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Abstract

In this research, we study Markovian random walks with resetting performed in networks.

We deduce different analytical results for the stationary distribution and mean first pas-

sage time (MFPT) for different random walk models, these quantities help us explore the

efficiency and the effect of resetting to multiple nodes in networks. We present a method

to obtain these values in terms of the eigenvalues and eigenvectors of the transition matrix

without resetting.

The formalism is applied to one, two, and an arbitrary number of resetting nodes. To test

the method, for one and two resetting nodes, we study the MFPT for finite and infinite

rings using exact known spectral properties. We also explore Lévy flights on rings and

the tendency of values towards the infinity limit. For an arbitrary number of resetting

nodes, we analyze the dynamics on Cayley trees, a random walk to visit a distribution of

points in a continuous space, and the Google search strategy in interacting cycles.
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1.2.2 Lévy flights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Networks and graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Circulant graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Dynamical processes on networks . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.1 Random walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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Introduction

Complex systems can be found everywhere in nature, and its accurate description includes

many scientific areas. Powerful and abstract tools are necessary to study the emergent

properties of these systems. When the system is described as elements and interactions,

we can use networks to represent it. In this framework, the adjacency matrix encodes

all the information about the nodes and links connecting pairs of nodes. In addition,

different network properties are used to classify and determine the main features of the

system. Furthermore, we can define dynamical processes on networks, such as random

walks and Lévy flights for the analysis of transport in discrete structures.

Something as intricate as the human mobility in a city can be abstracted and modeled

by a network using these principles and analyze them. We can, for example, optimize the

exploration of the entire network, reduce the time it takes to move from one location to

another using a strategy, or find a particular target node in the shortest time possible,

among many others.

A particular dynamic procedure to optimize network exploration is stochastic resetting.

This implies returning to a certain location with probability γ. In this document, we

apply this strategy to standard random walks and Lévy flights, restoring to one and two

nodes initially. Afterwards, this procedure is generalized to consider M resetting nodes,

finding a simple equation for the mean first passage time in terms of the eigenvalues and

eigenvectors of the transition matrix without resetting, starting from the master equation

of the process.

First, in Chapter 1, we review the fundamentals of stochastic processes and networks, an

essential part of this work. We begin with the basis of random processes and quantities

that measure globally their behaviors, such as mean, variance, and stationary distribution.

We also review the statistical background for random walks and Lévy flights. Next, we

introduce the adjacency matrix and several properties that characterize networks. We
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present a detailed study of circulant matrices, with rings being a particular case. The

formalism of random walks on networks in terms of the master equation is also discussed.

In Chapter 2, we present the method to study random walks on networks with resetting

to one node. We review rings, as, in this case, the exact eigenvalues and eigenvectors of

the transition matrix are known. We consider resetting to one node, both for the classical

random walk and Lévy flights. To assess the efficiency of network exploration, we calculate

the stationary distribution and mean first passage time. Also, we explore the limit where

the number of nodes in the ring tends to infinity. Following an analogous procedure, using

the same structures and taking similar limits, in Chapter 3 we analyze resetting to two

nodes, calculating the stationary distribution and the mean first passage time between

pairs of nodes. The principal objective is to introduce the reader to a method that can

be extended to include multiple resetting nodes.

Finally, in Chapter 4 we generalize the method so that resetting to M nodes is possible

and apply it to Cayley trees, random distributions of points in space, and interacting

cycles. In the latter case, we implement the Google search strategy, where the resetting

is made to all the nodes in the network.
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Chapter 1

Stochastic processes and networks

1.1 Introduction

We are surrounded by complex systems, from the intricate structure of the internet to

the brain composed by a web of interconnected neurons, from the multi-factorial stock

exchange to the organization of a bee-hive. This is a motivation to study and model

their behaviors and understand these phenomena, with the ultimate goal of obtaining

accurate simulations and predictions. In this case, graph theory and network science have

an important role because in this formalism it is possible to abstract the structure of

a complex system and represent it in the language of mathematics. Furthermore, it is

possible with numerical simulations to study dynamical processes on networks and analyze

their evolution in time. In this introductory chapter, we review the definition of stochastic

processes and some examples such as random walks and Lévy flights; also, we will explore

the basis of graph theory, and finally discuss diffusive transport processes taking place on

networks and their mathematical formalism.

1.2 Stochastic processes

Randomness permeates all natural processes at all scales, therefore is important to study

and understand its effect in different models. To describe such behavior, we need to

introduce the concept of random variable, denoted by X. This is a mathematical object

defined by a set of possible values and a probability distribution PX(x) [1]. If we apply a
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CHAPTER 1. STOCHASTIC PROCESSES AND NETWORKS

mapping f to the random variable, we obtain other random variables.

Given a probability space (Ω,F , PX), where Ω is the set of all possible outcomes of the

random variable, F is the event space and PX the probability function, we define a

stochastic process as any collection of random variables defined on the probability space

[2]. We can denote it as {X(t) : t ∈ I} where I is the index set, which orders the

succession of the random variables [2].

We can apply a mapping f to the random variable X and let t be the time, such that

YX(t) = f(X, t). A realization is when the random variable takes a single value X = x

and we have a function only of time Yx(t) = f(x, t) and then the process is formed by an

ensemble of realizations [1].

Since stochastic processes have a random component, different realizations of the process

take different values, thus we need quantities that summarize information and give an

insight into the behavior in time. For instance, the average is defined as [1]

〈Y (t)〉 =

∫
Yx(t)PX(x)dx (1.1)

which is integrated over the random variable, alternatively we can have also an average

over time. Fluctuations also can occur, a measure of such variations is the variance

calculated as [1]

σ2(t) = 〈Y 2(t)〉 − 〈Y (t)〉2. (1.2)

A stochastic process which is said to be Markovian asserts that the distribution at time

t + 1 depends only on the state t [3]. Particularly, for discrete time steps, we take a set

of successive times t1 < t2 < · · · < tn then the Markovian property is expressed as [1]

P1|n−1(yn, tn|y1, t1; . . . ; yn−1, tn−1) = P1|1(yn, tn|yn−1, tn−1) (1.3)

which formally states that the conditional probability density at time tn of the random

variable Y = yn depends only on the values of the immediate previous step yn−1 and

tn−1. Taking a sequence of Markov steps, a Markov chain is formed. This conditional

probability is directly linked to transition probabilities, which will be addressed later on.

This type of processes are said to be memoryless since the future state will depend only on

the latest information available on the state of the system, not on the path followed to get

there [4]. The stationary distribution of a Markov chain P∞ with transition probability

matrix W is a row vector that satisfies P∞ = P∞W [1], so if the process follows the
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CHAPTER 1. STOCHASTIC PROCESSES AND NETWORKS

stationary distribution at a given time t, in consecutive times the same behavior remains,

so it is interpreted as a steady-state condition [4].

Several physical phenomena can be described by a time-dependent random process. Some

examples are diffusion [5, 6], Brownian motion, surface growth [7, 8], stochastic noise [9],

bounded drift [10], nuclear scattering by simple liquids [11], linear response [5], nucleation

in supersaturated vapors [10], turbulent dispersion [12] among many others. In the next

sections we will analyze in detail two particular examples.

1.2.1 Random walks

A very important concept that will be widely discussed throughout this thesis is the

random walk. The main idea is intuitive and can lead to interesting results. A one-

dimensional random walk in discrete time consists of a walker that flips a fair coin and

moves one step to the right or to the left, depending on the result of the coin toss [13]. In

this way, the direction taken at each step is independent of the direction of the previous

ones. The term was coined by K. Pearson in 1905 [14]. It is a stochastic process and can

be modeled by random variables, so if x is the initial position and Sn is its position after

n steps (or equivalent, after time n) then the random walk can be described as

Sn = x+X1 + · · ·+Xn, (1.4)

where Xj = ±1 is a random discrete variable. Besides a pure probabilistic treatment, a

random walk can be modeled by a Markov chain.

The most notorious example of random walks in nature is the Brownian motion, first

observed by Robert Brown as the movement of particles floating in a medium [15]. In the

continuous-time limit, it is proved to follow a diffusion equation [16, 17]

∂p

∂t
= D

∂2p

∂x2
. (1.5)

Here p = p(x, t) is the probability density of finding the particle in the x position at time

t, D is the diffusion coefficient. If the value of x is not bounded positively and negatively,

the equation can be solved using the Fourier transform or Green functions, considering

the initial conditions of P (x, 0) = δ(x) the solution is a normal (Gaussian) distribution

10



CHAPTER 1. STOCHASTIC PROCESSES AND NETWORKS

[1]

p(x, t) =
1√

4πDt
e−

x2

4Dt , (1.6)

where the corresponding standard deviation is σ =
√

2Dt, a relation that implies that the

mean-squared displacement is proportional to time [17]. This linear dependency is consid-

ered as a threshold to determine if the process is subdiffusive, normal, or superdiffusive,

the first and third qualities are considered anomalous diffusion.

1.2.2 Lévy flights

A discrete random walk has a fixed step length, but we can have a dynamical process that

includes variable step size, in particular its distribution p(x) can be chosen as a power

law with infinite variance, of the form [18]

p(x) ∼ |x|−1−α (1.7)

for large x, and where α is a real parameter known as the Lévy index [19] that takes

values between 0 < α < 2.

In this stochastic process, given that the variance of the distribution is infinite, there

is a high probability of making large jumps [20]. So we have two types of dynamics,

local for the smaller steps and non-local for larger steps where the walker gets far away

from clusters formed when the step-length is shorter for consecutive times [21]. Another

consequence of infinite variance is that the Central Limit Theorem is not valid, instead

the random variable y =
∑
xi follows an α-stable distribution [22].

When a Lévy flight is performed, a larger area is covered for a single realization compared

to the random walk. As we can see in Figure 1.1, the blue line represents a random walk

which shows a more local behavior, while the orange line corresponds to a Lévy flight.

This realization shows a characteristic long step that allows to reach further positions. We

can guess that due to a Lévy flight, the process diffuses more rapidly producing anomalous

transport. Its trajectories show a self-similar structure and its fractal dimension is α [20].

In order to model anomalous diffusion, a fractional calculus approach has been proposed

[21, 19]. Particularly, for one dimensional Lévy flights with continuous waiting times, the
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CHAPTER 1. STOCHASTIC PROCESSES AND NETWORKS

Figure 1.1: Illustrative comparison of a single realization of a Lévy flight with α = 1.5 and a random
walk in one dimension. As we can see, the explored distance is greater for the Lévy flights.

diffusion equation needs to be modified as [23]

∂W

∂t
= Kα∇αW, (1.8)

where W is the propagator, a distribution which depends on time t and position x,

constructed with the distribution of jump length p(x) and a Poissonian distribution that

models the waiting time between jumps, ∇α is the Riesz operator as defined in [24] and

Kα is a generalized diffusion constant. Its analytical solution is given in terms of the

Fox functions [23] and the normal random walk behavior is recovered in the limit α→ 2.

Asymptotically

W (x, t) ∼ Kαt

|x|1+α
. (1.9)

Calculating the mean-square displacement with this distribution, it is easy to see that it

is infinite 〈x2(t)〉 → ∞. Meanwhile, the fractional moment, calculated as [23]

〈|x|δ〉 = 2

∫ ∞
0

xδW (x, t)dx ∝ tδ/α (1.10)

where 0 < δ < α < 2, is not linear with time, characteristic of anomalous diffusion.
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CHAPTER 1. STOCHASTIC PROCESSES AND NETWORKS

Figure 1.2: Example of an undirected unweighted network with N = 10 nodes

1.3 Networks and graph theory

Often, some systems present in nature can be represented by a network which is a con-

nected graph. In this section, basic definitions from graph theory are reviewed, as well as

some examples of graphs and their properties.

A graph G = (V , E) is composed by a set of vertices or nodes V and a set of edges

E that link pairs of nodes [18]. We denote the number of nodes as N = |V|. If the

incoming or outgoing direction of the vertices is considered, we have a directed graph, if

such constriction doesn’t exist we have an undirected graph, as we will see, this property

has implications in its mathematical description. A graph is said to be weighted if the

edges or nodes have a value.

Complex systems can be modeled by a graph whose nodes can represent the constitutive

parts of the system and the edges interactions between the elements. In Figure 1.2 a

graphical representation of an undirected network is shown, the nodes are the colored

circles with their respective numbers and the lines represent the edges.

The connectivity of the graph can be encoded in matrix form, called the adjacency matrix

A. For a network with N nodes, A has N × N entries, each Aij can be one or zero,

depending if the nodes i and j are connected or not on the network. Therefore, the struc-

ture of the network is stored in an abstract mathematical object that can be manipulated

easily. The diagonal of A is zero since there are no self-loops. For undirected networks,

the adjacency matrix is symmetric, i.e., Aij = Aji and therefore this matrix is diagonal-

13



CHAPTER 1. STOCHASTIC PROCESSES AND NETWORKS

izable. The degree of node i, ki, defined as the number of connections of the node, can

be calculated using the elements in A with the expression ki =
∑N

l=1Ail, this relation is

valid for undirected networks [18]. If all the nodes have the same degree, i.e. ki = k for

all i, we have a regular or k-regular network. The network diameter D is the maximum

degree of separation between all pairs of vertices [25].

