifolds are called
exotic spheres and they where discovered by Milnor in 1956.

To distinguish two differentiable manifolds we can use topological invariants. A topological
invariant associates to a differentiable manifold M an algebraic object I(M), say a number,
group, vector space, etc. If we have a continuous map f :M −→ N between two differentiable
manifolds M and N , to such f we associate a morphism I(f): I(M) −→ I(N) that preserves
the algebraic structure, say bijection, homomorphism, linear isomorphism, etc; so if two
differentiable manifolds are homeomorphic, then I(M) and I(N) are isomorphic, that is,
I(M) and I(N) are equivalent as algebraic objects. If the reciprocal implication also holds,
that is, if I(M) ∼= I(N) thenM and N are homeomorphic, the topological invariant is called
complete. Topological invariants are used in the following way: if I(M) 6= I(N), then M
and N cannot be homeomorphic, and of course they are not diffeomorphic.

Some examples of topological invariants are:

1. The number of connected components. This is a basic topological invariant.

2. Cohomology associates to a topological space X a family of modules Hk(X) for k ≥
0. There are different cohomology theories which all are isomorphic on “reasonable
spaces”. “Furthermore, in the realm of differentiable manifolds, all these theories co-
incide with the De Rham theory which makes its appearance there and constitutes in
some sense the most perfect example of a cohomology theory. The De Rham theory
is also unique in that it stands at the crossroads of topology, analysis, and physics,
enriching all three disciplines.” 1

De Rham cohomology is defined as follows:
1R. Bott and L. W. Tu. Differential Forms in Algebraic Topology, p. 3 [8].
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2 Introduction

Let M be a differentiable manifold, k be an integer 0 ≤ k ≤ dimM and Ωk(M) be the
real vector space of differentiable k–forms on M . We consider the exterior derivative
d: Ωk(M) −→ Ωk(M) and since d ◦ d = 0 we obtain a complex called the De Rham
complex of M given by

( Ω•(M), d ) : 0 −→ C∞(M) d0−→ Ω1(M) d1−→ . . .
dn−1−→ Ωn(M) −→ 0.

We denote by Hk
DR(M) := Ker dk

Im dk−1
the k–th group of De Rham cohomology with real

coefficients of M .
Note that to define the De Rham cohomology we need the differentiable structure of the
differentiable manifold, however, De Rham showed that if the manifold is differentiable
this cohomology is isomorphic to the singular cohomology, see [8, Cor. 8.9.2] and [39,
Thm. 5.36]. Then De Rham cohomology is only a topological invariant, and not an
invariant of the differentiable structure.

3. The k–th Betti number of M is the dimension of the k–th group of De Rham cohomol-
ogy and it is denoted by βk(M).

4. The Euler characteristic: LetM be a differentiable n–manifold, the Euler characteristic
of M is the alternating sum of its Betti numbers, that is,

χ(M) =
n∑
k=0

(−1)kβk(M).

In the case of connected, closed surfaces, the Euler characteristic is a complete topo-
logical invariant.

There is a relationship between the k–th group of the De Rham cohomology and the
kernel of the Laplace-Beltrami differentiable operator on Ωk(M). Let d? be the adjoint
operator of d. The Laplace-Beltrami operator is the operator �k: Ωk(M) −→ Ωk(M), defined
by �kω = (d+ d?)2ω. This operator is an extension of the classical Laplace on differentiable
functions on Rn.

Hodge theorem says that for all oriented compact Riemannian manifold of dimension
n, a De Rham cohomology class of M can be represented by a unique element of Ker�k,
moreover,

Hk
DR(M) ∼= Ker�k.

Hodge theorem is important in geometric analysis and harmonic analysis, we will use it
constantly.

By Hodge theorem we have βk(M) = dim (Ker�k).
To calculate the k–th Betti number of an orientable, closed differentiable n–manifold we

can use results as the Poincaré duality for De Rham cohomology or De Rham theorem, but
in general it can be difficult. It is possible to give upper bounds to the Betti numbers of M
in terms of critical points of some special differentiable functions: Morse functions.

A differentiable function f :M −→ R is called a Morse function on M if all its critical
points are non-degenerate, that is, the symmetric matrix of second order partial derivatives
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called the Hessian matrix is invertible. Morse functions can be expressed locally as quadratic
polynomials near a critical point (Morse Lemma).

Let f be a Morse function and p be a critical point of f . The index of p respect to f ,
denoted by nf (p), is the number of negative eigenvalues of the Hessian matrix at p. We will
denote by mk the number of critical points of f with index k.

Morse inequalities give upper bounds for the Betti numbers:

Theorem (Morse inequalities). Let M be an oriented, closed Riemannian n–manifold. For
any Morse function on M one has

1. (Weak Morse inequalities) For any 0 ≤ k ≤ n, we have

βk(M) ≤ mk. (1)

2. (Strong Morse inequalities) For any 0 ≤ k ≤ n, we have

βk(M)− βk−1(M) + . . .+ (−1)kβ0(M) ≤ mk −mk−1 + . . .+ (−1)km0. (2)

Moreover, for k = n:

βn(M)− βn−1(M) + . . .+ (−1)nβ0(M) = mn −mn−1 + . . .+ (−1)nm0. (3)

Note that by (7) the Euler characteristic χ(M) of M can be calculated (up to sign) using
the number of critical points of Morse functions.

There are several proofs of this theorem, there is a proof by Marston Morse making use
of the notion of subadditive function, for more details see [25] and [30]. Another proof is
using Morse Homology, see [5]. These proofs of the Morse inequalities are more general than
the one presented here because we need the extra hypothesis of M to be orientable.

The aim of this thesis is to develop the analytic proof of Morse inequalities using the
Witten Deformation given on the paper “Supersymmetry and Morse theory” [40] in 1982.

Witten’s ideas created relationships between analysis, geometry, topology and mathemat-
ical physics. The reader may consult developments or consequences of his ideas in [41], [5],
and [6].

Witten’s proof consists of studying the deformed De Rham complex of M with the de-
formed exterior derivative, we deform d by taking a positive real parameter T and a Morse
function f on M ,

dTfω := exp(−Tf)d exp(Tf)ω, ω ∈ Ωk(M).
The important fact is that the cohomology spaces of De Rham complex and the deformed

De Rham complex are isomorphic seen as vector spaces, therefore the k–th Betti numbers
are the same.

There is an analogue of Hodge Theorem for Hk
Tf,DR(M) the k–th cohomology space of

the deformed the De Rham complex and �Tf, k the deformed Laplace–Beltrami operator,
that is, Hk

Tf,DR(M) ∼= Ker�Tf, k. Hence

βk(M) = dim Ker�Tf, k.
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Thus, it is enough to give bounds for dim Ker�Tf, k.
To do this, let c ∈ R, c > 0 and Aν be the eigenspace of �Tf, k associated to the eigenvalue

ν. We define F[0,c]
Tf, k ⊂ Ω•(M) the direct sum of the the eigenspaces of �Tf, k associated with

eigenvalues in [0, c] with 0 ≤ k ≤ n,

F[0,c]
Tf, k =

⊕
ν∈[0,c]

Aν .

The following theorem is the key to the proof of the Morse inequalities:

Theorem. Let M be an oriented, closed Riemannian n–manifold, 0 < T ∈ R and f :M −→
R be a Morse function. For any 0 < c ∈ R there exist a 0 < T0 ∈ R such that for every
T ≥ T0

dim (F[0, c]
Tf, k) = mk. (4)

Proof of the Morse inequalities:

1. To prove weak Morse inequality (5), we note that A0 ⊂ F[0, c]
Tf, k the eigenspace of �Tf, k

associated to the eigenvalue 0 and Ker (�Tf, k) = A0. By Hodge Theorem and T large
enough such that (8) holds we conclude that βk(M) ≤ dim (F[0, c]

Tf, k) = mk.

2. By Rank–Nullity Theorem we have

mk = dim F[0,c]
Tf, k = dim Ker (dTf |F[0,c]

Tf, k

) + dim Im (dTf |F[0,c]
Tf, k

).

By the dimension of the quotient vector space we have

mk = dim

 Ker dTf
∣∣∣∣F[0,c]
Tf, k

Im dTf

∣∣∣∣F[0,c]
Tf, k−1

+ dim Im
(
dTf |F[0,c]

Tf, k−1

)
+ dim Im

(
dTf |F[0,c]

Tf, k

)

= βk(M) + dim Im (dTf |F[0,c]
Tf, k−1

) + dim Im (dTf |F[0,c]
Tf, k

).

For 0 ≤ l ≤ n, we take alternating the sum of the mk to get

l∑
k=0

(−1)kml−k =
l∑

k=0
(−1)k

(
βl−k(M) + dim Im (dTf |F[0,c]

Tf, l−k−1
) + dim Im (dTf |F[0,c]

Tf, l−k
)
)

=
l∑

k=0
(−1)kβl−k(M) +

l∑
k=0

(−1)kdim Im (dTf |F[0,c]
Tf, l−k−1

)

+
l∑

k=0
(−1)kdim Im (dTf |F[0,c]

Tf, l−k
)

=
l∑

k=0
(−1)kβl−k(M) + dim Im (dTf |F[0,c]

Tf, l

).
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We have the last equality by cancelling the dimensions of the images of the respective
operators and by noticing that dim Im (dTf |F[0,c]

Tf,−1
) = dim 0 = 0.

In particular, for all 0 ≤ l ≤ n, we have
l∑

k=0
(−1)kβl−k(M) ≤

l∑
k=0

(−1)kml−k.

This proves the inequality (6).

3. For l = n, since Im (dTf |F[0,c]
Tf, n

) = 0 we get

n∑
k=0

(−1)kmn−k =
n∑
k=0

(−1)kβn−k(M).

Then the equality (7) is proved.

Outline:
In Chapter 1 we define the De Rham complex and the k–th group of De Rham cohomology.

We will present some relevant results of this cohomology, for example: De Rham Theorem,
Poincaré duality for De Rham cohomology and Mayer-Vietoris Theorem. We do the explicit
calculations to obtain the k–th groups of De Rham cohomology of some surfaces.

Chapter 2 presents preliminaries of Morse theory. It shows that Morse functions are
characterized by locally being quadratic polynomials and we will describe their critical points.
This include figures to illustrate examples of Morse functions. We enunciate the Morse
inequalities.

In Chapter 3 we proceed with the study of differentiable operators d?,�k. Also, it contains
the proof of Hodge theorem which tells us that Hk

DR(M) ∼= Ker�k.
In Chapter 4 we study connections on vector bundles and Clifford algebras which in

Chapter 6 we will use to do an explicit description of the deformed operator �Tf, k.
In Chapter 5 we present the Witten deformation of the exterior derivative and we define

the corresponding deformed operator �Tf, k. The main result in this Chapter is that the
cohomology spaces Hk

DR(M) of De Rham complex and Hk
Tf,DR(M) the deformed De Rham

complex are isomorphic, that is,

Hk
DR(M) ∼= Hk

Tf,DR(M).

In Chapter 6 we compute a local description of the deformed Laplace-Beltrami operator
on differentiable k–forms.

In chapter 7 we describe the eigenspaces of the deformed Laplace-Beltrami operator on
differentiable k–forms.

In Chapter 8 we prove the Morse inequalities.
Also four appendices are included, we recall notions and results for the following topics:

Multilinear Algebra, Differential Geometry, Vector bundles and Functional Analysis.
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Introducción

Las variedades diferenciables son el objeto de estudio de la geometría diferencial. Podemos
pensar estos objetos como subconjuntos de Rn suavemente pegados por homeomorfismos. Las
variedades diferenciables son las generalizaciones a altas dimensiones de curvas y superficies.

Para clasificar variedades diferenciables (y objetos matemáticos en general) usamos rela-
ciones de equivalencia. En el caso de variedades diferenciables, las relaciones de equivalencia
pueden estar dadas por homeomorfismos o difeomorfismos. Notar que variedades diferencia-
bles difeomorfas implica que son homeomorfas. Sin embargo, tener variedades diferenciables
homeomorfas no implica que sean difeomorfas. Por ejemplo, existen variedades diferencia-
bles que son homeomorfas a la 7–esfera pero no son difeomorfas, estas variedades se llaman
esferas exóticas y fueron descubiertas por Milnor en 1956.

Para distinguir dos variedades diferenciables podemos usar invariantes topológicos. Un
invariante topológico asocia a una variedad diferenciable M un objeto algebraico I(M),
digamos un número, grupo, espacio vectorial, etc. Si tenemos una aplicación continua
f :M −→ N entre dos variedades diferenciables M y N , a tal f le asociamos un morfismo
I(f): I(M) −→ I(N) que preserva la estructura algebraica, digamos biyección, homomor-
fismo, isomorfismo lineal, etc; así si dos variedades diferenciables son homeomorfas entonces
I(M) y I(N) son isomorfas, es decir, I(M) y I(N) son equivalentes como objetos algebraicos.
Si la implicación recíproca también se cumple, es decir, si I(M) ∼= I(N) entonces M y N
son homeomorfas, el invariante topológico es llamado completo.

Los invariantes topológicos son usados de la siguiente manera: si I(M) 6= I(N), entonces
M y N no pueden ser homeomorfos, y por supuesto las variedades no son difeomorfas.

Algunos ejemplos de invariantes topológicos son:

1. El número de componentes conexas. Este es un invariante topológico básico.

2. La cohomología asocia a un espacio topológico X una familia de módulos Hk(X) para
k ≥ 0. Existen diferentes teorías de cohomología las cuales son todas isomorfas sobre
“espacios razonables”. “Más aún, en el reino de las variedades diferenciables, todas estas
teorías coinciden con la teoría de De Rham que hace su aparición allí y constituye en
algun sentido el ejemplo más perfecto de una teoría cohomológica. La teoría de De
Rham es también única porque se encuentra en la intersección de la topología, el análisis
y la física, enriqueciendo a las tres disciplinas..” 2

La cohomología de De Rham es definida como sigue:
2R. Bott and L. W. Tu. Differential Forms in Algebraic Topology, pág. 3 [8].
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Sea M una variedad diferenciable, k un entero 0 ≤ k ≤ dimM y Ωk(M) es el espacio
vectorial real de k–formas diferenciables sobre M . Consideramos la derivada exterior
d: Ωk(M) −→ Ωk(M) y dado que d◦d = 0 obtenemos un complejo llamado el complejo
De Rham de M dado por

( Ω•(M), d ) : 0 −→ C∞(M) d0−→ Ω1(M) d1−→ . . .
dn−1−→ Ωn(M) −→ 0.

Denotamos por Hk
DR(M) := Ker dk

Im dk−1
el k–ésimo grupo de cohomología de De Rham con

coeficientes reales sobre M .
Notar que para definir la cohomología De Rham cohomology necesitamos la estructura
diferenciable de la variedad diferenciable, sin embargo, De Rham mostró que si la
variedad es diferenciable esta cohomología es isomorfa a la cohomología singular, ver [8,
Cor. 8.9.2] y [39, Teo. 5.36]. Entonces la cohomología De Rham es sólo un invariante
topológico, y no un invariante de la estructura diferenciable.

3. El k–ésimo número de Betti deM es la dimensión de el k–ésimo grupo de la cohomología
De Rham y es denotado por βk(M).

4. La característica de Euler: Sea M una n–variedad diferenciable, la característica de
Euler de M es la suma alternada de sus números de Betti, es decir,

χ(M) =
n∑
k=0

(−1)kβk(M).

En el caso de superficies conexas cerradas, la característica de Euler es un invariante
topológico completo.

Existe una relación entre el k–ésimo grupo de cohomología de De Rham y el kernel del
operador diferenciable Laplace-Beltrami sobre Ωk(M). Sea d? el operador adjunto de d. El
operador Laplace-Beltrami es el operador �k: Ωk(M) −→ Ωk(M), definido por �kω = (d +
d?)2ω. Este operador es una extension del Laplaciano clásico sobre funciones diferenciables
sobre Rn.

El teorema de Hodge dice que para toda variedad Riemanniana compacta, orientada de
dimensión n, una clase de cohomología De Rham de M puede ser representada por un único
elemento de Ker�k, más aún,

Hk
DR(M) ∼= Ker�k.

El teorema de Hodge es importante en el análisis geométrico y el análisis armónico, lo
usaremos constantemente.

Por el teorema de Hodge tenemos βk(M) = dim (Ker�k).
Para calcular el k–ésimo número de Betti de una n–variedad diferenciable cerrada y

orientada podemos usar resultados como la dualidad de Poincaré para la cohomología de
De Rham o el teorema de De Rham, pero en general esto puede ser difícil. Es posible dar
cotas superiores de los números de Betti de M en términos de los puntos críticos de algunas
funciones diferenciables especiales: funciones de Morse.
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Una función diferenciable f :M −→ R es llamada función de Morse sobre M si todos
sus puntos criticos son no degenerados, es decir, la matriz simétrica de derivadas parciales
de segundo orden llamada la matriz Hessiana es invertible. Las funciones de Morse pueden
ser expresadas localmente como polinomios cuadráticos cerca de un punto crítico (Lema de
Morse).

Sea f una función de Morse y p un punto crítico de f . El índice de p respecto a f ,
denotado por nf (p), es el número de eigenvalores negativos de la matriz Hessiana en p.
Denotaremos por mk el número de puntos críticos de f con índice k.

Las desigualdades de Morse dan cotas superiores para los números de Betti:

Theorem (Desigualdades de Morse). Sea M una n–variedad Riemanniana cerrada y orien-
tada. Para cualquier función de Morse sobre M uno tiene:

1. (Desigualdad de Morse débil) Para cualquier 0 ≤ k ≤ n, tenemos

βk(M) ≤ mk. (5)

2. (Desigualdades de Morse fuertes) Para cualquier 0 ≤ k ≤ n, tenemos

βk(M)− βk−1(M) + . . .+ (−1)kβ0(M) ≤ mk −mk−1 + . . .+ (−1)km0. (6)

Más aún, para k = n:

βn(M)− βn−1(M) + . . .+ (−1)nβ0(M) = mn −mn−1 + . . .+ (−1)nm0. (7)

Notar que por la igualdad (7) la característica de Euler χ(M) de M puede ser calculada
(salvo un signo) usando el número de puntos críticos de funciones de Morse.

Hay varias pruebas de este teorema, hay una prueba por Marston Morse que hace uso
de la noción de función subaditiva, para más detalles ver [25] y [30]. Otra prueba es usando
homología de Morse, ver [5]. Estas pruebas de las desigualdades son más generales a la que
presentaremos aquí ya que necesitamos la hipótesis extra sobre M de ser orientable.

El objetivo de esta tesis es desarrollar la prueba analítica de las desigualdades de Morse
usando la Deformación de Witten dada en el artículo “Supersymmetry and Morse theory” [40]
en 1982.

Las ideas deWitten crearon relaciones entre análisis, geometría, topología y física matemática.
El lector puede consultar desarrollos o consecuencias de sus ideas en [41], [5], y [6].

La demostración de Witten consiste en estudiar el complejo de De Rham deformado de
M con la derivada exterior deformada, deformamos d tomando un parámetro real positivo
T y una función de Morse f sobre M ,

dTfω := exp(−Tf)d exp(Tf)ω, ω ∈ Ωk(M).

El hecho importante es que los espacios de cohomología del complejo de De Rham y
el complejo de De Rham deformado son isomorfos vistos como espacios vectoriales, por lo
tanto, los k–ésimos números Betti son los mismos.
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Hay un análogo del Teorema de Hodge para Hk
Tf,DR(M) el k–ésimo espacio de coho-

mología del complejo de De Rham deformado y �Tf, k el operador Laplace–Beltrami defor-
mado, es decir, Hk

Tf,DR(M) ∼= Ker�Tf, k. Entonces

βk(M) = dim Ker�Tf, k.

Por lo tanto, es suficiente dar cotas para dim Ker�Tf, k.
Para ello, sea c ∈ R, c > 0 y Aν el eigenespacio de �Tf, k asociado al eigenvalor ν. Defin-

imos F[0,c]
Tf, k ⊂ Ω•(M) la suma directa de los eigenspacios de �Tf, k asociado con eigenvalues

en [0, c] con 0 ≤ k ≤ n,

F[0,c]
Tf, k =

⊕
ν∈[0,c]

Aν .

El siguiente teorema es la clave para la demostración de las desigualdades de Morse:

Theorem. Sea M una n–variedad Riemanniana cerrada y orientada, 0 < T ∈ R y f :M −→
R una función de Morse. Para cualquier 0 < c ∈ R existe un 0 < T0 ∈ R tal que para
cualquier T ≥ T0

dim (F[0, c]
Tf, k) = mk. (8)

Prueba de las desigualdades de Morse:

1. Para probar la desigualdad de Morse débil (5), notemos que A0 ⊂ F[0, c]
Tf, k el eigenspacio

de �Tf, k asociado al eigenvalor 0 y Ker (�Tf, k) = A0. Por el teorema de Hodge, para T
lo suficientemente grande tal que (8) se cumpla, concluimos que βk(M) ≤ dim (F[0, c]

Tf, k) =
mk.

2. Por el teorema de Rango–Nulidad tenemos

mk = dim F[0,c]
Tf, k = dim Ker (dTf |F[0,c]

Tf, k

) + dim Im (dTf |F[0,c]
Tf, k

).

Por la dimensión del espacio vectorial cociente tenemos

mk = dim

 Ker dTf
∣∣∣∣F[0,c]
Tf, k

Im dTf

∣∣∣∣F[0,c]
Tf, k−1

+ dim Im
(
dTf |F[0,c]

Tf, k−1

)
+ dim Im

(
dTf |F[0,c]

Tf, k

)

= βk(M) + dim Im (dTf |F[0,c]
Tf, k−1

) + dim Im (dTf |F[0,c]
Tf, k

).

Para 0 ≤ l ≤ n, tomamos la suma alternada de los mk para obtener

l∑
k=0

(−1)kml−k =
l∑

k=0
(−1)k

(
βl−k(M) + dim Im (dTf |F[0,c]

Tf, l−k−1
) + dim Im (dTf |F[0,c]

Tf, l−k
)
)

=
l∑

k=0
(−1)kβl−k(M) +

l∑
k=0

(−1)kdim Im (dTf |F[0,c]
Tf, l−k−1

)
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+
l∑

k=0
(−1)kdim Im (dTf |F[0,c]

Tf, l−k
)

=
l∑

k=0
(−1)kβl−k(M) + dim Im (dTf |F[0,c]

Tf, l

).

Tenemos la última igualdad cancelando las dimensiones de las imágenes de los respec-
tivos operadores y notando que dim Im (dTf |F[0,c]

Tf,−1
) = dim 0 = 0.

En particular, para toda 0 ≤ l ≤ n, tenemos

l∑
k=0

(−1)kβl−k(M) ≤
l∑

k=0
(−1)kml−k.

Esto demuestra la desigualdad (6).

3. Para l = n, dado que Im (dTf |F[0,c]
Tf, n

) = 0 obtenemos

n∑
k=0

(−1)kmn−k =
n∑
k=0

(−1)kβn−k(M).

Entonces la igualdad (7) es probada.

Esquema:
En el Capítulo 1 definimos el complejo de De Rham y el k–ésimo grupo de cohomología de

De Rham. Presentaremos algunos resultados relevantes de esta cohomología, por ejemplo:
el Teorema de De Rham, la dualidad de Poincaré para la cohomología de De Rham y el
Teorema de Mayer-Vietoris. Hacemos los cálculos explícitos para obtener los k–ésimos grupos
de cohomología de De Rham de algunas superficies.

El capítulo 2 presenta los preliminares de la teoría de Morse. Muestra que las funciones
de Morse estan caracterizadas por ser localmente polinomios cuadráticos y describiremos sus
puntos críticos. Este incluye figuras para ilustrar ejemplos de funciones Morse. Enunciamos
las desigualdades de Morse.

En el Capítulo 3 procedemos con el estudio de los operadores diferenciables d?,�k.
Además, contiene la prueba del teorema de Hodge que nos dice que Hk

DR(M) ∼= Ker�k.
En el Capítulo 4 estudiamos conexiones sobre haces vectoriales y álgebras de Clifford que

en el Capítulo 6 usaremos para hacer una descripción explícita del operador deformado �Tf, k.
En el Capítulo 5 presentamos la deformación de Witten de la derivada exterior y definimos
el operador deformado correspondiente �Tf, k. El principal resultado de este capítulo es que
los espacios de cohomología Hk

DR(M) del complejo De Rham y Hk
Tf,DR(M) el complejo de

De Rham deformado son isomorfos, es decir,

Hk
DR(M) ∼= Hk

Tf,DR(M).



En el Capítulo 6 calculamos una descripción local del operador deformado de Laplace-
Beltrami en k–formas diferenciables.

En el capítulo 7 describimos los eigenespacios del operador deformado de Laplace-Beltrami
en k–formas diferenciables.

En el Capítulo 8 demostramos las desigualdades de Morse.
También se incluyen cuatro apéndices, recordamos nociones y resultados para los sigu-

ientes temas: Álgebra multilineal, Geometría diferencial, Haces vectoriales y Análisis fun-
cional.



Chapter 1

De Rham cohomology

The objective of this chapter is to describe the De Rham cohomology. One can consult
books [18], [37], [31] and [24].

1.1 Tangent space and tangent bundle
Let M be a differentiable manifold and p ∈M be a point, we will denote by C∞p (M) the set
of all differentiable germs of φ:M −→ R, (see Definitions B.2.1 and B.2.4).

The tangent space at the point p is the real vector space of derivations of the algebra
C∞p (M), that is, X:C∞(M) −→ R which satisfies the Leibniz rule, (see B.2.5),

X(φ ◦ ψ) = X(φ) ◦ ψ(p) + φ(p) ◦X(ψ). (1.1)

This space is denoted by TpM .
The readers interested in these notions, see section B.2 in particular definition B.2.6.
Let TM be the tangent bundle of M whose fibers are the tangent spaces at each point,

(see example C.1.3). A differentiable section of the tangent bundle TM of M is called a
vector field, see Definition C.0.9.

Analogously, we have T ∗M the cotangent bundle of M whose fibers are the cotangent
spaces of M , (see example C.1.5), the vector spaces dual to the tangent space TpM . The
sections of T ∗M are called 1-forms.

For more details on vector bundles see the Appendix C.

1.2 Differentiable forms on M

In this section we will define differentiable k–forms, that is, differentiable sections of the k–th
exterior power of the cotangent bundle, (see example C.1.6).

First, we give a characterization of differentiable 1-forms.

13
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Let M be a differentiable manifold and (U,ϕ) = (U, x1, . . . , xn) be a chart on M , the
value of the 1-form ω at p ∈ U is a linear combination

ω(p) =
n∑
i=1

ai(p)(dxi)p.

As p varies in U , the coefficients ai become functions on U .
We will extend the definition of the support of a function to k–forms as follows.

Definition 1.2.1. Let M be a differentiable manifold, we define the support of a k–form ω
to be

suppω = {p ∈M |ω(p) 6= 0}.

Definition 1.2.2. If f is a differentiable function on a differentiable manifold M , its differ-
ential is defined to be the 1–form df on M such that for any p ∈M and Xp ∈ TpM ,

(df)p(Xp) = Xpf.

Where Xp is a derivation (see Definition B.2.5), making abuse of notation Xpf denote
Xpfp with f ∈ C∞p (M).

Proposition 1.2.3 (Linearity of a 1–form over functions). Let ω be a 1–form on a differ-
entiable manifold M . If f is a differentiable function and X is a vector field on M , then
ω(fX) = fω(X).

Proof. At each point p ∈ M , since ω(X) is defined pointwise, and at each ω(p) is R–linear
in its argument:

ω(fX)(p) = ω(p)(f(p)Xp) = f(p)ω(p)(Xp) = (fω(X))(p).

�
The objective now is to generalize the construction of 1–forms on a differentiable manifold

to k–forms.
We apply the construction of exterior algebra to the tangent space TpM of a differentiable

manifold M at a point p.
The k-th exterior power bundle of T ∗M is the vector bundle over M with fibers ΛkT ∗pM

over p ∈ M , denoted by ΛkT ∗M . The fiber ΛkT ∗pM at a point p ∈ M is isomorphic to the
vector space of all alternating k–forms on the tangent space TpM, see Remark A.3.33.

A k–form on a differentiable manifoldM is a section ω of the vector bundle ΛkT ∗M . The
space of sections of ΛkT ∗M is denoted by Ωk(M) = Γ(ΛkT ∗M).

Suppose (U, x1, . . . , xn) is a chart on a differentiable manifoldM , we know that dx1, . . . , dxn
are 1–forms on U . Since at each point p ∈ U, (dx1)p, . . . , (dxn)p is a basis for T ∗pM , then a
basis for ΛkT ∗pM is the set

(dxi1)p ∧ . . . ∧ (dxik)p, 1 ≤ i1 < . . . < ik ≤ n.
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Let
Jk,n = {I = (i1, . . . , ik)|1 ≤ i1 < . . . < ik ≤ n} (1.2)

be the set of all strictly ascending multiindices between 1 and n of length k and let dxI
denote dxi1 ∧ . . . ∧ dxik . Thus, locally a k–form on U can be written as

ω =
∑

I∈Jk,n
aIdxI

where the aI are functions on U .
Proposition 1.2.4 ([37, Prop. 18.7]). Let M be a differentiable manifold, let ω be a k–form
on M . The following affirmations are equivalent:

1. The k–form ω is differentiable on M .

2. For every chart (U, x1, . . . , xn) on M , the coefficients aI of ω = ∑
aIdxI relative to the

local frame {dxI}I∈Jk,n are all differentiable.

3. For any k vector fields X1, . . . , Xk on M , the function ω(X1, . . . , Xk) is differentiable
on M .

Remark 1.2.5. Let M be a differentiable manifold, the set of differentiable forms is en-
dowed with a wedge product induced by the wedge product of alternating multilinear maps,
(see A.3.41). The pointwise wedge product of differentiable forms on M is given as follows:
let ω be a k–form and η be an l–form on M , their wedge product ω ∧ η ∈ Λ•T ∗M is the
(k + l)–form on M such that

(ω ∧ η)(p) = ω(p) ∧ η(p)
at all p ∈M .
Proposition 1.2.6. If ω and η are differentiable forms on a differentiable manifold M , then
ω ∧ η is also differentiable.

Proof. Let (U, x1, . . . , xn) be a chart on a differentiable M . On U we have:

ω =
∑

I∈Jk,n
aIdxI and η =

∑
J∈Jl,n

bJdxJ ,

where aI , bJ ∈ C∞(U), then

ω ∧ η =
 ∑
I∈Jk,n

aIdxI

 ∧
 ∑
J∈Jl,n

bJdxJ


=

∑
J∈Jl,n

∑
I∈Jk,n

aIbJdxI ∧ dxJ .

In the sum, dxI ∧ dxJ = 0 if I and J have an index in common. If I and J are disjoint then
dxI ∧ dxJ = ±dxK where K = I ∪ J but reordered as an increasing multiindex. Thus,

ω ∧ η =
∑

K∈Jk+l,n

±aIbJdxK .
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Since the coefficients of dxK are differentiable functions on U , by the Proposition 1.2.4, ω∧η
is differentiable.

�
LetM be a differentiable manifold, the set of all the differentiable forms onM is denoted

by Ω•(M), this is an anticommutative algebra over C∞(M) with the wedge product.

1.2.1 Pullback of k–forms
Let us see how to pull differentiable forms from one manifold to another. Let f :M −→ N be
a differentiable function and φ ∈ C∞(N), the pullback f ∗φ is the composition f ∗φ = φ ◦ f ∈
C∞(M).

First, let any k ≥ 1, we consider T :V −→ W a linear map of vector spaces. It induces a
pullback map

T ∗: ΛkW ∗ −→ ΛkV ∗,

(T ∗η)(v1, . . . , vk) = η(T (v1), . . . , T (vn)),

for η ∈ ΛkW ∗ and v1, . . . , vk ∈ V . Let f :M −→ N be a differentiable function, at each
point p ∈ M , the differential Dpf :TpM −→ Tf(p)N is a linear map of tangent spaces, see
definition B.2.7. There is a pullback map

f ∗p : ΛkT ∗f(p)N −→ ΛkT ∗pM.

Thus, let ω(f(p)) ∈ ΛkT ∗f(p)N , then its pullback f ∗(ω(f(p))) ∈ ΛkT ∗pM given by

f ∗(ω(f(p)))(X1, . . . , Xk) = ω(f(p))(DpfX1, . . . , DpfXk)

for all Xi ∈ TpM. Now, if ω ∈ Ωk(N), then its pullback f ∗ω ∈ Ωk(M) defined pointwise by
(f ∗ω)p = f ∗(ω(f(p))) for all p ∈M . Equivalently,

(f ∗ω)(p)(X1, . . . , Xk) = ω(f(p))(Dpf(X1), . . . , Dpf(Xk)). (1.3)

1.3 Exterior derivative
Now, we want to extend the differential of differentiable functions to differentiable k–forms.
Definition 1.3.1. Let M be a differentiable manifold and k = 0, 1, . . . , dimM . We define a
linear map d: Ωk(M) −→ Ωk+1(M) called the exterior derivative by

d(fdxi1 ∧ . . . ∧ dxik) =
n∑
i=1

∂f

∂xi
dxi ∧ dxi1 ∧ . . . ∧ dxik f ∈ C∞(M), (1.4)

and extended by linearity to all of Ωk(M).
We have the following fundamental result.
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Theorem 1.3.2. LetM be a differentiable manifold and the exterior derivative d: Ω•(M) −→
Ω•+1(M) of (1.4), then d satisfies:

1. If ω ∈ Ωk(M) and η ∈ Ωl(M), then
d(ω ∧ η) = dω ∧ η + (−1)degωω ∧ dη.

Then d is of degree 1, that is deg dω = degω + 1.

2. (d ◦ d)ω = 0, for all ω ∈ Ω•(M).

3. If f is a differentiable function and X a vector field on M , then (df)(X) = Xf.

Proof. Let (U, x1, . . . , xn) be a chart on a differentiable manifold M .
1. By linearity of d, we consider ω = fdxi1 ∧ . . . ∧ dxik and η = gdxj1 ∧ . . . ∧ dxjr , with
f, g ∈ C∞(U). We set for simplicity

dxI = dxi1 ∧ . . . ∧ dxik and dxJ = dxj1 ∧ . . . ∧ dxjr .

Since ω ∧ η = fgdxI ∧ dxJ , by product rule of differentiable functions and anticommu-
tativity of the wedge product of forms we have

d(ω ∧ η) =
n∑
r=1

∂fg

∂xr
dxr ∧ dxI ∧ dxJ

=
n∑
r=1

(
g
∂f

∂xr
+ f

∂g

∂xr

)
dxr ∧ dxI ∧ dxJ

=
n∑
r=1

g
∂f

∂xr
dxr ∧ dxI ∧ dxJ +

n∑
r=1

f
∂g

∂xr
dxr ∧ dxI ∧ dxJ

=
(

n∑
r=1

∂f

∂xr
dxr ∧ dxI

)
∧ gdxJ + (−1)kfdxI

(
n∑
r=1

∂g

∂xr
dxr ∧ dxJ

)
= dω ∧ η + (−1)degωω ∧ dη.

2. By linearity of d, it suffices to check the asserted identity on forms of the type:
ω = fdxi1 ∧ . . . ∧ dxik , f ∈ C∞(U).

By definition of d, 1.3.1, then

dω =
n∑
j=1

∂f

∂xj
dxj ∧ dxi1 ∧ . . . ∧ dxik .

d(dω) =
n∑
l=1

n∑
j=1

∂2f

∂xl∂xj
dxl ∧ dxj ∧ dxi1 ∧ . . . ∧ dxik

=
∑
l<j

∂2f

∂xl∂xj
dxl ∧ dxj ∧ dxi1 ∧ . . . ∧ dxik −

∑
l>j

∂2f

∂xl∂xj
dxj ∧ dxl ∧ dxi1 ∧ . . . ∧ dxik

+
n∑
l=j

∂2f

∂2xl
dxl ∧ dxl ∧ dxi1 ∧ . . . ∧ dxik

= 0.
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3. Let X ∈ Γ(TM) be a vector field, then X =
n∑
i=1

gi
∂
∂xi

with gi ∈ C∞(U). By defini-
tion 1.2.2, we obtain

df(X) =
n∑
i=1

∂f

∂xi
gi =

n∑
i=1

gi
∂f

∂xi
.

�

Theorem 1.3.3 ([24, Thm. 3.7]). Let M be a differentiable manifold, there is precisely one
linear map d: Ωk(M) −→ Ωk+1(M), such that it satisfies the properties of the Theorem 1.3.2.

Corollary 1.3.4 ([18, Cor. 2.1.2]). d is independent of the choice of charts.

In section 4.2 we will see that we can express d in other ways.

1.4 De Rham cohomology
Now, the objective is to define the De Rham cohomology and describe some results and
examples.

Definition 1.4.1. Let us consider the vector space {Ωk(M)}nk=0 of differentiable forms on
a differentiable manifold M of dimension n together with the exterior derivative d, the De
Rham complex of M is the complex defined by

( Ω•(M), d ) : 0 −→ C∞(M) d0−→ Ω1(M) d1−→ . . .
dn−1−→ Ωn(M) −→ 0. (1.5)

Where by Theorem 1.3.2-2. dn+1 ◦ dn = 0.

Definition 1.4.2. Let M be a differentiable manifold, a differentiable k–form ω ∈ Ωk(M) is
said to be a closed k–form if dω = 0. A differentiable k–form β ∈ Ωk(M) is an exact k–form
if β = dτ for some form τ ∈ Ωk−1(M).

The vector space of all closed k–forms is denoted by Zk(M); and the vector space of all
exact k–forms on M is denoted by Bk(M). Since d ◦ d = 0, (see Theorem 1.3.2-2.), every
exact form is closed but not every closed form is exact, then Bk(M) is a subspace of Zk(M),

Definition 1.4.3. Let M be a differentiable manifold, for all k ∈ Z, with 0 ≤ k ≤ dimM
the k–th group of De Rham cohomology with real coefficients of M is defined by the quotient
vector space

Hk
DR(M,R) := Zk(M)

Bk(M) = Ker dk
Im dk−1

. (1.6)

We shall simply write Hk
DR(M).

We have an equivalence relation given by the quotient Zk(M)
Bk(M) on Zk(M), as follows:

ω′ ∼ ω in Zk(M) if and only if ω′ − ω ∈ Bk(M).
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The equivalence class of a closed form ω is called its cohomology class and denoted by
[ω]. Also, two closed forms ω and ω′ determine the same cohomology class if and only if they
differ by an exact form ω′ = ω + dβ. In this case, we say that two closed forms ω and ω′ are
cohomologous.

Proposition 1.4.4. If the differentiable manifold M has r connected components, then the
0–th group of De Rham cohomology is H0

DR(M) = Rr.

Proof. Let M be a differentiable manifold.
By complex (1.5) and definition 1.4.2, there are no nonzero exact 0–forms, then by

definition (1.6) H0
DR(M) = Z0(M).

Let (U, x1, . . . , xn) be any chart on M and f ∈ Z0(M), that is, f ∈ C∞(M) such that
df = 0. We have

df =
n∑
i=1

∂f

∂xi
dxi.

Since f ∈ Z0(M), df = 0 on U if and only if all the partial derivatives ∂f
∂xi

vanish identically
on U . This is equivalent to f be locally constant on U .

Let Ci be a connected component of M , then M =
r⋃
i=1

Ci.
Let U, V ⊂ Ci such that U ∩V 6= ∅, since f is locally constant f |U∩V = f |U = f |V , we set

f :Ci −→ R defined by f(p) = ci for some ci ∈ R, the same for each connected component
Ci, with i = 1, . . . , r.

If M has r connected components, then a closed 0–form is a constant differentiable
function on the connected components, which can be specified by (c1, . . . , cr) ∈ Rr. Therefore
H0

DR(M) = Z0(M) = Rr.
�

Proposition 1.4.5. Let M be a differentiable manifold of dimension n, then the k–th group
of De Rham cohomology Hk

DR(M) = 0 for k > n.

Proof. At any point p ∈ M , the tangent space TpM is a vector space of dimension n.
Let ω ∈ Ωk(M), then ω(p):TpM × . . . × TpM −→ R is a k–multilinear map on TpM by
Proposition A.3.31 if k > n, then ΛkTpM = 0. Hence, M ∼= M×{0}, that is, M is the trivial
bundle of rank 0. Then for k > n, the only k–form on M is the zero form. �

Let M be a differentiable manifold of dimension n, the total De Rham cohomology of M
is given by

H•DR(M) =
n⊕
k=0

Hk
DR(M).

We consider the wedge product of differentiable forms, (see Remark 1.2.5), it induces a
product on H•DR(M) in the following way: let x ∈ Hk

DR(M) and y ∈ Hl
DR(M) be represented

by closed forms ω ∈ Zk(M), β ∈ Z l(M) respectively, then we set

xy = [ω] ∧ [β] = [ω ∧ β] ∈ Hk+l
DR (M).
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Lemma 1.4.6. The product
xy = [ω ∧ β] ∈ Hk+l

DR (M)

is well defined.

Proof. Let x ∈ Hk
DR(M) and y ∈ Hl

DR(M) be represented by closed forms ω ∈ Zk(M), β ∈
Z l(M) respectively. Since ω and β are closed forms, then

d(ω ∧ β) = (dω) ∧ β + (−1)kω ∧ dβ = 0

The ω ∧ β is a closed k + l–form.
Let us see that xy does not depend of ω and β. Assume that ω′ = ω + dα, β′ = β + dη,

by Theorem 1.3.2-1. and by linearity of d then

ω′ ∧ β′ = (ω + dα) ∧ (β + dη)
= ω ∧ β + dα ∧ β + ω ∧ dη + dη ∧ dη
= ω ∧ β + d(α ∧ β) + (−1)kd(ω ∧ η) + d(α ∧ dη)
= ω ∧ β + d((−1)kω ∧ η + α ∧ β + α ∧ dη).

Then ω′ ∧ β′ and ω ∧ β are cohomologous.
Hence the product xy is determined independently of the choice of closed forms repre-

senting x, y. �
Also, by Proposition A.3.44 we have: yx = (−1)klxy.
An element ω ∈ H•DR(M) is a finite sum of cohomology classes in Hk

DR(M) for several
k ∈ {0, . . . , n}:

ω = ω0 + . . . + ωk ∈ H•DR(M).

This is similar to operating with polynomials, except that the multiplication operation is
the wedge product. Then under addition and multiplication, H•DR(M) is a ring, called the co-
homology ring ofM . Also, since the wedge product of differentiable forms is anticommutative
then the ring is anticommutative.

Note that the ring H•DR(M) has a natural grading by the degree of a closed form.
Then, H•DR(M) is an anticommutative graded algebra.
A priori, the spaces Hk

DR(M) may be infinite dimensional. The number dim (Hk
DR(M)),

denoted by βk(M), is called the k–th Betti number of M .
For each integer k ≥ 0, we denote by Hk

Sing(M) the k–th group of singular cohomology
with real coefficients, see the section The Classical Cohomology Theories in [39], [12] and
[16].

