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Chapter 1

Abstract

The actuator-cylinder model was implemented in OpenFOAM by virtue of source terms in the
Navier–Stokes equations. Since the stand-alone actuator cylinder is not able to properly model
the wake of a vertical-axis wind turbine, the steady incompressible flow solver simpleFoam
provided by OpenFOAM was used to resolve the entire flow and wakes of the turbines. The
source terms are only applied inside a certain region of the computational domain, namely
a finite-thickness cylinder which represents the flight path of the blades. One of the major
advantages of this approach is its implicitness – that is, the velocities inside the hollow cylinder
region feed the stand-alone actuator-cylinder model (AC); this in turn computes the volumetric
forces and passes them to the OpenFOAM solver in order to be applied inside the hollow cylinder
region. The process is repeated in each iteration of the solver until convergence is achieved. The
model was compared against experimental works; wake deficits and power coefficients are used in
order to assess the validity of the model. Overall, there is a good agreement of the pattern of the
power coefficients according to the positions of the turbines in the array. The actual accuracy of
the power coefficient depends strongly on the solidity of the turbine (actuator cylinder related)
and both the inlet boundary turbulence intensity and turbulence length scale (RANS simulation
related).

Last, the virtual AC was used to study the performance of two different arrays of wind tur-
bines. A staggered array proved to be more efficient than a fish-school array in most directions;
however, the fish-school array outperformed the conventional staggered array when the pairs
of turbines were facing the wind. Increases in global power coefficient up to 16% were found
when the wind speed was 8 m s−1 and up to 10% when the wind speed was 10 m s−1 . Despite
the fish-school array being slightly less efficient, this array yielded almost twice as much power
density as the staggered array in almost all directions.

1



Chapter 2

Resumen

Se implementó un cilindro virtual en OpenFOAM mediante los términos fuente en las ecuaciones
de Navier-Stokes. Debido a que el cilindro virtual no es capaz de modelar la estela de la turbina
por śı solo, el solucionador para flujo turbulento e incompresible simpleFoam fue usado para
resolver el campo de velocidades del dominio. Los términos fuente solamente se aplican en una
región que forma un cilindro hueco, donde pasan las aspas de la turbina. Las fuerzas volumétricas
son calculadas por el cilindro virtual y posteriormente aplicadas en la región correspondiente,
esto desacelera el fluido y se crea una estela similar a la de una turbina. El modelo se verificó
y validó con trabajos experimentales y teóricos. Hubo buena concordancia en cuanto al patrón
de los coeficientes de potencia de cada turbina respecto a su posición. La precisión del modelo
depende de la solidez de la turbina y de las condiciones de frontera impuestas en el dominio
computacional.

Por último, se utilizó el modelo para comparar el desempeño de dos tipos de arreglos de
granjas de turbinas. La granja escalonada resultó ser más eficiente que la granja de pares en
la mayoŕıa de las direcciones de incidencia del viento. Sin embargo; la granja de pares superó
a la granja convencional escalonada en cuanto a densidad de potencia, especialmente cuando el
par de turbinas miraba hacia al viento. El promedio de la densidad de potencia de todas las
direcciones del viento para la granja de pares fue casi del doble, dependiendo de la velocidad del
viento. Se cree que con una posición estratégica de las turbinas se puede compactar la granja
en un terreno dos veces menor y aún aśı conseguir casi el doble de enerǵıa durante todo el año.
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Chapter 3

Introduction

Vertical-axis wind turbines have been experiencing a surge during the last decades, mainly due
to the availability of new materials as well as machinery that is especially designed for vertical-
axis wind turbines (VAWT). Initially, these turbines were meant to be used in large-scale wind
farms but unfortunately the turbines could not withstand the wind loads as well as fatigue from
vibration problems [2]. Once the eighties were over these projects were largely abandoned and
interest in VAWTs was lost. Recently, researchers, builders and even amateurs have tried success
using VAWTs in residential applications but the efforts have been thwarted by the superiority
of horizontal-axis wind turbines (HAWT) which are able to reach much higher revolutions per
minute and higher efficiencies. Many small manufacturers have gone bankrupt or have been
unable to catch up with HAWT markets.

Nowadays offshore wind power has been taking over and companies such as SeaTwirl are
beginning to build vertical-axis wind turbines designed for offshore applications [3]. Claims
from academia even go as far as to say that placing these turbines close to each other –forming
pairs– can cause an increase up to 15% in power [4]. This can reducing land area costs while
increasing the power density of the farm.

Installing VAWTs next to roads is also a recent concept that is meant to charge batteries
that will light the roads. This idea employs Savonius turbines, to be precise. Savonius turbines
usually employ blades that resemble a bucket which has been cut in half, these turbines are able
to self-start at lower revolutions per minute. The energy will come from the wakes of cars and
trucks.

Some of the models employed to study VAWTs are the multiple stream-tube model, the
double multiple stream-tube model [5], the actuator cylinder [6], vortex lattice models and
vortex panel model, etc. The double multiple stream-tube model is based on the momentum
theory and the blade element method. The turbine is seen as a series of multiple stream-tubes
with actuators on the upstream and downstream parts of the rotor, it is able to compute the
forces acting on the blade as well as the whole power coefficient of the turbine. The actuator
cylinder on the other hand, is a solution of the Euler equations, the source terms in the Euler
equations are treated as volumetric forces exerted by the turbine, this elegant solution can
resolve the entire velocity field if the force distribution along the flight path is known. In order
to close the system of equations, the blade element theory is needed and an iterative solution is
achieved.

While these last two methods described above are useful for the analysis of a single turbine,
they are hard to implement on multiple turbines. The author of this work generalized the
actuator cylinder model for multiple turbines but the fading of the wakes was unrealistic due
to the inviscid nature of the solution –the wakes do not vanish. Therefore a search for a model
that could analyze wind farms and predict their wakes was undertaken.
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4 CHAPTER 3. INTRODUCTION

The modeling of vertical-axis wind turbine farms has also lacked researched in the last
years compared to horizontal-axis wind turbines. The complexity of the models ranges from
simple momentum models to full-rotor Reynolds-averaged Navier-Stokes equations or large-
eddy simulations. While simple models are computationally inexpensive, they lack accuracy
and rely on various semi-empirical corrections which may not be valid for all cases; high-fidelity
simulations are simply out of the scope of many researchers and scientists due to the tremendous
computational requirements.

The models that have been used for wind farm modeling will be listed according to complex-
ity, their benefits and caveats will be listed below.

The first category belongs to models using the momentum theory or potential flow theory.
One of the simplest wake model is the Jensen model [7], which is able to describe the wake
shape provided the thrust coefficient and induction factors are given. The rate of growth of the
wake depends on empirical constants. The model can be extended to multiple turbines using
a superposition technique. Although it was originally developed for HAWTs, some researchers
have developed similar models for VAWTs [8] achieving good results for the wake shape. Poten-
tial flow models try to emulate the wake of a turbine by superposing many different potential
flows such as a uniform stream, a dipole and a vortex [9]. The wake deficit can be modeled as
a probabilistic density function and it is simply subtracted from the flow field. This model has
also been extended to multiple-turbine environments [10] but it is still very problem-dependent
and needs much more calibration since it is unable to model viscous effects.

The next category belongs to actuator models. These models rely on replacing the turbine’s
blades by volumetric forces. [11] has successfully implemented a RANS actuator disc model
for a HAWT in OpenFOAM. The model is explicit and it requires the values of thrust and
torque; although it can be extended to multiple turbines, it relies on the assumption of all
turbines having the same thrust and torque, which may not be entirely true for turbines in the
back rows. [12] has also developed actuator line models for both HAWTs and VAWTs with the
option of using either RANS or LES. [1, 13, 14] have also performed LES simulations of actuator
line models on a single VAWT. An interesting multi-turbine simulation using an actuator line
model was done by [15], the study works on the effect of clustering the turbines in order to
increase the power density.

The last category of models employs full-rotor RANS simulations. Works on multiple VAWTs
can be found in [16, 17, 18]. Recently, a very interesting study by [4] was done on pairs and
triplets of VAWTs, the study claims that a 15% increase in power can be achieved if turbines
are placed closer. Although these claims are done on the basis of 2D simulations, it is not sure
whether this effect may scale up to a wind farm.

Therefore, the purpose of this thesis is to come up with a new model that is computationally
cheap and able to resolve the wakes of turbine. The actuator cylinder model was chosen as a
surrogate model which will compute the volumetric forces of the turbine and pass them to an
OpenFOAM RANS solver as source terms in the momentum equations; the forces will block
the flow, thereby creating a wake. The OpenFOAM simpleFoam solver (incompressible and
turbulent flows) will then resolve the entire pressure and velocity field.

The thesis is organized in the following way: a chapter devoted to the original actuator
cylinder model as well as some verifications; a chapter dedicated to the RANS solver using the
actuator cylinder as the surrogate model; and a last chapter dedicated to a case study of different
types of wind farm arrays.



Chapter 4

The Actuator Cylinder Model

This chapter will explain the actuator cylinder model. Many other relatively simple models
are available, they are mostly based on the momentum theory and the blade element theory.
The current model is chosen because it can be generalized to many turbines (although the wake
effects cannot be captured realistically). Moreover it will be used in the subsequent chapter as
it will be incorporated into a CFD code in order to create a virtual turbine, that is, volumetric
forces will replace the effects of the actual blades.

The vertical-axis wind turbine can be modeled as a cylindrical surface upon which radial
volume forces act, this will, in turn, create a pressure jump ∆p across the entire surface. The
turbine’s blades are responsible for these radial forces. Madsen [6] devised this model in the
early eighties, he states that the normal loads are a result of the volume forces integrated along
the thickness of the actuator cylinder as shown in the next equation (∆p has been replaced by
Qn in order to denote normal forces per unit length averaged over one revolution).

Qn(θ) = lim
ε→0

∫ R+ε

R−ε
fn(θ) · dr (4.1)

Figure 4.1 depicts an upper view of an infinite long actuator cylinder (in the z-direction). Qn
represents the normal load at angular position θ, fn(θ) is the volumetric force and the incoming
wind velocity is represented by V∞. Notice that θ is zero at the conventional θ = 90◦. The gov-
erning equations are the equation of continuity and the steady-state Euler equations. Velocities
in the x and y directions are to be non-dimensionalized by the incoming wind velocity V∞; lengths
are non-dimensionalized by the wind turbine radius R and pressure is non-dimensionalized by
ρV 2
∞.

