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RESUMEN 

En la presente tesis doctoral se desarrolla un novedoso modelo matemático puntual 

de orden fraccional para el estudio y análisis simultáneo de los procesos de transporte de 

calor y neutrones en reactores nucleares. Con el fin de lograrlo, el primer paso fue llevar a 

cabo una revisión literaria exhaustiva, la cual se realizó hasta la conclusión del presente 

trabajo. Lo siguiente, fue el desarrollo del modelo de la cinética neutrónica puntual fraccional 

de tiempo-espacio (TSFNPK por sus siglas en inglés), el cual considera dos exponentes de 

difusión anómalos (dos exponentes distintos de orden fraccional), uno que incluye estados 

de la memoria pasados (memoria de tiempo no local); y el otro, efectos de memoria 

espaciales (memoria espacial local). Adicionalmente se exploran métodos de solución, 

encontrando que el método de Edwards et al. (2002) tiene la mejor aproximación de solución 

para la ecuación diferencial de orden fraccional presentada. El modelo fue evaluado para 

obtener los intervalos en los que los exponentes de difusión fraccional producen los 

resultados más cercanos a los datos comparados. Al final, el acoplamiento del modelo 

TSFNPK se llevó a cabo en un código numérico de un Reactor de Agua Supercrítica 

(SCWR), se comparó con datos de la literatura y se encontraron resultados similares. 

 

 

 

 

 

  



 

 

ABSTRACT 

In this PhD thesis is presented a novel zero-dimensional mathematical model of 

fractional order for the analysis and study of the simultaneous heat and neutron transport 

processes in nuclear power reactors. In order to achieve this, the first step was to perform an 

extensive literature review, which was carried out until the fulfillment of the thesis. 

Following, a Time-Space Fractional Neutron Point Kinetics (TSFNPK) mathematical model 

was derived, which considers two-anomalous diffusion exponents (two different exponents 

of fractional order), one which includes memory past states (non-local time memory) and the 

other, space memory effects (local space memory); additionally, solution methods were 

explored, the Edwards et al. (2002) method was found to be the best solution approach for 

the present fractional differential equation. The model was assessed in order to obtain the 

intervals in which the fractional diffusion exponents yielded the results closest to compared 

data. At the end, the coupling of the developed TSFNPK model was accomplished in a 

Supercritical Water Reactor (SCWR) numerical code, results were compared to those of 

literature finding close agreement to some of them.  
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NOMENCLATURE 

 

fA    Flow area     2m 
 

 

2
gB    Geometric buckling    2m− 

 
 

1k
gB +    Fractional geometric buckling  ( )1

m
− + 

  
 

Cp    Heat capacity     2 2 1kgm s K− − 
 

 

mD    Mass transfer diffusion coefficient  2cm /s 
 

 

nD    Neutron diffusion coefficient    cm  

thD    Thermal diffusivity    2m / s 
 

  

f    Friction factor     Dimensionless 

( )F z    Axial power factor    Dimensionless 

G    Mass flux     2kg/m s 
 

 

H    Convective heat transfer coefficient  2W/ m K 
 

 

k    Thermal conductivity    1 1Wm K− − 
 

 

effk    Effective multiplication factor  Dimensionless 

k    Infinite multiplication factor   Dimensionless 

n    Neutron density 

l    Neutron lifetime     s  

   Characteristic length     cm  

L    Neutron difussion length    cm  



aL    Characteristic length of the system   cm  

HP    Heated perimeter     m  

P    Neutronic power     

0P    Nominal power     

NLP    Non-leakage probability   Dimensionless 

q    Heat flux vector    2Wm− 
 

 

q    Internal heat generation   1W s− 
 

 

S    Neutron source    3 1cm s− − 
 

 

t    Time       s  

T    Temperature      K  

fV    Fuel volumen     3m 
 

 

w    Thermal propagation velocity  1ms− 
 

 

 

 

Greek letters and Special Characters 

 

J    Diffusion flux     2 1molm s− − 
 

 

nJ    Neutron current density   2 1cm s− − 
 

 

a    Macroscopic absorption cross section 
1cm− 

 
 

f    Macroscopic fission cross-section  
1cm− 

 
 

tr    Macroscopic transfer cross-section  
1cm− 

 
 



    Neutron flux     2 1cm s− − 
 

 

    Neutron velocity    1cms− 
 

 

    Mean number of fission neutrons  Dimensionless 

    Fraction of delayed neutrons   Dimensionless 

    Neutron leakage    Dimensionless 

m    Density     3kgm 
 

 

n    Reactivity     Dimensionless 

0    Relaxation time     s  

    Fractional relaxation time   Dimensionless 

    Decay constant    1s− 
 

 

    Neutron generation time    s  

 

 

Subindexes and Superindexes 

    Time dependent fractional diffusion exponent or related 

    Space dependent fractional diffusion exponent or related 

w    Wall 

b    Bulk 

n    Nuclear related 

m    Mass related 

 

Mathematical Operators and Functions 

 

    Gamma function 

B    Beta function 



1/2B̂    Square root of the matrix 

D    Fractional time derivative 

tD    Caputo fractional derivative 

Erf    Error function  

Erfc    Complementary error function 

E    Mittag-Leffler function 

tE    Mellin-Ross function  

r    Cylindrical radial coordinate  

W    Wiener process 

    Gradient operator 

 

 

Acronyms 

 

2EFPKE  Two Energy Groups Fractional Point Kinetics Equations 

ADE   Anomalous Diffusion Exponent 

ANN   Artificial Neural Network 

ATWS   Anticipated Transient Without SCRAM 

BWR   Boiling Water Reactor 

CFNPK  Corrected Fractional Neutron Point Kinetics 

EFDM   Explicit Finite Difference Method 

EFNPK  Extended Fractional Neutron Point Kinetics 

FDE   Fractional Differential Equations 

FPID   Fractional Proportional Integral Derivative 

F-ROM  Fractional Reduced Order Model 

F-SNPK  Fractional-Space Neutron Point Kinetics 

FNPK   Fractional Neutron Point Kinetics 



IAEA   International Atomic Energy Agency 

MCNP   Monte Carlo N-Particle Transport Code 

NFDE   Spatial-Fractional Diffusion Equation 

NPP   Nuclear Power Plant 

NSFDM  Nonstandard Finite Difference Method 

PID   Proportional Integral Derivative 

QBS   Quintic B-Spline 

ROIOSMC  Reduced-Order Integer-Order Sliding Mode Controller 

ROFOSMC  Reduced-Order Fractional-Order Sliding Mode Controller 

SCWR   Supercritical-Water-Cooled Reactor 

SFDM   Standard Finite Difference Method 

TFTE   Time Fractional Telegraph Equation 

TSFNPK  Time-Space Fractional Neutron Point Kinetics 

 

 

  



 

 

1. INTRODUCTION 

The transport phenomena and neutron point kinetics models are usually presented as 

positive integer Partial Differential Equations; however, since 1695, when L’Hopital 

addressed a letter to Leibniz inquiring the result when y is not an integer, fractional calculus, 

Fractional Differential Equations (FDE) or Differentiation and Integration to an arbitrary 

order has been studied. These studies have been applied in several areas in the last 30 years 

(physics, signal processing, fluid mechanics, viscoelasticity, mathematical biology, 

electrochemistry, among others), but not in nuclear technology until recent years (Debnath, 

2003). These fractional derivatives provide (it has been proved in other areas) exceptional 

description of memory and hereditary properties of materials and different processes such as, 

but not limited to diffusion; compared to classical models where these properties are 

neglected, especially in dynamical systems. The paradigm of having a simple mathematical 

model that can predict energy and neutron transport in a highly absorbent and heterogeneous 

medium, such as in a Nuclear Reactor core, could be solved with FDE.  

In the energy and mass transport phenomena, the molecular transport mechanism is 

described as a constitutive equation with the form,  

m mD = − J      (1.1) 

where J  is the diffusion flux, D  is the diffusion coefficient which represents a scale 

parameter among the molecular behavior and the continuum hypothesis, and   is the flux 

driving force. 



Analogously, for mass transport, the concentration gradient is the driving force of the 

flux, and for energy transport, the temperature gradient. The energy balance equation in 

transitory regimen of a nuclear fuel with energy source by volume unit can be expressed as,  

m
T

Cp q q
t




+  =


     (1.2) 

where m  is the density and Cp  is the heat capacity, T  is the temperature, t  is the time, q  

is the heat flux vector, and q  is the internal heat generation. The constitutive equation 

analogously with Eq. (1.1) is q k T= −  , where k  is the thermal conductivity; when 

substituted to Eq. (1.2), yields, 

2
m

T
Cp k T q

t



−  =


     (1.3) 

In the classical diffusion theory, the Fourier’s Law of heat conduction describes the 

relation among the heat flux and the temperature gradient, and considers that the heat 

propagation velocity is infinite, due that the propagation time is zero. When heat transfer 

includes events of extremely high temperature gradients, extremely high heat fluxes or an 

extremely short transitory length, the heat propagation velocity is finite, and the heat flux 

conduction is propagative, not diffusive. Especially in highly unstable situations the 

parabolic heat conduction equation fails. In such situations the Fourier’s Law fails 

(Lewandowska and Malinowski, 2006), this yields to paradoxical results. Therefore, in 

literature numerous attempts of formulate a new model exists (Joseph and Preziosi, 1989, 

1990; Ozisik and Tzou, 1994; Tzou, 1997). Nowadays, the most used is the heat conduction 

hyperbolic model introduced by Vernotte (1958) and Cattaneo (1958), independently, 

0
q

q k T
t




+ = − 


      (1.4) 



where 0  is a relaxation time. This model, which contains, memory effects, is widely 

accepted due to its simplicity and efficacy. If, we substitute (1.4) in (1.2), yields, 

2
2

0 02m m
m

T T k q
Cp Cp T q

t Cp tt
   



    
+ −  = + + 

    

   (1.5) 

The resulting governing equation has a hyperbolic nature, with the relaxation time, 

and it is known as the non-Fourier heat conduction equation; it can be associated with the 

telegraph equation, where the thermal propagation velocity is given by, 

0

thD
w


= ,  ;  th

k
D

Cp
=     (1.6) 

where thD  is the thermal diffusivity. If 0 0 = , which is the parabolic Fourier’s equation, Eq. 

(1.6) results in the infinite paradox velocity. The non-Fourier effect is more attractive in 

engineering practical problems such as conduction in heterogeneous systems, fast heat 

processes and slow conduction processes. Recently, numerous heat conduction non-Fourier 

problems have been investigated, such as, the problem of the thermal resistance at the 

interfase by Lor and Chu (2000); reaction heat conduction in the solid phase by Antaki 

(1998); and non-Fourier heat conduction in a finite media under superficial heating under 

impulses by Araki (2000). 

In nuclear reactor applications the term 
2

0 2

T

t





 in the nuclear fuel has effects that 

could be important in the safety transient analysis which translates in power excursion peaks 

as well as turbine trip, or isolation of the steam lines, while the physical interpretation of the 

term 0 q

Cp t








 suggests that it exists a heat transfer effect due to a rapid change in the source 



term, i.e., neutron power affected by changes in the reactivity, mainly by Doppler and void 

fraction effects. 

In the present thesis, the aim is to develop a heat transfer and neutron flux coupled model to 

describe all typical and atypical transients in BWRs. The specific objectives are listed as 

follows. 1. A thorough literature review to know the state-of-the-art of fractional calculus 

applied to the analysis of nuclear reactors. 2. From the derivation of a Fractional Neutron 

Diffusion Equation Model (FNDEM), obtaining a TSFNPK model, proposing analytical and 

numerical solutions, evaluate such model performing numerical experiments with different 

diffusion exponents of fractional order. 3. Deriving a TSFNPK model with temperature 

feedback effects, proposing numerical solutions and evaluating it with numerical 

experiments with different diffusion exponents of fractional order. 3. Comparing the results 

with classical transport theory and literature data. 4. Finally, the numerical coupling of the 

TSFNPK with the thermal hydraulics of a SCWR is presented.  

