

UNIVERSIDAD NACIONAL AUTÓNOMA DE MEXICO PROGRAMA DE MAESTRÍA Y DOCTORADO EN CIENCIAS QUÍMICAS

SÍNTESIS DE PROTOACULEINA B Y DERIVADOS DE RHAZINAL Y QUINAZOLINONA MEDIANTE REACCIONES DE ADICIÓN OXIDATIVA VÍA RADICALES LIBRES

TESIS

PARA OPTAR POR EL GRADO DE

DOCTORA EN CIENCIAS

PRESENTA

M. en C. JAZMÍN GARCÍA RAMÍREZ

Dr. LUIS DEMETRIO MIRANDA GUTIÉRREZ INSTITUTO DE QUÍMICA, UNAM

CIUDAD DE MÉXICO, NOVIEMBRE 2021

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN CIENCIAS QUÍMICAS

SÍNTESIS DE PROTOACULEINA B Y DERIVADOS DE RHAZINAL Y QUINAZOLINONA MEDIANTE REACCIONES DE ADICIÓN OXIDATIVA VÍA RADICALES LIBRES

T E S I S PARA OPTAR POR EL GRADO DE

DOCTORA EN CIENCIAS

PRESENTA

M. en C. JAZMÍN GARCÍA RAMÍREZ

Dr. LUIS DEMETRIO MIRANDA GUTIÉRREZ INSTITUTO DE QUÍMICA, UNAM

Ciudad de México, noviembre 2021

Este trabajo se realizó en los laboratorios 2-3 y 1-2 del Instituto de Química de la Universidad Nacional Autónoma de México.

Con el financiamiento de PAPIIT (DGPA, UNAM) número de proyecto IN208719.

Y con el apoyo de los técnicos académicos del Instituto de Química: Q. Ángeles Peña, M. en C. Elizabeth Huerta, Dra. Beatriz Quiroz, Dra. Carmen García González, Q.F.B. Ma. del Rocío Patiño[†], Dra. Marisol Reyes, M. en C. Simón Hernández, Dr. Rubén Alfredo Toscano y M. en C. María Teresa Ramírez.

Agradezco al Consejo Nacional de Ciencia y Tecnología (CONACyT) por la beca otorgada 577203 y al jurado asignado para el sometimiento de este trabajo para obtener el grado de doctora.

Jurado Asignado

Presidente	Dr. Joaquín Tamariz Mascarúa	ENCB, IPN
Vocal	Dr. José Alfredo Vázquez Martínez	Facultad de Química, UNAM
Vocal	Dr. René Miranda Ruvalcaba	FES - Cuautitlán
Vocal	Dr. Alejandro Cordero Vargas	Instituto de Química, UNAM
Secretario	Dra. Susana Porcel García	Instituto de Química, UNAM

M. en C. Jazmín García Ramírez Sustentante

plicaste

Dr. Luis D. Miranda Gutiérrez Asesor

Agradecimientos

A la Universidad Nacional Autónoma de México, por la educación y formación como científica.

Al consejo Nacional de Ciencia y Tecnología (CONACyT) por financiar mis estudios de Doctorado (No. Becario: 577203, No. CVU: 661809).

A mi asesor Dr. Luis D. Miranda, por aceptarme en su grupo de investigación. Gracias Luis por tu apoyo y motivación para ser cada vez mejor.

A los miembros de mi comité tutor: Dr. Alfredo Vázquez Martínez y Dr. Roberto Martínez, por sus valiosas aportaciones durante el desarrollo de este proyecto.

A los miembros de mi jurado: Dr. Joaquín Tamariz Mascarúa, Dr. José Alfredo Vázquez Martínez, Dr. René Miranda Ruvalcaba, Dr. Alejandro Cordero Vargas y Dra. Susana Porcel García por sus valiosos comentarios que me ayudaron a mejorar este trabajo.

A los técnicos académicos del Instituto de Química: Q. Ángeles Peña, M. en C. Elizabeth Huerta, Dra. Beatriz Quiroz, Dra. Carmen García González, Q.F.B. Ma. del Rocío Patiño[†], Dra. Marisol Reyes, M. en C. Simón Hernández, Dr. Rubén Alfredo Toscano y M. en C. María Teresa Ramírez, por la capacitación y soporte técnico brindado.

A mis papás Agustina Ramírez y Felipe García por su apoyo incondicional.

A Luis Antonio González Cortés, por su colaboración y apoyo en el desarrollo de este proyecto. Gracias Luisito.

A mis compañeros de laboratorio 2-3 y 1-2 del Instituto de Química: Ricardo Romero Cruz, Anahí Sánchez Chávez, Marco Vinicio Mijangos Linares, Manuel Pastrana, Brayan de Jesús Flores, Andrés Borja Miranda, Saul Romay Merecías, Adriana Romo Pérez, Ricardo Gutiérrez, Gustavo Gabriel Flores, Pedro López Mendoza y Yoarhy Amador.

Índice

Abreviaturas	5
RESUMEN	7
INTRODUCCIÓN	8
Capítulo 1 ANTECEDENTES	10
Los radicales libres	10
Xantatos como precursores radicalarios	15
Procesos en cascada utilizando xantatos	18
Adición sobre sistemas aromáticos	20
Capítulo 2 SINTESIS DE PROTOACULEINA B	24
La protoaculeina B	24
Síntesis reportada para pACU-B	25
Propuesta para la síntesis de pACU-B	27
Objetivo general	29
Objetivos particulares	29
Desarrollo de una estrategia radicalaria para la síntesis de pACU-B	30
Conclusiones	35
Capítulo 3 SINTESIS DEL RHAZINAL	37
El rhazinilam	37
Síntesis total para el rhazinilam (120)	37
Propuesta para la síntesis del núcleo tetracíclico del rhazinal (121)	40
Objetivo general	41
Objetivos particulares	41
Desarrollo de una estrategia radicalaria para la síntesis del rhazinal (121)	42
Conclusiones	48
Capítulo 4 CICLACIÓN RADICAL OXIDATIVA SOBRE SISTEMAS AROMÁTICOS	49
Yoduros de alquilo como precursores de radicales	49
Catálisis fotoredox	51
Objetivos	56
Ciclación radical oxidativa en quinazolinonas	57
Ciclación intramolecular de yoduros de alquilo vía fotocatálisis	58
Conclusiones	61
Sección experimental	62
Información general	62

1.	Síntesis de protoaculeina B	63
2.	Síntesis de análogos del rhazinal	75
3.	Ciclación radical oxidativa en quinazolinonas	116
4.	Ciclación radical intramolecular con fotocatálisis	123
Ar	Anexo: Publicación 13	

Abreviaturas

°C	Grados Celsius	
1,2-DCE	1,2-Dicloroetano	
Ac	Acetilo	
AcOEt	Acetato de etilo	
AIBN	2,2'-Azobis[isobutironitrilo]	
aq.	Acuoso	
atm.	Atmósfera	
Boc	ter-Butoxicarbonil	
CDCl ₃	Cloroformo deuterado	
DART	Análisis directo en tiempo real	
DCM	Diclorometano	
DCP	Peróxido de dicumilo (dicumil peroxide)	
DLP	Peróxido de dilaurilo (dilauryl peroxide)	
DMA	N,N-Dimetilacetamida	
DMF	N,N-Dimetilformamida	
EDG	Grupo electrodonador	
equiv.	Equivalente	
Et	Etilo	
EtOH	Etanol	
EWG	Grupo electroatractor	
Hex	Hexano	
НОМО	Orbital molecular más alto ocupado	
hr	Hora	
Hz	Hertz	
IR	Infrarrojo	
LEDs	Diodos emisores de luz (del inglés light emitting diodes)	
LUMO	Orbital molecular más bajo ocupado	
Μ	Concentración molar	
m/z	Relación masa-carga	
Me	Metilo	
MeCN	Acetonitrilo	
MeOH	Metanol	
min	Minutos	
mL	Mililitros	
mmol	Milimol	
MOM	Metoximetileter	
Ns	Nosilo (p-nitro- bencenosulfonilo)	
Ph	Fenil	
PhCl	Clorobenceno	
PhMe	Tolueno	

Phth	Ftalimida
Ру	Piridina
RMN	Resonancia magnética nuclear
sat.	Saturado
SET	Trasferencia monoelectrónica
SOMO	Orbital molecular único ocupado
t.a.	Temperatura ambiente
t _{1/2}	Tiempo de vida media
TBDMPS	ter-Butildifenilsilano
TEA	Trietilamina
THF	Tetrahidrofurano
TLC	Cromatografía en capa fina (del inglés tyn layer chromatography)
Tr	Tritilo (trifenilmetano)
Ts	Tosilo
W	Vatios (del inglés Watts)
Δ ΡΡΜ	Calentamiento
δ ppm	Desplazamiento químico

RESUMEN

En este trabajo se describen tres estrategias de síntesis vía radicales aplicadas a 1) la síntesis de la protoaculeina B, 2) la síntesis del rhazinal y 3) una metodología de ciclación oxidativa intramolecular.

INTRODUCCIÓN

Actualmente, las reacciones vía radicales libres son una de las herramientas más importantes para la formación de enlaces C-C, especialmente en los procesos en cascada, en los cuales se generan más de uno de estos enlaces.

través de la historia, las reacciones radicales libres se vía han posicionado como una de las herramientas más útiles en el abanico de la química orgánica sintética. En particular, la última década ha sido testigo de un crecimiento exponencial en la investigación de estas reacciones. De hecho, por el número e impacto de publicaciones sobre el tema, se puede decir que actualmente es uno de los más importantes. Esto se debe a que los radicales libres despliegan una serie de características químicas únicas que las diferencian de sus congéneres cationes y aniones, las cuales se han aprovechado tanto para la manipulación de diferentes grupos funcionales, como en la formación de enlaces carbono-carbono y carbono-heteroátomo. Así, algunas de las transformaciones difíciles de llevar a cabo a través de la tradicional química iónica, ahora son posibles mediante procesos homolíticos.¹ En la literatura se pueden encontrar un gran número de

metodologías que implican el uso de radicales libres para la construcción de una gama amplia de moléculas farmacológicamente importantes y/o como etapas clave en la síntesis total de una variedad de productos naturales.² Este renovado interés en el uso de radicales, sin duda se debe al extraordinario desarrollo que en los últimos años se ha producido en las técnicas fotocatalíticas para la generación y manipulación de estas especies.³ Así, ante el desarrollo de nuevos electroquímicos sistemas químicos, V fotocatalíticos, más prácticos, más versátiles y económicos, se abre un impresionante margen de posibilidades para el desarrollo de transformaciones cada vez más eficientes y poderosas.

Una de las aplicaciones más espectaculares que presentan las reacciones radicalarias son los llamados procesos "dominó" o en "cascada", en los cuales en una sola reacción se construye más de un enlace carbonocarbono o carbono-heteroátomo.⁴ En estos

^{1 (}a) Motherwell, W.; Crich, D. Free Radical Chain Reactions in Organic Synthesis, Academic Press **1992**, (b) Curran, D.; Porter, N. A.; Giese, B. Stereochemistry of Radical Reactions, VCH Publishers, **1996**, (c) Jasperse, C. P.; Curran, D. P; Feving, T. L. *Chem. Rev.* **1991**, *91*(6), 1237-1286.

^{2 (}a) Parsons, P. J.; Penkett, C. S.; Shell, A. *J. Chem. Rev.* **1996**, *96* (1), 195-206. (b) Romero, K. J.;

Galliher, M. S.; Pratt, D. A.; Stephenson, C. R. J. Chem. Soc. Rev. 2018, 47, 7851-7866.

^{3 (}a) Liu, J.; Lu, L.; Wood, D.; Lin, S. *ACS Cent. Sci.* **2020**, *6* (8), 1317-1340. (b) Verschueren, R. H.; De Borggraeve, W. M. *Molecules* **2019**, *24*(11), 2122.

^{4 (}a) Sebren L. J.; Devery J. J.; Stephenson, C. R. J. ACS Catal. **2014**, *4* (2), 703-716. (b) Plesniak, M.;

procesos, en una sola operación sintética se incrementa dramáticamente la complejidad de la molécula de partida. Este tipo de procesos se desencadena cuando un radical se adiciona sobre un enlace doble de un sustrato con dos o más aceptores de radicales libres. Esto permite que una vez que ha sucedido la primera adición homolítica, el nuevo radical reacciona con un segundo aceptor inter- o intramolecularmente y así sucesivamente, dependiendo del número de etapas de la cascada. Estos protocolos han servido para generar una variedad de sistemas policíclicos, y como paso clave en síntesis totales elegantes de productos naturales.⁵

Sin duda, el desarrollo de nuevas metodologías y/o estrategias sintéticas en donde intervienen reacciones vía radicales libres, es y continuará siendo uno de los temas de mayor relevancia dentro de la síntesis orgánica.

Huang H.M.; Procter, D. *Nat. Rev. Chem.* **2017**, *1*(10), 0077.

⁵ Hung K.; Hu X.; Maimone T. J. *Nat. Prod. Rep.* **2018**, *35*(2), 174-202.

ANTECEDENTES

Los radicales libres transitorios son especies de alta energía que tienen un electrón desapareado en su capa de valencia, son neutros y electrónicamente intermedios entre los cationes y aniones. Estas características permiten a estas especies llevar a cabo una serie de procesos que los hacen únicos en su reactividad.

Los radicales libres

n radical libre se define como un átomo o molécula que posee un electrón desapareado, es decir, que tiene una capa electrónica de valencia abierta. Su descubrimiento se atribuye a Gomberg, quien en 1900 describió la formación del radical trifenilmetilo en la reacción de cloruro de trifenilmetilo y zinc.6 Desde entonces, la química de radicales ha tenido un desarrollo creciente. Se han realizado múltiples estudios de parámetros cinéticos y termodinámicos para entender la reactividad y las propiedades estructurales de estos intermediarios. Se ha observado que los radicales alquilo adquieren una estructura plana con un electrón desapareado en un orbital p, aunque también pueden adquirir una estructura piramidal con un electrón desapareado en un orbital hibrido sp^3 . Esto es debido a la presencia de halógenos (Figura 1A) o si se encuentran dentro de estructuras que presenten tensión angular. Los radicales alquilo presentan una rápida

inversión del centro radical, por lo que no tienen un control estereoquímico en la formación de enlaces posteriores (Figura 1A). El mismo efecto se observa en los radicales vinílicos, en los cuales el electrón desapareado se encuentra en un orbital sp^2 que se invierte rápidamente y pierde cualquier información estereoquímica que tuviera la molécula fuente. Los radicales que contienen un electrón desapareado en un orbital p se denominan radicales π , mientras que los que contienen al electrón desapareado en un orbital híbrido $(sp^3, sp^2 \circ sp)$ son conocidos como radicales σ (Figura 1C). En general, los sustituyentes π donadores estabilizan la forma piramidal de los radicales alquilo y los sustituyentes π aceptores estabilizan la forma plana.

Hablando de estabilidad, los radicales alquilo son estabilizados por conjugación clásica cuando son vecinos a un sistema pi (radicales bencilo, alilo o alfa-carbonilo etc. Figura 1B) o por hiperconjugación cuando sólo tienen orbitales sigma vecinos (radicales alquilo Figura 1B). En estos radicales la estabilidad

⁶ Gomberg, M. J. Am. Chem. Soc. **1900**, 22(11) 757-771.

aumenta conforme aumenta el número de sustituventes en el centro radical - terciario (tres posibilidades de hiperconjugación 1b) > secundario >primario (solo una hiperconjugación). A través de estos efectos el electrón desapareado se deslocaliza, lo que genera estabilidad en el sistema. Además, los radicales son especies ambifilicas, es decir, que pueden ser estabilizados tanto por grupos electroatractores como electrodonadores que contengan un sistema π (radicales alfacarbonilo o alfa a un heteroátomo con un par de electrones libres. Figura 1C).

A diferencia de los aniones y los cationes, que normalmente sólo reaccionan con moléculas de carga opuesta, los radicales libres pueden acoplarse rápidamente entre sí. A veces tan rápido como la velocidad de difusión (10^{-9} s) ,⁷ ya que en las interacciones radical-radical prácticamente no hay una barrera energética. El tiempo de vida media de un radial es menor a 10^{-3} s. Por otra parte, además de la estabilidad termodinámica por hiperconjugación y resonancia, los radicales pueden ser estabilizados cinéticamente por efectos estéricos. Así, la presencia de sustituyentes voluminosos alrededor del centro radicalario puede prolongar su tiempo de vida al disminuir su velocidad de reacción.8 Un ejemplo de un radical con una vida media inusualmente larga (radical persistente) es el TEMPO, el cual incluso es comercialmente disponible. Es de llamar la atención que en comparación con el radical del N-oxido de piperidina, la vida media del TEMPO es substancialmente más larga (Esquema 1D). Esto es remarcable ya que, si bien ambos radicales tienen la misma estabilización electrónica, el TEMPO no puede sufrir desproporción debido a la ausencia de hidrógenos en los dos carbonos unidos al átomo de nitrógeno, además del fuerte impedimento estérico que ejercen los grupos metilo adyacentes para una posible dimerización.

⁷ Alberty, R. A.; Hammes, G. G. *J. Phys. Chem.* **1958**, *62*(2), 154-159.

⁸ Nonhebel, D. C.; Walton J. C. *Free-Radical Chemistry: Structure and Mechanism,* Cambridge chemistry texts, **1974**.

A través de la historia se ha desarrollado una variedad de grupos funcionales y condiciones bajo las cuales se pueden generar especies radicalarias. La mayoría de estas reacciones se pueden agrupar en dos mecanismos generales: a través de una ruptura homolítica o vía un proceso redox seguido de una ruptura heterolítica. Ambos procesos pueden ser promovidos térmica o fotoquímicamente respectivamente (Esquema 1). Es importante señalar que un enlace fuerte como C-C, C-H e incluso la mayoría de los enlaces Cheteroátomo (que son los más abundantes en compuestos orgánicos), los requieren temperaturas por arriba de los 400 °C o bien irradiación con luz ultravioleta (200-400 nm) para ser fragmentados homolíticamente. Este hecho facilita enormemente la selectividad en el tipo de enlaces que se fragmentan en una reacción de utilidad sintética. Esto es, sólo enlaces relativamente débiles (20 - 35 kcal mol^{-1}) pueden ser fragmentados а temperaturas menores a 200 °C o bajo irradiación con luz visible o ultravioleta cercano (400-500 nm) - condiciones prácticas para cualquier laboratorio y/o proceso

industrial. Así, se puede suponer que sólo ciertos grupos funcionales con los atributos adecuados pueden fragmentados ser exclusivamente, bajo condiciones específicas. Dos ejemplos clásicos de grupos funcionales que experimentan fragmentación térmica a relativa baja temperatura (50-150 °C), son los peróxidos orgánicos y algunos diazenos terciarios, los cuales presentan una energía de disociación de enlace de menos de 30 Kcal/mol (Esquema 1A). Esta propiedad ha llevado a estos derivados a un uso extendido como iniciadores de cadenas radicalarias, por lo que algunos de ellos son producidos en escala de toneladas. En la Tabla 1 se presentan algunos de los diazenos y peróxidos más populares con sus datos de tiempo de vida media y los radicales que se generan al fragmentarse. En el caso de los peróxidos sus fragmentos primarios experimentan una fragmentación secundaria para generar un radical más reactivo. Por otro lado, los O-acil tiohidroxamatos de Barton y algunos ditiocarbonatos derivados de V ditiocarbamatos, por mencionar algunos, son funcionalidades que se pueden fragmentar

homolíticamente bajo simple irradiación con luz visible (Esquema 1B). Por otro lado, los procesos redox implican el uso de sales metálicas o moléculas orgánicas, como oxidantes V reductores а través de transferencias monoelectrónicas. Estas transferencias generan un catión o un anión radical, el cual se puede fragmentar homolíticamente y generar un catión o anión y el correspondiente radical libre (Esquema 1C).9

Una reacción radicalaria clásica en cadena sigue tres pasos elementales: iniciación, propagación y terminación. En el primer paso, se genera un radical a partir de una molécula iniciadora mediante un proceso térmico, fotoquímico o redox, como se

describió anteriormente. La elección de los iniciadores se basa en su tiempo de vida media a la temperatura de reacción y en la naturaleza del radical liberado. En este primer paso puede participar alguno de los iniciadores mostrados en la Tabla 1. Una vez que los radicales libres están presentes en el medio de reacción, se desencadena una serie de reacciones elementales para generar otro radical en etapas de propagación. En general, las reacciones pueden ser: la adición a enlaces insaturados, la eliminación (fragmentación, β-eliminación, αescisión), ciclación, apertura de anillo, reordenamiento, sustitución homolítica, etc. Finalmente, la terminación es la última fase de una reacción en cadena. Esta conduce a la formación de especies no radicalarias por

radicalarias por desproporción, combinación o reducción u oxidación del radical.

A diferencia de las reacciones iónicas, la velocidad de reacción de los radicales libres no se ve afectada por la polaridad del disolvente. Sin embargo, en ciertos casos, estas especies sí reaccionan con el disolvente cuando estos contienen átomos de hidrógeno o halógeno disponibles. Otra característica importante es que los radicales libres pueden sufrir reordenamientos a través de una transferencia intramolecular de hidrógeno (por lo general transferencias 1,5). En general, las condiciones de reacción son relativamente suaves y presentan una amplia tolerancia a grupos funcionales.

⁹ Simões, J. A. M.; Liebman, J. F.; Greenberg, A. *Energetics of Organic Free Radicals*, volumen 4, Springer Science & Business Media, **2012**.

En principio, un radical es neutro; sin embargo, dependiendo de la presencia de grupos electrodonadores o electroatractores, el radical puede tener un comportamiento nucleofílico o electrofílico, respectivamente. Esta reactividad se puede explicar en términos de interacciones de orbitales (Figura 2). La diferencia de energía entre el orbital del radical SOMO y los orbitales HOMO y LUMO sustrato, determina del las interacciones favorables entre el radical y el aceptor del radical. El orbital SOMO se encuentra en un nivel energético entre los orbitales HOMO y LUMO. La energía del orbital SOMO se modifica en función del carácter electrónico de los sustituyentes del centro radical (grupos electroatractores o electrodonadores). Por ejemplo, la presencia de grupos electroatractores disminuyen la energía del orbital SOMO. Así, estas especies pueden reaccionar con sustratos ricos o deficientes de electrones. Como consecuencia, la diferencia energética entre orbitales SOMO-HOMO los también disminuve y es menor a la diferencia energética entre los orbitales SOMO-LUMO.

En este caso la interacción SOMO-HOMO es más favorable. Por lo tanto, un radical con carácter deficiente de electrones va a reaccionar más rápido con enlaces dobles ricos en electrones. En el caso contrario, la presencia de un sustituyente electrodonador en el centro radical va a aumentar la energía del orbital SOMO, diferencia reduciendo la

energética entre los orbitales SOMO-LUMO y las interacciones SOMO-LUMO serán más favorables con respecto a las SOMO-HOMO. En este caso, un radical con carácter nucleofílico reacciona más rápido con un enlace doble deficiente de electrones¹⁰ (Figura 2). Además de la reactividad previamente descrita, es necesario considerar factores estéricos en los sustratos aceptores y la estabilidad de los radicales intermediarios formados.

La consideración de las características y propiedades de los radicales, permite diseñar de manera efectiva una reacción. Se han implementado numerosos métodos sintéticos para preparar intermediarios de utilidad en la síntesis total de productos naturales, tomando principalmente ventaja de la quimioselectividad presentan las que reacciones radicalarias. Además, el uso de radicales altamente reactivos promueve mecanismos únicos de formación y ruptura de enlaces en las transformaciones químicas. Esta característica permite la instalación rápida de una variedad de grupos funcionales aumentando la complejidad molecular de

¹⁰ Fleming, I. *Molecular Orbitals and Organic Chemical Reactions, Reference Edition*; Wiley: Chichester, UK, **2010**.

manera eficiente. Sin duda, esta es una de las principales razones por las que existe un número creciente de estrategias de síntesis para la construcción de productos naturales estructuralmente complejos, basadas en la química de radicales.

Xantatos como precursores radicalarios

La fragmentación térmica de ésteres de xantato (1) es un proceso radicalario que inicialmente se diseñó para desoxigenar alcoholes secundarios (conocida como Reacción de Barton-McCobie), por medio de la escisión del enlace R–O del correspondiente xantato derivado R–O–C(=S)–SMe.¹¹ A partir de este reporte, el uso

de los xantatos se convirtió paulatinamente en un método extremadamente versátil para la construcción de enlaces C-C, y se ha incorporado en numerosas secuencias radicalarias.¹² En este contexto, el aprovechamiento de la escisión del enlace R-S de menor energía en los xantatos de tipo 1 vino a revolucionar aún más las aplicaciones de este grupo funcional. Como se muestra en el Esquema 2, mecanísticamente la reacción del xantato O-etilo con un iniciador (térmico o por redox) puede generar inicialmente el radical 2, el cual puede tomar dos caminos. Por un lado, la adición reversible del radical R• con su xantato precursor 1 (camino A) es un proceso energéticamente degenerado (no hay pérdida ni ganancia de energía). Esto es porque el intermediario 3 genera o mejor dicho regenera el mismo radical 2 a través de dos posibles β -fragmentaciones, por lo que no se consume este radical. La ruptura del enlace C-O en 3 no es un proceso favorable por ser de mayor energía y porque daría lugar a la formación de un radical Et•. Así, esta adición reversible degenerada del radical 2 sobre su precursor 1 le proporciona a éste una vida útil prolongada. Esto permite al radical ser capturado por trampas olefínicas poco reactivas o no activadas, ya sea de modo intrao intermolecular, para dar el producto de adición 4 (camino B). Este radical puede reaccionar nuevamente con 1 y generar un

¹¹ Barton, D. H. R.; Crich, D.; Löbberding, A.; Zard, S. Z. *J. Chem. Soc. Chem., Commun.* **1985**, 10, 646-647.

¹² S. Z. Zard (**2012**). Xanthates and Related Derivatives as Radical Precursors. Encyclopedia of Radicals in Chemistry, Biology and Materials.

nuevo intermediario 5. Una β-fragmentación del radical 5 hacia un nuevo xantato 7 está definida por la diferencia de estabilidad entre el radical 2 (más estable) y 4 (menos estable). El radical 4 puede ser también oxidado al carbocatión 6 y sufrir transformaciones típicas de estos iones (procesos de cruce radical-polar), dependiendo de las condiciones del medio y de la naturaleza del xantato y de la trampa olefínica (Esquema 2). Se han reportado numerosos métodos para sintetizar xantatos, y dependiendo de la naturaleza o la sustitución deseada se puede escoger una ruta u otra. Como se mencionó anteriormente, el grupo etilo en el grupo xantato evita la fragmentación del enlace carbono-oxígeno por lo que el etilxantogenato de potasio (8) es el reactivo por excelencia para estas aplicaciones, que además

se puede comprar a precio muy accesible (Esquema 3, ejemplo a). Así, el método más popular para obtener xantatos es la sustitución nucleofílica de un grupo saliente (9) por la sal 8.¹³ Este método es muy práctico, además de que existe una gran disponibilidad de halogenuros (o alcoholes que se pueden convertir en buenos grupos salientes) y es eficiente para la síntesis de xantatos primarios y secundarios. Otro método reportado por Zard es la adición de Michael de la sal 8 al alqueno electrofílico 11 en condiciones acidas¹⁴ (ejemplo 3b). Con este método se obtienen xantatos terciarios. Otra opción es el ataque nucleofílico de un anión de tipo 13 al bisxantato 12^{15} (ejemplo 3c). Los xantatos también son generados por la adición radicalaria de un xantato 15 a una olefina 14

¹³ Traoré, M.; Mietton, F.; Maubon, D.; Peuchmaur, M.; Francisco Hilário, F.; Pereira de Freitas, R.; Bougdpur, A.; Curt, A; Maynadier, M; Vial, H.; Pelloux, H.; Hakimi, M.; Wong, Y.-S. *J. Org. Chem.* **2013**, *78*(8), 3655-3675.

¹⁴ Charrier, N.; Gravestock, D.; Zard, S. Z. Angew. Chem. Int. Ed. **2006**, 45(39), 6520-6523. ¹⁵ A) Dufils, P-E.; David, G.; Boutevin, B.; Woodward, G.; Otter, G.; Guinaudeau, A.; Mazières, S.; Destarac, M. *Journal of Polymer Science Part A: Polymer Chemistry* 2007, *50*(10), 1997-2007. B) Thang, S. H.; Chong, Y.K.; Mayadunne, R.; Moad, G.; Rizzardo, E. *Tetraedron Lett.* 1990, *40*(12), 2435-2438.

por transferencia de grupo¹⁶ (ejemplo 3d) con base en el mecanismo del Esquema 2. Esta estrategia permite acceder a xantatos difíciles de obtener con los métodos anteriores. Modificando los precursores de xantato y los sustituyentes en el enlace doble, el número de xantatos generados será ilimitado. Una vez que se ha preparado el xantato, éste participa en una gran variedad de reacciones vía radicales libres. Por ejemplo, el xantato se puede convertir en una azida (16), se pueden llevar a cabo alilaciones (17) o vinilaciones (18). De igual manera, se llevan a cabo alquilaciones homolíticas sobre sistemas (19) aromáticos reducciones (22)0 transformaciones en un bromuro (20) o utilizando tioéter (21), los reactivos adecuados. El radical formado a partir del xantato puede adicionarse a otro enlace doble y llevar a cabo la transferencia del xantato (23) de manera inter- o intramolecular (Esquema 3).¹⁷ El número y la variedad de posibles transformaciones posteriores puede ser muy amplio, incluyendo también las reacciones iónicas como una simple eliminación de Chugaev (24).

Varias son las ventajas prácticas asociadas al uso de la adición de derivados de ditiocarbonato sobre un enlace doble, por ejemplo:

• Los reactivos son fácilmente disponibles, son de bajo costo, estables y en general muy fáciles de manipular.

- Las adiciones de radicales se realizan a concentraciones elevadas (1-2 M) y algunas veces incluso sin disolvente.
- Algunas reacciones son átomoeconómicas ya que todos los componentes de partida terminan en el producto (transferencia de grupo).
- Las reacciones radicalarias no se ven afectadas por la polaridad de disolvente.
- No se utilizan metales pesados.
- Los procesos son reproducibles, sencillos y escalables.
- Los peróxidos suelen ser los iniciadores preferidos por su doble función como iniciadores y como oxidantes en adiciones a sistemas aromáticos. Otros iniciadores también efectivos son derivados diazo o una combinación de trietilborano y oxígeno.
- Diferentes tipos de radicales son generados y capturados directamente en modo inter o intramolecular.
- Cualquier radical intermedio rico en electrones implicado en el proceso es oxidado al catión correspondiente por la presencia del propio peróxido utilizado en la iniciación, o por la adición de algún oxidante más fuerte. Esta oxidación es de importancia cuando se trata de derivados aromáticos y heteroaromáticos.

Por lo tanto, es destacable que un grupo funcional de aspecto sencillo, como un xantato, pueda albergar una química de radicales muy rica y variada.

¹⁶ Lamb, R.; Revil-Baudard, V.; Zard, S. Z. *Org. Lett.* **2019**, *21* (16), 6352-6356.

¹⁷ Quiclet-Sire, B.; Zard, S. Z. *CHIMIA Int. J. of Chem.* **2012**, *66*(6), 404-412.

Procesos en cascada utilizando xantatos

Además del potencial de los radicales para formar enlaces carbono-carbono, destaca su capacidad para participar en procesos en cascada, en los que se forman o rompen múltiples enlaces de manera secuencial. Estas secuencias de formación consecutiva de varios enlaces C-C o C-heteroátomo son particularmente atractivas, ya que pueden acortar considerablemente la ruta de síntesis para la construcción de estructuras complejas. No es sorprendente que se hayan dedicado muchos esfuerzos al desarrollo de procesos en cascada utilizando la química de radicales.¹⁸ De todos los intermedios reactivos, los radicales ocupan una posición privilegiada por su facilidad para crear nuevos enlaces. Por ejemplo, además de su facilidad para formarse, la adición de un radical a un enlace π conduce a otro radical que puede sufrir una segunda adición y así sucesivamente.

Se han reportado estrategias en cascada espectaculares que involucran diversas formas de ciclación-radicalaria.¹⁹ A continuación se describen algunas combinaciones de reacciones radicalarias.

Secuencias de reacciones intramoleculares. Son fáciles de implementar, ya que los pasos clave son procesos unimoleculares que no se ven afectados por la dilución de la reacción, como por ejemplo la ciclación intramolecular 6-exo del radical derivado del xantato 25. En este caso, se trata de un mecanismo de transferencia de grupo, reacción con un impacto impresionante porque no se pierde la funcionalidad del grupo xantato, el cual sin duda se puede utilizar como vector para funcionalizaciones posteriores ya sea vía radicales libres o mediante la química iónica del azufre (Esquema 4A).²⁰ Este proceso es el proceso central también en la polimerización viviente tipo RAFT con la que

 ¹⁸ Yoshimitsu, T. *Chem. Rec.* **2014**, *14*(2), 268-279.
¹⁹ Quiclet-Sire, B.; Zard, S. Z. *Proc. R. Soc. A* **2017**, *473*(2200), 20160859.

²⁰ Rodriguez, R.; Chapelon, A.-S.; Ollivier, C.; Santelli,
M. *Tetrahedron* **2009**, *65*(34), 7001-7015.

se han producido una variedad de nuevos materiales.²¹

Combinaciones intramolecularesintermoleculares. Mediante estas metodologías se puede asegurar un acceso más rápido y convergente a la complejidad estructural incorporando uno o más pasos intermoleculares en la reacción en cascada. De esta manera, se agregan más átomos a la estructura inicial y se incrementa la complejidad molecular. Por ejemplo, la adición intramolecular del radical derivado del seguida xantato 27. de la adición intermolecular sobre la vinilfenil sulfona, genera la β-lactama **28** (Esquema 4B).²²

Combinaciones intermolecularesintramoleculares. La convergencia también se logra invirtiendo el orden de los procesos intramoleculares е intermoleculares. Particularmente, este proceso permite el almacenamiento reversible de radicales bajo una forma relativamente no reactiva y reduce la concentración absoluta de todos los radicales activos mientras regula simultáneamente sus concentraciones relativas. De esta forma. aumenta considerablemente la vida útil del radical, y al mismo tiempo limita las reacciones de dimerización no deseables. Por ejemplo, la adición intermolecular del xantato de acetilo al doble enlace de 29 y posterior ciclación intramolecular para obtener 30 (Esquema 4C).²³

Cabe resaltar que las reacciones en cascada no están restringidas a la formación de sólo dos enlaces C-C. Cuando se hacen diseños

²¹ a) La polimerización viva se refiere a procesos en los que no se produce una terminación inesperada de la cadena. La cadena sigue creciendo y creciendo mientras se suministre más monómero. b) Kamigaito, M.; Ando, T.; Sawamoto, M. *Chem. Rev.* **2001**, *101*(12), 3689-3746. ²² Boiteau, L.; Boivin, J.; Quiclet-Sire, B.; Saunier, J. B.; Zard, S. Z. *Tetrahedron* **1998**, *54*(10), 2087-2098.
²³ Alameda-Angulo, C.; Quiclet-Sire, B.; Zard, S.
Z. *Tetrahedron Lett.* **2006**, *47*(6), 913-916.

adecuados de las materias primas, las reacciones se pueden extender a dobles ciclaciones. Tal es el proceso aplicado por el grupo de Zard para la espectacular síntesis en un solo paso de todo el sistema tetracíclico de la matrina (Esquema 5). Este proceso incluye una primera adición intermolecular del radical 36 sobre el enlace doble 37, seguida de una doble ciclación y con la transferencia del xantato final para generar el tetraciclo 38 (Esquema 5A).²⁴ De igual forma, estos procesos pueden tener una terminación oxidativa cuando el sustrato lo permite (40). Un proceso de tal naturaleza fue aplicado en nuestro grupo de trabajo para la construcción de derivados indol-matrina 41, vía una secuencia en cascada de adición/doble ciclación similar a la descrita anteriormente, pero con la rearomatización oxidativa del $5B).^{25}$ sistema del indol (Esquema Evidentemente, este último paso en el proceso fue favorecido por la recuperación de la aromaticidad del sistema del indol.

Combinación intermolecular-

intermolecular. Es la forma más rápida y eficiente de lograr complejidad estructural, así como diversidad debido a la capacidad de unir bloques de construcción diferentes y separados. La transferencia por adición degenerada de xantatos es particularmente eficaz, ya que el producto de la adición es en sí un nuevo xantato y, por lo tanto, un punto de partida potencial para otra adición de radicales intermoleculares (Esquema 4D).²⁶ Estas combinaciones de ciclación radicalaria entre xantatos y alquenos ofrecen un número infinito combinaciones. casi de Particularmente, las ciclaciones en cascada se convierten en una herramienta excepcionalmente útil en la síntesis de moléculas policíclicas complejas como los terpenos y alcaloides. En el Esquema 4D se muestra un ejemplo en donde se lleva a cabo un acoplamiento tricomponente entre el xantato 31 y las olefinas 32 y 33. La secuencia de reactividad de estas olefinas fue modulada por su naturaleza electrónica. 32 es una olefina electrofílica que reaccionará primero con el radical electrofílico derivado del xantato para generar un nuevo radical nucleofílico que reaccionará con la olefina 33 altamente electrofílica. Todos estos procesos transcurren en un concierto radicalario que finalmente genera la piperidona 34, después de la expulsión homolítica de un grupo sulfona.

Adición sobre sistemas aromáticos

La adición oxidativa de radicales libres sobre sistemas homo y heteroaromáticos (Esquema 6) ha atraído la atención de un número significativo de investigadores en los últimos años. En la última década se han desarrollado metodologías cada vez más prácticas y versátiles que permiten la adición intra o intermolecular de varios radicales alquilo sobre una variedad de heterociclos aromáticos.²⁷ Mecanísticamente, la adición de

²⁴ Boiteau, L.; Boivin, J.; Liard, A.; Quiclet-Sire; B., Zard, S. Z. *Angew. Chem. Int. Ed.* **1998**, *37* (8), 1128-1131.

²⁵ Olguín, S.; Mijangos, M. V.; Amador, Y. A.; Sánchez, M. A.; Miranda, L. D. *Eur. J. Org. Chem.* **2017**, *2017*(17), 2481-2485.

 ²⁶ Beniazza, R.; Liautard, V.; Poittevin, C.; Ovadia, B.;
Mohammed, S.; Robert, F.; Landais, Y. *Chem. Eur. J.* **2017**, *23*(10), 2439-2447.

²⁷ a) O'Brien, A. G.; Maruyama, A.; Inokuma, Y.; Fujita, M.; Baran, P. S.; Blackmond, D. G. *Angew. Chem. Int. Ed.* **2014**, *53*(44), 11868-11871; b) O'Hara, F.; Baxter, R. D.; O'Brien, A. G.; Collins, M. 20

un radical a un sistema homo- o heteroaromático (Esquema 6A) involucra un proceso en el que se genera inicialmente un radical conjugado **42**. En este respecto, existen tres salvedades que se deben tener en cuenta para este proceso y que lo hacen diferente a la adición sobre una doble ligadura simple. *a*) la adición del radical es por

2012, *134*(3), 1494-1497; f) Fujiwara, Y.; Dixon, J. A.; O'Hara, F.; Funder, E. D.; Dixon, D. D.; Rodriguez, R. A.; Baxter, R. D.; Herlé, B.; Sach, N.; Collins, M. R.; Ishihara, Y.; Baran, P. S. *Nature* **2012**, *492*(7427), 95-99; g) Ji, Y.; Brueckl, T.; Baxter, R. D.; Fujiwara, Y.; Seiple, I. B.; Su, S.; Blackmond, D. G.; Baran, P. S. *Proc. Natl. Acad. Sci. USA* **2011**, *108*(35), 14411-14415.

R.; Dixon, J. A., Fujiwara, Y.; Ishihara, Y.; Baran, P. S. *Nat. Protoc.* **2013**, *8*(6), 1042-1047; c) Zhou, Q.; Gui, J.; Pan, C.-M.; Albone, E.; Cheng, X.; Suh, E. M.; Grasso, L.; Ishihara, Y.; Baran, P. S. *J. Am. Chem. Soc.* **2013**, *135*(35), 12994-12997; d) Baxter, R. D.; Blackmond, D. G. *Tetrahedron* **2013**, *69*(27-28), 5604-5608; e) Fujiwara, Y.; Dixon, J. A.; Rodriguez, R. A.; Baxter, R. D.; Dixon, D. D.; Collins, M. R.; Blackmond, D. G.; Baran, P. S. *J. Am. Chem. Soc.*

necesidad de mayor requerimiento energético, debido a la energía de aromaticidad que se pierde en el proceso. b) La oxidación de 42 y pérdida de un H⁺ regenera el sistema aromático 43, por lo que es un proceso muy favorecido que se puede llevar a cabo con oxidantes relativamente débiles. c) La regioselectividad de la adición depende de factores termodinámicos y cinéticos que cambian con cada sistema heteroaromático. Es importante señalar que estos procesos son equivalentes a una alquilación de tipo Friedel-Crafts, pero sin el uso de ácidos de Lewis fuertes y sin el intermediario catiónico susceptible a reordenamientos y, además, la adición de radicales a sistemas aromáticos puede funcionar con anillos aromáticos pobres en electrones. Probablemente, la ventaja más importante de estos procesos es que constituye la sustitución de un enlace carbono-hidrógeno por un enlace carbonocarbono nuevo,²⁸ y por lo tanto se pueden utilizar para la introducción directa de un sustituyente sobre un sistema aromático sin previa funcionalización. Aunque menos frecuentes, las reacciones de adición simple a un sistema aromático también pueden generar a los correspondientes productos de desaromatización **44**.

Entre otras aplicaciones, la reacción de alquilación homolítica de sistemas aromáticos ha permitido modificar directamente moléculas candidatas a fármacos, con el fin de optimizar su actividad biológica y perfil farmacológico.

La química de xantatos ha demostrado ser una herramienta particularmente poderosa y hasta ahora se han logrado cientos de adiciones a sistemas aromáticos, inclusive a sustratos bastante complejos. Uno de los primeros reportes de una adición intermolecular de este tipo de procesos fue descrito por nuestro grupo de investigación en el año 2003.²⁹ Esta metodología se ha utilizado para adicionar diferentes radicales electrofílicos tipo 46 a una variedad de sistemas heteroaromáticos tales como índoles **48**³⁰ pirroles, furanos, tiofenos **53**,³² **49**,³¹ cumarinas flavonas **52**.³³ imidazopiridinas 51, uracilo 55 y cafeína 54,³⁴ entre otros (Esquema 6). Generalmente, estas

Mann, E.; Parr, J. J. Chem. Soc., Perkin Trans. 1 2000, 2991-2999.

30 Reyes, P. E.; Torres, R. O.; Martínez, R.; Miranda, L. D. *Org. Biomol. Chem.* **2009**, *7*(7), 1388-1396.

31 (a) Guadarrama, O.; Méndez, F.; Miranda, L. D. *Tetrahedron Lett.* **200**7, *48*(26), 4515-4518. (b) Flórez, E.; Gomez, L. B.; Miranda, L. D. *Tetrahedron Lett.* **2010**, *51*(46), 6000-6002.

32 Miranda, L. D.; Icelo, E.; Rentería, Á.; Pila, M.; Marrero, J. G. *Eur. J. Org. Chem.* **2015**, *2015*(19), 4098-4101.

34 Pérez, V. M.; Fregoso, D.; Miranda, L. D. *Tetrahedron Lett.* **2017**, *58*(13), 1326-1329.

²⁸ a) Studer, A. in Radicals in Organic Synthesis, Renaud, P. and Sibi, M. P., Ed. Wiley VCH, Weinhem, 2001, volumen 2, p. 62-76; (b) Murphy, J. A.; Sherburn, M. S. Tetrahedron 1991, 47(24), 4077-4088; (c) Suzuki, F.; Kuroda, K. J. Heterocyclic Chem. 1993, 30, 811; (d) Antonio, Y.; De La Cruz, M. E.; Galeazzi, E.; Guzman, A.; Bray, B. L.; Greenhouse, R.; Kurz, L. J.; Lustig, D. A.; Maddox, M. L.; Muchowski, J. M. Can. J. Chem. 1994, 72(1), 15-22; (e) Jones, K.; Ho, T. C. T.; Wilkinson, J. Tetrahedron Lett. 1995, 36(37), 6743-6744; (f) Ho, T. C. T.; Jones, K. Tetrahedron 1997, 53(24), 8287-8294; (g) Aldabbagh, F.; Bowman, W. R.; Mann, E. Tetrahedron Lett. 1997, 38(45), 7937-7940; (h) Ziegler F. E.; Belema, M. J. Org. Chem. 1997, 62(4), 1083-1094; (i) Moody, C. J.; Norton, C. L. J. Chem. Soc., Perkin Trans. 1 1997, 2639-2644; (j) Harrowen, D. C.; Nunn, M. I. T. Tetrahedron Lett. 1998, 39(32), 5875-5876; (k) Aldabbagh, F.; Bowman, W. R.; Mann, E.; Slawin, A. M. Z. Tetrahedron 1999, 55(26), 8111-8128; (I) Marco, J.; Rodríquez, M. Tetrahedron Lett. 2000, 41(3), 381-384. (m) Bowman, W. R.;

²⁹ Osornio, Y. M.; Cruz-Almanza, R.; Jiménez-Montaño, V.; Miranda, L. D. *Chem Comm.* **2003**, 2316-2317.

