

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE POSGRADO EN CIENCIAS DE LA TIERRA

ESTUDIO DESCRIPTIVO DE LA VARIACIÓN SECULAR DEL CAMPO MAGNÉTICO TERRESTRE EN EL ÁREA DE LA REPÚBLICA MEXICANA; ALCANCES Y LIMITACIONES DE LOS MODELOS GEOMAGNÉTICOS DE REFERENCIA

TESIS

QUE PARA OPTAR POR EL GRADO DE

DOCTOR EN CIENCIAS DE LA TIERRA (GEOFÍSICA DE LA TIERRA SÓLIDA)

PRESENTA:

JUAN ESTEBAN HERNÁNDEZ QUINTERO

TUTOR:

DR. AVTANDIL GOGICHAISHVILI

INSTITUTO DE GEOFÍSICA

MORELIA, MICHOACÁN, MÉXICO, MARZO 2022

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

COMITÉ TUTORIAL:

Dr. Avtandil Gogichaishvili

Dra. Ana María Soler Arechalde

Dr. Miguel Cervantes Solano

JURADO EXAMINADOR:

Dr. René Chávez Segura

Dr. Andrés Tejero Andrade

Dr. Avto Gogichaishvili

Dra. Leda Sánchez Bettucci

Dr. Luiz Carlos Beyosef

Juan Esteban Hernández Quintero: *Estudio Descriptivo de la Variación Secular del Campo Magnético Terrestre en el Área de la República Mexicana; Alcances y Limitaciones de los Modelos Geomagnéticos de Referencia*, TESIS, ©, MARZO 2022.

DEDICATORIA

A toda mi gran y extensa familia, empezando por Nora Elia, mi compañera y mejor motivación a través de los años.

A mi madre y a mis hermanos Abel y Carmen, que se han adelantado en el camino, pero que dejaron una profunda huella en ese niño, siempre curioso que nunca he dejado de ser.

A mis hermanos con quien sigo disfrutando de su compañía, junto con sus familias que hacen que sigamos vigentes.

A mis compañeros y amigos que me han acompañado desde la vida universitaria: José Antonio Alatorre, Jesús Zaldívar y en la vida profesional: Gerardo Cifuentes, Armando Carrillo, Alejandro García, Cynthia Martínez, Ana Caccavari, Xochitl Flores y tantos más.

AGRADECIMIENTOS

Quiero hacer patente mi agradecimiento a la Universidad Nacional Autónoma de México, por formar parte de mi vida desde la primera vez que tuve el honor de ingresar al Colegio de Ciencias y Humanidades plantel Vallejo en 1978, por alcanzar mis metas en la Facultad de Ingeniería, posteriormente por convertirme en profesor, y académico como parte del instituto de Geofísica; en el Servicio Magnético. Después de tantos años, por este logro trascendental que es la culminación satisfactoria de esta tesis doctoral con todo el apoyo de esta gran universidad.

Al Dr. Avtandil Gogichaishvili quien me motivó a realizar este gran proyecto bajo su siempre atinada asesoría, agradezco toda su experiencia y conocimiento que compartió para ir resolviendo paso a paso cada reto, y cada problema para obtener la mejor versión de mí, como estudiante. A los miembros del comité tutorial: Dra. Ana María Soler Arechalde y al Dr. Miguel Cervantes Solano por sus valiosas opiniones en cada evaluación del desarrollo de mi trabajo.

A cada uno de los miembros de mi jurado examinador: Dr. René Chávez Segura, Dr. Andrés Tejero Andrade, Dra. Leda Sánchez Bettucci, y Dr. Luiz Carlos Benyosef. Sus sugerencias y correcciones a este trabajo fueron muy valiosas para mejorarlo sustancialmente.

Agradezco infinitamente a los Dres. Rafael García y Rubén Cejudo por aportar sus conocimientos de modelado de campo magnético terrestre y su apoyo en la elaboración de los mapas de distribución espacial de los elementos magnéticos.

Al Programa de Posgrado en Ciencias de la Tierra, que desde mis estudios de maestría me abrió sus puertas y su infraestructura para mi formación académica. Al apoyo que recibí de Araceli Chaman (Ciudad de México) y Janette Huante (Morelia) dándome la pauta con sus consejos y sugerencias.

A mi hermana Ma del Carmen Hernández Quintero (†) quien recientemente trascendió. Estoy seguro que sin su apoyo nunca hubiese llegado hasta aquí.

A mis amigos y compañeros del trabajo, a mis profesores y a mis alumnos quienes han hecho patente este proceso enseñanza-aprendizaje, el cual, no se circunscribe a las paredes de las aulas.

Esta investigación fue apoyada financieramente por los proyectos CONACYT No. 252149, UNAM-PAPIIT-IN101920.

Contenido

RESUMEN1
INTRODUCCIÓN
CAPÍTULO 1. EL OBSERVATORIO MAGNÉTICO DE TEOLOYUCAN, MÉXICO: MÁS DE 100 AÑOS DE HISTORIA DE DATOS14
CAPÍTULO 2. MÁS DE 100 AÑOS ININTERRUMPIDOS DE REGISTRO GEOMAGNÉTICO EN MÉXICO: IMPLICACIONES EN LA DATACIÓN ABSOLUTA DE ALGUNOS EDIFICIOS HISTÓRICOS44
CAPÍTULO 3. SPATIAL DISTRIBUTION OS HISTORICAL GEOMAGNETIC MEASUREMENTS IN MEXICO
CAPÍTULO 4. FLUCTUATION OF THE EARTH'S MAGNETIC FIELD ELEMENTS IN MÉXICO REVEALED BY ARCHIVE DOCUMENTS SINCE 1587
CAPÍTULO 5. SECULAR VARIATION OF THE EARTH'S MAGNETIC FIELD REVEALED BY MEXICAN GEOMAGNETIC REPEAT STATIONS DURING THE LAST TWO CENTURIES
CAPÍTULO 6. CONCLUSIONES GENERALES

RESUMEN

Se presenta un análisis de la evolución del campo magnético terrestre observado durante varios siglos en diversas posiciones geográficas de la República Mexicana. En los dos primeros capítulos se hace una detallada descripción, organización y análisis más de 100 años de datos del Observatorio Magnético de Teoloyucan. Se describe de manera introductoria la historia de los antecedentes de este observatorio, así como una descripción cualitativa de la forma como se han reportado los datos, y su evolución. La importancia de su posición geográfica en un área muy grande en donde es el único observatorio que proporciona información desde hace más de cien años, pues es de gran importancia para alimentar los modelos de campo geomagnético global. En el segundo capítulo se estiman las implicaciones en la datación absoluta de algunos edificios históricos, extendiendo el análisis de los datos del capítulo primero, se propone una curva de variación secular regional la cual, dada su calidad técnica, se propone como herramienta de datación arqueomagnética para esta temporalidad.

El capítulo tres aborda el análisis de una base de datos más extensa, la cual fue cuidadosamente seleccionada. El análisis espacio-temporal del campo geomagnético permitió obtener información crucial sobre la evolución interna y profunda de la Tierra asociado a las condiciones de la frontera entre el núcleo y el manto, en donde se origina el campo magnético interno. Se logra reconocer que el acervo histórico disponible en México puede dividirse en dos grandes grupos: Datos de los diferentes observatorios en México entre 1879 y 2018 (139 años); y los valores históricos de la cartografía magnética acumulados en varios documentos entre 1587 y 2018 (431 años). Se reconoce que parte de los objetivos específicos del mapeo magnético en la historia de México es la estimación y análisis del comportamiento local y global de los fenómenos geomagnéticos.

El capítulo 4 profundiza el análisis mediante la creación de un catálogo actualizado. Los datos se redujeron a la Ciudad de México con el fin de construir una referencia de la variación secular de la información obtenida. El capítulo 5 presenta un análisis de la variación secular del campo geomagnético reciente en sus componentes direccionales y de intensidad. Usualmente este tipo de análisis se basa en datos disponibles de observatorios magnéticos durante los últimos cuatro siglos en el caso específico de Europa, sin embargo, el estudio en el resto del planeta se basa en acervos de datos de menos de 100 años de antigüedad. Las Estaciones Geomagnéticas de Repetición son una fuente invaluable de datos complementarios que permite extender los registros disponibles para la modelación de campo en áreas de pobre cobertura. En este trabajo se analiza una base de datos a partir de 32 estaciones de repetición realizadas en el territorio mexicano. En los resultados, hay evidencias de posibles jerks geomagnéticos para los años 1958, 1969 y 1978 que se pueden correlacionar con aquellos reportados por observatorios como Chambon la Forêt en Francia y Tucson en los Estados Unidos.

La recuperación de datos geomagnéticos a partir de observatorios y estaciones de repetición, han enriquecido sustancialmente el acervo que existe en México. La aportación de este trabajo es que, bajo el adecuado análisis de la información, se logra la conexión entre los modelos geomagnéticos, arqueomagnéticos, y los datos observados, con fenómenos geofísicos asociados a la fuente más profunda en la frontera núcleo-manto de la Tierra, basada en la teoría de la dínamo auto sostenida.

INTRODUCCIÓN

Aunque el estudio del campo magnético de la tierra se remonta a épocas muy remotas, es posible reconocer en el siglo XI el estado del arte de esta disciplina. Para entonces, era bien sabido que en la Grecia antigua se conocía la piedra imán (lonestone), así como la propiedad direccional del campo magnético de la tierra, conocimiento heredado de los chinos.

El descubrimiento de la declinación magnética se reporta en el siglo XV, como consecuencia, para 1576 se descubre la inclinación magnética. Esto culmina con la obra publicada por William Gilbert en 1600: De Magnete, en donde por primera vez, se describe la geometría de las líneas de fuerza alrededor de un modelo de tierra esférica. En 1700 Edmund Halley participa en la que se puede considerar la primera expedición puramente geofísica, y publica el primer mapa global de una magnitud geofísica: la declinación magnética. En retrospectiva, para finales del siglo XVIII, los exploradores ya medían de manera rutinaria la intensidad del campo magnético, así como su dirección. Es importante señalar que desde los siglos XVII y XVIII, las variaciones temporales del campo magnético de la tierra ya se reconocían. Primero Gellibrand en 1634 reconoció la denominada "Variación Secular" (variación a largo plazo). Posteriormente Graham descubrió la variación diaria (variación diurna) en 1772. En el siglo XIX, Alexander Von Humboldt en sus expediciones a Sudamérica y Asia, reportó la existencia de perturbaciones irregulares a las que denominó "Tormentas Magnéticas"; durante los años subsiguientes, las técnicas de observación se perfeccionaron (Garland, 1979).

Hacia 1825 no había un claro entendimiento de la distribución del campo y su comportamiento en el planeta, además una idea errónea prevaleció gracias a Edumnd Halley, quien afirmaba que el campo magnético de la tierra presentaba una simetría originada por un cuadrupolo, en lugar de un dipolo.

Es en 1829, cuando entra en escena Carl Friederick Gauss, quien comienza a dedicarse de manera devota al geomagnetismo; su legado puede centrarse en tres líneas: el desarrollo de instrumentos capaces de medir el campo de manera absoluta, el desarrollo de un modelo matemático para la descripción precisa del campo, así como el estudio sistemático de las variaciones del campo magnético terrestre mediante una red de observatorios que tanto el, como W. Weber denominaron la Unión Magnética de Göttingen que la formaban 50 estaciones de observación simultánea del campo geomagnético con una tasa de muestreo a cada hora y posteriormente cada 5 minutos para estudiar por primera vez, sus variaciones temporales diurnas (Fukushima, 1994; Gauss, 1839).

En la actualidad, casi todos los modelos del campo magnético en la superficie de la Tierra, tienen sus bases en el artículo publicado por Carl Frederick Gauss "Allgemeine Theorie Des Erdmagnetismus" (elementos de la teoría del geomagnetismo) en donde expresa el potencial del campo como una suma de armónicos esféricos. Aunque otros científicos ya habían utilizado esta técnica (en particular Legendre), la aplicación que le dio Gauss a su teoría sobre los datos disponibles en aquella época, puede considerarse arriesgada por la escasa información, sin embargo, la percepción que el mismo tenía del alcance de su teoría fue muy notable. En su análisis original, consideró un modelo de tierra esférica y la fuente del campo enteramente interna. El potencial V lo expresó como:

$$V = a \sum_{n=0}^{\infty} \sum_{m=0}^{n} \left(\frac{a}{r}\right)^{n+1} \left[g_n^m \cos m\lambda + h_n^m \sin m\lambda\right] P_n^m \left(\cos \theta\right)$$
(1)

En donde *a* es el radio de la Tierra, $r, \theta, y \lambda$ son las coordenadas esféricas de cualquier punto (θ se define como la co-latitud), y P_n^m (cos θ) son las funciones asociadas de Legendre. Las componentes del campo magnético son:

$$X = \frac{\partial V}{r\partial \theta}, \qquad Y = \frac{1}{rsen\theta} \frac{\partial V}{\partial \lambda}, \qquad Z = \frac{\partial V}{\partial r}$$
(2)

En este planteamiento, el problema consistía en determinar los coeficientes g_n^m y h_n^m (denominados por Gauss como los elementos del campo). Estos coeficientes tienen unidades de campo magnético. Mientras escribía su artículo en 1838, Gauss dejó saber acerca su deseo de desarrollar este análisis, pero era necesario esperar por un número de mediciones reales suficientes. Sin embargo, en 1837 Sabine publica una carta magnética mundial para la intensidad total. En este trabajo Sabine mostraba las estaciones en donde se midieron las componentes magnéticas (Garland, 1979).

Gauss combinó la carta magnética de Sabine con otras cartas más antiguas de declinación e inclinación, logrando medir tres componentes (declinación, inclinación e intensidad) en 12 puntos repartidos en 7 paralelos de latitud; dándose cuenta de otro problema importante, que resulta de combinar datos obtenidos en diferentes fechas, antes de 1837 (Gauss, 1839).

Gauss logró combinar 6 ecuaciones para cada uno de los 7 paralelos de latitud a lo largo de los cuales el campo fue desarrollado. Usando el método de mínimos cuadrados (ideado por él mismo), resolvió 168

ecuaciones para encontrar los 24 coeficientes que describían el campo magnético de manera global. En su primer modelo teórico, Gauss obtuvo una buena aproximación para aquella época; para realizar sus cálculos, también consideró involucrar la forma elipsoidal de la Tierra, sin embrago, no era justificable para el número de observaciones reales que tenía en aquel entonces. Con estos resultados, fue posible demostrar que los términos tenían su origen en una fuente dipolar, eliminando la idea errónea que había prevalecido desde los tiempos de Halley. Gauss pensaba que la fuente del campo magnético era completamente interna, y que esto estaba bien fundamentado gracias a la similitud entre las observaciones y los datos teóricos de su modelo básicamente de origen interno. El mismo Gauss escribió "*Otra parte de nuestra teoría, puede resolver la siguiente incertidumbre, la cual consiste en demostrar que la fuente del campo magnético de la tierra es de origen interno. Si la fuente del campo completo o parte de éste es de origen externo, podemos, con el fin de eliminar conjeturas fantasiosas, y referirnos a los hechos, debería atribuirse a una corriente galvánica. El aire ordinario no es un conductor, ni es espacio vacío; esto nos lleva a deducir que en la atmósfera superior como un posible conductor. Entre aquellas teorías basadas en la electricidad en movimiento que entran en juego, solo el despliegue misterioso de la aurora puede darnos una pauta para encontrar esa fuente de corriente" (Gauss, 1839).*

La separación formal de las contribuciones internas del campo, dependen del hecho que el potencial expresado en términos de r es diferente si la fuente es interna o externa. Si solo conocemos las componentes horizontales X y Y sobre la superficie de la Tierra, entonces los coeficientes del desarrollo en armónicos esféricos nos llevan a la suma de las contribuciones tanto internas como externas. Por otro lado, si la componente vertical se conoce, entonces estas dos contribuciones se obtienen de manera separada. Cuando existen tanto la interna como la externa, el potencial V se puede conocer convenientemente con la siguiente relación:

$$V = a \left[\sum_{n=1}^{\infty} \sum_{m=0}^{n} \left[C_n^m \left(\frac{r}{a} \right)^n + (1 - C_n^m) \left(\frac{a}{r} \right)^{n+1} \right] g_n^m \cos m + \left[S_n^m \left(\frac{r}{a} \right)^n + (1 - S_n^m) \left(\frac{a}{r} \right)^{n+1} \right] h_n^m \sin m \lambda \right] P_n^m \left(\cos \theta \right)$$
(3)

En este caso, C_n^m y S_n^m son coeficientes adimensionales que varían entre 0 y 1, y representan la fracción proporcional de cada término que proviene de fuentes externas.

En el caso de la superficie de la Tierra, r = a y las componentes X y Y del campo no involucran a los coeficientes C_n^m y S_n^m . Para este caso, los coeficientes g_n^m y h_n^m pueden determinarse mediante las

derivadas correspondientes, como quedó establecido anteriormente. Para Z, la componente vertical, se obtiene mediante su derivada:

$$Z = \frac{\partial V}{\partial r} = \left[\sum_{n=1}^{\infty} \sum_{m=0}^{n} \left[n C_n^m - (n+1)(1-C_n^m)\right] g_n^m \cos m\lambda + \left[n S_n^m (n+1) + (1-S_n^m)\right] h_n^m \sin m\lambda \right] P_n^m (\cos \theta)$$
(4)

La componente Z medida sobre la superficie de la Tierra arroja datos para conocer los coeficientes C_n^m y S_n^m ; de esta forma, la importancia relativa entre las fuentes de campos de origen interno y externo, quedan bien determinadas, por ejemplo, si se considera la variación de X y Y en el desarrollo de los primeros términos, si $C_0^1 = 0$ tendremos una contribución puramente dipolar (campo interno), en el otro extremo, cuando $C_0^1 = 1$ la contribución será puramente externa.

Desde el punto de vista del Teorema de Helmholtz (Kalyan, 2008; Velazco 2021), el cual, establece que el vector de inducción magnética $\bar{B}(\vec{r})$ debería explicarse como el rotacional de un potencial vectorial:

$$B(\vec{r}) = \nabla X A(\vec{r}) \tag{5}$$

En donde de acuerdo a Helmholtz, se puede conocer mediante la expresión:

$$\vec{\mathcal{A}}(\vec{r}) = \frac{\mu_0}{4\pi} \int_{V'} \frac{\vec{\mathcal{J}}(\vec{r'})}{\mathcal{R}(\vec{r},\vec{r'})} \, dv' \tag{6}$$

 $\vec{\mathcal{J}}(\vec{r'})$ representa la distribución de corrientes acotadas en el volumen V' que producen la inducción de campo magnético $\bar{B}(\vec{r})$. Si se asume que la distancia r entre la fuente y el punto de observación, es lo suficientemente grande de tal forma que r>>r' para cualquier posición del espacio V' entonces esta expresión se puede desarrollar como una expansión de polinomios de Legendre para aproximar al potencial $\bar{A}(\vec{r})$ como:

$$\vec{\mathcal{A}}(\vec{r}) = \frac{\mu_0}{4\pi r} \sum_{k=0}^{\infty} \iint_{V'} \left(\frac{r'}{r}\right)^k \vec{\mathcal{J}}(\vec{r'}) P_k(\cos\theta') \, dv' \tag{7}$$

llamada la expansión multipolar del potencial vectorial (Wangsness, 1986). Si se asume que r es suficientemente grande entonces la serie será dominada por la contribución de los primeros términos, mientras que los términos superiores pueden ser ignorados (Velazco, 2021).

$$\vec{\mathcal{A}}(\vec{r}) = \frac{\mu_0}{4\pi} \left\{ \frac{1}{r} \int\limits_{V'} \vec{\mathcal{J}}(\vec{r'}) \, dv' + \frac{1}{r^2} \int\limits_{V'} (\hat{r} \cdot \vec{r'}) \vec{\mathcal{J}}(\vec{r'}) \, dv' + \frac{1}{r^3} \int\limits_{V'} (\frac{3}{2} (\hat{r} \cdot \vec{r'})^2 - \frac{1}{2} r'^2) \vec{\mathcal{J}}(\vec{r'}) \, dv' + \dots \right\}$$
(8)

Es posible demostrar que tomando el segundo término (el primer término no es una fuente real), puede expresarse en términos de llamado momento dipolar magnético de la distribución de corrientes (Wangsness, 1986).

$$\vec{\mathcal{A}}_D(\vec{r}) = \frac{\mu_0}{4\pi r^2} \left[\frac{1}{2} \int\limits_{V'} \vec{r'} \times \vec{\mathcal{J}}(\vec{r'}) \, dv' \right] \times \hat{r} \tag{9}$$

Considerando:

$$\vec{m}(\vec{r}) = \frac{1}{2} \int_{V'} \vec{r'} \times \vec{\mathcal{J}}(\vec{r'}) \, dv'$$
(10)

Se conoce el potencial vectorial en términos del momento dipolar:

$$\vec{\mathcal{A}}_D(\vec{r}) = \frac{\mu_0}{4\pi} \frac{\vec{m} \times \hat{r}}{r^2} = \frac{\mu_0}{4\pi} \frac{\vec{m} \times \vec{r}}{r^3}$$
(11)

Si el punto de observación es lo suficientemente lejano a la distribución de corriente entonces el término dipolar será el predominante en la expansión multipolar, y basado en la figura 1, el producto cruz, se podrá expresar como:

$$\vec{m} \times \hat{r} = m\hat{k} \times \hat{r} = m\sin\theta\hat{\varphi}$$
(12)

Figura 1. Posición del dipolo magnético con el momento en la misma dirección que el eje vertical z POSGRADO EN CIENCIAS DE LA TIERRA

El potencial entonces será:

$$\vec{\mathcal{A}}_D(\vec{r}) = \frac{\mu_0}{4\pi} \frac{m\sin\theta}{r^2} \hat{\varphi} \tag{13}$$

Mediante la ecuación (5) en coordenadas esféricas se tendrá:

$$\vec{B}_D(\vec{r}) = \nabla \times \vec{\mathcal{A}}_D(\vec{r}) = \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \mathcal{A}_{D\varphi}) \hat{r} - \frac{1}{r} \frac{\partial}{\partial r} (r \mathcal{A}_{D\varphi}) \hat{\vartheta}$$
(14)

Lo que lleva a:

$$\vec{B}_D(\vec{r}) = \frac{\mu_0 m}{4\pi} \frac{2\cos\theta}{r^3} \hat{r} + \frac{\mu_0 m}{4\pi} \frac{\sin\theta}{r^3} \hat{\vartheta}$$
(15)

Gracias al legado de Gauss, actualmente existe un modelo geomagnético internacional de referencia basado en sus ideas originales (Thébault, et al. 2015; Velazco, 2021).

El Modelo Geomagnético Internacional de Referencia (IGRF por sus siglas en inglés) es válido sobre la superficie de la Tierra, donde el campo geomagnético principal puede describirse como el gradiente de un potencial escalar mediante la relación $\overline{B} = -\nabla V \operatorname{con} V(r, \theta, \phi)$ las versiones más recientes del modelo global, describen de manera más detallada el campo con ayuda de los datos proporcionados por misiones satelitales de alta resolución como Ørsted, CHAMP y Swarm. La 13ª generación del modelo de IGRF fue publicada en febrero de 2021, y consta de tres productos: (1) un modelo definitivo de referencia para la época 2015.0 (DGRF por sus siglas en inglés), (2) un modelo de campo geomagnético principal de referencia (IGRF) para la época 2020.0, y (3) un modelo de variación secular lineal de IGRF para la época 2020.0 a 2025.0 (Alken et al., 2021).

En los capítulos de este trabajo, se propone que los modelos de campo geomagnético globales pueden construirse a partir de datos paleomagnéticos, datos históricos, y datos instrumentales. Esta combinación de información, aparentemente con escasa relación, nos permite conocer el comportamiento del campo magnético en el pasado.

Para tiempos recientes menores a 400 años, un modelo de alta resolución basado en datos históricos ya ha sido analizado en la literatura (Jackson et al., 2000), conocido como modelo GUFMI. Sin embargo, si requerimos conocer a fondo el comportamiento del campo geomagnético en los últimos 10 a 12 mil años, POSGRADO EN CIENCIAS DE LA TIERRA 8

es decir en el periodo Holoceno, deben utilizarse aquellos basados en datos paleo-magnéticos, ejemplo de estos son los propuestos por Hongre et al. (1998); Korte y Constable (2003 y 2005); Pavón-Carrasco et al. 2008a, 2008b, y 2009 o bien Korte et al. en 2009, los cuales, no alcanzan la precisión que aportan los modelos fundamentados en datos históricos, que fueron medidos por instrumentos. Sin embargo, son el único camino para estudiar el comportamiento de la Variación Secular del campo geomagnético en escalas temporales en el orden de milenios.

En Europa, Pavón-Carrasco publica en 2010 un modelo geomagnético regional de bajo grado que se puede aplicar a este continente y que es válido para el periodo que va entre los 6000-1000 años A.C.

Este modelo se basó en una compilación seleccionada a partir de datos de rocas sedimentarias y de origen arqueo-magnético (modelo SCHA.DIF.8k). El modelo proporciona información sobre componentes angulares (declinación e inclinación), y de intensidad del campo magnético terrestre. Estos modelos se correlacionan con versiones anteriores como el SCHA.DIF.3k, válido para el periodo 1000 A.C. al 900 D.C. en combinación con el IGRF, logrando generar información continua para los últimos 800 años en Europa.

Los algoritmos de estos modelos tienen relación con la introducción de los Armónicos Esféricos propuestos por Gauss, en un casquete (cap) bidimensional (R-SCHA2D) y usando la norma del campo magnético de la Tierra para constreñir la solución del problema. El tamaño de los casquetes utilizados es de 22° y el grado máximo de la expansión es de 2.

Tales modelos requieren de un modelo inicial de referencia, que está basado en del llamado Dipolo Geocéntrico Axial (GAD). El tiempo se introduce mediante un ventaneo traslapado y móvil, en donde el tamaño de la ventana es de 100 años con desplazamientos de 50. Estos modelos funcionan mejor a escalas más locales, en comparación con escalas regionales. En relación con los datos de intensidad, hay una alta coincidencia con el modelo de referencia GAD reportado en la literatura (Pavón-Carrasco et al., 2010). Es importante mencionar que la aplicación de este tipo de modelos, ha llevado a descubrir cambios rápidos en el registro del campo geomagnético en los últimos 8000 años en el área de Europa, los denominados *jerks arqueo-magnéticos*.

La contribución de este trabajo consiste en revisar los datos no solo del observatorio magnético de Teoloyucan, una base en sí misma de gran valor (capítulos 1 y 2). Atendiendo adicionalmente a las observaciones históricas relacionadas con la navegación, y a partir del siglo XX, a mediciones sistemáticas en las Estaciones Geomagnéticas de Repetición, en los capítulos 3, 4 y 5, se logra construir un modelo arqueo-magnético que consta de doscientos años de cobertura.

El espíritu de esta obra no se detiene en la construcción de modelos bien fundamentados desde el punto de vista teórico. La intención de extender formalmente el análisis del campo magnético de la Tierra en el área de México, hasta escalas centenarias, es describir la conexión entre los datos analizados (obtenidos por diferentes instrumentos, diversas técnicas de medición, y un grupo extenso de observadores en más de 400 años) y el fenómeno geofísico involucrado.

Actualmente, es generalmente aceptado que el campo magnético principal del planeta, tiene su origen en un dínamo auto-sostenido que funciona en el núcleo de fluido metálico de la Tierra; un excelente conductor de calor y de electricidad. Se ha demostrado que el material del núcleo es una aleación Fe-Ni con una componente proporcional del 10% de Si, S y O. Actualmente se sabe que la parte sólida del núcleo interno tiene un radio de 1,200 km. La energía necesaria para poder sostener el dínamo es del orden de 10¹¹ W. Debido a que la Tierra se está enfriando, el calor que escapa de la frontera entre el núcleo y el manto (CMB por sus siglas en inglés) es del orden de 5 X 10¹² W, es decir 50 veces mayor. Esto implica que mientras el núcleo se enfría, el tamaño del núcleo interior va incrementando su tamaño paulatinamente gracias a las capas que se cristalizan y acumulan sucesivamente en su frontera interna (ICB por sus siglas en inglés); los elementos ligeros de estas capas no evolucionan en una fase sólida, éstas son liberadas en la ICB proporcionando una energía gravitacional de 10¹² W, y las fuerzas de flotación son inmediatamente útiles para los procesos de convección (Dormy y Le Mouël, 2008).

En este trabajo se hace una descripción cualitativa y cuantitativa de la Variación Secular del campo magnético terrestre, mediante la comparación de aquellos modelos primigenios que históricamente se han actualizado y perfeccionado con la gran cantidad de datos acumulados a través del tiempo (Jackson et al., 2000). Se analizan los datos del valioso acervo histórico observacional de la república mexicana (Sandoval, 1950; Cañón, 1993). Bajo la hipótesis de que haciendo una adecuada combinación de procesos de adquisición, rastreo y validación de datos registrados en periodos de tiempo que abarcan varios siglos; métodos, técnicas y algoritmos en el dominio de la estadística, la modelación comparativa del campo geomagnético entre modelos globales, y regionales; es posible develar fenómenos geofísicos específicos registrados en el tiempo, tales como la tendencia de la Variación Secular, la deriva al oeste y recientemente los Jerks Geomagnéticos (Courtillot et al., 1978; De Michelis et al., 2005).

De esta manera en la actualidad se cree que el movimiento mecánico en el núcleo, que es el generador del campo magnético de la Tierra, consiste de corrientes convectivas de origen térmico o composicional (también llamado químico). Estas fuerzas se caracterizan en el modelado del dínamo mediante el número

de Rayleigh, cuando este y otros indicadores se incrementan, puede existir la bifurcación convectiva, o las llamadas bifurcaciones de dínamo (Dormy, 2008).

Otras hipótesis se encuentran en consideración, con sus pros y contras, tales como el efecto de la precesión Luna-Sol capaz de inducir movimientos lo suficientemente complejos como para ejercer un efecto antidínamo. Los experimentos históricos de Malkus (1963) y aquellos más recientes de Vanyo (1991) dan indicios de turbulencias con este origen (Dormy, 2008).

En los capítulos 4 y 5 de este trabajo, se demuestra la evidencia de la existencia de los posibles efectos descritos en la literatura. El aceleramiento repentino o cambios abruptos en la segunda derivada con respecto al tiempo de los datos magnéticos, demuestran que los jerks geomagnéticos pueden observarse en 1958, 1969 y 1978. Se pueden correlacionar con aquellos reportados en Europa y América. Gracias al rescate de la valiosa información que nos dan las Estaciones Geomagnéticas de Repetición en México. De otra manera, estos fenómenos de origen profundo, hubiesen pasado desapercibidos.

Referencias

Alken, P., Thébault, E., Beggan, C.D., et al., 2021. International Geomagnetic Reference Field: the thirteen generation. Earth Planets Space 73, 49. https://doi.org/10.1186/s40623-020-01228-X.

Cañón, A., Hernández, J.E., Nolasco, H., and Orozco, A., 1993, Cartas Magnéticas de la República Mexicana para la época 1990.0, escala 1:5 000 000. Instituto de Geofísica UNAM. Instituto Nacional de Estadística Geografía e Informática, INEGI. México.

Courtillot, V., Ducruix, J., and Le Mouël, J.L., 1978. Sure une accéleration récente de la variation seculaire du champ magnétique terrestre. *Comptes rendus des séances de l'Académie des Sciences*, **287**, D: 1095–1098.

De Michelis P., Tozzi R., y Meloni A., 2005. Geomagnetic jerks: observation and theoretical modelling, Memorie della Societa Astronomica Italiana, 76, 957.

Dormy, E. and Le Mouël, J.L., 2008. Geomagnetism and the dynamo: where do we stand? C.R. Physique 9 (711-720).

Fukushima, N. 1994. Some topics and historical episodes in geomagnetism and aeronomy. Journal of Geophysical Research: Space Physics 99/A10: 19113-19142.

Garland, G.D. 1979. The Contributions of Karl Fredrich Gauss to Geomagnetism. Historia Mathematica (6) 5-29.

Gauss, C.F., 1839. Allgemeine Theorie des Erdmagnetismus, in Resultate aus den Beobachtungen des MagnetkchenVereins im Jahre 1838, eds Gauss, C.F. & Weber, W., Gottingen und Leipzig. (Reprinted in Werke, 5, 121-193)

Hongre, L., G. Hulot, and A. Khokhlov (1998), An analysis of the geomagnetic field over the past 2000 years, Phys. Earth Planet. Inter., 106, 311-335, doi:10.1016/S0031-9201(97) 00115-5.

Jackson, A., Jonkers R.T., and Walker, R., 2000, Four centuries of geomagnetic secular variation from historical records, The Royal Society, 358, 957-990.

Korte, M., and C. G. Constable (2003), Continuous global geomagnetic field models for the past 3000 years, Phys. Earth Planet. Inter., 140, 73-89, doi:10.1016/j.pepi.2003.07.013.

Korte, M., and C. G. Constable (2005), Continuous geomagnetic field models for the past 7 millennia: 2. CALS7K, Geochem. Geophys. Geosyst., 6, Q02H16, doi:10.1029/2004GC000801.

Korte, M., F. Donadini, and C. G. Constable (2009), Geomagnetic field for 0-3 ka: 2. A new series of time - varying global models, Geochem. Geophys. Geosyst., 10, Q06008, doi:10.1029/2008GC002297.

Kaylan, K.R. 2008. Potential Theory in Applied Geophysics. Springer-Verlag Berlin Heidelberg. ISBN 978-3-540-72089-8. 651 pp.

Malkus, W.V.R. 1963. Precessional torques as the cause of geomagnetism. J. Geophys. Research. 68 (2871-2886)

Pavón - Carrasco, F. J., M. L. Osete, J. M. Torta, L. R. Gaya - Piqué, and P. Lanos (2008a), Initial SCHA.DI.00 regional archaeomagnetic model for Europe for the last 2000 years, Phys. Chem. Earth, 33(6-7), 596-608, doi:10.1016/j.pce.2008.02.024.

Pavón - Carrasco, F. J., M. L. Osete, J. M. Torta, and L. R. Gaya - Piqué (2008b), A regional archaeomagnetic model for the palaeointensity in Europe for the last 2000 years and its implications for climatic change, Pure Appl. Geophys., 165(6), 1209-1225, doi:10.1007/s00024-008-0354-4.

Pavón - Carrasco, F. J., M. L. Osete, J. M. Torta, and L. R. Gaya - Piqué (2009), A regional archeomagnetic model for Europe for the last 3000 years, SCHA.DIF.3K: Applications to archeomagnetic dating, Geochem. Geophys. Geosyst., 10, Q03013, doi:10.1029/2008GC002244.

Pavón - Carrasco, F. J., M. L. Osete, and J. M. Torta (2010), Regional modeling of the geomagnetic field in Europe from 6000 to 1000 B.C., Geochem. Geophys. Geosyst., 11, Q11008, doi:10.1029/2010GC003197.

Sandoval, O.R., 1950, Elementos magnéticos en la República Mexicana. Servicio Geomagnético. Instituto de Geofísica. UNAM. México. 182 pp.

Thébault, E., Finlay, C.C., Beggan, C.D., et al., 2015. International geomagnetic reference field: the 12th generation. Earth Planets Space 67, 79. https://doi.org/10.1186/s40623-015-0228-9.

Vanyo, J.P. 1991. A geodynamo powered by luni-solar precession. Geophys. Astrophys. Fluid Dyn. 59 (209-234).

Velazco Lindero, M.A. 2021. Caracterización y modelo geológico a partir de la exploración magnetométrica en San Andrés Lagunas, Oaxaca. Tesis Facultad de Ingeniería. Universidad Nacional Autónoma de México. 76 pp.

Wangsness, R. (1986). Electromagnetic Fields. Wiley, New York. 608 pp.

Winch DE, Ivers DJ, Turner JPR, Stening RJ. 2005. Geomagnetism and Schmidt quasi-normalization. Gephysical Journal International 160(2):487-504. http://doi.org/10.1111/j.1365-246X.2004.02472.x, https://academic.oup.com/ggi/article-pdf/160/2/487/5970028/160-2-487.pdf.

CAPÍTULO 1. EL OBSERVATORIO MAGNÉTICO DE TEOLOYUCAN, MÉXICO: MÁS DE 100 AÑOS DE HISTORIA DE DATOS

Resumen

El Observatorio Magnético de Teoloyucan (código IAGA TEO) se localiza al norte de la Ciudad de México. La historia de su posición geográfica ha sido de gran interés para México debido a que es el único observatorio magnético en el país durante los últimos 108 años y ofrece una base de datos muy importante para ser analizada. El estado de operación ha permanecido incierto durante los últimos ocho años debido al incremento del ruido de alta frecuencia y sus correspondientes armónicos cerca de sus instalaciones, actualmente sus datos son válidos para el estudio de la variación diurna, y de la tendencia de variación secular en la red internacional Intermagnet. Varios tipos de usuarios hacen uso de sus datos en tiempo real tales como algunas compañías mineras y de exploración petrolera; así como aplicaciones más recientes relacionadas con el denominado Clima Espacial; adicionalmente a aquellos usuarios tradicionales en el ámbito académico.

El objetivo de este trabajo es describir de manera introductoria la historia de los antecedentes de este observatorio, así como una descripción cualitativa de la forma como se han reportado los datos, y su evolución en el futuro próximo. La importancia de su posición geográfica en un área muy grande en donde es el único observatorio que proporciona información desde hace más de cien años.

Palabras Clave: Observatorio Geomagnético, México, Registro Magnético

Abstract

The Teoloyucan Magnetic Observatory (IAGA code TEO) is located north of Mexico City. The history and its geographical position is considered of great interest being country's only magnetic observatory for the last 103 years that produced very important dataset of magnetic elements. The current state of operation has remained uncertain for the past eight years due to the increase in high frequency noise and its harmonics near its facilities. Currently available data are valid for the study of diurnal variation, and the trend of secular variation through the international Intermagnet network. Nowadays, many institutions and individuals use the observatory data in real time such as some mining and oil exploration companies while more recent applications are related to the so-called Space Weather.

The objective of this work is to describe in an introductory way the history and background of this observatory, as well as a qualitative description of the way in which the data have been reported and its evolution trough the time. The special emphasis is paid to the importance of its geographical position covering a very large area with single magnetic observatory providing reliable record for more than one hundred years.

Keywords: Geomagnetic Observatory, Mexico, Magnetic Record Publicado en: Latinmag Letters. (2018) LL18-0801Rv, 1-22 (<u>https://www.geofisica.unam.mx/LatinmagLetters/published.html</u>)

Introducción

Más de mil años antes de la era cristiana, los chinos ya conocían la propiedad inherente al imán de señalar siempre hacia una dirección determinada; y para dirigirse a través de las estepas inmensas de la Tartaria hacían uso de brújulas acuáticas, formadas de una aguja imantada que flotando libremente en el agua, hacia mover el brazo de una figura miniatura que señalaba el Sur. Este instrumento estratégico, que desde su descubrimiento sólo se usaba en los viajes por tierra, fue convirtiéndose en un importante instrumento de navegación marítima; se sabe que, bajo la dinastía de los Tsin y en el siglo IV de la era presente, los barcos chinos, guiados por la brújula, visitaron los puertos indios y las costas orientales del África. Su uso se extendió por todo el Océano Indico, y sobre las costas de Persia y de Arabia. Su aparición en los mares europeos se reporta hasta entrado el siglo XII.

Las fuentes históricas no han puesto de manifiesto de una manera certera, si la importación de la brújula fue debida a la influencia directa de los árabes, o de los cruzados, que desde el año de 1096 entraron en comercio con el Egipto y el Oriente propiamente dicho; pero sí se sabe que los que más eficazmente contribuyeron al uso del nuevo instrumento fueron los pilotos moriscos, los genoveses, los venecianos, los mallorquines y los catalanes.

Para aquella época, las brújulas primitivas flotantes presentaban una movilidad excesiva, y por lo tanto no eran útiles para medir con exactitud su dirección, se reemplazaron entonces por agujas que, moviéndose con libertad en el aire, estaban suspendidas de un hilo de seda de algodón muy delgado, según la técnica denominada "suspensión tipo Coulomb" y que Gilbert puso por primera vez en uso en la Europa occidental. Con este aparato comenzó a medirse la "variación" o declinación magnética en varios lugares de la tierra firme, así como en los mares, y gracias a los viajes de descubrimientos que se realizaron en los

siglos posteriores, se enriqueció la ciencia con nuevos e importantes elementos para el desarrollo del magnetismo terrestre, tanto desde el punto de vista práctico, así como las primeras especulaciones teóricas.

En su célebre viaje, Cristóbal Colon planteó a la cartografía magnética un adelanto muy importante; el 13 de Septiembre de 1492 una línea sin declinación magnética, situada dos grados y medio al este de la Isla Corvo, en el archipiélago de las Azores: al navegar por la parte occidental del Océano Atlántico notó que la variación pasaba insensiblemente del noreste al noroeste lo cual le condujo a la idea que después ocupó tanto a los navegantes, es decir, encontrar la longitud por medio de las curvas de las variaciones, que suponían todavía paralelas al meridiano.

Las ideas predominantes en aquella época hicieron trasformar una línea física de demarcación en una línea política, y la raya sobre la cual la aguja de marear (brújula) estaba exactamente dirigida hacia la estrella polar, fue el límite de separación de las posesiones portuguesas y españolas. Fue necesario determinar de una manera precisa, por los métodos astronómicos, su longitud geográfica, siguiéndola en ambos hemisferios sobre toda la superficie terrestre; y así, queda patente en el desarrollo trascendental histórico para la navegación y también para los instrumentos magnéticos.

Por espacio de mucho tiempo la atención de los observadores estuvo exclusivamente en el estudio de la declinación, es decir, de la distancia angular de la aguja horizontal al polo norte geográfico; pero en el siglo XVI comenzó a medirse otro elemento de la fuerza magnética, la inclinación. En 1576, Robert Normann determinó en Londres esta propiedad de la aguja imantada, por medio de un declinatorio inventado por él mismo y con una gran precisión (Humboldt, 1867).

Dos siglos más tarde se hacían los primeros ensayos para estimar el tercer elemento del magnetismo terrestre: la intensidad misma (intensidad total) de esta fuerza. Según Humboldt, se debe a la penetración del caballero Borda la idea de estudiar las diferencias de la intensidad magnética en diversos lugares de la superficie terrestre, medidas por la duración de las oscilaciones de una aguja colocada verticalmente en el meridiano magnético y confirmadas por las observaciones que hiciera Lamanon (compañero de La Pérouse), en 1785. Posteriormente, comenzó a entreverse, aunque de una manera incompleta, la ley de la intensidad, variable con la latitud magnética; si bien esa ley recibió una existencia verdaderamente científica el día en que fueron publicadas las observaciones que Humboldt ejecutó, entre 1798 y 1804, en Francia, España, Islas Canarias, en América tropical (México), el Océano Atlántico y en el Mar del Sur.

En la primera mitad del siglo XIX, el estudio del magnetismo recibió un gran impulso; debido al progreso casi simultáneo para todas las ramas de la teoría del magnetismo, el estudio de la declinación, la inclinación y la intensidad. Así mismo, los nuevos fundamentos sobre el magnetismo terrestre y su distribución geográfica, y lo más importante la teoría del campo geomagnético desarrollada y publicada por Carl F. Gauss, desarrollada por medio de un riguroso razonamiento matemático (Gauss, 1839).

La gran influencia de los resultados de Humboldt, y gracias a sus relaciones con los gobiernos de Europa, fueron elementos que puso siempre al servicio de la ciencia, y sus iniciativas con la Academia Imperial de San Petersburgo y la Real Sociedad de Londres, propuso el establecimiento de una red de observatorios magnéticos en las vastas posesiones de los imperios ruso y británico.

Bajo la dirección del profesor Kupffer se fundaron en Rusia un gran número de estaciones magnéticas, y desde 1832 se realizaron observaciones simultáneas entre el Mar Blanco y la Crimea, entre el golfo de Finlandia y las costas de la América Rusa; la actual Alaska.

En 1839 fueron establecidos varios observatorios magnéticos, en ambos hemisferios, bajo el patrocinio del gobierno británico, poniéndolos bajo la dirección del coronel Sabine, quien en 1818 realizó este tipo de estudios en el viaje de John Ross al Estrecho de Davy, a la Bahía de Baffin y al Estrecho de Lancaster.

Las observaciones comenzaron en Toronto en 1840 y el año siguiente en el Cabo de Buena Esperanza. Estos trabajos contribuyeron de manera importante para perfeccionar el conocimiento de la distribución geográfica del magnetismo terrestre, poniendo, además de manifiesto buen número de leyes relativas a las perturbaciones accidentales y a las variaciones periódicas de los elementos magnéticos, señalando también su conexión con otro tipo de fenómenos, tales como el comportamiento del clima y hasta su relación con los terremotos (Moreno, 1977).

Webber en Gotinga, con Gauss; Lamont en Munich; Airy en Greenwich; Quetelet en Bruselas; Lloyd en Dublin; Arago en Paris; Secchi en Roma, y los más eminentes observadores contemporáneos, contribuyeron de manera importante al estudio del magnetismo terrestre, perfeccionado los instrumentos o los métodos de observación (Reyes, 1879).

En el contexto internacional de la primera mitad del siglo XIX, México se encontraba históricamente en un periodo de formación como nación; pero es en las últimas tres décadas de este siglo cuando se pueden vislumbrar los primeros esfuerzos por integrarse a la comunidad internacional para el estudio del fenómeno magnético. Humboldt contribuyó con su trabajo en México para estimular el conocimiento en esta área (Hernández y Orozco, 1997).

Antecedentes de la Cartografía Magnética en México y el Conocimiento en el Siglo XIX

Para el último tercio del siglo XIX, el fenómeno magnético en México estaba documentado debido a que esta disciplina era necesaria para la navegación. La variación o declinación magnética era la componente más estudiada; sin embargo, los datos recabados por naves de otros países contribuyeron a dar un conocimiento grueso de su comportamiento.

La República Mexicana se localizaba en la década de 1889 entre las líneas isogónicas de 6° y 13° al Este; la primera iba desde el sur y hasta el mar Caribe, atravesando el canal de Yucatán, dirigiéndose al norte hasta la costa de los Estados Unidos a la altura de Mobile. La isogónica de 13° se proyectaba desde el Pacífico con rumbo este en la Península de la Baja California al Sur (Bahía de Todos Santos), y entraba en el Continente recurvando al norte.

Se reportaba que las isogónicas de 8° y 9° distan más entre sí que las otras líneas de igual declinación , variando de grado en grado, continúan surcando el territorio mexicano al hacia el noroeste de san Blas (Nayarit); por consiguiente, desde Minatitlán hasta Matamoros en la costa del Golfo, y desde Salina Cruz hasta San Blas en el Pacífico, las variaciones de la declinación magnética son cortas por el cambio de posición geográfica después de realizar una sustracción de la influencia de los efectos locales.

Sandoval (1950) reconstruye algunos de estos mapas y le da sentido a las descripciones reportadas en algunas publicaciones de la época (Figura 1.1).

Figura 1.1 El conocimiento de la variación espacial de la declinación magnética en 1889, construida con los datos de Sandoval (1950) para la República Mexicana.

Se sabía que la declinación magnética experimenta cambios tanto espaciales como temporales con distintos periodos: variación secular, variaciones anuales, diurnas, estacionales e irregulares de varios tipos de amplitud.

Es importante el análisis reportado por Reyes (1884), en donde describe ya de manera detallada la variación diurna del campo geomagnético: "La amplitud de la variación diurna depende de la latitud magnética del lugar, habiéndose observado que en el hemisferio Norte la aguja alcanza su extrema posición occidental hacia las dos de la tarde, y hacia las ocho de la noche su extrema posición oriental; por consiguiente, en los puntos que tienen una declinación occidental, la máxima tiene lugar hábil las 2 p.m., y hacia las 8 p.m. en los puntos que tienen declinación oriental."

La tecnología de aquellos años permitía reconocer la variación de la Inclinación Magnética en le República Mexicana (las isóclinas variaban entre de 35° y 60° en 1884).

El tercer elemento del magnetismo terrestre estudiado fue la intensidad de la fuerza total, la cual puede también representarse gráficamente en las cartas por un sistema de líneas isodinámicas. Se sabía que estas líneas difieren notablemente de las líneas isoclínicas; la línea de mínima intensidad dista poco, pero se

sabía que no llega a confundirse con el ecuador magnético, y además a lo largo de la línea llamada ecuador magnético verdadero, la intensidad total tiene valores variables.

