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Abstract

Unconventional reservoirs are characterized by having a wide pore-size distribution, ranging

from nanopores to hydraulic fractures. Given these heterogeneities, non-uniform flow be-

havior is likely to be developed, and new models considering these complexities should be

sought. This research presents a fractal-fractional model to consider the anisotropy, hetero-

geneity, and anomalous diffusive flow, that may occur inside unconventional reservoirs. This

is done by incorporating a more general flux law and power-law relationships.

Subdiffusive flow is considered in the fracture network inside the SRV. Time-fractional deriva-

tives in the flux law model this anomalous diffusion behavior (fractional approach). Addi-

tionally, it is assumed that the stimulation induces certain fractal characteristics in between

the propped hydraulic fractures. Inside this region, petrophysical properties and matrix

block size are assigned through power-law relationships (fractal approach). The model is

solved numerically through a finite difference scheme, the results show good agreement with

existing numerical and analytical works.

The generated responses cannot be obtained with existing models when anisotropy-heterogeneity

and anomalous diffusion are present. Thus, the typical slopes are not recovered when the

fractal dimension (dmf), connectivity index (θ), and anomalous diffusion exponent (α) take

other than normal diffusion values (dmf = 1, θ = 0, α = 1).

According to this study, the anomalous diffusion approach represents an alternative for ana-

lyzing well responses from complex systems. It is also shown that, when designing stimulation

treatments, attention should be paid to increasing unpropped fracture density-connectivity.

To the best of the authors’ knowledge, this is the first time that, the effect anisotropy and

heterogeneity in unconventional reservoirs, is analyzed through a 3D combination of fractal-

fractional diffusion.
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Chapter 1

Introduction

Energy consumption is growing so quickly that conventional reserves alone cannot satisfy

the demand. Currently, substantial hydrocarbon volumes are being produced from low

permeability formations. Some of these rocks have pores so small or poorly connected that

they almost inhibit fluid flow, shale, and tight rocks are common examples. Due to its

abundance around the world, production from these formations may be taken global, as

technology leaps out of North America (Webster, 2014).

1.1 Problem Statement

Fluid flow modeling is crucial to develop these resources. Several approaches have been

applied and innovative improvements are still being developed. However, multiple challenges

and unanswered questions remain unsolved.

Geologic considerations are of paramount importance. Highly contrasting porous media

coexist inside the same rock.

Several experiments including: ultra-high-pressure mercury injection, back-scattered scan-

ning electron microscopy, and atomic force microscopy have identified pores in the range

of nanometers. These nano-paths give promote flow mechanisms that are typically negligi-

ble in conventional reservoirs. It is thought that those mechanisms are responsible for the

mismatches when only advection (Darcy approach) is considered (Javadpour et al., 2009).
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CHAPTER 1. INTRODUCTION

The exceeds from expected production rates in unconventional reservoirs can also be ex-

plained by the presence of natural fractures. Evidence encountered in outcrops, cores, logs

and microseismic monitoring suggest that their presence in shale rocks should not be dis-

missed. (Gale et al., 2014).

Hydraulic fracturing has become a mandatory procedure to cost-effectively develop these

reservoirs. Describing rock alterations that result from this procedure, should also become

mandatory. Discrete approaches have proven not practical for most of the cases. Further-

more, tracking fracture propagation itself is not the information of interest, but its influences

on rock’s fluid-flow properties. In this sense, if some concepts on fractal theory are recovered,

advantage can be taken from some special characteristics of the induced fracture network.

Their randomness, irregularity, and self-similarity (Wang et al., 2017) suggest that they can

be fractally described, and thus, power law relationships may govern the resulting alterations.

The variance in pore size distribution in these rocks severely limits the assumption of uniform

flow. Instead, flow at multiple scales is developed. Different velocity fields, at each scale,

coexist in these reservoirs. Consequently, pressure and rate responses will depart from normal

diffusion trends.

Complex systems sometimes inhibit diffusion processes to follow Gaussian statistics, and

thus, Fick’s second law fails to describe the related transport behavior (Metzler and Klafter,

2000). By analogy Darcy’s law may also be insufficient for complex reservoirs. Fluid flow

can be sub-diffusive in case of flux impediment, or super-diffusive if the flux is facilitated

(Holy, 2016). As an alternative to analyze flow in complex media, this anomalous diffusion

behavior has been studied through fractional (non-integer order derivatives) flux laws (See

Fomin, 2011; Raghavan, 2011; Chen and Raghavan, 2015; Ozcan, 2014; Albinali, 2016; Holy,

2016).

Despite some authors have suggested the fractional approach as an alternative for dual-

porosity models (see Holy (2016), Holy and Ozkan (2017), Ozcan (2014)), we believe that

the application of fractionality should be limited. It would be better to consider a dual-

porosity idealization with the two media having different degrees of fractionality (see Albinali

(2016) and Raghavan and Chen (2019)). In this sense we decided to include a source term

representing other pore system not included as part of the fracture network. For simplicity,

pseudosteady-state flow was considered for the transfer function. This formulation assumes

that, as pressure in the fracture is disturbed, there is an instantaneous readjustment of

matrix block pressure, therefore, there are no pressure gradients inside matrix blocks. In

2



CHAPTER 1. INTRODUCTION

this way, the flux is not a function of position on matrix blocks, it is only proportional to

the pressure difference between matrix blocks, and fractures.

1.2 Research Objective

The objective of this research is to present an alternative fractal-fractional model to consider

the anisotropy-heterogeneity and anomalous diffusive flow inside a dual-porosity Stimulated

Reservoir Volume (SRV). The model considers 3D flow and is solved numerically through a

finite difference scheme. Single phase flow of slightly compressible fluid of constant viscosity

and compressibility is considered.

1.3 Thesis Organization

� Chapter 1 states the problem under consideration and establishes the objectives of this

work.

� Chapter 2 provides a brief description of the works that were consulted.

� Chapter 3 provides the general concepts that support the use of fractal theory to

describe reservoir non-uniform properties.

� Chapter 4 provides a brief introduction into diffusion works and describes how anoma-

lous diffusion models arise. It also provides support on the use of anomalous diffusion

ideas to describe flow in complex reservoirs.

� Chapter 5 briefly describes the mathematical model and its considerations.

� Chapter 6 presents the verification of the model. This is attained by reproducing Ozcan

(2014) and Holy and Ozkan (2017) data.

� Chapter 7 analyzes the sensitivity of the model responses to all the involved parameters.

� Chapter 8 provides the concluding remarks that arise from the results and presents

some recommendations for future works.

� Appendices A and B provide a detailed description of the model and its derivation.

3



Chapter 2

Literature Review

Gale et al. (2014) presented a study of natural fractures in shale plays. They concluded that

attributes of natural fractures influence, in good or bad sense, depending on the morphology

of the fractures, production from shale reservoirs. The study includes core and outcrop data.

Maxwell et al. (2002) presented microseismic monitoring examples of Barnet Shale formation.

These examples show the complexities developed by the interaction between hydraulic frac-

ture, and the pre-existing fracture networks. Evidence from microseismic studies (Daniels

et al., 2007; Fisher et al., 2005; Xu et al., 2009) leads to the conclusion that the stimulation

extends beyond the symmetric bi-wing planar crack geometry typically considered.

According to Wu (2017), a large proportion of the hydraulic fractures created during a stim-

ulation treatment remain unpropped. These fractures either have a fracture width smaller

than the size of the proppants, or are too far away from the wellbore where proppant cannot

reach. Despite their low conductivity (2-4 orders of magnitude less than hydraulic fractures),

they present a huge potential for production enhancement.

The aforementioned studies indicate that considering uniform properties beyond the propped

hydraulic fracture might not be representative enough.

Given the characteristics of randomness, irregularity, and self-similarity, fracture branches

are excellent candidates to be fractally described (Wang et al., 2017). Fractal geometry was

employed by Wang et al. (2017) to characterize fracture networks based on microseismic

data. They successfully matched microseismic events with fractal bifurcation patterns.
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CHAPTER 2. LITERATURE REVIEW

Conventional flow models of fractured reservoirs typically assume uniformly distributed, all

interconnected fractures, and a mono-scale fracture set. These assumptions severely limit

their application. Multiple improvements and modifications have been proposed, however,

alternative models must be sought (Chang and Yortsos, 1990).

One promising approach to overcome the limitations of conventional fractured reservoirs

idealizations can be found in fractal theory.

O’Shaughnessy and Procaccia (1985) addressed diffusion on fractal objects. Chang and

Yortsos (1990) developed a model to describe the single-phase flow of slightly compressible

fluid in a fractal reservoir. The formulation consists of a fractal object (fracture network)

embedded in a Euclidian medium. Reservoirs with nonuniform fracture distribution, frac-

tures at different scales, and varying degrees of interconnection can be modeled through

this approach. Acuña and Yortsos (1995) simulated pressure transients in synthetic fractal

networks of fractures. They found out that the wellbore pressure is a power-law function of

time.

Flamenco-Lopez and Camacho-Velázquez (2003) derived an approximate analytical solution

for dual-porosity systems, exhibiting fractal characteristics. Short- and long-time approxi-

mations were used to determine fractal parameters. They demonstrated that, by analyzing

transient and pseudo-steady state responses, a Naturally Fractured Reservoir (NFR) exhibit-

ing fractal characteristics can be fully described.

Cossio Santizo (2012) combined a fractal diffusivity equation with the trilinear Flow Model.

They introduced a new semi-analytic solution for flow in a finite-conductivity vertical frac-

ture. This model considers that porosity and permeability are functions of distance from the

wellbore as in Chang and Yortsos (1990).

Fuentes-Cruz et al. (2014) introduced a flow model for fractured wells where nonuniform per-

meability is considered. Stimulation degree decreases with distance from the main fracture

plane. According to their studies, due to the alteration, reservoir response departs signif-

icantly from the uniform permeability approach. They considered linear and exponential

relationships to represent the varying permeability, and to avoid mathematical singularities

that the fractal approach may lead to.

Not only fractal characteristics cause reservoir responses to depart from normal diffusion

trends.
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CHAPTER 2. LITERATURE REVIEW

According to Camacho-Velázquez et al. (2008), diffusion process of fractal reservoirs is history

dependent. Formulations such as the one presented by O’Shaughnessy and Procaccia (1985)

cannot fully describe the anomalous diffusion properties of fractals. In fractally fractured

systems, the history of flow plays an important role in all stages of production. Thus,

temporal flux dependencies must be considered.

In addition, unconventional reservoirs consist of wide range of pore sizes, thus, transport

mechanisms at different scales must be considered (Yucel Akkutlu and Fathi, 2012).

Several experiments confirm the existence of Nanopores in shale reservoirs (Javadpour et al.,

2009). Given the smallness of these pore paths, other transport processes take relevance

besides viscous flow, and thus, Darcy’s law becomes insufficient (Javadpour et al., 2009).

