

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA CIVIL – CONSTRUCCIÓN

ESTUDIO SOBRE LOS DISTINTOS SISTEMAS DE CARACTERIZACIÓN GEOMECÁNICA DE MACIZOS ROCOSOS APOYADO EN TÉCNICAS DE FOTOGRAFÍA ESTEREOSCÓPICA TRIDIMENSIONAL

TESIS QUE PARA OPTAR POR EL GRADO DE: MAESTRO EN INGENIERÍA

PRESENTA: JOSÉ ALEJANDRO LOZADA CAPETILLO

TUTOR PRINCIPAL M.I. FERMÍN ANTONIO SÁNCHEZ REYES PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA

CIUDAD DE MÉXICO, MAYO 2022

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

Presidente: M. I. Mendoza Rosas Marco Tulio

Secretario: Dra. Ossa López Alexandra

Vocal: M. I. Sánchez Reyes Fermín Antonio

1 er. Suplente: M. en I. Suárez Fino José Francisco

2^d o. Suplente: M. en I. López Molina Jorge A.

Lugar o lugares donde se realizó la tesis: Ciudad de México y Estado de Oaxaca, México.

TUTOR DE TESIS:

M.I. FERMÍN ANTONIO SÁNCHEZ REYES

FIRMA

Para mi madre:

Que me enseñó el valor del trabajo duro y honesto y la importancia del amor diario a lo que uno hace. Tu trabajo y cariño infinito me hicieron capaz de lograr esto. Muchas gracias.

Agradecimientos

A la Universidad Nacional Autónoma de México que me ha formado académicamente, como a muchos otros mexicanos, desde la preparatoria.

Al M. I. Fermín Sánchez, por su gran ayuda, enseñanzas, tiempo, confianza y por abrirme las puertas, le estaré siempre agradecido. Maestro una vez maestro para toda la vida.

A la empresa GEOSA por permitirme realizar parte de este trabajo en sus instalaciones de la Ciudad de México y Oaxaca.

A mi comité sinodal, M. I. Mendoza Rosas Marco Tulio, Dra. Ossa López Alexandra, M. en I. Suárez Fino José Francisco y M. en I. López Molina Jorge A., por brindarme el apoyo de revisar esta tesis y darme su valiosa opinión.

A Viri, quien ha sido el apoyo que cualquier hombre quisiera tener junto a él, por su amor, fuerza y confianza incondicional, todo esto es gracias a ti.

A mí padre y hermanos por brindarme siempre su apoyo, en todo momento y en cualquier situación, los llevo siempre en mi corazón.

A mis profesores y compañeros de maestría, Edgar, Alonso, Alejandro y Filiberto, que me enseñaron siempre y ayudaron en todo momento para concluir con la maestría

Al Consejo Nacional de la Ciencia y Tecnología (CONACYT) por la beca otorgada para concluir este grado de Maestría.

Resumen

En este trabajo se hace una revisión de las clasificaciones geomecánicas más empleadas en el estudio de las obras subterráneas, con el fin de otorgar al lector visión más amplia de las bases que fundamentaron su desarrollo. Las clasificaciones geomecánicas son el puente entre los distintos profesionales que colaboran en el diseño y construcción de túneles, por lo que son indispensables como medio de comunicación entre todas las partes, de ahí la importancia de tener una comprensión solida de éstas.

Como una alternativa o complemento para la clasificación geomecánica de macizos rocosos, se analiza la practicidad del RMi de Palmström comparado con las más utilizadas (RMR, Q y GSI), con la ayuda de un sistema de medición dinámico y progresivo para la adquisición de datos geológicos y geotécnicos, el equipo y software ShapeMetriX3D, se analizó un total de 20 frentes de excavación en un túnel en el estado de Oaxaca, en la provincia fisiográfica de la Sierra Madre del Sur, frontera entre dos complejos metamórficos: el Terreno Xolapa y el Terreno Oaxaca.

Además, se propone una relación matemática que permita calcular el módulo de deformación del macizo rocoso (E_m) utilizando el valor de RMR respectivo, esto fundamentado en la recopilación de la literatura de datos de medidos in situ. Se concluye con una opinión sobre las características que más influyen en el estado mecánico de macizos rocosos fracturados.

Índice

1. II	NTRODUCCIÓN 1					
1.1.	Descripción del problema a investigar y justificación de la investigación					
1.2.	Planteamiento del problema1					
1.3.	Línea y área de la investigación. Enfoque práctico 2					
1.4.	Palabras clave y alcance de la investigación 2					
1.5.	Objetivo de la Tesis 2					
	1.5.1. General					
	1.5.2. Particulares					
1.6.	Metodología 4					
1.7.	Hipótesis del trabajo					
2. C Y LOS	LASIFICACIONES GEOMECÁNICAS PARA LA ESTIMACIÓN DE LA CALIDAD DE LOS MACIZOS ROCOSOS SISTEMAS DE SOSTENIMIENTO					
2.1.	Matriz rocosa					
	2.1.1. Litología					
	2.1.2. Densidad, porosidad11					
	2.1.3. Alteración					
	2.1.4. Resistencia					
2.2.	Macizo rocoso					
	2.2.1. Discontinuidades					
2.3.	Sistema RMR-201416					
р	2.3.1. Evaluación crítica de las prácticas de diseño de túneles basadas en RMR: Un enfoque ráctico de ingeniero, de Lowson y Bieniawski, 2013					
	2.3.1.1. Estimación de cargas sobre el soporte					
	2.3.1.2. Tiempo de autosoporte					
	2.3.1.3. Separación entre anclas					
	2.3.1.4. Longitud del ancla					
	2.3.1.5. Capacidad de soporte del ancla					
	2.3.1.6. Capacidad de soporte del concreto lanzado					
	2.3.1.7. Marcos metálicos					
C	2.3.2. Implicaciones en el uso de la clasificación geomecánica Rock Mass Rating, (RMR ₁₄), celada et al. 2014					
2.4.	NGI, índice Q de Barton et al., 1974					

subte	2.4.1. erráneas.	Uso del índice Q de Barton, para la evaluación de las necesidades de soporte en obras 40
	2.4.2.	Implicaciones en el uso de la clasificación geomecánica índice Q, Barton et al. 197444
2.5.	Rock M	ass Index, RMI (Palmström, 2000) 45
	2.5.1.	Determinación del volumen de bloque49
	2.5.2.	Efecto de escala
2000	2.5.3.)	Implicaciones en el uso de la clasificación geomecánica Rock Mass Index, (Palmström, 58
2.6.	Geologi	cal strength index (Hoek y Brown, 1995)59
	2.6.1.	Implicaciones en el uso del índice de resistencia geológica (Hoek, 1994)63
2.7.	Correla	ción entre RMR e índice Q65
2.8.	Correla	ciones entre RMi con RMR e índice Q70
3. ESTIN MÁS IMPO	MACIÓN DRTANTE	DEL MÓDULO DE DEFORMACIÓN UTILIZANDO LAS CLASIFICACIONES GEOMECÁNICAS S
3.1.	Correla	ción entre el módulo de deformación de macizos rocosos y el RMR, Q y GSI
	3.1.1.	Recopilación de datos de la literatura77
3.2.	Recopila	ación y ajuste de datos de Palmström (2001)78
	3.2.1.	Comparación de las deformaciones y los resultados medidos79
	3.2.2.	Aplicación en macizos rocosos fracturados80
	3.2.3.	Aplicación en macizos rocosos masivos
3.3.	Recopila	ación y ajuste de datos de Khabbazi et al. (2012)86
junto	3.3.1. con la p	Correlaciones empíricas de diferentes autores, entre E _m y clasificaciones geomecánicas, ropuesta en este trabajo
3.4.	Correla	ción entre el módulo de deformación de macizos rocosos y el RMi
4. TRAB	AJO DE (CAMPO, APLICACIÓN PRÁCTICA EN TÚNEL EN EL ESTADO DE OAXACA
4.1.	Present	ación del equipo, fotografía del frente y su normalización
4.2.	Análisis	y clasificación del frente en el cadenamiento 0+196 del túnel
	4.2.1.	Descripción general del frente
	4.2.2.	Zonificación
	4.2	2.2.1. Zona I
	4.	2.2.2. Zona II
	4.2.3.	Descripción de las discontinuidades en la zona I101
	4.2.4.	Descripción de las discontinuidades en la zona II101
	4.2.5.	Análisis con ShapeMetriX3D
	4.2.6.	Análisis de 3 frentes de excavación según su grado de fracturamiento104

Índice de Tablas

Tabla 1. Relación histórica de sistemas de clasificación geomecánicas para macizos rocosos
Tabla 2. Escala de calidades de la clasificación RMR ₈₉ 17
Tabla 3. Criterios para calcular el RMR ^b utilizados por Geocontrol desde el año 2000. A partir de Celada et
al. 2014
Tabla 4. Puntuación de los parámetros utilizados en la valoración de la resistencia de las juntas. A partir
de Celada et al. 2014 20
Tabla 5. Cuatro hipótesis formuladas por Celada et al. 2014 con base en los datos de Geocontrol.
Modificada de Celada et al. 2014 21
Tabla 6. Puntuación de la alterabilidad en el RMR14. Modificada de Celada et al. 2014
Tabla 7. Criterios para el cálculo de los factores de ajuste para el RMR ₁₄ . Modificada de Celada et al. 2014.
Tabla 8. Valores del factor f (forma de la excavación). Modificada de Celada et al. 2014
Tabla 9. Comportamiento plástico del frente de excavación según su valor de ICE. Modificada de Celada
et al. 2014
Tabla 10. Criterios y puntuaciones para el cálculo del RMR ₁₄ . Modificada de Celada et al. 2014 24
Tabla 11. Fases de excavación y tipo de soporte según el valor de RMR para un túnel en forma de
herradura de 10 de ancho y un esfuerzo vertical <25 MPa, construido con explosivos. Tomada de
Bieniawski, 2011
Tabla 12. Escala de calidad para el índice Q de Barton 39
Tabla 13. Tipos de excavaciones junto con ejemplos según su necesidad de seguridad. Tomada de Barton,
2013
Tabla 14. Clases de concreto lanzado según su energía absorbida. Tomada de Barton, 2013 42
Tabla 15. Categorías de sostenimientos según la dimensión equivalente de la excavación y su índice Q.
Tomada de Barton, 2013 43
Tabla 16. Escala y clasificación del índice RMi. A partir de Palmström (2001)
Tabla 17. Valores de jR según la suavidad y ondulación de la discontinuidad. Tomada de Palmström (1996).
47

Tabla 18. Factor de longitud y continuidad de la discontinuidad (<i>jL</i>). Tomada de Palmström, 1996 48
Tabla 19. Caracterización y valor del factor de alteración de la discontinuidad (jA). Tomada de Palmström,
1996
Tabla 20. Relaciones entre valores de <i>jC</i> y <i>D</i> 55
Tabla 21. Tabla propuesta por Osgoui y Ünal, 2009, para obtener la longitud del ancla (L _b)63
Tabla 22. Propuesta de una escala de valores de resistencia $\sigma^i_{ m c}$ para distintos rangos de RMR. A partir de
Sánchez (2014)
Tabla 23. Correlaciones entre RMR y Q recopiladas de la literatura
Tabla 24. Valores de ajuste del parámetro SRF del índice Q, para macizos rocosos fracturados y sometidos
a grandes esfuerzos. Tomada de Kumar et al. 2004 71
Tabla 25. Limitaciones de las correlaciones sugeridas por Kumar et al. 2004. 72
Tabla 26. Relación entre pruebas in situ. A partir de Palmström, 2001
Tabla 27. Estimaciones del módulo de deformación para roca masiva
Tabla 28. Medidas del error cuadrático de distintas correlaciones empíricas entre <i>E_m</i> y RMR92
Tabla 29. Líneas de tendencia obtenidas para cada grupo de puntos
Tabla 30. Descripción de las familias de discontinuidades correspondientes a la zona I del frente 102
Tabla 31. Descripción de las familias de discontinuidades correspondientes a la zona II del frente 103
Tabla 32. Tabla que muestra, en resumen, la complicación que podría tenerse para obtener ciertos
parámetros en el frente de excavación y los parámetros que se pueden obtener con el ShapeMetrix3D
directa o indirectamente
Tabla 33. Compilación de los 20 frentes de excavación caracterizados en este trabajo junto con la
puntuación que se obtuvo según la clasificación RMR14, Índice Q, RMi y GSI y el sostenimiento resultante
para un avance de 3 metros 118

Índice de figuras

Figura 1. Esquema del manejo del concepto de escala. Modificada de Hoek, 1994
Figura 2. Características físicas y mecánicas que influyen en el comportamiento geomecánico de la roca
matriz. Modificada de Palmström (2001) 10
Figura 3. Dirección que pueden tomar los esfuerzos principal mayor y menor, respecto a la condición del
relleno de las discontinuidades que atraviesan. Tomada de Hudson y Harrison, 1997 12
Figura 4. Tabla de escala de meteorización, donde se muestra el grado de meteorización que presenta un
macizo rocoso y su descripción. Modificada de ISRM 81 13
Figura 5. Gráfica que representa la puntuación del parámetro recién introducido en el RMR14 (Número de
discontinuidades por metro). Tomada de Celada et al. 2014 17
Figura 6. Gráficas para calcular la puntuación del valor correspondiente a la resistencia a la compresión
simple, el RQD y al espaciamiento entre discontinuidades del RMR. Tomada de Bieniawski (1989) 19
Figura 7. Histograma con base en los datos de Geocontrol. Tomada de Celada et al. 2014 20
Figura 8. Gráfica de la correlación entre el RMR _{TBM} y el RMR. Tomada de Celada et al. 2014 22
Figura 9. Gráfica de valores del factor Fs según su valor de ICE. A partir de Celada et al. 2014 23

Figura 10. Correlación entre el RMR ₁₄ y el RMR ₈₉ , con base en los datos de Geocontrol. Tomada de Celada et al. 2014
Figura 11. Gráfica de la carga de roca contra ancho de excavación. Para γ_r =1.5 y ρ_r =27kN/m ³ . A partir
de Lowson y Bieniawski, 2013
Figura 12. Gráfica del tiempo de autosoporte contra ancho excavado sin soporte. Tomada de Lowson v
Bienjawski, 2013
Figura 13. Gráfica de espaciamiento entre anclas. Tomada de Lowson y Bieniawski. 2013
Figura 14. Gráfica para obtener largo del ancla embebida (líneas continuas y punteadas) según el ancho
de excavación (span) y el valor de RMR del frente. Tomada de Lowson y Bieniawski. 2013
Figura 15. Gráfica de la capacidad de soporte del ancla, para $F_{h}=250$ kN y $\gamma_{h}=1.5$. Tomada de Lowson y
Bienjawski, 2013
Figura 16. Diagrama de interacción de un concreto lanzado de 32 MPa con Eurocode 2. Tomada de Lowson
y Bieniawski, 2013
Figura 17. Gráfica para el diseño del espesor del concreto lanzado sin uso de marcos metálicos, en función
del valor RMR y el ancho de la excavación. Tomada de Lowson y Bieniawski, 2013
Figura 18. Gráfica para conocer el espesor del concreto lanzado para diferentes anchos de excavación vs
RMR. Tomada de Lowson y Bieniawski, 2013
Figura 19. Gráfica para obtener el espesor del concreto lanzado según el espacio entre marcos metálicos.
Tomada de Lowson y Bieniawski, 2013
Figura 20. Dirección de las discontinuidades, respecto a un barreno, ambos pueden coincidir y por ende
nunca cortarse. Tomada de Palmström, 2002
Figura 21. Esquema que muestra como un barreno, solo es capaz de mostrar una fracción de un plano de
discontinuidad. A partir de Palmström, 2002
Figura 22. Diferencia entre evaluar el RQD en un sondeo, por metro o por secciones
Figura 23. Se muestran las dos formas de medir al RQD, cada metro y por secciones de acuerdo al grado
de fracturamiento. Modificada de Palmström, 2002
Figura 24. Valores y características de los parámetros que constituyen al índice Q de Barton. Tomado de
Barton, 2013
Figura 25. Ábaco de Barton para obtener las necesidades de sostenimiento en unaO excavación. Tomado
de Barton, 2013
Figura 26. Esquema que muestra el sostenimiento mencionado por Barton en la Tabla 15. Tomado de
Barton, 2013
Figura 27. Medición del ancho, alto y fondo de bloque manualmente
Figura 28. Estereograma obtenido del software Stereonet, donde se calculó el ángulo entre los polos de
cada plano correspondientes a las 3 familias de discontinuidades principales
Figura 29. Esquema de la medición del espaciamiento para cada familia de discontinuidades 52
Figura 30. Pared de un macizo rocoso fracturado, con 3 familias de discontinuidades principales; como
referencia, una cinta métrica de 1 m. Se ejemplifica el proceso para obtener el espaciamiento y
continuidad de las discontinuidades de cada familia, midiendo cada discontinuidad, categorizándolas para
cada familia y calculando el promedio para cada una; mientras que, para obtener el espaciamiento se

traza una línea lo más perpendicular posible entre las discontinuidades y se mide la distancia entre ellas.
Figura 31. Formas tipo de bloques de roca según Palmström (2001)
Figura 32. Gráfica para obtener el parámetro de las discontinuidades (JP) en función de los factores
volumen del bloque (Vb) y la condición de las discontinuidades (jC). A partir de Palmström, 1995 55
Figura 33. Gráfica para obtener el valor de RMi para valores "comunes" de <i>jC</i> en un rango de 1 – 2. Tomado de Palmström 1995
Figura 34 Combinación de parámetros utilizados en el RMi A partir de Palmström 1996 57
Figura 35. Obtención del índice GSI (A partir de Hoek, 1995)
Figura 36. Tabla para obtener el valor de GSI correspondiente a macizos rocosos muy fracturados (GSI = 6
a 27). Modificada de Osgoui y Ünal, 2009
Figura 37. Tabla para estimar visualmente el valor de GSI. Tomada de Marinos & Hoek (2000), modificada
por Cai et al. 2004, respecto al uso de los parámetros <i>Jc</i> y <i>Vb</i>
Figure 28. Duptusciones del índice DMD para distintes renges de σ^i y supre de regresión
Figura 38. Puntuaciones del indice Rivir para distintos rangos de O_c y curva de regresion
Figura 39. Correlaciones entre RMR ₈₉ y Q propuestas por varios autores y correlación obtenida empleando la técnica de Goel et al., 1996. A partir de Sánchez (2014)
Figura 40. Clasificación de macizos rocosos de 23 segmentos que pasan formaciones rocosas en el túnel
Sebzkuh, utilizando 4 sistemas: RMR. O. RMi v GSI (3 métodos). Tomada de Hashemi et al. (2010) 72
Figura 41. Correlación entre los valores de RMI y RMR para el túnel Sezskuh y la comparación con la
relación de Kumar et al. (2004). Tomada de Hashemi et al. (2010)
Figura 42. Correlación entre los valores de RMi y el índice O para el túnel Sezskuh y la comparación con la
relación de Kumar et al. (2004). Tomada de Hashemi et al. (2010)
Figura 43. Correlación entre los valores de RMR y el RMI para la mina Imiter y su comparación con las
ecuaciones de Kumar et al. 2004 y Hashemi et al. 2010. Modificada de Soufi et al. 2018
Figura 44. Correlación entre los valores de O y el RMi para la mina Imiter y su comparación con las
ecuaciones de Kumar et al. 2004 y Hashemi et al. 2010. Modificada de Soufi et al. 2018
Figura 45. Curva que muestra el resultado de la correlación entre las clasificaciones RMR y RMi de los
autores Kumar et al. 2004. Hashemi et al. 2010 v Soufi et al. 2018
Figura 46. Curva que muestra el resultado de la correlación entre las clasificaciones O y RMi de los autores
Kumar et al. 2004. Hashemi et al. 2010 v Soufi et al. 2018. \sim 76
Figura 47. Gráfica. Recopilación de 130 puntos provenientes de Bieniawski. Serafim & Pereira v Clerici. 77
Figura 48. Gráfica esfuerzo-deformación. Palmström. 2001
Figura 49. Gráficas. A la izquierda, comparación entre los datos recopilados de la literatura y los datos no
normalizados de la CSMRS: a la derecha, comparación entre los datos recopilados de la literatura y los
datos normalizados de la CSMRS. Gráficas tomadas de Palmström v Singh (2001)
Figura 50. Gráfica de la correlación entre RMR y el módulo de deformación del macizo rocoso medido in
situ (E_m). Datos de la CSMRS normalizados con un E_m 3. Tomada de Palmström v Singh (2001)
Figura 51. Gráfica. Correlación entre el sistema O y el módulo de deformación del macizo rocoso medido.
in situ (Em). Datos de la CSMRS normalizados con un Ff = 3. Tomada de Palmström (2001)
Figura 52. Correlación entre el sistema RMi v el módulo de deformación del macizo rocoso medido in situ
(E_m) . Datos de la CSMRS normalizados con un F_f = 2.5. Tomada de Palmström, 2001

Figura 53. Izquierda: comparación entre datos recopilados de la literatura y los datos obtenidos por Palmström (2001) y Khabbazi et al. (2012) sin modificar; derecha: comparación entre datos recopilados de la literatura y los datos obtenidos por Palmström, 2001 y Khabbazi (2012), estos últimos multiplicados Figura 54. Curvas de correlación de diversos autores (Tabla 29), junto con todos los datos recopilados de Figura 55. Datos transformados de su valor original de RMR a RMi obtenido del promedio entre las ecuaciones de correlación (47) de Hashemi et al. 2010 y la ecuación (49) de Soufi et al. 2018, junto con su Figura 56. Datos transformados de su valor Q a RMi obtenido del promedio entre las ecuaciones de correlación (46) de Hashemi et al. 2010 y la ecuación (50) de Soufi et al. 2018, junto con su respectiva curva de ajuste y su ecuación correspondiente......94 Figura 57. Configuraciones de las dianas circulares montadas en el tripié, según el tamaño del frente. Tomada de 3G Software & Measurement GmbH95 Figura 58. A la izquierda la corrección del norte, a la derecha plano de referencia medido en campo. Tomada de 3G Software & Measurement GmbH.96 Figura 59. Ejemplificación de la distancia entre la cámara y el frente y la distancia entre ambas fotografías. Tomada de 3G Software & Measurement GmbH......96 Figura 60. Vista preliminar de la imagen 3D generada, además del indicador de calidad de la imagen. Figura 61. Arriba zona oxidada en la parte central del frente; en medio, rasgos estructurales importantes; Figura 62. Zonificación del frente. Zona I, izquierda (azul); zona II, derecha (marrón). 100 Figura 63. Rugosidad y ondulación de una pared de discontinuidad en el frente del túnel cadenamiento Figura 65. A la izquierda el estereograma con las 6 familias principales presentes en el frente de excavación cadenamiento 0+196. A la derecha imagen tridimensional del frente de excavación del cadenamiento Figura 66. Estereograma y cuñas formadas por las familias 3, 4 y 5..... 104 Figura 67. Frente de excavación No. 08, cad. 0+208. Macizo rocoso poco fracturado-masivo. Se indican las Figura 68. Familias de discontinuidades presentes en el frente de excavación, correspondiente al cadenamiento 0+208, obtenidos mediante la herramienta ShapeMetriX3D......105 Figura 69. Esquema renderizado donde se muestran las familias principales presentes en el frente de Figura 70. Frente de excavación No. 07, cadenamiento 0+205. Macizo rocoso fracturado. Se indican las Figura 71. Familias de discontinuidades presentes en el frente de excavación, correspondiente al cadenamiento 0+205, obtenidos mediante la herramienta ShapeMetriX3D......108 Figura 72. Frente de excavación No. 01, cad. 0+187. Macizo rocoso muy fracturado. Se indican las fracturas principales sobre el frente de excavación......109

1. INTRODUCCIÓN

1.1. Descripción del problema a investigar y justificación de la investigación

En este trabajo se propone utilizar el sistema de clasificación geotécnica Rock Mass Index (RMi) planteado por Palmström (1995, 1996, 2001 y 2007) como nueva alternativa para estimar la capacidad mecánica y de autosoporte de macizos rocosos excavados principalmente en obras subterráneas.

No obstante que el índice Rock Mass Rating (RMR) de Bieniawski (1978, 1984) es el sistema más utilizado mundialmente en el medio académico y profesional para caracterizar los macizos rocosos en términos de la calidad geomecánica, esto puede ser debido a múltiples factores entre los cuales está la facilidad para medir los datos que la alimenta. El objetivo de este trabajo es exponer las ventajas de complementar la información obtenida de frentes de excavación con otros sistemas de clasificación, con la intención de abarcar la mayoría de los factores que puedan relacionarse con la calidad geotécnica y la condición en que influyen en la respuesta mecánica de un sistema geológico cuando se horada un túnel.

Si bien, existe una actualización reciente del índice RMR, elaborada por Celada et al., en el 2014, que lo hace aún más potente. Es importante fundamentar con otras clasificaciones que permitan conocer las características geomecánicas de los macizos rocosos. Por otra parte, Barton (1974) plantea un sistema (índice Q) de clasificación específico para túneles que es útil y práctico para este tipo de obras y del cual se derivan múltiples correlaciones para estimar parámetros mecánicos, así como recomendaciones constructivas. Además de ser una referente internacional muy importante y por ello, se utiliza en este trabajo, aunque su uso no es tan común en el ámbito hispanoamericano como el sistema Bieniawski, a la par del RMR para valorar las ventajas y desventajas del índice RMi.

1.2. Planteamiento del problema

La presente investigación pretende responder a las siguientes cuestiones:

- ¿Cuáles son las ventajas y desventajas de los sistemas RMi, RMR e índice Q en la caracterización de macizos rocosos durante la construcción de túneles?
- ¿Qué relaciones físicas existen entre los sistemas de clasificación geomecánica RMR, Q y RMi?
- ¿Cuáles son las correlaciones matemáticas entre las clasificaciones geomecánicas RMR, RMi y Q de Barton?
- ¿Cuál es la cercanía de estas clasificaciones geomecánicos con la realidad?
- ¿Cuáles son los datos que pueden obtenerse (medir) con mayor facilidad en campo?
- ¿Cómo el uso de herramientas como el ShapeMetriX3D para la evaluación de estos sistemas, puede ser útil?
- ¿Qué datos de estos tres sistemas tienen mayor relevancia en la estabilidad de túneles?

1.3. Línea y área de la investigación. Enfoque práctico

La presente investigación se encuentra dentro del ámbito de estudio de la mecánica de rocas y se centra en la línea de las clasificaciones geomecánicas de macizos rocosos, junto con las variables que intervienen en ellas. Su contribución será la de desarrollar una metodología práctica para la implementación de la clasificación geomecánica RMi, basada en fundamentos sencillos y con el apoyo de tecnologías vanguardistas para la toma de datos.

1.4. Palabras clave y alcance de la investigación

Se usarán los siguientes términos:

- Clasificación geomecánica:
- RMR:
- Q de Barton:
- RMi:
- Macizo rocoso:
- Estructura del macizo rocoso:
- ShapeMetriX3D:
- Fotografía estereoscópica:
- Módulo de deformación del terreno:

Por otro lado, este trabajo pretende desarrollar una técnica sistemática de toma de datos, que sea eficiente y versátil, que contribuya de manera eficaz al seguimiento geotécnico durante la construcción de túneles, así como a la revisión de las condiciones de estabilidad, procesos de retroanálisis, toma de decisiones, etc.

1.5. Objetivo de la Tesis

1.5.1. General

Con el uso práctico de herramientas digitales, ShapeMetriX3D, como apoyo en las mediciones para la clasificación geomecánica de frente de avance en túneles se determinará la practicidad del Rock Mass Index (RMi, Palmoström, 2001) como una alternativa más al uso de técnicas de caracterización; a fin de que, junto con éstas, se logre un entendimiento de la estructura geológica y la posible respuesta del macizo ante la perturbación que produce la excavación.

Además de realizar una comparación en los aspectos como el tiempo relativo en la toma de datos, para conocer el índice de calidad del RMi con respecto a las clasificaciones geomecánicas RMR e índice Q. Asimismo, tener en cuenta otras condiciones de importancia como su facilidad en el levantamiento de datos, cantidad de mediciones, utilidad de los datos (importancia que cada autor le da a cada característica del macizo rocoso para evaluar su calidad geomecánica) y la cercanía que estas clasificaciones tienen con la realidad.

1.5.2. Particulares

- Analizar las ventajas y desventajas del uso de herramientas digitales, como el ShapeMetriX3D, para que sean apoyo en la medición de algunos parámetros de las clasificaciones geomecánicas RMi, RMR₁₄ e índice Q.
- Analizar la eficiencia de toma de datos de las clasificaciones geomecánicas RMi, RMR₁₄ e índice Q en un caso práctico.
- Analizar qué parámetros, contenidos en las clasificaciones geomecánicas RMR₁₄, RMi e índice Q, intervienen en la resistencia mecánica o deformabilidad del macizo rocoso para el tipo de roca específico presente en esta obra concreta.
- Estudiar las correlaciones entre distintos índices de calidad geotécnica con el módulo de deformación del macizo, siguiendo diversos autores. Debido a que existen dificultades en la correlación entre las clasificaciones RMR₁₄, índice Q y RMi, teniendo en cuenta factores y características distintas para su evaluación; una manera válida de relacionarlas indirectamente es comparar el valor del módulo de deformación calculado para cada una. Al mismo tiempo, se indica una relación matemática que permita calcular el módulo de deformación del macizo rocoso utilizando su valor de RMR respectivo, esto fundamentado en la recopilación de datos de *E*_m medidos *in situ* obtenidos de la literatura.
- A partir de los análisis anteriores, se establecen las consideraciones en el uso del sistema de clasificación geomecánica RMi, como parte complementaria en el uso del RMR₁₄ y del índice Q.

Existen circunstancias importantes en la aplicación práctica de la toma de datos para la clasificación geomecánica de un macizo rocoso, ajenas al sistema de medición o clasificación que se utilizan: desde peligros al acercarse al frente de excavación hasta la premura del constructor para lograr el avance en el tiempo estimado. Esto implica tiempos cortos para el levantamiento estructural del frente de excavación; por lo que, se requiere una metodología simple, pero suficiente para caracterizar el frente que se excava. Por tal motivo, es importante conocer la manera correcta de utilizar las principales clasificaciones geomecánicas (RMR₁₄, índice Q y RMi), sus limitaciones y la utilidad de sus parámetros. Permitiendo, a su vez, tomar decisiones rápidas, sobre todo consistentes con el verdadero comportamiento geomecánico del terreno.

También, es fundamental contar con alternativas para la evaluación de la calidad geomecánica de los macizos rocosos excavados y las características más relevantes que condicionan su comportamiento mecánico. Lo anterior, incluye comprender los estados de esfuerzos en el terreno y la manera en que estos se alteran como producto de la excavación.

Este trabajo podrá ser de gran utilidad para los profesionales en general que buscan estandarizar su práctica y que requieren de un medio de comunicación y entendimiento efectivo, al contar con un criterio más amplio que les permite apoyarse en los estudios y experiencias que dieron origen al RMR₁₄, RMi e índice Q. La comparación e integración entre estos criterios puede ayudar a formar una comprensión más sólida y ordenada de los factores más notables que rigen el comportamiento del terreno excavado.

1.6. Metodología

La metodología para el uso práctico de la clasificación propuesta por Palmström (RMi) se desarrollará con base a estudios realizados en un túnel en construcción en el estado de Oaxaca, así como con el apoyo de la herramienta ShapeMetriX3D y mediciones directas sobre los frentes de avance; además de tener como base de comparación dos de las clasificaciones más importantes en obras subterráneas: el índice RMR (Bieniawski, 1978, 1989 y 2014) y el índice Q (Barton, 1974).

Se parte del análisis de la propuesta de Palmström (RMi), puntualizando los conceptos más importantes que conforman su teoría. Luego, mediante el empleo de una herramienta práctica y novedosa que brinde apoyo en la toma de datos estructurales del frente (ShapeMetriX3D), se presenta una estandarización de dicha tarea que permita un mejor control en los resultados.

Una vez obtenidos los datos estructurales de múltiples frentes de excavación, se aplica la clasificación RMi, Palmström, 2000, junto con el RMR₈₉ y el índice Q (Barton, 1974) se establecen rangos de comparación entre ellos.

En consecuencia, se analizan las ventajas y desventajas implícitas en el uso del RMi en un caso práctico, comparándolo con el RMR₈₉ y el índice Q, por ser estos conocidos. Finalmente, se determina para el caso particular de esta obra, cuáles son los parámetros de las tres clasificaciones que tienen mayor relevancia en la estabilidad del túnel.

1.7. Hipótesis del trabajo

Los ingenieros que estudian las obras subterráneas han intentado, a lo largo del tiempo, comprender el comportamiento del terreno que atravesará la excavación. Sin embargo, los aspectos geológicos suelen ser una complicación inherente con una gama muy amplia de posibles factores que se combinan: litología, estructura y estado de la roca; esto desde el punto de vista de su génesis y, aunado a esto, es fundamental añadir la necesidad de comprender la manera en que el macizo reacciona ante las acciones de la excavación, los efectos del agua subterránea, los métodos de excavación, etc.

Cuando se trata de analizar y modelizar el comportamiento que tiene el terreno al ser excavado, se puede recurrir a diferentes métodos: como los empíricos, los analíticos y los numéricos. Entre los primeros se encuentran las clasificaciones geomecánicas, desde el RQD (Deere et al., 1967), hasta métodos más modernos como el RMi de Palmström (2000), que de alguna manera son utilizados para estimar un rango de la calidad del macizo rocoso que se está excavando para conocer la capacidad de autosoporte de este y las necesidades de sostenimiento.

Sin embargo, y desde aquí parte la hipótesis de este trabajo, en ocasiones las clasificaciones geomecánicas se usan indiscriminadamente para darle una "calificación" al macizo rocoso, según los criterios y experiencia de quien los usa, sin considerar las bases con las que fueron desarrolladas y, en otras, se usan sin considerar el tipo de obra que se ejecuta, siendo que cada obra es particular y no en todas, la misma característica impacta de la misma manera en la estabilidad de túneles, taludes, excavaciones, cimentaciones, etc. Es por esto que, es esencial comprender que las clasificaciones geomecánicas sirven para materializar conceptos particulares que interactúan entre sí y funcionan como un conjunto (discontinuidades, dureza de la roca, bloques, rugosidad, etc.)

presente en la geología del terreno y cómo estos factores impactan en el comportamiento del macizo rocoso al ser perturbado. Las clasificaciones geomecánicas son una herramienta que el ingeniero debe utilizar racionalmente para crear una imagen cognitiva del estado del macizo rocoso y tridimensional que le permita comprender su respuesta mecánica a la excavación de la obra.

2. CLASIFICACIONES GEOMECÁNICAS PARA LA ESTIMACIÓN DE LA CALIDAD DE LOS MACIZOS ROCOSOS Y LOS SISTEMAS DE SOSTENIMIENTO

Cuando es posible medir lo que se está estudiando y esto puede expresarse con números, se está comprendiendo algo al respecto, sin embargo, cuando no eres capaz de medirlo y mucho menos expresarlo con números, tú conocimiento sobre aquello es limitado.

William Thomson Kelvin (1824-1907)

Antes de Terzaghi se buscaba una manera de contener el material excavado en un túnel con medios físicos, v.gr., el uso de un escudo (patente de Marc Isambard Brunel en 1818) para excavar por debajo del Río Támesis; inclusive, mucho antes, cuando en la antigüedad se necesitaba conducir el agua de ciudades griegas o cuando se necesitaba extraer algún mineral primario de vetas, se construían túneles rudimentarios, estos fueron excavados probablemente sin un sistema que permitiera clasificar el material que se excavaba y mucho menos utilizar un método para prevenir su comportamiento mecánico ante su perturbación.

Fue en épocas relativamente recientes de nuestra historia, cuando se buscaron formas de ordenar patrones y características similares para procesar de mejor manera la información recopilada y contribuir al mejor entendimiento de la naturaleza y al aprendizaje (la taxonomía ha sido aplicada ampliamente en la biología, geología, matemáticas y otras ciencias). RAE, 2020.

Se puede decir que, en nuestra historia reciente, Terzaghi (1946) fue el primero en desarrollar una clasificación para comprender la reacción mecánica en la clave de un túnel, ante una carga de roca. Aunque hubo algunas otras clasificaciones (Tabla 1) entre la propuesta por Terzagui en 1946 y la propuesta por Deer et al. (RQD, *Rock Quality Designation*, 1967), esta última fue la que sentó las bases de un concepto muy importante, la separación entre discontinuidades, misma que posteriormente evolucionaría al concepto de tamaño de bloque. Aunque el RQD está contenido en las clasificaciones geomecánicas RMR, Q y de alguna manera también en el RMi, por sí solo no es suficiente para conceptualizar el estado mecánico de un macizo rocoso; únicamente da una idea del grado de fracturamiento del terreno a cierta profundidad.

Fue hasta 1973, cuando Bieniawski publicó su clasificación geomecánica RMR (Rock Mass Rating), que contenía 5 criterios de evaluación: resistencia de la roca matriz: RQD, separación entre discontinuidades, estado de las discontinuidades y condiciones del agua subterránea; estos criterios de algún modo permiten formar una imagen general del estado del macizo rocoso, sin embargo, no contiene un factor muy importante (mismo que fue introducido por Barton et al. en 1974) y que es el estado de esfuerzos que afecta a la excavación, siendo éste el que, de acuerdo con Barton, rige el comportamiento de cada una de las propiedades físicas del macizo rocoso, ante una perturbación física.

Aunque ambas clasificaciones (RMR e índice Q) comparten similitudes en sus criterios de evaluación, el RMR fue desarrollado para ser utilizado en diferentes tipos de obras excavadas en

roca, es decir, en cimentaciones, taludes y túneles; sin embargo, esto ocasiona que su evaluación sea general y no tome en cuenta las características específicas de cada caso, siendo estos muy diferentes en algunas ocasiones (aunque existan correcciones propuestas por Bieniawski, continúa sin considerar el estado de esfuerzos).

Posterior a las clasificaciones RMR e índice Q, Palmström (1995), desarrolló el sistema RMi (Rock Mass Index), una clasificación que plantea un nuevo enfoque para la evaluación de macizos rocosos, teniendo como criterios principales: la resistencia de la roca matriz, el volumen de bloques de roca y el estado de las discontinuidades. En capítulos posteriores, se darán las implicaciones en el uso de cada una de estas clasificaciones, así como también del índice de resistencia geológica (GSI) de Hoek.

En la Tabla 1 se muestra una relación histórica de sistemas de clasificación geomecánicas para macizos rocosos.

Las clasificaciones ingenieriles para caracterizar macizos rocosos son ampliamente usadas por diversas razones, algunas de ellas son:

- Promueven una mejor comunicación con el grupo de trabajo, proyectistas, geólogos, diseñadores, contratistas e ingenieros civiles.
- La experiencia, juicio y observación se correlacionan y consolidan de mejor manera con una clasificación ingenieril.
- Los ingenieros prefieren los números.
- Las clasificaciones ayudan a organizar y consolidar el conocimiento, materializando en una imagen real, conceptos abstractos (v.gr., rugosidad, puentes de roca, persistencia, fractura, falla, etc.).
- Son de gran aplicación en proyectos de mecánica de rocas, para la planeación y diseño de obras como hidroeléctricas, túneles, cavernas, silos, puentes, túneles, etc.

En próximos incisos se presenta una breve descripción de los conceptos más importantes contenidos en las clasificaciones geomecánicas más difundidas, mismas que son motivo de estudio de esta tesis; asimismo se discuten las implicaciones que tienen en su aplicación y en la descripción de macizos rocosos.

2.1. Matriz rocosa

2.1.1. Litología

La escala es un factor muy importante en el comportamiento mecánico del sistema rocoso, hablando de los minerales como una escala meso o micro, la roca matriz como una escala macro y el macizo rocoso como una escala estructural (Figura 1)

Sistema de	Forma y tipo	Aplicación principal	Autor	
clasificación				
Clasificación por carga de roca de Terzaghi	Forma descriptiva y del comportamiento. Tipo funcional	Diseño de marcos metálicos para suporte en túneles	Terzaghi, 1946	
Tiempo de autosoporte de Lauffer	Forma descriptiva. Tipo General	Diseño de excavación de túneles	Laufer H., 1958	
Nuevo método austriaco de excavación de túneles (NATM)	Forma descriptiva y del comportamiento. Concepto de excavación de túneles	Diseño y excavación de subsuelo incompetente (sobresfuerzo)	Rabcewicz, Müller and Pacher, 1958 - 1964	
Clasificación de rocas para propósitos de mecánica de rocas	Forma descriptiva. Tipo General	Datos de entrada para mecánica de rocas	Patching and Coates, 1968	
Clasificación unificada para suelos y rocas	Forma descriptiva. Tipo General	Basada en partículas y bloques para comunicarse	Deer et al., 1969	
Designación de la calidad de roca (RQD)	Forma numérica. Tipo General	Basado en núcleos de sondeos, está incluido en otras clasificaciones	Deer et al., 1967	
Clasificación tamaño- resistencia	Forma numérica. Tipo General	Basado en la resistencia de la roca y diámetro de bloques, usado principalmente en minería	Franklin, 1975	
Clasificación de la calidad de la estructura rocosa (RSR)	Forma numérica. Tipo General	Diseño del sistema de soporte (marcos) en túneles	Wickham et al., 1972	
Calidad del macizo rocoso (RMR)	Forma numérica. Tipo General	Diseño de túneles, minas y cimientos	Bieniawski, 1973	
Sistema Q	Forma numérica. Tipo General	Diseño del soporte en excavaciones subterráneas	Barton et al., 1974	
Clasificación tipológica	Forma descriptiva. Tipo General	Usada para transmitir el conocimiento, entendimiento (comunicación)	Maluta and Holzer, 1978	
Sistema unificado de clasificación de rocas	Forma descriptiva. Tipo General	Usada para transmitir el conocimiento, entendimiento (comunicación)	Williamson, 1980	
Clasificación geotécnica básica (BGD)	Forma descriptiva. Tipo General	Aplicación general	ISRM, 1981	
Índice de resistencia geológica (GSI)	Forma numérica. Tipo General	Diseño del soporte en excavaciones subterráneas	Hoek, 1994	
Índice del macizo rocoso (RMi)	Forma numérica. Tipo General	Caracterización general, diseño del soporte, uso en el proceso de excavación en TBM	Palmström, 1995	

Glosario:

Forma descriptiva: Los criterios de entrada en el sistema están basados mayormente en descripciones; Forma numérica: Los criterios de entrada están dados por valores numéricos acorde a sus características; Forma del comportamiento: Los criterios de entrada están basados en el comportamiento del macizo rocoso en el túnel;

Tipo general: el sistema está elaborado para servir como una caracterización general Tipo funcional: El sistema está estructurado para ser aplicado en una especialidad (p.e. para sistemas de soporte)

Tabla 1. Relación histórica de sistemas de clasificación geomecánicas para macizos rocosos.

Figura 1. Esquema del manejo del concepto de escala. Modificada de Hoek, 1994.

Cada una influye más o menos en el comportamiento mecánico del medio, un ejemplo es cuando las propiedades de la roca matriz impactan en el comportamiento mecánico del macizo rocoso; esto sucede cuando el espaciamiento de las juntas es amplio pero la roca intacta es débil; esto se reflejará en posibles roturas y altos niveles de deformación (Singh & Goel, 2011); por otro lado, las propiedades petrográficas influyen en la formación y distribución de las discontinuidades que constituyen el macizo rocoso y en la degradación de sus paredes.

La roca matriz está conformada por minerales, que tienen unas características que a su vez influyen en la respuesta mecánica de la roca. Algunas propiedades físicas de los minerales que influyen en su comportamiento mecánico pueden ser el clivaje, maclas, dislocaciones, fracturas microscópicas, densidad y dureza (Mohs y Vickers). Yendo a una escala mayor, el comportamiento mecánico de la roca matriz está condicionado por los granos, su textura, su fábrica, meso estructura, porosidad, flujo y micro fisuras (Verbrugge y Schroeder, 2018, Figura 2).

Para conocer la dureza de los minerales, es posible utilizar dos tipos de escalas, una relativa (Mohs) y una mecánica (Vickers). La escala de Mohs tiene 10 niveles de dureza y es representada por 10 minerales, el de menor dureza (1 en la escala) es el talco, mientras que el de mayor dureza (10 en la escala) es el diamante, para conocer la dureza de un mineral se le intenta rayar con otro

mineral de dureza conocida y se le compara para conocer su dureza relativa, Tarbuk y Lutgens (2005). Por su parte, la prueba de Vickers mide la dureza de manera mecánica; esto se logra midiendo la resistencia de un material al ser penetrado. Una punta de diamante ejerce sobre el mineral una presión a un ángulo base de 136° y la escala de cargas va de 5 a 125 kilogramo-fuerza (de cinco en cinco, de acuerdo con Verbrugge y Schroeder, 2018).

Figura 2. Características físicas y mecánicas que influyen en el comportamiento geomecánico de la roca matriz. Modificada de Palmström (2001).

Se emplean láminas delgadas de hasta 0,15 mm y para determinar el número de dureza se aplica la siguiente ecuación:

$$HV = \frac{2\sin(68^\circ) \cdot F}{d^2} \approx \frac{1.8544 \cdot F}{d^2}$$
(1)

donde d es la diagonal de la huella dejada por la punta (o la media de las diagonales medidas) y F es la fuerza aplicada sobre la pirámide de diamante.

Usando la dureza de Vickers es posible aproximar la composición mineralógica de una roca; este parámetro es llamado "dureza media ponderada" (WAH¹), además es posible calcular el contraste entre durezas en una roca con este método.

Un parámetro indirecto que es consecuencia de la composición mineralógica de la roca, es por ejemplo la abrasividad, que puede indicar la presencia de minerales con gran dureza y así poder cuantificarlos mediante parámetros como el factor de desgaste (F_{schim}), definido por Schimazeck y

¹ Weighted average hardness (dureza promedio ponderada)

Knatz en 1970 (Verbrugge y Schroeder, 2018); este parámetro puede ser útil, en el cálculo de desgaste de discos para su reemplazo en una TMB.

2.1.2. Densidad, porosidad

La porosidad está determinada por el tamaño de grano, su distribución, su forma, así como la presión y profundidad a la que se encuentra (Schón, 1996).

La densidad y porosidad son propiedades físicas de la roca y son inversamente proporcionales (a mayor porosidad, menor densidad y viceversa). Esto se explica por la mayor cantidad de huecos en una roca porosa. Ahora bien, la profundidad influye en la densidad de una roca, mientras mayor sea la profundidad en la que se encuentra, mayor la carga sobre ella y su compresión será mayor, provocando el cierre de los espacios vacíos y de las micro fisuras, disminuyendo su porosidad.

2.1.3. Alteración

Como se mencionó anteriormente la matriz rocosa está formada por minerales que se alteran con menor o mayor facilidad dependiendo de su propia naturaleza y de las condiciones de temperatura y presión en las que se formaron.

Un ejemplo sencillo de lo anterior se encuentra en la serie de reacción de Bowen, 1956, donde se describe la secuencia de cristalización de los principales minerales formadores de roca (origen ígneo); ésta nos dice que, el mineral que se encuentra más arriba de esta serie (olivino) comienza a cristalizar a temperaturas mayores que el mineral que se encuentra más abajo (cuarzo), entonces el mineral olivino ya habrá formado cristales en un magma con condiciones de temperatura muy altas, mientras que, el mineral que se encuentra más abajo de la serie (cuarzo) se encontrará en solución en este magma y no formara cristales hasta que la temperatura disminuya. Lo anterior también tiene relación con el comportamiento de los minerales ante los efectos del intemperismo, siendo que, mientras un mineral esté más alejado de su ambiente de formación (temperatura y presión), éste será más propenso a alterarse. Por ejemplo, en condiciones superficiales, el cuarzo es estable y difícilmente se altera, sólo se desgasta; mientras que el olivino es muy inestable y es muy propenso a alterarse.

Lo anterior es solo un ejemplo de un tipo de alteración de los minerales que forman una roca; existen muchos más factores que quedan fuera del alcance de este trabajo, pero que ayudan a comprender hasta qué grado puede afectar el intemperismo y la meteorización a la roca expuesta en un túnel o excavación. Existen minerales que se comienzan a alterar casi al momento de ser expuestos. Conocer su alteración y la forma en la que ésta se presenta, ayuda a fortalecer el entendimiento del comportamiento mecánico del macizo rocoso.

Así mismo, esto da una idea general del tipo de relleno que puede presentar una discontinuidad, de qué manera la alteración de los minerales o el aporte de una fuente externa; v.gr., hidrotermal, dará como resultado un relleno duro o suave, o simplemente no lo tendrá; esto tiene implicaciones como el comportamiento ante el estado de esfuerzos, según sea el tipo de relleno de las discontinuidades (Figura 3). El grado de meteorización es también un factor que

altera la densidad y la resistencia de la roca: una roca sana no pesa ni resiste de la misma manera que una roca con un grado alto de meteorización, debido a la alteración de los minerales que la componen.

Figura 3. Dirección que pueden tomar los esfuerzos principal mayor y menor, respecto a la condición del relleno de las discontinuidades que atraviesan. Tomada de Hudson y Harrison, 1997.

Existen distintas maneras de conocer el grado de alteración (o meteorización) de la roca: la tabla propuesta por el ISRM en 1981 (Figura 4) ayuda a caracterizar el estado de alteración en el que se encuentra un macizo rocoso, con pruebas sencillas en campo (golpe del martillo y estado de la estructura geológica). Otro método sencillo es el propuesto por Hoek (1994), en el índice de resistencia geológica (GSI), que utiliza a grandes rasgos, la estructura geológica del macizo rocoso y la resistencia que esta tiene al golpe del martillo de geólogo.

2.1.4. Resistencia

La resistencia que presenta una roca antes de romperse o fallar, cuando es sometida a fuerzas, depende de distintos factores; a continuación, se explican algunos de manera breve.

Como se mencionó anteriormente (inciso 2.1.1) la litología de la roca es un factor muy importante que define su resistencia; se puede englobar la forma de su depósito o emplazamiento (estratificación, foliación, fábrica y textura), los minerales que contiene, su densidad y porosidad; además, a estas propiedades físicas puede sumarse el estado de esfuerzos al que está sometida y el grado de meteorización que presenta.

Es importante tomar en cuenta la forma en la que se acomodan los minerales o sedimentos en una roca debido a que la resistencia no siempre es la misma en cualquier dirección en la que se le aplica una fuerza. En rocas estratificadas la resistencia a la compresión simple suele ser mayor si la fuerza aplicada es perpendicular a la estratificación y menor si es paralela, en cambio el módulo de Young y la velocidad de ondas sísmicas son mínimas, Verbrugge y Schroeder, 2018. Algunos autores como Palmström (1995), han observado que la fractura de algunas rocas sigue planos paralelos a la dirección de minerales como micas, clorita, anfíbol y piroxeno; además, la presencia de otros como la serpentina, talco y grafito impactan desfavorablemente en la resistencia.

		(ISRM, 1981)
GRADO DE METEORIZACIÓN	TIPO	DESCRIPCIÓN
1	Fresco	No aparecen signos de meteorización
II	Ligeramente meteorizado	La decoloración indica alteración del material rocoso y de las superficies de la discontinuidad. Todo el conjunto rocoso está decolorados por meteorización.
111	Moderadamente Meteorizado	Menos de la mitad del macizo rocoso aparece descompuesto y/o transformado en suelo. La roca fresca decolorada aparece como una estructura continua o como núcleos aislados
IV	Altamente meteorizado	Más de la mitad del macizo rocoso aparece descompuesto y/o transformado en suelo. La roca fresca o decolorada aparece como núcleos aislados.
V	Completamente meteorizado	Todo el macizo rocoso aparece descompuesto y/o transformado en suelo. Se conserva la estructuradel macizo rocoso.
VI	Suelo residual	Todo el macizo rocoso se ha transformado en un suelo. Se ha destruido la estructura del macizo y la fabrica del material

Escala de Meteorización

Figura 4. Tabla de escala de meteorización, donde se muestra el grado de meteorización que presenta un macizo rocoso y su descripción. Modificada de ISRM 81.

Respecto a la textura y mineralogía que compone la roca, Johnson y Hoek & Brown utilizan el parámetro M que depende del tipo de roca y su resistencia (σ_c); el tipo de roca está dividido en una escala de 5 y esto depende de la forma en la que fallan, es decir, si la roca tiene minerales que tienen clivaje (una forma en la que los minerales rompen en planos geométricos, que están regidos por su acomodo molecular) o si, por el contrario, su fractura es aleatoria; además, esta clasificación distingue entre rocas detríticas y rocas policristalinas (Zhang, 2017).

Para el caso de las rocas con cristales de mayor tamaño (v.gr. textura fanerítica, porfídica), el valor del parámetro *M* será mayor (Zhang, 2017). Es decir, el parámetro menor vendrá dado por una roca formada por minerales con clivaje e irá aumentando conforme el tamaño de los minerales o sedimentos aumenta; le seguirán, entonces, rocas con grano muy fino (v.gr., lodos, carbonatos, *mudstone*), después, rocas de grano grueso con clastos de minerales sin clivaje (v.gr., arenisca, cuarcitas), para terminar con rocas policristalinas de micro cristales (v.gr., textura afanítica) y rocas policristalinas de cristales visibles (v.gr., textura fanerítica, porfídica).

Respecto a la influencia de la escala en la resistencia de la roca, Hoek & Brown, 1997, sugieren que la reducción de la resistencia, al aumentar el tamaño de la muestra, se debe a que aumenta la posibilidad de fallar a través y alrededor de los granos, así que mientras mayor sea el número de granos, mayor la posibilidad de falla, (Zhang, 2017).

Tal y como se discutió en el inciso 2.1.2, respecto a la porosidad y la densidad de la roca, un punto a destacar es la influencia del micro fisuramiento, sin importar la densidad que tenga; esto tiene implicaciones en la respuesta mecánica cuando se le aplica una fuerza y tiene que ver con la modificación de su anisotropía, ya que los espacios tenderán a cerrarse cuando la fuerza que se le aplica es perpendicular a estos planos, modificando su módulo de Young, además mientras mayor sea la fuerza que se le aplique, estas fisuras se unirán unas a otras (fenómeno de coalescencia) provocando que la roca falle.

El estado de esfuerzos se refiere, de manera general, a la distribución de las fuerzas que experimenta, en este caso, un macizo rocoso, ya sea por la gravedad representada por el peso de la roca sobre un punto cualquiera, la presión que ejerce el agua (presión de poro o el caudal) sobre éste o la fuerza aplicada de origen antropogénico (una excavación hecha por el hombre). Esto afecta en todos sentidos a la resistencia y comportamiento de la roca; afecta, como se dijo antes, en la porosidad y en la densidad; además la dirección de los esfuerzos principales, en algunas clases de rocas, pueden inducir anisotropía.

Si a una muestra isótropa de roca (refiriéndose a la mineralogía y de una uniformidad en las fracturas y poros que la conforman) se le aplica una carga hidrostática, su respuesta elástica será también isótropa; sin embargo, si se aplica una carga axial, esto tenderá a cerrar fisuras o poros cuya normal sea paralela a la carga aplicada, provocando una anisotropía inducida.

Algunos ejemplos de cómo el cambio en el estado de esfuerzos puede alterar el comportamiento mecánico de la matriz rocosa son:

- El cierre de fisuras posterior a la compresión: tiende a incrementar el módulo elástico efectivo de la roca, (Afrouz, 1992).
- La relación de la compresibilidad de la roca porosa: es igual a la compresibilidad del mineral que la conforma y la compresibilidad producida por el cierre de los poros. El módulo de corte (*shear modulus*) y el módulo volumétrico (*bulk modulus*) son utilizados para saber cuánto cambiará de forma un mineral al aplicarle una carga, (Afrouz, 1992).
- Rocas con arreglos de minerales como micas, arcillas y clorita (v.gr., textura lepidoblástica) tienden a presentar un mayor grado de anisotropía al ser ensayadas, (Zhang, 2017).
- La resistencia máxima de una roca estratificada se da cuando el esfuerzo mayor es perpendicular o paralelo a la estratificación y su menor resistencia es cuando el esfuerzo mayor y la estratificación forman un ángulo de entre 30° y 60°, (Zhang, 2017).
- La relación de anisotropía es usualmente definida como la variación entre la resistencia a la compresión mayor y la resistencia a la compresión menor, según sea la dirección en la que se aplique la fuerza respecto, por ejemplo, a su estratificación, (Zhang, 2017).

• Cuando la resistencia a la compresión simple (RCS) varía, pero la dureza media ponderada (WAH) no, la resistencia no depende de la mineralogía, sino de un factor geológico con mayor importancia, la intensidad del micro fracturamiento, (Verbrugge y Schroeder, 2018).

2.2. Macizo rocoso

Un macizo rocoso es el conjunto de la roca matriz y sus discontinuidades. Considerar la dimensión (tamaño) geológica es crucial, a excepción de los casos donde el macizo rocoso es homogéneo, isótropo, inalterado y continuo, sin embargo, esto es casi imposible de encontrar en la naturaleza.

Entonces, son dos los factores que componen al macizo rocoso y cada uno afecta su comportamiento mecánico según sean sus características físicas, v.gr., cuando el número de discontinuidades es reducido, un análisis de estabilidad puede basarse en la geometría del área de estudio y en la resistencia al corte de las discontinuidades que lo conforman. Por otro lado, cuando son muchas las familias de discontinuidades y el macizo rocoso está muy fracturado, la resistencia de la matriz rocosa comienza a tener mayor importancia (Verbrugge y Schroeder, 2018).

Sin embargo, para la simplificación de análisis prácticos en taludes, excavaciones y túneles, es común que se utilicen cuerpos o unidades geotécnicas que engloban unidades litológicas con características geotécnicas similares, para poder resolverlo con métodos y herramientas utilizadas en problemas de ingeniería del terreno (Verbrugge y Schroeder, 2018).

La conformación de estos cuerpos o unidades es posible al utilizar clasificaciones geomecánicas, que engloban, en un solo ámbito, macizos rocosos de propiedades geomecánicas similares; con esto se logra simplificar el problema y, sobre todo, disminuir los requerimientos de cómputo, reduciendo también el número de variables que intervienen en un fenómeno geomecánico.

2.2.1. Discontinuidades

En el inciso anterior (2.1) se habló de manera general sobre las implicaciones y características de la matriz rocosa; en este apartado se exponen de manera general las implicaciones y características del segundo grupo que conforma un macizo rocoso, las discontinuidades.