Durante gran parte del siglo XIX, el estudio y la medición de la fuerza magnética, se realizaba mediante un método ampliamente conocido y denominado "oscilaciones" refiriéndose a una aguja vertical u horizontal, éste comenzó a cobrar importancia desde principios de aquel siglo; y gracias a los recursos perfeccionados de la óptica y de la cronometría, las medidas de la intensidad fueron de una exactitud superior a las otras componentes magnéticas. Las líneas de la misma declinación magnética (isogónicas) fueron, en verdad, las líneas que más interesaron al navegante y al piloto; pero tratándose de la teoría general del magnetismo terrestre, las líneas de igual intensidad fueron objeto de particular importancia para los físicos.

Es interesante reconocer los avances que existían para las postrimerías del siglo XIX; cuando se examina atentamente la dirección de las líneas isodinámicas se hacía referencia a líneas "más débiles", o a las "líneas interiores", cuya fuerza característica aumentaba gradualmente, se reconocía ya en cada hemisferio, a distancias desiguales de los polos de rotación y de los polos magnéticos, existían dos puntos o focos de intensidad máxima, uno más intenso y otro más débil. De estos cuatro puntos, el más intenso era el foco americano, situado en el hemisferio Norte, en una posición geográfica de 52° 19' de latitud y 117° 40' longitud al Este de París; el otro punto más débil, llamado también foco siberiano, se ubicaba a los 70° de latitud Norte; y a los 117° 40' de longitud Este; finalmente el medio de la lemniscata, que liga los dos focos del hemisferio septentrional se hallaba al noreste del Estrecho de Bering, más cerca del foco asiático que del americano.

Antecedentes Geomagnéticos en México en el Siglos XVIII y XIX

Los estudios magnéticos más antiguos se comenzaron a practicar en la ciudad y en el valle de México. En la porción del continente americano que ocupa la República, se observa que apenas se medían los elementos magnéticos de tarde en tarde, y no siempre de una manera metódica y continuada; en las costas es tal vez donde mejor se ha estudiado la declinación, y esto debido a las exploraciones de las oficinas hidrográficas extranjera. En el Valle, los primeros trabajos sobre la declinación, dignos de fe, se practicaron en 1775 por D. Joaquín Velázquez de León; el Barón de Humboldt determinó más tarde la declinación de varios lugares de la entonces Nueva España, en su célebre viaje, y posteriormente algunos

ingenieros se han ocupado de este género de observaciones. Desgraciadamente los resultados obtenidos son poco conocidos, se encuentran dispersos en diversas obras, se midieron en épocas distintas y son insuficientes para trazar con alguna seguridad el curso de las líneas isogónicas sobre la carta de la República para aquella época.

Hablando de las observaciones hechas en el Valle de México, Orozco y Berra reporta:"el Ingeniero Iglesias, que practicó sus observaciones con un tránsito americano, obtuvo en 1862 una declinación hacia el este de 8° 34' 50". Datos como estos propiciaron la búsqueda de más datos aislados de declinación magnética (tabla 1.1).

Año	Observador	Declinación al E
1775	Velázquez de León	6° 42' 0"
1804	Barón de Humboldt	8° 08" 0"
1849	Gómez de la Cortina	8° 30' 12"
1857	Dr. Sonntag	8° 46' 05"
1858	Almazán	8° 22' 18"
1860	Salazar Ilarregui	8° 30' 0"
1862	Iglesias	8° 34' 50"

Tabla 1.1 Observaciones reportadas de Declinación Magnética en el Valle de México (Reyes, 1884).

En la obra de Reyes se encuentran referencias detalladas de las primeras mediciones: "Las observaciones metódicas emprendidas en el Colegio de Minería, podrían enseñarnos alguna cosa, si los resultados finales hubieran visto la luz pública; a nuestro conocimiento no han llegado más de las relativas al período corrido de 11 de Mayo a fin de Julio de 1857 que, como de luego a luego se comprende, así aislados son datos truncos de los que no deben sacarse conclusión alguna. Resulta de ellos que el 12 de Mayo la declinación era de 8° 50' 15" a las siete de la mañana, aumentada a 8° 56'55" a las seis de la tarde; la desviación creció el 14 hasta 9° que disminuyó durante el día, y desde las seis de la tarde del 15, que se observaron 9° 20' 55", la aguja se mantuvo avanzando y retrocediendo hasta el 18 de Junio a las doce de la mañana, que volvió a señalar 8° 55". Retorno a 9° el 25 y se mantuvo así hasta el 5 de Julio, en que dio a las nueve de la mañana 8° 31' y así permaneció con poco más o menos hasta el fin de aquel mes".

La descripción es clara y metódica, que demuestra cómo la variación de la declinación magnética en los primeros esfuerzos por llegar a ser un observatorio magnético, se pueden desprender conclusiones en

relación con el carácter de una posible tormenta geomagnética descrita en este párrafo. Es importante reconocer que hasta mediados de los años 1950 se introducen los conceptos relacionados con el comportamiento magnético entre el Sol y la Tierra.

En otra de sus obras, el mismo autor inserta datos que le fueron suministrados por el Sr. Ingeniero Ignacio Cornejo, acerca de las observaciones meteorológicas y magnéticas que practicó en la Escuela de Minas durante el año de 1866, y cuyos resultados ponen de manifiesto que en el año al que se ha hecho referencia, la inclinación de la aguja magnética varió entre 45° 20' y 43° 40', oscilando la declinación entre 8° 8' 47" y 7° 56'27".

Cornejo (1866) se ocupó de reportar observaciones magnéticas, quien también observaba datos meteorológicos en menor número; tales datos merecieron entera confianza. Contaba para medir la declinación con una brújula de variaciones horarias del sistema de Gambey, construida por Secretan y con un limbo dividido en grados sexagesimales, con aproximación de diez en diez segundos. La aguja queda encerrada en una caja y libre de las agitaciones del aire, suspendida por un sistema de pivote en el centro, es muy sensible a toda variación. La brújula de inclinación es inglesa, construida por Blunt, con graduación sexagesimal, sin nivel; de manera que no exige mucho tiempo para ponerla en observación, en su parte superior contaba con suspensión de cardan, por su propio peso se coloca siempre en el plano vertical. Parece un primer intento sistemático de la medición del magnetismo terrestre planificado en México; se consideró un espacio con dos ventanas, al Norte y al lado contrario al del barómetro.

La primera operación practicada fue la de quitar todos los goznes, clavos y objetos de fierro, sustituyéndolos con otros semejantes de latón o bronce. Abiertos los claros en el muro de fachada, de un espesor suficiente para evitar variaciones drásticas de temperatura, fueron inapreciables sobre los instrumentos los movimientos que producían los carruajes a su paso por la calle.

La colocación de la brújula de inclinación se reporta como una tarea sencilla; no así la de declinación, ya que fue preciso instalarla en tres ocasiones, mediante el apoyo de Miguel Ponce, observador del Observatorio Astronómico, y el ingeniero de minas Luis Espinosa. Ambos calcularon varios pasos de la estrella polar por el meridiano para determinada su ecuación y asegurar la medición de la declinación magnética de una manera altamente precisa. Notando que siendo el centro de la Ciudad de México era posible observar la estrella polar y que las condiciones de las últimas décadas del siglo XIX, ofrecían una buena expectativa para la operación de un lugar para la medición del campo magnético terrestre.

	Temperatura media.	Altura media harómetro á	del 0?	Inclina- cion.	Declination.
1769 Alzate. 1803 Humboldt. 1826 Barkart. 1833 Gerolt. 1842 Plana mayor. Cortina. 1855 Jimenez. Mezeorologia de K. 1866 Geïnejo.	17°00 C 16 8 15 8 19 92 18 59 21 2 19 43 16 6 18 29	585 mm (585 5 586 5 586 5 585 (585 6 585 6 583 5 585 9	00 29 24 77 00 04 13 30	42°10' " " " 45°20' & 43 40	8° 8''00" E. 8° 30''12" E. 8° 8''47" á 7° 56' 27"

"Las temperaturas mas acordes presentadas por esta tabla son, en primer lugar, las del Sr. Humboldt y Meteorologia de Kaemetz, que solo presentan dos décimas de diferencia; en seguida la de la Plana mayor y la mía, con tres décimas de diferencia. Comparadas con la obtenida pormí, la que mas difiere es la del Sr. Conde de la Cortina, cuya diferenciallega a 2° 91. La del Sr. Jimenez, obternida con el mismo Instrumento de que yo usé, presenta, sín embargo, 1° 14 en mas."

Figura 1.2. Ejemplo de la obra original Manuel Orozco y Berra 1867, "Memoria para el plano de la Ciudad de México" reporta Inclinación y Declinación Magnética.

Examinando atentamente los valores que se midieron para la declinación, no se logra obtener entre ellos una tendencia determinada para la variación secular; pues aunque la disminución o aumento gradual de la desviación de la aguja magnética no se registraba de una manera constante en determinado sentido, ya que para la época, la oscilación secular general se hallaba subdividida en ciclos menores de diez a once años probablemente relacionados con el ciclo de las variaciones de las manchas solares; sin embargo, el movimiento general en los dos primeros tercios del siglo XIX no acusaba una tendencia, o incremento de la declinación. Comparando los resultados que obtuvo Humboldt en 1804, con los del Conde de la Cortina en 1849, aparentemente la declinación experimentó un incremento de 29" por año; entre 1849 y 1857 la variación anual mostraba + 1' 59"; de 1857 y 1858 aparece una diferencia de 23' 47", que corresponde a un excesivo decremento, tornándose este después en incremento de 3' 51" por año, entre 1858 y 1860, para que finalmente Orozco y Berra reporte una variación de 25" entre 1860 y 1862.

La literatura más importante disponible entre los siglos XVIII y XIX evidenciaron una serie de serias discrepancias en extremo sensibles, se interpretaba entre otras causas, que su origen se debía al uso de los mismos instrumentos sin una calibración adecuada, es decir la falta de comparación de los nuevos

instrumentos con los antiguos, para tomar en cuenta sus diferencias, refiriendo a los más precisos las declinaciones obtenidas en estas épocas.

Estas incongruencias aparentes, se explicaban porque las observaciones no se habían practicado en una misma época, o bien la eliminación de la influencia de las variaciones anuales, pues puede muy bien haber acontecido que los datos de un observador se refieran a la época de máxima actividad solar y los de otro a la de la mínima.

El hecho de no haberse ejecutado estas observaciones en el mismo punto geográfico, para que fueran constantes los errores motivados por las influencias locales, a las que no es fácil sustraerse completamente cuando el observador se encuentra rodeado de construcciones en el centro de las grandes ciudades. Era un motivo importante pues de manera incipiente se requerían condiciones muy especiales para la medición adecuada el campo.

Es altamente probable que estas incongruencias aparentes coincidieran con alguna perturbación magnética notable, evidenciadas por las mediciones de la aguja magnética que se apartaron de su valor medio normal.

En esta etapa de la historia se demuestra la carencia del desarrollo tecnológico necesario para explicar los fenómenos que ahora conocemos de manera más clara; conceptos tales como tormentas geomagnéticas, corrientes inducidas por la Ionósfera, o lo más interesante, un cambio trascendente en el cambio de la deriva al oeste en la declinación magnética medida en aquel siglo. Más escasos son todavía los datos relativos a las observaciones hechas en México sobre la inclinación de la aguja magnética: Humboldt encontró en 1803, 42° 10'; Sonntag, en 1856. 41° 26'; Cornejo,en 1866, 44° 30', (Humboldt, 1867; Sonntag, 1860; Reyes, 1884).

Son de gran importancia los estudios sobre el magnetismo terrestre que promovió el Instituto Smithsoniano en 1856 bajo la dirección del Dr. A. Sonntag y el Baron Von Muller (Reyes, 1884). Esos trabajos constituyen una serie de experimentos meticulosos ejecutados desde Veracruz hasta la ciudad de México, y los observadores hicieron uso de los métodos e instrumentos de aquella última generación, lo que permitió grandes y apreciables resultados, puesto que sirven de referencia para los estudios posteriores sobre los elementos magnéticos.

No es aventurado asegurar que, desde principios del siglo XIX Humboldt ejecutó en México observaciones sobre la intensidad de la fuerza magnética, cuando tales observaciones eran incipientes, y

desde entonces no volvieron a ser emprendidos en el valle de México, fue hasta 1856, cuando se determinó por primera vez la intensidad horizontal con un aparato de precisión, el Magnetómetro Unifilar de Gauss, perfeccionado por Lamont (Sonntag; 1860). En un resumen de los resultados reportados por Sonntag entre 1856 y 1857, se observan en la tabla 1.2.

Sitio	Lat N	Long W	Declinación	Inclinación	н	Fecha
Veracruz	10°12'	96°09′	8°17′	43° 58'	7.530	Agosto 7, 1856
Potrero	18°56′	96°48′	8°39′	42° 51'	7.570	Agosto 16-17, 1856
Totolapa	18°53'	97°04	8°28′	42° 51'	7.580	Agosto 16-17, 1856
San Andrés	18°59'	97°15	8°13′	42° 38'	7.590	Septiembre 17-18, 1856
Mirador	19°13′	96°37	8°02′	43° 05'	7.520	Octubre10-11, 1856
México	19°26′	99°05	8°46′	41° 26′	7.756	Diciembre10-17, 1856
Chalco	19°18′	98°51	9°03′	43° 12'	7.540	Enero 6, 1857
Tlamacas	19°03'	98°39′	8°28′	42° 34'	7.571	Enero 25, 1857

Tabla 1.2. Resumen de las observaciones magnéticas hechas por A sonntag, bajo la dirección del BaronVon Muller entre 1856 y 1857 (Sonntag, 1860).

Los valores de la fuerza horizontal están expresados en la escala inglesa, tomando por unidades respectivas el pie inglés, el segundo de tiempo medio solar y el gramo; en la escala métrica las unidades son: el milímetro, el segundo de tiempo y el miligramo, y para reducir los valores ingleses a los métricos, basta multiplicarlos por el factor 0.46108.

Una variable importante para el estudio del magnetismo en el Valle de México durante el siglo XIX, fue su altura sobre el nivel del mar. Se le asignó una importancia particular a las observaciones magnéticas; dado que se acumulaban los datos con el fin de estimar la disminución de la intensidad total del campo magnético a estas alturas, ya que las medidas no daban resultados siempre en el mismo sentido. Es de mencionar la atención que se prestó a la importancia de las cadenas montañosas que rodean al valle de México y su probable influencia por el contenido mineralógico y composición de estos macizos montañosos (Royal Society of London, 1878).

Antes de la aparición de una entidad encargada en México para la medición del campo magnético terrestre, se crearon las bases sobre la creencia de la hipotética relación entre las perturbaciones magnéticas y aquellos fenómenos denominados "grandes accidentes meteorológicos"; los cuales, si se representaban gráficamente en un sistema de ejes coordinados las variaciones de la declinación y de la intensidad se presentaban correlaciones interesantes con las oscilaciones anormales de la presión atmosférica, o la

temperatura, entre otras; así como las variaciones de la presión atmosférica. Estas herramientas se desarrollaron para rastrear la aproximación de temporales, ciclones, o huracanes; reportando de manera sensible la ocurrencia de perturbaciones notables en el magnetismo bajo la inminente llegada de un meteoro (Reyes, 1884).

Es importante señalar que, para el Primer Año Internacional Polar, se realizó un esfuerzo internacional entre agosto de 1882 y agosto de 1883 para realizar observaciones principalmente en las áreas de meteorología, geomagnetismo y las denominadas luces polares (auroras); bajo esta filosofía se acuñó el término Aeronomía, el cual relaciona estas tres disciplinas (Fukushima, 1994).

El Departamento Magnético del Observatorio Meteorológico Central de México

Es claro que, para las últimas décadas del siglo XIX, las líneas de desarrollo para el geomagnetismo tenían un panorama amplio y con grandes posibilidades de desarrollo. Es por esto que durante el tiempo en que la Secretaría de Fomento del gobierno de México estuvo a cargo del General Vicente Riva Palacio, considerado fundador de los Observatorios meteorológico y astronómico y celoso protector de los estudios científicos, promovió el encargo a Inglaterra, a la fábrica Negretti y Zambra, de Londres, un magnetómetro unifilar primero, y más tarde una brújula de inclinación (Figuier, 1878). Antes de ser recibido en México, el magnetómetro fue cuidadosamente verificado en el Observatorio de Kew, donde estuvo algún tiempo en calibración, habiendo sido determinadas las constantes y coeficientes de corrección y computadas las tablas para facilitar los cálculos por Mr. F. G. Figg, bajo la superintendencia de G. M. Whipple.

Las primeras observaciones en el Departamento Magnético de declinación y la fuerza horizontal, fueron ejecutadas entre enero y mayo de 1879 en una pequeña barraca de madera, contigua al Observatorio central astronómico situado en la azotea del Palacio Nacional (Figura 1.3)

Antes de comenzar esa primera serie de observaciones, se tuvo cuidado de quitar del piso, techo y paredes de la barraca, todo clavo de fierro, asegurando las tablas con espigas de madera, y el herraje de la puerta y ventanas fue también reemplazado por piezas análogas de cobre o bronce: el magnetómetro estuvo instalado sobre un postre de ladrillo de un metro de altura, teniendo el cuarto dos ventanas orientadas al norte y al sur, con la puerta hacia el oeste.

La brújula de inclinación se recibió varios meses después, y fue necesario proceder a la construcción de una construcción especial, donde los instrumentos estuvieron establecidos en las mejores condiciones

posibles, y se dio principio a la nueva serie regular de observaciones completas sobre los tres elementos del magnetismo terrestre, el 1 de Septiembre de 1879, bajo la responsabilidad de José Collado y Vicente Reyes, ambos personal auxiliar del Observatorio Central Meteorológico (Reyes, 1884).

Para esta época resultaba muy peculiar la adquisición de los datos, ya que cumplía con las horas de oficina en la que laboraba el personal; se realizaban mediciones en domingo también. Sin embargo, los instrumentos que se utilizaban (magnetómetro unifilar; brújula para declinación y brújula para inclinación) eran transportados en campañas en los alrededores del Valle de México para la realización de mediciones de interés científico y siempre correlacionadas con la faceta meteorológica (Comisión Nacional del Agua, 2012).

Este es considerado el primer antecedente del observatorio magnético en México; Las coordenadas geográficas del salón magnético fueron 19°26' de latitud norte, y 99° 6' 39" de longitud oeste. Como ya se mencionó el primer observatorio magnético en México fue parte del Departamento Magnético el cuál dependió del Observatorio Meteorológico Central en México esto como consecuencia del decreto del Presidente de la República Porfirio Díaz y por iniciativa del entonces Ministro de Fomento Vicente Riva Palacio. Haciendo un seguimiento de la historia de este antecedente, es posible reconocer los motivos por los cuales quedó clausurado en 1887; de acuerdo a V. Reyes (1884), se describe en su obra:

"Cuando se está en el centro de una gran ciudad, no es posible sustraer por completo los instrumentos magnéticos a la influencia de la proximidad de los edificios, que determinan la alteración de los valores de los resultados, particularmente por la presencia del fierro, cuyo uso está tan generalizado en las construcciones modernas, por una parte; y por la otra, aunque el fierro no figure en ellas al estado metálico, no por eso dejarán de ejercer cierta acción sobre la dirección y los movimientos de la aguja imantada, ya por la masa misma de los edificios, ya por la existencia de otros materiales de construcción, artificiales o naturales, como el ladrillo y las rocas, que, como se sabe, contienen el fierro más o menos encubierto al estado de óxido. Por lo demás, la vecindad de grandes masas de agua, de carbón, de mercurio y otros cuerpos, producen pequeñas desviaciones sobre la aguja..."

Figura 1.3. Palacio Nacional alrededor de 1884, con el Departamento Magnético en funcionamiento desde septiembre de 1879 (Comisión Nacional del Agua, 2012).

"Ahora bien: el objeto principal de las largas series regulares de Observaciones magnéticas que se emprenden en los observatorios, es el de establecer las leyes de las variaciones seculares anuales, diurnas, y de las perturbaciones accidentales; y como esas variaciones se estiman por las diferencias entre los resultados obtenidos en épocas determinadas o por las diferencias de los máximos y mínimos con los valores medidos o normales, si la influencia de las causas locales es constante, porque no varíe de una manera sensible la situación respectiva de los cuerpos que originan las alteraciones, es evidente que también será constante el error que afecte a cada uno de los resultados individuales, y por consiguiente las variaciones, apreciadas como antes se ha dicho, tienen necesariamente que aparecer independientes de tales errores".

Para 1878 el Observatorio Meteorológico y Astronómico fue trasladado al Castillo de Chapultepec donde estuvo a cargo de un grupo de científicos que en ese entonces eran capitaneados por el ingeniero Mariano Bárcena, Jefe de la 1ra Comisión Geográfica Exploradora del Territorio Nacional y primer director del Observatorio Meteorológico Central, después del cierre en 1887 del observatorio de la Ciudad de México, los instrumentos se almacenaron también en el castillo de Chapultepec (Figura 1.4), hasta que a principios de 1889 el Observatorio Astronómico de Tacubaya lo fundo de nuevo, en sus jardines (Figura 1.5 y 1.6).

Para el inicio del siglo XX, este observatorio enfrentó los mismos problemas que en su posición geográfica anterior; esto se originó después de la instalación de la línea de tranvías eléctricos México- Tacubaya. Se encontró un predio privado que entre 1903 y 1912 logró mantener en funcionamiento el observatorio; la agitación social de la Revolución Mexicana, en combinación de la llegada de tranvías eléctricos al pueblo, obligó nuevamente al cierre del observatorio magnético (Sandoval, 1950).

Figura 1.4 Magnetómetro unifilar para la medición de la Intensidad Horizontal del Campo Magnético Terrestre mediante el método de Oscilaciones (acervo fotográfico del Observatorio Magnético de Teoloyucan)

Figura 1.5. Magnetómetro unifilar para la medición de la Intensidad Horizontal del Campo Magnético Terrestre con trípode para prospección de campo (acervo fotográfico del Observatorio Magnético de Teoloyucan)

Figura 1.6. Instalaciones del Observatorio Meteorológico Central de México hacia finales del siglo XIX (archivo UNAM, 2017).

La Era de Teoloyucan (1914-2017)

Después de cerrar Cuajimalpa en el año 1912, los instrumentos permanecieron guardados mientras el conflicto armado de la Revolución Mexicana se desarrollaba. En correlación con los acontecimientos; se firman los Tratados de Teoloyucan (Figura 1.7), en el Estado de México el 13 de agosto de 1914 entre los representantes del Cuerpo de Ejército del Noreste, Álvaro Obregón, Lucio Blanco que formaba parte de los ejércitos revolucionarios que se enfrentaron al gobierno usurpador de Victoriano Huerta, comandado por Lauro Villar y representado por él mismo, Gustavo A. Salas y José Refugio Velazco y el Almirante Othon P. Estableciendo las condiciones en que se verificaría la evacuación de la Plaza de la Ciudad de México por el Ejército Federal y la disolución definitiva del mismo (Galeana 2015).

Figura 1.7 Firma de los tratados de Teoloyucan el 13 de agosto de 1914 (Foto, UNAM)

En Cuajimalpa funcionaban los Variómetros registradores fotográficos tipo Mascart, y aunque se había logrado coleccionar sus magnetogramas, no fue posible aprovechar los datos, pues de acuerdo con Sandolval (1950), no se pudieron encontrar los datos de las Constantes, de las Calibraciones y de los Coeficientes de Temperatura de los instrumentos; por esta razón los documentos que sobrevivieron son tablas con valores absolutos observados; la herencia sin embargo es de gran importancia para la herencia del observatorio magnético de Cuajimalpa (Sandoval, 1950).

Con estos instrumentos el Observatorio Magnético de Teoloyucan comienza sus observaciones en las coordenadas geográficas de 19° 44' 47.49" de latitud norte y 99° 10' 53.4" de longitud oeste y a una altitud de 2,200 metros sobre el nivel del mar. Conservaba el requisito de medir las variaciones del campo magnético en una altura importante para los estudios de aquella época; asimismo, se aseguraba una permanencia prolongada en este sitio dada la distancia que lo separaba de la ciudad de México (más de 50 kilómetros). La nueva posición del observatorio le dio estabilidad, un requisito imprescindible para medir de manera adecuada el fenómeno magnético (Figura 1.8).

En 1929 el Observatorio Astronómico de Tacubaya, y por tanto su Departamento Magnético, paso a desprender de la Universidad Nacional Autónoma de México (en el mismo año que la universidad había obtenido su autonomía).

Figura 1.8 Primera ubicación del Observatorio Magnético de Teoloyucan fundado el 13 de agosto de 1914 (plano correspondiente a Junio de 1922, acervo Teoloyucan)

Además del Observatorio Magnético de Teoloyucan, la Red de Nacional de Estaciones de Repetición pasaron a formar parte de la Universidad cuando se declara la apertura del Instituto de Geofísica en 1949.

En el marco del Observatorio Meteorológico Central de México, otros proyectos consistían en la elaboración de cartas de Inclinación y Declinación magnética en los alrededores del Valle de México. Es este periodo cuando el Departamento de Geomagnetismo se concibe como parte del instituto (Figuras 1.9 y 1.10).

Figura 1.9 Carta de Inclinación Magnética en los alrededores del Valle de México (Observatorio Astronómico de Tacubaya, 1934).

Figura 1.10 Carta de Declinación Magnética en los alrededores del Valle de México (Observatorio Astronómico de Tacubaya, 1934).

En Teoloyucan se siguió usando el mismo instrumental de Cuajimalpa; más por las vicisitudes nacionales solo fue posible observar dos o tres veces cada mes la declinación, entre los años de 1914 y 1922 (Figura 1.11). De 1923 a 1930 ya funcionaron los tres variómetros registradores fotográficos D, H, Z el Magnetómetro Dover 123 y las Brújulas de Inclinación Fauth 73, Negretti-Zambra 65 y Chasselon 64.

Figura 1.11 Pabellones de observaciones absolutas (izquierda) y de variación (derecha) en el Observatorio Magnético de Teoloyucan en el año de 1922, como parte del Observatorio Meteorológico Central (Acervo Fotográfico Teoloyucan, 2018).

Posteriormente, se observaron las discordancias de los valores determinados, debido a desperfectos en los aparatos; no siendo posible sustituir estos sino hasta 1927 cuando se adquirió el Magnetómetro C.I.W. POSGRADO EN CIENCIAS DE LA TIERRA 33

107, y hasta 1931 en que sé compró el juego de variómetros registradores fotográficos Eschenhagen, de la Casa Askania.

No poseyendo más que un solo Magnetómetro, fue indispensable utilizarlo como patrón del Observatorio y como instrumento de campo, lo que naturalmente ha efectuado a las Líneas de Base de los magnetogramas.

En algunos meses de 1945 y 1946 se careció de suficiente papel fotográfico; en 1947 un accidente por causa de una pequeñísima araña que se introdujo en el Variómetro H, dañó el único hilo de cuarzo de que se disponía; finalmente, hubo que hacer ciertas reparaciones urgentes en los pabellones del Observatorio.

En el seno universitario, el departamento de Geomagnetismo se encargó de la realización del inventario de los datos con los que hasta entonces se contaba. Es la obra del Ing. Octavio Rosendo Sandoval "Valores Magnéticos", se ve reflejado todo el acervo de información que hasta 1950 se tenía en México en esta disciplina (Sandoval, 1950).

Además del trabajo sistemático de la medición del campo magnético, y la elaboración de cartas magnéticas, se incursionó también en el área de la Exploración Geofísica y la Física Espacial. La investigación sobre los temas relacionados se refleja en los trabajos de A. Chargoy, R. Gall o R. Sandoval, por ejemplo. A este periodo se le ha designado como de "estabilización", pues su característica es que los datos comienzan a consolidarse en un solo punto geográfico en la república y lo más importante, el observatorio alcanza las características ideales en su funcionamiento.

Entre 1949 y 1978, el grupo de Geomagnetismo del Instituto de Geofísica tuvo su mayor desarrollo en casi todos los sentidos; presumiblemente este periodo es el de mayor auge. El personal relacionado con este grupo fluctuó entre siete y diez. Este lapso se caracterizó por un aumento en infraestructura tanto de instrumentación como en el personal participante, adicionalmente a los elementos heredados de la etapa anterior.

El año 1978 marca un cambio muy importante en lo referente al Observatorio Magnético de Teoloyucan, pues de la posición geográfica que ocupó desde 1914, se desplazó setecientos metros al suroeste. La infraestructura con que el grupo de Geomagnetismo contaba en 1978 no permitió hacer este cambio de manera adecuada desde el punto de vista técnico. Era necesaria la medición de la variación de campo magnético en los dos sitios durante al menos seis meses antes del cambio, acción que no pudo realizarse.

El resultado es que la curva de variación secular de este punto geográfico no presenta una adecuada continuidad antes y después de 1978. Entre las consecuencias encontradas posteriormente, es que precisamente en el año de 1978 se reportó un "Jerk" geomagnético en casi todos los observatorios europeos en operación en aquel entonces, esto hubiese permitido corroborar este fenómeno en este hemisferio con los datos completos (Bloxham et al., 2000).

El periodo que abarca 1978-1996, podemos considerarlo como de "consolidación", pues a pesar de la grave crisis de personal, los fondos apenas mínimos para operar aceptablemente, y otras variables de índole técnico, la comunidad internacional puso sus ojos en estos problemas. Gracias a proyectos Latinoamericanos que instituciones como el Instituto Panamericano de Geografía e Historia apoyaron, Teoloyucan se calibró por primera vez en 1993 con un observatorio patrón de primera categoría (Friedericksburg, USA). Se realizó la carta magnética nacional (1990-1991; Cañón et al., 1993); se realizó el primer congreso Latinoamericano de instrumentación geomagnética con sede en el Observatorio Magnético de Teoloyucan (1996), entre otros logros con fuentes de apoyo principalmente externas.

En 1996, que podemos concebir el concepto de Servicio Magnético en un sentido más práctico; pues además de la operación del observatorio magnético ahora digital, la obtención de la carta magnética de la República Mexicana; la etapa denominada "analógico-digital" es el periodo de transformación radical del mismo concepto de observatorio. La automatización de la adquisición de datos geomagnéticos dio la pauta para incursionar en nuevas aplicaciones. Para 1997 se instaló la primera Estación Geomagnética Temporal en un volcán activo en México. En 1999 personal del Servicio Magnético fue capacitado con apoyo de la ONU en métodos de medición del campo magnético en regiones sismogénicas. Se estimuló la participación y la organización de foros de discusión internacionales a nivel latinoamericano (1995, la Segunda Escuela Latinoamericana de Geomagnetismo en Taxco, Gro. 1996 El Primer Taller latinoamericano de Instrumentación Geomagnética, Teoloyucan, Edo. de Mex., 1997 Tercera Escuela latinoamericana de Geomagnetismo Huancayo, Perú. 1998 Taller sobre procesamiento de datos Geomagnéticos y su relación con zonas sismogénicas, Beijing, China; 2000, Workshop on Geomagnetic Processing and Observatory Instrumentation, Hurbanovo, Eslovakia; 2012, primer Workshop on Geomagnetism, en México; 2017 segundo Workshop on Geomagnetism, en Brasil).

Entre 1996 a 2010 el personal se conformó por un investigador, dos técnicos académicos, un técnico administrativo (asignado al Observatorio Magnético de Teoloyucan) y un observador. Durante este periodo se reconoció la necesidad de establecer estos elementos de producción de datos para la POSGRADO EN CIENCIAS DE LA TIERRA 35

investigación científica (el observatorio y las estaciones geomagnéticas de repetición) y así postular la formación del "Servicio Magnético".

El último periodo, 2003-2009, es considerado como la concepción del Servicio Magnético; dado que la comunidad internacional sigue los pasos del desarrollo de esta rama. En 2004, México vuelve a organizar la V Escuela Latinoamericana de Geomagnetismo (Juriquilla, México). En 2005 se organiza por primera vez en Latinoamérica, la reunión anual del consorcio Intermagnet (Instituto de Geofísica, UNAM), además de que México ha participado ya de manera sistemática en los talleres organizados por la Internacional Asociation of Geomagnetism and Aeronomy (IAGA) en Belsk (Polonia, 2006) y Bouder (EEUU, 2008). En 2004 el US Geological Survey dona un magnetómetro de observaciones absolutas para Declinación e Inclinación para aumentar la calidad y cantidad de observaciones, asimismo se incorpora un observador que se hace responsable de las observaciones de calibración en Teoloyucan.

Bajo estos conceptos y combinando la secuencia histórica y las variables analizadas; un diagnóstico no puede plantearse sin combinar la misión de la universidad con la del Servicio Magnético. La Educación, La investigación, y la Difusión de la cultura (en este caso de la científica). Además la misión propia del Instituto de Geofísica, que es la de realizar investigación científica y tecnológica tanto en Geofísica como en otras disciplinas afines, tiene como propósito apoyar la labor de investigación, docencia, difusión y divulgación científica de su personal académico. Las variables que permiten evaluar los distintos periodos que han definido la evolución de esta rama de la geofísica se concibieron como válidas a través de 130 años de operación.

La Era de Teoloyucan (1914-2017), producción de datos

Una definición simple de un observatorio geomagnético es la constancia a través del tiempo de datos de calidad, es decir la mayor continuidad posible en el tiempo y en un sitio geográfico definido. Aunque en este reporte no es el caso describir detalladamente el desarrollo de este tipo de observaciones, es al menos imprescindible definir cualitativamente la existencia de al menos cinco posiciones geográficas en donde se realizaron mediciones constantes en periodos de entre 8 a 10 años. Basados en valores medios anuales del campo geomagnético, se pueden definir los que a continuación se describen y un resumen de los sitios donde han operado los observatorios geomagnéticos en México se muestra en la tabla 1.3.

Tabla 1.3 Resumen de los distintos sitios de los observatorios geomagnéticos que han operado en México entre 1879 y 2018 (Reyes, 1884; Sandoval, 1950; Hernández-Quintero et al., 2017)

Observatorio	Periodo	Latitud N	Longitud W	Entidad Responsable
Ciudad de México	1879-1887	19°26′ 0″	99° 6′ 39″	Observatorio Meteorológico Central de México
Chapultepec	1887-1888	19°25′ 7″	99°10′51″	Observatorio Meteorológico Central de México
Tacubaya	1889-1900	19°24′16″	99°11′43″	Observatorio Meteorológico Central de México
Cuajimalpa	1903-1912	19°21′46″	99°17′17″	Observatorio Meteorológico Central de México
Teoloyucan A	1914-1978	19° 44′ 47.5″	99° 10′ 53.4″	Observatorio Meteorológico Central de México y Uni- versidad Nacional Autónoma de México
Teoloyucan B	1978-2018	19° 44′ 45.1″	99° 11′ 35.7″	Universidad Nacional Autónoma de México

<u>Observatorio Ciudad de México (1879-1887</u>). Aunque se tienen antecedentes de observaciones en el Palacio de Minería de la Ciudad de México, fue en 1879 cuando se logró la precisión y calidad necesarias, como para asumir que los datos fuesen de alto nivel de confianza. Bajo estas características, este observatorio tuvo que cerrar sus operaciones tras la llegada de las construcciones de acero, la luz eléctrica, las instalaciones telegráficas, así como los tranvías eléctricos, a partir del año 1888 aproximadamente, al zócalo de la ciudad. Durante 1887 y 1888, los instrumentos se almacenaron en Chapultepec, sin tener datos de medición

<u>Observatorio Magnético de Tacubaya (1889-1900)</u>. Los datos localizados pueden estar asociados con el observatorio astronómico que operó en las colinas de Tacubaya los últimos años del siglo XIX. La tecnología asociada a la electricidad llevó a reubicar este observatorio, que hasta el momento era patrocinado por la Secretaría de Fomento.

<u>Observatorio de Cuajimalpa (1903-1912)</u>. Los datos aportados por este observatorio permitieron darle continuidad a las posiciones anteriores y aunque solo son nueve años de promedios anuales de declinación magnética; son muy importantes puesto que se correlacionan con la tendencia del comportamiento de la variación secular con treinta y tres años acumulados.

Figura 1.12 Comparación de bases de datos en diversos sitios geográficos en México como antecesores del Observatorio Magnético de Teoloyucan.

<u>Observatorio Magnético de Teoloyucan "A" (1914-1978).</u> Al término de la Revolución Mexicana, la Secretaría de Fomento primero; el Instituto de Geología (1929); y finalmente el Instituto de Geofísica (1949) ambos de la Universidad Nacional Autónoma de México; continuaron una labor cuidadosa y sistemática en los sesenta y cuatro años que se ubicó en la Presidencia Municipal del pueblo. Esta etapa marcó la pauta para darle una consolidación al observatorio como tal. Este acervo de datos se muestra en la Figura 1.11.

<u>Observatorio Magnético de Teoloyucan (1979-2018).</u> Aunque el sitio geográfico donde se continuó midiendo el campo magnético cambio menos de un kilómetro de su primera posición en 1914, es importante señalar la falta de experiencia y de instrumentación adecuada para darle una continuidad a la base de datos; esto sin embargo es salvable en términos prácticos para dar continuidad a una serie de tiempo de 140 años.

		INDIT	NO DE OTO	OFISICA										
		Servie	Lo Oceang	poliseo.										
UNSERVETCRIC REGRETICO DE TROLOVOCAN														
DECLIFACION, D. (B.B.)														
Waler-s medice diarice														
ofindena	das googt	rff1ess		Coundernda	s georage	ofticas								
₩= # 29 ⁰ 44' 4785														
A= 99 10' 5384 = 6 36 43.6 T. de 67. A= 327 4' 20" E.														
iltitud _ 2280 strs. Ia x indics wher perturbade														
1948														
Dies	Inero	Febrero	Marao	Abril	Mayo	Junio								
		8 1	8 1	* *										
1 1	9 30.4	9 29-1	9 29.0	9 2.9	9 28-2	9 28.4								
1	50.8	1.2	2.1	14.1	31	17.2								
1 11	30.2	27.4	28.2	2.3	28.1									
2	0	29.1	28.4	28.9	30.4	E								
: ::		29.2	20.7	12-4	12-1									
	50.1	28.9	28.2	38.1	29.2									
1 18	58.8	20.9	1413O	320		1.1								
111111	58:6	22222	2110 37 第2225	10000	C.R.22 20.4	28.5								
9119123.5	30.2	17.67.92 19222020	************************************	1966975	12.22 22.22 22 22 22 22 22 22 22 22 22 22	26.5								
91111111191	10000 10000	2017-0-7-9-2-0-8 20122-20122-27-20	第4日 1月 1日 1日 1日 1日 1日 1日 1日 1日 1日 1日 1日 1日 1日	194431313	22222222222	10000000000000000000000000000000000000								
911112121222	1000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1	2017-6-7-9-2-0-8-1-	第項目の13.5.5.5.1 第項目の25.5.5.5.5.1 × × × ×	19449-9-9-999 8000000000000000	2288.49.100.060 2288.29.20 200.000 200.000 200.000 200.000 200.000 200.000 200.0000 200.00000000	10.00000000000000000000000000000000000								
9111212412422498	1000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1	0-17-6-7-9-2-0-8-1-5-1 2028-2222-22-0-8-1-5-1	23.0.3.???9.1 #通行2357:??9.1 × × ×	194497577895 8000000000000	**************************************									
91121212121212121212	1000	2022 2022 2022 2022 2022 2022 2022 202	23037??01 ###22555558	1044333539995 - 44	**************************************									
101111111111111111111111111111111111111	1000	2022年2月11日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1	2303????! ##22255555	1044333739995, 4499 800000000000000, 4499	273524,91906711881 28527590285711881 2755928275908230	**************************************								
91112241141281981282348298	100	9-17-6-7-9-2-0-8-1-3-3-6-5-3-1-4-4 899820028999888889998888888888888888888	2:3,0,3,5,9,9,1 ※通知22:5:5:5:5:5:5:5:5:5:5:5:5:5:5:5:5:5:5:	#2222232222222222222222222222222222222	2285.24.91.90.67.1188.164.1 2285.289.289.289.088.230.94.1	**************************************								
	100	9-17-6-7-9-2-0-8-1-5-3-6-5-3-1-4-4-1-9 8998202289999828999982898988888988888888	23.03.7???91 第項前部での方法での方法 ※ # # #	#222222222222222222222222222222222222	**************************************	**************************************								
	1028-0 100-0 100-00	200.17.6.7.9.2.0.8.1.5.7.6.5.7.1.4.4.1.7.2 20232000 202000 202000 202000 202000 202000 202000 202000 202000 202000 202000 202000 202000 202000 202000 20200	28.0 28.0 28.0 28.0 28.0 28.0 28.0	#7777777777777777777777777777777777777	274332 28832 2884 29919 29919 28912 2887 29919 2887 29919 2887 29919 2887 29919 2887 29919 2887 29919 2887 29919 2887 29919 2005 29919 2005 29919 2005 29919 2005 29919 2005 29919 2005 2005 2005 2005 2005 2005 2005 200	**************************************								

Figura 1.13 Ejemplo de datos publicados para Teoloyucan correspondientes a 1948 en donde se reportaban los datos promedios diarios.

Datos promedios diarios asociados al Observatorio. Un producto del observatorio catalogado como estándar es el dato promedio diario. En las distintas etapas descritas anteriormente es posible encontrar periodos prolongados con valores promedios diarios; a fines de la década de los años 1940's 1a sistematización de la. información promovió una mejor calidad de los datos. Es por esto que esta información puede tener gran valor poniendo especial cuidado influencia en la. de fenómenos geomagnéticos con periodos estables como cambios estacionales, anuales, y variación diurna por poner algunos ejemplos. La figura 1.13 muestra un ejemplo de la forma de este tipo de información.

<u>Datos promedios horarios asociados al Observatorio.</u> Es posible encontrar a partir de 1965 que los datos se comenzaron a reportar como promedios horarios. Esto se relaciona con los años geofísicos, y las expectativas que en aquella década podían alcanzar los datos. La era espacial estaba en sus inicios y era muy importante reconocer fenómenos geomagnéticos de periodos menores. Es por esto que la comunidad internacional adopta el reporte de los datos de observatorios geomagnéticos (Figura 1.14).

Variación Secular en La Era de Teoloyucan (1879-2017)

Además del análisis histórico de la evolución de las mediciones del campo geomagnético en México, un resultado que se desprende de este volumen de información es la curva de 130 años de variación secular para la declinación magnética en el centro de la República Mexicana (Figura 1.15); de esta manera se complementan distintas bases históricas reportadas en la literatura (Campos-Enríquez *et al.*, 1994; Hernández-Quintero et al., 1994; Flores-Ruiz et al., 2000; Hernández et al., 1997).

•							1	CALCON	a die	santro	COB . INA	et. 14	-			-	A160												165			11 P		i wa.	-	ABULA		-	-	ATHE G
DECEN	1000	мер	enca	F = 1 Jie	rabee	inte n y	hada 3 Al Gr	Si dena	de Las	ag ov	au ne	-		-				Fullin 2				19999		28888		47.4	107.1 149.1 149.1 149.1	11111		10 10 10 10 10 10 10 10 10 10 10 10 10 1		17 10044	10	U.+ 00:4 00:4 00:5	4145.4	12.13 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5	40.0	47.1 47.1 47.1 47.1	48.5 48.5 48.1 47.5	19999
Dialition	- 14941	AAAAA	~ 92522	ABBBE +	- 1000	- 12885	T 44 48 19 19 19 19 19 19 19 19 19 19 19 19 19	* 88388	\$1235 v	5 00000 c	36983	24835 zz		49.5 47.5 48.5 47.4	*****				P.2 X #1.2 # 1.2	18.7 19:13 18:5 19:13 19:15 19	48.2 47.4 47.5 47.5	47.1 44.7 44.5 44.5			42.5	47.5	****	4 407.4 4			5 47 48 50 47		1.2	0.4 0.7 0.7 0.7	47.1 47.5 47.1 48.1	411	·····································	45.1 46.1 46.1	41.7 44.1 47.1	40.0 40.0 40.0
1	11010	\$4444	11618	22922	11124	54,623	111 121 140 480	53.598	89.808	38.368	3582E	20000		47.5 47.7 48.1 48.1				1111	8.3 8.3 9.1 8.5	#11 #17	****		11.1 18.1 18.1 18.1 18.1 18.1 18.1		48.3 48.3 48.3 48.3						1	****		10.7 10.7 10.4	14.7 47.1 84.4 84.4	17.18 12.5 18.3 18.3 18.3	40.0 40.1 40.1 40.1	***	17,0 17,7 17,7 14.4	47.5 48.5 49.1 49.1 49.1
0.25434	1000000	52853	270.52	33323	10501	39583	10000	25222	5.5.5.2	44888	00000	10100	178 17								40.0 47.3 48.7	17.1 19.1 19.1 19.1	47.7 47.8 48.3 48.1	47.8	47.0		47		2 49.				2223	17.1 19.5 19.5 19.5	10.1 20.1 10.1	45.3 1813 48.7 47.0	北方をある		42.4	0.8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
SCARA I	SALLES	12228	14444	32592		55555	22325	393545	12266	133655	22020	53855	ABRAS.	47.7				1179	4.2				88.7 88.1 98.5	1000		44.1			0 48. 5 80. 7 50. 1 50.	4 48.	1 18 19 78				41.7	48.5	***		11	10,000
111112-045	66.656	22.253	23234	1111	64062	12252	62252	125.95	6885	24/45	10052	23665	34 *	44.1	1				1.5	101.4 10.4	12.3 48.7 48.4	12.1		41	12.1	51.0	41.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 47.5	3 40	1 11	1 4 4		4-1	45.9	40.4	444	47.	-	10.7 10.0 17.0
8118.991	33555	21215	22522	46944	10000	22228	55233	122238	1000	40.044	00230	12285	1011	40.1 47.4 40.5	-	-		-1 •	8.7 8.0 8.0	47.12 47.17 48.1	48.2	46.1 48.1 47.3	-		41.0	40.1 47.1		30. 30. 31.	6 114 0 100. 1 100.			1174 4		10.3 10.1 11.3	41.1	10 A		10.1 10.1	11	100 m .0
New York	-	10	+12		10	40	*0	40	40	- 20	171	-	125	47.5 47.5	-	14	2 40		8.4	#:2	19.3	40.7	21:5	49.1	45.0	40.1	48.	17.	4 56.		1#	1 4	13	83	\$::	10.0	44.3 47.3	47.1	12.5	41.5

Figura 1.14 Ejemplos de datos publicados y de acervos históricos de Teoloyucan para 1965 y 1976; cuando estos datos son reportados como promedios horarios en forma impresa, la cual desaparece después de 1995.

De esta curva se pueden observar rasgos de variación muy interesantes, siendo el principal la inflexión que presenta la declinación magnética en los inicios del siglo XX (1900-1905); y un decremento del campo para fines del siglo XIX. El alcance en esta etapa de trabajo es puramente descriptivo. Es claro que se requiere complementar esta información para revisar el efecto de este comportamiento.

La larga historia de procurar la medición del campo geomagnético en México desde el siglo XVII (Sandoval, 1950) y posteriormente los distintos episodios para mantener una medición sistemática y permanente mediante un observatorio, suman ya varios siglos. Es muy importante la conservación y el análisis de esta información; principalmente con la intención de pronóstico y evaluación para la aplicación en nuevas áreas.

Agradecimientos

Los autores desean expresar su agradecimiento a la Dra. Ana Caccavari Garza y al Fis. Manuel Mena Jara por sus aportaciones para la realización de este trabajo.

Figura 1.15 Serie de promedios anuales de Declinación Magnética (D) reducidos al Observatorio Magnético de Teoloyucan entre 1879 y 2017.

Referencias

Campos-Enríquez, J.O., E. Hernández-Quintero, H. Nolasco-Chávez, A. Orozco-Torres, C. Cañón-Amaro, G. Alvarez-García, J. Urrutia-Fucugauchi. 1994. A Preliminary Assessment of IGRF-1990 for Mexico. Physics of the Earth and Planetary Interiors. 82 p 105-111.

Cañón A., J.E. Hernández, Nolasco H., Orozco A., 1993. Cartas Magnéticas de la República Mexicana para la época 1990.0, escala 1:5 000 000. Instituto de Geofísca UNAM. Instituto Nacional de Estadística Geografía e Informática, INEGI. México.

Comisión Nacional del Agua. 2012. Servicio Meteorológico Nacional: 135 años de historia en México. ISBN: 978-607-7908-63-0. 76 pp.

