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1 Introduction

One of the most important problems in financial mathematics as well as in practice is how to price
financial instruments such as options, futures, etc. It is well known that under certain assumptions,
such as market completeness (a market without arbitrage opportunities where every contingent claim
can be replicated), it is possible to find the price of financial instruments in a mathematically consistent
way. However, in practice those hypotheses do not hold, and therefore, problems such as uniqueness
of the price, arbitrage opportunities, hedging problems, etc., appear.

In the real world, there is always a group of investors that has some hedging constraints on their
portfolios since they do not have access to information and proprietary technology that institutional
investors have. For this type of investors perfect replication of a derivative is usually not possible, and
the market shows properties of incompleteness relative to these agents. Moreover, almost any market
has institutional investors who combine technical analysis, fundamental analysis, and economics to
assess potential investments on stock derivatives. Their decisions depend on their informational frame-
work, and their perception of the probabilities of future macroeconomic events. When this happens
investors face the problem of what measure to use to price financial instruments. This type of environ-
ments has been a topic of interest for researchers in the field of mathematical finance, and some have
created methods to deal with this problem. Some of the most common characterizations have been
the existence of many martingale measures and hedging restrictions. When this happens, quantitative
analysts face the problem of what criteria they have to use to pick up a probability measure to price
the financial instruments they are working with. There are some works that have been addressing this
problem, but some of them offer a mathematical answer rather than a financial solution of how to
price derivatives. For example, the minimal martingale measure proposed by (Föllmer and Schweizer,
1991); the minimax measure by (Belini and Fritelli, 2002) or the minimal distance martingale by
(Goll and Rüschendorf, 2001). Most recently and as it is explained by (Cheridito et al., 2016) there
have been several works giving more financial sense about pricing derivatives under utility indifference
arguments; however, utility based prices are personal and reflecting the preferences of a single agent.
Moreover the structure of the function and the optimization process make the estimation of prices
difficult under this methodology.

In this work we propose the following method to compute the price of a derivative in this market.
Let C be the payoff of a derivative with maturity at time T . Let PM be the price of the derivative
(at time zero) in this micro-market. Let P λ̄(C) be the discounted expected value of the payoff of the
derivative under the martingale measure Qλ̄ such that the expected value of the financial indicators
of the companies related with the derivative match their respective forecasts. More specifically

P λ̄(C) := EQλ̄
[
C̃
]

(1.1)

with λ̄ computed from
max
λ̄

‖λ̄‖=1

H(λ1, ..., λm) (1.2)

subject to
EQλ̄ [Xi] = X̄i for i = 1, ..., LM, (1.3)

where C̃ is the discounted value of C under the numéraire; H is the Shannon’s information entropy; Xi

is the i-th macroeconomic indicator that includes part of the information of the financial health of the
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stocks related with the derivative, and X̄i is the respective forecast. Let pαj (v
(j)
0 , C) be the price for

the αj-stereotyped (characterized by a utility function Ûαj (v
(j)
0 , C)) agent with an initial endowment

v
(j)
0 with j = 1, ..., N . If we compute these prices for each t = 0, 1, ..., T , we can define P λ̄t (C), and

p
αj
t (v

(j)
0 , C). What we propose is that the micro-market price should be of the form

PMt = Y
′
tPt + εt, and ‖Yt‖ ≤ 1, (1.4)

where

Pt =


P λ̄t (C)

pα1
t (v

(1)
0 , C)
...

pαNt (v
(N)
0 , C)

 , (1.5)

and the errors εt must be studied using time series analysis to know what is the most accurate model
for calibration and forecasting. Here ‖Yt‖ represents the coefficient of participation of each agent in
the market. In theory, we should have ‖Yt‖ = 1, but since there are errors that cannot be captured
by εt, we use the inequality instead.

This approach can serve as a bridge between the theoretical economic models of market prices
and the technical methods of how to find market prices of derivatives using black boxes. There have
been some approaches that provide a good approximation. Abedinia et al. (2019) propose a model to
find optimal offering and bidding strategies for large consumers in specific markets using stochastic
hybrid approaches. Saeedi et al. (2019b) find a way through which decision makers can select as a
risk-neutral strategy the most robust decision via robust optimization approach. Saeedi et al. (2019a)
show a multiblock-neural network (NN) that is optimized by an algorithm to increase the training and
forecasting capabilities for price and load prediction. Xu (2006) proposes new methods with financial
intuition about how to price and hedge financial instruments through super-replication strategies.
Consiglio and Giovanni (2008) show a mathematical model to determine the fair price of bonus and
default options using constraints and super-replication via stochastic programming. Sirignano and
Cont (2018) provide a Deep Learning approach to uncover evidence for exitence of a universal and
stationary price formation mechanism relating the dynamics of supply and demand for a stock. Most
of these models provide either a numerical approach or a theoretical financial intuition. However,
we need to find a holistic approach where we not only know how different agents price derivatives,
but how the macroeconomic events and other economic sectors can influence the price of financial
instruments, and the a posteriori probability of occurrence of those interactions. This information will
be useful for decision takers and organizations that base their strategies in the expectations on future
financial events.

We know that the prices of stocks options are not only affected by the underlying assets, but
also by the diversity of informational frameworks, and the other stocks that are correlated with
the underlying assets of the stock option. We use, expand, and create algorithms using the theory
developed by El Karoui and Rouge (2000) and Brigo et al. (2004) to describe the different types of
agents in this micro-market. To know how other stocks affect the price of stock options, we break down
the volatility of the underlying asset into what we call components of volatility, parts of the volatility
of the underlying that depend on other assets. In addition to that, we need to consider all this
information together in a mathematical structure that let us understand where the weights Yt come
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from, and how they change when agents choose prices by relations of preference, and macroeconomic
information. For simplicity, we will assume that the function of the expected value of the market
price is a linear function of the prices proposed by each one of the agents. This allow researchers to
use many approximation methods. In particular, by using linear approximations under very small
intervals (Taylor approximations) of time, we can assume 1.4 should hold. In practice, because of the
lack of accuracy, forecasts are never made over long periods. Therefore, we can use the estimator of
Yt to make predictions of the price of the derivative over short periods.

In this work, we first explore the continuous time pricing method for institutional investors. We
will not only create the formula for derivatives, but also provide information about the distribution
of the derivative and the algorithm used to compute the optimization problem in 1.1. Next, we
study the behavior and two ways small investors price derivatives and how they intertwine. We begin
exploring a continuous time pricing technique under relations of preference and the connection with
superreplicating prices, a way of computing the price of derivatives when the investor has some market
constraints that do not let her find perfect hedging strategies. After that, we set the theoretical way to
compute the price of the derivative as in (El Karoui and Rouge, 2000). In the next section we explore
the discrete time version for the theoretical formulas and limit theorems to recover the time continuous
pricing formula. Finally in the last section, we provide new methods to estimate the parameters of
each one of the pricing formulas for the institutional and retail investors. In this process we will create
new maximum likelihood estimation methods combining economic restrictions, and a new method
using semigroup theory. For the readability purposes most of the theory and background is located in
the appendix section of this work.

2 Continuous Time Setting for Big Agents

To introduce the continuous time setting, we proceed as follows. In the most basic discrete-time

financial scenario we consider a market with two assets S
(0)
t and S

(1)
t . The asset S

(0)
t is the riskless

asset(numéraire), satisfying S
(0)
t = (1+r)S

(0)
t−1, and S

(1)
t is the risky asset. We talk about an attainable

contingent claim (pay-off of an option), CT , if we can find a self-financing portfolio strategy ξt :=

(ξ0
t , ξ

1
t ) (predictable process) such that the portfolio value Vt := ξt · (S(0)

t , S
(1)
t ) satisfies VT = CT , and

the difference between they values at time t+ 1 and t equals

Vt+1 − Vt = ξt+1 · (S(0)
t+1, S

(1)
t+1)− ξt · (S(0)

t , S
(1)
t )

= ξt+1 · (S(0)
t+1, S

(1)
t+1)− ξt+1 · (S(0)

t , S
(1)
t )

= ξ0
t+1(S

(0)
t+1 − S

(0)
t ) + ξ1

t+1(S
(1)
t+1 − S

(1)
t ),

(2.1)

where the second line in 2.1 means that the value of the portfolio investment remains the same
under portfolio re-allocations at the end of each period. These portfolio processes are useful and
one of the most common ways to price financial instruments. Even in a continuous time framework,
under a complete market without arbitrage opportunities, we can find a unique martingale measure
(risk-neutral measure), Q, that allows us to calculate the unique arbitrage-free price, πt=0(V ) =
EQ[(1 + r)−TCT ] at time t = 0 of the contingent claim, CT , with maturity T .
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As we might expect from 2.1 the continuous time scenario should be

dVt = ξ0
t dS

(0)
t + ξ1

t dS
(1)
t ,

where (S
(0)
t )Tt=0 and (S

(1)
t )Tt=0 should satisfy in some sense dynamics of the type

dS
(0)
t = r(t)S

(0)
t , and dS

(1)
t = γ(t)S

(1)
t dt+ vtS

(1)
t dWt, (2.2)

where (Wt)
T
t=0 is a standard Brownian motion, the process (ξt)

T
t=0 is predictable with respect to

the filtration Ft = σ{S(1)
l , l ≤ t} = σ{Wl, l ≤ t}, and therefore the dynamics of S(1) splits into

deterministic and random dynamics.

Fortunately, the continuous-time scenario shares similar results with the discrete-time model. In
fact, a sufficient condition that assures that a continuous-time market does not have arbitrage op-
portunities is the existence of a risk-neutral measure Q and under which the discounted process

(S
(1)
t /S

(0)
t )Tt=0 is a martingale. Moreover, in complete markets, it can be established that the unique

arbitrage-free price for a contingent claim CT ∈ L2(Q) is given by Πt(CT ) = S
(0)
t EQ[CT /S

(0)
T |Ft],

where Ft = σ{S(1)
l , l ≤ t} = σ{Wl, l ≤ t} (Harrison and Pliska, 1981).

In the context of the Black-Scholes-Merton model, we can deduce from the results given in appendix
A and B that the dynamics of S, under the risk neutral measure, can be assumed to be of the form

dS
(1)
t = r(t)S

(1)
t dt+ v(t)S

(1)
t dWt, S

(1)
0 = s0, t ∈ [0, T ], (2.3)

where s0 is a positive constant value; r and v are well behaved strictly positive functions.

By using Itô’s lemma with ln(S
(1)
t ), we get

ln(S
(1)
t ) = ln(S

(1)
0 ) +

∫ t

0

(
r(s)− v2(s)

2

)
ds+

∫ t

0
v(s)dWs,

and using
∫ t

0 v(s)dWs ∼ N
(

0,
∫ t

0 v
2(s)ds

)
, we get

ln

(
S

(1)
t

S
(1)
0

)
∼ N

(
R(0, t)− 1

2
V 2(t), V 2(t)

)
, R(b, t) :=

∫ t

b
r(s)ds,

V 2(t) :=

∫ t

0
v2(s)ds.

Now, from these results and the remarks in the appendix B, we have all the tools to compute the
unique free-arbitrage price

Π0(CT ) = S
(0)
0 EQ[CT /S

(0)
T |F0] = EQ[CT /S

(0)
T ],

for any contingent claim CT ∈ L2(Q) under complete and free-arbitrage markets.

Now with all these results, we can analyze the type of models that “deviate the least” from
the standard financial models. This approach can give us a better understanding of how to price
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derivatives. There are some proposals for this approach, but perhaps the first natural step (Brigo,
2002) is via a mixture of diffusion processes. Institutional traders do not have complete deterministic
information about the markets. In fact, their knowledge (that can be described by the interest rate,
drift and diffusion coefficients) changes and depends on macroeconomic scenarios. This problem
gives rise to different ways to compute interest rates, volatilities, etc. Because big companies usually
have advanced technological platforms, qualified staff, and state-of-the-art technology, we assume that
financial derivatives are attainable for these types of firms, i.e. there exists a self-financing portfolio
strategy that is a hedge for the derivative.

Suppose that we have a financial market with riskless and risky assets (S
(0)
t )Tt=0, and (S

(1)
t )Tt=0

respectively. The dynamics of S(0) and S(1) are of the form

dS
(0)
t = rtdS

(0)
t and dS

(1)
t = S

(1)
t µ(t)dt+ S

(1)
t ξtdWt, (2.4)

where the processes (µt), (rt), and (ξt) depend on the macroeconomic events Λ1,Λ2, ...,Λn. The
following proposition, a consequence of the results presented by Fabio Mercurio in (Brigo et al., 2004),
proves that such type of markets have infinitely many martingale measures, and therefore, they are
incomplete.

Proposition 2.1. Let (W̃t)t∈[0,T ] be a one dimensional Brownian motion on a filtered probability space

(ΩW̃ ,FW̃T , (FW̃t )t∈[0,T ], P
W̃ ); and let (ΩΛ,FΛ, PΛ) be a probability space with ΩΛ = {Λ1, ...,Λm} and

probability measure satisfying PΛ(Λj) := pj > 0 for j = 1, ...,m. Set the process (ξ̃t)t∈[0,T ], (µ̃t)t∈[0,T ],
and (r̃t)t∈[0,T ] such that:

1. ξ̃t(Λj) = vj(t) for each j and t ≥ 0, where v1, ..., vm are strictly positive, continuous, and bounded
away from zero,

2. µ̃t(Λj) = µj(t) for each j and t ≥ 0, where µ1, ..., µm are continuous,

3. r̃t(Λj) = rj(t) for each j and t ≥ 0, where r1, ..., rm are continuous.

Set Ω := ΩΛ × ΩW̃ , Ft := FΛ ⊗FW̃t , P := PΛ ⊗ P W̃ ; and let ξt(Λ, y) := ξ̃t(Λ), µt(Λ, y) := µ̃t(Λ),
rt(Λ, y) := r̃t(Λ), and Wt(Λ, y) := W̃t(y) be defined on (Ω,FT , (Ft)t∈[0,T ], P ). If we define a measure

QΛ in (Ω,FT ) by
dQΛ

dP
(Λj , y) :=

λj
pj

for all y ∈ ΩW̃ , (2.5)

where λj is strictly positive for each j = 1, ...,m with
∑m

j=1 λj = 1; and the process (S
(1)
t )t∈[0,T ] satisfies

dS
(1)
t = S

(1)
t µ(t)dt+ S

(1)
t ξtdWt;

then there exist a risk-neutral measure Qλ̄ in (Ω,FT ) associated with (St)t∈[0,T ] and the numéraire

S
(0)
t = e

∫ t
0 ru(·,·)du that satisfy

dQλ̄

dP
=
dQΛ

dP
exp

{
−1

2

∫ T

0

(
µ(t)− r(t)

ξt

)2

dt−
∫ T

0

(
µ(t)− r(t)

ξt

)
dWt

}
. (2.6)
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Proof. To prove this result, it is enough to show that (S
(1)
t /S

(0)
t )t∈[0,T ] is an (Ft, Qλ̄)-martingale (see

for instance Harrison and Pliska, 1981; Shreve, 2004; Privault, 2020). We observe that (Wt)t∈[0,T ] and
(ξt)t∈[0,T ] are independent on (Ω,FT , (Ft), P ). Moreover, (Wt)t∈[0,T ] is an (Ω,FT , (Ft), P )-Brownian

motion, and (ξt)t∈[0,T ] has the same law as (ξ̃t)t∈[0,T ].

To prove that Qλ̄ is a measure on FT , it is enough to verify EP

[
dQλ̄/dP

]
= 1. Let us then set

Lt := −
∫ t

0

(
µ(l)− r(l)

ξl

)
dWl, L

i
t := −

∫ t

0

(
µi(l)− ri(l)

vi(l)

)
dWl, Z

i
t := exp

{
Lit −

1

2
〈Li〉t

}
. (2.7)

The process (Zit)t∈[0,T ] is such that Zit = 1 +
∫ t

0 Z
i
sdL

i
s and 〈Li〉 is deterministic and bounded on

[0, T ]; therefore (Zit)t∈[0,T ] is a martingale (see results and remarks in A.3 ) and then E[Zil ] = 1 for all
l ∈ [0, T ]. Finally, we use a linear combination of the indicator functions 1{Λi}×ΩW̃

and independence

to conclude EP [dQ/dP ] = 1.

Now, we show that S
(1)
T e−

∫ T
0 ru(·,·)du is a Qλ̄- martingale. By Bayes’ formula (see appendix C), we

have

EQλ̄
[
S

(1)
T e−

∫ T
0 ru(·,·)du

∣∣∣Ft] =

EP

S(1)
T e−

∫ T
0 ru(·,·)dudQ

Λ

dP
e
LT−

1

2
〈L〉T

∣∣∣∣∣∣Ft


EP

 dQΛ

dP
e
LT−

1

2
〈L〉T

∣∣∣∣∣∣Ft


=

EP

S(1)
T e−

∫ T
0 ru(·,·)dudQ

Λ

dP
e
Lt−

1

2
〈L〉t

e
(LT−Lt)−

1

2
〈L〉Tt

∣∣∣∣∣∣Ft


EP

 dQΛ

dP
e
LT−

1

2
〈L〉T

∣∣∣∣∣∣Ft
 .

Using the notation in 2.7, the fact that each 1
Λj×ΩW̃

is Ft-measurable, and all of the terms are positive,
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the last formula equals

S
(1)
t e−

∫ t
0 ru(·,·)dudQ

Λ

dP
e
Lt−

1

2
〈L〉t

EP

 S(1)
T

S
(1)
t

e−
∫ T
t ru(·,·)due

(LT−Lt)−
1

2
〈L〉Tt

∣∣∣∣∣∣Ft


dQΛ

dP
e
Lt−

1

2
〈L〉t

EP

e(LT−Lt)−
1

2
〈L〉Tt

∣∣∣∣∣∣Ft


=

S
(1)
t e−

∫ t
0 ru(·,·)du


∑m

j=1 1{Λj}×ΩW̃
EP

e
∫ T
t

µj(u)−
v2
j (u)

2
−rj(u)

du+
∫ T
t vj(u)dWu

e
(LjT−L

j
t )−

1

2
〈Lj〉Tt

∣∣∣∣∣∣∣∣∣Ft



∑m
j=1 1{Λj}×ΩW̃

EP

e(LjT−L
j
t )−

1

2
〈Lj〉Tt

∣∣∣∣∣∣Ft
 .

By proposition A.3, and the fact that (Wt)t∈[0,T ] have independent and stationary increments (by
construction), the last part equals

S
(1)
t e−

∫ t
0 ru(·,·)du∑m

j=1 1{Λj}×ΩW̃
EP

e
∫ T
t

v2
j (u)− (µj(u)− rj(u))

vj(u)

dWu−
1

2

∫ T
t

v2
j (u)− (µj(u)− rj(u))

vj(u)


2

du

∣∣∣∣∣∣∣∣∣∣
Ft


∑m

j=1 1{Λj}×ΩW̃
EP

e(LjT−L
j
t )−

1

2
〈Lj〉Tt



= S
(1)
t e−

∫ t
0 ru(·,·)du

m∑
j=1

1{Λj}×ΩW̃
EP

e
∫ T
t

v2
j (u)− (µj(u)− rj(u))

vj(u)

dWu−
1

2

∫ T
t

v2
j (u)− (µj(u)− rj(u))

vj(u)


2

du


= S

(1)
t e−

∫ t
0 ru(·,·)du.

which ends the proof.

This result shows that for each set of positive numbers λ1, ..., λm such that
∑m

j=1 λj = 1, we get a

martingale measure of the form 2.6. Moreover, we have information about the density of S(1) under
P in Proposition 2.1 because for each 0 ≤ u ≤ t ≤ T and A ∈ BR+

11



EP [S
(1)
t ∈ A] = EP

 m∑
j=1

1{Λj}×ΩW̃
1{Sj,(1)

t ∈A}

 =
m∑
j=1

EP

[
1{Λj}×ΩW̃

]
EP

[
1
S
j,(1)
t ∈A

]

=

m∑
j=1

pj

∫
A
P (S

j,(1)
t ∈ dl) =

m∑
j=1

pj

∫
A

exp


−

(
ln(l)−

∫ t
0

(
µj(z)−

v2
j (z)

2

)
dz − ln(S

j,(1)
0 )

)2

2
∫ t

0 v
2
j (z)dz


l
(∫ t

0 v
2
j (z)dz

)1/2√
2π

dl,

(2.8)

where S
j,(1)
t satisfies

dS
j,(1)
t = S

j,(1)
t µj(t)dt+ S

j,(1)
t vj(t)dWt,

under P . However, the density of S(1) is slightly different under Qλ̄ as is showed in the next corollary.

Corollary 2.2. Let S(0) and S(1) be as in Proposition 2.1 in the investment period [0, T ]. Then the
density of S(1) under Qλ̄ is of the form

Qλ̄
(
S

(1)
t ∈ dx

)
=

m∑
i=1

λi exp


−
(

ln(x)−
∫ t

0

(
ri(z)−

v2
i (z)

2

)
dz − ln(S

i,(1)
0 )

)2

2
∫ t

0 v
2
i (z)dz


x
(∫ t

0 v
2
i (z)dz

)1/2√
2π

. (2.9)

Proof. Under each {Λj} × ΩW̃ the dynamics of S(1) is of the form

dS
(1)
t = S

(1)
t µj(t)dt+ S

(1)
t vj(t)dWt. (2.10)

If we denote by Sj,(1) the process that satisfies the previous dynamics, and let

dQj,λ̄

dP
:= exp

{
−1

2

∫ T

0

(
µj(t)− rj(t)

vj(t)

)2

dt−
∫ T

0

(
µj(t)− rj(t)

vj(t)

)
dWt

}
, (2.11)

we have, by Girsanov’s theorem, that

W j
t := Wt −

〈
W·,−

∫ ·
0

(
µj(l)− rj(l)

vj(l)

)
dWl

〉
t

= Wt +

∫ t

0

(
µj(l)− rj(l)

vj(l)

)
dl (2.12)

is a Qj,λ̄−Brownian motion, and Sj,(1) satisfies

dS
j,(1)
t = S

j,(1)
t rj(t)dt+ S

j,(1)
t vj(t)dW

j
t , (2.13)
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under Qj,λ̄. Therefore, for each A ∈ B(R+), we have

EQλ̄ [S
(1)
t ∈ A]

= EP

 m∑
j=1

1{Λj}×ΩW̃
1{Sj,(1)

t ∈A}

(
λj
pj

)
exp

{
−1

2

∫ T

0

(
µj(t)− rj(t)

vj(t)

)2

dt−
∫ T

0

(
µj(t)− rj(t)

vj(t)

)
dWt

}
=

m∑
j=1

λjEP

[
1{Sj,(1)

t ∈A} exp

{
−1

2

∫ T

0

(
µj(t)− rj(t)

vj(t)

)2

dt−
∫ T

0

(
µj(t)− rj(t)

vj(t)

)
dWt

}]

=

m∑
j=1

λjEQj,λ̄
[
1{Sj,(1)

t ∈A}

]

=

m∑
j=1

λj

∫
A

exp


−

(
ln(l)−

∫ t
0

(
rj(z)−

v2
j (z)

2

)
dz − ln(S

j,(1)
0 )

)2

2
∫ t

0 v
2
j (z)dz


l
(∫ t

0 v
2
j (z)dz

)1/2√
2π

dl.

(2.14)

As it is expected, it is possible to expand this result to some risky assets. However, we need to
add some tools to make it work.

Suppose that we have a financial market with riskless asset (S
(0)
t )t∈[0,T ] and risky assets (S

(i)
t )t∈[0,T ]

with i = 1, ..., n. The dynamics of (S
(0)
t ) and (S

(i)
t ) are of the form

dS
(0)
t = rtdS

(0)
t and dS

(i)
t = µitS

(i)
t dt+ S

(i)
t

 n∑
j=1

σ
(ij)
t dW

(j)
t

 , (2.15)

for each i = 1, ..., n. The processes rt, µ
(i)
t , and σ

(ij)
t depend on the macroeconomic events Λ1, ...,Λm.

The following proposition, the multiprice version of the model presented by (Brigo et al., 2004),
proves that such type of markets have infinitely many martingale measures, and therefore, they are
incomplete.

Intuitively, the system of prices 2.15, under the macroeconomic event Λk, is of the form

dS
(0)
t = krtdS

(0)
t and dS

(i)
t = kµ

(i)
t S

(i)
t dt+ S

(i)
t

 n∑
j=1

kσ
(ij)
t dW

(j)
t

 . (2.16)

Using Ito’s formula, we get

d

(
S

(i)
t

S
(0)
t

)
=
(
kµ

(i)
t − krt

) S(i)
t

S
(0)
t

dt+
S

(i)
t

S
(0)
t

n∑
j=1

kσ
(ij)
t dW

(j)
t . (2.17)

13



Now, we will make some assumptions about the matrix kσt for all t ∈ [0, T ].