Las características de las discontinuidades que deben tomarse en cuenta al momento de analizar el posible comportamiento de una excavación de túnel son: persistencia o continuidad, espaciamiento, relleno, abertura, rugosidad y resistencia de las paredes. Otras consideraciones que se deben tener en cuenta son la humedad o flujo de agua. Además, Bieniawski (1989), propone una corrección a su clasificación, restándole cierto valor, al total de la puntuación del RMR, dependiendo de la orientación desfavorable de alguna familia de discontinuidades, el valor varía según sea el tipo de excavación que se realice.

La persistencia o continuidad da una idea de la superficie de contacto entre las discontinuidades que constituyen al macizo rocoso, además, junto con el espaciamiento, es posible estimar el tamaño de los bloques, como lo propone Palmström (1995) en su clasificación. Sin

embargo, existen implicaciones en la medición de este parámetro, siendo que, se observan y miden en un plano bidimensional (v.gr., el frente de excavación), por lo que, hacer un cálculo preciso de la forma de los bloques (tridimensional) que forman las discontinuidades resulta complicado. En la naturaleza suelen presentarse más de 3 familias de discontinuidades, por lo que las formas que pueden adquirir, así como los tamaños que pueden presentar son casi infinitos.

La abertura, el relleno y la rugosidad de las discontinuidades suelen ser los parámetros con la mayor variación dentro del macizo rocoso; pueden coexistir cualquier tipo de ondulación y rugosidad en las paredes de un solo macizo rocoso, por lo que evaluarlas depende del criterio del geólogo; puede usarse el promedio de todas las que se hayan observado o inferir primero la familia principal de discontinuidades y con las condiciones más desfavorables y evaluar sus características.

Existe una gran diferencia en el comportamiento de un bloque sin relleno con paredes rugosas, respecto a un bloque con las juntas abiertas y con relleno arcilloso. De estas condiciones puede depender su movimiento y, por ello, diversos autores consideran que el factor geomecánico con mayor importancia para las discontinuidades (Verbrugge y Schroeder, 2018) es la resistencia al corte, debido a que la de compresión casi no interviene y la de tensión, en un análisis mecánico, usualmente es considerada nula; la resistencia al corte usualmente está basada en criterios cohesivo friccionantes (Mohr-Coulomb, Barton-Bandis, etc.), aunque la cohesión se desprecia ocasionalmente.

2.3. Sistema RMR-2014

Durante las últimas dos décadas la clasificación geomecánica de Bieniawski, en su versión de 1989, ha sido posiblemente la más empleada en la caracterización de macizos rocosos, especialmente para túneles y obras subterráneas.

En 2014, Celada y sus colaboradores (empresa Geocontrol, España) realizaron una revisión y actualización del sistema RMR₈₉ para lo cual, consideraron los siguientes aspectos:

- Toma como base la tabla del RMR⁸⁹ (nombrado RMR_b o RMR básico) modificada por Geocontrol que ha utilizado desde el 2000 para la excavación de túneles.
- En el RMR₈₉ modificado, o RMR₁₄ (Celada et al., 2014), se mantienen 3 parámetros propuestos por Bieniawski, (1989) y Lowson y Bieniawski (2013) que son:
 - o La resistencia a la compresión simple de la roca intacta
 - Número de juntas por metro (desde Lowson y Bieniawski, 2013, Figura 5)
 - El efecto del agua en la excavación
- Hace modificaciones al concepto de la condición de las discontinuidades del RMR₈₉, dando un límite de 20 puntos en la condición más favorable.
- Introduce el concepto de alterabilidad, que se refiere al porcentaje de matriz rocosa que puede alterarse debido al intemperismo que afecta al frente al ser descubierto por la excavación
- Añade además dos parámetros de corrección para utilizar el RMR₁₄, en excavaciones con tuneladoras (TBM's) y para considerar la plastificación del frente.

Número de discontinuidades por metro

Figura 5. Gráfica que representa la puntuación del parámetro recién introducido en el RMR₁₄ (Número de discontinuidades por metro). Tomada de Celada et al. 2014.

Cada uno de estos parámetros tiene un valor numérico que se suma o resta definiendo cinco categorías de calidad de roca, de acuerdo con la Tabla 2. En la Tabla 3 se muestra la clasificación completa de Bieniawski, según la versión de 1989. En ella se incluyen las puntuaciones para cada rubro, el detalle de los parámetros que definen el estado de las diaclasas, así como la corrección por orientación de discontinuidades y los diferentes tipos de obra a los que es aplicable esta clasificación.

RMR	Clase	Calidad
100 a 81	Ι	Muy buena
80 a 61	II	Buena
60 a 41	III	Mediana
40 a 21	IV	Mala
< 20	V	Muy mala

Tabla 2. Escala de calidades de la clasificación RMR₈₉.

Desde el año 2000, Geocontrol comenzó a utilizar la Tabla 3, una modificación del RMR⁸⁹ por la necesidad de adaptar mejor esta clasificación a la excavación de túneles, donde, puede caracterizarse la roca directamente en el frente y observar las unidades geológicas. Por lo que, no es necesario utilizar métodos directos como el RQD para conocer las condiciones geológicas de la zona; además, el RQD medido in situ plantea inconvenientes cuando se quiere obtener su puntuación, resultando confuso y no representativo a las condiciones reales del medio donde se encuentra.

Por lo anterior Geocontrol (Tabla 3) y posteriormente Lowson y Bieniawski (2013), sugieren sustituir el parámetro RQD y espaciamiento entre discontinuidades del RMR₈₉, por el de número de discontinuidades por metro (Figura 5) y así poder medirlo directamente de un frente de

excavación. Celada et al. (2014) nombran a este RMR_{89} modificado, como RMR_b o RMR base y sobre este hace modificaciones.

Parámetros de clasificación																	
RMR (1) Resistencia a la compresión simple de la roca intacta																	
	>2500	1000 - 2500 500 - 1000 250 - 50			500 50 - 250			10-50			<10						
Puntuación	15		12		,	7		4			2	1				0	
		RN	1 R (2	+3) l	RQD y	D y espaciamiento de las discontinuidades					es						
Discontinuida	ades/m	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Puntuaci	ón	40	34	31	29	28	27	26	25	24	23	22	21	20	19	18	17
Discontinuida	ades/m	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Puntuaci	ón	17	16	15	14	14	13	13	12	12	11	11	10	10	9	9	9
Discontinuida	ades/m	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
Puntuaci	ón	8	8	7	7	7	6	6	6	5	4	3	3	2	2	1.5	1
Discontinuidades/m		48	49	50													
Puntuaci	ón	1	0.5	0													
RMR (4)						Condi	ición	de la	as disc	ontin	uidade	es					
Persisten	cia		< 1 m	l	1 - 3 m				3	3 - 10 r	n	10) - 20	m		20 m	
			6		4					2			1			0	
Apertur	a		0		<0.1 mm			0.	1 - 1 n	nm	1 - 5 mm		m	> 5 mm			
	_		6		5				4			1		_	0		
Rugosida	ad	Mu	iy rug	oso	Rugoso			rugoso			Ondulado				Suave		
			6		5				3			2			0		
Rellend)	Si	n relle	no	Relle	eno Du	ro <5	mm	Relleno Duro		ouro	Relleno		0	Relleno Suave		lave
								>5mm		1	Suave <5mm		mm	n >5mm		l	
			6			4				2		2			0		
Alteración		In	altera	do	Liger	amente	e alte	rado	Moderadamente alterada		nente a	Muy alterada		rada	Descompuesta		
			6			5			3			1				0	
RMR (5)						Cond	icion	es de	el agua	a subte	erráne	a					
Estado	1		Seco		Liger	amente	e hún	nedo	Húmedo		0	Goteando		do	Agua fluyendo		endo
Puntuación			15		10			7				4		0			

Tabla 3. Criterios para calcular el RMR_b utilizados por Geocontrol desde el año 2000. A partir de Celada et al. 2014.

Figura 6. Gráficas para calcular la puntuación del valor correspondiente a la resistencia a la compresión simple, el RQD y al espaciamiento entre discontinuidades del RMR. Tomada de Bieniawski (1989).

En Celada et al. (2014) se agregan dos nuevos parámetros al RMR, estos son la resistencia de las juntas y la alterabilidad del terreno por el efecto del agua. La resistencia de las juntas se valora según los siguientes aspectos:

- Continuidad de las juntas
- Rugosidad de las juntas, medida por el JRC
- Tipo de relleno en las juntas
- Grado de meteorización de los labios de la junta

Estos cuatro parámetros son propuestos en la "*Guía para la clasificación en condiciones de discontinuidad*", Bieniawski (1989) y Celada et al. (2014) los limita a 20 puntos para las condiciones más favorables de las discontinuidades. (Tabla 4).

RMR (4)	Condición de las discontinuidades									
Demisterie	< 1 m	1 - 3 m	3 - 10 m	> 10 m						
Persistencia	5	4	2	0						
Rugosidad	Muy rugoso	Rugoso	Suave	Superficie de deslizamiento						
U	5	3	1	0						
	D	uro	Blando							
Relleno	< 5 mm	> 5 mm	< 5 mm	> 5 mm						
	5	2	2	0						
Altonosión	Inalterado	Ligeramente	Inalterado	Ligeramente						
Aneracion	5	3	1	0						

Tabla 4. Puntuación de los parámetros utilizados en la valoración de la resistencia de las juntas. A partir de Celada et al. 2014.

La alterabilidad se evalúa según los resultados obtenidos por el *Slake Durability Test*, definido en la norma ASTM D4644-87; éste permite calcular el índice de alterabilidad I_{d2} , que para su valoración, Celada et al. (2014), utilizan la base de datos de Geocontrol (Figura 7), que contiene 2,298 datos de RMR en frente de túneles; según su hipótesis, para poder integrarse sin alterar el valor medio del RMR_b, es necesario que los valores de esta base de datos no tengan una variación importante cuando este parámetro se evalúe. Para esto propone 4 hipótesis con valores de I_{d2} (Tabla 5) para un rango determinado de RMR₁₄ (es decir, un valor de RMR_b con el parámetro I_{d2} , sumado a su valoración).

Figura 7. Histograma con base en los datos de Geocontrol. Tomada de Celada et al. 2014.

Evaluando cada hipótesis y obteniendo su respectivo histograma y comparándolo con el histograma de la base de datos de valores RMR_b (Figura 7), les fue posible evaluar cuál de estas hipótesis se ajustaban mejor.

Hipótesis	Valores del I_{d2} (%)							
	<98	95 - 98	85 - 95	60 - 85	30 - 60	<30		
RMR ₁₄ -I	10	8	6	4	2	0		
RMR ₁₄ -II	10	10	10	8	4	0		
RMR ₁₄ -III	10	9	8	2	1	0		
RMR ₁₄ -IV	10	10	9	3	1	0		

Tabla 5. Cuatro hipótesis formuladas por Celada et al. 2014 con base en los datos de Geocontrol. Modificada de Celada et al. 2014.

La hipótesis que Celada et al. 2014 presentan como la más adecuada, la que corresponde al RMR₁₄-II, que tiene una desviación R=0.982 respecto al histograma base (Figura 7). La Tabla 6 muestra la valoración del parámetro I_{d2} que integran el nuevo RMR (RMR₁₄).

Alterabilidad I _{d2} (%)							
<85	60 - 85	30 - 60	<30				
10	8	4	0				

Tabla 6. Puntuación de la alterabilidad en el RMR₁₄. Modificada de Celada et al. 2014.

Una vez obtenido un RMR_b con los 2 parámetros propuestos por Celada et al. (2014), se agregan 2 nuevos factores de corrección, que al ser considerados junto con el factor de corrección por orientación de discontinuidades (Tabla 7) propuesto por Bieniawski (1989), el RMR₁₄ se calcula con la siguiente ecuación (Celada et al., 2014):

$$\operatorname{RMR}_{14} = \left(\operatorname{RMR}_{b} + F_{0}\right) \cdot F_{e} \cdot F_{s} \tag{2}$$

donde: RMR_b=RMR₈₉ del macizo rocoso, sin corregir por orientación del túnel; F_0 el factor que considera la orientación del eje del túnel respecto a la familia de discontinuidades más importante del terreno; F_e el factor que se considera el mejor comportamiento del terreno cuando se excava con tuneladoras y F_s el factor que considera el efecto de la plastificación del terreno en el frente del túnel.

Perpendicular				Paralela		Inclinación de las	
Avance a favor de la inclinación		Avance en contra de la inclinación		Inclinación		discontinuidades	
45° - 90°	20° - 45°	45° - 90°	20° - 45°	45° - 90°	20° - 45°	Menor a 20°	
0	-2	-5	-10	-12	-5	-5	

Tabla 7. Criterios para el cálculo de los factores de ajuste para el RMR₁₄. Modificada de Celada et al. 2014.

El factor de corrección F_0 es el mismo que se aplica en el RMR₈₉, mientras que F_e se refiere a la menor perturbación del terreno cuando se usa una TBM para su excavación, esto implica que el valor RMR del frente de un túnel excavado con explosivos sería menor al medido en un frente excavado con TBM, mientras que F_s se refiere al efecto de la plastificación del frente que aumenta el grado de fracturamiento natural de la roca y por ende disminuye el valor del RMR del macizo rocoso.

Figura 8. Gráfica de la correlación entre el RMR_{TBM} y el RMR. Tomada de Celada et al. 2014.

Para la obtención de F_e , Bieniawski et al. (2011) plantea la relación entre el RMR_{TBM} y RMR₈₉, para obtener curvas de ajuste que proporcionen ecuaciones para calcularlo (Figura 8).

En Celada et al. 2014 se proponen, con base en Bieniawski, 2011, las siguientes ecuaciones:

Para RMR<40:

$$F_e = 1 + 2 \left(\frac{\text{RMR}}{100}\right)^2 \tag{3}$$

Para RMR>40:

$$F_e = 1.32 - \sqrt{\frac{(\text{RMR} - 40)}{25}} \tag{4}$$

Para calcular este efecto es necesario utilizar el *índice de comportamiento elástico (ICE)*, propuesto por Bieniawski et al. (2011) y está dado por las siguientes ecuaciones:

Para
$$K_0 \le 1$$
: $ICE = \frac{3704\sigma_c^i \cdot e^{\frac{\text{RMR}-100}{24}}}{(3-K_0) \cdot H} \cdot f$ (5)

Para
$$K_0 \ge 1$$
:
 $ICE = \frac{3704\sigma_c^i \cdot e^{\frac{\text{RMR}-100}{24}}}{(3K_0 - 1) \cdot H} \cdot f$
(6)

donde; σ_c^i es la resistencia a la compresión simple de la roca intacta; k_0 es el coeficiente de esfuerzo horizontal, H es la profundidad a la que se encuentra el frente del túnel; y f el factor de forma del túnel (Tabla 8).
Tipo de excavación subterránea	f
Túnel circular de 6 m de diámetro	1.3
Túnel circular de 10 m de diámetro	1
Túnel convencional de 14 m de anchura	0.75
Cavernas (25 m de ancho x 60 m de alto)	0.55

Tabla 8. Valores del factor f (forma de la excavación). Modificada de Celada et al. 2014.

Con el valor de *ICE* obtenido es posible predecir el estado tenso-deformacional del frente, de acuerdo con Celada et al. (2014); para un valor de *ICE*<70 el frente puede presentar plastificación importante que altere la calificación RMR (Tabla 9 y Figura 9).

Figura 9. Gráfica de valores del factor Fs según su valor de ICE. A partir de Celada et al. 2014.

ICE	Comportamiento del frente del t		
>130	>130 Completamente elástico		
70 - 130	70 - 130 Elástico con incipiente plastificació		
40 - 69	40 - 69 Moderadamente plastificad		
15 - 39	15 - 39 Intensamente plastificad		
< 15	Totalmente plastificado		

Tabla 9. Comportamiento plástico del frente de excavación según su valor de ICE. Modificada deCelada et al. 2014.

La Figura 9 representa la relación entre el F_s y el *ICE* y las ecuaciones que definen los distintos tramos la curva son las siguientes Celada et al. 2014.

Para ICE<15:
$$F_s = 1.3$$
 (7)

$$F_{s} = 1.3 - 0.6 \left(\frac{ICE}{100}\right)^{2}$$
(8)

Para ICE>70

Para 15<ICE<70

La Tabla 10, muestra los parámetros y sus valores, para poder evaluar cualquier macizo rocoso con el RMR₁₄, propuesto por Celada et al. (2014).

 $F_{s} = 1$

(9)

Parámetros de clasificación RMR ₁₄						
(1) Resistencia a la compresión simple de la roca intacta (2) Número de discontinuidades						
	Figura 6 Figura 5					ıra 5
(3)		Condici	ón de la	as disconti	nuidades	
Densistancia	< 1 m	1 - 3 m	3 -	10 m		> 10 m
reisistencia	5	4		2		0
Rugosidad	Muy rugoso	Rugoso	Suave		Superfic	ie de deslizamiento
	5	3		1		0
	Duro			Blando		
Relleno	< 5 mm	> 5 mm	< 5 mm		> 5 mm	
	5	2		2		0
Altorogión	Inalterado	Ligeramente	Inalterado Ligerament		ligeramente	
Alteracion	5	3		1		0
(4)		Condici	ones de	el agua sub	oterránea	
Estado	Seco	Ligeramente ht	ímedo	Húmedo	Goteando	Agua fluyendo
Puntuación	15	10		7	4	0
(5)	Alterabilidad I _{d2} (%)					
>85		60 - 85		30 - 85	<30	
10		8		4		0

Tabla 10. Criterios y puntuaciones para el cálculo del RMR₁₄. Modificada de Celada et al. 2014.

Finalmente, en Celada et al. 2014 se sugiere una correlación entre el RMR₁₄ y el RMR₈₉, que calcula utilizando la base de datos de Geocontrol (2,298 datos) (Figura 10); obteniendo la ecuación (10) correspondiente a la línea de tendencia, como puede observarse, ambas tienen casi una correspondencia lineal entre sí.

$$RMR_{14} = 1.1 \cdot RMR_{89} + 2 \tag{10}$$

Figura 10. Correlación entre el RMR₁₄ y el RMR₈₉, con base en los datos de Geocontrol. Tomada de Celada et al. 2014.

2.3.1. Evaluación crítica de las prácticas de diseño de túneles basadas en RMR: Un enfoque práctico de ingeniero, de Lowson y Bieniawski, 2013

Lowson y Bieniawski, 2013, muestran una guía práctica del uso correcto de la clasificación RMR para el diseño de túneles. Para esto se basan en 5 aspectos importantes que deben tomar en cuenta los profesionales dedicados al diseño y construcción de túneles, estos son:

- Tablas para el diseño de anclas, concreto lanzado y marcos de soporte en función del tiempo de la excavación y la calidad de la roca.
- Decisión de la forma del túnel y el revestimiento secundario.
- Gráficas de la clasificación RMR y su aplicación práctica.
- Refinamiento de la predicción del módulo de deformación de un macizo rocoso sólo con su calidad.
- Nuevo enfoque para el manejo de condiciones de squeezing y rock-busting.

En casi 40 años de experiencia adquirida en el uso del sistema RMR se han llevado a cabo múltiples actualizaciones para mejorarlo y ajustarlo a las necesidades actuales y acercarse cada vez más a la realidad vista en obras alrededor del mundo. Esto implica el uso práctico del sistema con base en tablas y gráficas para la estimación y valoración del estado del macizo rocoso estudiado; además de mostrar los errores en el uso de ésta y otras clasificaciones geomecánicas, que se han arraigado y, en ocasiones viciado desde el inicio de su uso (Bieniawski, 2011).

Para el diseño de soporte en túneles en roca se han usado tablas como la Tabla 11 que resultaban ser descriptivas y hasta cierto punto ambiguas, pudiendo interpretarse a conveniencia de quien la usaba. Esta tabla, cuando se propuso, era sólo aplicable a casos particulares, respecto a la forma y tamaño del túnel (herradura con ancho no mayor a 10 m) y el nivel de esfuerzos en el que se encuentra (esfuerzo vertical menor a 25 MPa).

El uso de tablas entonces se sustituyó por el uso de gráficas y ecuaciones de las cuales se pueden obtener datos cuantitativos con mejor aplicabilidad en el diseño genérico de túneles.

En Bieniawski, 2011, habla sobre los mitos, usos y errores en la aplicación de las clasificaciones geomecánicas. Se refiere a la reserva en la aplicación de métodos empíricos como lo son las clasificaciones geomecánicas y su uso conjunto con otros métodos para el diseño de túneles; además de poner en contexto las técnicas viciadas que se han llevado a cabo alrededor del uso de su sistema RMR.

Un aspecto importante comenta, es la interpretación equivocada de las tablas del RMR en algún momento por parte de Hoek y Brown, 1995, en la que supone que los valores mínimos del sistema RMR son valores promedio (indicados en las tablas del RMR₈₉) y no realmente los mínimos (iguales a 0) y que pueden obtenerse de las gráficas de la Figura 6, lo cual se ha reproducido en la literatura en la última década, dando por sentada una idea errónea de que el sistema RMR sólo se calcula con las tablas proporcionadas por Bieniawski, 1989, sin tomar en cuenta las gráficas que abarcan cada valor del rango de cada parámetro con su respectiva puntuación, esto por lo tanto implica la aplicación de datos erróneos Bieniawski, 2011.

		SOPORTE			
CLASE DEL MACIZO	EXCAVACIÓN	ANCLAJE (20 mm de díametro	CONCRETO	MARCOS	
ROCOSO	EACAVACION	totalmente embebidas)	LANZADO	METÁLICOS	
ROCA DE MUY BUENA CALIDAD CLASE I RMR 81 - 100	Sección completa con 3 m de avance	Generalmente no es necesario algún sistema de soporte, excepto por el uso ocasional de anclas puntuales		ccepto por el uso	
ROCA DE BUENA CALIDAD CLASE II RMR 61 - 80	Sección completa con 1 a 1.5 m de avance, soporte completo a 20 m del frente	Localmente, anclajes en la corona de 3 m de longitud, espaciadas a 2.5 m, puede ir acompañada ocasionalemente de malla de alambre	50 mm en la corona donde sea requerido	Sin marcos	
ROCA DE MEDIANA CALIDAD	Sección superior y banqueo con avance de 1.5 - 3 m avanzando en sección superior Se comienza a colocar el	Anclaje sistemático de 4 m de longitud, espaciados de 1.5 - 2	50 - 100 mm en la corona y 30 mm en los	Sin marcos	
CLASE III	soporte justo después de cada voladura Soporte completo a 10 m	m en la corona y paredes con malla de alambre en la corona	hastiales		
KIVIK 41 - 00	del frente				
ROCA DE MALA CALIDAD	Sección superior y banqueo con avance de 1 - 1.5 m avanzando en sección superior	Anclaje sistemático de 4 - 5 m de longitud, espaciados de 1 -	100 - 150 mm en la	Marcos ligeros o medianos, espaciados	
CLASE IV	Instalar el soporte de manera simultánea con la	1.5 m en la corona y paredes con malla de alambre en la corona	hastiales	cada 1.5 m donde se requiera	
RMR 21 - 40	excavación a 10 m del frente				
ROCA DE MUY MALA CALIDAD	Multiples excavaciones con 0.5 a 1.5 m de avance en la sección superior Instalar el soporte de	Anclaje sistemático de 5 - 6 m de longitud, espaciados de 1 -	150 - 200 mm en la corona, 150 mm en los	Marcos medianos a pesados espaciados a	
CLASE V	manera simultánea con la excavación. Lanzar	ultánea con la 1.5 m en la corona y paredes con hastiales y 5 ión. Lanzar malla de alambre en la corona fre		cada 0.75 con armado y colado si se requiere	
RMR <20	concreto lo más pronto y cerca posible del frente.			requiere.	

Tabla 11. Fases de excavación y tipo de soporte según el valor de RMR para un túnel en forma de herradura de 10 de ancho y un esfuerzo vertical <25 MPa, construido con explosivos. Tomada de Bieniawski, 2011.

Las gráficas de la Figura 6 son una reproducción de las propuestas originalmente por Bieniawski y que incluyen las puntuaciones correspondientes a los rangos que se presentan en las tablas, así como el coeficiente de relación que guardan las curvas continuas con dichos puntos. Esto último resulta interesante para conocer el rango de error en el que se puede incurrir si se toman directamente los rangos de las tablas.

Debe entenderse entonces que los datos contenidos en las tablas del sistema RMR provienen de gráficas que relacionan el parámetro que se valora y su puntuación. Y que para valorar el estado de un macizo rocoso con el sistema RMR conviene utilizar las gráficas correctamente y no sólo limitarse al uso las tablas que sólo muestran los valores promedio correspondientes a cada puntuación.

2.3.1.1. Estimación de cargas sobre el soporte

De acuerdo con los autores, la carga de la roca aplicada al sistema de soporte (con fines de cálculo), está en función de las condiciones del macizo rocoso y del estado inicial de esfuerzos (Lowson y Bieniawski, 2013). Siempre y cuando la roca no esté bajo altos grados de esfuerzo y no ocurra el fenómeno de *squeezing*, se puede estimar con la siguiente ecuación:

$$P_r = \frac{100 - \text{RMR}}{100} \bullet 10m \bullet \left(\frac{Span}{10m}\right)^{\frac{1}{2}} \bullet \rho_r \bullet \gamma_r \tag{11}$$

donde γ_r es un factor parcial, ρ_r es la densidad de la roca y *Span* el ancho de la excavación. Los resultados de esta ecuación se muestran en la gráfica de la Figura 11.

Figura 11. Gráfica de la carga de roca contra ancho de excavación. Para $\gamma_r = 1.5$ y $\rho_r = 27$ kN/m³. A partir de Lowson y Bieniawski, 2013.

2.3.1.2. Tiempo de autosoporte

Dependiendo de la condición del macizo rocoso y el ancho de la excavación, ésta puede necesitar algún sistema de sostenimiento como marcos, anclas, concreto lanzado o una combinación de ellos, o puede prescindir de éste y autosoportarse (Lowson y Bieniawski, 2013).

Lo anterior puede estimarse utilizando la gráfica de la Figura 12, adicionalmente en la gráfica se puede observar el tiempo que puede pasar después de que se realiza la excavación sin soporte, a partir del RMR y que, teóricamente, en este periodo de tiempo no se deformara completamente el macizo rocoso.

Figura 12. Gráfica del tiempo de autosoporte contra ancho excavado sin soporte. Tomada de Lowson y Bieniawski, 2013.

2.3.1.3. Separación entre anclas

De acuerdo con **Lowson y Bieniawski, 2013**, la separación entre anclas puede estimarse a partir del índice RMR, asimismo, ésta debe reflejar el espaciamiento de las discontinuidades en el macizo rocoso, y es preferible el uso en conjunto con concreto lanzado para darle un mayor soporte a las anclas sobre la superficie rocosa; además el comportamiento del concreto lanzado no debe ser considerado igual al de un arco.

La estimación de la separación entre anclas puede ser obtenida de las siguientes ecuaciones:

Si 10S_b = 0.25m + \frac{(RMR - 10)^{1.5}}{140}m(13)

Si RMR
$$\leq 10$$
 $S_{\rm b} = 0.25m$ (14)

Nota: Lowson y Bieniawski (2013), recomiendan que para macizos rocosos con un RMR igual o mayor a 85 no es necesario utilizar anclas.

La Figura 13 muestra de forma gráfica el resultado de las anteriores ecuaciones.

Figura 13. Gráfica de espaciamiento entre anclas. Tomada de Lowson y Bieniawski, 2013.

Una mirada crítica a este criterio de diseño de los anclajes partiría de que, en muchas ocasiones, los valores de RMR por debajo de 25 implican que el macizo rocoso es débil, está en extremo alterado y que es posible incluso que haya perdido por completo su estructura. Entonces la implementación de anclas de fricción puede resultar poco eficiente o incluso inútil, siendo que el espaciamiento entre anclas menores a un metro resulta una práctica extremadamente costosa, tanto en tiempo de colocación como en materiales.

2.3.1.4. Longitud del ancla.

La longitud del ancla está en función del RMR y del ancho de excavación. Lowson y Bieniawski, 2013, se basaron en datos empíricos de experiencias en minas y en resultados de modelización numérica para obtener la siguiente relación:

$$Span = \frac{(L_b + 2.5)^{\frac{\text{RMR} + 25}{52}}}{3.6}$$
(15)

donde *Span* es el ancho de la excavación en metros y L_b es el largo del ancla embebida en metros. Sin embargo, y como se muestra en la Figura 14, el ancho de excavación se limita a un máximo de 25 m, puesto que, un ancho de excavación mayor, pondría en riesgo la excavación. Además, se tiene que pensar en una longitud de la ancla congruente y compatible con el proceso constructivo y recursos logísticos y materiales, con los que se cuenta. Aunque de la ecuación (15), se pueden obtener resultados de ancho de excavación de 60 m, con una longitud de ancla de 12 m y un RMR de 80, es importante utilizar el criterio y reserva en el uso de esta ecuación.

En la Figura 14 se muestran valores de largo de ancla de 1 hasta de 6 m. Sin embargo, para un macizo rocoso de calidad media (RMR=45) y un ancho de excavación de 10 m, la ecuación (15) da como resultado anclas de 12 m de largo, lo cual debería ser el límite de esta figura, ya que considerar anclas más largas dificultaría el proceso constructivo; además, debe considerarse la eficiencia de éstas en materiales muy fracturados, sin olvidar que anchos de excavación mayores pondrían en riesgo la estabilidad del túnel para un macizo rocoso muy fracturado y de baja calidad; para valores de RMR menores se tendría que pensar en la aplicación de otro sistema de sostenimientos, que actúe en conjunto con las anclas, para estabilizar la excavación de manera eficiente y segura.

Largo del ancla en función del ancho de excavación vs el valor de RMR

Figura 14. Gráfica para obtener largo del ancla embebida (líneas continuas y punteadas) según el ancho de excavación (span) y el valor de RMR del frente. Tomada de Lowson y Bieniawski, 2013.

2.3.1.5. Capacidad de soporte del ancla

La capacidad de soporte del patrón de anclas en roca se asume como la capacidad de cada ancla dividida por el área que ésta soporta. Esta capacidad de soporte se reduce conforme el RMR es menor, debido a que se pierde el agarre efectivo del ancla, reduciendo su efectividad para evitar la movilización de bloques (Lowson y Bieniawski, 2013).

$$F_{bd} = \frac{F_b}{\gamma_b} \left(\frac{\text{RMR}}{85}\right)^{\frac{40}{\text{RMR}}}$$
(16)

donde F_b es la capacidad tensional última del ancla y γ_b es un factor de reducción (un valor arbitrario que le da el autor y que corresponde al 75% de la capacidad de carga del ancla).

Capacidad de soporte del ancla

Figura 15. Gráfica de la capacidad de soporte del ancla, para $F_b=250$ kN y $\gamma_b=1.5$. Tomada de Lowson y Bieniawski, 2013.

2.3.1.6. Capacidad de soporte del concreto lanzado

El diseño de la capacidad del concreto lanzado se basa en el concepto de que éste actúa simplemente como un arco bajo compresión². Sin embargo, esto se ha modificado para reflejar la realidad en dos aspectos: el comportamiento real del concreto lanzado y el proceso constructivo. Para esto se consideraron diferentes situaciones. (Lowson y Bieniawski, 2013).

- Cuando la roca es de buena calidad, RMR>60, sólo es necesaria una capa delgada. Para una superficie irregular (debido a los bloques de tamaño considerable formados) resulta también una capa de concreto lanzado irregular, por lo cual no puede considerársele a esto un arco. La realidad es que esta capa actúa de manera preventiva ante el posible desprendimiento de bloques inestables resultantes de la excavación (p.ej. explosivos). (Lowson y Bieniawski, 2013).
- Cuando la roca es de calidad media, RMR de 35 a 60, el concreto lanzado puede comportarse como un arco siempre y cuando a lo largo de un tramo considerable de túnel la excavación se mantiene con esa calidad de roca y la forma del túnel sea de herradura; el concreto lanzado estará en una superficie menos rugosa que la anterior. Por lo cual, la capa será menos irregular (Lowson y Bieniawski, 2013).
- Cuando la roca está por debajo de un RMR=35, se debe de pensar en el uso de varios tipos de soporte, debido a que, en estas condiciones el túnel estaría sometido a cargas axiales y de flexión que podrían ocasionar su colapso (Lowson y Bieniawski, 2013).

Como se observa en la Figura 16, la capacidad máxima del momento de diseño ocurre cuando el esfuerzo axial medio es aproximadamente 1/5 de la resistencia del cilindro. Esto implica que no importa el espesor del concreto lanzado, si el espesor cambia, cambia la escala en el eje de las abscisas, pero la escala en el eje de las ordenadas y la forma de la curva seguirían siendo las mismas (Lowson y Bieniawski, 2013).

²Nótese que en la sección donde se define la metodología para proponer la longitud de las anclas, los propios autores sugieren que el concreto lanzado no debe ser considerado igual al de un arco.

Figura 16. Diagrama de interacción de un concreto lanzado de 32 MPa con Eurocode 2. Tomada de Lowson y Bieniawski, 2013.

Esta propiedad es usada para desarrollar la relación para la capacidad de diseño (*design capacity* es el rendimiento máximo teórico de un sistema en un período dado en condiciones ideales) del concreto lanzado, que refleja el comportamiento del concreto lanzado usado en una excavación.

$$f_{cd} = \frac{f_{ck}}{\gamma_s} \left[0.2 + 0.8 \left(\frac{\text{RMR}}{100} \right)^{\frac{3}{2}} \right]$$
(17)

donde f_{ck} es la resistencia de un cilindro del concreto lanzado, γ_s es un factor de reducción y f_{cd} es la capacidad de diseño del concreto lanzado.

En Lowson y Bieniawski (2013), se basaron en relaciones entre capacidad del concreto lanzado y anclas para diseñar gráficas que relacionen el ancho de la excavación y el RMR con el espesor del concreto lanzado.

2.3.1.7. Marcos metálicos

Según Lowson y Bieniawski (2013), el uso de marcos metálicos en roca va disminuyendo con el tiempo y es sustituido por concreto lanzado con fibras sintéticas o metálicas, que consumen menos tiempo al colocarse (robots lanzadores) y su uso es más económico. Sin embargo, es posible que el uso de marcos metálicos sea adecuado cuando el concreto lanzado no es efectivo, v.gr., en rocas de muy mala calidad y poca resistencia, además en situaciones donde exista *squeezing* en los que la ductilidad puede ser importante.

Grafico de diseño de concreto lanzado asumiendo que no hay marcos metalicos

Figura 17. Gráfica para el diseño del espesor del concreto lanzado sin uso de marcos metálicos, en función del valor RMR y el ancho de la excavación. Tomada de Lowson y Bieniawski, 2013.

Figura 18. Gráfica para conocer el espesor del concreto lanzado para diferentes anchos de excavación vs RMR. Tomada de Lowson y Bieniawski, 2013.

El diseño de marcos metálicos se basa en que los marcos están separados por incrementos discretos. Su falla resulta cuando se combina la compresión axial y la flexión. Las ecuaciones para el cálculo de la capacidad de marcos metálicos son las siguientes Lowson y Bieniawski, 2013:

Límite elástico

$$P_{el} = \frac{4A_s I_s \sigma_y}{S_r r_i \left[4I_s + A_s X r_i \left(1 - \cos(\theta) \right) \right]}$$
(18)

33

Límite plástico

$$P_{pl} = \frac{2S_{pl}A_s\sigma_y}{S_r r_i \left[2S_{pl} + A_s r_i (1 - \cos(\theta))\right]}$$
(19)

donde A_s es el área de la sección, I_s es el momento de inercia, S_{pl} es el módulo de sección plástica, X es la profundad de la sección y S_r es el espaciamiento entre marcos. Siempre es indispensable rellenar cualquier espacio que quede entre el marco y la superficie de la roca o concreto lanzado.

Para Lowson y Bieniawski (2013), es posible diseñar el concreto lanzado que se necesita utilizar en conjunto con marcos metálicos, si a este se le considera una viga que se apoya entre dos de estos, el espesor que este debe tener en función del espacio entre marcos metálicos se obtiene conforme a la ecuación (20) o de manera gráfica en la Figura 19.

$$t = \sqrt{\frac{3S_r^3 \rho_r \gamma_r \gamma_f}{4f_{flex}}}$$
(20)

donde S_r es el espaciamiento entre marcos, ρ_r es la densidad de la roca, γ_r y γ_f son factores parciales sobre la carga y la resistencia a la flexión del concreto lanzado y f_{flex} es la resistencia a la flexión tensional del concreto lanzado.

Figura 19. Gráfica para obtener el espesor del concreto lanzado según el espacio entre marcos metálicos. Tomada de Lowson y Bieniawski, 2013.

2.3.2. Implicaciones en el uso de la clasificación geomecánica Rock Mass Rating, (RMR₁₄), Celada et al. 2014.

Bieniawski (1989) incluye en su clasificación al RQD de Deer et al. (1967), como una alternativa para estimar el estado de fracturamiento del macizo rocoso, v.gr., cuando no es posible observar directamente el frente de excavación de un túnel, sin embargo, esta técnica de exploración directa, implica ciertos inconvenientes como: (1) un área o escala reducida de exploración, (2) diferencias

en su interpretación y medición, según quién las mida, (3) las limitaciones económicas en el proyecto ejecutivo y (4) que es altamente dependiente de la dirección del sondeo (Figura 20).

Figura 20. Dirección de las discontinuidades, respecto a un barreno, ambos pueden coincidir y por ende nunca cortarse. Tomada de Palmström, 2002.

Respecto a la escala que puede ser cubierta por el RQD, Palmström (2001) refiere que el número de discontinuidades que pueden contarse en un barreno, puede ser sólo una porción de las existentes; esto llega a producir errores en el cálculo final, además, es complicado obtener datos confiables de rugosidad, espaciamiento, continuidad e incluso número de familias (el barreno puede ser paralelo a una familia de discontinuidades importante y por ende, no cortarla) en un barreno (Figura 20). Por lo anterior, Palmström retoma el concepto del ISRM-81 y posteriormente de Hoek y Brown (1995), incorporando en su clasificación el número de discontinuidades por metro cuadrado, un concepto que es más conveniente para ser utilizado en un frente de excavación. Celada et al, incorporan en el RMR₁₄ un concepto similar: el número de discontinuidades por metro, probablemente debido a que es un concepto análogo al RQD.

Figura 21. Esquema que muestra como un barreno, solo es capaz de mostrar una fracción de un plano de discontinuidad. A partir de Palmström, 2002.

El siguiente factor implica el método de toma de muestras en un sondeo; si no se mide de manera correcta el RQD, tomando en cuenta roturas inducidas por el propio método de extracción, se corre el riesgo de obtener un RQD diferente al real.

Además, el RQD suele medirse cada metro de extracción de muestra y no por secciones con similar densidad de discontinuidades, lo que a priori es la mejor manera de describir el estado real del macizo rocoso (Figura 22).

Para el correcto análisis del RQD se recomienda agrupar intervalos con densidad de discontinuidades similar, siendo esto el objetivo principal de Deere al proponerlo. (Figura 23).

En la Figura 23 se muestran las dos formas de medir al RQD, cada metro y por secciones de acuerdo al grado de fracturamiento, como se observa, ambos tienen diferencias en cuanto a su valor y lo que reflejan, siendo que, el método más efectivo y representativo, es medirlo siguiendo intervalos de iguales condiciones de fracturamiento, v. gr., en el intervalo de 52 a 53 m, si el RQD se mide cada metro, en este intervalo, se obtiene un valor cercano a 30, mientras que si se mide por secciones de igual grado de fracturamiento, se obtiene un valor de 0, esto implica que, el valor de RQD igual a 30, no refleja que en esa zona la roca está triturada, por estar influenciada por las zonas de bloques cercanas.

M	edición	en seccione	s
Sección	Longitud	Centro del núcleo > 10 cm	RQD
1	2.17 m	1.62 m	75
2	0.63 m	0 m	0
3	0.56 m	0.23 m	41
4	1.63 m	1.55 m	95

N	ledició	n cada metro	D
Sección	Longitud	Centro del núcleo > 10 cm	RQD
50 - 51 m	1 m	0.66 m	66
51 - 52 m	1 m	0.82 m	82
52 - 53 m	1 m	0.26 m	26
53 - 54 m	1 m	0.75 m	75
54 - 55 m	1 m	0.92 m	92

Figura 22. Diferencia entre evaluar el RQD en un sondeo, por metro o por secciones.

Figura 23. Se muestran las dos formas de medir al RQD, cada metro y por secciones de acuerdo al grado de fracturamiento. Modificada de Palmström, 2002.

El RQD es fácil y rápido de medir y por ello, es y ha sido utilizado universalmente como un parámetro importante para estimar la calidad del macizo rocoso; resulta útil cuando no se tienen afloramientos que puedan medirse directamente. Además, en los estudios preliminares, durante la exploración geológica, es indispensable, sin embargo, como ya se anticipó, su utilidad para conocer la densidad de discontinuidades de un macizo rocoso puede ser limitada. Para este fin, es posible utilizar los conceptos de volumen de bloque (Vb) y discontinuidades por metro cúbico, utilizados principalmente por Palmström y Hoek & Brown en sus clasificaciones.

La clasificación de Bieniawski en un principio no contemplaba la aplicación directa a casos particulares como túneles, taludes o presas, sino que era general (Bieniawski, 1973). Posteriormente introdujo un ajuste que tomó de la clasificación RSR de Wickham et al. (1972), (Tabla 1) quien propone como una característica escencial para conocer la calidad de un macizo rocoso, el rumbo y la inclinación de las familias de discontinuidades respecto a la dirección de la excavación (a favor y en contra), y le da por nombre JO (*joint orientarion-strike and dip*) y un valor según sea su repercución en la estabilidad de la excavación.

Sin embargo, lo anterior implica considerar al macizo rocoso como un medio en dos dimensiones, sin tomar en cuenta que esto puede no corresponder a la realidad, donde intervienen factores como la tridimensionalidad del medio, que implicaría una salida o no a cuñas, independientemente de su inclinación desfavorable. El tamaño de bloque (dado por el espaciamiento y continuidad de las juntas), la rugosidad de las paredes y el estado de esfuerzos son conceptos tridimensionales; por lo que, verlos bajo una proyección bidimensional puede implicar entenderlos de una manera incorrecta.

Lowson y Bieniawski (2013), reconocen que muchos problemas en la interpretación y aplicación de su clasificación se debe a su estandarización y al poco análisis del que es sujeta, dando por sentado que se trata de una tabla con valores absolutos, determinados y establecidos, que acaban siendo una "receta de cocina" que debe seguirse al pie de la letra, dejando de lado el análisis tridimensional del posible comportamiento del macizo rocoso, sin tomar en cuenta el grado de influencia que estos factores tienen.

Como se vio en el inciso 2.3.1, el RMR⁸⁹ de Bieniawski está basado en gráficas que deben ser usadas para obtener el valor correspondiente de la puntuación para cada factor, siendo que, los datos que se presentan en las tablas de esta clasificación, son promedios para ciertos intervalos.

2.4. NGI, índice Q de Barton et al., 1974

Está basado en la experiencia de excavación de 200 túneles y cavernas. Se define por 6 factores que caracterizan 3 propiedades del macizo rocoso: el número de discontinuidades y sus propiedades físicas, así como el estado de esfuerzos al que está sujeto el macizo rocoso.

Fue propuesta por Barton et al. 1974, fue desarrollada para ser usada especialmente en el diseño de sistemas de sostenimiento en túneles. Este índice combina, como ya se dijo, 6 parámetros para su evaluación:

- Rock Quality Designation (RQD)
- Número de familias de discontinuidades (*J_n*)
- Rugosidad de la discontinuidad más desfavorable (*J_r*)
- Alteración o relleno a lo largo de la discontinuidad más débil (*J*_a)
- Condición del flujo de agua (J_w)
- Condición de esfuerzos (SRF)

$$Q = \frac{RQD}{J_n} \times \frac{J_r}{J_a} \times \frac{J_w}{SRF}$$
(21)

El primer coeficiente $(\frac{\text{RQD}}{J_n})$, representa la estructura del macizo rocoso, es la medida del

bloque de roca o el tamaño de partícula y tiene dos valores extremos (100/0.5=200 y 10/20=0.5) que tienen una diferencia de 400 puntos entre sí. Si el valor de este coeficiente se interpreta en unidades de centímetros (Zhan, 2017).

El segundo coeficiente $(\frac{J_r}{J_a})$ representa la rugosidad y fricción entre las paredes o el relleno

de las discontinuidades. Este coeficiente se inclina a favor de la rugosidad: al contacto directo de discontinuidades inalteradas; lo anterior debido a que se espera que esta condición dé como resultado el máximo valor de resistencia posible y que esto ocasione mayor dilatancia cuando falle, siendo este mecanismo especialmente favorable para la estabilidad del túnel.

Cuando las discontinuidades están rellenas de minerales arcillosos, su resistencia disminuye significativamente, sin embargo, después de que éstas fallan y se desplazan para dar lugar a un contacto entre paredes, es posible que se preserve un factor de estabilidad en la excavación.

El tercer coeficiente $(\frac{J_w}{SRF})$ se refiere a los dos estados de esfuerzos que constituyen el índice Q, *SRF* es una medida de: (1) perdida de carga en el caso de que en una excavación se

presenten zonas de falla o capas de arcilla entre la roca; (2) carga de roca en macizos rocosos competentes y (3) cargas tipo *squeezing* en macizos rocosos competentes plásticos. Entonces, el *SRF* es el parámetro que puede ser considerado como representativo del total de los esfuerzos actuando en el macizo rocoso. Por su parte J_w es la medida de la presión del agua, que tiene un efecto adverso en la resistencia al corte de las discontinuidades, debido a que reduce el esfuerzo normal efectivo; además, el agua puede causar ablandamiento y lavado del relleno de las discontinuidades.

Kumar (2002), estima que hay 1260 casos donde se muestra la efectividad de este sistema para la estimación del sistema de soporte en túneles.

Algunas consideraciones que se le deben tener a este sistema, son las siguientes:

- En este sistema, el factor J_w es la condición del agua cuando ésta comienza a fluir en la excavación, causado por el lavado o disolución del relleno de las discontinuidades.
- El valor *J_r/J_a* es obtenido de la familia de discontinuidades más desfavorable para la excavación, específicamente la más desfavorable para la estabilidad de la clave del túnel.
- En esta clasificación geomecánica no es indispensable el uso de una orientación desfavorable respecto al eje del túnel como en el RMR, debido a que le da mayor importancia a la rugosidad y posible falla de las discontinuidades que pudieran provocar el deslizamiento de una cuña en la clave.
- Es utilizado por diversos autores para calcular la presión del soporte, tiempos de colocación, deformaciones, cohesión, ángulo de fricción y módulo de deformación.
- Su limitación está en el factor *SRF* que es difícil de estimar en campo, además de que no toma en cuenta la anisotropía del estado de esfuerzos en zonas específicas.

En la Tabla 12 se presenta la escala para la caracterización de los macizos rocosos de acuerdo a este índice.

Q	Calidad	Clases
400-1,000	Excepcionalmente buena	
100-400	Extremadamente buena	А
40-100	Muy buena	
10-40	Buena	В
4-10	Regular	С
1-4	Mala	D
0.1-1	Muy mala	Е
0.01-0.1	Extremadamente mala	F
00.01	Excepcionalmente mala	G

Tabla 12. Escala de calidad para el índice Q de Barton.

2.4.1. Uso del índice Q de Barton, para la evaluación de las necesidades de soporte en obras subterráneas.

El libro de mano para el uso del índice de Q, Barton (2013), muestra cómo utilizar su ábaco para la evaluación de las necesidades de soporte de un macizo rocoso en una excavación; para ello, además de utilizar el valor de Q del macizo, son necesarios dos factores adicionales, éstos son: un cierto coeficiente de seguridad requerido según la obra que se ejecute y la altura del frente de excavación o avance de la excavación.

El factor de seguridad está representado por el parámetro nombrado *ESR* (Excavation Support Ratio o relación del soporte de la excavación), éste es un valor a modo de coeficiente de seguridad que se le da a una obra, según el tipo que sea y cuan segura se requiere; v.gr., un túnel provisional en minería requiere un coeficiente de seguridad menor, a diferencia del que requiere una casa de máquinas de una central hidroeléctrica; el valor de *ESR* es menor cuando se requiere mayor seguridad en una obra y es mayor cuando se requiere menor seguridad. Además, se deben considerar los coeficientes de seguridad que demanda la normativa del país donde se encuentra la obra.

La relación entre estos dos factores (*ESR* y el ancho de la excavación) da como resultado la dimensión equivalente, qué, junto con el valor de Q, son utilizados por Barton (2013) para el diseño del sostenimiento en una excavación con el ábaco presentado en la Figura 25.

$$\frac{\text{Ancho de excavación}}{ESR} = \text{Dimensión equivalente}$$
(22)

Barton (2013), sugiere utilizar un *ESR* igual a 1, cuando se obtenga un valor de Q menor a 0.1, en excavaciones tipo B, C y D (Tabla 13 y Figura 25). Igualmente, en macizos rocosos con un valor de Q tan bajo, recomienda un sostenimiento RRS (Reinforced Rib + Sprayed Concrete o marcos reforzados con concreto lanzado), en el cual varía de grosor del concreto lanzado, según disminuya la calidad del macizo rocoso.

Barton incluye diferentes tipos de energía absorbida por el concreto lanzado reforzado con fibras, basándose en la expectativa de que el macizo rocoso tendrá cierto grado de deformación según su calidad geotécnica. Para ello, se basa en lo propuesto por EFNARC (*Experts for Specialised Construction and Concrete Systems*) citados en la publicación no. 7-2011, de la Asociación Noruega del Concreto. En la Tabla 14 se muestran los valores de E (Energía absorbida por el concreto lanzado reforzado con fibras) que Barton utiliza.

El ábaco de Barton se presenta en la Figura 25; en la parte superior están escritas la clase y calidad del macizo rocoso, en la parte inferior se encuentra, en escala logarítmica, el índice Q; en los extremos izquierdo y derecho del ábaco se encuentra la dimensión equivalente [ecuación (22)] y la longitud del ancla sólo para un *ESR* igual a 1. Con el valor del índice Q y la dimensión equivalente se obtienen un punto en el ábaco, por la intersección de dos líneas rectas. El punto que se obtiene se encontrará dentro el área de una categoría de sostenimiento (indicadas con un número en un círculo blanco). Según sea la categoría se utiliza la Tabla 15 para conocer el tipo de sostenimiento que se recomienda.

1. Clase Calidad del testigo RQD RQD %	c. Las descrpciones se refieren a caracterización a pequeña escala y escala intermedia	Notas:	b. Rocas competentes, problemas tensionales	qc/ol of	θ/qc SRF
A Calidad muy mala 0-25		Los valores expresados para los parámetros Jr y Ja se aplican a las familias de	de las rocas	> 200	0.01
B Calidad mala 25-50	H Zona que contiene minerales arcillosos con un espesor 1	discontinuidades que son menos favorables con relacion a la estabilidad, tanto por la	H Tensiones pequenas cerca de la superficie,	>200 >	0.01 2.5
C Calidad media 50-75	sufficiente para impedirei contacto de las caras de la	evaluarse mediante la expresión: $\sigma = \tan(J/Ja)$	I Tensión medias, condiciones tensionales	200.10 (01 1
D Calidad buena /5-90	Zana aranasa da arayas a triturada son un espesar		favorables	200-10 0	0.01- 1
r Candad excelence 90-100	L suficiente para impedir el contacto entre las dos	5. Factor de reducción por la reducción Presión J_W	K Tensiones elevadas estructura muy compacta	10-5	0.3 0.5
Notas:	caras de la discontinuidad	Clases por la presencia de agua Rg/cm2	Normalmente favorable para la estabilidad	. 10-5 (0.4
(incluvendo el 0), de toma un valor nominal de 10 para cacular	Notas:	A Excavaciones secas o pequeñas afluencias de agua <1 1	puede ser desfavorable para la estabilidad		0.1
el índice O.	i) Si el espacio de la familia principal de discontinuidades es superior a 3 m se debe	inferiores a 5 l/m, de forma localizada.	de los hastiales.		
ii) Los intervalos de 5 unidades para el ROD, es decir, 100, 95.	aumentar el indice <i>Jr</i> en una unidad	B Afluencia o presiones medias con lavado ocasional de los 1-1,5 0.7	L Lajamiento moderado de la roca después de	5-3	0.5- 5-50
90, etc. tienen suficiente precisión.	ii) En el caso de discontinuidades planas perfectamente lisas que presentan lineaciones	rellenos de las discontinuidades.	algunos minutos en rocas masivas.	(0.65
No. Familias de	y que èstas estèn orientadas según la dirección de resistencia minima, se puede utilizar	C Afluencia importante o presión alta en rocas competentes 2.5-10 0.5	M Lajamientos y estallidos de la roca después	3-2	0.6- 50-20
2. Clase Jn discontinuidades	el valor de $Jr = 0.5$	con discontinuidades sin rellenos.	de algunos minutos en rocas masivas		1
A Roca masiva sin facturas o con fisuras 0.5-1	4. Índice de alteración de las Ør	D Afluencia importante o presion alta, produciendose un 2.5-10 0.33	N Estallidos violentos de roca (deformación	<2	<1 200-4
escasas	Clase discontinuidades aprox Ja	lavado considerable de los relienos de las discontinuidades.	explosiva) y deformaciones dinámicas		
B Una familia de discontinuidades 2	a Contacto entre los planos de la discontinuidad (sin minerales de relleno intermedio)	E Afluencia excepcionalmente alta o presion elevada en el >10 0.2	inmediatas en rocas masivas.		
C Una familia y algunas fracturas aleatorias 3	a. Contacto cinte los planos de la discontinuidad (sin initiciales de feneno intermedio)	momento de realizar voladuras, decreciendo con el tiempo. 0.1	Notas:		
D Dos familias de discontinuidades 4	A Discontinuidad cerrada, dura, sin reblandecimiento, 0.8	F Afluencia excepcionalmente alta o presion elevada de >10 0.1	i) Si se comprueba la existencia de campos tensionales fu	uertemente a	nisotrópicos:
E Dos familias y algunas fracturas 6	Impermeable, cuarzo	caracter persistente, sin disminución apreciable. 0.05	cuando 5< σ 1/ σ 3<10, reduce qc a 0.75qc; cuando σ 1/ σ 3>1	0, reduce qc	: a 0.5qc.
aleatorias	B Planos de discontinuidad inalterados, superficies 25-35 1	Notas:	ii) qc es la resistencia a la compresión simple de la roca, o	σl y σ3 son l	os esfuerzos
F Tres familias de discontinuidades 9	Igeramente manchadas	1) Los valores de las clases C, D, E y F son meramente estimativos. Si se instalan	tangenciales mayor y menor, y $\sigma\theta$ es la tensión tangencial	l máxima (es	stimada a partir
G Tres familias y algunas discontnuidades 12	C Planos de discontinuidad ligeramente alterados. 25-30 2	ii) No se han considerado los problemas especiales derivados de la formación de hielo	de la teoria de la elasticidad)	a del strad a	
aleatorias	Presentan minerales no reblandecidos, particulas	n) No se nan considerado los problemas especiales derivados de la formación de meio	ni) En aquellos casos en los que la prorundidad de la clav	e dei tunei e	s menor que la
H Cuatro o o más familias, fracturas 15	D Begubrimiento de greilles limeges e areneges	6. Condicionales tensionales de la roca SRF	unidades (véase clase H)	a factor SICI	, entre 2.5 a 5
aleatorias, roca muy fracturada, roca	D Recubinmento de arcilla no blando	a. Las zonas débiles intersectan a la excavación nudiendo producirse			
en terrones	E Recubrimiento de arcillas blandas o de baja fricción o 16	desprendimientos de roca a medida que la excavación del túnel va avanzando	c. Rocas deformables: flujo plástico de la roca	of	θ∕qc SRF
J Roca triturada terrosa 20	es decir, caolinita o mica. También clorita, talco.	A Múltiples zonas débiles contenido de arcilla o roca desintegrada 10	incompetente sometida a altas presiones litostáticas		
Notas:	veso grafito etc. y pequeñas cantidades de arcillas	químicamente, roca muy suelta (cualquier profundidad)	O Presión de deformación suave	1	-5 5-1
i) En intersecciones de túneles se utiliza la expresión $(3, Jn)$.	expansivas	B Zonas débiles aisladas contenido arcilla o roca desintegrada 5	P Presión de deformación intensa		>5 10 - 3
ii) En las bocas de los túneles, se utiliza la expresión (2, Jn)	expansivas.	guímicamente (profundidad de la excavación <50 m)	Notae		10 2
fadha da maaddad da ba	h Contacto antra los planos de la discontinuidad ante un desplazamiento cortante	C Zonas débiles aisladas, conteniendo arcilla o roca desintegrada 2.5	iv) Los fenómenos de deformación o fluencia de rocas su	uelen ocurrir	a profundidad
3. Clase discontinuidador Jr	inferior a 10 cm (minerales de relleno en pequeños espesores)	químicamente (profunidad de la excavación >50m)	$H>3500^{1/3}$ (Singh & Goel, 2006). La resistencia a la con	npresión sim	ple del macizo
discontinuidades	interior à ro em (innerates de reneno en pequenos espesores)	D Múltiples zonas de fracturas en roca competente (libre de arcillas) 7.5	rocoso, puede estimarse mediante la expresión: gcmass=77	$\gamma(Q)^{1/3}$; dor	$de \gamma$, es la
a Contactos entre las caras de la discontinuidad.	F Partículas arenosas, roca desintegrada libre de 25-30 4	roca de contorno suelta (a cualquier profunidad)	densidad de la roca en t/m3, y qcmass es la resistencia a l	la compresió	n del macizo
desplazamiento cortante inferior a 10 cm	arcillas, etc.	E Zonas de fractura aisladas en roca competente (libre de arcillas), 5	rocoso		
A Fractures discontinues	G Fuertemente sobreconsolidadas con rellenos de 16-24 6	(profundidad de la excavación <50m)	d. Rocas expansivas: actividad expansiva química der	pendiendo	CDE
A Fracturas unscontinuas A Fracturas onduladas rugosas o irregulares 2	minerales arcillosos no blandos (continuos, pero	F Zonas de fractura aisladas en roca competente (libre de arcillas), 2.5	de la presencia de agua	,	SRF
C Fracturas onduladas - lugosas o integuiares 3	de espesores inferiores a 5 mm)	(profunidad de la excavación >50 m)	R Presión de expansión suave		5 - 10
D Fracturas onduladas enfectamente lisas 15	H Sobreconsolidación media a baja, con reblandecimiento, 12-16 8	G Terreno suelto, discontinuidades abiertas fuertemente fracturado 5	S Presión de expansión intensa		10 - 14
E Fracturas planas rugosas o irregulares 1.5	relienos de minerales arciliosos (continuos, pero con	en terrones, etc. (a cualquier profundidad)	· · · · · · · · · · · · · · · · · · ·		
E Fracturas planas, lugosas o megunares 1.5	espesores interiores a 5 mm)	,			
G Fracturas planas, perfectamente lisas 0.5	1 Referios de archias expansivas, es decir, monunormonital 6-12 8-12				
Vista	de la depende del persenteie de pertículos con temoño				
Notas:	similaras da las araillas expansivas				
1) Las descripciones se reneren a caracterizaciones a	sininares de las arcinas expansivas.				
pequena escala y escala interineuta	D No se produce contacto entre los planos de la discontinuidad ante un desplazamiento contente (rollence de minereles de oran concerci)				
	contante (retienos de minerales de gran espesor)				
	K Zonas o bandas de roca desintegrada o triturada y arcillas 6-24 6, 8				
	L (ver clases G, H y I para la descripción de las condiciones o				
	M de las arcillas) 8 - 12				
	N Zonas o bandas de arcilla limosas o arenosas con pequeñas 5				
	fracciones de arcilla no reblandecidas				
	O Zonas o bandas continuas de arcilla con espesor grueso 6.24.10.13 o				

13-20

P, R (ver clases G, H y J, para la descripción de las arcillas)

Figura 24. Valores y características de los parámetros que constituyen al índice Q de Barton. Tomado de Barton, 2013.