The proposed fractional non-Fourier constitutive equation is, 

q
q k T

t








+ = − 


      (1.7) 

where   is the time dependent fractional diffusion exponent, 0 1   for subdiffusive 

processes; 1 2   superdifussive processes; and 1 =  for normal diffusion. This fractional 

order constitutive equation is a generalization of Vernotte-Cattaneo (1958), when substituted 

in Eq. (1.5), the fractional order heat conduction equation is obtained, or more commonly, 

the fractional order telegraph equation, 

1

1
2

m m
m

T T k q
Cp Cp T q

t Cp tt


 
 


   

+

+   
+ −  = +

 

    (1.8) 



In most applications, the proposed fractional equation is of the form, 2T
D T

t






= 


 

(e.g., Dzieliński et al., 2010; Sierociuk et al., 2013; Xiaojun y Baleanu, 2013), where Eq. 

(1.8) is not included in an implicit form, therefore without source term. In nuclear reactors 

the fractional modeling has been applied to determine the temperature fields in a Pebble 

nuclear fuel, which is highly heterogeneous (Espinosa-Paredes et al., 2014a). However, the 

implementation of these type of modeling is almost null in the nuclear field, being of great 

importance due that the irradiated fuels present irregularities in the geometry and microscopic 

cracks, where fractional order models have a huge field of application.  



 

2. FRACTIONAL CALCULUS IN ENGENEERING 

Almost all theory regarding fractional calculus was developed more than a century 

ago, however it was in the 21st century that most engineering applications were developed, 

this, in order to meet the requirements of the physical phenomena. 

 Complementary formulation is presented, due that this project is not of 

calculus/mathematical nature, but it is being used as an advanced tool in order to accomplish 

the objectives (Kimeu, 2009; Loverro, 2004). 

 

2.1 Essential Functions 

Before pushing into more deep concepts, such as the Riemann-Liouville and 

Grunwald-Letnikov definitions, it is essential to introduce other simpler mathematical 

definitions, the Gamma Function, the Betta Function, the error function, and the Mittag-

Leffler Function. (Miller and Ross, 1993; Oldham and Spanier, 1974; Pod- lubny, 1999). 

 

2.1.1 The Gamma Function 

Known also as the Euler’s Gamma Function, is inherent to fractional calculus, its 

most basic interpretation is the generalization of the factorial of all real numbers, by 

definition,  

( ) 1

0
 for alln tn t e dt n

 − − + =    (2.1) 



or, 

( ) ( )1 ;n n n n + + =     (2.2) 

and, 

( ) ( )1 ! ;n n n = −     (2.3) 

For this function, the value for any quantity is of the form of the integral equivalent 

to the same quantity n  minus one time the gamma of the quantity minus one. If integrated 

by parts, the relation for integer values of n  is the factorial definition. Figure 2.1 shows the 

plot of the gamma function around the value of zero, for negative integer values, the function 

goes to infinity. 

 



 

Figure 2.1. Gamma Function Approximation (MATLAB). 

 

2.1.2 The Beta Function 

This function is known as the Euler Integral of the First Kind, just as the Gamma 

function, it is essential to fractional calculus, 

( ) ( )
1 11

0
, 1 ; ,

yxB x y t t dt x y x
−− += −     (2.4) 

Also its solution is given in terms of the Gamma function, 

( )
( ) ( )
( )

, ; ,
x y

B x y x y x
x y

+ 
=  

 +
   (2.5) 



2.1.3 The Error Function 

The error function is given by, 

( )
2

0

2
;

n tErf n e dt n


−=     (2.6) 

Its complementary function (Erfc) can be written in terms of the Error function, 

( ) ( )1Erfc n Erf n= −      (2.7) 

thus, ( )0 0Erf =  and ( ) 1Erf  = . 

 

2.1.4 The Mittag-Leffler Function 

This function is a generalization of the exponential function, xe , and plays a very 

important role in fractional calculus, the standard definition is given by, 

( )
( )0

; 0
1

k

k

z
E z

k
 





=

= 
 +

   (2.8) 

Plotting (2.8) for different   is shown in Figure 2.2. 

Also, this function can be represented in two arguments, 

( )
( ),

0

; 0, 0
k

k

z
E z

k
   

 



=

=  
 +

   (2.9) 

The latter equation is the more generalized form of the equation, although not always 

required with fractional differential equations. 



 

Figure 2.2. Mittag-Leffler Standard Function Approximation for different 

values of   (MATLAB). 

 

2.1.5 The Mellin-Ross Function 

This function appears when the fractional integral of an exponent is solved, te , its 

definition is given by, 

( ) ( )*, ,v t
tE v t e v t =       (2.10) 

or, 



( )
( )
( )

( )1, 10
,

1

t
v v

t vk

t
E v t t E at

k v





+=

= =
 + +

   (2.11) 

 

2.2 The Riemann-Liouville Fractional Integral and Derivative 

In order to obtain the Riemann-Liouville definition, we consider the Riemann-

Liouville n -fold integral which is given by, 

( )
( )

( )

( )

1 3 2
1 1 2 1 1

fold

1n nt t t t t t

n n n

n

f
f t dt dt dt dt d

n t     






−
− −

−

=
 −

       (2.12) 

Rewriting Eq. (2.12) of the order  , after a few steps we obtain the fractional integral 

which is given by, 

( )
( )

( )

( )
0 10

1 n
t

t n n

fd
D f x d

n dt t







 
− +

=
 − −

   (2.13) 

where ( )n  is the Gamma Function (Eq. 2.1) given by Oldham and Spanier (1974). 

Recalling that differentiation is the opposite of integration, we can define the 

fractional derivative using the fractional integral definition, thereby if n u = − , where 

0 1  , n  being the smallest integer greater than u , we have, 

( ) ( )f xu nD f x D D
− =

  
    (2.14) 

 



2.3 The Grünwald-Letnikov Fractional Integrals and Derivative 

If we have a continuous function ( )f t , the first derivative can be expressed as, 

( ) ( )
( ) ( )

0
lim
h

f t f t hd
f t f t

dt h→

− −
 =    (2.15) 

The second derivative of Eq. (2.15) yields, 

( ) ( )
( ) ( ) ( )2
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If we derive Eq. (2.16) once again, we obtain, 
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Generalizing this rule we obtain a formula, 
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Considering the above equations, we can write the derivative definition of the order 

of   as follows, 
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for 1
0

 
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 
 and 

t
n

h

−
= , where a  is a real constant, we finally obtain the Grünwald-

Letnikov, 
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2.4 The Caputo Fractional Derivatives 

The Caputo definition was given by (Caputo, 1967; Podlubny, 1999), 
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Under homogenous initial conditions the Riemann-Liouville and the Caputo 

derivatives are equivalent. If the Riemann-Liouville fractional derivative is ( )RL
tD t t

  and 

the Caputo definition is ( )C
tD f t

 , then the relation between them, 
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for ( ) ( ) ( )0 ; 0,1, , 1
k

f k n = = − . 

The initial conditions for this derivative are in the same form as for the integer-order 

differential equations, being an advantage because applied problems require definitions of 

fractional derivatives. 

 



2.5 Solution Schemes 

2.5.1 Method of separating variables 

In order to exemplify the separating variables method for fractional differential 

equations, the following time-fractional telegraph equation will be solved, 
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  (2.23) 

constrained by the initial and boundary conditions, 

( ) ( ) ( ) ( )
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  (2.24) 

( )x  and ( )x  are continuous functions which satisfy ( ) ( )10 0 = , ( ) ( )2 0L = , where 

( )1 t  and ( )2 t  are nonzero functions with order-one continuous derivative. Transforming 

the nonhomogeneous boundary to homogeneous boundary conditions, 

( ) ( ) ( )1 1, , ,u x t W x t V x t= +  and ( ) ( )
( ) ( )( )2 1

1 1,
t t x

V x t t
L

 


−
= +  which satisfies the 

boundary conditions, 

( ) ( ) ( ) ( )1 1 1 20, ; ,V t t V L t t = = =    (2.25) 

substituting in Eqs. (2.23) and (2.24), 
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2.5.2 Laplace Transform 

 For this solution scheme we need to find the Laplace transform of the equation, solve 

for the function, and find the solution with the inverse Laplace function. 

 

  



 

3. FRACTIONAL MODELS APPLIED TO NUCLEAR 

POWER REACTORS 

 The development of fractional order models applied to nuclear power reactors began 

in the present century and can be divided into two stages, an early stage which comprehends 

from the first ever published article in 2002 until the year 2019, and the present stage or 

contemporary stage of that this work is part of. The most relevant works in chronological 

order are shown below. 

 

3.1 Early stage 

The first published article regarding fractional order models applied to nuclear 

reactor analysis was from Zabadal et al. (2002), which presents a closed solution for the 

multidimensional transport equation using a fractional derivative, they name it as the 

fractional derivative transport equation solution (FDE). 

Next, Amaral et al. (2003) construct an integral form for the 1D, 2D and 3D 

dimensional transport equation solutions to calculation of the angular flux, with the Klein-

Nishina scattering kernel, isotropic scattering, and Rutherford scattering kernel. Their 

formulation is applied on the calculation of the angular flux for one, two and three 

dimensional problems and compared with numeric results available in the literature. 

No other publications involving fractional calculus are reported from that year until 

Das & Biswas (2007) introduced and explored the fractional divergence, where it is 



developed for application to the constitutive neutron diffusion equation for describing the 

neutron flux profile, 

0n a S   + − =J      (3.1) 

where nJ  is the vector current density, a  is the macroscopic absorption cross section,   is 

the neutron flux, and S  is the neutron source. Rewritten in a one-dimensional form and 

applying the current vector given by the Fick's law, 

1

1
0, 0 1n a

d
D S

dx






 

+

+
− +  − =      (3.2) 

where nD  is the neutron diffusion coefficient. 

According to them, the above equation which includes the definition of fractional 

divergence describes the neutron flux by not considering it as a classical point quantity, thus 

giving a better representation for a distributed system encompassing the process history. 

Therefore, really describing the reactor flux profile. However, it is important to mention that 

the fractional order will be different from reactor to reactor due to heterogeneity and reactor 

configurations. 

The next year, a book by Das (2008) is published, extending the ideas of Das & 

Biswas (2007) regarding fractional divergence in a complete chapter, also establishing 

concepts such as fractional curl, fractional criticality and fractional geometrical buckling 

which is later explored by Espinosa-Paredes (2017), its work is mainly focused on reactor 

control. Meanwhile Espinosa-Paredes et al. (2008) derived a fractional 1P  equation which 



covers normal diffusion and anomalous diffusion, the non-Fickian law for the vector of 

neutron current density ( nJ ) applied by these authors is given by,  
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where the term 
3 nD



 
 
 

 has units of time, and it is known as the relaxation time relax , and 

  is the neutron velocity. The latter yields the neutron fractional wave equation, considered 

as a time-fractional neutron flux telegrapher equation, 
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where   is the time dependent fractional diffusion coefficient. 

After two years without any other works, Sarder et al. (2010) presents an analytical 

approximation method for the solution of the fractional neutron diffusion equations with one 

group of delayed neutrons as a possible solution of the fractional neutron transport equation, 

given by, 
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   (3.5) 

where 0 0.5  ;   is the average number of neutrons produced per fission, f  the 

macroscopic fission cross-section,   the decay constant, C  the concentration of neutron 

precursors , and   the total fraction of delayed neutrons.  



The next year, Espinosa-Paredes et al. (2011) derived the first form of the Fractional 

Neutron Point Kinetics model (FNPK), 
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   (3.6) 

where   fractional relaxation time,   is the neutron generation time, l  the neutron lifetime 

in a finite reactor,   reactivity, and n  neutron density. 

Eq. (3.6) is the first fractional approximation including time memory and non-local 

effects, and they present its numerical solution applying the numerical method introduced by 

Edwards et al. (2002) which in turn considers the Diethelm (1997) method, additionally a 

numerical stability analysis is presented. The bases and fundamentals of fractional models 

for the analysis of nuclear reactors, tested with numerical experiments considering non-

leakage probability equal to one are presented in this work and the model expands the 

classical neutron point kinetics, from integer derivatives to non-integer derivatives. These 

newly derived models are a useful tool to provide important information on reactor dynamics.  

