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Summary

We study the analytical and numerical solution of the Percus-Yevick integral
equation of a complex hard spheres fluid. To test our findings, we performed
molecular dynamics simulations of a two-species hard spheres fluid. One of
the well established analytical solutions of the Percus-Yevick equation for this
system was derived by R. J. Baxter, for one species [1]. For a mixture [2] of
hard spheres, he generalized his one-species mathematical approach [1]. Un-
fortunately, there are some mathematical incongruities in his derivations, as
we prove in this thesis. Therefore, we review Baxter’s derivations and offer a
correct derivation. In particular, we propose an alternative set of equations to
that given in reference [2]. We, successfully, test our new reformulation of the
n-species Percus-Yevick integral equations against other analytical solutions,
its finite elements numerical solution, and molecular dynamics simulations.
Finally, we demonstrate that the solution derived following Baxter’s steps
does not coincide with the molecular dynamics results.
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Chapter 1

Introduction

Let us consider a system of N particles confined in a volume V . If the num-
ber of particles is small and we know their pair-interaction potential, their
position and velocity (momenta) can be computed by solving the system’s La-
grangian (Hamiltonian). However, if the number of particles is enormous: it
would be challenging—sometimes impossible—to compute the system’s mo-
tion as a function of time by the methods of classical mechanics. In the past,
the Newton’s equations have been numerically solved for a large, but finite
number of particles. In fact, we can obtain macroscopic properties, given the
inter-particles potential, by taking averages over the position and velocities of
particles. This computer experiment approach is known as molecular dynam-
ics [3]. However, as the system’s complexity increases it becomes, sometimes,
impossible to use this method. So, how can we study more complex systems?

On the other hand, is it even useful to analyze this many body systems us-
ing a particle approach? Even though the objects we encounter in our daily
experience are of macroscopic size–large enough to be observed directly–,
they are composed of particles. Most of the many body systems in physics,
chemistry and biology consist of very many particles of atomic, nanoscopic or
microscopic scale, i.e. from atoms (& 1Å) to complex molecules (. 10µm).
Hence, macroscopic parameters such as volume, pressure, energy, entropy and
temperature depend on the distribution, motion and velocity of the systems
particles. Therefore, it is, indeed, worthwhile to analyze such system’s under
a particle’s approach. However, is it useful to know the system’s particles’
position and momenta as a function time? This, of course, depends on what
we want to do; for example, let us consider the following problem: CRISPR-
Cas9 is a genome-editing technology which can be programmed to change
specific genes in living organisms. Even so, its mechanics at the molecular
level is not fully understood yet. Furthermore, since the key steps of the
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2 Chapter 1. Introduction

process have to be traced with precision at tiny time jumps, it turns out that
molecular dynamics simulations can bring some light on how CRISPR-Cas9
works [4]. Therefore, yes, sometimes it is, to some limited extent, useful
knowing the system’s particles position as a function of time. Altogether,
molecular dynamics is a very reliable tool for simulation of microscopic sys-
tems, but simultaneously it might be a very computationally expensive tech-
nique. In addition to molecular computer simulations, there are, of course,
non-equilibrium statistical mechanics theories to deal with time-dependent
phenomena, such as transport theory [5], molecular hydrodynamics [6], and
irreversible thermodynamics [7], based on time-dependent correlation func-
tions.

Hence, in general, knowing the system’s particles position as a function of
time is not so useful. In fact, statistical mechanics has proven that un-
derstanding the behavior of the whole system can be achieved not only by
knowing individually the behavior of particles, but by understanding its in-
teractions as a whole. Quoting Richard Tolman, the complete explanation
"of thermodynamics in terms of ... statistical mechanics is one of the great-
est achievements of physics", nonetheless we haven’t defined what statistical
mechanics is. With this in mind, let us answer our first question, i.e., how
can we study more complex systems?

One of the first ideas that comes into one’s mind with the words “statis-
tical” and “many” is the mathematical law of large numbers. It basically
states: if we were to perform an experiment several times–several as in 10
million of particle collisions or more–the outcomes’ average obtained is close
and even tends to the expected value as we perform more trials. As an exam-
ple, in Figure 1.1, we show our molecular dynamics simulation of a system
of particles consisting of two hard spheres species immersed in a container.
There are no external fields acting over them–the fluid is homogeneous–, the
diameter of each species is two and six angstroms respectively, the molar
concentrations are 1 mol

cm3 ≡ M for both of them, and the temperature is
298K. Figure 1.1 shows the equilibrium total correlation between particles
of species, i and j, hi,j(r), in terms of their distance, r. This illustrates
the law of large numbers, i.e., as we perform more collisions (trials): we ob-
tain a better picture of the expected value of the parameter we are looking
for (compare Fig. 1.1-b, 6x106 collisions, against Fig. 1.1-a, 6x105 trials).
We will properly define hi,j(r) later on this chapter, and discuss extensively
Fig. 1.1, in chapters 5 and 6. Moreover, the total correlation functions were
computed applying Boltzmann’s method [8], in other words, taking the av-
erage over a trajectory on the phase space, i.e., over a sequence of possible
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Figure 1.1: Total correlation functions, hi,j(r) (i, j ∈ {1, 2}), calculated with
molecular dynamics. The system is a two-species of hard spheres fluid, at
a temperature T = 298K. Their diameters and molar concentrations are
d1 = 6Å and d2 = 2Å, and ρ1 = 1M and ρ2 = 1M , respectively. (a) Total
correlation functions after 600,000 collisions. (b) Total correlation functions
after 6,000,000 trials.

positions and velocities, given an initial condition. On the other hand, if
the expected value was computed over an ensemble of systems–a collection
containing system’s copies representing all the possible states at least one
time–Gibbs’s method [8] would’ve been applied. By definition, the theory of
statistical mechanics consists of statistical methods and probability theory
applied to large assemblies of microscopic entities. It does not assume or
postulate any natural laws, but explains the macroscopic behavior of nature
from the behavior of such ensembles.

Therefore, the theory of equilibrium statistical mechanics predicts the ex-
pected state of a system. Given initial conditions, we can find an equilibrium
state–an average of what it is encountered in nature–however, equilibrium
statistical mechanics is not concerned with each particles’ behavior.

Let us elaborate on Gibbs’s method by explaining the concept of phase space,
Γ. Imagine a system of N particles; let Γ be the subset of R6N comprising all
system’s accessible positions and momenta. A microstate is an element of Γ
governed by Hamilton’s equations. A system’s macrostate M in equilibrium
is described by some state functions such as energy, temperature, pressure
and the number of particles. In other words, it is a set comprising tuples
whose entries are the state functions’ values. To grasp these concepts, let
us state the following example. We flip twice a coin, there are four possible
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outcomes or microstates with the same probability (principle of equal a priori
probability):

{(head, tail), (head, head), (tail, tail), (tail, head)},

but just three macrostates (not equally probable): two heads, two tails or one
head and one tail, i.e., microstates are different ways a system can achieve
a macrostate. Gibbs proposed an ensemble (a collection) of microstates.
It contains an infinite number of copies of our system, where each possible
microstate is represented at least one time. Therefore, there is a distribution
of the microstates in the ensemble. Consequently, what we look for is to
compute the expected value of a macroscopic property, X, using a probability
density function, f , over the phase space 1.

E[X] =
∫

Γ
X(q, p)f(q, p)dqdp

However, how do we find such functions? We could make assumptions over f
depending on the system to be modeled–choosing the ensemble–, but, finding
X, which describes the system’s thermodynamic properties is necessary.

Assuming a system of particles interacting via pair-wise additive forces–since
more real assumptions result in more expensive computations–, thermody-
namic properties can be expressed as functionals of the radial distribution
function, gi,j(r), which is the expected number of j−particles at distance
r from an i−particle divided by the number of j−particles at distance r
from an i−particle if the fluid was an ideal gas. It measures how the fluid’s
structure deviates from an ideal gas–complete randomness–under the same
conditions.

Before talking about such a relationship, let us introduce the reduced distri-
bution function, defined as,

f (n)(qn, pn; t) = N !
(N − n)!

∫ ∫
f(q, p; t)dq(N−n)dp(N−n),

where qn = (q1, q2, .., qn), dq(N−n) = dqn+1dqn+2 · · · dqN , pn = (p1, p2, .., pn),
and dp(N−n) = dpn+1dpn+2 · · · dpN . f (n)(qn, pn; t) is the probability that at
time t the system’s first n general coordinates lie in the volume element
dp(n)dq(n) irrespective of the integrated coordinates and momenta of the (N−

1Note that in this thesis only equations which will be referred to afterwards will be
numbered.
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n) particles2. Let us define ρ(n) by integrating f (n) with respect the momenta,

f (n)(qn) = Aρ(n)(qn),

where A is a constant. Subsequently, the n-particle distribution function,
g(n), is defined as

g(n)(q1, q2, ..., qn) = ρ(n)(q1, q2, ..., qn)∏n
i=1 ρ

(1)(qi)
.

If the fluid is homogeneous, then it reduces to

ρng(n)(q1, q2, ..., qn) = ρ(n)(q1, q2, ..., qn).

If the fluid is also isotropic–its properties are not dependent on the direction
along which they are measured–, the pair distribution function depends on
the distance between particles and becomes the radial distribution function,
g(2)(|qi − qj|) = gi,j(r). Nevertheless, how do we compute it? First, let us
introduce the total correlation functions, hi,j, defined as

hi,j(r) = gi,j(r)− 1, (1.1)

and the direct correlation functions, ci,j(r), defined by the integral equations,
known in the literature as the Ornstein-Zernike (OZ) equations form species,

hi,j(r) = ci,j(r) +
m∑
k=1

ρk

∫
ci,k(r − r′)hk,j(r′)dr′. (1.2)

General liquid theories have been developed from different balance equations,
such as the the Ornstein-Zernike equations. For a review of these theories
see, for example, reference [8]. In this thesis, we focus on solving the integral
equations 1.2. Thus, expected values of thermodynamic properties can be
computed if the total correlation function or the direct correlation functions
are found. For the expressions of the thermodynamic properties the reader
is referred to [5]. In order to solve equations 1.2, we need to make assump-
tions or approximations of the direct correlations functions, known in the
literature as closure approximations. Some of them are the Percus-Yevick
approximation (PY) [9, 1, 10] Hyper-netted Chain approximation (HNC)
[8], and the Mean Spherical approximation (MSA) [11]. For a system of
hard-spheres the MSA and PY approximations become equal. Different ap-
proximations can be combined to obtain new liquid theories. For example,if

2Since the fluid is homogeneous it’s computed for one subset and multiplied by the
number of subsets containing n particles
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in equation 1.2 the MSA is taken for ci,k(r − r′), and the HNC approxima-
tion is used for ci,j(r), the so-called HNC/MSA equation is obtained [12, 13].
The HNC/MSA and MSA integral equations have been widely used in soft-
condensed matter physics systems to obtain the correlation functions of, e.g.,
simple liquids, electrolytes, colloid dispersions, etc. Two simple models have
been used to study a large variety of condensed matter fluids: hard spheres
and charged hard spheres.

Equation 1.2 is an integral equation with two unknown functions: hi,j(r)
and ci,j(r). To solve this system of equations, we need an expression for the
direct correlation function. The PY approximation is given by

ci,j(r) =
{
e−βWi,j(r) − e−β[Wi,j(r)−ui,j(r)]

}
= gi,j(r)[1− eβui,j(r)], (1.3)

while for the MSA ci,j(r) = −βui,j(r). For a system of hard spheres

ui,j(r) =

∞ r < ai,j

0 r > ai,j,
(1.4)

where ui,j(r) is the unscreened interaction potential between two particles
of the fluid, Wi,j(r) is their corresponding potential of mean force, and
ai,j ≡ (ai + aj)/2, such that ai and aj are the molecular diameters of the
particles of species i and j, respectively. Hence, inserting equation 1.3 or
equation 1.4, in equation 1.2, we obtain the MSA integral equation. How-
ever, for charged hard spheres, equations 1.3 and 1.4 are not anymore equiva-
lent. An important advantage of this approach is that an analytical solution
of the direct correlation function for hard spheres fluids exists, thus provid-
ing closed formulas. Although, here we will not go any further with the
HNC/MSA equation, let us just add that the HNC direct correlation func-
tion is easily obtained from equation 1.3, by expanding to first order the
second exponential in the curly brackets. Hence, as pointed out above, the
HNC/MSA equation is found by substituting this correlation function in the
first term of the right hand side of equation 1.2, while the MSA correlation
is used inside its integral term.

The Ornstein-Zernike equation, with the Percus-Yevick approximation for
fluid mixtures has been analytically studied by R. J. Baxter [1, 2], L. Blum
[14], and J. L. Lebowitz [15], among other authors. Having analytical expres-
sions for the bulk direct correlation function of hard spheres or charged hard
spheres have proved to be a good approach for the solution of integral equa-
tions derived for more complex fluids, for example, in the study of mixtures
of charged nano-particles or colloids [13], where the MSA analytical direct
correlation functions are used [11].
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In this thesis we are interested in the solution of the OZ equation with the
Percus-Yevick approximation for a mixture of hard spheres. To completely
understand what the autor wanted to do in reference [1], some mathematical
theory is needed. Hence, in chapter 2 a mathematical background is pre-
sented, the majority of it is not demonstrated, but it’s referenced. In chapter
3, the theory for the Wiener-Hopf factorization method is presented, most of
it, is demonstrated and the gaps of reference [16] are filled. In chapter 4, we
obtain the main result from reference [1] using the theory from the previous
chapters; moreover, it also contains the correct, Baxter couldn’t arrive to one,
and complete generalization from [2] rigorously proved. This generalization
is a set equations, see equations 4.24 and 4.25, that connect the total and
direct correlation functions using a function denoted by Qi. For the case of
one species this set of equations allows us to find an analytical solution for
the direct correlation function, however for more than one species this set
of equations does not allow us to find it. Nevertheless, this generalization
provides a new optic to the problem of computing the total and direct cor-
relation functions, in fact it might be better to work with the functions Qi:
given that severe changes in the direct correlation function might produce
similar total correlation functions, as it can be seen in section 6.3.2 (figures
6.3.2 and 6.3.2).

Why is this finding relevant? Assume an non-homogeneous fluid comprised
by one charged sphere in the center and two species of charged hard spheres–
where the difference between diameters is big–around it. The method to
obtain the system’s total correlation functions [13] uses as input the direct
correlations functions estimated with MSA, but those analytical expressions
[11] were based on [2] and [10]! So it might be worth to redo the compu-
tations involved in obtaining those results. It becomes more relevant since
some of the steps are not so transparent, as discussed in section 6.1.2.

In chapter 5, we present the total correlations functions for a fluid comprised
of two species at temperature, T = 298K, the particles are hard spheres with
no long-range inter-molecular forces. Its diameters are d1 = 6Å and d2 = 2Å.
Its molar concentrations are ρ1 = 1M and ρ2 = 1M . The total correlation
functions were obtained using two methods, molecular dynamics and finite
element. We compare them and use as benchmark the finite element total
correlation functions in the next chapter. Finally, in chapter 6, we discuss
Hiroike’s analytical expressions for the direct correlation functions [10] and
compare them to our numerical results. For a binary mixture we validate the
main result of chapter 4, additionally, we compare Baxter’s work [2], arriving
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to an analytical expression for the direct correlations functions for a binary
mixture, against our numerical results. In summary, Baxter’s work is wrong,
since the direct correlation functions are very different from our benchmark.
Hiroike’s analytical solution coincide with our benchmark, but a crucial step
is obscure in his work, as commented in section 6.1.2.

As for a synthesis of our contributions:

1. We rigorously proved Baxter’s result [1] for one species in section 4.1.

2. We followed Baxter’s steps in [2] to obtain analytical expression for the
direct correlation function, in the case of a binary mixture in section
6.3.

(a) We used these analytical expressions as counterexample to prove
he was wrong, when we compared them against our results from
molecular dynamics and finite element.

(b) We used these analytical expressions as a way to illustrate how
very different direct correlation functions used to solve the OZ
equation produce similar total correlation functions.

3. We rigorously derived what Baxter intended to do in [2]. With that
we arrived to a set of equations, which reformulate de OZ equation in
section 4.2.

(a) We validated this set of equations for a binary mixture. We did
it by comparing them with our results from molecular dynamics
and finite element in section 6.2.



Chapter 2

Mathematical background

Let us do a review of definitions, propositions and theorems that will be used
in chapter 3. Most of them are from real and complex analysis, nevertheless,
there are some definitions that will be used in all the document.

2.1 Complex analysis
Let us recall useful propositions from complex analysis, they will be used in
section 3.1.1. The statements and proofs are found in references [17, 18, 19,
20].

Definition 2.1.1 Let L : [a, b] ⊆ R → C be a curve; we say L is a Jordan
curve if it is injective when restricted to (a, b).

Proposition 2.1.2 Let G be the interior of closed rectifiable Jordan curve
L; if f is analytic in G and continuous in the frontier of G, then∫

L
f(z)dz = 0.

Definition 2.1.3 Let δ : [a, b] ⊆ R → C be a curve; we say δ is an arc, if
a 6= b. We say β is an open arc if β is the restriction of δ to (a, b). Moreover,
it is rectifiable if it is of finite length.

Theorem 2.1.4 Let f1 and f2 be functions of a complex variable such that
f1 is analytic in G1 and f2 is analytic in G2, where G1 ∩ G2 = ∅, but share
an accessible open and rectifiable Jordan boundary arc δ. If f1 is continuous
in G1 ∪ δ, f2 is continuous in G2 ∪ δ and for all z ∈ δ f1(z) = f2(z), then

9
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there exists a function f analytic in G1 ∪ δ ∪G2 such that

f(z) =


f1(z) z ∈ G1

f1(z) = f2(z) z ∈ δ
f2(z) z ∈ G2.

Theorem 2.1.5 Let f be an analytic function in a closed disc of radius R
with center in the origin. Suppose r < R, then

max|z|=r|f(z)| ≤ 2r
R− r

sup|z|≤RRe(f(z)) + R + r

R− r
|f(0)|.

Theorem 2.1.6 Let A and C be positive constants and F an entire function.
If

1. for all z ∈ C |F (z)| ≤ CeA|z| and

2.
∫∞
−∞ |F (x)|2dx <∞,

then there exists f ∈ L2(−A,A) such that for all z ∈ C

F (z) =
∫ A

−A
f(t)eitzdt.

2.2 Preliminaries
This section contains the definitions that will be used in the document. The
propositions where we prove that some set is a ring are useful when we
engage in simplifying expressions where the elements are used. In the Fourier
subsection we give a recount of used definitions. Finally, the propositions and
theorems are from real analysis and they will be used shortly after stating
them or in chapter 3. All of the proofs were made by us, in some not all, we
filled the blanks left by Krein in reference [16].

2.2.1 Foundations
Definition 2.2.1 Let L be the set

L =
{
f : R→ C

∣∣∣∣∫ ∞
−∞
|f(t)|dt is finite

}
with a norm defined as ||f ||L =

∫∞
−∞ |f(t)|dt, and a product defined as

f1 ∗ f2(t) =
∫ ∞
−∞

f1(t− s)f2(s)ds =
∫ ∞
−∞

f1(s)f2(t− s)ds.
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Remark 2.2.2

||f1 ∗ f2||L =
∫ ∞
−∞

∣∣∣∣∫ ∞
−∞

f1(t− s)f2(s)ds
∣∣∣∣ dt

≤
∫ ∞
−∞

∫ ∞
−∞
|f1(t− s)f2(s)| dsdt

=
∫ ∞
−∞
|f2(s)|

∫ ∞
−∞
|f1(r)| drds

=
∫ ∞
−∞
|f2(s)| ||f1||Lds

= ||f1||L ||f2||L.

Proposition 2.2.3 The set L equipped with the usual sum of functions, the
product defined above and the zero function as additive identity is a ring.

Proof. First, let us show (L,+, 0) is an abelian group.
1. To be demonstrated, ∀ a, b ∈ L a+ b ∈ L.

Let a, b ∈ L.∫ ∞
−∞
|(a+ b)(t)|dt =

∫ ∞
−∞
|a(t) + b(t)|dt

≤
∫ ∞
−∞
|a(t)|dt+

∫ ∞
−∞
|b(t)|dt

< ∞,

thus a+ b ∈ L.

2. To be demonstrated, ∀ a, b, c ∈ L (a+ b) + c = a+ (b+ c).
Let a, b, c ∈ L and x ∈ R. Since C is a field,

(a(x) + b(x)) + c(x) = a(x) + (b(x) + c(x).

Consequently, (a+ b) + c = a+ (b+ c).

3. To be demonstrated, ∀a, b ∈ L a+ b = b+ a.
Let a, b ∈ L and x ∈ R. Seeing that C is a field,

a(x) + b(x) = b(x) + a(x).

Hence, a+ b = b+ a.

4. To be demonstrated, ∃ e ∈ L, such that ∀a ∈ L a+ e = e+ a = a.
Let 0 be the zero function and a ∈ L: 0 ∈ L. Since we proved commu-
tativity it suffices to prove a+ 0 = a. Suppose x ∈ R, recognizing that
C is a field:

a(x) + 0(x) = a(x) + 0 = a(x).
Therefore, a+ 0 = a.
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5. To be demonstrated, ∀a ∈ L ∃ b ∈ L, such that a+ b = e = b+ a.
Let a ∈ L, i.e.

