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Chapter 1

Introduction

In this thesis, we use the lattice Boltzmann equation method (LBEM) in
the D2Q9 to study the Rayleigh-Bénard-Poiseuille flow with the double
distribution function model. To test the accuracy of the LBEM to simulate
fluid flows with heat transfer, we carried out numerical simulations
for two heat conduction problems, Poiseuille flow and Rayleigh-Bénard
convection. We compare our results with theoretical solutions and
available data.

The Rayleigh-Bénard-Poiseuille flow (RBP) is described by the
competition of two body forces, the buoyancy force generated by a
temperature difference in the vertical direction and a pressure gradient
in the horizontal direction. These two problems are known as the
Rayleigh-Bénard convection, characterized by the Rayleigh number Ra,
and the Poiseuille flow, characterized by the Reynolds number Re. Ra is
proportional to the temperature difference between the lower and upper
horizontal walls of the cavity and Re is proportional to a representative
velocity. For any value of Re and for Ra beyond the critical Rayleigh
number Rac, two different instabilities appear, the transversal rolls and
the longitudinal rolls. The transversal rolls are perpendicular to the flow
direction and are two dimensional structures [3]. The longitudinal rolls
are parallel to the flow direction and appear in some conditions in a three
dimensional domain [4].

8
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The aim is to determine the critical Rayleigh number Rac as a function
of Re to study the transition from the transversal rolls or RBP flow to the
conductive state characterized by the Poiseuille flow, for large values of Re
and Ra. This transition is determined by measuring the Nusselt number
Nu in the vertical direction in a steady state as a function of Re.

The LBEM is a powerful numerical method to simulate flows with
heat transfer [1, 5, 6, 7, 8, 9]. This method is originated from the lattice
gas cellular automata (LGCA). The LGCA simulate a fluid flow with
a particle system that evolves in two steps, propagation and collision,
where space, time and velocities are discrete. The set of discrete velocities
are defined by the geometry of the lattice. The system evolves due to a
set of collision rules where mass and momentum are conserved. Hardy,
Pomeau and Pazzis [10] presented the first and simplest model of a LGCA
called HPP. Frisch, Hasslacher and Pomeau [11] presented a model called
FHP that considered the geometry of the lattice to recover the Navier-
Stokes equations. Instead of a set of discrete variables, McNamara and
Zanetti [12] proposed the average of the population of the particles which
evolution depends on the Boltzmann transport equation (BTE). Bhatnagar,
Gross and Krook (BGK) [13, 14] proposed to replace the collision integral
of the BTE by a relaxation to the local equilibrium term yielding to the
lattice Boltzmann equation method in the BGK approximation. Several
authors [7, 9, 15] have shown that the Navier-Stokes equations can be
recovered by the Chapman and Enskog expansion .

The two dimensional Rayleigh-Bénard-Poiseuille flow for air (Pr =
0.71) inside a rectangular cavity has been studied by several authors. The
first numerical and experimental studies were presented by Ouazzani et
al. [16] for 2, 000 ≤ Ra ≤ 12, 000 and 1 ≤ Re ≤ 9. Müller et al. [17]
compared their numerical results with theoretical results for low values
of Re and Ra. Many authors reported correlations for the Nusselt Nu and
Rayleigh Ra numbers for small values of Ra with cavities filled with air
[18, 19, 20, 21]. Nicolas et al. [4] studied the bidimensional RBP flow for
water (Pr = 6.4) for Ra ≤ 6, 000 and Re ≤ 3. Their results showed
that for Re < 0.26, the transversal roll frequency as a function of the
Reynolds number decreases when the Rayleigh number increases. Beyond
this value, the frequency increases as a function of the Rayleigh number.

The Poiseuille flow is stable below the critical Rayleigh number Rac.
For larger values of Rac, two instabilities are observed, the transversal
rolls and the longitudinal rolls. The transversal rolls appear only in a
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bidimensional domain while the longitudinal rolls can be observed only
in a three dimensional domain [4, 16, 17].

Numerical and experimental studies for three dimensional RBP flow
have been carried out by several authors [3, 22, 23, 24, 25]. Schröder and
Bühler [25] studied the RBP flow for silicon oil (Pr = 530), Rayleigh
numbers 2, 300 ≤ Ra ≤ 20, 000 and Reynolds numbers 3× 10−5 ≤ Re ≤
0.1. They found that the transversal roll frequency as a function of the
Reynolds number increases with Ra. At Ra > 14, 000, the frequency varies
slightly due to the convective motion barely affects the traveling velocity.
Fujimura and Kelly [22] documented that at high Reynolds numbers,
the longitudinal rolls interact with a tranverse traveling wave known as
Tollmien-Schlichting wave for Re > 140 and Pr = 1. The study of the RBP
flow has several technological and industrial applications, for instance,
the cooling of electronic components [26], the study of a flow inside solar
chimney power plants [27] or the study of the chemical vapor deposition
(CVD) which is a technique to manufacture thin films such as sollar cells
[28].

In chapter 2 section 2.2, we present the Boltzmann’s transport equation
which describes the irreversible relaxation towards equilibrium in an
isolated system. In section 2.3, we show the equilibrium distribution
function given by the Maxwell-Boltzmann distribution function and its
approximations to low Mach numbers. In section 2.4, we present the
BGK approximation for the collision term, here the collision integral
is replaced by a relaxation to the local equilibrium term and we
discuss the discretization in time of this approximation. In sections
2.5 and 2.6, we obtain the hydrodynamic moments of the equilibrium
distribution function f (eq), we discuss the discretization of the phase
space and we obtain the LBEM in the D2Q9 model for the velocity and
temperature fields. In section 2.7, we obtain the mass, momentum and
energy conservation equations of fluid dynamics from the BTE through
a Chapman and Enskog expansion.

In chapter 3, we show that heat transfer problems in solids can be
simulated by the D2Q9 LBEM with the temperature distribution function.
To test our results, we study the heat conduction in solids and compare our
results with analytic solutions. In section 3.2, we study the heat conduction
in a two dimensional solid that is heated from below. We calculate the
heat flux in the vertical direction as a function of time. From Fourier’s law,
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we find a relation between the relaxation time for the temperature field
and the thermal conductivity. We compare the numerical results with the
solution in steady and non-steady states. In section 3.3, we present the heat
transfer in a bidimensional block made of two solids, one on the top of the
other with different thermal diffusivities. We compare our results with the
analytic solution and the interface temperature solution in steady states.

In chapter 4 section 4.2, we study the Poiseuille flow. We compare
our numerical results with the analytic solution in steady and non-steady
states. In section 4.3, we simulate the Rayleigh-Benard convection with
the double distribution function model. We validate our simulations by
comparing the results with those of Shan [1], and Clever and Busse
[2]. In section 4.4, we simulate the two dimensional Rayleigh-Bénard-
Poiseuille flow for air. We find that for Rayleigh numbers beyond the
critical Rayleigh number and Re > 0, the Poiseuille flow breaks the
symmetry of the convection rolls and they move downstream to the right.
In a steady state, the velocity components u and v are closed and there is a
symmetry between their trajectories at Ly = 1/4 and Ly = 3/4 with Ly the
height of the cavity. The components of the velocity u and v at any point
(x, Ly/2) oscillates in time in a way that the frequency of u is twice that of
v. The Nusselt number as a function of the Reynolds number shows that
for fixed Ra, the transition from Poiseuille to RBP flow is found when the
Nusselt number Nu = 1. As Ra grows, we find a transition at a critical
value of the Rayleigh number Rac where the flow is the RBP flow. We find
the transition curve by plotting Rac as a function of Re for different cavity
sizes. For the largest cavity size, the Rayleigh and Reynolds numbers
Ra ≤ 300, 000 and Re ≤ 1, 500, respectively. Finally, we find that Nu as
a function of Ra grows as a power law for large values of Ra.

In chapter 5, we present the conclusions of this thesis.



Chapter 2

The lattice Boltzmman equation
method

2.1 Introduction

In this chapter, we present an overview of the lattice Boltzmann equation
method (LBEM) which is a useful numerical tool to simulate different
fluid flows. The LBEM is a numerical method for solving the Boltzmann’s
transport equation (BTE) for the velocity distribution function. The
Navier-Stokes equations can be recovered through a Chapman and
Enskog expansion [15, 7]. The BTE was presented in 1872 by Ludwig
Boltzmann. This equation describes the irreversible relaxation towards
equilibrium in an isolated system. In section 2.2, we discuss the velocity
distribution function and we present the BTE. In section 2.3, we
introduce the Maxwell Boltzmann’s distribution function, also known
as the equilibrium distribution function f (eq) and its low Mach number
approximation up to the second order. In section 2.4, we present the
Bhatnagar, Gross and Krook (BGK) approximation, here the collision
integral is replaced by a relaxation to the local equilibrium term and
we discuss the discretization in time of this approximation. In sections
2.5 an 2.6, we obtain the hydrodynamic moments of the equilibrium
distribution function f (eq), we discuss the discretization of the phase space

12
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and we obtain the LBEM in the D2Q9 model for the velocity and the
temperature fields. In section 2.7, we obtain the mass, momentum and
energy conservation equations of fluid dynamics from the BTE through
a Chapman and Enskog expansion. In section 2.8, we end with some
conclusions.
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2.2 Boltzmann’s transport equation

Let us consider a dilute gas with N particles contained in a cavity of
volume V. The average number of particles contained in a volume element
dr about position r with velocities v in a range dv about v at time t is
given by the velocity distribution function f (r, v, t)drdv. The total number
of particles N in the volume V is

