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CIUDAD UNIVERSITARIA, CDMX, JUNIO 2022



 

UNAM – Dirección General de Bibliotecas 

Tesis Digitales 

Restricciones de uso 
  

DERECHOS RESERVADOS © 

PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL 
  

Todo el material contenido en esta tesis esta protegido por la Ley Federal 
del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México). 

El uso de imágenes, fragmentos de videos, y demás material que sea 
objeto de protección de los derechos de autor, será exclusivamente para 
fines educativos e informativos y deberá citar la fuente donde la obtuvo 
mencionando el autor o autores. Cualquier uso distinto como el lucro, 
reproducción, edición o modificación, será perseguido y sancionado por el 
respectivo titular de los Derechos de Autor. 

 

  

 



JURADO ASIGNADO:
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Abstract

Via a frequency approach, the issue of the design of gains for the second order robust exact differen-
tiator introduced by Levant is studied under the presence of a delay. Assuming that the resultant
high-frequency oscillatory motion due to the introduced nonideality could be decomposed in its
fast and slow components, a describing function is computed for the differentiator. By using such
describing function a selection criterion for the differentiator gains ensuring orbital stability and a
local minimization of the oscillations amplitude along the estimate of the first derivative is found.
According to the proposed criterion, some sets of gains are determined. Furthermore, for the ideal
case without delay, the feasibility of those gains sets is shown by proving that the differentiator
preserves its stability properties under such parameters settings; moreover, an extension of the
results to a case with more relaxed assumptions on the input signal is also suggested. Finally, sim-
ulations are performed in order to show the consistency of the results under the stated assumptions
illustrating the performance of one of the computed gains sets.

IV



Contents

List of Figures VII

List of Tables IX

Acronyms X

1 Introduction 1
1.1 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Preliminaries 7
2.1 Sliding Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Chattering Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Homogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Weighted Homogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Homogeneity and Differential Inclusions . . . . . . . . . . . . . . . . . . . . . 9

2.3 Robust Exact Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Arbitrary Order Robust Exact Differentiator . . . . . . . . . . . . . . . . . . 9
2.3.2 Second Order Robust Exact Differentiator . . . . . . . . . . . . . . . . . . . . 11

2.4 Frequency Domain Analysis Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.1 Describing Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 Harmonic Balance Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.3 Loeb’s Stability Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Lyapunov Stability for Generalized Forms . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.1 Lyapunov Stability for Homogeneous Systems . . . . . . . . . . . . . . . . . . 15
2.5.2 Construction of Lyapunov Functions for Generalized Forms . . . . . . . . . . 15

2.6 Positive Definiteness of Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6.1 Sum of Squares Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Gain Design of the 2-RED 18
3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Steady State Oscillatory Response: Existence and Parameters . . . . . . . . . . . . . 19

3.2.1 Describing Function Computation . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Steady State Oscillation Parameters . . . . . . . . . . . . . . . . . . . . . . . 21

V



3.2.3 Asymptotic Orbital Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Gain Design Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Minimizing Gain for |z̄0| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Minimizing Gain for |z1| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Numeric Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.1 Zero Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.2 Sinusoidal Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Stability Analysis of the 2-RED 36
4.1 Stability Analysis for the Nominal Case . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Lyapunov Function Candidate . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.2 Associated Forms Computation . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.3 Positive Definiteness Verification . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Stability Analysis for the Perturbed Case . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Numeric Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Conclusions 44

References 46

VI



List of Figures

1.1 Robust exact differentiator diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Sliding motion and the chattering phenomenon. . . . . . . . . . . . . . . . . . . . . . 8
2.2 Nonlinear system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Nonlinear system with a DF substituted for the nonlinearity. . . . . . . . . . . . . . 13

3.1 Second order robust exact differentiator DF diagram. . . . . . . . . . . . . . . . . . . 18
3.2 Steady-state response amplitude considering a delay µ = 0.01 and the fixed pair

k1 = 5.0 and k2 = 1.01 of gains set I from Tables 3.2-3.4, varying k0. . . . . . . . . . 27
3.3 Simulation results for z0 considering a delay µ = 0.01 and the suboptimal gains of

set I from Table 3.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Simulation results for z1 considering a delay µ = 0.01 and the suboptimals gains of

set I from Table 3.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Simulation results for z2 considering a delay µ = 0.01 and the suboptimal gains of

set I from Table 3.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 Steady-state response amplitude considering a delay µ = 0.01 and the fixed pair

k1 = 5.0 and k2 = 1.01 of gains set I from Tables 3.2-3.4, varying k0; corrected terms
due to the triangular signal are considered for the amplitude estimation via the HB
equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7 Steady-state response amplitude for z0 considering a delay µ = 0.01 and the fixed
pair k1 = 5.0 and k2 = 1.01 of gains set I from Tables 3.2-3.4, varying k0. . . . . . . 32

3.8 Steady-state response amplitude for z1 considering a delay µ = 0.01 and the fixed
pair k1 = 5.0 and k2 = 1.01 of gains set I from Tables 3.2-3.4, varying k0. . . . . . . 32

3.9 Steady-state response amplitude for z2 considering a delay µ = 0.01 and the fixed
pair k1 = 5.0 and k2 = 1.01 of gains set I from Tables 3.2-3.4, varying k0. . . . . . . 33

3.10 Simulation results considering a delay µ = 0.01 and the suboptimal gains of set I
from Table 3.4. f(t) = 0.5sin(0.5t) + 0.5cos(t) is considered as input signal. . . . . . 34

3.11 Simulation results for ε1 considering a delay µ = 0.01 and the suboptimal gains of
set I from Table 3.4. The results for two additional gains sets with different values
of k0 are also plotted. f(t) = 0.5sin(0.5t) + 0.5cos(t) is considered as input signal. . . 35

3.12 Simulation results for ε1 considering a delay µ = 0.01 using a Padé approximation
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Chapter 1

Introduction

1.1 State of the Art

Real-time differentiation is an important issue concerning the fields of control theory and applica-
tions. Closely related to the task of state observation, differentiators turn to be particularly useful
to estimate the derivatives of a given signal, when no further measurements are available; Besides
estimation and identification, another important application of differentiators lies in the design and
implementation of output feedback (OF) control schemes.

One of the main difficulties related to the task of on-line differentiation in real systems is the
ubiquitous presence of measurement noise along the base signal; since the differentiation of such
small high-frequency components may lead to large derivatives, the resultant estimation might be
greatly deteriorated. A classical approach to deal with this problem consists in the construction
of linear differentiators along with the use of low-pass filters to damp the noise; the main of such
methods relies on approximating the transfer function of an ideal differentiator on a fixed frequency
band (Rabiner & Steiglitz, 1970). Moreover, stochastic features of the noise may also be considered
in order to estimate the derivatives of the base signal (Kalman, 1960).

Some other well known linear techniques which might be applied in a real-time environment rely on
observer-based or algebraic approaches such as the high-gain observers (Dabroom & Khalil, 1997)
and algebraic differentiators (Mboup et al., 2009), respectively; additionally, some observer-based
approaches have exploited the homogeneity property to develop nonlinear continuous differentiation
algorithms (Andrieu et al., 2008; Perruquetti et al., 2008).

Besides the aforementioned approaches, the robust exact differentiator (RED) (Levant, 1998; Lev-
ant, 2003) has become a very popular tool to tackle the real-time differentation problem. Based on
sliding-modes techniques, this differentiator provides a convenient method to estimate the deriva-
tive of a noisy signal. In the absence of noise, the n-th order robust exact differentiator (n-RED)
achieves exact convergence to the n derivatives of the input signal, when its n + 1-th derivative
remains uniformly bounded by a known constant. Furthermore, it does so in finite time as has
been shown both using geometric methods (Levant, 1998) and homogeneity properties (Levant,
2003). Regarding the nonideal case, the attainable precision of the n-RED due to the effects of
measurement noise and discrete-time sampling can be assessed as a function of the noise magnitude
upper bound and the sampling step, respectively (Levant, 2003).

Since the introduction of the RED in the late 1990s, research has been fostered aiming at the en-
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hancement of the performance of this differentation algorithm, leading to developments such as the
uniform robust exact differentiator (URED) (Cruz-Zavala et al., 2011), whose convergence time is
independent of the initial conditions of the differentiation error, or the robust exact filtering differ-
entiator (Levant & Livne, 2020) that is capable of filtering out unbounded noises with small average
values while preserving the features of the standard RED. Regarding its computer-based application
to real-time systems, some discretization schemes aiming to render discrete-time versions of this
kind of differentiatiors while preserving the accuracy of their continuous-time counterparts have
been introduced during the last decade (Livne & Levant, 2014; Barbot et al., 2020).

Despite all this advance, the RED as introduced by Levant in 2003 remains a simple and effective
solution to the differentiation problem given a properly designed set of gains; for this reason, the
main problem concerning the use of this differentiation algorithm relies in the appropriate selection
of such parameters. As first introducing this differentiator, Levant (2003) stated that the best way
to choose its parameters was by computer simulation, hence reporting a set of suitable gains for
the fifth-order version from which the gains for the low-order differentiators could be selected in
a straightforward way. This set of parameters has been frequently used due to the homogeneity
properties of the differentiatior which allows to scale them according to each case requirements.
Elaborating on the gain selection issue, Reichhartinger and Spurgeon (2018) remarked that although
the parameters of the first order robust exact differentiator (RED) may be selected based on the
available theoretical convergence conditions for the case of reconstructing the first derivative, the
parameters setting for the case of high-order differentiators may turn into a more difficult task and
it could be complicated to achieve a good performance over a broad domain of application from a
single set of gains.

In the abscence of noise and f(t), t ≥ 0 denoting the signal to be differentiated, the only assumption
required by the first order RED is that the first derivative of f(t) has a known finite Lipszchitz
constant L Levant (1998), that is, that the input signal belongs to the class of signals with bounded
second derivative

∣∣∣f̈(t)
∣∣∣ ≤ L. (1.1)

For the n-RED, the assumption on the input signal follows in a similar way. Moreover, the same
requirement holds for a noisy signal, where the Lipschitz condition is to be considered on the
derivative of the base signal. Therefore, a bound L has to be known beforehand in order to select
the differentiator parameters accordingly. Further research has led to results aiming to simplify
the task of case-based gains tuning, allowing a broader class of input signals to be considered. For
example, in the work by Moreno (2018) an exact differentiation with varying gains was proved for
signals whose derivatives are bounded by a known time-varying function, that is, accounting for a
varying L(t) instead of a constant L. Also in 2018, Reichhartinger and Spurgeon proposed a design
paradigm with adaptive gains based on a pseudo-linear representation of the system; likewise, Obeid
et al. (2018) developed an adaptation algorithm for the gains of the RED based on barrier function.