Theorem 1.4.7 (De Rham, [8, Cor. 8.9.2] and [39, Thm. 5.36]). Let M be a compact
differentiable manifold, then for any integer k with 0 ≤ k ≤ dimM,

1. βk(M) < +∞.

2. Hk
DR(M) is canonically isomorphic to Hk

Sing(M).
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Remark 1.4.8. Since the De Rham cohomology of a differentiable manifold is defined using
differentiable forms, it would seem to depend significantly on the differentiable structure of
M . However, in reality, it is determined only by properties of M as a topological space. The
De Rham theorem expresses this fact concretely.
Theorem 1.4.9 (Homotopic invariance, [33, Thm. 1.44]). If M and N are smoothly homo-
topy equivalent manifolds, then Hk

DR(M) = Hk
DR(N).

Theorem 1.4.10 (Poincaré duality for De Rham cohomology, [33, Thm. 1.48]). Let M be
a compact, connected, oriented differentiable n–manifold, then Hk

DR(M) ∼= Hn−k
DR (M).

If k = 0, by Proposition 1.4.4 and Theorem 1.4.10 we have:
Corollary 1.4.11. Let M be a compact, connected, oriented differentiable n–manifold, then
dim (Hn

DR(M)) = 1.

1.4.1 Computation of the De Rham cohomology
To understand the De Rham complex and the information obtained in De Rham cohomology
groups we will compute some examples.
Example 1.4.12 (De Rham cohomology of the real line.). Since the real line R1 is connected,
by Proposition 1.4.4

H0
DR(R1) = R.

For dimensional reasons, on R1 there are no nonzero differentiable 2–forms. This implies
that every differentiable 1–form on R1 is closed. A differentiable 1-form f(x)dx on R1 is
exact if and only if there is a differentiable function g(x) on R1 such that

f(x)dx = dg = g′(x)dx,
where g′(x) is the derivative of g with respect to x. Such a function g(x) is simply an
antiderivative of f(x), for example

g(x) =
∫ x

0
f(t)dt.

This proves that every differentiable 1–form on R1 is exact. Therefore, H1
DR(R1) = 0 and by

Proposition 1.4.5 we have
Hk

DR(R1) =
{R for k = 0

0 for k ≥ 1. (1.7)

Example 1.4.13 (The cohomology of the Circle). Cover the circle S1 with two open arcs U
and V , the intersection U ∩V is the disjoint union of two open arcs, which we call A and B.

Since S1 is connected, by Proposition 1.4.4 H0
DR(S1) = R.

We know that S1 is a compact, connected, oriented differentiable manifold of dimension
1, by Corollary 1.4.11, H1

DR(S1) = R, and by Proposition 1.4.5, Hk
DR(S1) = 0 for k > 1.

Therefore, we have
Hk

DR(S1) =
{
R if k = 1, 0
0 otherwise. (1.8)

Then β0(S1) = 1 and β1(S1) = 1.
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The Mayer-Vietoris Sequence

In the example of the cohomology of the real line R1 we can see that calculating the co-
homology of a differentiable manifold by solving a given system of differential equations on
the manifold and, in case it is not solvable, perhaps we find obstructions to its solvability.
This is usually quite difficult to do directly. We introduce one of the most useful tools in the
calculation of de Rham cohomology, the Mayer–Vietoris sequence.

LetM be a differentiable manifold and {Uα, ϕα}α∈Λ be an open cover ofM , let ιU :U →M
be the inclusion map give by ιU(p) = p where p ∈ U . Then the pullback

ι∗U : Ωk(M) −→ Ωk(U)

is the restriction map that restricts the domain of a differentiable k–form on M to U :
ι∗Uω = ω|U . In fact, there are four inclusion maps that form a commutative diagram:

�
�
��

@
@
@R

@
@
@R

�
�
��

jU

jV

ιU

ιV

U ∩ V M

U

V

By restricting a k–form from M to U and to V , we get a homomorphism of vector spaces

ι: Ωk(M) −→ Ωk(U)⊕ Ωk(V ),
σ 7→ (ι∗Uσ, ι∗V σ) = (σ|U , σ|V ).

Define the map

j: Ωk(U)⊕ Ωk(V ) −→ Ωk(U ∩ V )
(ω, η) 7→ j∗V η − j∗Uω = η|U∩V − ω|U∩V .

If U ∩ V is empty, we define Ωk(U ∩ V ) = 0. In this case, j is simply the zero map. We call
ι the restriction map and j is the difference map.

Theorem 1.4.14 (Mayer-Vietoris, [31, Thm. 7.1.29]). Let M be a differentiable manifold
and M = U ∪ V be an open cover of M . Then there exists a long exact sequence

. . . −→ Hk
DR(M) ι∗−→ Hk

DR(U)⊕ Hk
DR(V ) j∗−→ Hk

DR(U ∩ V )
d∗k−→ Hk+1

DR (M) −→ . . . ,

called the Mayer-Vietoris sequence.

Lemma 1.4.15. Let 0 −→ A0
d0−→ A1

d1−→ A2
d2−→ . . .

dm−1−→ Am −→ 0 be an exact
sequence of finite dimensional vector spaces. Then

m∑
k=0

(−1)kdimAk = 0.

The proof is by Rank-Nullity Theorem and the fact that dim Ker dk = dim Im dk.



1.4 De Rham cohomology 23

Proposition 1.4.16 (Mayer-Vietoris, [37, Prop. 26.4]). In the Mayer–Vietoris sequence, if
U, V and U ∩ V are connected and nonempty, then

1. M is connected and

0 −→ H0
DR(M) −→ H0

DR(U)⊕ H0
DR(V ) −→ H0

DR(U ∩ V ) −→ 0

is exact.

2. We may start the Mayer–Vietoris sequence with

0 −→ H1
DR(M) ι∗−→ H1

DR(U)⊕ H1
DR(V ) j∗−→ H1

DR(U ∩ V ) −→ . . . .

Example 1.4.17 (The cohomology of the 2-sphere). Consider the 2–sphere

S2 = {(x1, x2, x3) ∈ R3|x2
1 + x2

2 + x2
3 = 1}.

We will use the Mayer–Vietoris sequence to deduce the cohomology groups of the 2–sphere.
Let N = (0, 0, 1) and S = (0, 0,−1) be points on S2, we note that S2 = U ∪ V where

U = S2 − {N} and V = S2 − {S}.
Since S2 is connected, by Proposition 1.4.4 H0

DR(S2) = R.
On the other hand, U is homeomorphic to R2, which is connected, by Theorem 1.4.9 and

Proposition 1.4.4, we have H0
DR(U) = R, analogously for V , we get H0

DR(V ) = R. Also, R2

is contractible to a point and by Theorem 1.4.9

Hk
DR(U) = Hk

DR(V ) =
{
R if k = 0
0 if k > 1.

Now, U ∩ V is homotopically equivalent to S1, by Theorem 1.4.9 and by equality (1.8)
we have

Hk
DR(U ∩ V ) =

{
R if k = 0, 1
0 if k > 1.

Since U , V and U ∩ V are connected we can apply Proposition 1.4.16, we have the Mayer–
Vietoris sequence:

0 −→ H0
DR(S2) = R −→ R⊕ R −→ R −→ 0,

and

- - -

- - --0

H2
DR(S2)

H1
DR(S2)

0⊕ 0

0⊕ 0

0

R

Then H1
DR(S2) = 0 and for the exactness of the sequence H2

DR(S2) = R. Therefore

Hk
DR(S2) =

{
R if k = 0, 2
0 otherwise.

Then β0(S2) = 1, β1(S2) = 0 and β2(S2) = 1.
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Example 1.4.18 (The cohomology of the 2-Torus). We consider the 2-Torus.
Cover the torus T 2 with two open subsets U and V , both U and V are homeomorphic to

S1 × I, where I = [0, 1].
Note that T 2 is connected, by Proposition 1.4.4 H0

DR(T 2) = R.
Also, U and V are homotopically equivalent to S1, by Theorem 1.4.9

Hk
DR(U) = Hk

DR(V ) =
{
R if k = 0, 1
0 otherwise.

Now, U ∩ V is the disjoint union of two S1, then

Hk
DR(U ∩ V ) =

{
R⊕ R if k = 0, 1
0 if k > 1.

By Theorem 1.4.14 we have the long Mayer–Vietoris sequence of T 2:

- - -

- - -

- - -0

H2
DR(T 2)

H1
DR(T 2)
R

0⊕ 0

R⊕ R
R⊕ R

0

R⊕ R
R⊕ R

d∗0

d∗1

ι∗ s

t

By Proposition 1.4.4 H0
DR(M) is the vector space of constant functions on the manifold, if

a ∈ H0
DR(U) is the constant function with value a on U , j∗U : H0

DR(U) −→ H0
DR(U ∩ V ) then

j∗Ua = a|U∩V is the constant function with the value a on each component of U ∩ V, that is,
j∗Ua = (a, a).

Then, for (a, b) ∈ H0
DR(U)⊕H0

DR(V ), t(a, b) = b|U∩V−a|U∩V = (b, b)−(a, a) = (b−a, b−a).
Analogously, we describe the map s: H1

DR(U)⊕ H1
DR(V ) −→ H1

DR(U ∩ V ).
Let U ∩ V = A t B, A and B the connected components. We have the inclusions

jU,A:A −→ U, jU,B:B −→ U , if ωU generates H1
DR(U), we define

j∗U,A: H1
DR(U) −→ H1

DR(A)
ωU 7→ ωA.

Then j∗U,AωU = ωA is a generator of H1
DR(A), the same for H1

DR(B).

j∗U : H1
DR(U) −→ H1

DR(U ∩ V )
cωU 7→ (cωA, cωB).

The pair of real numbers (a, b) ∈ H1
DR(U)⊕ H1

DR(V ) stands for (aωU , bωV ).
Then

s(a, b) = j∗V (bωV )− j∗U(aωU) = (b, b)− (a, a) = (b− a, b− a).

By Rank-Nullity Theorem, s and the exactness of the sequence we have H2
DR(T 2) = R. And

by Lemma 1.4.15 we obtain dim H1
DR(T 2) = 2, therefore H1

DR(T 2) = R⊕ R.



1.5 Other expression of d 25

1.5 Other expression of d
A generalization of the definition of contraction, A.3.34, is as follows:

Definition 1.5.1. Let M be a differentiable manifold and X ∈ Γ(TM) be a vector field on
M . The contraction or interior product by X is a linear map

Xy: Ωk(M) −→ Ωk−1(M)

defined by
Xyω(X1, . . . , Xk−1) = ω(X,X1, . . . , Xk−1)

for ω ∈ Ωk(M), X1, . . . , Xk−1 ∈ Γ(TM).

Note that if k = 0, we define Xy = 0.
Let f ∈ C∞(M), by definition Xy(fω) = f · [Xyω], then Xy is linear with respect to

differentiable functions.

Lemma 1.5.2 ([37, Proposition 20.8]). Let M be a differentiable manifold, for all X ∈
Γ(TM) a vector field on M , then Xy: Ωk(M)→ Ωk−1(M) the contraction by X satisfies:

1. Xy ◦Xy = 0.

2. Xy is of degree -1, such that, for each ω ∈ Ωk(M), η ∈ Ωl(M),

Xy(ω ∧ η) = (Xyω) ∧ η + (−1)kω ∧ (Xyη).

In the tangent space we have an anticonmutative bilinear map [ , ].

Definition 1.5.3. Let M be a differentiable manifold and p ∈ M . Let (U, x1, . . . , xn) be a
chart around p ∈ U , the Lie bracket between two vector fields [ , ]: Γ(TM) × Γ(TM) −→
Γ(TM) is a bilinear map defined by

[X, Y ] =
n∑
j=1

n∑
i=1

(
ai
∂bj
∂xi

∂

∂xj
− bj

∂ai
∂xj

∂

∂xi

)
, where X =

n∑
i=1

ai
∂

∂xi
, Y =

n∑
j=1

bj
∂

∂xj
, ai, bi ∈ C∞(M).

We say that the vector fields X and Y commute if [X, Y ] = 0.

Lemma 1.5.4. The Lie bracket [ , ] is R–bilinear. Also, for any differentiable function
f :M −→ R, we have [X, Y ]f = X(Y (f))− Y (X(f)). Furthermore, we have that the Jacobi
identity holds

[[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0

for any three vector fields X, Y, Z.
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Proof. Let p ∈ M , (U, x1, . . . , xn) be a chart at p and X =
n∑
i=1

ai
∂
∂xi
, Y =

n∑
j=1

bj
∂
∂xj

vector
fields. We have

[X, Y ]f =
n∑
i=1

n∑
j=1

(
ai
∂bj
∂xi

∂f

∂xj
− bj

∂ai
∂xj

∂f

∂xi

)
= X(Y (f))− Y (X(f)).

And this is R–bilinear in X, Y . This implies the first two claims. By computation follows
the Jacobi identity. �

Theorem 1.5.5 ([28, Thm. 42.9]). Let M be a differentiable manifold, ω ∈ Ωk(M) an
arbitrary differentiable k–form on M . Then for any vector fields Xj ∈ Γ(TM), with 0 ≤ j ≤
k, we have

dω(X0, . . . , Xk) =
k∑
i=0

(−1)iXi(ω(X0, . . . , X̂i, . . . , Xk))

+
∑

0≤i<j≤k
(−1)i+jω([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xk).



Chapter 2

Morse theory

The idea of Morse Theory is that global invariants of a compact differentiable manifold can
be recovered from the local analysis at the critical points of a differentiable function on that
manifold, for example the Morse inequalities.

In this chapter we will give the terminology, results and examples of Morse theory.
For more references consult [25], [30] and [26].

Definition 2.0.1. Let M be a differentiable manifold of dimension n, let f :M −→ R
be a differentiable function on M . For each point p ∈ M , we choose a chart around p,
ϕ:U −→ V ⊂ Rn. Consider F = f ◦ ϕ−1:Rn −→ R and its differential

Dϕ(p)F :Tϕ(p)Rn −→ Tf(p)R.

1. p is a critical point of f if Dϕ(p)F is not surjective, that is, the partial derivatives
vanishes

∂F

∂x1
(ϕ(p)) = 0, . . . , ∂F

∂xn
(ϕ(p)) = 0.

2. The Hessian matrix of f with respect to ϕ is defined as the symmetric matrix of second
order partial derivatives:

HessF =
(

∂2F

∂xi∂xj

)
1≤i,j≤n

.

3. p is a non-degenerate critical point of f if the Hessian is invertible, that is,

det(HessF (ϕ(p))) 6= 0.

Definition 2.0.2. A differentiable function is called a Morse function if all its critical points
are non-degenerate.

Lemma 2.0.3. The critical points and non-degenerate critical points do not depend on the
choice of chart.

27
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Proof. LetM be a differentiable manifold of dimension n and f :M −→ R be a differentiable
function.

Let (U,ϕ) with ϕ = (x1, . . . , xn) and (V, ψ) with ψ = (y1, . . . , yn) be charts around a
critical point p of f . We note that

f ◦ ϕ−1|ϕ(U∩V ) = (f ◦ ψ−1) ◦ (ψ ◦ ϕ−1)|ϕ(U∩V ). (2.1)
f ◦ ψ−1|ψ(U∩V ) = (f ◦ ϕ−1) ◦ (ϕ ◦ ψ−1)|ψ(U∩V ). (2.2)

Let us see that

∂(f ◦ ϕ−1)
∂xi

(ϕ(p)) = 0 if and only if ∂(f ◦ ψ−1)
∂yi

(ψ(p)) = 0 for all i = 1, . . . , n.

Suppose that for all i = 1, . . . , n,

∂(f ◦ ψ−1)
∂yi

(ψ(p)) = 0.

We get ∂(f◦ψ−1)
∂yi

(ψ(p)) and let (ψ ◦ ϕ−1)j be the j–th coordinate function of ψ ◦ ϕ−1.
By equality (2.1) and the chain rule we have

∂(f ◦ ϕ−1)
∂xi

(ϕ(p)) = ∂((f ◦ ψ−1) ◦ (ψ ◦ ϕ−1))
∂xi

(ϕ(p))

=
n∑
j=1

(
∂(f ◦ ψ−1)

∂yj
(ψ ◦ ϕ−1)(ϕ(p))

)
∂(ψ ◦ ϕ−1)j

∂xi
(ϕ(p)).

We note that ψ ◦ ϕ−1(ϕ(p)) = ψ(p) and we evaluate

∂(f ◦ ϕ−1)
∂xi

(ϕ(p)) =
n∑
j=1

(
∂(f ◦ ψ−1)

∂yj
(ψ(p))

)(
∂(ψ ◦ ϕ−1)j

∂xi
(ϕ(p))

)
. (2.3)

By hipothesis, we obtain
∂(f ◦ ϕ−1)

∂xi
(ϕ(p)) = 0.

The same in the other direction.
Therefore, a critical point of f does not depend on the choice of chart.
Now, suppose that p is a non-degenerate critical point of f .
Let (U,ϕ) with ϕ = (x1, . . . , xn) and (V, ψ) with ψ = (y1, . . . , yn) be charts around of p.
By equation (2.3) and Leibniz rule we obtain that for all 1 ≤ j ≤ n

∂2(f ◦ ϕ−1)
∂xi∂xj

(ϕ(p)) =
n∑
r=1

∂

∂xj

(
∂(f ◦ ψ−1)

∂yr
(ψ(p))

)(
∂(ψ ◦ ϕ−1)r

∂xi
(ϕ(p))

)

=
n∑
r=1

n∑
l=1

(
∂2(f ◦ ψ−1)
∂yl∂yr

(ψ(p))∂(ψ ◦ ϕ−1)l
∂xj

(ϕ(p))
)(

∂(ψ ◦ ϕ−1)r
∂xi

(ϕ(p))
)
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+
n∑
r=1

(
∂(f ◦ ψ−1)

∂yr
(ψ(p))

)(
∂2(ψ ◦ ϕ−1)r
∂xi∂xj

(ϕ(p))
)

=
n∑
r=1

n∑
l=1

(
∂2(f ◦ ψ−1)
∂yl∂yr

ψ(p)
)(

∂(ψ ◦ ϕ−1)l
∂xj

ϕ(p)
)(

∂(ψ ◦ ϕ−1)r
∂xi

(ϕ(p))
)

+
n∑
r=1

∂(f ◦ ψ−1)
∂yr

ψ(p)∂
2(ψ ◦ ϕ−1)
∂xi∂xj

(ϕ(p)).

Since p is a critical point, the second term vanishes. Then

∂2(f ◦ ϕ−1)
∂xi∂xj

(ϕ(p)) =
n∑
r=1

n∑
l=1

∂2(f ◦ ψ−1)
∂yl∂yr

ψ(p)∂(ψ ◦ ϕ−1)l
∂xj

ϕ(p)∂(ψ ◦ ϕ−1)r
∂xi

(ϕ(p)).

We consider the Jacobian of ψ ◦ ϕ−1 at ϕ(p) = 0

J = Jψ◦ϕ−1(0)

=


∂(ψ◦ϕ−1)1

∂x1

∂(ψ◦ϕ−1)1
∂x2

. . . ∂(ψ◦ϕ−1)1
∂xn... ... ...

∂(ψ◦ϕ−1)n
∂x1

∂(ψ◦ϕ−1)n
∂x2

. . . ∂(ψ◦ϕ−1)n
∂xn

 .
We denoted by J t its transpose, we have

Hessf◦ϕ(ϕ(p)) = J tHessf◦ψ(ψ(p))J.

Since ψ ◦ ϕ−1 is a differentiable function with differentiable inverse function, the matrix J
and J t have non-zero determinant.

Therefore, det(Hessf◦ϕ−1(ϕ(p))) 6= 0 if and only if det(Hessf◦ψ−1(ψ(p))) 6= 0.
�

The existence of Morse functions is guaranteed by [30, Thm. 1.21]. In fact, by Sard
Theorem the majority of differentiable functions are actually Morse functions, see [15, Sec-
tion 1.7].

Morse functions have a very simple local structure: up to a change of coordinates all
Morse functions are quadratic polynomials. This is the content of the Morse Lemma.
Theorem 2.0.4 (Morse Lemma). Let M be an n–dimensional differentiable manifold. Sup-
pose f :M −→ R is a differentiable function and p is a non-degenerate critical point of f .
Then there exists an open neighbourhood U of p and a chart ϕ:U −→ V ⊂ Rn such that
ϕ(p) = 0 and in this chart we have the equality

(f ◦ ϕ−1)(y) = f(p)− y2
1 − . . .− y2

k + y2
k+1 + . . .+ y2

n, y = (y1, . . . , yn) ∈ V. (2.4)

Proof. Without loss of generality, assume that f(p) = 0, otherwise we can take the function
g := f − f(p).

Since the problem is local and invariant under local diffeomorphisms we can also assume
that f :W −→ R where W is an open connected neighborhood around 0 in Rn and 0 is a
non-degenerate critical point of f.
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By Lemma B.2.8, there exist differentiable functions gi:W −→ R, 1 ≤ i ≤ n such that

f(x) =
n∑
i=1

xigi(x), x ∈ W.

Since 0 is a critical point, gi(0) = ∂f
∂xi

(0) = 0.
Again, for gi by Lemma B.2.8 there exist differentiable functions gij:W −→ R with

1 ≤ j ≤ n such that

gi(x) =
n∑
j=1

xjgij(x), x ∈ W.

Then

f(x) =
n∑
i=1

n∑
j=1

xixjgij(x)

=
n∑
i=1

x2
i gii(x) +

∑
i<j

xixj(gij + gji)(x).

We define hij(x) = 1
2(gij + gji)(x), then we rewrite

f(x) =
n∑
i=1

x2
ihii(x) +

∑
i<j

xixjhij(x) =
n∑
i=1

n∑
j=1

xixjhij(x). (2.5)

Hence (hij(x)) is a symmetric n× n matrix of differentiable functions.
Let us calculate the second derivatives of f :

∂f

∂xi
(x) = 2xihii(x) + x2

i

∂hii
∂xi

(x) +
n∑
j=1

(
xjhij(x) + xixj

∂hij
∂xi

(x)
)
.

∂2f

∂xj∂xi
(x) = x2

i

∂2hii
∂xj∂xi

(x) + hij(x) + xj
∂hij
∂xj

(x) + xi
∂hij
∂xi

(x) + xixj
∂2hij
∂xj∂xi

(x).

∂2f

∂x2
i

(x) = 2hii(x) + 4xi
hii
∂xi

(x) + x2
i

∂2hii
∂xi

(x) + 2xj
∂hij
∂xi

(x) + xixj
∂2hij
∂x2

i

(x).

We get
∂2f

∂xi∂xj
(0) =

{
hij(0) if i 6= j
2hii(0) if i = j.

Since 0 is a non-degenerate critical point of f , then Hessf (0) = (hij(0)) is an invertible
matrix.

We will do the proof by induction, let us see that the chart ϕ of the Theorem can be
chosen in such a way that it is given by equality (2.5) with

(hij(x)) =
(
D 0
0 S

)
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with D an (l − 1) × (l − 1) matrix with diagonal (±1, . . . ,±1) and S some symmetric
(n − l − 1) × (n − l − 1) matrix of differentiable functions. Then we assume the induction
hypothesis

f(x) =
l−1∑
i=1

δix
2
i +

n∑
i=l

n∑
j=l

xixjhij(x), δ = ±1. (2.6)

Remark 2.0.5. We can always find hss(0) 6= 0 with l ≤ s ≤ n, the arguments are the
following:

1. If some hrr(0) 6= 0 for some l ≤ r ≤ n, we only make a change of rows and columns.

2. If hll(0) = hl+1l+1(0) = 0 = . . . = hnn(0) = 0, as among the coefficients of the double
summation of the equality (2.5) it must be coefficients different from 0, otherwise the
Hessf (0) = 0.
For example, suppose that hrs(0) 6= 0, with l ≤ r, s ≤ n. Then it is sufficient to
consider the differentiable function T :Rn −→ Rn defined as

T (z1, . . . , zn) =

xr = zr − zs,
xs = zr + zs,
xi = zi, i 6= r, i 6= s.

Then the Jacobian matrix of T at 0 is

JT (0) =



1 . . .

l−1︷︸︸︷
0

l︷︸︸︷
0 . . .

r︷︸︸︷
0 . . .

s︷︸︸︷
0 . . .

n︷︸︸︷
0... . . .

... ... . . .
... . . .

... . . .
...

0 . . . 1 0 . . . 0 . . . 0 . . . 0
0 . . . 0 1 . . . 0 . . . 0 . . . 0... . . .

... ... . . .
... . . .

... . . .
...

0 . . . 0 0 . . . 1 . . . −1 . . . 0
0 . . . 0 0 . . . 1 . . . 1 . . . 0... . . .

... ... . . .
... . . .

... . . .
...

0 . . . 0 0 . . . 0 . . . 0 . . . 1


JT (0) is a non-degenerate matrix with determinant 2.
So the term xrxshrs(x), we rewrite it as

xrxshrs(z) = (zr − zs)(zr + zs)hrs(z) = z2
rhrs(z)− z2

shrs(z).

Replacing it in the equality (2.6)

f(T (x)) =
l−1∑
i=1

δiz
2
i +

n∑
i=l
i 6=s,r

n∑
j=l
j 6=r,s

xixjhij(z) + (z2
r − z2

s)(hrs + hsr)(z), δ = ±1.
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If l = 1, we get
f(x) = δ1x

2
1 +

n∑
i=2

n∑
j=2

xixjhij(x), δ = ±1.

By Remark 2.0.5, we can assume h11(0) 6= 0, by continuity of h11 we can also assume that
h11(x) has a constant sign δ1 = ±1 on some smaller neighborhood W1 ⊂ W . Then

√
|h11(x)|

is a non zero differentiable function at x over W1.
We have the new variables through the differentiable function R:Rn −→ Rn defined by

y1 =
√
|h11(x)|

(
x1 +

n∑
i=2

xj
hi1(x)
h11(x)

)
yj = xj, for all j = 2, . . . , n.

Note that detJR(0) =
√
|h11(0)| 6= 0, then R is an invertible function. Also, dim (T0Rn) =

dim (TR(0)Rn), we have D0R is a linear isomorphism. By Theorem B.2.11, R is a local
diffeomorphism. Then

f ◦R−1(y) = f(x)

= δ1x
2
1 +

n∑
i=2

n∑
j=2

xixjhij(x)

Now, we assume the induction hypothesis (2.6), let us see that it is true for l.
By Remark 2.0.5, we suppose that hll(0) 6= 0 and by continuity of hll(x) we can assume

that h11(x) has a constant sign δl = ±1 on some smaller neighborhood W1 ⊂ W .
We define

q(x) :=
√
|hll(x)|.

Since hll(0) 6= 0, q(x) is a differentiable function no zero at x over W1.
Introducing the new variables through the differentiable function S:Rn −→ Rn defined

by

yl = q(x)
xl +

n∑
i=l+1

xj
hil(x)
hll(x)

 (2.7)

yj = xj, for all j = 1, . . . , n, j 6= l. (2.8)

We calculate

JS(0) =



1 . . .

l−1︷︸︸︷
0

l︷︸︸︷
0

l+1︷︸︸︷
0 . . .

n︷︸︸︷
0... . . .

... ... ... . . .
...

0 . . . 1 0 0 . . . 0
0 . . . 0 q(0) hl+1l(0)

hll(0) . . . hnl(0)
hll(0)

0 . . . 0 0 1 . . . 0... . . .
... ... ... . . .

...
0 . . . 0 0 0 . . . 1
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We note that detJS(0) = q(0) 6= 0, then S is an invertible function. Also, dim (T0Rn) =
dim (TS(0)Rn) and by Theorem B.2.11, S is a local diffeomorphism.

By equality (2.6), then

f ◦ S−1(y) = f(x)

=
l−1∑
i=1

δix
2
i + x2

l hll(x) + 2xl
n∑

j=l+1
xjhjl(x) +

n∑
i=l+1

n∑
j=l+1

xixjhij(x)

=
l−1∑
i=1

δix
2
i + hll(x)

x2
l + 2xl

n∑
j=l+1

xj
hjl(x)
hll(x)

+
n∑

i=l+1

n∑
j=l+1

xixjhij(x)

=
l−1∑
i=1

δix
2
i + hll(x)

x2
l + 2xl

n∑
j=l+1

xj
hjl(x)
hll(x) +

 n∑
j=l+1

xj
hjl(x)
hll(x)

2


−hll(x)
 n∑
j=l+1

xj
hjl(x)
hll(x)

2

+
n∑

i=l+1

n∑
j=l+1

xixjhij(x).

By squaring equality (2.7), we obtain:

f ◦ S−1(y) =
l−1∑
i=1

δix
2
i + hll(x)

x2
l +

n∑
j=l+1

xj
hjl(x)
hll(x)

2

− hll(x)
 n∑
j=l+1

xj
hjl(x)
hll(x)

2

+
n∑

i=l+1

n∑
j=l+1

xixjhij(x)

=
l−1∑
i=1

δiy
2
i + hll(y)
|hll(y)|y

2
l − hll(y)

 n∑
j=l+1

yj
hjl(y)
hll(y)

2

+
n∑

i=l+1

n∑
j=l+1

yiyjhij(y)

=
l∑

i=1
δiy

2
i −

n∑
i=l+1

n∑
j=l+1

yiyj
hjl(y)hil(y)
hll(y) +

n∑
i=l+1

n∑
j=l+1

yiyjhij(y)

=
l∑

i=1
δiy

2
i +

n∑
i=l+1

n∑
j=l+1

yiyj

(
hij(y)− hjl(y)hil(y)

hll(y)

)
.

We define
h̃ij(x) = hij(x)− hjl(y)hil(y)

hll(y) .

Therefore
f ◦ S−1(y) =

l∑
i=1

δiy
2
i +

n∑
i=l+1

n∑
j=l+1

yiyjh̃ij ◦ S−1(y).

�

Definition 2.0.6. Let M be an n–dimensional differentiable manifold, let f :M −→ R be a
differentiable function and p be a non-degenerate critical point to f . The index of p respect
to f is the number of negative eigenvalues of the Hessian HessF (ϕ(p)), where F = f ◦ ϕ−1

for any chart ϕ:U ⊂M −→ V ⊂ Rn around p. We denoted the index of f at p by nf (p).
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Note that in the Morse Lemma (equality (2.4)), the index k coincides with nf (p). This
index, by Sylvester’s law of inertia is invariant under diagonalization, see [11, Thm. 6.38].

Considering the linear change of variables T (y1, . . . , yn) = ( y1√
2 , . . . ,

yn√
2) and adding the

notion of index, we reformulate the Morse Lemma as follows:

Corollary 2.0.7. Let M be an n–dimensional differentiable manifold. Suppose f :M −→ R
is a differentiable function and p is a non-degenerate critical point of f . Then there exists
an open neighbourhood U of p and a chart ϕ:U −→ V ⊂ Rn such that ϕ(p) = 0 and in this
chart we have the equality

(f ◦ϕ−1)(x) = f(p)−1
2x

2
1−. . .−

1
2x

2
nf (p)+

1
2x

2
nf (p)+1+. . .+ 1

2x
2
n, x = (x1, . . . , xn) ∈ V. (2.9)

Now, we will describe the non-degenerate critical points of differentiable functions.

Corollary 2.0.8. Let M be a differentiable manifold and f :M −→ R be a differentiable
function. Every non-degenerate critical point of f is isolated. In particular, if f is a Morse
function and M is compact, then f has a finite number of critical points.

Proof. By Corollary 2.0.7, there exist a chart (U,ϕ) around p and by equality (2.9)

D(f ◦ ϕ−1)(x) = (−x1, . . . ,−xnf (p), xnf (p), . . . xn).

Note that D(f ◦ ϕ−1)(x) = 0 if and only if x = 0.
Then the chart does not contain another critical point, that is, ϕ−1(0) = p is the only

critical point of f in U , therefore, p is isolated.
Now suppose that M is compact and f is a Morse function.
By contradiction.
We assume that the set of critical points is infinite, since M is a compact space, by

Theorem (see [29, Thm. 28.1]) the set has an accumulation point, we say q.
Let (U,ϕ = (x1, . . . , xn)) be a chart about p, since f is a differentiable function then

∂
∂xi

∣∣∣
p
f := D0ϕ

−1( ∂
∂ri

) depends smoothly on p ∈ M , where f is the germ of f and r1, . . . , rn

the standard coordinates on Rn. For each critical point p of f we get ∂
∂xi

∣∣∣
p
f = 0. Then at

the accumulation point ∂
∂xi

∣∣∣
q
f = 0, therefore q is also a critical point of f and by definition

of Morse function 2.0.2, q is a non-degenerate critical point.
Without loss of generality, let V ⊂M be an open neighborhood around q. By definition

of accumulation point V contains at least one other critical point close to q. Then q is a
non-degenerate critical point not isolated, which is a contradiction to the first statement. �

2.1 Height function
By Corollary 2.0.7 we have that Morse functions have a simple local structure. Also, the
existence of Morse functions is guaranteed by Whitney embedding Theorem, for more details
see [30, Sec. 1.2].
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The objective of this section is to describe examples of Morse functions and to see the
information obtained. We will consider compact manifolds, so by Corollary 2.0.8, their Morse
functions have a finite number of critical points.

The following Morse functions can be thought as “height functions”.
Definition 2.1.1. Let M be a differentiable manifold and f :M −→ R be a differentiable
function. Assume M ⊂ Rk, for some integer k > 0, f is a height function if f is a projection
on to the last coordinate axis of Rk.

Example 2.1.2. Now, consider the 2–sphere in R3

S2 = {(x1, x2, x3) ∈ R3|x2
1 + x2

2 + x2
3 = 1}.

Let f :S2 −→ R the height function, define by f(x1, x2, x3) = x3.
Let us see that f is a Morse function and the indices of f at its critical points.
Let N = (0, 0, 1) and S = (0, 0,−1) be the north pole and the south pole of S2, respec-

tively.
Through stereographic projection we have two charts of S2, ϕ1:S2 \ {N} −→ R2 and

ϕ2:S2 \ {S} −→ R2 give by

ϕ1(x1, x2, x3) =
(

x1

1− x3
,

x2

1− x3

)
and ϕ2(x1, x2, x3) =

(
x1

1 + x3
,

x2

1 + x3

)
.

The inverses of ϕ1 and ϕ2 are

ϕ−1
1 (x1, x2) =

(
2x1

x2
1 + x2

2 + 1 ,
2x2

x2
1 + x2

2 + 1 ,
x2

1 + x2
2 − 1

x2
1 + x2

2 + 1

)

and
ϕ−1

2 (x1, x2) =
(

2x1

x2
1 + x2

2 + 1 ,
2x2

x2
1 + x2

2 + 1 ,
1− x2

1 − x2
2

x2
1 + x2

2 + 1

)
respectively.

To determine the critical points of f , considerer the map Fi = f ◦ϕ−1
i :R2 −→ R for each

i = 1, 2.
We consider the map F1 = f ◦ ϕ−1

1 :R2 −→ R by

F (x1, x2) = x2
1 + x2

2 − 1
x2

1 + x2
2 + 1 .

Since
DxF1 =

(
4x1

(x2
1 + x2

2 + 1)2 ,
4x2

(x2
1 + x2

2 + 1)2

)
.

We have that DxF1 = 0 if and only if x1 = 0 = x2. Then ϕ−1
1 (0, 0) = (0, 0,−1) = S is the

only critical point of f in S2 \ {N}. Now, let us see the Hessian of f at S,

HessF (ϕ2(S)) =
( 4 0

0 4

)
.
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So, S is a non-degenerate critical point of f in S2 \ {N} with index 0.
Similar calculation shows that N is the only non-degenerate critical point of f in S2\{S}

with index 2.
Therefore, f is a Morse function.

The critical points of a height function are characterized by the tangent spaces at the
points, that is, let f be a height function and p a critical point of f , then TpM is orthogonal
to the axis onto which f is projected, that is, Dpf = 0.

Remark 2.1.3. Let S be a surface, f :S −→ R be a Morse function and p ∈ S be a critical
point of f . Let (U,ϕ = (x1, x2, x3)) be a chart around p and F = f ◦ ϕ. We have the
following cases:

1. We will say that p is a minimum point of f if ∂2F
∂xi∂xj

(ϕ(q)) > 0 for all q ∈ U and for all
i, j = 1, 2, 3.

2. We will say that p is a maximum point of f if ∂2F
∂xi∂xj

(ϕ(q)) < 0 for all q ∈ U and for all
i, j = 1, 2, 3.

3. Otherwise, we will say that p is a saddle point of f .

a

d

b

c

f R

T 2

Figure 2.1: Height function on T 2

Example 2.1.4. Analogously to the 2–sphere, one can see that if r and R are real numbers
satisfying 0 < r < R, consider the 2–torus T 2 = {(x1, x2, x3) ∈ R3|x2

1+(
√
x2

2 + x2
3−R)2 = r2}.

The function f :T 2 −→ R defined by f(x1, x2, x3) = x3 is a Morse function which has 4
non-degenerate critical points, (see Figure 2.1),

a = (0, 0, R + r), b = (0, 0, R− r), c = (0, 0,−(R− r)), d = (0, 0,−(R + r)).

Since a is a maximum of f , nf (a) = 2, d is a minimum of f then nf (d) = 0, while b and
c are saddle points of f , then nf (b) = 1, nf (c) = 1.
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R

S2

f

Figure 2.2: Height function on S2 with a saddle at the top

Example 2.1.5. Let M be S2 with a saddle at the top, this has four critical points: two
maxima points, one saddle point and one minimum point, see Figure 2.2.
Example 2.1.6. On the other hand, if we take the 2–torus with a saddle at the top, then
the height function is a Morse function. The function has two maxima points, three saddle
points and one minimum point.

f

R

T 2

Figure 2.3: Height function on T 2 with a saddle at the top

2.2 Morse inequalities
Let M be an n–dimensional differentiable manifold, remember that for any integer k such
that 0 ≤ k ≤ n, βk(M) = dim Hk

DR(M) is the k–th Betti number.
Let mk denote the number of critical points p ∈M of f such that nf (p) = k.
The Morse inequalities establish a relationship between the number of critical points of

index k of a real valued Morse function on M and the k–th Betti number on M .
Theorem 2.2.1 (Morse inequalities, Thm. 5.2,[41]). Let M be an oriented, closed Rieman-
nian n–manifold. For any Morse function on M one has

1. (Weak Morse inequalities) For any 0 ≤ k ≤ n, we have

βk(M) ≤ mk. (2.10)
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2. (Strong Morse inequalities) For any 0 ≤ k ≤ n, we have

βk(M)− βk−1(M) + . . .+ (−1)kβ0(M) ≤ mk −mk−1 + . . .+ (−1)km0. (2.11)

Moreover, for k = n:

βn(M)− βn−1(M) + . . .+ (−1)nβ0(M) = mn −mn−1 + . . .+ (−1)nm0. (2.12)

Let us see that Morse inequalities hold for the examples S2 and T 2.

Example 2.2.2. Consider the 2–sphere S2.
By example 1.4.17 we obtain β0(S2) = 1, β1(S2) = 0 and β2(S2) = 1.
By example 2.1.2 we have m0 = 1,m1 = 0 and m2 = 1.
One can see that the inequalities and equality of Theorem 2.2.1 are satisfied.

Example 2.2.3. We consider the 2–torus, T 2.
By example 1.4.18 we obtain β0(T 2) = 1, β1(T 2) = 2 and β2(T 2) = 1.
By example 2.1.4 we have m0 = 1,m1 = 2 and m2 = 1.
We obtain the equality and inequalities of Theorem 2.2.1.
A proof of Theorem 2.2.1 using topological tools and further development of Morse theory

can be found in [25].
In the present text we will follow the ideas of Witten, to obtain an analytic proof for the

Morse inequalities (2.10) and (2.11).



Chapter 3

Hodge theory

In this chapter we will describe the adjoint operator of the exterior derivative and extend
the Laplace operator to differentiable forms.

For more details see [28], [18] and [1].

3.1 ?–Operator
In this section we define an isomorphism of vector spaces that we will extend to the space
of forms.

Let V be a real vector space of dimension n with an inner product 〈 , 〉. Also, for ΛkV
with 1 < k ≤ n, we can define an inner product

〈 , 〉ΛkV : ΛkV × ΛkV −→ R.

Let v1 ∧ . . . ∧ vk, w1 ∧ . . . ∧ wk ∈ ΛkV , with vi, wj ∈ V , we define their inner product as

〈v1 ∧ . . . ∧ vk, w1 ∧ . . . ∧ wk〉ΛkV = det(〈vi, wj〉). (3.1)

The value is independent of the way the two elements are represented, this follows from the
properties of wedge product and determinant.

If e1 . . . , en is an orthonormal basis of V , then all the elements of the form

ei1 ∧ . . . ∧ eik , 1 ≤ i1 < . . . ik ≤ n,

form an orthonormal basis of ΛkV .
Given an orientation in V which is the choice of an equivalence class of an ordered basis,

see section A.4, we have an orientation in ΛnV , taking the equivalence class of the ordered
basis of ΛnV induced by the ordered basis of V .

Let e1, . . . , ek, ek+1, . . . , en ∈ V be an arbitrary positively oriented orthonormal basis. We
define VolV := e1 ∧ . . . ∧ en the volume form of V .

We define a linear map
?: ΛkV −→ Λn−kV

39
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such that for each w, u ∈ ΛkV

w ∧ ?u = 〈w, u〉ΛkV VolV . (3.2)

This operator is called the ?–operator.
In elements of the oriented orthonormal basis of ΛkV the map ? is given by:

?(eσ(1) ∧ . . . ∧ eσ(k)) = sgnσeσ(k+1) ∧ . . . ∧ eσ(n), (3.3)

where σ ∈ S(k, n−k), the set of (k, n−k)–shuffles, see definition A.2.4. Where (3.3) follows
from (3.2),

eσ(1) ∧ . . . ∧ eσ(k) ∧ ?(eσ(1) ∧ . . . ∧ eσ(k)) = eσ(1) ∧ . . . ∧ eσ(k) ∧ sgnσ(eσ(k+1) ∧ . . . ∧ eσ(n))
= sgnσeσ(1) ∧ . . . ∧ eσ(n)

= (sgnσ)2VolV
= VolV .

And
〈eσ(1) ∧ . . . ∧ eσ(k), eσ(1) ∧ . . . ∧ eσ(k)〉ΛkV = 1.

By condition (3.3), we consider 1 ∈ R = Λ0V , we have ?1 = e1∧. . .∧en and ?(e1∧. . .∧en) = 1.
Also, by equality (3.3) in basic elements, we get that ? is surjective and since the vector

spaces ΛkV and Λn−kV are of the same dimension hence ? is a linear isomorphism.
Proposition 3.1.1. Let V be a real vector space of dimension n. The ?–operator has the
following properties. For any r, t ∈ R and for any w and u in ΛkV we have

1. ?(rw + tu) = r ? w + t ? u.