N
V

=
∫

f (r, v, t)dv. (2.1)

In the following we will denote the particle density N/V by n. All the
particles contained in a volume element drdv at (r, v), at time t, will be
contained in a volume element dr′dv′ at (r + v∆t, v + F/m∆t, t + ∆t), at
time t + ∆t. In the absence of collisions between the particles

f
(

r + v∆t, v +
F
m

∆t, t + ∆t
)

dr′dv′ = f (r, v, t)drdv, (2.2)

with F the external force and m the particle’s mass. It can be shown that in
the absence of collisions, the volume element remains unchanged under
evolution in time [29], that is drdv = dr′dv′. Then equation (2.2) reduces to

f
(

r + v∆t, v +
F
m

∆t, t + ∆t
)
= f (r, v, t). (2.3)

In the presence of collisions equation (2.3) is

f
(

r + v∆t, v +
F
m

∆t, t + ∆t
)
− f (r, v, t) =

(
∂ f
∂t

)
coll

∆t, (2.4)

where (∂ f /∂t)coll is the collision operator, as the name implies, this therm
represents the collisions of one particle with another. We expand the left
hand side of this equation to the first order in ∆t. We obtain the equation
of motion for the velocity distribution function

∂ f (r, v, t)
∂t

=

(
∂

∂t
+ v · ∇r +

F
m
· ∇v

)
f (r, v, t) =

(
∂ f
∂t

)
coll

, (2.5)

where

∇r =

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
, ∇v =

(
∂

∂vx
,

∂

∂vy
,

∂

∂vz

)
. (2.6)
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The derivation process of the collision operator (∂ f /∂t)coll is presented in
[29], where binary collisions and the assumption of molecular chaos are
considered. Boltzmann’s transport equation is

∂ f (r, v, t)
∂t

=

(
∂

∂t
+ v · ∇r +

F
m
· ∇v1

)
f (r, v1, t) =

∫
dv2

∫
σ(Ω)dΩ |v2 − v1|

[
f (r, v′1, t) f (r, v′2, t)− f (r, v1, t) f (r, v2, t)

]
,

(2.7)
in this expression (v1, v2) and (v′1, v′2) are the initial and final velocities of
any possible collision and σ(Ω) is the differential cross section of the solid
angle Ω.
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2.3 The equilibrium distribution function f (eq)

The equilibrium distribution function f (eq) is the solution to the
equation (2.7) when ∂ f (v, t)/∂t = 0. Hence, equation (2.7) is∫

dv2

∫
σ(Ω)dΩ |v2 − v1|[

f (eq)(r, v′1, t) f (eq)(r, v′2, t)− f (eq)(r, v1, t) f (eq)(r, v2, t)
]
= 0.

(2.8)

A sufficient condition that satisfies the integral of the left hand side of this
equation is

f (eq)(v′1) f (eq)(v′2) = f (eq)(v1) f (eq)(v2). (2.9)

We take the logarithm of both sides

ln f (eq)(v′1) + ln f (eq)(v′2) = ln f (eq)(v1) + ln f (eq)(v2), (2.10)

this equation has the form of a conservation law. The general solution is

ln f (eq)(v) = λ1(v) + λ2(v) + λ3(v)... (2.11)

where λ1, λ2 and λ3 represent the conservation of mass, momentum and
energy, respectively. Therefore ln f (eq) is a linear combination of v2 and the
three components of the velocity v plus an arbitrary constant

ln f (eq)(v) = −A(v− u)2 + ln C (2.12)

or
f (eq)(v) = C exp

[
−A(v− u)2

]
, (2.13)

where C, A and u are five arbitrary constants. Substituting f (eq)(v) into
the equation (2.1), the particle density n is

n = C
∫

exp
[
−A(v− u)2

]
dv, (2.14)

with u = 0, the above equation becomes

n = C
∫

exp
[
−Av2

]
dv. (2.15)
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The solution of this equation is

n = C
(π

A

)3/2
, (2.16)

then

C = n
(

A
π

)3/2

. (2.17)

The average velocity u is defined by

u =
1
n

∫
v f (eq)(v)dv. (2.18)

The average kinetic energy 〈ε〉 of a particle is

〈ε〉 = m
2n

∫ ∣∣∣v2 − u2
∣∣∣ f (eq)(v)dv, (2.19)

with m the particle’s mass. We assume there is energy equipartition, hence
equation (2.19) is associated with the temperature T through Boltzmann’s
constant k by

〈ε〉 = D
2

kT, (2.20)

with D the number of dimensions. It can be shown that the constant A is
related to the average energy by [29]

A =
m

2kT
. (2.21)

Substituting A in equation (2.17)

C = n
( m

2πkT

)3/2
. (2.22)

Then

f (eq)(v) = n
( m

2πkT

)3/2
exp

[
−m

(v− u)2

2kT

]
. (2.23)

This is the Maxwell-Boltzmann’s distribution function which describes the
probability to find a particle with velocity v under equilibrium conditions,
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with the particle density n, the average velocity u and the temperature T
given by

n(r, t) =
∫

f (r, v, t)dv, (2.24a)

u(r, t) =
1
n

∫
vv f (r, v, t)dv, (2.24b)

T(r, t) =
m

Dkn

∫
|v− u|2 f (r, v, t)dv. (2.24c)

equation (2.23) can be written as

f (eq)(v, u) = n
( m

2πkT

)3/2
exp

(
−mv2

2kT

)
a(v, u) (2.25)

with

a(v, u) = exp
(

m
v · u
kT
−m

u2

2kT

)
. (2.26)

In the low Mach number approximation, the velocity is considered to be
small. We apply a Taylor expansion of the term a(v, u) up to the second
order

a(v, u) = 1 +∇a(0, 0) · u +
1
2

u ·H(0, 0) · uT, (2.27)

where
∇a(0, 0) · u = m

v · u
kT

, (2.28)

(u)T is the transpose of u and H(0, 0) the Hessian. The low Mach number
approximation of the equilibrium distribution function f (eq)(v) is

f (eq)(v) =n
( m

2πkT

)D/2
exp

(
−m

v2

2kT

)
[

1 +
m
kT

(v · u) +
( m

kT

)2
(v · u)2 − m

kT
u2
]

.
(2.29)
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2.4 Discretization of Boltzmann’s transport equation

In the Bhatnaghar, Gross and Krook (BGK) approximation [13, 14], the
collision operator given by the right hand side of the equation (2.7) is
replaced by a relaxation to the local equilibrium term of the form(

∂ f
∂t

)
coll

=
1
τ

[
f (eq)(r, v, t)− f (r, v, t)

]
, (2.30)

where f (r, v, t) is the velocity distribution function, v is the microscopic
velocity, τ is the relaxation time and f (eq)(r, v, t) is Maxwell Boltzmann’s
distribution function. Substituting the relaxation to the local equilibrium
term into the equation (2.5) we obtain

f
(

r + v∆t, v +
F
m

∆t, t + ∆t
)
− f (r, v, t) =

∆t
τ

[
f (r, v, t)− f (eq)(r, v, t)

]
.

(2.31)
To discretize the BTE in the BGK approximation, the above equation can
be rewritten as

d f
dt

+
1
τ

f =
1
τ

f (eq). (2.32)

This equation has the form of a linear first order differential equation that
can be solved using the technique of an integrating factor µ = et/τ. We
multiply equation (2.32) by µ

d
dt

(
f et/τ

)
=

1
τ

f (eq)et/τ. (2.33)

Integrating both sides we obtain

f
(

r + v∆t, v +
F
m

∆t, t + ∆t
)
=

1
τ

e−∆t/τ

∫ ∆t

0
et/τ f (eq)

(
r + v∆t, v +

F
m

∆t, t + ∆t
)

dt + e(−∆t/τ) f (r, v, t).
(2.34)

To linearize f (eq), we assume that ∆t is small

f (eq)
(

r + v∆t, v +
F
m

∆t, t + ∆t
)
=

(
1− t

∆t

)
f (r, v, t)+

t
∆t

f (eq)
(

r + v∆t, v +
F
m

∆t, t + ∆t
)

.
(2.35)
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Substituting the above expression into the equation (2.34) and integrating
the resulting equation, we obtain

f
(

r + v∆t, v +
F
m

∆t, t + ∆t
)
− f (r, v, t) =(

e−∆t/τ − 1
) (

f (r, v, t)− f (eq)(r, v, t)
)
+(

1 +
τ

∆t
(e−∆t/τ − 1)

)
f (eq)

(
r + v∆t, v +

F
m

∆t, t + ∆t
)

.

(2.36)

We expand e−∆t/τ to the first order Taylor series in ∆t and neglect the
terms of order O(∆t2), equation (2.36) leads to

f
(

r + v∆t, v +
F
m

∆t, t + ∆t
)
− f (r, v, t) = −∆t

τ

[
f (r, v, t)− f (eq)(r, v, t)

]
.

(2.37)
This equation is the discretization of the BTE in the BGK approximation.
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2.5 The lattice Boltzmann equation method in
the D2Q9 model

The Chapman-Enskog hypothesis states that the moments of equations
(2.24) can be evaluated with f (eq)

Im,n =
∫

ψm,n(v) f (r, v)dv =
∫

ψm,n(v) f (eq)(r, v)dv, (2.38)

where ψm,n is a polynomial of v and the mth and nth order . The integral
of equation (2.38) has the form∫

ψ(ζ) exp−ζ2
dζ, (2.39)

which can be calculated with Gaussian quadrature [30]. The LBEM in a
two dimensional lattice with nine velocities is known as the D2Q9 model.
In this model the polynomial ψ is

ψm,n(v) = vm
x vn

y (2.40)

where vm
x and vn

y are the x and y components of v. Substituting ψm,n(v)
and f (eq) into the equation (2.38)

Im,n =
∫

ψm,n(v) f (eq)dv =
ρ

2πkT

[∫
vm

x vn
y exp

(
−v2

2kT

)(
1− u2

2kT

)
dvxdvy

+
∫

vm
x vn

y exp
(
−v2

2kT

)(v · u
2kT

)
dvxdvy

+
∫

vm
x vn

y exp
(
−v2

2kT

)
1
2

(v · u
kT

)2
dvxdvy

]
.