∫∞
−∞ |a(t)|dt = cte < ∞, then −

∫∞
−∞ |a(t)|dt < ∞;

−a ∈ L. Let x ∈ R. Since C is a field,

a(x) + b(x) = b(x) + a(x) = 0(x) :

a+ b = b+ a = 0.

Now let us see (L, ∗) is a semigroup.

1. To be demonstrated, ∀a, b ∈ L a ∗ b = b ∗ a.
Let a, b ∈ L and t ∈ R.

a ∗ b(t) =
∫ ∞
−∞

a(t− s)b(s)ds

= −
∫ −∞
∞

a(x)b(t− x)dx

=
∫ ∞
−∞

b(t− x)a(x)dx

= b ∗ a(t).

2. To be demonstrated, ∀a, b, c ∈ L (a ∗ b) ∗ c = a ∗ (b ∗ c).
Let a, b, c ∈ L and t ∈ R.

(a ∗ b(t)) ∗ c(t) =
(∫ ∞
−∞

a(t− s)b(s)ds
)
∗ c(t)

=
(∫ ∞
−∞

b(t− x)a(x)dx
)
∗ c(t)

=
∫ ∞
−∞

∫ ∞
−∞

b(t− x− s)a(x)dxc(s)ds

=
∫ ∞
−∞

a(x)
∫ ∞
−∞

b(t− x− s)c(s)dsdx

= a(t) ∗
(∫ ∞
−∞

b(t− s)c(s)ds
)

= a(t) ∗ (b ∗ c(t)) .

Finally let us show ∀a, b, c ∈ L a∗(b+c) = (a∗b)+(a∗c). Suppose a, b, c ∈ L
and t ∈ R.

(a ∗ b(t)) + (a ∗ c(t)) =
(∫ ∞
−∞

a(t− s)b(s)ds
)

+
(∫ ∞
−∞

a(t− s)c(s)ds
)

=
∫ ∞
−∞

a(t− s) [b(s) + c(s)] ds

= a(t) ∗ (b+ c(t)) :

a ∗ (b+ c) = (a ∗ b) + (a ∗ c). �
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Definition 2.2.4 Let us define the following sets:

L+ = {f ∈ L | if t < 0, then f(t) = 0}

and

L− = {f ∈ L | if t > 0, then f(t) = 0}.

Proposition 2.2.5 (L+,+, ∗, 0) and (L−,+, ∗, 0) are sub rings of L.

Proof. Let us show it for (L+,+, 0, ∗), the other one is analogous.

1. To be demonstrated, ∀a, b ∈ L+ a− b ∈ L+.
Let a, b ∈ L+ and t < 0. Since C is a field,

(a− b)(t) = a(t)− b(t)
= 0 + 0
= 0.

Furthermore, in view of L being a commutative ring, a−b ∈ L: a−b ∈
L+.

2. To be demonstrated, ∀a, b ∈ L+ a ∗ b ∈ L+.
Considering L is a commutative ring, a ∗ b ∈ L. Let t < 0.

a ∗ b(t) =
∫ ∞
−∞

a(t− s)b(s)ds

=
∫ 0

−∞
a(t− s)b(s)ds+

∫ ∞
0

a(t− s)b(s)ds

= 0 + 0 :

a ∗ b ∈ L+.

�

2.2.2 Fourier transform
Definition 2.2.6 Let f be a real valued function; we define the Fourier
transform of f as f̂(y) =

∫∞
−∞ f(x)eixydx if f̂(y) is finite.

Theorem 2.2.7 Suppose a function g exists such that,

g(x) = 1
2π

∫ ∞
−∞

f̂(t)eixtdt x ∈ R.

If f ∈ L and f̂ ∈ L, then g is continuous and f = g except in a set of
measure zero. If f is continuous: f = g.
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2.2.3 Useful propositions and theorems
Proposition 2.2.8 If f ∈ L, f̂(y)→ 0 when |y| → ∞.

Proof. Suppose f ∈ L:

f̂(y) =
∫ ∞
−∞

f(x)eiyxdx

=
∫ ∞
−∞

f

(
t+ π

y

)
eiy(t+

π
y )dt

=
∫ ∞
−∞

f

(
x+ π

y

)
eiyxeiπdx

= −
∫ ∞
−∞

f

(
x+ π

y

)
eiyxdx,

then

2f̂(y) =
∫ ∞
−∞

[
f(x)− f

(
x+ π

y

)]
eiyxdx.

|f̂(y)| =
∣∣∣∣∣12
∫ ∞
−∞

∫ ∞
−∞

[
f(x)− f

(
x+ π

y

)]
eiyxdx

∣∣∣∣∣
≤ 1

2

∫ ∞
−∞

∣∣∣∣∣
[
f(x)− f

(
x+ π

y

)]∣∣∣∣∣ dx.
By the dominated convergence theorem we can move the limit inside the
integral: for all ε > 0 there exists a Y > 0 such that for all |y| > Y ||f̂(y)| −
0| < ε. It follows that |f̂(y)| < ε, moreover f̂(y)→ 0 given that |y| → ∞. �

Remark 2.2.9 The Fourier transform of f , f̂ , is continuous.

Remark 2.2.10 It’s well known that given f and g ∈ L, the Fourier trans-
form of h = f ∗ g is ĥ = f̂ ĝ.

Definition 2.2.11 Let us define de following set:

R0 = {f̂ | f ∈ L}.

Proposition 2.2.12 The algebraic structure (R0,+, ·, 0) is a ring where · is
the usual product of functions.

�
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Definition 2.2.13 Let R be a set such that

R =
{
c+

∫ ∞
−∞

f(t)eitydt | c ∈ C, f ∈ L
}
.

Remark 2.2.14 F ∈ R:

F(y) = c+
∫ ∞
−∞

f(t)eitydt

=
∫ ∞
−∞

[cδ(t) + f(t)] eitydt

where δ is Dirac’s delta function. Therefore,

R =
{∫ ∞
−∞

[cδ(t) + f(t)] eitydt | f ∈ L, c ∈ C
}
,

i.e., R contains all the integrable functions’ Fourier transformation of the
form cδ + f .

Proposition 2.2.15 Let L̃ = {cδ + f | f ∈ L, c ∈ C}; (R,+, ·, 0, 1) and
(L̃,+, ∗, 0, δ) are rings.

�

Definition 2.2.16 We denote the upper and lower complex plane as

Π+ = {z ∈ C | Im(z) ≥ 0} and Π− = {z ∈ C | Im(z) ≤ 0}.

Definition 2.2.17 Let us define the following sets:

R+ =
{
c+

∫ ∞
0

f(t)eitydt | c ∈ C, f ∈ L+

}
⊂ R

R0
+ =

{∫ ∞
0

f(t)eitydt | f ∈ L+

}
⊂ R+

R− =
{
c+

∫ 0

−∞
f(t)eitydt | c ∈ C, f ∈ L−

}
⊂ R

R0
− =

{∫ 0

−∞
f(t)eitydt | f ∈ L−

}
⊂ R−.

Proposition 2.2.18 If F+ ∈ R+ and F− ∈ R−, they can be extended to
holomorphic functions in the interior and continuous on Π±.
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Proof. Suppose F+ ∈ R+, i.e., F+(y) = c+
∫∞

0 f(t)eitydt and let z ∈ C.∣∣∣∣c+
∫ ∞

0
f(t)eitzdt

∣∣∣∣ =
∣∣∣∣c+

∫ ∞
0

f(t)eitz1e−tz2dt
∣∣∣∣

≤ |c|+
∫ ∞

0
|f(t)|e−tz2dt

if T is big enough ≤ |c|+
∫ T

0
|f(t)|e−tz2dt+

∫ ∞
T
|f(t)|dt

< ∞.

∣∣∣∣c+
∫ ∞

0
itf(t)eitzdt

∣∣∣∣ =
∣∣∣∣c+

∫ ∞
0

itf(t)eitz1e−tz2dt

∣∣∣∣
≤ |c|+

∫ ∞
0
|tf(t)|e−tz2dt

if T is big enough ≤ |c|+
∫ T

0
|tf(t)|e−tz2dt+

∫ ∞
T
|f(t)|dt

< ∞.

Using remark 2.2.9 F+ can be extended to a holomorphic function in the
interior and continuous on Π+. Similarly, F− is a holomorphic function in
the interior and continuous on Π−. �

Examples.

1. 1
y−z = −i

∫∞
0 e−izteiytdt ∈ R0

+ ⊂ R+ Im(z) < 0. Im(z) < 0 is asked
so f(t) = e−izt = e−iz1tez2t ∈ L+ ⇐⇒ Im(z) < 0. Using proposition
2.2.18,

1
ζ − z

= −i
∫ ∞

0
e−izteiζtdt.

2. 1
y−z = i

∫ 0
−∞ e

−izteiytdt ∈ R0
− Im(z) > 0. Im(z) > 0 is asked so

f(t) = e−izt = e−iz1tez2t ∈ L− ⇐⇒ Im(z) > 0. Using proposition
2.2.18,

1
ζ − z

= i
∫ 0

−∞
e−izteiζtdt.

Proposition 2.2.19 Suppose F ∈ R0
+ and consider its extension to Π+. If

z = Reiθ and θ ∈ [0, π], then |F(z)| → 0 uniformly as R→∞.

Proof. Let F ∈ R0
+ and consider its extension to Π+, i.e.,

F(z) =
∫ ∞

0
f(t)eiztdt
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where f ∈ L+. Let ε > 0 and consider g(x) =

1 x ∈ (a, b)
0 otherwise

: for b > a ≥ 0

∫ ∞
0

g(x)ei(Rcosθ+iRsenθ)xdx =
∫ b

a
ei(Rcosθ+iRsenθ)xdx

= eiRcos(θ)be−Rsen(θ)b − eiRcos(θ)ae−Rsen(θ)a

iR(cosθ + isenθ) .

∣∣∣∣∫ ∞
0

g(x)ei(Rcosθ+iRsenθ)dx
∣∣∣∣ ≤ e−Rsen(θ)b

R
+ e−Rsen(θ)a

R

given that sin(θ) ≤ 1 for θ ∈ [0, π] ≤ e−Rb

R
+ e−Ra

R
if R→∞ → 0.

Let g be a simple function, g = ∑n
i=1 ciχ(a,b). Using additive properties of

limits and integrals, we get the same result. Consequently, there existsN ∈ N
such that if R > N , ∣∣∣∣∫ ∞

0
g(x)eizxdx

∣∣∣∣ < ε

2 .

Since the simple functions are dense in L [17],∫ ∞
−∞
|f(t)− g(t)| dt < ε

2 .∫ ∞
0
|f(t)− g(t)| dt ≤

∫ ∞
−∞
|f(t)− g(t)| dt

<
ε

2 .

For θ ∈ [0, π]∫ ∞
0
|f(t)− g(t)| e−Rsen(θ)xdt ≤

∫ ∞
0
|f(t)− g(t)| e−Rxdt

given R big enough ≤
∫ ∞

0
|f(t)− g(t)| dt

<
ε

2 :

∣∣∣∣∫ ∞
0

f(x)eizxdx
∣∣∣∣ =

∣∣∣∣∫ ∞
0

(f − g)(x)eizxdx+
∫ ∞

0
g(x)eizxdx

∣∣∣∣
≤

∫ ∞
0
|f(t)− g(t)| e−Rsen(θ)xdt+

∣∣∣∣∫ ∞
0

g(x)eizxdx
∣∣∣∣

< ε .

�
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Proposition 2.2.20 Suppose F ∈ R0
− and consider its extension to Π−. If

z = Reiθ and θ ∈ [π, 2π], then |F(z)| → 0 uniformly as R→∞.

Proof. The demonstration is analogous to the previous proposition. �

Proposition 2.2.21 Let F ∈ R+, in other words there exists f ∈ L+ such
that F = c +

∫∞
0 f(t)eiztdt. If we consider the extension of F to Π+, thus

F(z) ≤ M for all z ∈ Π+ where M > 0. In a similar manner, if F ∈ R−,
then F is bounded on Π−.

Proof. ∣∣∣∣c+
∫ ∞

0
f(t)eiztdt

∣∣∣∣ ≤ |c|+
∣∣∣∣∫ ∞

0
f(t)eiztdt

∣∣∣∣
≤ |c|+ ε

= M.

�

Proposition 2.2.22 Let F ∈ R+, in other words there exists f ∈ L+ such
that F = c +

∫∞
0 f(t)eiztdt. If we consider the extension of F to Π+, F

is continuous on Π+ ∪ {∞}. In a similar manner, if F ∈ R−, then F is
continuous on Π− ∪ {∞}.

Proof. Let F ∈ R+, in other words there exists f ∈ L+ such that F =
c+

∫∞
0 f(t)eiztdt. Consider the extension of F to Π+. Since it is holomorphic

on Π+, we just need to check it is continuous on∞. Let {zn} be a succession
of points tending to ∞. Let ε > 0, by proposition 2.2.19 there exists R > 0
and N a natural number such that for all n > N |

∫∞
0 f(t)eiztdt| < ε:

|F(zn)− c| =
∣∣∣∣c+

∫ ∞
0

f(t)eizntdt− c
∣∣∣∣

=
∣∣∣∣∫ ∞

0
f(t)eizntdt

∣∣∣∣
< ε.

Consequently, F is continuous. �
The following theorem is of great importance; it won’t be demonstrated, but
reference to it can be found in [16].

Theorem 2.2.23 Let G : C → C be a holomorphic function in D ⊂ C and
F ∈ R such that for all y ∈ R ∪ {−∞,∞} F(y) ∈ D, therefore G ◦ F ∈ R.
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Definition 2.2.24 Let α : R ∪ {−∞,∞} → C be a closed curve oriented
in the complex plane with respect to the origin, i.e., α(∞) = α(−∞) and
(∀t α(t) 6= 0). We define its index as

ind(α) = 1
2π arg(α(t))|∞−∞ .

Remark 2.2.25 If the curve α admits an extension over Π+ (Π−), i.e.,
is holomorphic in the interior and continuous in the region including the
frontier–even the point at infinity–, thus ind(α) is the number of zeros (the
number of zeros with negative sign) where every zero is counted as much as
its multiplicity.

Corolary 2.2.26 Suppose F ∈ R such that lim|y|→∞F(y) = 1 for all y ∈ R
F(y) 6= 0 and ind(F) = 0, then for an adequate logarithm branch there exists
l ∈ L such that

ln (F(y)) =
∫ ∞
−∞

l(t)eiytdt y ∈ R.

Proof. With the hypothesis we can define a branch where the logarithm is
analytic, and the image of F stays in it. Using theorem 2.2.23 there exists
l ∈ L such that

ln (F(y)) = c+
∫ ∞
−∞

l(t)eiytdt y ∈ R, c ∈ C.

We must prove c = 0, first let us show

lim
|y|→∞

ln (F(y)) = 0.

Let ε > 0. Since ln[ ] is continuous in 1, for ε there exists δ such that for
all |z − 1| < δ |lnz| < ε. Given that F(y) → 1 when |y| → ∞, for δ there
exists a Y > 0 such that for all |y| > Y |F − 1| < δ. Since |F − 1| < δ,
|ln [F(y)] | < ε: for all ε > 0 there exists Y > 0 such that for all |y| > Y
|ln [F(y)] | < ε, in other words ln [F(y)] → 0 as |y| → ∞. Substituting our
findings,

0 = ln (F(∞))
= c+ 0 :

ln (F(y)) =
∫ ∞
−∞

l(t)eiytdt y ∈ R, c ∈ C.

�

The following theorems won’t be demonstrated, reference to them can be
found on [16], even though they are of great importance.
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Theorem 2.2.27 Let G : C→ C be a function holomorphic on D ⊂ C and
F ∈ R+. Let us consider its extension to Π+; if for all z ∈ Π+ ∪ {−∞,∞}
F(z) ∈ D, then G ◦ F ∈ R+.

Theorem 2.2.28 Let G : C→ C be a function holomorphic on D ⊂ C and
F ∈ R−. Let us consider its extension to Π−; if for all z ∈ Π− ∪ {−∞,∞}
F(z) ∈ D, then G ◦ F ∈ R−.



Chapter 3

The factorization problem

As pointed out in the introduction, we are interested in finding the radial
distribution function gi,j(r); since gi,j(r) − 1 = hi,j(r), one approach is to
solve the system of integral equations

hi,j(|r|) = ci,j(|r|) +
M∑
k=1

ρk

∫
ci,k(|r − r′|)hk,j(|r′|)dr′

called Ornstein-Zernike for M species. We have M equations and 2M un-
knowns (hi,j, ci,j). We will start by assuming that c and h behave well–so
their Fourier transformation exists–, and M = 1:

h(|r|) = c(|r|) + ρ
∫
c(|r − r′|)h(|r′|)dr′.

After some computations, we can use the Wiener-Hopf factorization to solve
it. In this chapter, we will fill the gaps of some theory exposed in references
[16, 21]. In the next chapter, we will follow Baxter’s steps [1] and see what
follows for the general case, furthermore we will complete and correct what
he did in reference [2].

3.1 Factorization on the line
Definition 3.1.1 A factorization of a continuous function,

f : R ∪ {−∞,∞} → C,

is a representation of the form

f(y) = f+(y)f−(y) y ∈ R ∪ {−∞,∞}

21
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where f+ and f− are holomorphic functions in the interior and continuous
on Π+ and Π−, respectively, and f+(±∞) = 1 = f−(±∞). We say it’s a
proper factorization if at least one factor f+ or f− is different from zero in
their domain (Π+ and Π−). Furthermore, it’s canonical if both factors are
different from zero in its domain. On mathematical notation

1. its proper ⇐⇒ (∀ z ∈ Π+ f+(z) 6= 0) o (∀ z ∈ Π− f−(z) 6= 0) and

2. its canonical ⇐⇒ (∀ z ∈ Π+ f+(z) 6= 0) and (∀ z ∈ Π− f−(z) 6= 0).

Remark 3.1.2 We will be interested in studying functions of the form f(y) =
1− ĝ, with g ∈ L. Using proposition 2.2.8, f → 1 as |y| → ∞.

Theorem 3.1.3 Let f ∈ R be a function such that lim|y|→∞ f(y) = 1. The
function f admits a canonical factorization if and only if

∀y ∈ R ∪ {−∞,∞} f(y) 6= 0 and ind(f) = 0.

Moreover, if f admits a canonical factorization, then it is the only proper
factorization. In addition, the factors f+ and f− are elements of R+ and
R−, respectively, and f+, f− → 1 as |y| → ∞.

Proof. Let f ∈ R such that lim|y|→∞ f(y) = 1. First, suppose f admits a
canonical factorization. Let us assume there exists y ∈ R ∪ {−∞,∞} such
that f(y) = 0: 0 = f(y) = f+(y)f−(y). Wherewith, f+(y) = 0 or f−(y) = 0.
But that is a contradiction, since the factorization was canonical. Then, for
all y ∈ R ∪ {−∞,∞} f(y) 6= 0. Given that arg(z1z2) = arg(z1) + arg(z2),
ind(f) = ind(f+) + ind(f−). Considering that f+ and f− have no zeros in
Π+ and Π−, respectively, and using remark 2.2.25,

ind(f) = 0 + 0 = 0.

Suppose
∀y ∈ R ∪ {−∞,∞} f(y) 6= 0 y ind(f) = 0.

Using corollary 2.2.26 there exists l ∈ L such that for all y ∈ R

f(y) = exp
(∫ ∞
−∞

l(t)eiytdt
)
.

Let us define the following functions:

l+(t) =

l(t) t ≥ 0
0 t < 0

and l−(t) =

0 t > 0
l(t) t ≤ 0

.
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In view of∫ ∞
0
|l(t)|dt ≤

∫ ∞
−∞
|l(t)|dt <∞ and

∫ 0

−∞
|l(t)|dt ≤

∫ ∞
−∞
|l(t)|dt <∞ l+, l− ∈ L,

by inspection l+ ∈ L+ and l− ∈ L−:∫ ∞
0

l+(t)eiytdt ∈ R+ and
∫ 0

−∞
l+(t)eiytdt ∈ R−.

For all y ∈ R we define:

f+(y) = exp
(∫ ∞

0
l+(t)eiytdt

)
and f−(y) = exp

(∫ 0

−∞
l−(t)eiytdt

)
.

Using proposition 2.2.18 we can extend f+ to Π+ and f− to Π−. Let us
consider that

1. ∫ ∞
0

l+(t)eiytdt ∈ R+ and
∫ 0

−∞
l+(t)eiytdt ∈ R−

can be extended to Π+ and Π−, respectively, and

2. exp( ) is holomorphic in C.

Therefore, by theorems 2.2.27 and 2.2.28: f+ ∈ R+ and f− ∈ R−. Further-
more,

f+f− = exp
(∫ ∞

0
l+(t)eiytdt

)
exp

(∫ 0

−∞
l−(t)eiytdt

)
= exp

(∫ ∞
0

l+(t)eiytdt+
∫ 0

−∞
l−(t)eiytdt

)
= exp

(∫ ∞
−∞

l(t)eiytdt
)

= f.

