

UNIVERSIDAD NACIONAL AUTÓNOMA DE MEXICO

DOCTORADO EN CIENCIAS BIOMÉDICAS IDENTIFICACIÓN DE ALTERACIONES PERSISTENTES EN LA METILACIÓN DE ADN DURANTE LA DIFERENCIACIÓN DEL ADIPOCITO EN PACIENTES OBESOS DIABÉTICOS Y NO DIABÉTICOS

TESIS: QUE PARA OPTAR POR EL GRADO DE: DOCTOR EN CIENCIAS

> PRESENTA: ELAHEH MIRZAEICHESHMEH

DIRECTORA DE TESIS:

DRA. LORENA SOFÍA OROZCO OROZCO

INSTITUTO NACIONAL DE MEDICINA GENÓMICA

MIEMBROS DEL COMITÉ TUTOR: DRA.SARA FRÍAS VÁZQUEZ INSTITUTO DE BIOMEDICAS, UNAM DR. ROLANDO HERNÁNDEZ MUÑOZ INSTITUTO DE FISIOLOGÍA CELULAR, UNAM CIUDAD DE MÉXICO, MAYO DE 2022

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Agradecimientos

Primero quiero agradecer a Dios, quien puso en mi destino la posibilidad de seguir estudiando y de enamorarme del área de investigación.

A mi familia por todo el amor incondicional, apoyo y tolerar la distancia entre nosotros que me permitió seguir adelante mi carrera académica.

A la Dra. Lorena Orozco, por aceptarme como su alumna, por su confianza y amistad; por otorgarme su tiempo para compartirme sus conocimientos y darme el ejemplo de lo que significa ser una gran investigadora; por mostrarme la pasión y la dedicación en la investigación. Por ser una gran profesora de vida y que cambió mi percepción de ver la vida de manera favorable.

A Dr. Francisco Barajas Olmos por su interés en el proyecto, por su compañerismo y su paciencia en las diferencias del idioma, así como su apoyo para desarrollar este proyecto y presencia durante todo mi doctorado.

A Dr. Federico Centeno por su apoyo y atención al proyecto.

A mis amigos y compañeros durante todos estos años viviendo en México por su amor y apoyo emocional en cada momento. Que formaron como familia mexicana para mi. Especialmente a María Antonieta Querra Vargas, Ian Ilizaliturri Floresy a mi novio Ehecatl Miguel Ángel García.

A Conacyt por darme la beca lo que nos permite estudiar en este país.

INDICE

Índice De Tablas	3
Índice De Figuras	4
Lista De Abreviaturas	5
Resumen	6
Introducción	7
Epidemiologia de Diabetes Tipo 2	7
Fisiopatología de diabetes tipo 2	7
Critérios diagnósticos de diabetes tipo 2	9
Factores de riesgo para desarrollar diabetes tipo 2	9
Cuantificación y clasificación de la obesidad según el IMC (kg/m2)	10
El tejido adiposo	11
Tejido adiposo blanco (TAB)	12
La Inflamación del tejido adiposo	12
El proceso de adipogénesis: los etapas y factores involucradas	13
Alteraciones estructurales relacionadas con TA y DT2	15
Factores genéticos de DT2	16
Epigenética	18
Epigenética y DT2	19
Epigenética y su influencia en la adipogénesis	20
Justificación	21
Hipótesis	21
Objetivo general	22
Objetivos específicos	22
Material y métodos	22
Estrategia general	22
Criterios de inclusión	23
Criterios de exclusión	24
Biopsias de tejido adiposo	24
Preparación de las muestras en parafina	25
Análisis de área de adipocitos en las imágenes de histología	25
Aislamiento de células madre derivadas de tejido adiposo	25
Cuantificación de células CM con citometría de flujo	26
Diferenciación adipogénica	27
Extracción de ADN	28
Extracción de ARN	28
Análisis de metilación del genoma	29
Análisis de expresión génica	29
Análisis estadístico	29
Análisis de vías	30

31
31
33
37
37
38
39
46
47
49
54
59
71
84

Índice de tablas

Tabla 1. Características clínicas de pacientes obesos sometidos a cirugía	
bariátrica(n=71)	31
Tabla 2. Características clínicas de pacientes obesos con y sin	
diabetes donadoras de células madre derivados de adipocitos	34
Tabla 3. Primeros 20 DMCs, agrupados por etapa de adipogénesis	42
Tabla 4. Vías comunes alteradas en las etapas de adipogénesis (CM, PreA y AM) en los diabéticos	44
Tabla 5. DMR obtenidos de tres etapas de adipogénesis en muestras de OD	46
Tabla 6. Lista de DMCs persistentes con correlación significativa con la	
expresión génica	48
Tabla 7. Términos enriquecidos en el análisis ontológico de CDMs con	
correlación significativa con la expresión génica	48
Tabla 8. Lista de DMCs presentes durante la adipogenesis, comparación de los grupos de (PreA-OD vs CM-OD)	84
Tabla 9. Lista de CDT2s presentes durante la adipogenesis, comparación de	07
IOS GIUDOS DE (AM-OD VS CM-OD) Tabla 10, Lista do CDT2s prosontos on adipogónosis, comparación do los	87
arupos de (PreA-OND vs CM-OND)	90
	00
Tabla 11. Lista de CDT2s presentes en adipogenesis, comparación de los	02
giupos de (AM-OND VS CM-OND) Tabla 12 Lista de CDT2s presentes en la etapa de CM, comparación de los	93
arunos de OD v OND	97
Tabla 13. Lista de DMCs presentes en la etapa de PreA. comparación de los	07
grupos de OD y OND	100
Tabla 14. Lista de CDT2s presentes en la etapa de AM, comparación de los grupos de OD y OND	103
Tabla 15. Términos enriquecidos de los perfiles de metilación de 115 genes	
compartidas en el análisis ontológico de genes de los procesos	
biológicos	106
Tabla 16. Términos enriquecidos en el análisis ontológico de DMCs en la etapa	
de CM	108
Tabla 17. Términos enriquecidos en el análisis ontológico de DMCs en la etapa	
de pera	111
Tabla 18. Términos enriquecidos en el análisis ontológico de DMCs en la etapa	
de MA	138

Índice de figuras

Figura 1. Proceso de adipogénesis	15
Figura 2. Estrategia general	23
Figura 3. Expresión génica en las etapas CM y AM de pacientes con OD y ON	27
Figura 4. Medición del área de adipocito utilizando ImageJ/ Adipocyte tool	32
Figura 5. Comparación del área del adipocito con HOMA-IR pacientes	33
Figura 6. Tipificación de células mesénquimas	35
Figura 7. Evaluación de etapas del proceso de diferenciación a adipocito maduro	36
Figura 8. Niveles de expresión génica de marcadores específicos como	
FABP4, SLC24A, PPARG del proceso de adipogénesis durante 18	
días de Inducción de CM a AM	37
Figura 9. La metilación global del ADN en tres etapas de la diferenciación,	
ordenada por la posición en el gen	38
Figura 10. El diagrama de Venn muestra una comparación de DMC de	
muestras OD y OND en las diferentes etapas	39
Figura 11. Resultados del análisis de PCA, basados en 115 DMCs persistentes	40
Figura 12. Correlación significativa entre el componente principal 1 (PC1) y los	
valores de %Hb1Ac	41

Lista de Abreviaturas

DT2	Diabetes tipo 2		
DMCs	Sitios CpG diferencialmente metilados		
CpG	Dinucleótido citosina fosfato guanina		
ADN	Ácido desoxirribonucleico		
Hb1Ac	Hemoglobina glucosilada		
HDL	Lipoproteínas de alta densidad (Del inglés: High density lipoprotein)		
HOMA-B	Modelo de Determinación de Homeostasis de la actividad del		
	pancreas (Del inglés homeostasis model assessment)		
IMC	Índice de masa corporal		
Kg	Kilogramos		
mg	Miligramos		
OD	Pacientes Obesos con Diabetes		
OND	Pacientes Obesos sin Diabetes		
RI	Resistencia a la insulina		
RIN	Valor de la integridad del RNA (RNA Integrity Number)		
ARN	Ácido Ribonucleico		
ТА	Tejido adiposo		
TAB	Tejido adiposo blanco		
TAS	Tejido adiposo subcutáneo		
TAV	Tejido adiposo visceral		
UTR	Regiones no traducidas (del inglés: Untranslated Region)		
GWAS	Estudio de asociación de genoma completo		
СМ	Celulas mesenquimales		
PreA	Pre adipocitos		
AM	Adipocito maduro		

Resumen

La regulación de la adipogénesis es crucial para la función del adipocito maduro. Sin embargo, la homeostasis de la adipogénesis se afecta por procesos como la obesidad; un impulsor importante de la Diabetes tipo 2 (DT2). Actualmente, esta desregulación permanece poco caracterizada, por lo que el presente estudio se centró en identificar perfiles de metilación de ADN alterados en pacientes obesos con diabetes, durante tres etapas de diferenciación de adipocitos. Nosotros aislamos células mesénquimales desde el tejido adiposo visceral de pacientes obesos con y sin diabetes para analizar los perfiles de metilación del ADN a los 0, 3 y 18 días de la diferenciación *ex vivo*. Documentamos el impacto de las alteraciones persistentes en la metilación del ADN sobre la expresión génica en estos pacientes y la metilación se analizó con los microarreglos EPIC y la expresión génica con el microarreglo de Clarion S. El análisis de metilación en todo el genoma mostró que los pacientes con DT2 tenían alteraciones epigenéticas en todas las etapas analizadas.

Se observaron alteraciones principalmente en los genes importantes en la adipogénesis, como la resistencia a la insulina, la programación de la muerte celular y los procesos inmunológicos. Es importante destacar que, a los 3 días, encontramos cambios de CpG con hasta seis veces mayor metilación que en las otras etapas. Además, este estudio fue el primero en documentar marcadores epigenéticos que persistieron durante las tres etapas de la adipogénesis y su impacto en la expresión. Estos hallazgos sugirieron que existen marcadores que podrían participar en la memoria metabólicos celulares que podrían estar involucradas en la diabetes tipo 2. Nuestros datos también proporcionaron evidencia de que, a lo largo del proceso de adipogénesis, aparecen alteraciones en la metilación que podrían afectar la función de los adipocitos maduros, causar un mal funcionamiento de los tejidos y, potencialmente, conducir al desarrollo de la DT2. Además de las alteraciones epigeneticas de los adicpocitos, los resultados de expresión génica nos indican que la alteración en el incremento del tamaño del adipocito correlaciona con expresión de genes que participan en vías involucradas con la fisiopatología de la enfermedad.

Introducción

Epidemiologia de Diabetes Tipo 2

Cada año la Organización Mundial de la Salud (OMS) reporta una mayor prevalencia de personas que padecen diabetes a nivel mundial, por lo que se considera como una epidemia silenciosa que afecta desde niños hasta adultos, provocando un problema de salud pública (1). La diabetes se define como un grupo de alteraciones metabólicas caracterizadas por hiperglucemia que conducen a complicaciones microvasculares y cardiovasculares que aumenta la morbimortalidad (2). De acuerdo con la OMS actualmente 463 millones de personas en el mundo padecen diabetes, y se estima que para el año 2030 la prevalencia será de 578 millones así que para el 2045 aumentará hasta 700 millones. En México la prevalencia y la incidencia de sobrepeso y obesidad van en aumento. En el periodo de 2012 a 2020, se observó que la obesidad en los hombres incrementó un 17.5% y en las mujeres un 7.2%. En el año 2019, 260 mil muertes fueron a causa de la obesidad, aunado a 104 mil por diabetes y 156 mil por complicaciones cardiovasculares (3). Actualmente, México se encuentra en el sexto lugar de prevalencia con más de 12 millones de personas con diabetes y es la segunda causa de muerte en el país, según datos de la Federación Internacional de Diabetes. Los tipos de diabetes más comunes son diabetes tipo 1, diabetes tipo 2 (DT2) y diabetes gestacional, siendo la DT2 la más frecuente (4). En las personas con DT2 el grado de resistencia a la insulina es variable, sin embargo, también puede existir un déficit en la producción de esta hormona.

Fisiopatología de diabetes tipo 2

Inicialmente, la DM2 se definió como la insuficiencia de las células β pancreáticas para secretar insulina o la resistencia a la acción insulina en los tejidos blanco, con una gluconeogénesis hepática incrementada. Hoy en día se conoce también el impacto de otros factores como la alteración del metabolismo de los adipocitos, alteraciones del microbiota, aumento de la secreción de glucagón, aumento de la

reabsorción renal de glucosa, disfunción de neurotransmisores y desregulación central del apetito además de la adición del papel de la dopamina, vitamina D, testosterona y sistema renina-angiotensina (5).

Para las funciones biológicas es importante y vital el mantenimiento de los niveles de glucosa en plasma y tejidos; sin embargo, los niveles elevados son perjudiciales o tóxicos para el endotelio vascular (5). Tras la ingesta de un alimento, después de dos horas, la secreción de la insulina depende del grado de disposición de la glucosa y del grado de supresión de la producción de glucosa hepática (HGP). Además, la insulina estimula la lipoproteína lipasa, promoviendo la lipólisis y participa en la eliminación de quilomicrones y VLDL de la circulación. La insulina se libera como respuesta a altas concentraciones de glucosa, aminoácidos, ácidos grasos y hormonas como la de crecimiento, prolactina péptido similar a glucagón tipo 1 (GLP-1) y péptido inhibidor gástrico (GIP).

La alteración en la secreción de insulina por las células β o la acción de la insulina a nivel del tejido adiposo, músculo e hígado provoca el estado hiperglucémico de los prediabéticos y diabéticos (6). Durante la obesidad ocurre la glucotoxicidad, citotoxicidad y glucolipotoxicidad que inducen a un estrés oxidativo que daña a las células β (7).

Los niveles elevados de ácidos grasos libres peden generar un estrés al activar la vía de la UPR (del inglés: Unfolded Protein Response) mediante varios mecanismos, por ejemplo, la inhibición de la ATPasa de Ca2+ del retículo sarco/endoplásmico (SERCA), que es responsable de la movilización de Ca2, o la activación de los receptores IP3.

Por su parte, los niveles elevados de glucosa aumentan la biosíntesis de proinsulina y los polipéptidos amiloides de los islotes (IAAP) en las células β , lo que causa un mal plegamiento de IAAP y la acumulación de insulina y eso aumenta la producción de especies reactivas de oxígeno (ROS). Estos efectos activan las señales proapoptóticas y alteran la movilización del Ca2+ en el ER y la degradación del ARNm de la proinsulina e inducen la liberación de interleucina (IL) -1 β que reclutas macrófagos y potencia la inflamación local (8).

Las personas con DT2 presentan tres alteraciones principales: a) resistencia a la acción de la insulina en los tejidos periféricos, como tejido adiposo, hígado y músculo, que puede estar presente años antes de que aparezca el diagnóstico clínico (9); b) una secreción alterada de insulina debido a que las células β -pancreáticas aumentan la producción de insulina como un mecanismo compensatorio, las cuales posteriormente sufren agotamiento con un fallo en la producción de insulina; y c) una producción hepática aumentada de glucosa (10,11).

Criterios diagnósticos de diabetes tipo 2

Según la OMS, los criterios bioquímicos de laboratorio para el diagnóstico de diabetes son los siguientes: hemoglobina glucosada fracción A1c (HbA1c) \geq 6.5 %, glucosa en ayunas \geq 126 mg/dL, glucosa plasmática \geq 200 mg/dL posterior a prueba de tolerancia oral a la glucosa y glucemia aleatoria \geq 200 mg/dL (12).

De manera general los sintomas de la diabetes tipo 2 son los siguentes: polifagia, pérdida de peso, poliuria, polidipsia, visión borrosa, infecciones frecuentes, náusea y vómito (13).

Factores de riesgo para desarrollar diabetes tipo 2

La DT2 es una enfermedad muy compleja causada por la combinación de factores genéticos y ambientales. De manera general, los factores de riesgo en la DT2 se pueden agrupar en no modificables como: a) la edad, donde el riesgo de DT2 incrementa a partir de los 45 años (14) ; b) la etnicidad, donde individuos con origen nativo americano, asiático y africano tienen mayor riesgo para padecer DT2 y una evolución más grave que aquellos de origen caucásico (15) y c) la historia familiar, es decir, individuos con uno de sus progenitores diabético tienen entre dos a tres veces mayor riesgo de desarrollar la enfermedad, mientras que en aquellos donde ambos padres tienen la enfermedad, el riesgo a padecerla puede aumentar hasta 6 veces (16).

Por otra parte, dentro de los factores de riesgo modificables para DT2 se encuentran: a) estilo de vida, como el sedentarismo y la dieta. El sedentarismo

reduce el gasto de energía y promueve el incremento de peso mientras que la dieta baja en fibra y con un alto contenido de grasa y azúcares simples, incrementa el depósito de grasa corporal independientemente del IMC, edad, antecedentes familiares o actividad física (17). Adicionalmente, un estilo de vida con tabaquismo y consumo de alcohol también incrementa el riesgo de DT2 (16); b) la obesidad, la cual es considerada como el factor más importante para el desarrollo DT2. Desde 1998 la OMS determinó que la obesidad es una enfermedad, en la cual se caracteriza por el acúmulo excesivo de grasa y un bajo grado de inflamación crónica. Al igual que la DT2, ésta es un padecimiento crónico multifactorial, cuya aparición depende de la interacción de factores genéticos y ambientales (18,19).

Clasificación de la obesidad según el IMC kg/m²

La definición más utilizada para el diagnóstico de obesidad es el Índice de Masa Corporal (IMC), y el cálculo se realiza dividiendo el peso del sujeto (en kilogramos) por el cuadrado de su altura (en metros) (20). Se conocen las siguientes clasificaciones:

•	IMC <18.5 Kg/m ²	Bajo Peso.
•	IMC 18.5 -24.9 Kg/m ²	Peso Normal.
•	IMC 25 – 29.9 Kg/m ²	Sobrepeso.
•	IMC 30 – 34.9 Kg/m ²	Obesidad Grado I
•	IMC 35 – 39.9 Kg/m ²	Obesidad Grado II
•	IMC ≥40 Kg/m²	Obesidad Grado III (Obesidad Mórbida)

Las personas con obesidad, comparadas con personas con un normo peso, presentan tres veces más el riesgo de desarrollo DT2; de hecho, la pérdida de peso disminuye el riesgo y mejora el control glucémico en pacientes con DT2 establecida (21). Se estima que más del 80% de los casos de DT2 se puede atribuir a la obesidad, por lo que algunos autores le han denominado a esta asociación "diabesidad", la cuál se relaciona con otras alteraciones metabólicas como hiperuricemia y dislipidemia. Otras no metabólicas como hígado graso e

hipertensión arterial, e incluso con la expresión de diversos marcadores de inflamación de bajo grado (IL-6) (22).

El tejido adiposo

Antes sólo se conocía el papel del tejido adiposo (TA) como el reservorio de grasa corporal. Sin embargo, a partir de la década de los 90, con el descubrimiento de la hormona leptina, la cual se produce en el tejido adiposo y tiene acción en el sistema nervioso central, se consideró a este tejido como un órgano endocrino (23). El TA es un tejido conectivo, cuyo origen proviene de células mesenquimales (24) y está compuesto por varios tipos celulares como células endoteliales, células madre pluripotenciales y por una fracción estromal, que contiene adipocitos, macrófagos y fibroblastos (25). El estroma es responsable de la homeostasis del tejido adiposo, donde la principal célula es el adipocito. Estas células están involucradas en la secreción de factores llamados adipocinas (26) y en la acumulación de lípidos en forma de triglicéridos. Cabe mencionar que en el TA de los adultos, los adipocitos parecen sufrir un 10% de recambio anual, (27) así es como la adipogénesis tiene lugar fundamental en adultos para mantener la homeostasis del tejido. Existen dos tipos de tejidos adiposos, el tejido adiposo blanco (TAB) y el tejido adiposo pardo (TAP), con diferencias importantes en el metabolismo energético (28).

Tejido adiposo blanco

El TAB es el principal tejido de almacenamiento de energía del organismo y actúa como soporte mecánico y protección para determinadas partes del organismo (29). En la ingesta energética, el TAB recluta lípidos y con ello se libera glicerol y ácidos grasos, que son transportados por la sangre a los tejidos, donde serán oxidados para obtener energía. Este tejido contiene diversos receptores relacionados a distintas respuestas biológicas. Es así como, durante la obesidad en el tejido adiposo blanco se aumenta la liberación de ácidos grasos libres y adipocinas, que estimulan los receptores tipo Toll cuya activación induce la producción de TNF- α e IL-6, y dichos receptores se unen a los adipocitos, modulando la sensibilidad a la insulina (30).

El tejido adiposo blanco también posee receptores de diferentes hormonas como TSH, corticoides, andrógenos y estrógenos; además que también participa en la detección de patógenos por el sistema de inmune (31).

En condiciones normales, el TAB constituye el 20-25% del peso corporal de la mujer y el 15-20% del hombre. Este se encuentra distribuido en todo el cuerpo, por ejemplo, subcutáneamente e intraabdominal, principalmente en el epiplón mayor, en las áreas perirrenales y en el mesenterio. En tejido subcutáneo se localiza principalmente a nivel abdominal, glúteos y muslos. También está localizado en cara, periarterial, retro-orbital, intramuscular, cara y pericardio (32,33).

La inflamación del tejido adiposo

Se ha demostrado que el estado de hipertrofia del tejido adiposo genera hipoxia y eso provoca diversas respuestas celulares como inflamación, estrés oxidativo y estrés del retículo endoplasmático.

Al infiltrarse los macrófagos en el tejido adiposo, cambian su estado de polarización, y pasan de ser M2 a tipo M1, con un perfil secretor proinflamatorio (34). Esto provoca la activación de cascadas del proceso de inflamación como citocinas proinflamatorias entre las que destacan: TNF- α , IL-6 y CRP (proteína C reactiva) que son secretadas por el tejido adiposo y modulan la actividad de insulina, negativamente (35). Estas señales activan vías inflamatorias importantes, relacionadas con obesidad y diabetes como: IKK2/NF-kB que participa en la transcripción de moléculas proinflamatorias provocando inflamación local e inhibición de la expresión de PPARy, interfiriendo así, con la sensibilidad a la insulina (36). La vía de JNK/AP1 es activada por estrés celular, citocinas inflamatorias y lípidos. Al activar la vía JNK se activa la fosforilación de IRS1, posteriormente se bloquea la acción de la insulina y se induce apoptosis celular (37). Otra de las vías que activan las citocinas inflamatorias (además de factores de crecimiento) es la vía JAK/STAT, la cual se encuentra relacionada con obesidad y regula la adipogénesis. Por otra parte, el estado de hipertrofia del adipocito activa el estrés oxidativo, el cual aumenta la expresión de HIF-1 y NF-KB provocando posteriormente un incremento de NOX y ROS (38). Estos eventos en conjunto inducen la inflamación crónica de bajo grado y la resistencia a la insulina.

El proceso de adipogénesis: las etapas y factores involucrados

Los adipocitos maduros son células postmitóticas (39) que, junto con los osteoblastos, miocitos y condrocitos, se diferencian de las células madre mesénquimales (CM), un tipo de células fibroblastoides de origen mesodérmico con capacidad precursora en el tejido adiposo, cartílago, músculo, tendón y hueso, (40). La diferenciación de las CM a un tipo celular concreto se caracteriza por una estimulación adecuada, resultado de una cantidad importante de señales químicas (citocinas del sistema inmunitario, hormonas clásicas y moléculas producidas localmente con efecto autócrino y parácrino) y también de señales de contacto entre células (41).

El proceso celular de la diferenciación se ha estudiado en manera *in vitro* e incluye varias etapas: primero se alcanza la confluencia celular, lo que provoca una pausa del ciclo celular, inducida por la inhibición por contacto. El hecho de estar en contacto cada una de las células con otras, es importante porque ayuda a señalizaciones para llevar a cabo la diferenciación de CM a adipocitos. Por el contrario, la baja confluencia favorece la diferenciación hacia osteocitos y eso implica una integración compleja de cito-arquitectura, vías de señalización y reguladores de la transcripción (42). La vía WNT es esencial para la supervivencia de los preadipocitos, WNT1 protege de la apoptosis regulando la expresión del factor de crecimiento de insulina 1 (IGF1). IGF1 ayuda a la formación de lípidos cuando la GTPasa RHO esta inhibida en esta etapa Finalmente, STAT3 y la cinasa Janus 2 (JAK2) promueven directamente la expresión de C / EBPβ en preadipocitos comprometidos (43,44).

A continuación, sucede la fase de "expansión clonal", donde los CM pasan a pre-adipocitos blancos comprometidos (mediados por factores como la rigidez de la matriz extracelular [ECM], la forma celular o la confluencia) y empiezan a expresar genes característicos de los adipocitos y a acumular lípidos. La familia de KLFs

promueve la diferenciación de adipocitos, por ejemplo, KLF15 induce la expresión del transportador de glucosa sensible a la insulina-4 (GLUT4). The KLF5, es inducido en la etapa temprana de la diferenciación de adipocitos por medio de C/EBP β y C/EBP δ , por otra parte, KLF5, se une y activa a PPARG2. KLF6 también ayuda a la diferenciación del adipocito mediante la inhibición de la expresión del factor 1 preadipocitario tipo delta 1 (DLK1 / PREF1) (45). Otra proteína que ayuda en esta etapa es TCF7L1, que inhibe genes relacionados con la estructura celular y formación de fibras de miosina contra estímulos adipogénicos (46).

La última fase se denomina como "diferenciación terminal", donde los preadipocitos comprometidos pueden convertirse en adipocitos maduros con los estímulos adipogénicos, como glucocorticoides, insulina y AMP cíclico (47). Este proceso se lleva a cabo bajo la regulación de una compleja cascada transcripcional de factores reguladores en la que juegan un papel principal y fundamental el receptor nuclear PPARG y diversos miembros de la familia de factores de transcripción C/EBP (48), (Fig 1).

Existen 2 isoformas de PPARG, 1 y 2, donde la segunda se expresa más en el tejido adiposo; la familia de factores de transcripción C/EBP incluye 5 miembros, los cuales son necesarios para la expresión temprana de C/EBP β y C/EBP δ , y estos van a promover la expresión de C/EBP α y C/EBP γ , que son esenciales para la diferenciación total de los adipocitos. Por ello C/EBP β es fundamental para las primeras etapas de la diferenciación, y C/EBP α junto con PPARG para la adipogénesis, aunque este último parece ser dominante en el proceso. A su vez este proceso va acompañado de la acumulación de grasa en células y un cambio de su morfología alargada a una conformación redondeada (49,50).

Figura1. Diferenciación de adipocitos a partir de las células mesenquimales progenitoras (33).

Alteraciones estructurales relacionadas con tejido adiposo y DT2

Las células de un tipo particular, ya sea que formen un tejido específico o crezcan como células individuales, a menudo mantienen un tamaño constante. Por lo general, se piensa que este mantenimiento del tamaño de las células se produce coordinando la progresión del ciclo celular (51). Una de las razones por las que el tamaño de la célula es importante es por los procesos básicos de la fisiología celular, como el flujo a través de las membranas, dependen por naturaleza del tamaño de la célula (52). Los cambios en el volumen o área de superficie celular tendrán efectos profundos en el flujo metabólico, la capacidad biocinética y el intercambio de nutrientes.

El tejido adiposo posee la capacidad de modificarse mediante hipertrofia o hiperplasia. El número de adipocitos es el equilibrio entre la proliferación, la diferenciación y la apoptosis, mientras que el volumen es el balance entre lipólisis y lipogénesis (53). Los depósitos de tejido adiposo se modifican dinámicamente, al inicio de la obesidad es mediante hipertrofia hasta un umbral crítico (0.7 a 0.8

µg/célula), mientras que durante el progreso de la obesidad es mediante hiperplasia (54).

En humanos, se ha reportado que el exceso de los nutrientes que conduce a la hipertrofia de TAB se deposita en la parte alta de cuerpo, mientras que la hiperplasia se ubica por debajo de la cintura (53). Su distribución relativa difiere entre individuos, lo que resulta en morfologías adiposas alternas. El TAB hipertrófico es una morfología perniciosa que se asocia con dislipidemia, resistencia a la insulina y DT2 (55-58). La mayor incidencia de enfermedad metabólica asociada con TAB hipertrófico, puede explicarse por una mayor lipólisis espontánea y posteriormente liberación de adipocinas pro-inflamatorias (59,60). Además, la hipertrofia de TAB se ha relacionado con la alteración de la función de la EMC y la alteración de la adipogénesis, por eso el tamaño de adipocito juega un papel fundamental para funciones normales de tejido adiposo (61,62). Se ha documentado como la alteración del tamaño del adipocito está relacionada directamente con la resistencia a la insulina, pero aún falta entender con mayor profundidad los mecanismos moleculares que afectan directamente a la resistencia a la insulina en este tejido.

Factores genéticos de DT2

La DT2 es el resultado de una amplia y compleja interacción entre múltiples genes y diversos factores ambientales que conducen a hiperglucemia por una alteración en la secreción y la acción de la insulina. Específicamente, los estudios de asociación de genoma completo (GWAS) han sido muy exitosos para identificar genes y variantes genéticas asociadas a la DT2, que han resultado en la identificación y comprensión de las vías bioquímicas, metabólicas y celulares relacionados a la disfunción de diferentes órganos y tejidos en los pacientes diabéticos. Es así como este conocimiento ha promovido el desarrollo y la aplicación de nuevas medidas de prevención y tratamiento para esta enfermedad clínica y genética (63). Dentro de los genes más estudiados en el metabolismo de la glucosa se encuentran los genes *PPARG* y *TCF7L2*, que son factores de transcripción relacionados con la respuesta a la insulina y forman parte de la vía de señalización

de WNT, implicada en la adipogénesis y, *KCNJ11*, el cual codifica para una de las subunidades del canal de potasio sensible a ATP de la célula beta pancreática (K-ATP). El papel importante de canal K-ATP está en la secreción de insulina (64,65).

Sin embargo, a pesar de que los GWAs han logrado dilucidar, en estos y otros genes, diferentes variantes asociadas a la susceptibilidad para padecer DT2, estas asociaciones no se han logrado replicar en todas las poblaciones y sólo explican una pequeña proporción de la heredabilidad total que contribribuye al desarrollo de esta entidad metabólica. Algunos autores han tratado de explicar las limitaciones de los estudios postulando que: 1) existen variantes genéticas raras o propias de cada población que no pueden ser identificadas en todos los grupos étnicos con las herramientas de microarreglos, las cuáles fueron diseñadas para poblaciones europeas y asiáticas y 2) se requiere profundizar en las interacciones gen-gen-ambiente.

Una pregunta actual en el mundo de la investigación es ¿cómo identificar más rápidamente los mecanismos precisos de una disfunción tan compleja? para así traducir el conocimiento generado a la práctica clínica y con ello a la detección temprana y al tratamiento oportuno de las enfermedades. Sin embargo, en este tipo de estudios algunas poblaciones como las de origen nativoameticano han quedado rezagadas, a pesar de que la existencia de variantes privadas está siendo de gran utilidad para explicar la prevalencia de algunas enfermedades en las poblaciones. En la última década, el Consorcio de la Inciativa Slim en Medicina Genómica (SIGMA) reportaron un estudio en 8,214 mexicanos donde logró documentar la asociación de diabetes con variantes altamente replicadas en el mundo, pero interesantemente, también se logró el descubrimiento de variantes privadas de la población de origen nativoamericana, como un haplotipo localizado en el gen SLC16A11, un transportador de solutos que confiere riesgo a padecer DT2 y que tiene una alta frecuencia en mexicanos (50%), además que no existe en africanos y es raro en europeos. Este haplotipo, además explica el 20% de la prevalencia de DT2 en población mexicana (66).

17

La heredabilidad perdida en las diferentes poblaciones nos guía a considerar que existen otros mecanismos como los epigenéticos que regulan la expresión de genes. Dado que las marcas epigenéticas son un vínculo entre las influencias ambientales y los factores genéticos, se requiere profundizar en el conocimiento de los procesos epigenéticos involucrados en la fisiopatogenia de la DT2.

Epigenética

La epigenética es el estudio de los mecanismos mediante los cuales el ambiente modifica de manera temporal o permanente la expresión génica, sin cambiar la secuencia de ADN. Estas modificaciones heredables y reversibles tienen un papel muy importante en el desarrollo de las enfermedades. Existen diferentes tipos de modificaciones epigenéticas: modificación de histonas, metilación del ADN, regulación por ARN no codificante, variantes de histonas, posicionamiento de los nucleosomas, entre otros (67). Dentro de estos tipos, diversos reportes científicos muestran el impacto de la metilación del ADN sobre el desarrollo de enfermedades como la DT2. La metilación del ADN en los dinucléotidos CpG es uno de los mecanismos epigenéticos más estudiados en mamíferos. Para cada especie, tipo de tejido y células, los patrones de metilación son únicos, la metilación del ADN es vital para mantener el silenciamiento génico en el desarrollo normal, y la inactivación del cromosoma X (68,69). Por el contrario, alteraciones en en la tasa de metilación resultan en algunas enfermedades, especialmente aquellas relacionadas con defectos en el desarrollo y procesos neoplásicos como cáncer (70).

De forma general la metilación es la adición de un grupo metilo (-CH3) en la posición 5´ de las citosinas y esto se puede observar tanto en el ADN como el ARN. En eucariotas se da principalmente en dinucleótidos CpG (71). La metilación en regiones enriquecidas con CpGs, llamadas islas CpG, proporciona mecanismos reguladores de la expresión génica y es esencial para la diferenciación celular y la integridad de los tejidos. Como norma general, el 70-80 % de las CpGs están metiladas (72). Las islas CpG representan una gran fracción de secuencias

reguladoras en cis y se encuentran en la mayoría de los promotores o en promotores alternativos (73), que funcionan como reguladores distales (74).

Epigenética y DT2

Se han reportado multiples estudios que relacionan los cambios epigenéticos con la DT2. En un estudio, realizado hace una más de una década, se documentó un incremento del 50% en la metilación del promotor del gen *PPARGC1A*, en células de islotes pancreáticos de pacientes diabéticos comparados con los no diabéticos (69). Esta hipermetilación en *PPARGC1A* correlacionó con el decremento tanto de la expresión del gen como de los niveles plasmáticos de insulina. Años más tarde, se encontró un sitio CpG hipometilado en el primer intrón del gen *FTO*, en células de sangre periférica de pacientes diabéticos. Estos primeros estudios mostraron la importancia de la metilación del ADN en la fisiopatogenia de esta enfermedad metabólica (75).

Por otra parte, se han encontrado numerosas modificaciones epigenéticas en los tejidos blancos de la insulina, como son el tejido adiposo, el hígado y el músculo esquelético, en diversos genes implicados en diabetes tipo 2, como *PPARG*, *C/EBP*, *KCNQ1*, *TCF7L2*, *IRS1*, *CCL18*, *SPP1* y *ADIPOQ* (76,78). Existe consenso en que el perfil de metilación del ADN es clave durante la adipogénesis. Por ejemplo, *PPARg*, que regula el metabolismo de la glucosa y el almacenamiento de ácidos grasos, junto con el *C/EBP*, necesitan ser desmetilados durante la adipogénesis para incrementar su expresión (80-82). También, niveles bajo de metilación de ADN en el promotor del gen de adiponectina (*ADIPOQ*) en la cara fetal de la placenta se asocia con niveles altos de glucosa materna durante el embarazo y esto correlaciona con resistencia de insulina. La adiponectina es la hormona que produce principalmente el tejido adiposo y tiene un papel importante en el mantenimiento de la homeostasis energética regulando el metabolismo de los lípidos y de la glucosa (79).

Epigenética y adipogénesis

La adipogénesis es un proceso fisiológico complejo, necesario para almacenar los lípidos de manera efectiva evitando la lipotoxicidad en otros tejidos como el corazón, el músculo y el hígado, es esencial para mantener la homeostasis metabólica y tiene un papel crucial como componente del sistema inmune innato. En condiciones fisiopatológicas, la adipogénesis provoca un estado proinflamatorio, liberación de adipocinas y angiogénesis acelerada. Esto da lugar a un estado hipóxico, que se relaciona con estrés oxidativo y la síntesis y liberación de ácidos grasos libres oxidados (80). Se cree que el deterioro de la función de los adipocitos se produce debido a factores genéticos y ambientales de los individuos que afectan en gran medida el perfil epigenético y provocan la alteración de la expresión génica. En el 2019, se reporta por primera vez que el patrón epigenético se encuentra alterado en las células mesenquimales (CM) de pacientes obesos y diabéticos y aparece la idea de una posible memoria metabólica (81). La regulación de la diferenciación de las CM a una célula de linaje específico, está asociada con múltiples factores epigenéticos que modulan la estructura de la cromatina y facilitan la expresión de genes específicos de un tipo celular, mientras que reprimen la transcripción de genes de linajes alternativos (82,83). Sin embargo, poco se conoce de la remodelación epigenética durante el proceso de adipogenésis que incluye las CM, el pre-adipocito y el adipocito maduro.

Justificación

La expansión de tejido adiposo ocasionada por un desbalance energético positivo es un factor de riesgo para el desarrollo de enfermedades metabólicas como la DT2, que se caracteriza por la hiperglucemia resultante de un defecto en la secreción o la acción de la insulina. Aunque es ampliamente reconocida la asociación entre obesidad y diabetes, aún no están claros los mecanismos para explicar dicha relación. Se ha reportado que durante la obesidad las funciones normales del adipocito se ven alteradas conduciendo a un proceso inflamatorio crónico de bajo grado y a la acumulación ectópica de lípidos, estimulando así la resistencia a la insulina en músculo, hígado y el propio adipocito, que posteriormente ocasiona una disminución de la secreción de la insulina y eventualmente, puede progresar a DT2. Investigaciones recientes, proponen que procesos epigenéticos, principalmente la metilación del ADN, pueden asociarse a la obesidad y a DT2. En estudios recientes se observaron alteraciones en la metilación del ADN en CM de pacientes obesos con DT2; sin embargo, no se conoce si en estos pacientes, estos disturbios epigenéticos persisten durante las diferentes etapas de la diferenciación del adipocito o si existe alteración de la remodelación de la metilación.

El estado potencialmente reversible de la metilación del ADN hace de las alteraciones en los patrones de metilación asociados a enfermedad, marcadores potenciales para el diagnóstico y tratamiento que implique la reactivación o el resilenciamiento de genes específicos.

Hipótesis

Si existe una programación metabólica relacionada con la alteración en la metilación del ADN en adipocitos de pacientes diabéticos con obesidad, entonces es posible encontrar alteraciones epigenéticas persistentes durante el proceso de diferenciación del adipocito.

Objetivo general

Identificar si existe un estatus de metilación diferencial en células madre mesenquimales que persiste durante el proceso de diferenciación del adipocito maduro, entre pacientes obesos con y sin diabetes.

Objetivos específicos

- 1. Determinar si el estado de hipertrofia de los adipocitos muestra diferencias entre los diabéticos y no diabéticos con obesidad.
- Determinar la correlación entre las diferencias en el estado de hipertrofia del adipocito y el perfil metabólico en pacientes obesos.
- Identificar si los patrones de metilación y expresión en cada etapa del proceso de la diferenciación (CM, preadipocito y adipocito maduro), es diferente entre diabéticos y no diabéticos con obesidad.
- Identificar las vías de señalización cuya regulación epigenética se altera durante el proceso de diferenciación del adipocito en pacientes diabéticos con obesidad.

Material y métodos

Estrategia General

Para llevar a cabo nuestros objetivos se siguió la estrategia experimental descrita a continuación. En resumen, este estudio consistió en la correlación del tamaño del adipocito con los parámetros bioquímicos en 54 pacientes femeninas por la razon que si existen diferencias en los perfiles de metilación entre hombre y mujer para evitar un posible sesgo nosotros decidimos quitar los pacientes hombre, y la comparación de patrones de metilación del ADN y expresión génica durante el proceso de adipogénesis *in vitro*, a partir de CM obtenidas del tejido visceral de un grupo independiente de 17 pacientes femeninas con obesidad, estratificadas por presencia (casos: OD) o ausencia de diabetes (controles: OND), pareadas por índice de masa corporal y edad. El TAV obtenido se dividió en dos partes: 1) embebido en parafina donde se cuantificó el área de las células adiposas, la cuál se correlacionó con el estatus metabólico de los pacientes para documentar la relación de la hipertrofia con la presencia de DT2 y, 2) tejido fresco a partir del cuál se purificaron las CM para llevar a cabo el proceso de adipogénesis *in vitro* (Fig. 2).

Figura 2. Estrategia general para el análisis de metilación y expresión diferencial durante el proceso de adipogénesis de pacientes OD y OND.

Selección de pacientes y evaluación clínica

Criterios de inclusión

Tanto para pacientes obesos con o sin DT2 los criterios fueron:

- Con obesidad: IMC ≥35 Kg/m2
- Pacientes sometidos a cirugía bariátrica.
- Mujeres Que decidieran participa en el estudio

Para los pacientes con DT2 (casos: OD):

• Glucosa en ayuno ≥126 mg/dL ó Hb1Ac ≥ 6.5%

Para pacientes no diabéticos (controles: OND):

• Glucosa en ayuno $\leq 100 \text{ mg/dL y Hb1Ac} \leq 6.5\%$

• Que presenten características de IMC y edad pareables con los casos

Criterios de exclusión.

- Pacientes con otra comorbilidad diferente a diabetes (insuficiencia renal, hepatopatías, disfunción endocrinológica, síndromes genéticos)
- Pacientes con tratamiento diferente a hipoglucemiantes

Criterios de eliminación.

- Pacientes que retiren su consentimiento informado
- Que sus muestras no presenten la calidad necesaria durante la extracción de ácidos nucleicos

Pacientes con un IMC ≥35 kg/m² fueron sometidos a cirugía bariátrica por indicación médica en la Clínica de Atención Integral para la Obesidad y Enfermedades Metabólicas del Gobierno de la Ciudad de México Unidad Tláhuac. A todos ellos se les realizó una biopsia de tejido adiposo visceral (TAV) y toma de muestra sanguínea para su la evaluación de los niveles plasmáticos de glucosa y lípidos. Se seleccionaron los pacientes que cumplieron los criterios de inclusión y aceptaron firmar el consentimiento informado (n=71). El estudio se rigió bajo la declaración de Helsinki, el código de Núremberg, las buenas prácticas clínicas para las Américas, el reglamento de la Ley General de Salud en Materia de Investigación para la Salud, Norma Oficiales Mexicanas, para la ejecución de proyectos de investigación para la salud en seres humanos. Este estudio fue aprobado por el comité de ética e investigación del Instituto Nacional de Ciencias Genómicas (INMEGEN).

Muestras Biológicas

Biopsias de tejido adiposo

De los pacientes seleccionados se obtuvieron biopsias de TAV del epiplón mayor cerca del estómago, durante la cirugía bariátrica. Además, se obtuvieron muestras de sangre el día de la cirugía para su análisis bioquímico. Por la cantidad de TAV obtenido durante la biopsia (2-3 gr), los pacientes fueron separados en dos grupos, el primero para embeber el TAV en parafina (n=54) y el resto para obtener CM y diferenciarlas *in vitro* en adipocitos maduros (n=17).

Preparación de las muestras en parafina

Las muestras fueron colocadas inmediatamente en formaldehído al 10%, luego se deshidrataron y embebieron en bloques de parafina para su posterior análisis. Secciones de tejido adiposo embebido se cortaron utilizando un micrótomo rotatorio para su observación en el microscopio de luz, posteriormente las muestras se tiñeron con hematoxilina y eosina (84).

Análisis de área de adipocitos en las imágenes de histología

Una vez obtenidos los cortes de tejido de los 54 pacientes, se utilizó un microscopio invertido Zeiss, se tomaron por lo menos 3 fotografías representativas de cada sección de la muestra y se analizaron por lo menos 400 adipocitos por cada muestra. A partir de las muestras procesadas las imágenes de adipocitos fueron analizados con el programa ImageJ para cuantificar la superficie de área del adipocito, el total de adipocitos y el promedio de tamaño de los adipocitos (85)

Aislamiento de CM derivadas de tejido adiposo

Las CM se aislaron a partir de TAV, siguiendo el protocolo previamente publicado po Zuk.PA y cols (86). De manera breve, éste consistió en: la biopsia fresca de TA (media: 2-3 g) fue cortada en trozos pequeños, se lavó con buffer de solución salina con fosfato (PBS, Life Technologies, USA), después se transfirió a una solución de digestión estéril que contiene medio HAM-DMEM / F12 (Life Technologies, CA, USA), 1 mg/ml de colagenasa II (Sig-ma-Aldrich, St. Louis, MO), y 10 mg/ml de albumina sérica bovina (BSA, Sigma-Aldrich, St. Louis, MO). Las muestras se incubaron a 37 °C durante 45 min. El tejido digerido se centrifugó a 1200 g durante

8 min. Posteriormente la suspensión celular (que contiene células vasculares del estroma) se filtró a través de un colador de células (Nalgene, Rochester, NY), y las células se transfirieron a placas de cultivo para la proliferación de CM en medio de cultivo DMEM (Life Technologies, CA, USA.) suplementado con suero bovino fetal al 10% (Gibco, Fisher Scientific, USA.), estreptomicina (10,000 μg / ml, Gibco, Fisher Scientific, EE. UU.). Las células se cultivaron en una incubadora humidificada con 5% de CO₂ a 37 °C. Se utilizó la técnica estándar de citometría de flujo para identificar las CM.

Cuantificación de células CM por citometría de flujo

En resumen, la metodología fue la siguiente: una vez que ya están las células aisladas se agrega la solución de anticuerpos monoclonales que están marcados con fluorocromo de un kit de marcadores específicos de las células CM (Abcam ab93758, USA): CD90-PE, CD34-PE, CD29-PE, CD105-PE (positivos) y CD45-FITC (negativo). Para el control de isotipo, se agregaron anticuerpos de ratón marcados (IgG 1.PE e IgG1.FITC) a las células durante 30 min a temperatura ambiente y cubierto de luz. Después se lavaron las células con PBS dos veces para quitar el exceso de anticuerpos, se centrifugaron a 400 g por 5 min, se eliminó el sobrenadante y se agregó una solución fijadora que contiene formaldehído 0.5% con PBS. Se leyeron las muestras en un Citómetro de Flujo (FACSARIA-BD) y los marcadores CD se corroboraron por expresión génica, junto con marcadores específicos del estadio CM (Fig 3). Posteriormente, las CM fueron estimuladas para diferenciarse en adipocitos maduros.

Figura 3. Comparación de la expresión génica en las etapas CM y AM (adipocito maduro) de pacientes con OD y OND. Las líneas grises unen la misma muestra antes y después de la diferenciación adipogénica. A) Ejemplos de expresión génica positiva de marcadores CM. B) Ejemplos de expresión génica negativa de marcadores CM. C) Marcadores adipogénicos que muestran una expresión génica aumentada en AM.

Diferenciación adipogénica

Previo al análisis de los perfiles de metilación del ADN y de expresión génica se llevó a cabo la diferenciación adipogénica. Para la metilación se prepararon 51 placas de cultivo de células derivadas de 17 pacientes. Las células se sembraron a una densidad de 1,000,000 de CM, en placa (60 mm de diámetro). El día 0 se definió como el día en que las células alcanzaron una confluencia del 80-90% (CM). En este punto, se prepararon 17 placas de cultivo para examinar la etapa 1. En las 34 placas restantes, la diferenciación se indujo con un medio adipogénico que contenía DMEM suplementado con dexametasona 250 nM, 3-isobutil-1 metilxantina

0,5 mM y 10 µg / ml de insulina (Sigma-Aldrich, USA). El medio de diferenciación se reemplazó cada 72 h y los adipocitos se cultivaron hasta el día 3 (pre-adipocitos). En este punto, se prepararon 17 placas de cultivo para examinar la etapa 2. Las 17 placas restantes se dejaron madurar hasta el día 18 (AM). Los AM mostraron la morfología de adipocitos con acumulación masiva de gotitas de lípidos, identificadas con tinción de aceite rojo que es la siguiente: las células se lavaron dos veces con la solución PBS, y para fijarlas se utilizó la formalina al 10% PBS en un tiempo de 30 minutos. Después de fijar las células, estas se tiñieron con un solución de rojo oleoso durante 10 min. Posteriormente se tiñeron con hematoxilina durante 3 min, y se procedió a lavar durante 10 min y se observó bajo el miscroscopio para documentar la acumulación de gotas de lípidos en el AM.

De la misma forma que para el análisis de metilación se prepararon 22 placas de cultivo para analizar el perfil de expresión génica al inicio (día 0, n = 11) y al final (día 18, n = 11) del proceso de diferenciación, correspondiente a 11 pacientes seleccionados aleatoriamente (6 OD y 5 OND). Los AM mostraron una expresión génica aumentada de marcadores adipogénicos tales como: FABP4, PPARG y PPARGC1A (Fig 3D).

Extracción de ADN

El ADN se extrajo con el kit de QIAamp ADN Mini (Qiagen, Valencia CA) a partir de las células obtenidas en las tres etapas de diferenciación (CM, PreA, and AM). El ADN se cuantificó con el NanoDrop® ND-1000 v3.5.2. (NanoDrop Technologies Inc). Durante el proceso de extracción de ADN se eliminaron dos muestras de PreA porque la concentración de ADN no fue suficiente.

Extracción de ARN

Se extrajo ARN de células CM y adipocitos maduros utilizando TRIzol® (Invitrogen, Life Technologies, CA 92008, USA), de acuerdo con las instrucciones del fabricante. La calidad del ARN se evaluó con el bioanalizador Agilent 2100, (Agilent Technologies, USA) y todas las muestras tenían una puntuación RIN aceptable > 8.