(2.41)
We denote the above equation as

I = A + B + C, (2.42)

with
A =

ρ

π

(√
2kT

)m+n (
1− u

2kT
Im In

)
, (2.43)

B =
ρ

π

(√
2kT

)m+n
(

2ux Im+1 In + 2uy Im In+1√
2kT

)
(2.44)
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and

C =
ρ

π

(√
2kT

)m+n
(

ux
2 Im+2 In + 2uxuy Im+1 In+1 + u2

y Im In+2

kT

)
, (2.45)

where
Im =

∫ ∞

−∞
exp−ζ2

ζmdζ, ζ = v/
√

2kT, (2.46)

is the mth order moment of the weight function exp−ζ2
. This equation can

be evaluated with the third order Hermite formula given by

Im =
3

∑
j=1

ωkζm
k , (2.47)

where ζk are the set of k discrete velocities or abscissas and ωk are the
weight coefficients of the quadrature. Substituting equation (2.47) into
equation (2.43)

A =
ρ

π

(
1− u2

2kT

) 3

∑
i=1

ωi(2kT)m/2ζm
i

3

∑
j=1

ωj(2kT)n/2ζn
j

=
ρ

π ∑
i,j

ωiωjψm,n(vi,j)

(
1− u2

2kT

)
,

(2.48)

with
vi,j = (vi, vj) =

√
2kT(ζi, ζ j), ψm,n(vi,j) = vm

i vn
j , (2.49)

From equations (2.44) and (2.45)

B =
ρ

πkT

(
ux

2

∑
i,j=1

ωiωjψm,n(vi,j)vi + uy

3

∑
i,j=1

ωiωjψm,n(vi,j)vj

)
,

B =
ρ

π

3

∑
i,j

ωiωjψm,n(vi,j)

(
vivj · u

kT

)
,

(2.50)

and

C =
ρ

π
ωiωjψm,n(vi,j)

(
u2

xv2
i + 2uxuyvivj + u2

yv2
j

2(kT2)

)
,

C =
ρ

π

3

∑
i,j=1

ωiωjψm,n(vi,j)

[
((vi, vj) · u)2

2(kT)2

]
.

(2.51)
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The integral of equation (2.47) becomes

Im,n =
ρ

π

3

∑
i,j=1

ωiωjψm,n(vi,j)

[(
1− u2

2kT

)
+

(
vi,j · u

kT

)
+

1
2

(
vi,j · u

kT

)2
]

(2.52)
From the above equation we identify the equilibrium distribution function

f (eq)
i,j =

ωiωjn
π

[(
1− u2

2kT

)
+

(
vi,j · u

kT

)
+

1
2

(
vi,j · u

kT

)2
]

. (2.53)

With equation (2.47) we rewrite equation (2.52) as follows

Im,n = ∑
i,j

ψm,n(vi, vj) f (eq)
i,j (r, v). (2.54)

To obtain the weight coefficients ωiωj, we use the Hermite polynomial Hn
defined by

Hn(ζ) = (−1)n expζ2 dn

dζn

[
exp

(
−ζ2

)]
. (2.55)

The third order Hermite formula is

H3(ζ) = (−1)3 expζ2 d3

dζ3

[
exp

(
−ζ2

)]
= 8ζ3 − 12ζ. (2.56)

The three abscissas of the quadrature are

ζ1 = −
√

3/2, ζ2 = 0, ζ3 =
√

3/2. (2.57)

The weight coefficients given by the Hermite formula are

ωk =
2n+1n!

√
π

H′
n(ζ j)2 , (2.58)

with H
′
n the first derivative of the Hermite polynomial of order n. The first

derivative of equation (2.56) is

H3
′(ζ) = 24ζ2 − 12. (2.59)

The roots of this equation are

H3
′(ζ1) = 24, H3

′(ζ2) = −12, H3
′(ζ3) = 24, (2.60)
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b c0 c1

c2

c3

c4

c5c6

c7 c8

1

Figure 2.1: Schematic representation of the discrete velocity vectors ck for
the D2Q9 model.

and the weight coefficients

ω1 =
√

π/6, ω2 = 2
√

π/3, ω3 =
√

π/6. (2.61)

In figure 2.1 we show the nine different velocity directions ck of the D2Q9
model. The velocities ck are

ck =


(0, 0), k = 0
c(cos(φk), sin(φk)), k = 1, ..., 4
c
√

2(cos(ψk), sin(ψk)), k = 5, ..., 8.
(2.62)

with k = 0, ..., 8, φk = π(k− 1/2), ψk = π(k− 9/2), and the speed of the
lattice c = ∆x/∆t = 1. The discrete velocity vi,j defined by equation (2.49)
for i, j = (1, 1) is

v1,1 =
√

2kT(ζ1, ζ1) =
√

2kT
√

3/2(−1,−1), (2.63)

v1,1 =
√

3kT(−1,−1) =
√

3kTc7. (2.64)

The weight coefficient in this case is

ω1ω1 =

√
π

6

√
π

6
=

π

36
. (2.65)

The substitution of the rest of the values of (i, j) for the set of discrete
velocities vectors vi,j and weight coefficients ωk are shown in table 2.1.
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i j vi,j/
√

3kT ωiωj/π = ωk ck

1 1 (-1,-1) 1/36 c7
1 2 (-1,0) 1/9 c3
1 3 (-1,1) 1/36 c6
2 1 (0,-1) 1/9 c4
2 2 (0,0) 4/9 c0
2 3 (0,1) 1/9 c2
3 1 (1,-1) 1/36 c8
3 2 (1,0) 1/9 c1
3 3 (1,1) 1/36 c5

Table 2.1: The set of discrete velocities vectors vi,j and weight coefficients
ωk of the D2Q9 model.

From equation (2.53) in terms of ck and ωk, we obtain the equilibrium
distribution function for the D2Q9 model given by

f (eq)
k (r) = ωkn

[
1 +

(ck · u)
cs2 +

(ck · u)2

2cs4 − u2

2cs2

]
, (2.66)

with the substitution kT = c2
s = c2/3, with cs the speed of sound [30]. The

particle density n and the velocity u are given by

n(r, t) =
8

∑
k=0

fk(r, t) u(r, t) =
8

∑
k=0

ck fk(r, t). (2.67)

The velocity distribution function in the BGK approximation is

fk(r + ck∆t, t + ∆t)− fk(r, t) = −∆t
τ

[
fk(r, t)− f (eq)

k (r, t)
]
+ Fk, (2.68)

In this equation fk(r, t) is the probability of a particle being at position r at
time t with velocity ck, f (eq)

k is the local equilibrium distribution function
given by the equation (2.66). In section 2.7, we show that the relaxation
time τ is related to the kinematic viscosity ν by

ν = cs
2 (τ − τ0) , (2.69)
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with τ0 = 1/2. The term Fk represents a body force like gravitation,
pressure difference or electromagnetic forces in a dimensionless form. The
general form of Fk is

Fk = 3ωk
(
ckxGx + ckyGy

)
, (2.70)

where ckx and cky are the horizontal and vertical component of ck,
respectively. In chapter 4, we simulate a pressure gradient in the x
direction, in this case equation (2.70) is

Fx = 3ωkckxGx, (2.71)

with Gx = P̂′, given by

P̂′ =
8ν2ρRe

Ly
3 . (2.72)

We will further discuss the body force P̂′ in chapter 4, section 4.2.
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2.6 The temperature field

The temperature T is defined by [7]

T(r, t) =
8

∑
i=0

Tk(r, t) (2.73)

with k = 0, ..., 8 and Tk is the temperature distribution function in the
BGK approximation at position r with velocity ck and time t that obeys
the transport equation

Tk(r + ∆tck, t + ∆t)− Tk(r, t) = −∆t
τT

[
Tk(r, t)− T(eq)

k (r, t)
]

, (2.74)

where τT is the relaxation time for the temperature field related to the
thermal diffusivity α [7] by

α = cs
2(τT − τ0), (2.75)

with τ0 = 0.5, cs = 1/
√

3 the speed of sound , α > 0 and τT > 0.5.
The equilibrium distribution function for the temperature field T(eq)

k [8]
is

T(eq)
k (r, t) = ωkTk

[
1 +

ck · u
cs2

]
. (2.76)

The weight coefficients ωk and the velocities ck are shown in table 2.1.
Natural convection in LBEM is simulated by adding a body force Fk

with the Boussinesq approximation to the buoyancy force to the left hand
side of equation (2.68),

Fk = −3ωkckyGy, (2.77)

with Gy
Gy = gβ(T − T0). (2.78)

In these expressions cky is the vertical component of ck, g is the acceleration
due to gravity in the lattice, β is the thermal expansion coefficient
and T0 a reference temperature. We will further discuss the Boussinesq
approximation in section 4.3.
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2.7 The Chapman-Enskog expansion

The macroscopic hydrodynamic equations can be derived through the
Chapman and Enskog procedure [15, 7], which is a multiscaling expansion
technique for solving Boltzmann’s Equation. To see this, we first use a
Taylor expansion in time and space of the left hand side of equation (2.4)

fk(r + ck∆t, t + ∆t) = fk(r, t) + ∆t(ck · ∇) fk(r, t) +
∆t2

2

(
∂

∂t
+ ck · ∇

)2

fk(r, t).