Assumption 2.3. For each k = 1, ...,m, the matrix (k)σt
(k)σ∗t is non-degenerate in the sense that

θ∗
(
kσt

kσ∗t
)
θ > εθ∗θ for all (θ, t) ∈ Rn \ {0} × [0, T ] and for some ε > 0. Here the symbol ∗ means

transpose.

With this assumption we can find a process kθt = (kθ
(1)
t , ..., kθ

(n)
t ) such that

kµ
(i)
t − krt =

n∑
j=1

kσ
(ij)
t

kθ
(j)
t , (2.18)

for each i = 1, ..., n and k = 1, ...,m. Then using kθt = (kθ
(1)
t , ..., kθ

(n)
t ) the system for prices 2.17

“under Λk” becomes

d

(
S

(i)
t

S
(0)
t

)
=
S

(i)
t

S
(0)
t

n∑
j=1

kσ
(ij)
t

(
kθ

(j)
t dt+ dW

(j)
t

)
. (2.19)

Now we define
dQ

kθ

dP

∣∣∣∣∣
Ft

= exp

{
−
∫ t

0

kθl · dWl −
1

2

∫ t

0
| kθl|2dl

}
. (2.20)

Using the vector form of Girsanov’s Theorem, we get that the process (kW t) with dynamics

d(kW t) = kθtdt+ dWt (2.21)

is an n−dimensional Brownian motion underQ
kθ. As a result, by using Ito’s formula and the expression

2.19, we get that S
(i)
t /S

(0)
t “under Λk” is of the form

S
(i)
t

S
(0)
t

=
S

(i)
0

S
(0)
0

exp


n∑
j=1

∫ t

0

kσ
(ij)
t d(kW

(j)
t )− 1

2

n∑
j=1

∫ t

0

∣∣∣kσ(ij)
t

∣∣∣2 dl
 . (2.22)

Assuming that the coefficients kσ(ij), kµ, kr, and kθ are uniformly bounded on Ω× [0, T ], we can

use Novikov condition to get that S
(i)
t /S

(0)
t is a Q

kθ-martingale “under Λk.” Now, we are ready to
show these remarks in a formal way.

Proposition 2.4. Let (W̃t) = (W̃
(1)
t , ..., W̃

(n)
t )t∈[0,T ] be an n-dimensional Brownian motion on a

filtered probability space (ΩW̃ ,FW̃T , (FW̃t )t∈[0,T ], P
W̃ ); and let (ΩΛ,FΛ, PΛ) be a probability space with

ΩΛ = {Λ1, ...,Λm} and probability measure satisfying PΛ(Λk) := pk > 0 for k = 1, ...,m. Set the

process (σ̃
(ij)
t )t∈[0,T ], (µ̃

(i)
t )t∈[0,T ], and (r̃

(i)
t )t∈[0,T ] such that:

1. σ̃
(ij)
t (Λk) = kσ

(ij)
t for each k = 1, ...,m; i, j = 1, ..., n; and t ∈ [0, T ], where each kσ

(ij)
t is

deterministic, strictly positive, continuous, and bounded away from zero and satisfies assumption
2.3.

2. µ̃
(i)
t (Λk) = kµit for each k = 1, ...,m; i = 1, ..., n; and t ∈ [0, T ], where each kµit is deterministic,

and continuous.
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3. r̃t(Λk) = krt for each k = 1, ...,m; and t ∈ [0, T ], where each krt is deterministic and continuous.

Set Ω := ΩΛ × ΩW̃ , Ft := FΛ ⊗ FW̃t , P := PΛ ⊗ P W̃ ; and let σ
(ij)
t (Λ, y) := σ̃

(ij)
t (Λ), µ

(i)
t (Λ, y) :=

µ̃
(i)
t (Λ), rt(Λ, y) := r̃t(Λ), and Wt(Λ, y) := W̃t(y) be defined on (Ω,FT , (Ft)t∈[0,T ], P ). If we define a

measure QΛ in (Ω,FT ) by

dQΛ

dP
(Λk, y) :=

λk
pk

for all y ∈ ΩW̃ , (2.23)

where λk is strictly positive for each k = 1, ...,m with
∑m

k=1 λk = 1; and the processes (S
(0)
t )t∈[0,T ] and

(S
(i)
t )t∈[0,T ] satisfy

dS
(0)
t = rtS

(0)
t and dS

(i)
t = µ

(i)
t S

(i)
t dt+ S

(i)
t

 n∑
j=1

σ
(ij)
t dW

(j)
t

 , (2.24)

for each i = 1, ..., n, respectively, then there exist a risk-neutral measure Qλ̄ in (Ω,FT ) associated with

(St)t∈[0,T ] = (S
(1)
t , ..., S

(n)
t )t∈[0,T ] and the numéraire S

(0)
t = e

∫ t
0 ru(·,·)du that satisfy

dQλ̄

dP
=
dQΛ

dP
exp

{
−
∫ T

0
θl · dWl −

1

2

∫ T

0
|θl|2dl

}
, (2.25)

where θt = (θ
(1)
t , ..., θ

(n)
t )∗t∈[0,T ]is the Ft-measurable process that satisfies 2.18, i.e.

σ
(11)
t . . . σ

(1n)
t

...
. . .

σ
(n1)
t · · · σ

(nn)
t


θ

(1)
t
...

θ
(n)
t

 =

µ
(1)
t − rt

...

µ
(n)
t − rt

 , (2.26)

and θt(Λk, y) = (θ
(1)
t (Λk, y), ..., θ

(n)
t (Λk, y))t∈[0,T ] is the process kθt = (kθ

(1)
t , ..., kθ

(n)
t ) as in 2.18.

Proof. Abusing the notation in the statement, we use rt, µ
(i)
t , σ

(ij)
t , and θt instead of rt(·, ·), µ(i)

t (·, ·), σ(ij)
t (·, ·),

and θt(·, ·) respectively. This is to make the notation less awkward.

We only need to show that (S
(i)
t /S

(0)
t )t∈[0,T ] is an (Ft, Qλ̄)-martingale (see for instance Harrison

and Pliska, 1981; Shreve, 2004; Privault, 2020). We point out that (Wt)t∈[0,T ] is independent of each

(σ
(ij)
t )t∈[0,T ], (r

(i)
t )t∈[0,T ], and (µ

(i)
t )t∈[0,T ] on (Ω,FT , (Ft), P ). Moreover, (Wt)t∈[0,T ] is an n-dimensional

Brownian motion on (Ω,FT , (Ft), P ), and (σ
(ij)
t )t∈[0,T ], (µ

(i)
t )t∈[0,T ], and (rt)t∈[0,T ] have the same laws

as (σ̃
(ij)
t )t∈[0,T ], (µ̃

(i)
t )t∈[0,T ], and (r̃t)t∈[0,T ] respectively.

To prove that Qλ̃ is a measure on FT it is enough to show that EP [dQλ̃/dP ] = 1. Let us then set

Lt := −
∫ t

0
θl · dWl

kLt := −
∫ t

0

kθl · dWl and kZt := exp{kLt −
1

2
〈kL〉t}. (2.27)

15



The process (kZt)t∈[0,T ] satisfies the SDE kZt = 1 +
∫ t

0
kZ ld(kLl). Since the quadratic variation

〈kL〉 is deterministic and bounded in [0, T ]; therefore, (kZt)t∈[0,T ] is a martingale (see for instance

Meyer, 2000) and then E[kZ l] = 1 for all l ∈ [0, T ]. Finally, we use a linear combination of the

indicator functions 1
Λi×ΩW̃

and independence to conclude EP

[
dQλ̃/dP

]
= 1.

We now show that S
(i)
t e−

∫ t
0 rldl is an (Ft, Qλ̃)-martingale. By Bayes’ formula, we have

E
Qλ̃

[
S

(i)
T e−

∫ T
0 rudu

∣∣∣Ft] =

EP

S(i)
T e−

∫ T
0 rudu

dQΛ

dP
e
LT−

1

2
〈L〉T

∣∣∣∣∣∣Ft


EP

 dQΛ

dP
e
LT−

1

2
〈L〉T

∣∣∣∣∣∣Ft


=

EP

S(i)
T e−

∫ T
0 rudu

dQΛ

dP
e
Lt−

1

2
〈L〉t

e
(LT−Lt)−

1

2
〈L〉Tt

∣∣∣∣∣∣Ft


EP

 dQΛ

dP
e
LT−

1

2
〈L〉T

∣∣∣∣∣∣Ft
 .

Using the notation in 2.27, the fact that each 1
Λk×ΩW̃

is Ft-measurable, kZt is a martingale that has
stationary and independent increments, and all of the terms are positive, the last formula equals

S
(i)
t e−

∫ t
0 rudu

dQΛ

dP
e
Lt−

1

2
〈L〉t

EP

 S(i)
T

S
(i)
t

e−
∫ T
t rudue

(LT−Lt)−
1

2
〈L〉Tt

∣∣∣∣∣∣Ft


dQΛ

dP
e
Lt−

1

2
〈L〉t

EP

e(LT−Lt)−
1

2
〈L〉Tt

∣∣∣∣∣∣Ft


=

S
(i)
t e−

∫ t
0 rudu

∑m
k=1 1

Λk×ΩW̃
EP

 S(i)
T

S
(i)
t

e−
∫ T
t rudue

(kLT−kLt)−
1

2
〈kL〉Tt

∣∣∣∣∣∣Ft


∑m
k=1 1

Λk×ΩW̃
EP

e(kLT−kLt)−
1

2
〈kL〉Tt

∣∣∣∣∣∣Ft


= S
(i)
t e−

∫ t
0 rudu


m∑
k=1

1
Λk×ΩW̃

EP

 S(i)
T

S
(i)
t

e−
∫ T
t rudue

(kLT−kLt)−
1

2
〈kL〉Tt

∣∣∣∣∣∣Ft
 .

We know that under Λk × ΩW̃ and using Ito’s formula on 2.16

S
(i)
t = S

(i)
0 exp


∫ t

0

kµ(i)
u −

1

2

n∑
j=1

(
kσ(ij)

u

)2

 du+
n∑
j=1

∫ t

0

kσ(ij)
u dW (j)

u

 , (2.28)
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and
n∑
j=1

kσ(ij)
u

kθ(j)
u = kµ(i)

u − kru, (2.29)

for i = 1, ..., n and k = 1, ...,m. With these remarks, we conclude that

S
(i)
t e−

∫ t
0 rudu


m∑
k=1

1
Λk×ΩW̃

EP

 S(i)
T

S
(i)
t

e−
∫ T
t rudue

(kLT−kLt)−
1

2
〈kL〉Tt

∣∣∣∣∣∣Ft


= S
(i)
t e−

∫ t
0 rudu

m∑
k=1

1
Λk×ΩW̃

EP

e∫ Tt
(
kµ

(i)
u −kru−

1

2
∑n
j=1

(
kσ

(ij)
u

)2
+
(
kθ

(j)
u

)2
)
du+

∑n
j=1

∫ T
t (kσ

(ij)
u −kθ(j)

u )dW
(j)
u

∣∣∣∣∣∣∣Ft


= S
(i)
t e−

∫ t
0 rudu

m∑
k=1

1
Λk×ΩW̃

EP

e∑n
j=1

∫ T
t (kσ

(ij)
u −kθ(j)

u )dW
(j)
u −

1

2

〈∑n
j=1

∫ ·
0(kσ

(ij)
u −kθ(j)

u )dW
(j)
u

〉T
t

∣∣∣∣∣∣Ft


= S
(i)
t e−

∫ t
0 rudu,

which ends the proof.

This result shows that for each set of positive numbers λ1, ..., λm such that
∑m

j=1 λj = 1, we get a
martingale measure of the form 2.25. This rises the question, What criterion should be used to choose
the martingale measure, and therefore, the price of the derivative? Before solving this question, we
will give the characterization of the distribution of the prices under the measure Qλ̄.

Corollary 2.5. Let (S
(0)
t )t∈[0,T ], and (S

(1)
t , ..., S

(n)
t )t∈[0,T ] be as in Proposition 2.4. Then the density

of S(i) under Qλ̄ is of the form

Qλ̄
(
S

(i)
t ∈ dx

)
=

m∑
k=1

λk exp


−
(

ln(x)−
∫ t

0

(
krz −

1

2

∑n
j=1

(
kσ

(ij)
z

)2
)
dz − ln(kS

(i)
0 )

)2

2
∑n

j=1

∫ t
0

(
kσ

(ij)
z

)2
dz


x

(∑n
j=1

∫ t
0

(
kσ

(ij)
z

)2
dz

)1/2√
2π

. (2.30)

Proof. Under each {Λk} × ΩW̃ the dynamics of S(i) is of the form

dS
(i)
t = kµ

(i)
t S

(i)
t dt+ S

(i)
t

 n∑
j=1

kσ
(ij)
t dW

(j)
t

 . (2.31)

If we denote by kS(i) the process that satisfies the previous dynamics, and letting

d(kQλ̄)

dP
:= exp

{
−
∫ T

0

kθl · dWl −
1

2

∫ T

0
| kθl|2dl

}
, (2.32)

17



we have, by the vector form of Girsanov’s theorem, that kW t :=
∫ t

0
kθldl + Wt is an n−dimensional

Brownian motion under kQλ̄. Moreover, kS(i) satisfies

d kS
(i)
t = kS

(i)
t

krtdt+ kS
(i)
t

 n∑
j=1

(
kσ

(ij)
t

kθ
(j)
t

)
dt+ kσ

(ij)
t dW
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t


= kS

(i)
t

krtdt+ kS
(i)
t

n∑
j=1

kσ
(ij)
t d

(
kW

(j)
t

) (2.33)

under kQλ̄. Therefore, for each A ∈ B(R+) we have

EQλ̄ [S
(i)
t ∈ A]

= EP

[
m∑
k=1

1
Λk×ΩW̃

1{kS(i)
t ∈A}

(
λk
pk

)
exp

{
−
∫ T

0

kθl · dWl −
1

2

∫ T

0
| kθl|2dl

}]

=

m∑
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λkEP

[
1{kS(i)

t ∈A}
exp

{
−
∫ T

0

kθl · dWl −
1

2

∫ T

0
| kθl|2dl

}]

=
m∑
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λkE(kQλ̄)

[
1{kS(i)

t ∈A}

]

=
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∫
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−
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1
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(ij)
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)2
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dz − ln(kS
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0

(
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(ij)
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)2
dz


l

(∑n
j=1

∫ t
0

(
kσ

(ij)
z

)2
dz

)1/2√
2π

dl.

(2.34)

In this kind of markets pricing financial derivatives is not immediate as in the Black-Scholes-Merton
setting for complete markets. If we assume that the only martingale measures are of the form 2.25,
and we denote them by Qλ̄ for each vector λ̄ ∈ Rm+ such that

∑m
j=1 λj = 1, then the problem of pricing

an attainable contingent claim, C, is picking up an arbitrage-free price in

I =

 inf
λ̄∈Rm+∑m
i=1 λi=1

EQλ̄ [C̃], sup
λ̄∈Rm+∑m
i=1 λi=1

EQλ̄ [C̃]

 , (2.35)

such that it maximizes a specific criterion where C̃ = e−
∫ T
0 rtC. This problem is equivalent to maximize

a function of the finite distributions, λ̄, such that some restrictions hold. We propose that a possible
criterion is the maximization of Shannon’s information entropy under some macroeconomic restrictions
that include information about the underlying stocks in the derivative in question.
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Nowadays, there are many indicators in the financial markets that help to see how financially well
a company is. As can be seen in (Investopedia, 2018a; NASDAQ, 2018), Profit Margin is sometimes
considered the best single indicator of a company’s financial health and long-term viability. However,
there are some aspects of a company that cannot be measured by this indicator. As an example, if we
pay attention to the annual income statement in 2017 for Apple Inc. (Ticket AAPL) and Amazon.com
Inc. (Ticket AMZN) provided by NASDAQ, we see that

Apple Inc. Profit margin =
$48, 351, 000

$229, 234, 000
= 0.2109

and

Amazon.com Inc. Profit Margin =
$3, 033, 000

$177, 866, 000
= 0.01705

Therefore, according to this criterion Apple Inc. should be more evaluated than Amazon.com Inc.
in the American financial markets. However, this is not true. The prices of Amazon.com Inc. and
Apple Inc. in 2017 increased about 55%,and 44% respectively. Moreover, the price of Amazon.com
Inc. closed at $1630.04 and the price of Apple Inc. closed at $186.97 on May 31, 2018.

Figure 1: Annual income statement of Apple Inc.
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Figure 2: Annual income statement of Amazon.com Inc.

This problem and some others force us to look for indicators that can reflect the financial health
and long-term viability of the companies more accurately. Fortunately, as can be seen in (Investopedia,
2018a; NASDAQ, 2018) a better financial approach to a company’s financial health can be obtained
by looking at their Liquidity, Solvency, Operating Efficiency, and Profitability. These criteria have
important indicators that are used by the largest American exchanges such as NASDAQ and NYSE to
see how strong the stocks are, and by public companies to forecast their performance in each quarter.
In fact, this is a well known area of finance known as financial statement forecasting.

Liquidity (Investopedia, 2018a) refers to the amount of assets that are easily convertible to cash.
A company owns this type of assets to manage short-term debts and obligations. The quick ratio is
the most precise index to see how liquid a company is because it excludes inventory from assets, and
also excludes the current part from long-term debts from liabilities. It is computed by the formula

Quick Ratio =
Current Assets− Inventories

Current Liabilities
. (2.36)

Solvency (Investopedia, 2018a) is the company’s ability to face its debt obligations on the long-
term. Its best indicator is the debt/equity ratio. This measures how much debts a company is using
to finance its assets based on shareholders’ equity

Debt/Equity Ratio =
Total Liabilities

Shareholders’ Equity
. (2.37)
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Operating Efficiency (Investopedia, 2018a) is the capacity of a company to deliver products and
services in the most cost-effective possible way without reducing the quality of its products and services.
operating margin is the best indicator of operating efficiency. This measure not only indicates a
company’s basic operational profit margin after deducing the production costs, but also gives a signal
of how well the company manages their costs

Operating Profit Margin =
Operating Income

Operating Revenue
. (2.38)

Profitability (Investopedia, 2018a). We have seen that liquidity, solvency and operating efficiency
are important factors for a company. However, perhaps the most important factor is profitability. A
company can survive for some years without being profitable based on creditors and investors, but in
the long-term a company needs to be profitable to survive.

The best indicator of profitability is the net margin that is the ratio of profits to revenues. This
indicator is important because a measure given by any currency is not adequate to assess a company’s
financial health. For example, if a company shows a net income of many millions of dollars, and the
net margin is very small, then a very slight increase in production costs may take the company out of
business

Net Margin =
Net Income

Total Revenues
. (2.39)

In addition to the previous ratios, we have the earnings per share and price-earnings ratio given
by the formulas

Earnings Per Share =
Net Income−Dividends On Preferred Stock

Average Outstanding Shares
, (2.40)

Price-Earnings Ratio =
Market Value Per Share

Earnings Per Share
, (2.41)

and the DuPont framework

Profitability Efficiency Laverage

Return on Equity = Profit Margin × Asset Turnover × Equity Multiplier

Net Income

Equity
=

Net Income

Sales
× Sales

Assets
× Assets

Equity
,

(2.42)

a formula commonly used by investors to take investing decisions.

We were talking about macroeconomic restrictions; however, these indexes are microeconomic
indicators because they only refer to specific companies. This problem is fixed when we consider the
aggregate accounts: net income, sales, assets, equity, etc. of the biggest companies of a country that
are related to the underlying stocks of the derivative in question. Financial analysts can include more
financial restrictions, but for the sake of simplicity, we restrict ourselves to these financial accounts.

As it is expected, we will equal these numeric restrictions of the accounts, already known under
the measure PΛ, with their respective expected values under the measure Qλ̄ with λ̄ as in 2.35. As an
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example, we can consider XApple,1, XApple,2, ... as the random variables that represent the net income,
sales, assets, equity,.., etc., of Apple Inc. which are functions of the possible macroeconomic events
Λ1, ...,Λm. Therefore, some of our restrictions will be of the form

EQλ̄ [XApple,j ] = EPΛ [XApple,j ] =
m∑
i=1

PΛ(Λi)XApple,j(Λi) for j = 1, ...,M, (2.43)

where the right hand side of this formula is already known under the knowledge described by the
measure PΛ, and M is the number of microeconomic characteristics of Apple Inc. such as net income,
sales, etc.

When we consider the S&P 500 companies that are correlated with the underlying, we get equations
of the form

EQλ̄ [Xi,j ] = EPΛ [Xi,j ] for i = 1, ..., l; j = 1, ...,M, (2.44)

where j is the microeconomic feature, and i is the company. Now, we can rewrite these microeconomic
restrictions into macroeconomic ones by considering the sum on each one of the L economic sectors,
(Ik)

L
k=1, of the economy

EQλ̄

∑
i∈Ik

Xi,j

 = EPΛ

∑
i∈Ik

Xi,j

 =
∑
i∈Ik

EPΛ [Xi,j ] for j = 1, ...,M, and k = 1, ..., L. (2.45)

Finally, if we let X1, ..., XLM denote these new random variables, we have that our complete set of
macroeconomic restrictions will be

EQλ̄ [Xi] = EPΛ [Xi] for i = 1, ..., LM. (2.46)

Since the institutional trader, under the informational framework, (Ft)t∈[0,T ], does not have any
intuitive idea about the nature and the impact of the distributions λ1, ..., λn on its investment perfor-
mance, it should try to find a distribution that maximizes the company’s state of uncertainty under
some macroeconomic restrictions that take into account information of derivative in question. In
practice one of the most common ways to measure uncertainty is using the Shannon’s information
entropy1. Here, we denote this function by H, and it is defined as H(λ1, ..., λm) = −

∑m
i=1 λi log(λi),

on any finite probability distribution (λ1, ..., λm).

From now on, unless otherwise stated, we will consider all of the random variablesXi as they appear
in 2.46. This is done for the sake of simplicity of restrictions and computations in the optimization
processes that will be mentioned later. Therefore, if we let X̄i be the expected value of Xi under PΛ,
the problem of computing

max
λ̄

‖λ̄‖=1

H(λ1, ..., λm) (2.47)

subject to
EQλ̄ [Xi] = X̄i for i = 1, ..., LM, and m > LM (2.48)

1More references and applications can be found in the work created by (Jaynes et al., 2003)
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Bloomberg’s sector performance

is equivalent to the problem of picking up a Qλ̄ such that it reflects the maximum state of uncertainty
of the choice of the arbitrage-free price in

I =

 inf
λ̄

‖λ̄‖=1

EQλ̄ [C̃], sup
λ̄

‖λ̄‖=1

EQλ̄ [C̃]

 , (2.49)

and at the same time satisfies the macroeconomic restrictions previously known under the information
represented by the measure PΛ. In other words, the measure Qλ̄ resulting from 2.47 and 2.48 will
be a distribution as spread-out as it can be while agreeing with available information in 2.48 . This
kind of reasoning is completely desirable, because we do not want to favor any macroeconomical event
over any other. On the contrary, we want to make a decision based exclusively on the entire data we
have at the moment of picking up Qλ̄. It is straightforward to solve a maximization problem of this
kind since there are available packages such as CVXfromR in R programming language for convex
optimization. This is a tool that not only has a comprehensive documentation,2 but it also makes
easy to solve general convex problems, and the syntax to input problems is simple. This package was
created by Michael Grant3 and Stephen Boyd4 . In addition to that, Jacob Bien5 is the person is in
charge of upgrading the package for R.

2Theoretical and technical details of the package can be found at http://cvxr.com/cvx/.
3http://cvxr.com/cvx/.
4https://web.stanford.edu/~boyd/.
5http://faculty.marshall.usc.edu/jacob-bien/cvxfromr.html
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Here is an example of the use of the package CVXfromR in practice taken from http://www.di.

fc.ul.pt/~jpn/r/maxent/maxent.html.

Figure 4: Shannon’s information entropy code using CVXfromR package

As it is expected in this example, if we use as constraint the expected value of an exponential
random variable, the solution to the Shannon’s entropy maximization problem will be the distribution
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of the exponential random variable.

3 Continuous Time Setting for Small Agents

3.1 Informational framework of smaller buyers and short sellers

In this part we will be using some of the ideas by (Duffie and Huang, 1986) and (El Karoui and Rouge,
2000) to analyze how agents with differential information in a constrained market take decisions, and
price financial derivatives. With these tools, we can have a deeper look at how small agents are taking
decisions. This machinery will help us to track the parameters that make the prices of small agents
different from the prices computed by institutional investors, and therefore, we can have more insights
about the impact of small investors in the price of the market.