Análisis de metilación del genoma

Se analizó la metilación del ADN con el kit de Infinium Methylation EPIC BeadChip (Illumina, Inc., San Diego, CA). Este ensayo cubrió más de 850,000 sitios de metilación por muestra en la resolución de un solo nucleótido. Los casos y controles OD y OND se colocaron aleatoriamente entre los Bead Chips. Se realizó el protocolo de ensayo de metilación Illumina Infinium, de acuerdo con las instrucciones del fabricante, y se utilizó un equipo iScan para escanear las matrices. Los datos de metilación se visualizaron y analizaron con el software GenomeStudio versión 2011.1 (Illumina) y el módulo de metilación. En los análisis sólo se utilizaron muestras que pasaron las evaluaciones de control de calidad. Los valores beta de metilación se estimaron como la relación entre la intensidad de la señal de la sonda metilada y la suma de las sondas metiladas y no metiladas. Los valores beta

Análisis de expresión génica

Para amplificar el ARN extraído se utilizó el kit de amplificación Total Prep RNA (Life Technologies, Foster City, CA, USA), (200 ng). El análisis de expresión génica se realizó en un total de 22 muestras (11 muestras CM y 11 muestras adipocitos maduras), utilizando los BeadChips de expresión humana Clariom S (Affymetrix, Inc., San Diego, CA, USA). La matriz se procesó en el sistema de instrumentos Applied Biosystems ™ GeneChip ™ 3000.

Análisis estadístico

Los datos clínicos se reportaron mediante medidas de tendencia central: media y desviación estándar (DE). Las diferencias en los datos bioquímicos y antropométricos entre los grupos OND y OD se probaron con la prueba de Wilcox para datos no paramétricos (Tabla 1).

Para la correlación del área del adipocito con los parámetros bioquímicos de los pacientes, tales como TA_sistólica, TA_diastólica, niveles séricos de glucosa, hemoglobina glucosilada (HbA1c), colesterol total, HDL, LDL, triglicéridos, insulina, se utilizó la prueba de Pearson y los resultados obtenidos se graficaron con programa R.

La estadística descriptiva para la metilación de todo el genoma y expresión se calculó en R, versión 3.1 (87). El paquete ChAMP se utilizó para realizar la evaluación del control de calidad, el cual incluye los valores de detección p (> 0,01), la normalización de intensidades de la metilación del ADN y el análisis de desviación de variación única. El paquete también se utilizó para realizar el análisis de metilación diferencial (DMC y DMR). El valor de Delta-beta se obtuvo restando el valor Beta promedio del grupo OD del valor Beta promedio del grupo OND para cada locus. Se definió un DMC cuando el valor p <0.05 y la media absoluta Delta-Beta >0.1 (88). El paquete Oligo se utilizó para normalizar la intensidad de la expresión génica (89). La correlación de Pearson entre la metilación del ADN y la expresión génica se realizó comparando los valores Beta de CpG y la expresión génica donde se encontraban los CpGs.

Análisis de vías:

Se utilizó la herramienta DAVID V.6.8 para analizar las vías potencialmente alteradas de la lista de genes que se metilaron diferencialmente entre las muestras de OD y OND (90).

Resultados

Las pacientes incluidas en este estudio, que cumplieron los criterios de inclusión y aceptaron firmar el consentimiento informado fueron 71, de las cuales se obtuvieron 54 biopsias del TAV durante la cirugía bariátrica, mismas que fueron embebidas en parafina, mientras que las CM se obtuvieron a partir de los 17 tejidos restantes.

Tabla 1	. Características	clínicas de	pacientes	obesos	sometidos	a cirugía b	ariátrica
(n=71)							

Parámetro	Datos clinicos dePacientes	Valores de referencia
EDAD	40.19 ± 8.99	
IMC (kg/m2 ± SD)	45.37 ± 6.77	18.5 y 24.9
SISTOLICA (mmHg \pm SD)	130.9 ± 16.21	<120
DISTOLICA (mmHg ± SD)	74.58 ± 14.10	<80
GLUCOSA (mg/dl ± SD)	103.3 ± 23.65	<100
COLESTEROL (mg/dl ±SD)	190.3 ± 250.44	<183
HDL (mg/dl ± SD)	42.99 ± 26.96	<50
Triglicérido (mg/dl± SD)	158.9 ± 67.13	<150
HOMA-ir (%± SD)	2.42 ± 1.25	<2.6
HOMA-s (%± SD)	52.48 ± 28.06	<37.8
HOMA-b (%± SD)	134.88 ± 56.76	<67.6
%HbA1c (%± SD)	6.04 ± 0.80	<7
INSULINA (µU/ml ± SD)	19.22 ± 10.98	<30

Medición del tamaño de los adipocitos

La medición del tamaño de los adipocitos se llevó acabo en cortes de tejido embebidos en parafina de 54 pacientes de los cuáles se midieron al menos 400 adipocitos por paciente (Fig 4), obteniendo un área promedio dentro de un rango de 600 a 1200 μ m². El área del adipocito presentó una correlación positiva con el valor de HOMA-IR (r=0.41), e interesantemente, cuando se estratificaron los pacientes

en OND, prediabéticos y OD, esta correlación fue mayor en pacientes prediabéticos (r=0.6) y diabéticos (r=0.58) que en los no-diabéticos, documentando la relación entre la resistencia a la insulia y la hipertrofia del adipocito (Fig 5).

Figura 4: Área del adipocito utilizando la herramienta ImageJ/ adipocyte tool. A) células de adipocitos fijadas en parafina. B) conteo de adipocitos.

A)

Figura 5. Correlación del área del adipocito con HOMA-IR en pacientes OND, prediabéticos y OD.

Selección de pacientes OND y OD

Los pacientes con niveles séricos de glucosa en ayuno \geq 126 mg/dL ó Hb1Ac \geq 6.5% se les diagnosticó diabetes (OD), mientras que los pacientes con niveles séricos de glucosa en ayuno \leq 100 mg/dL y Hb1Ac \leq 6.5% fueron diagnosticados como controles, no diabéticos (OND). Estos grupos comprendieron 9 pacientes OND y 8 OD, como resultado del pareamiento por IMC, edad y parámetros bioquímicos. Como era de esperarse, se observó una diferencia sólo en los niveles de HbA1c (p=0.0002) y de glucosa sérica (p=0.01) entre ambos grupos (Tabla 2).
Parámetros	OD	OND	Valor P
n	8	9	
Edad	45.3 ± 5.94	39.11 ± 4.62	0.07
IMC (kg/m2 ± SD)	45.4 ± 7.07	44.40 ± 6.02	0.68
Glucosa (mg/dl ± SD)	131.7 ± 33.73	97.11 ± 8.22	0.01
HbA1c (%± SD)	6.79 ± 0.72	5.56 ± 0.54	0.0002
HOMA (%B ± SD)	7.47 ± 4.15	5.21 ± 3.90	0.15
Insulina (µU/ml ± SD)	22.28 ± 10.42	21.07 ± 14.25	0.54
Triglicéridos (mg/dl± SD)	168.7 ± 70.50	154.27 ± 65.96	0.96
HDL (mg/dl ± SD)	48.52 ± 16.64	59.6± 63.74	0.23
Colesterol (mg/dl ±SD)	180.7 ± 35.63	152.25 ± 69.94	0.39
Sistólica (mmHg ± SD)	133.3 ± 22.24	133.11 ± 15.64	0.9
Diastólica (mmHg ± SD)	74.6 ± 11.24	74.22 ± 10.91	0.96
LDL (mg/dl ± SD)	118.27 ± 25.71	107.27 ± 53.64	0.78

 Tabla 2. Características clínicas de de pacientes obesos con y sin diabetes

 donadores de células madre derivados de adipocitos

Adipogénesis.

Las CM se aislaron del tejido adiposo obtenido de los grupos de pacientes OD y OND. Una vez aisladas, las CM se cuantificaron por citometría de flujo. Para esto, se mideron marcadores de superficie específicos de superficie, mostrando un 90% de homogeneidad con CD90 y CD44, CD105, CD29 positivos, además de CD45 negativo (Fig 6). Posteriormente, las células se sometieron al proceso de diferenciación *in vitro*, durante el cuál se identificaron tres etapas de la diferenciación mediante la tinción con aceite rojo oleoso (Fig 7) expresión de genes promotores de la adipogénesis como *PPARG, FABP4* y *SLC24A*, estableciendo el día 0 para CM, día 3 para el estatus de preadipocitos (PreA) y el día 18 para adipocitos maduros

(AM) (Fig 8). Una vez establecidas las etapas de CM, PreA y AM, se obtuvieron ADN y ARN para analizar el perfil de metilación y expresión génica.

Figura 6. Tipificación de células mesénquimas. Cuantificación de las células CM por citometría de flujo utilizando marcadores específicos de superficie de las células.

Figura 7. Evaluación de las etapas del proceso de diferenciación a adipocito maduro, acumulación gotitas de lípidos en el citoplasma teñidos con aceite rojo oleoso.

Tiempo de inducción a diferenciación (días)

Figura 8. Niveles de expresión génica de marcadores específicos como FABP4, SLC24A, PPARG del proceso de adipogénesis durante 18 días de inducción de CM a adipocito maduro

Niveles de metilación globales

Para conocer si existe una programación metabólica relacionada con la alteración en la metilación del ADN en adipocitos de pacientes diabéticos, se buscaron alteraciones epigenéticas diferenciales entre pacientes OBD y OND, en tres etapas de la adipogénesis *in vitro*. Se identificaron aquellas alteraciones que sufrieran remodelación o que fueran persistentes durante el proceso de diferenciación del adipocito en pacientes diabéticos.

Para establecer la dinámica de las alteraciones en la metilación observadas durante la adipogénesis, obtuvimos ADN de cultivos de CM (día 0), cultivos de preadipocitos (PreA, día 3) y cultivos de adipocitos maduros (AM, día18). Después del control de calidad y la normalización de los datos en el microareglo EpicBead chip de Illumina, el análisis de los perfiles de metilación del ADN en muestras OD y OND revelaron 755,382 sitios CpGs distribuidos en sitios de inicio de transcripción (TSS1200 y 1500), región 5' no traducible (5'UTR), límites de exón (ExonBnd) y regiones intergénicas (IGR). La comparación entre OD y OND no mostró diferencias significativas en los perfiles globales de metilación, aún cuando estos fueron analizados por las diferentes etapas de la adipogénesis (Fig 9).

Figura 9. La metilación global del ADN en tres etapas de la diferenciación, ordenada por la posición en el gen. Parcelas de barras que representan la distribución de valores β y características genómicas. Sitios de inicio de transcripción (TSS1200 y 1500); región 5' no traducible (5'UTR); límites de exón (ExonBnd): regiones intergénicas (IGR).

Metilación diferencial del ADN

Para identificar la metilación diferencial se compararon los valores beta para las tres etapas diferentes entre grupos y se identificaron los sitios CpG diferencialmente metilados (DMC) (Fig 10 A) (Anexo Tablas 12-14). Este análisis reveló 115 DMC que persistieron durante las tres etapas de adipogénesis en las muestras de OD. Interesantemente, las muestras de OD mostraron un hipometilación en las etapas CM y AM y una hipermetilación en la etapa PreA (Fig 10 B).

En las muestras de OD, las alteraciones epigenómicas fueron seis veces más altas en la etapa PreA que en las etapas CM y AM. De manera notable, en esta etapa, las alteraciones en la metilación afectaron genes maestros que regulan la adipogénesis como *PPARG, GATA3, JAK2, y STAT5A*.

B)

A)

Figure 10. (A) El diagrama de Venn muestra una comparación de DMC de muestras OD y OND en las diferentes etapas. El color de fondo representa el número de DMC; el porcentaje se calculó sobre la base del número total de DMC en las tres etapas. (B) La tabla muestra una comparación de los números de DMC observados en las muestras OND y OD en las tres etapas. DMC: sitios CpG de metilación diferencial; OD: muestras de pacientes obesos con diabetes; OND: muestras de pacientes obesos sin diabetes.

En un análisis de componentes principales (PCA), el valor beta de los 115 DMC persistentes mostró una separación de los grupos de pacientes con diabetes y sin diabetes (Fig 12). Además, el componente principal 1 (PC1) correlacionó significativamente con los valores de Hb1Ac (Fig 13).

El análisis de enriquecimiento con la herramienta DAVID mostró que, involucrando estos 115 DMC persistentes se encontraban relacionados con las vías de regulación de actividad de la caspasa, actividad de la endopeptidasa y muerte celular programada, así como con vías implicadas en procesos efectores inmunitarios

(Anexo-Tabla 15).

Figura 11. Resultados del análisis de PCA, basados en 115 DMC persistentes en pacientes diabéticos. OD (símbolos rojos, pacientes obesos con diabetes); OND (símbolos negros, pacientes obesos sin diabetes); DMC: sitios CpG de metilación diferencial.

AdjR2=0.3107Intercepción =6.0361 Pendiente=0.40632 P=1.899e-05

Figura 12. Análisis de correlación (Pearson) entre el componente principal 1 (PC1) y los valores de Hb1Ac. Se observa una correlación significativa.

Adicionalmente, en los pacientes OD el análisis de los perfiles de metilación entre las diferentes etapas de la adipogénesis mostró alteraciones particulares de cada una de las etapas. Los 20 principales DMC identificados en cada etapa se muestran en la Tabla 3. Al igual que lo anterior, para investigar los enriquecimientos en las vías funcionales involucradas en cada etapa, utilizamos la herramienta DAVID (Anexo-Tablas 16-18). Los resultados revelaron que, aunque las DMC en algunos genes fueron particulares de alguna de las etapas, algunas vías funcionales fueron compartidas en las tres etapas (Tabla 4). Estas vías incluyeron la regulación negativa de los procesos biosintéticos de macromoléculas y la regulación de la apoptosis y de la muerte celular programada. También encontramos que algunas alteraciones persistieron de CM a PreA y de PreA a AM. Las alteraciones persistentes de CM a PreA representaron vías implicadas en la adhesión célulacélula, desarrollo de órganos hematopoyéticos o linfoides, adhesión celular homofílica, desarrollo del sistema inmunológico, fosforilación de aminoácidos de proteínas y regulación de la transducción de señales mediada por GTPasa. Por otra parte, las alteraciones persistentes de PreA a AM, mostró un mayor número de vías alteradas, en particular: señalización celular, morfogénesis embrionaria, regulación negativa de procesos biosintéticos, regulación positiva de la expresión génica, morfogénesis tisular y proceso catabólico de carbohidratos celulares. Estos hallazgos proporcionan evidencia de que las diferencias en la metilación afectan tanto vías específicas como comunes en las diferentes etapas de la adipogénesis en pacientes con DT2.

Tabla 3. Top 20 DMC, agrupados por etapa de adipogénesis. Sitios CpG de metilación diferencial (DMC), sitios de inicio de transcripción (TSS 200 pb1500 pb) y regiones intergénicas (IGR)

Etapa	CpG	Beta OND	Beta OD	Delta Beta	Cromosoma	Símbolo del gen	Región genómica	Valor P
	cg02332293	0.71	0.889	0.18	5		IGR	7.44E-08
	cg26480858	0.305	0.201	0.103	7	THSD7A	Body	7.42E-05
	cg05170452	0.713	0.829	0.115	5		IGR	9.31E-05
	cg16626954	0.513	0.406	0.107	3		IGR	0.00015
	cg24056885	0.5	0.356	0.144	3	ABCC5AS1	TSS200	0.00015
СМ	cg12771637	0.555	0.657	0.101	11		IGR	0.00021
	cg25635251	0.531	0.664	0.133	11		IGR	0.00028
	cg13482309	0.393	0.571	0.178	9	OR1B1	1stExon	0.00028
	cg18830697	0.747	0.849	0.102	6	RIMS1	TSS200	0.00052
	cg11086466	0.762	0.608	0.154	6	RNF182	5'UTR	0.00054
	cg18454042	0.581	0.694	0.113	7	SDK1	Body	0.00063

	cg18116804	0.525	0.368	0.156	10	PLXDC2	Body	0.00064
	cg18860301	0.634	0.466	0.168	6	RNF182	5'UTR	0.0007
	cg06121514	0.576	0.677	0.101	15	IPW	Body	0.00071
	cg14439102	0.544	0.442	0.102	9	GNAQ	Body	0.00075
	cg06104343	0.761	0.631	0.13	17		IGR	0.00082
	cg03915559	0.592	0.455	0.136	10	LGI1	Body	0.00082
	cg00435063	0.449	0.553	0.104	7	PTPRN2	Body	0.0009
	cg10284704	0.773	0.645	0.128	15		IGR	0.0009
	cg03962019	0.799	0.689	0.11	1		IGR	0.00095
	cg17292337	0.092	0.351	0.258	12		IGR	1.62E-05
	cg20790798	0.456	0.611	0.156	5		IGR	1.99E-05
	cg24517467	0.444	0.602	0.158	7		IGR	2.12E-05
	cg14950747	0.915	0.796	0.118	19	ZFR2	Body	7.18E-05
	cg24449463	0.48	0.28	0.2	1	DCAF6	Body	9.36E-05
	cg23084986	0.748	0.645	0.103	1	RAB42	TSS1500	0.00011
	cg07415266	0.562	0.686	0.124	2	IL18RAP	Body	0.00017
	cg27216788	0.266	0.459	0.193	16	ST3GAL2	3'UTR	0.00025
	cg06821828	0.262	0.548	0.286	14		IGR	0.00026
	cg20253542	0.872	0.718	0.155	7		IGR	0.00026
PreA	cg06259934	0.48	0.322	0.162	10	ZMIZ1	Body	0.0003
	cg02721751	0.837	0.651	0.186	6	SLC44A4	Body	0.00032
	cg27614534	0.855	0.71	0.145	18	ALPK2	TSS1500	0.00035
	cg07342647	0.847	0.669	0.178	16		IGR	0.00041
	cg04051335	0.641	0.479	0.162	5	C5orf62	TSS1500	0.00045
	cg17071479	0.736	0.608	0.128	16	SRL	Body	0.00046
	cg26457868	0.495	0.34	0.155	10	SUFU	Body	0.00053
	cg17045772	0.859	0.738	0.122	1	CTPS	TSS1500	0.00053
	cg15397200	0.618	0.738	0.119	2		IGR	0.00053
	cg05867245	0.563	0.872	0.31	20	ZBTB46	Body	0.00055
	cg22960347	0.361	0.247	0.115	7		IGR	7.03E+05
	cg00216549	0.631	0.529	0.102	1	DDAH1	Body	0.00011
	cg05146544	0.109	0.227	0.118	2		IGR	0.00023
	cg24224080	0.331	0.22	0.111	5		IGR	0.00026
4 14	cg24449463	0.451	0.31	0.14	1	DCAF6	Body	0.00029
AM	cg10354380	0.573	0.458	0.115	6	IL17F	TSS200	0.00032
	cg01911494	0.29	0.177	0.113	16	LMF1	Body	0.00049
	cg27082921	0.803	0.655	0.147	19	ATP8B3	Body	0.00053
	cg11613005	0.34	0.443	0.103	5	GPR151	1stExon	0.00068
	cg19534681	0.12	0.237	0.117	2		IGR	0.00073

cg17487381	0.391	0.272	0.119	9		IGR	0.00098
cg25635251	0.497	0.652	0.156	11		IGR	0.00099
cg23989344	0.719	0.591	0.128	10	ST8SIA6	Body	0.00107
cg00034755	0.785	0.678	0.107	22		IGR	0.00114
cg22891588	0.7	0.594	0.105	5	LRRC70	1stExon	0.00131
cg04676645	0.82	0.704	0.116	8	CLU	Body	0.00166
cg16246747	0.722	0.607	0.115	2	ACOXL	5'UTR	0.00176
cg00945409	0.4	0.222	0.177	10	ZMIZ1AS1	Body	0.0019
cg19868364	0.56	0.663	0.103	14		IGR	0.00203
cg06159404	0.188	0.352	0.164	10		IGR	0.00217

Tabla 4. Vías comunes alteradas en las etapas de adipogénesis CM, PreA y AM en diabéticos

	Número de	Número de	Número de
Término GO (gene ontology) *	genes	genes	genes
	CM-OD	PreA-OD	AM-OD
	n (valor p)	n (valor p)	n (valor p)
Biological adhesion	30(0.00002)	114(0.0003)	23(0.012)
Negative regulation of macromolecule biosynthetic	17(0.03)	93(0,0003)	19(0.014)
process	17(0.03)	55(0:0005)	19(0.014)
Regulation of apoptosis	25(0.01)	123(0.002)	25(0.015)
Regulation of cell death	25(0.01)	126(0.001)	25(0.018)
Regulation of programmed cell death	25(0.01)	124(0.002)	25(0.017)
Cell-cell adhesion	14(0.001)	46(0.016)	
Hemopoiesis	10(0.02)	47(0.0004)	
Hemopoietic or lymphoid organ development	12(0.007)	50(0.0006)	
Homophilic cell adhesion	9(0.002)	27(0.005)	
Immune system development	12(0.01)	50(0.002)	
Phosphorylation	24(0.01)	140(1.73E-06)	
Protein amino acid phosphorylation	21(0.01)	122(8.98E-07)	
Regulation of small GTPase mediated signal transduction	10(0.03)	55(1.03E-05)	
Cell-cell signaling		106(2.30E-05)	19(0.033)
Embryonic morphogenesis		61(6.28E-05)	13(0.012)
Epithelial tube morphogenesis		14(0.04)	5(0.036)
Epithelium development		37(0.04)	11(0.010)
Forebrain development		31(0.003)	10(0.002)

Induction of apoptosis		50(0.03)	12(0.038)
Morphogenesis of an epithelium		25(0.0006)	8(0.002)
Negative regulation of biosynthetic process		101(4.09E-05)	19(0.022)
Negative regulation of nitrogen compound metabolic process		87(0.0007)	17(0.034)
Negative regulation of nucleobase		86(0.0007)	17(0.031)
Negative regulation of RNA metabolic process		62(0.002)	13(0.039)
Positive regulation of gene expression		91(0.004)	19(0.025)
Positive regulation of macromolecule metabolic process		138(0.0001)	25(0.031)
Positive regulation of nitrogen compound metabolic process		105(0.0006)	21(0.018)
Positive regulation of transcription		89(0.004)	18(0.036)
Positive regulation of transcription from RNA polymerase II promoter		59(0.01)	15(0.010)
Regulation of carbohydrate catabolic process		7(0.007)	3(0.035)
Regulation of carbohydrate metabolic process		11(0.01)	4(0.036)
Regulation of cellular carbohydrate catabolic process		7(0.007)	3(0.035)
Regulation of transcription from RNA polymerase II promoter		112(0.002)	25(0.004)
Tissue morphogenesis		34(0.007)	9(0.0019)
Tube development		40(0.006)	10(0.022)
Tube morphogenesis		24(0.02)	7(0.032)
Anterior/posterior pattern formation	7(0.04)		7(0.047)
Cell adhesion	30(2.35E- 05)		23(0.012)
Negative regulation of cellular biosynthetic process	17(0.04)		19(0.018)
Negative regulation of transcription	15(0.03)		17(0.012)

Pacientes obesos (OD) mediante análisis de la vía de enriquecimiento de DMC. DMC: sitios CpG de metilación diferencial; CM: células mesénquimales; PreA: preadipocito; AM: adipocito maduro.

Regiones diferencialmente metiladas (DMR) en la adipogénesis

Se analizaron las regiones diferencialmente metiladas (DMR) durante la adipogénesis entre pacientes OD y OND, usando la biblioteca Bumphunter proporcionada en el paquete Chip Analisis Methylation Pipeline (ChAMP). Este análisis identificó 17 DMR distribuidos de la siguiente manera: 8 en CM, 4 en PreA y 5 en MA. Además, entre los 17 DMR, 10 se asociaron a un gen, incluidos: *HOXA11, CCHCR1, BLK, CAT y NSF* en la etapa CM; *HOXA5 y RPH3AL* en la etapa PreA y *CCHCR1, HOXA5 y RPH3AL* en la etapa AM (Tabla 5). Notablemente, la familia de genes *HOX* contenía DMR en todas las etapas de la adipogénesis.

Etapas	DMR	Cromosoma	DMR Inicio	DMR Final	Valor P	Genes
	DMR 1	7	27183946	27185512	0.0002	HOXA11
	DMR 2	12	115134148	115135333	0.0005	
	DMR 3	6	31148332	31148666	0.002	CCHCR1, PSORS1C3
СМ	DMR 4	1	119531625	119532352	0.006	
	DMR 5	8	11560299	11560851	0.008	BLK
	DMR 6	11	34460182	34461028	0.008	CAT
	DMR 7	8	65492280	65492936	0.009	
	DMR 8	17	46651722	46652501	0.03	NSF
	DMR 1	7	27142204	27143585	0.0009	HOXA5
Dro A	DMR 2	8	65492280	65492936	0.008	
FIEA	DMR 3	4	111532996	111533951	0.02	
	DMR 4	17	259755	260058	0.03	RPH3AL
	DMR 1	6	31148332	31148666	0.008	CCHCR1
	DMR 2	7	27142799	27143788	0.01	HOXA5
MA	DMR 3	10	729204	729956	0.02	
	DMR 4	8	65492280	65492846	0.02	
	DMR 5	17	259755	260058	0.02	RPH3AL

Tabla J. Divin Oblemiuus de lies elapas de adipogenesis en mueslias de Ob
--

DMR: Regiones diferencialmente metiladas.

Análisis de la expresión diferencial génica y su relación con la metilación en pacientes con OND y OD

Con el fin de identificar las consecuencias funcionales de las alteraciones de la metilación del ADN, se realizó una correlación entre el valor Beta de las 115 DMC que persisten durante la adipogénesis, y la expresión génica del gen afectado, en las etapas CM y AM. Un total de 14 DMC (ubicados en 11 genes), mostraron una correlación significativa con la expresión génica: 7 en CM (*CLU* / cg04676645, *DAXX* / cg00117005, *FRK* / cg26893134, *LCLAT1* / cg04618327, *LPP* / cg21354037, *MICA* / cg25285646 y *PRDM16* / cg112113363), 4 en AM (*DIP2C* / cg10064922, *MYO10* / cg02895120, *PLD1* / cg05771324 y *THSD7A* / cg26480858), y 3 compartidos en las dos etapas (cg26557270, cg18764771 y cg15226275, todos ubicados en *FRK*) (Tabla 6). Usando estos 11 genes, se encontró que la fagocitosis mediada por Fc gamma R y la vía del metabolismo de los glicerofosfolípidos se enriquecieron significativamente (Tabla 7).

CrC Carao		СМ		AM		
СрС	Genes	Correlación Pearson (r)	Valor P	Correlación Pearson(r)	Valor P	
cg04676645	CLU	0.727	0.011	0.408	0.212	
cg00117005	DAXX	0.669	0.024	-0.394	0.231	
cg10064922	DIP2C	-0.207	0.542	-0.726	0.011	
cg26557270	FRK	-0.781	0.005	-0.617	0.043	
cg18764771	FRK	-0.767	0.006	-0.635	0.036	
cg15226275	FRK	-0.720	0.013	-0.617	0.043	
cg26893134	FRK	-0.711	0.014	-0.563	0.071	
cg04618327	LCLAT1	0.665	0.026	-0.188	0.580	
cg21354037	LPP	0.643	0.033	-0.047	0.890	
cg25285646	MICA	-0.841	0.001	-0.571	0.067	
cg02895120	MYO10	0.287	0.393	0.714	0.014	
cg05771324	PLD1	0.557	0.075	0.630	0.038	
cg11113363	PRDM16	0.608	0.047	0.004	0.990	
cg26480858	THSD7A	0.215	0.526	0.635	0.036	

Tabla 6. Correlación significativa de DMCs persistentes con la expresión génica.

Tabla 7. Términos enriquecidos en el análisis ontológico de CDMs con correlación significativa con la expresión génica.

Término GO*	Números de genes	Valor P	Genes	Nivel de enriquecimiento
Fc gamma R-mediated phagocytosis	2	0.036	MYO10, PLD1	40.94642857
Glycerophospholipid metabolism	2	0.04	PLD1, LCLAT1	36.20526316

Discusión

El papel del tejido adiposo (TA) es principalmente de reservorio de grasa corporal y de órgano endocrino (23). Su origen proviene de células mesenquimales y está compuesto por varios tipos celulares, donde las principales son los adipocitos. Un número importante de evidencias señalan la participación de la adiposopatía en el desarrolo de DT2; sin embargo, los mecanismos fisiopatológicos aun no son del todo comprendidos. Entre otros, la alteración del tejido adiposo se ve reflejada en su recambio y su morfología, que conducen a cabios hipertróficos e hiperplásicos. La mayor incidencia de enfermedad metabólica asociada con TA hipertrófico puede explicarse por una mayor lipólisis espontánea y posteriormente liberación de adipocinas pro-inflamatorias (59,60). Para conocer si la hipertrofia del tejido adiposo correlaciona con el estado metabólico del paciente, como la resistancia a la insulina, en este trabajo se llevó acabo la medición de las dimensiones de los adipocitos en cortes de tejido de los pacientes obesos con y sin diabetes y con prediabetes. Así, se logró documentar una diferencia significativa entre pacientes con un diferente estado metabólico (Fig. 5). Particularmente, nuestros resultados mostraron una correlación entre el área del adipocito y la resistencia de insulina. Estudios en animales han mostrado una relación entre el tamaño del adipocito y la resistencia a la insulina.

Es importante mencionar que la adipogénesis es fundamental para mantener la homeostasis del tejido, la cual es mantenida en gran parte por las células madre, que se auto-renuevan y dan lugar a células maduras para construir diferentes tipos de tejidos (91). Cuando se activan estas células, existe una enorme regulación para expresar o desactivar los factores de transcripción para establecer el compromiso celular con el linaje final, donde los mecanismos epigenéticos juegan un papel fundamental (47). La remodelación epigenética puede ocurrir durante los procesos de diferenciación y en diferentes estados metabólicos. De hecho, varios estudios han demostrado que las alteraciones epigenéticas en tejido adiposo juegan un papel fundamental en el desarrollo de enfermedades como la DT2 y el síndrome metabólico. Se ha demostrado que estas alteraciones epigenéticas pueden ser hereditarias y reversibles (92-96); sin embargo, no está claro cómo impactan los compromisos metabólicos.

La identificación de marcadores epigenéticos alterados durante el proceso de diferenciación podría proporcionar una comprensión más profunda del papel de la epigenética en las enfermedades metabólicas. Un estudio previo, donde se analizó la expresión génica durante la adipogénesis, mostró que el paso entre las etapas de CM y AM era crucial para establecer un fenotipo especializado celular (97). Para profundizar en este conocimiento, en esta tesis se analizaron tres etapas de adipogénesis (CM, PreA y AM) para identificar la metilación diferencial y su correlación con alteraciones en la expresión génica, entre pacientes con obesidad con DT2 y sin diabetes. Hasta donde sabemos, este es el primer trabajo donde se presenta el perfil diferencial de metilación del ADN durante las 3 etapas del proceso de adipogénesis. Al igual que en estudios previos (92,96,98), la comparación entre OD y OND no mostró diferencias significativas en los perfiles globales de metilación. Aún más, este hallazgo se mantuvo cuando se compararon los perfiles de metilación global en células mesénquimales, preadipocitos y adipocitos maduros de pacientes OD y OND (Fig. 9).

Sin embargo, un análisis más detallado mostró alteraciones específicas en la metilación de CpG durante las tres etapas de adipogénesis en muestras de OD. Estas alteraciones epigenéticas fueron similares a aquellas previamente reportadas de manera independiente en CM y TAV (92,98).

Por otra parte, se ha propuesto que la metilación del ADN podría participar en la memoria epigenética y que las alteraciones en la metilación se asocian con enfermedades complejas, como el cáncer o la DT2, aunque esta noción se ha abordado muy poco en esta última (99, 100). En este estudio, nosotros mostramos una mayor evidencia de que la memoria epigenética alterada participa en la diabetes tipo 2. En este estudio, nosotros documentamos 115 DMC que persistieron a lo largo de las tres etapas de adipogénesis en muestras de OD (Fig 10 A). Además, se logró identificar vías comunes a las tres etapas estudiadas que estaban involucradas en la regulación funcional de la adipogénesis. Estas vías estuvieron implicadas en la muerte celular programada, procesos efectores inmunes, adhesión celular, biosíntesis macromolecular y diferenciación (Tabla 4). Aunque estas vías se han asociado ampliamente con el desarrollo de la diabetes, pocos estudios han demostrado que su disfuncionalidad podría ser dada por una alteración de la metilación que ocurre durante la adipogénesis. El único estudio previo que mostró que la metilación alterada del ADN en las CM obtenidas de pacientes obesos con DT2, sugirió que el tejido adiposo podría retener la memoria epigenética después de un estímulo (101). De manera notable, el análisis de PCA de los 115 DMC encontrados en este trabajo, mostró una agrupación independiente de los pacientes OD y OND (Fig 11). Adicionalmente, nuestros resultados también revelaron una correlación positiva entre el porcentaje de Hb1Ac y PC1 (Fig 12). Además, 14 de estos 115 DMC persistentes mostraron enriquecimiento de vías relacionadas con la regulación de la expresión génica (Tabla 6).

De estos, MYO10 y PLD1 estuvieron relacionados con la fagocitosis mediada por Fc gamma R, así como PLD1 y LCLAT1 se asociaron con el metabolismo de los glicerofosfolípidos (Tabla 7). Ambas vías se han relacionado con el desarrollo de la diabetes tipo 2; la primera está asociada con la comunicación entre adipocitos y macrófagos durante el aclaramiento de células muertas (102), mientras que la segunda vía, se ha asociado ampliamente con la desregulación de la sensibilidad a la insulina (103). Otro gen interesante revelado por alteración de la metilación durante la dipogénesis fue FRK, el cuál es un regulador positivo de PTEN (104), quién recientemente ha sido reportado como un regulador crítico de leptina y puede ser modulado en el tejido adiposo por estímulos externos como el enriquecimiento ambiental en modelos animales (105,106). Aquí, FRK mostró tres DMC en la región promotora con una correlación significativa con la expresión génica tanto en CM como en AM. Aunque ésta es la primera vez que se reporta que la metilación de FRK se encuentra alterada en la adipogénesis de pacientes diabéticos, en apoyo a nuestros resultados, un estudio reciente había revelado que la expresión de FRK puede modularse mediante la metilación del promotor en células de cáncer de mama (107). Nuestros hallazgos sugieren que la disfunción del metabolismo del tejido adiposo por la alteración persistente de la metilación del ADN, puede ser un

mecanismo promotor de la diabetes en pacientes obesos, aunque se necesitan más estudios para corroborar esta hipótesis.

Otro hallazgo interesante fue la presencia de alteraciones de la metilación en varios sitios de genes específicos (regiones diferencialmente metiladas: DMR), que persistieron en dos de las tres etapas de diferenciación. Por ejemplo, el gen *HOXA5* mostró un DMR en PreA y AM. Se sabe que la familia *HOX* influye en el desarrollo y linaje celular y se activa a través de vía BMP y *Wnt* en fases tempranas de la adipogénesis (108). Notablemente, se lograron identificar DMR en CM en otros miembros de la familia *HOX*, como es el caso de *HOXA11*, sugiriendo que esta familia de genes tiene un papel importante desde el inicio de la diferenciación que persiste durante las diferentes etapas de la adipogénesis con la participación de sus diferentes miembros. En este sentido, durante la osteogénesis se ha documentado que la regulación de la expresión de *HOXA5 y HOXA11* por miRNAs y modificaciones de histonas, son requeridos desde y para el mantenimiento del linaje (109).

Adicionalmente, también se identificaron DMC en una gran variedad de genes específicos en cada una de las 3 etapas (Fig 10). En la etapa de CM se encontraron DMC en 432 genes, donde el gen *THSD7A*, involucrado en la interacción entre la obesidad y la diabetes tipo 2, mostró la mayor significancia estadística. Este gen participa en la angiogénesis promoviendo la migración de células endoteliales y la formación de vasos (110). Otros genes interesantes que se encontraron entre los 20 principales genes con DMC en la etapa de CM fueron *RIMS1*, *RNF186* y *PTPRN2*, los cuales previamente se han asociado con una secreción alterada de insulina (111-113). Otro gen en esta lista fue *LGI3*, propuesto por algunos autores como supresor de la adipogénesis (114). Estos hallazgos sugirieron que las alteraciones iniciadas en la etapa de CM podrían afectar el mantenimiento del tejido adiposo. El análisis de enriquecimiento reveló términos involucrados en la vía de señalización del ácido gamma aminobutírico (*GABA*). Este hallazgo fue consistente con los hallazgos de un estudio reciente que sugirió que las células madre derivadas de tejido adiposo respondieron al GABA suprimiendo

la infiltración de macrófagos y mejorando la acción de la insulina en un modelo de obesidad (115).

La siguiente etapa de la adipogénesis, la etapa PreA, mostró las mayores alteraciones epigenéticas. Los genes con DMC más significativos fueron *DCAF6*, *SUFU*, *ZFR2*, *ZMIZ1* y *IL18RAP*. En esta etapa, los genes principales con DMC significativos participaron en vías relevantes para la función de los adipocitos, como la acumulación de grasa, resistencia a la insulina e inflamación (116-120). Adicionalmente, también se identificaron DMC en genes reguladores maestros de la adipogénesis, incluidos los genes de la cascada *JAK-STAT*, *PPARG*, *GATA3*, *JAK2* y *STAT5* (121,122). Por lo tanto, la etapa PreA parece ser una preparación para la fase de compromiso, donde las células asumirían las funciones de un adipocito maduro. Nuestros resultados también sugieren que las alteraciones de la metilación del ADN en la etapa PreA juegan un papel fundamental en la desregulación de la función de los adipocitos en pacientes con diabetes.

En la última etapa de diferenciación, la etapa AM, los 20 genes con DMC más significativos se relacionaron con la regulación de la adipogénesis (*DDAH1*) (123), la respuesta inflamatoria (*ST8SIA6* e *IL17F*) (124,125), fenotipos de obesidad (*GPR151* y *ZMIZ1AS1*) (119,126) hipertrigliceridemia (*LMF1*) (127), termogénesis (*ACOXL*) (128), y resistencia a la insulina (*CLU*) (129). Nuestro análisis de enriquecimiento mostró que los DMC se relacionaron con vías implicadas en la adhesión celular y la morfogénesis embrionaria (130). En la etapa AM, identificamos nuevas alteraciones en vías clave para el metabolismo de los adipocitos, incluidas las vías implicadas en la regulación de la transcripción y la regulación negativa de la biosíntesis de macromoléculas.

Entre los 20 genes principales con DMC en cada etapa de diferenciación, también encontramos nuevos genes candidatos relacionados con la diabetes. Por ejemplo, en la etapa CM, se encontraron DMC en *ABCC5-AS1* (131), *IPW* (132), *OR1B1, GNAQ* (133) y *PLXDC2* (134). En la etapa PreA, se encontraron DMC en *ST3GAL2* (135) y *ALPK2* (136). En la etapa AM, se encontraron DMC en *LRRC70* (137). Existe

poca evidencia sobre la función de estos genes en el tejido adiposo humano. Sin embargo, se ha sugerido la participación de estos genes en la patogénesis de la DT2. Por ejemplo, los niveles séricos de insulina, glucosa o ácidos grasos libres se relacionaron con *OR1B1*, *ABCC5AS1* y *ST3GAL2*; la adiposidad se relacionó con *IPW* y *ABCC5AS1* y las vías de señalización de lípidos o adipogénesis se relacionaron con *GNAQ*, *ALPK2* y *LRRC70*. Por lo tanto, se necesitan más estudios sobre estos genes para profundizar en sus funciones en el tejido adiposo humano y la diabetes tipo 2.

Conclusiones

Nuestros resultados muestran que en el tejido adiposo de pacientes diabéticos existen alteraciones en el proceso de diferenciación del adipocito y el tamaño de sus células; los cambios se encontraron desde CM y PreA y AM.

Los hallazgos de esta tesis documentan que, en pacientes obesos con diabetes, las vías involucradas en funciones metabólicas cruciales en tejido adiposo, como el metabolismo o catabolismo de lípidos y las funciones endocrinas, así como los procesos efectores inmunes y la señalización de la apoptosis, se encuentran desreguladas por una alteración epigenética. Estos resultados muestran que algunas alteraciones en la metilación persisten a través del proceso de diferenciación de adipocitos y sugieren que existe una memoria metabólica afectando genes clave involucrados en la regulación de la diferenciación y función Este estudio es el primero en documentar marcadores de los adipocitos. epigenéticos que persistien durante las tres etapas de la adipogénesis y su impacto en la expresión. Adicionalmente, este estudio documenta alteraciones en la metilación del ADN que afectan vías particulares y que son específicos de cada una de las tres etapas de diferenciación analizadas en este trabajo. Interesantemente el mayor cambio se encuentra en la etapa de PreA. Notablemente, algunos cambios en la metilación se correlacionaron con la alteración en la expresión génica que participan en las vías metabólicas relacionadas a la fisiopatología de la diabetes. Así, las alteraciones transitorias y persistentes en la metilación del ADN del

adipocito podrían ser uno de los mecanismos cruciales para el desarrollo de DT2 en pacientes con obesidad.

Publicaciónes

	Adipocyte	Taylor & Francis Taylor & Francis Taylor & Innew Coup
۵	ISSN: (Print) (Online) Journal homepage: <u>https://www.tandfonline.com/lo</u>	/kadi20
	Alterations of DNA methylation duri adipogenesis differentiation of meso cells isolated from adipose tissue of obesity is associated with type 2 dia	ng enchymal stem patients with betes
	laheh Mirzaeicheshmeh, Carlos Zerrweck, Federico C Jaca-Peynado, Angélica Martinez-Hernandez, Humber Secilia Contreras-Cubas, María Guadalupe Salas-Martí Nvarez, Elvia C. Mendoza-Caamal, Francisco Barajas-O	enteno-Cruz, Paulina to García-Ortiz, nez, Yolanda Saldaña- lmos & Lorena Orozco
	o cite this article: Elaheh Mirzaeicheshmeh, Carlos Zerrweck, Feder aca-Peynado, Angélica Martinez-Hernandez, Humberto García-Ortiz, Iaría Guadalupe Salas-Martínez, Yolanda Saldaña-Alvarez, Elvia C. I arajas-Olmos & Lorena Orozco (2021) Alterations of DNA methylatio ifferentiation of mesenchymal stem cells isolated from adipose tissue sociated with type 2 diabetes, Adipocyte, 10:1, 493-504, DOI: <u>10.10</u> o link to this article: https://doi.org/10.1090/21623245.2021.1975	ico Centeno-Cruz, Paulina Cecilia Contreras-Cubas, Aendoza-Caamal, Francisco n during adipogenesis of patients with obesity is 30/21623945.2021.1978157
	o link to this article: https://doi.org/10.1080/21623945.2021.1978	157
	8 © 2021 The Author(s). Published by Informa View supplem UK Limited, trading as Taylor & Francis Group.	entary material ^亿
	Published online: 26 Oct 2021. Submit your a	rticle to this journal 🖉
	View related articles C View Crossma	rk data 🖙
	Full Terms & Conditions of access and use can be for https://www.tandfonline.com/action/journalInformation?jou	ound at nalCode=kadi20

ADIPOCYTE 2021, VOL. 10, NO. 1, 493–504 https://doi.org/10.1080/21623945.2021.1978157

RESEARCH PAPER

Taylor & Francis Taylor & Francis Group

OPEN ACCESS OPEN ACCESS

Alterations of DNA methylation during adipogenesis differentiation of mesenchymal stem cells isolated from adipose tissue of patients with obesity is associated with type 2 diabetes

Elaheh Mirzaeicheshmeh ©^a, Carlos Zerrweck ©^{bc}, Federico Centeno-Cruz ©^a, Paulina Baca-Peynado^a, Angélica Martinez-Hernandez ©^a, Humberto García-Ortiz ©^a, Cecilia Contreras-Cubas ©^a, María Guadalupe Salas-Martínez ©^a, Yolanda Saldaña-Alvarez ©^a, Elvia C. Mendoza-Caamal ©^d, Francisco Barajas-Olmos ©^a, and Lorena Orozco ©^a*

^almmunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico; ^bClínica de Obesidad del Hospital General Tláhuac, SSA, Mexico City, Mexico; ^cFacultad De Medicina, Alta Especialidad En Cirugía Bariatrica, Unam, Mexico City, Mexico; ^dClinical Area, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico

ABSTRACT

Adipogenesis regulation is crucial for mature adipocyte function. In obesity, a major driver of type 2 diabetes (T2D), this process is disrupted and remains poorly characterized. Here we identified altered DNA methylation profiles in diabetic obese patients, during three adipocytes differentiation stages. We isolated mesenchymal cells from visceral adipose tissue of obese patients with and without T2D to analyse DNA methylation profiles at 0, 3, and 18 days of *ex vivo* differentiation and documented their impact on gene expression. Methylation and gene expression were analysed with EPIC and Clarion S arrays, respectively. Patients with T2D had epigenetic alterations in all the analysed stages, and these were mainly observed in genes important in adipogenesis, insulin resistance, cell death programming, and immune effector processes. Importantly, at 3 days, we found six-fold more methylated CpG alterations than in the other stages. This is the first study to on gene expression, which could be a cellular metabolic memory involved in T2D. Our data provided evidence that, throughout the adipogenesis process, alterations occur in methylation that might impact mature adipocyte function, cause tissue malfunction, and potentially, lead to the development of T2D.

ARTICLE HISTORY Received 7 April 2021 Revised 1 September 2021

Accepted 3 September 2021

KEYWORDS Adipogenesis; type 2 diabetes; obesity; DNA methylation

Introduction

White adipose tissue (WAT) is mainly composed of adipocytes; indeed, adipocytes form >90% of WAT mass. Adipocytes store energy in the form of fat, mainly triglycerides, and contribute to the modulation of whole-body metabolism by secreting endocrine and paracrine factors [1,2]. Adipocyte physiology drastically changes during obesity. WAT expansion can arise from adipogenesis, where new adipocytes are formed by precursor differentiation (hyperplasia), or from an increase in adipocyte size (hypertrophy) [3,4]. Although lowgrade inflammation is associated with obesity, it has been shown that structural cell changes are related to insulin resistance even in the absence of inflammation [5]. Obesity has important implications for the development of cardiovascular risk diseases, like hypertension, insulin resistance, dyslipidemia, and type 2

diabetes (T2D). Physio pathological studies have shown that obesity and these pathologies are highly interrelated by an exceeded ability to build up adequate fat stores and altered adipogenesis [6–10].

The number of adipocytes in a body is established in childhood. In adulthood, about 10% of the adipocytes are renewed per year, to maintain the WAT compartment [11,12]. Thus, maintaining a balance between metabolism and adipocyte differentiation is of paramount importance for health [13]. Adipocytes are generated from mesenchymal stem cells (MSCs) [14], which undergo differentiation in two phases. The first phase promotes the stem cell transformation into a preadipocyte. During this phase, many epigenetic events occur to guarantee that preadipocytes acquire mature adipocyte features [15]. This process requires

CONTACT Lorena Orozco * 😒 lorozco@inmegen.gob.mx 💽 Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica. Ss. Mexico City. Mexico.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Supplemental data for this article can be accessed here

^{© 2021} The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

494 🕒 E. MIRZAEICHESHMEH ET AL.

complex integration between the cytoarchitecture and signalling pathways, which involves more than 2000 regulatory transcription factors [16].

Epigenetic factors can modulate accessibility to the chromatin, and thus, they can regulate the genes that participate in the development of mature adipocytes [17]. However, changes induced in DNA methylation patterns can potentially persist long after the original stimuli is eliminated. This persistence results in a mitotically heritable memory, which can contribute to chronic diseases, like T2D [18–20]. Taken together, these findings have suggested that it is relevant to understand adipogenesis and its role in the regulation of metabolic processes.

In the present study, to extend our understanding of the role of the adipocyte in T2D, we sought to explore DNA methylation dynamics in-depth, by tracking its progress through three stages of adipogenesis. We cultured adipocytes from patients that were obese without T2D (OND) or obese with T2D (OD) and compared their methylation dynamics during adipogenesis. Moreover, we aimed to identify markers that persisted or appeared during the different phases of differentiation.

Results

Patients were classified as controls (OND; n = 9) and cases (OD; n = 8). We matched the two groups in terms of body mass index (BMI), age, and biochemical parameters. As expected, we observed differences between the two groups in the HbA1c (p = 0.0002) and serum glucose levels (p = 0.01) (Table 1).

Differential DNA methylation

To establish the dynamics of the alterations in methylation observed during adipogenesis, we obtained DNA from MSC cultures (day 0), preadipocyte cultures (PreA, day 3), and mature adipocyte cultures

(MA, day 18). We then analysed the DNA methylation profiles in OD and OND samples. After quality control and data normalization, we could detect 755,382 CpG sites. No significant differences in global methylation were observed between the OD and OND samples (Supplemental Figure S1). However, the epigenetic remodelling pattern during adipogenesis was different between OD and OND samples (Supplemental Tables S1-S4 and Supplemental Figure S2). We also compared the beta values for the three different stages between groups to identify differentially methylated CpG sites (DMCs; Figure 1 and Supplemental Tables S5-S7). We identified 115 DMCs that persisted during all three adipogenesis stages in the OD samples. In addition, OD samples showed hypomethylation in the MSC and MA stages, and hypermethylation in the PreA stage (Figure 2 and Supplemental Figure S3). In OD samples, epigenomic alterations were six-fold higher in the PreA stage than in the MSC and MA stages. Interestingly, in the PreA stage these alterations included DMCs mainly in master genes that regulate adipogenesis, such as PPARG, GATA3, JAK2, and STAT5A.

In a principal component analysis (PCA), the beta values of the 115 persistent DMCs could separate patients with diabetes from patients without diabetes (Figure 3). Furthermore, we found a significant correlation between principal component 1 (PC1) and the Hb1Ac values (Supplemental Figure S4). To determine the potential roles of genes with persistent DMCs, we performed an enrichment pathway analysis with a database for annotation, visualization, and integrated discovery (DAVID). We found enriched pathways related to the regulation of caspase activity, endopeptidase activity, and programmed cell death, in addition to pathways involved in immune effector processes (Supplemental Table S8).

We found alterations in each differentiation stage. The top 20 DMCs identified in each stage are shown in (Table 2). To investigate enrichments in the functional

Table 1. Clinical characteristics of obese patients, with and without diabetes.