Flores-Ruíz J.H., Marines-Campos R., Hernández-Quintero J.E., Campor-Enríquez J.O., Urrutia-Fucugauchi J. 2000. Evaluación Geo-Estadística de la Red de Estaciones Magnéticas de la República Mexicana. Revista Geofísica del Instituto Panamericano de Geografía e Historia. No. 52-53. p 107-122.

Figuier, L. 1878. L'annee Scientifique et Industrielle. Librairie Hachette et Cie, Paris, pag 93.

Fukushima N., 1994. Some topics and historical episodes in geomagnetism and aeronomy. Journal of Geophysical research. V99, no A10, pp 19,112-19,142.

Galeana, P., 2015. El triunfo del Constitucionalismo. Gobierno de la República, Secretaría de Educación Pública. Instituto Nacional de Estudios Históricos de las Revoluciones de México, 184 pp.

Gauss, C.F., 1839. Allgemeine Theorie des Erdmagnetismus, in Resultate aus den Beobachtungen des Magnetkchen Vereins im Jahre 1838, eds Gauss, C.F. & Weber, W., Gottingen und Leipzig. (Reprinted in Werke, 5, 121-193.)

Henry, R. 1878. Report of the Kew Committee for the year ending October 31, 1878; in Proceedings of the Royal Society of London Vol. 28 (1878 - 1879), pp. 80-97.

Hernández-Quintero J.E., Cifuentes Nava G., Caccavari Garza A., López Alcántara V., Editores. 2018. *Catálogo de Estaciones Magnéticas de Repetición de la república Mexicana*. Servicio Magnético, Instituto de Geofísica, UNAM, México. 107 pp.

Hernández-Quintero E., H. Nolasco-Chávez, J.O. Campos-Enríquez, C. Cañón-Amaro, A. Orozco-Torres, J. Urrutia-Fucugauchi y G. Alvarez-García. 1994. Evaluación preliminar del campo geomagnético de referencia internacional IGRF-1990 para México y anomalías magnéticas corticales. Geofísica Internacional 33-2, p235-241.

Hernández, E., A. Orozco.1997. "Magnetic Field work and IGRF models for México, three examples for the 20th Century" J. Geomag. Geoelectr., vol 49, pp 387-392.

Humboldt A.V. 1867. Cosmos, tomo IV, pág.67—Edición de 1867, París.

Moreno, Roberto. 1977. Joaquín Velázquez de León y sus trabajos científicos sobre el valle de México 1773-1775. Universidad Nacional Autónoma de México. Instituto de Investigaciones Históricas. Serie: Historia Novohispana. 403 pp.

Orozco y Berra, M. 1864. Memoria para la Carta Hidrográfica del Valle de México. Sociedad Mexicana de Geografía y Estadística. México. 185 pp.

Orozco y Berra, M. 1867. Memoria para el plano de la ciudad de México. Ministerio de Fomento, México. 231 pp.

Reyes, V. 1884. Memoria sobre el departamento magnético del observatorio meteorológico central de México. 111 pp.

Sandoval, O.R. 1950. *Elementos magnéticos en la República Mexicana*. Servicio Geomagnético. Instituto de Geofísica. UNAM. México. 182 pp.

Sonntag A. 1860. Smithsonian Contributions to Knowledge. Observations on terrestrial magnetism in México, conducted under the direction of Baron Von Muller, with notes and illustrations of an examination of the Volcano Popocatépetl and its vicinity. Washington.60 pp.

CAPÍTULO 2. MÁS DE 100 AÑOS ININTERRUMPIDOS DE REGISTRO GEOMAGNÉTICO EN MÉXICO: IMPLICACIONES EN LA DATACIÓN ABSOLUTA DE ALGUNOS EDIFICIOS HISTÓRICOS

Resumen

En México, funciona con regularidad desde el año 1914 el Observatorio Geomagnético de Teoloyucan proporcionando un registro casi continuo de la variación secular del campo magnético terrestre. En el presente trabajo se presenta una síntesis del registro geomagnético obtenido en México desde hace más de cien años. Con estos datos se propone una curva de variación secular regional la cual, dada su calidad técnica, se propone como herramienta de datación arqueomagnética para este intervalo de tiempo.

Palabras Claves: Registro Geomagnético, Variación secular, Datación Arqueomagnética, México.

Abstract

In Mexico, the Teoloyucan Geomagnetic Observatory has been operating regularly since 1914, providing an almost continuous record of the secular variation of the Earth's magnetic field. In the present work a synthesis of the geomagnetic record obtained in Mexico for more than one hundred years is presented. With these data we propose a regional secular variation curve which, given its technical quality, is proposed as an archaeogenetic dating tool for this time interval.

Key words: Geomagnetic Record, Secular Variation, Archaeomagnetic dating, México.

Publicado en: Arqueología Iberoamericana. 39 (2018): 36-43. ISSN 1989-4104. http://laiesken.net/arqueologia/

Introducción

En el actual territorio mexicano, se tienen referencias desde el siglo XVI (1576) cuando Cavendish efectuó mediciones magnéticas en La Paz, Cabo Corrientes, y Manzanillo. Sir Dudley hizo mediciones en el Puerto de Veracruz (1630). En el centro de la República, las mediciones más antiguas, fueron efectuadas por Antonio Alzate y Velásquez de León, esto en 1769 y 1775 en la Ciudad de México, así como por Alejandro Von Humboldt a principios del siglo XIX. Para 1856, se actualizan los instrumentos de

medición, y se comienza a medir en 1856 la componente horizontal del campo magnético terrestre (Sonntag, 1860).

En 1879 se instaló el Observatorio Meteorológico y Magnético Central de México en el Palacio Nacional (Figura 2.1), año en el que fungía como presidente Porfirio Díaz. El observatorio dependía de la Secretaria de Fomento. Para la instalación de los instrumentos se construyó, en la azotea del palacio, una caseta de madera y herrajes de bronce. Se instaló un magnetómetro unifilar Tompson para determinar H y D, una brújula de inclinación Negrette-Zambra y se nombró como jefe al Ingeniero Vicente Reyes (Reyes, 1884).

Es importante mencionar la obra de Rosendo Sandoval (1950) como responsable del entonces departamento magnético; en su trabajo organizó todo el acervo de datos geomagnéticos hasta aquella época; dando sentido a las descripciones reportadas en algunas publicaciones de la época (Figura 2.2).

Figura 2.1. El primer observatorio magnético formalmente instalado en México se situó en la azotea del Palacio Nacional funcionamiento desde septiembre de 1879.

Figura 2.2 Ejemplo de variación espacial de la declinación magnética en 1850 construida con los datos de R. Sandoval (1950) para la República Mexicana.

Durante las primeras dos décadas del siglo XX, y gracias al gran impulso global de la ciencia del geomagnetismo, se instala el Observatorio Magnético en Teoloyucan (19° 44' 47.49" N y 99° 10' 53.4" W a 2,200 metros de altura).

			ANNUAL	MEAN	VALUES				
			Teoloyucan	Teo	México				
COLATITUDE	COLATITUDE 70.254		Longitude	260.807	260.807		2280		
	D[°]		I[°]		н	х	Y	z	F
YEAR	Deg	min	Deg	min	nT	nT	nT	nT	nT
1914.5	8	49.6	46.06	0	32275	31927	4722	33499	46517
1915.5	8.49037	0	46.1571285	0	32196.3898	31843.5397	4753.57751	33523.8365	46480.6963
1916.5	8	59.7	46.2249336	0	32121.2181	31763.9013	4777.78504	33524.8883	46429.4173
1917.5	9	5	46.292853	0	32046.0864	31684.2629	4801.99258	33525.9402	46378.2311
1918.5	9	6.6	46.3608864	0	31970.9947	31604.6246	4826.20011	33526.9921	46327.1378
1919.5	9	7.7	46.4290336	0	31895.9435	31524.9862	4850.40765	33528.044	46276.1379
1920.5	9	9.6	46.4972946	0	31820.933	31445.3479	4874.61518	33529.0959	46225.2317
1921.5	9	11.9	46.5479323	0	31753.4106	31375.3829	4885.12368	33517.2249	46170.1575
1922.5	9	11.2	46.5986782	0	31685.9023	31305.4179	4895.63218	33505.3539	46115.1292
1923.5	9	13.4	46	29	31727	31317	5085	33413	46076
1924.5	9	14	46	39.9	31562	31153	5064	33452	45991
1925.5	9	14.7	46	30.4	31601	31191	5077	33308	45913
1926.5	9	18.2	46	44.7	31590	31174	5107	33576	46101
1927.5	9	20.9	40	40.5	21240	20924	5088	33270	45735
1928.5	9	20.0	46	45.0	21202	20924	5109	22203	45720
1920.5	9	25.5	40	52.5	31202	30781	5110	33214	45644
1931 5	9	29.2	40	1.8	31122	30696	5129	33410	45660
1932.5	9	30.6	47	2.6	31106	30679	5139	33407	45647
1933.5	9	33.8	47	5.6	31041	30610	5155	33396	45594
1934 5	9	36.1	47	73	31017	30582	5174	33404	45584
1935.5	9	37.5	47	9	31007	30571	5184	33425	45592
1936.5	9	39	47	8.5	30932	30494	5185	33336	45476
1937.5	9	39.4	47	10.9	30883	30445	5180	33330	45438
1938.5	9	40	47	12.3	30847	30409	5180	33318	45405
1939.5	9	40.7	47	10.2	30832	30393	5183	33261	45353
1940.5	9	41.8	47	9.3	30825	30385	5192	33235	45329
1941.5	9	40.9	47	10.7	30781	30343	5177	33216	45285
1942.5	9	41.5	47	10.5	30736	30297	5174	33162	45215
1943.5	9	39.5	47	9.1	30722	30287	5154	33121	45176
1944.5	9	38.5	47	8.2	30709	30275	5143	33090	45144
1945.5	9	39.1	47	5.4	30672	30238	5142	32995	45049
1946.5	9	37	47	1.6	30622	30192	5116	32869	44923
1947.5	9	37.2	47	0.7	30594	30164	5113	32822	44870
1948.5	9	28.4	47.1893221	0	30609.0694	30191.3126	5039.81909	32929	45041.2873
1949.5	9	25	47	5.2	30566	30154	5001	32878	44891
1950.5	9	21.6	47	4.2	30506	30100	4961	32794	44789
1951.5	9	18.7	47	3.1	30487	30085	4933	32752	44745
1952.5	9	15.7	47	2.6	30467	30070	4903	32722	44710
1953.5	9	14.6	47	3.7	30487	30091	4897	32763	44753
1954.5	9	14.3	47	4	30475	30080	4893	32757	44741
1955.5	9	10.7	47	9.6	30339	29951	4839	32/17	44619
1956.5	9	10.6	47	5.8	30312	29924	4834	32616	44527
1957.5	9	6.1	47	11.2	30254	29872	4794	32656	44517
1958.5	9	D.1	47	10.4	30232	29851	4782	32617	44473
1959.5	9	3.2	47	10.2	20155	29810	4700	32393	44420
1961 5	9	2.5	47	10.5	20122	29761	4739	22/01	44300
1962 5	8	53.5	47	9.9	30074	29713	4708	32431	44300
1963 5	8	45.8	47	10.3	30032	29681	4575	32400	44178
1964.5	8	47.5	47	8.6	30007	29654	4586	32341	44118
1965.5	8	43.6	47	9	29971	29624	4547	32309	44070
1966.5	8	37.6	47	13.3	29933	29594	4490	32350	44074
1967.5	8	32.4	47	11.6	29934	29602	4445	32318	44051
1968.5	8	30	47	14.7	29901	29573	4420	32341	44046
1969.5	8	24.9	47	16.4	29872	29550	4372	32342	44027
1970.5	8	18.6	47	21	29845	29532	4313	32399	44050
1971.5	8	13.2	47	2.3	29816	29510	4263	32016	43749
1972.5	8	9.6	47	3.4	29777	29476	4226	31995	43708
1973.5	8	7.2	47	3.3	29769	29471	4205	31984	43694
1974.5	8	0.3	47	5.6	29675	29386	4133	31926	43588
1975.5	7	55.4	47	3.7	29632	29349	4085	31846	43500
1976.5	7	47.5	47	3.4	29566	29293	4008	31769	43398
1977.5	7	39.1	47	1.2	29568	29305	3937	31730	43371
1978.125	7	33	47	2.9	29506	29250	3877	31694	43303

Tabla 2.1a. Elementos del CMT registrados en el observatorio de Teoloyucan. La cursiva se refiere a los datos derivados de la onceava generación del campo geomagnético internacional de referencia IGRF11 para la localidad de Teoloyucan.

			ANNUAL	MEAN	VALUES				
	70.254		Teoloyucan	Teo 260 807	México	Flovation	2280		
COLATITODE	D[°]	۱[°]	H	200.807 X	Ŷ	Z	2280 F		D[°]
YEAR	Deg	min	Deg	min	nT	nT	nT	nT	nT
1978.5	7.791843	0	47.2385734	0	29524.2747	29251.6815	4002.7393	31926.4044	43485.3779
1979.5	7	36.4	47	25.3	29320	29062	3881	31909	43334
1980.5	7	41.4	47	15.1	29342	29078	3926	31744	43228
1981.5	7	43	47	18.9	29283	29018	3932	31750	43192
1982.5	7	35	47	22.3	29230	28974	3857	31755	43160
1983.5	7	32.4	47	23.7	29169	28917	3828	31715	43089
1984.5	7	30.3	47	22.9	29147	28897	3807	31676	43046
1985.5	7	27.1	47	23.8	29075	28829	3771	31615	42952
1986.5	7	25.8	47	25.7	29014	28770	3752	31583	42887
1987.5	7	22.9	47	26.8	28966	28726	3722	31552	42832
1988.5	7	19.9	47	31.1	28896	28660	3687	31555	42787
1989.5	7	20	47	31.7	28869	28633	3685	31537	42755
1990.5	7	15.7	47	33.7	28831	28600	3644	31531	42725
1991.5	7	11.7	47	33.7	28775	28548	3604	31470	42642
1992.5	7	7	47	35.3	28732	28511	3560	31452	42600
1993.5	7	3.4	47	36.6	28692	28475	3525	31433	42559
1994.5	6	59.5	47	42.5	28601	28388	3481	31442	42504
1995.5	6	53.4	47	45	28541	28335	3423	31421	42449
1996.5	6	51.6	47	43.6	28541	28337	3409	31395	42430
1997.5	6	49.7	47	44	28463	28261	3384	31316	42318
1998.5	6	44.8	47	45.1	28394	28197	3336	31260	42230
1999.5	6	39.4	47	44.6	28336	28145	3285	31188	42138
2000.5	6	34.6	47	44.2	28279	28093	3239	31118	42048
2001.5	6	26.4	47	43.4	28200	28022	3163	31016	41920
2002.292	6	24.9	47	41.4	28192	28015	3150	30971	41880
2002.792	6	23.9	47	42.5	28145	27970	3137	30941	41827
2003.5	6	20	47	42.8	28100	27928	3100	30895	41762
2004.5	6	14.1	47	40.8	28064	27898	3048	30821	41683
2005.5	6	8.4	47	40	28020	27860	2997	30759	41608
2006.5	6	3.1	47	37.3	27987	27831	2950	30672	41521
2007.5	5	56.6	47	36.2	27933	27783	2892	30595	41428
2008.5	5	50.1	47	35	27881	27737	2834	30515	41334

Tabla 2.1b. Elementos del CMT registrados en el observatorio de Teoloyucan. La cursiva se refiere a los datos derivados de la onceava generación del campo geomagnético internacional de referencia IGRF11 para la localidad de Teoloyucan.

Medir las variaciones del campo magnético a alturas significativas fue de gran importancia para los estudios de aquella época, dada la inexistente tecnología satelital; asimismo, se aseguraba una permanencia prolongada en este sitio dada la distancia que lo separaba de la ciudad de México (más de 50 kilómetros). La estabilidad ha sido en un observatorio magnético un requisito imprescindible para medir de manera adecuada los elementos magnéticos.

El Observatorio Magnético de Teoloyucan queda a cargo del Instituto de Geofísica de la Universidad Nacional Autónoma de México formalmente en 1949, año de su fundación. Después de la Secretaría de Fomento, el gobierno central designa a la Universidad como responsable de su operación (1929) al Instituto de geología, la cual pasa al Instituto de Geofísica a partir de 1949. Durante 104 años ha mantenido

su posición geográfica, con tan solo un cambio menor en 1978 que se reubicó a unos metros de la Presidencia Municipal del pueblo de Teoloyucan. Esta etapa marcó la pauta para darle una consolidación al observatorio como tal.

Actualmente opera con instrumentos de última tecnología, como variógrafos fluxgate de 3 componentes, magnetómetros Overhauser de intensidad total y magnetómetros de declinación e inclinación magnética. Además reporta sus datos en tiempo real a la red mundial de observatorios magnéticos.

Además del análisis histórico de la evolución de las mediciones del campo geomagnético en México; un resultado que se desprende de este volumen de información es la curva de más de 100 años de variación secular para el vector geoomagnético con respecto al centro de la República Mexicana (Tabla 2.1, Figura 2.3). De esta curva se pueden observar rasgos de variación muy interesantes: a) la declinación muestra aumento de 1900 a 1945, con un leve descenso casi continuo hasta hoy en día, observando un pequeño punto de inflexión ~1977; b) La inclinación para los últimos 100 años tiene una variación de aproximadamente 2 grados, en donde se observa una aumento casi continuo de principio del 1900 hasta el 2010; c) La intensidad por otro lado es un parámetro el cual decae en una línea recta uniforme y continua, como es de esperarse para hoy en día.

Figura 2.3: Curvas representativas de las componentes del campo geomagnético para Teoloyucan

Implicaciones para la datación

Dentro del presente trabajo se desarrolla la curva geomagnética de la declinación, inclinación e intensidad haciendo uso de los datos recopilados para los últimos 100 años, donde los gruesos de dichos datos pertenecen al observatorio de Teoloyucan. Se complementó la información del vector geomagnético haciendo uso de la onceava generación del campo geomagnético internacional de referencia IGRF11 (*International Geomagnetic Reference Field* según sus siglas en inglés) para la localidad de Teoloyucan. Los datos sintéticos que se incorporaron por medio del IGRF11 para la inclinación y la intensidad son aproximadamente el 11% del total de los datos, y los de la declinación son ~2%.

Para poder obtener una curva de ajuste del conjunto de datos se hace uso del método llamado *splines* cúbicos penalizados, el cual es un método que junta dos enfoques como lo son los *splines* de suavizado (*smothing splines*) y *splines* de regresión, en donde dicho método hace uso de menos parámetros comparado con los *splines* de suavizado y la selección de los nodos no es tan determinante como en los *splines* de regresión. Esto es sumamente importante ya que evita el hacer uso de dimensiones elevadas de datos lo que elevaría el costo computacional debido a que se hace uso de matrices, que al ser muy grandes pueden hacer ineficiente al método.

El método de P-*splines* se caracteriza por hacer uso de penalizaciones lo cual ayuda a que la elección del número y la localización de nodos no sean de vital importancia.

$$\vec{f} = \left(\vec{B^T}\vec{C^{-1}}\vec{B} + \Lambda\Phi\right)^{-1}\vec{B^T}\vec{C}^{-1}\Upsilon$$

Uno de los factores importantes dentro del presente método es la matriz de diferenciación de segundo orden con la cual se realiza la penalización Φ . El segundo factor significativo es el parámetro de suavizado Λ para poder controlar la suavidad de la curva y penalizar los coeficientes que están muy separados entre sí los cual es sumamente importante en la presencia brechas o espacios sin información (*gaps*). La matriz de covarianza C del error, pero este es despreciable debido a que éstos provienen de un observatorio, por lo cual esta matriz se aproxima a la matriz base \vec{B} de los B-*splines* cúbicos. Los datos de entrada que puede ser la declinación inclinación o la intensidad entran como el vector Υ .

El algoritmo de interpolación sigue la metodología establecida por Carrancho et *al*. (2013) para poder obtener la curva representativa para la declinación y la inclinación, así como el algoritmo para el ajuste de los datos de la intensidad establecido por Goguichaishvili et al. (2018).

POSGRADO EN CIENCIAS DE LA TIERRA

Haciendo uso del método de los *splines* cúbicos penalizados se obtienen la curva representativa para cada uno de los componentes del campo geomagnético de México para los últimos 100 años, dicha curva (Figura 2.4) pude ser de gran utilidad para poder realizar el ejercicio de datación de los objetos quemados tales como ladrillos, tejas y hornos mediante la herramienta de datación arqueomagnética soportada por MatLab (Pavón-Carrasco et al., 2011).

Obtención de edad

Gracias al *software* desarrollado por Pavón-Carrasco *et al.* (2011) es posible obtener una edad dentro del rango de tiempo de los últimos 100 años con el método arqueomagnético si se cuenta con la declinación, la inclinación y la intensidad.

Cabe destacar que esta plataforma de datación fue empleado exitosamente en Mesoamérica para los últimos 2 milenios (Punzo Díaz et al. 2015; Goguitchaichvili et al. 2016; Hernández Álvarez et al. 2017) Dentro del presente trabajo se describe de manera breve la manera de utilizar la curva dentro del *software* llamado "*Archeomagnetic Dating by Paleosecular Variation Curves*":

- Es fundamental que la computadora o el ordenador que se utilice tenga el software MATLAB.
- Es necesario el descarga el software "archaeo_dating" de la página: http://pc213fis.fis.ucm.es/archaeo_dating/download.html.
- El tener el archivo .dat donde está contenida la información de la curva desarrollada dentro del presente trabajo, dentro de la carpeta del software "archaeo_dating".
- Al ejecutar MATLAB es necesario ir a la carpeta donde está el software "*archaeo_dating*" y ejecutar la orden: >>*archaeo_dating*.
- La ventan que se abre nos ofrece tres sub-ventanas: *Archaeomagnetic Data, Choose your master* PSVC y *Parameters*, además del botón *Dating*.
- Dentro de "*Archaeomagnetic Data*", es donde hay que poner la información magnética junto con los parámetros de incertidumbre (α_{95} y σ_I) y las coordenadas del sitio de interés.
- En "*Parameters*" se debe seleccionar "*Entire Interval*" y la probabilidad a la cual se desea hacer el ejercicio de datación.
- Por último en "*Choose your master PSVC*" la única opción a la cual se le debe poner atención dentro del presente ejercicio de datación es a la pestaña "*New PSVC*" en donde se escoge si se desea hacer datación con los parámetros magnéticos por separado o con el vector completo "*Full Vector*".

- Al seleccionar cualquiera de las cuatro opciones anteriores, es importante poner de nuevo las coordenadas geográficas del sitio de interés y seleccionar el archivo .*dat*.
- Finalmente para terminar se debe presionar el botón *Dating* el cual proporciona la edad más probable.

Conclusión

Luego de la selección de los tratamientos estadísticos antes descritos, el registro del CMT obtenido por el Observatorio Geomagnético en México permite obtener las curvas de variación secular para cada una de sus componentes -declinación, inclinación e intensidad- para los últimos 100 años. Estas curvas cuentan con la resolución y calidad adecuadas para ser utilizadas como herramienta de datación arqueomagnética.

Figura 2.4. Curvas de variación de campo geomagnético desde 1914 bajo plataforma de datación Pavon-Carrasco et al. 2011.

Referencias

Campos-Enríquez, J.O., Hernández-Quintero, E., Nolasco-Chávez, H., Orozco-Torres, A., Cañón-Amaro, C., Álvarez-García, G., y Urrutia-Fucugauchi, J. 1994. A Preliminary Assessment of IGRF-1990 for Mexico. *Physics of the Earth and Planetary Interiors* 82, 105-111.

Cañón A., Hernández, J.E., Nolasco H., y Orozco A., 1993. Cartas Magnéticas de la República Mexicana para la época 1990.0, escala 1:5 000 000. Instituto de Geofísica UNAM. Instituto Nacional de Estadística Geografía e Informática, (INEGI). México.

Carrancho, A., Villalaín, J. J., Pavón-Carrasco, F. J., Osete, M. L., Straus L.G., Vergés, J. M., Carretero, J. M., Angelucci, D. E., González-Morales, M. R., Arsuaga, J. L., Bermúdez de Castro, J. M., y Carbonell, E. 2013. First directional European palaeosecular variaiton curve for the Neolithic based on archaeomagnetic data. Earth and Planetary Science Letters 380, 124-137.

Cifuentes, G., Hernández-Quintero, E., Cabral, E., Chavez-Segura, R., Urrutia Fucugauchi, J., Martin del Pozzo, A.L., y Arango, C. 1998. Simultaneous magnetic observations at Teoloyucan Magnetic Observatory and Popocatepetl volcano. Revista Geofísica, Instituto Panamericano de Geografia e Historia 48, 49-159.

Comisión Nacional del Agua. 2012. Servicio Meteorológico Nacional: 135 años de historia en México. ISBN: 978-607-7908-63-0. 76 pp.

Figuier, L. 1878. L'annee Scientifique et Industrielle, 1878, 93. Hachette.

Flores-Ruíz, J.H., Marines-Campos, R., Hernández-Quintero, J.E., Campor-Enríquez, J.O., y Urrutia-Fucugauchi, J. 2000. Evaluación Geo-Estadística de la Red de Estaciones Magnéticas de la República Mexicana. Revista Geofísica 52-53: 107-122 Instituto Panamericano de Geografía e Historia.

Fukushima N., 1994. Some topics and historical episodes in geomagnetism and aeronomy. Journal of Geophysical research 99, A10, pp 19,112-19,142.

Goguichaishvili, A., García-Ruiz, R., Pavón-Carrasco, F. J., Morales-Contreras, J. J., Soler-Arechalde, A.M., y Urrutia-Fucugauchi, J. 2018. Last three millennia Earth's Magnetic field strength in Mesoamerica and southern United States: Implications in geomagnetism and archaeology. Physics of the Earth and Planetary Interiors 279, 79-91.

Goguitchaichvili, A., J. Morales, R. Esparza López, A.M. Soler, J. Urrutia Fucugauchi, M. Cervantes Solano, 2016. Primer intento de datación de pinturas murales mesoamericanas, Arqueología Iberoamericana, vol. 29, 3-8.

Henry, R. 1878. Report of the Kew Committee for the year ending October 31, 1878; Proceedings of the Royal Society of London 28 (1878 - 1879), 80-97.

Hernández-Álvarez, H., S. Ortiz-Ruiz, A. Goguitchaichvili, J. Morales, M. Cervantes-Solano, 2017. Intervención arqueomagnética del horno de la hacienda San Pedro Cholul (Mérida, Yucatán), Arqueología Iberoamericana, vol. 36, 3-8.

Hernández-Quintero, E., Campos-Enríquez, O., y Cifuentes-Nava, G. 2001. A comparison between satellite data and geomagnetic stations over Mexico. Contributions to Geophysics and Geodesy 3.

Hernández-Quintero E., Nolasco-Chávez, H., Campos-Enríquez, J.O., Cañón-Amaro, C., Orozco-Torres, A., Urrutia-Fucugauchi J., y Alvarez-García, G. 1994. Evaluación preliminar del campo geomagnético de referencia internacional IGRF-1990 para México y anomalías magnéticas corticales. Geofísica Internacional 33(2), 235-241.

Hernández, E., y Orozco, A. 1997. Magnetic Field work and IGRF models for México, three examples for the 20th Century. Journal of Geomagnetism and Geoelectricity 49, 387-392.

Humboldt, A.V. 1867. Cosmos, tomo IV, pág.67, Edición de 1867, París.

Orozco y Berra, M. 1864. Memoria para la Carta Hidrográfica del Valle de México. Sociedad Mexicana de Geografía y Estadística. México. 185 pp.

Orozco y Berra, M. 1867. Memoria para el plano de la ciudad de México. Ministerio de Fomento, México. 231 pp.

Pavón-Carrasco, F. J., Rodríguez-González J., Osete M. L., y Torta J.M., 2011. A Matlab Tool for archaemagnetic dating. Journal of Archaeological Science 38(2), 408-419.

Punzo Díaz, J.L., J. Morales, A. Goguitchaichvili, 2015. Evidencia de escorias de cobre prehispánicas en el área de Santa Clara del Cobre, Michoacán, Occidente de México, Arqueología Iberoamericana, vol. 28, 46-51.

Reyes, V. 1884. Memoria sobre el departamento magnético del observatorio meteorológico central de México. 111 pp.

Sandoval, O.R. 1950. Elementos magnéticos en la República Mexicana. Servicio Geomagnético. Instituto de Geofísica. UNAM. México. 182 pp.

Sonntag A. 1860. Smithsonian Contributions to Knowledge. Observations on terrestrial magnetism in México, conducted under the direction of Baron Von Muller, with notes and illustrations of an examination of the Volcano Popocatépetl and its vicinity. Washington, 60 pp.

CAPÍTULO 3. SPATIAL DISTRIBUTION OF HISTORICAL GEOMAGNETIC MEASUREMENTS IN MEXICO

Resumen

El análisis espacial del campo geomagnético a lo largo del tiempo permite obtener información crucial sobre la evolución del interior profundo de la Tierra y las condiciones de la frontera entre el manto exterior y el núcleo. Aparte de los registros paleomagnéticos y arqueomagnéticos discretos, las mediciones magnéticas directas de declinación, inclinación e intensidad pueden contribuir en gran medida a desentrañar mapas históricos de la distribución geográfica de datos geomagnéticos. Los datos históricos disponibles en México (https://doi.org/10.1016/j.pepi.2020.106433, Physics of the Earth and Planetary Interiors 300, 2020, 106433) se pueden clasificar en dos grandes grupos: Datos de los diferentes observatorios entre 1879 y 2018 (139 años); y los valores históricos de la cartografía magnética acumulados en varios documentos entre 1587 y 2018 (431 años). Parte de los objetivos específicos del registro magnéticos. El registro geomagnético histórico contiene datos de declinación, inclinación e intensidad total de campo, obtenidos inicialmente por los navegantes, representan un patrimonio científico único en América Latina.

Palabras Clave: Geomagnetismo, Declinación, Inclinación, Intensidad Total, Registros Históricos, Distribución Espacial.

Abstract

The spatial analysis of the geomagnetic field through time allows obtaining some crucial information about the evolution of the Earth's deep interiors and outer core-mantle conditions. Apart from discrete palaeomagnetic and archaeomagnetic records, the direct magnetic measurements of declination, inclination and intensity may largely contribute to unearthing historical geomagnetic distribution maps. The available historical data in Mexico (https://doi.org/10.1016/j.pepi.2020.106433, Physics of the Earth and Planetary Interiors 300, 2020, 106433) may be divided into two large groups: Data from the different observatories in Mexico between 1879 and 2018 (139 years); and the historical values of magnetic cartography accumulated in several documents between 1587 and 2018 (431 years). Part of the specific objectives of magnetic mapping in Mexico is the estimation and analysis of the local and global behavior

of the geomagnetic phenomena. The historical geomagnetic record gathers data on the declination, inclination and total geomagnetic intensity obtained initially by sailors that represent a unique scientific heritage in Latin America.

Key Words: Geomagnetism, Declination, Inclination, Total Intensity, Historical Record, Spatial Distribution.

Publicado en: Journal of South American Earth Sciences (100) 102556 (2020) https://www.sciencedirect.com/journal/journal-of-south-american-earth-sciences/vol/100/

Introduction

A magnetic chart is the representation of the geomagnetic field elements and their secular variation on the Earth's surface for a given time. These charts are an important tool for global orientation and through the definition of residual magnetic field maps, they can contribute to modern exploration geophysics. Magnetic Repetition Station (MRS) represents a particular location where the values of the geomagnetic field vector are obtained at regular intervals through absolute observations. The last MRS campaign in Mexico was performed during 2008-2013, however, the Institute of Geophysics of the National University of Mexico (UNAM) has an uninterrupted collection of data since the XVI century (Goguitchaichvili et al. 2020). These observations were carried out mainly for maritime navigation.

Although the first known magnetic observations in Mexico (Sandoval, 1950), were carried in 1587, in the Gulf of Mexico the oldest magnetic measurement was made by Sir Arthur Dudley in 1625. These observations led to the first magnetic maps for Mexico (e.g., Cañón, 1993). The first magnetic survey in XX Century in Mexico was carried out by the National Astronomical Observatory between 1906 and 1907 in collaboration with the Carnegie Institute of Washington involving in a total of 81 sites. Despite this tremendous effort, only preliminary and imprecise magnetic charts were achieved. The significant technological improvements, allowed a new magnetic observation campaign in 1942 resulting in the publishing of magnetic maps in 1952. Another great effort in studying the geomagnetic field in Mexico was carried out during 1990-1993. This survey led to the publication of the Magnetic Charts of Mexico for 1990.0 (Cañón et al., 1993; Hernández and Orozco, 1997) involving in a total of 53 repetition magnetic stations throughout the country.

As part of the effort to construct a reference paleosecular variation curve for the last four centuries in Mexico, Goguitchaichvili and et al. (2020) updated and compiled the main works on the subject corresponding to Sandoval (Magnetic Elements in the Mexican Republic, 1950) and Cañón Amaro (Magnetic Values in the Mexican Republic and Central America from 1587-1991; published in 1991). As for the magnetic elements of the western coast in the 18th century, they were taken from several appendices of the "Annual Reports" of the United States Coast & Geodetic Survey. In turn, many data were retrieved from General Archive of the Nation, in Mexico City. The historical magnetic data from Mexico, covers a time window from the 16th to the 20th century. The data contains information on measurement location, geographic coordinates, time, altitude, date, magnetic data (declination, inclination, horizontal intensity (H) and vertical intensity (Z)), observer's name and source.

Geomagnetic Record

The historical record comprises 877 magnetic data that comes from the 32 states of the Mexican Republic, surrounding islands and offshore areas, covering a time window from 1587 to 1946 (Figure 3.1). Most of the collected data provide information on the full magnetic vector, however, the complete record is not always available. In some cases, only Declination data are available in particular for early measurements (Figure 2). The number of data per magnetic element are: 844 values of magnetic declination, 495 of inclination, 467 of the horizontal intensity component (H) and 455 of the vertical intensity (Z) component (Goguitchaichvili et al. 2020). These parameters are distributed spatially and temporarily throughout the Mexican Republic (Figure 3.2).

Magnetic Declination

844 magnetic declination values available ranges from $0.17 \circ to 16.46 \circ$. The global record shows a marked disparity since there are relatively large time intervals without any data (1588 to 1624; 1630 to 1685; 1740 to 1770 and 1790 to 1814). The magnetic declination value showed an increase during the seventeenth to the twentieth century.

Figure 3.1. Distribution of all geomagnetic data locations from 1587 to 1946 in Mexico (retrieved from Goguitchaichvili et al. 2020).

Figure 3.2. Spatial distribution of historical record showing locations with only declination data, only declination and inclination data and full vector (including intensity) measurements.

For the 17th century, 10 declination records were reported, which come from six states: Baja California, Colima, Guerrero, Jalisco, Nayarit and Veracruz. The data are distributed between 15 ° N at 25 ° N and 115 ° W at 95 ° W. The inverse distance interpolation (IDW) model obtained with 10 declination records showed that: declination greater than 3° is located at the northwest of the country, while values below 2° were reported in Guerrero and values between 2 and 3° are distributed to remained territory (Figure 3.3).

Figure 3.3. Interpolation by IDW of 17th century magnetic declination data (interpolation is done with only 10 records and thus large uncertainty is expected. The geomagnetic significance of this distribution is highly questionable because of a low number of observations).

The 85 records of magnetic declination in the 18th century come from the eastern part of the Mexican territory and are from offshore areas and islands in the Pacific Ocean. An alignment of the historical records on the high seas was also observed, which suggests that the data come from navigation routes in the Pacific Ocean for the 18th century (Jackson et. Al., 2000). These routes start from the Cabos

in Baja California and Nayarit to the west. Data from the mainland were reported in Baja California, Nayarit, Mexico, Guerrero and Veracruz.

The IDW interpolation model obtained from 85 magnetic declination data with values ranging from 0.42 to 10.5 ° showed that: declinations greater than 6 ° were observed mainly in the northwest of the country (Baja California, Baja California Sur and Sonora) between the latitude of 25 ° N to 35 ° N and longitude of 105 ° to 120 ° W. There are also reports of high magnetic declination values in the state of Nayarit and Veracruz (Figure 3.4). The declination values from 5 to 6 ° are distributed for the rest for Mexican territory, however, there are few data that firmly validate this result. The lowest declination values (<3 °) were reported for the state of Guerrero.

Figure 3.4. Interpolation by IDW of 18th-century magnetic declination record. Still, the number of observations is not enough to drive any form of conclusion about the spatial distribution.

The 372 nineteenth-century magnetic declination data from Mexico come primarily from records in the continental area, Pacific Ocean, the Gulf of Mexico and the Caribbean Sea. A concentration of data was observed in two groups: The first one is between 22 $^{\circ}$ N to 33 $^{\circ}$ N and 118 $^{\circ}$ W to 109 $^{\circ}$ W (Baja California, Baja California Sur, Sinaloa and Sonora) and the second group between 15 $^{\circ}$ to 20 $^{\circ}$ N and 90 $^{\circ}$ to 100 $^{\circ}$ W (Guerrero, Mexico City, State of Mexico and Veracruz).

The IDW interpolation model obtained from 372 magnetic declination data for the 19th century showed variations between 4.26 to 16.42° with higher than 11 ° observed at northwest Mexico. The values between 9° to 8° were found in the central zone of the Mexican territory and the lowest declination values (<7 °) were reported for the Yucatan Peninsula (Figure 3.5).

Figure 3.5. Interpolation by IDW of 19th-century magnetic declination record.

The 377 records of magnetic declination of the twentieth century are distributed throughout large area and come from 31 states, where the State of Mexico, Chihuahua and Hidalgo report most of the values. No report from high seas is available. The data is grouped between 17 $^{\circ}$ to 22 $^{\circ}$ N and 94 to 104 $^{\circ}$ W.

The IDW interpolation model obtained under this investigation showed values between 0.17 and 15.07 °, where: declination greater than 11 ° was found in the northwest of the country (Baja California, Baja California Sur, Chihuahua and Sonora) between the latitude of 25 ° to 35 ° N and longitude of 105 ° to 118 ° W. The values between 8 ° and 10 ° were observed in Central Mexico and the lowest declination values (<8 °) were reported for the state of Chiapas, Tabasco and the Yucatan Peninsula (Figure 3.6).

Figure 3.6. Interpolation by IDW of 20th-century magnetic declination record.

Magnetic Inclination

In total, 495 magnetic inclination data were reported for the Mexican Republic for the seventeenth to twentieth centuries showing variations between $0.76 \circ to 59.89 \circ$. The recording of the magnetic inclination began in 1778 and between 1778 and 1879 the measurements were performed every 10 years or so. Inclination record becomes much more frequent after 1879. However, there are periods from 1803 to 1837 with no single data available.

During the eighteenth century, there are only 4 inclination records, which come from three states: Mexico City, Guerrero and Nayarit. The data shows a variation of inclination from 38 $^{\circ}$ to 43 $^{\circ}$. The nineteenth century is represented by 129 records, which come from the mainland, Pacific Ocean, the Gulf of Mexico and the Caribbean Sea. The data are mainly concentrated in two groups: the first group is between 22 $^{\circ}$ to 33 $^{\circ}$ N and109 $^{\circ}$ to 118 $^{\circ}$ W (Baja California, Baja California Sur and Sonora) and the second between15 $^{\circ}$ to 20 $^{\circ}$ N and 90 $^{\circ}$ to 100 $^{\circ}$ W (Mexico City, Puebla and Veracruz).

The IDW interpolation model obtained from 129 magnetic inclination data from 19 states presented values between 37.05 ° to 59.08 °, where the inclinations greater than 52 ° were found in the northwestern part of the country (Baja California, Baja California Sur, Chihuahua, Coahuila and Sonora) between 27 ° to 35 ° N and 105 ° to 118 ° W; The lowest inclination values (<44 °) were reported for the central part of Mexico between 15 ° to 22 ° N and 93 ° to 105 ° W (Figure 3.7).

362 inclination records are available for the twentieth century, which come from two geographical areas. The first zone of clustering was found between 22 ° to 33 ° N and 100 ° to 109 ° W (Baja California, Baja California South, Chihuahua, Durango, Nuevo León and Sonora), the second zone was between 20 ° to 15 ° N 90 ° to 100 ° W (Mexico City, Hidalgo, Puebla, Querétaro and Veracruz).

The IDW interpolation model presented values between 0.76 to 59.89, where the inclinations greater than 52 ° were found in the northwest of the country (Baja California, Baja California Sur, Chihuahua, Coahuila, Nuevo León, Tamaulipas and Sonora) between 25 ° to 35 ° N and from 97 ° to 118 ° W; the inclination values between 48 ° to 52 ° were found between 22 ° to 25 ° N and from 97 ° to 115 ° W; the lowest inclination values (<44°) were reported for the states of Central Mexico between 15 ° to 18 ° N and 93 ° to 101 ° W (Chiapas, Guerrero and Oaxaca, see Figure 3.8).

Figure 3.7. Interpolation model by IDW for historical records of magnetic inclination of the 19th century.

Figure 3.8. Interpolation model by IDW of historical data of magnetic inclination for the twentieth century.

Absolute Intensity

In total, 455 historical magnetic intensity data were reported for the Mexican Republic, which provided values from 41,622 nT to 57,309 nT covering a temporary window from 1803 to 1946. Between 1803 to 1879, the data presented a periodic record of every 10 years approximately while for 1879 to 1914 the record is annual. Between 1914 and 1922 there are no records of magnetic intensity. The intensity values for the 19th and 20th centuries were similar, the range of intensity values for the 19th century was 41,622 to 55,556 nT, while, for the 20th century was 42969 to 57309 nT coming from a large geographical area.

111 records of magnetic intensity are reported for the 19th century coming from 21 states. The IDW interpolation model obtained from values between 41622 to 55556 nT, where the intensity greater than 50,000 nT was found in the northwest of the country (Baja California, Baja California Sur, Chihuahua, Coahuila and Sonora), between 25 ° to 35 ° N and 97 ° to 118 ° W; Intensity values between 48,000 to 50,000 nT are located between 20 ° and 25 ° N 97 ° to 115 ° W belonging to the northern part of the Yucatan Peninsula; low-intensity values (<46,000 nT) were reported for the state of Oaxaca (Figure 3.9).

Figure 3.9. Interpolation model by IDW of magnetic intensity of historical data of the 19th century.
344 measurements of magnetic intensity of the twentieth century are reported coming from 31 states. The IDW interpolation model presented values from 38036 to 57309 nT, where: the highest intensity values (> 50,000 nT) were found in the northwest of the country (Baja California, Baja California Sur , Chihuahua, Coahuila and Nuevo León, Tamaulipas and Sonora) between 35 ° to 25 ° N and 97 ° to 118 ° W; the intensity values from 46,000 to 50,000 nT were reported between 19 ° to 25 ° N and between 97 ° to 115 °; the lowest intensity values (<46,000 nT) were reported for latitudes less than 20 ° N in the state of Chiapas, Guerrero, Oaxaca and Tabasco (Figure 3.10).

Figure 3.10. Interpolation model by IDW of 20th-century magnetic intensity data.

Concluding Remarks

Over the four centuries, there have been several efforts to analyze, safeguard and validate the geomagnetic information recorded throughout history in Mexico. In this study, we conclude that the methodology of the treatment of the information through the control of the number of magnetic records, its descriptive analysis and the geographical distribution provides important features on its spatial and temporal distributions.

The Magnetic Declination distribution allows detecting the influence of the *Westward Drift* (Jault et. Al, 1988). Analyzing the 20th-century record, it is possible to observe some isolated areas that deviate from the regional trend west of the city of Zacatecas, the south of Durango and on the boundaries between Oaxaca and Veracruz. These patterns should be carefully studied to recognize their origin which could be associated with three potential sources: procedural errors in measurement, superficial magnetic anomalies of local character, or anomalies originating in the crust that influence the regional trend.

The data corresponding to the angle of magnetic inclination shows statistically great similarities with the Declination. Namely, they exhibit poor coverage for the eighteenth century, improving for the nineteenth and twentieth centuries. Its regional tendency to follow the geomagnetic latitude lines is evident, covering the national territory between 44 and 56 degrees according to the interpolation method used.

In relation to the magnitude of the magnetic vector or total intensity, it is known that the measurement technology was introduced later. In the twentieth century, the southern area of the Mexican Republic shows a greater zone of lower intensity. A significant decrease in the magnitude of the geomagnetic field is detected in just one century. This rate of reduction has been reported in the literature and is clearly observed using these historical measurement results.

The results show that magnetic intensity decreased between 1950-2017 nearly 8.6% in agreement with worldwide data. The absolute intensity decay from about 1650 seems to be a general feature of the global geomagnetic field observed in numerous archaeomagnetic records worldwide (Valet et al., 2008, Genevey et al., 2009, Hartmann et al., 2010, Goguitchaichvili et al. 2011).

The relationship between the paleoclimate and Earth's Magnetic field, however, is still matter of debate (Campuzano et al., 2018). As evidenced by Gallet et al., 2005 (see also Courtillot et al., 2007) these

variations may be correlated to moderate to large scale climate changes. The cooling (warming) periods are apparently correlated to the intensity increase (decrease) and seem to be influenced by the geomagnetic field trough the modulation of cosmic ray flux interacting with the atmosphere (see also discussion in Goguitchaichvili et al. 2011). The first credit should be given to Wollin et al. (1971), who argued that low geomagnetic strength is likely associated with warm climate episodes, similar to the current conditions.

References

Campuzano SA, De Santis A, Pavon-Carrasco FJ, Osete ML, E. Qamili, 2018. New perspectives in the study of the Earth's magnetic field and climate connection: The use of transfer entropy. PLoS ONE 13(11): e0207270. doi.org/10.1371/journal.pone.0207270.

Cañón A., J.E. Hernández, Nolasco H., y Orozco A., 1993. Cartas Magnéticas de la República Mexicana para la época 1990.0, escala 1:5 000 000. Instituto de Geofísica UNAM. Instituto Nacional de Estadística Geografía e Informática, INEGI. México.

Courtillot, V., Gallet, Y., Le Mouël, J.L., Fluteau, F., Genevey, A., 2007. Are there connections between the Earth's magnetic field and climate? Earth and Planetary Science Letters 253, 328-339.

Gallet, Y., Genevey, A., Fluteau, F., 2005. Does Earth's magnetic field secular variation control centennial climate change? Earth Planet. Sci. Lett. 236, 339–347.

Genevey, A., Gallet, Y., Constable, C. G., Korte, M., Hulot, G., 2008. ArcheoInt: An upgraded compilation of geomagnetic field intensity data for the past ten millennia and its application to the recovery of the past dipole moment, Geochemistry Geophysics Geosystems, 9, DOI: 10.1029/2007gc001881.

Goguitchaichvili, A., E. Hernandez-Quintero, R. Cejudo, G. Cifuentes, M. Cervantes, 2020. Fluctuation of the Earth's magnetic field elements in Mexico revealed by archive documents since 1587, Physics of the Earth and Planetary Interiors, doi.org/10.1016/j.pepi.2020.106433.

Goguitchaichvili, A., Greco, C., Morales, J., 2011. Geomagnetic field intensity behavior in South America between 400 AD and 1800 AD: First archeointensity results from Argentina. Physics of the Earth and Planetary Interiors 186, 191-197.

Halley, E.,1701. A new and correct chart shewing the variations of the compass in the western and southern oceans as observed in the year 1700. London.

Hartmann, G., Genevey, A., Gallet, Y., Trindade, R., Le Goff, M., 2010. New historical archeointensity data from Brazil: Evidence for a large regional non-dipole field contribution over the past few centuries. Earth and Planetary Science Letters 306, 66-77.

Hernández-Quintero, E.; Avto Goguitchaichvili; Rafael García-Ruiz; Miguel Cervantes-Solano; Gerardo Cifuentes-Nava, 2018. Más de 100 años ininterrumpidos de Registro Geomagnético en México: Implicaciones en la Datación Absoluta de Algunos Edificios Históricos. Arqueología Iberoamericana. 39, 36-43.

Hernández-Quintero E., H. Nolasco-Chávez, J.O. Campos-Enríquez, C. Cañón-Amaro, A. Orozco-Torres, J. Urrutia-Fucugauchi y G. Alvarez-García, 1994. Evaluación preliminar del campo geomagnético de referencia internacional IGRF-1990 para México y anomalías magnéticas corticales. Geofísica Internacional 33-2, p35-241.