³³ Mijangos, M. V; González, J.; Miranda, L. D.; Vincent, P.; Lujan, A.; Olivera, D.; Bautista, E.; Ortega, A.; Campos, M.; Gamez, R. *Org. Biomol. Chem.* **2012**, *10*(15), 2946-2949.

reacciones hacen uso del peróxido de lauroilo para iniciar la reacción, aunque en este caso se usa en cantidades estequiométricas porque también es responsable del proceso de oxidación en la etapa de rearomatización. Más recientemente el grupo de Zard ha utilizado la misma reacción para adicionar una variedad de radicales de carácter nucleofílico.35 Del mismo modo, en el Esquema 6 se presenta un método práctico, económico y versátil para la introducción de grupo *tert*-butilo un voluminoso de forma selectiva sobre el C-2 de un derivado de dihidroquinina 35, en un proceso tipo Minisci. Como es de suponer en este caso, el peróxido de dilauroilo se debe utilizar también cantidades en estequiométricas.36

La adición intermolecular de radicales se puede explotar para unir dos estructuras que permitan obtener anillos aromáticos y heteroaromáticos en reacciones posteriores. Esta estrategia se ejemplifica en la síntesis del precursor **60** para la obtención de piridinas sustituidas tipo **61** (Esquema 7). La adición del xantato **58** al alqueno **59** genera un radical secundario **62** que se adiciona al anillo aromático vecino. Después, mediante un reordenamiento (**63**) y la eliminación del radical metilsulfonilo se impulsa el equilibrio hacia la formación del éster insaturado **60**. Este compuesto contiene dos centros electrofílicos, la cetona y el alqueno, que después del tratamiento con amoníaco genera la correspondiente piperidina. Finalmente, la deshidrogenación proporciona la correspondiente piridina **61**.³⁷

El potencial inusual de introducir diversidad estructural sobre un núcleo aromático o heteroaromático vía radicales libres, ofrece muchas oportunidades para la construcción de nuevas estructuras de interés en química medicinal. Inclusive anillos de cinco, seis o siete miembros pueden ser creados por una ciclación directa, y la secuencia puede ser aplicada a casi cualquier estructura aromática o heteroaromática.

³⁵ Braun, M.-G.; Castanedo, G.; Qin, L.; Salvo, P.; Zard, S. Z. *Org. Lett.* **2017**, *19*(15), 4090-4093.

³⁶Revil, V. L.; Vors, J.-P.; Zard, S. Z. *Org. Lett.* **2018**, *20*(12), 3531-3535.

³⁷Zard, S. Z. *Tetrahedron* **2020**, *76*(2), 130802.

SINTESIS DE PROTOACULEINA B

La estructura principal de la pACU-B, un aminoácido modificado parte de un péptido, puede construirse a partir de una adición en cascada vía radicales.

La protoaculeina B

n 2011, Matsunaga y colaboradores reportaron nuevas moléculas neuroactivas encontradas en toxinas peptídicas ribosómicas, conocidas como aculeinas (ACUs).³⁸ Se informó el aislamiento, la actividad biológica y la secuencia de aminoácidos para tres nuevas aculeinas de la esponja marina de Okinawa Axinyssa aculeata (Figura 3). Las ACU-A, -B y -C contienen homólogos de poliamina y también contienen una secuencia de aminoácidos común para el péptido de estas moléculas (denominado AcuPep) compuesto de 44 residuos de aminoácidos. Sin embargo, la estructura del aminoácido N-terminal de las ACUs, no pudo ser determinado por la degradación de Edman. Años más tarde, los autores³⁹ encontraron en el mismo extracto de esponja (*Axinyssa aculeata*) una molécula que exhibe el peso molecular correspondiente a la del residuo *N*-terminal de ACU-B (Figura 3). Se determinó que la estructura de este compuesto, que se denota como protoaculeina B (pACU-B, **64**), consta de un heterotricíclo derivado de triptófano y de una poliamina de cadena larga (LCPA) que es una extensión lineal de 14 unidades de 1,3-propanediamina.

Se conoce que las toxinas peptídicas desempeñan funciones defensivas; sin embargo, se ha documentado una gran variedad de actividades biológicas para muchos de estos péptidos. Algunas toxinas peptídicas han recibido considerable atención como fármacos potenciales debido a su alta especificidad diana V estabilidad de bioquímica.40 Las ACUs son el primer ejemplo péptidos modificados de postraduccionalmente por la cadena de

³⁸ Matsunaga, S.; Jimbo, M.; Gill, M.B.; Wyhe, L. L.; Murata, M.; Nonomura, K.; Swanson, G.T.; Sakai, R. *Chembiochem* **2011**, *12*(14), 2191-2200.

 ³⁹ Matsunaga, S.; Kishi, R.; Otsuka, K.; Fujita, M. J.;
Oikawa, M.; Sakai, R. *Org. Lett.* **2014**, *16*, 3090-3093.
⁴⁰ Matsunaga, S.; Sakai, R.; Jimbo, M.; Kamiya, H.
Chembiochem **2007**, *8*(14), 1729-1735.

poliamina. Las ACUs se describieron inicialmente como compuestos citotóxicos y neurotóxicos, y más tarde se descubrió que estas toxicidades derivaban de su potente actividad disruptiva de la membrana celular. La ruptura de la membrana es una estrategia común en la defensa química, representada por una serie de pequeños péptidos antimicrobianos derivados de una amplia variedad de organismos, incluidos mamíferos, saponinas de plantas, estrellas de mar y polialquilpiridinios de esponjas. Sin embargo, los productos naturales a base de poliaminas con esta actividad son raros. Por lo tanto, la determinación de las propiedades estructurales de las ACUs es de particular interés para obtener más información sobre la base molecular de la defensa química dirigida a la membrana celular.⁴⁰

Síntesis reportada para pACU-B

En 2018, el grupo de investigación de Oikawa⁴¹ reportó por primera vez una estrategia sintética para acceder a la protoaculeína B a partir de dos fragmentos: la estructura central del aminoácido (fragmento A) y una cadena de poliamina (fragmento B) (Esquema 8 y 9). La síntesis del fragmento A comenzó con la obtención del DL-triptófano protegido y N-allilado 66. Después, se realizó la propagación de la cadena de carbono por metátesis cruzada del alqueno 66 con acrilato de *t*-butilo para obtener el éster α,β insaturado 67. Enseguida, la hidrogenación regioselectiva de 67 condujo al éster 68. El tratamiento del producto 68 con TFA proporcionó el correspondiente ácido carboxílico, que luego se cicló vía un

⁴¹ Shiozaki, H.; Miyahara, M.; Otsuka, K.; Miyako, K.; Honda, A.; Takasaki, Y.; Takamizawa, S.; Tukada, S.;

Ishikawa, Y.; Sakai, R.; Oikawa, M. Org. Lett. 2018, 20(11), 3403-3407.

intermediario O-acilfosfórico al C-2 del anillo de indol para la construcción del anillo C de 69. La introducción de una amina en la posición C11 del anillo C se logró con el tratamiento de 69 con hidroxilamina, vía un intermediario oxima 70, que posteriormente se transformó en la N-Acetilenamida 71. Después, la hidrogenación regioy estereoselectiva condujo a 72 (9 S^* , 11 S^*) como producto principal. La estereoselectividad en la hidrogenación es aparentemente controlada por inducción asimétrica remota, donde la cara superior de la molécula está estéricamente protegida por el grupo protector ftalimida. Después, de una serie de pasos de protección y desprotección se obtuvo la N-Ns amina 73 (fragmento A)

para el acoplamiento con la cadena de poliamina (Esquema 8).

síntesis del La fragmento de polipropanodiamina B (**80**) parte de la triamina protegida 74, la cual se obtuvo en 5 pasos, a partir de 1,3-diaminoprpano. Con el fragmento 74 se realizó una fotodegradación selectiva del grupo protector 1 - (2 nitrofenil)etoxicarbonilo (NPEC) para obtener la N-Ns amina libre 75. Por otro lado, se realizó la desprotección selectiva de tritilo (Tr-) en 74 para obtener 76. Luego, mediante una reacción de Mitsunobu se acoplaron los fragmentos 75 y 76 para obtener la cadena 77. La secuencia de desprotección selectiva de NPEC- y Tr- se repitió para el fragmento 77 y los dos fragmentos obtenidos 78 y 79 (respectivamente) se acoplaron, una vez más,

mediante una reacción de Mitsunobu. De esta forma se obtuvo la cadena de poliamina **80**. Por último, después de una desprotección selectiva de Tr- en **80** se acopló al fragmento A (**73**) con una reacción de Mitsunobu para obtener **81** (Esquema 9).

Cabe señalar que esta síntesis parte de triptófano racémico para construir el núcleo base de la pACU-B. Además, el anillo C se construyó en 7 pasos de reacción y posteriormente se incorporó el grupo amino en el C-11. Finalmente, hay que subrayar que la publicación de esta síntesis se realizó mientras se desarrollaba nuestra estrategia de síntesis.

Propuesta para la síntesis de pACU-B

Entusiasmados por el alcance de la química de radicales en síntesis total, decidimos explorar el desarrollo de una nueva estrategia sintética para la obtención de la pACU-B. Detectamos que el sistema tricíclico presente en el núcleo de la estructura molecular de pACU-B podría construirse en un solo paso de reacción utilizando la química de radicales basada en xantatos. Una reacción de adición-ciclación en cascada vía radicales a partir del xantato

derivado de triptófano 86 y el alqueno 85 nos permitirá construir el anillo C del núcleo base del producto natural. Este tipo de estrategias cascada han sido utilizadas en ya anteriormente en nuestro grupo de investigación.²⁶ Así, se puede funcionalizar el nitrógeno del indol para obtener el correspondiente xantato vía una N-acilación, el cual puede ser utilizado como precursor de radicales. La formación del radical derivado de dicho xantato permite, en principio, una adición a un enlace doble para generar un nuevo radical y la subsecuente ciclación del nuevo radical sobre el sistema aromático del indol. Esta es una manera muy atractiva para la formación de un anillo de 6 miembros fusionado en la cara [1,2-a] del indol que contiene los sustituyentes requeridos para una síntesis total de la avanzar а protoaculeina, con la selección adecuada de la olefina.

Con este razonamiento, la estructura de la pACU-B puede simplificarse retrosintéticamente en dos fragmentos: la estructura tricíclica **83** que proporciona el núcleo base del producto natural y la cadena de poliamina **82** (Esquema 10). Estos dos fragmentos podrían sintetizarse por separado y acoplados al final. La estructura **83** puede provenir del tetrahidropirido[1,2-*a*]indol **84** ensamblado vía una adición-ciclación en cascada de dos materiales simples de partida: un xantato derivado del aminoácido Ltriptófano 86 y la enamina protegida 85. Para el proceso de adición-ciclación, que es el fundamento principal de nuestra estrategia sintética, se propuso a la N-vinilftalimida (85) como aceptor de radicales ya que ésta proporciona el grupo amino para el anillo C del núcleo base. Por último, se puede acceder al xantato 86 a partir de la N-acilación del Ltriptófano con cloruro de cloroacetilo y sustitución con posterior la sal de xantogenato (Esquema 10). Debido a que la estructura del producto natural presenta un centro estereogénico en el anillo C, de con la metodología acuerdo descrita anteriormente, en principio, el estereoisómero requerido puede ser separado de la mezcla de diasteroisómeros generada en la ciclación e inducida por la presencia del centro quiral del triptófano.

Para la síntesis de la cadena de poliamina se propone la siguiente estrategia: en primer lugar, se obtendrán las dos cadenas de poliamina 91 y 93, que serían acopladas con el núcleo base para obtener el producto natural 95 (Esquema 11). La adición de 1,3diaminopropano (88) a acrilonitrilo proporcionará el dinitrilo 89. Posteriormente,

se protegerán las aminas secundarias del compuesto **89** con Boc₂O y con la subsiguiente reducción de los nitrilos se obtendría la diamina primaria 90. Este proceso de adición, protección y reducción se repetirá hasta obtener las poliaminas 91 y 93. En un siguiente paso, la poliamina 91 será diprotegida para obtener 92. Con la poliamina 93 se hará una mono adición de acrilato de metilo, seguida de la protección de las aminas y la reducción del éster para obtener el alcohol 94. Finalmente, una reacción de Mitsunobu podrá unir el fragmento 95 con la poliamina 92 y en una segunda sustitución se unirá 94 para obtener el producto 96.

Objetivo general

Desarrollar una estrategia sintética para la obtención del producto natural protoaculeina

B (pACU-B) utilizando una reacción de adición-oxidativa en cascada vía radicales como estrategia principal.

Objetivos particulares

- Sintetizar el xantato derivado de *L*-triptófano protegido.
- Estudiar la ciclación radical-oxidativa para obtener el núcleo base correspondiente al producto natural.
- Separar la mezcla de distereoisómeros obtenida de la reacción en cascada para obtener el isómero precursor correspondiente al producto natural.
- Sintetizar la cadena de poliamina y posteriormente acoplarla con el núcleo base para obtener la pACU-B.

Desarrollo de una estrategia radicalaria para la síntesis de pACU-B

De acuerdo con la síntesis propuesta en el Esquema 10, la investigación comenzó con la protección del aminoácido L-triptófano (**87**). Primero se realizó la esterificación del ácido carboxílico y posteriormente se protegió la amina con Boc₂O obteniendo el derivado de triptófano **97** con buenos rendimientos (Esquema 12).

Para la obtención del xantato 86 se requirió acilar el derivado de triptófano 97 con cloruro de cloroacetilo. En la Tabla 2 se resumen las condiciones utilizadas para obtener el derivado N-acilado 98. En los ensayos 1-6 se probaron diferentes bases como K₂CO₃, NaH, piridina, NaOH, v diferentes disolventes, como DMF, THF, tolueno y diclorometano, y utilizando cloruro de cloroacetilo como agente acilante. El mayor rendimiento se obtuvo en el ensayo 6 utilizando hidróxido de sodio como base, en diclorometano y Bu₄NHSO₄ como agente de trasferencia de fase. En todos los ensayos se recuperó el indol 97. En los ensayos 7 y 8 se probaron diferentes grupos acilantes tales como bromuro de bromoacetilo (A2) y ácido bromoacético (A3), sin éxito alguno. Finalmente, se logró optimizar la reacción de acilación hasta un 63% de rendimiento, utilizando hidróxido de potasio como base y Bu₄NHSO₄ en DCM (ensayo 10, Tabla 2).

Cabe señalar que el derivado acilado **98** presentó un Rf muy cercano al producto de partida **97** en TLC lo que dificultó su purificación por cromatografía en columna. Por consiguiente, se decidió utilizar el producto directamente en el siguiente paso de reacción. La sustitución de **98** con la sal de xantogenato de potasio permitió obtener el correspondiente xantato **86** en rendimientos cuantitativos y que fue purificado sin problema alguno (Esquema 12).

Con el xantato **86** en mano, se iniciaron los ensayos de adición-ciclación utilizando las condiciones convencionales para una reacción de radicales libres estudiadas antes en nuestro grupo de investigación.²⁵ En los primeros ensayos (ensayo 1-6, Tabla 3) se hizo

reaccionar el xantato 86 y la Nvinilftalimida como (85) aceptor de radicales, en reflujo de 1,2-dicloroetano desgasificado, adicionando un total de 1.5 equivalentes de peróxido de dilaurilo (DLP) en porciones de 0.3 equiv. cada hora hasta el consumo total del (monitoreado xantato por TLC). Bajo estas condiciones se observó la formación del producto 84 en un 32% de rendimiento, cuando se usaron cantidades equimolares de ambas materias primas (ensayo 1. Tabla 3). Después de modificar número el de

equivalentes de los sustratos, se observó que un exceso del xantato 86 favorece la formación del producto, obteniendo un 72% de rendimiento (ensayo 4, Tabla 3). También se variaron los equivalentes del peróxido que se adicionaron cada hora; sin embargo, no cambio significativo hubo un en el rendimiento (ensavos 5-7). Además, la reacción también se probó utilizando irradiación de microondas (ensayo 7, Tabla 3), v se obtuvo un rendimiento similar al obtenido con calentamiento convencional. No obstante, se observa una reacción más limpia por TLC en las condiciones de reflujo. Paralelamente, se probó la adición radicalaria utilizando un catalizador de Ir y luz LED (esta metodología se está desarrollando en nuestro laboratorio). En este caso, se obtuvo el producto 84, pero con bajo rendimiento (ensayos 8-9, Tabla 3). Así, se decidió establecer las condiciones de reflujo como óptimas (ensayo 4).

De esta forma, se obtuvo el producto deseado 84 con un 72% de rendimiento. Además, se determinó por análisis de ¹H de RMN que el

producto es una mezcla diastereomérica en una relación 3:2, favorecido el isómero S,S. Después de una búsqueda breve de un método de separación de los productos, se separar optó por la mezcla de diasteroisómeros cromatografía por centrifuga de capa fina. Como resultado se aisló el epímero S,S correspondiente a la configuración del producto natural y se usó en el siguiente paso de reacción.

Sobre la base de reportes previos y de nuestras observaciones experimentales, se propone el siguiente mecanismo para la adición en cascada vía radicales (Esquema 13). La reacción inicia con la homólisis de DLP seguida de una descarboxilación para obtener el radical alquilo primario 101, el cual reacciona con el tiocarbonilo del xantato 86 (por su alta afinidad a los radicales) y genera el intermediario 102. El radical terciario (102) sufre una β fragmentación preferiblemente en el enlace C-S, para generar el radical acetilo 103, que es estabilizado por resonancia con el sistema π del grupo C=O (104). La presencia del grupo carbonilo en 103 retira densidad

electrónica del centro radical disminuyendo la energía del SOMO. Esta condición hace que el radical presente un comportamiento electrofílico, favoreciendo la reacción con la vinilftalimida (85) que es una olefina de carácter nucleofílico. La adición de 103 al enlace doble de 85 genera un radical secundario 105, estabilizado por la ftalimida, que se adiciona al sistema aromático generando el intermediario 106. El radical 106 es oxidado al carbocatión 107 por una transferencia monoelectrónica (SET) del peróxido y finalmente, la eliminación de un protón promueve la regeneración del sistema aromático para obtener la mezcla de diastereisómeros 84.

A continuación, se trató el producto **84** (diastereómero puro) con hidrazina para obtener la amina primaria **108**. Así, después de

una breve optimización de la temperatura (Tabla 4), se obtuvo la amina con un rendimiento de 70%. La reacción procede mejor cuando la adición de la hidrazina es a 0 °C (ensayo 5). Cuando se aumentó la temperatura se observaron trazas del producto y otros subproductos no identificados (ensayos 1-4 y 6).

El siguiente paso en la estrategia de síntesis fue la incorporación de un conector para unir la amina **108** y la cadena de poliamina. En un primer intento se realizó la alquilación de **108** con 3-bromo-1-propanol (**111**) en presencia de TEA en THF. Sin embargo, la reacción no procedió, incluso cuando se utilizó el bromopropanol protegido [(3bromopropoxi)(t-butil)difenilsilano] (**112**). En ambos casos se recuperó parte de la amina **108**. Después, se optó por hacer una

aminación reductiva con el aldehído **109**, el cual se preparó en dos pasos de reacción a partir de 1,3-propanodiol: primero se protegió uno de los OH's con CITBDPS y después se oxidó el segundo OH al aldehído (ver apéndice experimental). A diferencia de la alquilación inicialmente probada, la reacción de la amina **108** con **109** procedió con buena eficiencia y se obtuvo el producto **110** con buen rendimiento (Esquema 14).

Al mismo tiempo, se inició con la síntesis de la cadena de poliamina utilizando 1,3

diaminopropano (94) como material de partida y siguiendo una estrategia de crecimiento iterativa de la cadena de propanoamina (Esquema 15).42 El primer paso fue la adición de tipo Michael de la diamina 88 a acrilonitrilo, obteniendo el dinitrilo 113 con un 96% de rendimiento. En un segundo paso, se realizó la protección de las aminas secundarias de 113 con Boc₂O en presencia de TEA y se obtuvo el dinitrilo 114 con un 95% de rendimiento. Posteriormente, la reducción del dinitrilo 114 se logró

⁴² Trachsel, A.; de Saint, J. Y.; Haefliger, O. P.; Herrmann, A. *Chem. Eur. J.* **2009**, *15*(12), 2846-2860.
mediante el tratamiento con Ni-Raney y Pd/C en una mezcla de dioxano/agua para obtener la diamina 115, con un rendimiento del 92%. Esta secuencia de reacciones de adición(I)/protección (II)/reducción (III), unidades permitió aumentar dos de propanoamina a la cadena inicial 88. Enseguida, esta serie de pasos (I-III) se repitió para la diamina 115 y de esta forma se obtuvo la diamina 116. Finalmente, se repitió una vez más esta serie de pasos (I-III) para la diamina 116 y de esta forma se obtuvo la correspondiente diamina 117. Los rendimientos en cada paso fueron por arriba del 90%. Las diaminas 116 y 117 son las poliaminas inicialmente propuestas para el acoplamiento con el núcleo base (Esquema 11).

Desafortunadamente, los siguientes pasos hacia la obtención del producto natural no pudieron realizarse, debido a la inesperada interrupción de las actividades académicas por la contingencia sanitaria que vivimos. A pesar de esto, se logró obtener un intermediario avanzado del núcleo base de la protoaculeina B con una estrategia principal de adición radicalaria en cascada.

Adicionalmente, es importante mencionar que recientemente se reportó una revisión estructural del producto natural protoaculeina B, por el grupo de investigación de Oikawa.⁴³ Derivado de la primera síntesis reportada en el 201839 se encontraron algunas inconsistencias en la comparación de los espectros de RMN del producto natural aislado. Además algunas de

diferencias de reactividad de ambas moléculas en condiciones acidas. La estructura propuesta inicialmente para la protoaculeina B se muestra en la Figura 4. La nueva estructura propuesta (119) se deriva de una tetrahidro-β-carbolina, donde la cadena de poliamina está conectada al carbono C-11 y la configuración S,S están en los carbonos 9 y 11. Se sugiere que la estructura de 119 también podría ser biosintetizada a partir de triptófano. La comparación de espectros de RMN de 119 (sintético) con los del producto (aislado) tienen una natural mayor coincidencia. La modificación a la estructura original de la pACU-B cambia completamente la aplicación del sistema en cascada que se implementó en este trabajo. Sin embargo, con el estudio llevado a cabo hasta ahora, se pone de manifiesto una vez más la eficiencia y versatilidad que tiene la química de xantatos para la síntesis de tetrahidropirido[1,2-a]indol derivado de triptófano. Además, se destaca la implementación de una estrategia iterativa eficiente síntesis para la de polipropanoaminas, la cual se puede aplicar a la síntesis de este tipo de productos naturales.

⁴³ Irie, R.; Miyako, K.; Matsunaga, S.; Sakai, R.; Oikawa, M. *J. Nat. Prod.* **2021**, *84*(4) 1203-1209.

Conclusiones

- Se desarrolló una estrategia de adición ciclación en cascada vía radicales libres para la obtención del núcleo base de la estructura inicialmente propuesta para el producto natural protoaculeina B (pACU-B).
- Se logró la síntesis de un xantato derivado de triptófano.
- Se logró la adición radicalaria en cascada entre un xantato derivado de triptófano a vinilftalimida de forma eficiente con un exceso diastereomérico.
- Se logró separar los diastereómeros de la adición en cascada por cromatografía.
- Se implementó una estrategia iterativa eficiente para la síntesis de una cadena de ocho unidades de propanoamina a partir de 1,3-diaminopropano.

SINTESIS DEL RHAZINAL

En la síntesis total de rhazinal, un alcaloide indol monoterpenoide, destaca la adiciónciclación radical en cascada, así como la preparación simple de una nueva familia de análogos.

El rhazinilam

alcaloides de tipo indol os monoterpeno es uno de los grupos más grandes de productos naturales que presentan una variedad de estructuras y una amplia gama de actividades biológicas.⁴⁴ En su mayoría, los más de 2000 alcaloides reportados han sido aislados de las plantas Apocynaceae, Loganiaceae y Rubiaceae. Según sus puntos de ramificación biogenética se clasifican en cinco subgrupos principales: Aspidosperma, Ajmalan, Corynanthe, Iboga y *Quinoline*.⁴⁵ El rhazinilam (**120**) es un alcaloide de indol monoterpeno que pertenece a una subfamilia de alcaloides de Aspidosperma, formada por una variedad de congéneres estructurales (Esquema 16A).⁴⁶ Particularmente, el rhazinilam (120) ha llamado la atención de la comunidad sintética debido a su peculiar estructura y a la actividad anticancerígena biológica prometedora que presenta.

La importancia biológica del rhazinilam (120) radica en su capacidad de interferir en el equilibrio tubulina-microtúbulos, lo que origina una reducción considerable en la división celular para ciertas líneas celulares cancerosas. Como es conocido, el cáncer es una patología que se caracteriza por la trasformación de las células que proliferan de forma anormal e incontrolada. Así, una de las aproximaciones para el desarrollo de terapias anticancerígenas es inhibir la división celular, específicamente de las células cancerosas. Por esta razón, el rhazinilam (120) resultó ser un buen candidato para su implementación en terapias anticancerígenas. Sin embargo, a pesar de que 120 presenta propiedades anticancerígenas in vitro, no presenta actividad alguna *in vivo.*⁴⁷ Desafortunadamente, **120** es metabolizado en el organismo reduciendo su

⁴⁴ Lopchuk, J. M. (**2011**). *Recent Advances in the Synthesis of Aspidosperma-Type Alkaloids. Progress in Heterocyclic Chemistry,* volumen 23, 1-25.

⁴⁵ Pfaffenbach, M.; Gaich. T. (**2017**). *The Rhazinilam-Leuconoxine-Mersicarpine Triad of Monoterpenoid Indole Alkaloids. The Alkaloids, volume* 77, 1-84.

⁴⁶ Kim, J.-L.; Sim, K.-S.; Yong, K.-T.; Loong, B.-J.; Ting, K.-N.; Lim, S.-H.; Low, Y.; Kam, T.-S. *Phytochemistry* **2015**, *117*, 317-324.

⁴⁷ Décor, A.; Bellocq, D.; Thoison, O.; Lekieffre, N.; Chiaroni, A.; Ouazzani, J.; Cresteil, T.; Guéritte, F.; Baudoin, O. *Bioorg. Med. Chem.* **2006**, *14*(5), 1558-1564.

efecto terapéutico, lo que impide que pueda ser empleado en terapias anticancerígenas. Los productos de la biotransformación de **120** se ilustran en el Esquema 16B, y ninguno de estos productos presenta actividad anticancerígena. Esta es una de las razones por las que se ha explorado la búsqueda de análogos de **120** que muestren una bioactividad diferente, y en el mejor de los casos, que finalmente resulten activos en pruebas *in vivo*.

Síntesis total para el rhazinilam (120)

El rhazinilam (120) y sus congéneres comparten una estructura tetracíclica que involucra un centro de carbono cuaternario en un sistema de tetrahidroindolizina, un heteroazabiarilo de fenil-pirrol conformacionalmente restringido, y un anillo de lactama de nueve miembros. Estas características estructurales han permitido 37]

enfocar las estrategias de síntesis hacia la obtención de un intermediario común. En algunos casos, la síntesis de 120 se ha orientado a la formación del núcleo de anilino-pirrol 135, seguido de un proceso de lactamización que permite el cierre del anillo de nueve miembros (Esquema 17A). Históricamente, la primera síntesis del (±)rhazinilam (120) se reportó en 1973 por Smith en una secuencia de 10 pasos y un rendimiento global del 14%. Los pasos clave consisten en una N-alquilación de pirrol con 136 y la subsiguiente ciclación mediada por un ácido de Lewis para llegar a un intermediario tipo **135**.⁴⁸ Casi tres décadas después, el grupo de Sames logró la segunda síntesis total de (±)-120 en 18 pasos vía una reacción de activación C-H dirigida por un complejo de platino (5% de rendimiento global).49 Un año más tarde, el grupo de Magnus logró la síntesis total de (\pm) -120 en 9 pasos y con un rendimiento global del 8%. Su estrategia partió de la 8 ppm-valerolactama 138 para construir el esqueleto de tetrahidroindolizina a través del imidotioato de fenilo.⁵⁰ A partir de ese momento, el número publicaciones para la obtención de 120 incrementó considerablemente. En 2012, Gaunt reportó la síntesis total de (\pm) -120 en una secuencia de 11 pasos (14% de rendimiento global) mediante dos funcionalizaciones selectivas de enlaces C-H catalizadas por metales de un derivado simple de pirrol 139.51 En 2013, Tokuyama logró la primera síntesis total

asimétrica de (-)-**120** en 14 pasos y un rendimiento global de 11%. En esta síntesis, la estructura central de tetrahidroindolizina se construyó eficientemente mediante una ciclación en cascada catalizada por Au del sustrato **141**.⁵² En 2014, Lin y Yao desarrollaron una alquilación C5 del 3-carboxi-4-arilpirrol **142** para la síntesis total de (-)-**120** en 13 pasos y un rendimiento global del 9%. Los reportes anteriores condujeron al intermediario **135** para formar la lactama.⁵³

Por otro lado, la activación del enlace C-H catalizada por metales es una de las estrategias también utilizadas para el cierre del anillo de la lactama 143 en la síntesis de 120 (Esquema 17A). Por ejemplo, en 2005, el grupo de Trauner informó de una síntesis en 11 pasos (2% de rendimiento global) de (\pm)-120 por acoplamiento biarílico intramolecular directo catalizado por Pd.54 En 2003, Banwell et al. publicaron la síntesis total de (\pm) -120 en 13 pasos y con un rendimiento global del 7% a partir de la sal potásica del pirrol 145 y la ybutirolactona (142).55 La obtención de la estructural clave de la tetrahidroindolizina se logró mediante una adición de Michael intramolecular de la posición C2 del pirrol a un acrilato ligado al nitrógeno del pirrol. En 2015, el grupo de Chandrasekhar informó de una síntesis formal de (±)-120 en 19 pasos y con un rendimiento global del 1%. Su estrategia se basa en una orto-sustitución en el pirrol 147 seguida de una amidación intramolecular para formar el núcleo de la

⁴⁸ Ratcliffe, A. H.; Smith, G. F.; Smith, G. N. *Tetrahedron Lett.* **1973**, *14*(52), 5179-5184.

⁴⁹ Johnson, J. A.; Sames, D. *J. Am. Chem. Soc.* **2000**, *122*(26), 6321-6322.

⁵⁰ Magnus, P.; Rainey, T. *Tetrahedron* **2001**, *57*(41), 8647-8651.

 ⁵¹ a) Beck, E. M.; Hatley, R.; Gaunt, M. J. Angew.
 Chem. Int. Ed. 2008, 47(16), 3004-3007. b)
 McMurray, L.; Beck, E. M.; Gaunt, M. J. Angew.
 Chem. Int. Ed. 2012, 51(37), 9288-9291.

⁵² Sugimoto, K.; Toyoshima, K.; Nonaka, S.; Kotaki, K.; Ueda, H.; Tokuyama, H. *Angew. Chem. Int. Ed.* **2013**, *52*(28), 7168-7171.

⁵³ Su, Y.; Zou, H.; Chen, J.; Xu, J.; Wu, X.; Lin, A.; Yao,
H. Org. Lett. 2014, 16(18), 4884-4887.

 ⁵⁴ Bowie, A. L.; Hughes, C. C.; Trauner, D. Org. Lett.
 2005, 7(23) 5207-5209.

⁵⁵ Banwell, M. G.; Edwards, A. J.; Jolliffe, K. A.; Smith, J. A.; Hamel, E.; Verdier, P. *Org. Biomol. Chem.* **2003**, *1*(2), 296-305.

tetrahidroindolizina. En esta síntesis también logran acceder al intermedio de Trauner **143** para el cierre de anillo.⁵⁶

Por las características estructurales que presenta **120**, el principal reto sintético hacia su obtención es la formación del centro cuaternario en el sistema de la tetrahidroindolizina, lo cual se refleja en el número de pasos de las síntesis. La mayoría de las estrategias reportadas hasta la fecha han sido completadas entre 10 y 15 pasos de reacción, con rendimientos globales menores al 10% (Esquema 17A).

⁵⁶ Sailu, M.; Muley, S. S.; Das, A.; Mainkar, P. S.; Chandrasekhar, S. *Tetrahedron* **2015**, *71*(8), 1276-1282.

Como hemos comentado anteriormente, el diseño de nuevas metodologías que permitan la formación de más de un enlace C-C en un solo paso es esencial para la síntesis total de productos naturales.⁵⁷ En este contexto, las reacciones de radicales en cascada son un recurso valioso para la construcción de moléculas con diversidad estructural, principalmente mediante el uso de xantatos y un sistema insaturado.58 En 2012, nuestro grupo de investigación informó un proceso secuencial de adición-ciclación de radicales para la síntesis del (\pm) -desetilrhazinal (154) (Esquema 17B). Dicha reacción implica la adición en cascada de un radical generado del xantato derivado del acetato de etilo 149 a un alqueno terminal y la posterior ciclación sobre el anillo de pirrol, formando así el núcleo de tetrahidroindolizina 150 en un solo un paso de reacción. Después, se realizó una vodación regioselectiva en presencia de Ag(OCOCF₃) y se obtuvo el voduro 151 con buenos rendimientos. El siguiente paso fue un acoplamiento cruzado de Suzuki-Miyaura de 151 con el ácido 2-aminofenilborónico (152) para obtener el sistema biarílico 153, que en este punto ya tenía toda la estructura del producto final. La subsecuente hidrólisis del éster, desprotección de la anilina V lactamización, permitieron la obtención del análogo de rhazinal 154.59 En tan sólo 6 pasos de reacción, a partir del pirrol 148 se obtuvo la estructura tetracíclica característica del rhazinal (120). Aunque el rendimiento en el proceso de macrolactamización es un poco bajo, esta estrategia ofrece la ruta más corta reportada para obtener la estructura característica de esta familia de productos naturales. Sin embargo, la estrategia no fue extendida a la obtención del producto natural y sus análogos.

Propuesta para la síntesis del núcleo tetracíclico del rhazinal (121)

A raíz de nuestro interés en implementar procesos en cascada de adición y ciclación radicalaria para la síntesis de alcaloides, nos propusimos explorar una nueva estrategia para la síntesis de la estructura de **120**. Nuestro enfoque fue dirigido a ensamblar todos los elementos que constituyen la estructura del producto natural en un solo paso, utilizando la química de xantatos y las adiciones en cascada.

Con este razonamiento, propusimos que la formación del enlace heterobiaril fenil-pirrol de 120 podría formarse en el último paso a partir del acoplamiento intramolecular del voduro 155. A su vez, el intermediario 155 se podría construir a través de un proceso en cascada de adición-ciclación vía radicales a partir de dos materias de partida simples: un xantato derivado de yodoanilida 156 y un derivado de pirrol N-alquilado 157. Este último motivo estructural proviene de la alquilación del 2-formilpirrol (158) y del alqueno terminal 159 para la formación del centro cuaternario. Por su parte, el xantato 156 se obtendría a partir de la acilación de 1,2vodoanilina (160) y protección de la amida. La adición del radical acilo derivado de 152 al enlace doble y la posterior ciclación oxidativa al pirrol 157, permitirían ensamblar el anillo de tetrahidroindolizina de la estructura del rhazinal (121) en un solo paso. Con esta

⁵⁷ Zhao, Y.; Lv, Y.; Xia, W. Chem. Rec. **2019**, *19*(2-3), 424-439.

⁵⁸ Zard, S. Z. Acc. Chem. Res. **2018**, 51, 1722-1733.

⁵⁹ Paleo, E.; Osornio, Y. M.; Miranda, L. D. *Org. Biomol. Chem.* **2011**, *9*, 361-362.

estrategia se accederá al producto natural en tan sólo 3 pasos de reacción a partir del pirrol **153** (Esquema 18).

Adicionalmente, y considerando que los materiales de partida a utilizar 156 y 157 son aparentemente de fácil acceso. podríamos introducir sin complicaciones diferentes sustituyentes а la estructura final del rhazinal (121) y así obtener diversos análogos empleando anilinas sustituidas y diferentes heterociclos.

Objetivo general

Desarrollar una estrategia de síntesis para la obtención de la estructura del rhazinal (**121**) utilizando la química de xantatos como fuente de eficiencia sintética.

Objetivos particulares

• Implementar una reacción de adición oxidativa en cascada para ensamblar el sistema de tetrahidroindolizina de la estructura del rhazinal (**121**).

- Explorar el acoplamiento directo sin la protección de la anilida.
- Sinterizar diversos heterociclos *N*alquilados y xantatos de anilidas que permitan acceder, mediante la metodología establecida, a diversos análogos del rhazinal (**121**).
- Evaluar la actividad citotóxica de los compuestos obtenidos.

Desarrollo de una estrategia radicalaria para la síntesis del rhazinal (121)

De acuerdo con el análisis retrosintético descrito en el Esquema 18, y con la idea de ensayar la estrategia completa, se escogió el pirrol 148 como modelo inicial, tomando en cuenta que tanto este compuesto como la olefina requerida son comerciales. Así, la investigación comenzó con la N-alquilación del pirrol-2-carboxaldehído (158) con 5bromo-1-penteno (161) (Esquema 19A). También se sintetizó el xantato 156 en 3 pasos de reacción. Primero, se realizó la N-acilación de 1,2-vodoanilina (160) con cloruro de cloroacetilo; después, se protegió la amida con cloruro de metoximetil éter (ClMOM). Finalmente, se realizó la sustitución con la sal de xantogenato de potasio, del halogenuro 162 (Esquema 19B). Estos sustratos se prepararon como un sistema modelo para evaluar la reacción en cascada de adición ciclación y el acoplamiento directo.

Con los materiales 148 y 156 a disposición, se procedió a ensayar la reacción en cascada a reflujo de 1,2-dicloroetano (1,2-DCE) (que por su temperatura de ebullición es el disolvente más eficiente en este tipo de reacciones) y peróxido de dilaurilo (DLP) como reactivo iniciador y oxidante. En la Tabla 5 se resume un breve proceso de optimización de las condiciones para esta reacción. Inicialmente, se utilizó un exceso del alqueno 148 (1.3 equiv.) sobre el xantato 156 y adiciones de 0.3 equiv. de DLP cada hora, hasta el consumo total del xantato. En este ensayo se logró aislar el producto 164 en un 20% de rendimiento (ensayo 1). En cambio, cuando el xantato se usó en exceso rendimiento equiv) el (1.3)mejoró considerablemente a un 63% (ensavo 2). Sin embargo, el rendimiento no mejora

significativamente al usar 1.5 equiv de DLP (ensayo 3). La reacción también se probó en condiciones de microondas y con adiciones de DLP cada 15 min. En este caso, se aisló el producto **164** con un 61% y se observaron algunos subproductos en TLC en menor concentración (ensayo 4). Finalmente, decidimos establecer las condiciones del ensayo 2 como las óptimas para la reacción.

Como se ha mencionado antes, bajo estas condiciones, en el mecanismo se formará el radical acetilo **163** mediante el típico proceso de la química de los xantatos. Una vez formado este radical se adiciona al enlace doble de **148** generando un radical secundario que luego se adiciona al sistema aromático del pirrol. El nuevo radical así generado es oxidado al carbocatión por una transferencia electrónica al peróxido, seguido de la rearomatización por perdida de un protón, para proporcionar finalmente a **164** (Esquema 19C).

Una vez obtenido el compuesto **164** se realizó el acoplamiento intramolecular utilizando una

pequeña modificación de las condiciones de Trauner.⁶⁰ Una mezcla del voduro 164, cantidades catalíticas del ligante de Buchwald DavePhos (166) y Pd(OAc)₂ en presencia de carbonato de potasio se hizo reaccionar bajo irradiación de microondas durante 1.5 hr. Así, bajo estas condiciones el producto esperado 167 se aisló en un rendimiento satisfactorio de 47% (Esquema 20A). Mecánisticamente, la reacción de ciclación procede primero por la adición oxidante del catalizador de paladio al yoduro de arilo (168). El ligante utilizado DavePhos rico en electrones (166) facilita la adición oxidativa y la formación de una especie catiónica de Pd(II) más reactiva por la disociación del haluro. Enseguida, la activación C-H en el pirrol por el Pd(II) en 168 conduce a la formación del intermediario paladaciclo 169. Finalmente, la eliminación reductiva de Pd(0) del complejo 169 da lugar a la formación del enlace biarílico de 167 (Esquema 20B).

Con la intención de evitar el proceso de protección/desprotección en la ruta de

⁶⁰ Bowie, A. L.; Trauner, D. J. *Org. Chem.* **2009**, *74*(4), 1581-1586.

síntesis, se exploró la posibilidad de realizar el acoplamiento directo del voduro 165 con la amida desprotegida. Desafortunadamente, tras exponer el intermediario 165 a las condiciones establecidas para el acoplamiento catalizado por paladio, se obtuvo el producto desyodado 170 y no se observó la formación del producto ciclado. Este resultado es congruente con lo reportado por el grupo de Trauner.⁵⁵ Una explicación para este resultado es la posible formación del complejo de Pd(II) 170 en presencia de la base, lo que favorece la reducción del vodoarilo 171 (Esquema 20C). Por consiguiente, la protección de la amida es necesaria para la obtención del producto requerido. No obstante, el resultado, aunque negativo, demuestra la gran confiabilidad que la química de los xantatos despliega, al permitir llevar a cabo la reacción en cascada con o sin el grupo protector.

Para completar el esquema sintético, la eliminación del grupo protector MOM se logró mediante el tratamiento del compuesto **167** con un exceso de tribromuro de boro a - 78 °C lo cual proporcionó el compuesto **154** con un rendimiento del 82% (Esquema 20A). De esta forma, la estructura **154** que constituye el núcleo del rhazinal (sin el etilo del centro cuaternario) se logró obtener en 4 pasos de reacción a partir del pirrol-2-carboxaldehído (**158**), lo que establece una ventaja a la síntesis previamente reportada descrita en el Esquema 17B.

Habiendo ensayado y optimizado la ruta de síntesis completa para la obtención del análogo **154**, se decidió explorar la posibilidad de implementar esta estrategia en la obtención de diferentes análogos del rhazinal (**120**). Con este objetivo se sintetizaron algunos heterociclos *N*-alquilados (**172a-h**) derivados de pirrol, pirrol-2-carboxaldehído, indol y

, y en combinación con un alqueno terminal con y sin el grupo etilo. Paralelamente, se prepararon dos xantatos **173a** y **173b** (a partir de 4-fluoro-2-yodoanilina y metil-2-amino-5cloro-3-yodobenzoato respectivamente) siguiendo las condiciones establecidas en el Esquema 19. Las estructuras y los rendimientos de los productos se muestran en la Figura 5.

Con las moléculas anteriormente obtenidas se procedió а la obtención de las tetrahidroindolizinas con diferentes sustituyentes utilizando las condiciones óptimas para la adición en cascada. Los resultados se muestran en la Tabla 6. En primer lugar, se utilizó el xantato 156 (Esquema 19) en combinación con los productos 172a-h obteniendo los derivados 176a-1 con rendimientos de 63-68%. En el caso de los heterociclos N-alquilados con 4metilenhexilo (172a-d, f y h) la adición del radical derivado del xantato 156 al enlace doble generó un radical terciario que se adicionó al pirrol exitosamente, ensamblando el sistema de tetrahidroindolizina con el centro cuaternario característico del producto natural rhazinal (**121**). Hay que señalar que los yoduros obtenidos **176a-c** son precursores de los productos naturales rhazinilam (**120**), rhazinal (**121**) y rhacinicina (**122**) respectivamente.