(2.79)
Substituting equation (2.79) in equation (2.68)

fk(r, t)+∆t(ck ·∇) fk(r, t)+
∆t2

2

(
∂

∂t
+ ck · ∇

)2

fk(r, t) =
∆t
τ

[
fk(r, t)− f (eq)

k (r, t)
]

.

(2.80)
We expand the particle distribution function fk(r, t) about the local
equilibrium distribution function f (eq)

k

fk(r, t) = f (eq)
k + ε f (neq)

k , (2.81)

where f (eq)
k = f (0)k , the equilibrium distribution function, f (neq)

k =

f (1)k (r, t) + ε f (2)k (r, t) + ... is the non equilibrium distribution function and
ε is a small parameter proportional to the Knudsen number, given by the
ratio between the mean free path and the representative flow length scale.
We introduce two macroscopic time scales and a length scale[

∂

∂t
= ε

∂

∂t1
+ ε2 ∂

∂t2
, ∇ = ε∇

]
. (2.82)

Inserting the expressions (2.81) and (2.82) in the equation (2.80),(
ε

∂

∂t1
+ ε2 ∂

∂t2

)(
f (0)k + ε f (1)k + ε2 f (2)k

)
+ (ck · ε∇)

[
f (0)k + ε f (1)k + ε2 f (2)k

]
+

1
2

[(
ε

∂

∂t1
+ ε2 ∂

∂t2

)2

+ 2
(

ε
∂

∂t1
+ ε2 ∂

∂t2

)
(ck · ε∇) + (ck · ε∇)2

]
=

1
τ

[
f (0)k + ε f (1)k + ε2 f (2)k − f (eq)

k

]
.

(2.83)
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Collecting the terms of first order ε1

∂

∂t1
f (eq)
k + (ck · ε∇) f (eq)

k = −
f (1)k
τ

, (2.84)

and second order ε2

∂

∂t1
f (1)k +

∂

∂t2
f (eq)
k + (ck · ε∇) f (1)k +

1
2

∂2

∂t1
2 f (eq)

k +

∂

∂t1
(ck · ε∇) f (eq)

k +
1
2

ckck · ∇2 f (eq)
k =

1
τ

f (eq)
k .

(2.85)

We can rewrite equation (2.85) by using the equation (2.84)

∂

∂t2
f (eq)
k +

(
1− 1

2τ

) [
∂

∂t1
f (1)k + (ck · ∇) f (1)k

]
= −

f (2)k
τ

. (2.86)

From equation (2.84) and (2.86) we can obtain the macroscopic mass and
momentum equations

∂ρ

∂t
+∇ · ρu = 0, (2.87)

∂ρu
∂t

+∇ ·Π = 0, (2.88)

where Π is the momentum flux tensor given by

Παβ = ∑
k

ckαckβ

[
f (eq)
k +

(
1− 1

2τ

)
f (1)k

]
, (2.89)

with ckα and ckβ are the components of the velocity vector ck in the α and
β coordinate directions.

The momentum flux tensor Π can be specified by the lattice geometry.
As we mentioned in the previous section, we consider a two dimensional
square lattice with nine velocities (the D2Q9 model), in this case, the term
f (eq)
k is given by equation (2.66). We substitute f (eq)

k into the equation (2.89)
and we obtain

Π(0)
α = ∑

k
ckαckβ f (eq)

k = pδαβ + ρuαuβ,

Π(1)
α =

(
1− 1

2τ

)
∑
k

ckαckβ f (1)k = ν
(
∇α(ρuβ) +∇β(ρuα)

)
,

(2.90)
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with the pressure p = cs
2ρ, cs = 1/

√
3 the sound speed [31], and the

kinematic viscosity ν = cs
2(τ − τ0), with τ0 = 1/2.

The momentum equation is

ρ

(
∂uα

∂t
+∇β · uαuβ

)
= −∇α p + ν∇β ·

(
∇αρuβ +∇βρuα

)
. (2.91)

We can follow the same procedure to obtain the energy equation [7, 8, 9]
determined by

∂T
∂t

+∇ · (uT) = α∇2T, (2.92)

with α the thermal diffusivity.
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2.8 Conclusions

In this chapter, we discussed Boltzmann’s transport equation (BTE). The
stationary solution of the BTE is given by the Maxwell distribution
function f (eq), this equation describes the probability to find a particle
with velocity v under equilibrium conditions. We discussed the low Mach
number approximation up to the second order. Bhatnagar, Groos and
Krook (BGK) proposed an approximation in which the collision integral
is replaced by a relaxation to the local equilibrium term, this expresses
that collisions relax the distribution function to its local equilibrium value.
We obtained the hydrodynamic moments of the equilibrium distribution
function f (eq) for the D2Q9 model, which is a nine velocity model in
a two dimensional lattice. We discussed the discretization of the phase
space in the D2Q9 model. We presented the lattice Boltzmann equation
method for the velocity and the temperature fields. We showed that the
Navier-Stokes equations can be recovered by performing the Chapman
and Enskog expansion.



Chapter 3

Heat transfer in solids using the
lattice Boltzmann equation

method

3.1 Introduction

To test the LBEM with the temperature distribution function given by
equation (2.74) in the D2Q9 model, we study two different problems
of heat conduction in solids and compare our results with theoretical
solutions.

In section 3.2, we study the heat conduction in a two dimensional
solid that is heated from below. We calculate the heat flux in the vertical
direction as a function of time. We use Fourier’s Law to find a relation
between the relaxation time for the temperature field and the thermal
conductivity. We study the temperature as a function of time. We compare
the results with the numerical solution of the heat equation via Fourier
series and calculate the average percentual error.

In section 3.3, we study the heat transfer in a bidimensional block
made of two solids, one on the top of the other with different thermal
diffusivities. We study the temperature variation and compare the results
with the analytic solution in a steady state.
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3.2 Heat flux, thermal conductivity and thermal
diffusivity

In this section, we study the heat conduction in a plane wall that is heated
from below at a constant temperature TH. The top of the wall is maintained
at a constant temperature TC. The aspect is Ly/Lx = 1/2. The periodic
boundary conditions are used in the x direction. The top and bottom walls
have Dirichlet boundary conditions [32]. We find a relation between the
relaxation time for the temperature field and the thermal conductivity. We
compare our results with the numerical solution of the heat equation via
Fourier series.

The heat flux q′ is defined as the heat transfer rate per unit area and is
described by Fourier’s law

q = −k′∇T′, (3.1)

where the negative sign shows that the heat flux goes from the higher
temperature to the lower temperature, k is the thermal conductivity which
is a property of the material and∇T′ is the temperature gradient given by

∇T′ =
(

∂T′

∂x′
,

∂T′

∂y′

)
. (3.2)

Note that we denote the dimensional parameters by the superindex ′.
In the lattice Boltzmann equation method, the heat flux is defined as

[6]
q = ∑

k
(ck − u)Tk(r, t). (3.3)

In the case of heat conduction in a solid u = 0. Then equation (3.3)
becomes

q = ∑
k

ckTk(r, t). (3.4)

The general form of the heat equation [33] is

∂

∂x′

(
k′

∂T′

∂x′

)
+

∂

∂y′

(
k′

∂T′

∂y′

)
+

∂

∂z′

(
k′

∂T′

∂z′

)
+ q̇ = ρ′c′p

∂T′

∂t′
, (3.5)

with ρ the density and cp the specific heat capacity at constant pressure.
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In the case of a plane wall that is heated from below, the temperature is
a function of the y coordinate and heat is transferred only in this direction.
We assume that the thermal conductivity is constant and there is no
internal generation, then equation (3.5) reduces to

α′
∂2T′

∂y2′ =
∂T′

∂t′
, (3.6)

with the thermal diffusivity α′ = k′/ρ′c′p measures the rate of heat transfer
through a material. The nondimensional quantities are defined by

r =
r′

Ly
, t =

α

L2
y

t′, T =
T′ − T′C

∆T′
, (3.7)

with Ly the characteristic length, L2
y/α the characteristic time and ∆T′ =

T′H − T′C the characteristic temperature, note that 0 ≤ T ≤ 1. The initial
temperature inside the plane wall is TC.

The boundary conditions are

T(0) = TH, T(Ly) = TC. (3.8)

The solution of equation (3.6) in the steady state is

T(s) = (TC − TH) y + TH. (3.9)

The time dependent solution of equation (3.6) using Fourier series is

T(y, t) = T(s) +
∞

∑
n=1

Cn sin(nπy) exp
(

n2π2tLy

)
, (3.10)

with the Fourier coefficients

Cn =
2(TC − TH)

nπ
. (3.11)

In figure 3.1, we show the heat flux in the vertical direction qy calculated
with equation (3.4) as a function of time t for different bottom wall
temperatures TH.

From Fourier’s law, we find a relation between the relaxation time for
the temperature field τT and the thermal conductivity k. In figure 3.2(a),
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Figure 3.1: The heat flux in the vertical direction qy as a function of time t
for different bottom wall temperatures TH. In the numerical simulations,
the number of mesh sites in Lx is Nx = 51 , the temperature T′C = 0.1 and
the relaxation time τT = 2.

we show the heat flux qy in a steady state as a function of the temperature
gradient in the vertical direction ∆T/Ly for different values of τT. The data
is fit by qy = −k∆T/Ly with the same values of TH of figure 3.1. Note
that the slope of every fit is the value of the thermal conductivity k. In
figure 3.2(b), we show k as a function of τT, open squares in black. We find
that the data is fit by k(τT) ≈ τT/3, continuous line in black.