Hernández, E. y Orozco. A. 1997. Magnetic Field work and IGRF models for México, three examples for the 20th Century. J. Geomag. Geoelectr., vol 49, 387-392.

Hernández-Quintero E., H. Nolasco-Chávez, J.O. Campos Enríquez, C. Cañón-Amaro, A. Orozco-Torres, J. Urrutia-Fucugauchi y G. Alvarez-García, 1994. Evaluación preliminar del Campo Geomagnético Referencia Internacional IGRF-1990 para México y anomalías Magnéticas corticales. Geofísica Internacional. vol.33, n°. 2, 235-241.

Jackson, Andrew E.; Art R. T. Jonkers, Matthew R. Walker, 2000. Four centuries of geomagnetic secular variation from historical records. Philosophical Transactions of the Royal Society. Mathematical, Physical, and Engineering sciences. DOI:10.1098/rsta.2000.0569.

Jault D., Gire, C.,Le Mouel, J. L.1988. Westward drift, core motions and exchanges of angular momentum between core and mantle. Nature, vol 33. DOI:10.1038/333353a0

Reyes, V., 1884. Memoria sobre el departamento magnético del observatorio meteorológico central de México. 111 pp.

Sandoval, O.R., 1950. Elementos magnéticos en la República Mexicana. Servicio Geomagnético. Instituto de Geofísica. UNAM. México. 182 pp.

Wollin G, Ericson DB, Ryan WBF, 1971, Magnetism of the Earth and climatic changes. Earth Planet. Sci. Lett. 12, 175–183.

CAPÍTULO 4. FLUCTUATION OF THE EARTH'S MAGNETIC FIELD ELEMENTS IN MÉXICO REVEALED BY ARCHIVE DOCUMENTS SINCE 1587

Resumen

El uso de documentos Históricos, archivos y colecciones fotográficas antiguas, permitieron analizar 877 mediciones geomagnéticas directas con datos obtenidos por marineros (incluidos piratas), e instituciones como el *United State Coast and Geodetic Survey* o el *National Astronomical Observatory* que datan desde 1587. El catálogo de datos actualizados incluye 844 valores de declinación magnética, 495 de inclinación, 467 de la componente horizontal (H) y 455 de la componente vertical (Z). Todos los datos se relocalizaron en la Ciudad de México mediante el método de conversión de polo con el fin de construir una curva de variación secular de referencia para México y áreas adyacentes utilizando un método bootstrap para mitigar el efecto de valores fuera de rango y estimar las Funciones Densidad de Probabilidad. Los patrones de variación direccional resultantes en este trabajo se compararon con las curvas obtenidas por los modelos Sha.Dif.14k, GUFM1 e IGRF-12, mientras que las variaciones del VADM (momento dipolar axial virtual, por sus siglas en inglés) se compararon tanto con determinaciones cualitativas similares en otros sitios del planeta, como con curvas arqueomagnéticas para Mesoamérica.

Abstract

Historical documents, archives and old photographic collections allowed to analyze 877 direct geomagnetic measurement data obtained by sailors (including pirates), United State Coast and Geodetic Survey and National Astronomical Observatory since 1587. The updated catalogue includes 844 values of magnetic declination, 495 of inclination, 467 of the horizontal intensity component (H) and 455 of the vertical intensity component (Z). All data were relocated to Mexico City through the pole conversion method in order to build a reference secular variation curve for Mexico and surrounding area using bootstrap method to mitigate the effect of outliers and estimate the probability of density functions. The directional variation patterns obtained in this investigation were compared to the curves retrieved from Sha.Dif.14k, GUFM1 and IGRF-12 models while VADM fluctuations were confronted to similar quality determinations from other localities worldwide as well as archaeomagnetic curves from Mesoamerica.

Key Words: Direct Magnetic Measurements, Secular Variation, Regional Reference Curve, North America, Mexico.

Publicado en: Physics of the Earth and Planetary Interiors (300) 106433 (2020) (https://www.sciencedirect.com/journal/physics-of-the-earth-and-planetary-interiors/vol/300/

Introduction

Fluctuations of the Earth's Magnetic Field elements are of great interest in geophysics and almost unique source to elucidate the core-mantle conditions of our planet. Geomagnetic secular variation over the last millennia's may be potentially connected to the long-term climate changes (Courtillot et al., 2007) and collapse of ancestral cultures (Haug et al., 2003, see also Glassmeir, Soffel and Negendank, 2009). Recently, some relationship between the health issues of human populations and fine fluctuations of the geomagnetic field are also matter of debate (Palmer et al., 2006).

Another great application of paleosecular variation is in absolute chronology (Korte et al. 2019). Since most archaeological materials contain magnetic particles, they can be used in many different studies. One of the main properties is that they can acquire a remanence at a specific time. As the geomagnetic field changes in direction and intensity over time, the moment of acquisition of the remanent magnetization can be determined by comparing these parameters with the known records of the magnetic field in the past in a specific location. When past variations of the Earth's magnetic field have been well established, archaeomagnetic dating can be as accurate as the most expensive method of radiometric absolute dating. The mandatory condition for magnetic dating is the availability of reference, also known as master curve which may be obtained from alternatively dated igneous rocks and burned archaeological artifacts carrying thermoremanente magnetization (Goguitchaichvili et al., 2018, 2019). However, because of sporadic character of volcanic eruptions and problems related to the age-sample-event association, the reliable curves are extremely difficult to obtain. The alternative way for this purpose is the analysis of the historical data which are obtained directly form geomagnetic measurements.

Historical documents compiled in numerous annals as well as photographic collections allow to establish the characteristics of the geomagnetic data in Mexico. At first, they can be divided into two large groups: The data of the different observatories in Mexico from 1879 and those obtained from direct measurements since 1587. Thanks to the references of Sandoval (1950) among other sources it is possible to note that between the 16th century and the middle of the XIX century, direct magnetic measurements were performed for orientation purposes, mainly for maritime navigation. It was until the 1701, when Edmond Halley published a map of magnetic declination for the Atlantic Ocean (see in Murray and Bellhouse, 2017). In Mexico, the first magnetic observations were made at the end of the 16th century by Thomas Cavendish in 1576 in La Paz, Baja California (Sandoval, 1950).

Most of historic measurements carried out since 1587 are compiled by Sandoval (Main Magnetic Elements in Mexico, 1950) and then updated by Cañón (Magnetic Values in Mexico and Central America between 1587- 1991; published in 1991). As for the magnetic data of the Western Coast in the eighteenth century, they were taken from several appendices of the "Annual Reports" of the Coast & Geodetic Survey (USA). In turn, these measurements were obtained from historical files located in Madrid (Spain). However, according to information in both Madrid and San Fernando (Cádiz), these documents were finally moved to General Archive of the Nation in Mexico City. As a result, a significant number of original logbooks written by exploratory trip navigators between 1769 and 1795 were obtained. These files describe geomagnetic measurements carried out from San Blas, Revillagigedo Islands, Baja California and formerly called the Northern Coast of California, which includes the coasts from the western United States, Canada and southern Alaska. The United States Coast & Geodetic Survey not only collected part of this data, but also carried out excellent investigations published in the "Annual Reports."

The Dataset and Analysis

The present dataset is a result of more than five years of uninterrupted work performed by National Geomagnetic Observatory (also known as Teoloyucan Magnetic Observatory- part of Magnetic Service of the UNAM). Three main sources are used:

1.- Sandoval R.O., 1950. "*Elementos Magnéticos para la República Mexicana*. Universidad Nacional Autónoma de México, Instituto de Geofisica, Servicio Geomagnético". This work consists of a large number of data collected by the author in national archives mainly. The printed version is available at the UNAM library under the reference number QC825.2-S34 (223 pages).

2.- Cañon in 1991 was responsible for updating the Sandoval's data (1950), however this work was not published as it is currently part of the databases for internal use in the Geomagnetic Observatory. Some of the data are however published in Cañon et al., 1993 work as supporting information of regional magnetic charts.

3.- A third source of information, correspond to the *Annual Reports*. These are a series of logbooks - printed material at the Teoloyucan magnetic observatory between 1914 and 1986.

The present database which is carefully updated and corrected by the National Geomagnetic observatory workers includes these main sources together with national archive documents.

Jonkers et al. (2003) and later Arneitz et al. (2017) reported similar dataset from Mexico. The particularity of this database is that the authors combine both direct measurements and paleomagnetic/archaeomagnetic results derived from burned archaeological artifacts or recent volcanic eruptions while our dataset is only based on historical (direct) measurements. A simple comparison between two datasets shows marked difference at some time intervals. Jonkers et al. (2003) mention some libraries located in Spain (Naval Museum Madrid, National Library and National Museum of Natural Sciences among some others) as potential source of data but it is not clear whether they used same archive documents as in present study.

The historical record comprises 877 magnetic data that comes from the 32 states of Mexico (Appendix 4.1), islands and offshore records, which cover a time interval from 1587 to 1946. The collected data provide information about main geomagnetic elements. However, full record is not always available because the technology to measure inclination and total intensity was introduced much later than declination. The global record is presented by 844 declination values, 495 inclination, 467 horizontal magnetic intensity component (H) and 455 vertical magnetic intensity component (Z) these parameters are spatially and temporarily distributed throughout the Mexican Republic (Figure 4.1). Only ten measurements are available between 1587 and 1686 while the number of data increased to 87 values between 1709 and 1799 reaching 381 in XIX century. 399 full vector data are available between 1901 and 1946. Magnetic declination values range between 0.17° a 16.46° while inclination presents values from 0.76° to 59.89°. Two unusually low values are most probably related to the technical difficulties and consequently were discarded from the analysis. The total intensity values range from 41,622 to 57,309 Gamma distributed between 1803 and 1946.

The first step to generate the regional paleosecular variation curve (PSVC) is the relocation of data to a reference position through the pole conversion method (Noël and Batt, 1990) under the assumption of an ideal dipolar geomagnetic field. Due to the fact that the geomagnetic field has non-dipolar contributions, the relocation procedure requires certain rules to be obeyed. The involved area must not be bigger than $10^5 km^2$ (Tarling, 1983) which is equivalent to 800 km of radius with respect to the reference location.

Figure 3.1 Spatial distribution of historical record showing locations with only declination data, only declination and inclination data and full vector (including intensity) measurements.

The relocation exercise for the geomagnetic direction need to use the geographic colatitude of the Virtual Geomagnetic Poles (VGP) while the intensity may be relocated using two methods: first one uses the available directional information and the second method assumes a geocentric axial dipole (GAD) field, with the use of a virtual Axial Dipole Moment (VADM).

$$F_R = F_S \sqrt{\frac{1 + 3\cos\theta_R^2}{1 + 3\cos\theta_S^2}}$$

The relocation exercise for the geomagnetic direction need to use the geographic colatitude θ_R of the Virtual Geomagnetic Poles (VGP), the geographical colatitude of the sample site θ_S and the intensity F_S . This produces an error of relocation which increase with the distance with respect to the reference point. The directional relocation error is given by the angular differences between the relocated direction and the direction of the reference point assuming an axial geomagnetic dipole field. The intensity follows the same procedure to obtain the relocation error. It should be noted that the relocation error depends of the study area (Figure 4.2a,b,c). In this study we only accepted data showing relocation error for absolute intensity less than 2.5 nT, for declination $<2^{\circ}$ and for inclination $<5^{\circ}$. The relocation error for directions and intensities within the study area was analyzed using the IGRF-12 model for year 1900. As may be easily appreciated trough the Figures 3.2a - 3.2c, this method is useful to observe the increase in the relocation error with respect to the site locations evidencing the non-dipolar contribution of the geomagnetic field and restricts the data that can be used in the analysis.

The construction of a PSVC needs the temporal distribution of the data together with the geomagnetic information with its uncertainties ($\alpha_{95}, \sigma_F, \sigma_T$). For the present data, however, the uncertainties were estimated based in its relocation error added to the α_{95} calculated between the declination and the inclination while σ_F was estimated as the standard deviation for all the intensities. The uncertainties for the directions, was calculated by $\sigma_{Inc} = \sqrt{\alpha_{95}^2 + \sigma_R^2}$ for the inclination and $\sigma_{Dec} = \sqrt{(\sin^{-1}\frac{\sin \alpha_{95}}{\cos Inc})^2 + \sigma_R^2}$ for the declination by $\sigma_I = \sqrt{\sigma_F^2 + \sigma_R^2}$ for the total intensities.

The directional and intensity PSVC was built using a bootstrap method to mitigate the effect of outliers and estimate the probability of density functions in Mexico (Thébault and Gallet et al., 2010) to adjust then by the P-Splines following the same procedure as reported in Goguictchaishvili et al. (2018) and Carrancho et al. (2013). This allows to generate series of curves considering a combination of random data generated for declination, inclination and intensity, through the use of a Gaussian distribution with mean and standard deviation. The data assembly f (declination, inclination and intensity) is adjusted by the P-Splines, penalizing the data with a temporary second order derivative D and a smoothing parameter λ as follows

$$\hat{f} = (A^T W A + \lambda D)^{-1} A^T W^T f,$$

W being the diagonal matrix of the uncertainties $w_{ii} = 1/\sigma^2$. This approach ensure the decreases of the weight of outliers as explained by Thebault and Gallet (2010). The smoothing parameter obtained is 1000.

Figure 4.2. Relocation error estimation for a) Intensity, b) Inclination and c) declination for Mexico obtained by IGRF-12 model for 1900

Discussion and Concluding Remarks

The values reported in present database in terms of both directions and absolute intensity have no errors because they are obtained through direct magnetic measurements. However, we formally calculated the α_{95} and F errors by grouping the data using following approach: 1. determining the maximum spacing parameter (GAP) for declination, inclination and intensity. 2. Forming temporary windows giving more weights to the maximum spacing intervals. 3. The calculated errors are assigned to the corresponding data. 4. Finally, the relocation error (see above) of each series was also incorporated into the data.

The PSVC for obtained in this study was compared with the Sha.Dif.14k (Pavón-Carrasco et al., 2014), GUFM1 (Jackson et al., 2000) and IGRF-12 (Thébault et al., 2015) models (Figure 4.3). The declination record differs substantially with respect of the three models from 1600 to 1750. The same is true for intensity curve between 1880 and 1950. The inclination however, show marked similarity with the curves retrieved from the global models. As directional data are concerned, the comparative analysis vas performed with available archaeomagnetic data from Mesoamerica (Figure 4.4) and Hawaii (same latitude as Central Mexico). Also reported is Geomagnetic Axial Dipole directions as a reference. The secular variation (archaeomagnetic) curve for Hawaii was built using directional data obtained from volcanic materials without relocation because they are concentrated in a small geographical region comprised of the Hawaii and Maui islands. The model used is based on a formal Bayesian framework established by Lanos (2004). The directional and intensity curve of Mexico (Mahgoub et al., 2019) was constructed by making a critical evaluation of the paleomagnetic and archaeomagnetic database from 50ka to 1900 AD.

The methodology used to construct the CVPS was the use of the Bootstrap algorithm established by Thébault and Gallet, 2010.

Figure 4.3 Paleosecular variation curves for declination, inclination and intensity compared to model data (GUFM1, Sha.Dif.14k and IGRF-12).

Figure 4.4 Paleosecular variation curve obtained in this study vs. archaeomagnetic curves for Mesoamerica for magnetic declination and inclination.

The new declination curve agrees with archaeomagnetic (mostly defined from volcanic lava flow data) PSVC from Mexico between 1700 through 1900 with a little lag between both curves. The Hawaiian PSVC show significantly lower values but the same general pattern. The inclination record shows notable differences with respect to both the PSVC of Mexico and Hawaii (Figure 4.5).

Figure 4.5 Virtual Axial Dipole Moment values from the present study, Mesoamerica, South America, Paris and Hawaii (see text for more details).

The intensity curve obtained under this investigation was compared to the PSVC of Mexico, Mesoamerica and Hawaii (Mahgoub et al., 2019, Goguitchaichvili et al., 2018, Tema et al., 2017 and Goguitchaichvili et al., 2019) assuming a geocentric axial dipole hypothesis as a mandatory requirement to estimate the Virtual Axial Dipole Moment (VADM).

Figure 4.6 Possible geomagnetic jerk revealed by the analysis described in Pavón-Carrasco and Osete (2010) using the maxima intensity and the directional curvature.

While a rather reasonable agreement is reached between this new curves with archaeomagnetic secular variation curves from Mesoamerica (Goguitchaichvili et al, 2018, Mahgoub et al., 2019), other localities exhibit substantial differences.

As a final exercise to detect possible geomagnetic jerks, we carried out the analysis described in Pavón-Carrasco and Osete (2010) based on the maxima intensity and the directional curvature as follows (see also Figure 4.6):

(1)
$$M_f = (-F''/abs(F''))(1/abs(F'))$$

(2)
$$\rho_D(t) = abs(D'I'' - I'D'')/(D' + I')^{3/2}$$

where D', I' and F' are the first derivatives of the declination, inclination and the intensity while D'', I'' and F'' are the second derivatives with the time. This procedure, commonly applied to archaeomagnetic data, allowed to reveal a potential geomagnetic jerk at about 1850 ± 5 . Tema and Kondopoulou (2011) first reported a potential jerk for the same time interval for Balkan region. However, the reliability of this event was questioned by the authors. We believe that this approach is valid in our case because the temporal distribution of values retrieved from direct measurements is similar to archaeomagnetic data distribution and both share the sporadic nature of record. This study gives some new insights to the existence of global character geomagnetic jerk for the time interval involved but still should considered within the caution.

References

Arneitz , P., Leonhardt, R., E.,Heilig, B., Mayrhofer, F., Kovacs, P., Hejda, P., Valach, F., Vadasz, G., Hammerl, C., Egli, R., Fabian, K., Kompein, N., 2017. The HISTMAG database: combining historical, archaeomagnetic and volcanic data. Geophys. J. Int. 210 (3), 1347–1359. https://doi.org/10.1093/gji/ggx245.

Cañón C., Hernández E., Nolasco H., Orozco A., 1993. Cartas Magnéticas de la República Mexicana para la Época 1990.0. Instituto de Geofísica. UNAM - INEGI.

Carrancho, Á., Villalaín, J. J., Pavón-Carrasco, F. J., Osete, M. L., Straus, L. G., Vergès, J. M., and Carbonell, E., 2013. First directional European palaeosecular variation curve for the Neolithic based on archaeomagnetic data. *Earth Planet. Sci. Lett*, 380, 124-13.

Courtillot, V., Y. Gallet, J.L. Le Mouël, F. Fluteau, A. Genevey, 2007. Are there connections between Earth's magnetic field and climate, Earth Planet. Sci. Lett., 253, 328–339.

Glabmeier, K., Soffel, H, F.W. Negendank, 2009. Geomagnetic Field Variations, In Advances in Geophysical and Environmental Mechanics and Mathematics, Springer-Verlag Berlin Heidelberg.

Goguitchaichvili A., García-Ruiz R., Pavón-Carrasco F. J., Morales Contreras J.J, Soler-Arechalde A. M., Urrutia-Fucugauchi J., 2018, Last three millennia Earth's Magnetic field strength in Mesoamerica and southern United States: Implications in geomagnetism and archaeology, Physics of Earth and Planetary Interiors, 279, 79-91.

Goguitchaichvili A., Greco C., García-Ruiz R., Domingorena L. P., Cejudo R., Morales J., Gogorza C., Scattolin C., and Tarrago M., 2019, First archaeointensity reference paleosecular variation curve for South America and its implication for geomagnetism and archaeology, Quaternary Research, 1-17, doi:10.1017/qua.2018.119.

Haug G., Günther D, Peterson LC, Sigman DM, Hughen KA, Aeschlimann B, 2003. Climate and the collapse of Maya civilization. Science, 299 (5613), 1731-5.

Jackson, A., A.R.T. Jonkers, and M.R. Walker, 2000. Four centuries of geomagnetic secular variation from historical records. *Phil. Trans. R. Soc. Lond.* A, 358, 957 - 990.

Jonkers A.R.T., Jackson A., Murray A., 2003. Four centuries of geomagnetic data from historical records, Rev. Geophys., 41, 1006, doi:10.1029/2002RG000115.

Korte, M., M. C. Brown, S. R. Gunnarson, A. Nilsson, S. Panovska, I. Wardinski and C. G. Constable (2019): Refining Holocene geochronologies using palaeomagnetic records. Quaternary Geochronology, 50, 47-74, doi: 10.1016/j.quageo.2018.11.004.

Lanos, Ph., 2004. Bayesian inference of calibration curves, application to archaeo-magnetism. In: Buck, C.E., Millard, A.R. (Eds.), Tools for Constructing Chronolo-gies, Crossing Disciplinary Boundaries. In: Lecture Notes in Statistics. 177. Springer- Verlag, London, pp. 43–82.

Mahgoub A. N., Juárez-Arriaga E., Böhnel H., Siebe C., and Pavón-Carrasco F.J., 2019. Late-Quaternary secular variation data from Mexico volcanoes, 519, 28-39.

Murray, L and D. R. Bellhouse, 2017. How Was Edmond Halley's Map of Magnetic Declination (1701) Constructed?, Imago Mundi, 69, 72-84, Doi: 10.1080/03085694.2017.1242841.

Noel, M., Batt, C.M., 1990. A method for correcting geographically separatedremanence directions for the purpose of archaeomagnetic dating. Geophys. J. Int. 102, 753–756.

Palmer, S.J., Rycroft, M.J., Cermack, M., 2006. Solar and geomagnetic activity, extremely low frequency magnetic and electric fields and human health at the Earth's surface. Surv. Geophys. 27, 557–595.

Pavón-Carrasco, F.J., and Osete M.L., 2010, Regional modelling of the geomagnetic field in Europe from 6000 to 1000 B.C., Geochemistry, Geophysics, Geosystems, 11(11), doi:10.1029/2010GC003197.

Pavón-Carrasco, F.J., M.L. Osete, J.M. Torta, J.M., and A. De Santis 2014. A geomagnetic field model for the Holocene based on archaeomagnetic and lava flow data, *Earth Planet. Sci. Lett.*, 388, 98 - 109.

Sandoval R.O., 1950. Elementos Magnéticos para la República Mexicana. Universidad Nacional Autónoma de México, Instituto de Geofísica, Servicio Geomagnético. QC825.2-S34, 223 pp.

Tarling, D.H., 1983. Palaeomagnetism. Principles and Applications in Geology, Geophysics and Archaeology. Chapman & Hall, London, New York, pp. 379.

Tema, E., and Kondopoulou D., 2011. Secular Variation of the Earth's magnetic field in the Balkan region during the last eight millennia based on archaeomagnetic data, Geophysical Journal International, 186, 603-614.

Tema, E., Herrero-Bervera, E., Lanos, Ph., 2017. Geomagnetic field secular variation in Pacific Ocean: A Bayesian reference curve based on Holocene Hawaiian lava flows. Earth Planet. Sci. Lett. 478, 58–65. http://dx.doi.org/10.1016/j.epsl.2017.08.023.

Thébault E.,and Gallet Y., 2010. A bootstrap algorithm for deriving the archeomagnetic field intensity variation curve in the Middle East over the past 4 millennia BC, Geophysical Research Letters, 37, L22303.

Thébault E., Finlay C.C., Beggan C.D., Alken P., Aubert J., Barrois O., Bertrand F., Bondar T., Boness A., Brocco L., Canet E., Chambodut A., Chulliat A., Coïsson P., Civet F., Du A., Fournier A., Fratter I., Gillet N., Hamilton B., Hamoudi M., Hulot G., Jager T., Korte M., Kuang W., Lalanne X., Langlais B., Léger J.M., Lesur V., Lowes F.J., et al., 2015. International Geomagnetic Reference Field: the 12th generation, Earth, Planets and Space, 67-79.

Appendix 4.1

Updated database of historical geomagnetic measurements in Mexico shown in Figures since 1587 indicating name of location, geographic coordinates, Magnetic Declination, Declination, Horizontal and Vertical Components of Total Intensity, name of observer and source as appears in historical documents and national archives. Updated and corrected values are used in corresponding figures.

O.A.N. – National Astronomical Observatory (*Observatorio Astronomico Nacional*).

Com. – Commander.

- C. & C.G. Coast and Geodetic Survey of United States
- **NSN** New Spain Navy.

POSGRADO	
Ē	
CIENCIAS	
Ē	
Ā	
TIERRA	

		Ge	ographic Posit	ion	Altitud	Date	D	I	Н	Z		
No.	Location	Lat. N	Long	g. W			NE	N	(2)	(~)	Observer	Reference
				h m s			• •	• •	0	0		
										AGUASCA	LIENTES	
1	Aguascalientes	21 55.0	102 17.0	6 49 8	1890	1897 - VII	8 14.5	47 19.0	32354	35082	Manuel Moreno Anda (O. A. N.)	Magnetic Map Expedition Mexico. 1896 -1911
		21 52.8	102 17.2	6499	1890	1940 - V	10 6.0	49 18.7	30299	35240	Rodolfo Jurado (O. A. N.)	Magnetic Map Expedition Mexico. 1896 -1911.
2	Rincon de Romos (Calpulalpam)	22 13.1	102 18.7	6 49 15		1907 - IV	8 44.9	48 28.6	31900	36027	Manuel Moreno Anda (O. A. N.)	Magnetic Map Expedition Mexico. 1896 -1911.
<u> </u>			·						RE	VILLAGIGE	DO ISLANDS	
1	Clarión	18 21	114 41 9	7 38 48	1	1839		37 3.0	35030	26445	Sir Edward Belcher.	Reports of C. & G. S. 1885, A, 6.
	Clarión	18 19.6	114 41 9	7 38 48	1	1880	8 23.0	39 34.0	33920	28028	H. E. Nichols (C. &. G. S.)	Reports 1881, Apendix 9; 1882, A. 13; 1896, A. 1; 1897, A. 1.
	Clarión	18 19.6	114 41 9	7 38 48	1	1890	8 11.4				Calculated Value	Reports 1881, Apendix 9; 1882, A. 13; 1896, A. 1; 1897, A. 1.
2	High Sea	18 33	110 31	7 22 4	0	1775	50				Com. Bruno Heceta. (New Spain Navy).	Report of C. & G. S. 1885, A. 7.
3	High Sea	18 33	110 42	7 22 48	0	1775	5 13				Com. Bruno Heceta. (New Spain Navy).	Report of C. & G. S. 1885, A. 7.
4	Socorro	18 43	110 54	7 23 36		1839		40 43.7	34480	29999	Sir Edward Belcher.	Reports of C. & G. S. 1885, A. 6.
	Socorro	18 43	110 54	7 23 36		1877	95				Unknown	West Coast of Mexico. U.S. Hydrogr. Office Bureau of Navegation, 1880
	Socorro	18 42.8	110 54.2	7 23 37		1880	8 49.6	41 18 7	34640	30446	H. E. Nichols (C. &. G. S.)	Reports, 1881, A. 9; 1882, A. 13; 1885, A. 6; 1896 A. 1; 1897, A. 1.
	Socorro	18 42.8	110 54.2	7 23 37		1890	8 38.4				Calculated Value	Report 1889 A. 11,
5	In Front of Roca Partida.	19 6	112 0	7 28 0	0	1874	8 21				C. Seymour &. E. J. Young (C.&.G.S.)	Reports 1882, A. 13; 1896, A. 1,
	In Front of Roca Partida.	19 6	112 0	7 28 0	0	1890	86				Calculated Value	Report 1889, A. 11,
6	In Front of Sn. Benedicto.	19 15	110 49	7 23 16	0	1874	96				C. Seymour &. E. J. Young (C.&.G.S.)	Reports 1882, A. 13; 1896, A. 1,
	In Front of Sn. Benedicto.	19 15	110 49	7 23 16	0	1890	8 51				Calculated Value	Report 1889 A. 11,
7	High Sea	19 49	110 44	7 22 56	0	1775	5 0				Com. D. Bruno Heceta. (New Spain Navy).	Report 1885, A, 7.
8	High Sea	20 0	111 34	7 26 16	0	1779	60				Sr. Virey and Antonio Bucareli (New Spain Navy)	Report 1885, A, 7.
9	High Sea	20 8	116 51	7 47 24	0	1779	7 0				Sr. Virey and Antonio Bucareli (New Spain Navy)	Report 1885, A, 7.
10	High Sea	20 9	115 53	7 43 32	0	1790	6 49				Com. Manuel Quimper and Salvador Fidalgo (New Spain Navy)	Report 1885, A, 7.
11	High Sea	20 10	112 52	7 31 28	0	1775	4 30				Com. Bruno Heceta (New Spain Navy)	Report 1885, A, 7.
12	High Sea	20 14	112 44	7 30 56	0	1788	5 30				Com. Esteban Martinez and Gonzalo Lopez de Haro (NSN)	Report 1885, A, 7.
13	High Sea	20 16	113 49	7 35 16	0	1788	5 30				Com. Esteban Martinez and Gonzalo Lopez de Haro (NSN)	Report 1885, A, 7.
14	High Sea	20 21	110 3	7 20 12	0	1779	5 30				Sr. Virey and Antonio Bucareli (NSN)	Report 1885, A, 7.
15	High Sea	20 25	116 38	7 46 32	0	1788	60				Com. Esteban Martinez and Gonzalo Lopez de Haro (NSN)	Report 1885, A, 7.
16	High Sea	20 26	114 29	7 37 56	0	1779	60				Sr. Virey and Antonio Bucareli (NSN)	Report 1885, A, 7.
17	High Sea	20 29	113 26	7 33 44	0	1774	50				Com. D. Manuel Quimper and Salvador Hidalgo (NSN)	Report 1885, A, 7.
18	High Sea	20 29	114 9	7 36 36	0	1790	6 55				Com. D. Manuel Quimper and Salvador Hidalgo (NSN)	Report 1885, A, 7.
19	High Sea	20 33	112 21	7 29 24	0	1779	50				Sr. Virey and Antonio Bucareli ((NSN)	Report 1885, A, 7.
20	High Sea	20 34	111 46	727 4	0	1779	50				Sr. Virey and Antonio Bucareli (NSN)	Report 1885, A, 7.
21	High Sea	20 35	113 56	7 35 44	0	1775	4 30				Com. D. Bruno Heceta. (NSN).	Report 1885, A, 7.
22	High Sea	20 38	117 45	751 0	0	1788	60				Com. Esteban Martinez and Gonzalo Lopez de Haro (NSN)	Report 1885, A, 7.
23	High Sea	20.45	113 48	7 35 12	0	1774	5 0				Com. D. Juan Perez (NSN)	Report 1885, A, 7.
24	High Sea	21 25	110 17	7 21 8	0	1775	4 30				Com. D. Bruno Heceta (NSN.)	Report 1885, A, 7.
25	High Sea	21 33	110 20	7 21 20	0	1779	5 0				Sr. Virey and Antonio Bucareli (NSN)	Report 1885, A, 7.
26	High Sea	21 37	110 48	7 23 12	0	1779	50				Sr. Virey and Antonio Bucareli (NSN.)	Report 1885, A, 7.
27	High Sea	21 48	111 26	7 25 44	0	1779	5 0				Sr. Virey and Antonio Bucareli (NSN)	Report 1885, A, 7.

		Ge	ographic Posit	ion	Altitud	Date	D	I	Н	Z		
No.	Location	Lat. N	Lon	g. W			NE	N	(2)	(2)	Observer	Reference
				h m s	1		• •	• •	0	0		
										BAJA CAL	IFORNIA	
1	High Sea	21 49	113 32	7 34 8	0	1779	50				Sr. Virey and Antonio Bucareli (NSN)	Report C. &. G. S. 1885 A. 7.
2	High Sea	22 16	112 40	7 30 40	0	1779	5 30				Sr. Virey and Antonio Bucareli (NSN)	Report C. &. G. S. 1885 A. 7.
3	High Sea	22 30	114 18	7 37 12	0	1779	5 30				Sr. Virey and Antonio Bucareli (NSN)	Report C. &. G. S. 1885 A. 7.
4	High Sea	22 31	110 32	7 22 8	0	1779	5 30				Sr. Virey and Antonio Bucareli (NSN)	Report C. &. G. S. 1885 A. 7.
5	High Sea	22 41	111 25	7 25 40	0	1790	7 30				Salvador Fidalgo (NSN)	Report C. &. G. S. 1885 A. 7.
6	High Sea	22 43	108 37	7 14 28	0	1788	4 28				Gonzalo Lopez de Haro (NSN)	Report C. &. G. S. 1885 A. 7.
7	High Sea	22 46	108 2	7 12 8	0	1790	7 0				Salvador Fidalgo (NSN)	Report C. &. G. S. 1885 A. 7.
8	High Sea	22 49	115 7	7 40 28	0	1779	60				Sr. Virey and Antonio Bucareli (NSN)	Report C. &. G. S. 1885 A. 7.
9	High Sea	22 50	110 8	7 20 32	0	1779	60				Sr. Virey and Antonio Bucareli (NSN)	Report C. &. G. S. 1885 A. 7.
10	High Sea	22 53	108 41	7 14 44	0	1788	5 0				Gonzalo Lopez de Haro (NSN)	Report C. &. G. S. 1885 A. 7.
11	High Sea	23 1	116 0	744 0	0	1779	6 30				Sr. Virey and Antonio Bucareli (NSN)	Report C. &. G. S. 1885 A. 7.
12	Cabo Sn. Lucas.	22 53.6	109 54.7	7 19 39	0	1587	3 0				Thomas Cavendish (Pirate)	Terrestrial Magnetism, vol. 13, pag. 103.
	Cabo Sn. Lucas.	22 53.6	109 54.7	7 19 39	0	1630	2 15				Sir Robert Dudley.	Arcano de Mare; Report of 1888, A. 7.
	Cabo Sn. Lucas.	22 53.6	109 54.7	7 19 39	0	1709	2 30				Woods Rogers (Pirate)	Reports 1888, A. 7; 1895, A. 1.
	Cabo Sn. Lucas.	22 53.6	109 54.7	7 19 39	0	1714	1 30				Sauvage Le Muet (Pirate)	Reports 1888, A. 7; 1895, A. 1.
	Cabo Sn. Lucas.	22 53.6	109 54.7	7 19 39	0	1779	6 0				Sr. Virey and Antonio Bucareli (NSN)	Reports 1888, A. 7; 1895, A. 1.
	Cabo Sn. Lucas.	22 53.6	109 54.7	7 19 39	0	1783	5 51				Saylors of New Spain Navy	Reports 1888, A. 7; 1895, A. 1.
	Cabo Sn. Lucas.	22 53.6	109 54.7	7 19 39	0	1839	8 38	45 39.3	33470	34244	Sr. Edward Belcher.	Philos. Transac. R. S. 1843 y 1875. Reports 1885, A. 6; 1888, A.7; 1895, A. 1.
	Cabo Sn. Lucas.	22 53.6	109 54.7	7 19 39	0	1841	7 53 ?				Unknown	Explor. De l'Oregon, Paris 1844; Reports 1888, A. 7; 1895, A.1.
	Cabo Sn. Lucas.	22 53.6	109 54.7	7 19 39	0	1873	10 23.3				Z. L. Tanner y E. J Young (C. &. G. S.)	Reports 1888, A. 7; 1895, A. 1.
	Cabo Sn. Lucas.	22 53.6	109 54.7	7 19 39	0	1875	9 38.8				G. C. Reiter. (C. &. G. S.)	Reports 1888, A. 7; 1895, A. 1.
	Cabo Sn. Lucas.	22 53.6	109 54.7	7 19 39	0	1878	9 40.0				Unknown	West Coast of Mexico. U.S. Hydrogr. Office Bureau of Navegation, 1880
	Cabo Sn. Lucas.	22 53.6	109 54.7	7 19 39	0	1881	9 26.2	47 23.2	32750	35599	H. E. Nichols (C. &. G. S.)	Reports 1881 A. 9; 1882 A. 13; 1885 A.; 1888 A. 7; 1895 A. 1; 1896 A. 1; 1897 A.1.
	Cabo Sn. Lucas.	22 53.6	109 54.7	7 19 39	0	1890	9 22.2				Calculated Value	Report, 1885 A. 11.
	Cabo Sn. Lucas.	22 53.6	109 54.7	7 19 39	0	1929 - VII	10 54.4	48 29.1	30759	34748	R. O. Sandoval (O. A. N.)	Magnetic Data Aqcuisition Campaign, Mexico
13	High Sea	23 2	111 2	7 24 8	0	1779	6 30				Sr. Virey and Antonio Bucareli (NSN)	Report, 1885 A. 7.
14	San Jose del Cabo.	23 3.6	109 40.7	7 18 43	15	1873	10 32.4	47 25.2	32310	35161	W. Eimbeck (C. &. G. S.)	Reports, 1881, A. 9; 1885, A. 6; 1896 A. 1; 1897, A. 1.
	San Jose del Cabo.	23 3.6	109 40.7	7 18 43	15	1878	9 40 ?				Unknown	West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation, 1880.
	San Jose del Cabo.	23 3.6	109 40.7	7 18 43	15	1881	9 43.8				Tte H. Nichols (C. &. G. S.)	Reports, 1881 A. 9; 1882 A. 13; 1896 A. 1
	San Jose del Cabo.	23 3.6	109 40.7	7 18 43	15	1890	9 32.4				Calculated Value	Report, 1889 A. 11.
	San Jose del Cabo.	23 2.8	109 41.1	7 18 44	15	1917	10 25				Ing. Silverio Aleman (O. A. N.)	Boletin Observatorio Astronomico de Tacubaya, No. 6, 1920.
	San Jose del Cabo.	23 4.1	109 40.5	7 18 42	15	1929 - VII	10 28.0	48 48.1	30595	34951	R. O. Sandoval (O. A. N.)	Magnetic Data Aqcuisition Campaign, Mexico
15	High Sea	23 7	112 22	7 29 28	0	1790	8 30				Salvador Fidalgo (NSN)	Report, 1885 A. 7.
16	Todos Santos	23 24	110 14	7 20 56	0	1875	9 14 ?				G. C. Reiter. (C. &. G. S.)	Reports, 1882 A. 13; 1896 A. 1.
	Todos Santos	23 24	110 14	7 20 56	0	1876	9 50				Unknown	West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation, 1880.
	Todos Santos	23 24	110 14	7 20 56	0	1890	9 1.2				Calculated Value	Report, 1889 A. 11.
	Todos Santos	23 25.7	110 13.9	7 20 56	25	1929 - VII	10 55.0	50 7.5	30279	36245	R. O. Sandoval (O. A. N.)	Magnetic Data Aqcuisition Campaign, Mexico
17	High Sea	23 27	117 20	7 49 20	0	1779	7 0				Sr. Virey and Antonio Bucareli (NSN)	Report, 1885 A. 7.
18	Punta Arena	23 33	109 29	7 17 56	0	1875	9 53.6				G. C. Reiter. (C. &. G. S.)	Reports, 1882 A. 13; 1896 A. 1; (Llamado Observation Point).
	Punta Arena	23 33	109 29	7 17 56		1876	9 50				Unknown	West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation, 1880.

		Ge	ographic Posit	tion	Altitud	Date	D	I	н	Z		
No.	Location	Lat. N	Lon	g. W			NE	N	(~)	(2)	Observer	Reference
				hms			• •	• •		(D)		
										BAJA CAL	IFORNIA	
	Punta Arena	23 33	109 29	7 17 56	0	1890	9 45				Calculated Value	Report, 1889 A. 11.
19	Peña Golorada										Unknown	
20	High Sea	23 37	112 47	7 31 8	0	1788	50				Gonzalo Lopez de Haro (NSN)	Report, 1885 A. 7.
21	High Sea	23 45	114 7	7 36 28	0	1790	90				Salvador Fidalgo (NSN)	Report, 1885 A. 7.
22	High Sea	23 48	109 27	7 7 48	0	1788	6 30				Com. D. Esteban Martinez. (NSN)	Report, 1885 A. 7.
23	Punta Arena de la Ventana	24 4	109 50	7 19 20	0	1875	10 0 ?				G. C. Reiter. (C. &. G. S.)	Reports, 1882 A. 13; 1896 A. 1.
	Punta Arena de la											West Coast of Mexico, U. S. Hydrogr. Office, Bureau of Navigation,
	Ventana	24 4	109 50	7 19 20	0	1876	10 5				Unknown	1880.
	Punta Arena de la Ventena	24 4	109 50	7 19 20	0	1890	9 53.4				Calculated Value	Report, 1889 A. 11.
24	La Paz	24 10	110 21	7 21 24	5	1875	10 10				Unknown	West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation, 1880
	La Paz	24 10	110 21	7 21 24	5	1881	10.9	49 10.1	32380	37355	H. E. Nichols (C. &. G. S.)	Reports, 1881 A. 9: 1882 A. 13: 1885 A. 6: 1896 A. 1: 1897 A. 1.
	La Paz	24 10	110 21	7 21 24	5	1890	9 58.8				H. E. Nichols (C. &. G. S.)	Report, 1889 A. 11.
	La Paz	24 10	110.21	7 21 24	5	1907 - III	10.46.5	49 46 0	31690	37456	Manuel Moreno and Anda (O. A. N.)	Magnetic Data Accusition Campaign Mexico
	La Paz	24 9.7	110 20.7	7 21 23	5	1929 - VII	11 32.3	50 11.4	30520	36618	R. O. Sandoval (O. A. N.)	Magnetic Data Accuisition Campaign, Mexico
25	High Sea	24 12	113 30	7 34 0	0	1788	5 10				Gonzalo Lopez de Haro (NSN)	Report, 1885 A. 7.
26	Pichilingue Bay	24 15.5	110 20.1	7 21 20		1879	10 15?				Unknown	West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation, 1880.
	Pichilingue Bay	24 15.5	110 20.1	7 21 20		1881	9 45.1	49 48.5	31750	37582	H. E. Nichols (C. &. G. S.)	Reports, 1881 A. 9; 1882 A. 13; 1885 A. 6; 1896 A. 1; 1897 A. 1.
	Pichilingue Bay	24 15.5	110 20.1	7 21 20		1890	9 36				Calculated Value	Report, 1889 A. 11.
27	Punta Conejo	24 21	111 30	7 26 0		1875	10 16				G. C. Reiter y J. E. Craig. (C. &. G. S.)	Reports, 1882 A. 13; 1896 A. 1.
	Punta Conejo	24 21	111 30	7 26 0		1890	10 3.6				Calculated Value	Report, 1889 A. 11.
28	High Sea	24 22	118 32	7 54 8	0	1779	70				Sr. Virey and Antonio Bucareli (NSN)	Report, 1885 A. 7.
29	Punta Lupona (Espiritu Santo).	24 24	110 21	7 21 24		1875	9 26				G. C. Reiter and J. E. Craig. (C. &. G. S.)	Reports, 1882 A. 13; 1896 A. 1.
	Punta Lupona (Espiritu Santo).	24 24	110 21	7 21 24		1890	9 13.2				Calculated Value	Report, 1889 A. 1.
30	Almejas Bay	24 30	111 40	7 26 40		1874	10 20				Unknown	West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation, 1880.
31	In Front of Sta. Maria Bay	24 37	112 36	7 30 24	0	1788	70				Com. D. Esteban Martinez. (NSN)	Report, 1885 A. 7.
32	Magdalena Bay	24 38	112 8	7 28 32		1630	4 0				Sir Robert Dudley.	Arcano de Mare; Report of 1888, A. 7.; 1895 A. 1.
	Magdalena Bay	24 38	112 8	7 28 32		1714	1 30				Sauvage le Muet (Pirate).	Reports, 1888 A. 7; 1895 A. 1.
	Magdalena Bay	24 38	112 8	7 28 32		1783	6 47				Saylors of New Spain Navy	Reports, 1886 A. 12, 1888 A. 7; 1895 A. 1.
	Magdalena Bay	24 38	112 8	7 28 32		1837	8 15	45 39			Du Petit Tohuars	Voyage de la Frégate Venus; Reports, 1879 A. 9; 1886 A. 12; 1888 A. 7 1895 A. 1.
	Magdalena Bay	24 38	112 8	7 28 32		1837	8 17 ?	50 43 ?			Du Petit Tohuars	Philos. Transac. R. S. 1875; Reports 1885, A. 6;1886 A. 12; 1888, A.7; 1895, A. 1.; Voyage de la Frégate Venus.
	Magdalena Bay	24 38	112 8	7 28 32		1839	9 15 ?	46 34 ?	33010	34866	Sir Edward Belcher.	Philos. Transac. R. S. 1875; Reports 1885, A. 6;1886 A. 12; 1888, A.7; 1895, A. 1.
	Magdalena Bay	24 38	112 8	7 28 32		1841	8 15 ?				Duflot de Mofras.	Explor. De l'Oregon, Paris 1844; Reports 1879, A. 9; 1888, A. 7; 1895 A 1
	Magdalena Bay	24 38	112 8	7 28 32		1866	10 40.5	48 32	33090	37445	Prof. William Harkness	Smiths Contrib. to Know. Washington, 1873; Reports, 1879 A. 9.; 1885 A. 6; 1886 A. 12; 1888 A. 7; 1895 A. 1.