Aside from the aformentioned results involving time-varying or adaptive schemes, there exist some
tuning procedures for the standard case with constant gains, particularly for the first order RED
which shares some of the parameter selection criteria with the super twisting algorithm (STA)
(Levant, 1998; Shtessel et al., 2014). The tuning for second and higher differentiation orders
has been less studied, though. However, the introduction of a Lyapunov function (LF) for the
second order robust exact differentiator (2-RED) (Moreno, 2012) brought new insights to such
study, enabling to inquiry into properties like convergence time and robustness that were hardly
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approached under the back then existent geometric and homogeneity paradigms; further results
followed thereafter. Trying to circumvent the cumbersome task of dealing with the numerous
inequalities arisen from the design methodology based on a generalization of Young inequalities in
Moreno (2012), Ortiz-Ricardez et al. (2015) devised a new LF for the 2-RED by using a generalized-
forms approach which besides being continuous, was also differentiable. Furthermore, in 2018,
Sanchez, Cruz-Zavala, et al. generalized such design approach relying on a sum-of-squares method
for both the cases of continuous and discontinuous differentiators, comprising the n-RED as a
particular instance. Similarly, an account of a family of smooth LFs for the n-RED was presented
in Cruz-Zavala and Moreno (2018), allowing to study the convergence and performance properties
as well as consider the design of gains for such differentiators. More recently, elaborating on the
work by Cruz-Zavala and Moreno (2018), Merino (2019) introduced a methodology that, exploiting
the recursive structure of the RED, enables to design the gains of a higher-order differentiator based
on a given set of gains for a lower-order one.

As a sliding-modes algorithm, the RED is no excluded from the so-called chattering phenomenon,
that is, high-frequency oscillations which arise due to the imposibility of attaining the theoretically
infinite switching frequency demanded by such algorithms in a real environment (see Levant, 2010,
for a formal account on chattering). This, generally undesirable, phenomenon is the main drawback
that has hindered the broader application of these techniques due to the potentially harmful effects
to actuators which may arise in a control system. Therefore, great part of the research on sliding
mode control (SMC) has been aimed at the study of chattering and its mitigation (Utkin & Lee,
2006), motivating advancements such as the development of the so-called continuous high order
sliding modes (HOSMs) (Fridman et al., 2015).

Regarding the chattering analysis, the use of frequency methods constitutes a direction within
the sliding-modes research which seeks to tackle problems related to the existence and parameters
determination of periodic motions, the stability of limit cycles and the input-output problem (Boiko,
2005). Accordingly, the main approaches which have been explored since their application to relay-
feedback systems comprise methods such as the describing function (DF) (Atherton, 1975, as cited
in Boiko, 2005), the Tsypkin’s one (Tsypkin, 1984, as cited in Boiko, 2005) and the locus of a
perturbed relay system (LPRS) (Boiko, 2003). Although being only capable to yield approximate
results, providing less accuracy in comparison with the other two referred techniques, the DF
method has allowed to develop systematic approaches to analyze chattering (Boiko et al., 2007);
it has also been proven to be a convenient method to study various continuous and discontinuous
SMC algorithms under a unified approach, allowing to draw a performance comparison among
them (Pérez-Ventura & Fridman, 2019b). Furthermore, it has been succesfully applied to aid the
gain design of some sliding-mode controllers such as the super twisting controller (STC) (Pérez-
Ventura & Fridman, 2019a) and the PID-like continuous sliding mode controller (PID-CSMC)
(Pérez-Ventura et al., 2021), enabling to develop a methodology to find suboptimal gains sets
which allow to reduce either the chattering amplitude or the average power required to maintain
the system’s trajectories into a real sliding motion.

With respect to the study of the RED via frequency methods, an antecedent can be found in Boiko
et al. (2008), where the transfer properties of a STA-based differentiator due to a external input
were investigated by introducing the equivalent gain concept. However, neither the case of the
second-order differentiator nor the parameters design were considered in such work. Therefore, a
DF-based approach such as the aforementioned one may be explored to tackle the issue of the design
of gains for the 2-RED in order to yield criteria for the parameter selection aiming to reduce the
chattering amplitude of the first derivative estimate and, consequently, improve the performance
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during the differentiation task.

1.2 Motivation

Although the first derivative of a given signal can already be estimated by using a first order
RED, as remarked by Levant (2003), for every l < k, a k-th order differentiator allows for a much
better accuracy of the l-th derivative than an l-th order differentiator. Due to this fact, it is
more convenient to work with a 2-RED instead of its first order counterpart when just the first
derivative is required. Moreover, concerning the design of OF control schemes, the use of 2-RED-
based observers has been proven to result more advantageous in comparison with its first-order
counterpart. For example, for the STC, Chalanga et al. (2016) showed that the stabilization of a
perturbed double integrator cannot be achieved by using a STA-based observer in the OF control
scheme, that is, by using a first order RED. They proved that for the resultant control law an
additional term is required in order to attain the desired second-order sliding mode along a relative
degree 1 sliding surface, leading to a discontinuous control signal, though. On the contrary, if a
higher-order observer based on the 2-RED is considered in the OF control scheme, the stabilization
is accomplished not only by means of a continuous control signal, but also allowing an improved
precision on the sliding manifold. Another result which points in favor of the use of the 2-RED can
be found in Sanchez, Moreno, and Fridman (2018), regarding the continuous twisting algorithm
(CTA). By studying two OF control schemes, one based on the first order RED and the other based
on the 2-RED, they showed that whereas in the case of the lower-order RED homogeneity is lost, by
using the higher-order one it can be retained, preserving the robustness and accuracy properties of
the state feedback CTA. Moreover, they pointed out the establishment of a separation principle in
the OF design considering the 2-RED, allowing to design the controller and the observer indepently
from each other.

From this perspective, despite the additional tuning parameter, the 2-RED may turn to be a better
option in cases such as the mentioned ones; on account of that, some gain selection criteria which
allows for a better performance of the differentiator and consequently of the whole OF control
scheme would be a valuable design tool.

1.3 Problem Statement

Consider the 2-RED (Levant, 2003) in its so-called nonrecursive form:

ż0 = −k0 |z0 − f(t)| 23 sign(z0 − f(t)) + z1,

ż1 = −k1 |z0 − f(t)| 13 sign(z0 − f(t)) + z2,

ż2 = −k2sign(z0 − f(t)),

(1.2)

where f(t), t > 0 is a function whose third derivative has a known upperbound, that is,
∣∣f (3)(t)∣∣ ≤ L.

For the ideal continuous-time case in absence of noise, the following equalities are established after
a finite time:

z0 = f(t), z1 = ḟ(t), z2 = f̈(t)
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Nevertheless, from a practical point of view, its real discrete-time application may give rise to
the chattering phenomenon, causing the trajectories zi to exhibit high frequency oscillations in a
neighborhood of the base signals f (i)(t), i = 0, 1, 2. Accounting for the nonidealities which may lead
to this behavior during the measurement or processing tasks, a scalar constant delay is introduced in
order to study the differentiator via the closed loop scheme shown in Fig. 1.1; furthermore, the zero
function f(t) = 0 is considered at the input in order to study the steady-state oscillatory response
via the single-sinusoid DF approach. Therefore, under such assumption, the problem lies in finding
some guidelines for the selection of gains which ensure a local minimum achievable amplitude of the
chattering induced by the introduction of the time delay, in accord with the methodology exposed
by Pérez-Ventura et al. (2021). It is important to remark that the goal is not to achieve a global
minimum amplitude, but to ensure that given a pair of gains, the third one completing the set
allows to yield the attainable minimum chattering for such pair. In some works on the gain design
for SMC algorithms (Pérez-Ventura & Fridman, 2019a; Pérez-Ventura et al., 2021), the paremeter
tuning which yields such local minimum by the selection of one of the gains while fixing the rest
of them has been referred to as suboptimal. Accordingly, the gain sets computed via the guidelines
proposed in this work may be referred as suboptimal too.

Figure 1.1: Robust exact differentiator diagram.

1.4 Objectives

The main objectives of this work, which also correspond to its contributions, are the following:

1. to compute, as a function of the 2-RED gains, the approximated values for the amplitude of
possible oscillations arisen by the presence of a time delay,

2. to find a criterion for the selection of the differentiator gains which ensure a local minimization
of the calculated oscillations amplitude,

3. to show that if the above-mentioned oscillations exist, they are orbitally asymptotically stable,

4. to prove for the ideal case without delay that the differentiator keeps global finite time con-
vergence for some of the parameter sets found via the proposed criterion.

5



1.5 Outline

After having provided an introduction to the present work in the current chapter, in Chapter 2,
the case study of this work, that is, the 2-RED, is presented. Moreover, a brief overview of SMC
and the chattering phenomenon is given as well as some useful preliminaries.

In Chapter 3, the considered methodology for suboptimal gains design is introduced and some of
such sets is determined; additionally, simulation examples are provided to depict the achievable
steady-state performance of one of those parameters sets.

In Chapter 4, Lyapunov stability is studied for both the nominal and perturbed cases of the 2-RED
error dynamics for the given suboptimal gains sets.

Finally, in Chapter 5, some concluding remarks are stated.

Remark on Notation

Let d·cρ = |·|ρ sign(·) denote the so-called signed power function for any ρ ∈ R≥0 such that R≥0
denotes the nonnegative reals. The same notation holds likewise for the sets of nonnegative rationals
Q≥0 and nonnegative integers Z≥0.
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Chapter 2

Preliminaries

2.1 Sliding Modes

Sliding mode control (SMC) is one of the main robust control approaches for dealing with uncertain
systems. It is a particular type of the variable structure control (VSC) techniques that involve a
set of feedback control laws and a decision rule, called switching function, that allows to switch
among the controllers, leading to different subsystems with fixed control structures valid for specific
regions of the system state space, hence its name (Emelyanov et. al., 1970, as cited in Hung et al.,
1993). As such, SMC relies on the deliberate change of the control law based on some defined
state-dependent rules in order to drive the trajectories to a constrained region of the state space
where a desired behavior is attained.

2.1.1 Chattering Phenomenon

According to the SMC jargon, the region of the state space where a determined constraint is kept
is referred to as the sliding surface. Thus, denoting such constraint as ς(x) = 0, with x being the
system state, ς is the so-called sliding variable that acts as the decision rule to switch the control law.
This terminology is due to the two stages which can be distinguished in the trajectories of a system
under the action of a SMC algorithm; namely, the reaching phase in which the trajectories are driven
towards the sliding surface, and the sliding phase in which they remain within a neighbourhood of
such surface sliding along it as depicted in Fig. 2.1.

A system whose dynamics are subject to the constraint kept during the sliding phase is said to be in
sliding motion or to have attained a sliding mode; moreover, if the trajectories remain constrained
to lie exactly over the sliding surface, then such behavior is referred to as an ideal sliding mode.
Nevertheless, such an ideal behavior only exists theoretically for time-continuous systems without
delays due to the fact that it would imply a control signal commuting at an infinite frequency on
account of the discontinuities usually found in the driving control laws. Therefore, in real systems,
the presence of switching imperfections owing to time delays, and nonmodeled dynamics in both
sensors and actuators prevent attaining an ideal sliding motion, giving rise to a dynamic behavior
consisting on high-frequency oscillations across the vicinity of the sliding surface (Emelyanov, 1963,
as cited in Fossard & Floquet, 2002). Since this phenomenon known as chattering can be detri-
mental to both plant and actuators, research has been encouraged towards developing techniques
to diminish it in order to advance the application of this control methodology. This has led to the
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Figure 2.1: Sliding motion and the chattering phenomenon.

development of numerous SMC algorithms which can be grouped in the so-called sliding modes
generations depending on some of its features (Fridman et al., 2015; Utkin et al., 2020).

