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Introduccion

La idea de que las categorias aditivas son anillos con varios objetos fue desarrollada convincente-
mente por Barry Mitchell (ver [65]) quien mostré que parte sustancial de la teoria de anillos no
conmutativos sigue siendo cierta en esta generalizacion. Aqui queremos enfatizar que a veces la
claridad en conceptos, afirmaciones y demostraciones se obtienen al tratar con categorias aditivas y
que teoremas familiares para anillos aparecen del desarrollo natural de la teoria de categorias. Por
ejemplo, las nociones de radical de un anilo, anillos perfectos y semiperfectos, dimensiones globales,
etc, han sido ampliamente estudiadas en el contexto de anillos con varios objetos (ver [20], [43],
[44], [45], [46], [47], [48], [50], [55], [69], [83], [85], [88], [90], [91]).

Como ejemplo del poder de este punto de vista esta el enfoque que M. Auslander e I. Reiten
dieron al estudio de la teoria de representaciones (ver por ejemplo [4], [5], [9], [10],[11], [12], [13],
[14], [15], [16], [17], [6]), los cuales dieron origen al concepto de sucesion que casi se divide. Hubo
dos enfoques diferentes a la existencia de sucesiones que casi se dividen. Uno fue inspirado por
[2] v se enfocd en mostrar que los funtores simples son finitamente presentados. Un ingrediente
esencial en esta demostracion es establecer una dualidad entre los funtores finitamente presenta-
dos contravariantes y covariantes. Esto llevd a la nocién de R-variedad dualizante, introducida e
investigada en [9]. Por lo tanto, la existencia de sucesiones que casi se dividen se demuestra en el
contexto de R-variedades dualizantes.

R-variedades dualizantes han aparecido en el contexto de k-categorias localmente acotadas so-
bre un campo k, categorias de modulos graduados sobre dlgebras de artin y también en conexién
con teoria de cubrimientos. M. Auslander e I. Reiten continuaron un estudio sistemaético de las
R-variedades dualizantes en [10], [11], [12]. Una de las ventajas de la nociéon de R-variedad dua-
lizante, definida en [9] es que esta proporciona un entorno comun para las categorias proj(A4) de
A-modulos proyectivos finitamente generados, mod(A) y mod(mod(A)); las cuales juegan un papel
importante en el estudio de un élgebra de artin A.

Por otro lado, en [8], Auslander-Platzeck-Todorov estudiaron ideales idempotentes en el caso de
mod(A), donde A es un élgebra de artin. Ellos probaron varios resultados fundamentales relaciona-
dos con ideales homolégicos y conectaron esta nocién con el contexto de algebras casi-hereditarias.
En el caso en que I es la traza de un moédulo proyectivo P, estudiaron como las propiedades ho-
mologicas de las categorias de mddulos finitamente generados sobre A y el anillo de endomorfismos
de P estan relacionadas.

Es natural extender este estudio al contexto de anillos con varios objetos. Esta extensiéon es
mejor expresada en el lenguaje de las R-variedades dualizantes. En las siguiente subsecciones
describimos nuestros resultados con mayor detalle.

vii
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0.1 Resumen de resultados

0.1.1 Resultados basicos y caracterizaciones homolb6gicas

Después de la introduccién, en el capitulo 1 recordamos algunas definiciones basicas y resultados
sobre Mod(C) y variedades dualizantes. Consideramos categorias preaditivas C y la nocion de ideal
en C. Nuestros primeros resutados son sobre categorias preaditivas. Iniciamos nuestro trabajo gene-
ralizando la adjuncion clasica para algebras de artin dada por Homy /7 (Y, Try /7 (X)) ~ Homy (Y, X)
al caso de anillos con varios objetos. Para ello, para un ideal Z consideramos la proyecion 7 : C —
C/Z y construimos el funtor m : C — C/Z que es el analogo de Tr,,; y probamos lo siguiente (ver
1.29).

Proposicion 0.1 El funtor m, : Mod(C/Z) — Mod(C) es adjunto a izquierda de ﬁ% i=QoTre :
Mod(C) — Mod(C/Z). Esto es, existe un isomorfismo natural.
0F,G : HomMOd(c) (W*(F), G) — HomMod(C/I) (F,ﬁ (G))

(4
z

para F € Mod(C/Z) y G € Mod(C).

En la seccion 2.1, estudiamos los funtores derivados Tor¢(—, —), obtenidos del producto ten-
sorial ®c¢ : Mod(C°?) x Mod(C) — Ab introducido en [4]; y también estudiamos los funtores
derivados EXti/[od(c)(—’—)- Con la ayuda de estos funtores derivados definimos el funtor de-
notado por EXTL(C/Z,—) y damos algunas caracterizaciones homolégicas de cuando el funtor
ﬁ% : Mod(C) — Mod(C/Z) preserva corresoluciones inyectivas de longitud k (ver proposiciones
2.3y 2.21).

Proposicion 0.2 Sea Z un ideal en C y w : C — C/T el funtor candnico. Entonces, tenemos el
siguiente diagrama

*
™

-
Mod(C/T) m.— Mod(C)
~— -
AT
z
donde (7*,m.) y (m., ") son pares adjuntos con m' := C(%,—) ~ ﬁ% y ™ = £®c. Sean G €
Mod(C) y0 - G — Iy — I — --+ — una corresolucion inyectiva de G y 1 < k < oo. Las

siguientes condiciones son equivalentes.

(a) 0 — ﬁ%(G) — i%(IO) — ﬁ%(h) — -+ — Tre(Iy) es el inicio de una corresolucion

inyectiva de ﬁ% (G) € Mod(C/T).

[«
z

(b) EXTL(C/Z,G) =0 for all 1 <i <k.
(¢) Para F € Mod(C/Z) los morfismos dados en 2.8
<P37,G : EXt%\/Iod(C/I) (F,ﬁ% (G) — Eth\Aod(C)(W*(F)a G),

son isomorfismos para 1 <1i < k.



0.1. RESUMEN DE RESULTADOS ix

0.1.2 Propiedad A y restricciéon a modulos finitamente presentados

En el capitulo 2, estudiamos condiciones en el ideal Z bajo las cuales podemos restringir nuestros
resultados previos en este trabajo (por ejemplo la proposicion 0.2), a la subcategoria mod(C) de los
C-modulos finitamente presentados. Introducimos la condicion A en el ideal Z (ver definicion 2.37),
y probamos que si un ideal satisface la propiedad A entonces podemos restringir nuestra atencion
al caso de moédulos finitamente presentados. En particular, demostramos que si C es una variedad
dualizante e Z es un ideal que satisface la propiedad A entonces C/Z es también una variedad
dualizante (ver 2.33). En este contexto, tenemos lo siguiente (ver 2.36)

Proposicion 0.3 Sean C una R-variedad dualizante e Z un ideal tal que para todo objeto C' € C
existen epimorfismos Home(C',—) — Z(C,—) — 0 y Home(—,C") — Z(—,C) — 0. Sea
w1 : C — C/I el funtor candnico, entonces podemos restringir el diagrama dado en 0.2 a los
modulos finitamente presentados.

«
St

-~
mod(C/Z) —(r1).— mod(C)
~—
w;
Finalizamos la seccién 2.2 dando ejemplos de ideales que satisfacen la propiedad A, un importante
ejemplo es el ideal de los morfismos que se factorizan a través de objetos de una subcategoria aditiva

funtorialmente finita de C (ver proposicion 2.42).

0.1.3 Ideales k-idempotentes

En la secciéon 3.1 introducimos la nocién de ideal k-idempotente en categorias preaditivas de ma-
nera similar a la dada por Auslader-Reiten-Todorov en [8] (ver definicién 3.2). Describimos los
ideales idempotentes en términos del anulamiento de ciertos funtores derivados. En este contexto
demostramos el siguiente resultado (ver 3.4 y 3.5).

Proposicion 0.4 Sean C una categoria preaditiva, T un ideal en C y 1 <i<kyw:C — C/T el
funtor candnico. Las siguientes afirmaciones son equivalentes.

(a) T es k-idempotente.

(b) @%’m(F,) : Exthod(c/j)(F, Fy — Ext%vmd(c)(m(F),ﬁ*(F')) es un isomorfismo para todos
F,F' € Mod(C/ZT) y todo 0 <i < k.

¢) EXTL(C/T,F' o) =0 para 1 < i <k y para F' € Mod(C/T).
C
(d) EXTL(C/Z,J o) =0 para 1 <i <k y para cada J € Mod(C/T) inyectivo.

Mas aun, si el ideal Z satisface la propiedad A y C es una R-variedad dualizante, usando la
dualidad de Auslander-Reiten damos caracterizaciones de cuando Z es k-idempotente en términos
de los funtores Exty, qc)(— —) ¥ Tor§ (—, —) (ver 3.15).

Corolario 0.5 Sea C una R-variedad dualizante y T un ideal que satisface la propiedad A y sea
1 <i < k. Las siguientes afirmaciones son equivalentes.
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(a) T es k-f.p-idempotente

(b) <p%7(m)*(F,) : Extfnod(c/l)(F, F'y — Extfnod(c)((m)*(F), (m1)«(F")) es un isomorfismo para
todos F, F' € mod(C/ZT) y para todo 0 < i < k.

¢) EXTL(C/T,F' omy) =0 para 1 < i <k y para F' € mod(C/T).
c

(d) EXTL(C/T,Jom) =0 para 1 <i <k y para cada J € mod(C/T) inyectivo.

c/T

%

(f) 7/1377(771)*(17/) : TOI‘S(FO 772,F/ ° 71'1) — s Tor
F € mod((C/Z)°P) y F' € mod(C/T).

(F,F") es un ismorfismo para todo 1 <1 <k y

(9) TORS(C/Z,F' om;) =0 para 1 <i < k y para todo F' € mod(C/T).

h T@RCCI,HomCIC,f om) =0 para 1 <1i <k y para todo Hom¢,7(C, —) € mod(C/Z).
i / /

0.1.4 Resoluciones proyectivas de ideales k-idempotentes

En la seccion 3.2, probamos el lema de la base dual para la categoria Mod(C) (ver 3.16. Dado un
moédulo proyectivo P, introducimos el ideal traza Z := TrpC (ver definicién 3.19). Probamos varios
resultados clésicos sobre ideales que son traza de moédulos proyectivos, por ejemplo demostramos
que TrpC es un ideal idempotente (ver proposiciones 3.20 and 3.22). En esta seccion, también
mostramos que si C es una R-variedad dualizante y P = Hom¢(C, —) entonces TrpC satisface la
propiedad A (ver proposicion 3.30). Siguiendo [8], estudiamos resoluciones proyectivas de ideales
k-idempotentes. Para ello, para P € mod(C) un modulo proyectivo y para 0 < k < oo introducimos
P, la subcategoria plena de mod(C) consistente en los C-médulos X que tienen una resolucion
proyectiva

"'PnHPnfl Pl PO X 0

con P; € add(P) para 0 < i < k (ver definicién 3.35). De manera dual, se introduce la subcategoria
I (ver definicion 3.41). Luego probamos lo siguiente (ver 3.38).

Proposicion 0.6 Sean C una R-variedad dualizante, P = Hom¢(C,—) € mod(C) un mddulo
proyectivo y T = TrpC. Para 1 < k < oo, las siguientes condiciones somn equivalentes para
X € mod(C).

(CL) X e Py.
(b) Extfnod(c)(X, (m1)«(Y)) =0 para todo Y € mod(C/Z) ei=0,...,k.
(c) Extfmd(c)(X7 (m1)«(J)) = 0 para todo J € mod(C/I) inyectivo e i =0,..., k.

También demostramos lo siguiente (ver 3.39), que es una generalizacion del resultado [8, Teorema
2.1].

Proposicion 0.7 Sean C una R-variedad dualizante, P = Hom¢(C,—) € mod(C) un mddulo
proyectivo y T = TrpC. Entonces T es k + 1-idempotente si y sdélo si Z(C',—) € Py para todo
C'eCyl<k<oo.
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0.1.5 Un recollement candénico

Al generalizar los resultados dados en [8], consideramos P = Hom¢(C,—) € mod(C) y Rp :=
Endyoa(c)(P) y estudiamos el funtor Homy,eq(cy (P, —) : mod(C) — mod(Rp) y coémo relaciona
propiedades homologicas de mod(C) y mod(Rp). Luego, en el capitulo 4 obtenemos la siguiente
generalizacion natural de un recollement bien conocido (ver por ejemplo [4, seccion 5] y [76, ejemplo
3.4]) al contexto de R-variedades dualizantes (ver 4.12).

Proposicion 0.8 Sean C una R-variedad dualizante y P = Home(C,—) € Mod(C) un mddulo
proyectivo finitamente generado y sean B = add(C) y Rp = Endyoq(c)(P)?P. Entonces, existe un

recollement
m #ﬁm

mod(C/Ig) — mod(C) oo (P) mod(Rp)
c(C/Is,—) Hom g, (P*,—)

donde Ip es el ideal de los morfismos en C que se factorizan a través de objetos en B. Mads aun,
tenemos que Iy = TrpC.

Entonces, desde el punto de vista de la teoria de localicacién de Gabriel tenemos que mod(Rp)
es una categoria cociente de mod(C) (ver 4.37). Esto es, tenemos una equivalencia de categorias

mod(C)/Ker(Homyoq(c)(P, —)) ~ mod(Rp).

También estudiamos las nociones de modulo proyectivamente presentado (inyectivamente copresen-
tado) sobre P (ver definicién 4.14) y damos caracterizaciones en términos del anulamiento de los
funtores Homp,oq(c)(—, —) ¥ Ext}nod(c)(—, —) (ver 4.28).

Proposicion 0.9 Sean C una R-variedad dualizante P = Home(C,—) € mod(C). Entonces las
siguientes afirmaciones se cumplen.

(a) M € F.P.P(P) siy solo si Hompyeqc)(M,N) =0y Extrlnod(c)(M, N) = 0 para todo N €
mod(C) con N € Ker(Homy,oq(c)(P, —)).

(b) N € F.IC(P) si y solo si Homypoq(ey)(M,N) = 0 y Extllnod(c)(M, N) = 0 para todo M €
mod(C) con M € Ker(Homyeqc) (P, —))-

Finalmente, demostramos que mod(Rp) es equivalente a ciertas subcategorias de mod(C). Esto
es, probamos el siguiente resultado (ver 4.35), el cual es una generalizacion de uno dado por
Auslander-Reiten-Todorov (ver [8, Lema 3.1]).

Proposition 0.10 Sean C una R-variedad dualizante y P = Home(C, —) € mod(C). Consideremos
el funtor Homy,oq(c) (P, —) : mod(C) — mod(Rp). Entonces lo siguiente se cumple.

(a) Tenemos equivalencias
Homyoq(ey (P —)|p, : P1 — mod(Rp)

Hommod(C) (P7 _)|]I1 L — mOd(RP)
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(b) Consideremos el morfismo
PX,Y
Homymod(e) (X, V) 2> Homp,, (Hommod(c) (P, X), Homyoa(c) (P, Y)) .

Entonces:
(i) pxy es un monomorfismo si X € Py oY € I,
(ii) px,y es un isomorfismo si X € Py y Y € I,
(iii) px,y es un isomorfismo si X € P1 oY €1;.
(¢c) El funtor Homy,oq(c) (P, —) induce una equivalencia de categorias entre add(P) y la categoria

de Rp-mddulos proyectivos y entre add(J) y la categoria de Rp-mddulos inyectivos, donde J

es la envolvente inyectiva de (P

0.1.6 Extensiones sobre el anilo de endomorfismos de un médulo proyec-
tivo

En el capitulo 5, estudiamos algunas propiedades homolégicas del funtor Homy,q(c) (P, —) : mod(C) —
mod(Rp) y como se relaciona con ideales k-idempotentes, en particular con el ideal TrpC. Enfo-
camos nuestra atencion en el estudio de los siguientes morfismos naturales inducidos por Homy,oq(c) (P, —)

Homymodce) (X, V) 22 Homp,, (Hommod(c) (P, X), Hompoq(c) (P, Y)) .

Exploramos la relacion entre corresoluciones inyectivas en mod(C) y mod(Rp). Por definicion se
tiene que
I,C--C---I;---CI; CI

Una cadena similar se tiene para Py. De particular interés es trabajar suponiendo que I; = I ..
En esta direccion, demostramos lo siguiente (ver 5.5). Este resultado es una generalizacion de [8,
Corollary 3.4].

Proposiciéon 0.11 Sean C una R-variedad dualizante y P = Home(C, —) € mod(C). Si Py = Po
oI} = I entonces gl.dim(Rp) < gl.dim(mod(C)).

Dada una R-variedad dualizante C podemos construir las categorias P; and I} (de manera
analoga a Py y 1) en la categoria mod(C°?) y usando la dualidad probamos lo siguiente (ver 5.11).

Proposicion 0.12 Sean C una R-variedad dualizante y P = Home(C, —).
(a) Entonces tenemos que X € Py si y solo si De(X) € I7.

(b) Entonces tenemos que X € I, si y solo si D¢(X) € Py.
Usando propiedades de los siguiente morfismos inducidos por el morfismo pxy
By 1 Extlyoqioy(X,Y) — Exth, (Hommod(c)(R X), Homymoacc) (P, Y))

probamos la siguiente caracterizacién de los elementos en la categoria [, en términos del anulamiento
del funtor Ext% , (—, —) en la categoria mod(Rp) (ver 5.13).
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Proposiciéon 0.13 Sea C una R-variedad dualizante y P = Home(C,—) € mod(C). Sean X € I}
y k> 1. Entonces X € 1, si y solo si

Exty,, (P*(C"), (P, X)) =0
para todo 1 < i <k —1 y para todo C’' € C.

Usando dualidad tenemos el resultado dual a la dltima proposicion (see 5.14). La proposicion
0.13 es una generalizacion del resultado dado en [8, Proposition 3.7]. También demostramos el
siguiente resultado (see 5.15), el cual es una generalizacion de [8, Corollary 3.8].

Proposicion 0.14 Sean C una R-variedad dualizante y P = Home(C, —) € mod(C). Se cumple lo
siguiente.

(a) Iy =l siy sdlo si P*(C') = Homyeq(c)(P, Home (C, —)) es un Rp-mddulo proyectivo para
todo C' € C.

(b) Py =Py siy solo si P(C') ~ Homypeq(c)(Home (C7, =), P) es un RY’-mddulo proyectivo para
todo C' € C.

0.1.7 Condiciones para [ =, y algunas aplicaciones

Continuando con las dos udltimas proposiciones (0.13 and 0.14), en la seccion 6.1 damos otras
condiciones necesarias y suficientes para que I; sea igual a I,. Demostramos el siguiente resultado
(ver 6.3), el cual es una generalizacion de [8, proposition 4.5].

Proposicion 0.15 Sean C una R-variedad dualizante y P = Home(C, —) € mod(C). Las siguientes
afirmaciones son equivalentes

(a) Hl = Hoo
(b) P ®g, Homyioq(c) (P, Home(C', —)) es un C-mddulo proyectivo para todo C' € C.

También demostramos lo siguiente (ver 6.4), lo cual es una generalizacion de [8, proposition
5.1].

Proposicion 0.16 Sean C una R-variedad dualizante, P = Hom¢(C,—) € mod(C) y Z = TrpC.
Las siguientes afirmaciones son equivalentes.

(a) T es 2-idempotente y I; = I;
(b) Z(C',—) es un C-mddulo proyectivo para todo C' € C.

El daltimo resultado es importante porque se relaciona con la nocién de categoria casi-hereditaria
desarrollada en [71]. La condicion de que Z(C’, —) sea proyetivo es parte de la definicion de ideal de
herencia dada en [71]. Como consecuencia de 0.16, mostramos que bajo ciertas ciertas condiciones
somos capaces de producir dlgebras casi-hereditarias. Mas precisamente, tenemos lo siguiente (ver
6.5).

Proposicion 0.17 Sea C una R-variedad dualizante con cokerneles y consideremos P = Hom¢ (C, —) €
mod(C). Si Z(C’,—) es proyectivo para todo C’ € C. Entonces tenemos que Rp es casi-hereditaria.
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Finalmente tenemos la siguiente aplicacion a categorias derivadas (ver 6.6). Este resultado

es una generalizacion de un resultado bien conocido para la categoria Mod(R) donde R es anillo
asociativo.

Proposition 0.18 Sean C una R-variedad dualizante, P = Hom¢(C,—) € mod(C) y Z = TrpC.
Consideremos el funtor ., : mod(C/Z) — mod(C). Si Z(C',—) es proyectivo para todo C' € C,
tenemos el siguiente encaje

D’(,) : D*(mod(C/Z)) — D’(mod(C))
entre categorias derivadas acotadas.

Finalmente, en el apéndice A recolectamos algunas propiedades de funtores derivados, las cuales
usamos en el trabajo. En el apéndice B damos algunas propiedades bien conocidas sobre cubiertas
proyectivas y teoria general de categorias.



Introduction

The idea that additive categories are rings with several objects was developed convincingly by
Barry Mitchell (see [65]) who showed that a substantial amount of noncommutative ring theory is
still true in this generality. Here we would like to emphazise that sometimes clarity in concepts,
statements, and proofs are gained by dealing with additive categories, and that familiar theorems
for rings come out of the natural development of category theory. For instance, the notions of rad-
ical of an additive category, perfect and semisimple rings, global dimensions etc, have been amply
studied in the context of rings with several objects (see [20], [43], [44], [45], [46], [47], [48], [50], [55],
[69], [83], [85], [88], [90], [91])-

As an example of the power of this point of view is the approach that M. Auslander and I. Reiten
gave to the study of representation theory (see for example [4], [5], [9], [10],[11], [12], [13], [14],
[15], [16], [17], [6]), which gave birth to the concept of almost split sequence. There were two
different approaches to the existence of almost split sequences. One was inspired by [2] and focused
on showing that simple functors are finitely presented. An essential ingredient in this proof is to
establish a duality between finitely presented contravariant and finitely presented covariant func-
tors. This led to the notion of dualizing R-varieties, introduced and investigated in [9]. Therefore
the existence of almost split sequences is proved in the context of dualizing R-varieties. Dualizing
R-varieties have appeared in the context of locally bounded k-categories over a field k, categories
of graded modules over artin algebras and also in connection with covering theory. M. Auslander
and I. Reiten continued a systematic study of R-dualizing varieties in [10], [11], [12]. One of the
advantages of the notion of dualizing R-variety defined in [9] is that it provides a common setting
for the category proj(A) of finitely generated projective A-modules, mod(A) and mod(mod(A4));
which all play an important role in the study of an artin algebra A.

On the other hand, in [8], Auslander-Platzeck-Todorov studied idempotent ideals in the case of
mod(A) where A is an artin algebra. They proved several fundamental results related to homolog-
ical ideals and they connected such a notion with the context of quasi-hereditary algebras. In the
case that I is the trace of a projective module P, they studied how the homological properties of
the categories of finitely generated modules over A, A/I and the endomorphism ring of P are related.

It is natural to extend this study to the setting of rings with several objects. This extension is
better expressed in the language of dualizing R-varieties. In this thesis we generalize several results
given in [8] to the context of dualizing varieties. In the following subsections we describe our results
in more detail.

XV
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0.2 Summary of results

0.2.1 Basic results and homological characterizations

After the introduction, in chapter 1 we recall basic definitions and results about Mod(C) and dual-
izing varieties. We consider preadditive categories C and the notion of ideal in C. Our firsts results
are on general preadditive categories C. We start our work by generalizing the classical adjunction
for artin algebras given by Homy ,; (Y, Try (X)) ~ Homa (Y, X) to the case of rings with several
objects. In doing so, for an ideal Z we consider the projection 7 : C — C/Z and we construct a
functor ﬁ% which is the analogous to Try,; and we prove the following (see 1.29).

Proposition 0.19 The functor m. : Mod(C/Z) — Mod(C) is left adjoint to ﬁ% = QoTr
Mod(C) — Mod(C/Z). That is, there exists a natural isomorphism

[NleY

GF,G : HomMOd(c) (W*(F), G) — HomMod(c/I) (F, ﬁ% (G))
for F € Mod(C/Z) and G € Mod(C).
In section 2.1, we study the derived functors Tor§(—,—) coming from the tensor product

®c : Mod(C°?) x Mod(C) — Ab introduced in [4]; and we also study the derived functors
Extf\/lod(c) (=, —). With the help of this derived functors, we define a functor denoted by EXT%(C/Z, —)
and we give homological characterizations of when the functor Tre : Mod(C) — Mod(C/Z) pre-
serve injective coresolutions of length k (see propositions 2.3 and 2.21).

Proposition 0.20 Let Z be an ideal in C and n : C — C/Z the canonical functor. Then we have
the following diagram

A/k
Mod(C/T) m.—> Mod(C)
-~
'=Tr¢

)
G € Mod(C) and 0 —» G — Iy — I — --- — an injective coresolution of G and 1 < k < oo. The
following conditions are equivalent.

where (7*,7,) and (m.,7) are adjoint pairs with ™' = C(%,~) ~ ﬁ% and ™ = $®c. Let

(a) 0 — ﬁ%(G) — ﬁ%([g) — ﬁ%(h) — e = ﬁ%(Ik) is the beginning of an injective
coresolution of ﬁ% (@) € Mod(C/T).

(b) EXTL(C/Z,G) =0 for all 1 <i < k.
(¢) For F' € Mod(C/ZI) the morphisms given in 2.8
(G)) — Extioace) (m(F), G),

Y a t Extipoqe/m (F, Tr

c
T

are isomorphisms for 1 <i <k,
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0.2.2 Property A and restriction to finitely presented modules

In chapter 2, we study conditions on the ideal Z under which we can restrict our previous results
in this paper (for example proposition 0.20), to the subcategory mod(C) of the finitely presented
C-modules. We introduce the condition A on the ideal Z (see definition 2.37), and we prove that
if an ideal satisfies property A then we can restrict our attention to the case of finitely presented
modules. In particular, we proved that if C is a dualizing variety and Z is an ideal satisfying the
property A then C/Z is also a dualizing variety (see 2.33 ). In this context, we have the following
(see 2.36)

Proposition 0.21 Let C be a dualizing R-variety and T an ideal such that for every object C' € C
there exists epimorphisms Home(C',—) — Z(C,—) — 0 and Hom¢(—,C") — I(—,C) — 0.
Let my : C — C/T the canonical functor, then we can restrict the diagram given in 0.20 to the
finitely presented modules

"
!

— T
mod(C/Z) —(m1).— mod(C)
~~—

!
1

We finish section 2.2 by giving examples of ideals satisfying property A, one important example is
the ideal of morphisms which factor through objects of a functorially finite and additive subcate-
gory of C (see proposition 2.42).

0.2.3 k-idempotent ideals

In section 3.1, we introduce the notion of k-idempotent ideal in preadditive categories in a similar
way to the given by Auslander-Reiten-Todorov in [8] (see definition 3.2). We describe the idem-
potent ideals in terms of the vanishing of certain derived functors. In this context we proved the
following result (see 3.4 and 3.5)

Proposition 0.22 Let C be a preadditive category, T an ideal inC and1 <i<kandw:C — C/T
the canonical functor. The following are equivalent

(a) T is k-idempotent.

(b) @}J*(F,) : EXt%\/Iod(C/I) (F,F') — EXt%\/Iod(C) (7 (F), e (F")) is an isomorphism for all F, F' €
Mod(C/Z) and for all 0 < i < k.

(c) EXTL(C/Z,F' o) =0 for 1 <i <k and for F’ € Mod(C/T).
(d) EXTL(C/T,Jom) =0 for 1 <i <k and for each J € Mod(C/T) which is injective.

Moreover, if the ideal Z satisfies property A and C is a dualizing R-variety, by using Auslander-
Reiten duality we give characterizations of when Z is k-idempotent in terms of the functors
Ext}yoacc)(— —) and Tor{ (—, —) (see 3.15).

Corollary 0.23 Let C be a dualizing R-variety and Z an ideal which satisfies property A and let
1 <i<k. The following are equivalent

(a) T es k-f.p-idempotent
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(b) <p3,7(m)*(F,) : Extfnod(c/l)(F, F'y — Extfnod(c)((m)*(F), (m1)«(F")) is an isomorphism for all
F,F’ € mod(C/T) and for all 0 < i < k.

(¢) EXTL(C/Z, F' o) =0 for 1 <i <k and for F’ € mod(C/T).
d) EXTSL(C/Z,Jom) =0 for 1 <i <k and for each J € mod(C/Z) which is injective.
( c

) w%,(m)*(F’) : Tor$ (F oy, F o) —» TorS/I(F, F') is an isomorphism for all 1 <i <k and
F € mod((C/Z)°P) and F' € mod(C/Z).

(9) TORS(C/Z,F' om) =0 for 1 <i <k and for all F’ € mod(C/T).

(h) TORS(C/Z, Homez(C,—)om) =0 for 1 <i <k and for all Hom¢,7(C, —) € mod(C/Z).

0.2.4 Projective resolutions of k-idempotent ideals

In section 3.2, we prove the dual basis lemma for the category Mod(C) (see 3.16). Given a projective
module P, we introduce the trace ideal Z := TrpC (see definition 3.19). We prove several classical
results about ideals which are trace of projective modules, for example we prove that TrpC is an
idempotent ideal (see propositions 3.20 and 3.22). In this section, we also show that if C is a
dualizing R-variety and P = Hom¢(C, —) then TrpC satisfies property A (see proposition 3.30).
Following [8], we study projective resolutions of k-idempotent ideals. In doing so, for P € mod(C)
a projective module and for 0 < k < oo we introduce Py to be the full subcategory of mod(C)
consisting of the C-modules X having a projective resolution

oP,—> P, P Py X 0

with P; € add(P) for 0 < i < k (see definition 3.35). Dually, it is introduced the subcategory Iy
(see definition 3.41). Then we proved the following (see 3.38)

Proposition 0.24 Let C be a dualizing R-variety, P = Home(C, —) € mod(C) a projective module
and T =TrpC. For 1 < k < oo, the following conditions are equivalent for X € mod(C).

(a) X € Py.
(b) Extloaic)(X, (m1)+(Y)) =0 for all Y € mod(C/I) and i =0,... k.
(c) Extfnod(c)(X, (m1)«(J)) =0 for all J € mod(C/T) injective and i =0, ..., k.
We also prove the following (see 3.39), which is a generalization of the result [8, Theorem 2.1].

Proposition 0.25 Let C be a dualizing R-variety, P = Hom¢(C, —) € mod(C) a projective module
and T = TrpC. Then T is k + 1-idempotent if and only if Z(C',—) € Py for all C' € C and
1<k <.

0.2.5 A canonical recollement

When generalizing the results given in [8], we consider P = Hom¢(C,—) € mod(C) and Rp :=
Endpyoq(e)(P)° and we study the functor Homp,eq(cy(P, —) : mod(C) — mod(Rp) and how it
relates homological properties of mod(C) and mod(Rp). Then, in chapter 4, we obtain the following
natural generalization of a well known recollement (see for example [4, section 5] and [76, example
3.4]) to the setting of dualizing R-varieties (see 4.12)
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Proposition 0.26 Let C be a dualizing R-variety and P = Home(C, —) € Mod(C) a finitely gen-
erated projective module and let B = add(C) and Rp = Endyioqc)(P)?. Then, there exist a

recollement
yﬁm m\

mod(C/Ip) - mod(C) E——— mod(Rp)
eC/Is,—) Homp, (P*,—)

where I is the ideal of morphisms in C which factor through objects in B. Moreover we have that
Ip =TrpC.

Then, from viewpoint of the Gabriel localization theory we have that mod(Rp) is a quotient category
of mod(C) (see 4.37). That is we have an equivalence of categories

mod(C)/Ker(Hom,,oq(c) (P, —)) ~ mod(Rp).

We also study the notions of projectively presented (injectively copresented) module over P (see
definition 4.14) and we give characterizarions for the modules being projectively presented (see for
example 4.18). We also give the following characterization in terms of the vanishing of the functors
Homyyoq(cy(—, —) and Extinod(c)(—, —) (see 4.28).

Proposition 0.27 Let C be a dualizing R-variety and P = Home(C,—) € mod(C). Then the
following hold.

(a) M € F.P.P(P) if and only if Homyeqe)(M,N) = 0 and Extﬂnod(c)(M, N) =0 forall N €
mod(C) with N € Ker(Homy,q(c)(P, —)).

(b) N € F.ILC(P) if and only if Homyioqc)(M,N) = 0 and Extinod(c)(M, N) =0 for all M €
mod(C) with M € Ker(Hompsacc)(P, —))-

Finally, we prove that mod(Rp) is equivalent to certain subcategories of mod(C). That is, we
prove the following result (see 4.35) which is a generalization of one given by Auslander-Reiten-
Todorov (see [8, Lemma 3.1]).

Proposition 0.28 Let C be a dualizing R-variety and P = Hom¢(C,—) € mod(C). Consider the
functor Homy,q(cy (P, —) : mod(C) — mod(Rp). Then the following hold.

(a) We have equivalences
Homy,oq(cy (P, —)|p, : P1 — mod(Rp)

Hom,oq(c) (P, —)|r, : It — mod(Rp)
(b) Consider the map
PX,Y
Homy,oq(cy (X,Y) —— Homg, (Hommod(c) (P, X), Homyoq(c) (P, Y))

Then:
(i) px,y is a monomorphism if either X € Py orY € I,

(i) pxy is an isomorphism if X € Py and Y € I,
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(111) px,y is an isomorphism if either X € Py orY €.
c) The functor Homy,oq(c) (P, —) induces an equivalence of categories between add(P) an the cat-
©)

egory of projective Rp-modules and between add(J) and the category of injective Rp-modules,

where J is the injective envelope of %.

0.2.6 Extensions over the endomorphism ring of a projective module

In chapter 5, we study some homological properties of the functor Homysq(c)(P, —) : mod(C) —
mod(Rp) and how it relates to k-idempotent ideals, in particular to the ideal TrpC. We focus our
attention on the study of the following natural morphism induced by Hom,eq(c) (P, —)

PX,
Hommod(C) (Xa Y) % HomRP (Hommod(C) (Pv X)a Hommod(C) (P7 Y)) .

We explore the relationship between injective coresolutions in mod(C) and mod(Rp). By definition
it follows that
I,C--C---I;---CI CI

A similar chain holds for P,. Of particular interest is working under the assumption that Iy = I ..
In this direction, we proved the following (see 5.5). This result is a generalization of [8, Corollary
3.4].

Proposition 0.29 Let C be a dualizing R-variety and P = Home(C, —) € mod(C). If P; = Py, or
I} =TI then gl.dim(Rp) < gl.dim(mod(C)).

Given a dualizing R-variety C we can construct the categories Py and I} (analogous to Py and
I) in the category mod(C°P) and using duality we prove the following (see 5.11).

Proposition 0.30 Let C be a dualizing R-variety y P = Home(C, —).
(a) Then we have that X € Py if and only if De(X) € I}.

(b) Then we have that X € I}, if and only if De(X) € Py

Using properties of the following morphisms induced by the map px vy
<I)fX,Y : Ethnod(C) (X7 Y) — Ethép (Hommod(C) (P7 X)a Hommod(C) (Pa Y))

we prove the following characterization of the elements in the category I in terms of the vanishing
of the functor Ext (—, —) in the category mod(Rp) (see 5.13).

Proposition 0.31 Let C be a dualizing R-variety and P = Home(C,—) € mod(C). Let X € I
and k > 1. Then X € Iy if and only if

Exty,, (P*(C"), (P, X)) =0
forall1<i<k-—1 and for all C' € C.

Using duality we have the dual result to the last proposition (see 5.14). Proposition 0.31 is a
generalization of the result given in [8, Proposition 3.7]. We also prove the following result (see
5.15), which is a generalization of [8, Corollary 3.8].
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Proposition 0.32 Let C be a dualizing R-variety and P = Hom¢(C,—) € mod(C). The following
holds.

(a) Iy = I if and only if P*(C') = Homy,eq(c) (P, Home(C', —)) is a projective Rp-module for
allC" € C.

1 =Py if and only 1 ~ Hom,oq(c)(Home (C7, —), 1§ a projective -module for
b) P Py if and only if P(C’ H ) (H c’ P RY dule f
all C' € C.

0.2.7 Conditions for I; =, and some applications

Because of the last two propositions (0.31 and 0.32), in section 6.1 we give other necessary and
sufficient conditions for I; to be equal to I,. We proved the following result (see 6.3 ), which is a
generalization of [8, proposition 4.5]

Proposition 0.33 Let C be a dualizing R-variety and P = Home(C,—) € mod(C). The following
statements are equivalent

(a) Hl = Hoo
(b) P ®g, Homyioq(cy (P, Home(C’, —)) is a projective C-module for all C' € C.
We also prove the following (see 6.4), which is a generalization of [8, proposition 5.1]

Proposition 0.34 Let C be a dualizing R-variety, P = Home(C, —) € mod(C) and T = TrpC.
The following statements are equivalent.

(a) T is 2-idempotent and Iy = Io;
(b) Z(C',—) is a projective C-module for all C' € C.

The last result is important because it is related to the notion of quasi-hereditary categories de-
veloped in [71]. The condition of Z(C’, —) being projective is part of the definition of heredety
ideal given in [71]. As a consecuence of 0.34, we show that under certain conditions we are able to
produce quasi-hereditary algebras. More precisely, we have the following (see 6.5).

Proposition 0.35 Let C be a dualizing R-variety with cokernels and consider P = Hom¢(C, —) €
mod(C). If Z(C', —) is projective for all C' € C. Then we have that Rp is quasi-hereditary.

Finally we have the following application to derived categories (see 6.6). This result is a gener-
alization of a well known result for the category Mod(R) where R is an associative ring.

Proposition 0.36 Let C be a dualizing R-variety, P = Hom¢(C,—) € mod(C) and T = TrpC.
Consider the functor m, : mod(C/Z) — mod(C). If Z(C’, —) is projective for all C' € C, we have
a full embedding

D’(7,) : D’(mod(C/Z)) — D’(mod(C))

between its bounded derived categories.
Finally, in appendix A we recollect some homological facts of derived functors, which we use

in this work. In appendix B we give some well known properties of projective covers and general
category theory.
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Chapter

Preliminaries

In this chapter we introduce the theoretical bases on which all the work will be based. We recall
basic definitions and results about rings with several objects, as a theory that generalizes most of
noncommutative homological rings properties. This point of view was developed by Barry Mitchell
in [65]. In this sense we will see the category (Mod)(C') associated to a small preaddtive category
C and its main properties.

We see the definition of the tensor product ®¢ : Mod(C°?) x Mod(C) — Ab. Given an additive
subcategory of C we will obtain adjoint pairs of functors between their module categories.

We recall Krull-Schmidt categories. As a particular case we will see a fundamental concept in this
work: dualizing varieties, introduced by Auslander and Reiten in [9] as a generalization of artin
algebras. Then, this theory can be seen as a generalization of the theory of representations of artin
algebras.

Finally, we will construct the trace functor associated to a family of C—modules and we will prove
that it induces and adjoint pair.

1.1 Categorical Foundations and Notations

We recall that a category C together with an abelian group structure on each of the sets of mor-
phisms C(Cy, Cy) is called preadditive category provided all the composition maps C(C,C") x
C(C’",C") — C(C,C") in C are bilinear maps of abelian groups. A covariant functor F : C; — Cy
between preadditive categories C; and Cs is said to be additive if for each pair of objects C' and
C’" in Cy, the map F : C1(C,C") — Co(F(C), F(C")) is a morphism of abelian groups. Let C and
D be preadditive categories and Ab the category of abelian groups. A functor F : C x D — Ab
is called biadditive if F : C(C,C") x D(D,D’) — Ab(F(C,D),F(C’,D’)) is biadditive, that is,
F(f+f,9)=F(f,.9)+F(f'.g)and F(f,g+¢')=F(f.9)+F(f,9)-

If C is a preadditive category we always consider its opposite category C°P as a preadditive category
by letting C°?(C’,C) = C(C,C"). We follow the usual convention of identifying each contravariant
functor F' from a category C to D with the covariant functor F' from C°P to D.

An arbitrary category C is small if the class of objects of C is a set. An additive category is a
preadditive category C such that every finite family of objects in C has a coproduct. Given a small
preadditive category C and D a preadditive category, we denote by (C,D) the category of all the
covariant additive functors.
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1.2 The category Mod(C)

Throughout this section C will be an arbitrary small preadditive category, and Mod(C) will denote
the category of additive covariant functors from C to the category of abelian groups Ab, called the
category of C-modules. This category has as objects the functors from C to Ab, and a morphism f :
M; — M> of C-modules is a natural transformation, that is, the set of morphisms Home (M7, Ms)
from M; to My is given by Nat(Mi, Ms). Sometimes we will write for short, C(—,?) instead of
Home¢(—,?) and when it is clear from the context we will use just (—,?).