The following year a boom regarding fractional models applied to Nuclear Power 

Plants (NPP) analysis appears, and diverse works are published, from the numerical solution 

of the FNPK model, based on an explicit finite difference scheme with the Grunwald–

Letnikov fractional derivative definition (Ray & Patra, 2012) applied to the analysis of the 

dynamics of nuclear reactors, which agreed with original results; a SIMULINK dynamical 

stability simulation of nuclear reactor cores (Shirazi, 2012), once again, applied to the FNPK 

model; sensitivity and uncertainty analyses of the anomalous diffusion exponent (ADE) in 



the FNPK model (Espinosa-Paredes et al., 2012a) and to the Time-Fractional Telegrapher’s 

Equation (Espinosa-Paredes et al. 2012b) were performed applying a Monte Carlo simulation 

in their methodology to determine the best value of the ADE; in the start-up of NPPs by Polo-

Labarrios & Espinosa-Paredes (2012a, 2012b) which considers and external source; and, the 

derivation of a P1 approximation for the Transport Equation (TFTE) by Espinosa-Paredes & 

Polo-Labarrios (2012) finding that this derivation gives the best estimate for purely absorbing 

media where it is known that normally most approximations fail. 

In 2013, based on the same original ideas, i.e., non-local and time memory effects, 

a novel fractional-space law for the vector of neutron current density was proposed by 

Espinosa-Paredes et al. (2013a), 

,( , ) ( , )n nt D t
 = − J r r      (3.7) 

which was applied to derive the spatial-fractional diffusion equation (NFDE) and established 

as a new constitutive law for the neutron current density, additionally they present a 

detrended fluctuation analysis method to estimate the fractional coefficient.  

Afterwards, Vyawahare & Nataraj (2013a) presented a simplified version of the 

FNPK model applied to a nuclear reactor slab geometry, considering only the term /d n dt 

, i.e.,  / (1 ) / 1NLP l − −  =  where NLP  is the non-leakage probability. The same 

authors present the derivation of a Fractional Telegraph Equation Vyawahare & Nataraj 

(2013b) based on the standard continuous-time random walk method, where their main 

findings are that nuclear reactor cores should be modeled as sub-diffusion, values of the 

fractional exponent near the unity should be used on the moderator region and smaller values 

for highly absorbing regions such as in the control rods vicinity; they also claim that the 



model is more realistic and "trouble free", thus being appropriate to achieve more efficient, 

safe, and reliable operation and control in NPPs. Schramm et al. (2013) solved the FNPK 

model applying the Adomain decomposition method and found that their results where 

between those of classical kinetics and results from transport approaches and also that the 

order of the derivative is related to a scaling of the differential with the "effective volume" 

which is not necessarily obtained with an integer order. Ray & Patra (2013) once again 

applied an explicit difference method with the Grunwald-Letnikov derivative definition to 

solve the first fractional order stochastic neutron point kinetic model, 
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where W  is a Wiener process and 
1/2B̂  is the square root of the matrix. Eq. (3.8) represents 

the first model of its type to be analyzed, however they only report findings regarding the 

numerical method. 

Continuing with the chronology, Polo-Labarrios et al. (2014) presented a numerical 

analysis with reactivity insertion of the FNPK model, analyzing the ramp and sinusoidal 

reactivity insertion; their main findings are that with relatively small values of the fractional 

exponent, sub-diffusive effects are greater. Espinosa-Paredes et al. (2014) deal with the 

incorporation of temperature feedback effects to the FNPK model, where results are 

compared with the classical model and found that the neutron density peak is lower for the 



classical model caused by anomalous diffusion which is more evident when the decreasing 

the anomalous diffusion exponent. Nowak et al. (2014a,b) present two works where they 

analyse the FNPK model with six groups of delayed neutron precursors and present results 

considering a bilinear system of fractional and ordinary differential equations, where they 

compare three different solution methods; the first one considers the discrete Grünwald-

Letnikov definition of the fractional derivative, the second involves building an scheme in 

the FOMCON Toolbox from the MATLAB environment, and the third is the Edwards et al. 

(2002) method; the effect of relaxation time, order of fractional derivative and step-size on 

the obtained results were examined and according to numerical results, the last method turned 

out to be the best. Nowak & Duzinkiewicz (2014) proposed a numerical solution in a 

MATLAB environment with step input change and analyse the impact of the stablished 

parameters. Ray & Patra (2014a) present numerical simulations for solving the FNPK model 

applying the multi-step differential transform method, their model considers a fractional 

derivative in time for the neutron density and the concentration for six groups of delayed 

neutrons, their main finding is that the numerical method is an easier and efficient way to 

obtain a numerical solution and accuracy improves with the time step. In another work, Ray 

& Patra (2014b) performed a numerical simulation for a fractional order stationary neutron 

transport equation using the Haar wavelet collocation method in a homogeneous medium 

with isotropic scattering, resulting in a simple, easy and fast mathematical method and being 

more suitable, accurate and efficient than other methods. The NFDE model was subject of 

study by Maleki Moghaddam et al. (2014) who developed a one-dimensional numerical code 

to simulate the reactor code for different fractional exponents, the model is validated against 

the classical neutron point kinetics equation model and they found that the effective 

multiplication factor strongly depends on the order of the fractional derivative.  



Next year the last authors expand their numerical code, Maleki Moghaddam et al. 

(2015a) present a 2 dimensional multigroup numerical code (NFDE-2D) and Maleki 

Moghaddam et al. (2015b) a 3 dimensional multigroup numerical code (NFDE-3D) to 

simulate anomalous diffusion phenomena in the nuclear reactors; the conclusion of these 

works is that when 0.86 = , results closely approach (0.035% of relative error) to those of 

the transport theory and in order to choose the best order of the fractional exponent, 

experimental data is necessary. Moghaddam et al. (2015c) once again studied the NFDE and 

results were comparable to those of the transport theory, finding a maximum error of 1.7% 

for the classical and 0.108% for the transport theory of the effk , using Monte Carlo N-

Particle Transport code (MCNP). Nowak et al. (2015) studied feedback reactivity effects in 

the FNPK model considering fuel and coolant temperatures applying two approximations, an 

algorithm based in the discrete Grünwald–Letnikov definition of the fractional derivative and 

building an analog scheme in the FOMCON Toolbox in MATLAB environment. Patra & 

Ray (2015) present the solution of a nonlinear FNPK model, expanding their 2014 works by 

including temperature feedback reactivity with multi-group of delayed neutrons, applying the 

explicit finite difference method (EFDM) for the solution, and demonstrating that this method 

is straightforward and effective to solve fractional order nonlinear neutron point kinetics 

equations. This same year, a book dealing with applications of fractional calculus in reactor 

dynamics is published by Ray (2015), which is basically a compendium of his works on 

fractional calculus applied to nuclear engineering. Finally, Vyawahare & Nataraj (2015) 

present their findings of their developed 2013 model, on a book chapter, including adiabatic 

temperature feedback effects, where the stiff system is solved with the Adams-Bashforth-



Moulton method, being self-limited in power excursions and reporting convergence issues 

for small values of the fractional exponent but being consistent with reactor physics. 

Vyawahare & Nataraj (2016) develops two one-dimensional fractional-order two-

group models with two groups, a Telegraph-Subdiffusion model and a Fractional-order 

model. The first analysis of the fractional terms in the mathematical models is presented by 

Espinosa-Paredes & Polo-Labarrios (2016) and found that the time derivative directional 

source term is negligible i.e., 
S

0
d

dt



 
  , thus they simplify the FNPK model to, 
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The same year, Aboanber & Nahla (2016a) present a corrected version of the FNPK 

(CFNPK) model, where the proposed version considers a non-leakage probability different 

from one, thus, 
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   (3.10) 

Probably motivated by the above work Espinosa-Paredes (2016) discuss the length 

and time scales orders of magnitude of the FNPK model, remarking that the corrected version 

of the FNPK model is in fact an extension of the original model. In another work, Aboanber 

& Nahla (2016b) derived a modified FNPK model, 
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where 
( )

( ) ( )i i
i i

dC t
n t C t

dt


= −


; they tested and compared it with the classical model for 

step, ramp, and sinusoidal reactivity, finding that, in their own words, is the best 

representation of neutron density for subcritical and supercritical reactors. Schramm et al. 

(2016) studied the FNPK model with a fractional Riemann-Liouville definition and 

temperature feedback effects, their main findings are that within the used parameters the 

influence of the fractional derivative is small and for temperature feedback effects these were 

completely suppressed due to the fractional derivative; however, their conclusions seem to 

contradict every work published so far which include feedback effects by temperature, e.g., 

Espinosa-Paredes et al. (2014) found that the fractional point kinetics model has important 

effects on the neutron density with feedback effects due that sub-diffusive effects are 

evidently appreciated, and in a more recent work this issue is addressed. This year, the first 

tangible applications of fractional order models applied to nuclear engineering start to appear, 

Cázares-Ramírez & Espinosa-Paredes (2016) applied a time-fractional telegraph equation 

(TFTE) during a severe accident transient in a BWR to study the Hydrogen generation and 

found that the Hydrogen concentration is inversely proportional to the fractional coefficient. 

Another application of fractional order models was published by Davijani et al. (2016), 

developing a reduced-order fractional-order sliding mode controller (ROFOSMC) for power 

control of NPPs, the proposed model was adapted in order to include temperature feedback 

from the lumped fuel, coolant temperatures, and the effect of Xenon concentration in the 

controller design; they found that compared with respect to the integer-order model 



(ROIOSMC), their model has robustness against uncertainty, acceptable performance, faster 

response of control effort signal and a smaller tracking error as well as the ability to reject 

disturbance and noise signal. Sallah & Margeanu (2016) studied the effect of a fractional 

parameter on the neutron transport in finite disturbed reactors with quadratic scattering for 

shielding effectiveness in the MAVRIC shielding module in SCALE6, their aim was to study 

neutron energy and flux data. Another analysis of the terms in fractional point kinetics 

(FNPK) equations is presented by Espinosa-Paredes & Cázares-Ramírez (2016) finding that 

the source term is crucial for the FNPK stability and very important for the W -domain. 

Vyawahare et al. (2016) models the neutron fractional order telegraph equation for the 

application in linear control models with fractional operators, they present a fractional point 

reactor kinetics model, a zero power fractional order transfer function and a fractional order 

transfer function with temperature feedback, their model predicts sub-diffusive behavior for 

long-times.  

In the following year more applicability begins to appear, in the work of Polo-

Labarrios et al. (2017) they studied the Anticipated Transient Without SCRAM (ATWS) 

boron with the FNPK model, the justification for this particular transient is that boron in the 

reactor core produces atypical neutron absorption in combination with the intrinsic feedback 

mechanisms which causes anomalous diffusion effects in the neutron density behavior, the 

FNPK model is perfect to model the dynamic behavior, due that it considers explicitly the 

absorption macroscopic cross section, and time-memory with non-local effects which are not 

considered in the classical model. Until this time only time-fractional models applied to 

nuclear analysis were developed and Espinosa-Paredes (2017) introduces the first spatial-

fractional point reactor model (F-SNPK), 
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where   is the fractional differential operator; Eq. (3.12) includes a fractional geometrical 

buckling, a concept first introduced by Das (2008) but that it had not been explored nor 

concretely proposed until this work, the physical interpretation of this term is to consider 

neutron leakage for any geometry and dimensions of a reactor, being more realistic from a 

reactor physics point of view compared to the integer model; for this fractional model the 

initial conditions are met if and only if the initial condition ( )2 1(0) g gDB D B  += − −  is 

constrained, thus considering neutron leakage as a function estimated with the anomalous 

diffusion exponent. Once again, the FNPK model was studied, this time by Hamada & Brikaa 

(2017) applying a nonstandard finite difference method (NSFDM) which according to them 

is desirable than the standard finite difference method (SFDM), the fractional derivative is 

defined in the form of Grunwald-Letnikov; numerical simulations were performed for 

subcritical, critical, and supercritical reactivities and results are compared with the classical 

solutions. Nahla & Hemeda (2017) studied the FNPK model without a relaxation time and a 

multi-group of delayed neutrons with Picard iteration and Padé approximations, their results 

show that for small sub-diffusive effects the anomalous diffusion exponent is less than one 

but very close to one, and for small super-diffusive effects the anomalous diffusion exponent 

is greater than one but very close to one. Hamada (2017a) modifies the original FNPK model 

and includes the time derivative of the reactivity to consider Newtonian temperature 

feedbacks effects, 
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where ( )
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n g

t
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( ) ( )1 1n
NL

t
t P

 − − 
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  
; the author uses an 

implicit difference method for the solution, comparing the results with previous and the 

normal model, his main finding is that the method is unconditionally stable; on another work 

Hamada (2017b) expands his modified FNPK model to a finite cylindrical reactor with 

similar results. Another application with the Ray & Patra (2014) model is explored by Nahla 

(2017) during the start-up of a nuclear reactor, their results with one group of delayed 

neutrons agreed with Zhang et al. (2009), but not for six groups of delayed neutrons, showing 

that there is no difference during the lifting of the control rods. Starting from the FNPK 

model, Vyawahare & Espinosa-Paredes (2017) applied a reduced order model to consider 

void fraction and temperature feedback effects, resulting in a Fractional Reduced Order 

Model (F-ROM) consisting of 5 differential equations for the analysis of BWR dynamics, 

their results are compared with the normal reduced order model. In the same line of research, 

Cázares-Ramírez et al. (2017) present the stability feedback analysis of linear FNPK models 

developed and analyzed by Vyawahare et al. (2017), applying root locus, location of closed-

loop poles in the Riemman sheet and evaluation of step response and found that the studied 

FNPK models are closed-loop stable. Espinosa-Paredes et al. (2017) also studied the stability 

of FNPK considering the transformation from the S-plane to the W-plane and finding the 

unstable and stable zones in the system. 