We study the temperature T as a function of the vertical direction y at
x = 1/2 and different times t together with the solution of equation (3.6)
given by equation (3.10) with n = 200, as we show in figure 3.3. The
numerical simulations with the LBEM, colored squares, agree with the
solution of equation (3.10) in steady and non-steady states, continuous
curves and lines in black.
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Figure 3.2: (a) The heat flux qy in the vertical direction as a function of
the temperature gradient in the vertical direction ∆T/Ly in a steady state
for different relaxation times τT. The colored continuous lines are the fit of
qy = k∆T/Ly. (b) The thermal conductivity k as a function of the relaxation
time τT, open squares in black. The data is fit by k = 0.33τT, continuous
line in black.
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Figure 3.3: The temperature T as a function of the vertical axis y at different
times t, colored squares, together with the solution of equation (3.10),
shown as the continuous curves in black. The average percentual error for
the temperature in a steady state is 0.00334%. In the numerical solutions,
n = 200, α = 0.86,TC = 0, TH = 1 and the number of mesh sites in Lx, Ly
is Nx = 51, Ny = 101.
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3.3 Heat conduction between two solids

α0

α1

T (x, 0, t) = TH

T (x, Ly, t) = TC

x

y

Lx

Ly

Ly0

Ly1

1

Figure 3.4: Scheme of a solid made of two different materials with different
thermal difussivities α0 and α1. The length is Lx, the total height Ly =
Ly0 + Ly1 with Ly0 and Ly1 the heights of the bottom and the top solids
respectively.

In this section, we study the heat conduction in a bidimensional solid
made of two materials, one is on the top of the other with length Lx and
a total height Ly = Ly0 + Ly1, with Ly0 and Ly1 the heights of the bottom
and the top solids respectively, this is shown in figure 3.4. The bottom and
top thermal diffusivities are α0 and α1 with ρcp = 1 in both materials, thus
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α∗ = k. The horizontal walls have the Dirichlet boundary condition [32]
and the vertical walls have the periodic boundary condition. We denote
the dimensional variables by the superindex ′. The initial condition is
T′(x′, y′, 0) = T′C.

The solid is in thermal contact with heat baths at temperatures TH and
TC in the bottom and top horizontal walls

T′(0, t′) = T′H, T′(Ly, t′) = T′C, (3.12)

with T′H > T′C. The boundary condition at the interface y′ = Ly0 between
the solids is

− k0
∂T′

∂y′
∣∣∣

L−y0

= −k1
∂T′

∂y′
∣∣∣

L+
y0

. (3.13)

The solutions in the steady state are

T′(Ly0−) =
T′I − T′H

Ly0
y+ T′H, T′(Ly0+) =

T′C − T′I
Ly1

(y− Ly0)+ T′I , (3.14)

with TI = T(y = Ly0) the interface temperature in the steady state. The
non-dimensional position, time and temperature are defined by

r =
r′

Ly0 + Ly1
, t =

t′(
L2

y0/α0 + L2
y1/α1

) , T =
T′ − T′C

∆T′
,

(3.15)
with Ly0 + Ly1 the characteristic length, 1/(Ly0/α0 + Ly1/α1) the
characteristic time and ∆T′ = T′H − T′C the characteristic temperature. The
derivatives in equation (3.13) are taken on the left and right of y = Ly0,
respectively. Thus, equation (3.13) is

− k0
TI − TH

Ly0
= −k1

TC − TI

Ly1
, (3.16)

from this expression

TI =
k0Ly1TH + k1Ly0TC

k0Ly1 + k1Ly0
. (3.17)

In figure 3.5, we show the temperature T(Lx/2, y) as a function of the
height y at different times t together with the interface temperature in
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a steady state TI , horizontal black line, given by equation (3.17) and
the steady state temperature, two straight segments in black, given by
equation (3.14). We show that our results are in good agreement with the
analytic solutions in steady states of the temperature T as a function of y
and the interface temperature TI .
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Figure 3.5: The temperature T(Lx/2, y) as a function of the vertical
direction y at different times t together with the interface temperature in a
steady state TI = 0.364, horizontal line in black, given by equation (3.17)
and the steady state temperature, two straight segments in black, given
by equation (3.14). The average percentual error for the temperature in
a steady state is 0.65%. In the numerical simulations TH = 1, TC = 0,
ρcp = 1, α0 = 0.86, α1 = 1.5 and the number of mesh sites in Lx, Ly with
Ly = Ly0 + Ly1 is Nx = 51, Ny = 101.
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3.4 Conclusions

In this chapter, we studied the heat conduction in solids. In section 3.2,
we presented the heat conduction in a plane wall heated from below. Our
numerical results agreed with the numerical solution of the heat equation
via Fourier series. The average percentage error for the temperature in
a steady state was 0.00334%. We calculated the heat flux in the vertical
direction qy as a function of time t. From these results, we found a
relation between the thermal conductivity and the relaxation time for the
temperature field.

In section 3.3, we studied the heat transfer in a block made of two
solids, one on the top of the other with different thermal diffusivities.
Our results were in good agreement with the analytic solutions in steady
states of the temperature as a function of the height and the interface
temperature. The average percentage error for the temperature in a steady
state is 0.65%.

We showed that the thermal LBEM in the D2Q9 model can be used to
simulate problems with time dependent heat transfer.



Chapter 4

Rayleigh-Bénard-Poiseuille flow

4.1 Introduction

In this chapter, we study three different flows, Poiseuille flow, Rayleigh-
Bénard convection and Rayleigh-Bénard-Poiseuille (RBP) flow with the
lattice Boltzmann equation method in the D2Q9 model. In the LBEM for
flows with heat transfer, we use two coupled distribution functions, one
for the particles and the other one for temperature. These distribution
functions evolve according to equations (2.68) and (2.74), respectively.
To simplify the geometry of the problems, we assume that in the cavity
shown in figure 4.1, the width Lz is much larger than the length Lx and the
height Ly, thus all the dependent variables are independent of Lz. Then,
we consider a two dimensional cavity of length Lx and height Ly with a
pressure gradient in the x direction in Poiseuille flow and a temperature
difference in the y direction in Rayleigh-Bénard convection. The Rayleigh-
Bénard-Poiseuille flow occurs in the presence of a pressure gradient and a
temperature difference.

We use Poiseuille flow and Rayleigh-Bénard convection as a bechmark
tests. In section 4.2, we study Poiseuille flow. We compare our results with
the analytic solution in steady and non steady states for different Reynolds
numbers. We show that the average percentual error for the steady state
solutions is less than 4%. In section 4.3, we study the Rayleigh-Bénard
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convection in which the bottom and top walls are in thermal contact with
heat baths at temperatures TH and TC, respectively, with TH > TC. We
study the maximum vertical velocity to find the value of the relaxation
time in which the transition from a conductive state to a convective one
occurs near the critical Rayleigh number Ra0 ∼ 1707.76. To validate our
results, we compute the Nusselt number Nu as a function of the Rayleigh
number Ra and we compare the results with the benchmark solutions of
Shan, and Clever and Busse. The percentual error in both cases is less than
4%.

For Ra > Ra0 and Re > 0 not too large, we have Rayleigh-Bénard
convection together with Poiseuille flow, known as Rayleigh-Bénard-
Poiseuille flow. In section 4.4, we study this flow and find that for a
fixed value of Ra, the Nusselt number Nu is a decreasing function of the
Reynolds number Re and there is a transition from RBP flow to Poiseuille
flow when Nu = 1. Thus, for fixed Re, we find a critical Rayleigh number
Rac where the flow is RBP when Ra > Rac and Poiseuille flow when
Ra < Rac. The main object of this chapter is to extend the study of the
transition curve in the Rac − Re plane for larger values of Ra and Re. We
study Nu as a function of Ra and show that Nu grows as a power law for
large values of Ra close to those we found for Rayleigh-Bénard convection.
In the last part of this chapter, we present our conclusions.
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z

Figure 4.1: Schematic representation of a three dimensional cavity with
length Lx, height Ly and width Lz.



4.2. Poiseuille flow 45

4.2 Poiseuille flow

No slip wall

No slip wall

x

y

Lx

Ly PBC PBCu(y)dP/dx = const

1

Figure 4.2: Schematic representation of the two dimensional steady state
Poiseuille flow with no-slip boundary conditions in the horizontal walls
with length Lx and periodic boundary conditions (PBC’s) in the vertical
walls with height Ly.

In this section, we study the time dependent and steady state plane
Poiseuille flow for different Reynolds numbers with the lattice Boltzmann
equation method. In order to evaluate the accuracy of our numerical
results, we compare them with the analytical solutions in steady and non-
steady states.

The flow of a viscous fluid contained in a pipe of constant cross section
is referred to as Poiseuille flow [34]. It was experimentally studied by Jean
Léonard Marie Poiseuille in 1838 and Gotthilf Heinrich Ludwig Hagen in
1839 [35]. In a two dimensional incompressible plane, Poiseuille flow is
a unidirectional flow between two infinite parallel plates, separated by a
distance Ly, as shown in figure 4.2. The flow is moving due to a constant
pressure gradient in the horizontal direction dP/dx = 0. The no-slip
boundary conditions are considered, in which the vertical and horizontal
components of fluid velocity are equal to those of the bottom and top
walls. Since the horizontal walls are at rest, then u = 0.
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The momentum conservation equation in the x direction is

∂u
′

∂t′
= −1

ρ

dP′

dx′
+ ν

∂2u′

∂y′2
, (4.1)

with u′ the horizontal component of the velocity, t′ time, y′ vertical
position, ν the kinematic viscosity, ρ the fluid density, and −P̂′ =
−dP′/dx′ the pressure gradient, in which the negative sign shows that
the pressure decreases in the flow direction. Note that the superindex ′ is
used to denote the dimensional parameters.