5 - 10

10 - 20

SRF 5 - 10 10 - 15

2.5

0.5 - 2

5-50

50-200

200-400

Tij	po de excavación	ESR
А	Excavaciones mineras temporales	3 a 5
В	Excavaciones verticales*: i) Sección circular; ii) Sección rectangular/cuadrada Dependiendo el propósito podría disminuir el valor de <i>ESR</i>	2.5 2.0
С	Excavaciones mineras permanentes, túneles hídricos de plantas hidroeléctricas (excluyendo para compuertas de alta presión), túneles para suministro de agua, túneles piloto, túneles de desvío, túneles excavados en fases (media sección superior, fases laterales y galerías).	1.6
D	Túneles carreteros o ferroviarios menores, túneles para el transporte de agua a grandes presiones, túneles de acceso, túneles de aguas residuales.	1.3
E	Casa de máquinas, depósitos subterráneos, plantas de tratamiento de agua, túneles carreteros o ferroviarios mayores, bóvedas para defensa civil, portales, intersecciones.	1.0
F	Estaciones subterráneas de energía nuclear, estaciones de tren o metro, fábricas, instalaciones subterráneas deportivas o públicas.	0.8
G	Cavernas o excavaciones subterráneas muy importantes, que se espera un largo tiempo de vida (100 años) o sin acceso para mantenimiento.	0.5

Tabla 13. Tipos de excavaciones junto con ejemplos según su necesidad de seguridad. Tomada de Barton, 2013.

Clase según la energía absorbida	Energía absorbida mínima en Joule
E500	500
E700	700
E1000	1000

Tabla 14. Clases	de concreto lanzad	o según su energí	a absorbida.	Tomada de Barton,	2013

Ahora bien, sí se obtiene una categoría 6, 7 u 8, Barton recomienda un sostenimiento RRS, que puede encontrarse a la derecha del ábaco de Barton, en la Figura 25, donde se dan diferentes opciones para su uso; según el avance que se tenga, el diámetro de la varilla que componga al marco varía.

Con la información anterior es posible proponer el sostenimiento necesario para un tramo de túnel excavado. A continuación, se da un ejemplo con valores tomados del ejemplo real de esta tesis.

Para una roca de calidad extremadamente mala con un índice Q de 0.04, un avance de 3 metros y un ESR de 1, se tienen los siguientes valores: Dimensión equivalente = 3; calidad: F (extremadamente mala); área número 6, concreto lanzado reforzado con fibras con 12 a 15 cm de espesor y anclas (**Sfr E700 +B**) + marcos metálicos reforzados con concreto lanzado y anclas, **Sfr (E700) + RRS I +B** Longitud del ancla: 2.4 metros; espaciado entre anclas: 1.7 a 2.1 m

	Categorías de sostenimientos				
1	Sin sostenimiento o anclas puntuales				
2	Anclas puntuales (SB)				
3	Anclaje sistemático con concreto lanzado reforzado con fibras con 5 a 6 cm de espesor (B+Sfr)				
4	Concreto lanzado reforzado con fibras con 6 a 9 cm de espesor y anclas (Sfr E500 +B)				
5	Concreto lanzado reforzado con fibras con 9 a 12 cm de espesor y anclas (Sfr E700 +B)				
6	Concreto lanzado reforzado con fibras con 12 a 15 cm de espesor y anclas (Sfr E700 +B) + marcos				
	reforzados con concreto lanzado y anclas, Sfr (E700) + RRS I +B				
7	Concreto lanzado reforzado con fibras con espesor >15 cm + marcos reforzados con concreto				
	lanzado y anclas, Sfr (E1000) + RRS II +B				
8	Concreto armado, CCA o Sfr (E1000) + RRS III+B				
9	Evaluación especial				
El	El espaciamiento entre anclas está basado para un 20mm				
E	E = Energía absorbida por el concreto lanzado reforzado con fibras				
ES	<i>ESR</i> = Relación del soporte de la excavación				
Áı	eas con línea punteada no se tienen datos empíricos para evaluarlos				

Tabla 15. Categorías de sostenimientos según la dimensión equivalente de la excavación y su índiceQ. Tomada de Barton, 2013.

Figura 25. Ábaco de Barton para obtener las necesidades de sostenimiento en una0 excavación. Tomado de Barton, 2013.

Figura 26. Esquema que muestra el sostenimiento mencionado por Barton en la Tabla 15. Tomado de Barton, 2013.

2.4.2. Implicaciones en el uso de la clasificación geomecánica índice Q, Barton et al. 1974

El índice Q de Barton es más que una simple clasificación, ya que permite conocer el estado geomecánico general del macizo rocoso. Es también un sistema que facilita la obtención de datos concretos para cálculo en modelos matemáticos; no es un sistema o índice que pueda calcularse directamente en campo, debido a que necesita de operaciones y datos que implican un poco más de tiempo.

El uso del RQD es ambiguo, sin embargo, cuando se ocupa en un proyecto donde aún no se conoce el frente resulta útil. Estimar el valor del RQD directamente del frente de excavación implica decidir la dirección y ubicación "imaginaria" de un barreno; utilizarlo como el único método de evaluación de un macizo rocoso, puede arrojar un valor que no representa la condición real de éste.

Barton correlaciona al RQD con el parámetro *Jn*, dando como resultado de esta división, valores que oscilan de 0.25 hasta 200, que corresponden a los valores extremos del factor RQD/Jn, cuando el RQD=5 y Jn=20 (roca triturada) y cuando el RQD=100 y Jn=0.5 (roca masiva), respectivamente, valores que, según el autor, corresponden al tamaño de los bloques, es decir, bloques que van de 0.5 cm a 200 cm, un rango bastante razonable, que abarca una importante variedad de condiciones de fracturamiento en macizos rocosos.

Es posible utilizar un valor promedio del RQD y más recomendable dividir el frente en zonas con distintos grados de fracturamiento, evaluando las zonas de mayor vulnerabilidad, que puedan impactar de manera más desfavorable a la excavación y de esta forma ajustarse mejor a la realidad.

El factor más importante y que diferencia a esta clasificación de las demás es el que se obtiene al relacionar el factor SRF y el Jw, dos parámetros que se refieren al estado de esfuerzos que afecta al macizo rocoso. Sin embargo, la estimación del SRF, trae consigo algunas implicaciones, como el costo de pruebas in situ representativas y su estimación por medio de análisis numéricos o analíticos. Ahora bien, correlacionar ambos parámetros implica un reto (Zhang, 2017), suponiendo que ambos son proporcionales y que SRF afecta a Jw.

El parámetro *Jw* puede afectar la resistencia al corte asignado a las discontinuidades con relleno, reduciendo el esfuerzo normal efectivo y aumentando la presión de poro. Sin embargo, el agua también puede lavar el relleno y provocar el contacto entre las caras, lo que supondría un factor positivo a la estabilidad.

Se ha demostrado que es imposible combinar estos dos parámetros en términos de esfuerzo efectivo entre bloques porque, paradójicamente, un valor alto de esfuerzo normal efectivo, a veces, puede significar condiciones menos estables que un valor bajo, a pesar de la mayor resistencia al corte (Zhang, 2017).

Combinar dos parámetros con tantas implicaciones detrás, es complicado y puede omitir factores que pueden beneficiar o no a la excavación, además existen casos particulares en los que ambos no son compatibles, tanto que puede dar un resultado erróneo, que no refleja la realidad (Zhang, 2017).

Sin embargo, el cociente SRF/Jw da una idea general del estado de esfuerzos que afecta al macizo rocoso y, por lo tanto, del posible comportamiento del mismo, resultando en una imagen cognitiva de cómo estos factores afectan a las demás características del macizo rocoso, siendo todos parte de un sistema que funciona en conjunto.

2.5. Rock Mass Index, RMI (Palmström, 2000)

En Palmström (2005), se caracteriza el macizo rocoso y su resistencia como un "material de construcción", tomando en cuenta la resistencia de la roca intacta y un índice de reducción que está dado por 4 propiedades de las discontinuidades.

$$\mathbf{RMi} = q_c \cdot Jp \tag{23}$$

donde; q_c es la resistencia a la compresión simple de la roca intacta y J_p es el parámetro que contiene las características de las discontinuidades.

La ecuación (23) lleva implícitos otros parámetros como el volumen o densidad de bloques (V_b) , la rugosidad de las discontinuidades, (jR), la alteración de las discontinuidades (jA) y la longitud o continuidad de las discontinuidades (jL). De estas variables se hablará más adelante.

 J_p adquiere valores de 0 a 1 y representa el efecto reductor de resistencia que provocan las discontinuidades.

Palmström incluye en su criterio la resistencia de la roca intacta debido a la importancia que ésta tiene en ciertas circunstancias, sobre todo, cuando influye en el comportamiento global

del macizo rocoso. La resistencia de la roca intacta y las propiedades mecánicas de las discontinuidades son consecuencia de la petrografía que las constituye; de acuerdo con el autor, esta información, por ende, debe ser manejada con la debida importancia, ya que con ella es posible inferir la formación de discontinuidades y las alteraciones que éstas pudieran contener.

El RMi puede ser utilizado, entre otros fines, para estimar la resistencia del macizo rocoso y su deformabilidad; esto se logra, como se verá más adelante, relacionando la resistencia a la compresión de la roca intacta (q_c) con el parámetro J_p , que a la vez está relacionado con el volumen del bloque (V_b), con la resistencia al corte (jC, a partir de jR y jA) y con el tamaño de las discontinuidades (jL).

El índice RMi de Palmström utiliza varios de los parámetros comunes a las clasificaciones de Barton y Bieniawski para caracterizar a las discontinuidades como son la rugosidad, relleno y alteración de las paredes, su espesor o apertura y su tamaño o longitud. Existen similitudes entre las clasificaciones de estos tres autores y por ende es posible, en cierta medida, relacionar sus parámetros, un ejemplo de esto es el parámetro de la rugosidad, que según la escala con la que se mide, se divide en suavidad (o rugosidad) y ondulación; estos son conceptualmente iguales entre el RMi y el índice Q, mientras que el RMR sólo toma en cuenta la escala menor de la rugosidad, es decir, la suavidad de la discontinuidad.

La alteración en la discontinuidad es definida por Palmström y Barton de la misma manera, considerando si tiene o no relleno, mientras que Bieniawski lo define como meteorizado o sin relleno. En el caso de la apertura de la discontinuidad, el sistema RMR lo incluye en su clasificación, mientras que el RMi lo incluye parcialmente en un parámetro complementario llamado "Interlocking of structure (trabazón entre discontinuidades, Palmström, 2005)", que también es parcialmente descrito y utilizado en la clasificación GSI, Cai et al. 2004.

La persistencia y longitud de la discontinuidad son parámetros utilizados en el RMR y el RMi, pero no en el índice Q. El RMi utiliza la persistencia en el parámetro "continuidad de la junta" que describe la longitud de las juntas en el macizo rocoso y lo combina con el espaciamiento y la profundidad de la discontinuidad, para conocer el volumen del bloque y la forma que éste tiene.

Como se mencionó anteriormente, Palmström (1995), plantea la idea de caracterizar al macizo rocoso como un material de construcción, esto tomando en cuenta la resistencia a la compresión simple de la matriz rocosa, reduciendo sus propiedades mecánicas por la acción de las discontinuidades que lo afectan; dicho concepto parte de la idea de que un macizo rocoso sin ningún tipo de discontinuidad o en el que éstas tengan un espaciamiento amplio, tiene el mismo módulo de deformación y resistencia que su roca matriz (lo cual es contradicho por otros autores, como se verá más adelante). La escala y los términos de la clasificación del RMi se resumen en la Tabla 16.

El concepto de Palmström es una relación de escalas, pretende estimar el comportamiento mecánico de un macizo rocoso (escala mayor), a partir de la resistencia a la compresión simple de una probeta de roca matriz (escala menor), afectada por las discontinuidades que lo conforman; esto implica que para aplicar el concepto de Palmström y aproximarse a la deformabilidad del macizo rocoso, según el valor de RMi, debe existir una relación entre la resistencia de la roca matriz y las características de las discontinuidades.

Clasificación	Relativo a la resistencia del macizo rocoso	Valor del RMi		
Extremadamente bajo	Extremadamente débil	< 0.001		
Muy bajo	Muy débil	0.001 - 0.01		
Bajo	Débil	0.01 - 0.1		
Moderado	Medio	0.1 – 1		
Alto	Fuerte	1 – 10		
Muy alto	Muy fuerte	10 - 100		
Extremadamente alto	Extremadamente fuerte	>100		

Tabla 16. Escala y clasificación del índice RMi. A partir de Palmström (2001).

Asimismo, Palmström (2005), relaciona el tamaño y forma de los bloques que se forman en la roca (V_b) y el parámetro que caracteriza e influye en su movimiento y que tiene que ver con la rugosidad (jR), la alteración y el tamaño de las discontinuidades (jC); esto para asignar un valor al parámetro J_p , siendo este el parámetro que afecta directamente a la resistencia a la compresión simple de la roca matriz [ecuación (23)].

Pequeña esca de	la. Suavidad do la discontinuid	e la superficie ad.	Gran escala. Ondulación del plano de la discontinuidad.					
	Plano	Росо	Ondulado	Muy	Escalonado			
Muy rugoso	2	3	4	6	6			
Rugoso	1.5	2	3	4.5	6			
Suave	1	1.5	2	3	4			
Pulida o resbaladiza	0.5	1	1.5	2	3			
Para discontinuidades rellenas: $jR = 6$; para discontinuidades irregulares $jR = 6$ es recomendado								

Tabla 17. Valores de jR según la suavidad y ondulación de la discontinuidad. Tomada de Palmström(1996).

El uso del sistema RMi de Palmström tiene como ventaja principal la facilidad en la toma de datos, además de que es útil cuando la información es escasa ya que requiere de poca información para estimar la calidad del macizo rocoso; su uso es conveniente cuando se necesita comparar la condición geomecánica de un mismo material en diferentes puntos del área de estudio. El uso del RMi es práctico debido a que su evaluación es rápida y el manejo de información es sistemático. Una posible limitación radica en el número reducido de parámetros que toma en cuenta ya que al despreciar otros de importancia que pueden afectar la resistencia del macizo rocoso lo hace muy conservador (Singh & Goel, 2011).

		jL							
Longitud de la discontinuidad	Término	Тіро	Fracturas continuas	Fracturas discontinuas**					
<0.5	Muy corta	Estratificación/foliación	3	6					
0.1 - 1.0	Corta/Pequeña	Discontinuidad	2	4					
1 - 10	Mediana	Discontinuidad	1	2					
10-30	Larga/Corta	Discontinuidad	0.75	1.5					
> 30 Muy larga/Muy grande		Discontinuidad rellena, cementada o no cementada*	0.5	1					
* Con frecuencia es tratado de manera separada									
**Fracturas discontinuas que terminan dentro del macizo rocoso masivo.									

Tabla 18. Factor de longitud y continuidad de la discontinuidad (*jL*). Tomada de Palmström, 1996.

El parámetro jC es relativamente fácil de obtener con observaciones de campo, mientras que Vb es calculado según Palmström (2005), con la siguiente ecuación:

$$Vb = \beta (Jv)^{-3} \tag{24}$$

donde; Jv es el conteo volumétrico de discontinuidades, que toma su valor de factores que caracterizan la densidad de discontinuidades en un volumen de macizo rocoso representativo; estos pueden ser medidos en la superficie (espaciamiento entre discontinuidades, mediciones de frecuencia 2D y mediciones con refracción sísmica), medidos en superficie o en sondeos (densidad promedio de discontinuidades) y medidos únicamente con sondeos (mediciones de frecuencia 1D y RQD); por su parte β es el factor de forma del bloque y su valor varía según la forma que tienen:

- Para formas equidimensionales (cúbico o compacto) β =27
- Para formas ligeramente alargadas (prismáticas) y ligeramente planas (tabular) β =28-32
- Para formas moderadamente alargadas y moderadamente planas β =33–59
- Para formas alargadas y planas β =60–200
- Para formas muy alargadas y muy planas β >200

También es posible calcular el valor de β con la ecuación:

$$\beta = 20 + \frac{7a3}{a1} \tag{25}$$

donde; a3 y a1 son el largo y ancho del bloque. El valor más común de β es 36 (Palmström, 2005).

A. Contacto entre las superficies de la pared de la roca										
Termino	jA									
Discontinuidad limpia										
Discontinuidades soladas	Ablandamiento, relleno i	Ablandamiento, relleno impermeable (cuarzo, epidota, etc.).								
Paredes frescas	Sin capas o relleno, sól	o machas de material inorgáni orgánico.	co u	1						
Alteración de la pared de la roca										
i. 1 grado más alterado La superficie de la discontinuidad exhibe una clase de alteración más que la roca intacta 2										
ii. 2 grados más alterado	La discontinuidad exhibe r	e dos clases de alteración más o oca intacta.	que la	4						
Capa o relleno angosto										
Arena, limo, calcita, etc.	Capas de mater	3								
Arcilla, clorita, talco, etc.	Capas de mine	4								
B. Discontinui	B. Discontinuidades rellenas con contacto parcial o sin contacto en las superficies de la pared de la roca									
Tipo de material de relleno	Descripción	Contacto parcial entre paredes (Relleno angosto <5mm*)	Sin c	Sin contacto entre paredes (Relleno ancho)						
Arena, limo, calcita, etc. (no reblandecidos)	Capas de material friccionante sin arcillas	4		8						
Materiales arcillosos compactos	Relleno "duro" de material blando o cohesivo	6		6 - 10						
Materiales arcillosos blandos	Consolidación media o baja del material	8	12							
Materiales arcillosos expansivos	El material de relleno exhibe propiedades expansivas	8-12		13 - 20						
*Basado en el apartado sobre la apertura de las discontinuidades del sistema RMR (Bieniawski, 1973)										

Tabla 19. Caracterización y valor del factor de alteración de la discontinuidad (jA). T	lomada de
Palmström, 1996.	

2.5.1. Determinación del volumen de bloque

Son 3 los métodos para calcular el volumen del bloque V_b , que se utilizaron en este trabajo: (1) la medición manual de cada bloque (en este trabajo se midieron 10 bloques y se sacó un promedio para conocer el volumen promedio de bloque); (2) mediante la ecuación (26), propuesta por Palmström (2001) y que relaciona el espaciamiento de las familias principales y el ángulo que

forman entre éstas, y (3) mediante el cálculo del factor Jv y que utiliza una relación entre el espaciamiento de las familias principales y el número de familias [ecuación (27)].

$$V_b = S1 \times S2 \times S3 \times (\text{Sen}\gamma_1 \times \text{Sen}\gamma_2 \times \text{Sen}\gamma_3)$$
(26)

donde; *S1*, *S2* y *S3* son el espaciamiento de cada familia de discontinuidades principales y $\gamma 1$, $\gamma 2$ y $\gamma 3$ son los ángulos que forman entre ellas, el cual es posible medir mediante una red de Wulf o un programa como *Stereo Net*.

$$Jv = \frac{1}{S1} + \frac{1}{S2} + \frac{1}{S3} + \dots + \frac{Nr}{5}$$
(27)

donde; *S1, S2* y *S3* son el espaciamiento de cada familia de discontinuidades principales y *Nr* es el número de familias de discontinuidades aleatorias, qué, además de las familias principales, afectan al macizo rocoso.

Como se verá más adelante es posible apoyarse de instrumentos como el ShapeMetriX3D, para calcular el espaciamiento de las distintas familias de discontinuidades y medir el largo, alto y ancho de los bloques sin necesidad de acercarse al frente de excavación.

Para fines didácticos, a continuación, se explican los métodos que se utilizaron, con ejemplos y fotografías de afloramientos, donde son fácilmente observables y medibles parámetros como espaciamientos y medidas de bloques.

En la Figura 27 se ejemplifica, el primer método para conocer el valor promedio del volumen del bloque, medirlo directamente en el frente; esto implica acercarse y permanecer demasiado tiempo en él, con el riesgo correspondiente y las molestias causadas al personal a cargo de los procesos de excavación, rezaga y sostenimiento.

Figura 27. Medición del ancho, alto y fondo de bloque manualmente.

En el anterior ejemplo un bloque indicado con las etiquetas F1, F2 y F3, es medido con una cinta métrica, dando como resultado, un bloque de 0.7 m de largo, 0.1 m de ancho y 0.5 m de alto, dando como resultado un bloque de 0.035 m³; para obtener un mejor resultado se tiene que medir un buen número de bloques y obtener su promedio.

Figura 28. Estereograma obtenido del software Stereonet, donde se calculó el ángulo entre los polos de cada plano correspondientes a las 3 familias de discontinuidades principales.

El segundo método consiste en obtener el volumen del bloque, mediante la ecuación (26), para esto es necesario obtener el espaciamiento promedio de las 3 familias de discontinuidades principales en una zona representativa del macizo rocoso (Figura 29); para ello puede utilizarse una cinta métrica o apoyarse en una herramienta como el ShapeMetriX3D, que calcula el espaciamiento promedio de cada familia, con una imagen tridimensional del frente (más adelante se explicará con mayor detalle su funcionamiento); posteriormente se obtiene el valor del rumbo y echado promedio de las 3 familias principales y se dibujan en una red estereográfica de Wulf, para obtener el polo de cada uno (el polo es la proyección de una línea perpendicular al plano, que es un punto en la red de Wulf), y con éstos, calcular el ángulo que forman entre ellos (este ángulo se mide directamente de la red de Wulf, al colocar dos polos sobre un círculo mayor de la red). Siendo el seno de estos ángulos (γn), los que se utilizan en la ecuación (26). Para este proceso, es posible utilizar programas computacionales que utilizan proyecciones estereográficas para calcular planos, polos y ángulos, como Stereonet que fue el programa utilizado en este trabajo (Figura 28).

El tercer método consiste en calcular el volumen de bloque mediante la ecuación (24), que utiliza los parámetros Jv y el factor β , ambos se pueden calcular mediante las ecuaciones (27) y

(25), respectivamente. Como ejemplo se toman las Figura 27 y Figura 29, de las cuales pueden obtenerse los siguientes datos: de la primera se obtiene, con bloques con un largo (a3) de 0.7 m y un ancho (a1) de 0.1 m, un valor de $\beta = 69$, que corresponden a bloques alargados y planos; de la segunda se obtiene, con valores de espaciamiento (*S1, S2 y S3*) de 0.8 m, 0.6 m y 0.8 m respectivamente, un valor de Jv=4.16. Finalmente, el volumen promedio de los bloques es 0.95 m³.

Figura 29. Esquema de la medición del espaciamiento para cada familia de discontinuidades.

Figura 30. Pared de un macizo rocoso fracturado, con 3 familias de discontinuidades principales; como referencia, una cinta métrica de 1 m. Se ejemplifica el proceso para obtener el espaciamiento y continuidad de las discontinuidades de cada familia, midiendo cada discontinuidad,

categorizándolas para cada familia y calculando el promedio para cada una; mientras que, para obtener el espaciamiento se traza una línea lo más perpendicular posible entre las discontinuidades y se mide la distancia entre ellas.

En este sentido, para la F1, en color azul, su continuidad promedio es de 0.71 m y su espaciamiento promedio es 0.2 m; mientras que, para la F2, en color verde, se obtiene una continuidad promedio de 1.06 m y su espaciamiento promedio es de 0.21 m; y finalmente para la F3, de color rojo, se obtiene una continuidad promedio de 1.04 m y su espaciamiento promedio es de 0.17 m.

El factor *jC* se relaciona con los parámetros *jL*, *jR* y *jA* de la siguiente manera (Palmström, 2005):

Figura 31. Formas tipo de bloques de roca según Palmström (2001).

Los factores *jL*, *jR* y *jA* son, como se mencionó, medidos en campo y valorados según la Tabla 17, la Tabla 18 y la Tabla 19, respectivamente. Una vez estimados los parámetros Vb y *jC*, es posible calcular el valor de *Jp* con la siguiente ecuación (**Palmström, 2005**):

$$Jp = 0.2(jC)^{0.5} \cdot (Vb)^{D}$$
(29)

donde Vb está en m³ y $D = 0.37 \cdot jC^{-0.2}$.

La forma en que los factores Vb y jC se relacionan es mediante la gráfica de la Figura 32, dando como resultado el valor del parámetro de las discontinuidades (Jp).

Figura 32. Gráfica para obtener el parámetro de las discontinuidades (*JP*) en función de los factores volumen del bloque (*Vb*) y la condición de las discontinuidades (*jC*). A partir de Palmström, 1995.

Además, existen relaciones empíricas entre valores establecidos de *jC* y *D*, que Palmström muestra y se obtienen de la Tabla 20; también propone simplificaciones de la ecuación (29), para valores de *jC* que tengan un intervalo de 1 a 2, dando como resultado que la ecuación (29) fluctúe entre $Jp = 0.2Vb^{0.37}$ y $Jp = 0.28Vb^{0.32}$. Por ejemplo:

para jC= 1.75 la ecuación (29) se simplifica a:

$$Jp = 0.28Vb^{0.32} \tag{30}$$

y para jC = 1.0, quedaría:

$$Jp = 0.2 \left(Vb\right)^{0.37} \tag{31}$$

Lo anterior sirve para obtener el valor de RMi de la gráfica de la Figura 33, que es una simplificación del proceso para calcular el RMi, ya que, teniendo el volumen de la roca y la resistencia a la compresión simple de la matriz, siempre y cuando se encuentre jC dentro del rango de 1 a 2, se puede calcular el RMi fácilmente.

jC	0.1	0.25	0.5	0.75	1	2	2.5	3	4	6	9	12	16	20
D	0.586	0.488	0.425	0.392	0.37	0.341	0.322	0.308	0.28	0.259	0.238	0.225	0.213	0.203

Tabla 20. Relaciones entre valores de jC y D.

Figura 33. Gráfica para obtener el valor de RMi para valores "comunes" de *jC* en un rango de 1 − 2. Tomado de Palmström, 1995.

2.5.2. Efecto de escala

Barton (1990), con base en información presentada por Hoek y Brown (1980) y Wagner (1987), sugiere la relación de resistencia a la compresión q_c entre una probeta de 50 mm de diámetro y otra de diferente tamaño con la siguiente ecuación:

$$q_{c} = q_{co} (50/d)^{0.2} = q_{co} (0.05/\text{Db})^{0.2} = q_{co} \cdot f$$
(32)

donde q_{co} es la resistencia a la compresión de una probeta de 50 mm de diámetro, Db es el diámetro del bloque medido en metros y d es el diámetro de una probeta cualquiera (medido en milímetros). Por lo tanto:

$$f = \left(\frac{0.05}{Db}\right)^{0.2} \tag{33}$$

que es el factor de escala y, puesto que ambas son proporción de volumen o tamaño, puede aproximarse a Vp (de Palmström, 2005) de la siguiente manera (Singh & Goel, 2011):

$$Db = \left(Vp\right)^{0.33} \tag{34}$$

En la Figura 34 se muestra un diagrama de flujo que muestra de manera gráfica, los parámetros que se utilizan para obtener el valor del RMi de un macizo rocoso. En la primera etapa,

los parámetros rugosidad de las discontinuidades (*jR*), la alteración de las discontinuidades (*jA*) y la longitud o continuidad de las discontinuidades (*jL*), se combinan para obtener el factor de condición de las discontinuidades (*jC*) [ecuación (28)] y los parámetros Jv (densidad de las discontinuidades) y la forma del bloque (β) para obtener el volumen del bloque [Vb, consultar la ecuación (24)]; estos dos al utilizar la gráfica de la Figura 32 dan como resultado el parámetro de las discontinuidades (Jp); y finalmente al multiplicar Jp por la resistencia a la compresión simple de la roca matriz (qc), se obtiene el valor del RMi.

Figura 34. Combinación de parámetros utilizados en el RMi. A partir de Palmström, 1996.

2.5.3. Implicaciones en el uso de la clasificación geomecánica Rock Mass Index, (Palmström, 2000)

Un concepto importante en la clasificación propuesta por Palmström (RMi) es el volumen de los bloques de roca; para el autor, la resistencia del macizo rocoso está relacionada con la resistencia de la matriz rocosa, y cómo ésta, es afectada por las discontinuidades, esto implica que, en teoría, la resistencia de un macizo rocoso masivo es casi la misma que la de su roca matriz y mientras más fracturado se encuentre el macizo rocoso menor será su resistencia, respecto a la resistencia de la roca matriz; por lo que, el tamaño y la forma de los bloques que forman al macizo rocoso, rigen su comportamiento mecánico ante una excavación. Sin embargo, este parámetro es difícil de medir en campo; debido a la heterogeneidad del terreno, es imposible encontrar un macizo rocoso formado por bloques del mismo tamaño y con la misma forma, por lo que, para obtener el mayor número de datos razonables, en este trabajo se utilizaron las fórmulas tomadas de Palmström (2001): (24), (25), (26) y (27).

El espaciamiento y el número de familias pueden calcularse rápidamente con ShapeMetriX3D, obteniendo gran número de datos de manera práctica y segura; con esto se obtiene un promedio del volumen de los bloques que lo forman y se compara el resultado de ambas ecuaciones con el resultado promedio de lo obtenido en campo directamente, utilizando el que mejor se ajusta a la realidad.

El concepto de volumen propuesto por Palmström ayuda a comprender el posible comportamiento del macizo rocoso; asimismo, contribuye a la compresión cognitiva al representar al macizo rocoso como un conjunto de bloques que interactúan entre sí a través de sus discontinuidades y la manera en que éstos interactúan geométricamente. Es decir, la forma y volumen de los bloques pueden indicar si habrá o no formación de cuñas y desprendimiento de estas, cuando se les corta en una excavación.

El uso de ShapeMetriX3D elimina el riesgo que implica medir bloques directamente sobre el frente de excavación y el tiempo que esto implica, aumentando el número de datos que se pueden obtener; este sistema proporciona datos como el espaciamiento y continuidad, o en su defecto, es posible medir directamente los bloques en el modelo tridimensional, con unos centímetros de diferencia (según este trabajo, 5 - 10 cm).

En el RMi de Palmström, se utilizan 3 conceptos básicos para conocer la resistencia del macizo rocoso: roca intacta, características de las discontinuidades y tamaño o volumen del bloque; sin embargo, en macizos rocosos heterogéneos, donde se tiene gran variación en la resistencia de la roca, por distintos factores (meteorización o el ambiente de depósito), la muestra de roca matriz podría no ser representativa.

Ahora bien, Palmström (1995) en su clasificación base, no toma en cuenta el estado de esfuerzos al que se encuentra sometido un macizo rocoso, al igual que Bieniawski (RMR₈₉); sin embargo, este factor rige el comportamiento de una excavación subterránea, por lo que Palmström
(2000), en su propuesta para la estimación del tipo de sostenimiento, lo suma a su análisis como un factor de corrección.

2.6. Geological strength index (Hoek y Brown, 1995)

El índice de resistencia geológica (GSI) fue propuesto por Hoek y Brown en 1995 con el objetivo de correlacionar observaciones de campo y el estado geomecánico general de macizos rocosos con su criterio de rotura.

Para realizar una valoración del estado geomecánico de un macizo rocoso se fundamentan en la observación general del mismo, es decir, en características del macizo como su grado de fracturamiento, la condición de sus discontinuidades y la resistencia de la roca que lo constituye, características que pueden ser obtenidas con una inspección visual rápida y un golpe de martillo.

Tomando como fundamento la experiencia de campo de los ingenieros y geólogos para evaluar de forma visual, rápida y general un macizo rocoso, lo categorizan según su grado de fracturamiento de la siguiente manera:

- Intacta/masiva
- Bloquizada/fracturada
- Muy bloquizada/muy fracturada
- Bloquizada y plegada/Fracturada y plegada
- Desintegrada

El movimiento de bloques está controlado por su forma geométrica y el estado de sus caras. Los bloques angulares con superficies de discontinuidad limpias y rugosas darán como resultado un macizo rocoso mucho más resistente que uno con bloques redondeados y superficies planas y alteradas. El estado general de las discontinuidades (rugosidad, alteración de las paredes y el relleno), junto con la resistencia del macizo dan una idea general de su calidad geomecánica. Por lo anterior, estos parámetros en conjunto, son similares a los presentados en el RMR (la condición de las discontinuidades, Tabla 3), de forma que pueden clasificarse de similarmente:

- Muy buena
- Buena
- Regular
- Mala
- Muy mala

En un principio, los parámetros del criterio de rotura de Hoek y Brown se derivaban a partir del índice RMR de Bieniawski. Sin embargo, la experiencia demostró que existían rangos de calidad del RMR para los cuales la aplicabilidad del criterio de rotura se veía muy limitada. Lo anterior motivó a Hoek a desarrollar el GSI como una caracterización basada más en observaciones geológicas fundamentales que propiamente "en números" (Hoek, 1985). A partir de la versión 2002

del criterio de rotura de Hoek y Brown, la cual incluye una revisión muy profunda de la correspondencia entre parámetros e índices de calidad, existe una amplia colección de correlaciones que permiten aproximar las constantes de cálculo a partir de bases más sólidas, aunque lo anterior no signifique que el criterio del ingeniero no continúa siendo el que juega el papel más relevante.

Basándose en los parámetros de condición de las discontinuidades y el grado de fracturamiento, es posible utilizar la tabla de la Figura 35, lo que resulta en un valor único que corresponde al valor de GSI, que posteriormente es utilizado en el criterio de rotura de Hoek y Brown (2002). En esta tesis, este criterio fue utilizados en la evaluación de los 20 frentes excavados y son nombradas más adelante solo para su referencia. Las relaciones entre m_b/m_i , s y a con el GSI, que a su vez permiten calcular la resistencia a compresión del macizo rocoso son:

$$\frac{m_b}{m_t} = \exp\left(\frac{GSI - 100}{28 - (14D)}\right)$$
(35)

donde m_b y m_i corresponden con el macizo rocoso y la roca intacta respectivamente.

$$s = \exp\left(\frac{GSI - 100}{9 - (3D)}\right) \tag{36}$$

$$a = \left(\frac{1}{2}\right) + \left(\frac{1}{6}\right) \left(e^{\frac{-\text{GSI}}{15}} - e^{\frac{-20}{3}}\right)$$
(37)

Los detalles de este índice de calidad son ampliamente descritos en los libros y artículos de Hoek. En la Figura 35 se muestra la tabla (Hoek, 1995) para obtener el índice GSI basado en descripciones geológicas. La Figura 36 es una extensión de la tabla anterior en la que se presenta un mayor nivel de detalle de las condiciones del macizo para los rangos más bajos del GSI.

Debido a que, como se mencionó anteriormente, este es un índice que toma como fundamento la experiencia de quien lo mide, pueden existir diferencias y variaciones entre las mediciones de un ingeniero experimentado y uno sin experiencia, por lo que algunos autores como Cai et al. (2004), han realizado correlaciones entre parámetros de Palmström (RMi) y Barton (índice Q) con parámetros del GSI, para obtener parámetros medibles y cuantitativos que permitan disminuir el error en la apreciación que cada individuo tiene. Un ejemplo de esto se observa en la tabla de la Figura 37, donde es posible correlacionar el volumen de los bloques con la estructura del macizo y el parámetro Jc (condición de las discontinuidades del RMi) con la calidad de las superficies.

Además, Osgoui y Ünal, 2009, han propuesto un método empírico para el diseño de anclas basado en este índice, debido a que ellos definen, este es un índice que abarca un rango muy amplio de condiciones geomecánicas en macizos rocosos.

Asimismo, el GSI es utilizado por estos autores para calcular la presión en el soporte, utilizando la función de Ünal (1983 y 1992), modificándola a modo que se incluya el índice de resistencia del macizo rocoso (GSI):

$$P = h_t \gamma = \frac{100 - \left[\left(1 - \frac{D}{2} \right) \sqrt{\frac{\sigma_{cr}}{100} \text{GSI}} \right]}{100} C_s S_q D_e$$
(38)

donde; D_e es el diámetro equivalente de la sección del túnel, C_s es el factor de corrección del estado de esfuerzos (k), σ_{cs} es la resistencia a la compresión residual de la roca alrededor de la excavación, γ es la densidad de la roca, S_q es el factor de corrección para condiciones de squeezing y h_t es la carga de la roca.

Figura 35. Obtención del índice GSI (A partir de Hoek, 1995).

Figura 36. Tabla para obtener el valor de GSI correspondiente a macizos rocosos muy fracturados (GSI = 6 a 27). Modificada de Osgoui y Ünal, 2009.

Además, estos autores sugieren que el GSI tiene ciertas dificultades para ser evaluado en macizos rocosos de muy mala calidad donde el RMR es menor a 30, por lo que realizan una modificación en la tabla base del GSI (Figura 35), dando como resultado la Figura 36 para valores de GSI menores a 27.

Para el diseño de anclajes los autores proponen el cálculo de tres parámetros: (β) rock bolt density o densidad de anclas, espaciamiento entre anclas y el largo del ancla (los detalles se pueden consultar en el artículo original).

El parámetro de densidad de las anclas se refiere a la densidad relativa de las anclas con respecto al perímetro del túnel y tiene en cuenta la resistencia de las anclas en su superficie, que se opone a los desplazamientos del macizo rocoso cerca de la pared del túnel y es utilizado por Osgoui y Ünal para introducir los parámetros de resistencia equivalente en términos de Mohr-Coulomb y el criterio de rotura de Hoek-Brown.

El espaciamiento entre anclas se calcula con la ecuación (39), propuesta por Osgoui y Ünal, donde d es el diámetro del ancla, λ es el factor de fricción entre el ancla y la lechada, r_e es el radio equivalente del túnel y β es la densidad de las anclas.

$$S_s = \sqrt{\frac{\pi d\lambda r_e}{\beta}} \tag{39}$$

La longitud del ancla (L_b) debe de ser lo suficiente para superar el área del macizo rocoso afectado por la excavación y así poder proporcionarle mayor agarre en una zona donde el macizo

Densidad de anclas inyectadas recomendadas para un túnel reforzado de 2,5 m de radio para						
		diferentes c	lases de roca			
GSI	Calidad	$L_b(\mathrm{m})$	S _r y S _L (m) espaciamiento	eta / λ	Posible aflojamiento alrededor del túnel	
81-100	Muy buena		Sin soporte		0.0	
61-80	Buena	2 a 3	2.0-2.5	0.06-0.04	0.038-0.024	
41-60	Regular	3 a 5	1.5-2.0	0.11-0.06	0.067-0.038	
31-40	Relativamen te mala	5 a 6	1.0-1.25	0.25-0.11	0.151-0.067	
21-30	Mala	≥6	1.0	0.25	0.151	
<20	Muy mala	≥6	0.8	0.39	0.236	

rocoso tiene una mayor resistencia. Los autores proponen la Tabla 21 para calcularla, con ciertas condiciones (estado de esfuerzos = 15 MPa y diámetro del ancla = 32 mm).

			••		
T-LL- 01	T -11	^	TI	- 1.4 1 - 1 ! 4 1	$\mathbf{J} \cdot \mathbf{I} = \mathbf{J} \cdot $
Tania 71	Tahla nronilocta na	r i kanılı v	Lingi /Illiy ngrg	ontoner 19 longitud	del ancia (1 1)
$\mathbf{I} \mathbf{a} \mathbf{y} \mathbf{i} \mathbf{a} \mathbf{z} \mathbf{I} \mathbf{i}$	\mathbf{I} abia propuesta p		Unal 2007, Dala	UDIUNUI IA IUNENUU	uti antia (Ln).
	The second secon		- · · · · · · · · · · · ·		

2.6.1. Implicaciones en el uso del índice de resistencia geológica (Hoek, 1994).

El GSI es utilizado como un enlace entre las observaciones de campo y su criterio de rotura, es decir, en un principio fue desarrollado el criterio de rotura para macizos rocosos, que toma como principio la homologación entre la roca intacta y su respuesta a un estado de esfuerzos, con el comportamiento geomecánico de macizos rocosos muy fracturados o razonablemente isótropos (Hoek, 1994).

Posteriormente, aunque los parámetros m y s del criterio de falla podían calcularse con clasificaciones geomecánicas robustas como lo son el RMR y el índice Q, de algún modo, por su mismo planteamiento caían en confusión e incompatibilidad con el primero y en redundancia con el segundo. Por lo cual, propusieron un nuevo índice de clasificación de macizos rocosos y lo nombraron Índice de Resistencia Geológica (GSI), que, en palabras de los autores, sólo sirve para proporcionar los datos necesarios para utilizar su criterio de falla (Hoek y Brown, 1995).

Hoek hace las siguientes recomendaciones (Hoek y Brown, 1995): el criterio de rotura sólo puede utilizarse en macizos rocosos que tengan un comportamiento isótropo razonable. Es decir, en roca intacta o macizos rocosos muy fracturados (más de tres familias de discontinuidades); para macizos rocosos poco fracturados con una o dos familias de discontinuidades solo es posible utilizarlo para conocer su resistencia al corte (Figura 1).

A partir de lo anterior, se infiere que el índice de resistencia geológica (GSI) es efectivo sólo en un rango limitado de macizos rocosos con ciertas condiciones, en comparación con las otras clasificaciones mostradas en este trabajo. Además, como sus autores lo dicen (Hoek y Brown, 1995), fue creado para obtener datos para ser utilizados en un modelo matemático propuesto por ellos mismos. Las clasificaciones geomecánicas tienen como fin principal ser un medio para correlacionar la información que se obtiene en campo, con los parámetros utilizados en los distintos

métodos de cálculo a fin de simular el comportamiento del macizo rocoso; por lo que puede considerarse a éste como un índice de caracterización geomecánica, como lo dice Bieniawski (2011), en lugar de un sistema de clasificación como el suyo o el de Barton et al. (1974).

Figura 37. Tabla para estimar visualmente el valor de GSI. Tomada de Marinos & Hoek (2000), modificada por Cai et al. 2004, respecto al uso de los parámetros *Jc* y *Vb*.

2.7. Correlación entre RMR e índice Q

La relación entre el GSI y el RMR se establece, desde Hoek (1995), como GSI = $RMR_{89} - 5$. Por otro lado, en la literatura es posible encontrar cerca de 30 correlaciones entre RMR y Q propuestas por varios autores (Tabla 23) y en un ejercicio de comparación es posible encontrar diferencias muy grandes entre algunas de ellas. Cada autor, o grupo de autores, establece sus propios argumentos para justificar los parámetros de ajuste empleados. Al final, resulta muy difícil establecer cuáles correlaciones son las más adecuadas debido, entre otras cosas, a que contienen un importante grado de empirismo.

Un argumento fundamental a considerar es que, en realidad, los índices Q y RMR no son del todo equivalentes (Zhang, 2017): mientras que Q toma en cuenta la influencia del estado de esfuerzos en el macizo (a través del *stress reduction factor o SRF*), el RMR considera la resistencia a la compresión simple de la roca matriz y la orientación de las discontinuidades. A fin de homologar estas dos clasificaciones, Goel et al (1996) proponen una correlación en la que, para el

RMR se eliminan las puntuaciones correspondientes a σ_c^i y la orientación por discontinuidades, mientras que para Q no se considera la influencia de los estados de esfuerzos. Con esto, se propone la correlación:

$$RCR = A \ln N + B \tag{40}$$

donde RCR es igual al RMR menos los puntos correspondientes a σ_c^i y sin corrección por orientación de discontinuidades, mientras que *N* (*rock mass number*) es igual a Q, pero con *SRF* = 1.0 y *A* y *B* son los parámetros de ajuste de la curva.

Calidad RMR	Resistencia σ^i_c (MPa)	Puntos
< 20	0 a 5	0 a 2
20 - 30	5 a 10	2
30 - 40	10 a 25	2 a 4
40 - 50	25 a 50	4 a 7
50 - 60	50 a 75	7
60 - 70	75 a 100	7 a 12
70 - 80	100 a 120	12
80 - 100	125 a > 250	12 a 15

Tabla 22. Propuesta de una escala de valores de resistencia σ_c^i para distintos rangos de RMR. A partir de Sánchez (2014).

Correlaciones entre clasificaciones geomecánicas RMR e índice Q						
Autor	Correlación	R/R^2				
Bieniawski (1976)	$RMR = 9\ln Q + 44$					
Rutledge and Preston (1978)	RMR = 5.9lnQ + 43 = 13.5logQ + 43	R=0.81 $R^{2}=0.66$				
Cameron-Clarke &Budavari (1981)	RMR = 5lnQ + 60.8 (proveniente de mediciones in situ)	Mucha dispersión				
Cameron-Clarke &Budavari (1981)	RMR = 4.6InQ + 55.5 (proveniente de mediciones					
Moreno Tallon (1982)	RMR = 5.4lnQ + 55.2 = 12.5logQ + 55.2	R=0.55 $R^{2}=0.30$				
Abad et al. (1983)	RMR = 10.5lnQ + 41.8	R=0.66 $R^{2}=0.44$				
Baczynski (1983)	RMR = 7.5lnQ + 42					
Uddan Wang (1985)	RMR = 5.3lnQ + 50.81 = 12.11logQ + 50.81					
Kaiser et al. (1986)	RMR = 6.3lnQ + 41.6					
Kaiser et al. (1986)	$RMR = 8.7 lnQ + 38 \pm 18 (\text{teoría de probabilidad})^{a}$					
Kaiser et al. (1986)	$\ln Q = 0.087 \text{RMR} - 2.28$					
Sheorey (1993)	$RMR = 6.8 lnQ + 42^{b}$					
Celada Thamames (1983)	RMR = 43.89 - 9.19lnQ					
Choquet&Charette (1988)	RMR = 10lnQ + 39					
Bieniawski (1989)	$RMR = 9lnQ + 44 \pm 18$					
Rawlings et al (1995)	$RMR = 10.3lnQ + 49.3$ (cuando $Q \le 1$, <i>SRF</i> =1) ^c					
Rawlings et al (1995)	RMR = 6.2lnQ + 49.2 (cuando Q>1, <i>SRF</i> =1) ^c					
Rawlings et al (1995)	$RMR = 6.6 lnQ + 53$ (cuando $Q \le 0.65$) ^c					
Rawlings et al (1995)	RMR = 5.7 lnQ + 54.1 (cuando Q>0.65) ^c					
Tugrul (1998)	RMR = 7lnQ + 36					
Asgari (2001)	RMR = 4.2lnQ + 50.6					
Sunwoo& Hwang (2001)	RMR = 5.97 lnQ + 49.5	R=0.89 $R^{2}=0.79$				
Kumar et al. (2004)	RMR = 4.7 lnQ + 56.8					
Kumar et al. (2004)	RMR = 8.3lnQ + 42.5(con SRF=1)					
Kumar et al. (2004)	RMR = 6.4lnQ + 49.6 (con valores <i>SRF</i> revisados)					
Sari &Pasamehmetoglu (2004)	RMR = 3.7lnQ + 53.1	$R^2 = 0.86$				
Castro-Fresno et al. (2010)	RMR = 6.63 lnQ + 35.53	R=0.70 $R^{2}=0.49$				
Alkorta- Lertxundi y Bernando- Sanchez (2010)	RMR = 5.9 lnQ + 43	R=0.89 $R^2=0.79$				
Alkorta- Lertxundi et al. (2014)	RMR = 6.7 lnQ + 45.4	R=0.94 $R^2=0.884$				
Syeed y Khanna (2015)	RMR = 4.52lnQ + 43.6	R=0.86 $R^{2}=0.736$				
J. D. Fernández-Gutiérrez et al.	RMR = 8.2lnQ + 45.4 (para formaciones rocosas	$n^2 - 0.01 \pi$				
(2017)	sedimentarias de grano fino)	<i>R</i> ² =0.915				

Correlación entre las clasificaciones RMR e índice Q, con base en los índices RCR y N							
Sheorey (1993)	RCR = 9.5 lnN + 31	$R^2 = 0.87$					
Goel et al. (1996)	RCR = 8lnN + 30	$R^2 = 0.92$					
Kumar et al. (2004)	RCR = 8lnN + 42.7	$R^2 = 0.88$					
Sari &Pasamehmetoglu (2004)	RCR = 1.7 lnN + 51.5	$R^2 = 0.65$					
a) asumiendo que el RMR y lnQ son probabilidad; b)derivado de la inform de sondeos.	a) asumiendo que el RMR y lnQ son la variante normal y satisface el límite central de la teoría de la probabilidad; b)derivado de la información presentados por Sheorey (1993); c)datos provenientes de núcleos de sondeos						

Tabla 23. Correlaciones entre RMR y Q recopiladas de la literatura.

Generalmente, los datos de laboratorio con los que se cuenta en un proyecto son limitados y corresponden a zonas muy puntuales de las que se extrajeron núcleos mediante perforación. En macizos heterogéneos la resistencia de la roca matriz puede variar sensiblemente a lo largo del trazo del túnel, ya sea por cambios litológicos o diferentes grados de alteración o compacidad. Aunque la resistencia a la compresión simple de la roca matriz no necesariamente va ligada a la calidad del macizo, en los casos en los que no se conoce con certeza el valor de σ_c^i , puede establecerse una correlación empírica basada en la experiencia y en los propios valores que propone la clasificación de Bieniawski para las distintas calidades (Sánchez, 2014).

En la Tabla 22, Sánchez (2014) propone una escala de valores de la resistencia a la compresión simple para distintos rangos de calidad *RMR* y se indican los puntos correspondientes de la clasificación. Esta tabla puede ser útil para emplearse en varias correlaciones. Los rangos y puntuaciones corresponden con la escala tabulada de Bieniawski (1989).

En la gráfica de la Figura 38 puede verse la variación de los puntos asignados por el RMR para los distintos rangos de σ_c^i . A partir de la relación entre resistencia y puntos es posible establecer una relación continua mediante una curva de regresión. En este caso se propone una parábola simple de la forma (Sánchez, 2014):

$$p = a \left(\sigma_{\rm c}^i - u\right)^2 + v \tag{41}$$

donde *p* son los puntos asignados, *u* y *v* son las coordenadas correspondientes al vértice de la parábola ($\sigma_c^i = 300, p=15$) y *a* es el parámetro de ajuste para la regresión. Utilizando un valor del parámetro *a* = 1.58×10⁻⁴ se obtiene la curva con un coeficiente de correlación $R^2 = 96\%$.

Nótese que en las publicaciones de Bieniawski en las que aparecen las curvas de correlación entre σ_c^i , RQD, espaciamiento de discontinuidades y sus respectivas puntuaciones, no se presentan las ecuaciones que generan dichas curvas. Nótese además que la ecuación (42) aquí propuesta arroja el mismo valor de R^2 que la curva de Bieniawski. Por lo tanto, puede tomarse como válida (Figura 38).

Figura 38. Puntuaciones del índice RMR para distintos rangos de σ_c^i y curva de regresión.

Entonces se plantea la ecuación:

RCR = RMR_B - p = RMR_B -
$$\left[1.58 \times 10^{-4} \left(\sigma_{c}^{i} - 300\right)^{2} + 15\right]$$
 (42)

donde RMR_B es el índice básico, que no toma en cuenta la corrección por orientación de discontinuidades.

Debido a que, por lo general, los ingenieros están más familiarizados con el índice RMR que con el Q, las correlaciones que se establecerán en este capítulo están referidas al primero, por lo que se ha de invertir la ecuación (43).

$$N = e^{\left(\frac{\text{RCR-}B}{A}\right)} \tag{43}$$

Una vez obtenidos los valores de *N* para el valor de RCR (o de RMR) considerado, el índice Q se obtiene simplemente dividiendo *N/SRF*.

Figura 39. Correlaciones entre RMR₈₉ y Q propuestas por varios autores y correlación obtenida empleando la técnica de Goel et al., 1996. A partir de Sánchez (2014).

El parámetro *SRF* de Barton adquiere valores que son función de un número importante de factores relacionados con las características del macizo rocoso y los estados tensionales. Estos factores contemplan desde situaciones normales, hasta situaciones extremas de esfuerzos, presiones de hinchamiento, estallidos de roca, fluencia lenta, etc. Los valores que adquiere este factor van desde 1.0, para condiciones óptimas de excavación, hasta 20 para las situaciones más críticas. Para el caso de un túnel convencional en roca es previsible que el valor pésimo que podría adquirir el *SRF* sea de 10, lo que corresponde con el cruce por una zona de falla a poca profundidad. Si se asume que el túnel será construido en condiciones "normales", se puede establecer razonablemente una relación entre la calidad del macizo rocoso y el *SRF* que va de 1.0 a 10 (Sánchez, 2014).

Si se supone que, a partir de una categoría de roca muy buena, con un RMR> 80 el valor de SRF = 1 y que para valores menores de calidad disminuye linealmente hasta un límite de SRF = 10 para RMR = 10, finalmente se puede obtener una curva que relaciona la calidad geotécnica de Bieniawski con el índice Q de Barton (Sánchez, 2014).

En la Figura 39 se muestra la relación entre RMR y Q obtenida con el criterio hasta aquí descrito, comparada con 9 correlaciones de distintos autores, las cuales corresponden con aquellas que no arrojan resultados de Q por encima de 1000. Nótese que en la publicación de Goel et al.

(1996), los autores proponen valores de ajuste *A* y *B* iguales a 8 y 30 respectivamente. Sin embargo, con tales parámetros los valores máximos alcanzados del índice Q exceden el máximo de 1,000 propuesto como límite por el propio Barton. Entonces, haciendo un ajuste tal que B = 31.32, se obtiene un Q = 1,000 para RMR = 100 (Sánchez, 2014).

2.8. Correlaciones entre RMi con RMR e índice Q

En la literatura es posible encontrar algunas correlaciones entre las clasificaciones RMi de Palmström (1995), RMR de Bieniawski (1989) y el índice Q de Barton (1974), sin embargo, también existen discrepancias entre ellas.

Autores como Kumar et al. (2004) y Hashemi et al. 2010 han intentado formular una relación entre el RMi de Palmström (1995), con las clasificaciones RMR de Bieniawski (1989) y el índice Q de Barton (1974), sin embargo, existen ciertas limitaciones, entre ellas, la diferencia entre conceptos y parámetros que constituyen a cada una.

Entre las clasificaciones RMi y RMR hay similitud entre los conceptos que usan para evaluar la calidad de un macizo rocoso, sin embargo, la valoración de sus parámetros tiene rangos diferentes. Por ejemplo, el uso del RQD en la clasificación RMR es parte de la evaluación del macizo rocoso y su puntuación va de 0 a 15, mientras que para el RMi se utiliza como complemento para cálculo del parámetro del volumen de roca (Jv), aunque su uso no es indispensable y puede sustituirse por otro método. Otros parámetros como el tipo de excavación (en específico en túneles la dirección e inclinación de la familia de discontinuidades más importante respecto al túnel) y la influencia del agua subterránea en la excavación, no están presentes en la determinación del índice RMi y únicamente se utilizan en la estimación de la carga sobre el soporte.

La plastificación del frente, un concepto introducido en el nuevo RMR₁₄, es un parámetro que se refiere al cambio de calidad de la roca producto de la relajación del frente excavado en un túnel y que a su vez disminuye su calidad. Este también es un parámetro que no está incluido en el RMi.

Por su parte, el parámetro de alterabilidad de las discontinuidades no estaba incluido en el RMR₈₉, mientras que el RMi sí lo incluye, lo cual generaba una diferencia. Sin embargo, con la introducción de este factor en el nuevo RMR₁₄ la correlación mejora.

Existen similitudes importantes entre el índice Q de Barton y el índice RMi como se mostrará más adelante (inciso 3.2.3), sin embargo, también hay diferencias importantes. Parámetros como σ_c que es parte fundamental del concepto del RMi, no está incluido en el índice Q; además el parámetro SRF que se refiere al estado de esfuerzos en el sitio excavado y el factor de reducción por agua (*Jw*), incluidos en el índice Q, no están presentes en el RMi, aunque sí se utilizan, como ya se dijo, para calcular la carga sobre el soporte (parámetros nombrados por Palmström *SL* y *GW*, respectivamente).

Pese a las dificultades que implica relacionar estas clasificaciones, Kumar et al. (2004) proponen las siguientes correlaciones:

$$\mathbf{RMi} = 0.5\mathbf{O}^{0.93} \tag{44}$$

$$RMR = 5.4\ln(RMi) + 54.4$$
 (45)

Esto con base en un estudio realizado en el proyecto Nathpa Jhakri, en Himachal Pradesh, India. Se trata de un túnel de 27.4 km de longitud con un diámetro de 10.15 m, construido en los Himalaya, a través de formaciones geológicas muy complejas. El estudio se basó en la integración y análisis de 685 frentes de excavación, cubriendo 20 km de túnel; incluidas en estas secciones se encuentran 50 frentes con condiciones de *squeezing* con una longitud conjunta de 1 km, con longitudes individuales que van de 3 a 63 m y 69 frentes con condiciones de cizalla, con una longitud conjunta de 1 km, con longitudes individuales de 2 a 63 m (Kumar et al. 2004).

A una distancia de 800 metros desde el portal, el túnel tiene 1 kilómetro de cobertura, llegando hasta un máximo de 1.43 km. Esto trae consigo complicaciones además de constructivas, de cálculo y valoración de parámetros como el *SRF* del índice Q y el parámetro *SL* del RMi de Palmström (1995).

Debido a que no existía un valor recomendado del parámetro *SRF* en el índice Q para las condiciones de grandes esfuerzos y roca medianamente fracturada (condiciones frecuentes en la excavación del túnel Nathpa Jhakri), Kumar et al. (2004), proponen rangos de valores para estas condiciones que obtiene mediante el cálculo de la carga de soporte en diferentes secciones mediante el uso del índice Q y el *rock mass number (N)* (Goel et al., 1995). Esto con el objetivo de poder ajustar el uso del índice Q a las condiciones reales de la excavación; además de verificar la hipótesis de que, con el uso de Q, los valores están sobre estimados (debido a que los valores de *SRF* propuestos por Barton, 1974, son aplicables sólo en condiciones de roca masiva: categorías L, N y M, Figura 24); en cambio con el uso de *N* es posible remover la incertidumbre del cálculo del parámetro *SRF*, ya que este sería igual a 1.