First we consider a countable set of agents A endowed with the characteristics {�α, Vα,Fα}, where
for each α, �α is the relation of preference of the α-stereotype agent; Vα = R × L1(Ω,Fα, P ) is the
space of pairs (x,C) where x is the initial investment in a strategy related to the payoff of the financial
instrument that the α-stereotyped agent sold or bought and whose payoff is −C and C respectively.

We have that an α-stereotyped agent with initial endowment x who wishes to sell or buy at time
t = 0 a claim C ∈ L1

+ have two possibilities:

1. In the case of the seller, delivering the claim C at the maturity date T in exchange for an
additional endowment of y at time zero. That is, she chooses the pair (x+ y,−C). In the case
of the buyer, she will exercise the security with payoff C in exchange for an additional payment
of y at time zero. That is, she chooses the pair (x− y, C).

2. Not selling or buying the security. That is (x, 0).

The price to sell the security with payoff −C under an α−preference is defined as the minimum
additional endowment such that a seller prefers to sell the security with payoff C rather than do
nothing:

pα(x,C) = inf{y ≥ 0 : (x+ y,−C) �α (x, 0)}. (3.1)

In a similar way, the price to buy the security with payoff C under an α−preference is defined as the
maximum additional endowment such that a buyer prefers to buy the security with payoff C rather
than do nothing:

− pα(x,−C) = inf{y ≥ 0 : (x− y, C) �α (x, 0)}. (3.2)

We conveniently take non-positive values for the price to buy in order to summarize the two formulas
in a single one

pα(x,C) = inf{y ∈ R : (x+ y,−C) �α (x, 0)}. (3.3)

Now we consider the price system (St)t∈[0,T ] = (S
(0)
t , ..., S

(n)
t )t∈[0,T ] satisfying that St is a vector

of non-negative semimartingales adapted with respect to the filtered space of the institutional trader,
(Ω,FT , (Ft)t∈[0,T ], P ), as in Proposition 2.4 such that

Fα ⊆ F for all α ∈ A, and E[F 〈S, S〉1/2T ] <∞, (3.4)
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where F = (Ft)t∈[0,T ]; Fα = (Fαt )t∈[0,T ] represents the information of the α-stereotyped agent, and
the symbol ⊆ means that Fα is a subfiltration of F , i.e., Fαt ⊂ Ft for all t ∈ [0, T ].

We will use some results and notations that appear in (Duffie and Huang, 1986) that will help us
to understand some essential features that a market with differential informational framework has.

We assume that the agents learn from the price system to refine their information. The information
filtration of an α-stereotyped agent after seeing a price system (St)t∈[0,T ] is denoted by Fα,S :=

(Fα,St )t∈[0,T ] where Fα,St := Fαt ∨ FSt , and FS := (FSt )t∈[0,T ] with FSt := σ{Sl : l ≤ t}.

Assumption 3.1. We assume that (Fα,S)t∈[0,T ] is right-continuous for each α ∈ A.

Lemma 3.2. The price system, (St)t∈[0,T ], under assumption 3.1, is a vector of Fα,S semimartingales
for each α ∈ A.

Proof. By construction (St) is Fα,S−adapted and right-continuous, then (St) is Fα,S−optional (see
for instance Chung and Williams, 2013). Therefore, (St) is an F−semimartingale, and Fα,S−optional.
It follows from (Theorem 9.19 (a) Jacod, 1979) that (St) is an Fα,S−semimartingale since Fα,S is a
subfiltration of F .

In order to apply Ito’s formula, we need information about the quadratic covariation between
prices computed under different filtrations Fα.

Lemma 3.3. There exists a process (〈S(m), S(n)〉t)t∈[0,T ] that is a common version of the processes

(F 〈S(m), S(n)〉t)t∈[0,T ] and (F
α,S

〈S(m), S(n)〉t)t∈[0,T ] for each α ∈ A.

Proof. We know that (Smt ) and (Snt ) are semimartingales with respect to the filtrations F , and Fα,S

for each α ∈ A, then the processes (F 〈S(m), S(n)〉t)t∈[0,T ] and (F
α,S

〈S(m), S(n)〉t)t∈[0,T ] for each α ∈ A
are well-defined.

Now using the identities

F 〈S(m), S(n)〉t =
1

4

(
F 〈S(n) + S(m), S(n) + S(m)〉t − F 〈S(n) + S(m), S(n) + S(m)〉t

)
, (3.5)

Fα,S 〈S(m), S(n)〉t =
1

4

(
Fα,S 〈S(n) + S(m), S(n) + S(m)〉t − F

α,S

〈S(n) + S(m), S(n) + S(m)〉t
)
, (3.6)

and (Theorem 9.19 (b) Jacod, 1979), we have that there exists a common version of F 〈S(n)+S(m), S(n)+

S(m)〉t∈[0,T ] and F
α,S

〈S(n) + S(m), S(n) + S(m)〉t∈[0,T ], and similarly, a common version of F 〈S(n) −
S(m), S(n) − S(m)〉t∈[0,T ] and F

α,S

〈S(n) − S(m), S(n) − S(m)〉t∈[0,T ]. This last implies that we can find a

common version of (F 〈S(m), S(n)〉t)t∈[0,T ] and (F
α,S

〈S(m), S(n)〉t)t∈[0,T ] for each α ∈ A since the set A
is countable.

With this result and the right-continuity assumption, we can go a little bit further. We know that

(〈S(m), S(n)〉t)t∈[0,T ] is a common version of the processes (F 〈S(m), S(n)〉t)t∈[0,T ] and (F
α,S

〈S(m), S(n)〉t)t∈[0,T ]

for each α ∈ A. Since A is countable and these processes are right-continuous, they are indistinguish-
able.
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Let Pα,S define the σ−algebra of predictable subsets of Ω × [0, T ] with respect to the filtration
Fα,S (see for details Meyer, 2000, Chapter 3). This can also be expressed as the σ−algebra generated
by the left-continuous and Fα,S−adapted processes (see for instance Bass, 2011, Chapter 16). We
then say that a process (Zt) from Ω× [0, T ] to R is Fα,S−predictable if it is Pα,S−measurable.

We will now make some assumptions on the set of admissible strategies for an α-stereotyped agent.
Some of these assumptions are made to define the portfolio value as a stochastic integral, and some
others based on financial intuition.

Definition 3.4. Given a price system (St)t∈[0,T ], an admissible set of strategies for an α-stereotyped

agent is an n+ 1−vector of Fα,S−predictable process (ξt)t∈[0,T ] = (ξ
(0)
t , ..., ξ

(n)
t )t∈[0,T ] such that

1. The stochastic integral
∫ t

0 ξu · dSu exists for each t ∈ [0, T ].

2. The strategy is self-financing:

Vt = ξt · St = ξ0 · S0 +

∫ t

0
ξu · dSu for each t ∈ [0, T ] (3.7)

3. EP

[(∫ T
0 (ξ

(i)
t )2d〈S(i), S(i)〉t

)]1/2
<∞ for each i ∈ {0, 1, ..., n}.

Now we will define the set of admissible strategies for each type of agent.

Definition 3.5. Let Zα,S denote the space of admissible strategies of an α-stereotyped agent when the
price system is (St)t∈[0,T ].

We can easily check that Zα,S is a vector space by using linearity of the stochastic integral and
Kunita-Watanabe inequality.

In an complete market, the problem of pricing and hedging a given contingent claim is well known.
In fact, in a scenario of no arbitrage and perfect hedging, the price of a contingent claim at time
t = 0 with maturity T equals the discounted expected value under the unique martingale measure (see
Harrison and Pliska, 1981). However, in an constraint market where perfect replication is not possible
some ways to find a price have been proposed. One way to find a coherent price is via a concept
known as superreplicating prices.

The superreplicating price is the minimum amount of money that has to be invested in a strategy
such that its portfolio value process at the maturity date dominates the payoff of the contingent claim.
(El Karoui and Quenez, 1995) showed this price is characterized as the essential supremum on the
set of equivalent measures of the expected value of the discounted payoff, and this result was later
generalized by (Cvitanić and Karatzas, 1993). These authors also showed that any price between the
superreplicating price for sellers hα,up, and the superreplicating price for buyers hα,low does not lead
to arbitrage opportunities. Although this result is important, it is unsatisfactory because the prices
they set are too high (El Karoui and Rouge, 2000).

In a constrained market, the sellers naturally want to find an initial endowment v0 and a portfolio
strategy ξ such that the portfolio value at the maturity date, VT , dominates the payoff, C, of the
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contingent claim. The same idea is used for buyers but with −C instead. This idea will allow us to
build an arbitrage free interval for a claim for an α-stereotype seller and buyer.

We define the α-seller’s superreplicating price of a claim with payoff −C, denoted by hα,up, as the
smallest amount of money invested in a strategy for which its portfolio value superreplicate the payoff
C for the buyer.

hα,up = inf

{
v0 : ∃ξ ∈ Zα,S , V v0,ξ

T := v0 +

∫ T

0
ξu · dSu ≥ C

}
. (3.8)

Using the same idea, we define the α-buyer’s superreplicating price as

hα,low = sup

{
v0 : ∃ξ ∈ Zα,S , V −v0,ξ

T := −v0 +

∫ T

0
ξu · dSu ≥ −C

}
. (3.9)

By the results of (Cvitanić and Karatzas, 1993), we have that under the informational framework
Fα,S , the price for a contingent claim may vary between the superreplicating price for buyers hα,low,
and the superreplicating price for sellers hα,up. They also showed that any price in (hα,low, h

α,up) does
not lead to arbitrage opportunities.

Although we have for each agent α ∈ A a relation of preference �α, we need to find a way to
quantify it. A natural way to do this is via utility functions U (concave and strictly increasing). Here,
we will use the maximal expected utility Û .

The maximal utility Ûα(v0, C) of (v0, C) ∈ R × L under the relation of preference of agent α is
defined as

Ûα(v0, C) = max
ξ∈Zα,S

EP

[
Uα(V v0,ξ

T + C)
]
, (3.10)

and then we define the relation of preference, �α, of the α-stereotyped agent by (v0, C) �α (v
′
0, C

′
) if

and only if Ûα(v0, C) ≥ Ûα(v
′
0, C

′
)6.

We now show a result by (El Karoui and Rouge, 2000) that sets a relationship between the price
for an α-stereotyped agent 3.3, and the α-arbitrage free interval (hα,low, h

α,up).

Proposition 3.6. Let C ∈ L1. The price pα(v0, C) in 3.3 derived from the utility maximization 3.10
for an agent α is consistent with arbitrage:

hα,low ≤ pα(v0, C) ≤ hα,up. (3.11)

Proof. Let ξα be the portfolio strategy that satisfies hα,up, then V hα,up,ξα

T ≥ C Pα-a.s. By the definition

of Zα,S we know that ξ, ξ
′ ∈ Zα,S implies ξ+ξ

′ ∈ Zα,S , and then V v0,ξ
t +V

v
′
0,ξ
′

t = V
v0+v

′
0,ξ+ξ

′

t . Therefore,

max
ξ∈Zα,S

EPα
[
Uα(V v+hα,up,ξ

T − C)
]
≥ max

ξ′∈Zα,S
EPα

[
Uα(V v,ξ

′

T + V hα,up,ξ
T − C)

]
≥ max

ξ′∈Zα,S
EPα

[
Uα(V v,ξ

′

T )

]
.

(3.12)

6The use of “Max” instead of “Sup” comes form the results of (El Karoui and Rouge, 2000)
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The last inequality comes from the fact that V hα,up,ξ
T − C ≥ 0 and U is strictly increasing. With

this inequality we get Ûα(v + hα,up,−C) ≥ Ûα(v, 0). This means hα,up ≥ pα(v, C). Using a similar
reasoning, we can prove that Ûα(v − hα,low, C) ≥ Ûα(v, 0) which means hα,low ≤ −pα(x,−C). Now
with these two inequalities we obtain hα,low ≤ pα(x,C) ≤ hα,up

3.1.1 Consequences of more information

In this part, we show some general results of the consequences of having access to more information.
We show that a more informed agent is better in the sense that he or she has access to more admissible
strategies, and his or her set of potential arbitrage opportunities is bigger. Next, we give other results
about what happens when an agent has a bigger set of admissible strategies than another. We begin
by giving a definition of what means having more information.

First, we provide a definition of what arbitrage opportunity means, and what being more informed
means.

Definition 3.7. We say that a strategy ξα ∈ Zα,S with initial investment v0, provides an arbitrage
opportunity for an α-stereotyped agent if

V v0,ξ
0 ≤ 0 Pα-a.s. and Pα[V v0,ξ

T > 0] > 0, (3.13)

where Pα = P |Fα,ST
.

Definition 3.8. We say that an α-stereotyped agent is more informed than a β-stereotyped agent
after seeing the price system (St)t∈[0,T ] if Fβ,S ⊆ Fα,S, i.e.

Fβ,St ⊆ Fα,St for all t ∈ [0, T ]. (3.14)

The next remark is an extension of the results by (Duffie and Huang, 1986) about arbitrage
opportunities.

Theorem 3.9. If an agent α is more informed than an agent β, then

1. Agent α has a bigger set of admissible strategies than agent β, i.e. Zβ,S ⊆ Zα,S .

2. The set of potential arbitrage opportunities for agent α is bigger than agent β.

Proof. We first start proving that more information implies a bigger set of admissible strategies. Let
ξβ ∈ Zβ,S , so we have that ξβ is Fβ,S-predictable, and then Fα,S-predictable by hypothesis. Since
(St)t∈[0,T ] is an Fα,S and Fβ,S semimartingale (see Lemma 3.2 ), we can use (Theorem 9.26 of Jacod,

1979) to show that V v0,ξβ

t := ξβt ·St = ξβ0 ·S0 +
∫ t

0 ξ
β
u · dSu is well-defined with respect to Fα,S as well.

Therefore, ξβ ∈ Zα,S .

For the second part, we know that if ξβ ∈ Zβ,S such that V v0,ξβ

0 = ξβ0 · S0 ≤ 0 P β-a.s., and

P β[ξβT · ST ≥ 0] > 0, then ξβ ∈ Zα,S with V v0,ξβ

0 = ξβ0 · S0 ≤ 0 Pα-a.s., and Pα[ξβT · ST ≥ 0] > 0.
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(Duffie and Huang, 1986) showed that if an agent has a bigger set of admissible strategies it does
not imply that he or she has more information. This can be illustrated in the following proposition.

Proposition 3.10. Let Fβ,St ⊆ Fα,St for all t ∈ [0, T ). Then Pβ,S ⊆ Pα,S and Zβ,S ⊆ Zα,S .

Proof. We know that Pβ,S is generated by the sets of the form {0}×B0 and (s, t]×Bs with B0 ∈ Fβ,S0

and Bs ∈ Fβ,Ss respectively. By hypothesis B0 ∈ Fα,S0 , and Bs ∈ Fα,Ss . Consequently, Pβ,S ⊆ Pα,S

Now with this result we know that each Fβ,S-predictable process is Fα,S-predictable. Using
(Theorem 9.26 Jacod, 1979) and the same reasoning as in Theorem 3.9 we get that Zβ,S ⊆ Zα,S .

The intuition of the previous result is obvious. In a finite horizon setting the information revealed
at the maturity date does not provide any kind of advantage.

Now we draw another conclusion from another theorem by (Duffie and Huang, 1986).

Theorem 3.11. If Fβ,ST ⊆ Fα,ST with S a system of prices strictly positive, then Zβ,S ⊆ Zα,S implies
Fβ,S ⊆ Fα,S.

Proof. Suppose that there exists a t ∈ [0, T ) such that Fβ,St 6⊆ Fα,St . Without loss of generality we can

assume that t ∈ (0, T ). Then there exists an A ∈ Fβ,St , but A 6∈ Fα,St . We know that 1(t,T ]×A is Fβ,S-

predictable since (t, T ] × A ∈ Pβ,S . Now, we construct our self-financing strategy ξt = (ξ
(0)
t , ..., ξ

(n)
t )

defined as

ξ(k)
u (w) =


θ

(i)
t 1(t,T ]×A(u,w), if k = i,

θ
(j)
t 1(t,T ]×A(u,w), if k = j,

0, otherwise,

(3.15)

with

θ
(k)
t (w) =


θ

(i)
t (w), if k = i,

−θ(i)
t (w)S

(i)
t (w)

S
(j)
t (w)

, if k = j and S
(j)
t (w) > 0,

0, otherwise,

(3.16)

where i 6= j, and θ
(i)
t is any strictly positive Fβ,St -measurable random variable.

We have that ξu · Su = 0 and ξ0 · S0 +
∫ u

0 ξl · dSl = 0 for u ∈ [0, t]. And for u ∈ (t, T ] we obtain

ξu · Su = θ
(i)
t S(i)

u + θjtS
(j)
u

= θ
(i)
t (S(i)

u − S
(i)
t ) +

∑
k 6=i

θ
(k)
t (S(k)

u − S
(k)
t )

= ξ0 · S0 +

∫ u

0
ξl · dSl.

(3.17)

Therefore, ξ is an Fβ,S-predictable self-financing strategy, and ξ ∈ Zβ,S . However, ξ is not Fα,S-
predictable since (ξ(i))−1(R+ \ {0}) = (t, T ]×A 6∈ Pα,S . This contradicts the hypothesis Zβ,S ⊆ Zα,S .
Consequently, Fβ,S ⊆ Fα,S .
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Corollary 3.12. If Fα,ST = Fβ,ST and Zα,S = Zβ,S , then Fα,S = Fβ,S .

3.2 The market model and the price of a contingent claim from a small investor’s
perspective

In the previous section we described how an institutional investor computes the price of a derivative.
We assume that the small investors and the big investor share similar data to some extent. From this
perspective we can assume that each one of the α-stereotyped agents, with α ∈ A, perceives the prices
as in 2.24, i.e.

dS
(0)
t = rαt S

(0)
t and dS

(i)
t = µ

α,(i)
t S

(i)
t dt+ S

(i)
t

 n∑
j=1

σ
α,(ij)
t dW

(j)
t

 , (3.18)

adapted to the filtered space (Ω,FT , (Ft)t∈[0,T ], P ) as in Proposition 2.4 for each i = 1, ..., n. However,
since they do not have the information, equipment, and appropriate staff that allow them to make

accurate and prudent forecasts of µ
α,(i)
t , rαt , and σ

α,(ij)
t for each macroeconomic event Λ1, ...,Λm., the

estimation process has to be different. In the algorithm used to compute these prices, we will consider
these coefficients as deterministic functions for each agent α. The results of Subsection 3.1 allow
us to define the system of prices, and make all of the analysis from each informational framework
(Ω,Fα,ST , (Fα,St )t∈[0,T ], P

α).

Another important feature that we need to take into account is the heterogeneity of the preferences
and informational framework. In a market we cannot assume that all of the individuals are the same
and that have the same quantity of information. For this reason, we will use the ideas developed in
Subsection 3.1. In other words, we consider a countable set of agents A endowed with the character-
istics {�α, Vα,Fα}, where for each α ∈ A, �α is the relation of preference of the α-stereotyped agent,
Vα = R×L1(Ω,Fα, P ) is the space of pairs (x,C) where x is the initial investment in a strategy related
to the payoff of the financial instrument that the α-stereotyped agent sold or bought and whose payoff
is −C and C respectively. Additionally, we will quantify these relations of preference using different
types of utility functions. In this model for each agent α ∈ A, we will use the utility function given
by the negative exponential:

Uα(x) := exp(−γαx), (3.19)

where γα represents the coefficient of risk aversion of agent α. Using 3.10 we have that the maximal
utility Ûα(v0, C) of (v0, C) ∈ R× L under the relation of preference of agent α is

Ûα(v0, C) = max
ξα∈Zα,S

EPα
[
− exp

{
−γα(V v0,ξα

T + C)
}]

, (3.20)

where Pα = P |Fα,ST
. Therefore, we set (v0, C) �α (v

′
0, C

′
) if and only if Ûα(v0, C) ≤ Ûα(v

′
0, C

′
).

3.2.1 Entropy and price

The concept of entropy has different interpretations and is used in different contexts. We used it
in the case of a big company that wants to maximize its state of uncertainty (not being biased in
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favor of some event) under some macroeconomic restrictions. However, entropy can also be used to
express the cost of using some information instead of another. Here, we use the relative entropy,
h(Q|Pα) = E[(dQ/dPα) ln(dQ/dPα)], of Q with respect to Pα as the cost of using Q instead of Pα

for an α-stereotyped agent.

We need to find a coherent price that a small agent will compute under his or her circumstances.
One way to do that is by the use of the free energy, lnE[exp(X)], of a random variable X. For a
bounded from below random variable, there exists a relation between free energy and relative entropy
also known as the duality for the Kullback-Leibler divergence

lnE[exp(X)]) = sup
Q�P

[EP [X]− h(Q|P )]. (3.21)

Using this property we can find the stochastic game between an α-stereotyped agent and the market
denoted by Ψα(v0, C) :

Ψα(v0, C) :=
1

γα
ln[−Ûα(v0,−C)]

= inf
ξα∈Zα,S

1

γα
lnEPα [exp(−γα(V v0,ξα

T − C))]

= inf
ξα∈Zα,S

sup
Q�Pα

{
EQ[−V v0,ξα

T + C]− 1

γα
h(Q|Pα)

}
.

(3.22)

Assumption 3.13. As it is mentioned in (El Karoui and Rouge, 2000), each α-stereotyped agent
considers that the accumulation of behaviors in the market makes it risk neutral, and then they should
behave in the same way. Therefore, the α-stereotyped agent should consider Q ∼ Pα, and then

Ψα(v0, C) = inf
ξα∈Zα,S

sup
Q∼Pα

{
EQ[−V v0,ξα

T + C]− 1

γα
h(Q|Pα)

}
, (3.23)

where each probability measure Q satisfies

EQ[V v0,ξα

T ] ≤ v0/B0,T . (3.24)

The process (Bα
t,T )t∈[0,T ] is the price of a zero-coupon bond with maturity T. Therefore, v0/B

α
0,T can

be interpreted as the forward price of v0.

With assumption 3.13, and (Bα
t,T )t∈[0,T ] as the numéraire for the small agents, we get that

Ψα(v0, C) ≥ − v0

Bα
0,T

+ sup
Q∼Pα

{
EQ[C]− 1

γα
h(Q|Pα)

}
(3.25)

from the perspective of an α-stereotyped agent.

We know that under these circumstances, it is intuitive that the agent α wants to compute the
price of the claim as in 3.3, i.e., the smallest p such that

max
ξα∈Zα,S

EPα
[
− exp

{
−γα(V v0+p,ξα

T + C)
}]
≥ max

ξα∈Zα,S
EPα

[
− exp

{
−γα(V v0,ξα

T )
}]

. (3.26)
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(Frittelli, 2000) showed that under a general setting where portfolios are bounded from below it is
possible to find this price. (El Karoui and Rouge, 2000) proposed a Brownian model using dynamic
programming. We will show that it is possible to find an estimate of this price proposed by (El Karoui
and Rouge, 2000) using semi-group theory. For this purpose, we need to make some changes on this
model in order to use the formulas we built in 3.18 and in 2.24. First, we will show how the price is
computed when

Ψα(v0, C) = − v0

Bα
0,T

+ sup
Q∼Pα

{
EQ[C]− 1

γα
h(Q|Pα)

}
, (3.27)

and next we will show how we can prove 3.27 under the assumption that the system of prices follows
the model 3.18.

Proposition 3.14. If the value function of 3.23 can be written as

Ψα(v0, C) = − v0

Bα
0,T

+ sup
Q∼Pα

{
EQ[C]− 1

γα
h(Q|Pα)

}
, (3.28)

then the price 3.3 for the α-stereotyped agent is

pα(v0, C) = Bα
0,T

(
sup
Q∼Pα

{
EQ[C]− 1

γα
h(Q|Pα)

}
− sup
Q∼Pα

{
− 1

γα
h(Q|Pα)

})
. (3.29)

Proof. Using the definition of Ψα and the usual properties of inequalities for increasing and decreasing
functions, we get

min {p : Ψα(v0 + p, C) ≤ Ψα(v0, 0)}

= min

{
p :

1

γα
ln
[
−Û(v0 + p,−C)

]
≤ 1

γα
ln
[
−Û(v0, 0)

]}
= min

{
p : exp

{
γα

(
1

γα
ln
[
−Û(v0 + p,−C)

])}
≤ exp

{
γα

(
1

γα
ln
[
−Û(v0, 0)

])}}
= min

{
p : −Û(v0 + p,−C) ≤ −Û(v0, 0)

}
= min

{
p : Û(v0 + p,−C) ≥ Û(v0, 0)

}
= min {p : (v0 + p,−C) �α (v0, 0)} .