Parameter	OD	OND	p-value
n	8	9	
Age (years ± SD)	45.3 ± 5.94	39.11 ± 4.62	0.07
BMI $(kg/m2 \pm SD)$	45.4 ± 7.07	44.40 ± 6.02	0.68
Glucose (mg/dl \pm SD)	131.7 ± 33.73	97.11 ± 8.22	0.01
HbA1c (%± SD)	6.79 ± 0.72	5.56 ± 0.54	0.0002
HOMA (%B \pm SD)	7.47 ± 4.15	5.21 ± 3.90	0.15
Insulin (μ U/ml ± SD)	22.28 ± 10.42	21.07 ± 14.25	0.54
Triglycerides (mg/dl± SD)	168.7 ± 70.50	154.27 ± 65.96	0.96
HDL-Cholesterol (mg/dl ± SD)	48.52 ± 16.64	59.6 ± 63.74	0.23
Total Cholesterol (mg/dl ±SD)	180.7 ± 35.63	152.25 ± 69.94	0.39
Systolic blood pressure (mmHa \pm SD)	133.3 ± 22.24	133.11 ± 15.64	0.9
Diastolic blood pressure (mmHg ± SD)	74.6 ± 11.24	74.22 ± 10.91	0.96
D (ma/dl + SD)	118 27 + 25 71	107 27 + 53 64	0.78

OD: obese patients with diabetes; OND: obese patients without diabetes; HDL: high-density lipoprotein.

ADIPOCYTE 🕳 495

Figure 1. Differential DNA methylation profiles in MSC, PreA and MA in OD patients. Blue points indicate DMCs with |Delta-Beta|> 0.1 and p-value<0.05.

Figure 2. (a) Venn diagram shows a comparison of DMCs from OD and OND samples in the different stages. The background colour represents the number of DMCs; the percentage was calculated based on the total number of DMCs in all three stages. (b) Table shows a comparison of DMC numbers observed in OND and OD samples in all three stages. DMC: differential methylation CpG sites; OD: samples from obese patients with diabetes; OND: samples from obese patients without diabetes.

pathways, we also used DAVID to examine all observed DMCs in each stage (Supplemental Tables S9-S11). Although DMCs were observed on particular genes in specific stages, notably, some pathways were shared in all three stages (Table 3). These pathways included biological adhesion, negative regulation of macromolecule biosynthetic processes, regulation of apoptosis, and regulation of programmed cell death. We also found that some alterations persisted from MSC to PreA; these alterations represented pathways involved in cell-cell adhesion, haemopoietic or lymphoid organ development, homophilic cell adhesion, immune system development, phosphorylation, protein amino acid phosphorylation, and regulation of small GTPase mediated signal transduction. The largest number of altered shared pathways were found in both PreA and MAin particular,: cell-cell signalling, embryonic morphogenesis, negative regulation of biosynthetic

processes, positive regulation of gene expression, tissue morphogenesis and cellular carbohydrate catabolic processes. The last one showing the highest fold enrichedlevel regulation. Our findings provide evidence that differences in methylation affected both specific and common pathways in the different stages of adipogenesis in patients with T2D.

Differentially methylated regions in adipogenesis

We analysed differentially methylated regions (DMRs) with the Bumphunter library provided in the Chip Analysis Methylation Pipeline (ChAMP) package to compare OND and OD samples. We found 17 DMRs distributed as follows: 8 in MSC, 4 in PreA, and 5 in MA. Moreover, among the 17 DMRs, 10 were associated with a single gene, including: HOXA11, 496 👄 E. MIRZAEICHESHMEH ET AL.

Figure 3. PCA analysis results, based on 115 persistent DMCs, among OD (red symbols) and OND (black symbols) samples. DMC: differential methylation CpG site; OD: samples from obese patients with diabetes; OND: samples from obese patients without diabetes.

CCHCR1, BLK, CAT, and NSF in the MSC stage; HOXA5 and RPH3AL in the PreA stage; and CCHCR1, HOXA5, and RPH3AL in the MA stage (Table 4). Interestingly, the HOX gene family had DMRs in all adipogenesis stages.

Alterations of DNA methylation correlated with gene expression levels

In order to identify the functional consequences of DNA methylation alterations, a correlation between the beta value of 115 DMCs persisting during adipogenesis with gene expression was performed in the MSC and MA stages. A total of 14 DMCs (located on 11 genes) showed a significant correlation with their gene expression: 7 in MSC (CLU/cg04676645, DAXX/ cg00117005, FRK/cg26893134, LCLAT1/cg04618327, LPP/cg21354037, MICA/cg25285646 and PRDM16/ cg11113363), 4 in MA (DIP2C/cg10064922, MYO10/ cg02895120, PLD1/cg05771324 and THSD7A/ cg26480858), and 3 located on FRK, which were shared in the two stages (cg26557270, cg18764771 and cg15226275; Supplemental Table S12). Using these 11 genes, Fc gamma R-mediated phagocytosis and Glycerophospholipid metabolism pathway, were identified as significantly enriched (Supplemental Table S13).

Discussion

Tissue homoeostasis is largely maintained by stem cells, which self-renew and give rise to mature cells to build different types of tissues [21]. It has been reported that alterations in MSCs can lead to the development of diseases [22]. When MSCs are activated, there is a huge regulation to express or turn off transcription factors to establish cellular commitment to the final lineage [12]. Several studies have shown that epigenetic alterations in WAT play a fundamental role in the development of diseases, such as T2D and metabolic syndrome. Epigenetic remodelling can occur during differentiation processes and in different metabolic states. It has been shown that the epigenetic alterations can be heritable and reversible [23-27]. However, it remains unclear how epigenetic alterations in DNA that occur during adipogenesis impact metabolic commitments. Identifying altered epigenetic markers during the differentiation process might provide a deeper understanding of the role of epigenetics in metabolic diseases.

In this study, we analysed the MSC, PreA, and MA stages of adipogenesis. A previous expression study showed that, in adipogenesis, the step between MSC and MA stages was crucial for establishing a specialized cell phenotype [28]. Consistent with the findings from

ADIPOCYTE 😔 497

OD vs OND	CpG ID	OND Beta mean	OD Beta mean	Delta Beta	Chromosome	Gene symbol	Genomic region	P value
MSC	cg02332293	0.710	0.889	0.180	5		IGR	7.44E-08
	cg26480858	0.305	0.201	0.103	7	THSD7A	Body	7.42E-05
	cg05170452	0.713	0.829	0.115	5		IGR	9.31E-05
	cg16626954	0.513	0.406	0.107	3		IGR	0.00015
	cg24056885	0.500	0.356	0.144	3	ABCC5AS1	TSS200	0.00015
	cg12771637	0.555	0.657	0.101	11		IGR	0.00021
	cg25635251	0.531	0.664	0.133	11		IGR	0.00028
	cg13482309	0.393	0.571	0.178	9	OR1B1	1stExon	0.00028
	cg18830697	0.747	0.849	0.102	6	RIMS1	TSS200	0.00052
	cg11086466	0.762	0.608	0.154	6	RNF182	5'UTR	0.00054
	cg18454042	0.581	0.694	0.113	7	SDK1	Body	0.00063
	cg18116804	0.525	0.368	0.156	10	PLXDC2	Body	0.00064
	cg18860301	0.634	0.466	0.168	6	RNF182	5'UTR	0.0007
	cg06121514	0.576	0.677	0.101	15	IPW	Body	0.00071
	cg14439102	0.544	0.442	0.102	9	GNAQ	Body	0.00075
	cg06104343	0.761	0.631	0.130	17		IGR	0.00082
	cg03915559	0.592	0.455	0.136	10	LGI1	Body	0.00082
	cg00435063	0.449	0.553	0.104	7	PTPRN2	Body	0.0009
	cg10284704	0.773	0.645	0.128	15		IGR	0.0009
	cg03962019	0.799	0.689	0.110	1		IGR	0.00095
PreA	cg17292337	0.092	0.351	0.258	12		IGR	1.62E-05
	cg20790798	0.456	0.611	0.156	5		IGR	1.99E-05
	cg24517467	0.444	0.602	0.158	7		IGR	2.12E-05
	cg14950747	0.915	0.796	0.118	19	ZFR2	Body	7.18E-05
	cg24449463	0.480	0.280	0.200	1	DCAF6	Body	9.36E-05
	cg23084986	0.748	0.645	0.103	1	RAB42	TSS1500	0.00011
	cg07415266	0.562	0.686	0.124	2	IL18RAP	Body	0.00017
	cg27216788	0.266	0.459	0.193	16	ST3GAL2	3'UTR	0.00025
	cg06821828	0.262	0.548	0.286	14		IGR	0.00026
	cg20253542	0.872	0.718	0.155	7		IGR	0.00026
	cg06259934	0.48	0.322	0.162	10	ZMIZ1	Body	0.0003
	cg02721751	0.837	0.651	0.186	6	SLC44A4	Body	0.00032
	cg27614534	0.855	0.710	0.145	18	ALPK2	TSS1500	0.00035
	cg07342647	0.847	0.669	0.178	16		IGR	0.00041
	cg04051335	0.641	0.479	0.162	5	C5orf62	TSS1500	0.00045
	cg17071479	0.736	0.608	0.128	16	SRL	Body	0.00046
	cg26457868	0.495	0.340	0.155	10	SUFU	Body	0.00053
	cg17045772	0.859	0.738	0.122	1	CTPS	TSS1500	0.00053
	cg15397200	0.618	0.738	0.119	2		IGR	0.00053
	cg05867245	0.563	0.872	0.310	20	ZBTB46	Body	0.00055
MA	cg22960347	0.361	0.247	0.115	7		IGR	7.03E05
	cg00216549	0.631	0.529	0.102	1	DDAH1	Body	0.00011
	cg05146544	0.109	0.227	0.118	2		IGR	0.00023
	cg24224080	0.331	0.220	0.111	5		IGR	0.00026
	cg24449463	0.451	0.310	0.140	1	DCAF6	Body	0.00029
	cg10354380	0.573	0.458	0.115	6	IL17F	TSS200	0.00032
	cg01911494	0.290	0.177	0.113	16	LMF1	Body	0.00049
	cg27082921	0.803	0.655	0.147	19	ATP8B3	Body	0.00053
	cg11613005	0.340	0.443	0.103	5	GPR151	1stExon	0.00068
	cg19534681	0.120	0.237	0.117	2		IGR	0.00073
	cg17487381	0.391	0.272	0.119	9		IGR	0.00098
	cg25635251	0.497	0.652	0.156	11		IGR	0.00099
	cg23989344	0.719	0.591	0.128	10	ST8SIA6	Body	0.00107
	cg00034755	0.785	0.678	0.107	22		IGR	0.00114
	cg22891588	0.700	0.594	0.105	5	LRRC70	1stExon	0.00131
	cg04676645	0.820	0.704	0.116	8	CLU	Body	0.00166
	cg16246747	0.722	0.607	0.115	2	ACOXL	5'UTR	0.00176
	cq00945409	0.400	0.222	0.177	10	ZMIZ1AS1	Body	0.0019
	cg19868364	0.560	0.663	0.103	14		IGR	0.00203
	cq06159404	0 188	0 352	0 164	10		IGR	0.00217

DMC: differential methylation CpG sites, Transcription starts sites (TSS 200 pb1500 pb), intergenic regions (IGR)

previous studies [23,27,29], when we compared global methylation in OD and OND tissue samples, we found small, statistically insignificant differences (Supplemental Figure 1). However, we found specific CpG methylation alterations during the three adipogenesis stages in the OD samples. These alterations were similar to those documented previously in MSCs

and WAT [23,30]. To the best of our knowledge, this study was the first to compare differential DNA methylation during three stages of the adipogenesis process, from ex vivo MSC differentiation obtained from obese patients with and without diabetes.

It has been proposed that DNA methylation might participate in epigenetic memory and that alterations

498 😉 E. MIRZAEICHESHMEH ET AL.

Table 3. Altered common pathways in MSC, PreA and MA adipogenesis stages in diabetic obese patients (ODs) by DMCs enric

Table	3. ((Continued)	•
-------	------	-------------	---

	Gene number in OD-MSC	Gene number in OD-PreA	Gene number in OD- MA
Go term	(p-value)	(p-value)	(p-value)
biological adhesion	30(0.00002)	114	23(0.012)
negative regulation of	17(0.03)	(0.0003) 93(0.0003)	19(0.014)
macromolecule	17 (0.05)	<i>y</i> 5(0.0005)	12(0.014)
biosynthetic process			
regulation of apoptosis	25(0.01)	123(0.002)	25(0.015)
regulation of cell death	25(0.01)	126(0.001)	25(0.018)
regulation of programmed	25(0.01)	124(0.002)	25(0.017)
cell death	14(0.001)	46(0.016)	
haemonoiesis	14(0.001)	40(0.010)	
haemopoietic or lymphoid	12(0.007)	50(0.0006)	
organ development			
homophilic cell adhesion	9(0.002)	27(0.005)	
immune system development	12(0.01)	50(0.002)	
phosphorylation	24(0.01)	140(1.73E-	
protein amino acid	21(0.01)	06) 122/8 085	
protein amino acio	21(0.01)	122(0.98E- 07)	
regulation of small GTPase	10(0.03)	55(1.03F-	
mediated signal		05)	
transduction			
cell-cell signalling		106(2.30E-	19(0.033)
		05)	10/0 0/-
empryonic morphogenesis		61(6.28E-	13(0.012)
enithelial tube		14(0.04)	5(0.036)
morphogenesis		(+0.0)+1	5(0.050)
epithelium development		37(0.04)	11(0.010)
forebrain development		31(0.003)	10(0.002)
induction of apoptosis		50(0.03)	12(0.038)
morphogenesis of an		25(0.0006)	8(0.002)
epithelium		101/4 00E	10(0.022)
biosynthetic process		101(4.09E- 05)	19(0.022)
negative regulation of		87(0.0007)	17(0.034)
nitrogen compound		(,	
metabolic process			
negative regulation of		86(0.0007)	17(0.031)
nucleobase, nucleoside,			
nucleotide and nucleic acid			
metabolic process		62(0.002)	13(0.020)
metabolic process		02(0.002)	13(0.039)
positive regulation of gene		91(0.004)	19(0.025)
expression			,
positive regulation of		138	25(0.031)
macromolecule metabolic		(0.0001)	
process		105	21/0.010
positive regulation or nitrogen compound		(0.0006)	∠ I (U.U18)
metabolic process		(0.0000)	
positive regulation of		89(0.004)	18(0.036)
transcription			-,,
positive regulation of		59(0.01)	15(0.010)
transcription from RNA			
polymerase II promoter		7/0	2/0
regulation of carbohydrate		7(0.007)	3(0.035)
catabolic process		11(0.01)	4(0.036)
metabolic process		11(0.01)	4(0.050)
regulation of cellular		7(0.007)	3(0.035)
carbohydrate catabolic			
process			
regulation of transcription		112(0.002)	25(0.004)
from RNA polymerase II			
promoter			

Go term	Gene number in OD-MSC (p-value)	Gene number in OD-PreA (p-value)	Gene number in OD- MA (p-value)
tissue morphogenesis		34(0.007)	9(0.0019)
tube development		40(0.006)	10(0.022)
tube morphogenesis		24(0.02)	7(0.032)
anterior/posterior pattern formation	7(0.04)		7(0.047)
cell adhesion	30(2.35E-05)		23(0.012)
negative regulation of cellular biosynthetic process	17(0.04)		19(0.018)
negative regulation of transcription	15(0.03)		17(0.012)

vellow = low enrichment; green = high enrichment; DMC: differential methylation CpG sites; MSC: mesenchymal stem cell; PreA: preadipocyte; MA: mature adipocyte.

able 4. DMRs obtained from three adipogenesis stages in OD amples.

Stage	DMR	Chromo some	DMR start	DMR end	P value	Related gene
MSC	DMR	7	27,183,946	27,185,512	0.0002	HOXA11
	DMR 2	12	115,134,148	115,135,333	0.0005	
	DMR	6	31,148,332	31,148,666	0.002	CCHCR1,
	DMR	1	119,531,625	119,532,352	0.006	FJORJICJ
	DMR	8	11,560,299	11,560,851	0.008	BLK
	DMR	11	34,460,182	34,461,028	0.008	CAT
	DMR	8	65,492,280	65,492,936	0.009	
	DMR	17	46,651,722	46,652,501	0.03	NSF
PreA	DMR	7	27,142,204	27,143,585	0.0009	HOXA5
	DMR	8	65,492,280	65,492,936	0.008	
	DMR	4	111,532,996	111,533,951	0.02	
	DMR	17	259,755	260,058	0.03	RPH3AL
MA	DMR	6	31,148,332	31,148,666	0.008	CCHCR1
	DMR	7	27,142,799	27,143,788	0.01	HOXA5
	DMR	10	729,204	729,956	0.02	
	DMR	8	65,492,280	65,492,846	0.02	
	DMR 5	17	259,755	260,058	0.02	RPH3AL

MR: differentially methylated region

n methylation were associated with complex diseases, uch cancer [31]. However, this notion has been oorly addressed in T2D [32] Here, we provided evience that altered epigenetic memory participates in 2D. In this study, 115 DMCs persisted throughout the three adipogenesis stages in OD samples (Figure 1a). Thus, we could identify pathways

(Continued)

ADIPOCYTE 😔 499

common to all three stages studied that were involved in the functional regulation of adipogenesis. These pathways were involved in programmed cell death, immune effector processes, cell adhesion, macromolecular biosynthesis, and differentiation (Table 3 and Supplemental Table S8). Although these pathways have been widely associated with the development of diabetes, few studies have shown that altered methylation profiles can affect these pathways during adipogenesis in patients with diabetes. The only previous study that documented altered DNA methylation in MSCs obtained from obese patients with T2D suggested that adipose tissue could retain epigenetic memory after a stimulus [30].

Our PCA analysis of the 115 DMCs showed that the OD and OND samples were in-dependently clustered (Figure 2). Interestingly, there was a positive correlation between the %Hb1Ac and PC1 (Supplemental Figure 4). Furthermore, 14 of the persisting 115 DMCs shown a possible role in the regulation of gene expression (Supplemental Table 12). From these, MYO10 and PLD1 were related to Fc gamma R-mediated phagocytosis, as well as PLD1 and LCLAT1 were to Glycerophospholipid metabolism in enrichment pathways analysis (Supplemental Table 13). Both pathways have been related to the development of T2D. The first pathway is associated to the crosstalk between adipocytes and macrophages during clearance of dead cells [33]. The second one, glycerophospholipids, has been broadly reported as a participant in the dysregulation of insulin sensitivity [34]. Otherwise, FRK is shown to have three DMCs in both MSC and MA. These DMCs were located in the gene promoter region, with a significant correlation with gene expression. Our findings support a previous report that documented that FRK expression can be modulated by sitespecific promoter methylation in breast cancer cells [35]. FRK is a potent positive regulator of PTEN [36], which has recently been reported as a critical regulator of leptin-sympathetic loops and it can be modulated in adipose tissue by external stimuli such as environmental enrichment in animal models [37,38]. Furthermore, in our analysis FRK shows hypermethylation and under-expression in OD patients. All this suggests a role in adipose metabolism due to persistent DNA methylation alteration, although further studies are needed to corroborate it.

Additionally, we found altered methylation in specific genes that occurred in two of the three differentiation stages. For example, the HOXA5 gene displayed DMRs in PreA and MA. Of note, a DMR was also found in the HOXA11 in MSC. The HOX family influences fat cell development, and it is activated through bone morphogenetic protein signalling and the WNT pathway in early differentiation phases [39].

We also identified DMCs on specific genes in each of the stages analysed. In the MSC stage, an enrichment analysis of the genes that contained DMCs revealed involved terms in the gamma aminobutyric acid (GABA) signalling pathway (Supplemental Table S5). This finding was consistent with findings in a recent study that suggested that adipose-derived stem cells responded to GABA by suppressing macrophage infiltration and enhancing insulin action in an obesity model. Interestingly, in the present study, the top gene with DMCs in the MSC stage was THSD7A, which was previously shown to be involved in the interaction between obesity and T2D. This gene participates in angiogenesis by promoting endothelial cell migration and tube formation [40]. Other interesting genes that were among the top 20 genes with DMCs in the MSC stage were RIMS1 [41], RNF186 [42], and PTPRN2 [43], which were previously associated with impaired insulin secretion. Another gene on this list was LGI3 [44], which was proposed to be an adipogenesis suppressor. This finding suggests that the alterations initiated in the MSC stage might affect the maintenance of adipose tissue.

The next step in adipogenesis, the PreA stage, showed greater epigenetic alterations in the OD group. In this stage, the top genes with significant DMCs participated in pathways relevant to adipocyte functions, such as fat accumulation (DCAF6 [45], SUFU [46], and ZFR2 [47]), insulin resistance (ZMIZ1 [48]), and inflammation (IL18RAP [49]). We also identified master regulators of adipogenesis, including genes in the JAK-STAT cascade, PPARG, GATA3, JAK2, and STAT5A [50,51]. Thus, the PreA stage appeared to be a preparation for the commitment phase, where cells would take on the functions of a mature adipocyte. Our results also suggest that DNA methylation alterations in the PreA stage play a fundamental role in the dysregulation of adipocyte function in patients with diabetes.

In the last stage of differentiation, the MA stage, our enrichment analysis showed that DMCs were identified in pathways involved in cell adhesion and embryonic morpho genesis [52,53]. In the MA stage, we identified new alterations in key pathways for adipocyte metabolism, including pathways implied by the regulation of transcription and the negative regulation of macromolecule biosynthesis. The top 20 genes altered by DMCs were related to the regulation of adipogenesis (DDAH1) [54], the inflammatory response (ST8SIA6 and IL17F) [55,56], obesity phenotypes (GPR151 and ZMIZ1-AS1) [57,58] hypertriglyceridaemia (LMF1) [59],

500 🕒 E. MIRZAEICHESHMEH ET AL.

thermogenesis (ACOXL) [60], and insulin resistance (CLU) [61]. These findings suggest that, in obese patients with diabetes, pathways involved in crucial metabolic functions in WAT, such as lipid metabolism or catabolism and endocrine roles were dysregulated by epigenetic alterations.

Among the top 20 genes altered with DMCs in each differentiation stage, we also found new candidate genes related to diabetes. For example, in the MSC stage, DMCs were found on ABCC5-AS1 [62], IPW [63], GNAQ [64], and PLXDC2 [65] In the PreA stage, DMCs were found on ST3GAL2 [58] and ALPK2 [59]. In the MA stage, DMCs were found on LRRC70 [66]. There is limited evidence on the function of these genes in human adipose tissue. However, there is evidence that has suggested the involvement of these genes in T2D pathogenesis. For example, serum levels of insulin, glucose, or free fatty acids were related to OR1B1, ABCC5-AS1, and ST3GAL2; adiposity was related to IPW and ABCC5-AS1; and lipid or adipogenesis signalling pathways were related to GNAQ, ALPK2, and LRRC70. Further studies on these genes are needed to delve into their roles in human adipose tissue and T2D.

Taken together, the results presented here indicate that some alterations in methylation persisted through the adipocyte differentiation process. The main alterations were observed in key genes involved in the regulation of adipocyte differentiation and function (i.e., lipid metabolism and insulin sensitivity), immune effector processes, and apoptosis signalling. Additionally, this study revealed specific methylated sites in each of the three analysed stages that affected particular pathways. Thus, both transient and persistent alterations in methylation could contribute to impairments in mature adipocyte function and lead to the development of T2D. Specifically, in the MSC stage, altered methylation occurred mainly in the GABA signalling pathway. In the PreA stage, where we found the highest number of genes with altered methylation, the alterations were mainly found in the glucose transport and JAK-STAT pathways. In the MA stage, altered methylation occurred mainly in genes involved in the negative regulation of macromolecule metabolic processes and energy generation. Thus, these data have bridged some knowledge gaps regarding the role of DNA methylation remodelling during adipogenesis in diabetes. Future analyses are needed to deepen our understanding of the pathophysiology of these metabolic processes.

Materials and methods

Subject recruitment and clinical evaluation

We included 17 women with a BMI \geq 35 kg/m2 that were undergoing bariatric surgery at the Integral Clinics for Obesity and Metabolic Diseases in Tláhuac Hospital, Mexico City. All patients were clinically and biochemically evaluated before surgery. Visceral WAT was obtained during surgery, as previously described. Patients were diagnosed without (control) or with diabetes, according to the American Diabetes Association criteria. Patients with hypothyroidism were excluded.

Isolation of adipose-derived stem cells

MSCs were isolated from visceral adipose tissue as was previously described by Zuk P. et ale 2019 [67]. Briefly, a fresh WAT biopsy (median: 2-3 g) was cut into small pieces, washed with phosphate-buffered saline (PBS, Life Technologies, USA) and transferred to a sterile digestion solution, containing HAM- DMEM/F12 medium (Life Technologies, CA, USA), 1 mg/ml collagenase II (Sigma-Aldrich, St. Louis, MO), and 10 mg/ml bovine serum albumin (BSA, Sigma-Aldrich, St. Louis, MO). Samples were incubated at 37°C for 45 min. The digested tissue was centrifuged at 1200 × g for 8 min. The cell suspension (containing stromal vascular cells) was filtered through a cell strainer (Nalgene, Rochester, NY), and cells were transferred to culture dishes for MSC proliferation in culture medium DMEM (Life Technologies, CA, USA) supplemented with 10% foetal bovine serum (Gibco, Fisher Scientific, USA), streptomycin (10,000 µg/ml, Gibco, Fisher Scientific, USA), and penicillin (10,000 units/ml, Gibco, Fisher Scientific, USA). Cells were grown in a humidified incubator with 5% CO₂ at 37°C. Medium was changed every day. All cells were expanded until passage four. The MSCs were verified in a flow cytometer (FACSARIA-BD) using a set of MSC surface markers (CD90, CD44, CD105, and CD29) for cells that did not express CD45 (Abcam ab93758, USA) and it was also corroborated by gene expression (Supplemental Figure S5A-B). These cells were stimulated to differentiate into mature adipocytes.

Adipogenic differentiation

To analyse the DNA methylation profiles we prepared 51 culture plates of cells derived from 17 patients. The cells were seeded at a density of 1,000,000 by plate

(60 mm diameter). Day 0 was defined as the day the cells reached 80-90% confluency (MSCs). At this point, 17 culture dishes were harvested to examine stage 1. In the remaining 34 plates, differentiation was induced with an adipogenic medium that contained DMEM supplemented with 250 nM dexamethasone (Sigma Aldrich, USA), 0.5 mM 3-isobutyl-1 methylxanthine (Sigma Aldrich, USA), and 10 µg/ml insulin (Sigma Aldrich, USA). The differentiation medium was replaced every 72 h, and adipocytes were grown until day 3 (PreA). At this point, 17 culture dishes were prepared to examine stage 2. The remaining 17 plates were allowed to mature until day 18 (MA). The MAs displayed adipocyte morphology with massive lipid droplet accumulation, identified with oil red stain (Supplemental Figure S6). Similar to the methylation analysis, 22 culture plates were prepared to analyse the gene expression profile at the beginning (day 0, n = 11) and at the end (day 18, n = 11) of the differentiation process, corresponding to 11 patients randomly selected (6 OD and 5 OND). MAs displayed an increased gene expression of adipogenic markers such as: FABP4, PPARG and PPARGC1A (Supplemental Figure S5 C).

DNA extraction

DNA was extracted with the QIAamp DNA Mini Kit (Qiagen, Valencia CA) from cells in all three differentiation stages (MSC, PreA, and MA). DNA was quantified with the NanoDrop[•] ND-1000 v3.5.2. (NanoDrop Technologies Inc.). During the DNA extraction process, two PreA samples were eliminated because DNA concentration was not enough.

RNA extraction

RNA was obtained from 11 MSC and 11 MA cultures using TRIzol^{*} (Invitrogen, Life Technologies, CA, USA), according to the manufacturer's instructions. RNA quality was assessed using the Agilent 2100 Bioanalyzer (Agilent Technologies, USA) and all samples had an acceptable RIN score >8. Gene expression analysis was performed using the Clariom S Human Expression Assay (Affymetrix, USA).

Genome methylation analysis

We analysed DNA methylation with the Infinium Methylation EPIC Bead Chip kit (Illumina, Inc., San Diego, CA). This assay covers over 850,000 methylation sites per sample at single nucleotide resolution. OD and OND controls were placed randomly among the Bead ADIPOCYTE 😔 501

Chips. We performed the Illumina Infinium methylation assay protocol, according to manufacturer's instructions, and we used iScan to scan the arrays. Methylation data were visualized and analysed with Genome Studio software version 2011.1 (Illumina) and the Methylation Module. Only samples that passed quality control evaluations were used in the analysis. Methylation beta values were estimated as the ratio of the signal intensity of the methylated probe to the sum of methylated and unmethylated probes. The beta values ranged from 0 to 1.

Statistical analysis

Clinical data are reported as the mean and standard deviations (SD). Differences in biochemical and anthropometric data between OND and OD groups were tested with the unpaired Wilcox test (Table 1). Descriptive statistics for genome-wide methylation were calculated in R, version 3.1 [68]. The ChAMP package was used to perform the control quality (C) evaluation and QC included detection of p-value cutoffs (>0.01), the raw intensities normalization of DNA methylation and Single Variation Deviation analysis. The package was also used to perform the differential methylation analysis (DMCs and DMRs). The Deltabeta value was obtained by subtracting the average Beta value of the OD group from the average Beta value of the OND group for each locus. A DMC was defined when p-value <0.05 and absolute mean Delta-Beta >0.1 [69]. The oligo package was used to normalize the intensity of the gene expression [70]. The Pearson's correlation between DNA methylation and gene expression was performed comparing the Beta values of CpGs and the gene expression where the CpGs were located.

Pathway analyses

DAVID V.6.8 was used to analyse potentially altered pathways from the list of genes that were differentially methylated between OD and OND samples [71].

Abbreviations

Type 2 diabetes (T2D) White adipose tissue (WAT) Mesenchymal stem cells (MSCs) Obese without T2D (OND) Obese with T2D (OD) Preadipocyte (PreA) Mature adipocyte (MA) Differentially methylated CpG sites (DMCs) Differentially methylated regions (DMRs) 502 🛞 E. MIRZAEICHESHMEH ET AL.

Principal component analysis (PCA) Gamma-aminobutyric acid (GABA)

Acknowledgments

Elaheh Mirzaeicheshmeh is a doctoral student from the programa de doctorado en ciencias biomedicas Universidad Nacional Autonoma de Mexico (UNAM) and has received CONACyT fellowship 280204.

Funding

This work was supported by the Consejo Nacional de Ciencia y Tecnología, Mexico [280204].

Author contributions

Conceptualization, LO, FBO, FCC, and EM.; Clinical Research and Metabolic Phenotyping, CZ and ECM; Methodology, EM and PB; formal analysis, LO, FBO, HGO and EM; resources, LO and CZ; data curation, EM and FBO; writing – original draught preparation, LO and EM.; writing review and editing, EM, LO, FBO, CZ, FCC, PBP, HGO, AM, MGSM, YSA, and ECM; visualization, EM, LO, FBO, CZ, FCC, PBP, HGO, AM, MGSM, YSA, and ECM; supervision, LO and FBO; project administration, LO, CZ and AM; funding acquisition LO and CZ. All authors have read and agreed to the published version of the manuscript.

Institutional review board statement:

The study was conducted according to the guidelines of the Declaration of Helsinki and approved by the Institutional Ethics Committee of Instituto Nacional de Medicina Genómica (C1_29/2011).

Informed consent statement:

Informed consent was obtained from all subjects involved in the study.

Data Availability Statement:

The methylation dataset can be found in https://www.ebi.ac. uk/ with accession number: E-MTAB-10178.

ORCID

Elaheh Mirzaeicheshmeh 💿 http://orcid.org/0000-0003-3347-4539

Carlos Zerrweck http://orcid.org/0000-0001-7358-2652 Federico Centeno-Cruz http://orcid.org/0000-0002-3512-4519

Angélica Martinez-Hernandez 💿 http://orcid.org/0000-0001-9883-2988

Humberto García-Ortiz 💿 http://orcid.org/0000-0002-0453-980X Cecilia Contreras-Cubas 💿 http://orcid.org/0000-0002-7994-3831

María Guadalupe Salas-Martínez (2) http://orcid.org/0000-0003-1095-3801

Yolanda Saldaña-Alvarez 💿 http://orcid.org/0000-0003-3649-1705

Elvia C. Mendoza-Caamal 💿 http://orcid.org/0000-0002-6224-6829

Francisco Barajas-Olmos 💿 http://orcid.org/0000-0001-5064-6203

Lorena Orozco 💿 http://orcid.org/0000-0002-5801-9180

References

- Cohen P, Spiegelman BM. Cell biology of fat storage. MBoC. 2016;27(16):2523-2527.
- [2] Arner P, Bernard S, Appelsved L, et al. Adipose lipid turnover and long-term changes in body weight. Nat Med. 2019;25(9):1385–1389.
- [3] Ghaben AL, Scherer PE. Adipogenesis and metabolic health. Nat Rev Mol Cell Biol. 2019;20(4):242-258.
- [4] Arner P, Arner E, Hammarstedt A, et al. Genetic predisposition for type 2 diabetes, but not for overweight/ obesity, is associated with a restricted adipogenesis. PLoS ONE. 2011;6(4):e18284.
- [5] Kim JI, Huh JY, Sohn JH, et al. Lipid-overloaded enlarged adipocytes provoke insulin resistance independent of inflammation. Mol Cell Biol. 2015;35 (10):1686–1699.
- [6] Jiang S-Z, Lu W, and Zong X-F, et al. Obesity and hypertension Pharmacological Research. 2016;122:1–7.
- [7] Zhu J, Su X, Li G, et al. Systematic review/meta-analysis the incidence of acute myocardial infarction in relation to overweight and obesity: a meta-analysis. aoms. 2014;5:855-862.
- [8] Guilherme A, Henriques F, Bedard AH, et al. Molecular pathways linking adipose innervation to insulin action in obesity and diabetes mellitus. Nat Rev Endocrinol. 2019;15(4):207-225.
- [9] Langin D. In and out: adipose tissue lipid turnover in obesity and dyslipidemia. Cell Metab. 2011;14 (5):569–570.
- [10] Castro AM, L. E. M-DLC, Pantoja Meléndez CA. Lowgrade inflammation and its relation to obesity and chronic degenerative diseases. Revista Médica del Hospital General de México. 2017;80(2):101–105.
- [11] Spalding KL, Arner E, Westermark PO, et al. Dynamics of fat cell turnover in humans. Nature. 2008;453 (7196):783-787.
- [12] Cristancho AG, Lazar MA. Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol. 2011;12(11):722-734.
- [13] Reusch JEB, Colton LA, Klemm DJ. CREB activation induces adipogenesis in 3T3-L1 cells. Mol Cell Biol. 2000;20(3):1008-1020.
- [14] Majka SM, Barak Y, Klemm DJ. Concise review: adipocyte origins: weighing the possibilities. STEM CELLS. 2011;29(7):1034–1040.
- [15] Christodoulides C, Lagathu C, Sethi JK, et al. Adipogenesis and WNT signalling. Trends Endocrinol Metab. 2009;20(1):16-24.

- [16] Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol. 2006;7 (12):885-896.
- [17] Nic-Can GI, Rodas-Junco BA, Carrillo-Cocom LM, et al. Epigenetic regulation of adipogenic differentiation by histone lysine demethylation. IJMS. 2019;20 (16):3918.
- [18] Reddy MA, Zhang E, Natarajan R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia. 2015;58(3):443-455.
- [19] Kennedy EM, Powell DR, Li Z, et al. Galactic cosmic radiation induces persistent epigenome alterations relevant to human lung cancer. Sci Rep. 2018;8 (1):6709.
- [20] Rønningen T, Shah A, Reiner AH, et al. Epigenetic priming of inflammatory response genes by high glucose in adipose progenitor cells. Biochem Biophys Res Commun. 2015;467(4):979–986.
- [21] Via AG, Frizziero A, Oliva F. Biological properties of mesenchymal stem cells from different sources. 9.
- [22] Kornicka K, Houston J, Marycz K. Dysfunction of mesenchymal stem cells isolated from metabolic syndrome and type 2 diabetic patients as result of oxidative stress and autophagy may limit their potential therapeutic use. Stem Cell Rev Rep. 2018;14(3):337–345.
- [23] Barajas-Olmos F, Centeno-Cruz F, Zerrweck C, et al. Altered DNA methylation in liver and adipose tissues derived from individuals with obesity and type 2 diabetes. BMC Med Genet. 2018;19(1):28.
- [24] Togliatto G, Dentelli P, Gili M, et al. Obesity reduces the pro-angiogenic potential of adipose tissue stem cell-derived extracellular vesicles (EVs) by impairing mir-126 content: impact on clinical applications. Int J Obes. 2016;40(1):102-111.
- [25] Nilsson E, Jansson PA, Perfilyev A, et al. Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes. 2014;63 (9):2962-2976.
- [26] Broholm C, Olsson AH, Perfilyev A, et al. Human adipogenesis is associated with genome-wide DNA methylation and gene-expression changes. Epigenomics. 2016;8(12):1601-1617.
- [27] Castellano-Castillo D, Moreno-Indias I, Sanchez-Alcoholado L, et al. Altered adipose tissue DNA methylation status in metabolic syndrome: relationships between global DNA methylation and specific methylation at adipogenic, lipid metabolism and inflammatory candidate genes and metabolic variables. JCM. 2019;8(1):87.
- [28] van de Peppel J, Strini T, Tilburg J, et al. Identification of three early phases of cell-fate determination during osteogenic and adipogenic differentiation by transcription factor dynamics. Stem Cell Reports. 2017;8 (4):947-960.
- [29] Kirchner H, Sinha I, Gao H, et al. Altered DNA methylation of glycolytic and lipogenic genes in liver from obese and type 2 diabetic patients. Mol Metab. 2016;5 (3):171–183.
- [30] Andersen E, Ingerslev LR, Fabre O, et al. Preadipocytes from obese humans with type 2 diabetes are

epigenetically reprogrammed at genes controlling adipose tissue function. Int J Obes. 2019;43(2):306–318.

- [31] Kim M, Costello J, Methylation: DNA. An epigenetic mark of cellular memory. Exp Mol Med. 2017;49(4): e322-e322.
- [32] Sundararajan J. Epigenetic mechanisms of metabolic memory in diabetes. Circulation Research. 2012;110: 1039-1041.
- [33] Kuroda M, Sakaue H. Adipocyte death and chronic inflammation in obesity. J Med Invest. 2017;64 (3.4):193–196. PMID: 28954980.
- [34] Chang W, Hatch GM, Wang Y, et al. The relationship between phospholipids and insulin resistance: from clinical to experimental studies. J Cell Mol Med. 2019Feb;23(2):702-710. Epub 2018 Nov 6. PMID: 30402908; PMCID: PMC6349352.
- [35] Bagu ET, Miah S, Dai C, et al. Repression of Fyn-related kinase in breast cancer cells is associated with promoter site-specific CpG methylation. Oncotarget. 2017Feb14;8(7):11442-11459. PMID: 28077797; PMCID: PMC5355277.
- [36] Yim EK, Peng G, Dai H, et al. Rak functions as a tumor suppressor by regulating PTEN protein stability and function. Cancer Cell. 2009Apr7;15(4):304–314. PMID: 19345329; PMCID: PMC2673492.
- [37] Huang W, Queen NJ, McMurphy TB, et al. Adipose PTEN regulates adult adipose tissue homeostasis and redistribution via a PTEN-leptin-sympathetic loop. Mol Metab. 2019Dec; 30: 48-60. Epub 2019 Sep 28. PMID: 31767180; PMCID: PMC6812328.
- [38] Huang W, Queen NJ, McMurphy T, et al. (2020). Adipose PTEN acts as a downstream mediator of a brain-fat axis in environmental enrichment.
- [39] Bhatlekar S, Fields JZ, Boman BM. Role of HOX genes in stem cell differentiation and cancer. Stem Cells Int. 2018;2018:1–15.
- [40] Nizamuddin S, Govindaraj P, Saxena S, et al. A novel gene THSD7A is associated with obesity. Int J Obes. 2015;39(11):1662-1665.
- [41] Andersson SA, Olsson AH, Esguerra JLS, et al. Reduced insulin secretion correlates with decreased expression of exocytotic genes in pancreatic islets from patients with type 2 diabetes. Mol Cell Endocrinol. 2012;364(1-2):36-45.
- [42] Tong X, Zhang Q, Wang L, et al. RNF186 impairs insulin sensitivity by inducing er stress in mouse primary hepatocytes. Cell Signal. 2018;52:155-162.
- [43] Lee S. The association of genetically controlled CpG methylation (Cg158269415) of protein tyrosine phosphatase, receptor type N2 (PTPRN2) with childhood obesity. Sci Rep. 2019;9(1):4855.
- [44] Kim HA, Park W-J, Jeong H-S, et al. Leucine-rich glioma inactivated 3 regulates adipogenesis through ADAM23. Biochimica Et Biophysica Acta (BBA) -Mol Cell Biol Lipids. 2012;1821(6):914–922.
- [45] Groh BS, Yan F, Smith MD, et al. The antiobesity factor WDTC 1 suppresses adipogenesis via the CRL 4 WDTC 1 E3 Ligase. EMBO Rep. 2016;17(5):638-647.
- [46] Shi Y, Long F. Hedgehog signaling via Gli2 prevents obesity induced by high-fat diet in adult mice. eLife. 2017;6:e31649.

504 🕒 E. MIRZAEICHESHMEH ET AL.

- [47] Turcot V, Lu Y, and Highland HM, et al. Implicate pathways that control energy intake and expenditure underpinning obesity. Nat Genet. 2018;501 25–41.
- [48] Van De Bunt M, Manning Fox JE, Dai X, et al. Transcript expression data from human islets links regulatory signals from genome-wide association studies for type 2 diabetes and glycemic traits to their downstream effectors. PLoS Genet. 2015;11(12): e1005694.
- [49] Martínez-Barquero V, Marco GD, Martínez-Hervas S, et al. Are IL18RAP gene polymorphisms associated with body mass regulation? A cross-sectional study. BMJ Open. 2017;7(11):e017875.
- [50] Richard AJ, Stephens JM. The role of JAK-STAT Signaling in Adipose Tissue Function. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2014;1842 (3):431-439.
- [51] Al-Mansoori L, Al-Jaber H, and Madani AY, et al. Suppression of GATA-3 increases adipogenesis, reduces inflammation and t improves insulin sensitivity in 3T3L-1 preadipocytes. Cellular Signalling 2020. ;75 109735.
- [52] Eguchi J, Wada J, Hida K, et al. Identification of adipocyte adhesion molecule (ACAM), a novel CTX gene family, implicated in adipocyte maturation and development of obesity. Biochem J. 2005;387(2):343–353.
- [53] Minakuchi H, Wakino S, Hosoya K, et al. The role of adipose tissue asymmetric dimethylarginine/dimethylarginine dimethylaminohydrolase pathway in adipose tissue phenotype and metabolic abnormalities in subtotally nephrectomized rats. Nephrology Dialysis Transplantation. 2016;31(3):413-423.
- [54] CrottsSB, FriedmanDJ, and WangZ Regulation of the immune response by ST8Sia6. The Journal of Immunology. 2020;204(1). 1 Supplement. 228.18.
- [55] Ahmed M, Gaffen SL. IL-17 in obesity and adipogenesis. Cytokine Growth Factor Rev. 2010;21 (6):449-453.
- [56] Tanigawa Y, Li J, Justesen JM, et al. Components of genetic associations across 2,138 phenotypes in the UK biobank highlight adipocyte biology. Nature Communications. 2019;10(1). 10.1038/s41467-019-11953-9
- [57] Chen -W-W, Yang Q, Li X-Y, et al. Identification of a novel and heterozygous Imf1 nonsense mutation in an acute pancreatitis patient with severe hypertriglyceridemia, severe obesity and heavy smoking. Lipids Health Dis. 2019;18(1):68.
- [58] Zhu Z, Guo Y, and Shi H, et al. Shared Genetic and Experimental Link between Obesity-Related Traits and

Asthma Subtypes in UK Biobank. J Allergy Clin Immunol. 2020;145(2) 537-549 .

- [59] Bradley D, Blaszczak A, and Yin Z, et al. Clusterin impairs hepatic insulin sensitivity and adipocyte clusterin associates with cardiometabolic risk. Diabetes Care. 2019;42(3):466–475.
- [60] Cyranka M, Veprik A, McKay EJ, et al. Abcc5 knockout mice have lower fat mass and increased levels of circulating GLP-1. Obesity. 2019;27(8):1292–1304.
- [61] Zahova S, Isles AR. The role of the prader-Willi syndrome critical interval for epigenetic regulation, transcription and phenotype. Epigenomes. 2018;2(4):18.
- [62] Klenke S, Tan S, Hahn S, et al. A functional GNAQ promoter haplotype is associated with altered gq expression and with insulin resistance and obesity in women with polycystic ovary syndrome. Pharmacogenetics and Genomics. 2010;20(8):476-484.
- [63] Hosseini SM, Boright AP, and Sun L, et al. The association of previously reported polymorphisms for microvascular complications in a meta-analysis of diabetic retinopathy. Human Genetics. 2015;134: 247– 257.
- [64] Lopez PH, Hahn S, and Aoki K, et al. Mice lacking sialyltransferase st3gal-ii develop late-onset obesity and insulin resistance Glycobiology. 2016;27(nos. 2):129–139.
- [65] Ambrosi TH, Scialdone A, Graja A, et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell. 2017;20(6):771-784.e6.
- [66] Wei W, Yan Y, and Lei L, et al. Synleurin, a Novel leucine-rich repeat protein that increases the intensity of pleiotropic cytokine responses Biochem Biophys Res Commun. 2003;305:981–988.
- [67] Zuk M, Zhu H, Mizuno J, et al. «Multilineage cells from human adipose tissue: implications for cellbased therapies,». Tissue Eng. 2001;7(2):211–226.
- [68] R Core Team. R: a language and environment for statistical computing. Vienna Austria: R Foundation for Statistical Computing; 2020.
- [69] Tian Y, Morris TJ, Webster AP, et al. ChAMP: updated methylation analysis pipeline for illumina beadChips. Bioinformatics. 2017;33(24):3982–3984.
- [70] Carvalho BS, Irizarry RA. A framework for oligonucleotide microarray preprocessing. Bioinformatics. 2010;26(19):2363-2367.
- [71] Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using David bioinformatics resources. Nat Protoc. 2009;4(1):44-57.

2- Morales-Rivera MI, Alemón-Medina R, Martínez-Hernández A, Gómez-Garduño J, Mirzaeicheshmeh E, Altamirano-Bustamante NF, Ilizaliturri-Flores I, Mendoza-Caamal EC, Pérez-Guillé MG, García-Álvarez R, Contreras-Cubas C, Centeno-Cruz F, Revilla-Monsalve C, García-Ortiz H, Barajas-Olmos F, Orozco L. The L125F MATE1 variant enriched in populations of Amerindian origin is associated with increased plasma levels of metformin and lactate. Biomed Pharmacother. 2021 Oct;142:112009. doi: 10.1016/j.biopha.2021.112009. Epub 2021 Aug 11. PMID: 34388523.

3- Martínez-Hernández A, Larrosa J, Barajas-Olmos F, García-Ortíz H, Mendoza-Caamal EC, Contreras-Cubas C, Mirzaeicheshmeh E, Lezana JL, Orozco L. Nextgeneration sequencing for identifying a novel/de novo pathogenic variant in a Mexican patient with cystic fibrosis: a case report. BMC Med Genomics. 2019 May 22;12(1):68. doi: 10.1186/s12920-019-0528-1. PMID: 31118044; PMCID: PMC6532186.

4- Mendoza-Caamal EC, Barajas-Olmos F, García-Ortiz H, Cicerón-Arellano I, Martínez-Hernández A, Córdova EJ, Esparza-Aguilar M, Contreras-Cubas C, Centeno-Cruz F, Cid-Soto M, Morales-Marín ME, Reséndiz-Rodríguez A, Jiménez-Ruiz JL, Salas-Martínez MG, Saldaña-Alvarez Y, Mirzaeicheshmeh E, Rojas-Martínez MR, Orozco L. Metabolic syndrome in indigenous communities in Mexico: a descriptive and cross-sectional study. BMC Public Health. 2020 Mar 17;20(1):339. doi: 10.1186/s12889-020-8378-5. PMID: 32183766; PMCID: PMC7076922.

5- Mendoza-Caamal EC, Barajas-Olmos F, Mirzaeicheshmeh E, Ilizaliturri-Flores I, Aguilar-Salinas CA, Gómez-Velasco DV, Cicerón-Arellano I, Reséndiz-Rodríguez A, Martínez-Hernández A, Contreras-Cubas C, Islas-Andrade S, Zerrweck C, García-Ortiz H, Orozco L. Two novel variants in DYRK1B causative of AOMS3: expanding the clinical spectrum. Orphanet J Rare Dis. 2021 Jun 30;16(1):291. doi: 10.1186/s13023-021-01924-z. PMID: 34193236; PMCID: PMC8247206.

6- García-Ortiz H, Barajas-Olmos F, Contreras-Cubas C, Cid-Soto MÁ, Córdova EJ, Centeno-Cruz F, Mendoza-Caamal E, Cicerón-Arellano I, Flores-Huacuja M, Baca P, Bolnick DA, Snow M, Flores-Martínez SE, Ortiz-Lopez R, Reynolds AW, Blanchet A, Morales-Marín M, Velázquez-Cruz R, Kostic AD, Galaviz-Hernández C, García-Zapién AG, Jiménez-López JC, León-Reyes G, Salas-Bautista EG, Lazalde-Ramos BP, Jiménez-Ruíz JL, Salas-Martínez G, Ramos-Madrigal J, Mirzaeicheshmeh E, Saldaña-Alvarez Y, Del Carmen Abrahantes-Pérez M, Loeza-Becerra F, Mojica-Espinosa R, Sánchez-Quinto F, Rangel-Villalobos H, Sosa-Macías M, Sánchez-Corona J, Rojas-Martinez A, Martínez-Hernández A, Orozco L. The genomic landscape of Mexican Indigenous populations brings insights into
the peopling of the Americas. Nat Commun. 2021 Oct 12;12(1):5942. doi: 10.1038/s41467-021-26188-w. PMID: 34642312; PMCID: PMC8511047.