Después, de la combinación del xantato 4fluoro-2-yodoanilida 173a con 148, 172a y 172g se obtuvieron los correspondientes productos de adición 176i-k en rendimientos de moderados a buenos (40%-71%). También, se obtuvo un yoduro 1761 derivado del xantato 173b con buen rendimiento. Además, se logró obtener la estructura de rayos X de 176k, la cual confirmó la formación de los dos enlaces C-C en la adición en cascada (Tabla 6). Con los productos obtenidos, probamos la versatilidad de la metodología de adición vía radicales, para la formación del sistema de tetrahidroindolizina, ya que permitió variar el sistema aceptor de radicales y también incorporar diferentes sustituyentes en el anillo aromático del xantato. En total, se sintetizaron 12 ejemplos con diversidad

estructural y con rendimientos de moderados a buenos.

A continuación, se realizó el acoplamiento intramolecular de los yoduros obtenidos **176a-1** utilizando las condiciones previamente establecidas para el análogo **164** (Esquema 20A), para terminar de ensamblar la lactama de nueve miembros. Se lograron obtener satisfactoriamente todos los derivados ciclados **177a-1** con rendimientos de moderados a buenos (38-74%) (Tabla 7). Se puede apreciar que el acoplamiento en C-3 del sistema del pirrol se ve favorecido por la presencia de grupos electroatractores C=O en C-5 (ejemplos **177a-d**, **177l**) con los mejores rendimientos observados. En el caso de los

índoles, el acoplamiento en C-3 también procede favorablemente (177g-i) y no se ve afectado por la presencia del flúor en el fenilo, al igual que en los ejemplos 177j-k. En cambio, en los ejemplos con pirazol la presencia de dos nitrógenos electronegativos en el anillo favorece considerablemente el acoplamiento en C-3 mejorando su rendimiento (177e y 177f). Además, se logró cristalizar el producto 177k y se obtuvieron correspondientes rayos los Х que comprueban la formación de la lactama (Tabla 7).

Para completar el esquema de síntesis, se procedió a llevar a cabo la desprotección del grupo amida, mediante el tratamiento de los compuestos 177a-l con un exceso de tribromuro de boro a -78 °C durante 2 h. Fue muy satisfactorio para nosotros observar que bajo estas condiciones los análogos 120-122 y 178d-1, fueron obtenidos, en general, con excelentes rendimientos. Como se muestra en la Tabla 7, con esta metodología se logró de manera práctica, obtener tres productos naturales; el (\pm) -rhazinilam (120), (\pm) -rhazinal (121), y la (\pm) -rhazinicina (122), y una nueva familia de compuestos análogos, obtuvo el análisis de rayos X de **1781** que confirmó la estructura tetracíclica del producto.

Teniendo antecedente que los como productos naturales despliegan una importante actividad anticancerígena, la siguiente etapa en nuestra investigación fue la evaluación da la actividad antiproliferativa de cada una de las moléculas obtenidas 154 y 178d-1. Esto se llevó a cabo sobre seis tipos diferentes de líneas celulares de cáncer: U251 (glioblastoma humano), PC-3 (adenocarcinoma de próstata humano), K562 (leucemia mielógena crónica humana), HCT-15 (cáncer de colon), MCF-7 (adenocarcinoma de mama humano) y SKLU-1 (adenocarcinoma de pulmón humano). Además, se evaluó la citotoxicidad de los compuestos en la línea celular sana COS-7. Los porcentajes de inhibición a una concentración de 25 µM se presentan en la Tabla 8. Claramente, el rhazinal (121) y el rhazinilam (120)mostraron actividad inhibidora contra las líneas probadas, pero se observó una mayor actividad citotóxica en las líneas K562 y SKLU-1, aunque una toxicidad comparable contra las células sanas en COS-

demostrando así la versatilidad del protocolo implementado. Adicionalmente, realizó la se reducción del aldehído de 121 con borohidruro de sodio para obtener el producto natural (\pm) kopsiyunanina C3 (128). También, se

Tabla 8 J Actividad antiproliferativa de los análogos del rhazinal (121)							
% de inhibición de crecimiento a $25 \ \mu M$							
Análogo	U251	PC-3	K562	HCT-15	MCF-7	SKLU-1	COS7
154	39.9	55.6	94.0	54.18	49.5	64.2	66.4
121	48.6	65.7	93.0	83.8	69.6	94.3	74.0
120	51.1	67.7	95.9	70.7	60.6	94.3	67.7
122	19.4	58.8	23.2	NC	35.6	14.9	38.2
178d	73.7	64.8	99.2	92.8	85.9	92.2	77.6
178e	48.7	33.6	76.0	74.7	82.1	73.4	68.9
178f	11.0	NC	15.3	5.7	42.2	16.9	23.4
178g	30.9	34.5	49.8	24.0	33.3	20.0	41.2
178h	52.0	21.1	48.7	20.0	25.9	32.3	51.9
178i	39.0	NC	42.7	18.7	37.9	25.4	43.4
178j	75.9	84.4	100	77.5	72.9	95.6	67.5
178k	31.9	51.4	50.6	36.5	48.8	38.7	59.1
1781	24.0	2.2	24.6	2.7	23.0	9.6	23.8
IC50 μM	U251	PC-3	K562	HCT-15	MCF-7	SKLU-1	COS7
178j	2.14±0.2	3.04±0.3	1.09±0.02	-	-	0.85 ± 0.08	-
Etoposido	2.38±0.2	31.4±2.2	2.21 ± 0.7	-	-	2.6±0.2	-

7. El análogo del rhazinal **154** (sin el etilo) también presentó una alta actividad inhibitoria para la línea K562. En cambio, en los otros análogos que no tienen grupo etilo (178f, 178h, 178i y 178l) se observó una baja actividad en general en todas las líneas celulares, lo que sugiere que la presencia del centro cuaternario es indispensable para la actividad citotóxica. El producto natural rhazinicina (122) no presentó actividad significativa en alguna línea celular. El derivado 178d mostró una alta actividad citotóxica en todas las líneas celulares, particularmente en K562, HCT-15 y SKLU-1. Aunque este compuesto presenta también citotoxicidad contra las células sanas COS-7, esta actividad es claramente menor a la desplegada sobre células cancerosas. El derivado de pirazol 178e también mostró cierta actividad en algunas líneas celulares, pero menor a la de los productos naturales. El análogo con indol 178g presentó baja actividad en todas las líneas celulares. Podemos asumir que el aumento en el volumen estructural también es un factor que influye en el efecto de la actividad citotóxica tanto en el anillo de fenilo como en el de pirrol (178g y 178l). Hay que destacar al compuesto 178j, el análogo con un flúor en el fenilo, que mostró una alta actividad contra las líneas celulares K562 y SKLU-1 incluso mayor a la observada en los productos naturales. En general, la familia de análogos evaluados muestra una mayor actividad citotóxica en estas dos líneas celulares (K562 y SKLU-1). Además, se determinó la IC50 del análogo 178j, el cual exhibió la mejor actividad contra K562 y SKLU-1. Se incluyó al etopósido como control de referencia. Para nuestra sorpresa, el compuesto probado (178j) mostró valores de IC50 más bajos que el etopósido. Dada la potencia del compuesto

podrían

evaluado

considerarse

como

referencia para una mayor optimización y experimentación para la actividad in vitro e in vivo.

Conclusiones

- Se desarrolló una metodología rápida y eficiente para la síntesis del sistema tetracíclico de los alcaloides de tipo rhazinal.
- Se implementó una reacción en cascada vía radicales para ensamblar la estructura de tetrahidroindolizina característica de los alcaloides tipo rhazinal.
- La metodología funciona para derivados de pirrol, indol y pirazol.
- Se sintetizaron 10 ejemplos con diversidad estructural y 4 productos naturales que incluyen el rhazinal (121), el rhazinilam (120), la rhazinicina (122) y la kopsiyunanina C3 (128).
- La ventaja de esta reacción con respecto a los reportes previos es que el ensamble de casi toda la estructura es en un solo paso de reacción, lo que reduce considerablemente el número de pasos en la síntesis.
- En la evaluación de actividad citotóxica se determinó que la estructura de la tetrahidroindolizina con un centro cuaternario es necesaria para su actividad, y que grupos voluminosos en la estructura disminuyen considerablemente su efectividad.
- Finalmente, se descubrió un análogo que, en principio, es más activo que los productos naturales. Este análogo contiene un átomo de flúor en el anillo de fenilo. El compuesto presenta aún mayor actividad en las líneas K562 y SKLU-1, inclusive mayor que el etopósido usado como referencia.

Capítulo 4

CICLACIÓN RADICAL OXIDATIVA SOBRE SISTEMAS AROMÁTICOS

La formación de radicales libres vía térmica y fotoredox se ejemplifica en la construcción de sistemas policíclicos de sistemas aromáticos.

Yoduros de alquilo como precursores de radicales

generación de intermediarios radicales se puede lograr a partir de un amplio espectro de grupos funcionales. Uno de los más sencillos son los halogenuros de alquilo especialmente yodo y bromoalcanos. Particularmente, el enlace C-I es el más débil de los enlaces químicos carbono-halógeno, con una energía de disociación de enlace de 57.6 kcal/mol (H₃C-I).⁶¹ El enlace carbono-halógeno se debilita de C-F a C-I debido a una repulsión estérica creciente (repulsión estérica de Pauli) con el tamaño del átomo efectivamente más grande y los átomos de halógeno más pesados y ricos en electrones. ⁶²

El método de transferencia de átomos es uno de los enfoques fundamentales de la química de radicales y consiste principalmente en la transferencia de átomos de halógeno. El enlace C-I es un buen donante de átomos de yodo favoreciendo su transferencia entre los radicales alquilo o estanilo. La rápida transferencia de átomos de yodo puede ocurrir siempre que exista la formación de un radical alquilo más estabilizado que el radical alquilo inicial. Por lo tanto, para acelerar el proceso de transferencia de átomos de yodo, es deseable que el radical R^2 sea más estable que el radical inicial R^1 (Esquema 21A).⁶³

⁶¹ Blanksby, S. J.; Ellison, G. B. *Acc. Chem. Res.* **2003**, *36*(4), 255-263.

⁶² Blokker, E.; Sun, X.; Poater, J.; Van der Schuur, J.
M.; Hamlin, T.; Bickelhaupt, F. M. *Chem. Eur. J.* **2021**, *27*(63), 15616-15622.

⁶³ Castelhano, A. L.; Griller, D. J. Am. Chem. Soc. **1928**, *104*, 3655-3659.

Los radicales alquilo son empleados principalmente en reacciones de ciclación radicalaria intramolecular para la obtención de anillos sistemas de monocíclicos V policíclicos. Un método comúnmente utilizado para la formación de radicales alquilo es el uso de un yoduro de alquilo (179) en combinación con Bu₃SH y AIBN o hidruro de tristrimetilsililsilano (Esquema 21B). El radical alquilo generado se adiciona a un enlace doble y el radical final es atrapado por un átomo de hidrógeno del reactivo iniciador para obtener **180**. Una desventaja de utilizar estas condiciones es que también se obtiene el producto reducido prematuramente **181**.⁶⁴ Otro aspecto a considerar es que los reactivos de estaño presentan toxicidad, además de su difícil eliminación en el proceso de purificación, por lo que se prefiere evitar el uso de este tipo de compuestos.

⁶⁴ Mancheño, O. G.; Gómez, R.; Adrio, J.; Carretero,

J. C. J. Org. Chem. 2007, 72(26), 10294-10297.

Por otro lado, la adición oxidativa intramolecular de un radical a un núcleo aromático es un proceso que tiene una considerable utilidad sintética. Se han empleado varios métodos para efectuar tales ciclaciones; por ejemplo, las adiciones intramoleculares oxidantes sistemas а aromáticos mediadas por Mn (III), Fe (III) (condiciones tipo Fenton),⁶⁵ Cu (II), Ce(IV), Ni(II)⁶⁶ e hidruro de estaño⁶⁷ que proceden con diversos grados de eficiencia (Esquema 21C). La limitante en estos casos es el uso de oxidantes fuertes o reactivos tóxicos. En 2007, el grupo de investigación de Bowman reportó una metodología que se basa en la ciclación de un radical alquilo sobre el anillo de 4(3H)-quinazolinona.68 Los compuestos obtenidos son los productos naturales desoxivasicinona y mackinazolinona cuyas estructuras se diferencian en el tamaño del anillo fusionado de 5 y 6 miembros (Esquema 21D). En esta aproximación, utilizaron los voduros de alquilo derivados de 4(3H)quinazolinona 186 y 187 como precursores, y para la ciclación radicalaria se utilizó (Me₃Sn)₂ como iniciador (condiciones a). Bajo estas condiciones, la desoxivasicinona (188) y mackinazolinona (189) se obtuvieron en bajos rendimientos (20% y 30%, respectivamente). Además, se aislaron los productos de reducción del sistema aromático (190 y 191) y la reducción prematura del yoduro (192). También, se utilizó Et₃B como iniciador (condiciones b); en este caso, el rendimiento aumentó para 188 (40%) y 189 (61%), pero también se aislaron los productos reducidos

190 y **191**. Aunque se obtuvieron los productos deseados, estas condiciones no son tan selectivas para la adición oxidativa.

En nuestro grupo de investigación se ha demostrado que una buena alternativa para efectuar ciclaciones radical oxidativas en sistemas aromáticos, a partir de voduros de alquilo, es utilizar peróxidos orgánicos como único reactivo y que, además, estas condiciones evitan el uso de reactivos tóxicos como los de estaño y/o reactivos metálicos. Particularmente, el uso de peróxido de dicumilo (DCP) favorece la formación de radicales alquilo bajo un mecanismo efectivo (Esquema 21E). La fragmentación térmica de DCP produce un radical metilo (194) muy reactivo, que reacciona con el yoduro de alquilo 193 y genera un nuevo radical alquilo estabilizado por hiperconjugación (196). El nuevo radical se adiciona de forma intramolecular al núcleo aromático para formar el intermediario 197. El DCP también funciona como agente oxidante y favorece la regeneración del sistema aromático, con la salida de un protón, para obtener 198.69

Catálisis fotoredox

Una de las áreas más estudiadas de la química orgánica en los últimos años es el desarrollo de la catálisis fotoredox. Históricamente, los primeros estudios de fotocatálisis con luz visible se remontan a la década de 1980.⁷⁰ Aunque fueron trabajos más recientes, especialmente por los grupos de MacMillan⁷¹

 ⁶⁵ Artis, D. R.; Cho, I-S.; Figueroa, S. J; Muchowski, J.
 M. J. Org. Chem. **1994**, 59(9), 2456-2466.

⁶⁶ Ozaki, S.; Mitoh, S.; Ohmori, H. *Chem. Pharm. Bull.* **1996**, 44(11), 2020-2024.

⁶⁷ Moody, C. J.; Norton, C. L. *Tetrahedron Lett.* **1995** *36*(49), 9051-9052.

⁶⁸ Bowman, R.; Elsegood, M.; Stein, T.; Weaver, G. *Org. Biomol. Chem.* **2007**, *5*, 103-113.

⁶⁹ Menes, M.; Martínez, R.; Cruz, R.; Muchowski, J. M.; Osornio, Y. M.; Miranda, L.D. *J. Org. Chem.*, **2004**, *69*(11), 4001-4004.

⁷⁰ Pac, C.; Ihama, M.; Yasuda, M.; Miyauchi, Y.; Sakurai, H. J. Am. Chem. Soc., **1981**, 103(21), 6495-6497.

⁷¹ Nicewicz, D. A.; MacMillan, D. W. C. *Science* **2008**, *322*(5898), 77-80.

y Stephenson,⁷² entre otros, que abrieron toda una avenida para el desarrollo de métodos sintéticos para la activación de ciertos grupos funcionales utilizando luz visible en sinergia con un catalizador metálico u orgánico. Así, los últimos diez años han sido testigos de un incremento exponencial de los métodos fotocatalíticos. El principio de la fotocatálisis se basa en transformar la energía de la luz visible en energía química a

Ciclo oxidativo FC FC 205 214 В 206 215 FC X++ R- $R' + X^-$ B' 199 209 208 207 216 217 218 FC: fotocatalizador, A: sustrato o reactivo de sacrificio, B: sutrato Esquema 22 | Mecanismo general de catálisis fotoredox. través de fotocatalizadores. Tras absorber

R + X -

201

204 203 (A'-

202

FC^{*}

200

energía, los fotocatalizadores alcanzan un estado excitado donde pueden participar en eventos de transferencia monoelectrónica (SET) con moléculas orgánicas. Generalmente, las moléculas orgánicas no absorben energía en el intervalo de luz visible, lo que permite que el fotocatalizador sea excitado selectivamente evitando reacciones secundarias deseadas. no Los fotocatalizadores pueden actuar simultáneamente como oxidantes V reductores de electrones dependiendo del sustrato, lo cual permite el desarrollo de diversas reacciones químicas. Se han estudiado múltiples versiones de catalizadores, y los más comunes incluyen complejos polipiridínicos de Ru(II) e Ir(III), así como colorantes orgánicos capaces de absorber la luz en el rango visible.⁷³ La principal fuente de energía utilizada son los dispositivos LED (del inglés Light Emmitting Diode) que son energéticamente eficientes, económicos y de fácil acceso.⁷⁴

El mecanismo de las transformaciones fotoinducidas se ilustra en el Esquema 22. La irradiación de luz visible promueve la absorción de un fotón por el catalizador (199) para generar un estado excitado de alta energía FC^* (200). Este efecto es debido a la promoción de un electrón del centro metálico al orbital π^* del ligante, resultando en un estado singulete, que posteriormente sufre un cambio configuracional de spin para obtener un estado excitado triplete de menor energía. Esto hace que el tiempo de vida media del estado excitado sea mayor y permite al catalizador transferencias hacer monoelectrónicas. La dirección de la SET puede tener dos vías: una acción reductora u oxidante. En un ciclo oxidativo: 200 reduce al sustrato 201 mediante una SET generando el radical anión 202 y la especie oxidada del fotocatalizador 206 (FC⁺), de ahí el término ciclo oxidativo. El intermediario 202 sufre una fragmentación y genera las especies 203 y 204, donde el radical 204 puede participar en diferentes transformaciones químicas. La

A*+

211

► R + X+

А

210

213

Ciclo reductivo

212

⁷² Narayanam, J. M. R.; Tucker, J. W.; Stephenson, C. R. J. J. Am. Chem. Soc. 2009, 131(25), 8756-8757.

⁷³ Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. J. Org. Chem. 2016, 81(16), 6898-6926.

⁷⁴ Jo, W.-K.; Tayade, R. J. Ind. Eng. Chem. Res. 2014, 53(6), 2073-2084.

regeneración del catalizador implica la reducción de la 205 especie por algún intermediario 206 y de esta manera inicia de nuevo el ciclo catalítico (Esquema 22). Por el contrario, en un ciclo reductivo: el sustrato 210 oxida a la especie excitada 200 mediante una SET generando un catión radical 211 y la especie reducida del fotocatalizador FC⁻ (214). El intermediario 211 también puede fragmentarse y generar

el radical 212 que participará en alguna reacción química conocida y el catión 213. En este caso la regeneración del catalizador es por oxidación algún proceso de de un intermediario 215. Es importante mencionar que en algunos procesos fotoredox se utilizan reactivos donadores o aceptores de electrones que interaccionan directamente con el estado excitado del fotocatalizador, para oxidarlo o Estas sustancias son llamadas reducirlo. reactivos de sacrifico. Estos reactivos interaccionan con el estado excitado del fotocatalizador para oxidarlo (205) o reducirlo (214) antes de que reaccione con el sustrato.⁷⁵ La capacidad de los catalizadores fotoredox para generar especies orgánicas de capa abierta de forma controlada y selectiva, ha permitido la invención de una infinidad de poderosas metodologías para la construcción de nuevos enlaces. Estas reacciones se realizan en condiciones suaves y se obtienen productos con buenos rendimientos y con una alta selectividad. Además, debido a que la energía de las reacciones fotoredox proviene de la luz visible, no quedan residuos o

reactivos tóxicos contaminantes después de la fotólisis.

Múltiples reacciones conocidas han sido recreadas en versión fotoredox entre ellas la química de xantatos. Recientemente, se reportó la activación de xantatos bajo catálisis fotoredox utilizando un catalizador de Ir(ppy)₃ y LEDs azules, para generar especies de radicales alquilo electrofílicos.⁷⁶ La metodología puede utilizarse en reacciones de transferencia de grupo y adición de radicales oxidantes a sistemas aromáticos. En el Esquema 23 se ilustra el mecanismo propuesto para la adición radical oxidativa en sistemas aromáticos vía fotocatálisis. La adición oxidativa comienza con una SET desde el estado excitado de Ir(III) (220) al xantato 222, dando lugar a un radical-anión 223, que experimenta una ruptura homolítica para generar un nuevo radical 224 y el anión de xantogenato 225. El radical 224 se añade al sistema aromático del indol, dando lugar a un nuevo radical 227 que es oxidado por Ir(IV) (221) para regenerar el catalizador 219. Finalmente, la eliminación de un protón en

⁷⁵ Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. *Chem. Rev.* **2013**, *113*(7), 5322-5363.

⁷⁶ López, P.; Díaz, J. E.; Loaiza, A. E.; Miranda, L. D. *Tetrahedron* **2018**, *7*4(38), 5494-5502.

228 regenera el sistema aromático para obtener el producto final **229**.

La activación de xantatos por este método presenta algunas ventajas con respecto a las reacciones típicas utilizando iniciadores radicalarios como los peróxidos. La más notable es que el proceso no requiere de dicho iniciador; por lo tanto, la reacción no depende de la temperatura permitiendo una amplia tolerancia a sustratos sensibles a temperaturas evitan altas. Además, se reacciones secundarias derivadas del radical iniciador (transferencia de átomo, dimerización, etc.). Una ventaja de las reacciones fotoredox neutras como la anterior (Esquema 23) es que el proceso de oxidación forma parte del ciclo catalítico, por lo que no se requiere de un oxidante estequiométrico (DLP), lo que evita la generación de grandes cantidades de desechos, que en la mayoría de los casos son difíciles de separar del producto.

A pesar de que la catálisis fotoredox ofrece una serie de ventajas sintéticas muy interesantes, aún es un área joven y en desarrollo y, definitivamente, quedan muchas aplicaciones que experimentar y sobre todo

aplicaciones cada vez más espectaculares. La actual brecha sintética es especialmente evidente en el caso de la reactividad y uso de los haluros de alquilo no activados, para los que sólo notificado se ha la deshalogenación y algunas ciclaciones muy específicas de yoduros de alquilo. En este contexto, el grupo de

Corey R. J. Stephenson desarrolló una metodología de deshalogenación radicalreductiva vía fotocatálisis, utilizando el catalizador fac-Ir(ppy)3 y tributilamina en combinación con el éster de Hantzsch (Esquema 24A).⁷⁷ La reacción se logra en un ciclo oxidativo donde el catalizador, excitado por luz visible, dona un electrón al enlace C-I de 230 y luego el donador de electrones Bu₃N reduce al catalizador a su estado inicial. Posteriormente, el radical de carbono generado extrae un átomo de hidrógeno para dar el producto reducido 231. Los radicales generados también pueden ser sometidos a ciclación intramolecular para proporcionar la correspondiente estructura cíclica (Esquema 24B). La metodología procede en condiciones suaves y además utilizan donadores de átomos de hidrógeno baratos, accesibles y no tóxicos.

Por otro lado, el mismo grupo de investigación documentó una estrategia de ciclación intramolecular de radicales derivados de bromomalonato a indoles y pirroles para obtener los correspondientes derivados de tetrahidropiridoindoles y tetrahidroindolizina (Esquema 24C). La formación del radical intermedio se generó en condiciones reductoras de 234 utilizando Ru(bpy)₃Cl₂ como catalizador, TEA como donador de electrones y luz visible. El producto mayoritario es el producto de ciclación oxidativa 235, donde se recupera la aromaticidad del indol. Sin embargo, también se obtiene el producto de deshalogenación prematura 236, por la reacción competitiva del átomo H de la trialquilamina por el radical malonilo.⁷⁸ En el caso contrario, cuando se utilizan yoduros de alquilo no activados (237) para ciclaciones intramoleculares en sistemas aromáticos vía fotoredox, el producto principal es el producto de ciclación reductiva 239 y no el aromático 238, como lo reporta Rehbein.⁷⁹ La selectividad observada en estas ciclaciones 6-exo-trig en indol deriva de la funcionalidad del catión radical amina 240, que actúa como oxidante en el primer caso (242) y como reductor en el caso de los radicales de alquilo no estabilizados (243).

Estudios derivados de cálculos teóricos sugieren que esta reactividad es consecuencia de un efecto estérico provocado por el grupo malonato, el cual impide una transferencia de átomo de hidrógeno (HAT, del inglés

⁷⁷ Nguyen, J. D.; D'Amato, E. M.; Narayanam, J. M. R.; Stephenson, C. R. J. *Nat. Chem.* **2012**, *4* (10), 854-859.

 ⁷⁸ Tucker, J. W.; Narayanam, J. M. R.; Krabbe, S. W.;
 Stephenson, C. R. J. Org. Lett. **2010**, *12*(2), 368-371.
 ⁷⁹ Alpers, D.; Brasholz, M.; Rehbein, J. *Eur. J. Org. Chem.* **2017**, *2017*(15), 2186-2193.

Hydrogen Atom Transfer). Por el contrario, el radical derivado de **238**, que esta estéricamente menos impedido, permite la formación de una configuración favorable para que ocurra un HAT.

Se ha buscado sustituir las aminas terciarias por otros donadores de electrones que no sean capaces de donar un átomo de hidrógeno. En este sentido, se ha explorado el uso de algunos candidatos como DABCO, Me₃N, trietanolamina (TEOA) y Ph₃N. Aunque todos resultaron eficientes en la generación del alquil radical tienen una baja selectividad y generan mezclas al final de la reacción.30 Este desafío fue superado con el uso de 4-metoxi-N,N-difenilanilina (246, Esquema 24D) como donador de electrones que no funciona como donador de átomos de hidrógeno. En ausencia de protones a, el catión radical formado centrado en nitrógeno no puede actuar como donante de átomos de hidrógeno.⁸⁰ Su aplicación es eficiente en adiciones intermoleculares de bromomalonato de dietilo a indoles con buenos rendimientos (247).

Otra alternativa que se ha implementado para este tipo de adición intermolecular fotoredox, es el uso de biscatecol borato de litio (LiB(cat)₂, **250**) como reductor. El biscatecol 250 no está disponible comercialmente, pero se puede preparar fácilmente a partir de ácido bórico y catecol, que además resulta ser más barato que la amina 246. El reactivo es eficiente en adiciones intermoleculares de bromo malonato sobre indoles ricos en electrones. También se implementó en el acoplamiento radical de bromopirroloindolinas varios con heterociclos, obteniendo rendimientos de

⁸⁰ Furst, L.; Matsuura, B. S.; Narayanam, J. M. R.; Tucker, J. W.; Stephenson, C. R. J. *Org. Lett.* **2010**, *12*(13), 3104-3107. moderados a buenos.⁸¹ En este proceso, el catalizador de Ir(III) (**248**) es excitado por luz visible para formar Ir(III)^{*} (**249**) que luego es reducido por LiB(cat)₂ (**250**) para formar la especie de Ir(II) (**251**). La deshalogenación reductora regenera el Ir(III) (**248**) y se obtiene el radical de malonilo **253** que se va adicionar al indol **244**. Los autores proponen que la rearomatización de la especie radical formada **255** se logra por la oxidación del radical por **252** y finalmente la desprotonación da lugar al producto **256** (Esquema 25).

Después de esta breve revisión, se puede ver que aún queda por explorar la reactividad de enlaces C-halógeno no activados en fotocatálisis.

Objetivos

- Explorar la ciclación oxidativa intramolecular vía radicales de yoduros de alquilo en el sistema de quinazolinona utilizando DCP.
- Realizar adiciones oxidativas intramoleculares para la formación de anillos de 5, 6 y 7 miembros fusionados a la quinazolinona.
- Explorar la ciclación intramolecular de yoduros de alquilo en diferentes sistemas aromáticos mediante catálisis fotoredox.
- Realizar adiciones oxidativas intramoleculares vía fotocatálisis para la formación de anillos de 6 y 7 miembros en sistemas heterocíclicos.

⁸¹ Sevrin, M. J.; Furst, L.; Nguyen, J. D.; Collins III, J.
L.; Stephenson, C. R. J. *Tetrahedron* **2018**, *74*(26), 3246-3252.

Ciclación radical oxidativa en quinazolinonas

En primer lugar, se decidió explorar la ciclación oxidativa vía radicales de yoduros de alquilo de quinazolinonas, utilizando DLP como iniciador y oxidante. Con este objetivo se sintetizaron los yoduros 186, 187 y257c-j (Tabla 9), los cuales fueron preparados a partir de la N-alquilación de quinazolinonas con un dibromoalcano seguido de una de Finkelstein reacción (ver Sección utilizó Experimental). Se 4(3H)quinazolinona y 2 quinazolinonas sustituidas 6-cloro-8-metil-4(3H)-quinazolinona y 6,7dimetoxi-4(3H)-quinazolinona.

Considerando los ensayos anteriormente reportados,⁶⁸ se inició explorando la adición intramolecular de **186** utilizando DCP y

clorobenceno como disolvente. Después de algunos ensavos de optimización, finalmente se utilizó 1.5 equivalentes de DCP adicionados durante un periodo de 5 hr., obteniendo exitosamente el producto ciclado 188 con un rendimiento de 80% (Tabla 9, ensavo 1). Con este resultado, se procedió a la obtención de los derivados ciclados de los voduros 187 v 257b-j. De esta forma, se lograron obtener los derivados tricíclicos con anillos fusionados de 5, 6 y 7 miembros con rendimientos excelentes (ensayo 1-3). Además, la ciclación de un radical secundario (257d) también procedió con buen rendimiento (ensavo 4). En el caso de los derivados de 6-cloro-8-metil-4(3H)quinazolinona también se obtuvieron los productos ciclados con buenos rendimientos (ensayos 5-7). En cambio, no se obtuvieron los productos esperados para los yoduros

257h-j. En la reacción de estos últimos productos se recuperó materia prima y cuando se aumentaron los equivalentes del peróxido se observó la descomposición de estos. Creemos que el anillo rico en electrones de la quinazolinona en **157h-j**, inhibe por completo la reacción a través de un mecanismo que desconocemos.

En ninguna de las reacciones anteriores se observó la formación de los productos de reducción ya que no hay fuente de átomos de hidrógeno en el medio de reacción. El mecanismo propuesto para esta metodología es muy parecido al presentado anteriormente en el Esquema 21E. La reacción comienza con la fragmentación térmica del peróxido de para generar el radical metilo. El radical metilo reacciona con el yodo del haluro de alquilo 257 generando el radical 258. El radical primario 258 se forma debido a que presenta estabilización por hiperconjugación, а diferencia del radical metilo. Después, el radical 258 se adiciona al sistema aromático de la quinazolinona y esté se oxida al carbocatión por el DCP. Finalmente, la eliminación de un protón regenera la aromaticidad del sistema y se obtiene 259.

La metodología anterior resultó muy efectiva para la síntesis de quinazolinonas tricíclicas con anillos de diversos tamaños. A diferencia de las condiciones reportadas por Bowman, el

 Tabla 10 | Optimización de las condiciones ciclación intramolecular fotoredox.

uso de peróxido de dicumilo como único reactivo facilitó la selectividad de la reacción hacia el producto de ciclación oxidativa.

Ciclación intramolecular de yoduros de alquilo vía fotocatálisis

Adicionalmente, decidimos explorar la ciclación intramolecular de yoduros de alquilo en sistemas aromáticos bajo condiciones de fotocatálisis. Para comenzar, se hizo una optimización de las condiciones de reacción utilizando el yoduro derivado de indol 253, previamente obtenido mediante la alquilación de 3-metoxicarbonil indol con 1.4dibromopenteno y posterior intercambio de halógeno. Tomando en cuenta los reportes previos (ref. 76 y 81) se decidió utilizar el fotocatalizador fac-[Ir(ppy)3], Na2HPO4, DMF como disolvente por la mejor solubilidad del fotocatalizador y un reactor de Luz LED azul con control de temperatura entre 25-30 °C. En un primer ensayo, el voduro 260 y el fotocatalizador se irradiaron bajo Luz LED durante 24 hr y no se observó la formación del producto esperado (Tabla 10, ensayo 1). En un segundo ensayo, la reacción del el fotocatalizador y la base yoduro, (Na₂HPO₄) sólo se observan trazas del producto 261 tras 24 hr de irradiación LED

(ensayo 2). Después, se decidió donador utilizar un de electrones de sacrificio (LiBCat₂) V el rendimiento mejoró notablemente (ensayo 3). Se utilizó 2% y 5 % en mol del fotocatalizador y se obtuvo el mismo rendimiento en ambos casos (ensavo 4). En estos ensayos se utilizó la base y el agente de sacrificio en exceso.

La reacción se monitoreo durante 48 hr. y se observó un rendimiento máximo a las 24 horas (ensayo 5), por lo que decidió utilizar las condiciones del ensayo 5 como optimas.

Con estos resultados, se procedió a sintetizar varios yoduros de diferentes heterociclos para demostrar el alcance de la reacción. Se obtuvieron algunos yoduros derivados de indol, pirrol, teofilina, cumarina, tiofenol, fenol y quinazolinona, a partir de la alquilación del heterociclo con un 1,4dibromobutano y el posterior intercambio de halógeno mediante la reacción de Finkelstein (ver Sección Experimental). Los compuestos sintetizados se presentan en la Tabla 11.

Con las condiciones de reacción previamente establecidas para **260**, se procedió a la obtener

los productos ciclados de los yoduros **263a-h**. (Tabla 11).

Se obtuvieron con éxito los productos ciclados de los yoduros derivados de indol 263a-d con excelentes rendimientos. Los productos obtenidos 264a-d presentan grupos electrodonadores y electroatractores en el C3 y los rendimientos son similares, en cualquier caso. También, se obtuvo el producto de cicloadición en la posición 2 del indol 263h, sin la protección del nitrógeno del indol, obteniendo el derivado carbazol 264h con 96% de rendimiento. Las ciclaciones de los voduros derivados de pirrol también se obtuvieron con éxito (264f y 264g). Incluso se obtuvo el triciclo derivado de teofilina 264e con 88% de rendimiento. Además, se

obtuvieron los productos de ciclación intramolecular para la formación de anillos de 7 miembros 264i y 264j. Sin embargo, no se logró obtener los productos de ciclación de los voduros derivados de los heterociclos 263k-r. Estos voduros son derivados de benzimidazol (263k), fenotiazina (2631), tiofenol metoxibenceno (263m),(263n), fenoles (263o y 263r), cumarina (263p), éster bencílico (263q) (Tabla 11). También se probó la ciclación

de los yoduros de quinazolinona **187**, **257f** y **257i**, anteriormente obtenidos. A diferencia de las condiciones radicalarias con peróxido, en este caso no se obtuvieron los productos de ciclación. En la mayoría de las reacciones donde no se obtuvo el producto esperado se recuperó yoduro de partida (**263k-r**, **187**, **257f** y **257i**), y únicamente para la reacción del yoduro **2631** se observó el producto de eliminación. Suponemos que el sistema aromático de **263k-r** y **187** podría desactivar la reacción fotoredox de alguna forma. Se necesitan más estudios para corroborar esta hipótesis.

Adicionalmente, en un trabajo desarrollado en nuestro grupo de investigación, se realizó la ciclación intramolecular de yodoalquil indoles y yoduros derivados de 2-acetilpirrol obteniendo los productos con buenos rendimientos. Los productos tricíclicos derivados de indol y 2-acetilpirrol fueron obtenidos siguiendo las condiciones descritas anteriormente.⁸²

Esquema 26 | Mecanismo de ciclación de yoduros de alquilo vía fotoredox.

En resumen, se lograron obtener los productos de la ciclación radicalaria de yoduros de alquilo catalizadas por Ir(III) en derivados de indol, pirrol y teofilina, 11 ejemplos en total con excelentes rendimientos de 88-97%.

Tomando en cuenta las propuestas mecanísticas reportadas, en el Esquema 26 se plantea un mecanismo para la adición intramolecular de voduros de alquilo en sistemas aromáticos vía fotocatálisis. Tras la irradiación del fotocatalizador de Ir(III) (265) por luz LED azul, se genera el estado excitado de Ir(III)* (266) que es reducido por el LiB(cat)₂ (**250**) a Ir(II) (**267**). Después, el Ir(II) hace una transferencia monoelectrónica al yoduro de alquilo 268 para generar el radical anión 269 y así el catalizador se reoxida a Ir(III) (265). El intermediario 269 sufre una fragmentación heterolítica generando el radical 270 y el anión yoduro. El radical alquilo 270 se adiciona al sistema aromático y genera un nuevo centro radical 271 que puede

⁸² García García, E. A. (2019). *Ciclación radical oxidativa intramolecular sobre derivados de 2 y 3 acetilpirrol*. [Tesis de licenciatura, Universidad

Nacional Autónoma de México].

http://132.248.9.195/ptd2019/junio/0790365/Inde x.htmlTexto completo

ser oxidado al carbocatión por la especie **252** y finalmente se obtiene el producto **272**.

Conclusiones

- Se desarrolló una metodología radical oxidativa para la ciclación intramolecular de yoduros derivados de quinazolinona utilizando DLP.
- Se sintetizaron 7 ejemplos ciclados de quinazolinona con anillos fusionados de 5, 6 y 7 miembros con buenos rendimientos.
- A diferencia de las condiciones reportadas por Bowman para este tipo de sistemas aromáticos, el uso de un peróxido orgánico para la ciclación-oxidativa de radicales alquilo primario es más eficiente y selectiva.

- Se desarrolló una metodología fotocatalítca para la ciclación radicalaria de yoduros de alquilo en sistemas aromáticos.
- Esta metodología es efectiva en sistemas aromáticos derivados de indol, pirrol y teofilina.
- Se obtuvieron 11 ejemplos ciclados con rendimientos de 88-97%, con anillos fusionados de 6 y 7 miembros.
- La metodología no es efectiva en otros sistemas aromáticos como benzimidazol, fenotiazina, tiofenol, metoxibenceno, fenoles, cumarina, éster bencílico y quinazolinonas.

Sección experimental

Información general

Los disolventes utilizados fueron adquiridos en Tecsiquim y Merck, y fueron secados de acuerdo con los métodos reportados en la literatura. Todos los reactivos utilizados fueron adquiridos de Merck y se utilizaron sin ninguna purificación adicional. Los puntos de fusión fueron determinados en un aparato Fisher-Johns y no están corregidos. Las reacciones fueron monitoreadas por cromatografía en capa fina usando cromatofolios de gel de sílice ALUGRAM SIL G/UV. Se utilizó una lampara de luz UV 254 reveladores nm V de ácido fosfomolíbdico, vainillina. verde de bromocresol y molibdato cérico de amonio (CAM) para la visualización de la cromatografía en capa fina. Las reacciones asistidas por microondas se realizaron en un equipo de microondas CEM-Discover. Las reacciones de fotocatálisis se realizaron en un reactor de LEDs azules de 24 W equipado

un ventilador para mantener la con temperatura de 25-30 °C. Los espectros de RMN de ¹H y ¹³C se realizaron en equipos JEOL Eclipse 300 MHz, Bruker AV 400 MHz v Varian Unity Inova-500 MHz, utilizando CDCl₃ como disolvente. Los desplazamientos químicos se encuentran reportados en partes por millón (ppm) utilizando como referencia tetrametilsilano. Las constantes de acoplamiento (]) se reportan en Hertz (Hz) y la multiplicidad de señales se indica de la siguiente manera: s= doblete, singulete, d= t= triplete, m=multiplete para espectros de ¹H. Los espectros de IR se obtuvieron en un espectrofotómetro Bruker Tensor 27 FT-IR. Los espectros de masas fueron obtenidos en un espectrómetro JEOL JMS-T100CL con potencial de ionización de 70 eV. La difracción de rayos-X se realizó en un difractómetro CCD Bruker Smart APEX II con irradiación de Mo Ka monocromática de grafito.

L-Triptofanato de etilo 87a

A una disolución de L-triptófano (1 g, 4.89 mmol) en etanol (9.8 mL) se añadió ácido canforsulfónico (2.5g, 10.76 mmol). La mezcla se agitó a temperatura ambiente hasta su completa disolución y después se calentó a reflujo durante 22 h. Transcurrido el tiempo de reacción, el etanol en exceso se eliminó al vació y el residuo se diluyó con AcOEt. La fase orgánica se lavó con una disolución saturada de NaHCO₃ y salmuera, se secó sobre Na₂SO₄, se concentró al vacío y se purificó por cromatografía en columna DCM/MeOH (9:1). El producto esterificado se obtuvo como un aceite amarillo (1.08 g, 95%).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 8.73 (s, 1H), 7.59 (d, J = 7.7 Hz, 1H), 7.34 (d, J = 7.8 Hz, 1H), 7.21 – 7.04 (m, 3H), 4.14 (qd, J = 7.1, 1.0 Hz, 2H), 3.87 – 3.74 (m, 1H), 3.28 (dd, J = 14.4, 4.6 Hz, 1H), 3.04 (dd, J = 14.4, 7.8 Hz, 1H), 2.58 (s, 2H), 1.23 (t, J = 7.1 Hz, 3H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 174.97, 136.41, 127.48, 123.50, 122.06, 119.41, 118.71, 111.46, 110.57, 61.18, 54.84, 30.42, 14.22.

EMAR-DART m/z: exacto 233.12900, preciso 233.12796, error ppm -4.46, insat. 6.5, datos consistentes para C₁₃H₁₇N₂O₂.

*N-(tert-*butoxicarbonil)-*L*-triptofanato de etilo **97**

A una disolución de **87a** (1g, 4.31mmol) en dioxano/NaHCO₃ aq. (1:2, 21 mL) se agregó di-*ter*-butil-dicarbonato (940 mg, 4.3mmol) y se agitó a temperatura ambiente durante 8 h. La mezcla de reacción se extrajo con AcOEt y se lavó con salmuera. La fase orgánica se secó sobre Na₂SO₄, se concentró al vacío y se purificó por cromatografía en columna Hex/AcOEt (7:3). El producto protegido **97** se obtuvo como un sólido blanco p.f. 155 °C (1.37 g, 96%).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 8.14 (s, 1H), 7.61 – 7.53 (m, 1H), 7.39 – 7.32 (m, 1H), 7.15 (dtd, J = 22.3, 7.1, 1.2 Hz, 2H), 7.04 – 6.97 (m, 1H), 5.09 (d, J = 7.9 Hz, 1H), 4.70 – 4.56 (m, 1H), 4.12 (q, J = 7.13 Hz 2H), 3.29 (d, J = 5.1 Hz, 2H), 1.43 (s, 9H), 1.20 (t, J = 7.1 Hz, 3H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 172.45, 155.41, 136.22, 127.90, 122.85, 122.30, 119.70, 118.96, 111.26, 110.48, 79.90, 61.45, 54.38, 28.47 (3C), 28.11, 14.21.

EMAR-DART m/χ : exacto 333.18143, preciso 333.18305, error ppm 4.86, insat. 7.5, datos consistentes para C₁₈H₂₅N₂O₄.

Los datos analíticos coinciden con los reportados en la literatura.⁸³

⁸³ Mondal, M.; Radeva, N.; Fanlo-Virgós, H.; Otto,
S.; Klebe, G.; Hirsch, A. K. H. *Angew. Chem. Int. Ed.* **2016**, *55*(32), 9422-9426.

A una disolución de 97 (500 mg, 1.5 mmol) en DCM anhidro (10mL/mmol) se adicionó Bu₄N(SH)/TBAI (1:1, 0.4 equiv.) e KOH finamente pulverizado (421 mg, 7.51 mmol). La mezcla se agitó durante 15 min bajo atmosfera de nitrógeno. Posteriormente, se adicionó cloruro de cloroacetilo (0.36 mL, 4.51 mmol) gota a gota y la reacción se mantuvo en agitación durante 4 horas. Después, se adicionó agua a la mezcla de reacción y se extrajo con DCM (x3 veces). Las faces orgánicas combinadas se lavaron con salmuera, se secaron sobre Na₂SO₄ y se concentró a presión reducida. El residuo se redisolvió en acetonitrilo (10 mL/mmol) y se adicionó KSC(S)OEt (240 mg, 1.5 mmol) a 0 °C. La mezcla de reacción se agitó durante 1 h a temperatura ambiente y después se inactivó por la adición de agua. El acetonitrilo se evaporó al vacío y el crudo de reacción se redisolvió en AcOEt y se lavó con salmuera. La fase orgánica se secó sobre Na₂SO₄ y se purificó por cromatografía en columna Hex/AcOEt (9:1). EL xantato **86** se obtuvo como un sólido blanco p.f. 140 °C (468 mg, 63%).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 8.41 (d, J = 7.9 Hz, 1H), 7.53 (d, J = 7.4 Hz, 1H), 7.45 – 7.27 (m, 3H), 5.18 (d, J = 7.8 Hz, 1H), 4.66 (q, J = 7.1 Hz, 3H), 4.55 (s, 2H), 4.21 – 4.07 (m, 2H), 3.23 (qd, J = 15.0, 6.1 Hz, 2H), 1.47 – 1.35 (m, 12H), 1.21 (t, J = 7.1 Hz, 3H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 212.64, 171.87, 164.65, 164.10, 136.03, 125.90, 124.17, 122.48, 119.12, 118.60, 116.85, 99.99, 80.20, 71.16, 61.81, 53.55, 40.75, 28.41 (3C), 28.19, 14.23, 13.83.