(3.30)

On the other hand, we know that

Ψα(v0 + p, C)−Ψα(v0, 0) =
−p
Bα

0,T

+ sup
Q∼Pα

{
EQ[C]− 1

γα
h(Q|Pα)

}
− sup
Q∼Pα

{
− 1

γα
h(Q|Pα)

}
. (3.31)

Therefore, pα(v0, C) must satisfy

pα(v0, C) = Bα
0,T

(
sup
Q∼Pα

{
EQ[C]− 1

γα
h(Q|Pα)

}
− sup
Q∼Pα

{
− 1

γα
h(Q|Pα)

})
. (3.32)
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As we said earlier, each one of the α-stereotyped agents, with α ∈ A, perceives the prices as in
3.18, i.e.

dS
(0)
t = rαt S

(0)
t and dS

(i)
t = µ

α,(i)
t S

(i)
t dt+ S

(i)
t

 n∑
j=1

σ
α,(ij)
t dW

(j)
t

 , (3.33)

for each i = 1, ..., n. We want to show that the value function of each agent α ∈ A, under assumption
3.13, is of the form

Ψα(v0, C) = − v0

Bα
0,T

+ sup
Q∼Pα

{
EQ[C]− 1

γα
h(Q|Pα)

}
, (3.34)

and by using Proposition 3.14, we get the price that a small investor “intuitively” should compute
under his or her position.

Since we are using the machinery employed by (El Karoui and Rouge, 2000), we need to make
some adjustments to our price system 3.18. Using

V v0,ξα

t =
n∑
i=0

ξ
α,(i)
t S

(i)
t (3.35)

we can rewrite the dynamics of (V v0,ξα

t ) as

dV v0,ξα

t = rαt ξ
α,(0)
t S

(0)
t dt+

n∑
i=1

ξ
α,(i)
t dS

(i)
t

= rαt

(
V v0,ξα

t −
n∑
i=1

ξ
α,(i)
t S

(i)
t

)
dt+

n∑
i=1

ξ
α,(i)
t S

(i)
t

µα,(i)t dt+
n∑
j=1

σ
α,(ij)
t dW

(j)
t

 (3.36)

If we set ηt := (σαt )−1(µαt − rαt Jn,1) with

Jn,1 =

1
...
1


n×1

, σαt =

σ
α,(11)
t . . . σ

α,(1n)
t

...
. . .

σ
α,(n1)
t · · · σ

α,(nn)
t


n×n

, and µαt =

µ
α,(1)
t
...

µ
α,(n)
t


n×1

(3.37)

the equation 3.36 becomes

dV v0,ξα

t = rαt V
v0,ξα

t dt+ (παt )∗σαt (dWt + ηtdt) with V v0,ξα

0 = v0 (3.38)

where

παt :=

π
α,(1)
t
...

π
α,(n)
t


n×1

=

ξ
α,(1)
t S

(1)
t

...

ξ
α,(n)
t S

(n)
t


n×1

(3.39)

represents the amount of money invested in the risky assets.

Assumption 3.15. We need to make some assumptions about how each agent α perceives the price
model.
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1. The coefficients rαt , µ
α
t , and σαt are Fα,S progressively measurable, and uniformly bounded on

[0, T ]× Ω.

2. The matrix σαt also satisfies the assumption 2.3.

3. We assume that each portfolio strategy ξα is in Zα,S as in Definition 3.4.

Under the assumption in Definition 3.4, we know that Zα,S is a vector space, and then we can
assume that the process παt remains in a vector space, Vα, for all t ∈ [0, T ]. Moreover, these assumptions
set that

EPα

[(∫ T

0
(ξ
α,(i)
t )2d〈S(i), S(i)〉t

)]1/2

<∞ for each i = 0, 1, ..., n, (3.40)

and therefore, we obtain

EPα

[∫ T

0
‖παs ‖2ds

]
<∞. (3.41)

As a result, with either 3.40 or 3.41 and using the first lemmas of Section 3.1, we conclude that 3.36
and 3.38 are well-defined for each filtration Fα,S .

From now on, and for the sake of simplicity we will use Vt, πt and ξt instead of V v0,ξα

t , παt and ξαt
respectively.

Proposition 3.16. Under assumption 3.15 we have that the process V v0,ξ
t is bounded in L2(Ω, P )

Proof. We can rewrite the formula 3.38 as

dVt = rαt Vtdt+ π∗t σ
α
t (dWt + ηtdt)

= (π∗t σ
α
t ηt + rαt Vt)dt+ π∗t σ

α
t dWt

= (π∗t σ
α
t ηt + rαt Vt)dt+

n∑
j=1

(π∗t σ
α
t )(j)dW

(j)
t

(3.42)

Let us use g(t, Vt) = Vte
−
∫ t
0 r

α
s ds. We have that

gt(t, Vt) = −rαt Vte−
∫ t
0 r

α
s ds

gx(t, Vt) = e−
∫ t
0 r

α
s ds

gxx(t, Vt) = 0,

(3.43)

and using Ito’s formula we get

dg(t, Vt) = −rαt Vte−
∫ t
0 r

α
s dsdt+

(
e−
∫ t
0 r

α
s ds
)(π∗t σ

α
t ηt + rαt Vt)dt+

n∑
j=1

(π∗t σ
α
t )(j)dW

(j)
t


= e−

∫ t
0 r

α
s dsπ∗t σ

α
t ηtdt+

n∑
j=1

e−
∫ t
0 r

α
s ds(π∗t σ

α
t )(j)dW

(j)
t ,

(3.44)
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and integrating yields

Vte
−
∫ t
0 r

α
s ds = V0 +

∫ t

0
e−
∫ s
0 r

α
uduπ∗sσ

α
s ηsds+

n∑
j=1

∫ t

0
e−
∫ s
0 r

α
udu(π∗sσ

α
s )(j)dW (j)

s . (3.45)

Thus,

Vt = e
∫ t
0 r

α
s ds

V0 +

∫ t

0
e−
∫ s
0 r

α
uduπ∗sσ

α
s ηsds+

n∑
j=1

∫ t

0
e−
∫ s
0 r

α
udu(π∗sσ

α
s )(j)dW (j)

s

 . (3.46)

Since rα, σα, and µα are uniformly bounded on Ω× [0, T ]; πt satisfies inequality 3.41, and the terms∫ t

0
e−
∫ s
0 r

α
udu(π∗sσ

α
s )(j)dW (j)

s (3.47)

are independent martingales for j = 1, ..., n., by Doob’s Lp-inequality, and Ito’s isometry, we obtain

E

[
sup
t≤T

∣∣∣∣∫ t

0
e−
∫ s
0 r

α
udu(π∗sσ

α
s )(j)dW (j)

s

∣∣∣∣2
]
≤ 4E

[∣∣∣∣∫ T

0
e−
∫ s
0 r

α
udu(π∗sσ

α
s )(j)dW (j)

s

∣∣∣∣2
]

≤ 4E

[∫ T

0

(
e−
∫ s
0 r

α
udu(π∗sσ

α
s )(j)

)2
ds

]
<∞.

(3.48)

Therefore, we conclude that

E

[
sup
t≤T

(
V v0,ξ
t

)2
]
<∞. (3.49)

Since Pα = P |Fα,ST
, the previous result holds for either Pα or P .

3.2.2 Change of Numéraire

Every investor does not necessarily quote the price of each one of the financial assets under the same
numéraire. In fact, in a market where investors may have different informational frameworks, it is
natural to think that each investor should have its own numéraire. In Proposition 2.4, we assumed

that the big company has S
(0)
t = S

(0)
0 e

∫ t
0 r

α
udu as numéraire. However, here we assume that each agent

α ∈ A, has a numéraire that is the zero-coupon bond, (Bα
t,T )t∈[0,T ], with maturity date T . Using

again the same tools as in Subsection 3.1, we can assume that there exists an Rn-valued and Fα,S
progressively measurable and uniformly bounded process (%αt )t∈[0,T ] such that the dynamics of Bα

t,T is
of the form

dBα
t,T = Bα

t,T [(rαt + (%αt )∗σαt ηt)dt+ (%αt )∗σαt dWt] and Bα
0,T = 1. (3.50)

In most cases a numéraire is a “riskless” financial asset and unit of reference. Therefore, we should
have that the discounted prices of the financial assets in 3.33 with respect to any numéraire from the
informational framework of an α-stereotyped agent should have some similar properties.
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We know that our model 3.33 has a martingale measure. Let us recall some details. If we define

dQα,θ
α

dPα
= exp

{
−
∫ t

0
θαu · dWu −

1

2

∫ t

0
‖θαu‖2du

}
, (3.51)

where θαt = (θ
α,(1)
t , ..., θ

α,(n)
t )∗ is the Fα,S progressively measurable process that satisfiesσ

α,(11)
t . . . σ

α,(1n)
t

...
. . .

σ
α,(n1)
t · · · σ

α,(nn)
t


θ

α,(1)
t
...

θ
α,(n)
t

 =

µ
α,(1)
t − rαt

...

µ
α,(n)
t − rαt

 . (3.52)

Therefore, under Qα,θ
α

we have that

dWα,θα

t = θαt dt+ dWt (3.53)

is an n-dimensional Brownian motion. Now using Ito’s formula and 3.53 we get

d

(
S

(i)
t

S
(0)
t

)
=
(
µ
α,(i)
t − rαt

) S(i)
t

S
(0)
t

dt+
S

(i)
t

S
(0)
t

n∑
j=1

σ
α,(ij)
t dW

(j)
t

=
S

(i)
t

S
(0)
t

n∑
j=1

σ
α,(ij)
t

(
θ
α,(j)
t dt+ dW

(j)
t

)

=
S

(i)
t

S
(0)
t

n∑
j=1

σ
α,(ij)
t

(
dW

α,θα,(j)
t

)
,

(3.54)

and by Ito’s formula on ln
(
S

(i)
t /S

(0)
t

)
, we obtain

S
(i)
t

S
(0)
t

=
S

(i)
0

S
(0)
0

exp


n∑
j=1

∫ t

0
σ
σ,(ij)
u d(Wα,θα,(j)

u )− 1

2

n∑
j=1

∫ t

0

∣∣∣σσ,(ij)u

∣∣∣2 du
 . (3.55)

Since σαt is uniformly bounded on Ω × [0, T ], we can conclude that (S
(i)
t /S

(0)
t ) is an Fα,S-martingale

under Qα,θ
α
.

As it is expected, we will show that the forward prices S
(i)
t /Bα

t,T , are martingales with respect to
some equivalent measure with respect to Pα. For this purpose we will provide some results that allow
us to conclude this remark.

Proposition 3.17. The discounted zero-coupon bond (Bα
t,T /e

∫ t
0 r

α
udu) is an Fα,S-martingale under

Qα,θ
α

.
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Proof. Using Ito’s formula, we get

d

(
Bα
t,T

e
∫ t
0 r

α
udu

)
=

(
Bα
t,T

e
∫ t
0 r

α
udu

)
[((%αt )∗σαt ηt)dt+ (%αt )∗σαt dWt]

=

(
Bα
t,T

e
∫ t
0 r

α
udu

)
[(%αt )∗(µαt − rαt Jn×1)dt+ (%αt )∗σαt dWt]

=

(
Bα
t,T

e
∫ t
0 r

α
udu

)
(%αt )∗ [(µαt − rαt Jn×1)dt+ σαt dWt]

=

(
Bα
t,T

e
∫ t
0 r

α
udu

)
(%αt )∗σαt [θαt dt+ dWt]

=

(
Bα
t,T

e
∫ t
0 r

α
udu

)
(%αt )∗σαt dW

α,θα

t .

(3.56)

By the same reasoning as in 3.55, we have

Bα
t,T

e
∫ t
0 r

α
udu

= exp


n∑
j=1

∫ t

0
((%αu)∗σαu )(j) d(Wα,θα,(j)

u )− 1

2

n∑
j=1

∫ t

0

∣∣∣((%αu)∗σαu )(j)
∣∣∣2 du

 . (3.57)

Since (%α)∗σαt is uniformly bounded on Ω× [0, T ], we conclude that (Bα
t,T /S

(0)
t ) is an Fα,S-martingale

under Qα,θ
α
.

Now we will use some results about change of numéraire by (Geman et al., 1995) that can also be

found in (Privault, 2020). This result states that if (Nt)t∈[0,T ] is a numèraire, and e−
∫ t
0 r

α
s dsNt is an

Fα,S-martingale under Qα,θ
α
, we can define the probability measure

dP̃α

dQα,θα
:= e−

∫ T
0 rαs ds

NT

N0
, (3.58)

such that the following proposition holds

Proposition 3.18. If (Yt)t∈[0,T ] is a continuous and Fα,S-adapted process such that

e−
∫ t
0 r

α
s dsYt with t ∈ [0, T ], (3.59)

is an Fα,S-martingale under Qα,θ
α

, then the discounted price of Yt with respect to Nt

Yt
Nt

with t ∈ [0, T ], (3.60)

is an Fα,S-martingale under P̃α.

Proof. We want to show

EP̃α

[
Yt
Nt

∣∣∣∣Fα,Ss

]
=
Ys
Ns

, (3.61)
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for s ≤ t. For this purpose, we will use the formal definition of conditional expectation. Let X be a
bounded Fα,Ss -measurable random variable. Using 3.58 we get

EP̃α

[
X
Yt
Nt

]
= EQα,θα

[
X
Yt
Nt

dP̃α

dQα,θα

]

= EQα,θα

[
X
Yt
Nt
EQα,θα

[
dP̃α

dQα,θα

∣∣∣∣∣Fα,St

]]

= EQα,θα

[
X
Yt
Nt
e−
∫ t
0 r

α
udu

Nt

N0

]
= EQα,θα

[
X
Yt
N0

e−
∫ t
0 r

α
udu

]
= EQα,θα

[
XEQα,θα

[
Yt
N0

e−
∫ t
0 r

α
udu

∣∣∣∣Fα,Ss

]]
= EQα,θα

[
X
Ys
N0

e−
∫ s
0 r

α
udu

]
= EQα,θα

[
X
Ys
Ns

e−
∫ s
0 r

α
udu

Ns

N0

]
= EQα,θα

[
X
Ys
Ns

EQα,θα

[
dP̃α

dQα,θα

∣∣∣∣∣Fα,Ss

]]

= EQα,θα

[
X
Ys
Ns

dP̃α

dQα,θα

]

= EP̃α

[
X
Ys
Ns

]

(3.62)

The following corollary is a consequence of these remarks

Corollary 3.19. The forward prices using the zero-coupon bond process

S
(i)
t

Bα
t,T

for i = 0, ..., n and t ∈ [0, T ] (3.63)

are Fα,S-martingales with respect to P̃α, with

dP̃α

dQα,θα
= e−

∫ T
0 rαs ds

Bα
T,T

Bα
0,T

= e−
∫ T
0 rαs ds

1

Bα
0,T

(3.64)

Proof. We already showed that (S
(i)
t /S

(0)
t )t∈[0,T ] is a martingale under Qα,θ

α
for each i = 0, ..., n. Now,

using Proposition 3.18, Yt = S
(i)
t , Nt = Bα

t,T as in 3.58 and Proposition 3.17 respectively, we obtain
the result.
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Assumption 3.20. We assume that the process %α is uniformly bounded in [0, T ] × Ω and remains
in Vα.

Let βαt,T = (Bα
t,T )−1. Since our goal is to compute the price pα(v0, C), we have to make use of Ψα.

Therefore, the formula 3.27 tells us that we have to employ the process βαt,TVt in the procedure. We
are ready to show the next proposition by (El Karoui and Rouge, 2000) that allow us to rewrite βαt,TVt
in a more convenient way.

Proposition 3.21. The dynamics of the forward wealth βαt,TVt is of the form

dβαt,TVt = [−βαt,TVt%αt + βαt,Tπ]∗σαt dW
ρα

t (3.65)

with W ρα

t = Wt +
∫ t

0 ρ
α
s ds, and ραt = (σαt )−1(µαt − rαt Jn×1 − σαt (σαt )∗%αt ) for t ∈ [0, T ].

Proof. Using Ito’s formula in βαt,T = (Bα
t,T )−1 we deduce the formula

dβαt,T = −βαt,T [(rαt + (%αt )∗σαt ηt)dt+ (%αt )∗σαt dWt] + βαt,T ((%αt )∗σαt ) ((%αt )∗σαt )∗ dt (3.66)

Now, with the use of ηt := (σαt )−1(µαt − rαt Jn,1) and

dVt = rαt Vtdt+ π∗t σ
α
t (dWt + ηtdt), (3.67)

we can conclude

dβαt,TVt = Vtdβ
α
t,T + βαt,TdVt + d〈V·, βα·,T 〉t

= −Vtβαt,T rαt dt− Vtβαt,T (%αt )∗σαt ηtdt− Vtβαt,T (%αt )∗σαt dWt + Vtβ
α
t,T ((%αt )∗σαt ) ((%αt )∗σαt )∗ dt

+ βαt,T r
α
t Vtdt+ βαt,Tπ

∗
t σ

α
t dWt + βαt,Tπ

∗
t σ

α
t ηtdt− βαt,Tπ∗t σαt ((%αt )∗σαt )∗ dt

= [−βαt,TVt%αr + βαt,Tπt]
∗σαt dWt − Vtβαt,T rαt dt− Vtβαt,T (%αt )∗σαt ηtdt

+ Vtβ
α
t,T ((%αt )∗σαt ) ((%αt )∗σαt )∗ dt+ βαt,T r

α
t Vtdt+ βαt,Tπ

∗
t σ

α
t ηtdt− βαt,Tπ∗t σαt ((%αt )∗σαt )∗ dt

= [−βαt,TVt%αr + βαt,Tπt]
∗σαt dWt − Vtβαt,T (%αt )∗σαt ηtdt+ Vtβ

α
t,T ((%αt )∗σαt ) ((%αt )∗σαt )∗ dt

+ βαt,Tπ
∗
t σ

α
t ηtdt− βαt,Tπ∗t σαt ((%αt )∗σαt )∗ dt

= [−βαt,TVt%αr + βαt,Tπt]
∗σαt dWt + [−βαt,TVt(%αr )∗ + βαt,Tπt]

∗σαt ρ
α
t dt

= [−βαt,TVt%αr + βαt,Tπt]
∗σαt dW

ρα

t .

(3.68)

By assumption 3.15 and 3.20, we know that ρα is bounded and we can define the probability
measure

dP ρ
α

dPα
= Hρα

T = exp

{
−
∫ T

0
ραt · dWt −

1

2

∫ T

0
‖ραt ‖2dt

}
. (3.69)

By the vector form of the Girsanov’s theorem, W ρα is an n-dimensional Brownian motion under P ρ
α
.

Proposition 3.22. If ξ ∈ Zα,S then the process βαt,TV
v0,ξ
t is an Fα,S-martingale under P ρ

α
.
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Proof. Let ξ ∈ Zα,S . Using the remark of assumption 3.15, we have that

EPα

[∫ T

0
‖πs‖2ds

]
<∞. (3.70)

We know that βαt,TV
v0,ξ
t is a local martingale under P ρ

α
. Since %αt is uniformly bounded on Ω× [0, T ],

and V v0,ξ
t is bounded on L2(Ω, Pα), we have

EP ρα
[〈
βα·,TV

v0,ξ
·

〉
T

]
<∞. (3.71)

Therefore, βαt,TV
v0,ξ
t is an Fα,S-martingale under P ρ

α
.

3.2.3 Optimal portfolio

As pointed out by (El Karoui and Rouge, 2000), the superreplicating price is characterized as the
essential supremum on the set of equivalent measures of the expected value of the discounted payoff.
Under Assumption 3.13, the value function used to compute the price of the payoff of the contingent
claim satisfies

Ψα(v0, C) ≥ − v0

Bα
0,T

+ sup
Q∼Pα

{
EQ[C]− 1

γα
h(Q|Pα)

}
, (3.72)

and if the previous result is an equality, we can use Proposition 3.14 to compute the price.

Since

Ψα(v0, C) = inf
ξ∈Zα,S

sup
Q∼Pα

{
EQ[−V v0,ξ

T + C]− 1

γα
h(Q|Pα)

}
, (3.73)

(El Karoui and Rouge, 2000) proposed a “dual” optimal problem that can give a solution to 3.27.
This method was based on the idea that, if we consider 3.73 with respect the collection of measures
Qρ

α,u as in 3.76 such that βαt,TV
v0,ξ
t is a martingale , then

Ψα(v0, C) = inf
ξ∈Zα,S

sup
Qρα,u∼Pα

{
EQρα,u [−V v0,ξ

T + C]− 1

γα
h(Qρ

α,u|Pα)

}
= − v0

Bα
0,T

+ sup
Qρα,u∼Pα

{
EQρα,u [C]− 1

γα
h(Qρ

α,u|Pα)

}
.

(3.74)

By Proposition 3.14, we can compute the price. Moreover, we can also have the same results using a
weaker hypothesis about Vα. In fact, if Vα is a closed cone then by 3.87, we have that βαt,TV

v0,ξ
t is a

supermartingale and properties 3.23 and 3.25 hold. Finally we get the result 3.74 from Theorem 4.2.
by (El Karoui and Rouge, 2000).

Having mentioned the ideas about how to compute the price, we build the tools to find it. Let V⊥α
be the orthogonal complement of Vα, and Ṽ⊥α,t = (σαt )−1(V⊥α ), and take u in

Uα = {u progressively measurable, and uniformly bounded, such that ut ∈ Ṽ⊥α,t}. (3.75)
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We define Qρ
α,u as

dQρ
α,u

dPα
= Hρα,u

T = exp

{
−
∫ T

0
ρα,ut · dWt −

1

2

∫ T

0
‖ρα,ut ‖2dt

}
, (3.76)

where ρα,ut = ραt + ut. Using the vector form of Girsanov’s theorem, Wα,u
t = Wt +

∫ t
0 ρ

α,u
s ds is an

n-dimensional Fα,S-Brownian motion under Qρ
α,u.

Let Vt be the portfolio value process of agent α. We know that σαt ut ∈ V⊥α,t, and by assumption
3.20, (%αt )∗σαt ut = 0. We can rewrite the discounted wealth with respect to the zero-coupon bond as

dβαt,TVt = [−βαt,TVt%αt + βαt,Tπt]
∗σαt dW

ρα

t

= [−βαt,TVt%αt + βαt,Tπt]
∗σαt dW

α,u
t − βαt,Tπ∗t σαt utdt

= [−βαt,TVt%αt + βαt,Tπt]
∗σαt dW

α,u
t ,

(3.77)

where the last part comes from π∗t σ
α
t ut = 0 since πt ∈ Vα. Therefore, the process βαt,TVt is a martingale

under Qρ
α,u for each u ∈ Uα, and the forward neutral point of view property 3.23 holds.

Now we are ready to introduce the dual static value function problem proposed by (El Karoui and
Rouge, 2000)

V α,C
0 := sup

Qρα,u
V α,C,u

0 with V α,C,u
0 := EQρα,u [C]− 1

γα
h(Qρ

α,u|Pα). (3.78)

Since the entropy of Qρ
α,u with respect to Pα is

h(Qρ
α,u|Pα) = EPα

[
exp

{
−
∫ T

0
ρα,ut · dWt −

1

2

∫ T

0
‖ρα,ut ‖2dt

}(
−
∫ T

0
ρα,ut · dWt −

1

2

∫ T

0
‖ρα,ut ‖2dt

)]
= EQρα,u

[
−
∫ T

0
ρα,ut · dWt −

1

2

∫ T

0
‖ρα,ut ‖2dt

]
= EQρα,u

[∫ T

0
‖ρα,ut ‖2dt−

∫ T

0
ρα,ut · dWα,u

t − 1

2

∫ T

0
‖ρα,ut ‖2dt

]
= EQρα,u

[
1

2

∫ T

0
‖ρα,ut ‖2dt

]
,

(3.79)

we have

V α,C,u
0 = EQρα,u

[
C − 1

2γα

∫ T

0
‖ρα,ut ‖2dt

]
, (3.80)

and we take

V α,C,u
t = EQρα,u

[
C − 1

2γα

∫ T

t
‖ρα,ut ‖2dt

∣∣∣∣Ft] . (3.81)

V α,C,u
t can be written as

V α,C,u
t = EQρα,u

[
C − 1

2γα

∫ T

t
‖ρα,us ‖2ds

∣∣∣∣Ft]
=

1

2γα

∫ t

0
‖ρα,us ‖2ds+ EQρα,u

[
C − 1

2γα

∫ T

0
‖ρα,us ‖2ds

∣∣∣∣Ft] . (3.82)
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By the martingale representation theorem, we can find a predictable portfolio process πα,ut such that

V α,C,u
t = V α,C,u

0 +
1

2γα

∫ t

0
‖ρα,us ‖2ds+

∫ t

0
(πα,us )∗σαs · dWα.u

s . (3.83)

Following (El Karoui and Rouge, 2000), we have to make some changes in 3.82 in order to compute
the essential supremum of V α,C,u

t . To this end, it will be convenient to take zα,ut = (σαt )∗πα,ut and
fρα,t(zt, ut) = −1/2γα‖ρα,ut ‖2− (ρα,ut )∗z. Using this notation we can rewrite 3.82 as a linear backward
stochastic differential equation (BSDE)

− dV α,C,u
t = fρα,t(z

α,u
t , ut)dt− (zα,ut )∗dWt and V α,C,u

T = C. (3.84)

By the comparison principle for BSDE’s (see for instace El Karoui and Rouge, 2000; Liu and Ren,
2002; Cohen et al., 2010) we only need to maximize in u for a given z the driver fρα,t(z, u). The driver
can be written as

fρα,t(z, u) = − 1

2γα
‖ρα,ut ‖2 − (ρα,ut )∗z

= − 1

2γα
(ρα,ut )∗ρα,ut − 1

2γα
(2(ρα,ut )∗γαz)−

1

2γα
γ2
αz
∗z +

γα
2
z∗z

= − 1

2γα
‖ραt + ut + γαz‖2 +

γα
2
‖z‖2.