7- Salas-Martínez MG, Saldaña-Alvarez Y, Cordova EJ, Mendiola-Soto DK, Cid-Soto MA, Luckie-Duque A, Vicenteño-Ayala H, Barajas-Olmos F, Contreras-Cubas C, García-Ortiz H, Jiménez-Ruíz JL, Centeno-Cruz F, Martínez-Hernández A, Mendoza-Caamal EC, Mirzaeicheshmeh E, Orozco L. Genetic variability of five ADRB2 polymorphisms among Mexican Amerindian ethnicities and the Mestizo population. PLoS One. 2019 Dec 2;14(12):e0225030. doi: 10.1371/journal.pone.0225030. PMID: 31790415; PMCID: PMC6886845.

Bibliografía:

1- https://www.who.int/es (La Organización Mundial de la Salud).

2- Billeter AT, Scheurlen KM, Probst P, Eichel S, Nickel F, Kopf S, et al. Metaanalysis of metabolic surgery versus medical treatment for microvascular complications in patients with type 2 diabetes mellitus. Br. J. Surg. England; 2018;105:168–81.

3- Kanter coronel, Irma. Magnitud del sobrepeso y la obesidad en México: Un cambio de estrategia para su erradicación,09-Febrero-2021. http://bibliodigitalibd.senado.gob.mx/handle/123456789/5127.

4- American Diabetes Association. Diabetes Basics. Type 2. Disponible en http://www.diabetes.org/ diabetes-basics/type-2/?loc=404.

5- Jothydev Kesavadev, Fatema Jawad, Asma Deeb, Ankia Coetzee, M. A. Jalil Ansari, Dina Shrestha, Noel Somasundaram, and Sanjay Kalra. Pathophysiology of Type 2 Diabetes. Springer Nature Switzerland AG june2019. The Diabetes Textbook, <u>https://doi.org/10.1007/978-3-030-11815-0_8</u>.

6- Chawla R. Type 2 diabetes: etiology and pathogenesis. In: Chawla R, editor. Manual of diabetes care. New Delhi: Jaypee Brothers, Medical Publishers Pvt. Limited; 2014.

7- Halban, P.A.; Polonsky, K.S.; Bowden, D.W.; Hawkins, M.A.; Ling, C.; Mather, K.J.; Powers, A.C.; Rhodes, C.J.; Sussel, L.; Weir, G.C. beta-cell failure in type 2 diabetes: Postulated mechanisms and prospects for prevention and treatment. Diabetes Care 2014, 37, 1751–1758.

8- Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, Ostolaza H, Martín C. Pathophysiology of Type 2 Diabetes Mellitus. Int J Mol Sci. 2020 Aug 30;21(17):6275. doi: 10.3390/ijms21176275. PMID: 32872570; PMCID: PMC7503727.

9- Carrera Boada CA, Martínez-Moreno JM. Pathophysiology of diabetes mellitus type 2: beyond the duo "insulin resistance-secretion deficit". Nutr Hosp. 2013 Mar;28 Suppl 2:78-87. doi: 10.3305/nh.2013.28.sup2.6717. PMID: 23834050

10- Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health 2009; 9:88

11- Suñol Sala X, Bombuy Giménez E, Mans Muntwyler E. La obesidad como factor de riesgo. Enfermedades asociadas y complicaciones. En: Cirugía de la Obesidad

Mórbida. 2a Edición. Guías Clínicas de la Asociación Española de Cirujanos. Ed Arán 2012. Capítulo 2: 43-49

12- Diabetes DOF. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2013; 36:67–74.

13- Flores Ramírez J, Aguilar Rebolledo F. Diabetes mellitus y sus complicaciones. La epidemiología, las manifestaciones clínicas de la diabetes tipo 1 y 2. Diabetes gestacional. Vol. 5 Núm. 2 Julio-Diciembre 2006

14- Distribución corporal del TAB y del TAM en humanos. Adaptado de Gesta S, Tseng Y- H, Kahn R. Developmental origin of fat:Tracking obesity to its source. Cell, 2007

15- No Title [Internet]. Available from: https://www.cdc.gov/media/dpk/diseases-and-conditions/native-americans-diabetes/native-americans-diabetes.html

16- McCulloch DK, Robertson RP. Risk factors for type 2 diabetes mellitus. UpToDate. Disponible en: URL: http://www.uptodate.com/contents/ risk-factors-for-type-2-diabetes-mellitus [último acceso: 23 de febrero de 2015].

17- Nielsen J, Holmberg H-C, Schrøder HD, Saltin B, Ørtenblad N. Human skeletal muscle glycogen utilization in exhaustive exercise: role of subcellular localization and fibre type. J. Physiol. [Internet]. Blackwell Science Inc; 2011;589:2871–85. Available from: <u>http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3112561</u>.

18- Maio GR, Haddock GG, Jarman HL. Social psychological factors in tackling obesity. Obes Rev. 2007 Mar;8 Suppl 1:123-5. doi: 10.1111/j.1467-789X.2007.00330.x. PMID: 17316314.

19- González Jiménez E. Genes y obesidad: una relación de causa-consecuencia. Endocrinol Nutr.2011; 58:492-6.

20- Bosello O, Donataccio MP, Cuzzolaro M. Obesity or obesities? Controversies on the association between body mass index and premature mortality. Eat Weight Disord. 2016 Jun;21(2):165-74. doi: 10.1007/s40519-016-0278-4. PMID: 27043948.

21- Bhupathiraju, S. N., & Hu, F. B. (2016). Epidemiology of Obesity and Diabetes and Their Cardiovascular Complications. *Circ Res*, *118*(11), 1723–1735. https://doi.org/10.1161/CIRCRESAHA.115.306825

22- Serrano Ríos M. El síndrome metabólico: una versión moderna de la enfermedad ligada al estrés [Metabolic syndrome: a modern variant of stress-related disease?]. Rev Esp Cardiol. 2005 Jul;58(7):768-71. Spanish. doi: 10.1157/13077226. PMID: 16022806.

23- Zhang, Y.; Proenca, R.; Maffei, M.; Barone, M.; Leopold, L.; Friedman, J.M. Positional cloning of the mouse obese gene and its human homologue. *Nature* 1994, *372*, 425–432.

24- Baer PC. Adipose-derived mesenchymal stromal/stem cells: An update on their phenotype in vivo and in vitro. World J Stem Cells. 2014;6(3):256-265. doi:10.4252/wjsc.v6.i3.256.

25- Trujillo, M. E. and Scherer, P. E. (2006). "Adipose tissue-derived factors: impact on health and disease." Endocr Rev 27(7): 762-778.

26- Pereira S, Alvarez-Leite J. Adipokines: biological functions and metabolically healthy obese profile. Journal of Receptor, Ligand and Channel Research. 2014;7:15-25

27- Spalding, K. L. et al. Dynamics of fat cell turnover in humans. Nature 453, 783–787 (2008). Calculates rates of adipocyte differentiation and apoptosis in humans using a novel isotopic method.

28- Rosen, E.D., MacDougald, O.A., 2006. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol., 7(12):885-896. [doi:10.1038/nrm2066].

29- Vigouroux, C., Caron-Debarle, M., Le Dour, C., Magre, J. and Capeau, J. (2011). "Molecular mechanisms of human lipodystrophies: from adipocyte lipid droplet to oxidative stress and lipotoxicity." Int J Biochem Cell Biol 43(6): 862-876.

30- Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 2006; 116:3015-3025.

31- García-Torres D, Castellanos-González M, Cedeño-Morales R, Benet-Rodríguez M, Ramírez-Arteaga I. Tejido adiposo como glándula endocrina. Implicaciones fisiopatológicas. Revista Finlay [revista en Internet]. 2011. 1(2):[aprox. 20 p.]. Disponible en: http://revfinlay.sld.cu/index.php/finlay/article/view/39.

32- Tchkonia, N. Giorgadze, T. Pirtskhalava, Y. Tchoukalova, I. Karagiannides, R.A. Forse, et al. Fat depot origin affects adipogenesis in primary cultured and cloned human preadipocytes.

33- Tchkonia T, Giorgadze N, Pirtskhalava T, Tchoukalova Y, Karagiannides I, Forse RA, DePonte M, Stevenson M, Guo W, Han J, Waloga G, Lash TL, Jensen MD, Kirkland JL. Fat depot origin affects adipogenesis in primary cultured and cloned human preadipocytes. Am J Physiol Regul Integr Comp Physiol. 2002 May;282(5):R1286-96. doi: 10.1152/ajpregu.00653.2001. PMID: 11959668.

34- M.T. Nguyen, S. Favelyukis, A.K. Nguyen, D. Reichart, P.A. Scott, A. Jenn, et al. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is

activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways.J Biol Chem, 282 (2007), pp. 35279-35292

35- Soronen J, Laurila P-P, Naukkarinen J, Surakka I, Ripatti S, Jauhiainen M, et al. Adipose tissue gene expression analysis reveals changes in inflammatory, mitochondrial respiratory and lipid metabolic pathways in obese insulin-resistant subjects. BMC Med. Genomics [Internet]. BioMed Central Ltd; 2012; 5:9.

36- Serrano Ríos, M., Ordovás, J. M., & Gutiérrez Fuentes, J. A. Obesity. Barcelona, España: Elsevier. (2011).

37- Ozcan, U. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. 306(457-61). (2004).

38- Vázquez-Jimenez, J. G., Alberto Olivares-Reyes, J., Roura, A., & Jimenez-Mena, L. R. El papel de los ácidos grasos libres en la resistencia a la insulina. *Gaceta Médica de Mexico*, *153*, 852–863. (2017).

39- Simon, G. (1965). Histogenesis. In Handbook of Physiology. Section 5: Adi- pose Tissue, A.E. Renold and G.F. Cahill, eds. (Washington, DC: American Physiological Society).

40- Chen, Y., Shao, J. Z., Xiang, L. X., Dong, X. J. and Zhang, G. R. (2008a). "Mesenchymal stem cells: a promising candidate in regenerative medicine." Int J Biochem Cell Biol 40(5): 815-820.

41- Rodeheffer MS, Birsoy K, Friedman JM. identification of white adipocyte progenitor cells in vivo. Cell. 2008; 135: 240–249.

42- Virtue S, Vidal-Puig A. Adipose tissue expandability, lipotoxicity and the metabolic syndrome--an allostatic perspective. Biochim Biophys Acta. 2010; 1801(3):338-49.

43- Longo, K. A. et al. Wnt signaling protects 3T3-L1 preadipocytes from apoptosis through induction of insulin-like growth factors. J. Biol. Chem. 277, 38239–38244 (2002).

44- Sordella, R., Jiang, W., Chen, G. C., Curto, M. & Settleman, J. Modulation of Rho GTPase signaling regulates a switch between adipogénesis and myogenesis. Cell 113, 147–158 (2003).

45- Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol. 2006 Dec;7(12):885-96. doi: 10.1038/nrm2066. PMID: 17139329.

46- Cristancho, A. G. et al. Repressor transcription factor 7-like 1 promotes adipogenic competency in precursor cells. Proc. Natl Acad. Sci. USA 13 Sep 2011 (doi:10.1073/pnas.1109409108).

47- Forming functional fat: a growing understanding of adipocyte differentiation. Nature reviews, 2011.

48- Lefterova, M. I., Zhang, Y., Steger, D. J., Schupp, M., Schug, J., Cristancho, A., Feng, D., Zhuo, D., Stoeckert, C. J., Jr., Liu, X. S. and Lazar, M. A. (2008). "PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale." Genes Dev 22(21): 2941-2952.

49- Yeh WC, Cao Z, Classon M, McKnight SL. Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes Dev 1995 Jan 15;9(2):168-181.

50- Rosen ED, Hsu CH, Wang X, Sakai S, Freeman MW, Gonzalez FJ, et al. C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes Dev 2002 Jan 1;16(1):22-26

51- Conlon I, Raff M. Differences in the way a mammalian cell and yeast cells coordinate cell growth and cell-cycle progression. J Biol. Chem 2003;2(1):7. doi: 10.1186/1475-4924-2-7. Epub 2003 Apr 24. PMID: 12733998; PMCID: PMC156598.

52- Marshall, W. F., Young, K. D., Swaffer, M., Wood, E., Nurse, P., Kimura, A. Roeder, A. H. (2012). What determines cell size? BMC Biology, 10(1), 101. doi:10.1186/1741-7007-10-101.

53- Rosen ED, Spiegelman BM. 0. Cell. 2014 Jan 16;156(1-2):20-44. doi: 10.1016/j.cell.2013.12.012. PMID: 24439368; PMCID: PMC3934003.

54- Spalding KL. et al. Dynamics of fat cell turnover in humans. Nature 2008. 453(7196):783-7).

55- Veilleux, A., Caron-Jobin, M., Noel, S., Laberge, P.Y., Tchernof, A., 2011. Visceral adipocyte hypertrophy is associated with dyslipidemia independent of body composition and fat distribution in women. Diabetes 60(5):1504e1511.

56- Guilherme, A., Virbasius, J.V., Puri, V., Czech, M.P., 2008. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nature Reviews Molecular Cell Biology 9(5):367e377.

57- Weyer, C., Foley, J.E., Bogardus, C., Tataranni, P.A., Pratley, R.E., 2000. Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, pre- dicts type II diabetes independent of insulin resistance. Diabetologia 43(12): 1498e1506.

58- Lonn, M., Mehlig, K., Bengtsson, C., Lissner, L., 2010. Adipocyte size predicts incidence of type 2 diabetes in women. The FASEB Journal 24(1):326e331.

59- Gao, H., Mejhert, N., Fretz, J.A., Arner, E., Lorente-Cebrian, S., Ehrlund, A., et al., 2014. Early B cell factor 1 regulates adipocyte morphology and lipolysis in white adipose tissue. Cell Metab 19(6):981e992.

60- Kanda H, Tateya S, Tamori Y, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 2006;116(6):1494-1505. doi:10.1172/JCI26498

61- Minchin, J.E., Dahlman, I., Harvey, C.J., Mejhert, N., Singh, M.K., Epstein, J.A., et al., 2015. Plexin D1 determines body fat distribution by regulating the type V collagen microenvironment in visceral adipose tissue. Proc Nat Acad Sci U S A 112(14):4363e 4368.

62- Arner, E., Westermark, P.O., Spalding, K.L., Britton, T., Ryden, M., Frisen, J., et al., 2010. Adipocyte turnover: relevance to human adipose tissue morphology. Diabetes 59(1):105e109.

63- Replication DIG, Meta-analysis C. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 2014; 46:234-44.

64- Barroso I, Luan J, Middelberg RP, Harding AH, Franks PW, Jakes RW, Clayton D, Schafer AJ, O'Rahilly S, Wareham NJ. Candidate gene association study in type 2 diabetes indicates a role for genes involved in beta-cell function as well as insulin action. PLoS Biol. 2003 Oct;1(1): E20. doi: 10.1371/journal.pbio.0000020. Epub 2003 Oct 13. Erratum in: PLoS Biol. 2003 Dec;1(3):445. PMID: 14551916; PMCID: PMC212698.

65- Haghvirdizadeh P, Mohamed Z, Abdullah NA, Haghvirdizadeh P, Haerian MS, Haerian BS. KCNJ11: Genetic Polymorphisms and Risk of Diabetes Mellitus. J Diabetes Res.2015; 2015:908152. doi: 10.1155/2015/908152. Epub 2015 Sep 13. PMID: 26448950; PMCID: PMC4584059.

66- SIGMA Type 2 Diabetes Consortium, Williams AL, Jacobs SB, Moreno-Macías H, Huerta-Chagoya A, Churchhouse C, Márquez-Luna C, García-Ortíz H, Gómez-Vázquez MJ, Burtt NP, Aguilar-Salinas CA, González-Villalpando C, Florez JC, Orozco L, Haiman CA, Tusié-Luna T, Altshuler D. Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature. 2014 Feb 6;506(7486):97-101. doi: 10.1038/nature12828. Epub 2013 Dec 25. PMID: 24390345; PMCID: PMC4127086.

67- Lim DHK, Maher ER. ADN methylation: a form of epigenetic control of gene expression. The Obstetrician & Gynaecologist2010; 12:37–42.

68- Jones PA. Functions of ADN methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13:484–92. <u>https://doi.org/10.1038/nrg3230</u>.

69- Xin Y, O'Donnell AH, Ge Y, et al. Role of CpG context and content in evolutionary signatures of brain ADN methylation. Epigenetics. 2011;6(11):1308-1318. doi:10.4161/epi.6.11.17876.

70- Wang Z, Yin J, Zhou W, et al. Complex impact of ADN methylation on transcriptional dysregulation across 22 human cancer types. Nucleic Acids Res. 2020;48(5):2287-2302. doi:10.1093/nar/gkaa041.

71- Ren R, Horton JR, Zhang X, Blumenthal RM, Cheng X. Detecting and interpreting ADN methylation marks. Curr Opin Struct Biol. 2018 Dec;53:88-99. doi: 10.1016/j.sbi.2018.06.004. Epub 2018 Jul 19. PMID: 30031306; PMCID: PMC6322410.

72- Xin Y, O'Donnell AH, Ge Y, et al. Role of CpG context and content in evolutionary signatures of brain ADN methylation. Epigenetics. 2011;6(11):1308-1318. doi:10.4161/epi.6.11.17876.

73- Number of CpG islands and genes in human and mouse.Antequera F, Bird AProc Natl Acad Sci U S A. 1993 Dec 15; 90(24):11995-9., Large-scale human promoter mapping using CpG islands.Ioshikhes IP, Zhang MQNat Genet. 2000 Sep; 26(1):61-3

74- Tanay A, O'Donnell AH, Damelin M, Bestor TH. Hyperconserved CpG domains underlie Polycomb-binding sites. Proc Natl Acad Sci U S A. 2007 Mar 27;104(13):5521-6. doi: 10.1073/pnas.0609746104. Epub 2007 Mar 21. PMID: 17376869; PMCID: PMC1838490.

75- Toperoff G, Aran D, Kark JD, Rosenberg M, Dubnikov T, Nissan B, et al. 2012. Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood. Hum Mol Genet 21: 371-383.

76- Ilsson E, Jansson PA, Perfilyev A et al. Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes 2014; 63: 2962–76.10 Nilsson E, Matte A, Perfilyev A, et al. Epigenetic Alterations in Human Liver From Subjects With Type 2 Diabetes in Parallel With Reduced Folate Levels. J Clin Endocrinol Metab 2015;100: E1491–501.

77- Ribel-Madsen R, Fraga MF, Jacobsen S et al. Genome-wideanalysis of DNA methylation differences in muscle and fatfrom monozygotic twins discordant for type 2 diabetes. PLoS One 2012; 7: e51302.

78- Nilsson E, Jansson PA, Perfilyev A, et al. Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes 2014;63:2962–2976.

79- Bouchard L, Hivert MF, Guay SP, St-Pierre J, Perron P, Brisson D. Placental adiponectin gene DNA methylation levels are associated with mothers' blood glucose concentration. Diabetes. 2012;61:1272–80 [PMC free article] [PubMed] [Google Scholar].

80- Hafidi ME, Buelna-Chontal M, Sánchez-Muñoz F, Carbó R. Adipogenesis: A Necessary but Harmful Strategy. Int J Mol Sci. 2019 Jul 26;20(15):3657. doi: 10.3390/ijms20153657. PMID: 31357412; PMCID: PMC6696444.

81- Andersen, E.; Ingerslev, L. R.; Fabre, O.; Donkin, I.; Altıntaş, A.; Versteyhe, S.; Bisgaard, T.; Kristiansen, V. B.; Simar, D.; Barrès, R. Preadipocytes from Obese Humans with Type 2 Diabetes Are Epigenetically Reprogrammed at Genes Controlling Adipose Tissue Function. Int J Obes, 2019, 43 (2), 306–318. https://doi.org/10.1038/s41366-018-0031-3.

82- Ge, K. Epigenetic regulation of adipogenesis by histone methylation. Biochim Biophys Acta 1819, 727–732, doi: 10.1016/j.bbagrm.2011.12.008 (2012).

83- Avgustinova A, Benitah SA. Epigenetic control of adult stem cell function. Nat Rev Mol Cell Biol. 2016 Oct;17(10):643-58. doi: 10.1038/nrm.2016.76. Epub 2016 Jul 13. PMID: 27405257.

84- Functional Implications of DNA Methylation in Adipose Biology .Xiang Ma and Sona Kang .Diabetes 2019;68:871–878 | https://doi.org/10.2337/dbi18-0057

85- C. A. Schneider, W. S. Rasband, K. W. Eliceiri, \NIH Image to ImageJ: 25 years of image analysis," Nat. Methods 9(7), 671–675 (2012).)ImageJ software (http://imagej.nih.gov/ij

86- Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., Benhaim, P., Lorenz, H. P., and Hedrick, M. H. (2001)Multilineage cells from human adipose tissue: implications forcell-based therapies. Tissue Eng.7,211–228

87- R Core Team (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

88- Tian, Y.; Morris, T. J.; Webster, A. P.; Yang, Z.; Beck, S.; Feber, A.; Teschendorff, A. E. ChAMP: Updated Methylation Analysis Pipeline for Illumina BeadChips. Bioinformatics, 2017, 33 (24), 3982–3984. https://doi.org/10.1093/bioinformatics/btx513.

89- Carvalho BS, Irizarry RA (2010). "A Framework for Oligonucleotide Microarray Preprocessing." *Bioinformatics*, 26(19), 2363-7. ISSN 1367-4803

90- Via, A. G.; Frizziero, A.; Oliva, F. Biological Properties of Mesenchymal Stem Cells from Different Sources. 9.

91- Kornicka, K.; Houston, J.; Marycz, K. Dysfunction of Mesenchymal Stem Cells Isolated from Metabolic Syndrome and Type 2 Diabetic Patients as Result of Oxidative Stress and Autophagy May Limit Their Potential Therapeutic Use. Stem Cell Rev Rep, 2018, 14 (3), 337–345. https://doi.org/10.1007/s12015-018-9809-x.

92- Barajas-Olmos, F.; Centeno-Cruz, F.; Zerrweck, C.; Imaz-Rosshandler, I.; Martínez-Hernández, A.; Cordova, E. J.; Rangel-Escareño, C.; Gálvez, F.; Castillo, A.; Maydón, H.; et al. Altered DNA Methylation in Liver and Adipose Tissues Derived from Individuals with Obesity and Type 2 Diabetes. BMC Med Genet, 2018, 19 (1), 28. https://doi.org/10.1186/s12881-018-0542-8.

93- Togliatto, G.; Dentelli, P.; Gili, M.; Gallo, S.; Deregibus, C.; Biglieri, E.; Iavello, A.; Santini, E.; Rossi, C.; Solini, A.; et al. Obesity Reduces the Pro-Angiogenic Potential of Adipose Tissue Stem Cell-Derived Extracellular Vehicles (EVs) by Impairing MiR-126 Content: Impact on Clinical Applications. Int J Obes, 2016, 40 (1), 102–111. https://doi.org/10.1038/ijo.2015.123.

94- Nilsson, E.; Jansson, P. A.; Perfilyev, A.; Volkov, P.; Pedersen, M.; Svensson, M. K.; Poulsen, P.; Ribel-Madsen, R.; Pedersen, N. L.; Almgren, P.; et al. Altered DNA Methylation and Differential Expression of Genes Influencing Metabolism and Inflammation in Adipose Tissue from Subjects with Type 2 Diabetes. Diabetes, 2014, 63 (9), 2962–2976. https://doi.org/10.2337/db13-1459.

95- Broholm, C.; Olsson, A. H.; Perfilyev, A.; Gillberg, L.; Hansen, N. S.; Ali, A.; Mortensen, B.; Ling, C.; Vaag, A. Human Adipogenesis Is Associated with Genome-Wide DNA Methylation and Gene-Expression Changes. Epigenomics, 2016, 8 (12), 1601–1617. https://doi.org/10.2217/epi-2016-0077.

96- Castellano-Castillo, D.; Moreno-Indias, I.; Sanchez-Alcoholado, L.; Ramos-Molina, B.; Alcaide-Torres, J.; Morcillo, S.; Ocaña-Wilhelmi, L.; Tinahones, F.; Queipo-Ortuño, M.; Cardona, F. Altered Adipose Tissue DNA Methylation Status in Metabolic Syndrome: Relationships Between Global DNA Methylation and Specific Methylation at Adipogenic, Lipid Metabolism and Inflammatory Candidate Genes and Metabolic Variables. JCM, 2019, 8 (1), 87. <u>https://doi.org/10.3390/jcm8010087</u>.

97- Van de Peppel, J.; Strini, T.; Tilburg, J.; Westerhoff, H.; van Wijnen, A. J.; van Leeuwen, J. P. Identification of Three Early Phases of Cell-Fate Determination during Osteogenic and Adipogenic Differentiation by Transcription Factor Dynamics. Stem Cell Reports, 2017, 8 (4), 947–960. https://doi.org/10.1016/j.stemcr.2017.02.018.

98- Kirchner, H.; Sinha, I.; Gao, H.; Ruby, M. A.; Schönke, M.; Lindvall, J. M.; Barrès, R.; Krook, A.; Näslund, E.; Dahlman-Wright, K.; et al. Altered DNA Methylation of Glycolytic and Lipogenic Genes in Liver from Obese and Type 2 Diabetic Patients. Mol Metab, 2016, 5 (3), 171–183. https://doi.org/10.1016/j.molmet.2015.12.004.

99- Kim, M.; Costello, J. DNA Methylation: An Epigenetic Mark of Cellular Memory. Exp Mol Med, 2017, 49 (4), e322–e322. <u>https://doi.org/10.1038/emm.2017.10</u>.

100- Sundararajan, J. Epigenetic Mechanisms of Metabolic Memory in Diabetes. 2012. <u>https://doi.org/10.1161/CIRCRESAHA.112.268375</u>.

101- Andersen, E.; Ingerslev, L. R.; Fabre, O.; Donkin, I.; Altıntaş, A.; Versteyhe, S.; Bisgaard, T.; Kristiansen, V. B.; Simar, D.; Barrès, R. Preadipocytes from Obese Humans with Type 2 Diabetes Are Epigenetically Reprogrammed at Genes Controlling Adipose Tissue Function. Int J Obes, 2019, 43 (2), 306–318. https://doi.org/10.1038/s41366-018-0031-3.

102- Kuroda M, Sakaue H. Adipocyte Death and Chronic Inflammation in Obesity. J Med Invest. 2017;64(3.4):193-196. doi: 10.2152/jmi.64.193. PMID: 28954980

103- Chang W, Hatch GM, Wang Y, Yu F, Wang M. The relationship between phospholipids and insulin resistance: From clinical to experimental studies. J Cell Mol Med. 2019 Feb;23(2):702-710. doi: 10.1111/jcmm.13984. Epub 2018 Nov 6. PMID: 30402908; PMCID: PMC6349352.

104- Yim EK, Peng G, Dai H, Hu R, Li K, Lu Y, Mills GB, Meric-Bernstam F, Hennessy BT, Craven RJ, Lin SY. Rak functions as a tumor suppressor by regulating PTEN protein stability and function. Cancer Cell. 2009 Apr 7;15(4):304-14. doi: 10.1016/j.ccr.2009.02.012. PMID: 19345329; PMCID: PMC2673492.

105- Huang W, Queen NJ, McMurphy TB, Ali S, Cao L. Adipose PTEN regulates adult adipose tissue homeostasis and redistribution via a PTEN-leptin-sympathetic loop. Mol Metab. 2019 Dec;30:48-60. doi: 10.1016/j.molmet.2019.09.008. Epub 2019 Sep 28. PMID: 31767180; PMCID: PMC6812328.

106- Huang, W., Queen, N.J., McMurphy, T., Ali, S., Wilkins, R.K., Appana, B., & Cao, L. (2020). Adipose PTEN acts as a downstream mediator of a brain-fat axis in environmental enrichment. Comprehensive Psychoneuroendocrinology. <u>Volume</u> <u>4</u>, November 2020, 100013. https://doi.org/10.1016/j.cpnec.2020.100013

107- Bagu ET, Miah S, Dai C, Spriggs T, Ogunbolude Y, Beaton E, Sanders M, Goel RK, Bonham K, Lukong KE. Repression of Fyn-related kinase in breast cancer cells is associated with promoter site-specific CpG methylation. Oncotarget. 2017 Feb 14;8(7):11442-11459. doi: 10.18632/oncotarget.14546. PMID: 28077797; PMCID: PMC5355277.

108- Bhatlekar, S.; Fields, J. Z.; Boman, B. M. Role of HOX Genes in Stem Cell Differentiation and Cancer. Stem Cell Int, 2018, 2018, 1–15. <u>https://doi.org/10.1155/2018/3569493</u>.

109- Godfrey TC, Wildman BJ, Beloti MM, Kemper AG, Ferraz EP, Roy B, Rehan M, Afreen LH, Kim E, Lengner CJ, Hassan Q. The microRNA-23a cluster regulates the developmental HoxA cluster function during osteoblast differentiation. J Biol Chem. 2018 Nov 9;293(45):17646-17660. doi: 10.1074/jbc.RA118.003052. Epub 2018 Sep 21. PMID: 30242124; PMCID: PMC6231122.

110- Nizamuddin, S.; Govindaraj, P.; Saxena, S.; Kashyap, M.; Mishra, A.; Singh, S.; Rotti, H.; Raval, R.; Nayak, J.; Bhat, B. K.; et al. A Novel Gene THSD7A Is Associated with Obesity. Int J Obes, 2015, 39 (11), 1662–1665. https://doi.org/10.1038/ijo.2015.144.

111- Andersson, S. A.; Olsson, A. H.; Esguerra, J. L. S.; Heimann, E.; Ladenvall, C.; Edlund, A.; Salehi, A.; Taneera, J.; Degerman, E.; Groop, L.; et al. Reduced Insulin Secretion Correlates with Decreased Expression of Exocytotic Genes in Pancreatic Islets from Patients with Type 2 Diabetes. Molecular and Cellular Endocrinology, 2012, 364 (1–2), 36–45. <u>https://doi.org/10.1016/j.mce.2012.08.009</u>.

112- Tong, X.; Zhang, Q.; Wang, L.; Ji, Y.; Zhang, L.; Xie, L.; Chen, W.; Zhang, H. RNF186 Impairs Insulin Sensitivity by Inducing ER Stress in Mouse Primary Hepatocytes. Cell Signal, 2018, 52, 155–162. https://doi.org/10.1016/j.cellsig.2018.09.008.

113- Lee, S. The Association of Genetically Controlled CpG Methylation (Cg158269415) of Protein Tyrosine Phosphatase, Receptor Type N2 (PTPRN2) with Childhood Obesity. Sci Rep, 2019, 9 (1), 4855. <u>https://doi.org/10.1038/s41598-019-40486-w</u>.

114- Kim, H. A. Leucine-Rich Glioma Inactivated 3 Regulates Adipogenesis through ADAM23. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2012, 1821 (6), 914–922. <u>https://doi.org/10.1016/j.bbalip.2012.02.010</u>.

115- Hwang I, Jo K, Shin KC, et al. GABA-stimulated adipose-derived stem cells suppress subcutaneous adipose inflammation in obesity [published correction appears in Proc Natl Acad Sci U S A. 2020 Jul 7;117(27):16083]. *Proc Natl Acad Sci U S A*. 2019;116(24):11936-11945. doi:10.1073/pnas.1822067116.

116- Groh, B. S.; Yan, F.; Smith, M. D.; Yu, Y.; Chen, X.; Xiong, Y. The Antiobesity Factor WDTC 1 Suppresses Adipogenesis via the CRL 4 WDTC 1 E3 Ligase. EMBO Rep, 2016, 17 (5), 638–647. <u>https://doi.org/10.15252/embr.201540500</u>.

117- Shi, Y.; Long, F. Hedgehog Signaling via Gli2 Prevents Obesity Induced by High-Fat Diet in Adult Mice. eLife, 2017, 6, e31649. https://doi.org/10.7554/eLife.31649.

118- Turcot, V.; Lu, Y.; Highland, H. M.; Schurmann, C. Implicate Pathways That Control Energy Intake and Expenditure Underpinning Obesity. 2018. https://doi.org/10.1038/s41588-017-0011-x. 119- Van de Bunt, M.; Manning Fox, J. E.; Dai, X.; Barrett, A.; Grey, C.; Li, L.; Bennett, A. J.; Johnson, P. R.; Rajotte, R. V.; Gaulton, K. J.; et al. Transcript Expression Data from Human Islets Links Regulatory Signals from Genome-Wide Association Studies for Type 2 Diabetes and Glycemic Traits to Their Downstream Effectors. PLoS Genet, 2015, 11 (12), e1005694. https://doi.org/10.1371/journal.pgen.1005694.

120- Martínez-Barquero, V.; Marco, G. de; Martínez-Hervas, S.; Adam-Felici, V.; Pérez-Soriano, C.; Gonzalez-Albert, V.; Rojo, G.; Ascaso, J. F.; Real, J. T.; Garcia-Garcia, A. B.; et al. Are IL18RAP Gene Polymorphisms Associated with Body Mass Regulation? A Cross-Sectional Study. BMJ Open, 2017, 7 (11), e017875. https://doi.org/10.1136/bmjopen-2017-017875.

121- Richard, A. J.; Stephens, J. M. The Role of JAK–STAT Signaling in Adipose Tissue Function. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2014, 1842 (3), 431–439. https://doi.org/10.1016/j.bbadis.2013.05.030.

122- Al-Mansoori L, Al-Jaber H, Madani AY, Mazloum NA, Agouni A, Ramanjaneya M, Abou-Samra AB, Elrayess MA. Suppression of GATA-3 increases adipogenesis, reduces inflammation and improves insulin sensitivity in 3T3L-1 preadipocytes. Cell Signal. 2020 Nov; 75:109735. doi: 10.1016/j.cellsig.2020.109735. Epub 2020 Aug 11. PMID: 32795510.

123- Minakuchi, H.; Wakino, S.; Hosoya, K.; Sueyasu, K.; Hasegawa, K.; Shinozuka, K.; Yoshifuji, A.; Futatsugi, K.; Komatsu, M.; Kanda, T.; et al. The Role of Adipose Tissue Asymmetric Dimethylarginine/Dimethylarginine Dimethylaminohydrolase Pathway in Adipose Tissue Phenotype and Metabolic Abnormalities in Subtotally Nephrectomized Rats. Nephrol. Dial. Transplant., 2016, 31 (3), 413–423. <u>https://doi.org/10.1093/ndt/gfv367</u>.

124- Crotts, S. B.; Friedman, D. J.; Wang, Z.; Shapiro, M. J. Regulation of the Immune Response by ST8Sia6. The American Association of Immunologists, Inc., 2020, 204 no. 1 Supplement 228.18.

125- Ahmed, M.; Gaffen, S. L. IL-17 in Obesity and Adipogenesis. Cytokine Growth Fact Rev, 2010, 21 (6), 449–453. https://doi.org/10.1016/j.cytogfr.2010.10.005.

126- Tanigawa, Y.; Li, J.; Justesen, J. M.; Horn, H.; Aguirre, M. Components of Genetic Associations across 2,138 Phenotypes in the UK Biobank Highlight Adipocyte Biol. 2019. <u>https://doi.org/10.1038/s41467-019-11953-9</u>.

127- Chen, W.-W.; Yang, Q.; Li, X.-Y.; Shi, X.-L.; Pu, N.; Lu, G.-T.; Tong, Z.-H.; Chen, J.-M.; Li, W.-Q. Identification of a Novel and Heterozygous LMF1 Nonsense Mutation in an Acute Pancreatitis Patient with Severe Hypertriglyceridemia, Severe Obesity and Heavy Smoking. Lipids Health Dis, 2019, 18 (1), 68. https://doi.org/10.1186/s12944-019-1012-9.

128- Zhu, Zhaozhong; Guo, Yanjun; Shi, Huwenbo; Liu, C.-L. Shared Genetic and Experimental Link between Obesity-Related Traits and Asthma Subtypes in UK Biobank. 2019. <u>https://doi.org/10.1016/j.jaci.2019.09.035</u>.

129- Bradley, D.; Blaszczak, A.; Yin, Z.; Liu, J.; Joseph, J. J.; Wright, V.; Anandani, K.; Needleman, B.; Noria, S.; Renton, D.; et al. Clusterin Impairs Hepatic Insulin Sensitivity and Adipocyte Clusterin Associates With Cardiometabolic Risk. Diabetes Care, 2019, 42 (3), 466–475. <u>https://doi.org/10.2337/dc18-0870</u>.

130- Eguchi, J.; Wada, J.; Hida, K.; Zhang, H.; Matsuoka, T.; Baba, M.; Hashimoto, I.; Shikata, K.; Ogawa, N.; Makino, H. Identification of Adipocyte Adhesion Molecule (ACAM), a Novel CTX Gene Family, Implicated in Adipocyte Maturation and Development of Obesity. Biochem J, 2005, 387 (2), 343–353. https://doi.org/10.1042/BJ20041709.

131- Cyranka, M.; Veprik, A.; McKay, E. J.; Loon, N.; Thijsse, A.; Cotter, L.; Hare, N.; Saibudeen, A.; Lingam, S.; Pires, E.; et al. Abcc5 Knockout Mice Have Lower Fat Mass and Increased Levels of Circulating GLP-1. Obesity, 2019, 27 (8), 1292–1304. <u>https://doi.org/10.1002/oby.22521</u>.

132- Zahova, S.; Isles, A. R. The Role of the Prader-Willi Syndrome Critical Interval for Epigenetic Regulation, Transcription and Phenotype. 2018. <u>https://doi.org/10.3390/epigenomes2040018</u>.

133- Klenke, S.; Tan, S.; Hahn, S.; Mann, K. A Functional GNAQ Promoter Haplotype Is Associated with Altered Gq Expression and with Insulin Resistance and Obesity in Women with Polycystic Ovary Syndrome. 2010. https://doi.org/10.1097//FPC.0b013e32833b7497.

134- Hosseini SM, Boright AP, Sun L, et al. The association of previously reported polymorphisms for microvascular complications in a meta-analysis of diabetic retinopathy. Hum Genet. 2015;134(2):247-257. doi:10.1007/s00439-014-1517-2

135- Lopez, P. H.; Hahn, S.; Aoki, K.; Seldin, M. M.; Lei, X. Mice Lacking Sialyltransferase ST3Gal-II Develop Late-Onset Obesity and Insulin Resistance. 2016, 27, nos. 2, 129–139. https://doi.org/doi: 10.1093/glycob/cww098.

136- Ambrosi, T. H.; Scialdone, A.; Graja, A.; Gohlke, S.; Jank, A.-M.; Bocian, C.; Woelk, L.; Fan, H.; Logan, D. W.; Schürmann, A.; et al. Adipocyte Accumulation in the Bone Marrow during Obesity and Aging Impairs Stem Cell-Based Hematopoietic and Bone Regeneration. Cell Stem Cell, 2017, 20 (6), 771-784.e6. https://doi.org/10.1016/j.stem.2017.02.009. 137- Wei, W.; Yan, Y.; Lei, L.; Yanggu, S. Synleurin, a Novel Leucine-Rich Repeat Protein That Increases the Intensity of Pleiotropic Cytokine Responses. 2003. <u>https://doi.org/10.1016/S0006-291X(03)00876-3</u>.

Anexos de tablas

Tabla 8. Lista de CDMs presentes en adipogénesis, comparación de los grupos de (PreA-OD vs CM-OD)

	Beta-	Beta-		Cromo			
CpG	OD_CM	OD_PreA	Delta Beta	soma	Símbolo	Característica	Valor P
cg12657014	0.723476265	0.859978016	0.13650175	1	ZNF672	5'UTR	4.16E-07
cg27181253	0.291473077	0.180575357	-0.1108977	1	WNT2B	Body	4.20E-06
cg26933384	0.518576468	0.710043886	0.19146742	19	NUMBL	Body	7.89E-06
cg08458711	0.333636533	0.166648313	-0.1669882	1	BSND	Body	1.24E-05
cg21275838	0.521656337	0.3323815	-0.1892748	15	MYO1E	Body	1.79E-05
cg04634182	0.508442485	0.778173927	0.26973144	3	ZBTB47	5'UTR	1.96E-05
cg20589096	0.467522802	0.297680482	-0.1698423	4	MOBKL1A	Body	2.08E-05
cg25858983	0.416125083	0.171536889	-0.2445882	17	UBTF	5'UTR	2.65E-05
cg15280185	0.748329226	0.628613184	-0.119716	10		IGR	3.84E-05
cg03449513	0.590769565	0.418423431	-0.1723461	6		IGR	4.14E-05
cg10817615	0.624903985	0.475172168	-0.1497318	11	CHST1	TSS200	4.35E-05
cg03190379	0.216730743	0.115851669	-0.1008791	12	PRPH	Body	4.42E-05
cg23363754	0.179112859	0.072425474	-0.1066874	7	PRR15	Body	5.42E-05
cg14246142	0.609405756	0.452774643	-0.1566311	Х		IGR	5.81E-05
cg13351860	0.49522405	0.382307456	-0.1129166	6	DDR1	TSS200	5.81E-05
cg26175287	0.238161542	0.416669911	0.17850837	14	C14orf139	TSS1500	5.83E-05
cg23593232	0.585567687	0.484378338	-0.1011893	10	ADARB2	Body	6.05E-05
cg25746764	0.437020994	0.287929265	-0.1490917	1	ACBD3	5'UTR	6.51E-05
cg02043083	0.38086745	0.187172437	-0.193695	6	PCMT1	1stExon	6.59E-05

cg14235350	0.178911319	0.077144272	-0.101767	6	ZDHHC14	TSS200	6.62E-05
cg04016992	0.690398081	0.560006384	-0.1303917	4	UGT2B15	TSS1500	6.99E-05
cg25024143	0.680288204	0.855130889	0.17484268	17	SP2	Body	7.10E-05
cg05295427	0.346245381	0.244645381	-0.1016	14		IGR	7.48E-05
cg05421392	0.678144469	0.537888234	-0.1402562	11	OR5I1	TSS1500	7.64E-05
cg17678740	0.386666391	0.190857124	-0.1958093	7		IGR	8.56E-05
cg20058542	0.394160555	0.238635888	-0.1555247	15	RPUSD2	TSS1500	8.73E-05
cg27618483	0.768642013	0.632056489	-0.1365855	2		IGR	9.24E-05
cg18540455	0.252592152	0.130529299	-0.1220629	3	CLASP2	5'UTR	9.43E-05
cg10448052	0.325829844	0.198885983	-0.1269439	12	AAAS	TSS1500	9.52E-05
cg02719245	0.540639818	0.27952089	-0.2611189	14	FLJ45244	Body	9.52E-05
cg21592262	0.238972867	0.12973325	-0.1092396	19		IGR	9.55E-05
cg07981044	0.386901782	0.280662393	-0.1062394	7		IGR	9.74E-05
cg04847110	0.816471666	0.703587219	-0.1128844	15		IGR	9.89E-05
cg07345515	0.33300391	0.226416497	-0.1065874	6	TNXB	Body	0.00010093
cg25457607	0.584899912	0.467314662	-0.1175853	6		IGR	0.00010127
cg24806326	0.721194803	0.582702727	-0.1384921	17	PLCD3	Body	0.00010395
cg09987408	0.862262881	0.704197781	-0.1580651	9	PMPCA	Body	0.00010612
cg02236554	0.757787808	0.642157359	-0.1156304	2		IGR	0.00010618
cg23977256	0.767348103	0.59315156	-0.1741965	6	TRIM10	Body	0.00010661
cg16434510	0.209289326	0.065851757	-0.1434376	8		IGR	0.00010729
cg18701481	0.445669568	0.223257723	-0.2224118	5	GM2A	TSS200	0.00011218
cg10506618	0.257740767	0.521193612	0.26345284	3	TRAK1	Body	0.00011595
cg05437132	0.603147438	0.47250763	-0.1306398	21	TPTE	1stExon	0.00012038
cg19651184	0.235417035	0.064236111	-0.1711809	4	SHROOM3	Body	0.00012404
cg12041100	0.668406483	0.79305666	0.12465018	17	RAPGEFL1	5'UTR	0.00012447
cg08007986	0.232517968	0.069446291	-0.1630717	9	FBXO10	5'UTR	0.00012594
cg01215762	0.5637222	0.340797122	-0.2229251	7	HOXA10	TSS200	0.00013408
cg18705039	0.291573533	0.100317809	-0.1912557	11	MLL	Body	0.00013498
cg12697442	0.347081836	0.180794383	-0.1662875	11	YAP1	TSS200	0.00013625
cg16317961	0.429651649	0.277699124	-0.1519525	18	MAPRE2	Body	0.00013682
cg05472874	0.186685073	0.083770037	-0.102915	22	SULT4A1	1stExon	0.00013963
cg14787155	0.318065722	0.151734023	-0.1663317	3	DZIP3	1stExon	0.00014487

cg00296578	0.181112116	0.080727384	-0.1003847	2	CRIM1	Body	0.00014748
cg14683065	0.804036853	0.278966181	-0.5250707	10	LRRC27	Body	0.00014929
cg10211530	0.544781214	0.734759418	0.1899782	7	TNRC18	Body	0.00015082
cg26453169	0.633853531	0.487728426	-0.1461251	5	GAPT	TSS200	0.00015139
cg26123532	0.783874461	0.633855246	-0.1500192	2		IGR	0.00015498
cg26094470	0.532189207	0.766712696	0.23452349	10	ZMYND17	Body	0.00015617
cg10190035	0.935816769	0.65310635	-0.2827104	15	IGF1R	Body	0.00015656
cg11048797	0.654674433	0.544853886	-0.1098205	17		IGR	0.00015733
cg25632883	0.377970778	0.22675024	-0.1512205	12	SSH1	Body	0.00016101
cg02229946	0.379586546	0.245230481	-0.1343561	2	IL1F7	TSS1500	0.00016111
cg04764687	0.415098377	0.526239418	0.11114104	16	TCF25	Body	0.00016271
cg17171539	0.652332814	0.506723934	-0.1456089	1		IGR	0.00016402
cg10986355	0.324933812	0.186551612	-0.1383822	7	GRM8	TSS1500	0.00017332
cg23064082	0.561461813	0.397759879	-0.1637019	11	MPPED2	Body	0.00017498
cg26258588	0.813344648	0.705895363	-0.1074493	1	PTCHD2	Body	0.00017753
cg25840173	0.626290408	0.472605283	-0.1536851	7		IGR	0.0001781
cg08906194	0.27804249	0.177362899	-0.1006796	9	CNTFR	5'UTR	0.00018121
cg19887462	0.725208822	0.856154326	0.1309455	3	PLXNB1	Body	0.00018161
cg07243202	0.216723844	0.105370009	-0.1113538	8		IGR	0.0001852
cg10861005	0.466048947	0.233363624	-0.2326853	6	RGL2	Body	0.00019132
cg17049032	0.172885269	0.067005686	-0.1058796	12	SPRYD3	TSS200	0.00019228
cg26456399	0.65373928	0.547727967	-0.1060113	15		IGR	0.00019814
cg11115235	0.219212902	0.067175299	-0.1520376	4		IGR	0.00020662
cg05141384	0.434028811	0.322799126	-0.1112297	18		IGR	0.00021285
cg20465143	0.386478211	0.19058334	-0.1958949	8	C8orf73	Body	0.00021644
cg06994238	0.850715537	0.689227544	-0.161488	10	SORCS3	Body	0.00021847
cg16704720	0.823721607	0.718230779	-0.1054908	12	LOC116437	Body	0.00022248
cg02853387	0.467291174	0.317530083	-0.1497611	11	DSCAML1	Body	0.00022337
cg24040043	0.358831864	0.230025296	-0.1288066	1	YOD1	TSS1500	0.00022538
cg00160302	0.878029967	0.752900868	-0.1251291	8	ST18	TSS1500	0.00023005
cg21040775	0.321954972	0.1644188	-0.1575362	6		IGR	0.00023133
cg16866321	0.404991834	0.274120303	-0.1308715	7		IGR	0.00023226
cg08106377	0.595744028	0.471078208	-0.1246658	1	SMYD3	Body	0.00023348

cg13911697	0.779109889	0.599083454	-0.1800264	11		IGR	0.00023396
cg18221317	0.825171515	0.717769098	-0.1074024	Х	ZFP92	TSS200	0.00023404
cg23853484	0.379172188	0.193125821	-0.1860464	19	CLEC4G	Body	0.00023791
cg00106685	0.560259648	0.405390955	-0.1548687	3	GNL3	1stExon	0.0002399
cg05946920	0.374623111	0.260644744	-0.1139784	22	GGA1	Body	0.00024176
cg23866759	0.167909587	0.06040414	-0.1075054	5	PCBD2	Body	0.00024279
cg15931673	0.641222907	0.538363704	-0.1028592	1	TMCO4	Body	0.00024322
cg00112465	0.433219133	0.216830343	-0.2163888	3	CCDC48	TSS1500	0.0002494
cg08750501	0.155645606	0.053971163	-0.1016744	16	C16orf58	Body	0.00025785
cg15476885	0.343417828	0.541377078	0.19795925	12	C12orf69	TSS1500	0.00025876
cg00214780	0.641464217	0.787185142	0.14572092	11	PTPMT1	TSS1500	0.00025878
cg19159011	0.488534575	0.355873696	-0.1326609	7	IKZF1	5'UTR	0.00026172
cg21047322	0.577824448	0.762541117	0.18471667	6	AKAP12	Body	0.00026488

Tabla 9. Lista de CDMs presentes en adipogénesis, comparación de los grupos de AM-OD vs CM-OD.