2.2 Homogeneity

Homogeneity is the property through which some mathematical objects such as functions or vector
fields scale in a consistent manner with respect to a scaling operation known as dilation (Bernuau et
al., 2014). Although the concept has been refined since the first studies on homogeneous polynomi-
als by Euler, leading to several notions of homogeneity, the definition used in this work corresponds
to that of weighted homogeneity (Hermes, 1991).

2.2.1 Weighted Homogeneity

Following the notation introduced by Bernuau et al. (2014), let x ∈ Rn, λ ∈ R and r ∈ Rn, such

that r =
[
r1 . . . rn

]>
is the so-called generalized vector of weights with ri > 0. Now define the

dilation operator Λr as
Λr : R>0 × Rn → Rn

(λ, x) 7→ diag(λr1 , . . . , λrn)x,

and for simplicity denote Λrx := Λr(λ, x) = diag(λr1 , . . . , λrn)x, then

• a function V : Rn → R is said to be r-homogeneous with degree m ∈ R if for all x ∈ Rn and
all λ > 0,

λ−mV (Λrx) = V (x),

• a vector field f : Rn → Rn is said to be r-homogeneous with degree m ∈ R if for all x ∈ Rn
and all λ > 0,

λ−mΛ−1r f(Λrx) = f(x),
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• a system ẋ = f(x) is r-homogeneous if f is so.

2.2.2 Homogeneity and Differential Inclusions

The homogeneity definition can be further extended to the case of differential inclusions (DIs),
such as those arising from the application of the regularization procedure due to Filippov (1988)
to ordinary differential equations (ODEs) with discontinuous right-hand side; such kind of ODEs
are frequently found when dealing with VSC systems. According to such procedure, an ODE with
discontinuous right-hand side of the form

ẋ = f(x), (2.1)

where f is measurable and locally essentially bounded, can be replaced with a DI defined by a
set-valued map of the form

ẋ ∈ F (x). (2.2)

Therefore, a solution to the ODE (2.1) is said to be understood in the sense of Filippov if it is
defined as a solution to the DI (2.2).

Accordingly,

• a set-valued map F : Rn ⇒ Rn is r-homogeneous with degree m ∈ R if for all x ∈ Rn and
for all λ > 0,

λ−mΛ−1r F (Λrx) = F (x),

• a system ẋ ∈ F (x) is homogeneous if F is so.

Moreover, if the set-valued map comes from the Filippov regularization procedure, the homogeneity
property is preserved. Thus, if a vector field f is r-homogeneous of degree m, then the associated
set-valued map F is r-homogeneous of degree m too (Bernuau et al., 2013).

2.3 Robust Exact Differentiation

Besides control, sliding modes find one of its main applications in the field of robust finite-time
exact observation and differentiation. Regarding the differentation problem, it can be stated as
follows: let f : R → R be the input signal given by f(t) = f0(t) + ξ(t), that is, the sum of
an unknown base signal f0 and a bounded Lebesgue-measurable noise component ξ. In addition,
assume that the base function f0(t) is n-times differentiable and its n-th derivative has a Lipschitz
constant L > 0. Then, the problem consists in finding real-time robust estimation of the derivatives

f ′0(t), . . . , f
(n)
0 (t); moreover, to do so exactly in the absence of measurement noise.

2.3.1 Arbitrary Order Robust Exact Differentiator

The differentiation problem can be tackled with the n-RED (Levant, 2003)
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ż0 = v0,

v0 = −k0dz0 − f(t)c n
n+1 + z1,

ż1 = v1,

v1 = −k1dz1 − v0c
n−1
n + z2,

...

żn−1 = vn−1,

vn−1 = −kn−1dzn−1 − vn−2c
1
2 + zn,

żn = −kndzn − vn−1c0,

(2.3)

where ki ∈ R>0, i = 0, . . . , n are the differentiator gains or parameters. By exploiting the properties
of the so-called signed power function d·c, the differentiator (2.3) can be also expressed in the
commonly named nonrecursive form (Shtessel et al., 2014) as

ż0 = −k0dz0 − f(t)c n
n+1 + z1,

żi = −kidz0 − f(t)c
n−i
n+1 + zi+1,

...

żn = −kndz0 − f(t)c.

(2.4)

Some of the main features of the n-RED can be stated in the following theorems.

Theorem 2.3.1 (Levant, 2003) Given properly chosen parameters, the following equalities are
established in the absence of input noises after a finite time

zi = f
(i)
0 (t), i = 0, . . . , n.

Therefore, in absence of noise, and given a proper selection of gains, the RED states converge
theoretically exactly to the sought derivatives in finite time. Regarding the nonideal case in which
input noise satisfying the aforementioned assumptions is considered, the next result holds.

Theorem 2.3.2 (Levant, 2003) Let the input noise satisfy the inequality |f(t)− f0(t)| ≤ ε. Then
the following inequalities are established in finite time for some positive constants κi depending
exclusively on the parameters of the differentiator∣∣∣zi − f (i)0 (t)

∣∣∣ ≤ κiεn−i+1
n+1 , i = 0, . . . , n.

The previous inequalities provide some means to estimate the magnitude order of the differentiator
error given a known upper bound of the input noise. Finally, considering a sampling step τ , a
similar result is obtained for the discrete-time case when z0(tj)− f(tj) is substituted for z0 − f(t)
with tj ≤ t < tj+1 such that tj+1 − tj = τ > 0.

Theorem 2.3.3 (Levant, 2003) Let τ > 0 be the constant input sampling interval in the absence
of noises. Then the following inequalities are established in finite time for some positive constants
νi depending exclusively on the parameters of the differentiator∣∣∣zi − f (0)0 (t)

∣∣∣ ≤ νiτn−i+1, i = 0, . . . , n.
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2.3.2 Second Order Robust Exact Differentiator

For n = 2, the 2-RED is obtained from (2.4) as

ż0 = −k0dz0 − f(t)c 23 + z1,

ż1 = −k1dz0 − f(t)c 13 + z2,

ż2 = −k2dz0 − ft()c0,
(2.5)

and defining the differentiation error as εi = zi − f (i)0 (t), the dynamics of (2.5) can be restated as

ε̇0 = −k0dε0c
2
3 + ε1,

ε̇1 = −k1dε0c
1
3 + ε2,

ε̇2 = −k2dε0c0 + ψ(t),

(2.6)

where ψ(t) = −f (3)0 (t). It can be easily verified that the system (2.6) is homogeneous of degree -1

with homogeneity weights r =
[
3 2 1

]>
.

2.4 Frequency Domain Analysis Techniques

The frequency response method is one of the main tools for the analysis and design of linear systems
based on the description of such systems by a complex-valued function. Although it is not possible
to directly apply this method to nonlinear systems, it is possible to study a broad range of them
with some analytical techniques under a frequency approach. One of such techniques is the DF
method which finds its main application in the prediction and characterization of limit cycles.

2.4.1 Describing Function

This technique could be considered as an extended version of the frequency response method which
allows to analyze nonlinear behavior. It basically consists on the use of quasi-linear functions to
approximate the transfer characteristics of nonlinear elements; such functions are known as the
DFs of the nonlinearities. Even though this method can only yield approximate results, it is a
useful tool to study the effects of a large class of common nonlinearities frequently found in control
systems such as saturation, dead-zone, backlash and hysteresis, among others (Atherton, 1996).

In its simplest formulation, a DF can be used to study systems which allow themselves to be
accurately modeled as shown in the diagram of Fig. 2.2, that is, as a feedback loop comprising
an interconnection between clearly distinguishable linear and nonlinear elements subject to no
external inputs; thus, r(t) = 0. This technique relies on assuming beforehand the signal form at the
nonlinearity input, and since this method is mainly used to study the existence and characterization
of limit cycles, a sinusoid is usualy considered as the result of the filtering effect of the linear block
in the loop. This assumption of low-pass properties in the linear part, which allows the driving
sinusoid at the nonlinearity input to be approximated by its fundamental component, is known as
the filtering hypothesis. Therefore, the major limitation of this technique is the requirement that
the actual signal at the input of the nonlinear block is well approximated by that considered in the
derivation of the DF (Gelb & Vander Velde, 1968).
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Figure 2.2: Nonlinear system.

A brief description of the formulation of a DF in its basic version, that is, for the case of an odd,
static, single-valued nonlinearity, based on the exposition by Slotine and Li (1991) is outlined here.

Consider the diagram in Fig. 2.2 and assume an input

x(t) = Asin(ωt). (2.7)

Regarding the output, it can be expressed in terms of its trigonometric Fourier series as

y(t) = a0 +
∞∑
n=1

[ancos (nωt) + bnsin (nωt)] (2.8)

with

a0 =
1

2π

∫ 2π

0
y(ωt)dωt,

an =
1

π

∫ 2π

0
y(ωt)cos(nωt)dωt,

bn =
1

π

∫ 2π

0
y(ωt)sin(nωt)dωt.

(2.9)

Since the considered nonlinearity is odd, a0 = 0. Therefore, due to the filtering hypothesis, y(t)
can be approximated by its first harmonic as

y(t) ≈ y1(t) = a1cos(ωt) + b1sin(ωt) = Msin (ωt+ φ) (2.10)

where

M(A,ω) =
(
a21 + b21

) 1
2 and φ(A,ω) = arctan

(
a1
b1

)
.

Since the DF of a nonlinearity is defined as the complex ratio of the fundamental component of its
output to its input sinusoid, and due to Euler’s formula and the expression of the Fourier series in
its amplitude-phase form, it can be stated as

N(A,ω) =
Mej(ωt+φ)

Aejωt
=
M

A
ejφ =

1

A
(b1 + ja1) (2.11)
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which in turn can be expressed as

N(A,ω) =
j

πA

∫ 2π

0
y(ωt)e−jωtdωt. (2.12)

Moreover, for single-valued nonlinearities , a1 = 0, so

N(A,ω) =
1

πA

∫ 2π

0
y(ωt)sin(ωt)dωt. (2.13)

As a result, once the DF has been computed with (2.13), it can be substituted for the nonlinearity
to render an approximation of the original system and study its behavior.

2.4.2 Harmonic Balance Equation

The main application of the DF method consists in the study of steady-state oscillations such as
limit cycles in nonlinear systems; this can be done as follows. Consider the diagram in Fig. 2.3, in
which the DF has been substituted for the nonlinear element and the linear element is characterized
by its frequency response function, assuming the existence of a self-sustained oscillation of amplitude
A and frequency ω.

Figure 2.3: Nonlinear system with a DF substituted for the nonlinearity.

Since the input is considered to be zero, the following loop relations must hold:

X(jω) = −G(jω)Y (jω),

Y (jω) = N(A,ω)X(jω),
(2.14)

which can be expressed in matrix notation as

[
N(A,ω) −1

1 G(jω)

] [
X(jω)
Y (jω)

]
= 0.