2. ? ? w = (−1)k(n−k)w.

3. w ∧ ?u = u ∧ ?w.

4. ?(w ∧ ?u) = ?(u ∧ ?w) = 〈w, u〉ΛkV .

5. 〈?w, ?u〉ΛkV = 〈w, u〉ΛkV .

Proof. 1. By linearity of ?, it satisfies ?(rw + tu) = r ? w + t ? u, for all r, t ∈ R.

2. Let e1, . . . en be an oriented orthonormal basis of V . Assume that w = eσ(1)∧ . . .∧eσ(k),
then ?w = sgnσeσ(k+1) ∧ . . . ∧ eσ(n). By condition (3.2), we have

?w ∧ ? ? w = (sgnσeσ(k+1) ∧ . . . ∧ eσ(n)) ∧ ?(sgnσeσ(k+1) ∧ . . . ∧ eσ(n))
= (sgnσ)2eσ(k+1) ∧ . . . ∧ eσ(n) ∧ ?(eσ(k+1) ∧ . . . ∧ eσ(n))
= eσ(k+1) ∧ . . . ∧ eσ(n) ∧ sgnσeσ(1) ∧ . . . ∧ eσ(n)

= (sgnσ)2e1 ∧ . . . ∧ en
= VolV .
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On the other hand, since the basis of V is orthonormal

〈?w, ?w〉VolV = 〈sgnσeσ(k+1) ∧ . . . ∧ eσ(n), sgnσeσ(k+1) ∧ . . . ∧ eσ(n)〉ΛkV
= (sgnσ)2〈eσ(k+1) ∧ . . . ∧ eσ(n), eσ(k+1) ∧ . . . ∧ eσ(n)〉ΛkV VolV
= VolV .

If we consider (−1)k(n−k)w, we obtain:

?w ∧ ? ? w = ?w ∧ (−1)k(n−k)w

= (−1)k(n−k) ? w ∧ w
= (−1)k(n−k)sgnσek+1 ∧ . . . ∧ en ∧ eσ(1) ∧ . . . ∧ eσ(k)

= ((−1)k(n−k))2sgnσeσ(1) ∧ . . . ∧ eσ(n)

= (sgnσ)2e1 ∧ . . . ∧ en
= VolV .

Finally:

?w ∧ (−1)k(n−k)w = ((−1)k(n−k))2w ∧ ?w
= 〈w,w〉ΛkV VolV
= VolV .

Therefore
? ? w = (−1)k(n−k)w.

3. By condition (3.2) and the symmetry of inner product of ΛkV , we have

〈w, u〉ΛkV VolV = w ∧ ?u = u ∧ ?w.

4. Applying ? to 3.1.1-3. in w ∧ ?u = u ∧ ?w, we have ?(w ∧ ?u) = ?(u ∧ ?w).
Also, by (3.2) we have u ∧ ?w = 〈w, u〉ΛkV VolV , since VolV = ?1 and 3.1.1-3., we get

?(u ∧ ?w) = ?(〈w, u〉VolV ) = ?VolV 〈w, u〉ΛkV = 〈w, u〉ΛkV .

5. Item 5 holds by Proposition 3.1.1-2. and -4.

〈?w, ?u〉ΛkV = ?(?w ∧ ? ? u)
= ?(?w ∧ (−1)k(n−k)u)
= (−1)k(n−k) ? (?w ∧ u)
= (−1)k(n−k) ? (−1)k(n−k)(u ∧ ?w)
= ?(u ∧ ?w)
= 〈w, u〉ΛkV .

�
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3.2 Hodge ?–operator
Using the properties of the ?–operator we will define the Hodge ?–operator on differentiable
forms. For this reason, we will first study the inner product we need, the Riemannian metric.

3.2.1 Riemannian metric
A Riemannian metric on a differentiable manifold M is a section g of S2T ∗M which is
pointwise positive definite, (see definition C.2.5). Now we will describe the Riemannian
metric locally.

Let (U, x1, . . . , xn) be a chart on M . If we set gij:U −→ R

gij(p) = gp

(
∂

∂xi
,
∂

∂xj

)
, p ∈ U. (3.4)

Then gij is a function of x1, . . . , xn. We say that g is differentiable if the functions gij are
differentiable in all charts.

Example 3.2.1. One example of a Riemannian manifold is Rn with its Euclidean metric
g, which is just the usual inner product on each tangent space TpRn under the natural
identification TpRn = Rn. In standard coordinates, let be a chart (Rn, x1, . . . , xn), g can be
written in several ways:

g =
n∑
i=1

dxi ⊗ dxi =
n∑
i=1

(dxi)2.

g viewed as a 2 degree polynomial in the variables {dx1, . . . , dxn}.

By Proposition C.2.4 we have that for every differentiable manifoldM there always exists
a Riemannian metric.

Proposition 3.2.2. Let (M, g) be a Riemannian manifold. For each point p ∈M , consider
the inner product gp:TpM × TpM −→ R. The linear map ĝp:TpM −→ T ∗pM, given by
ĝp(X)(Y ) = gp(X, Y ), X, Y ∈ TpM, is an isomorphism.

Proof. Assume that ĝp(X) = 0, then ĝp(X)(X) = 0, that is, gp(X,X) = 0, since gp is positive
definite then X = 0. So ĝp is injective. Also, we have dim (TpM) = dim (T ∗pM), hence ĝp is
an isomorphism. �

Then the metric gp identifies the tangent space TpM and the cotangent space T ∗pM .
Moreover, we may extend this identification to the space Γ(TM) of all vector fields on M
and the space Ω1(M) of all differentiable forms of degree 1 on M . For example, for each
differentiable function f on M , df :TM −→ TR ∼= R is a differentiable form of degree 1
on M and by the isomorphism Γ(TM) ∼= Ω1(M), there is a unique vector field called the
gradient of f , denoted by gradf , such that

g(gradf,X) = df(X) = Xf,
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for every vector field X on M . For a differentiable function f = f(x1, . . . , xn) on the
Euclidean space Rn, we have

gradf =
n∑
i=1

∂f

∂xi

∂

∂xi
.

3.2.2 Hodge ?–operator

Let (M, g) be an oriented Riemannian n–manifold.
For any integer k, with 0 ≤ k ≤ n, we have an inner product on ΛkT ∗pM for each p ∈M .

There is a natural linear isomorphism

?: ΛkT ∗pM −→ Λn−kT ∗pM

for each point p ∈M . That induces the vector bundle isomorphism ?: ΛkT ∗M −→ Λn−kT ∗M .
By varying p ∈M , we have the linear isomorphism

?: Ωk(M) −→ Ωn−k(M), (?ω)(p) = ?(ω(p)),

called the Hodge ?–operator.
Moreover, if (U, x1, . . . , xn) is an oriented chart assume that { ∂

∂x1
, . . . , ∂

∂xn
} form a pos-

itive local frame. Take the Gram-Schmidt orthogonalization process and get an oriented
orthonormal local frame e1, . . . , en of TM. That is, we let e1 =

∂
∂x1
|| ∂
∂x1
|| and inductively define

with g the Riemannian metric

Yi = ∂

∂xi
−

i−1∑
j=1

g

(
∂

∂xi
, ej

)
ej, ei = Yi

||Yi||
, i = 2, 3, . . . , n.

Let {e1, . . . , en} be the dual oriented orthonormal basis of T ∗M . Now, if

ω =
∑

σ∈S(k,n−k)
fσ(1)...σ(k)e

σ(1) ∧ . . . ∧ eσ(k),

then we have
?ω =

∑
σ∈S(k,n−k)

sgnσfσ(1)...σ(k)e
σ(k+1) ∧ . . . ∧ eσ(n).

Let 1 ∈ C∞(M) be the constant function with value 1, we have ?1 ∈ Ωn(M), which
is called the volume form and will be denoted by VolM , a concrete expression is given by
VolM = e1 ∧ . . . ∧ en. In terms of the metric (3.4) we have

VolM =
√

det(gij)dx1 ∧ . . . ∧ dxn.
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3.3 The Laplace–Beltrami operator and harmonic forms
Using the Hodge ?–operator, we can define the adjoint operator of the exterior derivative
and with these two operators we will extend the Laplace operator to forms.

Let (M, g) be an oriented Riemannian n–manifold without boundary, in addition, we also
need it to be compact. Using the inner product on ΛkT ∗pM for each p ∈M we can define an
inner product in Ωk(M). Let ω, η ∈ Ωk(M) by integrating the function 〈ω(p), η(p)〉 over M ,
we define

〈ω, η〉Ωk(M) =
∫
M
〈ω(p), η(p)〉ΛkT ∗pMVolM . (3.5)

where VolM is the volume form of M .
The inner product on Ωk(M) will be denoted simply by 〈 , 〉.
According to Proposition 3.1.1-3., the inner product (3.5) can also be written in the form

〈ω, η〉 =
∫
M
ω ∧ ?η =

∫
M
η ∧ ?ω. (3.6)

Furthermore, by Proposition 3.1.1-5., 〈?ω, ?η〉 = 〈ω, η〉, which means that the Hodge ?–
operator ?: Ωk(M) −→ Ωn−k(M) is an isometry relative to the inner product (3.5).

By convention, we define the inner product between differentiable forms of two different
degrees to be zero, so that the entire vector space Ω•(M) is provided with an inner product.

Now we study how the exterior derivative d: Ω•(M) −→ Ω•(M) is transformed by the
Hodge ?–operator.

Definition 3.3.1. Let d?: Ωk(M) −→ Ωk−1(M) be the differentiable linear operator defined
as follows: let ω ∈ Ωk(M),

d?ω = (−1)n(k+1)+1 ? d ? ω ∈ Ωk−1(M). (3.7)

Lemma 3.3.2. d and d∗ satisfy the following equalities: let ω ∈ Ωk(M)

?d?ω = (−1)kd ? ω, (3.8)
d? ? ω = (−1)k+1 ? dω, (3.9)

d? ◦ d?ω = 0. (3.10)

Proof. Let ω ∈ Ωk(M).
By equality (3.7) and Proposition 3.1.1, we see that

1.

?d?ω = ?(−1)n(k+1)+1 ? d ? ω

= (−1)n(k+1)+1 ? ?d ? ω

= (−1)n(k+1)+1(−1)(n−k+1)(k−1)d ? ω

= (−1)kd ? ω.
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2.

d? ? ω = (−1)n(n−k+1)+1 ? d ? (?ω)
= (−1)nk+1 ? d(−1)k(n−k)ω

= (−1)k+1 ? dω.

3.

(d? ◦ d?)ω = d?[(−1)n(k+1)+1 ? d ? ω]
= (−1)n(k+1)+1(−1)nk+1 ? d ? (?d ? ω)
= (−1)n ? d(−1)(n−k+1)(k−1)d ? ω

= 0.

�
Stokes theorem is a fundamental formula concerning the integral of differentiable forms

and we will use it to describe the adjoint operator of d. First we describe the case of manifolds
with boundary.

Theorem 3.3.3 (Stokes Theorem, [28, Thm. 3.6]). Let M be an oriented differentiable n–
manifold with boundary and ω a differentiable (n − 1)–form on M with compact support.
Then ∫

M
dω =

∫
∂M

ω.

Here the right-hand side is the integral of ω on the boundary ∂M of M , and we assume that
∂M is equipped with an orientation induced from that of M .

The next corollary follows immediately from Theorem 3.3.3.

Corollary 3.3.4 ([28, Cor. 3.7]). Let M be an oriented differentiable n–manifold without
boundary. Then for an arbitrary differentiable (n− 1)–form ω on M with compact support,
we have ∫

M
dω = 0.

Proposition 3.3.5. Let M be an oriented Riemannian n–manifold without boundary. Rel-
ative to the inner product 〈 , 〉 in Ω•(M), d? is an adjoint operator of the exterior derivative
d, that is, we have

〈dω, η〉 = 〈ω, d?η〉.

Proof. It suffices to take ω ∈ Ωk(M) and η ∈ Ωk+1(M). By Theorem 1.3.2-1. and equal-
ity (3.8) we have

dω ∧ ?η = d(ω ∧ ?η)− (−1)kω ∧ d ? η
= d(ω ∧ ?η) + (−1)k+1ω ∧ d ? η
= d(ω ∧ ?η) + ω ∧ ?d?η.
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Integrating each side over M , we have∫
M
dω ∧ ?η =

∫
M
d(ω ∧ ?η) +

∫
M
ω ∧ ?d?η.

Since ω ∧ ?η is an (n− 1)–form by Corollary 3.3.4, we have∫
M
d(ω ∧ ?η) = 0.

Now, by definition of the inner product in Ωk(M) and Proposition 3.1.1-4.,

〈dω, η〉 = 〈ω, d?η〉.

�

Definition 3.3.6. Let (M, g) be an oriented Riemannnian n–manifold, the De Rham-Hodge
operator

D: Ω•(M) −→ Ω•(M)
associated to g is defined by

Dω := dω + d?ω. (3.11)

Lemma 3.3.7. D is a self-adjoint operator over Ω•(M).

Proof. Let ω, η ∈ Ω•(M), by Proposition 3.3.5 we have

〈ω,Dη〉 = 〈ω, (d+ d?)η〉
= 〈ω, dη〉+ 〈ω, d?η〉
= 〈d?ω, η〉+ 〈dω, η〉
= 〈(d? + d)ω, η〉
= 〈Dω, η〉.

�

Definition 3.3.8. Let f :Rn −→ R be a differentiable function, we define the Laplacian of
f by

�f =
n∑
i=1

∂2f

∂x2
i

.

With the Hodge ?–operator and the exterior derivative and its adjoint we can extend the
Laplacian operator to differentiable forms.
Definition 3.3.9. Let M be an oriented Riemannian n–manifold, the Laplace–Beltrami
operator or Laplacian �k: Ωk(M) −→ Ωk(M) is defined by

�kω = D2ω = dd?ω + d?dω, (3.12)

for all ω ∈ Ωk(M) and is a linear operator for each k with 0 ≤ k ≤ n.
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It is also called the Hodge-De Rham Laplacian.
Note that �k preserves each Ωk(M) with 0 ≤ k ≤ n.

Definition 3.3.10. A form ω ∈ Ωk(M) such that �kω = 0 is called a harmonic k–form.
In particular, a differentiable function such that �0f = 0 is called a harmonic function.

Proposition 3.3.11. Let V ⊂ Rn be an open subset of Rn, ω = fIdx1 ∧ . . . ∧ dxk ∈ Ωk(V ),
then the Laplace–Beltrami operator on Rn is as follows:

�kω = −
n∑
i=1

∂2fI
∂x2

i

dx1 ∧ . . . ∧ dxk.

Proof. We consider the Euclidean metric, ? and d? with respect to the Euclidean metric.
Let { ∂

∂x1
, . . . , ∂

∂xn
} be a positive orthonormal basis of Rn.

It is sufficient to compute �kω for a differentiable k–form written as
ω = fIdx1 ∧ . . . ∧ dxk.

By definition (3.3) ?ω = fIdxk+1 ∧ . . . ∧ dxn. We apply the exterior derivative, see 1.3.1,

d ? ω =
n∑
i=1

∂fI
∂xi

dxi ∧ dxk+1 ∧ . . . ∧ dxn.

By equality (3.2), we have:
VolRn = dxi ∧ dxk+1 ∧ . . . ∧ dxn ∧ ?(dxi ∧ dxk+1 ∧ . . . ∧ dxn)

= dxi ∧ dxk+1 ∧ . . . ∧ dxn ∧ dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxk
= (−1)(n−k+1)(i−1)dx1 ∧ . . . ∧ dxi ∧ dxk+1 ∧ . . . ∧ dxn
= (−1)(n−k+1)(i−1)(−1)(n−k)(k−i)VolRn .

Where (n−k+1)(i−1)+(n−k)(k−i) = ni−ik+i−n+k−1+nk−k2−ni+ki = nk+i−n−1.
We obtain:

?d ? ω =
k∑
i=1

∂fI
∂xi

(−1)nk−n+i−1dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxk.

We have (−1)nk−n+i−1(−1)n(k+1)+1 = (−1)i. By definition 3.3.1

d?ω =
k∑
i=1

(−1)i∂fI
∂xi

dx1 ∧ . . . ∧ d̂xi ∧ . . . dxk.

dd?ω =
k∑
i=1

∂2fI
∂x2

i

(−1)idxi ∧ dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxk

+
k∑
i=1

n∑
j=k+1

∂2fI
∂xj∂xi

(−1)idxj ∧ dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxk

= −
k∑
i=1

∂2fI
∂x2

i

dx1 ∧ . . . ∧ dxi ∧ . . . ∧ dxk

+
k∑
i=1

n∑
j=k+1

∂2f

∂xj∂xi
(−1)idxj ∧ dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxk.
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On the other hand, by definition 1.3.1 we get

dω =
n∑
i=1

∂fI
∂xi

dxi ∧ dx1 . . . ∧ dxk

=
n∑

i=k+1

∂fI
∂xi

dxi ∧ dx1 ∧ . . . ∧ dxk.

Later, by equality (3.2)

VolRn = dxi ∧ dx1 ∧ . . . ∧ dxk ∧ ?(dxi ∧ dx1 ∧ . . . ∧ dxk)
= (−1)i−1dx1 ∧ . . . ∧ dxn.

We apply ? and d, hence

?dω =
n∑

i=k+1
(−1)i−1∂fI

∂xi
dxk+1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn.

d ? dω =
n∑
j=1

n∑
i=k+1

(−1)i−1 ∂2fI
∂xi∂xj

dxj ∧ dxk+1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn

=
n∑

i=k+1
(−1)i−1∂

2fI
∂x2

i

dxi ∧ dxk+1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn

+
k∑
j=1

n∑
i=k+1

(−1)i−1 ∂2fI
∂xi∂xj

dxj ∧ dxk+1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn

=
k∑
j=1

n∑
i=k+1

(−1)i−1 ∂2fI
∂xi∂xj

dxj ∧ dxk+1 ∧ dxk+1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn

+
n∑

i=k+1
(−1)k ∂

2fI
∂x2

i

dxk+1 ∧ . . . ∧ dxi ∧ . . . ∧ dxn.

Again, by equality (3.2) we have

VolRn = dxj ∧ dxk+1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn ∧ ?(dxj ∧ dxk+1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn)
= (−1)n−k−1+jdxk+1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn ∧ dx1 ∧ . . . ∧ dxj ∧ . . . ∧ dxk ∧ dxi
= (−1)n−k+j−1(−1)k+n−k−idxk+1 ∧ . . . ∧ dxi ∧ . . . ∧ dxn ∧ dx1 ∧ . . . ∧ dxk
= (−1)n−k+j−1(−1)k+n−k−i(−1)(n−k)kVolRn .

Where (−1)n−k+j−1(−1)k+n−k−i(−1)(n−k)k = (−1)nk+j. Also, we apply the equality (3.2) to
dxk+1 ∧ . . . ∧ dxn, then

?d ? dω =
k∑
j=1

n∑
i=k+1

(−1)nk+j ∂2fI
∂xi∂xj

dx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxk ∧ dxi

n∑
i=k+1

(−1)k+k(n−k)∂
2fI
∂x2

i

dx1 ∧ . . . ∧ dxk.
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Now, we note that dω ∈ Ωk+1(V ), then we take d?: Ωk+1(V ) −→ Ωk+2(V ), that is,

d?(dω) = (−1)n(k+2)+1 ? d ? dω.

Then (−1)n(k+2)+1(−1)nk+j = (−1)j+1 and (−1)n(k+2)+1(−1)k+k(n−k) = −1.

d?dω =
k∑
j=1

n∑
i=k+1

(−1)j+1 ∂2fI
∂xi∂xj

dx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxk ∧ dxi

−
n∑

i=k+1

∂2fI
∂x2

i

dx1 ∧ . . . ∧ dxk.

Therefore, adding the two calculations, we obtain:

�kω = dd?ω + d?dω

= −
k∑
i=1

∂2fI
∂x2

i

dx1 ∧ . . . ∧ dxi ∧ . . . ∧ dxk

+
k∑
i=1

n∑
j=k+1

∂2f

∂xj∂xi
(−1)idxj ∧ dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxk

+
k∑
j=1

n∑
i=k+1

(−1)j+1 ∂2fI
∂xi∂xj

dx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxk ∧ dxi

−
n∑

i=k+1

∂2fI
∂x2

i

dx1 ∧ . . . ∧ dxk

= −
n∑
i=1

∂2fI
∂x2

i

dx1 ∧ . . . ∧ dxk.

From the penultimate equality, the double summations are canceled.
�

Proposition 3.3.12 ([28, Prop. 4.13]). The Laplace–Beltrami operator has the following
properties: let ω ∈ Ωk(M)

1. ?�kω = �k ? ω. If ω is a harmonic k–form, so is ?ω.

2. �k is self-adjoint, that is, 〈�kω, η〉 = 〈ω,�kη〉 for all ω, η ∈ Ωk(M).

3. �kω = 0 if and only if dω = 0 and d?ω = 0.

Proof. 1. Let ω ∈ Ωk(M), we have

?d?ω = ?

∈Ωk−1(M)︷ ︸︸ ︷
(−1)n(k+1)+1 ? d ? ω

= (−1)n(k+1)+1(−1)(k−1)(n−(k−1))d ? ω
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But n(k+1)+1+(k−1)(n−(k−1)) = nk+n+1+kn−k2 +2k−n−1 = 2nk−k2 +2k,
then by the axioms of the exponents and since (2i)2 is even and (2i+ 1)2 is odd:

?d?ω = (−1)2nk(−1)−k2(−1)2kd ? ω

= (−1)−k2
d ? ω

= (−1)kd ? ω.

On the other hand,

d? ?ω︸︷︷︸
∈Ωn−k(M)

= (−1)n(n−k+1) ? d ? ?ω

= (−1)n2−kn+n+1(−1)k(n−k) ? dω.

But n2 − kn+ n+ 1 + k(n− k) = n2 − kn+ n+ 1 + kn− k2 = n(n+ 1)− k2 + 1, note
that if n is even then n+ 1 is odd and reciprocally. Then,

d? ? ω = (−1)−k2(−1) ? dω
= (−1)k+1 ? dω.

Then, by the second calculation,

?d

∈Ωk−1(M)︷︸︸︷
d?ω = (−1)kd? ? d?ω

= d?d ? ω.

Analogously, by the first calculation,

?d?dω = (−1)k+1d ? dω

= dd? ? ω.

Therefore,

?�kω = ?(dd?ω + d?dω)
= ?dd?ω + ?d?dω

= d?d ? ω + dd? ? ω

= (dd? + d?d) ? ω
= �k ? ω.

2. It is a consequence of Definition A.3.12 and Proposition 3.3.5. Let ω, η ∈ Ωk(M), then

〈�kω, η〉 = 〈(dd?ω + d?dω), η〉
= 〈dd?ω, η〉+ 〈d?dω, η〉
= 〈d?ω, d?η〉+ 〈dω, dη〉
= 〈ω, dd?η〉+ 〈ω, d?dη〉
= 〈�kω, η〉.
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3. Let ω ∈ Ωk(M).
Note that if dω = 0 and d?ω = 0 then �kω = 0.
Now, assume that �kω = 0. By Definition A.3.12, we have

〈�ω, ω〉 = 〈(dd? + d?d)ω, ω〉
= 〈dω, dω〉+ 〈d?ω, d?ω〉

The last equality follows by Lemma 3.3.5, since

〈dω, dω〉 = 〈ω, d?dω〉
= 〈d?dω, ω〉

and
〈d?ω, d?ω〉 = 〈dd?ω, ω〉.

Since 〈·, ·〉 is definite positive, so dω = 0 and d?ω = 0.
�

3.4 Sobolev spaces on k–forms
In section D.3 we define k–Sobolev spaces of the L2–space of functions with compact support
on Rn, we will now extend the definition of k–Sobolev space to differentiable forms with
compact support.
Definition 3.4.1. Let M be a differentiable manifold, an open cover {Uα}α∈Λ is a locally
finite cover if every point p ∈ M has a neighborhood that meets only finitely many of the
sets Uα.
Definition 3.4.2. Let M be a differentiable manifold and {Uα}α∈Λ a locally finite open
cover of M . A partition of unity subordinate to {Uα}α∈Λ is a collection of non negative
differentiable functions {ρα}α∈Λ satisfying

1. ∑ ρα = 1.

2. supp ρα ⊂ Uα.
Given an open cover of M , one can construct a locally finite subcover of M , see [9,

Thm. 7.1].
Let p ∈M , consider the inner product on ΛkT ∗pM

〈 , 〉p: ΛkT ∗pM × ΛkT ∗pM −→ R,

defined by (3.1).
In a natural way, this inner product induces the norm

|| ||: ΛkT ∗pM −→ R, ||ω(p)|| = 〈ω(p), ω(p)〉
1
2
p .

Note that this inner product and norm depends smoothly on p ∈M.We denote this function
by fω:M −→ R, given by fω(p) = ||ω(p)||.
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Definition 3.4.3. Let (M, g) be a Riemannian n–manifold with an atlas {(Uα, ϕα)}α∈Λ
where {Uα}α∈Λ is a locally finite open cover of M and ϕα:Uα −→ Vα with V α compact in
Rn. Take a partition of unity {ρα:Uα −→ [0, 1]}α∈Λ. We define the l–norm of a compactly
supported k–form ω to be the l–norm,

||ω||l =
∑
α∈Λ
||(ραfω) ◦ ϕ−1

α ||2l, Hl(Rn)

 1
2

(3.13)

And || ||l, Hl(Rn) is the l–norm of functions defined by the equality (D.7).
We denote the set of all differentiable k–forms with compact support contained in M by

Ωk
c (M). Note that Ωk

c (M) ⊂ Ωk(M).
Definition 3.4.4. The completation of Ωk

c (M) with respect to the l–norm (3.13) is the
l–Sobolev space of differentiable k–forms, denoted by H l

k(M).
The inner product on Ωk(M) defined in equality (3.6) induce the L2–norm

||ω||0 := 〈ω, ω〉1/2. (3.14)

With respect to the || ||0–norm we have the 0–Sobolev space H0(M), by Remark D.3.4
H0
k(M) = L2(Ωk

c (M)), see section D.2.
On Ωk(M), we define inner product

〈ω, ω〉1 := 〈dω, dω〉+ 〈d?ω, d?ω〉+ 〈ω, ω〉. (3.15)

And
||ω||1 := 〈ω, ω〉1/21 . (3.16)

By straightforward calculations we can see that if l = 1 the 1–norm (3.13) coincides with
the norm (3.16).

We complete the space Ωk
c (M) of differentiable k–forms with respect to the norm || ||1,

the resulting vector space is the 1–Sobolev space of Ωk(M), denoted by H1
k(M).

Also, one can extend the inner products (3.6) and (3.15) to Ω•(M), we will denote by
H i
•(M) the i–Sobolev space of Ω•(M), where i = 0, 1.

3.5 Hodge theorem
The objective of the section is to see that each De Rham cohomology class contains a har-
monic representative, this result relates differential geometry and geometric analysis.
Lemma 3.5.1 ([18, Lemma. 3.4.2]). Let {ωn}n∈N ⊂ H1

k(M) be bounded. Then a subsequence
of {ωn} converges with respect to (3.14) to some ω ∈ H1

k(M).
Lemma 3.5.2. There exists a constant c > 0, depending only on the Riemannian metric of
M , with the property that for all closed k–form ω that is orthogonal to the kernel of d?,

〈ω, ω〉 ≤ c〈d?ω, d?ω〉. (3.17)
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Proof. If (3.17) is not true, suppose there exists a sequence of closed k–forms {βn} orthogonal
to Ker d? with

〈βn, βn〉 ≥ n〈d?βn, d?βn〉. (3.18)

We define λn := 〈βn, βn〉−1/2 ∈ R. Then

〈λnβn, λnβn〉 = λn〈βn, λnβn〉
= λ2

n〈βn, βn〉
= (〈βn, βn〉)−1〈βn, βn〉
= 1.

By equality (3.18)
1 = 〈λnβn, λnβn〉 ≥ n〈d?(λnβn), d?(λnβn)〉. (3.19)

By hypothesis βn is a closed k–form, since d is R–linear, then d(λnβn) = 0. One has that

1
n
≥ 〈d?(λnβn), d?(λnβn)〉+ 〈d(λnβn), d(λnβn)〉

We add the term 〈λnβn, λnβn〉,

1
n

+ 1 ≥ 〈d?(λnβn), d?(λnβn)〉+ 〈d(λnβn), d(λnβn)〉+ 〈λnβn, λnβn〉 = 〈λnβn〉1 = ||λnβn||21.

Since {λnβn} is a bounded sequence, by Lemma 3.5.1, there exist a subsequence of {λnβn}
that converges with respect to the 0–norm || ||0 to some ψ ∈ H1

k(M).
By inequality (3.19), 1

n
≥ 〈d?(λnβn), d?(λnβn)〉, then d?(λnβn) converges to 0 with respect

to 0–norm.
Since a subsequence λnβn converges to ψ, we get that for all ω ∈ Ωk−1(M)

0 = lim
n→∞
〈d?(λnβn), ω〉

= lim
n→∞
〈λnβn, dω〉

= 〈ψ, dω〉
= 〈d?ψ, ω〉.

Then d?ψ = 0.
Since d?ψ = 0 and βn is orthogonal to Ker d?, then

〈ψ, λnβn〉 = 0. (3.20)

On the other hand, since 〈λnβn, λnβn〉 = 1 and λnβn converges to ψ with respect to || ||0,
then

lim
n→∞
〈ψ, λnβn〉 = lim

n→∞
〈λnβn, λnβn〉 = lim

n→∞
1 = 1.

Which is a contradiction to (3.20). �
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Theorem 3.5.3 (Hodge Theorem). LetM be an oriented, compact Riemannian n–manifold.
An arbitrary De Rham cohomology class of M can be represented by a unique harmonic form,
that is

Ker�k ∼= Hk
DR(M).

Proof. Uniqueness:
Let [ω1], [ω2] ∈ Hk

DR(M) such that ω1, ω2 are cohomologous and harmonic k–forms.
Since ω1, ω2 ∈ Ωk(M) are cohomologous, then

ω1 = ω2 + dη (3.21)

for some η ∈ Ωk−1(M).
We have the following cases:

1. If k = 0, by hipothesis ω1, ω2 ∈ Ω0(M) = C∞(M) and the equality (3.21) is satisfied
for some η ∈ Ω−1(M) = 0, then η = 0. Therefore, ω1 = ω2.

2. If k 6= 0. By equality (3.21) for some η ∈ Ωk−1(M) and Proposition 3.3.5, we have

〈ω1 − ω2, ω1 − ω2〉 = 〈ω1 − ω2, dη〉 = 〈d?(ω1 − ω2), η〉.

Since d? is a linear map, ω1 and ω2 are harmonic k–forms and by Proposition 3.3.12-3
we obtain

||ω1 − ω2||0 = 〈ω1 − ω2, ω1 − ω2〉 = 〈d?ω1, η〉 − 〈d?ω2, η〉 = 0

Therefore ω1 = ω2.

Existence:
Let ω0 be a closed differentiable form representing of [ω0] ∈ Hk

DR(M).
Note that all forms cohomologous to ω0 are of the form

ω = ω0 + dα (3.22)

for some α ∈ Ωk−1, where ω is also a closed form.
We denote by Zk

ω0(M) the vector space of all closed k–forms cohomologous to ω0. We
consider the functional

N : Zk
ω0(M) −→ R

ω 7→ 〈ω, ω〉.

We want to minimize N , that is we want to see the infimum is achieved by a differentiable
form η ∈ Zk

ω0(M), such that η must satisfy the following equation: for all β ∈ Ωk−1(M),

d

dt
N(η + tdβ)

∣∣∣∣∣
t=0

= 0 (3.23)
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0 = d

dt
〈η + tdβ, η + tdβ〉|t=0

= d

dt
(〈η, η + tdβ〉+ 〈tdβ, η + tdβ〉)|t=0

= d

dt
(〈η, η〉+ 〈η, tdβ〉+ 〈tdβ, η〉+ 〈tdβ, tdβ〉)|t=0

= d

dt
(〈η, η〉+ 2〈η, tdβ〉+ t2〈dβ, dβ〉)|t=0

= (2〈η, dβ〉+ 2t〈dβ, dβ〉)|t=0

= 2〈η, dβ〉
= 2〈d?η, β〉

0 = 〈d?η, β〉.

0 = 〈η, dβ〉. (3.24)

Since this holds for all β ∈ Ωk−1(M), d?η = 0. Since η is a closed form, then dη = 0. By
Proposition 3.3.12-3, η is a harmonic k–form.

If we prove that there exists the infimum of N by the equation (3.23), it will already be
a harmonic k–form.

Let {ωn}n∈N ⊂ Zk
ω0(M) be a sequence such that

ωn = ω0 + dαn, (3.25)

for some αn ∈ Ωk−1(M), N(ωn) converges to inf
ω=ω0+dα

N(ω) = κ.

So 〈ωn, ωn〉 = N(ωn) ≤ κ+ 1.
Since {ωn}n∈N is bounded, by Theorem D.1.13 then there exist converges weakly subse-

quence {ωn}n∈N to some ω ∈ H0
k(M), see Definition D.1.12.

Since 〈ωn − ω0, ϕ〉 = 〈dαn, ϕ〉 = 〈αn, d?ϕ〉 for all ϕ ∈ Ωk(M). Then

〈ω − ω0, ϕ〉 = 0 (3.26)

if and only if d?ϕ = 0, ϕ ∈ Ωk(M).
Set τ := ω − ω0.

We define the functional

A: Im d? −→ R (3.27)
d?ϕ −→ 〈τ, ϕ〉.

Let us see that A is well defined. If d?ϕ1 = d?ϕ2, since d? is a linear map, then 0 =
d?ϕ1 − d?ϕ2 = d?(ϕ1 − ϕ2).

By equality (3.26) and by definition (3.27) then

A(d?(ϕ1 − ϕ2)) = 〈τ, (ϕ1 − ϕ2)〉 = 0.
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Since 〈 , 〉 is bilinear

0 = 〈τ, (ϕ1 − ϕ2)〉 = 〈τ, ϕ1〉 − 〈τ, ϕ2〉, then 〈τ, ϕ1〉 = 〈τ, ϕ2〉,
A(d?ϕ1) = A(d?ϕ2).

Therefore, A is well defined.
Consider pr: Ωk(M) −→ Ker d? be the orthogonal projection onto Ker d?
Let ϕ ∈ Ωk(M), we define ψ := ϕ− pr(ϕ) ∈ (Ker d?)⊥. Note that

d?ψ = d?(ϕ− pr(ϕ)) = d?ϕ− d?(pr(ϕ)) = d?ϕ. (3.28)

Then
A(d?ϕ) = A(d?ψ) = 〈τ, ψ〉. (3.29)

In equality (3.29) apply Cauchy-Schwarz inequality

|A(d?ϕ)| = |〈τ, ψ〉| ≤ ||τ ||0||ψ||0. (3.30)

Since ψ is a closed k–form and ψ is orthogonal to the kernel of d?, by Lemma 3.5.2 there is a
constant c > 0 such that 〈ψ, ψ〉 ≤ c〈d?ψ, d?ψ〉. By definition (3.14) and equality (3.28), then

||ψ||0 ≤
√
c||d?ψ||0 =

√
c||d?ϕ||0. (3.31)

By equalities (3.30) and (3.31) then |A(d?ϕ)| ≤
√
c||τ ||0||d?ϕ||0, therefore A is a bounded

functional, see definition D.1.17.
Since A is a bounded functional, it is a continuous functional, then A can be extended

to the L2-closure of Im d?. By Riesz Theorem D.1.19, there exist α ∈ L2(Im d?) such that

〈α, d?ϕ〉 = 〈τ, ϕ〉

for all ϕ ∈ Ωk(M). Since d is the adjoint operator of d?, see Proposition 3.3.5, rewrite

〈dα, ϕ〉 = 〈τ, ϕ〉,

then dα = τ. Therefore ω = ω0 + τ ∈ Zk
ω0(M).

By Theorem D.3.9 we have the regularity of the solutions of equality (3.24). �
Some consequences of Hodge Theorem are Theorems 1.4.10 and 1.4.7-1.



Chapter 4

More expressions for d, d? and D

In this chapter, we shall omit the word “differentiable” for a vector bundle, form and section,
since we will only deal with differentiable objects.

Through the notions and properties of connections and Clifford algebras we will give
expressions for d, d? and �k that we need, the equalities (4.20), (4.21) and (4.46).

4.1 Connections
To review topics related to this section see [18], [28], [14] and [24].

First, let us mention a result of isomorphisms of C∞(M)–modules.
Theorem 4.1.1 ([24, Prop. 16.13]). Let (E, π,M) and (F, π′,M) be two vector bundles,
there are the following isomorphisms:

1. Γ(HomR(E,F )) ∼= HomC∞(M)(Γ(E),Γ(F )).

2. Γ(E ⊗ F ) ∼= Γ(E)⊗C∞(M) Γ(F ).

3. Γ(E∗) ∼= HomC∞(M)(Γ(E), C∞(M)).

4. Γ(ΛiE) ∼= Λi
C∞(M)(Γ(E)).

Definition 4.1.2. Let E andM be differentiable manifolds and π:E −→M be a real vector
bundle over M . The set of all k–forms with values in E is

Ωk(E) := Γ(Λk(T ∗M)⊗ E).

That is, by Proposition 1.2.4-2 an arbitrary element of Ωk(E) can be written as a linear
combination of elements of the form ω ⊗ s, where ω ∈ Ωk(M), s ∈ Γ(E). Let ω ∈ Ωk(M),
ω(p):TpM × . . .× TpM −→ R, generalizing this, for a vector bundle π:E −→ M we obtain
a k–form with values in E, taking ω(p)⊗ π−1(p).

The space of sections of Λ•(T ∗M)⊗ E the tensor product vector bundle is denoted by

Ω•(E) = Γ(Λ•(T ∗M)⊗ E). (4.1)

57
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A connection on E may be thought of, in some sense, as an extension of the exterior
derivative d to include coefficients in E.

Definition 4.1.3. A connection in a vector bundle (E, π,M) over a differentiable manifold
M , is a linear map

∇E: Γ(E) −→ Ω1(E)

satisfying the following condition: (Leibniz rule) for each f ∈ C∞(M), s ∈ Γ(E),

∇E(fs) = df · s+ f∇Es. (4.2)

If X ∈ Γ(TM), then a connection ∇E induces a canonical map

∇E
X : Γ(E) −→ Γ(E)

via the contraction between TM and T ∗M , that is, let s ∈ Γ(E) ∇E
Xs = Xy∇Es, (see

definition of contraction 1.5.1).
∇E
X is called the covariant derivative of ∇E along X.

Proposition 4.1.4 ([20, Prop. 1.2, Prop. 2.7]). Let (E, π,M) be a vector bundle, let X
and Y be vector fields on a differentiable manifold M , then the covariant derivative has the
following properties: for all s ∈ Γ(E),

1. ∇E
X+Y s = ∇E

Xs+∇E
Y s.

2. ∇E
fXs = f∇E

Xs and ∇E
λXs = λ∇E

Xs for each f ∈ C∞(M) and λ ∈ R.

3. ∇E
Xf = Xf for every function f ∈ C∞(M).

Elements of Ω1(E|U) are written uniquely as
k∑
i=1

ηi ⊗ si for some ηi ∈ Ω1(U).

Definition 4.1.5. Let (E, π,M) be a vector bundle of rank k, U ⊂ M an open subset and
s1, . . . , sk ∈ Γ(E |U) be a local frame. For a connection ∇E on E we have

∇Esi =
k∑
j=1

Aij ⊗ sj (4.3)

where Aij ∈ Ω1(U) is a k × k matrix of 1–forms, which is called the connection matrix with
respect to the local frame {s1, . . . , sk} and it is denoted by A.

Conversely, given an arbitrary matrix A of 1–forms on U and a local frame {s1, . . . , sk}
for E |U , then equality (4.3) defines a connection on Γ(E |U). Let s ∈ Γ(E |U) we can write
it as s =

k∑
i=1

aisi, with ai ∈ C∞(U). By equalities (4.2) and (4.3), we get

∇Es = ∇E

(
k∑
i=1

aisi

)
=

k∑
i=1

(
dai · si + ai∇Esi

)
.
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Then

∇Es =
k∑
i=1

dai · si +
k∑
i=1

k∑
j=1

aiAij ⊗ sj. (4.4)

With respect to s = (a1, . . . , ak), equation (4.4) can be written in matrix for as

∇E(a1, . . . , ak) = (da1, . . . , dak) + (a1, . . . , ak)A.

We consider a trivial bundle π:E −→ M , that is, it has a trivialization E ∼= M × Rn.
One can see that Γ(E) = C∞(M,Rn), we have

∇E = ∇M×Rn :C∞(M,Rn) −→ Γ(T ∗M)× C∞(M,Rn).

Let f1, . . . , fn ∈ C∞(M,Rn) be a local frame, for any f ∈ C∞(M,Rn) f =
n∑
i=1

aifi with
ai ∈ C∞(M), by equality (4.4), we have

∇Ef =
n∑
i=1

(dai)fi +
n∑
i=1

n∑
j=1

aiAij ⊗ fj. (4.5)

Suppose Aij is the zero matrix, then for every vector field X, ∇E
Xf is just the directional

derivative of f in the direction of X. In this case, ∇E is called the trivial connection in the
product bundle.

Lemma 4.1.6. Any vector bundle over a differentiable manifold admits a connection.

Proof. Let (E, π,M) be a vector bundle over a differentiable manifold M , let {Uα}α∈Λ be a
locally finite open cover. By the local trivializations we have π−1(Uα) ∼= Uα×Rn, we denoted
by ∇α a trivial connection for each π−1(Uα) −→ Uα.

Let {gα}α∈Λ be a partition of unity for the cover {Uα}α∈Λ, (see definition 3.4.2). By
equality (4.5) we define

∇Es :=
∑
α∈Λ

gα∇αs =
∑
α∈Λ

n∑
i=1

gαdaifi +
∑
α∈Λ

n∑
i=1

n∑
j=1

gαaiAij ⊗ fj.

�

Remark 4.1.7. In this way, we construct a connection on E. Since we have an infinite
number of connection matrices, there are infinitely many connections on E.

4.1.1 Connections on the tangent bundle
Connections on the tangent bundle TM are particularly important. Also on the tangent
bundle there is the Levi-Civita connection.
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The Levi-Civita Connection

Definition 4.1.8. The torsion of a connection ∇TM on TM is defined as

T (X, Y ) := ∇TM
X Y −∇TM

Y X − [X, Y ], X, Y ∈ Γ(TM).

∇TM is called torsion free if T (X, Y ) = 0 for all X, Y ∈ Γ(TM).