Vyawahare & Nataraj (2018) present a brief development and analysis of the FNPK 

and NFDE models, applied to control; additionally they rewrite the neutron transport 

equation in its integral form, compare the kernel of the respective formal solution with the 

Riemann–Liouville definition of the fractional derivative operator, and solve the 

corresponding algebraic equation for finding the differ-integration order; their proposed 

equation establishes the ideas for solving transport problems in heterogeneous media with 

anisotropic scattering. This year, also the first artificial neural network (ANN) approximation 

applied to the FNPK and F-ROM was presented by Vyawahare et al. (2018), the Fractional-

Space Neutron Point Kinetics (F-SNPK) and their main findings are that the ANN has good 

agreement with the linear FNPK models and the convergence and learning of the ANN are 

affected by the type of model, the value of the fractional diffusion exponent and the relaxation 

time. Although the F-SNPK being novel, Vyawahare & Espinosa-Paredes (2018) present a 

work regarding its stability using three methods, root locus, Bode plot, and unite step 

response applied to closed and open loop models (slab and cylindrical geometries), they 

compare their results with non-fractional models, finding stability for both and faster 

dynamics with an increase in sub-diffusivity. Aboanber et al. (2018a) present a solution 

method using the generalization form of the Taylor’s formula involving the Caputo fractional 

derivatives to solve the stiffness of the nonlinear fractional differential model which includes 

a fractional term for the temperature feedback, finding that in sub-difussion greater number 

of fissions are produced while for super-diffussion smaller number of fissions are produced. 

On another work and based on a study by Nahla & Hemeda (2017), Aboanber et al. (2018b) 

present a solution method including the Mittag-Leffler function with the Padé 

approximations to solve the stiffness of a proposed two fractional neutron point kinetics 

model which include an equation for the neutron density for the core and one for the 



moderator, they validate their model with a variation of reactivity insertions and found that 

their results agree with the Picard iteration method. Also based in a previous work (Ray & 

Patra, 2013), Aboanber et al. (2018c) developed the second fractional stochastic point 

kinetics model with multi-group of precursors and temperature feedback, applying a split-

step method which considers the Laplace transforms, Mittage–Leffler function, eigenvalues 

of the coefficient matrix, and its corresponding eigenvectors for the solution of the fractional 

stochastic matrix differential equation; their results agree with the normal Neutron Point 

Kinetics model. Another stochastic neutron point kinetics model with temperature feedback 

effects is presented by Singh & Saha Ray (2019), where the solution is obtained by higher-

order approximation where the fractional stochastic for neutron density and concentration of 

precursors were presented in the work of Ray & Patra (2013). 

Rafiei et al. (2019a) present a stability analysis of the FNPK model with three groups 

of delayed neutrons and reactivity feedback effects, their solution method is by 

transformation to the W-domain, they find negative effects by Xenon on the stability and that 

stability highly depends on the values of the fractional derivative and relaxation time. The 

same authors (Rafiei et al., 2019b) apply a PID controller based to their previous work, 

Genetic Algorithm is used for the optimization of the PID controller, the model was applied 

during power maneuvering transients considering Xenon concentration changes and results 

find good performance and stability compared to the conventional PID and FOPID (not-

tuned) controllers. Roul et al. (2019a) also studies the FNPK model considering non-leakage 

probability ( 1NLP  ), and named it, the extended fractional neutron point kinetics (EFNPK), 

they apply a nonstandard finite difference scheme and compare the FNPK with the EFNPK 

applying the same numerical scheme by Hamada & Brikaa (2017). Furthermore, in another 



work, Roul et al. (2019b) present the numerical solution of the Aboander & Nahla (2016) 

model (CFNPK), they compare the results of neutron density with the FNPK original model, 

the difference in the neutron density increases as sub-diffusion increases or when the 

simulation time increases, but for short times of the simulation where the dynamics analysis 

NPPs are paramount, the difference is relatively small. Based on the work of Aboanber et al. 

(2018c), Singh & Ray (2019) present another fractional Stochastic Point Kinetics Equations 

(SPKEs) including Newtonian temperature feedback effects, they solve their model using a 

higher-order approximation scheme, the results were compared against previous integer 

stochastic models finding good agreement among them. Finally, a dynamics analysis of a 

PWR was presented by Zarei (2019) where the coupling of integer and fractional order 

models is studied, their results show instability issues when the fractional derivative value 

decreases, i.e., in more sub-diffusive regions. 

 

3.2 Contemporary stage 

The modified FNPK Hamada (2017a) model is solved by Polo-Labarrios et al. 

(2020a,b) for sinusoidal reactivity and during transient, applying a numerical solution based 

on the Edwards et al. (2002) method, they compare their results against Hamada’s (2017a) 

and the normal neutron point kinetics, finding evident differences mainly because the 

fractional derivative term of the neutron density was considered as a differential operator and 

solved by implicit difference by Hamada (2017a), while the current authors consider it as an 

integro-differential operator. Once again Hamada (2020) applies fractional derivatives to 

nuclear reactor analysis and proposed a fractional telegraph point reactors kinetics (FTPRK) 

model considering two new terms for the neutron density, 
( )

( )
0

1n
NLt

d t
I n t P

dt

 −


 and 



( )2
n g

d n t
D B

dt


  , applies the model to a TRIGA reactor and to the Three Miles Island PWR 

for different reactivity insertions (step, ramp and sinusoidal); his results agree with those of 

literature, large values of the relaxation time ( ) increases rapidly the neutron density and 

the value of the fractional derivative order affects directly the behavior of the neutron density. 

Roul et al. (2021) present a numerical method to solve the FNPK, using the L1 approximation 

technique for the discretization of the fractional time derivative; convergence and stability 

analyses are reported. Another numerical solution is proposed for solving the FNPK by 

Sadeghi (2020), a mesh-free numerical scheme, their main finding is that the method is 

accurate and efficient. Zare et al. (2020) present another reactor power FPID controller using 

Matlab/Simulink and the FNPK finding robustness in the controller against disturbances and 

uncertainties.  

The model developed in the present work (Espinosa-Martínez et al., 2020) integrates 

the first novel model since the F-SNPK Espinosa-Paredes (2017) model, and constitutes a 

state of the art Time-Space Fractional Neutron Point Kinetics (TSFNPK) model,  

( ) ( ) ( )

( )( )
( ) ( )

( )

1

1 a

d n t dn t d n t

dtdt dt

t d S t
n t C t

dt

 
 

 


 



  

  
 

+

+
+ +

 − +
= + + 

  


  (3.14) 

The development of the model is presented in the following chapter. 

Finally, in the present year a few accepted papers and a book dealing within the 

present’s work scope can be found. At the beginning of 2021, Espinosa-Paredes 

(2021) publishes a book in which its scope is the importance of the non-Fickian 



diffusion in heterogeneous systems and variations of the diffusion processes in 

nuclear reactors as well as issues regarding fractional modeling in nuclear reactors. 

The prolific authors, Aboander et al. (2021) present a Fractional two energy groups 

kinetics equations with multi-group of delayed neutron precursors (2EFPKE) and its 

solved analytically based on the Laplace transform, eigenvalues, and eigenvalues of 

the coefficient matrix; their main findings are that for sub-diffusion processes the 

accumulation in the neutron density increases, and for super-diffusive processes the 

accumulation decreases. Roul et al. (2021) expand their numerical method (Roul et 

al., 2020) to solve the NFDE, considering in addition to the L1 approximation 

technique, a collocation method based on quintic B-spline (QBS); they report results 

of benchmark problems showing a convergence of the solution. The most current 

work, Nikan et al. (2021) present the solution of the TFTE in in two “stages”, the first 

contemplates a semi-discrete algorithm and the second is a full discretization, 

approaching the derivatives to a given point producing a sparse matrix and reducing 

the computational effort, the stability and convergence are confirmed with the results. 

 As an advice for the reader, I would like to point out that since the last update of the 

existing literature and the writing of the present thesis, other works might have been 

submitted and published.  

 

  



 

4. TIME-SPACE FRACTIONAL NEUTRON POINT 

KINETICS (TSFNPK) MODEL 

 In the present chapter, the mathematical derivation of the Time-Space Fractional 

Neutron Point Kinetics Model is presented in detail. The TSFNPK model was derived 

considering a non-Fickian law for the neutron density current where the differential 

operators, one dependent in time and another dependent in space, are both of fractional order, 

thus being an extended model with respect to other fractional models and the classical 

neutron point kinetics equations due to the consideration of such two diffusion exponents. 

4.1 Development of the TSFNPK Model 

The conservation equation that governs the neutron collision and reaction processes 

in a multiplying-system, as well as the initial conditions and boundaries at interfaces are 

given by, 
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where tr  is the transfer cross section. 

Initial condition,  

( ) ( )0,0 =r r      (4.3) 

The boundary conditions are depending in general on the type of physical system we 

are studying. However, to local scale (moderator-  and fuel rod- ) continuity of the neutron 



flux and continuity of the neutron current vector can be applied at the interface between the 

moderator and fuel rod, 

n nD D      −   = −  n n  at  - interface  (4.4.1) 

  =   at  - interface  (4.4.2) 

where nD   is the neutron diffusion coefficient at the coolant, nD   is the neutron diffusion 

coefficient at the fuel rod and 


n  (


−n ) is the unit normal vector directed from the 

moderator towards the fuel. These equations are known as one-speed neutron diffusion 

equation. 

From a fundamental point of view, the neutron processes in nuclear reactors are not 

instantaneous phenomena. Then in order to considers the time-and space-memory effects, in 

this work we propose that the vector of the neutron current density nJ  for subdiffusive 

process, is given by, 
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For subdiffusive process 0 1   and 0 1  , where   is the time dependent 

anomalous diffusion exponent,   is the relaxation time, and   is the space dependent 

anomalous diffusion exponent. In this equation   has units of s , kD   of cm , and   

of cm − . The analysis of this fractional constitutive law indicates that when 1 →  and 

1 → , the P1 approximation of transport theory of neutron is recovered. The P1 

approximation considers normal diffusion with relaxations effects (Espinosa-Paredes et al., 

2019), i.e., with memory process. Now, when 0 →  and 1 →  the so-called Fick's law 



(Duderstadt and Hamilton, 1976) is recovered, that is normal diffusion where this law is 

memoryless process. Now, when 1 →  and 0 1  , the time-fractional constitutive law 

of vector current is recovered (Espinosa-Paredes et al., 2008), finally when 0 →  and 

0 1   the space-fractional constitutive law of vector current is recovered (Espinosa-

Paredes, 2017). Another fundamental characteristic is that the nuclear reactor models based 

on fractional-order differential operators are by nature non-local.  

The relaxation time for the neutronic process is defined as, 

3 nD 



=       (4.6) 

and the neutron diffusion coefficient, 
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where 0  is the average scattering angle cosine and, tr , t , and s  are respectively, the 

transport, total and scattering cross sections for the coolant  . 

Next, combining Eqs. (4.1) and (4.5) yields a fractional neutron diffusion equation, 
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 (4.8) 

For the particular case when 0 →  and 1 → , as stated before, the Fick’s law is 

recovered, thus resulting in the classical form of the diffusion equation, 
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The source term is given by (Glasstone and Sesonske, 1981), 
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where k is the infinite multiplication factor and the subindex ( i ) indicates the precursor of 

delayed neutron of the i th−  group, given by, 
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where iC  is the concentration of neutron precursors of the thi −  group, a  is the 

macroscopic absorption cross section at the coolant, i  is the total fraction of delayed 

neutrons of the thi −  group, k  is the infinite medium neutron multiplication factor, and i  

is the decay constant of delayed neutron of precursors of the thi −  group. 