Con el ajuste del parámetro *SRF* para las categorías L, N y M del índice Q para macizos rocosos medianamente fracturados y sometidos a grandes esfuerzos (Tabla 24), Kumar et al. (2004) proponen las relaciones (44) y (45), aunque existen restricciones para su uso, por lo que proponen intervalos en los valores de los parámetros del índice Q y el índice RMi, que se pueden consultar en la Tabla 25.

Ajuste del índice Q para macizos rocosos medianamente fracturados y sometidos a grandes esfuerzos.					
Categoría L del parámetro SRF:	1.5 - 2.0				
Categoría N del parámetro SRF:	2.0 - 2.5				
Categoría M del parámetro SRF:	2.5 - 3.0				

Tabla 24. Valores de ajuste del parámetro SRF del índice Q, para macizos rocosos fracturados y
sometidos a grandes esfuerzos. Tomada de Kumar et al. 2004.

Hashemi et al. (2010), también proponen algunas correlaciones entre clasificaciones geomecánicas, esto con base en el estudio realizado en un tramo del túnel Sabzkuh, en la provincia de Chaharmahal-Bakhtyari, Irán. El tramo de estudio está dividido en 23 secciones, que fueron

evaluadas mediante las clasificaciones RMí de Palmström (1995), RMR de Bianiawski (1989), el índice Q de Barton (1974) y GSI (Hoek et al. 1998, 2005; Sonmez and Ulusay 1999, 2002; Marinos and Hoek 2000, 2001; Cai et al. 2004). Dando como resultado la comparación (Figura 40) entre estas cuatro clasificaciones.

Limitaciones de las correlaciones sugeridas por Kumar et al. 2004							
Para el índice Q	<i>Jn</i> = 3 a 20	<i>Jr</i> =0.5 a 3	<i>Ja</i> =0.75 a 13	<i>Jw</i> =0.15 a 1	SRF=0.5 a 20		
Para el sistema RMi	<i>qc</i> = 9.5 a 125 MPa	<i>jL</i> =0.75 a 1	Para <i>jR</i> y <i>jA</i> e	el mismo rango c índice Q	que <i>Jr</i> y <i>Ja</i> del		

Tabla 25. Limitaciones de las correlaciones sugeridas por Kumar et al. 2004.

Figura 40. Clasificación de macizos rocosos de 23 segmentos que pasan formaciones rocosas en el túnel Sebzkuh, utilizando 4 sistemas: RMR, Q, RMi y GSI (3 métodos). Tomada de Hashemi et al. (2010).

Posteriormente Hashemi et al. (2010), presentan las gráficas de la Figura 41 y de la Figura 42, que muestran la relación entre las clasificaciones RMi – RMR y RMi – índice Q. Además, utilizan las correlaciones propuestas por Kumar et al. (2004) como comparativa y calculan la línea de tendencia que mejor se ajustan a los datos.

Figura 41. Correlación entre los valores de RMi y RMR para el túnel Sezskuh y la comparación con la relación de Kumar et al. (2004). Tomada de Hashemi et al. (2010).

Figura 42. Correlación entre los valores de RMi y el índice Q para el túnel Sezskuh y la comparación con la relación de Kumar et al. (2004). Tomada de Hashemi et al. (2010).

Como resultado, Hashemi et al. (2010), proponen las siguientes correlaciones entre el RMR y el índice Q con el RMi.

$$RMi = 1082Q^{0.4945}$$
(46)

$$RMR = 7.5 \ln(RMi) + 36.8$$
 (47)

Más recientemente, en 2018, ante la necesidad de encontrar una mejor correlación entre las clasificaciones más usadas en el mundo, Soufi et al. 2018 realizaron un análisis de las ecuaciones propuestas por Kumar et al. 2004 y Hashemi et al. 2010 utilizando 128 nuevos datos de macizos rocosos evaluados con estas tres clasificaciones (RMR, Q y RMi).

Los 128 macizos rocosos fueron analizados en el nivel CPB3 de la mina de plata Imiter, localizada al este de Anti-Atlas en Marruecos, en rocas vulcano-sedimentarias a una profundidad de 500 m.

Soufi et al. (2018) calcularon nuevas curvas de ajuste para la correlación entre RMR y RMi (lineal, multilineal, exponencial y logarítmica) de las cuales 2 resultaron tener una mejor correlación:

$$RMR = 0.52F - 6.32Js - 0.04Ja + 0.19jL + 5.96Vb + 3.13jC - 84.86D + 107.62$$
(48)

$$RMR = 7.71 \cdot ln(RMi) + 54.441$$
 (49)

Soufi et al. (2018), presentan la gráfica de la Figura 43, que muestra la relación entre las clasificaciones RMi y RMR a partir de las propuestas por Kumar et al. 2004 y Hashemi et al. 2010, junto con la línea de tendencia que mejor se ajusta a los datos, que en este caso es la ecuación (49).

Figura 43. Correlación entre los valores de RMR y el RMi para la mina Imiter y su comparación con las ecuaciones de Kumar et al. 2004 y Hashemi et al. 2010. Modificada de Soufi et al. 2018

Posteriormente Soufi et al. 2018 hacen un tratamiento similar con la correlación entre el índice Q y el RMi, calculando curvas de ajuste (lineal, multilineal, exponencial, logarítmica y potencial) donde la ecuación potencial es la que resulta en una mejor correlación:

$$\mathbf{RMi} = 0.5195Q^{0.7202} \tag{50}$$

Para este caso Soufi et al. 2018 también presentan la gráfica de comparación entre la curva generada con la ecuación anterior y las propuestas por Hashemi et al. 2010 y Kumar et al. 2004 (Figura 44).

Figura 44. Correlación entre los valores de Q y el RMi para la mina Imiter y su comparación con las ecuaciones de Kumar et al. 2004 y Hashemi et al. 2010. Modificada de Soufi et al. 2018

Para el presente trabajo es necesario conocer la efectividad de cada correlación reportada en la literatura para el cálculo del módulo de deformación de un macizo rocoso. Esto implica el cálculo de la *media de error cuadrático* de cada una, comparando la línea de mejor tendencia que las constituye contra una base de datos (puntos) recopilados de la literatura. Con base en esto, se puede estimar cual presenta el mejor índice de correlación, y por ende cual representa mejor la realidad.

Figura 45. Curva que muestra el resultado de la correlación entre las clasificaciones RMR y RMi de los autores Kumar et al. 2004, Hashemi et al. 2010 y Soufi et al. 2018.

Debido a que la clasificación de Bieniawski RMR₈₉ es la más utilizada en el mundo para evaluar la calidad de macizos rocosos, la mayor parte de los datos que se encuentran en la literatura correspondientes a mediciones *in situ* del módulo de deformación en macizos rocosos son valorados utilizándola. Esto implica que, primero se requieren ecuaciones que correlacionen a la clasificación RMR con los índices Q y RMi para el uso de estos datos recopilados en la evaluación de las ecuaciones para el cálculo del módulo de deformación de macizos rocosos propuestas por Palmström y Barton.

Para utilizar las ecuaciones en el cálculo del módulo de deformación de macizos rocosos de Palmström (1995) y Palmström (2001) y poder evaluarlas, es necesario correlacionar los valores recopilados en la literatura, que corresponden a valores de la clasificación RMR y transformarlos en valores de RMi; una vez transformados es posible utilizarlos para calcular el módulo de deformación del macizo rocoso según el índice RMi que le corresponde a cada valor transformado.

Figura 46. Curva que muestra el resultado de la correlación entre las clasificaciones Q y RMi de los autores Kumar et al. 2004, Hashemi et al. 2010 y Soufi et al. 2018.

Para hacer la transformación de la clasificación RMR a RMi se utilizaron las correlaciones mencionadas anteriormente (Kumar et al., 2004 y Hashemi et al., 2010 y Soufi et al. 2018) y se evaluaron para cada dato recopilado con calidad RMR, obteniendo rangos de calidad RMi distintos entre ambas correlaciones (Figura 45 y Figura 46).

Considerando la antigüedad de la ecuación mostrada por Kumar et al. 2004, así como el hecho de que tiene un sesgo muy importante sobre las dos correlaciones más recientes, en el presente trabajo no se tomará como referente; sólo las propuestas por Hashemi et al. 2010 y Soufi et al. 2018 se utilizarán para la transformación de los datos recopilados con valores de RMR a valores de RMI.

En el caso de la ecuación de correlación entre el índice Q y el RMi de Kumar et al. 2004 y Hashemi et al. 2010 muestran poca correlación entre ambas, no tanto así entre Hashemi et al. 2010 y Soufi et al. 2018, mismas que exhiben cierto paralelismo; sin embargo, aún existen diferencias importantes entre éstas, v.gr., para valores altos de RMi, es decir >10, se obtiene apenas un valor de Q de 4 a 10, esto quiere decir que para el RMi es un macizo rocoso con una calidad geomecánica muy alta, para el índice Q, es apenas regular.

3. ESTIMACIÓN DEL MÓDULO DE DEFORMACIÓN UTILIZANDO LAS CLASIFICACIONES GEOMECÁNICAS MÁS IMPORTANTES

3.1. Correlación entre el módulo de deformación de macizos rocosos y el RMR, Q y GSI

3.1.1. Recopilación de datos de la literatura

En esta investigación se han recopilado de distintas fuentes (como el trabajo realizado por Bieniawski y otros autores), valores del módulo de Young de macizos rocosos, medidos con diferentes pruebas in situ como PJT, GJT y PLT y comparados con el RMR correspondiente al macizo rocoso medido (Figura 47), con un total de 130 puntos.

Figura 47. Gráfica. Recopilación de 130 puntos provenientes de Bieniawski, Serafim & Pereira y Clerici.

Dada la complejidad y el gran costo que suponen las medidas in situ, el objetivo de esta recopilación de datos es encontrar una correlación entre la clasificación geomecánica RMR y el valor del módulo de Young (E_m) de macizos rocosos medidos in situ y así obtener una curva de ajuste que proporcione una fórmula empírica que dé resultados aproximados de E_m . Para esto se

han ido sumando a esta base de datos, otros de diversos autores como Khabbazi et al. (2012) y Palmström (2001), cuyos trabajos se resumen a continuación.

3.2. Recopilación y ajuste de datos de Palmström (2001)

En el trabajo realizado por Palmström, 2001^3 se comparan los resultados obtenidos de 3 métodos directos medidos in situ (PJT⁴, GJT⁵ y PLT⁶) y a su vez se estudia la relación que guardan con varias correlaciones geomecánicas para la estimación de E_m . Las pruebas fueron proporcionadas y recopiladas por la "Central Soil and Materials Research Station" (CSMRS) provenientes de diferentes proyectos en Bután y Nepal, India.

Para estas pruebas no suele tomarse en cuenta la primera carga, debido a que esta representa el cierre de las discontinuidades. Además, debe considerarse que habrá variaciones en la distribución de esfuerzos entre la placa y el macizo, según sea el tamaño de la placa del instrumento (Palmström y Singh, 2001).

Las clasificaciones geomecánicas utilizadas en las correlaciones fueron el RMR, el sistema Q y el RMi, teniendo en cuenta factores que pudieran causar incertidumbre en la estimación, como el método de medición, la caracterización del macizo, el daño provocado por la excavación, etc.

El módulo estático de deformación es el parámetro que mejor representa el desarrollo mecánico de un macizo rocoso en una excavación subterránea. Es por esto que, la mayoría de los programas numéricos de cálculo basados en elementos finitos, diferencias finitas y elementos de contorno lo utilizan para modelizar o calcular la distribución de esfuerzos y deformaciones en una excavación (Sánchez, 2014).

Debido al costo elevado y alto consumo de tiempo que requiere una prueba *in situ* para estimar el módulo de deformación estático, en la mayoría de los casos se utilizan métodos indirectos para determinarlo, usando clasificaciones geomecánicas, la experiencia del ingeniero geólogo o la literatura (Sánchez, 2014).

³. "The Deformation Modulus of Rock Masses - comparisons between in situ tests and indirect estimates"

⁴Plate Jacking test (PJT). - Es una prueba realizada in situ, para estimar la deformabilidad del macizo rocoso, para ello utiliza dos placas empujadas por un sistema de pistones hidráulicos, que proporciona una carga opuesta entre ambas. Las deformaciones se miden con un extensómetro instalado en una perforación sobre el eje de la maquinaría.

⁵Goodman Jack test (GJT). - Es un instrumento de medición que se introduce en una perforación de 3 pulgadas y en la que por medio de pistones se produce una presión o hinchamiento que genera una presión uniforme en las paredes. Es usado para medir la deformabilidad de la roca y suelo.

⁶Plate loading test (PLT). - Utiliza dos placas empujadas por un sistema de empuje hidráulico, que proporciona una carga opuesta entre ambas. Las deformaciones se miden directamente en la placa-superficie.

Según la **ISRM 75**, las definiciones de los módulos de deformación son los siguientes (Figura 48):

- **Módulo de elasticidad o módulo de Young** (*E*). Es la relación entre el esfuerzo aplicado y la deformación producida, por debajo del límite o pico de resistencia del material.
- Módulo de deformación del macizo rocoso (E_m) . Es la relación entre el esfuerzo aplicado y la deformación producida durante la carga en un macizo rocoso, incluyendo el desarrollo elástico e inelástico del mismo (W_d) .
- Módulo de elasticidad del macizo rocoso (E_{em}). Es la relación entre el esfuerzo y la deformación producida durante la carga en un macizo rocoso, incluyendo solamente el desarrollo elástico (W_e).

Figura 48. Gráfica esfuerzo-deformación. Palmström, 2001.

Farmer y Kemeny (1992) concluyen que la deformación del macizo rocoso puede variar entre 5 a 20% respecto a la deformación de su roca intacta. Mientras que Palmström, 2001, concluyen que E_m no es constante en el macizo rocoso, y que depende del estado de esfuerzos, siendo generalmente mayor en macizos con alto grado de esfuerzos y menor en macizos de bajo grado de esfuerzos. Por lo tanto, en la búsqueda de una medición del módulo de deformación del macizo rocoso, no puede tenerse en mente un valor absoluto, sino un intervalo o rango del valor del módulo Clerici, 1993.

3.2.1. Comparación de las deformaciones y los resultados medidos.

Como se mencionó anteriormente los datos proporcionados por CSMRS de pruebas tipo Goodman, PJT y PLT, han sido recopiladas durante 20 años en obras realizadas en Nepal y Bután, India, siguiendo la metodología de la ISRM (1979). Esto implica que la información proporcionada puede diferir para cada tipo de prueba, debido a las diferencias de medición, los distintos métodos de excavación y la orientación de las pruebas.

Relación	Medicio	nes realizadas en p	royectos hidroeléct	ricos	Experier	ncia de	Relación
	Lakhwar	Jam	rani	Tala			sugerida
		Basado en la constante de Goodman	Basada en la constante de Heuze y Amadei's		Bieniawski	CSMRS	(Rp) con mediciones in situ
PJT/PLT	1.9	2.6	2.3	4		2 a 3	2.5
PJT/FJT	1.75			2.4		2 a 3	2.5
PJT/GJT	2.05				Aprox. 2	2 a 3	2.5
PLT= plat	PLT= plate loading test; GJT = Goodman jack test; FJT = flat jack test						

De modo que, se utilizaron correlaciones entre pruebas de distintos autores para normalizarlas, poniendo énfasis en la desviación que tienen (Tabla 26).

Tabla 26. Relación	n entre pruebas	in situ. A partir	de Palmström, 2001
--------------------	-----------------	-------------------	--------------------

3.2.2. Aplicación en macizos rocosos fracturados.

Palmström y Singh, 2001, buscaron una relación entre el módulo de deformación del macizo rocoso y su clasificación geomecánica RMi; para esto utilizaron datos de E_m medidos in situ vs valores de RMR obtenidos por la CSMRS, así como datos recopilados en la literatura por diversos autores (Bieniawski, Clerici y Serafim & Pereira), con el fin de obtener una gráfica y definirla curva de tendencia que mejor se ajuste a éstos. Sin embargo, los datos de la CSMRS muestran una clara desviación respecto a los recopilados en la literatura (Figura 49, izquierda), lo que podría ocasionar dispersión y un error al tratar de calcular una línea de tendencia de cualquier índole.

Figura 49. Gráficas. A la izquierda, comparación entre los datos recopilados de la literatura y los datos no normalizados de la CSMRS; a la derecha, comparación entre los datos recopilados de la literatura y los datos normalizados de la CSMRS. Gráficas tomadas de Palmström y Singh (2001).

Debido a lo anterior, realizaron un ajuste a sus datos por medio de un factor de daño por explosivos (F_f), que según los autores haría que los datos de la CSMRS se aproximaran a los datos

propuestos por Bieniawski, Clerici y Serafim & Pereira (Figura 49, derecha); los datos obtenidos por la CSMRS son de una magnitud menor a los datos recopilados debido quizás, al método de excavación utilizado en los proyectos recopilados por la CSMRS, donde se utilizaron explosivos para la excavación, esto provoca que el área ensayada esté debilitada y dé como resultado valores menores (Palmström y Singh, 2001). Para la homogenización de los datos los autores, utilizaron un factor de 3 para las pruebas in situ *plate loading test* y *platejacking test*, y un factor de 2.5 para la prueba tipo Goodman. Sin estos factores de escala, los datos proporcionados por la CSMRS no podrían ser comparados con datos de otros autores (Serafim y Pereira, Bieniawski, y Clerici), y no habría correlación entre estos y las ecuaciones estimadas por los mismos.

Con los datos normalizados, Palmström y Singh (2001), realizaron una comparación y cálculo de curvas de ajuste para tres clasificaciones geomecánicas: RMR, sistema Q y RMi. El resultado se muestra a continuación.

Figura 50. Gráfica de la correlación entre RMR y el módulo de deformación del macizo rocoso medido in situ (E_m). Datos de la CSMRS normalizados con un F_f = 3. Tomada de Palmström y Singh (2001).

Para calcular E_m con RMR se utilizaron 2 dos ecuaciones, propuestas por Bieniawski (1978) y por Serafim & Pereira (1983), cuyas curvas se limitan según el rango que mejor se ajusta a los puntos recopilados, correspondientes a Bieniawski, Clenci, Serafim & Pereira y Stripa, además de los datos normalizados de la CSMRS.

Para RMR>55, Bieniawski, (1978)
$$E_m = 2RMR - 100$$
 (51)

Para RMR<60, Serafim & Pereira, (1983) $E_m = 10^{(\text{RMR}-10)/40}$ (52)

Para calcular E_m con el sistema Q se utilizó el mismo principio: primero se comparó una ecuación existente $E_m = 25 \log Q$ (Grimstady Barton, 1993) para observar el ajuste que ésta tiene

con los datos graficados de Clerici y Stripa, así como los datos ya normalizados de la CSMR, además de calcular la línea de mejor ajuste, dando como resultado la ecuación (53).

Para1<Q<30 Grimstady Barton, 1993 $E_m = 25 \log Q$

Figura 51. Gráfica. Correlación entre el sistema Q y el módulo de deformación del macizo rocoso medido in situ (Em). Datos de la CSMRS normalizados con un Ff = 3. Tomada de Palmström (2001).

Palmström (1995) propone la ecuación (56) que es utilizada en la gráfica de la Figura 52 como comparativa con los datos graficados de Clerici y Stripa, así como los datos ya normalizados de la CSMR; además de calcular la línea que mejor se ajusta a los datos, dando como resultado la ecuación (55).

Para 1 < RMi < 30 Palmström y Singh,
$$E_m = 7 \text{RMi}^{0.4}$$
 (55)
2001

Para RMi > 0.1 Palmström, 1995 $E_{\rm m} = 5.6 {\rm RMi}^{0.375}$

El análisis de Palmström y Singh (2001), muestra las diferencias entre las clasificaciones RMR, índice Q y RMi, aunque la más evidente es la escala (logarítmica para el índice Q y el RMi, y lineal para el RMR), la de mayor repercusión es el número de datos utilizados en cada comparación.

82

(56)

(54)

Figura 52. Correlación entre el sistema RMi y el módulo de deformación del macizo rocoso medido in situ (E_m). Datos de la CSMRS normalizados con un $F_f = 2.5$. Tomada de Palmström, 2001.

3.2.3. Aplicación en macizos rocosos masivos.

Para macizos rocosos con pocas o nulas discontinuidades, Palmström y Singh, (2001), utilizaron la relación de escala de Barton, 1990, para roca matriz y probetas de 50mm:

$$\sigma_{cm} = \sigma_c \cdot f_\sigma = \sigma_c \left(\frac{0.05}{Db}\right)^{0.2}$$
(57)

Natau (1990) indica que el efecto de la escala en la deformación de macizos rocosos masivos, se asume similar al de su resistencia, por lo cual el factor de escala f_{σ} es similar al factor de escala f_e propuesto por Barton (1990) y que ha sido descrito anteriormente. Aplicado a E_m y macizos rocosos con $f_e \approx f_{\sigma}$ (Natau, 1990) se simplifica de la siguiente manera (Palmström y Singh, 2001):

$$Emr = E \cdot f_E \approx E \left(\frac{0.05}{Db}\right)^{0.2} \approx 0.5 \cdot E = 0.5 \left(400\sigma_c\right) = 200\sigma_c \tag{58}$$

Palmström y Singh, (2001), utilizaron esta ecuación, para calcular el valor de RMR, Q y RMi para distintos macizos rocosos y rocas intactas de diversas resistencias. Para mayor detalle, el lector puede revisar el estudio realizado por Palmström y Singh, 2001; sin embargo, es posible observar que los valores obtenidos con RMR y Q de Barton son muy altos, principalmente para rocas de baja resistencia, en cambio con el RMi la relación E_m/E_{mr} es menor (Tabla 27).

Respecto a las pruebas *in situ*, Benson (1970) y la CSMRS (Palmstrom y Singh, 2001) concuerdan que la prueba más confiable es la PJT, debido a que sus mediciones son tomadas por el extensómetro encima y debajo del instrumento, lo cual abarca un área mucho mayor; por ende,

fuera de la zona dañada; esto es importante ya que ayuda a comparar los resultados a diferentes distancias, reduciendo el error.

Palmström y Singh (2001) concluyen con la misma idea, y concuerdan con Benson y CSMRS respecto a la PJT, además aconsejan tener en cuenta la zona y orientación de la prueba, sobre todo en túneles excavados con explosivos, debido a la mayor extensión de la zona de daño en el piso y la clave del túnel comparado con las paredes. También, incluyen lo siguiente:

- El efecto de la relación de Poisson en la estimación del módulo de deformación es mínimo para valores de v = 0.1 a 0.35.
- Según los datos mostrados, el RMi estima de manera más realista el módulo de deformación de un macizo rocoso, que el sistema Q y que el RMR, los cuales arrojan datos muy altos en este tipo de macizos.

Para rocas débiles y masivas el valor de la deformación debe estimarse a partir de pruebas de laboratorio ajustadas por el efecto de la escala.

Relación entre <i>Emr</i> y <i>E</i> para cada clasificación geomecánica						
Método para calcular E		Valor de <i>E</i> , para σ_c igual a:				Ecuación usada para
		4 MPa	20 MPa	60 MPa	200 MPa	calcular <i>Em</i>
Prueba de lat de 50 mm) <i>E</i>	o. (muestra	1.6 GPa	8 GPa	32 GPa	80 GPa	$Em = 400\sigma_c$
Prueba de lat por el efecto	o. Ajustada escala <i>Emr</i> =	0.8 GPa	4 GPa	16 GPa	40 GPa	$E_{mr} = f_E \bullet 400E = 200\sigma_c$
	RMR=	81	82	87	92	
RMR* (Para roca	$E_m =$	62 GPa	64 GPa	74 GPa	84 GPa	$E_m = 2$ RMR -100
(Fara loca masiva)	relación <i>Em/Emr</i>	78	16	6	2	
	Q=	50	50	50	50	
Q*	$E_m =$	42 GPa	42 GPa	42 GPa	42 GPa	$E_m = 25 \log Q$
(Para roca	<i>Em</i> nuevo=	38 GPa	38 GPa	38 GPa	38 GPa	nuevo $E_m = 8Q^{0.4}$
masiva)	relación <i>Em/Emr</i>	53	11	3.5	1	
	RMi=	2	10	30	100	
RMi* (Para roca masiva)	E_m anterior=	13 GPa	16 GPa	19 GPa	23 GPa	$E_m = 5.6 \text{RMi}^{0.375}$
	$E_m =$	9 GPa	18 GPa	27 GPa	44 GPa	$E_m = 7 \mathrm{RMi}^{0.4}$
	relación <i>Em/Emr</i>	12	4	2	1.1	
*Valores usad	os = espaciamie	ento = 3 m : F	RQD = 100;	2 familias de	discontinuid	ades, rugoso,
discontinuidades estrechas y frescas, sin agua o influencia de esfuerzos.						

Algunos parámetros utilizados en el RMi tienen similitudes con los usados en otras clasificaciones como:

- Jp ≈ s = (Jp)²; entre el parámetro Jp del RMi y la constante s del criterio de falla de Hoek & Brown, existen similitudes según Palmström, 1996 (citado en Singh & Goel, 2011), esto se debe a que ambas caracterizan las propiedades geomecánicas de las discontinuidades en un macizo rocoso.
- *Vb* y *jC* son parámetros agregados al índice de resistencia geológica, GSI, por Cai et al. (2004) y pueden ser utilizados en la tabla para la valoración visual de macizos rocosos de Marinos & Hoek (2000), debido a que, para obtener el valor de GSI, se evalúa la estructura geológica y condición mecánica de la superficie y discontinuidades del macizo rocoso, el mismo concepto de *Vb* y *jC* respectivamente (Figura 37).
- Además de los parámetros *jA* y *jR* que son iguales a los utilizados por Barton (1974) en el índice Q (*Ja* y *Jr*).

Por lo tanto, puede decirse que el sistema RMi de Palmström (1995), tiene como base otros sistemas ya conocidos que han sido utilizados a lo largo de los años, cuya experiencia y fundamentos han sido justificados y modificados según sus resultados; esto, de acuerdo con Singh & Goel (2011), le da al sistema una base firme y la obtención de los datos resulta familiar para la evaluación del macizo rocoso.

Palmström (2001), sugieren la siguiente correlación entre el módulo de deformación y el RMi:

$$E_d = 7 \text{RMi}^{0.4} \tag{59}$$

En GPa, para RMi>1.0

Además, según los autores, a través de la resistencia del macizo rocoso estimada con el RMi es posible construir curvas de respuesta para túneles construidos bajo el esquema del llamado "Nuevo Método Austriaco, NATM".

Como ya se anticipó, el índice RMi tiene como beneficios la facilidad en la toma de datos y es útil cuando la información se requiere en las primeras etapas de un diseño de factibilidad, es decir, cuando una estimación aproximada es suficiente (Singh & Goel, 2011).

También resulta útil cuando se necesita comparar con el mismo parámetro diferentes unidades en el área de estudio, esto debido al fácil manejo de información y a que resulta sistemático para generar un buen juicio ingenieril.

Sus limitaciones radican en que está basado en una ecuación simple que busca estimar la resistencia a la compresión de un macizo rocoso, para lo cual utiliza la resistencia a la compresión

de la roca matriz y la influencia que tienen las discontinuidades en ella; sin embargo, no toma en cuenta otros factores que también pueden influir en el comportamiento integral del macizo rocoso.

Singh & Goel (2011) afirman que, aunque existe una cantidad enorme de combinaciones de materiales y características en las discontinuidades que conforman un macizo rocoso y que ninguna de las clasificaciones geomecánicas existentes puede describir de manera exacta su condición mecánica, el RMi es quizá el que mayor cercanía tiene a la realidad, al evaluar la resistencia de un macizo.

También se debe mencionar que los parámetros jR, Vb y jL se refieren a la escala, que requieren del manejo de un volumen representativo y, por ende, están limitados por este. Lo cual puede ocasionar errores al momento de su estimación.

Para Kumar (2002), el RMi es conservador comparado con el sistema Q, ya que este último está completamente basado en la excavación de túneles, dando una evaluación mejor fundamentada de las propiedades mecánicas de un macizo rocoso, bajo estas condiciones.

3.3. Recopilación y ajuste de datos de Khabbazi et al. (2012)

En la literatura, para el RMR de Bieniawski (1989), existen una mayor cantidad de datos de E_m medidos in situ vs RMR, debido a su uso generalizado entre la comunidad; esto lo hace fácil de correlacionar y poder obtener una curva de ajuste a la cantidad de datos recopilados con un error menor, comparado con las otras dos clasificaciones.

Lo anterior es evidente al observar el número de puntos utilizados en cada comparación; mientras que para el RMR es posible utilizar una gran cantidad de datos graficados (Bieniawski, Serafim & Pereira, Clerici, Stripa y CSMRS), para el índice Q y el RMi, sólo es posible utilizar una porción de éstos (Clerici, Stripa y CSMRS). Esto, además de reducir el rango de los resultados (debido a que no hay datos para RMi> 30, ni para Q > 30), produce una dispersión mayor de las ecuaciones empíricas formuladas respecto a los puntos graficados.

Respecto a la ecuación que mejor se ajusta a los datos graficados, es complicado elegir sólo una; para el caso de las ecuaciones de Bieniawski (1978) y Serafim and Pereira (1983) son aplicables a rangos específicos, aunque el uso adecuado de cada una según sus limitaciones podría dar una buena aproximación a la realidad.

Aunque Palmström y Singh, 2001, concluyen que su regresión lineal muestra menor dispersión que la mostrada por parte de Grimstad and Barton (1993) y la formulada por ellos con base en el sistema Q, las curvas correspondientes a Palmström (1995, 2001) muestran una gran dispersión respecto a los puntos graficados, esto implica un error cuadrático importante de las ecuaciones que proponen. No obstante que el rango de aplicación de ambas fórmulas para el sistema Q y el sistema RMi son limitados (macizos rocosos muy fracturados a calidad moderada a buena para el sistema Q y para el RMi de calidad extremadamente mala a muy buena), resulta ser un rango aceptable si se tiene en cuenta que macizos rocosos de mejor calidad que ese rango muestran una deformación baja.

Khabbazi et al. (2012), presentan una recopilación de múltiples mediciones in situ del módulo de Young de macizos rocosos y su correspondiente valor de RMR. Como ya se anticipó, para este trabajo es importante obtener el mayor número de datos posible, puesto que resulta complicado y costoso realizar pruebas in situ para conocer la deformación de un macizo rocoso; la información de pruebas in situ recopilada por otros autores o instituciones en el mundo es muy valiosa. La cantidad de datos con la que se cuente es relevante para realizar análisis de error de las ecuaciones empíricas publicadas por diferentes autores (se hablará de esto más delante) así como para llevar a cabo la definición de la mejor curva de ajuste.

Los datos obtenidos del trabajo de Khabbazi et al. (2012) muestran una tendencia similar a la presentada por Palmström y Singh (2001) (Figura 53), sin embargo, en valor absoluto son claramente menores, de modo que, para poder incorporarlos a los datos recopilados por otros autores (Serafim & Pereira, Bieniawski, Clerici, Stripa y Palmström y Singh (CSMRS) se debe seguir el mismo procedimiento utilizado por estos autores.

La diferencia que muestran los datos de Palmström y Singh (2001) y Khabbazi et al. (2012) respecto a los datos recopilados por otros autores (Figura 53 izquierda) posiblemente se deba al uso de explosivos en la excavación, lo que provoca que la zona ensayada se encuentre debilitada y por ende su deformación sea mayor (Palmström y Singh, 2001).

Una vez teniendo clara la similitud entre los datos publicados por Palmström y Singh (2001) y Khabbazi et al. (2012), es posible aplicar el factor de daño por explosivos igual a 2.5 sugerido por los primeros, para normalizar los datos.

La Figura 53 derecha muestra los datos de Palmström y Singh (2001) y Khabbazi et al. (2012) multiplicados por un factor de daño por explosión igual a 2.5, junto con los datos recopilados de otros autores. En esta ocasión se observa una tendencia similar entre los 3 grupos, esto hace posible que los datos ahora normalizados puedan ser utilizados junto con los antes recopilados, sumando 252 puntos, mismos que servirán para analizar y calcular una nueva curva de tendencia; que a su vez permitirá obtener una nueva fórmula con la cual calcular de manera empírica el módulo de Young de un macizo rocoso conociendo su valor de RMR.

Para fines de prediseño y dado el hecho de que, sólo en obras muy especiales se justifica realizar medidas de deformabilidad in situ, en un proyecto convencional de túnel es necesario establecer un rango razonable con el cual realizar los cálculos tenso-deformacionales y estructurales.

El procedimiento más directo para establecer dicho rango consiste de dos etapas fundamentales: la primera, encontrar una correlación que represente la media aproximada de los valores de E_m que se tienen reportados en la literatura; la segunda etapa consiste en establecer las cotas inferior y superior de variabilidad posible para cada rango de calidad presente en el macizo.

Figura 53. Izquierda: comparación entre datos recopilados de la literatura y los datos obtenidos por Palmström (2001) y Khabbazi et al. (2012) sin modificar; derecha: comparación entre datos recopilados de la literatura y los datos obtenidos por Palmström, 2001 y Khabbazi (2012), estos últimos multiplicados por un factor de daño igual a 2.5.

3.3.1. Correlaciones empíricas de diferentes autores, entre E_m y clasificaciones geomecánicas, junto con la propuesta en este trabajo

A partir de las correlaciones empíricas propuestas por los distintos autores es posible definir estadísticamente el rango de error (respecto a los valores medidos *in situ*) de cada una de ellas, para establecer cuál es la que presenta el mejor índice de correlación. La ecuación para medir el margen de error o *media de error cuadrático* (M_e^2) es:

$$M_e^2 = \sqrt{\frac{\sum_{i=1}^{N} \left(\left(E_m^{estimado} - E_m^{medido} \right)^2 \right)}{N}}$$
(60)

donde $E_{\rm m}^{estimado}$ se calcula con cada una de las correlaciones empíricas, $E_{\rm m}^{medido}$ son las mediciones y N es el número de mediciones *in situ*, respectivamente.

Los ahora 252 datos de E_m medidos in situ fueron utilizados para calcular la medida del error cuadrático (M_e^2) de las ecuaciones empíricas de los siguientes autores: Serafim & Pereira

(1983), Hoek (2002), Barton (2002), Gokceoglu (2003), Hoek (2004), Hoek y Brown (1997), Mohammadi y Rahmannejad (2010), Palmström (1995 y 2001), Mitri et al. 1994, Galera et al. 2005, Sonmez et al. (2004), Aydan et al. 1997 y Read et al. 1999. Como resultado se obtuvo una variedad de valores de M_e^2 que van desde 7 hasta 17 y otros casos excepcionales que no fueron incluidos por tener un valor fuera de un rango normal.

Las correlaciones entre el módulo de deformación del macizo rocoso y sus respectivos autores, utilizados en esta recopilación se citan a continuación.

• Hoek, 2002 (GSI, σ_c^i, D)

para
$$\sigma_{\rm c}^{i} < 100 \,{\rm MPa}$$

$$E_{\rm m} = \left(1 - \frac{D}{2}\right) \sqrt{\frac{\sigma_{\rm c}^{i}}{100} \cdot 10^{\frac{\rm GSI-10}{40}}}$$
(61)

para
$$\sigma_c^i > 100 \text{ MPa}$$
 $E_m = \left(1 - \frac{D}{2}\right) \cdot 10^{\frac{\text{GSI} - 10}{40}}$ (62)

donde D es el factor de daño producido por el método de excavación al macizo rocoso

- Bieniawski, 1978 (RMR) paraRMR> 55 $E_{\rm m} = 2 {\rm RMR} - 100 ({\rm GPa})$ (63)
- Serafim y Pereira, 1983 (RMR)
- para 10 <RMR< 50 $E_{\rm m} = 10^{\frac{\rm RMR-10}{40}}$ (GPa) (64)
- Barton, 1992 (Q)

$$E_{\rm m} = 25 \operatorname{Log}_{10} Q \ ({\rm GPa}) \tag{65}$$

• Barton, 2002(Q, $\sigma_{\rm c}^i$)

$$E_{\rm m} = 10 \left(Q \frac{\sigma_{\rm c}^{i}}{100} \right)^{(1/3)} (\rm GPa)$$
 (66)

• Gokceoglu, 2003 (RMR)

$$E_{\rm m} = 0.073 \times e^{0.075 \,{\rm RMR}}$$
 (GPa) (67)

• Hoek 2004

$$E_{\rm m} = 0.33 \times e^{0.064 \rm GSI}$$
 (GPa) (68)

(70)

• Hoek y Brown, 1997

$$E_{\rm m} = \sqrt{\frac{\sigma_{\rm c}^{i}}{100}} 10^{\left(\frac{\rm GSI-10}{40}\right)} \quad (\rm GPa) \tag{69}$$

- Palmström (1995) para RMi>0.1 $E_m = 5.6 \text{RMi}^{0.375}$
- Palmström y Singh (2001)

$$E_m = 7 \mathrm{RMi}^{0.4} \tag{71}$$

• Mitri et al. 1994

para 1<RMi<30

$$E_m = E_i \left\{ 0.5 \left[1 - \left(\cos \left(\pi \cdot \frac{\text{RMR}}{100} \right) \right) \right] \right\}$$
(72)

• Galera et al. 2005

$$E_m = E_i \cdot e^{\left(\frac{\text{RMR} - 100}{36}\right)} \tag{73}$$

• Sonmez et al. (2004)

$$E_m = E_i \left(s^a\right)^{0.4} \tag{74}$$

En MPa, donde $E_i = f \times \sigma_c^i$, s y a son los parámetros del criterio de Hoek y Brown (2002) y f un factor de ajuste.

• Aydan et al. 1997

$$E_m = 0.0097 \text{RMR}^{3.54} \tag{75}$$

• Read et al. 1999

$$E_m = 0.1 \cdot \left(\frac{\mathrm{RMR}}{10}\right)^3 \tag{76}$$

Además de las anteriores correlaciones, como parte de este trabajo, Sánchez y Lozada, (2020), proponen la siguiente ecuación:

$$E_{\rm m} = 572.22e^{0.054 \cdot RMR} \tag{77}$$

Esta correlación es analizada más adelante respecto a su grado de ajuste con los datos recopilados de la literatura.

En las gráficas mostradas en la Figura 54, se muestran las curvas de correlación para cada ecuación de correlación entre *Em* y RMR, de diversos autores (Tabla 28), junto todos los valores recopilados de la literatura, para tener una idea visual de cuanto se ajustan las curvas a éstos.

Los valores más bajos en cuanto a la media de error cuadrático (M_e^2) se obtuvieron de las ecuaciones empíricas formuladas por Serafim & Pereira (1983), Barton (2002), Mitri et al. 1994 y Aydan et al. 1997 cuyo error es de 7, mientras que los valores más altos corresponden a las ecuaciones de Palmström y Singh (2001) con $M_e^2=17$, Palmström (1995) y Hoek (2002) con $M_e^2=14$ (Tabla 28).

Adicionalmente se realizó una regresión exponencial para los datos medidos y se consideró un estudio realizado por Mohammadi y Rahmannejad (2010) de la Universidad de Kerman (Irán) quienes realizaron una regresión por medio de redes neuronales artificiales. Las correlaciones que fueron descartadas tienen rangos de aplicabilidad muy limitados y por lo tanto no son representativas.

Figura 54. Curvas de correlación de diversos autores (Tabla 28), junto con todos los datos recopilados de la literatura de módulo de elasticidad del macizo medidos in situ (252 puntos).

3.4. Correlación entre el módulo de deformación de macizos rocosos y el RMi

En esta sección se emplearán las correlaciones entre RMi – índice Q y RMi – RMR, obtenidas por Hashemi et al. 2010 y Soufi et al. 2018.

De la misma manera en la que Palmström y Singh (2001), utilizan datos de E_m medidos in situ, para obtener curvas de ajuste, que proporcionen una correlación entre el E_m y el RMi [ecuaciones (55) y (56)]; en este apartado se utiliza el mismo concepto, pero utilizando todos los datos recopilados de la literatura (Figura 53).

Para poder obtener una correlación que permita calcular el módulo de deformación de un macizo rocoso, calculando su índice de resistencia (RMi), primero es necesario tener la mayor cantidad de datos de E_m medidos in situ y evaluados con la clasificación RMi, para obtener una curva de ajuste que se ajuste a estos con el menor error cuadrático posible. Sin embargo, no se cuenta con mucha información en la literatura sobre macizos rocosos clasificados mediante el RMi y que a su vez se haya medido en ellos su *Em* in situ, pero sí es posible utilizar los datos de la Figura 47 y utilizar las ecuaciones de correlación (49) y (50) de Soufi et al. 2018 y las ecuaciones (46) y (47) de Hashemi et al. (2010), para obtener una relación entre datos de E_m medidos in situ y su posible valor según la clasificación RMi.

Criterio	Dependencia	M_e^2
Hoek (2002)	GSI, D y $\sigma_{\rm c}^i$	14
Barton (2002)	Qy $\sigma_{ m c}^i$	7
Serafim y Pereira, 1983	RMR	7
Gokceoglu (2003)	RMR	13
Hoek (2004)	GSI	9
Hoek y Brown (1997)	RMR, $\sigma_{ m c}^{i}$	8
Sánchez y Lozada (2020)	RMR	7
Mohammadi y Rahmannejad (2010)	RMR	5.84
Palmström (1995)	RMi > 0.1	17
Palmström y Singh (2001)	1 <rmi<30< td=""><td>15</td></rmi<30<>	15
Mitri et al. 1994	E_i y RMR	7
Galera et al. 2005	E_i y RMR	12
Sonmez et al. 2004	GSI	13
Aydan et al. 1997	RMR	7
Read et al. 1999	RMR	8

Tabla 28. Medidas del error cuadrático de distintas correlaciones empíricas entre E_m y RMR.

Los valores de RMi que resultan de avaluar las ecuaciones (46), (47), (49) y (50) son promediados para obtener un único valor que representa su valor de RMi y su valor de *Em*, esto se obtiene sumando ambos valores de RMi obtenidos con las ecuaciones de cada autor y dividiendo a ambos entre dos; además, las 4 ecuaciones tienen las mismas condiciones que Palmström (1995) y Palmström y Singh (2001), obtienen en las ecuaciones (55) y (56).

En la Figura 55, se tienen los datos recopilados (mostrados en la Figura 47) transformados de su valor original de RMR a RMi resultado del promedio entre las ecuaciones de correlación (47) de Hashemi et al. 2010 y la ecuación (49) de Soufi et al. 2018, junto con su respectiva curva de ajuste y su ecuación correspondiente, que puede ser consultada en la Tabla 29. Además, se evaluaron las ecuaciones (55) y (56) con estos mismos datos, graficándose sus respectivas curvas para los rangos propuestos por Palmström (1995) y Palmström y Singh (2001).

De la misma manera, en la Figura 56 se muestran los datos recopilados (Figura 53) transformados de su valor de Q a RMi obtenido del promedio entre las ecuaciones de correlación (46) de Hashemi et al. 2010 y la ecuación (50) de Soufi et al. 2018, con su curva de ajuste y su ecuación correspondiente, que también puede ser consultada en la Tabla 29, además se evaluaron las ecuaciones (55) y (56) con estos mismos datos, graficándose sus respectivas curvas para los rangos propuestos por Palmström (1995) y Palmström y Singh (2001).

Figura 55. Datos transformados de su valor original de RMR a RMi obtenido del promedio entre las ecuaciones de correlación (47) de Hashemi et al. 2010 y la ecuación (49) de Soufi et al. 2018, junto con su respectiva curva de ajuste y su ecuación correspondiente.

Ecuaciones correspondientes a las curvas de tendencia obtenidas para cada gráfica						
Autor de la correlación utilizada	Ecuación obtenida	Coeficiente de correlación <i>R</i> ²				
$RMi = 0.5195Q^{0.7202}$ Soufi et al. 2018	Em 2625 02DM: 1 4090 10	$P^2 - 0.80$				
$RMi = 1082Q^{0.4945}$ Hashemi et al. 2010	Em = 3025.02 RIVII + 4980.19	<i>K</i> =0.89				
$RMR = 7.71 \ln(RMi) + 54.441$ Soufi et al.						
2018	$E_m = 0.407 \ln(\mathbf{PM_i}) + 8.58$	$R^2 = 0.70$				
$RMR = 7.5 \ln(RMi) + 36.8$ Hashemi et al.	Em = 0.407 m(Kivit) + 0.30					
2010						

Tabla 29. Líneas de tendencia obtenidas para cada grupo de puntos.

Figura 56. Datos transformados de su valor Q a RMi obtenido del promedio entre las ecuaciones de correlación (46) de Hashemi et al. 2010 y la ecuación (50) de Soufi et al. 2018, junto con su respectiva curva de ajuste y su ecuación correspondiente.
4. TRABAJO DE CAMPO, APLICACIÓN PRÁCTICA EN TÚNEL EN EL ESTADO DE OAXACA.

4.1. Presentación del equipo, fotografía del frente y su normalización

El proceso de la toma de la fotografía del frente consta de dos fases, la primera es preparar las dianas circulares y el montaje de los tripiés, que pueden tener configuraciones diferentes (Figura 57), según sea el tamaño de la porción del terreno que queramos analizar; el manual sugiere dos configuraciones y distancia entre las dianas, aunque a veces por cuestiones técnicas no pueden seguirse fielmente estas configuraciones, es importante tomar la medida exacta entre ambos polos ya que el programa ShapeMetriX3D requiere de este dato al momento de procesar y normalizar el modelo tridimensional.

Figura 57. Configuraciones de las dianas circulares montadas en el tripié, según el tamaño del frente. Tomada de 3G Software & Measurement GmbH

Las tres dianas se colocan frente a la excavación, lo más cerca posible de la pared que se quiera fotografiar, se asegura bien al piso y se nivela. Es importante que se deje libre la zona de interés de la excavación, colocando los tripiés en los extremos.

Una vez colocados los tripiés con las dianas montadas, es necesario e imprescindible referenciarlas, para que el modelo quede orientado y normalizado correctamente y las mediciones que realicemos tengan la mayor exactitud, para esto se sugieren dos métodos:

- El más sencillo y de mayor exactitud es la medición de las dianas con una estación topográfica, que mide el centro de las tres dianas y nos proporciona el punto exacto en coordenadas UTM.
- El segundo es manual y se utiliza una brújula para medir el rumbo y echado de un plano bien definido y que sea visible en la fotografía; además se tiene que medir el rumbo entre los dos tripiés (Figura 57). Esto para poder hacer una corrección del norte al momento de procesar la imagen.

Figura 58. A la izquierda la corrección del norte, a la derecha plano de referencia medido en campo. Tomada de 3G Software & Measurement GmbH.

Una vez colocadas y referenciadas las dianas es posible tomar el par de fotografías del frente de excavación, esto se realiza a una distancia en la cual sea visible toda la pared de roca, desde el piso hasta la clave, esta distancia influye en la distancia en la cual se tomará la segunda fotografía.

La cámara tiene que apuntar de manera perpendicular al frente, para que la fotografía no tenga distorsiones o formen un ángulo respecto a la cámara, una vez tomada la primera fotografía, como se dijo anteriormente se mide la distancia que hay entre el frente y la cámara, esta se divide entre 5 a 8 y se posiciona la cámara para tomar la segunda fotografía (Figura 59); la segunda fotografía tiene que ser lo más paralelo posible a la primera.

Figura 59. Ejemplificación de la distancia entre la cámara y el frente y la distancia entre ambas fotografías. Tomada de 3G Software & Measurement GmbH.

El primer paso en el proceso y análisis del modelo 3D del frente de excavación, es la generación de la imagen tridimensional, para esto es necesario cargar el par de imágenes del mismo frente, izquierda y derecha, con la misma distancia focal y apertura del lente.

Posteriormente el programa requerirá que emparejemos ambas imágenes manualmente, es sencillo tomando de referencia las dianas circulares como los puntos de la imagen que se quieren empatar, después de esto tendremos que indicarle al programa donde está el techo y el piso de la porción del frente que requerimos. Una vez que el programa termine de generar la imagen 3D, nos mostrará una vista preliminar y un indicador que nos mostrará la calidad de la imagen 3D generada (Figura 60), mientras el indicador esté más cerca del color verde mejor y mientras más cerca del color rojo peor será su calidad.

Figura 60. Vista preliminar de la imagen 3D generada, además del indicador de calidad de la imagen. Tomada de 3G Software & Measurement, 2010.

Una vez generada la imagen tridimensional, esta debe ser normalizada, esto se hace indicando en el programa ShapeMetriX3D (en la sección *SMX normalizer*) donde están las dianas circulares en ambas fotografías, así como la distancia entre ambas, según la configuración con la que se hayan montado en el tripié.

Posteriormente, si fue posible medir las dianas con una estación topográfica o manualmente, se procede a referenciar la imagen. Para el primer caso en la sección *SMX referencer*, se le indica al programa la posición de las dianas y se les numera, de modo que una vez cargado el archivo que contiene las coordenadas con la misma numeración y orden, el programa sepa a cuál diana corresponde cada coordenada.

Para el segundo caso en la sección *SMX Surface trimmer* se carga la imagen 3D y se dibuja manualmente la traza del plano que se midió anteriormente y se le indica al programa su dirección, posteriormente en la sección *SMX normalizer* se realiza la corrección del norte, indicando la posición de las tres dianas circulares y el rumbo que forman ambos tripiés.

Normalizada y referenciada la imagen 3D, será posible analizarla y formar un modelo tridimensional de la estructura geológica del frente. Esto se realiza en la sección *SMX analyst*, donde se carga la imagen y se siguen los siguientes pasos para su análisis:

- 1. Se localizan de forma visual el número de familias presentes en el frente de excavación, así como las fracturas y planos bien formados que se puedan indicar.
- 2. Una vez teniendo una imagen general del frente, se comienzan a dibujar los planos de discontinuidad que se forman en la imagen 3D, esto con la herramienta *región grawn*, esto se repite en todos los planos que se observen, cambiando continuamente la vista para que sea más fácil apreciar la tridimensionalidad de la imagen.
- 3. Obtenidos los planos de discontinuidad, se tienen que indicar las trazas de las discontinuidades presentes en el frente, esto quiere decir que se tiene que indicar la forma y extensión de las fracturas que se observen, dándole cierta tridimensionalidad a la traza, para que no sea simplemente una línea dibujada en el frente, sin dirección ni inclinación.
- 4. Cuando se han indicado todos los rasgos estructurales del macizo rocoso visible por el frente de excavación, es posible conocer el número de familias de discontinuidades presentes, esto con la opción *Clustering Structure Sets*, que de manera automática logra acomodar en familias con rumbo y echado similar, todos los rasgos que le indicamos anteriormente. Esto debe tener sus reservas y debe influir mucho el criterio de quien analiza la imagen 3D, para que se acerque mejor a la realidad.
- 5. Una vez obtenidas las familias de discontinuidades, es posible obtener datos del modelo, datos que nos serán útiles al momento de clasificar el macizo rocoso del frente y saber su estado mecánico. Con la opción *view stereo net* es posible conocer el número de familias, junto con su rumbo y echado promedio (Figura 65). Además, con la opción *scanline* es posible conocer el espaciamiento, persistencia y frecuencia de las discontinuidades para cada familia.

4.2. Análisis y clasificación del frente en el cadenamiento 0+196 del túnel.

4.2.1. Descripción general del frente

El macizo rocoso excavado está fracturado en bloques regulares de volumen variable, aunque en algunas zonas, principalmente en la parte izquierda y central del frente se aprecia una roca masiva, mientras que en la parte derecha se observan bloques de menor tamaño y rastros de material fino rellenando las discontinuidades.

Un análisis preliminar del frente permite identificar 3 familias cuya orientación da lugar a la formación de bloques de volumen considerable; además son identificables rasgos estructurales importantes como las discontinuidades mostradas en la Figura 61, cuya continuidad es de 3 metros aproximadamente, con un relleno que se caracteriza como material suelto, desintegrado, con manchas de material fino color marrón.

Figura 61. Arriba zona oxidada en la parte central del frente; en medio, rasgos estructurales importantes; abajo, cuñas formadas en el perfil del túnel.

En el frente se formaban cuñas que, aunque eran de tamaño poco considerable, resultaba importante prestarles atención ya que eran desfavorables; se recomendó monitorear su comportamiento y ajustar el tiempo de colocación del soporte, así como la ejecución de la voladura,

con algún sistema de precorte. En las zonas indicadas en la Figura 61, es donde se observa la mayor cantidad de humedad. Como se mencionó anteriormente, estas discontinuidades se encontraban rellenas de material fino color marrón, con humedad. No se observaba flujo de agua, pero se consideró que la humedad podía disminuir la resistencia al corte del material de relleno y desestabilizar el frente.

4.2.2. Zonificación

Debido a las diferentes condiciones en el macizo, se decidió definir zonas de características similares a fin de poder realizar una caracterización sistemática que proporcionara un orden y una mayor precisión en la toma de datos y descripción del frente.

De manera general es posible distinguir dos zonas con diferentes propiedades. A continuación, se describen.

4.2.2.1. Zona I

Se trata de un sector muy masivo, aunque fracturado y con una forma sistemática en los bloques, definidos por discontinuidades cerradas.

4.2.2.2. Zona II

Corresponde con la intersección entre las discontinuidades particulares que se muestran en la Figura 62 y que, como se explicó antes, está constituida por bloques de menor tamaño y mayor cantidad de fracturas, con relleno fino. Esta zona fue migrando a través del túnel; probablemente se trate de una zona de falla que es más o menos paralela al trazo del túnel. Esta condición varía del centro hacia el hastial derecho y en la parte superior del túnel, dando como resultado desprendimientos de bloques en el frente, sin embargo, este cambio de posición de la traza de la estructura respecto al eje del túnel terminó por quedarse atrás.

Figura 62. Zonificación del frente. Zona I, izquierda (azul); zona II, derecha (marrón).

Figura 63. Rugosidad y ondulación de una pared de discontinuidad en el frente del túnel cadenamiento 0+196.

Figura 64. Estado de las discontinuidades: rugosidad y presencia de humedad.

4.2.3. Descripción de las discontinuidades en la zona I

En la Tabla 30, se muestran las características de las discontinuidades, medidas solamente en la zona 1 del frente (Figura 62), estas características fueron tomadas del método sugerido para caracterizar y monitorear macizos rocosos del ISRM, 1981, y son las siguientes: orientación e inclinación de las discontinuidades, espaciado entre discontinuidades, continuidad de los planos de discontinuidad, rugosidad de las paredes, resistencia de las paredes, abertura entre paredes de discontinuidad, relleno de aberturas y filtraciones; las primeras tres características se obtuvieron mediante la aplicación de la herramienta ShapeMetriX3D, la rugosidad, abertura, relleno y filtraciones fueron cartografiadas directamente del frente y fue necesario obtener un promedio de todas ellas, quedando en la tabla la de mayor presencia; finalmente, la resistencia a la compresión simple fue tomada de la literatura (Verbrugge y Schroeder, 2018).

4.2.4. Descripción de las discontinuidades en la zona II

En la Tabla 31, se muestran las características de las discontinuidades, medidas en la zona 2 del frente (Figura 62) y fueron medidas de la misma manera que las de la Tabla 30. En el apartado inferior de ambas tablas, se encuentran las abreviaturas para las características: rugosidad, abertura, relleno y filtraciones; junto con su significado.

Familia	Orientación (dip/dip H direction)	Espaciado (Continuidad	Rugosidad	Resistencia de las paredes	Abertura	Relleno	Filtraciones
1	61.3°/137.2°	1.01 m	0.97 m	O/R	120 MPa	С	S/R	S
2	66.9 °, 205.7 °	1.02 m	1.01 m	O/R	100 MPa	С	S/R	S
3	46.2 ° 13.6 °	0.80 m	0.94 m	O/R	120 MPa	С	S/R	S
4	67.5 °, 320.9 °	0.72 m	0.95 m	O/R	120 MPa	Plte/A	М	Н
5	48.8 °, 271.5 °	0.93 m	1.31 m	O/R	120 MPa	С	S/R	S
6	20.2 °, 155.6 °	0.52 m	0.94 m	O/R	120 MPa	Plte/A	S/R	Н
			A	breviaturas:				
Rugosidad :	O – ondulada P – plana E – escalonada R – rugosa L – lisa Pu – pulida	Abertura: C- A- Ca M- M- Di	-cerrada -abierta 1-ancha 1-cavernoso -muy o-moderadament te-parcialmente	Relleno:	S/R-sin relleno M-manchado F-fino G-grueso	Filtracione	S:	S–secas H–húmedo F–flujo

Tabla 30. Descripción de las familias de discontinuidades correspondientes a la zona I del frente.

4.2.5. Análisis con ShapeMetriX3D

Con ayuda del sistema ShapeMetriX3D, fue posible identificar 6 familias de discontinuidades y realizar una comparación entre el frente anterior y el actual; esto permitió observar las variaciones de dirección e inclinación de las familias de discontinuidades respecto al frente excavado del túnel.

En el frente anterior (0+193), las familias 5 y 6 tuvieron un mayor en su rumbo e inclinación, la familia 5 cambió totalmente en su dirección de echado, de oeste hacia este, mientras que la familia 6 no se encontraba en el frente anterior.

En el primer frente (0+187), se tenían solo dos familias (3 y 4) que eran desfavorables al frente del túnel, debido a la dirección de su echado en contra del avance de la excavación. En este nuevo frente se les suma la familia 5 que tiene una dirección muy desfavorable respecto a la excavación del túnel, debido a que es casi paralelo a este, lo que implica una disminución de 12 puntos en el RMR.

Las familias 1, 2 y 3 son discontinuidades que se presentan tanto en la presente estación como en las anteriores; posiblemente son las familias principales en la región y las demás familias son asociadas a éstas, lo que ocasiona que cambien constantemente de dirección e inclinación.