We can construct a path in a network with a sequence of nodes and edges [18] in which

consecutive nodes are connected by an edge. If for any pair of nodes there is a connecting

path, the graph is said to be connected. A particular type of path where the initial and

final nodes are linked is called a cycle. In addition, we can define a distance between

nodes as the number of edges in the shortest path, in this manner we are determining a

metric in terms of the network structure.

The coordination number z is defined as the average number of edges per node [25], if it

is related to the network diameter D and number of nodes as zD ≈ N , then the diameter

increases as the logarithm of N , and the network has the property of small-world. The

name comes from a social experiment by S. Milgram [26], where he tried to prove that

two individuals in a social network could be connected by a short sequence of consecutive

friends or acquaintances, this implies that any two nodes can reach each other in a number

of steps much smaller than the total number of nodes.

In the next subsections, we review the main properties of the networks used in this work.

Since for their description, a convenient tool is the spectral theory of stochastic matrices,

the Dirac notation is adopted for the rest of this document.

1.3.1 Circulant graphs

A special type of graphs with interesting properties are the circulant graphs, where the

adjacency matrix is circulant [27]. This type of square matrix with n× n entries has the

following structure [28]

C =



c0 cn−1 cn−2 . . . c1

c1 c0 cn−1 . . . c2

c2 c1 c0
. . . c3

...
...

. . . . . .
...

cn−1 cn−2 cn−3 . . . c0


. (1.11)

14
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As we can see, the elements are repeated in each column but shifted one index down so

that the last entry becomes the first in the next column.

We can write a circulant matrix as [28]

C = c0I + c1E + · · ·+ cn−1E
n−1 =

n−1∑
i=0

ciE
i, (1.12)

where E is a circulant matrix called elementary matrix in which c1 = 1 and all the entries

are zero and E0 = I is the identity matrix.

The eigenvalues of C are the Fourier transform of the entries of the matrix and given only

in terms of the coefficients ci as [29, 28]

λm =
n−1∑
q=0

cqe
(2πi/n)(m−1)q, (1.13)

where i =
√
−1 is the unit imaginary number. For any circulant matrix C, the eigenvectors

are the same as those of the matrix E. Let us denote the i-th canonical right eigenvector

as |i〉, a column vector where the i-th entry is one and the rest are zero, and the j-th

canonical left eigenvector as 〈j| which is a row vector with the j-th entry one and rest

zero. With this notation the components of the eigenvectors of E are 〈i|φl〉 = 1√
n
e−iϕl(i−1)

and 〈φ̄l|j〉 = 1√
n
eiϕl(j−1), with ϕl = 2π(l − 1)/n (see [28] for details).

One of the simplest circulant graphs is the ring that consists of nodes connected just to

its two nearest neighbors in a closed-form, this particular structure is shown in Figure

1.3. The application of the result in Eq. (1.13) with c1 = cN−1 = 1/2 allows obtaining

the eigenvalues of the transition matrix W for a random walker in a ring with N nodes

[18]

λl = cos

[
2π(l − 1)

N

]
. (1.14)

1.4 Dynamical processes on networks

On a network, if we have the rules to move from one node to another we obtain a good

representation of transport since the vertices can be locations while edges can model

roads. We define a walk in the graph as a sequence of vertices in a graph, starting in node

i and finishing in node j such that consecutive vertices in the sequence are adjacent [30].
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Figure 1.3: Ring with N = 10 nodes.

If i = j then we have a closed walk, if it ends on a different node the walk is open. The

length of the walk is the number of edges encountered. A walk is a trail if all of its edges

are different and an open trail is a path if all of its vertices are different [31].

Dynamical processes that occur in a network-like structure can be studied by the formal-

ism of the Laplacian matrix L. Its entries are defined as Lij = kiδij−Aij (see Ref. [18] for

a detailed discussion). With this expression, we observe that the non-diagonal elements

are negative. An equivalent, more compact expression in terms of matrices is

L = K−A, (1.15)

where K is a diagonal matrix with the respective degree of the nodes. Since it preserves

the symmetry property of A and its entries are real, L is Hermitian, L = (LT )∗. Also,

for every row the magnitude of the diagonal entry is equal to the sum of the magnitudes

of the off-diagonal entries, this means that L is a diagonally dominant matrix. This two

properties imply that it is a semi-definite positive matrix. The eigenvalues of L are real,

non-negative and their eigenvectors mutually orthogonal [32]. Following Dirac notation,

let {|ϕj〉}Nj=1 be the set of eigenvectors and {µj}Nj=1 the set of eigenvalues of L, then the

spectral form of the Laplacian matrix is

L =
N∑
j=1

µj|ϕj〉〈ϕj|. (1.16)

Since the eigenvalues are non-negative, zero is a lower bound for the eigenvalues of L.

16
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1.4.1 Random walks

A random walk on a finite network follows a master equation. If the walker is in node

i, and the probability to jump to any of its neighbors is the same, then the transition

probability is wi→j = Aij/ki [33]. A Markovian random walk is described by a master

equation [33, 34]

Pij(t+ 1) =
N∑
l=1

Pil(t)
Alj
kl

=
N∑
l=1

Pil(t)wl→j, (1.17)

where Pij(t) is the probability to find the walker at node j at time t starting in node i

at time t = 0 [33]. In the last equality, the transition probability is expressed in a more

generalized way as an element of the time-independent transition matrix W. Its entries

wi→j are the conditional probability of visiting node j given the condition of having visited

i in the step earlier. Observe that for regular networks, the transition probability matrix

is symmetric because all the nodes have the same degree ki. In more general networks,

W is not symmetric. The time evolution of Pij(t) for a Markov process can be given in

terms of powers of the transition matrix

Pij(t) = 〈i|Wt|j〉, (1.18)

where {|i〉}Ni=1 is the canonical base of RN . This matrix is stochastic and satisfies

N∑
j=1

Pij(t) = 1, (1.19)

this means that the walker stays on the network at all times [18].

Additionally, we want the random walker to be able to reach any node of the network,

this condition is called ergodicity. Strictly, a random walk will be ergodic if there exist a

finite number of time-steps tij for any pair of nodes i and j such that

Pij(t = tij) = 〈i|Wtij |j〉 > 0, (1.20)

in other terms, any node has a non-zero probability of being visited. Moreover, the

stationary distribution is obtained given the limit [33]

P∞j = lim
T→∞

1

T

T∑
t′=0

Pij(t
′). (1.21)

17
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For a random walk in undirected networks, P∞j is independent of the starting position

and completely determined by the degree of the node [33]

P∞j =
kj∑N
l=1 kl

. (1.22)

This result coincides with the intuitive idea that a node with various connections will be

visited more often.

In addition to the stationary distribution, the mean first passage time (MFPT) is an

important way of characterizing a random walk [33]. It is denoted as 〈Tij〉, and intuitively

can be interpreted as the average time it takes a random walker to reach j for the first

time, starting from i. We can obtain its value from the first-passage probability Fij(t)

which is the probability that starting from i, the first transition to j occurs at time t.

This quantity is closely related to Pij(t) through the relation [33]

Pij(t) = δt0δij +
t∑

t′=0

Pjj(t− t
′
)Fij(t

′). (1.23)

Applying the discrete Laplace transform f̃(s) =
∑∞

t=0 f(t)e−st, we can obtain F̃ij(s) with

simple algebraic manipulations [33]

F̃ij(s) =
P̃ij(s)− δij
P̃jj(s)

. (1.24)

On the other hand, by definition, the MFPT can be written in terms of the Fij(t) as

〈Tij〉 =
∞∑
t=0

tFij(t), (1.25)

if we derive (1.24) with respect to the parameter s in the limit s→ 0 we find that

〈Tij〉 = −dF̃ij
ds

∣∣∣∣
s=0

. (1.26)

Expanding P̃ij(s) in powers of s and substituting in (1.24), the final result is [33]

〈Tij〉 =
R(0)
jj −R

(0)
ij + δij

P∞j
, (1.27)
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where R(n)
ij are the respective moments given by

R(n)
ij =

∞∑
t=0

tn(Pij(t)− P∞j ). (1.28)

Alternatively, the eigenvalues and eigenvectors of W can be used to find the MFPT as

shown in [35]. Assume that we know the eigenvalues λi as well as the right |φi〉 and left

〈φ̄i| eigenvectors which satisfy

W|φi〉 = λi|φi〉, 〈φ̄i|W = λi〈φ̄i|. (1.29)

Since W is stochastic, its eigenvalues can be ordered such that λ1 = 1 is the maximum

value. In this way, we can obtain the spectral representation of the transition matrix and

when substituted in (1.18)

Pij(t) =
N∑
l=1

λtl〈i|φl〉〈φ̄l|j〉, (1.30)

therefore the stationary distribution is P∞j = 〈i|φ1〉〈φ̄1|j〉. Substituting (1.30) in (1.28),

summing over t and finally substituting in (1.27) we obtain [36]

〈Tij〉 =
δij

〈i|φ1〉〈φ̄1|j〉
+

N∑
l=2

1

1− λl
〈j|φl〉〈φ̄l|j〉 − 〈i|φl〉〈φ̄l|j〉

〈i|φ1〉〈φ̄1|j〉
. (1.31)

Observe that this expression, unlike (1.27), does not involve an infinite sum, now it only

depends on the eigenvalues, left and right eigenvectors of the transition matrix W. This

is extremely useful because its calculation is straightforward with a computer program.

For networks with a few nodes, the diagonalization process might take little time, but

for bigger systems, the time of execution grows algebraically as N3. If we want only one

calculation, the diagonalization can take just a few seconds, but if we need to calculate it

as a function of a parameter, the total time could add up considerably.

1.4.2 Lévy flights

In subsection 1.2.2, we explored the basic idea behind a Lévy flight in one dimension. In

this section, we will assess this process when performed in a network. The main difference

from a normal random walk is that now it is possible to jump to nodes that are not just

first neighbors. Lévy flights on an arbitrary graph can be generated by taking powers of

the Laplacian matrix (defined in Eq. (1.15)). Lα is called the fractional Laplacian of a
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graph with 0 < α < 1, this allows non-null transitions between sites in the network [37],

even if they are not connected with an edge.

In this formalism, the transition probabilities are given by [38]

wi→j(α) = δij −
(Lα)ij
(Lα)ii

0 < α < 1. (1.32)

In particular, for α→ 1 one recovers the simple random walk with transitions to nearest-

neighbor nodes. The transition probabilities in Eq. (1.32) with 0 < α < 1 define a Lévy

flight. Particularly on rings, a circulant network we reviewed in section 1.3.1, we have

that wi→j(α) ∼ d
−(1+2α)
ij , where the distance dij is the length of the shortest path between

i and j, and where dij � 1 (see Refs. [36, 37, 18] for a detailed discussion on Lévy flights

and fractional transport on networks).

If the Lévy flight is performed in a finite ring, the eigenvectors remain the same because

the adjacency matrix is circulant and all circulant matrices have the same eigenvectors as

a consequence of Eq. (1.12), while the eigenvalues are modified as [18]

λl(α) = 1− 1

k(α)
(2− 2 cosϕl)

α (1.33)

where ϕl = 2π
N

(l − 1) and k(α) is the fractional degree, defined as [18]

k(α) =
1

N

N∑
l=1

(2− 2 cosϕl)
α . (1.34)

Since we have an exact expression for the eigenvalues and eigenvectors, we can use the

ring structure to analyze the method proposed to calculate the MFPT in the following

chapters and compare the results to test its validity.

Lévy flights have proved to be efficient in search and movement strategies, for example,

to optimize in encounter rate for animals in a predator-prey dynamics [39, 40], in animal

and human foraging [41, 42, 43], movement patterns performed by boats while fishing

[44], movement strategy to avoid extinction and maximize population [45], as a first

approximation to the migration of chemokines within lymphoid tissues crucial to the

optimal working mechanism of the immune system [46], and also it has been used as an

improvement mechanism for the metaheuristic optimization bat algorithm [47]. Not all

the consequences of Lévy flights are beneficial, since they also accelerate the propagation

of diseases to a world-wide scale [48, 49].
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Chapter 2

Random walks with resetting on

networks

2.1 Introduction

As stated in Chapter 1, a random walker can explore a network and eventually return

to the initial node. However, it is possible to relocate randomly the walker to a partic-

ular node with probability γ at every step. This process is called resetting and has a

fundamental role in transport processes on networks. This type of dynamic was initially

studied in [50], were the authors considered the diffusion of a particle which stochastically

resets to its initial position at a constant rate r in continuous time using the master equa-

tion formalism. They found that the position does not follow a Gaussian distribution,

as it would happen with a normal random walk, and that the MFPT becomes finite for

0 < r < ∞1, these results are direct effects of the resetting process. A natural resetting

dynamic is found on birth-death processes when there is an absorbing state or queueing

systems where an event sets the queue to zero length [52].

Particularly, as shown in Figure 2.1, let us imagine a tourist visiting a city and who wants

to explore certain important historical places in the span of a week, but can return to the

hotel with probability γ at each time step. A question is: how does this resetting affect

the efficiency of network exploration?

1For pure continuous random walks, we can use the first passage time in [51] pp. 23 and calculate the
MFPT as the first moment, the result is divergent.
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Figure 2.1: A tourist wants to explore the particular places in a city but returns to the hotel with
probability γ. How can the exploration of the network be optimized?