 Using the presented equations, we will derive the Time-Space Fractional Neutron 

Point Kinetics (TSFNPK) model, first we substitute Eq. (4.10) into Eq. (4.8),  
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where the differential operator of fractional order in the diffusive term was proposed by 

Espinosa-Paredes (2017), 

1 1( , ) ( , )k
gt B t

  + +  −r r     (4.13) 



The above assumption, known as the fractional geometrical buckling ( 1k
gB + ) which 

is related to the deviation of the ideal flux map (cosine in an infinite slab) inside the reactor, 

was first conceived when fractional divergence was noticed (anomalous diffusion), also gives 

birth to fractional criticality when used with the classical multiplication factor k  (Das 2008; 

Das and Biswas, 2007). The geometrical buckling is a measure of neutron leakage and 

depends on the geometry of the core, thus the approximation is valid for subdiffusive 

processes, when 1 →  the classical flux profile is obtained, (i.e., normal diffusion). 

Introducing the fractional geometrical buckling into Eq. (4.12), leads to, 
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Next, representing the flux, precursor concentrations and source term as separable 

functions of space and time, 

( , ) ( ) ( )t n t  =r r      (4.15) 

ˆ ( , ) ( ) ( )i iC t C t =r r      (4.16) 

ˆ( , ) ( ) ( )S t S t =r r      (4.17) 

Thus, Eq. (4.14) can be re-written solely as a function of time,
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Substituting the acknowledged nuclear definitions in Table 4.1 of reactivity, effective 

neutron multiplication factor, neutron diffusion length, neutron mean life in the reactor core, 

non-leakage probability and neutron mean generation time (Lamarsh and Baratta 2001), we 

obtain, 
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Table 4.1. Nuclear definitions 

Description Variable Definition 

Reactivity  n  1eff

eff

k

k

−
 

Effective neutron 

multiplication factor 
effk  

2 2(1 )g

k

L B



+
 

Neutron diffusion length L  1/2

a

D



 
 
  

 

Mean lifetime of 

neutron in reactor 

l NL

a

P


 

Non-leakage probability NLP  
2 2

1

(1 )gL B+
 

Mean neutron 

generation time 
  

effk
 

 

Finally, for simplification we conglomerate the terms containing the fractional 

geometrical buckling and normal geometrical buckling in the following definition of 



reactivity for the fractional term of order  , which is associated to neutron leakage in the 

system, i.e., 0  . 

( )2 1
n g n gD B D B    +=  −     (4.20) 

where 2
gB  is the geometrical buckling. 

Thereby the TSFNPK equation model, 
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It is important to note that this equation has no restrictions regarding the non-leakage 

probability discussed in previous works, due that the source term is in implicit form (last 

term in the right side) (Aboanber & Nahla, 2016; Espinosa-Paredes, 2016). 

 

Applying the elements that led to the time-fractional order model, we re-write Eq. 

(4.10) for neutron source, 
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 It can be demonstrated that starting with concentration of delayed neutron precursors 

given by Eq. (4.11), and following the same procedure applied previously, leads to, 
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This condition in all cases is fulfilled due that 2 1
n g n gD B D B 

+ . This can be 

explained considering that the diffusion processes are carried out in the moderator (  ) with 

a characteristic length  , which is the distance between two fuel rods, and the characteristic 

length of the system is aL  (fuel assembly), in this sense the Fickian and non-Fickian diffusion 

approximations are valid as long as the scale restrictions fulfill aL  . The orders of 

magnitude of the current density vectors, normal and fractional, are, 
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respectively. Then it can be clearly shown that 
L L



 

   
   

   
   

 for L 
   and L  . 

 



 

Figure 4.1. Value of   in pcm for different reactors. Slab reactor, sphere reactor, 

cylinder reactor and rectangular parallelepiped reactor. Values were: thickness a = 100 cm 

for slab, radius R = 50 cm for a sphere and cylinder, length a = b = 50 cm and c = 100 cm 

for rectangular parallelepiped. 

 

It is important to stress that the definition of leakage reactivity (  ) given by Eq. 

(4.20) contains a term of integer order, and a term of fractional order, which depends of the 

geometry and size of the reactor which is analyzed in Figure 4.1 using the calculated 

geometric buckling of fractional order from Table 4.2. The integer order term is due to classic 

diffusion whose approximation is 2 2( , ) ( , )gt B t   = −r r , while the fractional order term is 

due to anomalous diffusion (subdiffusion), i.e., 1 1( , ) ( , )gt B t 
  + + = −r r . Performing a 

dimensional analysis, we can observe that the quantity 1
n gD B

+  has the dimensions of 

1length− , since nD   is a length  and 1
gB+  is a ( 1)length − + . 



 

Table 4.2. Geometric Buckling of fractional order 

Reactor Geometries * 1
gB+  

Slab 1

a




+
 
 
 

 

Sphere 1

R




+
 
 
 

 

Rectangular 

parallelepiped 

1 1 1

a b c

  
  

+ + +
     

+ +     
     

 

Cylinder 1 1
2.405

R H

 


+ +
   

+   
   

 

 

For the introduction of temperature feedback effects, derived from the ideas of 

Hetrick (1993) and Glasstone & Sesonske (1994), we introduce a temperature dependent 

reactivity, 

( )0 0( )n n ct r T t T = − −       (4.24) 

where 0  is the initial reactivity, cr  is the reactivity coefficient, 0T  is the initial fuel 

temperature, and the prompt temperature is given by, 

( )
( )c

dT t
K n t

dt
=      (4.25) 

where cK  is the reciprocal of thermal capacity of the fuel. 

 Differentiating Eq. (4.24) and substituting it in Eq. (4.25) yields the temperature 

feedback model, 

( )
( )n

c c

d t
r K n t

dt


= −      (4.26) 



In previous works feedback effects have been studied with models of fractional order 

for neutron point kinetics approximation, mainly with the FNPK model but not exclusive 

(e.g., Espinosa-Paredes et al., 2014; Nowak et al., 2015; Vyawahare & Nataraj, 2015; 

Schramm et al., 2016; Singh & Ray, 2019).  

 

4.1.1 Temperature feedback effects 

For the numerical experiments only one group of delayed neutrons is considered. The 

complete set of equations and initial conditions of the space-time fractional point reactor with 

feedback effects are, 

Space-time Fractional neutron density equation 

( ) ( ) ( ) ( )( )
( ) ( )

( )1

1

n
a

td n t dn t d n t d S t
n t C t

dtdt dt dt

  
  

  

  
    

+

+

 − +
+ +  = + + 

  

 

(4.27) 

Precursor concentration 

( )
( ) ( )

dC t
n t C t

dt


= −


    (4.28) 

Reactivity feedback 

( )
( )n

c c

d t
r K n t

dt


= −      (4.29) 

Neutron source 

( ) ( ) ( )(1 )dS t dn t dC t

dt dt dt




−
= +


   (4.30) 

The initial conditions at 0t =  are,  

 ( ) 00n n=      (4.31) 



 ( ) 0 00C C n



= =


     (4.32) 

( ) 00n n k  = = −  for 0 1      (4.33) 

( ) 0
00

n
S S= =


     (4.34) 

( )1

1

0
0

d n

dt





+

+
=      (4.35) 

( )0
0

d n

dt




=       (4.36) 

( )0
0

d S

dt




=       (4.37) 

It is important to note that Eq. (4.27) is written in terms of differential operators, due 

to strategies of the numerical solution in the applied method, as presented in the next section. 

 

4.2 Numerical Solution 

The present solution uses the Caputo version of the fractional derivative instead of 

the Riemann-Liouville fractional derivative, due that the initial conditions correspond to 

physical states, i.e., initial condition of the integer-order model can be considered. 

Additionally, this numerical solution is based on the idea of solving the fractional differential 

equation as a system of equations, thus, reducing the problem to a much easier one.  

For a function :[ , [ ,f a + →  the   order Caputo fractional derivative is defined 

by Podlubny (1999), 

( )
( )

( )( )

1

1

( )a

n
tC

t na

f
D f t d

n t







  + −
=
 − −

 ,  1n n−      (4.38) 



where ( )n  −  is the gamma function, whose argument is n − , and ( )
n

n

n

d
f

dt
= . 

The numerical solution of the fractional point reactor model is obtained applying 

linear multi-term fractional differential equations for systems of equations developed by 

Edwards et al. (2002). The fractional kinetics model can be represented as a multi-term high-

order linear fractional differential equation, which is calculated by writing the problem as a 

system of ordinary and fractional differential equations. This numerical method is attractive 

for the fractional nuclear reactor dynamics analysis, because the implementation is relatively 

direct and it has been applied in previous works (e.g. Espinosa-Paredes et al., 2011; Nowak 

et al., 2014; Polo-Labarrios et al., 2014). Regarding to discreditation of the derivatives to 

solve; for the first-order differential equations, the trapezium rule is applied; and to discretize 

the fractional derivative, the Diethelm’s method is applied (Diethelm, 1997), 

0
,

0

1 i

k i i k
ki

y
D y y 





−

=

 
= + 
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 
     (4.39) 

 

where ( )( )i ih  =  −  , h  is the size step, 0y  is the initial condition, and ,0 ,,...,k k i
    

are convolution weights calculated by (Diethelm, 1997), 
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1 11
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1 1
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1 1 ,
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  (4.40) 

 

In this analysis, the fractional neutron point kinetics equations, considering one group 

of delayed neutron precursors with reactivity feedback effects, are given by a set of 



fractional-order and integer-order ordinary differential, Eqs. (4.27)-(4.29) that are rewritten 

of the following form, 

 

1
3 2 1 1D n a Dn a D n a n b C D S  + + + + = +     (4.41) 

2 0DC b C a n+ =       (4.42) 

4 2DS a Dn b DC= +       (4.43) 

c cD r K n = −       (4.44) 

In these equations it was changed 
d

dt
 for D  and the coefficients are defined in Table 4.3. 

Table 4.3. Coefficients of Eqs. (4.41)-(4.44) 

Coefficient Value 

0a  


 

1a  


  



− +
−


 

2a  a  

3a  1


 

4a  1 −


 

1b  





 

2b    

 

Applying the following change of variables, 1x n= , 2 1x D x= , 3 1x Dx= , 

4 3x D x= , 1y C= , 2 1y Dy= , 1z S= , 2 1z D z= , 3 1z Dz= , 1r =  and 2 1r Dr= . The 

discrete form of the solution of the system of equations can be presented in matrix form, 

=Ax b       (4.45) 



where 

( )1, 2, 3, 1, 1, 2, 3,
T

i i i i i i ix x x y z z z=x     (4.46) 

( )1, 2, 3, 1, 1, 2, 3,
T

i i i i i i iu u u v w w w=b     (4.47) 
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(4.48) 

the coefficients of the vector b  are given by, 

1,0
1,i , 1,

1

i

p i i p
p

x
u x


−

=

=  +       (4.49) 

2,i 1, 1 3, 1
2

i i
h

u x x− −= +        (4.50) 

3,0
3,i , 3,

1

i

p i i p
p

x
u x


−

=

=  +      (4.51) 

0 2
1, 1, 1 1, 11

2 2
i i i

a h b h
v x y− −

 
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 
      (4.52) 

1,0
1,i , 1,

1

i

p i i p
p

z
w z


−

=

=  +      (4.53) 

( )3, 1

2
2, 1, 1 0 2 1, 1 4 2 1, 1

2 ii i i x i
h

w z a b x a b y
−− − −= + + −     (4.54) 

( )3, 3, 1 1, 1
2

i i c c i
h

w z r K x− −= −      (4.55) 

The problem solution is subject to the following initial conditions, 



1,0 0 2,0 3,0

1,0 1,0

1,0
1,0 2,0 3,0 0

, 0, 0,

,

, 0, z

x n x x

y x

x
z z







= = =

=


= = =


   (4.56) 

 

4.3 Numerical Experiments 

In order to establish proper values of the time- and space-anomalous diffusion 

coefficient with memory effects   and  , numerous simulations were performed in which 

we establish the single effects of the fractional diffusion exponents i.e., for a fixed value of 

  and different values of  , and for different values of   and a fixed value of  , as well 

as without temperature feedback effects and then considering them.  