(3.85)

So for fixed z, we only have to maximize in u ∈ Ṽ⊥α,t the function −‖ραt + ut + γαz‖2. We know that
this function is maximized by only one u that is characterized by

ũt = arg sup
u∈Ṽ⊥α,t

fρα,t(z, u) = ΠṼ⊥α,t
(−ραt − γαz). (3.86)

Here the function ΠṼ⊥α,t
(y) is the orthogonal projection of y ∈ Rn on Ṽ⊥α,t.

All of the results mentioned before could have been obtained by using a weaker assumption, namely
Vα be a closed convex set. Following the ideas by (El Karoui and Rouge, 2000), the only tools that
would have changed are

1. Let δ(x) = supπ∈Vα −π
∗x be the support function of the convex set −Vα

2. Let Ṽα := {x ∈ Rn : δ(x) <∞} the effective domain of δ, and Ṽσα,t = (σαt )−1(Ṽα).

Using them together with the assumption %αt ∈ −Vα ∩Vα, we would have obtained (%αt )∗σαt ut = 0 and

dβαt,TVt = [−βαt,TVt%αt + βαt,Tπt]
∗σαt dW

ρα

t

= [−βαt,TVt%αt + βαt,Tπt]
∗σαt dW

α,u
t − βαt,Tπ∗t σαt utdt.

(3.87)

Since −y∗σαt ut ≤ 0 for all y ∈ Vα we have that 3.87 is a supermartingale and the desired property
3.23 is satisfied.

We know that the function ΠṼ⊥α,t
satisfies the following inequalities
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� 〈ΠṼ⊥α,ty − y, x−ΠṼ⊥α,t
y〉 = 0 for all x ∈ Ṽ⊥α,t and y ∈ Rn

�

(
ΠṼ⊥α,t

y − y
)∗

ΠṼ⊥α,t
y = 0 for all y ∈ Rn,

and for the case Vα a closed convex set, the properties are

� 〈ΠṼσα,ty − y, x−ΠṼσα,t
y〉 ≥ 0 for all x ∈ Ṽσα,t and y ∈ Rn

�

(
ΠṼσα,t

y − y
)∗

ΠṼσα,t
y = 0 for all y ∈ Rn.

In these two scenarios we get

ραt + γαz + ũ ∈ (σαt )∗Vα and (%αt + γαz + ũ)∗ũ = 0. (3.88)

We now need to get an expression for the dynamics of

V α,C
t = ess sup

u∈Uα
V α,C,u
t . (3.89)

By a result of (El Karoui and Rouge, 2000) we will show that the BSDE with driver

f̃ρα,t(z) := ess sup
u∈Ṽ⊥α,t

fρ,t(z, u) = fρ,t(z, ũ(t, ρα, z)), (3.90)

and terminal condition C admits a solution that dominates the BSDEs with driver f in 3.84. As it is
pointed out by (El Karoui and Rouge, 2000) the driver f̃ is quadratic and the results about quadratic
BSDEs are not easy to obtain.

Theorem 3.23. Let V α,C
t = ess supu∈Uα V

α,C,u
t . Then there exists a process z ∈ H2,d

T such that
(V C
t , Zt) satisfies the BSDE−dV

α,C
t =

[
− 1

2γα
‖ραt + ΠṼ⊥α,t

(−ραt − γαzt)‖2 − (ραt + ΠṼ⊥α,t
(−ραt − γαzt))∗zt

]
dt− z∗t dWt

V α,C
T = C

.

(3.91)

Proof. The formula 3.85 can be written as

− 1

2γα
‖ραt + ΠṼ⊥α,t

(−ραt − γαzt) + γαz‖2 +
γα
2
‖zt‖2

= − 1

2γα

{
‖ραt + ΠṼ⊥α,t

(−ραt − γαzt)‖2 + 2
(
ραt + ΠṼ⊥α,t

(−ραt − γαzt)
)∗
γαzt + γ2

α‖zt‖2
}

+
γα
2
‖zt‖2

= − 1

2γα
‖ραt + ΠṼ⊥α,t

(−ραt − γαzt)‖2 − (ραt + ΠṼ⊥α,t
(−ραt − γαzt))∗zt

(3.92)

in 3.91.
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Now, we need to show that the driver f(x, z) in 3.91 is majorized by k(1 + |z|2) for some positive
constant k. Then, by using (Theorem B.1 El Karoui and Rouge, 2000) we get the existence of the
solution.

Using the properties of inner products of orthogonal projections with x = 0, we have that
‖ΠṼ⊥α,ty‖

2 ≤ 〈ΠṼ⊥α,ty, y〉 ≤ ‖ΠṼ⊥α,ty‖‖y‖, and dividing by ‖ΠṼ⊥α,ty‖ we get ‖ΠṼ⊥α,ty‖ ≤ ‖y‖. Now

− 1

2γα
‖ραt + ΠṼ⊥α,t

(−ραt − γαzt)‖2 − (ραt + ΠṼ⊥α,t
(−ραt − γαzt))∗zt

≤ − 1

2γα
‖ραt + ΠṼ⊥α,t

(−ραt − γαzt)‖2 + ‖ραt + ΠṼ⊥α,t
(−ραt − γαzt)‖‖zt‖

≤ − 1

2γα

(
‖ραt ‖ − ‖ΠṼ⊥α,t(−ρ

α
t − γαzt)‖

)2
+ (2‖ραt ‖+ γα‖zt‖) ‖zt‖

≤ − 1

2γα
‖ραt ‖2 +

1

γα
‖ραt ‖‖ΠṼ⊥α,t(−ρ

α
t − γαzt)‖ −

1

2γα
‖ΠṼ⊥α,t(−ρ

α
t − γαzt)‖2 + 2‖ραt ‖‖zt‖+ γα‖zt‖2

≤ 1

2γα
‖ραt ‖2 + ‖ραt ‖‖zt‖+

1

2γα
(‖ραt ‖+ γα‖zt‖)2 + 2‖ραt ‖‖zt‖+ γα‖zt‖2

≤ 1

γα
‖ραt ‖2 + 4‖ραt ‖‖zt‖+

3

2
γα‖zt‖2

≤ k(1 + ‖zt‖2)

(3.93)

for some constant k > 0. The last part of these inequalities comes from the fact that ρα is uniformly
bounded on Ω× [0, T ]. As it is pointed by (El Karoui and Rouge, 2000) after some lengthy work the
conditions by (Theorem B.2 El Karoui and Rouge, 2000) holds, and then we get the domination and
uniqueness.

Optimal portfolio

We worked on the properties of the dual problem 3.78. With these tools we are ready to show the
solution to the problem 3.22 due to (El Karoui and Rouge, 2000).

Theorem 3.24. The value function of 3.91 is given by

Ψα(v0, C) = inf
π∈Vα

1

γα
lnEPα

[
exp(−γα(V v0,ξ

T − C))
]

= − v0

βα0,T
+ sup
u∈Uα

{
EQρα,u [C]− 1

γα
h(Qρ

α,u|Pα)

} (3.94)

The forward wealth is given by

Ṽ α
t = −Ψα(v0, C)− 1

γα
lnHρα,ũ

t + V α,C
t (3.95)

and its dynamics is given by

dṼ α
t =

(
1

γα
ρα,ũt + zt

)∗
(dWt + ραt dt) (3.96)
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where the process zt is determined by the BSDE 3.91 and ρα,ũt = ρt + ΠṼ⊥α,t
(−ραt − γαzt). Moreover,

the optimal portfolio is

πt = Bα
t,T

[
((σαt )−1)∗

(
1

γα
ρα,ũt + zt

)
+ %αt Ṽt

]
. (3.97)

Proof. First, we prove the value function. We know that each ξ ∈ Zα,S characterizes a particular πt,
and each πt is characterized by a ξ ∈ Zα,S . So we can use

Ψα(v0, C) = inf
π∈Vα

1

γα
lnEPα

[
exp(−γα(V v0,π

T − C))
]

(3.98)

instead of

Ψα(v0, C) = inf
ξ∈Zα,S

1

γα
lnEPα [exp(−γα(V v0,ξ

T − C))]. (3.99)

Under the assumption Vα being a vector space, we have that

dβαt,TV
α,π
t = [−βαt,TV

α,π
t %αt + βαt,Tπ]∗σαt dW

α,u
t (3.100)

is a martingale under Qρ
α,u for each u ∈ Uα as it was proved in 3.77 by using Proposition 3.22. Taking

into account that Bα
T,T = 1, we get

Ψα(v0, C) = inf
π∈Vα

1

γα
lnEPα

[
exp(−γα(V v0,π

T − C))
]

= inf
π∈Vα

sup
Qρα,u∼Pα

{
EQρα,u [−V v0,π

T + C]− 1

γα
h(Qρ

α,u|Pα)

}

= inf
π∈Vα

sup
Qρα,u∼Pα

{
− v0

Bα
0,T

+ EQρα,u [C]− 1

γα
h(Qρ

α,u|Pα)

}

= − v0

Bα
0,T

+ sup
Qρα,u∼Pα

{
EQρα,u [C]− 1

γα
h(Qρ

α,u|Pα)

}
.

(3.101)

To prove Theorem 3.24 we go the other way around. We define V α
t as

V α
t = −Ψα(v0, C)− 1

γα
lnHρα,ũ

t + V α,C
t , (3.102)

and we verify that its dynamics, portfolio and value function are 3.96, 3.97, and 3.94 respectively.

46



From the equation 3.102, we know that the dynamics of V α
t satisfies

dṼ α
t = −dΨα(v0, C)− 1

γα
d lnHρα,ũ

t + dV α,C
t

= − 1

γα
d lnHρα,ũ

t + dV α,C
t

= − 1

γα

{
−(ρα,ũt )∗dWt −

1

2
‖ρα,ũt ‖2dt

}
+

1

2γα
‖ραt + ΠṼ⊥α,t

(−ραt − γαzt)‖2dt

+ (ραt + ΠṼ⊥α,t
(−ραt − γαzt))∗ztdt+ z∗t dWt

=

(
1

2γα
‖ρα,ũt ‖2 +

1

2γα
‖ρα,ũt ‖2 + (ρα,ũt )∗zt

)
dt+

(
1

γα
ρα,ũt + zt

)∗
dWt

=

(
1

γα
ρα,ũt + zt

)∗ (
dWt + ρα,ũt dt

)
,

(3.103)

and using the fact that(
ραt + ΠṼ⊥α,t

(−ραt − γαzt) + γαzt

)∗
ΠṼ⊥α,t

(−ραt − γαzt) = 0, (3.104)

we get

dṼ α
t =

(
1

γα
ρα,ũt + zt

)∗ (
dWt + ρα,ũt dt

)
=

(
1

γα
ρα,ũt + zt

)∗
(dWt + ραt dt) +

1

γα

(
ραt + ΠṼ⊥α,t

(−ραt − γαzt) + γαzt

)∗
ΠṼ⊥α,t

(−ραt − γαzt)dt

=

(
1

γα
ρα,ũt + zt

)∗
(dWt + ραt dt) .

(3.105)

By using 3.88, we know that ((σαt )−1)∗
(

1

γα
ρα,ũt + zt

)
is in Vα. In addition, we notice that

%αt V
α
t B

α
t,T belongs to Vα. Therefore, the expression 3.97 for πt belongs to Vα as it was stated in

the consequences of assumption 3.15.

We have to prove that by using 3.97, the formula 3.105 can be expressed in a closed form as in
3.65. It is showed as follows

dṼ α
t =

(
1

γα
ρα,ũt + zt

)∗
(dWt + ραt dt)

=
(

(σαt )∗πtβ
α
t,T − (σαt )∗(%αt )Ṽ α

t

)∗
dW ρα

t

=
[
−βαt,TV α

t %
α
t + βαt,Tπt

]∗
σαt dW

ρα

t .

(3.106)

Finally, by definition of Ṽ α
t , we have Ṽ α

T = V α
T and V α

T − C = −Ψα(v0, C) − 1

γα
lnHρα,ũ

T . Therefore,

we get

Ψα(v0, C) =
1

γα
lnEPα [exp{−γα(V α

T − C)}] , (3.107)

which completes the proof.
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A similar proof can be given for the case where Vα is a closed cone.

4 Discrete Time Setting

In this part we will provide some of the basic tools that can be used to discretize the time-continuous
models mentioned in the previous sections. We start by showing the relation of the CRR model
with Proposition 2.2 and Corollary 2.5. Next, we show the standard procedure of how to discretize
the time-continuous models for the big agent, and then we proceed to show the discretization of the
time-continuous model for small agents.

4.1 Convergence to the single price model under different macroeconomic events

Throughout this part we consider the time interval [0, T ] with N equally-spaced times T/N, 2T/N, ..., T

that we identify with indices 1, 2, ..., N respectively. As in the CRR model let us consider S
N,j,(0)
t ,

S
N,j,(1)
t , R

(N),j
t the riskless asset, the risky asset and the return of the risky asset when the macroeco-

nomic event Λj occurs. The return of the risky asset is given by the formula

R
(N),j
t =

S
N,j,(1)
t − SN,j,(1)

t−1

S
N,j,(1)
t−1

. (4.1)

Our goal in this subsection is to rigorously show that Corollary 2.2 can be obtained as the limit
of the CRR binomial tree model.

We first need to build the returns of the risky assets under different macroeconomic events. For
this purpose let

(
ΩN ,⊗Ni=12Ω

)
be a measurable space where Ω = {u, d} with u = up and d = down

is the space of states for the risky assets. We define, R
(N),j
t , the rate of the risky asset under the

macroeconomic event Λj by

R
(N),j
t =

{
b
(N)
j , on Π−1

t ({u}),
a

(N)
j , on Π−1

t ({d}),
(4.2)

where
a

(N)
j := e−vj

√
T/N − 1, b

(N)
j := evj

√
T/N − 1, (4.3)

and
Πt : ΩN → ΩN with Πt(w1, ..., wN ) = wt (4.4)

for (w1, ..., wN ) ∈ ΩN and distinct positive numbers v1, ..., vm.

Under Λj , the risky and riskless assets are described by the formulas

S
N,j,(1)
t := S

N,j,(1)
0

t∏
k=1

(1 +R
(N),j
k ) and S

N,j,(0)
t = (1 + r

(N)
j )t, (4.5)

where r
(N)
j = rjT/N.
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A consequence of this construction is that FN,(j)t := σ{R(N),j
1 , ..., R

(N),j
t } = σ{S(N),j,(1)

1 , ..., S
(N),j,(1)
t }

for j = 1, ...,m. In fact, we can easily see that

FN,(i)t = FN,(j)t for i 6= j and t ∈ {1, 2, ..., N}. (4.6)

Therefore, from now on, we use FNt to denote FN,jt for any j ∈ {1, ...,m}.

Now, we are interested in finding a probability measure PN,j with respect to Λj and under which
the equations

PN,j
[
Π−1
t ({u})|FNt−1

]
+ PN,j

[
Π−1
t ({d})|FNt−1

]
= 1 (4.7)

and

EPN,j

[
S

(N),j,(1)
t

1 + r
(N)
j

∣∣∣∣∣FNt−1

]
= S

(N),j,(1)
t−1 (4.8)

hold.

By using equation 4.5, we can rewrite the formula 4.8 as

EPN,j
[
R

(N),j
t

∣∣∣Ft−1

]
= r

(N)
j (4.9)

that is equivalent to

b
(N)
j PN,j

[
Π−1
t ({u})|FNt−1

]
+ a

(N)
j PN,j

[
Π−1
t ({d})|FNt−1

]
= r

(N)
j . (4.10)

Therefore, the problem of finding the probability measure becomes the following linear problem[
b
(N)
j a

(N)
j

1 1

] [
PN,j

[
Π−1
t ({u})|FNt−1

]
PN,j

[
Π−1
t ({d})|FNt−1

]] =

[
r

(N)
j

1

]
. (4.11)

Using Cramer’s rule, we have that

PN,j
[
Π−1
t ({u})|FNt−1

]
=
r

(N)
j − a(N)

j

b
(N)
j − a(N)

j

and PN,j
[
Π−1
t ({d})|FNt−1

]
=
b
(N)
j − r(N)

j

b
(N)
j − a(N)

j

. (4.12)

Thus

PN,j
[
Π−1
t ({u})

]
=
r

(N)
j − a(N)

j

b
(N)
j − a(N)

j

and PN,j
[
Π−1
t ({d})

]
=
b
(N)
j − r(N)

j

b
(N)
j − a(N)

j

, (4.13)

for any t ∈ {1, 2, ..., N}. Since these conditional probabilities do not depend on t, the conclusion that

R
(N),j
1 , ..., R

(N),j
N are i.i.d. under

(
ΩN ,⊗Ni=12Ω,FNt , PN,j

)
is straightforward.

Corollary 4.1. Let S
(N),j,(0)
t , S

(N),j,(1)
t and R

(N),j
t be the riskless asset, the risky asset, and the

return of the risky asset defined on
(
ΩN ,⊗Ni=12Ω,FNt , PN,j

)
under the macroeconomic event Λj, then

S
(N),j,(1)
t /S

(N),j,(0)
t is a martingale, and R

(N),j
1 , ..., R

(N),j
N are i.i.d. under PN,j.

Proof. This is a consequence of 4.7, 4.8 and 4.13.
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Now, we will use some results by (Föllmer and Schweizer, 1991) to show that S
(N),j,(1)
N under PN,j

converges weakly to a log-normal distribution.

Remark 4.2. S
(N),j,(1)
N under PN,j converges weakly to the distribution of

S
(N),j,(1)
0 exp

{
vjN(0, T ) +

(
rj −

1

2
v2
j

)
T

}
, (4.14)

where N(0, T ) is the normal distribution with mean 0, and variance T .

Proof. By Taylor formula, we get

ln(1 + x) = x− 1

2
x2 + q(x)x2, (4.15)

where the last term q satisfies

|q(x)| ≤ δ(a, b) for − 1 < a ≤ x ≤ b, (4.16)

and δ(a, b)→ 0 as a, b→ 0. Thus, by applying logarithm to

S
N,j,(1)
t = S

N,j,(1)
0

t∏
k=1

(1 +R
(N),j
k ), (4.17)

we get

ln
(
S
N,j,(1)
N

)
=

N∑
k=1

(
R

(N),j
k − 1

2

(
R

(N),j
k

)2
)

+ ε
(N)
j , (4.18)

where

|εNj | ≤ δ(aNj , bNj )
N∑
k=1

(
R

(N),j
k

)2
. (4.19)

We know from the definition of a
(N)
j and b

(N)
j that

√
Na

(N)
j → −vj

√
T and

√
Nb

(N)
j → vj

√
T . (4.20)

and by using EPN,j
[
R

(N),j
t

]
= r

(N)
j , we get

EPN,j
[
|ε(N)
j |

]
≤ δ(a(N)

j , b
(N)
j )NEPN,j

[(
R

(N),j
1

)2
]

≤ δ(a(N)
j , b

(N)
j )N

((
b
(N)
j

)2 r
(N)
j − a(N)

j

b
(N)
j − a(N)

j

+
(
a

(N)
j

)2 b
(N)
j − r(N)

j

b
(N)
j − a(N)

j

)
→ 0,

(4.21)

since

lim
N→∞

N

((
b
(N)
j

)2 r
(N)
j − a(N)

j

b
(N)
j − a(N)

j

+
(
a

(N)
j

)2 b
(N)
j − r(N)

j

b
(N)
j − a(N)

j

)
=

(
v2
jT

1

2
+ v2

jT
1

2

)
= v2

jT, (4.22)
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By using the fact that L1 convergence implies convergence in probability, we can use Slutsky’s theo-

rem (see for instance Jacod and Protter, 2004) to conclude that the corresponding laws of ε
(N)
j converge

weakly to the Dirac measure δ0. As a consequence, we only need to focus on the weak convergence of

Z(N) =
N∑
k=1

(
R

(N),j
k − 1

2

(
R

(N),j
k

)2
)
. (4.23)

We will prove that this process converges weakly to the normal distribution N(rjT −
1

2
v2
jT, v

2
jT ) by

using the results that appear in Theorem A.37 by (Föllmer and Schweizer, 1991). Therefore, by the

use of that theorem, we only have to show that the mean and variance of Z(N) converges to rjT−
1

2
v2
jT

and v2
jT respectively.

For the mean we have that

EPN,j

[
N∑
k=1

(
R

(N),j
k − 1

2

(
R

(N),j
k

)2
)]

= Nr
(N)
j − N

2
EPN,j

[(
R

(N),j
1

)2
]

= Nr
(N)
j − N

2

((
b
(N)
j

)2 r
(N)
j − a(N)

j

b
(N)
j − a(N)

j

+
(
a

(N)
j

)2 b
(N)
j − r(N)

j

b
(N)
j − a(N)

j

)

→ rjT −
1

2
v2
jT.

(4.24)

On the other hand, for the variance we have that

VarPN,j

[
N∑
k

R
(N),j
k − 1

2

(
R

(N),j
k

)2
]

= NVarPN,j

[
R

(N),j
1 − 1

2

(
R

(N),j
1

)2
]

= NEPN,j

[(
R

(N),j
1 − 1

2

(
R

(N),j
1

)2
)2
]
−NEPN,j

[
R

(N),j
1 − 1

2

(
R

(N),j
1

)2
]2

= NEPN,j

[(
R

(N),j
1

)2
−
(
R

(N),j
1

)3
+

1

4

(
R

(N),j
1

)4
]
−N

(
rjT

N
− 1

2
EPN,j

[(
R

(N),j
1

)2
])2

.

(4.25)

Now using the fact that for p > 2

N∑
k=1

EPN,j
[
|R(N),j

k |p
]
≤ max

{
|a(N)
j |, |b

(N)
j |

}p−2
N∑
k=1

EPN,j

[(
R

(N),j
k

)2
]
→ 0, (4.26)

we get that

VarPN,j

[
N∑
k

R
(N),j
k − 1

2

(
R

(N),j
k

)2
]
→ v2

jT. (4.27)

Therefore, the Theorem A.37 by (Föllmer and Schweizer, 1991) holds.
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We have proved so far that each S
(N),j,(1)
t /S

(N),j,(0)
t for j = 1, ...,m., is a martingale, andR

(N),j
1 , ..., R

(N),j
N

are i.i.d. on
(
ΩN ,⊗Ni=12Ω,Ft, PN,j

)
. However, these properties don’t hold on a single filtered prob-

ability space for all j = 1, ...,m. This problem can be addressed to some extent if we consider the
product space and the projection processes of the prices that will preserve the original distributions.
This idea is described by the following result.

Proposition 4.3. Let X
(1)
t , ..., X

(m)
t be processes that are martingales under the filtered probability

spaces (Ω,Ft, P (1)), ..., (Ω,Ft, P (m)) respectively, then there exist processes X̃
(1)
t , ..., X̃(m) and a filtered

probability space (Ω̃, F̃t, P̃ ) such that X̃
(1)
t , ..., X̃

(m)
t are pairwise independent and martingales under

P̃ such that
P̃
[
X̃

(j)
t ∈ A

]
= P (j)

[
X

(j)
t ∈ A

]
(4.28)

for every j = 1, ...,m., t = 0, 1, ..., N., and any A measurable set.

Proof. It suffices to show this result for the case m = 2. For this purpose let us define X̃(1) and X̃(2)

on the filtered probability space (Ω⊗ Ω,Ft ⊗Ft, P (1) ⊗ P (2)) that are given by

X̃
(1)
t = X

(1)
t (w) on Π−1

1 ({w}), (4.29)

and
X̃

(2)
t = X

(2)
t (w) on Π−1

2 ({w}), (4.30)

where Π1 and Π2 are the coordinate projections from Ω × Ω into Ω i.e., Π1(w1, w2) = w1 and
Π2(w1, w2) = w2 for (w1, w2) ∈ Ω× Ω.