In general, production begins with usual gas flow, followed by gas desorption, and, finally,

gas diffusion occurs in kerogen. This sequence suggests an advective-diffusive-desorptive

equation (Javadpour et al., 2009).

Javadpour et al. (2009) suggested a theoretical approach to describe gas flow in nanopores

(only diffusion and advection were considered). The introduction of the apparent permeabil-

ity concept allowed him to formulate a Darcy-like equation so that it could ease be adapted

into commercial reservoir simulators.

Yucel Akkutlu and Fathi (2012) investigated multiscale gas transport phenomena in organic-

rich shale core samples. They showed that as pore-walls effects increase (which is an obvious

condition of nanopores), the predicted gas transport is somewhat enhanced (compared to

conventional parabolic velocity profile). Other transport phenomena such as the hopping of

molecules by kerogen walls were also considered.

In view of the system’s complexity and considering the above-mentioned studies, flow through

these systems will depart from normal diffusion trends. The overall transport could be

considered as an anomalous diffusion transport.

Metzler and Klafter (2000) presented a generalization of O’Shaughnessy and Procaccia (1985)

equation by including a temporal-dependent flux. Although not emphasized, the model

involves the incorporation of an additional parameter in that it requires a modification to

either the conservation equation or to the flux law (Raghavan, 2011). This work and most

of the consulted references modify the flux law.

Camacho-Velázquez et al. (2008) investigated the production-decline behavior of a NFR ex-
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hibiting single and double porosity with fractal networks of fractures. Significant decline

departures from the Euclidian model were identified when fractality is present. Also, these

researchers presented for the first time in the petroleum literature the application of frac-

tional temporal derivative, defined by Caputo, combined with the fractal description of the

petrophysical properties to capture anomalous diffusion. Camacho-Velázquez et al. (2008)

presented for the first time approximate analytical solutions, for both the fractal and frac-

tional cases, at early and late times for transient and boundary-dominated flow periods,

respectively. This research was based on Metzler and Klafter (2000), O’Shaughnessy and

Procaccia (1985), and Chang and Yortsos (1990) works mainly.

Fomin (2011) presented two approaches for modeling diffusion in fractals. According to his

formulations, this can be done by assuming a variable diffusivity coefficient which scales with

a power law in the special coordinate and by introducing fractional differential equations.

These two ideas form the base to derive the model developed in this work.

Raghavan (2011) described a constitutive equation which employs the concepts used to model

continuous time random walk (CTRW). In this equation, the instantaneous flux is replaced

by a time-convolved delayed flux which also considers waiting period times for random walk-

ers. Raghavan and Chen (2013) addressed fractional diffusion in hydraulically fractured

horizontal wells (finite conductivity fractures were considered). Chen and Raghavan (2015)

analyzed the combined effects of fractional space and time terms in the flux law and exam-

ined the response at a fractured well. Situations that slow down diffusion (obstacles) are

modeled by time-fractional diffusion equations. On the other hand, diffusion enhancement

(highly conductive paths) is modeled by space-fractional diffusion equations. Raghavan and

Chen (2016) addressed two-dimensional flow towards a horizontal well under sub-diffusion.

Power law decline trends were identified at boundary-dominated flow periods.

Ozcan (2014) presented a trilinear anomalous diffusion (TAD) model. His purpose was to

analyze the concept of anomalous diffusion, an alternative to the conventional dual-porosity

formulations, for the SRV region (a time fractional formulation replaced the original dual

porosity idealization). The model was validated with a Barnet field well example which was

also employed by Brown et al (2011) to validate the trilinear dual porosity model. In this

research, sub-diffusion degree (represented by α, the anomalous diffusion exponent) depends

on flow interruptions in the fracture network by matrix elements. A sparsely fractured, tight-

matrix and loosely connected fractures could cause a high degree of sub-diffusion (α → 0).

However, when flow in the fracture network is not much hindered by the interruptions of the

matrix, normal diffusion can be developed (α → 1).

7



CHAPTER 2. LITERATURE REVIEW

Holy (2016) developed a numerical, anomalous-diffusion based flow model and investigated

its applicability to fractured nanoporous formations, tight-oil or shale-gas plays. Holy

(2016)’s approach claims that the extensive characterization (petrophysical properties and

scale dependent transport mechanisms) required to accurately describe these reservoirs, can

become impractical. Instead, a practical but rigorous alternative approach can be imple-

mented by focusing on the response itself. Thus, fluid flow through these systems was

modeled either as sub-diffusive (hindered flux) or supper-diffusive (facilitated flux). Three

cases were considered: slightly compressible fluid (implicit scheme), compressible gas flow

(implicit, simple iterative scheme), two-phase flow (Implicit Pressure Explicit Saturation

scheme).This model considers one dimensional flow, and homogeneous phenomenological co-

efficient (permeability for normal diffusion) and porosity. A nonuniform mesh was latter

considered in Holy and Ozkan (2017).

Albinali (2016) presented a solution for a trilinear flow scheme in a fractured horizontal well.

Inside the SRV a dual-porosity idealization is considered. A fractional flux law is used to

account for anomalous diffusion in fracture and matrix; different anomalous diffusion expo-

nents for both media are considered. Normal diffusion is achieved by selecting appropriate

values of anomalous diffusion parameters. The three contiguous linear flow regions coupled

via pressure and flux continuity are considered.

Chu et al. (2017) carried out an extensive analysis of data from downhole pressure gauges in

the Wolfcamp shale of the Permian basin. Using Chow pressure group, they identified power-

law decline behaviors with slopes much different than conventional 1/2. Raghavan and Chen

(2018) analyzed Chu et al. (2017) data through a modification of the transient-slab-matrix

model of Kazemi (1969) or de Swaan O. (1976). Sub-diffusive flow is considered both in

matrix and fracture network. Raghavan and Chen (2018) focuses on providing theoretical

foundation to Chu et al. (2017) well responses. Chu et al. (2018) employed fractional diffusion

solutions to interpret interference tests, power-law behaviors were also identified.

Raghavan and Chen (2019) went further by considering super and sub-diffusive flow in the

fracture network, whereas only sub-diffusive flow was considered in the slab-matrix system.

An analytical model was derived in Laplace domain.
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Chapter 3

Overview of Fractal Theory

In a broad sense, fractals (natural and mathematical) are shapes that remain essentially

unchanged as one zooms in continually (self-similarity is present at different scales).

3.1 Mathematical Fractals

Fractal geometry can also be considered as the study of geometric shapes that seem chaotic,

but in fact perfectly orderly. This chaotic order arise from iteration of simple rules (Mandel-

brot, 1989). See for example the Sierpiński triangle (3.1), which begins with an equilateral

triangle (blue) which is recursively subdivided into smaller equilateral triangles (whiten).

Figure 3.1: Sierpiński Carpet

9
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For each generation step the area reduces by a factor of three quarters from the previous

step. For the step n, the area will be
(
3
4

)n
of the zero step (original blue area). A different

situation occurs to perimeter (interior side length). Each step, the perimeter is three halfs

the previous step perimeter. For the n step, the triangle’s perimeter will be
(
3
2

)n
of the

zero step perimeter. As triangle goes further and further on its construction, the area will

approach a zero value, but perimeter will keep growing. On the limit, as n goes to infinity,

the figure will have a limited area but an infinite perimeter. Two methods are commonly

employed to determine fractal dimension: the self-similarity method and the box counting

method. With any of these methods it can be determined that the fractal dimension of

the Sierpiński triangle is dmf ≃ 1.585, a number between one and two. The object shares

features from one-dimensional and two-dimensional objects in some sense (depending on the

step of the iteration process, from the two-dimensional triangle, n = 0, to the line segments,

n→ ∞).

Strictly speaking, what is ’fractal’ is not the figure itself, but rather a specific property of it

(Cossio Santizo, 2012). For convenience, any object having fractal properties is also referred

to as fractal.

3.2 Fractal Objects in Nature

Fractal, or fractal-like, objects also appear in nature. There are different natural phenomena

which reflect certain scaling behavior and self-similarity. The scaling behavior is equivalent

to saying that some property of the fractal can be described by a power-law relation (Hardy

and Beier, 1994).

Fractals in nature can be considered as patterns repeated at different scales by natural

processes. See for example the growth of a tree, each of its branches looks similar to the

whole tree. Despite of the fact that each branch is much smaller (thin) than its predecessors,

the pattern remains the same. Something similar happens with the structure of some leafs.

Each vein grows in such a way that the bifurcation patterns are repeated at different scales.

Three examples of fractals in nature are shown next

10
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Figure 3.2: Fractals in Nature

Repetition patterns at different scales can also be found in the currents of a river delta, the

growth of lightning, coast lines, snow flakes, and why not in hydraulic fractures? In some

way, they all reproduce smaller and smaller copies of themselves as they grow. All these

examples may look completely chaotic, however, because in a broad sense, the same process

is repeated over and over again; the self-similarity within these fractal-like structures is much

organized than it appears, in a statistical sense.

3.3 Hydraulic Fractures, Fractals in Nature?

When a hydraulic fracture treatment is carried out a huge amount of energy is delivered at

the injection point. Rock begins to fail and fracture starts growing. The main propagation

direction is dictated by in-situ stress, however, rock heterogeneity and the presence of natural

fractures, provide weak paths where branches from the main fracture can arise. As the

fluid moves away, less energy will be available and smaller branches will be created, yet,

growth pattern will keep the same (smaller branches will continue growing through paths

of weakness). The growth of trees and hydraulic fractures shares certain similarity. Both

begin with a main trunk which spreads into smaller branches, whose size depends on the

branching level/step/generation, i.e, its distance from the main trunk.

Once the fractures are created, the flow back process will leave the proppants behind. How-

ever, some branches will have a fracture width smaller than the size of the proppants or they

will be too far away from the wellbore where proppant cannot reach (Wu, 2017). Proppant

11
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density will decline with distance from the main fracture plane, with the highest density

inside the main fracture plane. Here, proppant density refers to the number of grains inside

the fracture, not to the material’s density itself.

The main fracture plane will be propped and thus, uniform properties can be considered in

this region. The decline in proppant density and stimulation degree suggest employing a

nonuniform approach to assign properties inside the SRV. The enhancement in flow proper-

ties will decrease with respect to the distance from the main fracture plane. This behavior

will continue up to the point where reservoir unstimulated properties are found (the point

where energy was not enough to keep breaking down the rock).

Tracking the real growth of hydraulic fractures is quite complicated, Discrete Fracture Ne-

towrk (DFN) models should be considered. A more practical approach is selected here.

Given that hydraulic fractures spread out following fractal patterns (see chapter 2 for more

detail), a power-law model is considered to describe the non-uniformity of the SVR. Frac-

tures in the SRV are not modeled themselves, in fact, just the concepts of fracture density

and connectivity are considered. Reservoir permeability, porosity and matrix block size are

correlated to fracture density and connectivity. Thus, these three parameters are assigned

according to a power law relationship which depends on fracture density and connectivity in

some way. The approach follows the ideas presented by Chang and Yortsos (1990), Acuña

and Yortsos (1995), Camacho-Velázquez et al. (2008) and Cossio Santizo (2012).