As usual Mod(C°?) will be identified with the category of additive contravariant functors from C
to Ab. We now recall some properties of the category Mod(C), for more details consult [4]. The
category Mod(C) is an abelian category with the following properties:

1. A sequence

M1*f>M2*g>M3

is exact in Mod(C) if and only if

My (C) L5 My(C) 29 My (C)

is an exact sequence of abelian groups for each C' in C.

2. Let {M;}ier be a family of C-modules indexed by the set I. The C-module H M; defined by
(ZIE_[IM) o) = i]é[I M;(C) for all C in C, is a direct sum for the family {M }zel in Mod(C),
where ZJéIIMi(C) is the direct sum in Ab of the family of abelian groups {M;(C)};er. The
C-module [] M; defined by ([[M;) (C) = [[ M;(C) for all C'in C, is a product for the family

Bel icl iel
{M;}ier in Mod(C), where [] M;(C) is the product in Ab.
iel

3. For each C in C, the C-module (C, —) given by (C,—)(X) = C(C, X) for each X in C, has the
property that for each C-module M, the map ((C,—), M) — M(C) given by f — fc(1lc)
for each C-morphism f : (C,—) — M is an isomorphism of abelian groups. We will often
consider this isomorphism an identification. Hence

(a) The functor P : C — Mod(C) given by P(C) = (C, —) is fully faithful.
(b) For each family {C;}icr of objects in C, the C-module 'IEJIP(Ci) is a projective C-module.

(c) Given a C-module M, there is a family {C;};cr of objects in C such that there is an
epimorphism _IG_IIP(Ci) — M — 0.

1.3 Change of Categories

The results that appear in this subsection are directly taken from [4]. Let C be a small category.
There is a unique (up to isomorphism) functor ®@¢ : Mod(C°?) x Mod(C) — Ab called the tensor
product. The abelian group ®¢ (A4, B) is denoted by A®¢ B for all C°P-modules A and all C-modules
B.

Proposition 1.1 The tensor product has the following properties:
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1. (a) For each C-module B, the functor ®c¢B : Mod(C°?) — Ab given by (2¢B)(A) = A®¢ B
for all C°P-modules A is right exact.

(b) For each C°P-module A, the functor AQ¢ : Mod(C) — Ab given by (A®¢)(B) = A®c¢ B
for all C-modules B is right exact.

2. For each C°?-module A and each C-module B, the functors A®¢ and ®c¢B preserve arbitrary
sums.

3. For each object C in C we have A ®c (C,—) = A(C) and (—,C) ®c B = B(C) for all C°P-
modules A and all C-modules B.

Suppose now that C’ is a subcategory of the small category C. We use the tensor product of C’-
modules, to describe the left adjoint C®c¢: of the restriction functor rescs : Mod(C) — Mod(C’).
Define the functor C®¢: : Mod (C') — Mod (C) by (C ®¢ M) (C) = (—,C) |¢r ®c M for all
M € Mod (C') and C € C. Using the properties of the tensor product it is not difficult to establish
the following proposition.

Proposition 1.2 [4, Proposition 3.1| Let C’ be a subcategory of the small category C. Then the
functor C®¢: : Mod (C') — Mod (C) satisfies:

1. C®c: is right exact and preserves sums;

reses

2. The composition Mod (C’) “©¢ Mod (C) — Mod (C’) is the identity on Mod (C');
3. For each object C' € C', we have C @¢ C' (C',—) =C(C',—);
4. For each C'-module M and each C-module N, the restriction map
C(C®c M,N)—C'(M,N |cr)
s an isomorphism;
5. C®cr is a fully faithful functor;
6. C®¢/ preserves projective objects.

Having described the left adjoint C®¢: of the restriction functor rese: : Mod (C) — Mod (C'), we
now describe its right adjoint.

Let C’ be a full subcategory of the category C. Define the functor C’ (C,—) : Mod (C') — Mod (C)
by C'(C,M) (X) = C'((X,-) |¢r, M) for all C’-modules M and all objects X in C. We have the
following proposition.

Proposition 1.3 [4, Proposition 3.4| Let C’ be a subcategory of the small category C. Then the
functor C' (C,—) : Mod (C") — Mod (C) has the following properties:

1. C'(C,—) is left exact and preserves inverse limits;

resces

2. The composition Mod (C’) ¢ Mod (C) — Mod (C’) is the identity on Mod (C');
3. For each C'-module M and C-module N, the restriction map
C(N,C' (C,M)) — C" (N ¢/, M)
is an isomorphism;
4. C'(C,—) is a fully faithful functor;

5. C' (C,—) preserves injective objects.
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1.4 Dualizing varieties and Krull-Schmidt Categories

Let C be an additive category. It is said that C is a category in which idempotents split if given
e : C — C an idempotent endomorphism of an object C' € C, then e has a kernel in C. The
subcategory of Mod(C) consisting of all finitely generated projective objects, proj(C), is a small
additive category in which idempotents split, the functor P : C — proj(C), P(C) = C(C, —), is fully
faithful and induces by restriction res : Mod(proj(C)°?) — Mod(C), an equivalence of categories.
We recall the following notion given by Auslander in [4]. A variety is a small, additive category
in which idempotents split.

To fix the notation, we recall known results on functors and categories that we use through the
paper, referring for the proofs to the papers by Auslander and Reiten [4, 5].

Definition 1.4 Let C be a variety. We say C has pseudokernels; if given a map f : C; — Cy,
there exists a map g : Cy — C1 such that the sequence of morphisms C(—, C3) ﬂ (—,Ch) ﬂ

C(—,Cy) is exact in Mod(C°P).

Given a ring R we denote by Mod(R) the category of left R-modules and by mod(R) the full
subcategory of Mod(R) consisting of the finitely generated left R-modules. Now, we recall some
results from [9].

Definition 1.5 Let R be a commutative artin ring. An R-category C, is an additive category such
that C(C1,Cs) is an R-module, and the composition is R-bilinear. An R-variety C is a variety
which is an R-category. An R-variety C is Hom-finite, if for each pair of objects Cy,Cs in C,
the R-module C(C1,C3) is finitely generated. We denote by (C,mod(R)), the full subcategory of
(C,Mod(R)) consisting of the C-modules such that for every C in C the R-module M (C) is finitely
generated.

Suppose C is a Hom-finite R-variety. If M : C — Ab is a C-module, then for each C' € C
the abelian group M(C) has a structure of End¢(C)°P-module and hence as an R-module since
Endc(C) is an R-algebra. Further if f : M — M’ is a morphism of C-modules it is easy to show
that fo : M(C) — M’(C) is a morphism of R-modules for each C € C. Then, Mod(C) is an
R-variety, which we identify with the category of covariant functors (C,Mod(R)). Moreover, the
category (C,mod(R)) is abelian and the inclusion (C, mod(R)) — (C,Mod(R)) is exact.

Definition 1.6 Let C be a Hom-finite R-variety. We denote by mod(C) the full subcategory of
Mod(C) whose objects are the finitely presented functors. That is, M € mod(C) if and only if,
there exists an exact sequence in Mod(C)

Home(Cy, —) — Home (Ch, —) —— M —— 0.

It was proved in [9] that mod(C) (resp. mod(C°P)) is abelian if and only if C has pseudocokernels
(resp. psedokernels).
Consider the functors Deer : (C°?, mod(R)) — (C,mod(R)), and D¢ : (C,mod(R)) — (C°?, mod(R)),
which are defined as follows: for any object C' in C, D(M)(C) = Hompg(M(C), E) where E is the
injective envelope of R/rad(R) € mod(R). The functor D¢ defines a duality between (C, mod(R))
and (C°?,mod(R)). We know that since C is Hom-finite, mod(C) is a subcategory of (C, mod(R)).
Then we have the following definition due to Auslander and Reiten (see [9]).
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Definition 1.7 An Hom-finite R-variety C is dualizing, if the functor
¢ : (C,mod(R)) — (C°?, mod(R)) (1.1)
induces a duality between the categories mod(C) and mod(CP).

It is clear from the definition that for dualizing varieties C the category mod(C) has enough
injectives. To finish, we recall the following definition:

Definition 1.8 An additive category C is Krull-Schmaidt, if every object in C decomposes in a
finite sum of objects whose endomorphism ring is local.

Asumme that R is a commutative ring and R is a dualizing R-variety. Since the endomorphism
ring of each object in C is an artin algebra, it follows that C is a Krull-Schmidt category [9, p.337],
moreover, we have that for a dualizing variety the finitely presented functors have projective covers
[4, Cor. 4.13], [57, Cor. 4.4]. The following result appears in [9, Prop. 2.6]

Theorem 1.9 Let C a dualizing R-variety. Then mod(C) is a dualizing R-variety.

1.5 An adjunction

In the article [8], Auslander-Platzeck-Todorov studied homological ideals in the case of mod(A)

where A is an artin algebra.

Given a two sided ideal I of A they consider A/I and they studied the trace Try,; (M) of a module

M defined as Trp /(M) = Z Im(f). In order to define the analogous of Tr, ,; (M) in the category
f€Hom(A/I,M)

Mod(C) we introduced the following notions.

In this section C be will be a small preadditive category. Let M = {M;};c; be a family of
C-modules and set M := @, ; M;. For F' € Mod(C) we define Ar := Homyjoq(c)(M, F'), and for
A€ Ap we set uy : M —» MAF) a5 the A-th inclusion of M into M(AF) .= ®)\€AF M.

For A € Ar we have the morphism A : M — F', then by the universal property of the coproduct,
there exists a unique morphism
®F : M(AF) — F

such that the following diagram commutes for every A\ € Ap

\/

Definition 1.10 The trace of F respect to the family M = {M,};c1, denoted by Trp(F') is the
image of Op. That is, we have the following commutative diagram

2N

where Ar is an epimorphism and ¥ is a monomorphism.

MAF)
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Proposition 1.11 Trq : Mod(C) — Mod(C) is a functor.

Proof. Let a : F' — G be a morphism in Mod(C), Ar := Homyqe)(M, F) and Ag :=
Homygoq(cy(M, G). We have the morphism of abelian groups
HomMod(C) (Mv OZ) : HomMod(C) (Ma F) — HomMod(C) (Ma G)

Then, for each index A\ € Ap we get an index aX € Ag. For each \ € Ap we consider uy : M —
M®F) the \-th inclusion into the coproduct M©?7); and for each X € Ag let vy : M — M(A6) the
N-th inclusion into the coproduct Me), Since for each index A € Ap we get an index o\ € Ag,
we have a family of morphisms

{van s M — MBIy

By the universal property of the coproduct M(A#) we get a morphism o : MAr) — NM(A6) such
that the following diagram commutes

M(AF) > M(Ae)

\/

We assert that the following diagram commutes

M(AF) L

Y,

MAe)

B¢

Indeed, composing with the A-th inclusion into the coproduct M*#) we have

(Bga)uy = Og(a*uy) = Oguar = el = a(Ofpuy) = (@OF)uy.

Then, by the universal property of the coproduct we have that ©ga* = aOp, proving that the
required diagram commutes. Thus we get the following commutative diagram

Tram (F)

Consider
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the factorization of a¥p : Try(F) — G through its image. Therefore we get the following
commutative diagram

Tram (F)

T N
pOt

MAr) I F
*J( \ la

MAe) G
k %
(@)

TI‘M

where p,Ap is an epimorphism and p, is a momomorphism. We conclude that pu, is the image
of aVpAp = VgAga*. Since Vg is a momomorphism, by the universal property of the image
there exists a morphism ¢ : I — Trp(G) such that pu, = Ugd. That is, we have the following
commutative diagram

Tra(F)

Q*
-
S = =
Q R T

Trm(G)

Thus, we define Traq(a) := Ip,. We note that Traq(a) is the unique morphism such that the
following diagram commutes

Tra(F)

y F
F
a*l Traq (o) \La

\Zel

/e

4
EN

Trm(G)

Indeed, suppose that 1 : Trp(F) — Tra(G) makes commutative the last diagram, then UanAp =
aVpAp = UeTrp(a)Ap. Since ¥ is a monomorphism and A is an epimorphim, we get that
1 = Trp(a).

Now, it is easy to see that Try; is a functor. Indeed, let o : FF — G and § : G — H morphisms
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in Mod(C). Then we have the following commutative diagram

MAF) *>TrM *>F
]
MAe) *>TTM *>G
B*l TrM(ﬂ) lﬂ
MAH) —>TrM

Since Traq(Ba) @ Trapq(F) — Traq(H) is the unique morphism that makes commutative the
exterior rectangle, we have that Tra(Ba) = Tra(8)Tram(e). In the same way we have that
Tram(1p) = Loy (7). Then Trayg @ Mod(C) — Mod(C) is a functor. [

Lemma 1.12 Let M = {M;};er be a family of C-modules, M := ®;c;M; and F € Mod(C). If
there exists an epimorphism f : MY) — F, then Trp(F) = F.

Proof. For A € Ap let uy : M —s MF) the A-th inclusion. By construction of ©p we have the
following commutative diagram

for all A € Ap.

Now, let v; : M — M) be the j-th inclusion. Then for each j we get a morphism oj = fy:
M — F. Thus, we have the function o : J — Ap defined as o(j) = o; = fv;. We note that
f: M) — Fis the unique morphism such that fvj = o = fry; for each j € J.

Then we have a family of morphisms {uy,, : M — MAP)Y . ;. By the universal property of M (/)
there exists a unique morphism v : M) — M) such that the following diagram commutes for
all je J

»

M) MR
M

We assert that © p¢) = f. Indeed, for each j € J we have (Opo)oy; = Opous,, = for;. Then,
Or1 = f and thus ©p is an epimorphism. We conclude that F' = Trpy(F) and Vp = 1p. O
Now, we recall the following definitions which are essential throughout this work.

Definition 1.13 Let C be a preadditive category. An ideal T of C is an additive subfunctor
Home(—, —). That is, T is a subclass of Mor(C) such that:

(a) Z(A, B) = Hom¢ (A, B) N T is an abelian subgroup of Home (A, B) for each A, B € C;
(b) If f € Z(A, B), g € Home(C, A) and h € Home (B, D) then hfg € Z(C, D).

Definition 1.14 Let 7 and J ideals in C. The product of ideals Z.7 is defined as follows: for
each A, B € C we set

j(A B {Zfzgz

i=1

g; € Home (A, C;), fi € Home(Cy, B) for some C; € C}
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We say that an ideal I of C is idempotent if T?> = T.
Definition 1.15 Let Z be an ideal of C, we set
Ann(Z) :={F eMod(C) | F(f)=0Vf € Z(A,B) YA,B € C}.

We have the following well-known result that relates idempotent ideals with the property of
Ann(Z) being closed under extensions. Let .4 be an abelian category and B a full subcate-
gory of A. Recall that B is closed under extensions if whenever we have an exact sequence

0 A B C 0 with A,C € B then we have that B € B.

Lemma 1.16 [75, Proposition 9.2.1] Let C be a preadditive category. An ideal T is idempotent if
and only if Ann(Z) is a subcategory closed under extensions in Mod(C).

Now, we recall the construction of the quotient category.

Definition 1.17 Let T be an ideal in a preadditive category C. The quotient category C/T is defined
as follows:

(a) Obj(C/T) := Obj(C).

(b) Home,7(A, B) := HOIH(‘ji(g’)m for each A,B € C/T.

For f = f +Z(A, B) € Hom¢,7(A, B) and g = g+ Z(B,C) € Home7(B,C) we set

gofi=gf+Z(AC) € Homge,z(A4,C).

Let Z be an ideal of C, we have the canonical funtor 7 : C — C/Z defined as: w(A) = A for all
AeCandn(f):=f=f+ZI(A B) € Homc/z(A, B) for all f € Home (A, B).

Definition 1.18 Let Z be an ideal in a preadditive category C and consider the functor m: C —
C/Z. We have the functor
s : Mod(C/Z) — Mod(C)

defined as follows: m.(F) := F o for F € Mod(C/ZT) and m.(n) =n forn: F — G in Mod(C/T).

Definition 1.19 Let Z be an ideal in C, for C € C we set Mo = %@;) € Mod(C). We
consider the familiy M = {Mc¢}cec and we define

Tre := Traq : Mod(C) — Mod(C).

c
I

Proposition 1.20 For every F' € Mod(C) we have that Tr%(F) € Ann(Z).

Proof. Let M := @cc Mo be and Ap := Homypoq(c) (M, F). By construction of Tr%(F) we
have the following commutative diagram

MAF) F
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where Ay is an epimorphism. Since Ap is a morphism in Mod(C), for f: A — B in C we get the
following commutative diagram

MAr)(A) %(Tr

where (Ap)4 and (Ap)p are epimorphisms.

We note that Mc(f) : TopefGAl — HomelCB) i such that M (f) (a+Z(C, A)) = fa+Z(C, B)
for « € Home(C, A). Then, if f € Z, we have that fa € Z(C,B) since Z is an ideal; hence
Mg (f) = 0 and this implies that MAr)(f) = 0.

Therefore (Tr% (F))(f)o(Ar)a = 0 and since (Ap) 4 is an epimorphism, we get that (Tr
0. That is, Tre (F) e Ann(Z). O

(EN(f) =

c
A
Remark 1.21 We have that 7.(F) € Ann(Z) for all F € Mod(C/Z), that is, Im(m,) C Ann(Z).
Indeed, for f € Z(A, B) we have that 7(f) =0 and then 7. (F)(f) = F(w(f)) = F(0) = 0.
Proposition 1.22 There exists functor

Q: Ann(Z) — Mod(C/T).
For F € Ann(Z) we will use the notation F := Q(F).

Proof.  Suppose that F(Z) = 0 and let A,B € C. Since F is additive, we have a morphism
of abelian groups Fa p : Hom¢(A, B) — Homaw(F'(A4), F(B)). Since F(Z) = 0, we have that
Z(A,B) C Ker(F4,g). Then we have morphism F 4 p of abelian groups such that the following
diagram commutes

F
Home (A, B) — "+ Homap(F(A), F(B))
TFA,B\L —
FaB
Home (4,8)
Z(A,B)

We define the functor F : C/Z — Ab as follows:

(a) F(A) = F(A) for each A € C.
(b) For f:= f+ZI(A,B) € Homc,;(A, B) we set F(f) := F(f).
Let us see that F is a functor. Indeed, for f = f+Z(A, B) € Hom¢/z(A,B) and g = g+Z(B,C) €

Home,7(B,C) we have that go f := gf + Z(A,C) € Home,7(A,C). Then F(go f) = F(go f) =
F(go f)=F(g)o F(f) =F(g)o F(f). In the same way F(14) = F(1a) = 1p(a) = l54). Then F
is a functor and we have an assignation § : Ann(Z) — Mod(C/Z).

Let n : F — G be a morphism in Ann(Z). Then for each C' € C we have a morphism of abelian

groups n¢ : F(C) — G(C) such that for each f: C; — C5 in C the following diagram commutes

F(C)) —> G(Cy)

F(f)l iG(f)

F(Cy) e G(C2)
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Let f = f+Z(Cy,Cs) € Home,7(C1, Cy) amorphism in C/Z. Since F(f) = F(f) and G(f) = G(f)
we have the following commutative diagram

F(C1) —~G(Ch)

F(f)l iG(f)

F(Cy) == G(Ca).

Then we have 77 : F — G defined as [f]¢ := n¢ for each C € C/T.
Thus, is easy to see that we have a covariant functor

Q: Ann(Z) — Mod(C/T).
O

Proposition 1.23 The functors m, : Mod(C/Z) — Ann(Z) and Q : Ann(Z) — Mod(C/Z)
satisfies that

Ty O Q= 1Ann(Z)
Qo Tx = 1Mod(C/I)~

Proof. Let F' € Mod(C) such that F(Z) = 0, then we get F' = Q(F) € Mod(C/Z). For f: A — B
a morphism in C we have that (7.(F))(f) = (Fon)(f) = F(f) = F(f). Then (7, 0 Q)(F) = F in
objects.

Now, let n : FF — G be a morphism in Ann(Z), then 7, Q(n) = m.(7) = 7 = n. Therefore,
Ty 0 = 1Ann(I)~

Now, for F' € Mod(C/Z) we obtain that Q(m.(F)) = Q(Fon) = Fonr. Thenfor f = f+Z(A,B) €
Home, (A, B) = 25ele8) we get that (Fom)(f) = (Fom)(f) = F(f). Hence, For = F.

On the other hand, let  : F — G be a morphism in Mod(C/Z). Then now : For — Gom
is such that [ o 7]c = ny(c) = nc for each C € C. Moreover, we have that 7o 7 satisfies that

[To7]c = [non]c = ne for each C € C/Z. Therefore, we have that 767 = 1 and we conclude that

Qome = Iyoaee/z)- U

Remark 1.24 Let C € C/T be and consider the functor Home,7(C,—) : C/IT — Ab. For f =
f+Z(A, B) € Hom¢,7(A, B) we have the morphism

Hom¢ (C, A) Hom¢(C, B)
7(C,4) | I(C,B)

HomC/I(C7 ?) :

defined as follows: for g = g+ Z(C,A) € Home,z(C, A) = HOI“(%*(Z»)AW we set

HomC/I(Ca?)(g) = ?o? = fg+Z(C,B) € HomC/I(C7 B).

On the other hand, for A € Obj(C) we have that Mc(A) = }I(’Ir?cci(g’)f‘). Now, let f : A — B be a
morphism in C , by definition of M¢, the morphism

~Home(C, A) Hom¢(C, B)
Mc(D) s =@ a7 — "7, B)
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makes commutative the following diagram

0 —— Z(C, A) — Homg(C, A) —> Home () 0
Homc(Cvf)lz(c,A)l lHomc(C,f) J{Mc(f)
0 — Z(C, B) — Home(C, B) > Hoe(C.E) 0

Then, forg = g+I(C, A) € Home,7z(C, A) = HOIH(‘CCiEZ’)A) we have that Mc(f)(9) = Mc(f)(nc,a(g)) =
7o, g(Home(C, f)(9)) = me,s(fg) = fg+ Z(C,B). Therefore, we have the following equality of
morphisms of abelian groups

HOmc (C, A) Homc (C, B)
7(C,4) | I(C,B)

Mc¢(f) = Home7(C, f) :

Lemma 1.25 Let Mo = T3¢ %=) € Mod(C), then (M) = Mc = Homez(C, —) and Mg =

Home¢/7z(C, —) o m = m,(Home /z(C, —)).

Proof. We recall that 7 : C — C/Z is given as 7(C) = C and for f: A — B a morphism in C
we have that 7(f) := f + Z(A, B).
Now, we consider M and it is easy to show that Mc € Ann(Z), then we can construct Q(M¢) =
Mc : C/T —s Ab. We assert that

M¢ =Home,7(C, —).

Indeed, Mo (A) = Mc(A) = Hozn(lcciﬁ’)m = Home,7(C, A) for A € C/Z. By 1.24, we have that

Mc(f) := Mc(f) = Home 7 (f, C)

for f := f + Z(A, B) € Hom¢,z(A, B); proving that M ¢ = Home,z(—,C). Finally, by 1.23, we
have that M¢ = Mc o = HOI’Ilc/I(C, —) om. U

Proposition 1.26 Let m: C — C/Z be the canonical functor and consider the functor
7« : Mod(C/Z) — Mod(C).

Then . preserve coproducts. That is, (,;.; M;) om = @, ;(M; o) for each family {M;}ic of
C/Z-modules.

Proof. Let {u; : M; — @,.; Mi}ier be a coproduct in Mod(C/Z). We assert that the family
{pim = Mym — (D;c; Mi)7}ier of morphisms in Mod(C) is a coproduct of the family {M;n}icr.
Indeed, let {a; : M;m — @, ;(M;7)}ier be a coproduct of the family {M;n};c;. By the universal
property there exists a morphism © such that the following diagram is commutative

S}

@ieI(MiW) (@ie] M;)m

\ i T

Miﬂ'

Then for C € C we get the following commutative diagram in Ab
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(@ies(M1im)) (C) = ((@ie; M) (©)
[aile M
(M)(C)

Since 7(C) = C, we get the following commutative diagram in Ab

Bic; Mi(C) Oc D,cs Mi(C)
M;(C)

where [o;]c and [u;]c are the canonical inclusions of M;(C') into the coproduct ;. ; M;(C) in the
category Ab. Hence, we can assume that ©¢ = I, , Mi(c) and then © = I, (Mim)- Therefore,
{pim : Mym — (@;c; Mi)m}icr is a coproduct of the family {M;7}ic; in Mod(C). O

Proposition 1.27 Let F' € Mod(C/Z), then Tre (Fom) = Fom.

Proof. Let G := @, Home,7(C,—) € Mod(C/T) and A := Hom¢,z(G, F). Since G is a
generator in Mod(C/Z), there exists an epimorphism I : G®) — F in Mod(C/Z) . Then we have
an epimorphism in Mod(C)
For:G™oxr — Fou.
A

By 1.26 and 1.25 we have that G o7 = (@Cec(Homc/I(C’, =) ow))(A) = (@Cec MC> , since
M := @rec Mc = G ow. Therefore, we have
Tom): M® — For.
By 1.12, we conclude that Tr%(F om)=Fom. O
Proposition 1.28 Let F' € Mod(C) be. Then Tr%(F) = F if and only if F' € Ann(Z).

Proof. (<) Suppose that F € Ann(Z). Then, Q(F) = F € Mod(C/Z). By 1.23 we have that
F = Fon. Then, by 1.27 we have that Tre (F) = TI'%(FOTF) =For=F.
(=) By 1.20, we have that F' = Trc (F') € Ann(Z). Proving the result. [J

Now, let ﬁ% i=QoTre : Mod(C) — Mod(C/Z) be. Let us see that 7, is left adjoint to ﬁ%.

Proposition 1.29 The functor m. : Mod(C/Z) — Mod(C) is left adjoint to ﬁ% =QoTr
Mod(C) — Mod(C/Z). That is, there exists a natural isomorphism

0r g : Homypoq(e) (m«(F), G) — HomMod(C/I)(F7ﬁ%(G))
for F € Mod(C/Z) and G € Mod(C).
Proof. First we construct the unit of the adjunction

N Ivodc/z) — ﬁ% O Ty.
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Indeed, we have that (ﬁ% om)(F) = (Qo Tr%)(F om) =Q(Fom) = (Qom)(F)=F (see 1.27
and 1.23). Then for each F € Mod(C/Z) we define np :=1p : F — (Trc o m,)(F).
Now we define the counit of the adjunction

[«
Z

€ Ty Oﬁ% — 1Mod(C)~

We note that for G € Mod(C) we have (. oﬁ%)(G) = (M 0Q0Tre)(G) = (m 0 Q)(Tre (G)) =
Tre (G) (see 1.23). Then, for G € Mod(C) we define € := ¥ where Vg : Tre (G) — G is the
canonical inclusion given in 1.10. That is, U comes from the following commutative diagram

TI'% (G)

O¢c

M) G

where M = @ccc Hozrr(’cci((i)_) and Ag := Home (M, G). Let us see that the following diagram is

commutative

Indeed, let G € Mod(C) be, by definition we have [ o Tr

Tre (G). On the other hand,
(Trg) o do = Trg (cq).

Let us compute ﬁ% (eg) = (o TI‘%)(GG*). Firstly, since we have an epimorphism Ag : M¢) —
Tr%(G), we get that Tr%(Tr%(G)) = Tr%(G) (see 1.12). By definition, Tr%(e(;) = Tr%(\Ilg) is the
unique morphism such that the following diagram commutes

AT:-V 1e e (@)

M(ATr%(G))

c
T
(‘I/G)*l Tr%(\yc) \L‘I’G

MAe) G

Since the identity map also makes the diagram commutative, we conclude that

Tre(Vg) = 1ﬂ%(c)-

<
z

Therefore, ﬁ%(eg) = i (\Pg) = Q(Tr%(\lfg)) = Q(lﬂg(g)) = IQ(’I‘I'Q(G)) = lﬁc(G)' Thus,
z z T

<
T

[ﬁ% o€lgolno ﬁ%]g = lﬁ% ()~ Then we conclude that
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Proving the first triangular identity.
Now, let us see that the following diagram is commutative

T4 07 J—
Ty —————> T, 0 Tre om,
T

Ty

Indeed, for F' € Mod(C/Z) we have that [m. on]p = m.(nFr), but np = 1p (definition of the unit).
Hence we get,

[ﬂ-* © 77]F = 7T-"‘(”IF) = 77*(1F) = 17r*(F) =lpor
On the other hand, we have that [€ o 7.]p = €r_(p) = €por. In order to compute €por we consider

the following commutative diagram (see 1.10)

Tre (Fom)

MAror) Oron For

By 1.27, we have that Tr% (Fom) = Fom and then we have that ¥ por = 1por. Then by definition
of the counit we get that €, (F) = €For = YFor = lpor. Hence we have that

[comlr o [monlr = Lpor = Lu.qa).

Therefore [eom,] o [m. on] = 1,,. By [22, Theorem 3.1.5] we have that m, is left adjoint to ﬁ%. O
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Chapter

Derived functor and certain adjunctions

In this chapter we will see the functors derived from the functors defined in the previous chapter.
These derived functors will be of vital importance in the rest of the work since through these
we will obtain the concepts of k-idempotent ideal and strongly idempotent ideal and different
characterizations.

We will also obtain certain adjunctions which later will allow us to obtain recollements.

We will define property A. This property allows us restricting the adjunctions obtained to categories
of finitely presented functions.

2.1 Some derived functors

In this section C be will be a small preadditive category. For the results of this section we are going
to use the functor ®¢ : Mod(C°P) x Mod(C) — Ab which we introduced in section 1.3. Let Z be
an ideal in a preadditive category C. We recall the following functor (for more details see [60]).

Definition 2.1 We define the functor $®c : Mod(C) — Mod(C/Z) as follows: for M € Mod(C)
we set (£ ®c M) (C) := ;g:g; ®c M for all C € C/T and (£ ®c M) (f) = S(—, f) ®c M for all
f=/f+I(C,C") € Home,z(C,C").

We also recall the following functor which will be fundamental in this work.

Definition 2.2 We define the functor C(%,—) : Mod (C) — Mod (C/Z) as follows: for M €
Mod(C) we set C($,M)(C) = C (ggg;;M) for all C € C/T and (S, M)(F) = C (S(f,—), M)
forall f = f+Z(C,C") € Home,7(C,C").

It is well known that C(£, —) : Mod (C) — Mod (C/Z) is right adjoint to 7, and £®c is left adjoint
to 7. (see for example, [60, Proposition 3.9]) and hence by 1.29, we have that C(%, —)~Tr
adjoint functors are unique up to isomorphisms. Thus, we have the following result.

¢ since
z

Proposition 2.3 Let Z be an ideal in C and 7w : C — C/I the canonical functor. Then we have
the following diagram

*
™

-
Mod(C/Z) ——m——= Mod(C)

!
T

17
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where (7%, ) and (m,, ') are adjoint pairs with ©* == C(%,—) ~ ﬁ% and ™ == £®c.
Proposition 2.4 Let Z be an ideal in C and w7 : C — C/I the canonical functor. Consider

M = @Pyce % € Mod(C/Z), the functor Tr : Mod(C) — Mod(C/Z) and the following ezact

sequence N3 — No — N3 in Mod(C). Then
C (W*(M)le) —C (W*(M)aNQ) —C (W*(M)7N3)
is exact in Ab if and only if
TH(Vy) ——= TH(Ny) —— TH(Ny)
is exact in Mod(C/T).

Proof. Considerer M := @y ;8((7:; Then, we have the following commutative diagram where
the vertical maps are isomorphisms

C (m(M), Ny) C(me(M), Ng) ————— = C (m.(M), N3)

IT (Te(va) ()

Xec

T (Te(V2) ()

XecC

T (Te(v) ()

Xec

Since Mod(C) is an AB4™ category, by 7.20 we have that the lower row of the diagram is exact if
and only if
Tr(Ni)(X) —— Tr(N2)(X) — Tr(N3)(X)
is exact for each X. This happens if and only if
Tr(N1) — Tr(N2) — Tr(N3)
is exact in Mod(C/Z). O
We recall that for every small preadditive category C it is well known that Mod(C) is an abelian

category with enough projectives and enough injectives (see for example [64, Proposition 2.3] in p.
99 and also see p. 102 in [64]) . So, we can define derived functors in Mod(C).

Definition 2.5 Let M € Mod(C) be, we denote by Extfwod(c)(M,f) : Mod(C) — Ab the i-th
derived functor of Homyyoq(c) (M, —) : Mod(C) — Ab. Similarly we can define Extf\/lod(c)(f,M) :
Mod(C)°? — Ab.

We recall that if (I°, en) is an injective coresolution of N

€N

0 N Iy L

then by definition Extfvlod(c)(M, N) = H;(Homyjoq(cy(M, %)) where I® is the deleted injective
coresolution of N. In the case of Eth\/lod(C) (=, M) : Mod(C)°? — Ab we use projective resolutions.
We have the following well known result.
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Remark 2.6 Since Mod(C) has enough projectives and injectives we have that we given M, N €
Mod(C) the abelian group Extypoq(cy(M,N) can be computed using injective coresolutions of N or
projective resolutions of M (see [24] in pp. 201, 202). That is we have that

H; (Homppoq(c) (M, 1*)) =~ H;(Homyjoq(cy (P°, N)
where I°® is the deleted injective coresolution of N and P*® is the deleted projective resolution of M.

Proposition 2.7 Let F : C — D be and G : D — C functors between arbitrary abelian categories
such that F is left adjoint to G.

(a) If G preserve epimorphisms, then F preserve projective objects.

(b) If F preserve monomorphisms, then G preserve injective objects.

Proof. See [81, Theorem 11.8] in pag. 310. O
Now, we can construct canonical morphisms as the following proposition shows.

Proposition 2.8 Let G € Mod(C) and F € Mod(C/Z) be and consider

0 G Iy I

an injective coresolution of G in Mod(C). Then, there exists canonical morphisms of abelian groups
Ora t Extyoae/z) (F Tr%(G)) — Extijoae) (m(F), G) for each i > 0.

Proof. Since ﬁ% is right adjoint to 7, (see 1.29), we get the following complex in Mod(C/T)

OHﬁ%(G)Hﬁ%(IO)H r

where each ﬁ% (I;) es injective in Mod(C/Z) (see 2.7).
On the other hand, since Mod(C/Z) has enough injectives we can construct an injective resolution

Oﬁﬁ%(G) Jo J1

of ﬁ% (G). By the dual of comparison lemma (see [80, Theorem 6.16] in pag. 340), we have the
following commutative diagram

OH@%(G)H@%

T

OHTI'%(G) Jo Jh

(IO) Hﬁ%([l) —_— ...

Then, by applying Homyioq(c/z)(F, —) we have the diagram of figure 2.1, where each 0p 1, are the
adjuntion isomorphisms (see 1.29). Computing homology, we have a morphism which goes from
the homology of the first row to the homology of the third row

Hi(0F)) o Hi(l") = ¢ + Bxtyoaie/z) (Fy Trg (G)) — Extiyeqc (m:(F), G),

where h* := {h!};>0 and 0" = {Gglli}izo are the morphisms of complex in the diagram of figure
21. 0O
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00— HOmMOd(c) (TI'*F, G) —— HomMod(C) (7‘['*1:‘7 Io) —— HomMOd(C) (W*F, Il> —_— ...

O T O3t T 0, T
0 —— Homwioa(c/r)(F, Trg (G)) ——= Homtoa(e/n) (F, Trg (Io)) ——= Homnoae/r) (F, Trg (1)) —— ...

0 —— Homoa(e/ 1) (F, Trg (G)) —— Homuoa(e/ 1) (F Jo) ——— Homwoace/n) (F, J1) —— ...

Figure 2.1: Diagram

Proposition 2.9 Let 7 :C — C/Z be the canonical functor and consider (7). : Mod((C/Z)°P) —
Mod(C°P) given as (7)«(F) = F om for F € Mod((C/Z)°P)). Then for G € Mod(C) there exists a
functorial isomorphism

Ai(A)Fo—-)— (F®—)or"

where 7 : Mod(C) — Mod(C/Z) is the left adjoint to 7. : Mod(C/Z) — Mod(C).

Proof. Let Dy :C — C° and Dy : C/Z — (C/Z)°P be the canonical functors. Then we have a
functor

7T:=Dyomo(Dy)"':C? — (C/T)?,

an we have the induced functor (7). : Mod((C/Z)°?) — Mod(C°P) given by (7).(H) = H o7 for
all H € Mod((C/T)°P).

Now, if H; : C/T — Ab is a contravariant funtor, then H := H; o D' : (C/Z)°? — Ab. Hence,
we have that (7).(H) := How = HoDyomo(Dy)™! = (H; 0D2_1)OD207TO(D1)71 = H; o7roD1_1.
We conclude that identifying Mod((C/Z)°?) and Mod(C°P) with contravariant functors (composing
with D; and Ds), we can identify 7, with

(7)+ : Mod((C/T)°?) —s Mod(C°P)

defined as (7)«(F) = F o for a contravariant funtor F : C/Z — Ab.

Let Y : C — Mod(C) be the Yoneda embedding given by Y(C) := Hom¢(C, —). We know that
(Fom)® — : Mod(C) — Ab is the unique functor (up to isomorphism) such that the following
diagram commutes (see [74, Theorem 6.3])

Mod(C)
e
¥
C —C/T Ab

F

Similarly, FF ® — : Mod(C/Z) — Ab is the unique functor such that the following diagram is
commutative

Mod(C/T)

Y

C/ITA])

where Y : C/T — Mod(C/T) is the Yoneda embedding given by Y (C) := Hom¢ 7 (C, —). We have



2.1. SOME DERIVED FUNCTORS 21
that 7* = % ® — makes the following a commutative diagram

Mod(C) —™> Mod(C/T)

1

C T )T

Indeed, we get that *(Y(C))(C") = ($ ® Home (C, -))(C") = $=5) @ Home (C, —) = S$SE3 =
Home,7(C,C") = Y(n(C))(C') for C € C and ¢’ € C/T (see 1.1 ) and the same for morphisms,

proving that the last diagram is commutative. Then we have the following commutative diagram
Mod(C) —== Mod(C/T)

YT YT Fo-

C u C/T Ab
F

By uniqueness, we conclude that there exists an isomorphism
A (M)F@—-)— (F®—)orm".
Then, for G € Mod(C) we have that
(M)F) Q@G ~F ® (r*G).

O
Now, we give the following definition which is the analogous to the multiplication of an ideal an
a module in the classical sense.

Definition 2.10 Let G € Mod(C) and Z be an ideal in C. We define ZG as the subfunctor of G
defined as follows: for X € C we set

IG(X) = > Im(G(f)).

feUcec Z(C,X)

Lemma 2.11 [87, Lemma 2.9] Let G € Mod(C) be and Z an ideal in C. Then G/IG € Mod(C/T)
and there exists an isomorphism C/Z @¢ G ~ G/ZG of C/I-modules.

Remark 2.12 In the last lemma, formally it should be written C/I®cG ~ Q(G/IG) since G/IG €
Ann(Z) € Mod(C). But we will no write Q in order to avoid more complicated notation.

Corollary 2.13 For F € Mod((C/Z)°?)) and G € Mod(C) there exists an isomorphism
(1).F) © G ~ F © (G/TG).

Proof. We know that 7* = C/I®¢ and by 2.11, we have that C/Z ®¢ G ~ G/ZG. Then by 2.9,
we have that ((7).F)® G ~ F® (G/ZG). O

Definition 2.14 Let N € Mod(C°P) be and consider the functor N @ — : Mod(C) — Ab. We
define
Tor§ (N, —) : Mod(C) — Ab

as the i-th left derived funtor of N ® —.
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We recall that if (P®,~as) is a projective resolution of M € Mod(C)

Y

P Py M 0

by definition we have that Tor$ (N, M) = H;(N ® P*) where P* is the deleted projective resolution
of M.

Remark 2.15 In the same way, for M € Mod(C) consider the functor —® M : Mod(C°?) — Ab
and its derived functor Tor$ (—, M) : Mod(CP?) — Ab. If (Q°,~vn) is a projective resolution of
N € Mod(C) we set Tor$ (N, M) = H;(Q* @ M).

By [67] in pp. 192 and 198 we have that ToriC(N7 M) can be computed using projective resolutions
of M or projective resolutions of N. That is we have that

Remark 2.16 In order to study with more detail the functor Mod(C°) x Mod(C) — Ab and its
derived functors we recommend the following.

See the first paragraph in [59] in p. 341. See also [67] in pp. 192 and 193.