The initial condition and the no-slip boundary conditions are

u(x, y, 0) = 0, 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly. (4.2)

u(x, 0, t) = 0, u(x, Ly, t) = 0. (4.3)

In a steady state the term in the left hand side of equation (4.1) is zero,
hence

ν
∂2u

′

∂y′2
=

P̂′

ρ
. (4.4)

This equation states that there is a balance between the pressure gradient
in the fluid and the viscous shear stress. The general solution for the above
equation is

u(y)′ =
P̂′

νρ
(y
′2 + ay′ + b), (4.5)

where a and b are constants that are found from the no-slip boundary
conditions on the top and bottom walls. Then,

u
′(s) =

P̂′

2νρ
y′(Ly − y′). (4.6)

The velocity in the center of the cavity u′0 is

u′0 =
L2

yP̂′

8νρ
. (4.7)

The time dependent solution of equation (4.1) using Fourier series is
given by

u′(y′, t′) = u(s)′ +
∞

∑
n=1

C′n sin
(

nπy′

Ly

)
exp

(
−νn2π2t′

Ly
2

)
, (4.8)
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with

C′n = − 2
Ly

∫ Ly

0
u(s)′ sin

nπy′

Ly
dy =

2 ˆP′Ly
2

ν(nπ)3 (cos nπ − 1). (4.9)

The non-dimensional quantities are

y =
y′

Ly
, t =

νt′

Ly
2 , u =

Lyu′

ν
, (4.10)

where Ly is the characteristic length and Ly
2/ν is the characteristic time.

The non-dimensional parameter that measures the ratio of inertial forces
to viscous forces is the Reynolds number, given by

Re =
u′0Ly

ν
= u0, (4.11)

with u′0 the horizontal velocity in the center of the cavity in a steady state
given by equation (4.7). Then, substituting u′0 into the above equation, we
obtain

Re =
Ly

3P̂
8ν2ρ

. (4.12)

From this equation, we solve for the pressure gradient P̂ and we substitute
this term into equation (2.71) to simulate Poiseuille flow.

The dimensionless form of equations (4.6), (4.8) and (4.9) are

u(s)(y) = 4Re(1− y)y, (4.13)

u(y, t) = u(s)(y) +
∞

∑
n=1

Cn sin(nπy) exp(−n2π2t), (4.14)

Cn =
2P̂
ν2

(
Ly

nπ

)3

(cos nπ − 1). (4.15)

In the LBEM, we simulate the no-slip boundary condition with the
halfway bounce back boundary condition (HBB), in which the particle
distribution functions fk that hit a wall are reflected in the opposite
direction, considering that the wall is placed in the middle of two lattice
nodes [36, 37, 38]. The vertical walls have periodic boundary conditions,
PBC, where the outgoing particle distribution functions fk enter on the
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opposite wall. This boundary condition simulates a system periodically
infinite in the horizontal direction.

In figure 4.3(a), we show the normalized velocity profile u/Re as a
function of the height y for Re = 1, 000 at x = 1/2 and different times t
together with the solution of equation (4.14), continuous colored curves.
For larger times t, the series expansion in equation (4.14) is zero and
the velocity profile reaches the steady state given by equation (4.13). The
maximum velocity u(y) = Re at y = Ly/2.

In figure 4.3(b), we show the normalized velocity profile u/Re at x =
1/2, y = 1/2 as a function of time t for four values of Re together with
equation (4.14), continuous curve in black. We show that our results are in
good agreement with the solution of equation (4.14).
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Figure 4.3: (a) For Re = 1, 000, the normalized velocity profiles u/Re
as a function of the height y at x = 1/2 and several times t together
with the solution of equation (4.14), continuous colored curves. The
average percentual error of the solutions in steady states is 3.8%. (b) The
normalized velocity profile u/Re at x = 1/2, y = 1/2 as a function
of time t for different Reynolds numbers Re together with the graph of
equation (4.14), continuous curve in black. In the numerical solutions,
n = 200, τ = 0.6, ρ = 1, the number of mesh sites in Ly is Ny = 101.
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4.3 Rayleigh-Bénard convection

T (x, 0, t) = TH

T (x, Ly, t) = TC
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Figure 4.4: Schematic representation of the Rayleigh-Bénard convection.
The cavity has length Lx and height Ly with Lx = Ly/2. The acceleration
due to gravity g points vertically downwards. The bottom and top walls
are at constant temperatures TH and TC, respectively, with TH > TC.

In this section, we study the Rayleigh-Bénard convection with the
lattice Boltzmann equation method with two distribution functions, one
for the particles and the other one for the temperature. This problem
consists of a fluid that is confined between two plates that are thermally
conducting. The bottom and top plates are at constant temperatures TH
and TC, respectively, with TH > TC. The cavity has a length Lx and a height
Ly as is shown in figure 4.4. As the temperature difference between the
two plates is raised, the system reaches the convective state at the critical
Rayleigh number Ra0 and regular patterns are formed, known as Bénard
cells. At Ra < Ra0, the system remains in the conductive state.

The Rayleigh-Bénard convection studies are carried out in the
framework of the Boussinesq approximation, in which is considered that
all the properties of the fluid are constant except in the buoyancy term,
where the density of the fluid is assumed to be a linear function of the
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temperature
ρ = ρ0(1− β(T − T0)), (4.16)

where ρ0 is the average fluid density, T0 is a reference temperature and β
the coefficient of the thermal expansion. Then, the gravity is written as

G = ρ0g− ρgβ(T − T0), (4.17)

where g is the acceleration due to gravity. Note that the first term of the
right hand side of the above equation is absorbed into the pressure term.
Hence, the Boussinesq equations are

∇ · u′ = 0 (4.18a)
∂u′

∂t′
+ u′ · ∇u′ = −∇P′

ρ
+ ν∇2u′ − gβ(T′ − T0) (4.18b)

∂T′

∂t′
+∇ · (u′T′) = α∇2T′. (4.18c)

with α the thermal diffusivity and ν the kinematic viscosity.
In what follows, we denote the dimensional parameters of the problem

with the superindex ′. The dimensionless parameters that describe the
problem are

r =
r′

Ly
, t =

α

L2
y

t′, u = u′
Ly

α
T =

T′ − T0

∆T′
, (4.19)

with Ly the characteristic length, L2
y/α the characteristic time and ∆T′ =

T′H − T0 the characteristic temperature with T0 = T′C the reference
temperature. The Prandtl number and the Rayleigh numbers are

Pr =
ν

α
, Ra =

gβ∆TLy
3

να
. (4.20)

In the numerical simulations, the horizontal walls have isothermal,
no-slip boundary conditions. We simulate this conditions with the
halfway bounce back boundary condition, HBB, where the particle fk and
temperature Tk distribution functions that hit the wall are reflected in the
opposite direction [36, 37, 38]. The vertical walls have periodic boundary
conditions. At t = 0, the flow is at the lower temperature TC.
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To validate the numerical simulations we follow the work of Shan [1].
We study the maximum vertical velocity vmax to find the transition from
a conductive state to a convective one at Ra0 ∼ 1, 707.76, the theoretical
value predicted by linear stability theory [39, 40].

In figure 4.5(a), we show the maximum vertical velocity vmax as a
function of time t for four values of Ra. We find that the maximum vertical
velocity grows as vmax ∝ A exp(γt), with γ the growth rate. The fits are
shown as colored curves. From the previous figure, we study the growth
rate of the maximum vertical velocity γ as a function of Ra for three values
of the relaxation time τ, as we show in figure 4.5(b). The data is fit by
γ = aRa + b, by the colored straight lines. The intersection of each line
with the x axis gives us the value of Ra in which the transition occurs. We
find that for τ = 0.6, the Rayleigh number Ra = 1, 707.75, dashed lines in
black, agrees well, within a 0.0005%, with the theoretical value Ra0. This
value of τ is used in all the numerical simulations that follow.

In figure 4.6, we show the temperature field and the isotherms in
steady states for three values of Ra. The plumes are symmetric with
respect to the vertical axis y.

The Nusselt number Nu measures the ratio of the convective heat
transfer to the conductive heat transfer. When the temperature gradient
is in the vertical direction, the Nusselt number [6] is

Nu = −
Ly

∆T′Lx

∫ Lx

0

∂T′(x′, Ly)

∂y′
dx′. (4.21)

Another equivalent definition of the Nusselt number [2] is

Nu = 1 +
〈v′T′〉

α∆T′/Ly
, (4.22)

where v
′
is the vertical component of the velocity and 〈〉 is the average over

the height of the cavity. For conductive heat transfer, Nu = 1. When heat
is transferred by convection, Nu > 1. We measure the Nusselt number
Nu given by equation (4.22) in a steady state as a function of the Rayleigh
number Ra. Our results compare well with those of Clever and Busse [2],
and Shan [1] for large Rayleigh numbers Ra, as we show in figure 4.7.
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Figure 4.5: (a) The maximum vertical velocity vmax as a function of time
t for different Rayleigh numbers Ra. The colored continuous curves are
the fit of vmax = A exp(γt). (b) The growth rate of the maximum vertical
velocity γ as a function of the Rayleigh number Ra for different relaxation
times τ. For τ = 0.6, the Rayleigh number Ra = 1, 707.75, is shown as the
vertical dotted line. In the numerical simulations ρ = 1, τ = 0.6, Pr = 0.71
and the number of mesh sites in Lx, Ly is Nx = 201, Ny = 101.
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Figure 4.6: The temperature field and the isotherms in steady states for
three values of Ra. (a) Ra = 2x103, (b) Ra = 2x105 and (c) Ra = 1x106.
There are 10 isotherms between 0 ≤ T ≤ 1.