The importance of this problem is not restricted to tourism strategies, it is more general

and linked to processes where it is necessary to explore the space and find particular

targets such as in animal foraging [53], public transportation [54], ranking and searching

in databases [55], target search of proteins on DNA molecules [56], label propagation

in machine learning algorithms [57], defining the relevance score between two nodes in

graph mining [58], Brownian motion [59, 60, 52], models of anomalous diffusion [61, 62],

processes with a drift [63], among many others. These problems, to some degree, can be

modeled as a classical random walk. On the other hand, quantum walks have been in the

spotlight the past few years because of the progress in the implementation of a hybrid

quantum-classical Page-Rank [64, 65] and quantum search algorithms [66].

Local classical random walks on complex networks were studied by Noh and Rieger [33],

establishing a formalism that considers the structure of the network, which are key to

understanding for example, human mobility [67], spread of diseases in epidemics [68,

69, 70] and information diffusion in social networks [71, 72]. Only recently, stochastic

resetting was introduced in the context of quantum walks on networks in [73], where the

authors propose a Hamiltonian with a parameter that interpolates between a classical and

quantum behavior.

Considering these reasons, we proceed to analyze the effect of resetting in a classical

random walk on networks. In the next section, we will present the theory following the
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results introduced in [74] to show how quantities like the stationary distribution and

the MFPT are affected by resetting to the initial node, applying the formalism to rings.

In this structure, we will consider local random walks and Lévy flights, emphasizing

the differences. Later on, we will explore the limit when the number of nodes N → ∞
recovering the infinite one-dimensional lattice and the corresponding asymptotic behavior.

2.2 Random walks with stochastic resetting to one

node

As stated before, a random walk in a network follows a master equation (1.17), where

wl→j are elements of the transition matrix, independent of time. If the process involves

the return to node r with a resetting probability γ at each time step, the corresponding

master equation is

Pij(t+ 1; r, γ) = (1− γ)
N∑
l=1

Pil(t; r, γ)wl→j + γδrj, (2.1)

here Pij(t; r, γ) denotes the probability to find the walker in j at time t, given the initial

position i, resetting node r and resetting probability γ. It is directly verifiable that for

γ = 0, the master equation (1.17) is recovered. In addition, due to the second term, it

is not possible to use (1.31) directly to calculate the MFPT. Instead, in [74], the master

equation is rewritten in terms of a new transition matrix Π(r; γ)

Pij(t+ 1; r, γ) =
N∑
l=1

Pil(t; r, γ)πl→j(r; γ), (2.2)

where the matrix Π(r; γ) is constructed with two other matrices, the transition matrix

without resetting, W, and Θ(r) with elements Θlm(r) = δmr [74] which represent the

resetting part. The complete expression for Π(r; γ) is

Π(r; γ) = (1− γ)W + γΘ(r). (2.3)

This matrix is stochastic, as well as W. In this form, Eq. (1.31) can be applied, but

it is not always is the best option since for large networks, the direct calculation for

each value of γ of the eigenvalues ζl(r; γ), right |ψl(r; γ)〉 and left
〈
ψ̄l(r; γ)

∣∣ eigenvectors

can be computationally expensive, and if the resetting probability or resetting node is
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changed, the diagonalization must be redone. Instead, in [74], the description of the

random walker with resetting is made in terms of the eigenvalues λl, right eigenvectors

|φl〉 and left eigenvectors 〈φ̄l| of the random walk process without resetting W.

Following the procedure in [74], the eigenvalues of the matrix Π(r; γ) are

ζl(r; γ) =

1 for l = 1,

(1− γ)λl for l = 2, 3, . . . , N,
(2.4)

independent of the resetting node r. The left eigenvector corresponding to the first eigen-

value is a linear combination of the left eigenvectors of W

〈
ψ̄1(r; γ)

∣∣ =
〈
φ̄1

∣∣+
N∑
m=2

γ

1− (1− γ)λm

〈r|φm〉
〈r|φ1〉

〈
φ̄m
∣∣ , (2.5)

whereas the others are equal
〈
ψ̄l(r; γ)

∣∣ =
〈
φ̄l
∣∣ for l = 2, . . . , N . In the case of the right

eigenvectors, the correspondence is different, because now the linear combination is for

l = 2, . . . , N

|ψl(r; γ)〉 = |φl〉 −
γ

1− (1− γ)λl

〈r|φl〉
〈r|φ1〉

|φ1〉 , (2.6)

whereas the equality holds for |ψ1(r; γ)〉 = |φ1〉. This set of eigenvectors are orthonormal

and satisfy the completeness relation [74]. Consequently, the spectral representation of

the transition matrix is

Π(r; γ) =
N∑
l=1

ζl(r; γ) |ψl(r; γ)〉
〈
ψ̄l(r; γ)

∣∣ , (2.7)

which is particularly useful for calculating the occupation probability Pij(t; r, γ) by sub-

stituting in Eq. (1.18), the expression obtained is [74]

Pij(t; r, γ) = P∞j (r; γ) +
N∑
l=2

(1− γ)tλtl

[
〈i|φl〉

〈
φ̄l|j
〉
− γ
〈r|φl〉

〈
φ̄l|j
〉

1− (1− γ)λl

]
, (2.8)

where the first term is the stationary distribution with resetting

P∞j (r; γ) = 〈i|ψ1(r; γ)〉〈ψ̄1(r; γ)|j〉 = P∞j + γ
N∑
l=2

〈r|φl〉
〈
φ̄l|j
〉

1− (1− γ)λl
, (2.9)

and P∞j = 〈i|φ1〉〈φ̄1|j〉 is the stationary distribution without resetting. For γ = 0 the
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second term cancels out and we recover the original stationary distribution without reset-

ting. Now, the MFPT can be calculated with the same expression as in Eq. (1.27), using

as starting point the expression

〈Tij(r; γ)〉 =
R(0)
jj (r; γ)−R(0)

ij (r; γ) + δij

P∞j (r; γ)
, (2.10)

considering the resetting node r and resetting probability γ as parameters, where the

moments are

R(n)
ij (r; γ) ≡

∞∑
t=0

tn {Pij(t; r, γ)− P∞j (r; γ)}. (2.11)

Manipulating Eqs. (2.9) to (2.11) and simplifying we get

〈Tij(r; γ)〉 =
δij

P∞j (r; γ)
+

1

P∞j (r; γ)

N∑
`=2

〈j|φ`〉
〈
φ̄`|j

〉
− 〈i|φ`〉

〈
φ̄`|j

〉
1− (1− γ)λ`

. (2.12)

There is something important to note in this equality, compared to Eq. (1.31), we see that

the expression and dependencies change, since now the eigenvalues appear explicitly and

the value of 〈Tij(r; γ)〉 depends also of the resetting node r and the resetting probability

γ as expected.

In the next section, we will apply this procedure to a simple ring network, and compare

the results for a walker performing a normal random walk and a Lévy flight.

2.3 Dynamics with resetting on rings

In the first chapter, subsection 1.3.1, we reviewed the general properties of ring networks,

the corresponding adjacency matrix is circulant [28], their exact eigenvalues (Eq. (1.14))

and their left and right eigenvectors have analytical known expressions. This is relevant

to our study because we can calculate exact expressions of the stationary distribution and

MFPT, and compare them with the numerical results, therefore verifying the proposed

method.
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2.3.1 Random walks

Substituting the eigenvalues and considering the projections 〈i|φl〉 = 1√
N
e−iϕl(i−1) and

〈φ̄l|j〉 = 1√
N
eiϕl(j−1), ϕl = 2π(l − 1)/N in Eq. (2.9), the stationary distribution for the

ring with resetting to the initial node r = i is [74]

P∞j (i; γ) =
1

N
+
γ

N

N∑
l=2

cos(ϕldij)

1− (1− γ) cos(ϕl)
, (2.13)

where dij is the distance between nodes i, j and only the real parts of the projections

are considered, since imaginary parts are canceled in the sum. We can also calculate the

exact expression for the MFPT using Eq. (2.12), the final result is [74]

〈Tij(i; γ)〉 =
1

P∞j (i; γ)

[
δij +

N∑
l=2

1− cos(dijϕl)

1− (1− γ) cos(ϕl)

]
. (2.14)

as we can see both Eqs. (2.13) and (2.14) have an explicit dependence on the distance

between nodes. Observe that for i = j, which corresponds to the mean first return

time, the MFPT is the inverse of the stationary distribution just like in the case without

resetting, this is due to the Kac’s lemma on the mean recurrence time of discrete processes

[75].

Interesting results can be obtained when the limit N → ∞ is taken, where the equiva-

lent structure is the infinite one-dimensional lattice. In this scenario, the sums become

integrals over a continuous variable with differential dϕ = 2π
N

, therefore the stationary

distribution is [74]

P∞j (i; γ) =
γ

2π

∫ 2π

0

1− cos(dijϕ)

1− (1− γ) cos(ϕ)
dϕ =

√
γ

2− γ

[√
(2− γ)γ + 1

1− γ

]−dij
. (2.15)

For small γ, Eq. (2.15) follows an exponential distribution [74]

P∞j (i; γ) ≈
√

2γ

2
e−
√
2γdij , (2.16)

using the aproximations
√

γ
2−γ ≈

√
2γ
2

and log((
√

(2− γ)γ + 1)/(1 − γ)) ≈
√

2γ. The

result in Eq. (2.16) is similar to the non-equilibrium steady state of Brownian motion

in one dimension [50]. Following a completely analogous procedure, the MFPT can be
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obtained in the same limit

〈Tij(i; γ)〉 =


√

2−γ
γ

if i = j

1
γ

(√
(2−γ)γ
1−γ

)dij
− 1

γ
if i 6= j,

(2.17)

now, the MFPT has an exponential dependency of dij. Considering the limiting case

γ << 1 and dij > 0, the MFPT takes the form [74] 〈Tij〉 ≈ 1
γ
[e
√
2γdij − 1], where we can

find the critical point taking the partial derivative of the asimptotic approximation of

〈Tij〉 with respect to γ and making it equal to zero, finding that γ∗ ' 1.26982/d2ij in the

limit dij >> 1 [74].

In Figure 2.2 we can see the results as a function of the distance dij. The network

structure is a simple ring with N = 100 nodes and different resetting probabilities γ to

the initial node r = i. We observe two different calculations in this figure, the continuous

line represents the result from the calculation using the eigenvalues, left and right of the

Π(r; γ) substituting them in Eq. (1.31), while the dots are calculated with the left and

right eigenvectors of W and using Eq. (2.12).

Observing Eq. (1.22) it is clear that for a regular network, the stationary distribution

without resetting is a constant value. This corresponds to the blue line in Figure 2.2(a),

recovering effectively the normal walk for γ = 0. Since we are using a semi-logarithmic

scale, the straight lines in the rest of the curves indicate exponential behavior [74]. For

Figure 2.2(b) we observe that the MFPT increases as the distance increases, contrary to

when γ = 0 where there’s no resetting, where the MFPT stays in the same magnitude

order.

2.3.2 Lévy flights

In the past subsection, we showed the results of a normal random walk where the walker

can pass from node i to j, one of its neighboring nodes, as long as there is a connection,

that is, if Aij = 1. For Lévy flights in the same structure, the walker can hop with long-

range displacements following an inverse power-law distribution for the length of each

step.

Since the structure of the ring is the same and the adjacency matrix is defined by a

circulant matrix, the eigenvectors remain the same but the eigenvalues are now given in

terms of Eqs. (1.33) and (1.34). We can directly replace these values in Eqs. (2.9) and
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Figure 2.2: (a) Stationary distribution and (b) MFPT for a normal random walk performed in a ring
with N = 100 nodes and resetting to the initial node r = i for γ = 0.0, 0.05, 0.1, 0.15 as a function of the
distance dij

(2.12) obtaining respectively

P∞j (i; γ) =
1

N
+
γ

N

N∑
l=2

cos(ϕl)dij
1− (1− γ)λl(α)

(2.18)

and

〈Tij(i; γ)〉 =
1

P∞j (i; γ)

[
δij +

N∑
l=2

1− cos(dijϕl)

1− (1− γ)λl(α)

]
, (2.19)

which is valid for 0 < α ≤ 1. Figure 2.3 displays the results for a Lévy flight with α = 0.75

in a simple ring with N = 100 nodes and for different values of the resetting probability γ.

This figure is analogous to Figure 2.2 in the sense that the curves are calculated varying

the same parameter γ. Comparing, the stationary distribution (a) encompasses fewer

orders than for the normal random walk and does not follow a straight line. In the case of

the MFPT (b) something similar happens, the curves span over fewer orders and flatten

out for more distant nodes.

The analysis in the limit N → ∞ is more complicated than in the previous case, but

simplifies considering that the fractional degree takes the form [37]

k(α) = −Γ(−α)Γ(1 + 2α)

πΓ(1 + α)
sin(πα), (2.20)

in the limit, where Γ(x) is the gamma function. This result is obtained analytically,
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Figure 2.3: (a) Stationary distribution and (b) MFPT for a Lévy flight α = 0.75 performed in a ring
with N = 100 nodes and resetting to i = 0 for γ = 0.0, 0.05, 0.1, 0.15 as a function of the distance dij

beginning with the ij element of the fractional Laplacian matrix for a finite ring [37]

(Lα)ij =
1

N

N∑
l=1

(
2− 2 cos

[
2π

N
(l − 1)

])α
e

2πi
N

(l−1)dij . (2.21)

In the limit, the sum is transformed into a an integral in terms of the variable θ = 2π
N

(l−1),

evaluating using a result in [76] we get that [37]

(Lα)ij = −Γ(dij − α)γ(1 + 2α)

πΓ(1 + α + dij)
sin(πα). (2.22)

The fractional degree corresponds to k(α) = (Lα)ii, obtaining Eq. (2.20).