Familia	Orientación (dip/dip direction)	Espaciado	Continuidad	Rugosidad	Resistencia de las paredes	Abertura	Relleno	Filtraciones
1	61.3°, 137.2°	0.89 m	0.64 m	S/L	30 MPa	Mo/A	A/L	Н
2	66.9 °, 205.7 °	0.37 m	1.0 m	S/L	30 MPa	Mo/A	L/A	Н
3	46.2 ° 13.6 °	1.36 m	0.54 m	O/R	100 MPa	Plte/A	М	S
4	67.5 °, 320.9 °	0.80 m	0.67 m	O/R	100 MPa	Plte/A	S/R	S
5	48.8 °, 271.5 °	0.68 m	1.42 m	S/L	30 MPa	Mo/A	L/A	Н
6	20.2 °, 155.6 °	0.20 m	0.53 m	O/R	100 MPa	Plte/A	S/R	S
			At	previaturas:				
Rugosidad:	O – ondulada P – plana S-suave E – escalonada R – rugosa L – lisa Pu – pulida	Abertura C- : A- Ca M- Mc Plt	cerrada abierta –ancha –cavernoso -muy –moderadamente e–parcialmente	Relleno:	S/R-sin relleno M-manchado A-arenoso L-limoso Ar – arcilloso	Filtracione	s:	S–secas H–húmedo F–flujo

Tabla 31. Descripción de las familias de discontinuidades correspondientes a la zona II del frente.

Figura 65. A la izquierda el estereograma con las 6 familias principales presentes en el frente de excavación cadenamiento 0+196. A la derecha imagen tridimensional del frente de excavación del cadenamiento 0+196.

a) Descripción

Para este análisis de formación de cuñas se utilizó la combinación de la familia 3 (en el estereograma de color naranja), la familia 4 (en el estereograma de color amarillo) y la familia 5 (en el estereograma de color cian). Se eligieron estas 3 familias debido a que son las más desfavorables para la estabilidad del túnel.

Figura 66. Estereograma y cuñas formadas por las familias 3, 4 y 5.

Con esta combinación de familias y con ayuda del programa UNWEDGE se definieron 8 cuñas principales: dos que se forman en el frente de excavación, una en el piso, dos en los hastiales y dos en la parte superior del túnel. Aunque es importante tener en cuenta a todas (salvo la del piso), se estableció la cuña 7 es de un tamaño considerable, aunque tiene un factor de seguridad de 2, si su tratamiento de estabilización (anclaje) no es el correcto, o su tiempo de colocación es demasiado, podría causar problemas a la integridad del túnel.

4.2.6. Análisis de 3 frentes de excavación según su grado de fracturamiento

Con base al grado de fracturamiento, se enlistan las características geomecánicas que impactan en la resistencia de macizos rocosos, con el objetivo de proponer la clasificación geomecánica que mejor se adapta a tal grado. Se toman como ejemplos, 3 frentes caracterizados en el túnel San Antonio, con diferentes grados de fracturamiento para tal propósito.

4.2.6.1. Frente de excavación No. 08, cadenamiento 0+208. Macizo rocoso poco fracturado.

Las características en macizos rocosos poco fracturados o masivos (véase la Figura 67), según sea el impacto que éstas tienen en la estabilidad de la excavación, se ordenan conforme su importancia, a continuación:

- 1. Resistencia a la compresión simple de la roca matriz
 - El comportamiento mecánico de un macizo rocoso con pocas discontinuidades se asemeja, en cierto grado, al de una probeta de roca matriz, por lo que, esta característica es primordial en la caracterización de macizos.
- 2. Geometría de la excavación
 - Puede que las características de las discontinuidades sean desfavorables en la resistencia global del macizo rocoso, sin embargo, si éstas no tienen forma de moverse (incompatibilidad cinemática), por lo que, es más importante seguir un método de excavación correcto y unos avances acordes a la calidad de la roca, que, tener una familia de discontinuidades desfavorable a la excavación.

- 3. Características de las discontinuidades
 - El movimiento de grandes bloques, es causado por las condiciones desfavorables en las discontinuidades, y la característica con mayor importancia, según varios autores, es la resistencia al corte.
- 4. Estado de esfuerzos
 - El estado de esfuerzos puede afectar de manera favorable o desfavorable al macizo rocoso con estas características, en un macizo rocoso masivo que, además, tiene una resistencia alta y una cobertura suficiente para tener un estado tensional alto, puede impedir el movimiento de bloques por el confinamiento, sin embargo, puede también provocar lajamientos y explosiones de roca, o *squeezing* en rocas con resistencia baja.
 - Además, un macizo rocoso masivo con roca poco resistente y un estado tensional alto, puede provocar deformaciones en la geometría del túnel.

Figura 67. Frente de excavación No. 08, cad. 0+208. Macizo rocoso poco fracturado-masivo. Se indican las fracturas principales sobre el frente de excavación.

Figura 68. Familias de discontinuidades presentes en el frente de excavación, correspondiente al cadenamiento 0+208, obtenidos mediante la herramienta ShapeMetriX3D.

En la Figura 69 se muestra un esquema renderizado en Sketchup, cuyo objetivo es mostrar cómo se forman grandes cuñas y/o bloques, en macizos rocosos masivos, donde el espaciamiento y la continuidad de las fracturas son amplios, dando lugar a su formación.

Bieniawski y Celada, en el RMR₁₄, siguen utilizando un valor de corrección para diferentes rumbos e inclinaciones de la familia principal, desfavorables para la excavación. Sin embargo, esto puede dar la apariencia de un sistema geomecánico bidimensional, siendo que, para comprender el comportamiento geomecánico de un macizo rocoso en una excavación, es indispensable analizarlo como un medio tridimensional. Como se observa en la Figura 69, a pesar de tener una familia de discontinuidades en contra de la excavación, que, según los autores, sería desfavorable para la excavación, no es necesariamente así, puesto que, las cuñas que se forman no tienen salida, ya sea por la combinación de las 3 familias o la geometría de la excavación; aún entonces, intervendrían la resistencia al corte de las discontinuidades y el confinamiento del túnel.

Por lo anterior el sistema de clasificación que mejor describe y caracteriza este tipo de macizos rocosos es el RMi, sobre todo si el estado tensional no es muy alto; además, recordando que, el RMi tiene como sus parámetros de clasificación a la resistencia a la compresión simple de la roca matriz y a las características de las discontinuidades, sería práctico y fácil caracterizar macizos rocosos masivos con éste. Aunque también sería conveniente tomar en cuenta al índice Q de Barton, sobre todo si el túnel o excavación tiene una cobertura importante.

Figura 69. Esquema renderizado donde se muestran las familias principales presentes en el frente de excavación y la cuña formada por éstas.

4.2.6.2. Frente de excavación No. 07, cadenamiento 0+205. Macizo rocoso fracturado.

Las características en macizos rocosos fracturados (véase la Figura 70), según sea el impacto que éstas tienen en la estabilidad de la excavación, se ordenan conforme su importancia:

- 1. Características de las discontinuidades
 - La formación de bloques y su volumen son regidos por el número de familias de discontinuidades y el espaciamiento entre éstas, dando como resultado bloques de volumen determinado, entre las características más importantes para estos macizos son: continuidad de las discontinuidades, espaciamiento entre estas y número de familias. Además, la rugosidad y el relleno de discontinuidades son importantes, sin embargo, el grado de meteorización puede dar indicios de la condición de las paredes y de un posible relleno, si la roca es fresca o ligeramente meteorizada es posible que muchas de las paredes sean rugosas y cerradas.
- 2. Grado de meteorización
 - Como en el punto anterior se menciona, según el grado de meteorización juega un papel muy importante, debido a que, según sea el caso, la resistencia de la roca varía, así como, la rugosidad, abertura y relleno de las discontinuidades.
- 3. Geometría de la excavación
 - Para un macizo rocoso fracturado, seguramente se formaran cuñas con una largo menor a 1 metro, por lo que, el avance de excavación será mayor a la longitud de las cuñas, incluso entonces, según las características de los dos apartados anteriores, es probable que las cuñas no se muevan, si las condiciones son favorables.
- 4. Estado de esfuerzos
 - El estado de esfuerzos, aunque podría afectar de manera favorable, a la estabilidad de excavaciones en macizos rocosos fracturados, sobre todo cuando se forman cuñas de tamaño importante, seguramente cual sea el estado de esfuerzos, una excavación de este tipo, tendrá desprendimientos de cuñas de cualquier manera. Por lo que, es importante conocer el módulo de deformación del macizo rocoso, para poder aplicar de manera efectiva los métodos de excavación y soporte.

El sistema de clasificación que mejor describe y caracteriza este tipo de macizos rocosos es el RMR₁₄.

Figura 70. Frente de excavación No. 07, cadenamiento 0+205. Macizo rocoso fracturado. Se indican las fracturas principales sobre el frente de excavación.

Figura 71. Familias de discontinuidades presentes en el frente de excavación, correspondiente al cadenamiento 0+205, obtenidos mediante la herramienta ShapeMetriX3D.

4.2.6.3. Frente de excavación No. 01, cadenamiento 0+187. Macizo rocoso muy fracturado.

Las características en macizos rocosos fracturados (véase la Figura 72), según sea el impacto que éstas tienen en la estabilidad de la excavación, se ordenan conforme su importancia:

- 1. Estado de esfuerzos
 - El estado de esfuerzos va a afectar de manera desfavorable a este tipo de macizos rocosos, cualquiera que sea la profundidad del túnel, habrá problemas de estabilidad.
- 2. Geometría de la excavación
 - El avance y el método constructivo, serán factores determinantes en la estabilidad de túneles, excavados en macizos rocosos muy facturados.
- 3. Presencia de agua
 - Existiría en este tipo de macizos rocosos, permeabilidad secundaria que tendría afectaciones en la excavación.
- 4. Características de las discontinuidades
 - Las discontinuidades para estos macizos rocosos, tendrían un efecto desfavorable en la estabilidad del talud, el espaciamiento y continuidad de las discontinuidades sería elevado, lo que ocasionaría la formación de bloques de tamaño menor a 1 m³, por lo que, la superficie de contacto entre caras es bajo, disminuyendo la fricción para mantenerlos estables; la resistencia a la compresión simple, tendría un efecto casi imperceptible, a menos de que la excavación tenga un estado tensional alto.

El sistema de clasificación que mejor describe y caracteriza este tipo de macizos rocosos es el índice Q de Barton.

Figura 72. Frente de excavación No. 01, cad. 0+187. Macizo rocoso muy fracturado. Se indican las fracturas principales sobre el frente de excavación.

Figura 73. Familias de discontinuidades presentes en el frente de excavación, correspondiente al cadenamiento 0+187, obtenidos mediante la herramienta ShapeMetriX3D.

5. CONCLUSIONES

La comprensión de la posible respuesta mecánica de un macizo rocoso ante la perturbación ocasionada por una obra civil implica el entendimiento de todos los factores que intervienen en ella; se trata de un proceso cognitivo en el cual es fundamental la experiencia del ingeniero, así como el conocimiento adquirido durante la construcción. Es importante comprender al macizo rocoso como un medio tridimensional en el que cada factor es dependiente de otro, como un sistema interconectado.

Un sistema taxonómico como lo son las clasificaciones geomecánicas, ayuda a materializar un concepto abstracto que proviene de la percepción del interprete. Es complicado para cualquier profesional en el campo de la geotecnia adquirir conocimientos que le ayuden a analizar cada factor que interviene en el comportamiento de un macizo rocoso, así como relacionarlos entre sí, e incluso, inferir qué factor o factores tienen la mayor importancia en cada análisis particular, este no es un proceso inmediato y depende de las experiencias que ha adquirido.

El objetivo principal del análisis de las principales clasificaciones geomecánicas, es proporcionarle al lector una idea de cómo se crearon y fundamentaron, siendo que en ellas se ha vertido la experiencia de muchas obras subterráneas; el objetivo ha sido el de transmitir esta experiencia a otros para ayudar a la comprensión, cada vez mejor, del comportamiento geomecánico de macizos rocosos en una excavación.

Un análisis, más allá de las herramientas matemáticas y computacionales que se pueda aplicar en él, depende de la comprensión del problema que se estudia y, para lograrlo, se requiere llevar a cabo un proceso cognitivo sistemático y ordenado. Para el proceso cognitivo, en el aprendizaje básico se requiere al menos de 4 procesos: percepción, atención, memoria y comunicación; por lo tanto, el proceso mental o cognitivo que realiza el ingeniero en túneles, para comprender el comportamiento geomecánico de un macizo rocoso, cuando éste es excavado, debe comenzar con lo más básico.

La percepción, es el proceso cognitivo más básico para el aprendizaje, depende de los sentidos solamente; el primer proceso para analizar un macizo rocoso es observarlo y la primera característica que se identifica, sin aún tocarlo o medirlo, es el grado de fracturamiento.

Posteriormente, la atención que se refiere a identificar las características principales que afectan a un macizo rocoso; sin embargo, algunas características afectan más o menos, según sea el tipo y grado de fracturamiento; es por esto que se identifican las características principales, según sea el tipo de macizo rocoso analizado, para que el proceso de identificarlas y, por ende, medirlas sea más rápido y eficiente, en este sentido se podrán obtener mayor número de elementos de estas características de mayor importancia, obteniendo así una menor dispersión y un valor más cercano a la realidad.

Existe un sin número de posibles combinaciones de características, que pueden afectar a un macizo rocoso, sin embargo, la memoria como parte del proceso cognitivo de aprendizaje, es la

herramienta que coadyuva en él y, así aplicar lo visto en nuevos análisis, para finalmente poder comunicar a otros, ya sean personas dentro de nuestra rama profesional, como a otros que no tienen la misma formación, el conocimiento y aprendizaje que hemos adquirido; siendo entonces, la comunicación, el último de los procesos cognitivos del aprendizaje y que, es uno de los objetivos principales de las clasificaciones geomecánicas.

En resumen, cada clasificación tiene sus propios principios en los que se fundamentaron, por lo que utilizar correlaciones entre ellas es el último recurso al que se debería recurrir, siempre es mejor realizar un levantamiento específico para cada sistema de clasificación.

El uso de herramientas como Shape Metrix 3D para la obtención de datos durante la caracterización de macizos rocosos disminuye el riesgo que implica permanecer en el frente demasiado tiempo, obteniendo en gabinete mayor cantidad de estos. Además, disminuye el tiempo de espera para el constructor que implica esta tarea. Su rango de utilidad se encuentra en valores de RMR mayores a 20 y menores a 80; esto se debe a que para macizos rocosos muy fracturados (con RMR<20) el programa no es capaz de obtener planos tan pequeños dificultando su medición en gabinete, de igual manera para macizos rocosos poco fracturados los planos y discontinuidades que pudieran existir podrían ser medidos manualmente sin necesidad de hacer el proceso con esta herramienta, ahorrándose así el tiempo del análisis.

Si bien existe variación entre los resultados de valores arrojados de E_m por parte de las ecuaciones de correlación referenciadas en este trabajo (Cap.3), es posible observar que están dentro de un rango razonable (ver anexos), que pueden ser utilizadas en un estudio preliminar. Además, en la Figura 74 es posible observar cierta relación entre las clasificaciones RMR, índice Q, RMi y GSI, que, aunque tienen algunas diferencias siguen la misma tendencia (Figura 74). En este sentido se puede concluir que todas buscan el mismo objetivo de caracterizar el macizo rocoso de manera en que se obtenga una idea general de su condición geomecánica.

Figura 74. Gráfica que muestra los valores de RMR, índice Q, RMi y GSI obtenidos en los 20 frentes de excavación.

En la Tabla 32 se intenta resumir qué parámetros utilizan las clasificaciones RMR14, índice Q y RMi, cuáles de estos tienen una mayor complicación para obtenerse manualmente en el frente de excavación y cuáles son los que pueden obtenerse con el Shape Metrix de manera directa e indirecta.

Es importante mencionar que esta tabla no debe considerarse como una guía absoluta, ya que, está fundamentada en un túnel específico, con características geológicas, geométricas y geotecnicas específicas, por un lado, realizar una comparativa entre estas clasificaciones, siendo que estas utilizan diferentes parámetros para caracterizar un macizo rocoso y que cada una es más sensible cierto parámetro específico y a la cantidad de datos disponibles resultaría en un mal uso en sus correlaciones. Por otro lado, el objetivo de esta tesis es proporcionar al lector una herramienta con la cual pueda sistematizar sus análisis y con esto comprender cuál será el comportamiento del macizo rocoso que estudia y como sus características particulares interactúan entre sí.

	Clasificación					
Grupo	Parám	etro		RMR ₁₄	índice Q	RMi
Roca matriz	Resistencia a la co simple	ompresión		Р		Р
Fracturamiento	RQD				Р	
	Volumen del bloc	ue				Р
	Número de discor metro	ntinuidades por		Р		
Estructura geológica	tructura geológica Número de familias de discontinuidades				Р	
	Orientación de la principal		Р			
Características de las	Rugosidad		Р	Р	Р	
discontinuidades	Alteración y/o rel		Р	Р	Р	
	Alterabilidad		Р			
	Continuidad o per		Р		Р	
Agua freática	Flujo de agua o pr	resión de agua		Р	Р	
Estado de esfuerzos	Nivel de esfuerzo túnel	s alrededor del			Р	
Grado de dificultad para medirle excavación	Complicado	Alguna complicación		Ninguna complicación		
Es posible medirlo con el Shape	Directamente	Indirec	tamente	Parcial	mente	
Incluido en la evaluación de esa	clasificación	Р				
No incluido en la evaluación de	esa clasificación					

Tabla 32. Tabla que muestra, en resumen, la complicación que podría tenerse para obtener ciertosparámetros en el frente de excavación y los parámetros que se pueden obtener con elShapeMetrix3D directa o indirectamente.

Número de frente y cadenamiento aproximado	Clasificación geotécnica	Puntuación	Calidad geotecnica	Sostenimiento
1, 0+187	RMR ₁₄	46.5	Media	Anclas con 1.5 m de espaciamiento con concreto lanzado de 20 mm de espesor
	Índice Q	0.44	Muy mala	Anclas de 1.8 m de longitud con 2.5 m de espaciamiento con concreto lanzado de 4 a 10 cm de espesor
	RMi	10	Buena	Anclas con 2 m de espaciamiento con 40 mm de concreto lanzado
	GSI	37	N/A	N/A
2, 0+190	RMR ₁₄	51.5	Media	Anclas con 1.7 m de espaciamiento con concreto lanzado de 20 mm de espesor
	Índice Q 0.44 Muy mala Anclas de 1.8 m de los de espaciamiento con de 4 a 10 cm de espas		Anclas de 1.8 m de longitud con 2.5 m de espaciamiento con concreto lanzado de 4 a 10 cm de espesor	
	RMi	4	Buena	Anclas con 2 m de espaciamiento con 50 mm de concreto lanzado
	GSI	38	N/A	N/A
3, 0+193	RMR ₁₄	55	Media	Anclas con 1.8 m de espaciamiento con concreto lanzado de 20 mm de espesor
	Índice Q	1	Mala	Anclas de 1.8 m de longitud con 2.5 m de espaciamiento y concreto lanzado de 4 a 10 cm de espesor
	RMi	10.5	Buena	Anclas con 2 m de espaciamiento y 40 mm de concreto lanzado
	GSI	50	N/A	N/A
4, 0+196	RMR ₁₄	46	Media	Anclas con 1.9 m de espaciamiento y concreto lanzado de 20 mm de espesor
	Índice Q	1	Mala	Anclas de 1.8 m de longitud con 1.3 a 1.7 m de espaciamiento y concreto lanzado de 4 a 10 cm de espesor
	RMi	15.9	Muy Buena	Anclas puntuales
	GSI	40	N/A	N/A

Número de	Clasificación	Puntuación	Calidad	Sostenimiento propuesto para un avance
frente y	geotécnica		geotecnica	de 3 m
cadenamiento				
aproximado				
5,0+199	RMR ₁₄	48	Media	Anclas con 2 m de espaciamiento con
				concreto lanzado de 20 mm de espesor
	Índice O	1.33	Mala	Anclas de 1.8 m de longitud de 1.3 a 1.7
				m de espaciamiento con concreto
				lanzado de 4 a 10 cm de espesor
	RMi	6.45	Buena	Anclas con 2 metros con 40 mm de
				concreto lanzado
	GSI	38	N/A	N/A
6.0+205		48	Media	Anclas con 2 m de espaciamiento con
0,01200	100011014			concreto lanzado de 20 mm de espesor
	Índice O	1.42	Mala	Anclas de 1.8 m de longitud de 1.3 a 1.7
	manee Q	1.12	1)Iulu	m de espaciamiento con concreto
				lanzado de 4 a 10 cm de espesor
	RMi	25.65	Muy Buena	Anclas puntuales
	GSI	49	N/A	N/A
7 0+208	RMR ₁₄	68	Buena	Anclas con 2 3 m de espaciamiento con
7,01200	10011014	00	Duchu	concreto lanzado de 20 mm de espesor
	Índice O	5.67	Media	Anclas de 1.8 m de longitud puntuales
	RMi	68	Buena	Anclas puntuales
	GSI	62	N/A	N/A
8 0+211		48	Media	Anclas con 1.9 m de espaciamiento con
0,0+211	1(1)11(14	-10	Wiedła	concreto lanzado de 20 mm de espesor
	Índice O	0.35	Muy mala	Anclas de 2 m de longitud con 2.5 m de
	marce Q	0.55	Widy mara	espaciamiento con concreto lanzado de
				5 cm de espesor
	PMi	1.8	Buena	Anclas con 2 m de especiamiento junto
	KIVII	4.0	Duena	con concreto lanzado de 50 mm de
				espesor
	GSI	37	N/A	N/A
9.01214	PMP.	55	N/A Media	Anclas con 1.8 m de especiamiento con
9,0+214		55	wicula	concreto lanzado de 20 mm de espesor
	Índice O	1	Mala	Anclas de 1.8 m de longitud de 1.3 a 1.7
		1	11/1/1/1	m de espaciamiento con concreto
				lanzado de 4 a 10 cm de espesor
	PMi	16.2	Muy buono	Anclas con 2 m de especiamiento junto
		10.2	willy buena	con concreto lanzado do 40 mm do
				espesor
	CSI	51	NI/A	
	160	51	1N/A	IN/A

Número de frente y cadenamiento	Clasificación geotécnica	Puntuación	Calidad geotecnica	Sostenimiento propuesto para un avance de 3 m		
aproximado						
10, 0+217	RMR ₁₄	60	Media	Anclas con 2 m de espaciamiento con concreto lanzado de 20 mm de espesor		
	Índice Q	1.89	Mala	Anclas de 1.8 m puntuales		
	RMi	44	Muy buena	Anclas puntuales		
	GSI	61	N/A	N/A		
11, 0+220	RMR ₁₄	64	Buena	Anclas con 2 m de espaciamiento con concreto lanzado de 20 mm de espesor		
	Índice Q	2.5	Media	Anclas de 1.8 m puntuales		
	RMi	15.6	Muy Buena	Anclas puntuales		
	GSI	55	N/A	N/A		
12, 0+223	RMR ₁₄	56	Media	Anclas con 2.3 m de espaciamiento con concreto lanzado de 20 mm de espesor		
	Índice Q	0.52	Mala	Anclas de 1.8 m de longitud puntuales		
	RMi	7.2	Buena	Anclas con 2.5 m de espaciamiento junto con concreto lanzado de 5 cm de espesor		
	GSI	43	N/A	N/A		
13, 0+226	RMR ₁₄	48	Media	Anclas con 1.9 m de espaciamiento con concreto lanzado de 20 mm de espesor		
	Índice Q	0.14	Mala	Anclas de 2 m de longitud con 2.5 m de espaciamiento con concreto lanzado de 5 cm de espesor		
	RMi	0.88	Media	Anclas con 2 m de espaciamiento junto con concreto lanzado de 50 mm de espesor		
	GSI	33	N/A	N/A		
14, 0+229	RMR ₁₄	63	Buena	Anclas con 2.15 m de espaciamiento con concreto lanzado de 20 mm de espesor		
	Índice Q	1.75	Mala	Anclas de 2 m de longitud con 1.4 m de espaciamiento		
	RMi	13.2	Muy buena	Anclas con 2 m de espaciamiento		
	GSI	55	N/A	N/A		
15, 0+232	RMR ₁₄	49	Media	Anclas con 1.6 m de espaciamiento con concreto lanzado de 20 a 50 mm de espesor		
	Índice Q	0.33	Muy mala	Anclas de 2.5 m de longitud y 2.5 m de espaciamiento junto con concreto lanzada de 5 a 9 cm de espesor		
	RMi	4.8	Buena	Anclas con 2 m de espaciamiento con concreto lanzado de 50 mm de espesor		
	GSI	38	N/A	N/A		

Número de frente y cadenamiento aproximado	Clasificación geotécnica	Puntuación	Calidad geotecnica	Sostenimiento propuesto para un avance de 3 m			
16, 0+235	RMR ₁₄	46	Media	Anclas con 1.5 m de espaciamiento con concreto lanzado de 20 a 50 mm de espesor			
	Índice Q	0.12	Muy mala	Anclas de 2 m de longitud y de 2.1 a 2.5 m de espaciamiento, junto con concreto lanzado de 9 a 12 cm de espesor			
	RMi	1	Buena	Anclas de 1.5 m con concreto lanzado de 60 mm de espesor			
	GSI	28	N/A	N/A			
17, 0+238	RMR ₁₄	44	Media	Anclas con 1.4 m de espaciamiento con concreto lanzado de 20 a 50 mm de espesor			
	Índice Q	0.04	Extremadamente mala	Anclas de 2 m de longitud y 2.5 m de espaciamiento junto con concreto lanzado de 9 a 12 cm de espesor			
	RMi	1.5	Buena	Anclas con 1.5 cm de espaciamiento junto con concreto lanzado de 50 a 60 mm de espesor			
	GSI	30	N/A	N/A			
18, 0+241	RMR ₁₄	49	Media	Anclas con 1.6 m de espaciamiento con concreto lanzado de 20 a 50 mm de espesor			
	Índice Q	0.04	Extremadamente mala	Anclas de 2 m de longitud con 2.5 m de espaciamiento y concreto lanzado de 9 a 12 cm de espesor			
	RMi	1.5	Media	Anclas con 1.5 m de espaciamiento con concreto lanzado de 100 mm de espesor			
	GSI	26	N/A	N/A			
19, 0+244	RMR ₁₄	54	Media	Anclas con 1.8 m de espaciamiento con concreto lanzado de 20 mm de espesor			
	Índice Q	0.94	Muy mala	Anclas con 2.5 m de espaciamiento y 1.8 m de longitud, junto con concreto lanzado de 4 a 10 cm			

	RMi	4.8	Buena	Anclas con 1.5 m de espaciamiento con concreto lanzado de 50 a 60 mm de espesor
	GSI	47	N/A	N/A
Número de frente y cadenamiento aproximado	Clasificación geotécnica	Puntuación	Calidad geotecnica	Sostenimiento propuesto para un avance de 3 m
20, 0+247	RMR ₁₄	54	Media	Anclas con 1.8 m de espaciamiento con concreto lanzado de 20 mm de espesor
	Índice Q	2.13	Mala	Anclas de 1.8 m de longitud con 1.5 m de espaciamiento
	RMi	Mi 4.4 Buer		Anclas con 1.5 m de espaciamiento con concreto lanzado de 50 a 60 mm de espesor
	GSI	46	N/A	N/A

Tabla 33. Compilación de los 20 frentes de excavación caracterizados en este trabajo junto con la puntuación que se obtuvo según la clasificación RMR14, Índice Q, RMi y GSI y el sostenimiento resultante para un avance de 3 metros.

6. BIBLIOGRAFÍA

Afrouz A. A. (1992). Practical handbook of rock mass classification systems and modes of ground failure.

Barton N. (2013). Handbook, Using Q – system, Rock mass classification and support design, NGI.

Barton, N., Lien, R. and Lunde, J. (1974). Engineering classification of rock masses for the design of rock support. Rock Mechanics 6, pp. 189-236.

Barton N. (1992). ¿Scale effects or sampling bias? Proc. Int. Workshop Scale Effects in Rock Masses, Balkema Publ., Rotterdam, pp. 31-55, 1990. Ed. CRC Press.

Bieniawski, Z.T.; Celada, B.; Aguado, D. and Rodríguez, A. (2011). Forecasting tunneling behavior. Tunnels & Tunneling International, V. August, p.39-42.

Bieniawski, Z.T. (2011). Errores en la aplicación de las clasificaciones Geomecánicas y su corrección. Jornada sobre la Caracterización Geoctécnica del Terreno. Adif. Madrid.

Bieniawski Z.T. (1989). Engineering Rock Mass Classifications: A Complete Manual for Engineers and Geologists in Mining, Civil and Petroleum Engineering, Wiley-Interscience.

Bowen N. L. (1956). The evolution of igneous rocks, Dover publications, INC, Capítulo 5.

Cai M., Kaiser P. K., Uno H., Takasa Y., Minami M. (2004). Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system. International Journal of Rock Mechanics & Mining Sciences.

B. Celada, I. Tardáguila, A. Rodríguez, P. Varona y Z. T. Bieniawski. (2014). Actualización y mejora del RMR. INGEOPRES, No. 234.

Clerici, A. (1993). Indirect determination of rock masses—case histories. In: L.M. Riberio e Sousa and N.F. Grossman, eds. Proceedings of the Symposium EUROCK'93. Rotterdam: AA Balkema, 509–517.

P. Corona-Chávez, S. Poli y B. Bioggero. Syn-deformational migmatites and magmatic-arc metamorphism in the Xolapa Complex, southern Mexico. Journal metamorphic geology, 24, 169-191, 2006.

González de Vallejo, L., Ferrer, M., Ortuño, L., Oteo, C. (2002). Ingeniería Geológica. Pearson Educación, S.A., Madrid.

Hashemi M, Moghaddas S, Ajalloeian R. (2010). Application of rock mass characterization for determining the mechanical properties of rock mass: a comparative study. Rock Mech Rock Eng; 43:305–20.

Hoek, E. (1994). Strength of rock and rock masses. ISRM News Journal, 2(2), 4–16.

Hoek, E. y Brown, E. T. (1995). Excavaciones subterráneas en roca. Ed. Mc. Graw Hill.

Hudson J. A. y Harrison J. P. (1997). Engineering rock mechanics: An introduction to the principles. Ed. Pergamon.

Hoek, E., Carranza-Torres, C., y Corkum, B. (2002), Hoek-Brown Failure Criterion, In Proc. North American Rock Mechanics Society Meeting-TAC 2002: Mining and Tunneling Innovation and opportunity, Hammah, R. et al., eds., Toronto Canada, Vol. 1, pp. 267-273.

ISRM, (International Society for Rock Mechanics). (1975): Commission on terminology, symbols and graphic representation, International Society for Rock Mechanics (ISRM).

ISRM, (International Society for Rock Mechanics). (1981). In: E.T. Brown, ed. ISRM suggested method: rock characterization, testing and monitoring. London: Pergamon Press.

Jean-Claude Verbrugge y Christian Schroeder. (2018). Geotechnical Correlations for Soils and Rocks, ISTE Ltd and John Wiley & Sons.

Kadir Karaman, Ferdi Cihangir y Ayhan Kesimal. (2015). A comparative assessment of rock mass deformation modulus, International Journal of Mining Science and Technology.

Kumar, N. (2002). Rock mass characterization and evaluation of supports for tunnels in Himalaya (p. 289). Ph.D. Thesis. Uttarakhand, India: WRDM, IIT Roorkee.

Kumar N, Samadhiya NK, Anbalagan R. (2004). Application of rock mass classification system for tunneling in Himalaya, India, Paper 3B 14, SINOROCK2004 Symposium. Int J Rock Mech Min Sci 41(3):531.

A. Khabbazi, M. Ghafoori, G.R. Lashkaripour y A. Cheshomi. (2012). Estimation of the rock mass deformation modulus using a rock classification system, Geomechanics and Geoengineering: An International Journal.

Lowson, A. R. y Bieniawski, Z. T. (2013). Critical Assessment of RMR based tunnel design practices: a practical engineer's approach. Rapid excavation & tunneling conference.

Mauro Muñiz Menéndez. (2016). Correlaciones para la estimación del módulo de deformación en macizos rocosos, Researchgate.

Palmström, A. (2000). Block size and block size distribution. Paper presented at the workshop on "Reliability of classification systems" in connection with the GeoEng2000 conference, Melbourne, 18 - 24.

Palmström, A. & Singh R. (2001). The deformation modulus of rock masses. Comparisons between in situ test and indirect estimates. Published in: Tunneling and Underground space technology, Vol. 16, No. 3, pp. 115 - 131.

Palmström, A. (2002). Measurement and characterization of rock mass jointing. In: Sharma, V.M., Saxena, K.R. (Eds.), In-Situ Characterization of Rocks. Balkema, Lisse, pp. 49–98.

Palmström A. (2005). Measurements of and correlations between block size and rock quality designation, (RQD), Tunnels and Underground Space Technology, vol. 20, pp. 326–377.

Palmström A. (1995). RMi – a rock mass characterization system for rock engineering purposes, PhD thesis, Department of Geology, Faculty of Mathematics and Natural Sciences, University of Oslo.

Palmström, A. (1996). Characterizing rock masses by the RMi for use in practical Rock Engineering. Part 2: Some practical applications of the rock mass index (RMi). Published in the journal of tunneling and underground space technology, Vol. 11, No. 3, pp. 287-303.

Palmström, A. (2000). Recent developments in rock support estimates by the RMi, Journal of Rock Mechanics and Tunneling technology, vol. 6, no. 1, pp. 1-19.

Real Academia Española: Diccionario de la lengua española, 23.ª ed., [versión 23.3 en línea]. https://dle.rae.es [21 de noviembre del 2020].

Sánchez F. (2014). Ingeniería de Túneles. Ciudad de México: Inédito (#03-2015-012110003000-1).

Schón, J.H. (1996). Physical Properties of Rocks—Fundamentals and Principles of Petrophysics. Pergamon, Oxford.

Singh, B., & Goel, R. K. (2011). Engineering rock mass classification: Tunneling, foundations and landslides. Elsevier.

3G Software & Measurement. (2010). ShapeMetriX3D: 3D imaging for measuring and assessing rock and terrain surfaces. User Manual for Version 3.5.

Tarbuk E. J., Lutgens F. K. (2005), Ciencias de la Tierra: Una introducción a la geología física. Octava edición. Ed. Pearson.

Wickham, G. E., Tiedmann, H. R., & Skinner, E. H. (1972). Support determination based on geologic predictions. In Proceedings of the Rapid Excavation Tunneling Conference (pp. 43–64). New York: AIME.

Lianyang Zhang. (2017), Engineering Properties of Rocks, Segunda edición, Elsevier.

7.ANEXOS

Ficha de caracterización geológica - geotécnica del túnel San Antonio	
---	--

Ubicación: Túnel San Antonio, Puerto Escondido,	Cadanamianta	0,197	Fachar	22 de Febrero de 2019	
Oaxaca	Cadenamiento.	0+107	recila.		

Descripción general del frente:

El frente de excavación se encuentra en un macizo rocoso con distintos grados de fracturamiento, en la parte izquierda del frente se aprecia una roca masiva y poco fracturada, mientras que en el centro y parte superior se encuentra muy fracturado.

Se identifican 3 familias principalmente, cuya orientación provocan la formación de bloques de volumen considerable en la clave, además son identificables rasgos estructurales importantes como las discontinuidades (Fig. 1), cuya continuidad abarca gran parte del frente. En las Figuras 2, se observa la mayor cantidad de humedad, en esa zona las discontinuidades se encuentran rellenas de material fino color marrón húmedo. Aún no se observa un flujo de agua, pero la humedad puede disminuir la resistencia al corte del material de relleno y desestabilizar el frente.

Se observan dos zonas en el frente, donde el macizo rocosos tiene distintos grados de metorización. La zona 1 corresponde al macizo rocoso masivo a poco fracturado, mientras que la zona 2 se encuentra muy fracturada y sus discontinuidades tienen características más desfavorables que las de la zona 1. (Fig. 3)

Descripción geológica:

Se encuentran dos unidades litológicas en el frente, la primer unidad se trata de una roca de color verde de grano fino, masiva y muy dura, que contiene minerales como cuarzo, plagioclasa, biotita (mica negra) y hornblenda; se trata de una roca metamórfica corneana de contacto. La segunda unidad es una roca metamórfica llamada esquisto verde pelítico, se encuentra intercalada con la unidad 1, en ciertas zonas, se trata de una roca foliada, tacto jabonoso y textura esquitosa, ésta contiene minerales como cuarzo y biotita en abundancia, así como talco.

Es posible que esta litología se presente debido a una secuencia de sucesos en donde un cuerpo intrusivo (tonalita) que alteró la parte circundante de la roca encajonante (esquisto verde pelítico), dando como resultado la roca corneana de contacto en la aureola entre estos dos cuerpos.

Estructura geológica

Con ayuda de la herramienta ShapeMetrix 3D, fue posible identificar 6 familias de discontinuidades, dos de estas familias (3 y 4) corresponden a dos sistemas de fallas regionales que son cortadas por el trazo del túnel, ambas tienen un inclinación desfavorable en contra de la excavación. Además las discontinuidades de ambas, tienen las condiciones más desfavorables.

La familia 2 y 5 son formadoras de bloques en combinación con las otras familias, pero no tienen una inclinación desfavorable respecto a la excavación. Aunque ambas tienen un espaciamiento entre sus discontinuidades <20 cm por lo que sus discontinuidades son las de mayor abundancia en el macizo. La familia 1 y 6 son un par conjugado de un sistema de fallas, que forma bloques de volumen considerable, principalmente en la clave del túnel.

Además de los datos de dirección y echado de planos de discontinuidad y fracturas, la herramienta permite conocer el espaciamiento, continuidad y con ciertas mediciones permite conocer el tamaño de los bloques representativos del frente utilizados en la evaluación de la clasificación RMi (Palmstrom, 2001). Los datos de la descripción de las discontinuidades de cada familia y para cada zona se muestran en las tablas 1 y 2.

Para clasificar el macizo rocoso, mediante las clasificaciones RMR, índice Q y RMi, se tomaron los datos de las familias con las características más desfavorables para la estabilidad de la excavación o en ocasiones un promedio de estas, para acercarse lo más posible a la realidad.

	Descripción de las discontinuidades y clasificación geomecánica del frente									
			Та	bla 1. Descrip	ción de las discont	inuidades (ISRI	M, 1981). Para la :	zona 1.		
Familia	Orientación (echado, d del echado)	irección	Espac	iado	Continuidad	Rugosidad	Resistencia de las paredes	Abertura	Relleno	Filtraciones
1	55.41°, 142°		0.23 m		1.47 m	ondulado rugoso	120 Mpa	Cerrada	Sin relleno	Húmedo pero sin flujo
2	76.4 °, 225.5 °	•	0.17 m		1.01 m	ondulado rugoso	120 Mpa	Cerrada	Sin relleno	Juntas secas
3	42.5 °, 16.0 °		1.10 m		1.10 m	plana-rugosa	40 Mpa	Abierta	Limoso-arenoso	Relleno húmedo sin flujo
4	62.6 °, 319.4 °	•	0.69	∋m	0.75 m	ondulada-lisa	50 Mpa	Parcialmente abierta	Material triturado	Húmedo pero sin flujo
5	66.4 °, 77.8 °		0.73	1 m	0.61 m	ondulada- rugosa	120 Mpa	Cerrada	Sin relleno	Juntas secas
6	57.1 °, 186.6 °	•	0.3	4m	0.96 m	ondulada- rugosa	120 Mpa	Cerrada	Sin relleno	Húmedo pero sin flujo
	r		Та	bla 2. Descrip	ción de las discont	inuidades (ISRI	M, 1981). Para la :	zona 2.	ſ	
Familia	Orientación (echado, d del echado)	irección	Espac	iado	Continuidad	Rugosidad	Resistencia de las paredes	Abertura	Relleno	Filtraciones
1	55.41°, 142°		0.8	7 m	1.96 m	ondulado rugoso	120 Mpa	Cerrada	Sin relleno	Relleno húmedo pero sin flujo
2	76.4 °, 225.5 °		0.10	6 m	1.6 m	ondulado rugoso	120 Mpa	Cerrada	Sin relleno	Juntas secas
3	42.5 °, 16.0 °		0.74	4 m	2.3 m	ondulada - lisa	30 Mpa	Moderadament e abierta	Limoso-Arenoso	Relleno húmedo pero sin flujo
4	62.6 °, 319.4 °	•	0.58	3 m	1.75 m	ondulada - lisa	50 Mpa	Parcialmente abierta	Limoso-Arenoso	Relleno húmedo pero sin flujo
5	66.4 °, 77.8 °		N/	/Α	0.5 m	ondulada- rugosa	120 Mpa	Cerrada	Sin relleno	Juntas secas
6	57.1 °, 186.6 °	,	0.91 m		1.82 m	ondulada- rugosa	120 Mpa	Parcialmente abierta	Limoso-Arenoso	Juntas secas
	Rock Mass Rating (RMR14), Celada et al. 2014									
UCS (Mpa)	metro	ren	ntinuidad	Rugosidad	Relleno	Alteración	Alterabilidad	terreno	Túneles	Puntuación Total
5.5	34		4	1	0	1	4	7	-10	46.5
Tipo de sostedimiento según Lowson			Cálculo	o del módulo de	e deformación del	macizo rocoso	(Em) según difer	entes autores (RMR)		
Condición ge	eotécnica		Me	dia	Bieniawski, 1978			-7	GPa	
Carga de roc	a Pr to ontro anclas		118.6777851	kN/m2	Gokceoglu, 2003			2.44	GPa	
Espesor del o	concreto lanzado		1.519250789	mm	Read et al. 1997			10.05	GPa	
					Regresión lineal (Sánchez y Lozac	da, 2020)	7.08	GPa	
					Índice Q de	Barton et al 197	74		· · · · ·	
RQD	Jn		Jr		Jw		Ja	SRF	Puntuación	
80	12		1		1		2	-	0.44	Calidad del macizo
00	Tipo de sostedim	niento se	gún Barton		I Cálcu	lo del módulo c	s de deformación de	el macizo rocos	0.44 (Em) según dife	erentes autores (O)
Condición ge	eotécnica		Muy mala		Barton, 1992			-8.80	GPa	
Avance			3	m	arton, 2002			8.74	GPa	
ESR	1500		1.3		Palmstrom y Sing	h (2001)		5.78	GPa	
Relacion Ava	INCE/ESR to entre anclas		2.307692308	m						
Espesor del o	concreto lanzado		4 a 10	cm						
Longitud del	ancla		1.8	m						
					Rock Mass Index.	Palmstrom et	al 2001			
jR	UCS de la roca (qc)	MPa	jL	jA	jC		Vb	Jp D	Puntuación	
1.5	100	. ,	2	8	0.375	0	0.61	0.1 0.45	10	Calidad del macizo Buena
Sr	lipo de sostedimie	nto segú	10 59/157802	1	Calcul Palmstrom (1995	o dei modulo de	e deformación del	13 21	(EM) segun dife	rentes autores (RMI)
Gc 10		Palmstrom v Sing	, h (2001)		17.58	GPa				
Revestimiento propuesto Anclas con 2 metros de espaci		ciamiento y 40 mn	n de concreto la	inzado						
				Geo	ological strenght i	ndex, Hoek y Bi	rown, 1997			
Jc Vb	UCS de la roca (qc)	MPa	Coeficiente	de daño D=	mi	mb	s	а	Puntuación	
0.38 0.61	100		0.	7	25	0.7845	0.0001	0.5139	37	
Hooky Brow	n 1997		Cálculo	del módulo de	e detormación del	macizo rocoso (Em) según diferei	ntes autores		
Hoek, 2002	1, 1337		4.73	GPa						
Hoek 2004			3.52	GPa						
Sonmez et al	l. (2004)		6.12	GPa						

Análisis de cuñas, Túnel San Antonio, cadenamiento 0+187

Para este análisis se utilizó la combinación de 3 de las 6 familias, estas son las familias 3, 4 y 5. Se eligieron estas 3 familias, debido a que dos de ellas (3 y 4) tienen una inclinación en contra de la excavación del túnel, siendo desfavorables; en combinación con la familia 6 que por su rumbo perpendicular al eje del túnel, son la combinación de familias que forman cuñas menos favorables a la estabilidad del túnel.

Consideraciones

Con esta combinación de familias presentes en el Túnel San Antonio, y con ayuda del programa UNWEDGE se infiere la formación de 7 cuñas, sin embargo, ya se por su tamaño o su posición, solo 4 tienen relevancia para la estabilidad de la excavación. Dos cuñas que se forman en el frente de excavación, una el piso, dos en los hastiales y dos en la parte superior del túnel. Aunque es importante tener en cuenta todas las cuñas aquí mostradas, la cuña 8 es la que adquiere mayor relevancia, ya que, debido a su posición (en la clave) su factor de seguridad es igual a 0, lo que podría ocasionar caidos de volumen importante, y ser un riesgo importante para la seguridad del personal que labora y de la integridad del túnel.

Ubicación: Túnel San Antonio, Puerto Escondido, Oaxaca	Cadenamiento:	0+190	Fecha:	26 de Febrero de 2019

Descripción general del frente:

El frente de excavación se encuentra en un macizo rocoso con distintos grados de fracturamiento, en la parte izquierda y en la clave del frente se aprecia una roca masiva y poco fracturada, mientras que en el centro y parte inferior-central se encuentra muy fracturado.

Se identifican 3 familias principalmente, cuya orientación provocan la formación de bloques de volumen considerable en la clave, además son identificables rasgos estructurales importantes como las discontinuidades (Fig. 1), cuya continuidad va de los 3 metros hasta los 8 metros de longitud, con relleno de material fracturado y arcilla de color marrón. En las Figuras 2, se observa la mayor cantidad de humedad, en esa zona las discontinuidades se encuentran rellenas de material fino color marrón húmedo. Aún no se observa un flujo de agua, pero la humedad puede disminuir la resistencia al corte del material de relleno y desestabilizar el frente.

Se observan dos zonas en el frente, donde el macizo rocosos tiene distintos grados de metorización. La zona 1 corresponde al macizo rocoso masivo a poco fracturado, mientras que la zona 2 se encuentra muy fracturada y sus discontinuidades tienen características más desfavorables que las de la zona 1. (Fig. 3)

Descripción geológica:

Se encuentran dos unidades litológicas en el frente, la primer unidad se trata de una roca de color verde de grano fino, masiva y muy dura, que contiene minerales como cuarzo, plagioclasa, biotita (mica negra) y hornblenda; se trata de una roca metamórfica corneana de contacto. La segunda unidad es una roca metamórfica llamada esquisto verde pelítico, se encuentra intercalada con la unidad 1, en ciertas zonas, se trata de una roca foliada, tacto jabonoso y textura esquitosa, ésta contiene minerales como cuarzo y biotita en abundancia, así como talco.

Es posible que esta litología se presente debido a una secuencia de sucesos en donde un cuerpo intrusivo (tonalita) que alteró la parte circundante de la roca encajonante (esquisto verde pelítico), dando como resultado la roca corneana de contacto en la aureola entre estos dos cuerpos.

Estructura geológica

Con ayuda de la herramienta ShapeMetrix 3D, fue posible identificar 6 familias de discontinuidades. Es posible realizar una comparación entre el frente anterior (0+186) y el actual, esto permite observar las variaciones de dirección e inclinación de las familias de discontinuidades respecto frente excavado del túnel. Las familias 1, 2 y 6 tienen poca variación respecto al frente anterior; mientras que las familias 3, 4 y 5 tienen variaciones importantes, principalmente en la inclinación de las discontinuidades.

En el frente anterior, había dos familias (3 y 4) que se inclinaban en contra del avance de la excavación. En este frente permanece como desfavorable la familia 3, pero la familia 4 cambio la dirección de su echado lo suficiente para evitar inclinarse en contra del avance.

La demás familias 1,2, 5 y 6 son formadoras de bloques en combinación con las otras familias, pero no tienen una inclinación desfavorable respecto a la excavación.

Además de los datos de dirección y echado de planos de discontinuidad y fracturas, la herramienta permite conocer el espaciamiento, continuidad y con ciertas mediciones permite conocer el tamaño de los bloques representativos del frente utilizados en la evaluación de la clasificación RMi (Palmstrom, 2001). Los datos de la descripción de las discontinuidades de cada familia y para cada zona se muestran en las tablas 1 y 2.

Para clasificar el macizo rocoso, mediante las clasificaciones RMR, índice Q y RMi, se tomaron los datos de las familias con las características más desfavorables para la estabilidad de la excavación o en ocasiones un promedio de estas, para acercarse lo más posible a la realidad.

Descripción de las discontinuidades y clasificación geomecánica del frente										
Tabla 1. Descripción de las discontinuidades (ISRM, 1981). Para la zona 1.										
Familia	ia Orientación (echado, dirección del echado)		Espaciado		Continuidad	Rugosidad	Resistencia de las paredes	Abertura	Relleno	Filtraciones
1	63.3°, 121.8°	63.3°, 121.8°		1.90 m		plana-rugosa	100 Mpa	Parcialmente abierta	Arenoso	Húmedo pero sin flujo
2	76.3 °, 211.9 °		0.32	2 m	0.82 m	ondulado rugoso	120 Mpa	Cerrada	Sin relleno	Juntas secas
3	54.3 °, 3.0 °		0.82	2 m	1.37 m	ondulado rugoso	120 Mpa	Cerrada	Sin relleno	Relleno húmedo sin flujo
4	48.5 °, 295.6 °		1.07	7 m	0.87 m	ondulado rugoso	120 Mpa	Cerrada	Sin relleno	Juntas secas
5	29.5 °, 61.5 °		0.80) m	1.13 m	plana-rugosa	100 Mpa	Parcialmente abierta	Arenoso	Húmedo pero sin flujo
6	51.3 °, 174.3 °		0.4	7m	0.86 m	ondulada- rugosa	120 Mpa	Cerrada	Sin relleno	Húmedo pero sin flujo
	1		Та	ble 2.Descript	ión de las discont	inuidades (ISRN	VI, 1981). Para la 2	ona 2.		
Familia	Orientación (echado, d del echado)	irección	Espac	iado	Continuidad	Rugosidad	Resistencia de las paredes	Abertura	Relleno	Filtraciones
1	63.3°, 121.8°		No está presei	nte en la zona	N/A	N/A	N/A	N/A	N/A	N/A
2	76.3 °, 211.9 °		0.1	5 m	2.8 m	Plana-lisa	50 Mpa	Parcialmente abierta	Sin relleno	Juntas secas
3	54.3 °, 3.0 °		0.59	9 m	1.38 m	Plana-lisa	30 Mpa	Moderadament e abierta	Limoso-Arenoso	Relleno húmedo pero sin flujo
4	48.5 °, 295.6 °		0.40) m	1.11 m	ondulada - lisa	50 Mpa	Cerrada	Limoso-arcilloso	Juntas secas
5	29.5 °, 61.5 °		N/	/A	4.15 m	Plana-lisa	30 Mpa	Moderadament e abierta	Sin relleno	Relleno húmedo pero sin flujo
6	51.3 °, 174.3 °		0.54 m		1.15 m	ondulada- rugosa	120 Mpa	Cerrada	Limoso-Arenoso	Relleno húmedo pero sin flujo
				Ro	ck Mass Rating (R	MR14), Celada	et al. 2014			
UCS (Mpa)	Discontinuidades por metro	Per coi	sistencia - ntinuidad	Rugosidad	Relleno	Alteración	Alterabilidad	Estado del terreno	Corrección por Túneles	Puntuación Total
5.5	34		2	1	2	1	4	7	-5	51.5
Tipo de sostedimiento seg			ún Lowson		Cálculo	o del módulo de	e deformación del	macizo rocoso	(Em) según difer	entes autores (RMR)
Condición ge	eotécnica		Media 107 5864034 kN/m2		Bieniawski, 1978			3	GPa	
Carga de roc	to entre anclas		1 711538462	KIN/IIIZ metros	Gokceogiu, 2003 Avdan et al. 1997			3.50	GPa	
Espesor del o	concreto lanzado		20	mm	Read et al. 1999			13.66	GPa	
					Regresión lineal (Sánchez y Lozac	la, 2020)	9.28	GPa	
				1	Índice Q de	Barton et al 197	74			
RQD	Jn		Jr		Jw		Ja	SRF	Puntuación	Calidad dal masizo
80	12		1		1		3	5	0 44	Muy mala
	Tipo de sostedim	iento se	gún Barton		Cálcu	llo del módulo d	de deformación de	el macizo rocos	o (Em) según dife	erentes autores (Q)
Condición ge	eotécnica		Muy mala		Barton, 1992			-8.80	GPa	
Avance			3	m	Barton, 2002			8.74	GPa	
ESK Relación Ava	ance/FSR		2 307692308		Palmstrom y Sing	n (2001)		5.78	GPa	
Espaciamien	to entre anclas		2.507052500	m						
Espesor del o	concreto lanzado		4 a 10	cm						
Longitud del	ancla		1.8	m						
			••	••	Rock Mass Index.	Palmstrom et	al 2001		D • • • • (
JK	UCS de la roca (qc)	мра	JL	JA	JL		VD	n dr	Puntuación	Calidad del macizo
1.5	100 2 8 0.375 0.09 Tipo do controlimiento sogún Palmetróm Cálculo dal módula de defense sión).09 A deformación del	0.04 0.045	4 (Em) según dife	Buena				
Sr		19.92243788	[Palmstrom (1995))	derormación del	9.43	GPa		
Gc		4		Palmstrom y Sing	, h (2001)		12.19	GPa		
Revestimiento propuesto		Anclas con 2 m de espaciamie		ento con 50 mm de concreto lanzado						
Geological strenght index, Hoek y Brown, 1997										
Jc Vb UCS de la roca (qc) MPa Coe		Coeficiente	de daño D=	mi	mb	s	а	Puntuación		
0.38 0.09	0.09 100		0.	7 dol módula da	25	0.8288	0.0001	0.5130	38	
Hoek v Brow	(n 1997		Calculo 5.01	uei modulo de GPa	uetormación del	macizo rocoso (Ein) segun diferei	ites autores		
Hoek. 2002		3.26	GPa							
Hoek 2004			3.76	GPa	1					
Sonmez et al. (2004)			6.33	GPa						

		/ 1/	•	. / .	1 1 . / 1	~ • • •
Ficha de	caracterizaci	on geolos	zica - geo	otecnica d	del tunel	San Antonio
		82				

0+193

Ubicación: Túnel San Antonio, Puerto Escondido,
Oaxaca

Cadenamiento:

28 de Febrero de 2019

Fecha:

Descripción general del frente:

El frente de excavación se encuentra en un macizo rocoso con distintos grados de fracturamiento, en la parte izquierda y en la parte central del frente se aprecia una roca masiva y moderadamente fracturada, mientras que en la parte de ñla clave y derecha del frente se encuentra muy fracturado.

Se identifican 3 familias principalmente, cuya orientación provocan la formación de bloques de volumen considerable en la clave, además son identificables rasgos estructurales importantes como las discontinuidades (Fig. 1), cuya continuidad va de los 4 - 5 metros, cuyo relleno se caracteriza por material suelto, desintegrado y manchas de material fino color marrón. En las Figuras 2, se observa la mayor cantidad de humedad, en esa zona las discontinuidades se encuentran rellenas de material fino color marrón húmedo. Aún no se observa un flujo de agua, pero la humedad puede disminuir la resistencia al corte del material de relleno y desestabilizar el frente.

Se observan dos zonas en el frente, donde el macizo rocosos tiene distintos grados de metorización. La zona 1 corresponde al macizo rocoso masivo a poco fracturado, mientras que la zona 2 se encuentra muy fracturada y sus discontinuidades tienen características más desfavorables que las de la zona 1. (Fig. 3)

Descripción geológica:

Se encuentran dos unidades litológicas en el frente, la primer unidad se trata de una roca de color verde de grano fino, masiva y muy dura, que contiene minerales como cuarzo, plagioclasa, biotita (mica negra) y hornblenda; se trata de una roca metamórfica corneana de contacto. La segunda unidad es una roca metamórfica llamada esquisto verde pelítico, se encuentra intercalada con la unidad 1, en ciertas zonas, se trata de una roca foliada, tacto jabonoso y textura esquitosa, ésta contiene minerales como cuarzo y biotita en abundancia, así como talco.

Es posible que esta litología se presente debido a una secuencia de sucesos en donde un cuerpo intrusivo (tonalita) que alteró la parte circundante de la roca encajonante (esquisto verde pelítico), dando como resultado la roca corneana de contacto en la aureola entre estos dos cuerpos.

Estructura geológica

Con ayuda de la herramienta ShapeMetrix 3D, fue posible identificar 5 familias de discontinuidades. Es posible realizar una comparación entre el frente anterior (0+190) y el actual, esto permite observar las variaciones de dirección e inclinación de las familias de discontinuidades respecto frente excavado del túnel. Las familias 1 y 6 formaron una sola familia; las demás familias no tienen cambios realmente importantes.

Como en el frente anterior, permanece como desfavorable la familia 3 y la familia 4 cambio la dirección de su echado lo suficiente para tener un rumbo paralelo al eje del túnel, una condición muy desfavorable según la clasificación RMR.

La demás familias 2 y 5 son formadoras de bloques en combinación con las otras familias, pero no tienen una inclinación desfavorable respecto a la excavación.

Además de los datos de dirección y echado de planos de discontinuidad y fracturas, la herramienta permite conocer el espaciamiento, continuidad y con ciertas mediciones permite conocer el tamaño de los bloques representativos del frente utilizados en la evaluación de la clasificación RMi (Palmstrom, 2001). Los datos de la descripción de las discontinuidades de cada familia y para cada zona se muestran en las tablas 1 y 2.

Para clasificar el macizo rocoso, mediante las clasificaciones RMR, índice Q y RMi, se tomaron los datos de las familias con las características más desfavorables para la estabilidad de la excavación o en ocasiones un promedio de estas, para acercarse lo más posible a la realidad.