IR-ATR v (cm⁻¹): 3355, 2977, 1753, 1674, 1515, 1452, 1367, 1205, 1050, 747.

EMAR-DART m/z: exacto 495.16235, preciso 495.16163, error ppm -1.46, insat. 11.5, datos consistentes para C₂₃H₃₁N₂O₆S₂.

En un matraz de fondo redondo provisto con agitador magnético se colocó el xantato **86** (300, 0.6 mmol) y vinil ftalimida (115 mg, 0.66 mmol) disueltos en un 1,2 dicloroetano desgasificado (0.2 M). La mezcla se calentó a reflujo bajo atmosfera de nitrógeno y se adicionó DLP 0.3 equiv. cada hora (1.5 equiv. en total). Posteriormente, la reacción se concentró bajo presión reducida y se diluyó con acetonitrilo para formar un precipitado blanco que fue removió por filtración. El filtrado se concentró al vacío y la mezcla de diasterómeros (3:2, 238 mg, 72%) fue separada por cromatografía centrifuga de capa fina DCM/MeOH (95:5).

Epímero 84a

Epímero 84b

Aceite cristalino (143 mg, 60%).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 8.56 (d, J = 8.2 Hz, 1H), 7.82 (dt, J = 5.7, 2.9 Hz, 2H), 7.73 (td, J = 5.2, 2.0 Hz, 2H), 7.50 (d, J = 7.7 Hz, 1H), 7.37 (t, J = 7.3 Hz, 1H), 7.28 (d, J = 7.8 Hz, 1H), 5.90 (s, 1H), 5.01 (d, J = 8.3 Hz, 1H), 4.58 – 4.48 (m, 1H), 4.04 – 3.97 (m, 2H), 3.08 – 2.79 (m, 4H), 2.49 – 2.39 (m, 2H), 1.32 (s, 9H), 1.04 (t, J = 7.0 Hz, 3H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 171.65, 168.74, 167.86, 154.94, 135.01, 134.46, 131.79, 131.19, 129.47, 125.78, 124.10, 123.72, 118.89, 116.93, 114.73, 80.16, 61.72, 53.16, 41.58, 31.15, 28.29, 28.10, 27.69, 13.96.

Sólido amarillo (95 mg, 40%, p.f. 89 °C). **RMN** ¹**H** (300 MHz, CDCl₃) δ ppm 8.56 (d, *J* = 8.1 Hz, 1H), 7.80 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.71 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.52 (d, *J* = 7.7 Hz, 1H), 7.37 (t, *J* = 7.3 Hz, 1H), 7.29 (d, *J* = 7.5 Hz, 1H), 5.84 (s, 1H), 5.03 (d, *J* = 7.5 Hz, 1H), 4.60 – 4.48 (m, 1H), 3.97 (dq, *J* = 25.4, 9.3, 8.3 Hz, 2H), 3.15 – 2.98 (m, 2H), 2.96 (d, *J* = 6.2 Hz, 1H), 2.82 (dt, *J* = 17.7, 4.1 Hz, 1H), 2.40 (qq, *J* = 15.2, 7.6, 7.1 Hz, 2H), 1.35 (s, 9H), 1.12 – 1.02 (m, 3H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 171.98, 168.67, 168.03, 155.04, 135.08, 134.42, 131.85, 130.92, 129.44, 125.83, 124.09, 123.61, 119.25, 116.90, 115.01, 80.12, 61.64, 53.41, 41.16, 31.06, 28.35, 28.13, 27.84, 13.95.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 3360, 2976, 2929, 1772, 1703, 1612, 1455, 1366, 1320, 1162, 721. **EMAR**-DART *m*/*z*: exacto 546.22402, preciso 546.22205, error ppm -3.61, insat. 16.5, datos consistentes para C₃₀H₃₂N₃O₇. 1. Espectro COSY de 84a

3. Espectro HMBC de 84a

67

5. Espectro ROESY de 84a

Espectros en 2D del epímero 84b

1. Espectro COSY de 84b

2. Espectro HSQC de 84b

5.0 4.5 f2 (ppm)

4.0

3.5

3.0

2.5

2.0

1.5

1.0

6.5

8.5

8.0 7.5 7.0

6.0

5.5
4. Espectro NOESY de **84b**

Propanoato-(*S*)-3-((*S*)-9-amino-6-oxo-6,7,8,9-tetrahidropirido[1,2-a]indol-10-il)-2-((*tert*-butoxicarbonil)amino)de etilo **108**

En un matraz de bola se colocó **84a** (100 mg, 0.18 mmol) y se disolvió en etanol (0.11 mL, 1.8 mL, 1M) y la disolución se enfrió a 0 °C con un baño de hielo agua. A esta mezcla se adicionó hidrazina monohidratada 65% (1.46 mmol, 8 equiv.) y se agitó a 0 °C durante 10 min y después a temperatura ambiente durante 2 hr. Una vez terminada la reacción se filtró al vacío y al filtrado se adicionó agua y se extrajo con acetato de etilo. La fase orgánica se secó sobre Na₂SO₃, se filtró, se concentró al vacío y se obtuvo la amina como un aceite amarillo **108** (55 mg, 73% de rendimiento).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 8.39 (s, 2H), 7.48 (d, J = 7.0 Hz, 1H), 7.27 (dd, J = 18.9, 7.5 Hz, 3H), 6.51 (s, 1H), 4.52 – 4.35 (m, 1H), 4.07 (dd, J = 15.6, 8.5 Hz, 2H), 3.28 – 2.88 (m, 3H), 2.77 – 2.63 (m, 1H), 2.30 – 2.11 (m, 2H), 1.18 (s, 9H), 0.81 (t, J = 6.7 Hz, 3H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 178.67, 172.20, 155.16, 136.36, 136.05, 128.25, 122.24, 119.43, 118.44, 111.45, 107.19, 80.01, 61.64, 54.49, 50.63, 30.81, 29.01, 28.25, 27.29, 14.06.

IR-ATR v (cm⁻¹): 3356, 3299, 2925, 1694, 1456, 1365, 1163, 751.

EMAR-DART m/z: exacto 416.21855, preciso 416.21841, error ppm -0.32, insat. 9.5, datos consistentes para C₂₂H₃₀N₃O₅.

Una suspensión de NaH 90% (105 mg, 3.94 mol) en THF anhidro (3.5 mL) bajo atm. de nitrógeno se enfrió a 0 °C y se añadió lentamente 1,3-propanodiol (300 mg, 3.94 mmol) en THF (3.5 mL). La mezcla de reacción se agitó a 0 °C durante 1 hr. Se disolvió TBDPSCI (1.06 g, 3.94 mol) en THF (3.5 mL) y se añadió gota a gota a la mezcla de reacción anterior. La reacción se agitó a t. a. durante 16 h, transcurrido este tiempo se inactivó con agua. La fase orgánica se lavó con NaHCO3 aq. y salmuera, se secó sobre Na₂SO₄, se filtró y se concentró al vacío. El producto se utilizó en el siguiente paso de reacción sin purificación, aceite translúcido (1.2 g, 98%). A una disolución del 3-((terbutildifenilsilil)oxy)-1-propanol (1.2 g, 3.82 mmol) en DCM (38 mL) enfriada a 0 °C se añadió Dess-Martin peryodinano (1.95 g, 4.58 mmol, 1.5 equiv). La reacción se calentó a temperatura ambiente durante 3 hr. Una vez completada la reacción se filtró sobre celita y se lavó con DCM. El filtrado se lavó con NaHCO3 aq. y salmuera, se secó sobre Na₂SO₄, se filtró y se concentró al vacío. El producto se purificó por cromatografía en columna para obtener el producto como un aceite translúcido (1.02 g, 86%).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 5.12 (dd, *J* = 7.6, 1.7 Hz, 4H), 4.85 (q, *J* = 6.4, 6.0 Hz, 7H), 1.47 (t, *J* = 6.0 Hz, 2H), 0.05 (td, *J* = 6.0, 2.0 Hz, 2H), -1.50 (s, 9H). **RMN** ¹³**C** (75 MHz, CDCl₃) δ ppm 201.96, 135.65, 133.34, 129.93, 127.88, 58.38, 46.46, 26.84, 19.23.

Los datos analíticos para **109** coinciden con los reportados en la literatura.⁸⁴

Propanoato-(*S*)-2-((*tert*-butoxicarbonil)amino)-3-((*S*)-9-((3-((*tert*-butildifenilsilil)oxi)propil)amino)-6-oxo-6,7,8,9-tetrahidropirido[1,2-*a*]indol-10-il) de etilo **110**

En un matraz de bola se adicionó la amina 108 (50)0.12 mmol), 3-((termg, V butildifenilsilil)oxi)propanal (40 mg, 0.12 mmol) disueltos en THF anhidro (1.2 mL, 1M). La mezcla se agitó durante 8 hr. a temperatura ambiente y después se enfrió a 0 °C con un baño de hielo de agua y se adicionó NaBH₄ (6 mg, 0.15 mmol). Le mezcla se agitó durante 30 min y después se adicionó agua. El producto se extrajo con AcOEt/H2O. La fase orgánica se secó sobre Na₂SO₃, se filtró y se concentró al vacío. El producto se purificó cromatografía columna por en AcOEt/MeOH 95:5 (67 mg, 78 % de rendimiento).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.65 (s, 7H), 7.37 – 7.27 (m, 8H), 5.49 (s, 1H), 5.30 (d, *J* = 9.3 Hz, 1H), 4.62 – 4.48 (m, 1H), 4.13 (q,

J = 7.4 Hz, 3H), 3.96 – 3.65 (m, 2H), 3.35 – 3.19 (m, 2H), 3.11 – 2.94 (m, 2H), 2.86 – 2.31 (m, 4H), 2.30 – 2.05 (m, 2H), 1.06 (s, 9H), 1.00 (s, 9H), 0.88 (t, J = 6.7 Hz, 3H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 171.95, 168.71, 155.39, 151.00, 135.69, 134.75, 133.59, 130.69, 129.93, 127.91, 125.66, 124.24, 118.99, 116.86, 115.31, 80.09, 62.04, 61.71, 53.51, 42.83, 41.65, 35.86, 31.73, 29.88, 29.57, 27.84, 26.99, 19.33, 14.20.

1.1. Procedimiento general para la adición de acrilonitrilo.

A una disolución de 1,3 diaminopropano (1. 12 mL, 13.5 mmol, 1equiv) en metanol anhidro (10 mL) se enfrío a 0 °C y se adicionó una disolución de acrilonitrilo (1.76 mL, 27 mmol, 2 equiv.) en 10 mL de metanol gota a gota durante 30 min. La mezcla resultante se calentó a temperatura ambiente y se agitó durante 24 h. Posteriormente, se eliminó el disolvente al vacío y el producto se purificó por cromatografía en columna (DCM/MeOH 1-10%).

1.2. Procedimiento general para la protección de aminas secundarias.

A una disolución del dinitrilo **113** (500 mg, 2.76 mmol, 1 equiv.) en dioxano/NaHCO₃ aq. (1:2, 11 mL) se agregó di-*ter*-butildicarbonato (1.2 g, 5.52 mmol, 2 equiv.) y se agitó a temperatura ambiente durante 8 h. El producto se extrajo con AcOEt y se lavó con salmuera. La fase orgánica se secó sobre Na₂SO₄, se concentró al vacío y se purificó por cromatografía en columna AcOEt/MeOH (10:1).

⁸⁴ Bold, C. P.; Klaus, C.; Pfeiffer, B.; Schürmann, J.; Lombardi, R.; Lucena, D.; Díaz, J. F.; Altmann, K.-H. *Org. Lett.* **2021**, *23*(6) 2238-2242.

1.3. Procedimiento general para la reducción de dinitrilos

A una disolución del dinitrilo **114** (500 mg, 1.28 mol, 1 equiv.) en dioxano/agua (4:1, 12 mL) se añadió NaOH (97 mg, 2.44 mmol, 1.9 equiv.) e hidrazina monohidratada 65% (0.76 mL, 10.28 mmol, 8 equiv.). La mezcla de reacción se enfrió a 0 °C y se adicionó Ni-Raney (25 mg, 5% w) y se agitó a temperatura ambiente durante 6 h. después, la mezcla se filtró sobre celita para remover el Ni-Raney y el filtrado se concentró al vacío. El concentrado se redisolvió en AcOEt y se lavó con una disolución de NaOH 1M. La fase orgánica se secó sobre Na₂SO₄, se concentró a presión reducida y el producto se utilizó sin purificación en el siguiente paso de reacción.

3,3'-(Propano-1,3diilbis(azanediil))dipropanonitrilo **113**

Siguiendo el procedimiento general 1.1, **113** se obtuvo como un aceite translúcido (2.34 gr, 96%).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 2.72 (dt, J = 25.5, 6.6 Hz, 2H), 2.54 (dt, J = 25.6, 6.6 Hz, 2H), 2.44 – 2.28 (m, 2H), 1.47 (dp, J = 19.8, 6.6 Hz, 1H), 1.31 (d, J = 16.7 Hz, 1H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 118.66, 47.16, 44.60, 29.30, 18.15.

EMAR-DART m/z: exacto 181.14532, preciso 181.14463, error ppm -3.79, insat. 3.5, datos consistentes para C₉H₁₇N₄.

di-*tert*-Butil propano-1,3-diilbis((2cianoetil)carbamato) **114**

Siguiendo el procedimiento general 1.2, **114** se obtuvo como un aceite translúcido (1.02 gr, 95%).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 3.46 (t, *J* = 6.5 Hz, 2H), 3.27 (t, *J* = 7.3 Hz, 2H), 2.71 – 2.48 (m, 2H), 1.79 (p, *J* = 7.7 Hz, 1H), 1.45 (s, 9H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 154.62, 118.04, 80.01, 45.79, 43.43, 26.94, 16.51.

EMAR-DART m/z: exacto 381.25018, preciso 381.24956, error ppm -1.62, insat. 5.5, datos consistentes para C₁₉H₃₃N₄O₄.

di-tert-Butil	propano-1,3-diilbis((3-
aminoproil)carbamato) 115

Siguiendo el procedimiento general 1.3, **115** se obtuvo como un aceite translúcido (457 mg, 92%).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 3.20 (d, *J* = 31.0 Hz, 4H), 2.75 – 2.53 (m, 2H), 2.40 – 2.11 (m, 2H), 1.76 – 1.59 (m, 3H), 1.43 (s, 9H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 155.55, 79.42, 44.69, 43.87, 39.04, 31.46, 28.44, 28.32.

EMAR-DART m/z: exacto 389.31278, preciso 389.31152, error ppm -3.23, insat. 1.5, datos consistentes para C₁₉H₄₁N₄O₄.

Siguiendo el procedimiento general 1.1, **116a** se obtuvo como un aceite incoloro (1.2 gr, 95%).

RMN ¹**H** (500 MHz, CDCl₃) δ ppm 3.18 (d, *J* = 66.6 Hz, 4H), 2.88 (t, *J* = 6.6 Hz, 2H), 2.59 (s, 2H), 2.49 (t, *J* = 6.6 Hz, 2H), 2.26 (s, 1H), 1.74 – 1.63 (m, 3H), 1.42 (s, 9H).

RMN ¹³**C** (125 MHz, CDCl₃) δ ppm 155.62, 118.81, 79.62, 46.05, 45.15, 44.90, 44.23, 29.13, 28.54, 28.26, 18.66.

EMAR-DART m/χ (% ar): 495 (100) M⁺

Dinitrio 116b

Siguiendo el procedimiento general 1.2, **116b** se obtuvo como un aceite translúcido (619 mg, 95 %).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 3.22 (t, *J* = 6.0 Hz, 2H), 3.05 – 2.85 (m, 6H), 2.42 – 2.27 (m, 2H), 1.59 – 1.37 (m, 3H), 1.20 (s, 19H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 154.77, 117.75, 78.82, 45.81, 44.83, 44.34, 43.33, 42.93, 27.93, 16.95, 16.36.

EMAR-DART m/χ (% ar): 595 (100) M⁺

Diamina 116c

Siguiendo el procedimiento general 1.3, **116c** se obtuvo como un aceite amarillo (910 mg, 90%) **RMN** ¹**H** (500 MHz, CDCl₃) δ ppm 3.15 (d, *J* = 61.0 Hz, 10H), 2.44 (s, 2H), 2.00 – 1.84 (m, 1H), 1.67 (s, 4H), 1.38 (s, 18H).

RMN ¹³**C** (125 MHz, CDCl₃) δ ppm 155.39, 79.61, 44.87, 36.95, 28.52, 28.21, 27.56, 26.43.

EMAR-DART m/χ (% ar): 703 (100) M⁺

Dinitrilo 117a

Siguiendo el procedimiento general 1.1, **117a** se obtuvo como un aceite amarillo (875 mg, 95 %).

¹**H-RMN** (500 MHz, CDCl₃) δ ppm 3.14 (s, 8H), 2.90 (t, *J* = 6.6 Hz, 2H), 2.61 (s, 2H), 2.51 (t, *J* = 6.7 Hz, 2H), 2.11 (s, 1H), 1.70 (dd, *J* = 13.3, 6.2 Hz, 5H), 1.43 (s, 18H).

RMN ¹³**C** (125 MHz, CDCl₃) δ ppm 155.44, 118.77, 79.61, 46.01, 45.18, 44.98, 44.91, 44.74, 44.13, 29.10, 28.57, 28.23, 27.58, 18.68.

Dinitrilo 117b

Siguiendo el procedimiento general 1.2, **117b** se obtuvo como un aceite translúcido (355 mg, 95%).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 3.13 (d, *J* = 19.5 Hz, 9H), 2.85 (t, *J* = 6.7 Hz, 1H), 2.55 (tt, *J* = 6.3, 3.0 Hz, 2H), 2.44 (t, *J* = 6.6 Hz, 2H), 1.64 (dd, *J* = 13.6, 6.8 Hz, 6H), 1.39 (s, 27H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 155.33, 118.70, 79.39, 46.17, 45.97, 45.12, 44.79, 44.16, 29.08, 28.45, 27.75, 27.58, 18.67.

2.1. Procedimiento general para la síntesis de N-heterociclos

Método A. A una suspensión de hidruro de sodio (60 mg, 2.5 mmol) en THF (4 mL), enfriada a 0 °C y bajo atmosfera de nitrógeno, se adicionó pirrol-2-carboxaldehido (200 mg, 2.1 mmol) y se agitó durante 30 min a 0 °C. Después, se adicionó 5-bromo-1-penteno (0.43 mL, 2.3 mmol) o 4-metilenehexil-4metilbenzenesulfonato (0.66 mL, 2.3mmol) en THF (1 mL). La mezcla de reacción se agitó a temperatura ambiente durante 12 hr y después se adicionó agua (5 mL). La mezcla se extrajo con AcOEt (5 mL \times 3) y la fase orgánica se lavó con salmuera, se secó sobre Na₂SO₄ y se concentró al vacío. El crudo se purificó por columna cromatográfica usando una mezcla de hexano/AcOEt (95:5) para obtener el producto.

1-(Pent-4-en-1il)-1*H*-pirrol-2-carbaldehído 148

Siguiendo el procedimiento general 2.1A, **148** se obtuvo como un aceite incoloro (95%, 326 mg) después de purificarlo por cromatografía en columna (5% AcOEt/Hex).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 9.50 (s, 1H), 6.93 – 6.89 (m, 2H), 6.19 (dd, *J* = 3.9, 2.6 Hz, 1H), 5.77 (ddt, *J* = 16.8, 10.2, 6.5 Hz, 1H),

Método B. A una disolución de pirrol (0.2 mL, 2 mmol) en THF (2 mL) enfriada a -78 °C y bajo atmosfera de nitrógeno, se adicionó *n*-BuLi (0.8 mL, 2 mmol, 2.5 M in hexano) y se agitó durante 30 min. a -78 °C. Después se adicionó gota a gota una disolución de cloruro de 4-metilenehexanoilo (323 mg, 2.2 mmol) en THF (2 mL) vía cánula. Después de agitar 10 min. a -78 °C la reacción se calentó a temperatura ambiente y se agitó durante 12 hr. Después se adicionó agua (5 mL) y se extrajo con AcOEt (5 mL \times 3), la fase orgánica se lavó con salmuera, se secó sobre Na₂SO₄ y se concentró al vacío. El crudo se purificó por columna cromatográfica usando una mezcla de hexano/éter (95:5) para obtener el producto.

5.05 – 4.94 (m, 2H), 4.32 – 4.24 (m, 2H), 2.07 – 1.98 (m, 2H), 1.89 – 1.78 (m, 2H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 179.29, 137.53, 131.44, 131.38, 124.94, 115.50, 109.56, 48.52, 30.55, 30.37.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 3076, 2928, 2854, 2806, 2767, 2722, 1702, 1664, 1527, 1481, 1406, 1368, 1321, 1216, 1074, 1032, 915, 758.

EMAR-DART m/z: exacto 164.10754, preciso 164.10746, error ppm -0.50, insat. 4.5, datos consistentes para C₁₀H₁₄NO.

1-(4-Metilenhexil)-1*H*-pirrol-2-carbaldehído **172a**

Siguiendo el procedimiento general 2.1A, **172a** se obtuvo como un aceite incoloro (95%, 573 mg) después de purificarlo por cromatografía en columna (10% Et₂O/Hex).

RMN ¹**H** (400 MHz, CDCl₃) δ ppm 9.53 (s, 1H), 6.93 (dd, J = 4.0, 1.7 Hz, 2H), 6.22 (dd, J = 3.9, 2.5 Hz, 1H), 4.74 (d, J = 14.6 Hz, 2H), 4.34 – 4.27 (m, 2H), 2.02 (q, J = 7.2 Hz, 4H), 1.97 – 1.87 (m, 2H), 1.01 (t, J = 7.4 Hz, 3H).

RMN ¹³**C** (100 MHz, CDCl₃) δ ppm 179.25, 150.09, 131.44, 131.44, 124.91, 109.55, 108.39, 48.80, 32.95, 29.30, 28.73, 12.35.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 3074, 2964, 2924, 2853, 1665, 1595, 1458, 1404, 1362, 1177, 1098, 974, 924, 815, 743, 662.

EMAR-DART m/χ : exacto 192.13884, preciso 192.13951, error ppm 3.51, insat. 4.5, datos consistentes para C₁₂H₁₈NO.

1-(4-Metilenhexil)-1H-pirrol 172b

Siguiendo el procedimiento general 2.1B, **172b** se obtuvo como un aceite incoloro (92%, 334 mg) después de purificarlo por cromatografía en columna (5% Et_2O/Hex).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 6.77 – 6.64 (m, 2H), 6.23 – 6.12 (m, 2H), 4.76 (d, *J* = 14.0 Hz, 2H), 3.89 (t, *J* = 6.9 Hz, 2H), 2.19 – 1.84 (m, 6H), 1.03 (t, *J* = 7.4 Hz, 3H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 150.16, 120.61, 108.47, 107.96, 49.18, 33.15, 29.54, 28.81, 12.41.

IR-ATR v (cm⁻¹): 2958, 2925, 2855, 1733, 1630, 1461, 1365, 1176, 1076, 969, 739.

EMAR-DART m/χ exacto 164.14392, preciso 164.14425, error ppm 1.96, insat. 3.5, datos consistentes para C₁₁H₁₈N.

Siguiendo el procedimiento general 2.1B, 172c se obtuvo como un aceite incoloro (90%, 150 mg) después de purificarlo por cromatografía en columna (10% Et₂O/Hex).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.33 (s, 2H), 6.36 – 6.21 (m, 2H), 4.85 – 4.73 (m, 2H), 3.03 – 2.92 (m, 2H), 2.57 – 2.44 (m, 2H), 2.15 – 2.03 (m, 2H), 1.06 (t, *J* = 7.4 Hz, 3H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 170.26, 149.53, 119.08, 113.18, 108.53, 33.14, 30.58, 29.16, 12.38.

IR-ATR \mathbf{v} (cm⁻¹): 3353, 2966, 2929, 1721, 1649, 1467, 1339, 1218, 1121, 1073, 893, 755.

EMAR-DART m/χ : exacto 178.12319, preciso 178.12272, error ppm -2.64, insat. 4.5, datos consistentes para C₁₁H₁₆NO.

Metil 1-(4-metilenhexil)-1H-pirrol-2carboxilato **172d**

Siguiendo el procedimiento general 2.1A, **172d** se obtuvo como un aceite incoloro (91%, 321 mg) después de purificarlo por cromatografía en columna (5% Et₂O/Hex).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 6.95 (dd, J = 4.0, 1.8 Hz, 1H), 6.87 – 6.76 (m, 1H), 6.11 (dd, J = 4.0, 2.5 Hz, 1H), 4.78 – 4.67 (m, 2H), 4.33 – 4.22 (m, 2H), 3.80 (s, 3H), 2.06 – 1.85 (m, 6H), 1.02 (t, J = 7.4 Hz, 3H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 161.54, 150.25, 128.85, 121.55, 118.27, 108.26, 107.95, 51.01, 48.91, 33.12, 29.59, 28.81, 12.37.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 3079, 2964, 2934, 2805, 2721, 1665, 1527, 1481, 1405, 1368, 1322, 1216, 1073, 1032, 891, 764, 746.

EMAR-DART m/z: exacto 222.14940, preciso 222.14899, error ppm -1.88, insat. 4.5, datos consistentes para C₁₃H₂₀NO₂.

1-(Pent-4-en-1-il)-1H-pirazol 172e

Siguiendo el procedimiento general 2.1A, **172e** se obtuvo como un aceite incoloro (95%, 300 mg) después de purificarlo por cromatografía en columna (DCM/MeOH 2%).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.46 (s, 1H), 7.31 (d, *J* = 1.9 Hz, 1H), 6.18 (q, *J* = 2.0

Hz, 1H), 5.84 - 5.64 (m, 1H), 5.11 - 4.87 (m, 2H), 4.08 (t, J = 6.7 Hz, 2H), 1.95 (ddt, J = 16.1, 10.1, 5.5 Hz, 4H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 139.03, 137.16, 128.99, 115.57, 105.09, 51.09, 30.47, 29.33.

IR-ATR $\overline{\mathbf{v}}$ (cm⁻¹): 3381, 2923, 2853, 1641, 1508, 1447, 1230, 1108, 1080, 912, 660.

EMAR-DART m/z: exacto 137.10787, preciso 137.10793, error ppm 0.38, insat. 3.5, datos consistentes para C₈H₁₃N₂.

1-(4-Metilenehexil)-1H-pirazol 172f

Siguiendo el procedimiento general 1A, **172f** se obtuvo como un aceite incoloro (90%, 434 mg) después de purificarlo por cromatografía en columna (DCM/MeOH 2%).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.50 (s, 1H), 7.36 (d, *J* = 1.9 Hz, 1H), 6.23 (d, *J* = 2.0 Hz, 1H), 4.73 (d, *J* = 13.4 Hz, 2H), 4.10 (d, *J* = 6.7 Hz, 2H), 2.00 (t, *J* = 3.5 Hz, 6H), 1.00 (t, *J* = 7.5 Hz, 3H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 149.98, 139.25, 129.07, 108.60, 105.24, 51.66, 33.04, 28.70, 28.43, 12.36.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 3197, 3062, 2981, 2926, 1645, 1396, 1356, 1133, 1033, 930, 883, 757.

EMAR-DART m/z: exacto 165.13917, preciso 165.13959, error ppm 2.54, insat. 3.5, datos consistentes para C₁₀H₁₇N₂.

Siguiendo el procedimiento general 2.1A, **172g** se obtuvo como un aceite incoloro (95%, 300 mg) después de purificarlo por cromatografía en columna (Hex/AcOEt 9:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.73 (d, J = 7.6 Hz, 1H), 7.42 (d, J = 8.2 Hz, 1H), 7.34 – 7.24 (m, 1H), 7.18 (dd, J = 14.7, 5.2 Hz, 2H), 6.65 – 6.53 (m, 1H), 5.88 (ddt, J = 12.9, 10.3, 6.4 Hz, 1H), 5.19 – 5.08 (m, 2H), 4.18 (t, J = 6.9 Hz, 2H), 2.14 (q, J = 6.6 Hz, 2H), 2.00 (quin, J = 6.8 Hz, 2H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 137.57, 136.12, 128.80, 128.00, 121.54, 121.16, 119.42, 115.82, 109.58, 101.16, 45.74, 31.04, 29.37.

IR-ATR v̄ (cm⁻¹): 3078, 3009, 2933, 2873, 1641, 1512, 1482, 1462, 1401, 1315, 1216, 995, 916, 759, 667.

EMAR-DART m/z: exacto 186.12827, preciso 186.12818, error ppm -0.48, insat. 6.5, datos consistentes para C₁₃H₁₆N.

Siguiendo el procedimiento general 2.1A, **172h** se obtuvo como un aceite incoloro (92%, 508 mg) después de purificarlo por cromatografía en columna (Hex/AcOEt 9:1).

RMN ¹**H** (400 MHz, CDCl₃) δ ppm 7.55 (dt, J = 7.9, 1.0 Hz, 1H), 7.26 (dd, J = 8.2, 0.8 Hz, 1H), 7.13 (ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 7.05 – 7.00 (m, 2H), 6.41 (dd, J = 3.1, 0.8 Hz, 1H), 4.72 – 4.65 (m, 2H), 4.04 (t, J = 6.9 Hz, 2H), 2.01 – 1.89 (m, 6H), 0.94 (t, J = 7.4 Hz, 3H).

RMN ¹³**C** (100 MHz, CDCl₃) δ ppm 150.03, 135.98, 128.61, 127.81, 121.36, 120.97, 119.22, 109.38, 108.42, 100.99, 45.91, 33.29, 28.78, 28.10, 12.34.

IR-ATR \mathbf{v} (cm⁻¹): 3082, 3055, 2964, 2935, 1645, 1511, 1436, 1316, 887, 762.

EMAR-DART m/χ : exacto 214.15957, preciso 214.15951, error ppm -0.30, insat. ,6.5 datos consistentes para C₁₅H₂₀N.

2.2. Procedimiento general para la N-acilación de 2-yodoanilinas

En un matraz redondo se disolvió 2-yodoanilina (2g, 9.17 mmol) en DCM (30 mL) y se añadió trietilamina (1.91 mL, 13.63 mmol). La mezcla de reacción se enfrío a 0 °C y se añadió cloruro de cloroacetilo (0.93 mL, 11.95 mmol). Después de la adición, la reacción se calentó a temperatura ambiente y se agitó durante 5 hr. La reacción se inactivó por la adición de agua (20 mL), se extrajo con DCM (3x20 mL), la fase orgánica se secó sobre Na₂SO₄, se filtró y concentró al vacío. El crudo se purificó por cromatografía en columna y una mezcla de Hexano/AcOEt (9:1) para obtener el producto.

Siguiendo el procedimiento general 2.2, la anilida **161** se obtuvo como un sólido blanco (2.65 g, 98 %, p.f. 100–102 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 9:1).

RMN ¹**H** (400 MHz, CDCl₃) δ ppm 8.73 (s, 1H), 8.23 (d, *J* = 8.2 Hz, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.42 – 7.31 (m, 1H), 6.90 (t, *J* = 7.7 Hz, 1H), 4.23 (s, 2H).

RMN ¹³**C** (100 MHz, CDCl₃) δ ppm 164.26, 139.19, 137.42, 129.41, 126.82, 121.78, 90.01, 43.31.

IR-ATR \mathbf{v} (cm⁻¹): 3250, 1917, 1668,1534, 1431, 753, 663, 566, 430.

EMAR-DART m/z: exacto 295.93391, preciso 295.93317, error ppm -2.49, insat. 4.5, datos consistentes para C₈H₈CIINO.

Siguiendo el procedimiento general 2.2, la anilida **173-a1** se obtuvo como un sólido blanco (2.6g, 98 %, p.f. 107–109°C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 95:5).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 8.82 (s, 1H), 8.17 (dd, J = 11.0, 3.0 Hz, 1H), 7.74 (dd, J = 8.8, 6.0 Hz, 1H), 6.69 (ddd, J = 8.8, 7.7, 3.0 Hz, 1H), 4.24 (s, 2H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 164.39, 163.30 (d, J = 247.0 Hz), 139.60 (d, J = 8.8 Hz), 138.67 (d, J = 11.4 Hz), 113.89 (d, J = 22.5 Hz), 109.11 (d, J = 28.5 Hz), 82.12 (d, J = 3.4 Hz), 43.28.

IR-ATR \mathbf{v} (cm⁻¹): 3255, 3041, 1671, 1591, 1538, 1414, 1200, 974, 810, 655, 572.

EMAR-DART m/χ : exacto 313.92449, preciso 313.92557, error ppm 3.46, insat. 4.5, datos consistentes para C₈H₇ClFINO.

Metil 5-cloro-2-(2-cloroacetamido)-3yodobenzoato **173-b1**

Siguiendo el procedimiento general 2.2, la anilida **173-b1** se obtuvo como un sólido blanco (1.18 g, 95%, p.f. 144–146 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 95:5).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 8.96 (s, 1H), 8.00 (t, *J* = 2.6 Hz, 1H), 7.86 (d, *J* = 2.4 Hz, 1H), 4.20 (s, 2H), 3.88 (s, 4H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 164.94, 164.71, 142.58, 136.22, 133.15, 130.90, 128.39, 98.25, 53.13, 43.20.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 3250, 3036, 1668, 1577, 1534, 1276, 1190, 1015, 866, 774, 663, 566, 430.

EMAR-DART m/z: exacto 387.90042, preciso 387.90007, error ppm -0.90, insat. 5.5, datos consistentes para C₁₀H₉Cl₂INO₃.

2.3. Procedimiento general para la protección de 2-yodoanilidas

A una suspensión de NaH (339 mg, 14.12 mmol) en DMF (14 mL) anhidro, bajo atmosfera de nitrógeno y enfriada a 0 °C se añadió una disolución de la anilida **161** (2.65 g, 8.96 mmol) en DMF (9 mL) vía cánula. La mezcla resultante se agitó a 0 °C durante 1 hr y después se adicionó MOMCl (0.75 mL, 9.86 mmol). La reacción se calentó a temperatura ambiente y se agitó a esta temperatura durante 8 hr. Después se adicionó hielo de agua y la reacción se extrajo con AcOEt (3 ×20 mL). La fase orgánica se secó sobre Na₂SO₄, se filtró y concentró al vacío. El crudo se purificó por cromatografía en columna y una mezcla de Hexano/AcOEt (85:15) para obtener el producto.

2-Cloro-N-(2-yodofenil)-N-(metoximetil)acetamida **162**

Siguiendo el procedimiento general 2.3, la anilida **162** se obtuvo como un aceite amarillo (2.83 g, 93%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 85:15).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.96 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.46 (td, *J* = 7.7, 1.4 Hz, 1H), 7.35 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.14 (td, *J* = 7.9, 1.7 Hz, 1H), 5.59 (d, *J* = 10.3 Hz, 1H), 4.41 (d, *J* = 10.3 Hz, 1H), 3.86 – 3.72 (m, 2H), 3.48 (s, 3H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 167.14, 141.94, 140.37, 131.22, 130.93, 129.99, 100.21, 78.92, 57.35, 42.80.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 3016, 2943, 2830, 1693, 1469, 1378, 1235, 1112, 1079, 911, 756, 667.

EMAR-DART m/z: exacto 339.96012, preciso 339.96109, error ppm 2.85, insat. 4.5, datos consistentes para C₁₀H₁₂ClINO₂.

Siguiendo el procedimiento general 2.3, la anilida **173-a2** se obtuvo como un sólido blanco (2.78 g, 94 %, p.f. 89–91 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 9:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.93 – 7.74 (m, 1H), 7.08 (d, *J* = 8.5 Hz, 1H), 6.90 (t, *J* = 6.8 Hz, 1H), 5.49 (d, *J* = 10.2 Hz, 1H), 4.32 (d, *J* = 9.1 Hz, 1H), 3.73 (s, 2H), 3.39 (s, 3H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 166.76, 163.12 (d, J = 251.9 Hz), 143.25 (d, J = 9.6 Hz), 140.97 (d, J = 8.5 Hz), 119.07 (d, J = 22.6 Hz), 118.58 (d, J = 21.5 Hz), 93.64 (d, J = 3.3 Hz), 78.77, 57.31, 42.60.

IR-ATR v̄ (cm⁻¹): 3065, 2991, 2941, 2827, 1691, 1576, 1464, 1408, 1253, 1107, 918, 794, 722, 650, 575, 499.

EMAR-DART m/χ : exacto 357.95070, preciso 357.94935, error ppm -3.78, insat. 4.5, datos consistentes para C₁₀H₁₁ClFINO₂.

Metil 5-cloro-2-(2-cloro-*N*-(metoximetil)acetamido)-3-yodobenzoato **173-b2**

Siguiendo el procedimiento general 23, la anilida **173-b2** se obtuvo como un sólido blanco (1.18 g, 90%, p.f. 114–115 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 9:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 8.10 (d, J = 2.4 Hz, 1H), 7.82 (d, J = 2.4 Hz, 1H), 5.51 (d, J = 10.5 Hz, 1H), 4.26 (d, J = 10.5 Hz, 1H), 4.05 (d, J = 14.4 Hz, 1H), 3.89 (s, 3H), 3.81 (d, J = 14.4 Hz, 1H), 3.38 (s, 3H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 167.42, 164.68, 142.68, 139.53, 136.09, 134.09, 131.15, 103.57, 79.80, 58.54, 53.32, 43.35.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 3016, 2943, 1693, 1469, 1378, 1314, 1112, 1079, 911, 756, 667.

EMAR-DART m/z: exacto 431.92663, preciso 431.92732, error ppm 1.60, insat. 5.5, datos consistentes para C₁₂H₁₃Cl₂INO₄.

2.4. Procedimiento general para la síntesis de xantatos derivados de anilidas

A una disolución de la anilida **142b** (3 g, 8.83 mmol) en acetona (90 mL) a 0 °C se adicionó etil xantogenato de potasio (1.55 g, 9.71 mmol). La mezcla de reacción se agitó a temperatura ambiente durante 3 hr y después se adicionó agua (60 mL). La reacción se extrajo con AcOEt y (3 ×20 mL) y la fase orgánica se secó sobre Na₂SO₄, se filtró y concentró al vacío. El crudo se purificó por cromatografía en columna y una mezcla de Hexano/AcOEt (9:1) para obtener el producto.

O-Etil-S-(2-((2yodofenil)(metoximetil)amino)-2-oxoetil) carbonoditioato **156**

Siguiendo el procedimiento general 2.4, el xantato **156** se obtuvo como un aceite amarillo (3.5 g, 99 %) después de purificarlo por cromatografía en columna (Hexano/AcOEt 9:1).

RMN ¹**H** (400 MHz, CDCl₃) δ ppm 7.93 – 7.87 (m, 1H), 7.45 – 7.37 (m, 2H), 7.08 (ddd, J = 8.1, 6.3, 2.8 Hz, 1H), 5.55 (d, J = 10.4 Hz, 1H), 4.53 (q, J = 7.1 Hz, 2H), 4.36 (d, J = 10.4 Hz, 1H), 3.77 (d, J = 16.2 Hz, 1H), 3.59 (s, 1H), 3.41 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H).

RMN ¹³**C** (100 MHz, CDCl₃) δ ppm 213.73, 167.37, 142.50, 140.22, 131.45, 130.62, 129.86, 100.25, 78.72, 70.63, 57.25, 40.23, 13.78.

IR-ATR v̄ (cm⁻¹): 3351, 3059, 2981, 2935, 2826, 1677, 1577, 1468, 1374, 1303, 1227, 1106, 1076, 1041, 1015, 910, 760, 723, 621, 558, 463, 418.

EMAR-DART m/z: exacto 425.96945, preciso 425.97090, error ppm 3.39, insat. 7.5, datos consistentes para C₁₃H₁₇INO₃S₂.

O-Etil-*S*-(2-((5-fluoro-2yodofenil)(metoximetil)amino)-2-oxoetil) carbonoditioato **173a**

Siguiendo el procedimiento general 2.4, el xantato **173a** se obtuvo como un sólido blanco (3.41 g, 99 %, p.f. 76–77 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 9:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.90 (dd, *J* = 8.8, 5.9 Hz, 1H), 7.22 (dd, *J* = 8.7, 2.9 Hz, 1H), 6.94 (td, *J* = 8.3, 2.9 Hz, 1H), 5.60 (d, *J* = 10.4 Hz, 1H), 4.58 (q, *J* = 7.1 Hz, 2H), 4.38 (d, *J* = 10.4 Hz, 1H), 3.83 (d, *J* = 16.2 Hz, 1H), 3.64 (s, 1H), 3.45 (s, 3H), 1.38 (t, *J* = 7.1 Hz, 3H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 213.74, 167.18, 163.25 (d, J = 251.8 Hz), 143.86 (d, J = 9.6 Hz), 140.89 (d, J = 8.5 Hz), 119.35 (d, J = 22.6 Hz), 118.43 (d, J = 21.6 Hz), 93.72 (d, J = 3.8 Hz), 78.65, 70.90, 57.38, 40.20, 13.88.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 3076, 2995, 2982, 2942, 2033, 1690, 1575, 1460, 1413, 1

360, 1308, 1233, 1170, 1119, 1093, 1047, 1029, 904, 832, 724, 658, 576, 496, 428.

EMAR-DART m/z: exacto 443.96003, preciso 443.96159, error ppm 3.52, insat. 7.5, datos consistentes para C₁₃H₁₆FINO₃S₂.

Metil-5-cloro-2-(2-((etoxicarbonotioil)tio)-*N*-(metoximetil)acetamido)-3-yodobenzoato **173b**

Siguiendo el procedimiento general 2.4, el xantato **173b** se obtuvo como un sólido blanco (1.4 g, 99%, p.f. 69–70 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 9:1).

RMN ¹**H** (400 MHz, CDCl₃) δ ppm 8.05 (d, *J* = 2.4 Hz, 1H), 7.78 (d, *J* = 2.4 Hz, 1H), 5.38 (d, *J* = 10.5 Hz, 1H), 4.55 (q, *J* = 7.1 Hz, 2H), 4.25 (d, *J* = 10.5 Hz, 1H), 3.87 (d, *J* = 10.7 Hz, 2H), 3.82 (s, 3H), 3.30 (s, 3H), 1.32 (t, *J* = 7.1 Hz, 3H).

RMN ¹³**C** (100 MHz, CDCl₃) δ ppm 213.47, 167.99, 164.57, 142.59, 140.06, 135.77, 133.85, 131.18, 103.81, 79.61, 70.52, 58.44, 53.18, 40.67, 13.82.

IR-ATR v̄ (cm⁻¹): 3441, 3321, 3064, 2983, 2951, 2937, 2836, 2182, 2020, 1727, 1665, 1573,1433, 1409, 1366, 1315, 1284, 1220, 1111, 1091, 1046, 1007, 962, 909, 864, 776, 750, 711, 637, 595, 496, 408.

EMAR-DART m/z: exacto 517.93596, preciso 517.93553, error ppm -0.28, insat. 8.5, datos consistentes para C₁₅H₁₈ClINO₅S₂.

2.5. Procedimiento general para la síntesis de yoduros 164 y 176

En un matraz redondo se colocan el pirrol **148** (155 mg, 0.95 mmol), el xantato **156** (525 mg, 1.23 mmol) y peróxido de dilaurilo DLP) (113 mg, 0.28 mmol) en 3.1 mL de 1,2-dicloroetano. La mezcla se desoxigenó con ultrasonido y se mantuvo bajo atmosfera de nitrógeno. Después, la mezcla de reacción se calentó a reflujo y se adicionó DLP 0.3 equiv. /1 hr. hasta adicionar 1.5 equiv. Después, se evaporó el disolvente al vacío y el crudo fue purificado por cromatografía en columna utilizando una mezcla de hexano-AcOEt para obtener el producto.

3-(3-Formil-5,6,7,8-tetrahidroindolizin-8-il)-N-(2-yodofenil)-N-(metoximetil)propenamida **164**

Siguiendo el procedimiento general 2.5, **164** se obtuvo como un aceite amarillo (360 mg, 63%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 8:2).