4.3. Rayleigh-Bénard convection 55

1.5

3

4.5

1000 10000 100000

Nu

Ra

LBM
Clever and Busse
1.56(Ra/Rac)

0.296

Figure 4.7: The steady state Nusselt number Nu as a function of the
Rayleigh number Ra. The Nusselt number grows as Nu = aRab with
a = 0.198 and b = 0.28. The LBEM simulations, open circles in magenta,
agree with the results of Shan for large Ra, black curve [1], and those of
Clever and Busse, green crosses [2]. In both cases, the percentual error is
less than 4% for 5, 000 ≤ Ra ≤ 50, 000.
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4.4 Rayleigh-Bénard-Poiseuille flow

T (x, 0, t) = TH

T (x, Ly, t) = TC

x

y

Lx

dP/dx = constLy

g

1

Figure 4.8: Schematic representation of the Rayleigh-Bénard-Poiseuille
(RBP) flow. The cavity has a length Lx and a height Ly with Ly = Lx/2. The
fluid is driven by a pressure difference in the x direction and a temperature
difference in the y direction. The bottom temperature TH and the top
temperature TC with TH > TC. The acceleration due to gravity g points
vertically downwards.

In this section, we study the Rayleigh-Bénard-Poiseuille flow (RBP),
which is a combination of Rayleigh-Bénard convection and Poiseuille
flow presented in the previous sections. There is a pressure difference in
the horizontal direction, characterized by the Reynolds number Re and
a temperature difference in the vertical direction, characterized by the
Rayleigh number Ra. For a fixed value of Re, Re > 0, and Ra < Ra0, we
find a Poiseuille flow and as Ra grows, we find a transition at a critical
value of the Rayleigh number Rac where the flow is the RBP. In what
follows, we study this transition for a wide range of Reynolds Re and
Rayleigh Ra numbers.

We consider two infinite parallel plates separated by a distance Ly. The
bottom and top plates are maintained at constant temperatures TH and
TC, respectively, with TH > TC. A constant pressure gradient ∂P/∂x = 0 is
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imposed in the horizontal direction. In figure 4.8, we show the schematic
representation of RBP flow. The bottom and top walls have no-slip
boundary conditions. With the Boussinesq approximation, the governing
equations are

∇ · u′ = 0 (4.23a)
∂u′

∂t′
+ u′ · ∇u′ = −∇P′

ρ
+ ν∇2u′ − gβ(T′ − T0) (4.23b)

∂T′

∂t′
+∇ · (u′T′) = α∇2T′. (4.23c)

with α the thermal diffusivity and ν the kinematic viscosity. The
dimensionless parameters are

t =
t′ν
Ly

2 , u = u′
Ly

ν
, T =

T′ − T′C
T′H − T′C

, (4.24)

where Ly is the characteristic distance, L2
y/ν the characteristic time

and T′H − T′C the characteristic temperature. Note that the dimensional
parameters of the problem are denoted with the superindex ′.

We perform the numerical simulations of the bidimensional RBP flow
with the LBEM. The no-slip boundary conditions are simulated with the
halfway bounce back boundary conditions that we have described in
previous sections. The vertical walls have periodic boundary conditions.
The aspect ratio of the cavity is r = Ly/Lx = 1/2. The pressure gradient is
constant along the cavity. At t = 0, the temperature in the fluid is TC.

For Ra = 10, 000 and Re = 40, a mesh refinement was performed.
The number of mesh sites of the computational domain in Lx, Ly is Nx, Ny.
We measure the Nusselt number Nu given by equation (4.22) in a steady
state and we calculate the percentual error e given by equation (4.25) for
different values of the number of mesh sites, taking as a reference the value
of Nu of the finer mesh. The results are shown in table 4.1. We show that
Nu tends toward a well defined value as the number of mesh sites of the
computational domain increases. For Nx = 201, Ny = 101, we find that
the percentual error is less than 0.4. This value of Ny is used in all the
numerical simulations that follow, except where noted.

e =
Nu(Nymax)− Nu(Ny)

Nu(Nymax)
× 100. (4.25)
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Table 4.1: The Nusselt number Nu in a steady state for different values of
the number of mesh sites Nx, Ny together with the percentual error e for
Ra = 10, 000 and Re = 40. In the numerical simulations the parameters
are ρ = 1, τ = 0.6 and Pr = 0.71.

Ny Nu e

51 2.477 1.02
76 2.488 0.58

101 2.493 0.37
126 2.497 0.25
151 2.499 0.17
176 2.500 0.11
201 2.501 0.07
226 2.503 0.0

In figure 4.9, we show the horizontal component of the velocity u
as a function of the height y together with the steady state solution of
Poiseuille flow, continuous curve in black, given by equation (4.13). In
figure 4.9(a), we show u as a function of y for Reynolds number Re = 10
and three different Rayleigh numbers Ra. For Ra < Ra0, shown as crosses
in magenta, the velocity profile is in a steady state and the result compares
well, within a 4.8% with the steady state solution of Poiseuille flow. For
Ra ≥ Ra0, after a time has passed, the velocity profiles are not longer
symmetric with respect to the vertical axis y and they yield a quasi steady
state for which the velocity profiles fluctuate periodically. This is shown in
figure 4.9(b) for Re = 10, Ra = 2, 000 and several times t.

In figure 4.10, we show the velocity fields in periodic steady states in
the first column, together with the vertical component of the velocity v as
a function of the horizontal component u in the second column, at x = 1/2
and y = 1/2, 1/4, 3/4 for Ra = 20, 000 and four values of Re. In figure 4.11,
we show the corresponding temperature fields and the isotherms of the
previous figure. In figures 4.10(b), (d), (f) and (h), the trajectories in the
u− v space are closed and there is a symmetry between them at y = 1/4
and y = 3/4. In figure 4.12, we show the vertical velocity component v as
a function of the horizontal component u at the center of the cavity in a
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Figure 4.9: The horizontal component of the velocity u as a function of
the height y together with the steady state solution of Poiseuille flow,
shown as the continuous curve in black, given by equation (4.13). (a)
The horizontal velocity u as a function of y in a periodic steady state for
Reynolds number Re = 10 and different Rayleigh numbers Ra. (b) The
horizontal velocity u as a function of y for Ra = 2, 000, Re = 10 and
different times t. In terms of dimensional variables, the parameters are
Nx = 201, Ny = 101, ρ = 1, τ = 0.6, Pr = 0.71, β = 0.1 and g = 0.001.
We keep these values for most of the numerical simulations, except where
noted.



60 Chapter 4. Rayleigh-Bénard-Poiseuille flow

periodic steady state for the same Rayleigh number of the previous figure
and several values of Re. The period of oscillation in the x direction is twice
that of the one in the y direction at y = 1/2, v → 0 and u → Re. In figures
4.10(a), (c), (e) and (g), we show that for small Re, the presence of Poiseuille
flow breaks the symmetry of the convective rolls, as a consequence they
shift downstream to the right. For larger Re, the Poiseuille flow stabilizes
the conductive state.

In figure 4.13, we show the power spectra P of u and v as functions
of the frequency f in the center of the cavity in a periodic steady state
for Ra = 20, 000 and Re = 50. In figure 4.14, we show the fundamental
frequencies of u, fu, in (a) and v, fv in (b) as functions of Re for different
values of Ra. The data grows linearly with Re,

f = mRe, (4.26)

and fu = 2 fv. In figure 4.15, we show that m as a function of Ra decreases
as Ra grows.

To find the transition between RBP flow to Poiseuille flow for a fixed
value of Ra as Re changes, we evaluate the Nusselt number Nu knowing
that Nu > 1 in a RBP flow and Nu = 1 in a Poiseuille flow.

In figure 4.16, we show Nu in a steady state as a function of Re for four
values of Ra. Then for each value of Ra, we can find Rec as mentioned
above. Another equivalent way is to fix Re and change Ra starting with
a small value for which Nu = 1 and finding Rac as the value where RBP
flow passes to a Poiseuille flow.

In figure 4.17, we show the critical Rayleigh number Rac as a function
of the Reynolds number Re for different values of the number of mesh
sites in Lx, Ly. To the left and above of this curve, the flow is RBP and to
the right and below, the flow is Poiseuille. The data is fitted for Re ≤ 50,
Rac = aRe2 + bRe + c with c ≈ 1, 708, shown by the dotted curves in black
and for Re ≥ 50, Rac = a1Re2 + b1Re+ c1, shown by the continuous curves
in black.