We are particularly interested in the dependency of the stationary distribution P∞j (i; γ)

with the distance to the resetting node dij.

First, for the stationary distribution, we take the limit and convert the sum in Eq. (2.18)

into an integral with the differential dϕ = 2π/N , obtaining

P∞j (i; γ) =
γ

2π

∫ 2π

0

cos(dijϕ)

1− (1− γ)[1− (2−2 cos(ϕ))α
k(α)

]
dϕ. (2.23)

Now, using the trigonometric identity 1−cos(ϕ) = 2 sin2(ϕ/2), this expression transforms

into

P∞j (i; γ) =
γ

2π

∫ 2π

0

cos(dijϕ)

1− (1− γ)[1− 22α sin2α(ϕ/2)

k(α)
]
dϕ. (2.24)
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Changing variables θ = ϕ/2 and the integration limits derived from this, expanding and

canceling out terms in the denominator, we get

P∞j (i; γ) =
1

2π

∫ π

0

cos(2dijθ)

1 +Dα sin2α(θ)
dθ, (2.25)

where Dα = 22α

k(α)
(1−γ)
γ

is a constant independent of θ. The denominator can be expanded

into a infinite sum, therefore

P∞j (i; γ) =
1

2π

∞∑
n=0

(−Dα)n
∫ π

0

cos(2dijθ) sin2nα(θ)dθ. (2.26)

It seems we have a more complicated equation than before because of the infinite sum

and its convergence, but we have gained an expression without a denominator and just

in terms of trigonometric functions. Considering the limit x = dij � 1, this integral form

is analytic∫ π

0

cos(2xθ) sin2nα(θ)dθ =
2−2αnπ cos(πx)Γ(1 + 2αn)

Γ(1 + αn− x)Γ(1 + αn+ x)
(2.27)

= −2−2αn sin(παn)Γ(1 + 2αn)
Γ(x− αn)

Γ(1 + αn+ x)
, (2.28)

where in the last equality, the property Γ(1 − z)Γ(z) = π/ sin(πz) was used, taking

z = x−αn. Since we are in the limiting case, for dij = x� 1 the gamma function can be

approximated as Γ(x+ b) ≈ Γ(x)xb and the fraction in the last equality of Eq. (2.27) is

Γ(x− αn)

Γ(1 + αn+ x)
≈ 1

x1+2αn
(2.29)

so finally, the stationary distribution approximates to the leading term

P∞j (i; γ) ≈ −
(

1− γ
γ

)
Γ(1 + α)

Γ(−α)

1

d1+2a
ij

(2.30)

in the asymptotic limit dij � 1. Here we have replaced Dα to obtain this last equality.

So now, it is clear that the asymptotic behavior of the stationary distribution for Lévy

flights with resetting in a ring is ruled by a power-law with the distance to the node. This

result is consistent with previous results for continuous Lévy flights on the infinite line

[77].

In addition, applying the same approach to the analysis of the MFPT in Eq. (2.19) for
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Lévy flights in the limit N →∞, we have

〈Tij(i; γ)〉 =
1

γ
+

1

P∞j (i; γ)

[
δij +

1

2π

∫ 2π

0

dϕ

1− (1− γ)
[
1− 22α

k(α)
sin(ϕ/2)2α

]] . (2.31)

However

1

2π

∫ 2π

0

dϕ

1− (1− γ)
[
1− 22α

k(α)
sin(ϕ/2)2α

] =
1

π

∫ π

0

dθ

1− (1− γ)
[
1− 22α

k(α)
sin(θ)2α

]
=

1

γπ

∫ π

0

dθ

1 + (1−γ)
γ

22α

k(α)
sin(θ)2α

=
1

γπ

∫ π

0

dθ

1 +Dα sin(θ)2α
=

1

γ
G(γ, α),

where we have defined G(γ, α) that depends on γ and α but is independent of the distance

between i and j. Therefore

〈Tij(i; γ)〉 =
1

γ
+

1

P∞j (i; γ)

[
δij +

G(γ, α)

γ

]
. (2.32)

In this way, for 0 < γ < 1, 1/2 ≤ α < 1

〈Tij(i; γ)〉 ∼ d1+2α
ij , dij � 1. (2.33)

A relation that agrees with the result reported in Ref. [77].

Finally, applying the method to a ring with N = 2000 and resetting to the initial node

r = i we obtain results when the ring is large. In Figure 2.4, the stationary distribution

P∞j (r; γ) (Eq. (2.18)) is shown with different markers for different values of the Lévy

index α while the resetting probability γ = 0.2 is the same for all. The black dashed line

shows the power-law ∝ d−(1+2α) corresponding to the limit N → ∞. The curves show

some variations from the exact line of the power-law, particularly for nodes closest to

the resetting node and the farthest due to the periodicity of the ring structure. Now the

behavior is different compared to Figure 2.2 where the dependency is exponential (Eq.

(2.16)). Under the same conditions, in Figure 2.5, we display the corresponding MFPT

for different values of α. Again, we notice the variations in the extreme values of the

curves. It is important to observe that the interval of validity of the approximation is the

same for both Figures 2.4 and 2.5. To increase this interval, we need a network with more

nodes, since the analytical results in Eqs. (2.30) and (2.33) are valid in the limit N →∞.
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Figure 2.4: Stationary distribution for Lévy flight performed in a ring with N = 2000 nodes and
resetting to the initial node i for different α as a function of the distance dij , γ = 0.2. The dashed lines
are the corresponding power-laws showing that P∞j ∝ d−(1+2α).

Figure 2.5: MFPT for Lévy flight performed in a ring with N = 2000 nodes and resetting to the initial
node i for different α as a function of the distance dij , γ = 0.2. The dashed lines are the corresponding
power-laws showing that 〈Tij(i; γ)〉 ∝ d1+2α.
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Since 〈Tij(i; γ)〉 is the average time it takes for a walker to arrive for the first time from

node i to node j, its value helps to understand the network exploration. For instance, for

the hypothetical case where we could find a minimum value in Figures 2.2(b) and 2.3 (b),

this would imply that the walker takes less time on average to arrive at that node. Now,

to the actual figures, in comparison to the curve with γ = 0, we observe in both cases that

for nodes near the resetting point the MFPT decreases, but for distances dij � 10 the

value is greater than the case without stochastic resetting. In the next chapter, we present

the formalism for resetting to two different nodes and analyse the possible generalization

of the method.
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Chapter 3

Random walks with resetting to two

nodes

3.1 Introduction

In the last chapter, we explored how the stationary distribution and MFPT are affected

by resetting of the random walker to a particular node r. Now, we want to use a sim-

ilar approach but with resetting to two different nodes and generalize the notation and

methods so that this procedure can be extended to include any number of resetting nodes.

As an example, this problem adapts perfectly to the idea of a person that explores a city

(the network) but has to return constantly to its house and its workplace, as we can see

in Figure 3.1. In this case, the walker has two different resetting nodes r1 and r2 and their

corresponding resetting probabilities a1 and a2 at each time step. This situation appears

naturally in human mobility, since this is a common pattern in human displacement. Of

course, we can think ahead and consider an arbitrary number of resetting nodes, but that

will be discussed in Chapter 4.

As we will see in this chapter, adding another resetting node and using a similar approach

to calculate the eigenvalues, left and right eigenvectors, modifies considerably the analyt-

ical results for the stationary distribution and MFPTs. The formalism and notation will

allow the possibility to use recursion methods in the calculation.
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Figure 3.1: Random walker in a network with two different resetting nodes r1 and r2 and their corre-
sponding probabilities a1 and a2. Here a0 = 1−a1−a2 is the probability to perform a random walk step
to a nearest neighbor.

3.2 General approach

In this section, we explore the stationary distribution and MFPT for two resetting nodes

r1 and r2, events that occur randomly with probabilities a1 and a2 at each time step.

Following a similar procedure as the one presented in Chapter 2, it is possible to write

the transition matrix as

Π(r1, r2; a1, a2) = a0W + a1Θ(r1) + a2Θ(r2), (3.1)

where we have added two resetting matrices Θ(r1) and Θ(r2), the resetting probabilities

and constant a0 satisfy a0 + a1 + a2 = 1. Reorganizing a0 + a1 in the first two terms, we

have

Π(r1, r2; a1, a2) = (a0 + a1)
[ a0
a0 + a1

W +
a1

a0 + a1
Θ(r1)

]
+ a2Θ(r2), (3.2)
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defining γ1 = a1
a0+a1

, and simplifying we obtain

Π(r1, r2; a1, a2) = (a0 + a1) [(1− γ1)W + γ1Θ(r1)] + a2Θ(r2)

= (a0 + a1) Π(r1; γ1) + a2Θ(r2)

= (a0 + a1 + a2)
[ a0 + a1
a0 + a1 + a2

Π(r1; γ1) +
a2

a0 + a1 + a2
Θ(r2)

]
.

In the last equality, we factor out a0 + a1 + a2. This might seem redundant due to the

condition a0 + a1 + a2 = 1, but will be useful for the general case. Defining γ2 = a2 the

final expression for the transition matrix is with resetting to two nodes Π(r1, r2; a1, a2) is

Π(r1, r2; a1, a2) = (1− γ2)Π(r1; γ1) + γ2Θ(r2). (3.3)

We can immediately recognize the form, since it is equal to Eq. (2.3), where W is replaced

by Π(r1; γ1). This is convenient because we know the exact form of their eigenvalues (Eq.

(2.4)) and right and left eigenvectors (Eqs. (2.5) and (2.6)), therefore we can get directly

the eigenvalues, for ζ1(r1, r2; γ1, γ2) = 1 and for l = 2, . . . , N , we have

ζl(r1, r2; γ1, γ2) = (1− γ2)(1− γ1)λl. (3.4)

The eigenvectors are obtained using the analogous expressions, for the left eigenvector

corresponding to the first eigenvalue ζ1(r1, r2; γ1, γ2) we use the form of Eq. (2.5)

〈
ψ̄1(r1, r2; γ1, γ2)

∣∣ =
〈
ψ̄1(r1; γ1)

∣∣
+

N∑
m=2

γ2
1− (1− γ2)ζm(r1; γ1)

〈r2|ψm(r1; γ1)〉
〈r2|ψ1(r1; γ1)〉

〈
ψ̄m(r1; γ1)

∣∣ , (3.5)

where
〈
ψ̄m(r1; γ1)

∣∣ denotes the left eigenvector of Π(r1; γ1) and |ψm(r1; γ1)〉 the right

eigenvector. Substituting the eigenvectors and eigenvalues known for resetting to one

node, we obtain

〈
ψ̄1(r1, r2; γ1, γ2)

∣∣ =
〈
φ̄1

∣∣+
N∑
m=2

γ1
1− (1− γ1)λm

〈r1|φm〉
〈r1|φ1〉

〈
φ̄m
∣∣

+
N∑
m=2

γ2
1− (1− γ2)(1− γ1)λm

[〈r2|φm〉
〈r2|φ1〉

− γ1
1− (1− γ1)λm

〈r1|φm〉
〈r1|φ1〉

] 〈
φ̄m
∣∣ . (3.6)

Here, the first two terms correspond to 〈ψ̄1(r1; γ1)| and the last one is obtained con-

sidering that 〈ψ̄m(r1; γ1)| = 〈φ̄m|, 〈r2|ψ1(r1; γ1)〉 = 〈r2|φ1〉 for m = 2, 3, . . . , N and the
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corresponding

|ψm(r1; γ1)〉 = |φm〉 −
γ1

1− (1− γ1)λm
〈r1|φm〉
〈r1|φ1〉

|φ1〉 m = 2, 3, . . . , N. (3.7)

Rearranging the terms, we have the equivalent expression

〈
ψ̄1(r1, r2; γ1, γ2)

∣∣ =
〈
φ̄1

∣∣+ N∑
m=2

γ1
1− (1− γ1)λm

〈r1|φm〉
〈r1|φ1〉

[
1− γ2

1− (1− γ2)(1− γ1)λm

] 〈
φ̄m
∣∣

+
N∑
m=2

γ2
1− (1− γ2)(1− γ1)λm

〈r2|φm〉
〈r2|φ1〉

〈
φ̄m
∣∣ . (3.8)

It is convenient to have a more compact notation, therefore we define the parameters

νm =
γ2

1− (1− γ2)(1− γ1)λm
(3.9)

and

κm =
γ1

1− (1− γ1)λm
(1− νm). (3.10)

It is important to keep in mind that both νm and κm depend on γ1, γ2 and the spectrum of

eigenvalues λm. Therefore, the left eigenvector for l = 1 in terms of these new parameters

is 〈
ψ̄1(r1, r2; γ1, γ2)

∣∣ =
〈
φ̄1

∣∣+
N∑
m=2

(
κm
〈r1|φm〉
〈r1|φ1〉

+ νm
〈r2|φm〉
〈r2|φ1〉

)〈
φ̄m
∣∣ , (3.11)

while for the other values of l = 2, . . . , N we get

〈
ψ̄l(r1, r2; γ1, γ2)

∣∣ =
〈
φ̄l(r1; γ1)

∣∣ =
〈
φ̄l
∣∣ , (3.12)

which means that once we calculate the left eigenvectors of W we also have the eigenvec-

tors of Π(r1, r2; γ1, γ2). In particular, for the first right eigenvector, we have

|ψ1(r1, r2; γ1, γ2)〉 = |ψ1(r1; γ1)〉 = |φ1〉 (3.13)

while, following a similar procedure, we find that the right eigenvectors for l = 2, . . . , N

are

|ψl(r1, r2; γ1, γ2)〉 = |ψl(r1; γ1)〉 −
γ2

1− (1− γ2)(1− γ1)λl
〈r2|ψl(r1; γ1)〉
〈r2|ψ1(r1; γ1)〉

|ψ1(r1; γ1)〉.
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Now, expressing |ψl(r1, r2; γ1, γ2)〉 directly in terms of the eigenvectors of W, using Eq.