5



6 CHAPTER 4. THE ACTUATOR CYLINDER MODEL

y

x

2ε2ε

R

Qn

V∞

Figure 4.1: The radial forces acting upon the actuator cylinder’s surface.

The non-dimensional velocities in the Euler’s equations are expressed as functions of the
perturbation velocities:

vx = 1 + wx (4.2)

vy = wy (4.3)

The reason being, is that the velocities on the very surface of the cylinder will not be the
same as those in the free stream due to lost of momentum. The non-dimensional volume force
components in x and y are represented by fx and fy respectively. The non-dimensional Euler’s
equation then become:

∂wx
∂x

+ wx
∂wx
∂x

+ wy
∂wx
∂y

= −∂p
∂x

+ fx (4.4)

∂wy
∂x

+ wx
∂wy
∂x

+ wy
∂wy
∂y

= −∂p
∂y

+ fy (4.5)

The equation of continuity:

∂wx
∂x

+
∂wy
∂y

= 0 (4.6)

The non-linear terms in equations 4.4 and 4.5 are grouped into gx and gy, which can be seen
as second-order volume forces.

∂wx
∂x

= −∂p
∂x

+ fx + gx (4.7)

∂wy
∂x

= −∂p
∂y

+ fy + gy (4.8)

Differentiating 4.7 with respect to x and 4.8 with respect to y yields to:

∂2wx
∂x2

= −∂
2p

∂x2
+
∂fx
∂x

+
∂gx
∂x

(4.9)

∂2wy
∂x∂y

= −∂
2p

∂y2
+
∂fy
∂y

+
∂gy
∂y

(4.10)
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The continuity equation is also differentiated with respect to x:

∂2wx
∂x2

+
∂2wy
∂x∂y

= 0 (4.11)

Finally, summing both equation 4.9 and equation 4.10 yields to a Poisson type equation for
the pressure.

∂2p

∂x2
+
∂2p

∂y2
=

(
∂fx
∂x

+
∂fy
∂y

)
+

(
∂gx
∂x

+
∂gy
∂y

)
(4.12)

Given that the pressure equals zero far away from the actuator cylinder, the solution can be
broken down into a linear part and a nonlinear part.

p(f) =
1

2π

∫ ∫
fx(x− ξ) + fy(y − η)

(x− ξ)2 + (y − η)2
dξdη (4.13)

p(g) =
1

2π

∫ ∫
gx(x− ξ) + gy(y − η)

(x− ξ)2 + (y − η)2
dξdη (4.14)

These integrals must be performed throughout the surface of the actuator cylinder since
this is precisely the blade’s flight path. Equations 4.7 and 4.8 are integrated with respect to x
yielding:

wx = −p(f) +

∫ x

−∞
fx · dx′ − p(g) +

∫ x

−∞
gx · dx′ (4.15)

wy = −
∫ x

−∞

∂

∂y
p(f)dx′ +

∫ x

−∞
fy · dx′ −

∫ x

−∞

∂

∂y
p(g)dx′ +

∫ x

−∞
gy · dx′ (4.16)

The terms containing g in the last two equations belong to the non-linear solution, these
terms will be neglected for the time being. In subsequent sections, a modification of the linear
solution will be shown to make up for the non-linear part of the solution. Meanwhile, equation
4.13 needs to be expressed in terms of polar coordinates, since ξ and η are the dummy variables
in the x and y directions respectively. Note that the non-dimensional radius of the turbine
equals one, while the azimuth angle θ takes the value of zero at y = 1. Therefore, equation 4.13
becomes.

p(f) =
1

2π

∫ 2π

0

∆p(θ)
−(x+ sin(θ)) sin(θ) + (y − cos(θ)) cos(θ)

(x+ sin(θ))2 + (y − cos(θ))2
dθ (4.17)

After working out the integrals in equations 4.15 and 4.16, the perturbation velocities are
shown to be:

wx =− 1

2π

∫ 2π

0

∆p(θ)
−(x+ sin(θ)) sin(θ) + (y − cos(θ)) cos(θ)

(x+ sin(θ))2 + (y − cos(θ))2
dθ

−∆p(arccos(y))∗ + ∆p(− arccos(y))∗∗
(4.18)

wy = − 1

2π

∫ 2π

0

∆p(θ)
−(x+ sin(θ)) cos(θ)− (y − cos(θ)) sin(θ)

(x+ sin(θ))2 + (y − cos(θ))2
dθ (4.19)

When the evaluation takes place inside the cylinder, the ∗ term must be included; on the
other hand, if the evaluation point is located in the wake (the leeward part of the cylinder), both
the ∗ and the ∗∗ terms must be included in the equation. The ∆p term can be replaced by Qn,
thus this will be the nomenclature for the normal loads. The previous derivation is contained
in Appendix A.
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4.1 Numerical Solution

The typical approach is to divide the cylinder’s surface into a finite number of evaluation points,
that is, the perturbation velocities along the flight path of the blades will be determined. The
step between two points is then:

∆θ = 2π/N (4.20)

Where N is the total number of evaluation points. It is assumed that the normal loads are
piecewise constant, this means that the property to be evaluated is constant throughout each
sector.
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Equations 4.18 and 4.19 can be re-written as:

wx =− 1

2π

N−1∑
i=0

Qn,i

∫ θi+
1
2 ∆θ

θi− 1
2 ∆θ

−(x+ sin(φ)) sin(φ) + (y − cos(φ)) cos(φ)

(x+ sin(φ))2 + (y − cos(φ))2
dφ

−Qn(arccos(y))∗ +Qn(− arccos(y))∗∗
(4.21)

wy = − 1

2π

N−1∑
i=0

Qn,i

∫ θi+
1
2 ∆θ

θi− 1
2 ∆θ

−(x+ sin(φ)) cos(φ)− (y − cos(φ)) sin(φ)

(x+ sin(φ))2 + (y − cos(φ))2
dφ (4.22)

It is important to note that x and y refer to the coordinates of the point on which the
perturbation velocities are to be determined, while the subscript i refers to the i-eth of the total
N points the flight path was divided into, namely, evaluation points; θ refers to the azimuthal
location of the evaluation points, while φ is just a dummy variable used to integrate along each
sector. It’s also important to realize that since the normal loadings are assumed to be piecewise
constant, they can be taken out of each of the N integrals.
According to Madsen[6], problems due to certain singularities –division by zero– could arise in
equations 4.21 and 4.22. He recommends to offset the control points (on which the perturbation
velocities are wished to be known, namely j) ever so slightly outside the cylinder. Thus, the
offset factor for both x and y lies between 0.1% and 1%. The offsetted control points are given
by the following expressions:

xj = −f sin θ (4.23)

yj = f cos θ (4.24)

The j and i nomenclature is according to Li[19]. However, offsetting the control points will
make all of them lie just outside the cylinder, this means that the ∗ and ∗∗ terms will only be
taken into account for the control points in the leeward part of the rotor.
Notice that the term arccos(y) always evaluates to a positive angle, therefore, for the leeward
part of the rotor the ∗ and ∗∗ terms can be written as:

−Qn(arccos(y))∗ = −Qn,(N−j−1) (4.25)

Qn(− arccos(y))∗∗ = Qn,j (4.26)

Therefore, for a control point located at θ = 355◦, −Qn(arccos(y)) will become −Qn(5◦)
and Qn(− arccos(y)) will become Qn(355◦). Li [19] suggests to write equations 4.21 and 4.22 in
matrix form:

wx,j = − 1

2π

N−1∑
i=0

Qn,iCx,j,i − (Qn,N−j−1)∗ + (Qn,j)
∗∗ (4.27)

wy,j = − 1

2π

N−1∑
i=0

Qn,iCy,j,i (4.28)

The Cx,j,i and Cy,j,i are the so-called influence coefficients and they represent the integral
terms in equations 4.21 and 4.22 . Notice that these influence coefficients depend only on
geometrical properties, time is saved by precomputing the influence coefficients before even
beginning the numerical solution.
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4.1.1 The normal and tangential loads

The above equations for the perturbation velocities depend on geometrical properties –which can
be known beforehand– and the normal loads Qn. In order to compute the loads, it is necessary
to draw upon the blade-element theory. Firstly, the aerodynamic properties must be known in
order to compute the forces acting on the blade.

Figure 4.2 depicts the velocities acting on the aerodynamic center of the blade at position
θ. The free stream velocity V∞ (coming from the left) is broken down into its x and y compo-
nents so that they can be projected along the blade’s tangential and normal axes. Note that
α is the angle of attack with respect to the blade’s chord, ωR is the tangential velocity of the
blade due to rotation, Vt and Vn are the tangential and normal velocities, Vrel is the relative
velocity (units in m

s ) and δ is the pitch angle which is formed between the blade’s chord and
the tangent of the flight path of the turbine.

Figure 4.2: Velocity triangle of a blade element.

With the aforementioned explanation it is now possible to state that the projections of the
free stream velocity will depend upon the perturbation velocities:

Vx = V∞(1 + wx) (4.29)

Vy = V∞wy (4.30)

Here, only equation 4.29 contains the unit added inside the parenthesis because the free
stream velocity is assumed to be in the x direction only.
The tangential and normal velocities –assuming counterclockwise rotation– are:

Vt = Vx cos θ + Vy sin θ + ωR (4.31)

Vn = Vx sin θ − Vy cos θ (4.32)

The relative velocity, that is, the velocity seen by the blade is given by:

Vrel =
√
V 2
t + V 2

n (4.33)

The angle of attack can be derived from simple trigonometry:

α = arctan(Vn/Vt)− δ (4.34)
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The widely accepted Reynolds number for a blade element and its correspondent lift and
drag forces are:

Reb =
Vrel · c
ν

(4.35)

The characteristic length is the turbine’s blade chord denoted by c. The blade lift and drag
forces at a specific location are:

L =
1

2
ρcV 2

relCL (4.36)

D =
1

2
ρcV 2

relCD (4.37)

The force coefficients can be extracted from data of wing profiles by performing a look-up
method based on the angle of attack and the local Reynolds number. The normal and tangential
forces with respect to the blade’s chord are projected in the following manner:

Fn = L cosα+D sinα (4.38)

Ft = L sinα−D cosα (4.39)

The forces of main interest are the normal and tangential ones with respect to the cylinder’s
surface, this tangential force is responsible for generating the wind turbine’s torque. Figure 4.3
shows the projection of these forces.