This system has a nontrivial solution only if its matrix determinant equals zero, that is,

1 +N(A,ω)G(jω) = 0, (2.15)

and the amplitudes and frequencies of the limit cycles can be estimated by the solutions of (2.15),
which is known as the harmonic balance (HB) equation.
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2.4.3 Loeb’s Stability Criterion

Under small amplitude or frequency perturbations, a limit cycle is said to be stable if the trajectories
of a system are attracted back towards the cycle. On the other hand, if the amplitude or frequency
grows or decays leading the trajectories away from the limit cycle, it is said to be unstable. The
stability of a limit cycle can be determined in terms of the DF-characterized system via an analytical
method devised by Loeb (1956, as cited in Gelb & Vander Velde, 1968), such method relies on the
assumption that the HB equation remains valid at some small deviations from the periodic solution
given by A0 and ω0 (Boiko, 2018). Therefore, by taking

A0 → A0 + ∆A,

ω0 → ω0 + ∆ω − j∆σ, (2.16)

into (2.15), the following equation must hold:

1 +N(A0 + ∆A, ω0 + ∆ω + j∆σ)G(jω0 + j∆ω + ∆σ) = 0 (2.17)

where ∆A is the amplitude deviation, ∆ω is the frequency deviation, and ∆σ is the rate of change
of amplitude, that is, ∆σ = Ȧ/A (Gelb & Vander Velde, 1968).

Based on the referred assumption, a necessary condition for the stability of a limit cycle can be
obtained as the following inequality, commonly known as the Loeb’s criterion:

∂U

∂A

∂V

∂ω
− ∂U

∂ω

∂V

∂A
> 0 (2.18)

where the terms U and V are obtained from the HB equation as

U(A,ω) = Re
{
N(A,ω) +G(jω)−1

}
,

V (A,ω) = Im
{
N(A,ω) +G(jω)−1

}
.

2.5 Lyapunov Stability for Generalized Forms

Stability theory is one of the main cornerstones for the analysis of nonlinear systems. Regarding the
notion of stability in the sense of Lyapunov, recall the following statement (Khalil, 2002): Consider
the autonomous system

ẋ = f(x) (2.19)

where f : D → Rn is a continuous map from a domain D ⊂ Rn into Rn and assume that the system
has an equilibrium point at the origin, that is, f(x) satisfies f(0) = 0. Then, the equilibrium point
x = 0 of (2.19) is said to be

• stable if, for each ε > 0, there is δ = δ(ε) > 0 such that

||x(0)|| < δ ⇒ ||x(t)|| < ε, ∀t ≥ 0,
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• unstable if not stable,

• asymptotically stable if it is stable and δ can be chosen such that

||x(0)|| < δ ⇒ lim
t→∞

x(t) = 0. (2.20)

Accordingly, one of the main results concerning Lyapunov stability can be stated by the following
theorem:

Theorem 2.5.1 (Khalil, 2002) Let x = 0 be an equilibrium point for the system (2.19) and
D ⊂ Rn be a domain containing x = 0. Let V : D → R be a continuously differentiable function
such that

V (0) = 0 and V (x) > 0 in D \ {0} (2.21)

and

V̇ (x) ≤ 0 in D. (2.22)

Then, x = 0 is stable. Moreover, if

V̇ (x) < 0 in D \ {0}, (2.23)

then, x = 0 is asymptotically stable.

2.5.1 Lyapunov Stability for Homogeneous Systems

In the case of homogeneous systems, such property gives rise to some additional features related
to the stability of the equilibrium. Some of the main features include the ensurance of global
asymptotic stability for a locally attractive equilibrium (Zubov, 1964), the existence of a homoge-
neous continuous LF for systems with globally asymptotically stable origin (Zubov, 1964), and the
finite-time stability implied by the asymptotic one for a system with negative homogeneity degree
(Bhat & Bernstein, 1997). Likewise, these results can be generalized for the case of DIs as shown
in Bernuau et al. (2013). Therefore, such stability features still hold for systems with discontinuous
right-hand side like the 2-RED. This is a powerful result that proves to be very useful for the
analysis and design of homogeneous SMC systems and justifies great part of the antecedents on
which this work is grounded.

2.5.2 Construction of Lyapunov Functions for Generalized Forms

Homogeneous polynomial functions are conventionally called forms (Lang, 2002). A generalization
based upon this notion of classical forms, comprising functions with polynomial structure but
allowing real powers and preserving the sign of variables, lead to the concept of the so-called
generalized forms (GFs). In agreement with Sanchez et al. (2016), a function f : Rn → R is a GF if

it is r-homogeneous of degree m with weights r =
[
r1 . . . rn

]>
and exclusively consists of sums

and products of terms of the type adxicp and b |xi|q, such that a, b ∈ R and p, q ∈ Q.
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In 2019, Sanchez and Moreno proposed a design methodology of LFs for a class of homogeneous
systems described by GFs. According to their work, consider the system

ẋ = f(x; k), x ∈ Rn, k ∈ Rp (2.24)

where k represents the vector of system free parameters and f =
[
f1 . . . fn

]>
is homogeneous

with each function fi, i = 1, . . . , n being a GF with rational exponents. Moreover, let V : Rn → R
be a GF corresponding to a LF for (2.24) and likewise, W : Rn → R, a function of its derivative
given by

W (x) = −∂V (x)

∂x
f(x). (2.25)

Thus, such methodology conveys some guidelines to construct a family of LF candidates V (x;α) and
their respective W (x;β), where α and β represent the vector of coefficients of the GFs monomials.
In addition, it provides a systematic approach to find a matching set of coefficients α, β and
parameters k, such that V and W are rendered positive definite (PD). This approach yields a
useful tool for the design of systems constituted by GF such as SMC algorithms.

Although no LF for the 2-RED is designed from scratch in this work, this methodology is applied
to tackle an intermediate problem; namely, given a set of parameters k, to find some suitable
coefficients α which yield a LF from a given candidate family V (x;α). Briefly, this approach requires
both GFs V and W to be transformed into a set of classical forms via a change of coordinates. If a
solution α which renders all those forms PD is found, the positive definiteness of the original GFs
follows thereafter, consequently demonstrating V to be a LF.

2.6 Positive Definiteness of Forms

Since the design methodology described in the previous section involves the demonstration of posi-
tive definiteness of a set of forms, Sanchez and Moreno (2019) suggested two approaches to perform
this task: one relying on the use of a theorem by Pólya (1927, as cited in Hardy et al., 1988), and
the other one via a representation of such forms as a sum of squares (SOS).

The SOS approach is the one used in this work; therefore, it is briefly introduced.

2.6.1 Sum of Squares Representation

Based on the work by Parrilo (2000), whereby the SOS decomposition for multivariable polynomials
can be formulated as a linear matrix inequality (LMI), the nonnegativity of a form can be verified
by proving it to be a SOS. Accordingly, let F : Rn → R be a classical form of degree 2m,m ∈ Z>0,
then F is said to be a SOS if there exist a finite number of forms fi, i = 1, 2, . . . , N such that

F (x) =

N∑
i=1

[fi(x)]2 . (2.26)

It can be seen that F is positive semidefinite if it is a SOS. Furthermore, if

F̃ (x) = F (x)− θ
n∑
j=1

x2mj (2.27)
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is a SOS for some θ ∈ R>0, then F is PD (Papachristodoulou & Prajna, 2002). Thus, the SOS
approach provides with a sufficient condition to prove the positive definiteness of a form, task which
can be performed via some specialized software such as SOSTOOLS (Prajna et al., 2002).
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Chapter 3

Gain Design of the 2-RED

3.1 Assumptions

In order to study the behavior of the differentiator output under the presence of a time delay, the
2-RED system is considered as depicted in Fig. 3.1. From the figure it can be observed that the
differentiator nonlinearites can be lumped into one single block which in turn can be replaced by its
corresponding DF. On the other hand, if the input is set as f(t) = 0 and a first-order approximation
is used for the time delay so that it can be grouped with the integrator into a linear block, a closed
loop with the structure shown in Fig. 2.3 can be attained. Furthermore, it is asumed that the
input at the nonlinear block is a sinusoidal signal and that the linear element fulfils the filtering
hypothesis.

Figure 3.1: Second order robust exact differentiator DF diagram.

These assumptions meet the requirements imposed by the DF approach described in the previous
chapter, allowing the use of that technique. Although such assumptions may raise no objection to
the application of this technique to the study of stabilizing controllers, as done by Pérez-Ventura
and Fridman (2019a) for example, its use to the considered differentation scheme may bring up
some uncertainties specially with regard to the requirement of a reference or input signal f(t) = 0.
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Since such restriction would limit the differentiator to solely take the zero function as the input
signal to be differentiated, such results would turn to be little useful in practice. Nevertheless,
this approach is based on the assumption of a nonideal sliding mode whose motion comprises well
discernible slow and fast components. Therefore, such motion may be studied as arising from
two separate dynamic subsystems; namely, the slow one dealing with the motion due to nonzero
initial conditions and forced responses caused by an input signal or a disturbance, and the fast
one corresponding to the self-excited oscillations due to the chattering phenomenon. Accordingly,
the slow subsystem would be related to the motion along the sliding surface, whereas the fast one,
with that across the surface. This decomposition of the dynamics results appropriate on account
of the assumption that the external input is much slower than the self-excited oscillations, which
is usually the case in real sliding modes, allowing to study the fast component of motion due to
chattering via the DF method (Boiko, 2005); more accurate results may be obtained by using a
more sofisticated approach such as the LPRS method (Boiko, 2003) or the dual-input describing
function (DIDF) (Gelb & Vander Velde, 1968), though.

With respect to the issue of how slow must external signals be in comparison with the self os-
cillations, Boiko (2005) states the nonrigorous definition that the external signal can be regarded
comparatively slow if it can be considered constant over the oscillations period without significant
loss of accuracy of the oscillations estimation. In agreement with such notion and recalling Fig.
(2.2), with a nonzero input in this case, Gelb and Vander Velde (1968) give the following condition
as an assumption for the formulation of the DIDF:

T
∣∣r′(t)∣∣� A (3.1)

where T and A are the period and amplitude of the limit cycle oscillation at the input of the
nonlinearity, respectively, and r is an external slowly-varying reference input, that is, one which
changes relatively little with respect to A over the period T . Therefore, the results obtained in this
work based on the assumption of a zero function at the input may only hold valid for low-frequency
nonzero reference inputs r(t) satisfying (3.1) along with the chattering parameters A and T .

3.2 Steady State Oscillatory Response: Existence and Parameters

In oder to compute the parameters of the estimated chattering oscillations caused by the delay as
a function of the differentiator gains, it is first required to determine the DF of the nonlinearities
and the transfer function of the linearities. Then the HB equation can be stated and solved for
the sought oscillation parameters in terms of the differentiator gains. Such expressions are later
used along Loeb’s criterion to introduce a gain selection methodology ensuring stable oscillations
with a local minimum amplitude. Thus, let ς = z̄0 − f(t) denote the input to the differentiator
nonlinear block under the presence of a delay. From Fig. 3.1 it can be noticed that the 2-RED
system (2.5) can be regarded as formed by a parallel interconnection involving nonlinearities of the
type kidς(q)cp with p ∈ Z≥0 and q ∈ Q≥0. Therefore, if the DF of this kind of nonlinearities is
known, then a DF for the whole 2-RED can be easily computed accordingly.