(3.7), we obtain

|ψl(r1, r2; γ1, γ2)〉 = |φl〉 −
γ1

1− (1− γ1)λl
〈r1|φl〉
〈r1|φ1〉

|φ1〉

− γ2
1− (1− γ2)(1− γ1)λl

[
〈r2|φl〉
〈r2|φ1〉

− γ1
1− (1− γ1)λl

〈r1|φl〉
〈r1|φ1〉

]
|φ1〉 (3.14)

and, regrouping terms we get the expression

|ψl(r1, r2; γ1, γ2)〉 = |φl〉+

[
γ1

1− (1− γ1)λl
〈r1|φl〉
〈r1|φ1〉

(
γ2

1− (1− γ2)(1− γ1)λl
− 1

)
− γ2

1− (1− γ2)(1− γ1)λl
〈r2|φl〉
〈r2|φ1〉

]
|φ1〉. (3.15)

And finally, substituting the κl and νl parameters we get

|ψl(r1, r2; γ1, γ2)〉 = |φl〉 −
(
κl
〈r1|φl〉
〈r1|φ1〉

+ νl
〈r2|φl〉
〈r2|φ1〉

)
|φ1〉. (3.16)

This equation shows that the right eigenvectors are a linear combination of two right

eigenvectors of W. This is a direct result of substituting the already known eigenvectors

for one resetting node (Eqs. (2.5) and (2.6)).

Now that we have the left and right eigenvectors, we can calculate the stationary distri-

bution directly in terms of the first left and right eigenvectors as follows

P∞j (r1, r2; γ1, γ2) =
〈
i |ψ1(r1, r2; γ1, γ2)〉

〈
ψ̄1(r1, r2; γ1, γ2)

∣∣ j〉
= P∞i +

N∑
m=2

γ1
1− (1− γ1)λm

〈r1|φm〉
〈r1|φ1〉

×[
1− γ2

1− (1− γ2)(1− γ1)λm

]
〈i|φ1〉

〈
φ̄m
∣∣ j〉

+
N∑
m=2

γ2
1− (1− γ2)(1− γ1)λm

〈r2|φm〉
〈r2|φ1〉

〈i|φ1〉
〈
φ̄m
∣∣ j〉.

Using the parameters κm and νm, we obtain

P∞j (r1, r2; γ1, γ2) = P∞i +
N∑
m=2

(κm 〈r1|φm〉+ νm 〈r2|φm〉)
〈
φ̄m
∣∣ j〉. (3.17)

38



CHAPTER 3. RANDOM WALKS WITH RESETTING TO TWO NODES

As we can see, the first term P∞i is the stationary distribution without resetting and

the sum in Eq. (3.17) considers the effect of resetting to two nodes. Another advantage

of having the eigenvectors and eigenvalues in an exact form is that we can calculate

the transition probabilities with the spectral representation of Π(r1, r2; γ1, γ2), using Eq.

(2.7) and also have its time evolution, as in Eq. (1.18). For finite time t, the occupation

probability is

Pij(t, r1, r2; γ1, γ2) = P∞j (r1, r2; γ1, γ2)

+
N∑
l=2

ζl(r1, r2; γ1, γ2)
t
〈
i |ψl(r1, r2; γ1, γ2)〉

〈
ψ̄l(r1, r2; γ1, γ2)

∣∣ j〉 , (3.18)

where the first term is the stationary distribution as given by Eq. (3.17). This expression

for Pij(t, r1, r2; γ1, γ2) is useful to calculate the moments, substituting directly in

R(0)
ij (r1, r2; γ1, γ2) =

∞∑
t=0

(Pij(t, r1, r2; γ1, γ2)− P∞j (r1, r2; γ1, γ2))

=
N∑
l=2

〈i|ψl(r1, r2; γ1, γ2)〉〈ψ̄l(r1, r2; γ1, γ2)|j〉
1− (1− γ2)(1− γ1)λl

, (3.19)

we obtain a compact expression. The moments R(0)
ij (r1, r2; γ1, γ2) can be used further to

calculate the MFPT given by

〈Tij(r1, r2; γ1, γ2)〉 =
δij

P∞j (r1, r2; γ1, γ2)
+
R(0)
jj (r1, r2; γ1, γ2)−R(0)

ij (r1, r2; γ1, γ2)

P∞j (r1, r2; γ1, γ2)
. (3.20)

In Eq. (3.16) we show that the right eigenvector |ψl(r1, r2; γ1, γ2)〉 is a linear combination

of |φl〉 and |φ1〉 and that the left eigenvector with resetting for l = 2, . . . , N is equal to the

left eigenvector without resetting 〈φ̄l| = 〈ψ̄l(r1; γ1)| so we can simplify Eq. (3.20) noticing

that

〈i|ψl(r1, r2; γ1, γ2)〉 = 〈i|φl〉 − κl〈r1|φl〉 − νl〈r2|φl〉 (3.21)

and

〈ψ̄l(r1, r2; γ1, γ2)|j〉 = 〈φ̄l|j〉. (3.22)
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Therefore

R(0)
jj (r1, r2; γ1, γ2)−R(0)

ij (r1, r2; γ1, γ2)

=

N∑
l=2

〈j|ψl(r1, r2; γ1, γ2)〉〈ψ̄l(r1, r2; γ1, γ2)|j〉 − 〈i|ψl(r1, r2; γ1, γ2)〉〈ψ̄l(r1, r2; γ1, γ2)|j〉
1− (1− γ2)(1− γ1)λl

=
N∑
l=2

〈j|φl〉〈φ̄l|j〉 − 〈i|φl〉〈φ̄l|j〉
1− (1− γ2)(1− γ1)λl

.

Introducing this result in Eq. (3.20), we obtain a simpler expression for the MFPT

〈Tij(r1, r2; γ1, γ2)〉 =
1

P∞j (r1, r2; γ1, γ2)

[
δij +

N∑
l=2

〈j|φl〉〈φ̄l|j〉 − 〈i|φl〉〈φ̄l|j〉
1− (1− γ2)(1− γ1)λl

]
. (3.23)

Observe that this equation is very similar to Eqs. (1.31) and (2.12), the only part affected

is the denominator inside the sum, where the eigenvalues have been modified accordingly.

3.3 Dynamics with resetting on rings

Just as we did with one resetting node, now we calculate the stationary distribution and

MFPT for the dynamics with resetting to two nodes on rings. We compare the results

between the two types of walkers with local and non-local transitions between nodes.

3.3.1 Random walks

Since we know the analytic eigenvalues and eigenvectors for a ring (Eq. (1.14)), we can use

the expression in Eqs. (3.17) and (3.23) to obtain the exact expressions for the stationary

distribution and MFPT. Substituting λl = cos(ϕl) and using the respective eigenvectors,

we obtain

P∞j (r1, r2; γ1, γ2) =
1

N

+
1

N

N∑
m=2

γ1 cos(ϕmdjr1)

1− (1− γ1)(1− γ2) cos(ϕm)

(
1− γ2

1− (1− γ2)(1− γ1) cos(ϕm)

)

+
1

N

N∑
m=2

γ2 cos(ϕmdjr2)

1− (1− γ2)(1− γ1) cos(ϕm)
. (3.24)
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Figure 3.2: (a) Stationary distribution and (b) MFPT for a random walk performed in a ring with
N = 100 nodes and resetting to r1 = 20, r2 = 80, i = 0. The resetting probability a2 = 0.01 is constant
and a1 = 0, 0.005, . . . , 0.02. The results are presented as a function of the node j.

The corresponding expression for the MFPT is

〈Tij(r1, r2; γ1, γ2)〉 =
1

P∞j (r1, r2; γ1, γ2)

[
δij +

N∑
l=2

1− cos(ϕldij)

1− (1− γ2)(1− γ1) cos(ϕl)

]
. (3.25)

In Figure 3.2, we show the results obtained for a random walk with two resetting nodes.

We calculate the stationary distribution using Eq. (3.17) and the MFPT with Eq. (3.23)

keeping the resetting probability a2 = 0.01 fixed and changing the value of a1 for each

curve. An important and necessary step is to verify that the results are consistent, so we

made the calculations using both methods, the first one obtaining the eigenvalues, left and

right eigenvectors of matrix Π(r1, r2; γ1, γ2) and directly use Eq. (1.31) for the MFPT,

the result is shown as a continuous line, while the other is calculated diagonalizing W and

evaluate numerically Eqs. (3.24) and (3.25), the results are shown with different markers.

As we can see, both results overlap exactly, validating the general result in Eqs. (3.17)

and (3.23).

To investigate further the accuracy of the method, we calculated as well the relative error

between the two values which is a measure of how far off the numerical approximation is

relative to the actual value, expressed as [78]

err =
δx

x(n)
=
|xn − x(n)|
|x(n)|

(3.26)

where xn is the numerical value of our method (using the eigenvalues and eigenvectors of
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Figure 3.3: (a) Relative error for the stationary distribution and (b) MFPT for a random walk performed
in a ring with N = 100 nodes and resetting to r1 = 20, r2 = 80 leaving the resetting probability a2 = 0.01
fixed varying a1, both as a function of the node j.

W) and x(n) is the actual value, in this case, we considered the value obtained with the

numerical calculation of the eigenvalues and eigenvectors of the matrix Π(r1, r2; γ1, γ2).

As we can observe, in Figure 3.3, for the stationary distribution and the MFPT most of

the curves stay bounded between 10−15 and 10−10 which is close to the machine’s precision,

showing that our analytical approach is correct. We plot these values to see the general

behaviour of the relative error.

An analysis for the limit N → ∞ is possible using Eq. (3.24) and (3.25), following an

analogous procedure to that of resetting to one node, turning the discrete variable ϕm

into a continuous with differential dϕ = 2π/N in Eq. (3.24), therefore we obtain

P∞j (r1, r2; γ1, γ2) =
γ1
2π

∫ 2π

0

cos(ϕdjr1)

1− b1 cos(ϕ)
dϕ+

γ2
2π

∫ 2π

0

cos(ϕdjr2)

1− b12 cos(ϕ)
dϕ

− γ1γ2
2π

∫ 2π

0

cos(ϕdjr1)

(1− b1 cos(ϕ))(1− b12 cos(ϕ))
dϕ. (3.27)

Here, we have introduced a more compact notation, defining the auxiliary variables b1 =

1−γ1 and b12 = (1−γ1)(1−γ2). The first two integrals can be obtained exactly using Eq.