In a broad sense, the power law relation is given as follows

Ps =


Pv

[(
x

LSx

)bx (
y

LSy

)by (
z

LSz

)bz
]

for x ≤ LSx , y ≤ LSy , z ≤ LSz

Pv for x > LSx , y > LSy , z > LSz

(3.1)

where Ps is the resultant value of a original property, Pv, after the stimulation treatment. The

exponents bx, by, bz involve the fractal parameters (connectivity index θ, fractal dimension

dmf and Euclidian dimension d). Note that the scaling behavior is only present inside

the stimulated region delimited by LSx , LSy , LSz , outside of this region, original reservoir

properties are found. Further detail is provided in chapter 5 and Appendix A.
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Chapter 4

Overview of Fractional Diffusion

4.1 First Steps into Diffusion Models

By the first quarter of nineteenth century, Joseph Fourier had already studied the theory of

heat propagation through solids. At the time, Laplace was trying to estimate the probability

that the sum of n random variables may be equal to or less than a certain value when n is

very large. Both the equations they formulated share similar forms (Narasimhan, 2009).

The study of diffusion also traces its roots back to Robert Brown and his observations of

the erratic motion of particles. Unfortunately, because of the advancements at that time

(1820s), Robert Brown was unable to provide further insight. (Turner, 2012).

A milestone in the field of diffusion came up from the work of Adolf Eugen Fick. This

German physiologist presented a phenomenological approach to describe how particles under

random motion tend to spread from a region of higher concentration to a region of lower

concentration. He postulated the flux of matter ȷ in x direction is proportional to the

pertaining gradient of concentration C. The constant of proportionality D was dependent

upon substance nature (Narasimhan, 2009).

j = −D∂C
∂x

(4.1)

Currently, his theory and similar approaches are referred to as ’linear response’ approaches

(Narasimhan, 2009).

Combining equation 4.1 with conservation of matter, the Fick’s second Law (Diffusion equa-

13



CHAPTER 4. OVERVIEW OF FRACTIONAL DIFFUSION

tion) is derived.

∂C

∂t
= D

∂2C

∂x2
(4.2)

Fick’s first Law 4.1 and the diffusion equation 4.2 were widely regarded as statements in

continuum mechanics. The kinetic molecular hypothesis gained widespread acceptance only

after Albert Einstein’s famous analysis of Brownian motion in 1905 (Gillespie and Seitaridou,

2012).

4.2 Einstein Diffusion Equation

The following derivation is taken from Gillespie and Seitaridou (2012); for simplicity some

steps have been omitted.

Lets consider a rectangular liquid (solvent) container where Brownian particles (solute) have

been left (see figure 4.1). The number of solute particles at certain x-coordinate and certain

time t is represented by ρ(x, t). Now assume a time interval δt which is infinitesimal but

also large enough to allow solute molecule to collide many times with solvent molecules.

Those particle motions during different successive intervals are assumed independent from

displacements in previous time steps. To describe the displacement that results from par-

ticle collisions, it means the likelihood of a particle to displace from a certain location to

another, an stochastic approach is employed. Consider the probability density function of

displacement ϕ(ζ; δt), defined so that, it gives the probability that the x-coordinate of a

solute molecule will change during the next δt by an amount between ζ and ζ + dζ.

Now, to determine how many solute molecules will end up at a certain x-coordinate inside

the enclosed area (limited by x and x + dx) for the next time interval t + δt, that is,

ρ (x, t+ δt) dx, the procedure presented by Gillespie and Seitaridou (2012) is applied.

ρ (x, t+ δt) dx =

∫ ∞

ζ=−∞
[ρ (x− ζ, t) dx]× [ϕ (ζ, δt) dζ] (4.3)

The factor [ρ (x− ζ, t) dx] represents the number of solute molecules in the dx-interval that

are located at x − ζ at time t. Then, [ϕ (ζ, δt) dζ] represents the fraction (in average) of

solute molecules that will suffer a displacement (due to collisions with solvent molecules)

14



CHAPTER 4. OVERVIEW OF FRACTIONAL DIFFUSION

Figure 4.1: Brownian particles

in x-coordinate between ζ and ζ + dζ and will therefore end up in the dx-interval at x at

time t+ δt. The product is then summed (integrated) over all possible values of ζ to get the

average number of molecules with x-coordinate between x and x+ dx at time t+ δt.

From equation 4.3, dxs are canceled. Then, the term ρ (x− ζ) is Taylor expanded around x.

ρ (x, t+ δt) =

∫ ∞

ζ=−∞
ϕ (ζ, δt)

[
ρ (x, t) +

∞∑
k=1

(−ζ)k

k!

∂kρ (x, t)

∂xk

]
dζ

= ρ (x, t)

∫ ∞

ζ=−∞
ϕ (ζ, δt) dζ +

∞∑
k=1

∂kρ (x, t)

∂xk

[
1

k!

∫ ∞

−∞
(−ζ)k ϕ (ζ, δt) dζ

] (4.4)

As the total probability equals one, the integral in the first term of right hand equals one.

Now, because the probability of displacement is symmetric, the negative and positive dis-

placements are equally likely. This means that under the summation of many terms, all odd

terms in the sum will add up to a zero net displacement. Then only even terms will be

considered. According to Gillespie and Seitaridou (2012), the rearrangement of equation 4.4

results in

ρ (x, t+ δt) − ρ (x, t)

δt
=

∞∑
k=1

[
1

δt

1

(2k)!

∫ ∞

−∞
ζ2kϕ (ζ, δt) dζ

]
∂2kρ (x, t)

∂x2k
. (4.5)

Considering only the first term of the sum, the Einstein diffusion equation is obtained,
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CHAPTER 4. OVERVIEW OF FRACTIONAL DIFFUSION

∂ρ (x, t)

∂t
= D

∂2ρ (x, t)

∂x2
, (4.6)

where

D ≡ 1

2δt

∫ ∞

−∞
ζ2ϕ (ζ, δt) dζ. (4.7)

In 1908 Jean Perrin carried out a series of experiments which confirmed Einstein results and

thus the molecular-kinetic theory.

The solution to the above diffusion equation turns out that the probability distribution is

Gaussian in nature (normal). From Einstein’s approach it can be concluded that the mean

square displacement ⟨r2 (t)⟩ of a particle scales linearly with time.

⟨r2 (t)⟩ ∝ t (4.8)

4.3 Random Walk

Another way to deal with the erratic motion of particles is by considering that they behave

as random walkers. Figure 4.2 shows a representation of the trajectory followed by two

Brownian particles.

Figure 4.2: Simulation of Brownian particle Trajectory
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According to Metzler and Klafter (2000), this erratic motion can be seen as a random walk.

For the 2D-case, this model assumes that an individual can only move in four directions at

each time step: right, left, up and down (see figure 4.3). Each displacement is independent

from the previous ones. After a certain number of steps the individual will draw a complex

trajectory, such as those presented previously (figure 4.2).

Figure 4.3: 2D Lattice for Random Walk, modified from Metzler and Klafter (2000)

For the following derivation, the one-dimensional case will be employed. Consider a random

walker which can only move along a line. Its initial position is set at the origin and each time

step (∆t) the walker has equal probability of displacing the same distance (∆x units), either

to the right or to the left. Let’s consider that P (x, t) is the probability that the individual

is at x at time t. Now the probability of finding the random walker at x at some time t+∆t

is given by

P (x, t+∆t) =
1

2
P (x−∆x, t) +

1

2
P (x+∆x, t) . (4.9)

According to Metzler and Klafter (2000), the prefactor 1/2, expresses the direction isotropy

of the jumps. The probability of being at x in the next time step, t + ∆t, is given by the

sum of the probabilities of being at one jump (∆x), either to the right or to the left (±∆x),

from the x-position just at time t.

Lets subtract P (x, t) from both sides of the equation and divide by ∆t

P (x, t+∆t)− P (x, t)

∆t
=

1

2∆t
{P (x−∆x, t)− 2P (x, t) + P (x+∆x, t)} , (4.10)
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right hand side of the equation is multiplied by a unitary factor (∆x2/∆x2),

P (x, t+∆t)− P (x, t)

∆t
=

(∆x)2

2∆t

{
P (x−∆x, t)− 2P (x, t) + P (x+∆x, t)

(∆x)2

}
. (4.11)

In the continuum limit ∆x,∆t → 0, considering that, under this limit, (∆x)2

2∆t
is a constant,

then, recalling finite-difference approximations, equation 4.11 can be written as follows

∂P (x, t)

∂t
= D

∂2P (x, t)

∂x2
, (4.12)

where

D = lim
∆x→0,∆t→0

(∆x)2

2∆t
. (4.13)

One more time, the diffusion equation is obtained. This random walk formulation also leads

to a Gaussian shape, and to the conclusion that the Mean Square Displacement (MSD),

scales with time in a linear way.

Although normal diffusion is one of the most fundamental process, many phenomena (see aqúı

poner papers de ejemplo) show deviations from normal diffusion trends. Slower (disorded

solids, biological media, fractal media, porous media) or faster (turbulent plasmas, transport

in polymers, Lévy flights) diffusion rates can be found in different environments (Henry et al.,

2010). This anomalous diffusion behavior is characterized by scaling the MSD with a more

general scaling form (Vlahos et al., 2008).

⟨r2 (t)⟩ ∝ tα (4.14)

The diffusion processes are then categorized according to the α-exponent in a power law

relationship. Subdiffusion occurs when 0 ≤ α < 1, superdiffusion cases are found when

1 < α ≥ 2, and finally, if α = 1 normal diffusion case is recovered.

This scaling behavior can also be linked to random walks, however, certain limitations of

conventional random walks must be overcome.
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4.4 Continuous Time RandomWalks (CTRW), theWay

to Anomalous Diffusion

The aim of this section is to present some conditions under which an experiment can lead

to anomalous diffusion. This derivation is taken from Henry et al. (2010) and Metzler and

Klafter (2000) mainly. Similar derivations can also be found in Sokolov and Klafter (2005),

Vlahos et al. (2008) and Angstmann et al. (2013).

Classic random walks consider a constant length (∆x) jumps which successively occur at

each constant interval time (∆t). To overcome these limitations, Montroll and Weiss in 1965

introduced the so called Continous Time Random Walks (CTRW). They considered that

both, jump length and waiting time (the time elapsed between two successive jumps), are

obtained from a probability density function (PDF), Ψ (x− x′, t− t′). This pdf represents

the probability that a walker steps a jump length of x− x′ once it has waited a time t− t′.