Definition 4.1.9. Let TM be the tangent bundle on a Riemannian manifold (M, g). A
connection ∇TM on TM is called metric if

Xg(Y, Z) = g(∇TM
X Y, Z) + g(Y,∇TM

X Z), X, Y, Z ∈ Γ(TM). (4.6)

Theorem 4.1.10 ([18, Thm. 4.3.1]). On each Riemannian manifold (M, g), there is precisely
one metric and torsion free connection ∇LC on TM . It is determined by the formula:

g(∇LC
X Y, Z) = 1

2(Xg(Y, Z)−Zg(X, Y )+Y g(Z,X)−g(X, [Y, Z])+g(Z, [X, Y ])+g(Y, [Z,X]),
(4.7)

for all X, Y, Z ∈ Γ(TM). The formula (4.7) is called the Koszul formula.

Definition 4.1.11. The connection ∇LC determined by (4.7) is called the Levi-Civita con-
nection of M .

Definition 4.1.12. Let ∇TM be a connection on TM , the Christoffel symbols Γkij are given
by

∇TM
∂
∂xi

∂

∂xj
=

n∑
k=1

Γkij
∂

∂xk
. (4.8)

It is possible to characterize a torsion free connection ∇TM in terms of its Christoffel
symbols. In local coordinates, by equality (4.8) the components of the torsion T are given
by

Tij = T

(
∂

∂xi
,
∂

∂xj

)
= ∇TM

∂
∂xi

∂

∂xj
−∇TM

∂
∂xj

∂

∂xi
=

n∑
k=1

(Γkij − Γkji)
∂

∂xk
. (4.9)

Theorem 4.1.13 ([18, Cor. 4.3.1]). The connection ∇TM on TM is torsion free if and only
if

Γkij = Γkji for all i, j, k. (4.10)

LetM be a differentiable manifold, c: I −→M be a differentiable curve and (U, x1, . . . , xn)
be a chart on M . We consider x(t) := x(c(t)) where x = (x1, . . . , xn). Then,

ċ =
n∑
i=1

ċi
∂

∂xi
.
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By equalities (4.2), (4.8) and Proposition 4.1.4-2. we get

∇TM
ċ(t) ċ(t) = ∇TM∑n

i=1 ċi(t)
∂
∂xi

n∑
k=1

ċk(t)
∂

∂xk

=
n∑
i=1

n∑
k=1
∇TM
ċi(t) ∂

∂xi

ċk(t)
∂

∂xk

=
n∑
i=1

n∑
k=1

(
ċ(t) ∂

∂xk
(c(t)) + ċk(t)∇TM

ċi(t) ∂
∂xi

∂

∂xk

)

=
n∑
i=1

n∑
k=1

c̈(t) ∂

∂xj
+

n∑
i=1

n∑
k=1

n∑
j=1

ċi(t)ċk(t)Γjik(c(t))
∂

∂xj
.

Definition 4.1.14. Let M be a differentiable manifold and ∇TM be a connection on the
tangent bundle TM . A geodesic is a differentiable curve c: I −→M with respect to ∇TM if

∇TM
ċ ċ ≡ 0.

That is,  n∑
i=1

n∑
j=1

c̈(t) +
n∑
i=1

n∑
k=1

n∑
j=1

ċi(t)ċk(t)Γjik(c(t))
 ∂

∂xj
= 0. (4.11)

Theorem 4.1.15 ([18, Thm. 1.4.2]). Let M be a Riemannian manifold, for each p ∈ M ,
v ∈ TpM there exist a maximal interval ε > 0 and precisely one geodesic c: [0, ε] −→M with
c(0) = p, ċ(0) = v. In addition, c depends smoothly on p and v.

The geodesic of Theorem 4.1.15 will be denoted by cv, also, we have that for λ > 0, t ∈
[0, ε]

cv(t) = cλv

(
t

λ

)
.

By Heine-Borel Theorem, see [4, Thm. 3.3.1], the set {v ∈ TpM | ||v|| = 1} is compact and
since cv depends smoothly on v, there exists ε0 > 0 with the property that for ||v|| = 1, cv
is defined at least on [0, 1].

Definition 4.1.16. Let M be a Riemannian manifold, p ∈M .
Let Vp = {v ∈ TpM |cv is defined on [0, 1]}, we define

expp:Vp −→M

v 7→ cv(1).

Called the exponential map of M at p. If v ∈ Vp, 0 ≤ t ≤ 1, then expp(tv) = cv(t).

Theorem 4.1.17 ([18, Thm. 1.4.3]). The exponential map expp maps a neighborhood of
0 ∈ TpM diffeomorphically onto a neighborhood of p ∈M.
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Let X1, . . . , Xn be an orthonormal basis of TpM with respect to the Riemannian metric.
For each v ∈ TpM , we can write v =

n∑
i=1

aiXi with ai ∈ R. We have a linear map:

ψ: TpM −→ Rn

v 7→ (a1, . . . , an).

By the linear map ψ we identify TpM with Rn.
By Theorem 4.1.17 there exists a neighborhood V of p such that is mapped by exp−1

p

diffeomorphically onto a neighborhood W ⊂ C of 0 ∈ TpM and by ψ ◦ exp−1
p we have a

neighborhood V of p diffeomorphic onto a neighborhood U of 0 ∈ Rn. In particular, p is
mapped to 0.

Definition 4.1.18. Let M be a Riemannian n–manifold, the local coordinates defined by
the charts (U, ψ ◦ exp−1

p ) are called normal coordinates with center p.

Theorem 4.1.19. Let M be a Riemannian n–manifold, in normal coordinates we have:

Γkij(0Rn) = 0R, for all i, j, k. (4.12)

Proof. Let M be a Riemannian n–manifold, p ∈ M and (U, x), where x = (x1, . . . , xn),
normal coordinates with center p. In this coordinates, the straight lines throught the origin
of Rn, (or, more precisely, their portions contained in the chart image) are geodesic. Namely,
the line tx, t ∈ R,x ∈ Rn is mapped (for sufficiently small t) onto ctx(1) = cx(t), where cx(t)
is the geodesic, parametrized by arc length, with ċx(0) = x.

We consider x(c(t)) = tv, with v ∈ TpM , since is a normal coordinate x(p) = 0.
We have

ċ(t) = d

dt
x(c(t)) = (ċ1(t), . . . , ċn(t)), where ċi(t) = d

dt
xi(c(t)).

Then ċj(t) = d
dt

(tvj) = vj and c̈j(t) = 0, we substitute this in equality (4.11) and have

n∑
i=1

n∑
j=1

n∑
k=1

Γkij(x(c(t)))vivj
∂

∂xk
= 0.

Then Γkij(tv)vivj = 0 for all k = 1, . . . , n. In particular at t = 0, Γkij(0Rn)vivj = 0 for all
v ∈ Rn and k = 1, . . . , n.

Let X1, . . . , Xn be an orthonormal basis of TpM with respect to the Riemannian metric.
We put v = 1

2(Xl +Xm) with m, l = 1, . . . , n and since x is a normal coordinate we obtain

Γkij(0Rn) = 0R

for all k = 1, . . . , n.
Also, sinceM is a Riemannian manifold, for∇LC, by Theorem 4.1.13 Γkij = Γkji. Therefore

Γkij(0Rn) = 0 for all i, j, k. �
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4.1.2 Induced connections
In this section ∇E will be a connection on a vector bundle (E, π,M) over a differentiable
manifold M and ∇F will be a connection on the vector bundle (F, π′,M), these connections
induce connections on the vector bundles that we build in the section C.1, for example the
connection in the cotangent bundle and in the k–th exterior bundle of T ∗M.

Let (E, π,M) and (F, π′,M) be two vector bundles over M . The usual wedge product
induces a natural map

∧: Ωi(M)× Ωj(E) −→ Ωi+j(E),
defined by

∧(η, ω ⊗ s) = (η ∧ ω)⊗ s.
That induces a C∞(M)–pairing

∧: Ωi(E)⊗ Ωj(F ) −→ Ωi+j(E ⊗ F ), (ω ⊗ s) ∧ (η ⊗ t) = ω ∧ η ⊗ (s⊗ t). (4.13)

Where ω ∈ Ωi(M), η ∈ Ωj(M), s ∈ Γ(E) and t ∈ Γ(F ) and ω ∧ η is the wedge product.
Let (E∗, π′,M) be the dual vector bundle of (E, π,M), we define the evaluation map as

Ev: Ωi+j(E ⊗ E∗) −→ Ωi+j(M),
ω ⊗ (s⊗ s∗) 7→ ω(s∗(s)).

With respect to (E∗, π′,M) and (E, π,M) we have the pairing ( , ) = Ev ◦ ∧ of Ωi(E) and
Ωj(E∗) defined by

( , ): Ωi(E)⊗ Ωj(E∗) −→ Ωi+j(M)
(ω ⊗ s, η ⊗ s∗) 7→ ω ∧ η(s∗(s)).

Since ∧ is a non-singular pairing, then ( , ) is also a non-singular pairing.
Let ∇E be a connection on (E, π,M), using the pairing ( , ) we define the connection,

∇E∗ on E∗ such that

d(s, s∗) = (∇Es, s∗) + (s,∇E∗s∗), s∗ ∈ Γ(E∗), s ∈ Γ(E). (4.14)

On the right side of the equality (4.14) the first pairing is ( , ): Ω1(E)⊗Γ(E∗) −→ Ω1(M),
and the second is ( , ): Γ(E)⊗Ω1(E∗) −→ Ω1(M). Since the pairing ( , ) is non-singular, the
connection ∇E∗ is unique and will be called the dual connection of ∇E.

We can rewrite the equality (4.14) as

d(s∗(s)) = s∗(∇Es) + (∇E∗s∗)(s). (4.15)

If we return to the matrix of the connection we have the following.
Lemma 4.1.20. Let (E, π,M) be a vector bundle, U ⊂ M be an open subset, s1, . . . , sk be
a local frame over U . Let A = (Aij) be the connection matrix of ∇E with respect to the local
frame, then for E∗ the dual vector bundle has the connection matrix Ã = −At = (−Aji).



64 More expressions for d, d? and D

Proof. Let s1, . . . , sk be a local frame over U ⊂M and let s∗1, . . . , s∗k be the dual local frame
on E∗.

By equality (4.14) for the connection ∇E∗ we get

d(si, s∗j) = (∇Esi, s
∗
j) + (si,∇E∗s∗j).

Let 1, 0 ∈ C∞(M) be the constant functions with values 1 and 0 respectively, from first term,
if i = j, then (si, s∗j) = 1, while if i 6= j then (si, s∗j) = 0, in both cases d(si, s∗j) = 0. By
equality (4.3) and since the pairing is bilinear we have

(sr,∇E∗s∗i ) = −(∇Esr, s
∗
i )

(sr,
k∑
j=1

Ãij ⊗ s∗j) = −(
k∑
l=1

Arl ⊗ sl, s∗i )

k∑
j=1

Ãij(sr, s∗j) = −
k∑
l=1

Arl(sl, s∗i ).

On both sides of the expressions are nonzero if the indices coincide, that is, r = j and i = l.
Therefore Ãir = −Ari. �

Remark 4.1.21. We consider { ∂
∂x1
, . . . , ∂

∂xk
} the local frame over TM |U , with U ⊂ M an

open subset.
In relation with equality (4.3) and the Christoffel symbols we obtain

∇TM
∂
∂xi

∂

∂xj
=

k∑
l=1

Ajl

(
∂

∂xi

)
∂

∂xl
(4.16)

that is, Ajl( ∂
∂xi

) = Γlij ∈ C∞(U), we obtain a k × k matrix A =
(
Γlij
)

1≤j, l≤k
.

Remark 4.1.22. By lemma 4.1.20 and Remark 4.1.21, we can obtain a matrix of ∇T ∗M
∂
∂xi

.
Let A = (Γlij)1≤j, l≤k be the matrix of ∇TM

∂
∂xi

, then −At is the matrix of ∇T ∗M
∂
∂xi

. We get

∇T ∗M
∂
∂xi

dxj = −
k∑
l=1

Γjildxl. (4.17)

Lemma 4.1.23. Let (M, g) be a Riemannian manifold, if ∇TM is metric then: for all
X, Y ∈ Γ(TM), where α is the dual of Y with respect to g,(

∇TM
X Y

)∗
= ∇T ∗M

X α.

Proof. Let X, Y, s ∈ Γ(TM), where α ∈ Γ(T ∗M) is the dual section of Y with respect to g.
Using the pairings and equality (4.15) we have:

(∇T ∗M
X α)(s) = X(s, α)− (∇TM

X s, α)
= Xg(s, Y )− g(∇TM

X s, Y ).
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On the other hand, since ∇TM is metric, see equality (4.6), we have

(∇TM
X Y )∗(s) = g(s,∇TM

X Y )
= Xg(s, Y )− g(∇TM

X s, Y ).

�

Definition 4.1.24. The Hessian of a differentiable function f :M −→ R on a Riemannian
manifold M is ∇T ∗Mdf .

In local coordinates (U, x1, . . . , xn) we have:

df =
n∑
i=1

∂f

∂xi
dxi.

By Leibniz rule and equality (4.17), we have:

∇T ∗M
∂
∂xj

df = ∇T ∗M
∂
∂xj

(
n∑
i=1

∂f

∂xi
dxi

)

=
n∑
i=1
∇T ∗M

∂
∂xj

(
∂

∂xi
dxi

)

=
n∑
i=1

(
d

(
∂f

∂xi

))(
∂

∂xj

)
dxi −

n∑
i=1

n∑
l=1

∂f

∂xi
Γijldxl.

In particular, by Lemma 4.1.23, we have:

Corollary 4.1.25. Let (M, g) be a Riemannian manifold and f :M −→ R be a differentiable
function. If ∇TM is a metric connection and any X ∈ Γ(TM) then (∇TM

X gradf)∗ = ∇T ∗M
X df.

Definition 4.1.26. Let ∇E be a connection in (E, π,M). Then there a unique connection
∇ΛkE such that

∇ΛkE(s1 ∧ . . . ∧ sk) =
k∑
i=1

s1 ∧ . . . ∧∇Esi ∧ . . . ∧ sk. (4.18)

Where s1, . . . , sk ∈ Γ(E).

By Theorem 4.1.1-4. s1 ∧ . . . ∧ sk ∈ Γ(ΛkE).
And by equality (4.18) we have: let ω ∈ Ωk(M) and η ∈ Ωl(M),

∇Λk+lE(ω ∧ η) = ∇ΛkEω ∧ η + ω ∧∇ΛlEη.

Lemma 4.1.27. Let ∇TM be a connection on the tangent bundle TM . Then it induces
canonically a unique connection ∇ΛkT ∗M on ΛkT ∗M .
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Proof. Let s1, . . . , sk ∈ Γ(TM) be a local frame and the dual local frame s1, . . . , sk ∈
Γ(T ∗M), by equalities (4.18), (4.15) and Lemma A.3.42 we obtain:

∇ΛkT ∗M(s1 ∧ . . . ∧ sk)(s1, . . . , sk) =
k∑
i=1

(s1 ∧ . . . ∧∇T ∗Msi ∧ . . . ∧ sk)(s1, . . . , sk)

=
k∑
i=1

s1(s1) ∧ . . . ∧ (∇T ∗Msi)(si) ∧ . . . ∧ sk(sk)

=
k∑
i=1

(∇T ∗Msi)(si)

=
k∑
i=1

(d(si(si))− si(∇TMsi))

= −
k∑
i=1

si(∇TMsi).

In fact, ∇ΛkT ∗M(s1 ∧ . . . ∧ sk)(s1, . . . , sk) = −∑k
i=1 s

i(∇TMsi). �

Remark 4.1.28. ∇ΛkT ∗M coincides with the induced connection of T ∗M from definition 4.1.26.

By linearity of the connections, Leibniz rule, Lemmas 4.1.27 and A.3.42, we have:

Corollary 4.1.29. If ω ∈ Ωk(M) and X0, . . . , Xk ∈ Γ(TM), then

∇ΛkT ∗M
X0 ω(X1, . . . , Xk) = X0(ω(X1, . . . , Xk))−

k∑
i=1

ω(X1, . . . , Xi−1,∇TM
X0 Xi, Xi+1, . . . , Xk)

(4.19)

4.2 Other expressions for d and d?

In sections 1.3 and 3.3 we described the exterior derivative and its adjoint operator, in this
section we obtain other expressions for d and d? using connections, properties of the wedge
product and the contraction.

Proposition 4.2.1. Let (M, g) be a Riemannian manifold of dimension n. Let ω ∈ Ωk(M),
X0, . . . , Xk ∈ Γ(TM). Then

dω(X0, . . . , Xk) =
k∑
i=0

(−1)i∇ΛkT ∗M
Xi

ω(X0, . . . , X̂i, . . . , Xk).

Proof. By Theorem 4.1.10 there is ∇LC the Levi-Civita connection of TM , that is metric
and torsion free.

We use the exterior derivative of Theorem 1.5.5 and since ∇LC is torsion free, we obtain
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dω(X0, . . . , Xk) =
k∑
i=0

(−1)iXi(ω(X0, . . . , X̂i, . . . , Xk))

+
∑

0≤i<j≤k
(−1)i+jω([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xk)

=
k∑
i=0

(−1)iXi(ω(X0, . . . , X̂i, . . . , Xk))

+
∑

0≤i<j≤k
(−1)i+jω(∇LC

Xi
Xj, X0, . . . , X̂i, . . . , X̂j, . . . , Xk)

−
∑

0≤i<j≤k
(−1)i+jω(∇LC

Xj
Xi, X0, . . . , X̂i, . . . , X̂j, . . . , Xk).

We permute ∇LC
Xi
Xj and ∇LC

Xj
Xi to the entries j− 2 and i respectively. After we develop and

reorder the sums.

dω(X0, . . . , Xk) =
k∑
i=0

(−1)iXi(ω(X0, . . . , X̂i, . . . , Xk))

+
∑

0≤i<j≤k
(−1)i−1ω(X0, . . . , X̂i, . . . , X̂j,∇LC

Xi
Xj, Xj+1 . . . , Xk)

−
∑

0≤i<j≤k
(−1)jω(X0, . . . , X̂i,∇LC

Xj
Xi, Xi+1, . . . , X̂j, . . . , Xk)

=
k∑
i=0

(−1)i
[
Xiω(X0, . . . , X̂i, . . . , Xk))

−
k∑

j=i+1
ω(X0, . . . , X̂i, . . . , X̂j,∇LC

Xi
Xj, Xj+1 . . . , Xk)


−

k−1∑
i=0

k∑
j=i+1

(−1)jω(X0, . . . , X̂i,∇LC
Xj
Xi, Xi+1, . . . , X̂j, . . . , Xk)

+(−1)kXkω(X0, . . . , Xk−1, X̂k)
= (−1)kXkω(X0, . . . , Xk−1)

+
k−1∑
i=0

(−1)i
[
Xiω(X0, . . . , Xk−1))

−
k∑

j=i+1
ω(X0, . . . , X̂i, . . . , X̂j,∇LC

Xi
Xj, Xj+1 . . . , Xk)


−

k∑
i=0

i−1∑
j=0

(−1)iω(X0, . . . , X̂i,∇LC
Xi
Xj, Xi+1, . . . , X̂j, . . . , Xk).

By equality (4.19), then

dω(X0, . . . , Xk) = X0ω(X1, . . . , Xk)−
k∑
j=1

ω(X1, . . . , Xi−1,∇LC
X0Xj, . . . , Xk)
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+
k−1∑
i=1

(−1)i
[
Xiω(X0, . . . , X̂i, . . . , Xk))

−
k∑

j=i+1
ω(X0, . . . , X̂i, . . . , X̂j,∇LC

Xi
Xj, Xj+1 . . . , Xk)

−
i−1∑
j=0

ω(X0, . . . , X̂i,∇LC
Xi
Xj, Xi+1, . . . , X̂j, . . . , Xk)


+(−1)k

Xkω(X0, . . . , Xk−1)−
k−1∑
j=1

ω(X0, . . . ,∇LC
Xk
Xj, . . . , Xk−1)


= ∇ΛkT ∗M

Y0 ω(X1, . . . , Xk) +
k−1∑
i=1

(−1)i∇ΛkT ∗M
Xi

ω(X0, . . . , X̂i, . . . , Xk)

+(−1)k∇ΛkT ∗M
Xk

ω(X0, . . . , Xk−1)

=
k∑
i=0

(−1)i∇ΛkT ∗M
Xi

ω(X0, . . . , X̂i, . . . , Xk).

�

Theorem 4.2.2. Let (M, g) be a Riemannian manifold of dimension n, e1, . . . , en be a local
frame of TM and e1, . . . , en be the dual local frame of T ∗M . The exterior derivative satisfies

dω =
n∑
i=1

ei ∧∇ΛkT ∗M
ei

ω, ω ∈ Ωk(M) (4.20)

Proof. Let X0, X1, . . . , Xk ∈ Γ(TM).
Each Xj =

n∑
i=1

ajiei, in particular, ei(Xj) = aji , where aji ∈ C∞(M). By definition of
wedge product, see the definition A.3.41 we obtain

n∑
i=1

ei ∧∇ΛkT ∗M
ei

ω(X0, . . . , Xk) =
n∑
i=1

∑
σ∈S(1,k)

sgnσ ei(Xσ(1)) · ∇ΛkT ∗M
ei

ω(Xσ(0), . . . , Xσ(k))

=
n∑
i=1

k∑
j=0

(−1)jaji · ∇ΛkT ∗M
ei

ω(X0, . . . , X̂j, . . . , Xk).

By Proposition 4.1.4-2., the linearity of ∇ΛkT ∗M and Proposition 4.2.1 we get
n∑
i=1

ei ∧∇ΛkT ∗M
ei

ω(X0, . . . , Xk) =
n∑
i=1

k∑
j=0

(−1)j∇ΛkT ∗M
ajiei

ω(X0, . . . , X̂j, . . . , Xk)

=
n∑
j=0

(−1)j∇ΛkT ∗M∑n

i=1 ajiei
ω(X0, . . . , X̂j . . . , Xk)

=
n∑
j=0

(−1)j∇ΛkT ∗M
Xj

ω(X0, . . . , X̂j, . . . , Xk)

= dω(X0, . . . , Xk).
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�

Theorem 4.2.3. LetM be an oriented Riemannian n–manifold without boundary, e1, . . . , en
be an oriented orthonormal local frame of TM and e1, . . . , en be the dual oriented orthonormal
local frame of T ∗M . We have

d?ω = −
n∑
i=1

eiy∇ΛkT ∗M
ei

ω, ω ∈ Ωk(M). (4.21)

Proof. Let ω ∈ Ωk(M) we put

d̃?ω := −
n∑
i=1

eiy∇ΛkT ∗M
ei

ω.

First let us see that d̃? does not depend on the choice of the local frame e1, . . . , en.
Let f1, . . . , fn be another oriented orthonormal local frame with dual orthonormal local

frame f 1, . . . , fn. Then
fj =

n∑
k=1

akj ek, f j =
n∑
k=1

bjke
k

for some coefficients akj , b
j
k ∈ C∞(M). Since the bases are orthonormal, the transition matrix

is orthogonal, then bjk = akj and
n∑
j=1

akja
l
j = δkl. (4.22)

Now, let ω ∈ Ωk(M), by Proposition 4.1.4-2., equality (4.22) and since y is a linear map
we have

−
n∑
i=1

fiy∇ΛkT ∗M
fi

ω = −
n∑
i=1

n∑
j=1

n∑
l=1

aliely∇ΛkT ∗M
aji ej

ω

= −
n∑
i=1

n∑
j=1

n∑
l=1

alia
j
iely∇ΛkT ∗M

ej
ω

= −
n∑
j=1

n∑
l=1

δljely∇ΛkT ∗M
ej

ω

= −
n∑
j=1

ejy∇ΛkT ∗M
ej

ω.

Therefore, d̃? does not depend on the choice of the local frame.
Since d is independent of the choice of charts, see the Corollary 1.3.4, then also d?.
We choose normal coordinates (x1, . . . , xn) with center at p ∈ M and we will consider

the local frames { ∂
∂x1
, . . . , ∂

∂xn
} of TM and {dx1, . . . , dxn} of T ∗M.

We will show (4.21) at the point p for those bases, since p ∈M is arbitrary, it is sufficient.
At p, by Theorem 4.1.19 we have for all i, j

∇LC
∂
∂xi

(
∂

∂xj

)∣∣∣∣∣
p

= 0
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By equality (4.17) we get for all i, j

∇T ∗M
∂
∂xi

(dxj)
∣∣∣∣
p

= 0 (4.23)

Since d̃? is a linear map, it suffices to verify the equality (4.21) on forms of type fdxi1 ∧
. . . ∧ dxik ∈ Ωk(M) with f ∈ C∞(M), renumbering indices, it suffices to consider the form
fdx1 ∧ . . . ∧ dxk.

By equalities (4.2), (4.18), (4.23) and Lemma A.3.42 we obtain

d̃?(fdx1 ∧ . . . ∧ dxk)
∣∣∣
p

= −
n∑
i=1

[
∂

∂xi
y∇ΛkT ∗M

∂
∂xi

(fdx1 ∧ . . . ∧ dxk)
]∣∣∣∣∣
p

= −
n∑
i=1

∂

∂xi
y

[
∂f

∂xi
dx1 ∧ . . . ∧ dxk + f∇ΛkT ∗M

∂
∂xi

(dx1 ∧ . . . ∧ dxk)
]∣∣∣∣∣
p

= −
(

n∑
i=1

∂f

∂xi

∂

∂xi
ydx1 ∧ . . . ∧ dxk

)∣∣∣∣∣
p

+
 n∑
i=1

n∑
j=1

f
∂

∂xi
ydx1 ∧ . . .∇T ∗M

∂
∂xi

dxj ∧ . . . ∧ dxk

∣∣∣∣∣∣
p

= −
(

n∑
i=1

∂f

∂xi

∂

∂xi
ydx1 ∧ . . . ∧ dxk

)∣∣∣∣∣
p

=
(

n∑
i=1

(−1)i ∂f
∂xi

dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxk
)∣∣∣∣∣

p

.

On the other hand, by Definition 3.3.1, equalities (4.20) and (4.2) we have

d?(fdx1 ∧ . . . ∧ dxk)|p = (−1)n(k+1)+1 ? d ? (fdx1 ∧ . . . ∧ dxk)
∣∣∣
p

= (−1)n(k+1)+1 ? d(fdxk+1 ∧ . . . ∧ dxn)
∣∣∣
p

= (−1)n(k+1)+1 ?

(
n∑
i=1

dxi ∧∇ΛkT ∗M
∂
∂xi

(fdxk+1 ∧ . . . ∧ dxn)
)∣∣∣∣∣

p

= (−1)n(k+1)+1 ?

(
n∑
i=1

∂f

∂xi
dxi ∧ dxk+1 ∧ . . . ∧ dxn

+
n∑
i=1

fdxi ∧∇ΛkT ∗M
∂
∂xi

(dxk+1 ∧ . . . ∧ dxn)
)∣∣∣∣∣

p

By equality (4.23) the second term is zero. Now, we consider

ω = dxi ∧ dxk+1 ∧ . . . ∧ dxn

with i = 1, . . . , k. By equality (3.2) we have

?ω = (−1)(j−1)(n−k+1)+(n−k)(k−j)dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxk. (4.24)
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d?(fdx1 ∧ . . . ∧ dxk)|p = (−1)n(k+1)+1 ?

(
n∑
i=1

∂f

∂xi
dxi ∧ dxk+1 ∧ . . . ∧ dxn

)∣∣∣∣∣
p

= (−1)n(k+1)+1+(j−1)(n−k+1)+(n−k)(k−j)
n∑
i=1

∂f

∂xi
dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxk

∣∣∣∣∣
p

=
n∑
i=1

(−1)i ∂f
∂xi

dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxk
∣∣∣∣∣
p

.

Therefore
d?ω = −

n∑
i=1

∂

∂xi
y∇ΛkT ∗M

∂
∂xi

ω, ω ∈ Ωk(M).

�

4.3 Clifford algebra and Clifford operators
We want to obtain an explicit expression of the Laplace-Beltrami operator (3.12), so we need
to introduce the Clifford algebra and the Clifford operators.

The book where you can consult related topics is [22].

Definition 4.3.1. Let V be a finite dimensional real vector space with a non-degenerate
symmetric bilinear form q:V × V −→ R. The Clifford algebra Cl(V, q) is the algebra over R,
with unit, generated by the elements of V , subject to the relation

ef + fe = −2q(e, f) with e, f ∈ V. (4.25)

Example 4.3.2. If V = Rn and q = 〈 , 〉 the standard inner product on Rn, we denote the
Clifford algebra Cl(Rn, 〈 , 〉) by Cln. Also, if we consider {e1, . . . , en} the canonical basis for
Rn then Cln is subject to the relations

(ei)2 = −1 (4.26)
eiej = −ejei with i 6= j (4.27)

But if we consider the inner product as q = −〈 , 〉, we have the Clifford algebra

Cln,− = Cl(Rn,−〈 , 〉)

that is subject to the relations

(ei)2 = 1 (4.28)
eiej = −ejei with i 6= j, (4.29)
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Examples 4.3.3.

Cl0 = R with basis 1
Cl1 = C with basis 1, e1

Cl2 = H with basis 1, e1, e2, e1e2.

Let V be a real vector space of dimension n endowed with an inner product, note that since
the vector spaces Λ•V and Cl(V ) have dimension 2n, then there is a natural isomorphism of
vector spaces

γ: Cl(V ) −→ Λ•V.
Note that Cl(V ) contains V , let us denote by c:V ↪→ Cl(V ) the inclusion defined by c(v) = v.
We consider the bilinear map · of the Clifford algebra as ·: c(V )× Cl(V ) −→ Cl(V ).

Analogously for Rn∗, we consider Cl∗n = Cl(Rn∗, 〈 , 〉∗). For the following proposition see
the definition A.3.34.
Proposition 4.3.4. With respect to the canonical isomorphism Cl∗n ∼= Λ•Rn∗, Clifford mul-
tiplication between x ∈ Rn and any v ∈ Cl∗n can be written as

x · v := x∗ ∧ v − xyv.
-

?
-

?

γidV × γ

V × Cl(V )

V × Λ•V ∗

Cl(V )·

Λ•V ∗

Proof. Let e1, . . . , en the canonical basis for Rn and e1, . . . , en the dual basis for Rn∗, let
v = ei1 · . . . · eik for i1 < . . . < ik.

Set i, let x = tei for some t ∈ R. By equalities (4.26), (4.27) and the contraction (A.8),
then we have the following cases:

1. If i = 1, we obtain

x · v =
{
−tei2 · . . . · eik = x∗ ∧ v − xyv if i1 = 1
te1 · ei1 · . . . · eik = x∗ ∧ v − xyv if i1 > 1. (4.30)

2. If i = ij for some 1 < j ≤ k, then

x · v = (−1)jtei1 · . . . · êij · . . . · eik = x∗ ∧ v − xyv.

3. If i 6= ir with r = 1, . . . , k, then ij < i < ij+1. Hence

x · v = (−1)jtei1 · . . . · eij · ei · eij+1 · . . . · eik = x∗ ∧ v − xyv.

�
Analogously, we have the following result
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Proposition 4.3.5. With respect to the canonical isomorphism Cl∗n,− ∼= Λ•Rn∗, Clifford
multiplication between x ∈ Rn and any v ∈ Cl∗n,− can be written as

x · v := x∗ ∧ v + xyv.

The proof is the same as the Proposition 4.3.4, but now we use the equalities (4.28)
and (4.29).

4.3.1 The Clifford algebra of TM
Now, let (M, g) be a Riemannian n–manifold, we take the Clifford algebra of TM .

We consider π′: Cl(TM) −→ M the vector bundle whose fibers are the Clifford algebras
Cl(TpM) with respect to g, also we take π:TM −→ M , making abuse of notation, we have
the inclusion vector bundle map c:TM ↪→ Cl(TM). Fiber to fiber we have an isomorphism
of vector bundles h: Λ•T ∗M −→ Cl(TM).

Let X ∈ Γ(TM), we have that c(X) ∈ Γ(Cl(TM)).
On the other hand, for any X ∈ Γ(TM), let X∗ ∈ Γ(T ∗M) corresponds to X via g, that

is, for any Y ∈ Γ(TM),
X∗(Y ) = g(X, Y ).

Given the linear isomorphism h′: Ω•(M) −→ Cl(TM), by Propositions 4.3.4 and 4.3.5 we
have the diagram of vector spaces

-

?
-

?

h′idΓ(TM) × h′

Γ(TM)× Cl(TM)

Γ(TM)× Ω•(M)

Cl(TM)·

Ω•(M)

Then c(X) acting on Ω•(M), we define the Clifford multiplication between X ∈ TM and
any ω ∈ Cl(V ) as follows:
Definition 4.3.6. Let X ∈ Γ(TM), we define the Clifford operators (multiplications)

c(X), ĉ(X): Ω•(M) −→ Ω•(M)
ω 7→ c(X)ω = X∗ ∧ ω −Xyω, (4.31)
ω 7→ ĉ(X)ω = X∗ ∧ ω +Xyω. (4.32)

Where ∧ and y are the wedge product and the contraction, respectively.
Since ·, idTM × h′ are bilinear maps and h′ linear isomorphism, then c(X) is a linear

map. Furthermore, since ∧ is C∞(M)–bilinear and R–bilinear and y is C∞(M)–linear and
R–linear, then c(X) and ĉ(X) are C∞(M)–linear and R–linear for all X ∈ Γ(TM).
Lemma 4.3.7. The Clifford operators satisfy the following equalities: let X ∈ Γ(TM) and
ω ∈ Ωk(M),

1. (ĉ(X))2ω = |X|2ω.

2. (c(X))2ω = −|X|2ω.
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Proof. Let ω ∈ Ωk(M), X ∈ Γ(TM). By equality (4.32) and Lemma 1.5.2-1 and -2 we have

ĉ(X)ĉ(X)ω = ĉ(X)(X∗ ∧ ω +Xyω)
= X∗ ∧ (X∗ ∧ ω +Xyω) +Xy(X∗ ∧ ω +Xyω)
= X∗ ∧Xyω +Xy(X∗ ∧ ω)
= XyX∗ ∧ ω
= X∗(X)ω
= g(X,X)ω
= |X|2ω.

Analogously for the second equality, by equality (4.31) and Lemma 1.5.2-1 and -2 we have

c(X)c(X)ω = c(X)(X∗ ∧ w −Xyω)
= X∗ ∧ (X∗ ∧ ω −Xyω)−Xy(X∗ ∧ ω −Xyω)
= −X∗ ∧ eyω −Xy(X∗ ∧ ω)
= −XyX∗ ∧ ω
= −X∗(X)ω
= −g(X,X)ω
= −|X|2ω.

�

Lemma 4.3.8. The Clifford operators c(X) and ĉ(X) satisfy the following relations: let
X, Y ∈ Γ(TM) and ω ∈ Ωk(M) we have

c(X)c(Y )ω + c(X)c(Y )ω = −2g(X, Y )ω (4.33)
ĉ(X)ĉ(Y )ω + ĉ(Y )ĉ(X)ω = 2g(X, Y )ω (4.34)
c(X)ĉ(Y )ω + ĉ(Y )c(X)ω = 0. (4.35)

Proof. Note that, c(X), ĉ(X) ∈ Cl(TM), then the first two relations follows by equality (4.25)
with g and −g.

While the third relation follows from the following: let ω ∈ Ωk(M)

c(X)ĉ(X)ω = c(X)(X∗ ∧ ω +Xyω)
= X∗ ∧ (X∗ ∧ ω +Xyω)−Xy(X∗ ∧ ω +Xyω)
= X∗ ∧ (Xyω)−Xy(X∗ ∧ ω).

ĉ(X)c(X)ω = ĉ(X)(X∗ ∧ ω −Xyω)
= X∗ ∧ (X∗ ∧ ω −Xyω) +Xy(X∗ ∧ ω −Xyω)
= −X∗ ∧ (Xyω) +Xy(X∗ ∧ ω).
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Then
c(X)ĉ(X)ω + ĉ(X)c(X)ω = 0.

�
For the next proof we will use the following remark.

Remark 4.3.9. Let (M, g) be a Riemannian n–manifold.
We consider the local frames { ∂

∂x1
, . . . , ∂

∂xn
} of TM and {dx1, . . . , dxn} of T ∗M .

We have {dxi1 ∧ . . . ∧ dxik}(i1,...,ik)∈Ik,n the local frame of ΛkT ∗M , see notation 1.2. We
choose an arbitrary element of the basis dx1 ∧ . . . ∧ dxk, (if is necessary, we reindex the
multiindex).

1. If j = 1, . . . , k, by Lemma A.3.42 we have
∂

∂xj
y(dx1 ∧ . . . ∧ dxk) = dx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxk.

2. If j = k + 1, . . . , n, by Lemma A.3.42 and since dxi( ∂
∂xj

) = 0 for i = 1, . . . , k, we have

∂

∂xj
y(dx1 ∧ . . . ∧ dxk) = 0

Proposition 4.3.10. Let (M, g) be a Riemannian manifold. Every connection ∇Λ•T ∗M

on Λ•T ∗M and ∇TM on TM satisfy the following formulas: for all X, Y ∈ Γ(TM) and
ω ∈ Ωk(M).

∇Λ•T ∗M
X (ĉ(Y )ω) = ĉ(∇TM

X Y )ω + ĉ(Y )∇ΛkT ∗M
X ω (4.36)

∇Λ•T ∗M
X (c(Y )ω) = c(∇TM

X Y )ω + c(Y )∇ΛkT ∗M
X ω, (4.37)

Proof. Since c(Y ),∇Λ•T ∗M
X ,∇TM

X are linear maps it is sufficient do the proof in basic elements.
Let ∂

∂xi
, ∂
∂xj
∈ Γ(TM) and dx1 ∧ . . . ∧ dxk ∈ Ωk(M).

For the proof of the expression (4.36), we have the cases j = 1, . . . , k and j = k+1, . . . , n.

1. If j = 1, . . . , k, by equality (4.32) and Remark 4.3.9 we have:

ĉ

(
∂

∂xj

)
dx1 ∧ . . . ∧ dxk = ∂

∂xj
ydx1 ∧ . . . ∧ dxk = dx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxk.

By equalities (4.18) and (4.17) we obtain:

∇Λk−1T ∗M
∂
∂xi

(
ĉ

(
∂

∂xj

)
dx1 ∧ . . . ∧ dxk

)
= ∇Λk−1T ∗M

∂
∂xi

(dx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxk)

=
k∑
r=1
r 6=j

dx1 ∧ . . . ∧ d̂xj ∧ . . . ∧∇T ∗M
∂
∂xi

dxr ∧ . . . ∧ dxk

= −
n∑
s=1

k∑
r=1
r 6=j

Γrisdx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxs︸︷︷︸
r

∧ . . . ∧ dxk
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Since j = 1, . . . , k, hence s = j, r, k + 1, . . . , n. We have

∇Λk−1T ∗M
∂
∂xi

(
ĉ

(
∂

∂xj

)
dx1 ∧ . . . ∧ dxk

)
=

−
k∑
r=1
r 6=j

Γrijdx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxj︸︷︷︸
r

∧ . . . ∧ dxk (4.38)

−
k∑
r=1
r 6=j

Γrirdx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxr︸︷︷︸
r

∧ . . . ∧ dxk (4.39)

−
n∑

s=k+1

k∑
r=1
r 6=j

Γrisdx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxs︸︷︷︸
r

∧ . . . ∧ dxk (4.40)

On the other hand, since that ĉ(Y ) is a linear map, by equality (4.8) and defini-
tion (4.32) we get

ĉ

(
∇TM

∂
∂xi

∂

∂xj

)
dx1 ∧ . . . ∧ dxk = ĉ

(
n∑
s=1

Γsij
∂

∂xs

)
dx1 ∧ . . . ∧ dxk

=
n∑
s=1

Γsij
(
dxs ∧ dx1 ∧ . . . ∧ dxk + ∂

∂xs
ydx1 ∧ . . . ∧ dxk

)

=
n∑

s=k+1
Γsijdxs ∧ dx1 ∧ . . . ∧ dxk

+
k∑
s=1

Γsijdx1 ∧ . . . ∧ d̂xs ∧ . . . ∧ dxk

By equalities (4.18) and (4.17) we have:

ĉ

(
∂

∂xj

)
∇ΛkT ∗M

∂
∂xi

dx1 ∧ . . . ∧ dxk = ĉ

(
∂

∂xj

)[
k∑
l=1

dx1 ∧ . . . ∧∇T ∗M
∂
∂xi

dxl ∧ . . . ∧ dxk
]

= ĉ

(
∂

∂xj

)− n∑
s=1

k∑
l=1

Γlisdx1 ∧ . . . ∧ dxs︸︷︷︸
l

∧ . . . ∧ dxk


= −

n∑
s=1

k∑
l=1

Γlisĉ
(
∂

∂xj

)
dx1 ∧ . . . ∧ dxs︸︷︷︸

l

∧ . . . ∧ dxk

= −
k∑
l=1

Γlilĉ
(
∂

∂xj

)
dx1 ∧ . . . ∧ dxl︸︷︷︸

l

∧ . . . ∧ dxk

−
n∑

s=k+1

k∑
l=1

Γlisĉ
(
∂

∂xj

)
dx1 ∧ . . . ∧ dxs︸︷︷︸

l

∧ . . . ∧ dxk
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= −
k∑
l=1

Γlildx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxl︸︷︷︸
l

∧ . . . ∧ dxk

−
n∑

s=k+1

k∑
l=1

Γlis

dxj ∧ dx1 ∧ . . . ∧ dxs︸︷︷︸
l

∧ . . . ∧ dxk

+ ∂

∂xj
ydx1 ∧ . . . ∧ dxs︸︷︷︸

l

∧ . . . ∧ dxk


= −

k∑
l=1

Γlildx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxl︸︷︷︸
l

∧ . . . ∧ dxk

−
n∑

s=k+1

k∑
l=1

Γlisdxj ∧ dx1 ∧ . . . ∧ dxs︸︷︷︸
l

∧ . . . ∧ dxk

−
n∑

s=k+1

k∑
l=1

Γlisdx1 ∧ . . . ∧ dxs︸︷︷︸
l

∧ . . . ∧ d̂xj ∧ . . . ∧ dxk

= −
k∑
l=1

Γlildx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxl︸︷︷︸
l

∧ . . . ∧ dxk

−
n∑

s=k+1
Γjisdxj ∧ dx1 ∧ . . . ∧ dxs︸︷︷︸

j

∧ . . . ∧ dxk when j = l

−
n∑

s=k+1

k∑
l=1
l 6=j

Γlisdx1 ∧ . . . ∧ dxs︸︷︷︸
l

∧ . . . ∧ d̂xj ∧ . . . ∧ dxk

Adding the two terms we have

ĉ

(
∇TM

∂
∂xi

∂

∂xj

)
dx1 ∧ . . . ∧ dxk + ĉ

(
∂

∂xj

)
∇ΛkT ∗M

∂
∂xi

dx1 ∧ . . . ∧ dxk =
n∑

s=k+1
Γsijdxs ∧ dx1 ∧ . . . ∧ dxk (4.41)

+
k∑
s=1

Γsijdx1 ∧ . . . ∧ d̂xs ∧ . . . ∧ dxk (4.42)

−
k∑
l=1

Γlildx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxl︸︷︷︸
l

∧ . . . ∧ dxk (4.43)

−
n∑

s=k+1
Γjisdxj ∧ dx1 ∧ . . . ∧ dxs︸︷︷︸

j

∧ . . . ∧ dxk when j = l (4.44)
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−
n∑

s=k+1

k∑
l=1
l 6=j

Γlisdx1 ∧ . . . ∧ dxs︸︷︷︸
l

∧ . . . ∧ d̂xj ∧ . . . ∧ dxk (4.45)

We have that expressions (4.39) and (4.43) are equal, the same with (4.40) and (4.45).
We permute dxs and dxj, later by Remark (4.1.22) the Christoffel symbols Γjis = −Γsij,
hence the expressions (4.38) and (4.42) are also equal. From term (4.44) we get:

−
n∑

s=k+1
Γjisdxj ∧ dx1 ∧ . . . ∧ dxs︸︷︷︸

j

∧ . . . ∧ dxk =

−
n∑

s=k+1
Γjis(−1)j−1+jdxs ∧ dx1 ∧ . . . ∧ dxj︸︷︷︸

j

∧ . . . ∧ dxk

= −(−1)
n∑

s=k+1
Γjisdxs ∧ dx1 ∧ . . . ∧ dxj︸︷︷︸

j

∧ . . . ∧ dxk

=
n∑

s=k+1
Γjisdxs ∧ dx1 ∧ . . . ∧ dxj︸︷︷︸

j

∧ . . . ∧ dxk

= −
n∑

s=k+1
Γsijdxs ∧ dx1 ∧ . . . ∧ dxj︸︷︷︸

j

∧ . . . ∧ dxk

The last expression is canceled with the expression (4.41).
Therefore, if j = 1, . . . , k

∇Λk−1T ∗M
∂
∂xi

(
ĉ

(
∂

∂xj

)
dx1 ∧ . . . ∧ dxk

)
= ĉ

(
∇TM

∂
∂xi

∂

∂xj

)
dx1 ∧ . . . ∧ dxk

+ĉ
(
∂

∂xj

)
∇ΛkT ∗M

∂
∂xi

dx1 ∧ . . . ∧ dxk.