Let us prove f+, f− → 1 as |y| → ∞. We do it for f+, the proof for f− is
analogous. Seeing that l+ ∈ L+ and l− ∈ L−, l+, l− ∈ L; using proposition
2.2.8 l̂+(y), l̂−(y) → 0 as |y| → ∞. Since exp( ) is continuous, using an
argument of continuity, f+(y)→ 1 if |y| → ∞.

Let g+ and g− be a proper factorization of f ; without loss of generality
suppose g+(z) 6= 0–definition of proper factorization–on Π+. We define the
function G as

G = f+

g+
= g−
f−
.
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For this reason G is analytic in C. Since G is continuous and C ∪ {∞} is
compact, the image of G is bounded; using Liouville’s theorem G is constant.
By theorems 2.2.19 and 2.2.20,

1. if z = Reiθ y θ ∈ [0, π], then |f+(z)| → 1 when R→∞ and |g+(z)| → 1
when R→∞, and

2. if z = Reiθ y θ ∈ [π, 2π], then |f−(z)| → 1 when R→∞ and |g−(z)| →
1 when R→∞.

For Π+ we use f+
g+

and for Π−, f−
g−
. By taking the limit when R → ∞

|G(z)| → 1, G = 1: f+ = g+ and f− = g−. �

Corolary 3.1.4 Let f ∈ R; suppose lim|y|→∞ f(y) = 1, in other words there
exists g ∈ L such that f(y) = 1 +

∫∞
−∞ e

iytg(t)dt. If f admits a canonical
factorization and g is even, hence f+(z) = f−(z) = f+(−z) and f−(z) =
f+(z) = f−(−z).

Proof. Let f ∈ R and suppose lim|y|→∞ f(y) = 1: there exists g ∈ L
such that f(y) = 1 +

∫∞
−∞ e

iytg(t)dt. Assume g is even and f admits a
canonical factorization, f = f+f−. Since f+ ∈ R+, f− ∈ R−, f+(∞) = 1,
and f−(∞) = 1, therefore

f+(z) = 1 +
∫ ∞

0
eiztg+(t)dt z ∈ Π+

f−(z) = 1 +
∫ 0

−∞
eiztg−(t)dt z ∈ Π−.

f+(y) = f+(y)
= f+(y)

= 1 +
∫ ∞

0
eiytg+(t)dt

= 1 +
∫ ∞

0
e−iytg+(t)dt

= 1 +
∫ ∞

0
e−iytg+(t)dt

= 1 +
∫ 0

−∞
eiysg+(−s)ds.
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First, let us prove that g+(−s) ∈ L−.∫ 0

−∞
|g+(−s)|ds =

∫ ∞
0
|g+(x)|dx

=
∫ ∞

0
|g+(x)|dx

=
∫ ∞

0
|g+(x)|dx

=
∫ ∞

0
|g+(x)|dx

< ∞.

Wherefore, g+(−s) ∈ L−: f+(y) can be extended to an analytical function in
the interior and continuous on Π−, furthermore f+(±∞) = 1. Let us prove
that f+(z) 6= 0 for all z in Π−. Let z ∈ Π−. Suppose f+(z) = 0, therefore

0 = f+(z)
= f+(z).

Taking the conjugate from both sides,

0 = f+(z).

Which is a contradiction, since z ∈ Π+ and f+ can’t be zero on Π+: f+(z) 6= 0
in Π−. It is analogous to prove that f−(z) 6= 0 on Π+, is analytic on the
interior and continuous on Π+, and f−(±∞) = 1. Considering that f has a
canonical factorization, there is only one proper factorization. It only remains
to be proved that f = f− f+ on the real line to obtain, f+(z) = f−(z) and
f−(z) = f+(z).

f(y) = 1 +
∫ ∞
−∞

eiytg(t)dt

= 1 +
∫ ∞
−∞

cos(yt)g(t)dt+ i
∫ ∞
−∞

sen(yt)g(t)dt

sen(yt)g(t) is odd = 1 +
∫ ∞
−∞

cos(yt)g(t)dt,

in other words, f(y) is a real number.

f(y) = f(y)
⇐⇒ f(y) = f−(y)f+(y)
⇐⇒ f(y) = f−(y) f+(y)
⇐⇒ f(y) = f−(y) f+(y)
⇐⇒ f(y) = f−(y) f+(y).
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Hence, f− and f+ is a proper factorization of f . Using the uniqueness,
f+(z) = f−(z) and f−(z) = f+(z).

Given that g is even, f is even:

f(y) = f(−y)
= f+(−y)f−(−y).

Wherefore f+(−y) and f−(−y) are candidates for a proper factorization of f .
Since f+ and f− are holomorphic functions in the interior and continuous on
Π+ and Π−, respectively, f−(−z) and f+(−z) are holomorphic functions in
the interior and continuous on Π+ and Π−, respectively. Clearly, f+(∓∞) =
1 = f−(∓∞) = 1 given that f+(±∞) = 1 = f−(±∞) = 1. Moreover,
f+(z) 6= 0 for all z ∈ Π+, hence f+(−z) 6= 0 for all z ∈ Π−: f+(−z) and
f−(−z) is a proper factorization of f . Given that f admits a canonical
factorization, using the uniqueness, f+(z) = f−(−z) and f−(z) = f+(−z). �

Proposition 3.1.5 Let F ∈ R0
+ or F ∈ R0

−; if we consider its extension to
Π+ or Π−, respectively, then |F (k)| → 0 uniformly as |k1| → ∞.

Proof. Let F ∈ R0
+ be a function, and ε > 0.

F (k) =
∫ ∞

0
f(x)ei(k1+ik2)xdx

=
∫ ∞

0
f(x)eikxdx

=
∫ ∞

0
f
(
t+ π

k1

)
e
ik

(
t+ π

k1

)
dt

= 1√
2π

∫ ∞
0

f
(
x+ π

k1

)
e
i(k1+ik2)

(
x+ π

k1

)
dx

=
∫ ∞

0
f
(
x+ π

k1

)
ei(k1+ik2)xeiπe

− k2π
k1 dx

= −
∫ ∞

0
f
(
x+ π

k1

)
ei(k1+ik2)xe

− k2π
k1 dx :

2F (k) =
∫ ∞

0

[
f(x)− f

(
x+ π

k1

)
e
− k2π

k1

]
eik1e−k2xdx.
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|F (k)| =
∣∣∣∣12
∫ ∞

0

[
f(x)− f

(
x+ π

k1

)
e
− k2π

k1

]
eik1e−k2xdx

∣∣∣∣
≤ 1

2

∫ ∞
0

∣∣∣∣[f(x)− f
(
x+ π

k1

)
e
− k2π

k1

]∣∣∣∣ e−k2xdx

= 1
2

∫ ∞
0

∣∣∣∣[f(x)− f
(
x+ π

k1

)
e
− k2π

k1 + f(x)e−
k2π
k1 − f(x)e−

k2π
k1

]∣∣∣∣ e−k2xdx

≤ e
− k2π

k1

∫ ∞
0

∣∣∣∣f(x)− f
(
x+ π

k1

)∣∣∣∣ e−k2xdx+
∣∣∣∣1− e− k2π

k1

∣∣∣∣ ∫ ∞
0
|f(x)|e−k2xdx.

By inspection the first term can be made smaller than ε

2
∫∞

0

∣∣∣f(x)−f
(
x+ π

k1

)∣∣∣e−k2xdx

for some K > |k1|; since exp( ) is continuous in 0, there exists δ > 0 such
that for all |t| < δ |et − 1| < ε

2
∫∞

0 |f(x)|e−k2xdx
. Therefore, we can choose K

sufficiently big such that what we described happens,

|F (k)| <
ε

2 + ε

2
= ε.

In other words, |F (k)| → 0 uniformly when |k1| → ∞. �

Remark 3.1.6 Given that f+ ∈ R+, f− ∈ R−, f+(∞) = 1, and f−(∞) = 1:

f+(z) = 1 +
∫ ∞

0
eiztg+(t)dt z ∈ Π+

f−(z) = 1 +
∫ 0

−∞
eiztg−(t)dt z ∈ Π−.

Furthermore,

f−(z) = 1 +
∫ 0

−∞
eiztg−(t)dt z ∈ Π−

= 1−
∫ 0

∞
e−izxg−(−x)dx z ∈ Π−

= 1 +
∫ ∞

0
e−izxgτ (x)dx z ∈ Π−

where gτ (x) = g−(−x). Hence, for all x < 0 gτ = 0 and gτ ∈ L+.

3.1.1 Entire functions of exponential type
Let g ∈ L such that g(x) = 0 for all x /∈ [a−, a+]. We want to know the
canonical factorization of functions f ∈ R such that

f(y) = 1 + λ
∫ a+

a−
g(t)eiytdt.
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Remark 3.1.7 1. The function f is entire.

2. If 0 < a− < a+: the problem degenerates to f = fh where h = 1.
Without loss of generality, let us suppose a− < 0 < a+.

Proposition 3.1.8 Let a− < 0 < a+ and f(y) = 1 + λ
∫ a+
a−
g(t)eiytdt where

g ∈ L. The following statements are true.

1. There exists C > 0 such that ∀z ∈ Π+ |f(z)| ≤ Ce−a−|Im(z)|.

2. There exists C > 0 such that ∀z ∈ Π− |f(z)| ≤ Cea+|Im(z)|.

3. There exists C > 0 such that ∀z ∈ C |f(z)| ≤ Cea|Im(z)|

where a = max(a+,−a−).

Proof. Let a = max(a+,−a−).

|f(z)| ≤ 1 + |λ|
∫ a+

a−
|g(t)|e−z2tdt.

If z2 ≥ 0

a− ≤ t ≤ a+

⇐⇒ z2a− ≤ z2t ≤ z2a+

⇐⇒ −z2a− ≥ −z2t ≥ −z2a+

⇐⇒ e−a−|Im(z)| = e−z2a− ≥ e−z2t,

therefore

|f(z)| ≤ 1 + |λ|
∫ a+

a−
|g(t)|e−a−|Im(z)|dt

= Ce−a−|Im(z)| ≤ Cea|Im(z)|.

If z2 < 0, −z2 > 0:

a− ≤ t ≤ a+

⇐⇒ −z2a− ≤ −z2t ≤ −z2a+

⇐⇒ e−z2t ≤ e−z2a+ = ea+|Im(z)|.

Thus,

|f(z)| ≤ 1 + |λ|
∫ a+

a−
|g(t)|ea+|Im(z)|dt

= Cea+|Im(z)| ≤ Cea|Im(z)|.

�
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Theorem 3.1.9 Let a− < 0 < a+, g ∈ L such that g(x) = 0 for all x /∈
[a−, a+], and

f(y) = 1 + λ
∫ a+

a−
g(t)eiytdt ∈ R.

If
∀y ∈ R ∪ {−∞,∞} f(y) 6= 0 and ind(f) = 0,

then there exists f+ ∈ R+ and f− ∈ R− such that

1. f± → 1 as |y| → ∞,

2. f(y) = f+(y)f−(y) for all y ∈ R∪{−∞,∞}–in fact f(z) = f+(z)f−(z)
for all z ∈ C–,

3. the extensions of f+ and f− are entire functions,

4. (∀ z ∈ Π+ f+(z) 6= 0) and (∀ z ∈ Π− f−(z) 6= 0), and

5. is the only proper factorization.

Furthermore,

f+(z) = 1 +
∫ a+

0
eiztg+(t)dt, and f−(z) = 1 +

∫ 0

a−
eiztg−(t)dt

where g+ ∈ L+, g− ∈ L−, g+(t) = 0 for all t ≥ a+, and g−(t) = 0 for all
t ≤ a−.

Proof. Let a− < 0 < a+, g ∈ L such that g(x) = 0 for all x /∈ [a−, a+], and

f(y) = 1 + λ
∫ a+

a−
g(t)eiytdt ∈ R.

Suppose that for all

y ∈ R ∪ {−∞,∞} f(y) 6= 0, and ind(f) = 0.

Using theorem 3.1.3 there exist f+ ∈ R+, and f− ∈ R− such that

1. f± → 1 if |y| → ∞,

2. f(y) = f+(y)f−(y) for all y ∈ R ∪ {−∞,∞},

3. the extensions of f+ and f− are holomorphic and continuous on Π+ and
Π−, respectively,

4. (∀ z ∈ Π+ f+(z) 6= 0) and (∀ z ∈ Π− f−(z) 6= 0), and
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5. it is the only proper factorization.

To be demonstrated:

1. the extensions of f+ and f− are entire,

2. f(z) = f+(z)f−(z) for all z ∈ C,

3. f and f+ have zeros in the interior of Π+,

4. f and f− have zeros in the interior of Π−, and

5.
f+(z) = 1 +

∫ a+

0
eiztγ+(t)dt y f−(z) = 1 +

∫ 0

a−
eiztγ−(t)dt

where γ+ ∈ L+, γ− ∈ L−, γ+(t) = 0 for all t > a+ and γ−(t) = 0 for all
t < a−.

Let us define

g+(z) =

f+(z) 0 ≤ Im(z) <∞
ff−1
− (z) −∞ < Im(z) < 0

and

g−(z) =

ff
−1
+ (z) 0 < Im(z) <∞

f−(z) −∞ < Im(z) ≤ 0.

f+ is continuous on Π+, ff−1
− is continuous on Π−, and on the intersection–

the real line–they are equal: using the pasting lemma1 g+ is continuous on
C; similarly, g− is continuous on C. Given that f+ is analytical on the inte-
rior of Π+ and ff−1

− is analytical on the interior of Π−, g+ is analytical on
C − {z ∈ C | Im(z) = 0}; the analyticity of g+ in C follows from using a
similar argument used in theorem’s 2.1.4 demonstration. Analogously, g− is
analytical on C: point 1 is proven.

In view of the fact that g+ has the same characteristics of f+ on Π+ and
g− the same as f− on Π−, it is a proper factorization of f in the real line,
where we have used the uniqueness, f+ = g+ and f− = g−. Therefore, f+
and f− are entire functions. Because of how we defined g− and g+: f = f+f−
in all C, which proves point 2.

1Let X , Y be both closed (or both open) subsets of a topological space A such that
A = X ∪ Y , and let B also be a topological space. If f : A → B is continuous when
restricted to both X and Y , then f is continuous.
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Next, let us prove that f+ has at least one zero–in fact, there is an infin-
ity of zeros. Suppose f+ doesn’t have a zero for Im(z) < 0, hence f+ has no
zeros on C. Given that f+ is an entire function, there exists an entire function
g such that f+(z) = eg(z)

(
consider the following function g′(z) = f ′+(z)

f+(z)

)
. It

follows from theorem 2.2.28, that f−1
− ∈ R−; by proposition 2.2.21 there

exists M+ and M− such that

∀z ∈ Π+ |f+(z)| ≤M+ and ∀z ∈ Π− |f−1
− (z)| ≤M−.

Furthermore, by proposition 3.1.8 there exists C > 0 such that ∀z ∈ Π−
|f(z)| ≤ Cea+|Im(z)|. Since f+ = ff−1

− , for all z ∈ Π− |f+(z)| ≤M−Ce
a+|Im(z)| =

Aea+|Im(z)|. Moreover, M+ or A are as big as we want, so

∀z ∈ Π− |f+(z)| ≤M+e
a+|Im(z)|.

Because f+ 6= 0, then lnf+ = g is analytical and |f+(z)| = eRe(g(z)). For this
reason, ln|f+(z)| = Re(g(z)):

Re(g(z)) ≤ ln(M+) ≤ ln(M+) + a+|Im(z)| ∀z ∈ Π+ and

Re(g(z)) ≤ ln(M+) + a+|Im(z)| ∀z ∈ Π−.

Wherefore, for all z ∈ C

Re(g(z)) ≤ ln(M+) + a+|Im(z)| ≤ ln(M+) + a+|z|.

Using theorem 2.1.5 for R < 2R,

max|z|=R|g(z)| ≤ 2R
2R−Rsup|z|≤2RRe(g(z)) + 3R

2R−R |g(0)|

= 2sup|z|≤2RRe(g(z)) + 3|g(0)|
≤ 2ln(M+) + 2a+|z|+ 3|g(0)|
= 2a+|z|+M1 M1 > 0 :

for |z| < R
|g(z)| < 2a+|z|+M1.

Let us observe the last statement is valid for all R > 0, therefore for all z ∈ C

|g(z)| < 2a+|z|+M1.

Thus, g(z) = cz + b where c, b ∈ C.

g(z) = c1z1 + ic1z2 + ic2z1 − c2z2 + b1 + ib2.
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Re(g(z)) = c1z1 + b1 − c2z2.

Let z2 = 0.

Re(g(z)) = c1z1 + b1 ≤ ln(M+).

Suppose c1 < 0. When z1 → −∞, Re(g(z)) → ∞ and it’s not bounded,
which is a contradiction: c1 ≥ 0. Let c1 > 0. When z1 →∞, Re(g(z))→∞
and it’s not bounded, again it’s a contradiction: c1 ≤ 0. Consequently c1 = 0.
Let z = ix for x ≥ 0, hence

Re(g(z)) = b1 − c2x ≤ ln(M+).

Therefore, c2 ≥ 0, in other words c2 = a with a ≥ 0. If z = −ix with x > 0:

Re(g(z)) = b1 + ax

≤ ln(M+) + a+|x|
= ln(M+) + a+x.

If A = b1 − ln(M+):

A

x
+ a ≤ a+.

Taking the limit when x→∞: a ≤ a+, thus

f+(z) = ebeiaz = Ceiaz 0 ≤ a ≤ a+.

Seeing that |f+(x)| → 1 when |x| → ∞, we obtain C = 1.

|f+(z)| = |eiaRcos(θ)e−aRsen(θ)|
= |e−aRsen(θ)|
≤ e−aR.

Taking the limit R → ∞ given that θ ∈ [0, π] and |f+(Reiθ)| → 1, implies
1 ≤ 0. Consequently, a = 0 and f+(z) = 1, where we have used the following
result found in [16],

lim sup
r→∞

ln|f(−ir)|
r

= lim sup
r→∞

ln|f+(−ir)|
r

= a+.

Since f+(z) = 1, a+ = 1, but that is a contradiction given that a+ is arbitrary.
Consequently, f+ has at least one zero in the interior of Π−. Therefore, f
has it too. In a similar way we obtain that f− has at least one zero in the
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interior of Π+, thus f has it too: we have proved point 3. Let α be in the
interior of Π− and a zero of f+. We define the following function

F (z) = f+(z)
z − α

e−i
a+
2 z.

Since f+e
−ia+

2 z is entire and the singularity is removable in α, F is an entire
function. Consider a ball with radius R containing α, BR(α), such that it
is contained in the interior of Π−. Inside the ball F (z) is bounded, let us
assume by M1 > 0. Outside of the ball and in the interior of Π−

|f+(z)| ≤M+e
a+|Im(z)|,

1
|z − α|

≤ 1
|α0 − α|

= M2, and

∣∣∣e−ia+
2 z
∣∣∣ = ez2

a+
2 = e−|Im(z)|a+

2

where α0 ∈ BR(α). Hence,

|F (z)| ≤ M+M2e
a+|Im(z)|e−|Im(z)|a+

2

= Ne|Im(z)|a+
2 .

On Π+

|f+(z)| ≤M+,
1

|z − α|
≤ 1
|α0 − α|

= M2, and
∣∣∣e−ia+

2 z
∣∣∣ = e|Im(z)|a+

2 .

Therefore,

|F (z)| ≤ M+M2e
|Im(z)|a+

2

= Ne|Im(z)|a+
2 .

Consequently, for all z ∈ C

|F (z)| ≤ Ne|Im(z)|a+
2 .

For t ∈ R

|F (t)|2 = |f+(t)|2
|t− α|2

:
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∫ ∞
−∞
|F (t)|2dt =

∫ ∞
−∞

|f+(t)|2

|t− α|2
dt

=
∫ A

−A

|f+(t)|2

|t− α|2
dt+

∫ −A
−∞

1
|t− α|2

dt+
∫ ∞
A

1
|t− α|2

dt

=
∫ A

−A

|f+(t)|2

|t− α|2
dt+

∫ −A
−∞

1
(t− α1)2 + α2

2
dt+

∫ ∞
A

1
(t− α1)2 + α2

2
dt

= B +
∫ −A−α1

−∞

1
x2 + α2

2
dt+

∫ ∞
A−α1

1
x2 + α2

2
dt

= B + 1
α2

[
arctan

(
−A− α1

α2

)
−
(
−π2

)]
+ 1
α2

[
π

2 − arctan
(
A− α1

α2

)]
< ∞.

Using theorem 2.1.6 there exists h ∈ L2
(
−a+

2 ,
a+
2

)
such that

F (z) =
∫ a+

2

−a+
2

eizth(t)dt.

Substituting F (z) in its definition,

f+(z)
z − α

=
∫ a+

2

−a+
2

eiztei
a+
2 zh(t)dt

=
∫ a+

2

−a+
2

eiz(t+
a+
2 )h(t)dt

=
∫ a+

0
eizxh

(
x− a+

2

)
dx.

On the other hand, we know that

f+(z) = 1 +
∫ ∞

0
eiztγ+(t)dt

=
∫ ∞
−∞

eizt (δ + γ+) (t)dt.