Waiting times and jump lengths are independent identically distributed random variables,

with density ψ (t) , t > 0 and λ (x) , x ∈ R respectively. If the jump length and waiting time

are independent from each other, then the decoupled form of the displacement PDF can be

expressed as

Ψ (x− x′, t− t′) = ψ (t− t′)λ (x− x′) . (4.15)

Now, according to Metzler and Klafter (2000) the survival probability, i.e., the probability

that the walker does not jump during the time interval t, is given as

Φ (t) = 1−
∫ t

0

ψ (t′) dt′ =

∫ ∞

t

ψ (t′) dt′. (4.16)

The walker has not jumped since the expected waiting time is greater than t.

The fundamental quantity to calculate is PDF, n (x, t), that a walker starting from whatever

position be located at x at time t. This can related to following master equation of CTRW

n (x, t) = Φ (t)n (x, 0) +

∫ ∞

−∞

∫ t

0

n (x′, t′)ψ (t− t′)λ (x− x′) dt′dx′ (4.17)
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Equation 4.17 is the master equation for the expected concentration of walkers at x and time

t. This equation relates the pdf n (x, t) of just having arrived at position x at time t, with

the event of having just arrived at x′ at t′, n (x′, t′). The first term in the right hand side

of the equation represents the persistence of the walker at the initial position. The second

considers walkers that were at other positions x at time t′ but then stepped to x at time t

after waiting a time t − t′. All possible values of different jump lengths and waiting times

are considered through the integration processes with respect to x′ and t′.

4.5 The Quest for Anomalous Diffusion Equations

Different types of random walks arise depending on the way that jump lengths and waiting

times are assigned, i.e., the way their PDF is defined. For the next, different options for

jump length and waiting time densities will be considered.

4.5.1 Normal diffusion

According to Henry et al. (2010), the Fourier-Laplace (space-time) transform of the CTRW

master equation is given as follows

ˆ̂n (q, s) = Φ̂ (s) n̂ (q, 0) + ψ̂ (s) λ̂ (q) ˆ̂n (q, s) (4.18)

where s, and q denote the Laplace and Fourier variables respectively. Now, the Laplace

transform of survival probability is given as

Φ̂ (s) =
1

s
− ψ̂ (s)

s
(4.19)

Let’s assume that jump lengths are Gaussian distributed

λ (x) =
1√
2πσ2

exp

(
− x2

2σ2

)
(4.20)

Fourier transform of this pdf results in

λ (q) = exp

(
−q

2σ2

2

)
(4.21)
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Following Henry et al. (2010) procedure, the Taylor expansion of the previous equation

results in
ˆλ (q) ∼ 1− q2σ2

2
+O

(
q4
)

(4.22)

Now let’s consider that waiting times are exponentially distributed with finite mean waiting

time τ

ψ (t) =
1

τ
exp

(
− t

τ

)
(4.23)

The asymptotic expansion of the Laplace transform is given as

ψ̂ (s) ∼ 1− τs+O
(
s2
)

(4.24)

Equation 4.19, 4.22, 4.24 are substituted into equation 4.18 leads to

sˆ̂n (q, s) =
(
1− ψ̂ (s)

)
n̂ (q, 0) + s (1− τs)

(
1− q2σ2

2

)
ˆ̂n (q, s) (4.25)

simplification of some terms results in

sˆ̂n (q, s) = τsn̂ (q, 0) +
(
s− τs2

)(
1− q2σ2

2

)
ˆ̂n (q, s) (4.26)

and finally

sˆ̂n (q, s)− n̂ (q, 0) = −
(
σ2

2τ

)
q2 ˆ̂n (q, s) + s

(
q2σ2

2

)
ˆ̂n (4.27)

The inverse Fourier and Laplace transforms the standard diffusion equation is recovered

(Henry et al., 2010)
∂n

∂t
= D

∂2n

∂x2
(4.28)

where

D =
σ2

2τ
(4.29)

4.5.2 Subdiffusion

Following Henry et al. (2010) derivations, a Pareto waiting time density is considered,

ψ (t) =
ατα

t1+α
t ∈ [τ,∞] , 0 < α < 1 (4.30)

As this is a long-tailed distribution, the mean waiting time is infinite. In contrast to exponen-

tial case, this is a non-markovian distribution (waiting time density has temporal memory).
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This should be also noted that this is a scale invariant distribution. (See Henry et al. (2010)

for more detail)

The asymptotic expansion for this distribution is given by

ψ (s) ∼ 1− Γ (1− α) ταsα (4.31)

If a Gaussian pdf is considered for jump lengths, then the master equation for this CTRW

can be written as follows

sˆ̂n (q, s)− n̂ (q, 0) = − σ2

2ταΓ (1− α)
s1−α ˆ̂n (q, s) (4.32)

taking the Fourier-Laplace inverse transform

∂n (x, t)

∂t
= −DL−1

(
s1−α∂

2n̂ (x, s)

∂x2

)
(4.33)

where

D =
σ2

2ταΓ (1− α)
. (4.34)

Using rules of fractional integrals (these rules are under the scope of this chapter, but reader

should refer to Henry et al. (2010) for more detail), the fractional order diffusion equation

is obtained

∂n (x, t)

∂t
= D

(
0D1−α

t

∂2n (x, t)

∂x2

)
(4.35)

0D1−α
t represents the Riemann-Liouville fractional derivative of order α. Finally, equation

4.35 represents the anomalous diffusion equation, for the subdiffusion case.

4.6 Waiting Time on Reservoirs?

Strictly speaking the overlap, or equivalency, of physical and stochastic diffusion models is

limited to a narrow class of problems. Stochastic diffusion is designed to handle discrete ob-

jects moving randomly. However, some problems of physical diffusion are not associated with

random motion, but with a driving force (pressure or concentration gradient). (Narasimhan,

2009).
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Evidence suggests that some of the ideas developed for anomalous stochastic diffusion could

be borrowed to model anomalous diffusion in porous media. This section explains the hy-

pothesis which support the use of stochastic anomalous diffusion ideas to describe anomalous

diffusion in complex reservoirs.

Let us start with the concept of waiting times. As it was previously shown, normal or

anomalous diffusion can arise, depending on the waiting time pdf.

Some characteristics should be noted on normal distributions: they have some representa-

tive finite average of the system, so, they have a well defined center. Outside of this region,

the distribution drop off exponentially fast; therefore, the probability of reaching extreme

events is almost negligible. There are many phenomena well characterized by normal dis-

tributions; however, certain complex systems show a power law nature which is best suited

with long-tailed distributions. Extraordinarily events are more likely to occur in Long-tailed

distributions. As a result the representative average (mean) of the system diverges. As long-

tailed distributions are power-law governed, they have the characteristic of being scale-free

or scale invariant. Actually, the employment of these distributions to describe waiting time

in CTRW has been referred to as fractal time random walk (Metzler and Klafter, 2000).

Long-tailed distributions are best suited to describe heterogeneous a systems.

Let us think about the system of studio that this work pretends to consider. Unconventional

reservoirs (tight and shale) are characterized by having a wide pore size distribution, ranging

from nanopores to hydraulic fractures (See chapter 2 for more detail). Flow in these reservoirs

will be hindered by some paths of much lower conductivity. This can be seen as different

waiting times for fluid to move. Some works have referred to waiting time as trapping time.

Under this scope, trapping time is selected for better describing the link between CTRW

ideas to reservoir engineering problems.

Of course, fluid trapping or flux impediments also occur in conventional reservoirs. However,

the homogeneity in some of these reservoirs would allow them to be described by some

representative (finite average) trapping time value, and thus, normal diffusion would govern

flow in some of these reservoirs. In contrast, the heterogeneity of unconventional reservoirs

inhibits to assign a mean trapping time to consider flux impediments. They are more likely to

be described by a long-tailed distribution, and thus, the diffusion process would be sublinear

(subdiffusion), i.e., the MSD would no longer scales with time linearly, and a more general

(power-law) relation would be observed.
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Although the anomalous diffusion equation presented above follows the trajectory of discrete

walkers, an anomalous diffusion equation for a continuum environment could also be obtained

through the application of an ad-hoc Darcy’s Law (see Henry et al. (2010))

q = −kα
µ

0D1−α
t

∂p

∂x
(4.36)

This phenomenological flux law is more general, computation of α = 1 results in normal

diffusion case. This should also be noted that kα has units of L2T 1−α

4.7 Space Dependent Diffusion Coefficient

O’Shaughnessy and Procaccia (1985) presented a different approach to formulate an anoma-

lous diffusion equation (for the case of fractal objects). A space dependent diffusion coef-

ficient was employed instead of the constant one. This procedure changes the scaling rela-

tionship of MSD with time. One way of addressing this space deppendency is through the

application of the fractal approach. However, as noted by Camacho-Velázquez et al. (2008),

diffusion process of fractal reservoirs is history dependent, and thus, formulations such as the

one presented by O’Shaughnessy and Procaccia (1985) cannot fully describe the anomalous

diffusion properties of fractal reservoirs. In fractally fractured systems, the history of flow

plays an important role in all stages of production. Thus, temporal flux dependencies must

also be considered.

The two ideas presented in this chapter for addresing anomalous diffusion, fractionality and

space dependent diffusion coefficient, form the base for the model developed.
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Chapter 5

Model Description

Let us consider a horizontal well drilled in a rectangular reservoir originally consisting of

two media: natural fractures (represented by subscript f) and matrix (represented by sub-

script m). Both media exhibit poor flow characteristics. Although natural-fracture-network

permeability (kf ) is much larger than that of matrix (km), it is not large enough to allow

production under profitable rates. Hydraulic fracturing is conducted, and higher conductiv-

ity paths are induced. For simplicity, a set of nF (number of hydraulic fractures) equidistant

and identical hydraulic fractures (represented by budscript F ) is considered. See figure 5.1.

Figure 5.1: Typical fractured well in a 2ϕ reservoir
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Typical representations of fractured wells consider that stimulation is only limited to the

propped section of the hydraulic fracture (HF). For practical purposes this approach is valid,

however, evidence suggests that a region of higher permeability is also created around HFs.

Actually, the effectiveness of fracture treatment is often correlated with the SRV extent and

associated permeability, as obtained from microseismic and flowback data (Agrawal et al.,

2020). Some pre-existing natural fractures (NF) can be reactivated by the branches that

propagate away from the main HFs.These fractures either have a fracture width smaller than

the size of proppants, or are too far away from the wellbore, where proppant cannot reach

(Wu, 2017). The absence of proppants causes them to have a much lower conductivity than

the main HFs, but higher than that of the original fracture network (due to the stimulation).

A region of enhanced permeability surrounding the main HFs will be considered (see figure

5.2).

Figure 5.2: Schematization of a typical hydraulic stimulation

The symmetry of the problem enables us to consider only one eight of hydraulic fracture.

The results from this section can be scaled up to each fracture and then to the well (see

figure 5.3).
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Figure 5.3: Problem domain reduction to one-eight section

5.1 Hydraulic Fracture

The model considers homogenous and isotropic properties inside the main plane of the HFs.