(2.15) since the dependency with ϕ is the same. For the last term, we have to operate

further to get a similar expression. The integral we need to calculate has the form

I2 =
1

2π

∫ 2π

0

cos(ϕx)

(1− y cos(ϕ))(1− z cos(ϕ))
dϕ (3.28)
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which can be expressed as the sum of two fractions. Applying partial fraction decompo-

sition, we have

1

(1− y cos(ϕ))(1− z cos(ϕ))
=

1

y − z

[
y

1− y cos(ϕ)
− z

1− z cos(ϕ)

]
. (3.29)

Since this is the denominator of the integral I2, substituting in Eq. (3.28), we obtain

I2 =
1

2π(y − z)

[ ∫ 2π

0

y cos(ϕx)

1− y cos(ϕ)
dϕ−

∫ 2π

0

z cos(ϕx)

1− z cos(ϕ)
dϕ

]
, (3.30)

which are integrals that we have previously calculated (Eq. (2.15)). Substituting the

exact values considering x = djr1 , y = b1 and z = b12 we obtain four terms

P∞j (r1, r2; γ1, γ2) =
γ1√

1− b21

(
1 +

√
1− b21
b1

)−djr1
+

γ2√
1− b212

(
1 +

√
1− b212
b12

)−djr2
− γ1γ2
b1 − b2

b1√
1− b21

(
1 +

√
1− b21
b1

)−djr1
+

γ1γ2
b1 − b2

b12√
1− b212

(
1 +

√
1− b212
b12

)−djr1
. (3.31)

We can simplify further because b1−b12 = γ2(1−γ1), b1 = 1−γ1 and b12 = (1−γ1)(1−γ2),
so the first term cancels out with the third and the remaining can be expressed as

P∞j (r1, r2; γ1, γ2) =
γ1(1− γ2)√

1− b212

(
1 +

√
1− b212
b12

)−djr1
+

γ2√
1− b212

(
1 +

√
1− b212
b12

)−djr2
. (3.32)

In this result, we can see that in both terms appears, b12 which depends on both γ1 and

γ2. If either is zero, we recover the exact expression for resetting to one node in the

limit N → ∞ (Eq. (2.15)). In addition, to analyze asymptotic behavior, we define the

parameter

χ = log

(
1 +

√
1− b212
b12

)
. (3.33)

Substituting in Eq. (3.32) the stationary distribution is

P∞j (r1, r2; γ1, γ2) =
γ1(1− γ2)e−χdjr1 + γ2e

−χdjr2√
1− (1− γ1)2(1− γ2)2

. (3.34)

As we observe, the distribution for nodes far from the resetting nodes falls as an expo-

nential regulated by the parameter χ. For the MFPT we follow an analogous procedure,
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Figure 3.4: (a) Stationary distribution and (b) MFPT for a random walk performed in a ring in the
limit N → ∞ for the first 100 nodes, resetting to r1 = 20, r2 = 80 leaving the resetting probability
a2 = 0.01 fixed varying a1, both as a function of the node j, i = 0. We used Eq. (3.34) and (3.37)
considering the same parameters as in Figure 3.2.

changing the summation for an integral and turning the discrete variable ϕl into the

continuous ϕ, the resulting expression is

〈Tij(r1, r2; γ1, γ2)〉 =
δij

P∞j (r1, r2; γ1, γ2)
+

1

P∞j (r1, r2; γ1, γ2)

∫ 2π

0

1− cos(ϕdij)

1− b12 cos(ϕ)
dϕ (3.35)

which can be directly integrated to obtain

〈Tij(r1, r2; γ1, γ2)〉 =
δij

P∞j (r1, r2; γ1, γ2)

+
1

P∞j (r1, r2; γ1, γ2)

1√
1− b212

[
1−

(
1 +

√
1− b212
b12

)−dij]
, (3.36)

when i = j we have dij = 0 and the second term vanishes. In this way, the remaining

expression is just the inverse of the stationary distribution in agreement with Kac’s Lemma

[75]. In the case i 6= j we can write 〈Tij(r1, r2; γ1, γ2)〉 in terms of χ

〈Tij(r1, r2; γ1, γ2)〉 =
1− e−χdij

γ1(1− γ2)e−χdjr1 + γ2e
−χdjr2

. (3.37)

As we can see, χ is a parameter that regulates the behavior with respect to dij, djr1

and djr2 . In Figure 3.2 the values for b12 are 0.99, 0.985, 0.98, 0.975 and 0.97 with the

corresponding χ’s 0.142, 0.174, 0.201, 0.225 and 0.248.

To analyze how the stationary distribution and MFPT would behave in the limit N →
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∞, we calculated the values with Eqs. (3.34) and (3.37) as shown in Figure 3.4. We

observe straight lines in the semi-logarithmic scale due to the exponential dependence. In

comparison with the results in Figure (3.2), the border effects are avoided and are bound

between the same orders, except for the case a1 = 0 where the curves are very different.

3.3.2 Lévy flights

Now, we apply the formalism to Lévy flight dynamics on a ring with N nodes. In com-

parison with the results in Eqs. (3.24) and (3.25), the study of Lévy flights only requires

modifications of the eigenvalues using the result in Eq. (1.33)

λl(α) = 1− 1

k(α)
(2− 2 cosϕl)

α , k(α) =
1

N

N∑
l=1

(2− 2 cosϕl)
α .

Then, we have for Lévy flights with resetting to nodes r1 and r2

P∞j (r1, r2; γ1, γ2) =
1

N

+
1

N

N∑
m=2

γ1 cos(ϕmdjr1)

1− (1− γ1)(1− γ2)λm(α)

(
1− γ2

1− (1− γ2)(1− γ1)λm(α)

)

+
1

N

N∑
m=2

γ2 cos(ϕmdjr2)

1− (1− γ2)(1− γ1)λm(α)
. (3.38)

Figure 3.5: (a) Stationary distribution and (b) MFPT for a Lévy flight α = 0.75 performed in a ring
with N = 100 nodes and resetting to r1 = 20, r2 = 80 leaving the resetting probability a2 = 0.01 fixed
varying a1, both as a function of the node j, i = 0.
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The corresponding expression for the MFPT is

〈Tij(r1, r2; γ1, γ2)〉 =
1

P∞j (r1, r2; γ1, γ2)

[
δij +

N∑
l=2

1− cos(ϕldij)

1− (1− γ2)(1− γ1)λl(α)

]
. (3.39)

The results are shown in Figure 3.5, for the stationary distribution (a) and the MFPT

(b). It is observed that the order of magnitude of the stationary distribution and MFPT

changes in comparison to the results for the normal random walk in Figure 3.2. As we

can see the curves are bounded by one and two orders respectively.

With Chapters 1, 2 and 3 we conclude the presentation of the method, its validation, and

application to simple structures. In the next chapter we will explore a generalization of

the equations considering a resetting to an arbitrary number of nodes, this framework

will be applied to networks with more complex structures.
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Chapter 4

Dynamics with resetting to M nodes

4.1 Introduction

In the previous chapters, we explored the effects of resetting on networks considering

one and two nodes. In this chapter, we will describe a generalization of random walks

with resetting to an arbitrary number of nodes M. In order to make the equations

clear and understandable, it is necessary to introduce a more compact notation. Once

the theory is fully explained and implemented, we will apply this generalization to more

complex structures than the simple ring, particularly to Cayley trees, random distribution

of points in a continuous space, and interacting cycles. For this last type of networks, we

apply the Google search strategy where the dynamics resets to all nodes.

We introduce the total resetting probability β and the global mean first passage time T ,

which is the average of the MFPT over all the target and source nodes, consequently its

value does not depend on the initial condition of the random walker. The main objective

is to show how the parameter β affects T and in some cases optimizes it.

4.2 General approach

We consider a network with N nodes and a random walker defined by a transition matrix

W. Now the resetting is performed to M nodes, respectively r1, r2, . . . , rM, and the

corresponding restart probabilities 0 ≤ as ≤ 1 (where s = 1, . . . ,M). The transition
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matrix is

Π(r1, r2, . . . , rM; a1, a2, . . . , aM) = a0W +
M∑
s=1

asΘ(rs). (4.1)

We have the constriction a0 ≡ 1 −
∑M

s=1 as due to conservation of probability. We also

require 0 ≤
∑M

s=1 as ≤ 1. As in previous sections, the resetting matrix to node rs will be

denoted as Θ(rs).

Since now the transition matrix depends on various different parameters, we introduce a

more compact notation for Eq. (4.1), thus

Π(r1, r2, . . . , rM; a1, a2, . . . , aM) = ΠM. (4.2)

The total transition matrix ΠM can be calculated iteratively, considering that at step s we

can substitute the transition matrix for step s−1 and the resetting matrix corresponding

to s, Θ(rs), following Eq. (3.2) we get

Πs =

∑s−1
l=0 al∑s
l=0 al

Πs−1 +
as∑s
l=0 al

Θ(rs), (4.3)

for s = 1, 2, . . . ,M with Π0 ≡ W. We introduce the generalized parameter γs in terms

of the individual resetting probabilities as

γs ≡
as∑s
l=0 al

, s = 1, 2, . . . ,M, (4.4)

which follows that
∑s−1
l=0 al∑s
l=0 al

= 1−γs. We directly substitute this relation to obtain the final

expression for the transition matrix in step s of the iteration

Πs = (1− γs)Πs−1 + γsΘ(rs). (4.5)

Let us now denote the right and left eigenvectors of Πs as |ψ(s)
l 〉 and 〈ψ̄(s)

l |, and their

corresponding eigenvalues as ζ
(s)
l . According to the result in Eq. (2.4), the first eigenvalue

satisfies ζ
(s)
1 = 1 and the others are obtained iteratively

ζ
(s)
l = (1− γs)ζ(s−1)l = (1− γs)(1− γs−1)ζ(s−2)l

= · · · = λl

s∏
m=1

(1− γm), l = 2, 3, . . . , N, (4.6)

where we use ζ
(0)
l = λl, and λl is the eigenvalue of W, the transition matrix without
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resetting. For the right eigenvector corresponding to the first eigenvalue, we have

|ψ(s)
1 〉 = |ψ(s−1)

1 〉 = |ψ(s−2)
1 〉 = · · · = |ψ(0)

1 〉 = |φ1〉, (4.7)

and, for the left eigenvectors with index m = 2, . . . , N , we get

〈ψ̄(s)
m | = 〈ψ̄(s−1)

m | = · · · = 〈ψ̄(0)
m | = 〈φ̄m|. (4.8)

Observe that, in these two cases, the eigenvectors remain unaltered with the introduction

of resetting. On the other hand, from Eqs. (2.6) and (4.7), for l = 2, . . . , N the right

eigenvectors are

|ψ(s)
l 〉 = |ψ(s−1)

l 〉 − γs

1− ζ(s)l

〈rs|ψ(s−1)
l 〉

〈rs|φ1〉
|φ1〉. (4.9)

Finally, for 〈ψ̄(s)
1 |, combining the results in Eq. (2.5) with (4.7) and (4.8) we obtain the

first left eigenvector

〈ψ̄(s)
1 | = 〈ψ̄

(s−1)
1 |+

N∑
m=2

γs

1− ζ(s)l

〈rs|ψ(s−1)
m 〉

〈rs|φ1〉
〈
φ̄m
∣∣ . (4.10)

With these eigenvectors, the stationary distribution is

P∞j (~r;~γ) ≡ P∞j (r1, r2, . . . , rM; γ1, γ2, . . . , γM)

= 〈j|ψ(M)
1 〉〈ψ̄(M)

1 |j〉, (4.11)

where we used the property 〈i|ψ(M)
1 〉 = 〈j|ψ(M)

1 〉 for every i and j. The expression in

Eq. (4.11) would be written explicitly in terms of the eigenvectors in past iterations

s−1, s−2, . . . , 1. Alternatively, we can calculate it from the eigenvalues and eigenvectors

of the transition matrix W through the successive application of the Eqs. (4.6)-(4.10)

to obtain 〈ψ̄(M)
1 |j〉. We introduce the notation P∞j (~r;~γ) for the stationary distribution,

where ~r is a vector containing all the resetting nodes and ~γ has the parameters as presented

in Eq. (4.4). This approach also allows to deduce iteratively all the eigenvalues and

eigenvectors of ΠM in Eq. (4.1). Introducing these results to the moments defined in Eq.
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(2.11), we get

R(0)(i, j, ~r, ~γ) =
∞∑
t=0

[
Pij(~r,~γ; t)− P∞j (~r,~γ)

]
=
∞∑
t=0

N∑
l=2

(ζ
(M)
l )t〈i|ψ(M)

l 〉〈ψ̄(M)
l |j〉

=
N∑
l=2

1

1− ζ(M)
l

〈i|ψ(M)
l 〉〈ψ̄(M)

l |j〉. (4.12)

Hence, the difference is calculated as

R(0)(j, j, ~r, ~γ)−R(0)(i, j, ~r, ~γ) =
N∑
l=2

〈j|ψ(M)
l 〉〈ψ̄(M)

l |j〉 − 〈i|ψ(M)
l 〉〈ψ̄(M)

l |j〉
1− ζ(M)

l

. (4.13)

However, from Eq. (4.9), we see that the components of second term (proportional to

|φ1〉) in |ψ(s)
l 〉 are constant for all the nodes. As a consequence

〈j|ψ(M)
l 〉〈ψ̄(M)

l |j〉 − 〈i|ψ(M)
l 〉〈ψ̄(M)

l |j〉 = 〈j|ψ(M−1)
l 〉〈ψ̄(M−1)

l |j〉 − 〈i|ψ(M−1)
l 〉〈ψ̄(M−1)

l |j〉

= 〈j|ψ(M−2)
l 〉〈ψ̄(M−2)

l |j〉 − 〈i|ψ(M−2)
l 〉〈ψ̄(M−2)

l |j〉

= · · ·

= 〈j|ψ(0)
l 〉〈ψ̄

(0)
l |j〉 − 〈i|ψ

(0)
l 〉〈ψ̄

(0)
l |j〉

= 〈j|φl〉〈φ̄l|j〉 − 〈i|φl〉〈φ̄l|j〉.

In Appendix A we present a more detailed calculation, demonstrating this equality with

mathematical induction. In this manner, the difference between moments for different

source node is

R(0)(j, j, ~r, ~γ)−R(0)(i, j, ~r, ~γ) =
N∑
l=2

1

1− ζ(M)
l

[
〈j|φl〉〈φ̄l|j〉 − 〈i|φl〉〈φ̄l|j〉

]
, (4.14)

which is useful to calculate the MFPT in terms of the eigenvectors of the transition matrix

without resetting W.

As we can see, the net effect of the resetting relies on the eigenvalues that appear in the

denominator. The application of the Eq. (1.27) is valid for ergodic random walks but now
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considering the resetting toM nodes, the resulting MFPT can be generally expressed [79]

〈Tij(~r;~γ)〉 =
δij

P∞j (~r;~γ)
+

1

P∞j (~r;~γ)

N∑
l=2

〈j|φl〉〈φ̄l|j〉 − 〈i|φl〉〈φ̄l|j〉
1− z(~γ)λl

(4.15)

with z(~γ) ≡ z(γ1, γ2, . . . , γM) =
∏M

s=1(1 − γs), where γs are parameters linked to the

resetting and λl are the eigenvalues of the transition matrix W.