The anomalous diffusion exponents are applicable everywhere in the homogeneous 

and heterogeneous reactor core due that it predicts neutrons finite velocity i.e., a value of   

close to one indicates the presence of normal diffusion (Fickian) implying lesser or negligible 

fission reactions, such as in the moderator and reflectors; and, smaller values of   evidence 

highly subdiffusive conditions, strong absorbing regions, such as fuel bundles and control 

rods (Vyawahare and Nataraj, 2018). On the other hand, the term  considers neutron 

leakage, i.e., a value of   close to one indicates lesser leakage and smaller values of   

greater leakage, which is directly affected by cores geometry. 

 

4.3.1. Slab geometry without temperature feedback effects 

For the following numerical experiments, a homogeneous slab reactor with a 

thickness of 100a =  cm, including the extrapolation distance, was considered. Thermal 

neutron diffusion parameters were taken from literature (Lamarsh, 2001; Duderstadt, 1976) 



for water as moderator at 20 ºC, 2 5E = −  s, 0.0065 = , 220,000v =  cm/s, 0.16D =  cm, 

0.0197a =  1/cm, 0.0810958 =  and 0.00024l =  s. 

Figures 4.2 and 4.3 show the neutron density behavior of a positive reactivity 

insertion of 5n =  at 0.5 s. Figure 4.2 shows clearly the effect of the spatial anomalous 

diffusion coefficient ( ) which can be important for short transients, i.e., for smaller values 

of   the neutron density increases less dramatically than for bigger values or even without 

the term   which contains the coefficient in the proposed fractional buckling. In Figure 4.3 

the effect of the value in the fractional derivative is shown, contrary to what happens with 

the anomalous diffusion coefficient  , for smaller values of   the neutron density increases 

more dramatically, this effect can also be important for short transients. 

 

Figure 4.2. Normalized neutron density ( 0n n ) when 0.99 =  for two values of 

the fractional diffusion exponent   and without its effect. 

 



 

Figure 4.3. Normalized neutron density ( 0n n ) when 0.90 =  for two values of 

 in the fractional derivative. 

Figures 4.5-4.8 show the neutron density behavior after a constant positive reactivity 

insertion of 5n = , it can be observed that when   decreases, neutron leakage is greater, 

this can be specially noticed in Figure 4.8 where a comparison between Figures 4.4 and 4.7 

is presented. With respect to the fractional diffusion exponent  , the behavior is backwards, 

i.e., the neutron leakage is less when   decreases.  

 



 

Figure 4.4. Normalized density ( 0n n ) when 0.900 =  for different values of the 

fractional diffusion exponent  . 

  



 

Figure. 4.5. Normalized neutron density ( 0n n ) when 0.930 =  for different values of 

the fractional diffusion exponent  . 

 

 

Figure.4.6. Normalized neutron density ( 0n n ) when 0.960 =  for different values of the 

fractional diffusion exponent  .  



 

Figure. 4.7. Normalized neutron density ( 0n n ) when 1 =  for different values of the 

fractional diffusion exponent  . 

 

 

Figure. 4.8. Overlapping of Figures 4.4 and 4.7, lines with symbol represent 0.900 =  and 

solid lines represent 1 = .  



Figures 4.9-4.12 show the precursors concentration behavior after a constant positive 

reactivity insertion of 5n = , it can be observed that when   decreases, precursors 

concentration increments, this can be specially noticed in Figure 4.13 where a comparison 

between Figures 4.9 and 4.12 is presented. With respect to the fractional diffusion exponent 

 , the behavior is consistent with the behavior of  , i.e., when   decreases, precursors 

concentration increments as well.  

 

 

Figure 4.9. Precursors concentration (C ) when 0.900 =  for different values of the 

fractional diffusion exponent  . 



 

Figure 4.10. Precursors concentration (C ) when 0.930 =  for different values of the 

fractional diffusion exponent  . 

 

 

Figure 4.11. Precursors concentration (C ) when 0.960 =  for different values of the 

fractional diffusion exponent  . 



 

Figure 4.12. Precursors concentration (C ) when 1 =  for different values of the 

fractional diffusion exponent  . 

 

 

Figure 4.13. Overlapping Figures 4.9 and 4.12, lines with symbol represent 

0.900 =  and solid lines represent 1 = . 

  



4.3.2. Slab geometry with temperature feedback effects 

For the following numerical experiments, a homogeneous slab reactor with a 

thickness of 100a =  cm, including the extrapolation distance, was considered. Thermal 

neutron diffusion parameters were taken from literature (Lamarsh, 2001; Duderstadt, 1976) 

for water as moderator at 20 ºC, 2 5E = −  s, 0.0065 = , 220,000v =  cm/s, 0.16D =  cm, 

0.0197a =  1/cm, 0.0810958 =  and 0.00024l =  s. 

Figures 4.14 and 4.15 show the behavior of neutron density and reactivity, 

respectively for an initial reactivity of 0 0.002n = , a fixed 0.90 =  and different values of 

 . 

Figure 4.14 shows clearly the effect of the anomalous diffusion coefficient ( ) which can be 

important for long transients, i.e., for smaller values of   the neutron density increases less 

dramatically than for bigger values or even without the term   which contains the 

coefficient in the proposed fractional buckling. In Figure 4.15 the same effect can be 

appreciated, i.e., for smaller values of   the reactivity decreases less dramatically than for 

bigger values or even without the term  .  



 

Figure 4.14. Normalized neutron density when 0.90 =  for different values of the 

fractional diffusion exponent  . 

 

 

Figure 4.15. Reactivity when 0.90 =  for two values of the fractional diffusion exponent 

  and without its effect.  



Figures 4.16 and 4.17 show the behavior of neutron density and reactivity, 

respectively for an initial reactivity of 0 0.002n = , a fixed 0.99 =  and different values of 

 . Similarly to Figures 4.14 and 4.15 the behavior of the neutron density and reactivity are 

apparently the same in Figures 4.16 and 4.17, due that the effect of   can’t be appreciated 

in long transients.  

 

 

Figure 4.16. Normalized neutron density when 0.99 =  for two values of the fractional 

diffusion exponent   and without its effect. 

  



 

 

Figure 4.17. Reactivity when 0.99 =  for two values of the fractional diffusion exponent 

  and without its effect. 

 

Figures 4.18 and 4.19 show the behavior of neutron density and reactivity, 

respectively for an initial reactivity of 0 0.002n = , a fixed 0.90 =  and different values of 

 . As stated before, the effect of   cannot be appreciated in long transients, thus simulations 

from a value of 0.50 up to 0.99 were performed in order to show its effect when its value 

moves away from 1. Figure 4.18 shows the effect of this, i.e., for very small values of   the 

neutron density increases more dramatically than for bigger. In Figure 4.19 its effect in the 

reactivity can be appreciated, i.e., for very small values of   the reactivity decreases more 

dramatically. 

  



 

Figure 4.18. Normalized neutron density when 0.90 =  for different values of  . 

 

 

Figure 4.19. Reactivity when 0.90 =  for different values of  .  



Figures 4.20 and 4.21 show the behavior of neutron density and reactivity, 

respectively for an initial reactivity of 0 0.002 = , a fixed 0.99 =  and different values of 

 . As stated before, the effect of   cannot be appreciated in long transients, thus simulations 

from a value of 0.50 up to 0.99 were performed in order to show its effect when its value 

moves away from 1. Figure 4.20 shows the effect of this, i.e., for very small values of   the 

neutron density increases more dramatically than for bigger. In Figure 4.21 its effect in the 

reactivity can be appreciated, i.e., for very small values of   the reactivity decreases more 

dramatically. 

 

 

Figure 4.20. Normalized neutron density when 0.99 =  for different values of  . 

 

  



 

Figure 4.21. Reactivity when 0.99 =  for different values of  . 

 

Although the value of   should be close to 1, according to Espinosa-Paredes (2017), 

the experiments were performed using values as low as 0.50 in order to observe a perceivable 

difference. Yasser (2017) has also experimented with values of   as low as 0.2 in order to 

appreciate the effect of the anomalous diffusion exponent. 

 



4.3.2. Cylindrical geometry without temperature feedback effects 

For the present experiment, nuclear reactor parameters used are: 52 10− =   s, 

0.0065 = , 220,000v =  cm/s, 0.16D =  cm, 0.0197a =  1/cm, 10.0810958 s −= , and 

0.00024 sl = . Regarding the geometry used in the study, it corresponds to typical core 

dimensions of a BWR, a cylinder of 3.708 m in height and a diameter of 5.2 m. 

 

 

Figure 4.22. Numerical experiment without temperature feedback effects for three 

different values of 0.90,0.95,0.99 = , two representative values of 0.90,0.99 =  and the 

classical neutron point kinetics model. 

 

The first experiment without temperature feedback effects (Figure 4.22) considers a 

reactor in steady state and at 10 st = , a reactivity insertion of 5n =  is introduced. It can 



be clearly observed that the prompt jump corresponds of approximately 20-30% of nominal 

neutron density, which has a dependence on the value of the fractional diffusion exponent. 

After numerous experiments these values of   and   where selected due that its 

curves are just over and below the curve of the classic neutron point kinetics model, which 

was numerically solved, 410 s −=  for all cases. From this experiment, it can be observed 

that both terms compete with each other, for values of   closer to one (dashed lines), neutron 

density is lower; and for values of   closer to one (red lines), neutron density is higher; for 

the case of  , this behavior is due to neutron leakage. Table 4.4 presents the behavior of 

reactivity by neutron leakage  , when 1 =  implies that the reactivity by neutron leakage 

is null and corresponds to the classical approximation of the reactor point kinetics equations, 

additionally in Figure 4.24 the same behavior can be observed for different geometries, also 

it can be concluded that for bigger cores neutron leakage is less. However, as the space-

anomalous diffusion coefficient decreases, i.e., neutron leakage increases. This has an 

important interpretation of the effect that spatial memory has with spatial non-local 

approximation throughout the term 2 1( )g gD B D B 
+− , i.e., for high spatial sub-diffusion 

(small values of  ) neutron leakage is greater (blue lines) due to two important effects, 

according to the order of magnitude analysis the relation among microscopic and 

macroscopic fractional lengths is greater with respect to the normal relation, which means 

that the spatial diffusion coefficient is bigger than the normal diffusion coefficient, therefore 

the mean free paths are greater according with   decreasing with respect to normal diffusion 

(Figure. 4.23). In Table 4.5 the modified versions (for the plotting of Figure. 4.23) of the 

geometrical buckling are presented. For this case, the curve which fits the most to the 

classical model, corresponds to values of 0.99 =  and 0.99 =  (red dashed line). 



 

 

TABLE 4.4. Behavior of neutron leakage (  ) with   variation, for 

a cylindrical reactor with typical dimensions of a BWR. 

      

0 -1.24E-02 

0.05 -9.74E-03 

0.1 -7.67E-03 

0.15 -6.03E-03 

0.2 -4.74E-03 

0.25 -3.72E-03 

0.3 -2.91E-03 

0.35 -2.28E-03 

0.4 -1.77E-03 

0.45 -1.38E-03 

0.5 -1.06E-03 

0.55 -8.17E-04 

0.6 -6.22E-04 

0.65 -4.68E-04 

0.7 -3.46E-04 

0.75 -2.50E-04 

0.8 -1.74E-04 

0.85 -1.14E-04 
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Figure 4.23. Neutron leakage (  ) behavior for different geometries. 

 

 

 

 

TABLE 4.5. Fractional geometrical Buckling modified from Duderstadt and 

Hamilton (1976). 

 

Geometry Dimensions Fractional geometrical Buckling 

Cylinder Radius R, Height H 

1 1
2.405

R H

 


+ +
   

+   
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Slab Thickness a 

1

a




+
 
 
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Sphere Radius R 

1

R




+
 
 
 

 

  

 

 



4.3.3. Cylindrical geometry with temperature feedback effects 

For the present experiment, nuclear reactor parameters used are: 52 10− =   s, 

0.0065 = , 220,000v =  cm/s, 0.16D =  cm, 0.0197a =  1/cm, 10.0810958 s −= , and 

0.00024 sl = . Regarding the geometry used in the study, it corresponds to typical core 

dimensions of a BWR, a cylinder of 3.708 m in height and a diameter of 5.2 m. 

This experiment (Figure. 4.24) considers a reactor in steady state and at 1t i= +  a 

reactivity insertion of 5n =  is introduced, it can be observed, the prompt jump which 

corresponds of about 20%-30% of nominal neutron density for all cases, except for 0.70 =  

and lower values (not shown) which is only of approximately 10% of nominal neutron 

density.  