		Beta-		Cromo			
CpG	Beta-OD_AM	OD_CM	Delta Beta	soma	Símbolo	Característica	Valor P
cg26334518	0.793716836	0.200341578	-0.5933753	17		IGR	6.40E-11
cg19701828	0.705046242	0.235614164	-0.4694321	2		IGR	1.09E-10
cg10190035	0.935816769	0.321945418	-0.6138714	15	IGF1R	Body	2.43E-10
cg10220068	0.879260493	0.483106662	-0.3961538	5	GFPT2	Body	1.35E-09
cg21275838	0.521656337	0.222127681	-0.2995287	15	MYO1E	Body	1.35E-08
cg13575139	0.485212445	0.154972748	-0.3302397	3		IGR	8.89E-08
cg26123532	0.783874461	0.423374161	-0.3605003	2		IGR	1.08E-07
cg00870449	0.726173162	0.405534383	-0.3206388	2	SLC8A1	Body	1.12E-07
cg17171539	0.652332814	0.400919647	-0.2514132	1		IGR	1.46E-07
cg04139043	0.156754774	0.033790483	-0.1229643	1		IGR	5.12E-07
cg06465076	0.924298067	0.693056833	-0.2312412	5	CAST	Body	8.50E-07
cg11638399	0.587647589	0.157596981	-0.4300506	8		IGR	9.70E-07
cg09354294	0.331338921	0.182466046	-0.1488729	1	GNG12	5'UTR	1.24E-06

cg27645858	0.691382592	0.437431379	-0.2539512	2	COPS8	Body	1.44E-06
cg08681890	0.719755478	0.496739402	-0.2230161	6		IGR	1.48E-06
cg06984156	0.90947609	0.784745069	-0.124731	1	CDA	Body	1.60E-06
cg11088672	0.692376523	0.35337797	-0.3389986	4		IGR	2.63E-06
cg00945409	0.50720923	0.221757481	-0.2854517	10	LOC283050	Body	2.87E-06
cg24854175	0.679661518	0.364990046	-0.3146715	5	CTNNA1	Body	3.03E-06
cg23181311	0.678641428	0.562896171	-0.1157453	3	LAMB2L	TSS1500	3.06E-06
cg03274800	0.81190653	0.660720817	-0.1511857	8	RHOBTB2	Body	3.18E-06
cg20589096	0.467522802	0.236464196	-0.2310586	4	MOBKL1A	Body	3.44E-06
cg13509421	0.223372133	0.049726075	-0.1736461	12	ANKRD13A	3'UTR	3.71E-06
cg02515899	0.748976776	0.30876847	-0.4402083	10		IGR	3.83E-06
cg04016992	0.690398081	0.559424435	-0.1309736	4	UGT2B15	TSS1500	4.43E-06
cg03834767	0.786242136	0.465602348	-0.3206398	7	CDK14	3'UTR	4.70E-06
cg17094249	0.60216218	0.281983025	-0.3201792	1		IGR	4.86E-06
cg16213217	0.417976781	0.172968887	-0.2450079	13	PHF11	Body	4.89E-06
cg09039561	0.388325966	0.229595799	-0.1587302	7		IGR	5.33E-06
cg07399209	0.935871104	0.737201344	-0.1986698	3		IGR	5.41E-06
cg16509531	0.316456394	0.142280735	-0.1741757	4		IGR	5.48E-06
cg01933519	0.498708147	0.275272398	-0.2234357	1	LEPR	5'UTR	6.47E-06
cg11689744	0.698172126	0.555871103	-0.142301	1		IGR	7.02E-06
cg03598112	0.473828502	0.208326811	-0.2655017	17		IGR	7.16E-06
cg26787199	0.221223311	0.095648352	-0.125575	16	SYNGR3	3'UTR	7.58E-06
cg03525818	0.951562069	0.53076573	-0.4207963	1		IGR	7.96E-06
cg16898066	0.641832456	0.4600521	-0.1817804	6	HIST1H2BA	TSS1500	8.06E-06
cg07908039	0.619578597	0.43022459	-0.189354	6	DDR1	TSS200	8.06E-06
cg27051231	0.646393444	0.440865632	-0.2055278	2		IGR	8.30E-06
cg24967811	0.615221287	0.250673796	-0.3645475	12	PITPNM2	Body	9.27E-06
cg04383836	0.524324236	0.384466847	-0.1398574	17	USP43	Body	1.55E-05
cg21530210	0.626882495	0.471607163	-0.1552753	19		IGR	1.63E-05
cg20761182	0.841305096	0.677380434	-0.1639247	2	GULP1	5'UTR	1.64E-05
cg05834728	0.776321197	0.652720475	-0.1236007	4	ANTXR2	3'UTR	1.65E-05
cg07886142	0.688031247	0.577810904	-0.1102203	5	MEGF10	3'UTR	1.72E-05
cg14509631	0.636599204	0.5085612	-0.128038	5		IGR	1.93E-05

cg05223441	0.282430705	0.116304075	-0.1661266	6		IGR	1.96E-05
cg08683088	0.812261699	0.702352931	-0.1099088	6	ELOVL2	Body	2.03E-05
cg16518990	0.801572115	0.685296521	-0.1162756	12	TBC1D15	Body	2.17E-05
cg10076902	0.498605913	0.392814927	-0.105791	11	SYT8	Body	2.28E-05
cg03526452	0.725364297	0.607837938	-0.1175264	3		IGR	2.39E-05
cg19791221	0.500735462	0.236027443	-0.264708	21	RUNX1	Body	2.68E-05
cg01345365	0.678693352	0.558633235	-0.1200601	2		IGR	2.79E-05
cg05112967	0.753054091	0.563937909	-0.1891162	7		IGR	2.80E-05
cg02806156	0.868982079	0.694357338	-0.1746247	12		IGR	2.82E-05
cg21443274	0.905239114	0.715412302	-0.1898268	8	ZFPM2	Body	2.94E-05
cg21836357	0.853369379	0.7329815	-0.1203879	4		IGR	3.20E-05
cg17170942	0.69915306	0.572653987	-0.1264991	3	UMPS	Body	3.20E-05
cg00287012	0.279506866	0.147659272	-0.1318476	18	TTC39C	5'UTR	3.27E-05
cg17761837	0.594628858	0.421154675	-0.1734742	19	ZNF675	TSS1500	3.27E-05
cg11838152	0.8004072	0.498217919	-0.3021893	13	ITGBL1	Body	3.30E-05
cg15319576	0.284887615	0.116168923	-0.1687187	11		IGR	3.34E-05
cg14881054	0.506241922	0.330683576	-0.1755583	7		IGR	3.58E-05
cg23400169	0.205715998	0.086488574	-0.1192274	8	PSD3	Body	3.76E-05
cg21949194	0.564866684	0.3130395	-0.2518272	2		IGR	3.80E-05
cg14520079	0.540993373	0.39911106	-0.1418823	3		IGR	3.85E-05
cg08458711	0.333636533	0.172677038	-0.1609595	1	BSND	Body	3.91E-05
cg08290728	0.731447956	0.60685498	-0.124593	10	CDK1	TSS1500	4.00E-05
cg20330521	0.255424603	0.139092176	-0.1163324	8	COL14A1	Body	4.12E-05
cg01869342	0.86065511	0.614107237	-0.2465479	4	ТВСК	Body	4.15E-05
cg05216542	0.424061391	0.301630028	-0.1224314	16		IGR	4.19E-05
cg26330063	0.659787826	0.49213544	-0.1676524	5	FAM105A	3'UTR	4.28E-05
cg17678740	0.386666391	0.209789557	-0.1768768	7		IGR	4.40E-05
cg08977931	0.545252542	0.3302901	-0.2149624	2	PDE1A	Body	4.44E-05
cg06791963	0.338289635	0.195252716	-0.1430369	17	BCAS3	Body	4.49E-05
cg24073782	0.828230625	0.684303494	-0.1439271	10	MPP7	5'UTR	4.72E-05
cg10892497	0.270228529	0.113460244	-0.1567683	8		IGR	4.76E-05
cg05046020	0.924482297	0.735654068	-0.1888282	1	CD1D	TSS1500	4.97E-05
cg16851584	0.587840588	0.468516507	-0.1193241	7	SDK1	Body	5.00E-05

cg14457074	0.668740159	0.53878564	-0.1299545	5		IGR	5.03E-05
cg09493818	0.724411379	0.565930496	-0.1584809	21	DIP2A	Body	5.08E-05
cg13351860	0.49522405	0.381255324	-0.1139687	6	DDR1	TSS200	5.08E-05
cg12654140	0.387787291	0.281427983	-0.1063593	17	TTLL6	3'UTR	5.11E-05
cg25454681	0.77093727	0.644215945	-0.1267213	13		IGR	5.25E-05
cg25175240	0.48996987	0.217270505	-0.2726994	15		IGR	5.32E-05
cg04412950	0.774373932	0.639627164	-0.1347468	21	NCRNA00159	TSS1500	5.34E-05
cg21893651	0.847032475	0.635921799	-0.2111107	6	NCRNA00171	Body	5.34E-05
cg16028012	0.842200098	0.707064033	-0.1351361	19	SHC2	Body	5.53E-05
cg26776551	0.790713769	0.562680338	-0.2280334	13	INTS6	Body	5.89E-05
cg21631409	0.576654243	0.454168966	-0.1224853	11	ALDH3B2	TSS1500	5.97E-05
cg01855027	0.626954413	0.487460153	-0.1394943	3	CADT2	Body	6.05E-05
cg14658607	0.8267977	0.621118973	-0.2056787	2		IGR	6.13E-05
cg07243202	0.216723844	0.105075194	-0.1116486	8		IGR	6.61E-05
cg21872288	0.651375854	0.513913207	-0.1374626	6		IGR	6.63E-05
cg08698428	0.761890662	0.661265026	-0.1006256	2	REEP1	Body	6.98E-05
cg13828068	0.530645697	0.264968683	-0.265677	9	RMI1	5'UTR	7.09E-05
cg26366554	0.266711389	0.125737691	-0.1409737	6	KIAA1244	Body	7.12E-05
cg02568557	0.624967428	0.449102432	-0.175865	11	BARX2	Body	7.20E-05

Tabla 10. Lista de CDMs presentes en adipogénesis, comparación de los grupos de (PreA-OND vs CM-OND)

	Beta-	Beta-		Cromo			
CpG	OD_CM	OD_PreA	Delta Beta	soma	Símbolo	Característica	Valor P
cg02218809	0.696322418	0.45471573	-0.2416067	16	TMEM219	TSS200	8.63E-09
cg06928346	0.550658917	0.333763736	-0.2168952	12	GPR19	1stExon	5.53E-08
cg17373656	0.558316111	0.378287744	-0.1800284	21	CSTB	5'UTR	9.21E-08
cg00112465	0.443128962	0.183703409	-0.2594256	3	CCDC48	TSS1500	1.03E-07
cg22846334	0.933016344	0.101563077	-0.8314533	15	CATSPER2	TSS200	1.51E-07
cg10817615	0.624179609	0.454534723	-0.1696449	11	CHST1	TSS200	2.29E-07
cg01014399	0.534808561	0.060638889	-0.4741697	5		IGR	3.78E-07

cg21040775	0.313861872	0.145255453	-0.1686064	6		IGR	5.00E-07
cg04634182	0.512203474	0.78953953	0.27733606	3	ZBTB47	5'UTR	5.35E-07
cg10681804	0.957989601	0.262074419	-0.6959152	20	GGT7	3'UTR	7.58E-07
cg26933384	0.524059086	0.719454949	0.19539586	19	NUMBL	Body	7.63E-07
cg14065121	0.251241211	0.079306982	-0.1719342	9	C9orf41	1stExon	8.00E-07
cg06398908	0.220714042	0.11641854	-0.1042955	19	RFX2	5'UTR	9.19E-07
cg06947608	0.269381222	0.572151794	0.30277057	10	C10orf90	3'UTR	1.29E-06
cg02719245	0.525033163	0.230464051	-0.2945691	14	FLJ45244	Body	1.54E-06
cg20891060	0.704651163	0.573523253	-0.1311279	11		IGR	1.73E-06
cg02963550	0.26534871	0.115431173	-0.1499175	12		IGR	1.86E-06
cg23380496	0.439938832	0.621394419	0.18145559	19	ZFR2	Body	2.34E-06
cg25746764	0.41212632	0.266679417	-0.1454469	1	ACBD3	5'UTR	2.52E-06
cg03409548	0.599063177	0.358940925	-0.2401223	1	MOBKL2C	TSS200	2.65E-06
cg04866810	0.751928002	0.865591354	0.11366335	19	TUBB4	Body	2.73E-06
cg04400521	0.788367363	0.92023751	0.13187015	11		IGR	2.99E-06
cg02043083	0.371854848	0.167278357	-0.2045765	6	PCMT1	1stExon	3.11E-06
cg07418777	0.624311785	0.892620048	0.26830826	10	CCDC3	Body	3.34E-06
cg05797594	0.586910683	0.742362725	0.15545204	16	MIR1910	TSS1500	3.37E-06
cg13543375	0.33261856	0.200489796	-0.1321288	1	WNT4	TSS1500	3.67E-06
cg21812670	0.231968497	0.110289146	-0.1216794	1	SNORD45C	TSS1500	4.17E-06
cg26429042	0.605468031	0.772507407	0.16703938	8	TRAPPC9	Body	4.67E-06
cg08157318	0.439187946	0.335129202	-0.1040587	12	GNPTAB	Body	5.00E-06
cg27071312	0.200196766	0.081079407	-0.1191174	5	KIAA0947	TSS200	5.05E-06
cg03362815	0.735624388	0.838126814	0.10250243	16		IGR	5.09E-06
cg25858983	0.389873018	0.163148805	-0.2267242	17	UBTF	5'UTR	5.79E-06
cg23266398	0.764561304	0.886425021	0.12186372	1		IGR	7.95E-06
cg24066259	0.345530484	0.155813594	-0.1897169	11	CCKBR	Body	8.00E-06
cg25024143	0.684954658	0.864068121	0.17911346	17	SP2	Body	8.25E-06
cg04894169	0.650629994	0.422471823	-0.2281582	3	XPC	TSS1500	9.38E-06
cg27641419	0.93819982	0.834241448	-0.1039584	16		IGR	9.58E-06
cg09698465	0.504741969	0.061682255	-0.4430597	12		IGR	9.62E-06
cg22565389	0.693287834	0.874013164	0.18072533	19	CNN1	3'UTR	9.78E-06
cg01053463	0.54962289	0.65580728	0.10618439	1	C1orf135	TSS1500	9.92E-06

cg18705039	0.266021907	0.08604199	-0.1799799	11	MLL	Body	1.01E-05
cg19896655	0.195288268	0.08892381	-0.1063645	15	LEO1	TSS1500	1.16E-05
cg02090742	0.188962339	0.020325164	-0.1686372	17	C17orf79	TSS200	1.23E-05
cg15403961	0.596483175	0.751991866	0.15550869	4	GALNTL6	Body	1.44E-05
cg10861005	0.44960171	0.218373781	-0.2312279	6	RGL2	Body	1.49E-05
cg04451839	0.783990121	0.931783912	0.14779379	16		IGR	1.68E-05
cg08702825	0.549229244	0.40063348	-0.1485958	Y		IGR	1.81E-05
cg17477835	0.651356775	0.780967478	0.1296107	10	UNC5B	Body	1.85E-05
cg16256492	0.343121375	0.184477004	-0.1586444	1	ZBTB7B	3'UTR	2.01E-05
cg26612252	0.216507082	0.100131543	-0.1163755	16	N4BP1	Body	2.01E-05
cg15850557	0.839849645	0.956986394	0.11713675	22	GRAMD4	Body	2.02E-05
cg13982823	0.218147171	0.072637726	-0.1455094	13	HMGB1	TSS1500	2.12E-05
cg23866759	0.164019727	0.063738276	-0.1002815	5	PCBD2	Body	2.13E-05
cg03412735	0.247059104	0.130556899	-0.1165022	16	SMPD3	TSS200	2.17E-05
cg18499294	0.443779193	0.620848904	0.17706971	14	SAMD4A	Body	2.36E-05
cg08280936	0.466939807	0.604289492	0.13734969	7	ZNF783	Body	2.41E-05
cg01409593	0.767448996	0.896892633	0.12944364	10	DIP2C	Body	2.50E-05
cg16317961	0.413998968	0.251520329	-0.1624786	18	MAPRE2	Body	2.54E-05
cg12697442	0.326275626	0.155077019	-0.1711986	11	YAP1	TSS200	2.57E-05
cg18540455	0.241882363	0.115493328	-0.126389	3	CLASP2	5'UTR	2.85E-05
cg08750501	0.177656585	0.051834958	-0.1258216	16	C16orf58	Body	2.99E-05
cg08906194	0.273276304	0.12731742	-0.1459589	9	CNTFR	5'UTR	3.11E-05
cg26175287	0.238349142	0.407268777	0.16891963	14	C14orf139	TSS1500	3.15E-05
cg27341933	0.14774778	0.047302681	-0.1004451	15	PTPLAD1	1stExon	3.37E-05
cg19081470	0.714378588	0.902286262	0.18790767	1		IGR	3.41E-05
cg08823985	0.482930142	0.702794908	0.21986477	6	IL20RA	TSS1500	3.43E-05
cg15259920	0.609823569	0.744919485	0.13509592	17	CDK3	5'UTR	3.47E-05
cg00549040	0.541218784	0.744139857	0.20292107	2		IGR	3.48E-05
cg09323788	0.863946448	0.191143123	-0.6728033	16	CHTF18	Body	3.66E-05
cg02154531	0.18035572	0.319016856	0.13866114	Х	NHSL2	Body	3.67E-05
cg11552078	0.383134768	0.186043608	-0.1970912	19	TIMM50	Body	3.72E-05
cg17052310	0.293056031	0.097852891	-0.1952031	7		IGR	3.92E-05
cg06423425	0.771861125	0.875704218	0.10384309	7	LFNG	Body	4.14E-05

cg19162862	0.321105227	0.190993459	-0.1301118	11	IP07	TSS1500	4.30E-05
cg12257830	0.732376455	0.851855935	0.11947948	1	HSPG2	Body	4.30E-05
cg01952234	0.248111816	0.126677172	-0.1214346	11	WT1	TSS200	4.48E-05
cg14787155	0.302763453	0.162104753	-0.1406587	3	DZIP3	1stExon	4.63E-05
cg05472874	0.184649635	0.07825959	-0.10639	22	SULT4A1	1stExon	4.81E-05
cg00106685	0.547954356	0.407608427	-0.1403459	3	GNL3	1stExon	5.00E-05
cg04473235	0.576282619	0.431537306	-0.1447453	5		IGR	5.08E-05
cg11683966	0.469017253	0.790721847	0.32170459	1	FLJ40434	TSS200	5.14E-05
cg08616760	0.272454634	0.155274571	-0.1171801	5	ZNF354A	TSS200	5.19E-05
cg17049032	0.175569723	0.055915005	-0.1196547	12	SPRYD3	TSS200	5.51E-05
cg14648311	0.738721836	0.624303658	-0.1144182	17		IGR	5.55E-05
cg17207064	0.831519525	0.664221329	-0.1672982	2		IGR	5.55E-05
cg05898482	0.158599895	0.052882774	-0.1057171	7	XRCC2	1stExon	5.65E-05
cg06931676	0.670611797	0.869667139	0.19905534	19		IGR	5.86E-05
cg00526953	0.694899334	0.798476403	0.10357707	16		IGR	6.06E-05
cg08007986	0.2101267	0.071517203	-0.1386095	9	FBXO10	5'UTR	6.18E-05
cg14573099	0.760415859	0.882132978	0.12171712	2	TBC1D8	Body	6.28E-05
cg18701481	0.414687715	0.221396107	-0.1932916	5	GM2A	TSS200	6.71E-05
cg04662961	0.48007426	0.308494936	-0.1715793	15	FRMD5	Body	6.79E-05
cg10576280	0.070083528	0.764021857	0.69393833	10	PLEKHA1	TSS1500	7.27E-05
cg12438576	0.75372661	0.618859456	-0.1348672	11	NOX4	5'UTR	7.28E-05
cg14819942	0.81672177	0.713331445	-0.1033903	15		IGR	7.30E-05
cg16880783	0.200452435	0.076886766	-0.1235657	19	TRMT1	1stExon	7.34E-05
cg18346402	0.669011935	0.86720782	0.19819589	2	TIGD1	1stExon	7.37E-05
cg25155009	0.209870362	0.097767631	-0.1121027	1	MAPKAPK2	Body	7.66E-05

Tabla 11. Lista de CDMs presentes en adipogénesis, comparación de los grupos de (AM-OND vs CM-OND)

	Beta-OND-	Beta-		Cromo			
CpG	СМ	OD_AM	Delta Beta	soma	Símbolo	Característica	Valor P
cg26776551	0.79204041	0.57309469	-0.2189457	13	INTS6	Body	2.60E-07

cg03525818	0.9472632	0.60159614	-0.3456671	1		IGR	2.28E-06
cg19701828	0.69754652	0.36510437	-0.3324422	2		IGR	5.15E-06
cg10190035	0.92390053	0.45013718	-0.4737634	15	IGF1R	Body	5.76E-06
cg11638399	0.57298212	0.20642854	-0.3665536	8		IGR	4.78E-05
cg03553758	0.78134522	0.67209997	-0.1092453	5		IGR	5.40E-05
cg24505974	0.76090831	0.65113435	-0.109774	2	PUS10	Body	0.0001002
cg08683088	0.81988059	0.71436482	-0.1055158	6	ELOVL2	Body	0.0001007
cg24585035	0.81731294	0.69292073	-0.1243922	5		IGR	0.00014393
cg26334518	0.71880547	0.33267305	-0.3861324	17		IGR	0.0001898
cg16278514	0.79798245	0.65405732	-0.1439251	3		IGR	0.00021497
cg11838152	0.83669443	0.55194655	-0.2847479	13	ITGBL1	Body	0.00023219
cg02333649	0.92448349	0.80307535	-0.1214081	22	CDC45L	Body	0.00024682
cg04721884	0.68241896	0.57538685	-0.1070321	1	ZYG11A	TSS1500	0.00025432
cg12710800	0.23024712	0.12412951	-0.1061176	10		IGR	0.00025597
cg27177006	0.57396726	0.46044293	-0.1135243	17	FLJ40504	TSS1500	0.00026888
cg07182163	0.80850441	0.57352119	-0.2349832	14	NRXN3	Body	0.00031328
cg12028646	0.86539255	0.68968982	-0.1757027	20		IGR	0.00032357
cg10220068	0.89357094	0.65215501	-0.2414159	5	GFPT2	Body	0.00032543
cg14256840	0.8115365	0.67960649	-0.13193	7		IGR	0.00032706
cg20891060	0.70465116	0.60120567	-0.1034455	11		IGR	0.00033386
cg10709925	0.80928205	0.6968124	-0.1124697	3		IGR	0.00033886
cg07922204	0.80818774	0.67827999	-0.1299078	17	EFCAB5	Body	0.00034308
cg12515684	0.47257253	0.36988432	-0.1026882	10		IGR	0.00036418
cg13543375	0.33261856	0.22340879	-0.1092098	1	WNT4	TSS1500	0.00038917
cg20608895	0.66913244	0.32644753	-0.3426849	13		IGR	0.00046167
cg04936619	0.91879801	0.80493926	-0.1138588	17	C17orf75	3'UTR	0.00058618
cg07516076	0.6959532	0.54640089	-0.1495523	7		IGR	0.00061674
cg26123532	0.73463734	0.49657485	-0.2380625	2		IGR	0.00064034
cg18773260	0.69558512	0.57422633	-0.1213588	17	HOXB7	Body	0.00064271
cg11496113	0.73692627	0.60669382	-0.1302325	5		IGR	0.00067467
cg08195176	0.94424429	0.8103952	-0.1338491	11	SIK3	Body	0.00068441
cg21581312	0.55094567	0.35410403	-0.1968416	15	LOC723972	TSS200	0.00069491
cg10757852	0.58562269	0.45672129	-0.1289014	3	RASA2	Body	0.00070684

cg24967811	0.6363682	0.38884044	-0.2475278	12	PITPNM2	Body	0.00073215
cg01991875	0.88739468	0.76748772	-0.119907	3		IGR	0.00074882
cg21459645	0.84412397	0.73067117	-0.1134528	2	CYP27A1	Body	0.00079446
cg10690677	0.78866924	0.67610584	-0.1125634	1	CLCA4	Body	0.00079674
cg04334496	0.59844632	0.43804286	-0.1604035	6		IGR	0.00081095
cg00602295	0.711732	0.52631968	-0.1854123	16		IGR	0.00081463
cg07399209	0.93047444	0.79471803	-0.1357564	3		IGR	0.00086158
cg04005938	0.79430798	0.69298012	-0.1013279	7		IGR	0.00090109
cg13879411	0.48894871	0.63976109	0.15081238	7	COL28A1	Body	0.00090205
cg22061479	0.42230599	0.3174274	-0.1048786	8	FAM82B	3'UTR	0.00090576
cg21893651	0.853316	0.71193924	-0.1413768	6	NCRNA00171	Body	0.00093196
cg15005421	0.82703603	0.72329263	-0.1037434	6	FILIP1	5'UTR	0.00094657
cg09225287	0.78278934	0.6796787	-0.1031106	7	SEMA3C	TSS1500	0.00096227
cg07791468	0.69396282	0.58995404	-0.1040088	2		IGR	0.00096737
cg22805491	0.51332747	0.35638798	-0.1569395	14		IGR	0.00098673
cg08365438	0.61725532	0.48901351	-0.1282418	10		IGR	0.00098802
cg22816343	0.4989904	0.32594952	-0.1730409	8	BNIP3L	Body	0.00103264
cg25187967	0.6965556	0.59377743	-0.1027782	11		IGR	0.00108012
cg10824972	0.48772282	0.32478403	-0.1629388	6		IGR	0.00108542
cg20761182	0.83290743	0.7126443	-0.1202631	2	GULP1	5'UTR	0.00109463
cg12438576	0.75372661	0.63210128	-0.1216253	11	NOX4	5'UTR	0.00110171
cg12021988	0.91153196	0.80665215	-0.1048798	3		IGR	0.0011097
cg25483907	0.79280494	0.62831573	-0.1644892	3	ULK4	Body	0.00111706
cg11386034	0.79468216	0.68483909	-0.1098431	4		IGR	0.00117969
cg05046020	0.90123629	0.76851495	-0.1327213	1	CD1D	TSS1500	0.00122848
cg07100957	0.74961105	0.646866	-0.102745	19	ZNF324	Body	0.00125017
cg17095167	0.5894602	0.46263435	-0.1268258	13		IGR	0.0012563
cg23860436	0.64412689	0.52461887	-0.119508	12		IGR	0.00127946
cg01232969	0.58693158	0.28231742	-0.3046142	18		IGR	0.00134975
cg15577287	0.5590512	0.41969337	-0.1393578	Х		IGR	0.00135577
cg14645856	0.72490298	0.59978908	-0.1251139	6		IGR	0.0013733
cg02738677	0.74948018	0.63371494	-0.1157652	3		IGR	0.00143345
cg15464645	0.8588381	0.75585399	-0.1029841	15	HERC2	Body	0.00151244

cg21141827	0.87864777	0.76993652	-0.1087113	5	ETF1	3'UTR	0.00156103
cg14115740	0.5764711	0.39478201	-0.1816891	9	FANCC	5'UTR	0.00163809
cg17978727	0.48916319	0.38790171	-0.1012615	20	SLC23A2	TSS200	0.00163814
cg19048327	0.64969051	0.77364134	0.12395082	2	ACOXL	3'UTR	0.00164119
cg03008165	0.7412347	0.5989371	-0.1422976	11		IGR	0.00164924
cg17586302	0.86119351	0.74053093	-0.1206626	6	PHACTR2	Body	0.00165306
cg17171539	0.5896534	0.42894916	-0.1607042	1		IGR	0.00165544
cg09622330	0.81084536	0.6788695	-0.1319759	16	GRIN2A	Body	0.00169236
cg23064501	0.749464	0.63925589	-0.1102081	12		IGR	0.0016998
cg20963267	0.78195484	0.65746315	-0.1244917	11	CCDC83	5'UTR	0.00172187
cg11683966	0.46901725	0.70155616	0.23253891	1	FLJ40434	TSS200	0.0017555
cg27272293	0.86152989	0.72633968	-0.1351902	12		IGR	0.00177996
cg06465076	0.91776157	0.75566051	-0.1621011	5	CAST	Body	0.00179999
cg14419869	0.81655335	0.71101169	-0.1055417	4		IGR	0.00183074
cg11983363	0.7828248	0.67765286	-0.1051719	2		IGR	0.00186807
cg14559409	0.60712286	0.45175001	-0.1553729	10		IGR	0.00186873
cg05041728	0.61499603	0.47313304	-0.141863	Х	ZCCHC16	5'UTR	0.00189685
cg11397033	0.76603829	0.65153889	-0.1144994	7		IGR	0.0019024
cg02054108	0.96565921	0.84170227	-0.1239569	2	USP34	Body	0.0019152
cg12210836	0.83707407	0.63417438	-0.2028997	6	AKAP7	Body	0.0019504
cg16898066	0.60383914	0.4767221	-0.127117	6	HIST1H2BA	TSS1500	0.00197401
cg00112465	0.44312896	0.31290587	-0.1302231	3	CCDC48	TSS1500	0.0020481
					STON1-		
cg14965639	0.85393806	0.74958648	-0.1043516	2	GTF2A1L	TSS200	0.00211432
cg23465426	0.62361099	0.50098196	-0.122629	6	PPP1R2P1	Body	0.00213512
cg14380045	0.52510039	0.37241521	-0.1526852	9		IGR	0.00218124
cg11788856	0.74356559	0.62655487	-0.1170107	17	RPH3AL	Body	0.00220528
cg06786600	0.83277685	0.70397414	-0.1288027	17		IGR	0.00221842
cg27556136	0.72926133	0.60839327	-0.1208681	Х	NCRNA00182	Body	0.002238
cg17983571	0.70740746	0.48964693	-0.2177605	10	JMJD1C	Body	0.00223951
cg14502625	0.62028216	0.50127199	-0.1190102	5		IGR	0.0022893
cg13037952	0.70499294	0.81147576	0.10648282	6		IGR	0.00229898
cg14683065	0.76189058	0.65336927	-0.1085213	10	LRRC27	Body	0.0023561

Tabla 12. Lista de CDMs presentes en la etapa de CM, comparación de los grupos de OD y OND.

		Beta-OND-		Cromo			
CpG	Beta-OD-CM	СМ	Delta Beta	soma	Símbolo	Característica	Valor P
cg02332293	0.709543766	0.889199233	0.17965547	5		IGR	7.44E-08
cg26480858	0.304540659	0.201212041	-0.1033286	7	THSD7A	Body	7.42E-05
cg05170452	0.713496124	0.828876858	0.11538073	5		IGR	9.31E-05
cg16626954	0.513150563	0.405843496	-0.1073071	3		IGR	0.00014913
cg24056885	0.499891706	0.355847189	-0.1440445	3	ABCC5-AS1	TSS200	0.00015274
cg12771637	0.555309405	0.656542152	0.10123275	11		IGR	0.00021429
cg25635251	0.531360581	0.663957922	0.13259734	11		IGR	0.00027605
cg13482309	0.393297815	0.570847522	0.17754971	9	OR1B1	1stExon	0.00028364
cg18830697	0.746634096	0.848992938	0.10235884	6	RIMS1	TSS200	0.00052259
cg11086466	0.761716167	0.607968375	-0.1537478	6	RNF182	5'UTR	0.00054278
cg18454042	0.581429779	0.694051714	0.11262194	7	SDK1	Body	0.00063226
cg18116804	0.524639881	0.368296671	-0.1563432	10	PLXDC2	Body	0.00064296
cg18860301	0.634378648	0.46625466	-0.168124	6	RNF182	5'UTR	0.00069915
cg06121514	0.576281561	0.676810329	0.10052877	15	IPW	Body	0.00070869
cg14439102	0.544007676	0.442067843	-0.1019398	9	GNAQ	Body	0.00074887
cg06104343	0.760962175	0.630962324	-0.1299999	17		IGR	0.0008165
cg03915559	0.591752757	0.455374007	-0.1363788	10	LGI1	Body	0.00082299
cg00435063	0.44879194	0.553212805	0.10442086	7	PTPRN2	Body	0.00089901
cg10284704	0.772663368	0.644800899	-0.1278625	15		IGR	0.00090426
cg03962019	0.799193753	0.689176835	-0.1100169	1		IGR	0.00094934
cg04618327	0.444280505	0.333324313	-0.1109562	2	LCLAT1	TSS1500	0.00110572
cg18976291	0.453528826	0.340877994	-0.1126508	15	SLCO3A1	Body	0.00113648
cg16519100	0.623826499	0.490395966	-0.1334305	15	HDGFRP3	Body	0.0011546
cg06317507	0.789381241	0.646073571	-0.1433077	6	MGC34034	Body	0.00116872
cg06683487	0.550260063	0.373323292	-0.1769368	16	LMF1	Body	0.00132211
cg17756483	0.557651526	0.439825306	-0.1178262	21	RNF160	TSS1500	0.00135572
					•	•	•

cg12129480	0.544446558	0.685006652	0.14056009	1	OR10X1	1stExon	0.00138308
cg14486098	0.315438451	0.198720328	-0.1167181	17	SLC38A10	Body	0.00146499
cg00429726	0.318178386	0.474190422	0.15601204	17		IGR	0.00146847
cg25631694	0.558827855	0.676202296	0.11737444	9	OR1Q1	TSS1500	0.00169141
cg23989344	0.707752038	0.60328991	-0.1044621	10	ST8SIA6	Body	0.00170819
cg02839123	0.466223291	0.309962884	-0.1562604	22	FAM83F	TSS1500	0.00193131
cg04528240	0.759044772	0.655303475	-0.1037413	4		IGR	0.00193262
cg23916205	0.725043385	0.618574079	-0.1064693	8	GATA4	Body	0.00193325
cg08835099	0.496361417	0.680984985	0.18462357	5	PCDHA2	Body	0.0019815
cg08272331	0.772542922	0.888434543	0.11589162	12	LOC389634	TSS1500	0.00199233
cg05895034	0.162371058	0.268568105	0.10619705	16	PRSS22	TSS1500	0.00210688
cg06793974	0.711379286	0.605667509	-0.1057118	20		IGR	0.00212456
cg09366982	0.668106552	0.785132764	0.11702621	14	SYNE2	Body	0.0021274
cg25363807	0.581757371	0.458401758	-0.1233556	1	ERI3	Body	0.00232871
cg16556605	0.76942153	0.662149188	-0.1072723	5	MGAT1	Body	0.00232877
cg23371584	0.099976607	0.297018722	0.19704211	1	BTG2	Body	0.00238706
cg11053632	0.344502349	0.5261433	0.18164095	16	BANP	Body	0.00245533
cg26953954	0.732149608	0.857406901	0.12525729	8		IGR	0.00250616
cg20790798	0.549769999	0.655690685	0.10592069	5		IGR	0.00256579
cg24449463	0.533756415	0.383548164	-0.1502083	1	DCAF6	Body	0.0026832
cg20533616	0.307558919	0.42135514	0.11379622	4		IGR	0.0027835
cg11508406	0.343074213	0.460789769	0.11771556	4		IGR	0.00282843
cg13334687	0.611045533	0.736340993	0.12529546	7		IGR	0.00296768
cg06625804	0.546794611	0.666525592	0.11973098	1		IGR	0.00303309
cg13928566	0.288128662	0.389310073	0.10118141	12		IGR	0.00310632
cg12284521	0.689775077	0.533527227	-0.1562479	6		IGR	0.00337031
cg17551002	0.661151306	0.771037714	0.10988641	1	OR6Y1	1stExon	0.00346646
cg03694936	0.578935921	0.687303679	0.10836776	5	PCDHA2	Body	0.00346845
cg02087739	0.548719439	0.40661993	-0.1420995	1		IGR	0.00351246
cg20202309	0.736275408	0.633566201	-0.1027092	11	PVRL1	Body	0.00353297
cg00778880	0.459787993	0.621122667	0.16133467	1	GPATCH2	Body	0.00355492
cg13911697	0.599109885	0.776911908	0.17780202	11		IGR	0.0035731
cg12405983	0.727559594	0.604009851	-0.1235497	19	ZSCAN18	TSS1500	0.00365191

cg06452234	0.262207703	0.384534404	0.1223267	12		IGR	0.00372168
cg15661150	0.565964897	0.428532396	-0.1374325	19		IGR	0.00373909
cg08699206	0.227283967	0.328233865	0.1009499	4		IGR	0.00378327
cg27518934	0.66772628	0.549300203	-0.1184261	6		IGR	0.00392097
cg19751562	0.691924927	0.807006621	0.11508169	3	CNTN6	Body	0.00400574
cg20928366	0.679222733	0.577759384	-0.1014633	20	CBFA2T2	5'UTR	0.00417966
cg19853494	0.517112472	0.414104156	-0.1030083	1	SELL	Body	0.0042677
cg26281107	0.616340528	0.722894789	0.10655426	4		IGR	0.00431416
cg03476864	0.381759266	0.262125239	-0.119634	7	PTPRN2	Body	0.00435774
cg19944138	0.411002868	0.623566606	0.21256374	7	EXOC4	Body	0.00444507
cg11369971	0.410325867	0.298284958	-0.1120409	12	RERG	Body	0.00445344
cg08528213	0.68047003	0.791428075	0.11095805	8	DEFB104A	TSS1500	0.00446539
cg03600259	0.27692004	0.410982715	0.13406268	6		IGR	0.00459271
cg22549881	0.660442213	0.774418918	0.11397671	2	SRD5A2	TSS1500	0.00463354
cg09040817	0.518556842	0.661424448	0.14286761	10	BAG3	Body	0.00465002
cg21757820	0.524153014	0.637578782	0.11342577	5	GABRA1	Body	0.00467423
cg10931901	0.715423665	0.821973576	0.10654991	14	SNORD114-11	TSS1500	0.00474354
cg18260532	0.474842457	0.600190264	0.12534781	2		IGR	0.00484942
cg11493080	0.491328809	0.61660948	0.12528067	14		IGR	0.00492036
cg17773231	0.671724941	0.558665918	-0.113059	15	FAN1	Body	0.00498562
cg08790890	0.576569009	0.451241938	-0.1253271	2		IGR	0.00501092
cg09978860	0.219443251	0.37024662	0.15080337	4		IGR	0.00507704
cg01777861	0.213504612	0.327797636	0.11429302	4		IGR	0.00518102
cg12792180	0.171497127	0.288886777	0.11738965	17	HRNBP3	5'UTR	0.00522692
cg24246628	0.298157559	0.172151338	-0.1260062	6	KIF25	Body	0.00528635
cg13521251	0.330549423	0.226235019	-0.1043144	8	MMP16	Body	0.00534829
cg10151799	0.673533477	0.534288651	-0.1392448	6		IGR	0.00539066
cg17437930	0.675462576	0.574600511	-0.1008621	7	MPP6	5'UTR	0.00539487
cg01235375	0.588023284	0.711186075	0.12316279	2	LOC100507073	Body	0.00545365
cg15787438	0.546637159	0.416970756	-0.1296664	2	TANK	TSS1500	0.00546862
cg26945139	0.649713582	0.760176793	0.11046321	3	TM4SF1-AS1	Body	0.00549597
cg25013443	0.581844038	0.727979666	0.14613563	11		IGR	0.00560404
cg14261943	0.881462247	0.66667497	-0.2147873	6	ZNF311	5'UTR	0.00563997

cg18352882	0.697529106	0.595823154	-0.101706	10		IGR	0.00587202
cg13681940	0.67376371	0.536839785	-0.1369239	6	MGC34034	Body	0.00593251
cg04657470	0.076200272	0.184896655	0.10869638	2	HSPE1	1stExon	0.00593756
cg18347426	0.821947754	0.718893149	-0.1030546	5	MARCH3	5'UTR	0.00600352
cg00117005	0.375209302	0.266540885	-0.1086684	6	DAXX	Body	0.00600914
cg21110092	0.687889254	0.565056046	-0.1228332	7		IGR	0.00605317
cg16312002	0.357480666	0.255148862	-0.1023318	1		IGR	0.00623331

Tabla 13. Lista de CDMs presentes en la etapa de PreA, comparación de los grupos de OD y OND.

	Beta-	Beta-		Cromo			
CpG	OND_PreA	OD_PreA	Delta Beta	soma	Símbolo	Característica	Valor P
cg17292337	0.092199858	0.350628585	0.25842873	12		IGR	1.62E-05
cg20790798	0.45570547	0.611404564	0.1556991	5		IGR	1.99E-05
cg24517467	0.443961901	0.601865842	0.15790394	7		IGR	2.12E-05
cg14950747	0.914741288	0.796415768	-0.1183255	19	ZFR2	Body	7.18E-05
cg24449463	0.480095102	0.280553625	-0.1995415	1	DCAF6	Body	9.36E-05
cg23084986	0.747772363	0.645034836	-0.1027375	1	RAB42	TSS1500	0.00010762
cg07415266	0.561745786	0.685986003	0.12424022	2	IL18RAP	Body	0.0001694
cg27216788	0.266037889	0.459213968	0.19317608	16	ST3GAL2	3'UTR	0.00025215
cg06821828	0.261923167	0.547539936	0.28561677	14		IGR	0.00025502
cg20253542	0.872431859	0.717860435	-0.1545714	7		IGR	0.00026351
cg06259934	0.48366255	0.321509551	-0.162153	10	ZMIZ1	Body	0.00029839
cg02721751	0.836596793	0.650536242	-0.1860606	6	SLC44A4	Body	0.0003187
cg27614534	0.854560969	0.709558875	-0.1450021	18	ALPK2	TSS1500	0.0003507
cg07342647	0.847027082	0.668611488	-0.1784156	16		IGR	0.00040738
cg04051335	0.641350676	0.478963993	-0.1623867	5	C5orf62	TSS1500	0.0004451
cg17071479	0.736450585	0.608286217	-0.1281644	16	SRL	Body	0.00046087
cg26457868	0.495089528	0.340026729	-0.1550628	10	SUFU	Body	0.00052584
cg17045772	0.859172678	0.737508734	-0.1216639	1	CTPS	TSS1500	0.00052663
cg15397200	0.618257553	0.737726351	0.1194688	2		IGR	0.00053129

cg05867245	0.562572451	0.872369055	0.3097966	20	ZBTB46	Body	0.00055058
cg08383695	0.445200779	0.304041002	-0.1411598	6	SYCP2L	TSS1500	0.00055196
cg15661150	0.612154713	0.379951111	-0.2322036	19		IGR	0.00060935
cg13209822	0.162985538	0.280602676	0.11761714	6	KCNQ5	Body	0.0006263
cg23844865	0.210809978	0.05835111	-0.1524589	6	PACRG	Body	0.00064111
cg14687298	0.133714286	0.390033152	0.25631887	12		IGR	0.00069685
cg23989344	0.730978757	0.56219038	-0.1687884	10	ST8SIA6	Body	0.00070574
cg24980525	0.383632463	0.232560206	-0.1510723	16		IGR	0.00076185
cg18431970	0.743750929	0.602988201	-0.1407627	19	BTBD2	Body	0.00077812
cg20652414	0.41034153	0.279573888	-0.1307676	8		IGR	0.00078365
cg19534681	0.112268022	0.236624368	0.12435635	2		IGR	0.00080968
cg00513208	0.653758071	0.806939633	0.15318156	10	UPF2	TSS1500	0.00082841
cg05146544	0.10563912	0.235973946	0.13033483	2		IGR	0.00084494
cg10317314	0.091199464	0.311898609	0.22069915	12		IGR	0.00086223
cg19070118	0.564091731	0.304855571	-0.2592362	3		IGR	0.00087194
cg18116804	0.583247177	0.395485708	-0.1877615	10	PLXDC2	Body	0.00092341
cg13662530	0.704515681	0.521981832	-0.1825338	13	CLDN10	Body	0.00093771
cg02438408	0.343025311	0.21937499	-0.1236503	19		IGR	0.00097826
cg03641043	0.258428307	0.155676619	-0.1027517	5		IGR	0.00098106
cg23330451	0.408257244	0.266751656	-0.1415056	3	PRR23B	TSS200	0.00098913
cg27652350	0.383547453	0.239001363	-0.1445461	15	ALDH1A3	Body	0.00098951
cg23585251	0.69369009	0.521761678	-0.1719284	2		IGR	0.00101097
cg24056452	0.292907601	0.43600264	0.14309504	18	LOC729950	Body	0.00103569
cg26320010	0.583354767	0.699762354	0.11640759	2	OSBPL6	5'UTR	0.00103703
cg17999099	0.798933734	0.616807351	-0.1821264	5	ZNF622	Body	0.00110465
cg21591807	0.819706613	0.699689261	-0.1200174	19	FGF21	TSS1500	0.00113459
cg12453047	0.649445986	0.514332794	-0.1351132	1	LOC101929147	Body	0.0011549
cg18419079	0.808342549	0.682070594	-0.126272	19	МҮО9В	3'UTR	0.00116512
cg24985672	0.902986611	0.797765927	-0.1052207	15	IQCH	Body	0.00119322
cg14809811	0.445533861	0.342565278	-0.1029686	14		IGR	0.00120048
cg10831246	0.327487083	0.203944794	-0.1235423	17		IGR	0.00120063
cg12352315	0.863801687	0.738593009	-0.1252087	17	SRP68	TSS1500	0.00125818
cg19388050	0.74651995	0.625220978	-0.121299	11	KCNQ1	Body	0.00127195

cg25017349	0.71400217	0.596715355	-0.1172868	6		IGR	0.00133039
cg07081203	0.655018711	0.481104224	-0.1739145	19		IGR	0.00137168
cg12046314	0.478161062	0.253267385	-0.2248937	6	BTBD9	Body	0.00139389
cg08558430	0.747583689	0.606363638	-0.1412201	10	RPS24	Body	0.00142058
cg14581628	0.307586735	0.201864703	-0.105722	9	DBH	Body	0.00145714
cg07775813	0.818576419	0.693533302	-0.1250431	15	MIR548H4	Body	0.00147192
cg12791520	0.379073944	0.24960479	-0.1294692	3	RBMS3	Body	0.00147393
cg21551271	0.302699124	0.426516226	0.1238171	16		IGR	0.00147415
cg06483840	0.635428285	0.513583936	-0.1218443	3		IGR	0.00149821
cg06683487	0.550330768	0.361368014	-0.1889628	16	LMF1	Body	0.00150558
cg07267674	0.817281498	0.646959674	-0.1703218	5		IGR	0.00155488
cg14619806	0.863126409	0.761990849	-0.1011356	10	CHST15	3'UTR	0.00157663
cg14782438	0.653108701	0.76572692	0.11261822	8		IGR	0.00158838
cg22990871	0.423519529	0.18200173	-0.2415178	21		IGR	0.00161397
cg25455659	0.712022046	0.603680947	-0.1083411	2	KCNG3	3'UTR	0.00162913
cg02859984	0.576719754	0.443522039	-0.1331977	20	LINC00494	Body	0.00162933
cg02403721	0.675689238	0.561631655	-0.1140576	9		IGR	0.00163751
cg22691986	0.532765346	0.325880515	-0.2068848	13	FREM2	Body	0.00165568
cg07521825	0.713810861	0.819249917	0.10543906	2	DHRS9	TSS1500	0.00165808
cg08564027	0.518379459	0.920431809	0.40205235	20		IGR	0.00166761
cg08088075	0.736330498	0.624263945	-0.1120666	2		IGR	0.0017273
cg13713155	0.478674473	0.367194736	-0.1114797	4	LRPAP1	Body	0.00175015
cg23754052	0.321387933	0.460210928	0.138823	9		IGR	0.00176197
cg08930752	0.679298398	0.550175886	-0.1291225	9	FANCC	Body	0.00184274
cg19086309	0.49859525	0.147628208	-0.350967	7	CALD1	5'UTR	0.00186048
cg26784201	0.548783029	0.339892573	-0.2088905	5	MYOZ3	Body	0.00187957
cg14009348	0.703150961	0.575573373	-0.1275776	2	XDH	Body	0.00189816
cg18712494	0.673696125	0.469476961	-0.2042192	14	TRIM9	Body	0.00192412
cg22158648	0.729019311	0.855305237	0.12628593	18	CABLES1	TSS1500	0.00192765
cg13431929	0.35605238	0.234433807	-0.1216186	6	ACOT13	TSS1500	0.0019289
cg01729977	0.115054994	0.2325432	0.11748821	5	PCDHGA4	Body	0.00193236
cg07677047	0.835947373	0.655769775	-0.1801776	4	PDLIM5	3'UTR	0.00195232
cg19657502	0.411462652	0.272648381	-0.1388143	4	CLGN	TSS1500	0.00198632

cg23240145	0.471445677	0.319375224	-0.1520705	13	KLHL1	TSS200	0.00200121
cg18023085	0.874149314	0.75704082	-0.1171085	8		IGR	0.00205505
cg00211489	0.450514867	0.265476332	-0.1850385	15	MRPL42P5	TSS1500	0.00206888
cg27318622	0.591335781	0.475844483	-0.1154913	17	GLTPD2	TSS1500	0.00208239
cg21407044	0.789893621	0.680510938	-0.1093827	16	DHODH	Body	0.00213309
cg25363807	0.582993685	0.418505409	-0.1644883	1	ERI3	Body	0.00217939
cg05981144	0.46504618	0.310958056	-0.1540881	11	C11orf90	Body	0.00223344
cg11868247	0.819432413	0.670757541	-0.1486749	7		IGR	0.0022354
cg05919202	0.289177602	0.163865786	-0.1253118	4		IGR	0.00224062
cg14827198	0.75562794	0.632949054	-0.1226789	2	ZEB2	Body	0.00224436
cg03203155	0.614623202	0.746456322	0.13183312	6		IGR	0.00225043
cg04676645	0.800042558	0.668763875	-0.1312787	8	CLU	Body	0.00225374
cg20598190	0.428903505	0.240142071	-0.1887614	2		IGR	0.00226777
cg15825516	0.887220309	0.770401037	-0.1168193	15		IGR	0.00226944

Tabla 14. Lista de CDMs presentes en la etapa de AM, comparación de los grupos de OD y OND.