As a result, normal diffusion is developed, and thus, the governing equation is given by

∂

∂y

[
kF
µ

∂pF
∂y

]
+

∂

∂z

[
kF
µ

∂pF
∂z

]
= (ϕct)F

∂pF
∂t

(5.1)

for 0 > x < wf/2, 0 > y < LF y, 0 > z < LF z

The boundary conditions are depicted in figure 5.4

Figure 5.4: Hydraulic Fracture (HF) section
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5.2 Stimulated Reservoir Volume and Outside Region

Stimulation magnitude decreases according to the distance from the main injection point.

In this sense, non-uniform reservoir properties should be considered in the SRV (Figure 5.5).

The problem now is how to describe this non-uniformity. Fractal theory constitutes a promis-

ing approach on this regard.

Fractal structures are likely to arise in propagation of HFs. Bifurcation of main fracture

branches will induce a certain fracture density which will increase as they propagate into

the SRV. Despite fracture density would increase, the size of fractures and their impact on

reservoir flow properties will decrease as the process goes on. This will continue up to the

point where energy will be not enough to keep breaking the rock. A similar situation occurs

in a fractal tree (see figure 3.2), where many branches result from a main trunk. As the

process continues, the tree seems more populated but its branches are smaller and weaker.

This decline in stimulation magnitude corresponds to a decline in SRV permeability and

porosity. Matrix block size will also suffer changes but in a opposite way.

Figure 5.5: Stimulated Reservoir Volume (SRV)
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The assignment of reservoir properties is performed with the following relations

� Phenomenological Flow Coefficient (permeability at α)

kα,bx =


kα,vx

[(
x

LSx

)bx (
y

LSy

)by (
z

LSz

)bz
]

for x ≤ LSx , y ≤ LSy , z ≤ LSz

kα,vx for x > LSx , y > LSy , z > LSz

(5.2)

kα,by =


kα,vy

[(
x

LSx

)bx (
y

LSy

)by (
z

LSz

)bz
]

for x ≤ LSx , y ≤ LSy , z ≤ LSz

kα,vy for x > LSx , y > LSy , z > LSz

(5.3)

kα,bz =


kα,vz

[(
x

LSx

)bx (
y

LSy

)by (
z

LSz

)bz
]

for x ≤ LSx , y ≤ LSy , z ≤ LSz

kα,vz for x > LSx , y > LSy , z > LSz

(5.4)

where

bx = dmfx − θx − 1 (5.5)

by = dmfy − θy − 1 (5.6)

bz = dmfz − θz − 1 (5.7)

� Porosity

ϕc =


ϕv

[(
x

LSx

)cx (
y

LSy

)cy (
z

LSz

)cz]
for x ≤ LSx , y ≤ LSy , z ≤ LSz

ϕv for x > LSx , y > LSy , z > LSz

(5.8)

where

cx = dmfx − 1 (5.9)

cy = dmfy − 1 (5.10)

cz = dmfz − 1 (5.11)
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� Matrix block size

Lx =


Lvx

[(
LSx

x

)cx (LSy

y

)cy (LSz

z

)cz]
for x ≤ LSx , y ≤ LSy , z ≤ LSz

Lvx for x > LSx , y > LSy , z > LSz

(5.12)

Ly =


Lvy

[(
LSx

x

)cx (LSy

y

)cy (LSz

z

)cz]
for x ≤ LSx , y ≤ LSy , z ≤ LSz

Lvy for x > LSx , y > LSy , z > LSz

(5.13)

Lz =


Lvz

[(
LSx

x

)cx (LSy

y

)cy (LSz

z

)cz]
for x ≤ LSx , y ≤ LSy , z ≤ LSz

Lvz for x > LSx , y > LSy , z > LSz

(5.14)

Note that matrix block size should increase with distance from the main fracture plane.

As noted, the non-uniform properties are only assigned inside the stimulated region. Outside

from this region, the properties remain essentially unchanged.

Both regions share the same governing equation, the only difference relies on the non-

uniformity of reservoir properties. The governing equation is given as follows


∂
∂x

[
k(α,b)x

µ
∂1−α

∂t

(
∂pf
∂x

)]
+ ∂

∂y

[
k(α,b)y

µ
∂1−α

∂t

(
∂pf
∂y

)]
+ ∂

∂z

[
k(α,b)z

µ
∂1−α

∂t

(
∂pf
∂z

)]
− q̂m−f

 = (ϕct)f
∂pf
∂t

(5.15)

The previous equation considers the anomalous diffusion behavior through the fractional flux

law and space dependent (fractal) petrophysical properties. The source term indicates the

matrix contribution. This is also a way of indicating that the application fractional approach,

as a method of representing heterogeneity, should be limited. The transfer function is defined

as follows

q̂m−f = σSF
km
µ

(pf − pm) (5.16)

All outside boundaries in the SRV and unstimulated regions are no flow boundaries, except

for the boundaries between SRV and unstimulated regions.
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Chapter 6

Verification of the Model

This section aims to verify the correctness of the Fractal-Fractional Dual-porosity Diffusion

(FFDPD) model. Data obtained from existing numerical and analytical existing works were

reproduced with the FFDPD model.

6.1 Ozcan (2014) Model

In this section, the FFDPD model will be verified against the Trilinear Anomalous Diffusion

(TAD) solution, developed by Ozcan (2014).

The main idea of the TAD solution, is the replacement of the SRV dual-porosity idealization,

by an anomalous diffusion approach. FFDPD and TAD models share certain similarities,

their main difference relies on the dual-porosity considerations. The FFDPD model considers

that, despite of the fact that by fitting an anomalous diffusion model, the extensive char-

acterization would be avoided, a better description of the system is obtained by explicitly

including most of its features.

A hypothesis of FFDPD model is that, the heterogeneity inside the fracture network, leads

to anomalous diffusion (See chapter 4). Matrix blocks work as flux impediments, and they

could induce different waiting times for fluids to move. One may think that this heterogeneity

could be captured as part of the anomalous diffusion flow behavior, but the high contrast

between matrix and fractures, severely limits this assumption. In this sense, the anomalous

diffusion concept should be limited to avoid oversimplification; therefore, matrix contribution
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CHAPTER 6. VERIFICATION OF THE MODEL

should be considered explicitly. Albinali (2016) and Raghavan and Chen (2018) went further

by considering different degrees of fractionality for matrix and fracture respectively.

Ozcan (2014) provided an example to show that the anomalous diffusion approach, can

capture the behavior of a naturally fractured reservoir, idealized by a dual porosity model

(See figure 3.1 of Ozcan (2014)). This example is useful to validate the FFDPD model

because it allows to verify both, the implementation of the anomalous diffusion concepts,

and the dual porosity formulation, separately. The anomalous diffusion side of the model is

verified by turning down the dual-porosity formulation (FFDPD - Anomalous D), FFDPD

collapses to TAD. Then, a normal diffusion case (α = 1, dmf = 0, θ = 1) is computed

accounting only for the dual-porosity feature (FFDPD - 2 ϕ), the FFDPD collapses to the

Trilinear Dual-Porosity model (TDP).

To verify the FFDPD model with this solution, fractal parameters must collapse to Euclidean

case values.

Table 6.1 provides the general data computed, into the FFDPD, to reproduce the pressure re-

sponses shown in figure 3.2, and figure 5.1 of Ozcan (2014). Note that, km and kf correspond

to the normal-diffusion case permeability values. On the other side, kα corresponds to the

anomalous diffusion case, i.e., permeability at α. Ozcan (2014) considers one-dimensional

flow in the x direction, for the SRV region, and one-dimensional flow in the y direction,

for the HFs. Furthermore, only one quarter of the HF is modeled. Corresponding adjust-

ments for wellbore rate, thickness and transmissibilities were carried out to reproduce these

characteristics.

Figure 6.1 shows the results obtained when the FFDPD model is collapsed to the TAD

solution of Ozcan (2014). Figure 3.1 from Ozcan (2014) was taken and modified to verify

the FFDPD model. Figure 6.2 compares the results obtained with the FFDPD model and

those of Ozcan (2014) when the anomalous diffusion exponent is modified. The models show

good agreement.
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CHAPTER 6. VERIFICATION OF THE MODEL

Parameter V alue

Both figures -

Constant wellbore flow rate, qw, [stb/d] 15

Viscosity, µ, [cp] 0.3

Formation thickness, h, [ft] 250

Simulated thickness, HT , [ft] h/2

Distance to boundary parallel to well, WT , [ft] 250

Hydraulic fracture half y-length, LF y, [ft] WT

Hydraulic fracture half z-length, LF z,[ft] HT

Hydraulic fracture half width, LF x, [ft] 0.005

Hydraulic fracture porosity, ϕF ,[1] 0.38

Hydraulic fracture permeability, kF , [md] 5e4

Hydraulic fracture total compressibility, ctF ,[1/psi] 1e-4

Figure 6.1 -

Half distance between hydraulic fractures, LT ,[ft] 100

SRV reservoir x-permeability at α, kα,vx, [md-hr1−α] 1,200

SRV porosity-compressibility product, (ϕ ct)f , [1/psi] 4.62 e-4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Matrix permeability, km, [md] 1e-4

Matrix porosity, ϕm, [1] 0.05

Matrix total compressibility, ctm, [1/psi] 1e-5

Undisturbed matrix block size, Lvx, Lvy, Lvz, [ft] 1,1,1

Figure 6.2 -

Half distance between hydraulic fractures, LT ,[ft] 300

SRV reservoir x-permeability at α, kα,vx, [md-hr1−α] 1.2

SRV porosity-compressibility product, (ϕ ct)f , [1/psi] 4.62 e-4

Table 6.1: Model verification - figure 6.1
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CHAPTER 6. VERIFICATION OF THE MODEL

Figure 6.1: Model verification, modified from Ozcan (2014)

Figure 6.2: Model verification, modified from Ozcan (2014)
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CHAPTER 6. VERIFICATION OF THE MODEL

6.2 Holy and Ozkan (2017) Model

In this section the FFDPD model will be verified against the numerical model developed

by Holy and Ozkan (2017). Holy (2016) considered that the responses from unconventional

reservoirs could be analyzed with an anomalous diffusion approach, without rigorously assign-

ing properties of matrix and fracture network. The model was latter enhanced by considering

a non-uniform mesh in Holy and Ozkan (2017). To reproduce the responses of figure 2 (left)

from Holy and Ozkan (2017), a one-dimensional flow grid is constructed and parameters are

adjusted so that uniform properties be considered. Finally, as in Holy and Ozkan (2017) the

responses are calculated at fracture face, hydraulic fracture cells are avoided.

Table 6.2 provides the general data computed into the FFDPD model to reproduce figure 2

(left) from Holy and Ozkan (2017).

Figure 6.3 demonstrates that both models exhibit excellent agreement.