Figure 4.3: Aerodynamic forces acting on the blade Note that Fn is normal to the blade’s chord
while Qn is normal to the blade’s flight path.
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Taking into account that the turbine has NB blades, the instantaneous normal and tangential
forces of each blade with respect to the flight’s path can be modeled as:

Qn(θk) = (Fn(θk) cos δ − Ft(θk) sin δ)
1

1/2ρV 2
relc

(4.40)

Qt(θk) = − (Fn(θk) sin δ + Ft(θk) cos δ)
1

1/2ρV 2
relc

(4.41)

Where k is the index for the k-eth blade and each blade will be set appart from the others
by 360◦/N degrees, δ is the pitch angle of the blade.

Since this is a steady-state problem, all variables must be multiplied by the NB blades, time
averaged in one revolution by 2πR and non-dimensionalized by ρV 2

∞; therefore the loads become:

Qn(θ) =
NB

2πRρV 2∞
(Fn(θ) cos δ − Ft(θ) sin δ) (4.42)

Qt(θ) = − NB
2πRρV 2∞

(Fn(θ) sin δ + Ft(θ) cos δ) (4.43)

4.1.2 Normalization of the loads

The previous set of equations depend on variables with their correspondent dimensions. It is a
good practice, though, to non-dimensionalize (normalize) all of the equations in such a way that
they only depend on other non-dimensional variables; thus, the velocities are normalized by the
quantity V∞:

vx = 1 + wx (4.44)

vy = wy (4.45)

vn = vx sin θ − vy cos θ (4.46)

vt = vx cos θ + vy sin θ + λ (4.47)

The rotational speed of the rotor normalized by V∞ is ωR/V∞, a common characteristic
parameter of wind turbines called the tip-speed ratio which is denoted by λ or TSR. The
normalization of the relative speed and the angle of attack is as follows:

vrel =
√
v2
t + v2

n (4.48)

α = arctan(vn/vt)− δ (4.49)

The aerodynamic forces become:

Cn = CL cosα+ CD sinα (4.50)

Ct = CL sinα− CD cosα (4.51)

Equations 4.42 and 4.43 become:

Qn(θ) =
σ

2π
v2
rel(Cn(θ) cos δ − Ct(θ) sin δ) (4.52)

Qt(θ) = − σ

2π
v2
rel(Cn(θ) sin δ + Ct(θ) cos δ) (4.53)

The turbine’s solidty is given by σ = NBc/2R, which can be seen as the blades’ area per
unit length divided by the turbine’s swept area per unit length.
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4.2 Actuator Cylinder Tangential Loads Modification

At the beginning of the chapter, it was stated that the non-dimensional volume forces fx and
fy were a projection of the normal forces fn acting on the surface of the cylinder, the tangential
forces ft were neglected. Cheng [20] devised a modification of the actuator cylinder model by
including the terms ft. See Appendix A for the derivation of the corresponding equations. The
modified equations for the perturbation velocities are similar in nature:

wx,j =− 1

2π

N−1∑
i=0

Qn,iCx,j,i −
1

2π

N−1∑
i=0

Qt,iCy,j,i − (Qn,N−j−1)∗ + (Qn,j)
∗∗

− yi√
1− y2

i

(Qt,N−j−1)∗ − yi√
1− y2

i

(Qt,j)
∗∗

(4.54)

wy,j = − 1

2π

N−1∑
i=0

Qn,iCy,j,i +
1

2π

N−1∑
i=0

Qt,iCx,j,i (4.55)

4.3 Verification of the model

To ensure the proper functioning of the model, a code in Python was elaborated. The results
of Ang Li [19] were used to compare the results of the present work and those of his.
An NACA0015 inviscid airfoil polar was used, although data from viscous NACA profiles could
be used as well. The following are the lift and drag coefficient respectively:

CL = 2π · 1.11 sinα (4.56)

CD = 0 (4.57)

Figures 4.4 and 4.5 shows the variation of the thrust and power coefficients with respect to
the wind turbine’s solidity at various tip-speed ratios. See Appendices B and C for the derivation
of the thrust coefficient and the power coefficient respectively.
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Figure 4.4: Comparison of the thrust coefficient curves. White symbols are from this work, black
dots are from Li [19].

Figure 4.5: Comparison of the power coefficient curves. White symbols are from this work, black
dots are from Li [19].

Evidently, there is a good agreement between both results. The reason why the power curves
get too close to the Betz limit is that the chosen airfoil polar is inviscid and the correspondent
function for the lift coefficient actually delays stall, thus, the lift coefficient doesn’t drop prema-
turely as in the case of a viscous airfoil polar. Next, the comparison of local non-dimensional
variables (perturbation velocities, loads, angle of attack and relative velocity) and their variation
along the cylinder’s surface is presented.
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Figure 4.6: Validation for the case of a wind turbine with λ = 4, σ = 0.07, NB = 2, mounted
at the aerodynamic center 1/4c. The black dots belong to the present work.

It can be seen from Figure 4.6 that the values of the perturbation velocities in the windward
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zone —0◦–180◦— are lower than the values in the leeward zone, this implies that most of the
energy is extracted in the windward zone as it can be observed in the Qt subplot, where the
non-dimensional tangential load reaches higher values in the windward zone.

4.4 Conclusions

The actuator cylinder model was successfully implemented in Python. The correction factor
was used according to Madsen, Larsen, Vita and Paulsen [21]. The execution time in a desktop
computer doesn’t exceed 0.9 seconds, which is ideal for investigating the influence of parameters
such as tip-speed ratio, solidity, number of blades, pitch angle, on the overall performance of the
turbine. Important variables such as perturbation velocities, drag and lift coefficients, angle of
attack, normal and tangential loads, power and thrust coefficient were able to be studied with
the present model. It is important to stress out the fact that the model works fine only on low
solidity rotors –low chord-to-radius ratio or a large number of blades–; the solidity is defined as
the quotient of the area of the blades and the swept area of the rotor.



Chapter 5

RANS-AC Model

5.1 Introduction

This section proposes an actuator model integrated within an OpenFOAM solver that relies on
replacing the turbine by volumetric forces exerted on the fluid, this approach eliminates the
need of highly resolved meshes around the blades, thereby reducing the mesh size considerably.
The forces are modeled using the steady-state actuator cylinder model [6], although any other
model can be employed. This approach is two-dimensional and the computational time needed
for simulating a wind farm ranges from minutes to hours; moreover, the fidelity is superior to
that of simple momentum models since the viscous wake is resolved by the RANS simulation.
This proposed model provides the capability of serving as an optimization tool for vertical-axis
wind turbine farms.

The current RANS-AC has the potential of modeling entire wind farms without relying on
empirical corrections for the wake or without the need of HPC (high performance computing).
Moreover, only simple input data must be entered, namely the geometrical and operational
parameters and inlet boundary conditions for the simulation.

5.2 AC validation against a 1.2 kW Windspire turbine

The Windspire turbine [16] was chosen for validation because it will be used throughout this work
(it is the turbine employed in the only wind farm experiment available), therefore the results of
the AC model will be compared against experimental data. Ideally, it would be better to validate
against a low-solidity turbine since it meets the requirements of the AC model; nevertheless the
Windspire turbine will be used despite it having a solidity of σ = 0.32. According to [16], the
turbine is kept at an optimal tip-speed ratio λ = 2.3 up until 10.6 m s−1, after this point the
rotational speed is kept constant and λ begins to decrease. The turbine’s radius is R = 0.6 m,
the height is H = 6.1 m, the number of blades is N = 3, the chord is c = 0.128 m and the airfoil
is a DU06W200 section derived from a NACA0018 section, except the maximum thickness is
20% and little camber is added.

The turbine σ is given by σ = NBc/2R, which can be interpreted as the blades’ area per unit
length divided by the turbine swept area per unit length. It is important to keep σ low, otherwise
the basic assumptions about the model break down since effects such as flow curvature and flow
distortion are not taken into account. The model does not guarantee any results whatsoever if
high-solidity rotors are used. [22, p. 40] uses the AC model in his Ph.D. thesis and the solidity
values encountered there are fairly low –around 0.12 for a large two-bladed VAWT–; [5, p. 169]
also employs low-solidity turbines in the development of his double multiple stream-tube model,

17
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the values of σ do not go beyond 0.22. The problem of solidity becomes important in small
turbines as they have a large c/R ratio. According to [23], these blades are subjected to a
curvilinear flow which alters the boundary layer of the airfoil. Kinematic analysis from [23] also
shows that the angle of attack and the relative wind velocity are dependent on the azimuthal
angle, the tip speed ratio and the chord-to-radius ratio; therefore α and vrel can vary significantly
chordwise since any point on the blade has a unique radial distance. By employing conformal
mapping techniques, it is possible to transform the airfoil in the curvilinear flow to a virtual
airfoil in a rectilinear flow. The transformation introduces a camber and an additional angle
of incidence –namely virtual camber and virtual incidence– which are also dependent on the
azimuthal angle, although they can be averaged by the mean value of one revolution. Thus it is
shown in [23] that these virtual airfoils have lift at α = 0, therefore the CL vs α curve is shifted
upwards depending on the value of c/R. Not only the lift coefficient is affected but also the
stall angle, which occurs much earlier as in the original airfoil without camber; this premature
stall deteriorates the efficiency of the wind turbine. Results from wind turbines with values of
c/R = 0.114 and c/R = 0.26 each in [23] show that the power coefficient is strongly dwindled
as c/R increases. In summary, results from the AC model using relatively high-solidity wind
turbines will certainly miscalculate the angle of attack to a certain degree, thus overestimating
the power coefficient of the turbine.

A particular challenge was to find polars for the DU06W200. [24] provides both theoretical
and experimental data for Reynolds numbers of 300,000 and 500,000 but does not give infor-
mation whatsoever for Reynolds number below 300,000, the turbine’s global Reynolds number
at 8 m s−1 is Re = Rωc/ν = 130, 000, ω being the rotational speed. It was then decided to use
polars from the software QBlade [25] which is based on a vortex panel code derived from the
MIT’s code Xfoil [26]. QBlade is able to predict both drag and lift coefficients at angles of at-
tack below stall, for ranges above stall, an extrapolation can be done based on the Montgomerie
model, which is more accurate (at least in this case) than the Viterna model. It was observed
that the Montgomerie model predicted better the shear drop in lift after stall has occurred.
Figures 5.1 and 5.2 show the polar for both the lift and drag coefficient at the typical Reynolds
numbers encountered by this turbine; QBlade seems to have trouble at low Reynolds numbers,
instabilities are manifested in the zone just before stall plus the fact that the slope before stall is
not always linear and presents jagged segments, despite the shortcomings, polars at Re = 50, 000
Re = 100, 000, Re = 150, 000 and Re = 200, 000 were included. At higher Re it was found that
QBlade overestimated lift and could not predict well the shear drop of lift after stall according
to wind tunnel data from [24].