By construction and the definition of product measure, we know that X̃(1) and X̃(2) are independent
and also

P (i)
[
X

(i)
t ∈ A

]
= P (1) ⊗ P (2)

[
X̃

(i)
t ∈ A

]
(4.31)

for A any measurable set, and i = 1, 2.

Now we only need to prove that X̃
(1)
t and X̃

(2)
t are martingales on (Ω ⊗ Ω,Ft ⊗ Ft, P (1) ⊗ P (2)).

To this end we will use the monotone class theorem for λ-π systems (see for instance Gut, 2013), and
the formal definition of conditional expectation.

Let

Ct−1 =
{
A×B ∈ Ft−1 ×Ft−1 : EP (1)⊗P (2)

[
X̃

(1)
t 1A×B

]
= EP (1)⊗P (2)

[
X̃

(1)
t−11A×B

]
for i = 1, 2

}
.

(4.32)
We want to show Ct−1 is a π-system that generates Ft−1 ⊗Ft−1. To this end, it suffices to show that
Ct−1 = Ft−1 ×Ft−1.
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For each A,B ∈ Ft−1 we have

EP (1)⊗P (2)

[
X̃

(1)
t 1A×B

]
= EP (1)⊗P (2)

[
X̃

(1)
t 1A×Ω1Ω×B

]
= EP (1)⊗P (2)

[
X̃

(1)
t 1A×Ω

]
EP (1)⊗P (2) [1Ω×B]

= EP (1)

[
X

(1)
t 1{A}

]
EP (1)⊗P (2) [1Ω×B]

= EP (1)

[
X

(1)
t−11{A}

]
EP (1)⊗P (2) [1Ω×B]

= EP (1)⊗P (2)

[
X

(1)
t−11A×Ω

]
EP (1)⊗P (2) [1Ω×B]

= EP (1)⊗P (2)

[
X

(1)
t−11A×Ω1Ω×B

]
= EP (1)⊗P (2)

[
X

(1)
t−11A×B

]
.

(4.33)

Using an analogous reasoning, we can deduce the same result for X̃
(2)
t . This proves that in fact

Ct−1 = Ft−1 ×Ft−1.

Let

Dt−1 =
{
D ∈ Ft−1 ⊗Ft−1 : EP (1)⊗P (2)

[
X̃

(i)
t 1D

]
= EP (1)⊗P (2)

[
X̃

(i)
t−11D

]
for i = 1, 2

}
. (4.34)

We know that Ct−1 ⊆ Dt−1, so we only need to show that Dt−1 is a λ-system to finish the proof that

X̃
(i)
t is a martingale under P (1) ⊗ P (2) for i = 1, 2.

Let D,E ∈ Dt−1 with D ⊆ E, then

EP (1)⊗P (2)

[
X̃

(i)
t 1E\D

]
= EP (1)⊗P (2)

[
X̃

(i)
t (1E − 1D)

]
= EP (1)⊗P (2)

[
X̃

(i)
t 1E

]
− EP (1)⊗P (2)

[
X̃

(i)
t 1D

]
= EP (1)⊗P (2)

[
X̃

(i)
t−11E

]
− EP (1)⊗P (2)

[
X̃

(i)
t−11D

]
= EP (1)⊗P (2)

[
X̃

(i)
t−1 (1E − 1D)

]
= EP (1)⊗P (2)

[
X̃

(i)
t−11E\D

]
.

(4.35)

for i = 1, 2. Moreover, for any (Dn)∞n=1 increasing sequence of elements in Dt−1, we have that

EP (1)⊗P (2)

[
X̃

(i)
t 1⋃

nDn

]
= EP (1)⊗P (2)

[
X̃

(i)
t

(
lim
n

1Dn

)]
= lim

n
EP (1)⊗P (2)

[
X̃

(i)
t 1Dn

]
= lim

n
EP (1)⊗P (2)

[
X̃

(i)
t−11Dn

]
= EP (1)⊗P (2)

[
X̃

(i)
t

(
lim
n

1Dn

)]
= EP (1)⊗P (2)

[
X̃

(i)
t 1⋃

nDn

]
,

(4.36)

and this finishes the proof.
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From the previous results the following corollary is derived

Corollary 4.4. Let S
(N),j,(0)
t , S

(N),j,(1)
t and R

(N),j
t the riskless asset, the risky asset, and the return of

the risky asset defined on
(
ΩN ,⊗Ni=12Ω,Ft, PN,j

)
under the macroeconomic event Λj for j = 1, ...,m. If

we define the processes S̃
(N),j,(0)
t , S̃

(N),j,(1)
t and R̃

(N),j
t on

(
Πm
i=1ΩN ,⊗mi=1

(
⊗Nj=12Ω

)
,⊗mi=1FNt ,⊗mi=1P

N,i
)

by

S̃t
N,j,(1)

:= S̃
N,j,(1)
0

t∏
k=1

(1 + R̃
(N),j
k ), R̃

(N),j
t =


b
(N)
j , on ΩN × · · · ×Π−1

t ({u})︸ ︷︷ ︸
j-th position

× · · · × ΩN ,

a
(N)
j , on ΩN × · · · × Π−1

t ({d})︸ ︷︷ ︸
j-th position

× · · · × ΩN ,

(4.37)
and

S̃
N,j,(0)
t = (1 + r

(N)
j )t, (4.38)

then each S̃
(N),j,(1)
t /S̃

(N),j,(0)
t is a martingale, and R̃

(N),j
1 , ..., R̃

(N),j
N are i.i.d. under ⊗mi=1P

N,i.

Proof. It is a direct consequence of remark 4.2, and Proposition 4.3.

From corollary 4.4 and by using the definition of product measure, we conclude that for any
function f continuous and bounded

lim
N→∞

1

(1 + r
(N)
j )N

E⊗mi=1P
N,i

[
f
(
S̃
N,j,(1)
N

)]
= lim

N→∞

1

(1 + r
(N)
j )N

EPN,j
[
f
(
S
N,j,(1)
N

)]

= e−rjTE

f
Sj,(1)

0 e
vjN(0,T )+rjT−

1

2
v2
jT

 (4.39)

where the last part comes from using the remark 4.2.

By using (ΩΛ,FΛ, QΛ) as in Proposition 2.1 i.e., QΛ ({Λj}) = λj with
∑m

j=1 λj = 1, we can define

on the filtered probability space
(

ΩΛ ×Πm
i=1ΩN ,FΛ ⊗

(
⊗mi=1

(
⊗Nj=12Ω

))
,FΛ ⊗ (⊗mi=1Ft) , QΛ ⊗

(
⊗mi=1P

N,i
))

the price process of the risky asset, S
N,(1)
t , and the riskless asset, S

N,(0)
t , by

S
N,(1)
t = S̃

N,j,(1)
t and S

N,(0)
t = S̃

N,j,(0)
t , on {Λj} ×Πm

i=1ΩN (4.40)

Now we are ready to show the limit version of Corollary 2.2.

Proposition 4.5. Let f be a continuous and bounded function on R. The price at time t = 0 of a
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contingent claim with payoff C = f(S
N,(1)
N ) converges as follows

lim
N→∞

EQΛ⊗(⊗mi=1P
N,i)

[
1

S
N,(0)
N

f
(
S
N,(1)
N

)]

=
m∑
i=1

λie
−riT

∫
f(x)

exp


−
(

ln(x)−
∫ t

0

(
ri(z)−

v2
i (z)

2

)
dz − ln(S̃

N,i,(1)
0 )

)2

2
∫ t

0 v
2
i (z)dz


x
(∫ t

0 v
2
i (z)dz

)1/2√
2π

dx

(4.41)

Proof. By using the definition of product measure, S
N,(0)
t and S

N,(1)
t as in 4.40, we have that

lim
N→∞

EQΛ⊗(⊗mi=1P
N,i)

[
1

S
N,(0)
N

f
(
S
N,(1)
N

)]

= lim
N→∞

EQΛ⊗(⊗mi=1P
N,i)

 1

S
N,(0)
N

f
(
S
N,(1)
N

) m∑
j=1

1{Λj}×Πmi=1ΩN


= lim

N→∞
EQΛ⊗(⊗mi=1P

N,i)

 m∑
j=1

1

S̃
N,j,(0)
N

f
(
S̃
N,j,(1)
N

)
1{Λj}×Πmi=1ΩN

 .
(4.42)

Now, by using the independence of 1{Λj}×Πmi=1ΩN with respect to S̃
N,j,(0)
N and S̃

N,j,(1)
N we can use the

result in 4.39 to get

lim
N→∞

EQΛ⊗(⊗mi=1P
N,i)

 m∑
j=1

1

S̃
N,j,(0)
N

f
(
S̃
N,j,(1)
N

)
1{Λj}×Πmi=1ΩN


= lim

N→∞

m∑
j=1

EQΛ⊗(⊗mi=1P
N,i)

[
1

S̃
N,j,(0)
N

f
(
S̃
N,j,(1)
N

)]
EQΛ⊗(⊗mi=1P

N,i)

[
1{Λj}×Πmi=1ΩN

]

=

m∑
j=1

lim
N→∞

λjE⊗mi=1P
N,i

[
1

S̃
N,j,(0)
N

f
(
S̃
N,j,(1)
N

)]

=

m∑
j=1

λje
−rjT

∫
f(x)

exp


−

(
ln(x)−

∫ t
0

(
rj(z)−

v2
j (z)

2

)
dz − ln(S̃

N,j,(1)
0 )

)2

2
∫ t

0 v
2
j (z)dz


x
(∫ t

0 v
2
j (z)dz

)1/2√
2π

dx

(4.43)

where in this case vi(t) = vi for all t ∈ [0, T ], and i = 1, ...,m. This result coincides with the formula
in Corollary 2.2.
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4.2 Convergence to the multi-price model under different macroeconomic events

As in the previous subsection we consider the time interval [0, T ] with N equally-spaced times
T/N, 2T/N, ..., NT/N that we identify with indices 1, 2, ..., N respectively. As in the CRR model

let us consider kS
N,(0)
t , kS

N,(1)
t , ..., kS

N,(n)
t ,and kR

N,(1)
t , ..., kR

N,(n)
t the riskless asset, the risky assets

and the returns of the risky assets when the macroeconomic event Λk occurs. The return of the j-th
risky asset under the macroeconomic event Λk is given by the formula

kR
N,(j)
t =

kS
N,(j)
t − kS

N,(j)
t−1

kS
N,(j)
t−1

. (4.44)

Now our goal is to show that it is possible to prove that the Corollary 2.5 can be expressed as
a limit of CRR binomial tree model. Since our task is to prove this statement, we need to do an
analogous procedure as with the model with only one risky asset.

We first need to build the returns of the risky assets under different macroeconomic events. First

notice that under each Λk the dynamics of kS
(i)
t is of the form

kS
(i)
t = kS

(i)
0 exp


∫ t

0

kµ(i)
u −

1

2

n∑
j=1

(
kσ(ij)

u

)2

 du+

n∑
j=1

∫ t

0

kσ(ij)
u dW (j)

u

 . (4.45)

Since we are using the same tools as in the previous subsection, we are assuming that all of the
coefficients are constant and then kσt = kσ for all t ∈ [0, T ] where kσ is non-degenerate as in assumption
2.3. Thus, we have

n∑
j=1

∫ t

0

kσ(ij)
u dW (j)

u ∼ N

0, t

n∑
j=1

(
kσ(ij)

)2

 (4.46)

Therefore, we can consider the dynamics of kS
(i)
t to be of the form

kS
(i)
t = kS

(i)
0 exp

t
kµ(i) − 1

2

n∑
j=1

(
kσ(ij)

)2

+N

0, t

n∑
j=1

(
kσ(ij)

)2

 . (4.47)

As we noticed, in the limit of the CRR model for a single risky price, the notation turned out to
be cumbersome. Since we are interested in pricing European options for several risky assets, we can
follow a similar approach to Subsection 5.1. All what we need to do is create the model for each i-th

risky asset S
(i)
t .

For this purpose let
(
ΩN ,⊗Ni=12Ω

)
be a measurable space where Ω = {u, d} with u = up and

d = down is the space of states for the risky assets. We define, kR
N,(i)
t , the rate of the i-th risky asset

under the macroeconomic event Λk by

kR
N,(i)
t =

{
b
N,(i)
k , on Π−1

t ({u}),
a
N,(i)
k , on Π−1

t ({d}),
(4.48)
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where

a
N,(i)
k := e−

√∑n
j=1(kσ(ij))

2√
T/N − 1, b

N,(i)
k := e

√∑n
j=1(kσ(ij))

2√
T/N − 1, (4.49)

and
Πt : ΩN → Ω with Πt(w1, ..., wN ) = wt (4.50)

for (w1, ..., wN ) ∈ ΩN with positive numbers σi1, ..., σin that are estimated in the Subsection 5.1.

Under Λk, the risky and riskless assets are described by the formulas

kS
N,(i)
t := kS

N,(i)
0

t∏
l=1

(1 + kR
N,(i)
l ) and kS

N,(0)
t = (1 + r

(N)
k )t (4.51)

where r
(N)
k = rkT/N as in the CRR model for only one risky asset in the market. A consequence of

this construction is that kFN,(i)t := σ{kRN,(i)1 , ..., kR
N,(i)
t } = σ{kSN,(i)1 , ..., kS

N,(i)
t } for k = 1, ...,m. In

fact, we can easily see that

jFN,(i)t = kFtN,(i) for j 6= k and t ∈ {1, 2, ..., N}. (4.52)

Therefore, we can use FN,(i)t to denote kFN,(i)t for any k ∈ {1, ...,m}. Moreover, since each one of the
risky asset only take two different values, we have that

FN,(i)t = FN,(j)t (4.53)

for any risky asset i, j = 1, ..., n. As a result, we will use FNt instead of FN,(i)t .

Now we are interested in finding a probability measure kPN,(i) with respect to Λk and under which
the equations

kPN,(i)
[
Π−1
t ({u})|FNt−1

]
+ kPN,(i)

[
Π−1
t ({d})|FNt−1

]
= 1 (4.54)

and

EkPN,(i)

[
kS

(N),(i)
t

1 + r
(N)
k

∣∣∣∣∣FNt−1

]
= kS

(N),(i)
t−1 (4.55)

hold.

By using equation 4.51, we can rewrite the formula 4.55 as

EkPN,(i)

[
kR

N,(i)
t

∣∣∣FNt−1

]
= r

(N)
k (4.56)

that is equivalent to

b
N,(i)
k

kPN,(i)
[
Π−1
t ({u})|FNt−1

]
+ a

N,(i)
k

kPN,(i)
[
Π−1
t ({d})|FNt−1

]
= r

(N)
k . (4.57)

Therefore, the problem of finding the probability measure becomes the following linear problem[
b
N,(i)
k a

N,(i)
k

1 1

][
kPN,(i)

[
Π−1
t ({u})|FNt−1

]
kPN,(i)

[
Π−1
t ({d})|FNt−1

]] =

[
r

(N)
k

1

]
, (4.58)
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Using Cramer’s rule we have that

kPN,(i)
[
Π−1
t ({u})|FNt−1

]
=

r
(N)
k − aN,(i)k

b
N,(i)
k − aN,(i)k

and kPN,(i)
[
Π−1
t ({d})|FNt−1

]
=

b
N,(i)
k − r(N)

k

b
N,(i)
k − aN,(i)k

(4.59)

Thus

kPN,(i)
[
Π−1
t ({u})

]
=

r
(N)
k − aN,(i)k

b
N,(i)
k − aN,(i)k

and kPN,(i)
[
Π−1
t ({d})

]
=

b
N,(i)
k − r(N)

k

b
N,(i)
k − aN,(i)k

(4.60)

for any t ∈ {1, 2, ..., N}. Since these conditional probabilities do not depend on t, the conclusion that
kR

N,(i)
1 , ..., kR

N,(i)
N under

(
ΩN ,⊗Ni=12Ω,FNt , kPN,(i)

)
are i.i.d. is straightforward.

Corollary 4.6. Let kS
N,(0)
t , kS

N,(i)
t and kR

N,(i)
t the riskless asset, the i-th risky asset, and the return

of the i-th risky asset defined on
(
ΩN ,⊗Ni=12Ω,FNt , kPN,(i)

)
under the macroeconomic event Λk, then

kS
N,(i)
t / kS

N,(0)
t is martingale, and kR

N,(i)
1 , ..., kR

N,(i)
N are i.i.d. under kPN,(i).

Proof. This is a consequence of 4.54, 4.55 and 4.60.

Now we will use some results by (Föllmer and Schweizer, 1991) to show that kS
N,(i)
N under kPN,(i)

converges weakly to a log-normal distribution.

Remark 4.7. Under the previous assumptions kS
N,(i)
N under kPN,(i) converges weakly to the distribu-

tion of

kS
N,(i)
0 exp


√√√√ n∑

j=1

(
kσ(ij)

)2
N(0, T ) +

rj − 1

2

n∑
j=1

(
kσ(ij)

)2

T

 , (4.61)

where N(0, T ) is the normal distribution with mean 0, and variance T .

Proof. By Taylor formula, we get

ln(1 + x) = x− 1

2
x2 + q(x)x2 (4.62)

where the last term q satisfies

|q(x)| ≤ δ(a, b) for − 1 < a ≤ x ≤ b (4.63)

where δ(a, b)→ 0 as a, b→ 0. Thus, by applying logarithm to

kS
N,(i)
t = kS

N,(i)
0

t∏
l=1

(1 + kR
N,(i)
l ), (4.64)

we get

ln
(
kS

N,(i)
N

)
=

N∑
l=1

(
kR

N,(i)
l − 1

2

(
kR

N,(i)
l

)2
)

+ ε
N,(i)
k (4.65)
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where

|εN,(i)k | ≤ δ(aN,(i)k , b
N,(i)
k )

N∑
l=1

(
kR

N,(i)
l

)2
(4.66)

We know from the definition of a
N,(i)
k and b

N,(i)
k that

√
Na

N,(i)
k → −

√√√√T
n∑
j=1

(
kσ(ij)

)2
and

√
Nb

N,(i)
k →

√√√√T
n∑
j=1

(
kσ(ij)

)2
, (4.67)

and by using E(kPN,(i))

[
kR

N,(i)
t

]
= r

(N)
k , we get

E(kPN,(i))

[
|εN,(i)k |

]
≤ δ(aN,(i)k , b

N,(i)
k )NE(kPN,(i))

[(
kR

N,(i)
1

)2
]

≤ δ(aN,(i)k , b
N,(i)
k )N

((
b
N,(i)
k

)2 r
(N)
k − aN,(i)k

b
N,(i)
k − aN,(i)k

+
(
a
N,(i)
k

)2 b
N,(i)
k − r(N)

k

b
N,(i)
k − aN,(i)k

)
−−−−→
N→∞

0,

(4.68)

since

lim
N→∞

N

((
b
N,(i)
k

)2 r
(N)
k − aN,(i)k

b
N,(i)
k − aN,(i)k

+
(
a
N,(i)
k

)2 b
N,(i)
k − r(N)

k

b
N,(i)
k − aN,(i)k

)
=

 n∑
j=1

(
kσ(ij)

)2
T

1

2
+

n∑
j=1

(
kσ(ij)

)2
T

1

2


=

n∑
j=1

(
kσ(ij)

)2
T,

(4.69)

By using the fact that L1 convergence implies convergence in probability, we can use Slutsky’s

theorem to conclude that the corresponding laws of ε
(N)
j converge weakly to the Dirac measure δ0. As

a consequence, we only need to focus on the weak convergence of

Z(N) =
N∑
l=1

(
kR

N,(i)
l − 1

2

(
kR

N,(i)
l

)2
)
. (4.70)

We will prove that this process converges weakly to the normal distribution

N

rjT − 1

2

n∑
j=1

(
kσ(ij)

)2
T,

n∑
j=1

(
kσ(ij)

)2
T

 (4.71)

by using the results that appear in Theorem A.37 by (Föllmer and Schweizer, 1991). For this purpose

we only have to show that the mean and variance of Z(N) converges to rjT −
1

2

∑n
j=1

(
kσ(ij)

)2
T and∑n

j=1

(
kσ(ij)

)2
T respectively.
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For the mean we have that

E(kPN,(i))

[
N∑
l=1

(
kR

N,(i)
l − 1

2

(
kR

N,(i)
l

)2
)]

= Nr
(N)
k − N

2
E(kPN,(i))

[(
kR

N,(i)
l

)2
]

= Nr
(N)
k − N

2

((
b
N,(i)
k

)2 r
(N)
k − aN,(i)k

b
N,(i)
k − aN,(i)k

+
(
a
N,(i)
k

)2 b
N,(i)
k − r(N)

k

b
N,(i)
k − aN,(i)k

)

→ rjT −
1

2

n∑
j=1

(
kσ(ij)

)2
T.

(4.72)

On the other hand, for the variance we have that

Var(kPN,(i))

[
N∑
l

kR
N,(i)
l − 1

2

(
kR

N,(i)
l

)2
]

= NVar(kPN,(i))

[
kR

N,(i)
1 − 1

2

(
kR

N,(i)
1

)2
]

= NE(kPN,(i))

[(
kR

N,(i)
1 − 1

2

(
kR

N,(i)
1

)2
)2
]
−NE(kPN,(i))

[
kR

N,(i)
1 − 1

2

(
kR

N,(i)
1

)2
]2

= NE(kPN,(i))

[(
kR

N,(i)
1

)2
−
(
kR

N,(i)
1

)3
+

1

4

(
kR

N,(i)
1

)4
]
−N

(
rjT

N
− 1

2
E(kPN,(i))

[(
kR

N,(i)
1

)2
])2

(4.73)

Now using the fact that for p > 2

N∑
l=1

E(kPN,(i))

[
| kRN,(i)l |p

]
≤ max

{
|aN,(i)k |, |bN,(i)k |

}p−2
N∑
l=1

E(kPN,(i))

[(
kR

N,(i)
l

)2
]
→ 0, (4.74)

we get that

Var(kPN,(i))

[
N∑
l=1

kR
N,(i)
l − 1

2

(
kR

N,(i)
l

)2
]
→

n∑
j=1

(
kσ(ij)

)2
T. (4.75)

Therefore, the Theorem A.37 by (Föllmer and Schweizer, 1991) holds.

We have proved so far that each kS
N,(i)
t / kS

N,(0)
t for k = 1, ...,m., is a martingale, and kR

N,(i)
1 , ..., kR

N,(i)
N

are i.i.d. on
(
ΩN ,⊗Ni=12Ω,FNt , kPN,(i)

)
. However, these properties don’t hold on a single filtered prob-

ability space for all k = 1, ...,m. This problem can be addressed using Proposition 4.3 as it is described
in the following corollary.

Corollary 4.8. Let kS
(N),(0)
t , kS

(N),(i)
t and kR

N,(i)
t be the riskless asset, the i-th risky asset, and the

return of the i-th risky asset defined on
(
ΩN ,⊗Ni=12Ω,FNt , kPN,(i)

)
under the macroeconomic event Λk
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for k = 1, ...,m. If we define the processes
k
S̃

(N),(0)
t ,

k
S̃

(N),(i)
t and

k
R̃

(N),(i)
t on the filtered probability

space
(

Πm
j=1ΩN ,⊗mj=1

(
⊗Nj=12Ω

)
,⊗mj=1FNt ,⊗mj=1

jPN,(i)
)

by

k
S̃t
N,(i)

:=
k
S̃0

N,(i)
t∏
l=1

(1 +
k
R̃
N,(i)
l ),

k
R̃
N,(i)
t =


b
N,(i)
k , on ΩN × · · · ×Π−1

t ({u})︸ ︷︷ ︸
k position

× · · · × ΩN ,

a
N,(i)
k , on ΩN × · · · ×Π−1

t ({d})︸ ︷︷ ︸
k position

× · · · × ΩN ,

(4.76)
and

k
S̃t
N,(0)

= (1 + r
(N)
k )t, (4.77)

then each
k
S̃
N,(i)
t /

k
S̃
N,(0)
t for k = 1, ...,m., is a martingale, and

k
R̃
N,(i)
1 , ...,

k
R̃
N,(i)
N are i.i.d. under

⊗mj=1
jPN,(i).

Proof. It is a direct consequence of remark 4.7, Proposition 4.3, and Corollary 4.4.