3.2.1 Describing Function Computation

Under the assumption of a steady-state periodic response and the linear block satisfying the filtering
hypothesis, ς can be approximated by its first harmonic as
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ς = Asin(ωt) (3.2)

so, according to Pérez-Ventura and Fridman (2019b), the DF of a nonlinearity kidς(q)cp is given by

Ni(A,ω) = jqωpq
2ki

πA1−p

∫ π

0
dsin(ωt)cpdωt. (3.3)

Next, consider the B and Γ functions defined as

B(x, y) = 2

∫ π/2

0
(sinθ)2x−1 (cosθ)2y−1 dθ (3.4)

and

Γ(z) =

∫ ∞
0

xz−1e−xdx (3.5)

where x, y and z are complex inputs with positive real part. Due to the relationship among these
functions given by

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
(3.6)

and further properties of the Γ function (see Beals & Wong, 2010, for more details), the DF (3.3)
can be computed as

Ni(A,ω) = jqωpq
2ki√
πA1−p

Γ
(p
2 + 1

)
Γ
(p
2 + 3

2

) . (3.7)

Therefore, the DF of the 2-RED can be obtained from the DF of the three individual nonlinearities
corresponding with each of the gains k0, k1 and k2 as

N(A,ω) = N0 +
1

jω
N1 +

1

(jω)2
N2. (3.8)

Thus, evaluating (3.7) for the values of p and q in Table 3.1, corresponding to each nonlinear term
of the 2-RED, the DFs are obtained as

N0 =
2δ0k0

πA1/3
, (3.9a)

N1 =
2δ1k1

πA2/3
, (3.9b)

N2 =
4k2
πA

, (3.9c)
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where δ0 and δ1 are introduced for the sake of simplicity as

δ1 =
√
π

Γ
(
7
6

)
Γ
(
5
3

) and δ0 =
√
π

Γ
(
4
3

)
Γ
(
11
6

) .
Ni p q

N0 2/3 0
N1 1/3 0
N2 0 0

Table 3.1: Exponents and derivative order values for each nonlinearity conforming the 2-RED.

Finally, from (3.8) and (3.9), the DF of the 2-RED results in

N(A,ω) =
2δ0k0

πA1/3
− 4k2
πAω2

− j 2δ1k1

πA2/3ω
. (3.10)

3.2.2 Steady State Oscillation Parameters

Besides the DF, the transfer function of the linear block is required to compute the HB whose
solution yields the approximated oscillation parameters. Thus, in order to group the time delay
and the integrator together into the linear block, a first order Padé approximation (Baker et al.,
1996) is used as

e−µs ≈ 2− µs
2 + µs

. (3.11)

Thus, including the integrator, the transfer function of the considered linear element is given by

G(s) =
2− µs

s (2 + µs)
. (3.12)

Finally, substituting (3.10) and (3.12) into (2.15), the HB equation for the 2-RED results in

2δ0k0

πA1/3
− 4k2
πAω2

− j 2δ1k1

πA2/3ω
=

4µω2

4 + µ2ω2
− j ω

(
4− µ2ω2

)
4 + µ2ω2

. (3.13)

Hence, in order to determine the steady state oscillation parameters, (3.13) can be separated into
its real and imaginary parts. Accordingly, the amplitude can be estimated by solving the real part
for A as

A = µ3

[
2δ1k1

(
4 + K2

)
πK2 (4−K2)

] 3
2

, (3.14)

whereas the frequency is given by
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ω =
K
µ
, (3.15)

where the parameter K in (3.14) and (3.15) can be obtained by solving the equation resulting from
substituting the amplitude (3.14) into the imaginary part of the HB equation (3.13); such resultant
equation is given by

a
k0

k
1/2
1

(
4 + K2

)
− b k2

k
3/2
1

(
4−K2

)
= K

[
4 + K2

4−K2

] 1
2

(3.16)

with

a =

(
δ20

8πδ1

) 1
2

and b =

(
π

8δ31

) 1
2

.

Once the oscillation parameters corresponding to the input to the nonlinear block, that is, z̄0 =
Asin(ωt), are known, upper bounds of the magnitude of the differentiator state variables can be
estimated accordingly. First, based on the previously computed DFs, a first-order approximation
of z0, z1 and z2 can be obtained as

z0 = −jN
ω
z̄0 =

[
−N1

ω2
+ j

(
N2

ω3
− N0

ω

)]
z̄0, (3.17a)

z1 =

(
−N2

ω2
− jN1

ω

)
z̄0, (3.17b)

z2 = −jN2

ω
z̄0. (3.17c)

Then, substituting the corresponding DFs (3.9) in (3.17), the magnitude upper bounds can be
estimated as

|z0| =

(2δ1k1A
1/3

πω2

)2

+

(
4k2 − 2δ0k0A

2/3ω2

πω3

)2
 1

2

, (3.18a)

|z1| =

( 4k2
πω2

)2

+

(
2δ1k1A

1/3

πω

)2
 1

2

, (3.18b)

|z2| =
4k2
πω

. (3.18c)

Furthermore, notice that |z̄0| = A and that A is a function of both k1 and K. It is also important
to remark that since the considered input is the zero signal f(t) = 0, the estimated upper bounds
|zi|, i = 0, 1, 2 coincide with the estimated oscillations amplitude.
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3.2.3 Asymptotic Orbital Stability

For the purpose of introducing a gain selection criterion such that the chosen parameters give
rise to orbital stable oscilations, a stability condition as a function of the differentiator gains can
be obtained as follows. Recalling Loeb’s Criterion and considering both the DF of the 2-RED
(3.10) and the transfer function of the linear block (3.12), the inequality (2.18) yields the following
stability condition:

k
1/2
1 >

(
32δ20
πδ1

) 1
2

[
K
(
16−K4

)1/2
K4 + 16K2 + 16

]
k0. (3.19)

On the other hand, from the HB equation, solving (3.16) for k0 leads to

k0 =
K

a (16−K4)1/2
k
1/2
1 +

b
(
4−K2

)
k2

a (4 + K2) k1
. (3.20)

Therefore, from (3.19) and (3.20), the stability condition can be restated in terms of k2, k1 and K
as

k
3/2
1 >

 25/2δ0bK
(
4−K2

)3/2
(4 + K2)1/2

(
(πδ1)

1/2 a (K4 + 16K2 + 16)− 25/2δ0K2
)
 k2. (3.21)

In this way, (3.21) is used first to select k1 and k2 complying with the orbital stability condition,
then the corresponding k0 providing a suboptimal performance, that is, ensuring a local minimum
amplitude, can be computed with (3.20).

3.3 Gain Design Methodology

Based on the methodology used in the study of some SMC algorithms such as the STC and the
PID-CSMC (Pérez-Ventura & Fridman, 2019a; Pérez-Ventura et al., 2021), the proposed selection
methodology of the gains for the 2-RED comprise the following tasks:

• compute a pair of gains k1 and k2 giving rise to stable oscillations,

• given the pair of gains k1 and k2 ensuring orbital stability, adjust the remaining parameter
k0 in order to minimize the oscillations amplitude across the estimates of either z0 or z1.

This tasks can be achieved via the following three steps conforming the proposed algorithm:

1. fix k1 and k2 which ensure orbital stability according to the Loeb’s Criterion given by the
inequality (3.21),

2. find a K which minimizes the desired criterion; namely, A in (3.14) or |z1| in (3.18b),

3. given the minimizing K, compute k0 in terms of k1 and k2 with (3.20).

Following this methodology it is possible to find a gain k0 resulting in a set of parameters that
yield a local minimum chattering amplitude of the first derivative estimate given a pair k1 and k2
complying with the orbital stability condition.
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In order to exemplify it, the methodology is first shown for the case of minimizing |z̄0|, that is, the
amplitude of the delayed estimate of the input signal f(t).

3.3.1 Minimizing Gain for |z̄0|
According to the described methodology, in order to minimize |z̄0|, which coincides with A as given
in (3.14) as a function of K, a minimum is found for such function at

K2 = −4 + 25/2 ≈ 1.657 (3.22)

which in turn can be substituted into (3.20) and (3.21) to yield

k0 =
k
3/2
1 + 2(2− 21/2)bk2

23/2ak1
(3.23)

and

k
3/2
1 > 0.42235k2. (3.24)

In this way, a pair k1 and k2 ensuring orbital stability can be selected with (3.24); in turn, a
suboptimal k0 can be computed for such pair with (3.23). Note that the minimizing value of K is
given by a constant that must hold for any selection of the suboptimal parameters k.

3.3.2 Minimizing Gain for |z1|
In order to minimize the oscillations amplitude across the first derivative estimate, the amplitude
A given by (3.14) is substituted in the expression for |z1| in (3.18b), leading to a function of K for
which a minimum value can be found at

K2 =
2δ31k

3
1 − 8πk22 + 2

(
5δ61k

6
1 + 8πδ31k

3
1k

2
2

)1/2
δ31k

3
1 − 2πk22

(3.25)

This expression, just as in the previous case, can be substituted first into (3.21) to yield an orbital
stability condition for the selection of k1 and k2, and then into (3.20) to find a corresponding
suboptimal gain k0.

Note that given k2, it is not as straightforward to select k1 complying with the stability criteria as
can be done when minimizing |z̄0| via the inequality (3.24). Since the minimizing K is a function of
both k1 and k2, the suggested approach is to fix such pair of parameters and compute the respective
K with (3.25), then verify the feasibility of such selection via the inequality (3.21). Having attained
an appropriate selection of k1 and k2, k0 can be directly determined with (3.20), though.

3.4 Numeric Examples

In order to test the methodology, some sets of suboptimal gains can be found based on preexisting
suggested parameters for the 2-RED taken from the literature review. Accordingly, Table 3.2 shows
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Set k0 k1 k2 Reference

I 3.1 5.0 1.01 Sanchez, Cruz-Zavala, et al., 2018
II 6.0 5.0 0.2 Sanchez et al., 2016
III 3.45 5.65 1.1 Cruz-Zavala and Moreno, 2018
IV 4.44 5.75 0.5 Moreno, 2012
V 9.56 6.87 0.02 Ortiz-Ricardez et al., 2015

Table 3.2: Preexisting 2-RED gains sets found in the literature.

some reported sets of gains taken from previous works developed after a LF for the differentiator
was introduced for the first time by Moreno (2012).

Now, assuming a delay with µ = 0.01, the proposed selection algorithm can be applied in order to
determine some gain sets minimizing the estimated oscillations amplitude for either z0 or z1. For
the case of z0, first k1 and k2 are selected as given in Table 3.2 for each of the parameter sets and it
is verified that they satisfy with the stability condition (3.24). Then, the parameter K minimizing
the amplitude of the estimated oscillations across z0 is taken as (3.22). Finally, the remaining gain
k0 is computed from (3.23) with the corresponding values of k1, k2 and K.

