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Resumen

En esta tesis investigamos los defectos topológicos conocidos como cuerdas cósmicas en una
extensión del Modelo Estándar (ME). Estas cuerdas cósmicas son vórtices con una estructura
de tipo filamento que surgen a partir del campo de norma usado en esta extensión y relacionado
al grupo unitario Up1qY 1 con la carga Y 1 “ αY ` βpB ´ Lq. Este es un grupo de simetŕıa
formado por una combinación lineal de la hipercarga Y y el número bariónico menos el número
leptónico, B ´ L. Inclúımos este campo de norma con el objetivo de convertir a B ´ L en una
simetŕıa local, de forma que sea naturalmente exacta. También añadimos un neutrino derecho
por cada generación de fermiones para curar la anomaĺıa de norma triangular que prohib́ıa
este campo de norma en la versión tradicional del ME. Asimismo podemos escribir términos de
masa para los neutrinos izquierdos y derechos usando el mecanismo de Higgs. Para que estos
términos de masa sean invariantes de norma, requerimos de un campo escalar adicional. Este
nuevo campo tiene un valor de expectación en el vaćıo (VEV) mayor que el del campo de Higgs
estándar. Encontramos que el modelo es consistente y usamos el formalismo Lagrangiano de
teoŕıa de campos para obtener las ecuaciones de movimiento de los campos involucrados. La
parte relevante de la Lagrangiana consiste de dos campos de Higgs con su respectivo potencial
cuártico y un campo de norma acoplado a los otros campos con diferentes cargas. Para obtener
soluciones de cuerdas cósmicas usamos un ansatz con simetŕıa ciĺındrica. Este procedimiento
nos lleva a un sistema de ecuaciones diferenciales no-lineales, de segundo orden. Condiciones de
frontera adecuadas se imponen para asegurar la continuidad en el origen y para que los campos
tomen sus VEVs apropiados lejos de la cuerda. Resolvemos este sistema utilizando métodos
numéricos. Las soluciones corresponden a los perfiles de las cuerdas cósmicas en la parte radial
de los campos. Nuestra extensión tiene parámetros libres adicionales al ME y encontramos
que las soluciones dependen fuertemente del número de veces que las configuraciones de los
campos dan vuelta al rededor de la cuerda cósmica. Los resultados se reportan como gráficas
con distintos valores de los parámetros libres. Concluimos que este tipo de cuerdas cósmicas es
concebible. Su existencia puede tener consecuencias en la masa de los rayos cósmicos, cuando
pasan a través o cerca de ellas. Los campos de Higgs cambian su valor con la distancia al núcleo
y los términos de masa de las part́ıculas dependen de ellos.
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Abstract

In this thesis we investigate topological defects known as cosmic strings in an extension of the
Standard Model (SM). These cosmic strings are vortices with a filament structure arising from
the gauge field used in this extension and related to the unitary group Up1qY 1 , with the charge
Y 1 “ αY ` βpB ´ Lq. This is a symmetry group formed by a linear combination of the weak
hypercharge Y and the baryon number minus lepton number, B ´ L. The reason we include
this gauge field is to turn B ´ L into a local symmetry, such that it becomes naturally exact.
We also include a right-handed neutrino to each fermion generation so that we can cure the
triangular gauge anomaly that prohibited this gauge field in the traditional version of the SM.
Furthermore we can write mass terms for the left- and right-handed neutrinos using the Higgs
mechanism. For these mass terms to be gauge invariant we require an additional scalar field.
This new field has a larger vacuum expectation value (VEV) than the standard Higgs field. We
find that the model is consistent, we use the Lagrangian formalism of field theory to obtain
the equations of motion for the involved fields. The relevant part of the Lagrangian consists of
two Higgs fields with their respective quartic potential and the gauge field coupled to the other
fields with different charges. To obtain cosmic string solutions we use a cylindrically symmetric
ansatz. This procedure leads to a system of non-linear differential equations. Suitable boundary
conditions are imposed to guarantee continuity in the origin and for the fields to attain the
appropriate VEVs far away from the string. This system is solved using numerical methods.
The solutions correspond to the profiles of the cosmic strings in the radial part of the fields.
Our extension has free parameters additional to the SM and we find that the field solutions are
strongly dependent on the winding numbers. The results are reported as plots with different
values of the free parameters. We conclude this type of cosmic strings is conceivable. Their
existence would have consequences in cosmic ray masses when passing through or nearby the
string. The Higgs fields change their values with the distance from the core and particles mass
terms depend on them.
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Chapter 1

Introduction

Cosmic strings are hypothetical large-scale objects in the universe which can be obtained from
a Lagrangian description of quantum fields. To this day there is no evidence of their existence,
but they are still an open and fruitful possibility, being studied theoretically and observationally.
It is an open possibility because constraints on the proposed models are compatible with the
present observational data. They are fruitful because their cosmological consequences can be
used advantageously, for example in structure formation. There are many types of theorized
cosmic strings associated with different fields, they can have distinct physical properties like
superconductivity when they are associated with electromagnetic fields. They can have mass
and dynamical properties which could result in the production of gravitational waves. Their
origin can be speculated in the early universe at phase transitions and traces of them can be
searched for in the Cosmic Microwave Background (CMB).

While we have no evidence for the existence of cosmic strings, there are analogous phenomena
in systems of condensed matter which are known as quantized vortices. Such structures have
been described and observed experimentally in superconductors, superfluids and liquid crystals.
So we have a better comprehension of them and it is easier to study them since they can be
generated in laboratories. Even if the physical description of these structures is different from 4-
dimensional field theory, they are a motivation for cosmic strings research since they are solutions
of similar equations of motion which arise from symmetries and topological arguments like the
homotopy groups. Many authors have proposed to study these systems and recognize analogies
between the properties of the universe and the behaviour in phase transitions.

1.1 Overview

The Standard Model (SM) of particle physics describes with great precision the observed content
of matter and its interactions in the universe, at the fundamental level available with the current
technology. Many authors have contributed to the study of experimental particle physics, from
the discovery of electrons and atoms to the big contemporary collaborations in experiments of
particle accelerators. The SM contains a set of elementary particles, including three generations
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2 CHAPTER 1. INTRODUCTION

of quarks and leptons. Imposing local symmetry to the theory, leads to gauge invariance and
this introduces the elementary particles known as force carrier bosons, which mediate three
interactions (strong, weak and electromagnetic). At last the Higgs mechanism is used to give
mass to the particles and also the Higgs field has its associated boson.

However, the SM still contains some short-comings, and extensions of it are proposed to
account them. For example neutrinos in the SM are assumed as massless, although we now
know they are not, due to the neutrino oscillations experiments. There are many attempts
to introduce the mass adding a right-handed neutrino. Another example in cosmology is dark
matter, necessary to explain certain astronomical observations. The content of matter we see
with light can’t account for all the observed gravitational effects. This could be explained by
unknown particles which might be added to the SM in some extension.

In this thesis we will focus on the baryon number minus lepton number, B´L, conservation.
In the SM this is a global and exact symmetry. In theory, there are certain processes where the
conservation of baryon or lepton number is violated, but the difference is not. The basic idea
is to turn the unitary group Up1qB´L into a local symmetry as it is more natural for an exact
symmetry to be a gauged. This is the first step in our extension of the SM proposal and this
gauge field would be coupled to all particles with B ´ L ‰ 0. We can even gauge a unitary
group which considers a linear combination of the hypercharge and the B ´ L number Up1qY 1 ,
Y 1 “ αY ` βpB ´ Lq. The introduction of this gauge field is accompanied by a triangular
gauge anomaly with fermionic internal lines. Our proposal to this point can’t cure this anomaly,
but adding a right-handed neutrino to each fermion generation, cancels it. With right-handed
neutrinos at our disposal we can give mass to the neutrinos, both to the left- and right-handed.
We write a Dirac term which gives mass to the neutrinos by means of the usual Higgs mechanism.
Furthermore we write a Majorana mass term for the right-handed neutrino. This mass term
can be added without breaking the new Y 1 gauge symmetry if we include a new scalar field with
B ´ L “ 2 and apply the Higgs mechanism.

Therefore our extension of the SM is a minimal extension to explain why B ´ L is exact. It
contains additional fields, namely the Y 1 gauge field, a right-handed neutrino to each fermion
generation and a new scalar Higgs field. Even though these particles have never been observed,
this can be justified as follows. For the case of the new Higgs particle, we can assume that it has
a vacuum expectation value (VEV) v1 much larger than the standard Higgs VEV, v1 " 246 GeV,
accelerator physics experiments do not allow for systematic search at these energies.

We conclude that the model is well posed and constructed in a self-consistent way with
the traditional constituents. We will start from this extension and just consider a sector of it,
the one which is related to the relevant fields under some assumptions like a constant fermion
background. This sector will consist of three fields, the standard and new Higgs fields and the
Up1qY 1 gauge field. Using the Lagrangian formulation we can derive the equations of motion
of this system. They turn out to be a system of second order, non-linear differential equations
with specific boundary values. They do not have any analytic solution but they can be solved
through numerical methods, for instance with Python. Just as the SM contains free parameters,
our extension contains a set which needs to be fixed to specify solutions using the numerical
methods. There are five additional free parameters in the relevant sector that we consider, seven
additional free parameters considering a first generation of neutrinos and eleven considering
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three generations. Our results will consist of cosmic string solutions for these equations, they
are obtained by using a cylindrically symmetric ansatz. The profiles of the solutions will be
reported as plots for the radial part of the fields using distinct values of the free parameters.
We will also investigate the presence of a possible behaviour which differs from typical cosmic
strings in the literature, which we call co-axial cosmic strings.

1.2 Outline

This thesis consists of five chapters and two appendices. Chapter 2 is a review of the basic and
relevant features of the SM. Here we will present the theoretical basis of our model and we will
be led to the search of admissible cosmic string solutions. Chapter 3 is a review of topological
defects, particularly of vortices appearing in condensed matter systems as superconductors and
superfluids. This chapter will provide a picture of what we are looking for in 4-dimensional field
theory. We close this chapter with remarks about cosmic strings and their important general
features. Chapter 4 describes our work and results for cosmic strings in this extension of the
SM. At last, Chapter 5 contains the conclusions and prospects for future work. Throughout the
thesis two appendices are needed to substantiate this work. Appendix A is a note on how to
define the derivatives of real and complex scalar fields, including a complex doublet. Appendix
B explains the algorithms we used for the numerical solutions of the cosmic strings; this also
involves tests of reliability and self-consistency.
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Chapter 2

The Standard Model

The Standard Model (SM) of elementary particle physics describes three of the four known gauge
interactions in the universe. It consists of fermionic fields whose excitations give rise to three
generations of quarks and leptons. It also includes gauge fields which are associated with the
force carriers bosons and the Higgs field associated with the Higgs boson. The anti-particles of
the corresponding particles with opposite charges are also included. Figure 2.1 shows the content
of particles of the SM along with their properties; the already mentioned three generations of
matter, the 8 gluons as the gauge bosons for the strong interaction, the photon as the gauge
boson of electromagnetism, the W˘ and Z0 bosons for the weak interaction and the Higgs boson.

Figure 2.1: Particles of the Standard Model.
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6 CHAPTER 2. THE STANDARD MODEL

In this chapter we will discuss the SM as a field theory in a Lagrangian formulation, using
natural units ~ “ 1, c “ 1. The fields presented here are not operator valued, so they can define
a classical or quantum system. The quantization procedure does not modify the Lagrangian
structure or equations of motion; but it indeed requires a reinterpretation of the field variables.
When fields are quantized, particles emerge as quantized excitations of their respective fields.
With respect to gauge invariance we mean taking a global symmetry group and requiring the
Lagrangian to be invariant locally as a principle of the theory. Imposing this condition leads to
additional fields (gauge fields) which represent another set of particles that are the force carriers,
they mediate the interactions. This idea goes back to Weyl [3] in 1918, he used the symmetry
group Up1q (complex phases) and Yang and Mills [4] in 1954 using the symmetry group SUp2q,
complex 2ˆ2 unitary matrices with determinant 1, where the Pauli matrices are the generators.

Let us look at Weyl’s proposal [3]. We start from the Dirac Lagrangian in eq. (2.1) for the
fermionic fields ψ, ψ which represents a free spin-1{2 particle with mass m,

L “ ψ piγµBµ ´mqψ. (2.1)

By inspection we see that it is invariant under a global phase transformation ψ Ñ eiθψ, ψ Ñ
e´iθψ, θ P R. But if this phase depends on spacetime, θpxq, then it is not invariant. This is a
local phase transformation ψ Ñ e´iqθpxqψ, ψ Ñ eiqθpxqψ, where q is the electric charge. If we
perform this transformation, the system picks up an extra term. In order to implement gauge
invariance we add a massless vector field Aµ. The gauge invariant Lagrangian we obtain is

L “ ψ piγµDµ ´mqψ ´
1

4
FµνFµν . (2.2)

The last term in eq. (2.2) is the gauge term Fµν “ BµAν ´ BνAµ. Moreover we have substituted
the partial derivative by a covariant derivative Dµ “ Bµ ` ieqAµ, this is called the minimal
coupling rule and e is the electron charge. The gauge field should transform as Aµ Ñ Aµ`

1
eBµθ.

The difference between eqs. (2.1) and (2.2) is that the second one is gauge invariant. This
Lagrangian describes electrodynamics, Aµ is the electromagnetic potential and its quantization
leads to the photon.

We can generalize this to a Yang-Mills theory, for instance using the symmetry group SUp2q
[4]. We start with two fermionic fields ψ1, ψ2 with the same mass m. Writing them as a
two-component column vector

ψ “
´

ψ1
ψ2

¯

, (2.3)

we obtain the free Dirac Lagrangian

L “ ψ piγµBµ ´mqψ. (2.4)

In complete analogy we observe that this Lagrangian is invariant under global SUp2q transfor-
mations ψ Ñ eiσaθ

a
ψ, ψ Ñ e´iσaθ

a
ψ, where a “ t1, 2, 3u, σa are the 3 Pauli matrices and θa

real constants. If we turn this into a local symmetry, that is θapxq, we have to add three vector
fields Wµ

a “ pW
µ
1 ,W

µ
2 ,W

µ
3 q. The gauge invariant Lagrangian reads

L “ ψ piγµDµ ´mqψ ´
1

4
Wµν
a W a

µν . (2.5)
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The difference between eqs. (2.4) and (2.5) is again that the second one is gauge invariant. We
also have used a covariant derivative Dµ “ Bµ ` igWµ, with Wµ “ igW a

µσa{2. Now we have 3
gauge field components that include a self-interaction in Wµν “ BµWν ´BνWµ` grWµ,Wνs, be-
cause of the commutator. This theory describes two fermion fields with equal masses interacting
with three massless vector gauge fields.

The SM is a QFT, starting from the Lagrangian formalism, one can obtain the Feynman
rules. The free part of the Lagrangian defines the free propagator and the interaction terms lead
to the vertex factor, so the Feynman diagrams can be computed. With these diagrams one can
obtain for instance the cross sections and decay rates in the perturbative approximation, that
are of great interest in particle phenomenology.

In the quantization through the path integral formulation, we use the action (or Lagrangian)
of some field φ to define the generating functional in Minkowski spacetime

ZrJs “
ż

Dφei
ş

d4xLpφ,Bµφq`i
ş

d4xJφ. (2.6)

All the n-point functions or Green functions, can be obtained through functional derivatives
with respect to the source field Jpxq as

xφpx1q . . . φpxnqy “
1

inZr0s
δnZrJs

δJpx1q . . . δJpxnq

ˇ

ˇ

ˇ

ˇ

J“0

. (2.7)

Therefore the quantum theory is complete, the physical observables can be obtained using these
functions.

2.1 The strong interaction

After the discovery of the electron and the already known atoms, Thomson suggested atoms
were composed of electrons enclosed in a positively charged volume [5]. Accepting this idea and
as atoms are electrically neutral, Rutherford’s scattering experiments showed that the positive
charge and most of the mass were contained in the center of the atom, the nucleus. In 1932
Chadwick discovered the neutron [6], a neutral particle with a mass similar to the proton. With
these three elements, an atom mass and its nucleus charge could be explained consistently. The
nucleus is then formed of protons and neutrons, while electrons surrounding it compose together
the atom. However there was a piece still missing. The existence of a strong force was proposed,
produced by a field that held together protons and neutrons in the nucleus, overcoming the
electromagnetic repulsion of the positive charged protons.

Upon quantization of this new field, as Yukawa proposed, there should be exchange particles
that mediate the interaction. As a short range force, Yukawa’s proposition led to an exchange
particle named meson. Later the (charged) pion π was discovered, along with the muon µ in
1947 using cosmic rays [7]. This π particle had the characteristics that Yukawa predicted. Now
we know these are not the exchange particles of the strong interaction at the fundamental level,
but the name meson was kept to classify them as we will see later in this section. The neutral
kaon K0 was discovered by Rochester and Butler using a cloud chamber and cosmic rays; they
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observed the reaction K0 Ñ π``π´ [8]. In 1949 the K` was discovered by Brown et al. through
the reaction K` Ñ π` ` π` ` π´ seen in photographs of cosmic rays [9]. In some aspects, the
kaons behave like the pions, so they are also classified in the meson family. In the following
years, many more mesons were discovered like η, η1, φ, ω, ρ, etc.

The law of baryon number conservation was proposed in 1938 by Stückelberg to account for
the proton stability, even though the expression “baryon” was introduced by Pais only in 1953
[10]. A number B “ `1 was assigned to baryons and B “ ´1 to anti-baryons. In an elementary
particle reaction, the difference of the number of baryons and the number of anti-baryons should
be conserved following this law. According to Stückelberg, the stability of the proton as the
lightest baryon is assured by the conservation of the baryon number.

In 1932 Heisenberg noticed that despite the different electric charge, the proton and neutron
were similar particles. In particular their masses are really close. So he proposed that they
are different states of the same particle, the nucleon [11]. By direct analogy to the spin, he
introduced the isospin ~I from the symmetry group SUp2q. Then the nucleon has isospin I “ 1{2
and its projections give rise to the proton I3 “ `1{2 and the neutron I3 “ ´1{2, they belong
to the 2-dimensional representation of SUp2q. Heisenberg’s proposal tells us that the strong
interactions are invariant under rotations in isospin space, thus by Noether’s theorem, isospin
is conserved in strong interactions.

However, in that epoch the proton and neutron were the only known baryons. It was not
until 1950 that the Λ particle was discovered by Hopper and Biswas [12] through the reaction
Λ Ñ p ` π. Using the baryon number conservation law, we see that it must be classified as a
baryon. In the following years, many more baryons were discovered like Σ’s, Ξ’s, ∆’s, etc.

In 1961 Gell-Mann noticed that he could arrange the known particles in group theoretic
patterns which he called the eightfold way [13]. We can see the case of the lightest hadrons in
Fig. 2.2 forming an hexagonal structure, where Q is the electric charge and S is the strangeness1.
All these particles carry similar masses.

(a) (b)

Figure 2.2: The light baryon octet (a) and the meson nonet (b).

1Another quantum number associated to the strange quark: it is a conserved quantity in the strong interaction,
given by the number of strange anti-quarks minus quarks.
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The baryon decuplet in Fig. 2.3 led to the prediction of the Ω´ particle and its mass. This
particle was discovered afterwards in 1964 [14], so Gell-Mann’s scheme was affirmed.

Figure 2.3: Baryon decuplet.

Gell-Mann and Zweig proposed that hadrons (baryons and mesons) are composed of ele-
mentary constituents called quarks, whose combinations lead to the quark model and the un-
derstanding of these group theoretic patterns as multiplets of SUp2q group representations, a
generalization of Heisenberg’s idea. For example, all particles in the baryon octet in Fig. 2.2
carry spin 1/2, regarding all these particles as a supermultiplet meant they belonged to a rep-
resentation of some enlarged group where isospin is a subgroup. SUpNf q is the group, where
Nf is the number of flavors, six according the already mentioned three generations of quarks
(matter) in Fig. 2.1 and they are labelled by a flavor index f “ tu, d, s, c, t, bu, up, down, strange,
charm, top and bottom. It is an approximate symmetry because the masses in the supermul-
tiplets are not the same, indeed their difference become larger as we add more flavors. This
breaking of flavor symmetry is due to the fact that quarks have different masses. Thus in the
quark model, hadrons are bound-states of these quarks. Baryons are composed of three valence
quarks. Mesons are composed of a valence quark and anti-quark pair.