Parameter V alue

Constant HF rate, qw, [stb/d] 15

Viscosity, µ, [cp] 0.3

Formation thickness, h, [ft] 150

Simulated thickness, HT , [ft] h/2

Half distance between hydraulic fractures, LT ,[ft] 150

Distance to boundary parallel to well, WT , [ft] 250

Hydraulic fracture half y-length, LF y, [ft] WT

Hydraulic fracture half z-length, LF z,[ft] HT

SRV reservoir x-permeability at α, kα,vx, [md-d1−α] 0.05

SRV porosity, ϕf , [1] 0.2

SRV total compressibility, ctf , [1/psi] 4e-5

Table 6.2: Model verification - figure 6.3
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Figure 6.3: Model verification, modified from Holy and Ozkan (2017)

The Fractal-Fractional Dual-porosity Diffusion (FFDPD) model was verified and good agree-

ment was obtained with existing numerical and analytical models.
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Chapter 7

Results

In this chapter the results of the study are presented and analized with reference to the main

objectives. In this sense, the sensitivity of the FFDPD model to the main parameters is

evaluated.

Table 7.1 includes the general input data required to reproduce the pressure responses (figures

7.1, 7.2 and 7.3). Table 7.2 provides the general data for figure 7.4

Figure 7.1 shows the case of reservoir where a low fracture density (dmf = 0.7) and poor

connectivity (θ = 0.1) has been induced. The anomalous diffusion exponent aims to capture

the degree of heterogeneity, between the several paths available for the fluids to flow, inside

the fracture network. Those cases where the different flow paths (preexisting and induced

during stimulation) are highly contrasting, inhibit the development of a uniform flow, and

thus anomalous diffusion is developed. On the other hand, for homogeneous reservoirs normal

diffusion will occur (α → 1). Of course, the more subdiffusive the process is, the more

pressure drop (driving force) it will require, to maintain the imposed constant-rate condition.

Figure 7.2 shows the example of a reservoir with different degrees of fracturing developed

during the stimulation (variable dmf). All the examples show a poor degree of connec-

tivity (θ = 0.1). Fractal dimension (dmf) was selected the same for all directions. The

examples are still anisotropic because of the permeability vector at unstimulated conditions.

Anomalous diffusion exponent was selected to represent a certain degree of subdiffusion.

Figure 7.3 reports the case of a poorly stimulated reservoir (Low fracture density has been

induced, dmf = 0.8). The few flow paths show different degrees of connectivity (variable θ).
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Connectivity index was selected the same for all directions; the examples are still anisotropic

due to the unstimulated permeability vector (kα,v). Anomalous diffusion exponent was se-

lected to represent a certain degree of anomalous diffusion.

Rate decline responses are discussed next.

Table 7.2 provides the general data required for reproducing figure 7.4. This example reports

the case of a poorly stimulated reservoir. Fracture density as well as connectivity are both

extremely low (dmf → 1 and θ → 0).The anomalous diffusion exponent (α) reflects different

degrees of heterogenities. As flow conditions deflect from normal diffusion, wells will decline

faster, with differences in orders of magnitud.

Table 7.3 provides the general data employed in developing figure 7.5 and 7.6.

Figure 7.5 shows examples having different degrees of fracturing all having poor connectivity.

Anomalous diffusion exponent was selected to represent some degree of heterogeneity inside

all the examples. Very optimistic intial production rates are obtained when the medium is

densily fractured, however, these cases show a faster decline. Initial production rates lower

as fracturing level diminishes. Note that the differences are in order of magnitudes, both

in time and rate. According to this figure, increasing fracture density far away from the

propped sections, it is of paramount importance when designing stimulation treatments.

Figure 7.6 reports the case of a slightly fractured reservoir showing different connectivity

levels. All examples exhibit almost neglible contrast in the magnitude of the rock flow

properties (α = 0.9). The cases where connectivity is high show a high initial production

which declines faster, as compared with poorly connectivity cases. It is concluded form this

figure that, when designing a fracture treatment, attention should be pay on increasing the

connectivity behind the propped sections. Not only on the induced fractures, but for those

already present.

As it can be seen in the figures, the usual slope patterns are not recovered when anomalous

diffusion is present.

Note that there is a paradigm shift with respect to the tendencies in carbonate naturally

fractured fractal reservoirs (NFFR). It is more feasible to have certainty on the value of

reservoir original properties, than on the ones obtained at the HF face after stimulation

treatment. Thus, in order to create the fractal distributions, the unstimulated reservoir

properties are computed as the scaling parameters in the power law equations. It implies
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that, for this study, the euclidian case (dmf = 1, θ = 0) is in fact the unstimulated one.

In other words, the euclidian case considers no stimulation is obtained beyond the HF, and

thus, the most pesimistic case is obtained when euclidian parameters are computed. In

contrast, for carbonate NFFR, the ideal or most optimistic case (Warren and Root model),

is recovered through computation of euclidian values of fractal parameters (dmf = 1, θ = 0).

Note also that simulation time is long, and some trends are highly optimistic. This is done

mostly to provide a better visualization of the trends, and to provide a frame of reference

with previous existing works, as we tried to employ similar data.

Parameter V alue

Constant wellbore flow rate, qw, [stb/d] 150

Number of Hydraulic fractures, nF ,[1] 10

Viscosity, µ, [cp] 0.3

Formation thickness, h, [ft] 250

Simulated thickness, HT , [ft] h/2

Half distance between hydraulic fractures, LT ,[ft] 300

Distance to boundary parallel to well, WT , [ft] 250

Hydraulic fracture half width, LF x, [ft] 0.005

Stimulated length on x-direction, LSx, [ft] 50

Hydraulic fracture half y-length, LF y,[ft] 150

Stimulated length on y-direction, LSy, [ft] 200

Hydraulic fracture half z-length, LF z, [ft] 50

Stimulated length on z-direction, LSz, [ft] 20

Hydraulic fracture porosity, ϕF ,[1] 0.38

Hydraulic fracture permeability (isotropic), kF , [md] 5e4

Hydraulic fracture total compressibility, ctF ,[1/psi] 1e-4

Original reservoir x-permeability at α, kα,vx, [md-hr1−α] 3

Original reservoir y-permeability at α, kα,vy, [md-hr1−α] 1
5
kα,vx

Original reservoir z-permeability at α, kα,vz, [md-hr1−α] 1
10
kα,vx

SRV porosity-compressibility product, (ϕ ct)f , [1/psi] 4.62 e-4

Matrix permeability, km, [md] 1e-4

Matrix porosity, ϕm, [1] 0.05

Matrix total compressibility, ctm, [1/psi] 1e-5

Undisturbed matrix block size, Lvx, Lvy, Lvz, [ft] 1,1,1

Table 7.1: General data for figures 7.1, 7.2 and 7.3
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Parameter V alue

Constant wellbore pressue drawdown, pw, [psi] 900

Number of Hydraulic Fractures, nF , [1] 5

Viscosity, µ, [cp] 0.3

Formation thickness, h, [ft] 300

Simulated thickness, HT , [ft] h/2

Half distance between hydraulic fractures, LT ,[ft] 250

Distance to boundary parallel to well, WT , [ft] 250

Hydraulic fracture half width, LF x, [ft] 0.005

Stimulated length on x-direction, LSx, [ft] 80

Hydraulic fracture half y-length, LF y,[ft] 40

Stimulated length on y-direction, LSy, [ft] 80

Hydraulic fracture half z-length, LF z, [ft] 40

Stimulated length on z-direction, LSz, [ft] 80

Hydraulic fracture porosity, ϕF ,[1] 0.2

Hydraulic fracture permeability (isotropic), kF , [md] 1e4

Hydraulic fracture total compressibility, ctF ,[1/psi] 1e-4

Original reservoir x-permeability at α, kα,vx, [md-hr1−α] 0.5

Original reservoir y-permeability at α, kα,vy, [md-hr1−α] 1
2
kα,vx

Original reservoir z-permeability at α, kα,vz, [md-hr1−α] 1
5
kα,vx

SRV porosity-compressibility product, (ϕ ct)f , [1/psi] 4.62 e-4

Matrix permeability, km, [md] 1e-4

Matrix porosity, ϕm, [1] 0.05

Matrix total compressibility, ctm, [1/psi] 1e-5

Undisturbed matrix block size, Lvx, Lvy, Lvz, [ft] 1,1,1

Table 7.2: General data for figure 7.4
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Parameter V alue

Constant wellbore pressue drawdown, pw, [psi] 900

Number of Hydraulic Fractures, nF , [1] 5

Viscosity, µ, [cp] 0.3

Formation thickness, h, [ft] 100

Simulated thickness, HT , [ft] h/2

Half distance between hydraulic fractures, LT ,[ft] 100

Distance to boundary parallel to well, WT , [ft] 100

Hydraulic fracture half width, LF x, [ft] 0.005

Stimulated length on x-direction, LSx, [ft] 20

Hydraulic fracture half y-length, LF y,[ft] 10

Stimulated length on y-direction, LSy, [ft] 30

Hydraulic fracture half z-length, LF z, [ft] 10

Stimulated length on x-direction, LSz, [ft] 30

Hydraulic fracture porosity, ϕF ,[1] 0.2

Hydraulic fracture permeability (isotropic), kF , [md] 1e3

Hydraulic fracture total compressibility, ctF ,[1/psi] 1e-4

Original reservoir x-permeability at α, kα,vx, [md-hr1−α] 0.5

Original reservoir y-permeability at α, kα,vy, [md-hr1−α] 1
2
kα,vx

Original reservoir z-permeability at α, kα,vz, [md-hr1−α] 1
5
kα,vx

SRV porosity-compressibility product, (ϕ ct)f , [1/psi] 4.62 e-4

Matrix permeability, km, [md] 1e-4

Matrix porosity, ϕm, [1] 0.05

Matrix total compressibility, ctm, [1/psi] 1e-5

Undisturbed matrix block size, Lvx, Lvy, Lvz, [ft] 1,1,1

Table 7.3: General data for figures 7.5 and 7.6
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Figure 7.1: Pressure sensitivity: anomalous diffusion exponent, α

Figure 7.2: Pressure sensitivity: fractal dimension, dmf
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Figure 7.3: Pressure sensitivity: connectivity index, θ

Figure 7.4: Rate response sensitivity: anomalous diffusion exponent, α
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Figure 7.5: Rate response sensitivity: fractal dimension, dmf

Figure 7.6: Rate response sensitivity: fractal dimension, dmf
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Chapter 8

Conclusions and Recommendations

Unconventional reservoirs exhibit new challenges for modeling fluid flow, many of which

are scale-dependent. The aim of this research was to combine the application of two novel

approaches (fractal theory and anomalous diffusion), for modeling multidimensional flow in

fractured media. The results of this work allowed to establish the following conclusions.