				Cromo			
CpG	Beta-OND-AM	Beta-OD-AM	Delta Beta	soma	Símbolo	Característica	Valor P
cg22960347	0.361200859	0.246631971	-0.1145689	7		IGR	7.03E-05
cg00216549	0.630805684	0.529091239	-0.1017144	1	DDAH1	Body	0.00011478
cg05146544	0.108519755	0.226757064	0.11823731	2		IGR	0.00023325
cg24224080	0.33071079	0.220206593	-0.1105042	5		IGR	0.00026497
cg24449463	0.450626172	0.310388879	-0.1402373	1	DCAF6	Body	0.00029058
cg10354380	0.573332538	0.458045479	-0.1152871	6	IL17F	TSS200	0.00032293
cg01911494	0.290025048	0.177159289	-0.1128658	16	LMF1	Body	0.00048833
cg27082921	0.802815871	0.655479212	-0.1473367	19	ATP8B3	Body	0.00053101
cg11613005	0.339600834	0.442926357	0.10332552	5	GPR151	1stExon	0.0006812
cg19534681	0.120230621	0.237422969	0.11719235	2		IGR	0.00072663
cg17487381	0.390957417	0.271718241	-0.1192392	9		IGR	0.00098425
cg25635251	0.496530602	0.652300573	0.15576997	11		IGR	0.00098992
cg23989344	0.719315326	0.591233104	-0.1280822	10	ST8SIA6	Body	0.00107152

cg00034755	0.785215547	0.677865795	-0.1073498	22		IGR	0.00113679
cg22891588	0.699550433	0.594231614	-0.1053188	5	LRRC70	1stExon	0.00130723
cg04676645	0.820404579	0.704019538	-0.116385	8	CLU	Body	0.00166287
cg16246747	0.721967739	0.607380493	-0.1145872	2	ACOXL	5'UTR	0.00176013
cg00945409	0.399563477	0.222326747	-0.1772367	10	LOC283050	Body	0.00190206
cg19868364	0.560119664	0.663009401	0.10288974	14		IGR	0.0020326
cg06159404	0.188033475	0.352311789	0.16427831	10		IGR	0.00217146
cg00160505	0.422892662	0.303927627	-0.118965	17	ADAP2	TSS200	0.00234241
cg26557270	0.367292255	0.640554945	0.27326269	6	FRK	TSS1500	0.0024053
cg06313349	0.625606154	0.519284372	-0.1063218	7	PTPRN2	Body	0.00240776
cg13681940	0.679637069	0.508633169	-0.1710039	6	MGC34034	Body	0.00259452
cg20837474	0.740598983	0.639694327	-0.1009047	1	PHACTR4	Body	0.00266783
cg05895034	0.167043236	0.271890727	0.10484749	16	PRSS22	TSS1500	0.00271988
cg21340230	0.336364281	0.44238334	0.10601906	15		IGR	0.00279716
cg26163057	0.424851132	0.310714301	-0.1141368	2	SPDYA	TSS1500	0.00291472
cg01124539	0.221529053	0.334665657	0.1131366	9		IGR	0.002976
cg08258309	0.602409006	0.730206182	0.12779718	12	ELK3	5'UTR	0.00299391
cg03346351	0.430135784	0.320485907	-0.1096499	22	BAIAP2L2	Body	0.00318261
cg14187219	0.249138133	0.350537247	0.10139911	2	ALPP	Body	0.00320505
cg26480858	0.308275659	0.19363384	-0.1146418	7	THSD7A	Body	0.00321294
cg02332293	0.686082914	0.808097165	0.12201425	5		IGR	0.00324735
cg19944138	0.412756104	0.633470336	0.22071423	7	EXOC4	Body	0.00329849
cg00538458	0.091641319	0.203153023	0.1115117	16		IGR	0.00356175
cg15674627	0.407571382	0.545916591	0.13834521	11	MOB2	TSS1500	0.00388555
cg07661093	0.494506397	0.368524787	-0.1259816	14	FOXN3	Body	0.00402019
cg01945491	0.557070435	0.451731024	-0.1053394	22	MEI1	Body	0.0040861
cg06683487	0.530601201	0.360835559	-0.1697656	16	LMF1	Body	0.00416206
cg03476864	0.349047995	0.212224682	-0.1368233	7	PTPRN2	Body	0.00425438
cg24340640	0.817562598	0.71125913	-0.1063035	10	ADK	Body	0.0042599
cg12695519	0.642917065	0.75124604	0.10832898	1		IGR	0.00446913
cg02794906	0.381396189	0.255979082	-0.1254171	8	DMTN	TSS1500	0.00460761
cg09452848	0.530223113	0.416345079	-0.113878	11	CDON	5'UTR	0.00461385
cg15787438	0.550325954	0.42699939	-0.1233266	2	TANK	TSS1500	0.00486988

cg20253542	0.837366809	0.735048334	-0.1023185	7		IGR	0.00508385
cg08272331	0.730757978	0.873312298	0.14255432	12	LOC389634	TSS1500	0.00519154
cg24599065	0.756803892	0.637828817	-0.1189751	2	CASP10	3'UTR	0.00520604
cg08501402	0.607130867	0.485389958	-0.1217409	12		IGR	0.00523346
cg18127003	0.808549861	0.684849772	-0.1237001	8	GATA4	Body	0.00526373
cg23916205	0.694075471	0.579830125	-0.1142453	8	GATA4	Body	0.00529106
cg10708761	0.455655495	0.33704465	-0.1186108	2	TMEM178	TSS1500	0.00538602
cg14242928	0.627101186	0.742244969	0.11514378	19	PRR19	5'UTR	0.00538612
cg00698444	0.469934431	0.352913347	-0.1170211	13	FAM155A	Body	0.00539622
cg11002560	0.646738583	0.516522255	-0.1302163	9		IGR	0.00540474
cg06317507	0.786225369	0.659016241	-0.1272091	6	MGC34034	Body	0.00541153
cg14211075	0.411208058	0.296291406	-0.1149167	9	TSC1	5'UTR	0.00545067
cg18502238	0.694168787	0.82928	0.13511121	10	DIP2C	Body	0.00556442
cg04168479	0.534960456	0.780935552	0.2459751	2	CACNB4	Body	0.0056239
cg24056885	0.475875194	0.343005783	-0.1328694	3	ABCC5-AS1	TSS200	0.00566299
cg07154223	0.736538589	0.631941767	-0.1045968	19	СКМ	Body	0.00583427
cg08478621	0.574327315	0.443533786	-0.1307935	3	ABCC5-AS1	TSS1500	0.00584072
cg03444184	0.43287474	0.534267811	0.10139307	11		IGR	0.00595761
cg04756223	0.343591368	0.225423567	-0.1181678	2	PRKCE	Body	0.00596835
cg00117005	0.388440496	0.269349016	-0.1190915	6	DAXX	Body	0.00604484
cg15661150	0.564789983	0.408902371	-0.1558876	19		IGR	0.00606701
cg02372334	0.417149911	0.564439153	0.14728924	11	RHOG	5'UTR	0.00633492
cg16083439	0.265742713	0.152629132	-0.1131136	6	LACE1	TSS1500	0.00639409
cg17421805	0.47693512	0.336078638	-0.1408565	1	FCRL6	Body	0.00649836
cg18327147	0.763646743	0.660758826	-0.1028879	10	TCERG1L	Body	0.00650257
cg24768167	0.680001277	0.575721979	-0.1042793	14		IGR	0.00652322
cg23978242	0.621225489	0.744723514	0.12349803	10	DIP2C	Body	0.00657392
cg12900115	0.604664335	0.482328335	-0.122336	15		IGR	0.00665729
cg08267629	0.826002719	0.716461204	-0.1095415	19	PIP5K1C	Body	0.00689339
cg15415259	0.890886187	0.776101904	-0.1147843	6	MGC34034	Body	0.00699914
cg16969681	0.405620862	0.292465879	-0.113155	13	FOX01	Body	0.00700592
cg19070118	0.578626722	0.388677811	-0.1899489	3		IGR	0.0070708
cg14100362	0.536786587	0.675612164	0.13882558	5		IGR	0.00707124
cg15819333	0.249192952	0.389915547	0.1407226	16	COX4NB	Body	0.00709119
------------	-------------	-------------	------------	----	-----------	---------	------------
cg00166372	0.195234063	0.303928077	0.10869401	3	GNAT1	3'UTR	0.00714728
cg09690539	0.620814379	0.729603375	0.108789	3	LMCD1-AS1	Body	0.00719727
cg05771324	0.302486983	0.185892664	-0.1165943	3	PLD1	Body	0.00724675
cg27272853	0.627843936	0.48737767	-0.1404663	16		IGR	0.00729348
cg16994790	0.397754246	0.289268078	-0.1084862	2		IGR	0.00730066
cg04329291	0.216947269	0.107192292	-0.109755	6	CD109	Body	0.00730255
cg05209518	0.774452285	0.631515929	-0.1429364	2		IGR	0.00740103
cg26905254	0.096105199	0.216061661	0.11995646	19		IGR	0.00743259
cg04760493	0.412098286	0.277871566	-0.1342267	4	LARP1B	TSS1500	0.00755449
cg07950002	0.481856877	0.35947203	-0.1223848	9	PKN3	Body	0.00755817
cg04657470	0.086261802	0.197486613	0.11122481	2	HSPE1	1stExon	0.00766723
cg10064922	0.462873026	0.277055109	-0.1858179	10	DIP2C	Body	0.00767876
cg04618327	0.441057596	0.340060892	-0.1009967	2	LCLAT1	TSS1500	0.00769235
cg08455772	0.492454413	0.63746366	0.14500925	12	FLJ12825	Body	0.00770021
cg09091185	0.665100372	0.524332169	-0.1407682	16	LMF1	Body	0.00773421
cg08494603	0.565281739	0.460290699	-0.104991	19	RNU6-66P	Body	0.0077949
cg26751094	0.300219083	0.416407303	0.11618822	13	ABCC4	TSS1500	0.00813828
cg20965168	0.316889369	0.417604149	0.10071478	6	RTN4IP1	TSS1500	0.00818992
cg02839123	0.473047012	0.347767581	-0.1252794	22	FAM83F	TSS1500	0.00837917

Tabla 15. Términos enriquecidos de los perfiles de metilación de 115 genes compartidos en el análisis ontológico de genes de los procesos biológicos

Termino GO	Numero de	Valor P	Genes	Nivel de
	genes			enriquecimiento
positive regulation of	3	0.01188627	SIVA1, HSPE1, NLRP2	17.63
peptidase activity				
positive regulation of	3	0.01188627	SIVA1, HSPE1, NLRP2	17.64
caspase activity				

regulation of caspase	3	0.0206651	SIVA1, HSPE1, NLRP2	13.17
activity				
regulation of	3	0.02215807	SIVA1, HSPE1, NLRP2	12.69
endopeptidase activity				
regulation of apoptosis	7	0.02341464	SIVA1, BTG2, NTF3,	3.02
			CLU, HSPE1, NLRP2,	
			DAXX	
regulation of peptidase	3	0.02421635	SIVA1, HSPE1, NLRP2	12.1
activity				
regulation of programmed	7	0.02444833	SIVA1, BTG2, NTF3,	2.99
cell death			CLU, HSPE1, NLRP2,	
			DAXX	
regulation of cell death	7	0.02484386	SIVA1, BTG2, NTF3,	2.97
			CLU, HSPE1, NLRP2,	
			DAXX	
cell adhesion	6	0.04472169	FREM2, LPP, SELL,	2.97
			PKP3, ITGB5, NTM	
biological adhesion	6	0.04495196	FREM2, LPP, SELL,	2.96
			PKP3, ITGB5, NTM	
cell death	6	0.04922121	SIVA1, MICA, CLU,	2.89
			HSPE1, NLRP2, DAXX	
death	6	0.05044908	SIVA1, MICA, CLU,	2.87
			HSPE1, NLRP2, DAXX	
immune effector process	3	0.05430238	MICA, CLU, AICDA	7.76
anterior/posterior pattern	3	0.05867957	HOXB7, BTG2, GATA4	7.43
formation				

Tabla 16. Términos enriquecidos en el análisis ontológico de CDMs en el etapa de CM.

	Numer		
Termino GO	o de	Valor P	Genes
	genes		
cell adhesion	30	2.35E-05	PCDHA2, COL21A1, OPCML, PCDHA4, FERMT1, ITGB5, CDH8, PVRL1, ROBO1, FAT1, COL6A1, COL12A1, PCDHA11, FNDC3A, DLG1, GMDS, SELL, LPP, CNTN6, SDK1, CTNNA3, CDH13, DDR1, FREM2, PKP3, CDON, ADAM17, CNTN4, NTM, CHL1
biological adhesion	30	2.36E-05	PCDHA2, COL21A1, OPCML, PCDHA4, FERMT1, ITGB5, CDH8, PVRL1, ROBO1, FAT1, COL6A1, COL12A1, PCDHA11, FNDC3A, DLG1, GMDS, SELL, LPP, CNTN6, SDK1, CTNNA3, CDH13, DDR1, FREM2, PKP3, CDON, ADAM17, CNTN4, NTM, CHL1
cell-cell adhesion	14	0.0014641 5	GMDS, PCDHA2, PCDHA4, CTNNA3, CDH8, CDH13, PVRL1, ROBO1, FREM2, FAT1, CNTN4, PCDHA11, FNDC3A, DLG1
homophilic cell adhesion	9	0.0025085 6	CDH8, CDH13, PCDHA2, PVRL1, FREM2, ROBO1, PCDHA4, FAT1, PCDHA11
spleen development	4	0.0044839 3	HOXB4, JARID2, ADAM17, CACNB4
thymus development	4	0.0068494 9	JARID2, BCL11B, PSEN2, CACNB4
hemopoietic or lymphoid organ development	12	0.0074224 6	XRCC4, HOXB4, TM7SF4, HOXB7, JARID2, BCL11B, BCL11A, PSEN2, ADAM17, AICDA, CACNB4, TRIM10
T cell activation	8	0.0076655 2	XRCC4, CBLB, MICA, BCL11B, BCL11A, PSEN2, ADAM17, KIF13B
phosphorus metabolic process	29	0.0089915 2	FRK, TFG, MAPKAPK2, ULK4, DAXX, RNGTT, GALK2, STAT4, LMTK3, STK39, SMAD7, PTPRN2, NDUFA6, DUSP22, PRKCE, DAPK1, MAP4K4, DDR1, CAMK4, SLC17A4, PTP4A1, PDGFRA, ATP5C1, ERN1, MAPK9, RIPK4, EIF2AK4, ACVR1, BMPR1A
phosphate metabolic process	29	0.0089915 2	FRK, TFG, MAPKAPK2, ULK4, DAXX, RNGTT, GALK2, STAT4, LMTK3, STK39, SMAD7, PTPRN2, NDUFA6, DUSP22, PRKCE, DAPK1, MAP4K4, DDR1, CAMK4, SLC17A4, PTP4A1,

			PDGFRA, ATP5C1, ERN1, MAPK9, RIPK4. EIF2AK4. ACVR1. BMPR1A
regulation of apoptosis	25	0.0100505 5	MEF2C, ARHGEF4, SIVA1, XRCC4, ARHGEF2, NTF3, CLU, PRKCE, DAXX, NLRP2, DAPK1, CDH13, BTG2, ALDH1A3, BCL11B, BAG3, PLEKHG5, PSEN2, ERN1, MAPK9, AVEN, ADAM17, HSPE1, NRG1, ACVR1
immune system development	12	0.0112221 9	XRCC4, HOXB4, TM7SF4, HOXB7, JARID2, BCL11B, BCL11A, PSEN2, ADAM17, AICDA, CACNB4, TRIM10
regulation of programmed cell death	25	0.0112562 4	MEF2C, ARHGEF4, SIVA1, XRCC4, ARHGEF2, NTF3, CLU, PRKCE, DAXX, NLRP2, DAPK1, CDH13, BTG2, ALDH1A3, BCL11B, BAG3, PLEKHG5, PSEN2, ERN1, MAPK9, AVEN, ADAM17, HSPE1, NRG1, ACVR1
regulation of cell death	25	0.0117375 4	MEF2C, ARHGEF4, SIVA1, XRCC4, ARHGEF2, NTF3, CLU, PRKCE, DAXX, NLRP2, DAPK1, CDH13, BTG2, ALDH1A3, BCL11B, BAG3, PLEKHG5, PSEN2, ERN1, MAPK9, AVEN, ADAM17, HSPE1, NRG1, ACVR1
induction of apoptosis by extracellular signals	7	0.0155742 3	ARHGEF4, ARHGEF2, PSEN2, PLEKHG5, MAPK9, DAXX, DAPK1
protein amino acid phosphorylation	21	0.0170876 9	FRK, SMAD7, TFG, MAPKAPK2, ULK4, PRKCE, DAXX, DAPK1, DDR1, MAP4K4, STAT4, CAMK4, PDGFRA, ERN1, MAPK9, LMTK3, STK39, RIPK4, EIF2AK4, BMPR1A, ACVR1
Phosphorylation	24	0.0174760 2	FRK, SMAD7, NDUFA6, TFG, MAPKAPK2, ULK4, PRKCE, DAXX, DAPK1, GALK2, DDR1, MAP4K4, STAT4, CAMK4, PDGFRA, ERN1, ATP5C1, MAPK9, LMTK3, STK39, RIPK4, EIF2AK4, ACVR1, BMPR1A
negative regulation of apoptosis	13	0.0264811 3	<i>MEF2C, XRCC4, CLU, DAPK1, CDH13, BTG2, BCL11B, BAG3, PSEN2, AVEN, ADAM17, NRG1, ACVR1</i>
Hemopoiesis	10	0.0269187 6	XRCC4, HOXB4, TM7SF4, HOXB7, BCL11B, BCL11A, PSEN2, ADAM17, AICDA, TRIM10
lymphocyte activation	9	0.0273164 3	XRCC4, CBLB, MICA, BCL11B, BCL11A, PSEN2, ADAM17, AICDA, KIF13B
negative regulation of programmed cell death	13	0.0289059 6	MEF2C, XRCC4, CLU, DAPK1, CDH13, BTG2, BCL11B, BAG3, PSEN2, AVEN, ADAM17, NRG1, ACVR1

negative regulation of cell death	13	0.0297169 1	MEF2C, XRCC4, CLU, DAPK1, CDH13, BTG2, BCL11B, BAG3, PSEN2, AVEN, ADAM17, NRG1, ACVR1
eukocyte differentiation	7	0.0308394 5	XRCC4, TM7SF4, BCL11B, BCL11A, PSEN2, ADAM17, AICDA
negative regulation of transcription	15	0.0378055 1	<i>MEF2C, KLF12, JARID2, SMAD7, ZEB2,</i> <i>PRDM16, CBFA2T2, DAXX, FOXN3,</i> <i>HOXB4, ATP8B1, PEX14, NRG1,</i> <i>NR1H4, NR2F1</i>
negative regulation of macromolecule biosynthetic process	17	0.0380177 5	MEF2C, KLF12, JARID2, SMAD7, ZEB2, PRDM16, CBFA2T2, DAXX, FOXN3, SIGIRR, HOXB4, ATP8B1, PEX14, NRG1, NR1H4, EIF2AK4, NR2F1
regulation of small GTPase mediated signal transduction	10	0.0384860 5	ARHGEF4, ARHGEF2, PLEKHG1, PLEKHG5, RAPGEF5, RASA3, ARAP2, ARHGEF10, TBC1D22A, USP6NL
anterior/posterior pattern formation	7	0.0406321 1	HOXB4, HOXB7, BTG2, PSEN2, GATA4, ZEB2, BMPR1A
Ras protein signal transduction	6	0.0407821 5	CDH13, PLD1, GNA12, MAPKAPK2, RHOG, PARK7
axon guidance	6	0.0436489 1	SEMA6A, NTF3, PVRL1, ROBO1, EFNA5, CNTN4
negative regulation of cellular biosynthetic process	17	0.0458340 3	MEF2C, KLF12, JARID2, SMAD7, ZEB2, PRDM16, CBFA2T2, DAXX, FOXN3, SIGIRR, HOXB4, ATP8B1, PEX14, NRG1, NR1H4, EIF2AK4, NR2F1
negative regulation of transcription factor activity	4	0.0467592	SIVA1, SMAD7, PEX14, SIGIRR
gamma-aminobutyric acid signaling pathway	3	0.0493742 2	GABRA1, GABBR1, CACNB4
embryonic morphogenesis	11	0.0508190 3	HOXB4, GNAQ, HOXB7, ALDH1A3, CDON, PSEN2, GATA4, GNA12, ZEB2, BMPR1A, ACVR1
neuron recognition	3	0.0539405 6	OPCML, CNTN4, NTM
negative regulation of biosynthetic process	17	0.0540046	MEF2C, KLF12, JARID2, SMAD7, ZEB2, PRDM16, CBFA2T2, DAXX, FOXN3, SIGIRR, HOXB4, ATP8B1, PEX14, NRG1, NR1H4, EIF2AK4, NR2F1
positive regulation of cell differentiation	9	0.0545710 5	SH3PXD2B, XRCC4, NTF3, ROBO1, CLU, MAPK9, NRG1, BMPR1A, ACVR1
negative regulation of transcription, ADN- dependent	12	0.0567459 9	MEF2C, HOXB4, KLF12, JARID2, SMAD7, PEX14, PRDM16, DAXX, CBFA2T2, FOXN3, NR1H4, NR2F1

Tabla 17. Términos enriquecidos en el análisis ontológico de CDMs en la etapa de PreA.

	Numero		
Termino GO	do	Valor P	Genes
Termino GO	donoc	valuri	Oenes
	genes		
protein amino acid			GDF6, STAT5A, AURKC, LPAR3, LPAR2, PRKG1, APP, PSKH1, CLK3, IL1B, FRS2, INSR, PIK3CG, EGFR, BRAF, PIK3CB, MADD, STK4, STK3, MAP4K3, EIF2AK1, CDKL1, CAMK4, RIOK3, F2, RELN, EIF2AK3, LRRK1, NEK6, KALRN, NEK3, STK11, BLK, DRD4, MAPKAPK3, BMPR2, MAP4K2, ASZ1, ROBLD3, MAPKAPK2, EPHB1, SRC, IL12RB2, LOC407835, VRK2, SBK1, LMTK3, TNKS, CSF1R, TEC, BMP2, KDR, NTRK3, EPHA8, PRKAR1B, DYRK1B, GRK5, ABL1, ABL2, SRMS, MYLK, FASTK, PRKAG1, CAD, FER, LATS1, DAXX, PAK6, AKT1, PAK7, EEF2K, SHC1, AKT3, SIK3, CDK14, PRKCA, CTBP1, LYN, LIMK2, SGK3, PRKCH, PRKCE, GAK, MAST4, MAST2, PROK1, ERN1, CDK2AP1, GHRL, ERN2, TXK, MAP3K14, MAP3K12, FRK, PRKCZ, PML, BRSK2, BRSK1, STK32C, IGF1R, STK32B, STAT4, ERCC6, PTK2B, MORC3, FYB, PTPRC, ALPK1, ERG, FLT1, ALPK3, ALPK2, HCK, PTPRA, NPR2, SOD1, GSG2,
phosphorylation	122	8.98E-07	CSNK1D, RPS6KA2, GSK3A, JAK2, JAK3
			GDF6, STAT5A, AURKC, LPAR3, LPAR2, PRKG1, APP, PSKH1, CLK3, IL1B, FRS2, INSR, PIK3CG, EGFR, BRAF, PIK3CB, MADD, STK4, STK3, MAP4K3, EIF2AK1, CDKL1, CAMK4, RIOK3, F2, RELN, EIF2AK3, LRRK1, NEK6, KALRN, NEK3, STK11, BLK, DRD4, MAPKAPK3, BMPR2, MAP4K2, ASZ1, ROBLD3, MAPKAPK2, EPHB1, SRC, IL12RB2, LOC407835, VRK2, SBK1, LMTK3, TNKS, CSF1R, TEC, BMP2, KDR, NTRK3, EPHA8, DYRK1B, NDUFV1, PRKAR1B, GRK5, PIP4K2A, ABL1, ABL2, SRMS, MYLK, TOLLIP, FASTK, PRKAG1, PIP5K1B, CAD, FER, LATS1, DAXX, PAK6, AKT1, PAK7, FXN, EEF2K, ATP5L, SHC1, AKT3, CDK14, SIK3, PRKCA, CTBP1, LYN, LIMK2, SGK3, NDUFC2, PRKCH, ATP6V1H, PRKCE, GAK, ATP6V1C1, MAST4, MAST2, PROK1, CDK2AP1, ERN1, GHRL, ERN2, TXK, MAP3K14, MAP3K12, FRK, NDUFB4, PRKCZ, NDUFB6, BRSK2, PML, BRSK1, GALK2, STK32C, IGF1R, STK32B, STAT4, ERCC6, PTK2B, MORC3, FYB, PTPRC, ALPK1, ERG, FLT1, ALPK3, ALPK2, NDUFA6, HCK, PTPRA,
phosphorylation	140	1.73E-06	NPR2, NADK, SOD1, MON2, GSG2, GCK, CSNK1D,

			GSK3A, RPS6KA2, ATP6V1E2, JAK2, JAK3,
intracellular signaling cascade	201	4.71E-06	STAT5A, LHCGR, LPAR3, LPAR2, ITSN1, CTNNB1, HMHA1, RAPGEF5, H2AFX, GNG4, DDAH1, GNG7, RAB27A, PIK3CG, PLD1, BRAF, PIK3CB, TANK, SSTR5, SIRPG, SSTR1, RAB17, F2, MC2R, RAB14, RAB12, TGFB111, RAB10, EIF2AK3, UNC13A, GRB14, RALGPS2, RUNDC3A, AKAP13, MY09B, ASB18, LOC407835, TYROBP, ABR, RERG, RGS3, NOTCH4, GRK5, RGS9, TOLLIP, TP63, DAXX, LATS1, MCF2L, ARL5A, AGAP2, TUBB3, AGPAT1, ARHGEF4, ARHGEF2, ARHGEF1, LYN, ARHGEF7, GRM5, GNAL, GNAQ, DOK4, LAX1, PROK1, GNAS, TXK, MAP3K12, CAPS, CARHSP1, PML, FHL2, RAB42, PLCL2, STAT4, DGKE, PTK2B, DGKG, PKD2, RASA3, KNDC1, CD27, FYB, DGKQ, HCLS1, NPR2, DGKH, SOD1, TP73, CDH13, RASSF5, RAB30, YWHAH, RAB36, RPS6KA2, RASSF1, CHN2, APBB2, PHLDB2, THRA, RGL1, TIAM2, TIAM1, IL1B, SPRED1, MLL3, FRS2, INSR, EGFR, PLXNB1, MADD, SOCS6, SOCS7, STK4, FOXN3, STK3, MAP4K3, UCN3, SGSM3, ASB1, AKAP7, LRRK1, KALRN, NGF, RAB7A, DRD3, BLM, GRB2, BLK, ARFRP1, DRD4, MAP4K2, MAPKAPK3, ROBLD3, MAPKAPK2, SRC, DOCK1, PLCH1, RHOBTB1, TEC, CCM2, RGNEF, SHANK2, TRAF3IP2, UACA, PRKAR1B, PLCG2, RAP1A, ABL1, RHOJ, PRKAG2, FER, SDCBP2, AKT1, GSN, ARHGAP1, SHC1, RHOF, PRL, RHOG, RHOH, PRKCA, ARL2, RSU1, SP100, SLA2, ESR1, ADIPOR2, PRKCH, RB1, ESR2, RASL12, PRKCE, SH2D3C, CD80, APITD1, RRAS2, DEF8, GHRL, BUB1B, PMEPA1, PRKCZ, FKBP8, BRSK1, ALDH1A2, LINGO1, IGF1R, ERCC6, HRH2, RASGRP4, HINFP, SH2B3, INPP5D, NFATC1, PTPRC, FLT1, RCAN2, GSG2, GCK, JAK2, JAK3, FAF1
			DLC1, ALS2, LPAR2, ITSN1, RGL1, MCF2L, TBC1D17, EVI5, TIAM2, TIAM1, TBC1D14, GIT2, RAPGEF5, AGAP2, ARHGEF4, ARHGEF2, ARHGEF1, ARHGEF7, SIPA1L2, ARHGAP27, TBC1D22B, TBC1D22A, ARHGEF10, FARP1, MFN2, SGSM3, RELN, KALRN, AREGAP2, RAP1GAP
regulation of small			AGFG2, RALGAPB, AKAP13, CYTH3, ARFGEF1, ADAP1, MCF2L2, RASGRP4, PTK2B, PPP2CB, PLEKHG5, RASA3, RAP1GAP2, KNDC1, FGD6
GTPase mediated signal	55	1 025 05	IQSEC1, NGEF, ABR, RGNEF, USP6NL, TBC1D24,
	55	1.032-03	ALS2, CGB5, PGF, PDGFA, IL18, GRIK4, SLC6A4,
	100		LPAR3, CNP, IL15, VIPR2, CTNNB1, BDNF, APP,
cen-cen signaling	106	2.30E-05	WINTH, GRINZE, GATAH, GRIDZ, ILTE, CHRINAD,

			FRS2, CHRNA3, PTPRJ, KCND2, PTPRF, BSN, FGF21, NTSR1, GABRR2, SIRPG, COLQ, CAMK4, SSTR1, RAB14, EFNA5, EIF2AK3, DRD3, GRB2, DRD4, ASZ1, ITGB2, EPHB1, ADCYAP1, IL17C, PRIMA1, BMP4, HCN2, BMP3, MLN, BMP2, NTF3, GABRA5, NPY5R, LIN7A, VDAC1, PDE7B, P2RX1, CACNA1C, CHRNE, CACNA1A, CYB5R4, HNF1B, TOLLIP, TP63, GLI2, GJA3, KCNQ5, SLC1A3, TNFRSF11A, TRPV4, IHH, PRKCA, GABRG3, LYN, PCDHB5, SLC25A4, PCDHB6, PCDHB3, ESR2, NRXN1, GRM5, APITD1, CD80, GRM8, GRM7, GHRL, PPFIA3, NMB, COMT, NPTX1, FAT1, PCDHB16, MPZ, DLGAP2, TBX5, PARK2, DBH, CCL16, CCL15, ATXN1, ACCN1, PNOC, GRIA1, STAB1, SLC5A7, GDF15
negative regulation of biosynthetic process	101	4.09E-05	THRA, PDGFB, PDGFA, CBX4, CBX3, REST, CTNNB1, EPC1, HOXC8, SATB2, ZHX2, ZHX3, FOXN3, SUZ12, EIF2AK1, HOXD8, TRIM33, ASB1, EIF2AK3, SMARCA4, DRD3, BLM, ENPP1, DRD4, IGF2BP1, NOSTRIN, IGF2BP3, ELK3, ZC3H8, MEIS2, HOXA7, OVOL1, BMP2, EHMT1, IKZF1, RFX5, L3MBTL, LMCD1, SMAD3, SKI, SMYD1, FOXP1, FOXP2, HILS1, CDKN1B, TSC1, HDAC9, NCOR2, CACNA1A, FOXK1, PPARG, TBX20, TP63, ZEB2, GLI2, DAXX, PRR15L, GFI1B, AES, ATP8B1, NR2F1, PRKCA, CTBP1, SP100, CTBP2, SLA2, ARID5A, RB1, IL6R, MXD3, CTNNBIP1, GRM8, GRM7, ERN2, GHRL, ZFPM2, CUX2, LCOR, KDM6B, GLIS3, BCLAF1, PML, PRDM16, HINFP, LBXCOR1, GFI1, INPP5D, BAZ2A, WDTC1, NACC1, NF2, JARID2, TRIM27, SIRT5, SIRT6, ANKHD1, SOD1, ATXN1, GCK, IRF7, DR1
negative regulation of	48	4.60E-05	DLC1, PRKCZ, ENPP1, DRD3, PRDM16, AKT1, WNT4, RGS12, HTRA1, PPP2CB, CHST11, IL1B, LBXCOR1, INPP5D, LECT2, WWOX, RHOH, IHH, PRKCA, PTPRC, PTPRF, NF2, SLA2, SOCS6, SOCS7, SKI, RGS16, RGS14, RGS22, CTNNBIP1, ATXN1, MFN2, LRP1, BMPER, TSC1, TRIM33, HNF4A, RGS3, GSK3A, ATXN7, RGS5, LRP6, TGFB111, PTPN1, SMURF1, RGS9, TNFAIP3, GRB14
synaptic transmission	60	4.91E-05	ALS2, SLC6A4, GRIK4, LPAR3, CNP, CTNNB1, KCNQ5, APP, SLC1A3, GRIN2B, GRID2, CHRNA6, CHRNA3, PRKCA, GABRG3, KCND2, PCDHB5, SLC25A4, PTPRF, PCDHB6, PCDHB3, BSN, NRXN1, NTSR1, GABRR2, GRM5, CAMK4, APITD1, COLQ, GRM8, GRM7, RAB14, GHRL, PPFIA3, DRD3, DRD4, ASZ1, COMT, NPTX1, PCDHB16, PRIMA1, MPZ, NTF3, DLGAP2, GABRA5, PARK2, DBH, NPY5R, LIN7A, VDAC1, ATXN1, ACCN1.

			PDE7B, P2RX1, PNOC, GRIA1, SLC5A7, CACNA1C, CHRNE, CACNA1A
actin filament-based process	51	5.27E-05	RHOJ, DLC1, PDGFB, PDLIM7, AIF1, MYO7A, PRKG1, KLHL1, GSN, PACSIN2, RHOF, FMNL2, ARHGEF2, MYH3, MYH2, FMN1, EPB41L2, CAPN10, PRR5-ARHGAP8, FHOD3, GHRL, DST, ADD1, ALDOA, PRKCZ, SHROOM3, CNN3, CALD1, MYL1, NEDD9, MYO9B, TPM1, DOCK2, NPHP4, PTK2B, GRID2IP, WIPF1, EHD2, FGD6, NPHP1, INF2, TNXB, NF2, MYO1E, EVL, MYH11, ANTXR1, MYH14, ABL1, ABL2, ARAP1
regulation of Ras protein			DLC1, ALS2, ARFGAP2, AGFG2, AKAP13, LPAR2, CYTH3, ITSN1, ARFGEF1, MCF2L, ADAP1, MCF2L2, TBC1D17, EVI5, TIAM2, RASGRP4, PTK2B, TIAM1, TBC1D14, PPP2CB, PLEKHG5, GIT2, FGD6, AGAP2, IQSEC1, ARHGEF4, NGEF, ARHGEF2, ARHGEF1, ABR, ARHGEF7, ARHGAP27, RGNEF, TBC1D22B, TBC1D22A, ARHGEF10, FARP1, USP6NL, MFN2, TBC1D24, ADAP2, TSC1, LOC100271715, SGSM3, ARAP1,
signal transduction	46	5.46E-05	KALRN
embryonic			DEC 1, HMX2, EMO4, MYO7A, JAG2, HIRA, PRRX 1, TP63, ZEB2, GLI2, ZIC1, ZIC2, CTNNB1, ATP2B2, WNT4, OSR2, HOXC4, CHST11, GATA4, MKKS, FRS2, CDH23, SATB2, MBNL1, HOXC10, EYA2, GNAQ, CLIC5, TFAP2A, GNAS, TGFB111, EXT2, SMARCA4, SHROOM3, HOXA13, ARFRP1, BMPR2, ZBTB17, ALDH1A2, MYO15A, ALDH1A3, HOXA7, GFI1, FBN2, C170RF28, BMP4, NF2, TBX5, SMAD3, SKI, CELSR1, SOD1, HOXB7, TSC1, DLX5, HOXB6,
morphogenesis	61	6.28E-05	LRP6, PBX1, IFT52, FOXI1, LRP5
positive regulation of			DLC1, THRA, PDGFB, AURKAIP1, PDGFA, GDF6, STAT5A, RORA, CTNNB1, EPC1, GATA2, APP, GATA4, IL1B, H2AFX, INSR, SAMD4A, SATB2, ANAPC5, RXRB, ARID1B, SKP1, TRERF1, BOLL, AHR, HIF1A, MTF1, HNF4A, SGSM3, F2, TGFB1I1, SMARCA4, HOXA13, BLM, DRD3, CRTC1, BMPR2, TFEB, AFAP1L2, ANAPC11, ARNT, MEIS2, TEAD4, IL17F, HOXA7, TNKS, MAML3, RUNX1, TCF3, PLAGL2, NKX2-3, KLF5, BMP4, BMP3, TESC, BMP2, NFE2, EPAS1, IKZF1, NTF3, SMAD5, MAML2, MSTN, TEAD1, SMAD3, ITGA2, FURIN, DYRK1B, NOTCH4, GTF2F2, EBF1, PSMC1, HIVEP3, SMURF1, FOXI1, HNF1B, FOXK1, TBX20, PPARG, PRKAG2, TP63, GLI2, AKT1, SHC1, YAP1, FAM129A, MKL1, IHH, PSMD9, PRKCA, SP100, LYN, ESR1, RB1, IL6R, ESR2, RAD51, CARD11, CD80, PSME1, ZMIZ1, ZFPM2, USP22, CLN6, GLIS3, PML, FHL2, NFYC, TNFRSF8, FKBP1A.
macromolecule metabolic			PRDM16, IGF1R, NPAS2, ERCC6, PTK2B, HINFP,
process	138	1.36E-04	NFAT5, PCSK9, CD4, CD28, PTPRC, HCLS1, TBX5,

			CREB5, AFF1, VSX2, TP73, ATXN1, GAPDHS, CDH13, YWHAH, GCK, PSMD11, ATXN7, PBX1,
			JAK2, JAK3, IFT52
			ALS2, BDNF, GRIN2B, GRM7, DRD4, GABRA5,
fear response	10	1.40E-04	ESR2, DBH, GNG7, VDAC1
			ALS2, DLC1, AKAP13, LPAR2, ITSN1, MCF2L,
			MCF2L2, TIAM2, TIAM1, PTK2B, PLEKHG5, FGD6,
			ARHGEF4, NGEF, ARHGEF2, ABR, ARHGEF1,
regulation of Rho protein			ARHGEFT, ARHGAP27, RGNEF, FARP1,
signal transduction	26	1.76E-04	ARHGEF10. TSC1. LOC100271715. ARAP1. KALRN
			SLC8A3, SLC22A13, SLC22A12, SLC9A3, SLC9A2,
			GRIK4 ATP2B2 GRIN2B GRID2 SI CO1C1
			CHRNA6 CHRNA3 GRID1 SI C12A8 KCND2
			TRPA1 SI C22A23 PKD2I 1 SI C34A3 GABRR2
			$ATD_{2}C_{2} = 2 RVR1 AKAD7 ENDD1 AS71$
			$\begin{array}{c} (1) \\ (2) \\$
			SLOSOATU, SFANZ, KONAT, KONJT, TTTHS, TTTHT,
			KCTD2 CACNA1S CACNA2DA VDAC1 KCNUA
			COKNAR KONNE DORVA TECA ATROAD DORVO
			CDRN 1D, RCNJO, FZRA 1, TSC1, ATFZAS, FZRAZ, CACNA4C, DDZK1
			CHONE CACHATA ATDZD KONHA KONHA
			CHRINE, CACINATA, ATP7D, KONHT, KONJTO,
			KONJID, JPHZ, CACHUI, KONABI, KONIP4,
			KUNK10, KUNQ5, SLU1A3, SLN, SLU24A4, ATP5S,
			TRPV4, ATP5L, TRPV6, ANU7, KUNG3, KUNQ1,
			ANU6, KUNG2, SUN1UA, TRPM4, GABRG3,
			TRPM8, SLC25A4, ATP6V1H, CLIC1, CACNG1,
			TRPM2, TRPM1, ATP6V1C1, SLC26A8, CLIC5,
			KCNH6, PLLP, KCNH4, CLDN16, SLC39A10,
			SLC39A12, FKBP1A, ATP6V1G2, BEST1, C1QTNF3,
			PKD2, SLC4A8, NEDD4L, SLCO3A1, SCN5A,
			SCNN1D, SLC39A2, NFATC1, CNNM2, PTPRC,
			CPT1B, SLC12A3, ITPR3, MON2, KCNV1, ITPR2,
			SLC16A3, ACCN1, SLC17A3, GRIA1, SLC16A8,
ion transport	125	1.86E-04	ATP6V1E2, SLC5A7, ATP6AP1L
			HMX2, LMO2, MYO7A, TFEB, PRRX1, EGLN1, ZIC1,
			GLI2, ARNT, ATP2B2, ALDH1A2, GATA2, OSR2,
			HOXC4, MYO15A, ALDH1A3, CHST11, GATA4,
			HOXA7, PKD2, SH2B3, GFI1, FRS2, C170RF28,
			CDH23, SATB2, EPAS1, SOD1, HIF1A, HOXB7,
embryonic organ			DLX5, CLIC5, HOXB6, TFAP2A, ZFPM2, PBX1,
development	38	2.23E-04	GNAS, FOXI1
			RHOJ, DLC1, ALDOA, SHROOM3, LST1, ITGB2,
			LRRC4C, CDH4, LINGO1, ROBO1, TIAM1, NUMB,
			FGD6, CHRNA3, NEFM, FN1, ARHGEF1, PTPRF,
			PLXNB1, EPB42, SMAD3, KDR, NTRK3, YWHAH,
regulation of cell			CFDP1, TGFB1I1, MYH14, AKAP2, ARAP1,
morphogenesis	31	2.76E-04	CACNA1A, NGF
			THRA, FOXK1, PPARG, TBX20, CBX4, TP63, CBX3,
negative regulation of			ZEB2, REST, GLI2, DAXX, CTNNB1, PRR15L.
macromolecule			EPC1, HOXC8, GFI1B, AES, ATP8B1, NR2F1.
biosynthetic process	93	3.16E-04	PRKCA, CTBP1, SATB2, CTBP2, SP100, SLA2,

			ARID5A, ZHX2, ZHX3, RB1, IL6R, MXD3, FOXN3, SUZ12, CTNNBIP1, HOXD8, EIF2AK1, TRIM33, ASB1, GHRL, ERN2, ZFPM2, CUX2, LCOR, EIF2AK3, KDM6B, SMARCA4, GLIS3, BCLAF1, ENPP1, DRD3, BLM, PML, IGF2BP1, NOSTRIN, IGF2BP3, ELK3, PRDM16, ZC3H8, MEIS2, HOXA7, OVOL1, HINFP, LBXCOR1, GFI1, INPP5D, BAZ2A, WDTC1, BMP2, NACC1, EHMT1, NF2, IKZF1, RFX5, JARID2, L3MBTL, LMCD1, TRIM27, SMAD3, SIRT5, SIRT6, SMYD1, SKI, ANKHD1, FOXP1, FOXP2, ATXN1, HILS1, CDKN1B, TSC1, DR1, IRF7, HDAC9, NCOR2
multicellular organismal response to stress	14	3.69E-04	ALS2, GABRA5, TRPA1, DRD4, ESR2, COM1, DBH, VDAC1, BDNF, GRIN2B, GRM7, RELN, CACNA1A, GNG7
biological adhesion	114	3.79E-04	DLC1, MAEA, THRA, CADM1, RADIL, CTNNB1, CDH20, APP, ROBO1, COL12A1, CSF3R, IZUMO1, SPON2, CDH26, NEGR1, CDH23, SPON1, EGFR, PTPRF, PIK3CB, PTPRS, BTBD9, NCAM2, SIRPG, PODXL2, RELN, TGFB1I1, COL24A1, DST, EMCN, NEDD9, COL28A1, ITGB5, ITGB2, ITGAM, SRC, PVRL4, LAMB4, NPHP4, PVRL3, MSLN, TTYH1, SCARB1, FN1, NPHP1, COL18A1, LPP, PCDH10, ITGA2, CELSR1, ITGA9, LAMA3, TSC1, FREM2, PKP3, CD58, CYFIP2, CFDP1, ANTXR1, ABL1, ABL2, NRP2, AEBP1, OPCML, PCDHA2, COL21A1, CLSTN3, FERMT3, PCDHGA9, PCDHGA7, BCAN, FER, PCDHGA4, DGCR2, COL11A2, LOXL2, PCDHB7, PCDHB5, PCDHB6, PCDHB3, SDK1, IGFALS, SIGLEC11, NRXN1, SIGLEC8, CNTN3, CLDN16, DCHS2, CTNND2, CLDN10, CDH4, ANXA9, PTK2B, TNR, FAT1, PCDHB16, COL6A3, PKD2, ACAN, COL6A1, CD4, THBS4, PTPRC, TNXB, SELL, MSLNL, VWF, CDH13, COL19A1, CDH15, STAB1, CDH18, FBLN7, NTM
hemonoiesis		4 58E-04	XRCC5, MAEA, BLM, LMO2, MMP9, STAT5A, PPARG, JAG2, PML, IL15, CTNNB1, IL17C, DOCK2, RASGRP4, BCL11A, SH2B3, CD4, RUNX1, TCF3, KIRREL3, CD28, RHOH, NKX2-3, BMP4, PTPRC, LYN, EPAS1, TTC7A, IKZF1, EPB42, CRIP2, MYO1E, HCLS1, SMAD5, L3MBTL, RB1, FOXP1, KDR, CARD11, HOXB7, PLCG2, NOTCH4, PBX1, AICDA, IAK2, HDAC9, ADD1
transmission of nerve		4.000-04	ALS2, SLC6A4, GRIK4, LPAR3, CNP, CTNNB1, KCNQ5, APP, SLC1A3, GRIN2B, GRID2, CHRNA6, CHRNA3, PRKCA, GABRG3, KCND2, SLC25A4, PCDHB5, PTPRF, PCDHB6, PCDHB3, BSN, NRXN1, NTSR1, GABRR2, GRM5, COLQ, APITD1, CAMK4, GRM8, GRM7, RAB14, GHRL, PLLP, PPFIA3, DRD3, DRD4, ASZ1, COMT, SERINC5, NPTX1, PCDHB16,
Impulse	64	4.59E-04	PRIMAT, MPZ, NTE3, DLGAPZ, GABRA5, PARK2,

			SOD1. DBH. NPY5R. LIN7A. VDAC1. ATXN1.
			ACCN1. PDE7B. P2RX1. PNOC. TSC1. GRIA1.
			SLC5A7, CACNA1C, CHRNE, CACNA1A
			THRA. PDGFB. PDGFA. GDF6. STAT5A. LHCGR.
			RORA, CTNNB1, EPC1, GATA2, APP, GATA4, IL1B,
			INSR. DDAH1. SAMD4A. EGFR. SATB2. RXRB.
			ARID1B. TRERF1. BOLL. AHR. HIF1A. MTF1.
			HNF4A, TGFB1I1, SMARCA4, DRD3, BLM, HOXA13,
			CRTC1, TFEB, AFAP1L2, ARNT, MEIS2, TEAD4,
			HOXA7, IL17F, TNKS, MAML3, RUNX1, TCF3,
			PLAGL2. NKX2-3. KLF5. BMP4. BMP3. BMP2.
			TESC. NFE2. EPAS1. IKZF1. NTF3. MAML2.
			SMAD5. MSTN. TEAD1. SMAD3. ITGA2. DYRK1B.
			NOTCH4, EBF1, GTF2F2, HIVEP3, FOXI1, HNF1B,
			FOXK1, PPARG, TBX20, TP63, GLI2, AKT1, SHC1,
			YAP1, FAM129A, MKL1, PSMD9, IHH, SP100, RB1,
			ESR2, CARD11, CD80, ZMIZ1, ZFPM2, USP22,
			GLIS3, TNFRSF8, NFYC, FHL2, PRDM16, IGF1R,
positive regulation of			NPAS2, PTK2B, HINFP, NFAT5, CD4, CD28, TBX5,
cellular biosynthetic			CREB5, AFF1, VSX2, TP73, ATXN1, YWHAH, GCK,
process	111	5.25E-04	ATXN7, JAK2, PBX1, JAK3
			EGFR, COL18A1, PLD1, FLT1, PDGFB, PDGFA,
			MMP9, SMAD3, ITGA2, MYO1F, IL6R, FURIN, KDR,
positive regulation of cell			IGF1R, CDH13, HIF1A, PTK2B, RRAS2, PRR5-
migration	23	5.79E-04	ARHGAP8, JAK2, SCARB1, HDAC9, INSR
			PRKCA, BMP4, BMP2, TRPA1, ITGA2, FOXP2,
response to mechanical			ATP2B2, SLC1A3, BTG2, GRIN2B, PTK2B, PKD2,
stimulus	17	5.87E-04	TRPV4, MKKS, STRBP, GFI1, NGF
			THRA, PDGFB, PDGFA, GDF6, STAT5A, RORA,
			CINNBI, GATA2, EPCI, APP, GATA4, ILIB,
			HZAFX, INSR, DDAH1, EGFR, SATB2, RXRB,
			ARID1B, TRERF1, AHR, HIF1A, MTF1, HNF4A,
			TGFB111, SMARCA4, DRD3, BLM, HUXA13, CRTC1,
			TEADA THEO MANUS DUNKA TOES DUACES
			TEAD4, TINKS, MAML3, RUNX1, TCF3, PLAGLZ,
			NKXZ-3, BMP4, KLF3, BMP3, BMP2, TESU, NFE2,
			TEADI SMADO DVDKID NOTOUA EDEI
			CTE2E2 HIVED2 EOVIA HNEAD EOVKA DAADO
			TRV20 TEG2 CU2 AKT1 SUC1 VAD1 AKU1
			DSMDQ IHH SD100 PR1 ESD2 PAD51 CD80
			7MIZ1 ZEDM2 LISP22 GLIS3 NEVC EHL2 COMT
positive regulation of			PRDM16 IGE1R NPAS2 ERCC6 NEAT5 HINED
nitrogen compound			PTPRC TBX5 CREB5 AFE1 VSX2 TP73 ATXN1
metabolic process	105	6 05E-04	YWHAH ATXN7 JAK2 PBX1 JAK3
	100	0.002 01	THRA PDGEB PDGEA GDE6 STAT5A / HCGR
			RORA, CTNNB1, EPC1, GATA2, APP, GATA4, II 1B
			INSR. DDAH1. SAMD4A. EGFR. SATB2. RXRB
			ARID1B, TRERF1, BOLL, AHR. HIF1A. MTF1.
positive regulation of			HNF4A, F2, TGFB1I1, SMARCA4. HOXA13. DRD3.
biosynthetic process	112	6.11E-04	BLM, CRTC1, TFEB, AFAP1L2, ARNT, MEIS2,

			TEAD4, HOXA7, IL17F, TNKS, MAML3, RUNX1, TCF3, PLAGL2, NKX2-3, KLF5, BMP4, BMP3, BMP2, TESC, NFE2, EPAS1, IKZF1, NTF3, MAML2, SMAD5, MSTN, TEAD1, SMAD3, ITGA2, DYRK1B, NOTCH4, GTF2F2, EBF1, HIVEP3, FOXI1, HNF1B, FOXK1, PPARG, TBX20, TP63, GLI2, AKT1, SHC1, YAP1, FAM129A, MKL1, PSMD9, IHH, SP100, RB1, ESR2, CARD11, CD80, ZMIZ1, ZFPM2, USP22, GLIS3, TNFRSF8, NFYC, FHL2, PRDM16, IGF1R, NPAS2, PTK2B, HINFP, NFAT5, CD4, CD28, TBX5, CREB5, AFF1, VSX2, TP73, ATXN1, YWHAH, GCK, ATXN7, JAK2, PBX1, JAK3
			RHOJ, DLC1, ALDOA, PRKCZ, SHROOM3, PDLIM7, PDGFB, CNN3, AIF1, CALD1, NEDD9, MYO9B, PRKG1_TPM1_KLHL1_DOCK2_NPHP4_PACSIN2
			GSN, PTK2B, GRID2IP, WIPF1, EHD2, FGD6, RHOF, NPHP1, INF2, FMNL2, ARHGEF2, TNXB,
actin cytoskeleton			NF2, EVL, FMN1, EPB41L2, CAPN10, PRR5- ARHGAP8, MYH11, FHOD3, GHRL, ANTXR1, ABL1,
organization	45	6.18E-04	ABL2, DST, ARAP1, ADD1
morphogenesis of an			DLC1, SHROOM3, PGF, LMO4, JAG2, TP63, ZEB2, GLI2, CTNNB1, ZIC2, ALDH1A2, WNT4, ALDH1A3, MKKS, NKX2-3, BMP4, BMP2, TBX5, CELSR1,
epithelium	25	6.18E-04	TSC1, FREM2, TFAP2A, PBX1, IFT52, TGFB1I1
neuron differentiation	76	6.47E-04	ALS2, NRP2, OPCML, MYO7A, JAG2, STRN, PIP5K1C, CNP, RORA, PRKG1, GLI2, KLHL1, GATA2, ATP2B2, BDNF, HOXC8, APP, SLC1A3, ANK3, ROBO1, SPON2, TUBB3, CDH23, PRKCA, EGFR, KIF5C, PTPRR, NRXN1, SLIT1, SLIT3, HOXC10, NCAM2, SLITRK1, BTG2, GNAQ, CLIC5, GHRL, EFNA5, RELN, IGSF9, DST, NGF, KALRN, LST1, CLU, BRSK2, NAPA, BRSK1, CDH4, EPHB1, OTP, LINGO1, ALDH1A2, IGF1R, PTK2B, DGKG, TNR, NUMB, PCSK9, GFI1, C170RF28, BMP4, DFNA5, GNAO1, NTF3, NTN4, LMX1A, VSX2, SOD1, TP73, NTRK3, DLX5, JAK2, APBB2, NTM, CACNA1A
			XRCC5, MAEA, LMO2, MMP9, STAT5A, PPARG, JAG2, IL15, CTNNB1, TNFRSF11A, RHOH, KIRREL3, TTC7A, LYN, RB1, CARD11, AICDA, ADD1, BLM, PML, IL17C, DOCK2, RASGRP4, BCL11A, SH2B3, CD4, RUNX1, TCF3, CD28, NKX2- 3, BMP4, PTPRC, IKZF1, EPAS1, EPB42, CRIP2, JARID2, HCLS1, MYO1E, L3MBTL, SMAD5, SOD1,
organ development	50	6.76F-04	JAK2. HDAC9
negative regulation of nitrogen compound metabolic process	87	7.70E-04	THRA, FOXK1, PPARG, TBX20, CBX4, TP63, CBX3, ZEB2, REST, GLI2, DAXX, CTNNB1, PRR15L, EPC1, HOXC8, GFI1B, AES, ATP8B1, NR2F1, SATB2, CTBP1, CTBP2, SP100, SLA2, ARID5A, ZHX2, ZHX3, RB1, MXD3, FOXN3, SUZ12.