RMN ¹**H** (300 MHz, CDCl₃, mezcla de rotámeros) δ ppm 9.37 (d, J = 1.4 Hz, 1H), 7.94 (dd, J = 8.0, 1.4 Hz, 1H), 7.42 (td, J = 7.6, 1.4 Hz, 1H), 7.32 – 7.21 (m, 1H), 7.18 – 7.06 (m, 1H), 6.81 (t, J = 4.1 Hz, 1H), 5.99 (dd, J = 7.0, 4.2 Hz, 1H), 5.60 (d, J = 10.1 Hz, 1H), 4.54 – 4.40 (m, 1H), 4.31 (d, J = 10.1 Hz, 1H), 4.15 – 3.97 (m, 1H), 3.43 (d, J = 1.5 Hz, 3H), 2.88 – 2.69 (m, 1H), 2.33 – 1.72 (m, 8H).

RMN ¹³**C** (75 MHz, CDCl₃, mezcla de rotámeros) δ ppm 178.63, 173.32 (173.30), 143.96 (143.87), 143.42 (143.36), 140.23, 131.02, 130.95, 130.33, 129.81, 124.57, 107.62 (107.55), 100.59, 78.29 (78.26), 57.05, 45.62, 33.92 (33.82) 31.87 (31.79) 29.82 (29.77), 25.43 (25.32), 21.68 (21.63).

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 2927, 2854, 1650, 1468, 1399, 1377, 1319, 1193, 1108, 1073, 1038, 911, 783, 726, 682, 626, 576, 448.

EMAR-DART m/z: exacto 467.08316, preciso 467.08179, error ppm -2.39, insat. 9.5, datos consistentes para $C_{20}H_{24}IN_2O_3$.

3-(8-Etil-3-formil-5,6,7,8-tetrahidroindolizin-8-il)-*N*-(2-yodofenil)-*N*-(metoximetil)propenamida **176a**

Siguiendo el procedimiento general 2.5, **176a** se obtuvo como un aceite amarillo (272 mg, 65%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 8:2).

RMN ¹**H** (300 MHz, CDCl₃, mezcla de rotámeros) δ ppm 9.36 (d, J = 5.4 Hz, 1H), 7.91 (ddd, J = 7.9, 2.5, 1.4 Hz, 1H), 7.42 – 7.32 (m, 1H), 7.22 – 7.04 (m, 2H), 6.76 (dd, J = 5.3, 4.2 Hz, 1H), 5.78 (d, J = 4.2 Hz, 1H), 5.56 (dd, J = 10.1, 4.7 Hz, 1H), 4.43 – 4.14 (m, 3H), 3.41 (d, J = 1.7 Hz, 3H), 1.88 (m, 5H), 1.50 (dddd, J = 21.7, 10.4, 8.7, 5.7 Hz, 5H), 0.74 (t, J = 7.4 Hz, 3H).

RMN ¹³**C** (75 MHz, CDCl₃, mezcla de rotámeros) δ ppm 178.52, 173.81 (173.73), 146.30 (146.18), 143.44 (143.39), 140.16, 130.92, 130.74, 130.21, 129.70 (129.64), 124.60, 107.57 (107.46), 100.52, 78.24, 57.06, 45.35, 38.25 (38.12), 35.18 (34.98), 33.29 (33.04), 30.25 (30.139), 28.96 (28.83), 19.59 (19.52), 8.58 (8.53).

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 2930, 2854, 1674, 1468, 1402, 1282, 1109, 1075, 1018, 912, 771, 728, 629, 449.

EMAR-DART m/z: exacto 495.11446, preciso 495.11393, error ppm -1.07, insat. 9.5, datos consistentes para C₂₂H₂₈IN₂O₃.

3-(8-Etil-5,6,7,8-tetrahidroindolizin-8-il)-*N*-(2-yodofenil)-*N*-(metoximetil)propenamida **176b**

Siguiendo el procedimiento general 2.5, 176b se obtuvo como un aceite amarillo (273mg, 53%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 8:2).

RMN ¹**H** (300 MHz, CDCl₃, mezcla de rotámeros) δ ppm 7.93 (ddd, J = 10.4, 8.0, 1.2 Hz, 1H), 7.40 (ddt, J = 6.3, 3.5, 1.8 Hz, 1H), 7.20 (ddd, J = 14.1, 7.8, 1.5 Hz, 1H), 7.09 (qd, J = 7.45, 1.57 Hz, 1H), 6.40 (d, J = 1.7 Hz, 1H), 5.98 (dt, J = 6.3, 3.1 Hz, 1H), 5.63 – 5.53 (m, 2H), 4.31 (d, J = 10.2 Hz, 1H), 3.76 (dt, J = 17.2, 5.7 Hz, 2H), 3.42 (d, J = 6.4 Hz, 4H), 1.97 – 1.83 (m, 6H), 1.56 – 1.51 (m, 1H), 1.48 – 1.34 (m, 3H), 0.73 (t, J = 7.4 Hz, 3H).

RMN ¹³**C** (75 MHz, CDCl₃, mezcla de rotámeros) δ ppm 174.61 (174.44), 143.59 (143.53), 140.12 (140.08), 134.84, 131.10, 130.11 (130.03), 129.63 (129.58), 118.53 (118.49), 107.22 (107.14), 104.11 (104.07), 100.67 (100.60), 78.14, 57.00, 45.33 (45.28), 37.53 (37.29), 35.06 (34.50) 33.15 (32.57), 31.16 (30.48), 30.71 (30.34), 20.13 (19.98), 8.66 (8.53).

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 2933, 2877, 1650, 1578, 1468, 1398, 1319, 1237, 1107, 1074, 1040, 911, 783, 727, 628, 452.

EMAR-DART m/z: exacto 467.11954, preciso 467.12022, error ppm 1.45, insat. 8.5, datos consistentes para C₂₁H₂₈IN₂O₂.

3-(8-Etil-5-oxo-5,6,7,8-tetrahidroindolizin-8il)-*N*-(2-yodofenil)-*N*-(metoximetil)propenamida **176c**

Siguiendo el procedimiento general 2.5, 176c se obtuvo como un aceite naranja (236mg, 58%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 8:2).

RMN ¹**H** (300 MHz, CDCl₃, mezcla de rotámeros) δ ppm 7.92 – 7.76 (m, 1H), 7.34 (q, *J* = 7.0, 6.4 Hz, 1H), 7.29 – 7.09 (m, 2H), 7.03 (t, *J* = 7.2 Hz, 1H), 6.08 – 5.99 (m, 1H), 5.63 (d, *J* = 10.1 Hz, 1H), 5.51 (d, *J* = 10.1 Hz, 1H), 4.25 (d, *J* = 10.1 Hz, 1H), 3.37 (d, *J* = 5.7 Hz, 3H), 2.75 – 2.47 (m, 2H), 2.02 – 1.61 (m, 6H), 1.41 (dtt, *J* = 21.4, 14.3, 7.0 Hz, 2H), 0.71 (t, *J* = 6.9 Hz, 3H).

RMN ¹³**C** (75 MHz, CDCl₃, mezcla de rotámeros) δ ppm 173.64 (173.49), 167.68, 143.21 (143.14), 140.02 (140.00), 137.68 (137.64), 130.72 (130.70), 130.14 (130.07), 129.57, 116.33 (116.29) 112.20 (112.16), 109.12 (109.05) 100.43 (100.35), 78.08, 56.87, 36.68 (36.58), 31.67 (31.34) 30.47 (30.44), 29.90 (29.82), 29.50 (29.43), 29.31, 7.89.

IR-ATR v̄ (cm⁻¹): 2932, 2877, 1716, 1671, 1469, 1400, 1354, 1307, 1074, 912, 728, 602, 449

EMAR-DART m/z: exacto 481.0988, preciso 481.09973, error ppm 1.90, insat. 9.5, datos consistentes para C₂₁H₂₆IN₂O₃.

Carboxylato-8-etil-8-(3-((2yodofenil)(metoximetil)amino)-3-oxopropil)-5,6,7,8-tetrahidroindolizina-3-de metilo **176d**

Siguiendo el procedimiento general 2. 5, **176d** se obtuvo como un aceite amarillo (203 mg, 66%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 8:2).

RMN ¹**H** (300 MHz, CDCl₃, mezcla de rotámeros) δ ppm 7.84 (ddd, J = 7.7, 5.0, 1.2 Hz, 1H), 7.34 – 7.27 (m, 1H), 7.19 – 6.95 (m, 2H), 6.74 (dd, J = 6.7, 4.1 Hz, 1H), 5.59 (dd, J = 8.4, 4.1 Hz, 1H), 5.50 (dd, J = 10.2, 4.7 Hz, 1H), 4.24 (d, J = 10.1 Hz, 1H), 4.17 – 3.96 (m, 2H), 3.68 (d, J = 1.9 Hz, 3H), 3.34 (d, J = 3.0 Hz, 3H), 1.88 – 1.75 (m, 6H), 1.44 (dtt, J = 20.2, 13.7, 6.4 Hz, 4H), 0.66 (t, J = 7.4 Hz, 3H).

RMN ¹³**C** (75 MHz, CDCl₃, mezcla de rotámeros) δ ppm 173.87 (173.77), 161.50, 143.24 (143.19), 142.66 (142.52), 139.94 (139.90), 130.78, 129.98 (129.96), 129.48 (129.42), 120.16, 117.47 (117.44), 105.63 (105.52), 100.38, 77.96, 56.78, 50.62, 44.91, 38.00 (37.83), 35.14 (34.87), 33.27 (32.83), 30.09 (29.96), 28.97 (28.75), 19.71 (19.60), 8.43 (8.35).

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 3056, 2934, 2877, 1693, 1673, 1468, 1232, 1107, 1074, 1017, 913,753, 728, 449.

EMAR-DART m/χ : exacto 525.12502, preciso 525.12634, error ppm 2.51, insat. 9.5, datos consistentes para C₂₃H₃₀IN₂O₄.

3-(4-Etil-4,5,6,7-tetrahidropirazolo[1,5*a*]piridin-4-il)-*N*-(2-yodofenil)-*N*-(metoximetil)propenamida **176e**

Siguiendo el procedimiento general 2.5, **176e** se obtuvo como un aceite amarillo (280 mg, 68%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 8:2).

RMN ¹**H** (400 MHz, CDCl₃, mezcla de rotámeros) 7.93 (ddd, J = 9.5, 8.0, 1.4 Hz, 1H), 7.40 (qd, J = 7.5, 1.4 Hz, 1H), 7.32 – 7.28 (m, 1H), 7.19 (td, J = 7.8, 1.6 Hz, 1H), 7.09 (tt, J = 7.7, 1.7 Hz, 1H), 5.70 (dd, J = 10.9, 1.9 Hz, 1H), 5.57 (dd, J = 10.1, 7.0 Hz, 1H), 4.31 (d, J = 10.2 Hz, 1H), 4.06 – 3.91 (m, 2H), 3.42 (d, J = 5.0 Hz, 3H), 2.01 – 1.83 (m, 6H), 1.65 – 1.39 (m, 4H), 0.75 (td, J = 7.4, 1.2 Hz, 3H).

RMN ¹³**C** (100 MHz, CDCl₃, mezcla de rotámeros) δ ppm 173.85 (173.76), 144.73 (144.68), 143.41 (143.35), 140.12, 138.33 (138.29), 130.92 (130.89), 130.21 (130.16), 129.67, 102.26 (102.17), 100.54 (100.47), 78.21 (78.18), 57.00, 47.66, 37.93 (37.78), 34.52 (34.17), 32.77 (32.40), 30.13 (29.80), 30.05, 19.77 (19.66), 8.49 (8.41).

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 2938, 2879, 1671, 1468, 1237, 1074, 1017, 727, 648, 452.

EMAR-DART m/χ : exacto 468.11479, preciso 468.11373, error ppm -2.27, insat. 8.5, datos consistentes para C₂₀H₂₇IN₃O₂.

N-(2-Yodofenil)-*N*-(metoximetil)-3-(4,5,6,7tetrahidropirazolo[1,5-*a*]piridin-4il)propanamida **176f**

Siguiendo el procedimiento general 2.5, 176f se obtuvo como un aceite amarillo (190 mg, 59%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 8:2).

RMN ¹**H** (300 MHz, CDCl₃, mezcla de rotámeros) δ ppm 7.95 (d, J = 7.9 Hz, 1H), 7.42 (t, J = 7.6 Hz, 1H), 7.36 (dd, J = 4.2, 1.7 Hz, 1H), 7.29 – 7.23 (m, 1H), 7.11 (td, J = 7.8, 1.5 Hz, 1H), 5.91 (d, J = 7.6 Hz, 1H), 5.60 (d, J = 10.1 Hz, 1H), 4.32 (d, J = 10.1 Hz, 1H), 4.14 (dt, J = 15.6, 7.4 Hz, 1H), 3.43 (d, J = 1.6 Hz, 3H), 2.76 (ddt, J = 13.8, 9.3, 4.8 Hz, 1H), 2.18 – 1.98 (m, 5H), 1.85 (ddt, J = 16.3, 7.8, 5.0 Hz, 3H).

RMN ¹³**C** (75 MHz, CDCl₃, mezcla de rotámeros) δ ppm 173.08, 143.11, 142.42 (142.36), 139.98, 138.37, 130.78 (130.73), 130.11, 129.58, 102.09 (102.01), 100.42 (100.41), 77.98, 56.78, 47.49, 33.09 (32.99), 31.76 (31.64), 29.65 (29.59) 26.13 (25.99), 21.81 (21.75).

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 2924, 2854, 1671, 1468, 1378, 1192, 1111, 1074, 1017, 911, 769, 728, 648, 449.

EMAR-DART m/χ exacto 440.08349, preciso 440.08467, error ppm 2.68, insat. 8.5, datos consistentes para C₁₈H₂₃IN₃O₂.

3-(9-Etil-6,7,8,9-tetrahidropirido[1,2-*a*]indol-9-il)-*N*-(2-yodofenil)-*N*-(metoximetil)propanamida **176g**

Siguiendo el procedimiento general 2.5, **176g** se obtuvo como un aceite café (244 mg, 63%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 8:2).

RMN ¹**H** (300 MHz, CDCl₃, mezcla de rotámeros) δ ppm 7.80 (ddd, J = 43.1, 8.0, 1.3 Hz, 1H), 7.46 (d, J = 7.7 Hz, 1H), 7.25 (ddd, J = 14.9, 12.8, 7.1 Hz, 2H), 7.15 – 7.04 (m, 3H), 6.97 (t, J = 7.7 Hz, 1H), 5.91 (d, J = 21.2 Hz, 1H), 5.57 (dd, J = 10.1, 3.3 Hz, 1H), 4.30 (d, J = 10.2 Hz, 1H), 4.00 – 3.81 (m, 2H), 3.41 (d, J = 17.9 Hz, 3H), 2.01 (m, 6H), 1.70 – 1.51 (m, 4H), 0.80 (td, J = 7.4, 5.1 Hz, 3H).

RMN ¹³**C** (75 MHz, CDCl₃, mezcla de rotámeros) δ ppm 174.47 (174.30), 143.371 (143.37), 142.65 (142.52), 140.05 (139.98), 136.29 (136.26), 130.97, 130.08 (130.01), 129.54 (f129.47), 128.09 (128.04), 120.30, 119.94 (119.87), 119.50, 108.91, 100.48, 97.83 (97.66), 78.18, 57.03 (57.00), 42.05 (42.01), 38.17 (37.97), 34.83 (34.44), 32.93 (32.39), 30.54 (30.48), 30.30 (30.18), 19.34 (19.24), 8.59 (8.49).

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 2935, 2873, 1671, 1468, 1311, 1108, 1073, 1016, 910.

EMAR-DART m/χ : exacto 517.13519, preciso 517.13386, error ppm -2.58, insat. 11.5, datos consistentes para $C_{25}H_{30}IN_2O_2$.

N-(2-Yodofenil)-*N*-(metoximetil)-3-(6,7,8,9tetrahidropirido[1,2-*a*]indol-9-il)propanamida **176h**

Siguiendo el procedimiento general 2.5, 176h se obtuvo como un aceite amarillo (323mg, 68%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 8:2).

RMN ¹**H** (300 MHz, CDCl₃, mezcla de rotámeros) δ ppm 7.95 (t, J = 7.7 Hz, 1H), 7.50 (d, J = 7.2 Hz, 1H), 7.45 – 7.38 (m, 1H), 7.24 (s, 2H), 7.13 – 7.05 (m, 3H), 6.13 (d, J = 10.1 Hz, 1H), 5.71 – 5.58 (m, 1H), 4.41 – 4.30 (m, 1H), 4.09 (dt, J = 10.5, 5.4 Hz, 1H), 3.83 (ddt, J = 16.6, 12.2, 5.2 Hz, 1H), 3.46 (d, J = 5.1 Hz, 4H), 2.93 (dd, J = 12.8, 7.1 Hz, 1H), 2.18 (dd, J = 19.5, 9.3 Hz, 4H), 1.97 (dt, J = 13.0, 6.2 Hz, 4H).

RMN ¹³**C** (75 MHz, CDCl₃, mezcla de rotámeros) δ ppm 173.84 (173.82), 143.55 (143.53), 140.65, 140.28 (140.23), 136.32, 131.15 (131.09), 130.27, 129.80, 128.17, 120.51, 119.88, 119.68, 108.81, 100.71 (100.68), 97.52 (97.35), 78.29, 57.09, 42.29, 34.41 (34.30), 32.34 (32.01), 29.99 (29.82), 26.94 (26.72), 22.11 (21.92).

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 3935, 2873, 1671, 1468, 1366, 1311, 1108, 1073, 1016, 910, 727, 450.

EMAR-DART m/χ : exacto: 489.10389, preciso 489.10415, error ppm 0.52, insat. 11.5, datos consistentes para C₂₃H₂₆IN₂O₂.

N-(5-Fluoro-2-yodofenil)-*N*-(metoximetil)-3-(6,7,8,9-tetrahidropirido[1,2-*a*]indol-9il)propenamida **176**i

Siguiendo el procedimiento general 2.5, **176i** se obtuvo como un aceite café (350 mg, 71%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 8:2).

RMN ¹**H** (300 MHz, CDCl₃, mezcla de rotámeros) δ ppm 7.86 (dt, J = 8.8, 5.7 Hz, 1H), 7.52 (d, J = 7.1 Hz, 1H), 7.27 – 7.21 (m, 1H), 7.17 – 7.03 (m, 3H), 6.88 (qd, J = 8.4, 2.9 Hz, 1H), 6.17 (s, 1H), 5.64 (dd, J = 10.2, 1.1 Hz, 1H), 4.38 – 4.30 (m, 1H), 4.09 (dq, J = 10.9, 5.4 Hz, 1H), 3.92 – 3.79 (m, 1H), 3.46 (d, J = 5.7 Hz, 3H), 3.06 – 2.87 (m, 1H), 2.37 – 2.08 (m, 5H), 1.98 (ddt, J = 16.2, 11.2, 6.3 Hz, 3H).

RMN ¹³**C** (75 MHz, CDCl₃, mezcla de rotámeros) δ ppm 173.37 (173.34), 165.95 – 160.72 (m), 144.87 (d, *J* = 9.8 Hz), 140.78 (dd, *J* = 8.5, 2.7 Hz), 140.42, 136.35, 128.14, 120.53, 119.88, 119.70, 118.80 (dd, *J* = 22.3, 5.3 Hz), 117.87 (d, *J* = 21.5 Hz), 108.81, 97.58 (97.38), 93.98 (d, *J* = 3.7 Hz), 78.13, 57.09, 42.25, 34.31 (34.23), 32.28 (31.95), 29.86 (29.72), 26.90 (26.74), 22.02 (21.84).

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 2925, 2853, 1676, 1576, 1463, 1366, 1264, 1174, 1071, 1020, 913, 813, 732, 577, 467.

EMAR-DART m/z: exacto 507.09447, preciso 507.09462, error ppm 0.29, insat. 11.5, datos consistentes para C₂₃H₂₅FIN₂O₂.

3-(8-Etil-3-formil-5,6,7,8-tetrahidroindolizin-8-il)-N-(5-fluoro-2-yodofenil)-*N*-(metoximetil)propanamida **176j**

Siguiendo el procedimiento general 2.5, 176j se obtuvo como un aceite amarillo (200mg, 46%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 8:2).

RMN ¹**H** (300 MHz, CDCl₃, mezcla de rotámeros) δ ppm 9.32 (d, J = 1.6 Hz, 1H), 7.80 (dt, J = 8.7, 6.3 Hz, 1H), 6.99 – 6.79 (m, 2H), 6.73 (t, J = 3.8 Hz, 1H), 5.76 (dd, J = 4.2, 0.9 Hz, 1H), 5.50 (dd, J = 10.2, 3.4 Hz, 1H), 4.28 – 4.08 (m, 3H), 3.36 (d, J = 2.8 Hz, 3H), 1.94 – 1.76 (m, 6H), 1.58 – 1.35 (m, 4H), 0.72 (t, J = 7.4 Hz, 3H).

RMN ¹³**C** (75 MHz, CDCl₃, mezcla de rotámeros) δ ppm 178.39, 173.29 (173.16), 163.02 (d, J = 251.3 Hz), 145.97 (145.85), 144.64 (d, J = 9.4 Hz), 140.60 (dd, J = 8.4, 3.4 Hz), 130.69, 124.35, 118.55 (d, J = 22.2 Hz), 117.73 (dd, J = 21.5, 3.3 Hz), 107.41 (107.22), 93.74 (d, J = 2.9 Hz), 77.95, 56.95, 45.21, 38.11 (37.97), 35.09 (34.75), 33.15 (32.88), 30.12 (30.00), 28.87 (28.73), 19.47 (19.37), 8.46 (8.43).

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 2937, 2877, 1676, 1649, 1575, 1464, 1319, 1172, 1101, 1071,914, 783, 731, 577, 470.

EMAR-DART m/z: exacto 513.10504, preciso 513.10640, error ppm 2.65, insat. 9.5, datos consistentes para C₂₂H₂₇FIN₂O₃.

N-(5-Fluoro-2-yodofenil)-3-(3-formil-5,6,7,8tetrahidroindolizin-8-il)-N-(metoximetil)propenamida **176k**

Siguiendo el procedimiento general 5, **176k** se obtuvo como un sólido amarillo (148 mg, 40%; p.f.: 170-172 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 8:2).

RMN ¹**H** (300 MHz, CDCl₃, mezcla de rotámeros) δ ppm 9.38 (s, 1H), 7.88 (dd, J = 8.8, 5.9 Hz, 1H), 7.03 (dt, J = 8.7, 3.3 Hz, 1H), 6.94 – 6.86 (m, 1H), 6.83 (t, J = 3.9 Hz, 1H), 6.00 (t, J = 4.5 Hz, 1H), 5.59 (d, J = 10.2 Hz, 1H), 4.56 – 4.39 (m, 1H), 4.29 (d, J = 10.2 Hz, 1H), 4.08 (ddq, J = 14.4, 10.2, 5.0 Hz, 1H), 3.42 (d, J = 1.7 Hz, 3H), 2.80 (ddq, J = 13.5, 9.4, 4.8 Hz, 1H), 2.31 – 1.94 (m, 5H), 1.92 – 1.70 (m, 3H).

RMN ¹³**C** (75 MHz, CDCl₃, mezcla de rotámeros) δ ppm 178.65, 172.90, 163.19 (d, J = 251.4 Hz), 144.69 (dd, J = 9.5, 3.9 Hz), 143.75 (143.68), 140.80 (d, J = 8.1 Hz), 130.97, 124.54, 118.71 (dd, J = 22.1, 5.6 Hz), 117.97 (d, J = 21.5 Hz), 107.55 (107.47), 93.89 (d, J = 3.5 Hz), 78.07, 57.05, 45.59, 33.85 (33.75), 31.80 (31.71), 29.67 (29.62), 25.40 (25.30), 21.63.

IR-ATR v̄ (cm⁻¹): 2931, 2858, 1649, 1576, 1464, 1400, 1175, 1022, 915, 784, 731, 578, 490.

EMAR-DART m/z: exacto 485.07374, preciso 485.07263, error ppm -2.28, insat. 9.5, datos consistentes para C₂₀H₂₃FIN₂O₃.

Metil 5-cloro-2-(3-(3-formil-5,6,7,8tetrahidroindolizin-8-il)-*N*-(metoximetil)propanamido)-3-yodobenzoato **1761**

Siguiendo el procedimiento general 2.5, **1761** se obtuvo como un sólido amarillo (267 mg, 65%; p.f.: 140–142 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 8:2).

RMN ¹**H** (300 MHz, CDCl₃, mezcla de rotámeros) δ ppm 9.37 (s, 1H), 8.12 – 8.02 (m, 1H), 7.83 – 7.74 (m, 1H), 6.83 (dd, *J* = 4.1, 1.8

Hz, 1H), 6.06 (dd, J = 7.3, 4.1 Hz, 1H), 5.46 (d, J = 10.4 Hz, 1H), 4.48 (dq, J = 14.1, 4.8 Hz, 1H), 4.20 (d, J = 10.4 Hz, 1H), 4.15 – 3.99 (m, 1H), 3.85 (s, 3H), 3.34 (d, J = 0.7 Hz, 3H), 2.86 (dq, J = 9.2, 4.6 Hz, 1H), 2.38 – 1.72 (m, 8H).

RMN ¹³**C** (75 MHz, CDCl₃, mezcla de rotámeros) δ ppm 178.58, 173.47, 164.67, 144.25 (144.18), 142.38, 140.94, 135.29, 133.97 (133.90), 131.02, 124.56, 107.56, 103.92, 79.07, 58.18, 53.05, 45.64, 33.88, 31.81, 29.52 (29.46), 25.54 (25.38), 21.80 (21.69).

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 3058, 2937, 2856, 1732, 1650, 1434, 1274, 1201, 1088, 970, 784, 732, 571, 409.

EMAR-DART m/χ : exacto 559.04967, preciso 559.05245, error ppm 4.98, insat. 10.5, datos consistentes para C₂₂H₂₅ClIN₂O₅.

2.6. Procedimiento general para el acoplamiento de los aductos 167 y 177

En un vial para microondas se colocó el aducto **164** (150 mg, 0.32 mmol), K₂CO₃ (83.8 mg, 0.6 mmol), Dave Phos (12.6 mg, 10 mol%) y Pd(OAc)₂ (7.2 mg, 10 mol%) en DMF (5 mL)y la mezcla se desoxigenó con ultrasonido. La reacción se realizó en un reactor de microondas a 145 °C y 100 W durante 2 hr. Después, la reacción se filtró sobre celita y se lavó con AcOEt. Se adicionó agua al filtrado y se extrajo la fase orgánica, se lavó con salmuera, se secó sobre Na₂SO₄. y se concentró al vacío. El crudo se purificó por cromatografía en columna hexano/AcOEt 1:1 para obtener el producto.

7-(Metoximetil)-6-oxo-1,2,3,3a,4,5,6,7octahidrobenzo[2,3]azonino[6,5,4-*hi*]indolizina-13-carbaldeído **167**

Siguiendo el procedimiento general 2.6, **167** se obtuvo como un aceite amarillo (102.6 mg, 47%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 1:1).

RMN ¹**H** (400 MHz, CDCl₃) δ ppm 9.43 (s, 1H), 7.45 (td, J = 7.6, 1.7 Hz, 1H), 7.37 (td, J = 7.5, 1.4 Hz, 1H), 7.32 (ddd, J = 11.8, 7.7, 1.3 Hz, 2H), 6.65 (s, 1H), 5.19 (d, J = 10.1 Hz, 1H), 4.75 (dd, J = 14.2, 5.6 Hz, 1H), 4.39 (d, J = 10.1 Hz, 1H), 4.00 (ddd, J = 14.1, 12.2, 5.7 Hz, 1H), 3.29 (s, 3H), 2.75 – 2.68 (m, 1H), 2.36 – 2.13 (m, 4H), 1.97 – 1.89 (m, 1H), 1.87 – 1.64 (m, 3H).

RMN ¹³**C** (100 MHz, CDCl₃) δ ppm 178.90, 175.15, 143.03, 140.37, 135.82, 132.01, 130.93, 129.55, 128.07, 127.91, 124.33, 120.38, 79.09, 57.01, 46.20, 33.52, 33.52, 33.04, 27.08, 18.14.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 2931, 2856, 1661, 1446, 1408, 1312, 1152, 1116, 1070, 915, 811, 756, 666.

EMAR-DART m/z: exacto 339.17087, preciso 339.17142, error ppm 1.64, insat. 10.5, datos consistentes para C₂₀H₂₃N₂O₃.

3a-Etil-7-(metoximetil)-6-oxo-1,2,3,3a,4,5,6,7octahidrobenzo[2,3]azonino[6,5,4-*hi*]indolizina-13-carbaldeído **177a**

Siguiendo el procedimiento general 2.6, **177a** se obtuvo como un sólido blanco (50 mg, 45%, p.f. 128–130 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 1:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 9.40 – 9.35 (m, 1H), 7.46 – 7.29 (m, 4H), 6.56 (s, 1H), 5.15 (d, *J* = 10.1 Hz, 1H), 4.75 (dd, *J* = 13.9, 5.0 Hz, 1H), 4.30 (d, *J* = 10.1 Hz, 1H), 3.94 (td, *J* = 13.0, 5.1 Hz, 1H), 3.26 (d, *J* = 0.7 Hz, 3H), 2.57 – 2.40 (m, 2H), 2.21 – 2.01 (m, 2H), 1.93 (d, *J* = 14.1 Hz, 1H), 1.75 (td, *J* = 13.4, 2.6 Hz, 1H), 1.50 (dt, *J* = 13.4, 7.4 Hz, 3H), 1.21 (dd, *J* = 12.7, 5.4 Hz, 1H), 0.69 (t, *J* = 7.2 Hz, 3H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 178.76, 175.41, 142.65, 141.51, 137.09, 131.43, 130.08, 129.28, 127.63, 127.30, 125.77, 120.12, 79.03, 56.90, 46.48, 39.82, 36.97, 32.06, 29.94, 29.50, 18.69, 8.31.

IR-ATR v (cm⁻¹): 2939, 2879, 1661, 1544, 1496, 1445, 1411, 1310, 1283, 1195, 1149, 1119, 1070, 915, 808, 754.

EMAR-DART m/z: exacto 367.20217, preciso 367.20082, error ppm -3.67, insat. 10.5, datos consistentes para $C_{22}H_{27}N_2O_3$.

3a-Etil-7-(metoximetil)-2,3,3a,4,5,7hexahidrobenzo[2,3]azonino[6,5,4-*hi*]indolizin-6(1*H*)-ona **177b**

Siguiendo el procedimiento general 2.6, **177b** se obtuvo como un aceite amarillo (41 mg, 38%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 1:1).

RMN ¹**H** (400 MHz, CDCl₃) δ ppm 7.42 (dd, J = 7.1, 2.4 Hz, 1H), 7.39 – 7.35 (m, 1H), 7.32 – 7.27 (m, 2H), 6.46 (d, J = 2.7 Hz, 1H), 5.76 (d, J = 2.7 Hz, 1H), 5.27 (d, J = 10.1 Hz, 1H), 4.15 (d, J = 10.1 Hz, 1H), 3.99 (dd, J = 12.0, 5.1 Hz, 1H), 3.77 (td, J = 12.2, 4.6 Hz, 1H), 3.32 (s, 3H), 2.50 – 2.39 (m, 2H), 2.27 – 2.15 (m, 1H), 2.05 – 2.00 (m, 1H), 1.85 (dd, J = 10.9, 2.2 Hz, 1H), 1.71 (td, J = 13.4, 3.0 Hz, 1H), 1.55 – 1.40 (m, 3H), 1.19 (dd, J = 14.1, 7.2 Hz, 1H), 0.70 (t, J = 7.3 Hz, 3H).

RMN ¹³**C** (100 MHz, CDCl₃) δ ppm 176.13, 143.28, 139.17, 131.64, 130.54, 128.32, 127.23, 126.98 118.92, 116.87, 109.89, 79.10, 56.58, 46.29, 39.07, 36.88, 33.27, 30.34, 29.63, 19.67, 8.37.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 3057, 2922, 1723, 1436, 1192, 1119, 720.

3a-Etil-7-(metoximetil)-2,3,3a,4,5,7hexahidrobenzo[2,3]azonino[6,5,4-*h*]indolizina-1,6-diona **177c**

Siguiendo el procedimiento general 2.6, **177c** se obtuvo como un aceite amarillo (44 mg, 40%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 1:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.46 – 7.33 (m, 5H), 5.96 (d, *J* = 3.3 Hz, 1H), 5.18 (d, *J* = 10.1 Hz, 1H), 4.24 (d, *J* = 10.0 Hz, 1H), 3.29 (s, 3H), 2.97 – 2.82 (m, 1H), 2.74 – 2.62 (m, 1H), 2.45 (d, *J* = 12.1 Hz, 2H), 2.22 – 2.07 (m, 2H), 1.77 – 1.66 (m, 1H), 1.54 (d, *J* = 12.1 Hz, 2H), 1.42 (dt, *J* = 14.2, 7.0 Hz, 1H), 0.71 (t, *J* = 7.3 Hz, 3H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 175.17, 168.17, 142.28, 136.02, 133.38, 130.55, 129.30, 127.83, 127.63, 121.70, 116.45, 115.10, 79.31, 56.85, 38.46, 33.88, 31.83, 30.00, 29.81, 29.19, 8.13.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 2931, 2740, 2676, 2490, 1721, 1664, 1552, 1373, 1271, 1167, 1113, 1068, 915, 753, 706. 634.

EMAR-DART m/z: exacto 353.18652, preciso 353.18546, error ppm -2.99, insat. 10.5, datos consistentes para $C_{21}H_{25}N_2O_3$.

Metil-3a-etil-7-(metoximetil)-6-oxo-1,2,3,3a,4,5,6,7octahidrobenzo[2,3]azonino[6,5,4*hi*]indolizina-13-carboxilato **177d**

Siguiendo el procedimiento general 2.6, **177d** se obtuvo como un sólido blanco (56 mg, 51%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 1:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.41 – 7.29 (m, 4H), 6.61 (s, 1H), 5.20 (d, *J* = 10.1 Hz, 1H), 4.76 (dd, *J* = 13.6, 5.0 Hz, 1H), 4.25 (d, *J* = 10.1 Hz, 1H), 3.89 (m, 1H), 3.74 (s, 3H), 3.28 (s, 3H), 2.54 – 2.44 (m, 2H), 2.22 – 2.04 (m, 2H), 1.93 (d, *J* = 13.9 Hz, 1H), 1.78 – 1.68 (m, 1H), 1.51 – 1.43 (m, 3H), 1.16 (dt, *J* = 14.2, 7.1 Hz, 1H), 0.68 (t, *J* = 7.3 Hz, 3H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 175.67, 161.58, 142.81, 138.19, 137.82, 131.50, 128.96, 127.52, 127.21, 120.34, 119.49, 118.40, 79.06, 56.81, 51.04, 46.31, 39.81, 37.19, 32.19, 30.20, 29.61, 19.07, 8.36.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 3016, 2931, 2857, 1701, 1661, 1460, 1405, 1238, 1112, 755.

EMAR-DART m/z: exacto 397.21273, preciso 397.21190, error ppm -2.09, insat. 10.5, datos consistentes para $C_{23}H_{29}N_2O_4$.

3a-Etil-7-(metoximetil)-2,3,3a,4,5,7-hexahidro-7,13,13a-triazabenzo[8,9]ciclonona[1,2,3*ad*]inden-6(1*H*)-ona **177e**

Siguiendo el procedimiento general 2.6, **177e** se obtuvo como un aceite amarillo (61 mg, 70%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 1:1).

RMN ¹**H** (400 MHz, CDCl₃) δ ppm 7.43 (td, J = 7.5, 2.2 Hz, 1H), 7.38 – 7.30 (m, 3H), 7.16 (s, 1H), 5.15 (d, J = 10.1 Hz, 1H), 4.36 (d, J = 10.1 Hz, 1H), 4.29 (dd, J = 12.7, 5.4 Hz, 1H), 3.97 (td, J = 12.5, 4.8 Hz, 1H), 3.26 (s, 3H), 2.52 – 2.42 (m, 2H), 2.32 – 2.18 (m, 1H), 2.11 – 2.03 (m, 1H), 1.98 (d, J = 14.0 Hz, 1H), 1.76 (td, J = 13.5, 2.9 Hz, 1H), 1.59 – 1.51 (m, 2H), 1.43 (dt, J = 14.6, 7.3 Hz, 1H), 1.21 (dd, J = 14.4, 7.2 Hz, 1H), 0.69 (t, J = 7.4 Hz, 3H).

RMN ¹³**C** (100 MHz, CDCl₃) δ ppm 175.49, 143.07, 141.30, 139.02, 134.89, 131.82, 129.29, 127.60, 127.24, 115.13, 79.13, 57.01, 48.82, 39.68, 36.37, 32.61, 29.92, 29.34, 19.44, 8.18.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 3055, 2935, 1668, 1450, 1283, 1115, 1069, 758.

EMAR-DART m/χ exacto 340.20250, preciso 340.20291, error ppm 1.19, insat. 9.5, datos consistentes para C₂₀H₂₆N₃O₂.

7-(Metoximetil)-2,3,3a,4,5,7-hexahidro-7,13,13a-triazabenzo[8,9]ciclonona[1,2,3*ad*]inden-6(1*H*)-ona **177f**

Siguiendo el procedimiento general 2.6, 177f se obtuvo como un aceite amarillo (56 mg, 72%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 1:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.42 (dd, J = 7.3, 1.8 Hz, 1H), 7.38 (d, J = 1.7 Hz, 1H), 7.33 – 7.29 (m, 2H), 7.24 (s, 1H), 5.15 (d, J = 10.1 Hz, 1H), 4.43 (d, J = 10.1 Hz, 1H), 4.31 (dd, J = 12.7, 6.1 Hz, 1H), 3.98 (td, J = 12.5, 5.4 Hz, 1H), 3.26 (s, 3H), 2.81 – 2.70 (m, 1H), 2.26 (m, 4H), 2.03 – 1.92 (m, 1H), 1.82 – 1.71 (m, 3H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 175.24, 143.13, 140.04, 138.46, 133.96, 132.33, 129.48, 127.90, 127.69, 115.77, 79.10, 57.06, 48.30, 33.24, 33.18, 32.59, 27.54, 18.97.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 3019, 2949, 1660, 1489, 1448, 1412, 1215, 1118, 1071, 661.

EMAR-DART m/z: exacto 312.17120, preciso 312.17108, error ppm -0.40, insat. 9.5, datos consistentes para $C_{18}H_{22}N_3O_2$.

8a-Etil-5-(metoximetil)-7,8,8a,9,10,11hexahidrobenzo[*b*]benzo[2,3]azonino[6,5,4*ht*]indolizin-6(5*H*)-ona **177g**

Siguiendo el procedimiento general 2.6, **177g** se obtuvo como un aceite café (38 mg, 46%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 1:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.48 (mf, 2H), 7.40 (ddt, *J* = 7.2, 2.9, 1.8 Hz, 2H), 7.23 (d, *J* = 8.2 Hz, 1H), 7.17 – 7.09 (m, 1H), 6.97 (ddd, *J* = 7.84, 6.88, 1.03 Hz, 1H), 6.89 (d, *J* = 7.8 Hz, 1H), 4.94 (d, *J* = 10.2 Hz, 1H), 4.30 (dd, *J* = 11.5, 5.4 Hz, 1H), 4.12 (d, *J* = 10.2 Hz, 1H), 3.80 (td, *J* = 12.0, 5.0 Hz, 1H), 3.02 (s, 3H), 2.67 – 2.55 (m, 2H), 2.41 – 2.23 (m, 1H), 2.15 – 2.02 (m, 2H), 1.85 (td, *J* = 13.4, 2.9 Hz, 1H), 1.63 – 1.56 (m, 3H), 1.35 – 1.27 (m, 1H), 0.73 (t, *J* = 7.3 Hz, 3H).

RMN ¹³C (75 MHz, CDCl₃) δ ppm 175.87, 143.82, 138.09, 136.46, 135.27, 132.34, 129.13, 128.91, 127.67, 127.22, 121.30, 119.79, 118.64, 109.29, 108.88, 78.62, 56.25, 42.88, 39.72, 36.85, 32.95, 30.50, 29.79, 18.87, 8.41.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 2925, 2857, 1722, 1667, 1600, 1457, 1374, 1274, 1113, 1068, 914, 753.

EMAR-DART m/z: exacto 389.22290, preciso 389.22173, error ppm -3.01, insat. 12.5, datos consistentes para $C_{25}H_{29}N_2O_2$.

5-(Metoximetil)-7,8,8a,9,10,11hexahidrobenzo[*b*]benzo[2,3]azonino[6,5,4*hi*]indolizin-6(5*H*)-ona **177h**

Siguiendo el procedimiento general 2.6, **177h** se obtuvo como un sólido café (34 mg, 42%, p.f. 173-175 °C.) después de purificarlo por cromatografía en columna (Hexano/AcOEt 1:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.43 – 7.37 (m, 1H), 7.37 – 7.31 (m, 3H), 7.18 (d, *J* = 6.5 Hz, 1H), 7.07 (ddd, *J* = 8.1, 6.1, 2.1 Hz, 1H), 6.93 (d, *J* = 6.0 Hz, 2H), 4.94 (d, *J* = 10.2 Hz, 1H), 4.25 (dd, *J* = 11.7, 5.1 Hz, 1H), 4.19 (d, *J* = 10.2 Hz, 1H), 3.71 (td, *J* = 12.0, 5.4 Hz, 1H), 2.97 (s, 3H), 2.89 – 2.77 (m, 1H), 2.39 – 2.18 (m, 4H), 2.01 – 1.91 (m, 1H), 1.85 – 1.77 (m, 2H), 1.72 – 1.64 (m, 1H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 175.59, 144.12, 137.08, 136.23, 135.47, 132.85, 129.15, 128.80, 128.05, 127.79, 121.15, 120.01, 118.62, 109.85, 109.09, 78.73, 56.37, 42.76, 33.88, 32.94, 29.84, 28.19, 18.50.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 3019, 2930, 2864, 1657, 1456, 1415, 1215, 1069, 756, 668.

EMAR-DART m/z: exacto 361.19160, preciso 361.19085, error ppm -2.09, insat. 12.5, datos consistentes para $C_{23}H_{25}N_2O_2$.

3-Fluoro-5-(metoximetil)-7,8,8a,9,10,11hexahidrobenzo[*b*]benzo[2,3]azonino[6,5,4*bi*]indolizin-6(5*H*)-ona **177i**

Siguiendo el procedimiento general 2.6, **177i** se obtuvo como un aceite café (46 mg, 49%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 1:1).

RMN ¹**H** (400 MHz, CDCl₃) δ ppm 7.34 – 7.28 (m, 1H), 7.20 – 7.17 (m, 1H), 7.12 – 7.03 (m, 3H), 6.97 – 6.89 (m, 2H), 4.94 (d, *J* = 10.2 Hz, 1H), 4.28 – 4.20 (m, 1H), 4.17 (d, *J* = 10.3 Hz, 1H), 3.70 (td, *J* = 12.1, 5.4 Hz, 1H), 2.97 (s, 3H), 2.80 (dq, *J* = 11.0, 3.1 Hz, 1H), 2.41 – 2.19 (m, 4H), 2.00 – 1.92 (m, 1H), 1.81 (dt, *J* = 9.5, 3.5 Hz, 2H), 1.73 – 1.65 (m, 1H).

RMN ¹³**C** (100 MHz, CDCl₃) δ ppm 175.27, 162.63 (d, *J* = 248.6 Hz), 145.22 (d, *J* = 10.1 Hz), 137.38, 136.22, 133.84 (d, *J* = 8.7 Hz), 131.33 (d, *J* = 3.3 Hz), 128.80, 121.29, 120.13, 115.24 (d, *J* = 8.9 Hz), 115.03 (d, *J* = 7.5 Hz), 115.03, 109.15, 108.79, 78.58, 56.39, 42.74, 33.94, 33.79, 32.93, 28.08, 18.47.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 3020, 2928, 1704, 1668, 1523, 1215, 928.

EMAR-DART m/z: exacto 379.18218, preciso 379.18243, error ppm 0.65, insat. 12.5, datos consistentes para C₂₃H₂₄FN₂O₂.

3a-etil-9-fluoro-7-(metoximetil)-6-oxo-1,2,3,3a,4,5,6,7octahidrobenzo[2,3]azonino[6,5,4-*h*]indolizina-13-carbaldeído **177**j

Siguiendo el procedimiento general 2.6, **177**j se obtuvo como un aceite amarillo (35 mg, 41%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 1:1).