2. The case j = k + 1, . . . , n is analogous.
�

A connection on Λ•T ∗M that satisfies conditions (4.37) and (4.36) is called a Clifford
connection on Λ•T ∗M .

LetM be an oriented Riemannian n–manifold without boundary, e1, . . . , en be an oriented
orthonormal local frame of TM , let e1, . . . , en be the corresponding dual local frame of T ∗M
with respect to g.

Let ω ∈ Ωk(M). Since Dω := dω + d?ω, by equalities (4.20), (4.21), (4.31) we obtain

Dω =
n∑
i=1

ei ∧∇ΛkT ∗M
ei

ω −
n∑
i=1

eiy∇ΛkT ∗M
ei

ω

Dω =
n∑
i=1

c(ei)∇ΛkT ∗M
ei

ω. (4.46)



Chapter 5

Witten Deformation

In this chapter we will deform the De Rham complex of a differentiable manifold (see the
definitions 1.4.1 and 1.4.3) and we will define the deformed Laplace-Beltrami operator.

We will also see that the deformed De Rham complex has the same Betti numbers as the
usual one.

Let M be an n–dimensional differentiable manifold and f :M −→ R be a differentiable
function on M .

We define the deformed exterior derivative operator by conjugation, as follows: for any
T ∈ R, set

dTfω := exp(−Tf)d exp(Tf)ω, ω ∈ Ωk(M). (5.1)
Since the algebra of differentiable forms is a module over C∞(M) and multiplication by a
function does not affect the grading, the deformation defined above can still be seen as an
operator dTf : Ωk(M) −→ Ωk+1(M), for any 0 ≤ k ≤ n.

Let ω ∈ Ωk(M), by Theorem 1.3.2-2. we see that

d2
Tfω = (exp(−Tf)d exp(Tf))(exp(−Tf)d exp(Tf))ω

= exp(−Tf)d2 exp(Tf)ω
= 0.

Therefore, we get a deformation of the De Rham complex (Ω•(M), d), given by the cochain
complex (Ω•(M), dTf ) defined by

( Ω•(M), dTf ) : 0 −→ C∞(M ) dTf, 0−→ Ω1(M) dTf, 1−→ . . .
dTf, n−1−→ Ωn(M) −→ 0 .

Associated to this complex, for each k = 0, . . . , n we have the k–the cohomology space

Hk
Tf,DR(M) = Ker dTf, k

Im dTf, k−1
.

The total cohomology is given by

H•Tf,DR(M) =
n⊕
k=0

Hk
Tf,DR(M).

The k–th cohomology spaces Hk
DR(M) and Hk

Tf,DR(M) are the same viewed as vector spaces.
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Proposition 5.0.1. Let M be a differentiable manifold of dimension n, f :M −→ R dif-
ferentiable function and T ∈ R. For any integer k such that 0 ≤ k ≤ n, the cohomologies
Hk

DR(M) and Hk
Tf,DR(M) are isomorphic. Therefore,

dim Hk
Tf,DR(M) = βk(M).

Proof. We define the linear map

ϕ: Ωk(M) −→ Ωk(M),
ω 7→ exp(−Tf)ω.

We will see that ϕ induces a linear map Hk
DR(M) −→ Hk

Tf, DR(M).
Take ω ∈ Ωk(M) be a closed form, that is, dω = 0, we have

dTf (exp(−Tf)ω) = exp(−Tf)d exp(Tf)(exp(−Tf)ω)
= exp(−Tf)dω
= 0.

Then, under ϕ Ker d |Ωk(M) is mapped into Ker dTf |Ωk(M) .
On the other hand, let η ∈ Ωk−1(M), we get

ϕ(dη) = exp(−Tf)dη
= exp(−Tf)d(exp(Tf) exp(−Tf))η
= (exp(−Tf)d exp(Tf)) exp(−Tf)η
= dTf exp(−Tf)η.

That is, ϕ maps Im d |Ωk−1(M) into Im dTf |Ωk−1(M) . Therefore, ϕ induces a linear map in the
quotient

Φ: Hk
DR(M) −→ Hk

Tf, DR(M).
Now, define the linear map ψ: Ωk(M) −→ Ωk(M) by ψ(ω) = exp(Tf)ω.

By doing a completely analogous reasoning we can see that the map ψ induces a linear
map in the quotient

Ψ: Hk
Tf, DR(M) −→ Hk

DR(M).
Note that Φ and Ψ are the inverse of each other, then Hk

DR(M) and Hk
Tf, DR(M) are isomor-

phic, in particular, have the same dimension. �
We can develop the Hodge Theory associated to the complex (Ω•(M), dTf ) in the same

way as in the De Rham complex.
Let (M, g) be an oriented Riemannian n–manifold with boundary and 〈 , 〉 the inner

product on Ωk(M), (see (3.6)).
Let T ∈ R, for any ω ∈ Ωk−1(M), η ∈ Ωk(M). By Proposition 3.3.5 we get

〈dTfω, η〉 = 〈exp(−Tf)d exp(Tf)ω, η〉
= 〈d exp(Tf)ω, exp(−Tf)η〉
= 〈exp(Tf)ω, d? exp(−Tf)η〉
= 〈ω, exp(Tf)d? exp(−Tf)η〉.
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Thus, let ω ∈ Ωk(M), we define

d?Tfω := exp(Tf)d? exp(−Tf)ω. (5.2)

In other words, the adjoint of dTf is d?Tf .
For any T ∈ R, let ω ∈ Ωk(M), set

DTfω = dTfω + d?Tfω. (5.3)

Similarly to the Lemma 3.3.7, we have:

Lemma 5.0.2. DTf is a self-adjoint differentiable operator over Ω•(M).

The proof is analogous to that of the Lemma 3.3.7.
So the corresponding Laplace–Beltrami operator for (Ω•(M), dTf ) is

�Tfω := D2
Tfω = dTfd

?
Tfω + d?TfdTfω, ω ∈ Ω•(M). (5.4)

By Definitions (5.1) and (5.2) one sees that �Tf preserves each Ωk(M), for 0 ≤ k ≤ n, that
is, �Tf, k: Ωk(M) −→ Ωk(M), note that by restricting ourselves to the space of differentiable
k–forms, we add a subscript in the notation.

Remark 5.0.3. Let ω ∈ Ωk(M) be an eigenform of DTf with eigenvalue λ, by Definition (5.4)
then

�Tf, kω = D2
Tfω = λ(DTfω) = λ2ω,

therefore, the deformed Laplace-Beltrami operator �Tf, k on Ωk(M) is a nonnegative operator
for all 0 ≤ k ≤ n.

Lemma 5.0.4. Let (M, g) be an oriented Riemannian n–manifold without boundary, the
operators dTf and d?Tf satisfy the following equalities: let ω ∈ Ωk(M),

dTf�Tf, kω = �Tf, k+1dTfω, (5.5)
d?Tf�Tf, kω = �Tf, k−1d

?
Tfω. (5.6)

Proof. Let ω ∈ Ωk(M), by equalities (5.4), (5.1) (5.2) one can see that

dTf�Tf, kω = dTfD2
Tfω

= dTf (dTfd?Tfω + d?TfdTfω)
= dTfd

?
TfdTfω.

�Tf, k+1dTfω = D2
TfdTfω

= (dTfd?Tf + d?TfdTf )dTfω
= dTfd

?
TfdTfω.

So
dTf�Tf, kω = �Tf, k+1dTfω, ω ∈ Ωk(M).
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Similarly, we have
d?Tf�Tf, kω = �Tf, k−1d

?
Tfω, ω ∈ Ωk(M).

�
Moreover, we can also establish Hodge Theorem, see 3.5.3, for the complex (Ω•(M), dTf ),

we have
Ker�Tf, k ∼= Hk

Tf,DR(M). (5.7)
This implies that for any integer k such that 0 ≤ k ≤ n,

dim (Ker�Tf, k) = dim (Hk
Tf,DR(M)).

By Proposition 5.0.1
dim (Ker�Tf, k) = βk(M). (5.8)

Thus we reduced the problem of estimating the Betti numbers to analyzing the behavior of
the kernel of �Tf, k.



Chapter 6

Local behavior of �Tf, nf (p)

In this chapter we will focus on the local behavior of the deformed Laplace–Beltrami operator.
Proposition 6.0.1. Let (M, g) be an oriented Riemannian n–manifold without boundary,
T ∈ R, f :M −→ R be a differentiable function. Let {e1, . . . , en} be a local frame of TM and
{e1, . . . , en} be the dual local frame of T ∗M. We have the following expressions on Ωk(M):
let ω ∈ Ωk(M)

dTfω = dω + Tdf ∧ ω. (6.1)
d?Tfω = d?ω + Tgradfyω. (6.2)
DTfω = Dω + T ĉ(gradf)ω. (6.3)

�Tf, kω = �kω + T
n∑
i=1

c(ei)ĉ(∇TM
ei

gradf)ω + T 2|gradf |2ω. (6.4)

Where c(X), ĉ(X) are the operators (4.31) and (4.32).

Proof. Let ω ∈ Ωk(M), by definition (5.1), equality (4.20) and Leibniz rule (4.2) we see that

dTfω = (exp(−Tf)d exp(Tf))ω

=
n∑
i=1

(
exp(−Tf)

(
ei ∧∇ΛkT ∗M

ei

)
exp(Tf)

)
ω

=
n∑
i=1

exp(−Tf)ei ∧ (∇ΛkT ∗M
ei

exp(Tf)ω)

=
n∑
i=1

exp(−Tf) ei ∧
(
T exp(Tf)df(ei)ω + exp(Tf)∇ΛkT ∗M

ei
ω
)

=
n∑
i=1

T exp(−Tf) exp(Tf)ei ∧ (df(ei))ω +
n∑
i=1

exp(−Tf) exp(Tf)ei ∧∇ΛkT ∗M
ei

ω

= T
n∑
i=1

(df(ei))ei ∧ ω +
n∑
i=1

ei ∧∇ΛkT ∗M
ei

ω

= Tdf ∧ ω + dω.
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Then
dTfω = dω + Tdf ∧ ω. (6.5)

Similarly, let ω ∈ Ωk(M), we have that exp(−Tf) ∈ C∞(M), by Leibniz rule (4.2) notice
that

∇ΛkT ∗M
ei

exp(−Tf)ω = d exp(−Tf)(ei)ω + exp(−Tf)∇ΛkT ∗M
ei

ω

= −T exp(−Tf)(df(ei))ω + exp(−Tf)∇ΛkT ∗M
ei

ω.

By equality (4.21), we have

d?Tfω =
(

exp(Tf)
(
−

n∑
i=1

eiy∇ΛkT ∗M
ei

)
exp(−Tf)

)
ω

= −
n∑
i=1

exp(Tf)eiy∇ΛkT ∗M
ei

(exp(−Tf)ω)

= −
n∑
i=1

exp(Tf)eiy
(
−T exp(−Tf)df(ei)ω + exp(−Tf)∇ΛkT ∗M

ei
ω
)

= T
n∑
i=1

exp(Tf) exp(−Tf)eiy(df(ei))ω −
n∑
i=1

exp(Tf) exp(−Tf)eiy∇ΛkT ∗M
ei

ω

= T
n∑
i=1

eiy(df(ei))ω −
n∑
i=1

eiy∇ΛkT ∗M
ei

ω

= Tgradfyω + d?ω.

So,
d?Tfω = d?ω + Tgradfyω. (6.6)

Let ω ∈ Ωk(M), substituting in the equality (5.3) the expressions (6.5) and (6.6), by defini-
tions (4.32) and (3.11), then

DTfω = dω + Tdf ∧ ω + d?ω + Tgradfyω
= dω + d?ω + T (df ∧ ω + gradfyω)
= Dω + T ĉ(gradf)ω.

We want to write �Tf, k, see the definition (5.4). One gets

�Tf, kω = D2ω + T (Dĉ(gradf)ω + ĉ(gradf)Dω) + T 2(ĉ(gradf))2ω.

By expression (4.46) and since ĉ(gradf)ω ∈ Ωk+1(M)⊕Ωk−1(M), we take ∇Λ•T ∗M we obtain

T (Dĉ(gradf) + ĉ(gradf)D)ω = T

(
n∑
i=1

c(ei)∇Λ•T ∗M
ei

)
ĉ(gradf)ω + T ĉ(gradf)

(
n∑
i=1

c(ei)∇ΛkT ∗M
ei

)
ω

= T
n∑
i=1

c(ei)∇Λ•T ∗M
ei

(ĉ(gradf)ω) + T
n∑
i=1

ĉ(gradf)c(ei)∇ΛkT ∗M
ei

ω.
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By Clifford connection (4.36) and property (4.35) we get:

T (Dĉ(gradf) + ĉ(gradf)D)ω = T
n∑
i=1

c(ei)(ĉ(∇TM
ei

gradf)ω + T ĉ(gradf)∇ΛkT ∗M
ei

ω)

+T ĉ(gradf)
n∑
i=1

c(ei)∇ΛkT ∗M
ei

ω

= T
n∑
i=1

c(ei)ĉ(∇TM
ei

gradf)ω + T
n∑
i=1

c(ei)ĉ(gradf)∇ΛkT ∗M
ei

ω

+T
n∑
i=1

ĉ(gradf)c(ei)∇ΛkT ∗M
ei

ω

= T
n∑
i=1

c(ei)ĉ(∇TM
ei

gradf)ω

+T
n∑
i=1

(c(ei)ĉ(gradf) + ĉ(gradf)c(ei))∇ΛkT ∗M
ei

ω

= T
n∑
i=1

c(ei)ĉ(∇TM
ei

gradf)ω.

By Lemma 4.3.7-1 we get (ĉ(gradf))2 = |gradf |2 and Definition (3.12), therefore we
rewrite

�Tf, kω = �kω + T
n∑
i=1

c(ei)ĉ(∇TM
ei

gradf)ω + T 2|gradf |2ω.

�

Remark 6.0.2. Note that to prove the equality (6.1) we only need that (M, g) is a Rieman-
nian n–manifold.
Theorem 6.0.3. Let (M, g) be an oriented Riemannian n–manifold without boundary, T ∈
R, f :M −→ R be a Morse function and p be a critical point of f . Then there is a chart
ϕ:U −→ V ⊂ Rn around p such that the deformed Laplace-Beltrami operator �Tf,nf (p) on
Ωnf (p)(Rn) is given by

�Tf,nf (p)ω = −
n∑
i=1

∂2

∂x2
i

ω − nTω + T 2|x|2ω + 2T
nf (p)∑
i=1

eiy(dxi ∧ ω) +
n∑

i=nf (p)+1
dxi ∧ (eiyω)

 ,
(6.7)

where x = (x1, . . . , xn) ∈ V.

Proof. Let f be a Morse function and p ∈ M a critical point of f , by Corollary 2.0.7, there
is an open neighbourhood U of p and a chart ϕ:U −→ V ⊂ Rn around p such that ϕ(p) = 0
and for all x ∈ V the equality (2.9) is satisfied, that is,

(f ◦ ϕ−1)(x) = f(p)− 1
2x

2
1 − . . .−

1
2x

2
nf (p) + 1

2x
2
nf (p)+1 + . . .+ 1

2x
2
n.
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Let { ∂
∂x1
, . . . , ∂

∂xn
}, be the oriented local frame of TU .

We will simply denote ei = ∂
∂xi

for all i = 1, . . . , n.
We will study the equality (6.4) in parts.
Let V ⊂ Rn and ω ∈ Ωnf (p)(V ), by Proposition 3.3.11 the first part we already have it,

�nf (p)ω = −
n∑
i=1

∂2

∂x2
i

ω. (6.8)

While the last term, by equality (2.9), we have

gradf = (−x1, . . . ,−xnf (p), xnf (p)+1, . . . , xn). (6.9)

Then
|gradf |2 = (−x1)2 + . . .+ (−xnf (p))2 + x2

nf (p) + . . .+ x2
n = |x|2. (6.10)

Now, we develop the middle term of the expression (6.4).
We know that the gradient of f is the dual of df under g, (see subsection 3.2.1).
Let ∇TM be a metric connection on TM , by Corollary 4.1.25 ∇TM

ei
gradf = (∇T ∗M

ei
df)∗.

By equality (6.9) we have

∂f

∂xj
=
{
−xj if j ≤ nf (p),
xj if j > nf (p).

Fix i, then

d

(
∂f

∂xj

)
(ei) =

{
−1 if i ≤ nf (p),

1 if i > nf (p).

We take the Hessian of f , see definition 4.1.24, since ∇T ∗M is a linear map and by Leibniz
rule, then

∇T ∗M
ei

df = ∇T ∗M
ei

 n∑
j=1

∂f

∂xj
dxj


=

n∑
j=1
∇T ∗M
ei

(
∂f

∂xj
dxj

)

=
n∑
j=1

(
d

(
∂f

∂xj

)
(ei) dxj + ∂f

∂xj
∇T ∗M
ei

dxj

)
.

Since p is a critical point of f , ∂f
∂xj

∣∣∣
p

= 0 for all j = 1, . . . , n, also since (dxi)∗ = ei and
by equality (6.9), we obtain at the point p:

∇TM
ei

gradf =
{
−ei if i ≤ nf (p),
ei if i > nf (p).
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Since ĉ(ei) is a R–linear operator, then

T
n∑
i=1

c(ei)ĉ(∇TM
ei

gradf)ω = −T
nf (p)∑
i=1

c(ei)ĉ(ei)ω + T
n∑

i=nf (p)+1
c(ei)ĉ(ei)ω.

We can write as nT = T
n∑
i=1

1, then

T
n∑
i=1

c(ei)ĉ(∇TM
ei

gradf)ω = T
nf (p)∑
i=1

ω − T
nf (p)∑
i=1

c(ei)ĉ(ei)ω + T
n∑

i=nf (p)+1
ω

+T
n∑

i=nf (p)+1
c(ei)ĉ(ei)ω − nTω

= T

nf (p)∑
i=1

(1− c(ei)ĉ(ei))ω +
n∑

i=nf (p)+1
(1 + c(ei)ĉ(ei))ω

− nTω.
Let ω ∈ Ωnf (p)(M), by Definitions (4.31), (4.32) and by Lemma 1.5.2-1. and -2., we have

c(ei)ĉ(ei)ω = c(ei)(dxi ∧ ω + eiyω)
= dxi ∧ (dxi ∧ ω + eiyω)− eiy(dxi ∧ ω + eiyω)
= dxi ∧ (eiyω)− eiy(dxi ∧ ω)
= dxi ∧ (eiyω) + dxi ∧ (eiyω)− (eiydxi) ∧ ω
= 2dxi ∧ (eiyω)− ω.

Thus

ω − c(ei)ĉ(ei)ω = ω − 2dxi ∧ (eiyω) + ω = −2dxi ∧ (eiyω) + 2ω
ω + c(ei)ĉ(ei)ω = ω + 2dxi ∧ (eiyω)− ω = 2dxi ∧ (eiyω).

It follows that

T
n∑
i=1

c(ei)ĉ(∇TM
ei

gradf)ω = 2T
nf (p)∑
i=1

(ω − dxi ∧ (eiyω)) +
n∑

i=nf (p)+1
dxi ∧ (eiyω)

− nTω.
Note that by Lemma 1.5.2-2., for ω ∈ Ωnf (p)(M) we obtain

eiy(dxi ∧ ω) = (eiydxi) ∧ ω + (−1)dxi ∧ (eiyω)
= dxi(ei)ω − dxi ∧ (eiyω)
= ω − dxi ∧ (eiyω).

Rewrite

T
n∑
i=1

c(ei)ĉ(∇TM
ei

gradf)ω = 2T
nf (p)∑
i=1

eiy(dxi ∧ ω) +
n∑

i=nf (p)+1
dxi ∧ (eiyω)

− nTω. (6.11)
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By equalities (6.4), (6.8), (6.11), (6.10) the deformed Laplace–Beltrami operator on Ωnf (p)(Rn)
we have

�Tf,nf (p)ω = −
n∑
i=1

∂2

∂x2
i

ω − nTω + T 2|x|2ω + 2T
nf (p)∑
i=1

eiy(dxi ∧ ω) +
n∑

i=nf (p)+1
dxi ∧ (eiyω)


�

The differentiable operator

−
n∑
i=1

∂2

∂x2
i

− nT + T 2|x|2

acts only on differentiable functions and T > 0 is a harmonic oscillator operator, see [21,
Example 11.3-1]. Let κ(x) be a function such that(

−
n∑
i=1

∂2

∂x2
i

− nT + T 2|x|2
)
κ(x) = 0.

Since it is a harmonic oscillator operator, the solution is given by

κ(x) = exp
(
−T |x|2

2

)
.

Proposition 6.0.4 ([41, Prop. 5.4]). Under the conditions of Theorem 6.0.3, T > 0,
Ker (�Tf,nf (p)) is generated by

exp
(
−T |x|2

2

)
dx1 ∧ . . . ∧ dxnf (p) ∈ Ωnf (p)(Rn).

That is, dim (Ker�Tf,nf (p)) = 1.
Let us see that this differentiable nf (p)–form is in the kernel of �Tf,nf (p).
By Remark 4.3.9 we can see that

dx1 ∧ . . . ∧ dxnf (p) ∈ Ker
nf (p)∑

i=1
eiy(dxi∧ ) +

n∑
i=nf (p)+1

dxi ∧ (eiy )
 .

1. If i = 1, . . . , nf (p), then eiy(dxi ∧ dx1 ∧ . . . ∧ dxnf (p)) = eiy0.

2. If i = nf (p) + 1, . . . , n, then dxi ∧ (eiydx1 ∧ . . . ∧ dxnf (p)) = dxi ∧ 0 = 0.

Therefore dx1 ∧ . . . ∧ dxnf (p) ∈ Ker
(

nf (p)∑
i=1

eiy(dxi∧ ) +
n∑

i=nf (p)+1
dxi ∧ (eiy )

)
.

Note that dxnf (p)+1 ∧ . . . ∧ dxn /∈ Ker
(

nf (p)∑
i=1

eiy(dxi∧ ) +
n∑

i=nf (p)+1
dxi ∧ (eiy )

)
, one can

check it also using Remark 4.3.9.
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Now, the case of exp
(
−T |x|2

2

)
∈ Ker

(
−

n∑
i=1

∂2

∂x2
i
− nT + T 2|x|2

)
, we have:

∂

∂xi
exp

(
−T |x|2

2

)
= −Txi exp

(
−T |x|2

2

)
,

∂

∂xi

(
∂

∂xi
exp

(
−T |x|2

2

))
= −T exp

(
−T |x|2

2

)
+ T 2x2

i exp
(
−T |x|2

2

)
.

Then(
−

n∑
i=1

∂2

∂x2
i

− nT + T 2|x|2
)

exp
(
−T |x|2

2

)
= −

n∑
i=1

[
T 2x2

i exp
(
−T |x|2

2

)
− T exp

(
−T |x|2

2

)]

−nT exp
(
−T |x|2

2

)
+ T 2|x|2 exp

(
−T |x|2

2

)

= −T 2|x|2 exp
(
−T |x|2

2

)
+ nT exp

(
−T |x|2

2

)

−nT exp
(
−T |x|2

2

)
+ T 2|x|2 exp

(
−T |x|2

2

)
= 0.

Therefore, exp
(
−T |x|2

2

)
dx1 ∧ . . . ∧ dxnf (p) ∈ Ker�Tf,nf (p).

Remark 6.0.5. Theorem 6.0.3 and Proposition 6.0.4 tell us that:

1. For each critical point p of a Morse function f one can write a local description of the
deformed Laplace-Beltrami operator �Tf,nf (p).

2. There may be no critical point of some index nf (p) = 0, . . . , n = dim (M).

To illustrate this observations, consider the following examples.
Example 6.0.6. Consider the 2–torus and f :T 2 −→ R the height function, we will use the
information obtained from the examples 1.4.18 and 2.1.4.

The 2–torus is an oriented, closed Riemannian manifold of dimension 2, then we have
Ωk(T 2) with k = 0, 1, 2. We will denote the critical points by a, b, c, d, as in the Figure 2.1.

1. Let k = 0, we take �Tf, 0:C∞(T 2) −→ C∞(T 2).
By Hodge Theorem (5.7) and Proposition 5.0.1 we have

dim (Ker�Tf, 0) = dim (H0
Tf,DR(T 2)) = 1.

We have a critical point of index 0, the critical point d, by Theorem 6.0.3 there is
a chart ϕ:Ud −→ Vd ⊂ R2 around d such that we get the equation of �Tf, 0 for all
x = (x1, x2) ∈ Vd and by Proposition 6.0.4 we know Ker�Tk, 0, that is, its generator is
gd = exp

(
−T |x|2

2

)
. Which agrees with Hodge Theorem.
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2. Let k = 1, consider �Tf,1: Ω1(T 2) −→ Ω1(T 2).
By Hodge Theorem (5.7) and Proposition 5.0.1 we get

dim (Ker�Tf, 1) = dim (H1
Tf,DR(T 2)) = 2.

There are two critical points of index 1, the critical points b and c, by Theorem 6.0.3
for each point there are charts φ:Ub −→ Vb ⊂ R2 and φ′:Uc −→ Vc ⊂ R2 around b and
c respectively such that we have the equations of �Tf,nf (b) for all y = (y1, y2) ∈ Vb and
�Tf,nf (c) for all z = (z1, z2) ∈ Vc and by Proposition 6.0.4 we know:

Ker�Tf,nf (b) = 〈gb〉 =
〈

exp
(
−T |y|2

2

)
dy1

〉
,

Ker�Tf,nf (c) = 〈gc〉 =
〈

exp
(
−T |z|2

2

)
dz1

〉
.

Then 2 = dim (Ker�Tf, 1) = dim (Ker�Tf,nf (b)) + dim (Ker�Tf,nf (c)), which coincides
with Hodge Theorem.

3. If k = 2, it is similar to the situation k = 0, for �Tf, 2: Ω2(T 2) −→ Ω2(T 2) by Hodge
Theorem (5.7) and Proposition 5.0.1 then

dim (Ker�Tf, 2) = dim (H2
Tf,DR(T 2)) = 1.

The critical point a is the critical point of index 2, by Theorem 6.0.3 there is a chart
ψ:Ua −→ Va ⊂ R2 around a such that we get the equation of �Tf, 2 for all v = (v1, v2) ∈
Va and by Proposition 6.0.4 the generator of Ker�Tk, 2 is ga = exp

(
−T |v|2

2

)
dv1 ∧ dv2,

that coincides with Hodge Theorem.

Example 6.0.7. Consider the 2–sphere and f :S2 −→ R the height function, we will use the
information obtained from examples 1.4.17 and 2.1.2.

Proceeding analogously to the example 6.0.6, we get:

1. Let k = 0, �Tf, 0:C∞(S2) −→ C∞(S2), then by Hodge Theorem (5.7) and Proposi-
tion 5.0.1 one can obtain that dim (Ker�Tf, 0) = 1.
There is a critical point of index 0, the south pole S, by Theorem 6.0.3 there is a
chart ϕ:US −→ VS ⊂ R2 around S such that we get the equation of �Tf, 0 for all x =
(x1, x2) ∈ VS and by Proposition 6.0.4 the generator of Ker�Tk, 0 is gS = exp

(
−T |x|2

2

)
,

then the dimensions of the vector spaces coincide with the given by Hodge Theorem.

2. Let k = 2, the critical point of index 2 is N the north pole, by Theorem 6.0.3
there is a chart φ:UN −→ VN ⊂ Rn around N such that we obtain the equation
of �Tf, 2 for all y = (y1, y2) ∈ VN and by Proposition 6.0.4 then Ker�Tf, 2 = 〈gN〉 =〈
exp

(
−T |y|2

2

)
dy1 ∧ dy2

〉
. Hodge Theorem also holds.
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3. This case is an example of Remark 6.0.5-2.
Let k = 1, by Hodge Theorem (5.7) and Proposition 5.0.1 dim (Ker�Tf, 1) = 0. Also,
we have no critical points of index 1.

In the next chapter we will see that the set of generators of all kernels of the local
operators �Tf,nf (p) from each of the critical points p generate the kernel of �Tf, •.
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Chapter 7

Global description of �Tf, k

We will generate the eigenspaces of �Tf, • and �Tf, k using functional analysis.
Fore more details see [41].

7.1 Bump functions
In differential geometry and analysis we use bump functions as tools. For example, they are
used to define partitions of unity and for extending locally defined differentiable functions
to globally defined differentiable functions.

Definition 7.1.1. Let f be a differentiable function on a differentiable manifold M . The
support of f is defined to be the closure of the set on which f(p) 6= 0 for p ∈ M , that is:
supp f = {p ∈M |f(p) 6= 0}.

Definition 7.1.2. Let M be a differentiable manifold, p ∈M and U a neighbourhood of p.
A bump function at p supported in U is any differentiable function f :M −→ R that is 1 in
a neighbourhood of p with supp f ⊂ U.

Example 7.1.3. Figure 7.1 is the graph of a bump function at 0 with support in (−1, 1 ),
the function is nonzero on the open interval (−1, 1) and is zero otherwise. Its support is the
closed interval [−1, 1].

−2 −1 21

Figure 7.1: A bump function
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7.2 Global description of �Tf, k
Now, let us consider differentiable k–forms with compact support, see definition 1.2.1.

Let M be an oriented, closed Riemannian n–manifold, T ∈ R, T > 0.
We want to describe globally the operator �Tf, k and relate it to the number of critical

points p ∈M of f ∈ C∞(M) such that nf (p) = k, that is, with mk, this for every 0 ≤ k ≤ n.
Let f :M −→ R be a Morse function and p ∈ M a critical point of f . Let W ⊂ R be a

neighborhood of 0.
We assume that f(p) = 0, if f(p) 6= 0, then we consider g = f − f(p).
We consider γ:R −→ [0, 1] a bump function such that

γ(t) =
{ 1 if |t| ≤ r

0 if |t| ≥ 2r

for some radius r such that the ball of radius 2r, B2r(0), is still contained in W .
By Corollary 2.0.7 there is a chart ϕ:U −→ V around p such that (2.9) holds, that is,

(f ◦ ϕ−1)(x) = f(p)− 1
2x

2
1 − . . .−

1
2x

2
nf (p) + 1

2x
2
nf (p)+1 + . . .+ 1

2x
2
n, x = (x1, . . . , xn) ∈ V.

By equalities (2.9) and (6.9) |grad(f ◦ϕ−1)| = |x|2 ∈ C∞(V ), grad(f ◦ϕ−1)(0R) = gradf(p) =
0R.

By Proposition 6.0.4 we define the real number λp, T by

λp,T :=
∫
V
γ(|x|)2 exp(−T |x|2)dx1 ∧ . . . ∧ dxn. (7.1)

Let
ωp, T := γ(|x|)√

λp,T
exp

(
−T |x|2

2

)
dx1 ∧ . . . ∧ dxnf (p) ∈ Ωnf (p)

c (V ). (7.2)

ωp, T is a differentiable nf (p)–form with compact support contained in B2r(0).
We want to extend this differentiable nf (p)–form to a differentiable nf (p)–form on M , so

we take the pullback of the nf (p)–form, see 1.2.1 in particular (1.3), and we define

ω̃p, T (q) =
{
ϕ∗(ωp,T )(q) if q ∈ ϕ−1(B2r(0)),

0 if q /∈ ϕ−1(B2r(0)).

Note that Br(0) ⊂ B2r(0) ⊂ V.
Therefore, ω̃p, T ∈ Ωnf (p)(M) with compact support contained in ϕ−1(B2r(0Rn)).

Lemma 7.2.1. For all p ∈ Crit(f), we have ||ω̃p, T ||0 = 1.

Proof. Let ω̃p, T ∈ Ωnf (p)(M), by equalities (3.14) and (3.6)

||ω̃p, T ||20 = 〈ω̃p, T , ω̃p, T 〉

=
∫
M
ω̃p, T ∧ ?ω̃p, T .
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Since ϕ is a local diffeomorphism

||ω̃p, T ||20 =
∫
ϕ−1(B2r(0))

ϕ∗(ωp,T ) ∧ ?ϕ∗(ωp, T ).

By equalities (7.1) and (7.2) and by product property of the exponential

||ω̃p, T ||20 =
∫
B2r(0)

ωp,T ∧ ?ωp,T

=
∫
B2r(0)

γ(|x|)√
λp,T

2 (
exp

(
−T |x|2

2

))(
exp

(
−T |x|2

2

))
dx1 ∧ . . . ∧ dxn

= 1
λp, T

∫
B2r(0)

(γ(|x|))2 exp(−T |x|2)dx1 ∧ . . . ∧ dxn

= 1.
||ω̃p, T ||0 = 1.

�
Since λp,T is the appropriate term such that ω̃p, T is a differentiable nf (p)–form of norm

1, then λp,T is called the normalization factor of ω̃p,T .
We will denote by Crit(f) the set of critical points of f .
Let ET be the subspace of Ω•c(M) generated by the ω̃p, T for all p ∈ Crit(f).
SinceM is a compact manifold, by Corollary 2.0.8 the set Crit(f) is finite and the critical

points are isolated, then if we take the domain of the charts that exists from Corollary 2.0.7,
the domains of the charts are disjoint.
Lemma 7.2.2. {ω̃p, T}p∈Crit(f) is an orthonormal set.

Proof. By Lemma 7.2.1, it suffices to prove that 〈ω̃p, T , ω̃q, T 〉 = 0 for all p, q ∈ Crit(f), p 6= q,
nf (p) = nf (q).

Let ω̃p, T , ω̃q, T ∈ Ωnf (p)(M), by Corollary 2.0.7 there exists ϕ1:Up −→ Vp and ϕ2:Uq −→
Vq charts around p and q, respectively, then

〈ω̃p, T , ω̃q, T 〉 =
∫
M
ϕ∗1(ωp, T ) ∧ ?ϕ∗2(ωq, T )

=
∫

suppϕ∗1(ωp, T )∪suppϕ∗2(ωq, T )
ϕ∗1(ωp, T ) ∧ ?ϕ∗2(ωq, T )

= 0.

�
We complete the space Ω•c(M) of differentiable •–forms with respect to the norm || ||i,

i = 0, 1, the resulting vector space is the i–Sobolev space of Ω•c(M), denoted byH i
•(M). Anal-

ogously, if we take Ωk(M) and the norm || ||i, k, we have the i–Sobolev space of differentiable
k–forms H i

k(M).
By Remark D.3.4 H0

• (M) = L2(Ω•c(U)) and by Corollary D.2.9 H0
• (M) is a Hilbert space.

In particular, ET ⊂ H0
• (M).
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Remark 7.2.3. By Lemma 7.2.2, ET is an orthonormal set and by Lemma A.5.4 ET is
linearly independent, therefore ET is a finite dimensional vector space. Also, since ET is a
normed space with || ||0 by Theorem D.1.6 we have ET is complete, then ET is a Hilbert
space.

Let E⊥T be the orthogonal complement to ET in H0
• (M).

Since ET is complete, by Theorem D.1.10 ET is a closed space in H0
• (M), by Theo-

rem D.1.11 H0
• (M) admits an orthogonal decomposition

H0
• (M) = ET ⊕ E⊥T . (7.3)

We consider pr:H0
• (M) −→ ET , pr⊥:H0

• (M) −→ E⊥T the projections, see the Defini-
tion D.1.23.

We decompose the deformed Witten operator

DTf : H0
• (M) −→ H0

• (M),
ET ⊕ E⊥T −→ ET ⊕ E⊥T .

Let ω ∈ H0
• (M), set

DT, 1ω = prDTfprω, (7.4)
DT, 2ω = prDTfpr⊥ω, (7.5)
DT, 3ω = pr⊥DTfprω, (7.6)
DT, 4ω = pr⊥DTfpr⊥ω. (7.7)

Lemma 7.2.4. DT, 2 is the adjoint operator of DT, 3.

Proof. Let ω, η ∈ H0
• (M).

By Theorem D.1.24 pr, pr⊥ are self-adjoint operators and by Lemma 5.0.2 DTf is a
self-adjoint operator, all with respect to 〈 , 〉, (3.6), then

〈DT, 3ω, η〉 = 〈pr⊥DTfprω, η〉
= 〈DTfprω, pr⊥η〉
= 〈prω, DTfpr⊥η〉
= 〈ω, prDTfpr⊥η〉
= 〈ω, DT, 2η〉.

�
We describe some estimates for these operators

Proposition 7.2.5.

1. For any T > 0 and for all ω ∈ H0
• (M), we have DT, 1ω = 0.



7.2 Global description of �Tf, k 97

2. There exists a constant T1 > 0, such that for any ω ∈ E⊥T ∩ H1
• (M), ω′ ∈ ET and

T ≥ T1, one has

||DT, 2ω||0 ≤
||ω||0
T

. (7.8)

||DT, 3ω
′||0 ≤

||ω′||0
T

. (7.9)

Proof. 1. By the definition of ET and since pr is a projection, for all ω ∈ H0
• (M)

prω =
∑

p∈Crit(f)
〈ω̃p, T , ω〉ω̃p, T .

Since 〈ω̃p, T , ω〉ω̃p, T ∈ Ωnf (p)(M) has compact support in U and its derivatives have
compact support in U, then

DTf (〈ω̃p, T , ω〉ω̃p, T ) ∈ Ωnf (p)−1(M)⊕ Ωnf (p)+1(M)

has compact support in U. But inside U , pr maps into Ωnf (p)(M), so

prDTf (〈ω̃p, T , ω〉ω̃p, T ) = 0

for each p ∈ Crit(f). Therefore, DT, 1ω = 0.

2. By Remark 7.2.3 ET is a Hilbert space. By Definition D.1.21, Theorem D.1.22 and
Lemma 7.2.4, it is enough to prove the estimate for DT, 2 or DT, 3. We will prove the
estimate for DT, 2.
Let ω ∈ E⊥T ∩H1

• (M), since ω ∈ E⊥T and by Lemma 5.0.2 we have

DT, 2ω = prDTfpr⊥ω
= prDTfω

=
∑

p∈Crit(f)
〈ω̃p, T ,DTfω〉ω̃p, T

=
∑

p∈Crit(f)
〈DTf ω̃p, T , ω〉ω̃p, T . (7.10)

By Cauchy-Schwarz inequality one see that

|〈DTf ω̃p,T , ω〉| ≤ ||DTf ω̃p,T ||0||ω||0. (7.11)

By Lemma 5.0.2, then

||DTf ω̃p, T ||20 = 〈DTf ω̃p, T ,DTf ω̃p, T 〉
= 〈D2

Tf ω̃p, T , ω̃p, T 〉

=
∫
M

D2
Tf ω̃p, T ∧ ?ω̃p,T

=
∫
M

D2
Tfϕ

∗(ωp, T ) ∧ ?ϕ∗(ωp, T )

=
∫
V

D2
Tfωp, T ∧ ?ωp, T .



98 Global description of �Tf, k

Remember the equality (7.2):

ωp, T = γ(|x|)√
λp,T

exp
(
−T |x|2

2

)
dx1 ∧ . . . ∧ dxnf (p),

where 1√
λp,T
∈ R, then

?ωp, T = γ(|x|)√
λp,T

exp
(
−T |x|2

2

)
dxnf (p)+1 ∧ . . . ∧ dxn.

Also, since D2
Tf (ωp, T ) = �Tf,nf (p)(ωp, T ):

||DTf ω̃p, T ||20 =
∫
B2r(0)

�Tf,nf (p)(ωp, T ) ∧ ?(ωp, T ).

=
∫
B2r(0)

�Tf,nf (p)(ωp, T ) ∧ γ(|x|)√
λp,T

exp
(
−T |x|2

2

)
dxnf (p)+1 ∧ . . . ∧ dxn

=
∫
B2r(0)

γ(|x|)√
λp,T

exp
(
−T |x|2

2

)
�Tf,nf (p)(ωp, T ) ∧ dxnf (p)+1 ∧ . . . ∧ dxn.

By equality (6.7) and Proposition 6.0.4 it is enough to see how

−
n∑
i=1

∂2

∂x2
i

− nT + T 2|x|2

acts on γ(|x|) exp
(
−T |x|2

2

)
∈ C∞(V ) on Br(0) and B2r(0) \Br(0). Since

∂

∂xi

(
γ(|x|) exp

(
−T |x|2

2

))
= γ(|x|) ∂

∂xi

(
exp

(
−T |x|2

2

))

+ ∂

∂xi
(γ(|x|)

(
exp

(
−T |x|2

2

))
.