We also recommend [65] in pp. 26 and 32; and see also [66] in p. 18. Finally we also recommend
the section 2 in the paper [30] in p. 282.

Proposition 2.17 Let F' € Mod((C/Z)°?) be and G € Mod(C) and consider a projective resolution
of G

P, P Py G 0

Then for each i > 0, there exists a canonical morphisms of abelian groups
Vi« Torl (F om,G) — Torl*(F,G/IG).

Proof.

Since £®¢ : Mod(C) — Mod(C/T) is right exact and adjoint to 7., we have the following
complex

=L@ Pb—> 58P —>$® Ph—> %@ G—>0

where each £ ®c P; is a projective C/Z-module (see 2.7). On the other hand, since Mod(C/Z) has
enough projectives we construct an exact sequence

Q2 @1 Qo £ @ G—=0

where each @) is a projective C/Z-module. By the comparison lemma (see for example [80, Theorem
6.16] in pag. 340) we get the following commutative diagram
c

>l @ Pp—> S0 P —> $®c Pp—> S0 G—>0

R L

Q2 Q1 Qo £ @ G—=0
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By 2.9, we have the following commutative diagram

IS O
( (

P () P () ——— F o (f)
iF@)nz iF®m \LF®770
F®Q: F®o F®Qo

where each Ap p, is an isomorphism. Then, taking homology, the last diagram induces morphisms
Vg TorS (7). F), G) — Tor’! (F,G/TIG).

But (7).G = G o, then we get ¢} : Toré(Fom, G) — ToriC/I(F, G/IG). O
Now, we give the following definition.

Definition 2.18 Consider the functors C(%,—),% ®c — : Mod(C) — Mod(C/Z) given in the
definitions 2.1 and 2.2. We denote by EXT4(C/Z, —) : Mod(C) — Mod(C/Z) the i-th right derived
functor of C(%,—) and TORS (C/Z, —) : Mod(C) — Mod(C/Z) the i-th left derived functor of £®ec.

Proposition 2.19 Consider the functors EXT5(C/Z, —) : Mod(C) — Mod(C/T) and TORS (C/Z, —) :
Mod(C) — Mod(C/Z). Then:

(a) For M € Mod(C) we get that EXT¢(C/Z, M)(C) = Extigoac) (}1011?87(5*)—)7]\4) for every
cec/t.

(b) For M € Mod(C) we have that TORS(C/Z, M)(C) = Tor¢ (Hozngii(g)c)7M> for every C €
C/T.

Proof. (a). Let M € Mod(C) be and consider

do dy da

0 M I I I

an injective resolution of M. Then we have the complex in Mod(C/Z)

Q»d Q,d Q,d
C(&, Io) (I*OQC(%,A) (I;lc(% A

(M)(C) _ Ker(£,di) (C) _ (Ker(%,d:)(C) _ Ker((%,di)c)

= Tm(Sd1) = Tm(Cd)©) — (S dne)” Consider the mor-

Thus R*(C($, -)

i
phism C(£,1;) E) (£,1;+1) . Then for each C € C we have that

NO S—

(%.di)e

C(%,1i+1)(C)

is given by

C(C(Cﬁ) Ii) C(ggg:;’dl)C(c(c

)
Ko L),
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Then

Ker((%,di)c) = Ker(C(C(C’ -) , d1)> = Ker(Homc(I%,di)>

and

Im((f,di)c) = Im(C(I(C, _),di>) = Im(HomC(I—IOIm(CC(g)),di_l))

Therefore we have that

Home (C,—)
Ker(($,di)e) Ker<H0mC( Z(C.o) d)) Bt (Homc(C’,—) M)
- - Mod(C 5 .
Im((,di—1)c) Im(HomC(HOIHZE,i(C)) d;_ )) © (I, -)
Proving that R (C($,-) ) (M)(C) = Extiyoqc) (e, M)

(b). Let M € Mod(C) and

ds d2 dy YM

RZ P1 fb M 0

Py
a projective resolution of M. Then we have the following complex in Mod(C/Z)

S ®ds c I®@ I®%
P A Y LR Y A ) A Y Y

Ker| £®d; Ker| $®d; | (C) Ker| (£®d;) _
s Li(%@)c _>(M)(C) - Imé;di+1)) = Im(g;d,ﬁrl)) () B Im(((?,;dm)cc)) Coderthe

€ ® P,_; . Then for C € C we have that

[¢]

morphism % QP

(£ ® P)(0) _ Gede (£ ®P_1)(C)

Cc(—,C

®d
is given by gE ) ®Rc P; o Ig:gg ®c P;_1 . Then
C B C(—,C) _ Home(—,C)
Ker((7 ©1:) ) = Ker(Z=1g) e i) = Ker (S 5y~ eed)
and

in{ () ) =gy ) = G e )

Therefore we have that
C Home (—,C)
Ke((§odle) Ker("peGPecd) <Homc(_0) M)
Im((% ® di+1)c> Im(HOI“(lc_iW ®c d¢+1) (-, 0)

Proving that Ll(% ®c —) (M)(C) = Tor® (Hon(‘ci(c) M) O
In the above proposition we just compute EXT4(C/Z, M) and TORS(C/Z, M) in objects in
C/Z. The following remark will not be used in this work, however we write it down just for sake of

completeness.
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Remark 2.20 Let f:= f+Z(C,C") € Home,z(C,C"). Then

(a) EXTL(C/T, M)(f) is the unique morphism such that the following diagram commutes

Im@(%,d%l)) - Ker(C(ggg::;,di» Extigoa(c) (%@;),M)
l i lIEXTé(C/LMXf)
(0853 ) — Ke(($5:50)) — B (PRIEFH ).

In fact, if EXTL(C/Z, M)(f) = ext? M,M) where

Mod(C) ( Z(—)

HOmc(f,—)7M)

extl —_——
i Home (C,—) M(’d(c)( () i Home (C',—)
eXtytod(c) ( e ’M) extyroqe) | o= M

denotes the derived functor of Homyioq(c)(—, M).

(b) TORS (C/Z, M)(F) is the unique map such that the following diagram commutes

Im(gg%gg ® di+1> Ker(IE ® d; ) Tor$ <7HOIH(1C_(E)C) , M)
i i lT@Rf(C/I,M)(f)
c(—,C") c(—,C ¢ ( Home(—,C")
Im(m®di+1) Ker( o ®d) Tor; (W,M) .

In fact, TORS (C/Z, M)(f) = tor¢ (HoInEci(—)f) M) where

1;oric (711025(;)]) ,]\/[)

I(*,C)

tor¢ (HomC(_’C),M) Ao

tor¢ (HomC(_ .C") M)

denotes the derived functor of — @ M : Mod(C°P) — Ab.

Proof. (a). If f := f+Z(C,C’) € Home,z(C,C”") we have the the morphism Home(f, —) :

Hom¢ (C’, —) — Home(C, —) and then Hozn(lfc(f)_) : HOI"(‘EV(,C_/)_) — HOIH(%(?)_) Then we have the

following commutative diagram

e(s6m0) Lo )

e,-y e,-)y

cto) . () .
C(I(f,—)’l’“>l e lc<z(fy—)’ll+l)
()

c(c',—) z(cr, =) c(c’,-)
C(I(C’,*)’Ii) C(I(Cl,7)7li+1)

Then, passing to homology we have that R? (C(f —))(M)(f) = Ker(Z.di) (f) : Ker(%:d:) (C) —

Im(%,difl) Im(%7di,1)

%(C’ ) is the unique morphism such that the following diagram commutes
m(z,d;—
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tm (€565, dir)) —Ker(c(5553. 4:)) = ae=n)

(C,—-)’ (c,—-)’ Im(c<%7di,l)>

l Ker($,d;) @

m($,d;_q)

o o Ker <C(§§gi*:§ d))
tm(C($&5 dia ) ) — Ker(¢($&5. d:)) '
(@) () o)
Im|C EACL) i1
We note that this is the construction given in [24] in pp. 201 and 202, where it proves that the

) er < i 7 7 om, —_ .
functor Ext’ are balanced. Then we have that If;(%(%(f) = extysoq(c) (HI(;i(i”))’ M) where in

this case

i Home (f,—)
Home (C,—) )eXtM°d<C>( (5, -) ’M)

. ) Home (C/,—
eXthod(C)( ) exXthod(c) (701(60(/,7) )7M>

denotes the derived functor of Homyjoq(cy(—, M) which uses projective resolutions to be computed.
Here we are using lowercase letter to denote the contravariant derived functors of the functor
Homygoq(c)(—, M) in order to avoid confusion.
(b). A similar discussion for (b) because Tor$ (—, —) is balanced (see 2.15). [

Now, we have the following proposition which will help us to characterize k-idempotent ideals
in the forthcoming sections.

Proposition 2.21 Let Z be an ideal in C and 7w : C — C/T the canonical functor. Consider the
diagram given in 2.3

-
Mod(C/T) m.—— Mod(C)
~——?
‘n—!:ﬁ%

Let G € Mod(C) be and 0 — G — Iy — Iy — --- — an injective resolution of G and 1 < k < oco.
The following conditions are equivalent.

(a) 0 — ﬁ%(G) — ﬁ%(lo) — ﬁ%(ll) — e = ﬁ%(Ik) is the beginning of an injective
resolution of ﬁ% (G) € Mod(C/T).
(b) EXT4L(C/Z,G) =0 for all 1 <i < k.
(¢) For F' € Mod(C/ZI) the morphisms given in 2.8
Pra EXtiAod(C/z) (Fvi% (G)) — EthwOa(C)(W*(F)a G),
are isomorphisms for 1 <i < k.

Proof. (b) < (a). By definition of the derived functor, we have that EXT4(C/Z,G) is the i-th
homology of the complex of C/Z-modules

c(C/I,Iy) —»Cc(C/I,)— - —=C(C/I,I;) — -

But Tre = C(C/I,~), then we have that EXT¢(C/Z,G) = 0 for all 1 < i < k if and only the
following complex is exact

0= Tre(G) = Tre(lo) = Tre(f) — -+ — Tre (Ik)

< (4
T z
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where each ﬁ% (I;) is an injective C/Z-module (see 2.7).
(a) = (¢). Suppose that 0 — ﬁ%(G) — ﬁ%(IO) — ﬁ%(h) — o= Tr

an injective resolution of ﬁ% (G).

(Ir) is the beginning of

c
z
We can complete it to an injective resolution of ﬁ% (G)

0= Tre(G) = Tre(fo) = -+ = Tre(Iy) = Ligg = Trgo — -+

In order to construct the morphisms gpﬁ,’G we need another injective resolution of G (see proof of
2.8)

04444>-TY%((;) Jo J1

By the proof of 2.8, (using the comparison lemma) we have the diagram

(Io) — ... —Tre (I1) .,

Uk+1T

0‘4‘4‘>;T?%((;) Jb e Jk Jk+1

>

o
N

>

E
o

where the first £ morphisms are the first £ morphisms h; of the morphisms of complexes h := {h; };>0
given in the proof of 2.8. Then, applying Homyoq(c/z)(F, —) we get the following morphism of
complexes

Homoa(e/z) (F) Trg (Io)) ——= Homiea(e/z) (F, Tr

hgT h;T

Homyoa(c/z) (F' Jo) —————— Homypoq(e/z) (F, J1) —— ...

() — ...

<
z

where the first k morphisms are the first £ morphisms A} in the morphism of complexes h* :=
{h}}i>0 given in the proof of 2.8. Taking homology we have that H;(h*) is an isomorphism for all
1 < < k (the homology does not depend on the injective resolutions). By 2.8 we have

Hi(05)) 0 Hi(h*) := ¢« Extygoae/ny (F, Tre (G)) — Extipoqiey (m(F), G)

C
7
is an isomorphism for all 1 <1 < k.

NOTE. The last argument can be shortened by just saying that in this case in the proof of 2.8,

we can take h; = 1 for all i = 1,...,k and then we can conclude as above.
(c) = (b). By 1.25, we have that M¢ := HOI"(%i(f)_) € Mod(C) satisfies that M¢ = Home/7(C, —) o

T = Ty (Homc/I(C’, —)) Let i be fix with 1 < i < k. We have that EXT4(C/Z,G) € Mod(C/T) is
defined for C' € C/T as follows. By 2.19 we have that

i i Home(C, —
EXT,(C/Z,G)(C) = Exthjoqcc) (I(é(_)) G)
= Extf\/lod(c) (71'* (Homc/I(C7 —)) , G)
o~ EXt%\/Iod(C/I) (Homc/I(C, —),ﬁ% (G)) [hypothesis]
=0 [Home 7(C, —) es projective in Mod(C/Z)]

In the last equality we are using 2.6. This is true for all C € C/Z. Then, we conclude that
EXTq(C/Z,G)=0. O
Now, we have the following result that is analogous to the previous result.
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Proposition 2.22 Let T be an ideal in C and n : C — C/Z the canonical functor. Consider the
diagram given in 2.3

*
s

-
Mod(C/Z) ——m.— Mod(C)
<~ -
=Tt ¢

Let G € Mod(C) be and --- — P, — -+ — P; — Py — G — 0 a projective resolution of G and let
1 <k <oo. The following are equivalent:

(a) PyJIP, — -+ — PiJIPy — Py/IPy — G/IG — 0 is the beginning of a projective resolution
of G/IG € Mod(C/T).

(b) TORS(C/Z,G) =0 for1<i<k.
(¢) For F € Mod((C/Z)°P) the morphisms given in 2.17,
Vg Torl (7). F), G) — Tor{*(F,G/1G)
are isomorphisms for 1 <i < k.

Proof. (a) < (b). By definition of the derived functor, we have that TORS (C/Z,G) is the i-th
homology of the complex of C/Z-modules

2 C/I@P, - C/I®P =C/IT® P,

But C/Z ® P; ~ P;/IP; (see 2.11), then we have that TORS (C/Z,G) = 0 for all 1 < i < k if and
only the following complex is exact

Pk/IPk—>—)Pl/IP1—>P0/IPO—>G/IG—>O

where each P;/ZP; is a projective C/Z-module (see 2.7).
(a) = (¢). Let P,/IP, — --- - Pi/IP, — Py/IPy — G/IG — 0 the beginning of a projective
resolution of G/ZG. We can complete it to a projective resolution of G/ZG

o2 Qri2 = Q41 — Py/IP, — - — P JIP, — Py/IPy — G/IG — 0.

Now, in the proof of 2.17, we can take n; = 1 for s = 0, ..., k. Therefore, we have that F ® n; and
AF,p, are isomorphisms for i = 0,...,k. Then by the definition of 1/1}70 we have that

Vg TorS (7). F), G) — Torl* (F,G/IG)

is an isomorphism for i =1,... k.

(¢) = (b). By 1.25, we have that Mg := Hozn(lii(a)c) € Mod(C°P) satisfies that Mo =
()« (Homc/I(—,C)) (see 2.9 for notation). Let ¢ be fixed with 1 < ¢ < k. Then for C € C/I

we have that TORS (C/I,G) € Mod(C/I) is defined as follows (see 2.19):

- Home (—, C)
TORS (C/Z,G)(C) := Tor® (Z(—C) G)

= Tor{ (7). (Homez(—, 0)), G)
~ Torf/I (Home,z(—,C),G/IG)  [hypothesis]
=0
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The last equality is by the following reason: consider the projective resolution of G/ZG:
¥) i = Qr— = Q1 Qo— G/IG — 0.
Applying Home,z(—,C) ® — to the exact sequence we get the following complex
-+ = Homgz(—,C) ® Q1 — Home z(—, C) ® Qo — Homez(—,C) ® (G/IG) — 0.
By 1.1, the last complex is isomorphic to the following complex
= Qr(C) = - =5 1(C) = Qu(C) = (G/IG)(C) — 0.

But this last sequence is exact since (*) is exact.
By definition, Torf/z (Homc/z(—, ), G/IG) is isomorphic to the i-th homology of the last com-

plex. Hence, Torf/l (Homc/z(—,C),G/IG) = 0. The last is true for all C € C/Z. Then,
TORS(C/Z,G) =0for 1 <i<k. O

Remark 2.23 We note that the case i = 0 in the isomorphism
Vg TorS (7). F), G) — TortF(F,G/IG)
is exactly the isomorphism 2.9.

Remark 2.24 The last paragraph of the last proposition can be shortened using that Toric(—, —) is
balanced (see 2.15). In this case we have that

Tor{’* (Home 7(—, C), G/IG) = 0

because Home /7(—, C) is projective in Mod(CP)

2.2 Property A and restriction of adjunctions

In this section we will use some of the notions given in the preliminares. First we recall the following
well known result.

Proposition 2.25 Let C be a variety and proj(C) the category of finitely generated projective C-
modules. Consider the Yoneda functor Y : C — proj(C) defined as Y(C) := Hom¢(C, —). Then Y
is a contravariant functor which is full, faithful and dense.

Remark 2.26 Let R be a an artinian ring. It is well known that if I is bilateral ideal ande € R/I
is an idempotent in R/I, then there exists an idempotent f € R such that f =€ € R/I. For this,
see for example [68, Proposition 1.5] and first paragraph in p. 271 in the same paper. This notion
is related to the so called clean rings, for this see for example [52], the proposition 2.6 and corollary
1.5.

Proposition 2.27 (a) Let C be an additive category and Z an ideal in C. Then C/T is an additive
category.

(b) Let C be an R-variety and T an ideal. Then C/T is an R-variety.

(c) Let C be a Hom-finite R-variety and Z an ideal. Then C/Z is a Hom-finite R-variety.
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Proof.

(a)

()

O

Let us consider 7 : C — C/Z the canonical functor. Let {C;}"_; C C/Z be a family of objects.
Since C is additive, we have that there exists {u; : C; — C}?_; a coproduct in C. We assert
that {m(u;) : C; — C}; is a coproduct in C/Z. Indeed, let {n(y;) : C; — X}, be a
family of morphisms in C/Z, where ; : C; — X is a family of morphisms in C (7 is surjective
in the set of morphisms). By the universal property, there exists a morphism 6 : C — X in
C such that Ou; = 7; for all i = 1,...,n. Then w(0)7(u;) = w(v;) for all i = 1,...,n. Now,
let us see that 7(#) is unique. Indeed, let us suppose that there exists another morphism
m(¢) : C — X in C/T such that w(¢)m(u;) = w(7y;) for all ¢ = 1,...,n. Then we have that
m(Yu;) = w(Ou;) for all i = 1,... n, that is, we have that (¢ — @)u; € Zforalli =1,...,n.
Since C is additive, there exists projections p; : C — C; for all ¢ = 1,...,n such that
le =Y wipi ({pi : C; — C}i—, is a coproduct). Then we have that
b—0=(—0)1lc=> (—0mpi =Y (¢ —0)u)pi €,
i=1 i=1

since Z is an ideal and (v — 0)pu; € Z for all i = 1,...,n. Then we have that 7(0) = 7(3)).
Proving the uniqueness.

Let us consider m : C — C/Z the canonical functor and w(e) : C' — C an idempotent in
Ende(C)/Z(C, C). Since End¢(C) is an artin R-algebra, we have by 2.26 that there exists and
idempotent f € End¢(C) such that 7(f) = w(e) € Ende(C)/Z(C,C). Since C is an R-variety,
there exist morphisms p; : K1 — C and ps : Ko — C in C such that p; = Ker(f) and
2 = Ker(1 — f). It can be proved that C' = K; @ K> with the inclusions pq and ps and if p;
and po are the corresponding projections f = pops and 1— f = p1py (see [64, proposition 18.5]
in p. 31). Now, since 7 is additive (or item (a) above), we have that {m(u;) : K; — C}?_,
is the coproduct of C € C/Z. Then we have that 1¢ = 7(p1)m(p1) + 7(p2)m(p2) in C/T.
We assert that 7(u1) is the kernel of 7(f). Indeed, let 7(g) : X — C in C/Z such that
7(f)w(g) = 0in C/Z. Then we have that 7(g) = Le(g) = m(z)m(pa)(9)+ () 7(p1)(g) =
w(f)m(g) + ()7 (p1)7(g) = w(p1)7w(p1)7(g). Then we have that w(g) factors through 7(p1)
and since 7(p1) is a monomorphism, we conclude that this factorization is unique. Then, we
conclude that 7(pq) is the kernel of 7(f) = m(e). Then, we have that C/Z is a category in
which idempotents split. Then we have that C/Z is an R-variety (see def. 1.5).

It follows from (b) and from the fact that a quotient of a finitely generated R-module is finitely
generated.

Let C be a Hom-finite R-variety, we recall that mod(C) denotes the full subcategory of Mod(C)
whose objects are the finitely presented functors. That is, M € mod(C) if and only if, there exists
an exact sequence in Mod(C)

Home(Cy, —) — Home (Ch, —) —— M —— 0.

The aim of this section is restrict the functors obtained in the last section.

Proposition 2.28 Let C be a Hom-finite R-variety, T an ideal in C and w : C — C/T the
canonical functor. Consider the upper part of the diagram given in 2.3

s

Mod(C/T) ——r——= Mod(C).
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(a) We can restrict 7 to a functor * : mod(C) — mod(C/Z).

(b) If for every C € C there exists an epimorphism Home(C',—) — Z(C,—) — 0, we can
restrict the functor m, to a functor m, : mod(C/Z) — mod(C).

(¢) If for every C € C there exists an epimorphism Home(C',—) — Z(C,—) — 0, we have the
adjoint pair

*
s

mod(C/T) = mod(C).

Proof.

(a) Let us see that we have 7* : mod(C) — mod(C/Z). Indeed, we know that 7* : Mod(C) —
Mod(C/T) is right exact. Moreover, by the construction of 7* it follows that 7*(Home (C, —))(C’) =
(£ ® Home(C, —))(C") = gg:g:g ® Home(C,—) = ggggg = Homg,z(C,C’) and thus we
have that 7*(Hom¢(C,—)) = Home,z(C,—) (see 1.1). From this we have the restriction

7 : mod(C) — mod(C/Z).

(b) Firstly, let us see that if M € mod(C/Z) then 7, (M) € mod(C). Indeed, let M € mod(C/T)
then there exists an exact sequence

HOch/I(X, —) — I‘IOIII(:/I(Y—7 —) — M —— 0,
with X,Y € C/Z. Applying ., by 1.25 we have the following exact sequence in Mod(C)

Home (X, — Home (Y, —
e T (M) —0.

We assert that HOIHES(*()E)_) is finitely presented for each X € C. To prove this, we consider the

following exact sequence in Mod(C)

0 — Z(X, —) — Home(X, -) Hopuefa o) 0

By hypothesis we have that Z(X, —) is finitely generated, then by theorem [4, proposition

4.2(c)], we have that HOIrr(‘g(i()f)_) is finitely presented. Then by [4, proposition 4.2(b)], we

conclude that 7, (M) is finitely presented.
(¢) Follows from (a) and (b).
]
Proposition 2.29 There exists an isomorphism of categories (C/T)°P ~ CP JI°P.

Proof.  First we recall that for A°?, B°? € C°P we have that Z°P(B°P, A°P) := Z(A, B). We
define T' : C°?/Z°P — (C/I)°P as follows: T(C°P) = C°P and for f°P : B°? — A° we set
T(f°P +Z°P(B°P, A°P)) = (f + Z(A4, B))°P. Tt is easy to show that T is an isomorphism. O

Since C is an R-variety we have the following two functors
D¢ : (C,mod(R)) — (C°P, mod(R))

Deor : (C°P, mod(R)) — (C,mod(R)).
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Given an ideal Z in C we will consider the canonical functors 7 : C — C/Z and my : C°? —
CeP/Z°P. Since (C,mod(R)) € Mod(C) it is easy to show that we have functors

(71)« : (C/Z,mod(R)) — (C,mod(R))
(m2)x : (C°P/Z°P, mod(R)) — (C°?, mod(R))

Remark 2.30 Using the isomorphism (C°P /Z°P, mod(R)) ~ ((C/Z)°?, mod(R)), we have the fol-
lowing commutative diagram

(1)

(C/Z,mod(R)) (C,mod(R))

ch/I i]D)c
((C/Z)°", mod(R)) (€, mod(R)).

Indeed, we recall that I(R/r) is the injective envelope of R/r in Mod(R). Then, for M € (C/Z, mod(R))
and C € C°? we have

(72)
s

De(n7 (M))(C) = Homp(m1 (M)(C), I(R/r)) = Homp((M o m)(C), I(R/r))
= Homg(M(C),I(R/T)).

On the other hand, (72)«(De/z(M)) = D¢/z(M) o my. Then
(Dejz(M) 0 m2)(CP) = Dez(M)(C?) = Hompg (M (C), I(R/1))).

If n: M — N is a morphism in (C/Z,mod(R)) it is easy to show that (D¢ o (71).)(n) = ((72)« 0
De¢/z)(n). Then the required diagram is commutative.

Consider the functor Q : Ann(Z) — Mod(C/Z) defined in 1.22, we known that € is an equiva-
lence of categories with inverse 7, : Mod(C/Z) — Ann(Z). We recall the following general result.

Proposition 2.31 Let A and B be arbitrary categories. Let F : A — B be a functor.

(a) Suppose that F' has a left adjoint G : B — A. Then F is full and faithful if and only if the
counit € : Go F — 14 is an isomorphism.

(b) Suppose that F has a right adjoint H : B — A. Then F is full and faithful if and only if the
unit n: 14 —> H o F' is an isomorphism.

Proof. See [22, Theorem 3.4.1] on page 114. O
Then we have the following which tell us that we can restrict the functor 7.

Proposition 2.32 Let C be a Hom-finite R-variety, Z an ideal in C such that for each C' € C there
exists an epimorphism Home(C', —) — Z(C,—) — 0. Then, there exists an equivalence

T |lmod(c/z) : mod(C/Z) — mod(C) N Ann([).

Proof. By 2.28(b), we have a functor 7, |meda(c/z) : mod(C/Z) — mod(C) N Ann([f). In order to
prove that 7, is an equivalence is enough to see that m, is dense.

Indeed, let M € mod(C) N Ann(Z). Then M (f) =0 for all f € Z. Since 7, : Mod(C/Z) — Ann(Z)
is an equivalence we have that there exists M’ € Mod(C/Z) such that 7,(M’) = M'om ~ M. By
2.3 we have that m, is right adjoint to 7* and moreover we have that 7, is full and faithful, then
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by 2.31 we conclude that 77, ~ Iyoq(c/z)- Now, by 2.28 we have that 7*(M) € mod(C/Z). Then
we have that M’ ~ n*m,(M’') = n*(M) € mod(C/Z). Proving that M’ is finitely presented and
m.(M') ~ M. Therefore 7. |mod(c/z) : mod(C/Z) — mod(C) N Ann(I) is dense. [

The following result give us that under certain conditions on the ideal Z the category C/Z is
dualizing.

Proposition 2.33 Let C be a dualizing R-variety and Z an ideal such that for every object C' € C
there exists epimorphisms Home(C',—) — Z(C,—) — 0 and Hom¢(—,C") — I(—,C) — 0.
Then C/T is a dualizing R-variety and the following diagram

(1)«

mod(C/7) mod(C)
mod((C/Z)°") ™2 > mod(ce?)
18 commutative.

Proof. Let D¢ : mod(C) — mod(C°P) be the duality. It is enough to see that we have functors
D¢ : mod(C) N Ann(Z) — mod(C?) N Ann(Z°P),

Deor : mod(C?) N Ann(Z°?) — mod(C) N Ann(Z).
Indeed, let M € mod(C) N Ann(Z) and consider D¢ (M) € mod(CP). Let f°P € Z°P(B°P, A°), then
f € Z(A, B). Therefore we have that
D(M)(f)) := Homp(M(f), [(R/r)) =0

since M(f) = 0. Similarly we have that Dcer : mod(C°) N Ann(Z°?) — mod(C) N Ann(Z).
Then C/Z is a dualizing variety with duality D¢z := (D¢)|mod(c)nann(z)- That is we have the
commutative diagram

(1)

mod(C/Z) mod(C)
\LDC/I ch
mod((C/T)°") ™= mod(CoP).
0

Remark 2.34 We note that the condition: for each C € C there exists epimorphisms Home(C', —) —
Z(C,—) — 0 and Home(—,C") — Z(—,C) — 0, is necessary in order to have the two functors

(1) (72)

mod(C/Z) ——mod(C) mod((C/T)°?) —— mod(C°P).
This is because we are using 2.28(b).

Lemma 2.35 Let A and B dualizing R-varieties and suppose we have functors F : mod(A) —
mod(B) and G : mod(B) — mod(A) such that (F,G) is an adjoint pair. Then (D 0G oDy Do
FoDy,") is an adjoint pair, where D 4 : mod(A) — mod(A°) and D : mod(B) — mod(B°)
are the corresponding dualities.

Proof. Straightforward. O
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Proposition 2.36 Let C be a dualizing R-variety and T an ideal such that for every object C' € C
there ezists epimorphisms Home(C',—) — Z(C,—) — 0 and Hom¢(—,C") — I(—,C) — 0.
Let m : C — C/T the canonical functor, then we can restrict the diagram given in 2.3 to the
finitely presented modules

*
™

T
mod(C/Z) —(r1).— mod(C)
~N~N~—N~

1
St

Proof. Consider the following diagram

mod(C/Z)

De,z - D¢
2

RN

mod((C/T)°P) e mod(CP)

Consider also
pi= Dg/lz o7y 0 D¢ : mod(C) — mod(C/T).

Since (73, (m2).) is an adjoint pair, by 2.35 we have that

(Dgl o (71'2)* Omc/z, ]D)E/II o 7T§ Oﬂ)c)

is an adjoint pair. But D, " o(m2). oD¢/z = (m1)« (see 2.33), then we have the adjoint pair ((71)«, p).
Note: we do not have that p~ 77.

We assert that p ~ C(%, —) Imod(c) = 77!1|mod(C)-
Indeed, consider D' (Home(—,C)) € mod(C). Then we have

p(Dc_l(Homc(—,C))) € mod(C/T).
Now, for X € C/Z we have that
p(Dg (Home(—,€))) (X) =
~ Homypoq(c/1) (HornC/I(X7 =), p(]D)C_l (Homc(f, C)))) [Yoneda Lemma)]

~ Homymod(c) ((71'1)*H0mc J7(X,—),Dg"! (Homc(_, 0))) [((71)., p) adjoint pair]

~ Hom,oq(c) (I—IOIm(CX(f(_’)), ]D)E1 (Homc(f, C’))) [by prop. 1.25]
- C(%Dgl(Homc(f,C)))(X) [def. ofc(% f)]

Therefore we get that

(oo mg" ) (Home(~,€)) = (¢(5.~) o ") (Home(~, )
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for every projective Home(—, C') € mod(C°P). Since p and C (%, —) are left exact (they are right

adjoint to certain functors) and D¢ is a duality we have that p o ]D)El and C(%7 7> o ]D)gl are right

exact an this implies that
(pome )= (8-} o)

for every M € mod(C°). That is po D' = C(%, —) oD, ! and since D¢ is a duality we conclude

that p ~ C(%, —> Imod(c) = 7T!1|mod(C)'
O

Because of the last proposition we are now interested in ideals that satisfies the hypothesis of
2.36. So we have the following definition.

Definition 2.37 LetC be a preadditive category. We say that an ideal T satisfies the property (A)
if for every C € C there exists epimorphisms

Home (X, —) — Z(C,—) — 0

Home(—,Y) — Z(—,C) — 0.

Now, we give some examples where the property A holds. We recall that the (Jacobson) radical
of an additive category C is the two-sided ideal rad¢ in C defined by the formula

rade(X,Y) = {h € C(X,Y) | 1x — gh is invertible for any g € C(Y, X)}
for all objects X and Y of C.

Proposition 2.38 Let C be a dualizing R-variety and T = rad(C)(—, —) the radical ideal. Then T
satisfies the property A.

Proof. See [54, Prop. 2.10 (2)] in p. 128. O

In order to give more examples of ideals satisfying the property A we recall the following
definition.

Definition 2.39 Let C be small abelian R-category with the following properties.
(a) There is only a finite number of nonisomorphic simple objects in C.
(b) Every object in C is of finite length.

(Is well known that under this hypothesis C is a Krull-Schmidt category). It is said that C is
of finite representation type if C has only a finite number of non-isomorphic indecomposable
objects (see [5, p. 12]).

Following the notation in [5, p. 3|, an object M € Mod(C) is finite if it is both noetherian an
artinian. That is, M satisfies the ascending and descending chain condition on submodules.

Proposition 2.40 Let C be of finite representation type as in definition 2.39. Then every ideal
Z(—,—) in C satisfies property A.
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Proof. By [5, 3.6 (a) and (b)], we have that Mod(C) and Mod(C°P) are locally finite. By [5, 3.1],
we have that each Home (C, —) and Home(—, C) are finite for each C' € C. Since the subcategory of
finite modules is a Serre subcategory we have that the submodules of Hom¢(C, —) and Home(—, C)
are finite. In particular each Z(C,—) and Z(—, C) are finite. By [5, Corollary 1.7] we have that
Z(C,—) and Z(—, C) are finitely generated. Then Z satisfies property A. O

Corollary 2.41 If A is an artin algebra of finite representation type then every ideal in C = mod(A)
satisfies property A.

We recall the following notions. Let A be an arbitrary category and B a full subcategory in
A. The full subcategory B is contravariantly finite if for every A € A there exists a morphism
fa: B — A with B € B such that if f' : B" — A is another morphism with B’ € B then
there exists a morphism ¢g : B’ — B such that f’ = fa o g. Dually is defined the notion
of covariantly finite. We say that B is functorially finite if B is contravariantly finite and
covariantly finite.
For related results to the following, see [23, Proposition 3.9] in page 95.

Proposition 2.42 Let C be an additive category and X an additive full subcategory of C. Let
T = Ix be the ideal of morphisms in C which factor through some object in X. Then T satisfies
property A if and only if X is functorially finite in C.

Proof. («<=). Suppose that X is contravariantly finite. Then for each C € C, there exists a right
X-approximation fo : X — C. Thus, we have a morphism

Home¢(—, fe) : Home(—, X) — Home(—, C)

We assert that Im(Home(—, feo)) = Z(—,C). Indeed, let C’ € C and o € Z(C’,C). Since T = Iy
there exists X’ € X and morphisms o' : ¢/ — X’ and o’ : X’ — C such that a« = o"o/.
Since fc is an X-approximation, there exists § : X’ — X such that o’ = fef8. Then a =
o'’ = feBa’. Then we have that o € Im(Home(—, fo)or). Now, for v : ¢/ — X we have that
(Home(—, fo))er () = fey € Z(C', C) since fery factors through X € X and Z = Zy, proving that

Im(Home(—, fe)) = Z(—, C) .Then there exists an epimorphism
HomC(*v fC) : HomC(*7 X) - I(fv C)

Similarly we can prove that if X' is covariantly finite then there exists and epimorphism Hom¢ (X, —) —
Z(C,—) — 0 for each C € C. Therefore, we have that if X is functorially finite then Z satisfies
property A.

(=). Suppose that for each C € C there exists an epimorphism

(%) : Home(—,Y) — Z(—,C) — 0.

By Yoneda it corresponds to a morphism « : Y — C with « € Z(Y, C). Then, there exists Y’ € X
and morphisms 3 : Y/ — C and v : Y — Y’ such that 8y = . We assert that § is a right
X-approximation. Indeed, let Z € X and f : Z — C morphism, then f € Z(Z,C). Since (x) is
exact there exists 6 : Z — Y such that the following diagram commutes
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This implies that the following diagram commutes

y lf
Y’LC.

Proving that 3 is is a right X-approximation and thus X is contravariantly finite. Similarly we can
see that if for every C € C there exists an epimorphism Home (X, —) — Z(C,—) — 0, then X is
covariantly finite. Then if Z satisfies property A we have that X is functorially finite. [

Now let us consider the transfinite radical of C denoted by rad;(—, —) (see [90] for details).
We inductively define the transfinite powers Z¢ for any ideal Z and any ordinal number «. Let Z°
all the morphisms in C and let Z' = Z. For a natural number n > 1 we define Z" as usual to be
the ideal generated by all compositions of n-tuples of morphisms from Z. If « is a limit ordinal, we
define 7¢ = ﬂﬂ<a Z8. If o is a non-limit, then uniquely o = B 4 n for some limit ordinal § < «
and a natural number n > 1, and we set Z% = (Z”)". Note that since we assume that C is small,
de decreasing chain

°>7'>7%?>...07*D> 7" O...

estabilizes for cardinality reasons. Let us define Z* = (1), Z* the minimum of the chain. In the case
T =rad(—, —) by definition we have that rad*(—, —) is the transfinite radical.

Proposition 2.43 Let C be Hom-finite R-variety and suppose that radi(—,—) = 0. Let Z an
tdempotent ideal in C and let
X={XeC|lx €eI(X,X)}.

If X is functorially finite then I satisfies property A.

Proof. Since R is artinian and C is a Hom-finite R-variety we have by [90] that C is Krull-Schmidt
with local d.c.c on ideals (see [90, Definition 5]). By [90, Corollary 10] we have that Z = Zx where
X ={X e€C|1lx € I(X, X)}. Now, if X is functorially finite by 2.42 we have that Z satisfies
property A. O

Example 2.44 Let C = mod(A) where A is a finite dimensional K -algebra over an algebraically
closed field. If A is a standard selfinjective algebra of domestic representation type or A is a special
biserial algebra of domestic representation type, then rad;(—,—) =0 (see [56] and [83]). We recall
that A is of domestic representation type if there is a natural number N such that for each dimension
d, all but finitely many indecomposable modules of dimension d belong to at most N one-parameter
families.

Finally, we give the following definition given by Fu-Asensio-Torrecillas. This definition is related
with our condition A on ideals.

Definition 2.45 [33] Let C be an additive category, T an ideal of C and C an object of C. An
ZI-precover of C is a morphism i : X — C with ¢ € I such that every morphism i’ : X' — C in
T factors through i
X/
Ve
Ve
% ii'
»
X "=
The ideal T is precovering if every C € C has an Z-precover. Dually there exists the notion of
ZI-preenvelope and preenveloping.
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Remark 2.46 We note that an ideal T satisfies property A if and only if T is precovering an
preenveloping in the sense of the above definition.



Chapter

k-idempotent ideals

In [8] Auslander, Platzeck y Todorov defined the k-idempotent ideals for artin algebras. In this
chapter we will define this concept in a broader context and focus on the context of dualizing
varieties, which is the perfect setting for generalize artin algebras representation theory. In this
new context we will generalize many properties obtained by Auslander, Platzeck and Todorov.
As we will see, many of these properties are related to the existence of projective resolutions and
injective corresolutions with certain characteristics.

3.1 k-idempotent ideals

In this section we will work in preadditive categories as well as in dualizing R-varieties. So, we will
say explicitely in which context we are working on.

In this section, we introduce the definition of ideal k-idempotent in C which is the analogous to the
one given by Aulander-Platzeck-Todorov in [8] for the case of artin algebras. In order to do this we
consider the morphisms

P EXt%\/Iod(C/I) (£, ﬁ% (G)) — Ethvlod(C) (m(F), G),

given in 2.8. Let us consider F’ € Mod(C/Z) and G := 7.(F’). In the proof of 1.29, we have that
Trg (m.(F')) = F'. Then for F, " € Mod(C/Z) we have canonical morphisms

9037,#*(1:‘/) : Eth\/Iod(C/I)(F’ F') — EXt%\/Iod(C)(W*(F)a T (F')).
It is well known the following result (see [75]).

Proposition 3.1 [75, Proposition 9.2.1] Let C be a preadditive category and T an ideal in C. The
following are equivalent.

(a) T is an idempotent ideal.

b) @} . Extl F, F') — Ext} T (F), 7« (F")) is an isomorphism for all F, F' €
Foma (FY) Mod(C/I) Mod(C)
Mod(C/Z).

(¢) Mod(C/T) is a subcategory of Mod(C) which is closed under extensions.

Motivated by the previous result and by the notion of k-idempotent ideal given in [8] we give
the following definition.

39
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Definition 3.2 Let C be a preadditive category and I an ideal in C.
(a) We say that T is k-idempotent if
WiF,Tr*(F’) : EXtiAod(C/z) (F,F') — EXt%\/Iod(C)(W*(F)vﬂ*(F/))
is an isomorphism for all F, F' € Mod(C/I) and for all 0 <1i < k.
(b) We say that T is strongly idempotent if
() Extioaieyn (Fy F') — Extiyoqiey (7 (F), ma(F))
is an isomorphism for all F, F' € Mod(C/Z) and for all 0 < i < oo.

We note that we have defined k-idempotent ideal in Mod(C), but this definition can also be
defined in the category of finitely presented C-modules. So, we give the following definition.