No.	Location	Lat. N
	Magdalena Bay	24 38
	Magdalena Bay	24 38
	Magdalena Bay	24 38.4
	Magdalena Bay	24 38.4
	Magdalena Bay	24 38.4
	Magdalena Bay Magdalena Bay	24 38.4 24 38.4

		Ge	ographic Posit	ion	Altitud	Date	D	I	н	z	Observar	Reference
No.	Location	Lat. N	Lon	g. W			NE	N	(2)	(2)	obate	
				h m s			• •	• •	0	(D)		
										BAJA CAL	IFORNIA	
	Magdalena Bay	24 38	112 8	7 28 32		1871	11 0 ?				G. Bradfor. (C. &. G. S.)	7, 1005 A 1
	Magdalena Bay	24 38	112 8	7 28 32		1873	10 36.6	48 9	31930	35649	W. Eimbeck (C. &. G. S.)	Charts in C. &. G. S. Archives; Reports, 1879 A. 9; 1881 A. 9; 1885 A. 6; 1886 A. 12; 1888 A.7; 1895 A. 1.
	Magdalena Bay	24 38.4	112 8.9	7 28 32		1873	10 30.8				Z. L. Tanner y E. J. Young. (C. &. G. S.)	Reports, 1879, A. 9; 1888, A. 7; 1895 A. 1.
	Magdalena Bay	24 38.4	112 8.9	7 28 36		1881	10 29.1	48 18.7	32420	36402	H. E. Nichols (C. &. G. S.)	Reports, 1881 A. 9; 1882 A. 13; 1885 A. 6; 1886 A. 12; 1888 a
	Magdalena Bay	24 38.4	112 8.9	7 28 36		1890	10 19.2				Calculated Value	Report, 1889 A. 11.
	Magdalena Bay	24 38.4	112 8.9	7 28 36		1907 - VI	11 14.5	49 5.7	31560	36427	Explorer Navy. (C. &. G. S.)	Report 1908 A. 3.
	Magdalena Bay	24 39.6	112 8.9	7 28 36		1907 - VI	11 32 ?	49 5	31410	36197	Explorer Navy. (C. &. G. S.)	Report 1908 A. 3.
33	High Sea	24 43	113 55	7 35 40	0	1788	5 20				Gonzalo Lopez de Haro (NSN)	Report, 1885 A. 7.
34	Sta. Maria Bay	24 45	112 16	7 29 4		1875	10 46				J. E. Craig. (C. &. G. S.)	Reports, 1882 A. 13; 1896, A. 1.
	Sta. Maria Bay	24 45	112 16	7 29 4		1890	10 33				Calculated Value	Report, 1889, A. 11.
35	High Sea	24 50	115 32	7428	0	1790	8 0				Salvador Fidalgo (NSN)	Report 1885, A, 7.
36	San Evaristo	24 52	110 42	7 22 48		1873	8 52.8				C. Seymour &. E. J. Young (C.&.G.S.)	Reports, 1882 A. 13; 1896, A. 1.
37	San José Aisland	25 2	110 43	7 22 52		1875	10 4.8				J. E. Craig y G. C. Reiter (C. &. G. S.)	Report, 1896 A. 1.
	San Jose Aisland	24 55.0	110 37.3	7 22 29		1881	9 47.6	49 38.5	31530	37102	H. E. Nichols (C. &. G. S.)	Reports, 1881 A. 9; 1882 A. 13; 1885 A. 6; 1896 A. 1; 1897 A. 1.
	San Jose Aisland	24 55.0	110 37.3	7 22 29	0	1890	8 38.4				Calculated Value	Report, 1889 A. 11.
38	High Sea	25 1	114 35	7 38 20		1788	5 30				Gonzalo Lopez de Haro (NSN)	Report, 1885 A. 7.
39	Boca Soledad	25 16	112 8	7 28 42		1875	11 8				G. C. Reiter. (C. &. G. S.)	Rerports, 1882 A. 13; 1895 A. 1.
		25.16		2 0 0 40		1074	10.20.0					West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation,
	Boca Soledad	25 10	112 8	7 28 42		1870	10.30 ?				Unknown	1880.
	Boca Soledad	25 16	112 8	7 28 42		1890	10 55.2				Calculated Value	Report, 1889 A. 11.
40	High Sea	25 16	119 36	7 58 24	0	1779	7 30				Sr. Virey and Antonio Bucareli (NSN)	Report, 1885, A. 7.
41	High Sea	25 17	114 39	7 38 36	0	1779	7 0				Sr. Virey and Antonio Bucareli (NSN)	Report, 1885, A. 7.
42	Punta Sn. Marcial	25 29	111 2	7248		1875	10 10.8				G. C. Reiter. (C. &. G. S.)	Reports, 1882 A. 13; 1895 A. 1.
	Punta Sn. Marcial	25 29	111 2	7 24 8		1878	10 35				G. C. Reiter. (C. &. G. S.)	West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation, 1880.
	Punta Sn. Marcial	25 29	111 2	7 24 8		1890	9 58.2				calculated Value	Report, 1889 A. 11.
43	High Sea	25 43	112 35	7 30 20	0	1778	9 0				Gonzalo Lopez de Haro (NSN)	Report, 1789 A. 7.
44	High Sea	25 43	115 12	7 40 48	0	1778	5 0				Com. D. Esteban Martinez. (NSN)	Report, 1789 A. 7.
45	Isla del Carmen	26 0	111 7	7 24 28		1873	11 27.6				H. P. Tuttle y E. J. Young. (C. &. G. S.)	Reports, 1882 A. 13; 1895 A. 1.
	Isla del Carmen	26 0	111 7	7 24 28		1878	10 55 ?				H. P. Tuttle y E. J. Young. (C. &. G. S.)	West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation, 1880.
	Isla del Carmen	26 0	111 7	7 24 28		1890	11 10.8				Calculated Value	
46	Loreto	26 1.1	111 20.5	7 25 22	0	1878	10 55 ?				Unknown	West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation, 1880.
	Loreto	26 1.1	111 20.5	7 25 22	0	1881	10 16.3	51 0.8	31300	38671	H. E. Nichols (C. &. G. S.)	Reports, 1881 A. 9; 1882 A. 13; 1885 A. 6; 1896 A. 1; 1897 A. 1.
	Loreto	26 1.1	111 20.5	7 25 22	0	1890	10 4.2				Calculated Value	Report, 1889 A. 11.
	Loreto	26 0.7	111 21.0	7 25 24	0	1929 - VII	11 41.2	52 8.8	39 397	37825	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign 1922 - 1929.
47	Comondú	26 1.0	111 48.0	7 27 12		1929	11 31. 1				R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign 1922 - 1929.
48	Punta Sn. Juanico	26 3	112 20	7 29 20		1875	10 49.2				G. C. Reiter. (C. &. G. S.)	Reports, 1882 A. 13; 1896 A.1.
	Punta Sn. Juanico	26 3	112 20	7 29 20		1890	10 32.4				Calculated Value	Report, 1889 A. 11.
49	High Sea	26 6	115 33	7 42 12	0	1779	7 30				Sr. Virey and Antonio Bucareli	Report, 1885 A. 7.
50	Bahia Pequeña	26 15.9	112 28.5	7 29 54		1881	10 31.2	51 48.1	30840	39193	Tte. H. E. Nichols (C. &. G. S.)	Reports, 1881 A. 9; 1882 A. 13; 1885 A. 6; 1896 A. 1: 1897 A. 1.
	Bahia Pequeña	26 15.9	112 28.5	7 29 54		1890	10 19.2				Calculated Value	Report, 1889 A. 11.

		Ge	ographic Posit	tion	Altitud	Date	D	I	Н	Z		
No.	Location	Lat. N	Lon	g. W			NE	N	(~)	(2)	Observer	Reference
				h m s	_ <u>_</u>		• •	• •	0	0		
										BAJA CAL	IFORNIA	
51	Punta Mangles	26 19	111 23	7 25 32		1878	11 5				CAlculated Value	West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation, 1880.
52	Punta Sto. Domingo	26 19	112 42	7 30 48		1875	10 21.6				J. E. Craig y G. C. Reiter (C. &. G. S.)	Reports, 1882 A. 13; 1896 A. 1.
	Punta Sto. Domingo	26 19	112 42	7 30 48		1890	10 4.8				Calculated Value	Reports, 1890 A. 11.
53	Punta Púlpito	26 31	111 27	7 25 48		1875	11 33.6				G. C. Reiter. (C. &. G. S.)	Reports, 1882 A. 13; 1896 A.1.
	Punta Púlpito (close to Punta Mercenarios)	26 31	111 27	7 25 48		1878	11 10 ?				G. C. Reiter. (C. &. G. S.)	West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation, 1880.
	Punta Púlpito	26 31	111 27	7 25 48		1890	11 16.8				Calculated Value	Report, 1889 A. 11.
54	Punta Piedras Prietas	26 42	113 14	7 32 56		1873	11 57 6				Z. L. Tanner and E. J. Young. (C. &. G. S.)	Report, 1896 A. 1.
55	Punta Abreojos	26 42	113 32.1	7 34 5		1878	11 15 ?				Unknown	West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation, 1880.
	Punta Abreojos	26 42	113 32.1	7345		1881	11 15.5	51 47.7	30920	39285	H. E. Nichols (C. &. G. S.)	Reports, 1881 A. 9; 1882, A. 13; 1885 A. 6; 1896 A. 1; 1897 A. 1.
	Punta Abreojos	26 42	113 32.1	7345		1890	10 58.2	51 52	31990	40750	C. F. Pond. (C. &. G. S.)	Reports, 1896 A. 1; 1897 A. 1.
56	Ballenas Bay											
57	San Ignacio Bay	26 46	113 16	7334		1875	12 7.8				J. E. Graig y C. Seymour. (C. &. G. S.)	Reports, 1882 A. 13; 1896 A. 1.
	San Ignacio Bay	26 46	113 16	7334		1890	11 51.0				Calculated Value	Report, 1889 A. 11.
58	Mulegé	26 53.8	111 58.2	7 27 53		1878	11 15				Unknown	West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation, 1880.
	Mulegé	26 53.8	111 58.2	7 27 53		1881	11 13.4	51 25.5	31010	38880	H. E. Nichols (C. &. G. S.)	Reports, 1881 A. 9; 1882 A. 13; 1885, A. 6; 1896 A. 1; 1897 A. 1.
	Mulegé	26 53.8	111 58.2	7 27 53		1890	11 1.2				Calculated Value	Report, 1889 A. 11.
59	High Sea	27 4	117 1	7484		1788	60				Gonzalo Lopez de Haro (NSN.)	Report, 1885 A. 7.
60	High Sea	27 5	116 31	7464		1779	8 30				Sr. Virey and Antonio Bucareli	Report, 1885 A. 7.
61	Isla de Asunción	27 6.4	114 18.2	7 37 13		1783	7 52				Saylors of New Spain Navy	Report, 1895 A. 1.
	Isla de Asunción	27 6.4	114 18.2	7 37 13		1839	10 46				Sir Edward Belcher.	Reports, 1895 A. 1. (Observó en San Bartolomé)
	Isla de Asunción	27 6.4	114 18.2	7 37 13		1873	11 26.4				W. Eimbeck (C. &. G. S.)	Reports, 1881 A. 9; 1895 A. 1.
	Isla de Asunción	27 6.4	114 18.2	7 37 13		1874	12 24.8				J. E. Craig y C. Seymour. (C. &. G. S.)	Report, 1895 A. 1.
	Isla de Asunción	27 6.4	114 18.2	7 37 13		1875	12 25				J. E. Craig y C. Seymour. (C. &. G. S.)	West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation, 1880.
	Isla de Asunción	27 6.4	114 18.2	7 37 13		1881	11 23	51 43.4	30940	39210	Tte. H. E. Nichols (C. &. G. S.)	Reports, 1881 A. 9; 1882 A. 13; 1885 A. 6; 1896 A. 1; 1897 A. 1.
	Isla de Asunción	27 6.4	114 18.2	7 37 13		1889	10 58.5	51 53	32090	40901	C. F. Pond. (C. &. G. S.)	Hydrogr. Office Public 101, Washington 1892. Reports, 1895 A. 1; 1896 A. 1; 1897 A. 1.
	Isla de Asunción	27 6.4	114 18.2	7 37 13		1890	11 10.8				Calculated Value	Report, 1889 A. 11.
62	Isla de San Marcos	27 10	112 6	7 28 24		1875	10 37.8				J. E. Craig y G. C. Reiter (C. &. G. S.)	Reports, 1882 A. 13; 1896 A, 1.
	Isla de San Marcos	27 10	112 6	7 28 24		1878	11 20				J. E. Craig y G. C. Reiter (C. &. G. S.)	West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation, 1880.
	Isla de San Marcos	27 10	112 6	7 28 24		1890	10 21				Calculated Value	Report, 1889 A. 11.
63	San Lucas	27 11.4	112 12.9	7 28 52								
64	San Ignacio	27 17.1	112 52.5	7 31 30								
65	Santa Rosalia	27 20	112 18	7 29 12	40	1892	10 51	52 40	31360	41116	L. Mottez.	Annales Hidrographiques, vol. 2 1893 Reports, 1896 A. 1; 1897 A. 1.
	Santa Rosalia	27 20	112 18	7 29 12	40	1929 -VII	12 11.5	53 41.2	28848	39253	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign. 1822 - 1929.
66	Caleta Santa Maria	27 25	112 20	7 29 18		1875	11 40				Unknown	West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation, 1880.
	Caleta Santa Maria	27 25	112 20	7 29 18		1881	10 6.3	52 56.8	30800	40794	Tte. H. E. Nichols (C. &. G. S.)	Reports, 1881 A. 9; 1882 A. 13; 1885 A. 6; 1896 A. 1; 1897 A. 1.
	Caleta Santa Maria	27 25	112 20	7 29 18		1890	10 51				Calculated Value	Report, 1889 A. 11.
67	San Bartolomé	27 39	114 52	7 39 28		1839	10 46	51 41	31260	39558	Sir. Edward Belcher.	Reports, 1885 A. 6; 1888, A. 7.
	San Bartolomé	27 39	114 52	7 39 28		1873	12 7.8				Z. L. Tanner v E. J. Young, (C. &. G. S.)	Report, 1882 A. 13.

		Ge	ographic Posi	tion	Altitud	Date	D	I	Н	Z		
No.	Location	Lat. N	Lon	g. W			NE	N	(0)	(2)	Observer	Reference
				h m s			• •	• •	0	0		
										BAJA CAL	IFORNIA	
	San Bartolomé	27 39	114 52	7 39 28		1875	11 30				Z. L. Tanner y E. J. Young. (C. &. G. S.)	West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation, 1880.
	San Bartolomé	27 39	114 52	7 39 28		1888	11 30	52 58	31640	41937	C. F. Pond. (C. &. G. S.)	Reports, 1896 A. 1; 1897 A. 1.
	San Bartolomé	27 39	114 52	7 39 28		1890	11 27				Calculated Value	Report, 1889 A. 11.
68	Punta San Carlos	28 0	112 48	7 31 12		1875	11 45.6				J. E. Craig y G. C. Reiter (C. &. G. S.)	Reports, 1882 A, 13; 1896 A. 1.
	Punta San Carlos	28 0	112 48	7 31 12		1890	11 23.4				Calculated Value	Report, 1889 A. 11.
69	Isla de Cedros	28 3.9	15 11.5	7 40 46		1714	2 15				Sauvague le Muet (Pirate)	Reports, 1889 A. 7; 1895 A.1.
	Isla de Cedros	28 3.9	15 11.5	7 40 46		1783	8 26				Saylors of New Spain Navy	Reports, 1889 A. 7; 1895 A.1.
	Isla de Cedros	28 3.9	15 11.5	7 40 46		1839	10 54				Sir Edward Belcher.	Phil. Trans. R. S.; Reports, 1888 A. 7; 1895 A. I (En San Bartolomé)
	Isla de Cedros	28 3.9	15 11.5	7 40 46		1873	11 45.2	52 30.5	29990	39096	Z. L. Tanner E. J. Young. (C. &. G. S.)	Reports, 1881 A. 9; 1885 A. 6; 1888 A. 7; 1895 A. 1.
	Isla de Cedros	28 3.9	15 11.5	7 40 46		1873	12 3.5				Z. L. Tanner E. J. Young. (C. &. G. S.)	Reports, 1886 A. 7; 1895 A. 1.
	Isla de Cedros	28 3.9	15 11.5	7 40 46		1874	12 9.2				J. E. Craig y C. Seymour. (C. &. G. S.)	Reports, 1886 A. 7; 1895 A. 1.
	Isla de Cedros	28 3.9	15 11.5	7 40 46		1878	11 40				J. E. Craig y C. Seymour. (C. &. G. S.)	West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation, 1880.
	Isla de Cedros	28 3.9	15 11.5	7 40 46		1881	11 58.6	52 55.0	30450	40287	Tte. H. E. Nichols (C. &. G. S.)	Reports, 1881 A. 9; 1882 A. 1; 1896 A. 1; 1897 A. 1.
	Isla de Cedros	28 3.9	15 11.5	7 40 46		1888	11 40 5	53 3.1	31220	41508	C. F. Pond. (C. &. G. S.)	Notices to Mariners. Nos. 40 y 52, 1888; Reports, A. 7; 1895 A. 1; 1896 A. 1; 1897 A. 1.
	Isla de Cedros	28 3.9	15 11.5	7 40 46		1888	11 38.4	52 54.7	31570	41761	C. F. Pond. (C. &. G. S.)	Notices to Mariners. Nos. 40 y 52, 1888; Reports, A. 7; 1895 A. 1; 1896 A. 1; 1897 A. 1.
	Isla de Cedros	28 3.9	15 11.5	7 40 46		1890	11 34.8				Calculated Value	Report, 1889 A. 11.
70	Calamahí (Calmallí)	28 11.0	113 24.5	7 33 38	300	1929 - VII	12 11 2	55 8.8	27712?	39794 ?	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisicion Campaign 1922 - 1929.
	Calamahí (Calmallí)	28 11.0	113 24.5	7 33 38	300							
71	Cabo Negro	28 14.4	114 6.4	7 36 26		1873	11 50.8				R. O. Sandoval (O. A. N.)	Reports 1881 A. 9; 1882 A. 13; 1896 A. 1.
	Cabo Negro	28 14.4	114 6.4	7 36 26		1877	11 50				R. O. Sandoval (O. A. N.)	West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation, 1880.
	Cabo Negro	28 14.4	114 6.4	7 36 26		1888	11 31.2	54 0.7	31930	43967	C. F. Pond. (C. &. G. S.)	Reports, 1896 A. 1; 1897 A. 1.
	Cabo Negro	28 14.4	114 6.4	7 36 26		1890	16 27.6				Calculated Value	Report, 1889 A. 11.
72	High Sea	28 16	119 3	7 56 12	0	1878	6 53				Gonzalo Lopez de Haro (NSN)	Report, 1885 A. 7.
73	High Sea	28 17	117 27	7 49 48	0	1779	9 30				Sr. Virey and Antonio Bucareli	Report, 1885 A. 7.
74	Isla San Benito	28 18	115 36	7 42 24		1874	11 18				J. E. Craig y C. Seymour. (C. &. G. S.)	Report, 1882 A. 13.
	Isla San Benito.	28 18	115 36	7 42 24		1889	11 26.4				C. F. Pond. (C. &. G. S.)	Reports, 1896 A. 1; 1897 A. 1.
75	Mezquital.	28 24.5	113 50.8	7 35 23								
76	Bahía Santa Teresa.	28 25.1	112 51.9	7 31 28		1875	12 0				unknown	West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation, 1880.
	Santa Teresa Bay	28 25.1	112 51.9	7 31 28		1881	11 42	53 49.0	30300	41425	H. E. Nichols (C. &. G. S.)	Reports, 1881 A. 9; 1882 A. 13; 1885 A. 6; 1896 A. 1; 1897 A. 1.
	Santa Teresa Bay	28 25.1	112 51.9	7 31 28		1890	11 27				Calculated Value	Report, 1889 A. 11.
77	Rosalía Bay	28 40	114 14	7 36 56		1888	9 26.4	56 7.2	29540	43990	C. F. Pond. (C. &. G. S.)	Reports, 1896 A. 1; 1897 A. 1.
	Rosalia Bay	28 40	114 14	7 36 56		1890	9 23.4				calculated Value	Report, 1889 A. 11.
78	Cabo las Animas	28 48	113 13	7 32 52		1873	12 35.4				G. C. Reiter y J. E. Craig. (C. &. G. S.)	Reports, 1882 A. 13; 1896 A. 1
	Cabo las Animas	28 48	113 13	7 32 52		1877	12 15				G. C. Reiter y J. E. Craig. (C. &. G. S.)	West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation, 1880.
	Cabo las Animas	28 48	113 13	7 32 52		1890	12 12.6				Calculated Value	Report, 1889 A. 11.
79	Isla Rasa	28 49	113 0	7 32 0		1875	12 30				G. C. Reiter and J. E. Craig. (C. &. G. S.)	Reports, 1882 A. 13: 1896 A. 1.
	Isla Rasa	28 49	113 0	7 32 0		1890	12 7.8				Calculated Value	Report, 1889 A. 11.
80	Playa María Bay	28 55	114 32	7384		1874	11 21.6				J. E. Graig y C. Seymour. (C. &. G. S.)	Report, 1882 A. 13.

		Ge	ographic Posit	ion	Altitud	Date	D	I	н	Z		
No.	Location	Lat. N	Lon	g. W			NE	N	(2)	(2)	Observer	Reference
				h m s			• •	• •	0	(D)		
										BAJA CAL	IFORNIA	
	Playa María Bay	28 55	114 32	7384		1875	11 55 ?				J. E. Graig y C. Seymour. (C. &. G. S.)	West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation, 1880.
	Playa María Bay	28 55	114 32	7384		1889	10 21.6	55 10.9	30240	43480	C. F. Pond. (C. &. G. S.)	Reports, 1896 A. 1; 1897 A. 1.
81	Isla de Guadalupe	28 55.3	118 15.1	7 53 0		1881	12 54.8	53 38.9	29610	40233	Tte. H. E. Nichols (C. &. G. S.)	Reports, 1881 A. 9; 1882 A. 13; 1885 A. 6; 1896 A. 1; 1897 A. 1.
	Isla de Guadalupe	28 55.3	118 15.1	7 53 0		1890	12 39.6				Calculated Value	Report, 1889 A. 11.
82	Los Angeles Bay	28 57	113 35	7 34 20		1873	12 41.4				H. P. Tuttle y E. J. Young. (C. &. G. S.)	Reports, 1882 A. 13; 1896 A. 1.
	Los Angeles Bay	28 57	113 35	7 34 20		1877	12 20				H. P. Tuttle y E. J. Young. (C. &. G. S.)	West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation, 1880.
	Los Angeles Bay	28 57	113 35	7 34 20		1890	12 18.6				Calculated Value	Report, 1889 A. 11.
83	Punta Colorada	28 58.1	113 27.7	7 33 51								
84	Punta Prieta	28 58.9	114 11.8	7 36 47								
85	Isla del Angel de la Guarda (Punta Sur)	29 0	113 12	7 32 48		1875	12 27.2				J. E. Craig y G. C. Reiter (C. &. G. S.)	Reports, 1882 A, 13; 1896 A. 1.
	Isla del Angel de la Guarda	29 0	113 12	7 32 48		1890	12 6.6				Calculated Value	Reports, 1882 A, 13; 1896 A. 1.
	Isla del Angel de la Guarda	29 32	113 30	7340		1875	12 31 8				J. E. Craig y G. C. Reiter (C. &. G. S.)	Reports, 1882 A, 13; 1896 A. 1.
	Isla del Angel de la Guarda	29 32	113 30	7340		1890	12 21				Calculated Value	Report, 1889 A. 11.
86	Los Remedios Bay	29 14	113 40	7 34 40		1873	12 33.6				H. P. Tuttle y E. J. Young. (C. &. G. S.)	Reports, 1882 A. 13 ; 1896 A .1.
	Los Remedios Bay	29 14	113 40	7 34 40		1890	12 22 8				Calculated Value	Report, 1889 A. 11.
87	Chapala	29 22.7	114 22.6	7 37 30							Calculated Value	• • • •
88	Punta Canoas	29 23	115 11	7 40 44		1877	12 30				Calculated Value	West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation, 1880.
89	High Sea	29 23	119 16	7574	0	1790	8 30				Salvador Fidalgo (NSN)	Report, 1885 A. 7.
90	Isla Mejia	29 33	113 35	7 34 20		1875	12 4.8				G. C. Reiter y C. Seymour. (C. &. G. S.)	Reports, 1882 A. 13; 1896 A. 1.
	Isla Mejia	29 33	113 35	7 34 20		1877	12 30				G. C. Reiter y C. Seymour. (C. &. G. S.)	West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation, 1880.
	Isla Mejia	29 33	113 35	7 34 20		1890	11 54				Calculated Value	Report, 1889 A. 11.
91	High Sea	29 45	116 14	7 44 56	0	1788	10 0				Com. D. Esteban Martinez. (NSN)	Report, 1895 A. 1.
	High Sea	29 46	118 56	7 55 44	0	1779	10 0				Sr. Virey and Antonio Bucareli	Report, 1895 A. 1.
93	Isla de San Gerónimo	29 47.2	115 47.7	7 43 11		1877	12 35 ?				H. E. Nichols (C. &. G. S.)	West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation, 1880.
	Isla de San Gerónimo	29 47.2	115 47.7	8 43 11		1881	12 42.2	54 30	29650	41568	H. E. Nichols (C. &. G. S.)	Reports, 1881 A.9; 1882 A. 13; 1885 A. 6; 1896 A. 1; 1897 A. 1.
	Isla de San Gerónimo	29 47.2	115 47.7	9 43 11		1888	12 23.4	54 52	30910	43926	C. F. Pond. (C. &. G. S.)	Report, 1889 A. 11.
	Isla de San Gerónimo	29 47.2	115 47.7	10 43 11		1890	12 22.2				Calculated Value	Report, 1889 A. 11.
94	Cataviña	29 51.0	114 55 7	7 39 43								
95	Isla de San Luis Gonzaga (North)	29 58	114 26	7 37 44		1873	12 30				H. P. Tuttle y E. J. Young. (C. &. G. S.)	Reports, 1882 A. 13; 1896 A. 1.
	Isla de San Luis Gonzaga (North)	29 58	114 26	7 37 44		1890	12 19.2				Calculated Value	Report, 1889 A. 11.
	Isla de San Luis Gonzaga (South)	29 50.9	114 25.4	7 37 42		1881	12 27.3	55 11.3	29620	42597	H. E. Nichols (C. &. G. S.)	Reports, 1881 A.9; 1882 A. 13; 1885 A. 6; 1896 A. 1; 1797 A. 1.
	Isla de San Luis Gonzaga (South)	29 50.9	114 25.4	7 37 42		1890	12 19.2				Calculated Value	Report, 1889 A. 11.
96	Rosario	30 0	115 45.6	7 43 2	20	1929 - VI	14 39.5	55 41.1	28206	41325	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign. 1822 - 1929.
97	San Quintín	30 28	115 55.3	7 43 41		1939		54 29.2	29820	41786	Sir Edward Belcher.	Reports, 1885 A. 6; 1897 A 1.

No.	Location
No.	Location
No.	Location
No.	Location San Quintín
No.	Location San Quintín San Quintín
No.	Location San Quintín San Quintín San Quintín
No.	Location San Quintín San Quintín San Quintín Punta San Fermí

POSGRADO EN CIENCIAS DE LA TIERRA

		Ge	ographic Posit	ion	Altitud	Date	D	I	н	Z		
No.	Location	Lat. N	Lon	g. W	m		NE	N	(2)	(0)	Observer	Reference
				h m s			• •	• •	(I)	07		
										BAJA CAL	IFORNIA	
	San Quintín	30 28	115 55.3	7 43 41		1873	13 0				Z. L. Tanner y E. J. Young. (C. &. G. S.)	Reports, 1882 A. 13; 1896 A. 1.
	San Quintín	30 28	115 55.3	7 43 41		1877	12 50				Z. L. Tanner y E. J. Young. (C. &. G. S.)	West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation, 1880.
	San Quintín	30 28	115 55.3	7 43 41		1890	12 49 2				Calculated Value	Report, 1889 A. 11.
98	Punta San Fermín	30 25	114 40	7 38 40		1873	11 13.8				H. P. Tuttle y E. J. Young. (C. &. G. S.)	Report, 1896 A. 1.
	Punta San Fermín	30 25	114 40	7 38 40		1890	11 3.0				Calculated Value	Report, 1889 A. 11.
99	Isla San Martín	30 28.9	115 6.8	7 44 27		1873	13 20 5				W. Eimbeck (C. &. G. S.)	Report, 1881 A. 9.
	Isla San Martín	30 28.9	115 6.8	7 44 27		1877	12 55				W. Eimbeck (C. &. G. S.)	West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation, 1880.
	Isla San Martín	30 28.9	115 6.8	7 44 27		1881	12 55.7	55 34.4	29400	42895	Tte. H. E. Nichols (C. &. G. S.)	Reports, 1881 A. 9; 1882 A. 13; 1885 A. 6; 1896 A. 1; 1897 A. 1.
	Isla San Martín	30 28.9	115 6.8	7 44 27		1888	12 23.4	55 21.0	30840	44622	C. F. Pond. (C. &. G. S.)	Reports, 1896 A. 1; 1897 A. 1.
	Isla San Martín	30 28.9	115 6.8	7 44 27		1890	12 22.0				calculated Value	Report, 1889 A. 11.
100	Alta Mar	30 37	116 22	7 45 28	0	1788	8 0				Gonzalo Lopez de Haro (Mar N. E.)	Report, 1885 A. 1.
101	San Felipe	30 52	114 36.7	7 39 7	10	1929 - VI	14 17.8	56 51.8	27687	42413	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign. 1822 - 1929.
102	Punta San Felipe	31 2.1	114 49.8	7 39 19		1877	13 0				Tte. H. E. Nichols (C. &. G. S.)	West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation, 1880.
	Punta San Felipe	31 2.1	114 49.8	7 39 19		1881	12 57.2	56 25.2	28920	43561	Tte. H. E. Nichols (C. &. G. S.)	Reports, 1881 A. 9; 1882 A. 13; 1885 A. 6; 1896 A. 1; 1897 A. 1.
103	High Sea	30 56	119 51	7 59 24	0	1779	10 30				Sr. Virey and Antonio Bucareli	Report, 1885 A. 7.
104	Cabo Colnett	30 58	116 17	7 45 8		1877	12 55				C. F. Pond. (C. &. G. S.)	West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation, 1880.
	Cabo Colnett	30 58	116 17	7 45 8		1889	13 15				C. F. Pond. (C. &. G. S.)	Reports, 1896 A. 1; 1897 A. 1.
105	High Sea	31 2	120 24	8 1 36	0	1790	90				Salvador Fidalgo (NSN.)	Report, 1885 A. 7.
106	San Antonio del Mar	31 6.3	116 16.3	7 45 5	5						Unknown	Unknown
107	El Alamo	31 29.7	116 9.7	7 44 39							Unknown	Unknown
108	Santo Tomás Bay	31 33	116 41	7 46 44		1877	12 50				C. F. Pond. (C. &. G. S.)	West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation, 1880.
	Santo Tomás Bay	31 33	116 41	7 46 44		1889	13 46.2	57 10.5	29420 ?	45607	C. F. Pond. (C. &. G. S.)	Reports, 1896 A. 1; 1897 A. 1.
109	High Sea	31 44	118 40	7 54 40		1788	8 30				Gonzalo Lopez de Haro	Report, 1885 A. 7.
110	Ensenada de Todos Santos	31 51.2	116 38.0	7 46 32	0	1873	12 41.4				Z. L. Tanner and E. J. Young. (C. &. G. S.)	Report, 1896 A. 1.
	Ensenada de Todos Santos	31 51.2	116 38.0	7 46 32		1877	13 0				Z. L. Tanner and E. J. Young. (C. &. G. S.)	West Coast of Mexico. U. S. Hydrogr. Office, Bureau of Navigation, 1880.
	Ensenada de Todos Santos	31 51.2	116 38.0	7 46 32		1881	12 0.8	58 30.6	27870	45497	H. E. Nichols (C. &. G. S.)	Reports, 1881 A. 9; 1882 A. 13; 1885 A. 6; 1896 A. 1; 1897 A. 1.
	Ensenada de Todos Santos	31 51.2	116 38.0	7 46 32		1890	11 58.8				Calculated Value	Report, 1889 A. 11.
	Ensenada de Todos Santos	31 51.2	116 38.0	7 46 32		1929 - VI	13 35.1	58 2.0	26908	43118	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign. 1822 - 1929.
111	Islas Coronados.	32 25	117 15	7 49 0		1889	13 9 6	57 49.8	29580	47027	C. F. Pond. (C. &. G. S.)	Reports. 1896 A. 1; 1897 A. 1.
112	Tijuana	32 30.0	117 1.8	7 48 7	100	1929 - VI	15 4.1	58 9.0	27041	43528	R. O. Sandoval (O. A. N.)	Magnetic Data Accquisition Campaign. 1822 - 1929.
113	Mexicali	32 40	115 31	7 42 4	1	1905	14 4.9	58 37.9	27530	45157	C. &. G. S. (in Calexico)	U. S. Magnetic Tables and Charts. 1908.
	Mexicali	32 37.5	115 28.6	7 41 55		1929 - VI	14 40.3	58 49.1	26590	43937	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign. 1822 - 1929.

		Ge	ographic Posi	tion	Altitud	Date	D	I	н	Z		
No.	Location	Lat. N	Lon	g. W			NE	N	~		Observer	Reference
				hms	m		• •	• •	(1)	(7)		
										CAMP	ECHE	
1	Ciudad del Carmen	18 38	91 50	6 7 20	2	1880	6 39.9	44 18.3	33900	33087	S. M. Ackley. (C. &. G. S.).	Reports, 1881 A. 9; 1885 A. 6; 1896 A. 1; 1897 A. 1.
	Ciudad del Carmen	18 38	91 50	6 7 20		1890	6 3.6				Calculated Value	Report, 1889 A. 11.
	Ciudad del Carmen	18 38.7	91 54	6 7 36		1907 - IX	6 17.2	45 11 0	32090	32296	Abel Diaz Covarrubias. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Ciudad del Carmen	18 40.4	91 54	6736		1930	7 44.3	47 31.7	30887	33740	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Ciudad del Carmen	18 39	91 50	6720		1942 - V	8 0.0	47 51.0	30530	33729	R. O. Sandoval (O. A. N.)	Magnetic Observations in the American Republics, 19411. Serial 677 (C. &. G. S).
	Ciudad del Carmen	18 38.8	91 50.2	6721		1946 - V	7 51.4	47 47.4	30412	33528	R. O. Sandoval (O. A. N.)	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
2	Lerma	19 49	90 34	6 2 13		1847	8 1.8				Barnet (C. &. G. S.)	Report, 1882 A. 13; y Phil. Trans. R. S., 1874
	Lerma	19 49	90 34	6 2 13		1890	6 9.0				Calculated Value	Report, 1889 A. 11.
3	Campeche	19 50.5	90 33.3	6 2 13	2	1880 - III	6 36.7	46 20.7	33330	34933	S. M. Ackley. (C. &. G. S.).	Reports, 1881 A. 9; 1882 A. 13; 1885 A. 6; 1896 A. 1; 1897 A. 1.
	Campeche	19 50.5	90 33.3	6 2 13	2	1890	6 9.0				Calculated Value	Report, 1889 A. 11.
	Campeche	19 50.9	90 32.0	628	2	1924 - VIII	7 21.6	49 21.1	30745	35809	J. Lindsay (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 1926
	Campeche	19 50.8	90 32.0	628	2	1930 - XI	7 30.1	49 40.1	30221	35595	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Campeche	19 50.0	90 32.0	628	2	1936 - XII	7 48.4	50 2.8	29987	35796	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Campeche	19 50.8	90 30 35	622	5	1941 - IX	7 45.4	49 59.0			A. Vaca (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Campeche	19 50.8	90 30 35	622	5	1945 - II	7 43.9	49 54.7	29809	35414	W. E. Wiles. (C. &. G. S.)	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
										CHIA	PAS	
1	Tapachula	14 54.8	92 13.6	6854	168	1930 - XI	7 57.4	42 11.5	31836	28858	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
2	Tonalá	16 5.2	93 45.0	6156		1907 - IX	7 19 5	41 8.6	33090	28910	Abel Diaz Covarrubias. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
3	Arriaga (Jalisco).	16 13.0	93 54.0	6 15 36	66	1930 - XI	8 19.6	43 38.6	31825	30356	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
4	Tuxtla Gutiérrez	16 45.3	93 6.8	6 12 27	530	1930 - XI	8 7.6	44 32.6	31536	31055	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
				-						сніни	AHUA	1
1	Escalón	26 44.5	104 19.0	6 57 16		1906 - ХП	10 4.4	53 53.4	30131	41305	J. P. Ault. (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1905 1910.
2	Santa Bárbara	26 49.1	105 47.0	738		1906 - XII	10 35.4	53 48.9	30087	41133	J. P. Ault. (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1905 1910.
3	Jiménez	27 6	104 57	6 59 48	1381	1902 - VII	9 57.6		30304		M. Moreno Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Jiménez	27 9.2	104 54	6 59 36	1381	1906 - XII	10 24.8	54 13.3	29944	41551	J. P. Ault. (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1905 1910.
	Jiménez	27 7.9	104 55.5	6 59 38	1381	1923 - IX	11 41.4	54 34.7	30525	42918	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Jiménez	27 7.7	104 55.6	6 59 38	1381	1933 - VII	11 35.3	55 4.1	28456	40741	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
4	Miñaca	28 27.4	107 28.0	7 9 56	2053	1923 - X	11 29.4	55 4.1	28456	40741	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
5	Chihuahua	27 38.4	106 4 5	7 4 18	1430	1902 - VII	10 31.0	55 50.6	29393	43321	M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Chihuahua Est A	28 37 5	105 6.0	7 4 24	1430	1906 - ХП	13 28.4	54 27.4	29920	48879	J. P. Ault. (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. I, Magn. Results. 1905 - 1910.
	Chihuahua Est B	28 37.7	105 6.0	7 4 24	1430	1906 - XII	12 12.8	55 57. 6	29170	43181	J. P. Ault. (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. I, Magn. Results. 1905 - 1910.
	Chihuahua Est B	27 37.2	106 4.8	7 4 19	1430	1923 - IX - X	13 17.5	55 33.8	30649	44705	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Chihuahua Est B	28 38.2	106 4.8	7 4 19	1430	1923 - X	12 3.1				R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Chihuahua Est A	28 37.6	106 5	7 4 20	1430	1924 - VIII	14 50.9	55 3.6	28839	41278	J. W. Green (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. I, Magn. Results. 1905 - 1910.
	Chihuahua Est B	28 38.9	106 4	7 4 16	1430	1924 - VIII	13 3.8	56 21.8	28252	42464	J. W. Green (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. I, Magn. Results. 1905 1910.
	Chihuahua Est C	28 37.6	106 5	7 4 20	1430	1924 - VIII	14 22.3	53 29.4	29755	40197	J. W. Green (C. I. W.)	researches of the Depart. of Tent. Magn. Vol. 1, Magn. Results. 1905 -

		Ge	ographic Posit	ion	Altitud	Date	D	I	Н	Z		
No.	Location	Lat. N	Lon	g. W	m		NE	N	(2)	(2)	Observer	Reference
				h m s			• •	• •	(I)	(I)		
										CHIHU.	AHUA	
	Chihuahua Est C	28 40.3	106 4.8	7 4 19	1430	1933 - VII	11 48.5	56 14.8	28338	42406	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Chihuahua Est C	28 39.8	106 5.0	7 4 20	1430	1940 - IV	11 45 0	55 57.3	28324	41921	R. Jurado (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Chihuahua Est C	28 38.2	106 5 7	7 4 23	1430	1946 - VII	11 32.4	56 47.0	27779	42424	A. Vaca (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
6	Villa Aldama.	28 49.9	105 53.5	7 3 34	1430	1923 - X	11 46.4	56 17.3	30159	45201	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
7	Temósachic.	28 58.8	107 51	7 11 24	1900	1906 - XII	11 25 0	55 50.6	29242	43098	J. P. Ault. (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. I, Magn. Results. 1905 - 1910.
8	Madera.	29 16.0	107 52.0	7 11 28		1923 -X	12 15.9	56 14.3	29359	43919	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
9	Ojinaga	29 34	104 25	6 57 40	841	1852	10 16.2	55 41			W. H. Emory. (C. &. G. S.)	Reports, 1882 A. 13; 1885 A. 6; 1896 A. 1; 1897 A. 1; U. S. &. Mex. Bound Survey.
	Ojinaga	29 34	104 25	6 57 40	841	1890	9 49.2				Calculated Value	Report, 1889 A. 11.
	Ojinaga	29 34	104 25	6 57 40	841	1927	11 33				R. O. Sandoval (O. A. N.)	Magnetic Declination in Texas in 1927. Public. Serial. No. 417.
	Ojinaga	29 33.9	104 25.4	6 57 42	841	1933	11 58.3	57 56.8	27367	43706	R. O. Sandoval (O. A. N.)	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Ojinaga	23 33.9	104 25.4	6 57 42	841	1946 - VII	12 13.4	57 53.2	27051	43101	A. Vaca (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
10	Nueva Casas Grandes.	30 25.3	107 55.2	6 11 41	1473	1906 - XII	11 51.4	27 24.0	28518	44592	J. P. Ault. (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1905 - 1910
	Nueva Casas Grandes.	30 25.5	107 55	7 11 40	1473	1924 - VIII	12 26.2	57 49.4	27624	43906	J. W. Green (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926.
	Nueva Casas Grandes.	30 25.5	107 54.8	7 11 39	1473	1933 - VII	13 11.7	57 34.7	27550	43376	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
11	El Espía	31 21	107 56	7 11 44		1855	12 4.8	57 49.0	28780	75731	W. H. Emory. (C. &. G. S.)	Reports, 1885 A. 6; 1896 A. 1; 1897 a. 1; U. S. &. Mex. Bound Surv.
	El Espía	31 21	107 56	7 11 44		1890	11 34.8				Calculated Value	Report, 1889 A. 11.
12	Ciudad Juárez (Paso del Norte).	31 44	106 29	7 5 56	1144	1852	12 24.0	59 5.0			W. H. Emory. (C. &. G. S.)	Reports, 1886 A. 12, 1888 A. 7; 1895 A. 1; U. S. &. Mex. Bound. Surv. (En el Paso, Texas)
	Ciudad Juárez (Paso del Norte).	31 44	106 29	7 5 56	1144	1855	11 55 2	58 39.0	28600	46946	W. H. Emory. (C. &. G. S.)	Reports, 1895 A. 1; 1896 A. 1; U. S. &. Mex. Bound surv.
	Ciudad Juárez (Paso del Norte).	31 44	106 29	7 5 56	1144	1859	12 25.0				J. H. Clarck (C. &. G. S.)	Reports, 1886 A. 12; 1888 A. 7; 1895 A. 1; Report Commissioner of Gral. Land. Office, 47 th Congr. 1882.
	Ciudad Juárez (Paso del Norte).	31 44	106 29	7 5 56	1144	1878	12 25.0				Report of Chief of Engineers, U. S. A. 1879 Vol. III (C. &. G. S.)	Reports, 1886 A. 12: 1888 A. 7; 1895 A. 1. (En Fort Bliss)
	Ciudad Juárez (Paso del Norte).	31 44	106 29	7 5 56	1144	1884	12 5.0				G. Davidson at C. &. G. S. Office. (C. &. G. S.)	Reports, 1886 A. 12; 1888 A. 7; 1895 A. 1. (En el Paso Texas).
	Ciudad Juárez (Paso del Norte).	31 44	106 29	7 5 56	1144	1888	11 53.8	58 52.3	28020	46397	J. B. Baylor. (C. &. G. S.) M. S. in archives of C. &. G. S.	Report, 1895 A. 1. (En Fort Bliss.)
	Ciudad Juárez (Paso del Norte).	31 44	106 29	7 5 56	1144	1895	11 46.0	59 3.0	28010	46709	E. Smith. (C. &. G. S.)	Report, 1895 A. 1. (Station in City Park, El Paso Texas).
	Ciudad Juárez (Paso del Norte).	31 44.2	106 29.3	7 5 57	1144	1902 - VII		59 21.0			M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	citudad Startez (Faso	31 44.2	106 29.3	7 5 57	1144	1927	12 48.0				R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Ciudad Juárez (Paso del Norte).	31 43.8	106 29.3	7 5 57	1144	1933 - VII	13 14.6	59 53.1	26476	45646	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Ciudad Juárez (Paso del Norte).	31 43.2	106 29.5	7 5 58	1144	1940 - IV	13 0.8		26324		R. Jurado (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Ciudad Juárez (Paso del Norte)	31 44.3	?	?	1144	1946 - VII	12 47.1	59 51.6	26016	44808	A. Vaca (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico

		Geographic Position				Data	D	T	u	7		
No	Location	Lat N	I I on	e W	Andtud	Date	NE	N	н	2	Observer	Reference
	Location	Lat. IN	201	hms	m		0 1	0 1	(Y)	(Y)	ood to	Activity of the second s
										COAH	UILA	1
1	San Juan Nepomuceno	24 42.6	100 54	6 43 36		1900 - V	9 1.1	51 29.3	30511	38342	Manuel Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
2	Saltillo	25 25.4	101 0	6 43 33	1599	1900 - V	8 39.4		30726		M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Saltillo	25 25.2	100 18	6440	1599	1907 - XII	9 3.2	52 57.8	30320	40182	Abel Diaz Covarrubias. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Saltillo	25 25.6	100 51.2	6 43 33	1599	1922 - VII	9 58.6	53 58.6	29861	41065	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Saltillo	25 25.1	101 00	6440	1599	1933 - VI	10 10.7	52 2.3	28942	39891	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Saltillo	25 25.1	101 00	6440	1599	1939 - X	10 19.3	53 59.4	28703	39492	A. Vaca (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
3	Torreón	25 32 2	103 28.0	6 53 52	1137	1923 - IX	10 18.5	52 54.3	30909	40876	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
4	Parras	25 38.0	102 9.0	6 48 36		1907 - II	9 25.5	52 39.5	30720	40265	Abel Diaz Covarrubias. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
5	Sam Pedro de las Colonias	25 45.9	102 59	6 51 56		1906 - XII	9 42.5	53 2.0	30570	40617	J. P. Ault. (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. I, Magn. Results. 1905 - 1910.
6	Monclova	26 54.2	101 24.7	6 45 39	587	1922 - VII	10 11.3	55 32.0	29596	43116	R. O. Sandoval (O. A. N.)	Magnetic Data Aqcuisition Campaign, Mexico
7	Cuatro Ciénegas	26 59.6	102 4	6 48 16		1907 - I	9 42.4	54 38.4	29914	42155	J. P. Ault. (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. I, Magn. Results. 1905 - 1910.
8	Sierra Mojada	27 18.9	103 37	6 54 28	1256	1906 - XII	10 1.2	54 39.4	29872	42122	J. P. Ault. (M. I. W.)	Researches of the Depart. of Terr. Magn. Vol. I, Magn. Results. 1905 - 1910.
9	San Juan de Sabinas	27 52.7	101 5.0	6 44 20		1907 - I	9 47.8	55 59.5	29303	43430	J. P. Ault. (M. I. W.)	Researches of the Depart. of Terr. Magn. Vol. I, Magn. Results. 1905 - 1910.
	San Juan de Saomas	27 51.4	101 6 0	6 44 24		1924 - VI	10 31.0	56 40 6	28248	43220	J. W. Green (C. I. W.)	Researches of the Depart of Tell, Magn. Vol. VI, Magn. Results. 1921 -
	San Juan de Sabinas Est B	27 51.4	101 60	6 44 24		1924 - VI	10 31.4	56 37.4	28226	42845	J. W. Green (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926.
10	Piedras Negras	28 42.1	100 30.7	6423	225	1922 - VII	10 15 2	57 12.3	28262	43863	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Piedras Negras	28 42.1	100 30.7	6423	225	1927	10 24				R. O. Sandoval (O. A. N.)	Magnetic Declination in Texas in 1927. Public. Serial. No. 417.
	Piedras Negras	28 42.8	100 30.9	6423	225	1933 - VI	10 37.6	57 53.4	27423	43699	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
11	North to Las Vacas	29 22.2	100 53.7	6 43 35		1927	10 50				R. O. Sandoval (O. A. N.)	Magnetic Declination in Texas in 1927. Public. Serial. No. 417.
12	Portales	29 48.5	101 33.6	6 46 14		1927	10 33				R. O. Sandoval (O. A. N.)	Magnetic Declination in Texas in 1927. Public. Serial. No. 417.
										COLI	MA	
1	Manzanillo	19 3	104 20	6 57 20	1	1587	2 0				Thomas Cavendish. (Pirate).	Terrestrial Magnetism, vol. 13, pag. 103.
	Manzanillo	19 2.8	104 20.5	6 57 22	1	1880 - XI - XII	8 5	43 15.8	33750	31763	H. E. Nichols (C. &. G. S.)	Reports, 1881 A. 9; 1882 A. 13; 1885 A. 5; 1895 A. 1; 1897 A. 1.
	Manzanillo	19 3.0	104 18.0	6 57 12	1	1907 - II	8 32.4	43 58.3	33000	31836	M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Manzanillo	19 3.3	104 19.5	6 57 3	1	1931 - XII	10 28.8	45 3.4	31563	31624	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
2	Colima	19 12.0	103 51.0	6 55 24	460	1907 - II	8 25.6	44 3.2	33120	32043	M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Colima	19 11.7	103 42.4	6 54 50	460	1931 - XII	9 57.8	45 3.9	31513	31585	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
										DISTRITO	FEDERAL	
1	Cerro de San Miguel	19 16	99 19	6 37 16		1903	7 16.6	46 47.8	42220	34307	M. Moreno y Anda (O. A. N.)	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
2	Cuajimalpa	19 22.4	99 17.0	6378		1903	7 14.7				Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Cuajimalpa	19 22.4	99 17.0	6378		1904	7 22.9	44 55.3	30050	32959	Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Cuajimalpa	19 22.4	99 17.0	6378		1905	7 36.8	44 59.2	31025	33009	Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Cuajimalpa	19 22.4	99 17.0	6378		1906	7 37.5	45 4.3			Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Cuajimalpa	19 22.4	99 17.0	6378		1907	7 51.3	45 4.6			Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Cuajimalpa	19 22.4	99 17.0	6378		1907	7 45.6	45 1.6	32034	32964	Magnetic Observatory	Department of Geomagnetism, institute of Geophysics (reational

		Ge	ographic Posit	tion	Altitud	Date	D	I	Н	Z		
No.	Location	Lat. N	Lon	g. W			NE	N	(2)	(2)	Observer	Reference
				h m s			• •	• •	0	0		
										DISTRITO	FEDERAL	
	Cuajimalpa	19 22.4	99 17.0	6378		1907		45 3.4			Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Cuajimalpa	19 22.4	99 17.0	6378		1908	7 56.1				Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Cuajimalpa	19 22.4	99 17.0	6378		1909	8 3.3				Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Cuajimalpa	19 22.4	99 17.0	6378		1910	8 14.3				Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Cuajimalpa	19 22.4	99 17.0	6378		1911	8 10.1	45 34.9	32760	33432	Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National
\vdash												Department of Geometricity of Mexico)
	Cuajimalpa	19 22.4	99 17.0	6378		1912	8 16.3	45 38.0	32741	33473	Magnetic Observatory	University of Mexico)
3	Cuajimalpa	19 21.5	99 18.0	6 37 12		1926 - V	8 48.8	46 18.1	32274	33775	R. O. Sandoval (O. A. N.)	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
4	Tacubaya	19 24.3	99 11.7	6 36 47	2290	1889	7 49.8	44 6.9			Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Tacubaya	19 24.3	99 11.7	6 36 47	2290	1890	7 51.8	44 6.9			Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Tacubaya	19 24.3	99 11.7	6 36 47	2290	1891	7 46.2	44 4.2			Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Tacubaya	19 24.3	99 11.7	6 36 47	2290	1892	7 47				Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Tacubaya	19 24.3	99 11.7	6 36 47	2290	1893	7 41.4	44 16.2	33474	32631	Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National
\vdash												Department of Geomagnetism Institute of Geophysics (National
	Tacubaya	19 24.3	99 11.7	6 36 47	2290	1894	7 43.9	44 16.6	33480	32645	Magnetic Observatory	University of Mexico)
	Tacubaya	19 24.3	99 11.7	6 36 47	2290	1895	7 45.7	44 23.2	33325	32619	Magnetic Observatory	Department of Geomagnetism, institute of Geophysics (National University of Mexico)
	Tacubaya	19 24.3	99 11.7	6 36 47	2290	1896	7 43.8				Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Tacubaya	19 24.3	99 11.7	6 36 47	2290	1897	7 48.8				Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Tacubaya	19 24.3	99 11.7	6 36 47	2290	1898	7 51 0	44 29.3	33275	32686	Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Tacubaya	19 24.3	99 11.7	6 36 47	2290	1899	7 47.3				Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Tacubaya	19 24.3	99 11.7	6 36 47	2290	1900	7 44.1				Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Tacubava	19 24.3	99 11.7	6 36 47	2290	1902		44 44.0			Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National
\vdash												University of Mexico)
5	Tacubaya	19 24.3	99 11.7	6 36 47	2290	1926 - IV	9 15.1	47 3.1	32141	34529	R. O. Sandoval (O. A. N.)	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
6	México	19 26	99 8	6 36 32	2240	1769	5 27.5				Antonio Alzate.	National Academy of Science Memories
	México	19 26	99 8	6 36 32	2240	1775	6 42				J. Velázquez de León	Magnetic Observatory within National Meteorological. Vicente Reyes. 1884.
\vdash	México	19 26	99 8	6 36 32	2240	1778		38 0			Antonio Alzate.	National Academy of Science Memories
	México	19.26	99.8	6 36 32	2240	1799		42 10			Alejandro de Humboldt	staggene coservatory within tvational streteorological, vicence keyes.