Quarks have never been directly observed as free particles. We call this phenomena quark
confinement. It can be understood as a long distance confining property of the strong interaction.
The up, down, strange, charm and bottom quarks hadronize but the top quark has no time to
do so [15]. On the other hand, one of the reasons to include a color index Nc “ tr, g, bu (red,
green, blue) is that, in order for quarks to constitute an hadron (and as quarks have spin-1{2)
they must satisfy the Pauli exclusion principle. Then a quark can have 3 different charges and
hadrons are colorless particles. A baryon is composed of 3 valence quarks of different color and
a meson is composed of 2 valence quarks with a color and anti-color. All we have seen so far is
the constituent quark model where hadrons are composed of valence quarks.

As a more fundamental description, the strong interaction can be treated as a field theory
known as Quantum Chromodynamics (QCD). It is formulated as an SUp3q gauge field theory.
Then a quark is represented as a triplet consisting of spinor fields

“

˜

r

g

b

¸

. (2.8)
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The QCD Lagrangian takes the form

LQCD “
Nf
ÿ

f“1

ψf piγ
µDµ ´mf qψf ´

1

4
GaµνG

µν
a , (2.9)

where ψf is the quark field of flavor f , mf is its mass and the last term is the gauge term. Upon
quantization the gauge fields give rise to the gluons, which are understood as massless particles
that are the force carriers of the strong interaction. We can write the gluon field with a set of
generators of SUp3q (Gell-Mann matrices λa) as

Gµpxq “
i

2
Gaµpxqλa, a P t1, . . . , 8u, (2.10)

there are 8 gluons. The covariant derivative takes the form

Dµ “ Bµ ` gsGµ, (2.11)

where gs is the strong coupling constant and the field strength tensor is

Gaµν “ BµG
a
ν ´ BνG

a
µ ´ gsf

a
bcG

b
µG

c
ν , (2.12)

where fabc are the SUp3q structure constants. Applying perturbation theory leads to a run-
ning coupling strength gRs which satisfies the β-function (a differential equation of the coupling
constant with respect to a renormalization scale µ) given by

µ
BgRs
Bµ

“ ´
pgRs q

3

16π2

ˆ

11´
2

3
Nf

˙

, (2.13)

to 1-loop. The solution is given by

αRs “
pgRs q

2

4π
, αRs pµq “

6π

33´ 2Nf

1

lnpµ{ΛQCDq
, (2.14)

where ΛQCD is the natural energy scale for QCD. Taking into account that there are 6 flavors,
eq. (2.13) is negative, which implies a decreasing coupling strength for increasing µ and the so-
called asymptotic freedom of QCD at high energies. Equation (2.14) describes a logarithmically
decreasing coupling strength.

2.2 The Higgs mechanism

Let us now take a look at the Higgs sector and the Higgs mechanism proposed in 1964 [16] to
explain why particles can have mass. Higgs was inspired by the phenomenon in which plasmon
modes from a superconducting Fermi gas acquire mass when the gas becomes charged [17]. The
idea is basically to have a new quantum field permeating space-time and spontaneous symmetry
breaking (SSB) of a local symmetry causes the particles to acquire mass, as we will see in this
section. This mechanism was also proposed independently by Brout and Englert [18] and by
Kibble, Guralnik and Hagen [19].
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Before gauging we can address a global symmetry group SUp2qL b SUp2qR where the sub-
script L and R refers to left and right chirality. The Higgs field is a complex scalar doublet
Φ P C2 given by

Φ “
1
?

2

ˆ

φ`pxq
φ0pxq

˙

, (2.15)

where the upper component carries electric charge. The Lagrangian reads

L “ BµΦ:BµΦ´ V “ BµΦ:BµΦ´m2Φ:Φ´ λpΦ:Φq2, (2.16)

where the mass term and self-coupling term are the Higgs potential. Under the condition λ ą 0
for the potential to be bounded from below, we can distinguish two cases: if m2 ě 0, there is a
single minimum Φ “ 0. If m2 ă 0 then we have a Mexican hat potential, Φ “ 0 is an unstable
local maximum, but we can also find a set of minima which represent a degenerate vacuum with

|Φ| “ v
?

2
“

c

´
m2

2λ
. (2.17)

It is invariant under SUp2qL b SUp2qR transformations. In order to describe the vacuum and
break the local symmetry, we can select a state

Φ “
v
?

2

´

0
1

¯

, (2.18)

with fluctuations

Φ “
1
?

2

ˆ

π1pxq ` iπ2pxq
v ` σpxq ` iπ3pxq

˙

. (2.19)

The fields π1, π2, π3 and σ describe the fluctuations around the Higgs field vacuum expectation
value (VEV) v “ 246 GeV. This is the perturbation procedure where we start from a ground
state and fields are fluctuations around that state. In this way we can expand the Lagrangian in
eq. (2.16) using the state in eq. (2.19) and find that there is a σ particle with mass m2

σ “ 2λv2

and three massless particles πi. They correspond to Nambu-Goldstone bosons because of the
symmetry breaking, according to the Goldstone theorem. The Goldstone Theorem states that
under the SSB of the global symmetry groups GÑ H, there will be nG ´ nH massless particles
or Nambu-Goldstone bosons, where n is the dimension of the symmetry group.

The next step is to promote the global symmetry to a local one. To do so we introduce
the gauge fields Wµpxq and Bµpxq for the SUp2qL and Up1qY groups, respectively, so that the
kinetic term becomes invariant. Up1qY is a subgroup of SUp2qR. In this way, the Higgs sector
Lagrangian takes the form

LH “ DµΦ:DµΦ´ V ´
1

4
Wµν
a W a

µν ´
1

4
BµνBµν (2.20)

with the potential

V “ m2Φ:Φ` λpΦ:Φq2 (2.21)

and the covariant derivative

DµΦ “

„

Bµ ` i
g

2
W a
µσa ` i

g1

2
Bµ



Φ, (2.22)
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where g and g1 are coupling constants. Notice that this follows from the Yang-Mills proposal [4]
we referred at the beginning of this chapter.

The SUp2qL non-Abelian gauge field Wµpxq has 2ˆ 2 complex matrices as field variables. It
can be written in terms of the Pauli matrices σa as

Wµpxq “
i

2

3
ÿ

a“1

W a
µ pxqσa, (2.23)

and a gauge transformation

Wµpxq
1 “ Gpxq

ˆ

Wµ `
1

g
Bµ

˙

G:pxq, Gpxq P SUp2qL. (2.24)

The field strength tensor includes a commutator which makes the gauge field self-interacting, it
takes the form

Wµν “ BµWν ´ BνWµ ` grWµ,Wνs. (2.25)

The Up1qY gauge field Bµ transforms with a scalar function φpxq, as usual

Bµpxq
1 “ Bµpxq `

1

g1
Bµϕpxq (2.26)

and its field strength tensor is

Bµν “ BµBν ´ BνBµ. (2.27)

These symmetry groups and gauge fields describe the electroweak interaction. The unifica-
tion of the weak and electromagnetic interactions, that is the electroweak sector, was pursued
since Fermi [20] and found first by Glashow [21] requiring the existence of neutral weak pro-
cesses. The motivation was that leptons just seemed to interact with photons and the interme-
diate bosons of weak interactions, so there was a suspicion that we could construct a unique
theory for both interactions. The weak neutral processes were already proposed by Bludman
who added the neutral gauge boson Z0, a partner of W˘ [22]. But the complete formulation
was proposed by Weinberg and Salam [23], employing the Glashow model but as an SSB of
gauge theory using the Higgs mechanism. The main difference between these two models is
that Glashow introduced symmetry breaking terms in the Lagrangian instead of using the Higgs
mechanism, this led to less definite predictions [23]; for example Glashow could not justify the
weak gauge bosons masses in his approach. In 1973 first evidence of neutral weak interactions
was found, through the scatterings νµ ` eÑ νµ ` e and the neutrino-quark (nucleon) processes
νµ `N Ñ νµ `N , νµ `N Ñ νµ `N using bubble chamber photos at CERN [24].

In the case of symmetry breaking with m2 ă 0, we can select the vacuum solution in eq.
(2.18). This vacuum state does not break completely the SUp2qL b Up1qY symmetry, instead
this solution is invariant under certain gauge transformations which we identify as Up1qem, the
gauge group of electromagnetism. These transformations take the form

Φpxq1 “

ˆ

eieϕ{2 0
0 1

˙

Φpxq. (2.28)
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By selecting a vacuum solution with real fluctuations due to gauge invariance and a transfor-
mation of a combination of isospin and hypercharge, given by

Φ “
1
?

2

´

0
v `Hpxq

¯

, (2.29)

and expanding the Lagrangian in eq. (2.20) around this vacuum solution eq. (2.29), we find a
massive Higgs particle with mass m2

H “ ´2m2, two W -bosons with mass mW “ gv{2, along
with a linear combination we define the Zµ field and the photon field Aµ

ˆ

Aµ
Z0
µ

˙

“

´

cos θW sin θW
´ sin θW cos θW

¯

ˆ

Bµ
W 3
µ

˙

, (2.30)

which correspond to a massive Z0 boson with mass mZ “ v
a

g2 ` g12{2 and a massless photon.
Now we have an explanation for the bosons mass. We call θW the weak mixing angle and it is
given by cos θW “ g{

a

g2 ` g12 and sin θW “ g1{
a

g2 ` g12. Due to the Higgs mechanism, the
W and Z bosons become massive. The coupling constant for the photon is the electric charge e
and by re-arranging of the fields in the kinetic term, we can identify it with

e “
gg1

a

g2 ` g12
. (2.31)

This is the weak and electromagnetic interaction described as an unified gauge theory, the
Glashow-Weinberg-Salam theory.

Quantization of the photon field leads to Quantum Electrodynamics, where the photon is the
gauge boson which mediates the electromagnetic interactions. Regarding the discovery of the
photon γ we have to go back to the history of light. In 1900 Planck postulated electromagnetic
radiation to be quantized with energy quanta E “ ~ω and avoided the ultraviolet catastro-
phe. In that epoch this was understood as a mathematical artifact instead of a change in the
understanding of nature. But in 1905 Einstein employed this postulate for the photoelectric
effect using a momentum of semi-corpuscular nature for the light, even though this was not a
direct proof for the existence of the photon. Finally in 1932 Compton found the scattering of a
particle at rest and the shift in the wavelength of light, which indeed proves that the photon is
a quantum particle.

The W˘ and Z0 bosons were found experimentally in 1983 using a proton-antiproton collider
constructed at CERN [25]. The Higgs boson was found in 2012 by the experiments ATLAS [26]
and CMS [27], also at CERN.

2.3 Leptons and quarks

Leptons and quarks, which are fermions, should now be included. First let us take a fermion
field ψ and distinguish between left-handed (L) and right-handed (R)

ψL,R “
1

2
p1¯ γ5qψ, (2.32)
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where γ5 is the product of the Dirac gamma matrices γ5 “ iγ0γ1γ2γ3, ψL and ψR are its
eigenvectors. The distinction between L and R is called chirality. In the case of massless
fermions, chirality and helicity are the same and it is defined as the projection of the spin onto
the direction of motion. We say a massless particle is left-handed if the spin is opposite to its
direction of motion and right-handed if they have the same direction.

If we work just with the first generation of leptons and quarks, we should include electrons,
electron neutrinos and the up and down quarks. First let us consider the leptons. The electron
was discovered in 1897 by Thomson using the deflection by an electromagnetic field of cathode
rays from a hot filament. The neutrino was a hypothetical particle proposed by Pauli, to justify
the energy spectrum of the electron in β-decay, which did not seem to conserve energy. The
neutrino was observed in 1956 in the Savannah River nuclear reactor using the inverse β-decay
ν ` pÑ n` e` [28].

In the SM there are only left-handed neutrinos and they are massless, so this will be our
approach in the continuation of this chapter. The other leptons and quarks acquire mass through
the Higgs mechanism via Yukawa interaction terms in the Lagrangian. The left-handed neutrino
νLpxq and the left-handed electron eLpxq can be written as a SUp2qL doublet, while the right-
handed electron eRpxq is written as a singlet, so the Lagrangian reads

L “ pνL, eLqiγµ
„

Bµ ` i
g

2
W a
µσa ´ i

g1

2
Bµ



´

νL
eL

¯

` eRiγ
µpBµ ´ ig

1BµqeR. (2.33)

Defining the charged fields W˘
µ “ pW

1
µ ¯ iW 2

µq{
?

2 and using the Z0
µ field and photon field Aµ

which are natural after the SSB, we can write the Lagrangian as

L “pνL, eLqiγµ
¨

˝

Bµ `
i
?
g2`g12

2 Z0
µ

ig
?

2
W`
µ

ig
?

2
W´
µ Bµ `

ipg12´g2q

2
?
g2`g12

Z0
µ ´

igg1?
g2`g12

Aµ

˛

‚

´

νL
eL

¯

` eRiγ
µ

˜

Bµ ´
ig1

a

g2 ` g12
pg1Z0

µ ` gAµq

¸

eR.

(2.34)

Here we can appreciate how the photon field couples to the electron but not to the neutrino,
making it an electrically neutral particle. Indeed we will find that neutrinos interact just through
the weak force and the Yukawa couplings.

A first generation of quarks must be added to this first generation of leptons. This is because
of the Up1qY gauge anomaly which comes from the fermionic triangle diagrams, and Witten’s
global anomaly in the SUp2q interaction. Adding quarks cancels these gauge anomalies. As
they participate in the strong interaction, they carry an SUp3q color charge with the color
index c “ tr, g, bu, anomaly cancellation requires an odd number of colors. We can write the
left-handed quarks up uLpxq and down dLpxq as SUp2qL doublets, and the right-handed quarks
uRpxq, dRpxq as flavor singlets.

As we mentioned before, we should include a Yukawa term for the electrons to have mass.
This term reads

L “ fe

”

eRΦ:
´

νL
eL

¯

` pνL, eLqΦeR

ı

“
fe
?

2

”

eRpφ
˚
`, φ

˚
0q

´

νL
eL

¯

` pνL, eLq
´

φ`
φ0

¯

eR

ı

. (2.35)
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Under the SSB we suppose the Higgs field to choose the VEV

Φ “
1
?

2

´

0
v

¯

. (2.36)

This will give us an electron mass me “ fev while the neutrino remains massless. For the down
quark dpxq we include another Yukawa term

L “ fd

”

dRΦ:
´

uL
dL

¯

` puL, dLqΦdR

ı

“
fd
?

2

”

dRpφ
˚
`, φ

˚
0q

´

uL
dL

¯

` puL, dLq
´

φ`
φ0

¯

dR

ı

, (2.37)

where we obtain a down quark mass md “ fdv and a massless up quark. For the up quark to
acquire a mass we should write a slightly different Yukawa term using the Higgs field

rΦ “
1
?

2

ˆ

φ˚0
´φ˚`

˙

. (2.38)

This Yukawa term reads

L “ fu

”

uRrΦ
:
´

uL
dL

¯

` puL, dLqrΦuR

ı

“
fu
?

2

„

uRpφ0,´φ`q
´

uL
dL

¯

` puL, dLq

ˆ

φ˚0
´φ˚`

˙

uR



, (2.39)

which provides an up quark mass mu “ fuv.

The next step is to introduce the remaining generations of fermions, following the pattern
of the first generation of leptons. The second generation consists of an SUp2qL doublet with
the left-handed muon neutrino νµLpxq and the left-handed muon µLpxq, and a singlet with the
right-handed muon µRpxq. The same reasoning applies to the third generation of leptons, with
an SUp2qL doublet consisting of the left-handed tauon neutrino ντLpxq and the left-handed tauon
τLpxq, and a singlet for the right-handed tauon τRpxq. The muon was discovered in 1947 by
Powell et al., in experiments with cosmic rays [7]. The tauon was discovered in 1975 by Perl
et al. [29], when observing the reaction e´ ` e` Ñ e˘ ` µ¯ ` .... Then it was proposed and
discovered in the reaction e´` e` Ñ τ´` τ` Ñ e˘`µ¯` 2ν ` 2ν, where the tau particles are
an intermediate state.

The law of lepton number conservation was proposed in 1953 by Konopinsky and Mahmoud
[30] in order to discriminate whether certain reactions are possible. They assigned a number
L “ `1 to leptonic particles and L “ ´1 to their anti-particles. Thus in an elementary particle
reaction, the lepton number before and after the reaction should be the same according to this
law. This explained why the analogous reaction of the β-decay ν ` nÑ p` e´ has never been
observed. The fact that the neutrino is an electrically neutral particle, raised the question if
it was its own anti-particle. In addition, lepton number families were defined Le, Lµ, Lτ to
account for the absence of reactions like µ´ Ñ e´ ` γ, using also the fact that neutrinos fall in
these families.

In the case of the remaining generation of quarks, as we did with the u and d, we write the
left-handed quarks as SUp2qL doublets and the right-handed as singlets. The second generation
is composed of the charm (c) and strange (s) quarks and the third generation with the top (t)
and bottom (b) quarks.
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So in the end we have the three generations of fermionic fields

´

νeL
eL

¯

, eR;
´

ucL
dcL

¯

, ucR, dcR;
ˆ

νµL
µL

˙

, µR;
´

scL
ccL

¯

, scR, ccR;

´

ντL
τL

¯

, τR;
´

tcL
bcL

¯

, tcR, bcR.

(2.40)

With these generations we can write a Lagrangian as we did for the first one, including the free
terms, the couplings with the gauge fields Wµ, Bµ and the Yukawa interactions, which provide
mass through the Higgs mechanism to all fermions except to the neutrinos.

In this version of the SM, neutrinos are massless left-handed particles, while the anti-
neutrinos are massless and right-handed. The chirality can be observed experimentally by
considering some special decays as follows. First, the β-decay n Ñ p ` e´ ` νe, consisting
of a neutron decaying into a proton, an electron and an electron anti-neutrino; or written as a
weak interaction dÑ u`W´ Ñ u` e´ ` νe. Parity (P) or mirror symmetry is broken in this
process as first observed by Wu and her collaborators in the reaction 50

27Co Ñ 60
28Ni`e´`νe`2γ.

In the Wu experiment, γ-rays2 were emitted in two directions, while the observed electrons were
preferentially emitted in the direction opposed to the nuclear spin [31]. This was a proof of
P-violation and it also implies charge conjugation C-violation [32, 33]. Now let us consider the
decay π´ Ñ µ´`νµ, which was used as an indirect method to measure the anti-neutrino helicity
and identify it as right-handed [34]. While even the detection of neutrinos is hard to achieve,
these kind of indirect methods accounts for the measurement of the neutrino helicity. When the
pion is at rest, the muon and neutrino will come in opposite directions and as the pion has spin 0,
the muon and the neutrino spins must be oppositely aligned. This led to identify the neutrino as
left-handed and the anti-neutrino as right-handed, with no evidence of a right-handed neutrino
or left-handed antineutrino. Indeed this characteristic of the neutrino is the perfect example for
P-violation and C-violation.

Now let us focus on the quarks and consider the SSB. We obtain a general quark mass term

puL, cL, tLqM
U

˜

uR
cR
tR

¸

` pdL, sL, bLqM
D

˜

dR
sR
bR

¸

, (2.41)

using bi-unitary transformations to the 3 ˆ 3 mass matrices MU and MD defined above. We
can diagonalize them by

UU:L MUUR “ diagpmu,mc,mtq, UD:L MDUR “ diagpmd,ms,mbq, (2.42)

where the terms in the diagonals are the physical quark masses. Subsequently, we relate the
gauge eigenstates f to the mass eigenstates f 1 as

˜

uL
cL
tL

¸

“ UUL

˜

u1L
c1L
t1L

¸

,

˜

uR
cR
tR

¸

“ UUR

˜

u1R
c1R
t1R

¸

, (2.43)

2The resulting 60Ni nuclei is in an excited state and decays to its ground state through the emission of two
photons. These photons are measured and used to determine the nuclei polarization and its associated anisotropy.
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˜

dL
sL
bL

¸

“ UDL

˜

d1L
s1L
b1L

¸

,

˜

dR
sR
bR

¸

“ UDR

˜

d1R
s1R
b1R

¸

. (2.44)

The Cabbibo-Kobayashi-Maskawa (CKM) quark mixing matrix is given by

V “ UU:L UDL P Up3q, (2.45)

which accounts for the strength of the flavour-changing weak interactions coming from the
charged currents. Examples of flavor changing transitions are the β-decay mentioned before,
and the decay Λ Ñ p ` e ` νe, where respectively the involved processes are u Ñ d `W´ and
sÑ u`W´.