Since Im(α) < 0,

1
z − α

= −i
∫ ∞

0
e−iαteiztdt.
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Let g be a function such that g(t) = −ie−iαt for all t ≥ 0 and g(t) = 0 for all
t < 0, thus

f+(z)
z − α

=
∫ ∞
−∞

eizt
∫ ∞
−∞

g(s) (δ + γ+) (t− s)ds

=
∫ ∞
−∞

eizt
(
g(t) +

∫ ∞
−∞

g(s)γ+(t− s)ds
)
dt

=
∫ ∞
−∞

eiztg(t)dt+
∫ ∞
−∞

eizt
∫ ∞
−∞

g(s)γ+(t− s)dsdt

=
∫ ∞

0
eiztg(t)dt+

∫ ∞
−∞

eizt
∫ t

0
g(s)γ+(t− s)dsdt

=
∫ ∞

0
eiztg(t)dt+

∫ ∞
0

eizt
∫ t

0
g(s)γ+(t− s)dsdt

=
∫ ∞

0
eizt

(
g(t) +

∫ t

0
g(s)γ+(t− s)ds

)
dt

=
∫ ∞

0
eizt

(
g(t)−

∫ 0

t
g(t− x)γ+(x)dx

)
dt

=
∫ ∞

0
eizt

(
g(t) +

∫ t

0
g(t− s)γ+(s)ds

)
dt

=
∫ ∞

0
eiztgα(t)dt

where gα(t) = g(t) +
∫ t

0 g(t− s)γ+(s)ds = −ie−iαt − i
∫ t

0 e
−iα(t−s)γ+(s)ds.

gα(t) = −ie−iαt − ie−iαt
∫ t

0
eiαsγ+(s)ds :

g′α(t) = αe−iαt + αe−iαt
∫ t

0
eiαsγ+(s)ds− ie−iαteiαtγ+(t)

= αe−iαt + αe−iαt
∫ t

0
eiαsγ+(s)ds− iγ+(t).

Wherefore,
g′α(t) + iαgα(t) = −iγ+(t).

Given that ∫ ∞
0

eiztgα(t)dt = f+(z)
z − α

=
∫ a+

0
eizxh

(
x− a+

2

)
dx,

if we define h
(
x− a+

2

)
= 0 outside of [0, a+):

∫ ∞
0

eizt
(
gα(t)− h

(
t− a+

2

))
dt = 0.
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Therefore, it is integrable. Using the theorem 2.2.7 gα(t) = h
(
t− a+

2

)
except in a zero measure set and gα(t) = 0 outside of [0, a+) (because
of the continuity of the zero function). Using the last assertion and that
g′α(t) + iαgα(t) = −iγ+(t), for all t /∈ [0, a+)

γ+(t) = 0,

and
f+(z) = 1 +

∫ a+

0
eiztγ+(t)dt.

Similarly,
f−(z) = 1 +

∫ 0

a−
eiztγ−(t)dt

where γ−(t) = 0 for all t ≤ a−. �

Corolary 3.1.10 Let 0 < a+, g ∈ L such that g(x) = 0 for all x /∈ [−a+, a+]
and

f(y) = 1 + λ
∫ a+

−a+
g(t)eiytdt ∈ R.

If
∀y ∈ R ∪ {−∞,∞} f(y) 6= 0, ind(f) = 0 and f is even,

then there exists f+ ∈ R+ such that

1. f+ → 1 as |y| → ∞,

2. f(y) = f+(y)f+(−y) for all y ∈ R∪{−∞,∞}–in fact f(z) = f+(z)f+(−z)
for all z ∈ C–,

3. the extensions of f+(z) and f+(−z) are entire functions,

4. (∀ z ∈ Π+ f+(z) 6= 0), (∀ z ∈ Π− f+(−z) 6= 0),

5. f and f+ have zeros in the interior of Π+, f and f− have zeros in the
interior of Π−, and

6. is its only proper factorization.

Furthermore,

f+(z) = 1 +
∫ a+

0
eiztγ+(t)dt and f+(−z) = 1 +

∫ 0

−a+
eiztγ+(−t)dt

where γ+ ∈ L+ and γ+(t) = 0 for all t ≥ a+.
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Proof. Let 0 < a+, g ∈ L such that g(x) = 0 for all x /∈ [−a+, a+] and

f(y) = 1 + λ
∫ a+

−a+
g(t)eiytdt ∈ R.

Suppose

∀y ∈ R ∪ {−∞,∞} f(y) 6= 0, ind(f) = 0 and f is an even function,

using theorem 3.1.9 there exist f+ ∈ R+ and f− ∈ R− such that

1. f± → 1 as |y| → ∞,

2. f(y) = f+(y)f−(y) for all y ∈ R∪ {−∞,∞}–in fact f(z) = f+(z)f−(z)
for all z ∈ C–,

3. the extensions of f+ and f− are entire functions;

4. (∀ z ∈ Π+ f+(z) 6= 0), (∀ z ∈ Π− f−(z) 6= 0),

5. f and f+ have zeros in the interior of Π+, f and f− have zeros in the
interior of Π−, and

6. is its only proper factorization.

Furthermore,

f+(z) = 1 +
∫ a+

0
eiztγ+(t)dt and f−(z) = 1 +

∫ 0

a−
eiztγ−(t)dt

where γ+ ∈ L+, γ− ∈ L−, γ+(t) = 0 for all t ≥ a+ and γ−(t) = 0 for all
t ≤ a−. Hence, what we need to prove is f+(z) = f−(−z).

f(z) = f(−z) f is even
= f+(−z)f−(−z),

thus f+(−z) and f−(−z) are candidates for a proper factorization of f . Since
f+ and f− are holomorphic functions in the interior and continuous in all Π+
and Π−, respectively, f−(−z) and f+(−z) are holomorphic functions in the
interior and continuous in all Π+ and Π−, respectively. f+(±∞) = 1 =
f−(±∞) = 1: f+(∓∞) = 1 = f−(∓∞) = 1. Moreover, since f+(z) 6= 0 for
all z ∈ Π+, f+(−z) 6= 0 for all z ∈ Π−. Wherefore, f+(−z) and f−(−z) is a
proper factorization of f . Using the uniqueness given by the theorem used
at the start, f+(z) = f−(−z) and f−(z) = f+(−z). Finally,
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1. f(y) = f+(y)f+(−y) for all y ∈ R∪{−∞,∞}–in fact f(z) = f+(z)f+(−z)
for all z ∈ C–,

2. the extensions of f+(z) and f+(−z) are entire functions,

3. (∀ z ∈ Π+ f+(z) 6= 0), (∀ z ∈ Π− f+(−z) 6= 0), and

4. is its only proper factorization.

Moreover,

f+(−z) = 1 +
∫ a+

0
eiztγ+(t)dt

= 1 +
∫ 0

−a+
eiztγ+(−t)dt.

Since γ+(t) = 0 for all t ≥ a+, γ+(−t) = 0 for all t ≤ −a+. �

Proposition 3.1.11 Let f : C → C. If there exist A > 0 and a ≥ 0 such
that for all z ∈ C |f(z)| ≤ Aea|Im(z)|, then there exists B > 0 such that for
all z ∈ C |1 + f(z)| ≤ Bea|Im(z)|.

Proof. Let f : C → C. Suppose there exist A > 0 and a ≥ 0 such that for
all z ∈ C |f(z)| ≤ Aea|Im(z)|.

|1 + f(z)| ≤ 1 + |f(z)|
≤ ea|Im(z)| + Aea|Im(z)|

= (A+ 1)ea|Im(z)|

= Bea|Im(z)|.

�

Proposition 3.1.12 Let c ∈ C, g+ ∈ L+, and f(y) = c +
∫∞

0 g+(t)eiytdt be
an entire function. Suppose there exists a ≥ 0 and A > 0 such that for all
z ∈ Π− |f(z)| ≤ Aea|Im(z)|, and α ∈ Π+ such that f(α) = 0. Therefore, f(z)

z−α
is an entire function, for all z ∈ Π+

f(z)
z − α

=
∫ ∞

0
eiztgα(t)dt,

and there exists B > 0 such that for all z ∈ Π− | f(z)
z−α | ≤ Bea|Im(z)|.
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Proof. Let gα(t) = ie−iαt
∫∞
t eiαsg+(s)ds for all t ≥ 0 and gα(t) = 0 for all

t < 0.

g′α(t) = αe−iαt
∫ ∞
t

eiαsg+(s)ds− ie−iαteiαtg+(s)

ig′α(t) = αgα(t) + g+(t)
g+(t) = ig′α(t)− αgα(t).

Let z ∈ Π+.

f(z) = c+
∫ ∞

0
g+(t)eiztdt

= c+
∫ ∞

0
[ig′α(t)− αgα(t)] eiztdt

= c+
∫ ∞

0
ig′α(t)eiztdt− α

∫ ∞
0

gα(t)eiztdt

= c+ ieiztgα
∣∣∣∞
0

+ z
∫ ∞

0
gα(t)eizt − α

∫ ∞
0

gα(t)eiztdt

= 0 + f(α) + (z − α)
∫ ∞

0
gα(t)eiztdt

= (z − α)
∫ ∞

0
gα(t)eiztdt.

Therefore,

f(z)
z − α

=
∫ ∞

0
eiztgα(t)dt.

It is entire since we can remove the singularity. Since α is an isolated zero,
there exists B an open ball such that α ∈ B and no other zero of f belongs
to it. Let z ∈ Π−. If z ∈ B, then f(z)

z−a is bounded. Let us say by M1. Let
α0 ∈ B − {α}. If z /∈ B,

f(z)
z − a

≤Max

(
M1e

aIm(z),
AeaIm(z)

α0 − α

)
.

�

Proposition 3.1.13 Let λ ∈ {0, 1}, g+ ∈ L+, and f(y) = λ+
∫∞

0 g+(t)eiytdt
an entire function such that lim|y|→∞ f(x+ iy) = 1. If there exist a ≥ 0 and
A > 0 such that for all z ∈ Π− |f(z)| ≤ Aea|Im(z)|, and g+ is not the function
zero or the function zero except in a zero measure set: g+(t) = 0 for all
t /∈ [0, a].
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Proof. Let λ ∈ {0, 1}, g+ ∈ L+, and f(y) = λ+
∫∞
0 g+(t)eiytdt be an entire

function. Suppose there exist a ≥ 0 and A > 0 such that for all z ∈ Π−
|f(z)| ≤ Aea|Im(z)|, and g+ is not the function zero or the function zero
except in a zero measure set.

Remark 3.1.14 The function f can only have a finite number of zeros in
Π+. Suppose there are an infinity number of zeros in Π+. Since Π+ ∪ {∞}
is compact in the complex sphere: there’s an accumulation point for those
zeros. It can be on Π+ or in ∞. If it is in Π+, given that it is entire, the
function is zero. But that is a contradiction since f(y) = 1+λ

∫∞
0 g+(t)eiytdt.

If the limit point is at ∞: any succession of zeros would tend to 1 because of
proposition 2.2.19, that’s a contradiction.

Consequently, we can use proposition 3.1.12 the right number of times to
obtain a function h such that

1. it is entire,

2. there exists B > 0 such that for all z ∈ Π− h(z) ≤ Bea|Im(z)|,

3. h and f share the same zeros in Π−,

4. lim|y|→∞ h(y) = 0, and

5. for all z ∈ Π+ h(z) =
∫∞
0 eiztp+(t)dt ∈ R+.

We are looking for a zero, α, in the interior of Π−, in order to define

F (z) = f(z)
z − α

e−i
a+
2 z.

Suppose h doesn’t have a zero in the interior of Π−, hence h has no zeros
on C. Given that h is an entire function, there exists an entire function g
such that h(z) = eg(z)

(
consider the following function g′(z) = h′(z)

h(z)

)
. Since

h ∈ R+ there exists M+ such that

∀z ∈ Π+ |h(z)| ≤M+.

Because h 6= 0, lnh = g is analytical and |h(z)| = eRe(g(z)): ln|h(z)| =
Re(g(z)). Consequently,

Re(g(z)) ≤ ln(M+) ≤ ln(M+) + a|Im(z)| ∀z ∈ Π+ and

Re(g(z)) ≤ ln(M+) + a|Im(z)| ∀z ∈ Π−.
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Wherefore, for all z ∈ C

Re(g(z)) ≤ ln(M+) + a|Im(z)| ≤ ln(M+) + a|z|.

Using theorem 2.1.5 for R < 2R,

max|z|=R|g(z)| ≤ 2R
2R−Rsup|z|≤2RRe(g(z)) + 3R

2R−R |g(0)|

= 2sup|z|≤2RRe(g(z)) + 3|g(0)|
≤ 2ln(M+) + 2a|z|+ 3|g(0)|
= 2a|z|+M1 M1 > 0 :

for |z| < R
|g(z)| < 2a|z|+M1.

The last statement is valid for all R > 0, thus for all z ∈ C

|g(z)| < 2a|z|+M1 :

g(z) = cz + b where c, b ∈ C.

g(z) = c1z1 + ic1z2 + ic2z1 − c2z2 + b1 + ib2.

Re(g(z)) = c1z1 + b1 − c2z2.

Let z2 = 0.

Re(g(z)) = c1z1 + b1 ≤ ln(M+).

Suppose c1 < 0. When z1 → −∞ Re(g(z)) → ∞, it’s not bounded, is a
contradiction: c1 ≥ 0. Let c1 > 0. When z1 → ∞ Re(g(z)) → ∞, it’s not
bounded, is a contradiction: hence c1 ≤ 0. Consequently, c1 = 0. Let z = ix
for x ≥ 0.

Re(g(z)) = b1 − c2x ≤ ln(M+).

c2 ≥ 0, because Re(g(z)) is bounded. Let a0 ≥ 0 such that a0 = c2. If
z = −ix with x > 0:

Re(g(z)) = b1 + a0x

≤ ln(M+) + a|x|
= ln(M+) + ax.

If A = b1 − ln(M+):

A

x
+ a0 ≤ a.
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Taking the limit when x→∞, a0 ≤ a. Thus,

h(z) = ebeia0z = Ceia0z 0 ≤ a0 ≤ a.

Seeing that |h(x)| → 0 when |x| → ∞, C = 0:∫ ∞
0

eiztg(t)dt = h(z) = 0.

Therefore, g is the function zero or the function zero except in a zero measure
set, but we made the assumption that it wasn’t. Consequently, h has at least
one zero in the interior of Π−: f has it too.

Let α be in the interior of Π− such that f(α) = 0. Let us define F as

F (z) = f(z)
z − α

e−i
a
2 z.

Since fe−ia2 z is entire and the singularity is removable in α, F is an entire
function. Let us take a ball with radius R containing α and that is contained
in the interior of Π−. Inside the ball F (z) is bounded, let us say by M1 > 0.
Outside of the ball and in the interior of Π−,

|f(z)| ≤M+e
a|Im(z)|,

1
|z − α|

≤ 1
|α0 − α|

= M2 and

∣∣∣e−ia2 z∣∣∣ = ez2
a
2 = e−|Im(z)|a2

where α0 ∈ BR(α). Hence,

|F (z)| ≤ M+M2e
a|Im(z)|e−|Im(z)|a2

= Ne|Im(z)|a2 .

On Π+

|f+(z)| ≤M+,
1

|z − α|
≤ 1
|α0 − α|

= M2, and
∣∣∣e−ia2 z∣∣∣ = e|Im(z)|a2 :

|F (z)| ≤ M+M2e
|Im(z)|a2

= Ne|Im(z)|a2 .

Consequently, for all z ∈ C

|F (z)| ≤ Ne|Im(z)|a2 .
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For t ∈ R

|F (t)|2 = |f(t)|2
|t− α|2

.

∫ ∞
−∞
|F (t)|2dt =

∫ ∞
−∞

|f(t)|2

|t− α|2
dt

=
∫ A

−A

|f(t)|2

|t− α|2
dt+

∫ −A
−∞

1
|t− α|2

dt+
∫ ∞
A

1
|t− α|2

dt

=
∫ A

−A

|f(t)|2

|t− α|2
dt+

∫ −A
−∞

1
(t− α1)2 + α2

2
dt+

∫ ∞
A

1
(t− α1)2 + α2

2
dt

= B +
∫ −A−α1

−∞

1
x2 + α2

2
dt+

∫ ∞
A−α1

1
x2 + α2

2
dt

= B + 1
α2

[
arctan

(
−A− α1

α2

)
−
(
−π2

)]
+ 1
α2

[
π

2 − arctan
(
A− α1

α2

)]
< ∞.

Using theorem 2.1.6, there exists h ∈ L2
(
−a

2 ,
a
2

)
such that

F (z) =
∫ a

2

−a2
eizth(t)dt.

Substituting F (z) in its definition,

f(z)
z − α

=
∫ a

2

−a2
eiztei

a
2 zh(t)dt

=
∫ a

2

−a2
eiz(t+

a
2 )h(t)dt

=
∫ a

0
eizxh

(
x− a

2

)
dx.

On the other hand we know that

f(z) = 1 +
∫ ∞

0
eiztg+(t)dt

=
∫ ∞
−∞

eizt (δ + g+) (t)dt.

Since Im(α) < 0,
1

z − α
= −i

∫ ∞
0

e−iαteiztdt.
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Let g be a function such that g(t) = −ie−iαt for all t ≥ 0 and g(t) = 0 for all
t < 0, then

f(z)
z − α

=
∫ ∞
−∞

eizt
∫ ∞
−∞

g(s) (δ + g+) (t− s)ds

=
∫ ∞
−∞

eizt
(
g(t) +

∫ ∞
−∞

g(s)g+(t− s)ds
)
dt

=
∫ ∞
−∞

eiztg(t)dt+
∫ ∞
−∞

eizt
∫ ∞
−∞

g(s)g+(t− s)dsdt

=
∫ ∞

0
eiztg(t)dt+

∫ ∞
−∞

eizt
∫ t

0
g(s)g+(t− s)dsdt

=
∫ ∞

0
eiztg(t)dt+

∫ ∞
0

eizt
∫ t

0
g(s)g+(t− s)dsdt

=
∫ ∞

0
eizt

(
g(t) +

∫ t

0
g(s)g+(t− s)ds

)
dt

=
∫ ∞

0
eizt

(
g(t)−

∫ 0

t
g(t− x)g+(x)dx

)
dt

=
∫ ∞

0
eizt

(
g(t) +

∫ t

0
g(t− s)g+(s)ds

)
dt

=
∫ ∞

0
eiztgα(t)dt

where gα(t) = g(t) +
∫ t

0 g(t− s)g+(s)ds = −ie−iαt − i
∫ t

0 e
−iα(t−s)g+(s)ds.

gα(t) = −ie−iαt − ie−iαt
∫ t

0
eiαsg+(s)ds.

g′α(t) = αe−iαt + αe−iαt
∫ t

0
eiαsg+(s)ds− ie−iαteiαtg+(t)

= αe−iαt + αe−iαt
∫ t

0
eiαsg+(s)ds− ig+(t).

Wherefore,
g′α(t) + iαgα(t) = −ig+(t).

Given that ∫ ∞
0

eiztgα(t)dt = f(z)
z − α

=
∫ a

0
eizxh

(
x− a

2

)
dx,

if we define h
(
x− a

2

)
= 0 outside of [0, a],

∫ ∞
0

eizt
(
gα(t)− h

(
t− a

2

))
dt = 0.
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Therefore, it is integrable. Using the theorem 2.2.7, gα(t) = h
(
t− a

2

)
except

in a zero measure set and gα(t) = 0 outside of [0, a] (because of the continuity
of the zero function). Using the last assertion and that g′α(t) + iαgα(t) =
−ig+(t), for all t /∈ [0, a]

g+(t) = 0

and
f(z) = 1 +

∫ a

0
eiztg+(t)dt.

�

Proposition 3.1.15 Let λ ∈ R, g− ∈ L−, and f(y) = 1 + λ
∫ 0
−∞ g−(t)eiytdt

be an entire function such that lim|y|→∞ f(x + iy) = 1. If there exist a ≥ 0
and A > 0 such that for all z ∈ Π+ |f(z)| ≤ Aea|Im(z)|, then g−(t) = 0 for
all t /∈ [−a, 0].

Proof. The proof is almost analogous to one of the last proposition. �

3.2 Factorization of nonsingular matrices
The following theorems and propositions won’t be demonstrated, the reader
can find proof of them in reference [21].

Definition 3.2.1 A left standard factorization of a continuous nonsingular
matrix function M(y) (−∞ < y <∞) is a representation of M such that

M(y) = R+(y)D(y)R−(y)

where D(y) is a diagonal matrix function,

D(y) =
[(

y−i
y+i

)κj
δjk
]
,

κ1 ≥ κ2 ≥ ... ≥ κn are integer numbers, and the matrix functions R±(y)
admit

1. analytic extensions, holomorphic in the interior and continuous on Π±,

2. whose determinant is not zero, i.e.,

det(R+)(z) 6= 0 ∀z ∈ Π+, det(R−)(z) 6= 0 ∀z ∈ Π−.

If the factors R±(y) are interchanged, then the factorization from R(y) is
called right standard factorization.
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Theorem 3.2.2 Every nonsingular matrix function M(y) ∈ R(n×n) has a
left (right) standard factorization and for every standard factorization the
factors R±(y) ∈ R±(n×n).