			CTNNBIP1, HOXD8, TRIM33, GRM8, GRM7, ERN2, ZFPM2, CUX2, LCOR, KDM6B, SMARCA4, GLIS3, BCLAF1, DRD3, BLM, DRD4, PML, NOSTRIN, ELK3, COMT, PRDM16, ZC3H8, MEIS2, HOXA7, OVOL1, HINFP, LBXCOR1, GFI1, BAZ2A, ERCC4, WDTC1, BMP2, NACC1, EHMT1, NF2, IKZF1, RFX5, JARID2, L3MBTL, LMCD1, TRIM27, SMAD3, SIRT5, SIRT6, SMYD1, SKI, FOXP1, FOXP2, ATXN1, HILS1, CDKN1B, GSK3A, DR1, IRF7, HDAC9, NCOR2
bebouior	80	7 705 04	ALS2, NRP2, PDGFB, PDGFA, SLC6A3, IL18, PGLYRP1, STRN, CNP, FER, ZIC1, KLHL1, ATP2B2, BDNF, APP, SLC1A3, FXN, GRIN2B, PPP1R1B, ROBO1, MKKS, IL1B, CHRNA3, GNG7, CDH23, PRKCA, PLD1, PIK3CB, CMKLR1, ESR2, IL6R, NTSR1, CCNL2, BBS2, GNAQ, GRM7, GAA, GHRL, RELN, NGF, CLN6, PRKCZ, DRD3, DRD4, CTNND2, ITGB2, COMT, CCL28, ITGAM, C190RF20, NPAS2, NPHP4, DOCK2, MY015A, PTN, GFI1, STRBP, LECT2, NPHP1, MAFG, GNA01, GABRA5, CCL19, PARK2, DBH, CCL16, SOD1, CCL15, NPY5R, VDAC1, FOXP2, ATXN1, GRIA1, PRKAR1B, CMTM8, CMTM7, NHLH2, CACNA1C, CMTM3, CACNA1A
negative regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process	80	7.79E-04 7.94E-04	CACNA1A THRA, FOXK1, PPARG, TBX20, CBX4, TP63, CBX3, ZEB2, REST, GLI2, DAXX, CTNNB1, PRR15L, EPC1, HOXC8, GFI1B, AES, ATP8B1, NR2F1, SATB2, CTBP1, CTBP2, SP100, SLA2, ARID5A, ZHX2, ZHX3, RB1, MXD3, FOXN3, SUZ12, CTNNBIP1, HOXD8, TRIM33, GRM8, GRM7, ERN2, ZFPM2, CUX2, LCOR, KDM6B, SMARCA4, GLIS3, BCLAF1, DRD3, BLM, DRD4, PML, NOSTRIN, ELK3, PRDM16, ZC3H8, MEIS2, HOXA7, OVOL1, HINFP, LBXCOR1, GFI1, BAZ2A, ERCC4, WDTC1, BMP2, NACC1, EHMT1, NF2, IKZF1, RFX5, JARID2, L3MBTL, LMCD1, TRIM27, SMAD3, SIRT5, SIRT6, SMYD1, SKI, FOXP1, FOXP2, ATXN1, HILS1, CDKN1B, GSK3A, DR1, IRF7, HDAC9, NCOR2
regulation of insulin receptor signaling pathway	9	8.82E-04	PRKCA, PRKCZ, PTPRF, ENPP1, GSK3A, IL1B, PTPN1, GRB14, SRC
negative regulation of insulin receptor signaling pathway	8	8.94E-04	PRKCA, PRKCZ, PTPRF, ENPP1, GSK3A, IL1B, PTPN1, GRB14
positive regulation of locomotion	24	9.54E-04	PRKCA, EGFR, COL18A1, PLD1, FLT1, PDGFB, PDGFA, MMP9, SMAD3, ITGA2, MYO1F, IL6R, FURIN, KDR, IGF1R, CDH13, HIF1A, PTK2B, RRAS2, PRR5-ARHGAP8, JAK2, SCARB1, HDAC9, INSR
response to hormone stimulus_	65	9.77E-04	THRA, PDGFB, STAR, PGF, PDGFA, STAT5A, SLC9A3, LHCGR, PPARG, PTGS1, LATS1, CTNNB1, AKT1, GATA3, IL1B, SHC1, GNG4, INSR,

			GNG7, IHH, PRKCA, PLD1, LYN, ESR1, FBP1, ADIPOR2, SOCS7, IL6R, ESR2, CDO1, UCN3, CAPN10, BTG2, GHRL, GNAS, NGF, ALPL, ENPP1, GRB2, ASZ1, FHL2, SRC, PRSS8, ALDH1A2, IGF1R, PTK2B, PCSK9, BMP4, WDTC1, HCLS1, PTPRA, ITGA2, MSTN, PCK1, RERG, TSC1, GSK3A, PRKAR1B, ARSA, JAK2, RGS9, PTPN1, HDAC9, PARP1, ABCC5
regulation of cell death	126	0.0013995	XRCC5, DLC1, MAEA, CADM1, MMP9, STAT5A, JAG2, CBX4, SGMS1, ITSN1, CRADD, PECR, APP, BDNF, TIAM2, TIAM1, GRID2, IL1B, PSENEN, WWOX, RAB27A, PIK3CG, EGFR, BRAF, PTPRF, MADD, STK4, STK3, TNFAIP8, F2, TNFAIP3, EIF2AK3, KALRN, NGF, SIVA1, HOXA13, CLU, AKAP13, SRC, ZC3H8, HSPE1, TRAF4, HIP1, PLAGL2, TRAF3, SPPL3, BMP4, COL18A1, CFLAR, MUC2, ABR, SPHK2, NTF3, SMAD3, FURIN, BFAR, CDKN1B, UACA, SFRP1, P2RX1, PLCG2, CFDP1, ABL1, CACNA1A, HTATIP2, FASTK, ZMAT3, TP63, DAXX, MCF2L, AKT1, PAK7, CHST11, MKL1, TERT, IHH, PRKCA, ARHGEF4, ARHGEF2, SGK3, SLC25A4, ARHGEF7, ESR1, IL6R, ESR2, PRKCE, NLRP2, CARD11, CAPN10, BTG2, IGF2R, ERN1, GHRL, ERN2, PRKCZ, BCLAF1, ING3, MGMT, PML, TNFRSF8, MIF, IGF1R, ERCC6, ALDH1A3, PLEKHG5, PPP2CB, PCSK9, INPP5D, PCSK6, CD27, NGEF, PTPRC, NACC1, TMBIM6, TBX5, DBH, SOD1, TP73, SELS, PLG, CDH13, BIK, JAK2, FAF1, APBB2, DNM2
extracellular structure	34	0.00143307	ALS2, CADM1, MMP9, HSD17B12, UTRN, FKBP1A, CTNNB1, ATP2B2, APP, ANK3, TNR, PCDHB16, SMOC1, ACAN, COL12A1, COL11A2, VWA1, RECK, COL18A1, DNM3, TNXB, PCDHB5, PCDHB6, PCDHB3, CCDC80, NRXN1, CACNA1S, COL19A1, TSC1, MYH11, APBB2, ADAMTS2, CACNA1A, SMARCA4
cell morphogenesis involved in differentiation	46	0.00172531	NRP2, ALS2, MYO7A, PIP5K1C, CNP, GLI2, CDH4, EPHB1, CTNNB1, ATP2B2, IGF1R, BDNF, APP, SLC1A3, ROBO1, ANK3, TNR, NUMB, SPON2, FN1, CDH23, NFATC1, COL18A1, PRKCA, BMP2, NTF3, KIF5C, LMX1A, NRXN1, SOD1, SLIT1, SLIT3, SLITRK1, NCAM2, HIF1A, DLX5, CLIC5, NOTCH4, RELN, EFNA5, JAK2, ANTXR1, APBB2, DST, CACNA1A, KALRN
cell morphogenesis	62	0.00197928	ALS2, NRP2, MYO7A, PIP5K1C, CNP, GLI2, CTNNB1, ATP2B2, BDNF, NDE1, APP, SLC1A3, ANK3, ROBO1, MKKS, SPON2, ZW10, CDH23, PRKCA, EGFR, ARHGEF2, KIF5C, NRXN1, DNAI2, STK4, SLIT1, SLIT3, NCAM2, SLITRK1, BBS2, HIF1A, CLIC5, EFNA5, RELN, DST, KALRN, ADD1, LST1, SHROOM3, CLU, BRSK2, BRSK1, CDH4,

			EPHB1, IGF1R, DOCK2, TNR, NUMB, FN1, NFATC1, COL18A1, BMP2, NTF3, EPB42, LMX1A,
			CACNA1A
regulation of cell motion	38	0 0021342	DLC1, PDGFB, PDGFA, MMP9, JAG2, TPM1, AKT1, IGF1R, PTK2B, MKKS, SCARB1, INSR, COL18A1, EGFR, MUC2, PLD1, FLT1, SP100, LYN, NF2, TBX5, SMAD3, MYO1F, ITGA2, IL6R, FURIN, PLG, KDR, CDH13, BBS2, LAMA3, HIF1A, CDKN1B, RRAS2, PRR5-ARHGAP8, JAK2, HDAC9, ARAP1
		0.0021012	STAR, ENPP1, GRB2, STAT5A, PPARG, ASZ1,
			PRSS8, AKT1, IGF1R, PCSK9, SHC1, INSR, PRKCA, PLD1, WDTC1, LYN, PTPRA, FBP1, SOCS7, IL6R, CDO1, PCK1, CAPN10, BTG2, TSC1,
response to peptide hormone stimulus	32	0.00215755	GSK3A, JAK2, PTPN1, HDAC9, PARP1, ABCC5, NGF
locomotory behavior	50	0.00216376	NRP2, ALS2, DRD3, PDGFB, PDGFA, SLC6A3, DRD4, STRN, CNP, ITGB2, FER, CCL28, ITGAM, KLHL1, ATP2B2, NPAS2, DOCK2, APP, FXN, ROBO1, MYO15A, IL1B, LECT2, CHRNA3, GNG7, CDH23, PRKCA, PLD1, GNAO1, CMKLR1, PIK3CB, CCL19, PARK2, IL6R, CCL16, NTSR1, DBH, SOD1, CCL15, CCNL2, ATXN1, CMTM8, GAA, CMTM7, REIN, CACNA1C, CMTM3, CACNA1A, NGE, CIN6
			XRCC5, DLC1, MAEA, CADM1, MMP9, STAT5A, CBX4, JAG2, SGMS1, ITSN1, CRADD, PECR, APP, BDNF, TIAM2, TIAM1, GRID2, IL1B, PSENEN, WWOX, RAB27A, PIK3CG, EGFR, BRAF, PTPRF, MADD, STK4, STK3, F2, TNFAIP8, TNFAIP3, EIF2AK3, KALRN, NGF, SIVA1, HOXA13, CLU, AKAP13, SRC, ZC3H8, HSPE1, TRAF4, PLAGL2, TRAF3, HIP1, SPPL3, COL18A1, CFLAR, MUC2, ABR, SPHK2, NTF3, SMAD3, FURIN, BFAR, CDKN1B, UACA, SFRP1, P2RX1, CFDP1, ABL1, CACNA1A, HTATIP2, FASTK, ZMAT3, TP63, DAXX, MCF2L, AKT1, PAK7, CHST11, MKL1, TERT, IHH, PRKCA, ARHGEF4, ARHGEF2, SGK3, ARHGEF7, ESR1, IL6R, ESR2, PRKCE, NLRP2, CARD11, CAPN10, BTG2, IGF2R, ERN1, GHRL, ERN2, PRKCZ, BCLAF1, ING3, MGMT, PML, TNFRSF8, MIF, IGF1R, ERCC6, ALDH1A3, PLEKHG5, PPP2CB, PCSK9, INPP5D, PCSK6, CD27, NGEF, PTPRC, NACC1, TMBIM6, TBX5, DBH, SOD1, TP73, SELS, PLG, CDH13, BIK, JAK2, FAF1, APBB2,
regulation of apoptosis	123	0.00229807	DNM2
regulation of			XRCC5, DLC1, MAEA, CADM1, MMP9, STAT5A, CBX4, JAG2, SGMS1, ITSN1, CRADD, PECR, APP, BDNF, TIAM2, TIAM1, GRID2, IL1B, PSENEN, WWOX, RAB27A, PIK3CG, EGFR, BRAF, PTPRF, MADD, STK4, STK3, TNFAIP8, F2, TNFAIP3,
programmed cell death	124	0.00230216	EIF2AK3, KALRN, NGF, SIVA1, HOXA13, CLU,

			AKAP13, SRC, ZC3H8, HSPE1, TRAF4, HIP1, PLAGL2, TRAF3, SPPL3, COL18A1, CFLAR, MUC2, ABR, SPHK2, NTF3, SMAD3, FURIN, BFAR, CDKN1B, UACA, SFRP1, P2RX1, PLCG2, CFDP1, ABL1, CACNA1A, HTATIP2, FASTK, ZMAT3, TP63, DAXX, MCF2L, AKT1, PAK7, CHST11, MKL1, TERT, IHH, PRKCA, ARHGEF4, ARHGEF2, SGK3, ARHGEF7, ESR1, IL6R, ESR2, PRKCE, NLRP2, CARD11, CAPN10, BTG2, IGF2R, ERN1, GHRL, ERN2, PRKCZ, BCLAF1, ING3, MGMT, PML, TNFRSF8, MIF, IGF1R, ERCC6, ALDH1A3, PLEKHG5, PPP2CB, PCSK9, INPP5D, PCSK6, CD27, NGEF, PTPRC, NACC1, TMBIM6, TBX5, DBH, SOD1, TP73, SELS, PLG, CDH13, BIK, JAK2, FAF1, APBB2, DNM2
calcium ion transport	30	0.00235401	SLC8A3, JPH2, CACHD1, FKBP1A, ATP2B2, SLN, GRIN2B, SLC24A4, PKD2, TRPV4, TRPV6, NFATC1, TRPM4, PTPRC, TRPC3, TRPM8, TRPA1, CACNG1, ITPR3, CACNA1S, TRPM2, ITPR2, CACNA2D4, ATP2C2, ATP2A3, F2, RYR1, CACNA1H, CACNA1C, CACNA1A
cytoskeleton-dependent intracellular transport	15	0.00236698	PRKCZ, MYO7A, MYH3, MYO1E, MYL1, MYH2, MYO9B, TPM1, NDE1, KIF1A, APP, MYH14, WIPF1, DST, NEFM
positive regulation of cell development	18	0.00243349	XRCC5, BMP2, ARHGEF1, PTPRF, NTF3, STAR, LYN, PLXNB1, PPARG, SMAD3, CDH4, OTP, NTRK3, ROBO1, TIAM1, NUMB, TGFB1I1, NGF
auditory receptor cell stereocilium organization	5	0.00244612	ATP2B2, CLIC5, MYO7A, SOD1, CDH23
auditory receptor cell morphogenesis	5	0.00244612	ATP2B2, CLIC5, MYO7A, SOD1, CDH23
immune system development	50	0.00252229	XRCC5, MAEA, LMO2, MMP9, STAT5A, PPARG, JAG2, IL15, CTNNB1, TNFRSF11A, RHOH, KIRREL3, TTC7A, LYN, RB1, CARD11, AICDA, ADD1, BLM, PML, IL17C, DOCK2, RASGRP4, BCL11A, SH2B3, CD4, RUNX1, TCF3, CD28, NKX2- 3, BMP4, PTPRC, IKZF1, EPAS1, EPB42, CRIP2, JARID2, HCLS1, MYO1E, L3MBTL, SMAD5, SOD1, FOXP1, KDR, HOXB7, PLCG2, NOTCH4, PBX1, JAK2, HDAC9
morphogenesis of embryonic epithelium	16	0.0025857	DLC1, SHROOM3, LMO4, JAG2, ZEB2, CELSR1, GLI2, ZIC2, CTNNB1, ALDH1A2, WNT4, TSC1, ALDH1A3, TFAP2A, IFT52, TGFB1I1
negative regulation of RNA metabolic process	62	0.00290453	FOXK1, PPARG, TBX20, CBX4, CBX3, TP63, REST, GLI2, DAXX, CTNNB1, EPC1, HOXC8, AES, GFI1B, NR2F1, SATB2, CTBP1, SP100, CTBP2, SLA2, ARID5A, ZHX2, ZHX3, RB1, FOXN3, CTNNBIP1, SUZ12, HOXD8, ZFPM2, CUX2, LCOR, KDM6B, SMARCA4, GLIS3, DRD3, NOSTRIN, PRDM16, MEIS2, OVOL1, HOXA7, GFI1, BAZ2A, BMP2, WDTC1, EHMT1, IKZF1, RFX5, JARID2, LMCD1.

			TRIM27, SMAD3, SIRT5, SIRT6, SKI, FOXP1,
			FOXP2, CDKN1B, HILS1, DR1, IRF7, HDAC9,
			NCORZ THRA STAT54 HIRA CBX4 MED23 MED22
			THRA, STAT5A, HIRA, CBX4, MED23, MED22, RORA, CTNNB1, EPC1, GATA2, GABPB1, APP, HOXC8, GATA4, SATB2, RXRB, ZHX2, AHR, MED10, SUZ12, HIF1A, HOXD8, MTF1, MED15, HNF4A, TFAP2A, SMARCA4, DRD3, HOXA13, CRTC1, TFEB, ARNT, MEIS2, TEAD4, HOXA7, OVOL1, IL17F, MAML3, RUNX1, TCF3, PLAGL2, NKX2-3, BMP4, BMP3, TAF4, BMP2, NFE2, EHMT1, EPAS1, IKZF1, NTF3, RFX5, MAML2, SMAD5, LMCD1, TEAD1, SMAD3, SKI, FOXP1, FOXP2, GTF2F2, TCF19, HDAC9, ABL1, TCF12, NCOR2, HNF1B, HTATIP2, FOXK1, PPARG, TP63, GLI2,
			GFI1B, AES, YAP1, NR2F1, IHH, CTBP1, SP100,
			SLA2, RB1, ESR2, TARBP1, CTNNBIP1, BRWD1,
			ZMIZT, ZFPMZ, LCOR, KDM0B, GLISS, NFTC, FALZ, PRDM16 NPAS2 NPAT HINEP NEAT5 GEI1
regulation of transcription			CHD4, WDTC1, DGKQ, JARID2, TBX5, TRIM27,
from RNA polymerase II			VSX2, PKNOX2, ATXN1, DR1, ATXN7, IRF7, PBX1,
promoter	112	0.00293093	JAK3
positive regulation of			XRCC5, BMP2, ARHGEF1, PIPRF, NIF3, SIAR,
	16	0 00309372	ROBOL TIAML NUMB NGE
	10	0.0000072	KCNH1, KCNJ16, SLC8A3, KCNJ15, JPH2,
			CACHD1, KCNAB1, SLC9A3, SLC9A2, KCNIP4,
			KCNK10, KCNQ5, ATP2B2, SLN, SLC24A4,
			GRIN2B, TRPV4, TRPV6, KCNG3, KCNQ1, KCNG2,
			SCN10A, TRPM4, SLC12A8, KCND2, TRPM8,
			TRPAT, CACINGT, SLU34A3, TRPIMZ, ATP2U2, FZ, RVR1 KCNH6 KCNH4 SLC39A10 SLC39A12
			SLC38A10, FKBP1A, SFXN2, KCNA7, KCNJ1,
			TTYH1, PKD2, SLC4A8, SLC30A3, NEDD4L, HCN4,
			SCN5A, SCNN1D, SLC39A2, NFATC1, PTPRC,
			HCN2, TRPC3, SLC12A3, KCTD3, ITPR3,
			CACNA1S, KCNV1, ITPR2, CACNA2D4, ACCN1,
			KCNJ4, KCNJ6, CDKN1B, SLC17A3, ISC1, ATP2A3,
metal ion transport	76	0.00335101	CACNA1A, ATP7B
			DLC1, SLC6A3, SLC6A4, BCAN, ZEB2, PRKG1,
			GLI2, SRC, OTP, CTNNB1, GATA2, ALDH1A2, APP,
			NDE1, ALDH1A3, NUMB, MKKS, FRS2, NR2F1,
for the rain development	24	0 000 40007	BMP4, GNAO1, IKZF1, LMX1A, IP73, IACC2,
actin filament-based	31	0.00342967	MYO1E MYH3 MYO7A MYH2 MYL1 MYO0B
movement	9	0.00370127	MYH14. WIPF1. TPM1
			HNF1B, THRA, FOXK1, STAT5A, GDF6, PPARG.
			TBX20, TP63, RORA, GLI2, CTNNB1, EPC1, GATA2,
positive regulation of			APP, GATA4, YAP1, MKL1, IHH, PSMD9, SATB2,
transcription	89	0.00417522	SP100, RXRB, RB1, ESR2, ARID1B, TRERF1, AHR,

			HIF1A, MTF1, CD80, HNF4A, ZMIZ1, ZFPM2, USP22, TGFB1I1, SMARCA4, GLIS3, HOXA13, DRD3, BLM, CRTC1, TFEB, NFYC, FHL2, AFAP1L2, PRDM16, ARNT, NPAS2, MEIS2, TEAD4, HOXA7, IL17F, HINFP, NFAT5, MAML3, RUNX1, TCF3, PLAGL2, NKX2-3, KLF5, BMP4, BMP3, BMP2, TESC, NFE2, EPAS1, IKZF1, NTF3, TBX5, SMAD5, MAML2, SMAD3, MSTN, TEAD1, CREB5, AFF1, VSX2, TP73, ATXN1, YWHAH, ATXN7, DYRK1B, NOTCH4, EBF1, GTF2F2, HIVEP3, PBX1, JAK3, FOXI1
regulation of phosphate	70	0.0045204	DLC1, ALS2, PDGFB, PDGFA, PRKAG1, GDF6, PRKAG2, LPAR3, LPAR2, ZEB2, SDC4, DAXX, LATS1, AKT1, APP, CERKL, IL1B, CDK5RAP3, SHC1, SPRED1, FAM129A, INSR, FRS2, CHRNA3, EGFR, PRKCA, LYN, LIMK2, CCDC88C, MADD, PIK3CB, PKIB, RB1, IL6R, PRKCE, CD80, HNF4A, LAX1, PROK1, F2, ERN1, GHRL, RELN, PRKCZ, ENPP1, BLM, DRD4, BMPR2, FKBP1A, ITGB2, ROBLD3, ERCC6, DGKE, PTK2B, DGKG, CD4, BMP4, PTPRC, BMP2, DGKQ, FLT1, NF2, SPHK2, HCLS1, SMAD3, ITGA2, DGKH, SOD1, TP73, ATXN1, CDKN1B, LRP1, PPP1R2, TSC1, RGS3, DEKAD4B, ATXN7, LAX2
metabolic process	78	0.0045324	PRKAR1B, ATXN7, JAK2
positive regulation of gene expression	91	0.00467472	HNF1B, THRA, FOXK1, STAT5A, GDF6, PPARG, TBX20, TP63, RORA, GLI2, CTNNB1, EPC1, GATA2, APP, GATA4, YAP1, MKL1, IHH, PSMD9, SATB2, SP100, RXRB, ESR1, RB1, ESR2, ARID1B, TRERF1, AHR, HIF1A, MTF1, CD80, HNF4A, ZMIZ1, ZFPM2, USP22, TGFB1I1, SMARCA4, GLIS3, HOXA13, DRD3, BLM, CRTC1, TFEB, NFYC, FHL2, AFAP1L2, PRDM16, ARNT, NPAS2, MEIS2, TEAD4, HOXA7, IL17F, HINFP, NFAT5, MAML3, RUNX1, TCF3, PLAGL2, NKX2-3, KLF5, BMP4, BMP3, BMP2, TESC, NFE2, EPAS1, IKZF1, NTF3, TBX5, SMAD5, MAML2, SMAD3, MSTN, TEAD1, CREB5, AFF1, VSX2, TP73, ATXN1, CDH13, YWHAH, ATXN7, DYRK1B, NOTCH4, EBF1, GTF2F2, HIVEP3, PBX1, JAK3, FOXI1
			DLC1, HTATIP2, CADM1, ZMAT3, FASTK, MMP9, TP63, ITSN1, DAXX, MCF2L, CRADD, AKT1, APP.
			TIAM2, TIAM1, IL1B, PSENEN, WWOX, RAB27A, ARHGEF4, PRKCA, ARHGEF2, PTPRF, ARHGEF7, PRKCE, STK4, STK3, CAPN10, ERN1, ERN2, NGF, KALRN, SIVA1, BCLAF1, ING3, HOXA13, PML, TNFRSF8, AKAP13, SRC, ZC3H8, ERCC6, ALDH1A3, PLEKHG5, PCSK9, INPP5D, CD27, PLAGL2, TRAF3, HIP1, COL18A1, BMP4, NGEF, PTPRC, CFLAR, MUC2, NACC1, ABR, TBX5,
death	71	0.00482059	BIK, FAF1, APBB2, ABL1, DNM2

inner ear receptor cell			ATP2B2, DFNA5, CLIC5, MYO7A, JAG2, GFI1.
differentiation	9	0.00498202	SOD1, C170RF28, CDH23
			CLRN1, DRD3, MYO7A, SLC6A3, PARK2, HOXC10,
			ATP2B2, APP, SLC1A3, GRIN2B, FXN, CLIC5,
neuromuscular process	16	0.00512938	GRID2, GAA, CACNA1A, CDH23
positive regulation of			
protein binding	5	0.00517077	CALD1, ITGA2, FKBP1A, EIF2AK3, ADD1
			MAFG, DRD3, DRD4, CNP, PARK2, DBH, NTSR1,
			KLHL1, ATXN1, BBS2, C19ORF20, APP, FXN,
			GRM7, GHRL, CACNA1C, CHRNA3, CACNA1A,
adult behavior	20	0.00519923	NGF, CDH23
			PRKCZ, EMCN, SRCIN1, STAT5A, IL18, HSD17B12,
			JAG2, CYTH3, TPM1, SRC, GSN, SMOC1, TNR,
			IL1B, TESC, NF2, PIK3CB, CCDC80, SMAD3,
regulation of cell			MYO1F, IIGA2, CDH13, SIRPG, LAMA3, ISC1,
adhesion	28	0.00542489	FBLNZ, JAKZ, FAF1
			DLC1, HIAIIP2, CADM1, ZMAI3, FASIK, MMP9,
			TP63, ITSN1, DAXX, MCF2L, CRADD, AKT1, APP,
			TIAMZ, TIAM1, IL1B, PSENEN, WWOX, RABZTA,
			ARHGEF4, PRKCA, ARHGEF2, PIPRF, ARHGEF7,
			PRKCE, STK4, STK3, CAPINIO, ERNI, ERNZ, NGF,
			KALRN, SIVAT, BOLAFT, ING3, HUXAT3, PML,
			INFROTO, ANAP 13, ORC, 20300, ERUCO,
			ALDETIAS, PLEKEGS, PUSKS, INPPOD, UD27,
			CELAD MUCO NACCI ADD TRYS SMADO SODI
positivo regulation of			TEAR, MUCZ, NACCT, ABR, TEAS, SMADS, SUDT,
apontosis	70	0.005/3/2/	APRE2 ARI 1 DNM2
	10	0.00343424	DCHS2 CADM1 PCDHA2 CLSTN3 PCDHGAQ
			PCDHGAZ PCDHGA4 CDH4 CDH20 ROBO1
			FAT1 PCDHB16 PVRI 3 CDH26 CDH23 PCDHB7
			PCDHB5_PTPRF_PIK3CB_PCDHB6_PCDHB3
homophilic cell adhesion	27	0.00570808	PCDH10, CELSR1, CDH13, CDH15, FREM2, CDH18
regulation of glucose			GAPDHS, AKT1, HIF1A, HNF4A, GCK, ENPP1.
metabolic process	11	0.00611179	GSK3A, PRKAG1, PRKAG2, INSR. ARNT
regulation of smooth			PRKCA, EGFR. FLT1. PDGFB. ITGA2. COMT. IL15.
muscle cell proliferation	13	0.00623062	IL6R. NPY5R. MFN2. CDH13. NOTCH4. AGPAT1
positive regulation of			BMP4. BMP2. PDLIM7. DLX5. SMAD5. BMPR2.
osteoblast differentiation	9	0.0065759	GNAS, IL6R, CTNNB1
			DLC1, SHROOM3, PGF, PDGFA, LMO4, C80RF85,
			TBX20, BMPR2, ASZ1, TP63, ZEB2, GLI2, CTNNB1,
			ZIC2, ALDH1A2, WNT4, BDNF, GATA4, MKKS,
			HS6ST1, TRAF4, IHH, BMP4, BMP2, FLT1, EPAS1,
			TBX5, TMBIM6, CYP1A2, CELSR1, FOXP1, KDR,
			FOXP2, TSC1, NOTCH4, TFAP2A, ZFPM2, PBX1,
tube development	40	0.00670688	IFT52, ADAMTS2
			DLC1, SHROOM3, PGF, LMO4, JAG2, BMPR2,
			TP63, FKBP1A, ZEB2, GLI2, TPM1, CTNNB1, ZIC2,
			ALDH1A2, WNT4, ALDH1A3, MKKS, NKX2-3, BMP4,
tissue morphogenesis	34	0.00725251	BMP2, NF2, TBX5, SMAD3, CELSR1, EYA2, TSC1,

			FREM2, GAA, TFAP2A, PBX1, TGFB1I1, IFT52, EXT2, SMARCA4
regulation of cellular			
carbohydrate catabolic	_		GAPDHS, HIF1A, GSK3A, PRKAG1, PRKAG2, INSR,
process	7	0.00777255	ARNT
regulation of			
carbohydrate catabolic	-	0 00777055	GAPDHS, HIF1A, GSK3A, PRKAG1, PRKAG2, INSR,
process	1	0.00777255	AKNI
			ALSZ, PDGFB, PDGFA, PRKAG1, GDF0, PRKAG2,
			LPARS, LPARZ, ZEDZ, SDU4, DAXX, LAIST, ANTT,
			AFF, CERRL, ILIB, CONSRAFS, SHCI, SFREDI, EAM120A INSP EDS2 CUDNA2 ECED DDKCA
			I VN LIMK2 CCDC88C MADD PIK3CB PKIB RB1
			II 6R PRKCE CD80 HNE4A I AX1 PROK1 E2
			ERN1 GHRI REIN PRKCZ ENPP1 BIM DRD4
			BMPR2, FKBP1A, ITGB2, ROBLD3, ERCC6, DGKE,
			PTK2B. DGKG. CD4. BMP4. PTPRC. BMP2. DGKQ.
			FLT1, NF2, SPHK2, HCLS1, DGKH, SOD1, TP73,
regulation of			ATXN1, CDKN1B, LRP1, TSC1, RGS3, PRKAR1B,
phosphorylation	74	0.00778368	ATXN7, JAK2
nerve-nerve synaptic			ALS2, CAMK4, P2RX1, DRD3, GRM8, DLGAP2,
transmission	10	0.00815524	GRID2, PARK2, CACNA1A, VDAC1
			ALDOA, CNN3, CALD1, TBX20, MYL1, UTRN,
			ANKRD2, FKBP1A, TPM1, DYSF, MYOM2, IL1B,
			HCN4, KCNQ1, SCN5A, HCN2, GNAO1, MYH3,
			MYH2, SMAD5, MSTN, PDE4D, CACNG1, SOD1,
			CACNA1S, MYH11, GAA, RYR1, CACNA1H,
muscle system process	32	0.00824826	CACNAIC, CHRNE, SGCA
			NRP2, ALS2, MYU7A, PIP3K1C, CNP, GLIZ, CDH4,
			EPHDI, AIPZDZ, IGFIR, APP, DDIVF, SLUIAS, DORO1 ANIKA TND NILIMB SDONA COURS
			RUBUT, ANNS, TINR, NUMB, SPUNZ, UDHZS, DRKCA NITES KIESC NRYNI I MYIA SODI
cell morphogenesis			SLIT1 SLIT3 SLITRK1 NCAM2 DLX5 CLIC5
involved in neuron			REIN JAK2 FENAS APBB2 DST CACNA1A
differentiation	38	0.00829583	KALRN
			ALS2. PRKCZ. PDGFB. PRKAG1. PRKAG2. DRD4.
			LPAR3, ZEB2, LPAR2, ROBLD3, SDC4, DAXX,
			AKT1, ERCC6, CERKL, DGKE, PTK2B, DGKG, IL1B,
			CD4, SHC1, FRS2, INSR, CHRNA3, EGFR, PTPRC,
			DGKQ, FLT1, SPHK2, MADD, PIK3CB, DGKH,
positive regulation of			SOD1, LRP1, PROK1, PRKAR1B, ERN1, GHRL,
protein kinase activity	40	0.00840134	RELN, JAK2
			PRKCA, ALPL, CYB5R4, SLC1A3, CYP1A1,
response to antibiotic	9	0.00852732	PPP2CB, UROS, JAK2, ZC3H8
regulation of glycolysis	6	0.00909062	GAPDHS, HIF1A, PRKAG1, PRKAG2, INSR, ARNT
			KHUJ, ALDUA, DLC1, SHROOM3, LST1, EPB42,
regulation of call share		0.000044.04	IIGB2, KDR, CFDP1, MYH14, AKAP2, FGD6,
regulation of cell snape	14	0.00924181	ΑΚΑΓΙ, ΓΝΙ
hisynthetic process	F	0 00022227	
) D	0.0093/32/	THE TA, LOUGH, THENET, CAUNATA, ARNT

inner ear receptor			
stereocilium organization	5	0.00937327	ATP2B2, CLIC5, MYO7A, SOD1, CDH23
			PTGES2, JPH2, SLC22A12, PDIA6, LPAR3, PDIA5,
			LPAR2, ATP2B2, APP, FXN, GRIN2B, NUBP1,
			GRID2, TRPV4, IL1B, CHRNA6, KCNQ1, CHRNA3,
			TXNL1, PRKCA, KCND2, TRPM8, TTC7A, PIK3CB,
			ATP6V1H, SLC34A3, CCNL2, HIF1A, GNAQ, F2,
			GAA, RYR1, GHRL, IXNRD2, PLLP, ADD1, CLN6,
			CLDN16, ALDUA, PRKCZ, ENPP1, DRD3, FGG1,
			NEDDAL MARC DIDDC HOND WOTCH MDZ
			DIC ATYNI DORYI TSCI CCK DICCO IAKO
cellular homeostasis	73	0 01119255	CACNA1C CHRNE CACNA1A ATP7B
	10	0.01110200	NRP2 ALS2 IST1 CLU PIP5K1C STRN CNP
			PRKG1 GLI2 CDH4 EPHB1 KLHL1 IGE1R
			LINGO1 APP BDNE ROBO1 ANK3 PTK2B TNR
			NUMB SPON2 EGER PRKCA GNA01 NTE3
			KIE5C, LMX1A, NRXN1, SLIT1, SLIT3, SLITRK1,
neuron projection			NCAM2. DLX5. GHRL. RELN. EFNA5. JAK2. APBB2.
development	44	0.01183314	DST, IGSF9, CACNA1A, KALRN, NGF
•			DLC1, HTATIP2, CADM1, CGB5, ZMAT3, FASTK,
			TP63, SGMS1, ITSN1, SHF, DAXX, MCF2L, CRADD,
			CTNNB1, PDCD2, AKT1, SHB, APP, TIAM2, GSN,
			TIAM1, IL1B, UNC5D, PSENEN, ARHGEF4,
			ARHGEF2, MADD, BLID, STK4, BCL2L12, NLRP2,
			STK3, AHR, EYA2, F2, TNFAIP8, ERN1, BUB1B,
			ERN2, TNFAIP3, EIF2AK3, NEK6, BLCAP, NGF,
			KALRN, SIVA1, PACS2, FKBP8, CLU, PML,
			AKAP13, ITGB2, SYCP2, GRAMD4, DIDO1,
			TNFRSF1B, DOCK1, PTK2B, TRIM69, PLEKHG5,
			BCAP29, HSPE1, INPP5D, TRAF4, CD27, TRAF3,
			HIP1, NGEF, CFLAR, MUC2, RNF144B, ABR,
			TMBIM6, UBE4B, SMAD3, FAM188A, SOD1, TP73,
			PLG, VDAC1, NCKAP1, TRAF3IP2, DNASE1, BFAR,
apoptosis	91	0.01196536	MEF2D, RASSF5, P2RX1, CYFIP2, JAK2, BIK, FAF1
			PRKCA, EGFR, PTPRC, PRKCZ, PDGFB, LYN, NF2,
regulation of peptidyl-			PDGFA, HCLS1, ITGB2, IL6R, PRKCE, CD80,
tyrosine phosphorylation	16	0.01239353	HNF4A, CD4, JAK2
			DLC1, HTATIP2, CADM1, CGB5, ZMAT3, FASTK,
			TP63, SGMS1, TISN1, SHF, DAXX, MCF2L, CRADD,
			CINNB1, PDCD2, AKI1, SHB, APP, HAM2, GSN,
			TIAM1, IL1B, UNC5D, PSEINEN, ARHGEF4,
			ARHGEFZ, MADD, BLID, STK4, BGLZL12, NLRPZ,
			STAJ, AMR, EYAZ, FZ, TINFAIPO, ERNT, BUBIB,
			ERIVZ, HIVFAIFS, EIFZARS, NERO, BLOAP, NGF,
			NALKIN, SIVAI, PAUSZ, PABPO, ULU, PIVIL,
			ANAF 13, 11002, 31072, GRANNU4, DIDU1, TNERSE1R DOCK1 DTK20 TDIMAG DIEKUOF
			$\frac{11}{10}$
programmed cell death	00	0.01269012	DUARZY, NOREI, INREYU, IKAR4, UUZI, IKAR3, UIDI NOEE OELAD MUOD DNEIAAD ADD
programmed cell death	92	0.01200912	I I I I I I I I I I

			TMBIM6, UBE4B, SMAD3, FAM188A, SOD1, TP73, PLG_VDAC1_NCKAP1_TRAE3IP2_DNASE1_BEAR
			MEF2D, RASSF5, CDKN1B, P2RX1, CYFIP2, JAK2, BIK. FAF1
			HOXA13, TBX5, PRRX1, TP63, SKI, MBNL1,
			CTNNB1, HOXC10, ALDH1A2, GNAQ, DLX5,
embryonic limb	10	0.01279977	CHST11, LRP6, GNAS, PBX1, FBN2, IFT52,
morphogenesis	19	0.01270077	HOXA13 TBX5 PRRX1 TP63 SKI MBNI 1
			CTNNB1, HOXC10, ALDH1A2, GNAQ, DLX5,
embryonic appendage			CHST11, LRP6, GNAS, PBX1, FBN2, IFT52,
morphogenesis	19	0.01278877	SMARCA4, LRP5
			ALDOA, CNN3, CALD1, TBX20, MYL1, UTRN,
			ANKRDZ, FKBP1A, IPM1, DYSF, MYUMZ, HUN4,
			SMAD5 PDE4D CACNG1 CACNA1S MYH11
muscle contraction	29	0.01295354	GAA. RYR1. CACNA1H. CACNA1C. CHRNE. SGCA
regulation of			
carbohydrate metabolic			GAPDHS, AKT1, HIF1A, HNF4A, GCK, ENPP1,
process	11	0.01363676	GSK3A, PRKAG1, PRKAG2, INSR, ARNT
	0	0.04000044	XDH, ATP2B2, BCAT2, SLC6A3, STAT5A, ASZ1,
mochanosonsony	9	0.01368244	CDUT, PRL, ATP7B
behavior	4	0.01392361	SLC1A3. STRBP. GFI1. FOXP2
	-		GLIS3, DRD3, PPARG, CBX4, TP63, PRDM16, GLI2,
			CTNNB1, EPC1, HOXC8, MEIS2, AES, GFI1B,
			HOXA7, OVOL1, GFI1, NR2F1, WDTC1, SATB2,
			CTBP1, EHMT1, SP100, IKZF1, RFX5, JARID2,
negative regulation of			SLAZ, LMCD1, TRIMZ7, ZHXZ, SMAD3, SKI, RB1, FOYP1 FOYP2 SU712 CTNNBIP1 HOYD8 IRF7
transcription from RNA			DR1 ZEPM2 HDAC9 I COR NCOR2 KDM6B
polymerase II promoter	45	0.01422025	SMARCA4
			ALS2, FKBP8, DRD3, GDF6, LHCGR, PRRX1,
			LPAR3, TP63, AFAP1L2, ZEB2, LPAR2, FKBP1A,
			ITSN1, SRC, ARNT, CANT1, CTNNB1, RASGRP4,
			PLEKHG5, IL1B, CD4, LBP, PRL, INSR, CD27,
			HCLS1 ESR1 II 6R EGE21 FURIN TRAE3IP2
positive regulation of			CARD11. CDH13. HIF1A. CD80. P2RX2. KCP.
signal transduction	49	0.01447279	GHRL, RELN, JAK2, TGFB1I1, NEK6
dopamine receptor			
signaling pathway	7	0.01463223	GNAL, GNAO1, GNAQ, DRD3, DRD4, GNAS, RGS9
			ALS2, PRKCZ, PDGFB, PRKAG1, PRKAG2, DRD4,
			AKT1 ERCCA CERKI DGKE PTK28 DGKG II 18
			CD4, SHC1, FRS2, INSR, CHRNA3, EGFR, PTPRC.
			DGKQ, FLT1, SPHK2, MADD, PIK3CB, DGKH.
positive regulation of			SOD1, LRP1, PROK1, PRKAR1B, ERN1, GHRL,
kinase activity	40	0.01472694	RELN, JAK2

inner ear receptor cell			
development	5	0.01529953	ATP2B2, CLIC5, MYO7A, SOD1, CDH23
regulation of glucose			PRKCA, AKT1, PRKCZ, CAPN10, ENPP1, GSK3A,
transport	10	0.01531343	PRKAG2, IL1B, FGF21, INSR
			NRP2, EMCN, HTATIP2, PGF, PDGFA, IL18, TBX20,
			PRRX1, ELK3, CTNNB1, ARHGAP22, SHB, ROBO1,
			PTK2B, CCBE1, SEMA3C, IL1B, HS6ST1, IHH,
			PTPRJ, BMP4, KLF5, COL18A1, CCM2, FLT1,
			EPAS1, MYO1E, DBH, ARHGAP24, KDR, CDH13,
blood vessel			HIF1A, PROK1, ZMIZ1, NOTCH4, ZFPM2,
morphogenesis	37	0.01592592	SMARCA4
			ARHGEF1, PIPRF, PLXNB1, LRRC4C, CDH4,
regulation of neuron	40		NTRK3, LINGO1, YWHAH, TIAM1, ROBO1, NUMB,
projection development	16	0.01608394	CACNA1A, NEFM, CHRNA3, NGF, KALRN
			CLDN16, DCHS2, EMCN, THRA, CADM1, PCDHA2,
			CLSTN3, PCDHGA9, CTNND2, PCDHGA7, CLDN10,
			IIGB2, PCDHGA4, CDH4, SRC, IIGAM, CINNB1,
			CDHZU, NPHP4, ANXA9, ROBU1, PVRL3,
			PCDHB16, FAT1, ACAN, CDH26, NPHP1, CDH23,
			EGFR, PIPRO, PODHBI, PIPRF, PODHBO,
			PIK3CB, PCDHB0, PCDHB3, PCDH10, CELSR1,
	46	0.01699940	NCAMZ, CDH13, COL19A1, CDH15, FREMZ,
	40	0.01000049	UNF10, UD30, UTF1P2
			CU2 CTNNP1 CATA2 EPC1 ADD CATAA VAD1
			ILL SATES DVDD DD1 ESD2 AUD LIE1A MATE1
			HNEAA ZMIZI ZEDM2 SMADCAA CLIS2 DDD2
			HOYA12 ODTO1 TEER ADNIT NDAS2 MEIS2
			II 17E HOYAT TEADA NEATS MAMI 2 DINYI
			TCE3 NKY2-3 PLACE2 RMPA RMP3 RMP2
positive regulation of			FPAS1 NTE3 IKZE1 TRY5 MAMI 2 SMAD5
transcription from RNA			SMAD3 TEAD1 VSY2 ATXN1 ATXN7 GTE2E2
polymerase II promoter	59	0.01696619	PRX1 IAK3
	00	0.01000010	IPH2 I PAR3 I PAR2 ATP2R2 APP EXM NUBP1
			GRIN2B GRID2 TRPV4 II 1B CHRNA6 KCNO1
			CHRNA3 PRKCA KCND2 TRPM8 TTC74
			PIK3CB ATP6V1H SIC34A3 CCNI2 GNAO E2
			RYR1 GHRI PLIP CIN6 CIDN16 PRKCZ DRD3
			ENPP1, DRD4, FKBP1A, CCL28, SERINC5, PTK2B,
			PKD2. NEDD4L. MAFG. HCN2. PTPRC. WDTC1.
			MPZ. NTF3. CCL19. ITPR3. SOD1. CCL15. HPR.
cellular chemical			ATXN1. P2RX1. GCK. TSC1. PLCG2. JAK2.
homeostasis	60	0.01833364	CACNA1C, CHRNE, CACNA1A, ATP7B
			XRCC5, STAR, DRD3, PPARG, REST, LRRC4C,
			GLI2, CDH4, OTP, LINGO1, BDNF, ROBO1, TIAM1,
			NUMB, CDK5RAP3, NEFM, CHRNA3, BMP4,
			PRKCA, BMP2, ARHGEF1, LYN, PTPRF, NTF3,
regulation of nervous			PLXNB1, LMX1A, NTRK3, YWHAH, GHRL, PBX1,
system development	34	0.01839457	EIF2AK3, CACNA1A, KALRN, NGF
calcium ion transport into			PTPRC, JPH2, F2, RYR1, PKD2, FKBP1A,
cytosol	7	0.01928104	CACNA1C