� A numerical multidimensional-flow model was developed to describe anomalous diffu-

sive flow, of a single-phase fluid, on an unconventional reservoir having fractal char-

acteristics. The pseudo-steady state contribution of matrix blocks was considered

explicitly.

� Results show that the typical slopes are not recovered when fractal characteristics and

anomalous diffusion are present.

� Production from highly fractured examples was considerably higher than those where

stimulation reaches only the propped section. Attention should be pay on designing

fracture treatments capable of creating fracture networks beyond the propped sections.

� Creating connectivity of the induced and preexisting fractures must be set as a goal for

fracture treatments; results show that the rate differences between highly and poorly

connected media reaches orders of magnitude.
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Finally, some recommendations for future works are presented next.

� To include multiphase-flow in three dimensions such as the model presented by Holy

(2016) for one-dimensional flow.

� To develop an anlytical solution for anomalous diffusion gas flow for considering carte-

sian coordinates, such as the one developed by Amin et al. (2017), for radial coordi-

nates.

� To analyze different real cases with discrete numerical models, using an optimization

algorithm to obtain the values of the parameters that are involved in the solution.

� At the time this work is presented, these formulations are not included as part of

comercial softwares. New tools including these effects should be developed.
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Nomenclature

q̂ Flux per unit of rock volume between two regions

ct Total compressibility

H Simulated thickness

k Permeability

kα Permeability at α

L Length

n Time level

P Finite difference approximation to pressure

p Pressure

q Rate

t Time

Vr Rock volume

W Width

x Position in x-direction

y Position in y-direction

z Position in z-direction

B Transmissibility in j − 1
2
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NOMENCLATURE

C central coefficient

F Transmissibility in j + 1
2

N Transmissibility in k + 1
2

S Transmissibility in k − 1
2

Greek

α Anomalous diffusion exponent and derivation order

∆ Delta operator

Γ Gamma function

γ Function of the derivation order

µ Viscosity

ω Function of time steps

ϕ Porosity

τ Integration variable

θ Connectivity index

Subscripts

b Permability fractal scaling exponent

c Porosity and Matrix block size fractal scaling exponent

F Hydraulic fractures

f Natural fractures

i Grid-division in x-direction

j Grid-division in y-direction

k Grid-division in z-direction

m Matrix elements

max Last division
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NOMENCLATURE

s Stimulation

v Unstimulated, original, virgin

w Well
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Appendix A

Model derivation

Consider a horizontal well with a set of multiple identical hydraulic fractures (see figure

A.1).

Figure A.1: Horizontal symmetrically fractured well

Symmetry of the fractures was assumed and only one-eight of the drainage area was consid-

ered. Computational time is reduced through this consideration. The domain is subdivided

into three main regions: hydraulic fracture, SRV, and undisturbed region (see figure A.2).
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Figure A.2: Three regions under consideration

The continuous flow equations for each region are approximated through a finite difference

scheme. A logarithmic mesh, both for time and space, is employed. Central and backward

difference approximations are used for space and time respectively (figure A.3).

Figure A.3: Logarithmic mesh
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The subscripts required for finite difference derivations are shown below (see figure A.4)

Figure A.4: Grid cell nomenclature

A.1 Hydraulic Fracture

A propped hydraulic fracture with homogeneous and isotropic properties is considered. Nor-

mal diffusion governs fluid flow in this region, and thus, conventional Darcy’s law is intro-

duced to continuity equation. The governing equation is given as

∂

∂y

[
kF
µ

∂pF
∂y

]
+

∂

∂z

[
kF
µ

∂pF
∂z

]
= (ϕct)F

∂pF
∂t

(A.1)

for 0 > x < wf/2, 0 > y < LF y, 0 > z < LF z,

where wF/2, LF y and LF z represent the hydraulic fracture lenghts in the corresponding

directions.

Boundary conditions are schematized in A.5

Figure A.5: Hydraulic fracture boundary conditions

57



APPENDIX A. MODEL DERIVATION

The conditions to be satisfied at the boundaries between hydraulic fracture and SRV are

represented through q̂F−SRV x
, q̂F−SRV y

, q̂F−SRV z
in figure A.5. These terms are defined as

q̂F−SRV x

∣∣∣∣
x=wF /2

= −
k(α,b)x
µ

∂1−α

∂t1−α

(
∂p

∂x

) ∣∣∣∣
x=wF /2

(A.2)

q̂F−SRV y

∣∣∣∣
LF y

= −
k(α,b)y
µ

∂1−α

∂t

(
∂p

∂y

) ∣∣∣∣
LF y

(A.3)

q̂F−SRV z

∣∣∣∣
LF z

= −
k(α,b)z
µ

∂1−α

∂t

(
∂p

∂z

) ∣∣∣∣
LF z

(A.4)

Fluids reach the wellbore only via hydraulic fracture. The boundary at the wellbore will

be considered next (Constant bottomhole pressure or constant rate). The constant 8, in

the left side of equation A.5, arises because only one-eight of the hydraulic fracture is being

modeled.
ˆqw/F

8
(x = 0, y = 0, z = 0, t) =

kFav

µ

∂p

∂x

∣∣∣∣
(0,0,0)

(A.5)

qw/F represents the contribution of each symmetric HF, to the total wellbore rate.

Problem’s symmetry inhibits fluids to cross the planes bisecting hydraulic fracture in any

of the three directions (again, note that only one-eight of the system is modeled). These

no-flow boundary conditions are given by

∂PF

∂x

∣∣∣∣
x=0

= 0 (A.6)

∂PF

∂y

∣∣∣∣
y=0

= 0 (A.7)

∂PF

∂z

∣∣∣∣
z=0

= 0 (A.8)
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A.1.1 Finite difference approximation

For the grid cell at (i, j, k) which belongs to the hydraulic fracture domain, the finite differ-

ence approximation of equation A.1 is given by

1

∆yj

[(
kF
µ

)
j+ 1

2

PF
n+1
j+1 − PF

n+1
j

∆yj+1/2

−
(
kF
µ

)
j− 1

2

PF
n+1
j − PF

n+1
j−1

∆yj−1/2

]
+

1

∆zj

[(
kF
µ

)
k+ 1

2

PF
n+1
k+1 − PF

n+1
k

∆zj−1/2

−
(
kF
µ

)
k− 1

2

PF
n+1
k − PF

n+1
k−1

∆zj−1/2

]
+

= (ϕct)F j,k

PF
n+1
j,k − PF

n
j,k

∆tn
. (A.9)

The rock volume (V ri,j,k) for each grid cell is defined as

V ri,j,k = ∆xi ×∆yj ×∆zk (A.10)

All hydraulic fracture cells are contained within the first grid division of x direction. This

division has a size of one-half the hydraulic fracture width, then ∆x0 = wF/2.

Multiplying equation A.9 by rock volume and rearranging the equation

[
wF/2 ∆zk
∆yj+ 1

2

(
kF
µ

)
j+1/2

]
PF

n+1
j+1

[
wF/2 ∆yj
∆zk+ 1

2

(
kF
µ

)
k+1/2

]
PF

n+1
k+1−

[
wF/2 ∆zk
∆yj+ 1

2

(
kF
µ

)
j+1/2

+

wF/2 ∆yj
∆zk+ 1

2

(
kF
µ

)
k+1/2

+
wF/2 ∆zk
∆yj− 1

2

(
kF
µ

)
j−1/2

+
wF/2 ∆yj
∆zk− 1

2

(
kF
µ

)
k−1/2

+
(ϕct)F j,k

∆tn

]
PF

n+1
j,k

[
wF/2 ∆zk
∆yj− 1

2

(
kF
µ

)
j−1/2

]
PF

n+1
j−1 +

[
wF/2 ∆yj
∆zk− 1

2

(
kF
µ

)
k−1/2

]
PF

n+1
k−1 = −

(ϕct)F j,k

∆tn
PF

n
j,k .

(A.11)
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Transmissibility coefficients are defined as follows,

FF j,k =

[
wF/2 ∆zk
∆yj+ 1

2

(
kF
µ

)
j+1/2

]
(A.12)

BF j,k =

[
wF/2 ∆zk
∆yj− 1

2

(
kF
µ

)
j−1/2

]
(A.13)

NF j,k =

[
wF/2 ∆yj
∆zk+ 1

2

(
kF
µ

)
k+1/2

]
(A.14)

SF j,k =

[
wF/2 ∆yj
∆zk− 1

2

(
kF
µ

)
k−1/2

]
. (A.15)

For convinience, letters are selected to represent North (k+ 1
2
), South (k− 1

2
), Forward (j+ 1

2
)

and Backward (j − 1
2
) directions. Equation A.11 can be written in a compact form as

NF j,k PF
n+1
k+1 + FF j,k PF

n+1
j+1 + CF j,k PF

n+1
i,j + SF j,k PF

n+1
k−1 + BF j,k PF

n+1
j−1 = RF i,j (A.16)

where

Ci,j = −
[
NF j,k + SF j,k + FF j,k + BF j,k

]
(A.17)

RF i,j = −
(ϕct)F j,k

∆tn
PF

n
j,k . (A.18)

Equation A.16 represents the recurrence equation for any node within the hydraulic fracture.

Those grid cells located at the boundary with SRV must also consider the corresponding

additional terms q̂F−SRV x
,

hatqF−SRV y
, q̂F−SRV z

. The finite-difference approximation of the time-fractional derivative

can be found in Appendix B (Note that these terms are anomalous diffusion governed).

q̂F−SRV x
= −

kα,bx
µ

σα

n+1∑
k=1

ωα
k

[
∂p (x, tk)

∂x
− ∂p (x, tk−1)

∂x

]
(A.19)

q̂F−SRV y
= −

kα,by
µ

σα

n+1∑
k=1

ωα
k

[
∂p (y, tk)

∂y
− ∂p (y, tk−1)

∂y

]
(A.20)

q̂F−SRV z
= −

kα,bz
µ

σα

n+1∑
k=1

ωα
k

[
∂p (z, tk)

∂z
− ∂p (x, tk−1)

∂x

]
. (A.21)
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Now the pressure gradient inside previous equations is approximated through a forward

difference. For simplicity only the equation A.19 is presented, identical procedure should be

followed for equation A.20 and A.21.