Definition 3.2.3 If all the left exponents (κi) of the nonsingular matrix
M(y) are zero, i.e.,

M(y) = R+(y)R−(y)
and R+(∞) = I: the left standard factorization is canonical. In a similar
manner the right standard factorization

M(y) = R−(y)R+(y)

such that R−(∞) = I is called right canonical factorization.

Proposition 3.2.4 We have the following uniqueness property. Let R+ and
R− be a left canonical factorization. Suppose G+ and G− is another left
canonical factorization,

R+ = G+ R− = G−.

Proof. Let R+ and R− be a left canonical factorization. Suppose G+ and
G− are another left canonical factorization. They are standard factorizations,
hence

G−1
+ (y)R+(y) = G−(y)R−1

− (y) y ∈ R.

Given that G−1
± (y)R+(y) is holomorphic on Π±, let

G(z) =

G
−1
+ (z)R+(z) z ∈ Π+

G−(z)R−1
− (z) z ∈ Π−.

G(∞) = I: is a constant matrix function–G(z) = I. Wherefore,

G−1
+ (y)R+(y) = G−(y)R−1

− (y) = I.

Proposition 3.2.5 If the matrix function M(y) has a left canonical factor-
ization, i.e., there exist G+(y) ∈ R+

(n×n) and G−(y) ∈ R−(n×n) such that

M(y) = G+(y)G−(y) y ∈ R and G+(∞) = I

where G±(y) can be extended to be holomorphic in the interior and continuous
on Π±. Then,(

∀z ∈ Π+G+(z) 6=
[
0
])

or
(
∀z ∈ Π−G−(z) 6=

[
0
])
.
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3.2.1 Factorization of hermitian matrices
Let us denote M∗(z) as the conjugated hermitian matrix function of M(z):
M∗(z) = MT (z) where the bar denotes taking the conjugate and T the trans-
pose.

Definition 3.2.6 We say a matrix function M is hermitian if

M(z) = M∗(z).

Definition 3.2.7

Re (M(z)) = MR(z) = M(z) + M∗(z)
2

Im (M(z)) = MJ(z) = M(z)−M∗(z)
2i .

Remark 3.2.8 The matrix functions MR(z) and MJ(z) are hermitian.

Definition 3.2.9 We say a matrix function M(z) is definite if for all y ∈
R ∪ {−∞,∞} the quadratic form

ζ∗M(y)ζ,

where ζ ∈ Cn, only has real values different from zero and with constant sign.

Remark 3.2.10 Every definite matrix function is hermitian.

Proposition 3.2.11 The hermitian matrix function M(y) is definite if and
only if M(y) is nonsingular and M(y) is definite for at least one point.

Proposition 3.2.12 If the real or the imaginary part of the nonsingular
matrix function M(y) is definite, then all left (right) exponents of the matrix
M(y) are zero, i.e., the factorization is canonical.

Theorem 3.2.13 A matrix function M(y) ∈ R(n×n) has a representation of
the form

M(y) = F+(y)F∗+(y),

where the matrix function F+(y) ∈ R+
(n×n) and det(F+(z)) 6= 0 for all z ∈ Π+,

if and only if M(y) is positive definite.





Chapter 4

Factoring the Ornstein-Zernike
equation

Definition 4.0.1 A homogeneous fluid is a fluid in absence of external forces.
Conversely, a nonhomogeneous fluid is a fluid in which an external force field
is acting over it.

Let a homogeneous fluid with m species have densities ρk with k ∈ {1, ...,m}.
Our principal objective is to solve the system of integral equations

hi,j(ri, rj) = ci,j(ri, rj) +
m∑
k=1

ρk

∫
ci,k(ri, rk)hk,j(rk, rj)drk (4.1)

for hi,j(r) and ci,j(r). We will refer to this system as the Ornstein-Zernike
equation for m species. The functions hi,j(r) and ci,j(r) are called the to-
tal and direct correlation function, respectively. The integral equations 4.1
are part of the general liquid theories developed from balance equations
[22, 23, 24]. If equations 4.1 are solved we can compute the system’s thermo-
dynamic properties with them, see reference [5]. In this chapter we will use
the Wiener-Hopf factorization method to transform equations 4.1 into a new
set of equations, which we will show below that, together with the Percus-
Yevick approximation, can be analytically solved for a one species of hard
spheres model or conveniently numerically resolved for some more complex
systems. In the case of one species, it is possible to solve equation 4.1 using
the factorization method. For now, let us assume particles are hard spheres.
Each particle has a diameter dk ordered such that if i ≤ j, then di ≥ dj.

Definition 4.0.2 A fluid is isotropic if its properties are not dependent on
the direction along which they are measured.

49
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It turns out that if the fluid is isotropic the Ornstein-Zernike equation for M
species becomes

hi,j(|ri − rj|) = ci,j(|ri − rj|) +
m∑
k=1

ρk

∫
ci,k(|ri − rk|)hk,j(|rk − rj|)drk.

In other words, hi,j and ci,j are functions of the distance between particles i
and j. Furthermore, if we suppose particle j is at the origin:

hi,j(|ri|) = ci,j(|ri|) +
m∑
k=1

ρk

∫
ci,k(|ri − rk|)hk,j(|rk|)drk.

We will use all the tools developed in previous chapters to get more infor-
mation from it. In the next section, we analytically solve the Percus-Yevick
approximation for one species of hard spheres.

4.1 One species
Let us assume we only have one species:

h1,1(|r1|) = c1,1(|r1|) +
1∑

k=1
ρ1

∫
c1,1(|r1 − r′1|)h1,1(|r′1|)dr′1.

We will drop the subscripts,

h(|r|) = c(|r|) + ρ1

∫
c(|r − r′|)h(|r′|)dr′.

If we make a change of variable:

h(|r|) = c(|r|) + ρ1

∫
c(|r′|)h(|r − r′|)dr′.

We will put vectors in bold letters to highlight the fact that they are not
scalars,

h(|r|) = c(|r|) + ρ
∫
c(|r’|)h(|r− r’|)dr’.

Baxter in [1] used the Winer-Hopf factorization in order to obtain the direct
correlation function. In this section we will develop what was done in [1]
using the theory from the last chapter.

Let us suppose c and h are elements of L, see definition 2.2.1. Multiply-
ing both sides of the Ornstein-Zernike equation by ei〈r,k〉 and integrating
over R3 with respect to r,∫
R3
ei〈r,k〉h(|r|)dr =

∫
R3
ei〈r,k〉c(|r|)dr + ρ

(∫
R3
ei〈r,k〉

[∫
c(|r’|)h(|r− r’|)dr’

]
dr
)
.
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We just applied the Fourier transform to the Ornstein-Zernike equation:

ĥ(k) = ĉ(k) + ρĉ(k)ĥ(k). (4.2)

Let us take as a base of R3,
{

x,y, k
|k|

}
. Any element, r, of R3 can be represented

as r = xx + yy + z k
|k| where x, y and z are real numbers. If |k| = k:

ĥ(k) =
∫
R3
eik〈r,k̂〉h(|r|)dxdydz

=
∫
R3
eizkh(|r|)dxdydz.

Changing to spherical coordinates,

ĥ(k) =
∫ ∞

0

∫ π

0

∫ 2π

0
eiRcos(φ)kh(R)R2sen(φ)dθdφdR

= 2π
∫ ∞

0

∫ π

0
eiRcos(φ)kh(R)R2sen(φ)dφdR. (4.3)

If we define t = cosφ:∫ π

0
eiRcos(φ)ksen(φ)dφ = −

∫ −1

1
eiRktdt

=
∫ 1

−1
eiRktdt

= eiRkt

iRk

∣∣∣∣∣
1

−1

= eiRk − e−iRk

iRk

= 2isen(Rk)
iRk

= 2sen(Rk)
Rk

.

Substituting the last result in equation 4.3,

ĥ(k) = 2π
∫ ∞

0

∫ π

0
eiRcos(φ)kh(R)R2sen(φ)dφdR

= 4π
k

∫ ∞
0

h(R)Rsen(kR)dR.

Since ĥ only depends on k: ĥ(k) = ĥ(k), i.e.

ĥ(k) = 4π
k

∫ ∞
0

h(R)Rsen(kR)dR k ≥ 0. (4.4)
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Similarly,
ĉ(k) = 4π

k

∫ ∞
0

c(R)Rsen(kR)dR k ≥ 0.

Now comes the interesting part, let us define

J(x) =
{∫∞

x th(t)dt x ≥ 0∫∞
−x th(t)dt x < 0

and integrate by parts equation 4.4, where

u = sen(kx) , dv = xh(x)dx

du = kcos(kx)dx and v = −
∫ ∞
x

th(t)dt :

ĥ(k) = 4π
k

[
−sen(kx)

∫ ∞
x

th(t)dt
∣∣∣∣∞
0

+
∫ ∞

0
kcos(kx)J(x)dx

]
= 0 + 4π

∫ ∞
0

cos(kx)J(x)dx

= 4π
∫ ∞

0
cos(kx)J(x)dx k ≥ 0.

In a similar way, let us define

S(x) =
{∫∞

x tc(t)dt x ≥ 0∫∞
−x tc(t)dt x < 0 :

ĉ(k) = 4π
∫ ∞

0
cos(kx)S(x)dx k ≥ 0.

We want to find a relation between the functions Ĵ and ĥ, hence we need to check
if there exists the Fourier transform of J .∫ 0

−∞
J(x)dx = −

∫ 0

∞
J(−x)dx

=
∫ ∞

0
J(−x)dx

=
∫ ∞

0

∫ ∞
−(−x)

th(t)dtdx

=
∫ ∞

0
J(x)dx

= ĥ(0)
4π

< ∞,

therefore

Ĵ(k) =
∫ ∞
−∞

J(x)eixkdx

=
∫ ∞
−∞

J(x)cos(kx)dx+ i

(∫ ∞
−∞

J(x)sen(kx)dx
)
.
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Remark 4.1.1 J and S are even functions.

Using remark 4.1.1, J(x)cos(kx) is even and J(x)sen(kx) is odd. Then,

Ĵ(k) = 2
∫ ∞

0
J(x)cos(kx)dx+ 0

= 2
∫ ∞

0
J(x)cos(kx)dx k ∈ R

and
Ŝ(k) = 2

∫ ∞
0

S(x)cos(kx)dx k ∈ R.

Wherefore, for all k ≥ 0

ĉ(k) = (2π)Ŝ(k) and ĥ(k) = (2π)Ĵ(k).

Substituting in equation 4.2, the OZ equation becomes,

(2π)Ĵ(k) = (2π)Ŝ(k) + (2π)2ρĴ(k)Ŝ(k).

Hence, defining λ = (2π)ρ, we obtain.

Ĵ(k) = Ŝ(k) + λĴ(k)Ŝ(k) : (4.5)

Ĵ(1− λŜ) = Ŝ and Ĵ = (1 + λĴ)Ŝ.

Solving for 1 + λĴ ,
1
F

= 1 + λĴ (4.6)

where F ≡ (1− λŜ).

Remark 4.1.2 Since Ĵ is the Fourier transform of J , 1
F doesn’t have poles in the

real line. Thus, F does not have zeros in the real line, i.e. for all y ∈ R F(y) 6= 0.
Therefore, F satisfies one of the hypothesis of corollary 3.1.10.

Now, we want to factor F , i.e. apply last chapter’s theory, to obtain a new
expression of (4.5), for hard spheres. Remark 4.1.2 is the first step to do it, and
in the next section we will make an additional assumption to continue in our
develepment.

4.1.1 Correlation function for hard spheres
Let us make the following supposition about the inter-molecular potential. If a is
the particles’ diameter, then

U(x) =
{
∞ x < d

0 x ≥ 0.

In other words,

h(x) = −1 ∀ x ≤ d and c(x) = 0 ∀x > d.



54 Chapter 4. Factoring the Ornstein-Zernike equation

Proposition 4.1.3 For all |x| > d S(x) = 0.

Proof. Let |x| > d. If x > d, then S(x) =
∫∞
x tc(t)dt. Since c(x) = 0 for all x > d,

S(x) = 0. If x < −d, then S(x) =
∫∞
−x tc(t)dt. But, −x > d: S(x) = 0. �

Using proposition 4.1.3,

Ŝ(y) =
∫ d

−d
eiytS(t)dt.

By proposition 3.1.8,

∣∣∣Ŝ(z)
∣∣∣ ≤ ed|Im(z)|

∫ d

−d
|S(t)|dt = Ced|Im(z)|.

Proposition 4.1.4 Let F ∈ R such that F is even. If for all y ∈ R F(y) 6= 0,
then ind(F) = 0.

Proof.

0 = ind(1)

= ind

(F(y)
F(y)

)
= ind(F(y))− ind(F(y))
= ind(F(y))− ind(F(−y))
= ind(F(y))− (−ind(F(y)))
= 2ind(F(y)) :

ind(F(y)) = 0. �

Using proposition 4.1.4, ind(F(y)) = 0. Since F(y) 6= 0 and ind(F(y)) = 0,
by corollary 3.1.10 there exists F+ ∈ R+ such that

1. F+ → 1 as |y| → ∞,

2. F(y) = F+(y)F+(−y) for all y ∈ R∪{−∞,∞}–in fact F(z) = F+(z)F+(−z)
for all z ∈ C–,

3. the extensions of F+(z) and F+(−z) are entire functions,

4. (∀ z ∈ Π+ F+(z) 6= 0), (∀ z ∈ Π− F+(−z) 6= 0),

5. f and F+ have zeros in the interior of Π+, F and F− have zeros in the
interior of Π−, and

6. is its only proper factorization.
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Furthermore,

F+(z) = 1 +
∫ d

0
eiztg+(t)dt and F+(−z) = 1 +

∫ 0

−d
eiztg+(−t)dt (4.7)

where g+ ∈ L+ and g+(t) = 0 for all t ≥ d.

1− λŜ(z) = F
= F+(z)F−(z)

=
(

1 +
∫ d

0
eiztg+(t)dt

)(
1 +

∫ 0

−d
eiztg−(t)dt

)
=

(
1 +

∫ ∞
−∞

eiztg+(t)dt
)(

1 +
∫ ∞
−∞

eiztg−(t)dx
)

= 1 +
∫ ∞
−∞

eiztg+(t)dt+
∫ ∞
−∞

eizt
∫ ∞
−∞

g−(t− s) [δ + g+] (s)dsdt.

−λŜ(z) =
∫ ∞
−∞

eiztg+(t)dt+
∫ ∞
−∞

eizt

[∫ ∞
−∞

g−(t− s)δ(s)ds+
∫ ∞
−∞

g−(t− s)g+(s)ds
]
dt

=
∫ ∞
−∞

eiztg+(t)dt+
∫ ∞
−∞

eizt

[∫ ∞
−∞

g−(x)δ(t− x)dx+
∫ ∞
−∞

g−(t− s)g+(s)ds
]
dt

=
∫ ∞
−∞

eiztg+(t)dt+
∫ ∞
−∞

eizt

[∫ ∞
−∞

g−(x)δ(−(x− t))dx+
∫ ∞
−∞

g−(t− s)g+(s)ds
]
dt

=
∫ ∞
−∞

eiztg+(t)dt+
∫ ∞
−∞

eizt

[∫ ∞
−∞

g−(x)δ(x− t)dx+
∫ ∞
−∞

g−(t− s)g+(s)ds
]
dt

=
∫ ∞
−∞

eiztg+(t)dt+
∫ ∞
−∞

eizt

[
g−(t) +

∫ ∞
−∞

g−(t− s)g+(s)ds
]
dt :

∫ ∞
−∞

eizt
[
λS(t) + g+(t) + g−(t) +

∫ ∞
−∞

g−(t− s)g+(s)ds
]
dt = 0.

Hence, except in a zero measure set,

λS(t) + g+(t) + g−(t) +
∫ ∞
−∞

g−(t− s)g+(s)ds = 0.

Since g+(t) = 0 for all t /∈ [0, d),

λS(t) + g+(t) + g−(t) +
∫ d

0
g−(t− s)g+(s)ds = 0.

Given that g+(−x) = g−(x),

λS(t) = −g+(t)− g+(−t)−
∫ d

0
g+(s)g+(s− t)ds.
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Definition 4.1.5 Let us define the function Q as

Q(t) = −1
λ
g+(t).

Therefore,

S(t) = Q(t) +Q(−t)− λ
∫ d

0
Q(s)Q(s− t)ds.

Suppose t > 0, then

S(t) = Q(t)− λ
∫ d

t
Q(s)Q(s− t)ds.

S(t) = Q(t)− λ
∫ d

t
Q(s)Q(s− t)ds

or if x = t− s, then

S(t) = Q(t) + λ
∫ t−d

0
Q(t− x)Q(−x)dx.

Remark 4.1.6 By corollary 3.1.4, F+(y) = F+(−y).

F+(z) = F+(−z) and F+ − 1(z) = F+(−z)− 1,

in other words it is hermitian. It’s well known that a function is real valued
if and only if its Fourier transform is hermitian. Consequently, g+ is real
valued. Therefore, we can compute the derivative of Q with respect to a real
variable.

−tc(t) = S ′(t)

= Q′(t) + λ

(
Q(d)Q(d− t) +

∫ t−d

0
Q′(t− x)Q(−x)dx

)
.

Since Q(d) = 0,

−tc(t) = Q′(t) + λ
∫ t−d

0
Q′(t− x)Q(−x)dx.

Let s = t− x, then

−tc(t) = Q′(t)− λ
∫ d

t
Q′(s)Q(s− t)ds. (4.8)
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Since 1
F = 1 + λĴ ,

F−1
− (y) = (1 + λĴ)F+(y). (4.9)

Using corollary 2.2.28 F−1
− ∈ R−, F−1

− = 1 +
∫ 0
−∞ e

iytp−(t)dt. Substituting
the expression for F−1

− and equation 4.7 in equation 4.9:

1 +
∫ 0

−∞
eiytp−(t)dt =

(
1 + λ

∫ ∞
−∞

J(t)eiytdt
)(

1 +
∫ d

0
eiytg+(t)dt

)
∫ 0

−∞
eiytp−(t)dt = λ

∫ ∞
−∞

J(t)eiytdt+
(∫ ∞
−∞

[δ(t) + λJ(t)] eiytdt
)(∫ d

0
eiytg+(t)dt

)
∫ 0

−∞
eiytp−(t)dt = λ

∫ ∞
−∞

J(t)eiytdt+
∫ ∞
−∞

eiyt
∫ ∞
−∞

g+(s) [δ(t− s) + λJ(t− s)] dsdt∫ 0

−∞
eiytp−(t)dt = λ

∫ ∞
−∞

J(t)eiytdt+
∫ ∞
−∞

eiytg+(t)dt+
∫ ∞
−∞

eiyt
∫ ∞
−∞

λg+(s)J(t− s)dsdt.

∫ ∞
−∞

eiyt
(
−p−(t) + λJ(t) + g+(t) +

∫ ∞
−∞

λg+(s)J(t− s)ds
)
dt = 0.

So, except in a zero measure set,

−p−(t) + λJ(t) + g+(t) +
∫ ∞
−∞

λg+(s)J(t− s)ds = 0.

Since, if t > 0, then p−(t) = 0:

λJ(t) + g+(t) +
∫ ∞
−∞

λg+(s)J(t− s)ds = 0 t > 0.

J(t) = −1
λ
g+(t)−

∫ d

0
g+(s)J(t− s)ds

Q(t) = −1
λ
g+(t) = Q(t) + λ

∫ d

0
Q(s)J(t− s)ds.

−th(t) = J ′(t)

= Q′(t) + λ

∫ d

0
Q(s)J ′(t− s)ds

= Q′(t) + λ

∫ t

0
Q(s)J ′(t− s)ds+ λ

∫ d

t

Q(s)J ′(t− s)ds

= Q′(t)− λ
∫ t

0
Q(s)(t− s)h(t− s)ds− λ

∫ d

t

Q(s)(−(t− s))h(−(t− s))(−1)ds

= Q′(t)− λ
∫ t

0
Q(s)(t− s)h(t− s)ds− λ

∫ d

t

Q(s)(t− s)h(−(t− s))ds

= Q′(t)− λ
∫ d

0
Q(s)(t− s)h(|t− s|)ds :
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−th(t) = Q′(t)− λ
∫ d

0
Q(s)(t− s)h(|t− s|)ds t > 0. (4.10)

Equations 4.8 and 4.10 are the reformulation of the OZ equation, (4.5), which
have been derived with a rigorous mathematical procedure, where every step
has been demonstrated, in contrast to Baxter’s procedure in reference [1],
which has some unproved mathematical assertions.

In the next subsection we present an analytical solution to Eqs. (4.8) and
(4.10).

4.1.2 Analytical solution for hard spheres

From equation 4.10, for all t ∈ (0, d)

−th(t) = t

= Q′(t)− λ
∫ d

0
Q(s)(t− s)h(|t− s|)ds

= Q′(t) + λ

∫ d

0
Q(s)(t− s)ds

= Q′(t) + tλ

∫ d

0
Q(s)ds− λ

∫ d

0
sQ(s)ds.

Solving for Q′(t),

Q′(t) = at+ b,

a = 1− λ
∫ d

0
Q(s)ds

b = λ
∫ d

0
sQ(s)ds.