From corollary 4.8 and by using the definition of product measure, we conclude that for any
continuous and bounded function, f , we get

lim
N→∞

1

(1 + r
(N)
k )N

E⊗mj=1
jPN,(i)

[
f
(
k
S̃
N,(i)
N

)]
= lim

N→∞

1

(1 + r
(N)
k )N

EkPN,(i)

[
f
(
kS

(N),(i)
N

)]

= e−rkTE

f
k

S̃
(i)
0 e

√∑n
j=1(kσ(ij))

2
N(0,T )+rjT−

1

2
∑n
j=1(kσ(ij))

2
T

 ,
(4.78)

where the last part comes from using the remark 4.7.

By using (ΩΛ,FΛ, QΛ) as in Proposition 2.1 i.e., QΛ ({Λj}) = λj with
∑m

j=1 λj = 1, we can

define on the space
(

ΩΛ ×Πm
j=1ΩN ,FΛ ⊗

(
⊗mk=1

(
⊗Nj=12Ω

))
,FΛ ⊗

(
⊗mj=1Ft

)
, QΛ ⊗

(
⊗mj=1

jPN,(i)
))

the price process of the i-th risky asset, S
N,(i)
t , and the riskless asset, S

N,(0)
t , by

S
N,(i)
t =

k
S̃
N,(i)
N and S

N,(0)
t =

k
S̃
N,(0)
N , on {Λk} ×Πm

i=1ΩN . (4.79)

Now, we are ready to show the limit version of Corollary 2.5.

Proposition 4.9. Let f be a continuous and bounded function on R. The price at time t = 0 of a
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contingent claim with payoff C = f(S
N,(i)
N ) converges as follows

lim
N→∞

EQΛ⊗(⊗mj=1
jPN,(i))

[
1

S
N,(0)
N

f
(
S
N,(i)
N

)]

=

m∑
k=1

λke
−rkT

∫
f(x)

exp


−
(

ln(x)− T
(
rk −

1

2

∑n
j=1

(
kσ(ij)

)2)− ln(
k
S̃

(i)
0 )

)2

2T
∑n

j=1

(
kσ(ij)

)2


x
√
T2π

∑n
j=1

(
kσ(ij)

)2 dx.

(4.80)

Proof. By using the definition of product measure, S
N,(0)
t and S

N,(i)
t as in 4.79, we have that

lim
N→∞

EQΛ⊗(⊗mj=1
jPN,(i))

[
1

S
N,(0)
N

f
(
S
N,(i)
N

)]

= lim
N→∞

EQΛ⊗(⊗mj=1
jPN,(i))

 1

S
N,(0)
N

f
(
S
N,(i)
N

) m∑
j=1

1{Λj}×Πmi=1ΩN


= lim

N→∞
EQΛ⊗(⊗mj=1

jPN,(i))

 m∑
j=1

1
j
S̃
N,(0)
N

f
(
j
S̃
N,(i)
N

)
1{Λj}×Πmi=1ΩN

 .
(4.81)

Now, by using the independence of 1{Λj}×Πmi=1ΩN with respect to
j
S̃
N,(0)
N and

j
S̃
N,(i)
N we can use the

result in 4.39 to get

lim
N→∞

EQΛ⊗(⊗mj=1
jPN,(i))

 m∑
j=1

1
j
S̃
N,(0)
N

f
(
j
S̃
N,(i)
N

)
1{Λj}×Πmi=1ΩN


= lim

N→∞

m∑
j=1

EQΛ⊗(⊗mj=1
jPN,(i))

[
1

j
S̃
N,(0)
N

f
(
j
S̃
N,(i)
N

)]
EQΛ⊗(⊗mj=1

jPN,(i))

[
1{Λj}×Πmi=1ΩN

]

=

m∑
j=1

lim
N→∞

λjE⊗mj=1
jPN,(i)

[
1

j
S̃
N,(0)
N

f
(
j
S̃
N,(i)
N

)]

=

m∑
i=1

λie
−rjT

∫
f(x)

exp


−
(

ln(x)− T
(
rk −

1

2

∑n
j=1

(
kσ(ij)

)2)− ln(
k
S̃

(i)
0 )

)2

2T
∑n

j=1

(
kσ(ij)

)2


x
√
T
∑n

j=1

(
kσ(ij)

)2√
2π

dx

(4.82)

Notice that by the use of the Proposition 4.3 we could have created a bigger probablility space
under which Proposition 4.9 holds for each i = 1, ..., n. However, for the sake of simplicity, we decided
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to work with the i-th risky asset since in practice the most active derivatives usually work with only
one underlying asset. For rainbow options, financial instruments with more than one underlying asset,
we can use the same reasoning mentioned before by using Proposition 4.3; however, the notation can
become cumbersome if the researcher or investor has many underlying assets.

4.3 Discretization of the continuous time stochastic models

In this part we will provide some numerical methods for the discretization of the continuous-time
models seen so far. We will focus especially on the Euler method since the price for small investors
involves BSDEs that are not easy discretized by binomial methods such as CRR. In addition to that,
the Euler method provides reasonable accurate predictions in small periods of time, and this is the
type of predictions that we are looking for because of the difficulty in finding several derivatives of
different stocks with the same issue and maturity over long periods of time. Since most of the methods
that we will use to estimate parameters on Section 5 are based on the fact that the risk-rate, diffusion
and drift coefficients are constant we will use the same assumptions throughout this subsection.

4.3.1 Euler discretization of continuous time model for big agents in a market with one
risky asset

In the case of a market with only one single risky asset S(1), we know from Proposition 2.1 that its
dynamics under the macroeconomic event Λk is of the form

dS
k,(1)
t = S

k,(1)
t µkdt+ S

k,(1)
t vkdWt. (4.83)

In order to simulate this continuous-time model, the instances of time have to be specified. Following
the ideas of the CRR limit model let us denote the time points by

0 = t0, t1 =
T

N
, t2 =

2T

N
, ..., tN = T (4.84)

with N ∈ Z+. We assume the simulation step size, ∆t, to be constant and equal to T/N. Therefore,

the sequence of (S
k,(1)
ti

)Ni=0 via the Euler discretization scheme for the stochastic deferential equation
4.83 is given by

S
k,(1)
t0

= S
k,(1)
0

S
k,(1)
ti+1

= S
k,(1)
ti

+ S
k,(1)
ti

µk∆t + S
k,(1)
ti

vk∆Wti

(4.85)

with ∆Wti ∼ N(0, T/N) and i = 0, 1, ..., N − 1.

4.3.2 Euler discretization of the continuous time model for big agents in a market with
some risky assets

As in the case of the market with only one risky asset, we will create an analogous procedure for a
market with several risky assets. We know from Corollary 2.2 that the dynamics of the price of the
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i-th risky asset under the macroeconomic event Λk is of the form

d kS
(i)
t = kµ

(i)
t

kS
(i)
t dt+ kS

(i)
t

 n∑
j=1

kσ
(ij)
t dW

(j)
t

 . (4.86)

where the processes W 1
t , ...,W

n
t are independent Brownian motions, and (kσ

(ij)
t )2 is the component

of the volatility of the i-th stock explained by the j-th equity, see Subsection 5.1 for more details.

Because of the fact that kσ
(ij)
u ≡ kσ(ij) for all u ∈ [0, T ] and

n∑
j=1

∫ t

0

kσ(ij)
u dW (j)

u ∼ N

0, t

n∑
j=1

(
kσ(ij)

)2

 , (4.87)

the discretization method using the Euler scheme for the price of the i-th risky asset under the
macroeconomic event Λk is of the form

kS
(i)
t0

= kS
(i)
0 , and kS

(i)
tj+1

= kS
(i)
tj

+ kS
(i)
tj
µk∆t + kS

(i)
tj

n∑
j=1

kσ
(ij)
t ∆Wtj , (4.88)

with ∆Wtj ∼ N(0, T/N) and j = 0, 1, ..., N − 1.

4.3.3 Euler discretization of continuous time model for small agents in a market with
some risky assets

To use the Euler method in the price formula for small agents, we need to find a BSDE that describes
the evolution of the prices pα(v0, C) with respect to the time for each one the stereotyped agents.

From formulas

pα(v0, C)

Bα
0,T

= sup
Q∼Pα

{
EQ[C]− 1

γα
h(Q|Pα)

}
− sup
Q∼Pα

{
− 1

γα
h(Q|Pα)

}
, (4.89)

and

h(Qρ
α,u|Pα) = EQρα,u

[
1

2

∫ T

0
‖ρα,ut ‖2dt

]
, and V α,C,u

t = EQρα,u

[
C − 1

2γα

∫ T

t
‖ρα,ut ‖2dt

∣∣∣∣Ft] ,
(4.90)

we have

V α,C,u
t − V α,0,u

0 = EQρα,u

[
C − 1

2γα

∫ T

t
‖ρα,ut ‖2dt

∣∣∣∣Ft]− (−h(Qρ
α,u|Pα)

)
. (4.91)

Therefore, by the use of Theorem 3.91 and the remark made at that part we conclude that the
dynamics of pαt (v0, C)/Bα

t,T is of the form

d
(
pαt (v0, C)/Bα

t,T

)
= d(V α,C

t − V α,0
0 ). (4.92)

We can rewrite the previous formula as a shorter one by using the next theorem due to (El Karoui
and Rouge, 2000).
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Theorem 4.10. The forward price, βt,T p
α
t (v0, C), of the derivative with payoff C for the α-stereotyped

agent is described by the BSDE

− d(βt,T p
α
t (v0, C)) =

γα
2
‖ΠṼ⊥α,tzt‖dt− z

∗
t dW

α,ũt
t (4.93)

where ũ0
t = ΠṼ⊥α,t

(−ραt −γαz0
t ). The processes (x0,α

t , z0,α
t ) and (xC,αt , zC,αt ) are the solutions in Theorem

3.91 with conditions x0,α
T = 0 and xC,αT = C respectively. The process Wα,ũ

t is an n-dimensional

Brownian motion under Qρ
α,ũ0

.

Core inflation usually refers to the inflation rate calculated based on a price index of goods and
services except food and energy.

Proof. From Theorem 3.23, we have that

− d(V α,C
t − V α,C

0 )

=

[
− 1

2γα
‖ραt + ΠṼ⊥α,t

(−ραt − γαz
C,α
t )‖2 − (ραt + ΠṼ⊥α,t

(−ραt − γαz
C,α
t ))∗zC,αt

]
dt− (zC,αt )∗dWt

−
[
− 1

2γα
‖ραt + ΠṼ⊥α,t

(−ραt − γαz
0,α
t )‖2 − (ραt + ΠṼ⊥α,t

(−ραt − γαz
0,α
t ))∗z0,α

t

]
dt+ (z0,α

t )∗dWt

(4.94)

our task is to transform this equation into 4.93.

First, we will work with the coefficients of dt. Rearranging the second part of the coefficients of dt
we get

− (ραt + ΠṼ⊥α,t
(−ραt − γαz

C,α
t ))∗zC,αt dt+ (ραt + ΠṼ⊥α,t

(−ραt − γαz
0,α
t ))∗z0,α

t dt

= (ΠṼ⊥α,t
(ραt )− ραt )∗(zC,αt − z0,α

t )dt+
[
−ΠṼ⊥α,t

(−γαzC,αt ))∗zC,αt + ΠṼ⊥α,t
(−γαz0,α

t ))∗z0,α
t

]
dt.

(4.95)

The remaining part of the coefficients of dt is equal to

− 1

2γα
‖ραt + ΠṼ⊥α,t

(−ραt − γαz
C,α
t )‖2dt+

1

2γα
‖ραt + ΠṼ⊥α,t

(−ραt − γαz
0,α
t )‖2dt

= − 1

2γα
‖
(
ραt + ΠṼ⊥α,t

(−ραt )
)

+ ΠṼ⊥α,t
(−γαzC,αt )‖2dt+

1

2γα
‖
(
ραt + ΠṼ⊥α,t

(−ραt )
)

+ ΠṼ⊥α,t
(−γαz0,α

t )‖2dt

= − 1

2γα
‖ΠṼ⊥α,t(γαz

C,α
t )‖2dt+

1

2γα
‖ΠṼ⊥α,t(γαz

0,α
t )‖2dt

=
γα
2

(
−‖ΠṼ⊥α,t(z

C,α
t )‖2 + ‖ΠṼ⊥α,t(z

0,α
t )‖2

)
dt

(4.96)

We know that the coefficient of dt in formula 4.94 is equal to the sum of the formulas 4.95 and

65



4.96 and this is equal to

(ΠṼ⊥α,t
(ραt )− ραt )∗(zC,αt − z0,α

t )dt+
γα
2

(
‖ΠṼ⊥α,t(z

C,α
t )‖2 − ‖ΠṼ⊥α,t(z

0,α
t )‖2

)
dt

+
[
−ΠṼ⊥α,t

(−γαzC,αt ))∗zC,αt + ΠṼ⊥α,t
(−γαz0,α

t ))∗z0,α
t

]
dt+−γα‖ΠṼ⊥α,t(z

C,α
t )‖2dt+ γα‖ΠṼ⊥α,t(z

0,α
t )‖2dt

= (ΠṼ⊥α,t
(ραt )− ραt )∗(zC,αt − z0,α

t )dt+
γα
2

(
‖ΠṼ⊥α,t(z

C,α
t )‖2 − ‖ΠṼ⊥α,t(z

0,α
t )‖2

)
dt

+ γα

{
−
(

ΠṼ⊥α,t
(zC,αt )− zC,αt

)∗
ΠṼ⊥α,t

(zC,αt ) +
(

ΠṼ⊥α,t
(z0,α
t )− z0,α

t

)∗
ΠṼ⊥α,t

(z0,α
t )
}

= (ΠṼ⊥α,t
(ραt )− ραt )∗(zC,αt − z0,α

t )dt+
γα
2

(
‖ΠṼ⊥α,t(z

C,α
t )‖2 − ‖ΠṼ⊥α,t(z

0,α
t )‖2

)
dt.

(4.97)

The last formula leads us to

− d(V α,C
t − V α,C

0 )

=
[
(ΠṼ⊥α,t

(ραt )− ραt )∗(zC,αt − z0,α
t ) +

γα
2

(
‖ΠṼ⊥α,t(z

C,α
t )‖2 − ‖ΠṼ⊥α,t(z

0,α
t )‖2

)]
dt− (zC,αt − z0,α

t )∗dWt.

(4.98)

Now, by using the formula a2−b2 = (a−b)2 +2(a−b)b and the change of variable zαt = zC,αt −z0,α
t

we write the coefficient of dt as

− (ραt + ΠṼ⊥α,t
(−ραt ))∗zαt dt+ γα

(
ΠṼ⊥α,t

(zC,αt − z0,α
t )
)∗

ΠṼ⊥α,t
(z0,α
t )dt+

γα
2
‖ΠṼ⊥α,t(z

C,α
t − z0,α

t )‖2dt

= −
(
ραt + ΠṼ⊥α,t

(−ραt − γαz
0,α
t ) + ΠṼ⊥α,t

(γαz
0,α
t )
)∗
zαt dt+ γα

(
ΠṼ⊥α,t

(zC,αt − z0,α
t )
)∗

ΠṼ⊥α,t
(z0,α
t )dt

+
γα
2
‖ΠṼ⊥α,t(z

C,α
t − z0,α

t )‖2dt.
(4.99)

From the definition of ũ0
t the previous equation can be expressed as

= −
(
ραt + ΠṼ⊥α,t

(−ραt − γαz
0,α
t ) + ΠṼ⊥α,t

(γαz
0,α
t )
)∗
zαt dt+ γα

(
ΠṼ⊥α,t

(zC,αt − z0,α
t )
)∗

ΠṼ⊥α,t
(z0,α
t )dt

+
γα
2
‖ΠṼ⊥α,t(z

C,α
t − z0,α

t )‖2dt

= −
(
ραt + ũ0

t

)∗
zαt dt−

(
ΠṼ⊥α,t

(γαz
0,α
t )
)∗ (

zαt −ΠṼ⊥α,t
(zαt )

)
dt+

γα
2
‖ΠṼ⊥α,t(z

C,α
t − z0,α

t )‖2dt

= −
(
ραt + ũ0

t

)∗
zαt dt+

γα
2
‖ΠṼ⊥α,t(z

α
t )‖2dt,

(4.100)

where the last line comes from basic properties of orthogonal projections. Therefore, by the use of
ρα,ũtt = ραt + ũt and Wα,ũ

t = Wt +
∫ t

0 ρ
α,ũt
s ds, formula 4.98 becomes

−d(βt,T p
α
t (v0, C)) = −d(V α,C

t − V α,C
0 )

= −
(
ραt + ũ0

t

)∗
zαt dt+

γα
2
‖ΠṼ⊥α,t(z

α
t )‖2dt− (zC,αt − z0,α

t )∗dWt

= −
(
ρ
α,ũ0

t
t

)∗
zαt dt+

γα
2
‖ΠṼ⊥α,t(z

α
t )‖2dt− (zC,αt − z0,α

t )∗dWt

=
γα
2
‖ΠṼ⊥α,tzt‖dt− z

∗
t dW

α,ũ0

t .

(4.101)
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As in the case of the Euler discretization method for big agents we can do the same process here.
We choose the same simulation time points with the same simulation step size ∆t, i.e.,

0 = t0, t1 =
T

N
, t2 =

2T

N
, ..., tN = T and ∆t = T/N, (4.102)

with N ∈ Z+. From 4.101 we have the Euler discretization for small agents

βt0,T p
α
t0(v0, C) = β0,T p

α
0 (v0, C)

βtj+1,T p
α
tj+1

(v0, C) = βtj ,T p
α
tj (v0, C) +

γα
2
‖ΠṼ⊥α,tj

ztj‖∆t − z∗tj∆W
α,ũ
t ,

(4.103)

with ∆Wα,ũ
t ∼ N(0, T/N) under Qρ

α,ũ0
and j = 0, 1, ..., N − 1.

5 Numerical Methods

This work involves the estimation and forecast of the parameters and prices proposed by each agent.
In particular, to estimate the parameters of the big agent as functions of the macroeconomic events,
we first estimate the parameters of the SDEs of the small agent using standard methods such as
maximum likelihood with restrictions, and then we use a new method to add macroeconomic factors
that modify the previous estimate such that the resulting estimate reflects to some extent the effects
of the events. We will use the following diagram to have an idea of the order at which each parameter
will be estimated and the methods that will be used 7.

Big Agent Price

{
σ̂ = σ̂(St, σ

imp)→ Maximum likelihood, components of volatility

µ̂ = µ̂(St, σ̂)→ Maximum likelihood

Small Agent Price



r̂ → Vasicek model, OLS estimation

Price Bond


η̂ = η̂(µ̂, r̂, σ̂)→ Maximum likelihood under restrictions

λ̂bond = λ̂bond(r̂, η̂)→ Maximum likelihood under restrictions

%̂ = %̂(σ̂, λ̂bond)→ Maximum likelihood under restrictions
ˆ̂% = π1,2(%̂)→ Projection on space Vα

ρ̂ = ρ̂(σ̂, µ̂, r̂, ˆ̂%)

û = û(σ̂, ρ̂)→ Semigroup theory, and representation theorem

The formulas developed so far can be applied to any number of assets. However, for the sake of
simplicity, we will make all of the numerical computations for a financial market with 3 risky assets.
In this study we will price an MSFT call option, and we will use information of ORCL and GOOG
call options that belong to the same economic sector as MSFT8.

7The description of the data used for the application, and the code of each algorithm are written in R, and included
in the supplementary information.

8The data that will be used to make the statistical methods was purchased in the Chicago Board Options Exchange,
https://datashop.cboe.com/
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The data is an End-of-Day Option Quotes with the following characteristics:

� Underlying Symbols: GOOG,MSFT,ORCL

� Dates: 08/01/2019 - 09/30/2019

� Files Grouping: Per day

� Columns

– Underlying Symbol

– Quote Date

– Root

– Expiration

– Strike

– Option Type

– Open

– High

– Low

– Close

– Trade Volume

– Bid Size 1545

– Bid 1545

– Ask Size 1545

– Ask 1545

– Underlying Bid 1545

– Underlying Ask 1545

– Implied Underlying Price 1545

– Active Underlying Price 1545

– Implied Volatility 1545

– Delta 1545

– Gamma 1545

– Theta 1545

– Vega 1545

– Rho 1545

– Bid Size Eod

– Bid Eod

– Ask Size Eod

– Ask Eod
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– Underlying Bid Eod

– Underlying Ask Eod

– VWAP

– Open Interest

Characteristic
Call option

MSFT
Call option

ORCL
Call option

GOOG

Issue date 2019-08-01 2019-08-01 2019-08-01

Maturity date 2019-10-18 2019-10-18 2019-10-18

Strike 140 55 1200

The difficulty in finding derivatives of different stocks with the same issue and maturity date,
forces us to work with call options over periods of time of over 2 months at most. For the maximum
likelihood estimation of volatility and interest rates we did not find accurate estimation over the same
short periods of time. As a result of that and for illustrative purposes, we decided to consider longer
periods for the first order conditions that involve the estimates of those parameters.

5.1 Estimation of parameters for big agents

5.1.1 Estimate of σ̂

In this part we will estimate the parameter µ(i) and σ(ij) using maximum likelihood estimation. We
start by building the estimation in a market where there is only one risky asset. Next, we show
the importance of extending these ideas to a market with several risky assets. Finally, we show the
estimation of the parameters in a market with many financial assets.

In a market with only one risky asset, namely S
(1)
t , we use the dynamics

dS
(1)
t = dS

(1)
t (µdt+ σdWt) (5.1)

where K,T, S
(1)
0 , and r are known. We find the implied volatility by matching the market price, M ,

to the Black-Scholes price, BSCall(S
(1)
0 ,K, T, r, σ), and solving for σ where T is the maturity date, K

is the strike price, and r is the risk-free rate. The solution is usually denoted by σimp(K,T ).

For the maximum likelihood estimator of the volatility, we proceed in the following way. Let us
assume that (Stk)Mk=0 is a set of prices observed at different times with tk − tk−1 = T/M , for all
k = 1, ...,M.

From the differential equation
dSt = µStdt+ σStdWt,

we know that the solution Stn with initial condition Stn−1 , is given by

Stn = Stn−1 exp

{(
µ− σ2

2

)
∆t+ σ(Wtn −Wtn−1)

}
,
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for each n ∈ {1, 2, ...,M} where ∆t = tj − tj−1.

We know that St is a function of the P -Brownian motion Wt; therefore

P [Stn ≤ stn |Ftn−1 ] = P

[(
Stn
Stn−1

)
Stn−1 ≤ stn

∣∣∣∣Ftn−1

]
= P

[(
Stn
Stn−1

)
x ≤ stn

]
x=Stn−1

= Ptn−tn−1(Stn−1 , (−∞, stn ]),

(5.2)

where the second and third lines come from the independent increments of the Brownian motion
and the fact that Stn−1 is Fn−1-measurable. The function Ptn−tn−1(stn−1 , (−∞, stn ]) is the transition
probability of the Markov process (St)t∈[0,T ] given by the formula

Ptn−tn−1(stn−1 , stn)

=
1

stn
√
σ2(tn − tn−1)2π

exp

−
(

ln(stn)− ln(stn−1)−
(
µ− σ2

2

)
(tn − tn−1)

)2

2σ2(tn − tn−1)

 .
(5.3)

We know that the finite-dimensional distributions of a Markov process are characterized by the
transition functions of the process itself (see Revuz and Yor, 1999, Section III.1), and satisfy the
following formula

P [St0 ∈ A0, ..., StM ∈ AM ] =

∫
A0

δS0(dx0)

∫
A1

Pt1−0(x0, dx1) · · ·
∫
AM

PtM−tM−1(xM−1, dxM )

=

∫
A0

∫
A1

· · ·
∫
AM

δS0(dx0)Pt1−0(x0, dx1) · · ·PtM−tM−1(xM−1, dxM ),

(5.4)

where δS0 is the Dirac delta distribution with point mass at S0. Therefore, the density of this finite-
dimensional distribution is of the form

f(µ, σ;S) :=

M∏
j=1

1

stj
√
σ2(∆t)2π

exp

−
(

ln(stj )− ln(stj−1)−
(
µ− σ2

2

)
∆t

)2

2σ2∆t

 . (5.5)

To find the maximum likelihood estimators of µ and σ, we first notice that our parameter space is

Θ = R× R+ = {(µ, σ) : µ ∈ R y σ > 0},

and the function (λ1(µ, σ), λ2(µ, σ)) from Θ on itself given by the formulas λ1 =

(
µ− σ2

2

)
∆t and

λ2 = σ2∆t is an homeomorphism. Since maximum likelihood estimators are invariant under homeo-
morphisms, we can consider the likelihood function

f(λ1, λ2;S) =
M∏
j=1

1

stj
√

2λ2π
exp

{
−
(
ln(stj )− ln(stj−1)− λ1

)2
2λ2

}
,
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with respect to the parameters (λ1, λ2).