Then

∂2

∂x2
i

(
γ(|x|) exp

(
−T |x|2

2

))
= γ(|x|) ∂

2

∂x2
i

(
exp

(
−T |x|2

2

))

+2 ∂

∂xi
(γ(|x|) ∂

∂xi

(
exp

(
−T |x|2

2

))

+ ∂2

∂x2
i

(γ(|x|)
(

exp
(
−T |x|2

2

))
.

Where γ(|x|) ∂2

∂x2
i

(
exp

(
−T |x|2

2

))
6= 0 on B2r(0), 2 ∂

∂xi
(γ(|x|) ∂

∂xi

(
exp

(
−T |x|2

2

))
6= B2r(0)\

Br(0) and ∂2

∂x2
i
(γ(|x|)

(
exp

(
−T |x|2

2

))
6= B2r(0) \Br(0).
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Note that on Br(0)(
−

n∑
i=1

∂2

∂x2
i

− nT + T 2|x|2
)(

γ(|x|) exp
(
−T |x|2

2

)
dx1 ∧ . . . ∧ dxnf (p)

)
= 0 (7.12)

While that on B2r(0) \Br(0) we have that(
−

n∑
i=1

∂2

∂x2
i

− nT + T 2|x|2
)(

γ(|x|) exp
(
−T |x|2

2

)
dx1 ∧ . . . ∧ dxnf (p)

)

= −
n∑
i=1

∂2

∂x2
i

[
γ(|x|) ∂

2

∂x2
i

(
exp

(
−T |x|2

2

))
+ 2 ∂

∂xi
(γ(|x)|) ∂

∂xi

(
exp

(
−T |x|2

2

))

+ ∂2

∂x2
i

(γ(|x|))
(

exp
(
−T |x|2

2

))]
dx1 ∧ . . . ∧ dxnf (p)

−nTγ(|x|) exp
(
−T |x|2

2

)
dx1 ∧ . . . ∧ dxnf (p)

+T 2|x|2γ(|x|) exp
(
−T |x|2

2

)
dx1 ∧ . . . ∧ dxnf (p)

= γ(|x|)
[
−

n∑
i=1

∂2

∂x2
i

(
exp

(
−T |x|2

2

))
− nT exp

(
−T |x|2

2

)

+T 2 |x|2 exp
(
−T |x|2

2

)]
dx1 ∧ . . . ∧ dxnf (p)

−2
n∑
i=1

∂

∂xi
γ(|x|) ∂

∂xi
exp

(
−T |x|2

2

)
dx1 ∧ . . . ∧ dxnf (p)

−
n∑
i=1

∂2

∂x2
i

γ(|x|) exp
(
−T |x|2

2

)
dx1 ∧ . . . ∧ dxnf (p).

By Proposition 6.0.4, exp
(
−T |x|2

2

)
dx1 ∧ . . . ∧ dxnf (p) ∈ Ker (�Tf,nf (p)) then(

−
n∑
i=1

∂2

∂x2
i

− nT + T 2|x|2
)(

γ(|x|) exp
(
−T |x|2

2

)
dx1 ∧ . . . ∧ dxnf (p)

)

= −
n∑
i=1

[
2 ∂

∂xi
γ(|x|) ∂

∂xi
exp

(
−T |x|2

2

)
+ ∂2

∂x2
i

γ(|x|) exp
(
−T |x|2

2

)]
dx1 ∧ . . . ∧ dxnf (p).

And
∂

∂xi

(
exp

(
−T |x|2

2

))
= −Txi exp

(
−T |x|2

2

)
. (7.13)

Substituting(
−

n∑
i=1

∂2

∂x2
i

− nT + T 2|x|2
)(

γ(|x|) exp
(
−T |x|2

2

)
dx1 ∧ . . . ∧ dxnf (p)

)

=
n∑
i=1

[
2Txi

∂

∂xi
γ(|x|)− ∂2

∂x2
i

γ(|x|)
]

exp
(
−T |x|2

2

)
dx1 ∧ . . . ∧ dxnf (p). (7.14)
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Then

||DTf ω̃p, T ||20 =
∫
B2r(0)

γ(|x|)√
λp,T

exp
(
−T |x|2

2

)
�Tf,nf (p)(ωp, T ) ∧ dxnf (p)+1 ∧ . . . ∧ dxn

= 1√
λp,T

∫
Br(0)

γ(|x|) exp
(
−T |x|2

2

)
�Tf,nf (p)(ωp, T ) ∧ dxnf (p)+1 ∧ . . . ∧ dxn

+ 1√
λp,T

∫
B2r(0)\Br(0)

γ(|x|) exp
(
−T |x|2

2

)
�Tf,nf (p)(ωp, T ) ∧ dxnf (p)+1 ∧ . . . ∧ dxn.

By equality (7.12) and since γ(|x|) ≤ 1

||DTf ω̃p, T ||20 = 1√
λp,T

∫
B2r(0)\Br(0)

γ(|x|) exp
(
−T |x|2

2

)
�Tf,nf (p)(ωp, T ) ∧ dxnf (p)+1 ∧ . . . ∧ dxn

≤ 1√
λp,T

∫
B2r(0)\Br(0)

exp
(
−T |x|2

2

)
�Tf,nf (p)(ωp, T ) ∧ dxnf (p)+1 ∧ . . . ∧ dxn

Also, using equalities (7.13) and (7.14) we have

||DTf ω̃p, T ||20 ≤
2T
λp,T

∫
B2r(0)\Br(0)

exp(−T |x|2)
(

n∑
i=1

xi
∂

∂xi
γ(|x|)

)
dx1 ∧ . . . ∧ dxn

− 1
λp, T

∫
B2r(0)\Br(0)

exp(−T |x|2)
(

n∑
i=1

∂2

∂x2
i

γ(|x|)
)
dx1 ∧ . . . ∧ dxn.

≤
∣∣∣∣∣ 2T
λp,T

∫
B2r(0)\Br(0)

exp(−T |x|2)
(

n∑
i=1

xi
∂

∂xi
γ(|x|)

)
dx1 ∧ . . . ∧ dxn

− 1
λp, T

∫
B2r(0)\Br(0)

exp(−T |x|2)
(

n∑
i=1

∂2

∂x2
i

γ(|x|)
)
dx1 ∧ . . . ∧ dxn

∣∣∣∣∣
≤ 2T
|λp,T |

∫
B2r(0)\Br(0)

exp(−T |x|2)
(

n∑
i=1

∣∣∣∣∣xi ∂∂xiγ(|x|)
∣∣∣∣∣
)
dx1 ∧ . . . ∧ dxn

+ 1
|λp, T |

∫
B2r(0)\Br(0)

exp(−T |x|2)
(

n∑
i=1

∣∣∣∣∣ ∂2

∂x2
i

γ(|x|)
∣∣∣∣∣
)
dx1 ∧ . . . ∧ dxn

Since |xi| ≤ 2r. Then

||DTf ω̃p, T ||20 ≤
4rT
|λp,T |

∫
B2r(0)\Br(0)

exp(−T |x|2)
(

n∑
i=1

∣∣∣∣∣ ∂∂xiγ(|x|)
∣∣∣∣∣
)
dx1 ∧ . . . ∧ dxn

+ 1
|λp, T |

∫
B2r(0)\Br(0)

exp(−T |x|2)
(

n∑
i=1

∣∣∣∣∣ ∂2

∂x2
i

γ(|x|)
∣∣∣∣∣
)
dx1 ∧ . . . ∧ dxn.

For all r < |x| < 2r we have | ∂
∂xi
γ(|x|)| ≤ s for some s ∈ R. The same for ∂2

∂x2
i
γ(|x|),

for some u ∈ R | ∂2

∂x2
i
γ(|x|)| ≤ u for all r < |x| < 2r. The derivatives of γ(|x|) vanish
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everywhere except on B2r(0) \Br(0).

||DTf ω̃p, T ||20 ≤
4Trsn+ nu

|λp,T |

∫
B2r(0)\Br(0)

exp(−T |x|2)dx1 ∧ . . . ∧ dxn

By definition λ > 0, see (7.1). Set C = 4Trsn+nu
|λp,T |

.

||DTf ω̃p, T ||20 ≤ C
∫
B2r(0)\Br(0)

exp(−T |x|2)dx1 ∧ . . . ∧ dxn

We can bound the function exp(−T |x|2) for exp(−T (2r)2) = exp(−4Tr2) on B2r(0) \
Br(0).

||DTf ω̃p, T ||20 ≤ C exp(−4Tr2)
∫
B2r(0)\Br(0)

dx1 ∧ . . . ∧ dxn

= C exp(−4Tr2)C ′((2r)n − rn)

Let C0 = CC ′((2r)n − rn), since exp(−4Tr2) = 1
∞∑
n=0

(4Tr2)n
n!

, we take the largest element

of the sum, say (4Tr2)N
N ! , there exist T ′ > 0 such that

||DTf ω̃p, T ||20 ≤ C0
1

(4Tr2)N
N !

≤ 1
T ′

||DTf ω̃p, T ||0 ≤
1
T ′

1
2

(7.15)

Note that 1
T ′

1
2
is too small. This for all p ∈ Crit(f).

By equality (7.10) and Lemma 7.2.1 then

||DT, 2ω||0 = ||
∑

p∈Crit(f)
〈DTf ω̃p, T , ω〉ω̃p, T ||0

≤
∑

p∈Crit(f)
||〈DTf ω̃p, T , ω〉ω̃p, T ||0

≤
∑

p∈Crit(f)
|〈DTf ω̃p, T , ω〉| ||ω̃p, T ||0

=
∑

p∈Crit(f)
|〈DTf ω̃p, T , ω〉|.

And by inequalities (7.11), (7.15)

||DT, 2ω||0 ≤
∑

p∈Crit(f)
||DTf ω̃p, T ||0||ω||0.

There is a constant T ′′ > 0 such that for all T ≥ T ′′

||DT, 2ω||0 ≤
||ω||0
T

.

�
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Proposition 7.2.6 ([41, Prop. 4.12]). There exist T2 > 0 and C > 0 such that for any
ω ∈ E⊥T ∩H1(M) and T ≥ T2

||DTfω||0 ≥ C
√
T ||ω||0.

For the following proof it will be necessary to change the field of the vector space Ω•(M)
of real numbers to that of complex numbers and extend the inner product to C.

We define
Ω•C(M) := C⊗R Ω•(M).

Where ⊗R means that we see C as a real vector space (of real dimension 2) and we consider
the tensor product with Ω•(M).

For all λ ∈ C, λ · (z⊗ω) = (λz)⊗ω, with λz the multiplication of complex numbers. By
doing this we have the complexification Ω•C(M).

Also, we define the inner product over Ω•C(M), using the inner product (3.6) over Ω•R(M),

〈ω, i⊗ η〉C = −i〈ω, η〉R, (7.16)
〈i⊗ ω, η〉C = i〈ω, η〉R. (7.17)

Considering this inner product over Ω•C(M) and the associated norm || ||0,C, we have the
0–Sobolev space of differentiable forms Ω•C(M), H0

• (M)C = C⊗R H
0
• (M)R.

We will specify if the norm and the Sobolev space are over the field R or C by writing it
as a subscript.

With respect to C, recall the arc length of a curve z: [a, b] −→ C given by equation

z(t) = x(t) + iy(t), t ∈ [a, b]. (7.18)

is define by
L =

∫ b

a
|z′(t)|dt, (7.19)

where |z′(t)| =
√

(x′(t))2 + (y′(t))2 is the modulus of z′(t).
Let C be the contour represented by the equation (7.18) and f :C −→ C be a complex-

valued function f(z) = u(x, y) + iv(x, y) such that u[x(t), y(t)] and v[x(t), y(t)] of f [z(t)] are
piecewise continuous functions of t. Then∣∣∣∣∫

C
f(z)dz

∣∣∣∣ ≤ ∫ b

a
|f [z(t)]z′(t)|dt. (7.20)

If there exist a constant c such that |f(z)| ≤ c whenever z is on the contour C, by equali-
ties (7.20) and (7.19) then ∣∣∣∣∫

C
f(z)dz

∣∣∣∣ ≤ c
∫ b

a
|z′(t)|dt = cL. (7.21)

For more details see [10].
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Let c ∈ R, c > 0 be a constant, ET (c) ⊂ H0
• (M)R be the direct sum of eigenspaces of

DTf corresponding to the eigenvalues in the interval [−c, c]. Note that by Lemma 5.0.2 DTf

is self-adjoint and by Theorem D.1.26 the eigenvalues of DTf are real.
Let c ∈ R, c > 0, we consider Pr(c):H0

• (M)R −→ ET (c) be the spectral projection onto
ET (c), see Definition D.1.30.
Proposition 7.2.7. There exist C1 > 0, T3 > 0 such that for any T ≥ T3 and any ω ∈ ET
holds that

||Pr(c)ω − ω||0,R ≤
C1

T
||ω||0,R.

Proof. Let S = {λ ∈ C| |λ| = c} be the counterclockwise oriented circle of radius c.
Let λ ∈ S, T ≥ T1 + T2 as in Propositions 7.2.5-2 and 7.2.6.
Let ω ∈ H1

• (M)R, by Remark D.3.8 H1
• (M)R ⊂ H0

• (M)R and by decomposition (7.3) one
can see that ω = prω + pr⊥ω.

Using the projections, definitions (7.4), (7.5) (7.6), (7.7) and Proposition 7.2.5-1, we have
two cases:

1. Since prω ∈ ET , we get

DT, 1prω = 0, DT, 2prω = 0, DT, 3prω 6= 0 and DT, 4prω = 0. (7.22)

2. Since pr⊥ω ∈ E⊥T , then

DT, 1pr⊥ω = 0, DT, 2pr⊥ω 6= 0, DT, 3pr⊥ω = 0 and DT, 4pr⊥ω 6= 0. (7.23)

We need to take the complexification H0
• (M)C.

Consider DTf :H0
• (M)C −→ H0

• (M)C given by DTf (z ⊗ ω) = z ⊗DTf (ω).
Since ω ∈ H1

• (M)R, we can write ω = 1⊗ ω with 1 ∈ R, so that ω ∈ H0
• (M)C.

prω, pr⊥ω,DT, 2pr⊥ω,DT, 3prω,DT, 4pr⊥ω,DTfω,DTfpr⊥ω ∈ H0
• (M)R,

so if take the complex norm || ||0,C of each of these elements it coincides with the real norm
|| ||0,R. Then we can use the estimation results 7.2.5 and 7.2.6 without problem.

By equalities (7.22) and (7.23), we get

||(λ−DTf )ω||0,C = ||λ⊗ prω + λ⊗ pr⊥ω −DT, 2pr⊥ω −DT, 3prω −DT, 4pr⊥ω||0,C
= ||(λ⊗ prω −DT, 2pr⊥ω) + (λ⊗ pr⊥ω −DT, 3prω −DT, 4pr⊥ω)||0,C.

Since λ ⊗ prω − DT, 2pr⊥ω ∈ ET , λ ⊗ pr⊥ω − DT, 3prω − DT, 4pr⊥ω ∈ E⊥T and ET , E
⊥
T are

orthogonal, by Lemma A.5.3, then

||(λ−DTf )ω||0,C ≥
1
2 ||λ⊗ prω −DT, 2pr⊥ω||0,C + 1

2 ||λ⊗ pr⊥ω − (DT, 3prω + DT, 4pr⊥ω)||0,C.

First, of the term 1
2

(
||λ⊗ prω −DT, 2pr⊥ω||0,C

)
.
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By triangle inequality, see inequality (D.1),
1
2
(
||λ⊗ prω −DT, 2pr⊥ω||0,C

)
≥ 1

2(||λ⊗ prω||0,C − ||DT, 2pr⊥ω||0,C).

Since |λ| = c,
1
2(||λ⊗ prω||0,C − ||DT, 2pr⊥ω||0,C) = 1

2(c||prω||0,C − ||DT, 2pr⊥ω||0,C) (7.24)

For the term 1
2(||λ⊗ pr⊥ω −DT, 3prω −DT, 4pr⊥ω||0,C). Note that by inequality (D.1):

||λ⊗ pr⊥ω −DT, 3prω −DT, 4pr⊥ω||0,C = || − λ⊗ pr⊥ω + DT, 3prω + DT, 4pr⊥ω||0,C
= ||DT, 4pr⊥ω − λ⊗ pr⊥ω + DT, 3prω||0,C
≥ ||DT, 4pr⊥ω − λ⊗ pr⊥ω||0,C − ||DT, 3prω||0,C
≥ ||DT, 4pr⊥ω||0,C − ||λ⊗ pr⊥ω||0,C − ||DT, 3prω||0,C

Since |λ| = c and prω ∈ ET , by Proposition 7.2.5-2 there exist a constant T1 > 0 such that
for any T ≥ T1 we obtain

||λ⊗ pr⊥ω −DT, 3prω −DT, 4pr⊥ω||0,C ≥ ||DT, 4pr⊥ω||0,C − c||pr⊥ω||0,C −
||prω||0,C

T
(7.25)

By equalities (7.24) and (7.25) then:

||(λ−DTf )ω||0,C ≥
1
2

(
c||prω||0,C − ||DT, 2pr⊥ω||0,C + ||DT, 4pr⊥ω||0,C − c||pr⊥ω||0,C −

||prω||0,C
T

)

By definitions (7.4), (7.5), (7.6), (7.7) and triangle inequality we have

||DTfpr⊥ω||0,C = ||DT, 2pr⊥ω + DT, 4pr⊥ω||0,C ≤ ||DT, 2pr⊥ω||0,C + ||DT, 4pr⊥ω||0,C.

On the other hand, since pr⊥ω ∈ E⊥T ∩H1
• (M)R and by Proposition 7.2.6, there exist T2 > 0

and C > 0 such that for all T ≥ T2, C
√
T ||pr⊥ω||0,C ≤ ||DTfpr⊥ω||0,C. Then

C
√
T ||pr⊥ω||0,C − ||DT, 2pr⊥ω||0,C ≤ ||DT, 4pr⊥ω||0,C.

Substituting this inequality and since pr⊥ω ∈ E⊥T ∩H1
• (M)R, by Proposition 7.2.5-2 there

exist T ′1 > 0, for any T ≥ T ′1

||(λ−DTf )ω||0,C ≥ 1
2

(
c||prω||0,C − 2||DT, 2pr⊥ω||0,C + C

√
T ||pr⊥ω||0,C − c||pr⊥ω||0,C −

||prω||0,C
T

)

= 1
2

(
c− 1

T

)
||prω||0,C + 1

2(C
√
T − c)||pr⊥ω||0,C − ||DT, 2pr⊥ω||0,C

≥ 1
2

(
c− 1

T

)
||prω||0,C + 1

2

(
C
√
T − c− 2

T

)
||pr⊥ω||0,C

≥ 1
2

(
c− 1

T

)
||prω||0,C + 1

2

(
C
√
T − c− 1

T

)
||pr⊥ω||0,C.
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There exist A2, B2 > 0 constants such that (c− 1
T

) ≥ A2 > 0 and (C
√
T−c− 1

T
) ≥ B2 > 0

for all T > T1 + T2, we take C2 = min{A2, B2} such that

||(λ−DTf )ω||0,C ≥
C2

2 (||prω||0,C + ||pr⊥ω||0,C).

There exist C3 > 0 constant C3 ≤ C2
2 such that

||(λ−DTf )ω||0,C ≥ C3||ω||0,C. (7.26)

Therefore, λ−DTf is bounded below.
Therefore λ−DTf :H1

• (M) −→ H0
• (M) is a bounded operator.

By Lemma D.1.20 and inequality (7.26), the operator

(λ−DTf )−1:H0
• (M) −→ H1

• (M),

exists and is bounded. Let λ ∈ ρ(λ − DTf ), then we can define the resolvent operator, see
definition D.1.27, by

Rλ(DTf )ω := (λ−DTf )−1ω.

and by Theorem D.1.28 Rλ(DTf ):H0
• (M)C −→ H0

• (M)C.
We take λ = r exp(iθ), r > 0,−π < θ < π, then∫

S
λ−1dλ =

∫ 2π

0
exp(−iθ)i exp(iθ)dt = 2πi.

Therefore 1
2πi
∫
S λ
−1dλ = 1. By Definition D.1.30 we get

Pr(c)ω − ω = 1
2πi

∫
S

(
(λ−DTf )−1 − λ−1

)
ωdλ, ω ∈ H0

• (M)R (7.27)

Since (λ−DTf )−1(λ−DTf ) = id and multiplying by λ−1, we get

(λ−DTf )−1 − λ−1id = λ−1(λ−DTf )−1DTf .

Applying to ω ∈ ET , and by Proposition 7.2.5-1, we have(
(λ−DTf )−1 − λ−1

)
ω = λ−1(λ−DTf )−1DT, 3ω.

Taking η = (λ−DTf )−1DT, 3ω and by inequality (7.26),

||(λ−DTf )(λ−DTf )−1DT, 3ω||0,C ≥ C3||(λ−DTf )−1DT, 3ω||0,C,

and ||(λ−DTf )(λ−DTf )−1DT, 3ω||0,C = ||DT, 3ω||0,C, then ||DT, 3ω||0 ≥ C3||(λ−DTf )−1DT, 3ω||0,C.
By Proposition 7.2.5-2 there exist T4 > 0, such that for all T ≥ T4 > 0 and ω ∈ ET

||(λ−DTf )−1DT, 3ω||0,C ≤
||ω||0,C
C3T
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Then:

||
(
(λ−DTf )−1 − λ−1

)
ω||0,C = ||λ−1(λ−DTf )−1DT, 3ω||0,C

= |λ−1| ||(λ−DTf )−1DT, 3ω||0,C.

||
(
(λ−DTf )−1 − λ−1

)
ω||0,C ≤

c

C3T
||ω||0,C. (7.28)

By equality (7.27)

||Pr(c)ω − ω||0,C = 1
2π ||

1
i

∫
S

(
(λ−DTf )−1 − λ−1

)
ωdλ||0,C

= 1
2π

∣∣∣∣1i
∣∣∣∣ || ∫

S

(
(λ−DTf )−1 − λ−1

)
ωdλ||0,C

Therefore, by inequalities (7.20) and (7.28) we get

||Pr(c)ω − ω||0,C ≤ 1
2π

∫
S
||
(
(λ−DTf )−1 − λ−1

)
z′(t)ω||0,Cdλ

≤ c

2πC3T
||ω||0,C

∫ 2π

0
|z′(t)|dt.

Taking the length of the curve z: [0, 2π] −→ R2 given by z(t) = (cos t, sin t), then |z′(t)| = 1
and ∫ 2π

0
|z′(t)|dt =

∫ 2π

0
dt = 2π.

By inequality (7.21), therefore

||Pr(c)ω − ω||0,C ≤
c

C3T
||ω||0,C. (7.29)

Since ω,Pr(c)ω ∈ H0
• (M)R the norm || ||0,C coincides with || ||0,R, Therefore Proposi-

tion 7.2.7 is satisfied. �
Let F[0, c′]

Tf, k ⊂ Ωk(M) be the vector space generated by the eigenspaces of �Tf, k associated
with eigenvalues in [0, c′] with 0 ≤ k ≤ n. We will to describe this vector space of �Tf, k.
Theorem 7.2.8. Let M be an oriented, closed Riemannian n–manifold, T ∈ R, T > 0 and
f :M −→ R be a Morse function. For any 0 < c′ ∈ R there exist a 0 < T0 ∈ R such that for
every T ≥ T0

dim (F[0, c′]
Tf, k) = mk.

Proof. First let us see that there exists T sufficiently large such that {Pr(c)ω̃p, T}p∈Crit(f) is
a linearly independent set.

Since M is a compact manifold, by Corollary 2.0.8 the set of critical points of f is finite,
we can assume that |Crit(f)| = r.

Let us suppose that
r∑
i=1

aiPr(c)ω̃pi, T = 0, ai ∈ R.
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Since Pr(c) is a linear map, then

r∑
i=1

aiPr(c)ω̃pi, T = Pr(c)
(

r∑
i=1

aiω̃pi, T

)
.

We denote by η =
r∑
i=1

aiω̃pi, T , note that η ∈ ET . Since Pr(c)η = 0 then η ∈ (ET (c))⊥.
By contradiction, assume that ||η||0 > 0.
By Proposition 7.2.7 there exists C1 > 0, T3 > 0 such that for all T ≥ T3

||Pr(c)η − η||0 ≤
C1

T
||η||0.

But ||Pr(c)η − η||0 = ||η||0, then ||η||0 ≤ C1
T
||η||0 this is true if and only if C1 > T, this

contradicts the hypothesis that for all T ≥ T3. Then ||η||0 = 0, so η = 0.
Since {ω̃pi, T}pi∈Crit(f) is a linearly independent set, then ai = 0 for all i = 1, . . . , r.

Therefore {Pr(c)ω̃p, T}p∈Crit(f) is a linearly independent set if T < C1.
Then, there must be a T5 > 0 such that for T ≥ T5 implies

dimET (c) ≥ dim Pr(c)(ET ) = dimET . (7.30)

Let us see that the equality holds.
By contradiction, assume we have dimET (c) > dimET , there is a nonzero element ω ∈

ET (c) such that ω ∈ (PrT (c)(ET ))⊥, that is, for every i = 1, . . . , r

〈ω,Pr(c)ω̃pi, T 〉 = 0.

Also for all i = 1, . . . , r, we get

〈ω,Pr(c)ω̃pi, T 〉Pr(c)ω̃pi, T = 0.

In particular,
r∑
i=1
〈ω,Pr(c)ω̃pi, T 〉Pr(c)ω̃pi, T = 0. (7.31)

By equality (7.31), adding and subtracting the term
r∑
i=1
〈ω, ω̃pi, T 〉Pr(c)ω̃pi, T , implies

prω =
r∑
i=1
〈ω, ω̃pi, T 〉ω̃pi, T −

r∑
i=1
〈ω,Pr(c)ω̃pi, T 〉ω̃pi, T

=
r∑
i=1
〈ω, ω̃pi, T 〉(ω̃pi, T − Pr(c)ω̃pi, T ) +

r∑
i=1
〈ω, ω̃pi, T − Pr(c)ω̃pi, T 〉Pr(c)ω̃pi, T .

Since the inner product is bilinear and by the Cauchy-Schwarz inequality we have

||prω||20 = 〈prω, prω〉
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≤
∣∣∣∣∣
r∑
i=1
〈ω, ω̃pi, T 〉2||ω̃pi, T − Pr(c)ω̃pi, T ||20

+
r∑
i=1
〈ω, ω̃pi, T − Pr(c)ω̃pi, T 〉2||Pr(c)ω̃pi, T ||20

∣∣∣∣∣
≤

∣∣∣∣∣
r∑
i=1
〈ω, ω̃pi, T 〉2

∣∣∣∣∣ ||ω̃pi, T − Pr(c)ω̃pi, T ||20

+
∣∣∣∣∣
r∑
i=1
〈ω, ω̃pi, T − Pr(c)ω̃pi, T 〉2

∣∣∣∣∣ ||Pr(c)ω̃pi, T ||20

≤
r∑
i=1
||ω||20||ω̃pi, T ||20||ω̃pi, T − Pr(c)ω̃pi, T ||20

+
r∑
i=1
||ω||20||ω̃pi, T − Pr(c)ω̃pi, T ||20||Pr(c)ω̃pi, T ||20.

By Lemma 7.2.1 and Proposition 7.2.7, for each pi ∈ Crit(f) there exists Ci, Ti > 0 such
that for all T ≥

r∑
i=1

Ti,

||Pr(c)ω̃pi, T ||20 = ||ω̃pi, T − (1− Pr(c))ω̃pi, T ||20
≤ (||ω̃pi, T ||0 + ||(1− Pr(c))ω̃pi, T ||0)2

≤
(

1 + Ci
T
||ω̃pi, T ||0

)2

=
(

1 + Ci
T

)2
.

By Lemma 7.2.1, then

||prω||20 ≤
r∑
i=1
||ω||20

(
Ci
T

)2
||ω̃pi, T ||20 +

r∑
i=1
||ω||20

(
Ci
T

)2
||ω̃pi, T ||20

(
1 + Ci

T

)2

≤
r∑
i=1

(
Ci
T

)2 (
1 +

(
1 + Ci

T

)2)
||ω||20

Since i = 1, . . . , r, then
(
Ci
T

)2
(

1 +
(
1 + Ci

T

)2
)

= C′

T 2 for some C ′ > 0 such that for all

T >
r∑
i=1

Ti implies

||prω||0 ≤
√
C ′

T
||ω||0. (7.32)

Let ω ∈ H1
• (M), ω = prω + pr⊥ω, then

||pr⊥ω||0 = ||ω − prω||0 ≥ ||ω||0 − ||prω||0.

By inequality (7.32), let C4 = (1−
√
C′

T
) > 0 be a constant and when T is large enough such

that
||pr⊥ω||0 ≥ ||ω||0 − ||prω|| ≥ ||ω||0 −

√
C ′

T
||ω||0 = C4||ω||0
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Now, by Proposition 7.2.6 there exists C > 0 and T ′ > 0 such that for any T ≥ T ′ we have

C
√
TC4||ω||0 ≤ C

√
T ||pr⊥ω||0 ≤ ||DTfpr⊥ω||0 (7.33)

Since ω ∈ ET (c), by definitions (7.4) - (7.7) and Proposition 7.2.5-1 we obtain DTfprω =
DT, 3ω. By Proposition 7.2.5-2, there exist T ′1 > 0 such that for all T ≥ T ′1 we have

||DTfpr⊥ω||0 = ||DTfω −DTfprω||0 ≤ ||DTfω||0 + ||DT, 3prω||0 ≤ ||DTfω||0 + ||ω||0
T

.

By equality (7.33) rewriting and taking C5 = CC4
√
T − 1

T
and for all T ≥ T ′1 +T ′ we get

C5||ω||0 = CC4
√
T ||ω||0 −

||ω||0
T
≤ ||DTfω||0.

Since ω ∈ ET (c), ω = ∑
λ∈[−c, c]

aλωλ, where λ is the eigenvalue of the eigenform ωλ, whose

eigenspace we will denote by Eλ. Since DTf is a linear map, then

C5||ω||20 = C5||
∑

λ∈[−c, c]
aλωλ||20 ≤ ||DTf

 ∑
λ∈[−c, c]

aλωλ

 ||20 = ||
∑

λ∈[−c, c]
aλDTf (ωλ)||20 = ||

∑
λ∈[−c, c]

aλλωλ||20

For eigenforms corresponding to different eigenvalues of DTf by Theorem D.1.26-2, we have

C5||ω||20 ≤
∑

λ∈[−c, c]
|λ|2||aλωλ||20 ≤ c2 ∑

λ∈[−c,c]
||aλωλ||20 = c2||ω||20.

This is true if and only if C5 = CC4
√
T − 1

T
≤ c this contradicts the hypothesis that for all

T ≥ T ′1 + T ′.
Therefore,

dimET (c) ≥ dim Pr(c)(ET ) = dimET =
n∑
i=1

mi. (7.34)

Then {Pr(c)ω̃p, T}p∈Crit(f) generates ET (c), therefore, {Pr(c)ω̃p, T}p∈Crit(f) form a basis for
ET (c).

We will give a decomposition of ET (c).
For each integer 0 ≤ k ≤ n, we define Prk:H0

• (M) −→ H0
k(M) the projection ontoH0

k(M)
the 0–Sobolev space of Ωk(M) with respect to the || ||0, k–norm.

First, since

||Prnf (p)Pr(c)ω̃p, T − ω̃p, T ||0, nf (p) = ||Prnf (p)Pr(c)ω̃p, T − Prnf (p)ω̃p, T ||0,nf (p)

= ||Prnf (p)(Pr(c)ω̃p, T − ω̃p, T )||0, nf (p)

≤ ||Pr(c)ω̃p, T − ω̃p, T ||0, •

By Proposition 7.2.7 there exist Cnf (p) > 0, Tnf (p) > 0 such that for every T ≥ Tnf (p) and
Lemma 7.2.1 we have that for every p ∈ Crit(f)

||Prnf (p)Pr(c)ω̃p, T − ω̃p, T ||0,nf (p) ≤
Cnf (p)

T
||ω̃p, T ||0 =

Cnf (p)

T
. (7.35)
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Also, we see that the set {Prnf (p)Pr(c)ω̃pi, T}ri=1 is linearly independent.
Let us suppose that

r∑
i=1

aiPrnf (p)Pr(c)ω̃pi, T = 0, ai ∈ R.

By Lemmas 7.2.2 and 7.2.1, then

||
r∑
i=1

(
aiPrnf (pi)Pr(c)ω̃pi, T − aiω̃pi, T

)
||20, • = ||

r∑
i=1

aiω̃pi, T ||20, • =
r∑
i=1
|ai|2 ||ω̃pi, T ||20, nf (pi) =

r∑
i=1
|ai|2.

On the other hand, by triangle inequality and inequality (7.35) for all T ≥
r∑
i=1

Ti

||
r∑
i=1

ai
(
Prnf (pi)Pr(c)ω̃pi, T − ω̃pi, T

)
||0, • ≤

r∑
i=1
||ai

(
Prnf (pi)Pr(c)ω̃pi, T − ω̃pi, T

)
||0, •

=
r∑
i=1
||ai

(
Prnf (pi)Pr(c)ω̃pi, T − ω̃pi, T

)
||0, nf (pi)

=
r∑
i=1
|ai| ||

(
Prnf (pi)Pr(c)ω̃pi, T − ω̃pi, T

)
||0, nf (pi)

≤
r∑
i=1
|ai|

Cnf (pi)

T

Let Cmax = max{Cnf (pi)}ri=1, then
r∑
i=1
|ai|2 ≤ C2

max
T 2

(
r∑
i=1
|ai|

)2
if and only if T ≤ rCmax.

We have that for T large enough, the {Prnf (p)Pr(c)ω̃p, T}p∈Crit(f) is a linearly independent
set. We denote by pij a critical point of nf (pij) = i, where j = 1, . . . ,mi. Then

Crit(f) = {p11 , . . . , p1m1
, . . . , pr1 , . . . , prmr}

Then

ET (c) = {Pr(c)ω̃p11 , T
, . . . ,Pr(c)ω̃p1m1 , T

, . . . ,Pr(c)ω̃pr1 , T
, . . . ,Pr(c)ω̃prmr , T}

Now,
Prk(ET (c)) = {Prk(Pr(c)ω̃pk1 , T

), . . . ,Prk(Pr(c)ω̃p1mk
, T )}

Thus for each 0 ≤ k ≤ n we obtain

dim Prk(ET (c)) ≥ mk.

Then
n∑
k=0

mk ≤
n∑
k=0

dim Prk(ET (c)).
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On the other hand, we define the operator

Pr =
n∑
k=0

Prk:H0
• (M) −→ H0

• (M).

Since for all 0 ≤ k ≤ n, the Prk(ET (c)) are orthogonal to each other, by Theorem D.1.25-1.
and -2. Pr is a projection onto

n⊕
k=0

Prk(ET (c)).
And since Pr is a linear map, we get
n∑
k=0

dim Prk(ET (c)) = dim
(

n⊕
k=0

Prk(ET (c))
)

= dim (Pr(ET (c))) ≤ dim (ET (c)) =
n∑
k=0

mk.

Therefore, for any 0 ≤ k ≤ n we get

dim Prk(ET (c)) = mk. (7.36)

Since �Tf preserves the grading of ω ∈ Ω•(M), the following diagram commutes

-

?
-

?

PrkPrk

H0
• (M)

H0
k(M)

H0
• (M)

D2
Tf

�Tf, k
H0
k(M)

Let ω ∈ ET (c) an eigenform of DTf with eigenvalue λ ∈ [−c, c], by the commutative
diagram then

�Tf, kPrkω = D2
TfPrkω = PrkD2

Tfω = Prkλ(DTfω) = λ2Prkω.

Then PrkET (c) = F[0, c2]
Tf, k .

Taking c =
√
c′, by equality (7.36), the Theorem follows.

�
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Chapter 8

Proof of Morse Inequalities

Finally we will prove Morse inequalities mentioned in section 2.2.
As in the chapter 7, let c ∈ R, c > 0 and Aν be the eigenspace of �Tf, k associated to the

eigenvalue ν ∈ [0, c].We define F[0,c]
Tf, k ⊂ Ω•(M) the vector space generated by the eigenspaces

of �Tf, k associated with eigenvalues in [0, c] with 0 ≤ k ≤ n.

F[0,c]
Tf, k =

⊕
ν∈[0,c]

Aν . (8.1)

Consider �Tf,k: F[0,c]
Tf, k −→ F[0,c]

Tf, k, equalities dTf�Tf, kω = �Tf, k+1dTfω and d?Tf�Tf, kω =
�Tf, k−1d

?
Tfω, see (5.5) and (5.6), imply that dTf and d?Tf restrict to

dTf : F[0,c]
Tf, k −→ F[0,c]

Tf, k+1

and
d?Tf : F[0,c]

Tf, k −→ F[0,c]
Tf, k−1.

So we obtain a finite dimensional subcomplex of (Ω•(M), dTf ) defined by

(F[0,c]
Tf, •, dTf ) : 0 −→ F[0,c]

Tf, 0
dTf−→ F[0,c]

Tf, 1
dTf−→ F[0,c]

Tf, 2
dTf−→ . . .

dTf−→ F[0,c]
Tf, n −→ 0 .

We define the k–th cohomology space by

Hk
F (M) =

Ker dTf
∣∣∣∣F[0,c]
Tf, k

Im dTf

∣∣∣∣F[0,c]
Tf, k−1

.

Remark 8.0.1. Remember that A0 is the eigenspace of �Tf, k associated to the eigenvalue 0,
then Ker (�Tf, k) = A0 and by definition A0 ⊂ F[0,c]

Tf, k thus A0 = Ker (�Tf, k |F[0,c]
Tf, k

). Therefore
Ker (�Tf, k) = Ker (�Tf, k |F[0,c]

Tf, k

).

Lemma 8.0.2. Let M be a differentiable manifold of dimension n, T ∈ R and f :M −→ R
be a Morse function. Then Hk

F (M) ∼= Hk
Tf,DR(M). Therefore,

dim (Hk
F (M)) = βk(M) (8.2)

113
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Proof. We denote the vector space of all closed k–forms under dTf by Zk
Tf (M), and we denote

the vector space of all closed k–forms under dTf |F[0,c]
Tf, k

by Zk
F (M).

On the other hand, we denote by Bk
Tf (M) the vector space of all exact k–forms under

dTf , and by Bk
F (M) the vector space of all exact k–forms under dTf |F[0,c]

Tf, k

.

Since F[0,c]
Tf, k ⊂ Ωk(M) we have Zk

Tf (M) ⊂ Zk
F (M).

Consider the projections to the quotient spaces π:Zk
F (M) −→ Hk

F (M) and π′:Zk
Tf (M) −→

Hk
Tf,DR(M).
Note that Bk

F (M) = Ker (π′ ◦ ι), by First Isomorphism Theorem Im (π′ ◦ ι) ∼= Hk
F (M)

and we have the following diagram

-

?
-

?

π′π

Zk
F (M)

Hk
F (M)

Zk
Tf (M)

ι

T
Hk
Tf,DR(M)

Let us see that π′ ◦ ι is surjective.
Let α ∈ Hk

Tf,DR(M) by Hodge Theorem (5.7) α has an harmonic representative, that
is, α = [ω] with ω ∈ A0. By Remark 8.0.1 ω ∈ Zk

F (M). So π′ ◦ ι is surjective, therefore
Hk
Tf,DR(M) ∼= Hk

F (M).
By Proposition 5.0.1, dim (Hk

F (M)) = βk(M). �

Corollary 8.0.3. Let M be a differentiable manifold of dimension n, T ∈ R and f :M −→ R
be a Morse function. Then

Ker (�Tf, k|F[0,c]
Tf, k

) ∼= Hk
F (M).

Theorem 8.0.4 (Morse inequalities). LetM be an oriented, closed Riemannian n–manifold.
For any Morse function on M one has

1. (Weak Morse inequalities) For any 0 ≤ k ≤ n, we have

βk(M) ≤ mk. (8.3)

2. (Strong Morse inequalities) For any 0 ≤ k ≤ n, we have

βk(M)− βk−1(M) + . . .+ (−1)kβ0(M) ≤ mk −mk−1 + . . .+ (−1)km0. (8.4)

Moreover, for k = n:

βn(M)− βn−1(M) + . . .+ (−1)nβ0(M) = mn −mn−1 + . . .+ (−1)nm0. (8.5)

Now, we are ready to prove the Morse inequalities.

Proof. We will assume T large enough, so that Theorem 7.2.8 is true, that is,

dim F[0,c]
Tf, k = mk.
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Since Ker (�Tf, k |F[0,c]
Tf, k

) ⊂ F[0,c]
Tf, k, implies

dim (Ker (�Tf, k |F[0,c]
Tf, k

)) ≤ mk. (8.6)

Therefore, by inequality (8.6), Remark 8.0.1 and the analogue of Hodge Theorem (5.7), we
get

βk(M) = dim Hk
Tf,DR(M) = dim Ker (�Tf, k) = dim Ker (�Tf, k|F[0,c]

Tf, k

) ≤ mk.

This proves the weak Morse inequality.
Now, to show the inequalities (8.4) and (8.5), let us note that from the complex (F[0,c]

Tf, •, dTf ),
by Rank-Nullity Theorem we have:

mk = dim F[0,c]
Tf, k

= dim Ker (dTf |F[0,c]
Tf, k

) + dim Im (dTf |F[0,c]
Tf, k

)

By the dimension of the quotient vector space and Lemma 8.0.2

mk = dim

 Ker dTf
∣∣∣∣F[0,c]
Tf, k

Im dTf

∣∣∣∣F[0,c]
Tf, k−1

+ dim Im
(
dTf |F[0,c]

Tf, k−1

)
+ dim Im

(
dTf |F[0,c]

Tf, k

)

= βk(M) + dim Im (dTf |F[0,c]
Tf, k−1

) + dim Im (dTf |F[0,c]
Tf, k

).

For 0 ≤ l ≤ n, we take alternating the sum of the mk to get

l∑
k=0

(−1)kml−k =
l∑

k=0
(−1)k

(
βl−k(M) + dim Im (dTf |F[0,c]

Tf, l−k−1
) + dim Im (dTf |F[0,c]

Tf, l−k
)
)

=
l∑

k=0
(−1)kβl−k(M) +

l∑
k=0

(−1)kdim Im (dTf |F[0,c]
Tf, l−k−1

)

+
l∑

k=0
(−1)kdim Im (dTf |F[0,c]

Tf, l−k
)

=
l∑

k=0
(−1)kβl−k(M) + dim Im (dTf |F[0,c]

Tf, l

).

We have the last equality by cancelling the dimensions of the images of the respective oper-
ators and by noticing that dim Im (dTf |F[0,c]

Tf,−1
) = dim 0 = 0.

In particular, for all 0 ≤ l ≤ n, we have

l∑
k=0

(−1)kβl−k(M) ≤
l∑

k=0
(−1)kml−k.
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For l = n, since Im (dTf |F[0,c]
Tf, n

) = 0

n∑
k=0

(−1)kmn−k =
n∑
k=0

(−1)kβn−k(M).