4.3 Examples of the dynamics with multiple reset

4.3.1 Cayley trees

A tree is a simple connected undirected graph with no cycles [80]. We can construct a

Cayley tree starting from a root or central seed vertex [81], the next generation of vertices

is formed with z sites connected with edges to the root, this composes the first shell. For

the next generations of shells, each vertex is connected to other z nodes, so that for finite

trees, the last shell has degree one and all the others have a total degree z considering the

connection to the previous shell. In Figure 4.1(a) we observe a Cayley tree with N = 94

nodes organized in five shells with coordination number z = 3 and in (b) its adjacency

matrix.

Figure 4.1: (a) Cayley tree with z = 3 and numbered nodes, with a total of N = 94 and (b) the
adjacency matrix.
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Figure 4.2: Cayley trees with N = 94. In the graphs Gs with s = 1, 2, . . . , 6, the red nodes represent
the vertices where reset is produced.

We define a global mean first passage time T to analyze the behavior of the random

walker, where the MFPT is averaged over all starting nodes i and target nodes j, so that

T =
1

N2

N∑
i=1

N∑
j=1

〈Tij〉. (4.16)

Its value is an alternative to quantify the capacity of the random walk to reach any node

considering all possible initial conditions [74]. A particular advantage of using the global

MFPT is that it does not depend on the initial condition i. Besides, the average over all

the source nodes has been proven useful studying the dynamics of the trapping problem

where a trap that absorbs a random walker is set to a particular location in a graph, the

global MFPT is used as an indicator of the trapping efficiency [82].

We calculate Eq. (4.16) as a function of the total resetting probability β =
∑M

s=1 as

for different strategic distributions of the resetting nodes. For convenience, we divide β

equally between the resetting nodes, this means that if we have M resetting points, to

each corresponds as = β/M as the resetting probability. As we can see in Figure 4.2, the

resetting nodes are colored in red and were chosen symmetrically considering complete
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Figure 4.3: Global mean first passage time T as a function of the total resetting probability β for
different number of resetting nodes and the inset shows a detail of the minimum of the respective curves.
Precise values of βmin can be found in Table 4.1

βmin T (βmin)

G1 0.0551515151515151 419.674549615583

G2 0.0610101010101010 395.635100983603

G3 0.1020202020202020 339.787614563130

G4 0.1898989898989898 256.295634485661

G5 0.3012121212121212 179.134420720821

G6 0.2836363636363636 147.483657849399

Table 4.1: Minimum values for the global mean first passage time and the corresponding βmin

shells, in the first simulation G1 we have only one resetting node, for G2 there are three,

in G3 we have six, then twelve for G4, twenty four for G5 and in the last one G6 there are

forty eight resetting nodes.

The curves corresponding to the global mean first passage time are shown in Figure 4.3.

In the inset, we can see the minimum value of T highlighted as a black dot. For the first

five, there is a tendency to increase its position in the horizontal axis while decreasing

in the vertical but we observe that for G6 where the resetting is made to all the nodes

in the outer shell, we can observe a significant change where the lowest point is settled

before the curve obtained for G5. Even in the case G6, there is an optimal resetting
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Figure 4.4: Matrix visualization of 〈Tij(~r;~γ)〉 for (a) G1, (b) G2, (c) G3, (d) G4, (e) G5 and (f) G6,
calculated using the minimum value of β, denoted as βmin that produced the minimal global time reported
in Table 4.1.

βmin that minimizes the global MFPT showing that the transport is more effective than

the dynamics without resetting. For higher values of β the curves corresponding to G5
and G6 intersect with others. In Table 4.1 we can find the precise value of βmin and its

corresponding global MFPT for all the configurations analyzed in Figure 4.3.

To further investigate the behavior of the MFPT, in Figure 4.4 we plot 〈Tij(~r;~γ)〉 as a

matrix, with node i, the source, varying in the vertical axis and j, the target node, in the

horizontal, considering the node numeration just as shown in Figure 4.1. We use the value

βmin to see the specific behavior for the optimal reset. The most notorious property is

that the majority of values are independent of the source node, which is shown as vertical

stripes of the same color. In addition, we observe that the overall general structure is the

same for the six figures independent of the number of resetting nodes but the difference

is clear in the values, since for (a) which has one resetting point we have predominantly

light blue and white colors in the order of 500 for some nodes, while for six resetting

nodes in (c) we have darker colors in areas that for (a). As the number of resetting nodes

increases, we observe the decrease in values which correspond to darker tones and finally
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for forty eight resetting nodes (f) the light areas in the other figures are much darker

which indicates values of the order of 200 and less.

As we can observe, the Cayley trees are very structured. Also, choosing a symmetrical

distribution of resetting nodes produced similar patterns in the MFPT. In the next section,

we will apply the method to a non-local random walker that visits points in a continuous

space to see the effects of multiple reset in more complex dynamics.

4.3.2 Dynamics on a distribution of points

We now consider a set of N points randomly distributed in a two-dimensional space and

agglomerated in clusters around a specific center. The networks used in the past sections,

such as rings and Cayley trees, the position of nodes and edges do not have actual relation

to the distribution in space, but in this type of dynamics we will have a transition matrix

that depends on the distance between nodes and a given radius R used as a threshold for

the transition probability. Following this premise, we designate that the probability of

going from one point to another is proportional to a power α of the Euclidean distance

dij between them for dij > R and independent of the distance for dij ≤ R, such that [83]

w
(α)
i→j(R) =

Ω
(α)
ij (R)∑N

m=1 Ω
(α)
im (R)

(4.17)

where

Ω
(α)
ij (R) =

1 if 0 ≤ dij ≤ R(dij
R

)−α
otherwise.

(4.18)

The sum in the denominator of Eq. (4.17) guarantees that
∑

j w
(α)
i→j(R) = 1. These

transition probabilities generate a Lévy-like dynamics.

The procedure to generate the distribution of points (nodes in a spatial network) consists

in choosing the centers and the number of nodes per cluster, selecting random positions

around the center with a Gaussian distribution characterized by predefined standard

deviations. A random node is selected from each cluster as a resetting node. Once the

clusters are formed, we fill a matrix with distances dij and operate to create the transition

matrix according to Eq. (4.17), finally we apply the multi-resetting formalism.

In Figure 4.5(a) we observe five clusters formed by 20 nodes each, the Gaussian distri-

bution that determines their positions has different values, the one in the center where
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Figure 4.5: (a) Random points distributed in space and resetting nodes. (b) Distance matrix used to
calculate the transition matrix

η3 is located has standard deviation σ3 = 0.055, the bottom left and upper right have

σ1 = σ5 = 0.04 and bottom right and upper left have σ2 = σ4 = 0.05. The resetting

nodes η1, η2, η3, η4, η5 and η6 where randomly chosen and denoted as black diamonds. In

Figure 4.5(b), we plot the distance matrix D which contains the Euclidean distance dij

between nodes. We observe that the highest value is around the unit, since the points

are inside the two-dimensional space [0, 1]× [0, 1]. There is a global symmetry due to the

numeration of nodes but the randomness is evident at a smaller scale.

Using this particular setting, we calculated the global MFPT for different R for β = 0,

ie. without resetting, as a function of the parameter α, the results are shown in Figure

4.6. We choose the values of R such that they were less than the percolation limit of a

random geometric graph
√

log(N)
πN

[84], since it is used as a reference length. We observe

that for greater radius, the global MFPT decreases, this behavior is consistent because

for greater R the probability of transition is non-null for more nodes.

In Figure 4.7 we present the global MFPT as a function of the total probability β for

α = 5 and R = 0.05. For one resetting node, the first curve in dark blue is monotonically

increasing, but for two and more resetting points the results show different behavior. For

three and four resetting nodes, there is a minimum value and the change in curvature is

clear, but five and six resetting points reduce significantly the global MFPT in comparison

with the dynamics without resetting at β = 0. Also, the result with ηi, i = 1, 2, 3, 4, 5, 6

shows that more than one resetting per cluster is redundant and does not further improve
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Figure 4.6: Global MFPT as a function of α for different values of R for the Lévy-like dynamics in Eq.
(4.17).

Figure 4.7: Global MFPT as a function of total probability β for a random distribution of points in
space considering different number of resetting nodes ηi, i = 1, 2, 3, 4, 5, 6, with α = 5 and R = 0.05
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the value T . With these results, we can see that for a small radius, the resetting process

optimizes the general exploration of this spatial distribution of points, as expected.

4.3.3 Google strategy on interacting cycles

A particular search method is the Google random walk strategy, were a local search to

nearest-neighbor nodes is combined with a stochastic relocation to any of the nodes, using

a constant resetting probability [85, 86]. In our formalism, this type of search requires

usingM = N reset nodes and defining a1 = a2 = · · · = aN , considering a total probability

β, the resetting probabilities are given by as = β/N . We directly obtain the eigenvalues

with Eq. (4.4) and (4.6), and considering that 1 = a0 + β

ζGoogle
l =

1 for l = 1,

(1− β)λl for l = 2, 3, . . . , N.
(4.19)

Remembering that λl is the corresponding eigenvector of W which is the transition matrix

without resetting and carries the information about the structure of the network.

The uniform resetting in a regular network produces a constant stationary distribution,

such that

P∞j (~r,~γ) =
1

N
, (4.20)

so that the global MFPT in Eq. (4.16) for regular networks is

T =
1

N2

N∑
i=1

N∑
j=1

〈Tij〉 =
1

N

N∑
i=1

N∑
j=1

[
δij +

N∑
l=2

〈j|φl〉〈φ̄l|j〉 − 〈i|φl〉〈φ̄l|j〉
1− (1− β)λl

]
. (4.21)

We can further simplify this expression. Considering just the first term, we have

1

N

N∑
i=1

N∑
j=1

δij =
1

N

N∑
i=1

1 = 1 (4.22)
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Figure 4.8: (a) Interacting cycle with N = 16 and J = 5 (b) the corresponding adjacency matrix

For the second term, we swap the sums and separate the subtraction such that

1

N

[
N∑
l=2

N∑
i=1

N∑
j=1

〈j|φl〉〈φ̄l|j〉
1− (1− β)λl

−
N∑
l=2

N∑
i=1

N∑
j=1

〈i|φl〉〈φ̄l|j〉
1− (1− β)λl

]
=

1

N

[
N∑
l=2

1

1− (1− β)λl

N∑
j=1

〈j|φl〉〈φ̄l|j〉
N∑
i=1

1−
N∑
l=2

1

1− (1− β)λl

N∑
i=1

〈i|φl〉
N∑
j=1

〈φ̄l|j〉

]
, (4.23)

where in the last equality, the terms independent of i and j were separated when possible.

Since
∑N

j=1〈φ̄l|j〉 = 0 for l = 2, 3, . . . , N , the second term vanishes. To express the sum

over j in the remaining term, we have that

N∑
j=1

〈j|φl〉〈φ̄l|j〉 =
N∑
j=1

〈φ̄l|j〉〈j|φl〉 = 〈φ̄l|
( N∑

j=1

|j〉〈j|
)
|φl〉 = 〈φ̄l|φl〉 = 1.

In this relation, we explicitly used the completeness of the N−dimensional space and the

orthonormality condition between 〈φ̄l| and |φl〉. Substituting Eqs. (4.22) and (4.23) in

Eq. (4.21), we finally obtain

T (β) = 1 +
N∑
l=2

1

1− (1− β)λl
. (4.24)

Observe that this simple equation is valid for any regular network, since for its derivation

the principles of the Google search strategy and basic properties of the orthonormal bases
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Figure 4.9: Interacting cycles with N = 11. For J = 1 we obtain the initial ring; in this network we
add links in order to connect each node to its J left and J right nearest nodes. The value J = 5 defines
a fully connected graph.

were used, also due to the fact that the stationary distribution is constant for all nodes.

The dependence of the structure is expressed in the eigenvalues λl.

In Section 1.3.1 we studied circulant graphs whose adjacency and transition matrices are

circulant [28]. A special case of this type of networks are interacting cycles and in this

section we will apply the multi-resetting formalism to this structure using the Google

strategy.

An interacting cycle has a layout based in a simple ring with periodic boundary conditions,

additionally, each node is connected to J nearest neighbors to the left and J to the right,

therefore having degree 2J [18]. In Figure 4.8(a) we observe an interacting cycle with

N = 16 nodes and J = 5 and to the right in (b) the adjacency matrix, where the colored

region represents a link between nodes. The value of J is called the interaction parameter,

in order to have just one edge between two nodes J is restricted to 1 ≤ J ≤ (N − 1)/2.

With J = 1 we recover the simple ring and for the other extreme we have a fully connected

graph as we can see in Figure 4.9.
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Figure 4.10: Global time T as a function of total probability β for the Google search strategy on
interacting cycles with N = 100 and different values of the interaction parameter J .

The eigenvalues of W, λm, can be obtained exactly, as shown in Appendix B, considering

properties of circulant matrices, the complete expression is

λm =
1

2J

[
sin
[
π
N

(m− 1)(2J + 1)
]

sin
[
π
N

(m− 1)
] − 1

]
for m = 2, . . . , N. (4.25)

From the particular value J = 1, we obtain the spectra of a ring with N nodes, using

the trigonometric identities sin(3x) = 3 cos2(x) sin(x)− sin3(x), sin2(x) + cos2(x) = 1 and

2 cos2(x/2) = 1 + cos(x). Consequently, the exact eigenvalues can be substituted in Eq.