Definition 3.3 Let C be a dualizing R-variety and Z an ideal which satisfies property A.
(a) We say that T is k-f.p-idempotent if
Clr (i) Exbioaesny (F F') — Bxtloace) (M (F), me(F))
is an isomorphism for all F, F' € mod(C/Z) and for all 0 <i < k.
(b) We say that T is f.p-strongly idempotent if
<P§r,m(F/) : Ethnod(C/z) (F,F') — Ethnod(C)(W*(F), T (F"))
is an isomorphism for all F, F' € mod(C/Z) and for all 0 < i < oc.

Next, we have a characterization of k-idempotent ideals in terms of the vanishing of certain
derived functors.

Proposition 3.4 Let C be a preadditive category and T an ideal in C and 1 < i < k. The following
conditions are equivalent.

(a) T es k-idempotent

(b) ot o (P Ext%\/lod(c/]) (F,F") — EXtii\/[od(C) (7 (F), 7 (F")) is an isomorphism for all F, F' €
Mod(C/Z) and for all 0 < i < k.

(¢) EXTL(C/Z, F' o) =0 for 1 <i <k and for F' € Mod(C/T).
(d) EXTL(C/Z,Jom) =0 for 1 <i <k and for each J € Mod(C/ZT) which is injective.

Proof. (a) <= (b). It is just the definition of k-idempotent.

(b) < (c¢). If follows, from 2.21, taking G := 7. (F’) and the fact that ﬁ% (me(F")) = F'.
(¢) = (d). Trivial.
(d) = (c). Let us see by induction on ¢ that EXT¢(C/Z, F' o) =0 for all F' € Mod(C/Z). Let us

suppose that ¢ = 1 and F’ € Mod(C/Z). Consider the exact sequence

0 e I 0

F
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where [ is an injective C-module. Since ﬁ% ~ C(%, —) and in the proof of the adjunction 1.29 we

have that 7 : Inoac/z) — ﬁ% o 7y is an isomorphism. Then we have the following commutative
and exact diagram

0——=C(§, F'om) —=C(§, Tom) —=C(§, 4 o) ——= EXT¢(C/Z, F' o )

| |

0 F’ 1

i

NIQ

’."E‘NH’?‘N

0

where the vertical morphisms are isomorphisms. We conclude that § = 0. Then we have the
following exact sequence

0 ——EXT¢(C/Z, F' o) —=EXT4(C/Z,I o) —=EXTH(C/T, £ o) —— -

By hypothesis we have that EX’]I%(C/I, Iom) =0, then we conclude that IEJX']I%(C/I, F'om) =0,
proving the case ¢+ = 1

Now, let us suppose that EXTg '(C/Z, N o) = 0 for all N € Mod(C/Z). Let F’ € Mod(C/Z) be.
From the long exact homology sequence

» R

0 — EXT¢(C/Z, F' o 7) —= EXT4(C/Z,1 o 7) — EXTE(C/Z, L o) >

. )
EXTg(C/Z, F' o) —=EXT&(C/Z,I o) —=EXTe(C/T, L om) — -
we have the exact sequence

EXTG '(C/T, 4 o m) —=EXTL(C/Z, F' o 1) —=EXT4(C/Z, I o).

Since £ € Mod(C/Z) by induction we have that EXTy '(C/Z, £ om) = 0 and by hypothesis
we have that EXT;(C/Z,1I o w) = 0, then we conclude that EXT¢(C/Z, F' o ) = 0. Proving the
proposition. [

Now, let C be a dualizing R-variety and Z an ideal which satisfies property A. Consider the

diagram given in 2.33

(1)«

mod(C/7) mod(C)
lDC/I \LDC
mod((C/Z)°") ™2 > mod(Co?)

where 71 : C — C/Z and 7y : C°? — C?/I°P and D¢z = D¢|mod(c/z)- The following proposition
tell us that we can restrict the result given in 3.4 to the category of finitely presented modules.

Proposition 3.5 Let C be a dualizing R-variety and Z an ideal which satisfies property A and let
and 1 <1 < k. The following are equivalent

(a) T es k-f.p-idempotent

(b) <p§,7(m)*(F,) : Extfnod(c/j)(F, F'y — Extfnod(c)((m)*(F), (m1)«(F")) is an isomorphism for all
F,F’ € mod(C/T) and for all 0 < i < k.
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(¢) EXTL(C/Z, F' o) =0 for 1 <i <k and for F’ € mod(C/T).
(d) EXTL(C/T,Jom) =0 for 1 <i <k and for each J € mod(C/T) which is injective.
Proof. By 2.36, we can restrict the diagram given in 2.3 to the category of finitely presented
modules. Now, since C is a dualizing R-variety and Z satisfies property A we have that mod(C)
and mod(C/Z) are dualizing varieties and thus they have enough injectives. Then the proofs given
in 2.21 and 3.4 hold for the case of finitely presented modules. So we have the result.
O

Now, we will work in the category Mod(C°?) and we consider the corresponding canonical
morphisms analogous to <,0§m o (F1Y5 which we will denote by

05 (o) (57 * EXinoa(eymyon) (F F') — Exthyoq(con) ((WQ)*(F)v (772)*(F/)>

for all F, F' € mod((C/T)°) and for all 0 < i < k, where my : C°? — C°P/Z°P is the projection.
Therefore, we have that the result 3.4 holds for the category Mod(CP).

Proposition 3.6 Let C be a dualizing R-variety and T an ideal which satisfies property A. Then
T is k-f.p-idempotent in C if and only if Z°P is k-f.p-idempotent in C°P.

Proof. (=). Suppose that Z is k-f.p-idempotent in C. Let us see that

05 (o) (57 * EXtinoa(eymyon) (F F') — Exthyoqcon) ((Wz)*(F)7 (Wz)*(F/))

is an isomorphism for all F, F" € mod((C/Z)°P) and for all 0 < i < k. By the proposition 3.5 is
enough to see that EXTk.,, (C% /Z°, F' o) = 0 for 1 <4 < k and for F’ € mod(C°?/Z°P). Indeed,
for C' € C°P/Z°P we have that

EXTgo, (CP /TP, F' 0 12)(C) =

= Extfnod(cop) (HOIm(C_(_C:)C)7 (7T2)*(F')> [see 2.19]
— EXtioq(con) ((m)* (Homc (=, C)), (ng)*m)) [see 1.25]

~ Extioqc) (Dgl ((WQ)*(F’)),Dgl ((7@)* (Homc (=, C)))) [De is a duality]

~ Bxtloqce) ((m)*(D;}I(F')), (1) (Dg}z (Homc 2(C, _)))) [diagram in 2.33]

~ Extlyoace/) (DE L (F), DG}y (Homc (=, 0))) [T is k-f.p-idempotent]
=0 [Dg )z (Home/z(—, C)) is injective in mod(C/Z))]

In the third equality we are using that Extfnod(c)(X, Y) ~ Extfnod(co,,) (Dc (Y), ]D)C(X)> for X,Y €
mod(C). Hence, ]EXT@OP(CO”/I"”,F’ om) =0for1<i<kandfor F/ € mod(C°/Z°P), proving
by 3.4 that I°P is k-idempotent.
O

Next we will consider the dual version of 3.4 and 3.5. By 2.17 we have morphism Q/J%,G :
TorS(F o my, G) — Tors/*(F,G/IG), for F € Mod((C/Z)°?) and G € Mod(C).
For G = F' om with F' € Mod(C/Z) we have that G/ZG ~ F'. Then for F' € Mod((C/Z)°P) and
F' € Mod(C/Z) we have the morphism
¢/

w%y(m)*(p) : Tor§ (F o g, F' o m) — Tor' " (F, F').

We obtain the following result.
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Proposition 3.7 Let C be a preadditive category, T an ideal in C and 1 < i < k. The following
conditions are equivalent.

(a) w%(m)*(F,) : ToriC(Fom,F’ omy) — Torf/I(F, F') is an isomorphism for all 1 <i <k and
F € Mod((C/Z)°P) and F' € Mod(C/T).

(b) TORS(C/Z,F' om) =0 for 1 <i <k and for all F’ € Mod(C/T).
(¢) TORS(C/Z,Pom) =0 for 1 <i <k and for all P € Mod(C/ZT) that is projective.

Proof. (a) <= (b). Follows from 2.22.

(b) = (¢). Is trivial.

(c) = (b). Let us see by induction on i that TOR,(C/Z, F' owr) = 0 for all F' € Mod(C/Z). Let us
suppose that i = 1 and F’ € Mod(C/Z). Consider the exact sequence

0 K P F’ 0

where P is a projective C/Z-module. Since (m1), is full and faithful, we have an isomorphism (see
2.31(a))

C
e |7 ®c — ) o (m1)« — Inoa(c/z)-

Then we have the following commutative and exact diagram

0 K P F’ 0

l | |

T@Ré(C/Z,F’om)L>%®c (Kom)—=£®c¢ (Pom)—= £ (Fom)—=0

where the vertical morphisms are isomorphisms. Then we conclude that § = 0. Therefore, we have
the following exact sequence

TORS(C/Z, K o my) — TORE(C/Z, P o m;) — TOR(C/Z, F' o 1) — 0.

By hypothesis we have that 'I[‘@]Ré (C/Z,Pom) =0 and thus T@Ré (C/Z,F’' om) =0, proving the
case ¢ = 1.

Now, let us suppose that TOR, '(C/Z, N o) = 0 for all N € Mod(C/Z). Let F’ € Mod(C/Z).
From the long exact homology sequence

... ——=TORZ(C/Z, K o m) — TOR2(C/Z, P o m;) —> TORZ(C/Z, F' o my) >

A

L TORS(C/Z, K o m;) — TORE(C/Z, P o m;) — TORL(C/Z, F' o) — 0
we have the exact sequence
TOR,(C/Z, P o m) — TORE(C/Z, F' o m) — TORS 1(C/Z, K o my).

Since K € Mod(C/Z) by induction we have that TOR, '(C/Z, K o m;) = 0 and by hypothesis we
have that TORS(C/Z, P o) = 0, then we conclude that TOR%(C/Z, F' o m;) = 0. Proving the
proposition. [

From this result we can restrict us to the category of finitely presented modules.
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Proposition 3.8 Let C be a dualizing R-variety, T an ideal which satisfies property A and 1 < i <
k. The following are equivalent

(a) w%,(m)*(F’) : Tor$ (Fomy, F o) —» TorS/I(F, F') is an isomorphism for all 1 <i <k and
F € mod((C/Z)°?) and F' € mod(C/Z).

(b) TORS(C/Z,F' omy) =0 for 1 <i <k and for all F’ € mod(C/T).
(c) ']I‘(O)Rf(C/I, Homez(C,—)om) =0 for 1 <i <k and for all Hom¢,7(C, —) € mod(C/Z).

Proof. By 2.36, we can restrict the diagram given in 2.3 to the category of finitely presented
modules. Now, since C is a dualizing R-variety and Z satisfies property A we have that mod(C) and
mod(C/Z) have enough projectives. We have that the projectives in mod(C/Z) are direct summands
of modules of the form @ ; Hom¢,7(C;, —). Then the proofs given in 2.22 and 3.7 hold for the
case of finitely presented modules. So we have the result. [

Now, in order to relate the functors EXT%(C/Z, —) and TORS (C/Z, —) we need the Auslander-
Reiten duality. So we recall the following.
Let C be a dualizing R-variety. Let M € Mod(C) be and consider the functor —®¢ M : Mod(C?) —
Ab and its derived functor Tor’(—, M) : Mod(C®?) — Ab. Then, restricting to the finitely
presented modules we have the functor Toré(—, M) : mod(C°?) — Ab.
Now, suppose that M € mod(C), since mod(C°?) is an R-variety we have Tor’(N, M) € mod(R)

if N € mod(C). Then we get a functor Tor’(—, M) € (mod(C"p),mod(R)>. By 1.9 we have that
mod(C°P) is a dualizing R-variety, then we have the duality

Dimod(cor) (mod(cop),mod(R)) — (mod(cop)op,mod(R)).

Hence ]D)mod(cop)(Torf(f,M)) € (mod(CoP)OP,mod(R)).
On the other hand, consider the duality D¢ : mod(C) — mod(C°P). Then, we have that D¢ (M) €
mod(C°P) since M € mod(C). Therefore

Exthoa(cory (— De(M)) : mod(C) — mod(R)
is a contravariant funtor. That is, Extinod(c(,p)(ﬁ]DDC(M)) € (mod(C°p)°p7mod(R)>.

Remark 3.9 Consider N € Mod(C°?) and M € Mod(C), we have N ®c M € mod(R). Now
consider L € mod(R) we define a functor Homp (M, L) € Mod(CP) as follows: Hompr(M, L)(C) =
Hompg(M(C), L) for C € C°P and if f : C — C' is a morphism in C we have

Homp (M, L)(f) := Hompg(M(f),L) : Homg(M(C"), L) — Hompg(M(C), L).
Then there exists an isomorphism functorial in M, N and L
Homp (N ®e M, L) ~ Homygoq(cor) (N, Homp (M, L)).

Indeed, this is the isomorphism 2 in p. 26 given in the paper [65]. We note that this is because
M ®cor N~ N ®c M (see [65] in p. 26).

Then we have the following result due to Auslander and Reiten.

Proposition 3.10 Let C be a dualizing R-variety and M € mod(C). Then we have the isomorphism
of contravariant functors from mod(C°P) to mod(R)

Dmod(CDP) (TOI'E(—, M)) = Ethnod(COP) (_7 DC (M))
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Proof. See [9, Proposition 7.3] in p. 341. O
Proposition 3.11 The last proposition give us isomorphisms of R-modules
Homp (Torf (N, M) E) ~ Extioqc) (M, ]DglN)

and
Tor$ (N, M) ~ Homp (Exti © (M, DglN) , E)

mod

for N € mod(C°?) and M € mod(C), where E = Iy(R/rad(R)) is the injective envelope of
R/rad(R) € mod(R).

Proof. We have the isomorphism Extfnod(c(,p)(]D)c(Y),Dc (X)) ~ Extfnod(c)(X, Y") for all For each
X,Y € mod(C). Then for N € mod(C°?) and M € mod(C) we have the isomorphism

Dinod(cory(Tor§ (=, M))(N) = Extloqicory (N, De(M)) == Extl,oqc) (M, Dg ' (V).

This give us the isomorphism Hompg (Toric (N, M) ,E) ~ Extfnod(c) (M, DglN); and the second
follows from the former since Hompg(—, E) : mod(R) — mod(R) is a duality. O

Remark 3.12 We note that in 3.11, we are using that in order to compute Toric(]\/'7 M) we can
use projective resolutions of N or projective resolutions of M (see 2.15). This is because in our
original definition of Tor$ (N, M) we use projective resolutions of M (see 2.14) and in order to
compute Toric(f, M)(N) in 8.11 we need to use projective resolutions of N. So, implicitely we are
using that Tor$ (—, —) is balanced.

In the same way, we can consider the following situation. Let N € Mod(C°?) and consider the
functor N ®@c — : Mod(C) — Ab and its derived functor Tor§ (N, —) : Mod(C) — Ab. Then,
restricting to the finitely presented modules we have the functor Tor$ (N, —) : mod(C) — Ab.
Let D¢ : mod(C) — mod(C°P) be the duality. If N € mod(C°), we have that D;'(N) € mod(C).
Therefore we have the functor

Hommod(c)(—,Dgl(N)) :mod(C)? — Ab

and its derived functors Extinod(c)(—,]D)C_l(N)) : mod(C)°? — Ab. Since mod(C) is an R-variety
we have Extfnod(c)(M, D' (N)) € mod(R) if M € mod(C)°?. Thus, we have a functor

Exthoqc) (= Dg (V) : mod(C)? — mod(R).
On the other hand, by 1.9 we have that mod(C) is a dualizing R-variety, then we have the duality
Diod(e) : (mod(C),mod(R)) — (mod(C)Op,mod(R)).

Since mod(C) is an R-variety we have Tor$ (N, L) € mod(R) if L € mod(C). Then we get a functor
Tor¢ (N, —) : mod(C) — mod(R) and then Dmod(c) (ToriC(N, —)) : mod(C)°? — mod(R). Then

we have the following proposition.

Proposition 3.13 Let C be a dualizing R-variety and N € mod(C°P). Then we have the isomor-
phism of functors from mod(C)° to mod(R):

Dunoa(e) (Torf (N, =) ) = Extioae) (=D (V).
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Proof. Let M € mod(C) be and (P®,vy) a projective resolution in mod(C). Let E =
Iy(R/rad(R)) the injective envelope of R/rad(R) in mod(R). By the isomorphism 2 given in [65]
in pag. 26, we have the isomorphism of complexes

Homp (N ®c P°*, E) ~ Hompioq(c) (P',HomR(N, E))

Taking homology on both sides and using the fact E is injective we have the isomorphism

Homp (Hi(N ®c P*), E) ~ H; (HomR (N ®c P°, E))
~H, (HomMod(c) (P‘, Hompg(N, E))) .

But by definition of D¢ we have that Homg(N, E) ~ D;'(N) (see 3.9 for the definition of D¢(N)).
Then we conclude
Homp (Tor (N, M), E) ~ Extlyoqc) (M, DG (V).

By definiton, we have that Dp,oq(c) (ToriC(N, —)) (M) = Homp (Tor (N, M), E) Then we have a
functorial isomorphism

Drmod(c) (Torf(N, —)) Extloacc) (= DG (V).

O
Now, we have the following result that characterizes k-idempotent ideals in terms of the mor-
phisms w}f,(m)*(F’)‘

Proposition 3.14 Let C be a dualizing R-variety, T an ideal which satisfies property A. Then
T is k-f.p-idempotent if and only if w%,(m)*(F,) is an isomorphism for F € mod((C/Z)°?) and
F' € mod(C/Z).

Proof. (=). Let F’ € mod(C/Z) be. Let us see that TORS (C/Z,F' om) = 0for 1 < i < k.
Indeed, for C € C/Z we have

TORS (C/Z, F' o m)(C) =
— Torf <Homc(’0)7 (Wl)*(F/))

Z(-,0)
= Tor¢ ( (Homc/z(—,C)>,(7r1)*(F’)) [see 1.25]
= Homp, (ExtMOd(C)( D (F’),Dgl((WQ)*(HomC/I(—,C))),E) by 3.11]
= HomR(ExtMOd(c ( » (F’),(w1>*(mg}1(ﬂomc/z(_,0))),E) diagram in 2.33]
= Homp (ExtMod(C ) (F D}, (Homc (= C))),E) [T is k — idempotent]
~0

the last equality is because ExtMOd(c/I) (F ]D)C/I (Homc/z(—7 C’))) = 0 since the functor
]DC/I (Homc/z(—7 C)) is injective in mod(C/Z).

Therefore, by 3.8 we have that 1/}} (m1)a (FY) is isomorphism.
(«<=) Now let us suppose that 1/JF ).(Fr) is isomorphism for F' € mod((C/Z)°?) and F' €
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mod(C/Z). In order to show that Z is k-f.p-idempotent is enough to see that EXT(C/Z, Jom;) =0
for 1 <4 <k and for each J € mod(C/Z) injective (see 3.5).

Let J € mod(C/Z) be injective. Since J es injective we can suppose that J = ID)C/I(HomC/I(—, ")
for some C’" € (C/Z)°P. Then

EXTS(C/Z, J om)( C)

— Extdyoqc) <Ho (1) (]D)C_/lI(Homc/I(,C’/)))>

= st (D oL g (ra). (Hormeyz(—, ") ) diagram in 2.33
— Exthpoacc) (%,Dgl (Hom(C(_C/)C/))) [see 1.25]
~ Homp (Torc (Hon(lf( O/)C/), Homc )E) [by 3.11]
~ Homp,(TORS (¢/1, HOIH(léi) E) [see 2.19]
~ Hom (TORS (C/Z, (m). (Home,z(C, -)) ) (€), E) [see 1.25]

Since 1/)}7(”1)*(17,) is an isomorphism for F' € mod((C/Z)°P) and F’ € mod(C/Z) by 3.8 we have that
TORY (C/z, (11)s (Homc 2(C, —))) (C') = 0. Therefore, we have that EXT:(C/Z, J o m)(C) = 0

and thus EX'JI% (C/Z,J om)=0. By 3.5 we have that Z is k-f.p-idempotent. [
We finished this section with the following result, which is analogous to proposition 1.3 en [8§].

Corollary 3.15 Let C be a dualizing R-variety and Z an ideal which satisfies property A and let
and 1 < i < k. The following are equivalent

(a) T es k-f.p-idempotent.

(b) ot (r0)a (F7) Ethnod(c/I)(F, Fy — Extfnod(c)((m)*(F), (m1)«(F")) is an isomorphism for all
F,F' € mod(C/T) and for all 0 < i < k.

(¢) EXTL(C/Z, F' o) =0 for 1 <i <k and for F’ € mod(C/T).
d) EXTL(C/Z,Jom) =0 for 1 <i <k and for each J € mod(C/ZI) which is injective.
( c

) ¢%,(m)*(F’) : TorS (F oy, F o) —» Torf/I(F, F') is an isomorphism for all 1 <i <k and
F € mod((C/Z)°P) and F' € mod(C/Z).

(9) TORS(C/Z,F' o) =0 for 1 < i<k and for all F' € mod(C/T).
(h) TORS(C/Z, Home/z(C,—)om) =0 for 1 <i <k and for all Hom¢,7(C, —) € mod(C/Z).

Proof. It follows from 3.5, 3.14 and 3.8. O

3.2 Projective resolutions and injective coresolutions

In this section we will work in preadditive categories as well as in dualizing R-varieties. So, we will
say explicitely in which context we are working on.
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In the previous section we characterized k-idempotent ideals in terms of the projective resolutions
of all C/Z-modules. We show here that knowing the projective resolutions of Z(C, —) for all C' € C
is enough to determine for which k the ideal Z is k-idempotent.

Firstly, we will prove the dual basis lemma for the case of Mod(C) (see also [66] in p. 34).

Proposition 3.16 (Dual basis Lemma) Let C be a preadditive category, an object P € Mod(C) is
projective if and only if there exists a family of morphisms {8; : P — Hom¢(Cj, —)}jes and a
family {z;};e; with z; € P(C;) such that for all X € C and for every a € P(X) there exists a
finite subset Jx o C J such that

a= Z P([B]x(a))(x;).

Jj€JX,a

Proof. (=) Since {Hom¢(C, —)}cec is a generating set of projective modules, there exists an
epimorphism

f: GBHomc(Cj7 -)— P.

jeJ

We get the morphism 7, := fu; : Home(Cj, —) — P, where u; : Home(Cj, —) — ¢, Home(C;
is the j-th inclusion. By Yoneda’s Lemma, fu; corresponds to one element x; := [n;]c,(1c;) €
P(Cj). Furthermore, n; : Hom¢(Cj, —) — P is such that [n;]x(a) = P(a)(z;) for all X € C
(Yoneda’s Lemma).
Now, let v = (7j)jes € @,c; Home(Cj, X). Then, there exists a finite subset J, of J such that
v =01if j ¢ J,. We know that fx : @,c; Home(Cy, X) — P(X) is defined for v = (75)jes €
@D, Home(Cj, X) as follows:

Ix((r)jen) = D milx (i) = > Py)(x).

jed, jed,

Now, since P is projective we have that f is a split epimorphism and then there exists g : P —
@D, Home(Cj, —) such that fg = 1p. Let us consider the projection ; : €, ; Home(Cj, —) —
Hom¢(Cj, —), then we have

Bj :=m;g : P — Home¢(Cj, —).

Then, for X € C we have that gx : P(X) — @, Homc(Cj, X) is defined as follows:

g9x(a) = ([Bj]x(a))jes Va € P(X)

where [3;]x (a) : C; — X. Since gx(a) € @, ; Home(Cj, X) there exists a finite subset Jx o C J
such that [B;]x(a) =0if j ¢ Jx 4. Then

a = Fx(ox(@) = fx ((Blx@)es) = D P(lBi]x(0)(x)).

J€JIX a

(<=). By Yoneda’s Lemma for each xz; € P(C};) there exists a natural transformation n; :
Home(Cj, —) — P such that for X € C the morphism [n;]x is defined as [;]x (o) = P(a)(z;).
By the universal property of the coproduct we have the morphism

n: @HomC(C’j, -)— P
JjEJ

-)
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Where ny is defined as follows. Let v = (7;)jes € €D
subset J, of J such that v; = 01if j ¢ J,. Therefore

nx(()jer) = D Imlx () = D Ply)(xy).

JET, JETy

ey Home (Cj, X) be, then there exists a finite

Let us see that nx is an epimorphism for all X € C. Indeed, for a € P(X) we construct (v;);cs
with v; = [Bj]x(a) if j € Jx, and ; = 0 in other case. Then, by hypothesis we get that

a=73icr. PUBjlx(a))(z;) = nx((v;)jes), proving that nx is an epimorphism and then 7 is an
epimorphism.

Now, we will define a morphism g : P — @ .., Hom¢(C;, —). For this, we define

jedJ

Bx : P(X) — €D Home(C;, X)
jeJ

as follows: for z € P(X) we set Bx(a) = (v;)jes with v; = [B,]x(a) if j € Jx , and ; = 0 in other
case.
Therefore,

nxBx(a) =nx((v)jes) = Y P((B]x(a))(z;) = a.

J€IxX a

Then we have that nx8x = 1p(x) and thus 8 = 1p. Thus, 7 is a split epimorphism and then P
is a direct summand of ;. ; Home(Cj, —). Proving that P is projective. [

Remark 3.17 If P is a finitely generated projective C-module, in the statement of the dual basis
Lemma we can take J as a finite set.

We recall that given a family of objects in F = {F;};e; and M € Mod(C), in 1.10 we defined the
trace of M respect to the family F which is denoted by Trz(M). We have the following description
of the trace.

Remark 3.18 Let F = {F;}ic1 be a family in Mod(C). For each N € Mod(C) and X € C we have
that

Ter(N)(X):= ) Im(fx).

{feHom(F,N) | FEF}

In the case F = {F} is just one object we will write TrpN.
We have the following definition.

Definition 3.19 Let C be a preadditive category and F = {F;};c1 a family of objects in Mod(C).
For each C' € C consider the C-submodule Trr(Home(C,—)) of Home(C,—). We define the sub-
functor TrzC of Home(—, —) : C°? x C — Ab as follows:

(TrzC)(C,C") := Trr(Home (C, —))(C")

for all C,C" € C. This ideal will be called trace ideal. In the case that F = {P} with P a projective
C-module we will write TrpC.

We will check that TrrHome(C, —) defines a bifunctor. Indeed, let f : C' — C’ be a morphism
in C. Then we have a morphism 1 = Home(f,—) : Home(C’',—) — Home(C,—). Since Trr :
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Mod(C) — Mod(C) is a functor (see 1.11), we have the morphism Trz(n) : TrzHome(C/, —) —
TrrHome (C, —) such that the following diagram commutes in Mod(C):

(¥*):  Home(C',—) fome(/,7) Home(C, —)

T Trx(n) T

Tr zHome (C', —) — TrrHom¢ (C, —)

where the vertical morphisms are the inclusions.
Now, since Trz(n) : TrrHome(C’, —) — TrrHome(C, —) is a morphism in Mod(C), we have that
for g : X — Y a morphism in C the following diagram is commutative

Trr(n)x

TI‘]:HOHlC(CI, —)(X) TI‘]:HOH’IC(C, _)(X)
Tr]:Homc(C/,—)(g)l

Tr zHome (C', —)(Y)

lTr;HoInc(C,—)(g)

Tr rHome (C, —)(Y)

Trr(n)y

Then for o € Trr(Home (C’, —))(X) C Home(C’, X) we have that

(TrsHome (€, =)(g) o Trr(n)x ) (@) =

= (TrzHome (C.-)(9) ) (ef) [by diagram (+)]
= g(af) [Tr Home (C, —) is a subfunctor of Home(C, —)]

Similarly, we have that (’H}-(n)y o Tr;Homc(C’,—)(g))(a) = (ga)f. That is, we have that

TrrC(—, —) is a subbifunctor of Home(—, —).
That is, we have that TrzC is an ideal in C.

Proposition 3.20 Let C be a preadditive category and let P be a projective C-module. Then TrpC
defines an idempotent ideal of C.

Proof. We have to show that (TrpC)(C, X) C (Tr5C)(C, X) for all C, X € C.
By definition we have that (TrpC)(C, X) := Trp(Home(C, —))(X). Then, if o € (TrpC)(C, X) we
have that

n

o= Z[m‘]x(ai)
i=1

for some 7; : P — Home(C,—) and a; € P(X) (see 3.18). Then, If we want to show that
(TrpC)(C, X) = (TrsC)(C, X) is enough to show that if  : P — Home(C,—) then nx(a) €
(Tr3C)(C, X) for a € P(X).

Then consider i : P — Hom¢(C, —) and a € P(X). By the dual basis lemma there exists a family
of morphisms {f; : P — Hom¢(Cj, —)},cs and a family {z;},c; with z; € P(C};) such that there
exists a finite subset Jx , C J such that

a= Z P([B]x(a))(x;).

J€JX,a
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with [8;]x(a) : C; — X. Since 7 is a natural transformation for each [5;]x(a) : C; — X we get
the following commutative diagram
ne;
P(Cj) —— I‘IOIrlc(C'7 CJ)
P([Bj]x("'))l iHomC(Q[ﬁj]x(G))
P(X) —> Home(C, X)

Then for z; € P(C;) we have that

x (P(18)x (@) () = Home (€, [8;1x(a)) (e, () = [8y]x (a) e o ().

Now, since n¢,(x;) € Im(ng;) we have that nc,(z;) € Trp(Home(C,—))(C;) € Home(C, Cy).
Similarly, [;]x(a) € Trp(Home(C}, —))(X) € Home(Cj, X). By definition of Tr3.C, we have that
[B5]x (a) o ne, (x;) € Trp(Home (C, —))(X) = (TrpC)(C, X).

Therefore

nx(@) = Y ux(P(B1x(@) @) = Y [Blx(a)one, (@) € (THC)(C, X),

Jj€Ix,a Jj€Ixa

This finishes the proof. O

Corollary 3.21 Let C be a preadditive category, P a projective C-module and T = TrpC. Consider
the functor m: C — C/Z. The following equivalent conditions hold.

(a) <p};,m(F,) : EXt%\/Iod(C/I) (F,F') — Ethl\/Iod(C) (me(F), e (F")) is an isomorphism for all F, F' €
Mod(C/Z).

(b) EXTL(C/Z, F' om) =0 for all F' € Mod(C/T).

Proof. It follows from 3.4 and 3.20. O
We recall the following definition (see 2.10). Let F' € Mod(C) and Z an ideal in C. We define
IF as the subfunctor of F' defined as follows: for X € C we set

IF(X) := > Im(E(f)).

felUcec Z(C.X)

In the case we consider the ideal TrpC we have that

(TrpC - F)(X) := > Im(F(f)).

fEU0ec(T1"PC)(CvX)

Now, we have the following result which is a generalization of the basic result in modules over a
ring R.

Proposition 3.22 Let C be a preadditive category, ' € Mod(C) be and TrpC the trace ideal. Then
TI'pC -F = TI‘p(F)

Proof. Let X € C be. Let us first see that (TrpC F)(X) C (TrpF)(X).
By definition we have that (TrpC - F)(X) := > Im(F(f)) where F(f) : F(C) — F(X). We
f (TrpC)(C,X)
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take x € Im(F(f)) with f € (TrpC)(C,X) € Home(C, X), then there exists y € F(C) such
that FI(f)(y) = z. Since f € (TrpC)(C, X) there exists morphisms 7; : P — Hom¢(C, —) and
a; € P(X) for i =1,...,n such that

n

F= [mlx(a).

i=1
Then F(f)(y) = Z?:1F<[ni]x(ai))(y). We assert that for each ¢ = 1,...,n we have that

F(nlx(a:) (@) € (TrpF)(X).
Indeed, since y € F(C), by Yoneda’s Lemma there exists o : Home(C,—) — F such that
ac(le) =y and ax(8) = F(B)(y), V6 € Home(C, X). Thus we have the morphism

Bi:=aomn; : P— F.

Then [3]x (ai) = ax (Inilx (a:) = F([n]x(a:) ) (4) and thus P[] (a:) ) (4) € Im([8:)x), proving
that F([m]x(ai)> (y) € (TrpF)(X). Therefore

v = F(N) = > F(Inlx(a))w) € (TrpF)(X).

since Trp(F)(X) := Z Im(Bx) (see 3.18). Proving that (TrpC - F)(X) C (TrpF)(X).
{B€Hom(P,F)}

Now, let us see that (TrpF)(X) C (TrpC-F)(X). It is enough to see that Im(nx) C (TrpC-F)(X)
for n: P — F. Then, let z € Im(nx) C F(X) with n: P — F, then there exists a € P(X) such
that nx(a) = . By Yoneda’s Lemma there exists o : Hom¢ (X, —) — P such that ax(1x) = a and
ay (B) = P(B)(a) VB € Home(X,Y). By the dual basis lemma there exists a family of morphisms
{B; : P — Hom¢(C}, —)} es and a family {z;};cs with z; € P(C;) such that

(): a= Y P(Blx(a))(z)),
J€JIX.a

for a finite subset Jx , C J. We note that [5;]x(a) : C; — X and [3;]x(a) € Im([B;]x) and then
[Bj]x (a) € Trp(Home(Cj, —))(X) = (TrpC)(Cj, X).

Applying 7x to the equality () we get @ =nx(a) =3, 1x (P([Bj]x(a))(xj)). Now, since 7

is a natural transformation we get the following commutative diagram

nc;

P(C;) — F(Cj)

P([ﬁj]x(a))l iF([ﬂj]x(a))

P(X) —— F(X).

nx

Then, we get that 7x (P([Bj]x(a))(xj)) - F([ﬁj}x(a)) (11¢,, (x;)) and since the morphism [3;] x () €
(TrpC)(Cy, X) we get that 7x (P([,Bj]x(a))(a:j)> € (TrpC - F)(X) (see 3.18). Therefore,

r=nx(@)= Y nx(PB)x(@)(;) € (TepC- F)(X).
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Proving that (TrpF)(X) C (TrpC - F)(X). Therefore (TrpF)(X) = (TrpC - F)(X). O

Let M € Mod(C) we recall that add(M) is the full subcategory of Mod(C) whose objects are
direct summands of finite coproducts of the module M. That is, X € add(M) if and only if there
exists a module Y such that X &Y ~ M™ for some n € N. The following proposition tell us when
two finitely projective C-modules produces the same ideal.

Proposition 3.23 Let P and @ finitely generated projective C-modules. Then TrpC = TrgC if
and only if add(P) = add(Q).

Proof. (=). We have that Trp(P) = P. Since TrpC = TrgC by 3.22 we have that P = TrpP =
TrpC- P = TrgC- P = Trg P. Then there exists an epimorphism 7 : Q) — P. Since P is finitely
generated we have that there exists a finite subset J C I and an epimorphism 7' : Q7 — P (see
[4, 2.1(b)]). Since P is projective we have that P is a direct summand of Q7. Then P € add(Q).
Similarly we have that @ € add(P) and therefore we have that add(P) = add(Q).

(«<=). Let C,C" € C be. By definition we have that

(TrpC)(C,C") := Trp(Home(C,—))(C") = D Im(fer).
{f€Hom(P,Hom¢(C,—))}

Let z € Im(fc-) be for some f : P — Home(C, —). Then there exists y € P(C”) such that for(y) =
z. Since add(P) = add(Q) we have that there exists an split epimorphism 7 = (a,...,an) :
Q" — P with a; : @ — P for all i = 1,...,n. Then there exists (wi,...,w,) € Q(C’)™ such
that mor (w1, .., wn) = Y1y lasler(w;) = y and thus © = for(y) = >0 (for o [as)er)(w;). Since
fai: Q@ — Home(C, —) we have that

y€ >~ Im(Ber) = Trg(Home (G, —))(C') = (TrgC)(C, C"),

{B€Hom(Q,Home (C,—))}

where the last equality is by 3.22. Then we get that (TrpC)(C,C") C (TrgC)(C,C"). Similarly we
have that (TrgC)(C,C") C (TrpC)(C, C"). Therefore we have that (TrpC)(C,C") = (TroC)(C, C").
Proving that TrpC = TroC. O

We have the following result which will be useful in the following.

Lemma 3.24 Let C be a Hom-finite R-variety and let B be an additive full subcategory of C.
Consider F := {Hom¢(C, —)}cen, then for each Home (X, —) € Mod(C) we have that

Tr}-(Homc(X, f)) — Zn(X, -)
where I is the ideal of the morphisms in C which factor through some object of B.
Proof. See [62, Lemma 2.3]. O

Lemma 3.25 Let C be an additive category and P = Home(C,—) € Mod(C) a finitely generated
projective C-module. Let us consider B := add(C) C C and consider F := {Hom¢(C’, —)}cren,
then for each Home (X, —) € Mod(C) we have that

Tr}-(Homc(X, —)) = Triome(c,—) (HomC(X7 —))
Proof. Let us see that for each Y we have that

Trr (Homc (X, —)) (V) = Triome (c.-) (Homc (X, —)) (Y).
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We have that Trz(Home (X, —))(Y) := Z Im(fy), so it is enough to see that
{f€Hompyo4q(c) (C(C7,—-),C(X,—)) | C’€B}

Im(fy) C rI‘rHomc(C’,)(Homc(X,—))(Y). Indeed, we have that f = Home(f’,—) for some f’ :
X — C'. Let &« : X — Y be with a € Im(fy). Then there exists 3 : ¢’ — Y such that
a = Af’. That is, we have the following commutative diagram

C/
(N
f

X 2>V

Since C’ € add(C') we have that there exists uc : ¢’ — C™ and por : C™ — C' such poruer = 1w
for some n. Let 0 = ucr f' : X — C™ and ¢ := Bopc : C* — Y. Then 0 = (01,--- ,0,)" with
0;: X — Cfori=1,...,n;and ¢ = (Y1, ,4,) with ¢, : C — Y for each i = 1,...,n. Then

a=Bf = Pporuc f' =10 =S 1b;
i=1
Let us consider ©, = Home¢(6;,—) : Home(C,—) — Home(X,—). Then we have (0;)y :
Home(C,Y) — Home(X,Y) and ¢,0; = (6;)y (¢;). Then

aeYym(©))C > Imlgy) = Truome(e ) (Home(X, -)) (V)
i=1 {g€Hompoa(c) (C(C,—),C(X,—))}

This proves that Im(fy) € Truome(c,—) (Homc(X, f)) (Y). Therefore,
TI‘]: (HOIHC (X7 _)) (Y) - TlI‘Homc (c,-) (HOI’HC (Xv _)) (Y)
It is clear that Tryom.(c,—) (Homc(X7 —))(Y) CTrr (Homc(X, —)) (Y). Proving that

Trr (Homc (X, —)) (V) = Tritome (e (Homc (X, —)) (Y).
O

Corollary 3.26 Let C be a Hom-finite R-variety and P = Hom¢(C,—) € Mod(C) a finitely gen-
erated projective C-module. Then Trp (Homc(X, —)) = Toaa(c)(X, =) where Toqq(cy is the ideal of
the morphisms in C which factor through some object of add(C'). That is

TrPC(fa 7) = z-audd(C)(*ﬂ 7)'

Proof. It follows from 3.24 and 3.25. [
A similar result holds in Mod(C°P). That is, we have the following result.

Corollary 3.27 Let C be a Hom-finite R-variety and P = Home(—,C) € Mod(C°?). Then
Trp (Homc(—,X)) = Toaa(c)(—, X) where Toqq(c) is the ideal of the morphisms in C which factor
through some object of add(C).

Now, we recall the following well known result.
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Proposition 3.28 Let C be an R-category which is Hom-finite, where R is a commutative ring.
Then for every C € C we have that add(T) is functorially finite.

Proof. See [19, Theorem 4.2]. O

Remark 3.29 For a reference where the last proposition is written we can see the section of pre-
liminaries in the paper [53] in pag. 7864. See also the proof of proposition 3.33 in [82]. This proof
works to prove that add(T) is functorially finite in the above context.

Proposition 3.30 Let C be a dualizing R-variety, P = Hom¢(C, —) a finitely generated projective
C-module and let T = TrpC. Then I satisfies property A.

Proof. By 3.26 we have that TrpC = Z,q4(c)- By 3.28 we have that add(C) is funtorially finite.
By 2.42 we have that Z,qq(c) satisfies the property A. [

Corollary 3.31 Let C be a dualizing R-variety, P = Hom¢(C, —) a finitely generated projective
C-module and let T = TrpC. Then we can restrict the diagram given in 2.3 to the finitely presented
modules

.
™

—
mod(C/Z) —(m1).— mod(C)
~— -

]
!