No attempt was made to introduce dynamic stall or flow curvature effects. Dynamic stall
models can conflict with the AC model according to [19]. As for flow curvature due to the
turbine’s c/R = 0.21, –which is above 0.075 and 0.11 in [5, p. 169] and [22, p. 40], respectively–,
it was decided not to employ any model due to the increase in computational cost. [19] uses
Migliore’s model which computes the shape of a virtual airfoil with added camber (the original
airfoil in a curved flow is mapped to a cambered airfoil in a straight flow); consequently, the lift
and drag coefficients have to be recomputed according to the shape of the virtual airfoil, this
needs models such as the vortex panel model which can be expensive considering that the panel
model has to be called for every azimuthal position times the number of iterations.
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Figure 5.1: Lift polar for the DU06W200 airfoil at different Re.

Figure 5.2: Drag polar for the DU06W200 airfoil at different Re.

The results from the AC model were compared against data from an AC model results
provided by [27], experimental data is also available. Figure 5.3 shows how both AC models
overpredict the CP . This overestimation must be in part because both AC models employ limited
polars, e.g. [27] using wind tunnel data at Re = 300, 000 and this work using data ranging from
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Re = 50, 000 to Re = 200, 000; thereby neglecting the fact that at lower wind speeds Re is much
lower. The other reason must be because of the fact that the model is only two-dimensional and
no effects from struts, tower, tip losses, as well as flow curvature and dynamic stall are included.
There is an overall good tendency, the results from the current work and the experimental data
both peak at 10 m s−1. Without accurate polars from wind tunnel measurements, it is hard
to get accurate results, the CP is therefore very sensitive to the polars and care must be taken
when interpreting the lift and drag coefficients.

Figure 5.3: 1.2 kW Windspire turbine validation and comparison. λ is kept at 2.3 up until
10 m s−1.

5.3 RANS-AC implementation

The AC model can be incorporated into one of the OpenFOAM solvers by taking advantage of
the source terms in the Reynolds-averaged Navier-Stokes equations. The solver used is called
simpleFoam [28] which solves the steady-state incompressible Navier-Stokes equations for tur-
bulent flows. A new solver called actuatorCylinderSimpleFoam was made by the author of this
thesis using the simpleFoam solver as a template. Whereas the solver needs minimal modifica-
tion, the AC routines took most of the work. These routines are placed in separate files. The k-ε
turbulence model is preferred since it has proven to yield relatively good results in environmental
flows such as wakes [29, 30]. Algorithm 1 shows the process followed by the new solver.
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Algorithm 1 actuatorCylinderSimpleFoam solver implementation

Create volumetric field
Read coordinates
Read geometrical and operational parameters
for i← 1 to N do

Create an actuator cylinder {i is the current cylinder}
Identify cells that belong to the cylinder
Initialize arrays of velocity and volumetric forces of current cylinder

end for
repeat

Solve for velocity
Clear volumetric field
for i← 1 to N do

Add Force(mesh, U, volumeForce)
{Access the mesh and the velocity field U.}
{Read the velocities in the corresponding cells.}
{Execute AC and compute forces.}
{Apply forces in the cylinder’s cells of volumetric force field.}

end for
Pressure correction

until convergence is achieved or last time step is achieved

Notice that N is the number of cylinders (turbines), each cylinder has a set of corresponding
cells where the velocity is read and then passed to the AC routine which computes the volumetric
forces and passes them back to OpenFOAM using the function Add Force. The thickness of the
cylinder is subjective and it will be explained in the next sections. The way the volumetric forces
are calculated by the RANS-AC is by assuming that they do not vary significantly across the
thickness of the cylinder, therefore Eq. 4.1 becomes Eq. 5.1, where ∆r is the thickness of the
cylinder and fn(θ) are the volumetric forces normal to the cylinder as a function of the azimuthal
angle. These normal forces have to be projected in the x and y direction of the volumetric field
of the simulation.

fn(θ) = Qn(θ)/∆r. (5.1)

5.3.1 RANS-AC verification against AC model

In order to prove that the RANS-AC has been implemented correctly, the power coefficient
of the RANS-AC will be compared against that of the stand-alone AC model. A sensitivity
analysis concerning the thickness of the cylinder and the turbulence intensity I at the inlet of
the domain will be discussed. A uniform mesh was chosen for simplicity. Although OpenFOAM
is provided with mesh refinement utilities, the refined mesh is inevitably three-dimensional due
to the meshing algorithm, which is even more computational expensive, therefore the refined
mesh was discarded. The boundary conditions are inlet, outlet, top and bottom, back and
front. Table 5.1 shows the boundary conditions for every variable OpenFOAM has to compute.
Numerical schemes can be found in Appendix E.
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Boundary conditions

U p volForce k ε νT
inlet freestream zeroGradient fixedValue freestream freestream calculated

outlet zeroGradient fixedValue fixedValue freestream freestream calculated
top/bottom freestream freestreamPressure fixedValue freestream freestream calculated
front/back empty empty empty empty empty empty

Table 5.1: Boundary conditions at time 0 for the computational domain.

It must be cleared that the simpleFoam solver interprets p as p/ρ since the RANS equations
are divided by ρ due to the flow being incompressible. Free stream conditions acts like a zero-
gradient condition when the flow comes out of the domain and acts like a fixed value when it is
not; it is a kind of inlet/outlet condition in case of having flow reversal. The freestreamPressure
is an outlet-inlet condition that uses the velocity orientation to act either as a zero-gradient
condition or a fixed-value condition. The empty boundary condition means that nothing is
calculated at those faces, this is only valid for two-dimensional cases with one cell in the third
direction.

In summary, all variables have to be initialized at time 0 in the domain. In order to initialize
the values of all variables, a set of equations is needed. Eqs. 5.3, 5.4, 5.5 and 5.5 are the
turbulence length scale, the turbulent kinetic energy, the turbulent kinetic energy dissipation
rate and the turbulent viscosity; respectively. The least intuitive is l, this value is taken from
[31, p. 66] based on the case of a wake flow, where L is the wake width which will be taken as
the diameter of the cylinder. Cm is just a model constant set to 0.09 by default, it is used in
isotropic turbulent flows.

l = 0.08L, (5.2)

k = 1.5(‖~U‖I)2, (5.3)

ε =
Cm

0.75k1.5

l
, (5.4)

νT =
Cmk

2

ε
. (5.5)

The RANS-AC was verified against the Windspire turbine using a fine mesh and a coarse
mesh. The mesh size was based on enclosing the cylinder in a n× n cell square, the rest of the
domain was meshed accordingly. Distances from the inlet to the turbine could range from 3 D to
5 D (diameters) as well as distances from the turbine to the sides. Distances from the turbine to
the outlet could be shorter than 10 D. No impact was observed in the CP . Table. 5.2 shows the
comparison of the power coefficients as well as the mesh parameters. No significant difference
was observed between both meshes, although both meshes underpredicted CP at 14 m s−1. The
number of time steps is dependent of the inlet velocity, e.g. the wake takes longer to develop
when the inlet velocity is low. Although the wake development depends strongly on the inlet
velocity and the value of ε, the power coefficient reaches a stable value much earlier. This is
verified in a log file. The development of the wake can be observed visually by inspecting each
time step; at 8 m s−1, 800 time steps were sufficient to achieve the final shape of the wake and
a steady power coefficient.

The distance from the turbine to the outlet does not seem to affect the result. In this case,
the outlet was placed 10 D away from the turbine. Care must be taken when choosing the value
of I, data from the wind farm experiment[10] was used to compute the value of I. Observations
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taken every 10 minutes from several wind directions and velocities were extracted; e.g. for
8 m s−1, data from velocities ranging from 7 m s−1 to 9 m s−1 were collected, then the mean
of the quotient of the standard deviation and the average velocity was calculated. The same
process was done for the rest of the velocity bins.

Mesh sensitivity results

stand-alone AC fine mesh coarse mesh
1.0 chord thickness cylinder 1.5 chord thickness cylinder
50× 50 cell enclosing square 30× 30 cell enclosing square

U∞ CP CP CP I
4 0.22 0.196 0.197 0.130
6 0.23 0.216 0.217 0.125
8 0.26 0.275 0.270 0.134
10 0.32 0.339 0.340 0.116
12 0.25 0.230 0.230 0.110
14 0.16 0.100 0.084 0.106

Table 5.2: RANS-AC results from two different meshes verified against the stand-alone AC.

Since a volumetric field is created initially, at the end of the simulation it is possible to
visualize these forces using Paraview (a postprocessing application). Figure 5.4 shows the vol-
umetric forces acting on the counter-clockwise rotating cylinder at 8 m s−1 (coarse mesh). It is
reminded that the volumetric field is a vector field but the magnitude is a scalar.

Figure 5.4: Volumetric forces acting on the cylinder. Flow goes from left to right. Free stream
speed is 8 m s−1, coarse mesh.

5.4 Validation against experimental results

This section is meant to test the capabilities of the RANS-AC in a multi-turbine environment.
Experimental data from a small wind farm of VAWTs was found in [10]. These kinds of exper-
iments are hard to find in the literature since most experimental studies on VAWTs are done
on one turbine only. The experiment consists of a set of turbines that can be rearranged in
any fashion in order to test the performance of several layouts, the location is in the Antelope
Valley, California. The turbines are the same 1.2 kW Windspire turbines mentioned in the
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past sections. Although data for multiple wind turbine arrays are available, only data from
two different arrays will be used here, namely an array of 4 turbines and another array of 18
turbines. Figures 5.5 and 5.6 show the layouts of the two arrays. The eighteen-turbine arrays
has counter-clockwise rotating turbines. It is said in [10] that the most prevalent wind direction
is from the southwest, therefore the turbines in Figs. 5.5 and 5.6 were aligned in that direction.
The wind speed is about 8 m s−1 and λ is kept at 2.3. The value of I is set to 0.13 according to
Table 5.2.
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Figure 5.5: Four turbines in a row. The distance from turbine to turbine is 11.31 D (diameters).
Flow is from left to right.
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Figure 5.6: Fish schooling configuration. Turbines are placed in a counter-clockwise rotating
fashion. The flow is also from left to right.