[q̂F−SRV x
]n+1 = −

kα,bx
µ

σα

n+1∑
k=1

ωα
k

[
P k
SRV − P k

F

∆xi+1/2

− P k−1
SRV − P k−1

F

∆xi+1/2

]
. (A.22)

Note that this equation is derived for the time level n + 1; variables for previous time step

(Tstep = 0, 1, 2, ..., n) have already been solved. Separating known from unknown variables,

equation A.22 results in

[q̂F−SRV x
]n+1 = −

kα,bx σα
µ

[
ωα
n+1

[
P n+1
SRV − P n+1

F

∆xi+1/2

− P n
SRV − P n

F

∆xi+1/2

]]

−
kα,bx σα

µ

n∑
k=1

ωα
k

[
P k
SRV − P k

F

∆xi+1/2

− P k−1
SRV − P k−1

F

∆xi+1/2

]
(A.23)

Finally the finite-difference approximation to the fractional flux law is given by

[q̂F−SRV x
]n+1 = −

kα,bx σα
µ ∆xi+1/2

ωα
n+1

[
P n+1
SRV − P n+1

F

]
−

kα,bx σα
µ ∆xi+1/2

ωα
n+1 [−P n

SRV + P n
F ]

−
kα,bx σα
µ ∆xi+1/2

n∑
k=1

ωα
k

[
P k
SRV − P k

F − P k−1
SRV + P k−1

F

]
(A.24)

A.2 Region Outside the Hydraulic Fracture

Two sections conform this region, the Stimulated Reservoir Volume (SRV), and the Outside

Reservoir (OR). In general, the same equation governs flow in both regions. The only

difference lies in porosity, phenomenological flow coefficient (permeability at α), and matrix

block size distribution. Uniform properties are considered for the outside region (stimulation

is negligible far away from the main fracture plane), and power-law decline distribution is

considered inside the SRV.

A.2.1 Distribution of properties

Consider the stimulated region delimited by LSx , LSy , LSz . Following a fractal approach,

power-law relationships are used to model the decline in porosity ϕc, phenomenological flow
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coefficient (permeability at α) kα,b, and matrix block size
(
Lcx , Lcy , Lcz

)
. Note that proper-

ties inside the hydraulic fracture are left behind (ϕF , kF ). Original reservoir properties are

found outside from this region (ϕv, kα,vx, kα,vy, kα,vz, Lcx , Lcy , Lcz). Note also that stimulation

magnitude decreases from point A to B (See figure A.6) and that subscript c makes reference

to the fractal exponent c.

Figure A.6: Schematization of stimulation magnitud at SRV

The three properties are assigned with the following definitions:

� Phenomenological Flow Coefficient (permeability at α)

kα,bx =


kα,vx

[(
x

LSx

)bx (
y

LSy

)by (
z

LSz

)bz
]

for x ≤ LSx , y ≤ LSy , z ≤ LSz

kα,vx for x > LSx , y > LSy , z > LSz

(A.25)

kα,by =


kα,vy

[(
x

LSx

)bx (
y

LSy

)by (
z

LSz

)bz
]

for x ≤ LSx , y ≤ LSy , z ≤ LSz

kα,vy for x > LSx , y > LSy , z > LSz

(A.26)

kα,bz =


kα,vz

[(
x

LSx

)bx (
y

LSy

)by (
z

LSz

)bz
]

for x ≤ LSx , y ≤ LSy , z ≤ LSz

kα,vz for x > LSx , y > LSy , z > LSz

(A.27)
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where

bx = dmfx − θx − 1 (A.28)

by = dmfy − θy − 1 (A.29)

bz = dmfz − θz − 1 (A.30)

� Porosity

ϕc =


ϕv

[(
x

LSx

)cx (
y

LSy

)cy (
z

LSz

)cz]
for x ≤ LSx , y ≤ LSy , z ≤ LSz

ϕv for x > LSx , y > LSy , z > LSz

(A.31)

where

cx = dmfx − 1 (A.32)

cy = dmfy − 1 (A.33)

cz = dmfz − 1 (A.34)

� Matrix block size

Lx =


Lvx

[(
LSx

x

)cx (LSy

y

)cy (LSz

z

)cz]
for x ≤ LSx , y ≤ LSy , z ≤ LSz

Lvx for x > LSx , y > LSy , z > LSz

(A.35)

Ly =


Lvy

[(
LSx

x

)cx (LSy

y

)cy (LSz

z

)cz]
for x ≤ LSx , y ≤ LSy , z ≤ LSz

Lvy for x > LSx , y > LSy , z > LSz

(A.36)

Lz =


Lvz

[(
LSx

x

)cx (LSy

y

)cy (LSz

z

)cz]
for x ≤ LSx , y ≤ LSy , z ≤ LSz

Lvz for x > LSx , y > LSy , z > LSz

(A.37)

Note that matrix block size should increase with distance from the main fracture plane.
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A.2.2 Governing Equation

As previously stated, flow in both regions (SRV and OR) is governed by the same anomalous

diffusion equation. However, some flow improvements occur inside the SRV. These flow

improvements are captured by assigning the properties of the medium through power-law

relationships.

The anomalous flux law is introduced into the continuity equation. Flow in three directions

is considered.


∂
∂x

[
k(α,b)x

µ
∂1−α

∂t

(
∂pf
∂x

)]
+ ∂

∂y

[
k(α,b)y

µ
∂1−α

∂t

(
∂pf
∂y

)]
+ ∂

∂z

[
k(α,b)z

µ
∂1−α

∂t

(
∂pf
∂z

)]
− q̂m−f

 = (ϕct)f
∂pf
∂t

(A.38)

where q̂m−f represents the matrix-natural fracture interaction. This transfer function is

assumed to occur under pseudosteady state and is given as

q̂m−f = σSF
km
µ

(pf − pm) (A.39)

Following the procedure described for boundary terms in hydraulic fracture domain, incor-

poration of the finite difference approximation of time fractional flux law into equation A.38

results in



∂
∂x

[
k(α,b)x

µ
σα

∑n+1
k=1 ω

α
k

[
∂p(x,tk)

∂x
− ∂p(x,tk−1)

∂x

]]
+ ∂

∂y

[
k(α,b)y

µ
σα

∑n+1
k=1 ω

α
k

[
∂p(y,tk)

∂y
− ∂p(y,tk−1)

∂y

]]
+ ∂

∂z

[
k(α,b)z

µ
σα

∑n+1
k=1 ω

α
k

[
∂p(x,tk)

∂x
− ∂p(x,tk−1)

∂x

]]
− q̂m−f


= (ϕct)f

∂pf
∂t

(A.40)
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Now, equation A.40 is approximated through a finite difference scheme
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Multiplying equation A.41 by rock volume and defining the following transmisibility coeffi-

cients

Efi,j,k =
∆yj ∆zk
∆xi+1/2

k(α,b)i+1/2

µ
σα (A.42)
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k(α,b)i−1/2

µ
σα (A.43)

Ffi,j,k =
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µ
σα (A.44)
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µ
σα (A.47)
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equation A.41 can be written as
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Now equation A.48 is rearranged by separating known from unknown values
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(A.49)

Now, the term q̂m−f depends on fracture and matrix pressure, the following procedure is

performed to reduce the unkowns on the system, and work only with fracture pressures.

Matrix pressure will be further computed in a explicit way.

The governing equation for matrix blocks is given by

q̂m−f = (ϕct)m
∂pm
∂t

. (A.50)

Combining the discrete form of equation A.39 and equation A.50 results in
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, (A.51)
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rearranging the previous equation[
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solving the equation for Pm
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Substitution of A.53 into the discrete form of equation A.39 results in
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grouping similar terms some members are canceled
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finally, the discrete form of the transfer function (q̂m−f ) can be written as
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Now, the previous equation is substituted into equation A.49. By grouping similar terms,

one more coefficient (C) and the known values vector (R) can be defined. The equation A.49

can be written in the following compact form
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where
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and
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(A.59)

Finally, equation A.57 represents the governing equation describing flow through the region

outside the hydraulic fracture.
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Finite-Difference Approximation of

Flux Equation

The following derivation is based on the methodology presented by Murio (2008), Holy (2016)

and Holy and Ozkan (2017).

Lets consider the time-fractional flux equation in x direction

q̂F−SRV x

∣∣∣∣
LF x

= −
k(α,b)x
µ

∂1−α

∂t

(
∂p

∂x

) ∣∣∣∣
LF x

. (B.1)

Time fractional derivative is defined according to Caputo (1967), thus

[
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)]
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∫ tn+1

0

∂

∂τ

(
∂p

∂x

)
(tn+1 − τ)−(1−α) dτ. (B.2)

The integral in equation B.2 is approximated by integrating smaller intervals which are later

summed together. Each one of these new integrals encompasses a time lapse ∆tr = tr−1 − tr

[
∂1−α

∂t1−α

(
∂p

∂x

)]
=

1

Γ (α)

n+1∑
r=1

∫ tr

tr−1

∂

∂τ

(
∂p

∂x

)
(tn+1 − τ)−(1−α) dτ. (B.3)
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Now, a backward difference is used to approximate the derivative inside each integral

[
∂1−α

∂t1−α

(
∂p

∂x

)]
=

1

Γ (α)

n+1∑
r=1

∫ tr

tr−1

∂p(x,tr)
∂x

− ∂p(x,tr−1)
∂x

∆tr
(tn+1 − τ)−(1−α) dτ, (B.4)

note that the integration variable is τ , thus some terms can be extracted from integral

[
∂1−α

∂t1−α

(
∂p

∂x

)]
=

1

Γ (α)

n+1∑
r=1

[
∂p(x,tr)

∂x
− ∂p(x,tr−1)

∂x

∆tr

]∫ tr

tr−1

(tn+1 − τ)−(1−α) dτ, (B.5)

the remaining terms are integrated next

∫ tr

tr−1

(tn+1 − τ)(−1+α) dτ = − [tn+1 − τ ]α

α

∣∣∣∣tr
tr−1

= − [tn+1 − tr]
α + [tn+1 − tr−1]

α

α

=
1

α

[
[tn+1 − tr−1]

α − [tn+1 − tr]
α

]
. (B.6)

Substitution of equation B.6 into equation B.5 results in

[
∂1−α

∂t1−α

(
∂p

∂x

)]
=

1

Γ (α)

n+1∑
r=1

[
∂p(x,tr)

∂x
− ∂p(x,tr−1)

∂x

∆tr

]
1

α

[
[tn+1 − tr−1]

α − [tn+1 − tr]
α

]
(B.7)

recalling gamma function properties,

[
∂1−α

∂t1−α

(
∂p

∂x

)]
=

1

Γ (α + 1)

n+1∑
r=1

[
∂p(x,tr)

∂x
− ∂p(x,tr−1)

∂x

∆tr

][
[tn+1 − tr−1]

α − [tn+1 − tr]
α

]
. (B.8)
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Finally, the compact form of the finite-difference approximation to time-fractional derivative

is given by

[
∂1−α

∂t1−α

(
∂p

∂x

)]
= σα

n+1∑
r=1

ωα
k

[
∂p (x, tr)

∂x
− ∂p (x, tr−1)

∂x

]
, (B.9)

where

σα =
1

Γ (α + 1)
, (B.10)

and

ωα
k =

[tn+1 − tr−1]
α − [tn+1 − tr]

α

∆tr
. (B.11)

This approximation to time-fractional derivative is introduced into the flux equation

q̂F−SRV x
= −

kα,bx
µ

σα

n+1∑
r=1

ωα
k

[
∂p (x, tr)

∂x
− ∂p (x, tr−1)

∂x

]
. (B.12)
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