Integrating,

Q(t) = a

2 t
2 + bt+ P.

Since Q(d) = 0,

P = −a2d
2 − bd.
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Wherefore,

a = 1− λ
∫ d

0

(
a

2s
2 + bs+ P

)
ds

= 1− λ
(
a

6s
3 + b

2s
2 + Ps

)∣∣∣∣∣
d

0

= 1− λ
[
a

6d
3 + b

2d
2 + Pd

]

= 1− λ
[
a

6d
3 + b

2d
2 − a

2d
3 − bd2

]

= 1 + λ

[
a

3d
3 + b

2d
2
]
.

Simplifying, we obtain, (
1− λd

3

3

)
a− λd

2

2 b = 1. (4.11)

Substituting in the other equation,

b = λ
∫ d

0
s
(
a

2s
2 + bs+ P

)
ds

= λ
∫ d

0

(
a

2s
3 + bs2 + Ps

)
ds

= λ

(
a

8s
4 + b

3s
3 + P

2 s
2
)∣∣∣∣∣

d

0

= λd4

8 a+ λd3

3 b+ λ

2d
2
(
−a2d

2 − bd
)

= λd4

8 a+ λd3

3 b− λd4

4 a− λd3

2 b

= −λd
4

8 a− λd3

6 b.

Hence,
λd4

8 a+
(

1 + λd3

6

)
b = 0. (4.12)

If (λ = 2πρ), the linear system consisting of the two equations 4.11 and 4.12
is (1− 2πρd3

3

)
−πρd2

πρd4

4

(
1 + πρd3

3

) [a
b

]
=
[
1
0

]
.
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Solving it by hand or using Wolfram Mathematica, we find,

a = 12(3 + ρπd3)
(6− ρπd3)2 and b = −9ρπd4

(6− ρπd3)2 .

Simplifying the equations,

a = 1 + 2η
(1− η)2 and b = −3

2
dη

(1− η)2

where η = 1
6πρd

3. Let us remember that for all t ∈ (0, d)

Q(t) = a

2 t
2 + bt− a

2d
2 − bd.

Substituting in equation 4.8,

−tc(t) = Q′(t)− λ
∫ d

t
Q′(s)Q(s− t)ds t ∈ (0, d]

= at+ b− 2πρ
∫ d

t
(as+ b)

(
a

2(s− t)2 + b(s− t) + P
)
ds

= at+ b− 2πρ
∫ d

t
(as+ b)

(
a

2(s2 − 2st+ t2) + b(s− t) + P
)
ds

= at+ b

− 2πρ
∫ d

t

(1
2a

2s3 − a2s2t+ 1
2a

2st2 + abs2 − abst+ asP
)
ds−

− 2πρ
∫ d

t

(1
2abs

2 − abst+ 1
2abt

2 + b2s− b2t+ bP
)
ds

= at+ b− 2πρ
∫ d

t

[
As3 +Bs2 + Cs+D

]
ds

= at+ b− 2πρ
(1

4As
4 + 1

3Bs
3 + 1

2Cs
2 +Ds

)∣∣∣∣d
t

= at+ 2πρ
(1

4At
4 + 1

3Bt
3 + 1

2Ct
2 +Dt

)
+ b− 2πρ

(1
4Ad

4 + 1
3Bd

3 + 1
2Cd

2 +Dd
)

where

A = 1
2a

2,

B = −a2t+ ab+ 1
2ab = −a2t+ 3

2ab,

C = 1
2a

2t2 − abt+ aP − abt+ b2 = 1
2a

2t2 − 2abt+ aP + b2, and

D = 1
2abt

2 − b2t+ bP.
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Simplifying the result with Wolfram Mathematica,

−tc(t) = −3(1− η)2d(6η − πρd3)
12(1− η)4 + 2(1 + 2η)(6[1− η]2 − [−4 + η]πρd3)t

12(1− η)4

− 3(2 + η)2πρd2t2

12(1− η)4 + (1 + 2η)2πρt4

12(1− η)4 ,

or

−tc(t) = 12(1 + 2η)2

12(1− η)4 t−
6
(
1 + η

2

)2
η 1
d

(1− η)4 t2 +
(1 + 2η)2η 1

2d3

(1− η)4 t4.

Given that t > 0,

c(t) = −(1 + 2η)2

(1− η)4 +
6
(
1 + η

2

)2
η 1
d

(1− η)4 t−
(1 + 2η)2η 1

2d3

(1− η)4 t3. (4.13)

Which is the analytical expression for the Percus-Yevick approximation for
hard spheres found by Wertheim in reference [9]. In the next section we
generalize most of the results for one species, except the analytical solution,
following the same ideas.

4.2 More than one species
The Ornstein-Zernike equation for m species,

hi,j(|r|) = ci,j(|r|) +
m∑
k=1

ρk

∫
ci,k(|r’|)hk,j(|r− r’|)dr’.

Suppose ci,j and hi,j are elements of L for all i and j. As for one species,
using the Fourier transform:

√
ρiρjĥi,j(k) = √ρiρj ĉi,j(k) +

m∑
k=1

√
ρiρkĉi,k(k)√ρkρjĥk,j(k) (4.14)

where ĥi,j(k) =
∫
R3 ei〈r,k〉hi,j(r)dr and ĉi,j(k) =

∫
R3 ei〈r,k〉ci,j(r)dr. For each

equation, we use the same method as in section 4.1:

ĥi,j(k) =
4π
k

∫ ∞
0

hi,j(R)Rsen(kR)dR k ≥ 0 and ĉi,j(k) =
4π
k

∫ ∞
0

ci,j(R)Rsen(kR)dR k ≥ 0

where k = |k|. Let us define

Ji,j(x) =


∫∞
x thi,j(t)dt x ≥ 0∫∞
−x thi,j(t)dt x < 0

and Si,j(x) =


∫∞
x tci,j(t)dt x ≥ 0∫∞
−x tci,j(t)dt x < 0.
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Similarly as in section 4.1, for all k ∈ R

Ĵi,j(k) = 2
∫ ∞

0
Ji,j(x)cos(kx)dx and Ŝi,j(k) = 2

∫ ∞
0

Si,j(x)cos(kx)dx.

Integrating by parts the expressions for ĉi,j and ĥi,j, for all k ≥ 0

ĥi,j(k) = 4π
∫ ∞

0
cos(kx)Ji,j(x)dx and ĉi,j(k) = 4π

∫ ∞
0

cos(kx)Si,j(x)dx.

Wherefore,
ĥi,j(k) = 2πĴi,j(k) and ĉi,j(k) = 2πŜi,j(k).

Substituting in equation 4.14,

2π√ρiρjĴi,j(y) = 2π√ρiρjŜi,j(y) + (2π)2
m∑
k=1

√
ρiρkŜi,k(y)√ρkρjĴk,j(y).

Let us define the following matrix functions as

Ji,j = 2π√ρiρjĴi,j(y) and Si,j = 2π√ρiρjŜi,j(y) :

J = S + SJ.

By inspection,
(I −S)J = S.

Proposition 4.2.1 The matrix function (I −S) is nonsingular.

Proof.

J = S + SJ

⇐⇒ I + J−S−SJ = I

⇐⇒ (I −S)(I + J) = I.

Therefore, (I + J) is the inverse of (I − S) and (I − S) is a nonsingular
matrix. �

Proposition 4.2.2 The matrix function (I −S) is positive definite.

Proof. Since (I −S)(∞) = I is nonsingular and positive definite at ∞, by
proposition 3.2.11 (I −S) is positive definite. �

Using theorem 3.2.13, propostions 3.2.5 and 3.2.12: there exists F+(y) ∈
R+

(n×n) and F−(y) ∈ R−(n×n) such that

1. I −S(y) = F+(y)F−(y),
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2. F−(y) = F∗+(y),

3. det(F+(z)) 6= 0 ∀ z ∈ Π+ and det(F−(z)) 6= 0 ∀ z ∈ Π−,

4. F+(∞) = I y F−(∞) = I −S(∞) = I,

5. the factors admit analytic continuations, holomorphic in the interior
and continuous on Π±, and

6. for all z ∈ Π+ F+(z) 6=
[
0
]
and for all z ∈ Π− F−(z) 6=

[
0
]
.

Since I −S(y) is symmetric, even and

I −S(y) = F+(y)F−(y),

then

I −S(y) = FT−(−y)FT+(−y)

where the super-index T denotes the transpose. Hence, FT−(−y) and FT+(−y)
are candidates for a canonical factorization of I −S(y). Doing a change of
variable in the elements of FT−(y) and FT+(y), FT−(−y) ∈ R+

(n×n) and FT+(−y) ∈
R−(n×n). Wherefore, they admit an analytical continuation, holomorphic in
the interior and continuous on Π±. Moreover, since F′−(−∞) = I, it is a left
canonical factorization and by proposition 3.2.4.

FT+(−y) = F∗+(y) FT−(−y) = F+(y).

Remark 4.2.3 Each element of F+ is an hermitian function, since

FT+(−y) = F∗+(y)
⇐⇒ F+(−y) = F+(y).

Remark 4.2.4 Given that F+(∞) = I = F−(∞),

∀ k = j Fk,j+ (y) = 1 +
∫ ∞

0
gk,j+ (t)eitydt,

∀ k 6= j Fk,j+ (y) =
∫ ∞

0
gk,j+ (t)eitydt,

∀ k = j Fk,j− (y) = 1 +
∫ 0

−∞
gk,j− (t)eitydt, and

∀ k 6= j Fk,j− (y) =
∫ 0

−∞
gk,j− (t)eitydt.

Furthermore, by remark 4.2.3 the functions gk,j+ and gk,j− are real valued for
all k and j in {1, 2, 3, ...,m}.
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δi,j −Si,j(y) =
m∑
k=1

Fi,k+ (y)Fk,j− (y).

If i = j, then

1−Si,i(y) =
m∑
k=1

Fi,k+ (y)Fk,i− (y)

= Fi,i+ (y)Fi,i− (y) +
∑
k 6=i

Fi,k+ (y)Fk,i− (y)

=
(

1 +
∫ ∞

0
eiytgi,i+ (t)dt

)(
1 +

∫ 0

−∞
eiytgi,i− (t)dt

)
+

∑
k 6=i

(∫ ∞
0

eiytgi,k+ (t)dt
)(∫ 0

−∞
eiytgk,i− (t)dt

)

= 1 +
∫ ∞

0
eiytgi,i+ (t)dt+

∫ 0

−∞
eiytgi,i− (t)dt

+
∫ ∞
−∞

eiyt
∫ ∞
−∞

gi,i+ (s)gi,i− (t− s)dsdt

+
∑
k 6=i

∫ ∞
−∞

eiyt
∫ ∞
−∞

gi,k+ (s)gk,i− (t− s)dsdt

= 1 +
∫ ∞

0
eiytgi,i+ (t)dt+

∫ 0

−∞
eiytgi,i− (t)dt

+
m∑
k=1

∫ ∞
−∞

eiyt
∫ ∞
−∞

gi,k+ (s)gk,i− (t− s)dsdt.

Since Si,j = 2π√ρiρjŜi,j(y) and substituting in the last equation,

0 =
∫ ∞
−∞

eiytdt

[
2π√ρiρjSi,i(t) + gi,i+ (t) + gi,i− (t) +

m∑
k=1

∫ ∞
−∞

dsgi,k+ (s)gk,i− (t− s)
]
.

Then, except in a zero measure set,

0 = 2π√ρiρjSi,i(t) + gi,i+ (t) + gi,i− (t) +
m∑
k=1

∫ ∞
−∞

dsgi,k+ (s)gk,i− (t− s). (4.15)

Definition 4.2.5 Let λk = 2πρk,

Q+
i,j = − gi,j+

2π√ρiρj
and Q−i,j = − gi,j−

2π√ρiρj
.

Solving for Si,i in equation 4.15,

Si,i(t) = Q+
i,i(t) +Q−i,i(t)−

m∑
k=1

λk

∫ ∞
−∞

dsQ+
i,k(s)Q−k,i(t− s)

= Q+
i,i(t) +Q−i,i(t)−

m∑
k=1

λk

∫ ∞
t

dsQ+
i,k(s)Q−k,i(t− s).
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If i 6= j, then

−Si,j(y) =
m∑
k=1

Fi,k+ (y)Fk,j− (y)

= Fi,i+ (y)Fi,j− (y) + Fi,j+ (y)Fj,j− (y) +
∑
k 6=i,j

Fi,k+ (y)Fk,j− (y)

=
(

1 +
∫ ∞

0
eiytgi,i+ (t)dt

) ∫ 0

−∞
eiytgi,j− (t)dt

+
∫ ∞

0
eiytgi,j+ (t)dt

(
1 +

∫ 0

−∞
eiytgj,j− (t)dt

)
+

∑
k 6=i,j

(∫ ∞
0

eiytgi,k+ (t)dt
)(∫ 0

−∞
eiytgk,j− (t)dt

)

=
∫ ∞

0
eiytgi,j+ (t)dt+

∫ 0

−∞
eiytgi,j− (t)dt

+
∫ ∞
−∞

eiyt
∫ ∞
−∞

gi,i+ (s)gi,j− (t− s)dsdt

+
∫ ∞
−∞

eiyt
∫ ∞
−∞

gi,j+ (s)gj,j− (t− s)dsdt

+
∑
k 6=i,j

∫ ∞
−∞

eiyt
∫ ∞
−∞

gi,k+ (s)gk,j− (t− s)dsdt

=
∫ ∞

0
eiytgi,j+ (t)dt+

∫ 0

−∞
eiytgi,j− (t)dt

+
m∑
k=1

∫ ∞
−∞

eiyt
∫ ∞
−∞

gi,k+ (s)gk,j− (t− s)dsdt.

Since Si,j = 2π√ρiρjŜi,j(y) and substituting in the last equation,

0 =
∫ ∞
−∞

eiytdt

[
2π√ρiρjSi,j(t) + gi,j+ (t) + gi,j− (t) +

m∑
k=1

∫ ∞
−∞

dsgi,k+ (s)gk,j− (t− s)
]
.

Then, except in a zero measure set,

0 = 2π√ρiρjSi,j(t) + gi,j+ (t) + gi,j− (t) +
m∑
k=1

∫ ∞
−∞

dsgi,k+ (s)gk,j− (t− s).

Solving for Si,j,

Si,j(t) = Q+
i,j(t) +Q−i,j(t)−

m∑
k=1

λk

∫ ∞
−∞

dsQ+
i,k(s)Q−k,j(t− s)

= Q+
i,j(t) +Q−i,j(t)−

m∑
k=1

λk

∫ ∞
t

dsQ+
i,k(s)Q−k,j(t− s).
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Comparing both equations, we get that for all i and j in {1, 2, 3, ...,M}

Si,j(t) = Q+
i,j(t) +Q−i,j(t)−

m∑
k=1

λk

∫ ∞
t

dsQ+
i,k(s)Q−k,j(t− s). (4.16)

Or in matrix notation,

S(t) = Q+(t) +Q−(t)−
∫ ∞
t

dsQ+(s)Q−(t− s). (4.17)

For the equation relating J with Q+,

(I −S)(I + J) = I

⇐⇒ (I + J) = (I −S)−1

⇐⇒ (I + J) = F−1
− F−1

+

⇐⇒ (I + J)F+ = F−1
−

⇐⇒ F+ + JF+ = F−1
− .

Fi,j+ +
m∑
k=1

Ji,kF
k,j
+ = (F−1

− )i,j

Fi,j+ +
∑
k 6=j

Ji,kF
k,j
+ + Ji,jF

j,j
+ = (F−1

− )i,j :

Substituting the values from F+ (remark 4.2.4), J and doing something sim-
ilar as in section 4.1:

0 =
∫ ∞
−∞

eiyt

(
g+
i,j(t) + 2π√ρiρjJi,j(t) +

m∑
k=1

2π√ρiρk

∫ ∞
−∞

Ji,k(t− s)g+
k,j

(s)ds− (g−1
− )i,j(t)

)
dt.

Except in a zero measure set,

−2π√ρiρjJi,j(t) = g+
i,j(t) +

m∑
k=1

2π√ρiρk
∫ ∞
−∞

Ji,k(t− s)g+
k,j(s)ds− (g−1

− )i,j(t) :

for t > 0

Ji,j(t) = Q+
i,j(t) +

m∑
k=1

λk

∫ ∞
0

Ji,k(t− s)Q+
k,j(s)ds. (4.18)

Or in matrix notation

J(t) = Q+(t) +
∫ ∞

0
J(t− s)Q+(s)ds. (4.19)

Equations 4.17 and 4.19 are the generalizations of equations 4.8 and 4.10. In
the next subsection we will see their form for the special case of hard spheres.
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4.2.1 Direct correlation function for hard spheres
Suppose

Ui,j(x) =

∞ x < di+dj
2

0 x ≥ di+dj
2 .

In other words we have

hi,j(x) = −1 ∀ x ≤ di + dj
2 and c(x) = 0 ∀x > di + dj

2 .

Remark 4.2.6 For all |x| > di+dj
2 Si,j(x) = 0.

Hence, I −Si,j is an entire function for all i and j in {1, 2, 3, ...,m}.

Proposition 4.2.7 Fi,j+ and Fi,j− are entire functions for all i, j, and

I −S(z) = F+(z)F−(z) z ∈ C.

Proof. Since for all z ∈ Π+ det (F+(z)) 6= 0 and for all z ∈ Π− det (F−(z)) 6=
0,

G+(z) =

F+(z) 0 ≤ Im(z) <∞
(I −S)F−1

− (z) −∞ < Im(z) < 0
and

G−(z) =

(I −S)F−1
+ (z) 0 < Im(z) <∞

F−(z) −∞ < Im(z) ≤ 0.

Given that F+ is continuous on Π+, (I −S)F−1
− is continuous on Π−. In the

intersection they are equal, then by the pasting lemma G+ is continuous on
C. Similarly, G− is continuous in C. Given that F+ is holomorphic in the
interior of Π+ and (I − S)F−1

− is holomorphic in the interior of Π−, G+ is
holomorphic on C − {z ∈ C | Im(z) = 0}. Using lemma 2.1.4 or a similar
argument to its demonstration, we get that G+ and G− are entire.

Since G+ has the same characteristics that F+ on Π+ and G− the same char-
acteristics that F− on Π−, then it is a canonical factorization of I −S in the
real line. By the uniqueness, we have that F+ = G+ and F− = G−. Therefore,
F+ and F− are entire, and by how we defined G− and G+, (I −S) = F+F−
on C. �

We want to find similar equations as in the one species case, we will con-
tinue with the proofs of auxiliary propositions used in the demonstration of
theorem 4.2.12.
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Proposition 4.2.8 There exists Ai,j > 0 such that for all z ∈ C

Fi,j+ (z) ≤ Ai,je
d1+di

2 |Im(z)|.

Proof. Let F = I −S.

F = F+F−.

Fi,j =
m∑
k=1

Fi,k+ Fk,j− .

Fixing i, we get the following system of linear equations,

Fi,1 =
m∑
k=1

Fi,k+ Fk,1−

Fi,2 =
m∑
k=1

Fi,k+ Fk,2−

...

Fi,M =
m∑
k=1

Fi,k+ Fk,M− .

It is equivalent to

Y = F−X

where

Y =


Fi,1
Fi,2
...

Fi,m

 and X =


Fi,1+
Fi,2+
...

Fi,m+ .


Using Cramer’s rule,

Xl =
det

([
F1
− . . . Fl−1

− Y Fl+1
− . . . Fm−

])
det(F−) .

Let z ∈ Π−. Since det(F−) ∈ R− and ∀z ∈ Π− det(F−) 6= 0, by theorem
2.2.28 1

det(F−) ∈ R−. Given that R− is a ring and by properties of the
determinant,

det
([
F1
− . . . Fl−1

− Y Fl+1
− . . . Fm−

])
=

m∑
k=1

Fi,kak
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where ak ∈ R−. Again, since R− is a ring, bk = ak
det(F−) ∈ R− and

Fi,l+ = X l =
m∑
k=1

bkFi,k. (4.20)

Using proposition 3.1.8, there exists A > 0 such that for all z ∈ Π−

|Fi,k(z)| ≤ Ake
di+dk

2 |Im(z)|.

Since we ordered the species so that d1 ≥ dk,

Fi,l+ ≤ Bi,le
d1+di

2 |Im(z)|

where Bi,l = Max(Ak)mk=1. By proposition 2.2.21, there exists Mi,l > 0 such
that

Fi,l+ ≤Mi,l :

if Ai,l = Max(Mi,l, Bi,l), then for all z ∈ C

Fi,l+ ≤ Ai,le
d1+di

2 |Im(z)|.

�

Definition 4.2.9 For hard spheres in the short-range, two species are the
same if they have the same diameter.

Remark 4.2.10 In our model the only parameters we encounter are the di-
ameter of particles and the number of particles per unit of volume. Hence,
we can add the densities and take as the same species two particles with the
same diameter. We will use this fact in the next proposition’s proof.

Proposition 4.2.11 For all i and j in {1, 2, 3, ...,m} gi,j+ is not the zero
function and gi,j+ is not the zero function except in a measure zero set.