5.4.1 Model calibration

Since the numerical simulation must be provided with the turbulence length scale in order to
compute the turbulent kinetic energy dissipation rate at the inlet, a study on the width of the
wake was conducted in order to find the appropriate turbulence length scale. The results in
Table 5.1 were obtained supposing that the width of the wake was similar to the diameter of
the turbines. This did not impact the results of the CP ; however, it was observed that the
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streamwise development of the wake was sensitive to this value, this is reflected in ε since it
depends on l = 0.08L where L is the width of the wake.

In order to obtain a value for l, a simulation with L = D was run and the width of the wake
was found. Care must be taken in selecting the width of the wake as it varies downstream. It
was decided to take the value at 7 D, roughly; the reason for this is that the rate of growth
begins to reach a steady value. The rate of growth of the wake at small distances downwind
cannot be neglected. At larger distances the wake begins to fade away and a wake width is hard
to define. This is exemplified in Fig. 5.7, the procedure consisted in placing several downwind
stations, e.g. crosswind plots of the magnitude of the velocity. The width was then measured
from end to end, where each end has a velocity value of the free stream velocity, which is 8 m s−1

in this case. These ends can be found visually by intersecting the wake plot with a horizontal
line drawn at U = 8 m s−1, where U is the magnitude of the velocity. Notice in the figure that
the location at which the ends of the wake stop varying is at 7 D approximately. The width is
then y+− y− where y+ is the upper end and y− is the lower end. It is also interesting to notice
the skewness of the wake, since the turbine is rotating counter-clockwise, most of the power is
extracted in the positive portion of y.

Figure 5.7: Wake width at different downwind stations. The width begins to reach a stable
value 7 D and its value is 2.8 m.

Once the new value of L was found, an iterative procedure following the same logic was
conducted: a new simulation with L = 2.8 was conducted and the width of the wake was
obtained in the same fashion. The procedure was stopped when the width stop varying across
iterations. Figure 5.8 shows the final value of the width of the wake, which is 3.7 m, the
turbulence length scale is found by substituting 3.7 in l = 0.08L.
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Figure 5.8: Wake widths obtained by following an iterative procedure. All the plots are located
at 7 D downwind.

5.4.2 Array of 4 turbines

The power coefficients from this array were obtained from data published by [10]. The distance
from turbine to turbine is 11.31 D. Figure 5.9 shows the CP and the normalized CP . The latter
was taken to be the current turbine CP divided by the leading turbine CP ; experimental data
was normalized with the leading turbine’s experimental CP and numerical data was normalized
accordingly. There is a clear overestimation of the CP , as discussed earlier, the AC model tended
to overestimate the CP of this particular turbine. The normalized CP shows that there is an
overall good trend: the power coefficients decrease in the same manner.
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Figure 5.9: Power coefficients of the four-turbine array. a) is the actual CP and b) is the
normalized CP .

Another plot concerning the velocity and turbulence intensity along the center line is included
in Fig. 5.10. The magnitude of the velocity is normalized with respect to the free stream velocity
U∞. The value of I was calculated in Paraview by creating a new field according to the following
equation derived from Eq. 5.4.

I =

√
(2/3)k

‖~U‖
. (5.6)

The RANS-AC underestimates the wake recovery in between the turbines. The value of I
starts at 0.13 according to Table 5.2, then it reaches a steady pattern past the second turbine,
values up to 0.4 can be found near the wake of each turbine. Although there are no experimental
data to compare with, the value of I along the center line follows an expected pattern and it
decays almost to its original value past the last turbine.

Figure 5.10: Wake across the turbine array. The axis for I is located at the right side of the
plot. Vertical dotted lines signify the locations of each turbine.

5.4.3 Array of 18 turbines

A plot similar to Fig. 5.9 is presented for this case. The CP s across the array do not follow a
coherent pattern, e.g. turbines that have been blocked present similar or even higher CP s than
the turbines free of blockage. Figure 5.11 shows the current CP in a) and the normalized CP in
b). The normalized CP was obtained by dividing each CP by the maximum CP .
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Figure 5.11: Power coefficients of the eighteen-turbine array.

It was observed that a portion of the angles of attack of the turbines that were free of
blockage were above stall according to Fig. 5.1. This is wrong since the manufacturer states
that the turbine is kept at an optimal λ of 2.3, therefore meaning that it is not stalled. As the
flow traverses each turbine downwind, it loses momentum, therefore each blocked turbine sees
lower relative velocities and thus lower angles of attack. It would be intuitive to think that lower
angles of attack lead to lower lift coefficients, but since the turbine is stalled, the lift coefficients
might be even higher than those in the stalled regime. Data extracted from a row of turbines
in the array is presented in Fig. 5.12. The plot shows the angles of attack and lift coefficients
from turbines 2, 10 and 18. It can be seen that there is indeed a decrease in the amplitude of α
as each turbine presents blockage from another turbine; however, it is important to notice that
in this case, turbine 18 for instance, has the lowest amplitude of α but its coefficients are not
in the stall region where they drop sharply, therefore achieving higher lift and tangential force
coefficients. The local Re ranges from 100,000 to 200,000 and the positive stall angle of attack
is about 16 ◦ according to Fig. 5.1. Turbine 18 has a maximum positive α of 13 ◦, therefore it
operates at an optimal regime, which should not happen actually.

It must be clear that this fault is due to the wrong predictions of α in the AC model no
due to the OpenFOAM solver, which is possible in case high-solidity turbines are being used.
The incoherent pattern of CP s along a row of turbines did not occur in the case of the array
of 4 turbines. It is thought that this array was not affected by the accelerated flow in between
turbines as in the case of the array of 18 turbines; therefore the velocity across the center line
decayed faster and the turbines in the back rows operated in a regime well below stall, achieving
even lower CP s.



5.5. VERIFICATION WITH AN LES SIMULATION 29

Figure 5.12: α and CL from turbines T02, T10 and T18.

5.5 Verification with an LES simulation

As seen in Section 5.4, the case of the eighteen-turbine wind farm did not yield good results
mainly because of the inability of the AC model to correctly predict angles of attack for high-
solidity turbines. In seeing this, an additional verification study was done to prove that the
RANS-AC does work well indeed if low-solidity turbines are used. The work from [1] is used
as a reference. An LES simulation was carried out on a three-bladed VAWT with a radius of
25 m, a chord of 1.5 m, and a height of 100 m. The wing’s cross section is an NACA0018. The
rotational speed is 16.5 rpm and the wind speed is 9.6 m s−1, thus yielding a tip-speed ratio
of 4.5. The turbulence intensity value at the inlet is 0.083 and an atmospheric boundary layer
is used, although this is not possible in a 2D simulation. Figure 5.13 shows a CP plot against
λ. The current RANS simulation was done a cylinder thickness of 2 chords and an enclosing
square of 30 × 30 cells. Although the RANS-AC model overpredicts the value of CP , there is
a very good agreement on the trend of the curve. Results from the stand-alone AC model are
presented too.

Figure 5.13: Comparison of CP results from an LES simulation with the current RANS-AC.
Turbine’s σ is 0.09.
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Next, a comparison of the wake of the turbine is presented. The LES wake is taken at the
equator. The width of the wake L was taken as the diameter of the turbine and the iterative
procedure done in Section 5.4 was not done since the results using the diameter as the width of
the wake were satisfactory. The accurate width of the wake seemed to impact mostly the initial
value of ε (which depends on l = 0.08L) at the inlet and not much difference was observed in
the wake recovery when using the diameter as the width of the wake. Figure 5.14 shows very
good agreement in the development of the wake.

Figure 5.14: Comparison of the LES wake at different downwind distances with the current
RANS-AC results.

Finally, the same eighteen-turbine wind farm simulation is done, except this time the turbine
from [1] is used. The relative distances from turbine to turbine are preserved. The Reynolds
number could not be preserved because that would imply to run the turbine at extremely low
wind speeds and extremely low rpm. The purpose is to show that the RANS-AC has no trouble
predicting the right trend of the power coefficients when using low-solidity turbines. The solver
converged at 1564 iterations, although the power coefficients reached an almost constant value
at 1000 iterations. Roughly an hour had passed by the time the solver reached 1000 iterations;
this was done on an all-in-one computer using only one 2.5GHz processor and 12GB RAM.
The distance from the last turbine to the outlet was half the distance from the first turbine to
the last turbine, or 1

2 (maxx − minx). Larger distances yielded the same results. It must be
mentioned that it is not necessary to resolve the entire wake of the turbines until they recover
the free stream value, this is possible thanks to the velocity outlet boundary condition which is
zeroGradient. Figure 5.15 shows the power coefficients and the normalized power coefficients.
The normalized coefficients were calculated by dividing all CP s by the maximum CP . A coherent
pattern is observed: the more the blockage, the lower the CP value is. Also, the CP s of the
turbines free of blockage were notably higher than those of the plot in Fig. 5.13, a maximum
of 0.59 was found in one of the leading turbines, whereas a single isolated turbine had a CP of
0.49. It is believed that the accelerated flow in some regions impacts the CP s, and thus different
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values are obtained as if they were isolated.

Figure 5.15: Wind farm array of 18 turbines using the 25 m-radius turbine from [1]. a) shows
the current CP and b) shows the normalized CP . Arrows pointing upwards denote turbines that
are blocked by only one turbine, whereas arrows that point downwards denote turbines that
have been blocked by two turbines.

5.6 Discussion

The RANS-AC was successfully implemented in OpenFOAM. This was confirmed by the fact
that it could achieve a power coefficient very similar to the stand-alone AC. Guidelines for select-
ing the mesh size and the thickness of the actuator were also given along with inlet boundary
conditions for the RANS simulation. The model was validated against multi-turbine experi-
ments and good agreement was found concerning the trend of the power coefficients in a row
of four VAWTs. Unfortunately these multi-turbine experiments were done using small turbines
which had a high solidity, this caused the model to wrongly predict the angles of attack, namely
overestimating the angles of attack and thus getting the wrong coefficients of lift and tangential
force. Thus results from the array of 18 turbines could not match the experimental data. An
additional verification against a large VAWT LES simulation [1] with a low solidity was con-
ducted to prove that the RANS-AC is indeed capable of model the wind farm power coefficients
so long the leading turbines were not incorrectly predicted in the stall regime by the AC.