In order to explain the decay rates of these two processes, in 1963 Cabibbo suggested an extra
factor of cos θC and sin θC in the vertex of the Feynman diagrams of these processes respectively
[35], where θC is known as the Cabibbo angle. Explicitly, as we can foresee from the eq. (2.44),
they are related as

ˆ

d1

s1

˙

“

´

cos θC sin θC
´ sin θC cos θC

¯´

d
s

¯

. (2.46)

However, the Cabibbo angle caused another problem, it predicted the decays K
0
Ñ µ´ ` µ`,

K` Ñ π` ` l ` l, etc., which do not happen in nature. This problem was solved by Glashow,
Iliopoulos and Maiani (GIM) in 1970 by introducing a forth quark, the charm [36]. We can see
two Feynman diagrams for the leptonic decay of the neutral kaon in Fig. 2.4. These diagrams
cancel each other due to the large W mass, suppressing this neutral current.

(a) (b)

Figure 2.4: Leptonic decay of the neutral kaon.

By that time just three quark flavors were known, according to the content of discovered
particles. Four years later, the charm quark was found by experimental evidence through the
discovery of the ψ{J meson. The interpretation of the GIM scheme was that instead of using
the quarks d, s, in weak interactions one should use the mass eigenstates d1, s1.

Subsequently the other quark flavors were found. The fifth quark flavor b was discovered
through the meson Υ and the sixth quark flavor t was discovered through the processes u`uÑ
t` t and d` dÑ t` t in 1995 with the Tevatron.

For three generations of matter, that is with the six quark flavors, Kobayashi and Maskawa
in 1973 [37] generalized the Cabibbo-GIM scheme in a 3ˆ 3 matrix V given in eq. (2.45). This
matrix has 9 parameters but some of them are redundant. In fact there are just four free
parameters, three mixing angles θiC (or Cabibbo angles) and a complex phase δ.
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P, C and CP (the combination of charge and parity symmetries) are violated in weak inter-
actions. We have seen how processes involving neutrinos violate P and C, but CP is not violated
by neutrinos. Nevertheless, CP is violated in other weak interactions, for example in processes
involving neutral kaons decays. This is accommodated in the SM as above, by the introduction
of the complex phase δ in the CKM matrix.

At last we repeat that neutrinos in the SM are considered to be massless. However this is
not true. A consequence of neutrinos being massive particles3 is neutrino oscillations. The first
observation of neutrino oscillations was found in the Super-Kamiokande experiment in 1998 with
atmospheric neutrino fluxes [38] and in the SNO experiment in 2001 [39]. This phenomenon can
be understood as a lepton mixing process, where neutrinos in a certain lepton family changes
into a different one. In analogy to the CKM matrix, this can be explained in what is known as
the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [40, 41].

Extensions of the SM can be made to include neutrino masses in several ways, adding for
example Dirac or Majorana terms to the Lagrangian. For the Dirac neutrinos, the mass term
uses the Higgs mechanism as we have already seen

L “ fν

”

νRrΦ
:
´

νL
eL

¯

` pνL, eLqrΦνR

ı

“
fν
?

2

„

νRpφ0,´φ`q
´

νL
eL

¯

` pνL, eLq

ˆ

φ˚0
´φ˚`

˙

νR



. (2.47)

This is a Yukawa interaction and the right-handed neutrino is sterile because it is not coupled
to any gauge field.

On the other hand, for Majorana neutrinos, the neutrino is its own anti-particle. The mass
term can be written as

L “ 1

2
pνRMRCν

T
R ` ν

T
RCM

:

RνRq, (2.48)

where C is the charge conjugation matrix. This mass term violates the lepton number by ∆L “
˘2. One of the major consequences of Majorana neutrinos is the still undetected neutrinoless
double β-decay.

3This holds for at least two of the three generations.



Chapter 3

Topological defects

Topological defects can be found in a great variety of systems in condensed matter. Some ex-
amples are the quantized magnetic flux lines in type-II superconductors, vortices in superfluids
as 3He or 4He, dislocations and other defects in crystals. Furthermore some proposals in and
beyond the SM exist with cosmological effects. Some examples of topological defects include
dislocations, domain walls, monopoles, textures, instantons, time dependent solitons and vor-
tices. Topological defects are associated with phase transitions since they arise from SSB and
they are characterized by the topological properties of the order parameter space or vacuum
manifold. Thus, topology can help us to establish a classification and prediction of this type of
phenomena in a physical system.

Within his contributions to the standard theory of phase transitions, particularly in his
studies about critical phenomena, Lev Landau, around the year 1932, was motivated to define
the order parameter η to characterize thermodynamic systems near their critical point [42]. This
was done by expressing the molar Gibbs free energy (or another thermodynamic potential) as
a power series of η, as an assumption. The order parameter is defined as a property of the
system that takes the value η “ 0 in a symmetric or disordered phase, and η ‰ 0 at an ordered
phase. While Landau’s theory was successful in predicting critical exponents, sometimes with
a numerical value near the experimental one, the analytic solution of the 2-dimensional Ising
model by Lars Onsager [43] was in contradiction. The order parameter led to conceptual clarity
and now we understand Landau’s proposal as an effective description.

The order parameter contains information about the topological defects. Phase transitions
are frequently associated with SSB. The SSB is a process in which an ordered state emerges from
a state of higher symmetry phase. This can lead to the formation of certain kinds of defects
defined as high symmetry regions covered by an ordered phase. The existence of topological
defects is related to the topology in which the order parameter of the system is defined, which
corresponds to a degenerate vacuum.

In order to clarify some concepts let us consider the molecular structure of water as an
example. In its liquid phase, water has a continuous translational symmetry and a continuous
rotational symmetry. But in the solid phase, the ice, water acquires a crystal structure that

19
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breaks these symmetries. Now it is invariant only under discrete translations and rotations. We
can see this in Fig. 3.1, ice (left) is just invariant under 120˝ rotations and not under arbitrary
rotations as in the liquid phase (right). In this way we identify the symmetric phase with the
disordered phase while the ordered phase corresponds to symmetry breaking.

Figure 3.1: Molecular structure of water in its solid phase (left) and liquid phase (right).

Another example is the 2-dimensional Ising model. It is formulated on a lattice where each
point carries a classical spin σi that can only take two values ˘1. The spins could represent
atomic dipolar moments. This is one of the simplest models of statistical physics that exhibits a
phase transition. There is a paramagnetic and a ferromagnetic phase. In the high temperature
regime, spins are randomly distributed and the magnetization is M “

ř

i σi{N “ 0. In this
phase, the Hamiltonian has a Z2 symmetry, it is spin flip invariant σi Ñ ´σi @ i. But when
the system cools down, the spins align. In this phase, the spin rotation symmetry is broken and
magnetization is non-zero. Thus, the order parameter is the magnetization M “

ř

i σi{N .

Now let us consider a ferromagnetic model, where spins are defined in space on a 3-dimensional
lattice. Spins are now 3-dimensional unit vectors and their direction is randomly distributed in
the symmetric phase where the order parameter is zero. But in the ferromagnetic phase, spins
align in an arbitrary direction. This gives rise to a parameter space equivalent to a 2-sphere, as
we can see in Fig. 3.2, and it corresponds to the direction of the magnetization.

Figure 3.2: The parameter space for a 3-dimensional ferromagnet is equivalent to a 2-sphere.

Homotopy groups are used to classify topological spaces and they contain information about
the basic shape or holes on a manifold. The definition of the n-th homotopy group πn is given
as follows. Let us consider two maps that preserve the base point f, g : Sn ÑM defined from
the n-sphere to a topological space or manifold M. These maps are homotopic if they can be
smoothly deformed into each other. Such homotopic maps form an equivalence class and each



21

map can be considered as an element of a group called πn, the n-th homotopy group. Figure 3.3
shows an application of the homotopy group π1 which consist of closed curves in space. In this
way we show how two topological spaces X and Y are distinct. In this figure the curves α and
β are homotopic, but α1 and β1 are not, because α1 contains a hole and it can’t be continuously
deformed into β1.

Figure 3.3: Two distinct topological spaces X and Y .

Now let us consider an example of an application of the homotopy groups in topological
defects. For a crystal, the important degrees of freedom are associated to translational symmetry
breaking. The order parameter for a 2-dimensional lattice is the displacement ~d1p~rq which is given
by

~d1p~rq “ ~dp~rq ` nax̂`maŷ, (3.1)

where x̂ and ŷ are the unit vectors in the plane. This displacement takes an ion from the real
lattice to the ideal regular lattice and this implies discrete translational symmetry. pn,mq are
integers and a is the lattice spacing. However in the presence of a dislocation, this symmetry
is lost. The set of equal order parameters form a lattice with periodic boundary conditions,
which is equivalent to a 2-torus. In Fig. 3.4 we see a dislocation in a lattice as a hole; a curve
surrounding it is represented as a curve which contains the center of the torus. We have an
infinite number of curves but we can classify them in two types, those which contain the hole
and those that do not. This can be described by two integers and it is important to highlight
that the homotopy of the torus is π1pT

2q “ Zb Z.

Figure 3.4: Dislocation on a lattice represented with a closed curve that contains the center of
the torus.
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In this way a pair of integers pn,mq, which are the winding numbers, determines the number
of extra rows and columns of atoms, respectively. The winding number of a curve is the number
of times a curve turns around the image of the map, as depicted in Fig. 3.5.

Figure 3.5: Winding number.

Up to now, we have taken just classical physics examples. In Quantum Mechanics and
in QFT, instead of an order parameter, we use the wavefunction and the vacuum manifold,
respectively. In this terminology we will take the vacuum state. If this state space is topologically
non-trivial, particularly if there are non-trivial homotopy groups, then it can have topological
defects. In this case, a QFT is described by a symmetry group G, and under a SSB to a symmetry
group H, topological defects arise if the homotopy group of the quotient space M “ G{H (the
space of all accessible vacua) is topologically non-trivial, i.e. πnpMq ‰ 1. This translates to a
system that has different ground states: in certain regions the system will choose different states
and the differences will be the topological defects.

3.1 Vortices

3.1.1 Type-II superconductors

A superconductor is a type of material whose electric resistance falls abruptly to zero below
a critical temperature. This phenomenon was discovered in 1911 by Kamerlingh Onnes [44].
Additionally the magnetic fields are repelled by this material, this is known as the Meissner
effect [45].

Superconductivity is a quantum phenomenon that, although it may seem like a classical ide-
alization of conductivity, is conventionally explained by the microscopic theory of BCS (Bardeen-
Cooper-Schrieffer) [46]. This theory states that two electrons can be correlated to form a Cooper
pair. The mechanism consists of an electron moving through the material that attracts positive
charge around it, this in turn will attract a second electron overcoming the Coulomb repulsion,
with the opposite spin moving in the region of greater positive charge than the first electron.
Superconductivity is explained as a macroscopic effect of the condensation of Cooper pairs.

Superconductors have a classification as type-I and type-II. For the first type there is only
one critical magnetic field Hc, the maximum magnetic field in which the material keeps being
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superconducting and the magnetic field is expelled from the material. It is exponentially sup-
pressed in the penetration depth. On the other hand, type-II superconductors have two critical
fields Hc1 and Hc2, in the region between them, the magnetic field is able to penetrate in certain
points called vortices.

Figure 3.6 shows vortices in the magnetic field of a 200 nm thin film of Yttrium Barium
Copper Oxide (YBCO), which is a ceramic superconducting material composed of oxides of
yttrium, barium and copper. This figure was taken from Ref. [47], which used the SQUID
technique for microscopy by superconducting quantum interference scanning, in order to measure
the local magnetic field on the surface of the thin film.

Figure 3.6: Vortices in the local magnetic field of a 200 nm thin film of YBCO superconductor,
image taken from Ref. [47].

Let us start from the Ginzburg-Landau theory to obtain an equation of motion for the
vortices in a superconductor. The wavefunction ψ represents the superconducting electrons
and the modulus |ψ| is the analogue of the order parameter in this quantum phenomenon.
The ordered phase is the superconducting phase, and for higher temperatures above a critical
temperature Tc, one obtains |ψ| “ 0. For lower temperatures one obtains |ψ| ‰ 0. The free
energy F can be expressed as a series in |ψ| around Tc as we have seen in Landau’s proposal

F “ F0 ` α|ψ|2 `
β

2
|ψ|4, (3.2)

subject to the equilibrium conditions

BF

B|ψ|2
“ 0,

B2F

B2|ψ|2
ą 0. (3.3)

In this way we can determine the coefficients in the critical point as αc “ 0 and βc ą 0, while
for T ă Tc, we obtain α ă 0. In the equilibrium superconducting phase we arrive at

0 “
BF

B|ψ|2
“ α` β|ψ|2, (3.4)
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which determines

|ψ|2 “ |ψ8|2 “ ´
α

β
“ ´

Tc ´ T

βc

ˆ

dα

dT

˙

c

, (3.5)

where we assume αpT q “ pTc´T qpdα{dT qc and βpT q “ βc as valid in the expansion. Substituting
in eq. (3.2) we also obtain

F “ F0 ` α|ψ|2 `
β

2
|ψ|4 “ F0 ´ α

α

β
` β

α2

2β2

“ F0 ´
α2

2β
“ F0 ´

pTc ´ T q
2

2βc

ˆ

dα

dT

˙2

c

.

(3.6)

Now let us assume the superconductor to be immersed in a time-independent magnetic field.
The above equation has to be modified to include the energy density of the magnetic field H2{8π,
where ~H is the magnetic field strength, and the kinetic energy density in quantum mechanics

~2

2m
|∇ψ|2 Ñ 1

2m

∣∣∣∣´i~∇ψ ´ 2e

c
~Aψ

∣∣∣∣2, (3.7)

where ~A is the vector potential. This substitution is due to the fact that in the presence of a
magnetic field, the canonical moment is used for a Cooper pair of charge 2e [48], which gives
rise to the above expression. In this way, the free energy takes the form

F “ F0 ` α|ψ|2 `
β

2
|ψ|4 ` H2

8π
`

1

2m

∣∣∣∣i~∇ψ ` 2e

c
~Aψ

∣∣∣∣2. (3.8)

Now, in order to obtain the equations of motion outside the superconductor z ą 0, we vary
the free energy F “

ş

FdV with respect to ψ˚ (or ψ for the conjugated equation) requiring it to
be minimal

δψ˚F “
ż

dV

˜

αψ ` βψ|ψ|2 ` 1

2m

ˆ

i~∇ψ ` 2e

c
~Aψ

˙2
¸

δψ˚ “ 0. (3.9)

If we write
ˆ

i~∇ψ ` 2e

c
~Aψ

˙2

δψ˚ “

ˆ

i~∇` 2e

c
~A

˙2

ψδψ˚ ` ~∇ ¨
ˆ

~∇´ 2ie

c
~A

˙

ψδψ˚, (3.10)

we obtain a term as a total derivative (the term with the divergence) that will give zero when
being integrated due to the boundary conditions, so the minimum free energy condition results
in an equation of motion that takes the form

αψ ` βψ|ψ|2 ` 1

2m

ˆ

i~∇` 2e

c
~A

˙2

ψ “ 0. (3.11)

Under an appropriate re-scaling of the variables ~r, ψ and ~A [49], this equation can be written
in a dimensionless form as

ˆ

i

χ
∇` ~A

˙2

ψ “ ψ ´ ψ|ψ|2. (3.12)
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The parameter

χ2 “
1

2π

´mc

2e~

¯2
, (3.13)

is used to classify superconductors. Ginzburg and Landau only considered cases with small
χ (χ ! 1{

?
2). But Zavaritskii and Abrikosov [50, 51] showed that for χ ą 1{

?
2 they could

describe thin films of pure condensed metals and suggested the division of superconductors in
two groups: type-I superconductors with χ ă 1{

?
2 and type-II with χ ą 1{

?
2. This parameter

is used to determine the surface tension between the superconducting and normal phases of a
material.

Analogously we obtain an equation of motion for the field ~A, for which we also impose the
minimum condition on the free energy

δ ~AF “
ż

dV

˜

2Hδ ~H

8π
`

2eδ ~A

2mc
˚

ˆ

i~∇ψ ` 2e

c
~A

˙

` c.c.

¸

, (3.14)

where the second and third term (its complex conjugate) come from expressing the modulus
|w|2 of a complex function as ww. The first term is

Hδ ~H

4π
“

1

4π
∇ˆ ~A ¨ δ∇ˆ ~A “

1

4π
∇ˆ ~A ¨∇ˆ δ ~A. (3.15)

Using the vector identity

∇ ¨
´

~aˆ~b
¯

“ ~a ¨ p∇ˆ~bq ´~b ¨ p∇ˆ~bq, (3.16)

we can write

∇ˆ ~A ¨∇ˆ δ ~A “ ∇ ¨
´

δ ~Aˆ∇ˆ ~A
¯

`∇ˆ∇ˆ ~A, (3.17)

and in this way, omitting the total derivative, we obtain the equation

∇ˆ∇ˆ ~A “ ´
e

mc
˚

ˆ

i~∇ψ ` 2e

c
~A

˙

` c.c. (3.18)

With the same change of variables used before, this can be written in a dimensionless form

∇ˆ∇ˆ ~A “ ´|ψ|2 ~A` 1

2χ
pψ˚∇ψ ´ ψ∇ψ˚q . (3.19)

Equations (3.12) and (3.19) are the Ginzburg-Landau equations for the superconductors [49].
Let us suppose the superconductor to occupy all the volume and the field ~A to be oriented in
the y direction [51],

~A “ H0xŷ, ~H “ H0ẑ. (3.20)

As a first approximation we can neglect the effects of ψ in the vector field, so we can use just
the linearized version of eq. (3.12). Solving by variable separation and assuming z-independence

ψpx, y; kq “ eikyφpxq, (3.21)
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where k is the wavenumber, eq. (3.12) takes the form

d2φ

dx2
“ ´χ2φ

«

1´H2
0

ˆ

x´
k

χH0

˙2
ff

. (3.22)

This is the harmonic oscillator equation, and a physical solution is given by the condition

χ “ H0p2n` 1q, (3.23)

where n is an integer. Thus, the general solution is a linear combination [51]

ψpx, yq “
8
ÿ

n“´8

Cne
ikny exp

˜

´
χ2

2

ˆ

x´
k

χ2

˙2
¸

. (3.24)

To illustrate the behaviour of this solution let us do some simplifications. First let us note that
this solution is periodic in y with period y0 “ 2π{k. Let us take a simple example that will
reproduce a rectangular lattice, this is given when we take the same value for the coefficients
Cn. In this way, the periodicity range in x is x0 “ k{χ2 and we obtain a square lattice geometry
with area x0y0 “ 2π{χ2 “ ξ2 corresponding to a quantum of flux per cell and ξ is the correlation
length. The solution is then

ψpx, yq “ C
8
ÿ

n“´8

exp

ˆ

2πi
ny

y0

˙

exp

ˆ

´
χ2

2
px´ x0nq

2

˙

(3.25)

and we show the modulus |ψ| of the solution in Fig. 3.7.

Figure 3.7: Contour lines of the solution |ψ| with square lattice symmetry.

To give an interpretation to this result, let us note that from eq. (3.19) we can define the
current

~J “ ´|ψ|2 ~A` 1

2χ
pψ˚∇ψ ´ ψ∇ψ˚q . (3.26)
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The solution given in eq. (3.25) allows us to relate the derivatives as

Bψ

Bx
“ ´i

B

By
´H0xψ. (3.27)

For the component Jx, remembering ~A is oriented in the y-axis, it is clear that

iψ˚
B

Bx
´ iψ

Bψ˚

Bx
“ iψ˚

ˆ

´i
B

By
´H0xψ

˙

´ iψ

ˆ

i
B ˚

By
´H0xψ

˚

˙

“ ψ˚
Bψ

By
`

Bψ˚

By

“
B|ψ|2

By
.