Therefore, the strong Morse inequalities hold. �
Let M be a differentiable n–manifold, we define the Euler characteristic of M to be the

alternating sum of its Betti numbers

χ(M) =
n∑
k=0

(−1)kβk(M).

Remark 8.0.5. We can rewrite equality (8.5) by (−1)nχ(M) = mn−mn−1 + . . .+(−1)nm0.



Appendix A

Multilinear algebra

This appendix contains the definitions and results of multilinear algebra that we will use in
the rest of the thesis.

For more details and proofs see [36], [24], [37], [11] and [13].

A.1 Categories
Sometimes it is helpful to use the language of category theory, in this section we give the
basic definitions. For more references consult [23] and [2].
Definition A.1.1. A category C consists of the following:

1. A class C , whose elements are called objects.

2. A set HomC (A,B) for any pair of objects A,B, whose elements are called morphism
from A to B.

3. For any 3 objects A,B,C, a binary operation called composition

HomC (A,B)×HomC (B,C) −→ HomC (A,C)

whose value in (f, g) is denoted by g ◦ f. It satisties the following conditions:

(a) For every object A, there exists a distinguished element idC
A ∈ HomC (A,A), called

the identity of A, such that: for any objects A,B and any f ∈ HomC (A,B), we
have that

f ◦ idC
A = idC

B ◦ f = f.

(b) For any objects A,B,C,D and f ∈ HomC (A,B), g ∈ HomC (B,C) and h ∈
HomC (C,D) we have

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

Example A.1.2. We denote by VectR the category of finite dimensional vector spaces over
R and linear maps.

117
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Example A.1.3. The category Set whose objects are all sets and morphisms are functions
between sets.
Example A.1.4. The category Grp of all groups and group homomorphisms.

In the following appendices we will describe other categories.
Definition A.1.5. Let C be a category, a morphism f :A −→ B in C is called an isomor-
phism if there exists a morphism g:B −→ A such that g ◦ f = idA and f ◦ g = idB. Such a
morphism g is called an inverse of f.
Proposition A.1.6. Let C be a category, if f :A −→ B, g:B −→ A and h:B −→ A are
morphism such that g ◦ f = idA and f ◦ h = idB then g = h.

Proof. We have h = idA ◦ h = (g ◦ f) ◦ h = g ◦ (f ◦ h) = g ◦ idB = g. �

Definition A.1.7. Let C and D be two categories. A covariant functor F : C −→ D is a
map which assigns

1. to each object A of C an object F (A) of D,

2. to each morphism f ∈ HomC (A,B) a morphism F (f) ∈ HomD(F (A), F (B)) so that

(a) For any objects A,B,C in C and any f ∈ HomC (A,B) and g ∈ HomC (B,C)

F (g ◦ f) = F (g) ◦ F (f).

(b) For every object A in C we have F (idA) = idF (A).

Definition A.1.8. Let C and D be two categories. A contravariant functor F : C −→ D is
a map which assigns

1. to each object A of C an object F (A) of D,

2. to each morphism f ∈ HomC (A,B) a morphism F (f) ∈ HomD(F (B), F (A)) such that

(a) For any objects A,B,C in C and any f ∈ HomC (A,B) and g ∈ HomC (B,C)

F (g ◦ f) = F (f) ◦ F (g).

(b) For every object A in C we have F (idA) = idF (A).

Also, in section A.3 and in the following appendices we will describe several functors.
Proposition A.1.9. A functor preserves isomorphisms.

Proof. Let C and D be two categories and F : C −→ D be a covariant functor. Let f :A→ A′

be an isomorphism in C and f−1 the inverse of f then

F (f) ◦ F (f−1) = F (f ◦ f−1) = F (idA′) = idF (A′).

Similarly, F (f−1) ◦ F (f) = idF (A).
Analogously if F is a contravariant functor. �
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A.2 Symmetric group
For details of the symmetric group and shuffles see [34], [24].
Definition A.2.1. Fix a positive integer k. A permutation of the set A = {1, . . . , k} is a
bijection σ:A −→ A.

Let Sk be the set of all permutations of the set {1, . . . , k}, Sk is a group with the operation
of composition.
Definition A.2.2. Let i1, . . . , ir be distinct integers between 1 and n. If σ ∈ Sn fixes the
remaining n− r integers and if

σ(i1) = i2, σ(i2) = i3, . . . , σ(ir−1) = ir, σ(ir) = i1,

then σ is an r–cycle of length r.
Every 1–cycle fixes every element of A, and so all 1–cycles are equal is the identity. A

2–cycle, which merely interchanges a pair of elements, is called a transposition.
Every permutation σ ∈ Sk is a product of transpositions, see [34, Thm. 1.3].

Definition A.2.3. A permutation σ ∈ Sk is even if it is a product of an even number of
transpositions; otherwise, σ is odd.

The sign of a permutation sgn : Sk −→ {±1} is a homomorphism between Sk and the
group {±1} defined by

sgn(σ) =
{ 1 if σ is even
−1 if σ is odd.

Definition A.2.4. A (k, l)–shuffle σ is a permutation of {1, . . . , k + l} satisfying

σ(1) < . . . < σ(k) and σ(k + 1) < . . . < σ(k + l).

The set of all such permutations is denoted by S(k, l).
Since a (k, l)–shuffle is uniquely determined by the set {σ(1), . . . , σ(k)}, the cardinality

of S(k, l) is
(
k + l
k

)
.

A.3 Multilinear algebra
This section deals with various aspects of linear and multilinear maps.
Remark A.3.1. Let V be a real vector space of dimension n. Let T :V −→ Rn be a linear
isomorphism, using T we can endow V with a topology. Let U ⊂ Rn be an open subset,
we set that T−1(U) ⊂ V is an open subset. One can see that this topology of V does not
depend on the linear isomorphism.

Let V and W be vector spaces over R of dimension n and m respectively, the set
HomR(V,W ) of all linear maps T :V −→ W is itself a vector space over R with the op-
erations:
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1. Sum of linear maps, that is, let T,R:V −→ W be two linear maps, we define
T +R:V −→ W by (T +R)(v) = T (v) +R(v) for all v ∈ V .

2. The scalar product of linear maps with a real number, that is, let r ∈ R and
T :V −→ W , we define rT :V −→ W by (rT )(v) = rT (v), for all v ∈ V .

Let {e1, . . . , en} be a basis of V and {w1, . . . , wm} be a basis of W .
Define Tij:V −→ W as

Tij(ek) =
{
wj for i = k
0 i 6= k.

The set {Tij | i = 1 . . . ,m, j = 1, . . . n} is a basis of HomR(V,W ), thus it has dimension mn
over R.

If V = W we write End(V ) := HomR(V, V ).
Definition A.3.2. A functor F : VectR −→ VectR is called a continuous functor if for each
pair (V,W ) ∈ VectR ×VectR, the natural map

FV,W : HomR(V,W ) −→ HomR(F (V ), F (W ))
T 7→ FV,W (T )

is continuous with respect to the usual topology on finite dimensional vector spaces described
in Remark A.3.1.

The concept of a functor and a continuous functor F : VectR × . . . ×VectR −→ VectR
in k variables is defined similarly.

In the rest of this section we will define several continuous functors which will allow us
to define different vector bundles, (see Appendix C).

A.3.1 Dual space V ∗

Definition A.3.3. The dual space of a vector space V over R is the vector space of all
real-valued linear functions on V ,

V ∗ = HomR(V,R).

Let {e1, . . . , en} be a basis for V , then every v ∈ V can be written uniquely as a linear
combination v =

n∑
i=1

aiei with ai ∈ R. Let ei:V −→ R be the linear function that picks out
the i–th coordinate, ei(v) = ai. Note that ei is characterized by

ei(ej) = δij =
{ 1 if i = j,

0 if i 6= j.

Proposition A.3.4 ([37, Prop. 3.1]). The functions e1, . . . , en form a basis for V ∗.
This basis {e1, . . . , en} for V ∗ is called the dual basis of the basis {e1, . . . , en} for V .

Corollary A.3.5 ([37, Cor. 3.2]). A vector space V and its dual V ∗ have the same dimension.
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Let V and W be vector spaces and T :V −→ W be a linear map, T induces a linear map
T ∗:W ∗ −→ V ∗ called the adjoint of T as follows: let f ∈ W ∗, then T ∗(f) = f ◦ T ∈ V ∗.

The linear map T is determined by a matrix A with respect to bases of V and W , where
T ∗ is associated with the transposed matrix A∗ with respect to the dual basis. Since the
map

-

-

∗
V,W : Hom(V,W )

A A∗
Hom(W ∗, V ∗)

is continuous we have a (contravariant) continuous functor.

A.3.2 HomR(V,W )
We have the continuous functor of two variables

-

?
6

?

- HomR(T,R)T R

HomR: VectR ×VectR
V ′

W ′

V

W

HomR(V, V ′)

HomR(W,W ′)

VectR

Let us considerer

HomR(W,V )× HomR(V ′,W ) −→ HomR(HomR(V, V ′),HomR(W,W ′)) (A.1)
(T,R) 7→ HomR(T,R)

Where:

HomR(T,R): HomR(V, V ′) −→ HomR(W,W ′), (HomR(T,R))(f) = R ◦ f ◦ T.

One can see that (A.1) is a continuous map, therefore the functor HomR is a continuous
functor.
Remark A.3.6. V ∗ is a particular case of the functor HomR(V,W ) taking W = R.

A.3.3 Direct sum V ⊕W
Definition A.3.7. Let V and W be vector spaces over R, the direct sum of V and W is
defined by

V ⊕W = V ×W = {(v, w) | v ∈ V,w ∈ W}.
Let (v1, w1), (v2, w2) ∈ V ⊕W , λ ∈ R, we define

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2), λ(v1, w1) = (λv1, λw1).

By definition of this vector space we have dim (V ⊕W ) = dim (V ) + dim (W ).
Let V, V ′,W andW ′ be vector spaces over R, let T :V −→ W and R:V ′ −→ W ′ be linear

maps, we define the linear map

T ⊕R:V ⊕ V ′ −→ W ⊕W ′
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by (T ⊕R)(v, v′) = (T (v), R(v′)). This defines the map.

-

-

V
⊕
W : HomR(V, V ′)× HomR(W,W ′)

(T,R) T
⊕
R

HomR(V ⊕W,V ′ ⊕W ′)

The linear maps T and R are determined by matrices A and B respectively, with respect to
bases of V, V ′,W,W ′. With respect to the bases of V ⊕ V ′ and W ⊕W ′, T ⊕R is associated
with a matrix

(
A 0
0 B

)
which continually depends on A and B. Therefore, V ⊕W is a

covariant continuous functor of two variables.

A.3.4 Multilinear maps
The Cartesian product of k copies of a vector space V is denoted by V k = V × . . .× V.

Definition A.3.8. Let V1, . . . , Vk,W be vector spaces. A map T :V1 × . . . × Vk −→ W is
k–multilinear if it is linear on each of its k arguments: for each i ∈ {1, . . . , k}, if all of the
variables but vi are held constant, then T (v1, . . . , vk) is a linear map of vi.

Example A.3.9. The dot product f :V 2 −→ Rn denoted by f(v, w) = v · w is bilinear: let
v =

n∑
i=1

aiei and w =
n∑
i=1

biei, ai, bi ∈ R then

v · w =
n∑
i=1

aibi.

Example A.3.10. The determinant f(v1, . . . , vn) = det(v1 . . . vn), viewed as a function of
the n column vectors v1, . . . , vn ∈ Rn is n–linear.

Definition A.3.11. Let V and W be real finite dimensional vector spaces. A pairing of V
and W is a bilinear map ( , ):V ×W −→ R. A pairing is called non-singular if whenever
w 6= 0 in W , there exists an element v ∈ V such that (v, w) 6= 0, and whenever v 6= 0 in V ,
there exists an element w ∈ W such that (v, w) 6= 0.

Let λ ∈ C, the bar λ denotes the conjugate of λ. If λ ∈ R, λ = λ.

Definition A.3.12. Let V be a vector space over the scalar field K = R, or C. An inner
product on V is a function 〈 , 〉:V × V −→ K that assigns to each pair of vectors v, w ∈ V a
scalar 〈v, w〉 in K with the following properties: For all v, u, w ∈ V and α ∈ K

1.

〈v + u,w〉 = 〈v, w〉+ 〈u,w〉,
〈αv, w〉 = α〈v, w〉,

〈v, u+ w〉 = 〈v, u〉+ 〈v, w〉,
〈v, αw〉 = α〈v, w〉.
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2. 〈v, w〉 = 〈w, v〉.

3. Positive Definiteness: 〈v, v〉 ≥ 0. If 〈v, v〉 = 0 if and only if v = 0.

4. If 〈v, u〉 = 〈v, w〉 for all v ∈ V, then u = w.

A vector space V endowed with a inner product is called an inner product space.

Example A.3.13. Let V be a real inner product space, by the positive definite condition
we have that the real inner product of V is an example of a non-singular pairing.

Definition A.3.14. Let V be a vector space. We define

Multk(V ) = {η:V k −→ R | η is a k–multilinear function}.

Also, let V,W be two finite dimensional vector spaces and T :V −→ W be a lineal map,
we have the linear map

Multk(T ): Multk(W ) −→Multk(V )
η 7→ η ◦ (T × . . .× T ).

The functor Multk is a continuous functor, because the following map is continuous
-

-

Multk: HomR(V,W )
T Multk(T ).

HomR(Multk(W ),Multk(V ))

A.3.5 Tensor product V ⊗W
Let V,W be two vector spaces over R of dimension n and m respectively. Let {e1, . . . , en}
be a basis of V and {f1, . . . , fm} be a basis of W . Let us consider the symbols of the form
ei ⊗ fj with 1 ≤ i ≤ n and 1 ≤ j ≤ m. Let V ⊗W be the vector space generated by the
symbols ei ⊗ fj. The vector space V ⊗W is called the tensor product of V and W .

Note that dim (V ⊗W ) = dimV dimW = mn, see [36, Thm. 8.3.1].
Let v ∈ V and w ∈ W , then we have

v =
n∑
i=1

aiei, w =
m∑
j=1

bjfj, ai, bj ∈ R.

We define the bilinear map Υ:V ×W −→ V ⊗W , by

Υ(v, w) =
n∑
i=1

m∑
j=1

aibjei ⊗ fj. (A.2)

We will denote Υ(v, w) by v ⊗ w.
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Theorem A.3.15 (Universal property of tensor product, [31, Prop. 2.2.1]).
Let V,W,Z be finite dimensional vector spaces over R and let Υ:V ×W −→ V ⊗W be the
bilinear map (A.2). It has the property that given any bilinear map R:V ×W −→ Z, there
exists an unique linear map S:V ⊗W −→ Z such that the diagram below is commutative.

V ×W V ⊗W

Z

-Υ
@
@
@@R

R

ppppppppppppppp	 S
�

Remark A.3.16. If Z = R and W = V , since the bilinear map R induces a linear map S,
then Mult2(V ) = (V ⊗ V )∗.

Example A.3.17. Let {e1, . . . , en} be the standard basis for Rn and let {e1, . . . , en} be its
dual basis. The dot product on Rn is the bilinear function f :Rn × Rn −→ R defined in
example A.3.9 by

f(v, w) = v · w.

We can express f in terms of the tensor product:

f(v, w) =
n∑
i=1

aibi =
n∑
i=1

ei(v)ei(w) =
n∑
i=1

(ei ⊗ ei)(v, w).

Theorem A.3.18 ([36, Thm. 8.3.3]). Let U, V and W be finite dimensional vector spaces.
Then there are natural isomorphisms:

U ⊗ (V ⊕W ) ∼= (U ⊗ V )⊕ (U ⊗W ). (A.3)
U ⊗ V ∼= V ⊗ U. (A.4)

(U ⊗ V )∗ ∼= U∗ ⊗ V ∗. (A.5)

Let T :V −→ V ′ and R:U −→ U ′ be linear maps, they induce a linear map:

T ⊗R:V ⊗ U −→ V ′ ⊗ U ′, (T ⊗R)(v ⊗ u) = T (v)⊗R(u)

which continually depends on T and R. Then, we have a continuous functor

⊗: Hom(V, V ′)× HomR(W,W ′) −→ HomR(V ⊗ V ′,W ⊗W ′)
(T, S) 7→ T ⊗ S.

By induction we can define the tensor product of n (possibly distinct) vector spaces which
is a continuous functor of n variables.
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A.3.6 k–th tensor power Tk(V )
Let V be a vector space over R, we define

Tk(V ) := V ⊗ . . .⊗ V︸ ︷︷ ︸
k

.

If k = 0, Tk(V ) = R.
Let V be a vector space and {e1, . . . , en} be a basis for V . It defines a basis for Tk(V )

consisting of the nk elements of the form ei1 ⊗ ei2 ⊗ . . . ⊗ eik where 1 ≤ i1, . . . , ik ≤ n. In
particular Tk(V ) has dimension nk.

Theorem A.3.15 can be extended to several vector spaces.
Theorem A.3.19 ([13, Sec. 1.20]). Let V1, . . . , Vk, Z be any k + 1 vector spaces and let
Υ̂:V1×. . .×Vk −→ V1⊗. . .⊗Vk be the k–multilinear map which generalizes (A.2). For any k–
multilinear map R̂:V1×. . .×Vk −→ Z, there exists an unique linear map Ŝ:V1⊗. . .⊗Vk −→ Z
such that the diagram is commutative.

V1 × . . .× Vk V1 ⊗ . . .⊗ Vk

Z

-
Υ̂

@
@
@
@@R

R̂

pppppppppppppppppppp	 Ŝ
�

Let V and W be vector spaces of dimension n and m respectively. Let {e1, . . . , en} be a
basis of V .

Let T :V −→ W be a linear map, we have Tk(T ): Tk(V ) −→ Tk(W ) in basic elements is
given by Tk(T )(ei1 ⊗ . . .⊗ eik) = T (ei1)⊗ . . .⊗ T (eik).

Tk(T ) is a continuous functor because the following map is continuous
-

-

Tk
V,W : HomR(V,W )

T Tk(T ).
HomR(Tk(V ),Tk(W ))

Remark A.3.20. By Theorem A.3.19, if Vi = V for all i = 1, . . . , k and Z = R we have the
composition of continuous functors Multk(V ) = (Tk(V ))∗ = Tk(V ∗) and a correspondence
between k–multilinear maps and linear maps.

A.3.7 k–th symmetric power SkV

Definition A.3.21. Let V and W be vector spaces. A k–multilinear map of the form

η: V k −→ W, (v1, v2, . . . , vk) 7−→ η(v1, v2, . . . , vk) ,

is symmetric if
η(vσ(1), vσ(2), . . . , vσ(k)) = η(v1, v2, . . . , vk);

for every σ ∈ Sk and any argument vectors v1, . . . , vk ∈ V .
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Example A.3.22. The dot product f(v, w) = v · w on Rn is symmetric.
Definition A.3.23. Let V be a vector space over R of dimension n. We define

SymkV := {η:V k → R | η is a symmetric k–multilinear function}

for each k ∈ N with Sym0V := R.
The set SymkV is a vector space over R in the usual manner:

(ω + η)(v1, . . . , vk) = ω(v1, . . . , vk) + η(v1, . . . , vk),
(λω)(v1, . . . , vk) = λω(v1, . . . , vk), λ ∈ R.

Let V be a vector space of dimension n with basis {e1, . . . , en}. The k–th symmetric power
of V is SkV the set of homogeneous polynomials of degree k in the variables {e1, . . . , en}. It
is a vector space of dimension

(
n+k+1

k

)
.

Let v1, . . . , vn ∈ V , then

v1 = a11e1 + . . .+ a1nen

v2 = a21e1 + . . .+ a2nen
...

vn = an1e1 + . . .+ annen

One can see vi = ai1e1 +. . .+ainen as an homogeneous polynomial of degree 1 in the variables
{e1, . . . , en}.

We define the linear map

S:V k −→ SkV (A.6)
(v1, . . . , vk) 7→ v1 · . . . · vk = (a11e1 + . . .+ a1nen) · . . . · (an1e1 + . . .+ annen).

We denote S(v1, . . . , vk) by v1 · . . . · vk.
We have the following universal property.

Theorem A.3.24 ([36, Thm. 10.1.3 and Thm. 10.5.1]). Let V be a vector space of dimension
n and an integer k > 0, let S:V k −→ SkV be the map (A.6), then S is a symmetric k–
multilinear map such that if W is a vector space of finite dimension and R:V k −→ W is a
symmetric k–multilinear map, then there exists an unique linear map T :SkV −→ W such
that the diagram below is commutative

V k SkV

W

-
S

@
@
@@R

R

ppppppppppppppp	 T
�

If W = R, one can see that SymkV = (SkV )∗.
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Example A.3.25. Let V and W be vector spaces and T :V −→ W be a linear map, it
induces the linear map

SkT : SkV −→ SkW

v1 · . . . · vk 7→ T (v1) · . . . · T (vk).

The functor Sk is a continuous functor, because the following map is continuous
-

-

SkV,W : HomR(V,W )
T SkT.

HomR(SkV, SkW )

A.3.8 k–th exterior power ΛkV

Definition A.3.26. Let V and W be vector spaces. A k–multilinear map η:V k −→ W is
called alternating if

η(vσ(1), vσ(2), . . . , vσ(k)) = sgn(σ)η(v1, v2, . . . , vk)

for every σ ∈ Sk and any argument vectors v1, . . . , vk ∈ V .

Proposition A.3.27 ([24, Lemma 2.7]). Let ω:V k −→ R be a k–multilinear map, if
ω(v1, . . . , vk) = 0 for all k–tuples with vi = vi+1 for all 1 ≤ i ≤ k − 1, then ω is alter-
nating.

Examples A.3.28.

1. The determinant ω:Rn2 −→ R, ω(x1, . . . ,xn) = det(x1 . . .xn), where (x1 . . .xn) de-
notes the n× n matrix whose columns are x1, . . . ,xn, then ω is alternating.

2. The cross product v × w on R3 is alternating.

The set

Altk(V ) = {η:V k → R | η is an alternating k–multilinear map},

is a vector space over R in the usual manner:

(ω + η)(v1, . . . , vk) = ω(v1, . . . , vk) + η(v1, . . . , vk),
(λω)(v1, . . . , vk) = λω(v1, . . . , vk), λ ∈ R.

Definition A.3.29. Let V be a vector space over R of dimension n and {e1, . . . , en} be a
basis of V . We consider the symbols of the form ei1 ∧ . . . ∧ eik with 1 ≤ i1 < . . . < ik ≤ n.
We have

(
n
k

)
elements.

The k–th exterior power of V is the vector space generated by elements ei1 ∧ . . . ∧ eik ,
this set is denoted by ΛkV , for each k ∈ N with Λ0V := R.
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Theorem A.3.30 ([24, Thm. 16.7]). Let V be a vector space of dimension n, if {e1, . . . , en}
is a basis for V , then {ei1 ∧ . . . ∧ eik |1 ≤ i1 < . . . < ik ≤ n} is a basis for the vector space
ΛkV , this basis has dimension

(
n
k

)
. Also, there is a natural isomorphism ΛkV ∗ ∼= (ΛkV )∗.

Proposition A.3.31 ([36, Thm. 9.3.2]). Let V be a vector space of dimension n, if n < k,
then ΛkV = 0. Also, dim (ΛnV ) = 1.

Let v1, . . . , vn ∈ V , then

v1 = a11e1 + . . .+ a1nen

v2 = a21e1 + . . .+ a2nen
...

vn = an1e1 + . . .+ annen

We define the alternating k–multilinear map

Θ:V k −→ ΛkV (A.7)
(v1, . . . , vk) 7→

∑
ei1∧...∧eik

det(Ai1,...,ik)(ei1 ∧ . . . ∧ eik).

where Ai1,...,ik is a k × k submatrix of A = (aij) which is obtained by taking the columns
i1, . . . , ik.

Given the elements v1, . . . , vk ∈ V we denoted Θ(v1, . . . , vk) by v1 ∧ . . .∧ vk. The map Θ
and the vector space ΛkV satisfy the following property.
Theorem A.3.32 ([36, Thm. 9.1.3]). Let V be a vector space of dimension n, let k ∈ N, 0 <
k ≤ n and Θ:V k −→ ΛkV the map (A.7). Then Θ is an alternating k–multilinear map,
such that for every vector space Z of finite dimension and R:V k −→ Z an alternating k–
multilinear map, then there exists an unique linear map R̂: ΛkV −→ Z such that the following
diagram is commutative

V k ΛkV

Z

-
Θ

@
@
@@R

R

ppppppppppppppp	 R̂
�

Remark A.3.33. If Z = R, we have Altk(V ) ∼= (ΛkV )∗.
Let V and W be vector spaces of dimension n and m respectively. Let T :V −→ W be a

linear map. It induces a linear map ΛkT : ΛkV −→ ΛkW which in basic elements is given by
ΛkT (ei1 ∧ . . . ∧ eik) = T (ei1) ∧ . . . ∧ T (eik).

We get a continuous functor of one variable.
-

-

Λk
V,W : HomR(V,W )

T ΛkT.

HomR(ΛkV,ΛkW )

In relation to the k–th exterior power of a vector space we have the following bilinear
map.
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Definition A.3.34. Let V be a real vector space of dimension n. The contraction on ΛkV ∗

is a bilinear map
y:V × ΛkV ∗ −→ Λk−1V ∗,

it v ∈ V and v1, . . . , vk ∈ V ∗ it is given by

vy(v1 ∧ . . . ∧ vk) =
k∑
i=1

(−1)i+1vi(v)v1 ∧ . . . ∧ v̂i ∧ . . . ∧ vk. (A.8)

A.3.9 Graded algebras
In the thesis we will consider some examples of algebras.
Definition A.3.35. An R–algebra A consist of a vector space over R and a bilinear map
µ:A×A −→ A which is associative, that is, for every a, b, c ∈ A

µ(a, µ(b, c)) = µ(µ(a, b), c).

Definition A.3.36. An R–algebra A is graded if it can be written as a direct sum

A• =
∞⊕
k=0
Ak

of vector spaces over R so that the multiplication map sends Ak ×Al to Ak+l.

The notation A• =
∞⊕
k=0
Ak means that each element of A is uniquely a finite sum

a = ai1 + . . .+ aim ,

where aij ∈ Aij . The elements in Ak are said to have degree k.
Definition A.3.37. A graded R–algebra A• is called graded anticommutative if

µ(a, b) = (−1)klµ(b, a)

for all a ∈ Ak and b ∈ Al.

Tensor algebra ⊕∞k=0 Tk(V )

Definition A.3.38. We define
T•(V ) =

∞⊕
k=0

Tk(V ).

On T•(V ) we have a product map.
Definition A.3.39. Let V be a vector space, we define the bilinear map

µ: Tk(V )×Tl(V ) −→ Tk+l(V ), (A.9)
(v, w) 7→ v ⊗ w.
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For every v ∈ Tk(V ) and w ∈ Tl(V ).
If we consider V ∗, identifying Tk(V ∗) with the k–multilinear functions (see Remark A.3.20),

the product map (A.9) can be seen as

µ: Tk(V ∗)×Tl(V ∗) −→ Tk+l(V ∗), (ω, η) 7→ ω ⊗ η.

where ω is a k–multilinear map and η an l–multilinear map on V and ω ⊗ η is a (k + l)–
multilinear function ω ⊗ η defined by

(ω ⊗ η)(v1, . . . , vk+l) = ω(v1, . . . , vk)η(vk+1, . . . , vk+l).

Where (v1, . . . , vk+l) ∈ V k+l.

Theorem A.3.40 ([38, Cor. 18.19]). The product (A.9) is associative: if v, w, u ∈ V , then

(v ⊗ w)⊗ u = v ⊗ (w ⊗ u).

By Theorem A.3.40 T•(V ) is associative. The graded algebra T•(V ) is called the tensor
algebra over V .

Exterior algebra ⊕∞k=0ΛkV

We define
Λ•V :=

n⊕
k=0

ΛkV.

We want to give a structure of graded algebra to Λ•V , for that, we need to define a product.
Definition A.3.41. We define the wedge product as the bilinear map

∧: ΛkV × ΛlV −→ Λk+lV, (v, w) 7→ v ∧ w. (A.10)

If we take V ∗, identifying Λk(V ∗) with the alternating k–multilinear functions the wedge
product (A.10) can be seen as

∧: ΛkV ∗ × ΛlV ∗ −→ Λk+lV ∗,

for each ω ∈ ΛkV ∗ and η ∈ ΛlV ∗ is defined by

(ω ∧ η)(v1, . . . , vk+l) =
∑

σ∈S(k,l)
sgn(σ)ω(vσ(1), . . . , vσ(k))η(vσ(k+1), . . . , vσ(k+l)).

Where (v1, . . . , vk+l) ∈ V k+l.

When k = l = 1 it is given by

(ω ∧ η)(v1, v2) = ω(v1)η(v2)− η(v1)ω(v2).

Where v1, v2 ∈ V .
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Lemma A.3.42 ([24, Lemma 2.7]). For any f1, . . . , fk ∈ V ∗ and any v1, . . . , vk ∈ V we have

(f1 ∧ . . . ∧ fk)(v1, . . . , vk) = det


f1(v1) f1(v2) · · · f1(vk)
f2(v1) f2(v2) · · · f2(vk)

... ... ...
fk(v1) fk(v2) · · · fk(vk)


In particular, we can express it as:

(f1 ∧ . . . ∧ fk)(v1, . . . , vk) =
∑
σ∈Sk

sgnσf1(vσ(1)) · . . . · fk(vσ(k)). (A.11)

We have that ω ∧ η is an alternating (k + l)–multilinear map, that is:

Proposition A.3.43 ([24, Lemma 2.6]). If v ∈ ΛkV and w ∈ ΛlV then v ∧ w ∈ Λk+lV.

Proposition A.3.44 ([24, Lemma 2.8]). The wedge product is anticommutative, that is, if
v ∈ ΛkV and w ∈ ΛlV , then

v ∧ w = (−1)klw ∧ v.

Proposition A.3.45 ([24, Lemma 2.9]). Let V be a real vector space and v ∈ ΛkV, w ∈
ΛlV, u ∈ ΛmV . Then

(v ∧ w) ∧ u = v ∧ (w ∧ u).

The basic formal properties of Λ•V can now be summarized in

Theorem A.3.46 ([24, Thm. 2.12]). Λ•V is an anticommutative graded algebra.

Λ•V is called the exterior or alternating algebra of V .

A.4 Orientation
Let V be a real vector space of finite dimension n, we considerer the set of all ordered bases
of V .

Definition A.4.1. Let V be a vector space of dimension n with ordered basis α and β given
by α = {a1, . . . , an} and β = {b1, . . . , bn}. Let A be a matrix n× n such that Abi = ai. The
matrix A is called the transition matrix of β to α.

Note that every transition matrix is invertible, then any transition matrix has det(A) > 0
or det(A) < 0.

We define an equivalence relation of the set of all ordered bases of V as follows: two
ordered bases of V being equivalent if and only if their transition matrix has positive deter-
minant.

Definition A.4.2. An orientation of V is a choice of one of these equivalence classes. To
indicate an orientation in a vector space we will generally give a basis representative of that
equivalence class.
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A.5 Inner product space
In this section we will focus on vector spaces endowed with an inner product and describe
the linear applications over these spaces. In chapter D we will return to some of the following
notions.
Definition A.5.1. Let V be an inner product space. For v ∈ V , we define the norm of v
by ||v|| = 〈v, v〉 1

2 .

Definition A.5.2. Let V be an inner product space.

1. Two elements v, u ∈ V are orthogonal if 〈v, u〉 = 0.

2. Let S be a nonempty subset of V , we define the orthogonal complement of S:

S⊥ = {v ∈ V |〈v, u〉 = 0 for all u ∈ S}.

3. A vector v ∈ V is an unit vector if ||v|| = 1.

4. A subset S of V is orthonormal if S is orthogonal and consists entirely of unit vectors.

Let V be an inner product space if v, w are orthogonal elements we have the Pythagorean
relation

||v + w||2 = ||v||2 + ||w||2. (A.12)
More generally, if {v1, . . . , vn} is an set whose elements are orthogonal to each other, then

||v1 + . . .+ vn||2 = ||v1||2 + . . .+ ||vn||2. (A.13)

Lemma A.5.3. Let V be an inner product space if v, w are orthogonal elements then

||v + w|| ≥ 1
2(||v||+ ||w||). (A.14)

Proof. By relation (A.12) we have ||v + w|| ≥ ||v|| and ||v + w|| ≥ ||w|| then 2||v + w|| ≥
||v||+ ||w||, that is, ||v + w|| ≥ 1

2(||v||+ ||w||). �

Lemma A.5.4 (Linear independence). Let V be an inner product space and S ⊂ V. If S is
an orthonormal set, then S is linearly independent.

Proof. Let {v1, . . . , vn} be an orthonormal set and consider the equality

a1v1 + . . .+ anvn = 0.

Set vj a fixed element, we take the inner product for this element, then〈
n∑
i=1

aivi, vj

〉
=

n∑
i=1

ai〈vi, vj〉 = aj〈vj, vj〉 = aj = 0.

Therefore any finite orthonormal set is linearly independent. �



Appendix B

Differential geometry

The objective of this appendix is to introduce the necessary definitions and results of differ-
entiable manifolds, in particular, we are interested in describing the tangent space.

For topics related to this section consult [9] and [31].

B.1 Topological manifolds
We will first see the topological structure of a differentiable manifold.

Definition B.1.1. A topological space is second countable if it has a countable basis.

Definition B.1.2. A topological space M is locally homeomorphic to Rn if for each point
p ∈ M there exists an open neighbourhood U of p and a homeomorphism h:U −→ U ′ onto
an open set U ′ ⊂ Rn.

Definition B.1.3. An n–dimensional topological manifold M is a Hausdorff and second
countable topological space, which is locally homeomorphic to Rn.

For the dimension to be well defined, it is important to know that for n 6= m an open
subset of Rn is not homeomorphic to an open subset of Rm, this result is called Invariance
of dimension, see [37, Cor. 8.7]. However, if a topological manifold has several connected
components, it is possible for each component to have a different dimension.

Examples B.1.4. Consider Sn = {x ∈ Rn+1|||x|| = 1} and the 2-Torus as a closed surface
defined as the product of two circles. Every open subset of Euclidean space, the n–sphere
Sn and the 2-torus are examples of topological manifolds.

The requirement that the space must be Hausdorff does not follow from the local condition
as the following example shows.

Example B.1.5. An example of a topological space locally homeomorphic to Rn that is not
Hausdorff is to take the real line R, together with an additional point p. Define the topology
on M = R ∪ {p} by saying that R is open and that the neighbourhoods of p are the sets
(U − {0}) ∪ {p}, where U is a neighbourhood of 0 ∈ R.
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Recall that the Hausdorff condition and second contability are hereditary properties,
that is, a subspace of a Hausdorff space is Hausdorff, analogously, a subspace of a second
countable space is second countable. So any subspace of Rn is automatically Hausdorff and
second countable.

Definition B.1.6. Let M be a topological manifold and ϕ:U −→ U ′ a homeomorphism of
an open subset U ⊂ M onto an open subset U ′ ⊂ Rn, then ϕ is called a chart of M and
U is the associated chart domain, the chart is traditionally indicated by the pair (U,ϕ). A
collection of charts {(Uα, ϕα)}α∈Λ with domains Uα is called an atlas for M if⋃

α∈Λ
Uα = M.

Example B.1.7. The Euclidean space Rn is covered by a single chart (Rn, idRn), where
idRn :Rn −→ Rn is the identity map. This space is a topological manifold. Also, every open
subset of Rn is a topological manifold, with chart (U, idU).

B.1.1 Differentiable manifolds
We want to introduce the notion of differentiable manifold.

Definition B.1.8. Let M be a topological manifold. Let (Uα, ϕα) and (Uβ, ϕβ) be two
charts of M such that Uαβ = Uα ∩ Uβ 6= ∅. We define the chart transformation ϕαβ :=
ϕβ ◦ ϕ−1

α :ϕα(Uαβ) −→ ϕβ(Uαβ) as a homeomorphism between open subsets on Rn by means
of the commutative diagram:

-

@
@
@I

�
�
��

U ′α ⊃ ϕα(Uαβ) ϕβ(Uαβ) ⊂ U ′β

Uαβ

ϕα

ϕαβ

ϕβ
�

For the chart transformations ϕαβ, wherever the respective maps are defined, it is clear
that ϕαα = id, ϕβγ ◦ ϕαβ = ϕαγ where Uα ∩ Uβ ∩ Uγ 6= 0, it follows that ϕ−1

αβ = ϕβα.

Definition B.1.9. An atlas of a manifold is called differentiable, if all its chart transforma-
tions are differentiable.

Recall that a function between open subsets of Rn is differentiable if its partial derivatives
exist and are continuous.

Definition B.1.10. Let U ⊂ Rn and V ⊂ Rn be open subsets. A differentiable func-
tion f :U −→ V is called a diffeomorphism if it is bijective and has a differentiable inverse
f−1:V −→ U.

Since ϕ−1
αβ = ϕβα, the inverses of the chart transformations are also differentiable and the

chart transformations are diffeomorphism.
Let U be a differentiable atlas on the manifold M . Let D = D(U) be the atlas that

contains precisely those charts for which every chart transformation with a chart from U is



B.1 Topological manifolds 135

differentiable. The atlas D is then differentiable as well, since one can locally write a chart
transformation ϕβγ in D as a composition ϕβγ = ϕαγ ◦ ϕβα of chart transformations for a
chart ϕα in D, and differentiable atlases is a local property. As an element in the family of
differentiable atlases, the atlas D can obviously not be enlarged by the addition of further
charts, and it is the largest differentiable atlas which contains U , thus each differentiable
atlas unequivocally determines a maximal differentiable atlas D(U), so that U ⊂ D(U); and
D(U) = D(B) if and only if the atlas U ∪ B is differentiable.

Definition B.1.11. A differentiable structure on a topological manifold is a maximal differ-
entiable atlas. A differentiable manifold is a topological manifold, together with a differen-
tiable structure.

Example B.1.12. As example B.1.7, the Euclidean space Rn is a differentiable manifold
with a single chart (Rn, idRn), this atlas determines a differentiable structure.

Example B.1.13. Any open subset V of a differentiable manifold M is also a differentiable
manifold. If {(Uα, ϕα)}α∈Λ is an atlas for M , then {(Uα ∩ V, ϕα|Uα∩V )}α∈Λ is an atlas for V ,
where

ϕα|Uα∩V :Uα ∩ V −→ Rn

denotes the restriction of ϕα to the subset Uα ∩ V.

Definition B.1.14. Let M be an n + k–dimensional differentiable manifold. A subset
N ⊂M is called an n–dimensional differentiable submanifold of M if for every point p ∈ N ,
there exists a chart around p ϕ:U −→ U ′ ⊂ Rn+k = Rn × Rk with ϕ(p) = 0 ∈ Rn+k so that

ϕ(N ∩ U) = U ′ ∩ (Rn × {0}).

The number k = dimM − dimN is called the codimension of the submanifold. That is,
locally the submanifold N lies in M as Rn lies Rn+k.

Definition B.1.15. Let M and N be differentiable manifolds of dimension m and n respec-
tively. A continuous map f :M −→ N between differentiable manifolds is said to be differen-
tiable at the point p ∈ M if for some (and therefore for every) chart ϕ:U −→ U ′ ⊂ Rm,
p ∈ U and φ:V −→ V ′ ⊂ Rn, f(p) ∈ V of M and N respectively, the composition
φ ◦ f ◦ ϕ−1:U ′ ⊂ Rm −→ V ′ ⊂ Rn is differentiable at the point ϕ(p) ∈ U ′. The map f
is called differentiable if it is differentiable at every point p ∈M .

Note that this map is defined in the neighbourhood ϕ(f−1(V ) ∩ U) of ϕ(p). This def-
inition is independent of the choice the chart (U, ϕ), since the chart transformations are
differentiable.

The identity map of a differentiable manifold is differentiable, the composition of differ-
entiable maps is differentiable, see [31, Thm. 6.9].

In definition B.1.10 we define diffeomorphisms between open subsets of Rn, but in general
we have the notion of diffeomorphism between manifolds.
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Definition B.1.16. The map f :M −→ N is a diffeomorphism if there is a differentiable
map g:N −→ M , so that f ◦ g = idN and g ◦ f = idM , in other words, f is bijective, and
f−1 is also differentiable.

We can consider the category whose objects are manifolds and morphisms are differen-
tiable maps, which we will denote by Diff .

B.1.2 Manifolds with boundary
Let Rn

+ = {x ∈ Rn | xn ≥ 0} be the closed Euclidean half-space.

Definition B.1.17. Let M be a second countable Hausdorff space, M is an n–dimensional
manifold with boundary if is locally homeomorphic to Rn

+. An n–dimensional differentiable
manifold with boundary is a pair consisting of a n–dimensional manifold with boundary M
and a maximal differentiable atlas U for M .

Definition B.1.18. Let M be an n–dimensional manifold with boundary. At each point
p ∈ M , which is mapped by some (and hence by every) chart about p to a point with
xn = 0, is called a boundary point of M . The set of boundary points of M is canonically an
(n− 1)–dimensional manifold, denoted by ∂M and called the boundary of M .

Definition B.1.19. A closed manifold is a compact manifold without boundary.

B.2 Tangent space
Problems in differential topology often divide into local and a global parts, we will study the
local part, then the key notion is the tangent space at a point.

For local descriptions in addition to considering maps f :M −→ N defined on all M , also
consider maps which are defined only in a neighbourhood of p ∈M . Two such maps can be
considered as equal if they agree in a neighbourhood. On the set of differentiable maps

{f :U −→ N |U is a neighbourhood of p ∈M}

we define the following relation: let f :U −→ N and g:U ′ −→ N be differentiable maps, then
f ∼ g if and only if there is a neighbourhood V of p, V ⊂ U ∩ U ′, so that f |V = g|V .

The relation ∼ is an equivalence relation.

Definition B.2.1. An equivalence class for this relation is called the germ of a map f :M −→
N at p. We denote such a germ by f : (M, p) −→ (N, f(p)).

Given germs f : (M, p) −→ (N, f(p)) and g: (N, f(p)) −→ (L, g(f(p))), one obtains a
composition g ◦ f : (M, p) −→ (L, g(f(p))) as the germ of the composition of suitable repre-
sentatives.

We consider the category of all pointed differentiable manifolds and differentiable germs,
which will be denoted by Diff∗.



B.2 Tangent space 137

Definition B.2.2. Let f : (M, p) −→ (N, f(p)) be a differentiable germ, we say that f is
an invertible germ if there is a germ g: (N, f(p)) −→ (M, p) such that f ◦ g = idN and
g ◦ f = idM .

Remark B.2.3. If f : (M, p) −→ (N, f(p)) is an invertible germ then there is a representative
map f :U ⊂M −→ N which is a local diffeomorphism.