Proof. It follows by 3.30 and 2.36. O

Remark 3.32 In the following section, we will see that we can complete the diagram in 3.31 to a
recollement.

Let C be a preadditive category, we recall the construction of the functor (—)* : Mod(C) —
Mod(C°P) which is a generalization of the functor Mod(A) — Mod(A°P) given by M — Hom (M, A)
for all the A-modules M.

Indeed, for each C-module M we define M* : C — Ab given by M*(C) = Homyoq(c)(M, Home (C, —)).
Clearly M* is a C°P-module. In this way we obtain a contravariant functor (—)* : Mod(C) —
Mod(C°P) given by M +— M*.

If M = Hom¢(C, —) it can be seen that M* = Home(—, C), we refer the reader to section 6 in [9]
for more details.

Corollary 3.33 Let C be a Hom-finite R-variety, P = Hom¢(C,—) € Mod(C) and consider the
ideal T = TrpC. Then we have that
Z°P = Trp.CP.

Proof. By definition of the ideal Z°? and by 3.26, we have that Z°P(X°P Y°P) = Z(Y, X) =
Iadd(C) (K X) for all X°P Y°P € C°P,
On the other hand, since P* = Hom¢(—, C') we have that

Trp«CP(XP,YP) := Trp« (Homeor (X7, —))(YP) = Trp»(Home(—, X))(Y)
= Taaa(c) (Y, X)
where the last equality is by 3.27. O

Now, we recall that if C is a dualizing R-variety by [9, Proposition 3.4] we have that mod(C)
has projective covers.
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Proposition 3.34 Let C be a dualizing R-variety and P be a projective C-module and let F €
mod(C). Let Py(F') be the projective cover of F', then Trp(F) = F if and only if Py(F) € add(P).

Proof. (<=). Suppose that Py(F') € add(P). Then there exists epimorphisms
P —%= Py(F) ——=F ——=0.

Therefore we get that Trp(F) = F.
(=) Now, suppose that Trp(F) = F. Then there exists an epimorphism PY) — F. Since
F € mod(C) we have that F is finitely generated and therefore we have that there exists an
epimorphism P" — F — 0 (see [4, 2.1(b)]). Since Py(F) is the projective cover of F' we have
that Py(F) is a direct summand of P™, proving that Py(F) € add(P). O

It is convenient to introduce the following definition that will be used along the thesis.

Definition 3.35 Let C be a dualizing R-variety and P € mod(C) be a projective module. For each
0 < k < oo we define Py, to be the full subcategory of mod(C) consisting of the C-modules X having
a projective resolution

oP,—> P, P Py X 0
with P; € add(P) for 0 <i < k.

We recall that if C is a variety and P € Mod(C) is finitely generated projective C-module then
P ~ Hom¢(C, —) for some C € C (see 2.25).

Lemma 3.36 Let C be a Hom-finite R-variety, P = Hom¢(C,—) € Mod(C) and T = TrpC.
Consider my : C — C/Z. Then we have that Homp,oq(c)(Q, (m1)«(Y)) = 0 for all Q € add(P) and
for all Y € mod(C/T).

Proof. Firstly, we note that Homy,oq(c)(P, (m1)«(Y)) = 0 for Y € mod(C/I). Indeed, by
Yoneda’s Lemma we have that Homy,oq(c) (P, (71)«(Y)) =~ (m1).(Y)(C) = Y(C) = 0, because
lyc) = Y(1¢) = 0 since C' € add(C), T = Z,qq(c) and Y € mod(C/Z) (see 3.26). We conclude
that Homy,eq(c) (@, (m1)«(Y)) = 0 for all Q € add(P). O

Corollary 3.37 Let C be a Hom-finite R-variety, P = Hom¢(C,—) € Mod(C) and Z = TrpC.
Consider my : C — C/T. Let X € mod(C). Then X € Py if and only if Homy,q(c) (X, (m1)4(Y)) =
0 for all Y € mod(C/Z).

Proof. (=). Suppose that X € Py, then there exists an epimorphism v : Py — X with Py €
add(P). Let a : X — (m1)+(Y"), then we have that ay € Hompoq(c)(Q, (71)«(Y")). By 3.36 we have
that ay = 0. Then a = 0, since v is an epimorphism. Proving that Hompsq(c)(X, (m1)«(Y")) = 0.
(<=). Suppose that Hompsqc)(X, (m1)«(Y)) = 0 for all Y € mod(C/Z). Let Py(X) be the
projective cover of X. We assert that Py(X) € add(P). By 3.34 it is enough to see that Trp(X) =
X. Let us consider the exact sequence

u q X
0 X X 2 0
We have that 2% € Ann(Z). By 1.23 we have that 2 = (m1).(Q(F5)) with Q(£%) € mod(C/T).
Then, by hypothesis we have that Hom,eq(c) (X, %) = 0. We conclude that ¢ = 0 and therefore
w is an isomorphism. That is we have that ZX = X. But ZX = TrpC - X = Trp(X) (see 3.22).
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Proving that Trp(X) = X and by 3.34 we conclude that Py(X) € add(P). Therefore, we have that
XelPy O

In the following proposition we give a characterization of the modules in Py that will be used
in the rest of the thesis.

Proposition 3.38 Let C be a dualizing R-variety, P = Hom¢(C, —) € mod(C) a projective module
and T = TrpC. For 1 <k < oo, the following conditions are equivalent for X € mod(C).

(a) X € Py.
(b) Extloaic)(X, (m1)+(Y)) =0 for all Y € mod(C/I) and i =0,... k.
(c) Extfnod(c)(X, (m1)«(J)) =0 for all J € mod(C/Z) injective and i =0, ..., k.

Proof. (a) = (b). Let X € P, be. In particular X € Py and hence by 3.37 we have that
Homyp,oq(c) (X, (m1)+(Y)) = 0. Now, since X € P, there exists an exact sequence

..P, P, . P P, X 0

with P; € add(P) for 0 <i < k. Applying Homy,q(c) (f, (wl)*(Y)> to the last exact sequence we
have the following exact sequence (see 3.36)

0—=0—=0—-- = Hompyeqce)(Prt1, (m1)«(Y)) = -+~

Since Ethnod(c) (X, (71)(Y)) is the -homology of the last complex we have that Extfnod(c) (X, (m)«(Y)) =
0for i =1,...,k. Proving that Extfnod(c)(X, (m)«(Y))=0fori=0,...,k.

(b) = (a). Let us see by induction on k that (b) = (a). Suppose that k = 1. That is, suppose that
Extfnod(c)(X, (m1)«(Y)) =0 for all Y € mod(C/Z) and ¢ = 0, 1. By the proof of 3.37, we have that

the projective cover Py(X) of X belongs to add(P). Now, let us consider the exact sequence

0 Lo Py(X) X 0

Applying Homy,oq(c)(—, (71)«(Y")) to the last sequence we have the exact sequence

Hommod(C) (PO(X)> (ﬂl)*(Y)) — Hommod(C) (LOa (Wl)*(y)) - EX%ﬂod(C) (X> (ﬂl)*(Y))

Since Py(X) € add(P) we have that Hom,,q(c) (Po(X), (m1)«(Y)) = 0 (see 3.36); and by hypoth-
esis we have that Extinod(c)(X, (m1)«(Y")) = 0. Then we conclude that Homy,oq(c) (Lo, (71)«(Y) =0
for all Y € mod(C/Z). Then, in the same way as we did for X we conclude that Py(L) € add(P).
Then, we have an exact sequence

PQ(L)HPO(X)HXHO

with Py(L), Po(X) € add(P), proving that X € P;.

Suppose that is true for £ — 1. Let X € mod(C) such that Extfnod(c) (X, (m1)«(Y)) = 0 for all
Y € mod(C/Z) and i = 0,...,k. In particular, Extinod(c)(X, (m1)«(Y)) =0 for all Y € mod(C/T)
and ¢ =0,...,k — 1. Then, by induction there exists a resolution

dk—l d] do
Py Py P

X 0
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with P; € add(P) for all i =0, ...,k — 1. Consider the exact sequence
0——s Lk—l = Ker(dk_l) . Pk—l - Ker(dk_g) = Lk_g —0

Applying Homy,eq(cy(—, (71)«(Y)) we have the exact sequence
Homynoq(cy (P—1, (m1)+(Y)) — Homueace) (Li—1, (m1)+(Y)) — Extioqie) (Lr—2, (11)+(Y))

By shifting lemma we get Extélod(c)(Lk_g,(m)*(Y)) -~ Ext];lod(c)(X, (m1)«(Y)) = 0. Since
Py 1 € add(P) we conclude that Homy,oq(c) (Pr—1, (71)«(Y)) = 0 (see 3.36); and therefore,
Homyoa(ey(Lk—1,(m1)«(Y)) = 0 for all Y € mod(C/Z). In the same way as we did for the case
k =1 we conclude that Py(Ly_1) € add(P). Then, we can construct an exact sequence

dk—1 di do

"HP]C:P()(Lk_l) Pk—l P1 PO X 0

with P; € add(P) for all i = 0,..., k. Proving that X € Py.

(b) = (c¢). Trivial.

(c) = (b). Let us see by induction on ¢ that Extfnod(c) (X, (m)«(Y)) =0for all Y € mod(C/Z) and
i=0,...k

Let us suppose that i = 0. Consider the exact sequence

0 Y J Z 0

in mod(C/Z) with J an injective. We apply (7). to obtain the exact sequence
0—— (m1)«(Y) —— (m1)«(J) —— (m1)«(Z) —— 0 in mod(C). Applying the functor
Homyoq(cy (X, —) we have the exact sequence

0—— Hommod(C)(Xa (Wl)*(y)) - HOInmod(C)(Xv (71—1)*(‘])) - Hommod(C) (X’ (Wl)*(z))

By hypothesis we have that Homy,oq(c) (X, (71)«(J)) = 0. Then, we have that
Hommod(c)(X, (7T1)*(Y)) = 0
Now, let us suppose that Extfn_old(c)(X, (m1)«(W)) =0 for all W € mod(C/Z).
Let Y € mod(C/Z) and consider the following exact sequence

0 Y J A 0

in mod(C/Z) with J an injective C/Z-module. By the long exact homology sequence

0 —— Homy,q(c) (X, (71)4(Y)) —— Homy,ea(c) (X, (1)« (J)) —— Homyeac) (X, (71)«(2)) )

. ]
Extinod(e) (X (1)« (Y)) = Extinoa(ey (X, (m1)x () —— Extinoa(ey (X, (m1)«(Z)) ——
we have the exact sequence
Extya ey (X, (m1)+(2)) = Extiyoqie) (X, (11)+(Y) = Homy,oq(0) (X, (m1)(J))

Since Z € mod(C/I) by induction we have that Extf;old(c)(X, (7r1)‘*(Z)) = 0. By hypothesis we
have that Homy,,q(c) (X, (m1)«(J)) = 0, then we conclude that Ext,,,qc) (X, (71)«(Y)) = 0. This

finishes the proof of the proposition. [
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Proposition 3.39 Let C be a dualizing R-variety, P = Hom¢(C, —) € mod(C) a projective module
and T = TrpC. Then T is k + 1-idempotent if and only if Z(C',—) € Py for all C' € C and
1<k <.

Proof. First, we note that by 3.30, we have that Z satisfies property A.

Let m : C — C/Z be the canonical functor. By 3.31, we have that m.(Hom¢,z(C’,—)) =

%,’CL’)_) € mod(C). Consider the following exact sequence in Mod(C)

00— Z(C", —) — Home(C", —) w2 0.

Since C is a dualizing R-variety we have that mod(C) is an abelian subcategory of Mod(C) and thus
Z(C’,—) € mod(C) (see [9, Theorem 2.4]).

Since Z = TrpC, there exists an epimorphism ~ : P* — Z(C’, —) for some n € N, this is because
Z(C’,—) is finitely generated (see [4, 2.1(b)]). Let ¥ € mod(C/Z). If there exists a non zero
morphism « : Z(C’, =) — m,.(Y) we have that ay # 0, which contradicts 3.36. Therefore we have

that Homy,eq(c) (I(C’7 7),7r*(Y)) = 0. On the other hand, applying Hom,oq(c)(—, 7«(Y")) to the
last exact sequence we get an isomorphism for ¢ > 1
(Homc =)

(*) : Ethi’nod(C) (I(C/, —), Ty (Y)) — Ethrt)ld(C) W, T x (Y)) .

We know that 7 is k + l-idempotent if and only if EXTY (C/z, w*(y)) —0for1<i<k+1and
for all Y € mod(C/Z) (see 3.5).

(=). Suppose that Z is k + 1 idempotent, then Extzrold(c) (%,W*(Y)) =0for0<i<k,
for all C" € C and for all Y € mod(C/Z). Therefore by the isomorphism (%) we have that

Extioaie) (Z(C, =), 7. (Y)) = 0

for 1 <4 <k, for all C' € C and for all Y € mod(C/Z). Since we proved above that

Hompod(c) (I(Cf, —),w*(Y)) — 0, we have that Ext!,oq(c, (I(C’, —)77r*(Y)) —0for 0 <i<k. By
3.38, this implies that Z(C’, —) € Py for all C’ € C.

(). Suppose that Z(C',~) € Py for all ¢ € C. We get Extlyoq) (I(O’,—),w*(Y)> — 0 for
0 <i<kandfor all Y € mod(C/Z) (see 3.38). Since the isomorphism (x) holds for i > 1 we

conclude that Extfnod(c)<%i’)_),m(§/)) =0for 2 <i<k+1, for all ¢’ € C and for all

Y € mod(C/Z). By 3.21, we have that EXT¢ (C/I7 w*(Y)) = 0. Therefore we have proved that

EXT, (C/I, n*(y)) =0for 1 <i<k+1andforall Y € mod(C/Z). By 3.5 we have that Z is k + 1
idempotent. [

Corollary 3.40 Let C be a dualizing R-variety, P = Hom¢(C,—) € mod(C) a projective module
and T = TrpC. Then T is f.p-strongly idempotent if and only if Z(C',—) € Pu.

Let C be a dualizing R-variety, given M € mod(C) we recall that rad(M) denotes the radical
of M. That is, rad(M) is the intersection of the maximal submodules of M.

Definition 3.41 Let C be a dualizing R-variety, P € mod(C) a projective module and J =

IO(%) € mod(C) the injective envelope of WI?P)' For each 0 < k < oo we define I, to be

the full subcategory of mod(C) consisting of the C-modules Y having an injective coresolution

0 Y JO J1 e Jn—l Jn
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with J; € add(J) for 0 <i <k.

Let C be a dualizing R-variety. Since the endomorphism ring of each object in C is an artin
algebra, it follows that C is a Krull-Schmidt category [9, p.337]. By 2.25, we conclude that P €
proj(C) is indecomposable if and only if P ~ Hom¢(C, —) where C' € C is indecomposable (see also
[62, Lemma 2.2 (b)]).

Lemma 3.42 Let C be a dualizing R-variety, P = Home(C,—) € mod(C) an indecomposable
projective module, J = IO(%) € mod(C) and T = TrpC. Consider the projection w1 : C —
C/I. Then Homyacc)((m1)«(X),JJ) =0 for all X € mod(C/I).

Homc(cl,—)

Proof. First, we will prove that Tre (J) = 0. Let o : =7&7=

Let us consider the factorization of « through its image

— J be a morphism in Mod(C).

Hom¢ (C',—) ] J

A (o)

Im(a).

Suppose that Im(a)) # 0. Consider the exact sequence

P u
0 (D) J Z 0

where u is an esencial monomorphism. Then we have that Im(a) N % # 0. Since P is in-

decomposable, we have that rad(P) is the unique maximal submodule of P and then % is a

P

simple C-module (see the proof of [9, p.337]). Then we conclude that Im(a) N % = (P

Then % C Im(a) and denote by 6 : % — Im(«) the inclusion. Consider the projection
T: P — %. Since P is projective, theres exists a morphism v : P — % such that
the following diagram commutes
P
/ l
O
Home(C',—) P
I(g(,)_) ) Im(a) 0.

Since P = Hom¢(C, —) we conclude by Yoneda that

Homc(C”,—)) _ Home(C',C) — Home(C',C) 0

Homm°d<c><P 5 (o Z(C",0)  Home(C",0)

where the last equality is because Z(C’,C) = Home(C’,C) since Z = Z,qa(cy (see 3.26). Then
we have that v = 0 and thus we have that 7 = 0. Since 6 is mono we conclude that 7 = 0
which is a contradiction. Then we have that o = 0. This implies that Tre (J) = 0 and hence

ﬁ%(J) =Q(Tre (J)) =0.
Now by adjunction (see 1.29) we have that

Homypoq(e) ((m1)+(X), J) = Homypoq(e/z) (X, Tre (J)) = Hompea(e/z) (X, 0) = 0.

Proving the result. [
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Proposition 3.43 Let C be a dualizing R-variety, P = Hom¢(C, —) € mod(C) an indecomposable
projective module, J := IO(rad(P)) € mod(C) and Z = TrpC. Consider the projection w1 : C —
C/I. Then

J ~D;* (Home(—, C)).

Proof. Since J is the injective envelope of the simple % we have that J is indecomposable (see
[31, Pro. 3.3.17] for an idea of a proof of this). Then we have that D¢(J) € mod(C°P) is an indecom-
posable projective C-module. By 3.42 and since J is injective we have that Extinod(c) ((m)«(X),J) =
0 for all X € mod(C/Z) for i = 0,1. Then we have that

Extinoace) (M)« (X), J) = Extryoqicor) (De(J), De((m1)«(X)))
= Extynoq(cor)(De(J), (m2)+De/z(X)))
where the last equality is by the diagram in 2.33. Since D¢,z is a duality we have that

Extfnod(cop)(]D)c(J), (m2)« (X)) = 0for all X’ € mod(C°P/Z°P). By 3.33 we have that Z°P = Trp-C°P.
Then by 3.38 (for the dualizing R-variety C°P) we have that there exists an exact sequence

Q1 Qo De(J) 0

with @; € add(P*) = add(Hom¢(—, C)).
Since D¢ (J) is projective we conclude that D¢ (J) is a direct summand of Qg and then we conclude
that De(J) € add(Home(—, C)). Since Home (—, C') is indecomposable and mod(C) is Krull-Schmidt
(because mod(C) is a dualizing R-variety) we conclude that D¢(J) ~ Home(—,C) and then J ~
D, ! (Home(—,C)). O

The following shows that the last proposition holds for every finitely generated projective C-
module.

Proposition 3.44 Let C be a dualizing R-variety, P = Hom¢(C, —) € mod(C) a projective module,
J = IO(%) € mod(C) the injective envelope of % and T = TrpC. Then

J ~ Dz (Home(—, C)).

Proof. Since mod(C) is Krull-Schmidt we have that P = @, P, where each P, = Hom¢(C;, —)
is indecomposable and C = ®j_,C;. Now, we have that raﬁp) ~ @

() = D)

Therefore

[ rad(P )"

Then by 3.43, we have that

n

eBlo(md ) @D (Home (— Ci»:DEl(Homc(_’@?Ci))

=D, (Home(—,0)).

Then J ~ D' (Home(—, C)), proving the result. [
Similarly, the result given in 3.42 holds for every finitely generated projective C-module. That
is, we have the following result.

Remark 3.45 Let C be a dualizing R-variety, P = Home(C,—) € mod(C) a projective mod-
ule, J : Io(md(P)) € mod(C) and T = TrpC. Consider the projection my : C — C/Z. Then
Homyoa(ey((m1)«(X),J) = 0 for all X € mod(C/Z).
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Corollary 3.46 Let C be a dualizing R-variety, P = Hom¢(C, —) € mod(C) a projective module,

J = IO(%) € mod(C) and T = TrpC. Consider the projection m : C — C/Z. Then'Y € if

and only if Homy,oqc)((m1)«(X),Y) =0 for all X € mod(C/Z).

Proof. (=). Since Y € I there exists a monomorphism p : Y — Iy with Iy € add(J). Now, let
a: (m)«(X) — Y, then pa € Homy,oqc)((m1)«(X), In). By 3.45 we have that pa = 0 since Iy €
add(.J). Hence o = 0 since y is a monomorphism and we conclude that Hompoq(c)((71)+(X),Y) =
0.

(<=). Suppose that Homyeq(c)((71)«(X),Y) = 0 for all X € mod(C/Z). Then

0 = Homyed(ey ((71)(X), Y) = Hompeq(cory (De(Y), De((m1)«(X)))
= Homy,oq(cor)(De(Y), (m2)+De/z(X)))
where the last equality is by the diagram in 2.33. Since D¢,z is a duality we have that
Homyoqa(cor) (De(Y), (m2)«(X")) = 0 for all X’ € mod(C°?/Z°P). By 3.33 we have that T° =
Trp«C°P and hence by 3.37 (for the case C°P) we have that there exists an epimorphism Qg —— D¢(Y')
—— 0 with Qo € add(Hom¢(—, C)). Then applying ]Dc_l we have a monomorphism 0 ——=Y

——=D; Qo) withD;'(Qo) € add(D; ' (Home(—,C)). By 3.44 we have that D; ' (Home (—, C) =
J. Then we have that Y € I,. O

Proposition 3.47 Let P = Hom¢(C,—) € mod(C) be a projective module, T = TrpC and 1 <
k < oo. Let my : C — C/T the canonical projection. The following conditions are equivalent for
Y € mod(C).

(a) Y €1,.
(b) Ext}oqc)((m1)«(X),Y) =0 for all X € mod(C/T) and i =0, ... k.
(c) Extfnod(c)((m)*(Q), Y) =0 for all @ € mod(C/T) projective and i =0,... k.

Proof. (a) = (b). Let Y € I be. In particular we have that Y € I5. By 3.46, we conclude that
Homyoa(cy((m1)«(X),Y) = 0. Now, since Y € I}, there exists

0 Y I I o I, 1 I,

an injective coresolution of Y with I; € add(J) for ¢ = 0,..., k. Applying the functor
Home ((m1)+(X), —) to the last exact sequence, by 3.45 we get

0 0 0 0 Homc((ﬂ1)*(X)7Ik+l)4>"'

Since Extfnod(c)((7r1)*(X)7 Y') is the i-th homology of the last complex we have that

Extioqe) (m1)+(X),Y) = 0 for i = 1,...,k. Then Ext q)((m1)+(X),Y) = 0 for all X €
mod(C/Z) and i =0,...,k.

(b) = (a). Let us suppose we have (b). For 0 <i < k, we have the following equalities

0 = Extiaoae) (m1)+(X),Y) = Extinoa(cor) (De(Y), De((m1)+(X)))
= Extioq(cor)(De(Y), (m2):De/z(X)))
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where the last equality is by the diagram in 2.33. Since D¢z is a duality we have that
Extfnod(cop)(]D)c(Y), (m2)«(X”)) = 0for all X’ € mod(C°?/Z°P). By 3.33 we have that Z°? = Trp-C°P
and hence by 3.38 (for the case C°?) we have that there exists a projective resolution

Qr o Qo De(Y) ——=0

with @Q; € add(Home(—,C)) for each ¢ = 0,...,k. Then applying ]D)C_l we have an injective
resolution

0—=Y ——=D; Qo) —=D;"(@Q1) — -+ —=D;" (Qp_1) —

with D; ' (Q;) € add(D; ' (Home(—,0)) for 0 < i < k. By 3.44 we have that D; ' (Home(—,C) = J.
Then we have the required exact sequence.

(b) = (c) Trivial.

(¢) = (b). Let I € mod(C°?/Z°) an injective module then Q = ]DC/I(I) is projective in mod(C/Z).
Then we have that

Extinoqicer) (De(Y), (m2). (1)) = Extyyoqicor) (De(Y), (m2)«(Dez(Q)))
= Extpoa(cor)(De(Y), De((m1)+(Q))
= EXtmod(C)((ﬂ'l)*(Q)a Y)
=0 [hypothesis]
By 3.38 (for the case C°P), we have that Extfnod(cc.p) (De(Y), (m2)«(X")) = 0for all X’ € mod(C°?/Z°P).
Then for X € mod(C/Z) we have that
Extinoa(e) (11)+(X), Y) = Extyyeqicer) (De(Y), De((m1)(X)
= Extinoacory (De(Y), (12)« (De/z(X)))
=0
since D¢ ,/z(X) € mod(C°?/Z°). Proving (c) = (b). O

Given any class of objects C in an abelian category A, we define its perpendicular categories
as the full subcategories of A given by

Ctr:={Ac A|Exty(C,A)=0VYC €Cand V0 <i<n}

tnc:={Ac A|Exty4(A,C)=0VYC €Cand V0 <i<n}.
We recall that a torsion theory for A is a pair (7,F) of classes of objects of A such that the
following conditions hold: (i) Home (7, F) = 0 for all T € T and for all F € T; (ii) 710 = F and
LoF = T. A class of objects T is a TTF class if there exists torsion theories of the form (D,T)
and (7, F). For more details related to torsion theories we refer the reader to chapter 6 in [89].

Proposition 3.48 Let C be a dualizing R-variety, P = Hom¢(C, —) € mod(C) a projective module
and T = TrpC. Then

(]P)Ov mOd(C/I)v ]IO)
is a TTF triple .

Proof. By 3.37 and 3.46, we have that ~°(mod(C/Z)) = Py and (mod(C/Z))*° = I,. We have
that mod(C/Z) ~ Ann(Z) is a hereditary torsion theory which is closed under arbitrary products.
Then by [89, Proposition 8.1] in pag. 153, we have that mod(C/Z) is a TTF-class and therefore we
have that (Py, mod(C/Z)) (mod(C/Z),Iy) are torsion pairs. O
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Chapter

Localization and Recollements

Recollements of abelian categories can be seen as exact sequences of abelian categories.

0—=B—sA-°s0— >0

Here i is the inclusion of A, a Serre subcategory, and e is the Gabriel quotient whose kernel is
precisely A. Then, C ~ A/B. In a recollement we also have that both, i and e have left and right
adjoints, so a recollement is usually represented as

77N

B A C

NN

4.1 A recollement
Let C be a preadditive category. Throught this section P will be a finitely generated projective
module in Mod(C) and Rp := Endyea(c)(P).

In this section we will study the functor Homyeq(c)(P, —) : Mod(C) — Mod(Rp). We recall the
following definition due to Auslander (see definition after proposition 2.2 in [4]).

Definition 4.1 Let V be a variety. An additive generator for V is a preadditive category U
together with a functor G : U — V such that G is full and faithful and every object V €V is a
direct summand of a finite coproduct of the form ®_,G(U;) for some U; € U.

Remark 4.2 Let C be a preadditive category and P € proj(C).
(a) Consider the Yoneda embedding Y : C — proj(C) defined as Y (C) := Home(C, —). Then
Y. : Mod((proj(C))°?) — Mod(C)
is an equivalence of categories (Y, is covariant).
(b) Consider the inclusion {P}°P C proj(C)°? and the functor
res : Mod((proj(C))°?) — Mod({P}°?)

65
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given as: M + M| popy. Then the following diagram is commutative

(¥): Mod((proj(C))”) ————= Mod({P}°")
- -
Mod(C) Mod(Rp)

Homyyoq(ce) (P—)

where Rp := Endyioq(e)(P)? and ep is the evaluation functor defined as follows: ep(M) =
M(P) for M € Mod({P}°P) and the abelian group M (P) is considered as a left Rp-module
by means of the operation f -x := M(f)(z) for each x € M(P) and f € Rp.

Proof.

(a) Indeed, let D : proj(C) — proj(C)°? the canonical functor (D(P) = P°P). It is easy to see
that DoY : C — proj(C)°? is an additive generator for (proj(C))°?. Then by [4, Proposition
2.3(b)] we have that Y, : Mod((proj(C))°?) — Mod(C) is an equivalence since Ab is an
additive category in which idempotents split.

(b) We have that
Y, (Homproj(C)(_7 P))(C) = Homproj(C)(HOmC(C7 _)a P)) = P(C)
We can see that if o : C' — C’ then the following diagram commutes

Y*(Homproj(C)(_vP))(C) - P(C)

i lp@

Y. (Homyrojc) (=, P))(C") —— P(C)

Then we have that Y, (Homp,ojc)(—, P)) =~ P. Now, let us see that the diagram (*) is commu-
tative. Indeed, let M € Mod((proj(C))°?), we have Y, (M) and then Homyoq(c)(P, Y™ (M)).
But since Y, is an equivalence we have that

HomMOd(C) (P, Y* (M)) ~

=~ HomMod((proj(C))"P)((Y*)il(P)v (Y*)il(Y*(M)))

= HomMod((proj(C))"l’) ((Homproj(C)(fv P)7 M))

~ M(P).
On the other hand, we have that ep(res(M)) = res(M)(P) = M(P). Therefore the diagram
(*) commutes up to isomorphism.

(]

Remark 4.3 Let A be a preadditive category with just one object A. Let G € Mod(A°P), then the
following diagram commutes up to isomorphism

Mod(A) Goaz Ab
Mod(R) —5 = Ab
—

where R = End4(A) and ea is the evaluation functor defined as: ea(M) = M(A) for all M €
Mod(A) (is an equivalence).
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Proof. Indeed, G ® 4 — is the unique functor such that the following diagram commutes

G®a—

Mod(A)

Ab
d
Ab

A

where Y(A) := Hom4 (4, —).

Now, since G is a contravariant functor we have that G(A) is a right R-module via the action:
f-a=G(f)(a) Ya € G(A) and Vf € R. Then we have a functor G(A) ® g — : Mod(R) — Ab.
Then, we have that

((G(A) @R —) 0 ea oY )(4) = (G(A) @r —))(End4(4)) = G(A) @p R
=G(A).
Thus the following diagram commutes

Mod(A) — G @n7)eca

Ab
d
Ab

A

G

On the other hand, we have a functor Homayp(G(A),—) : Ab — Mod(R). Indeed, for X € Ab
and r € R we have that Homap(G(A), X) is a left R-module as follows:

(rxf)(a) = f(ar) Vf € Homan(G(A), X) a € G(A).

It is well known that Homap (G (A), —) is right adjoint to G(A)® g —. Then we have that the functor
e,' o Homap(G(A), —) is right adjoint to (G(A) ®g —) o ea. By [74, Theorem 6.3], we conclude
that (G(A) ®r —) oesa ~ G ®4 —. That is the following diagram commutes up to isomorphism

Mod(A) Coaz

Ab
|
Ab

Mod(R)

G(A)®Rr—
O

Remark 4.4 Let C be a preadditive category, P € Mod(C) a finitely generated projective C-module
and Rp := Endyeqc)(P)?. For C € C we have that P(C) ~ Homyeq(cy(Home(C, —), P) then we
have that P(C) is a right Rp-module. We define a functor

P ®g, —: Mod(Rp) —s Mod(C)

as follows: (P ®g, M)(C) = P(C) ®g, M for all M € Mod(Rp) and C € C. Then the following
diagram commutes
(proj(C)°*)®pyor —

Mod({P}°P) Mod(proj(C))°P)
: -
Mod(Rp) Mod(C)

P®rp—
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where e'p is the evaluation functor and (proj(C)°?) ®@(pyer — is the functor defined in 1.2 for the
case of the categories { P}°P C proj(C)°P.

Proof. First, we know that Endypyor(P) = Endyoace)(P)? = Rp. Let F' € Mod({P}°?) be,
then we have (proj(C)°?) @pyor I : (proj(C))°? — Ab. Thus we have

((proj(C)oP) ®p}or F) oY : C — Ab. In order to avoid certain confusions, let A = {P}°? and
B = (proj(C)°P. Then, for C' € C we have that

(((proi(©)) @(pyes F) 0Y)(C)
- ((B ®4 F) o Y) (©)
- (B R4 F) (Home (C, —)

= Homp (—, Home (C, —)

= Homg (P, Home(C,—)) R F(P)  [by 4.3 since Rp = End 4(P)]

~ Homy,j(c) (Homc(C, -), P) ®F(P) [since B = (proj(C)°?]
~ P(C) ®g, F(P).
On the other hand, we have that
((P@n. =) 0 ep)())(C) = (P @r, —)EF(P)))(C) = P(C) @y F(P).
Proving that the required diagram commutes. [

Remark 4.5 Let C be a preadditive category, P € Mod(C) a finitely generated projective C-module
and Rp := Endyoq(c) (P)°P. We define a functor

P*:C — Mod(Rp)
given by P*(C) := Homyjoq(c) (P, Home (C, —)). Now we can construct a functor
Homp, (P*,—) : Mod(Rp) — Mod(C)
where for M € Mod(Rp) we define
Homp,(P*,M):C — Ab

as follows: (HomRP (P*,M))(C) := Hompg, (P*(C), M). Then the following diagram commutes

Mod({P}or) — PO 2] nod(proj(c))or)

. !

Mod(Rp) Mod(C)

Hompg, (P*,—)

where €', is the evaluation functor and {P}°P(proj(C)°?,—) is the functor defined in 1.3 for the
case of the categories { P}°P C proj(C)°P.
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Proof.  For F' € Mod({P}°?) we have that {P}(proj(C),F) : proj(C)°®> — Ab. Then we
have {P}(proj(C),F)oY : C — Ab. In order to avoid certain confusions, let A = {P}°? and
B = (proj(C)°P. Then, for C € C we have that

(1P} (proj(C)”, F) 0 Y)(C) =

= (A(B, 1)) (Home (€, -))

= Homygoq(a) (HomB (Homc(C, ), —) ‘A, F)

~ Homyod(r,) (e’P (Homg (Homc(C, o, —) ‘A) el (F)) [/ is full and faihtfull
= Homytod(ry) (HomB(Homc(C, ), P), F(P)) [def. of €]
=~ Homytaa () (Homprojic) (P, Home(C, —)), F(P)) [B = proj ()]

= Homyiod(rp) (HOmMod(C)(R Home (C, —)), F(P)>

where the last equality is because proj(C) is a full subcategory of Mod(C). On the other hand, we
have that

(HomRP (P*, F(P))) (C) : = Hompg, (P*(C), F(P))
= Hompg, (HomMOd(C)(R Home(C, —)), F(P))

Therefore the required diagram commutes. [
For the following, recall the definition of an additive generator given in 4.1.

Remark 4.6 Let D be an R-variety with G : C — D a generator of D. Consider T an ideal in C
and J an ideal of D such that GIZ(C,C") = J(G(C),G(C")) for all C,C’" € C. Then D/J is an
R-variety and the unique functor G : C/T — D/J such that the following diagram commutes

C—"=CJT

o]

D—>D/J

is an additive generator for D/J.

Proof. By 2.27, we have that D/J is an R-variety. Since GZ(C,C") = J(G(C),G(C")) there
exists a unique functor G : C/Z — D/J such that the following diagram is commutative

(x): C—"=C/T

A

D——=D/J

Let us see that G : C/Z — D/J is an additive generator for D/J.
Indeed, since GZ(C,C") = J(G(C),G(C")) and G is full and faithful we have that the following
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commutative diagram

0 (Cc, ) Home(C, C") Mo 2 0
00— J(G(C). G(C") —= Homp(G(C), G(C") — ‘Fgids ey — 0

where the vertical arrows are isomorphisms. Then we have that G is full and faithful.

On the other hand, let D = p(D) € D/J. Since G is a generator for D we have that for D € D,
there exists a finite family {C;}?_, of objects in C such that D is a direct summand of @;_, G(C;)
for some C; € C. That is, there exist D’ € D such that D& D’ ~ @, G(C;). Sincep: D — D/J
preserves finite coproducts (because is additive) and by the diagram (x) we have that p(D)®p(D’) ~
D, p(G(Cy)) = B, G(n(C;)). We conclude the G is a generator for D/J. O

For the definition of R-category we refer the reader to definition 1.5.

Proposition 4.7 Let C be an R-category, P = Hom¢(C, —) € proj(C), consider add(P) C proj(C)
and T = ZL,qq(p) the ideal of morphisms in proj(C) that factor through objects in add(P). Let
us consider the canonical functors II : proj(C) — proj(C)/Toaqcpy and m : C — C/Lqq(c) and
the functor Y : C — proj(C) given by Y(C') = Home(C',—). Then Y induces a functor Y :
C/Zaaacpy — Proj(C)/Laqacpy, such that the following diagram commutes

¢ = C/Taaa(c)

l ks

proj(C) —————= proj (C)/Zagacp)

and as a consequence the following diagram commutes

Mod((proj(C)/Zada(p))®?) ———— Mod((proj(C))°?)

v.| ly*

Mod(C/Zaqa(c)) Mod(C)

where the vertical functors are equivalences.

Proof. Let P = Hom¢(C,—) € proj(C) be and let T,qq(py the ideal of morphisms in proj(C)
which factor through an object in add(P). Let II : proj(C) — proj(C)/Zaqa(p) the projection and
Y : C — proj(C) the Yoneda embedding defined as Y (C’) = Hom¢(C’, —) for all C" € C. Let us
also consider 7 : C — C/Zaqq(c)-

Since Y (add(C')) = addY (C) = add(P) and Y is full and faithful we have that Y (Z,q4(c)(C’,C")) =
Toaapy(Y(C"),Y(C")) for all C",C" € C. Then I(Y(f)) = 0 for all f € Z,ga(c)(C',C").
Then by the universal property of C/Z we can define a contravariant functor Y : C/Z,qq(cy —
proj(C)/Zaqacp) (because Y is contravarian) such that the following diagram commutes

¢ = C/Zaaa(c)

v |7

proj(C) — proj (C)/Iadd(P)
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Let us consider the ideal I:gd(P) in proj(C)°? and II°? : proj(C)°? — proj(C )”p/Isgd(P the

canonical projection. Then we have the following commutative diagram

¢ = C/Zaaa(c)

I T

proj(C) —————proj(C)/Laaa(p)

Dll lDQ

op

. o IT . 10)

proj(C)? —— 17 proj(C)? /T,

where Dy and Dy are the canonical functors (which are full and faithful) and G = D; oY is a
covariant functor that satisfies that

G(Zaaa(c)(C',C") = Iy ) (G(C"), G(C")).

Since C is an R-category we have that Mod(C) is an R-category (see section 1 in [9]). Then we have
that proj(C) is an R-category and hence proj(C)°? is also an R-category. We know that proj(C)°P
is a variety and hence it is and R-variety. By 2.27(b) we have that proj(C)Op/Iaogd(P) is also an
R-variety. Since DjoY : C — proj(C)? is an additive generator (see def. 4.1) by 4.6 we have that
Dy oY : C — proj(C)° P /L o4ap) is an additive generator for proj(C)*? /7% p) (the functor G in
4.6 coincides with Dy oY by the uniqueness) . Then we have the following commutative diagram

Mod(proj(C )OP/Z dd(P)) ————— Mod((proj(C))?)

7| ly*

MOd(C/Iadd(c)) MOd(C)

where the vertical morphisms are equivalences by [4, Proposition 2.3(b)]. Finally we have that
(proj(C)/Zagacpy)? =~ proj(C )O”/Isgd(p (see 2.29). O

Remark 4.8 We have that Mod({P}°?) ~ Mod(add(P)°?). Indeed, this follows from [/, Proposi-
tion 2.5].

Now, we give the following definition which encodes the information of several adjunctions.

Definition 4.9 Let A, B and C be abelian categories. Then the diagram

" Jt
TN TN
B i*:i!%Aij =j*—C

\/ ;

is called a recollement, if the additive functors i*,i, = iy,i",j1,7' = j* and j, satisfy the following
conditions:

(Rl) (Z*,Z* = ilﬂil) and (j!vj! = ]*a]*) are adjOint triples, i.e. (Z*al*)) (ilail) (j!aj!) and (]*3.7*)
are adjoint pairs;
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(R2) j*i, = 0;
(R3) s, j1, j« are full embedding functors.

Proposition 4.10 Let C be a preadditive category, P € Mod(C) a finitely generated projective
module, and Rp = Endyjoq(c)(P)°P. Then, there exists the following diagram of adjoint pairs

/@\

Mod(C) o Mod(Rp)

w

Hompg, (P*,—)

Proof. Let us take ¢’ = proj(C)°? and B’ = add(P)°P. By [60, Theorem 3.10], we have

Mod(C') Mod(B')
B'(C',—)

Then by 4.8, 4.2, 4.4, 4.5 we have the result. [J
Next, we will see that we can construct a recollement.

Proposition 4.11 Let C be an R-category, P = Hom¢(C,—) € Mod(C) a finitely generated pro-
jective module, let B = add(C') C C be and Rp = Endyioq(c)(P)°P. Then, there exists a recollement

of the form
/m /@\

Mod(C/Zg) Mod(C) Mod(Rp)
c(C/In,—) Hompp, (P*,—)

where Ig is the ideal of morphisms in C which factor through objects in B.
Proof. Let us take C' = proj(C)°? and B’ = add(P)°?. By |60, Theorem 3.10], we have

Mod(C'/Zs) = Mod(C") = Mod(B')
C/(C//IB’V_) B,(clv_)

where Zp = I:gd(P) is the ideal of morphisms in C’ which factor through objects in add(P). We

also can construct the following diagram of adjoint pairs

m

Mod(C/Zp) — Mod(C).