For the case of z1, since the stability condition (3.21) involves both gains k1, k2 and the parameter
K, the value of K minimizing the amplitude of the estimated oscillations across z1 is first computed
from (3.25) with the values of k1 and k2 as given for each of the parameter sets in Table 3.2. Then,
the stability condition (3.21) is now verified for each pair k1, k2 and the corresponding parameter
K. Finally, the remaining gain k0 is computed from (3.20) with the determined values of k1, k2
and K.

It should be noticed that for the case of z1, the first and second steps of the design methodology
from Section 3.3 were swapped due to the fact that the corresponding stability condition includes
explicitely the parameter K, while for the case of z1 it just depends on k1 and k2. Nevertheless,
the tasks to be achieved by the methodology are well fulfilled for both cases. Namely, ensuring
stable oscillations from the pair of gains k1 and k2, and adjusting the remaining parameter k0 so
that the desired oscillations amplitude is minimized. Hence, the corresponding sets of parameters
obtained via the proposed methodology are shown in Tables 3.3 and 3.4 for the cases of minimizing
the oscillations amplitude for z0 and z1, respectively.

Set k0 k1 k2
I 3.23 5.0 1.01
II 3.2 5.0 0.2
III 3.46 5.65 1.1
IV 3.44 5.75 0.5
V 3.73 6.87 0.02

Table 3.3: Suboptimal 2-RED gains sets for minimal |z̄0|.

Following, some examples illustrating the predicted performance rendered by one of such sets of
suboptimal parameters sets are presented in comparison with actual results taken from simulations
for the 2-RED.
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Set k0 k1 k2
I 4.55 5.0 1.01
II 4.5 5.0 0.2
III 4.83 5.65 1.1
IV 4.84 5.75 0.5
V 5.27 6.87 0.02

Table 3.4: Suboptimal 2-RED gains sets for minimal |z1|.

3.4.1 Zero Function

The steady-state performance of the differentiator for the determined gains can be depicted with a
graph such as that in Fig. 3.2 for the parameters set I in Tables 3.2-3.4, where for a given delay µ
and a fixed pair k1 and k2, the oscillations amplitude are plotted against k0. Both the estimated
amplitude computed via the HB equation from (3.14) and that determined by computer simulation
are shown in the blue and red curves, respectively. In accordance with the study assumptions, the
zero function f(t) = 0 was considered to test the found suboptimal gains; therefore, the oscillations
arise due to nonzero initial conditions of the differentiator error. With respect to the simulation
results, two of them are distinguished: those considering the Padé approximant for the delay, and
the others dismissing such approximation in the simulation. Moreover, the estimated amplitude
corresponding to determined suboptimal gains are denoted with the black dots.

Additionally, in Figs. 3.3 - 3.5 the results from the simulation are plotted, showing the behavior of
the differentiator states. The chattering phenomenon can be appreciated as the convergence of the
trajectories to a limit cycle; accordingly, the amplitude values of such steady-state oscillations were
the ones used in the plots in Fig. 3.2. It can also be seen from those figures that the higher the
order of the derivative estimate, the higher the amplitude of the oscillations. Furthermore, from
the detailed views, it can be observed that although the assumption of a sinusoid holds well for z0,
it weakens for z1 and even more for z2 for which the signal is rendered triangular. Therefore, the
DF of the corresponding nonlinearity N2 in (3.9c) can be corrected as

N2corrected =
πk2
2A

. (3.26)

Taking into account such correction in the corresponding expressions for the first order approxima-
tions of z0, z1 and z2 given in (3.17), the magnitude upper bounds in (3.18) can be computed anew
as

|z0|corrected =

(2δ1k1A
1/3

πω2

)2

+

(
π2k2 − 4δ0k0A

2/3ω2

2πω3

)2
 1

2

, (3.27a)

|z1|corrected =

(πk2
2ω2

)2

+

(
2δ1k1A

1/3

πω

)2
 1

2

, (3.27b)

|z2|corrected =
πk2
2ω

. (3.27c)

26



1.0
2.0
3.0

|z
0|

×10−4 Oscillations Amplitude

1.0
2.0
3.0

|z 0
|

×10−4

0.5

1.0

|z 1
|

×10−2

1 2 3 4 5 6
k0

2.0

4.0

|z 2
|

×10−2

HB simulation simulation Padé

Figure 3.2: Steady-state response amplitude considering a delay µ = 0.01 and the fixed pair k1 = 5.0
and k2 = 1.01 of gains set I from Tables 3.2-3.4, varying k0.

By using the corrected upper bounds terms in (3.27), more accurate amplitude estimations can
be obtained as seen from a comparison between the plots from Fig. 3.6 and the former one from
Fig. 3.2; such improvement is less noticeable for |z0| and |z1| than for |z2|, though. Nevertheless, a
corresponding new expression for the K that minimizes the magnitude of the corrected term |z1| in
(3.27b) could be obtained, and consequently, updated criteria for the selection of the suboptimal
k0 which minimizes the chattering amplitude of the first derivative estimate.

Introducing the detailed views of each of the subplots from Fig. 3.6 in Figs. 3.3 - 3.5, it can
be seen that the estimations via the HB equation show a close agreement with the simulation
results considering the Padé approximation. Therefore, the determined suboptimal gains set yields
a minimum oscillation amplitude close to that achieved in the simulations. On the other hand,
omitting the Padé approximant in the simulations, the prediction of the oscillations amplitude not
only turns to be less effective, but also the minimum is attained with a gain k0 lying further from
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Figure 3.3: Simulation results for z0 considering a delay µ = 0.01 and the suboptimal gains of set
I from Table 3.4.

the determined suboptimal one. Nonetheless, the plots show that the methodology yields consistent
qualitative results in accordance with the considered assumptions and by using the other gains sets
from Tables 3.3 and 3.4 alike results could be obtained.

3.4.2 Sinusoidal Function

Considering a more illustrative case where f(t) 6= 0, the sinusoidal function

f(t) = 0.5sin(0.5t) + 0.5cos(t)

was introduced to perform further simulations. Accordingly, the evolution of the differentiator
states for both the cases with and without using the Padé approximant are shown in Fig. 3.10.
It can be appreciated that under the presence of the delay, the differentiator no longer converges
exactly to the base signal and its correspondent derivatives; this is particularly observed for the
last state z2.

Regarding the differentiation error, the plots from Figs. 3.11 and 3.12 show a detailed view of the
first derivative error ε1 for the two kinds of simulated cases, that is, with and without using the Padé
approximation. Besides the suboptimal gains set, the results for other two sets of parameters with
different values of k0 are plotted in order to appreciate the performance of the differentiatior under
such gain selection for a nonzero input signal. It can be appreciated that the curves describe small
amplitude oscillations across low frequency sinusoids. Therefore, in order to extract the amplitude
of such oscillations and make a graph such as that shown in Figs. 3.2 and 3.6, a further processing
must be performed to the resultant signals from the simulations. Such plots might result helpful to
better visualize the behavior of the differentiator for gains lying more closely to the suboptimal one.
Nevertheless, from the simulated cases it seems that the results obtained under the zero function
assumption may hold too for other kinds of signals as long as such inputs remain comparatively
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Figure 3.4: Simulation results for z1 considering a delay µ = 0.01 and the suboptimals gains of set
I from Table 3.4.

slow in comparison with regard to the high-frequency oscillations.
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Figure 3.5: Simulation results for z2 considering a delay µ = 0.01 and the suboptimal gains of set
I from Table 3.4.
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Figure 3.6: Steady-state response amplitude considering a delay µ = 0.01 and the fixed pair k1 = 5.0
and k2 = 1.01 of gains set I from Tables 3.2-3.4, varying k0; corrected terms due to the triangular
signal are considered for the amplitude estimation via the HB equation.
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Figure 3.7: Steady-state response amplitude for z0 considering a delay µ = 0.01 and the fixed pair
k1 = 5.0 and k2 = 1.01 of gains set I from Tables 3.2-3.4, varying k0.
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Figure 3.8: Steady-state response amplitude for z1 considering a delay µ = 0.01 and the fixed pair
k1 = 5.0 and k2 = 1.01 of gains set I from Tables 3.2-3.4, varying k0.
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Figure 3.9: Steady-state response amplitude for z2 considering a delay µ = 0.01 and the fixed pair
k1 = 5.0 and k2 = 1.01 of gains set I from Tables 3.2-3.4, varying k0.
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Figure 3.10: Simulation results considering a delay µ = 0.01 and the suboptimal gains of set I from
Table 3.4. f(t) = 0.5sin(0.5t) + 0.5cos(t) is considered as input signal.

34



0 2 4 6 8 10

t [s]

0.0

0.5

1.0

ε 1

Differentiation Error (ε1)

k0 = 4.549
(suboptimal)

k0 = 2 k0 = 10

9.90 9.95 10.00

0.5

1.0

1.5
×10−2

Figure 3.11: Simulation results for ε1 considering a delay µ = 0.01 and the suboptimal gains of
set I from Table 3.4. The results for two additional gains sets with different values of k0 are also
plotted. f(t) = 0.5sin(0.5t) + 0.5cos(t) is considered as input signal.
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Figure 3.12: Simulation results for ε1 considering a delay µ = 0.01 using a Padé approximation
and the suboptimal gains of set I from Table 3.4. The results for two additional gains sets with
different values of k0 are also plotted. f(t) = 0.5sin(0.5t) + 0.5cos(t) is considered as input signal.
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Chapter 4

Stability Analysis of the 2-RED

4.1 Stability Analysis for the Nominal Case

Even though a set of suboptimal gains like the ones presented on the previous chapter has been
determined, a problem regarding the feasibility of that parameters still remains; namely, to prove
that the differentiator preserves its properties of global asymptotic stability for such parameters.
Although under the considered assumptions such gains sets ensure the existence of an orbitally
stable periodic solution minimizing the amplitude of the chattering, this is only verified within a
region where the approximation of the steady-state response given by its fundamental harmonic,
as in (3.2), holds. Therefore, in agreement with the approach in Pérez-Ventura et al. (2021),
the asymptotic stability of the error dynamics (2.6) is proved for the ideal case, that is, without
considering the time delay in the scheme of Fig. 1.1. This can be done by using a pre-existing
LF candidate such as the ones found in the reviewed literature. Furthermore, this is first done by
considering the nominal case, that is, with ψ(t) = 0 in (2.6).

4.1.1 Lyapunov Function Candidate

Recall the error dynamics of the 2-RED introduced in Subsection 2.3.2

ε̇0 = −k0dε0c
2
3 + ε1,

ε̇1 = −k1dε0c
1
3 + ε2,

ε̇2 = −k2dε0c0 + ψ(t),

(4.1)

where εi = zi−f (i)0 (t), i = 0, 1, 2 was defined as the differentiation error and the term ψ(t) = −f (3)0 (t)
was considered as a disturbance. Assuming an input signal without noise; that is, f(t) = f0(t),
Sanchez et al. (2016) proved

V (ε) = α0|ε0|
5
3 − α01ε0ε1 + α1|ε1|

5
2 + α02dε0c

4
3 ε2 − α12ε1dε2c3 + α2|ε2|5 (4.2)

to be a LF for (4.1) for the nominal case without perturbation; that is, for ψ(t) = 0. In that work,

some sets of coefficients α =
[
α0 α01 α1 α12 α2

]>
and the corresponding differentiator gains

k =
[
k0 k1 k2

]>
were found via both the Pólya and the SOS methods.
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Since a set of gains k can be found with the methodology presented in the previous chapter, the
remaining problem consists in finding a set of coefficients α which renders (4.2) a LF for the error
dynamics (4.1) considering the ideal case without time delay as well as an input function complying

with the condition f
(3)
0 (t) = 0. This problem can be tackled via the approach devised by Sanchez

and Moreno (2019) introduced in Chapter 2 which comprises the following two stages:

1. determine a set of classical forms associated to the GFs corresponding to the LF candidate
V and the derivative W = −V̇ ,

2. find a set of coefficients α which guarantee the positive definiteness of the set of forms via
the Pólya or SOS methods.