 
Figure 4.24. Numerical experiment with temperature feedback effects for three different 

values of 0.90,0.95,0.99 = , two representative values of 0.90,0.99 = , and the classical 

neutron point kinetics model. 



 

After numerous experiments these values of   and   where selected due that its 

curves are just over and below the curve of the classical neutron point kinetics model, which 

was numerically solved, the value of 0.90 =  is not shown due that in this scale it appears 

as overlapping the curve of 0.99 = , therefore 0.75a =  was selected in order to show the 

effect of   in this experiment, additionally the curves of values between 0.75 and 0.90 were 

also to close to the curve corresponding to 0.99 = , 410 s −=  for all cases. Contrary to 

what Schramm et al. (2016) concluded, fractional derivative parameter effects on the neutron 

density are completely suppressed, for values of 0.9 = , 1.0 =  and 1.1 =  (the last value 

being superdifussion), we did found that temperature feedback effects are important for long 

( 50s ) and more important for very long times ( 100s ) ; however for short ( 10s ) and 

very short times ( 1s ) they are unnoticed and a more detailed analysis is required e.g. as in 

transient analysis.  As previously observed from previous numerical experiments and 

Neutron leakage (  ) behavior, for lower values of   (blue lines), as expected, yields lower 

neutron density; this experiment shows that both fractional diffusion exponents   and   are 

important for long ( 50s ) and very long time ( 100s ) transients. For this case, the curve 

which fits the most to the classical model, corresponds to values of 0.99 =  and 0.90 =  

(blue dashed line). 

 

4.3.4. Cylindrical geometry reactivity insertion pulse type experiment 

For the last numerical experiment, nuclear parameters of a typical TRIGA MARK II 

reactor were used (Table 4.6), and a pulse type experiment was simulated with a reactivity 



insertion of 2.33 dollars (Figure. 4.24), the transient occurs in 30 ms, reaching a power peak 

of 2250 MW with a reactor period T = 2 ms (IAEA, 2005). 

 

TABLE 4.6. Nuclear parameters used for the pulse type experiment. 

Nuclear parameter Value 

  52 10 s−  

  0.0810958 s-1 

  0.007 

l  643 10 s−  

 

Due that the present scenario is of extremely short time duration, we used several 

relaxation times in order to counter for infinite velocity propagation ( 5 610 s, 10 s − −= ), this 

can be clearly observed (Figure 4.24), at the beginning of the transient (first 5 ms), where the 

blue and green lines scenarios ( 310 s −=  and 410 s −=  respectively) raise evidently before 

the red and magenta lines scenarios ( 510 s −=  and 610 s−  respectively). It is hard to 

evidence the effect of   and  , observed from previous experiments, due that different 

values of   and   (Table 4.7) were used in order to predict with little error ( 1%  for 

4 5 610 s, 10 s and 10 s − − −= ) the power peak (black star). The scenario which corresponds 

to the black line corresponds to the classic model and presents the highest error when the 

transient reaches the power peak, in Table 4.7 a comparison of the power peak value of the 

simulated experiments against real value is presented along with its relative error.  

 

 

 

 



TABLE 4.7. Values and relative error (%) of the power peak of the simulated experiments against 

real value. 

Model Classical 

3

0.947

0.900

10





 −

=

=

=
 4

0.719

0.840

10





 −

=

=

=

 

5

0.839

0.990

10





 −

=

=

=
 6

0.713

0.999

10





 −

=

=

=
 

Power Peak 1,802.50 2,274.82 2,253.10 2252.02 2,252.87 

Rel. error % 19.88 1.10 0.14 0.09 0.13 

 

 

 
Figure 4.25. Pulse type numerical experiment for different values of    and the classic 

neutron point kinetics model. 



 

As stated before, the fractional diffusion exponent  is related to neutron leakage, 

this can be explained by the fact that, as expected, “classical” diffusion violates physical 

principles by propagating the signal farther than the points which can be reached at the given 

finite speed. The consequence of this physical violation has been addressed before, Dulla et 

al. (2006) states that for transport, P1 and P3, no neutron leakage is experienced and for pulse 

situations the infinite velocity propagation causes a high rate flux reduction due to leakage. 

The latter can be observed in Figures. 4.25 even when the present model considers anomalous 

diffusion, i.e., a relaxation time ( ). 

 

  



 

5. Thermal-hydraulic Coupling with neutronic 

fractional for SCWR 

 

The Super Critical Water is a very high-pressure water-cooled reactor which will 

operate at conditions above the thermodynamic critical point. Water enters the reactor core 

and then exits without change of phase, i.e., no water or steam separation is necessary. There 

is an expected increase of thermal efficiency of current nuclear power plants from 30% – 

35% to approximately 45 – 50% for Generation IV reactors (Thind, 2012; Schulenberg & 

Starflinger, 2012).  

Figure 5.1 shows the difference in the operating conditions of current generation 

reactor systems in comparison to SCWRs. Compared to existing Pressurized Water Reactors 

(PWRs), in SCWRs the target is to increase the coolant pressure from 10 MPa– 16 MPa to 

about 25 MPa; the inlet temperature to about 350ºC, and the outlet temperature to about 

625ºC (Pioro & Duffey, 2007). 

 



 

Figure 5.1. Operating conditions of current nuclear reactors and SCWRs (Pioro & 

Duffey, 2007). 

 

 

In this work we present a numerical analysis of the effect of different heat transfer 

correlations on the prediction of the fuel temperature and wall cladding in a SCWR reactor 

which includes a Time-Space Fractional Neutron Point Kinetics (TSFNPK) (Espinosa-

Martínez et al., 2018, 2020) model as a novelty, which considers a non-Fickian law for the 

neutron density current where the differential operators in space and time are of fractional 

order. 

Since decades, the neutron diffusion concept is a tool commonly used to understand 

the complex behavior of the neutrons average motion. Most reactor studies treat the neutron 

motion as a diffusion process, where it is assumed that neutrons in averaged motion tend to 

diffuse from regions of high neutron density to low neutron density. The treatment of neutron 



transport as a diffusion process has only limited validation due that neutrons tend to stream 

at relatively large distances between interactions. 

Over the last decade fractional neutron point kinetics (FNPK) models have been 

developed which generalizes the classical neutron point kinetics (CNPK) model, going from 

integer derivatives to non-integer derivatives. These newly derived models are a useful tool 

to provide important information on the reactor dynamics. 

In a seminal work of Espinosa-Paredes et al. (2008) a fractional wave equation for 

the average neutron motion in nuclear reactor was derived, which covers the full spectrum of 

the average neutron transport behavior, i.e., Fickian and non-Fickian effects. The fractional 

diffusion model retains the main dynamic characteristics of the neutron motion in which the 

relaxation time associated with a rapid variation in the neutron flux contains a fractional order 

exponent which is known as anomalous diffusion exponent. According with these authors 

the anomalous diffusion exponent can be manipulated to obtain the best representation of the 

neutron transport phenomena. 

The neutronic process with temperature feedback effects, the heat transfer in the fuel 

rod and the thermal-hydraulics in the core were simulated. Special attention was given to the 

thermal hydraulics, which uses a three-pass core design with multiple heat-up steps, where 

each step was simulated using an average channel. The first pass called “evaporator” is 

located in the center of the core. In this region, the moderator water flows downward in gaps 

between assembly boxes and inside the moderator tubes. The moderator water, heated-up 

through its path downward to the lower plenum, is mixed with the coolant coming from the 

downcomer reaching an inlet temperature of around 583K. The evaporator heats the coolant 

up to 663K, flowing upward and around the fuel rods, resulting in an outlet temperature 5K 

higher than the pseudo-critical temperature of 557.7K at a pressure of 25MPa. The second 



pass, called “superheater”, with downward flow, heats the coolant up to 706K. After a second 

mixing in an outer mixing plenum below the core, the coolant will finally be heated up to 

803K with an upward flow in a second superheater (the third pass) located at the core 

periphery. A transient one-dimensional radial conduction model was applied in the fuel rod 

for each cell in the axial coordinate. Energy balances for the coolant have been implemented 

using a steady state and a one-dimensional model for the axial coordinate. Fuel lattice 

neutronic calculations were performed with the HELIOS-2 code and the reactivity 

coefficients were used to evaluate the reactivity effects due to changes in the fuel temperature 

and in the supercritical water density for 177 energy groups. Due to the strong variation of 

coolant density through the core, five densities were considered. This safety parameter is 

calculated in order to evaluate the variation of the reactivity due to the Doppler Effect, as a 

function of the fuel temperature, which is related to the resonances broadening when the fuel 

temperature increases. The coupling of neutronics with the heat transfer in the fuel rod, and 

the thermal hydraulics is presented, and numerical experiments due to changes in the mass 

flow rate were accomplished in this study. Effects on fuel temperature predictions with 

improved heat transfer correlations and classical heat transfer correlations were also 

compared. 

 

5.2 Supercritical Fluids 

The behavior of liquid and gas density with pressure and temperature is illustrated in 

Figure. 5.2. When the pressure and temperatures are low, there is a significant density 

difference between the liquid and the gas states. Near the critical point, the density difference 



between the liquid and gas is small, and above the critical point, the densities of the liquid 

and the gas have become equal. 

The heat transfer process, at critical and supercritical pressures, is influenced by the 

significant changes in thermophysical properties, as is observed in Figure. 5.3 for specific 

heat, thermal conductivity, and density obtained from thermal properties taken from Wagner 

& Kretzchmar (2008). The most significant thermophysical property variations occur near 

the critical and pseudocritical points. For example, the specific heat of water has a maximum 

value at the critical point. The exact temperature that corresponds to the specific heat peak at 

pressures above the critical pressure is known as the pseudocritical temperature (Pioro et al., 

2004). 

 

 

Figure 5.2. Schematic behavior of liquid and gas density with pressure and temperature 

(Thind, 2012). 

 



 

Figure 5.3. Behavior of the specific heat capacity (Cp ), thermal conductivity ( k ) and 

density (  ), as a function of temperature at 25 MPa. 

5.3 Implementation 

In order to analyze the effect of different heat transfer correlations on the prediction 

of the wall temperature of the fuel rods, the SCWR numerical code developed by Barragán-

Martínez (2013) was applied using the HTCs shown in Table 5.1. The numerical model of 

the heat transfer processes in the fuel element of the HPLWR was obtained using the 

numerical model of typical reactors (Espinosa-Paredes & Espinosa-Martínez, 2009). The 

supercritical water reactor is integrated of cylindrical fuel elements which contain ceramic 

pellets inside the cladding.  

Then, the effect of heat transfer correlations on the fuel temperature prediction of SCWRs 

was conducted with numerical experiments. 

  



Table 5.1. Supercritical Water Heat-Transfer Correlations (HTCs) 

Correlation Reference 

 Dittus & Boelter (1930) 

 McAdams (1942) 

 
* Bishop et al., (1964) 

 Bishop et al., (1964) 

0.231
0.6130.923Nu 0.00459Re Pr w

w w w
b





 
=  

 

 Swenson et al., (1965) 

 Mokry et al., (2009a) preliminar 

 
 

Mokry et al., (2009a) final 

*with Entrance-Region Effect (ERE) and a fit of ±15%;  is the average; b 

and w means bulk-fluid and wall temperature, respectively. 

 

 

5.3.1 Fuel Heat Transfer Model 

A detailed multi-node fuel pin model was developed for this study. The fuel heat 

transfer formulation is based on the following fundamental assumptions: (i) Axis-symmetric 

radial heat transfer, ii) the heat conduction in the axial direction is negligible, iii) the 

volumetric heat rate generation in the fuel is uniform in each radial node, and iv) storage of 

heat in the fuel cladding and gap is negligible. Under these assumptions, the transient 

temperature distribution in the fuel pin, and the initial and boundary conditions are given in 

the following conditions, 
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B.C.1.  ( )m
T

k H T T
r




− = −


  at  clr r=   (5.3) 

B.C.2.  ( )m
T

H T T
r




= −


  at  0r r=   (5.4) 

In Eq. (5.1) ( )''' 0q t = , for f clr r  . In these equations, r is the cylindrical radial 

coordinate, 0r , fr  and clr  are the centroid, fuel and clad radius, respectively, 

( ) ( )''' / fq t P t V=  at each axial node, where P is the neutronic power, fV  is the fuel volume, 

wT  is the wall temperature, mT  is the moderator temperature, and H  is the convective heat 

transfer coefficient.  