RMN ¹**H** (400 MHz, CDCl₃) δ ppm 9.38 (s, 1H), 7.33 (dd, J = 9.4, 6.2 Hz, 1H), 7.09 – 7.04 (m, 2H), 6.54 (s, 1H), 5.16 (d, J = 10.1 Hz, 1H), 4.75 (dd, J = 14.0, 5.2 Hz, 1H), 4.28 (d, J = 10.2 Hz, 1H), 3.94 (td, J = 13.1, 5.1 Hz, 1H), 3.26 (d, J = 0.7 Hz, 3H), 2.48 (p, J = 12.4 Hz, 2H), 2.18 – 2.08 (m, 2H), 1.98 – 1.91 (m, 1H), 1.75 (td, J = 13.5, 2.9 Hz, 1H), 1.56 – 1.43 (m, 3H), 1.24 (t, J = 7.8 Hz, 1H), 0.70 (t, J = 7.3 Hz, 3H).

RMN ¹³**C** (100 MHz, CDCl₃) δ ppm 178.79, 175.15, 162.59, 143.81, 141.68, 133.06, 132.45, 130.17, 125.89, 119.06, 114.84, 114.60, 78.90, 56.94, 46.51, 39.84, 36.89, 32.03, 29.93, 29.61, 18.70, 8.30.

IR-ATR v (cm⁻¹): 3020, 2930, 1644, 1215,928, 756.

EMAR-DART m/z: exacto 385.19275, preciso 385.19338, error ppm 1.65, insat. 10.5, datos consistentes para C₂₂H₂₆FN₂O₃.

9-Fluoro-7-(metoximetil)-6-oxo-1,2,3,3a,4,5,6,7octahidrobenzo[2,3]azonino[6,5,4-*hi*]indolizina-13-carbaldeído **177k**

Siguiendo el procedimiento general 2.6, **177k** se obtuvo como un sólido amarillo (28 mg, 38%, p.f. 170–172 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 1:1).

RMN ¹**H** (700 MHz, CDCl₃) δ ppm 9.42 (s, 1H), 7.27 (dd, J = 8.4, 6.4 Hz, 1H), 7.12 – 7.05 (m, 2H), 6.62 (s, 1H), 5.19 (d, J = 10.2 Hz, 1H), 4.74 (dd, J = 14.2, 6.0 Hz, 1H), 4.37 (d, J = 10.2 Hz, 1H), 3.97 (m, 1H), 3.29 (s, 3H), 2.74 – 2.67 (m, 1H), 2.35 – 2.25 (m, 2H), 2.24 – 2.19 (m, 1H), 2.15 (dddd, J = 19.8, 10.0, 8.3, 4.9 Hz, 1H), 1.96 – 1.91 (m, 1H), 1.85 – 1.75 (m, 2H), 1.74 – 1.69 (m, 1H).

RMN ¹³**C** (175 MHz, CDCl₃) δ ppm 178.93, 174.87, 162.81 (d, J = 249.8 Hz), 144.20 (d, J = 10.1 Hz), 140.47, 133.06 (d, J = 8.9 Hz), 131.76 (d, J = 3.5 Hz), 130.99, 124.48, 119.28, 115.30 (d, J = 22.1 Hz), 115.16 (d, J = 20.9 Hz), 78.93, 57.02, 46.19, 33.58, 33.47, 33.00, 26.98, 18.09.

IR-ATR v (cm⁻¹): 3405, 2917, 2848, 1661, 1438, 1408, 1265, 1115, 735.

EMAR-DART m/z: exacto 357.16145, preciso 357.16111, error ppm -0.94, insat. 10.5, datos consistentes para C₂₀H₂₂FN₂O₃.

Metil-10-cloro-13-formil-7-(metoximetil)-6oxo-1,2,3,3a,4,5,6,7octahidrobenzo[2,3]azonino[6,5,4-*h*/]indolizina-8-carboxilato **1771**

Siguiendo el procedimiento general 2.6, **1771** se obtuvo como un sólido blanco (68 mg, 74%, p.f. 235–236 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 1:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 9.42 (s, 1H), 7.89 – 7.79 (m, 1H), 7.51 – 7.42 (m, 1H),

6.67 (s, 1H), 4.97 (d, J = 10.4 Hz, 1H), 4.71 (dd, J = 14.2, 6.0 Hz, 1H), 4.25 (d, J = 10.4 Hz, 1H), 3.99 (ddd, J = 14.2, 12.3, 6.0 Hz, 1H), 3.86 (s, 3H), 3.14 (s, 3H), 2.71 – 2.59 (m, 1H), 2.40 (dd, J = 11.3, 8.0 Hz, 1H), 2.33 – 2.24 (m, 2H), 2.19 – 2.08 (m, 1H), 1.93 (dd, J = 14.0, 3.9 Hz, 1H), 1.76 (dd, J = 10.1, 5.3 Hz, 3H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 178.90, 174.63, 165.66, 140.48, 140.19, 139.35, 134.98, 133.80, 131.99, 131.15, 130.48, 123.84, 118.62, 79.48, 57.82, 52.87, 46.26, 34.17, 33.72, 32.97, 27.22, 17.91.

IR-ATR \mathbf{v} (cm⁻¹): 2930, 2857, 1732, 1662, 1435, 1285, 1064, 755.

EMAR-DART m/z: exacto 431.13737, preciso 431.13868, error ppm 3.02, insat. 11.5, datos consistentes para C₂₂H₂₄ClN₂O₅.

2.7. Procedimiento general para la eliminación del grupo protector MOM

La amida **167** se disolvió en DCM anhidro (5 mL) bajo atmosfera de nitrógeno y se enfrió a -78 °C. Después se adicionó tribromuro de boro (0.27 mL, 2.84 mmol) vía una jeringa y la mezcla se agitó a -78 °C durante 2.5 h. Después se adicionó una solución saturada de NaHCO₃ (10 mL) y la fase acuosa se extrajo con DCM (2x5mL). La fase orgánica se lavó con salmuera, se secó sobre Na₂SO₄, se filtró y se secó al vacío. El producto se resolvió en MeOH (5 mL), se adicionó trietilamina (0.08 mL, 0.6 mmol) y se calentó a 50 °C por 2.5 h. La reacción se enfrió a temperatura ambiente y el disolvente se eliminó al vacío. El crudo se purificó por cromatografía en columna hexano/AcOEt para obtener el producto.

6-Oxo-1,2,3,3a,4,5,6,7octahidrobenzo[2,3]azonino[6,5,4*hi*]indolizino-13-carbaldeído **154**

Siguiendo el procedimiento general 2.7, **154** se obtuvo como un sólido blanco (64 mg, 82%, p.f. 240-242 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 3:7).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 9.43 (s, 1H), 7.46 – 7.35 (m, 2H), 7.33 – 7.27 (m, 2H), 6.83 (s, 1H), 6.63 (s, 1H), 4.75 (dd, *J* = 14.0, 6.0 Hz, 1H), 4.16 – 3.95 (m, 1H), 2.72 (d, *J* = 10.8 Hz, 1H), 2.29 – 2.14 (m, 4H), 1.94 (d, *J* = 10.8 Hz, 1H), 1.84 – 1.69 (m, 3H).

RMN ¹³C (75 MHz, CDCl₃) δ ppm 179.00, 176.53, 140.18, 137.94, 136.80, 131.95, 131.01, 129.33, 128.19, 128.04, 124.19, 120.68, 46.05, 33.61, 32.53, 32.20, 29.79, 27.11.

IR-ATR v̄ (cm⁻¹): 3223, 3087, 3061, 2949, 2921, 2852, 1674, 1634,1603, 1551, 1494, 1436, 1407, 1390, 1337, 1310, 1225, 1149, 1068, 912, 840, 814, 718, 727, 666, 628, 550, 463, 427.

EMAR-DART m/z: exacto 295.14465, preciso 295.14368, error ppm -3.29, insat. 10.5, datos consistentes para C₁₈H₁₉N₂O₂.

(±)-Rhazinal 121

Siguiendo el procedimiento general 2.7, **121** se obtuvo como un sólido blanco (38 mg, 90%, p.f. 233–235 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 3:7).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 9.39 (s, 1H), 7.37 (m, 4H), 6.75 (s, 1H), 6.55 (s, 1H), 4.86 – 4.72 (m, 1H), 4.05 – 3.89 (m, 1H), 2.58 – 2.35 (m, 2H), 2.14 (d, *J* = 23.1 Hz, 1H), 2.04 (d, *J* = 20.7 Hz, 2H), 1.77 (dd, *J* = 14.8, 12.0 Hz, 1H), 1.53 (dt, *J* = 14.8, 7.6 Hz, 4H), 0.71 (t, *J* = 7.3 Hz, 3H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 178.92, 176.81, 141.43, 138.35, 137.69, 131.43, 130.31, 129.12, 127.85, 127.45, 125.64, 120.59, 46.44, 39.78, 36.60, 32.07, 29.95, 28.19, 18.67, 8.31.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 3198, 3089, 3055, 2948, 2918, 2851, 1667, 1661, 1542, 1492, 1437, 1409, 1386, 1336, 1302, 1146, 989,841, 808, 775, 721, 612, 549, 447.

EMAR-DART m/z: exacto 323.17595, preciso 323.17553, error ppm -1.31, insat. 10.5, datos consistentes para $C_{20}H_{23}N_2O_2$.

Siguiendo el procedimiento general 2.7, **120** se obtuvo como un sólido blanco (28 mg, 90%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 3:7).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.43 (dd, J = 7.3, 1.9 Hz, 1H), 7.32 (ddd, J = 10.5, 7.3, 1.7 Hz, 2H), 7.22 – 7.19 (m, 1H), 6.61 (s, 1H), 6.51 (d, J = 2.7 Hz, 1H), 5.76 (d, J = 2.7 Hz, 1H), 4.01 (dd, J = 12.0, 5.4 Hz, 1H), 3.83 – 3.75 (m, 1H), 2.41 (dd, J = 19.1, 13.0 Hz, 2H), 2.23 (dtq, J = 13.5, 5.7, 2.8 Hz, 1H), 1.95 (dd, J = 13.4, 7.5 Hz, 1H), 1.88 – 1.83 (m, 1H), 1.75 – 1.69 (m, 1H), 1.55 – 1.44 (m, 3H), 1.26 (M, 2H), 0.71 (t, J = 7.4 Hz, 3H).

IR-ATR v (cm⁻¹): 3400, 3057, 2922, 1723, 1436, 1192, 1119, 754, 720.

Los datos analíticos coinciden con lo reportado en la literatura.⁴⁵

Siguiendo el procedimiento general 2.7, **122** se obtuvo como un sólido blanco (12 mg, 87%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 3:7).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.44 – 7.35 (m, 4H), 7.28 (d, *J* = 7.4 Hz, 1H), 6.87 (s, 1H), 5.93 (d, *J* = 3.4 Hz, 1H), 2.92 (ddd, *J* = 18.7, 13.7, 5.1 Hz, 1H), 2.73 – 2.67 (m, 1H), 2.48 – 2.37 (m, 2H), 2.10 (dd, *J* = 13.5, 4.5 Hz, 2H), 1.74 (dt, *J* = 13.8, 4.2 Hz, 1H), 1.59 (dd, *J* = 12.6, 8.1 Hz, 1H), 1.47 (dd, *J* = 14.3, 7.3 Hz, 1H), 1.35 – 1.29 (m, 1H), 0.73 (t, *J* = 7.4 Hz, 3H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 176.99, 168.09, 137.20, 137.13, 133.38, 130.49, 129.20, 128.15, 127.69, 122.07, 116.86, 114. 80, 38.43, 33.76, 31.95, 29.84, 29.19, 28.33, 8.14.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 3180, 2923, 1714, 1669, 1400, 1371, 1308.

EMAR-DART m/χ : exacto 309.16030, preciso 309.16112, error ppm 2.63, insat. 10.5, datos consistentes para C₁₉H₂₁N₂O₂.

Metil-3a-etil-6-oxo-1,2,3,3a,4,5,6,7octahidrobenzo[2,3]azonino[6,5,4-*hi*]indolizina-13-carboxilato **178d**

Siguiendo el procedimiento general 2.7, **178d** se obtuvo como un sólido blanco (40 mg, 91%, p.f. 231-232 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 3:7).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.46 – 7.26 (m, 5H), 6.64 (s, 1H), 4.91 – 4.78 (m, 1H), 3.89 (m, 1H), 3.74 (s, 3H), 2.57 – 2.36 (m, 2H), 2.17 (s, 1H), 2.10 – 2.01 (m, 1H), 1.97 (s, 1H), 1.80 – 1.68 (m, 1H), 1.54 – 1.42 (m, 3H), 1.23 – 1.16 (m, 1H), 0.69 (t, *J* = 7.3 Hz, 3H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 177.52, 161.54, 138.94, 138.06, 137.41, 135.71, 131.50, 128.82, 127.87, 127.11, 120.66, 119.38, 51.04, 46.21, 39.72, 36.79, 32.14, 30.17, 28.12, 19.00, 8.31.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 3291, 3946, 1702, 1670, 1495, 1404, 1273, 1189, 762.

EMAR-DART m/z: exacto 353.18652, preciso 353.18624, error ppm -0.80, insat. 10.5, datos consistentes para C₂₁H₂₅N₂O₃.

3a-Etil-2,3,3a,4,5,7-hexahidro-7,13,13atriazabenzo[8,9]ciclonona[1,2,3-*a*]indon-6(1*H*)ona **178e**

Siguiendo el procedimiento general 2.7, **178e** se obtuvo como un sólido blanco (40 mg, 91%, p.f. 202-204 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 3:7).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.40 – 7.30 (m, 3H), 7.22 (d, *J* = 7.6 Hz, 1H), 7.16 (s, 1H), 7.11 (s, 1H), 4.29 (dd, *J* = 12.5, 5.3 Hz, 1H), 3.97 (td, *J* = 12.5, 5.0 Hz, 1H), 2.48 – 2.33 (m, 2H), 2.32 – 2.15 (m, 1H), 2.00 (dd, *J* = 12.5, 8.5 Hz, 2H), 1.75 (td, *J* = 13.5, 3.0 Hz, 1H), 1.50 (ddd, *J* = 27.8, 13.2, 7.6 Hz, 3H), 1.31 – 1.24 (m, 1H), 0.69 (t, *J* = 7.4 Hz, 3H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 176.87, 141.28, 138.88, 138.17, 135.80, 131.76, 129.03, 127.63, 127.30, 115.64, 48.75, 39.58, 35.80, 32.65, 29.84, 27.89, 19.31, 8.11.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 3197, 3069, 2950, 2928, 2875, 1666, 1605, 1553, 1484, 1433, 1363, 1299, 1185, 1160, 1042, 937, 760, 634, 551, 492.

EMAR-DART m/z: exacto 296.17629, preciso 296.17597, error ppm -1.08, insat. 9.5, datos consistentes para C₁₈H₂₂N₃O.

2,3,3a,4,5,7-Hexahidro-7,13,13atriazabenzo[8,9]ciclonona[1,2,3-*a*]inden-6(1*H*)ona **178f**

Siguiendo el procedimiento general 2.7, **178f** se obtuvo como un sólido blanco (44 mg, 94%, p.f. 191–192 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 3:7).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.40 – 7.29 (m, 4H), 7.23 (s, 1H), 7.19 (s, 1H), 4.30 (dd, J = 12.4, 5.7 Hz, 1H), 3.99 (td, J = 12.1, 5.3 Hz, 1H), 2.86 – 2.67 (m, 1H), 2.23 (d, J = 12.4 Hz, 4H), 1.97 (d, J = 10.7 Hz, 1H), 1.90 – 1.76 (m, 2H), 1.70 (t, J = 9.7 Hz, 1H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 176.56, 139.94, 138.33, 138.33, 134.67, 132.21, 129.16, 127.86, 127.86, 116.17, 48.23, 33.46, 31.97, 29.35, 27.70, 18.96.

IR-ATR v (cm⁻¹): 3728, 3625, 3214, 3060, 2945, 2924, 2873, 1667, 1603, 1561, 1487, 1434, 1387, 1362, 1294, 1162, *36, 872, 771, 720, 614, 550, 494.

EMAR-DART m/z: exacto 268.14499, preciso 268.14403, error ppm -3.56, insat. 9.5, datos consistentes para C₁₆H₁₈N₃O.

8a-Etil-7,8,8a,9,10,11hexahidrobenzo[*b*]benzo[2,3]azonino[6,5,4*b*]indolizin-6(5*H*)-ona **178g**

Siguiendo el procedimiento general 2.7, **178g** se obtuvo como un sólido blanco (25 mg, 93%, p.f. 235-237 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 3:7).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.43 – 7.31 (m, 3H), 7.25 – 7.21 (m, 1H), 7.17 (s, 1H), 7.10 – 7.05 (m, 1H), 6.89 (t, *J* = 7.1 Hz, 1H), 6.71 (d, *J* = 7.9 Hz, 1H), 6.46 (s, 1H), 4.24 (dd, *J* = 11.6, 5.4 Hz, 1H), 3.74 (td, *J* = 11.9, 5.1 Hz, 1H), 2.59 – 2.39 (m, 2H), 2.36 – 2.21 (m, 1H), 1.96 (dt, *J* = 13.8, 7.3 Hz, 2H), 1.79 (td, *J* = 13.4, 3.0 Hz, 1H), 1.63 – 1.52 (m, 3H), 1.29 (dt, *J* = 14.6, 7.3 Hz, 1H), 0.69 (t, *J* = 7.3 Hz, 3H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 176.83, 138.54, 138.27, 137.62, 135.44, 132.22, 128.87, 128.64, 127.80, 127.23, 121.44, 119.70, 118.39, 109.58, 108.97, 42.77, 39.62, 36.89, 32.79, 30.38, 28.23, 18.76, 8.34.

IR-ATR v̄ (cm⁻¹): 3291, 3157, 3037, 2918, 2851, 1721, 1655, 1599, 1456, 1404, 1307, 1154, 1084, 901, 744, 698, 557, 436.

EMAR-DART m/z: exacto 345.19669, preciso 345.19620, error ppm -1.41, insat. 12.5, datos consistentes para $C_{23}H_{25}N_2O$.

7,8,8a,9,10,11-Hexahidrobenzo[*b*]benzo[2,3]azonino[6,5,4*bi*]indolizin-6(5*H*)-ona **178h**

Siguiendo el procedimiento general 2.7, **178h** se obtuvo como un sólido blanco (24 mg, 90%, p.f. 244–246 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 3:7).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.44 (dd, J = 9.4, 2.8 Hz, 3H), 7.36 – 7.28 (m, 2H), 7.20 – 7.11 (m, 1H), 6.97 (dt, J = 15.7, 7.6 Hz, 2H), 6.69 (s, 1H), 4.34 (dd, J = 11.0, 5.6 Hz, 1H), 3.78 (td, J = 11.9, 5.5 Hz, 1H), 2.91 (dd, J = 11.7, 3.3 Hz, 1H), 2.47 – 2.22 (m, 4H), 2.09 – 1.99 (m, 1H), 1.90 (dd, J = 7.4, 3.5 Hz, 2H), 1.83 – 1.71 (m, 1H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 176.73, 138.96, 137.13, 136.45, 136.42, 132.76, 128.94, 128.59, 128.16, 127.85, 121.31, 119.92, 118.47, 110.13, 109.18, 42.74, 33.95, 33.05, 32.43, 28.18, 18.49.

IR-ATR \mathbf{v} (cm⁻¹): 3289, 3156, 3033, 2958,2921, 2856, 1651, 1600, 1442, 1408, 1363, 1161, 1012, 904, 766, 738, 696, 551, 440.

EMAR-DART m/z: exacto 317.16539, preciso 317.16572, error ppm 1.05, insat. 12.5, datos consistentes para C₂₁H₂₁N₂O.

3-Fluoro-7,8,8a,9,10,11hexahidrobenzo[*b*]benzo[2,3]azonino[6,5,4*h*]indolizin-6(5*H*)-ona **178i**

Siguiendo el procedimiento general 2.7, **178i** se obtuvo como un sólido blanco (32 mg, 91%, p.f. 258–260°C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 3:7).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.30 (dd, J = 8.4, 6.4 Hz, 1H), 7.21 – 7.17 (m, 1H), 7.12 – 7.03 (m, 2H), 6.96 – 6.86 (m, 3H), 6.84 (d, J = 7.8 Hz, 1H), 4.33 – 4.22 (m, 1H), 3.70 (td, J = 12.0, 5.5 Hz, 1H), 2.81 (dd, J = 12.2, 3.3 Hz, 1H), 2.39 – 2.24 (m, 2H), 2.18 – 2.07 (m, 2H), 2.01 – 1.91 (m, 1H), 1.82 (dt, J = 6.3, 3.7 Hz, 2H), 1.70 (ddd, J = 14.4, 7.2, 2.9 Hz, 1H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 176.55, 162.35 (d, J = 248.7 Hz), 140.14 (d, J = 10.3 Hz), 137.34, 136.26, 133.64 (d, J = 8.8 Hz), 132.07, 129.01 – 127.99 (m), 121.31, 119.93, 118.24, 115.06 (d, J = 3.2 Hz, 114.86, 109.10, 108.99, 42.62, 33.81, 32.93, 32.42, 27.96, 18.35.

IR-ATR v (cm⁻¹): 3302, 3158, 3052, 3029, 2922, 2858, 2162, 1976, 1741, 1660, 1602, 1560, 1479, 1458, 1442, 1399, 1367,1367, 1249, 1159, 987, 884, 820, 748.

EMAR-DART m/z: exacto 335.15597, preciso 335.15540, error ppm -1.67, insat. 12.5, datos consistentes para C₂₁H₂₀FN₂O.

3a-Etil-9-fluoro-6-oxo-1,2,3,3a,4,5,6,7octahidrobenzo[2,3]azonino[6,5,4-*h*]indolizina-13-carbaldeído **178**j

Siguiendo el procedimiento general 2.7, **178**j se obtuvo como un sólido blanco (25 mg, 95%, p.f. 214–216 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 3:7).

RMN ¹**H** (500 MHz, CDCl₃) δ ppm 9.39 (s, 1H), 7.33 (dd, J = 8.5, 6.2 Hz, 1H), 7.07 (td, J = 8.3, 2.7 Hz, 1H), 6.98 (dd, J = 8.8, 2.7 Hz, 1H), 6.88 (s, 1H), 6.52 (s, 1H), 4.78 (dd, J = 14.0, 5.5 Hz, 1H), 3.97 (ddd, J = 13.8, 12.4, 5.2 Hz, 1H), 2.53 – 2.36 (m, 2H), 2.18 (dtt, J = 15.4, 8.6, 2.9 Hz, 1H), 2.10 – 2.01 (m, 1H), 2.00 – 1.92 (m, 1H), 1.76 (td, J = 13.5, 3.1 Hz, 1H), 1.53 (ddd, J = 16.5, 14.2, 7.7 Hz, 3H), 1.30 – 1.25 (m, 1H), 0.72 (t, J = 7.4 Hz, 3H).

RMN ¹³**C** (125 MHz, CDCl₃) δ ppm 178.95, 176.58, 162.50 (d, J = 249.6 Hz), 141.61, 139.02 (d, J = 10.1 Hz), 134.26, 132.48 (d, J = 8.8 Hz), 130.37, 125.80, 119.52, 114.97 (d, J = 20.9 Hz), 114.66 (d, J = 21.9 Hz), 46.44, 39.77, 36.54, 32.01, 29.91, 28.31, 18.65, 8.28.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 3212, 3112, 2965, 2930, 2859, 2770, 2691, 1650, 1605, 1500, 1412, 1308, 1198, 1147, 1052, 982, 804, 451.

EMAR-DART m/z: exacto 341.16653, preciso 341.16580, error ppm -2.13, insat. 10.5, datos consistentes para C₂₀H₂₂FN₂O₂.

9-Fluoro-6-oxo-1,2,3,3a,4,5,6,7octahidrobenzo[2,3]azonino[6,5,4-*hi*]indolizina-13-carbaldeído **178k**

Siguiendo el procedimiento general 2.7, **178k** se obtuvo como un sólido blanco (18 mg, 83%, p.f. 224–226 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 3:7).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 9.43 (s, 1H), 7.31 (s, 1H), 7.08 (ddd, *J* = 20.8, 8.5, 4.4 Hz, 2H), 6.86 (s, 1H), 6.61 (s, 1H), 4.76 (dd, *J* = 14.1, 6.0 Hz, 1H), 4.02 (m, 1H), 2.72 (d, *J* = 8.3 Hz, 1H), 2.35 – 2.10 (m, 4H), 1.96 (d, *J* = 13.1 Hz, 1H), 1.89 – 1.68 (m, 3H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 179.05, 176.47, 162.65 (d, J = 249.6 Hz), 140.38, 139.39 (d, J = 10.3 Hz), 133.06 (d, J = 8.9 Hz), 132.68 (d, J = 3.3 Hz), 131.07, 124.46, 119.68, 115.40 (d, J = 10.1 Hz), 115.12 (d, J = 8.9 Hz), 60.53, 46.10, 33.59, 32.34, 27.03, 18.07.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 3203, 3118, 3072, 2919, 2851, 1679, 1638, 1608, 1553, 1498, 1447, 1414, 1311, 1146, 982, 804, 760, 724, 657, 468.

EMAR-DART m/z: exacto 313.13523, preciso 313.13492, error ppm -0.98, insat. 10.5, datos consistentes para C₁₈H₁₈FN₂O₂.

Metil-10-cloro-13-formil-6-oxo-1,2,3,3a,4,5,6,7octahidrobenzo[2,3]azonino[6,5,4-*hi*]indolizina-8-carboxilato **178**

Siguiendo el procedimiento general 2.7, **1781** se obtuvo como un sólido blanco (42 mg, 93%, p.f. 208–210 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 3:7).

RMN ¹**H** (400 MHz, CDCl₃) δ ppm 9.36 (s, 1H), 7.85 (d, *J* = 2.5 Hz, 1H), 7.40 (d, *J* = 2.5 Hz, 1H), 7.20 (s, 1H), 6.51 (s, 1H), 4.70 (dd, *J* = 14.1, 5.8 Hz, 1H), 4.01 – 3.78 (m, 4H), 2.81 – 2.69 (m, 1H), 2.35 – 2.00 (m, 4H), 1.93 – 1.84 (m, 1H), 1.83 – 1.70 (m, 2H), 1.66 (ddd, *J* = 11.9, 7.8, 3.1 Hz, 1H).

RMN ¹³C (100 MHz, CDCl₃) δ ppm 179.15, 175.37, 165.50, 139.96, 139.12, 136.81, 135.40, 132.59, 131.03, 130.54, 129.12, 124.02, 118.94, 53.07, 46.11, 33.66, 32.69, 32.22, 26.71, 18.12.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 3299, 3161, 3086, 2951, 2921, 2853, 1712, 1652, 1435, 1398, 1286, 1227, 1151, 1118, 986, 827, 763, 677, 558, 456.

EMAR-DART m/z: exacto 387.11116, preciso 387.11000, error ppm -2.98, insat. 11.5, datos consistentes para $C_{20}H_{20}CIN_2O_4$:.

A una disolución de **128** (35 mg, 0.1 mmol) in THF anhidro (4 mL) enfriada a 0 °C, se adicionó NaBH₄ (5.3 mg, 0.14 mmol). La reacción se agitó a temperatura ambiente durante 2 hr. Después se adicionó NH₄Cl aq. sat. y la reacción se extrajo con AcOEt. La fracción orgánica se secó sobre Na₂SO₄, se filtró y concentró al vacío. El producto se purificó por cromatografía en columna (DCM-MeOH 1%) para obtener **173** (17 mg, 94%) como un sólido blanco, p.f. 150–152 °C.

RMN ¹**H** (400 MHz, CDCl₃) δ ppm 7.34 – 7.19 (m, 4H), 7.16 – 7.11 (m, 1H), 6.66 (s, 1H), 5.64 (s, 1H), 4.47 – 4.36 (m, 2H), 4.12 (dd, *J* = 12.3, 5.0 Hz, 1H), 3.65 (td, *J* = 12.3, 5.0 Hz, 1H), 2.43 – 2.25 (m, 2H), 2.12 (ddd, *J* = 13.5, 7.7, 2.9 Hz, 1H), 1.92 – 1.82 (m, 2H), 1.67 – 1.58 (m, 1H), 1.49 – 1.33 (m, 3H), 1.20 – 1.14 (m, 1H), 0.64 (t, *J* = 7.3 Hz, 3H).

RMN ¹³C (100 MHz, CDCl₃) δ ppm 177.73, 140.22, 138.08, 132.26, 131.50, 129.90, 128.21, 127.43, 126.94, 116.68, 110.41, 56.85, 43.43, 39.18, 36.70, 32.63, 30.29, 28.30, 19.16, 8.31.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 3266, 3062, 2928, 2874, 1657, 1601, 1447, 1413, 1305, 1195, 1149, 1037, 758, 552.

EMAR-DART m/z: exacto 307.18104, preciso 307.18099, error ppm -0.14, insat. 10.5, datos consistentes para C₂₀H₂₃N₂O.
Datos cristalográficos de compuestos seleccionados

	<u> </u>	1	
Empirical formula	C ₁₀ H ₁₀ Cl F I N O ₂		
Formula weight	357.54		
Temperature	304(2) K		
Wavelength	1.54178 Å		
Crystal system	Monoclinic		
Space group	P21/c		
Unit cell dimensions	a = 9.5172(2) Å	$\alpha = 90^{\circ}$.	
	b = 8.8672(2) Å	β= 99.4300(10)°.	
	c = 15.1450(3) Å	$\gamma = 90^{\circ}$.	
Volume	1260.83(5) Å ³		
Z	4		
Density (calculated)	1.884 Mg/m ³		
Absorption coefficient	21.930 mm ⁻¹		
F(000)	688		
Crystal size	$0.298 \ x \ 0.236 \ x \ 0.186 \ mm^3$	0.298 x 0.236 x 0.186 mm ³	
Theta range for data collection	4.710 to 68.244°.		
Index ranges	-11<=h<=11, -10<=k<=10, -14<=l<=18		
Reflections collected	9471		
Independent reflections	2310 [R(int) = 0.1069]		
Completeness to theta = 67.679°	100.0 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7531 and 0.2880		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	2310 / 0 / 147		
Goodness-of-fit on F ²	1.046		
Final R indices [I>2sigma(I)]	R1 = 0.0588, wR2 = 0.1496		
R indices (all data)	R1 = 0.0629, wR2 = 0.1545		
Extinction coefficient	0.0036(4)		
Largest diff. peak and hole	1.573 and -2.161 e.Å ⁻³		

Tabla 1. Datos cristalográficos y detalles de refinamiento para el compuesto 173-a2

Figure S1. Gráfico elipsoide de 173-a2

Empirical formula	C20 H22 F I N2 O3	
Formula weight	484.29	
Temperature	298(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 8.1876(4) Å	$\alpha = 98.9600(15)^{\circ}.$
	b = 8.8165(4) Å	$\beta = 95.5170(15)^{\circ}.$
	c = 14.7664(7) Å	$\gamma = 104.4590(15)^{\circ}.$
Volume	1009.36(8) Å ³	
Z	2	
Density (calculated)	1.593 Mg/m ³	
Absorption coefficient	1.617 mm ⁻¹	
F(000)	484	
Crystal size	0.365 x 0.300 x 0.168 mm ³	
Theta range for data collection	2.428 to 29.573°.	
Index ranges	-11<=h<=11, -12<=k<=12, -20<=l<=20	
Reflections collected	22650	
Independent reflections	5658 [R(int) = 0.0556]	
Completeness to theta = 25.242°	99.8 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7460 and 0.5882	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	5658 / 0 / 245	
Goodness-of-fit on F ²	1.019	
Final R indices [I>2sigma(I)]	R1 = 0.0558, $wR2 = 0.1034$	
R indices (all data)	R1 = 0.1138, wR2 = 0.1217	
Extinction coefficient	n/a	
Largest diff. peak and hole	1.062 and -0.597 e.Å ⁻³	

Tabla 2. Datos cristalográficos y detalles de refinamiento para el compuesto 176k

Figure S2. Gráfico elipsoide de 176k

Empirical formula	$C_{25}H_{28}N_2O_2$		
Formula weight	388.49		
Temperature	150(2) K		
Wavelength	1.54178 Å		
Crystal system	Orthorhombic		
Space group	Pna21		
Unit cell dimensions	$a = 16.5562(11) \text{ Å} \qquad \alpha = 90^{\circ}.$		
	$b = 9.1529(6) \text{ Å} \qquad \beta = 90^{\circ}.$		
	$c = 13.2682(8) \text{ Å}$ $\gamma = 90^{\circ}.$		
Volume	2010.6(2) Å ³		
Z	4		
Density (calculated)	1.283 Mg/m ³		
Absorption coefficient	0.641 mm ⁻¹		
F(000)	832		
Crystal size	0.417 x 0.275 x 0.168 mm ³		
Theta range for data collection	5.343 to 69.637°.		
Index ranges	-19<=h<=20, -10<=k<=11, -13<=l<=15		
Reflections collected	8783		
Independent reflections	2916 [R(int) = 0.0990]		
Completeness to theta = 67.679°	98.6 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7531 and 0.6069		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	2916 / 22 / 275		
Goodness-of-fit on F ²	1.287		
Final R indices [I>2sigma(I)]	R1 = 0.1052, $wR2 = 0.2568$		
R indices (all data)	R1 = 0.1112, $wR2 = 0.2618$		
Absolute structure parameter	0.7(5)		
Largest diff. peak and hole	0.361 and -0.375 e.Å ⁻³		

Tabla 3. Datos cristalográficos y detalles de refinamiento para el compuesto 177g

Empirical formula	C20 H21 F N2 O3		
Formula weight	356.39		
Temperature	298(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	$P2_1/n$		
Unit cell dimensions	a = 10.7720(12) Å	$\alpha = 90^{\circ}$.	
	b = 11.4902(13) Å	$\beta = 100.714(4)^{\circ}.$	
	c = 14.2635(17) Å	$\gamma = 90^{\circ}$.	
Volume	1734.7(3) Å ³		
Z	4		
Density (calculated)	1.365 Mg/m ³		
Absorption coefficient	0.099 mm ⁻¹	0.099 mm ⁻¹	
F(000)	752		
Crystal size	0.408 x 0.282 x 0.238 mm ³		
Theta range for data collection	2.292 to 27.100°.		
Index ranges	-13<=h<=11, -14<=k<=14, -18<=l<=18		
Reflections collected	26485		
Independent reflections	3825 [R(int) = 0.0935]		
Completeness to theta = 25.242°	99.8 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7460 and 0.6572		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3825 / 0 / 236		
Goodness-of-fit on F ²	1.009		
Final R indices [I>2sigma(I)]	R1 = 0.0549, wR2 = 0.1027		
R indices (all data)	R1 = 0.1306, $wR2 = 0.1284$		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.167 and -0.200 e.Å ⁻³		

Tabla 4. Datos cristalográficos y detalles de refinamiento para el compuesto 177k

Figure S4. Gráfico elipsoide de 177k

Empirical formula	C ₂₀ H ₁₉ Cl N ₂ O ₄	
Formula weight	386.82	
Temperature	150(2) K	
Wavelength	1.54178 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 8.0631(8) Å	$\alpha = 108.062(3)^{\circ}.$
	b = 10.6215(10) Å	$\beta = 97.302(3)^{\circ}.$
	c = 11.4787(11) Å	$\gamma = 95.579(3)^{\circ}.$
Volume	917.26(15) Å ³	
Z	2	
Density (calculated)	1.401 Mg/m ³	
Absorption coefficient	2.096 mm ⁻¹	
F(000)	404	
Crystal size	0.373 x 0.148 x 0.105 mm ³	
Theta range for data collection	4.108 to 68.310°.	
Index ranges	-9<=h<=9, -12<=k<=11, -13<=l<=13	
Reflections collected	10100	
Independent reflections	3339 [R(int) = 0.0278]	
Completeness to theta = 67.679°	99.4 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7531 and 0.5974	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3339 / 1 / 249	
Goodness-of-fit on F ²	1.056	
Final R indices [I>2sigma(I)]	R1 = 0.0391, $wR2 = 0.1071$	
R indices (all data)	R1 = 0.0432, $wR2 = 0.1112$	
Extinction coefficient	0.0042(7)	
Largest diff. peak and hole	0.214 and -0.173 e.Å ⁻³	

Tabla 5. Datos cristalográficos y detalles de refinamiento para el compuesto 1781

Figure S5. Gráfico elipsoide de 1781

3. Ciclación radical oxidativa en quinazolinonas

3.1. Metodología general para la alquilación de quinazolinonas

A una suspensión de NaH 90% (41 mg, 1.54 mmol, 1.5 equiv.) en DMF anhidro (2 mL) y DME (2 mL) enfriada a 0 °C se añadió una disolución de 4(3*H*)-quinazolinona (150 mg, 1.02 mmol, 1 equiv.) en DMF (2 mL). Después de 15 min de reacción, se adiciona a la mezcla de reacción LiBr (187.4 mg, 2.05 mmol, 2 equiv.) y se agitó durante 15 min a 0 °C. Después, se añadió gota a gota una disolución del 1,4-dibromobutano (0.13 mL, 1.13 mmol, 1.1 equiv.) en DMF (2 mL) a 0 °C. La mezcla de se calentó a temperatura ambiente y se agitó durante 8 hr. La reacción se inactivó con agua fría y se extrajo con acetato de etilo. La fase orgánica se lavó con agua y salmuera, se secó sobre Na₂SO₄ y el disolvente se eliminó a presión reducida. El crudo fue purificado por cromatografía en columna hexano-acetato de etilo. El crudo se redisolvió en acetonitrilo (10 mL) y se adicionó 4 equiv. yoduro de potasio (616 mg, 4.10 mmol). La mezcla resultante se calentó a reflujo con agitación durante 24 hr. Pasado el tiempo de reacción se filtró el sólido precipitado y el filtrado se concentró al vacío. El crudo se redisolvió en acetato de etilo y se lavó con una solución saturada de Na₂SO₃ y después con salmuera. La fase orgánica secó sobre Na₂SO₄, se filtró y se concentró al vacío. El crudo se purificó por cromatografía en columna Hex/AcOEt (9:1-7:3) para obtener el producto yodado.

3-(3-Yodopropil)quinazolin-4(3H)-ona 186

Siguiendo el procedimiento general 3.1, **186** se obtuvo como un sólido blanco (395 mg, 92%, p.f. 95 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 1:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 8.29 (d, J = 8.0 Hz, 1H), 8.10 (s, 1H), 7.74 (dt, J = 14.5, 8.1 Hz, 2H), 7.51 (t, J = 7.3 Hz, 1H), 4.11 (t, J = 6.7 Hz, 2H), 3.18 (t, J = 6.5 Hz, 2H), 2.32 (p, J = 6.5 Hz, 2H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 161.26, 148.17, 146.56, 134.49, 127.65, 127.54, 126.72, 122.12, 47.55, 32.00, 2.12.

IR-ATR \mathbf{v} (cm⁻¹): 3376, 2926,1657,1608, 1468, 770, 695.

EMAR-DART m/z: exacto 314.99943, preciso 314.99880, error ppm -2.01, insat. 6.5, datos consistentes para C₁₁H₁₂IN₂O.

3-(4-Yodobutil)quinazolin-4(3H)-ona 187

Siguiendo el procedimiento general 3.1, **187** se obtuvo como un sólido blanco (417 mg, 93%, p.f. 74 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 1:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 8.24 (td, *J* = 7.9, 6.9, 2.8 Hz, 1H), 7.99 (s, 1H), 7.75 – 7.60 (m, 2H), 7.45 (d, *J* = 6.3 Hz, 1H), 3.97 (t, *J* = 6.1 Hz, 2H), 3.15 (t, *J* = 5.2 Hz, 2H), 1.95 – 1.77 (m, 4H).

RMN ¹³**C** δ ppm 161.06, 148.12, 146.38, 134.34, 127.54, 127.41, 126.72, 122.10, 45.79, 30.46, 30.32, 5.45.

IR-ATR v (cm⁻¹): 3404, 2927,1651, 1606, 1468, 767, 694.

EMAR-DART m/z: exacto 329.01508, preciso 329.01707, error ppm -0.62, insat. 6.5, datos consistentes para C₁₂H₁₄IN₂O.

3-(5-Yodopentil)quinazolin-4(3H)-ona 257c

Siguiendo el procedimiento general 3.1, **157c** se obtuvo como un sólido blanco (395 mg, 92%, p.f. 88 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 1:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 8.24 (td, J = 7.7, 2.2 Hz, 1H), 8.05 – 7.96 (m, 1H), 7.66 (tt, J = 8.8, 4.7 Hz, 2H), 7.51 – 7.39 (m, 1H), 3.95 (q, J = 7.3, 6.7 Hz, 2H), 3.19 – 3.06 (m, 2H), 1.79 (dh, J = 14.9, 7.4 Hz, 4H), 1.56 – 1.36 (m, 2H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 161.05, 148.17, 146.52, 134.26, 127.51, 127.35, 126.70, 122.17, 46.85, 32.84, 28.35, 27.59, 6.40.

IR-ATR v (cm⁻¹): 2943,1663, 1604, 1465, 771, 695.

EMAR-DART m/z: exacto 343.03073, preciso 343.02932, error ppm -4.10, insat. 6.5, datos consistentes para C₁₃H₁₆IN₂O.

6-Cloro-3-(3-yodopropil)-8-metilquinazolin-4(3*H*)-ona **257d**

Siguiendo el procedimiento general 3.1, 257d se obtuvo como un sólido blanco (354 mg, 95%, p.f. 80 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 7:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 8.13 – 8.07 (m, 2H), 7.55 (dq, J = 2.5, 0.9 Hz, 1H), 4.10 (t, J = 6.6 Hz, 2H), 3.17 (t, J = 6.5 Hz, 2H), 2.57 (s, 3H), 2.31 (p, J = 6.6 Hz, 2H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 160.52, 145.51, 145.36, 138.41, 135.11, 132.71, 123.60, 123.06, 47.55, 31.87, 17.41, 2.20.

EMAR-DART m/z: exacto 343.03073, preciso 343.03024, error ppm -1.44, insat. 6.5, datos consistentes para C₁₃H₁₆IN₂O.

6-Cloro-3-(4-yodobutil)-8-metilquinazolin-4(3*H*)-ona **257e**

Siguiendo el procedimiento general 3.1, 257d se obtuvo como un sólido blanco (363 mg, 94%, p.f. 91 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 7:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 8.12 – 8.05 (m, 1H), 8.00 (s, 1H), 7.59 – 7.49 (m, 1H), 4.00 (t, *J* = 6.7 Hz, 2H), 3.19 (t, *J* = 6.3 Hz, 2H), 2.55 (s, 3H), 1.89 (tt, *J* = 6.6, 2.5 Hz, 4H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 160.43, 145.38, 145.29, 138.33, 135.04, 132.67, 123.71, 123.10, 45.87, 30.39, 30.26, 17.39, 5.33.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 2920, 1667, 1604, 1459, 795.

EMAR-DART m/z: exacto 362.97611, preciso 362.97599, error ppm -0.32, insat. 6.5, datos consistentes para C₁₂H₁₃ClIN₂O.

6-Cloro-3-(5-yodopentil)-8-metilquinazolin-4(3H)-ona **257f**

Siguiendo el procedimiento general 3.1, 257f se obtuvo como un sólido blanco (346 mg, 96%, p.f. 93 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 7:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 8.14 – 8.06 (m, 1H), 8.01 (s, 1H), 7.53 (t, *J* = 3.3 Hz, 1H), 3.98 (dd, *J* = 8.8, 5.7 Hz, 2H), 3.17 (t, *J* = 6.8 Hz, 2H), 2.56 (s, 3H), 1.94 – 1.74 (m, 4H), 1.59 – 1.42 (m, 2H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 160.44, 145.45, 138.29, 134.99, 132.60, 123.70, 123.18, 100.00, 46.95, 32.84, 28.29, 27.59, 17.40, 6.30.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 2917, 1675, 1602, 1458, 769.

EMAR-DART m/z: exacto 376.99176, preciso 376.99139, error ppm -0.98, insat. 6.5, datos consistentes para C₁₃H₁₅ClIN₂O.

Siguiendo el procedimiento general 3.1, 257g se obtuvo como un sólido blanco (315 mg, 90%, p.f. 91 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 1:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 8.30 (ddd, *J* = 8.0, 1.5, 0.6 Hz, 1H), 8.03 (s, 1H), 7.80 – 7.66 (m, 2H), 7.50 (ddd, *J* = 8.2, 6.8, 1.5 Hz, 1H), 4.24 – 4.09 (m, 1H), 4.09 – 3.94 (m, 2H), 2.03 – 1.84 (m, 6H), 1.77 – 1.64 (m, 1H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 161.14, 148.16, 146.40, 134.37, 127.57, 127.45, 126.79, 122.15, 45.94, 39.54, 29.94, 28.99, 28.47.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 2922, 1671, 1602, 1459, 1200, 878.

EMAR-DART m/z: exacto 391.00741, preciso 391.00835, error ppm 2.41, insat. 6.5, datos consistentes para C₁₄H₁₇ClIN₂O.