No.	Location	
_		
	México	
	México México	
	México México México	
	México México México México	

POSGRADO EN CIENCIAS DE LA TIERRA

		Ge	ographic Posit	ion	Altitud	Date	D	I	н	Z		
No.	Location	Lat. N	Lon	g. W	m		NE	N	(0)	(2)	Observer	Reference
				hms			• •	• •	0	0		
										DISTRITO	FEDERAL	
	México	19 26	99 8	6 36 32	2240	1803		42 10	30850	27941	Alejandro de Humboldt	Magnetic Observatory within National Meteorological. Vicente Reyes. 1884.
	México	19 26	99 8	6 36 32	2240	1804	88				Alejandro de Humboldt	Magnetic Observatory within National Meteorological. Vicente Reyes. 1884.
	México	19 26	99 8	6 36 32	2240	1849	8 30.2				Conde de la Cortina	Magnetic Observatory within National Meteorological. Vicente Reyes. 1884.
	México	19 26	99 8	6 36 32	2240	1850	8 35.2				Velázquez y Terán	F. Dias Cobarrubias, Topografia y Geodesia T. lo. 1869.
	México	19 26	99 8	6 36 32	2240	1856 - XII	8 46	41 26	34930	30831	A. Sontag	Magnetic Observatory within National Meteorological. Vicente Reyes. 1884.
	México	19 26	99 8	6 36 32	2240	1858	8 22.3				Almazan	Magnetic Observatory within tvational intereorological. Vicente Reyes.
	México	19 26	99 8	6 36 32	2240	1860	8 30				Salazar Ilaguerri	Magnetic Observatory within National Meteorological. Vicente Reyes. 1884.
	México	19 26	99 8	6 36 32	2240	1862	8 34.8				Iglesias	Magnetic Observatory within National Meteorological. Vicente Reyes. 1884.
	México	19 26	99 8	6 36 32	2240	1866	8 8.5				Ponce de Leon	F. Dias Cobarrubias, Topografia y Geodesia T. lo. 1869.
	México	19 26	99 8	6 36 32	2240	1866	8 15				I. Cornejo.	Magnetic Observatory within National Meteorological. Vicente Reyes. 1884.
	México	19 26	99 8	6 36 32	2240	1867	8 9.3				Ponce de Leon	F. Dias Cobarrubias, Topografia y Geodesia T. lo. 1869.
	México	19 26	99 8	6 36 32	2240	1868	8 10				F. Diaz Covarrubias	F. Dias Cobarrubias, Topografia y Geodesia T. lo. 1869.
	México	19 26	99 8	6 36 32	2240	1879	8 34.5	44 51.7	34488	34323	Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	México	19 26	99 8	6 36 32	2240	1881	8 10.9	44 59.9	34607	34593	Magnetic Observatory	Department of Geomagnetism, institute of Geophysics (roational
	México	19 26	99 8	6 36 32	2240	1882	8 21.9	45 2.2	34567	34624	Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	México	19 26	99 8	6 36 32	2240	1883	8 19.7	45 0.6	34495	34507	Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	México	19 26	99 8	6 36 32	2240	1884	8 19.1	45 0.7	34343	34357	Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	México	19 26	99 8	6 36 32	2240	1885	8 20.1	44 58.2	34333	34297	Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	México	19 26	99 8	6 36 32	2240	1886	8 11.2	44 58.9	34304	34282	Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	México	19 26	99 8	6 36 32	2240	1887	9 10.2	44 53.9	34215	34094	Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
										DURA	NGO	
1	Durango	24 1.2	104 39.8	6 58 39	1893	1923 - VIII	10 36.2	51 4.4	30953	38324	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
2	Canatlán	24 30.8	104 46.5	6 59 6		1907 - I	9 50.8	50 41.3	31240	38152	Abel Diaz Covarrubias. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
3	Yerbanis	24 43.9	103 50.5	6 55 22	1880	1923 - IX	10 53.8	52 13.8	30901	34880	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
4	Santiago Papasquiaro	25 2.7	105 18.0	7 1 12	1716	1923 - IX	10 55.4	52 14.5	31088	40139	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
5	Tepehuanes	25 21.3	105 46.5	736		1907 - I	10 23.1	51 51.6	30760	39173	Abel Diaz Covarrubias. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
6	Lerdo	25 33.3	103 32.8	6 54 11	1150	1940 - IV	10 46.0 ?		29963 ?		R. Jurado (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
7	Bermejillo	25 53.0	103 37.1	6 54 30		1907 - I	9 12.9 *	53 9.1 *	30360 *	40512 *	Abel Diaz Covarrubias. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico

		Geographic Position		Altitud	Date	D	I	Н	Z			
No.	Location	Lat. N	Long	5. W			NE	N	(2)	(2)	Observer	Reference
				hms			• •	• •	02	(1)		
L										GUANAJ	UATO	
1	Acámbaro	20 1.0	100 43.5	6 42 54	1856	1906 - XII	8 6.5	45 40.6	33000	33789	M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
2	Irapuato	20 40.4	101 21.2	6 45 25	1724	1931 - XI	9 39.5 ?	47 44.8	31086	35071	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Irapuato	20 40.4	101 21.2	6 45 25	1724	1931 - XI	9 42.9	47 44.0			R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
3	Guanajuato	21 1.0	101 18.2	6 45 13	2087	1931 - XI	9 51.1	48 11.3	30932	34581	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
4	León	21 7.4	101 41.0	6 46 44	1786	1906 - XII	8 19.6	47 15.8	32380	35045	M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	León	21 7.4	101 40.8	6 46 43	1786	1931 - XI	9 50.2	48 42.3	30485 *	34707 *	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
L										GUERE	ERO	
1	Acapulco	16 49	99 52	6 39 28	1	1625	1 30				Sir. Ddley.	Arcano del Mare y C. &. G. S., Reports, 1888 A.7; 1895 A. 1.
	Acapulco	16 49	99 52	6 39 28	1	1744	30				Anson (Pirate) (Hansteen: Magnet. der Erder, 1819).	Reports, 1874 A. 8; 1879 A. 9; 1886 A. 12; 1888 A. 7; 1895 A. 1.
	Acapulco	16 49	99 52	6 39 28	1	1791	7 44	36 7.5			A. Malaspina. (Berlin Astr. Jahrbuch, 1828).	Reports, 1874 A. 8; 1879 A. 9; 1885 A. 6; 1886 A. 12; 1888 A. 7; 1895 A. 1.
	Acapulco	16 49	99 52	6 39 28	1	1803		38 53			Alejandro de Humboldt	Report, 1885 A. 6. C. &. G. S.
	Acapulco	16 49	99 52	6 39 28	1	1822	8 40				Hall (En + 16° 5' y 99° 51'. Bequerel, Traite de Magnét. Paris 1846).	Reports, 1874 A. 8; 1879 A. 9; 1886 A. 12; 1888 A. 7; 1895 A. 1.
	Acapulco	16 49	99 52	6 39 28	1	1828	97				Cap. F. W. Beecher.	Reports, 1874 A. 8; 1879 A. 9; 1886 A. 12; 1888 A. 7; 1895 A. 1.
	Acapulco	16 49	99 52	6 39 28	1	1837	8 23				Sir Edward Belcher. Phil Trans R. S. 1843.	Reports, 1874 A. 8; 1879 A. 9; 1886 A. 12; 1888 A. 7; 1895 A. 1.
	Acapulco	16 49	99 52	6 39 28	1	1838	8 17				Du Petit Tohuars, Voyage de la Frégate Venus.	Reports, 1874 A. 8; 1879 A. 9; 1886 A. 12; 1888 A. 7; 1895 A. 1.
	Acapulco	16 49	99 52	6 39 28	1	1841	8 17				Duflot de Mafras, Explor. De l'Oregon Paris. 1844.	Reports, 1874 A. 8; 1879 A. 9; 1886 A. 12; 1888 A. 7; 1895 A. 1.
	Acapulco	16 49	99 52	6 39 28	1	1866	8 22	39 54.0	35690	29841	W. Harkness. U. S. Navy. Smiths. Contr, to Knowl, 1873.	Reports, 1874 A. 8; 1879 A. 9; 1885 A. 6; 1886 A. 12; 1888 A. 7; 1895 A. 1.
	Acapulco	16 49	99 52	6 39 28	1	1874	8 38.7				Z. L. Tanner y E. J. Young. (C. &. G. S.)	Reports, 1879, A. 9; 1875 A. 6; 1886 A. 12; 1888 A. 7.
	Acapulco	16 49.2	99 56.3	6 39 45	1	1880 - XI	7 56.6	40 8.5	34660	29229	Tte. H. E. Nichols (C. &. G. S.)	Reports, 1881 A. 9; 1882 A. 13; 1888 A. 7; 1895 A. 1; 1896 A. 1.
	Acapulco	16 49.2	99 56.3	6 39 45	1	1882	7 54.0 ?				W. P. Ray. Naval Profess. Papers, 19, Washington, 1886.	Reports, 1887 A. 12; 1888 A. 7; 1895 A. 1.
	Acapulco	16 49.2	99 56.3	6 39 45	1	1890	7 38.4 ?				Calculated Value	Report, 1889 A. 11.
	Acapulco	16 49.2	99 56.3	6 39 45	1	1892	7 35.0	40 25.0	34620	29481	Luis Mottez. Annales Hydrograph., Vol. 2. 1893.	Reports, 1895 A. 1; 1896 A. 1; 1897A. 1.
	Acapulco	16 50.9	99 55.4	6 39 41	1	1907 - VI	8 8.8	41 24 7	33513	29560	C. G. Quillian y A. I. Giacomini. (C. &. G. S.)	Report, 1908 A. 3.
	Acapulco	16 50.9	99 55.4	6 39 41	1	1907	8 22.0 ?	41 10.0	33550	29336	C. G. Quillian y A. I. Giacomini. (C. &. G. S.)	Report, 1908 A. 3.
	Acapulco	16 50.9	99 55.4	6 39 41	1	1912 - I	8 31.7	41 51.1	33302	29828	A. J. (C. &. G. S.)	Special Publication No. 15, Terrestrial Magnetism, 1913 Pág. 21.
	Acapulco	16 50.9	99 55.4	6 39 41	1	1912	8 35.0 ?	42 19.0	33250	30273	Patterson. (C. &. G. S.)	Special Publication No. 15, Terrestrial Magnetism, 1913 Pág. 22.
	Acapulco	16 49.2	99 55.8	6 39 43	2	1931 - III	9 22.5	42 46.4	32149	29743	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Acapulco	16 49.2	99 55.8	6 39 43	2	1940 - XI	9 30.9	43 8.6	31166	29677	A. Vaca (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Chilpancingo (C. Bravo)	17 33.0	99 29.7	6 37 59	1390	1931 - III	9 23.8	43 42.3	31880	30471	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Chilpancingo (C. Bravo)	17 33.0	99 29.7	6 37 59	1390	1940 - XI	9 25.8	43 50.5	31340	30098	A. Vaca (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Isla Grande	17 40.5	101 41.4	6 46 46	6	1880	7 26.4				H. E. Nichols (C. &. G. S.)	Reports, 1881 A. 9; 1882 A. 13; 1885 A. 6; 1896 A. 1.
	Isla Grande	17 40.5	101 41.4	6 46 46	6	1890	706				Calculated Value	Report, 1889 A. 11.
	Balsas	17 55.0	99 45.0	6 39 0	108	1907 - VI	8 58.5	43 2.8	33240	31047	M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Balsas	17 54.5	99 45.0	6390	108	1931 - Ш	9 19.5	44 10.6	31770	30869	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Iguala	18 18.6	99 30.6	6382	860	1931 - Ш	9 29.8	44 59	31679	31530	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Iguala	18 18.6	99 30.6	6382	860	1940 - XI	9 59.0	45 7.3	31282	31415	A. Vaca (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Taxco	18 33	99 33	6 38 12	1820	1931 - Ш	9 25.7	45 10.5	31553	31739	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
		Ge	ogn									
-----	------------	---------	-----									
No.	Location	Lat. N										
1	Apam	19 41.1										
	Apam	19 42.8										
2	Tula	20 3.5										
	Tula	20 3.5										
	Tula	20 3.5										
	Tula	20 3.5										
3	Tulancingo	20 4.8										
	Tulancingo	20 4.8										
	Tulancingo	20 4.8										
			_									
	Tulancingo	20 4.8										

		Ge	ographic Posit	tion	Altitud	Date	D	I	н	Z		
No.	Location	Lat. N	Lon	g. W			NE	N	(1)	(12)	Observer	Reference
				hms			• •	• •	ø	0		
										HIDAI	LGO	
1	Apam	19 41.1	98 27.8	6 33 48	2493	1907 - VI		45 51.9	31480?	32445?	M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Apam	19 42.8	98 27.8	6 33 48	2493	1909 - XI	8 13.8		32460		M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
2	Tula	20 3.5	99 20.6	6 37 22	2025	1928 - X	8 45.0 *	46 52.1	31492	33614	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Tula	20 3.5	99 20.6	6 37 22	2025	1934 - XI	8 44.5 *	47 18.0	31183	33793	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Tula	20 3.5	99 20.6	6 37 22	2025	1936 - III	8 42.0 *	47 18.5	31226	33830	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Tula	20 3.5	99 20.6	6 37 22	2025	1943 - I	9 41.2	47 25.6	30918	33654	G. Munch. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
3	Tulancingo	20 4.8	98 22.5	6 33 30	2176	1901 - IV - V	7 31.1	45 56.7	32708	33805	Valentin Gama, Sr. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Tulancingo	20 4.8	99 18.4	6 33 14	2176	1907 - VI	7 49.7	46 17.1	32540	34032	M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Tulancingo	20 4.8	98 23.3	6 33 29	2176	1910 - XII		44 14.4 ?			Abel Diaz Covarrubias. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Tulancingo	20 4.8	98 23.3	6 33 29	2176	1928 - XI	9 16.6	47 30.8	31027	33856	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Tulancingo	20 4.8	98 23.3	6 33 29	2176	1934 - XI	9 27.9	47 50.1	30733	33934	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Tulancingo	20 5.0	98 22.1	6 33 28	2176	1936 - III	9 27.8	47 6.6 *	31112 *	33492 *	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
4	Pachuca	20 7.2	98 44.8	6350	2426	1907 - X	8 7.8	46 25.4	32745	34414	M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Pachuca	20 7.2	98 44.8	6350	2426	1928 - XI	9 21.5	47 30.8	31066	33918	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Pachuca	21 7.8	98 43.8	6 34 55	2490	1934 - XI	9 41.1	47 53.0	30824	34094	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Pachuca	21 7.8	98 43.7	6 34 55	2490	1936 - III	9 43 6	47 57.4	30790	34144	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Pachuca	20 4	98 46	6354	2490	1943 - I	9 40.7	47 46.6	30649	33773	G. Munch. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
- 5	Actopan	20 16.2	98 56.4	6 35 46	2069	1936 - IV	9 39.2	47 51.8	30809	34025	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
6	Huichapan	20 23.0	99 39.0	6 38 46	2102	1907 - X	8 2.0	46 46 1	32860	34952	M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Huichapan	20 21.2	99 39.0	6 38 46	2130	1936 - III	10 27.7	47 2.9 *	31146 *	33408 *	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
7	Ixmiquilpan	20 28.9	99 13.1	6 36 52	1790	1936 - IV	9 45.6	48 9.0	30627 *	34193 *	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
8	Zimapán	20 44.2	99 22.9	6 37 32	1813	1936 - IV	10 21.0	48 53.7	29915 *	34285 *	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
9	Jacala	21 0.5	99 11.5	6 36 46	1392	1936 - IV	9 52.4	48 46.9 *	30601	34932 *	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
				_						JALIS	sco	
1	C. Gusmán (Zapotlán)	19 40.0	103 29.8	6 54 00	1523	1907 - П	8 36.7	44 44.9	32880	32592	M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	C. Gusmán (Zapotlán)	19 41.2	103 29.6	6 53 58	1523	1931 - XII	10 12.1	45 54.0	31356	32357	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
2	Cabo Corrientes	20 22.0	105 41.0	7 2 44		1587	2 0.0				Thomas Cavendish (Pirate).	Terrestrial Magnetism, vol. 13, pag. 103.
	Cabo Corrientes	20 22.0	105 41.0	7 2 44		1686	4 28				Dampier (Pirate).	(C.&.G.S.) Report, 1895 A. 1.
3	Bahía Tabo	20 24	105 40	7 2 40		1874	8 54				C. Seymour &. E. J. Young (C.&.G.S.)	Reports, 1882 A. 13; 1896 A. 1.
	Bahía Tabo	20 24	105 40	7 2 40		1890	8 13.2				Calculated Value	Report, 1889 A. 11.
4	Ameca	20 34.1	104 3.0	7 56 12		1907 - I		45 35.4	33030	33717	M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Ameca	20 34.1	104 3.0	7 56 12		1907 - XI	9 7.9				M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
5	Puerto Vallarta (Puerto Peñas)	20 36	105 16	714	-	1874	8 49.8				C. Seymour &. E. J. Young (C.&.G.S.)	Report, 1896 A. 1.
	Puerto Vallarta (Puerto Peñas)	20 36	105 16	714		1890	8 9.0				Calculated Value	Report, 1889 A. 11.
6	Guadalajara	20 40.5	103 21.0	6 53 24	1543	1907 - I	7 56.5	46 0.7	32740	33917	M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Guadalajara	20 44 2	103 22.0	6 53 32	1543	1924 - VII	10 0.0	47 40.5 ?	31208 ?	34267 ?	J. W. Green (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926.
	Guadalajara	20 44.3	103 22.0	6 53 32	1543	1924 - VII	10 1.0	47 36.8	31140	34119	J. W. Green (C. L W.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926.
	Guadalajara	20 40.8	103 20.5	6 53 22	1543	1931 - XI - XII	10 6.0	47 24.4	31215	33953	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Guadalajara	20 40.5	103 23 0	6 53 32	1543	1939 - IV	9 55.1	47 2.5	31691	43233	A. Vaca (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
7	Lagos de Moreno	21 21.3	101 55.5	6 47 42	1942	1896 - VI		46 40.1	32916	34889	M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Lagos de Moreno	21 21.4	101 54.0	6 48 36	1942	1906 - XII	8 29.9	47 15.4	32450	35112	M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Lagos de Moreno	21 21.0	101 55.5	6 48 42	1942	1923 - VIII	8 51.3	47 50.6	31616	34921	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico

POSGRADO EN CIENCIAS DE LA TIERRA

		Ge	ographic Posit	ion	Altitud	Date	D	I	Н	Z		
No.	Location	Lat. N	Lon	g. W			NE	N	(2)	(2)	Observer	Reference
				h m s			• •	• •	0	0		
										MEX	ICO	
1	Tlamacas	19 3	98 39	6 34 36	3899	1857	8 28.2	42 34	34910	32064	A. Sonntag. Contr. To Knowl, 1860.	Reports, 1882 A. 13; 1885 A. 6; 1896 A. 1; 1897 A. 1;
	Tlamacas	19 3	98 39	6 34 36		1890	7 40.2				Calculated Value	Report, 1889 A. 11.
2	Tzimantecatl. (Nevado de Toluca).	19 7.3	99 43.3	6 38 53	4278	1932 - VIII		46 0.8	31156	32272	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
3	Amecameca	19 7.5	98 46.1	6354	2540	1928 - XI	8 47.5	47 16.2	30772	33312	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign. Mexico
	Amecameca	19 7.5	98 46.1	6354	2540	1934 - XI	8 57.4	47 37.1	30561	33490	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
4	Toluca	19 17.5	99 39.0	6 38 36	2640	1907 - IX	8 13.5	44 56.6	32910	32845	M. Moreno v Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
<u> </u>	Toluca	19 17.2	99 40.8	6 38 43	2660	1928 - XI	8 59.6	45 49.0	31524	32436	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Toluca	19 17 6	99 40 7	6 38 43	2660	1931 - XII	9187	46.81	31319	32585	R O Sandoval (O A N)	Magnetic Data Acquisition Campaign Mexico
	Toluca	19 17.6	99 40 7	6 38 43	2660	1934 - XI	8 41.5	46 15 1	31117	32507	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
5	Chalco	10.18	98.51	6 35 24		1857	0 3	43.12	34770	32651	A Sonntag Contr. To Knowl 1860	Reports 1882 A 13: 1885 A 6: 1806 A 1: 1807 A 1
۲ <u>ـ</u>	Chalco	19 18	98.51	6 35 24		1890	8 15		21110	22021	Calculated Value	Report 1889 A 11
6	Chimalhuacán	10 23 0	08 57 3	6 35 40		1011 - YI	•		33800		G López de Llerzo (O A N)	Magnetic Data Accusition Campaign Mexico
۴,	Culturaturacau	19 23.9	90 51.5	03349		1911-34			55690		G. Lopez de Liergo. (G. A. N.)	Department of Geometricity Institute of Geophysics (National
7	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1879	8 33	44 4.7	33588	32524	Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1881	8 18	44 12.9	33707	32796	Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1882	8 20	44 15.2	33667	32801	Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1883	8 22	44 13.6	33595	32700	Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1884	8 23	44 13.7	33443	32554	Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1885	8 20	44 11.2	33433	32497	Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1886	8 17	44 11.9	33404	32480	Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National University of Maxico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1887	8 12	44 6.9	33315	32300	Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National
\vdash	Teolovucan	19 44.8	99 10.9	6 36 44	2280	1889	7.53	44 6.9			Values of México. Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National
<u> </u>												University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1890	7 55	44 6.9			Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1891	7 49	44 4.2			Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1892	7 50				Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1893	7 45	44 16.2	32924	32095	Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1894	7 47	44 16.6	32930	32112	Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1895	7 49	44 23.2	32775	32084	Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National
	Teolovucan	19 44.8	99 10.9	6 36 44	2280	1896	7 47				Values of México, Tacubaya and Cuaiimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National
<u> </u>	,											University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1897	7 52				Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)

		Ge	ographic Posit	tion	Altitud	Date	D	I	H	Z		
No.	Location	Lat. N	Lon	g. W	m		NE	N	(7)	(2)	Observer	Reference
				h m s			• •	• •	~			
_	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1898	7 54	44 29.3	32725	32146	CO Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1899	7 50				Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1900	7 47				Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1902		44 44.0			Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1903	7 44				Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1904	7 52	44 55.3	32370	32281	Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1905	86	44 59.2	32345	32330	Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1906	84	45 4.3			Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1907	8 15	45 46	32254	32340	Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1908	8 25	45 3.4			Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1909	8 32				Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1910	8 43				Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1911	8 39 ?	45 34.9	32080	32738	Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1912	8 45	45 38.0	32061	32779	Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1914	8 46.9	45 53.9	32521 ?	33557	Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1916	8 59.7				Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1917	9 5.0				Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1918	9 6.0				Values of México, Tacubaya and Cuajimalpa reduced Teoloyucan.	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1919	9 7.3					Description of Companying Training of Companying Obsides 1
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1920	9 9.6				Magnetic Observatory	University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1921	9 11.7				Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1922	9 11.2	46 30.7	32160	33903	Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico) Department of Geomagnetism instrume of Geophysics Construmed
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1923	9 13.4	46 25.1	31719	33328	Magnetic Observatory	Leinenite of Sconingartini, institute of Scopitysics (Haltonal
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1924	9 14.0	46 37 8	31562	33452	Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1925	9 14.7	46 30.3	31601	33308	Magnetic Observatory	Department of Geomagnetism, mistitute of Geophysics (Waltonal

No.	Location	Lat
	Teoloyucan	19 4
	Teoloyucan	19 4
	Teoloyucan	19 4
	Teoloyucan	19 4

POSGRADO EN CIENCIAS DE LA TIERRA

		Ge	ographic Posit	tion	Altitud	Date	D	I	Н	Z		
No.	Location	Lat. N	Lon	g. W	m		NE	N	60	(7)	Observer	Reference
				h m s			• •	• •				
										MEX	100	
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1926	9 18.2	46 44.8	31590	33576	Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1927	9 19.9	46 40.8	31379	33270	Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1928	9 20.8	46 44.3	31340	33289	Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1929	9 23.5	46 43.5	31303	33281	Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1930	9 25.5	46 54.2	31202	33314	Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1931	9 29.2	47 1.9	31122	33410	Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1932	9 30.6	47 2.6	31106	33407	Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
_	Teolovucan	10 44 8	00 10 0	6 36 44	2280	1033	0338	47.55	31041	33396	Magnetic Observatory	Department of Geomagnetism, institute of Geophysics (reational
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1934	9 36.1	47 7.3	31017	33403	Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1935	9 37.5	47 8.9	31007	33425	Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1936	9 39.0	47 8.5	30932	33336	Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1937	9 39.4	47 18.0	30883	33330	Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1938	8 40.0	47 12.3	30845	33318	Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1939	8 40.7	47 10.2	30832	33271	Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1940	9 41.8	47 9.2	30825	33235	Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1941	9 40.9	47 11.0	30781	33216	Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1942	9 40.8	47 10.3	30736	33162	Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1943	9 39.5	47 9.1	30722	33121	Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1944	9 38.5	47 8.5	30709	33090	Magnetic Observatory	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Teolovucan	10 44 8	00 10 0	6 36 44	2280	1045	0 30 1	47.1.4	30672	32011	Magnetic Observatory	Department of Geomagnetism, mistitute of Geophysics (National
_	reenty ucua										ingatute of our failery	Department of Geomagnetism Institute of Geophysics (National
_	Teoloyucan	19 44.8	99 10.9	6 36 44	2280	1946	9 37.0	47 2.4	30622	32869	Magnetic Observatory	University of Mexico)
8	El UTO Delevielón	19 49.7	100 5.3	0 40 21	2050	1951 - XII	9 40.3	40 33.4	31218	33387	K. U. Sandovai (U. A. N.)	Magnetic Data Acquisition Campaign, Mexico
9	Polotitian	20 12.5	99 51.0	0 39 24	2308	1908 - VI	8 3 7.9	40 13.0	32910	34349	Valentin Gama, Sr. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Polotitlán	20 12.7	99 50.5	6 39 22	2308	1928	9 16.9				Jose L. Basurto (Estacion particular).	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Polotitlán	20 12.7	99 50.5	6 39 22	2308	1929	9 18.8				Jose L. Basurto (Estacion particular).	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
			1									

	POSGRADO
5	Ē
	CIENCIAS
ľ	IJ.
5	⊳
	TIFRRA

		Ge	ographic Posit	ion	Altitud	Date	D	I	н	Z		
No.	Location	Lat. N	Long	g. W	m		NE	N	(7)	())	Observer	Reference
				h m s			• •	• •				
										MICHO	ACAN	
	Uruapan	19 25.0	101 57.0	6 47 48	1634	1907 - IX	8 10.9	44 20.0	33040	32280	M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
<u> </u>	Uruapan	19 25.2	101 56.9	6 47 48	1634	1931 - XII	9 57.4	45 36.5	31368	31939	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Uruapan	19 23	102 2	6488	1634	1943 - VII	10 31	46 0	30800	31894	R. O. Sandoval (O. A. N.)	C. &. G. S. Magnetic Observations in the American Republics. 1941-44. Serial 677, 1946.
	Uruapan	19 23	102 2	6488	1634	1945 - V - VI	10 27.6	45 57. 6	30758	31806	R. O. Sandoval (O. A. N.)	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
2	San Juan	19 32	102 15	6490	1634	1945 - 🎞 - VI	9 55.0	46 12.7	31149	32495	R. O. Sandoval (O. A. N.)	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
3	Paricutín	19 29	102 12	6 48 48		1943 - V - VI	9 25	45 20	31510	31879	R. O. Sandoval (O. A. N.)	C. &. G. S. Magnetic Observations in the American Republics. 1941-44. Serial 677, 1946.
4	Los Reyes	19 33.5	102 31.5	6 50 6		1907 - EX	8 29.3	44 29.3	33350	32760	M. Moreno y Anda (O. A. N.)	Magnetic Data Aqcuisition Campaign, Mexico
	Los Reyes	19 35	102 29	6 49 56		1943 - VI	10 22	46 24	30900	32448	M. Moreno y Anda (O. A. N.)	C. &. G. S. Magnetic Observations in the American Republics. 1941-44. Serial 677, 1946.
5	Morelia	19 42.2	101 6.0	6 44 24	1923	1906 - XII	8 19.3	45 6.1	33105	33223	M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Morelia	19 41.6	101 7.6	6 44 28	1923	1931 - XII	9 50.5	46 21.4	31339	32859	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Morelia	19 41.6	101 7.6	6 44 28	1923	1931 - XII	9 50.2	46 21.6	31344	32868	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
6	La Piedad	20 26.0	102 3.0	6 48 12	1675	1906 - XII	8 40.9	45 54.5	32690	33743	M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	La Piedad	20 20.5	102 1.5	6486	1675	1931 - XI	10 8.5	48 13.6	31279	33809	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
										MORE	LOS	
1	Puente de Ixtla	18 37.0	99 20.5	6 37 40	890	1931 - Ш	9 22.8	45 25.7	31647	32124	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
2	Cuautla	18 48.4	98 57.9	6 35 52	1290	1934 - XII	9 35.1 *	45 56.6	31290	32338	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Cuautla	18 48.4	98 57.9	6 35 52	1290	1943 - I	9 32.4	45 38.0	31049	31743	G. Munch. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
3	Cuemavaca	18 55.0	99 15.0	6370	1532	1907 - VI	8 4.4	44 32.2	33020	32490	M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Cuemavaca	18 54.9	99 14.2	6 36 57	1532	1909 - I	8 2.1	44 57.7	33030	32988	Arturo Diaz Covarrubias (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Cuemavaca	18 54.9	99 14.2	6 36 57	1532	1911 - XI			31985		Arturo Diaz Covarrubias (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Cuemavaca	18 54.6	99 14.2	6 36 57	1532	1928 - XI	9 29.2	45 24.1	31674	32121	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Cuemavaca	18 55.1	99 14.3	6 36 57	1532	1931 - IV	9 42.1	45 33.3	31648	32267	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Cuemavaca	18 55.0	99 14.3	6 36 57	1532	1934 - XII	9 32.6 ?	46 7.0	31410	32659	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Cuemavaca	18 55.0	99 14.3	6 36 57	1532	1940 - XI	9 44.3	46 19.8	31219	32703	A. Vaca (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
										NAYA	RIT	
1	Punta Mita	20 46	105 32	728		1875	9 5.4				J. E. Craig y C. Seymour. (C. &. G. S.)	Reports, 1882 A. 13; 1896 A. 1.
	Punta Mita	20 46	105 32	728		1890	8 25.2				Calculated Value	Report, 1889 A. 11.
2	Islas Marías	21 13	106 14	7 4 56		1890	60?				Salvador Fidalgo and Manuel Quimper	Report, 1885 A. 7.
3	Tepic	21 30.8	104 54 0	7 59 26	915	1907 - IX	9 7.1	46 47.8	32480	34583	M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Tepic	21 29.7	104 54.2	6 59 37	915	1923 - XII	10 21.7 ?	47 22.2	31340	34046	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Tepic	21 31.3	104 54.0	6 59 36	915	1924 - VII	10 6.6	47 31.2	31343	34229	J. W. Green (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926.
	Tepic	21 30.8	104 53.5	6 59 34	915	1939 - III	10 32.0	47 36.9	31441	34450	A. Vaca (O. A. N.)	Magnetic Data Aqcuisition Campaign, Mexico
4	San Blas	21 32.5	105 17.3	719		1630	2 30.0				R. Dudley.	Arcano del Mare y C. &. G. S., Reports, 1888 A.7; 1895 A. 1.
	San Blas	21 32.5	105 17.3	719		1686	3 28.0				Dampier (Pirate).	En Cabo Corrientes, Jal., Observacion reducida a San Blas. C. &. G. S. Report, 1895 A. 1.
	San Blas	21 32.5	105 17.3	719		1714	0 25.0				Sauvague le Muet (Pirate).	En Bahia de Banderas Reports, 1888 A. 7; 1895 A. 1.
	San Blas	21 32.5	105 17.3	719		1788	5 0.0				Com. D. Esteban Martinez. (BSN)	Reports, 1885 A. 7; 1886 A. 12; 1888 A. 7; 1895 A. 1.
	San Blas	21 32.5	105 17.3	719		1791	7 28.0	43 11.2			D. A. Malaspina.	Applits, 1074 H. 6, 1079 H. 9, 1065 H. 0, 1060 H. 12, 1066 H. 7, 1095

		Ge	ographic Posit	tion	Altitud	Date	D	I	н	Z		
No.	Location	Lat. N	Lon	g. W			NE	N	(1)	(*)	Observer	Reference
				h m s			• •	• •	0	(D)		
										NAYA	RIT	
	San Blas	21 32.5	105 17.3	719		1821	8 40.0				Hall.	Reports, 1874 A. 8; 1879 A. 9; 1886 A. 12; 1888 A. 7; 1895 A. 1. Y en Encicl. Brit. R. S. 1843.
	San Blas	21 32.5	105 17.3	719		1828	11 6.0				Cap. F. W. Beecher. Voyage to the Pacific, 1825 - 28, y Bequerel, Traité du Magnet. Paris, 1846	Reports, 1874 A. 8; 1879 A. 9; 1885 A. 6; 1886 A. 12; 1888 A. 7; 1895 A. 1.
	San Blas	21 32.5	105 17.3	719		1837	8 34.0 ?	45 24.3			Sir Edward Belcher. Phil Trans R. S. 1843.	C. &. G. S. Reports, 1874 A. 8; 1879 A. 9; 1886 A. 12; 1888 A. 7; 1895 A. 1.
	San Blas	21 32.5	105 17.3	719		1837	9 9.0	46 9.0			Du Petit Tohuars, Voyage de la Frégate Venus.	Reports, 1885 A. 6; 1886 A. 12, 1888 A. 7; 1895 A. 1.
	San Blas	21 32.5	105 17.3	719		1838	8 47.0	44 36.0			Sir Edward Belcher. Phil Trans R. S. 1843.	Reports, 1879 A.9; 1885 A. 6; 1886 A. 12; 1888 A. 7; 1895 A. 1.
	San Blas	21 32.5	105 17.3	719		1839	9 0.0	44 32.5	34220	33667	Sir Edward Belcher. Phil Trans R. S. 1843.	Reports, 1874 A. 8; 1895 A. 1.
	San Blas	21 32.5	105 17.3	719		1841	9 12.0				Duflot de Mafras, Explor, De l'Oregon Paris, 1844.	Reports, 1874 A. 8;1879 A. 9; 1886 A. 12; 1888 A. 7; 1895 A.1.
	San Blas	21 32.5	105 17.3	719		1874	98				Ttes. Z. L. Tanner y E. J. Young. (C. &. G. S.)	Reports, 1879 A. 9; 1886 A. 12; 1888 A. 7; 1895 A. 1.
	San Blas	21 32.2	105 18.1	7 1 12		1880	9 18.1	46 20.8	33220	34820	Tte. H. E. Nichols (C. &. G. S.)	Reports, 1001 A.'9, 1002 A.'13, 1003 A.'0, 1000 A.'12, 1000 A. 7, 1093
	San Blas	21 32.2	105 18.1	7 1 12		1890	8 30.0				Calculated Value	Report, 1889 A. 11.
5	Isla Isabel	21 56	105 18	7 1 12		1874	9 24				C. Seymour &. E. J. Young (C.&.G.S.)	Reports, 1892 A, 12; 1895 A, 1; 1896 A, 1.
	Isla Isabel	21 56	105 18	7 1 12		1890	8 43.2				Calculated Value	Report, 1889 A. 11.
6	Alta Mar	21.56	105 46	734	0	1788	4 28				Gonzalo Lopez de Haro	Report, 1885 A. 7.
7	Alta Mar	22.15	107.9	7 8 36	0	1788	4 28				Gonzalo Lopez de Haro	Report, 1885 A. 7.
8	Alta Mar	22 30	106 15	750	0	1790	5 0				Salvador Fidalgo	Report, 1885 A. 7.
					-					NUEVO	LEON	
1	Linares	24 51.6	99 34.1	6 38 18	684	1906 - XII	8 43.2 *	52 27.6 *	30650 *	34886 *	Abel Diaz Covarrubias. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
2	Monterrey	25 40.3	100 18.0	6 41 12	538	1906 - XII	8 57.1	53 23.8	30440	41044	Abel Diaz Covarrubias. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Monterrey	25 40.3	100 18.0	6 41 12	538	1907 - I		53 21.2			Abel Diaz Covarrubias. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Monterrey	25 40.5	100 19.0	6 41 16	538	1907 - I	9 1.2	53 21.0	30440	40913	J. P. Ault. (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. I, Magn. Results. 1905 - 1910.
	Monterrey	25 40.5	100 19.0	6 41 16	538	1907 - I	9 3.9	53 21.9	30466	40971	J. P. Ault. (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. I, Magn. Results. 1905 - 1910.
	Monterrey	25 40.2	100 27.0	6 41 48	538	1922 - VIII	9 54.2	54 7.9	29787	41197	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Monterrey	25 40.4	100 15.2	6411	538	1922 - VIII	10 14.2	55 15.3	29635	42727	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Monterrey	25 40.5	100 20	6 41 20	538	1924 - VI	9 53.7	54 6.0	29245	40539	J. W. Green (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926.
	Monterrey	25 40.5	100 20	6 41 20	538	1924 - VI	9 54.5	54 3.6	29315	40437	J. Lindsay (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926.
	Monterrey	25 40.1	100 18.4	6 41 14	538	1933 - VI	10 17.3	54 29.7	28778	40338	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Monterrey	25 40.1	100 18.4	6 41 14	538	1939 - X	10 18.7	54 29.5	28483	39919	A. Vaca (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
										OAX	ACA	
1	Puerto Escondido	16 4.1	96 56.7	6 27 47		1880 - XI	7 41.7	39 13.2	34600	28239	Tte. H. E. Nichols (C. &. G. S.)	Reports., 1881 A. 9; 1882 A. 13; 1885 A. 6; 1896 A. 1; 1897 A. 1,
	Puerto Escondido	16 4.1	96 56.7	6 27 47		1890	7 18.0				Calculated Value	Report, 1889 A. 11.
2	Salina Cruz	16 9	95 12	6 20 48	2	1871	8 10				C. B. Gils.	U. S. Navy Depart.
	Salina Cruz	16 9.6	95 26.7	6 21 47	2	1880 - XI	7 17.2	40 8.5	34480	29078	Tte. H. E. Nichols (C. &. G. S.)	Reports, 1881 A. 9; 1882 A. 13; 1885 A. 6; 1895 A. 1.
	Salina Cruz	16 9.6	95 26.7	6 21 47	2	1889	6 58.8	40 2.0	34260	28781	Laird Noris Holcomb.	R. Clover, Letter to Office.
	Salina Cruz	16 9.6	95 26.7	6 21 47	2	1890	6 53.4 ?				Calculated Value	Report, 1889 A. 11.
	Salina Cruz	16 9.5	95105	6 20 42	2	1906 - IV	7 32.6	41 29.4	33120	29292	M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Salina Cruz	16 9.5	95105	6 20 42	2	1907 - IX	7 10.8	41 25.3	33010	29124	Abel Diaz Covarrubias. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Salina Cruz	16 9.6	95 12.0	6 20 48	2	1930 - XI	8 38.2	43 6.4	31874	29834	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
3	Ejutla (Santa Maria)	16 33.8	96 43.7	6 26 55	1440	1909 - П		41 33.1	33218	29442	A. Diaz Covarrubias (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
4	reicon Antonio (Manas	16 52.7	95 2.4	6 20 10		1907 - IV	7 22.4 *	42 12.0 *	33640 *	30538 *	M. Moreno y Anda (O. A. N.)	Magnetic Data Accuisition Campaign, Mexico

No. Location Lat. N Long. W m NE N (y) (y) (y) Observer 0 h m s h m s h m s h m s h m s (y) (y) (y) Observer 5 Oaxaca 17 3.6 96 45.0 6 27 0 1907 - I 7 20.6 41 20.6 33102 30167 J. P. Ault. (C. I. W.) Oaxaca 17 3.7 96 43 3 6 26 53 1909 42 20.7 33250 30303 A. Diaz Covarrubias (O. A. N.) 0 Oaxaca Est. A 17 3.6 96 44.0 6 26 56 1924 - VI- VII 8 31.8 43 35.3 31979 30441 J. Lindsay (C. I. W.) 0 Oaxaca Est. B 17 3.6 96 44.0 6 26 56 1924 - VI- VII 8 27.2 43 35.2 32017 30475 J. Lindsay (C. I. W.) 0 Oaxaca Est. A 17 3.4 96 43.6 6 26 54 1550 1930 - XII 8 57.8 43 47.9 31734 30430 R. O. Sandova	Reference Researches of the Depart of Terr. Magn. Vol. I, Magn. Results. 1905 - 1910. Magnetic Data Acquisition Campaign, Mexico Researches of the Depart of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926. Researches of the Depart of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926. Magnetic Data Acquisition Campaign, Mexico
Image Image <th< td=""><td>Researches of the Depart. of Terr. Magn. Vol. I, Magn. Results. 1905 - 1910. Magnetic Data Acquisition Campaign, Mexico Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926. Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926. Magnetic Data Acquisition Campaign, Mexico Magnetic Data Acquisition Campaign, Mexico</td></th<>	Researches of the Depart. of Terr. Magn. Vol. I, Magn. Results. 1905 - 1910. Magnetic Data Acquisition Campaign, Mexico Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926. Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926. Magnetic Data Acquisition Campaign, Mexico
Source 17 3.6 96 45.0 6 27 0 1907 - I 7 20.6 41 20.6 33102 30167 J. P. Ault. (C. I. W.) Oaxaca 17 3.7 96 43 3 6 26 53 1909 42 20.7 33250 30303 A. Diaz Covarubias (O. A. N.) Oaxaca Est. A 17 3.6 96 44.0 6 26 56 1550 1924 - VII 8 31.8 43 35.3 31979 30441 J. Lindsay (C. I. W.) Oaxaca Est. B 17 3.6 96 44.0 6 26 56 1924 - VII 8 27.2 43 35.2 32017 30475 J. Lindsay (C. I. W.) Oaxaca Est. A 17 3.4 96 43.6 6 26 54 1550 1930 - XII 8 57.8 43 47.9 31734 30430 R. O. Sandoval (O. A. N.)	Researches of the Depart of Terr. Magn. Vol. I, Magn. Results. 1905 - 1910. Magnetic Data Acquisition Campaign, Mexico Researches of the Depart of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926. Researches of the Depart of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926. Magnetic Data Acquisition Campaign, Mexico Magnetic Data Acquisition Campaign, Mexico
5 Osxaca 17 3.6 96 45.0 6 27<0 1907 - I 7 20.6 41 20.6 33102 30167 J. P. Ault. (C. I. W.) Oaxaca 17 3.7 96 43 3 6.26 33 1909 42 20.7 33250 30303 A. Diaz Covarrubias (O. A. N.) Ooxaaca 17 3.6 96 44.0 6 26 1550 1924 - VI - VII 831.8 43 35.3 31979 30441 J. Lindsay (C. I. W.) Oaxaaca Est. B 17 3.6 96 44.0 6 6 6 1924 - VII 8 27.2 43 35.2 32017 30475 J. Lindsay (C. I. W.) Oaxaaca Est. A 17 3.4 96 43.6 6 26 1930 - XII 8 57.8 43 47.9 31734 30430 R. O. Sandoval (O. A. N.)	Researches of the Depart of Terr. Magn. Vol. I, Magn. Results. 1905 - 1910. Magnetic Data Acquisition Campaign, Mexico Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926. Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926. Magnetic Data Acquisition Campaign, Mexico
Oaxaca 17 3.7 96 43 3 6 26 53 1909 42 20.7 33250 30303 A. Diaz Covarrubias (O. A. N.) Ooaxaca Est. A 17 3.6 96 44.0 6 26 56 1550 1924 - VI-VII 8 31.8 43 35.3 31979 30441 J. Lindsay (C. I. W.) Oaxaca Est. B 17 3.6 96 44.0 6 26 56 1924 - VII 8 27.2 43 35.2 32017 30475 J. Lindsay (C. I. W.) Oaxaca Est. A 17 3.4 96 43.6 6 26 54 1550 1930 - XII 8 57.8 43 47.9 31734 30430 R. O. Sandoval (O. A. N.)	Maguetic Data Acquisition Campaign, Mexico Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926. Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926. Maguetic Data Acquisition Campaign, Mexico
Ooaxaca Est. A 17 3.6 96 44.0 6 26 1550 1924 - VI - VII 8 31.8 43 35.3 31979 30441 J. Lindsay (C. I. W.) Oaxaca Est. B 17 3.6 96 44.0 6 26 56 1924 - VI - VII 8 31.8 43 35.3 31979 30441 J. Lindsay (C. I. W.) Oaxaca Est. B 17 3.6 96 44.0 6 26 1924 - VII 8 27.2 43 30.2 30475 J. Lindsay (C. I. W.) Oaxaca Est. A 17 3.4 96 43.6 6 26 1930 - XII 8 57.8 43 47.9 31734 30430 R. O. Sandoval (O. A. N.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926. Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926. Magnetic Data Acquisition Campaign, Mexico
ORXEGE Est. B 17 3.6 96 44.0 6 26 56 1924 - VII 8 27.2 43 35.2 32017 30475 J. Lindsay (C. I. W.) ORXEGE Est. A 17 3.4 96 43.6 6 26 54 1550 1930 - XII 8 57.8 43 47.9 31734 30430 R. O. Sandoval (O. A. N.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926. Magnetic Data Acquisition Campaign, Mexico
Ogxacz Est. A 17 3.4 96 43.6 6 26 54 1550 1930 - XII 8 57.8 43 47.9 31734 30430 R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico Magnetic Data Acquisition Campaign, Mexico
	Magnetic Data Acquisition Campaign, Mexico Magnetic Data Acquisition Campaign, Mexico
Oaxaca Est. B 17 5.0 96 42.7 6 26 51 1550 1937 - IV - V 9 11.2 44 9.8 31480 30583 R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico Magnetic Data Acquisition Campaign, Mexico
Oaxaca Est. B 17 5.0 96 42.7 6 26 51 1550 1941 - V 9 17.9 44 2.0 31404 30362 A. Vaca (O.A. N.)	Magnetic Data Acquisition Campaign, Mexico Magnetic Data Acquisition Campaign, Mexico Magnetic Data Acquisition Campaign, Mexico Magnetic Data Acquisition Campaign, Mexico Magnetic Data Acquisition Campaign, Mexico
6 Nochistlan 17 27.6 97 13.5 6 28 54 1909 - Ш 42 37.1 32905 30277 А. Diaz Covarrubias (О.А. N.)	Magnetic Data Acquisition Campaign, Mexico Magnetic Data Acquisition Campaign, Mexico Magnetic Data Acquisition Campaign, Mexico Magnetic Data Acquisition Campaign, Mexico
7 El Hule 18 9.4 96 7.0 6 24 28 1907 - VI 7 22 7 44 10.8 33060 32127 M Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico Magnetic Data Acquisition Campaign, Mexico Magnetic Data Acquisition Campaign, Mexico
PUEBLA	Magnetic Data Acquisition Campaign, Mexico Magnetic Data Acquisition Campaign, Mexico Magnetic Data Acquisition Campaign, Mexico
1 Tehuarán 18.28.0 07.28.5 6.20.54 1676 1907-VI 7.39.3 44.12.8.2 32940 32047.7 M Moreno v Anda (O.A. N.)	Magnetic Data Acquisition Campaign, Mexico Magnetic Data Acquisition Campaign, Mexico
Tehnarán 18.27.0 97.23.3 6.20.33 1676 1909-ΠΙ 44.10.5 33138.2 32107.7 A Diaz Covarmbias (Ο A N)	Magnetic Data Acquisition Campaign, Mexico
Taburgán 18.270 07.237 6.20.35 1676 1030 V 0.34 45.402 31453 32107 P.O.Sandoval (O.A.N.)	Magnetic Data Acquisition campaign, Mexico
Tehnaria 18 17.6 57 23.7 6 12 33 1676 1930 1 7 576 17 576 2107 20062 A Vara (O.A.N.)	Magnetic Data Acquisition Campaign Mayico
2 University 2017/0 2015 10/0 10/0 10/0 2015 10/0 10/0 10/0 2015 10/0 2002 Article 2002 Article 2017 10/0 Article 2017 1	Magnetic Data Acquisition Compaign, Mexico
2 Each de Matamilions 18 50.0 56 26.5 05 57 1520 1907 VII 6 0.0 44 6.4 55050 52055 M. Moleculy Auda (C. R. N.) This and Matamilions 18 50.0 56 10 92 6 52 52 1220 1024 VII 02 56 4550 21244 22072 P. O. Sandaral (O. R. N.)	Magnetic Data Acquisition Campaign, Mexico
2204a de Matamolos 16 30.1 30 20.2 033 33 1330 1334 AL 352.3 43 43.0 31244 32013 K.O. 3addoval (O. R. N.)	stagnetic Data Acquisition Campaign, stexico
3 Тесатасћако 18 5.2 97 47.2 631 9 2055 1902-1-ш- 9 3.9 44 18.4 M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
4 San Andrés 18 59 97 26 6 29 44 2540 1856 8 13.2 42 38 34990 32212 A. Sonntag.	C. &. G. S. Reports, 1856 A. 28; 1882 A. 13; 1885 A. 6; 1896 A. 1; 1897 A. 1.
San Andrés 18 59 97 26 6 29 44 2540 1890 6 19.8 Chalchicomula Calculated Value	Report, 1889 A. 11.
San Andrés Chalchicomula 18 59.2 97 26.9 6 29 48 2540 1910 44 40 32670 32292 J. Gómez Farías. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
5 Puebla (de los Angeles) 19 2.5 98 12 6 32 48 2162 1902 - III 7 13.2 M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
Puebla (Barrio S. Miguel) 19 3.4 98 13.5 6 32 54 2162 1907 - V 7 55.9 44 52.0 32910 32621 M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
Puebla (Fuerte S. Juan) 19 3.2 98 13.6 6 32 54 2200 1907 - VI 8 9.5 * 44 33790 33388 M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
Puebla (Fuerte Guadalupe) 19 98 13 6 32 52 2267 1924 - VI 9 16.0 * 46 40.7 31397 33292 J. Lindsay (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926.
Puedra tr defice 19 3 98 13 6 32 52 2267 1924 - VI 9 31.0 * 46 41.1 31456 33363 J. Lindsay (C. I. W.)	Researches of the Depart of Tell, Magn. Vol. VI, Magn. Results. 1921 -
Puebla (Fuerte Guadalune) 19 3.1 98 10.8 6 32 43 2267 1928 - XI 8 17.0 * 46 26.0 31615 33238 R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
Puebla (Fuerte Guadature) 19 3.1 98 10.8 6 32 43 2267 1930 - X 8 23.6 * 46 37.3 31544 33382 R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
Puebla (Fuerte Guadahupe) 19 3.1 98 10.8 6 32 43 2267 1930 - X 8 23.6 * 46 15.4 31559 32974 R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
Puebla (al pie del Fre. De Guadalupe) 19 3.2 98 11.0 6 32 44 2200 1934 - XI 9 45.1 * 46 20.2 31303 32799 R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
Puebla (Puerto Aéreo) 19 2.5 98 11.3 6 32 45 31094 32929 R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
Puebla (Puerto Aéreo) 19 2.5 98 11.3 6 32 45 2175 1941 - V 9 34.2 46 24.4 31047 32610 G. Munch. (O. A. N.)	Magnetic Data Acquisition Campaign Mexico