Descripción de las discontinuidades y clasificación geomecánica del frente										
Tabla 1. Descripción de las discontinuidades (ISRM, 1981). Para la zona 1.										
Familia	a Orientación (echado, dirección del echado)		Espaciado		Continuidad	Rugosidad	Resistencia de las paredes	Abertura	Relleno	Filtraciones
1	57.3°, 153.2°		0.46 m		1.29 m	ondulado rugoso	120 MPa	Cerrada	Sin relleno	Húmedo pero sin flujo
2	80 °, 210.3 °		0.3	Lm	0.78 m	ondulado rugoso	100 MPa	Moderadament e abierta	Cuarzo	Húmedo pero sin flujo
3	60.7 °, 349.9 °		0.69	9 m	1.05 m	ondulado rugoso	120 MPa	Parcialmente abierta	Limoso-Arenoso	Relleno húmedo sin flujo
4	41.9 °, 280.3 °		0.84	1 m	0.87 m	ondulado rugoso	120 MPa	Cerrada	Sin relleno	Húmedo pero sin flujo
5	32 °, 50.4 °		1.64	1 m	1.40 m	ondulado rugoso	120 MPa	Cerrada	Arenoso	Húmedo pero sin flujo
	• •		Та	ble 2.Descripo	ión de las discont	inuidades (ISRN	И, 1981). Para la z	ona 2.	•	
Familia	Orientación (echado, d del echado)	irección	Espac	iado	Continuidad	Rugosidad	Resistencia de las paredes	Abertura	Relleno	Filtraciones
1	57.3°, 153.2°		0.87	7 m	1.96 m	ondulada - lisa	50 MPa	Parcialmente abierta	Limoso-arcilloso	Relleno húmedo pero sin flujo
2	80 °, 210.3 °		0.10	5 m	1.6 m	Plana rugosa	50 MPa	Parcialmente abierta	Material triturado	Relleno húmedo pero sin flujo
3	60.7 °, 349.9 °		0.74	1 m	2.3 m	ondulada - lisa	50 MPa	Parcialmente abierta	Limoso-arcilloso	Relleno húmedo pero sin flujo
4	41.9 °, 280.3 °		0.58	3 m	1.75 m	ondulada - lisa	30 MPa	Parcialmente abierta	Limoso-Arenoso	Relleno húmedo pero sin flujo
5	32 °, 50.4 °		N,	Ά	0.5 m	ondulada - lisa	50 MPa	Parcialmente abierta	Limoso-arcilloso	Relleno húmedo pero sin flujo
	Discontinuidades as	Der	-1-4	Ro	ck Mass Rating (R	MR14), Celada	et al. 2014	Catala dal	Composión no	
LICS (Mpa)	Discontinuidades por	Per	sistencia -	Rugosidad	Relleno	Alteración	Alterabilidad	Estado del	Corrección por	Puntuación Total
7	34	CO	A	1	2	1	4	7	-5	
,	Tipo de sostedimi	ento seg	rún Lowson	-	Cálculo	del módulo de	deformación del	macizo rocoso	(Em) según dife	rentes autores (RMR)
Condición ge	eotécnica		Me	dia	Bieniawski, 1978			10	GPa	× ,
Carga de roc	a Pr		99.82243611	2243611 kN/m2 Gokced				4.64	GPa	
Espaciamien	to entre anclas		1.846153846	metros	Aydan et al. 1997		14.05	GPa		
Espesor del o	concreto lanzado		20	mm	Read et al. 1999			16.64	GPa	
					Regresión lineal (Sánchez y Lozac	la, 2020)	11.21	GPa	
DOD	1		14		Indice Q de	Barton et al 19.	/4	CDF	Duratura si é a	
RQD	JU		JI		JW		Ja	SKF	Puntuación	Calidad del macizo
80	12		1.5		1		2	5	1.00	Mala
Constitution of	Tipo de sostedim	iiento se	gún Barton		Cálcu	ilo del módulo d	le deformación de	el macizo rocos	o (Em) según di	erentes autores (Q)
Condición ge	eotecnica		11/12	m	Barton, 1992 Barton, 2002			0.00	GPa	
FSR			13		Palmstrom v Sing	h (2001)		8.00	GPa	
Relación Ava	ince/ESR		2.307692308		, , , , , , , , , , , , , , , , , , , ,	()				
Espaciamien	to entre anclas		2.5	m						
Espesor del o	concreto lanzado		4 a 10	cm						
Longitud del	ancla		1.8	m						
10		MDc	:1	: 0	KOCK Mass Index	. Palmstrom et	ai 2001		Dunterst	
JK	UCS de la roca (qc)	IVIPa	JL	JA	je		VD	u di	Puntuación	Calidad del macizo
1.5	150		2	4	0.75	n	.01	0.07 0.4	10.5	Buena
Tipo de sostedimiento segú		n Palmström	· ·	Cálcul	o del módulo de	e deformación del	macizo rocoso	(Em) según dife	erentes autores (RMi)	
Sr		41.13793707		Palmstrom (1995)		13.56	GPa		
Gc		10.5		Palmstrom y Singh (2001)		17.93	GPa			
Revestimiento propuesto Anclas con 2 m			de espaciami	ento con 40 mm d	e concreto lanz	ado				
Geol					ological strenght i	ndex, Hoek y Bi	rown, 1997			1
Jc Vb	b UCS de la roca (qc) MPa Coeficiente de daño D=		mi	mb	S	а	Puntuación			
0.75 0.01	150		0.	/	25	1.6026	0.0007	0.5057	50	
Hoek v Brow	m 1997		12.25	GPa		1				
Hoek. 2002		6,50	GPa	1						
Hoek 2004			8.10	GPa	1					
Sonmez et al. (2004)			13.85	GPa	1					

0+196

Ubicación: Túnel San Antonio, Puerto Escondido,
Oaxaca

Cadenamiento:

16 de marzo de 2019

Fecha:

Descripción general del frente:

El frente de excavación se encuentra en un macizo rocoso con distintos grados de fracturamiento, en la parte izquierda y en la parte central del frente se aprecia una roca masiva y poco fracturada, mientras que en la parte derecha del frente se encuentra muy fracturado.

Se identifican 3 familias principalmente, cuya orientación provocan la formación de bloques de volumen considerable en la clave, además son identificables rasgos estructurales importantes como las discontinuidades dibujadas sobre el frente (Fig. 1), cuya continuidad va de los 4 - 5 metros hasta los 8 metros (verde y azul) de longitud, cuyo relleno se caracteriza por material suelto, desintegrado y manchas de material fino color marrón. En las Figuras 2, se observa la mayor cantidad de humedad, en esa zona las discontinuidades se encuentran rellenas de material fino color marrón húmedo. Aún no se observa un flujo de agua, pero la humedad puede disminuir la resistencia al corte del material de relleno y desestabilizar el frente.

Se observan dos zonas en el frente, donde el macizo rocosos tiene distintos grados de metorización. La zona 1 corresponde al macizo rocoso masivo a poco fracturado, mientras que la zona 2 se encuentra muy fracturada y sus discontinuidades tienen características más desfavorables que las de la zona 1. (Fig. 3)

Descripción geológica:

Se encuentran dos unidades litológicas en el frente, la primer unidad se trata de una roca de color verde de grano fino, masiva y muy dura, que contiene minerales como cuarzo, plagioclasa, biotita (mica negra) y hornblenda; se trata de una roca metamórfica corneana de contacto. La segunda unidad es una roca metamórfica llamada esquisto verde pelítico, se encuentra intercalada con la unidad 1, en ciertas zonas, se trata de una roca foliada, tacto jabonoso y textura esquitosa, ésta contiene minerales como cuarzo y biotita en abundancia, así como talco.

Es posible que esta litología se presente debido a una secuencia de sucesos en donde un cuerpo intrusivo (tonalita) que alteró la parte circundante de la roca encajonante (esquisto verde pelítico), dando como resultado la roca corneana de contacto en la aureola entre estos dos cuerpos.

Estructura geológica

Con ayuda de la herramienta ShapeMetrix 3D, fue posible identificar 6 familias de discontinuidades. Es posible realizar una comparación entre el frente anterior (0+193) y el actual, esto permite observar las variaciones de dirección e inclinación de las familias de discontinuidades respecto al frente excavado del túnel. Las familias 5 y 6 son las que tuvieron mayor variación, la familia 5 cambió totalmente en su dirección de echado, de oeste hacia este, mientras que la familia 6 no se encontraba en el frente anterior.

Como en el frente anterior, permanece como desfavorable la familia 3, mientras que la familia 5 tieneun rumbo paralelo al eje del túnel, una condición muy desfavorable según la clasificación RMR.

La demás familias 2 y 5 son formadoras de bloques en combinación con las otras familias, pero no tienen una inclinación desfavorable respecto a la excavación.

Además de los datos de dirección y echado de planos de discontinuidad y fracturas, la herramienta permite conocer el espaciamiento, continuidad y con ciertas mediciones permite conocer el tamaño de los bloques representativos del frente utilizados en la evaluación de la clasificación RMi (Palmstrom, 2001). Los datos de la descripción de las discontinuidades de cada familia y para cada zona se muestran en las tablas 1 y 2.

	Descripción de las discontinuidades y clasificación geomecánica del frente									
Tabla 1. Descripción de las discontinuidades (ISRM, 1981). Para la zona 1.										
Familia	Orientación (echado, d del echado)	lirección	Espac	iado	Continuidad	Rugosidad	Resistencia de las paredes	Abertura	Relleno	Filtraciones
1	61.3°, 137.2°		1.0	Lm	0.97 m	ondulado rugoso	120 MPa	Cerrada	Sin relleno	Juntas secas
2	66.9 °, 205.7 °	2	1.02	2 m	1.01 m	ondulado rugoso	100 MPa	Cerrada	Sin relleno	Juntas secas
3	46.2 °, 13.6 °		0.80) m	0.94 m	ondulado rugoso	120 MPa	Cerrada	Sin relleno	Juntas secas
4	4 67.5 °, 320.9 °		0.72	2 m	0.95 m	ondulado rugoso	120 MPa	Parcialmente abierta	Manchado	Húmedo pero sin flujo
5	48.8 °, 271.5 °		0.93	3 m	1.31 m	ondulado rugoso	120 MPa	Cerrada	Sin relleno	Juntas secas
6	20.2 °, 155.6 °		0.52	2 m	0.94 m	ondulado rugoso	120 MPa	Parcialmente abierta	Sin relleno	Húmedo pero sin flujo
			Та	ble 2.Descripc	ión de las discont	inuidades (ISRN	1, 1981). Para la z	ona 2.	1	1
Familia	Orientación (echado, d del echado)	lirección	Espac	iado	Continuidad	Rugosidad	Resistencia de las paredes	Abertura	Relleno	Filtraciones
1	61.3°, 137.2°		0.89	9 m	0.64 m	Suave-liso	30 MPa	Moderadamente abierta	Arenoso-limoso	Relleno húmedo pero sin flujo
2	66.9 °, 205.7 °		0.3	7 m	1.0 m	Suave-liso	30 MPa	Moderadamente abierta	Limoso-arenoso	Relleno húmedo pero sin flujo
3	46.2 °, 13.6 °		1.30	5 m	0.54 m	ondulada - lisa	100 MPa	Parcialmente abierta	Manchado	Juntas secas
4	67.5 °, 320.9 °		0.80) m	0.67 m	ondulada - lisa	100 MPa	Parcialmente abierta	Sin relleno	Juntas secas
5	48.8 °, 271.5 °	•	0.68	3 m	1.42 m	Suave-liso	30 MPa	Moderadamente abierta	Limoso-Arenoso	Relleno húmedo pero sin flujo
6	6 20.2 °, 155.6 °		0.20) m -	0.53 m	ondulada - lisa	100 MPa	Parcialmente abierta	Sin relleno	Juntas secas
	Discontinuidados o o	Der		Ro	ck Mass Rating (R	MR14), Celada	et al. 2014	Estada dal	Composión no	
UCS (Mpa)	metro	CO	ntinuidad	Rugosidad	Relleno	Alteración	Alterabilidad	terreno	Túneles	Puntuación Total
/	32 Tino de sostedimie	ento segi	4 ín Lowson	1	Z Cálcul	L o del módulo de	4 deformación de	/ macizo rocoso l	-12 Fm) según dife	4b rentes autores (RMR)
Condición geo	técnica		Me	dia	Bieniawski, 1978			-8	GPa	
Carga de roca	Pr		93.16761	kN/m2	Gokceoglu, 2003			2.35	GPa	
Espaciamiento	entre anclas		1.961538	metros	Aydan et al. 1997			7.46	GPa	
Espesor del co	ncreto lanzado		20	mm	Read et al. 1999	C (- 2020)	9.73	GPa	
					Regresion lineal (Sanchez y Lozac	ia, 2020)	6.89	GPa	
ROD	In		lr		lw	Santon et al 197	4 la	SRF	Puntuación	
	511						54	0111	- uncourient	Calidad del macizo
80	12 Tipo de sostedimi	iento see	1.5 rún Barton		1 Cálci	ulo del módulo (2 de deformación d	5 el macizo rocoso	1.00 (Em) según dif	Mala erentes autores (Q)
Condición geo	técnica	-	Roca mal	a clase D	Barton, 1992			0.00	GPa	
Avance			3	m	Barton, 2002			11.45	GPa	
ESR	/500		1.3		Palmstrom y Sing	h (2001)		8.00	GPa	
Relación Avan	ce/ESR		2.3076392		-					
Espesor del co	increto lanzado		1.5 a 1.7 4 a 10	cm						
Longitud del a	ncla		1.8	m						
			•		Rock Mass Index.	Palmstrom et a	al 2001			
jR	UCS de la roca (qc)	MPa	jL	jA	jC	1	Vb	Jp D	Puntuación	
1.5	150		2	6	0.5	0.	508	0.106 0.425	15.9	Calidad del macizo Muy buena
C -	Tipo de sostedimier	nto segúi	n Palmström		Cálcul	lo del módulo d	e deformación de	l macizo rocoso	(Em) según dife	rentes autores (RMi)
Sr			3.215/93		Palmstrom (1995) h (2001)		15.85	GPa	
Revestimiento propuesto Anclas			Anclas puntua	es				21.1/	5. a	
				Geo	ological strenght in	ndex, Hoek y Br	own, 1997			
Jc Vb	UCS de la roca (qc)	MPa	Coeficiente	de daño D=	mi	mb	S	а	Puntuación	
0.5 0.508	150		0.	7	25	0.9251	0.0002	0.5114	40	
	4007			0.0		1				
HOEK Y Brown	, 1997		5.89	GPa						
Hoek 2004			4.27	GPa	1					
Sonmez et al. (2004)			10.13	GPa	1					

Para este análisis se utilizó la combinación de 3 de las 6 familias, estas son las familias 3, 4 y 5. Se eligieron estas 3 familias, debido a que la familia 3 tiene una inclinación en contra de la excavación del túnel, siendo desfavorable; además, la familia 5 tiene un rumbo paralelo al eje del túnel, por lo que es la condición menos favorable según el RMR, en combinación con la familia 4 dan como resultado las cuñas con mayor tamaño y relevancia para la estabilidad del túnel.

Consideraciones

Con esta combinación de familias presentes en el Túnel San Antonio, y con ayuda del programa UNWEDGE se infiere la formación de 7 cuñas, sin embargo, ya sea por su tamaño o su posición, solo 4 tienen relevancia para la estabilidad de la excavación. Dos cuñas que se forman en la clave del túnel y dos en los hastiales. Aunque es importante tener en cuenta todas las cuñas aquí mostradas, la cuña 8 es la que debe tenerse en vigilancia, debido a que su factor de seguridad es igual a 0, lo que podría ocasionar caidos y ser un riesgo importante para la seguridad del personal que labora y de la integridad del túnel. Además la cuña 7 es de un tamaño considerable, y tiene un factor de seguridad de 3, que podría, si su tratamiento de estabilización (anclaje) no es el correcto, o su tiempo de colocación es demasiado, causar problemas a la integridad del túnel.

Ficha de caracteriza	ción geológica - geot	écnica del túnel Sa	an Antonio	D
Ubicación: Túnel San Antonio, Puerto Escondido,	Cadonamionto:	0+100	Focha	25 do Marzo do 2019
Oaxaca	Cauenannento.	0+199	recila.	25 de Mai 20 de 2019

El frente de excavación se encuentra en un macizo rocoso con distintos grados de fracturamiento, en la parte izquierda y central del frente se aprecia una roca masiva y poco fracturada, mientras que en la parte derecha se encuentra muy fracturado.

Se identifican 3 familias principalmente, cuya orientación provocan la formación de bloques de volumen considerable en la clave, además son identificables rasgos estructurales importantes (Fig. 1), cuya continuidad va de los 4 - 5 m hasta los 8 m de longitud, cuyo relleno se caracteriza por material suelto, desintegrado y manchas de material fino color marrón. En las Figuras 2, se observa la mayor cantidad de humedad, en esa zona las discontinuidades se encuentran rellenas de material fino color marrón húmedo. Aún no se observa un flujo de agua, pero la humedad puede disminuir la resistencia al corte del material de relleno y desestabilizar el frente.

Se observan dos zonas en el frente, donde el macizo rocosos tiene distintos grados de metorización. La zona 1 corresponde al macizo rocoso masivo a poco fracturado, mientras que la zona 2 se encuentra muy fracturada y sus discontinuidades tienen características más desfavorables que las de la zona 1. (Fig. 3)

Descripción geológica:

Se encuentran una unidad litológica en el frente, lse trata de una roca de color verde de grano fino, masiva y muy dura, que contiene minerales como cuarzo, plagioclasa, biotita (mica negra) y hornblenda; se trata de una roca metamórfica corneana de contacto.

Es posible que esta litología se presente debido a una secuencia de sucesos en donde un cuerpo intrusivo (tonalita) que alteró la parte circundante de la roca encajonante (esquisto verde pelítico), dando como resultado la roca corneana de contacto en la aureola entre estos dos cuerpos.

Estructura geológica

Con ayuda de la herramienta ShapeMetrix 3D, fue posible identificar 5 familias de discontinuidades. Es posible realizar una comparación entre el frente anterior (0+196) y el actual, esto permite observar las variaciones de dirección e inclinación de las familias de discontinuidades respecto frente excavado del túnel.

Son pocos los cambios entre un frente y otro, el cambio más substancial es la ausencia de la familia 6 y el cambio en el rumbo de la familia 1, aunque sigue dentro del rango aceptable para reconocer que es la misma familia.

Como en el frente anterior, permanece como desfavorable la familia 3 y las familias 1 y 4 tienen un rumbo paralelo al eje del túnel, una condición muy desfavorable según la clasificación RMR.

La demás familias 2 y 5 son formadoras de bloques en combinación con las otras familias, pero no tienen una inclinación desfavorable respecto a la excavación.

Además de los datos de dirección y echado de planos de discontinuidad y fracturas, la herramienta permite conocer el espaciamiento, continuidad y con ciertas mediciones permite conocer el tamaño de los bloques representativos del frente utilizados en la evaluación de la clasificación RMi (Palmstrom, 2001). Los datos de la descripción de las discontinuidades de cada familia y para cada zona se muestran en las tablas 1 y 2.

Image: Constraint of the		Descripción de las discontinuidades y clasificación geomecánica del frente											
nm <th></th> <th colspan="12">Tabla 1. Descripción de las discontinuidades (ISRM, 1981). Para la zona 1.</th>		Tabla 1. Descripción de las discontinuidades (ISRM, 1981). Para la zona 1.											
1 5.1.5°, 138.5° 0.5.6 m 1.0.1 m 00.0000 00.0000 120 Mpi Cerrals Someline Aurtai secs 2 35.6°, 138.9° 0.5.0 m 2 m 00.0000 Cerrals Someline Junceb pero Sin Rijo 3 78.24°, 19.7° 0.3.4 m 0.8 m Outstable 120 Mpi Cerrals Someline Junceb pero Sin Rijo 4 64.4°, 25.6° 0.5.1 m 0.8 m Outstable 120 Mpi Cerrals Someline Junceb pero Sin Rijo 5 17°, 22.7° 1.3 m 0.9 m Outstable Total Sin Releve Junces secs Junces secs 7 3.5.7°, 24.5° 0.7 m 1.4 m Someline Junces secs	Familia	Orientación (echado, d del echado)	irección	Espac	ciado	Continuidad	Rugosidad	Resistencia de las paredes	Abertura	Re	lleno	Filtraciones	
Image: ProbabilityImage: ProbabilityCarray fragmentCarray fragmentSome fragmentCarray fragmentSome fragme	1	53.5° , 104.5°		0.56	5 m	1.01 m	Ondulado rugoso	120 Mpa	Cerrada	Sin	relleno	Juntas secas	
178.24', 13.7'0.4 m0.86 m0noise branch ragon ragon 20 Mg20 MgGenda GrendaSin reliemJusta sees Justa sees50.7', 22.2''1.5 m0.9 m0.9 m0 mm0 mm0 mmJusta seesTotal 2. Description of the site site set total set	2	35.6° , 189.9°		0.50	0 m	2 m	Ondulado rugoso	120 Mpa	Cerrada	Sin	relleno	Húmedo pero sin flujo	
$ \begin{array}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	3	78.24°, 19.7°		0.14	4 m	0.86 m	Ondulada- rugosa	120 Mpa	Cerrada	Sin	relleno	Juntas secas	
5 17', 282, 7' 1.35 m 0.90 m 0nduding logo logo logo logo 200 kpa Canada canada Sin releva Junta's secas Table 2.Description de la dicontinuidade (RRM, 1581, Para la zona 2. 7 anila 60° 61° 61° 71°	4	64.4° , 326.6°		0.5:	1 m	0.65 m	Ondulada- rugosa	120 Mpa	Cerrada	Sin	relleno	Juntas secas	
Table 2.Description do la discontinuidade (BRM, 1581), Para la zona 2. Familia Orientado (Exhado, directa) Espaciado Continuidad Resistenci do la particles Aberture (D	5	17°, 282.7°		1.35	5 m	0.90 m	Ondulada- rugosa	120 Mpa	Cerrada	Sin	relleno	Juntas secas	
Presentable pertails of electronic discretion of the electronic discre				Та	able 2.Descript	ión de las discont	inuidades (ISRN	И, 1981). Para la z	ona 2.				
153.5°, 104.5°0.45 m1.4 mSuave-lise20 MpsNetter 10.5° 2.5 mm)Release-lines a 2.5 mm)Release-lines a 2.5 mm)Release-lines a 2.5 mm)Release-lines a 2.5 mm)Release-lines a 2.5 mm)Release-lines a 	Familia	Orientación (echado, d del echado)	irección	Espac	ciado	Continuidad	Rugosidad	Resistencia de las paredes	Abertura	Re	lleno	Filtraciones	
2 35, 6°, 1,89,9° 0.37 m 2.3 m Save-liko 30 Mpa Abter 10,3- Abter 10,3- Upgaa Immos arensos abter 10,3- Upgaa Immos arensos abter 10,3- Upgaa Relien húmedo pero sin flujo 3 78,24°, 19,7° 0.20 m 1.20 m Orduluds- Upgaa 50 Mpa Abter 10,3- Abter	1	53.5°, 104.5°		0.45	5 m	1.4 m	Suave-liso	30 Mpa	Abierta (0.5 - 2.5 mm)	Areno	so-limoso	Relleno húmedo pero sin flujo	
3 78.24°, 19.7° 0.20 m 1.20 m 0ndulata- tropposa 50 Mpa percent (0.22, abult = 70, 20) telleno hamedo pero sin flujo 4 64.4°, 326.6° 0.24 m 0.80 m Plana-regosa 30 Mpi Plana-regosa 30 Mpi Plana-regosa 10	2	35.6° , 189.9°		0.3	7 m	2.3 m	Suave-liso	30 Mpa	Abierta (0.5 - 2.5 mm)	Limoso	o-arenoso	Relleno húmedo pero sin flujo	
464.4", 326.6"0.24 m0.80 mPlana-rugota30 MpaPlana-rugota abiertal 0.5"Relicion dumedo pero sin flujo abiertal 0.5 mRelicion dumedo pero sin fl	3	78.24° , 19.7°		0.20	0 m	1.20 m	Ondulada- rugosa	50 Mpa	abierta (0.25 - 0.5 mm)	Limoso	o-arenoso	Relleno húmedo pero sin flujo	
S 17°, 282.7° 0.6 m 0.95 m Suave-liko 30 Mpa Abetra (0.7) Abetra (0.7) Monos-arenoso Abetra (0.7) Relleno húmedo pero sin flujo 2.5 mm] UCS (Mpa) metro Persistencia- continuidad Rugosidad Relleno Alterabilidad Estado del terreno Corrección por terreno Puntuación Total 7 31 4 1 2 1 4 0 12 4 7 31 4 1 2 1 4 0 12 4 600clión peorification Rosstedimiento sequin adveso m Cálculo del módulo de deformación del macizo roccos (0m) seguin diferentes autores (RMR) 0	4	64.4° , 326.6°		0.24	4 m	0.80 m	Plana-rugosa	30 Mpa	Parcialmente abierta	Limoso	o-arenoso	Relleno húmedo pero sin flujo	
Noto wask starting (tokk14), Usada et al. 2014 ULS (Map) Discontinuidades por metro Persistencia- continuidad Reguoidad Relieno Alteración Alteración Estado del terreno Concession por Troneles Puntuación Total 7 31 4 1 2 1 4 10 1.2 48 Concisión geotécnica Bos conteninento según Lowson Calcula del módulo de deformación del macizor roccos (Em) según diferentes autores (RMR) Condición geotécnica Bos amedia dase III Benavesti, 1978 -4 6Pa Espacardinento entre ancias 2.0384615 Marta et al. 1997 1911/7.33 GPa Espacardinento entre ancias 2.0384615 Marta et al. 1997 16100.00 GPa Regresión lineal (Sánchez y Lozada, 2020) 14693.83 GPa Caldad del macizo Bo 12 2 1 2 1.33 Mala Calcula del módulo de deformación del macizo roccos (Em) según diferentes autores (Q) Mala Adaia Calcula del mácizo Mala To Go eostedimiento según Barton Cálcula del módulo de deformación del maci	5	17° , 282.7°		0.6	im .	0.95 m	Suave-liso	30 Mpa	Abierta (0.5 - 2.5 mm)	Limoso-arenoso		Relleno húmedo pero sin flujo	
UCS (Mpa) metrometro continuidades por continuidadRegosidad RegionalReleno RegosidadAlteración AlteraciónAlteración AlteraciónCondición gentécnica continuidadPuntuación Total tal7314121410-1248Condición gentécnicaRoca media clase III Biniavski, 197864GPaGPaEspaciamiento entre anclas2.0384615 RerosGolce.ogu, 2003-677.137GPaEspaciamiento entre anclas2.0384615 RerosReca detal 199914693.83GPaEspacioniento entre anclas2.0384615 RerosNeca detal 199914693.83GPaImage: Space context anclas122121SRFImage: Space context anclas1211NNNImage: Space context anclas13NRegresión lineal (Sáncher y Lozada, 2020)14693.83GPaImage: Space context anclas13.3NRegresión lineal (Sáncher y Lozada, 2020)1251.33MalaAvance ConticaRoca de calladamalaBarton, 120212589.00GPaGPaSpace context anclas1.33N <t< td=""><td></td><td>Discontinuidades nor</td><td>Der</td><td>sistansis</td><td>KO</td><td>ck iviass kating (k</td><td>IVIR14), Celada</td><td>et al. 2014</td><td></td><td>Como</td><td></td><td></td></t<>		Discontinuidades nor	Der	sistansis	KO	ck iviass kating (k	IVIR14), Celada	et al. 2014		Como			
7 31 4 1 2 1 4 10 -12 48 Tip ode sostedimiento segin Lowson Condición geotécnica Roca media clase III Bieniawski, 1973 4 GPa GPa Carga de roca Pr 88,731054 [kV/m2 Gokceoglu, 2003 G771.37 GPa Especiamiento entre anclas 2,0384615 Avada et al. 1997 1911.73.3 GPa Especiamiento entre anclas 2,0384615 Mada et al. 1997 14693.83 GPa Especiamiento entre anclas 1.0 Jr Jr Jr Jr Jr 14693.83 GPa RQD Jn Jr Jr Jr Z 5 1.33 Mala Condición geotécnica Roca de calidad mala Barton, 1992 3.10 GPa Avance 3 m Barton, 2002 12589.00 GPa Relación Avance/ESR 2.3076923 Espaciamiento según Amarton 8.87 GPa Cálculo del módulo	UCS (Mpa)	metro	COI	ntinuidad	Rugosidad	Relleno	Alteración	Alterabilidad	terreno	Tú	neles	Puntuación Total	
Tipo de sostedimiento según LowsonCálculo del módulo de deformación del macizo roccos (Em) según diferentes autores (RMR)Carga de roca Pr88.731054kN/m2Gokceagu, 20034GPaEspesor del concreto lanzado2.0384615metrosAydan et al. 19971911.7.33GPaEspesor del concreto lanzado2.010893.83GPAGPAIndice Q de Barton et al 19971911.7.33GPARQDJnJrJwJaSRPuntuaciónCalidad del macizoNotacia de calidad malaBarton, 19923.10GPAGe sostedimiento según BartonCálculo del módulo de deformación del macizo roccoso (Em) según diferentes autores (Q)Condición ge otécnicaRoca de calidad malaAurorCálculo del módulo de deformación del macizo roccoso (Em) según diferentes autores (Q)Condición ge otécnicaRoca de calidad malaBarton, 19923.10GPaEspeci del concreto lanzado4 a 10Condición ge otécnicaRock Mass Index, Palmstrom et al 2001Especi del concreto lanzadoCalidad del macizoCosto de calidad malaBarton, 19923.10GPaEspeci del concreto lanzado4 a 10Costo de calidad malaBarton, 1992 <th colsp<="" td=""><td>7</td><td>31</td><td></td><td>4</td><td>1</td><td>2</td><td>1</td><td>4</td><td>10</td><td colspan="2">-12</td><td>48</td></th>	<td>7</td> <td>31</td> <td></td> <td>4</td> <td>1</td> <td>2</td> <td>1</td> <td>4</td> <td>10</td> <td colspan="2">-12</td> <td>48</td>	7	31		4	1	2	1	4	10	-12		48
Condición geotècnica Roca media clase III Bieniavski, 1978 -4 GPa G71.37 Canga de roca Pr 88,731054 [kV/m2] Gloca equil, 2003 677.137 GPa 21600.00 GPa Espesor del concreto lanzado 200 mm Read et al. 1999 21600.00 GPa Image de roca (Cargo		Tipo de sostedimi	iento seg	ún Lowson		Cálculo	o del módulo de	deformación del	macizo rocoso	(Em) se	egún difer	entes autores (RMR)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Condición ge	eotécnica		Roca med	ia clase III	Bieniawski, 1978			-4	GPa			
Expandimento entre anizado 2.03eelo 3 finetos 2.03	Carga de roc	a Pr		88.731054 KN/M2		Gokceoglu, 2003			6//1.3/	GPa			
Consistence window Induce Call Call Call Call Call RQD Jn Jr Jw Ja SRF Puntuación 80 12 2 1 2 5 1.33 Maia 80 12 2 1 2 5 1.33 Maia Condición geotécnica Roca de calidad maia Barton, 1992 3.10 GPa Avance 3 Barton, 1992 3.10 GPa SR 1.33 L.33 L.33 Maia Espaciamiento esgún Barton Cálculo del módulo de deformación del macizo rocoso (Em) según diferentes autores (Q) Avance 3 Barton, 2002 12589.00 GPa Spaciamiento entre ancias 1.3 a 1.7 Im Espaciamiento entre ancias 1.3 a 1.7 Im Espaciamiento entre ancias 1.3 a 1.7 Im Espaciamiento según Palmstrom Cálculo del módulo de deformación del macizo rocoso (Em) según diferentes autores (RMI) 1.5 150 2 6 0.5 0.061 0.04 0.425 6.45 Buena Revestimiento propuesto Anclas con 2 m de espaciamiento y co	Espaciannen Espesor del c	concreto lanzado		2.0384013 metros		Ayuan et al. 1997 Read et al. 1999			21600.00	GPa GPa			
RQD Jn Jr Jw Ja SRF Puntuación 80 12 2 1 2 5 1.33 Galdad del macizo 80 12 2 1 2 5 1.33 Mala Caliculo del módulo de deformación del macizo rocoso (Em) según diferentes autores (Q) Condición geotécnica Avance 3 m Barton, 1992 12589.00 GPa Espanamiento entre anclas 1.3 a 1.7 m Barton, 2002 6.97 GPa Espaciamiento entre anclas 1.3 a 1.7 m Barton, 2002 GPa GPa Iongitud del ancla 1.8 m Rock Mass Index. Palmstrom et al 2001 6.45 Buena Ing UCS de la roca (qc) MPa JL JA JC Vb Jp D Puntuación Sr 1.5 150 2 6 0.5 0.061 0.04 0.425 6.45 Buena Tipo de sostedimiento según Palmström Cálculo del módulo de deformación del macizo rocoso (Em) según diferentes autores (RMi) GPa GPa GPa	Lopedor dere			20		Regresión lineal (Sánchez v Lozac	la. 2020)	14693.83	GPa			
RQD Jn Jr Jw Ja SRF Puntuación 80 12 2 1 2 5 1.33 Mala Tipo de sostedimiento según Barton Cálculo del módulo de deformación del macizo roccoso (Em) según diferentes autores (Q) Condición geotécnica Roca de calidad mala Barton, 1992 3.10 GPa Avance SR 1.3 Palmstrom y Singh (2001) 8.97 GPa Especaraliento entre anclas 1.3 a 1.7 m Especaraliento entre anclas 1.3 a 1.7 Especaraliento entre anclas 1.3 a 1.7 m Especaraliento entre anclas 1.3 m Rock Mass Index. Palmstrom et al 2001 jR UCS de la roca (qc) MPa jL jA jC Vb Jp D Puntuación Galidad del macizo Rock Mass Index. Palmstrom et al 2001 jR UCS de la roca (qc) MPa jL jA jC Vb Jp D Puntuación Galidad del macizo Stepsor del concreto lanzado 6.45 Buena jR UCS de la roca (qc) MPa jL jA jC Vb Jp D Puntuación <						Índice Q de	Barton et al 19	74					
80 12 2 1 2 5 1.33 Calidad del macizo Condición geotécnica Roca de calidad mala Barton, 1992 3.10 GPa Avance 3 M Barton, 2002 12589.00 GPa Relación Avance/ESR 2.3076923 Espesor del concreto lanzado 1.3 1.7 m Espesor del concreto lanzado 4 a 10 cm concreto lanzado 4 a 10 cm Calidad del macizo 1.5 100 2 6 0.5 0.061 0.04 0.425 6.45 Buena Sr 1.5 150 2 6 0.5 0.061 0.04 0.425 6.45 Buena Sr - 6.4874099 Palmstrom Cáldulo del módulo de deformación del macizo rocoso Fma Segú diferentes autores (RMi) Sr - 6.4874099 Palmstrom (1995) 10.98 GPa Ge 0.06 10.01 14.33 GPa Vb UCS de la roca (qc) MPa Coeficiente de daño D= m	RQD	Jn		Jr		Jw		Ja	SRF	Punt	tuación		
80 12 2 1 2 5 1.33 Mala Tipo de sostedimiento según Barton Cálculo del módulo de deformación del macizo roccos (Em) según diferentes autores (Q) Condición geotécnica Roca de calidad mala Barton, 2002 12589.00 GPa Avance 3 m Barton, 2002 12589.00 GPa ESR 1.3 Palmstrom y Singh (2001) 8.97 GPa Relación Avance/ESR 1.3 a 1.7 m Especiamiento entre anclas 1.3 a 1.7 m Especiamiento entre anclas 1.8 m Palmstrom y Singh (2001) 9 Puntuación Longitud del ancla 1.8 m 6 0.5 0.061 0.04 0.425 6.45 Buena 1.5 150 2 6 0.5 0.061 0.04 0.425 6.45 Buena Sr 6.4874099 Palmstrom y Singh (2001) 10.98 GPa Revestimiento propuesto Anclas con 2 m de espaciamiento y concreto lanzado de 40 mm de grosor 10.98 GPa Roce daño D												Calidad del macizo	
Tipo de sostedimiento según BartonCálculo del módulo de deformación del macizo roccoso (Em) según diferentes autores (Q)Condición geotécnicaRoca de calidad mala Barton, 19923.10GPaAvance3mBarton, 200212589.00GPaESR1.31.3Palmstrom y Singh (2001)8.97GPaRelación Avance/ESR2.3076923Palmstrom y Singh (2001)8.97GPaEspeciamiento entre anclas1.3 a 1.7mEspeciamiento entre anclas1.3 a 1.7Cock Mass Index. Palmstrom et al 2001Cock Mass Index. Palmstrom et al 2001Calidad del macizoJi UCS de la roca (qc) MPajLjAjCVblpDPuntuación Galidad del macizoTipo de sostedimiento según PalmströmCálculo del módulo de deformación del macizo roccoso (Em) según diferentes autores (RMi)Setevestimiento propuestoAnclas con 2 m de espaciamiento y Singh (2001)10.98GPaGeological strenght index, Hoek y Brown, 1997Izo VbUCS de la roca (qc) MPaCoeficiente de daño D=mmaPHontaciónSection and the size or cocso (Em) según diferentes autores (RMi)Section and the de daño D=Top de sostedimiento según PalmstrómCálculo del módulo de deformación del macizo roccoso (Em) según diferentes autores (RMi)Section and the datora (qc) MPaCoeficiente de daño D=mtop section and de 40 mm de gr	80	12		2		1		2	5	1	.33	Mala	
Condición geotécnica Roca de calidad mala Barton, 1992 3.10 GPa Avance 3 m Barton, 2002 12589.00 GPa Relación Avance/ESR 2.3076923 Palmstrom y Singh (2001) 8.97 GPa Especialmiento entre anclas 1.3 a 1.7 m Especialmiento concreto lanzado 4 a 10 cm Longitud del ancla 1.8 m Relación Value Jp D Puntuación 1.5 150 2 6 0.5 0.061 0.04 0.425 6.435 Buena 1.5 150 2 6 0.5 0.061 0.04 0.425 6.45 Buena Sr 6.4874099 Palmstrom y Singh (2001) 14.33 GPa GPa GPa Revestimiento propuesto Anclas con 2 m de espaciamiento y concreto lanzado de 40 mm de grosor GPa Gea Gea 0.5 0.06 150 0.7 25 1.6026 0.0007 0.5057 38 Hoek y Brown, 1997 12.25 GPa 6.430 GPa GPa <td></td> <td>Tipo de sostedim</td> <td>iento se</td> <td>gún Barton</td> <td></td> <td>Cálcu</td> <td>ilo del módulo c</td> <td>le deformación de</td> <td>el macizo rocos</td> <td>o (Em)</td> <td>según dife</td> <td>erentes autores (Q)</td>		Tipo de sostedim	iento se	gún Barton		Cálcu	ilo del módulo c	le deformación de	el macizo rocos	o (Em)	según dife	erentes autores (Q)	
AVance3 mBarton, 20021289:006PaESR1.31.3Palmstrom y Singh (2001)8.97GPaEspaciamiento entre anclas1.3 a 1.7 mEspaciamiento entre anclas1.3 a 1.7 mEspeciamiento entre anclas1.3 a 1.7 mEspaciamiento entre anclas1.8 mLongitud del ancla1.8 mCalidad del macizoRock Mass Index. Palmstrom et al 2001jRUCS de la roca (qc) MPajLjAjCVbJpDPuntuaciónCalidad del macizo1.5150260.50.0610.040.4256.45BuenaSr6.4874099PalmstromCálculo del módulo de deformación del macizo rocoso (Em) según diferentes autores (RMi)Sr6.4874099Palmstrom (1995)10.98GPaGeological strength index, Hoek y Brown, 1997Anclas con 2 m de espaciamiento y concreto lanzado de 40 mm de grosorGeological strength index, Hoek y Brown, 199712.5GPaHoek y Brown, 199712.25GPaHoek 2004 8.10GPa6.90Hoek 2004 8.10GPaHoek 2004 8.10GPaHoek 2004 8.10GPaHoek 2004 Sonmez et al. (2004)La del ance and all of the set all strength index, Hoek and th	Condición ge	eotécnica		Roca de ca	lidad mala	Barton, 1992			3.10	GPa			
LAK La La Particular y Singl (2001) 0.37 GP a Espaciamiento entre anclas 1.3 a 1.7 m <t< td=""><td></td><td></td><td></td><td>3</td><td>m</td><td colspan="3">Barton, 2002</td><td>12589.00</td><td>GPa</td><td></td><td></td></t<>				3	m	Barton, 2002			12589.00	GPa			
Espaciamiento entre anclas 1.3 a 1.7 m Espaciamiento entre anclas 1.3 a 1.7 m Espesor del concreto lanzado 4 a 10 cm Longitud del ancla 1.8 m Rock Mass Index. Palmstrom et al 2001 jR UCS de la roca (qc) MPa jL jA jC Vb Jp D Puntuación 1.5 150 2 6 0.5 0.061 0.04 0.425 6.45 Buena Sepaciamiento según Palmström Cálculo del módulo de deformación del macizo rocoso (Em) según diferentes autores (RMi) Sr 6.4874099 Palmstrom (1995) 10.98 GPa Geological strenght index, Hoek y Brown, 1997 Revestimiento propuesto Anclas con 2 m de espaciamiento y concreto lanzado de 40 mm de grosor UCS de la roca (qc) MPa Coeficiente de daño D= mi mb s a Puntuación O.7 25 1.6026 0.0007 0.5057 38 Ide Vb UCS de la roca (qc) MPa Coeficiente de daño D= 1 M M S	Relación Ava	ince/ESR		2.3076923		r unistronn y sing	11(2001)		0.57	oru			
Espesor del concreto lanzado 4 a 10 cm Concreto lanzado 4 a 10 cm Concreto lanzado 4 a 10 cm Concreto lanzado 1.8 m Concreto lanzado Puntuación JIC V b Jp Puntuación JIC V b Jp Puntuación JIC V b JIC V b OLG de la roca (qc) MPa JIC Calidad del macizo JIC O de 4874099 Palmstrom (1995) 10.98 GPa Ge Calidad del macizo Coso (Em) según diferentes autores (RMi) S Geological strenght index, Hoek y Brown, 1998 Geological strenght index, Hoek y Brown, 1997 JL V Puntuación JIC VB Puntuación JIC Calidad del macizo Calidad del macizo <th colspa<="" td=""><td>Espaciamient</td><td>to entre anclas</td><td></td><td>1.3 a 1.7</td><td>m</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td>Espaciamient</td> <td>to entre anclas</td> <td></td> <td>1.3 a 1.7</td> <td>m</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Espaciamient	to entre anclas		1.3 a 1.7	m							
Longitud del ancla 1.8 m Rock Mass Index. Palmstrom et al 2001 jR UCS de la roca (qc) MPa jL jA jC Vb JP D Puntuación 1.5 150 2 6 0.5 0.061 0.04 0.425 6.45 Buena Sr 10.98 6.4874099 Palmstrom (1995) 10.98 GPa Gc 6.4874099 Palmstrom y Singh (2001) 14.33 GPa Revestimiento propuesto Anclas con 2 m de espaciamiento y concreto lanzado de 40 mm de grosor Puntuación Puntuación JC Vb UCS de la roca (qc) MPa Coeficiente de daño D = mi mb s a Puntuación 0.5 0.06 150 0.7 25 1.6026 0.007 0.5057 38 0.5 0.06 150 0.7 25 1.6026 0.007 0.5057 38 0.5 0.06 150 0.7 25 1.6026 0.007 0.5057 38 0.5 0.06 150 0.7 25 1.6026 0.007	Espesor del c	concreto lanzado		4 a 10	cm								
Rock Mass Index. Palmstrom et al 2001 jR UCS de la roca (qc) MPa jL jA jC Vb Jp D Puntuación 1.5 150 2 6 0.5 0.061 0.04 0.425 6.45 Buena Tipo de sostedimiento según Palmström Cáliculo del módulo de deformación del macizo rocoso (Em) según diferentes autores (RMi) Según diferentes autores (RMi) Sr 6.4874099 Palmstrom (1995) 10.98 GPa Gc 6.487 Palmstrom y Singh (2001) 14.33 GPa Revestimiento propuesto Anclas con 2 m de espaciamiento y concreto lanzado de 40 mm de grosor Según diferentes autores (RMi) Jc Vb UCS de la roca (qc) MPa Coeficiente de daño D= mi mb s a Puntuación 0.5 0.06 150 0.7 25 1.6026 0.0007 0.5057 38 I 0.5 0.06 150 0.7 25 1.6026 0.0007 0.5057 38 I <td col<="" td=""><td>Longitud del</td><td>ancla</td><td></td><td>1.8</td><td>m</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td>Longitud del</td> <td>ancla</td> <td></td> <td>1.8</td> <td>m</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Longitud del	ancla		1.8	m							
jk UCS de la roca (qc) MPa jL jA jC Vb Jp D Puntuación 1.5 150 2 6 0.5 0.061 0.04 0.425 6.45 Buena Sr Tipo de sostedimiento según Palmström Cálidad del mácizo Cálidad del mácizo 0.04 0.425 GPa Buena GC 6.4874099 Palmstrom (1995) 10.98 GPa GPa <td></td> <td></td> <td>1.45</td> <td></td> <td></td> <td>Rock Mass Index.</td> <td>Palmstrom et</td> <td>al 2001</td> <td></td> <td></td> <td></td> <td></td>			1.45			Rock Mass Index.	Palmstrom et	al 2001					
1.5 150 2 6 0.5 0.061 0.04 0.425 6.45 Buena Tipo de sostedimiento según Palmström Cálculo del módulo de deformación del macizo roccoso (Em) según diferentes autores (RMi) Sr 6.4874099 Palmstrom (1995) 10.98 GPa Gc 6.487 Palmstrom y Singh (2001) 14.33 GPa Revestimiento propuesto Anclas con 2 m de espaciamiento y concreto lanzado de 40 mm de grosor Geological strenght index, Hoek y Brown, 1997 12.05 1.6026 0.0007 0.5057 38 I 0.64 y Brown, 1997 12.25 GPa Hoek y Brown, 1997 12.25 GPa 1.6026 0.0007 0.5057 38 I I I I I I I I	jR	UCS de la roca (qc)	МРа	jL	jA	jC		Vb	Jp D	Punt	tuación	Calidad del macizo	
Tipo de sostedimiento según Palmström Cálculo del módulo de deformación del macizo rocoso (Em) según diferentes autores (RMi) Sr 6.4874099 Palmstrom (1995) 10.98 GPa Gc 6.487 Palmstrom (1995) 14.33 GPa Revestimiento propuesto Anclas con 2 m de espaciamiento y concreto lanzado de 40 mm de grosor Geological strenght index, Hoek y Brown, 1997 Jc Vb UCS de la roca (qc) MPa Coeficiente de daño D= mi mb s a Puntuación 0.5 0.06 150 0.7 25 1.6026 0.0007 0.5057 38 Hoek y Brown, 1997 Hoek y Brown, 1997 12.25 GPa Hoek 2004 8.10 GPa GPa Sonmez et al. (2004) 13852.29 GFa GFa	1.5	150		2	6	0.5	0.	061	0.04 0.425	e	5.45	Buena	
Sr 6.4874099 Palmstrom (1995) 10.98 GPa Gc 6.45 Palmstrom y Singh (2001) 14.33 GPa Revestimento propuesto Anclas con 2 m de espaciamiento y concreto lanzado de 40 mm de grosor Geological strenght index, Hoek y Brown, 1997 Jc Vb UCS de la roca (qc) MPa Coeficiente de daño D= mi mb s a Puntuación 0.5 0.06 150 0.7 25 1.6026 0.0007 0.5057 38 Hoek y Brown, 1997 Hoek 2004 8.10 GPa Hoek 2004 8.10 GPa Sonmez et al. (2004) 13852.29 GPa		Tipo de sostedimie	nto segú	in Palmström		Cálculo	o del módulo de	e deformación del	macizo rocoso	(Em) se	egún difei	rentes autores (RMi)	
Gc 6.45 Palmstrom y Singh (2001) 14.33 GPa Revestimiento propuesto Anclas con 2 m de espaciamiento y concreto lanzado de 40 mm de grosor Geological strenght index, Hoek y Brown, 1997 Jc Vb UCS de la roca (qc) MPa Coeficiente de daño D= mi mb s a Puntuación 0.5 0.06 150 0.7 25 1.6026 0.0007 0.5057 38 Hoek y Brown, 1997 Hoek y Brown, 1997 12.25 GPa Hoek 2004 8.10 GPa Sonmez et al. (2004) 13852.29 GPa	Sr			6.4874099		Palmstrom (1995))		10.98	GPa			
Anclas con 2 m de espaciamiento y concreto lanzado de 40 mm de grosor Geological strenght index, Hoek y Brown, 1997 Jc Vb UCS de la roca (qc) MPa Coeficiente de daño D= mi mb s a Puntuación 0.5 0.06 150 0.7 25 1.6026 0.0007 0.5057 38 Hoek y Brown, 1997 12.25 GPa Hoek, 2004 6.50 GPa 64.00 64.00 64.00 64.00 64.00 64.00 66.00 67.00	Gc			6.45	L	Palmstrom y Sing	h (2001)		14.33	GPa			
Geological su engli index, Hoek y Brown, 1997 Jc Vb UCS de la roca (qc) MPa Coeficiente de daño D= mi mb s a Puntuación 0.5 0.06 150 0.7 25 1.6026 0.0007 0.5057 38 I Hoek y Brown, 1997 12.25 GPa Hoek 2004 6.50 GPa 69a <	Revestimiento propuesto			Anclas con 2 m	n de espaciami	ento y concreto la	nzado de 40 mr	n de grosor					
0.5 0.06 150 0.7 25 1.6026 0.0007 0.5057 38 I Hoek y Brown, 1997 12.25 GPa Hoek, 2002 6.50 GPa Hoek 2004 8.10 GPa Sonmez et al. (2004) 13852.29 GPa	Jc Vb UCS de la roca (gc) MPa		MPa	Coeficiente	de daño D=	mi	mb	Swii, 1997	а	Punt	tuación		
1 Hoek y Brown, 1997 12.25 GPa Hoek, 2002 6.50 GPa Hoek 2004 8.10 GPa Sonmez et al. (2004) 13852.29 GPa	0.5 0.06	150		0.	.7	25	1.6026	0.0007	0.5057		38		
Hoek y Brown, 1997 12.25 GPa Hoek, 2002 6.50 GPa Hoek 2004 8.10 GPa Sonmez et al. (2004) 13852.29 GPa		1007		40.55	6.5		1						
Hock 2004 8.10 GPa Sonmez et al. (2004) 13852.29 GPa	HOEK y Brow	n, 1997		12.25	GPa GPa								
Sonmez et al. (2004) 13852.29 GPa	Hoek 2002			8,10	GPa								
	Sonmez et al	l. (2004)		13852.29	GPa	1							

Análisis de cuñas, Túnel San Antonio, cadenamiento 0+199

Para este análisis se utilizó la combinación de 3 de las 6 familias, estas son las familias 3, 4 y 5. Se eligieron estas 3 familias, debido a que la familia 3 tiene una inclinación en contra de la excavación del túnel y la familia 4 tiene un rumbo paralelo al eje del túnel condiciones desfavorables apra la estabilidad del túnel; en combinación con la familia 5 dan como resultado las cuñas con mayor tamaño y relevancia para la estabilidad del túnel.

Consideraciones

Con esta combinación de familias presentes en el Túnel San Antonio, y con ayuda del programa UNWEDGE es posible obtener 7 cuñas, sin embargo, ya sea por su tamaño o su posición, solo 3 tienen relevancia para la estabilidad de la excavación. Dos cuñas que se forman en la clave del túne y una en los hastiales. Aunque es importante tener en cuenta todas las cuñas aquí mostradas, la cuña 8 es la que adquiere mayor relevancia, ya que, debido a su posición (en la clave) su factor de seguridad es igual a 0, lo que podría ocasionar caidos de volumen importante, y ser un riesgo importante para la seguridad del personal que labora y de la integridad del túnel. Además la cuña 6 es de un tamaño considerable y tiene un factor de seguridad de 4, que podría, si su tratamiento de estabilización (anclaje) no es el correcto, o su tiempo de colocación es demasiado, causar problemas a la integridad del túnel.

Ubicación: Túnel San Antonio, Puerto Escondido, Oaxaca	Cadenamiento:	0+205	Fecha:	29 de Marzo de 2019
---	---------------	-------	--------	---------------------

El frente de excavación se encuentra en un macizo rocoso con distintos grados de fracturamiento, la mayor parte del frente se encuentra poco fracturada, la parte derecha del frente se encuentra muy fracturado.

Se identifican 3 familias principalmente, cuya orientación provocan la formación de bloques de volumen considerable en la clave, además son identificables rasgos estructurales importantes como las discontinuidades indicadas (Fig. 1), cuya continuidad va de los 4 - 5 metros hasta los 8 metrosde longitud, cuyo relleno se caracteriza por material suelto, triturado y manchas de material fino color marrón. En las Figuras 2, se observan las zonas con mayor cantidad de humedad, en esa zona las discontinuidades se encuentran rellenas de material fino color marrón húmedo. Aún no se observa un flujo de agua, pero la humedad puede disminuir la resistencia al corte del material de relleno y desestabilizar el frente.

Se observan dos zonas en el frente, donde el macizo rocosos tiene distintos grados de metorización. La zona 1 corresponde al macizo rocoso masivo a poco fracturado, mientras que la zona 2 se encuentra muy fracturada y sus discontinuidades tienen características más desfavorables que las de la zona 1. (Fig. 3)

Descripción geológica:

Se encuentran dos unidades litológicas en el frente, se encuentran intercalaciones de una roca color verde de grano fino, masiva y muy dura, junto con una roca de textura granítica muy dura y densa.

La roca de grano fino, contiene minerales como cuarzo, plagioclasa, biotita (mica negra) y hornblenda; siendo esta una roca metamórfica corneana de contacto, esta se encuentra mayormente en la parte superior el frente, la roca granítica (granodiorita) se encuentra en la parte inferior del frente, está constituida por minerales volcánicos como cuarzo y mica (biotita), además de bandas de grosor considerable (> 5 cm) de cuarzo lechoso. Ambas rocas se encuentran mineralizadas (presencia de pirita) y usualmente la división entre ambas se da por discontinuidades rellenas de material triturado o descompuesto de color verde (Serpentina).

Estructura geológica

Con ayuda de la herramienta ShapeMetrix 3D, fue posible identificar 6 familias de discontinuidades. Es posible realizar una comparación entre el frente anterior (0+199) y el actual, esto permite observar las variaciones de dirección e inclinación de las familias de discontinuidades respecto frente excavado del túnel. Existen cambios significativos en todas las familias de discontinuidades, respecto al frente anterior, por lo que es posible que nos encontremos en un bloque dislocadoposterior a una falla. En este frente las familias 3 y 4 se inclina en contra del avance en la excavación y la familia 1 tiene un rumbo paralelo al eje del túnel, una condición muy desfavorable según la clasificación RMR.

La demás familias 2, 5 y 6 son formadoras de bloques en combinación con las otras familias, pero no tienen una inclinación desfavorable respecto a la excavación.

Además de los datos de dirección y echado de planos de discontinuidad y fracturas, la herramienta permite conocer el espaciamiento, continuidad y con ciertas mediciones permite conocer el tamaño de los bloques representativos del frente utilizados en la evaluación de la clasificación RMi (Palmstrom, 2001). Los datos de la descripción de las discontinuidades de cada familia y para cada zona se muestran en las tablas 1 y 2.

	Descripción de las discontinuidades y clasificación geomecánica del frente										
	Tabla 1. Descripción de las discontinuidades (ISRM, 1981). Para la zona 1.										
Familia	Orientación (echado, d del echado)	irección	Espac	iado	Continuidad	Rugosidad	Resistencia de las paredes	Abertura	Re	lleno	Filtraciones
1	83.9° , 98.5°		1.77	7 m	0.94 m	Ondulado rugoso	120 MPa	Cerrada	Sin	relleno	Juntas secas
2	44.2°, 139.5°		0.8	m	0.9 m	Ondulado rugoso	120 MPa	Cerrada	Sin	relleno	Juntas secas
3	30.3° , 25.5°		1	m	1.03 m	Ondulada- rugosa	120 MPa	Cerrada	Sin	relleno	Juntas secas
4	51.5° , 328.3°		1	m	0.65 m	Ondulada- rugosa	120 MPa	Cerrada	Sin	relleno	Juntas secas
5	35.9° , 226.6°		0.54	łm	0.86 m	Ondulada- rugosa	120 MPa	Parcialmente abierta	Sin	relleno	Húmedo sin flujo
6	80.7° , 191.8°		0.37	7 m	0.45 m	Ondulada- rugosa	120 MPa	Parcialmente abierta	Sin	relleno	Húmedo sin flujo
			Ta	ble 2.Descripc	ión de las disconti	inuidades (ISRN	A, 1981). Para la z	ona 2.	1		
Familia	Orientación (echado, d del echado)	irección	Espac	iado	Continuidad	Rugosidad	Resistencia de las paredes	Abertura	Re	lleno	Filtraciones
1	83.9° , 98.5°		1.38	3 m	1.22 m	Suave-liso	30 MPa	Abierta (0.5 - 2.5 mm)	Areno	so-limoso	Relleno húmedo pero sin flujo
2	44.2° , 139.5°		0.55	ōm	1.10 m	Ondulada- rugosa	80 MPa	Parcialmente abierta	Sin	relleno	Húmedo pero sin flujo
3	30.3° , 25.5°		0.57	7 m	1.25 m	Ondulada- rugosa	80 MPa	abierta (0.25 - 0.5 mm)	Sin	relleno	Húmedo pero sin flujo
4	51.5° , 328.3°		0.43	3 m	0.66 m	Ondulada- rugosa	80 MPa	Parcialmente abierta	Sin	relleno	Húmedo pero sin flujo
5	35.9° , 226.6°		0.22	2 m	0.95 m	Suave-liso	30 MPa	Abierta (0.5 - 2.5 mm)	Limoso	o-arenoso	Relleno húmedo pero sin flujo
6	6 80.7° , 191.8°		0.3	m	0.76 m	Ondulada- rugosa	80 MPa	Parcialmente abierta	Sin	relleno	Húmedo pero sin flujo
	Discontinuidades por	Dor	sistencia -	ROC	K Wass Rating (R	wiki4), Celada	et al. 2014	Estado del	Correc	ción nor	
UCS (Mpa)	metro	со	ntinuidad	Rugosidad	Relleno	Alteración	Alterabilidad	terreno	Tú	neles	Puntuación Total
7	32		4	1	2	3	4	7		-12	48
Condition of	Tipo de sostedimi	ento seg	ún Lowson	l 10	Cálculo Dianianalii 4070	del módulo de	deformación del	macizo rocoso	(Em) s	egún dife	rentes autores (RMR)
Condición g			89 721054	la clase III	Bieniawski, 1978			20	GPa GPa		
Espaciamier	to entre anclas		2 0384615	metros	Avdan et al. 1997			19.12	GPa		
Espesor del	concreto lanzado		20	mm	Read et al. 1999			21.60	GPa		
					Regresión lineal (Sánchez y Lozad	da, 2020)	14.69	GPa		
					Índice Q de I	Barton et al 197	74	-			
RQD	Jn		Jr		Jw		Ja	SRF	Punt	tuación	Colidad dal massira
85	12 Tipo do costodim	ionto co	2		1		2 lo doformación do	5	1 (Em)	.42	Mala
Condición g	eotécnica	ilento se	Roca de ca	lidad mala	Barton, 1992			3.73	GPa	Seguirun	
Avance			3	m	Barton, 2002			12.84	GPa		
ESR			1.3		Palmstrom y Sing	h (2001)		9.18	GPa		
Relación Av	ance/ESR		2.3076923								
Espaciamier Espacer del	ito entre anclas		1.3 a 1.7	m							
Longitud de	Lancia		4 a 10	m							
8			2.0		Rock Mass Index.	Palmstrom et a	al 2001				
jR	UCS de la roca (qc)	MPa	jL	jA	jC		Vb	Jp D	Punt	tuación	
1.5	150		2	3	1	0.	.655	0.17 0.37	2	5.65	Calidad del macizo Muy Buena
-	Tipo de sostedimie	nto segú	n Palmström		Cálculo	o del módulo de	e deformación del	macizo rocoso	o (Em) s	egún dife	erentes autores (RMi)
Sr			2.9568523		Palmstrom (1995)		18.79	GPa		
Revestimier	to propuesto		25 Anclas puntual	es	rainisuotti y sing	11 (2001)		25.37	Grd		
			, in particular	Geo	logical strenght in	ndex, Hoek y Br	own, 1997				
Jc Vb	UCS de la roca (qc)	MPa	Coeficiente	de daño D=	mi	mb	S	а	Punt	tuación	
1 0.65	150		0.	7	25	1.5169	0.0006	0.5061		49	
					[1					
Hoek y Brov	vn, 1997		11.56	GPa							
Hoek 2002			0.14 7 50	GPa							
Sonmez et al. (2004)			13.44	GPa							

Análisis de cuñas, Túnel San Antonio, cadenamiento 0+205

Para este análisis se utilizó la combinación de 3 de las 6 familias, estas son las familias 1, 3 y 4. Se eligieron estas 3 familias, debido a que la familia 3 tiene una inclinación en contra y un rumbo paralelo de la excavación del túnel, siendo desfavorables; dando como resultado las cuñas con mayor tamaño y relevancia para la estabilidad del túnel.