~N_

c(C/Zp,—)




4.1. A RECOLLEMENT 73

where 7 : C — C/Zp the canonical projection. By 4.7 we can identify =, with resc/,. Then, we can
identify C/Zp ®¢ — with C'/Zp ®¢/ — and C(C/Ig, —) with C'(C’'/Zs/, —) since adjoint functors are
unique up to isomorphisms. Then we have the result by 4.10. O

We can restrict the last recollement to the finitely presented modules. So, we have the following
result that is an analogous to the one given in artin algebras.

Proposition 4.12 Let C be a dualizing R-variety and P = Home(C, —) € Mod(C) a finitely gen-
erated projective module and let B = add(C) and Rp = Endyeac)(P)°P. Then, there exists a

recollement
‘ﬁm ﬁ\

mod(C/Ig) - mod(C) — T mod(Rp)
eC/Is,—) Homp, (P*,—)

where I is the ideal of morphisms in C which factor through objects in B. Moreover we have that
IB = TI‘pC.

Proof. Let us take C' = proj(C)°? and B’ = add(P)°P. By the proof of 4.11 we have that the
recollement given in 4.11 is equivalent to the following

C'/Ig®cr m

Mod(C'/Zp") e Mod(C") o Mod(B')
C/(C,/IBU*) B,(C/’f)

where T = Z,q4(p) is the ideal of morphisms in C" which factor through objects in add(P). Since
C is an R-variety we have that Yoneda’s embedding gives us an equivalence C ~ proj(C)°? (see
2.25) and hence C’' = proj(C)°? is a dualizing R-variety. Now, B’ = add(P)°? is a functorially finite
subcategory of C’ (see [6]). Therefore by [70, Theorem 2.5] and 4.11, we can restrict the recollement
to the finitely presented modules and then we have that

mﬁ\

mod(C/Ig) - mod(C) Hommone (P) mod(Rp)
c(C/Ts—) Homp,, (P",—)

where Zp is the ideal of morphisms in C which factor through objects in B, since mod(Rp) coincides
with the finitely presented R-modules (because Rp is an artin R-algebra). Finally, by 3.26, we have
that Zg = TrpC. O

Remark 4.13 Consider the adjoints in 4.11.
Consider the counit and unit

€ : (P ®grp —) o Homyoa(e)(P,—) — 1, 7' : 1 — Homypeae) (P, —) o (P ®r,p —)

of the adjoint pair ((P ®Rrp —), Homypoae) (P, —))
Also consider the counit and unit

€ : Homyoq(cy (P, —) o Hompg, (P*, —) — 1,
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n:1— Hompg, (P*, —) o Homeq(cy (P, —)

of the adjoint pair (HomMod(c) (P,—), Homp, (P*, —))
By [/, Propositions 3.1 and 3.4] we have that € and ' are isomorphisms.

Next, we recall the following definitions given in [4].
Definition 4.14 Let C be an R-category and P = Home(C, —) € Mod(C). Let M € Mod(C) be.

(a) It is said that M is proyectively presented over P if €, is an isomorphism. Let us denote
by P.P(P) the full subcategory of Mod(C) consisting of the projectively presented modules. And
we denote by F.P.P(P) the full subcategory of mod(C) consisting of the projectively presented
modules.

(b) It is said that M is inyectively copresented over P if nus is an isomorphism. Let us denote
by I.C(P) the full subcategory of Mod(C) consisting of the injectively copresented modules. And
we denote by F.I.C(P) the full subcategory of mod(C) consisting of the injectively copresented
modules.

Remark 4.15 The last definition make sense if C is a preadditive category and P is a finitely
generated C-module (not necessarely of the form Home(C,—)) since we have the diagram of 4.10
and the remark 4.13 holds in preadditive categories. But we will not use the more general version
since we will focus in R-categories.

We recall that given and object C' in a category C with arbitrary coproducts we denote by
Add(C) the full subcategory of C consisting of the objects X such that there exists another object
such that X @ Y ~ C'D) for some set I. Now, we give the following definition which is similar to
3.35 for the case k = 1. We do not give the more general case, since we will not use it.

Definition 4.16 Let C be a preadditive category, P € Mod(C) a finitely generated projective module
and let Py the full subcategory of Mod(C) consisting of the modules N such that there exists an
exact sequence

P Py N 0,
with Py, Py € Add(P).

Proposition 4.17 Let C be a preadditive category, P € Mod(C) a finitely generated projective
module.  Consider Homy,oic)(—, P) € Mod((proj(C))°?) and let X be the full subcategory of
Mod((proj(C))°P) consisting of all the modules M € Mod((proj(C))°P) such that there exists an
ezact sequence in Mod((proj(C))°?)

@1 Qo M 0
with Q1,Qo € Add(Homyp,qj(c)(—, P)). Consider the restriction

res : Mod((proj(C))°?) — Mod({P}°?)

and
Y, : Mod((proj(C))°?) — Mod(C).
Then there exists an equivalence Yy|x : X —> Py such that the following diagram is commutative

res|x

X Mod({P}P)
Yi|x \Lep
P, MOd(Rp)

Homppod(c) (Py—)
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Proof. In the proof of 4.2 we have seen that Y, (Homy,qjc)(—, P)) ~ P.

Since Y, is an equivalence we have that @ € add(Homy,.j(cy(—, P)) if and only if Y, (Homp,oicy (—, P)) €
add(P). Now, since Y, we have that M € X if and only if Y,(M) € P;. Then we have that
Yilx : X — Py is an equivalence and by 4.2 the required diagram commutes. [

Proposition 4.18 Let C be an R-category, P = Home(C,—) € Mod(C). For M € Mod(C), the
following are equivalent.

(a) M € P.P(P).
(b) There exists a module X € Mod(Rp) such that M ~ P ®g, X.
(c) There exists an exact sequence
Ph—P—M-—0

with Py, P, € Add(P).

(d) For each C-module N the map
Homypoq(cy (M, N) — Hompg, (HomMod(C)(Pv M), Homygoq(c) (P, N))
s an tsomorphism.

Proof. It follows from [4, Proposition 3.2], considering the subcategories {P}°? C proj(C)°?,

using that Mod(add(P)°?) ~ Mod({P}°P) and using the identifications given in 4.17, 4.2, 4.4, 4.5.
O

Proposition 4.19 Let C be an R-category, P = Hom¢(C,—) € Mod(C). For N € Mod(C), the
following are equivalent.

(a) N € 1.C(P)
(b) There exists a left Rp-module X such that N ~ Hompg, (P*, X).
(c) There exists an ezact sequence in Mod(C)
0 —— N —— Homg, (P*, Iy) —— Hompg, (P*, 1)
where Iy, I are injective left Rp-modules.

(d) For each C-module M the map
HomMod(C) (M7 N) — HomRP (HomMod(C) (P7 M)a HomMod(C) (Pa N))
s an isomorphism.

Proof. It follows from [4, Proposition 3.5], considering the subcategories {P}°? C proj(C)°?,
using that Mod(add(P)°?) ~ Mod({P}°?) and using the identifications given in 4.2, 4.4, 4.5. O

Remark 4.20 The last two propositions hold for a preadditive category C and for P a finitely
generated projective C-module (not necessarely of the form Home(C,—)) because [}, Proposition
3.2] and [4, Proposition 3.5] hold for preadditive categories and we have the diagram in 4.10.
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Next, we will see that the last two results hold for the case of finitely presented modules in the case
of a dualizing R-variety. We recall that in the case of a dualizing R-variety every finitely generated
projective C-module is of the form Hom¢(C, —) (see 2.25).

Proposition 4.21 Let C be a dualizing R-variety and P = Home(C,—) € mod(C). For M €
mod(C), the following are equivalent.

(a) M € F.RP(P).
(b) There exists a module X € mod(Rp) such that M ~ P ®p, X.
(¢) There exists an exact sequence
Ph—FP—M—0

with Py, Py € add(P).

(d) For each module N € mod(C) the map
Homygoace)(M, N) — Homp,, (HomMod(c) (P, M), Homygou(c) (P, N))
is an isomorphism.

Proof. First we note that since C is a dualizing R-variety we have the adjunctions in the diagram
of 4.12.

(a) = (b) Since M € F.P.P(P), we have that M ~ P®p,Homyioq(c) (P, M). But Homyeqc) (P, M) €
mod(Rp) since M € mod(C) (see 4.12).

(b) = (¢). Suppose that there exists a module X € mod(Rp) such that M ~ P ®g, X. Since
X € mod(Rp) we have an exact sequence

(x): R% RE X 0.

On the other hand, we get that (P ®g, Rp)(C) = P(C) ®g, Rp ~ P(C) and hence we have that
P®pr, Rp ~ P. Since P®p,, — is right exact, applying P ®p, — to the exact sequence (x) we have

P?" ——P" —— PQ®pr, X M ——0.

(¢) = (d) It follows from 4.18.
(d) = (a). Consider the counit morphism of the adjunction (see 4.13)

€y P ®r, Homyoa(ey (P, M) — M

By 4.12 we have that P ®g, Homyeq(c)(P, M) € mod(C). We have the following isomorphism
given by the adjoint pair (P ®Rrp —, Homypoa(c) (P, —))

v (P ®r, Homytea(c) (P, M),N) . ((P, M), (P, N))

Let us recall the construction of W: for o : P ®p, Homyeac)(P, M) — N we have (P, a) :
(P, P®R,Homyioq(c) (P, M)) — (P, N) but we have nzpr) 2 (P,M) — (P, P®g,Homyoq(c) (P, M)).
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Then we set W(a) = (P, o) onyp -
We assert that the following diagram commutes

(M, N) (ha, ) (P @, Homygoq(c (P, M), N)

| 5
(GRONCE) (GRONCE)

Indeed, for A : M — N we have that (¢);, N)(A) = Ae);. Therefore, we have that

U(Aehr) = (P Aear) 0 p ary = (P A) © (P €hr) 01 agy-

But by the triangular identities we have that 1nomy.q ) (P,v) = Homyoa(c) (P, e’M)onf{omMod(c) (P

Then we have that ¥(\eh;) = (P, ), proving that the diagram commutes. Since the vertical
morphism are isomorphisms, we conclude that

e N
(M, N) % (P QRp HomMod(C)(P7 M)aN)

is an isomorphism for all N € mod(C). In particular for N = P ®g, Homyeq(c)(P, M) this
morphism is an isomorphism. This means that there exists 0 : M — P®pg, Homyioq(c)(P, M) such
that 1pg,  Homyea(e) (P.M) = 00 ¢y Taking N = M we also have that (¢}, M) is an isomorphism.
Let us consider ¢); 060 : M — M. We have that (e}, M)(eh;00) =€y, 000¢€y, =€, 0(00€),) =
ey ol =c¢y. But (¢, M)(1n) = €}, and hence we conclude that ¢, o § = 1,,. Proving that ¢/,
is an isomorphism and then M € F.P.P(P). O

Remark 4.22 We could have proven (a) = (c) in the following way. By 4.18, there exists an ezact

sequence

dy do

(+): Py Py M 0

with P1, Py € Add(P). Then, there exists an epimorphism P —s M — 0. Since M is finitely
generated we have that there exists an epimorphism p : P* — M (see [/, 2.1(b)]). Now, since
M € mod(C) we have that there exists an exact sequence in mod(C)

0—>L——> Py(M) " M—=0.

where 7 is a projective cover of M (see [9, Proposition 8.4]). Then, we have that Py(M) is a direct
summand of P", that is, Py(M) € add(P). Now, since Py is projective we have that there exists a
morphism o : Py — Py(M) such that ma = dy. Then, there exists a morphism o : K — L such
that the following diagram commutes

0 K Py —2 o M 0
la/ la
0 ——>L——>Py(M) "M ——=0.
Now, since dy = 7 is an epimorphism and 7 is the projective cover of M (in particular an essential

epimorphism) we conclude that « is an epimorphism. By the Snake lemma we conclude that o' is
an epimorphism. Since K = Im(dy) (see diagram (%)), we have an epimorphism o'dy : P, — L



78 CHAPTER 4. LOCALIZATION AND RECOLLEMENTS

where d} : Py — K is the canonical epimorphism; and as a consequence there exists an epimorphism
PY) — L. Since L is finitely generated we have that there exists an epimorphism P™ — L (see
[9, Proposition 3.4]). Therefore, we have the following exact sequence

P" —— Py(M) —— M ——0
with P™, Py(M) € add(P). Proving that (a) = (c).

Proposition 4.23 Let C be a dualizing R-variety and P = Hom¢(C,—) € mod(C). Let N €
mod(C) be, the following are equivalent.

(a) N € FIC(P).
(b) There exists a finitely generated Rp-module X such that N ~ Homp, (P*, X).
(c) There exists an exact sequence in mod(C)
0 —— N —— Hompg, (P*, Iy) — Hompg, (P*, 1)
where Iy, Iy are finitely generated injective Rp-modules.

(d) For each module M € mod(C) the map
HomMod(C) (M7 N) — HomRP (HomMod(C) (P7 M)a HomMod(C) (Pa N))
is an isomorphism.

Proof. First we note that since C is a dualizing R-variety we have the adjunctions in the diagram
of 4.12.

(a) = (b) Suppose that N is injectively copresented. Then we have that N ~

Homp, (P*,HomMod(c)(P, N)). By 4.12, we get that Homyjeq(c) (P, N) € mod(Rp).

(b) = (c) Suppose that there exists a finitely generated Rp-module X such that N ~ Homp, (P*, X).
Since Rp is an artin algebra we have that mod(Rp) has enough injectives. Then there exists an
exact sequence

0 X I I

where Iy, I are finitely generated injective left Rp-modules. Since Hompg, (P*, —) is right adjoint
to Homypoq(c) (P, —) we have that Hompg, (P*, —) is left exact. Then we have an exact sequence

0 —— N ~ Hompg, (P*, X) — Hompg, (P*, Iy) — Hompg, (P*, I;)

where Iy, I; are finitely generated injective Rp-modules.
(c) = (d) If follows from the implication (¢) = (d) in 4.19.
(d) = (a) It can be proved in a similar as we did (d) = (a) in 4.21, but now using the adjoint pair
(HomMod(C)(P, ), Homp, (P*, —)). 0
The following result gives certain subcategories of Mod(C) which are equivalent to the category
mod(Rp).
Proposition 4.24 Let C be an R-category, P = Hom¢(C, —) € Mod(C).
(a) There exist equivalences:

HomMod(C) (P, —) : ]P]P(P) — N[Od(RP)7

HomMod(C)(P, —) : ]I(C(P) — MOd(Rp),
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(b) If C be is a dualizing R-variety the equivalences in item (a) restrict to equivalences
HomMod(C) (P7 —) : FPP(P) — mOd(Rp),
Homyoq(ey (P, —) : F.IC(P) — mod(Rp).

Proof. (a). By [4, Proposition 3.3] we have that Homyoqc)(P, —)lp.p(p) : P.P(P) — Mod(Rp)
is an equivalence with inverse P @, — : Mod(Rp) — P.IP(P).
By [4, Proposition 3.6] we have that Homyioq(c)(P, —)|r.c(p) : .C(P) — Mod(Rp) is an equiva-
lence with inverse Hompg, (P*,—) : Mod(Rp) — 1.C(P).
(b). By 4.12, we can restrict the three functors Homyoa(c)(P, —), P ®r, — and Hompg, (P*, —) to
the finitely presented functors. Then we have the required equivalences.

O

Remark 4.25 The item (b) of the last proposition hold for a preadditive category C and for P a
finitely generated projective C-module (not necessarely of the form Home(C, —)) because [/, Propo-
sition 3.3 and [}, Proposition 3.6] hold for preadditive categories and we have the diagram in
4.10.

The next result gives us a characterization of the the categories P.P(P) and I.C(P) which will
help us in the forthcoming sections. For the convenience of the reader, we reproduce the proof
given in [4, Proposition 3.7].

Proposition 4.26 Let C be an R-category, P = Hom¢(C,—) € Mod(C). The following conditions
hold.

(a) M € P.P(P) if and only if Homyoqc)(M,N) = 0 and Extll\/lod(c)(M, N) =0 for all N €
Ker(HomMOd(c)(P, -)).

(b) N € L.C(P) if and only if Homyioq(cy(M,N) = 0 and Extllvlod(c)(M, N) =0 for all M €
Ker(Homygoq(cy (P, —))-

Proof. (a) (=). Suppose that M is projectively presented. Then there exists an exact sequence

dy

P B do

M 0

with P, Py € Add(P) (see 4.18). We complete this to a projective resolution of M

(%) 1 - P} “optep Ly 0

Let N € Ker(Homyyoq(c) (P, —)). Applying Homyeq(c)(—, N) to the last exact sequence we get
0 —— Homyjoq(cy (M, N') —— Homypoq(c) (Po, N) — Homygoq(cy (P1, N).

Since N € Ker(Homyoq(c)(P, —)) and Py € Add(P) we get Homyoq(c)(Fo, N) = 0 and therefore
HomMod(C) (Ma N) = O
Now, by definition Exty,q(c)(M, V) is the i-th homology of the complex

*

dy d3
Homygoa(c)(Po, N) — Homyioq(c) (P, N) — Homypoq(e) (P, N) —— - -
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Since N € Ker(Homyjoq(e)(P,—)) and Py € Add(P) we get Homygoq(c)(Pr,N) = 0. Then
Ker(d}) = Im(d}) = 0 and therefore we have that Extllvlod(c)(M, N) = 0. Proving the required.

(a) (<=). Suppose that Homyjoq(c)(M, N) =0 = Extllvlod(c)(M, N)for all N € Ker(Homyoq(cy (P, —)).
We consider the following exact sequence

0— K; —* > P @p, Homyeq(e)(P, M) —> M —+ K, 0

where €/, is the counit of the adjunction ((P ®Rrp —), Homypoq(e) (P, —)) (see 4.13). By the trian-
gular identities we have that omyoa(e) (P,M) = Homyoae) (P, €h) © nhomM wey(P.M)" By 4.13 we
have that ni{omMod(C)(P,M) is an isomorphism, then we conclude that Homyeq(c) (P, €),) is an iso-
morphism. Applying Homyeq(c) (P, —) to the last exact sequence and using that Homygoq(cy (P, —)
is exact, we conclude that

Homygoq(c) (P, K1) = 0 = Homypoq(c) (P, K2).

By hypothesis we have that Homyjoq(c)(M, K2) = 0, then we have that 3 = 0 and hence €}, is an
epimorphism.
Then we have the exact sequence

/

(*) : 04>K1 L>P®RP HomMod(C)(PaM) l>M4>O

Let M’ := P ®g, Homyeq(c)(P, M), since M’ = P ®g, X where X satisfies that

X = Hompeq(ey(P, M) € Mod(Rp); we have M’ is projectively presented (see 4.18). Since
Homypoq(c) (P, K1) = 0, by hypothesis we have that Extll\/lod(c)(M, K;) = 0. Then we have that
the exact sequence (x) is a split exact sequence. Then there exists an exact sequence

0——> M —>—> P®g, Homygea(c)(P, M) —> K; —>0

such that ma = 1k, and €0 = 1p. Since K; € Ker(HomMod(C)(P,—)) and M’ = P ®g,
Homyoq(c) (P, M) is projectively presented, by the implication (=) of this proposition we have
that Homyjoq(c)(M’, K1) = 0. Then we have that 7 = 0. This implies that 0 is an isomorphism.
But €¢},0 = 17, then we conclude that €}, is an isomorphism. Proving that M is projectively
presented.

(b) (=). Suppose that N is injectively copresented. Then there exists an injective coresolution
of the form (see 4.19)

d d
0 —— N — Homg,, (P*, Iy) — Homg,, (P*, I).
We complete it to an injective coresolution of N

(#): 0 ——> N —%0 Homp, (P*, Io) —> Homp, (P*, [,) 2> Qs — > ---
Applying Homyeq(cy(M, —) we have

0—— HomMod(C) (Ma N) - HomMod(C) (Ma HOIHRP (P*7 IO)) -
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Since Homygoq(cy (P, —) is left adjoint to Hompg,, (P*, —) we have that
Homyoa(cy(M, Homp, (P*, 1)) ~ Homg, (HomMod(c)(R M), Io).

Since M € Ker (HomMod(c)(P, —)) we have Homygoq(c)(P, M) = 0 and then we have

Homypoq(c)(M, Homp, (P*, Iy)) = 0. By the last exact sequence we conclude that Homyoq(cy (M, N) =
0.
Now, by definition we have that Extfvlod(c)(M , N) is the i-th homology of the complex

<M7 (P*,Io)) L (M,HomRP(P*,Il)> L (M7Q2> — ...

Again using adjunction we have that Homyoq(c)(M, Homp, (P*,11)) = 0 and then we conclude
that Ker(ds) = Im(d;) = 0 and therefore we have that Ethl\/Iod(C) (M, N) = 0. Proving the required.
(b) («=). Consider the exact sequence

(*): 0 K, s N

Homp, (P*, Homyjoq(c) (P, N)) Ky —>0

where ny is the unit of the adjoint pair (HomMod(c)(P, —), Hompg, (P*, —)) From the triangular
identities we have that

IHomyteace) (P,N) = €Homygoa(ey (P,N) © Homioace) (£ nn)

By 4.13, we have that €gomy,,q,(P,v) 18 an isomorphism. Then we conclude that Homygoa(c) (P, )
is an isomorphism. Applying Homyoq(cy (P, —) to the exact sequence (*) and using that Homyeq(c) (P, —)
is exact, we conclude that

Homypoq(ey (P, K1) = 0 = Homppq(c) (P K2)-

Then, by hypothesis we have that Homyoq(cy (K1, N) = 0. Then we conclude that u = 0, then 1y
is a monomorphism.
Then we have the exact sequence

(#%) : 0—> N —"™> Homp, (P*, Homytoacc) (P, N)) P Ky— 50

Let N’ := Homp, (P*,HomMod(C)(P, N)) € Mod(C). Since N’ = Homp, (P*,X) with X =
Homygoq(c)(P, N) € Mod(Rp) we have that N’ is injectively copresented (see 4.19).

Since K € Ker (HomMod(c)(P, 7)> we have that Extllvlod(c)(Kg, N)=0.

This implies that (xx) is a split exact sequence. Then there exists an exact sequence

0— > Ko —" > Homp, (P*, Homytoa(c) (P, N)) L N—0

with pp = 1k, and ¢gny = 1n. Since Ky € Ker (HomMOd(C) (P, —)) and

N’ := Homg, (P*,HomMOd(c)(P, N)) is injectively presented. By the implication (=) of this
proposition, we have that Homyoq(c) (K2, N') = 0. Then we have that = 0. This implies that ¢
is an isomorphism. But gny = 1y, then we conclude that 7y is an isomorphism. Proving that N

is injectively copresented.
O
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Remark 4.27 The last proposition holds for a preadditive category C and for P a finitely generated
projective C-module (not necessarely of the form Home(C, —)).

Proposition 4.28 Let C be a dualizing R-variety and P = Home(C,—) € mod(C). Then, the
following conditions hold.

(a) M € F.P.P(P) if and only if Homyoqc)(M,N) = 0 and Ext}nod(c)(M7 N) =0 for all N €
mod(C) with N € Ker(Homy,oq(cy (P, —))-

(b) N € F.LC(P) if and only if Homyjoq(ey(M, N) = 0 and Extrlnod(c)(M, N) =0 for all M €
mod(C) with M € Ker(Hompy,oq(cy (P, —))-

Proof. The proof given in 4.26 works for the finitely presented modules, since mod(C) is an
abelian subcategory of Mod(C) with enough injectives and projectives and we have the adjunctions
in 4.12. O

Lemma 4.29 Let C be a preadditive category, P a finitely generated projective C-module and Rp =
Endnioq(ey (P)°P. Consider M € Mod(C), then there exists an isomorphism Homyioq(cy (P, Trp(M)) ~
HomMod(C) (Pa M) :

Proof. Indeed, consider the exact sequence

u s M
04>TTP(M) M Top (30) 0.
Let a: P — %(M), since P is projective there exists o/ : P — M such that 7o’ = a. Now,
there exists o” : P — Trp(M) such that ua” = «. Then we have that a = 7o/ = 7ua’” = 0.
This means that Homyoq(c) (P, %(M)) = 0. Then applying the functor Hompjoa(c) (P, —) to the
last exact sequence we have that Homygeq(cy (P, Trp(M)) ~ Homygea(cy (P, M).

O

Remark 4.30 Let R be a ring and R°P its opposite ring with multiplication defined as: r°P e s°P =
(sr)°P. Since Rg is a right R-module we have that ro» R is a left R°P module given by r°P - s = sr.
We also have that R°P is a left R°P-module with action given by r°P - s°P := r°P e s°P. We define
the function 1 : R — R°P by ¢¥(r) = r°P. Then v is an isomorphism of left R°P-modules. Indeed,
(roP - s) = P(sr) = (sr)°P = r°P e P = y°P . g°P = y%P . 4))(s). This proves that R ~ R°P as left
R°P-modules.

We have the following result, which is a generalization of proposition 6.1 in [4].

Proposition 4.31 Let C be a preadditive category, P a finitely generated projective C-module and
Rp = Endyoqe)(P)?P. Consider M € Mod(C), then Trp(M) is finitely generated if and only if
Homypoa(c) (P, M) is a finitely generated Rp-module.

Proof. (=) Suppose that Trp(M) is a finitely generated C-module. We know that there exists
an epimorphism PY) — Trp(M) — 0. Since Trp(M) is finitely generated we have that there exists
an epimorphism P™ — Trp(M) for some natural number n (see [4, Proposition 2.1]). Then there
exists an exact sequence

HomMod(C) (P, P)n >~ HomMOd(C) (P, Pn) E—— HomMod(C) (P, T]."P(M)) —0

Now, since Homyoq(c)(P, P)" is a finitely generated left Rp-module (see 4.30), we conclude that
Homypoq(c) (P, Trp(M)) is a finitely generated left Rp-module and thus we conclude that Homyoq(c) (P, M)
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is a finitely generated left Rp-module (see 4.29).
(«<=). Firstly, let J be a set and let us consider P() € Mod(C). Then we have that P(/) € add(P)
and by 4.18 and 4.20 we have that

(35 : Homgoa(e) (P, N) — Homp,, (Homytoq e (P, P7)), Homsoate (P V) )

is an isomorphism for all N € Mod(C) and all the sets J. Since P is finitely generated it is compact
(Homygoq(cy (P, —) commutes with arbitrary coproducts) and then we have that

HomMod(C) (Pa P(J)) = (HomMod(C) (Pa P)>(J) = (RP)(J)v

where the last isomorphism is because Endyioq(c)(P) >~ Rp as left Rp-modules (see 4.30).
Now, let M € Mod(C) and suppose that Homyoq(cy (P, M) is a finitely generated Rp-module. Then
there exists an epimorphism 3 : R} — Homyjoq(c)(P, M) in Mod(Rp). Then, 3 corrresponds to
an epimorphism

8’ € Hompg, (HomMod(c) (P, P"), Homygou(c) (P, M)) .

By the bijection (), there exists a morphism « : P* — M such that 5" = Homyeq(c)(P, ). We
claim that Im(a) = Trp(M). In order to prove the claim, it is enough to see that if g : P — M
is a morphism then there exists h : P — P™ such that ¢ = ah. Indeed, let g : P — M and
consider the morphism in Mod(Rp)

Homyoa(ey (P, g) : Homygoq(ey (P, P) — Homygoq(ey (P, M).
We have the following diagram

HomMod(C)(Pa P)

Homyod(c) (P:9) i

B'=Hompoq(c) (P,c)
Homyoa(ey (P, P™) Homygoq(cy (P, M) —0

Since Homygoq(cy (P, P) is Rp-projective (see 4.30), there exists a morphism « : Homyoq(cy (P, P) —
Homygoq(c) (P, P™) such that the last diagram commutes. By the bijection (+*) (taking N = P"
and J = {1}) we have the isomorphism

Homyjoa(c) (P, P") — Homp,, (HomMOd(c) (P, P), Hompgou(c) (P, P”)) .
Then, there exists h : P — P" such that Homyoq(c)(P, h) = 7. It implies that
Homypoa(c) (P, g) = Homypoa(c) (P, ) o Homygeq(ey (P, h).

Evaluating at 1p : P — P we get that g = «ah.

This implies that Im(g) C Im(«) for all g : P — M and then Trp(M) C Im(«). Since there
exists an epimorphism « : P — Im(a) we have that Im(a) = Trp(M). Now, since P™ is finitely
generated we conclude that Trp(M) is finitely generated. O

Proposition 4.32 Let C be a dualizing R-variety and P a finitely generated projective C-module.
If M € mod(C) then Trp(M) € mod(C).

Proof. Let us see first that Trp(M) is finitely generated. By 4.31, it is enough to see that
Homyoq(c) (P, M) is a finitely generated left Rp-module.
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Since C is a dualizing R-variety, we have that mod(C) is a dualizing R-variety and hence Hom-finite
(see also [62, Proposition 2.4]). Then Homyioq(c) (P, M) = Homy,oq(c) (P, M) is a finitely generated
left R-module. Now, we know that there exists a ring homomorphism

Q: R— Rp = EndMOd(c)(P)OP

given by ¢(r) = rlp where 1p : P — P is the identity morphism.

Since Homypoq(e) (P, M) is a left Rp-module, we have that Homyjoq(c) (P, M) is an R-module via
. It is easy to show that this R-module structure coincides with the structure of R-module given
by the fact that mod(C) is an R-dualizing variety.

Now, since Homyyoq(c) (P, M) is a finitely generated left R-module, we have that there exists f; €
Homygoq(c)(P, M) with i = 1,...,n such that every element f € Homypoq(c)(P, M) can be written

as
F=Y rifi=> or)fi
i=1 i=1

with ¢(r;) € Rp for all i = 1,...,n. Then, we have that Homyjoq(c)(P, M) is a finitely generated
left Rp-module. By 4.31, we conclude that Trp(M) is a finitely generated C-module.
Now we consider the exact sequence

0 —— Trp(M) M oD 0.
Since M is finitely presented and Trp(M) is finitely generated we conclude by [4, Proposition
4.2(c)(i)] that #(M) is finitely presented. Now, since mod(C) is a dualizing R-variety, we have
that it is a full subcategory of Mod(C) which is closed under kernels and therefore from the last

exact sequence we conclude that Trp(M) is finitely presented. That is, Trp(M) € mod(C). O

Remark 4.33 The proof of 4.32 can be done shorter in the following way. In the case of a dualizing
R-variety every finitely generated projective C-module is of the form P = Hom¢(C,—). By 4.12
we have the functor Homy,oq(c) (P, —) : mod(C) — mod(Rp). So, if M € mod(C) we get that
Homy,oq(cy (P, M) € mod(Rp). Then by 4.31, we have that Trp(M) is finitely generated. Then we
can proceed as the final part in 4.32 to conclude that Trp(M) € mod(C).

Remark 4.34 Let C be a dualizing R-variety and P = Home(C, —) € mod(C). Let us consider the
ideal Zogq(cy in C and 7 : C — C/ZLyqq(c) the canonical functor. Since we have a recollement in
4.12, we have that

Im(7,) = Ker(Homy,oq(c) (P, —).

Proposition 4.35 Let C be a dualizing R-variety and P = Home(C, —) € mod(C). Consider the
functor Hom,,oq(c)(P, —) : mod(C) — mod(Rp). Then the following holds.

(a) We have equivalences
Hommod(c) (P, 7)‘]?1 P — mOd(RP)

Homy,oq(c) (P, =), : It — mod(Rp)
where P1 and 1y are the categories defined in 3.35 and 3.41.
(b) Consider the map

Hompod(cy (X, V) 222> Homp,, (Hommod(c) (P, X), Homyoq(c) (P, Y)) .

Then:
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(i) px,y is a monomorphism if either X € Py orY € I,
(ii) px,y is an isomorphism if X € Py and Y € I,
(i1i) px,y is an isomorphism if either X € Py orY €.

(¢c) The functor Hom,oq(c) (P, —) induces an equivalence of categories between add(P) and the cat-
egory of projective Rp-modules and between add(J) and the category of injective Rp-modules.

Proof. (a). The fact that Homy,oq(c) (P, —)|p, : P1 — mod(Rp) is an equivalence follows from
4.24, since F.P.P(P) = ;.

By 4.34, 4.28 and 3.47 we have that F.I.C(P) = I;. Then by 4.24, we have that Homy,oq(c) (P, —)Ir, :
I, — mod(Rp) is an equivalence.

(bi). Suppose that X € Py. Then there exists an epimorphism

Q—=X——0

with @ € add(P). Let a : X — Y be such that Homy,q(c)(P,a) = 0. Consider, ar : Q — Y,
then we have that

0 = Homy,oq(c) (P, ar) : Homy,eq(c) (P, Q) — Homy,oq(c)(P,Y)
Since @ € P; by 4.21(d), we have that
PQ)Y - Hommod(C) (Q7 Y) — Home (Hommod(C) (P7 Q)7 Hommod(C) (P7 Y))

is an isomorphism. Then we have that amr = 0. Since 7 is an epimorphism, we conclude that a = 0.
Then px y is mono.
Now, suppose that Y € Iy. Then there exists a monomorphism

0—=Y L7

with I € add(J) (recall J = Io(wd(ip))). Then we have that I € I;. Let o : X — Y be such that
Homyy,oq(cy (P, @) = 0. Consider the morphism pa : X — I, then we have that

0= Hommod(C)(Pa :ua) : Hommod(C)(Pv X) — Hommod(C)<Pa I)
Since I € I} = F.I.C(P) (see item (a)), we have that
px.1 : Homyeq(ey (X, T) — Homp, (Hommod(c) (P, X), Homyoq(c) (P, I))

is an isomorphism (see 4.23). Then we have that pa = 0. Since p is a monomorphism, we conclude
that aw = 0. Then px y is mono.
(bii). Since X € Py we have by (bi) that

px.y : Homypoq(e)(X,Y) — Homp, (Hommod(c) (P, X), Homymeqc) (P, Y))
is a monomorphism. Since X € Py and Y € [ there exists an epimorphism
Q—+X——0

and a monomorphism

[ v
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with @ € add(P) and I € add(J). By definition of P; and I;, we have that @ € P; and I € I;.
Let us see that px y is surjective.

Let ¢ : Hompoq(c) (P, X) — Homypeqac)(P,Y) be a morphism of Rp-modules. Consider the mor-
phism Homy,oq(cy (P, i) : Homyeq(e) (P, Y) — Homp,eq(ey (P, I) and then we get Homy,oq(cy (P, 1) ©
@ : Homp,eq(c) (P, X) — Homyeq(e) (P, ). Since I € I} = F.I.C(P) we have that

PX,I: Hommod(C) (X? I) — HOIDRP (Hommod(C)(P7 X)a Hommod(C) (P7 I))

is an isomorphism (see 4.23). Then there exists a morphism A : X — I such that Hom,oq(c) (P, A) =

Hommod(c)(P7 .u“) o p.
We also consider Homyoq(cy(P,7) @ Homyeae)(P, Q) — Homyeqc)(P, X) and then we have
@ o Homy,oq(cy (P, m) : Homyeq(e) (P, Q) — Hompoq(cy(P,Y). Since Q € P; we have that

PQ.y + Homyeq(c)(Q,Y) — Hompg, (Hommod(c)(Pv Q), Homy,oq(c) (P, Y))

is an isomorphism (see 4.21(d)). Then there exists a morphism 8 : @ — Y such that ¢ o

Hommod(C) (P7 ﬂ-) = Hommod(C) (P7 6)
Then we have two morphisms Am, uf : @ — I. We assert that A\m = pfS. Since

PQ,I Hommod(C) (Qv I) — HOmRP (Hommod(C) (P7 Q)v Hommod(C) (P7 I))
is an isomorphism, it is enough to see that
Hommod(C) (Pa )\7'(') = Hommod(C)(P7 /”/B) : Hommod(C) (Pv Q) — Hommod(C) (Pa I)

Indeed, let us consider a morphism vy € Homy,oq(c) (P, Q). Therefore,

Ay = Homyeq(c) (P A)(17) = (Hommod(o(P, p) o @) () = pop(ry).
On the other hand

ppy = po (By) = po (Hommod(a(P, B)(v)) =po ((w o Homyodce) (P, W))(v))
= pro p(my).
Then, we have that Homy,q(c) (P A7) = Homyeq(e) (P, p#f3) and then we conclude that A\r = pup.
Let us consider the factorization of A through its image

X—2 o7

N

Then, we have that u8 = At = dpr = §(pr) with pm an epimorphism and § a monomorphism.
Then, we have that J is the image of Aw. Since g is a monomorphism we have by the universal
property of the image that there exists ¢ : K — Y such that the following diagram commutes
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Then we have 1 op: X — Y. We assert that ¢ = Homy,oq(c)(P, % o p). Indeed, let o : P — X
and then p(a) : P — Y. Thus po p(a) = (Hommod(c)(P, p) o (p)(a) = Hompoqc) (P, A) () =
Aa = dpa = pypa. On the other hand

o Hommod(C) (Pa 1/1 © p) (a) = /“/12904

Since 1 is mono we conclude that ¢(a) = Homy,oq(c) (P, % o p)(c). Then, we have that

Y= Hommod(C) (Pa Yo p)

Therefore, we conclude that
px.y : Homypoq(e)(X,Y) — Homp,, (Hommod(c) (P, X), Homymoq(c) (P, Y))

is surjective and then an isomorphism.

(biiz) Follows from 4.21 and 4.23 since F.P.P(P) = P; and F.C.I(P) = 1.

() Since Hompoq(c) (P, P) =~ Rp we have that Homy,q(cy (P, —) : add(P) — add(Rp) = proj(Rp)
is an equivalence.

We have that J = D;'(Home(—,C)) is an injective C-module. Then .J is injective in the sub-
category I; of mod(C). Since Homyoq(cy (P, —) : I1 — mod(Rp) is an equivalence we have that
Homy,oq(cy (P, J) is an injective Rp-module.

Now let us consider I an injective Rp-module. Since

(Homumoae) (P, —), Homp,, (P*, )

is an adjoint pair and Homy,q(c)(P, —) is exact we have that Hompg,, (P*, I) is an injective module
in mod(C). Since Hompg,, (P*, —) is the inverse of Homy,eq(c) (P, —) : [1 — mod(Rp), we have that
Homp, (P*,I) € I;. Then there exists a monomorphism

0 —— Hompg,(P*,I) —Q

with @ € add(J). Since Hompg,, (P*,I) is an injective module in mod(C), we get from the last exact
sequence that Hompg, (P*,I) is a direct summand of @ and then Homg, (P*,I) € add(J). Then
we have an equivalence

Homy,oq(cy (P, —) : add(J) — inj(Rp),

with inverse
Homp, (P*,—) : inj(Rp) — add(J).
O

We recall that for any class C of objects in an abelian category A, we have

CH = {Ac A|Homy(C, A) = Ext4(C,A) =0 VC € C},

L1¢:={A € A|Homy(A,C) = Exty(A,C) =0 VC € C}.
For the following result see [34, Chap. III.2] (see also [26, Lemma 2.2.1] )

Proposition 4.36 Let F' : A — B be an exact functor between abelian categories and suppose
that F' admits a right adjoint G : B — A. Then the following are equivalent:

(a) The functor F' induces an equivalence A/Ker(F) — B.
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(b) The functor F induces an equivalence Ker(F)+1 —s B.
(¢) The functor G induces an equivalence B — Ker(F)11
(d) The functor G is full and faithfull.
Moreover, in that case Ker(F)1t = Im(G) and Ker(F) = 11Im(G).

Remark 4.37 Since Homy,oq(c) (P, —) : mod(C) — mod(Rp) has a full and faithfull right adjoint
(this functor is part of a recollement), we conclude that

mod(C) /Ker(Homyeq(c) (P, —)) ~ mod(Rp).

By 4.28, we have that I; = (Ker(Homy,oa(c) (P, —)))**, we conclude by 4.36 that Homyoac) (P, —)
mod(C) — mod(Rp) induces an equivalence

Homypoq(ey (P, —)r, : It — mod(Rp)
That is exactly the equivalence given in 4.35(b).

Remark 4.38 By [51, Proposition 5.16], we have that (mod(C/Z),1;) is a complete right cotorsion
pair cut along mod(C/T)*0 =1 (see 3.48).