		Ge	ographic Posit	tion	Altitud	Data	п	т	ч	7		
No	Location	Lat N	Lon	a W	Alutuu	Date	NE	N	- 1	- 2	Observer	Reference
	Location	2011. 11	200	hms	m		0 1	• •	(Y)	(Y)	oosarta	Activitience .
										PUEE	BLA	
6	Teziutlán	19 49.5	97 21.3	6 29 24	1990	1907 - VI	7 53.5	45 54.4	32690	33741	M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
7	Zacatlán (de las Manzanas)	19 56.6	97 57.4	6 31 49	2067	1901 - І - П	7 48.4	46 22.0	33370	35001	M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
										QUERE	TARO	
1	Querétaro	20 35	100 25	6 41 40	1840	1871 - П	8 58.7				José M. Romero	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
	Querétaro	20 35.7	100 22.5	6 41 40	1840	1906 - XII	8 21.0	46 53.7			M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Querétaro	20 35.6	100 23.2	6 41 33	1840	1922 - VI	9 25.4	47 7.3 *	31824	34273	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Querétaro	20 35.2	100 26	6 41 44	1840	1924 - VII	9 10.1 *	48 22.5 *	31055 *	34947 *	J. W. Green (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926.
	Querétaro	20 35	100 24	6 41 36	1840	1924 - VII	9 15.4 *	47 40 0 *	31503 *	34581 *	J. Lindsay (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926.
	Querétaro	20 35.6	100 24	6 41 36	1840	1924 - VII	9 22.5 *	45 28 4 *	31541 *		J. Lindsay (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926.
	Querétaro	20 35.6	100 24	6 41 36	1840	1924 - VII		47 28.4 *			J. W. Green (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926.
	Querétaro	20 34.8	100 2.5	6 41 40	1840	1924 - VII	9 38.2 *		31380*		J. Lindsay (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926.
	Querétaro	20 34.8	100 2.5	6 41 40	1840	1924 - VII		48 2.2 *			J. W. Green (C. I. W.)	Researches of the Depart of Tell, Magn. Vol. VI, Magn. Results. 1921 -
	Querétaro	20 35.2	100 22.6	6 41 31	1840	1931 - XI	9 47.0	48 7.5	30960	34536	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Querétaro	20 35.2	100 22.6	6 41 31	1840	1940 - Ш	10 16.8		30567		R. Jurado (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
										QUINTAN	NA ROO	
1	Cayo Lobos (Chinchorro)	18 22.1	87 22.5	5 49 30	0	1907 - VI		45 58.8	32340	33466	Abel Diaz Covarrubias. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
2	Chetumal (Poyo Obispo)	18 30	88 19	5 53 16		1942 - V	6 58	48 54	30110	34516	Unknown	C. &. G. S. Magnetic Observations in the American Republics. 1941-44. Serial 677, 1946.
3	Bahia Ascención	19 44.0	87 28.5	5 49 54	0	1907 - VII	4 44.2 *	47 58.9 *	31800 *	35295 *	Abel Diaz Covarrubias. (O. A. N.)	Magnetic Data Aqcuisition Campaign, Mexico
4	S. Miguel de Cozumel	20 33	86 57	5 47 48		1879 - IV	5 12.3	48 6.5	33090	36890	S. M. Ackley. (C. &. G. S.).	Reports, 1881 A. 9; 1885 A. 6; 1896 A. 1; 1897 A. 1.
	S. Miguel de Cozumel	20 33	86 57	5 47 48		1890	4 38.4				Calculated Value	Report, 1889 A. 11.
	S. Miguel de Cozumel	20 30	86 57.5	5 47 50		1907 - VII	4 36.3	49 14.8	31530	36588	Abel Diaz Covarrubias. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
5	Puerto Morelos	20 48.0	86 56.6	5 47 48		1907 - VII - VIII	4 31.8 *	49 58.8 *	31590 *	37621 *	Abel Diaz Covarrubias. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
6	Isla de Mujeres	21 14.7	86 45.7	5 47 3		1879 - VI	4 49.3	49 32.9	32570	38200	S. M. Ackley. (C. &. G. S.).	Reports, 1881 A. 9; 1885 A. 6; 1896 A. 1; 1897 A. 1.
	Isla de Mujeres	21 14.7	86 45.7	5 47 3		1890	4 15.6				Calculated Value	Report, 1889 A. 11.
	Isla de Mujeres	21 15.9	86 45.0	5470		1907 - VI - VII	4 39.6	50 27.1	31270	37868	Abel Diaz Covarrubias. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
7	Isla Contoy	21 30	86 49	5 47 16		1838		49 48.0			E. Barnet. (C. &. G. S.)	Reports, 1885 A. 6; 1897 A. 1.
8	Cabo Catoche	21 36.0	87 3.9	5 48 16		1907 - VII	5 4.9	50 45.9	31210	38222	Abel Diaz Covarrubias, (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico

POSGRADO	
Ē	
CIENCIA	
S DE L/	
A TIERRA	

		Ge	ographic Posit	tion	Altitud	Date	D	I	Н	Z		
No.	Location	Lat. N	Lon	g. W			NE	N	(2)	(2)	Observer	Reference
				h m s			• •	• •	0	(h)		
										SAN LUIS	POTOSI	
1	Río Verde	21 55.8	100 00	6400	991	1907 - I	8 23.1	48 26.2	31950	36033	Abel Diaz Covarrubias. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
2	Valles	21 59.1	99 1.5	6366	95	1907 - I	8 10.9	48 44.0	32050	36525	Abel Diaz Covarrubias. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
3	San Luis Potosí	22 8.5	100 55	6 43 40	1877	1900 - I	8 40.7	48 12.5	32981	36898	M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	San Luis Potosí	22 9.2	100 56.1	6 43 44	1877	1906 - XII	8 43.9	48 25.2	32090	33169	Abel Diaz Covarrubias. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	San Luis Potosí	22 8.5	100 56.2	6 43 45	1877	1922 - VII	9 31.3	49 1.7	31698	36501	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	San Luis Potosí	22 8.5	100 56.2	6 43 45	1877	1924 - VII	9 38.9	49 22.6	30776	35877	J. Lindsay (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926.
	San Luis Potosí	22 7.9	100 58.2	6 43 53	1860	1940 - V	9 58.3	49 56.0	30834	36660	R. Jurado (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Matehuala	23 38.2	100 37.0	6 42 28	1615	1922 - VII	9 41.4	51 14.4	30793	38353	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Catorce	23 41.6	100 54.0	6 43 36	2756	1906 - XII	9 38.0	50 39.8	31920	36660	Abel Diaz Covarrubias. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
										SINA	LOA	
1	Alta Mar	22 43	107 1	784	0	1790	60				Tte. Salvador Fidalgo (Mar N. E.)	C. &. G. S. Report, 1885 A. 7
2	Mazatlán	23 11	106 25	7 5 40		1837		47 45			Du Petit Thouars Voyage de la Frégate Venus.	Reports, 1886 A. 12; 1888 A. 7.
	Mazatlán	23 11	106 25	7 5 40		1839		46 38.5	33260	35223	Sir Edward Belcher.	Report, 1885 A. 6.
	Mazatlán	23 11.5	106 26.6	7 5 46		1881 - II	9 39.4	48 15.8	32500	36430	Tte. H. E. Nichols (C. &. G. S.)	Reports, 1881 A. 9; 1882 A. 13; 1885 A. 6; 1896 A. 1; 1897 A. 1.
	Mazatlán	23 11.5	106 26.6	7 5 46		1890	9 28.2				Calculated Value	Report, 1889 A. 11.
	Mazatlán	23 11.3	106 25.5	7 5 42	75	1907 - Ш	10 4.0	49 17.8	31500	36618	M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Mazatlán	23 11.3	106 25.8	7 5 43	7	1923 - XI	11 5.6?	50 17.8	30876	37186	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Mazatlán	23 11.4	106 25	7 5 40		1924 - VII	11 2.8	49 44.3	30595	36125	J. W. Green (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926.
	Mazatlán	23 11.3	106 25	7 5 40		1924 - VII	10 59.0	49 40.6	30680	36146	J. W. Green (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926.
	Mazatlán	23 13.6	106 25.2	7 5 41		1939 - Ш	11 23.7	49 24.8	29687	34652	A. Vaca (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
3	Altata	24 38.9	108 00	7 12 0	0	1907 - Ш		50 43.4			M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
4	Culiacán	24 48.6	107 23.8	7 9 35	520	1923 - XI	10 37.3 ?	52 2.7	30413	38992	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Culiacán	24 47.5	107 24.0	7936	520	1924 - VIII	10 33.0	51 26.2	30181	37857	J. W. Green (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926.
5	Playa Colorada	25 12	108 24	7 13 36		1874	10 40.8				Tutle & Young (C. &. G. S.)	Reports, 1882 A. 13; 1896 A. 1.
	Playa Colorada	25 12	108 24	7 13 36		1890	10 28.2				Calculated Value	Report, 1889 A. 11.
6	Navachista o Narachista	25 23	108 49	7 15 16		1874	10 22.4				Tutle & Young (N. &. G. S.)	Reports, 1882 A. 13; 1896 A. 1.
	Navachista o Narachista	25 23	108 49	7 15 16		1890	10 7.8				Calculated Value	Report, 1889 A. 11.
7	Topolobampo	25 34	109 10	7 16 40		1874	10 40.8				Tutle & Young (N. &. G. S.)	Reports, 1882 A. 13; 1896 A. 1.
	Topolobampo	25 34	109 10	7 16 40		1890	10 28.2				Calculated Value	Report, 1889 A. 11.
8	Punta San Ignacio	25 36.5	109 17.3	7179		1880 - XII	10 15.3				Tte. H. E. Nichols (C. &. G. S.)	Reports, 1881 A. 9; 1896 A. 1.
	Punta San Ignacio	25 36.5	109 17.3	7179		1890	10 3.6				Calculated Value	Report, 1889 A. 11.

		Ge	ographic Posi	tion	Altitud	Date	D	I	H	Z		
No.	Location	Lat. N	Lon	g. W			NE	N	(2)	(2)	Observer	Reference
				h m s	1 "		• •	• •	1 00	(i)		
					-	1074				SONC	RA	
1	Agiabampo	2617	109 18	7 17 12		18/4	12 1.2				Tutle & Young. (C. &. G. S.)	Reports, 1882 A. 13; 1890 A. 1.
2	Agiabampo Debis free Dichere	26.17	109 18	7 17 12		1890	11 44.2				Calculated Value	Report, 1889 A. 11.
2	Bahia Sta, Baroara	20 41.5	109 38.4	7 18 34		1880 - XII	10 48.4	52 51.2	31050	40248	Ite. H. E. Nichols (C. &. G. S.)	Reports, 1881 A. 9; 1882 A. 15; 1885 A. 0; 1890 A. 1; 1897 A. 1.
_	Bahia Sta, Barbara	20 41.5	109 38.4	7 18 34		1890	10 30.5				Calculated Value	Report, 1889 A. 11.
2	Isla de Claris	20.59	109 57	7 19 48		18/4	10.50.4				Tuttle & Foung. (C. &. G. S.)	Reports, 1882 A. 13, 1890 A. 1.
	Isla de Ciaris	20.59	109.57	7 19 48		1890	10 59.4				Calculated Value	Report, 1889 A. 11.
-	Isla de Lobos	27.20	110.58	7 22 32		18/4	11 30.0				Colordated Vielas	Reports, 1882 A. 13, 1890 A. 1.
	Isla de Looos	27.20	100.27.0	8 22 32	27	1002 VI	11 15.6	54.60	20200.2	41720	Calculated Value	Kepon, 1889 A. 11.
2	Navojoa	27 34.0	109 27.0	7 17 40	37	1925 - 11	12 30	54 18 6	30200 :	41/20	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
6	GUAYMAS	27 54.8	110 52.6	7 23 30	2	1880	12 27 5	52 58.0	30520	40452	Tte. H. E. Nichols (C. &. G. S.)	Reports, 1879 A. 1; 1881 A. 9; 1882 A. 13; 1885 A. 6; 1896 A. 1;1897
	GUAYMAS	27.54.9	110.52.6	7 23 30	2	1800	11 33 0				Calculated Value	Penort 1990 A 11
	GUAYMAS	20.54.5	110 52.0	7 23 4	2	1906 - XI	12 20 5	53.49.0	20880	40863	D C S (C I W)	Researches of the Depart, of Tell, Magn. Vol. 1, Magn. Results. 1905
	GUAYMAS	27 55 0	110.55.3	7 23 41	2	1023 - VI	12 55 3	54 26 2	30172	42201	P. O. Sandoral (O. A. N.)	Magnetic Data Acquisition Campaign Mayico
	GUAYMAS	27 55.4	110 55.5	7 23 48	2	1925 - MI 1924 - VIII	12 31.0	54 22.7	28841	40255	J. W. Green (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 1926.
	GUAYMAS	27 54.6	110 52	7 23 28	2	1924 - VIII	12 48.0	54 16.0	29016	40330	J. W. Green (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 1926.
	GUAYMAS	27 55.9	110 58.0	7 23 52	10	1933 - VI	12 44.8	54 56.2	28428	40504	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	GUAYMAS	27 55.9	110 55.3	7 23 41	2	1939 - Ш	12 7.2	54 37.0	29860	42043	A. Vaca (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
7	Punta San Pedro	28 3	111 16	7244		1874	12 24.6				Tuttle & Young. (C &. G. S.)	Reports, 1882 A. 13; 1896 A. 1.
	Punta San Pedro	28 3	111 16	7 24 4		1890	12 1.8				Calculated Value	Report, 1889 A. 11.
8	Kino Bay	28 46	111 59	7 27 56		1873	12 33.0				Tuttle & Young. (C &. G. S.)	Reports, 1882 A. 13; 1896 A. 1.
	Kino Bay	28 46	111 59	7 27 56		1890	12 10.2				Calculated Value	Report, 1889 A. 11.
9	Isla Tiburón (South).	28 46	112 22	7 29 28		1873	12 28.2				Tuttle & Young. (C &. G. S.)	Reports, 1882 A. 13; 1896 A. 1.
	Isla Tiburón	29 11.5	112 27.0	7 27 48		1880 - 81	11 59.3	54 59.2	29860	42623	Tte. H. E. Nichols (C. &. G. S.)	Reports, 1881 A. 9; 1882 A. 13; 1885 A. 6; 1896 A. 1; 1897 A. 1.
	Isla Tiburón	29 11.5	112 27.0	7 27 48		1890	11 44.4				Calculated Value	Report, 1889 A. 11.
10	Hermosillo	29 4.4	110 56 0	7 23 44	237	1906 - XI	11 58.3	55 26.6	29236	42449	D. C. S. (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. I, Magn. Results. 1905 - 1910.
	Hermosillo	29 4.5	110 57.8	7 23 5	237	1923 - XI	12 37.7	55 38.5 ?	30072 ?	43988 ?	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Hermosillo	29 4.4	110 57	7 23 48	237	1924 - VIII	13 37.7 ?	55 47.8	28360	41725	J. W. Green (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 1926.
	Hermosillo	29 4.5	110 58.2	7 23 51	237	1933 - VI	12 33.7	55 54.9	27959	41318	R. O. Sandoval (O. A. N.)	Magnetic Data Aqcuisition Campaign, Mexico
	Hermosillo	29 4.5	110 57.8	7 23 51	237	1946 - VII	12 50.6	55 58.4	27491	40716	A. Vaca (O. A. N.)	Magnetic Data Aqcuisition Campaign, Mexico
11	Isla de Patos	29 1.6	112 29	7 29 56		1872	13 0				Tuttle & Young. (C &. G. S.)	Reports, 1882 A. 13; 1896 A. 1.
	Isla de Patos	29 1.6	112 29	7 29 56		1890	12 49.2				Calculated Value	Report, 1889 A. 11.
12	Libertad Bay	29 54	112 45	7 31 0		1873	12 55.8				Tuttle & Young. (C &. G. S.)	Reports, 1882 A. 13; 1896 A. 1.
	Libertad Bay	29 54	112 45	7 31 0		1890	12 45.0				Calculated Value	Report, 1889 A. 11.
13	Tepoca Bay	30 16	112 53	7 31 32		1875	12 16.8				G. C. Reiter. (C. &. G. S.)	Reports, 1882 A. 13; 1896 A. 1.
	Tepoca Bay	31 16	113 53	8 31 32		1890	12 6.0				Calculated Value	Report, 1889 A. 11.
14	Isla San Jorge	31.1	113 17	7 34 12		1875	12 43.2				Reiter & Seymour. (C. &. G. S.)	Reports, 1882 A. 13; 1896 A. 1.
	Isla San Jorge	32 1	114 17	8 34 12		1890	12 32.7				Calculated Value	Report, 1889 A. 11.
15	Punta Rocosa or Peñasco	31 17.2	113 33.1	7 34 12		1881 - I	12 27.0	57 14.7	28820	44800	Tte. H. E. Nichols (C. &. G. S.)	Reports, 1881 A. 9; 1882 A. 13; 1885 A. 6; 1896 A. 1; 1897 A. 1.
	Pullia Rocosa ol	21 17 2	112 22 1	7 24 12		1900	12 19 6				Coloulated Value	Banart 1990 A 11

		Ge	ographic Posi	tion	Altitud	Date	D	I	Н	Z		
No.	Location	Lat. N	Lon	g. W			NE	N	63	65	Observer	Reference
				h m s	m		• •	• •	(M)	(Y)		
										SONO	DRA	
16	Santa Cruz River	31 18	110 31	7 22 4		1856	11 45	57 28	28410	44538	W. H. E. (En Magnetic Tables & Charts.)	C. &. G. S. 1915.
17	Nogales	31 20.0	110 56.5	7 23 46	1179	1923 - X	13 53.7	57 23.5	29665 ?	46371 ?	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Nogales	31 17.2	110 56.5	7 23 46	1137	1933 - VI	13 49.5	58 21.5	26954	43742	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
18	Adair Bay	31 30	114 8	7 36 32		1873	13 19.8				Tuttle & Young. (C &. G. S.)	Reports, 1882 A. 13; 1896 A. 1.
	Adair Bay	31 30	114 8	7 36 32		1890	13 9				Calculated Value	Report, 1889 A. 11.
19	Punta Felipe	31 43.1	114 43.4	7 38 54		1881 - I	13 5.7	57 31.8	28510	44803	Tte. H. E. Nichols (C. &. G. S.)	Reports, 1881 A. 9; 1882 A. 13; 1885 A. 6; 1896 A. 1; 1897 A. 1.
	Punta Felipe	31 43.1	114 43.4	7 38 54		1890	13 4.2				Calculated Value	Report, 1889 A. 11.
20	Boca del Río Colorado	31 51	114 45	7 39 0		1841	11 15				Duflot de Mafras, Explor. De l'Oregon Paris. 1884.	Reports, 1882 A. 13; 1896 A. 1.
	Boca del Río Colorado	31 51	114 45	7 39 0		1890	12 7.8				Calculated Value	Report, 1889 A. 11.
										TABA	sco	
1	Villahermosa (San Juan Bautista)	17 59.2	92 55.0	6 11 42	10	1907 - IX	6 35.6	44 9.7	32660	31720	Abel Diaz Covarrubias. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Villahermosa (San Juan Bautista)	18 1.0	92 57.2	6 11 49	10	1930 - XI	7 43.9	46 24.9	31286	32871	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
2	Frontera	18 31.8	92 39	6 10 36		1924 - VIII	7 31.0	46 46.7	31384	33395	J. Lindsay (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926.
										TAMAU	LIPAS	
1	Tampico	22 16.0	97 48.0	6 31 12	0	1907 - I	7 59.7	49 32.3	31800	37283	Abel Diaz Covarrubias. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Tampico	22 14.9	97 52.0	6 31 28	12	1924 - VII	9 13.4	50 11.0	30806	36953	J. Lindsay (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926.
	Tampico	22 13.0	97 52.0	6 31 28	0	1933 - V	9 17.9	51 7.9	30105	37351	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Tampico	22 13.0	97 52.0	6 31 28	0	1939 - X	9 19.6	51 6.5	29035	35994	A. Vaca (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
2	Ciudad Victoria	23 44.6	99 7.9	6 36 32	321	1907 - I	8 32.3	50 59.0	31370	38716	Abel Diaz Covarrubias. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Ciudad Victoria	23 45.6	99 8.0	6 36 32	321	1933 - VI	9 53.6	52 23.2	29600	38418	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
3	Matamoros	25 52.7	97 30.3	6 30 1		1927	9 14				(Observed in Brownsville).	Magn. Decl. In Texas. C. &. G. S. Serial No. 417.
4	Camargo	26 15.7	98 51	6 35 24		1907 - I	8 41.0	54 24.5	30104	42062	J. P. Ault. (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. I, Magn. Results. 1905 - 1910.
	Camargo	26 15.7	98 51	6 35 24		1927	9 14				Unknown	Magn. Decl. In Texas. C. &. G. S. Serial No. 417.
5	Nuevo Laredo	27 30.8	99 32.0	6388	171	1922 - VIII	9 51.8	56 31.9 ?	28854	43648 ?	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Nuevo Laredo	27 30.8	99 29.9	6 37 59	171	1933 - VI	10 5.8	56 54.6	27814	42683	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Nuevo Laredo	27 30.8	99 30.5	6382	171	1939 - X	10 17.3	56 55.9	27927	42894	A. Vaca (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
										TLAXO	CALA	
1	Huamantla	19 18.9	97 55.6	6 31 42	2553	1909 - XII	8 28.1	44 55.5	32660	32574	Abel Diaz Covarrubias. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
2	Tlaxcala	19 19.1	98 14.1	6 32 56	2252	1910 - І - Ш	8 49.1	44 20.6	32620	31851	Carlos Bazán. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
3	Apizaco	19 24.9	98 8.6	6 32 34	2406	1928 - XI	9 3.5	46 19.2	31456	32940	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Apizaco	19 24.9	98 8.7	6 32 35	2406	1934 - XI	9 25.0	46 50.3	31225	33299	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico

		Ge	ographic Posi	tion	Altitud	Date	D	T	н	Z		
No.	Location	Lat. N	Lon	e. W			NE	N			Observer	Reference
				hms	- m		• •	0 1	(1)	(7)		
										VERAG	CRUZ	
1	Santa Lucrecia	17 26.0	95 1.5	6 20 6	24	1907 - V	714.4	42 53.9	33720	30404	M. Moreno v Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
-	Santa Lucrecia	17 26.0	95 1.5	6 20 6	24	1930 - XI	8 37.5	44 50.9	31491	31325	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
2	Minatitlán	17 58.8	94 32.4	6 17 44		1871	6 50				N. H. Farouhar. (U. S. Navy Depart.).	U. S. Navy Depart.
3	Coatzacoalcos. (Puerto México).	18 8	94 26	6 17 44	12	1871	6 49 ?				N. H. Farquhar. (U. S. Navy Depart.).	U. S. Navy Depart.
	Coatzacoalcos. (Puerto México).	18 8	94 26	6 17 44	12	1880 - II	7 10.5	43 3.3	34110	31869	S. M. Ackley. (C. &. G. S.).	Reports, 1881 A. 9; 1885 A. 6; 1896 A. 1;
	Coatzacoalcos. (Puerto México).	18 8	94 26	6 17 44	12	1889	6 52.8	43 3	33600	31387	Laird, Noris & Holcomb. (R. Clover, Letters to Office).	Reports, 1896 A. 1; 1897 A. 1.
	Coalzacoalcos. (Puerto	18 8	94 26	6 17 44	12	1890	6 34.8 ?				Calculated Value	Report, 1889 A. 11.
	Coatzacoalcos. (Puerto México).	18 8.7	94 24.6	6 17 38	12	1907 - IV	6 59.2	44 26.5 ?	30060	32422	M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Coatzacoalcos. (Puerto México).	18 9.7	94 23	6 17 32	12	1924 - VIII	8 17.1	45 41.2	31689	32458	J. Lindsay (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926.
	Coatzacoalcos. (Puerto México).	18 9.7	94 23	6 17 32	12	1924 - VIII	8 15.8	45 37.8	31734	32438	J. Lindsay (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926.
	Coatzacoalcos. (Puerto México).	18 9.0	94 16.5	6176	12	1925 - IX	7 54.2 *	45 55 9	31723	32772	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Coatzacoalcos. (Puerto México).	18 8.9	94 23	6 17 32	12	1930 - XI	8 25.8	46 2.4	31246	32505	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
4	Cosamaloapan	18 21.8	94 48.5	6 23 14	90	1925 - IX	8 4.4	45 14.6	32147	32421	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
5	Orizaba	18 51	97 6	6 28 24	1284	1856	8 28.2	42 51	34950	32421	A. Sonntag. (Smiths, Contr. To Knowl, 1860).	Reports, 1856 A. 28; 1882 A. 13; 1885 A. 6; 1896 A. 1; 1897 A. 1.
	Orizaba	18 51	97 6	6 28 24	1284	1890	6 34.8				Calculated Value	Report, 1889 A. 11.
	Orizaba	18 51	97 5.8	6 28 23	1284	1910 - Ш	7 26.3	44 46.4	33200	32938	J. Gomez Farías. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
6	El Potrero	18 52	94 5.1	6 24 20		1856	8 39	42 51	34920	32393	A Sonntag. (Smiths, Contr. To Knowl, 1860).	Reports, 1856 A. 28; 1882 A. 13; 1885 A. 6; 1896 A. 1; 1897 A. 1.
	El Potrero	18 52	94 5.1	6 24 20		1890	6 36.1				Calculated Value	Report, 1889 A. 11.
7	Córdoba	18 53.5	96 57.0	6 27 48	827	1907 - V		45 1.3	32900	32924	M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Córdoba	18 53.5	96 55.5	6 27 42	827	1925 - X	8 29.3	46 26.4	31763	33401	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
8	El Mirador	19 5	96 27	6 25 48		1856	8 1.8	43 50	34680	32335	A Sonntag. (Smiths, Contr. To Knowl, 1860).	Reports, 1856 A. 28; 1882 A. 13; 1885 A. 6; 1896 A. 1; 1897 A. 1.
	El Mirador	19 5	96 27	6 25 48		1890	5 59.4 ?				Calculated Value	Report, 1889 A. 11.
9	VERACRUZ	19 11	96 8	6 24 32		1625	3				R. Dudley.	Arcano del Mare, Reports, 1888 A. 7; 1895 A. 1.
	VERACRUZ	19 11	96.8	6 24 32		1726	2 15				J. Harris (Phil. Trans. R. S. 1728. 1824 - 1834).	Reports, 1859 A. 24; 1874 A. 8; 1879 A. 9; 1886 A. 12; 1895 A. 1.
	VERACRUZ	19 11	96.8	6 24 32		1769	640?				Enciclopedia Britanica. 1842.	Reports, 1886 A. 12; 1888 A. 7; 1895 A. 1.
	VERACRUZ	19 11	96 8	6 24 32		1769	6 28				Chape. Enciclopedia Británica. 1842.	Reports, 1859 A. 24; 1874 A. 8; 1879 A. 9; 1886 A. 12; 1888 A. 7; 1895 A. 1.
	VERACRUZ	19 11	96 8	6 24 32		1776	7 30				Ulloa. Enciclopedia Británica. 1842.	Reports, 1859 A. 24; 1874 A. 8; 1879 A. 9; 1886 A. 12; 1888 A. 7; 1895 A. 1.
	VERACRUZ	19 11	96 8	6 24 32		1815	10 37 ?				Malony. Enciclopedia Británica. 1842.	Reports, 1859 A. 24; 1874 A. 8; 1879 A. 9; 1886 A. 12; 1888 A. 7; 1895 A. 1.
	VERACRUZ	19 11	96 8	6 24 32		1819	9 16				Wise. Enciclopedia Británica. 1842.	Reports, 1859 A. 24; 1874 A. 8; 1879 A. 9; 1886 A. 12; 1888 A. 7; 1895 A. 1.
	VERACRUZ	19 11	96 8	6 24 32		1839	8 22				Behard. (Phil. Trans. R. S. 1875)	Reports, 1879 A. 9; 1886 A. 12; 1888 A. 7; 1895 A. 1.
	VERACRUZ	19 11	96 8	6 24 32		1856	8 17	43 58	34740	33509	A Sonntag. (Smiths, Contr. To Knowl, 1860).	Reports, 1856 A. 28; 1874 A. 8; 1879 A. 9; 1882 A. 13; 1885 A. 6; 1888 A. 12; 1895 A. 1.
	VERACRUZ	19 11	96 8	6 24 32		1861	8 20				A. Mirantazgo	Reports, 1874 A. 8; 1886 A. 12; 1888 A. 7; 1895 A. 1.
	VERACRUZ	19 12.2	96 8.5	6 24 34		1880 - II	7 26.3	44 4.6	34080	32999	S. M. Ackley. (C. &. G. S.).	Reports, 1879 A, 9; 1881 A. 9; 1885 A. 6; 1886 A. 12; 1888 A. 7; 1895 A. 1: 1896 A. 1: 1897 A. 1.

POSGRADO EN CIENCIAS DE LA TIERRA

		Ge	ographic Posit	ion	Altitud	Date	D	I	н	Z		
No.	Location	Lat. N	Lon	g. W			NE	N		63	Observer	Reference
				hms	m		• •	• •	(M)	(1)		
	·									VERAG	CRUZ	
	VERACRUZ	19 12.2	96 8.5	6 24 34		1888	7 12.7	44 20			Laird, Noris & Holcomb. (R. Clover, Letters to Office).	Reports, 1895 A. 1; 1896 A. 1; 1897A. 1.
	VERACRUZ	19 12.2	96 8.5	6 24 34		1890	6 36.6 ?				Calculated Value	Report, 1889 A. 11.
	VERACRUZ	19 12.0	96 7.9	6 24 30	2	1907 - V	7 29.9	45 23.1	33000	33446	M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	VERACRUZ	19 11.7	96 5	6 24 20	2	1924 - VII	8 32.6	46 36.4	31478	33295	J. Lindsay (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 -
<u>⊢</u>	VEP ACRUZ	10 10 0	06.8.2	6 24 33	0	1025 - TV	8 10 2 2	46 50 4 2	31633	33732	P. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Compaign Mayico
\vdash	VERACEUZ	10 11 7	95 5.0	6 24 35	5	1020 - Di	8 48 0	47.36	31075	33304	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
<u> </u>	VERACRUZ	10 12 6	96.83	6 24 33	1	1936 - XII	8 58 6	43 35 0	30762	33669	R O Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	VERACRUZ	10 7 7	06.55.5	6 24 26		1946 - XII	8 58 3	47.7.8	30620	32086	In Punta Morambo	Geometric Observatory Files
10	Talana	10 31 6	96 55 5	6 27 42	1427	1907 - X	7 29 8	44 68	32690	31603	Abel Disz Covernibies (O. A. N.)	Magnetic Data Acquisition Campaign Mayico
<u> </u>	Talana	10 31 5	96 54 0	6 27 36	1427	1025 - TX	8 28 0	45 35 5	31657	32318	R O Sandoval (O A N)	Magnetic Data Acquisition Campaign, Marico
	Jampa	10 01.5	20 24.0	02/00	1427	1923-21	0 20.7	45 55.5	51057	YUCA	TAN	Magaene Data Mequisition campaign, Menteo
1	Peto	20.7.6	88 52 5	5 55 30		1907 - VIII	5 27 9	48.1.8	31780	35332	Abel Diaz Covarmbias (O.A.N.)	Magnetic Data Acquisition Campaign Mexico
<u> </u>	Peto	20 7.6	88 56 5	5 55 46		1930 - XT	6 52.4	50 26 0	29905	36192	R O Sandoval (O A N)	Magnetic Data Acquisition Campaign, Mexico
2	Maxcanú	20 35 2	90.0.0	600		1907 - VI	5 36 6	50.0.0	31630	37695	Abel Diaz Covarrubias (O.A.N.)	Magnetic Data Acquisition Campaign, Mexico
3	Chemax	20 39	87 55 5	5 51 42		1907 - VIII	5 6.0	49 18.8	31570	36721	Abel Diaz Covarrubias (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
<u> </u>												Researches of the Denart of Terr Magn Vol VI Magn Results 1021 -
4	Chichen Itzá	20 41	88 34	5 54 16		1924 - IX	6 30.0	50 36.8	30132	36701	J. Lindsay (C. I. W.)	1926.
5	Valladolid	20 41.4	88 12.5	5 52 50		1930 - XII	6 37.7	51 23.1	29506	36942	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
6	Dzitás	20 49.0	88 34	5 54 16		1930 - XII	6 33.8	51 23.4	29600	37066	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
7	Merida	20 58 0	89 39.0	5 58 30	9	1907 - VI	5 36.8	49 29.8	31670	37076	A. Diaz Covarrubias (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Merida	20 58.2	89 36.0	5 58 24	9	1924 - IX	6 38.6	51 2.5	30073 ?	37192 ?	J. Lindsay (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926.
	Merida	20 58.2	89 36.0	5 5824	9	1924 - IX	6 35.0	51 12 3	30027 ?	37353 ?	J. Lindsay (C. I. W.)	Researches of the Depart. of Terr. Magn. Vol. VI, Magn. Results. 1921 - 1926.
	Merida	20 58.6	89 37.4	5 58 30	9	1930 - XI	6 27.2 ?	51 14.2	29877	37208	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Merida	20 54.7	89 40.4	5 58 41	9	1936 - XI - XII	7 11.3	51 35.3	29474	37171	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Merida	20 54.7	89 40.4	5 58 41	9	1941	7 18.4	51 34.6			A. Vaca (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Merida	20 55.8	89 40.8	5 58 43	9	1945 - II	7 10.0	51 39.4	29319	37066	Unknown	Department of Geomagnetism, Institute of Geophysics (National University of Mexico)
8	Temax	21 9.1	88 52.5	5 55 30		1907 - VIII	5 36.5	49 36.8	31550	37089	Abel Diaz Covarrubias. (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
9	Progreso	21 16.8	89 39.5	5 58 36	2	1880 - Ш	6 25.7	48 52.3	32690	37436	S. M. Ackley. (C. &. G. S.).	Reports, 1881 A. 9; 1882 A. 13; 1885 A. 6; 1896 A. 1; 1897 A. 1.
	Progreso	21 16.8	89 39.5	5 58 36	2	1890	5 55.8				Calculated Value	Report, 1889 A. 11.
	Progreso	21 17.2	89 40.5	5 58 42	2	1907 - VI	5 45.8	50 00.0	31367	37382	A. Diaz Covarrubias (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
10	Cayo Arenas	22 7.2	91 24.9	6 5 40		1847		49 32			S. M. Ackley. (C. &. G. S.).	Report, 1885 A. 6.
	Cayo Arenas	22 7.2	91 24.9	6 5 40		1880 - I	6 32.9	49 35.8	32750	38477	S. M. Ackley. (C. &. G. S.).	Reports, 1881 A. 9; 1885 A. 6; 1896 A. 1; 1897 A. 1.
	Cavo Arenas	22 7.2	91 24.9	6 5 40		1890	6 3.0				Calculated Value	Report, 1889 A. 11.
11	Isla de Pérez, Arrecife de Alacranes.	22 23.5	89 42.0	5 58 48		1880 - I	6 19.2	50 9.7	32530	38990	S. M. Ackley. (C. &. G. S.).	Reports, 1881 A. 9; 1885 A. 6; 1896 A. 1; 1897 A. 1.
	Isla de Pérez, Arrecife de Alacranes.	22 23.5	89 42.0	5 58 48		1890	5 49.2				Calculated Value	Report, 1889 A. 11.
										ZACAT	ECAS	
1	Guadalupe	22 45.6	102 31.2	6 50 6		1907 - XII	9 2.0	48 52.5	31960	36604	M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
2	Zacatecas	22 46.6	102 31.5	6 50 6		1902 -VII	8 57.3		31947		M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Zacatecas	22 46.6	102 31.5	6 50 6		1906 -XII	9 0.2	49 7.3	31960	36924	M. Moreno y Anda (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Zacatecas	22 46.6	102 34.2	6 50 17	2700	1923 - VШ	10 3 8	50 12.3	31032	37252	R. O. Sandoval (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico
	Zacatecas	22 46.7	102 34.0	6 50 16	2700	1940 - V	10 14.5		30851		R. Jurado (O. A. N.)	Magnetic Data Acquisition Campaign, Mexico

CAPÍTULO 5. SECULAR VARIATION OF THE EARTH'S MAGNETIC FIELD REVEALED BY MEXICAN GEOMAGNETIC REPEAT STATIONS DURING THE LAST TWO CENTURIES

Resumen

El modelado de la variación secular geomagnética reciente en términos de direcciones y de intensidad normalmente se basa en datos de observatorios, disponibles durante los últimos cuatro siglos en Europa, pero en menos de 100 años en la mayor parte del planeta. Las Estaciones de Repetición Geomagnéticas proporcionan datos complementarios de gran valor para el mismo fin, permitiendo extender en el tiempo el registro magnético. En este trabajo, se compiló una base de datos de 32 localidades recuperadas en México que proporciona 257 valores de declinaciones magnéticas, 239 inclinaciones, 236 datos para el componente horizontal y otros 233 para el componente vertical. El conjunto de datos seleccionado consta de veintiséis Estaciones de Repetición que proporcionan 216 declinaciones, 234 inclinaciones, 140 intensidades, 213 valores para la componente horizontal y 209 para la vertical. Se utilizó el método de Arbol de Agrupación Aglomerativa Jerárquica (agglomerative hierarchical grouping tree) en combinación con métricas de Chebyshev para minimizar los errores, así como un ejercicio de relocalización de los mismos. Los resultados de esta metodología se consolidaron con Splines Cúbicos Penalizados para construir la curva de variación secular que muestra tendencias bastante similares con los datos de modelos globales para la mayor parte del intervalo de tiempo analizado. En los resultados, hay evidencias de posibles jerks geomagnéticos para los años 1958, 1969 y 1978 que se pueden correlacionar con aquellos reportados por observatorios como Chambon la Forêt en Francia y Tucson en los Estados Unidos.

Palabras clave: Campo Magnético Terrestre, Variación Secular, Estaciones Geomagnética de Repetición, Jerks Geomagnéticos, México.

Abstract

Modeling of the recent geomagnetic secular variation in terms of both directions and intensity is commonly based on observatory data, available for the last four centuries in Europe but less than 100 years in most part of our planet. Geomagnetic Repeat Stations provide invaluable supplementary data for such purpose allowing largely extend the magnetic record. Here, we compile database retrieved from 32 localities in Mexico providing 257 values of magnetic declinations, 239 inclinations, 236 data for the horizontal component and other 233 for the vertical component of intensity. The selected dataset consists of twenty-six repeat stations providing 216 declinations, 234 inclinations, 140 intensities, 213 values for horizontal and 209 vertical components. An *agglomerative hierarchical grouping tree* method and Chebyshev metrics were used to mitigate the measurement errors while the relocation error exercise was also implemented. The Bootstrap method and penalized cubic splines were used to build the secular variation curve which show rather similar trends comparing to the global model data for the most time interval involved. Several potential geomagnetic jerks are observed for 1958, 1969 and 1978 most likely corresponding with those detected in French observatories in Chambon la Forêt and in Tucson in North America.

Key Words: Earth's Magnetic Field, Secular Variation, Geomagnetic Repeat Stations, Geomagnetic Jerks, Mexico.

Publicado en: Journal of South American Earth Sciences 113 (2022) 103652. https://doi.org/10.1016/j.jsames.2021.103652

Introduction

There is now a general agreement among geomagnetic community that the variation of the Earth's Magnetic Field is mostly unpredictable. Instead of invaluable information provided by Geomagnetic Repeat Stations worldwide, still few data are analyzed (Korte and Haak, 2000, Korte and Thébault, 2007) in terms of secular variation modelling.

The Repetition Station concept is widely known in the Geomagnetism literature. By definition, they were designed to estimate the secular variation of a given geographic position. Unlike permanent magnetic observatories, which provide the most accurate measurements of the Earth's Magnetic Field

Elements, Repeat Stations represent a very important and relatively inexpensive means of supplementing data. In particular, the stations far from the observatories can provide valuable data to study the behavior of the global geomagnetic field. In addition, data from Repeat Geomagnetic Stations are used extensively to produce regional maps and models. The Geomagnetic Repeat Stations have among their objectives the measurement of the secular variation of the magnetic field. It is desirable to achieve a precision comparable to that obtained in a magnetic observatory, this is 1 nT or less for the intensity elements, and 0.1' for the directional components (inclination and declination).

At present, repeating geomagnetic stations are classified into two categories, First Order Stations and Second Order Stations. In the first case, the reference measurements are very precise and systematically calibrated to nearby magnetic observatory, which should not have differences greater than a dozen nanoteslas. Under this category, stations must record diurnal variation measurements in parallel way supported with complementary instrumentation at the measurement site, for at least two days without severe diurnal variations. In case of Second Order Stations, they may lack the support of supplementary instrumentation to monitor diurnal variation. The special effort is paid to obtain sufficient data to be able to overcome diurnal variation effect because there is no nearby geomagnetic observatory (Newitt et al., 1996; Jankowski and Sucksdorff 1996).

In 1990, one of the last regional surveys was carried out in Mexico involving 51 locations, the corresponding magnetic charts were published and the data were evaluated using the International Geomagnetic Reference Field (IGRF) model with encouraging results (Hernández and Orozco, 1997; Hernández et al., 1994, Campos Enriquez, 1994, Flores Ruiz et al., 2000, Guzman, 2013). The measurements of magnetic declination in Mexico started already in 17th century with rather continuous record, while systematic inclination data is available for the last two centuries (Sandoval, 1950). Thus, in conjunction, the selected database provided by Mexican Repeat Stations may be potentially used to reveal fine characteristics of the geomagnetic field variation.

Instrumentation Used

Positioning and Geolocation Instruments

The model T0 Theodolite (Wild Instruments) was used to obtain the latitude and longitude of the site by combination of geodesic methods and astrometric measurements. This instrument was combined with a mercury altimeter to obtain the altitude of the site. The altimeter was a donation from the United States Army to UNAM. It is important to mention that the precision of these methods was very poor compared to the use of GPS today, however, they were very useful at the time. This instrument was also used to obtain the Astronomical North at each of the magnetic stations. Using positional astronomy techniques, the true azimuth of the sun was calculated through repeated observations assigning a reference mark to measure the magnetic declination (Gutiérrez, 1991; Cañón, et al., 1993).

The Precision Gyroscope (Wild Instruments) was occasionally used. This device uses the gyroscope method to find geographic north anywhere on the earth's surface. This is a great advantage in the sense that an ideal climate is not required, since it is not necessary to observe the sun or some astronomical reference stars. Furthermore, it is not required to be in an outdoor place, since the method used by this precise orientation instrument is based on the principle of the gyroscope to find the geographical north.

Earth's Magnetic Field Measurement Instruments

Suspended Magnet Single Line Magnetometer (*Rusca Instruments*) was routinely used to measure magnetic declination. Its operating principle was based on a gold fiber that suspended a magnet, inside an isolated box. By measuring the periods of oscillation, it was possible to indirectly know the magnetic declination. The measurement algorithm dates from the times of K.F. Gauss for the measurement of magnetic declination (Gutiérrez, 1991; Cañón, et al., 1993).

For the Measurement of the Horizontal Component of the Magnetic Field, the Quartz Horizontal Magnetometer (QHM) patented by the Danish Meteorological Institute was routinely used. Its operating principle is based on the oscillation of a small magnet suspended inside the instrument, supported by a system of horizontal Vernier with a precision of 30 seconds. The magnet is mounted with a small mirror, both supported by a quartz fiber with well-known elastic properties as well as a thermometer to obtain POSGRADO EN CIENCIAS DE LA TIERRA 119

temperature control during measurement. The optical system of this instrument was somewhat inaccurate, and was very susceptible to large variations in temperature. Measuring the horizontal component of the magnetic field in the desert at 45°C represented a challenge due to the effects of reverberation and high temperatures.