Definition B.2.4. A function germ is a differentiable germ φ: (M, p) −→ (R, φ(p)).

The set of all function germs at p ∈ M will be denoted by C∞p (M), while the set of all
differentiable germs f : (M, p) −→ (N, f(p)) will be denoted by C∞p (M,N).

The addition and multiplication in the set C∞p (M) are defined by the corresponding
operations on representatives, thus C∞p (M) has the structure of a real algebra.

A differentiable germ f : (M, p) −→ (N, f(p)) induces by composition a homomorphism
of algebras

f ∗: C∞p (N) −→ C∞p (M) (B.1)
φ 7→ φ ◦ f = φ ◦ f.

Let us considerer idM : (M, p) −→ (M, p) this induces the homomorphism id∗:C∞p (M) −→
C∞p (M) then

id∗ = idC∞p (M). (B.2)

Let g: (N, f(p)) −→ (L, g(f(p))) be a germ, we have

(g ◦ f)∗ = f ∗ ◦ g∗. (B.3)

Consider the category whose objects are real algebras of type C∞p (M) and morphisms are
homomorphism of real algebras. We will denote this category by Alg.

Properties (B.2) and (B.3) imply that we have a functor from the category of pointed
differentiable manifolds and differentiable germs to the category of algebras and homomor-
phisms defined by

-

-

-

6
?

f ∗f

Diff∗
(M, p)

(N, q)

C∞p (M)

C∞q (N)

Alg

By Proposition A.1.9 the functor applied to an invertible germ is an isomorphism of algebras:
f ◦f−1 = idN then (f−1)∗◦f ∗ = idM . For example, if we take a chart ϕ about p, which defines
an invertible germ ϕ: (M, p) −→ (Rn, 0), therefore we have an isomorphism ϕ∗:C∞0 (Rn) −→
C∞p (M).

Let ϕ be a chart about p, taking the composition with translations, we have ϕ(p) = 0.
We simply denoted C∞n = C∞0 (Rn), then to study C∞p (M) is equivalent to study C∞n .
Now, we will define the tangent space.
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Definition B.2.5. A derivation of C∞p (M) is a linear map X:C∞p (M) −→ R which satisfies
the product rule (Leibniz rule)

X(φ ◦ ψ) = X(φ) ◦ ψ(p) + φ(p) ◦X(ψ). (B.4)

Definition B.2.6. The tangent space TpM of the differentiable manifold M at a point p is
the set of derivations of C∞p (M).

Definition B.2.7. Let f : (M, p) −→ (N, f(p)) be a differentiable germ. Let f ∗:C∞f(p)(N) −→
C∞p (M) be the induced homomorphism given in (B.1). The differential of f at p (or the
linear tangent map) is defined by

Dpf : TpM −→ Tf(p)N, (B.5)
X 7→ X ◦ f ∗.

Note that a linear combination of derivations is again a derivation, then the set of deriva-
tions forms a vector space. We can see that the differential is linear.

The definition of the differential implies that for a function germ φ: (N, f(p)) −→ (R, φ(f(p)))

Dpf(X)(φ) = X ◦ f ∗(φ) = X(φ ◦ f). (B.6)

Consider the function germ of the constant function with value 1, 1: (M, p) −→ (R, 1),
let X ∈ TpM , by the Leibniz rule it follows that X(1) = X(1) + X(1), therefore X(1) = 0.
Thus, for each function germ of a constant function with constant value c ∈ R, we have by
linearity that

X(c) = 0. (B.7)
From the functorial properties (B.2) and (B.3) of ∗, it follows that for the composition of

f : (M, p) −→ (N, f(p)) and g: (N, f(p)) −→ (L, g(f(p))), one has the property

Dp(g ◦ f) = Df(p)g ◦Dpf

for the differential of g ◦ f . This property is called the chain rule.
Now, if ϕ: (N, p) −→ (Rn, 0) is the germ of a chart, then the induced homomorphism

ϕ∗:C∞n −→ C∞p (N) is an isomorphism, as well as the differential of ϕ at p

Dpϕ:TpN −→ T0Rn.

Now, we will describe a basis of T0Rn.

Lemma B.2.8. Let x ∈ U be an open ball around the origin of Rn or Rn itself, and f :U −→
R a differentiable function, then there exist differentiable functions φ1, . . . , φn:U −→ R so
that

f(x) = f(0) +
n∑
i=1

xiφi(x)

Where x = (x1, . . . , xn) ∈ Rn.
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Proof. By Fundamental Theorem of Calculus:

f(x)− f(0) =
∫ 1

0

d

dt
f(tx1, . . . , txn)dt.

We can consider g:R −→ Rn define by g(t) = (tx1, . . . , txn) = tx. By the chain rule we have

Df(tx) ·Dg(t) =
(
∂f

∂x1
(tx), . . . , ∂f

∂xn
(tx)

) x1...
xn

 =
n∑
i=1

∂f

∂xi
(tx)xi.

Then

f(x)− f(0) =
∫ 1

0

d

dt
f(tx1, . . . , txn)dt

=
∫ 1

0
Df(tx)Dg(t)dt

=
∫ 1

0

n∑
i=1

∂f

∂xi
(tx)xidt

=
n∑
i=1

xi

∫ 1

0

∂f

∂xi
(tx1, . . . , txn)dt.

We define
φi(x) =

∫ 1

0

∂f

∂xi
(tx1, . . . , txn)dt.

Therefore,

f(x)− f(0) =
n∑
i=1

xiφi(x)

f(x) = f(0) +
n∑
i=1

xiφi(x).

�
Among the derivations of the algebra C∞n are the partial derivatives, which we denoted

by
∂

∂xi

∣∣∣∣∣
0

:C∞n −→ R,
∂

∂xi

∣∣∣∣∣
0

(φ) = ∂φ

∂xi
(0).

Theorem B.2.9. The ∂
∂xi

∣∣∣
0
, i = 1, . . . , n, form a basis of the vector space T0Rn of derivations

of C∞n .

Proof. Let ai ∈ R.
If the derivation

n∑
i=1

ai
(

∂
∂xi

∣∣∣
0

)
= 0, then, in particular, one obtains for xµ:Rn −→ R, the

µ–th coordinate function

aµ =
n∑
i=1

ai

(
∂xµ
∂xi

∣∣∣∣∣
0

)
= 0
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for each µ = 1, . . . , n.
Therefore the { ∂

∂xi

∣∣∣
0
} is a linearly independent set.

Now, let X ∈ T0Rn and X(xi) = ai. We see that X =
n∑
i=1

ai
∂
∂xi

∣∣∣
0
.

Set Y := X −
n∑
i=1

ai
∂
∂xi

∣∣∣
0
.

Since ∂
∂xi

∣∣∣
0
are derivations for each i = 1, . . . , n, and X is a derivation of T0Rn, then Y

is a derivation.
Now, by construction, Y (xi) = 0 for every coordinate function. If φ ∈ C∞n is an arbitrary

function germ, then by Lemma B.2.8 we get

φ = φ(0) +
n∑
ν=1

xνφν .

Since Y is a derivation, we apply the Leibniz rule, equation (B.7) and the definition of the
ν–th coordinate function we obtain

Y (φ) = Y (φ(0)) +
n∑
ν=1

Y (xνφν)

= Y (φ(0)) +
n∑
ν=1

[Y (xν)φν(0) + xν(0)Y (φν)]

= 0

Therefore,

X =
n∑
i=1

ai
∂

∂xi

∣∣∣∣∣
0
.

�
LetM be an n–dimensional differentiable manifold, note that the tangent space at a point

has dimension n as vector space, so that the dimension is indeed unequivocally defined. If U
is an open set containing p inM , then the algebra C∞p (U) of germs of differentiable functions
in U at p is the same as C∞p (M), then TpU = TpM.

Let (U,ϕ) = (U, x1, . . . , xn) be a chart about a point p in a manifold M , where each xi is
a coordinate function of ϕ. Let r1, . . . , rn be the standard coordinates on Rn. Then

xi = ri ◦ ϕ:U −→ R.

If f is a differentiable function in a neighbourhood of p, we define ∂
∂xi

∣∣∣
p

:= D0ϕ
−1
(
∂
∂ri

)
, by

definition (see (B.2.4))
∂

∂xi

∣∣∣∣∣
p

f := ∂

∂ri

∣∣∣∣∣
ϕ(p)

(f ◦ ϕ−1).

Theorem B.2.10 ([9, Thm. 2.4]). Let M and N be differentiable manifolds of dimension n
and m respectively. Let (U, x1, . . . , xn) and (V, y1, . . . , ym) be two charts around p ∈ M and
q ∈ N respectively, then the derivations ∂

∂xi
, ∂
∂yj

form bases of the vector spaces TpM and
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TqN respectively, and the differential of a germ f : (M, p) −→ (N, q) with respect to these
bases is given by Jf (0):Rn −→ Rm, where Jf (0) is the matrix Jf (0) =

(
∂fi
∂xj

)
1≤i≤n,1≤j≤m

.

The matrix Jf (0) is called the Jacobian matrix of f .
Theorem B.2.11 (The inverse function Theorem, [9, Thm. 5.1]). Let f :M −→ N be a
differentiable map between differentiable manifolds and suppose that Dpf :TpM −→ Tf(p)N
is a linear isomorphism at a point p ∈M. Then there exist a neighborhood U of p in M such
that the restriction of f to U is a local diffeomorphism onto a neighborhood V of f(p) in N .

B.2.1 Orientation
Let us remember Definition A.4.2 of orientation of a vector space, now we will define orien-
tation of a manifold.
Definition B.2.12. Let M be a differentiable manifold with boundary, an orientation of M
is a differentiable choice of orientations for all the tangent spaces TpM.

Also, we say M is orientable if it may be given an orientation. If so, then M admits at
least two different orientations, for if one is specified we need only reverse the orientations
of each tangent space to obtain the opposite orientation.
Theorem B.2.13 ([16, Prop. 3.25]). A connected, orientable manifold admits exactly two
orientations.
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Appendix C

Vector Bundles

In this appendix we will introduce vector bundles, we will also describe the ways of cons-
tructing these objects.

The books that the reader can consult are [17] and [9].

Definition C.0.1. Let E and B be topological spaces. A real vector bundle of rank n over
B is a continuous surjective map π:E −→ B such that it satisfies the following properties:

1. For each b ∈ B, the fiber over b, Eb = π−1(b), has a vector space structure of dimension
n over R.

2. Local triviality: There is an open cover {Uα}α∈Λ of B such that for each α ∈ Λ there
exists a homeomorphism hα: π−1(Uα) −→ Uα×Rn which makes the following diagram
commute

-

@
@
@R

�
�
�	

π−1(Uα) Uα × Rn

Uα

π

hα

π1�

taking π−1(b) to {b} ×Rn by a vector space isomorphism for each b ∈ Uα. Such an hα
is called a local trivialization of the vector bundle.

The space B is called the base space, E is the total space, π is the projection, the vector
spaces Eb are the fibers and π1 is the projection on the first factor. We denote the vector
bundle by (E, π,B)

Example C.0.2. The product bundle π1:E = B ×Rn −→ B with π1 projection on the first
factor.

Definition C.0.3. Let (E, π,B) be a vector bundle, a pair (U, h) where U is a open subset
of B and h is a local trivialization such that satisfies the axiom of local triviality is called a
bundle chart.
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Definition C.0.4. A vector bundle map f between two vector bundles π:E −→ B and
π′:E ′ −→ B with the same base space is a continuous map f :E −→ E ′ such that π = π′ ◦ f,
that is, the following diagram commute

-

@
@
@R

�
�
�	

E E ′

B

f

π π′�

Definition C.0.5. An isomorphism between vector bundles π:E −→ B and π′:E ′ −→ B
is a homeomorphism h:E −→ E ′ taking each fiber π−1(b) to the corresponding fiber π′−1(b)
by a linear isomorphism.

-

@
@
@R

�
�
�	

E E ′

B

h

π π′�

If there is an isomorphism between two vector bundles, we say that they are isomorphic.
Definition C.0.6. Let π:E −→ B be a vector bundle of rank n. (E, π,B) is called a trivial
bundle if is isomorphic to the product bundle π1:B × Rn −→ B.

If we consider vector bundles over a fixed base space B as objects and vector bundle maps
as morphism, we have a category, denoted by VB(B).
Definition C.0.7. Let (E, π,B) be a vector bundle of rank n. A set {(Uα, hα)}α∈Λ of bundle
charts is called a bundle atlas for E if ∪α∈ΛUα = B.

Now, let α, β ∈ Λ such that Uα ∩ Uβ 6= 0. We have local trivializations

hα: π−1(Uα) −→ Uα × Rn,

hβ: π−1(Uβ) −→ Uβ × Rn.

Let b ∈ Uα ∩ Uβ, consider the restrictions of hα and hβ to π−1(b)

hα,b: π−1(b) −→ {b} × Rn,

hβ,b: π−1(b) −→ {b} × Rn.

Then
hα,b ◦ h−1

β,b: {b} × Rn −→ {b} × Rn

is a linear isomorphism of Rn, that is, gαβ(b) := hα,b ◦ h−1
β,b ∈ GL(n,R). Now let us consider

hα and hβ restricted to Uα ∩ Uβ, so

hα|Uα∩Uβ ◦ (hβ|Uα∩Uβ)−1 : (Uα ∩ Uβ)× Rn −→ (Uα ∩ Uβ)× Rn

(b, v) 7→ (b, gαβ(b)(v)).

Therefore we have maps
gαβ:Uα ∩ Uβ −→ GL(n,R).
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This continuous maps given by overlapping of the bundle charts are called the transition
functions of the atlas and satisfy the following condition:

gαβ(b)gβγ(b) = gαγ(b), b ∈ Uα ∩ Uβ ∩ Uγ.

Definition C.0.8. A bundle atlas for a vector bundle (E, π,M) over a differentiable manifold
M is differentiable if all its transition functions are differentiable. A differentiable vector
bundle is a pair (E,B) consisting of a vector bundle E over M and a maximal differentiable
bundle atlas B for E.

Note that the total space of a differentiable vector bundle of rank k over an n–dimensional
manifold M is an (n+ k)–dimensional differentiable manifold.
Definition C.0.9. A (differentiable) section of a (differentiable) vector bundle π:E −→M
is a (differentiable) continuous map s:M −→ E assigning to each p ∈M a vector s(p) in the
fiber Ep, that is, π ◦ s = idM .

In the thesis we will focus on differentiable sections.
The set of sections of E is denoted by Γ(E).
The set of sections of a vector bundle π:E −→ M is a real vector space, we can add

sections by using the vector space structure of each fiber. The zero in Γ(E) is the zero-
section which to every p ∈M assigns the zero of the fiber π−1(p). Also, Γ(E) has a structure
of module not only over R but also over C∞(M), with

(f1s1 + f2s2)(p) = f1(p)s1(p) + f2(p)s2(p), f1, f2 ∈ C∞(M), p ∈M.

Definition C.0.10. Let (E, π,M) be a differentiable vector bundle of rank k and U an open
set in M . A local frame of E over U is an k–tuple s1, . . . , sk of differentiable sections of E
over U so that for each p ∈ U, s1(p), . . . , sk(p) form a basis of Ep.

If h: π−1(U) −→ U × Rn is a local trivialization and if we set si(p) = h−1(p, ei), where
ei is a basis element of Rn, then s1, . . . , sk form a local frame of E over U . Conversely, if
s1, . . . , sk is a local frame of E over U , then for any p ∈ U and any vp ∈ Ep, there exists a
unique k–tuple of scalars c1, . . . , ck so that vp = c1s1(p) + . . . + cksk(p). From this, one can
define a local trivialization of E over U by setting h(vp) = (p, c1, . . . , ck). So the existence of
a local frame of E over U is equivalent to the existence of a local trivialization over U.
Definition C.0.11. Let (E, π,M) be a differentiable vector bundle. A global frame is a
frame defined on the entire manifold M .
Remark C.0.12. The collection of sections ∂

∂x1
, ∂
∂x2
, ∂
∂x2

of TR3 is a global frame on R3.

Corollary C.0.13. If (E, π,M) has a global frame, then is a trivial bundle.

C.1 Constructing bundles
In this section we will obtain vector bundles through pre-vector bundles and using the con-
tinuous functors of the section A.3.
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C.1.1 Pre-vector bundles
Definition C.1.1. A pre-vector bundle of rank n is a quadruple (E, π,B,B) consisting of
a set E, a topological space B, a surjective map π:E −→ B where Eb = π−1(b) has a real
vector space structure of dimension n over R for every b ∈ B. A pre–bundle atlas B, that
is, a set {(Uα, fα)}α∈Λ, where {Uα}α∈Λ is an open cover of B and fα: π−1(Uα) −→ Uα × Rn

a bijective map which maps the fibre Eb linearly and isomorphically onto {b}×Rn for every
b ∈ Uα such that all the transition functions Uα ∩ Uβ −→ GL(n,R) of B are continuous.

The important fact is to define a topology over E that makes it the total space of a vector
bundle.

Proposition C.1.2 ([9, Note 3.17]). If (E, π,B,B) is a pre-vector bundle, then there is
exactly one topology on E, relative to which (E, π,B) is a vector bundle and B is a bundle
atlas.

IfM is a differentiable manifold and (E, π,M,B) is differentiable pre–vector bundle, that
is, if all the transition functions of B are differentiable, then by the maximal differentiable
atlas D(B) of B we clearly have a differentiable vector bundle (E,D(B)) over M .

Example C.1.3. LetM be an n–dimensional differentiable manifold and U = {(Uα, ϕα)}α∈Λ
be a differentiable atlas of M . Then we can construct a pre-vector bundle (TM, π,M,B) as
follows:

TM :=
⊔
p∈M

TpM.

The surjective map π:TM −→M , given by v ∈ TpM −→ p. And B = {(Uα, fα)}α∈Λ where

fα: π−1(Uα) −→ Uα × Rn.

Let
vp =

n∑
i=1

ai
∂

∂xi

∣∣∣∣∣
p

∈ π−1(p) ∈ TpM,

fα is defined by fα(vp) = (p, a1, . . . , an) where each ai is a real number on U , with respect
to (Uα, ϕα).

Note that the transition functions of TM correspond to the differential of the chart
transformations of M , since M is a differentiable manifold, its chart transformations are
differentiable, then the transition functions of TM are also differentiable. In addition, let
(Uα, ϕα) ∈ U , ϕα:Uα −→ U ′ where U ′ ⊂ Rn, by the composition (ϕα × idRn) ◦ fα we have
that TM is a differentiable manifold of dimension 2n.

The differentiable vector bundle π:TM −→ M of rank n obtained from this pre-vector
bundle, is called the tangent bundle of M .

Definition C.1.4. If f :M −→ N is a differentiable map, then the differentials

Dpf :TpM −→ Tf(p)N
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define a vector bundle map
Df :TM −→ TN,

which is called the differential of f .

C.1.2 Constructing new bundles using continuous functor
From one or more known vector bundles we can construct new ones applying continuous
functors fiber by fiber. Thus, continuous functor on VectR induce functors on VB(B).

Consider an arbitrary real vector bundle π:E −→ B of rank n, suppose that we have a
covariant continuous functor F : VectR −→ VectR, applying the functor to every fiber of the
vector bundle we obtain a pre-vector bundle.

We define the set F (E) as
F (E) :=

⊔
b∈B

F (Eb).

Let e ∈ F (E), then e ∈ F (Eb) for some b ∈ B, we define F (π):F (E) −→ B by F (π)(e) = b,
F (π) is a surjective map. Note that given b ∈ B, (F (π))−1(b) = F (E)b = F (Eb).

Since Eb is a real vector space of dimension n and F is a functor of VectR, F (Eb) is a
real vector space of dimension, let is say k. Let Uα be an open set in B, since

(F (π))−1(Uα) =
⊔
b∈Uα

F (Eb),

then fα: (F (π))−1(Uα) −→ Uα × Rk, where fα(e) = (b, v), is a bijective map where F (Rn) =
Rk and isomorphically onto F (π−1(b)) −→ {b} × Rk. Now, let Uα, Uβ be open subsets of B
such that Uαβ = Uα ∩ Uβ 6= ∅, let b ∈ Uαβ, we take fα:Uα −→ Uα × Rk, fβ:Uβ −→ Uβ × Rk

be bijective maps, with k > 0. We consider (Uα, hα) and (Uβ, hβ) be local trivialization of
vector bundle π:E −→ B, the transition function

g̃αβ:Uαβ −→ GL(k,R)

given by

fβ,b ◦ f−1
α,b = g̃αβ(b) = F (hβ,b) ◦ F (h−1

α,b) = F (hβ,b ◦ h−1
α,b) = F (gαβ(b)).

Where gαβ:Uα ∩Uβ −→ GL(n,R) is transition function of the atlas of π:E −→ B and since
F is a continuous functor

FRn,Rn : HomR(Rn,Rn) −→ HomR(F (Rn), F (Rn))

is continuous, then g̃αβ:Uα ∩ Uβ −→ GL(k,R) is a continuous map.
Therefore, F (π):F (E) −→ B is a pre–vector bundle of rank k and by the Proposi-

tion C.1.2, (F (E), F (π), B) is a real vector bundle of rank k over B.
For instance, if π:E −→ B and π′:E ′ −→ B are (differentiable) vector bundles over B

and we consider the functors defined in sections A.3.1, A.3.8, A.3.7, A.3.5, A.3.3 and A.3.2
then we get new (differentiable) vector bundles over B:
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1. E∗ is the real vector bundle with fiber (E∗)b = (Eb)∗ the dual vector space.

2. ΛkE is the vector bundle with fiber at b ∈ B is the k–th exterior power (ΛkE)b of the
fiber Eb.

3. SkE is the vector bundle with fiber at b ∈ B is the k-th symmetric power (SkE)b of
the fiber Eb.

4. E ⊗ E ′ is the real vector bundle with fiber (E ⊗ E ′)b = Eb ⊗ E ′b.

5. E ⊕ E ′ = {(v, w) ∈ E × E ′|π(v) = π′(w)} and the projection πE⊗E′(v, w) = π(v) =
π(w), where given b ∈ B the fiber (E ⊕ E ′)b is equal to Eb ⊕ E ′b.

6. Hom(E,E ′) = qb∈BHom(Eb, E ′b), with π: Hom(E,E ′) −→ B the projection map onto
B, which maps the entire vector space Hom(Eb, E ′b) to b ∈ B.

In particular, we have the following differentiable vector bundles:
Example C.1.5. Let M be an n–dimensional differentiable manifold and U be a differen-
tiable atlas of M .

We take (TM, π,M) the tangent bundle of M , apply the dual continuous functor to it
and by the Proposition C.1.2 we have the cotangent bundle, given by (T ∗M,π∗,M). There
is a natural surjective map π∗:T ∗M −→M give by π∗(ω) = p if ω ∈ T ∗pM .
Example C.1.6. We repeat the same construction, but now we take (T ∗M,π∗,M) the
cotangent bundle ofM , we apply the continuous functor Λk to it and by the Proposition C.1.2
we obtain the k–th exterior bundle of T ∗M , give by (ΛkT ∗M,π,M), where π = Λk(π∗). This
for any k = 1, . . . , n.

There are more examples of vector bundles that we can be build and that are important
to this topic, the reader can find more constructions in [27] and [19].

C.2 Sections
Let M be a differentiable manifold, we will describe sections of differentiable vector bundles
examples, remember the definition of section (Definition C.0.9).
Definition C.2.1. A differentiable section of the tangent bundle TM ofM is called a vector
field on M .

Note that a vector field assigns to a point p ∈M a vector in its tangent space TpM .
Let X be a vector field on M . Let us see a local expression for X.
Let (U, x1, . . . , xn) be a chart ofM , for each point p ∈ U , by Theorem B.2.10 { ∂

∂x1

∣∣∣
p
, . . . , ∂

∂xn

∣∣∣
p
}

is a basis for TpM , therefore { ∂
∂x1
, . . . , ∂

∂xn
} is a local frame of TM over U . Since Xp ∈ TpM

hence we have
Xp =

n∑
i=1

ai(p)
∂

∂xi

∣∣∣∣∣
p
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where ai ∈ C∞(U). This is called a local expression of X.
The condition of each coefficient ai being a differentiable function does not depend on

the choice of chart.
Let M be a differentiable manifold and X ∈ Γ(TM), for each f ∈ C∞(M), define Xf to

be the function
(Xf)(p) = Xpf, p ∈M.

Where Xp is a derivation, see the definition B.2.5, and Xpf is Xpfp with fp ∈ C∞p (M).
In some books the set of all vector fields on M is denoted by X(M), we will use Γ(TM).

Definition C.2.2. A section of ΛkT ∗M is called a k–form. The space of k–form is denoted
by

Ωk(M) = Γ(ΛkT ∗M). (C.1)
That is, ω ∈ Ωk(M) for all p ∈M ,

ω(p):TpM × . . .× TpM︸ ︷︷ ︸
k–times

−→ R.

is an alternating k–multilinear map.

Definition C.2.3. An inner product on a real differentiable vector bundle (E, π,M) is a
section g ∈ Γ(S2E∗) such that, for any p ∈M , s(p) is positive definite on Ep.
Proposition C.2.4 ([28, Prop. 5.8]). Every differentiable vector bundle admits an inner
product.
Definition C.2.5. An inner product in the tangent bundle TM of a differentiable manifold
M is called a Riemannian metric on M .
Definition C.2.6. Let M be a differentiable manifold, if g is a Riemannian metric on M ,
we also say that (M, g) is a Riemannian manifold.
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Appendix D

Functional analysis

This appendix contains a description of vector spaces endowed with an inner product.
The objective of this appendix is to describe Hilbert spaces, in particular, Sobolev spaces.
For topics developed in this appendix consult in [21] [3], and [33].

D.1 Operators and Hilbert spaces
Definition D.1.1. Let V be a real vector space, a real–valued function || ||:V −→ R is
called a norm if for all v ∈ V :

1. ||v|| ≥ 0.

2. ||v|| = 0 if and only if v = 0.

3. ||tv|| = |t|||v|| for all v ∈ V and t ∈ R.

4. ||v + u|| ≤ ||v||+ ||u|| for all u, v ∈ V , the triangle inequality.

A normed space is a vector space V provided with a norm.

If take ||v + u− u||, by triangle inequality we get

||v|| − ||u|| ≤ ||v + u||. (D.1)

Definition D.1.2. Let V be a normed space and {vi}i∈N ⊂ V be a sequence. We say {vi}i∈N
converges to v ∈ V if and only if

lim
i→∞
||vi − v|| = 0.

v is called a limit point of V .

Definition D.1.3. Let V be a normed space, V is closed if for all {vi}i∈N ⊂ V sequence
such that {vi}i∈N converges to v implies v ∈ V.

151
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Definition D.1.4. Let V be a normed space. A sequence {vi}i∈N ⊂ V is called a Cauchy
sequence if and only if for every ε > 0 there exist 0 < N ∈ N such that

||vk − vl|| < ε for all k, l ≥ N.

Definition D.1.5. Let V be a normed space. V is called complete (or a Cauchy space) if
every Cauchy sequence in V converges.
Theorem D.1.6 (Completeness, [21, Thm. 2.4-2]). Let V be a normed space, W ⊂ V be a
subspace, if W is a finite dimensional subspace then is complete. In particular, every finite
dimensional normed space is complete.
Definition D.1.7. A Banach space V is a complete, normed space.
Definition D.1.8. Let V be a vector space endowed with an inner product 〈 , 〉, the asso-
ciated norm is

||v|| := 〈v, v〉 1
2

The Cauchy-Schwarz inequality states for all v, u ∈ V

|〈v, u〉| ≤ ||v||||u||. (D.2)

Definition D.1.9. A Hilbert space is a vector space with an inner product such that it is a
Banach space with the associated norm.
Theorem D.1.10 (Subspace, [21, Thm. 3.2-4]). Let V be a subspace of a Hilbert space H.
Then V is complete if and only if V is closed in H.
Theorem D.1.11 (Direct sum, [21, Thm. 3.3-4]). Let V be any closed subspace of a Hilbert
space H. Then H = V ⊕ V ⊥, where V ⊥ is the orthogonal complement of V .
Definition D.1.12. Let H be a Hilbert space, a sequence {vn}n∈N is said to be weakly
convergent if and only if there is a v ∈ H such that 〈vn, w〉 −→ 〈v, w〉 for all w ∈ H.
Theorem D.1.13. Let H be a Hilbert space. Every bounded sequence {vn}n∈N in H contains
a weakly convergent subsequence.

With respect to real-valued functions and Hilbert spaces we have:
Definition D.1.14. A linear functional f is a real-valued function defined on a vector space
V . The functional f is linear provided

f(tv + sw) = tf(v) + sf(w), v, w ∈ V, s, t ∈ R.

Definition D.1.15. Let V and W be two vector space and T :V −→ W be a linear map. T
is called a linear operator if:

1. The domain Dom(T ) of T is a vector space and Im (T ) lies in a vector space over the
same field K.

2. T is a linear map for all v, w ∈ Dom(T ) and scalars α ∈ K = R or C.
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Example D.1.16. Let V be a normed space, the norm || ||:V −→ R is a functional on V ,
by the triangle inequality we note || || is not a linear operator.
Definition D.1.17. Let V be a normed space, a bounded linear functional
f : Dom(f) ⊂ V −→ R is a real-valued function such that: there exists a real number c
such that for all v ∈ Dom(f),

|f(v)| ≤ c||v||.
Definition D.1.18. Let V andW be normed spaces and T : Dom(T ) ⊂ V −→ W be a linear
operator. The linear operator T is bounded if there is c ∈ R such that for all v ∈ Dom(T )

||T (v)||W ≤ c||v||V .

Theorem D.1.19 (Riesz’s Theorem (Functionals on Hilbert spaces), [21, Thm. 3.8.1]).
Every bounded linear functional f on a Hilbert space H can be represented in terms the
inner product, namely,

f(v) = 〈v, w〉
where w depends on f , is uniquely determined by f and has norm

||w|| = ||f ||.

While operators between Hilbert spaces we have the following results and notion.
Lemma D.1.20 (Inverse operator, [21, Ex. 2.7.7]). Let V and W be two normed spaces and
T :V −→ W be a bounded linear operator. If there is a positive c ∈ R such that for all v ∈ V

||T (v)|| ≥ c||v||.

Then T−1:W −→ V exist and is bounded.
Definition D.1.21. Let H1, H2 be two Hilbert spaces and T :H1 −→ H2 be a bounded
linear operator. The adjoint operator T ∗ of T is the operator T ∗:H2 −→ H1 such that for
all v ∈ H1 and w ∈ H2

〈T (v), w〉 = 〈v, T ∗(w)〉.
Theorem D.1.22 (Existence, [21, Thm. 3.9-2]). The adjoint operator T ∗ of T in Defini-
tion D.1.21 exists, is unique and is a bounded linear operator with norm ||T ∗|| = ||T ||.

If T ∗ = T , T is said to be self-adjoint.
By Theorem D.1.11, we have the direct sum H = V ⊕ V ⊥, for any x ∈ H, there exist

unique v ∈ V and w ∈ V ⊥ such that x = v + w , then this direct sum defines a linear
operator onto V :

P : H −→ H

x 7→ v.

Definition D.1.23. Let H be a Hilbert space, a linear operator P :H −→ H is called a
projection of H if there is a closed subspace V of H such that V is the range of P and V ⊥
is the kernel of P and P |V is the identity operator on V .
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Theorem D.1.24 ([21, Thm. 9.5.1]). Let H be a Hilbert space, a bounded linear operator
P :H −→ H is a projection if and only if P is self-adjoint and P 2 = P.

The sum of projections need not be a projection, we have the result:
Theorem D.1.25 ([21, Thm. 9.5.4]). Let P0, . . . , Pn be projections on a Hilbert space H.
Then

1. The sum P =
n∑
i=0

Pi is a projection on H if and only if Yi = Pi(H) and Yj = Pj(H)
are orthogonal for all i, j = 0, . . . , n, i 6= j.

2. If P =
n∑
i=0

Pi is a projection, P projects H onto Y = ⊕n
i=0 Yi.

D.1.1 Spectral theory of bounded self-adjoint operator
Let T :V −→ V on a complex vector space V . A nonzero vector v ∈ V is called an eigenvector
of T if there exists a scalar λ such that T (v) = λv. The scalar λ is called the eigenvalue cor-
responding to the eigenvector v. The set Eλ = {v ∈ V : T (v) = λv} = ker(λidV − T ) is
called the eigenspace of T corresponding to the eigenvalue λ.
Theorem D.1.26. Let H be a complex Hilbert space and T :H −→ H be a bounded self-
adjoint linear operator. Then

1. All the eigenvalues of T (if they exist) are real.

2. Eigenvectors corresponding to (numerically) different eigenvalues of T are orthogonal.

Proof. 1. Let λ be any eigenvalue of T and v a corresponding eigenvector. Then v 6= 0
and T (v) = λv. Since T is self-adjoint operator

λ〈v, v〉 = 〈λv, v〉 = 〈T (v), v〉 = 〈v, T (v)〉 = 〈v, λv〉 = λ〈v, v〉

Since v 6= 0, then 〈v, v〉 6= 0, we divide by 〈v, v〉 on both sides, then λ = λ.

2. Let λ and ν be eigenvalues of T and let v and w be corresponding eigenvectors, that
is, T (v) = λv and T (w) = νw, since T is self-adjoint and by item 1. ν is real, we get:

λ〈v, w〉 = 〈λv, w〉 = 〈T (v), w〉 = 〈v, T (w)〉 = 〈v, νw〉 = ν〈v, w〉

Since λ 6= ν, then 〈v, w〉 = 0.
�

Definition D.1.27. Let V be a complex Banach space and T :V −→ V be a bounded linear
operator, the resolvent set of T is

ρ(T ) = {λ ∈ C | λid− T :Dom(T ) −→ V is one-to-one and onto}.

If λ ∈ ρ(T ), the resolvent operator Rλ(T ):V −→ V is defined by

Rλ(T )v := (λid− T )−1v.
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Its complement σ(T ) = C− ρ(T ) in the complex plane C is called the spectrum of T .

Theorem D.1.28 (Domain of Rλ, [21, Lemma 7.2-3]). Let V be a complex Banach space,
T :V −→ V be a linear operator and λ ∈ ρ(T ). Assume that T is closed or T is bounded,
then Rλ(T ) is defined on the whole space V and is bounded.

Definition D.1.29. Let H be a Hilbert space, a bounded self-adjoint operator T :H −→ H
is said to be nonnegative or positive if and only if its spectrum consists of nonnegative real
values only.

Projections have simple properties, we can to obtain a representation of a self-adjoint
operator on Hilbert spaces in terms of such operators.

For more details see [35, Sec. 6.4], [32, Sec. 148] and [21, Sec. 9.9].

Definition D.1.30. Let T be a self-adjoint operator of Hilbert spaces, σ1 ⊂ σ(T ) part of
the spectrum and there exist a domain D such that σ1 ⊂ D, we define Prσ1 the projection
onto the eigensubspace corresponding to σ1 by

Prσ1 = 1
2πi

∫
∂D
Rλ(T )dλ. (D.3)

We call Prσ1 the spectral projection associated with σ1.

D.2 The space L2(V )
In this section we describe the L2–space of real–valued functions on Rn.

Definition D.2.1. A collection Σ of subsets of Rn is called a σ–algebra if the following
conditions hold

1. Rn ∈ Σ.

2. If A ∈ Σ, then its complement Ac ∈ Σ.

3. If Aj ∈ Σ, j = 1, 2, . . . then
∞⋃
j=1

Aj ∈ Σ.

It follows from 1.− 3. that

• The empty set ∅ ∈ Σ.

• If Aj ∈ Σ, j = 1, 2, . . . , then
∞⋂
j=1

Aj ∈ Σ.

• If A,B ∈ Σ, then A−B = A ∩Bc ∈ Σ.
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Definition D.2.2. A measure µ on a σ–algebra Σ is a function on Σ taking values in
R ∪ {+∞} (a positive measure) which is countably additive in the sense that

µ

 ∞⋃
j=1

Aj

 =
∞∑
j

µ(Aj)

whenever Aj ∈ Σ, j = 1, 2, . . . and the sets Aj are pairwise disjoint, that is, Aj ∩ Ak = ∅ for
j 6= k.

Definition D.2.3. If B ⊂ A ⊂ Rn and µ(B) = 0, then any condition that holds on the set
A−B is said to hold almost everywhere in A.
Theorem D.2.4 (Existence of Lebesgue Measure, [3, Thm. 1.39]). There exists a σ–algebra
Σ of subsets of Rn and a positive measure µ on Σ having the following properties:

1. Every open set in Rn belongs to Σ.

2. If A ⊂ B,B ∈ Σ and µ(B) = 0, then A ∈ Σ and µ(A) = 0.

3. If A = {x ∈ Rn|aj ≤ xj ≤ bj, j = 1, 2, . . . , n} then A ∈ Σ and µ(A) = (b1−a1) . . . (bn−
an).

4. µ is translation invariant. That is, if x ∈ Rn and A ∈ Σ, then x + A = {x + y|y ∈
A} ∈ Σ and µ(x + A) = µ(A).

The elements of Σ are called (Lebesgue) measurable subsets of Rn and µ is called the
(Lebesgue) measure in Rn.

Definition D.2.5. A function f defined on a measurable set and values in R ∪ {−∞,+∞}
is itself called measurable if the set {x | f(x) > t} is measurable for every real t.
Definition D.2.6. Let V ⊂ Rn, we denote by L2(V ) the class of all measurable functions
f :V ⊂ Rn −→ R defined on V for which∫

V
|f(x)|2dx <∞. (D.4)

We identify in L2(V ) functions that are equal almost everywhere in V , the elements of
L2(V ) are thus equivalence classes of measurable functions satisfying D.4. Two functions
being equivalent if they are equal almost everywhere on V .

For convenience, we ignore this distinction and write f ∈ L2(V ) if f satisfies D.4, and
f = 0 in L2(V ) if f(x) = 0 almost everywhere in V.

L2(V ) is a real vector space.
Definition D.2.7. Let V ⊂ Rn, the L2–norm on L2(V ) of f :V −→ R is defined by

||f ||L2 =
(∫

V
|f(x)|2dx

)1/2
(D.5)

Theorem D.2.8 ([3, Thm. 2.16]). L2(V ) with the L2–norm is a Banach space.
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Corollary D.2.9 ([3, Cor. 2.18]). L2(V ) is a real Hilbert space with respect to the inner
product

〈f, g〉 =
∫
V
f(x)g(x)dx. (D.6)

D.3 Sobolev space
We will continue studying real-valued function spaces endowed with a norm where we define
a new norm so that it is a complete space. They are a important tool in the theory of partial
differential equations and modern analysis.

In this section we introduce Sobolev spaces of integer order and establish some results.

Definition D.3.1. Let α = (α1, . . . , αn) ∈ Nn be a multiindex and |α| =
n∑
j=1

αj. We consider

Dα = ∂|α|

∂xα1
1 . . . ∂xαnn

.

Let V ⊂ Rn be an open, for any nonnegative integer k let Ck(V ) the space consisting of all
functions f :V −→ R which, together with all their partial derivatives Dαf of orders |α| ≤ k,
are continuous on V. Let

C∞(V ) :=
∞⋂
k=0

Ck(U).

The subspaces Ck
c (V ) and C∞c (V ) consist of all those functions in Ck(V ) and C∞(V ), re-

spectively, that have compact support in V.
Let V ⊂ Rn be an open neighbourhood of x ∈ Rn, for each f ∈ Ck(V ), we define a

function || ||k where k is a positive integer as follows:

||f ||k =
 ∑
|α|≤k
||Dαf ||2L2

 1
2

(D.7)

This function defines a norm, the k–Sobolev norm, on any vector space of functions on which
the right side takes finite values provided functions are identified in the space if they are
equal almost everywhere in V.
Example D.3.2. Let V ⊂ Rn be an open subset and f :V −→ R be a differentiable function.

If k = 1, the 1–Sobolev norm of real-valued differentiable functions (see equalities (D.7)
and (D.5)) is given by

||f ||1, H1(V ) =
∫

V
|f(x)|2dx +

n∑
i=1

∫
V

∣∣∣∣∣ ∂f∂xi (x)
∣∣∣∣∣
2

dx

 1
2

. (D.8)

Definition D.3.3. Let V ⊂ Rn be an open subset and k ∈ N, we consider two vector spaces
on which || ||k is a norm:
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1. Hk(V ) the completion of {f ∈ Ck(V ) : ||f ||k < ∞} with respect to the norm || ||k,
see (D.7).

2. W k(V ) the set of all f ∈ L2(V ) such that Dαf ∈ L2(V ) for 0 ≤ |α| ≤ k.

This are k–Sobolev spaces over V .
Remark D.3.4. Note that the 0–Sobolev space, H0(V ) = L2(V ).
Theorem D.3.5 ([3, Thm. 3.17]). Let V ⊂ Rn be an open subset, if 1 ≤ k < ∞, then
Hk(V ) = W k(V ).

Characterizations of Hk(Rn)

Let V ⊂ Rn be an open neighbourhood of x ∈ Rn with compact closure V , the set of
infinitely differentiable functions f :V −→ R on V with compact support will be denoted by
C∞c (V ).

Let u ∈ C∞c (V ), the Fourier transform of u is the function û defined on Rn by:

û(y) = 1
(2π)n

∫
Rn
e−ix·yu(x)dx.

Definition D.3.6. Let V be a vector space with two norms || ||(1), || ||(2). The norms are
equivalent if there are constants C1, C2 > 0 such that for all f ∈ V

C1||f ||(1) ≤ ||f ||(2) ≤ C2||f ||(1).

If || ||(1) and || ||(2) are equivalent we denoted it by || ||(1) ≈ || ||(2).
Proposition D.3.7 ([33, Lem. 1.18]). Let k ∈ N, for f ∈ C∞c (V ), we have

||f ||k ≈
(∫

Rn
|f̂(y)|2(1 + |y|2)kdy

)1/2

Remark D.3.8 ([7, Ex. 2]). Using the fact that (1 + |y|2)k > (1 + |y|2)l for k > l, then if
k > l > 0 > r, we have continuous inclusions of Sobolev spaces Hk(V ) ⊂ H l(V ) ⊂ H0(V ) =
L2(V ) ⊂ Hr(V ).
Theorem D.3.9 (Sobolev Embedding Theorem, [33, Thm. 1.20]). If f ∈ Hk(V ) then f ∈
Ct
c(V ), for each t < k − 1

2 .

Corollary D.3.10 ([33, Cor. 1.21]). f ∈ ⋂
k∈R

Hk(V ) if and only if f ∈ C∞(V ).

Theorem D.3.11 (Rellich-Kondarachov Compacteness Theorem, [33, Thm. 1.22]). Let
k, t ∈ N, if t > k, then the inclusion H t(V ) −→ Hk(V ) is compact.
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wedge, 120
projection, 143

spectral, 145
pullback

of forms, 10
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