(4.24) and we can calculate directly the global MFPT.

In Figure 4.10 we observe several curves that correspond to the global MFPT as a function

of β for different values of J . The behavior of the lines are very different compared to

the other networks and resetting strategies. The value of T (β) tends to decrease as

β approaches to 1. The curves do not show a global minimum, instead they tend to

agglomerate around 102. For low values of J (purple and darker colors) we observe

variation in the order, while for high J (yellow and lighter colors) all curves remain

bounded around 102.

With these three different simulations, we have explored and applied the method to dif-
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ferent strategies and structures, observing that generally, the resetting process might

optimize the network exploration.
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Conclusions

In this work, we deduced analytical results for the stationary distribution and mean

first passage time (MFPT) for Markovian random walks with local transitions and long-

range dynamics with stochastic resetting to multiple nodes in different networks. For an

arbitrary number of resetting nodes, the derivation of the eigenvalues and eigenvectors of

the transition matrix for the dynamics with resetting can be calculated iteratively using

the information of the dynamics without resetting W. The introduction of resetting in

the dynamics affects the stationary distribution and MFPTs, as is easily generalized in

Eq. (4.15).

For Lévy flights with parameter α on an infinite ring with one resetting, the MFPT

behaves proportionally to the power 1+2α of the distance between nodes, similar behaviors

are observed for resetting to two nodes. For Cayley trees, we found that particular values

of the total resetting probability β optimizes the global MFPT. We obtained a similar

result for the random distribution of points where for a small radius the exploration is

benefited by the resetting process. For the interacting cycles with the Google strategy, it

is shown that for greater J the global MFPT reduces having a lower bound at T ≈ N2.

The methods developed in this research provide a general framework to study different

dynamics with resetting to multiple nodes with applications in the modeling of routines

in animal foraging, human mobility, among many others.
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Appendix A

Calculating the MFPT for M
resetting nodes by induction

We can prove by induction that the MFPT for M resetting nodes

〈Tij(~r;~γ)〉 =
δij

P∞j (~r;~γ)
+
R(0)
jj (~r;~γ)−R(0)

ij (~r;~γ)

P∞j (~r;~γ)

=
δij

P∞j (~r;~γ)
+

1

P∞j (~r;~γ)

N∑
l=2

〈j|ψ(M)
l 〉〈ψ̄(M)

l |j〉 − 〈i|ψ(M)
l 〉〈ψ̄(M)

l |j〉
1− ζ(M)

l

(A.1)

reduces to

〈Tij(~r;~γ)〉 =
δij

P∞j (~r;~γ)
+

1

P∞j (~r;~γ)

N∑
l=2

〈j|φl〉〈φ̄l|j〉 − 〈i|φl〉〈φ̄l|j〉
1− z(~γ)λl

, (A.2)

where ζ
(M)
l are the eigenvalues, |ψ(M)

l 〉 are the right eigenvectors and 〈ψ̄(M)
l | the left

eigenvectors of ΠM. In addition, λl are the eigenvalues, |φl〉 are the right eigenvectors

and 〈φ̄l| are the left eigenvectors of W, the transition matrix without resetting.

The key of the problem is the numerator in the fraction inside the sum. In the following

we prove that the equality

〈j|ψ(M)
l 〉〈ψ̄(M)

l |j〉 − 〈i|ψ(M)
l 〉〈ψ̄(M)

l |j〉 = 〈j|φl〉〈φ̄l|j〉 − 〈i|φl〉〈φ̄l|j〉 (A.3)

holds for any s. In this manner, we deduce directly the result in Eq. (A.2). We start by
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rewriting the left eigenvectors for m = 2, 3, . . . , N (Eq. (4.8))

〈ψ̄(s)
m | = 〈φ̄m| (A.4)

and right eigenvectors (Eq. (4.9)) , for a given s > 1 and l = 2, . . . , N

|ψ(s)
l 〉 = |ψ(s−1)

l 〉 − γs

1− ζ(s)l

〈rs|ψ(s−1)
l 〉

〈rs|φ1〉
|φ1〉. (A.5)

We have already shown that Eq. (A.2) holds for s = 1, 2 so we take the last as our base

case. We assume valid for arbitrary s, such that

〈j|ψ(s)
l 〉〈ψ̄

(s)
l |j〉 − 〈i|ψ

(s)
l 〉〈ψ̄

(s)
l |j〉 = 〈j|φl〉〈φ̄l|j〉 − 〈i|φl〉〈φ̄l|j〉. (A.6)

Now, we demonstrate it holds for s+ 1. Directly from Eq. (A.4) we get

〈ψ̄(s+1)
l |j〉 = 〈φ̄l|j〉 (A.7)

for the other factor, we use Eq. (A.5) with s+ 1

〈j|ψ(s+1)
l 〉 − 〈i|ψ(s+1)

l 〉 = 〈j|ψ(s)
l 〉 −

γs+1

1− ζ(s+1)
l

〈rs+1|ψ(s)
l 〉

〈rs+1|φ1〉
〈j|φ1〉

− 〈i|ψ(s)
l 〉+

γs+1

1− ζ(s+1)
l

〈rs+1|ψ(s)
l 〉

〈rs+1|φ1〉
〈i|φ1〉. (A.8)

Observe that 〈j|φ1〉 = 〈i|φ1〉 since |φ1〉 defines the stationary distribution independent of

the initial condition. Therefore the second and fourth term cancel out to get

〈j|ψ(s+1)
l 〉 − 〈i|ψ(s+1)

l 〉 = 〈j|ψ(s)
l 〉 − 〈i|ψ

(s)
l 〉. (A.9)

Now, considering Eq. (A.7) and the induction step, it is direct to see that

〈j|ψ(s+1)
l 〉〈ψ̄(s+1)

l |j〉 − 〈i|ψ(s+1)
l 〉〈ψ̄(s+1)

l |j〉 = 〈j|φl〉〈φ̄l|j〉 − 〈i|φl〉〈φ̄l|j〉, (A.10)

proving it valid for any s.
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Eigenvalues λm for interacting cycles

Consider the adjacency matrix A for an interacting cycle with N nodes and interaction

parameter J . In Section 1.3.1 we briefly introduced the structure of a circulant matrix,

where it was presented as the sum of elementary matrices, as if it were a polynomial (Eq.

(1.12)). Denoting it as p(z) =
∑N

j=0 cjz
j, the spectrum of the circulant matrix can be

found evaluating [28]

λm = p(ξ1−m), (B.1)

where ξ = e−2πi/N .

Since every node has degree 2J , the transition W and adjacency A matrices are circulant

and follow

W =
1

2J
A. (B.2)

From now on, we are going to work with A. Because there are no self loops (as shown in

Figure 4.8(b)), particularly for the first node, c0 = 0, splitting the terms in the polynomial

according to J and rearranging the indexes we have

p(z) =
J∑
j=1

cjz
j +

N−1∑
j=J+1

cjz
j =

J∑
j=1

cjz
j +

N−J−1∑
j=1

cN−jz
N−j. (B.3)

Because the matrix is circulant, the coefficients satisfy cj = cN−j and cj = 1 for j ≤ J
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and zero for the rest, also due to the bound over J we obtain

p(z) =
J∑
j=1

zj + zN
J∑
j=1

z−j (B.4)

We can calculate the terms in a closed form considering as a finite power sum [87]

n∑
j=0

rj =
1− rn+1

1− r
(B.5)

To have the exact expression, we can factor out a z in the first sum, z−1 from the second

and reordering the indexes we get

p(z) = z
J−1∑
j=0

zj + zN−1
J−1∑
j=0

z−j, (B.6)

substituting Eq. (B.5), the result is

p(z) = z
1− zJ

1− z
+ zN−1

1− z−J

1− z−1
. (B.7)

Evaluating ξ(1−m) = e−2πi(1−m)/N according to Eq. (B.1) we obtain

p(ξ1−m) =ξ1−m
1− ξJ−Jm

1− ξ(1−m)
+ ξ(1−m)(N−1)1− ξ−(J−Jm)

1− ξ−(1−m)
(B.8)

=e−2πi(1−m)/N 1− e−2πi(J−Jm)/N

1− e−2πi(1−m)/N
+ e−2πi(1−m)(N−1)/N 1− e2πi(J−Jm)/N

1− e2πi(1−m)/N
(B.9)

=e−2πi(1−m)/N 1− e−2πi(J−Jm)/N

1− e−2πi(1−m)/N
+ e2πi(1−m)/N 1− e2πi(J−Jm)/N

1− e2πi(1−m)/N
, (B.10)

we observe that the second term is the complex conjugate of the first, then we get the

double of the real part. Also, rewriting the complex fraction in terms of the sine function

1− e2πi(J−Jm)/N

1− e2πi(1−m)/N
= eπi(1−m)(J−1)/N sin

(π(1−m)J
N

)
sin
(π(1−m)

N

) . (B.11)
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So, we get

p(ξ1−m) = 2
sin
(π(m−1)J

N

)
sin
(π(m−1)

N

) cos

(
π(1−m)(J + 1)

N

)
(B.12)

= 2
sin
(
π(m−1)J

N

)
sin
(π(m−1)

N

) cos

(
π(m− 1)(J + 1)

N

)
(B.13)

using the formula

sin(a) cos(b) =
1

2
[sin(a+ b) + sin(a− b)] (B.14)

with a = π(m−1)J
N

and b = π(m−1)(J+1)
N

we get

p(ξ1−m) =
sin
(
π(m−1)(2J+1)

N

)
− sin

(
π(m−1)

N

)
sin
(π(m−1)

N

) . (B.15)

Remembering that this are the eigenvalues of A, the eigenvalues of W are

λm =
1

2J

[
sin( π

N
(m− 1)(2J + 1))

sin( π
N

(m− 1))
− 1

]
(B.16)

considering Eq. (B.2).

68



Bibliography

[1] N. van Kampen. Stochastic processes in physics and chemistry. Elsevier, Amsterdam

Boston London, 2007.

[2] I. Florescu. Probability and stochastic processes. John Wiley & Sons, Inc, Hoboken,

New Jersey, 2014.

[3] M. Kijima. Markov processes for stochastic modeling. Chapman & Hall, London New

York, 1997.

[4] R. Motwani. Randomized algorithms. Cambridge University Press, Cambridge New

York, 1995.

[5] G. Pavliotis. Stochastic processes and applications: diffusion processes, the Fokker-

Planck and Langevin equations. Springer, New York, NY, 2014.

[6] G. Kallianpur. Stochastic analysis and diffusion processes. Oxford University Press,

Oxford, 2014.

[7] G. Costanza. Langevin equations and surface growth. Phys. Rev. E, 55:6501–6506,

Jun 1997.

[8] R. Cuerno and M. Castro. Stochastic differential equation for surface growth from a

vapor phase: a moving boundary problem with fluctuations. 2004.

[9] S.-M. Kim, C.-M. Lim, M.-R. Jung, Y.-S. Kim, W.-T. Kwon, C.-N. Ahn, K.-T. Sun,

A. Fumar-Pici, and A. C. Chen. Understanding of stochastic noise. In O. R. W.

II and E. M. Panning, editors, Extreme Ultraviolet (EUV) Lithography VI, volume

9422, pages 167 – 177. International Society for Optics and Photonics, SPIE, 2015.

[10] R. Mahnke. Physics of stochastic processes: how randomness acts in time. Wiley-

VCH John Wiley distributor, Weinheim Chichester, 2009.

69



BIBLIOGRAPHY

[11] K. E. Shuler. Stochastic processes in chemical physics. John Wiley & Sons, Hoboken,

2009.

[12] P. Durbin. Stochastic differential equations and turbulent dispersion. 1983.

[13] G. Lawler. Random walk and the heat equation. American Mathematical Society,

Providence, R.I, 2010.

[14] K. Pearson. The problem of the random walk. Nature, 72(1865):294–294, July 1905.

[15] R. Brown. A brief account of microscopical observations made in the months of June,

July, and August, 1827, on the particles contained in the pollen of plants; and on

the general existence of active molecules in organic and inorganic bodies, volume 1 of

Cambridge Library Collection - Botany and Horticulture, page 463–486. Cambridge

University Press, 2015.

[16] J. Sethna. Statistical mechanics: entropy, order parameters, and complexity. Oxford

University Press, Oxford New York, 2006.

[17] J. Klafter and I. M. Sokolov. Anomalous diffusion spreads its wings. Physics World,

18(8):29–32, aug 2005.

[18] T. M. Michelitsch, A. P. Riascos, B. A. Collet, A. F. Nowakowski, and F. C. G. A.

Nicolleau. Fractional Dynamics on Networks and Lattices. ISTE/Wiley, London,

2019.

[19] T. Sandev. Fractional equations and models: theory and applications. Springer,

Cham, 2019.

[20] R. Klages. Anomalous transport: foundations and applications. Wiley-VCH, Wein-

heim, 2008.

[21] R. Metzler and J. Klafter. The restaurant at the end of the random walk: recent de-

velopments in the description of anomalous transport by fractional dynamics. Journal

of Physics A: Mathematical and General, 37(31):R161–R208, jul 2004.

[22] D. del Castillo-Negrete, B. A. Carreras, and V. E. Lynch. Front dynamics in reaction-
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