Proof. Let i, j ∈ {1, 2, 3, ...,m}. We are going to do the proof by contradic-
tion. Suppose gi,j+ is the zero function or gi,j+ is the zero function except in a
measure zero set:

Fi,j+ = δi,j.

Substituting in equation 4.20,

δi,j =
m∑
k=1

bkFi,k. (4.21)
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Using proposition 3.1.8, there exists Ak such that

Fi,k ≤ Ake
di+dk

2 |Im(z)|.

Hence, for an appropriate A > 0, for all z ∈ Π−

b1Fi,1 = δi,j −
∑
k 6=1

bkFi,k ≤ Ae
di+d2

2 |Im(z)|.

Let y < 0. Since b1 is bounded on Π−,

sup

({
ln|b1Fi,1(−ir)|

r

∣∣∣∣ r ≥ −y}) ≤ sup

({
lnA

r

∣∣∣∣ r ≥ −y})+ di + d2
2

= lnA

−y
+ di + d2

2 .

Taking the infimum on both sides,

lim sup
r→∞

ln|Fi,1(−ir)|
r

≤ 0 + di + d2

2

⇐⇒ lim sup
r→∞

ln|b1Fi,1(−ir)|
r

≤ di + d2

2 .

By [25],

lim sup
r→∞

ln|b1Fi,1(−ir)|
r

= di + d1

2 :

di + d1

2 ≤ di + d2

2 .

Which is a contradiction, since d1 > d2. �

Theorem 4.2.12 For all k, j ∈ {1, 2, 3, ...,m}

Fk,j+ (y) = δk,j +
∫ d1+dk

2

0
gk,j+ (t)eitydt and

Fk,j− (y) = δi,j +
∫ 0

− d1+dk
2

gk,j− (t)eitydt.

Furthermore, for all t /∈
(
0, d1+dk

2

)
gk,j+ (t) = 0 and for all t /∈

(
−d1+dk

2 , 0
)

gk,j− (t) = 0.
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Proof. Using propositions 3.1.13, 4.2.8 and 4.2.11, we get the result for Fk,j+ .
Given that FT−(−y) = F+(y), we get it for Fk,j− . �

Using the last theorem, equations 4.18 and 4.17 become,

Si,j(t) = Q+
i,j(t) +Q−i,j(t)−

m∑
k=1

λk

∫ d1+di
2

t
dsQ+

i,k(s)Q−k,j(t− s) (4.22)

Ji,j(t) = Q+
i,j(t) +

m∑
k=1

λk

∫ d1+dk
2

0
Ji,k(t− s)Q+

k,j(s)ds. (4.23)

Differentiating with respect to t > 0 (we have already proved they are real
valued) and if Q+

i,j = Qi,j, as in section 4.1,

−tci,j(t) = Q′i,j(t)−
m∑
k=1

λk

∫ d1+di
2

t
dsQ′i,k(s)Qj,k(s− t), (4.24)

and

−thi,j(t) = Q′i,j(t) +
m∑
k=1

λk

∫ d1+dk
2

0
(t− s)hi,k(|t− s|)Qk,j(s)ds. (4.25)

Equations 4.24 and 4.25 are the result of assuming a hard spheres potential
in equations 4.17 and 4.19. Together, these equations are a new, useful, re-
formulation of the PY equation for a mixture of hard spheres. Let us refer
to these equations as the m-species Rivera-Baxter (mRB) equations. Un-
fortunately, following Baxter’s approach [1], we were not able to solve them
analytically, due to what we think is an inconsistency in his derivation. How-
ever, in chapter 6 we will validate our new mRB integral equations using finite
element computational techniques [26, 27, 28] for a particular case, presented
in chapter 5.

1. In chapter 5 we will obtain the total and direct correlation functions for
a system of hard spheres using molecular dynamics and finite element
techniques. The systems comprise particles of diameters R1 = 6Å and
R2 = 2Å, and molar concentrations of ρ1 = 1M and ρ2 = 1M . We
will compare our finite element results with our molecular dynamics
simulations, so we can use the finite element total and direct correlation
functions as our benchmark.

2. In chapter 6, section 6.1, we will discuss and compare Hiroike’s analyt-
ical expression for the direct correlation functions [29] with our finite
element results from chapter 5.
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3. In section 6.2, we will use Hiroike’s analytical direct correlation func-
tions presented in chapter 6 to numerically obtain the Qi,j(r) functions
and validate the integral equations 4.24 and 4.25.

4. Finally, in section 6.3 we will follow article [2] and compute Baxter’s
direct correlation functions. Then, we will obtain their corresponding
total correlations functions, using the Ornstein-Zernike equations, and
we will compare the direct correlations functions to Hiroike’s analytical
solutions and our results from finite element computations.



Chapter 5

Numerical simulations

We want to numerically test the short range direct correlation functions
proposed in references [2, 10], chapter 6. For this reason we developed a
molecular dynamics computer simulation program, and ran it for some spe-
cific parameters. The basis of this technique can be consulted in reference
[3]. Additionally, we wrote a fortran 90 program to numerically solve, using
a finite element method [26], the Percus-Yevick integral equations:

fi,j(|r|) = ci,j(|r|) 0 < |r| ≤ di,j

fi,j(|r|) = hi,j(|r|) di,j < |r|

−1 = fi,j(|r|) +
m∑
k=1

ρk

∫
fi,k(|r − rk|)fk,j(|rk|)drk 0 < |r| ≤ di,j

fi,j(|r|) =
m∑
k=1

ρk

∫
fi,k(|r − rk|)fk,j(|rk|)drkdi,j < |r|,

obtained from the Ornstein-Zernike equations.

5.1 Molecular dynamics
Molecular dynamics is a computer experiment for a given model fluid, where
the Newton’s equations of motion are solved, as a function of time, for a
number of particles interacting through a simplified model of a given real
system. Let us suppose that these particles are hard spheres. Hence, the ki-
netic energy is conserved and there are no long-range inter-molecular forces.
Given those suppositions, we wrote a program to take pictures–we will clar-
ify later–of the fluid’s particles every time a collision occurred. For that,
we needed to identify the closest collision to occur given the position and
velocities of the particles at a given time. Then, advance the system until

73
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that collision to take the picture and compute the new velocity vectors of
the particles colliding. Again, we look for the closest collision and repeat the
process. It’s computationally expensive, because we need to compute all the
possible collisions between an enormous number of particles, then find the
one that will occur first, while we take care of not having overlaps between
particles. Now, let us clarify what we mean by taking pictures. Each time
a collision occurs we position ourselves in one specific particle and we count
how many particles of each species are at a distance r from it. Immediately,
we store that data, we do it for all the system’s particles and we use it to
compute the radial distribution function. As for the initial conditions we
assumed the particles were in a lattice, using a Maxwell velocity distribution
function we randomly assigned velocity vectors to the particles in accordance
with the system’s temperature and finally we let the system evolve for a con-
venient number of collisions.

In this thesis, we will perform a molecular dynamics simulation for a system
of two species of hard spheres and calculate their total correlation functions,
hi,j(r). We use periodic boundary conditions at the frontier, that is, every
time a particle leaves the box; another particle enters in an adequate way.
We will use these results to test our analytical solutions of the PY equation
for hard spheres. We assume a system comprised by two species, the particles
are hard spheres with no long-range inter-molecular forces. Their diameters
are d1 = 6Å and d2 = 2Å, and their molar concentrations are ρ1 = 1M
and ρ2 = 1M . We used a box with sides equal to 104.43Å and 686 parti-
cles for each species. In figures 5.1, 5.2, and 5.3 we present our results for
h1,1(r), h1,2(r), h2,1(r) and h2,2(r), after 600, 000, 1, 000, 000, 3, 000, 000 and
6, 000, 000 collisions. Of course, the larger the number of collisions allowed in
the simulation, the smoother are the calculated correlation functions. All the
total correlation functions exhibit the same qualitative behavior, i.e., hi,j(r)
has a first maximum at the inter-particles contact value, r = rc, while it
tends to zero for r → ∞, where rc ≡ (di + dj)/2. This behavior reveals the
existence of effective liquid cohesion forces, although no attractive forces are
present in our model. When the number of particles is lowered to a concen-
tration of the order of that of an ideal gas, the total correlation becomes equal
to 0, ∀r ≥ (di + dj)/2 (not shown), showing that this effective many-body
attraction is an entropy effect.

In Fig. 5.1 we show the total correlation distribution function, h1,1(r), as a
function of the inter-particles distance r among particles of species 1, i.e., the
larger particles in the system with d1 = 3d2. At the particles contact point,
rc ≡ (d1 + d1)/2 = 6Å, h1,1(rc) = 0.2076, while it shows a first minimum
of h1,1(r = 11.71) = −8.63x10−3. In particles diameters, this minimum is
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Figure 5.1: Total correlation function, h1,1(r), among particles of species 1
as a function of the inter-particles distance, r. The system is a two species
hard spheres fluid with temperature T = 298K. Their diameters and molar
concentrations are d1 = 6Å and d2 = 2Å, and ρ1 = 1M and ρ2 = 1M , respec-
tively. The results were obtained through a molecular dynamics simulation.
The different plots correspond to an increasing number of collisions.
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Figure 5.2: Total correlation functions, h1,2(r) and h2,1(r), between particles
of species 1 and 2, as a function of the inter-particles distance, r. The system
parameters are the same as in Fig. 5.1.
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Figure 5.3: Total correlation function, h2,2(r), among particles of species 2,
as a function of the inter-particles distance, r. The system parameters are
the same as in Figs. 5.1 and 5.2.
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located at r = 1.952d1 (or r = 5.85d2) from the center of the reference
central particle, indicating that after a first layer of adsorbed hard spheres,
the particles concentration decreased to an under-bulk concentration. Then,
it becomes a bit higher than one. Hence this total correlation shows an
oscillatory behavior, as has been long recognized in the literature [5, 8].

In Fig. 5.2 we depict the h1,2(r) and h2,1(r) total correlation functions. Of
course h1,2(r) = h2,1(r). We show both here to exhibit the consistency of our
MD calculations. For this case rc ≡ (d1 + d2)/2 = 4Å, and h1,2(rc) = 0.1413,
while it shows a minimum of h2,1(r = 9.69) = −5.01x10−3. In particles di-
ameters, this minimum is located at r = 1.615d1 (or r = 4.845d2 ), indicating
a particles depletion below their bulk value a bit after the contact between
two particles of species 1.

Finally, in In Fig. 5.3, we depict the h2,2(r) total correlation function.
Here, rc ≡ (d2+d2)/2 = 2Å, and h2,2(rc) = 0.1175, while it shows a minimum
of h2,2(r = 7.87) = −6.12x10−3. In particles radius, this minimum is located
at r = 1.312d1 (or r = 3.935d2 ), indicating a particles depletion below their
bulk value a in-between two particles of species 2. Higher contact values,
together with longer location of the minimum implies an increasing available
system volume, thus an increase in its entropy.

In the next section we will numerically solve the OZ equation with the
PY approximation for the direct correlation function, with a finite elements
method, and compare these solutions with our MD simulations.

5.2 Finite element

We want to approximate the total and direct correlation functions. Let us
define a node as an element of the function’s domain we want to approximate.
The finite element method we employ assumes that the functions we seek can
be expressed as a linear combination of polynomial basis functions, φl, which
at their central node take the value of one, and in the other nodes their
value is zero. For our numerical computations we assumed quadratic basis
functions. For the first node, we use a geometric transformation, t(x), that
sends the second node to the origin, the first node to −1 and the third node
to 1. Then,

φl(t) =


t(t−1)

2 |t| ≤ 1
0 t > 1.
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For the even nodes, we use a transformation, t(x), that sends the central
node to the origin and the adjacent nodes to −1 and 1. Then,

φl(t) =


1−t2

2 |t| ≤ 1
0 t > 1.

For the odd nodes, we use two transformations, the first one sends k − 2 to
−1, k − 1 to 0 and k to 1. The second one sends k to −1, k + 1 to 0 and
k + 2 to 1. Then, if x ≤ k,

φl(t) =


t(t+1)

2 |t| ≤ 1
0 t > 1.

Else,

φl(t) =


t(t−1)

2 |t| ≤ 1
0 t > 1.

Finally, for the last node, we use a transformation, t(x), that sends the L−2
node to −1, L− 1 to 0 and L to 1. Then,

φl(t) =


t(t+1)

2 |t| ≤ 1
0 t > 1.

Substituting the basis functions on the Percus-Yevick integral equations; they
become a system of linear equations, where the unknowns are the scalar
coefficients. For m species the OZ equation is

hi,j(ri, rj) = ci,j(ri, rj) +
m∑
k=1

ρk

∫
ci,k(ri, rk)hk,j(rk, rj)drk.

Hence, in terms of the inter-particles distance,

hi,j(|ri − rj |) = ci,j(|ri − rj |) +
m∑
k=1

∫
ci,k(|ri − rk|)hk,j(|rk − rj |)drk.

If we set particle i at the origin,

hi,j(|rj|) = ci,j(|rj|) +
m∑
k=1

∫
ci,k(|rk|)hk,j(|rk − rj|)drk.

Taking coordinates such that particle j is at the z axis,

hi,j(z) = ci,j(z) +
m∑
k=1

∫
ci,k(|rk|)hk,j(|rk − ~z|)drk.
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Changing to spherical coordinates, (s, θ, ϕ) 7→ t(cosθsenϕ, senθsenϕ, cosϕ),
we obtain

hi,j(z) = ci,j(z) +
m∑
k=1

2πρk
∫ ∞

0

∫ π

0
hk,j

(√
z2 + t2 − 2ztcosϕ

)
ci,k(t)t2senϕdϕdt

= ci,j(z) +
m∑
k=1

2πρk
z

∫ Ri+Rk
2

0
dtci,k(t)t

∫ |z+t|
|z−t|

dshk,j (s) s.

Now, with the Percus-Yevick approximation, given by,

fi,j(z) =

ci,j(z) z ≤ Ri+Rj
2

hi,j(z) z > Ri+Rj
2 .

, Ci,j(z) =

fi,j(z) z ≤ Ri+Rj
2

0 z > Ri+Rj
2 ,

,

and Hi,j(z) =

−1 z ≤ Ri+Rj
2

fi,j(z) z > Ri+Rj
2 .

The OZ equation becomes:

1. For all 0 < |r| ≤ Ri+Rj
2 ,

−1 = fi,j(|r|) +
m∑
k=1

2πρk
z

∫ Ri+Rk
2

0
dtCi,k(t)t

∫ |z+t|
|z−t|

dsHk,j (s) s.

2. For all Ri+Rj2 < |r|,

fi,j(|r|) =
m∑
k=1

2πρk
z

∫ Ri+Rk
2

0
dtCi,k(t)t

∫ |z+t|
|z−t|

dsHk,j (s) s.

From the last system we make the following observations. We are looking for
linear combinations of φl such that,

fi,j '
n∑
l=1

wli,jφl(z),

where wi,j are scalars and n is the number of nodes in our mesh. Therefore,
our system of integral equations becomes a linear system of algebraic equa-
tions, whose unknowns are wi,j. It is not a simple task to obtain the system
given the diameters of the particles, since, the range of the integrals and the
functions C and H depend on the particles’ diameters. For example, the
system won’t be the same when the diameters of the particles are similar or
when one diameter is 10 times the other.
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We used the Newton-Rhapson method to solve this system of equations.
In figure 5.4 we compare the different total correlation functions, hi,j(r),
obtained through our finite elements solution of the PY integral equations,
with those calculated in our MD simulations. On the other hand, since MD
does not give directly the direct correlation function, we have substituted our
MD results for the total correlation functions into the PY integral equations
to compute hybrid direct correlation functions, and compare them with those
obtained directly from the full solution of the PY integral equation. We
tested the consistency of both, the finite elements and MD calculations. In
figure 5.5 we show a comparison of the different ci,j(r) obtained from the
PY integral equation with these hybrid direct correlation functions. As it
can be appreciated in these figures the finite element results show a good
agreement with MD simulations; we would like to highlight that we got an
excellent agreement due to the fact we are working with low density values.
In figure 5.6 we highlight the direct correlation functions’ symmetry using
only finite element calculations.

6 8 10 12 14 16 18 20 22
r [Å]

0.00

0.05

0.10

0.15

0.20

h 1
,1

(r)

Molecular Dynamics
Finite Element

4 6 8 10 12 14 16 18 20 22
r [Å]

0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.150

h 1
,2

(r)

Molecular Dynamics
Finite Element

4 6 8 10 12 14 16 18 20 22
r [Å]

0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.150

h 2
,1

(r)

Molecular Dynamics
Finite Element

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
r [Å]

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

h 2
,2

(r)

Molecular Dynamics
Finite Element

Figure 5.4: Total correlation functions, hi,j(r) such that i, j ∈ {1, 2}, cal-
culated with molecular dynamics and finite element. The system is a two
species hard spheres fluid, with temperature, T = 298K. Their diameters
and molar concentrations are d1 = 6Å and d2 = 2Å, and ρ1 = 1M and
ρ2 = 1M , respectively.
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Figure 5.5: Direct correlation functions, ci,j(r) such that i, j ∈ {1, 2}, cal-
culated with molecular dynamics and finite element. The system is a two
species hard spheres fluid, with temperature, T = 298K. Their diameters
and molar concentrations are d1 = 6Å and d2 = 2Å, and ρ1 = 1M and
ρ2 = 1M , respectively.
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Figure 5.6: Symmetry in direct correlation functions, c1,2(r) and c2,1(r), cal-
culated with finite element. The system is a two species hard spheres fluid,
with temperature, T = 298K. Their diameters and molar concentrations are
d1 = 6Å and d2 = 2Å, and ρ1 = 1M and ρ2 = 1M , respectively.



Chapter 6

Analytical direct correlation
functions for hard spheres

We initiate this chapter discussing the work done by Kazuo Hiroike [10,
29], where he proposed an analytical expression for the finite range direct
correlation functions for a mixture of hard spheres. Next, we discuss the
work done by Baxter [1, 2]; we compare Baxter’s solution with our derivation,
presented in chapter 4, and Hiroike’s work. We briefly mention the correction
we made to Baxter’s work in order to complete it and compare his results to
the numerical direct correlation functions.

6.1 Hiroike’s work
We will start with nomenclature; our goal is to derive equation 2.7 from Hi-
roike’s derivation published in 1969 [10], which is the basis of Hiroike’s pro-
posed analytical solution (hereinafter referred to as Hiroioke1). His derivation
lacks clearness in his paper of 1970 [29], hereinafter referred to as Hiroike2.

6.1.1 Nomenclature
The Ornstein-Zernike equation for m species is:

hi,j(ri, rj) = ci,j(ri, rj) +
m∑
k=1

ρk

∫
ci,k(ri, rk)hk,j(r1, rk)drk.

Given the right assumptions, it only depends on the distance between particle
i and particle j:

hi,j(|ri − rj|) = ci,j(|ri − rj|) +
m∑
k=1

ρk

∫
ci,k(|ri − rk|)hk,j(|rk − rj|)drk.

83
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If the particle i is centered at the origin,

hi,j(|rj|) = ci,j(|rj|) +
m∑
k=1

ρk

∫
ci,k(|rk|)h1,j(|rk − rj|)drk.

Let us take the coordinates of R3 such that the particle j lies on e3 = (0, 0, 1):

hi,j(z) = ci,j(z) +
m∑
k=1

ρk

∫
ci,k(|rk|)hk,j(|rk − e3|)drk.

Using spherical coordinates in the integral,

(x, y, z) 7→ s(cosθsinϕ, sinθsinϕ, cosϕ),

hi,j(z) = ci,j(z) + 2π
m∑
k=1

ρk

∫ ∞
0

ds

∫ π

0
dϕhk,j

(√
z2 + s2 − 2zscosϕ

)
ci,k(s)s2senϕ

= ci,j(z) +
2π
z

m∑
k=1

ρk

∫ ∞
0

dsci,k(s)s
∫ z+s

|z−s|
dthk,j (t) t.

Multiplying both sides by 2π√ρiρjz,

2π√ρiρjzhi,j(z) = 2π√ρiρjzci,j(z) +
m∑
k=1

∫ ∞
0

ds2π√ρiρksci,k(s)
∫ z+s

|z−s|
dt2π√ρkρjthk,j (t) .

If z = r, Hi,j(r) = 2π√ρiρjrhi,j(r) and Ci,j(r) = 2π√ρiρjrci,j(r), then

Hi,j(r) = Ci,j(r) +
m∑
k=1

∫ ∞
0

dsCi,k(s)
∫ r+s

|r−s|
dtHk,j (t) :

H(r) = C(r) +
∫ ∞

0
ds
∫ r+s

|r−s|
dtC(s)H (t) .

Remark 6.1.1 The matrices H and C are symmetric: they are equal to
their transpose matrix.

H(r) = HT (r) and C(r) = CT (r).

Wherefore,

H(r)− C(r)−
∫ ∞

0
ds
∫ r+s

|r−s|
dtC(s)H (t) = 0m×m and (6.1)

H(r)− C(r)−
∫ ∞

0
ds
∫ r+s

|r−s|
dtH (t)C(s) = 0m×m. (6.2)
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Remark 6.1.2

hi,j(|rj|) = ci,j(|rj|) +
m∑
k=1

ρk

∫
ci,k(|rk|)h1,j(|rk − rj|)drk

= ci,j(|rj|) +
m∑
k=1

ρk

∫
ci,k(|rj − xk|)h1,j(|xk|)dx

= ci,j(|rj|) +
m∑
k=1

ρk

∫
ci,k(|xk − rj|)h1,j(|xk|)dx.