3-(3-Yodopropil)-6,7-dimetoxi-4(3*H*)quinazolinona **257h**

Siguiendo el procedimiento general 3.1, 257h se obtuvo como un sólido blanco (215 mg, 96%, p.f. 130 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 1:1). **RMN** ¹**H** (300 MHz, CDCl₃) δ ppm 8.02 (s, 1H), 7.59 (d, *J* = 2.5 Hz, 1H), 7.09 (d, *J* = 1.9 Hz, 1H), 4.10 (t, *J* = 6.7 Hz, 2H), 3.99 (s, 6H), 3.18 (t, *J* = 6.5 Hz, 2H), 2.33 (p, *J* = 6.6 Hz, 2H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 160.6, 155.0, 149.5, 145.3, 144.5, 115.5, 107.9, 105.5, 56.4, 56.4, 47.5, 32.1, 2.2.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 2929, 2827, 1653, 1603, 1498, 1274, 868, 780.

EMAR-DART *m*/*z* (% ar): 375 (100) M⁺

3-(4-Yodobutil)-6,7-dimetoxi-4(3*H*)quinazolinona **257i**

Siguiendo el procedimiento general 3.1, 257i se obtuvo como un sólido blanco (218 mg, 95%, p.f. 135 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 1:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.90 (s, 1H), 7.53 (s, 1H), 7.02 (s, 1H), 3.95 (m, 8H), 3.16 (t, *J* = 5.8 Hz, 2H), 1.98 – 1.81 (m, 4H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 160.5, 154.9, 149.4, 145.1, 144.4, 115.5, 107.8, 105.5, 56.4, 56.4, 45.8, 30.5, 30.3, 5.5.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 2936, 1660, 1605, 1497, 1268, 843, 780. **EMAR**-DART m/z (% ar): 389 (100) M⁺

3-(5-Yodopentil)-6,7-dimetoxi-4(3*H*)quinazolinona **257**j

Siguiendo el procedimiento general 3.1, 257j se obtuvo como un sólido blanco (235 mg, 95%, p.f. 139 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 1:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.95 (s, 1H), 7.61 (s, 1H), 7.09 (s, 1H), 3.99 (m, 8H), 3.19 (t, *J* = 6.9 Hz, 2H), 1.85 (tt, *J* = 15.4, 7.6 Hz, 4H), 1.56 – 1.44 (m, 2H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 160.5, 154.9, 149.4, 145.3, 144.5, 115.6, 107.8, 105.6, 56.4, 56.4, 46.9, 32.9, 28.4, 27.6, 6.3.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 2935, 1659, 1603, 1499, 1266, 855, 782.

EMAR-DART m/χ (% ar): 403 (100) M⁺

3.2. Metodología general para la ciclación oxidativa vía radicales en quinazolinonas

En un matraz de fondo redondo se disolvió el correspondiente yoduro de quinazolinona **250**a (150 mg, 0.47 mmol, 1 eq) en clorobenceno (4.7 mL). La mezcla se desgasificó y se calentó a reflujo. Se añadió peróxido de dicumilo (129 mg, 0.47 mmol, 1.5 eq) en porciones (0.3 equiv. cada hora). Después la reacción se dejó enfriar a temperatura ambiente y se evaporó el disolvente al vacío. El crudo de reacción se purificó por cromatografía en columna Hex/AcOEt para obtener el producto.

Deoxivasicinona 188

Siguiendo el procedimiento general 3.2, **188** se obtuvo como un sólido amarillo (47 mg, 80%, p.f. 110 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 4:6).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 8.35 – 8.25 (m, 1H), 7.77 – 7.68 (m, 1H), 7.64 (ddd, J = 8.2, 1.3, 0.6 Hz, 1H), 7.44 (ddd, J = 8.1, 7.0, 1.3 Hz, 1H), 4.29 – 4.15 (m, 2H), 3.18 (t, J = 8.0 Hz, 2H), 2.36 – 2.21 (m, 2H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 161.07, 159.54, 149.19, 134.25, 126.85, 126.44, 126.31, 120.53, 46.58, 32.59, 19.58.

IR-ATR v (cm⁻¹): 2922, 1667, 1609, 1464, 769, 691.

EMAR-DART m/z: exacto 187.08714, preciso 187.08788, error ppm 3.99, insat. 7.5, datos consistentes para $C_{11}H_{11}N_2O$.

Mackinazolinona 189

Siguiendo el procedimiento general 3.2, **189** se obtuvo como un sólido amarillo (50 mg, 83%, p.f. 100 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 4:6).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 8.24 (dd, J = 7.9, 1.6 Hz, 1H), 7.70 (ddt, J = 9.7, 7.0, 1.4 Hz, 1H), 7.61 – 7.55 (m, 1H), 7.45 – 7.37 (m, 1H), 4.06 (t, J = 6.1 Hz, 2H), 2.99 (t, J = 6.5 Hz, 2H), 2.10 – 1.83 (m, 4H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 162.28, 154.97, 147.50, 134.27, 126.73, 126.48, 126.17, 120.52, 42.42, 32.03, 22.20, 19.42.

IR-ATR v (cm⁻¹): 3372, 2947, 2873, 1653, 1472, 769, 690.

EMAR-DART m/z: exacto 201.10279, preciso 201.10270, error ppm -0.43, insat. 7.5, datos consistentes para C₁₂H₁₃N₂O.

7,8,9,10-Tetrahidroazepino[2,1-*b*]quinazolin-12(6*H*)-ona **259c**

Siguiendo el procedimiento general 3.2, **259c** se obtuvo como un sólido amarillo (49 mg, 79%, p.f. 95 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 4:6).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 8.29 – 8.23 (m, 1H), 7.71 (ddd, J = 8.4, 7.1, 1.5 Hz, 1H), 7.65 – 7.58 (m, 1H), 7.43 (ddd, J = 8.1, 7.1, 1.3 Hz, 1H), 4.45 – 4.35 (m, 2H), 3.13 – 3.03 (m, 2H), 1.86 (dd, J = 12.2, 7.7 Hz, 6H).

RMN ¹³**C** (75 MHz, CDCl₃) 162.04, 159.83, 147.50, 134.25, 127.12, 126.85, 126.48, 120.33, 42.97, 37.81, 29.66, 28.18, 25.51.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 2924, 1667, 1591, 1470, 774, 698.

EMAR-DART m/z: exacto 215.11844, preciso 215.11841, error ppm -0.03, insat. 7.5, datos consistentes para C₁₃H₁₅N₂O.

7-Cloro-5-metil-2,3-dihidropirrolo[2,1*b*]quinazolin-9(1*H*)-ona **259d**

Siguiendo el procedimiento general 3.2, **259d** se obtuvo como un sólido amarillo (57 mg, 89%, p.f. 81 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 6:4). **RMN** ¹**H** (300 MHz, CDCl₃) δ ppm 8.04 (d, *J* = 2.5 Hz, 1H), 7.48 (d, *J* = 2.5 Hz, 1H), 4.17 (t, *J* = 7.3 Hz, 2H), 3.16 (t, *J* = 8.0 Hz, 2H), 2.54 (s, 3H), 2.27 (p, *J* = 7.8 Hz, 2H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 160.39, 158.60, 146.57, 137.61, 134.81, 131.28, 123.35, 121.54, 46.58, 32.70, 19.66, 17.69.

EMAR-DART m/z: exacto 215.11844, preciso 215.11941, error ppm 452, insat. 7.5, datos consistentes para C₁₂H₁₂ClN₂O.

2-Cloro-4-metil-6,7,8,9-tetrahidro-11*H*pirido[2,1-*b*]quinazolin-11-ona **259e**

Siguiendo el procedimiento general 3.2, **259e** se obtuvo como un sólido amarillo (61 mg, 93%, p.f. 84 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 6:4).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 8.08 (d, *J* = 2.5 Hz, 1H), 7.51 (dd, *J* = 2.5, 0.8 Hz, 1H), 4.08 (t, *J* = 6.3 Hz, 2H), 3.01 (t, *J* = 6.7 Hz, 2H), 2.57 (s, 3H), 2.08 – 1.91 (m, 4H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 161.61, 153.82, 144.74, 137.35, 134.65, 130.97, 123.43, 121.32, 42.41, 32.12, 22.10, 19.35, 17.15.

IR-ATR v (cm⁻¹): 2918, 1661, 1596, 1458, 1338, 701.

EMAR-DART m/z: exacto 235.06382, preciso 235.06408, error ppm 1.14, insat. 7.5, datos consistentes para C₁₂H₁₂ClN₂O.

2-Cloro-4-metil-7,8,9,10tetrahidroazepino[2,1-*b*]quinazolin-12(6*H*)ona **259f**

Siguiendo el procedimiento general 3.2, **259f** se obtuvo como un sólido amarillo (60 mg, 90%, p.f. 89 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 4:6).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 8.01 – 7.97 (m, 1H), 7.45 – 7.35 (m, 1H), 4.33 – 4.25 (m, 2H), 3.02 – 2.98 (m, 2H), 2.48 (s, 3H), 1.83 – 1.70 (m, 6H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 161.42, 158.55, 144.71, 137.74, 134.64, 131.31, 123.82, 121.19, 43.08, 37.87, 29.62, 28.10, 25.53, 17.08.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 2941, 1658, 1588, 1458, 793.

EMAR-DART m/χ : exacto 249.07947, preciso 249.07925, error ppm -0.84, insat. 7.5, datos consistentes para C₁₃H₁₄ClN₂O.

6-Metil-6,7,8,9-tetrahidro-11*H*-pirido[2,1*b*]quinazolin-11-ona **259g**

Siguiendo el procedimiento general 3.1, **259g** se obtuvo como un sólido amarillo (49 mg, 79%, p.f. 89 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 4:6).

RMN ¹**H** (300 MHz, CDCl₃) ¹H-RMN (300 MHz, CDCl₃) δ ppm 8.24 (d, J = 8.0 Hz, 1H), 7.74 – 7.59 (m, 2H), 7.45 – 7.36 (m, 1H), 4.27 (dt, J = 14.1, 5.9 Hz, 1H), 3.90 (ddd, J = 13.4, 7.4, 5.8 Hz, 1H), 3.03 (dt, J = 8.7, 6.7 Hz, 1H), 2.16 – 1.92 (m, 3H), 1.68 – 1.57 (m, 1H), 1.48 (d, J = 7.0 Hz, 3H).

RMN ¹³**C** (75 MHz, CDCl₃) 162.36, 158.58, 147.53, 134.12, 126.81, 126.67, 126.16, 120.26, 42.25, 35.56, 27.69, 20.24, 19.61.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 2920, 1653, 1593, 1459, 1340, 858, 700.

EMAR-DART m/χ : exacto 263.09512, preciso 263.09506, error ppm -0.19, insat. 7.5, datos consistentes para C₁₄H₁₆ClN₂O.

4. Ciclación radical intramolecular con fotocatálisis

4.1. Metodología general A para la alquilación de heterociclos con dibromoalcano

En un matraz redondo equipado con agitador magnético se cargó NaH 90% (26 mg, 1 mmol, 1.5 equiv.) y se disolvió en THF (5 mL) anhidro recién destilado. La suspensión resultante se enfrió a 0 °C con un baño de hielo de agua y se inyecto una disolución del correspondiente heterociclo (**250**, 150 mg, 0.67 mmol, 1 equiv.) en THF (2.5 mL) gota a gota. La mezcla resultante se agitó a 0 °C durante 30 min y después se adicionó un dibromoalcano (1,4-dibromobutano, 0.13 mL, 0.73 mmol). Después, se retiró el baño de hielo y se calentó la reacción a temperatura ambiente con agitación durante 8 hr. Después se adicionó hielo de agua y la reacción se extrajo con AcOEt (3 ×20 mL). La fase orgánica se secó sobre Na₂SO₄, se filtró y concentró al vacío. El crudo se redisolvió en acetona (10 mL) y se adicionó 4 equiv. yoduro de potasio (40 mg). La mezcla resultante se calentó a reflujo con agitación durante 24 hr. Pasado el tiempo de reacción se filtró el sólido precipitado y el filtrado se concentró al vacío. El crudo se redisolvió en acetato de etilo y se lavó con una solución saturada de Na₂SO₃ y después con salmuera. La fase orgánica se concentró al vacío. El crudo se por cromatografía en columna Hex/AcOEt (9:1-7:3) para obtener el producto yodado.

4.2. Metodología general B para la síntesis de yoduros de alquilo

En un matraz redondo se colocó una mezcla de 4-(1H-indol-3-il)butan-1-ol (100 mg, 0.52 mmol, 1equiv.), PPh₃ (166.3 mg, 0.63 mmol, 1.2 equiv.), 1,2-diyodoetano (178.9 mg, 0.63 mmol, 1.2 equiv.) y acetonitrilo anhidro (2.6 mL). La mezcla resultante se calentó a 60 °C durante 2 hr. Después de este tiempo la reacción se enfrió a temperatura ambiente y se concentró al vacío. El crudo se redisolvió en AcOEt y se lavó con una solución saturada de Na₂SO₃ y después con salmuera. La fase orgánica secó sobre Na₂SO₄, se filtró y se concentró al vacío. El crudo se purificó por cromatografía en columna Hex/AcOEt (8:2) para obtener el producto yodado.

	uor 5 uc
metilo 260	

Siguiendo el procedimiento general 4.1, **260** se obtuvo como un aceite amarillo 297 mg, 97%, después de purificarlo por cromatografía en columna (Hexano/AcOEt 9:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 8.18 (dd, *J* = 6.4, 2.8 Hz, 1H), 7.81 (s, 1H), 7.39 – 7.34 (m, 1H), 7.30 – 7.25 (m, 2H), 4.18 (t, *J* = 6.9 Hz, 2H), 3.91 (s, 3H), 3.16 (t, *J* = 6.6 Hz, 2H), 2.02 (dd, *J* = 14.8, 7.0 Hz, 2H), 1.82 (dt, *J* = 13.1, 6.7 Hz, 2H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 165.56, 136.51, 134.11, 126.84, 122.99, 122.08, 121.99, 109.97, 107.39, 51.15, 46.04, 30.85, 30.48, 5.39.

IR-ATR \bar{v} (cm⁻¹): 2944.35, 1691.58, 1531.25, 1199.46, 1152.25, 747.77, 428.00.

EMAR-DART m/χ : exacto 358.03040, preciso 358.03057, error ppm 0.49, insat. 6.5, datos consistentes para C₁₄H₁₇INO₂.

5-Bromo-1-(4-yodobutil)-1*H*-indol-3carbaldehído **263a**

Siguiendo el procedimiento general 4.1, **263a** se obtuvo como un sólido café (250 mg, 92%, p.f. 65 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 8:2).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 10.00 (s, 1H), 8.50 (d, J = 1.9 Hz, 1H), 7.73 (s, 1H), 7.46 (dd, J = 8.7, 1.9 Hz, 1H), 7.29 (s, 1H), 4.22 (t, J = 7.0 Hz, 2H), 3.21 (t, J = 6.6 Hz, 2H), 2.11 – 2.01 (m, 2H), 1.91 – 1.81 (m, 2H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 184.15, 138.65, 135.80, 127.09, 126.88, 124.82, 117.65, 116.62, 111.54, 46.45, 30.66, 30.31, 5.15.

IR-ATR \bar{v} (cm⁻¹): 2923.30, 2804.58, 1653.43, 1529.82, 1386.45, 781.06, 428.83.

EMAR-DART m/z: exacto 407.92830, preciso 407.92929, error ppm 2.44, insat. 6.5, datos consistentes para C₁₃H₁₄BrINO.

2-(1-(4-Yodobutil)-1*H*-indol-3-il)acetonitrilo 263b

Siguiendo el procedimiento general 4.1, **263b** se obtuvo como un aceite amarillo (309 mg, 95%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 9:1). **RMN** ¹**H** (300 MHz, CDCl₃) δ ppm 7.58 (d, *J* = 7.9 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 1H), 7.31 – 7.25 (m, 1H), 7.18 (td, *J* = 7.5, 7.0, 1.1 Hz, 1H), 7.12 (s, 1H), 4.12 (t, *J* = 6.8 Hz, 2H), 3.83 (s, 2H), 3.15 (t, *J* = 6.6 Hz, 2H), 2.02 – 1.90 (m, 2H), 1.87 – 1.75 (m, 2H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 136.44, 126.64, 126.20, 122.60, 119.93, 118.47, 118.35, 109.82, 103.48, 45.42, 31.17, 30.60, 14.45, 5.76.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 2945.68, 2208.79, 1527.17, 739.71, 428.64.

tert-Butil (2-(1-(4-yodobutil)-1*H*-indol-3-il)etil)carbamato **263c**

Siguiendo el procedimiento general 4.1, **263c** se obtuvo como un aceite amarillo (230 mg, 90%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 8:2).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.67 (d, J = 7.9 Hz, 1H), 7.36 (d, J = 8.2 Hz, 1H), 7.28 (t, J = 7.6 Hz, 1H), 7.18 (t, J = 7.4 Hz, 1H), 6.97 (s, 1H), 4.83 (s, 1H), 4.12 (t, J = 6.9 Hz, 2H), 3.51 (d, J = 6.1 Hz, 2H), 3.16 (t, J = 6.7 Hz, 2H), 3.00 (t, J = 6.5 Hz, 2H), 1.97 (p, J = 7.0 Hz, 2H), 1.83 (p, J = 6.9 Hz, 2H), 1.52 (s, 9H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 156.14, 136.48, 128.12, 125.69, 121.87, 119.30, 119.10, 112.14, 109.48, 79.14, 45.18, 41.16, 31.24, 30.78, 28.66, 25.92, 6.17.

EMAR-DART m/z: exacto 443.11954, preciso 443.11840, error ppm -2.58, insat. 6.5, datos consistentes para C₁₉H₂₈IN₂O₂.

Metil-*N*-(*tert*-butoxicarbonil)-1-(4-yodobutil)-*D*-triptofanato **263d**

Siguiendo el procedimiento general 4.1, **263d** se obtuvo como un aceite amarillo (210 mg, 89%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 8:2).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.54 (d, *J* = 7.9 Hz, 1H), 7.30 (d, *J* = 8.2 Hz, 1H), 7.21 (t, *J* = 7.6 Hz, 1H), 7.11 (t, *J* = 7.4 Hz, 1H), 6.88 (s, 1H), 5.08 (d, *J* = 8.1 Hz, 1H), 4.69 – 4.59 (m, 1H), 4.10 (t, *J* = 6.8 Hz, 2H), 3.68 (s, 3H), 3.27 (d, *J* = 4.7 Hz, 2H), 3.14 (t, *J* = 6.6 Hz, 2H), 2.00 – 1.88 (m, 2H), 1.78 (dt, *J* = 13.5, 6.6 Hz, 2H), 1.44 (s, 9H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 172.83, 155.33, 136.23, 128.44, 126.32, 121.91, 119.32, 119.19, 109.42, 109.14, 79.89, 54.36, 52.35, 45.25, 31.15, 30.66, 28.46, 28.05, 5.87.

IR-ATR *v*[−] (cm^{−1}): 3391.58, 2974.54, 2931.36, 1714.13, 1707.20, 1365.02, 1156.55, 738.29, 427.12.

EMAR-DART m/z: exacto 501.12502, preciso 501.12526, error ppm 0.46, insat. 7.5, datos consistentes para C₂₁H₃₀IN₂O₄.

7-(4-Yodobutil)-1,3-dimetil-3,7-dihidro-1*H*-purina-2,6-diona **263e**

Siguiendo el procedimiento general 4.1, **263e** se obtuvo como un sólido amarillo (271 mg, 90%,

p.f. 101 °C) después de purificarlo por cromatografía en columna (DCM/MeOH 9:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.53 (s, 1H), 4.28 (t, *J* = 7.0 Hz, 2H), 3.53 (s, 3H), 3.35 (s, 3H), 3.14 (t, *J* = 6.7 Hz, 2H), 2.06 – 1.90 (m, 2H), 1.89 – 1.74 (m, 2H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 155.24, 151.76, 149.10, 140.87, 107.06, 46.21, 32.01, 30.18, 29.90, 28.12, 4.96.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 2959.39, 2941.87, 1694.28, 1642.54, 1221.02, 1177.73, 421.39.

EMAR-DART m/z: exacto 363.03179, preciso 363.03135, error ppm -1.21, insat. 5.5, datos consistentes para C₁₁H₁₆IN₄O₂.

Metil 1-(4-yodobutil)-1*H*-pirrol-2-carboxilato **263f**

Siguiendo el procedimiento general 4.1, **263f** se obtuvo como un aceite amarillo (353 mg, 96%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 9:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 6.94 (dd, *J* = 3.9, 1.8 Hz, 1H), 6.84 – 6.80 (m, 1H), 6.12 (dd, *J* = 3.9, 2.6 Hz, 1H), 4.33 (t, *J* = 6.7 Hz, 2H), 3.80 (s, 3H), 3.15 (t, *J* = 6.6 Hz, 2H), 1.84 (ttd, *J* = 12.6, 6.9, 6.1, 2.8 Hz, 4H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 161.54, 128.69, 121.54, 118.37, 108.22, 51.12, 48.02, 32.56, 30.60, 5.89.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 2946.94, 1698.28, 1237.43, 1101.18, 735.52.

EMAR-DART m/z: exacto 308.01475, preciso 308.01525, error ppm 1.65, insat. 3.5, datos consistentes para C₁₀H₁₅INO₂.

1-(1-(4-Yodobutil)-2,4-dimetil-1*H*-pirrol-3il)etan-1-ona **263g**

Siguiendo el procedimiento general 4.1, **263g** se obtuvo como un aceite amarillo (314 mg, 90%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 95:5).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 6.29 (s, 1H), 3.78 (s, 2H), 3.23 – 3.09 (m, 2H), 2.47 (s, 3H), 2.42 (s, 3H), 2.24 (s, 3H), 1.86 – 1.77 (m, 4H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 195.69, 135.58, 121.74, 119.48, 119.25, 45.22, 31.71, 31.24, 30.38, 13.86, 12.27, 5.58.

IR-ATR $\bar{\nu}$ (cm⁻¹): 2921.82, 2681.68, 1632.91, 1500.56, 1405.49, 951.53, 573.67.

EMAR-DART m/χ : exacto 320.05113, preciso 320.05042, error ppm -2.21, insat. 3.5, datos consistentes para C₁₂H₁₉INO.

3-(4-Yodobutil)-1H-indol 263h

Siguiendo el procedimiento general 4.2, **263h** se obtuvo como un aceite amarillo (220 mg, 93%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 9:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.93 (s, 1H), 7.61 (d, *J* = 7.8 Hz, 1H), 7.36 (d, *J* = 8.1 Hz, 1H), 7.19 (d, *J* = 7.8 Hz, 1H), 7.12 (t, *J* = 7.0 Hz, 1H), 6.99 (s, 1H), 3.23 (t, *J* = 6.6 Hz, 1H), 3.23 (t, *J* = 6.6 Hz, 1H), 5.23 (t, *J* = 6.6 Hz), 5.23 (t,

2H), 2.80 (t, *J* = 7.1 Hz, 2H), 1.88 (dt, *J* = 14.8, 7.4 Hz, 4H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 136.48, 127.56, 122.10, 121.35, 119.33, 119.01, 116.23, 111.23, 33.43, 31.07, 24.21, 7.23.

EMAR-DART m/χ : exacto 300.02492, preciso 300.02495, error ppm 0.12, insat. 5.5, datos consistentes para C₁₂H₁₅IN.

Los datos analíticos coinciden con los reportados en la literatura.⁸⁵

Metil-1-(5-yodopentil)-1*H*-indol-3carboxilato **263i**

Siguiendo el procedimiento general 4.1, **263i** se obtuvo como un aceite amarillo (293 mg, 92%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 9:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 8.19 (dd, J = 5.9, 3.2 Hz, 1H), 7.80 (s, 1H), 7.30 (ddt, J = 14.9, 6.2, 3.3 Hz, 3H), 4.09 (t, J = 7.0 Hz, 2H), 3.91 (s, 3H), 3.11 (t, J = 6.9 Hz, 2H), 1.81 (tt, J = 14.1, 7.1 Hz, 4H), 1.39 (ddt, J = 15.0, 10.4, 6.3 Hz, 2H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 165.38, 136.33, 134.09, 126.66, 122.70, 121.82, 121.70, 109.91, 106.88, 50.95, 46.63, 32.77, 28.72, 27.65, 6.18.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 2945.76, 1691.15, 1193.51, 1168.12, 761.03, 431.74.

⁸⁵ Ofori, E.; Zhu, X. Y.; Etukala, J. R.; Peprah, K.; Jordan, K. R.; Adkins, A. A.; Bricker, B.; Huang, X. P.;

Kang, H.; Roth, B.; Ablordeppey, S. Y. *Bioorg. Med. Chem.* **2016**, *24*(16), 3464-3471.

1-(5-Yodopentil)-1*H*-indol-3-carbaldehído 263j

Siguiendo el procedimiento general 4.1, **263j** se obtuvo como un aceite morado (324 mg, 92%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 8:2).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 9.91 (s, 1H), 8.32 – 8.22 (m, 1H), 7.64 (s, 1H), 7.36 – 7.25 (m, 3H), 4.08 (t, *J* = 7.1 Hz, 2H), 3.07 (t, *J* = 6.9 Hz, 2H), 1.79 (dp, *J* = 22.0, 7.1 Hz, 4H), 1.45 – 1.30 (m, 2H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 184.37, 138.45, 136.96, 125.20, 123.84, 122.74, 121.91, 117.83, 110.03, 46.80, 32.56, 28.48, 27.52, 6.33.

IR-ATR \mathbf{v} (cm⁻¹): 3106.64, 2927.30, 1646.04, 1392.74, 752.25, 430.66.

Los datos analíticos coinciden con los reportados en la literatura.⁸⁶

1-(4-Yodobutil)-1*H*-benzo[*d*]imidazol **263K**

Siguiendo el procedimiento general 4.1, **263k** se obtuvo como un aceite incoloro (228 mg, 90%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 1:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.87 (s, 1H), 7.79 (dd, *J* = 6.2, 3.0 Hz, 1H), 7.39 (dd, *J* =

6.4, 2.8 Hz, 1H), 7.28 (ddd, *J* = 8.1, 3.4, 1.9 Hz, 2H), 4.18 (t, *J* = 6.9 Hz, 2H), 3.15 (t, *J* = 6.7 Hz, 2H), 2.01 (dt, *J* = 14.3, 7.0 Hz, 2H), 1.81 (dt, *J* = 12.9, 6.7 Hz, 2H).

2-Cloro-10-(3-yodopropil)-10H-fenotiazina 2631

Siguiendo el procedimiento general 4.1, **2631** se obtuvo como un aceite amarillo (261 mg, 76%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 1:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.07 (ddd, J = 8.2, 7.4, 1.5 Hz, 1H), 7.03 (dd, J = 7.6, 1.5 Hz, 1H), 6.93 (d, J = 8.2 Hz, 1H), 6.88 (td, J = 7.4, 1.1 Hz, 1H), 6.84 – 6.81 (m, 2H), 6.77 (d, J = 2.0 Hz, 1H), 4.43 (dt, J = 4.1, 2.0 Hz, 2H), 3.26 (t, J = 6.5 Hz, 2H), 2.23 (q, J = 6.5 Hz, 2H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 145.69, 143.90, 133.14, 127.47, 127.33, 126.93, 122.96, 122.74, 122.25, 121.54, 118.04, 115.66, 51.47, 35.95, 6.41.

((3-Yodoetil)tio)benzeno 263m

Siguiendo el procedimiento general 4.2, **263m** se obtuvo como un aceite incoloro (154 mg, 96%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 9:1).

⁸⁶ Moody, C. J.; Norton, C. L. J. Chem., Soc. Perkin Trans. 1, **1997**, 17, 2639-2644.

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.31 (ddt, *J* = 20.0, 13.7, 7.0 Hz, 5H), 3.29 (tt, *J* = 12.0, 5.9 Hz, 4H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 134.19, 130.76, 129.39, 127.28, 37.13, 2.85.

Los datos analíticos coinciden con los reportados en la literatura.⁸⁷

1-(4-Yodobutil)-4-metoxibenzeno 263n

Siguiendo el procedimiento general 4.2, **263n** se obtuvo como un aceite amarillo (145 mg, 90%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 9:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.12 (d, *J* = 8.5 Hz, 2H), 6.86 (d, *J* = 8.5 Hz, 2H), 3.81 (s, 3H), 3.21 (t, *J* = 6.9 Hz, 2H), 2.67 – 2.49 (m, 2H), 1.87 (dt, *J* = 14.8, 6.6 Hz, 2H), 1.72 (p, *J* = 6.8, 6.2 Hz, 2H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 157.88, 133.90, 129.32, 113.85, 55.32, 33.90, 32.97, 32.48, 6.97.

Los datos analíticos coinciden con los reportados en la literatura.⁸⁸

1-(3-Yodopropoxi)-4-nitrobenzeno 2630

Siguiendo el procedimiento general 4.1, **2630** se obtuvo como un sólido blanco p.f.: 71-72 °C (203 mg, 92%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 8:2).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 8.20 (d, *J* = 9.2 Hz, 2H), 6.96 (d, *J* = 9.2 Hz, 2H), 4.17 – 4.10 (m, 2H), 3.37 (t, *J* = 6.6 Hz, 2H), 2.30 – 2.22 (m, 2H).

DEPT 135 (75 MHz, CDCl₃) δ ppm 126.07, 114.57, 68.20, 35.96, 1.95.

Los datos analíticos coinciden con los reportados en la literatura.⁸⁹

4-(3-Yodopropoxi)-2*H*-cromen-2-ona **263p**

Siguiendo el procedimiento general 4.1, **2630** se obtuvo como un sólido blanco (193 mg, 95%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 7:3).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.78 (d, *J* = 7.8 Hz, 1H), 7.54 (t, *J* = 7.8 Hz, 1H), 7.40 – 7.20 (m, 2H), 5.70 (s, 1H), 4.22 (t, *J* = 5.8 Hz, 2H), 3.37 (t, *J* = 6.6 Hz, 2H), 2.51 – 2.29 (m, 2H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 165.37, 162.84, 153.45, 132.62, 124.05, 122.96, 116.97, 115.64, 90.94, 68.83, 32.07, 0.97.

⁸⁷ Manteca, I.; Etxarri, B.; Ardeo, A.; Arrasate, S.;
Osante, I.; Sotomayor, N.; Lete, E. *Tetrahedron* **1998**, *54*(40), 12361-12378.

⁸⁸ Herran, A.; Rodriguez, M.; Parella, T.; Costas, M. *Angew. Chem. Int. Ed.* **2019**, *58*(39), 13904-13911.

⁸⁹ Butera, J. A.; Spinelli, W., Anantharaman, V.; Marcopulos, N.; Parsons, R. W.; Moubarak, I. F.; Cullinan, C.; Bagli, J. F. *J. Med. Chem.* **1991**, *34*(11), 3212-3228.

Siguiendo el procedimiento general 4.2, **263q** se obtuvo como un aceite incoloro (153 mg, 92%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 9:1).

RMN ¹**H** (400 MHz, CDCl₃) δ ppm 8.07 (d, *J* = 7.9 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.3 Hz, 2H), 4.57 (t, *J* = 6.7 Hz, 2H), 3.43 (t, *J* = 6.5 Hz, 2H).

RMN ¹³**C** (100 MHz, CDCl₃) δ ppm 165.97, 133.36, 129.84, 129.76, 128.55, 64.99, 0.67.

Los datos analíticos coinciden con los reportados en la literatura.⁹⁰

Siguiendo el procedimiento general 4.1, **263r** se obtuvo como un aceite amarillo (200 mg, 90%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 7:3).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 6.73 – 6.66 (m, 1H), 6.49 (s, 1H), 6.36 – 6.29 (m, 1H), 5.91 (s, 2H), 3.95 (t, *J* = 5.8 Hz, 2H), 3.35 (t, *J* = 6.7 Hz, 2H), 2.23 (p, *J* = 6.2 Hz, 2H).

4.3. Metodología general para la ciclación oxidativa vía fotocatálisis de yoduros de alquilo

En un vial de 4 mL provisto con agitador se cargó el heterociclo yodo alquilado **260** (50 mg, 0.12 mmol, 1 equiv), fosfato dibásico de sodio (Na₂HPO₄, 52 mg, 0.36 mmol, 3 equiv.) biscatecolboarto de litio (LiBCat) (86 mg, 0.36 mmol, 3 equiv.), *fac*-Ir(ppy)₃ (1.6 mg, 2 % mol) y DMF anhidra (0.5 mL). La mezcla se desgasificó con el método de congelación y descongelación al vacío. El vial de reacción se colocó en un reactor de luz LEDs provisto con agitación y control de la temperatura entre 25-30 °C. La reacción se irradio con luz LED azul durante 24 hr. Después del tiempo de reacción, el crudo se filtró al vacío y el filtrado se extrajo con AcOEt/agua y se lavó con salmuera. La fase orgánica se secó sobre Na₂SO₄, se filtró y se concentró al vacío. El crudo se purificó por cromatografía en columna Hex/AcOEt (9:1) para obtener el correspondiente producto.

⁹⁰ Liu, H.-X.; Dang, Y.-Q.; Yuan, Y.-F.; Xu, Z.-F.; Qiu,

S.-X.; Tan, H.-B. Org. Lett. 2016, 18(21), 5584-5587.

Metil 6,7,8,9-tetrahidropirido[1,2-*a*]indol-10-carboxilato **261**

Siguiendo el procedimiento general 4.3, **261** se obtuvo como un sólido amarillo (30.5 mg, 95%, p.f. 95 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 9:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 8.03 (dd, J = 8.0, 1.1 Hz, 1H), 7.21 – 7.10 (m, 3H), 3.97 (t, J = 6.0 Hz, 2H), 3.83 (s, 3H), 3.24 (t, J = 6.4 Hz, 2H), 2.04 – 1.96 (m, 2H), 1.89 – 1.80 (m, 2H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 166.49, 146.07, 136.05, 126.70, 122.08, 121.77, 121.21, 108.96, 102.48, 50.69, 42.58, 24.69, 22.66, 20.14.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 2939.95, 1684.88, 1142.78, 1112.56, 755.13.

EMAR-DART m/z: exacto 230.11810, preciso 230.11771, error ppm -1.70, insat. 7.5, datos consistentes para C₁₄H₁₆NO₂.

2-Bromo-6,7,8,9-tetrahidropirido[1,2-*a*]indol-10-carbaldehído **264a**

Siguiendo el procedimiento general 4.3, **264a** se obtuvo como un sólido café (31 mg, 93%, p.f. 159 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 8:2). **RMN** ¹**H** (300 MHz, CDCl₃) δ ppm 10.04 (s, 1H), 8.32 (d, *J* = 1.8 Hz, 1H), 7.30 (ddd, *J* = 8.5, 3.9, 1.9 Hz, 1H), 7.09 (dd, *J* = 8.5, 5.1 Hz, 1H), 4.03 (q, *J* = 6.0 Hz, 2H), 3.30 – 3.17 (m, 2H), 2.20 – 2.09 (m, 2H), 1.99 (dt, *J* = 9.4, 4.8 Hz, 2H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 183.30, 149.06, 135.26, 127.38, 125.67, 123.38, 116.73, 112.50, 110.62, 42.59, 22.66, 22.37, 19.48.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 2942.16, 2797.07, 1636.25, 1441.51, 1065.37, 798.91.

EMAR-DART m/z: exacto 278.01805, preciso 278.01876, error ppm 2.55, insat. 7.5, datos consistentes para C₁₃H₁₃BrNO.

2-(6,7,8,9-Tetrahidropirido[1,2-*a*]indol-10il)acetonitrilo **264b**

Siguiendo el procedimiento general 4.3, **264b** se obtuvo como un aceite café (29.5 mg, 95%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 95:5).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.59 – 7.53 (m, 1H), 7.31 – 7.25 (m, 1H), 7.23 – 7.13 (m, 2H), 4.05 (t, *J* = 6.0 Hz, 2H), 3.75 (s, 2H), 2.95 (t, *J* = 6.2 Hz, 2H), 2.09 (dt, *J* = 11.6, 6.0 Hz, 2H), 1.98 – 1.89 (m, 2H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 135.93, 134.74, 126.69, 121.19, 120.20, 118.27, 117.24, 109.00, 97.60, 42.43, 23.21, 22.36, 20.80, 12.81.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 2945.04, 28.58.09, 2242.62, 1459.85, 13622.31, 740.50.

EMAR-DART m/χ exacto 211.12352, preciso 211.12371, error ppm 0.88, insat. 8.5, datos consistentes para C₁₄H₁₅N₂.

tert-Butil-(2-(6,7,8,9-tetrahidropirido[1,2*a*]indol-10-il)etil)carbamato **264c**

Siguiendo el procedimiento general 4.3, **264c** se obtuvo como un aceite amarillo (32 mg, 91%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 8:2).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.52 (d, J = 7.4 Hz, 1H), 7.28 – 7.23 (m, 1H), 7.12 (dt, J = 14.9, 6.6 Hz, 2H), 4.61 (s, 1H), 4.03 (t, J = 6.1 Hz, 2H), 3.36 (q, J = 5.7 Hz, 2H), 2.90 (t, J = 6.1 Hz, 4H), 2.08 (dt, J = 11.8, 6.0 Hz, 2H), 1.89 (dt, J = 11.6, 6.1 Hz, 2H), 1.44 (s, 9H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 156.15, 136.14, 134.28, 127.98, 120.44, 119.37, 117.86, 108.65, 106.42, 79.08, 42.45, 41.08, 28.56, 24.51, 23.54, 22.58, 21.33.

IR-ATR *v*[−] (cm^{−1}): 3360.37, 2972.70, 2931.00, 1692.16, 1158.96, 737.00.

EMAR-DART m/χ : exacto 315.20725, preciso 315.20720, error ppm -0.17, insat. 7.5, datos consistentes para C₁₉H₂₇N₂O₂.

Metil (R)-2-((*tert*-butoxicarbonil)amino)-3-(6,7,8,9-tetrahidropirido[1,2-*a*]indol-10il)propanoato **264d**

Siguiendo el procedimiento general 4.3, **264d** se obtuvo como un aceite amarillo (34 mg, 91%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 8:2).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.43 (d, *J* = 7.5 Hz, 1H), 7.23 (d, *J* = 7.5 Hz, 1H), 7.16 – 7.06 (m, 2H), 5.12 (d, *J* = 7.9 Hz, 1H), 4.63 – 4.53 (m, 1H), 4.01 (t, *J* = 6.0 Hz, 2H), 3.66 (s, 3H), 3.22 (d, *J* = 5.4 Hz, 2H), 2.83 (q, *J* = 6.4 Hz, 2H), 2.12 – 2.02 (m, 2H), 1.89 – 1.81 (m, 2H), 1.42 (s, 9H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 173.10, 155.24, 136.18, 135.26, 128.37, 120.56, 119.58, 117.91, 108.67, 103.67, 79.80, 54.29, 52.40, 42.46, 28.46, 27.28, 23.45, 22.70, 21.32.

IR-ATR *v* (cm⁻¹): 3371.47, 2932.24, 1707.28, 1363.71, 1158.65, 739.20.

EMAR-DART m/χ : exacto 373.21273, preciso 373.21367, error ppm 2.51, insat. 8.5, datos consistentes para C₂₁H₂₉N₂O₄.

1,3-Dimetil-6,7,8,9-tetrahidropirido[2,1-/[purina-2,4(1*H*,3*H*)-diona **264e**

Siguiendo el procedimiento general 4.3, **264e** se obtuvo como un sólido blanco (29 mg, 88%, p.f. 226 °C) después de purificarlo por cromatografía en columna (DCM/MeOH 9:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 4.33 (t, *J* = 5.8 Hz, 2H), 3.56 (s, 3H), 3.39 (s, 3H), 2.94 (t, *J* = 6.1 Hz, 2H), 2.11 – 1.94 (m, 4H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 155.14, 151.89, 150.51, 148.46, 106.72, 44.90, 29.80, 27.92, 24.90, 22.21, 19.90.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 2951.77, 2875.24, 1699.21, 1649.93, 1419.56, 745.56.

EMAR-DART m/χ : exacto 235.11950, preciso 235.11900, error ppm -2.14, insat. 6.5, datos consistentes para C₁₁H₁₅N₄O₂.

Metil-5,6,7,8-tetrahidroindolizina-3carboxilato **264f**

Siguiendo el procedimiento general 4.1, **264f** se obtuvo como un aceite amarillo (27 mg, 93%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 9:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 6.92 (d, *J* = 3.9 Hz, 1H), 5.91 – 5.84 (m, 1H), 4.33 (t, *J* = 6.1 Hz, 2H), 3.78 (s, 3H), 2.88 – 2.76 (m, 2H), 1.96 (dt, *J* = 12.0, 6.0 Hz, 2H), 1.85 – 1.74 (m, 2H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 161.76, 137.29, 120.63, 117.71, 106.20, 50.84, 45.63, 24.18, 23.55, 20.16.

IR-ATR \mathbf{v} (cm⁻¹): 2946.76, 2857.37, 1695.58, 1227.35, 1141.62, 750.01.

EMAR-DART m/z: exacto 180.10245, preciso 180.10285, error ppm 2.22, insat. 4.5, datos consistentes para C₁₀H₁₄NO₂.

2-Bromo-6,7,8,9-tetrahidropirido[1,2-*a*]indol-10-carbaldehído **264g**

Siguiendo el procedimiento general 4.3, **264g** se obtuvo como un sólido rosa (27 mg, 91%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 9:1). **RMN** ¹**H** (300 MHz, CDCl₃) δ ppm 3.74 (t, *J* = 6.0 Hz, 2H), 2.64 (t, *J* = 6.2 Hz, 2H), 2.43 (d, *J* = 7.3 Hz, 6H), 2.15 (s, 3H), 1.99 – 1.89 (m, 2H), 1.85 – 1.75 (m, 2H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 195.99, 133.67, 125.36, 118.43, 118.13, 43.01, 31.44, 23.67, 21.91, 20.91, 11.86, 11.61.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 341368, 2941.89, 1629.33, 1402.67, 1098.41, 946.99.

EMAR-DART m/z: exacto 192.13884, preciso 192.13872, error ppm -0.61, insat. 4.5, datos consistentes para C₁₂H₁₈NO.

2,3,4,9-Tetrahidro-1H-carbazol 264h

Siguiendo el procedimiento general 4.3, **264h** se obtuvo como un sólido blanco (27 mg, 94%, p.f. 115-116 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 9:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 7.65 (s, 1H), 7.49 – 7.41 (m, 1H), 7.31 – 7.23 (m, 1H), 7.15 – 7.03 (m, 2H), 2.72 (d, *J* = 5.9 Hz, 4H), 1.90 (q, *J* = 5.0 Hz, 4H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 135.78, 134.20, 127.96, 121.10, 119.20, 117.84, 110.44, 110.30, 23.43, 23.38, 23.35, 21.05.

EMAR-DART m/z: exacto 172.11262, preciso 172.11248, error ppm -0.84, insat. 6.5, datos consistentes para $C_{12}H_{14}N$.

Los datos analíticos coinciden con los reportados en la literatura.⁹¹

Metil 7,8,9,10-Tetrahidro-6*H*-azepino[1,2*a*]indol-11-carboxilato **264i**

Siguiendo el procedimiento general 4.3, **264i** se obtuvo como un sólido blanco (32 mg, 96%) después de purificarlo por cromatografía en columna (Hexano/AcOEt 9:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 8.14 – 8.10 (m, 1H), 7.30 (ddd, *J* = 6.7, 2.9, 1.6 Hz, 1H), 7.25 – 7.19 (m, 2H), 4.25 – 4.18 (m, 2H), 3.58 – 3.46 (m, 2H), 1.91 (dt, *J* = 11.4, 5.7 Hz, 2H), 1.77 (dq, *J* = 11.2, 5.8 Hz, 4H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 166.84, 135.99, 134.38, 126.65, 122.07, 121.89, 121.51, 110.10, 109.00, 50.82, 44.78, 31.05, 28.60, 26.56, 25.75.

IR-ATR $\bar{\mathbf{v}}$ (cm⁻¹): 341368, 2941.89, 1629.33, 1402.67, 1098.41, 946.99.

7,8,9,10-Tetrahidro-6*H*-azepino[1,2-*a*]indol-11-carbaldehído **264**j

Siguiendo el procedimiento general 4.3, **264j** se obtuvo como un sólido morado (28 mg, 90%, p.f. 120 °C) después de purificarlo por cromatografía en columna (Hexano/AcOEt 9:1).