			PRKCA, PRKCZ, DRD3, GABRA5, CTNND2, ESR2, COMT, PARK2, DBH, FOXP2, VDAC1, ATXN1, APP,
learning or memory	22	0.02035627	BDNF, GRIN2B, GRIA1, PRKAR1B, GRM7, PTN, IL1B, CACNA1C, NGF
response to drug	37	0.02225151	DRD3, STAR, PGF, SLC22A12, SLC15A2, PDGFA, CTPS, SLC6A3, LHCGR, SRP68, PPARG, ASZ1, COMT, XRCC1, PRSS8, BDNF, DGCR2, ACSL1, SLC1A3, PTK2B, ALDH1A3, SEMA3C, IL1B, CHRNA3, COL18A1, GABRG3, GNAO1, LYN, CYP1A1, TRPA1, ACACA, ITGA2, SOD1, GNAS, GRK5, PDZK1, NGF
cytoskeleton organization	67	0.02233313	RHOJ, DLC1, CEP72, MAEA, PDLIM7, PDGFB, AIF1, CNP, PRKG1, KLHL1, CTNNB1, HOOK1, HOOK2, NDE1, CEP250, PACSIN2, ANK3, GSN, RHOF, ZW10, FMNL2, ARHGEF2, TACC2, FMN1, EPB41L2, BBS2, CAPN10, PRR5-ARHGAP8, FHOD3, BUB1B, GHRL, DST, ADD1, ALDOA, PRKCZ, SHROOM3, CNN3, CALD1, ASZ1, NEDD9, MYO9B, TPM1, C19ORF20, DOCK2, NPHP4, TUBGCP5, PTK2B, GRID2IP, TNKS, KRT3, WIPF1, TEKT4, EHD2, FGD6, NEFM, NPHP1, INF2, TNXB, NF2, EVL, SOD1, MYH11, ANTXR1, ABL1, ABL2, ARAP1, ARHGAP10
negative regulation of phosphorus metabolic			PRKCA, ATXN1, PRKCZ, PTPRC, CDKN1B, HNF4A,
regulation of ion transport	20	0.02283041	NF2, ENPP1, ATXN7, FKBP1A, FAM129A, INSR GNAO1, JPH2, DRD3, LYN, SLC9A3, DRD4, LHCGR, LPAR3, FKBP1A, AKT1, ATP2B2, SLN, GCK, P2RX1, F2, PLCG2, P2RX2, PKD2, NEDD4L, PDZK1
positive regulation of cellular carbohydrate metabolic process	7	0.02484197	GAPDHS, AKT1, HIF1A, HNF4A, GCK, INSR, ARNT
cytosolic calcium ion transport	7	0.02484197	PTPRC, JPH2, F2, RYR1, PKD2, FKBP1A, CACNA1C
regulation of transcription of G/S-phase of mitotic cell cycle	4	0.0254011	NPAT, HINFP, RB1, GFI1
positive regulation of fat cell differentiation	4	0.0254011	SH3PXD2B, AKT1, PPARG, FNDC3B
	۰ کار	0 025/3/86	DLC1, BMP4, BMP2, FLT1, SHROOM3, PGF, LMO4, TBX20, TP63, ZEB2, CELSR1, GLI2, ZIC2, CTNNB1, KDR, WNT4, TSC1, NOTCH4, GATA4, MKKS, TEAP24, PBX1, JET52, JHH
regulation of transferase	58	0.02556768	ALS2, PDGFB, PRKAG1, PRKAG2, PPARG, LPAR3, LPAR2, ZEB2, SDC4, DAXX, LATS1, AKT1, APP, CERKL, FXN, IL1B, SHC1, CDK5RAP3, SPRED1, FRS2, INSR, CHRNA3, PRKCA, EGFR, MADD, PIK3CB, PKIB, RB1, LAX1, PROK1, ERN1, GHRL, RELN, PRKCZ, BLM, DRD4, ROBLD3, SERINC5,

			ERCC6, DGKE, PTK2B, DGKG, CD4, PTPRC,
			DGKQ, FLT1, NF2, SPHK2, DGKH, SOD1, TP73,
			LRP1, CDKN1B, TSC1, RGS3, GSK3A, PRKAR1B,
			THRA, PPARG, TFEB, CTININBT, ARINT, GATAZ,
			TESC DGKO IKZEL TRYS SMAD3 ESR2
regulation of gene-			CDKN1B HIELA HNELA HDACO NCOR?
specific transcription	25	0 02576872	SMARCA4
	20	0.02010012	ALS2 CLTB PDUM7 SRCIN1 MARCKSU1
			SI C9A3 MYO7A AP2S1 SYT6 EPS15L1 CNO
			ITSN1_CLTC_TSNARF1_CTNNB1_ASGR1_HOOK1
			HOOK2. GATA2. APP. PACSIN2. GSN. TRAPPC6B.
			RABGEF1. LBP. ZW10. RAB27A. SCAMP1. LYN.
			NCALD, ATP6V1H, ARHGAP27, ERGIC1, LRPAP1,
			IGF2R, TRAPPC5, RAB14, LRMP, TOM1, TRAPPC1,
			UNC13A, KALRN, ARFGAP2, RAB7A, CPLX2,
			SNAP91, DRD3, MAP4K2, NAPA, NOSTRIN,
			CYTH3, ARFGEF1, RIMS4, SRC, SEC16B, DOCK1,
			STX19, FOLR1, BCAP29, EXOC4, EXOC3, SEC22C,
			SCARB1, EHD2, HIP1, AP2M1, DNM3, CUBN, HCK,
			MYO1F, MON2, LIN7A, SH3BP4, LRP1, P2RX1,
vesicle-mediated			GRIA1, STAB1, LRP6, SYT13, GOSR2, CACNA1C,
transport	85	0.0258636	LRP4, CACNA1A, LRP5, DNM2
			PRKCA, BMP4, BMP3, SATB2, BMP2, THRA,
	10		PRRX1, MEF2D, HOXC4, CHST11, IL17F, ACAN,
cartilage development	16	0.02593251	GHRL, GNAS, COL11A2, EIF2AK3
			PRKCA, BMP4, GNA01, CYP1A1, LYN, STAR,
reconcises to errorie			DRD3, SLC6A3, PPARG, DRD4, ACACA, IIGA2,
response to organic	22	0 00705162	FREPTA, COMT, CTININBT, GINAL, ACSLT, BTG2,
	23	0.02725165	VDH BCAT2 HOVA12 SLCGA2 STATEA ASZI
			TDATE CLID ATE ALDHIAD ICEID CATAD
			ΔΤΡ2R2 ΔΙ DH1Δ3 PRI NKX2-3 RMP4 EGER
			IKZE1 ITGA2 CDO1 SERP1 NOTCHA PBX1
dland development	25	0 02793177	ATP7R
		0.02100111	ALS2_DEC1_MICA_CGB5_CADM1_SGMS1_ITSN1
			SHF. CRADD. CTNNB1. SHB. APP. TIAM2. TIAM1.
			IL1B, PSENEN, UNC5D, MADD, BLID, BCL2L12,
			STK4, AHR, STK3, TNFAIP8, F2, TNFAIP3,
			EIF2AK3, NEK6, BLCAP, NGF, KALRN, SIVA1,
			PACS2, CLU, AKAP13, ITGB2, SYCP2, DIDO1,
			DOCK1, TRIM69, HSPE1, TRAF4, TRAF3, HIP1,
			CFLAR, MUC2, ABR, SMAD3, VDAC1, NCKAP1,
			TRAF3IP2, BFAR, DNASE1, CDKN1B, P2RX1,
			CYFIP2, CACNA1A, HTATIP2, FASTK, ZMAT3,
			TP63, DAXX, MCF2L, PDCD2, AKT1, GSN,
			ARHGEF4, ARHGEF2, GAN, NLRP2, EYA2,
			ZFYVE26, ERN1, ERN2, BUB1B, CLN6, FKBP8,
			KIAAU196, PML, GRAMD4, TNFRSF1B, PTK2B,
cell death	103	0.03086013	PLEKHG5, BCAP29, INPP5D, CD27, NGEF,

ATXN7, JAK2, BIK, FAF1, SPG11	
negative regulation of	
gene expression, EPC1, HILS1, TRIM27, SIRT5, SIRT6, BAZ2A,	
epigenetic 7 0.03137719 SMARCA4	
GALNT3, PRKCA, GALNT1, SBK1, TNKS, CAD,	
ARHGEF1, PIPRF, PLXNB1, IIGA2, LRRC4C,	,
CDH4, NTRK3, LINGUT, YWHAH, ROBUT, TIAWI	,
Includion of Cell INDIA, CHRINAS, ARAP I, CACINA IA, INEPIM, INGI	-,
HTATIP2 DML DIG GATA2 HIE1A STAR1	
PROK1 II 17E GATA4 II 1B GHRI RUNX1	
angiogenesis 14 0.03200508 HDAC9 DDAH1	
NRP2 FMCN HTATIP2 I MO2 PGF PDGFA II	18
TBX20 PRRX1 FLK3 CTNNB1 AKT1 ARHGAP	22
SHB_ROBO1_PTK2B_CCBE1_SEMA3C_II_1B	,
HS6ST1, IHH, RECK, COL18A1, PTPRJ, BMP4.	
KLF5. CCM2. FLT1. SPHK2. EPAS1. MYO1E. DB	Н.
ARHGAP24, KDR, CDH13, HIF1A, PROK1, ZMIZ1	1.
vasculature development 41 0.032249 NOTCH4, ZFPM2, SMARCA4	,
CYB5R4, HNF1B, CYP1B1, STAR, IDE, COMT,	
ALDH1A2, WNT4, ALDH1A3, TPO, TRPV4,	
SCARB1, PCSK6, HSD17B8, CYP1A1, LYN, DHR	S9,
regulation of hormone FURIN, YWHAH, CPE, CHST9, GHRL, RELN,	
levels 27 0.03279024 CACNA1C, EIF2AK3, CACNA1A, NGF	
positive regulation of cell EGFR, DRD3, CYP1A1, HOXA13, STAT5A, RPS1	5A,
cycle 13 0.03340784 AKT1, APP, IL1B, USP22, TCF3, INSR, CD28	
EGFR, BCAT1, ANAPC5, BLM, RB1, LATS1, FOX	'N3,
interphase of mitotic cell AKT1, APP, CDKN1B, GFI1B, NPAT, CDK2AP1,	_
cycle 20 0.03348181 HINFP, GFI1, ABL1, TCF3, KPNA2, DNM2, NFAT	C1
SLC8A3, KCNJ16, KCNH1, KCNJ15, KCNAB1,	_
SLC9A3, SLC9A2, SLC38A10, ATP6V1G2, KCNA	7,
KCNIP4, KCNK10, KCNJ1, KCNQ5, SLC24A4,	
ATP5S, SLC4A8, ATP5L, NEDD4L, KCNG3, HCN	4,
SCN5A, KCNQ1, SCNN1D, KCNG2, SCN10A, HC	Ν2,
SLC12A8, KCND2, SLC12A3, ATP6V1H, KCTD3,	
SLU34A3, MUNZ, KUNV1, TRPMZ, ATP6V1U1,	~1
AUGINI, KUINJ4, UDKINIB, KUINJ6, SLU17A3, TSU	۱,
ATPOVIEZ, KONHO, SLOBAT, SLOTA4, KOTDIS	,
DIVIE4, NEZ, ANERE I, FIRA, DIVIERZ, SIVIAUS, ZRTR17 CTNNR1 EVA2 GATAA I RDA MKKQ	
astrulation 15 0.03411709 ERS2 EXT2 / RP5	
regulation of G-protein	
coupled receptor protein RGS12, DRD3, RGS3, RASGRP4, RGS5, GIT2	
signaling pathway 12 0.03464099 RGS9. GRK5. RGS16. GNG4. RGS14_GNG7	
JPH2. SLC9A3. SLC9A2. LPAR3. LPAR2. ATP2B2	2.
ion homeostasis 62 0.03515288 APP, FXN, NUBP1, GRIN2B, GRID2, TRPV4, IL1E	Ś.

SLC8A3, KCNH1, SLC16A13, SLC45A4, SLC22A13, KCNAB1, SLC22A12, TIMM17A, SLC9A3, ZMAT3, SLC9A2, KCN05, SLC24A4, TRPV4, ATP5L, GLE1, SLC25A26, TRPV6, KCNG3, KCNQ1, KCNG2, SCN10A, TRPM4, SLC12A8, KCND2, TRPM8, SLC25A4, SLC22A23, TRPA1, ABCC11, ATP6V1H, TRPM2, TRPM1, ATP6V1C1, SENP2, SLC26A8, RHCE, KCNH6, RYR1, KCNH4, SLC39A10, SLC39A12, SFXN2, KCNA7, TRAM2, FOLR1, TAP2, TNKS, SCARB1, SLC30A3, HCN4, SCN5A, SLC39A2, CPT1B, RANBP17, HCN2, SLC2A9, SPNS2, TRPC3, CUBN, MYO1C, SLC12A3, ITPR3, CACNA15, MON2, KCNV1, ITPR2, VDAC1, SLC16A3, SLC17A3, ATP6V1E2, SLC16A8, ABCC3, CACNA16, ATP7B transmembrane transport 83 0.03520444 ATP7B MAD1L1, ILKAP, MAEA, HOXA13, DRD3, AURKAIP1, STAT5A, PML, AFAP1L2, TRRAP, APP, IL 1B, INSR, CD28, ZW10, EGFR, CYP1A1, L3MBT, SMAD3, RB1, HERC2, HNF4A, BUB1B, USP22, SPRS2, NARCA4 PRKCA, AKT1, PRKCZ, CAPN10, ENPP1, GSK3A, import 9 0.03585575 PRKA62, FGF21, INSR PRKCA, AKT1, PRKCZ, CAN10, SN3, RUNX1, ARNT jmport 9 0.03585575 PRKA62, FGF21, INSR jmpolidi cell 10 0.03608193
transmembrane transport830.03520444ATP7BMAD1L1, ILKAP, MAEA, HOXA13, DRD3, AURKAIP1, STAT5A, PML, AFAP1L2, TRRAP, APP, IL1B, INSR, CD28, ZW10, EGFR, CYP1A1, L3MBTL, SMAD3, RB1, HERC2, HNF4A, BUB1B, USP22, Cycleregulation of mitotic cell cycle270.03524746APBB2, NEK6, SMARCA4regulation of glucose import90.03585575PRKAG2, FGF21, INSRpositive regulation of myeloid cell differentiation90.03585575RUNX1, ARNTJAK-STAT cascade100.03608193PKD2, JAK2, PRL, AGPAT1peptidyl-serine modification100.03608193MORC3, TNKS, STK4, MAP3K12PDGFB, PDGFA, GRB2, STAT5A, BMPR2, EPHB1,
MAD1L1, ILKAP, MAEA, HOXA13, DRD3, AURKAIP1, STAT5A, PML, AFAP1L2, TRRAP, APP, IL1B, INSR, CD28, ZW10, EGFR, CYP1A1, L3MBTL, SMAD3, RB1, HERC2, HNF4A, BUB1B, USP22, SMAD3, RB1, HERC2, HNF4A, BUB1B, USP22, O.03524746regulation of glucose import270.03524746APBB2, NEK6, SMARCA4regulation of glucose import90.03585575PRKAG2, FGF21, INSRpositive regulation of myeloid cell differentiation90.03585575RUNX1, ARNTJAK-STAT cascade100.03608193PKD2, JAK2, PRL, AGPAT1peptidyl-serine modification100.03608193MORC3, TNKS, STK4, MAP3K12PDGFB, PDGFA, GRB2, STAT5A, BMPR2, EPHB1,
regulation of glucose importPRKCA, AKT1, PRKCZ, CAPN10, ENPP1, GSK3A, PRKAG2, FGF21, INSRpositive regulation of myeloid cell
Import90.03585575PRRAG2, FGF21, INSRpositive regulation of myeloid cellTESC, HIF1A, IKZF1, STAT5A, GNAS, RB1, INPP5D,differentiation90.03585575RUNX1, ARNTJAK-STAT cascade100.03608193PKD2, JAK2, PRL, AGPAT1peptidyl-serine modification0.03608193MORC3, TNKS, STK4, MAP3K12PDGFB, PDGFA, GRB2, STAT5A, BMPR2, EPHB1,
positive regulation of myeloid cellTESC, HIF1A, IKZF1, STAT5A, GNAS, RB1, INPP5D, TESC, HIF1A, IKZF1, STAT5A, GNAS, RB1, INPP5D, 9 0.03585575differentiation9 0.03585575RUNX1, ARNTJAK-STAT cascade10 0.03608193PKD2, JAK2, PRL, AGPAT1peptidyl-serine modificationGALNT3, PRKCA, AKT1, PRKCZ, GALNT1, SBK1, MORC3, TNKS, STK4, MAP3K12PDGFB, PDGFA, GRB2, STAT5A, BMPR2, EPHB1,
JAK-STAT cascade100.03608193PKD2, JAK2, PRL, AGPAT1peptidyl-serineGALNT3, PRKCA, AKT1, PRKCZ, GALNT1, SBK1,modification100.03608193MORC3, TNKS, STK4, MAP3K12PDGFB, PDGFA, GRB2, STAT5A, BMPR2, EPHB1,
peptidyl-serineGALNT3, PRKCA, AKT1, PRKCZ, GALNT1, SBK1,modification100.03608193MORC3, TNKS, STK4, MAP3K12PDGFB, PDGFA, GRB2, STAT5A, BMPR2, EPHB1,
PDGFB, PDGFA, GRB2, STAT5A, BMPR2, EPHB1,
SRC, ADCYAP1, AKT1, IGF1R, RASGRP4, TIAM1, PTK2B, CD4, SHC1, FRS2, INSR, CHRNA3, CD7, CSF1R, PTPRJ, EGFR, FLT1, PTPRG, MYO1E, PTPRA, SOCS7, KDR, NTRK3, DOK4, GSK3A,
signaling pathway 37 0.03632501 EPHA8, JAK2, PTPN1, EIF2AK3, CACNA1A, NGF
ALS2, ARFGAP2, AGFG2, ARHGAP27, TBC1D22B, TBC1D22A, ADAP1, USP6NL, TBC1D24, TBC1D17,
GTPase activity 20 0.0365713 GIT2, AGAP2, FGD6, ARAP1

			ALS2, DLC1, MICA, CGB5, CADM1, SGMS1, ITSN1, SHF, CRADD, CTNNB1, SHB, APP, TIAM2, TIAM1, IL1B, PSENEN, UNC5D, MADD, BLID, BCL2L12, STK4, AHR, STK3, TNFAIP8, F2, TNFAIP3, EIF2AK3, NEK6, BLCAP, NGF, KALRN, SIVA1, PACS2, CLU, AKAP13, ITGB2, SYCP2, DIDO1, DOCK1, TRIM69, HSPE1, TRAF4, TRAF3, HIP1, CFLAR, MUC2, ABR, SMAD3, VDAC1, NCKAP1, TRAF3IP2, BFAR, DNASE1, CDKN1B, P2RX1, CYFIP2, CACNA1A, HTATIP2, FASTK, ZMAT3, TP63, DAXX, MCF2L, PDCD2, AKT1, GSN, ARHGEF4, ARHGEF2, GAN, NLRP2, EYA2, ZFYVE26, ERN1, ERN2, BUB1B, CLN6, FKBP8, KIAA0196, PML, GRAMD4, TNFRSF1B, PTK2B, PLEKHG5, BCAP29, INPP5D, CD27, NGEF, RNF144B, TMBIM6, UBE4B, FAM188A, SOD1, TP73, PLG, ATXN1, NDOR1, MEF2D, RASSF5,
death	103	0.03677234	ATXN7, JAK2, BIK, FAF1, SPG11
			DLC1, SIVA1, BCLAF1, HTATIP2, CADM1, ZMAT3, FASTK, PML, TP63, AKAP13, ITSN1, DAXX, MCF2L, CRADD, APP, ERCC6, TIAM2, TIAM1, PLEKHG5, PCSK9, PSENEN, CD27, WWOX, HIP1, TRAF3, RAB27A, PLAGL2, ARHGEF4, PRKCA, NGEF, CFLAR, MUC2, ARHGEF2, NACC1, ABR, ARHGEF7, TBX5, SMAD3, PRKCE, PLG, TP73, CDKN1B, UACA, ERN1, ERN2, BIK, JAK2, ABL1,
induction of apoptosis	50	0.03706452	KALRN, NGF
negative regulation of			EGFR, HNF4A, PML, SMAD3, RB1, APBB2,
mitotic cell cycle	7	0.03893734	SMARCA4
nippocampus development	7	0 03803734	BBS2 TSC1 BCAN MKKS 7EB2 I MY1A TD72
polysaccharide	/	0.00030734	DDOZ, TOOT, DOAN, WITTO, ZEDZ, LIVIATA, TETS
localization	3	0.03900983	CHST11, SCARB1, LBP
glial cell proliferation	3	0.03900983	NF2, PTK2B, CTNNB1
regulation of growth hormone receptor	3	0 03000083	HNE4A GHRI IAK?
dial cell fate	5	0.0000000000	
determination	3	0.03900983	NTF3, SMARCA4, CTNNB1
regulation of ossification	16	0.03968579	BMP4, BMP2, ENPP1, PDLIM7, SMAD5, BMPR2, SMAD3, SKI, IL6R, CTNNB1, SFRP1, PTK2B, DLX5, GNAS, PBX1, SMURF1
G phase of mitotic cell	л	0 01057205	ADD DIM KDNA2 EOYN2
positive regulation of	4	0.04007365	AFF, DLIVI, NFIVAZ, FUANS
glycolysis	4	0.04057385	GAPDHS, HIF1A, INSR, ARNT
anaphase	4	0.04057385	MAD1L1, NUMA1, ANAPC5, SKA2
G phase	4	0.04057385	APP, BLM, KPNA2, FOXN3
protein homotrimerization	4	0.04057385	TRPM8, ALOX5AP, SKI, MIF

			EGFR, ASZ1, CAD, FER, STK4, AKT1, NTRK3,
protein amino acid	47	0.04400504	IGF1R, EIF2AK1, VRK2, CLK3, ERN1, LMTK3, JAK2,
autophosphorylation	17	0.04100504	INSR, EIFZAK3, MAP3K12
			CLID COHA OTD LINGO1 PONE PORO1 TIAM1
			NUMB COKEDAD2 NEEM CHONA3 RMDA RMD2
			ARHGEET I VN PTPRE NTE3 PI XNR1 SMAD3
regulation of cell			IMX1A NTRK3 YWHAH PRX1 TGER111 HDAC9
development	34	0.04268768	CACNA1A KALRN NGE
		010 12001 00	HOXA13, TBX5, PRRX1, TP63, SKL MBNL1,
			CTNNB1, HOXC10, ALDH1A2, GNAQ, DLX5,
			CHST11, LRP6, GNAS, PBX1, FBN2, IFT52,
limb morphogenesis	19	0.04280694	SMARCA4, LRP5
			HOXA13, TBX5, PRRX1, TP63, SKI, MBNL1,
			CTNNB1, HOXC10, ALDH1A2, GNAQ, DLX5,
appendage			CHST11, LRP6, GNAS, PBX1, FBN2, IFT52,
morphogenesis	19	0.04280694	SMARCA4, LRP5
			ALDOA, CTPS, PRKAG2, ATP6V1H, MON2,
ribonucleoside			ATP6V1C1, NME4, ATP2B2, ATP2C2, ATP2A3,
triphosphate biosynthetic	40	0.04000004	ATP55, ATP6V1E2, ATP8A2, ATP8B1, ATP8B2, ATP55, ATP6V1E2, ATP8A2, ATP75
process	19	0.04280694	ATP5L, ATP6AP1L, ATP8B3, ATP7B
proliferation	6	0 04292887	POGEA PRRX1 TP63 EOXP1 KOR EOXP2
	0	0.01202007	DI C1 SHROOM3 PGE I MO4 PPARG JAG2
			TP63. ZEB2. GLI2. CTNNB1. ZIC2. ALDH1A2.
			WNT4. ALDH1A3. MKKS. KRT3. NKX2-3. BMP4.
			COL18A1, BMP2, TBX5, DHRS9, LCE2A, CELSR1,
			KDR, LAMA3, TSC1, FREM2, LCE1C, DLX5,
			NOTCH4, TFAP2A, PBX1, TGFB1I1, IFT52, EMP1,
epithelium development	37	0.04307035	SMARCA4
			CYP1B1, CYP1A1, STAR, IDE, DHRS9, COMT,
			FURIN, ALDH1A2, WNT4, YWHAH, CPE, ALDH1A3,
hormone metabolic		0.04000005	CHS19, TPO, RELN, SCARB1, PCSK6, CACNA1A,
process	20	0.04336995	NGF, HSD17B8
			RABTA, PULIMT, URUS, SLUYAS, MYUTA,
			CATA2 ADD DOCK1 DACSIND FOLD1 DARCEE1
			SCARRI I RD FHD2 HID1 SCAMD1 DNM3
			CUBN HCK ATP6V1H ARHGAP27 SH3BP4
			I RP1 STAR1 GRIA1 IGE2R I RP6 TOM1 I RP4
membrane invagination	36	0.04380574	LRP5. DNM2
			RAB7A, PDLIM7, DRD3, SLC9A3, MYO7A,
			EPS15L1, NOSTRIN, ITSN1, ASGR1, HOOK2,
			GATA2, APP, DOCK1, PACSIN2, FOLR1, RABGEF1,
			SCARB1, LBP, EHD2, HIP1, SCAMP1, DNM3,
			CUBN, HCK, ATP6V1H, ARHGAP27, SH3BP4,
			LRP1, STAB1, GRIA1, IGF2R, LRP6, TOM1, LRP4,
endocytosis	36	0.04380574	LRP5, DNM2

			EXTL3, PDGFB, ENPP1, PPARG, PML, TP63,
			SGMS1, CDH4, AKT1, ATP2B2, APP, NUBP1, FXN,
			NDRG4, PTK2B, RASGRP4, LEFTY2, GNG4,
			WDTC1, ADIPOR2, SMAD3, RB1, ESR2, TP73,
			RERG, NTRK3, CDKN1B, HNF4A, TSC1, EMP3,
regulation of cell size	34	0.04525187	APBB2, EMP1, CACNA1A, NGF
			BMP4, MAEA, EPAS1, LYN, EPB42, HCLS1, MMP9,
myeloid cell			SMAD5, PPARG, PML, RB1, IL17C, HOXB7,
differentiation	18	0.04596271	RASGRP4, JAK2, RUNX1, ADD1, NKX2-3
positive regulation of cell			NTRK3, ARHGEF1, PTPRF, PLXNB1, TIAM1,
projection organization	11	0.04653052	ROBO1, NUMB, ITGA2, CDH4, ARAP1, NGF
			BMP4, SIVA1, MAEA, LYN, EPAS1, EPB42, HCLS1,
homeostasis of number			STAT5A, SMAD5, RB1, SOD1, ZC3H8, AKT1,
of cells	19	0.04663435	HOXB6, ADD1, NKX2-3, CD7, RPS24, FANCC
			KCNH1, BMP4, ALS2, NTF3, RXRB, TBX5, UTRN,
			RB1, MBNL1, TPM1, CACNA1S, FOXP1, PLG,
			CTNNB1, WNT4, APP, TSC1, DYRK1B, HINFP,
muscle cell differentiation	22	0.04748891	MYH11, CACNA1H, IFRD1
			HMX2, PDGFA, MYO7A, JAG2, PRRX1, NFYC,
			ZIC1, EPHB1, CTNNB1, ATP2B2, ALDH1A2, BDNF,
			MEIS2, GRIN2B, PVRL3, MYO15A, ALDH1A3, GFI1,
			FRS2, C170RF28, CDH23, BMP4, EGFR, DFNA5,
			IKZF1, CYP1A1, VSX2, SOD1, CACNA1S, FOXP2,
sensory organ			MFN2, CDKN1B, DLX5, CLIC5, GAA, FOXI1,
development	37	0.04806251	CRYBA4
neuromuscular process			ATP2B2, APP, CLRN1, SLC1A3, CLIC5, MYO7A,
controlling balance	9	0.04919213	GAA, CACNA1A, CDH23
			APP, BDNF, LST1, STRN, GHRL, PRKG1, IGSF9,
dendrite development	9	0.04919213	CACNA1A, KLHL1
epithelial tube			DLC1, BMP4, BMP2, SHROOM3, PGF, LMO4, ZEB2,
morphogenesis	14	0.04985342	CELSR1, ZIC2, WNT4, TSC1, TFAP2A, PBX1, IFT52
			DLC1, SIVA1, ALS2, PRKCZ, LHCGR, PML, LPAR3,
			LPAR2, TPM1, PTK2B, RASGRP4, HSPE1, HIP1,
			EGFR, GNAO1, SMAD3, ARHGAP27, ITGA2,
positive regulation of			NLRP2, GRM5, UACA, P2RX1, TSC1, GNAQ, F2,
hydrolase activity	30	0.05097871	ERN1, JAK2, RGS9, EIF2AK3, ARAP1
			EGFR, BMP4, BMP3, SATB2, BMP2, THRA,
			PDLIM7, TUFT1, SMAD5, GABBR1, FHL2, SMAD3,
			GLI2, MEF2D, TNFRSF11A, PTN, GNAS, EIF2AK3,
ossification	21	0.0511936	EXT2, WWOX, IHH
negative regulation of			
gene-specific			WDTC1, BMP2, CDKN1B, AES, IKZF1, PPARG,
transcription	11	0.0527674	SMAD3, GFI1, HDAC9, NCOR2, SMARCA4
regulation of			
mesenchymal cell			
proliferation	6	0.05381219	PDGFA, PRRX1, TP63, FOXP1, KDR, FOXP2
chondrocyte			PRKCA, MEF2D, CHST11, ACAN, COL11A2,
differentiation	6	0.05381219	EIF2AK3
regulation of			
phosphatase activity	6	0.05381219	PPP1R2, TSC1, SMAD3, ITGA2, FKBP1A, JAK2

			BMP4, EPAS1, PDGFA, TBX5, TMBIM6, C8ORF85,
			BMPR2, ASZ1, CYP1A2, GLI2, FOXP1, CTNNB1,
respiratory tube			FOXP2, KDR, ALDH1A2, ZFPM2, HS6ST1,
development	19	0.0550089	ADAMTS2, TRAF4
			EGFR, BMP4, BMP3, SATB2, BMP2, THRA,
			PDLIM7, TUFT1, SMAD5, GABBR1, FHL2, SMAD3,
			GLI2, MEF2D, TNFRSF11A, ANKRD11, PTN, GNAS,
bone development	22	0.05511038	EXT2, EIF2AK3, WWOX, IHH
intracellular receptor-			FLT1, SP100, SLA2, ESR1, PML, FHL2, RB1, ESR2,
mediated signaling			DAXX, CTNNB1, ALDH1A2, YWHAH, JAK2,
pathway	15	0.05682878	TGFB1I1, PMEPA1
embryonic placenta	_	0 0 0 4	
development	/	0.0572721	GATA2, HIF1A, EPAS1, TFEB, PKD2, EGLN1, ARNT
	0	0 05700440	DLC1, SHROOM3, TSC1, LMO4, TFAP2A, ZEB2,
neural tube closure	8	0.05788148	CELSR1, ZICZ
			DLC1, AIF1, PPARG, BAP1, STRN, IL15, BDNF,
			ILIB, PRACA, CIBPI, CIBPZ, PIPRF, RBI, ESRZ,
			NIFINZ, SSTRO, SIRPG, EIFZART, MINF4A, DTGZ, SSTRT CHDL ADAMTST TCERTLI EMDO EDK
			ISTAT, GARL, ADAMITST, TGEDTIT, EMIES, ERR,
			ALDH1A2 MORC3 INPP5D COL18A1 BMP4
			MUC2 TESC BMP2 NE2 JARID2 TBX5 SMAD3
negative regulation of cell			SKI VSX2 PIG RERG CDH13 CDKN1B TSC1
proliferation	54	0.05873474	ATP8A2, JAK2
		0.000.0	ALDOA, PRKAG2, ATP6V1H, MON2, ATP6V1C1.
			ATP2B2, ATP2C2, ATP2A3, ATP5S, ATP6V1E2,
			ATP8A2, ATP8B1, ATP5L, ATP8B2, ATP6AP1L,
ATP biosynthetic process	17	0.05880703	ATP8B3, ATP7B
			ALDOA, ENPP1, CTPS, PRKAG2, ATP6V1H,
			MYO9B, NADK, MON2, NME4, ATP6V1C1, ATP2B2,
			ATP2C2, ATP2A3, ATP5S, ADK, ATP6V1E2,
nucleoside triphosphate			ATP8A2, ATP8B1, ATP8B2, ATP5L, ATP6AP1L,
metabolic process	23	0.05884406	ATP8B3, ATP7B
detection of mechanical			
stimulus involved in	_	0 0500000	
sensory perception	5	0.05899969	ATP2B2, GRIN2B, TRPA1, MKKS, TIGA2
protein trimerization	5	0.05899969	TRPM8, ALOX5AP, TRIM27, SKI, MIF
response to ATP	5	0.05899969	DGKQ, P2RX1, SELL, PLCG2, IL1B
			ALDOA, CTPS, PRKAG2, ATP6V1H, CMPK1, MON2,
			NME4, ATP6V1C1, ATP2B2, ATP2C2, ATP2A3,
			ATP5S, ADK, ATP6V1E2, ATP8A2, DHODH,
ribonucleotide			ATP8B1, ATP8B2, ATP5L, ATP6AP1L, ATP8B3,
biosynthetic process	22	0.05922872	АТР7В
response to caffeine	4	0.0592942	GNAL, PPARG, RYR1, FKBP1A
regulation of defense			
response to virus by virus	4	0.0592942	AP2S1, ATP6V1H, AP2M1, CD28
positive regulation			
vascular endothelial			
growth factor production	4	0.0592942	HIF1A, GATA4, IL1B, ARNT

			BMP4, MAEA, LYN, EPAS1, EPB42, HCLS1,
erythrocyte homeostasis	11	0.05953357	HOXB6, SMAD5, RB1, ADD1, RPS24
			HOXA13, TBX5, PRRX1, TP63, SKI, MBNL1,
			CTNNB1, HOXC10, ALDH1A2, GNAQ, DLX5,
			CHST11, LRP6, GNAS, PBX1, FBN2, IFT52,
appendage development	19	0.05956758	SMARCA4, LRP5
			HOXA13, TBX5, PRRX1, TP63, SKI, MBNL1,
			CTNNB1, HOXC10, ALDH1A2, GNAQ, DLX5,
			CHST11, LRP6, GNAS, PBX1, FBN2, IFT52,
limb development	19	0.05956758	SMARCA4, LRP5

Tabla 18. Términos enriquecidos en el análisis ontológico de CDMs en la etapa de AM.

Termino GO	Numero de genes	Valor P	Genes
			DLC1, EYA1, PROP1, GNAQ, TSC1, PSEN2, ZEB2,
forebrain development	10	0.00223648	C10RF187, NR2F1, F0XP2
			DLC1, ADAP2, GNAQ, TSC1, HAND2, TBX5, GATA4,
heart development	12	0.00242113	SMYD1, EGLN1, FGF12, NFATC1, MAP2K5
morphogenesis of an			FRAS1, DLC1, EYA1, TSC1, FREM2, TBX5, TFAP2A,
epithelium	8	0.00284831	ZEB2
			CTBP1, NTF3, JARID2, TBX5, MAML2, FOXO1,
			PRDM16, TBR1, AHR, FOXP2, HDAC4, BRWD1,
regulation of			PROP1, HAND2, IL17F, SP4, GATA4, POU2F1,
transcription from RNA			TFAP2A, HOXB9, ABL1, SMARCA2, NR1H4, CHD3,
polymerase II promoter	25	0.00488742	NR2F1
positive regulation of			NTF3, TBX5, MAML2, FOXO1, TBR1, AHR, HDAC4,
transcription from RNA			PROP1, HAND2, GATA4, IL17F, POU2F1, HOXB9,
polymerase II promoter	15	0.01003795	SMARCA2, NR1H4
			FRAS1, DLC1, GSTM3, EYA1, LAMA3, TSC1, FREM2,
epithelium development	11	0.01046025	TBX5, TFAP2A, ZEB2, CBFA2T2
			DLC1, IBSP, SELP, PCDHA2, SELL, LPP, ACTN1,
			ITGB5, PCDH9, MSLNL, AMIGO3, LAMA3, TSC1,
			FREM2, PKP3, CDON, MSLN, ANTXR1, ADAM22,
biological adhesion	23	0.01211119	ABL1, NEGR1, PARVB, NTM
			DLC1, IBSP, SELP, PCDHA2, SELL, LPP, ACTN1,
			ITGB5, PCDH9, MSLNL, AMIGO3, LAMA3, TSC1,
			FREM2, PKP3, CDON, MSLN, ANTXR1, ADAM22,
cell adhesion	23	0.01227447	ABL1, NEGR1, PARVB, NTM
			CTBP1, JARID2, ZEB2, SMYD1, ELK3, PRDM16,
negative regulation of			CBFA2T2, DAXX, FOXN3, FOXP2, HDAC4, PROP1,
transcription	17	0.01252499	POU2F1, ATP8B1, SMARCA2, NR1H4, NR2F1
embryonic			DLC1, TBX5, ZEB2, EYA1, EYA2, GNAQ, TSC1,
morphogenesis	13	0.01299109	HOXB7, CDON, GATA4, PSEN2, POU2F1, TFAP2A

			CTBP1, JARID2, SMYD1, ZEB2, ELK3, PRDM16,
negative regulation of	10		CBFA2T2, DAXX, FOXN3, FOXP2, HDAC4, PROP1,
gene expression	18	0.01389524	POU2F1, ATP8B1, SMARCA2, TDRD1, NR1H4, NR2F1
pagative regulation of			CIBPI, JARIDZ, SMIDI, ZEBZ, ELK3, PRDMIO, CREADTO DAVY EOYNG SICIPP EOYDD HDACA
macromolecule			PROP1 TSC1 POU2E1 ATP8R1 SMARCA2 NR1HA
biosynthetic process	19	0.01451802	NR2F1
			DLC1, SIVA1, KNG1, ING3, NTF3, TBX5, CLU, ACTN1,
			FOXO1, PRKCE, DAXX, NLRP2, CRADD, TNFSF8,
			CASP10, IGF1R, EYA1, PROP1, BTG2, BTG1, PSEN2,
regulation of apoptosis	25	0.01595069	MAPK9, HSPE1, ABL1, HIP1
			DLC1, SIVA1, KNG1, ING3, NTF3, TBX5, CLU, ACTN1,
no evilotiono of			FOXO1, PRKCE, DAXX, NLRP2, CRADD, INFSF8,
regulation of	25	0 01772094	CASP10, IGF1R, EYA1, PROP1, BIG2, BIG1, PSEN2,
	23	0.01773904	MARNY, HSPET, ADLT, HIPT
regulation of generation	4	0.01000007	DLCT, TSCT, TFAFZA, ZEDZ
of precursor metabolites			
and energy	4	0.01808667	SPDYA, GAPDHS, HDAC4, PRDM16
neural tube closure	4	0.01808667	DLC1, TSC1, TFAP2A, ZEB2
			CTBP1, JARID2, SMYD1, ZEB2, ELK3, PRDM16,
negative regulation of			CBFA2T2, DAXX, FOXN3, SIGIRR, FOXP2, HDAC4,
cellular biosynthetic			PROP1, TSC1, POU2F1, ATP8B1, SMARCA2, NR1H4,
process	19	0.01828751	NR2F1
			DLC1, SIVA1, KNG1, ING3, NTF3, TBX5, CLU, ACTN1,
			PUXUI, PRACE, DAXX, NLRP2, CRADD, INFSFO,
regulation of cell death	25	0 01840808	MAPK9 HSPE1 ABI 1 HIP1
	20	0.01010000	KLF5. NTF3. TBX5. MAML2. FOXO1. PRDM16. TBR1.
positive regulation of			AHR, HDAC4, IGF1R, EYA1, PROP1, HAND2, IL17F,
nitrogen compound			GATA4, HIVEP3, POU2F1, HOXB9, SMARCA2,
metabolic process	21	0.0184081	DDAH1, NR1H4
			ZNF84, FOXO1, TTLL5, ZEB2, DAXX, MAX, GATA4,
			NR2F1, ZBTB20, BANP, ZNF333, TBR1, FOXN3, AHR,
			BRWD1, EYA1, EYA2, BIG2, ASCC3, IFAP2A,
			POI R2 I ELK3 PRDM16 TSC22D1 HAND2 POU2E1
			NR1H4. NFATC1. CHD3 HIP1 ZNF263 KI F5
			ZBTB46. JARID2. TBX5. MAML2. ZNF160. SMYD1.
			FOXP2, HDAC4, PAPOLA, HOXB7, IRF5, SP4, HIVEP3,
transcription	53	0.01880372	NHLH2, HOXB9, PARP1
			CTBP1, JARID2, SMYD1, ZEB2, ELK3, PRDM16,
negative regulation of			DAXX, CBFA2T2, FOXN3, SIGIRR, FOXP2, HDAC4,
macromolecule	22	0.01049077	PROP1, ISC1, GRIN2C, PSMD11, PSEN2, POU2F1,
	23	0.01946077	A = COMPANY
tissue morphogenesis	Q	0 01996767	$TFAP2A \ 7FB2$
		0.01000101	KLF5. BAIAP2L2. NTF3. PTPRZ1. CLU. PIP5K1C
cell projection			CAPZB, TBR1, SPAG16, KLHL1, IGF1R, TSC1, MAP2.
organization	14	0.02120985	C10RF187

negative regulation of	19	0 02231507	CTBP1, JARID2, SMYD1, ZEB2, ELK3, PRDM16, CBFA2T2, DAXX, FOXN3, SIGIRR, FOXP2, HDAC4, PROP1, TSC1, POU2F1, ATP8B1, SMARCA2, NR1H4, NR2F1
		0102201001	KLF5, DLC1, FRK, CTBP1, JARID2, TBX5, CLU,
			FOX01, DUSP22, IL15, CCL15, FOXP2, SPDYA,
regulation of cell			RERG, AGTR1, HDAC4, IGF1R, BTG2, TSC1, BTG1,
proliferation	24	0.02261652	GATA4, SMARCA2, RHOG, MAP2K5
			DLC1, EYA1, TSC1, HAND2, TBX5, PSEN2, GATA4,
tube development	10	0.02273898	TFAP2A, ZEB2, FOXP2
primary neural tube			
formation	4	0.02333409	DLC1, TSC1, TFAP2A, ZEB2
positive regulation of	_	0 00 407000	
peptidase activity	5	0.02437096	
positive regulation of	-	0.00407000	
caspase activity	5	0.02437096	DLC1, SIVA1, HSPE1, NLRP2, HIP1
			KLF5, NTF3, TBX5, MAML2, FUXU1, PRDM16, TBR1,
positive regulation of	40	0 00500 400	AHR, HDAC4, PROP1, HAND2, IL17F, GATA4, HIVEP3,
gene expression	19	0.02503493	PUUZF1, MAPK9, HUXB9, SMARCAZ, NR1H4
regulation of hydrolase	10	0.00507005	DLC1, GNAT1, SIVA1, AGTR1, ADAP2, GNAQ, TSC1,
activity	13	0.02507295	RABGAP1L, HSPE1, AGAP1, ARAP2, NLRP2, HIP1
positive regulation of			KIES NEED TRYS MANUS FOYON DROMAG TRDA
nucleobase, nucleoside,			KLF5, NTF3, TBX5, MAML2, FUXU1, PRDM16, TBR1,
nucleotide and nucleic	00	0.0050505	AHR, HDAC4, IGF1R, EYA1, PROP1, HAND2, IL17F,
acid metabolic process	20	0.0253565	GATA4, HIVEP3, POU2F1, HOXB9, SMARCA2, NR1H4
pattern specification		0 0000 4 4 5	EYA1, PROP1, CYP26C1, HOXB7, BTG2, TBX5,
process	11	0.0288445	PSENZ, GATA4, ZEB2, HUXB9, CXXC4
			DLC1, FOXO1, PRDM16, AGTR1, IGF1R, PROP1,
positive regulation of			HAND2, GATA4, IL17F, POU2F1, NR1H4, KLF5, NTF3,
macromolecule			TBX5, MAML2, TBR1, AHR, GAPDHS, HDAC4, EYA1,
metabolic process	25	0.03113744	PSMD11, HIVEP3, MAPK9, HOXB9, SMARCA2
negative regulation of			
nucleobase, nucleoside,			CTBP1, JARID2, ZEB2, SMYD1, ELK3, PRDM16,
nucleotide and nucleic			CBFA212, DAXX, FOXN3, FOXP2, HDAC4, PROP1,
acid metabolic process	17	0.03136808	POU2F1, ATP8B1, SMARCA2, NR1H4, NR2F1
			PROP1, CYP26C1, HOXB7, BTG2, PSEN2, GATA4,
regionalization	9	0.03192016	ZEB2, HOXB9, CXXC4
tube morphogenesis	7	0.03204461	DLC1, EYA1, TSC1, HAND2, GATA4, TFAP2A, ZEB2
			GAL3ST4, NTF3, TBX5, FGF12, GABBR2, GRIA4,
			CACNB4, IL15, CCL15, RIMS1, VDAC1, TNFSF8,
			SLC17A6, CAMK4, GRIN2C, GATA4, POU2F1, TRPV4,
cell-cell signaling	19	0.03311499	CORT
positive regulation of			NTF3, TBX5, MAML2, FOXO1, PRDM16, TBR1, AHR,
transcription, DNA-			HDAC4, PROP1, HAND2, GATA4, IL17F, POU2F1,
dependent	16	0.03454568	HOXB9, SMARCA2, NR1H4
negative regulation of			CTBP1, JARID2, ZEB2, SMYD1, ELK3, PRDM16,
nitrogen compound			CBFA2T2, DAXX, FOXN3, FOXP2, HDAC4, PROP1,
metabolic process	17	0.03492773	POU2F1, ATP8B1, SMARCA2, NR1H4, NR2F1

regulation of cellular			
	3	0 03518322	SPRYA GAPRHS HRACA
regulation of	5	0.00010022	
carbohydrate catabolic			
process	3	0.03518322	SPDYA, GAPDHS, HDAC4
regulation of			
carbohvdrate metabolic			
process	4	0.03603657	SPDYA, GAPDHS, HDAC4, NR1H4
negative regulation of			HDAC4, CTBP1, PROP1, JARID2, POU2F1, PRDM16,
transcription, DNA-			DAXX, CBFA2T2, SMARCA2, FOXN3, NR1H4, NR2F1,
dependent	13	0.03626368	FOXP2
			KLF5, NTF3, TBX5, MAML2, FOXO1, PRDM16, TBR1,
positive regulation of			AHR, HDAC4, PROP1, HAND2, IL17F, GATA4,
transcription	18	0.03632977	POU2F1, HIVEP3, HOXB9, SMARCA2, NR1H4
epithelial tube			
morphogenesis	5	0.03660914	DLC1, EYA1, TSC1, TFAP2A, ZEB2
			NTF3, TBX5, MAML2, FOXO1, PRDM16, TBR1, AHR,
positive regulation of			HDAC4, PROP1, HAND2, GATA4, IL17F, POU2F1,
RNA metabolic process	16	0.03740821	HOXB9, SMARCA2, NR1H4
			DLC1, SIVA1, CASP10, TBX5, PSEN2, MAPK9, ABL1,
induction of apoptosis	12	0.03832649	PRKCE, DAXX, CRADD, TNFSF8, HIP1
neural tube			
development	5	0.03834708	DLC1, TSC1, PSEN2, TFAP2A, ZEB2
neural tube formation	4	0.03843653	DLC1, TSC1, TFAP2A, ZEB2
induction of			DLC1, SIVA1, CASP10, TBX5, PSEN2, MAPK9, ABL1,
programmed cell death	12	0.03914582	PRKCE, DAXX, CRADD, TNFSF8, HIP1
			HDAC4, CTBP1, PROP1, JARID2, POU2F1, PRDM16,
negative regulation of			DAXX, CBFA2T2, SMARCA2, FOXN3, NR1H4, NR2F1,
RNA metabolic process	13	0.03991011	FOXP2
			ZNF84, FOXO1, ZEB2, DAXX, CBFA2T2, MAX, PROP1,
			GATA4, ATP8B1, NR2F1, ZBTB20, CTBP1, BANP,
			ZNF333, TBR1, FOXN3, AHR, SIGIRR, BRWD1, EYA1,
			EYA2, BTG2, ASCC3, BTG1, TFAP2A, SMARCA2,
			SCML4, SIVA1, CAMTA1, ING3, IRX6, EGLN1, ELK3,
			PRDM16, SUFU, ISCZZD1, HANDZ, IL17F, PUUZF1,
			NR 114, NFATCT, HIPT, CHU3, ZNF203, KLF3, ZRTR46 NTF2, IADID2, TRY5, MAML2, ZNF460
regulation of			201040, NTF3, JARIDZ, IDA3, WANILZ, ZNF100, SMVD1 EAYD2 HDACA HAVR7 IDE5 SDA HIVED2
transcription	61	0 04277541	SIM TD 1, T OXFZ, TIDAC4, TIOXD7, IN 5, SF4, TIIVEF5, NHI H2 HOYBO ABI 1
embryonic enithelial	01	0.04277341	
tube formation	4	0.04611066	DLC1_TSC1_TEAP2A_ZEB2
anterior/posterior pattern		0.01011000	CYP26C1 HOXB7 BTG2 PSEN2 GATA4 ZEB2
formation	7	0.04779977	HOXB9
tube lumon formation		0.0499244	
	4	0.0400244	SIVAL DICI CALCE CALDI JEDI NI DDI DAVV
positive regulation of			SPDYA HDACA AGTRI GNAO TSCI GALRI
molecular function	18	0 04886551	PSMD11 PSEN2 HSPF1 ARI 1 HIP1
positive regulation of	10	0.01000001	DI C1 SIVA1 AGTR1 GNAO TSC1 HSPF1 NI RP2
hvdrolase activity	8	0.05126008	HIP1
,	,		
negative regulation of transcription factor			
---	----	------------	--
activity	4	0.05161466	SIVA1, HDAC4, EGLN1, SIGIRR
			GNAT1, IGF1R, GNAQ, NTF3, PTPRZ1, CLU, MAP2,
neuron development	12	0.05420751	PIP5K1C, TBR1, NTM, C1ORF187, KLHL1
histone			
dephosphorylation	2	0.0550671	EYA1, EYA2
hemopoietic or lymphoid			CALCR, HDAC4, HOXB7, JARID2, PSEN2, ZNF160,
organ development	10	0.0559721	SH2B3, AICDA, IL15, CACNB4
positive regulation of			KLF5, NTF3, TBX5, MAML2, FOXO1, PRDM16, TBR1,
cellular biosynthetic			AHR, HDAC4, IGF1R, PROP1, HAND2, IL17F, GATA4,
process	20	0.05619571	HIVEP3, POU2F1, HOXB9, SMARCA2, DDAH1, NR1H4