4.1.2 Associated Forms Computation

Since the image of a GF with rational exponents can be represented as the image of a set of
classical forms, the problem of verifying its positive definiteness can be posed as that of proving
the corresponding set of forms to be PD. Once this set of classical forms, commonly known as the
associated forms (AFs) is found, some procedure such as the Pólya or SOS techniques mentioned in
Chapter 2 can be used to verify its positive definiteness. In like manner, the same approach allows
to determine the coefficients of a GF, such as the LF candidate (4.2), to render it PD.

Each form in the set of AFs can be obtained via a change of coordinates which serves two purposes;
namely, to transform the former GF into another one with integer exponents, and to restrict its
domain to the open positive hyperoctant P. Just as the case of quadrants in R2, hyperoctants are
the generalization of this concept to Rn; therefore, Oγ and Oγ , γ = 1, . . . , 2n denote the open and
closed hyperoctants in Rn, respectively. Accordingly, the open positive hyperoctant in Rn is denoted
as P = {x ∈ Rn | xi > 0, i = 1, . . . , n}, whereas the closed one, as P {x ∈ Rn | xi ≥ 0, i = 1, . . . , n}.
Thus, let f : Rn → R be a GF with rational exponents, then for each of the hyperoctants in Rn, a
corresponding form fγ : P → R, γ = 1, . . . 2n can be obtained as fγ = f ◦ φγ , where φγ : P → Oγ
is a homeomorphism given by

φγ(ζ) =
[
σ1dζ1cι1 . . . σndζncιn

]>
(4.3)

with ιi ∈ Z>0, i = 1, . . . , n selected appropriately in order to yield each fγ a form with integer expo-
nents and well defined homogeneity degree, and σi denoting the sign of xi in the open hyperoctant
Oγ .

Finally, according with Sanchez and Moreno (2019), define fγ : P → R as the extension of the

form fγ : P → R, that is, the function defined for all x ∈ P by using the same correspondence rule
of fγ , then the set {fγ} corresponds to the AFs of f .

Hence, for the LF candidate (4.2) with ε ∈ R3, the following hyperoctants can be distinguished:
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O1 =
{
ε ∈ R3 | ε0 > 0, ε1 > 0, ε2 > 0

}
,

O2 =
{
ε ∈ R3 | ε0 > 0, ε1 > 0, ε2 < 0

}
,

O3 =
{
ε ∈ R3 | ε0 > 0, ε1 < 0, ε2 > 0

}
,

O4 =
{
ε ∈ R3 | ε0 > 0, ε1 < 0, ε2 < 0

}
,

O5 =
{
ε ∈ R3 | ε0 < 0, ε1 < 0, ε2 < 0

}
,

O6 =
{
ε ∈ R3 | ε0 < 0, ε1 < 0, ε2 > 0

}
,

O7 =
{
ε ∈ R3 | ε0 < 0, ε1 > 0, ε2 < 0

}
,

O8 =
{
ε ∈ R3 | ε0 < 0, ε1 > 0, ε2 > 0

}
.

(4.4)

Now, let P =
{
ζ ∈ R3 | ζ0 > 0, ζ1 > 0, ζ2 > 0

}
denote the open positive hyperoctant and consid-

ering the sign of the components of ε in the hyperoctants (4.4), define the following change of
coordinates φγ : P → Oγ , γ = 1, . . . , 8 computed from (4.3) as

φ1(ζ) =
[
dζ0c3 dζ1c2 dζ2c

]>
,

φ2(ζ) =
[
dζ0c3 dζ1c2 −dζ2c

]>
,

φ3(ζ) =
[
dζ0c3 −dζ1c2 dζ2c

]>
,

φ4(ζ) =
[
dζ0c3 −dζ1c2 −dζ2c

]>
,

φ5(ζ) =
[
−dζ0c3 −dζ1c2 −dζ2c

]>
,

φ6(ζ) =
[
−dζ0c3 −dζ1c2 dζ2c

]>
,

φ7(ζ) =
[
−dζ0c3 dζ1c2 −dζ2c

]>
,

φ8(ζ) =
[
−dζ0c3 dζ1c2 dζ2c

]>
.

(4.5)

Therefore, from the homeomorphism (4.5) and the LF candidate (4.2), the corresponding classical
forms can be obtained as Vγ = V ◦ φγ , γ = 1, . . . , 8 leading to

V1(ζ) = V5(ζ) = α0ζ
5
0 − α01ζ

3
0ζ

2
1 + α1ζ

5
1 + α02ζ

2
0ζ2 − α12ζ

2
1ζ

3
2 + α2ζ

5
2 ,

V2(ζ) = V6(ζ) = α0ζ
5
0 − α01ζ

3
0ζ

2
1 + α1ζ

5
1 − α02ζ

2
0ζ2 + α12ζ

2
1ζ

3
2 + α2ζ

5
2 ,

V3(ζ) = V7(ζ) = α0ζ
5
0 + α01ζ

3
0ζ

2
1 + α1ζ

5
1 + α02ζ

2
0ζ2 + α12ζ

2
1ζ

3
2 + α2ζ

5
2 ,

V4(ζ) = V8(ζ) = α0ζ
5
0 + α01ζ

3
0ζ

2
1 + α1ζ

5
1 − α02ζ

2
0ζ2 − α12ζ

2
1ζ

3
2 + α2ζ

5
2 .

(4.6)

Note that due to the symmetry of V , it is just necessary to test positive definiteness of half the
forms. Also, for simplicity, the notation expressing the extension of the resulting forms is omitted,
that is, instead of V γ the AFs are just denoted as Vγ . Likewise, for W given by

W (ε) = β1|ε0|
4
3 − β2dε0c

2
3 ε1 + β3dε0c

1
3 dε1c

3
2 + β4|ε1|2 + β5ε0ε2 − β6|ε0|

1
3 ε1ε2

− β7dε1c
3
2 ε2 − β8dε0c0ε1|ε2|2 − β9dε0c

1
3 dε2c3 + β±10|ε2|4

(4.7)

with
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β1 =
5

3
α0k0 − α01k1 + α02

(
k2 − dε0c0ψ(t)

)
, β6 =

4

3
α02,

β2 =
5

3
α0 − α01k0, β7 =

5

2
α1,

β3 =
5

2
α1k1, β8 = 3α12

(
k2 − dε0c0ψ(t)

)
,

β4 = α01, β9 = α12k1,

β5 = α01 +
4

3
α02k0, β10 = α12 + 5α2

(
k2dε0c0dε2c0 − dε2c0ψ(t)

)
,

(4.8)

the set of AFs can be obtained as Wγ = W ◦φγ , γ = 1, . . . , 8 by taking ψ(t) = 0 in the corresponding
coefficients β1, β8 and β10 in (4.8), leading to

W1(ζ) = W5(ζ)

= β1ζ
4
0 − β2ζ20ζ21 + β3ζ0ζ

3
1 + β4ζ

4
1 + β5ζ

3
0ζ2 − β6ζ0ζ21ζ2 − β7ζ31ζ2 − β8ζ21ζ22 − β9ζ0ζ32 + β+10ζ

4
2 ,

W2(ζ) = W6(ζ)

= β1ζ
4
1 − β2ζ20ζ21 + β3ζ0ζ

3
1 + β4ζ

4
1 − β5ζ30ζ2 + β6ζ0ζ

2
1ζ2 + β7ζ

3
1ζ2 − β8ζ21ζ22 + β9ζ0ζ

3
2 + β−10ζ

4
2 ,

W3(ζ) = W7(ζ)

= β1ζ
4
1 + β2ζ

2
0ζ

2
1 − β3ζ0ζ31 + β4ζ

4
1 + β5ζ

3
0ζ2 + β6ζ0ζ

2
1ζ2 + β7ζ

3
1ζ2 + β8ζ

2
1ζ

2
2 − β9ζ0ζ32 + β+10ζ

4
2 ,

W4(ζ) = W8(ζ)

= β1ζ
4
1 + β2ζ

2
0ζ

2
1 − β3ζ0ζ31 + β4ζ

4
1 − β5ζ30ζ2 − β6ζ0ζ21ζ2 − β7ζ31ζ2 + β8ζ

2
1ζ

2
2 + β9ζ0ζ

3
2 + β−10ζ

4
2 ,

(4.9)

where

β+10 = α12 + 5α2k2 and β−10 = α12 − 5α2k2.

4.1.3 Positive Definiteness Verification

In order to determine the set of coefficients α for which the sets of AFs {Vi} and {Wi} are PD and,
consequently, show that (4.2) is a LF, the SOS procedure can be applied. Recall from Chapter
2, that this approach requires the forms to be of even degree. Therefore, the following change of
coordinates can be introduced to comply with this requirement

ζ =
[
η21 η22 η23

]>
. (4.10)

After applying the change of coordinates (4.10) and introducing the parameter θ, the set of AFs
(4.6), can be brought to a structure suitable for the SOS approach, resembling that given by (2.27).
Hence, for the set {Vi} we obtain
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Ṽ1(η) = (α0 − θ)η100 − α01η
6
0η

4
1 + (α1 − θ)η101 + α02η

8
0η

2
2 − α12η

4
1η

6
2 + (α2 − θ)η102 ,

Ṽ2(η) = (α0 − θ)η100 − α01η
6
0η

4
1 + (α1 − θ)η101 − α02η

8
0η

2
2 + α12η

4
1η

6
2 + (α2 − θ)η102 ,

Ṽ3(η) = (α0 − θ)η100 + α01η
6
0η

4
1 + (α1 − θ)η101 + α02η

8
0η

2
2 + α12η

4
1η

6
2 + (α2 − θ)η102 ,

Ṽ4(η) = (α0 − θ)η100 + α01η
6
0η

4
1 + (α1 − θ)η101 − α02η

8
0η

2
2 − α12η

4
1η

6
2 + (α2 − θ)η102 .