Finally, we show the Nusselt number Nu as a function of the Rayleigh
number Ra for fixed values of the Reynolds number Re in figure 4.18. Our
results show that for large values of Ra, Nu = aRab where a and b are
two constants. For Re = 0, the results are in good agreement with those of
Shan [1], and Clever and Busse [2] presented in section 4.3.
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Figure 4.10: The velocity fields in periodic steady states in the first column
together with the vertical velocity v as a function of the horizontal velocity
u in the second column, at x = 1/2 and different heights of the cavity y,
for Rayleigh number Ra = 20, 000. (a) and (b) Re = 5, (c) and (d) Re = 50,
(e) and (f) Re = 150, and (g) and (h) Re = 175.
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Figure 4.11: The temperature field and the isotherms in periodic steady
states for Ra = 20, 000 and the same values of Re of the previous figure.
There are 20 isotherms between 0 ≤ T ≤ 1.
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Figure 4.12: The vertical velocity v as a function of the horizontal velocity
u at x = 1/2, y = 1/2 and Ra = 20, 000, after a time transient for different
values of the Reynolds number Re.
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Figure 4.13: The Power spectra P as a function of the frequency f for Ra =
20, 000 and Re = 50. The horizontal velocity component u, continuous line
in magenta together with the vertical velocity component v, continuous
line in green. The fundamental frequencies for u and v are fu = 34.42,
shown as the vertical dashed line on the right and fv = 17.48, shown as
the vertical dashed line on the left.
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Figure 4.14: The fundamental frequency f of the velocity components u
and v as a function of the Reynolds number Re for six values of the
Rayleigh numbers Ra at x = 1/2, y = 1/2. (a) f as a function of Re
of the horizontal velocity component u. (b) f as a function of Re for the
vertical component v. The fundamental frequency f is fit by f = mRe with
fu = 2 fv.
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Figure 4.15: The slope of equation (4.26) of the horizontal component of
the velocity mu together with the slope of equation (4.26) of the vertical
component mv as a function of the Rayleigh number Ra.
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Figure 4.16: The Nusselt number Nu, calculated with equation (4.22), in
a steady state as a function of the Reynolds number Re for five values of
Rayleigh number Ra.
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Figure 4.17: The critical Rayleigh number Rac as a function of the Reynolds
number Re for different mesh sizes. For Re ≤ 50 the data grows as
Rac = aRe2 + bRe + c with c ≈ 1, 708, shown as the dotted curves in
black. For Re ≥ 50 the data grows as Rac = a1Re2 + b1Re + c1, shown
as the continuous curves in black. (a) For Ny = 101 and Re ≤ 50, a = 0.43,
b = −0.43 and c = 1708.86. (b) For Re ≥ 50, a1 = 0.02, b1 = 153.73 and
c1 = −8735.6. (c) For Ny = 151 and Re ≤ 50, a = 0.43, b = −0.41 and
c = 1, 707.85. (d) For Re ≥ 50, a1 = 0.04, b1 = 143.3 and c1 = −8, 056.9. (e)
For Ny = 201 and Re ≤ 50, a = 0.43, b = −0.4 and c = 1, 707.42. (f) For
Re ≥ 50, a1 = 0.03, b1 = 165.1 and c1 = −12, 481.1.
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Figure 4.18: The Nusselt number Nu as a function of the Rayleigh number
Ra for four values of the Reynolds number Re. For large values of Ra, Nu
grows as Nu = aRab. For Re = 0 with a = 0.231 and b = 0.264, for Re = 20
with a = 0.233 and b = 0.264, for Re = 40 with a = 0.236 and b = 0.261,
and for Re = 60 with a = 0.231 and b = 0.263.
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4.5 Conclusions

In this chapter we studied the Poiseuille, Rayleigh-Bénard and Rayleigh-
Bénard-Poiseuille (RBP) flows with the LBEM in the D2Q9 model. The
numerical results of Poiseuille flow were in good agreement with the
analytic solution in steady and non-steady states. The average percentual
error for the solution in a steady state was 3.8%.

The study of Rayleigh-Bénard convection showed that for τ = 0.6,
the critical Rayleigh number is close to the critical value Ra0 predicted
by linear stability theory. We found that the Nusselt number grows as
Nu = aRab with Ra the Rayleigh number in agreement with benchmark
results[1, 2] with a percentual error less than 4% for 5, 000 ≤ Ra ≤ 50, 000.
These comparison showed that the LBEM is an accurate numerical method
to simulate fluid flows with heat transfer.

In section 4.4, we studied the RBP flow. For Re > 0 and Ra > Ra0,
the Poiseuille flow breaks the symmetry of the convection rolls and they
move downstream to the right. In a periodic steady state, the trajectories
of the velocity components u and v are closed and there is a symmetry
between their trajectories at Ly = 1/4 and Ly = 3/4 with Ly the height of
the cavity. The velocity v = (u, v) at any point (x, Ly/2) oscillates in time
in a way that the frequency of u is twice that of v. The Nusselt number as a
function of the Reynolds number showed that for a fixed value of Ra, the
transition between the RBP flow and Poiseuille flow is found when Nu
reaches the conductive state at Nu = 1. We studied the transition curve
for different values of the number of mesh sites in Lx, Ly. In the largest
mesh size, we went to Rayleigh and Reynolds numbers Ra ≤ 300, 000
and Re ≤ 1, 500, respectively. To go to higher Ra and Re numbers, it is
necessary to consider larger domains. We found that the Rac − Re plane
has two regions, as shown in figure 4.17. In the left top region, we find
the RBP flow. In the right bottom region, we find the Poiseuille flow. For
Re ≤ 50, the data grows as Rac ≈ aRe2 + bRe + 1708. At Re = 0, the value
of the Rayleigh number is close to Ra0 ∼ 1707.76 for all the cavity sizes.
For Re ≥ 50, the data grows as Rac = a1Re2 + b1Re + c1, in this equation
the quadratic part is small for all the cavity sizes but not small enough to
be ignored.

The transition curve can be built from a different approach, for instance
by calculating the heat flow through the vertical axis of the cavity, given
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by

H =
Lx

∆T′Ly

∫ Ly

0

∂T′(Lx/2, y′)
∂x′

dy′. (4.27)

At the value of Re in which the transition from convective to a conductive
flow occurs, the heat flow H will be zero. Since the vertical walls have
periodic boundary conditions, H can be evaluated on any vertical line
inside the cavity.



Chapter 5

Conclusions

In this thesis, we presented the lattice Boltzmann equation method
(LBEM) in the D2Q9 model to study flows with heat transfer using
two coupled distribution functions, one for the particles and one for the
temperature.

In chapter 1, we presented the motivation of studying heat conduction
in solids and the Rayleigh-Bénard-Poiseuille flow (RBP).

In chapter 2, we presented the Boltzmann’s transport equation which
describes the irreversible relaxation towards equilibrium in an isolated
system. We showed the equilibrium distribution function given by the
Maxwell-Boltzmann distribution function and its approximations to low
Mach numbers. We presented the BGK approximation for the collision
term, in which the collision integral is replaced by a relaxation to the
local equilibrium term and we discussed the discretization in time of
this approximation. We obtained the hydrodynamic moments of the
equilibrium distribution function, we discussed the discretization of the
phase space and we obtained the LBEM in the D2Q9 model for the velocity
and temperature fields. We obtained the Navier-Stokes equations for
fluid flow and convection-diffusion equation for heat and mass transfer
through the Chapman and Enskog expansion.

In chapter 3, we showed that heat transfer problems in solids can be
simulated by the LBEM with the temperature distribution function. We

71



72 Chapter 5. Conclusions

studied the heat conduction in a two dimensional solid that is heated from
below. We calculated the heat flux in the vertical direction as a function
of time. We used Fourier’s Law to find a relation between the relaxation
time for the temperature field and the thermal conductivity. We compared
our results with the analytic solution in steady and non-steady states. We
presented the heat transfer in a bidimensional block made of two solids,
one on the top of the other with different thermal diffusivities. The results
were in good agreement with the analytic solution in a steady state.

In chapter 4 section 4.2, we studied the Poiseuille flow. The numerical
results were in good agreement with the analytic solution in steady
and non-steady states. In section 4.3, we studied the Rayleigh-Bénard
convection. We found that for τ = 0.6, the critical Rayleigh number is close
to the critical value predicted by linear stability theory. We showed that
the Nusselt number grows as Nu = aRab with Ra the Rayleigh number in
agreement with benchmark results [1, 2].

In section 4.4, we studied the Rayleigh-Bénard-Poiseuille flow. We
found that For Re > 0 and Ra > Ra0, Poiseuille flow breaks the symmetry
of the convection rolls and that they move downstream to the right. In a
periodic steady state, the trajectories of the velocity components u and
v are closed and there is a symmetry between them at Ly = 1/4 and
Ly = 3/4 with Ly the height of the cavity. The velocity v = (u, v) at
any point (x, Ly/2) oscillates in time in a way that the frequency of u
is twice that of v. The Nusselt number as a function of the Reynolds
number showed that for a fixed value of Ra, the transition between the
RBP flow and Poiseuille flow is found when Nu reaches the conductive
state at Nu = 1. We studied that Rayleigh number as a function of the
Reynolds number for different cavity sizes. In the largest cavity size, we
went to Rayleigh and Reynolds numbers Ra ≤ 300, 000 and Re ≤ 1, 500,
respectively. We found that to go to higher Ra and Re numbers, it is
necessary to consider larger domains. In figure 4.17, we found that the
Rac − Re plane has two regions. To the left and above, we find the RBP
flow and to the right and below, we find the Poiseuille flow. For Re ≤ 50,
the data grows as Rac ≈ aRe2 + bRe + 1708. At Re = 0, the value of the
Rayleigh number is close to Ra0 ∼ 1707.76 for all the cavity sizes. For
Re ≥ 50, the data grows as Rac = a1Re2 + b1Re + c1, in this equation the
quadratic part is small for all the mesh sizes but not small enough to be
ignored.

The study of the RBP flow could improve the understanding of



73

different processes related to renewable energies, such as chemical vapor
deposition (CVD) reactors to manufacture sollar cells and the cooling in
electronic components, to name a few.
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