Taking the coordinates of R3 such that the particle j lies on ~z = (0, 0, 1),

hi,j(z) = ci,j(z) +
m∑
k=1

ρk

∫
ci,k(|xk − ~z|)hk,j(|xk|)drk.

Hence,

H(r)− C(r)−
∫ ∞

0
dt
∫ r+s

|r−s|
dsC(s)H (t) = 0m×m and (6.3)

H(r)− C(r)−
∫ ∞

0
dt
∫ r+s

|r−s|
dsH (t)C(s) = 0m×m. (6.4)

6.1.2 Hiroike’s D(r) equation

0m×m = H(r)− C(r)−
∫ ∞

0
ds
∫ r+s

|r−s|
dtC(s)H (t)

= H(r)− C(r)−
∫ ∞

0
ds
∫ r+s

|r−s|
dtC(s)H (t) + 0m×m.
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0m×m = H(r)− C(r)−
∫ ∞

0
ds

∫ s+r

|s−r|
dtC(s)H (t)

−
∫ ∞

0
ds

∫ s+r

s
dt

[
H(s)− C(s)−

∫ ∞
0

du

∫ u+s

|u−s|
dvH (v)C(u)

]
H(t)

+
∫ ∞

0
ds

∫ s

|s−r|
dtH(t)

[
H(s)− C(s)−

∫ ∞
0

du

∫ u+s

|u−s|
dvC(u)H (v)

]

= H(r)− C(r)−
∫ ∞

0
ds

∫ s+r

|s−r|
dtC(s)H (t)

−
∫ ∞

0
ds

∫ s+r

s
dtH(s)H(t) +

∫ ∞
0

ds

∫ s+r

s
dtC(s)H(t)

+
∫ ∞

0
ds

∫ s+r

s
dt

[∫ ∞
0

du

∫ u+s

|u−s|
dvH (v)C(u)

]
H(t)

+
∫ ∞

0
ds

∫ s

|s−r|
dtH(t)H(s)−

∫ ∞
0

ds

∫ s

|s−r|
dtH(t)C(s)

−
∫ ∞

0
ds

∫ s

|s−r|
dtH(t)

[∫ ∞
0

du

∫ u+s

|u−s|
dvC(u)H (v)

]

= H(r)− C(r)−
∫ ∞

0
ds

∫ s

|s−r|
dt [C(s)H (t) +H(t)C(s)]

−
∫ ∞

0
ds

∫ s+r

s
dtH(s)H(t) +

∫ ∞
0

ds

∫ s

|r−s|
dtH(t)H(s)

+
∫ ∞

0
ds

∫ ∞
0

du

[∫ u+s

|u−s|
dv

∫ s+r

s
dtH (v)C(u)H(t)

−
∫ s

|s−r|
dt

∫ u+s

|u−s|
dvH(t)C(u)H (v)

]

= H(r)− C(r)−
∫ ∞

0
ds

∫ s

|s−r|
dt [C(s)H (t) +H(t)C(s)]

+
[
−
∫ ∞

0
dt

∫ t+r

t
ds+

∫ ∞
0

ds

∫ s

|r−s|
dt

]
H(t)H(s)

+
∫ ∞

0
ds

∫ ∞
0

du

[∫ u+s

|u−s|
dt

∫ s+r

s
dv −

∫ s

|s−r|
dt

∫ u+s

|u−s|
dv

]
H(t)C(u)H (v)

= D(r)

where D(r) its just the name of the expression given in Hiroike1 [10].

Remark 6.1.3 Careful consideration of the integration limits, and the use
of Fubini’s theorem of calculus [17], we find that
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∫ ∞
0

ds

∫ s

|r−s|
dt = −

∫ r
2

0
ds

∫ r−s

s

dt+
∫ r

r
2

ds

∫ s

r−s
dt+

∫ ∞
r

ds

∫ s

s−r
dt

= −
∫ r

2

0
dt

∫ t

0
ds−

∫ r

r
2

dt

∫ r−t

0
ds+

∫ r
2

0
dt

∫ r+t

r−t
ds+

∫ ∞
r
2

dt

∫ r+t

t

ds

−
∫ ∞

0
ds

∫ s

|s−r|
dtH(t)

[∫ ∞
0

du

∫ u+s

|u−s|
dvC(u)H (v)

]
= −

∫ ∞
0

ds

∫ s

|s−r|
dtH(t)F (s)

=
[
−
∫ r

2

0
dt

∫ t

0
ds−

∫ r

r
2

dt

∫ r−t

0
ds+

∫ r
2

0
dt

∫ r+t

r−t
ds+

∫ ∞
r
2

dt

∫ r+t

t
ds

]
H(t) ∗

∗
[∫ ∞

0
du

∫ u+s

|u−s|
dvC(u)H (v)

]
.

Consequently,[
−
∫ ∞

0
dt
∫ t+r

t
ds+

∫ ∞
0

ds
∫ s

|r−s|
dt

]
H(t)H(s) = −

∫ r

0
dt
∫ r−t

0
dsH(t)H(s).

It agrees with what is exposed in references [10, 29]. The last term of equation
2.7 in Hiroike1 [10] or equation 2.3 in Hiroike2 [29] is∫ r

0
dt

[∫ ∞
t

ds
∫ s

0
du
∫ s−|u−t|

|s−u−t|
dv −

∫ t

0
ds
∫ t

0
du
∫ t−|u−s|

|t−u−s|
dv

]
H(u)C(s)H(v),

or in the nomenclature we are using,∫ r

0
ds

[
−
∫ ∞
s

du

∫ u

0
dt

∫ u−|t−s|

|u−t−s|
dv +

∫ s

0
du

∫ s

0
dt

∫ s−|t−u|

|s−t−u|
dv

]
H(t)C(u)H(v).

(6.5)
We tried to derive the last expression from∫ ∞

0
ds
∫ ∞

0
du

[∫ u+s

|u−s|
dt
∫ s+r

s
dv −

∫ s

|s−r|
dt
∫ u+s

|u−s|
dv

]
H(t)C(u)H (v) , (6.6)

but we were unsuccessful. Since Hiroike used elementary calculations and
applied Fubini’s Theorem, we integrated

f(u) = e−u

over the two regions to test if the regions are equivalent under those com-
putations. We did it in Wolfram Mathematica. We obtained that over the
region of equation 6.5∫ r

0
ds

[
−
∫ ∞
s

du

∫ u

0
dt

∫ u−|t−s|

|u−t−s|
dv +

∫ s

0
du

∫ s

0
dt

∫ s−|t−u|

|s−t−u|
dv

]
f(u) = −4e−r + (r − 2)2,



88 Chapter 6. Analytical direct correlation functions for hard spheres

nevertheless over the region of equation 6.6,
∫ ∞

0
ds
∫ ∞

0
du

[∫ u+s

|u−s|
dt
∫ s+r

s
dv −

∫ s

|s−r|
dt
∫ u+s

|u−s|
dv

]
f(u)

diverges. Therefore, the regions are not equivalent under elementary calcu-
lations and the use of Fubini’s theorem. It is unclear how to proceed to ana-
lytically obtain Hiroike’s general expression for the direct correlations func-
tions. However, in this chapter we test its validity against our finite element
numerical solutions of equation 4.1 for the direct correlation functions. Fur-
thermore, substituting his analytical expressions for ci,j(r) in equation 4.1
and solving it numerically with finite element, we obtain their corresponding
total correlations functions, hi,j(r), and compare them with our finite element
results in chapter 5.

In figures 6.1 and 6.2 we present a comparison of hi,j(r) and ci,j(r) of a
mixture of hard spheres calculated with Hiroike’s analytical solution and the
numerical solution of the PY integral equation, solved with a finite elements
method and MD simulations. As can be seen in figure 6.1 there is an excel-
lent agreement of Hiroike’s solutions with our finite elements solution of the
PY integral equation, and, by extension, also with our previously presented
results of MD (see figure 5.4, 5.5, and 5.6). These results validate, by consis-
tency, our three approaches to the solution of the PY integral equation. In
figure 6.2, we present results for hi,j(r) and ci,j(r) for a highly asymmetric
mixture of two species of hard spheres, and compare hi,j(r), obtained from
the numerical solution of the PY equation using the finite element method,
with the MD simulation. In the same figure, we also compare Hiroike’s direct
correlation functions, ci,j(r), with the numerical solution of the PY equation.
As can be seen, in all cases, there is a good agreement among our different
approaches, even for a highly asymmetric system of hard spheres.
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Figure 6.1: (a) Total correlation functions, hi,j(r), calculated by solving the
PY integral equation with a finite elements methods, and those obtained
through the OZ equation with the PY approximation, but using the direct
correlation functions, ci,j(r), given by Hiroike’s analytical solution. (b) Finite
element solution of the Ornstein-Zernike equation against Hiroike’s analytical
solution for the direct correlation functions, ci,j(r).

The system is a two species hard spheres fluid, with temperature,
T = 298K. Their diameters and molar concentrations are d1 = 6Å and

d2 = 2Å, and ρ1 = 1M and ρ2 = 1M , respectively.
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Figure 6.2: On the left hand side, MD total correlation functions computed
after 1,000,000 collisions and compared to the finite element solution of the
PY integral equation. On the right hand side, the direct correlation func-
tions computed using finite elements to solve the PY integral equation and
Hiroike’s analytical solution. The system is a highly asymmetric mixture of
two species of hard spheres with temperature T = 298K.
Their diameters and molar concentrations are d1 = 50Å and d2 = 1Å, and
ρ1 = 0.0004M and ρ2 = 0.01M , respectively. For the molecular dynamics

computations we used a box with sides of 1033.56Å containing 266 particles
of the first species and 6646 particles of the second species.
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6.2 Our integral equations’ validation
Now, we want to numerically validate our system of equations, given by

−tci,j(t) = Q′i,j(t)−
m∑
k=1

λk

∫ d1+di
2

t
dsQ′i,k(s)Qj,k(s− t),

and

−thi,j(t) = Q′i,j(t) +
m∑
k=1

λk

∫ d1+dk
2

0
(t− s)hi,k(|t− s|)Qk,j(s)ds.

In order to do it, we used the finite elements method [26] to solve equation

Si,j(t) = Q+
i,j(t) +Q−i,j(t)−

m∑
k=1

λk

∫ d1+di
2

t
dsQ+

i,k(s)Q−k,j(t− s).

We used as an input Hiroike’s analytical expression for the direct correlation
function to numerically compute Qi,j(r). Then, we solved equation

Ji,j(t) = Q+
i,j(t) +

m∑
k=1

λk

∫ d1+dk
2

0
Ji,k(t− s)Q+

k,j(s)ds.

and differentiated Ji,j(r) to find hi,j(r). As it can be observed in figure 6.3,
our theorem 4.2.12 is validated by these numerical results, since the functions
Qi,j(r) = 0 for all r ≥ R1+Ri

2 –refuting what Baxter claimed in reference [2].
Moreover, from figure 6.4 we conclude the functions hi,j(r), obtained using
the equations derived in chapter 4, coincide with our benchmark obtained in
chapter 5.
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Figure 6.3: Functions Qi,j(r), for a mixture of two species of hard spheres,
at temperature T = 298K. Their diameters are d1 = 6Å and d2 = 2Å, and
their molar concentrations are ρ1 = 1M and ρ2 = 1M , respectively.
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Figure 6.4: Total correlation functions, hi,j(r), numerically computed for a
mixture of two species of hard spheres at temperature T = 298K. Their
diameters are d1 = 6Å and d2 = 2Å, and their molar concentrations are
ρ1 = 1M and ρ2 = 1M , respectively.
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6.3 Baxter’s work

6.3.1 One species
As Baxter in reference [1], we arrived to the same results in our section 4.1
for a system of only one species of hard spheres. However, we must point out
that we could not follow Baxter’s logical deductions, since we found a lack of
mathematical rigorousness. Hence, we recurred to methods for the solution of
integral equations on a half-line with kernel depending upon the difference of
the arguments [16], in order to develop section 4.1. Nevertheless, we arrived
at the same results of Baxter, i.e.,

−th(t) = Q′(t)− λ
∫ R

0
Q(s)(t− s)h(|t− s|)ds t > 0 and

−tc(t) = Q′(t)− λ
∫ R

t
Q′(s)Q(s− t)ds.

6.3.2 More than one species
Although, we were able to obtain the same result of Baxter, for a one species
fluid of hard spheres presented in reference [1], we were unable to reproduce,
with mathematical rigorousness, his derivation for a multi-component mix-
ture of hard spheres [2]. In fact, as we shall show below, his resultant direct
correlation functions, ci,j(r), seem to be incorrect. In his article [2] Baxter
claimed,

Fk,j+ (y) = ĝk,j+ (y) = δk,j +
∫ Rk+Rj

2

Rk−Rj
2

dteiytgk,j+ (t).

But a direct consequence of theorem 4.2.12 is that the support of the func-
tions Qk,j is

(
0, R1+Rk

2

)
and not

(
Rk−Rj

2 , Rk+Rj
2

)
, as claimed by Baxter. Bax-

ter’s claim should have been suspicious from the start since the functions Qk,j

are elements of L+, and Rk−Rj
2 can be a negative number. Moreover, when

it is a positive number the integral is missing
(
0, Rk−Rj2

)
, which can be very

large if the difference is big enough. Nevertheless, let us make the exercise
of following Baxter’s steps and compare the result with the numerical direct
correlation functions for hard spheres. Baxter’s equation 25 in our notation
is

rhi,j (|r|) = −Q′i,j(r) + 2π
M∑
k=1

ρk

∫ Ri+Rk
2

Ri−Rk
2

dtQi,k(t)(r − t)hk,j(|r − t|),
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where r ∈
(
Ri−Rj

2 , Ri+Rj2

)
. Using the assumptions for the PY approximation,

−r = −Q′i,j(r)− 2π
M∑
k=1

ρk

∫ Ri+Rk
2

Ri−Rk
2

dtQi,k(t)(r − t).

Solving for Q′i,j,

Q′i,j(r) = r − 2π
M∑
k=1

ρk

∫ Ri+Rk
2

Ri−Rk
2

dtQi,k(t)(r − t)

=

1− 2π
M∑
k=1

ρk

∫ Ri+Rk
2

Ri−Rk
2

dtQi,k(t)

 r +

2π
M∑
k=1

ρk

∫ Ri+Rk
2

Ri−Rk
2

dtQi,k(t)


= air + bi.

These equations differ from Baxter’s equations 38 and 39 by 2π [2], but let
us think it was a transcription mistake. Suppose we have two species, the
first with diameter R1 = 6 ∗ 10−8cm, density ρ1 = 6.023 ∗ 1020 particles per
liter; the second with diameter R2 = 2∗10−8cm and density ρ2 = 6.023∗1020

particles per liter. Making the calculations with Wolfram Mathematica,

a1 = 1.4239 , b1 = −4.2717 ∗ 10−15,

a2 = 1.1638 and b2 = −8.5917 ∗ 10−10.

But, if we use Baxter equations 40 and 41 from reference [2], then

a1 = 1.3389 , b1 = −7.8868 ∗ 10−9,

a2 = 1.1636 and b2 = −8.7631 ∗ 10−10.

Let us continue with the first set of numbers derived. Using equation 24 of
Baxter’s work [2],

c1,1(r) = −2.1539− 1.3219× 10−8

r
1.7758× 107r + 0.0125r2 − 5.3321 ∗ 1020r3.

The corresponding Hiroike’s analytical expression for c1,1(r) is given by,

c1,1(r) = −1.9329 + 1.3878 ∗ 107r − 4.8211 ∗ 1020r3.

In figure 6.5 we compare all the resultant direct correlation functions, ci,j(r),
following Baxter’s steps, as indicated above, against the results obtained from

1. the numerical solution from the Ornstein-Zernike equation, with the
PY approximation and
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2. Hiroike’s analytical expression.

It is clearly seen that the Baxter solution has significant quantitative and
qualitative disagreements with the the PY integral equation and the analyt-
ical solution of Hiroike, and, by extension, also with our MD simulation (see
figure 5.5). This is a counterexample, since we just need to show that for one
specific case the equations derived do not work. Hence, Baxter derivation in
reference [2] is incorrect. Finally, in figure 6.6 we compare the total correla-
tion functions, hi,j(r), corresponding to Baxter’s direct correlation functions
analytical solutions, with those from finite elements. It is interesting that
although there are major disagreements between the Baxter’s and finite ele-
ments direct correlation function, we find a qualitative agreement among the
corresponding total correlation functions.
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Figure 6.5: Direct correlation function, ci,j(r), calculated with Baxter’s
method, Hiroike’s analytical solution and the finite element method. The
system is a two species hard spheres fluid, with temperature, T = 298K.
Their diameters and molar concentrations are d1 = 6Å and d2 = 2Å, and
ρ1 = 1M and ρ2 = 1M , respectively.
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Figure 6.6: Total correlation function, hi,j(r), numerically computed using
the Ornstein-Zernike equation and Baxter’s analytical solutions for the direct
correlation functions. The system is a two species hard spheres fluid at
temperature T = 298K. The particles’ diameters and molar concentrations
are d1 = 6Å and d2 = 2Å, and ρ1 = 1M and ρ2 = 1M , respectively.





Chapter 7

Conclusions

In this thesis we focus on the solution of the Percus-Yevick integral equations
for an n-species hard spheres fluid. In particular, we review the Baxter’s so-
lutions for one species [1] and n-species [2] of hard spheres. We found math-
ematical inconsistencies in Baxter’s solutions for the one species case, and
frankly an incorrect derivation of Baxter’s result for n-species. Hence, we
have reformulated, both, the one species, see section 4.1 equations 4.8 and
4.10, and n-species Baxter’s derivations for the solution of the Percus-Yevick
equation, see section 4.2 equations 4.24 and 4.25. As for this part of the
thesis, we conclude that further inspections need to be made on works like
[14] and [11], since the first one is based on what Baxter did and the second
one does not provide the derivation of the findings.

Although, we have rigorously mathematically derived a reformulation of the
Percus-Yevich equations in chapter 4, we have revised the analytical solu-
tion of Hiroike (section 6.1), numerically solved the Percus-Yevick equation
and performed molecular dynamics simulations for a binary mixture of hard
spheres, both in chapter 5. With the simulations we calculated the direct
correlation functions, ci,j(r), and total correlation functions, hi,j(r), and we
found an excellent agreement with our derived functions (see section 6.2). It
might be possible to work just with the Qi,make assumptions over them, in
order to estimate the direct and total correlation functions.

We found agreement with Hiroike’s analytical solution, for it see section 6.1,
but some steps need to be clarified, since a particular case does not imply it’s
validity for all cases. In section 6.3 we showed that Baxter’s method to ob-
tain an analytical solution for the direct correlation functions is inconsistent
with our findings. It is also interesting that the total correlation functions
obtained with the Baxter’s direct correlations functions are in qualitative

99
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good agreement with our correct solution, but they are still different func-
tions. We point out that even if they are quantitatively close functions they
may lead to important differences in the fluid’s thermodynamic properties.
This is particularly important, since some approximations might appear to
be good ones, but may lead to very different results compared to what we
observe in nature. We want that our simulations be as close to reality in
order to perform experiments using the computer, in conclusion we should
be careful on what we think is a good estimation for the total correlation
function.

As for this thesis contributions:

1. We rigorously proved Baxter’s result [1] for one species in section 4.1.

2. We followed Baxter’s steps in [2] to obtain analytical expression for the
direct correlation function, in the case of a binary mixture in section
6.3.

(a) We used these analytical expressions as counterexample to prove
he was wrong, when we compared them against our results from
molecular dynamics and finite element.

(b) We used these analytical expressions as a way to illustrate how
very different direct correlation functions used to solve the OZ
equation produce similar total correlation functions.

3. We rigorously derived what Baxter intended to do in [2]. With that
we arrived to a set of equations, which reformulate de OZ equation in
section 4.2.

(a) We validated this set of equations for a binary mixture. We did
it by comparing them with our results from molecular dynamics
and finite element in section 6.2.

Finally, what comes next? When one person is new to field, he has to start
with old papers, there’s the responsibility of re-doing the theory to check
and understand what previous authors said. I’d say that the first half of
this thesis gave me experience in the field of integral equations, explicitly in
the ones that look like the OZ equation. The second half of the thesis gave
me experience in molecular dynamics and finite element computations. Hard
spheres with no charge is the first step to tackle more complicated problems
as charged hard spheres, confined charged hard spheres or charged spheres
where a force field is acting over them (in-homogeneous fluids). Knowing
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the analytical expression for the direct correlations functions in the bulk has
been used to compute the total correlation of in-homogeneous fluids (see
[30]). Furthermore, when dealing with particles with very different sizes as
in colloids, it becomes important to know the direct correlation functions in
bulk to be able to compute the total correlations functions as Dr. Lozada
did in [13]. In general, this thesis could be used or has repercussions in the
study of nanoparticles and colloidal particles.
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