The comparison with the results of the wake of the large VAWT were in very good agreement.
Although a multiple-turbine simulation was not done in [1], a simulation of an array of 18
turbines preserving the original relative distances between turbines in [10] was conducted. This
time, the RANS-AC predicted a coherent pattern of the power coefficients across the array, e.g.
the turbines free of blockage had higher power coefficients and the turbines that experienced
more blockage from other turbines had lower power coefficients.



Chapter 6

Wind Farm Case Study

This last chapter will employ the RANS-AC in a fictitious wind farm. The purpose is to test
two kinds of arrays; namely a staggered array and an array based on the fish-schooling idea
proposed in [10]. Currently there no available results in the literature of VAWT farms nor there
are studies about the influence of the wind direction and wind speed on the performance of the
wind farm. It is hoped that the fish-school wind farm is able to be twice as dense while keeping
a power coefficient close to the original staggered array. This would result in land cost savings
and better rate of return.

6.1 Turbine verification with AC model

This section describes the geometrical and operational parameters of the turbine chosen for
the wind farm layout study. One of the precautions that must be attended when using the
AC model is to keep the turbine’s solidity (σ) low. High values will cause the model to give
inaccurate predictions. This is due to the fact that adding too many blades or having a large
chord-to-radius ratio will introduce severe flow distortions which are not included in the model.

A large turbine from [4] with a low solidity and low chord-to-radius ratio was chosen for the
study. This turbine will be used throughout the rest of the chapter. The characteristics of this
turbine are described in Table 6.1.

Wind turbine characteristics

NACA NB R c Ω σ
0018 3 10 0.432 33.4 0.065

Table 6.1: Current turbine used throughout this chapter. NB is the number of blades, R is the
radius, c is the chord and Ω is the rotational speed in rpm.

6.1.1 Sensitivity analysis

As said in the previous chapter, the RANS-AC model should be able to predict the power
coefficient as close as the stand-alone AC. It is important to remind that the original AC is
based on the Euler equations and no I value is needed as an input parameter, therefore the
value of I at the inlet will be taken as 0.10 which is a typical value for offshore sites [32]. The
computational domain is two-dimensional and comprises uniform squared cells; the distance
from the center of the turbine to the inlet is 3D (rotor diameters) and so is the distance from

32
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the center of the turbine to the sides of the domain. The distance from the turbine’s center to
the outlet boundary is 10D. Two meshes were made: a fine one which is based upon a 50× 50
cells square surrounding the cylinder and a coarse one which is based upon a 30×30 cells square.
The thickness of the actuator is subjective, a value of one chord was chosen for the fine mesh
and a value of two chords was chosen for the coarse mesh. Figure 6.1 shows the comparison
of the power coefficient (CP ) of the RANS-AC model with respect to the stand-alone AC. The
tip-speed ratio is the quotient of the turbine’s tangential velocity and the wind velocity.

Figure 6.1: Power coefficients (AC vs RANS-AC) as a function of the tip-speed ratio λ.

It is believed that the discrepancy in Fig. 6.1 is due to the large distance between the
front and rear parts of the actuator cylinder. The AC model assumes that the velocity inside
the cylinder is constant streamwise whereas the RANS-AC actually takes into account viscous
effects, therefore the velocity will decay streamwise before impacting the blades in the rear part
of the rotor, hence the lower power coefficients exhibited by the RANS-AC. Without a validation
with an existing turbine, it is hard to know which model yields the best results. The stand-alone
AC will surely overestimate the power coefficient in the rear part of the rotor. Verifications and
validations of the RANS-AC can be found in Mart́ınez’s paper [33].

6.2 Proposed wind farm arrays

In this section two different kinds of array configurations will be studied, namely a staggered
array and an array based on the fish-schooling concept. According to [9], fish in shoals swim in
such a way that each of them sheds counter-rotating vortices which help the shoal to minimize
the energy needed for propulsion. It is not clear whether the wind farm is the right analogy to
fish schools and little is know as to whether these counter-rotating vortices benefit the turbines in
the back rows. The number of turbines is based on the staggered array, then the fish-school array
will have twice as many turbines since every turbine in the staggered array will be replaced by a
counter-rotating pair of turbines. The reason why the staggered array was chosen is because it is
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less sensitive to the effect of wind direction provided it is aligned with the most frequent sector.
Figures 6.2a and 6.2b show the two different arrays that will be studied throughout this work,
notice that the flow is from left to right. The distance from one row to the next non-staggered
row is 8 D; in Fig. 6.2b the distance between the axes of each pair is 1.5 D. Before moving on
to the details of the simulations, a sensitivity analysis for the mesh size will be carried on. In
order to save computational time, it is required to know how close the boundaries can be placed
next to the turbines, e.g. placing them too close to the turbines could invalidate the boundary
conditions, placing them too far apart could result in waste of computational time.
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Figure 6.2: The two different arrays that will be used throughout this work.

6.2.1 Wind farm mesh sensitivity analysis

In order to save time during the simulations, four meshes are evaluated. The wind farm tested
is that of Fig. 6.2a, the purpose is to choose the least computationally-expensive mesh without
losing accuracy. Table 6.2 shows the characteristics of each mesh.

Tested meshes

square-coarse rectangular-coarse square-fine rectangular-fine
enclosing square size in cells 30× 30 30× 30 50× 50 50× 50

minx tminx − 6R tminx − 6R tminx − 6R tminx − 6R
maxx tmaxx

+ 6R tmaxx
+ 12R tmaxx

+ 6R tmaxx
+ 12R

miny tminy
− 6R tminy

− 6R tminy
− 6R tminy

− 6R
maxy tmaxy + 6R tmaxy + 6R tmaxy + 6R tmaxy + 6R

thickness 2c 2c c c

Table 6.2: Four kinds of meshes used for the sensitivity study of a wind farm. λ = 4, U∞ =
8.74 m s−1. t is the position of a turbine, e.g. tminx is the leftmost turbine’s position.

Figure 6.3 shows the power coefficients for each mesh. Fine meshes exhibit a slightly larger
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power coefficient. The back rows are the ones exhibiting more discrepancy but overall the trend
is the same. Figure 6.4 shows the error between the smallest coarse mesh and the largest fine
mesh. The error is about 8% in the turbines that have been blocked by two or more turbines,
this is acceptable since the CP of turbine 16 of the smallest coarse mesh is 0.134 and the CP
of the larges fine mesh is 0.147, compared to the leading turbine’s average CP (coarse and fine
mesh) which is about 0.366, their respective normalized CP is 0.366 and 0.401.

(a) Rectangular mesh (b) Square mesh

Figure 6.3: Two different meshes used for sensitivity analysis.

Figure 6.4: Smallest coarse mesh versus largest fine mesh power coefficient error.

6.2.2 Influence of wind direction and wind speed

Figure 6.2a shows that the wind farm array is symmetrical with respect to the y axis, this means
that it is not necessary to study the full 360◦ sector but only half of it. Figure 6.5 shows the
nine directions taken into account in this study. Only the most critical wind directions are taken
into account. Four different speeds are chosen: 6, 8, 10 and 12 m s−1. The reason being is that
most wind turbines begin to operate at 5 m s−1, also wind speeds higher than 12 m s−1 are rare
during the whole year. These considerations will also be applied to the fish-school array. Results
in tabular form can be found in Appendix D.
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90◦
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135◦

157.5◦

180◦
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225◦

247.5◦
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Figure 6.5: Wind directions that will be used in the current study. Only half the entire sector
will be used due to symmetry.

Turbulence intensity values depends strongly on atmospheric conditions, wind speed and as
well as the roughness of the terrain. A site located in Bockstigen, Sweden will be taken as a
reference in order to obtain free stream values of I at different wind speeds. The site is located
offshore and data is provided in [32]. Since the data is a scatter plot from measured values at
different speeds, the values in between the minimum and maximum record were chosen from the
plot. Table 6.3 shows the minimum, mean and maximum values of I for different wind speeds.
The height of the mast is 40 m.

Turbulence intensity according to wind speed

ms−1 6 8 10 12 14
min 0.07 0.07 0.075 0.08 0.07
max 0.25 0.15 0.125 0.12 0.09
mean 0.16 0.11 0.100 0.10 0.08

Table 6.3: Wind data at 40 m from Bockstigen, Gotland, Sweden.

Figure 6.6 shows the average power coefficient of the entire farm as a function of the wind
direction and wind speed. The fish-schooling array shows detrimental results when the wind
blows from the north or the south since half the turbines are blocked by their twins. On the
other hand, the fish-schooling array shows an increase of 16% when the wind blows from the
west (180◦) for the case of 8 m s−1, an increase of 10% is seen for the case of 10 m s−1 with wind
blowing from the west. This increase in the power coefficient is more or less in accordance to
[4], which is 15% roughly for a pair of turbines. Interestingly, at 12 m s−1 the average CP of the
farm almost reaches the value of 0.20, which is the CP of an isolated turbine when λ = 4, see
Fig. 6.1.
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Figure 6.6: Average power coefficient as a function of direction and wind speed.

Power density is the quotient of the total power produced by the farm divided by the area
of land occupied by the turbine; in other words it is the power extracted by square meter. The
surface area of the farm was taken from Fig. 6.2a, the distance from turbine 1 to turbine 16
is 480 m, therefore the surface area is 115200 m2. In order to calculate the power of a single
turbine, it is necessary to know the swept area S which will be taken as (2R)(2R), since 2R
is the diameter of the turbine. The height of the turbine will be taken as the diameter of the
turbine. Equation 6.1 is necessary to calculate the power of a turbine.

P =
1

2
ρV 3
∞SCP (6.1)

The V∞ term will be based on the free stream speed for each turbine. Figure 6.7 shows the
power density of the farm as a function of direction and wind speed, this was calculated as the
sum of all of the turbines’ power divided by the surface area of the farm. The results show
an twofold increase in power density in almost all directions for a fish-schooling array, the only
cases where no increase is seen is in the case of 6 m s−1 when the wind blows from the north
and the south. The almost-twofold increase is expected since there are twice as many turbines
in the fish-school farm. There seems to be a dilemma in choosing fish-schooling farms; on the
one hand compactness can yield twice as much power, on the other hand, these fish-schooling
arrays are not necessarily more efficient (Fig. 6.6 shows that the fish-schooling farm is only more
efficient than the conventional farms in 3 out of the 9 directions).
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Figure 6.7: Wind farm power density W m−2 as a function of direction and wind speed.