(4.11)

Likewise, for {Wi} we get

W̃1(η) = (β1 − θ)η80 − β2η40η41 + β3η
2
0η

6
1 + (β4 − θ)η81 + β5η

6
0η

2
2

− β6η20η41η22 − β7η61η22 − β8η41η42 − β9η20η62 + (β+10 − θ)η82,
W̃2(η) = (β1 − θ)η80 − β2η40η41 + β3η

2
0η

6
1 + (β4 − θ)η81 − β5η60η22

+ β6η
2
0η

4
1η

2
2 + β7η

6
1η

2
2 − β8η41η42 + β9η

2
0η

6
2 + (β−10 − θ)η82,

W̃3(η) = (β1 − θ)η80 + β2η
4
0η

4
1 − β3η20η61 + (β4 − θ)η81 + β5η

6
0η

2
2

+ β6η
2
0η

4
1η

2
2 + β7η

6
1η

2
2 + β8η

4
1η

4
2 − β9η20η62 + (β+10 − θ)η82,

W̃4(η) = (β1 − θ)η80 + β2η
4
0η

4
1 − β3η20η61 + (β4 − θ)η81 − β5η60η22

− β6η20η41η22 − β7η61η22 + β8η
4
1η

4
2 + β9η

2
0η

6
2 + (β−10 − θ)η82.

(4.12)

Once the forms (4.11) and (4.12) have been determined, the remaining task consists in finding

a set of coefficients α which guarantee
{
Ṽi

}
and

{
W̃i

}
to be SOSs and, therefore, PD. This

can be approached in a straightforward manner with the aid of a specialized software such as
SOSTOOLS (Prajna et al., 2002). This software allows to formulate a SOS problem by defining
a set of inequalities as well as the unknowns acting as the decision variables to be found. Thus,
recalling the suboptimal gains sets from the previous chapter and substituting their values into
the corresponding terms β in (4.8), the coefficients α remain to be the only unknowns to be

found. Accordingly, considering the inequalities
{
Ṽi(η) > 0

}
and

{
W̃i(η) > 0

}
, and setting α as

the decision variables, a SOS problem can be formulated, from which SOSTOOLS returns the
parameters α which render (4.11) and (4.12) SOSs, and consequently, PD; the positive definiteness
of (4.2) and (4.7) follows, as a result.

Considering θ = 0.1, the computed LF coefficients α for each of the suboptimal gains sets from
Table 3.4 are presented in Table (4.1). As a result, Lyapunov stability is proved; moreover, due to
the homogeneity properties of the 2-RED, finite-time global asymptotical stability is ensured for
the ideal case without delay.

Set k0 k1 k2 α0 α01 α1 α02 α12 α2

I 4.55 5.0 1.01 615.5 456 125.9 66.9 31.5 5.8
II 4.5 5.0 0.2 52 34.8 10.4 12.7 13.6 12.3
III 4.83 5.65 1.1 809.8 578.6 149.2 86.7 33.3 5.7
IV 4.84 5.75 0.5 154.6 106.6 29.01 27.8 17.1 6.3
V 5.27 6.87 0.02 70.4 39.7 8.78 19.3 9.2 71.1

Table 4.1: Parameters α for the suboptimal gains sets k miniminizing |z1|.

Note that these results are only known to be valid for the nominal case error dynamics (2.6) with
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ψ = 0. Therefore, to investigate the robustness in the presence of disturbances, that is, for input

signals with f
(3)
0 (t) 6= 0 a further study must be done.

4.2 Stability Analysis for the Perturbed Case

Regarding the perturbed case with ψ(t) 6= 0, a maximum bound ∆0 can be found such that for any
disturbance satisfying |ψ(t)| ≤ ∆0, the form W given by (4.7) remains PD and, consequently, the
results from the previous section remain valid. Then, considering the coefficients β involving such
disturbance in (4.8), the term ±∆0 can be substituted for ψ(t) accounting for its possible extreme
values. Accordingly, two different cases can be distinguished:

• the first one, considering ∆0, with

β1 =
5

3
α0k0 − α01k1 + α02 (k2 + ∆0) , β+10 = α12 + 5α2 (k2 + ∆0) ,

β8 = 3α12 (k2 + ∆0) , β−10 = α12 − 5α2 (k2 + ∆0) ,
(4.13)

• and the second one, considering −∆0, with

β1 =
5

3
α0k0 − α01k1 + α02 (k2 −∆0) , β+10 = α12 + 5α2 (k2 −∆0) ,

β8 = 3α12 (k2 −∆0) , β−10 = α12 − 5α2 (k2 −∆0) .
(4.14)

Keeping the remaining coefficients of β as defined previously, and substituting the found values
of the coefficients α, a new SOS problem can be formulated for each gain set with ∆0 being the
corresponding decision variable. Therefore, the SOSTOOLS software can be used to search for a
solution satisfying simultaneously both cases corresponding to ∆0 and −∆0 as given in (4.13) and

(4.14), respectively. Such solution will ensure the positive definiteness of the forms
{
W̃i

}
, and,

therefore of W , proving the robustness to bounded disturbances complying with the aforementioned
condition |ψ(t)| ≤ ∆0. The determined bounds ∆0 are shown in Table 4.2, complementing the
results from Table (4.1) for the perturbed case.

Set k0 k1 k2 α0 α01 α1 α02 α12 α2 ∆0

I 4.55 5.0 1.01 615.5 456 125.9 66.9 31.5 5.8 0.032
II 4.5 5.0 0.2 52 34.8 10.4 12.7 13.6 12.3 0.018
III 4.83 5.65 1.1 809.8 578.6 149.2 86.7 33.3 5.7 0.035
IV 4.84 5.75 0.5 154.6 106.6 29.01 27.8 17.1 6.3 0.027
V 5.27 6.87 0.02 70.4 39.7 8.78 19.3 9.2 71.1 0.002

Table 4.2: Parameters α and ∆0 for the suboptimal gains sets k minimizing |z1|.

In addition, ∆0 can be used to provide a scaling for both the gains and the LF coefficients α
preserving the stability properties for the perturbed case with bounded disturbances |ψ(t)| ≤ ∆
and, consequently, extending the results obtained for the nominal case allowing a broader class of
input signals.

According to Sanchez et al. (2016), given a set of coefficients α and gains k such that (4.2) is a LF
for the perturbed 2-RED error dynamics (2.6) with a bounded perturbance ψ(t) complying with

41



|ψ(t)| ≤ ∆0, and considering |ψ(t)| ≤ ∆, ∀t ≥ 0 for any ∆, the origin of (2.6) is finite-time stable
with the scaled parameters

k̄ =
[
k̄0 k̄1 k̄2

]>
=
[
L

1
3k0 L

2
3k1 Lk2

]>
(4.15)

where L = ∆/∆0. Moreover, (4.2) is a LF for (2.6) with the scaled coefficients

ᾱ =
[
ᾱ0 ᾱ01 ᾱ1 ᾱ02 ᾱ12 ᾱ2

]>
=
[
L−

5
3α0 L−2α01 L−

5
2α1 L−

7
3α02 L−4α12 L−5α2

]>
.

(4.16)

Although such results assume noiseless continuous-time conditions, the scaling can still be used for
the considered case under a time delay to guarantee bounded trajectories for an input base signal

f0(t) satisfying
∣∣∣f (3)0 (t)

∣∣∣ ≤ ∆.

4.3 Numeric Example

In order to illustrate the scaling procedure, consider an input signal f(t) = cos(2t) for which the
considered suboptimal gains of set I from Table 4.2 cannot longer deal with the corresponding
disturbance |ψ| ≤ 8. Thus, for the corresponding bounds ∆0 = 0.032 and ∆ = 8 a scaling term
L = 250 is obtained. Applying such scaling, the simulation results for the differentiation error ε1 are
shown in Figs. (4.1) and (4.2) for both cases with and without considering the Padé approximation;
additionally, the case for a scaling term L = 10 is also plotted. It can be noticed that although
both scalings allow the differentiator to converge to a permanent state oscillatory regime, that with
L = 250 gives rise to a considerably greater chattering amplitude in comparison with the other
selected scaling term which despite being two orders of magnitude smaller, allows to deal with the
disturbance too. This fact may be explained due to the conservative bound ∆0 found previously
that leads to an overestimation of the corresponding scaling L. Therefore, although the mentioned
procedure works, it would be more convenient to choose a smaller scaling gain by other means in
order to improve the steady-state performance.

42



0 2 4 6 8 10

t [s]

0.0

2.0

4.0

6.0

8.0

ε 1

Differentiation Error (ε1)

L = ∆
∆0

= 250 L = 10

9.90 9.95 10.00

−5.0

0.0

5.0
×10−1

Figure 4.1: Simulation results for ε1 considering a delay µ = 0.01 and the suboptimal gains of set
I from Table 4.2. f(t) = cos(2t) is considered as input signal.
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Figure 4.2: Simulation results for ε1 considering a delay µ = 0.01 using a Padé approximation and
the suboptimal gains of set I from Table 4.2. f(t) = cos(2t) is considered as input signal.
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Chapter 5

Conclusions

During this work, the issue of the gains design for the 2-RED was studied under a frequency
approach. Taking advantage of the structure of the differentiator, a DF for such system was
computed under the assumption that a constant time delay may account for the nonidealities
giving rise to the chattering phenomenon during a real-time differentiation task. Furthermore,
considering that the resulting motion could be decomposed as arising from two different subsystems,
one pertaining to a slow component, and the other related to comparatively fast steady-state self
oscillations, the DF method was used to investigate the permanent regime oscillatory response.
Based on such technique and considering a first order approximation for the delay, a selection
criterion for the parameters of the differentiator was found meeting the stated objectives of this
work. Namely,

• approximated amplitude values for the possible oscillations due to the introduction of the
time delay were calculated as a function of the differentiator gains,

• some suboptimal sets of gains leading to a minimization of the computed oscillations ampli-
tude were found,

• it was shown that if the expected oscillations exist, they are to be orbitally asymptotically
stable,

• moreover, it was proved that the ideal differentiator without delay preserves global finite time
convergence given such suboptimal sets of parameters.

Additionally, the extension of such results to the perturbed case was suggested by considering a
scaling given as a function of estimated upper bounds of the allowed disturbances for the nominal
case.

With respect to the practical usefulness of these results, comparison between the steady-state es-
timated performance of the suboptimal gains via the frequency methods and that determined via
simulations show a close agreement if the assumption of a first order Padé approximant for the
delay holds; the likeness of the expected behavior is not quite as exact when such approximation
is dismissed, though. This could be further explained due to the fact that the DF is an approx-
imation technique too. Therefore, this approach may result better-suited for a qualitative study
as exemplified in the present work. Although the predicted chattering amplitude may not match
accurately the actual one arisen in the simulations, restricting the attention to the latter, the
amplitude values corresponding to the determined suboptimal gains do not differ too much from
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the actual minima. As such, the devised selection criterion could be regarded as an assisting, yet
not so straightforward to use, tool to enhance the performance of given parameters sets since it
involves the numerical solution of some equations. Moreover, a further study needs to be done in
order to reliably assert for which kind of input signals such results remain valid as well as assess
their consistency under the presence of measurement noise. Finally, their congruence with existent
results concerning discretization could be investigated too.

In view of the aforementioned issues, future work aiming to improve the reliability of the results
yielded by the gains selection criterion could be encompassed in two different directions: the first
one regarding the considered model of the time delay and the second one pertaining the frequency
method to be used. With respect to the time delay, a higher-order approximation may be intro-
duced, or even it could be attempted to exclude such approximation. Concerning the frequency
method to be used, some more complex techniques known to render more accurate results such as
the DIDF, the LPRS and that due to Tsypkin may be studied. Moreover, both research lines could
be merged.
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