By duality, we can prove that (P1, mod(C/T)) is complete left cotorsion pair along ~°mod(C/T) =
Py



Chapter

Endomorphism rings

5.1 Extension over the endomorphism ring of a projective
module

Throughout this section C will be a dualizing R-variety, we will consider the projective module
P = Home(C, —) € mod(C) and Rp := Endyoqe)(P)°. The ideal Z in which we will work is
7 :=TrpC.

In this section we will study some homological properties of the additive functor Homy,oq(cy (P, —) :
mod(C) — mod(Rp) and how it relates to k-idempotent ideals. We will explore the relationship
between injective coresolutions in mod(C) and mod(Rp)

For each X,Y € mod(C) consider the canonical function

px.y : Hompoq(e)(X,Y) — Homp,, (Hommod(c) (P, X), Homymoqc) (P, Y))

defined as px,y (f) = Homy,oq(c) (P, f) for all f € Homyoq(cy(X,Y).
If a: X — X' is a morphism we have the following commutative diagram

Homymod(e) (X', V) 55 Homp, (Hommod(c) (P, X"), Homyeq(c) (P, Y))
LHommdw)(a,Y) l@
Homode) (X,Y) 5= Hom . (Hompmoae) (P, X), Hompoaie) (P,Y) )
where © = Hompg, (Hommod(c)(P7 a), Homp,eqc) (P, Y)) Indeed, we have that if 8 : X' — Y we
have that px yHome(a, Y)(8) = Homp,eq(c) (P, fa).. On the other hand, we have that

@(pX/,Y(B)) = @(Hommod(C) (Pa 5)) = Hommod(C)(Pv 5)H0mmod(C) (Pa a)

Then, the diagram commutes. A similar commutative diagram commutes if we fix the first variable
and we consider a morphism 8:Y — Y.

Proposition 5.1 LetC be a dualizing R-variety and P = Home(C, —) € mod(C). For each X,Y €
mod(C) and for all i > 0 we have canonical morphisms

By 1 Extlyoqioy(X,Y) — Exth, (Hommod(c)(R X), Homymou ey (P, Y))

89
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0. —
where @y 3 = pxy.

Proof. Indeed, we recall the construction. Let (I®,ey) an injective coresolution of Y € mod(C):

0 Yy 2> I
Applying Homy,eq(cy (P, —) we have the following exact complex

0——=(PY) —— (P L)) —= (P, ;) — -
Then, applying Hompg,, (Hommod(c)(P, X), —) to the last complex we get the complex

0—= ((P.X),(P.Y)) — ((P.X), (P Jo) ) —= ((P.X), (P.[1)) —= -+

Then, we have the following commutative diagram

X)Y)— = (X, Ij) X, L) ——--- (5.1)

J/PX,Y iﬂx,lo lpx,h

0— ((P.X),(P.Y)) — ((P.X), (P.1o)) — ((P.X), (P. 1)) — -

We denote this map of complexes by p: (X,I*) — ((P7 X)), (P, I')).
On the other hand, let us consider an injective coresolution (E*®,¢pyy)) of (P,Y) in mod(Rp)

§(PY)

OH(P,Y) E() E1

By the comparison lemma (see dual of [80, Theorem 6.16]) we have the following diagram

0—— (PY)—— (P, I)) —= (P, ) ——---

<

OH(P,Y) EO E1

We apply Hompg, (Hommod(c)(P, X), —) to the last diagram and we get

0—— ((P,X), (P, Y)) — ((P,X)7 (P, 10)) — ((RX), (P, 11)) .. (5.2)

0—— ((P,X),(P,Y)) — ((P.X), Bo) —— ((P,X), By) ——= -
where A} = Homp, (Hommod(c)(P, X), )\i). Let us denote this map by

A ((P,X),(P, I')) N ((P,X),E').

Then, putting together diagram (2) and (3) we have
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(va) (XaIO) (Xv-[l)

\LPX,Y lkéopx,[o i){oprl

0—— ((P.X),(2Y)) — ((P.X), B) — ((P.X), Br) — -

We denote this morphism by
Dyy :=Aop: (X,I8) — ((P,X), E('RY)).

This map of complexes induces a morphisms between its homologies. That is a family of maps

(I)Z(,Y : EXtinod(C) (X7 Y) — Ethép (Hommod(C)(P7 X)7 Hommod(C) (P7 Y))
with i > 0 and % y ~ pxy. O

Remark 5.2 In the last proposition, we use injective resolutions of Y and (P,Y) in order to
construct the morphisms (I)g(,Y' Since mod(C) has enough injectives and projectives, by 7.12 we
have that we can use projective resolutions of X and (P, X) in order to construct <I>§(’Y. Moreover,
by 7.10 and 7.5, we have that the morphisms fbg(,y are natural in exact sequences (see the diagrams
of 7.10 and 7.5). For more details about this, see the appendix of this work.

Next, we give conditions in order to know when the morphisms <I>fxyy are isomorphisms.
Proposition 5.3 Let C be a dualizing R-variety and P = Hom¢(C, —) € mod(C). Then the map
%y Extyoqe)(X,Y) — Exty, (Hommod(C)(P7X)7Hommod(C)(Pﬂ Y))
above defined is an isomorphism for all n > 0, provided one of the three following conditions holds:
(a) X €eP;, Y €l andn <i+j,

(b) X €emod(C) and Y € 1,41,
(¢) X € Ppyq and Y € mod(C).

Proof. If n = 0 the statement is just the proposition 4.35 (ii) and (iii).
So we assume n > 1 and prove the theorem by induction on n. Let n = 1.
Let X € P, or X € Py in both cases we have that X € Py. Then, we have an exact sequence

0 K P, X 0

with Py € add(P). Since Py is projective in mod(C) and (P, Fy) is projective in mod(Rp) we have
that Extrlnod(c)(Po, Y) = 0 and Extj, ((P, Py), (P,Y)) = 0. Then, we have the commutative and
exact diagram in the figure 5.1 (see 7.10).

(a) If X € Py and Y € I; by 4.35(b)(iii) we have that the left vertical maps are isomorphisms and
then ®%  is an isomorphism.

(¢) If X € P, we have that K € P;. We also have that X € P; since P, C P; and that Py € P;.
Then, by 4.35(b)(iii) we have that all the three left vertical maps are isomorphisms, then <I>§(7Y is
an isomorphism.

Similarly, by considering an exact sequence

0 Y I K 0
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0 (X,Y) (Po,Y) (K,Y) Exthoaie)(X,Y) ——0

J/pxy lﬂpu‘y lﬂk,y J{éj\',y

0— > ((P, X), (P, Y)) — ((P, R, (P, Y)) — ((P, K), (P, Y)) > Exth, ((P.X), (P, Y)) S

Figure 5.1: exact diagram

with Iy € add(J) one proves that CI%(’Y is an isomorphism if either X € P; or Y € I,. This proves
the theorem for n = 1.

Assume now that n > 1. First we consider the case when X € P; with ¢ > 0. Then, there exists an
exact sequence 0 K Py X 0 with Py € add(P). Then, we get the exact
sequence

0—— (PK)—— (P,P)) —= (P, X)——=0

Since Py € add(P) we have that (P, Pp) is a finitely generated projective left Rp-module (see
4.35(c)). Then, we have the commutative diagram (see 7.10)

Extlodie) (K, Y) ————— Extlioq) (X, Y)
lqﬁ(j; Pxy

Exty ! ((P, K), (P, Y)) - Ext}, ((P, X), (P, Y))

where the horizontal maps are isomorphisms. Let Y € II; with j such that ¢ +j > n. If ¢ = 0
we have j > n = (n—1)+ 1, then Y € I,,. Then, we can apply the induction hypothesis to K
(item (b) of this proposition). Then, we have that @}?; is an isomorphism since Y € I,,. From the
last diagram we conclude that % y is an isomorphism. Now, if i > 1 we have that K € P;_;. In
this case we have that j + (¢ — 1) > n — 1 since j + ¢ > n. Then, by induction (item (a) of this
proposition), we have that @}‘; From the last diagram we conclude that @' y- is an isomorphism.
This proves item (a)

Now if X € P,,4; we have that K € P, (n > 1). Then, by induction (item (c)), we have that <I>’;{;
is an isomorphism. Then, we have ® ;- is an isomorphism, proving item (c).

Now, suppose that Y € [,11. Then we have an exact sequence

0 Y I K 0

with Iy € add(J). Then we have an exact sequence

0 (PY) (P, Iy) —= (P,K) ——=0
By 4.35(c), we have that (P, Ip) is an injective Rp-module. Then we have the diagram (see 7.5)
Ext;;jl(c) (X, K) ————— Ext] () (X, Y)
s s
Extyy,! ((P.X), (P, K)) — Extyy, ((P.X). (P.Y))

where the horizontal maps are isomorphisms. Since Y € I[,,1; we have that K € [,,. Then by
induction hypothesis (item b) we have that @&‘Il( is an isomorphism. Therefore, we conclude that
®% y is an isomorphism, proving (b). O
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Proposition 5.4 Let C be a dualizing R-variety and P = Home(C,—) € mod(C). The following
conditions hold.

(a) If X € Py then pd(X) = pdpg, ((P,X)).
(b) If X € Ly then id(X) = idg, ((P,X)).
Proof. (a). Let X € Py, be. By 5.3 we have that

By Extloge) (X, Y) — Exth, (Hommod(c)(P, X), Homymoa(c) (P, Y))

is an isomorphism for all n > 0. Suppose that pd(X) = m < co. Let us see that pdp ((P, X)) =m.

Indeed, let M € mod(Rp). Since Hom,oq(c) (P, —) is dense we have that there exists ¥ € mod(C)
such that Homy,oq(c)(P,Y) = M. Then, we have that

Extf (Hommod(c)(R X), M)) = Ext, (Hommod(c)(P, X), Homyoq(c) (P, Y))
~ EXtZLOd(C) (X, Y) = 0

for n > m since pd(X) = m < oco. Then, we have that d = pdp, ((P,X)) <m.
Now, for Y € mod(C) we have that

EXtloqic) (X, Y) = Ext}, (Hommod(c)(P, X), Homyoa(c) (P, Y)) —0

for n > d. Then, we have pd(X) < d. Therefore, we conclude that pd(X) = pdg, ((P,X)).

Similarly we can see that id pd(X) = co. Then, pdg, ((P, X)) = o0, proving the assertion. (b)
similar to (a). O

Proposition 5.5 Let C be a dualizing R-variety and P = Hom¢(C, —) € mod(C). If Py = Py, or
I} =TI then gl.dim(Rp) < gl.dim(mod(C)).

Proof. We know that Homuyeqc)(P,—) @ P1 — mod(Rp) and Homuyeqe)(P,—) @ i —
mod(Rp) are equivalences (see 4.35(a)). By 5.4 for each M € mod(Rp) there exists X € mod(C)
such that p.d,,,q(c)(X) = P-diod(r,)(M). This implies that gl.dim(Rp) < gl.dim(mod(C)). O

Proposition 5.6 Let C be a dualizing R-variety with cokernels and consider P = Hom¢(C,—) €
mod(C). If If Py = Py, or Iy = I, then gl.dim(Rp) < 2. In particular Rp is a quasi-hereditary
algebra.

Proof. If C has cokernels we know that gl.dim(mod(C)) < 2 (see [2, Theorem 2.2(b)]. By 5.5, we
have that gl.dim(Rp) < 2. By a well known result of Dlab-Ringel (see [28, Theorem 2]) we now
that every artin algebra with global dimension least or equal to 2 is quasi-hereditary. [

Remark 5.7 Let C be a dualizing R-variety and P = Home(C, —) € mod(C). Then, the following
diagram commutes

Hom,,, P,—
mod(C) ——mes@ BT ()

iDc iDRP
Hompea(cory (P*,—)

mod(C°P) mod(R%)

where P* = Home(—, C) € mod(C°P) and Dg,, is the usual duality of artin algebras.
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Proof. Indeed, since P = Hom¢(C, —) we have that

Hommod(COP) (P*v De (X)) = Hommod(COP) (HOmC(_7 C)a D¢ (X))
= D¢ (X)(C)
= Homg (X (C),1)

On the other hand,
Dg, (Hommod(c)(P, X)) — Hompg (Hommod(c)(P, X), I) = Homp(X(C), I).

Therefore, the diagram commutes. [
The following proposition gives us a relation of the canonical morphisms <I>§(7Y tExtoae) (X, Y) —

Extfqp (Homrmd(c)(P7 X), Homyoq(c) (P, Y)) in the category mod(C) and mod(C°P)
Proposition 5.8 Let C be a dualizing R-variety and P = Home(C, —) € mod(C). There exists a
commutative diagram

EXtmod(C) (Xv Y) <

l‘l’&,y iq’ﬁzdy),mc(m

0 Bty (P, De(Y)), (P, De(X)

Exthod(cor) (De(Y), De(X))

Exth, (P, X). (P,Y))

where the horizontal maps are isomorphisms, P* = Home(—,C) and (I)ﬁic(Y) De(X) is the analogous
to the morphism <I>§(7Y but constructed in the category mod(C°P).

Proof. Let us consider an injective coresolution (I°®,ey) of Y € mod(C). Then, (D¢ (1*),De(ey))
is a projective resolution of D¢ (Y) € mod(CP) and we get the following complex

0— (De(¥), De(X)) — (Pe(lo). De(X)) — (De(12), De(X)) — -

and the following map of complexes

(DC(Y), ID)C(X)) (Dc(fo)a Dc(X))

| |

0 — ((P",De(Y), (P, De(X))) — ((P*,De(lo)), (P, Be(X))) — -
Let us denote this morphism by
p": (De(I*),De(X)) — ((P*,De(1*), (P, De(X))).
On the other hand, in the construction of the map A in 5.1, we got the following diagram

0—— (PY)—— (P L)) —= (P, ;) ——---

S

0——=(PY) 0. g, B
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where (E°®,¢py)) is an injective coresolution of (P,Y) € mod(Rp). Then, applying the duality
Dg, to the last diagram we have
"HDRP(Pfl)HDRP(PI())HDRP PY —0

T T

"HDRP(EI) ]D)RP(E )HDRP P Y —0

where
-+ ——>Dg,(E1) — Dg,(Eo) —=Dg,(P,Y) —0

is a projective resolution of Dg,(P,Y) € mod(R?). By 5.7 the last commutative diagram is
isomorphic to the following

H(P*,Dc(fl))H(P*,Dc(Io)) P ]D)c 4>0
DRP(Al)T DRP()\O)T
i ——>Dp,(E)) ——— Dg, (Ey) — (P*,De(Y)) ——0

Then applying Hompg,, <7, Homyy,oq(cory (P, ]DJC(X))) to the last diagram we get

0— ((P",De(¥). (P*. De(X)) ) — ((P*.De(lo), (P*, D (X)) ) —---

|

0— ((P",De(Y)), (P, De (X)) ) ——> (D, (Eo), (P, De(X)) ) ——> -

Let us call this morphism
A" (P, De(1), (P, De(X))) — (D, (B*), (P, De(X)) ).
This gives us the map of complexes
Upe(v)pe(x) = A% o p": (DC(I.>7DC(X>) — (DRP(E°),(P*7DC(X)))-

We assert that the following diagram of maps of complexes is commutative

*

(Pe(1),Be (X)) ~*— ((P*,De(1°), (P*,De(X))) 2 (D, (B*), (P*,De(X)))

(X,I°) ’ ((P, X), (P, I‘)) ((P, X), E)

where p and A are the maps constructed in 5.1.
Indeed, consider o € Homy,oq(cy (X, In) = (X, I®)™ (n-th component of the complex (X, I*®)). Then,

(A 0 pp)(a) = Ay oHom(P, ) : (P, X) — E,.
Then, we have

Dg, ()\n o Hom(P, a)) = Dg, (Hom(P,«a)) o D, (\,) = (P*7 DC@)) oDrp(An)
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where the last equality is by 5.7.
On the other hand,

(A ((P")n(e(@))) = (A (P, De(@)) = (P*,De(@)) o D (An):

Then, the required diagram is commutative. Therefore, passing to cohomology we have the following
commutative diagram

i D
Extyoa(c) (X, Y) =

Exthod(cor) (De(Y), De(X))

lq)é(,Y i\llgnc(Y),Dc(X)

Exth, (P X), (P.Y)) ———> Exthop (P, De(Y), (P*, De(X)).

We note that the morphism \Ilﬁ)c(y) De(x) Was constructed using the projective resolution D¢ (7°)
of D¢(Y) and a projective resolution of Dg,(P,Y). But in order to construct the morphism
(I)J%JC(Y),DC(X) we need to consider an injective coresolution of D¢ (X). By 7.12, we have that we can
construct ‘I)EDC(Y) De(X) using injective coresolutions or projective resolutions. That is, we have that
\I/]%)C (V) De(X) = (I)fD)c (v),pe(x)» Proving that the required diagram is commutative. [J

Remark 5.9 Let C be a dualizing R-variety, P = Hom¢(C,—) € mod(C) and J = I()(%). By
3.43, we have that J ~ Dc_l(Homc(—, a)).

Then, if we work in the category mod(C°P) with the projective P* = Home(—,C) and J* :=

Iy (ﬁ) the injective envelope Ofﬁ in mod(C°P), we have that J* ~ D¢ (P) = Dc(Home (C, —)).

For the convenience of the reader we write the definition given in 3.35 but in the category
mod(C°P).

Definition 5.10 Let C be a dualizing R-variety and P* = Home(—,C) € mod(C°). For each
0 < k < oo we define P}, to be the full subcategory of mod(C°P) consisting of the C°P-modules X
having a projective resolution

P, —>P, P, P, X 0
with P; € add(P*) for 0 <i < k. Similarly to 3.41 we define I}.

We recall that for C a dualizing R-variety, P = Hom¢(C, —) we have the trace ideal associated
to P denoted as Z := TrpC and hence we have the dualizing R-variety C/Z.

Proposition 5.11 Let C be a dualizing R-variety, P = Home(C, —) and J = Io(%)
(a) Then we have that X € Py if and only if Dc(X) € I}.
(b) Then we have that X € I, if and only if Dc(X) € Pj.

Proof. We just prove (a) since (b) is similar. By 3.33 we have that Z°° = Trp«C°?. By 3.47 we
get that Dc(X) € I} if and only if Exty, q(cor) ((72)«(Y),De(X)) = 0 for all Y € mod(C? /Z°P) and
i=0,...,k, where o : C°? — C°P/Z°P is the canonical projection. Since D¢ is a duality, we have
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that Ethnod(c) (X, D" (m2)«(Y)) = 0 for all Y € mod(C°/Z°P). Since we have the commutative
diagram (see 2.33)

(1)«

mod(C/T) mod(C)

J{Dc/z iDc
(12) %

mod((C/Z)°P) === mod(C)

we get that Extfnod(c)(X, s (]D)E/lZ(Y))) =0 for all Y € mod(C?/Z°P). Since D¢,z is a duality we

have that Extfmd(c)(X, 71(Y’)) =0 for all Y € mod(C/Z) and i = 0,...,k. By 3.38, we have that
X € Pg. Then, we have proved that X € Py, if and only if D¢(X) € Iy, O

Proposition 5.12 Let C be a dualizing R-variety and P = Hom¢(C, —) € mod(C). Let 1 < k < oo
be. Then

(a) Y €1y if and only if
By Extlyoqe) (X,Y) — Extly, ((P, X), (P, Y))
is an isomorphism for all 0 < i < k — 1 and for all X € mod(C).
(b) X € Py if and only if
By Extiyoe) (X, Y) — Extly, ((P, X), (P, Y))
is an isomorphism for all 0 < i <k — 1 and for all Y € mod(C).

Proof. (a) (=). Suppose that Y € I,. Then, we have that Y € I, for all 1 <7 < k. By 5.3(b) we
have that ®% y- is an isomorphism for all 0 < < k — 1 and for all X € mod(C).
(«). Consider the ideal Z := TrpC and the exact sequence in mod(C)

(+) 1 0——=Z(C", =) —" Home(C', ) ——= HgelTy) ——0

We have that (P,u) : (P,Z(C’,—)) — (P,Hom¢(C’,—)) is an isomorphism since Z(C’',—) =
Trp(Home (C’, —)) (see 4.29).
Then,

Exth, ((P,Home(C', -)), (P,Y)) —= Exth, ((P.Z(C", =), (P,Y))
is an isomorphism for all ¢ > 0. On the other hand we have the commutative diagram
Exthoq(c)(Home (C7, =), Y) ————— Ext,oq¢¢)(Z(C', ), Y)
o e

Extt, ((P, Home (C7, —)), (P, Y)) — > Bxtly ((P, Z(C', -)), (P, Y)).

By hypothesis we have that the vertical maps are isomorphisms for all 0 < ¢ < k — 1. Then, we
have that
(**) : Ethnod(C) (Homc(c/7 _)7 Y) - Ethnod(C) (I(C/7 _)’ Y)
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is an isomorphism for all 0 < < k — 1.
For ¢ = 0, we have that (Homc(C’, 7),Y) — (I(C’, =), Y) is an isomorphism. Now, considering

the exact sequence (), we have the long exact sequence

0 (Zpgs) y) (Home(C”, ), Y ) — (Z(C",-).Y) >
A
@) Exthoa(c) (H‘?ggﬁ?ﬁﬁ Y ) 0

and then we conclude that

HOHIC(C/, —) . 1 HOHIC(C/, _)

For 1 <i <k — 1, using the isomorphism (xx) we have that
Ethnod(C) (I(C/’ _>7 Y) =0

since Home (C’, —) is a projective C-module. Applying Hom,,q(c)(—,Y") to the exact sequence (*)
we get an isomorphism

i i Homc (C',—
EXtmod(C) (I(C/7 _)7 Y) — EXtr:ol(i(C) (%’ Y)

for i > 1. This implies that Ext’,q.c) (% Y) —0for2<i<k

Then, we have proved that

i Home (C', —) i
Extodcc) (WJ/) = Extro4(0) ((Wl)*(HomC/z(Cl, =), Y) =0

for 0 < ¢ < k. Therefore, we have that Extfnod(c)((m)*(Q),Y) = 0 for all @ € mod(C/Z) pro-
jective and ¢ = 0,...,k (in a dualizing variety the finitely generated projectives are of the form
Hom¢(C’,—)). By 3.47, we have that Y € Ij.

(b) By 5.11, we have that X € Py, if and only if D¢(X) € I;. By (a), this happens if and only if

b vy e (x) | Exbiod(con) (De(Y), De (X)) — Extgopp (( P*,De(Y)), (P*, DC(X)))
is an isomorphism for all Y € mod(C) and 0 < i < k — 1. By 5.8, this happens if and only if
By 1 Extyoqioy(X,Y) — Exth, ((R X), (P, Y))
is an isomorphism for all 0 < i < k — 1 and for all Y € mod(C), proving (b). O

Proposition 5.13 Let C be a dualizing R-variety and P = Home(C,—) € mod(C). Let X € Iy
and k > 1. Then, X € Iy if and only if

EXtZﬁP (P*(C/)’ (P’X)) =0

foralll1<i<k-—1 and for all C' € C.
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Proof.  First note that P*(C") = Homp,q(c) (P, HomC(C”,—)) Then, we have that P*(C’) €
mod(Rp).
(=). Suppose that X € I;. Then, we have that

Extl, (P*(C"), (P, X)) = Extly ((P, (', —)), (P, X))
~ Extioqc) ((c’, ), X) by 5.12(a)]

=0 [(C',—) is projective]

forall 1 <i<k—1and forall C' €C.
(«<). Suppose that Exty,  (P*(C"), (P, X)) =0forall 1 <i <k —1 and for all C’ € C. Let us see
by induction on k that X € I;. For £ = 1 by hypothesis we have that X € I;. So let us check the
first non trivial case. So, suppose that & = 2. Counsider the ideal Z = TrpC and m : C — C/Z the
projection. Since Z(C',—) = Trp(Home(C’, —)) we have that Z(C’, —) € Py. By 5.3(a) we have an
isomorphism

Exthoaie)(Z(C', =), X) — Exth, ((P.Z(C",-)), (P, X))

Since Z(C', —) = Trp(Home(C, —)) we know that we have an isomorphism (see 4.29)
(P, Z(C'",—)) ~ (P,Home(C', —)).
Then, we have that
Exth, (P*(C"), (P, X)) = Exth, ((P,Home(C", =), (P, X))

~ Extl, ((P, (', ), (P, X))
~ Extpoqc)(Z(C', —), X).

From the following exact sequence in mod(C)

0 —=I(C’, —) — Home(C', -) R 0

we have that )
Homc¢ (C ) _)
Extuoaie)(Z(C", =) X) = Extiioac) (W X)

By hypothesis we have that Ext}%P (P* (ch, (P, X)) =0, then we conclude that

Extfnod(c)(%,X) = 0. Then Ext2,,q¢) ((m)*(HomC /1(0'7—))7)() = 0 for all C". This

implies that Extfnod(c) ((m)*(Q),X) = 0 for all projective module @ € mod(C/Z). Since X € I;

(hypothesis), we have that Extfmd(c) ((m)*(Q),X) = 0 for all projective module € mod(C/Z)
and ¢ =0, 1 (see 3.47.) By 3.47, we have that X € I5.

Suppose that the theorem is true for £ — 1 with £ — 1 > 2.

Let X € mod(C) such that Ext}, (P*(C”),(P,X)) =0forall 1 <i<k—1and for all ¢’ €C. In
particular, we have that Extp (P*(C’), (P, X)) = 0 for all C’ € C. Then by the case k = 2 just
proved above we have that X € I;. Then, we have an exact sequence

(*): 0 X I L 0
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with Iy € add(J) and L € I;. Applying Homy,oq(c)(P, —) we get an exact sequence
0—— (P, X)—— (P, lo) —(P,L) ——0.

Since Iy € add(J) we have that (P, 1) is an injective Rp-module (see 4.35(c)). Then applying
Homp, (P*(C"),—) to the last exact sequence we have an isomorphism

Exty, (P*(C"), (P, L)) ~ Extif ! (P*(C), (P, X))

for all i > 1. By hypothesis we can conclude that Exty , (P*(C"), (P, L)) = 0foralli=1,...,k—2.
Since L € I; we can apply the induction to L. Then, we conclude that L € I;_;. From the exact
sequence (x) we conclude that X € Iy. This finishes the proof. [

Proposition 5.14 Let C be a dualizing R-variety and P = Home(C, —) € mod(C). Let X € Py
and k > 1. Then X € Py if and only if

Tor[' (P(C"), (P, X)) =0
forall1 <i<k—1 and for all C' € C.

Proof. By 5.11, we have that X € Py if and only if D¢ (X) € If. By 5.13, we have that D¢ (X) € If
if and only if Extj,%;p((P*)*(C’), (P*,De(X))=0forall 1 <i<k—1 and for all C' € C. Consider
the usual duality in artin algebras Dg,, : mod(Rp) — mod(R%’). Then, we have the isomorphisms

Extipor (P*)*(C"), (P*, De(X))) =

~ Extis (P(C"), (P*, De(X))) [because (P*)* ~ P]

~ Extl, (ID) (P*, De(X)), DL (P (c’))) Dg, is a duality]

~ D(TorfP (P(C ), Dk (P, De(X )) [Duality in artin algebras]
~ D(Torfp (P(C’), (P, X))). by 5.7]

Then, we have that Ext%;p((P*)*(C’), (P*,De(X)) =0forall 1 <i<k—1and for all C’ € C if
and only if Tor’*” (P(C"), (P, X)) =0 for all 1 <i < k—1 and for all C’ € C, proving the result. [

Proposition 5.15 Let C be a dualizing R-variety and P = Home(C,—) € mod(C). The following
holds.

(a) Iy = I if and only if P*(C') = Homy,eq(c) (P, Home(C', —)) is a projective Rp-module for
all C' € C.

(b) Py = Po if and only if P(C") ~ Homy,q(c)(Home(C', —), P) is a projective RY -module for
all C" € C.

Proof.

(a) («). By definition we have that I, C I;. Now, let X € I; and suppose that P*(C’) is a
projective Rp-module for all C’ € C. Then, we have that Ext}, (P*(C"), (P, X)) = 0 for all
i > 1. By 5.13 we have that X € I, proving that [; = I
(=). Suppose that I; = I,. Consider Z € mod(Rp). Slnce the functor Homy,oq(c) (P, —)|1, :
I} — mod(Rp) is an equivalence (see 4.35), there exists a X € I; such that Z ~ (P,X).
Then,
Ext}, (P*(C"), Z) ~ Extl, (P*(C"), (P, X)) =0

foralli > 1 (since X € I} = [, and 5.13). This proves that P*(C") is a projective Rp-module.
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(b) By 5.11, we have that Py = P if and only if I} = I*_ in mod(C°?). By item (a), we have that
this happens if and only if (P*)*(C") is a projective R7-module for all C’ € C. This happens
if and only if P(C") is a projective R%’-module for all C" € C (since (P*)* ~ P).

O
In 4.12 we constructed the recollement

‘ﬁmm

mod(C/Ig) — mod(C) oo (P) mod(Rp)
c(C/Is,—) Hom g, (P*,—)

where for M € mod(Rp) we define
Hompg, (P*,M):C — Ab

as follows: (HomRP(P*,M))(C) := Homp, (P*(C), M) (see 4.5) and P ®p, — : mod(Rp) —
mod(C) is defined as follows:
(P ®r, M)(C) = P(C) ®r, M

for all M € mod(Rp) and C € C (see 4.4).

Proposition 5.16 Let C be a dualizing R-variety and P = Hom¢(C,—) € mod(C). Let X €
mod(C) be and M := (P, X) € mod(Rp). The following are equivalent for 1 < k < co.

(a) X el

(b) If0 - M — Iy —» I — --- is an injective resolution of M € mod(Rp) then 0 — X —
Hompg, (P*,1Iy) — Homg, (P*,I;) — -+ — Hompg,(P*, I}) is the begining of an injective
resolution of X ~ Hompg, (P*, M).

Proof. (a) = (b). Suppose that X € I with k¥ > 1. In particular we have that X € I; and then
we have that X ~ Hompg, (P*, M) (see for example 4.35).

Now, let 0 - M — Iy — I; — --- be an injective coresolution of M € mod(Rp). Then, applying
the functor Homp, (P*, —) to the last exact sequence we have the following complex

0 - X — Homg, (P*,Iy) —» Hompg,(P*,I;) = -+ — Hompg, (P*, Ix) — - -,

where all Hompg,, (P*, Iy) are injective (see 2.7). Since X € I, by 5.13 we have that EX‘BEP (P*(C"),M) =
Extp,, (P*(C"),(P, X)) =0for all 1 <i < k— 1 and for all C’ € C. This implies that the previous
complex is exact up to the (k — 1)-th place. That is,

0 — X — Hompg, (P*,Iy) — Hompg, (P*,I;) = -+ — Hompg, (P, I}).

es exact, proving that the last exact sequence is the begining of an injective resolution of X ~
Hompg, (P*, M).

(b) = (a). Let 0 > M — Iy — I; — --- be an injective coresolution of M € mod(Rp) then
by hypothesis 0 — X — Homg, (P*,Iy) — Homg,(P*,I;) — -+ — Hompg, (P*,I;_1) is the
begining of an injective resolution of the module X ~ Homg, (P*, M). By 4.35(c), we have that
Homp, (P*,I;) € add(J) for all i. Then, by definition of I we have that X € I;,. O
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Proposition 5.17 Let C be a dualizing R-variety and P = Hom¢(C,—) € mod(C). Let X €
mod(C) and M := (P, X) € mod(Rp). The following are equivalent for 1 < k < co.

(a) X € Py,
(b) If -+ — Py, — .-+ — Py — M — 0 is a projective resolution of M € mod(Rp) then
o= PR, Py — > PQr, Ph—>X—=0
is the begining of a projective resolution of X ~ P ®p, M € mod(C).

Proof. Similar to 5.16, but now using 5.14. [



Chapter

Certain special cases

In this chapter we will see certain exact sequences in mod(C), and using these we will obtain
conditions so I; = I,. We will also use conditions on the projectivity of Z(C’, —) for all C’ € C
and we will get an embedding of bounded derived categories. Finally, we will see examples of
k-idempotent ideals in different categories.

6.1 Conditions for I, = I, and projectivity of the trace ideal

In this section we give other necessary and sufficient conditions for I; to be equal to I, and
for P; to be equal to P,. We start by recalling some further properties of the adjoint pairs
(P ORp _aHommod(C)(P7 _)) and (Hommod(C)(Pa _)aHome (P*7 _))

Proposition 6.1 Let C be a dualizing R-variety, P = Hom¢(C, —) € mod(C) and M € mod(C).
(a) There ezists an exact sequence

’
€M P

0—— K, - P®RP HomMod(C)(Pv M) M

K, 0

given by the counit of the adjoint pair (P ®g, —, Hompyeq(c)(P, —)) such that
P ®p, Homyoqcy(P, M) € Py and Ky, Ky € Ker(Homy,q(c) (P, —))-

(b) Given an exact sequence

0 L M, M Ly 0

with My € Py and Ly, Ly € Ker(Homyoac)(P,—)). The following holds:
(b1) Homy,oq(c)(P, B) : Homyq(c) (P, M1) — Homy,eq(c) (P, M) is an isomorphism.
(b2) LetY € Py and 1 < k < co. The maps
Extyoacey (Vs B) : Extloaiey (Vs My) — Extloqc) (Y, M)
are isomorphisms for all 0 <i <k — 1.

103
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(b3) There is a commutative diagram

O*>K1 L)P(X)RP HOHIMOd(C)(P,M) M M KQ O

X - |-

0 Ly M, M Lo 0

where o, ag, a3 are isomorphisms.
Proof. (a) We consider the following exact sequence

’
€M p

0 —— K; —— P ®g, Homy,eq(c)(P, M) M

K> 0.

By the triangular identities we have that lyom,,,, ) (P,a) = Hommed(c) (P, €y) Onhommod(c)(P,M)' By
4.13 we have that n{iommod@( p, ) 18 an isomorphism, then we conclude that Homy,oq(c) (P, €)) is an
isomorphism. Applying Homy,oq(c) (P, —) to the last exact sequence and using that Homy,oq(cy (P, —)
is exact, we conclude that

Homoq(c) (P, K1) = 0 = Homyeq(e) (P, K2).

Now, by 4.21 we have that P ®g, Hompgqac)(P, M) € Py.
(b1). Since Homy,eq(cy (P, —) is exact we have the exact sequence

0—— (P.L1) — (P,M) 22 (P M) —— (P, Ly) —— 0.
Since Ly, Ly € Ker(Hompyeqc)(P, —)), we have that (P, L) = (P, Lz) = 0 and then (P, ) is an
isomorphism.
(b2). We prove that

Ethnod(c)(Y, B) : Ethnod(c) (Y, M) — Ethnod(c)(Y» M),

is an isomorphism for all 0 < < k — 1.

Indeed, consider M; N 1 P M the factorization of 5 through its image. Then we, have the

exact sequence

0 1 u Ly 0

Applying Homy,oq(cy (Y, —) we get for 0 < i < k — 1 the exact sequence

Ext®(Y,82)

Ext'"! (Y, Ly) — Ext'(Y, I) Ext (Y, M) — Ext'(Y, L»)

where Ext’~'(Y, Ly) := 0 for ¢ = 0. Since Ly € Ker(Homyeq(c)(P,—)) = Im(m.) and Y € Py
we have by 3.38 that Extgold(c)(Y, L) = Extyoqc)(YsL2) = 0. Then, Exty q)(Y,B2) is an
isomorphism.

Now, consider the exact sequence

0 Ly M, I 0.
Applying Hom,oq(c) (Y, —), we get for 0 <i < k — 1 the following exact sequence

Ext(Y,81)

Ext'(Y, L) — Ext'(Y, M;) Ext’(Y, I) —— Ext/ o) (Y, L1).
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Since L; € Ker(Home(P,—)) = Im(m,) and Y € P, we have by 3.38 that Ext'(Y,L;) = 0 =
Extij;ld(c)(Y, L;). Then, Extinod(c)(Y, B1) is an isomorphism for 0 < ¢ < k — 1. Therefore,

Extinoacc) (Y B8) = Extfmd(c)(Y, B2) o Extfnod(c)(Y, $1) is an isomorphism for 0 <i < k — 1.

(b3) Let us consider for short X; := P®g, Homyieq(cy (P, M) € P1. By (b2), we have that (X1, 3)
is an isomorphism. Therefore, there exists a unique map as : X3 — M; such that Sas = €.
Then, there exists a; and a3 making the required diagram commutative. Similarly there exists
maps o, o, a such that the following commutes

0 —= K; = P ®g, Homyaa(c) (P, M) — M —'~ K, 0
B
0 Ll Ml M L2 0
| | 5
0—— K, L)P(X)RP HomMod(C)(Pa M) u M P K> 0

By (b2) and (a), we have that
Homyoa(c) (X1, €3y) : Hompoq(ey (X1, X1) — Homypoq(e) (X1, M),

is an isomorphism.

Since €); = €, (abas) we conclude that abas = 1x, and therefore ofjay = 1k, and ajas = 1g,.
In similar way, we can see that asal, = 1,7, and therefore a1} = 11, and azaf = 1, proving
that aq, as and ag are isomorphisms.

0

Proposition 6.2 Let C be a dualizing R-variety, P = Hom¢(C, —) € mod(C) and N € mod(C).

(a) There exists an exact sequence

0 K —%~ N " Homp, (P*,Hommod(c)(P, N)) Ky —0
given by the unit of the adjoint pair (Homy,eq(c) (P, —), Homg, (P*,—)) such that
Hom g, (P*, Homoq(e) (P, N)) € I and Ky, Kz € Ker(Homuoare(P, -))).

(b) Given an exact sequence

0 L NN Lo 0

with Ny € I and Ly, Ly € Ker(Homy,q(c) (P, —)). The following holds:
(b1) Homyoq(e) (P, B) : Homy,eq(ey (P, N) — Homyeac) (P, N1) is an isomorphism.
(b2) LetY €1y and 1 < k < oco. The maps
Exthoae)(8,Y) : Exthoaie) (N1, Y) — Exthoqc) (N, Y)

are isomorphisms for all 0 <i <k — 1.
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(b3) There exists a commutative diagram

NN

0 u Homp,, (P*, Homyod(c) (P, N)) Ky —0

K N
- -k
N

0 Ly N Lo 0

where a1, as and ag are isomorphisms.
Proof. Similar to 6.1. O

Proposition 6.3 Let C be a dualizing R-variety and P = Hom¢(C, —) € mod(C). The following
are equivalent

(CL) Hl :Hoo

(b) P ®g, Homyioq(c) (P, Home(C’, —)) is a projective C-module for all C' € C.

Proof. (b) = (a). Let M = Hom¢(C’,—) and we consider the module M; := P ®pg,
Homygoq(c) (P, Home(C', —)) € mod(C). By 6.1 there exists morphism ¢}, : M; — M such that
Homyoq(cy (P €)yy) : Hompoq(ey (P, M1) — Homyyeq(e) (P, M) is an isomorphism.

Suppose that M is a projective C-module. Since M; € P; we have that there exists an epimorphism
P — M.

Then, we have that M; € add(P). By 4.35 we have that Homy,oqc)(P, M1) is a projective Rp-
module. But Homp,oq(c)(P, M) = P*(C’). Then, we have that P*(C") is a projective Rp-module
for all ¢’ € C. By 5.15, we have that I; = .

(a) = (b). Suppose that I; = I.. By 5.15, we have that the module

P*(C") = Hompeq(cy (P, Home(C’, —)) is a projective Rp-module for all C' € C. Since P ®g, —
preserves projectives since it is left adjoint to an exact functor, we have that

P ®r, Homypoq(c) (P, Home (C', —)) is a projective C-module for all C' € C. O

Proposition 6.4 Let C be a dualizing R-variety, P = Hom¢(C, —) € mod(C) and Z = TrpC. The
following are equivalent.

(a) T is 2-idempotent and 1y = I;
(b) Z(C',—) is a projective C-module for all C" € C.

Proof. (a) = (b). Let C’ € C, by 3.39, we have that Z(C’,—) € Py for all C' € C. Then, by 4.35
we have that Z(C’, —) = P ®g, Homy,eq(c) (P, Z(C’, —)).

But since Z(C’, —) = Trp(Hom¢ (C’, —)) we have the following isomorphism of Rp-modules
Homy,oq(cy (P, Z(C’, —)) = Hompga(c) (P, Home(C’, —)). Then,

P ®RP Hommod(C) (P, Homc(C’, —)) = I(Cl, —).

Since I; = I, by 6.3, we conclude that Z(C’, —) is projective.

(b) = (a). Now, suppose that Z(C’, —) is a projective C-module for all C’ € C. Since there exists an
epimorphism P" — Z(C’, —) (because Z = TrpC), we have that Z(C’, —) € add(P). In particular
we have that Z(C’,—) € P;. Then, we have that Z is 2-idempotent by 3.39.