(3.28)

The component Jy behaves analogously. In this way we can write the components of the current
as

Jx “ ´
1

2χ

B|ψ|2

By
, Jy “

1

2χ

B|ψ|2

Bx
. (3.29)

Thus we can conclude that |ψ|2 is the current function since the flux runs through lines with
constant |ψ|. We define a quantized vortex as a linear object (in 3 dimensions) that is charac-
terized by a quantized circulation of the phase of the order parameter around this line. This
theoretical prediction in superconductors was made by Abrikosov in 1957 [51]. In the case of
type II superconductors, a second order phase transition to a superconducting phase occurs with
the formation of quantized vortices. More precisely, because of z-independence, the vortices are
in fact filaments or strings, that when intersected with a plane we see the vortices as in Fig. 3.7,
together with the direction of the flux given by the current in Fig. 3.8.

Up to now, the analysis presented here treats multiple vortices near each other at a distance
of the coherence length order. The coherence length is the characteristic distance in which
the order parameter goes from zero in the center of the vortex to its asymptotic value outside
the core. Nevertheless we also study the case of a single vortex in 3 dimensions, considering
cylindrical coordinates and independence of the z-axis. So we start from the ansatz

“ fpρqeiφ, (3.30)

where ρ is the radial distance and φ is the azimuthal angle. With this ansatz and a vector field
given in the angular direction ~A “ Aϕϕ̂, using the non-linear eq. (3.12), the equation of motion
becomes

B2f

Bρ2
`

1

ρ

Bf

Bρ
“

ˆ

4e2Q2

~2c2
` χ2 ´ χ2f2

˙

f, (3.31)

where we have used a gauge transformation in the vector potential

~Q “ ~A´
~c
2e

∇λ “
ˆ

Aϕ ´
~c
2eρ

˙

ϕ̂ “ Qϕ̂. (3.32)

On the other hand, for the equation of motion of the vector potential we obtain

∇ˆ∇ˆ ~Q` f2 ~Q “ ~0, (3.33)
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Figure 3.8: Current as a vector field in the vortex.

and simplifying

B2Q

Bρ2
`

1

ρ

BQ

Bρ
“
Q

ρ2
` f2Q. (3.34)

Equations (3.31) and (3.34) are a system of non-linear second order differential equations which
describe superconductivity, they relate and determine the wavefunction and vector potential,
which can be solved numerically. Equivalently, they relate the current and electromagnetic field.

3.1.2 Superfluids

Superfluidity is a fluid state of matter with no viscosity. Some superfluids also exhibit vortices
in complete analogy with superconductors. But a difference is that in this case, circulation is
quantized. And instead of an electromagnetic field, we talk about a velocity field.

Beyond an analogy, we can argue as follows: a universality class is a set of physical systems
that have the same critical behavior. It turns out that the behavior of a superconductor near
its critical region is classified within the class of universality of λ-transitions. Within this class
there are also some superfluids such as 3He, 4He and liquid crystals [52]. This class regroups
systems with a phase diagram which has the shape of the Greek letter λ.

In a low temperature regime, the helium isotopes 3He, which is a fermion, and 4He, which
is a boson, reach the superfluid phase. Because of its bosonic nature, 4He is easier to describe.
Figure 3.9, taken from Ref. [53], shows the structure of these vortices shaped as filaments or
strings (as we mentioned before when using cylindrical symmetry). The visualization of these
filaments is done by injecting cold hydrogen atoms, which are then trapped by the vortices.
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Figure 3.9: Visualization of filaments in 4He superfluid, image from Ref. [53].

When a substance such as 4He cools down sufficiently, it achieves Bose-Einstein condensation
and a fraction of it is in its ground state described by a macroscopic wavefunction ψ which
represents the superfluid state as a coherent one. The wavefunction can be written as

ψp~rq “ Aeiφ “ A exp
´

i
m4

~
~vS ¨ ~r

¯

, (3.35)

where m4 is the mass of a 4He atom, A is the amplitude and ~vS is the superfluid velocity. The
phase can be written in this way, as in the case of a free particle. Because of the topology of
space which, might contain holes, we see that the circulation is quantized

¿

~vS ¨ d` “
nh

m4
. (3.36)

Therefore, around a singularity we expect circulation to be quantized in units of h{m4 and the
formation of a vortex around it. Because of the macroscopic wavefunction, this imply that the
vortex is indeed a vortex line, as in the case of superconductors. Typically, for 4He the core
radius of those vortices amounts to 0.1 nanometers and therefore the coherence length is very
short.

The fermion nature of 3He changes the behaviour of the phase diagram and indeed we find
two superfluid phases A and B with distinct magnetic properties. Figure 3.10 shows the phase
diagram of 3He. We have a second order phase transition from the fluid to the superfluid A phase
and a first order from A to B, both occur by reducing the temperature. The superfluid A phase
is reached at a lower temperature of the order of miliKelvin [54, 55], where nuclei correlate to
form pairs by an attractive interaction and we can use the BCS theory to describe this new state
of matter. This attractive interaction takes place because of the magnetic properties, namely
the nuclear magnetic moment. So as it happens in superconductors, an atom of 3He leaves the
medium polarized and attracts another 3He atom.

For superfluids like 3He, the order parameter turns out to be a 3 ˆ 3 matrix, which is the
vector representation of the symmetry group SOp3q of the Cooper pair amplitude xaσp~pqaσ1p´~pqy.
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Figure 3.10: Phase diagram of 3He.

This is a correlator where a is the annihilation operator and σ is the spin index. The pairs of
3He contain extra degrees of freedom because of their properties, they involve spin and angular
momentum. In the superfluid phase, the spin-orbit symmetry is spontaneously broken [55] which
gives rise to net (collective) spin and spatial ordering. Other symmetries are also broken in this
system but they are not relevant for this discussion. The A phase contains states of equally
paired spins |Òy, |Óy while the B phase involves also the unpaired state p|Öy ` |Œyq{

?
2.

The same arguments apply to the case of superfluid 3He in the formation of vortices, even
though due to a more complicated nature, there are several types of vortices. As we saw above
for a superfluid velocity ~vS , we will find the circulation to be quantized

¿

~vS ¨ d` “
nh

2m3
, (3.37)

where m3 is the mass of a 3He atom and the factor of 2 comes from the pairing. One of the
main differences with 4He is that in 3He, the coherence length is much larger, which requires
more energy for regular quantized vortex lines to form. However this is not an impediment in
both phases and also implies the existence of meta-stable vortices. These additional types of
vortices [52, 56] are for the A phase the half-integer quantized vortex lines and the vortex sheets
which occur by a planar soliton singularity1. In the case of the B phase there are vortex lines
with double core and hybrid spin-mass vortices consisting of a linear mass vortex, a linear spin
vortex and a planar soliton singularity.

1A domain wall which separates two regions with perpendicular spin and angular momenta in opposite direc-
tion.
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3.2 Topology in field theory

As we mentioned before, baryon number B and lepton number L conservation laws were pro-
posed. However now we know that at very high energy, the SM allows B and L violations,
even though this has not been observed experimentally. These violations correspond to the
Adler-Bell-Jackiw anomaly

BµJBµ “ B
µJLµ “ NgP “ ´

Ng

32π2
εµνρσTrrWµνWρσs, (3.38)

in the divergence of the B current JBµ which equals the divergence of the L current JLµ . Ng is
the number of fermion generations and P is known as the Chern-Pontryagin density. Wµν is the
field strength tensor of the SUp2qL gauge field Wµ. This anomaly is caused by the winding of
the weak gauge fields. At the classical level, the divergence of a current must be zero to obtain a
conservation law. But upon quantization, these divergences pick up quantum corrections known
as instanton and sphaleron processes that represent the violations. From this equation we can
also see that the baryon and lepton currents have the same anomaly, so B´L is still preserved.

For simplicity, we first consider the vacuum structure of the SUp2q gauge theory. It contains
a set of classical vacua. These states can’t be transformed continuously into one another without
passing through non-vacuum states, since they are separated by energy barriers. On the other
hand, SUp2q is topologically equivalent to the 3-sphere S3. This means that the vacuum states
can be characterized as elements in π3pS

3q “ Z. Vacuum states can be divided into different
topological sectors classified by the Chern-Simons or winding number given by

NCS “
1

24π2

ż

S3

d3xεijkTr rGipxqGjpxqGkpxqs , (3.39)

where Gipxq is a pure gauge potential, defined as the set of field configurations of the null-field

Gµ “
|x|2Ñ8

U´1BµU, (3.40)

for some U P SUp2q. Equation (3.39) comes from a four-dimensional integral which is reduced
to an integral over S3. This is due to the boundary condition established in the pure gauge
potential.

Another important quantity is the topological charge

Q “

ż

d4xεµνρσTr rGµνpxqGρσpxqs . (3.41)

The absolute value of the topological charge is the minimum number of discontinuous steps
to arrive from a given field configuration to a trivial one. For an evolution of a gauge field
configuration, we can define the topological charge as a function of time and in a gauge where
boundary terms vanish, we find

∆Qptq “ NCSptq ´NCSp0q. (3.42)

The SUp2q instanton is a gauge field configuration which minimizes the Euclidean action in
the topological sector with Q “ 1, its action takes the value

SE “
8π2

g2
. (3.43)
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The transition amplitude T between two vacuum states can be obtained in QFT at finite tem-
perature and is given by

T “ xn| e´H{T |n` 1y “

ż

DGµe´SE , (3.44)

integrated over closed paths of length 1{T . At zero temperature (g « 0.64) the transition rate
of quantum tunneling is exponentially suppressed by a factor

T 9 e´16π2{g2 9 10´164 (3.45)

[57], which explains the lack of experimental evidence.

On the other hand, a sphaleron is an unstable solution of the equations of motion of the
electroweak theory [58, 59]. In contrast to the instanton, it sits on the top of the barrier and
it has sufficient energy E0 to pass between topological sectors, as depicted in Fig. 3.11. In this
figure we symbolically illustrate the field configuration space which is given by the blue curve,
each point represents a configuration and the minima are the vacuum states labelled by the
winding number NCS in eq. (3.39). The sphaleron is a saddle point in between neighboring
vacua, and its decay to one of them changes NB (NL).

Figure 3.11: Sphaleron transition between sectors of the electroweak vacua. The sphaleron is on
the top of the barrier and it might fall into the vacuum states next to it, labelled by the winding
number NCS . Image taken from Ref. [60].

The transition rate of the sphalerons can be obtained with numerical methods as the Ref.
[61] shows with a lattice formulation. There are cases at finite temperature where thermal
fluctuations enable crossing the barrier classically.

For vacuum transitions, ∆Q is an integer given by the difference of the winding numbers

∆NB “ ∆NL “ Ng∆Q, (3.46)

associated with a process where the bosonic fields jump between different vacuum sectors. This
implies a change in the baryon number. If the gauge fields evolve from one vacuum, say with
NCS “ 0, to a neighbouring one with NCS “ ˘1, then the baryon or lepton number will change
with ˘1. This means that the quark number will change with ˘3. For example, a process in
terms of quarks could look like 2q Ñ 7q ` 3`.

As we can see, the difference B´L is conserved. B´L is an exact symmetry and it is more
natural if we gauge it. This will be our first step in an extension of the SM and will be discussed
in the next chapter.
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3.2.1 Cosmic strings

Cosmic strings or vortices are the main subject of this thesis. They are one-dimensional topo-
logical defects with a filament structure, analogous to type-II superconductors or superfluids
in condensed matter. In the context of QFT, cosmic strings are field configurations of sym-
metric theories where vorticity is concentrated in the core while it dissipates according to their
equations of motion until they acquire their respective VEV. They can be considered as lines of
trapped energy density [62].

In the context of cosmology, the Kibble mechanism [63] states that topological defects might
have been formed in phase transitions in the early universe, in a high temperature regime after
inflation took place, in the radiation dominated era. Inflation is an epoch of the universe at an
age of 10´36 seconds, which solves three fundamental problems. The horizon problem associated
to the isotropy in the Cosmic Microwave Background although there is no causal contact, the
flatness problem given by the fact that initial conditions in the universe would have major effects
in curvature today and the magnetic-monopole problem as stable zero-dimensional topological
defects in magnetic field configurations. Inflation also has the effect of sweeping away topological
defects, that is why we investigate them after this epoch. As traces of those phase transitions,
the case of stable topological defects might still exist in the present. Additionally, these defects
are of great importance since they can be used for explaining the origin of structure at very early
stages because of its interaction with matter [64, 65]. The particular case of cosmic strings is
believed to help in galaxy formation by the inhomogeneities they produce. However, at present
times, if they do exist, there might be just one within the observable universe [63].

Now the analogies with condensed matter we saw in the previous section can be put into
place for superconductors and superfluids. Because of the characteristics of 4He, it was proposed
to be used in experiments which mimic the universe [66, 67, 68]. Near the second order phase
transition, the free energy density can be written as eq. (3.2) which looks like the Higgs potential,
as we have seen already. This will lead to vortex solutions in the equations of motion as we
already seen. It is possible to test key elements of vortex formation during rapid phase transitions
[66]. For 3He the tests are also available, while being of a more complicated nature, measurements
are easier due to its magnetic properties and the nuclear magnetic resonance (NMR) technique
[52]. Another analogy can be made with the reaction

3He` n Ñ 1H` 3H` 764 keV (3.47)

which converts 3He into hydrogen, tritium and thermal energy. This process creates inhomo-
geneities in the superfluid which can build vorticities in the emerging phases [56]. This is a
process of rapid phase transition which can be used as a cosmological experiment as we have
mentioned above.

The simplest theory exhibiting string solutions [69] is described by a complex scalar field φ
and a globally symmetric Up1q invariant Lagrangian

L “ Bµφ˚Bµφ´ V “ Bµφ˚Bµφ´ µ2φ˚φ´ λpφ˚φq2, (3.48)

for λ ą 0 and µ2 ă 0, it has the ground state or vacuum solution

φ “ veiα0 . (3.49)
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This solution is not invariant under Up1q phase rotations, the symmetry is said to be broken.
Besides the vacuum, there are static solutions with non-zero energy density, in a cylindrically
symmetric ansatz

φpr, ϕ;nq “ fprqeinϕ, (3.50)

where n is an integer. The field equations reduce to the non-linear differential equation

d2f

dr2
`

1

r

df

dr
“

ˆ

n2

r2
` µ2 ` 2λf2

˙

f, (3.51)

which corresponds to the Euler-Lagrange equations, as we will see explicitly in the next chapter
for an extension of the SM. Dynamic cosmic strings can be studied with the Nambu-Goto action,
see Ref. [69] for a review. Notice that as r Ñ 0, continuity of φ requires f Ñ 0 and at infinity
f Ñ v, so the field has finite energy. This is the equation of motion of a (global) cosmic string
[70]. Here we observe another analogy. This equation is quite similar to the one we found for a
quantized vortex in type-II superconductors, namely eq. (3.31) but without gauge field. In this
globally symmetric model, the energy per unit length of the string is infinite. But if we consider
Up1q to be a local symmetry, this will be the Abelian Higgs model still presenting stable vortex
solutions and the energy per unit length will be finite [71]. The Lagrangian is

L “ Dµφ
˚Dµφ´ µ2φ˚φ´ λpφ˚φq2 ´

1

4
FµνFµν , (3.52)

with the covariant derivative
Dµφ “ pBµ ` ieAµqφ (3.53)

and the electromagnetic field strength tensor

Fµν “ BµAν ´ BνAµ. (3.54)

The stable vortex solutions in a cylindrically symmetric ansatz takes the form

φprq “ fprqeinϕ, Aµ “
aprq

r
ϕ̂. (3.55)

Following the same arguments as before, applying the Euler-Lagrange equations lead to equations
of motion which describe vortices. Now the important feature is that these vortices have a
quantized magnetic flux

ż

Fµνdσ
µν “

2πn

e
. (3.56)

Using this model we find a distance away from the vortex core, called the penetration depth
given by L “ 1{ev, where the current decays.

A typical profile of a static cosmic string is depicted in Fig. 3.12. Generally for the radial
part fprq of a field satisfying equations of motion like eq. (3.51), a cosmic string profile starts
at r “ 0 taking a value f “ 0 and it grows rapidly to its asymptotic value fpr Ñ8q Ñ v, with
v ą 0.

There is another behaviour for fprq that can also be classified as a cosmic string, with a
profile satisfying the initial and asymptotic conditions but changing its sign in between. We
call this solution a co-axial cosmic string and it is depicted in Fig. 3.13. To the best of our
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knowledge, they are not reported in the literature but at first sight there is no reason to exclude
them. The co-axial cosmic string is a proposal in which the field starts at f “ 0, then it
takes negative values and at last it grows towards positive values achieving asymptotically the
condition fpr Ñ8q Ñ v.

Figure 3.12: Typical profile of a cosmic string.

Figure 3.13: Typical profile of a (hypothetical) co-axial cosmic string.

Finally, conditions of dynamical stability of the vortices can be studied by numerical methods,
as Ref. [72, 73] shows by comparing the minima in the energy of a vortex with a winding number
n and n vortices. In this model the condition states that vortices are stable to perturbations
when λ ă 2e2 for any n and unstable for λ ą 2e2 and |n| ą 1 [72, 74]. The instability can
be explained physically by considering a vortex with a winding number n, splitting apart —
because of the repulsive interaction of the magnetic flux lines — into n separate vortices. In
contrast, for a stable vortex we will have an attractive force keeping together the vortex because
of the potential.

Let us consider a multicomponent scalar field φ which transforms under the representation of
a compact Lie Group G. Let M be the vacuum manifold and let v PM a point in the manifold.
For any element of the group g P G we also have gv PM. But many different elements g yield
to the same point, so we introduce the isotropy group H with all elements h P G such that
hv “ v. Then the points on M are in one-to-one correspondence with M “ G{H. In this way
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we can relate the vacuum manifold and the symmetry group of the theory. A solution for the
field configuration could be given by

φpϕq “ gpϕqv, (3.57)

where g might be regarded as defining a loop in M, a map S1 ÑM. Whether or not there is a
vortex solution depends on the topological characterization of this loop. In the extension of the
SM of this work, we use the symmetry group Up1qB´L and we have a non-trivial first homotopy
group

π1pUp1qq “ Z. (3.58)

There is a condition that assures the existence of stable cosmic strings, an unbroken discrete
symmetry group at low energies.

The concepts we treated before in the SM come into place with cosmology and cosmic strings
when treating the electroweak sector which — as we mentioned before — undergoes a symmetry
breaking SUp2qLbUp1qY Ñ Up1qem. This corresponds to a phase transition in the early universe
when it had an energy above 100 GeV or an age below 10´11 seconds. Unfortunately there are
no topologically stable or dynamically meta-stable vortex solutions for this phase transition
according to the free parameters of the SM measured experimentally [75, 76], unless extensions
of the SM are taken into account. Topological stability of a quantized vortex solution means
that it can’t be deformed continuously into the vacuum solution. It should be emphasized that
this is different from the dynamical stability defined above, where the decay of the cosmic is not
energetically favored.

Similarly cosmic strings are expected in Grand Unified Theories (GUTs) where a larger
symmetry group with non-trivial topology can allow them [69, 77, 78]. This larger symmetry
group is thought to unify at high energies the three known gauge interactions into one and its
breaking would lead to the SM. The GUT phase transitions are expected in the history of the
universe at an age of 10´35 seconds. As an important and relevant fact, B ´ L is expected to
be conserved in any GUT by invariance of SUp3qc b SUp2qL b Up1qY [79, 80].

An example of a GUT is the symmetry group SOp10q which also has B ´ L as a local
symmetry, it contains the SM as SUp3qc b SUp2qL b Up1qY Ă SUp5q Ă SOp10q [81]. SOp10q
contains cosmic strings, we can find an example in Ref. [82] where they are formed in the phase
transition Spinp10q Ñ SUp5q b Z2. Two types of cosmic strings are found in this reference,
an effectively Abelian one which enables baryon number violation and a non-Abelian which can
turn leptons into quarks as they travel around the string. Baryon number violation in GUTs due
to cosmic strings has been investigated and they can be used to explain the baryon asymmetry
in the universe. This requires leptons and quarks to have CP-violating couplings to the strings
[83, 84, 85].