The differential equations described previously are transformed into discrete 

equations using the control volume formulation technique in an implicit form (Patankar, 

1980). The control volume formulation enables the equations for fuel, gap, and cladding to 

be written as a single set of algebraic equations for the sweep in the radial direction, 

1 1
t t t t t t

j j j j j j ja T b T c T d+ + +
+ −= + +     (5.5) 

where 1
t t
jT +
− , t t

jT +  and 1
t t
jT +
+  are unknowns, ja , jb  and jc  are coefficients, which are 

computed at the time t . When these equations are put into a matrix form, the coefficient 

matrix is tridiagonal. The solution procedure for the tridiagonal system is the Thomas 

algorithm, which is the most efficient algorithm for this type of matrices. The coefficients ja

, jb  and jc  are dependent on thermophysical properties, i.e., thermal conductivity, density 

and specific heat; and since they are function of t t
jT + , at least one iteration is needed.  

 



5.3.2 Thermal-hydraulic Model 

The basic equations for describing the thermal hydraulic behavior in the three 

representative heated channels (one channel for each pass core) assuming the supercritical 

fluid is a single phase fluid, are presented as following. Incompressible flow was also 

considered in this study, i.e., the mass flux ( G ) is a constant. Under this consideration, the 

energy equation at steady state is shown as follows, 

''b H

f b H b

dT q P G dp fG
GCp

dz A dz D 

 
= + + 

 
   (5.6) 

where bT  is the bulk temperature, f  is the friction factor, HP  is the heated perimeter, and 

fA  is the flow area. The heat transfer from the wall to the coolant is obtained with Newton’s 

law of cooling, 

( )'' w bq H T T= −     (5.7) 

The temperature in each node of the channel is obtained numerically as, 

1 ib b
i

dT
T T z

dz
+

 
= +  

 
   (5.8) 

where z  is the node length and i  is the node number.  

 

5.3.3 Reactor Power Model 

The reactor power is given by, 

( ) ( ) ( ) 0,P t z n t F z P=     (5.9) 



where ( )F z  is the axial power factor, 0P  is nominal power and ( )n t  is the normalized 

neutron flux, which is calculated by using a point reactor kinetics model with six groups of 

delayed neutrons, 
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( )2 1
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
      (5.12) 

( )( ) 1 ( ) idC tdS t dn t

dt dt dt




−
= +


     (5.13) 

where iC  is a delayed neutron concentration of the i th−  precursor group normalized with 

the steady-state neutron density, n is the net reactivity,   is the neutron delay fraction,   

is the neutron generation time and i  is the portion of neutrons generated by the i th−  group. 

The initial conditions are given by ( ) 00n n=  and ( ) 00 /i i iC n =   According with 

definition given by Eq, (5.11), the reactivity is associated to neutron leakage in the system, 

i.e. 0  . The term 1
gD B
+  was proposed and analyzed by Espinosa-Paredes (2017). 

The parameters of the kinetics model are presented in Table 5.2. 

  



Table 5.2. Point Reactor Kinetics Model Parameters (Espinosa-Paredes, 2017) 

Group i  
1( )i s −

 

1 2.470  10-4 0.0127 

2 1.355  10-3 0.0317 

3 1.222 


10-3 0.1150 

4 2.646 


 10-3 0.3110 

5 8.320 


 10-4 1.4000 

6 1.690   


 10-4
 3.8700

 

 36.5 10 −=   
54.0 10− =  s

 
 

The net reactivity in this work includes three main components: Doppler effects due 

to fuel temperature, coolant density, and reactor control rods. The reactivity coefficient due 

to variations in fuel temperature was considered for the fuel assembly design which was 

proposed by Bishop et al. (1964). Calculations were performed for this fuel assembly along 

the active core height. And because of the strong variation of coolant density in the axial 

direction of the core, five densities: 0.74, 0.45, 0.31, 0.17 and 0.09 g/cm3 had to be 

considered. In order to evaluate the variation of the reactivity due to the Doppler Effect, as a 

function of the fuel temperature, this safety parameter is calculated, which is related to the 

resonances broadening when the temperature increases. The values of the reactivity as a 

function of the coolant density and fuel temperature are presented in Figure. 5.4. The values 

of the infinite multiplication factor obtained with HELIOS-2 for 177 energy groups were 

used to determine the reactivity. 

 

 



 

Figure 5.4. Reactivity coefficients obtained with HELIOS-2 for 177 energy groups at different 

densities. 

 

5.3 Numerical Solution 

The fractional neutron point kinetics equations with temperature feedback effects, 

considering one group of delayed neutron precursors for this analysis is given by a set of 

ordinary differential and algebraic Eqs, (5.10)-(5.13). The initial conditions at 0t =  are, 

0

0 0

0
0

n n

C C n

n
S S





=

= =


= =


     (5.14) 

Following the procedure of Edwards et al. (2002) we re-write Eqs. (5.1), (5.3), (5.4) and 

(5.7), 

 

1
3 2 1 1D n a Dn a D n a n b C D S  + + + + = +     (5.15) 

2 0DC b C a n+ =       (5.16) 



4 2DCDS a Dn b= +      (5.17) 

where D  is the derivate with respect to time. The coefficients of these equations are 

presented in Table 5.3. 

 

 

Table 5.3. Coefficients of Eqs. (5.15)-(5.17) 

 

Coefficient Value 

0a  



 

1a  

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

− +
−


 

2a  a  

3a  
1


 

4a  
1 −


 

1b  





 

2b    

 

Applying the following change of variables, 1x n= , 2 1x D x= , 3 1x Dx= , 

4 3x D x= , 1y C= , 2 1y Dy= , 1z S= , 2 1z D z= , 3 1z Dz= , 1r = , 2 1r Dr= , the discrete 

form of the solution of the system of equations can be presented in matrix form, 

=Ax b        (5.18) 

where 
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5.3.1 Representative SCWR Nodalization 

The fuel rod temperature distribution was obtained for the radial nodes at each of the 

twenty one thermohydraulic axial nodes in the core. The arrangement of the computational 

nodes of the thermohydraulics model is illustrated in Figure. 5.5. 

Figure. 5.6 shows the grid used in calculations. Half control volume near the 

boundary, radial nodes 1, 2, 3, 4, and 5 for the fuel; radial node 6 was used for the gap; radial 

nodes 7 and 8 for the clad. Radial nodes 1 and 8 were used for the boundary condition. 

 

 

Figure 5.5. Arrangement of the computational nodes in the thermohydraulics core model of the 

SCWR. 

 

 



 

Figure 5.6. Arrangement of the computational cells of fuel, gap, and clad. 

 

5.4 Numerical Experiments 

Each channel in the core was based on a hydraulic unit cell whose parameters are: 

0.025 mHP = , 0.054 mHD = , and 20.34 mfA = . The parameters of the fuel element are: 

35.207x10 mfr −=  for the fuel, 35.321x10 mgr
−=  for the gap, and 36.134x10 mclr −=  for 

the clad. The active height of the fuel cell (4.2 m) was divided into 21 equidistant axial nodes 

( 0.2 mz = ). The axial distribution of power for each channel was imposed with the idea 

that the heat flux is not uniform. The thermal physical properties used were taken from 

Wagner & Kretzschmar (2008). 73, 48 and 35 assembly clusters for Channel 1, Channel 2 

and Channel 3, respectively, were used in the simulation, in order to reach a better power 

distribution within the core.  

Fig. 5.7 presents the results for Channel 1, showing the Wall Temperature behavior 

for different correlations presented in Table 5.1. It should be noted that the last node 

temperature (at 4 m) is practically the same, and the trend is very similar for all the 

correlations, except for a short zone where the Swenson correlation yields a lower 

temperature while Mokry’s correlation and TSFNPK (yield a higher temperature, the same 

was noted for the Bishop’s correlations (with and without ERE). 
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In Fig. 5.8 the results for Channel 2 are presented, showing the wall temperature 

behavior for the correlations in Table I. Similar results were obtained, however contrary to 

what was observed in Channel 1, the Swenson’s correlation yields slightly higher 

temperatures along the entire channel meanwhile the Bishop’s (with and without ERE), 

Mokrys correlation and TSFNPK yield slightly lower temperatures along the entire channel.  

 

 

 

Figure 5.7. Simulation results for Channel 1 showing the wall temperature behavior for different 

HTCs.  

 

 



 

Figure 5.8. Simulation results for Channel 2 showing the wall temperature behavior for different 

HTCs. 

 

Figure 5.9 presents the results for Channel 3, showing the wall temperature behavior 

for the correlations presented in Table 5.1. In this case, the trends that most resemble each 

other are presented. Again, the Swenson’s correlation deviates the most, yielding slightly 

higher temperatures than other correlations. 

 



 

Figure 5.9. Simulation results for Channel 3 showing the Wall Temperature behavior for different 

HTCs. 

 

It has been found that Bishops correlation represents more closely HTCs through the heated 

length but deviates significantly in the pseudocritical range, and the Dittus-Boelter 

correlation predicts closely experimental HTCs outside the pseudocritical region, usually 

experimental HTCs are compared to these correlations (Mokry et al., 2009b and 2011). 

Therefore, for the present study, it is correct to take both correlations as reference due that 

are in good agreement with experimental data, i.e., temperature and pressure above the 

critical point (647 K and 22.5 MPa) from Channel 1  

Bishop’s correlations, with and without Entrance-Region Effect (ERE) have little differences 

among them in the prediction of the wall temperatures, meaning that, for this simulation the 

ERE is not important. The latter can be observed with the naked eye in Figures 5.7-5.9 (clear 

blue line and clear blue dotted line) where the correspondent curves overlap. Predictions 

compared to the Dittus-Boelter correlation are a little higher in the first channel and slightly 



lower in channels 2 and 3. With Mokrys correlation, higher temperature predictions were 

found in Channel 1, but were very similar to Dittus-Boelter in channels 2 and 3. Swenson’s 

correlation showed the most deviated results, yielding lower temperatures in the first channel 

and higher in channels 2 and 3. 

 

 

 

  



CONCLUSIONS 

 

In this PhD thesis the development of a novel zero-dimensional mathematical model of two 

different fractional orders was developed and analyzed to study the simultaneous heat and 

neutron transport processes in nuclear power reactors. The model developed was called 

Time-Space Fractional Neutron Point Kinetics (TSFNPK), which considers two-anomalous 

diffusion exponents: one for the differential operator dependent in time and another for the 

dependent operator in space. It is important to note that the TSFNPK model has unique 

relevant characteristics, because the memory in time is of the non-local type due that the 

differential operator of fractional order ( 1 and D D + ), and the memory in space is local, 

i.e., it does not depend on the past and neither the future to obtain the present state, due to is 

a function of the fractional order reactor geometry ( 1
gB+ ). The TSFNPK represents a model 

extended of the point reactor kinetics equations (PRKE), because when  and    tend one 

this is recovered. 

The model was assessed in order to obtain the intervals in which the fractional diffusion 

exponents yielded results which agreed to compared data, e.g., during positive reactivity 

insertion pulse type experiment. In this experiment the anomalous diffusion coefficients that 

were found are: 0.839 and 0.99 = =  with a relative error of 0.09% vs 19.88% of PRKE. 

These values of the exponents of fractional order, mean that the neutronic processes in a 

nuclear reactor are of a subdiffusive nature. 



In order to evaluate different heat transfer correlations, the TSFNPK model was coupled to 

a thermal-hydraulic model of a SCWR, it was found that the correlation, which agrees most 

with Dittus-Boelter, is McAdams. The only difference in the equation is the value of the 

coefficient. Mokrys correlation had higher temperature predictions in Channel 1 but were 

very similar to Dittus-Boelter in channels 2 and 3. And Swenson’s correlation presents the 

most deviated results. 

 

Challenges and recommendations 

 

This work represents a framework for future research that is challenging. 

• Develop systematic methods considering that the fractional order model is a poorly 

posed problem, because fractional orders in space and time are not known a priori. 

• Consider problem where the effect of the fractional order spatial operator (memory 

in space) is non-local, as in the case of memory in time. 

• Apply the PRKE model for the analysis of transients and safety in nuclear reactors, 

which can be compared with data from nuclear power plants. 

• Explore fractional order models for neutron kinetics with complex conjugate numbers 
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