RMN ¹**H** (300 MHz, CDCl₃) δ ppm 10.08 (s, 1H), 8.38 – 8.28 (m, 1H), 7.30 (dt, *J* = 7.9, 3.0 Hz, 3H), 4.23 (d, *J* = 9.5 Hz, 2H), 3.31 – 3.18 (m, 2H), 2.00 – 1.90 (m, 2H), 1.88 – 1.75 (m, 4H).

RMN ¹³**C** (75 MHz, CDCl₃) δ ppm 184.68, 144.26, 136.64, 125.57, 123.54, 123.12, 121.53, 120.87, 109.33, 45.05, 30.71, 28.10, 26.43, 25.17. Los datos analíticos coinciden con los reportados en la literatura.⁸⁶

⁹¹ Alt, I. T.; Plietker, B. Angew. Chem. Int. Ed. **2015**, 55(4), 1519-1522.

Anexo: Publicación

www.thieme.com

SYNTHESIS Reviews and Full Papers in Chemical Synthesis

This electronic reprint is provided for noncommercial and personal use only: this reprint may be forwarded to individual colleagues or may be used on the author's homepage. This reprint is not provided for distribution in repositories, including social and scientific networks and platforms.

Publishing House and Copyright: © 2021 by Georg Thieme Verlag KG Rüdigerstraße 14 70469 Stuttgart ISSN 0039-7881

Any further use only by permission of the Publishing House

I. García-Ramírez, L. D. Miranda

Peroxide-Mediated Oxidative Radical Cyclization to the Quinazolinone System: Efficient Syntheses of Deoxyvasicinone, Mackinazolinone and (±)-Leucomidine C

Jazmín García-Ramírez Luis D. Miranda*®

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S. N., Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, México Imiranda@unam.mx

Received: 28.08.2020 Accepted after revision: 15.10.2020 Published online: 19.11.2020 DOI: 10.1055/s-0040-1705975; Art ID: ss-2020-m0460-op

Abstract An efficient protocol for obtaining fused quinazolinones through an oxidative free-radical cyclization under metal- and tin-free conditions is described. The oxidative cyclization of various *N*-3- ω -iodo-alkyl derivatives to provide tricyclic systems using dicumyl peroxide as the sole reagent is studied. The method then is employed for the syntheses of 5-, 6-, and 7-membered fused quinazolinone analogues, including the natural products deoxyvasicinone and mackinazolinone. A xanthate-based oxidative radical cascade addition/cyclization process that allows the production of new menthol- and testosterone-quinazolinone conjugates, as well as the first total synthesis of leucomidine C, are also reported.

 $\ensuremath{\mbox{Key}}$ words quinazolinone, free radicals, peroxides, xanthates, leucomidine C

Quinazolinone (e.g., 1), a benzo-fused pyrimidinone heterocyclic system, is a privileged structure that covers about two hundred naturally occurring alkaloids¹ and several synthetic commercially important drugs (Figure 1).² Members of this class of alkaloids display a wide range of pharmacological activities such as antipsychotic, analgesic, anti-inflammatory, anti-oxidant, antimicrobial, and antihypertensive. Examples of this family of natural products are the bronchodilator alkaloid vasicinone (2) and deoxyvasicinone (3), both isolated from the aerial parts of the evergreen subherbaceous bush Adhatoda vasica, which is used in traditional medicine for the treatment of colds, coughs, bronchitis, and asthma.³ The homologue, piperidine-fused alkaloid mackinazolinone (4), was isolated from the leaves of Mackinlaya subulate, and showed antidepressive, antibacterial, and anti-inflammatory properties.⁴ Furthermore, the alkaloid leucomidine C (5), isolated from the bark of Leuconotis griffithii, is another alkylated piperidine-fused quinazolinone that exhibits important cytotoxic activity.⁵

Figure 1 Structurally related quinazolinone natural products

Synthetically, the main approach for the preparation of quinazolinone derivatives is by the de novo construction of the heterocyclic system from anthranilic acid derivatives (i.e., 2-aminobenzamide, isatoic anhydride, etc.).⁶ Several cascade processes for the construction of the quinazolinone skeleton have also been devised.⁷ A conceptually different approach is the direct functionalization of the quinazolinone system itself. Therefore, the construction of the skeleton of fused derivatives (i.e., 1-4) relies on N-3 alkylation and direct C-H functionalization at the C-2 position (or vice *versa*). To this end, different catalytic methods have been devised for the latter process, mainly using expensive precious metal salts.^{6,8} The other general approach is via the oxidative radical inter-⁹ or intramolecular C-H functionalization at C-2 (Scheme 1). Although these types of reactions have been increasingly used for C-H functionalization of a wide range of heterocyclic systems, this methodology has not been widely exploited for the assembly of quinazolinone-fused scaffolds. This method offers the advantage that alkyl, aryl, and acyl radicals can be cyclized to the quinazolinone system, as demonstrated in a pioneering study conducted by Bowman et al.¹⁰ However, highly toxic and difficult to remove tin reagents were used in their work, and the presence of a mixture of side-products resulted in diminished yields (Scheme 1). More recently, a silver-mediated oxidative decarboxylative radical cyclization was described by Mhaske and Mahajan, starting from

proline derivatives.¹¹ Unfortunately, the products were obtained in low yields. In other work, Procter et al. described a reductive homolytic cyclization to obtain the corresponding dihydroquinazolinone-fused products under SmI₂-catalyzed conditions.¹²

In this context, expanding the synthetic utility of free radicals to explore novel strategies for assembling unique heterocycle-fused systems is ongoing. Herein, we report an efficient protocol for obtaining fused quinazolinones through a free-radical cyclization under metal- and tin-free conditions. This methodology relies on the use of dicumyl peroxide (DCP) as the only reagent, a procedure that we had previously developed for the cyclization of a series of alkyl iodides onto different heteroaromatic systems.¹³ Under these conditions, we proposed that the methyl radical generated by the thermal decomposition of DCP would abstract the iodine atom and release the alkyl radical 9, which is oxidatively cyclized to the heterocyclic system to afford the tricyclic system 10 (path a, Scheme 1). We also anticipated that implementing a cascade addition/cyclization process (also via 9, path b) with the alkene 11 and radical 12 would lead to a new series of fused scaffolds, including a facile synthesis of leucomidine C, for which no total synthesis has vet been reported (Scheme 1). Under these conditions the use of a stoichiometric amount of the peroxide facilitates the oxidation process necessary to restore the conjugated system.13

Our endeavor started with the synthesis of *N*-alkyl iodides **13a–j** through the alkylation of commercial quinazolinones with the corresponding dihaloalkyl compounds, followed by a Finkelstein-type process to introduce the iodide substituent. Next, by utilizing reaction conditions described previously,¹³ quinazolinones **13a,b** were allowed to react with 1.5 equivalents of DCP (added portionwise) in refluxing chlorobenzene. Gratifyingly, the desired tricyclic compounds deoxyvasicinone (**2**) and mackinazolinone (**4**) were isolated in 80% and 83% yields, respectively (Table 1, entries 1 and 2). It is worth noting that the same process, under previously examined tin-based conditions, afforded natural products **2** and **4**, but only in 20% and 30% yields, respectively, from the same starting materials and with all the inconvenience that the use of tin reagents implies.¹⁰ Furthermore, under the DCP-mediated conditions, the quinazolinone derivatives **14c–g** were produced in fairly good yields from the corresponding iodide derivatives **13c–g** (entries 3–7), including those bearing an electron-attracting chlorine substituent on the aromatic system (entries 5–7). Hence, not only were 5- and 6-membered tricyclic analogues obtained efficiently, the 7-membered fused azepine **14g** was also prepared in 90% yield.

Table 1 Oxidative-Radical Cyclization on Quinazolinone Systems^a

^a Reaction conditions: **13** (1 equiv), DCP (1.5 equiv added portionwise), PhCl (0.02 M), reflux.

Paper

Synthesis

I. García-Ramírez, L. D. Miranda

Paper

The cyclization of a secondary radical such as in the case of **13d** (Table 1, entry 4) was also implemented efficiently. Interestingly, when iodides **13h–j**, bearing methoxy substituents at the C-6 and C-7 positions, were subjected to the same conditions, the formation of the desired cyclized products was not observed (entry 8). Most of the starting materials were recovered unchanged in these three experiments. These reactions are inhibited for reasons that we do not currently understand.

At this point, we recognized that implementing a radical cascade addition/cyclization process might be useful to further study these oxidative cyclizations (Table 2). This process not only would allow the generation of secondary and eventually tertiary radicals, but would also expand the structural diversity of the products with the simultaneous construction of two C–C bonds. Xanthate-based radical chemistry, used in related cascade processes,¹⁴ was of particular importance for this purpose, since under the standard conditions of these reactions, dilauryl peroxide (DLP) also acts as an initiator and oxidant,¹⁵ similar to conditions using DCP.

Accordingly, olefin 15, prepared from the N-alkylation of the quinazolinone and 5-bromo-1-pentene, was reacted with the xanthate 16a to test the feasibility of the proposed protocol. In the first experiment, DLP (1.5 equiv) was added to a refluxing solution (DCE, 0.017 M) of substrates 15 and 16a (1.2 equiv). Under these conditions, quinazolinone 17a was isolated in 48% yield. Further experimentation led us to discover that increasing the amount of 16a to 1.5 equivalents and performing the reaction under microwave irradiation [DLP (1.5 equiv), 0.3 equiv/15 min], resulted in an increased yield of 68% (Table 2, entry 1) in a shorter reaction time (75 min). With optimized conditions in hand, we next explored the scope of the cascade reaction using xanthates derived from menthol (16b) and testosterone (16c).¹⁶ To our delight, the tandem reactions of these xanthates with olefin 15 proceeded efficiently and allowed access to novel quinazolinone conjugates 17b and 17c in good yields and as 1:1 diastereomeric mixtures (determined by ¹H NMR) (entries 2 and 3). In the same way, the use of the acetonitrilederived xanthate 16d offered good performance and afforded the tricyclic product 17d in good yield.

^a Reaction conditions: 15 (1.0 equiv), 16 (1.5 equiv), DLP (1.5 equiv), DCE (0.017 M), microwave irradiation (100 W).

Thus, through this study, we have shown that the oxidative addition/cyclization cascade process represents a valuable and practical procedure for the preparation of a variety of quinazoline-fused scaffolds from relatively simple substrates.

We then turned our attention to the study of the oxidative cyclization of a tertiary radical. At the outset of these studies, we recognized that this process could be coupled with a short total synthesis of leucomidine C (5), by using the same oxidative addition/cyclization cascade process between olefin 20 and xanthate 21 (Scheme 2). Therefore, the required starting material **20** was prepared by the alkylation of quinazolinone **18** with known tosylate **19**.¹⁷ Next, according to the reaction conditions for the cascade process outlined earlier, DLP (1.5 equiv) was slowly added to olefin **20** in the presence of the methyl acetate derived xanthate **21** (1.5 equiv) in refluxing 1,2-dichloroethane under microwave irradiation. We were pleased to observe that under these conditions (\pm) -leucomidine C (5) was obtained in 68% yield. This process highlights important issues such as the oxidative addition of a tertiary radical to the conjugated system that forged the all-carbon quaternary center,¹⁸ as present in the natural product structure, along with the formation of two new C-C bonds. All spectroscopic data matched those previously reported for the natural product.⁵

In conclusion, an efficient protocol for obtaining fused quinazolinones through an oxidative free-radical cyclization under metal- and tin-free conditions is described. In the first part, we streamlined the oxidative cyclization of various N-3- ω -iodoalkyl derivatives to provide the tricyclic system using dicumyl peroxide as the sole reagent. Under these conditions, the oxidative cyclization process was much more efficient than previously reported with tin reagents. Thus, 5-, 6-, and 7-membered fused quinazolinone analogues, including the natural products deoxyvasicinone (**3**) and mackinazolinone (**4**), were efficiently obtained. We also implemented a xanthate-based oxidative radical cascade addition/cyclization process that allowed the production of new menthol- and testosterone-quinazolinone conjugates, and the first total synthesis of leucomidine C (**5**).

Future studies will expand on this chemistry and explore its usefulness in the synthesis of more complex molecules in order to investigate their biological properties.

The starting materials and solvents were purchased from commercial suppliers and were used without prior purification. Solvents (THF, DMF and DME) were dried using standard procedures. All reactions were performed under an argon atmosphere. The reaction progress was monitored by analytical thin-layer chromatography using GF silica gel plates purchased from Merck. Visualization was achieved under short-wave UV light (254 nm). Column chromatography was performed on Aldrich silica gel (230-400 mesh particle size). Reactions under microwave irradiation were performed using a Microwave Synthesis System - CEM-Discover instrument. Melting points were determined on a Fisher apparatus and are not corrected. ¹H and ¹³C NMR spectra were recorded on Jeol Eclipse-300 MHz and Bruker Avance 500 MHz spectrometers using CDCl₃ as the solvent. Chemical shifts are reported in parts per million (ppm) downfield from tetramethylsilane as the internal standard ($\delta = 0.0$), or from the solvent as a reference (CDCl₃, δ = 7.26 for ¹H; δ = 77.16 for ¹³C). NMR coupling constants are reported in hertz (Hz). Low- and high-resolution DART+ mass spectra were obtained on a Jeol JMS-T100LC spectrometer.

N-Alkyl Iodides 13a-g; General Procedure

To a suspension of NaH (95%, 72.5 mg, 3.02 mmol) in DMF (2 mL) and 1,2-dimethoxyethane (2 mL) was added a solution of the 4-hydroxyquinazolin-4(3H)-one (18) (300 mg, 2.01 mmol) in DME at 0 °C. After 15 min, the reaction mixture was treated with LiBr (357 mg, 4.1 mmol) and stirred for 15 min. The corresponding dihaloalkyl compound (1,3-dibromopropane, 1,4-dibromobutane, 1,4-dibromopentane or 1,4-dibromopentane) (0.2 mL, 2.05 mmol) was then added dropwise. The reaction mixture was stirred at room temperature for 5-6 h and then quenched with ice water. The resulting mixture was extracted with ethyl acetate and the combined organic layer was washed with water and brine, dried over Na2SO4, filtered and concentrated. The residue was used in the next step without further purification. The crude bromide was converted into the corresponding iodide by reaction with sodium iodide (4 equiv) in acetonitrile (30 mL/g bromide) at reflux for 24 h. After cooling, the solution was poured into water and extracted with dichloromethane. The organic layer was washed with saturated aqueous sodium sulfite solution and water, and then dried over Na₂SO₄. The solvent was removed in vacuo and the residue was purified by flash silica gel column chromatography (hexanes/ethyl acetate, 1:1) to provide pure product 13.

3-(3-Iodopropyl)quinazolin-4(3H)-one (13a)

Yield: 395 mg (92%); white solid; mp 95 °C.

¹H NMR (300 MHz, CDCl₃): δ = 8.29 (d, J = 8.0 Hz, 1 H), 8.10 (s, 1 H), 7.74 (dt, J = 14.5, 8.1 Hz, 2 H), 7.51 (t, J = 7.3 Hz, 1 H), 4.11 (t, J = 6.7 Hz, 2 H), 3.18 (t, J = 6.5 Hz, 2 H), 2.32 (quin, J = 6.5 Hz, 2 H).

 ^{13}C NMR (75 MHz, CDCl_3): δ = 161.26, 148.17, 146.56, 134.49, 127.65, 127.54, 126.72, 122.12, 47.55, 32.00, 2.12.

HRMS-DART: m/z [M + H]⁺ calcd for C₁₁H₁₂IN₂O: 314.99943; found: 314.99880.

3-(4-Iodobutyl)quinazolin-4(3H)-one (13b)

Yield: 417 mg (93%); white solid; mp 74 °C.

¹H NMR (300 MHz, CDCl₃): δ = 8.24 (td, *J* = 7.6, 1.7 Hz, 1 H), 7.99 (s, 1 H), 7.75–7.60 (m, 2 H), 7.45 (d, *J* = 6.3 Hz, 1 H), 3.97 (t, *J* = 6.1 Hz, 2 H), 3.15 (t, *J* = 5.2 Hz, 2 H), 1.95–1.77 (m, 4 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 161.06, 148.12, 146.38, 134.34, 127.54, 127.41, 126.72, 122.10, 45.79, 30.46, 30.32, 5.45.

HRMS-DART: m/z [M + H]⁺ calcd for C₁₂H₁₄IN₂O: 329.01508; found: 329.01707.

3-(5-Iodopentyl)quinazolin-4(3H)-one (13c)

Yield: 445 mg (95%); white solid; mp 88 °C.

¹H NMR (300 MHz, $CDCI_3$): δ = 8.24 (td, *J* = 7.7, 2.2 Hz, 1 H), 8.05–7.96 (m, 1 H), 7.66 (tt, *J* = 8.8, 4.7 Hz, 2 H), 7.51–7.39 (m, 1 H), 3.95 (q, *J* = 7.1 Hz, 2 H), 3.19–3.06 (m, 2 H), 1.79 (m, 4 H), 1.56–1.36 (m, 2 H).

 ^{13}C NMR (75 MHz, CDCl_3): δ = 161.05, 148.17, 146.52, 134.26, 127.51, 127.35, 126.70, 122.17, 46.85, 32.84, 28.35, 27.59, 6.40.

HRMS-DART: m/z [M + H]⁺ calcd for C₁₃H₁₆lN₂O: 343.03073; found: 343.02932.

3-(4-lodopentyl)quinazolin-4(3H)-one (13d)

Yield: 315 mg (90%); white solid; mp 91 °C.

¹H NMR (300 MHz, $CDCI_3$): δ = 8.30 (ddd, *J* = 8.0, 1.5, 0.6 Hz, 1 H), 8.03 (s, 1 H), 7.80–7.66 (m, 2 H), 7.50 (ddd, *J* = 8.2, 6.8, 1.5 Hz, 1 H), 4.24–4.09 (m, 1 H), 4.09–3.94 (m, 2 H), 2.03–1.84 (m, 6 H), 1.77–1.64 (m, 1 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 161.14, 148.16, 146.40, 134.37, 127.57, 127.45, 126.79, 122.15, 45.94, 39.54, 29.94, 28.99, 28.47.

HRMS-DART: m/z [M + H]⁺ calcd for C₁₃H₁₆IN₂O: 343.03073; found: 343.03058.

6-Chloro-3-(3-iodopropyl)-8-methylquinazolin-4(3*H*)-one (13e)

Yield: 354 mg (95%); white solid; mp 80 °C.

¹H NMR (300 MHz, CDCl₃): δ = 8.13–8.07 (m, 2 H), 7.55 (dq, *J* = 2.5, 0.9 Hz, 1 H), 4.10 (t, *J* = 6.6 Hz, 2 H), 3.17 (t, *J* = 6.5 Hz, 2 H), 2.57 (s, 3 H), 2.31 (quin, *J* = 6.6 Hz, 2 H).

 ^{13}C NMR (75 MHz, CDCl_3): δ = 160.52, 145.51, 145.36, 138.41, 135.11, 132.71, 123.60, 123.06, 47.55, 31.87, 17.41, 2.20.

HRMS-DART: m/z [M + H]⁺ calcd for C₁₂H₁₃ClIN₂O: 362.97611; found: 362.97599.

6-Chloro-3-(4-iodobutyl)-8-methylquinazolin-4(3H)-one (13f)

Yield: 363 mg (94%); white solid, mp 91 °C.

¹H NMR (300 MHz, CDCl₃): δ = 8.12–8.05 (m, 1 H), 8.00 (s, 1 H), 7.59–7.49 (m, 1 H), 4.00 (t, J = 6.7 Hz, 2 H), 3.19 (t, J = 6.3 Hz, 2 H), 2.55 (s, 3 H), 1.89 (tt, J = 6.6, 2.5 Hz, 4 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 160.43, 145.38, 145.29, 138.33, 135.04, 132.67, 123.71, 123.10, 45.87, 30.39, 30.26, 17.39, 5.33.

HRMS-DART: m/z [M + H]⁺ calcd for C₁₃H₁₅ClIN₂O: 376.99176; found: 376.99139.

6-Chloro-3-(5-iodopentyl)-8-methylquinazolin-4(3*H*)-one (13g)

Yield: 346 mg (96%); white solid, mp 93 °C.

¹H NMR (300 MHz, CDCl₃): δ = 8.14–8.06 (m, 1 H), 8.01 (s, 1 H), 7.53 (t, *J* = 3.3 Hz, 1 H), 3.98 (dd, *J* = 8.8, 5.7 Hz, 2 H), 3.17 (t, *J* = 6.8 Hz, 2 H), 2.56 (s, 3 H), 1.94–1.74 (m, 4 H), 1.59–1.42 (m, 2 H).

¹³C NMR (75 MHz, CDCl₃): δ = 160.44, 145.45, 138.29, 134.99, 132.60, 123.70, 123.18, 100.00, 46.95, 32.84, 28.29, 27.59, 17.40, 6.30.

HRMS-DART: $m/z \ [M + H]^+$ calcd for $C_{14}H_{17}CIIN_2O$: 391.00741; found: 391.00835.

Oxidative-Radical Cyclization on Quinazolinone Systems; General Procedure

In a round-bottomed flask, the alkyl iodide derivative 13a-g (100 mg, 0.31 mmol) was dissolved in degassed chlorobenzene (2.2 mL) and heated to reflux. Dicumyl peroxide (DCP) (129 mg, 0.47 mmol) was added in portions (0.3 equiv/1 h) under an N₂ atmosphere for 5 h. After consumption of the starting material, the reaction mixture was then allowed to cool to room temperature and the solvent was evaporated in vacuo. The residue was purified by flash column chromatography (n-hexane/EtOAc, 7:3) to afford the products **2**, **4** and **14c-g**.

Deoxyvasicinone (2)

Yield: 47 mg (80%); yellow solid; mp 110 °C.

¹H NMR (300 MHz, CDCl₃): δ = 8.35-8.25 (m, 1 H), 7.77-7.68 (m, 1 H), 7.64 (ddd, J = 8.2, 1.3, 0.6 Hz, 1 H), 7.44 (ddd, J = 8.1, 7.0, 1.3 Hz, 1 H), 4.29-4.15 (m, 2 H), 3.18 (t, J = 8.0 Hz, 2 H), 2.36-2.21 (m, 2 H).

 ^{13}C NMR (75 MHz, CDCl_3): δ = 161.07, 159.54, 149.19, 134.25, 126.85, 126.44, 126.31, 120.53, 46.58, 32.59, 19.58.

HRMS-DART: m/z [M + H]⁺ calcd for C₁₁H₁₁N₂O: 187.08714; found: 187.08788.

Mackinazolinone (4)

Yield: 50 mg (83%); yellow solid; mp 100 °C.

¹H NMR (300 MHz, CDCl₃): δ = 8.24 (dd, *J* = 7.9, 1.6 Hz, 1 H), 7.70 (ddt, *J* = 9.7, 7.0, 1.4 Hz, 1 H), 7.61–7.55 (m, 1 H), 7.45–7.37 (m, 1 H), 4.06 (t, *J* = 6.1 Hz, 2 H), 2.99 (t, *J* = 6.5 Hz, 2 H), 2.10–1.83 (m, 4 H).

 ^{13}C NMR (75 MHz, CDCl_3): δ = 162.28, 154.97, 147.50, 134.27, 126.73, 126.48, 126.17, 120.52, 42.42, 32.03, 22.20, 19.42.

HRMS-DART: m/z [M + H]⁺ calcd for C₁₂H₁₃N₂O: 201.10279; found: 201.10270.

7,8,9,10-Tetrahydroazepino[2,1-b]quinazolin-12(6H)-one (14c)

Yield: 49 mg (79%); yellow solid; mp 95 °C.

¹H NMR (300 MHz, CDCl₃): δ = 8.29–8.23 (m, 1 H), 7.71 (ddd, *J* = 8.4, 7.1, 1.5 Hz, 1 H), 7.65–7.58 (m, 1 H), 7.43 (ddd, *J* = 8.1, 7.1, 1.3 Hz, 1 H), 4.45–4.35 (m, 2 H), 3.13–3.03 (m, 2 H), 1.86 (dd, *J* = 12.2, 7.7 Hz, 6 H).

¹³C NMR (75 MHz, CDCl₃): δ = 162.04, 159.83, 147.50, 134.25, 127.12, 126.85, 126.48, 120.33, 42.97, 37.81, 29.66, 28.18, 25.51.

HRMS-DART: m/z [M + H]⁺ calcd for C₁₃H₁₅N₂O: 215.11844; found: 215.11841.

6-Methyl-6,7,8,9-tetrahydro-11*H*-pyrido[2,1-*b*]quinazolin-11-one (14d)

Yield: 49 mg (79%); yellow solid; mp 89 °C.

¹H NMR (300 MHz, CDCl₃): δ = 8.24 (d, J = 8.0 Hz, 1 H), 7.74–7.59 (m, 2 H), 7.45–7.36 (m, 1 H), 4.27 (dt, J = 14.1, 5.9 Hz, 1 H), 3.90 (ddd, J = 13.4, 7.4, 5.8 Hz, 1 H), 3.03 (dt, J = 8.7, 6.7 Hz, 1 H), 2.16–1.92 (m, 3 H), 1.68–1.57 (m, 1 H), 1.48 (d, J = 7.0 Hz, 3 H).

 ^{13}C NMR (75 MHz, CDCl_3): δ = 162.36, 158.58, 147.53, 134.12, 126.81, 126.67, 126.16, 120.26, 42.25, 35.56, 27.69, 20.24, 19.61.

HRMS-DART: m/z [M + H]⁺ calcd for C₁₃H₁₅N₂O: 215.11844; found: 215.11941.

Paper

J. García-Ramírez, L. D. Miranda

7-Chloro-5-methyl-2,3-dihydropyrrolo[2,1-*b*]quinazolin-9(1*H*)-one (14e)

Yield: 57 mg (89%); yellow solid; mp 81 °C.

¹H NMR (300 MHz, CDCl₃): δ = 8.04 (d, J = 2.5 Hz, 1 H), 7.48 (d, J = 2.5 Hz, 1 H), 4.17 (t, J = 7.3 Hz, 2 H), 3.16 (t, J = 8.0 Hz, 2 H), 2.54 (s, 3 H), 2.27 (quin, J = 7.8 Hz, 2 H).

 ^{13}C NMR (75 MHz, CDCl_3): δ = 160.39, 158.60, 146.57, 137.61, 134.81, 131.28, 123.35, 121.54, 46.58, 32.70, 19.66, 17.69.

HRMS-DART: $m/z [M + H]^+$ calcd for $C_{12}H_{12}CIN_2O$: 235.06382; found: 235.06408.

2-Chloro-4-methyl-6,7,8,9-tetrahydro-11*H*-pyrido-[2,1-*b*]quinazolin-11-one (14f)

Yield: 61 mg (93%); yellow solid; mp 84 °C.

¹H NMR (300 MHz, CDCl₃): δ = 8.08 (d, J = 2.5 Hz, 1 H), 7.51 (dd, J = 2.5, 0.8 Hz, 1 H), 4.08 (t, J = 6.3 Hz, 2 H), 3.01 (t, J = 6.7 Hz, 2 H), 2.57 (s, 3 H), 2.08–1.91 (m, 4 H).

 ^{13}C NMR (75 MHz, CDCl_3): δ = 161.61, 153.82, 144.74, 137.35, 134.65, 130.97, 123.43, 121.32, 42.41, 32.12, 22.10, 19.35, 17.15.

HRMS-DART: $m/z [M + H]^+$ calcd for $C_{13}H_{14}ClN_2O$: 249.07947; found: 249.07925.

2-Chloro-4-methyl-7,8,9,10-tetrahydroazepino[2,1-*b*]quinazolin-12(6*H*)-one (14g)

Yield: 60 mg (90%); yellow solid; mp 89 °C.

¹H NMR (300 MHz, CDCl₃): δ = 8.01–7.97 (m, 1 H), 7.45–7.35 (m, 1 H), 4.33–4.25 (m, 2 H), 3.02–2.98 (m, 2 H), 2.48 (s, 3 H), 1.83–1.70 (m, 6 H).

¹³C NMR (75 MHz, CDCl₃): δ = 161.42, 158.55, 144.71, 137.74, 134.64, 131.31, 123.82, 121.19, 43.08, 37.87, 29.62, 28.10, 25.53, 17.08.

HRMS-DART: m/z [M + H]⁺ calcd for C₁₄H₁₆ClN₂O: 263.09512; found: 263.09506.

N-Alkylation of 3H-Quinzolin-4-ones; General Procedure

To a suspension of NaH (95%, 72.5 mg, 3.02 mmol) in DMF (2 mL) and 1,2-dimethoxyethane (2 mL) was added a solution of 4-hydroxyquinazolin-4(*3H*)-one (**18**) (300 mg, 2.01 mmol) in DME at 0 °C. After 15 min, the reaction mixture was treated with LiBr (357 mg, 4.1 mmol) and stirred for 15 min, then 5-bromo-1-pentene (95%, 0.42 ml, 2.25 mmol) or tosylate **19** (0.26 mL, 2.26 mmol) was added dropwise. The reaction mixture was stirred at room temperature for 5–6 h and then quenched with ice water. The resulting mixture was extracted with ethyl acetate, and the organic layer was separated, washed with water and brine, dried over Na₂SO₄, filtered and concentrated. The product was purified by flash silica gel column chromatography (hexanes/EtOAc, 1:1) to provide pure *N*-alkylated products.

3-(Pent-4-en-1-yl)quinazolin-4(3H)-one (15)

Yield: 405 mg (92%); white solid; mp 70-71 °C.

¹H NMR (300 MHz, CDCl₃): δ = 8.34–8.27 (m, 1 H), 8.00 (s, 1 H), 7.78–7.66 (m, 2 H), 7.54–7.45 (m, 1 H), 5.80 (ddtd, *J* = 16.9, 10.3, 6.6, 0.9 Hz, 1 H), 5.14–4.99 (m, 2 H), 3.99 (t, *J* = 7.3 Hz, 2 H), 2.14 (q, *J* = 7.0 Hz, 2 H), 1.90 (quin, *J* = 7.3 Hz, 2 H).

 ^{13}C NMR (75 MHz, CDCl_3): δ = 161.17, 148.21, 146.68, 136.95, 134.25, 127.52, 127.34, 126.76, 122.26, 116.10, 46.56, 30.65, 28.23.

HRMS-DART: $m/z \ [M + H]^+$ calcd for $C_{13}H_{15}N_2O$: 215.11844; found: 215.11884.

3-(4-Methylenehexyl)quinazolin-4(3H)-one (20)

Yield: 372 mg (90%); yellow oil.

¹H NMR (300 MHz, CDCl₃): δ = 8.31 (ddd, *J* = 8.0, 1.4, 0.6 Hz, 1 H), 8.02 (s, 1 H), 7.81–7.66 (m, 2 H), 7.51 (ddd, *J* = 8.1, 6.8, 1.6 Hz, 1 H), 4.94–4.61 (m, 2 H), 4.15–3.94 (m, 2 H), 2.17–1.93 (m, 6 H), 1.03 (t, *J* = 7.4 Hz, 3 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 161.19, 149.58, 148.22, 146.76, 134.27, 127.52, 127.36, 126.78, 122.28, 108.92, 46.91, 33.11, 28.69, 27.09, 12.40.

HRMS-DART: m/z [M + H]⁺ calcd for C₁₅H₁₉N₂O: 243.14974; found: 243.14898.

Radical Cascades; General Procedure

A solution of quinazolinone **15** or **20** (50 mg, 0.23 mmol), xanthate **16** or **21** (73 mg, 0.35 mmol), dilauroyl peroxide (DLP) (30 mg, 0.07 mmol) in degassed 1,2-dichloroethane (1.1 mL) was heated in a sealed vial at 85 °C under microwave irradiation (100 W) for 15 min under and argon atmosphere, and then DLP (0.3 equiv) was added every 15 min five times. The reaction mixture was cooled to room temperature and diluted with dichloromethane. The resulting mixture was washed with water and brine. The organic layer was separated, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography (n-hexane/EtOAc, 7:3) to afford the products **17a–d** and **5**.

Ethyl 3-(11-Oxo-6,8,9,11-tetrahydro-7*H*-pyrido[2,1-*b*]quinazolin-6-yl)propanoate (17a)

Yield: 48 mg (68%); yellow oil.

¹H NMR (300 MHz, CDCl₃): δ = 8.23 (ddd, *J* = 8.0, 1.6, 0.7 Hz, 1 H), 7.72–7.66 (m, 1 H), 7.61 (ddd, *J* = 8.2, 1.3, 0.6 Hz, 1 H), 7.44–7.37 (m, 1 H), 4.31–4.22 (m, 1 H), 4.14–4.03 (m, 2 H), 3.97–3.86 (m, 1 H), 2.95–2.89 (m, 1 H), 2.60–2.53 (m, 2 H), 2.48–2.36 (m, 1 H), 2.05–1.93 (m, 4 H), 1.68–1.60 (m, 1 H), (t, *J* = 7.2 Hz, 3 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 173.55, 162.25, 156.96, 147.33, 134.10, 126.99, 126.66, 126.29, 120.34, 60.53, 41.60, 39.70, 32.16, 28.36, 25.13, 20.27, 14.31.

HRMS-DART: m/z [M + H]⁺ calcd for C₁₇H₂₁N₂O₃: 301.15522; found: 301.15512.

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl 3-(11-Oxo-6,8,9,11tetrahydro-7H-pyrido[2,1-b]quinazolin-6-yl)propanoate (17b)

Yield: 75 mg (65%); yellow oil; dr = 1:1.

¹H NMR (500 MHz, $CDCl_3$): $\delta = 8.25$ (d, J = 8.0 Hz, 1 H), 7.70 (t, J = 7.6 Hz, 1 H), 7.62 (d, J = 8.1 Hz, 1 H), 7.41 (t, J = 7.5 Hz, 1 H), 4.68 (qd, J = 10.8, 4.4 Hz, 1 H), 4.27 (dq, J = 17.1, 5.6 Hz, 1 H), 3.92 (td, J = 13.9, 6.0 Hz, 1 H), 2.99–2.85 (m, 1 H), 2.56 (t, J = 7.4 Hz, 2 H), 2.46 (dq, J = 13.9, 6.5 Hz, 1 H), 2.13 (dq, J = 13.0, 6.4 Hz, 1 H), 2.04–1.92 (m, 4 H), 1.86 (ddq, J = 13.5, 6.7, 3.4, 2.5 Hz, 1 H), 1.66 (ddt, J = 13.2, 10.3, 4.6 Hz, 3 H), 1.47 (dddt, J = 15.4, 9.9, 6.6, 3.4 Hz, 1 H), 1.36 (ddt, J = 14.7, 6.6, 3.2 Hz, 1 H), 1.04 (dddd, J = 18.5, 14.7, 9.9, 5.4 Hz, 1 H), 0.98–0.91 (m, 1 H), 0.91–0.86 (m, 7 H), 0.75 (t, J = 7.1 Hz, 3 H).

 ^{13}C NMR (125 MHz, CDCl₃): δ = 173.14, 162.29, 157.03, 147.44, 134.12, 127.08, 126.70, 126.31, 120.40, 74.37, 47.14, 41.62, 41.05, 39.77, 34.36, 32.52, 31.49, 28.44, 26.40, 25.11, 23.56, 22.14, 20.89, 20.33, 16.48.

HRMS-DART: $m/z \ [M + H]^+$ calcd for $C_{25}H_{35}N_2O_3$: 411.26477; found: 411.26551.

Paper
(8R,9*S*,10R,13*S*,14*S*,17*S*)-10,13-Dimethyl-3-oxo-2,3,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-17-yl 3-(11-Oxo-6,8,9,11-tetrahydro-7*H*-pyrido[2,1-*b*]quinazolin-6-yl)propanoate (17c)

Yield: 84 mg (55%); yellow oil; dr = 1:1.

¹H NMR (500 MHz, CDCl₃): δ = 8.24 (d, *J* = 8.0 Hz, 1 H), 7.69 (t, *J* = 7.6 Hz, 1 H), 7.61 (d, *J* = 8.2 Hz, 1 H), 7.41 (t, *J* = 7.5 Hz, 1 H), 5.71 (s, 1 H), 4.60 (t, *J* = 8.4 Hz, 1 H), 4.31–4.21 (m, 1 H), 3.96–3.87 (m, 1 H), 2.92 (quin, *J* = 6.7 Hz, 1 H), 2.58 (t, *J* = 7.5 Hz, 2 H), 2.46–2.25 (m, 5 H), 2.19–2.09 (m, 2 H), 1.99 (dd, *J* = 14.5, 8.6 Hz, 4 H), 1.85–1.75 (m, 2 H), 1.68–1.48 (m, 6 H), 1.36 (ddd, *J* = 25.0, 12.6, 4.8 Hz, 2 H), 1.17 (m, 4 H), 1.04 (m, 2 H), 0.95–0.89 (m, 1 H), 0.83 (s, 3 H).

 ^{13}C NMR (125 MHz, CDCl₃): δ = 199.58, 173.53, 171.07, 162.25, 156.96, 147.38, 134.11, 127.01, 126.69, 126.30, 124.04, 120.37, 82.60, 53.75, 50.29, 42.61, 41.64, 39.73, 38.68, 36.74, 35.77, 35.46, 34.01, 32.81, 32.29, 31.55, 28.44, 27.61, 25.11, 23.57, 20.60, 20.30, 17.47, 12.20.

HRMS-DART: m/z [M + H]⁺ calcd for C₃₄H₄₃N₂O₄: 543.32228; found: 543.32199.

3-(11-Oxo-6,8,9,11-tetrahydro-7*H*-pyrido[2,1-*b*]quinazolin-6-yl)propanenitrile (17d)

Yield: 47 mg (66%); yellow oil.

¹H NMR (300 MHz, CDCl₃): δ = 8.27 (dt, *J* = 8.0, 1.6 Hz, 1 H), 7.73 (ddt, *J* = 8.4, 7.1, 1.5 Hz, 1 H), 7.68–7.59 (m, 1 H), 7.45 (ddt, *J* = 8.2, 7.0, 1.4 Hz, 1 H), 4.42 (dtd, *J* = 13.9, 6.0, 1.5 Hz, 1 H), 3.94–3.78 (m, 1 H), 3.05–2.90 (m, 1 H), 2.91–2.69 (m, 2 H), 2.56–2.45 (m, 1 H), 2.20 (dq, *J* = 12.9, 6.5 Hz, 1 H), 2.09–1.96 (m, 3 H), 1.69–1.59 (m, 1 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 161.91, 155.96, 147.07, 134.25, 127.03, 126.77, 126.60, 120.45, 119.86, 41.02, 38.84, 28.70, 25.55, 20.61, 15.77.

HRMS-DART: m/z [M + H]⁺ calcd for C₁₅H₁₆N₃O: 254.12934; found: 254.13002.

(±)-Leucomidine C(5)

Yield: 44 mg (68%); yellow amorphous solid.

¹H NMR (300 MHz, CDCl₃): δ = 8.23 (ddd, *J* = 8.1, 1.6, 0.7 Hz, 1 H), 7.69 (ddd, *J* = 8.4, 7.0, 1.6 Hz, 1 H), 7.60 (ddd, *J* = 8.2, 1.4, 0.7 Hz, 1 H), 7.48–7.37 (m, 1 H), 4.15–3.93 (m, 2 H), 3.53 (s, 3 H), 2.50–2.40 (m, 1 H), 2.36–2.21 (m, 2 H), 2.08–1.89 (m, 5 H), 1.76 (dd, *J* = 13.7, 7.1 Hz, 2 H), 0.86 (t, *J* = 7.4 Hz, 3 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 174.18, 162.85, 158.80, 147.33, 134.02, 127.25, 126.53, 126.27, 119.95, 51.72, 43.81, 43.70, 34.94, 33.28, 29.55, 28.89, 19.10, 8.61.

HRMS-DART: m/z [M + H]⁺ calcd for C₁₈H₂₃N₂O₃: 315.17087; found: 315.17077.

Funding Information

Financial support from Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica-Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (PAPIIT-DGAPA) (Project IN208719) is gratefully acknowledged. JG-R thanks the Consejo Nacional de Ciencia y Tecnología (CONACYT) for a Ph.D. scholarship (No. 577203).

Acknowledgment

1477

We thank R. Patiño, A. Peña, E. Huerta, I. Chávez, H. Ríos, R. Gaviño, B. Quiroz, Ma. C. García-González, L. Velasco and J. Pérez for technical support.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1705975.

References

- (a) Michael, J. P. Nat. Prod. Rep. 2004, 21, 650. (b) Kshirsagar, U. A. Org. Biomol. Chem. 2015, 13, 9336.
- (2) For reviews, see: (a) Han, Y. Y.; Jiang, H.; Wang, R. Z.; Yu, S. Y. J. Org. Chem. 2016, 81, 7276. (b) Tiwary, B. K.; Pradhan, K.; Nanda, A. K.; Chakraborty, R. J. Chem. Biol. Ther. 2016, 1, 104. (c) Selvam, T. P.; Kumar, P. V. Res. Pharm. 2011, 1, 1.
- (3) (a) Amin, A. H.; Mehta, D. R. *Nature* 1959, *184*, 1317. (b) Mehta, D. R.; Naravane, J. S.; Desai, R. M. *J. Org. Chem.* 1963, *28*, 445. (c) Ghosal, S.; Chauhan, P. B. P. S.; Mehta, R. *Phytochemistry* 1975, *14*, 830.
- (4) (a) Liljegren, D. R. Phytochemistry 1968, 7, 1299. (b) Al-Shamma,
 A.; Drake, S.; Flynn, D. L.; Mitscher, L. A.; Park, Y. H.; Rao, G. S. R.;
 Wu, S. T.-S. J. Nat. Prod. 1981, 44, 745. (c) Johns, S. R.;
 Lamberton, J. A. Chem. Commun. 1965, 12, 267a.
- (5) Motegi, M.; Nugroho, A. E.; Hirasawa, Y.; Arai, T.; Hadi, A. H. A.; Morita, H. *Tetrahedron Lett.* **2012**, 53, 1227.
- (6) For reviews, see: (a) Rohokale, R. S.; Kshirsagar, U. A. Synthesis
 2016, 48, 1253. (b) Khan, I.; Zaib, S.; Batool, S.; Abbas, N.; Ashraf, Z.; Iqbal, J.; Saeed, A. Bioorg. Med. Chem. **2016**, 24, 2361.
- (7) For selected recent publications, see: (a) Larraufie, M. H.; Courillon, C.; Ollivier, C.; Lacôte, E.; Malacria, M.; Fensterbank, L. J. Am. Chem. Soc. 2010, 132, 4381. (b) Larraufie, M. H.; Malacria, M.; Courillon, C.; Ollivier, C.; Fensterbank, L.; Lacôte, E. Tetrahedron 2013, 69, 7699. (c) Xu, G.; Tong, C.; Cui, S.; Dai, L. Org. Biomol. Chem. 2018, 16, 5899. (d) Baguia, H.; Deldaele, C.; Romero, E.; Michelet, B.; Evano, G. Synthesis 2018, 50, 3022.
- (8) For a review, see: Ghosh, P.; Ganguly, B.; Das, S. Org. Biomol. Chem. 2020, 18, 4497.
- (9) Molander, G. A.; Colombel, V.; Braz, V. A. Org. Lett. 2011, 13, 1852.
- (10) Bowman, W. R.; Elsegood, M. R. J.; Stein, T.; Weaver, G. W. Org. *Biomol. Chem.* **2007**, *5*, 103.
- (11) Mahajan, P. S.; Mhaske, S. B. Org. Lett. 2018, 20, 2092.
- (12) Huang, H. M.; Adams, R. W.; Procter, D. J. Chem. Commun. 2018, 54, 10160.
- (13) Menes, M.; Martínez, R.; Cruz, R.; Muchowski, J. M.; Osornio, Y. M.; Miranda, L. D. J. Org. Chem. 2004, 69, 4001.
- (14) For selected examples, see: (a) Zard, S. Z. Acc. Chem. Res. 2018, 51, 1722. (b) Blechy, A.; Zard, S. Z. Org. Lett. 2009, 11, 2800. (c) Huang, Q.; Zard, S. Z. Org. Lett. 2018, 20, 5304. (d) Paleo, E.; Osornio, Y. M.; Miranda, L. D. Org. Biomol. Chem. 2011, 9, 361. (e) Osornio, Y. M.; Miranda, L. D. Rev. Soc. Quím. Méx. 2004, 48, 288.
- (15) Quiclet-Sire, B.; Zard, S. Z. Synlett 2016, 27, 680.
- (16) López, P.; Díaz, J. E.; Loaiza, A. E.; Miranda, L. D. Tetrahedron 2018, 74, 5494.
- (17) Banwell, M. G.; Edwards, A. J.; Jolliffe, K. A.; Smith, J. A.; Hamel, E.; Verdier, P. Org. *Biomol. Chem.* **2003**, *1*, 296.
- (18) Quiclet-Sire, B.; Zard, S. Z. Sci. China Chem. 2019, 62, 1450.