Another example of an extension of the SM, with topological defects, is the Peccei-Quinn
theory. The axion is a non-standard particle in the theory proposed by Peccei-Quinn [86, 87].
This proposal tries to solve the strong CP problem by introducing an additional field and a new
anomalous symmetry Up1qA in the QCD Lagrangian. This symmetry is spontaneously broken at
low energies and gives rise to the axion, making it a pseudo Nambu-Goldstone particle. Axionic
strings are a particular case associated with a spontaneously broken axial Up1qA symmetry.
The breaking of this symmetry leads to cosmic strings [88], as the ones already reviewed. But
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there are more effects upon quantization because of the axial anomaly, the theory couples to
instantons and leads to temperature dependent non-trivial configurations of the gluon field.

Last but not least, cosmic strings have dynamics and tension which makes space-time deform,
thus certain characteristics such as mass and gravitational consequences arise. We have already
talked about the equations of motion for static cosmic strings but they can also have temporal
dependence with moving string solutions and present oscillations which could induce gravita-
tional radiation [89]. For example, in electroweak generalizations, the cosmic strings can have a
mass of the order of 106 g for a length equal to the solar radius (« 7 ˆ 108 m), while for some
GUTs they may have a mass of the solar mass order which would produce gravitational lensing
[90, 91]. Measurements on the Cosmic Microwave Background can test their existence, even
though all observations have just established constraints on the possible string tension [92, 93].
With respect to the Cosmic Microwave Background what should be looked for is step-like discon-
tinuities in the temperature spectrum [94]. Furthermore, models of oscillating loops in cosmic
strings are able to produce powerful bursts of gravitational radiation [95]. Recent achievements
in the observation of gravitational waves also provide constraints for the parameters of cosmic
strings [96].

As we have seen in the case of the electroweak scale, the gravitational effects of cosmic strings
are small and therefore they might not be observable. But they are not the only kind of inter-
actions a cosmic string can have. They can have a superconducting core which enables them to
interact with magnetic fields in the universe with significant astrophysical effects. This happens
in the general case of a theory with symmetry G b Up1q where Up1q is related to electromag-
netism or to a linear combination (for example between electric, electroweak charges and baryon
number minus lepton number [97]) and G is spontaneously broken. Superconductivity can be
achieved — while stability and particularities depend on the model — by Goldstone bosons if
a charged Higgs field has a VEV inside the core, or if there are charged fermions trapped inside
the string [98, 99].
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Chapter 4

Cosmic strings for Y 1

Before starting the section about cosmic strings and the solutions, we describe the extension
of the SM we propose. In the SM there exist processes involving baryon and lepton number
violations, while the difference is kept invariant. This turns B ´ L into a global and exact
symmetry of the SM. So the first step we take is to gauge this symmetry such that it becomes
more natural for it to be exact.

We start by considering an extension of the SM with Up1qB´L as a local symmetry, instead
of a global one. We call Aµpxq the gauge field of the Up1qB´L symmetry group. As a global
symmetry, B´L is a conserved quantum number. Gauging it leads to an anomaly given by the
divergence of the current

BµJB´Lµ “ ´
1

16π2
FµνFµν . (4.1)

where Fµν “ BµAν ´ BνAµ is the field strength tensor of Aµ. This anomaly originates from the
fermion triangle diagram depicted in Fig. 4.1.

Figure 4.1: Fermion triangle diagram with gauge fields A and fermions f .

Explicitly, we will take a linear combination of the hypercharge Y and the quantum number
B ´ L, namely

Y 1 “ αY ` βpB ´ Lq (4.2)

as it is more general (α not to be confused with the fine structure constant) and the symmetry
group is Up1qY 1 , with Aµ the gauge field.

39



40 CHAPTER 4. COSMIC STRINGS FOR Y 1

We have gone a step forward by gauging Y 1 but as a result we have found an anomaly. The
absence of right-handed neutrinos prevents the B´L charges from summing zero. Our approach
consists of adding a right-handed neutrino νRpxq with B ´ L “ ´1 to each fermion generation,
this procedure cancels this anomaly. Now we have solved the problem in a consistent form and
furthermore with this right-handed neutrinos, we can construct mass terms for neutrinos. For
the neutrinos we can add a Dirac mass term using the Higgs mechanism, as the ones we saw in
Chapter 2. Defining

rΦ “
1
?

2

ˆ

φ˚0
´φ˚`

˙

, (4.3)

this mass term will take the form

L “ fν

”

pνL, eLqrΦνR ` νRrΦ
:
´

νL
eL

¯ı

“
fν
?

2

„

pνL, eLq

ˆ

φ˚0
´φ˚`

˙

νR ` νRpφ0,´φ`q
´

νL
eL

¯



, (4.4)

Under SSB, the neutrino will acquire a mass mν “ fνv where fν is the Yukawa coupling, v is
the standard Higgs VEV.

As we expect right-handed neutrinos to have a larger mass than the left-handed, an additional
mass term is proposed. We can’t use a Majorana mass term because it would violate B ´ L
conservation. This is not a problem in the SM, because a global symmetry like this can be
broken. But in this extension we consider it as a gauge symmetry. So we write a Majorana mass
term and use the Higgs mechanism. This type of term requires an additional complex scalar
Higgs field χpxq. This is the third field we add to our model and the last one. The mass term
for the right-handed neutrino takes the form

L “ fM

´

χνCRνR ` χ
˚νRν

C
R

¯

. (4.5)

Since the Lagrangian must be invariant under Up1qY 1 transformations, the new Higgs field
requires a quantum number of B ´ L “ 2. This will be constructed in a similar way as the
singlet majoron model [100]. Furthermore, the new gauge field and the SSB will lead to a new
massive and neutral Z 1-boson in addition to the W˘, Z0 bosons and photon A of the SM.

We can now take a look at our extension of the SM, at least in the Higgs and electroweak
sectors which are involved. In this extension we have the bosonic part of the Lagrangian with
SUp2qL b Up1qY 1 b Up1qY local symmetry. It is an extension of the eq. (2.20) with the same
prescriptions and is given by

Lb “ DµΦ:DµΦ`Dµχ
˚Dµχ´ V ´

1

4
Wµν
a W a

µν ´
1

4
BµνBµν ´

1

4
FµνFµν , (4.6)

with the Mexican hat potential for both Higgs fields plus an interaction term between them with
coupling κ

V “ µ2Φ:Φ` λpΦ:Φq2 ` µ12χ˚χ` λ1pχ˚χq2 ´ κΦ:Φχ˚χ, (4.7)

with λ, λ1 ą 0 and κ ă 2
?
λλ1 for the potential to be bounded from below.

The covariant derivative Dµ is given by

Dµ “ Bµ ` i
g

2
W a
µσa ` ig

1Y Bµ ` ihY
1Aµ, (4.8)
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where g, g1 and h are SUp2qL, Up1qY and Up1qY 1 coupling constants. This covariant derivative
couples the standard Higgs field to Wµ, Bµ and to the hypercharge contribution from the Aµ,
while it just couples the new Higgs field to the B ´ L contribution from Aµ as

DµΦ “

ˆ

Bµ ` i
g

2
W a
µσa ` i

g1

2
Bµ ` i

hα

2
Aµ

˙

Φ, Dµχ “ pBµ ` 2ihβAµqχ, (4.9)

where σa are the Pauli matrices and we have used the values of Y , B ´ L and Y 1 in Table 4.1.
Notice that the covariant derivative acts differently in each Higgs field.

Y B ´ L Y 1

Φ 1{2 0 α{2
χ 0 2 2β

Table 4.1: Weak hypercharge, baryon number minus lepton number and Y 1 values for the Higgs
fields.

At last the field strength tensors are given by these expressions

Wµν “ BµWν ´ BνWµ ` grWµ,Wνs, Bµν “ BµBν ´ BνBµ, Fµν “ BµAν ´ BνAµ. (4.10)

So this Lagrangian is gauge invariant, Lorentz invariant and power counting renormalizable.
The Up1qY 1 gauge transformation takes the form

Φ Ñ Φ1 “ e´ihαθ{2Φ, χÑ χ1 “ e´2ihβθχ, Aµ Ñ A1µ “ Aµ `
1

h
Bµθ. (4.11)

To explain the consistency of these modifications we add some remarks. The field Aµ should
acquire a mass dynamically, in order not to create long range interactions between macroscopic
objects that are charged under B ´ L. The new Higgs field should have a larger VEV than the
standard Higgs. And also we need a heavy right-handed neutrino.

In the case of a first generation of lepton and quarks, we will have electrons, neutrinos, up
and down quarks, all of them with left- and right-handed chirality. The Lagrangian reads

Lf “ pνL, eLqiγ
µDµ

´

νL
eL

¯

` eRiγ
µDµeR ` puL, dLqiγ

µDµ

´

uL
dL

¯

` uRiγ
µDµuR ` dRiγ

µDµdR

` νRiγ
µDµνR `

#

fepνL, eLqΦeR ` fdpuL, dLqΦdR ` fupuL, dLqrΦuR ` fνpνL, eLqrΦνR

` fMνRχCν
T
R ` h.c.

+

(4.12)

Now let us inspect the Lagrangian structure. The first line of eq. (4.12) contains the kinetic terms
for the left-handed lepton doublet, the right-handed electron, the left-handed quark doublet and
the right-handed up and down quarks, respectively. Explicitly, the covariant derivatives of eq.
(4.8) read

Dµ

´

νL
eL

¯

“

ˆ

Bµ ` i
g

2
W a
µσa ´ i

g1

2
Bµ ´ ih

´α

2
` β

¯

Aµ

˙

´

νL
eL

¯

, (4.13)



42 CHAPTER 4. COSMIC STRINGS FOR Y 1

DµeR “ pBµ ´ ig
1Bµ ´ ihpα` βqAµqeR, (4.14)

Dµ

´

uL
dL

¯

“

ˆ

Bµ ` i
g

2
W a
µσa ` i

g1

6
Bµ ` ih

α` 2β

6
Aµ

˙

´

uL
dL

¯

, (4.15)

DµuR “

ˆ

Bµ ` i
2g1

3
Bµ ` ih

2α` β

3
Aµ

˙

uR, (4.16)

DµdR “

ˆ

Bµ ´ i
g1

3
Bµ ´ ih

2α´ β

3
Aµ

˙

dR. (4.17)

The second line of eq. (4.8) consists of the kinetic term for the right-handed neutrino which
only couples to B ´ L, as we can see in

DµνR “ pBµ ´ ihβAµqνR. (4.18)

In this second line of the Lagrangian, we also have all the Yukawa interaction terms, which upon
SSB give mass to the first generation of fermions, now including the neutrino as we can see in
the last term. Furthermore we have the additional Majorana mass term in the third line, which
gives mass only to the right-handed neutrino.

Y B ´ L Y 1

eL ´1{2 ´1 ´α{2´ β
νL ´1{2 ´1 ´α{2´ β
eR ´1 ´1 ´α´ β
νR 0 ´1 ´β
uL 1{6 1{3 pα` 2βq{6
dL 1{6 1{3 pα` 2βq{6
uR 2{3 1{3 p2α` βq{3
dL ´1{3 1{3 p´α` βq{3

Table 4.2: Weak hypercharge, baryon number minus lepton number and Y 1 values for the first
generation of fermions.

This hypothetical model can be placed into a more physically realistic scenario by embedding
it into the SOp10q GUT subgroup SUp3qcbSUp2qLbUp1qY 1bUp1qY [101], where the Y 1-charge
is given by

Y 1 “ Y ´
5

4
pB ´ Lq, (4.19)

and the Up1qY 1 coupling constant is proportional to the electroweak coupling constant. This
embedding is obtained in our model by fixing the parameters as

α “ 1, β “ ´
5

4
, h “

c

2

3
g1. (4.20)

This GUT is constructed exactly as our model1, the Y 1-charge is a linear combination which
is fixed by the orthonormality conditions TrpY Y 1q “ 0, TrpY 2q “ 2

3TrpY 12q. The right-handed
neutrino acquires a Majorana mass using a new scalar Higgs field through the sequential SSB

SUp3qc b SUp2qL bUp1qY 1 bUp1qY Ñ
v1
SUp3qc b SUp2qL bUp1qY Ñ

v
SUp3qc bUp1qem. (4.21)

1The inclusion of the gauge group SUp3qc and the gluon field is straightforward.
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In this scenario, the right-handed (heavy) neutrino masses are bounded from above by the energy
scale v1 which is of the order of 1 TeV and the small masses of the left-handed neutrinos are
explained by the see-saw mechanism [101, 102]. The massless photon and the neutral Z0 fields
are expressed as usual

Aµ “ cos θWBµ ` sin θWW
3
µ ,

Z0
µ “ ´ sin θWBµ ` cos θWW

3
µ ,

(4.22)

but now we have two massive neutral Z and Z 1 bosons given by

Zµ “ cos ΘZ0
µ ´ sin ΘAµ,

Z 1µ “ sin ΘZ0
µ ` cos ΘAµ.

(4.23)

Experimental data might constrain the new free parameters, for example the Higgs masses
are modified. We can identify them by diagonalizing the mass matrix M p2q defined by the second
variational derivatives of the potential V in eq. (4.7),

M p2q “

˜

δ2V
δφδφ˚

δ2V
δφδξ˚

δ2V
δφ˚δξ

δ2V
δξδξ˚

¸ˇ

ˇ

ˇ

ˇ

ˇ

VEV

“

ˆ

µ2 ` 4λv2 ´ κv12 ´κvv1

´κvv1 µ12 ` 4λ1v12 ´ κv2

˙

“

ˆ

2λv2 ´κvv1

´κvv1 2λ1v12

˙

.

(4.24)

the eigenvalues of the diagonalized mass matrix are

m2
˘ “ λv2 ` λ1v2 ˘

a

pλ1v12 ´ λv2q2 ` κ2v2v12. (4.25)

We associate the masses to the fields as

m2
Φ “ λv2 ` λ1v2 ´

a

pλ1v12 ´ λv2q2 ` κ2v2v12, m2
χ “ λv2 ` λ1v2 `

a

pλ1v12 ´ λv2q2 ` κ2v2v12.

These expressions relate the particles masses associated to our two Higgs fields with the free
parameters of our proposal, namely the VEVs v, v1 and the coupling constants λ, λ1 and κ. In
the limit v1 " v, factorizing the term λ1v12 we arrive at

m2
˘ “ λv2 ` λ1v12 ˘ λ1v12

d

ˆ

1´
λv2

λ1v12

˙2

`
κ2v2v12

λ12v14
. (4.26)

Expanding the square root we obtain simpler expressions for the masses given by

m2
Φ « 2λv2 ´

κ2v2

2λ1
, m2

χ « 2λ1v12. (4.27)

In order to describe the cosmic strings associated to the Y 1 gauge field, we will derive — in a
semi-classical approach — the equations of motion or Euler-Lagrange equation of a Lagrangian
involving the standard Higgs field Φ, the new Higgs field χ and the gauge field Aµ to simplify
the problem. This simplification can be justified as a decoupling with the heavy W˘ and Z
fields by considering a low energy effective theory and constant fermion background. We will
comment more on this simplification in Chapter 5. Because of the structure of cosmic strings
we apply a cylindrically symmetric ansatz and radial boundary conditions.
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4.1 Equations of motion

First let us consider a Lagrangian with a global Up1q symmetry

L “ BµΦ:BµΦ` Bµχ
˚Bµχ´ V, (4.28)

with the potential

V “ µ2Φ:Φ` λpΦ:Φq2 ` µ12χ˚χ` λ1pχ˚χq2 ´ κΦ:Φχ˚χ, (4.29)

where Φ P C2 is the standard Higgs field and χ P C is an additional Higgs field. The Lagrangian is
in natural units, ~ “ 1, c “ 1, it must have the dimensions of length

“

l´4
‰

, so rΦs “
“

l´1
‰

“ rχs.
The equations of motion can be obtained with the Euler-Lagrange equations

Bµ
δL

δBµΦ:
“

δL
δΦ:

, Bµ
δL

δBµχ˚
“

δL
δχ˚

. (4.30)

We refer to Appendix A for a discussion of the derivatives respect to the complex fields. Then

δL
δΦ:

“ ´
δV

δΦ:
“ ´µ2Φ´ 2λΦpΦ:Φq ` κΦχ˚χ,

δL
δχ˚

“ ´
δV

δχ˚
“ ´µ12χ´ 2λ1χpχ˚χq ` κΦΦ:χ,

δL
δBµΦ:

“
δ

δBµΦ:
BνΦ:BνΦ “ ηµν B

νΦ “ BµΦ ñ Bµ
δL

δBµΦ:
“ BµB

µΦ “ lΦ,

δL
δBµχ˚

“
δ

δBµχ˚
Bνχ

˚Bνχ “ ηµν B
νχ “ Bµχ ñ Bµ

δL
δBµχ˚

“ BµB
µχ “ lχ.

(4.31)

Thus, the equations of motion for the global cosmic strings are

lΦ` µ2Φ` 2λΦpΦ:Φq ´ κΦχ˚χ “ 0,

lχ` µ12χ` 2λχpχ˚χq ´ κΦ:Φχ “ 0.
(4.32)

We look for static solutions which we express in cylindrical coordinates, so we use the Lapla-
cian in cylindrical coordinates and take the ansatz

Φpt, r, ϕ, zq “
´

0
φprq

¯

einϕ, χpt, r, ϕ, zq “ ξprqein
1ϕ, (4.33)

with dimensions rφs “
“

l´1
‰

“ rξs. Substituting ansatz (4.33) into eq. (4.32) we obtain the
explicit form for the equations of motion as a system of non-linear differential equations

d2φ

dr2
`

1

r

dφ

dr
“

ˆ

n2

r2
` µ2 ` 2λφ2 ´ κξ2

˙

φ,

d2ξ

dr2
`

1

r

dξ

dr
“

ˆ

n12

r2
` µ12 ` 2λ1ξ2 ´ κφ2

˙

ξ.

(4.34)

Notice that the exponential in ansatz (4.33) can be factorized in these equations. We take the
vacuum expectation value of the fields as

lim
rÑ8

φprq “ v, lim
rÑ8

χprq “ v1. (4.35)
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We can fix the parameters µ and µ1 in terms of λ, λ1 and κ, by referring to the equations (4.34)
and neglecting the field derivatives. In the large-r limit we obtain

µ2v ` 2λv3 ´ κvv12 “ 0 ñ µ2 “ ´2λv2 ` κv12,

µ12v1 ` 2λ1v13 ´ κv2v1 “ 0 ñ µ12 “ ´2λ1v12 ` κv2.
(4.36)

The next step is to promote the Up1q global symmetry to a gauge symmetry associated to
a gauge field Aµ, since we are mostly interested in this gauged model and local cosmic string
solutions. Here we start from the Lagrangian

L “ DµΦ:DµΦ`Dµχ
˚Dµχ´

1

4
FµνFµν ´ V, (4.37)

with the unchanged potential

V “ µ2Φ:Φ` λpΦ:Φq2 ` µ12χ˚χ` λ1pχ˚χq2 ´ κΦ:Φχ˚χ, (4.38)

with the covariant derivatives similar to eq. (4.8) given by

DµΦ “ BµΦ` i
hα

2
AµΦ, Dµχ “ Bµχ` 2ihβAµχ, (4.39)

or under a redefinition of hα{2 Ñ h and 2hβ Ñ h1 for simplicity

DµΦ “ BµΦ` ihAµΦ, Dµχ “ Bµχ` ih
1Aµχ, (4.40)

and the field strength tensor
Fµν “ BµAν ´ BνAµ. (4.41)

Again we have Φ P C2 as the standard Higgs field, an additional Higgs field χ P C and the
Up1qY 1 gauge field Aµ with dimensionless couplings h and h1, respectively, for the Higgs fields.
Notice the case α “ 0 where only the B ´ L symmetry is gauged, the gauge field Aµ has no
Y 1-charge and the standard Higgs field does not directly couple to it. We can again verify
rΦs “ rχs “ rAµs “

“

l´1
‰

. The equations of motion are obtained from the Euler-Lagrange
equations. Let us compute first the case for the Higgs field,

δL
δΦ:

“
δ

δΦ:
DµΦ:DµΦ´

δV

δΦ:
“ ´ihAµD

µΦ´ µ2Φ´ 2λΦpΦ:Φq ` κΦχ˚χ, (4.42)

δL
δBµΦ:

“
δ

δBµΦ:
DνΦ:DνΦ “ ηµνD

νΦ “ DµΦ ñ Bµ
δL

δBµΦ:
“ BµD

µΦ. (4.43)

So by equating these two terms

BµD
µΦ “ ´ihAµD

µΦ´ µ2Φ´ 2λΦpΦ:Φq ` κΦχ˚χ, (4.44)

we arrive at
DµDµΦ “ ´µ2Φ´ 2λΦpΦ:Φq ` κΦχ˚χ. (4.45)

At last, the left-hand side of eq. (4.45) can be written as

DµDµΦ “ pBµ ` ihAµqpBµ ` ihAµqΦ

“ BµBµΦ` ihBµpAµΦq ` ihAµBµΦ´ h2AµAµΦ

“ lΦ` 2ihAµBµΦ` ihBµAµΦ´ h2AµAµΦ.