According to [34] HAWT farms produce around 2–3 W m−2. Table 6.4 shows the fish-school
and conventional farm average power density (from all directions) for each wind speed. Notice
that in actuality the wind does not blow with the same probability from all directions, therefore,
cases in which half the turbines are blocked in the fish-school array (north and south) must be
avoided by placing the turbines strategically. The fact of getting almost twice as much power
density from the same occupied land can reduce costs dramatically since cabling costs and land
rental would probably be half the original cost.

Average power density W m−2

m s−1 fish-school conventional improvement ratio
6 3.8 2.2 1.72
8 9.6 5.2 1.85
10 16.4 8.7 1.88
12 18.8 9.9 1.9

Table 6.4: Average power density from all directions.

6.3 Discussion

The RANS actuator cylinder was used to assess the performance of two different wind turbine
arrays, namely a staggered array and another staggered array using pairs of counter-rotating
turbines. The power coefficient of a single isolated turbine was tested against the stand-alone
AC and the results were satisfactory except at high tip-speed ratios where the velocity of the
wind speed is low. This does not suggest that the RANS-AC is wrong but its CP at low wind
speeds simply differed from the stand-alone AC because the RANS-AC does indeed take into
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account viscous effects, therefore the wind speed impacting the rear part of the rotor is lower
than that of the stand-alone AC due to the large distance (20 m maximum, which is the turbine’s
diameter) from the upwind part of the rotor to the downwind part of the rotor.

A mesh sensitivity analysis was carried on for a wind farm in order to use the less time-
consuming mesh without sacrificing accuracy. The study was undertaken and several simulations
at different wind speeds and directions were done. A coarse mesh was found to be optimal. The
value of turbulence intensity at the inlet was chosen based on data acquired from an offshore
site off the coast of Sweden.

The staggered array outperformed the fish-school array in most directions but the fish-school
array yielded higher global power coefficients when the wind blows from the west (the case in
which all pairs are facing the wind). Improvements up to 16% percent were seen depending
on the wind speed. By contrast, the fish-school array outperformed the staggered array by
a factor of two in terms of power density. Given the fact that typical HAWT farms yield
around 2–3 W m−2, it can be said that VAWT farms yield in this case 5 or 3 times more power
density when the wind blows at 8 W m−2. The fish-school array power density averaged over all
directions was practically twice as high as in the staggered array, this proves that the fish-school
array may be able to extract twice as much energy so long it is placed strategically. VAWT
farms could be compacted within a surface area half the original size and still get almost twice
as much power density. This could reduce land costs as well as cabling significantly.



Conclusions

The mayor contribution of this work was the implementation of a virtual vertical-axis wind
turbine, that is, a modified steady, incompressible and turbulent solver that uses the actuator-
cylinder model as a surrogate for calculating the volumetric forces that the turbine exerts on the
fluid. This is crucial since the computational cost is greatly reduced since there are no blades
in the domain, which would need an extremely fine mesh. The mesh is now uniform across the
domain and the wake of a single turbine can be resolved in a few seconds depending the size
of the domain. Moreover, several turbines can be placed across the domain and each one of
the wakes takes into account the influence of the other wakes automatically. Up to this day,
only simple models were available for the computation of vertical-axis wind turbine farms; more
complicated models were also available but the computational cost was out of the scope of a
personal computer.

The model depends strongly on the solidity of the turbine, so turbines with many blades or
a large chord-to-radius ratio must be avoided or else the results are not guaranteed, this is due
to the actuator-cylinder model’s limitations. Boundary conditions must take into account the
inlet turbulence intensity, therefore the precise value will affect the shapes of the wakes.

The model was tested against experimental data, coherent patterns were observed as for the
power coefficient of each turbine. A verification against a wake from numerical simulations was
done and the results were satisfactory.

Finally, the model was used to compare two different kinds of arrays: a staggered array and a
fish-school array. The staggered array proved to be more efficient since it is more sparse and thus
less blocking effects are present; on the other hand, the fish-school array achieved more power
density and was only more efficient when the pairs of turbines were facing the wind directly.
With a good collocation strategy, the fish-school array can occupy half the land and yet achieve
a twofold increase in power density.

It is hoped that these results are considered by large energy companies installing vertical-axis
wind turbines in the future.

40



Appendix A

Derivation of the Equations for
the Perturbation Velocities

The linear part of equations 4.15 and 4.16 is:

wx = −p(f) +

∫ x

−∞
fx · dx′ (A.1)

wy = −
∫ x

−∞

∂

∂y
p(f)dx′ +

∫ x

−∞
fy · dx′ (A.2)

Equation 4.13 contains the volume forces in the x and y directions:

p(f) =
1

2π

∫ ∫
fx(x− ξ) + fy(y − η)

(x− ξ)2 + (y − η)2
dξdη (A.3)

The simple actuator cylinder model only considers the normal volume forces fn, so, fx and
fy only depend on fn. The actuator cylinder model modification by Cheng [20] includes the
tangential volume forces ft, therefore, the projections in the x and y directions will contain extra
terms:

fx = −fn sin θ − ft cos θ (A.4)

fy = fn cos θ − ft sin θ (A.5)

The normal and tangential loads are defined as following:

Qn(θ) = lim
ε→0

∫ R+ε

R−ε
fn(θ) · dr (A.6)

Qt(θ) = lim
ε→0

∫ R+ε

R−ε
ft(θ) · dr (A.7)

Substituting fx and fy in equation A.3 and using polar coordinates instead of dummy variables
yields:

p(f) =
1

2π

∫ 2π

0

Qn(θ)
−(x+ sin(θ)) sin(θ) + (y − cos(θ)) cos(θ)

(x+ sin(θ))2 + (y − cos(θ))2
dθ

+
1

2π

∫ 2π

0

Qt(θ)
−(x+ sin(θ)) cos(θ)− (y − cos(θ)) sin(θ)

(x+ sin(θ))2 + (y − cos(θ))2
dθ

(A.8)
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In order to obtain the first term in equation A.2, it is necessary to derivate the previous equation
with respect to y and integrate it with respect to x. The outcome is:∫ x

−∞

∂p(f)

∂y
dx′ = − 1

2π

∫ 2π

0

Qn(θ)
−(x+ sin(θ)) cos(θ)− (y − cos(θ)) sin(θ)

(x+ sin(θ))2 + (y − cos(θ))2
dθ

+
1

2π

∫ 2π

0

Qt(θ)
−(x+ sin(θ)) sin(θ) + (y − cos(θ)) cos(θ)

(x+ sin(θ))2 + (y − cos(θ))2
dθ

(A.9)

The last term to work out is the integration of the volume force in the x direction:∫ x

−∞
fx · dx′ (A.10)

Care must be taken when evaluating this integral. For the inner part of the cylinder, the
integration of the volume force becomes:∫ x

−∞
fx · dx′ =

∫ 0

−∞
fx · dx′ (A.11)

The x′ is a dummy variable for the x coordinate, while a plain x represents the horizontal
coordinate of the evaluation point. From simple trigonometry the following is obtained:

x′ = −
√
r2 − y2 (A.12)

dx′ = − r√
r2 − y2

dr (A.13)

The volume force in the horizontal direction becomes:

fx = −fn sin θ − ft cos θ = −fn
√
r2 − y2

r
− ft

y

r
(A.14)

Equation A.10 is now:∫ x

−∞
fx · dx′ = lim

ε→0

∫ R−ε

R+ε

(
−fn

√
r2 − y2

r
− ft

y

r

)(
− r√

r2 − y2

)
dr

= − lim
ε→0

∫ R+ε

R−ε

(
fn + ft

y√
r2 − y2

)
dr

= −Qn(arccos y)−Qt(arccos y)
y√

1− y2

(A.15)

For the leeward part of the cylinder, the integration of the volume force is given by:∫ x

−∞
fx · dx′ =

∫ 0

−∞
fx · dx′ +

∫ x

0

fx · dx′ (A.16)

The first term has already been computed, but the procedure for the second term is similar to
that of the first term:

x′ =
√
r2 − y2 (A.17)

dx′ =
r√

r2 − y2
dr (A.18)
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It is important to bear in mind that x is negative the the windward part and positive in the
leeward part, thus, the sines for x will also have different signs in the windward and leeward
part.

fx = −fn sin θ − ft cos θ = fn

√
r2 − y2

r
− ft

y

r
(A.19)

∫ x

0

fx · dx′ = lim
ε→0

∫ R+ε

R−ε

(
fn

√
r2 − y2

r
− ft

y

r

)(
r√

r2 − y2

)
dr

= − lim
ε→0

∫ R+ε

R−ε

(
fn − ft

y√
r2 − y2

)
dr

= Qn(− arccos y)−Qt(− arccos y)
y√

1− y2

(A.20)

Having all the terms worked out in equations A.1 and A.2, the induced velocities have the
following final form:

wx = − 1

2π

∫ 2π

0

Qn(θ)
−(x+ sin(θ)) sin(θ) + (y − cos(θ)) cos(θ)

(x+ sin(θ))2 + (y − cos(θ))2
dθ

− 1

2π

∫ 2π

0

Qt(θ)
−(x+ sin(θ)) cos(θ)− (y − cos(θ)) sin(θ)

(x+ sin(θ))2 + (y − cos(θ))2
dθ

−Qn(arccos y)∗ +Qn(− arccos y)∗∗

−

(
Qt(arccos y)

y√
1− y2

)∗
−

(
Qt(− arccos y)

y√
1− y2

)∗∗
(A.21)

wy = − 1

2π

∫ 2π

0

Qn(θ)
−(x+ sin(θ)) cos(θ)− (y − cos(θ)) sin(θ)

(x+ sin(θ))2 + (y − cos(θ))2
dθ

+
1

2π

∫ 2π

0

Qt(θ)
−(x+ sin(θ)) sin(θ) + (y − cos(θ)) cos(θ)

(x+ sin(θ))2 + (y − cos(θ))2
dθ

(A.22)



Appendix B

Modification of the Linear
Solution

This section shows details about the derivation of the thrust coeffcient, induction factor and
correction factor for the perturbation velocities.