Declination Inclination Magnetometer.

The DIM magnetometer is a portable instrument designed to accurately obtain the declination and inclination components. The most important part of the instrument is that it has a fluxgate type magnetometer attached to the non-magnetic theodolite that was integrated into the optical axis of the Ruska or Zeiss brand models (Jena 020-A). The instrument was installed on the same tripod where astronomical measurements were previously carried out for the calculation of true north using the theodolite or the gyroscope. The requirements of this magnetometer allowed the acquisition of magnetic information more precisely and quickly. One drawback of the first models consisted in the use of batteries that were difficult to find in the market, but solving this problem, it was an instrument that revolutionized magnetic cartography in practice (Gutiérrez, 1991; Cañón et al., 1993). Two types of magnetometers were used in the nineties: the DIM (Declination Inclination Magnetometer) and the PPM (Proton Precession Magnetometer), which met the strict precision requirements. In practice, the observation and data reduction errors are much higher in a repeating station compared to a magnetic observatory. In a practical way, errors of 5 nT are acceptable in the scalar components; one minute of arc for magnetic declination, and 0.5 minute of arc for inclination.

Proton Precession Magnetometer

This instrument is composed of a 200cc capacity sensor containing some fluid rich in hydrogen, which can be fuel, or some variety of alcohol. This sensor is surrounded by an east-west oriented coil of copper wire. At the beginning of the operation, a current is passed through for a few fractions of a second, to induce a vibration frequency to the particles. When this current cease, the vibration of the particles generates a gyroscopic frequency proportional to the Earth's magnetic field, due to the proton precession movement. It is possible to measure the frequency and therefore the local magnetic field. Protons are endowed with their own rotational movement around their axis, and obey with the properties of the magnetic needle and the gyroscope (Gutiérrez, 1991; Cañón et al., 1993).

First generation instruments were used for historical measurements while Quartz Horizontal Magnetometers were still employed during the 1990-1991 campaign together with Di-Flux Declination Inclination and Proton Precession Magnetometers. Recently PPM Geometrics model G856 instrument is also incorporated in Magnetic Service.

Figure 5.1. Location of the Mexican Geomagnetic Repeat Stations.

Data Analysis and Main Results

We analyzed the geomagnetic information both in terms of directions and intensity collected from the Geomagnetic Repeat Stations distributed along the country. These geomagnetic stations make up a group of 32 localities providing around 257 declinations, 239 inclinations, 162 intensities, 236 values for H (horizontal component) and 233 for Z (vertical component) (Figures 5.1 and 5.2). However, only 26 of them reports systematic, reliable measurements and deserve to be included in the database (please see the supplementary material Appendix 1).

Figure 5.2. Available data distribution through time a) declination, b) inclination and c) intensity (see text for more details

These selected stations provided 216 declinations, 234 inclinations, 140 intensities, 213 values for horizontal and 209 vertical components. We intentionally discarded some measurements of H, Z obtained between 1839-1946 labeled as less reliable data in archive documents probably due to calibration problems. Please note that some stations are labeled as "A", "B" or "C". A means the original location while B and C refer to alternative locations very close (with the 150 m radius) to the original stations.

These geomagnetic data are sporadically distributed from 1625 to 2015. Figure 5.3 shows the spatial distribution of the geomagnetic field elements obtained during the last (1990-1991) and most detailed systematic measurement campaign. Although last systematic measurement campaign was carried out during 1990-1991, some sporadic data are acquainted from 2009 to 2013. Thus, these data set was also incorporated into the database and corresponding analysis. The Repeat Stations of Acapulco, San José Guaymas, La Ventosa Salina Cruz, Chihuahua, Ciudad Juárez, Mérida and Chetumal are the localities with the highest number of measurements available (Appendix 1). The directional data represents a greater temporal record ranging from 1860 to 2015, with the same amount of information for the declination and the inclination (Figure 5.2). In contrast, intensity data are available from 1950 to 2015, with a considerably shorter time range with respect to the directions. Some sporadic measurements of horizontal and vertical components of the intensity are available for older times. However, these rather scattered data are characterized by relatively low quality and precision.

One of the major challenges within the analysis of this database is the so-called gaps or temporary jumps detected. Due to the uneven distribution of data for some age intervals, it is important to ascertain that they are not part of a measurement error. For this purpose, we used so-called an *agglomerative hierarchical grouping tree* method (Kaufman and Rousseeuw, 1990). This is a hierarchical grouping of data levels, taking into account the variety of scales observed over time allowing to decide the scale level of the grouping into more suitable groups and thus reject apparent anomalies. Additionally, this permits to create a *tree* employing the weighted mean distance method using of the Chebyshev metric to find the maximum difference between the data facilitating the construction of agglomerative groupings.

Figure 5.3. Spatial distribution of the Earths' Magnetic Field Elements obtained during the 1990 and 1991 measurement campaigns.

The intensities and directions were relocated to a common site such as Mexico City using a pole reduction method, but this relocation eventually involves an error in the original values due to the distance between the relocation and the measurement sites as well as the temporal variation of each geomagnetic element. Thus, relocation error was considered using the GUFM1 (Jackson et al., 2000) models together with the IGRF-12 (International Geomagnetic Reference Field: The 12^{th} generation) covering whole time range. The use of the relocation error is extremely important to develop a reliable secular variation curve (Noël and Batt, 1990; Lanos, 2004; Casas and Incoronato, 2007). The maximum relocation error is less than $2 \mu T$ which may be considered as tolerable.

For the development of the secular variation curve and to guarantee that the data used are representative, the Bootstrap methodology (Thebault and Galet, 2015, Thebault et al., 2015) was carried out for the directions and intensity with the original values and their dispersion (relocation error with respect to distance and time), generating 500 values through a normal distribution to obtain synthetic curves by interpolating the values with P-Splines (penalized cubic splines) which consider the relocation error. Finally, these curves are averaged to obtain the reference curves. Directional curves begin from 1850 while the intensity starts from 1950.

The inclination and declination curves present a rather continuous variation due to the considerable amount of data (Figure 5.4). The maximum inclination value is of order of 47° recorded in 1946 while a minimum of 43° is reached around 1865. The marked gap is observed from 1990 to 2010. The same is true for magnetic declination with a maximum of 10° in 1929 and a minimum value of 5° . In the case of intensity, a rather monotonic decrease is observed from 1950 to the present, exhibiting initial values of the order of 44μ T, reaching a maximum of 45μ T in 1967 until decreasing to 40.5μ T around 2015.

Figure 5.4. Secular variation curves of magnetic inclination, declination and intensity relocated to Mexico City.

An analysis of the abrupt variation in both the intensity and directions of the geomagnetic field in Mexico was carried out using the method proposed by Pavón-Carrasco et al. (2010). Potential geomagnetic jerks may be detected by revealing some sudden changes in the second-time derivative of the magnetic field (Courtillot, 1978). However, in our case, the record is discontinuous and thus the approach developed by Pavon-carrasco et al., 2009, 2010 (see also Tema et al., 2021) seems more appropriate. The paleosecular variation curve was analysed by its first and second derivative with respect time and the exchange rate between them (Figure 5.5).

Figure 5.5 Variation of the geomagnetic field in Mexico obtained from the Repeat Stations compared to the Geomagnetic Model data (Sha.Dif14K Pavon Carrasco et al., 2014; GUFM1 Jackson et al., 2000;
IGRF-12 - International Geomagnetic Reference Field: The 12th generation). Also shown are historical measurements reported in Goguitchaishvili et al., 2020.

In addition, a scalogram was developed which is useful for the analysis of some short-lived abnormal events such are geomagnetic jerks. This way, several potential jerks are detected for 1958, 1969 and 1978 (Figure 5.6) and seem to correspond with those detected in French observatories in Chambon la Forêt and in Tucson in North America (De Michelis et al., 2005). In addition, a possible jerk is detected for 2014 (Figure 5.5), which may be related to the one detected by the observatories of the European-African and Western Pacific-Australian sectors (Miquel-Torta et al., 2014).

Figure 5.6. The analyses of the potential geomagnetic jerks used the method described in Pavon-Carrasco et al. 2010 (see text for more details). Also shown are (right) *scalograms* of the intensity with first and second order derivatives.

Concluding Remarks

- Twenty-six Geomagnetic Repeat Stations provided robust dataset for the geomagnetic field modeling in Mexico. The present, selected database consists of

216 declinations, 234 inclinations, 140 intensities, 213 values for horizontal and 209 vertical components during the last two centuries.

- The mitigation of potential measurement errors was achieved using so-called Agglomerative Hierarchical Grouping Tree method combined with Chebyshev metric.
- All data were relocated to the Mexico City. The relocation error exercise was carried out using the GUFM1 and IGRF-12 models yielding less than 4° for magnetic declination and inclination and 2 μT for the intensity values.
- Directional secular variation curves begin from 1850 while the intensity became available from 1950. Bootstrap methodology allowed to generate 500 synthetic curves by interpolating the values with P-Splines (penalized cubic splines) considering the relocation error.
- The intensity curve shows a rather monotonic decrease from 45 to 40.5µT while larger variations are observed for magnetic declination and declination.

- Because of rather sporadic character of the geomagnetic record, we used a method described in Pavon-Carrasco et al. (2010) in order to reveal some abrupt, short time changes known as geomagnetic jerks. Several potential geomagnetic jerks are observed for 1958, 1969 and 1978 most likely corresponding with those detected in French observatories in Chambon la Forêt and in Tucson in North America.
- The possible jerk detected for 2014 most likely corresponding to one detected in Europe, Africa and Australia, should be still considered as speculative in absence of more robust dataset for the period involved.

References

Campos-Enríquez, J.O., Hernández-Quintero, E., Nolasco-Chávez, H., Orozco-Torres, A., Cañón-Amaro, C., Álvarez-García, G., y Urrutia-Fucugauchi, J., 1994, A Preliminary Assessment of IGRF-1990 for Mexico. Physics of the Earth and Planetary Interiors 82, 105-111.

Cañón, A., Hernández, J.E., Nolasco, H., and Orozco, A., 1993, Cartas Magnéticas de la República Mexicana para la época 1990.0, escala 1:5 000 000. Instituto de Geofísica UNAM. Instituto Nacional de Estadística Geografía e Informática, INEGI. México.

Casas, Ll., Incoronato, A., 2007, Distribution s analysis of errors due to relocations of geomagnetic data using the 'Conversion via Pole' (CVP) method: implications on archaeomagnetic data. Geophys. J. Int. 169, 448-454, http://dx.doi.org/10.1111/j.

1365-246X.2007.03346.x.

Courtillot, V., Ducruix, J., and Le Mouël, J.-L., 1978. Sure une accéleration récente de la variation seculaire du champ magnétique terrestre. Comptes rendus des séances de l'Académie des Sciences, 287, D: 1095–1098.

De Michelis P., Tozzi R., y Meloni A., 2005, Geomagnetic jerks: observation and theoretical modelling, Memorie della Societa Astronomica Italiana, 76, 957.

Flores-Ruíz, J.H., Marines-Campos, R., Hernández-Quintero, J.E., Campor-Enríquez, J.O., y Urrutia-Fucugauchi, J. 2000, Evaluación Geo-Estadística de la Red de Estaciones Magnéticas de la República Mexicana. Revista Geofísica del Instituto Panamericano de Geografía e Historia 52-53, 107-122.

Goguitchaichvili, A., Hernández-Quintero, E. R. García, R. Cejudo, G. Cifuentes, M. Cervantes, Fluctuation of the Earth's magnetic field elements in Mexico revealed by archive documents since 1587, Physics of the Earth and Planetary Interiors, 2020, https://doi.org/10.1016/j.pepi.2020.106433.

Gutiérrez, B., and Miguel, A., 1991, Elaboración y Aplicación del las Cartas Magnéticas de la República Mexicana. Tesis de Licenciatura. Universidad Nacional Autónoma de México. Facultad de Ingeniería. 98 pp.

Guzmán, A.B., 2013, Catálogo de estaciones magnéticas de repetición y carta magnética época 2010.0 para México. Tesis de Licenciatura. Universidad Nacional Autónoma de México. Facultad de Ingeniería. 200 pp.

Hernández, E., and Orozco, A., 1997. Magnetic Field work and IGRF models for México, three examples for the 20th Century. Journal of Geomagnetism and Geoelectricity 49, 387-392.

Hernández-Quintero, E., Nolasco-Chávez, H., Campos-Enríquez, J.O., Cañón-Amaro, C., Orozco-Torres, A., Urrutia-Fucugauchi J., y Alvarez-García, G. 1994, Evaluación preliminar del campo geomagnético de referencia internacional IGRF-1990 para México y anomalías magnéticas corticales. Geofísica Internacional 33(2), 235-241.

Jackson, A., Jonkers R.T., and Walker, R., 2000, Four centuries of geomagnetic secular variation from historical records, The Royal Society, 358, 957-990.

Jankoswki, J. and Sucksdorff C., 1996, Guide for magnetic measurements and

observatory practice, IAGA Division V.

Kaufman, L., Rousseeuw, P.J., 1990, Finding Groups in Data: An Introduction to Cluster Analysis, 1ed, New York: John Wiley, ISBN 0-471-87876-6.

Korte, M., and Haak V., 2000, Modelling European magnetic repeat station and survey data by SCHA in search of time-varying anomalies, Physics of the Earth and Planetary Interiors, 122 (3-4), 205-220.

Korte, M., and Thébault E., 2007, Geomagnetic repeat station crustal biases and vectorial anomaly maps for Germany, Geophysical Journal International, 170(1), 81-92, <u>https://doi.org/10.1111/j.1365-246X.2007.03387.x</u>

Lanos, Ph., 2004, Bayesian inference of calibration curves applications to archaeomagnetism. In: Buck, C, E., Millard, A.R. (Eds.), Tools for constructions Chronologies, Crossing Disciplinary Boundaries, In. Lectures Notes in Statistics, 177, Springer-Verlang, London, pp. 43-82.

Miquel-Torta, J., Pavón-Carrasco, J. F., Marsal, S., and Finlay, C.C., 2014, Evidence for a new geomagnetic jerk in 2014, Geophysical Research Letters, 42, 7933-7940, 10.1002/2015GL065501.

Newitt, L.R., Barton, C.E., and Bitterly, L., 1996, Guide for Magnetic Repeat Stations. International Association of Geomagnetism and Aeronomy. 129 pp.

Noel, M and Batt, C.M., 1990, A Method for correcting geographically separated remanence directions for the purpose of archaeomagnetic dating. Geophis. J., Int. 102, 753-756.

Pavón-Carrasco F.J., Osete M.L., Miquel Torta J., and De Santis A. 2014. A geomagnetic field model for the Holocene based on archaeomagnetic and lava flow data, Earth and Planetary Science Letters, 388, 98-109, <u>http://dx.doi.org/10.1016/j.epsl.2013.11.046.</u>

Pavón-Carrasco, F. J., Osete, L. M., and Torta, M.J., 2010, Regional modeling of geomagnetic field in Europe from 6000 to 1000 B.C., Geochemistry, Geophysics, Geosystems, 11(11), Q11008, doi:10.1029/2010GC003197.

Pavón-Carrasco F.J., Osete M.L., Miquel-Torta J., and Gaya-Pique L. R., and Gaya-Piqué L.R. 2009. A regional archeomagnetic model for Europe for the last 3000 years, SCHA.DIF.3k: Applications to

archeomagnetic dating, Geochemistry, Geophysics, Geosystems, 10(3), <u>https://doi.org/10.1029/2008GC002244</u>.

Sandoval, O.R., 1950, Elementos magnéticos en la República Mexicana. Servicio Geomagnético. Instituto de Geofísica. UNAM. México. 182 pp.

Tema E., Hedley I., Pavón Carrasco F.J., Ferrara E., Gaber P., Pilides D., Toumazou M., Violaris Y., Webb J., and Frankel D. 2021. The directional occurrence of the Levantine geomagnetic field anomaly: New data from Cyprus and abrupt directional changes, 557, 116731, https://doi.org/10.1016/j.epsl.2020.116731.

Thébault, E., Finlay, C.C., Beggan, C.D. et al. 2015, International Geomagnetic Reference Field: the 12th generation. Earth Planet Sp 67, 79, https://doi.org/10.1186/s40623-015-0228-9

Thébault, E., Gallet, Y., 2010, A bootstrap algorithm for deriving the archeomagnetic field intensity variation curve in the Middle East over the past 4 millennia BC. Geophys R., Lett. 37. http://dx.doi.org/10.1029/2010GL044788.

APPENDIX 5.1

Repeat stations catalogue data

Repeat Station: Mazatlán (Isla de Piedra), Sinaloa

North Latitude 23°11'31"

West Longitude:106°23'44.2"

Altitude: 0 meters msl

Last check: 2013-11

Azimuth Mark: Antenna on a near hill in Isla de Piedra at about 260 ° azimuth

Mark Azimuth: 266.4475°

Repeat Station	Date		D			Ι		F	Н	Z
А	1837	-	-	-	47	45	0	-	-	-
А	1839	-	-	-	46	38	30	-	33260	35223
А	1881-2	9	39	24	48	15	48	-	32500	36430
А	1890	9	28	18	-	-	-	-	-	-
А	1907-3	10	4	0	49	17	48	-	31500	36618
А	1923-11	11	5	36	50	17	48		30876	37186
А	1924-7	11	2	48	49	44	18	-	30595	36125
А	1924-7	10	59	0	49	40	36	-	30680	36146
А	1939-3	11	23	42	49	24	48	-	29687	34652
А	1956-6	10	39	27	49	43	34	45643	29505	34823
А	1964-2	10	24	56	49	48	44	45490	29354	34751
А	1974-2	9	53	43	49	59	26	44945	28986	34425
А	1981-5	9	17	54	49	56	46	44475	28620	34042
Α	1990-7	9	20	38	49	55	53	43961	28284	33642
В	2009-12	8	44	49	50	32	45	42537	27028	32843

Repeat Station: Los Mochis, Sinaloa

North Latitude: 25°49'4.6"

West Longitude: 108°58'43.9"

Altitude 157 meters msl

Last check: 2013-11

Azimuth Mark: The Largest antenna of the eastern hill.

Mark Azimuth: 144.2997222°

Repeat Station	Date		D			Ι		F	H	Z
А	1956-6	11	20	1	52	34	19	47246	28714	37518
А	1963-2	11	27	37	52	28	48	46934	28584	37225
А	1980-8	10	15	20	52	36	13	46132	28010	36649
А	1990-8	10	17	45	52	14	26	45328	27766	35835
Α	2009-12	9	14	50	52	42	5	44081	26710	35064

Zone: Northeast

Repeat Station: Hermosillo, Sonora

North Latitude: 29°15'24.2"

West Longitude 110°50'52.1"

Altitude: 290.6 meters msl

Last Check: 2013-11

Azimuth Mark: Northeastward water deposit pipe (30°)

Mark Azimuth : 32.1294444°

Repeat Station	Date		D			Ι		F	H	Z
А	1906-11	11	58	18	55	26	36	-	29236	42449
А	1923-11	12	37	42	55	38	30	-	30072	43988
А	1924-8	13	37	42	55	47	48	-	28360	41725
А	1933-6	12	33	42	55	54	54	-	27959	41318
А	1946-7	12	50	36	55	58	24	-	27491	40176
А	2009-12	10	6	11	55	28	5	45974	26059	37871

Repeat Station: San José Guaymas, Sonora

North Latitude: 27°59'14.9"

West Longitude:110°53'9.2"

Altitude: 4 meters msl

Last Check: 2013-11

Azimuth Mark: Communication antenna which is approximately 190 $^\circ$

Mark Azimuth: 200.5641667°

Repeat Station	Date		D			Ι		F	Н	Z
А	1880	11	48	0	52	58	0	-	30520	40452
А	1890	11	33	0	-	-	-	-	-	-
А	1906-11	12	20	30	53	49	0	-	29889	40863
А	1923-11	12	55	18	54	26	12	-	30172	42201
А	1924-8	12	31	0	54	22	42	-	28841	40255
А	1924-8	12	48	0	54	16	0	-	29016	40330
А	1933-6	12	44	48	54	56	12	-	28428	40504
А	1939-3	12	7	12	54	37	0	-	29860	42043
А	1952-3	12	33	56	54	44	24	48460	27976	39569
А	1956-6	12	27	42	54	42	36	48370	27944	39481
А	1954-2	12	22	39	54	38	39	48051	27805	39189
А	1980-8	11	9	51	54	33	9	47117	27319	38383
А	1988-1	11	44	9	54	33	12	46715	27101	38056
Α	1990-8	10	51	48	54	30	44	46377	26920	37761
А	2009-12	9	40	21	54	34	30	45204	26200	36833

Zone: Northeast

Repeat Station: Culiacán, Sinaloa

North Latitude: 24°44'33"

West Longitude: 107°29'35.4"

Altitude: 28 meters msl

Last Check: 2013-11

Azimuth Mark: The highest communication antenna northeastward (~ 40 °).

Mark Azimuth: 65.43527778°

Repeat Station	Date		D			Ι		F	H	Z
А	1923-11	11	37	18	52	2	42	-	30413	38992
А	1924-8	10	33	0	51	26	12	-	30181	37857
А	1952-7	11	5	54	51	27	8	47028	29306	36780
А	1956-6	11	1	46	51	29	16	46905	29207	36701
А	1963-2	10	38	26	51	36	49	46492	28870	36442
А	1990-8	9	39	58	51	40	52	45131	27986	35408
В	2009-12	8	30	59	51	45	50	43760	27082	34371

Repeat Station: Nuevo Casas Grande, Chihuahua.

North Latitude: 30°24'12.6"

West Longitude: 107°52'41.2"

Altitude: 1457 meters msl

Last Check: 2013-11

Azimuth Mark: Cell-phone antenna Northwestward (> 270 °)

Mark Azimuth: 307.3075

Repeat Station	Date		D			Ι		F	H	Z
А	1906-12	11	51	24	27	24	0	-	28518	44592
А	1924-8	12	26	12	57	49	24	-	27624	43906
А	1933-7	13	11	42	57	34	42	-	27550	43376
А	1959-5	12	12	21	58	0	23	50345	26674	42697
А	1990-6	10	35	37	57	39	45	48271	26072	40784
В	2009-12	9	18	41	57	42	22	47181	25204	39879

Zone: Northeast

Repeat Station: Nogales, Sonora

North Latitude: 31°13'38"

West Longitude: 110°58'24.2"

Altitude: 1255 meters msl

Last Check: 2013-11

Azimuth Mark: Antenna located on the building of the UTN (Universidad Tecnológica del Noroeste) at Northwestward 305 °.

Mark	Azimuth:	305.37	66667
Mark	Azimuth:	305.37	66667

Repeat Station	Date	D				Ι		F	Η	Z
А	1923-10	13	53	42	57	23	30	-	29665	46371
А	1933-6	13	49	30	58	21	30	-	26954	43742
А	1964-2	13	57	46	58	5	28	49972	26414	42420
А	1980-8	11	54	3	52	46	28	43136	26113	34347
А	1990-8	11	43	50	57	54	29	48602	25821	41175
В	2009-12	10	35	33	57	45	47	47069	25106	39810

Repeat Station: Puerto Peñasco, Sonora.

North Latitude: 31°21'11"

West Longitude: 113°31'16.8"

Altitude: 5.6 meters msl

Last Check: 2013-11

Azimuth Mark: Antenna at 160 ° azimuth. Municipality of Puerto Peñasco property (CCP Seguridad Pública)

Mark Azimuth: 165.7822222°

Repeat Station	Date	D				Ι		F	H	Z
А	1881-1	12	27	0	57	14	42	-	28820	44800
А	1890	13	18	36	-	-	-	-	-	-
А	1956-7	13	37	38	57	47	10	49858	26578	42183
А	1964-2	13	23	46	57	46	14	49640	26473	41991
А	1990-8	12	24	12	57	30	14	48291	25936	40729
В	2009-12	11	20	33	57	21	51	46823	25248	39427

Zone: South

Repeat Station: San Andrés Huayapam, Oaxaca

North Latitude: 17°05'40.8"

West Longitude: 96°39'40.9"

Altitude: 1684.2 meters msl

Last Check: 2013-11

Azimuth Mark: Antenna located on the roof of Municipal presidency of the town.

Mark Azimuth: 308.8319444°

Repeat Station	Date	D			Ι			F	Н	Z
А	1959-5	8	33	44	44	6	36	42922	30818	29875
А	1975-5	7	24	36	43	41	40	42036	30394	29038
А	1990-6	6	15	10	44	36	12	40970	29170	28768
В	2010-12	4	44	11	44	44	53	39753	28250	28036
Zone: South

Repeat Station: Comitán, Chiapas.

North Latitude:16°15'15.6"

West Longitude: 92°07'0.2"

Altitude: 1574 meters msl

Last Check: 2013-11

Azimuth Mark: Cell-phone antenna located on the northeastward hill

Mark Azimuth: 278.45°

Repeat Station	Date		D			Ι		F	H	Z
А	1952-8	7	49	28	44	17	6	43095	30851	30090
А	1955-6	7	43	25	44	25	12	42985	30701	30085
А	1960-9	7	38	48	44	23	26	42880	30642	29996
В	1952-8	7	48	29	44	14	51	43107	30879	30078
В	1955-4	7	37	15	44	23	59	42964	30697	30060
В	1990-11	4	53	5	44	47	16	40824	28974	28759
С	2010-12	2	44	42	44	39	37	39127	27850	27553

Zone: South

Repeat Station: Tapachula, Chiapas.

North Latitude:14°53'6.6"

West Longitude: 92°17'42.2"

Altitude :113 meters msl

Last Check 2013-11

Azimuth Mark: Antenna of the old Airport Control Tower located approx. 180 ° southward

Mark Azimuth: 14.555°

Repeat Station	Date	D				Ι		F	Н	Z
А	1930-11	7	57	24	42	11	30	-	31836	28858
А	1956-5	7	26	6	42	54	10	42011	30773	28599
А	1963-5	6	58	57	42	56	23	41679	30512	28392
А	1974-3	6	0	12	43	4	45	36504	26663	24932
А	1975-3	5	56	59	42	54	0	40682	29802	27693
А	1990-11	4	53	21	42	55	17	40311	29519	27451
В	2010-12	2	20	52	43	12	19	38186	27855	26193

Zone: South

Repeat Station: La Ventosa-Salina Cruz, Oaxaca

North Latitude:16°10'16.8"

West Longitude: 95°09'13.7"

Altitude: 8 meters msl

Last Check: 2013-11

Azimuth Mark: Northwest Radio antenna (red / white) within the village approximately 330 $^\circ$

Mark Azimuth: 334.5872222°

Repeat Station	Date		D			Ι		F	H	Z
А	1871	8	10	0	-	-	-	-	-	-
А	1880-11	7	17	12	40	8	30	-	34480	29078
А	1889	6	58	48	40	2	0	-	34260	28781
А	1890	6	53	24	-	-	-	-	-	-
А	1906-4	7	32	36	41	29	24	-	33120	29292
А	1907-9	7	10	48	41	25	18	-	33010	29124
А	1930-11	8	38	12	43	6	24	-	31874	29834
А	1954-8	8	27	0	43	16	0	42802	31167	29336
А	1956-5	8	15	26	43	15	0	42583	31016	29177
А	1963-5	7	53	9	43	16	59	42283	30781	28989
А	1975-5	6	55	33	43	21	9	41589	30240	28550
Α	1990-11	5	51	38	43	43	11	40646	29376	28091
В	2010-12	4	2	13	43	58	34	38990	28077	27123

Zone: South

Repeat Station: Tuxtla Gutiérrez, Chiapas

North Latitude:16°44' 29.4"

West Longitude: 93°12' 9.5"

Altitude 621 meters msl

Last Check 2013-11

Azimuth Mark: Antenna to Northeast of the soccer field

Mark Azimuth: 44.35833333°

Estación	Fecha		D			Ι		F	H	Z
А	1930-11	8	7	36	44	32	36	-	31536	31055
А	1956-4	7	42	22	44	43	38	43311	30771	30479
А	1960-9	7	28	36	44	30	28	42957	30635	30113
А	1990-11	4	59	5	45	8	6	41150	29029	29165
В	2010-12	3	6	42	44	59	3	39447	27919	27936

POSGRADO EN CIENCIAS DE LA TIERRA

Zone: Southwest

Repeat Station: Zihuatanejo, Guerrero

North Latitude: 17°36'28.2"

West Longitude: 101°27'45.2"

Altitude: 23 meters msl

Last Check 2013-11

Azimuth Mark: Antenna located Northward Ixtapa Airport Control Tower

Mark Azimuth: 212.6516667°

Repeat Station	Date		D			Ι		F	Н	Z
А	1990-11	8	18	29	45	10	2	41737	29426	29599
В	2011-10	5	47	58	45	17	6	40141	28337	28670

Zone: Southwest

Repeat Station : Pinotepa Nacional, Oaxaca

North Latitude:16°20'16.1"

West Longitude: 98°02'19.6"

Altitude: 208 meters msl

Last Check: 2013-11

Azimuth Mark: Cell phone Antenna northward

Mark Azimuth: 357.4147222°

Estación	Fecha		D			Ι		F	Н	Z
А	1990-11	6	55	9	43	27	44	40819	29627	28078
А	2011-10	3	1	34	43	37	15	39067	28381	27094

Zone: Southwest

Repeat Station: Acapulco, Guerrero

North Latitude:16°54'12"

West Longitude: 99°58'35"

Altitude: 30 meters msl

Last Check: 2013-11

Azimuth Mark: Radio antenna located westward inside the Mexican Air Force Base.

Mark Azimuth: 128.7988889°

Station	Date		D			Ι		F	Н	Z
А	1625	1	30	0	-	-	-	-	-	-
А	1744	3	0	0	-	-	-	-	-	-
А	1791	7	44	0	36	7	30	-	-	-
А	1803	-	-	-	38	53	0	-	-	-
А	1822	8	40	0	-	-	-	-	-	-
А	1828	9	7	0	-	-	-	-	-	-
А	1837	8	23	0	-	-	-	-	-	-
А	1838	8	17	0	-	-	-	-	-	-
А	1841	8	17	0	-	-	-	-	-	-
А	1866	8	22	0	39	54	0	-	35690	29841
А	1874	8	38	42	-	-	-	-	-	-
А	1880-11	7	56	36	40	8	30	-	34660	29229
А	1882	7	54	0	-	-	-	-	-	-
А	1890	7	38	24	-	-	-	-	-	-
А	1892	7	35	0	40	25	0	-	34620	29481
А	1907-6	8	8	48	41	24	42	-	33513	29560
А	1907	8	22	0	41	10	0	-	33550	29336
А	1912-1	8	31	42	41	51	6	-	33302	29828
А	1912	8	35	0	42	19	0	-	33250	30273
А	1931-3	9	22	30	42	46	24	-	32149	29743
А	1940-11	9	36	54	43	8	36	-	31166	29677
А	1952-6	9	9	12	42	15	32	42411	31389	28521
А	1955-3	9	2	59	42	57	2	42709	31260	29100
А	1963-1	8	49	6	43	2	51	42459	31029	28983
А	1975-8	7	48	29	42	48	29	41763	30638	28380
A	1990-11	7	16	48	43	36	59	40955	29650	28252
В	1952-6	9	4	25	43	5	38	43017	31413	29389
В	1955-3	8	57	20	43	1	13	42774	31272	29183
В	1963-1	8	40	55	43	8	31	42463	30983	29037
С	2011-1	5	44	56	43	50	35	39362	28493	27413

Repeat Station : Torreón, Coahuila

North Latitude: 25°36'28.9"

West Longitude: 103°25'4.4"

Altitude: 1127.3 meters msl

Last Check: 2013-11

Azimuth Mark: Lightning rod on the "Tecnológico Milenio" building northward.

Mark Azimuth: 112.3216667°

Repeat Station	Date		D			Ι		F	Н	Z
А	1923-9	10	18	30	52	54	18	-	30909	40876
А	1952-5	10	38	20	53	23	49	48138	28703	38644
А	1955-11	10	31	27	53	27	9	47993	28579	38555
А	1964-9	10	14	17	53	22	50	47658	28427	38251
А	1979-10	9	22	54	53	21	42	46770	27911	37529
А	1981-9	10	44	43	53	24	46	46651	27806	37458
В	1952-5	10	34	22	53	22	45	48077	28678	38586
С	2011-12	7	16	43	53	27	5	44395	26515	35834

Zone: North

Repeat Station: Parral, Chihuahua

North Latitude: 26°55'24"

West Longitude: 105°47'22.1"

Altitude: 1850.5 meters msl

Last Check: 2013-11

Azimuth Mark: Antenna on the main hangar of the airstrip.

Mark Azimuth: 106.6430556°

Estación	Fecha		D			Ι		F	Н	Z
А	1990-6	9	27	43	54	37	52	46783	27080	38149
В	2011-2	8	9	8	54	14	40	45000	26256	36775

Repeat Station : Laguna de Jaco, Coahuila

North Latitude: 27°57'27.6"

West Longitude: 103°57'16.8"

Altitude: 1244.1 meters msl

Last check: 2013-11

Azimuth Mark: Right side of the radio antenna structure in the main town building.

Mark Azimuth: 14.90083333°

Repeat Station	Date		D			Ι		F	Н	Z
А	1959-5	10	58	4	56	10	52	49266	27420	40930
А	1964-9	10	42	32	56	3	44	49004	27358	40656
А	1990-6	9	14	38	56	3	34	47503	26522	39409
В	2011-12	7	55	25	55	55	1	45665	25661	37996

Zone: North

Repeat Station: Durango City, Durango

North Latitude: 23°58'10.6"

West Longitude: 104°39'40"

Altitude: 1889.5 meters mls

Last Check: 2013-11

Mark Azimuth: Light pole inside the Country Club over a white house with red roof. The right side of the pole is taken as a reference.

Mark Azimuth: 328.7341667°

Repeat Station	Date		D			Ι		F	Н	Z
А	1923-8	10	36	12	51	4	24	-	30953	38324
А	1955-10	10	7	53	51	15	2	46780	29280	36483
А	1964-2	9	55	20	51	20	3	46604	29117	36389
А	1970-6	9	30	5	51	16	3	46285	28960	36106
А	1990-6	8	40	6	51	26	28	45034	28068	35215
В	2011-2	7	20	47	51	14	31	43100	27066	33775

Repeat Station: Chihuahua City, Chihuahua

North Latitude: 28°43'3.4"

West Longitude: 105°57'40.5"

Altitude: 1349.3 meters msl

Last Check: 2013-11

Mark Azimuth: Antenna located in a booth to the left of the hill with three communication antennas in Chihuahua town

Mark Azimuth: 212.0238889°

Repeat Station	Date		D			Ι		F	Н	Z
А	1902-7	10	31	0	55	50	36	-	29393	43321
А	1906-11	13	28	24	54	27	24	-	29920	41879
В	1906-11	12	12	48	55	57	36	-	29170	43181
В	1923-9-10	13	17	30	55	33	48	-	30649	44705
В	1923-10	12	3	6	-	-	-	-	-	-
А	1924-8	14	50	54	55	3	36	-	28839	41278
В	1924-8	13	3	48	56	21	48	-	28252	42464
С	1924-8	14	22	18	53	29	24	-	29755	40197
С	1933-7	11	48	30	56	14	48	-	28338	42406
С	1940-4	11	45	0	55	57	18	-	28324	41921
С	1946-7	11	32	6	56	47	0	-	27779	42424
А	1952-5	11	39	25	56	27	31	49901	27572	41592
А	1955-7	11	35	3	56	28	19	49625	27140	41368
В	1952-5	11	34	36	56	21	24	49984	27692	41612
В	1955-9	11	29	32	56	22	30	49831	27594	41493
Airport	1964-6	11	22	49	0	0	0	No data	27311	No data
Airport	1981-9	10	10	10	56	2	34	48570	27130	40287
Airport	1990-6	9	56	59	56	22	33	47830	26501	39827
С	2011-12	8	29	2	56	14	8	46092	25686	38493

Repeat Station: Ciudad Juárez, Chihuahua

North Latitude: 31°38'10"

West Longitude: 106°25'29.9"

Altitude: 1191.8 meters msl

Check: 2013-11

Mark Azimuth: Antenna with a "donuts-like" shape on the left side of the Airport Control Tower.

Mark Azimuth: 271.0658333°

Repeat Station	Date	D			I			F	Н	Z
А	1852	12	24	0	59	5	0	-	-	-
А	1855	11	55	12	58	39	0	-	28600	46946
А	1859	12	25	0	-	-	-	-	-	-
А	1878	12	25	0	-	-	-	-	-	-
А	1884	12	5	0	-	-	-	-	-	-
А	1888	11	53	48	58	52	18	-	28020	46397
А	1895	11	46	0	59	3	0	-	28010	46709
А	1902-7	-	-	-	59	21	0	-	-	-
А	1927	12	48	0	-	-	-	-	-	-
А	1933-7	13	14	36	59	53	6	-	26476	45646
А	1940-4	13	0	48	-	-	-	-	26324	-
А	1946-7	12	47	6	59	51	36	-	26016	41808
А	1955-7	12	9	43	59	29	46	51527	26155	44395
А	1964-5	11	53	56	59	20	2	51102	26064	43956
Α	1990-6	10	22	32	59	7	17	49648	25492	42611
В	1959-2	11	56	5	59	50	7	51529	25892	44551
С	2011-12	8	44	34	58	55	14	47712	24689	41042

Repeat Station: Zacatecas City, Zacatecas

North Latitude: 22°46' 36.6"

West Longitude: 102°38'35.8"

Altitude: 2314.4 meters msl

Last Check: 2013-11

Mark Azimuth: communication antenna southward ~ 160 $^{\circ}$, to the east of the University of Zacatecas campus in a cone with metallic parabolas.

Mark Azimuth: 169.4505556°

Repeat Station	Date		D		Ι			F	Н	Z
А	1902-7	8	57	18	-	-	-	-	31960	-
А	1906-12	9	0	12	49	7	18	-	31960	36924
А	1923-8	10	3	48	50	12	18	-	31032	37252
А	1940-5	10	14	30	-	-	-	-	30851	-
А	1952-6	10	3	14	50	13	25	46380	29664	35645
А	1990-6	8	21	20	50	36	38	44458	28189	34359
В	1956-3	9	54	44	50	11	36	46219	29589	35506
В	1964-9	7	35	1	50	13	49	45878	29349	35257
С	1970-6	9	13	46	50	11	8	45640	29224	35057
С	2011-12	6	49	46	50	29	44	42677	27236	33098

Zone: Caribbean

Repeat Station: Puerto Juárez, Quintana Roo

North Latitude: 21°19'50.7"

West Longitude: 86°47'51.3"

Altitude: 0 meters msl

Last Check:2013-11

Mark Azimuth: Highest radio antenna of the harbor captaincy of Isla Mujeres

Mark Azimuth: 147.3725°

Repeat Station	Date		D		I			F	Н	Z
А	1959-3	4	40	39	52	44	13	47167	28558	37538
А	1963-11	4	15	58	52	32	22	46806	28468	37153
А	1971-2	3	17	21	52	17	5	46297	28322	36624
А	1974-9	2	51	0	52	10	31	45884	28138	36243
А	1990-10	0	40	7	52	9	18	44583	27353	35206
В	2013-9	-1	36	34	51	17	10	42497	27394	30208

Zone: Caribbean

Repeat Station: Mérida, Yucatán

North Latitude: 21°8'10.7"

West Longitude: 89°47'4"

Altitude:9.8 meters msl

Last Check: 2013-11

Mark Azimuth: isolated luminary pole, 500 meters southward.

Mark Azimuth: 30.31361111°

Repeat Station	Date	D			I			F	Н	Z
А	1907-6	5	36	48	49	29	48	-	31670	37076
А	1924-9	6	38	36	51	2	30	-	30073	37192
А	1924-9	6	35	0	51	12	18	-	30027	37353
А	1930-11	6	27	12	51	14	12	-	29877	37208
А	1936-11-12	7	31	18	51	35	18	-	29474	37171
А	1941	7	18	24	51	34	0	-	-	-
А	1945-2	7	10	0	51	39	24	-	29319	37066
А	1955-4	6	36	51	51	21	22	46740	29188	36506
А	1963-12	6	0	42	51	14	29	46319	28998	36119
А	1966-5	5	44	12	51	33	2	46448	28882	36376
А	1967-7	5	35	35	51	14	56	46116	28866	35964
А	1971-2	5	8	4	51	4	7	45910	28849	35714
А	1974-9	4	45	10	50	49	43	45748	28793	35551
А	1979-9	4	17	43	51	10	1	44986	28209	35043
А	1981-7	No data	No data	No data	51	39	17	44901	27857	35215
Α	1990-10	2	43	40	51	4	38	44220	27811	34380
С	2013-8	0	47	54	50	25	28	42181	26903	32437

Zone: Caribbean

Repeat Station: Chetumal, Quintana Roo

North Latitude: 18°36'31.3"

West Longitude: 88°14'0.8"

Altitude: 12 meters msl

Last Check: 2013-11

Mark Azimuth: A portable mark was used, because the station was inside the jungle.

Mark Azimuth: 33.6425°

Repeat Station	Date		D		Ι		F	Н	Z	
А	1942-5	6	58	0	48	54	0	-	30110	34516
А	1952-9	6	23	44	48	34	50	45292	29963	33964
А	1955-6	6	16	12	48	34	54	45238	29927	33924
А	1959-75	5	58	24	48	35	19	45044	29795	33782
А	1963-11	5	36	16	48	31	22	44889	29731	33632
А	1971-2	4	44	6	48	20	48	44255	29413	33066
А	1981-8	3	5	16	48	23	9	43321	28770	32388
А	1990-10	2	33	52	48	27	38	42700	28331	31961
В	1952-11	6	25	41	48	24	51	45266	30038	33857
В	1955-3	6	15	40	48	30	54	45250	29974	33898
В	1959-6	5	55	6	48	32	23	45114	29870	33809
В	1963-11	5	34	23	48	25	36	44727	29680	33461
В	1971-11	4	40	1	48	21	9	44294	29435	33099
С	2013-8	0	4	52	47	43	12	40440	26535	33195

CAPÍTULO 6. CONCLUSIONES GENERALES

Gracias a la contribución individual de cada capítulo, de manera conjunta se pueden establecer a manera de conclusiones, las siguientes contribuciones del presente trabajo:

- (1) Además del análisis histórico de la evolución de las mediciones del campo geomagnético en México, un resultado que se desprende de este volumen de información es la curva de 130 años de variación secular para la declinación magnética en el centro de la República Mexicana; de esta manera se complementan distintas bases históricas reportadas en la literatura (Campos-Enríquez et al., 1994; Hernández-Quintero et al., 1994; Flores-Ruiz et al., 2000; Hernández y Orozco, 1997). De esta curva se pueden observar rasgos de variación muy interesantes, siendo el principal la inflexión que presenta la declinación magnética en los inicios del siglo XX (1900-1905); y un decremento del campo para fines del siglo XIX. La larga historia de procurar la medición del campo geomagnético en México desde el siglo XVII (Sandoval, 1950) y posteriormente los distintos episodios para mantener una medición sistemática y permanente mediante un observatorio, suman ya varios siglos.
- (2) Luego de la selección y de los tratamientos estadísticos descritos, el registro del CMT obtenido por el Observatorio Geomagnético de México permite obtener las curvas de variación secular para cada una de sus componentes, Declinación, Inclinación e Intensidad para los últimos 100 años. Estas curvas cuentan con la resolución y calidad adecuadas para ser utilizadas como herramienta de datación arqueomagnética.
- (3) La recuperación de datos geomagnéticos a partir de documentos Históricos, archivos y colecciones fotográficas antiguas, permitieron analizar casi 900 mediciones geomagnéticas directas con datos obtenidos por marineros (incluidos piratas), e instituciones como el United State Coast and

Geodetic Survey o el National Astronomical Observatory que datan desde 1587. Mediante algunas POSGRADO EN CIENCIAS DE LA TIERRA 151 técnicas de relocalización en la Ciudad de México se construyó una curva de variación secular de referencia para México y áreas adyacentes mitigando el efecto de valores fuera de rango. Los patrones de variación direccional resultantes en el capítulo 3 se compararon con las curvas obtenidas por varios modelos, tales como Sha.Dif.14k (Pavón-Carrasco et al., 2014), GUFM1 (Jackson et al., 2000) y el IGRF-12 (Thébault et al., 2015), las variaciones del Momento Dipolar Axial Virtual, se compararon con determinaciones cualitativas similares en otros sitios del planeta, y con curvas arqueomagnéticas para Mesoamérica. Las curvas concuerdan con modelos basados en medidas arqueo y paleomgnéticas.

Mediante algunos procedimientos utilizados en arqueomagnetismo, se logró revelar un posible Jerk geomagnético aproximadamente en 1850 ± 5 . Tema y Kondopoulou (2011) informaron por primera vez de un posible Jerk durante el mismo intervalo de tiempo para la región de los Balcanes. Este estudio ofrece nuevos conocimientos sobre la existencia de jerks geomagnéticos de carácter global para el intervalo de tiempo involucrado, deberán de abordarse con suma atención.

(4) Mediante el análisis espacial del campo geomagnético en México permitió obtener información crucial sobre la evolución del interior profundo de la Tierra y las condiciones de la frontera entre el manto exterior y el núcleo. Quedó demostrado que adicionalmente a los registros paleomagnéticos y arqueomagnéticos discretos, las mediciones magnéticas directas de declinación, inclinación e intensidad pueden contribuir en gran medida a desentrañar mapas históricos de la distribución geográfica de datos geomagnéticos. Los datos históricos disponibles en México se clasificaron en dos grandes grupos: Datos de los diferentes observatorios entre 1879 y 2018 (139 años); y los valores históricos de la cartografía magnética acumulados en varios documentos entre 1587 y 2018 (431 años). Gracias a que en este capítulo se describe el registro magnético en México, se realizó un análisis del comportamiento local y global de los fenómenos

geomagnéticos involucrados. El registro geomagnético histórico contiene datos de declinación, inclinación e intensidad total de campo que representan un patrimonio científico único en América Latina.

La aportación en el capítulo 5, implica nuevos conocimientos para el modelado de la variación secular geomagnética reciente en términos de direcciones y de intensidad. Estas se basan normalmente en datos de observatorios. Las Estaciones de Repetición Geomagnéticas proporcionan datos complementarios de gran valor para el mismo fin, permitiendo extender en el tiempo el registro magnético. El conjunto de datos seleccionado consta de veintiséis estaciones. Mediante el suavizado de errores, técnicas de agrupación, y relocalización combinadas con la minimización de errores, se logró construir la curva de variación secular que muestra tendencias bastante similares con los datos de modelos globales analizados. En la misma línea del capítulo anterior, se encontraron evidencias de posibles jerks geomagnéticos para los años 1958, 1969 y 1978 que se pueden correlacionar con aquellos reportados por observatorios como Chambôn la Forêt en Francia y Tucson en los Estados Unidos.

Esta obra describe, por un lado, las bases que los modelos teóricos de campo magnético de la Tierra. Rescata y evalúa con diversas técnicas, el acervo histórico de datos que existe en México. Como consecuencia, se logra develar la información de trascendencia asociada al origen más profundo del campo geomagnético, basada actualmente en el dínamo autosostenido. El comportamiento de la variación secular a partir de los datos obtenidos en el área de México, se correlacionan con los modelos usados en las disciplinas afines (arqueomagnetismo y paleomagnetismo), en donde se describen los alcances y las limitaciones de la información procesada y analizada. Es claro que, con la adquisición de nuevos datos desde satélites, tanto magnéticos como gravitacionales, se puede esperar una revisión, o ajustes en las hipótesis que sustentan el origen del campo magnético principal de la Tierra.

DECLARACIÓN

Declaro conocer el Código de Ética de la Universidad Nacional Autónoma de México, plasmado en la Legislación Universitaria. Con base en las definiciones de integridad y honestidad ahí especificadas, aseguro mediante mi firma al calce que el presente trabajo es original y enteramente de mi autoría. Todas las citas de, o referencias a, la obra de otros autores aparecen debida y adecuadamente señaladas, así como acreditadas mediante los recursos editoriales convencionales.

Morelia, Michoacán, México, marzo 2022

Juan Esteban Hernández Quintero