Consideraciones

Con esta combinación de familias presentes en el Túnel San Antonio, y con ayuda del programa UNWEDGE es posible obtener 4 cuñas, sin embargo, ya sea por su tamaño o su posición, solo 2 tienen relevancia para la estabilidad de la excavación. Una cuña que se forma en la clave del túnel. La cuña 2 es la que adquiere mayor relevancia, ya que, debido a su tamaño puede ser un riesgo importante para la seguridad del personal que labora y de la integridad del túnel.

Ficha de caracterización geológica - geotécnica del túnel San Antonio	
---	--

Cadenamiento:

Ubicación: Túnel San Antonio, Puerto Escondido, Oaxaca -----

0+208

Fecha: 03 de Abril de 2019

Descripción general del frente:

El frente de excavación se encuentra en un macizo rocoso con distintos grados de fracturamiento, la mayor parte del frente se encuentra poco fracturada, como se observa la zona muy fracturada que se encontraba en la parte derecha del frente se encuentra ahora en la parte superior del túnel excavado y ya no en el frente.

Se identifican 3 familias principalmente, cuya orientación provocan la formación de bloques de volumen considerable en la clave, además son identificables rasgos estructurales importantes como las discontinuidades indicadas (Fig. 1), cuya continuidad va de los 4 - 5 metros hasta los 8 metros de longitud, cuyo relleno se caracteriza por material suelto, triturado y manchas de material fino color marrón. En las Figuras 2, se observan las zonas con mayor cantidad de humedad, en esa zona las discontinuidades se encuentran rellenas de material fino color marrón húmedo. Aún no se observa un flujo de agua, pero la humedad puede disminuir la resistencia al corte del material de relleno y desestabilizar el frente.

La zona 2 ya no se encuentra en el frente, ahora se observa un frente homogéneo(Fig. 3)

Descripción geológica:

Se encuentran dos unidades litológicas en el frente,se encuentran intercalaciones de una roca color verde de grano fino, masiva y muy dura, junto con una roca de textura granítica muy dura y densa.

La roca de grano fino, contiene minerales como cuarzo, plagioclasa, biotita (mica negra) y hornblenda; siendo esta una roca metamórfica corneana de contacto, esta se encuentra mayormente en la parte superior el frente, la roca granítica (granodiorita) se encuentra en la parte inferior del frente, está constituida por minerales volcánicos como cuarzo y mica (biotita), además de bandas de grosor considerable (> 5 cm) de cuarzo lechoso. Ambas rocas se encuentran mineralizadas (presencia de pirita) y usualmente la división entre ambas se da por discontinuidades rellenas de material triturado o descompuesto de color verde (Serpentina).

Estructura geológica

Con ayuda de la herramienta ShapeMetrix 3D, fue posible identificar 3 familias de discontinuidades. Es posible realizar una comparación entre el frente anterior (0+205) y el actual, esto permite observar las variaciones de dirección e inclinación de las familias de discontinuidades respecto frente excavado del túnel. En este frente se observa el mismo patrón de 3 familias principales sin la presencia de discontinuidades secundarias. La familia 2 tiene una inclinación en contra del avance de la excavación.

La demás familias 1 y 3 son formadoras de bloques en combinación con las otras familias, pero no tienen una inclinación desfavorable respecto a la excavación.

Además de los datos de dirección y echado de planos de discontinuidad y fracturas, la herramienta permite conocer el espaciamiento, continuidad y con ciertas mediciones permite conocer el tamaño de los bloques representativos del frente utilizados en la evaluación de la clasificación RMi (Palmstrom, 2001). Los datos de la descripción de las discontinuidades de cada familia y para cada zona se muestran en las tablas 1 y 2.

	Descripción de las discontinuidades y clasificación geomecánica del frente											
	Tabla 1. Descripción de las discontinuidades (ISRM, 1981). Para la zona 1.											
Familia	Orientación (echado, d del echado)	lirección	Espac	iado	Continuidad	Rugosidad	Resistencia de las paredes	Abertura	Re	elleno	Filtraciones	
1	51.8° , 227.3°		0.65	5 m	1.38 m	Ondulado rugoso	200 Mpa	Cerrada	Sin	relleno	Juntas secas	
2	57.7° , 355.5°		0.82	2 m	1 m	Ondulado rugoso	200 Mpa	Cerrada	Sin	relleno	Juntas secas	
3	65.1°, 127°		1.7	7 m	1.08 m	Ondulada- rugosa	200 Mpa	Cerrada	Sin	relleno	Juntas secas	
				Ro	ck Mass Rating (R	MR14), Celada	et al. 2014					
UCS (Mpa)	Discontinuidades por metro	Per coi	sistencia - ntinuidad	Rugosidad	Relleno	Alteración	Alterabilidad	Estado del terreno	Corre Tú	cción por neles	Puntuación Total	
13	32		4	5	5	3	4	7		-5	68	
	Tipo de sostedim	iento seg	ún Lowson		Cálculo	del módulo de	deformación del i	macizo roco	so (Em) s	egún dife	rentes autores (RMR)	
Condición ge	eotécnica		Roca b	ouena	Bieniawski, 1978			36	GPa			
Carga de roc	a Pr		70.9848435	kN/m2	Gokceoglu, 2003			12.39	GPa			
Espaciamien	to entre anclas		2.34615385	metros	Aydan et al. 1997			29.78	GPa			
Espesor del o	concreto lanzado		20	mm	Read et al. 1999			31.44	GPa			
					Regresión lineal (Sánchez y Lozad	da, 2020)	22.65	GPa			
					Índice Q de I	Barton et al 197	74					
RQD	Jn		Jr		Jw		Ja	SRF	Pun	tuación		
											Calidad del macizo	
85	9		3		1		1	5	5	5.67	Media	
	Tipo de sostedim	niento se	gún Barton		Cálcu	lo del módulo d	le deformación de	l macizo roc	oso (Em)	según di	ferentes autores (Q)	
Condición ge	eotécnica		Roca de cal	idad media	Barton, 1992			18.71	GPa			
Avance			3	m Barton, 2002				20.33	GPa			
ESR			1.3		Palmstrom y Sing	h (2001)		15.94	GPa			
Relación Ava	ance/ESR		2.30769231									
Espaciamien	to entre anclas		Puntuales	m								
Espesor del o	concreto lanzado		N/A	cm								
Longitud del	ancla		1.8	m								
					Rock Mass Index.	Palmstrom et a	al 2001					
jR	UCS de la roca (qc)	MPa	jL	jA	jC		Vb	Jp D	Pun	tuación		
											Calidad del macizo	
3	200		2	2	3	C).95	0.34 0.29	9	68	Muy Buena	
	Tipo de sostedimie	nto segú	n Palmström		Cálculo	o del módulo de	e deformación del	macizo roco	so (Em) s	según dife	erentes autores (RMi)	
Sr			9.15363771		Palmstrom (1995)		27.41	GPa			
Gc			68.31		Palmstrom y Sing	h (2001)		37.92	GPa			
Revestimien	to propuesto		Anclas puntual	es								
				Geo	ological strenght in	ndex, Hoek y Br	own, 1997					
Jc Vb	UCS de la roca (qc)	MPa	Coeficiente	de daño D=	mi	mb	S	а	Pun	tuación		
3 0.95	200		0.	7	25	3.0986	0.0041	0.5025		62		
						1						
Hoek y Brow	rn, 1997		28.22	GPa								
Hoek 2002 12.97 GPa				GPa	1							
Hoek 2004			17.45	GPa	1							
Sonmez et a	l. (2004)		26.45	GPa	1							

Para este análisis se utilizó la combinación de las 3 familias de discontinuidades presentes en el frente, la familia 2 tiene una inclinación en contra de la excavación del túnel, siendo desfavorable; en combinación con las familias 1 y 3 dan como resultado las cuñas con mayor tamaño y relevancia para la estabilidad del túnel.

Consideraciones

Con esta combinación de familias presentes en el Túnel San Antonio, y con ayuda del programa UNWEDGE es posible obtener 7 cuñas, sin embargo, ya sea por su tamaño o su posición, solo 4 tienen relevancia para la estabilidad de la excavación. Dos cuñas que se forma en la clave del túnel (7 y 8) y dos cuñas en los hastiales (4 y 5). La cuña 8 es la que adquiere mayor relevancia debido a su tamaño y el haber obtenido un factor de seguridad igual a 0, puede ser un riesgo importante para la seguridad del personal que labora y de la integridad del túnel.

Ficha de caracterizac	Ficha de caracterización geológica - geotécnica del túnel San Antonio							
Ubicación: Túnel San Antonio, Puerto Escondido.								

Cadenamiento: 0+211Fecha: Oaxaca

05 de Abril de 2019

Descripción general del frente:

El frente de excavación se encuentra en un macizo rocoso con distintos grados de fracturamiento, la mayor parte del frente se encuentra poco fracturada, como se observa la zona muy fracturada que se encontraba en la parte derecha del frente se encuentra ahora en la parte superior del túnel excavado y ya no en el frente.

Se identifican 3 familias principalmente, cuya orientación provocan la formación de bloques de volumen considerable en la clave, además son identificables rasgos estructurales importantes como las discontinuidades indicadas (Fig. 1), cuya continuidad va de los 4 - 5 metros hasta los 8 metros de longitud, cuyo relleno se caracteriza por material suelto, triturado y manchas de material fino color marrón. En las Figuras 2, se observan las zonas con mayor cantidad de humedad, en esa zona las discontinuidades se encuentran rellenas de material fino color marrón húmedo. Aún no se observa un flujo de agua, pero la humedad puede disminuir la resistencia al corte del material de relleno y desestabilizar el frente.

La zona 2 ya no se encuentra en el frente, ahora se observa un frente homogéneo(Fig. 3)

Descripción geológica

Se encuentran dos unidades litológicas en el frente,se encuentran intercalaciones de una roca color verde de grano fino, masiva y muy dura, junto con una roca de textura granítica muy dura y densa.

La roca de grano fino, contiene minerales como cuarzo, plagioclasa, biotita (mica negra) y hornblenda; siendo esta una roca metamórfica corneana de contacto, esta se encuentra mayormente en la parte superior el frente, la roca granítica (granodiorita) se encuentra en la parte inferior del frente, está constituida por minerales volcánicos como cuarzo y mica (biotita), además de bandas de grosor considerable (> 5 cm) de cuarzo lechoso. Ambas rocas se encuentran mineralizadas (presencia de pirita) y usualmente la división entre ambas se da por discontinuidades rellenas de material triturado o arcilloso de color verde (Serpentina)

Estructura geológica

Con ayuda de la herramienta ShapeMetrix 3D, fue posible identificar 4 familias de discontinuidades. Es posible realizar una comparación entre el frente anterior (0+208) y el actual, esto permite observar las variaciones de dirección e inclinación de las familias de discontinuidades respecto frente excavado del túnel. Las 3 familias principales se mantienen, salvo la familia 3 que tuvo un cambio en su rumbo promedio, las demás no tuvieron cambios relevantes. Además, aparece una nueva familia que tiene un rumbo paralelo al avance del túnel.

La familia 2 tiene una inclinación en contra del avance de la excavación.

La demás familias 1 y 3 son formadoras de bloques en combinación con las otras familias, pero no tienen una inclinación desfavorable respecto a la excavación..

Además de los datos de dirección y echado de planos de discontinuidad y fracturas, la herramienta permite conocer el espaciamiento, continuidad y con ciertas mediciones permite conocer el tamaño de los bloques representativos del frente utilizados en la evaluación de la clasificación RMi (Palmstrom, 2001). Los datos de la descripción de las discontinuidades de cada familia y para cada zona se muestran en las tablas 1 y 2.

	Descripción de las discontinuidades y clasificación geomecánica del frente											
	Tabla 1. Descripción de las discontinuidades (ISRM, 1981). Para la zona 1.											
Familia	Orientación (echado, d del echado)	lirección	Espac	iado	Continuidad	Rugosidad	Resistencia de las paredes	Abertura	Re	elleno	Filtraciones	
1	74.2°, 3.02°		0.93	7 m	1.33 m	Ondulado rugoso	200 Mpa	Cerrada	Sin	relleno	Juntas secas	
2	34.4° , 148.9°		0.30	5 m	1.09 m	Ondulado rugoso	200 Mpa	Cerrada	Sin	relleno	Juntas secas	
3	46.3° , 255°		0.56	5 m	1.17 m	Ondulada- rugosa	200 Mpa	Cerrada	Sin	relleno	Juntas secas	
4	78.5° , 88.35°		0.56	i m	1.53 m	Ondulada-lisa	120 Mpa	Moderadamen te ancha (2.5 - 10 mm)	Rellen	o arcilloso	Húmedo	
				Roc	k Mass Rating (R	MR14), Celada	et al. 2014					
UCS (Mpa)	Discontinuidades por metro	Per coi	sistencia - ntinuidad	Rugosidad	Relleno	Alteración	Alterabilidad	Estado del terreno	Corre Tú	cción por neles	Puntuación Total	
9	32		4	5	0	0	0	10		-12	48	
-	Tipo de sostedim	iento seg	ún Lowson		Cálculo	del módulo de	deformación del	macizo rocoso) (Em) s	egún dife	rentes autores (RMR)	
Condición ge	otécnica		Roca med	ia clase III	Bieniawski, 1978			10	GPa			
Carga de roc	a Pr		99.8224361	kN/m2	Gokceoglu, 2003			4.64	GPa			
Espaciamien	to entre anclas		1.84615385	metros	Aydan et al. 1997			14.05	GPa			
Espesor del concreto lanzado			20	mm	Read et al. 1999			16.64	GPa			
			-		Regresión lineal (Sánchez y Lozac	la, 2020)	11.21	GPa			
	Índice Q de Barton et al 1974											
RQD	Jn		Jr		Jw		Ja	SRF	Pun	tuación		
											Calidad del macizo	
85	12		2		1		8	5	(0.35	Muy mala	
	Tipo de sostedim	niento se	gún Barton		Cálcu	lo del módulo d	e deformación de	el macizo roco:	so (Em)	según dif	erentes autores (Q)	
Condición ge	otécnica		Roca de ca	lidad mala	Barton, 1992			-11.40	GPa			
Avance			3	m	Barton, 2002			8.07	GPa			
ESR			1.3		Palmstrom y Sing	h (2001)		5.26	GPa			
Relación Ava	ince/ESR		2.31									
Espaciamien	to entre anclas		2.5	m								
Espesor del d	concreto lanzado		5	cm								
Longitud del	ancla		2	m								
					Rock Mass Index.	Palmstrom et a	l 2001					
jR	UCS de la roca (qc)	MPa	jL	jA	jC	,	Vb	Jp D	Pun	tuación		
											Calidad del macizo	
1.5	120		2	13	0.23	0	.22	0.04 0.49		4.8	Buena	
	Tipo de sostedimie	nto segú	n Palmström		Cálculo	o del módulo de	deformación del	macizo rocoso	o (Em) s	egún dife	rentes autores (RMi)	
Sr			17451152		Palmstrom (1995))		10.63	GPa	l		
Gc			5.5		Palmstrom y Sing	h (2001)		13.84	GPa			
Revestimiento propuesto Anclas con 2 m de espaciam					ento							
Geological strenght index, Hoek y Brown, 1997												
Jc Vb UCS de la roca (qc) MPa		Coeficiente	de daño D=	mi	mb	S	а	Pun	tuación			
0.23 0.22 120		0.	7	25	0.7845	0.0001	0.5139		37			
					-	1						
Hoek y Brow	n, 1997		5.18	GPa								
Hoek, 2002			3.08	GPa								
Hoek 2004			3.52	GPa								
Sonmez et al	. (2004)		7.35	GPa								

Ubicación: Túnel San Antonio, Puerto Escondido,	Cadonamionto	0+214	Focha	08 de abril de 2019	
Oaxaca	Cadenamiento:	0+214	Fecha.		

Descripción general del frente:

El frente de excavación se encuentra en un macizo rocoso se encuentra medianamente fracturado.

Se identifican 3 familias principalmente, cuya orientación provocan la formación de bloques de volumen considerable en la clave (Fig. 3), además son identificables rasgos estructurales importantes como las discontinuidades indicadas (Fig. 1), cuya continuidad va de los 4 - 5 metros hasta los 8 metros de longitud, cuyo relleno se caracteriza por material suelto, triturado y manchas de material fino color marrón. En las Figuras 2, se observan las zonas con mayor cantidad de humedad, en esa zona las discontinuidades se encuentran rellenas de material fino color marrón húmedo. Aún no se observa un flujo de agua, pero la humedad puede disminuir la resistencia al corte del material de relleno y desestabilizar el frente.

Descripción geológica:

Se encuentran dos unidades litológicas en el frente,se encuentran intercalaciones de una roca color verde de grano fino, masiva y muy dura, junto con una roca de textura granítica muy dura y densa.

La roca de grano fino, contiene minerales como cuarzo, plagioclasa, biotita (mica negra) y hornblenda; siendo esta una roca metamórfica corneana de contacto, esta se encuentra mayormente en la parte superior el frente, la roca granítica (granodiorita) se encuentra en la parte inferior del frente, está constituida por minerales volcánicos como cuarzo y mica (biotita), además de bandas de grosor considerable (> 5 cm) de cuarzo lechoso. Ambas rocas se encuentran mineralizadas (presencia de pirita) y usualmente la división entre ambas se da por discontinuidades rellenas de material triturado o descompuesto de color verde (Serpentina).

Estructura geológica

Con ayuda de la herramienta ShapeMetrix 3D, fue posible identificar 6 familias de discontinuidades. Es posible realizar una comparación entre el frente anterior (0+211) y el actual, esto permite observar las variaciones de dirección e inclinación de las familias de discontinuidades respecto al frente excavado del túnel. Las 3 familias principales se mantienen, salvo la familia 3 que tuvo un cambio en su rumbo promedio, las demás no tuvieron cambios relevantes. Además, la familia 4 cambio de rumbo de este a oeste, sin embargo, sigue con un rumbo paralelo al avance del túnel. Se forman otras dos familias de discontinuidades (familias 5 y 6).

La familia 2 tiene una inclinación en contra del avance de la excavación.

La demás familias 1 y 3 son formadoras de bloques en combinación con las otras familias, pero no tienen una inclinación desfavorable respecto a la excavación..

Además de los datos de dirección y echado de planos de discontinuidad y fracturas, la herramienta permite conocer el espaciamiento, continuidad y con ciertas mediciones permite conocer el tamaño de los bloques representativos del frente utilizados en la evaluación de la clasificación RMi (Palmstrom, 2001). Los datos de la descripción de las discontinuidades de cada familia y para cada zona se muestran en las tablas 1 y 2.

		Des	cripción d	e las disco	ontinuidades	y clasifica	ción geome	cánica del f	irente	
			Та	bla 1. Descrip	ción de las discont	inuidades (ISRN	/I, 1981). Para la 2	ona 1.		
Familia	Orientación (echado, d del echado)	irección	Espac	ciado	Continuidad	Rugosidad	Resistencia de las paredes	Abertura	Relleno	Filtraciones
1	18.84° , 142.5	0	0.60) m	1.12 m	ondulado rugoso	200 MPa	Cerrada	Sin relleno	Juntas secas
2	69.8° , 148.28	0	0.3 m ajuste		0.82 m	ondulado rugoso	200 MPa	Cerrada	Sin relleno	Juntas secas
3	54.1° , 352.2°		0.74	4 m	0.76 m	ondulada - rugosa	200 MPa	Cerrada	Sin relleno	Juntas secas
4	63.9° , 206.5°		1.40	5 m	1.60 m	ondulada - rugosa	200 MPa	Cerrada	Sin relleno	Juntas secas
5	84.54°, 274.6°		2.80) m	1.56 m	ondulada - rugosa	200 MPa	Cerrada	Sin relleno	Juntas secas
6	38.6° , 243.7°		0.2	5 m	1.13 m	ondulada - rugosa	200 MPa	Ancha (>10mm)	Material triturado	Húmedo sin flujo
				Ro	ck Mass Rating (R	MR14), Celada	et al. 2014			
UCS (Mpa)	Discontinuidades por metro	Per co	sistencia - ntinuidad	Rugosidad	Relleno	Alteración	Alterabilidad	Estado del terreno	Corrección po Túneles	r Puntuación Total
13	28		4	5	2	1	4	10	-12	55
	Tipo de sostedimie	ento segi	ún Lowson		Cálcul	o del módulo de	e deformación de	macizo rocoso	(Em) según dife	rentes autores (RMR)
Condición geo	técnica		Roca med	ia clase III	Bieniawski, 1978			10	GPa	
Carga de roca	Pr		99.8224361	kN/m2	Gokceoglu, 2003			4.64	GPa	
Espaciamiento	o entre anclas		1.84615385	metros	Aydan et al. 1997			14.05	GPa	
Espesor del concreto lanzado 20 m			mm	Read et al. 1999			16.64	GPa		
				Regresión lineal (Sánchez y Lozad	da, 2020)	11.21	GPa		
					Indice Q de I	Barton et al 197	'4			
RQD	Jn		Jr		Jw		Ja	SRF	Puntuación	Calidad del macizo
80	12		3		1		4	5	1.00	Mala
	Tipo de sostedimi	ento seg	jún Barton		Cálcu	ulo del módulo (de deformación d	el macizo rocoso	o (Em) según di	ferentes autores (Q)
Condición geo	técnica		Roca de ca	lidad mala	Barton, 1992			0.00	GPa	
Avance			3	m	Barton, 2002			11.45	GPa	
ESR			1.3		Palmstrom y Sing	h (2001)		8.00	GPa	
Relación Avan	ce/ESR		2.30769231							
Espaciamiento	o entre anclas		1.3 a 1.7	m						
Espesor del co	oncreto lanzado		4 a 10	cm						
Longitud del a	ncla		1.8	m						
			-	-	Rock Mass Index.	Palmstrom et a	al 2001			
jR	UCS de la roca (qc)	MPa	jL	jA	jC		Vb	Jp D	Puntuación	Calidad dal macizo
3	200		2	8	0.75	0.	146	0.081 0.39	16.2	Muy buena
	Tipo de sostedimier	nto segúi	n Palmström		Cálcul	o del módulo d	e deformación de	l macizo rocoso	(Em) según dife	erentes autores (RMi)
Sr			19.979616		Palmstrom (1995))		15.88	GPa	
Gc 16			Palmstrom y Sing	h (2001)		21.22	GPa			
Revestimiento propuesto Espesor de concreto 40 mm					anclas con 2 m de	espaciamiento				
				Ge	ological strenght in	ndex, Hoek y Br	own, 1997			
Jc Vb	Vb UCS de la roca (qc) MPa Coeficiente de daño D=		mi	mb	S	а	Puntuación	-		
0.75 0.146	75 0.146 200 0.7		25	1.6931	0.0008	0.5054	51			
Hook y Brown	1007		14.09	GPa	1	1				
Hoek 2002	, 1997		6 89	GPa	4					
Hoek 2002			8.63	GPa	1					
Sonmez et al	(2004)		19.04	GPa	1					

Ubicación: Túnel San Antonio, Puerto Escondido,	Cadanamianta	0,217	Fachar	10 do abril do 2010	
Oaxaca	Cadenaimento:	0+217	recha.	10 de abili de 2019	
				,	

Descripción general del frente:

El frente de excavación se encuentra en un macizo rocoso se encuentra medianamente fracturado.

Se identifican 3 familias principalmente, cuya orientación provocan la formación de bloques de volumen considerable en la clave (Fig. 3), además son identificables rasgos estructurales importantes como las discontinuidades indicadas (Fig. 1), cuya continuidad va de los 4 - 5 metros hasta los 8 metros de longitud, cuyo relleno se caracteriza por material suelto, triturado y manchas de material fino color marrón. En las Figuras 2, se observan las zonas con mayor cantidad de humedad, en esa zona las discontinuidades se encuentran rellenas de material fino color marrón húmedo. Aún no se observa un flujo de agua, pero la humedad puede disminuir la resistencia al corte del material de relleno y desestabilizar el frente.

Descripción geológica:

Se encuentran dos unidades litológicas en el frente,se encuentran intercalaciones de una roca color verde de grano fino, masiva y muy dura, junto con una roca de textura granítica muy dura y densa.

La roca de grano fino, contiene minerales como cuarzo, plagioclasa, biotita (mica negra) y hornblenda; siendo esta una roca metamórfica corneana de contacto, esta se encuentra mayormente en la parte superior el frente, la roca granítica (granodiorita) se encuentra en la parte inferior del frente, está constituida por minerales volcánicos como cuarzo y mica (biotita), además de bandas de grosor considerable (> 5 cm) de cuarzo lechoso. Ambas rocas se encuentran mineralizadas (presencia de pirita) y usualmente la división entre ambas se da por discontinuidades rellenas de material triturado y algunas (pocas y <5mm) rellenas de arcilla color verde (Sericita).

Estructura geológica

Con ayuda de la herramienta ShapeMetrix 3D, fue posible identificar 3 familias de discontinuidades. Es posible realizar una comparación entre el frente anterior (0+214) y el actual, esto permite observar las variaciones de dirección e inclinación de las familias de discontinuidades respecto al frente excavado del túnel. Las familias 2, 3 y 5 del corte anterior permanecen en este, que cambian de nombre en este frente a familia 1, 3 y 2 respectivamente.

Además de los datos de dirección y echado de planos de discontinuidad y fracturas, la herramienta permite conocer el espaciamiento, continuidad y con ciertas mediciones permite conocer el tamaño de los bloques representativos del frente utilizados en la evaluación de la clasificación RMi (Palmstrom, 2001). Los datos de la descripción de las discontinuidades de cada familia y para cada zona se muestran en las tablas 1 y 2.

	Descripción de las discontinuidades y clasificación geomecánica del frente											
Tabla 1. Descripción de las discontinuidades (ISRM, 1981). Para la zona 1.												
Familia	Orientación (echado, d del echado)	irección	Espa	ciado	Continuidad	Rugosidad	Resistencia de las paredes	Abertura	Relleno	Filtraciones		
1	41° , 24.6°		0.6	1 m	1.79 m	ondulado rugoso	200 MPa	Cerrada	Sin rellen	o Húmedo sin flujo		
2	67.6° , 213.8°		0.8	2 m	1.3 m	ondulado rugoso	200 MPa	Cerrada	Sin rellen	o Húmedo sin flujo		
3	69° , 138.3°		1.4	2 m	1.02 m	ondulada - rugosa	200 MPa	Abierta (0.5 mm - 2.5 mm)	Relleno arcil	oso Húmedo sin flujo		
Rock Mass Rating (RMR14), Celada et al. 2014												
UCS (Mpa)	Discontinuidades por metro	Per coi	sistencia - ntinuidad	Rugosidad	Relleno	Alteración	Alterabilidad	Estado del terreno	Corrección Túneles	por Puntuación Total		
13	32		4	5	2	3	4	7	-10	60		
	Tipo de sostedimie	ento segu	ún Lowson		Cálculo	del módulo de	deformación del	macizo rocoso	(Em) según	diferentes autores (RMR)		
Condición geo	otécnica		Roca de cal	idad media	Bieniawski, 1978			20	GPa			
Carga de roca	Pr		88.731054	kN/m2	Gokceoglu, 2003			6.77	GPa			
Espaciamiento	o entre anclas		2.0384615	metros	Aydan et al. 1997			19.12	GPa			
Espesor del co	oncreto lanzado		20	mm	Read et al. 1999			21.60	GPa			
					Regresión lineal (Sánchez y Lozac	la, 2020)	14.69	GPa			
					Índice Q de B	arton et al 1974	l					
RQD	Jn		Jr		Jw		Ja	SRF	Puntuació	in		
										Calidad del macizo		
85	9		3		1		3	5	1.89	Mala		
	Tipo de sostedimi	ento seg	ún Barton		Cálcul	o del módulo d	e deformación de	l macizo rocos	so (Em) segú	n diferentes autores (Q)		
Condición geo	técnica		Roca de cal	idad media	Barton, 1992			5.76	GPa	<i>C 4</i>		
Avance			3	m	Barton, 2002			13.66	GPa			
ESR			1.3		Palmstrom y Sing	h (2001)		9.89	GPa			
Relación Avan	ice/ESR		2.3076923						· · · · ·			
Espaciamiento	o entre anclas		Puntuales	m								
Espesor del co	oncreto lanzado		N/A	cm								
Longitud del a	incla		1.8	m								
					Rock Mass Index.	Palmstrom et a	2001					
iR	UCS de la roca (gc)	MPa	il	iA	iC		Vh	In D	Puntuació	in		
jit		IVII U	JE	,,,]C			- ²	Tuntuucit	Calidad del macizo		
з	200		2	4	15	0	77	0.22 0.34	44	Muy buena		
5	Tino de sostedimier	nto segúr	Palmström		Cálculo	del módulo de	deformación del	macizo rocoso) (Em) según	diferentes autores (RMi)		
Sr	npo de sostedimen	ito segui	3 2702377		Palmstrom (1995)		deformation def	23.23	GPa			
S. GC			3.2702377		Palmstrom v Sing	, h (2001)		31.80	GPa			
Revestimiento	nronuesto		Anclas nuntua	Δ <u>ς</u>	r annscionit y Sing	11 (2001)		51.00	UI a			
	propuesto		Ancias puncua	Geo	logical strenght in	lev Hoek v Bro	wp 1997					
le Vh	LICE do la roca (go)	MDo	Cooficiente	de daño D=	iogical screngint int	nex, noek y bio	, 1557	2	Duntuació			
JC VD		WIEd	coenciente		m	dhi	5	d	Funtuacio			
1.5 0.77	200		0	.7	25	2.9330	0.0035	0.5026	61			
			1	1	1	1						
Hoek y Brown	, 1997		26.64	GPa	4							
Hoek, 2002			12.24	GPa	1							
Hoek 2004			16.37	GPa	1							
Sonmez et al.	(2004)		25.68	GPa								

Ficha de caracterización	geológica	- geotécnica del túnel San Antonio	
	00		

0+220

Ubicación: Túnel San Antonio, Puerto Escondido, Oaxaca

Cadenamiento:

12 de Abril de 2019

Fecha:

Descripción general del frente:

El frente de excavación se encuentra en un macizo rocoso con distintos grados de fracturamiento, la parte superior del frente se encuentra poco fracturada, mientras que la parte inferior se encuentra muy fracturado.

Se identifican 3 familias principalmente, cuya orientación provocan la formación de bloques de volumen considerable en la clave, además son identificables rasgos estructurales importantes como las discontinuidades indicadas (Fig. 1), cuya continuidad va de los 4 - 5 metros hasta los 8 metrosde longitud, cuyo relleno se caracteriza por material suelto, triturado y manchas de material fino color marrón. En las Figuras 2, se observan las zonas con mayor cantidad de humedad, en esa zona las discontinuidades se encuentran rellenas de material fino color verde húmedo. Aún no se observa un flujo de agua, pero la humedad puede disminuir la resistencia al corte del material de relleno y desestabilizar el frente.

Se observan dos zonas en el frente, donde el macizo rocosos tiene distintos grados de metorización. La zona 1 corresponde al macizo rocoso poco fracturado, mientras que la zona 2 se encuentra muy fracturada y sus discontinuidades tienen características más desfavorables que las de la zona 1. (Fig. 3)

Descripción geológica:

Se encuentran dos unidades litológicas en el frente, la primer unidad se trata de una roca foliada de color verde de grano fino, que contiene minerales como cuarzo y biotita (mica negra) ; se trata de una roca metamórfica esquisto verde. La segunda unidad tiene una textura granítica (granodiorita) se encuentra en la parte inferior del frente, está constituida por minerales volcánicos como cuarzo y mica (biotita). La roca foliada tiene una textura jabonosa y se encuentra muy alterada, se encuentra mayormente en la parte inferior del frente, la roca granítica (granodiorita) se encuentra del frente. La granodiorita se encuentra mineralizada (presencia de pirita) y la división entre ambas se da por una discontinuidad que corta justo por enmedio al frente y esta se encuentra rellena de material triturado y limo arenoso.

Estructura geológica

Con ayuda de la herramienta ShapeMetrix 3D, fue posible identificar 3 familias de discontinuidades. Es posible realizar una comparación entre el frente anterior (0+217) y el actual, esto permite observar las variaciones de dirección e inclinación de las familias de discontinuidades respecto al frente excavado del túnel. Las familias 1, 2, y 3 del corte anterior permanecen en este y varian de rumbo y echado respecto a sus pares del frente anterior, pero sin tener algún cambio significativo.

Además de los datos de dirección y echado de planos de discontinuidad y fracturas, la herramienta permite conocer el espaciamiento, continuidad y con ciertas mediciones permite conocer el tamaño de los bloques representativos del frente utilizados en la evaluación de la clasificación RMi (Palmstrom, 2001). Los datos de la descripción de las discontinuidades de cada familia y para cada zona se muestran en las tablas 1 y 2.

	Descripción de las discontinuidades y clasificación geomecánica del frente											
			Та	bla 1. Descrip	ción de las discont	inuidades (ISRI	M, 1981). Para la :	zona 1.				
Familia	Orientación (echado, c del echado)	lirección	Espac	iado	Continuidad	Rugosidad	Resistencia de las paredes	Abertura	Relleno	Filtraciones		
1	56.6° , 124.3°		1.30) m	1.1 m	ondulado rugoso	200 MPa	Cerrada	Sin relleno	Juntas secas		
2	66.6° , 219.7°		1.20) m	1.40 m	ondulado rugoso	200 MPa	Cerrada	Sin relleno	Juntas secas		
3	47° , 345.4°		0.54	1 m	0.6 m	ondulada - rugosa	200 MPa	Cerrada	Sin relleno	Juntas secas		
			Та	ble 2.Descrip	ción de las discont	inuidades (ISRN	VI, 1981). Para la z	ona 2.	I			
Familia	Orientación (echado, c del echado)	lirección	Espac	iado	Continuidad	Rugosidad	Resistencia de las paredes	Abertura	Relleno	Filtraciones		
1	56.6° , 124.3°		1.30) m	1.1 m	Ondulado lisa	120 MPa	Cerrada	Sin relleno	Húmedo sin flujo		
2	66.6° , 219.7°		1.20) m	1.4 m	Ondulado lisa	120 MPa	Abierta (0.5 - 2.5 mm)	Sin relleno	Húmedo sin flujo		
3	47° , 345.4°		0.34	1 m	1.5 m	ondulada - lisa	120 MPa	Moderadament e ancha (2.5 - 10 mm)	Material duro a desintegrado	Húmedo sin flujo		
				Ro	ck Mass Rating (R	MR14), Celada	et al. 2014		•			
UCS (Mpa)	Discontinuidades por metro	Per	sistencia - ntinuidad	Rugosidad	Relleno	Alteración	Alterabilidad	Estado del terreno	Corrección por Túneles	Puntuación Total		
10	32		4	1	5	3	4	10	-5	64		
	Tipo de sostedim	iento seg	ún Lowson		Cálculo	o del módulo de	e deformación del	macizo rocoso	(Em) según dife	rentes autores (RMR)		
Condición ge	eotécnica		Roca b	uena	Bieniawski, 1978			28	GPa			
Carga de roc	a Pr		79.85794888	kN/m2	Gokceoglu, 2003			9.16	GPa			
Espaciamien	to entre anclas		2.192307692	metros	Aydan et al. 1997			24.02	GPa			
Espesor del	concreto lanzado		20	mm	Read et al. 1999			26.21	GPa			
					Regresión lineal (Sánchez y Lozac	da, 2020)	18.24	GPa			
					Índice Q de	Barton et al 197	74					
RQD	Jn		Jr		Jw		Ja	SRF	Puntuación			
75	9		3		1		2	5	2.50	Calidad del macizo Mala		
	Tipo de sostedin	niento se	gún Barton		Cálcu	ilo del módulo d	de deformación de	el macizo rocos	o (Em) según dif	erentes autores (Q)		
Condición ge	eotécnica		Roca de cal	idad media	Barton, 1992			9.95	GPa			
Avance			3	m	Barton, 2002			15.54	GPa			
ESR			1.3		Palmstrom y Sing	h (2001)		11.54	GPa			
Relación Ava	ance/ESR		2.307692308									
Espaciamien	to entre anclas		Puntuales	m								
Espesor del o	concreto lanzado		N/A	cm								
Longitud del	ancla		1.8	m								
				-	Rock Mass Index.	Palmstrom et	al 2001					
jR	UCS de la roca (qc)	MPa	jL	jA	jC		Vb	Jp D	Puntuación			
						_			15.0	Calidad del macizo		
2	120		1	2	1	0	1.31	0.13 0.37	15.6	Muy buena		
_	Tipo de sostedimie	ento segú	n Palmström	-	Cálcul	o del módulo de	e deformación del	macizo rocoso	(Em) según dife	rentes autores (RMi)		
Sr			13.2462562		Palmstrom (1995)		15.73	GPa			
GC Devestioni	** ****		15.6		Palmstrom y Sing	n (2001)		21.01	GPa			
Revestimien	to propuesto		Ancias puntual	es			1007					
10 10		MAD	Confining	Ge de de 8 - D	ological strenght i	паех, ноек у Ві	rown, 1997		Dumburget			
JC VD	JC Vb UCS de la roca (qc) MPa Coeficiente de daño D=			mi	mb	S 0.0007	d	Function				
1 0.31 120 0.7 25 1.6026 0.0007						0.5057	55					
	rp 1007		10.05	CDo		1						
Hook 2002	111, 1997		10.92	GPa	1							
Hook 2004			0.50	GPo	1							
Sonmar of a	1 (2004)		0.10	GPo	•							
Sourcer of a	1. (2004)		11.00	ura								

Análisis de cuñas, Túnel San Antonio, cadenamiento 0+220

Para este análisis se utilizó la combinación de las 3 familias que se encuentran en el frente. La familia 1 tiene una inclinación en contra de la excavación del túnel, siendo desfavorable; en combinación con las familias 2 y 5 dan como resultado las cuñas con mayor tamaño y relevancia para la estabilidad del túnel.

Consideraciones

Con esta combinación de familias presentes en el Túnel San Antonio, y con ayuda del programa UNWEDGE se infiere la formación de 6 cuñas, sin embargo, ya sea por su tamaño o su posición, solo 4 tienen relevancia para la estabilidad de la excavación. Una cuñas que se forman en la clave del túnel y tres en los hastiales. Aunque es importante tener en cuenta todas las cuñas aquí mostradas, la cuña 8 es la que adquiere mayor relevancia, ya que, debido a su posición (en la clave) su factor de seguridad es igual a 0, lo que podría ocasionar caidos de volumen importante, y ser un riesgo importante para la seguridad del personal que labora y de la integridad del túnel.

Ubicación: Túnel San Antonio, Puerto Escondido, Oaxaca	Cadenamiento:	0+223	Fecha:	15 de abril de 2019

Descripción general del frente:

El frente de excavación se encuentra en un macizo rocoso con distintos grados de fracturamiento, en la parte izquierda y en la parte interior del frente se aprecia una roca masiva y poco fracturada, mientras que en la parte central superior y derecha del frente se encuentra muy fracturado.

Se identifican 3 familias principalmente, cuya orientación provocan la formación de bloques de volumen considerable en la clave, además son identificables rasgos estructurales importantes como las 4 discontinuidades (Fig. 1), cuya continuidad va de los 4 - 5 metros (amarilla y roja) hasta los 8 metros (verde y azul) de longitud, cuyo relleno se caracteriza por material suelto, desintegrado y manchas de material fino color marrón. En las Figuras 2, se observa la mayor cantidad de humedad, en esa zona las discontinuidades se encuentran rellenas de material fino color marrón húmedo. Aún no se observa un flujo de agua, pero la humedad puede disminuir la resistencia al corte del material de relleno y desestabilizar el frente.

Se observan dos zonas en el frente, donde el macizo rocosos tiene distintos grados de metorización. La zona 1 corresponde al macizo rocoso masivo a poco fracturado, mientras que la zona 2 se encuentra muy fracturada y sus discontinuidades tienen características más desfavorables que las de la zona 1. (Fig. 3)

Descripción geológica:

Se encuentran dos unidades litológicas en el frente, la primer unidad se trata de una roca de color verde de grano fino, masiva y muy dura, que contiene minerales como cuarzo, plagioclasa, biotita (mica negra) y hornblenda; se trata de una roca metamórfica corneana de contacto. La segunda unidad es una roca metamórfica llamada esquisto verde pelítico, se encuentra intercalada con la unidad 1, en ciertas zonas, se trata de una roca foliada, tacto jabonoso y textura esquitosa, ésta contiene minerales como cuarzo y biotita en abundancia, así como talco.

Es posible que esta litología se presente debido a una secuencia de sucesos en donde un cuerpo intrusivo (tonalita) que alteró la parte circundante de la roca encajonante (esquisto verde pelítico), dando como resultado la roca corneana de contacto en la aureola entre estos dos cuerpos.

Estructura geológica

Con ayuda de la herramienta ShapeMetrix 3D, fue posible identificar 3 familias de discontinuidades. Es posible realizar una comparación entre el frente anterior (0+220) y el actual, esto permite observar las variaciones de dirección e inclinación de las familias de discontinuidades respecto frente excavado del túnel. Las familias 1 y 3 tienen un cambio en su rumbo respecto al frente anterior, mientras que la familia 2 permanece igual o con poca variación. Las familia 1 y 3 tienen una inclinación en contra del avance de la excavación del túnel, una condición desfavorable según la clasificación RMR. La familia 2 es junto las demás familias formadoras de bloques en combinación con las otras familias, pero no tienen una inclinación desfavorable respecto a la excavación.

Además de los datos de dirección y echado de planos de discontinuidad y fracturas, la herramienta permite conocer el espaciamiento, continuidad y con ciertas mediciones permite conocer el tamaño de los bloques representativos del frente utilizados en la evaluación de la clasificación RMi (Palmstrom, 2001). Los datos de la descripción de las discontinuidades de cada familia y para cada zona se muestran en las tablas 1 y 2.

	Descripción de las discontinuidades y clasificación geomecánica del frente											
			Та	bla 1. Descrip	ción de las discont	inuidades (ISRI	M, 1981). Para la	zona 1.				
Familia	Orientación (echado, d del echado)	lirección	Espac	iado	Continuidad	Rugosidad	Resistencia de las paredes	Abertura	Relleno	Filtraciones		
1	58.6°, 345.5°	,	0.65	5 m	0.88 m	Ondulado liso	120 MPa	Abierta	Material desintegrado	Húmedo sin flujo		
2	59.2° , 208.6°	,	0.54	4 m	0.63 m	ondulado rugoso	120 MPa	Moderadament e ancha	Limo arenoso	Húmedo sin flujo		
3	32.2° , 35.6°		0.60	6 m	1.05 m	Ondulado liso	120 MPa	Moderadament e ancha	Limo arenoso	Húmedo sin flujo		
				Ro	ck Mass Rating (R	MR14), Celada	et al. 2014					
UCS (Mpa)	Discontinuidades por metro	Per coi	sistencia - ntinuidad	Rugosidad	Relleno	Alteración	Alterabilidad	Estado del terreno	Corrección por Túneles	Puntuación Total		
10	32		4	1	2	3	4	10	-10	56		
	Tipo de sostedim	iento seg	ún Lowson		Cálculo	o del módulo de	deformación del	macizo rocoso	(Em) según difer	entes autores (RMR)		
Condición ge	eotécnica		Roca r	media	Bieniawski, 1978			12	GPa			
Carga de roc	a Pr		97.60415975	kN/m2	Gokceoglu, 2003			5.01	GPa			
Espaciamien	to entre anclas		1.884615385	metros	Aydan et al. 1997			14.97	GPa			
Espesor del o	concreto lanzado		20	mm	Read et al. 1999			17.56	GPa			
					Regresión lineal (Sánchez y Lozac	la, 2020)	11.83	GPa			
					Índice Q de	Barton et al 19	74		<u>, </u>			
ROD	In		Jr		Jw		Ja	SRF	Puntuación			
ngo	5.1.		51					1 uncuation	Calidad del macizo			
70	9		2		1		4	75	0.52	Mala		
	Tipo de sostedim	niento se	pún Barton		Cálcu	lo del módulo c	le deformación de	el macizo rocos	o (Fm) según dife	erentes autores (O)		
Condición ge	otécnica		Roca de ca	lidad mala	Barton 1992			-7 13	GPa			
Avance			3	m	Barton 2002			9.20	GPa			
FSR			13		Palmstrom v Sing	h (2001)		6 15	GPa			
Relación Ava	ance/FSR		2 307692308		r annocronn y onng			0.120	or a			
Espaciamien	to entre anclas		2.507052500	m								
Especial del d	concreto lanzado		5 2.5	cm								
Longitud del	ancla		385	m								
Longitud dei	uncia		2		Rock Mass Index	Palmstrom et	al 2001					
iD	LICE do la roca (go)	MDo	1	: ^	IC NOCK Wass mack	ramstromet	ul 2001		Duptusción			
JK		IVIFa	JL	JA	JC		VD	ם קו	Funtuacion	Calidad dol macizo		
2	120		1	4	0.5	0	15	0.06 0.42	7.2	Buopa		
2	Tipo do sostodimio	onto cogú	n Palmström	4	0.5	o dol módulo de	.15 deformación del	0.00 0.42	(Em) sogún difo	rontos autoros (RMi)		
C.r.	Tipo de sostedimie	ento segu	16 021071	[Dalmetrom (1005)			11 76	(LIII) segui ulle			
			10.0510/1		Palmstrom v Sing) h (2001)		11.70	GPa			
Bovostimion	to propulosto		4.0	n do ocnociom	Palifistron y Sing	n (2001)	to lanzado con fi	15.42	GPa			
nevestimlen			Ancias de 2.5 f		alogical stronget :	nday Hocky P		Ulas				
le V/b		MDe	Casfisianta	de deão D-		nuez, nuek y Bi	0wii, 1997		Duntussián			
dv DC	ous de la roca (qc)	IVIPa	coenciente	ue dano D=	mi	mb	S	d	Puntuación			
0 5 0 15	120		0	7	25	1 0000	0.0002	0 5003	42			
0.5 0.15	120		0.	1	25	1.0909	0.0003	0.5093	43			
	m 1007		7 22	C Do	1	T						
Hook 2002	11, 1997		1.32	GPa CDa	4							
Hook 2004			4.34	CDo	4							
	(2004)		5.17	GPa CDa	4							
sonmez et a	1. (2004)		8.92	бра								

			1	
Oaxaca	Cauenamiento.	0+220	Fecha.	17 de abril de 2019
Ubicación: Túnel San Antonio, Puerto Escondido,	Cadapamianta	0,226	Fachar	17 do abril do 2010

Descripción general del frente:

El frente de excavación se encuentra en un macizo rocoso se encuentra muy fracturado.

Se identifican 4 familias principalmente, cuya orientación provocan la formación de bloques de volumen considerable en la clave (Fig. 3), además son identificables rasgos estructurales importantes como las discontinuidades indicadas (Fig. 1), cuya continuidad va de los 4 - 5 metros hasta los 8 metros de longitud, cuyo relleno se caracteriza por material suelto, triturado y manchas de material fino color marrón. En las Figuras 2, se observan las zonas con mayor cantidad de humedad, en esa zona las discontinuidades se encuentran rellenas de material fino color marrón húmedo. Aún no se observa un flujo de agua, pero la humedad puede disminuir la resistencia al corte del material de relleno y desestabilizar el frente.

Descripción geológica:

Se encuentran dos unidades litológicas en el frente, la primer unidad se trata de una roca foliada de color verde de grano fino, que contiene minerales como cuarzo y biotita (mica negra) ; se trata de una roca metamórfica esquisto verde. La segunda unidad tiene una textura granítica (granodiorita) se encuentra en la parte inferior del frente, está constituida por minerales volcánicos como cuarzo y mica (biotita). La roca foliada tiene una textura jabonosa y se encuentra muy alterada, se encuentra mayormente en la parte inferior del frente, la roca granítica (granodiorita) se encuentra del frente. La granodiorita se encuentra mineralizada (presencia de pirita).

Estructura geológica

Con ayuda de la herramienta ShapeMetrix 3D, fue posible identificar 5 familias de discontinuidades. Es posible realizar una comparación entre el frente anterior (0+223) y el actual, esto permite observar las variaciones de dirección e inclinación de las familias de discontinuidades respecto al frente excavado del túnel. Las familias 1, 2 y 4 siguen siendo las familias 1, 2 y 3 del frente anterior, sumandose entonces 2 familias más en este frente.

Las familias 2 y 4 tienen una inclinación en contra del avance de la excavación, una condición muy desfavorable según la clasificación RMR. La demás familias 1, 3 y 5 son formadoras de bloques en combinación con las otras familias, pero no tienen una inclinación desfavorable respecto a la excavación.

Además de los datos de dirección y echado de planos de discontinuidad y fracturas, la herramienta permite conocer el espaciamiento, continuidad y con ciertas mediciones permite conocer el tamaño de los bloques representativos del frente utilizados en la evaluación de la clasificación RMi (Palmstrom, 2001). Los datos de la descripción de las discontinuidades de cada familia y para cada zona se muestran en las tablas 1 y 2.

	Descripción de las discontinuidades y clasificación geomecánica del frente											
	Tabla 1. Descripción de las discontinuidades (ISRM, 1981). Para la zona 1.											
Familia	Orientación (echado, d del echado)	lirección	Espac	iado	Continuidad	Rugosidad	Resistencia de las paredes	Abertura	Re	lleno	Filtraciones	
1	34° , 225.3°		0.49) m	0.97 m	Ondulado liso	90 MPa	Ancha	desin	tegrado,	Húmedo sin flujo	
2	71.2° , 355.5°		0.33	3 m	1 m	Ondulado liso	90 MPa	Muy ancha	Limo	arenoso	Húmedo sin flujo	
3	79.1°, 240°		2	m	0.62 m	Ondulado liso	90 MPa	Moderadamente ancha	Limo	arenoso	Húmedo sin flujo	
4	22° , 24.5°		0.45	5 m	1.82 m	Ondulado liso	90 MPa	Moderadamente ancha	Limo	arenoso	Húmedo sin flujo	
5	67° , 135°		0.10) m	0.68 m	Ondulado liso	90 MPa	Muy ancha	Limo	arenoso	Húmedo sin flujo	
				Ro	ck Mass Rating (R	MR14), Celada	et al. 2014					
UCS (Mpa)	Discontinuidades por metro	Per coi	sistencia - ntinuidad	Rugosidad	Relleno	Alteración	Alterabilidad	Estado del terreno	Corre Tú	cción por neles	Puntuación Total	
7	26		4	1	0	1	4	10		-5	48	
	Tipo de sostedimi	ento segi	ún Lowson		Cálculo	o del módulo de	e deformación de	l macizo rocoso	(Em) se	gún difer	entes autores (RMR)	
Condición geo	técnica		Roca r	nedia	Bieniawski, 1978			-4	GPa			
Carga de roca	Pr		115.3503706	kN/m2	Gokceoglu, 2003			2.74	GPa			
Espaciamiento	o entre anclas		1.576923077	metros	Aydan et al. 1997			8.68	GPa			
Espesor del co	oncreto lanzado		20	mm	Read et al. 1999			11.06	GPa			
					Regresión lineal (S	Sánchez y Lozad	la, 2020)	7.68	GPa			
Indice Q de Barton et al 1974												
RQD	Jn		Jr		Jw		Ja	SRF	Pun	tuación		
50	12		2		1		8	7.5	().14	Calidad del macizo Muy mala	
	Tipo de sostedim	iento seg	ún Barton		Cálcu	el macizo rocos	o (Em) s	egún dife	erentes autores (Q)			
Condición geo	otécnica		Roca de ca	lidad mala	Barton, 1992			-21.43	GPa			
Avance			3	m	Barton, 2002			5.93	GPa			
ESR			1.3		Palmstrom y Singl	h (2001)		3.63	GPa			
Relación Avan	ce/ESR		2.307692308									
Espaciamiento	o entre anclas		2.5	m								
Espesor del co	oncreto lanzado		5 a 9	cm								
Longitud del a	ncla		2	m								
					Rock Mass Index.	Palmstrom et a	al 2001					
jR	UCS de la roca (qc)	MPa	jL	jA	jC		Vb	Jp D	Pun	tuación		
			-								Calidad del macizo	
2	80		1	8	0.25	0.	012	0.011 0.48	().88	Media	
	Tipo de sostedimier	nto segúr	n Palmström		Cálcul	o del módulo d	e deformación de	l macizo rocoso	(Em) se	egún difer	entes autores (RMi)	
Sr			38.73581503		Palmstrom (1995)			5.34	GPa			
Gc			0.586666667		Palmstrom y Sing	n (2001)		6.65	GPa			
Revestimiento propuesto Anclas con 2.5 m de espaci					niento y 5 cm de e	spesor de conci	reto lanzado con	fibras				
				Geo	ological strenght ir	ndex, Hoek y Br	own, 1997					
Jc Vb	UCS de la roca (qc)	MPa	Coeficiente	de daño D=	mi	mb	S	а	Pun	tuación		
0.25 0.012	.25 0.012 80 0.7			7	25	0.6297	0.0001	0.5183		33		
						1						
Hoek y Brown	, 1997		3.36	GPa								
Hoek, 2002			2.44	GPa]							
Hoek 2004			2.73	GPa]							
Sonmez et al.	(2004)		4.28	GPa								

Ficha de caracterización geológica - geotécnica del túnel San Antonio									
Ubicación: Túnel San Antonio, Puerto Escondido,	Cadenamiento:	0+229	Fecha:	27 de abril de 2019					

El frente está siendo excavado en dos fases, en esta ficha se analiza el lado derecho de esta fase, el macizo rocoso que le corresponde se encuentra medianamente fracturado.

Se identifican 3 familias principalmente, cuya orientación provocan la formación de bloques de volumen considerable en la clave (Fig. 3), además son identificables rasgos estructurales importantes como las discontinuidades indicadas (Fig. 1), cuya continuidad va de los 4 - 5 metros hasta los 8 metros de longitud, cuyo relleno se caracteriza por material suelto, triturado y manchas de material fino color marrón. En las Figuras 2, se observan las zonas con mayor cantidad de humedad, en esa zona las discontinuidades se encuentran rellenas de material fino color marrón húmedo. Aún no se observa un flujo de agua, pero la humedad puede disminuir la resistencia al corte del material de relleno y desestabilizar el frente.

Descripción geológica:

Se encuentra una unidad litológica en el frente, se trata de una roca con textura granítica (granodiorita), está constituida por minerales volcánicos como cuarzo y mica (biotita), además de bandas de grosor considerable (> 5 cm) de cuarzo lechoso. Se encuentra mineralizada (presencia de pirita).

Con ayuda de la herramienta ShapeMetrix 3D, fue posible identificar 4 familias de discontinuidades. Es posible realizar una comparación entre el frente anterior (0+226) y el actual, esto permite observar las variaciones de dirección e inclinación de las familias de discontinuidades respecto frente excavado del túnel. En este frente desaparece la familia 5 y las demás familias tuvieron un cambio uniforme de 20 a 30 grados hacia el nor-este.

La familia 4 tiene una inclinación en contra del avance de la excavación del túnel, una condición desfavorable según la clasificación RMR.

La demás familias 1, 2 y 3 son formadoras de bloques en combinación con las otras familias, pero no tienen una inclinación desfavorable respecto a la excavación.

Además de los datos de dirección y echado de planos de discontinuidad y fracturas, la herramienta permite conocer el espaciamiento, continuidad y con ciertas mediciones permite conocer el tamaño de los bloques representativos del frente utilizados en la evaluación de la clasificación RMi (Palmstrom, 2001). Los datos de la descripción de las discontinuidades de cada familia y para cada zona se muestran en las tablas 1 y 2.