(4.46)
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Finally we obtain the equation of motion for the standard Higgs field as

lΦ` 2ihAµBµΦ` ihpBµAµqΦ´ h
2AµAµΦ “ ´µ2Φ´ 2λΦpΦ:Φq ` κΦχ˚χ. (4.47)

Analogously, we use the Euler-Lagrange equations for the extra Higgs field χ

δL
δχ˚

“
δ

δχ˚
Dµχ

˚Dµχ´
δV

δχ˚
“ ´ih1AµD

µχ´ µ12χ´ 2λ1χpχ˚χq ` κΦ:Φχ, (4.48)

δL
δBµχ˚

“
δ

δBµχ˚
Dνχ

˚Dνχ “ ηµνD
νχ “ Dµχ ñ Bµ

δL
δBµχ˚

“ BµD
µχ, (4.49)

which has the same structure treated before, so the equation of motion becomes

lχ` 2ih1AµBµχ` ih
1pBµAµqχ´ h

12AµAµχ “ ´µ
12χ´ 2λ1χpχ˚χq ` κΦ:Φχ. (4.50)

The equation of motion of the gauge field is obtained by writing

δL
δAµ

“ ´ihΦ:ηµνD
νΦ`DνΦ:pihΦηνµq ´ ih

1ηµνχ
˚Dνχ`Dνχ

˚pih1ηνµχq

“ ihppDµΦ:qΦ´ Φ:pDµΦqq ` ih1pχpDµχ˚q ´ χ˚pDµχqq

“ ihppBµΦ:qΦ´ Φ:pBµΦqq ` ihp´ihAµΦ:Φ´ Φ:pihAµΦqq ` ih1pχpBµχ˚q ´ χ˚pBµχqq

` ih1p´ih1Aµχ˚χ´ χ˚pih1Aµχqq

“ ihppBµΦ:qΦ´ Φ:pBµΦqq ` ih1pχpBµχ˚q ´ χ˚pBµχqq ` 2h2AµΦ:Φ` 2h12Aµχχ˚,

δL
δBνAµ

“ ´
1

4

δ

δBνAµ
FρσFρσ

“ ´
1

4

δ

δBνAµ
pBρAσ ´ BσAρqpB

ρAσ ´ BσAρq

“ ´
1

4
ppηνρη

µ
σ ´ η

ν
ση

µ
ρ qFρσ ` Fρσpηρνησµ ´ ησν ηρµqq

“ Fµν ,

where in the last step we have used the antisymmetry of the tensor F . So by equating these
two terms, we obtain the equation of motion for the gauge field

BνFµν “ ihppBµΦ:qΦ´ Φ:pBµΦqq ` ih1pχpBµχ
˚q ´ χ˚pBµχqq ` 2h2AµΦ:Φ` 2h12Aµχχ

˚. (4.51)

Now, let us insert the ansatz

Φ “
´

0
1

¯

φprqeinϕ, χ “ ξprqein
1ϕ, Aµ “ Aϕϕ̂ “

aprq

r
ϕ̂, (4.52)

where n and n1 are winding numbers and the gauge field gives a “magnetic” field in ẑ direction.
The dimensions of these fields now reads rφs “ rξs “

“

l´1
‰

. On the other hand as rAµs “
“

l´1
‰

,
then we get a dimensionless function ras “

“

l0
‰

.
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Equation (4.51) is a vectorial differential equation in Minkowski space and the µ-components
can be written in cylindrical coordinates as

BνFµν “ BνpBµAν ´ BνAµq “ B
νBµAν ´ B

νBνAµ “ ´B
νBνAµ. (4.53)

The first term is eliminated because the only non-zero component is Aϕ which does not depend
on the coordinate ϕ. As an observation, using Cartesian coordinates and a Cartesian basis for
the vector field A, both terms in eq. (4.53) are non-zero. It is just in this cylindrical case where
the eq. (4.53) reduces to a Laplacian. Then the Laplacian operator of a vector field reduces to
´BνBνAµprq “ ´lAµprq “ ∇2Aµprq. The ϕ-component of this equation turns out to be the
only non-zero component as we see by using the Laplacian of a vector in cylindrical coordinates.
Thus, we arrive at

BνFµν “ ∇2Aµ “

„

1

r

B

Br

ˆ

r
BAϕ

Br

˙

´
Aϕ

r2



ϕ̂ “

„

1

r

B

Br

ˆ

r
B

Br

aprq

r

˙

´
aprq

r3



ϕ̂

“

„

1

r

B

Br

ˆ

da

dr
´
a

r

˙

´
a

r3



ϕ̂ “

„

1

r

ˆ

d2a

dr2
´

1

r

da

dr
`
a

r2

˙

´
a

r3



ϕ̂

“

„

1

r

d2a

dr2
´

1

r2

da

dr



ϕ̂.

(4.54)

On the other hand, using the ansatz (4.52) we see that the ϕ-component of the right-hand side
of eq. (4.51) (also the non-zero component) is, written explicitly term by term

ihppBµΦ:qΦ´ Φ:pBµΦqq “ ih
1

r
p´inφ2 ´ inφ2qϕ̂ “ 2h

1

r
φ2nϕ̂,

ih1ppBµχ
˚qχ´ χ˚pBµχqq “ ih1

1

r
p´in1ξ2 ´ in1ξ2qϕ̂ “ 2h1

1

r
ξ2n1ϕ̂,

(4.55)

where we have used the gradient in cylindrical coordinates

Bµfpr, ϕq “ ∇fpr, ϕq “ Bf
Br
r̂ `

1

r

Bf

Bϕ
ϕ̂. (4.56)

The ϕ-component of the last terms of the right-hand side are

2h2AµΦ:Φ “ 2h2aprq

r
φ2ϕ̂,

2h12Aµχ
2 “ 2h12

aprq

r
ξ2ϕ̂.

(4.57)

Inserting into eq. (4.51) the terms (4.55)-(4.57), we obtain the equation of motion for the gauge
field. Analogously, adding the gauge term into eqs. (4.47) and (4.50), we obtain the equations
of motion for the fields φ and ξ, respectively. Thus for the local cosmic strings, we obtain a
system of second order differential equations given by

d2φ

dr2
`

1

r

dφ

dr
“

ˆ

pn` haq2

r2
` µ2 ` 2λφ2 ´ κξ2

˙

φ,

d2ξ

dr2
`

1

r

dξ

dr
“

ˆ

pn1 ` h1a1q2

r2
` µ12 ` 2λ1ξ2 ´ κφ2

˙

ξ,

d2a

dr2
´

1

r

da

dr
“ 2hφ2pn` haq ` 2h1ξ2pn1 ` h1aq.

(4.58)
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Taking the large-r limit, we find — using eq. (4.58) — the quantization conditions

lim
rÑ8

aprq “ ´
n

h
“ ´

n1

h1
. (4.59)

There is also a particular solution which we will not use because it is not consistent with the
other two equations (if one requires the factors of order 1{r2 to cancel). It and is given by

lim
rÑ8

aprq “ ´
hnv2 ` h1n1v12

h2v2 ` h12v12
. (4.60)

4.2 Solutions

As we stated before, eqs. (4.34) and (4.58) are non-linear second order differential equations
corresponding to the global and local cosmic string equations of motion. We explore solutions
for both of them in order to analyze if there are significant differences. They can be treated as
an initial value problem and as such, four and six initial values are needed, respectively. These
initial values should be given by the fields and their first derivatives evaluated at r “ 0.

Up to now we just have the values of the fields at the origin r “ 0 which are zero (if the
winding numbers are non-zero). We also have asymptotic conditions at r Ñ 8 which do not
fulfill the job of the remaining initial values to solve the problem. The missing initial values are
the first derivatives of the fields at the origin. We can say there is a set of solutions that satisfy
these initial values and asymptotic conditions; we will call them cosmic string solutions. There
is another set of solutions that does not satisfy the conditions we need, so we are not interested
in them. On the other hand the asymptotic conditions are imposed on the potential, but as an
initial value problem we have no way to restrict the values of the derivatives in order to find
only the cosmic strings. We can translate this problem into a boundary value problem (BVP),
where we can impose the asymptotic conditions as boundary values at some final point rf . This
does not completely solve the problem, the set of cosmic string solutions can surely be found,
however there might be other sets of solutions satisfying the conditions. This can be justified
by the large number of free parameters we have and we will review them later in this chapter
when we discuss the phase space of a particular case.

Nevertheless, the equations of motion can be solved using Python and the function solve_bvp

which implements numerical methods to solve a system of non-linear differential equations with
boundary conditions. The solutions are graphically presented in this section. For details about
the algorithm that the function solve_bvp use, see Appendix B. The reliability of the solutions
presented here can be tested using the Cauchy criterion tol inside the function solve_bvp and
the additional Python function status. Furthermore we can perform a self-consistency test
using the solutions computed in Python. These details can also be found also in Appendix B.

In all the plots given by Figs. 4.2-4.4 we use v “ 0.5, v1 “ 1, λ “ 1 “ λ1. Implicitly we have
µ2 “ ´0.5`κ, µ12 “ ´2`0.25κ. Converting to dimensional quantities, we have the Higgs VEV
v “ 246 GeV and therefore v1 “ 492 GeV as it is double. The variation of these parameters does
not change the qualitative behaviour of the solutions. We also take h “ n and h1 “ n1. It turns
out that the winding numbers establish the behaviour of the solutions. We vary κ P r´1, 1s to
identify a set of κ-dependent solutions.
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Figure 4.2 shows a case with winding numbers n “ 0 and n1 “ 1. When n “ 0, the gauge
field decouples from the standard Higgs field. Nevertheless we have an indirect coupling because
the two Higgs fields are coupled by the κ-term. For this reason the profile of the standard Higgs
fields still gets modified. We also note that it does not vanish at the origin because the winding
number is zero and we don’t have problems with continuity.

(a) (b)

Figure 4.2: Cosmic string solutions with (a) global symmetry (eq. (4.34)) and (b) local symmetry
(eq. (4.58)) with a gauge field, with parameters v “ 0.5, v1 “ 1, λ “ 1 “ λ1, n “ h “ 0,
n1 “ h1 “ 1.

Figure 4.3 shows a case where the winding numbers are the same, n “ n1 “ 1 and so both
of the fields take a loop around the cosmic string. The profiles also have asymptotically stable
solutions with respect to κ. At last, Fig. 4.4 represents a case where both winding numbers are
non-zero but they are different, n “ 1 and n1 “ 2. The standard Higgs field performs one loop
around the cosmic string but the new Higgs field performs two loops. In contrast to the previous
plots, we notice that near the origin there are solutions of the standard Higgs field which are
larger than the new Higgs field, we call this an “overshooting” behaviour.

(a) (b)

Figure 4.3: Cosmic string solutions with (a) global symmetry (eq. (4.34)) and (b) local symmetry
(eq. (4.58)) with a gauge field, with parameters v “ 0.5, v1 “ 1, λ “ 1 “ λ1, n “ h “ 1,
n1 “ h1 “ 1.
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(a) (b)

Figure 4.4: Cosmic string solutions with (a) global symmetry (eq. (4.34)) and (b) local symmetry
(eq. (4.58)) with a gauge field, with parameters v “ 0.5, v1 “ 1, λ “ 1 “ λ1, n “ h “ 1,
n1 “ h1 “ 2.

As we mentioned before, varying the parameters not involved with the winding numbers,
does not change the qualitative behaviour of the solutions. We can select another set to check
this, for example v “ 0.5, v1 “ 1.5 and introducing back the units v “ 246 GeV, v1 “ 738 GeV.
Implicitly we have µ2 “ ´0.25`2.25κ and µ12 “ ´4.5`0.25κ. Additionally we can take distinct
and smaller values for the self-couplings like λ “ 0.5 and λ1 “ 1. These parameters are chosen
in the set of Figs. 4.5-4.7.
Figure 4.5 refers to the case with the winding numbers n “ 0 and n1 “ 1. We have the same
qualitative behaviour as above, the standard Higgs field can take non-zero values at the origin
because of the non-zero winding number while the cosmic string profile is only visible on the
non-standard Higgs field. At last for the asymptotic value of the gauge field is determined by
h1 “ n1 “ 1 while h “ n “ 0.

(a) (b)

Figure 4.5: Cosmic string solutions with (a) global symmetry (eq. (4.34)) and (b) local symmetry
(eq. (4.58)) with a gauge field, with parameters v “ 0.5, v1 “ 1.5, λ “ 0.5, λ1 “ 1, n “ h “ 0,
n1 “ h1 “ 1.
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Figure 4.6 shows a case with winding numbers n “ n1 “ 1. We can also take distinct values
for the self-couplings as λ1 “ 0.5 and λ “ 1. In addition, the couplings of the Higgs fields with
the gauge field can also be taken differently as h “ 0.5 “ h1. This last condition induces a
different asymptotic behaviour for the gauge field as we can see in the plot, as it attains the
quotient ´n{h.

(a) (b)

Figure 4.6: Cosmic string solutions with (a) global symmetry (eq. (4.34)) and (b) local symmetry
(eq. (4.58)) a with gauge field, with parameters v “ 0.5, v1 “ 1.5, λ “ 0.5, λ1 “ 1, n “ 1 “ n1,
h “ 0.5 “ h1.

For the case of winding numbers n “ 1 and n1 “ 2 we have Fig. 4.7. But now by taking
h1 “ 0.5, the asymptotic condition necessarily demands h1 “ 1 as eq. (4.59) states. We also note
in this plot the same behaviour in which the standard Higgs field grows faster than the new one
in the origin and the “overshooting”.

(a) (b)

Figure 4.7: Cosmic string solutions with (a) global symmetry (eq. (4.34)) and (b) local symmetry
(eq. (4.58)) with a gauge field, with parameters v “ 0.5, v1 “ 1.5, λ “ 0.5, λ1 “ 1, n “ 1, n1 “ 2,
h “ 0.5, h1 “ 1.
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As we mentioned above, the SOp10q GUT subgroup SUp3qc b SUp2qL b Up1qY 1 b Up1qY is
obtained by fixing the parameters in eq. (4.20). Recalling that we absorbed α and β inside the
couplings h and h1, we get

hÑ h
α

2
“

c

2

3
g1

1

2
“

c

1

6
g1, (4.61)

h1 Ñ 2hβ “ ´2

c

2

3
g1

5

4
“ ´5

c

1

6
g1, (4.62)

for the same equations of motion and using this fixed parameters we find an additional constraint
in the winding numbers

n1 “ ´5n, (4.63)

due to the asymptotic condition in eq. (4.59). Figure 4.8 shows this case for the winding numbers
(a) n “ 1, n1 “ ´5 and (b) n “ ´2, n1 “ 10. In both plots we see the “overshooting” behaviour
in φprq is enhanced by an increasing value of the winding number |n1|. Additionally we identify
ξprq being kept close to zero at small r, also by an increasing value of |n1|.

(a) (b)

Figure 4.8: Cosmic string solutions with local symmetry (eq. (4.58)) with a gauge field, winding
numbers (a) n “ 1, n1 “ ´5 and (b) n “ ´2, n1 “ 10, the parameters are v “ 0.5, v1 “ 1,
λ “ 1 “ λ1, h “ 0.5, h1 “ ´2.5.

4.3 Fixed points

Cosmic string solutions had been found inside a region pκmin, κmaxq, using Python. Solutions
exist outside this region as Appendix B shows, but Python is unable to obtain them. This can
be justified by analyzing the Python algorithm and concluding that it might be because of a bad
initial guess function. A different behaviour of solutions, inside and outside this region can be
shown by performing an analysis of the stability matrix M at the fixed point of interest φÑ v
and ξ Ñ v1. The signs of the eigenvalues of this matrix determine the conditions of stability for
a fixed point of a system of differential equations. We write our model as a first order system of
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differential equations

dφ

dr
“ φd,

dξ

dr
“ ξd,

dφd
dr

“ ´
1

r
φd `

n2

r2
φ` µ2φ` 2λφ3 ´ κφξ2,

dξd
dr

“ ´
1

r
ξd `

n12

r2
ξ ` µ12ξ ` 2λ1ξ3 ´ κξφ2.

(4.64)

The Hessian, or stability matrix is

M “

¨

˚

˚

˚

˝

B
Bφd

dφ
dr

B
Bφ

dφ
dr

B
Bξd

dφ
dr

B
Bξ
dφ
dr

B
Bφd

dφd
dr

B
Bφ

dφd
dr

B
Bξd

dφd
dr

B
Bξ
dφd
dr

B
Bφd

dξ
dr

B
Bφ

dξ
dr

B
Bξd

dξ
dr

B
Bξ
dξ
dr

B
Bφd

dξd
dr

B
Bφ

dξd
dr

B
Bξd

dξd
dr

B
Bξ
dξd
dr

˛

‹

‹

‹

‚

“

¨

˚

˝

1 0 0 0

´1
r

n2

r2
` µ2 ` 6λφ2 ´ κξ2 0 ´2κφξ

0 0 1 0

´1
r ´2κφξ 0 n12

r2
` µ12 ` 6λ1ξ2 ´ κφ2

˛

‹

‚

.

(4.65)

We look for a restriction in the free parameters for a cosmic string solution which should have
a fixed point in the large-r limit. The matrix takes the asymptotic form

lim
rÑ8

M “

¨

˚

˝

1 0 0 0
0 µ2 ` 6λv2 ´ κv12 0 ´2κvv1

0 0 1 0
0 ´2κvv1 0 µ12 ` 6λ1v12 ´ κv2

˛

‹

‚

(4.66)

and it has the eigenvalues

λ1 “ 1,

λ2 “ 1,

λ3 “ 2
´

λv2 ` λ1v12 `
a

pκ2 ´ 2λλ1qv2v12 ` λ2v4 ` λ12v14
¯

,

λ4 “ 2
´

λv2 ` λ1v12 ´
a

pκ2 ´ 2λλ1qv2v12 ` λ2v4 ` λ12v14
¯

.

(4.67)

For the case we treated before in the Figs. 4.2-4.4 where the parameters are chosen as v “ 0.5,
v1 “ 1, λ “ 1 and λ1 “ 1, the eigenvalues evaluated at the fixed point are

λ1 “ 1, λ2 “ 1, λ3 “
5`

?
9` 4κ2

2
, λ4 “

5´
?

9` 4κ2

2
, (4.68)

and we can see that λ4 takes both signs. Indeed, this eigenvalue is positive for κ P p´2, 2q. This
is an argument to restrict the values of the free parameter κ due to stability. Cosmic strings in
Python are found inside this region.

This analysis can be extended if we see that the differential equations define a phase space.
The set of all solutions and its behaviour can be seen here. Unfortunately even in the global
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symmetry case with κ “ 0, the phase space has 3 dimensions: r, φ and dφ
dr or r, ξ and dξ

dr . At

least in 3 dimensions we can take the projections for different r like Fig. 4.9 as a φ vs dφ
dr or a ξ

vs dξ
dr plot with fixed r.