By lemma 4.35 we have that Z(C’,—) = P ®g, Homy,qq(c)(P,Z(C’, —)) since Z(C',—) € Py.
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But since Z(C',—~) = Trp(Hom¢(C’,—)) we have the isomorphism Hom,qc)(P,Z(C',—)) =
Hommod(C)(Pv HOmc (C/, —)) Then,

P ORp Hommod(C) (P7 HomC(Clv _)) = I(Clv _)

Since Z(C', —) is projective by 6.3, we conclude that [} = I.
]

Proposition 6.5 Let C be a dualizing R-variety with cokernels and consider P = Hom¢(C,—) €
mod(C). If Z(C', —) is projective for all C' € C. Then, we have that Rp is quasi-hereditary.

Proof. It follows from 5.6 and 6.4. O

Proposition 6.6 Let C be a dualizing R-variety, P = Hom¢(C,—) € mod(C) and T = TrpC.
Consider the functor m, : mod(C/Z) — mod(C). If Z(C’, —) is projective for all C' € C, we have
a full embedding

D’(7,) : D’(mod(C/Z)) — D’(mod(C))

between its bounded derived categories.

Proof. Since Z = TrpC for each C’ € C we get an epimorphism P" — Z(C’, —). Since Z(C’, —)
is projective for all C” € C, we have that Z(C’,—) € add(P) C P,. Then, by 3.40, we have that Z
is strongly idempotent. That is,

Clpr () Extioae/n) (Fy F') — Bxtloqiey (ma (F), ma(F))

is an isomorphism for all F, F’ € mod(C/Z) and for all 0 < i < oo (see definition 3.3). By [35,
Theorem 4.3] we have the required full embedding. O

6.2 Some examples

Consider an algebraically closed field F' and the infinite quiver

o a2 (7%

2 k

k41— —— ...

Q:1

Consider C := F'Q/(p) the path category associated to ) where p is given by the relations a;11; =0
for all 4 > 1. By construction we have that C is a Hom-finite F-category (for more details see for
example [62, Proposition 6.6]) and [21]).

It is well known that the category of representations Rep(Q, p) is equivalent to Mod(C). In this
case, the projective and simple representations associated to the vertex k are of the form

Pk: Sk:k‘

k41,

(1a) Consider P = @%_, P; and T = TrpC. We have that Trp(P;) = P; for 1 < i < k. Then,

we have that Hoﬁfy(j’)_) ~ Trf(ipi) =0 )for 1 < i < k. We also have that Trp(P;) = 0 for all
. Home(i,—) . P _ p ;

1>k + 1. Then we have that I(i__) ~ TPy = P;fori>k-+1.

Then, for all 7 > 1 we have that Exthod(c)(%, F'om)=0forall j € C=FQ/{p) and

for all F’ € Mod(C/Z). This proves that Z is strongly idempotent.
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(1b) Consider the projective P := @?:ng and let Z := TrpC. We assert that TrpC is k — 1-

idempotent.
Indeed, firstly we have that HOI“(‘f (i’)_) ~ lilpl) ~ S; where S; is the simple representation
associated to the vertex 1. Moreover, we have that Trp(P;) = P; for 2 < ¢ < k. Then, we

have that Home(:m) o Pipi) =0 for 2 < i < k. We also have that Trp(P;) = 0 for all

(i,—) Trp(
1 > k + 1; and hence HOI“EZ.C(E’)_) ~ Trf(ipi) =P, fori>k+ 1.

In order to see that TrpC is k — 1-idempotent, by 3.4 it is enough to see that
‘&%Mm(g%%ij%ﬂ):0WEC:FQMWVFEB%MWDaMﬂwﬂogjg
k — 1. Because of the above discussion, it is enough to see that EXti/Iod(C)(Sl’ F'om) =0 for
all 0 < j < k—1and VF' € Mod(C/Z). Now, because of the description of the projective
modules in this example, for each ¢, there exists an exact sequence 0 — S;11 — P, — S; — 0.
Then we have the infinite projective resolution of Sy

o —— Py Pria Py e Py S 0

where each P; is the projective associated to the vertex i (see also [39, Theorem 1.2] for
computing projective resolutions).
We also have the projective resolution of the simple S5

(*): PkJrl Pk P2 SQ 0

where each P; € add(P) for j =2,--- k.

Since C is a Hom-finite F-variety, by 3.36, we have that Hompoq(c) (P, F' o m) = 0 for all
F' € Mod(C/Z) and for all 2 <[ < k. In particular, Homyeq(cy (P2, F' o m) = 0 and similar
to the proof of 3.37, we have that Homyjoq(c)(S2, F' o) = 0 for all F’ € Mod(C/T).

Then, after applying Homyea(c)(—, F' o ) to (x) we have the complex

0—0—--— 0 — Homyea(e)(Prg1, F'om) = -

where the bold 0 is in the place k — 2. Then we have that Ext%/lod(c)(Sg, F'om) =0 for all
0<j<k-2.
Now, consider the exact sequence

(*) : 0 So Py S1 0.

From the long exact sequence we have the exact sequence for all 5 > 0

Ext’

Mod(c) (52 F' o) — Ext/Fl (81, F'on) = Ext! L (P, F'om).

Mod(C) Mod(C)

Since Extidod(c)(Sg,F’ om)=0forall 0 <j<k—2and P, is projective, we conclude that
Exti/lod(c)(sl, F'or) =0forall 1 < j < k—1. Therefore, we have that Z is (k—1)-idempotent.

The ideal given in item (b) is not k-idempotent. In order to see this, we are going to use some
notation of [39].
Let us consider T'(1,k + 1) the subquiver of Q given by

aq [e2} Ak

T(1,k+1): 1 2 k k41

and C' = FT(1,k 4+ 1)/(p') the path algebra (category) associated to T'(1,k + 1) where
p' is the restriction of p to T(1,k + 1) . We consider Q = P; & --- Pry1 € Mod(C) and
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A := Endyoqc)(Q)°. Tt can be seen that that the quiver associated to the K-algebra A is
exactly T'(1,k + 1). Then this implies that A ~ C’ as K-algebras.
We have a functor

G = Homyoq(cy (@, —) : Mod(C) — Mod(A)

which induces an equivalence of categories Rep(T'(1,k + 1), p’) =~ Mod(A) (see second para-
graph in pag. 182 in [39]). Since C is a variety we have the following commutative diagram

{add(Q)}*” —— proj(C)**

d d

C’ C

where the horizontal arrows are inclusions and the vertical arrows are the Yoneda embeddings
which are equivalences in this case. Then we have that

res : Mod(C) — Mod(C’)

can be identified with res : Mod(proj(C)°?) — Mod(add(Q)°?). By 4.2(b) we have that this
last one restriction can be identified with the functor G. Therefore, we have that the functor
G can be identified with the functor

res : Mod(C) — Mod(C").

Using that G can be identified with res : Mod(C) — Mod(C’) and by the descriptions
of the projective and simple modules in our example. We have that if .S; is simple and
SI = G(S;) # 0, then S, = G(S(7)) is simple. Similarly, if P; is an indecomposable projective
and P/ = G(P;) # 0, then P/ = G(P(i)) is projective (se also second paragraph in pag. 182
in [39]).

Let us consider Si11 € Mod(C) = Rep(Q, p) the simple corresponding to the vertex k+ 1. As
a functor Sg41 is the functor such that Sgyi(k+1) = F and Si41(j) =0for all j #k+1in
objects; and S(a;) = 0 for all a; : 4 — i+ 1 in C. Then, we have that Si+1 € Ann(Z) because
Sk+1(a) = for all @ € Z and hence we have that Syy1 = F' o7 for some F’' € Mod(C/Z).
Now, let S}, := G(Sk41) € Mod(A). We have that this corresponds to the vertex &k + 1 in
T(1,k+ 1) and also S| = G(S1) € Mod(A) corresponds to the vertex 1 in T'(1,k + 1).

Now, we compute Ext (S, S+1)- We have that S; = Q*~1(S]) (the k — 1 syzygy of S7). By
shifting lemma we have that Ext} (57, Spi1) =~ Ext'(Sy, S;.+1)- We have the exact sequence
0 — S, — P, — S; — 0 which does not split because S is not projective. We conclude
that Ext,k\(S{,S,gH) ~ Extl(S,’v,S,’e_H) # 0. Then by [39, Proposition 1.1(a)], we have that
Extﬁ/lod(c)(sl, Sk+1) # 0, proving that Z is not k-idempotent.

(1d) We can prove that the ideal given in item (b) is not k-idempotent in a shorter way. We
have that S, = QF1(S;) (the k — 1 syzygy of S;). By shifting lemma we have that
Extf/lod(c)(Sh Sk+1) =~ Extll\/lod(c)(Sk, Sk+1)- We have the exact sequence 0 — Si11 — P —

Sk — 0 which does not split because Sy, is not projective. We conclude that Extllf,lod(c) (S1, Sk+1) #
0. Then, 7 is not k-idempotent.

(2) Let Z be a heredety ideal in C, according to definition 3.2 in [71]. Then we have that
Z(C,—) is a projective C-module for all C € C and Z is idempotent. Then by 3.4, we

have that Extllvlod(c)(mzn('cci(?;),F' om) = 0 for all F/ € Mod(C/Z) and for all C' € C.
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Now, since the projective dimension of each H‘}“Eéi(c)) is less or equal to 1, we have that

Extidod(c)(%w)) F'om) =0 for all F' € Mod(C/Z) and for all C € C. Then by 3.4, we

have that 7 is strongly idempotent.
Remark 6.7 We note that in the example 4 given in p. 672 in [8], there is a mistake. The ideal
trace should be taken over the projective P & - - - & Py instead of over the projective Po & --- & Py
(this according to the notation used in that example in the paper).

Remark 6.8 We note that in example (1a) we have that Mod(C/Z) is isomorphic to Ann(Z) and
then we have that Mod(C/Z) is isomorphic to Mod(C') where C' = FQ'/{p') is the path category
given by the quiver

A+2 (7}

Q:k+1 2 k19 l

where p' is given by the relations a;1c; = 0 for all i > k. Then we have that Mod(C/Z) ~ Mod(C).
As in item (1c) we have that Homyoqc)(P, —) : Mod(C) — Mod(Rp) with Rp = Endyieq(c)(P)?,
can be identified with the restriction functor res : Mod(C) — Mod(C") where C"" = FT(1,k)/{p’ >
is the path category given by the quiver T'(1,k)

[+1

a1 a2

T(1,k): 1 2 k,

where p is the restriction of p to T(1,k). In this case the recollement in .11 is

mﬁ\

!
Cc(C/Ip,—) Hompg, (P*,—)

where Rp is the algebra which is isomorphic to to the path algebra C" = FT'(1,k)/{p").

Remark 6.9 We note that in example (1b) we have that Mod(C/Z) is isomorphic to Ann(Z) and
then we have that Mod(C/Z) is isomorphic to Mod(C') where C' = FQ'/{p') is the path category
given by the non-conected quiver

Q41 Q42 ay

Q1 k+1 k+2 l

[+1 —— -

where p' is given by the relations a; 10 = 0 for all i > k.

As in item (1c) we have that Homyioq(cy (P, —) : Mod(C) — Mod(Rp) with Rp = Endyeq(c)(P),
can be identified with the restriction functor res : Mod(C) — Mod(C") where C"" = FT(2,k)/{p")
is the path category given by the quiver T'(2,k)

a9 [07%:3

T(2,k): 2 3 k

where p is the restriction of p to T(2,k). In this case the recollement in /.11 is

mﬁ\

/
Cc(C/Ip,—) Hompg, (P*,—)

where Rp is the algebra which is isomorphic to to the path algebra C" = FT'(2,k)/{p").
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Appendix

7.1 Appendix A: Some homological algebra

Lemma 7.1 Consider the following exact and commutative diagram

0 Eo 0 By Ry — Fy 0
YA VB Yo
0 A o B b C 0
ﬁ % /uc
0 A Y ’ c’ 0

where ua,up,uc are monomorphisms Ey and Fy are injectives and the upper exact sequence splits
( that is, there exists pg, such that pg,ug, = 1). Then, there exists yar,yp:,yor such that the
following diagram commutes

UE(, PFy

0 Ey Ey® Fy Iy 0
A 4 A
/ / /
/ // /
/ pa / +B / o
Yar / B’ / Yc! /
/ / 3 /
0—+—A = B C 0
/ / /
% ) Sap / /%
/ , / 5 /
0 A = B’ c’ 0

Proof. Since Fy is injective and we is a monomorphism, there exists vor : C' — F, such
that yoruc = Y. Consider pg, : Eg ® Fyp — Ep the canonical projection. Then there exists
A
A : B" — Ej such that A\up = pg, o ¢¥p. We define vp = ( 5 > : B' — Ey ® Fy and we
Yer
define y4 = Aa’/. We assert that the diagram is commutative.

111
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(a) pr, © B’ = yc'B'. Indeed, we have that pp, o yp = (0 1) ( N Aﬁ, ) =B
C/

!
(b) vp o & = ug,var- Indeed, we have that ug,v4 = ( é )’yA/ = ( 76‘, ) = ( )\3 ) On

e = (g )= (L ) = (7))
o Yo B! Yo Bla! 0o )
(c) ¥vp =~ypup. It is enough to see that composing with the projections they coincide. Indeed,

PRYBUB = Yo flup = yorucB = Yo = pryB.
PE,YBruB = (1 0) <

the other hand,

Wc)/\ﬂl ) up = Aup = pg, ©¥p. Then, Yp =vpug.

(d) yarua =pa. Indeed, yarug = Ad'ug = Mupa = pg, o yp o = prup,ha = 1ohs = 4.
d
Remark 7.2 For the dual version of 7.1 see [84, Proposition 6.9] in page 140 and 141.

Lemma 7.3 Consider an ezxact diagram

0 Y - Ny 0
0 A" ¢ 0

Consider (E®,ea), (K® ep) and (F'*,ec) injective coresolutions of A, B and C constructed as in
the horseshoe lemma. Consider (X®,ea:), (Y*, ep) and (Z°,ecr) exact coresolutions of A', B’ and
C" such that there exists an exact sequence of complexes 0 X Y* zZ* 0.
Then, there exists morphisms of complezes v : X®* — E*, A:Y®* — K*® ¢ : Z* — F* such that
we have the following exact sequence of complexes

0 X* Y* zZ* 0
0 E* K* F* 0

Proof. Since €4/, e and € are monomorphisms, by the lemma 7.1, there exists morphisms
Yx,, Ay, and 1z, such that the following diagram is commutative

UB, PFy

0 FEy Ey & Fy Fy 0
‘YV Ay T d)V
0 Xo - Yo £ Zy
€A T €B 1 ec
A a B ’ e, 0
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Passing to the cokernels, there exists morphisms 6y, 61, 6(, 61, €0, &1, &2 such that the following dia-
gram is exact and all the squares are commutative except the ones marked with I an 1T

0o 01

0 Co 01 C2 0
& / &
1 11
0/ [
0 cl (e - ch
9y dEg@ Fo dry
6X0 5y0 6Z0
u p
Ey o Eod Fy o Fy 0
Vxq Avp ’lﬁy
0 Xo = Yo = A
€A ] €c
A o B d C 0
€p/ €pr [eld
/ o / B /
0 A B C 0

Let us see that I is also commutative. Indeed, there exists a unique morphism ¢ such that the
following diagram is commutative

€ a7 )
0 Al A Xo all cl 0
l af \L Ay oo \L ¢
€ )
0 B 5L By Fy —00 Cy 0

But 0gopodx, =0p00E, 0Vx, = OEymF, © UE, © VX, = OE,@F, © Ay, © Up- Similarly, we have that
€100 00x, =& 0dy, oug = dg,@r, © Ay, © ug. Then, we conclude that 6y o §o = & 0 6. Similarly
we can see that the square /7 is commutative. Now we recall that I, K and J are constructed as in
the horseshoes lemma and (X*®,e4/), (Y, ep/) and (Z°,ec) exact are coresolutions of A’, B and
C’ such that there exists an exact sequence of complexes 0 X Y* zZ* 0.
Then we can construct the following commutative exact diagram

UE, PFy
0 F4 E,® F; " 0
0 Xl uy YVI T p1 Zl
€cy ] ec, ] €Cy
Co %0 ol o Cy 0

€t €t
“o 1
o
’
00

0 cl ) . cl 0,

where ec, €cy, €c, €cy, €c, €c; are monomorphisms. We note that e, ecy, €c, €cy, €c, €cy are
morphisms such that dx, = €cy © 0x, : Xo — X1, dy, = €c; © dy, : Yo — Y1, dz, = €cy © 0z, :
Zy — 7y, dEo = €g, © 5Eo : By — FEq, dEoGBFo = €c, O(SE(]@FO By Fy — Ey & F and
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dr, = €c, 00F, : Fo — F} are the corresponding differentials in degree zero in the exact complexes
X* Y* Z° E°, K* and J*® respectively.
By 7.1, we can complete to the following commutative diagram

UEy PFy

0 Eq FE, & F; P 0
X1, Avy 7 Yz, , 7
v P v
d uy - P1 7
0 X1 Y1 A
€cq T ec, ] €Cy
Co % e o C, 0

€t €t
o 1
o
9/

0 cl 2 4 : C 0

Proceeding inductively, we can construct morphisms of complexes v : X®* — E*, A :Y* — K*
¥ : Z* — F'* such that we have the following exact sequence of complexes

0 X* Y* zZ* 0
Pk b
0 E* K* F* 0

O

Now, let us suppose that we have an exact functor 7' : A — B between abelian categories with
enough injectives. Let us consider an injective coresolution (I°,ex) of an object X € A. That is
we have the following exact sequence in A

0 X €x IO [1 SEIN

with I; injective for all j. Applying the functor T" we get the following exact sequence in B

0 T(X) T'(1o) (L) —--

Applying Homp(T(A), —) to the last complex we get the complex of abelian groups

0 —— Homp(T(A), T(X)) —— Hompg(T'(A4), Iy) —— Homp(T'(A), ;) —— - --

Then we have the following commutative diagram

00— = (A X)— = (A Ip) (A, I) (7.1)

\LPA,X ipA,Io ipA,Il

0—— (T(4), (X)) — (T(4), T(Ip)) — (T(A), [}) —> -

where p4 1, (o) = T(c) for a € (A, I;). We denote this morphism by p4 : (A,1°) — (T'(A),T(I*)).
On the other hand, let us consider an injective coresolution (E*®, ep(x)) of T(X) in B. That is we
have the exact sequence

€T (X)

0 ——T(X) Ey Ey e
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with Ej; injective for all j. By the comparison lemma (see dual of [80, Theorem 6.16]) we have the
following diagram

0—=T(X) T(Io) (L)
-]
0——T(X) Ey E,

We denote this morphism by A : T(I*) — E*®. We apply Homp (T(A)7 —) to the last diagram,
and then we have

0 —— (T(4), T(X)) — (T(4), T(Io) ) —= (T(4), T(1)) —= - (7.2)

0——> (T(A),T(X)) - (T(A),Eo)

where A} = Homgp (T(A), )\i). We denote this morphism by
(T(A),A) : (T(A), T(I%)) — (T(A), E*).

Putting together diagram 7.1 and 7.2 we have the following map of complexes (not exact)

(4, X) (A L) ——— (A ) ———— (A L) —— - -

lPA,X \L)\SOPA,IO iXTOPA,Il l/\;OPA.Iz

0 —— (T(A4), (X)) —= (T(A4), By ) — (T(4), By ) —= (T(A), By) —> -
We denote this morphism by ®4 x : (4,1°) — (T(A)7 E'). That is we have that

x4 = (T(A),\) 0 pa s (4,1%) — (T(4), E*).
This map of complexes induces morphisms between its homologies. That is, a family of maps

iy x  Bxtly(A, X) — Extls (T(A), T(X))
with ¢ > 0 and <I>?4’X ~pax.

Remark 7.4 See [/9] chapter IV in pp. 163 and 164 for other descripcion of the morphisms <I>f4,X.
See also the exercises 12.5, 12.6 and 12.7 en [}9] in page 165, for the naturality with the conecting
maps.

Proposition 7.5 Consider T : A — B an exact functor between abelian categories with enough
injectives. Consider a fix object A € A and for every object X € A the map <I>iA7X s Exty (4, X) —
Exti(T(A),T(X)) constructed above. Then, if

B

0 A" o B C// 0

is an exact sequence in A then we can construct the diagram in figure 7.1.
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Ext (A, A”) — = Ext’ (4, B") — > Ext/4(4,C") Ext’{ 14, A") ———— .-

+1
lq)LA.A” lq)LA.B” J{“’;&.C” \L@;.A”

Extls (T(A)‘ T(A”)) > Fxtly (T(A), T(B”)) > Fxtiy (T(A). T(c")) — Extif! (T(A). T(A”)) —
Figure 7.1: exact diagram

Proof. By the horseshoes lemma, we can construct(I®,e4), (H®,ep~) and (J*, ec~) injective
coresolutions of A”, B” and C” with H® = I" @ J" for each n and morphisms v : I* — H®,
p: H® — J*® the canonical ones such that 0 I* s He Lo g 0 is a degree-wise
split exact sequence of complexes. Since T is exact we have exact coresolutions (T'(I*),T(ea)),
(T(H*),T(ep~)) and (T(J*),T(ec)) of A" :=T(A"),B’ = T(B") and C’ = T(C") respectively.
Moreover, we have the following degree-wise split exact sequence of complexes

T (u) T(p)
—_—

0 T(I*) T(H®) T(J*) —=0.
Now, consider the diagram
0—=a g Loy
0 A g P 0

and (E*,ear), (K* ep) and (F*, ec) injective coresolutions of A’, B" and C’ constructed as in the
horseshoe lemma. By 7.3, we have following commutative and exact diagram of complexes

0 T(I*) T(H®) —=T(J*) —=0
I
0 E* K* Fe 0

where for each n the following exact sequences

0 7y 2 ey YL pmy 0,
0 E™ K" m 0
split. Then, applying Homg(T(A), —) we have the following exact and commutative diagram of
complexes
0 —— (T(4), (")) — (T(A), T(H")) — (T(4), T(J*)) —>0
0— (T(A),E') - (T(A),K') (T(A),F') S—)
Now, since 0 VAL H™ J" 0 splits for each n, we have that the following

sequence 0 — (A, I*) —— (A4, H®*) —— (A, J*) —— 0 is exact. Then we have the following
commutative and exact diagram of complexes
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(A, I*) (A H®) (A,J°)

| l |

0——> (T(A),T(I')) — (T(A),T(H‘)) — (T(A),T(J')) — 0.

0

Therefore, we have diagram

0— > (AT)——— > (A H) —— > (A, J*) ——>0

i‘bA,A// \L@A’B// i(bA’C”

0——> (T(A),E') — (T(A),K‘) — (T(A),F‘) — 0
Then passing to cohomology we have the exact diagram of figure 7.1. O

Proposition 7.6 Let T : A — B be an exact functor between abelian categories with enough
injectives. Let us fiz an object X € A, we also consider an injective coresolution (I°,ex) of X and
an injective coresolution (E®, ep(x)) of T(X) in B. Let a: A — B be a morphism in A, then we
have the following commutative diagram of morphism of complezxes

B, 1) — (a1

iq’B,x i‘i’A,x

(T'(B), E*®) “T@E) (T'(A), E*®),

where for each n the map («, I°®), is by definition («, I*), := (o, I,) : (B, I,) — (A, I,); similarly
is defined (T(a), E®).

Proof. Firstly, recall the constructions of 4 x and ®p x.
We have the following two maps of complexes

0— (4, X) (A, Iy) A L) —— -

\LPA‘X ipA,IU lPA,Il

0—— (T(4), T(X)) — (T(A4), T(Ip) ) — (T(4), 1) —=---

(BﬂX) (B7IO) (Ball)

iPB,X iPB,IO \LPB,Il

0—— (T(B).T(X)) — (T(B). T(Iy)) — (T(B). 1) —= -

which we denote by pa : (4,1°) — (T'(A),T(I*)) and pp : (B,I*) — (T(B),T(I*)) respectively.
Since T is exact we get the following exact sequence

0 — T(X) — T(lo) — T(I1)
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By the comparison lemma (see dual of [80, Theorem 6.16]) we have the following diagram

0 T(X) T(Iy) T([) — > -
M
0 T(X) Ey E

Let us denote this morphism by \: T'(I*) — E°.
Therefore, we have the following maps of complexes (T(A), )\) : (T(A),T(I')) — (T(A),E')

and (T(B),)\) : (T(B)f(p)) s (T(B),E‘).
Thus, by definition we have that

Dy = (T(A), /\> opa: (A, I%) —s (T(A), E*)

and
Dpx = (T(B),/\) opp : (B, 1%) —s (T(B), E*).

Let o : A — B be a morhism. Let us check that the following diagram is commutative

(B, T%) (1) (4,1°)
(1(B), B¥) —m (1(4), )

Indeed, consider a fixed n > 0. Let v : B — I" be, then (o, I*)"(7) = ya. Then,

(@ax)n(r0) = ((T(A),1) o (pa)n)(7a) = (T(4).A) (T(ra))
= Ao T(a)
=0 (T(y) o T(c)).

On the other hand, we have that

(@2.0a(0) = ((T(B).A) 0 (pe)n) () = (T(B).A) (T()) = Ao T().

Then ,
(T(@).B*) (AoT() = (a0 T(7)) 0 T().

Therefore the required diagram is commutative. [l

Definition 7.7 Let A be an abelian category with enough injectives and X € A. For each i > 0
we define the functors T% : A — Ab as follows.

(a) For every object A € A we set Ti(A) := Ext’y(4, X).

(b) Let o : A — B be a morphism in A we define T% (o) : T%(B) — T%(A) as follows:
Let (I°,ex) be the following injective coresolution of X

do dy

0 XX

5L I
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Ext’4(C, X) Extiy(B, X) ———— Ext} (4, X) —— Ext'{}(C, X)

N Ji . Js

Extls (T(C), T(X)) > Fxtiy (T(B), T(X)) —~ Bxtl, (T(A), T(X)) — - Bxty! (T(C), T(X)) —_—
Figure 7.2: exact diagram

Since the following diagram commutes for every i

(Bvdl)
(B, I;) — (B, li11)

l(a’fz‘) i(aJHl)
Ad;
(Aa Il) (H') (Av Ii+1)7

we have a morphism of complezes f = (a,I®) : (B,I*) — (A, I°*) such that f; = (a,I*); :=
(o, ) : (B, I;) — (A, I;). Passing to cohomology we have a morphism

Hi(f): H(B,I*) — H'(A,I*).

But by definition we have that H (B, 1*) = Ext'y (B, X) and H'(A,I*) = Ext’y (A, X). Then
we have that H'(f) : T%(B) — T%(A). Then we define T%(«) := H'(f).

Proposition 7.8 We have that {(T%,d;)}i>0 is a sequence of cohomological contravariant func-
tors where for each exact sequence n : 0 — A — B — C — 0 the conecting morphism
6:7 : T (C) — T)Z(H(A) comes from the connecting morphism of the following exact sequence of
complezes when passing to cohomology

0——(C,I°) — (B,I*) — (A4,I*) —— 0.
Proof. See [24] in pp. 201 and 202. O

Proposition 7.9 Let A be an abelian category with enough projectives and injectives and X € A.
Then T% ~ R'(Hom(—, B)) =: Ext’s(—, B) as cohomological functors

Proof. See [24] in page 201 and 202. O

Proposition 7.10 Let 0 A—*>B ’ C 0 be an ezxact sequence in A. Then we

can construct the diagram in figure 7.2.

Proof. By 7.6 we have the following commutative and exact diagram

0 (1) 2 (Bt 2 (410 ——0
lq’c,x lﬁPB,x i%,x

0—— (T(C),E*) —— (T(B),E*) —— (T(A),E*) ——=0
(T(C), B*) e T(B), E*) o (T(4), )

Passing to cohomology we have the following diagram
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T%(C) T4 (B) ————T%(A) ———=T¥(C)

e e s o

(T(C)) ——> T ) (T(B)) ——= Ty (T(A)) —— Titk (T(C)) —— -

Now, using 7.9, we have the diagram in the figure 7.2. O

Similarly, we can define a morphism ¥  : Extly (A, X) — Extjz(T(A),T(X)) in an abelian
category with enough projectives. We recall the construction:
consider X a fix object in A, we consider (P®,74) a projective resolution of A:

P, P, Py A 0

Since T is exact we obtain the following exact sequence

T(na)

T(P,) T(P) —T(R) r(A) 0.

We apply the functor Homp(—, T(X)) to the last exact sequence, then we get the following complex
0—(T(A), T(X)) — (T(R),T(X)) —= (T'(P), T(X1)) — -+~

Then we have the following diagram
0— A X)—— = (P, X)) ———— = (P, X)) —— - -~ (7.3)

\LPA,X lﬂPO,X ippl,x

0—(T(4),T(X)) — (T(R), T(X)) —= (T("), T(X)) — -~

On the other hand, consider a projective resolution (Q*,77(4)) of T'(A):

nrA)

Q2 Q1 Qo T(A) 0

By the comparison lemma there exists a morphism of complexes

nrAa)

Q2 Q1 Qo T(A) 0
S R L
T(Py) T(P)——T(P) T(A) 0

Then, applying Homg(—, T(X)) to the last exact sequence we have

0—(T(4),T(X)) — (T(R), T(X)) — (T(), T(X)) —— -~ (7.4)

0——(T(A),T(X)) —— (Qo, T(X) —— (@1, T(X)) —— -~

Composing the map of complexes given in the diagrams 7.3 and 7.4, we have the following diagram

0

(A’X) (Pon) (Ple)

lpA,X \L)‘SOPP(LX \L)\Toppl‘x

0—(T(A), T(X)) — (Qo, T(X)) — (Q1, T(X)) ——---.
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Ext’4(C, X) Extiy(B, X) ———— Ext} (4, X) —— Ext'{}(C, X)

Extls (T(C), T(X)) > Fxtiy (T(B), T(X)) —~ Bxtl, (T(A), T(X)) — - Bxty! (T(C), T(X)) —_—

Figure 7.3: exact diagram

We denote this morphism by
Uax (P X) — (Q°,T(X)).
Then, passing to cohomology we get morphisms
Uiy 1 Exty (A, X) — Exty(T(A), T(X)).
Then, we have the following result

Proposition 7.11 Consider T : A — B an exact functor between abelian categories with enough
projectives. Consider a fix object X € A and for every object A € A the map \I/f47X s Exty (4, X) —
Extgz(T(A), T(X)) constructed above. If

0 A—>p-Pf.c 0

is an exact sequence in A we can construct the diagram in figure 7.3.
Proof. Dual to 7.5. O

Proposition 7.12 Consider T' : A — B exact functor between abelian categories with enough
projectives and injectives. Then, we have that (I)fq,x = ‘I’fq,x for all i and for all A, X € A.

Proof. Let a@: A — B be morphism which is a monomorphism or an epimorphism. By the
diagram given in 7.3 we have the following commutative diagram

Ext’ (o, X)

(¥):  BExtY(B,X) Ext’y (4, X)

Jo. o
Exth(T(a),T(X))

Exti(T(B), T(X)) ———— 5 ExtL(T(A), T(X))

Now, since every morphism in A factors through an epimorphism and a monomorphism we obtain
an analogous diagram to (x) for every morphism in A. Then we have that \Iﬂ_ « : Extly(—, X) —
Extiz(T(—), T(X)) is a natural transformation. Since we have the diagram in figure 7.3 for every
exact sequence 0 — A — B — C' — 0. We have that {¥” y};> is a morphism of cohomo-
logical fuctors such that ¥* y =p_ x : (=, X) — (T(=), T(X)).

Since we have the diagram in figure 7.2, similarly we can have natural transformations CIDZ'_, x !
ExtYy(—, X) — Exti(T(—), T(X)) such that {‘I)i—,x}izo is a morphism of cohomological fuctors
and @' =p_x: (=, X)— (T(-), T(X)).

Since {Extl }i>0 is a universal cohomological functor, we conclude that ®* = W’  for every i
(see remark in [58] in page 804 and 805 and [58, Theorem 7.1°] of chapter XX, se also [40, Chapitre
2, section 2.2] in page 140, and the contravariant version of proposition 7.12 in pag. 193 in [24]).
O
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Remark 7.13 We could have proved 7.5 in the following way. By [58, Theorem 7.1], we know
that there exists a morphism of cohomological covariant functors T' := {Ff47_}i2(), where T :
Ext’y (A, —) — Exti(T(A),T(-)) such that the diagram in figure 7.1 is commutative for any
short exact sequence 0 —» A” — B" — C" — 0 with Ty x instead of ®' x for X € A. The
idea is to prove that Ty x = @' x for all i and for all X. For this we recall the construction of
I

We define T _ = pa,— : homa(A,—) — homp(T(A), T(-)). Now, suppose that we have defined
the natural transformation Ff{i : Ext’y (A, —) — Exty Y(T(A),T(-)) with i > 1, we define
Yyt Extly (A, —) — Extp(T(A), T(—)) as follows: for X € A consider an ezact sequence

(+): 0 X7,z 0

with I an injective object in A. Then Ff47X is the unique morphism such that the right square
marked with  in the following diagram commutes

0

Ext’y "(A,]) ————Ext’; (4, 2) Exty (4, X)

I
ie1 ie1 ;
lFA,I lFA,Z S IT% x
\

Exty; '(T(A),T(I)) — Extyy (T(A),T(Z)) — Extx(T(A),T(X))

(see final statement in the proof of [58, Theorem 7.1] in page 804). We note that the first squared
commutes since Ff{i is a natural transformation and the conecting morphism Extjl(A,Z) —

Ext’y (A, X) is an epimorphism since Ext’y(A, ) = 0 because i > 1.
Let us show that <I>iA’_ = Ff47_ for all i > 0. We do this by induction on i.

For i = 0 we have that @%7_ = I‘EL_ since <I>?4,_ = pa,—. Suppose that we have proved that
i—1 i—1

oy~ =T ". 4 4

Now, let us see that 4 ~ =T1" . We take X € A and we consider the evact sequence (x). We

consider (I°,ex) and (E*,ep(x)) injective coresolutions of X and T(X) respectively; and we also
consider (J®,ez) and (F*®,ep(z)) injective resolutions of Z and T(Z) respectively. Then we can
construct the morphisms ®4 x and ®4,z. Now, we have the following commutative diagram of
complezes

0 (AT = (AT B (A, ) —— = (A, J*) ——=0

\L‘I)A,X l‘I’A,XEBq)A,Z \L‘:I)A,Z

00— (T(A), E*) — (T(A), E*) & (T(A), F*) — (T(A), F*) — 0

Passing to cohomology we have the diagram

i ((A, 1)@ (A, J°)) ————— H'7Y((A,J%) —— H'((A,I*))
iH’il(éA,X@qh‘,,Z) lHi‘l(q’A,Z) Hi(g)AvX)L

——= B ((T(4), B) @ (T(A), F*)) —= B (T(A), F*)) —> H'(T(A),T(X))
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In the last diagram we don’t care about the first squared. The right squared is
Ext’y (A, Z) ————— Ext’y (4, X)

J{%,é :%.x
\
Exty '(T(A), T(Z)) — BExtp(T(A), T(X))

But by hipothesis of induction we have that I‘Xé = Q)Qfé Then we have that this diagram coincides
with the diagram . Then, we conclude that (bix,x makes commutative the diagram marked with I
and by unicity we conclude that &y x =T x, proving that Ty _ = & _ for all i > 0. Then, we
have the diagram in figure 7.1.

Remark 7.14 In the same way as we did in 7.13, we can give another construction of the morphism
\IIQ,X using that Ext'y(—, X) is a contravariant universal cohomological functor and using [58,
Theorem 7.1°] in page 805.

Remark 7.15 See [}9, Proposition 8.1] in pag. 144 and Daniel Murfets note: "Ext” in his home-
page (this notes are very similar to [/9] in pag 144) to see the balance using injectives or projectives
in Ext™(—, —).

7.2 Appendix B: Projective covers

Definition 7.16 Let o : A — B be an epimorphism. It is said that o« is a superfluous epi-
morphism if for every morphism 8 : C — A such that o o 8 is an epimorphism, then 5 is an
epimorphism.

Definition 7.17 Let 1 : K — A be a subobject of A. We say that K is small if satisfies the
following: for every subobject ' : K/ — A such that K + K' = A, then K' = A.

Lemma 7.18 Let oo: A — B be an epimorphism such that K = Ker(«) is small. If 0 : A’ — A
is @ monomorphism such that af is an epimorphism, then 0 is an epimorphism, in particular an
isomorphism.

Proof. We can construct the following diagram

’

0 Kt . p 0
oo
0 K-t aA-_“.p 0

Then, we conclude that I is a pushout. By [49, Exercise 9.2, pag.80] we have the following diagram
K—E5KeA S 54

in which G = Coker(F), where F' = (¢, /)" and G = (—pu, 0). In particular, we have that G is an
epimorphism and then Im(G) = A. By definition we have that K + A’ = Im(G). Then A’ = A
since K is small. Therefore, we have that 6 is an epimorphism and thus in isomorphim. [

Proposition 7.19 Let o : A — B be an epimorphism. Then « is a superfluous epimorphism if
and only if K = Ker(«) is small.
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Proof. (<=). Let us suppose that K = Ker(«) is small. Let 5 : C — A such that af is an
epimorphism. Consider

the factorization of 8 throught its image. Since a8 = («f)f’ is an epimorphism, we conclude that
af is an epimorphism. Then by lemma 7.18, we conclude that € is an epimorphism. This proves
that 8 = 08’ is an epimorhism, proving that « is a superfluous epi.
(=). Let p: K — A be the kernel of o and let p : K’ — A be a subobject such that
K + K' = A. That is, we have that the morphism v = (u, /) : K ® K’ — A is an epimorphism.
Then, we have that ay = (ap,ap’) = (0,au’) : K @ K’ — B is an epimorphism. This implies
that ay’ is an epi and since « is superflous, we conclude that p’ is an epimorphism an then we have
that K’ ~ A, proving that K is small. O

We recall that an abelian category A is an AB4" category if A has arbitrary direct products
and the direct product of a set of epimorphisms is an epimorphism (for more details about the AB
conditions we refer the reader to section 2.8 in [74]).

Lemma 7.20 Let A be an AB4™ abelian category and consider a family of morphisms

(%) : Hie] A —= Hie] B; = Hie] Ci

is exact if and only if A; L B; o C; s exact for alli € 1.

[Ticr fi ILicr9i i
Proof. (=) Suppose that [],.; A; < [Lic: B —<s [Lic; Ci is exact.
Let p# : [Lic; Ai — Asy pP [l,c; Bi — B; and p§ [I.c; Ci — C; the canonical projections.
Then we have the following commutative diagram

Hq‘, Ifi Hl 19
Hie[ A; — Hie[ B; — Hie[ Ci

Pk
f. .

A; : B; i C;

Since () is exact we get that [],.; gi o [[,c; fi = 0 and then g;f; =0 (pf! is an epimorphism).
Now, consider ¢ fix and let us see that the following diagram is commutative

A —" B,

Hi,e] fz

Hie[ Ai = Hiel B;

where u* and uf are the canonical inclusions. Indeed, let p? : [[,c; B — B; the j-th projection.
If j # i, we have that pPuf f; = 0 and pP o [[;¢; fi oul = f; op34 ouft = 0. If j =4, we have that
pfu?fi = f; and pf o[Liesr fio uft = fi 07334 out = f;. Then the required diagram is commutative
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and we can construct the following commutative diagram

fi gi

[Lier fi [Ticr 9i
Hie] A; = Hie[ B; = Hie] Ci

PN
i ;

A; B; g C;

We note that pflut = 14,, pPuf = 1p,, p§ul = 1¢,. We can think that the rows in above diagram

are complexes concentrated in degree 0,1 and 2 an that the vertical maps are maps of complexes

fi gi

X* e A; B; of
L kT
v . Mies A == Lo B~ e, Cs .

lp lpf ) lpf | ip?

X* e A; - B; Ci
Then, passing to homology we have a sequence of maps

Ker(gi) Hl(u) Ker(IT;er 9i) H'(p) Ker(gi)

Im(f;) Im([ ;e fi) Tm(f;)
But since pu = 1, we have that lxe, = H'(p) o H'(u). Since (x) is exact we conclude that

Im(f;)

M = 0 and then we have that 1k, = 0, from this we conclude that S92 — (. Hence,
Im(HiEI f'l) T (f;) Im(fz)

A; L> B; o C; is exact.

(<) It follows from the fact that A4 is an AB4" category (see |74, Proposition 8.3] on pag. 53). O
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