	Descripción de las discontinuidades y clasificación geomecánica del frente											
			Та	bla 1. Descripo	ción de las discont	inuidades (ISRN	VI, 1981). Para la 2	zona 1.				
Familia	Orientación (echado, d del echado)	lirección	Espac	Espaciado		Rugosidad	Resistencia de las paredes	Abei	rtura	Re	lleno	Filtraciones
1	41.7° , 72.4°		0.6	m	1.8 m	Ondulado rugoso	120 MPa	Ceri	rada	Sin	relleno	Húmedo sin flujo
2	76.5° , 248.1°		0.12	2 m	1.10 m	Ondulado liso	120 MPa	Cerr	rada	Limo	arenoso	Húmedo sin flujo
3	41.4° , 264.1°		0.33	3 m	1.10 m	Ondulado liso	120 MPa	Cerr	rada	Limo	arenoso	Húmedo sin flujo
4	74.1°, 17°		1.30) m	0.86 m	Ondulado liso	120 MPa	Parcial abie	imente erta	trite	urado,	Húmedo sin flujo
				Ro	ck Mass Rating (R	MR14), Celada	et al. 2014					
UCS (Mpa)	Discontinuidades por metro	Per	sistencia - ntinuidad	Rugosidad	Relleno	Alteración	Alterabilidad	Estad terr	lo del eno	Correo Tú	ción por neles	Puntuación Total
9	28		4	5	5	3	4	1	0		-5	63
	Tipo de sostedimi	ento segu	ún Lowson		Cálcul	o del módulo de	e deformación del	macizo	rocoso	(Em) se	gún difer	entes autores (RMR)
Condición geo	técnica		Roca de bu	ena calidad	Bieniawski, 1978			2	6	GPa		
Carga de roca	Pr		82.07622524	kN/m2	Gokceoglu, 2003			8.	49	GPa		
Espaciamiento	entre anclas		2.153846154	metros	Aydan et al. 1997			22	.72	GPa		
Espesor del co	ncreto lanzado		20	mm	Read et al. 1999			25	.00	GPa		
					Regresión lineal (Sánchez y Lozac	la, 2020)	17	.28	GPa		
				Índice Q de I	Barton et al 197	74						
RQD	Jn		Jr		Jw		Ja	SF	RF	Punt	uación	
												Calidad del macizo
70	12		3		1		2		5	1	75	Mala
	Tipo de sostedim	iento seg	ún Barton		Cálcu	lo del módulo	de deformación d	el maciz	o rocoso	o (Em) s	egún dife	erentes autores (Q)
Condición geo	técnica		Roca de ca	lidad mala	Barton, 1992			6.	08	GPa		
Avance			3	m	Barton, 2002	(2004)		13	.79	GPa		
ESR Dalasión Auro	/500		1.3		Palmstrom y Sing	n (2001)		10	.01	GPa		
Relacion Avan			2.307692308									
Espaciamiento	entre ancias		1.4	m								
Espesor del co	ncreto lanzado		Sin concreto									
Longitud del a	ncla		10112000	m								
Longitud del d			2		Rock Mass Index	Palmstrom et :	al 2001					
iR	UCS de la roca (gc)	MPa	iL	iA	iC		Vb	gL	D	Punt	uación	
j				,								Calidad del macizo
2	120		1	3	1	C	.21	0.11	0.37	1	3.2	Muy buena
	Tipo de sostedimier	nto segúr	n Palmström		Cálcul	o del módulo d	e deformación de	l macizo	rocoso	(Em) se	gún difer	entes autores (RMi)
Sr			15.06295373		Palmstrom (1995))		14	.77	GPa		
Gc			13.2		Palmstrom y Sing	h (2001)		19	.65	GPa		
Revestimiento propuesto Anclas con 2 m de espacian					ento							
	Geological strenght index, Hoek y Brown, 1997											
Jc Vb	UCS de la roca (qc)	MPa	Coeficiente	de daño D=	mi	mb	S	ä	а	Punt	uación	
1 0.21	1 0.21 120 0.7		25	2.1093	0.0015	0.5	040		55			
						1						
Hoek y Brown	, 1997		14.61	GPa								
Hoek, 2002 8.67 GPa												
Hoek 2004			11.15	GPa								
Sonmez et al.	(2004)		12.89	GPa								

Ficha de caracterización geológica - geotécnica del túnel San Antonio									
Ubicación: Túnel San Antonio, Puerto Escondido,	Cadenamiento:	0+232	Fecha	28 de Febrero de 2019					
Oaxaca	Cauenannento.	0+232	recha.	28 de l'ebleio de 2019					

El frente está siendo excavado en dos fases, en esta ficha se analiza el lado izquierdo de esta fase, el macizo rocoso que le corresponde se encuentra medianamente fracturado.

Se identifican 3 familias principalmente, cuya orientación provocan la formación de bloques de volumen considerable (Fig. 3), además son identificables rasgos estructurales importantes como las discontinuidades indicadas (Fig. 1), cuya continuidad va de los 4 - 5 metros hasta los 8 metros de longitud, cuyo relleno se caracteriza por material suelto, triturado y manchas de material fino color marrón. En las Figuras 2, se observan las zonas con mayor cantidad de humedad, en esa zona las discontinuidades se encuentran rellenas de material fino color marrón húmedo. Aún no se observa un flujo de agua, pero la humedad puede disminuir la resistencia al corte del material de relleno y desestabilizar el frente.

Descripción geológica:

Se encuentra una unidad litológica en el frente, se trata de una roca con textura granítica (granodiorita), está constituida por minerales volcánicos como cuarzo y mica (biotita), además de bandas de grosor considerable (> 5 cm) de cuarzo lechoso. Se encuentra mineralizada (presencia de pirita).

Estructura geológica

Con ayuda de la herramienta ShapeMetrix 3D, fue posible identificar 5 familias de discontinuidades. Es posible realizar una comparación entre el frente anterior (0+229) y el actual, esto permite observar las variaciones de dirección e inclinación de las familias de discontinuidades respecto frente excavado del túnel. Las familias 2 y 4 se mantienen del frente anterior, mientras que las familias 1, 3 y 5, son familias que se forman en este frente de excavación. Como en el frente anterior, permanece como desfavorable la familia 4 y la familia 2 cambio la dirección de su echado lo suficiente para tener un rumbo paralelo al eje del túnel, una condición muy desfavorable según la clasificación RMR.

La demás familias 1, 3 y 5 son formadoras de bloques en combinación con las otras familias, pero no tienen una inclinación desfavorable respecto a la excavación.

Además de los datos de dirección y echado de planos de discontinuidad y fracturas, la herramienta permite conocer el espaciamiento, continuidad y con ciertas mediciones permite conocer el tamaño de los bloques representativos del frente utilizados en la evaluación de la clasificación RMi (Palmstrom, 2001). Los datos de la descripción de las discontinuidades de cada familia y para cada zona se muestran en las tablas 1 y 2.

		Des	cripción d	e las discor	itinuidades y	y clasificaci	ón geomeca	ánica del t	irente		
			Tal	bla 1. Descripció	n de las discontin	uidades (ISRM,	1981). Para la zo	na 1.			
Familia	Orientación (echado, dirección del echado)		Espaciado		Continuidad	Rugosidad	Resistencia de las paredes	Abertura	Relleno	Filtraciones	
1	76.1° , 195.4°		0.22 m		1.0 m	Ondulado liso	120 MPa	Abierta	Limo arcillos	o Húmedo sin flujo	
2	2 82°, 271.5°		0.70 m		1.0 m	Ondulado rugoso	120 MPa	Parcialmente abierta	Limo arenos	o Húmedo sin flujo	
3	80° , 331.3°		0.50 m		0.8 m	Ondulado rugoso	120 MPa	Cerrada	Limo arenos	o Húmedo sin flujo	
4	4 68.2°, 47.8°		0.40 m		0.47 m	Ondulado rugoso	120 MPa	Parcialmente abierta	Material triturado, arenoso	Húmedo sin flujo	
5	5 11.7° , 205.4°		0.7 m		0.95 m	Ondulado liso	120 MPa	Muy ancha	Material triturado, arenoso-limo	Húmedo sin flujo	
	Rock Mass Rating (RMR14), Celada et al. 2014										
UCS (Mpa)	Discontinuidades por metro	Per	sistencia - ntinuidad	Rugosidad	Relleno	Alteración	Alterabilidad	Estado del terreno	Corrección p Túneles	or Puntuación Total	
9	27		4	1	5	1	4	10	-12	49	
	Tipo de sostedim	iento seg	gún Lowson		Cálculo	del módulo de	deformación del	macizo rocoso	(Em) según d	iferentes autores (RMR)	
Condición geotécnica			Roca de ca	lidad media	Bieniawski, 1978			-2	GPa	× 7	
Carga de roca Pr			113.1320943	1320943 kN/m2 Gokceoglu 2003				2.95	GPa		
Espaciamiento entre anclas			1 615384615 metros		Avdan et al. 1997	,		9.33	GPa		
Espesor del concreto Janzado			20-50	20-50 mm		Read et al. 1999		11 76	GPa		
			20 00		Regresión lineal (Sánchez v Lozad	la 2020)	8 10	GPa		
					Índice O de Ba	rton et al 1974	10, 2020)	0.10	Gru		
ROD In			lr		lw la		la	SRF	Puntuación		
60	12		1.5		1		3	7.5	0.33	Calidad del macizo	
Tipo de sostedimiento su			gún Barton		Cálculo del módulo de deformación o		l macizo roco	so (Em) según	diferentes autores (O)		
Condición geo	técnica	licitico se	Boca de calidad muy mala		Barton 1992			-11 93	GPa		
Avanco			Roca de calidad fildy filala		Barton, 1992		7.04	GPa			
			1 2	3 m		Balloll, 2002		7.94	GFa		
ESR Boloción Avon	/500	ESR			Dolmetrom v Sing	h (2001)		E 16	CDo		
Relación Avance/ESR			2 207(02200		Palmstrom y Sing	h (2001)		5.16	GPa		
			2.307692308		Palmstrom y Sing	h (2001)		5.16	GPa		
Espaciamiento	o entre anclas		2.307692308	m	Palmstrom y Sing	h (2001)		5.16	GPa		
Espaciamiento Espesor del co	o entre anclas		2.307692308 2.5 5 a 9	m cm	Palmstrom y Sing	h (2001)		5.16	GPa		
Espaciamiento Espesor del co Longitud del a	o entre anclas poncreto lanzado nocla		2.307692308 2.5 5 a 9 2.5	m cm m	Palmstrom y Sing	h (2001)	2001	5.16	GPa		
Espaciamiento Espesor del co Longitud del a	o entre anclas poncreto lanzado incla		2.307692308 2.5 5 a 9 2.5	m cm m R	Palmstrom y Sing	h (2001) almstrom et al 2	2001	5.16	GPa		
Espaciamiento Espesor del co Longitud del a jR	uce/ESR o entre anclas oncreto lanzado uncla UCS de la roca (qc)	MPa	2.307692308 2.5 5 a 9 2.5	m cm m JA	Palmstrom y Sing ock Mass Index. P jC	h (2001) almstrom et al 2	2001 Vb	5.16 Jp D	GPa Puntuaciór		
Espaciamiento Espesor del co Longitud del a jR	CC/ESK o entre anclas oncreto lanzado incla UCS de la roca (qc)	МРа	2.307692308 2.5 5 a 9 2.5	m m jA	Palmstrom y Sing ock Mass Index. P jC	h (2001) almstrom et al 2	2001 Vb	5.16 Jp D	GPa Puntuaciór	Calidad del macizo	
Espaciamiento Espesor del co Longitud del a jR 2	ce/ESK o entre anclas oncreto lanzado incla UCS de la roca (qc) 120	MPa	2.307692308 2.5 5 a 9 2.5 jL	m m jA 8	Palmstrom y Sing ock Mass Index. P jC 0.25	h (2001) almstrom et al 2	2001 Vb .16	5.16 Jp D 0.04 0.48	GPa Puntuaciór 4.8	Calidad del macizo Buena	
Espaciamiento Espesor del co Longitud del a jR 2	ce/ESK o entre anclas oncreto lanzado incla UCS de la roca (qc) 120 Tipo de sostedimie	MPa ento segu	2.307692308 2.5 5 a 9 2.5 jL 1 ún Palmström	m cm m jA jA 8	Palmstrom y Sing ock Mass Index. P jC 0.25 Cálculo	almstrom et al 2 0 0 del módulo de	2001 Vb .16 deformación del	5.16 Jp D 0.04 0.48 macizo rocos	GPa Puntuaciór 4.8 0 (Em) según o	Calidad del macizo Buena liferentes autores (RMi)	
Espaciamiento Espesor del co Longitud del a jR 2 Sr	UCS de la roca (qc) UCS de la roca (qc) 120 Tipo de sostedimie	MPa ento segu	2.307692308 2.5 5 a 9 2.5 jL 1 ún Palmström 16.4771811	m cm m jA 8	Palmstrom y Sing ock Mass Index. P jC 0.25 Cálculo Palmstrom (1995	almstrom et al 2 0 0 del módulo de)	2001 Vb .16 deformación del	5.16 Jp D 0.04 0.48 macizo rocoss 10.10	GPa Puntuación 4.8 o (Em) según o GPa	Calidad del macizo Buena liferentes autores (RMi)	
Espaciamiento Espesor del co Longitud del a jR 2 Sr Gc	ce/ESR o entre anclas oncreto lanzado incla UCS de la roca (qc) 120 Tipo de sostedimie	MPa ento segu	2.307692308 2.5 5 a 9 2.5 jL 1 in Palmström 16.4771811 3.2	m cm m jA 8	Palmstrom y Sing ock Mass Index. P jC 0.25 Cálculo Palmstrom (1995 Palmstrom y Sing	almstrom et al 2 0 0 del módulo de) h (2001)	2001 Vb .16 deformación del	5.16 Jp D 0.04 0.48 macizo rocos 10.10 13.11	Puntuación 4.8 (Em) según o GPa GPa	Calidad del macizo Buena liferentes autores (RMi)	
Espaciamiento Espesor del co Longitud del a jR 2 Sr Gc Revestimiento	ce/ESK o entre anclas oncreto lanzado incla UCS de la roca (qc) 120 Tipo de sostedimie	MPa ento segu	2.307692308 2.5 5 a 9 2.5 jL 1 in Palmström 16.4771811 3.2 Anclas con 2 m	m cm m jA 8 de espaciamier	Palmstrom y Sing ock Mass Index. P jC 0.25 Cálculo Palmstrom (1995 Palmstrom y Sing tto, 50 mm de esp	almstrom et al 3 0 0 del módulo de) h (2001) esor de concreto	2001 Vb .16 deformación del p lanzado con fibr	5.16 Jp D 0.04 0.48 macizo rocos 10.10 13.11 ras	Puntuación 4.8 0 (Em) según o GPa GPa	Calidad del macizo Buena liferentes autores (RMi)	
Espaciamiento Espesor del co Longitud del a jR 2 Sr Gc Revestimiento	ce/ESK o entre anclas oncreto lanzado incla UCS de la roca (qc) 120 Tipo de sostedimie	MPa ento segu	2.307692308 2.5 5 a 9 2.5 jL in Palmström 16.4771811 3.2 Anclas con 2 m	m cm jA jA 8 de espaciamier Geolo	Palmstrom y Sing ock Mass Index. P jC 0.25 Cálculo Palmstrom (1995 Palmstrom y Sing to, 50 mm de esp ogical strenght ind	almstrom et al 3 almstrom et al 3 del módulo de) h (2001) esor de concreto lex, Hoek y Brov	2001 Vb .16 deformación del o lanzado con fibr vn, 1997	5.16 Jp D 0.04 0.48 macizo rocos 10.10 13.11 as	GPa Puntuación 4.8 0 (Em) según o GPa GPa GPa	Calidad del macizo Buena liferentes autores (RMi)	
Espaciamiento Espesor del co Longitud del a jR 2 Sr Gc Revestimiento Jc Vb	ce/ESK o entre anclas oncreto lanzado incla UCS de la roca (qc) 120 Tipo de sostedimie o propuesto UCS de la roca (qc)	MPa ento segu MPa	2.307692308 2.5 5 a 9 2.5 jL 1 in Palmström 16.4771811 3.2 Anclas con 2 m	m cm jA jA 8 de espaciamier Geolo e de daño D=	Palmstrom y Sing ock Mass Index. P jC 0.25 Cálcult Palmstrom (1995 Palmstrom y Sing to, 50 mm de esp ogical strenght ind	almstrom et al 3 almstrom et al 3 o del módulo de) h (2001) esor de concreto lex, Hoek y Brov mb	2001 Vb .16 deformación del o lanzado con fibr vn, 1997 s	5.16 Jp D 0.04 0.48 macizo rocos 10.10 13.11 as	Puntuación 4.8 0 (Em) según o GPa GPa Puntuación	Calidad del macizo Buena liferentes autores (RMi)	
Espaciamiente Espesor del co Longitud del a jR 2 Sr Gc Revestimiente Jc Vb 0.25 0.16	ce/ESK o entre anclas oncreto lanzado incla UCS de la roca (qc) 120 Tipo de sostedimie o propuesto UCS de la roca (qc) 120	MPa ento segu MPa	2.307692308 2.5 5 a 9 2.5 jL 1 in Palmström 16.4771811 3.2 Anclas con 2 m Coeficiente	m cm m jA 8 de espaciamier Geolo e de daño D= 0.7	Palmstrom y Sing ock Mass Index. P jC 0.25 Cálcula Palmstrom (1995 Palmstrom y Sing ito, 50 mm de esp ogical strenght ind mi 25	almstrom et al 3 almstrom et al 3 b del módulo de) h (2001) esor de concreto lex, Hoek y Brov mb 0.8288	2001 Vb .16 deformación del o lanzado con fibr vn, 1997 \$ 0.0001	5.16 Jp D 0.04 0.48 macizo rocoso 10.10 13.11 ras 0.5130	Puntuaciór 4.8 0 (Em) según o GPa GPa Puntuaciór 38	Calidad del macizo Buena liferentes autores (RMi)	
Espaciamiento Espesor del co Longitud del a JR 2 Sr Gc Revestimiento Jc Vb 0.25 0.16	ce/ESK o entre anclas oncreto lanzado incla UCS de la roca (qc) 120 Tipo de sostedimie o propuesto UCS de la roca (qc) 120 120	MPa ento segu MPa	2.307692308 2.5 5 a 9 2.5 jL 1 in Palmström 16.4771811 3.2 Anclas con 2 m Coeficiente	m cm m jA 8 de espaciamier Geolo c de daño D= 0.7	Palmstrom y Sing ock Mass Index. P jC 0.25 Cálcule Palmstrom (1995 Palmstrom y Sing to, 50 mm de esp ogical strenght ind mi 25	almstrom et al 3 0 0 del módulo de) th (2001) esor de concreto lex, Hoek y Brov mb 0.8288 1	2001 Vb .16 deformación del o lanzado con fibr vn, 1997 	5.16 Jp D 0.04 0.48 macizo rocos 10.10 13.11 ras 0.5130	Puntuación 4.8 0 (Em) según o GPa GPa Puntuación 38	Calidad del macizo Buena liferentes autores (RMi)	
Espaciamiente Espesor del cc Longitud del a jR 2 Sr Gc Revestimiente Jc Vb 0.25 0.16 Hoek y Brown	ce/ESK po entre anclas poncreto lanzado incla UCS de la roca (qc) 120 Tipo de sostedimie popropuesto UCS de la roca (qc) 120 120 , 1997	MPa ento segu MPa	2.307692308 2.5 5 a 9 2.5 jL 1 in Palmström 16.4771811 3.2 Anclas con 2 m Coeficiente	m cm m jA 8 de espaciamier Geolo e de daño D= 0.7 GPa	Palmstrom y Sing ock Mass Index. P jC 0.25 Cálculo Palmstrom (1995 Palmstrom y Sing tto, 50 mm de esp ogical strenght ind 25	almstrom et al 3 0 0 del módulo de) (h (2001) esor de concreto lex, Hoek y Brov 0.8288 1	2001 Vb .16 deformación del o lanzado con fibr vn, 1997 	5.16 Jp D 0.04 0.48 macizo rocoss 10.10 13.11 ras 0.5130	Puntuación 4.8 0 (Em) según o GPa GPa Puntuación 38	Calidad del macizo Buena liferentes autores (RMi)	
Espaciamiento Espesor del co Longitud del a jR 2 Sr Gc Revestimiento Jc Vb 0.25 0.16 Hoek y Brown Hoek, 2002	ce/ESK o entre anclas oncreto lanzado incla UCS de la roca (qc) 120 Tipo de sostedimie o propuesto UCS de la roca (qc) 120 , 1997	MPa ento segu MPa	2.307692308 2.5 5 a 9 2.5 jL 1 in Palmström 16.4771811 3.2 Anclas con 2 m Coeficiente (5.49 3.26	m cm m jA 8 de espaciamier Geolo e de daño D= 0.7 GPa GPa	Palmstrom y Sing ock Mass Index. P jC 0.25 Cálculo Palmstrom (1995 Palmstrom (1995 Palmstrom y Sing to, 50 mm de esp ogical strenght ind mi 25	almstrom et al 3 almstrom et al 3 0 0 0 0 0 0 0 0 0 0 0 0 0	2001 Vb .16 deformación del p lanzado con fibr vn, 1997 	5.16 Jp D 0.04 0.48 macizo rocos 10.10 13.11 as 0.5130	GPa Puntuación 4.8 (Em) según o GPa GPa GPa GPa 38	Calidad del macizo Buena liferentes autores (RMi)	
Espaciamiente Espesor del co Longitud del a jR 2 Sr Gc Revestimiente Jc Vb 0.25 0.16 Hoek y Brown Hoek, 2002	ce/ESK pontre anclas poncreto lanzado incla UCS de la roca (qc) 120 Tipo de sostedimie popropuesto UCS de la roca (qc) 120 120 120 120 120 120 120 120	MPa ento segu MPa	2.307692308 2.5 5 a 9 2.5 jL 1 in Palmström 16.4771811 3.2 Anclas con 2 m Coeficiente Coeficiente 5.49 3.26 3.76	m cm m jA 8 de espaciamier Geolo e de daño D= 0.7 GPa GPa GPa	Palmstrom y Sing ock Mass Index. P jC 0.25 Cálculo Palmstrom (1995 Palmstrom y Sing to, 50 mm de esp ogical strenght ind mi 25	almstrom et al 3 almstrom et al 3 o del módulo de) (h (2001) esor de concretor lex, Hoek y Brov 0.8288 1	2001 Vb .16 deformación del o lanzado con fibr vn, 1997 s 0.0001	5.16 Jp D 0.04 0.48 macizo rocos 10.10 13.11 as 0.5130	GPa Puntuación 4.8 0 (Em) según o GPa GPa Puntuación 38	Calidad del macizo Buena liferentes autores (RMi)	

Ficha de caracteriza	ción geológica - geoto	écnica del túnel Sa	an Antonic)
Ubicación: Túnel San Antonio, Puerto Escondido,	Cadenamiento:	0+235	Fecha:	30 de abril de 2019

El frente está siendo excavado en dos fases, en esta ficha se analiza el lado derecho de esta fase, el macizo rocoso que le corresponde se encuentra ligeramente fracturado.

Se identifican 3 familias principalmente, cuya orientación provocan la formación de bloques de volumen considerable (Fig. 3), además son identificables rasgos estructurales importantes como las discontinuidades indicadas (Fig. 1), cuya continuidad va de los 4 - 5 metros de longitud, cuyo relleno se caracteriza por material suelto, triturado y manchas de material fino color marrón. En la Figuras 2, se observan las zonas con mayor cantidad de humedad, en esa zona las discontinuidades se encuentran rellenas de material fino color marrón húmedo. Aún no se observa un flujo de agua, pero la humedad puede disminuir la resistencia al corte del material de relleno y desestabilizar el frente.

Descripción geológica:

Se encuentra una unidad litológica en el frente, se trata de una roca con textura granítica (granodiorita), está constituida por minerales como cuarzo, plagioclasa y mica (biotita), además de bandas de grosor considerable (> 5 cm) de cuarzo lechoso. Se encuentra mineralizada (presencia de pirita).

Estructura geológica

Con ayuda de la herramienta ShapeMetrix 3D, fue posible identificar 3 familias de discontinuidades. Es posible realizar una comparación entre el frente anterior (0+232) y el actual, esto permite observar las variaciones de dirección e inclinación de las familias de discontinuidades respecto frente excavado del túnel. En este frente solo permanece la familia 5 del frente anterior tomando el nombre de familia 3 en éste.

La familia 2 tiene una inclinación desfavorable, ya que se inclina en contra del avance de la excavación.

Las demás familias 1 y 3 son formadoras de bloques en combinación con las otras familias, pero no tienen una inclinación desfavorable respecto a la excavación.

Además de los datos de dirección y echado de planos de discontinuidad y fracturas, la herramienta permite conocer el espaciamiento, continuidad y con ciertas mediciones permite conocer el tamaño de los bloques representativos del frente utilizados en la evaluación de la clasificación RMi (Palmstrom, 2001). Los datos de la descripción de las discontinuidades de cada familia y para cada zona se muestran en las tablas 1 y 2.

	Descripción de las discontinuidades y clasificación geomecánica del frente										
			Та	bla 1. Descripció	ón de las discontin	uidades (ISRM,	1981). Para la zo	na 1.			
Familia	Orientación (echado, d del echado)	lirección	Espa	aciado	Continuidad	Rugosidad	Resistencia de las paredes	Abertura	Relle	eno	Filtraciones
1	58° , 256.5°		0.4	19 m	0.84 m	Ondulado liso	50 - 100 MPa	Ancha	Limo ar	rcilloso	Húmedo sin flujo
2	51°, 5.3°		1.3	36 m	1.13 m	Ondulado liso	100 MPa	Moderadame nte ancha	Limo ar	renoso	Húmedo sin flujo
3	8° , 213.5°		0.!	50 m	1.10 m	Ondulado liso	50 - 100 MPa	Ancha	Limo ar	rcilloso	Húmedo sin flujo
				Rock	Mass Rating (RM	R14), Celada et	al. 2014				
UCS (Mpa)	Discontinuidades por metro	Per coi	sistencia - ntinuidad	Rugosidad	Relleno	Alteración	Alterabilidad	Estado del terreno	Correcc Túne	ión por eles	Puntuación Total
6	29		4	1	0	1	0	10	-5	5	46
	Tipo de sostedim	iento seg	gún Lowson	•	Cálculo	del módulo de	deformación del	macizo rocoso	(Em) seg	gún dife	rentes autores (RMR)
Condición geo	otécnica		Roca de ca	lidad media	Bieniawski, 1978			-8	GPa	0	
Carga de roca	Pr		119.7869233	kN/m2	Gokceoglu, 2003			2.35	GPa		
Espaciamiento	o entre anclas		1.5	metros	Avdan et al. 1997	,		7.46	GPa		
Espesor del co	oncreto lanzado		20-50	mm	Read et al. 1999			9.73	GPa		
			20 50		Regresión lineal (Sánchez v Lozad	la. 2020)	6.89	GPa		
					Indice O de Ba	rton et al 1974	,,				
ROD	In		lr		lw		12	SRE	Puntu	ación	
NQD	511		JI		J VV		Ja	514	i untu	acion	Calidad del macizo
50	9		1		1		6	75	0.4	12	Muy mala
50	Tino de sostedin	niento se	gin Barton	1	Cálcu	lo del módulo d	e deformación de	l macizo roco	so (Em) s	egún dif	ferentes autores (O)
Condición geo	npo de sostedin otécnica	licitto se	Roca de cali	dad muy mala	Barton 1992		e deformación de	-22 71	GPa	cgun un	
Avance			3	m	Barton 2002			5 70	GPa		
FSR			13		Palmstrom v Sing	h (2001)		3.46	GPa		
Belación Avan	nce/FSR		2 307692308		r unistronn y sing	.11 (2001)		3.40	010		
Espaciamient	o entre anclas		2.307032308	m							
Espaciarmento Espacor del co	oncroto lanzado		2.1 a 2.3	cm	-						
Longitud dol a			5812	m	-						
Longituu dei a			Z	P	ock Mass Index B	almstrom at al	2001				
10		MD-			Lic	annstronnet ar	2001		Durate	: /	
JK		IVIPa	JL	ја	JC		dv	u dr	Puntu	lacion	
	50			10	0.1			0.00 0.50			Calidad del macizo
1	50		L Delucata Xurr	10	0.1).22	0.02 0.58	(5)	ل	Buena
~	lipo de sostedimie	ento segu	In Paimstrom		Calculo	, dei modulo de	deformación del	macizo rocoso	5 (Em) se	gun aife	erentes autores (RIVII)
Sr			14.83347912		Palmstrom (1995)		5.60	GPa		
GC			0.666666667		Palmstrom y Sing	n (2001)		7.00	GPa		
Revestimiento	o propuesto		Anclas con 1.5	m de espaciami	ento, con 60 mm d	de espesor de co	oncreto lanzado				
				Geolo	ogical strenght ind	lex, Hoek y Brow	wn, 1997		-		
Jc Vb	UCS de la roca (qc)	MPa	Coeficiente	e de daño D=	mi	mb	S	а	Puntu	iación	
0.1 0.22	50			. 7	25	1 (02)	0.0007	0.5057	2		
0.1 0.22	50		(J.7	25	1.0020	0.0007	0.5057	2	0	
Lleeku Dec	1007		7.07	CDe	1	1					
Hoek y Brown	1, 1337		7.07	GPd CDa	-						
поек, 2002			0.50	GPd CDa	-						
	(2004)		8.10	GPa	4						
sonmez et al.	(2004)		4.62	GPa							

Ficha de caracteriza	ción geológica - geoté	écnica del túnel Sa	an Antonic	
Ubicación: Túnel San Antonio, Puerto Escondido,	Cadenamiento:	0+238	Fecha:	30 de Abril de 2019

El frente está siendo excavado en dos fases, en esta ficha se analiza el lado izquierdo de esta fase, el macizo rocoso que le corresponde se encuentra ligeramente fracturado.

Se identifican 3 familias principalmente, cuya orientación provocan la formación de bloques de volumen considerable (Fig. 3), además son identificables rasgos estructurales importantes como las discontinuidades indicadas (Fig. 1), cuya continuidad va de los 4 - 5 metros de longitud, cuyo relleno se caracteriza por material suelto, triturado y manchas de material fino color marrón. En la Figuras 2, se observan las zonas con mayor cantidad de humedad, en esa zona las discontinuidades se encuentran rellenas de material fino color marrón húmedo. Aún no se observa un flujo de agua, pero la humedad puede disminuir la resistencia al corte del material de relleno y desestabilizar el frente.

Descripción geológica:

Se encuentran dos unidades litológicas en el frente, la primer unidad se trata de una roca foliada de color verde de grano fino, que contiene minerales como cuarzo y biotita (mica negra) ; se trata de una roca metamórfica esquisto verde. La segunda unidad tiene una textura granítica (granodiorita) se encuentra en la parte inferior del frente, está constituida por minerales volcánicos como cuarzo y mica (biotita). La roca foliada tiene una textura jabonosa y se encuentra muy alterada, se encuentra mayormente en la parte inferior del frente, la roca granítica (granodiorita) se encuentra del frente. La granodiorita se encuentra mineralizada (presencia de pirita).

Estructura geológica

Con ayuda de la herramienta ShapeMetrix 3D, fue posible identificar 5 familias de discontinuidades. Es posible realizar una comparación entre el frente anterior (0+235) y el actual, esto permite observar las variaciones de dirección e inclinación de las familias de discontinuidades respecto frente excavado del túnel. Las familias 1 y 2 del frente anterior se mantienen en éste, con los nombre de familia 5 y 2 respectivamente.

Como en el frente anterior, permanece como desfavorable la familia 2, debido a que tiene una inclinación en contra del avance de la excavación del túnel. La demás familias de discontinuidades son formadoras de bloques en combinación con las otras familias, pero no tienen una inclinación desfavorable respecto a la excavación.

Además de los datos de dirección y echado de planos de discontinuidad y fracturas, la herramienta permite conocer el espaciamiento, continuidad y con ciertas mediciones permite conocer el tamaño de los bloques representativos del frente utilizados en la evaluación de la clasificación RMi (Palmstrom, 2001). Los datos de la descripción de las discontinuidades de cada familia y para cada zona se muestran en las tablas 1 y 2.

		Des	cripción d	e las discor	ntinuidades y	y clasificaci	ón geomeca	ánica del f	rent	e	
			Та	bla 1. Descripció	on de las discontin	uidades (ISRM,	1981). Para la zo	na 1.			
Familia	Orientación (echado, d del echado)	irección	Espa	iciado	Continuidad	Rugosidad	Resistencia de las paredes	Abertura	Re	lleno	Filtraciones
1	45° , 60°		0.8	0.86 m		Ondulado rugoso	100 MPa	Abierta	Roca	triturada	Húmedo sin flujo
2	68°, 354.3°		1.1	l5 m	1.36 m	Ondulado liso	50 MPa	Moderadame nte ancha	Limo	arcilloso	Húmedo sin flujo
3	55° , 302.3°		1.9	94 m	0.90 m	Ondulado liso	50 MPa	Moderadame nte ancha	Limo	arenoso	Húmedo sin flujo
4	67°, 179°		0.3	30 m	1.12 m	Ondulado rugoso	50 MPa	Ancha	Limo	arcilloso	Húmedo sin flujo
5	56.5° , 241.2°		0.5	54 m	0.90 m	Ondulado liso	50 MPa	Ancha	Limo	arenoso	Húmedo sin flujo
				Rock	Mass Rating (RM	R14), Celada et	al. 2014				
UCS (Mpa)	Discontinuidades por metro	Per coi	sistencia - ntinuidad	Rugosidad	Relleno	Alteración	Alterabilidad	Estado del terreno	Correo Tú	ción por neles	Puntuación Total
6	28		4	1	0	1	4	10		-10	44
	Tipo de sostedim	iento seg	gún Lowson		Cálculo	del módulo de	deformación del	macizo rocoso	(Em) s	egún dife	rentes autores (RMR)
Condición geo	técnica		Roca de ca	ilidad media	Bieniawski, 1978			-12	GPa		
Carga de roca	Pr		124.223476	kN/m2	Gokceoglu, 2003			2.02	GPa		
Espaciamiento	entre anclas		1.423076923	metros	Aydan et al. 1997			6.38	GPa		
Espesor del co	ncreto lanzado		50 a 20	mm	Read et al. 1999			8.52	GPa		
					Regresión lineal (Sánchez y Lozac	la, 2020)	6.18	GPa		
					Índice Q de Ba	rton et al 1974					
RQD	Jn		Jr		Jw		Ja	SRF	Punt	uación	
											Calidad del macizo
40	12		1		1		8	10	0	0.04	Extremadamente mala
	Tipo de sostedin	niento se	gún Barton		Cálcu	lo del módulo d	e deformación de	el macizo rocos	50 (Em)	según di	ferentes autores (Q)
Condición geo	técnica		Roca d extremada	e calidad mente mala	Barton, 1992			-34.51	GPa		
Avance			3	m	Barton, 2002			3.97	GPa		
ESR			1.3		Palmstrom y Sing	h (2001)		2.24	GPa		
Relación Avan	ce/ESR		2.307692308								
Espaciamiento	entre anclas		2.5	m							
Espesor del co	ncreto lanzado		9 a 12	cm							
Longitud del a	ncla		2	m							
				R	ock Mass Index. P	almstrom et al	2001				
jR	UCS de la roca (qc)	MPa	jL	jA	jC		Vb	Jp D	Punt	uación	
											Calidad del macizo
1	50		1	12	0.08	0	.37	0.03 0.6		1.5	Buena
	Tipo de sostedimie	ento segu	in Palmström		Cálculo	o del módulo de	deformación del	macizo rocoso	o (Em) s	egún dife	erentes autores (RMi)
Sr			12.49499079		Palmstrom (1995)		6.52	GPa		
Gc			0.75		Palmstrom y Sing	h (2001)		8.23	GPa		
Revestimiento propuesto Anclas con 1.5 m de espaciamiento y 50 a 60 mm de espesor de c							concreto lanzado				
				Geolo	ogical strenght ind	lex, Hoek y Brov	vn, 1997				1
Jc Vb	UCS de la roca (qc)	MPa	Coeficiente	e de daño D=	mi	mb	S	а	Punt	uación	4
0.08 0.37	50		().7	25	1.6026	0.0007	0.5057		30	
			-	-	1	1					
Hoek y Brown	, 1997		7.07	GPa	4						
Hoek, 2002			6.50	GPa	4						
Hoek 2004			8.10	GPa	4						
Sonmez et al.	(2004)		4.62	GPa							

	Fic	na c	de ca	racteriza	ción geológica - geotécnica del túnel Sa	an Antonio
 · _ ·	 	-				

Oaxaca	cadenamiento.	01241	Techa.	
Ubicación: Túnel San Antonio, Puerto Escondido,	Cadonamionto:	0+241	Focha	02 do Mayo do 2019

El frente está siendo excavado en dos fases, en esta ficha se analiza el lado izquierdo de esta fase, el macizo rocoso que le corresponde se encuentra muy fracturado.

Se identifican 3 familias principalmente, cuya orientación provocan la formación de bloques de volumen considerable (Fig. 3), además son identificables rasgos estructurales importantes como las discontinuidades indicadas (Fig. 1), cuya continuidad va de los 4 - 5 metros de longitud, cuyo relleno se caracteriza por material suelto, triturado y manchas de material fino color marrón. En la Figuras 2, se observan las zonas con mayor cantidad de humedad, en esa zona las discontinuidades se encuentran rellenas de material fino color marrón húmedo. Aún no se observa un flujo de agua, pero la humedad puede disminuir la resistencia al corte del material de relleno y desestabilizar el frente.

Descripción geológica:

Se encuentran dos unidades litológicas en el frente, la primer unidad se trata de una roca foliada de color verde de grano fino, que contiene minerales como cuarzo y biotita (mica negra) ; se trata de una roca metamórfica esquisto verde. La segunda unidad tiene una textura granítica (granodiorita) se encuentra en la parte inferior del frente, está constituida por minerales volcánicos como cuarzo y mica (biotita). La roca foliada tiene una textura jabonosa y se encuentra muy alterada, se encuentra mayormente en la parte inferior del frente, la roca granítica (granodiorita) se encuentra del frente. La granodiorita se encuentra mineralizada (presencia de pirita).

Estructura geológica

Con ayuda de la herramienta ShapeMetrix 3D, fue posible identificar 3 familias de discontinuidades. Es posible realizar una comparación entre el frente anterior (0+238) y el actual, esto permite observar las variaciones de dirección e inclinación de las familias de discontinuidades respecto frente excavado del túnel. Todas las familias presentes en este frente son diferentes a las presentes en el frente anterior, posiblemente hubo algún vuelvo en el bloque en el que se encuetra actualmente la excavación.

En este frente a familia 3 tiene un rumbo paralelo al eje del túnel, una condición muy desfavorable según la clasificación RMR.

La demás familias 1 y 2 son formadoras de bloques en combinación con las otras familias, pero no tienen una inclinación desfavorable respecto a la excavación.

Además de los datos de dirección y echado de planos de discontinuidad y fracturas, la herramienta permite conocer el espaciamiento, continuidad y con ciertas mediciones permite conocer el tamaño de los bloques representativos del frente utilizados en la evaluación de la clasificación RMi (Palmstrom, 2001). Los datos de la descripción de las discontinuidades de cada familia y para cada zona se muestran en las tablas 1 y 2.

		Des	cripción d	e las discor	itinuidades y	y clasificaci	ón geomeca	ánica de	l frent	e	
			Та	bla 1. Descripció	n de las discontin	uidades (ISRM,	1981). Para la zo	na 1.			
Familia	Orientación (echado, d del echado)	lirección	Espaciado		Continuidad	Rugosidad	Resistencia de las paredes	Abertura	R	elleno	Filtraciones
1	41.5° , 323.4°		0.7	73 m	1.70 m	Ondulado liso	50 MPa	Ancha	Limo	arcilloso	Húmedo sin flujo
2	65°, 161.8°		0.0	53 m	1.15 m	Ondulado rugoso	100 MPa	Ancha	Limo	arcilloso	Húmedo sin flujo
3	40° , 100°		1.:	15 m	1.5 m	Ondulado liso	50 MPa	Moderadan nte ancha	Limo	arenoso	Húmedo sin flujo
				Rock	Mass Rating (RM	R14), Celada et	al. 2014				
UCS (Mpa)	Discontinuidades por metro	Per coi	sistencia - ntinuidad	Rugosidad	Relleno	Alteración	Alterabilidad	Estado de terreno (humedao	l Corre Ti	cción por ineles	Puntuación Total
6	28		4	1	0	1	4	10		-5	49
	Tipo de sostedim	iiento seg	gún Lowson		Cálculo	del módulo de	deformación del	macizo roco	so (Em)	según dife	rentes autores (RMR)
Condición geo	técnica		Roca de ca	alidad media	Bieniawski, 1978			-2	GPa		
Carga de roca	Pr		113.1320943	kN/m2	Gokceoglu, 2003			2.95	GPa		
Espaciamiento	o entre anclas		1.615384615	metros	Aydan et al. 1997	'		9.33	GPa		
Espesor del co	oncreto lanzado		50 a 20	mm	Read et al. 1999			11.76	GPa		
					Regresión lineal (Sánchez y Lozac	la, 2020)	8.10	GPa		
					Índice Q de Ba	rton et al 1974					
RQD	Jn		Jr		Jw		Ja	SRF	Pur	tuación	
30	9		1		1		8	10		0.04	Calidad del macizo Extremadamente mala
	Tipo de sostedin	niento se	gún Barton	•	Cálcu	lo del módulo d	e deformación de	l macizo ro	oso (Em) según di	ferentes autores (Q)
			Roca d	e calidad							
Condición geo	técnica		extremada	mente mala	Barton, 1992			-34.51	GPa		
Avance			3	m	Barton, 2002			3.97	GPa		
ESR			1.3		Palmstrom y Sing	h (2001)		2.24	GPa		
Relación Avan	ce/ESR		2.307692308							-	
Espaciamiento	o entre anclas		2.5	m							
Espesor del co	oncreto lanzado		9 a 12	cm							
Longitud del a	ncla		2	m							
				R	ock Mass Index. P	almstrom et al	2001				
jR	UCS de la roca (qc)	MPa	jL	jA	jC		Vb	Jp D	Pur	tuación	
											Calidad del macizo
1	50		1	12	0.08	0.	.085	0.03 0.	6	1.5	Media
	Tipo de sostedimie	ento segú	in Palmström		Cálculo	o del módulo de	deformación del	macizo roco	oso (Em)	según dife	erentes autores (RMi)
Sr			20.30178686		Palmstrom (1995)		6.52	GPa		
Gc			0.75		Palmstrom y Sing	h (2001)		8.23	GPa		
Revestimiento propuesto Anclas con 1.5 m de espaciam					ento y 10 cm de es	spesor de concr	eto lanzado		-		
			ogical strenght ind	lex, Hoek y Brov	wn, 1997						
Jc Vb	UCS de la roca (qc)	MPa	Coeficiente	e de daño D=	mi	mb	S	а	Pur	tuación	
0.08 0.085 50 0.7				25	1.6026	0.0007	0.5057		26		
						1					
Hoek y Brown	, 1997		7.07	GPa							
Hoek, 2002			6.50	GPa							
Hoek 2004			8.10	GPa							
Sonmez et al.	(2004)		4.62	GPa							

Análisis de cuñas, Túnel San Antonio, cadenamiento 0+241

Para este análisis se utilizó la combinación de las 3 familias presentes en este frente, estas son las familias 1, 2, y 3. La familia 3 tiene un rumbo paralelo al eje del túnel, siendo muy desfavorable; en combinación con las familias 1 y 2 dan como resultado las cuñas con mayor tamaño y relevancia para la estabilidad del túnel.

Consideraciones

Con esta combinación de familias presentes en el Túnel San Antonio, y con ayuda del programa UNWEDGE se infiere la formación de 6 cuñas, sin embargo, ya sea por su tamaño o su posición, solo 4 tienen relevancia para la estabilidad de la excavación. Dos cuñas que se forman en la clave del túne y dos en los hastiales. Se forman grandes cuñas en los hastiales pero tienen un factor de seguridad alto y aunque es importante tener en cuenta todas las cuñas aquí mostradas, la cuña 8 es la que adquiere mayor relevancia, ya que, debido a su posición (en la clave) y su factor de seguridad igual a 0, podría ocasionar caidos de volumen importante, y ser un riesgo importante para la seguridad del personal que labora y de la integridad del túnel.

Ficha de caracterización geológica - geotécnica del túnel San Antonio

Ubicación: Túnel San Antonio, Puerto Escondido,	Cadanamianta	0.244	Fachar	06 do Mayo do 2010
Oaxaca	Cadenaimento:	0+244	Fecha.	00 de Mayo de 2019

El frente está siendo excavado en dos fases, en esta ficha se analiza el lado derecho de esta fase, el macizo rocoso que le corresponde se encuentra muy fracturado.

Se identifican 3 familias principalmente, cuya orientación provocan la formación de bloques de volumen considerable (Fig. 3), además son identificables rasgos estructurales importantes como las discontinuidades indicadas (Fig. 1), cuya continuidad va de los 4 - 5 metros de longitud, cuyo relleno se caracteriza por material suelto, triturado y manchas de material fino color marrón. En la Figuras 2, se observan las zonas con mayor cantidad de humedad, en esa zona las discontinuidades se encuentran rellenas de material fino color marrón húmedo. Aún no se observa un flujo de agua, pero la humedad puede disminuir la resistencia al corte del material de relleno y desestabilizar el frente.

Descripción geológica:

Se encuentran dos unidades litológicas en el frente, la primer unidad se trata de una roca foliada de color verde de grano fino, que contiene minerales como cuarzo y biotita (mica negra) ; se trata de una roca metamórfica esquisto verde. La segunda unidad tiene una textura granítica (granodiorita) se encuentra en la parte inferior del frente, está constituida por minerales volcánicos como cuarzo y mica (biotita). La roca foliada tiene una textura jabonosa y se encuentra muy alterada, se encuentra mayormente en la parte inferior del frente, la roca granítica (granodiorita) se encuentra del frente. La granodiorita se encuentra en la parte inferior del frente. La granodiorita se encuentra mineralizada (presencia de pirita).

Estructura geológica

Con ayuda de la herramienta ShapeMetrix 3D, fue posible identificar 5 familias de discontinuidades. Es posible realizar una comparación entre el frente anterior (0+241) y el actual, esto permite observar las variaciones de dirección e inclinación de las familias de discontinuidades respecto frente excavado del túnel. Solo la familia 2 del frente anterior permanece en este y toma el nombre de familia 1. Las demás familias cambiaron.

La familia 4 tiene un rumbo paralelo al eje del túnel, una condición muy desfavorable según la clasificación RMR.

La demás familias son formadoras de bloques en combinación con las otras familias, pero no tienen una inclinación desfavorable respecto a la excavación. Además de los datos de dirección y echado de planos de discontinuidad y fracturas, la herramienta permite conocer el espaciamiento, continuidad y con ciertas mediciones permite conocer el tamaño de los bloques representativos del frente utilizados en la evaluación de la clasificación RMi (Palmstrom, 2001). Los datos de la descripción de las discontinuidades de cada familia y para cada zona se muestran en las tablas 1 y 2.

		Des	cripción d	e las discor	tinuidades y	y clasificaci	ón geomeca	ánica del t	frente	•	
			Та	bla 1. Descripció	n de las discontin	uidades (ISRM.	1981). Para la zo	na 1.			
Familia	Orientación (echado, d del echado)	lirección	Espa	iciado	Continuidad	Rugosidad	Resistencia de las paredes	Abertura	Rel	leno	Filtraciones
1	38° , 168.8°		0.8	32 m	0.68 m	Ondulado liso	80 MPa	Abierta	Limo a	irenoso	Húmedo sin flujo
2	82.4° , 187.3°		0.4	13 m	1.69 m	Ondulado rugoso	100 MPa	Parcialmente abierta	Mat tritu	terial Irado	Húmedo sin flujo
3	57.3° , 251°		0.2	28 m	0.88 m	Ondulado liso	80 MPa	Abierta	Limo a	irenoso	Húmedo sin flujo
4	46.1° , 287.2°	-	0.5	53 m	1.13 m	Ondulado liso	80 MPa	Abierta	Limo a	irenoso	Húmedo sin flujo
Rock Mass Rating (RMR14), Celada et al. 2014											
UCS (Mpa)	Discontinuidades por metro	Per: cor	sistencia - ntinuidad	Rugosidad	Relleno	Alteración	Alterabilidad	Estado del terreno	Correco Tún	ción por Ieles	Puntuación Total
7	28		4	1	2	3	4	10	-	-5	54
	Tipo de sostedim	iiento seg	gún Lowson		Cálculo	o del módulo de	deformación del	macizo rocoso	o (Em) se	gún dife	rentes autores (RMR)
Condición geo	técnica		Roca de ca	lidad media	Bieniawski, 1978			8	GPa		
Carga de roca	Pr		102.0407125	kN/m2	Gokceoglu, 2003			4.30	GPa		
Espaciamiento	o entre anclas		1.807692308	metros	Aydan et al. 1997	7		13.17	GPa		
Espesor del co	oncreto lanzado		20	mm	Read et al. 1999			15.75	GPa		
					Regresión lineal ((Sánchez y Lozad	da, 2020)	10.62	GPa		
Índice Q de Barton et al 1974											
RQD	Jn		Jr		Jw		Ja	SRF	Punti	uación	
											Calidad del macizo
75	12		1.5		1		2	5	0.	.94	Muy mala
	Tipo de sostedin	niento se	gún Barton		Cálcu	lo del módulo d	e deformación de	l macizo roco	so (Em) s	según dif	ferentes autores (Q)
Condición geo	otécnica		Roca de cali	dad muy mala	Barton, 1992			-0.70	GPa		
Avance			3	m	Barton, 2002			11.20	GPa		
ESR			1.3		Palmstrom y Sing	gh (2001)		7.80	GPa		
Relación Avan	ce/ESR		2.307692308								
Espaciamiento	o entre anclas		2.5	m							
Espesor del co	oncreto lanzado		4 a 10	cm							
Longitud del a	ncla		1.8	m							
-				R	ock Mass Index. P	almstrom et al	2001				
jR	UCS de la roca (gc)	MPa	jL	jA	jC		Vb	Jp D	Punti	uación	
											Calidad del macizo
1.5	80		1	2	0.75	0	.085	0.06 0.39	4	.8	Buena
	Tipo de sostedimie	ento segú	in Palmström		Cálculo	o del módulo de	deformación del	macizo rocos	o (Em) se	egún dife	erentes autores (RMi)
Sr			20.30178686		Palmstrom (1995	5)		10.10	GPa	5	
Gc			4.8		Palmstrom v Sing	, zh (2001)		13.11	GPa		
Revestimiento propuesto Anclas con 1.5 m de espaciamiento v						n de espesor de	concreto lanzado		· · ··		
	• •			Geolo	ogical strenght inc	lex, Hoek y Brow	wn, 1997				
Jc Vh	UCS de la roca (gc)	MPa	Coeficiente	e de daño D=	mi	i mb	s	а	Punti	uación	
0.75 0.085	80		().7	25	1.6026	0.0007	0.5057		17	
						1					
Hoek y Brown	, 1997		8.94	GPa							
Hoek, 2002			6.50	GPa	1						
Hoek 2004			8.10	GPa	1						
Sonmez et al.	(2004)		7.39	GPa	1						

Para este análisis se utilizó la combinación de 3 de las 4 familias presentes en el frente, estas son las familias 1, 3 y 4. Se eligieron estas 3 familias, debido a que la familia 4 tiene un rumbo casi paralelo al eje del túnel, siendo muy desfavorable para la excavación; en combinación con las familias 1 y 3 dan como resultado las cuñas con mayor tamaño y relevancia para la estabilidad del túnel.

Consideraciones

Con esta combinación de familias presentes en el Túnel San Antonio, y con ayuda del programa UNWEDGE se infiere la formación de 6 cuñas, sin embargo, ya sea por su tamaño o su posición, solo 4 tienen relevancia para la estabilidad de la excavación. Dos cuñas que se forman en la clave del túnel y dos en los hastiales. Aunque es importante tener en cuenta todas las cuñas aquí mostradas, la cuña 6 es la que adquiere mayor relevancia, ya que, debido a su posición (en la clave) y su tamaño puede causar despendimientos en el túnel, su factor de seguridad esde 2.6 y hay que recordar que se está excavando en dos fases, lo que aminora el riesgo de un desprendimiento importante, pero se debe de considerar por la integridad del túnel.

Ficha de caracterización geológica - geotécnica del túnel San Antonio									
Ubicación: Túnel San Antonio, Puerto Escondido,	Cadenamiento:	0+247	Focha	8 do mayo do 2010					
Oaxaca Cadenamiento: 0+247 Fecha: 8 de mayo de 2									

El frente está siendo excavado en dos fases, en esta ficha se analiza el lado derecho de esta fase, el macizo rocoso que le corresponde tiene distintos grados de fracturamiento, en la mayor parte y superior del frente se aprecia una roca masiva y poco fracturada, mientras que en la parte inferior del frente se encuentra muy fracturado.

Se identifican 3 familias principalmente, cuya orientación provocan la formación de bloques y afecta en mayor grado a la roca de la parte inferior (Fig. 1), cuya continuidad va de los 4 - 5 metros que en la parte inferior tiene un relleno de material fino limo arenoso. En las Figuras 2, se observa la mayor cantidad de humedad y corresponde a la zona 2. Aún no se observa un flujo de agua, pero la humedad puede disminuir la resistencia al corte del material de relleno y desestabilizar el frente.

Se observan dos zonas en el frente, donde el macizo rocosos tiene distintos grados de metorización. La zona 1 corresponde al macizo rocoso masivo a poco fracturado, mientras que la zona 2 se encuentra muy fracturada y sus discontinuidades tienen características más desfavorables que las de la zona 1. (Fig. 3)

Descripción geológica:

Se encuentran dos unidades litológicas en el frente, la primer unidad se trata de una roca foliada de color verde de grano fino, que contiene minerales como cuarzo y biotita (mica negra) ; se trata de una roca metamórfica esquisto verde. La segunda unidad tiene una textura granítica (granodiorita) se encuentra en la parte superior del frente, está constituida por minerales volcánicos como cuarzo, plagioclasa y mica (biotita). La roca foliada tiene una textura jabonosa y se encuentra muy alterada, se encuentra mayormente en la parte inferior del frente, la roca granítica (granodiorita) se encuentra en la parte inferior del frente. La granodiorita se encuentra mineralizada (presencia de pirita).

Estructura geológica

Con ayuda de la herramienta ShapeMetrix 3D, fue posible identificar 6 familias de discontinuidades. Es posible realizar una comparación entre el frente anterior (0+244) y el actual, esto permite observar las variaciones de dirección e inclinación de las familias de discontinuidades respecto frente excavado del túnel. Las familias 2 y 3 se mantienen del corte anterior y mantienen también su numeración, las demás familias recién aparecen en este frente. La familia 4 tiene un rumbo paralelo al eje del túnel, una condición muy desfavorable según la clasificación RMR.

La demás familias son formadoras de bloques en combinación con las otras familias, pero no tienen una inclinación desfavorable respecto a la excavación. Además de los datos de dirección y echado de planos de discontinuidad y fracturas, la herramienta permite conocer el espaciamiento, continuidad y con ciertas mediciones permite conocer el tamaño de los bloques representativos del frente utilizados en la evaluación de la clasificación RMi (Palmstrom, 2001). Los datos de la descripción de las discontinuidades de cada familia y para cada zona se muestran en las tablas 1 y 2.

	Descripción de las discontinuidades y clasificación geomecánica del frente										
			Ta	bla 1. Descripció	n de las discontin	uidades (ISRM,	1981). Para la zo	na 1.			
Familia	Orientación (echado, d del echado)	lirección	Espa	aciado	Continuidad	Rugosidad	Resistencia de las paredes	Abertura	Relleno	Filtraciones	
1	45° , 49.7°		0.2	26 m	1.03 m	Ondulado rugoso	80 MPa	Cerrada	Limo arenoso	Húmedo sin flujo	
2	77° , 202.4°		0.4	14 m	1.53 m	Ondulado rugoso	80 MPa	Cerrada	Limo arenoso	Húmedo sin flujo	
3	55.4° , 256.6°		0.6	59 m	3.16 m	Ondulado liso- rugoso	30 - 80 MPa	Ancha-cerrada	Material arcilloso, duro	Húmedo sin flujo	
4	78° , 84.7°		0.6	66 m	1.05 m	Ondulado rugoso	80 MPa	Cerrada	Limo arenoso	Húmedo sin flujo	
5	58.7° , 325.4°		0.1	13 m	1.13 m	Ondulado rugoso	80 MPa	Cerrada	Limo arenoso	Húmedo sin flujo	
6	7° , 230°		1.2	25 m	1.82 m	Ondulado liso	80 MPa	Moderadame nte ancha	Material triturado	Húmedo sin flujo	
				Rock	Mass Rating (RM	R14), Celada et	al. 2014				
UCS (Mpa)	Discontinuidades por metro	Per cor	sistencia - ntinuidad	Rugosidad	Relleno	Alteración	Alterabilidad	Estado del terreno	Corrección por Túneles	Puntuación Total	
7	28		4	1	2	3	4	10	-5	54	
	Tipo de sostedim	iento seg	gún Lowson		Cálculo	del módulo de	deformación del	macizo rocoso	(Em) según dife	rentes autores (RMR)	
Condición geo	otécnica		Roca de ca	ilidad media	Bieniawski, 1978			8	GPa		
Carga de roca	Pr		102.0407125	kN/m2	Gokceoglu, 2003			4.30	GPa		
Espaciamiento	o entre anclas		1.807692308	metros	Aydan et al. 1997	,		13.17	GPa		
Espesor del co	oncreto lanzado		20	mm	Read et al. 1999			15.75	GPa		
					Regresión lineal (Sánchez y Lozac	la, 2020)	10.62	GPa		
					Índice Q de Ba	rton et al 1974	, ,		I		
RQD	Jn		Jr		Jw		Ja	SRF	Puntuación		
										Calidad del macizo	
85	12		1.5		1		1	5	2.13	Mala	
	Tipo de sostedin	niento se	gún Barton		Cálcu	lo del módulo d	e deformación de	el macizo rocos	o (Em) según di	ferentes autores (Q)	
Condición geo	otécnica		Roca de c	alidad mala	Barton, 1992			8.18	GPa		
Avance			3	m	Barton, 2002			14.72	GPa		
ESR			1.3		Palmstrom v Sing	h (2001)		10.82	GPa		
Relación Avan	ice/ESR		2.307692308								
Espaciamiento	o entre anclas		1.5	m							
Espesor del co	oncreto lanzado		S/N								
Longitud del a	incla		1.8	m							
				R	ock Mass Index. P	almstrom et al 3	2001				
jR	UCS de la roca (gc)	MPa	jL	iA	iC		Vb	Jp D	Puntuación		
			,	,						Calidad del macizo	
1.5	80		1	2	0.75	0.	054	0.055 0.39	4.4	Buena	
	Tipo de sostedimie	ento segú	in Palmström		Cálculo	o del módulo de	deformación del	macizo rocoso	(Em) según dife	erentes autores (RMi)	
Sr			23.58047606		Palmstrom (1995)		9.78	GPa		
GC			4 4		Palmstrom v Sing	, h (2001)		12.66	GPa		
Revestimiento	4.4 Paimstrom y Singn (2001)						concreto lanzado	12.00			
Geological stranght index Hoak v Roun 1997											
Ic Vb	UCS de la roca (oc)	Coeficiente	e de daño D=	mi	mh	c	a	Puntuación			
0.75 0.054	DE VU UES de la roca (qC) MPa Coeficiente de dano D=					1 6026	0.0007	0 5057	16		
5.75 0.034						1	0.0007	0.5057		l	
Hoek v Brown	1997		8 94	GPa	1	-					
Hoek 2002	, 0 .		6 50	GPa	1						
Hoek 2004			8 10	GPa	1						
Sonmez et al	(2004)		7 20	GPa	1						
sommez et al.	(2004)		1.39	ura							