Figure B.1: Streamwise projection of normal and tangential forces.

From Figure 4.4 the thrust force is obtained by means of projecting the normal and tangential
forces onto the direction of the free stream –horizontally.

Fx(θ) = Fn(θ) sin(θ − δ)− Ft(θ) cos(θ − δ) (B.1)

The average torque per unit meter in one revolution is:

T =
1

2π
NB

∫ 2π

0

Fx(θ)dθ (B.2)

The non-dimensional thrust, otherwise known as the thrust coefficient, is defined in the following
manner:

CT =
T

1
2ρV

2∞2R
(B.3)
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Notice carefully that 2R is the frontal area per unit length. Substituting equations B.1 and B.2
in the previous equation yields the following:

CT =
NB

2πρV 2∞R

∫ 2π

0

(Fn(θ) sin(θ − δ)− Ft(θ) cos(θ − δ)) dθ (B.4)

CT =
NB

2πρV 2∞R

∫ 2π

0

[(Fn(θ) cos δ − Ft(θ) sin δ)) sin θ − (Fn(θ) sin δ + Ft(θ) cos δ)) cos θ] dθ

(B.5)

From equations 4.42 and 4.43 the CT can be expressed in terms of the non-dimensional normal
and tangential loads:

CT =

∫ 2π

0

(Qn(θ) sin θ +Qt(θ) cos θ) dθ (B.6)

The modification of the linear solution by Madsen [21] is achieved by multiplying the perturba-
tion velocities by a correction factor:

wx,mod = ka · wx (B.7)

wy,mod = ka · wy (B.8)

In which ka is given by:

ka =
1

1− a
(B.9)

Where a is the global induction factor defined by the momentum theory:

Ct = 4a(1− a) (B.10)

The previous equation is only valid for a < 0.333. The linear solution of the thrust coefficient
according to Madsen [21] is CT = 4alin. It can be easily seen that the correction factor is
nothing but the ratio of the thrust coefficients from the linear solution and the momentum
theory. The induction factor can be determined in terms of the thrust coefficient from another
article provided by Larsen and Madsen [20]:

a = k3C
3
T + k2C

2
T + k1CT + k0 (B.11)

Where CT is given by equation B.6.



Appendix C

Derivation of the power
coefficient

Raw mechanical power of one blade can be obtained from the next equation:

P (θ) = ωT (θ) (C.1)

From Figure 4.3 it is observed that torque originates from the net tangential force times the
radius of the turbine:

T (θ) = Fr(θ)R = (Ft(θ) cos δ + Fn(θ) sin δ)R (C.2)

Where δ is the blade’s pitch angle. The average power is calculated by integrating the local
mechanical power, multiplying it by the NB blades and averaging it by 2π, which stands for one
revolution.

Pmean =
1

2π

∫ 2π

0

ωNBT (θ)dθ (C.3)

By definition, the power coefficient per unit length of the rotor is given by:

CP =
Pmean

1
2ρV

3∞2R
(C.4)

By substituting C.3 into C.4 the following is obtained:

CP =
ωR

V∞

∫ 2π

0

NB (Ft(θ) cos δ + Fn(θ) sin δ)

2πRρV 2∞
dθ (C.5)

Notice that the term before the integral is nothing but the tip-speed ratio of the turbine. The
integrand is the negative of the nondimensional tangential load of the actuator disk. Having
said that, the power coefficient can be simplified to:

CP = −λ
∫ 2π

0

Qt(θ)dθ (C.6)

The previous equations hold for the case of counter-clockwise rotation. For clockwise rotation,
the minus sign is ommitted in equation C.6. The derivation procedure is ommited here but it
can be performed in the same way.
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Appendix D

Power coefficients of the arrays

Figure D.1: Staggered array at 6 m s−1

Figure D.2: Staggered array at 8 m s−1
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Figure D.3: Staggered array at 10 m s−1

Figure D.4: Staggered array at 12 m s−1
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Figure D.5: Fish-school array at 6 m s−1

Figure D.6: Fish-school array at 8 m s−1
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Figure D.7: Fish-school array at 10 m s−1

Figure D.8: Fish-school array at 12 m s−1



Appendix E

Numerical Schemes

The following numerical schemes are required in the OpenFOAM settings:

� timeScheme: first and second time derivatives

� gradSchemes: gradient

� divSchemes: divergence

� laplacianSchemes: Laplacian

� interpolationSchemes: cell to face interpolations of values.

� snGradSchemes: component of gradient normal to a cell face.

� wallDist: distance to wall calculation, where required.

E.1 Gradient Schemes

The gradSchemes sub-dictionary contains gradient terms. The default discretization scheme
that is primarily used for gradient terms is

default Gauss linear;

The Gauss entry specifies the standard finite volume discretization of Gaussian integration
which requires the interpolation of values from cell centres to face centres. The interpolation
scheme is then given by the linear entry, meaning linear interpolation or central differencing.
In some cases, particular involving poorer quality meshes, the discretization of specific gradient
terms is overridden to improve boundedness and stability. The terms that are overridden in
those cases are the velocity gradient.

grad(U) cellLimited Gauss linear 1;

They use the cellLimited scheme which limits the gradient such that when cell values are ex-
trapolated to faces using the calculated gradient, the face values do not fall outside the bounds
of values in surrounding cells. A limiting coefficient is specified after the underlying scheme for
which 1 guarantees boundedness and 0 applies no limiting; 1 is invariably used.
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E.2 Divergence Schemes

The divSchemes sub-dictionary contains divergence terms, i.e. terms of the form ∇·, excluding
Laplacian terms (of the form ∇ · (Γ∇...)). This includes both advection terms, e.g. ∇ · (U∇),
where velocity U provides the advective flux, and other terms, that are often diffusive in nature.
The fact that terms that are fundamentally different reside in one sub-dictionary means that the
default scheme in generally set to none in divSchemes. The non-advective terms then generally
use the Gauss integration with linear interpolation, e.g.

div(U) Gauss linear;

The treatment of advective terms is one of the major challenges in CFD numerics and so the
options are more extensive. The keyword identifier for the advective terms are usually of the
form div(phi,. . . ), where phi generally denotes the (volumetric) flux of velocity on the cell faces
for constant-density flows and the mass flux for compressible flows, e.g. div(phi,U) for the ad-
vection of velocity, div(phi,e) for the advection of internal energy, div(phi,k) for turbulent kinetic
energy, etc.

The schemes are all based on Gauss integration, using the flux phi and the advected field
being interpolated to the cell faces by one of a selection of schemes, e.g. linear, linearUpwind,
etc. There is a bounded variant of the discretisation, discussed later. Ignoring ‘V’-schemes
(with keywords ending “V”), and rarely-used schemes such as Gauss cubic and vanLeerV, the
interpolation schemes are as follows.

� linear: second order, unbounded.

� linearUpwind: second order, upwind-biased, unbounded (but much less so than linear),
that requires discretisation of the velocity gradient to be specified.

� LUST: blended 75% linear/ 25%linearUpwind scheme, that requires discretization of the
velocity gradient to be specified.

� limitedLinear: linear: scheme that limits towards upwind in regions of rapidly changing
gradient; requires a coefficient, where 1 is strongest limiting, tending towards linear as the
coefficient tends to 0.

� upwind: first-order bounded, generally too inaccurate to be recommended.

E.3 Surface Normal Gradients

It is worth explaining the snGradSchemes sub-dictionary that contains surface normal gradient
terms, before discussion of laplacianSchemes, because they are required to evaluate a Laplacian
term using Gaussian integration. A surface normal gradient is evaluated at a cell face; it is the
component, normal to the face, of the gradient of values at the centres of the 2 cells that the
face connects. A search for the default scheme for snGradSchemes reveals the following entries.

default corrected;

default limited corrected 0.33;

default limited corrected 0.5;

default orthogonal;

default uncorrected;

The basis of the gradient calculation at a face is to subtract the value at the cell centre on
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one side of the face from the value in the centre on the other side and divide by the distance.
The calculation is second-order accurate for the gradient normal to the face if the vector connect-
ing the cell centres is orthogonal to the face, i.e. they are at right-angles. This is the orthogonal
scheme.

Orthogonality requires a regular mesh, typically aligned with the Catersian co-ordinate sys-
tem, which does not normally occur in meshes for real world, engineering geometries. Therefore,
to maintain second-order accuracy, an explicit non-orthogonal correction can be added to the
orthogonal component, known as the corrected scheme. The correction increases in size as the
non-orthonality, the angle α between the cell-cell vector and face normal vector, increases.

As α tends towards 90 degrees, e.g. beyond 70 degrees, the explicit correction can be so
large to cause a solution to go unstable. The solution can be stabilised by applying the limited
scheme to the correction which requires a coefficient ψ, 0 ≤ ψ ≤ 1 where

ψ =


0 corresponds uncorrected

0.33 non orthogonal correction less than 0.5 times orthogonal part

0.5 non orthogonal correction less than the orthogonal part

1 corresponds to corrected

Typically, ψ is chosen to be 0.33 or 0.5, where 0.33 offers greater stability and 0.5 greater accu-
racy. The corrected scheme applies under-relaxation in which the implicit orthogonal calculation
is increased by arccosα, with an equivalent boost within the non-orthogonal correction. The un-
corrected scheme is equivalent to the corrected scheme, without the non-orthogonal correction,
so includes is like orthogonal but with the arccosα under-relaxation. Generally the uncorrected
and orthogonal schemes are only recommended for meshes with very low non-orthogonality
(e.g. maximum 5 degrees). The corrected scheme is generally recommended, but for maximum
non-orthogonality above 70 degrees, limited may be required. At non-orthogonality above 80
degrees, convergence is generally hard to achieve.

E.4 Laplacian Schemes

The laplacianSchemes sub-dictionary contains Laplacian terms. A typical Laplacian term is
∇ · (ν∇), the diffusion term in the momentum equations, which corresponds to the keyword
laplacian(nu,U) in laplacianSchemes. The Gauss scheme is the only choice of discretization
and requires a selection of both an interpolation scheme for the diffusion coefficient, i.e. ν in our
example, and a surface normal gradient scheme, i.e. ∇U. To summarize, the entries required are:

Gauss <interpolationScheme> <snGradScheme>

The following entries are available.

default corrected;

default limited corrected 0.33;

default limited corrected 0.5;

default orthogonal;

default uncorrected;
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