(a) (b)

(c) (d)

Figure 4.9: Phase space for the differential equations with κ “ 0 showing three fixed points for
the fields φ and ξ, respectively in (a) and (b). A closer look is shown in (c) and (d), respectively.
The parameters are v “ 0.5, v “ 1, λ “ 1 “ λ1 and r “ 15.

From these projections in Fig. 4.9 we can see there are three critical points in each plot,
including a fixed point in p0, 0q which is stationary. Around it we see oscillatory solutions and
as we vary r they are damped towards zero. Outside these solutions we have two fixed points
where the fields attain their VEV φ Ñ ˘v and ξ Ñ ˘v1. We see a region of solutions that fall
into these fixed points and others which are repelled from them, those are divergent solutions.
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When we consider κ ‰ 0, the phase space has 5 dimensions. As we discussed before, there is
an interval pκmin, κmaxq where the eigenvalue λ4 is positive and outside, it is negative. For the
parameters chosen in this section we found the region κ P p´2, 2q. Following the classification
of stability analysis from the Hessian matrix, this would mean the fixed points φ Ñ ˘v and
ξ Ñ ˘v1 are nodal sources, while for κ outside this region they are saddle points.

Now if we consider the full system of equations with the gauge symmetry, we obtain a first
order system of differential equations given by

dφ

dr
“ φd,

dξ

dr
“ ξd,

da

dr
“ ad,

dφd
dr

“ ´
1

r
φd `

n2

r2
φ` µ2φ` 2λφ3 ´ κφξ2 ` h

a

r2
φp2n` haq,

dξd
dr

“ ´
1

r
ξd `

n12

r2
ξ ` µ12ξ ` 2λ1ξ3 ´ κξφ2 ` h1

a

r2
ξp2n1 ` h1aq,

dad
dr

“
1

r
ad ` 2hφ2pn` haq ` 2h1ξ2pn1 ` h1aq.

(4.69)

Now the Hessian is the matrix

M “

¨

˚

˚

˚

˝

B
Bφd

dφ
dr

B
Bφ

dφ
dr

B
Bξd

dφ
dr

B
Bξ
dφ
dr

B
Bad

dφ
dr

B
Ba

dφ
dr

B
Bφd

dφd
dr

B
Bφ

dφd
dr

B
Bξd

dφd
dr

B
Bξ
dφd
dr

B
Bad

dφd
dr

B
Ba

dφd
dr

B
Bφd

dξ
dr

B
Bφ

dξ
dr

B
Bξd

dξ
dr

B
Bξ
dξ
dr

B
Bad

dξ
dr

B
Ba

dξ
dr

B
Bφd

dξd
dr

B
Bφ

dξd
dr

B
Bξd

dξd
dr

B
Bξ
dξd
dr

B
ad

dξd
dr

B
Ba

dξd
dr

˛

‹

‹

‹

‚

, (4.70)

and in the large-r limit

lim
rÑ8

M “

¨

˚

˚

˝

1 0 0 0 0 0
0 µ2 ` 6λv2 ´ κv12 0 ´2κvv1 0 0
0 0 1 0 0 0
0 ´2κvv1 0 µ12 ` 6λ1v12 ´ κv2 0 0
0 0 0 0 0 2ph2v2 ` h12v12q

˛

‹

‹

‚

. (4.71)

λ1 “ 1,

λ2 “ 1,

λ3 “ 1,

λ4 “ 2ph2v2 ` h12v12q,

λ5 “ 2
´

λv2 ` λ1v12 `
a

pκ2 ´ λλ1qv2v12 ` λ2v4 ` λ12v14
¯

,

λ6 “ 2
´

λv2 ` λ1v12 ´
a

pκ2 ´ λλ1qv2v12 ` λ2v4 ` λ12v14
¯

.

(4.72)

These are the same eigenvalues as in the global symmetry plus two more which are positive.
Thus, in general we find that all eigenvalues are positive if κ2 ă 4λλ1 or equivalently, if κ P
p´2

?
λλ1, 2

?
λλ1q.
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Chapter 5

Conclusions

In this thesis we have reviewed the SM of particle physics with the goal of proposing an extension
and looking for cosmic string solutions. We gave a short historical perspective which motivated
the construction of the SM, emphasising symmetries and conservation laws such as baryon
number or lepton number. In this review we paid special attention to the Higgs mechanism,
where a SSB gives mass to quarks, leptons and the bosons W˘ and Z0. We have discussed the
three generations of quarks and leptons, pointing out that the SM treats neutrinos as massless
left-handed particles. Afterwards we reviewed topological defects, particularly vortices which
are present in condensed matter systems like superconductors and superfluids. Taking these
systems as an example, gave us a picture of the cosmic strings we are looking for, since they are
also based on one-dimensional topological defects. These systems are analogous to cosmic strings
and can be studied in controlled experiments, so their mathematical description gives physical
clarity through an available realization in nature. At last we connected these systems with
particle physics by referring to cosmic strings as vortices arising in field theory for topological
reasons.

We then proposed our extension of the SM taking into account the B ´L conservation. We
previously mentioned that baryon and lepton number violation were allowed by the SM, but the
difference is conserved. This is why we gauge this symmetry in our proposal, using explicitly
the symmetry group Up1qY 1 with Y 1 “ αY ` βpB ´ Lq. To prevent the model from having
gauge anomalies, we have to include a right-handed neutrino to each fermion generation. With
right-handed neutrinos we can give mass to neutrinos using a Dirac mass term and an additional
Majorana mass term for the right-handed neutrinos. We use the Higgs mechanism and add a
new Higgs field which gives mass to right-handed neutrinos without breaking the B ´ L gauge
symmetry. We end up adding a gauge field, a new Higgs field and a right-handed neutrino to
each fermion generation. The model is well posed since B´L is a gauge symmetry, there are no
gauge anomalies, neutrinos can have mass and none of the new terms in the Lagrangian violates
B ´ L conservation. Furthermore we can justify the lack of evidence of these particles using
properties for the Higgs VEVs, interactions and masses. As an hypothetical model, it needs
to be confronted with experimental data to relate it to a realistic scenario. Fortunately, the
SOp10q GUT subgroup SUp3qc b SUp2qL bUp1qY 1 bUp1qY is well posed under the constraints
established for its new free parameters using experimental data.
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With this model we then look for cosmic string solutions but we restrict ourselves to a
sector of this extension. This sector involves the standard and new Higgs fields and the Up1qY 1

gauge field. Simplicity is one of the main guidelines but we can also invoke a constant fermion
background and a low energy regime. Semi-local cosmic string in this new Higgs and electroweak
sectors are a valid starting point for calculations. Certainly a full analysis would involve the
W˘ and Z bosons, quarks, leptons and gluons.

The cosmic string involves the Higgs fields Φ, χ and the gauge field Aµ. This behaviour
is shown in the plotted solutions in Section 4.2 and it arises from the coupling terms in the
equations of motion. We find our solutions to be strongly dependent on the winding numbers
but not on any other free parameters. As we can see in the plots, the profiles of the fields
change their qualitative behaviour depending on the values of the winding numbers n and n1,
While differences in κ, λ, λ1 or the VEVs v and v1 lead to a continuous change of the curves. A
property we should point out is that the penetration depth of the cosmic string is modified by
these parameters. But in general everything else is qualitatively invariant.

Let us take a look at the case when there is no direct coupling between the standard Higgs
field and the gauge field, that is the case h “ 0 (or α “ 0) in Figs. 4.2 and 4.5. Physically, taking
this coupling to zero means that we are taking just B ´ L as the gauge symmetry, since we are
working with Up1qY 1 . We can also give it another perspective as a semi-local cosmic string,
where the hypercharge is not a gauge symmetry but a global one. Here, the winding number
of this Higgs field can be taken as non-trivial zero according to eq. (4.59). Furthermore, when
κ “ 0 the Higgs field is constant and it takes its usual VEV everywhere. This is expected since
then the Higgs field decouples to the new Higgs field. But when κ ‰ 0, the standard Higgs field
is indirectly coupled to the gauge field through the new Higgs field. This changes the constant
behaviour and it can take larger or smaller values at the origin and then present an asymptotic
behaviour towards its VEV. On the other hand, the new Higgs field depicts the characteristic
behaviour of a cosmic string solution, growing fast from zero to its VEV. It is the κ “ 0 case
where the system reduces to the Abelian Higgs model and the penetration depth is given by
L “ 1{h1v1. For κ ‰ 0 we can see the penetration depth depending on it. At last, the gauge field
also depicts the same cosmic string profile going from zero towards its asymptotic condition.
Variation of the parameters v, v1, λ, λ1 and κ changes the numerical values of the fields but not
this qualitative behaviour. The same arguments apply for the opposite case when h1 “ 0 (or
β “ 0). We have here a semi-local cosmic string in the gauged symmetry group Up1qY and a
penetration depth L “ 1{hv when κ “ 0.

The second case of interest is the one where the winding numbers are n “ 1 “ n1 which
can be seen in Figs. 4.3 and 4.6. Here, both Higgs fields wind around the cosmic string once.
The solutions perform the regular behaviour of a cosmic string profile. Variation of the free
parameters between these figures does not change the characteristic behaviour of the profiles.
Particularly, taking κ “ 0 establishes a curve in the plots, while taking it as non-zero changes
the behaviour near the cosmic string core. It turns out that the profiles acquire their asymptotic
conditions closer to the core for negative κ and further away for positive κ. These figures are
ideal for appreciating the smooth change in the plots depending on the parameters. As we
mentioned before, the penetration depth depends on the free parameters and variation of κ is
well represented as a continuous change in it. This can be seen in the figures, reducing the
coupling κ from positive to negative values results in a smaller penetration depth.
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At last, the third case of interest is the one depicted in Figs. 4.4 and 4.7. Here the winding
numbers are n “ 1 and n1 “ 2, implying that the standard Higgs field takes one loop around
the cosmic string while the new field takes two loops. This case is different from the others
above for two reasons. First there is a region where the standard Higgs field grows faster than
the new one. Even if the standard Higgs VEV is smaller, we can see this behaviour near the
core for certain negative values of κ. The second reason for which this case is different is the
“overshooting” effect, where the standard Higgs field can take larger values than its asymptotic
VEV in the core. Further analysis of this feature is needed and there is a possibility that these
solutions might be excluded for being dynamically unstable.

The results for the other winding numbers can be inferred from the cases above. Case 1
applies to n “ 0, n1 ‰ 0, with the observation that the sign of n1 will change the sign of the
asymptotic condition of the gauge field. For n “ n1 case 2 is applied and we can expect regular
cosmic string profiles, the gauge field can change its asymptotic value or not, depending on the
values of the couplings h and h1. For |n| ă |n1| we can apply case 3. Numerically we can expect
the same type of behaviour, but a stability analysis for this new conditions should be done.

Figure 4.8 shows the cosmic string solutions for the SOp10q GUT subgroup which we con-
sidered as a more valid physical scenario. This corresponds to the case 3 where |n| ă |n1| and
we can see that the “overshooting” effect is enhanced by the large value of |n1|. This large value
is a constraint set by the asymptotic condition for aprq in eq. (4.59) leading to n1 “ ´5n. This
condition can be relaxed to eq. (4.60) providing freedom for the winding numbers, so that we
can choose small values if stability conditions for this realistic model require them. This scenario
can be interpreted as the limiting case where the mixing angle is Θ “ 0 and the gauge field Aµ

corresponds to the Z 1 boson. Furthermore, the validity of these solutions relies on the argument
of the constant fermion background to justify the absence of fermions in the Lagrangian. We
also have the argument of a low energy effective theory which we used to justify the absence of
the W˘ and Z0 bosons. An additional argument in this mixing angle is extremising the energy,
as it is usually done (see for example Refs. [75, 76]) where we can take W 1

µ “ W 2
µ “ Aµ “ 0,

but this would require another differential equation for the Z0
µ field with an ansatz in cylindrical

coordinates as the one for Aµ. Thus, this would be the next logical step to work out a full
analysis.

The first physical consequence in this proposal is the change of particles masses when they
go across or nearby the string. This can be seen in the Yukawa terms in the SM Lagrangian and
the profile of the Higgs field throughout the plots. The neutrino masses have the same behaviour
due to the new terms we added in the Lagrangian. There is just a single case in which the cosmic
string is not present in the standard Higgs field as we can see in Fig. 4.2: for κ “ 0 and n “ 0
this field takes its VEV everywhere. Thus in this scenario, just neutrinos masses will be affected
when passing near the cosmic strings.

As we mentioned before, for future work a full analysis is needed. This would involve the
W , B bosons and fermion fields. In order to achieve this, we should consider more terms in
the Lagrangian, resulting in a larger system of coupled non-linear differential equations. In this
work we got a system of three equations, considering the W and B fields would give us a system
of 7 equations since they are vector fields. These SUp2qL gauge fields are used in the Lagrangian
given in eq. (4.6) in an analogous way as the Up1qY 1 gauge field. But we should notice that the
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Lagrangian contains the field strength tensor and that they are only coupled to the standard
Higgs field through the covariant derivative. If we want to solve this problem, we should follow
the same steps by getting the equations of motion and imposing boundary conditions under a
cylindrically symmetric ansatz. Because of the Lagrangian structure, the equations of motion
for the SUp2qL fields will take a form similar to the Up1qY 1 field. We would expect these fields to
be related to the cosmic string, but only if the standard Higgs field winding number is non-zero
n ‰ 0. If n “ 0 then we would expect the radial part of the W and B fields to have a constant
behaviour with κ “ 0, while for κ ‰ 0 there would be an indirect coupling to the cosmic string
through the Higgs fields. For all the other cases we expect similar cosmic string profiles in the
solutions. We can get this equations of motion for the fields Φ, ξ, Aµ, Bµ and W a

µ or equivalently
in the physical fields Φ, ξ, Z 1µ, Zµ, W˘

µ and Aµ if we use the mixing angles θW and Θ.

Adding a first generation of fermions implies adding left- and right-handed electrons, neutri-
nos, up and down quarks. By following the same steps, we would start obtaining the equations
of motion in a cylindrically symmetric ansatz, we would find that there are 8 new fields in total
to add. If we take into account also the W and B fields, then we are in a new and extended
electroweak sector. Our result would be a system of 15 non-linear second order differential
equations. Unfortunately, an analysis like the one above can’t be performed easily because of
the complexity and diversity of terms in the new Lagrangian. We can’t say how would be the
behaviour of the fermion fields or if they would change the profiles of the Higgs and gauge fields
solved and analyzed before. It is required to do the full calculations and numerical solutions in
order to go beyond. Furthermore adding the two remaining generations would lead to a system
of 31 coupled and non-linear second order differential equations. A full quantum field analysis
is beyond the scope of this thesis, with all these fields at hand it would be important to do it in
the future.

Throughout this analysis we have found three types of cosmic strings described in the three
cases above. However we could imagine a fourth type, the co-axial cosmic string. We have not
found this type of solution numerically and other methods should be proposed to look for them.
If we look for a co-axial solution, it would look like a line in the phase space in Fig. 4.9, that
travels around the φ (ξ) axis taking both negative and positive values before reaching the fixed
point φÑ v (ξ Ñ v1). The phase space does not need to give some initial values, we obtain all
the solutions admitted by the equations of motion. There is no co-axial solution in this plot.
Even though, one can argue that this plot has not enough resolution. If there exist a co-axial
string solution, it is between the damped oscillations and the axial cosmic string, in a very small
range.

Some other physical properties and effects can be studied in the future, of the cosmic strings
reported here and in the possible extension of the full electroweak sector we considered before.
For example, we can look for superconducting properties in the core, since the photon field
is included in the full gauge symmetry, and the effects on the scattering of particles. Also
a dynamical analysis can be done, including mass and string tension. This would lead us to
perform a dynamical stability analysis and to production of gravitational waves. The complexity
of all these properties is clearly beyond the scope of this thesis but they are certainly important
for observational purposes, since our analysis does not provide predictions for these kind of
effects.



Appendix A

Derivatives with respect to a field

This appendix clarifies the variational derivative with respect to the Higgs field. This means
that we have to analyze how the variational derivative of a complex scalar or a doublet acts.
We do this in two different forms, using real scalar fields and complex scalar fields, finding the
same and consistent result. Finally we are going to justify the result

δ

δΦ:
pΦ:Φq “ Φ. (A.1)

A.1 Derivative with respect to a complex scalar field

First, let us consider a one-component scalar field φ P C. We can write it as a real and imaginary
part,

φ “ φ1 ` iφ2, φ˚ “ φ1 ´ iφ2, (A.2)

where φ1, φ2 P R are real scalar fields. Using eq. (A.2) the real components are

φ1 “
1

2
pφ` φ˚q, φ2 “ ´

i

2
pφ´ φ˚q. (A.3)

Now we want to define the derivative with respect to a complex scalar field, so we use the
derivatives of the real fields, that we already know how to compute. As it is a derivative, the
Leibniz rule is a condition we must impose

δ

δφ˚
“
δφ1

δφ˚
δ

δφ1
`
δφ2

δφ˚
δ

δφ2
, (A.4)

Equation (A.3) specifies how to compute the variational derivatives

δφ1

δφ˚
“

1

2
,

δφ2

δφ˚
“
i

2
, (A.5)

thus
δ

δφ˚
“

1

2

δ

δφ1
`
i

2

δ

δφ2
. (A.6)
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With this definition, a consistency check confirms the treatment of φ and φ˚ as independent
fields

δφ˚

δφ˚
“

1

2

δφ˚

δφ1
`
i

2

δφ˚

δφ2
“

1

2

δ

δφ1
pφ1 ´ iφ2q `

i

2

δ

δφ2
pφ1 ´ iφ2q “

1

2
´
i2

2
“ 1, (A.7)

δφ

δφ˚
“

1

2

δφ

δφ1
`
i

2

δφ

δφ2
“

1

2

δ

δφ1
pφ1 ` iφ2q `

i

2

δ

δφ2
pφ1 ` iφ2q “

1

2
`
i2

2
“ 0. (A.8)

This consideration confirms that φ and φ˚ can be treated as independent with respect to the
variational derivative. Now we want to compute the derivative of the product

φ˚φ “ pφ1 ´ iφ2qpφ1 ` iφ2q “ φ2
1 ` φ

2
2, (A.9)

so

δ

δφ˚
pφ˚φq “

ˆ

1

2

δ

δφ1
`
i

2

δ

δφ2

˙

pφ2
1`φ

2
2q “

1

2

δ

δφ1
pφ2

1`φ
2
2q`

i

2

δ

δφ2
pφ2

1`φ
2
2q “

1

2
2φ1`

i

2
2φ2 “ φ,

(A.10)
therefore

δ

δφ˚
pφ˚φq “ φ. (A.11)

Analogously, with

δ

δφ
pφ˚φq “

ˆ

1

2

δ

δφ1
´
i

2

δ

δφ2

˙

pφ2
1`φ

2
2q “

1

2

δ

δφ1
pφ2

1`φ
2
2q´

i

2

δ

δφ2
pφ2

1`φ
2
2q “

1

2
2φ1´

i

2
2φ2 “ φ˚,

(A.12)
we find

δ

δφ
pφ˚φq “ φ˚. (A.13)

A.2 Derivative with respect to a scalar doublet

In this section we obtain the variational derivative of a complex scalar doublet field. We will
use the result we obtained in Section A.1 and the two methods we mentioned, starting from real
scalar fields to construct the complex doublet.

A.2.1 Using real scalar fields

Now let us consider a complex scalar doublet Φ P C2, we can write it as

Φ “
´

φ1 ` iφ2
φ3 ` iφ4

¯

, Φ: “ pφ1 ´ iφ2, φ3 ´ iφ4q (A.14)

with φ1, φ2, φ3, φ4 P R real scalar fields. Following a straightforward generalization of eq. (A.6)
we propose a derivative like

δ

δΦ:
“

1

2

´

1
0

¯ δ

δφ1
`
i

2

´

1
0

¯ δ

δφ2
`

1

2

´

0
1

¯ δ

δφ3
`
i

2

´

0
1

¯ δ

δφ4
. (A.15)
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As a consistency check we consider

δΦ:

δΦ:
“

ˆ

1

2

´

1
0

¯ δ

δφ1
`
i

2

´

1
0

¯ δ

δφ2
`

1

2

´

0
1

¯ δ

δφ3
`
i

2

´

0
1

¯ δ

δφ4

˙

pφ1 ´ iφ2, φ3 ´ iφ4q

“

ˆ

1

2

´

1
0

¯

p1, 0q `
i

2

´

1
0

¯

p´i, 0q `
1

2

´

0
1

¯

p0, 1q `
i

2

´

0
1

¯

p0,´iq

˙

“
1

2

´

1 0
0 0

¯

`
1

2

´

1 0
0 0

¯

`
1

2

´

0 0
0 1

¯

`
1

2

´

0 0
0 1

¯

“

´

1 0
0 1

¯

.

(A.16)

We want to compute the derivative of

Φ:Φ “ pφ1 ´ iφ2, φ3 ´ iφ4q

´

φ1 ` iφ2
φ3 ` iφ4

¯

“ φ2
1 ` φ

2
2 ` φ

2
3 ` φ

2
4, (A.17)

so

δ

δΦ:
pΦ:Φq “

ˆ

1

2

´

1
0

¯ δ

δφ1
`
i

2

´

1
0

¯ δ

δφ2
`

1

2

´

0
1

¯ δ

δφ3
`
i

2

´

0
1

¯ δ

δφ4

˙

pφ2
1 ` φ

2
2 ` φ

2
3 ` φ

2
4q

“
1

2

´

1
0

¯

2φ1 `
i

2

´

1
0

¯

2φ2 `
1

2

´

0
1

¯

2φ3 `
i

2

´

0
1

¯

2φ4

“

´

φ1 ` iφ2
φ3 ` iφ4

¯

“ Φ,

(A.18)

and therefore
δ

δΦ:
pΦ:Φq “ Φ. (A.19)

Analogously we find
δ

δΦ
pΦ:Φq “ Φ:. (A.20)

A.2.2 Using complex scalar fields

Now let us consider two scalar fields and write the doublet as

Φ “
´

φ`
φ0

¯

, Φ: “ pφ˚`, φ
˚
0q . (A.21)

where φ`, φ0 P C are complex scalar fields. We have seen in Section A.1 that we can treat the
components of a complex scalar field as independent, so we choose the conjugate ones and write
the Leibniz rule as

δ

δΦ:
“
δφ˚`
δΦ:

δ

δφ˚`
`
δφ˚0
δΦ:

δ

δφ˚0
, (A.22)

and we can take the variational derivatives as

δφ˚`
δΦ:

“

ˆ

δΦ:

δφ˚`

˙´1

“ p1, 0q´1 “

´

1
0

¯

,
δφ˚0
δΦ:

“

ˆ

δΦ:

δφ˚0

˙´1

“ p0, 1q´1 “

´

0
1

¯

, (A.23)
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thus the derivative is
δ

δΦ:
“

´

1
0

¯ δ

δφ˚`
`

´

0
1

¯ δ

δφ˚0
. (A.24)

Notice the self-consistency with eqs. (A.24), (A.15) and (A.6). Starting from eq. (A.24) and
introducing the result of eq. (A.6) for the variational derivative of a complex field, we arrive
again at eq. (A.15) with four real scalar fields. Another consistency check is

δΦ:

δΦ:
“

ˆ

´

1
0

¯ δ

δφ˚`
`

´

0
1

¯ δ

δφ˚0

˙

Φ: “

ˆ

´

1
0

¯ δ

δφ˚`
`

´

0
1

¯ δ

δφ˚0

˙

pφ˚`, φ
˚
0q

“

´

1
0

¯ δ

δφ˚`
pφ˚`, φ

˚
0q `

´

0
1

¯ δ

δφ˚0
pφ˚`, φ

˚
0q

“

´

1
0

¯

p1, 0q `
´

0
1

¯

p0, 1q

“

´

1 0
0 0

¯

`

´

0 0
0 1

¯

“

´

1 0
0 1

¯

.

(A.25)

And at last we reproduce the same result for the derivative of the product that we are interested
in

δ

δΦ:
pΦ:Φq “

ˆ

´

1
0

¯ δ

δφ˚`
`

´

0
1

¯ δ

δφ˚0

˙

Φ:Φ “

ˆ

´

1
0

¯ δ

δφ˚`
`

´

0
1

¯ δ

δφ˚0

˙

pφ˚`φ` ` φ
˚
0φ0q

“

´

1
0

¯ δ

δφ˚`
pφ˚`φ` ` φ

˚
0φ0q `

´

0
1

¯ δ

δφ˚0
pφ˚`φ` ` φ

˚
0φ0q

“

´

1
0

¯

φ` `
´

0
1

¯

φ0

“

´

φ`
φ0

¯

“ Φ.

(A.26)

Therefore we obtain
δ

δΦ:
pΦ:Φq “ Φ, (A.27)

and
δ

δΦ
pΦ:Φq “ Φ:, (A.28)
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Algorithms

In this appendix we describe the algorithms used to obtain the solutions and the self-consistency
tests we performed. We will describe the algorithms in the following way:

• In Section B.1 we show how the Python function scipy.integrate.solve_bvp works.
This function solves boundary value problems and is the one we used to obtain the solutions
to the equations of motion.

• In Section B.2 we describe the self-consistency test we performed to the reported solutions.
We use a discretization of the equations of motion and insert the data we obtained from
Python solutions.

• In Section B.3 we apply the Runge-Kutta method as an alternative to obtain solutions for
the equations of motion. While this is a less appropriate algorithm than Python because
of the type of problem we deal with, we use it for a comparison. The special feature of
this method is solving the differential equations as an initial value problem.

• In Section B.4 we apply the relaxation method, as yet another alternative to Python. This
algorithm is less appropriate too but the equations of motion are solved as a boundary
value problem.

B.1 Python Algorithm

The Python function scipy.integrate.solve_bvp implements a collocation algorithm with
control of residuals for a damped Newton method. A brief description can be found in Python
documentation [103], but here we describe explicitly some relevant technical details we need to
discuss. This function can be used to solve a system of differential equations subject to boundary
conditions.

The Newton method consists of an iteration procedure to solve linear or non-linear equations.
Given a function fpxq, we look for a root x˚ of this function, fpx˚q “ 0. We start from an initial
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guess x0 and then a sequence of approximations is done. Given a root approximation xk, the
next element xk`1 is given by

xk`1 “ xk ´
fpxkq

f 1pxkq
. (B.1)

If |x˚ ´ x0| is small enough and f satisfies some weak conditions, then this procedure attains
the root in a quadratic convergence, this means

lim
kÑ8

|xk`1 ´ x
˚|

|xk ´ x˚|2
“ c, (B.2)

for some positive number c.

To solve a differential equation system using this method, we can discretize the system of
equations of the boundary value problem as a system of non-linear algebraic equations. To
exemplify we can start from a differential equation given by

dy

dx
pxq “ F px, ypxqq. (B.3)

Then we discretize using the collocation algorithm, this is done as follows. We take a collec-
tion of n ` 1 points px0, . . . , xnq and the respective solutions to be approximated are given by
py0, . . . , ynq. Upper indices denote the elements of the discretization. We assume the solution
to be approximated by a linear combination of continuous functions ψ` as

yi “ ypxiq “
n
ÿ

`“0

a`ψ`px
iq. (B.4)

A set of differential equations can be defined with this decomposition

dy

dx
pxiq “ F pxi, yiq, (B.5)

by substituting the approximate solution for the derivative

n
ÿ

`“0

a`
dψ`
dx
pxiq “ F pxi, yiq. (B.6)

Here xi are the input while our objective is to find numerical values for all the yi. Therefore we
are working with an algebraic system of equations

~fp~yq “ ~0, (B.7)

with the vectors ~f “ pf0, ..., fnqT , ~y “ py0, ..., ynqT , the latter vector represents the solution of
the differential equation. We repeat that the upper indices in this convention are the entries of
the vectors which are the set of elements of the discretization. The iterations take the form

~yk`1 “ ~yk ´ Jp~ykq
´1 ~fp~ykq “ ~yk ` ~Y , (B.8)

where the vector ~Y is known as the Newton direction and the lower indices correspond to the
iteration step. The Jacobian matrix is given by

Jp~fk, ~ykq “
Bf ik
Byjk

. (B.9)



B.1. PYTHON ALGORITHM 67

The Newton method itself needs to be improved because of certain inconveniences, one of
them is the need of an initial guess which should be sufficiently close to the solution as the
Newton-Kantorovich theorem states [104]. This is why the damped Newton method is used as
an improvement. From eq. (B.8) we can see that each iteration gives a unit step in Newton’s
direction. The improvement consists in reducing the size of the step (as it might move further
away from the solution) by taking the iteration as

~yk`1 “ ~yk ` ε~Y , 0 ă ε ď 1. (B.10)

ε is the damping factor, it can be chosen by minimizing an objective function gpyq, for example

gp~yk`1q “
1

2

∣∣∣~fp~yk`1q

∣∣∣2. (B.11)

For the case of solve_bvp an affine invariant function is used, like

gp~yk`1q “
1

2
|Jpykq

´1 ~fp~yk`1q|
2. (B.12)

It is important to mention that this improvement does not necessarily lead to convergence
when the normal Newton method fails. But the damped Newton method can indeed de-
tect quickly when it fails. This might justify our finding in Chapter 4 of an interval outside
pκmin, κmaxq where the program is unable to find a solution. The failure of this algorithm might
be because solutions outside this interval are different or away from the proposed initial guess
functions. The other numerical methods, applied below, show that solutions outside the interval
exist, but they do not correspond to cosmic strings.

Let us consider our system of equations in the small-r regime, they read

d2φ

dr2
`

1

r

dφ

dr
“
n2

r2
φ,

d2ξ

dr2
`

1

r

dξ

dr
“
n12

r2
ξ.

(B.13)

These equations have a general solution

φprq “ φ0r
|n|, ξprq “ ξ0r

|n1|. (B.14)

Using these functions as an initial guess, does not work in the case |n| ą 1 or |n1| ą 1. This is
because the algorithm treats every point in the function as an independent initial guess. So as
we mentioned before, a better initial guess function should be one that better approximates the
solution in each point. That is why we use asymptotic functions as

φprq “ vp1´ e´rq, ξprq “ v1p1´ e´rq, (B.15)

which satisfy the boundary conditions.
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B.2 Self-consistency test

Using the data for a given solution in Python we perform a self-consistency test by defining the
discretized version of the differential equations as the error estimates

Eφ “

∣∣∣∣φi`1 ` φi´1 ´ 2φi
ε2

`
φi`1 ´ φi´1

2riε
´
n2φi
r2
i

´ µ2φ2
i ´ 2λφ3

i ` κφiξ
2
i

∣∣∣∣, (B.16)

Eξ “

∣∣∣∣ξi`1 ` ξi´1 ´ 2ξi
ε2

`
ξi`1 ´ ξi´1

2riε
´
n12φi
r2
i

´ µ12ξ2
i ´ 2λ1ξ3

i ` κφ
2
i ξi

∣∣∣∣, (B.17)

which should be approximately zero according to the system in eq. (4.34). We achieve numerical
values of the order of 10´4 for the global symmetry case. We present an example of these error
estimates for the parameters v “ 0.5, v1 “ 1, λ “ 1, λ1 “ 1, n “ 1, n1 “ 2 in Fig. B.1. This
figure contains the plots for the error estimates associated with the fields φ and ξ for two distinct
values of κ, namely κ “ ˘0.5. These errors correspond to the solutions in Fig. 4.4.

(a) (b)

(c) (d)

Figure B.1: Error estimate Eφ for κ “ ´0.5 (a), κ “ 0.5 (b) and error estimate Eξ for κ “ ´0.5
(c), κ “ 0.5 (d).

Analogously, for the local symmetry case we can define the error estimates using the system
of eq. (4.58) as

Eφ “

∣∣∣∣φi`1 ` φi´1 ´ 2φi
ε2

`
φi`1 ´ φi´1

2riε
´
n2φi
r2
i

´ µ2φ2
i ´ 2λφ3

i ` κφiξ
2
i ´ h

ai
r2
i

φip2n` haiq

∣∣∣∣,
(B.18)
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Eξ “

∣∣∣∣ξi`1 ` ξi´1 ´ 2ξi
ε2

`
ξi`1 ´ ξi´1

2riε
´
n12φi
r2
i

´ µ12ξ2
i ´ 2λ1ξ3

i ` κφ
2
i ξi ´ h

1 ai
r2
i

ξip2n
1 ` h1aiq

∣∣∣∣,
(B.19)

Ea “

∣∣∣∣ai`1 ` ai´1 ´ 2ai
ε2

´
ai`1 ´ ai´1

2riε
´ 2hφ2

i pn` haiq ´ 2h1ξ2
i pn

1 ` h1aiq

∣∣∣∣, (B.20)

and we achieve numerical errors of the order of 10´3 which decrease rapidly as r increases.
An example is shown in Fig. B.2 also for the two selected options for κ “ ˘0.5. These error
estimates are associated to the solutions in Fig. 4.3.

(a) (b)

(c) (d)

(e) (f)

Figure B.2: Error estimate Eφ for κ “ ´0.5 (a), κ “ 0.5 (b), error estimate Eξ for κ “ ´0.5 (c),
κ “ 0.5 (d) and error estimate Ea for κ “ ´0.5 (e), κ “ 0.5 (f).

In all these plots we appreciate that the largest errors appear near the origin and then they
decrease for larger r as the solutions converge asymptotically. In any case, the numerical error
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is quite small and we can justify it with our previous discussion about the numerical inability
to impose the boundary values at the origin, due to the removable singularity of the equations
of motion. The errors can also be slightly reduced by taking a refined discretization ε Ñ ε{2,
but this procedure maintains the same order in the error.

B.3 Runge-Kutta method

Another method to solve our equations of motion is fourth order Runge-Kutta method. This
method allows us to solve this problem as an initial value problem. The case κ “ 0 with global
symmetry is a good simplification to analyze because then the Higgs fields are uncoupled. We
can fix the parameters, for instance, as v “ 0.1, v1 “ 2, λ “ 1, λ1 “ 1{4, n “ 1, n1 “ 1 and this
section condition κ “ 0. The bare masses satisfy µ2 “ ´2λv2 ` κv12 and µ12 “ ´2λ1v12 ` κv2 as
can be seen from eq. (4.34) for the large-r limit. So introducing the parameters, the bare masses
take the value µ2 “ ´1{50 and µ12 “ ´2.

The conditions at r Ñ 8 of the fields taking their VEVs are already taken into account
because of the dependence on the bare masses to the other parameters. The equations of
motion as differential equations contain fixed points which will be attained for a set of solutions,
provided the initial conditions are adequate. Now, if we want to solve this problem numerically
we need to specify the initial conditions φpr0q and dφ

dr pr0q (ξpr0q and dξ
dr pr0q). Taking r0 “ 0 is

not viable numerically because of the 1{r dependence of the equations. So this is why we start
at an arbitrary value r0 “ 0.01. Then we fix φpr0q “ 0 and ξpr0q “ 0. The initial values dφ

dr pr0q

and dξ
dr pr0q are left as free parameters so that we can vary them using a program written in

Fortran, applying the fourth order Runge-Kutta method. This fixing does not necessarily reveal
all solutions, even in this κ “ 0 case.

In the case of φ, three types of solutions were found with this method: damped oscillations,
regular cosmic strings that take their VEV asymptotically and divergent solutions. We can see
these solutions in Fig. B.3. Around the value dφ

dr pr0q « 11.44 we can find the cosmic string
solution with the usual profile reported in literature for Up1q symmetry. There is also the trivial
solution and symmetry under φ Ñ ´φ. In the case of ξ there are the same kind of solutions,
as we can see in Fig. B.4. The only difference is the VEV and the range where the solutions
change. Around dξ

dr pr0q « 3.2989972 the solution corresponds to a cosmic string that attains the

VEV at infinity. Solutions with dξ
dr pr0q ă 3.2989972 are damped oscillations around zero and

dξ
dr pr0q ą 3.2989972 are divergent solutions. As the value of dξ

dr grows, the oscillatory solutions
approach the VEV and the amplitude of the first oscillation becomes flat as we can see in Fig.
B.5. Still this solution does not attain the VEV at infinity which is present in the analysis,
instead it goes to zero.

We see how this analysis gives us the same cosmic string profiles found with Python and
reported in the thesis. Moreover, this method allows us to find the damped oscillations and
divergent solutions which were present in the analysis of the phase space. Most importantly this
is an initial value problem which shows the asymptotic behaviour of the cosmic string solutions.



B.3. RUNGE-KUTTA METHOD 71

Figure B.3: The three types of solutions for the standard Higgs field radial part φprq, for different
initial conditions in the derivative, for the parameters v “ 0.1, λ “ 1 and n “ 0.

Figure B.4: The three types of solutions for the extra Higgs field radial part ξprq, for different
initial conditions in the derivative, for the parameters v1 “ 2, λ1 “ 1{4, and n1 “ 1.
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Figure B.5: Damped oscillation solution for the extra Higgs field ξprq near the cosmic string
solution, for the parameters v1 “ 2, λ1 “ 1{4 and n1 “ 1.

B.4 Relaxation method

In order to explore solutions for the values of κ where Python is unable to find, we implement the
relaxation method. This approach solves second order, non-linear differential equations subject
to boundary conditions. Furthermore, as we implement it directly in a Fortran code, we avoid
the numerical problems at r0 “ 0 which are related to the structure of Python function. First
we discretize a function fprq and its derivatives in the form

fprq «
fpr ` εq ` fpr ´ εq

2
,

df

dr
prq «

fpr ` εq ´ fpr ´ εq

2ε
,

d2f

dr2
prq «

fpr ` εq ` fpr ´ εq ´ 2fprq

ε2
,

(B.21)
for small ε, and the mean value of fprq is used in the non-linear terms. For the case of a global
cosmic string, starting from the differential equations we obtain the expressions for the fields at
r in terms of the fields at r ˘ ε. Equivalently, writing a discretization r “ iε for i P t1, . . . , Nu,
the fields at i depend on the fields at i˘ 1 as

φi “
p1` i´1qφi`1 ` φi´1 ´ 4´1λε2pφi`1 ` φi´1q

3 ´ 8´1κε2pφi`1 ` φi´1qpξi`1 ` ξi´1q
2

2´ µε2 ` i´1 ` n2i´2
,

(B.22)

ξi “
p1` i´1qξi`1 ` ξi´1 ´ 4´1λ1ε2pξi`1 ` ξi´1q

3 ´ 8´1κε2pξi`1 ` ξi´1qpφi`1 ` φi´1q
2

2´ µ1ε2 ` i´1 ` n12i´2
. (B.23)

For the case v “ 0.5, v1 “ 1, λ “ 1, λ1 “ 1, n “ 1, and n1 “ 1, we can use a small value
ε “ 10´2 and obtain the plots in Figs. B.6 and B.7. Convergence is assured by taking two large
values of iterations (like 107) and comparing the difference. From this figure we can see that
indeed, for κ outside p´2, 2q we have a different behaviour for the solution.
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Figure B.6: Cosmic string solutions for the standard Higgs field radial part φprq, for different
values of κ solved with the relaxation method, using the parameters v “ 0.5, v1 “ 1, λ “ 1,
λ1 “ 1, n “ 1 and n1 “ 1.

Figure B.7: Cosmic string solutions for the extra Higgs field radial part ξprq, for different values
of κ solved with the relaxation method, using the parameters v “ 0.5, v1 “ 1, λ “ 1, λ1 “ 1,
n “ 1 and n1 “ 1.



74 APPENDIX B. ALGORITHMS

In Figures B.6 and B.7 we see the solutions using the relaxation method, they coincide with
the solutions using Python. Furthermore, as the value of κ increases to κ “ 2, the solution
displays a linear behaviour and as it increases further more at κ ą 2, it changes to an increasing
concave up curve in both fields. These might correspond to divergent solutions which satisfy
the boundary conditions because of the algorithm. We also point out that, from these plots, we
can see that the derivatives at the endpoint rf “ 10 are non-zero, thus this solutions for κ ě 2
are excluded.
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