Now, our maximum likelihood estimators come from the usual maximization process. From

∂ ln f(λ1, λ2;S)

∂λ1
= − ∂

∂λ1

M∑
j=1

{
−
(
ln(stj )− ln(stj−1)− λ1

)2
2σ2∆t

}
= 0,

we get

λ̂1 =
1

M

M∑
j=1

(ln(stj )− ln(stj−1)) =
ln(stM )− ln(st0)

M
.

On the other hand, from the equation

∂ ln f(λ1, λ2;S)

∂λ2

=
∂

∂λ2

−M
2

ln(λ2) + ln

 M∏
j=1

1

stj
√

2π

− M∑
j=1

(
ln(stj )− ln(stj−1)− λ1

)2
2λ2


= 0

we get that

−M
2λ2

+
1

2λ2
2

M∑
j=1

(
ln(stj )− ln(stj−1)− λ1

)2
= 0,

and solving for λ2, we obtain

λ̂2 =
1

M

M∑
j=1

(
ln(stj )− ln(stj−1)− λ̂1

)2
.

By using λ2 = σ2∆t and λ1 =

(
µ− σ2

2

)
∆t, we get our maximum likelihood estimators

λ1 =

(
µ− σ2

2

)
∆t and µ̂ =

λ̂1

∆t
+
σ̂2

2
. (5.6)

There are some drawbacks of using any of these estimators in this model. One of the most obvious
is that the maximum likelihood property and the matching market price property of the implied
volatility cannot hold simultaneously in this model. Another problem is that these models do not split
the volatility of the i-th stock as a sum of different components σ(ij) that depend on the correlation of
the stock with other equities. This is something that is useful for investments, and should be included
in the models. As an example, when an investor goes long on SPY or QQQ, some of the most traded
ETFs in the United States, his or her shares are allocated into several stocks of the S&P 500 or QQQ
100 index. (Investopedia, 2018b).
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Financial sector SPY’s percent allocation

Information technology 26.2%

Health care 15%

Financial 13.46%

Consumer discretionary 13.12%

Industrials 9.72%

Consumer staples 6.69%

Energy 6.01%

Utilities 2.78%

Real state 2.61%

Materials 2.44%

Telecommunication services 1.97%

Table 1: SPY’s percent allocation

Financial sector QQQ’s percent allocation

Information technology 60.44%

Health care 9.85%

Consumer discretionary 22.38%

Industrials 2.1%

Consumer staples 4.42%

Telecommunication services 0.81%

Table 2: Nasdaq 100 QQQ’s percent allocation

Since ETFs are highly traded, and traders use them as benchmarks, this fact makes the correlations
of stocks in the SPY or QQQ category even stronger. One way to prove this fact is by computing
correlations between stocks in the same ETF group. As an example the Pearson’s correlation of daily
close prices of MSFT and ORCL between 2016-01-04 and 2019-09-30 was about 0.8635529. However,
there are other methods that can be used in practice to notice this pattern. One of the most practical
is by using the Beta indicator (measure of a stock’s volatility in relation to the market) of each stock
as can be seen in figure 6 provided by (Yahoo!, 2018). The Beta indicator of a stock is given by the
formula

Betastock =
Sample covariance of stock’s daily returns and SPY’s daily retuns

Sample variance of SPY’s daily returns
. (5.7)

9Computed using the R programming language. Source: Yahoo! Finance.
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Figure 5: Average daily volume of stocks of the S&P 500 index, and ETF’s, August 2018
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Figure 6: Beta of stocks of the S&P 500 index, August 2018

With the formula 5.7, we can go a little further. If we use a for a stock, b for SPY, ra,b for the
sample Pearson correlation between the stock and the SPY, we have

ra,b =
Qa, b

SaSb
=

BetaaSb

Sa
, (5.8)

where Qa, b is the sample covariance of the returns of the stock and the market; Sb is the sample
standard deviation of the market’s returns; and Sa is the sample standard deviation of the stock’s
returns.

This result helps us to understand why some stocks go up in a specific sector, they create a chain
reaction on the other stocks in the same sector. This effect is not explicitly shown in any of the
parameters of the usual Black-Scholes-Merton formula for one risky asset 5.1.

For the multiprice model , we need a different statistical approach. Let us consider the dynamics
of (S(i))t∈[0,T ] as in Proposition 2.4, i.e.

dS
(i)
t = µ

(i)
t S

(i)
t dt+ S

(i)
t

 n∑
j=1

σ
(ij)
t dW

(j)
t

 . (5.9)
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We know that under the macroeconomic event, Λk, the drift, and diffusion coefficients associated with

S(i) on 5.9 are kµ
(i)
t and kσ

(i,·)
t . As it usually happens with most of the statistical methods in practice

we assume that kµ
(i)
t and kσ

(i,·)
t are constants. To estimate the parameters, we need to make some

changes to formula 5.5.

Let us assume that (S
(i)
tk

)Mk=0 is a set of prices observed at different times with tM = T , t0 = 0, and
tk − tk−1 = T/M , for all k = 1, ...,M. From the dynamics 5.9, we know that the price satisfies

S
(i)
tl

= S
(i)
tl−1

exp


µ(i) − 1

2

n∑
j=1

(σ(ij))2

∆t+
n∑
j=1

σ(ij)(Wtl −Wtl−1
)

 ,

for each l ∈ {1, 2, ...,M} where ∆t = tl − tl−1. Moreover, since S
(i)
t is a function of the n-dimensional

Brownian motion Wt, then

P [S
(i)
tn ≤ s

(i)
tn |Ftn−1 ] = P

[(
S

(i)
tn

S
(i)
tn−1

)
S

(i)
tn−1
≤ s(i)

tn

∣∣∣∣∣Ftn−1

]

= P

[(
S

(i)
tn

S
(i)
tn−1

)
x ≤ s(i)

tn

]
x=S

(i)
tn−1

= P
(i)
tn−tn−1

(
S
t
(i)
n−1

, (−∞, s(i)
tn ]

)
,

(5.10)

where the second and third line comes from the independent increments of the Brownian motion

and the fact that S
(i)
tn−1

is Fn−1-measurable. The function P
(i)
tn−tn−1

(stn−1 , (−∞, stn ]) is the transition

probability of the Markov process (S
(i)
t )t∈[0,T ] given by the formula

P
(i)
tn−tn−1

(s
(i)
tn−1

, s
(i)
tn ) =

exp

−
(

ln(s
(i)
tn )− ln(s

(i)
tn−1

)−
(
µ(i) − 1

2

∑n
j=1(σ(ij))2

)
∆t

)2

2∆t
∑n

j=1(σ(ij))2


s
t
(i)
n

√
2π
(∑n

j=1(σ(ij))2
)

∆t

.

(5.11)

With these remarks we are ready to obtain the finite-dimensional distributions that are described
by
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P
[
S

(i)
tM
∈ AM , ..., S(i)

t0
∈ A0

]
= E

[
M−1∏
l=0

1{S(i)
tl
∈Al}

E

[
1{S(i)

tM
∈AM}

∣∣∣∣FtM−1

]]

= E

[
M−1∏
l=0

1{S(i)
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∈Al}

∫
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P
(i)
tM−tM−1

(S
(i)
tM−1
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(i)
M )

]

= E
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1{S(i)
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∈Al}

E

[
1{S(i)
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∈AM−1}

∫
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P
(i)
tM−tM−1

(S
(i)
tM−1
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(i)
M )

∣∣∣∣FtM−2

]]

= E

[
M−2∏
l=0

1{S(i)
tl
∈Al}

∫
AM−1

P
(i)
tM−1−tM−2

(S
(i)
tM−2

, ds
(i)
M−1)

∫
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P
(i)
tM−tM−1

(s
(i)
M−1, ds

(i)
M )

]
,

(5.12)

and by repeating the same reasoning, we get

= P
[
S

(i)
tM
∈ AM , ..., S(i)

t0
∈ A0

]
=

∫
A0

δ
S

(i)
0

(ds
(i)
0 )

∫
A1

P
(i)
t1−0(s

(i)
0 , ds

(i)
1 ) · · ·

∫
AM

P
(i)
tM−tM−1

(s
(i)
M−1, ds

(i)
M )

=

∫
A0

∫
A1

· · ·
∫
AM

δ
S

(i)
0

(ds
(i)
0 )P

(i)
t1−0(s

(i)
0 , ds

(i)
1 ) · · ·P (i)

tM−tM−1
(s

(i)
M−1, ds

(i)
M ).

(5.13)

Consequently, our likelihood function is of the form

f(µ(i), σ(i·);S) =

M∏
k=1

exp

−
(

ln(s
(i)
tk

)− ln(s
(i)
tk−1

)−
(
µ(i) − 1

2

∑n
j=1(σ(ij))2

)
∆t

)2

2∆t
∑n

j=1(σ(ij))2


s
t
(i)
k

√
2π
(∑n

j=1(σ(ij))2
)

∆t

.

(5.14)

We know that our parametric space is

Θ = R× Rn = {(µ(i), σ(i1), ..., σ(in)) : µ(i) ∈ R, σ(i1), ..., σ(in) ∈ R+}. (5.15)

By using the homeomorphism, λ, from Λ onto itself with λ(i)(µ(i), σ(i·)) = (λ
(i)
1 (µ(i), σ(i·)), ..., λ

(i)
n+1(µ(i), σ(i·)))

where

λ
(i)
1 (µ(i), σ(i·)) = ∆t

µ(i) − 1

2

n∑
j=1

(σ(ij))2)

 and λ
(i)
k (µ(i), σ(i·)) = (σ(i,k−1))2∆t, (5.16)

for k = 2, ..., n+ 1, we have that our likelihood function becomes

f(λ
(i)
1 , ..., λ

(i)
n+1;S(i)) =

M∏
k=1

exp

−
(

ln(s
(i)
tk

)− ln(s
(i)
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)− λ(i)
1

)2

2
∑n

j=1 λ
(i)
j+1


s
t
(i)
k

√
2π
∑n

j=1 λ
(i)
j+1

.
(5.17)
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Therefore our first-order conditions are of the form

∂ ln f(λ
(i)
1 , ..., λ

(i)
n+1;S(i))

∂λ
(i)
1

= − ∂

∂λ
(i)
1

M∑
k=1

(ln(s
(i)
tk

)− ln(s
(i)
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)− λ(i)
1 )2

2
∑n

j=1 λ
(i)
j+1

= 0, (5.18)

and
∂ ln f(λ

(i)
1 , ..., λ

(i)
n+1;S)

∂λ
(i)
k

= 0 (5.19)

for k = 2, ..., n+ 1.

From the equation 5.18, we conclude that the maximum likelihood estimator, λ̂
(i)
1 is of the form
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1

M
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ln(s
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(i)
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)
)
. (5.20)

For 5.19 we have the following computations
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(5.21)

Therefore, the first order condition 5.19 for λ
(i)
k can be rewritten as

− M

2

(
1∑n

j=1 λ
(i)
j+1

)
+

1

2
(∑n
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(
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= 0. (5.22)

Thus, we get
n∑
j=1

λ̂
(i)
j+1 =

1

M

M∑
k=1

(
ln(s

(i)
tk

)− ln(s
(i)
tk−1

)− λ̂(i)
1

)2
. (5.23)

By using the definition of λ̂
(i)
j+1, we get

n∑
j=1

(σ̂(i,j))2 =
1

M∆t

M∑
k=1

(
ln(s

(i)
tk

)− ln(s
(i)
tk−1

)− λ̂(i)
1

)2
. (5.24)

Assumption 5.1. Following the assumption 2.3, we assume that

(σ̂(i,j))2 = (σ̂(j,i))2 (5.25)

for i, j = 1, ..., n.
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By using the previous assumption, in the case of n = 3, we have the following linear system
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(5.26)

This system can be written in matrix form



1 1 1 0 0 0
0 1 0 1 1 0
0 0 1 0 1 1
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
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, (5.27)

where (σ̂(ii)) is considered as the intrinsic volatility of the i−th stock , and the other components, σ̂(ij)

with i 6= j, are the volatility components of the i−th stock affected by the j−th stock. The element
σ(i),imp in the linear equation is the implied volatility of the stock i. The choice of the constants c1, c2

and c3 depends on the analysis made by investors about how much of the volatility of the company
is due to itself (operating activities, management,etc.) and not to external factors such as a boom or
a crisis in the whole sector. This choice also has to satisfy assumption 2.3 what is a drawback of this
approach. However, as M gets bigger the values of 5.26 offer a good approximation to σ(1),imp, σ(2),imp

and σ(3),imp; and the choice of the constants c1, c2 and c3 can be made such that assumption 2.3 holds.
Finally, the estimate of µ̂ follows immediately from the formulas 5.16.

5.1.2 Implied Volatility Time Series Analysis, and Forecasting

As it was mentioned earlier, we need to make forecasts of the inputs for the small and big agent
pricing models. In this part, we make use of time series analysis on the implied volatility of the three
stocks. The structure of the data and the model force us to work with small samples, something that
happens in the study of macroeconomic measures such as GDP. We are aware that there are other
techniques such as Bayesian analysis for the study of small samples. Since our purpose is to explore
new estimation methods involving economic restrictions, we will consider the tools mentioned so far.
The Bayesian analysis may be another good topic of research in this study. For the sake of simplicity,
we will omit some steps in this analysis.

First, we analyze the time series of the implied volatility. Next, we evaluate if it is necessary to
apply some transformation to the time series. Finally, we choose the model that seems to be most
accurate to the pattern of the transformed time series.
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The following time series show linear trends, and their variance seems to be constant. Therefore,
we will apply the difference operator on the time series.
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Once applied to the series there are signs of stationarity except for the spike on the corresponding
time series of ORCL. However, this spike is not followed by an substantial increase in volatility.
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We check those findings using the Augmented Dickey-Fuller test

Since the p-value is less than 0.05, the data does not have a unit root and is stationary10. Therefore,
we proceed with the ACF, and PACF analysis.

10To use the Augmented Dicky-Fuller test, we make use of the library tseries in the R programming language.
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Since the ACF, and PACF tails off after lag(1 − 1) (they are in the region where the sample is
significantly small), we will use the ARIMA(1,1,1) model for the implied volatility of each one of the
stocks. The following is the code to estimate the ARIMA(1,1,1) parameters, and make the forecasts
1 and 2 steps ahead for illustrative purposes.

# ACF and PACF of implied volatility of ORCL
acf_diff_imp_volatility_orcl <-

acf(diff(implied_volatility_orcl[1:( length(implied_volatility_orcl)-2)]),
ylim=range(-1,1),lag.max = 14)

plot(acf_diff_imp_volatility_orcl , main="Diffence Operator on Volatility Implied ORCL ACF",
ylim=range(-1,1))

pacf_diff_imp_volatility_orcl <-
pacf(diff(implied_volatility_orcl[1:( length(implied_volatility_orcl)-2)]),

ylim=range(-1,1), lag.max = 14)
plot(pacf_diff_imp_volatility_orcl , main="Diffence Operator on Volatility Implied ORCL PACF",

ylim=range(-1,1))

# ACF and PACF of implied volatility of GOOG
acf_diff_imp_volatility_goog <-

acf(diff(implied_volatility_goog[1:( length(implied_volatility_goog)-2)]),
ylim=range(-1,1),lag.max = 14)

plot(acf_diff_imp_volatility_goog , main="Diffence Operator on Volatility Implied GOOG ACF",
ylim=range(-1,1))

pacf_diff_imp_volatility_goog <-
pacf(diff(implied_volatility_goog[1:( length(implied_volatility_goog)-2)]),

ylim=range(-1,1), lag.max = 14)
plot(pacf_diff_imp_volatility_goog , main="Diffence Operator on Volatility Implied GOOG PACF",

ylim=range(-1,1))

# ARIMA parameters of the implied volatility of MSFT
implied_volatility_arima_parameters_msft <-

arima(implied_volatility_msft[1: ( length(implied_volatility_msft) -2 )], order=c(1,1,1))

# ARIMA parameters of the implied volatility of ORCL
implied_volatility_arima_parameters_orcl <-

arima(implied_volatility_orcl[1: ( length(implied_volatility_orcl) -2 )], order=c(1,1,1))

# ARIMA parameters of the implied volatility of GOOG
implied_volatility_arima_parameters_goog <- arima(implied_volatility_goog , order=c(1,1,1))

# ARIMA forecast implied volatility MSFT
implied_volatility_msft_2_ahead <-

predict(implied_volatility_arima_parameters_msft , n.ahead =2)
# ARIMA forecast implied volatility MSFT
implied_volatility_orcl_2_ahead <-

predict(implied_volatility_arima_parameters_orcl , n.ahead =2)
# ARIMA forecast implied volatility GOOG
implied_volatility_goog_2_ahead <-

predict(implied_volatility_arima_parameters_goog , n.ahead =2)

Now, we need to add the forecasts to the the object linear_restrictions
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# Inclusion of the forecast of the implied volatility
# We assume that the level /mu will not change drastically withint the forecast of 2 days

t_forecast <- length(MSFT_Close)-start_date_time_s_analysis -2
i <- 0
for (i in c(1:2)){

linear_restrictions [[t_forecast + 1 + i]] <-
c(list_restrictions_l_equations [[1]][t_forecast + 1 + i],
list_restrictions_l_equations [[2]][t_forecast + 1 + i],
list_restrictions_l_equations [[3]][t_forecast + 1 + i],
0.5*( implied_volatility_msft_2_ahead$pred[i]^2),
0.5*( implied_volatility_orcl_2_ahead$pred[i]^2),
0.5*( implied_volatility_goog_2_ahead$pred[i]^2))

}

We use the following lines of code to check that the matrix σt is invertible, and its entries are all
positive

# check the solutions of the equation are all positive
b <- c()
for(i in c(1:( length(MSFT_Close)-start_date_time_s_analysis ))){

a <- (ginv(linear_equation_volatility) %*% linear_restrictions [[i]] > 0)
a <- all(a, na.rm = FALSE)
b <- c(b,a)

}
all(b, na.rm = FALSE)

# list of matrices of sigma (square)
list_sigma <- list()
for (i in c(0:( length(MSFT_Close)-start_date_time_s_analysis ))){

a <- ginv(linear_equation_volatility) %*% linear_restrictions [[i+1]]
list_sigma [[i+1]] <- sqrt(t(matrix(c(a[1],a[2],a[3],

a[2],a[4],a[5],
a[3],a[5],a[6]), ncol = 3)))

}

# check the sigma is invertible for each time t
b <-c()
for (i in c(0:( length(MSFT_Close)-start_date_time_s_analysis ))){

a <- det(list_sigma[[i+1]]) != 0
b <- c(b,a)

}
all(b, na.rm = FALSE)

Now, we check how accurate the approximation is

# Actual error of the square of the sum of the components of
# volatility and the implied volatility
error_estimation_volatility <- list()
comparison_implied_volatility_components_of_volatility <- c()
a<- 0
b<- 0
c<- 0
error_volatility_estimation_msft <-c()
error_volatility_estimation_orcl <- c()
error_volatility_estimation_goog <- c()
for (i in c(0: (length(MSFT_Close)-start_date_time_s_analysis -2)) ){

a <- abs(sqrt(list_sigma[[i+1]][1,1]^(2) + list_sigma[[i+1]][1,2]^(2) +
list_sigma[[i+1]][1,3]^(2)) - implied_volatility_msft[[i+1]] )
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b <- abs(sqrt(list_sigma[[i+1]][2,1]^(2) + list_sigma[[i+1]][2,2]^(2) +
list_sigma [[i+1]][2,3]^(2)) - implied_volatility_orcl[[i+1]] )

c <- abs(sqrt(list_sigma[[i+1]][3,1]^(2) + list_sigma[[i+1]][3,2]^(2) +
list_sigma [[i+1]][3,3]^(2)) - implied_volatility_goog[[i+1]] )

error_estimation_volatility [[i+1]] <- c( a, b, c)
error_volatility_estimation_msft <- c(error_volatility_estimation_msft , a)
error_volatility_estimation_orcl <- c(error_volatility_estimation_orcl , b)
error_volatility_estimation_goog <- c(error_volatility_estimation_goog , c)

}

# Root Mean Squared Error(RMSE)
sqrt(product(error_volatility_estimation_msft ))/ sqrt(length(error_volatility_estimation_msft))
sqrt(product(error_volatility_estimation_orcl ))/ sqrt(length(error_volatility_estimation_orcl))
sqrt(product(error_volatility_estimation_goog ))/ sqrt(length(error_volatility_estimation_goog))

As an example the error_volatility_estimation_msft is

Figure 7: Error estimation of MSFT implied volatility using components of volatility method

The root mean square error of those estimations(RMSE) are

Figure 8: Error estimation of MSFT implied volatility using components of volatility method

This suggests that the estimation is relatively good since RMSE if close to zero.

5.1.3 Estimate of r̂

To estimate r we will use the Vasicek model on the 1-treasure bill. There are different types of
estimation. In the application we will use the OLS estimation of the SDE’s parameters.

We have to estimate the parameters %α and ρα. However, their computation depends on the type
of zero-coupon bond that we choose. We suppose that the zero-coupon bond for the small investors
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will be the 1-year treasury bill11. Since stock options are not quoted on holidays, but 1-year treasury
bills do, we have to synchronize the stock data set with the 1-year treasury bill data. One way to do
that is by merging the stocks’ dataset with the 1-year treasury bill. Once we finish this step, we need
to remove the rows containing NA values. Next, we split the data again and work with the cleaned
1-year treasury bill data. The algorithm is provided below

# 2019-10-18 the expiration date of the European Call options

# 1-Year Treasury Bill: Secondary Market Rate
t_bill_1year_daily <- getSymbols("DTB1YR", src = "FRED", auto.assign = FALSE)

# Filling missing values using linear interpolation
t_bill_1year_daily <- na.approx(t_bill_1year_daily)

# Check 1 year treasury bill and stocks have the same indeces
# MSFT , ORCL , GOOG has the same indeces , but 1-Year Treasury Bill not
merged_data <- merge.xts(t_bill_1year_daily , MSFT_Close , by = "ID")
merged_data <- subset(merged_data , select = c(1,2))

# Remove values that does not share the same index
start_date_merged_data <-

min(which(format(index(merged_data), "%Y-%m-%d") == start_likelihood_estimation_date))
end_date_merged_data <-

min(which(format(index(merged_data), "%Y-%m-%d") == end_time_series_date))
merged_data <- merged_data[start_date_merged_data:end_date_merged_data]
merged_data <- merged_data[!is.na(merged_data[,2]),]

# clean data of the 1-Year Treasury Bill
t_bill_1year_daily <- merged_data[, c(1)]

Most of the treasury notes follow a mean reversion property. In this case, we will assume the same
for the U.S. 1-year Treasury Bill. The model that we will use for estimation, and forecasting will be
the Vasicek model (see for instance Privault, 2020)

drt = (a− brt)dt+ σdWt (5.28)

We can discretize this model using a sequence of times (tk)
N+1
k=0 , obtaining

rtk+1
− rtk = (a− brtk)∆t+ σWt. (5.29)

Instead of using the maximum likelihood estimator, we will minimize the quadratic residual

N+1∑
k=0

(rtk+1
− rtk − (a− brtk)∆t)2 (5.30)

11The data was taken from https://fred.stlouisfed.org/
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Using partial differentiation with respect to a and b, and the following code, we get the estimators.

# Vasicek model calibration , and forecast

# Term b of the Vasicek model
sample_t_bill_1year_daily <-

t_bill_1year_daily [( length(t_bill_1year_daily)-720): (length(t_bill_1year_daily) -2)]
sample_t_bill_1year_daily <- na.approx( as.numeric(sample_t_bill_1year_daily ))

numerator_1_vasicek_b <-
sum(sample_t_bill_1year_daily[-1]*

sample_t_bill_1year_daily[-length(sample_t_bill_1year_daily )])
numerator_2_vasicek_b <-

sum(sample_t_bill_1year_daily[-length(sample_t_bill_1year_daily )])*
sum(sample_t_bill_1year_daily[-1])

denominator_1_vasicek_b <- sum(sample_t_bill_1year_daily **2)
denominator_2_vasicek_b <-

sum(sample_t_bill_1year_daily[-length(sample_t_bill_1year_daily )])*2

# Term b of the Vasicek Model
term_1_vasicek_b <-

(numerator_1_vasicek_b - (numerator_2_vasicek_b/length(sample_t_bill_1year_daily)) ) /
(denominator_1_vasicek_b - (denominator_2_vasicek_b/ length(sample_t_bill_1year_daily )))

vasicek_b <- (term_1_vasicek_b -1)*(-365)

# Term a of the Vasicek model
term_1_vasicek_a <- sample_t_bill_1year_daily[-1] -

(1- (vasicek_b*(1/365)) )* sample_t_bill_1year_daily[-length(sample_t_bill_1year_daily)]
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vasicek_a <- ((1/length(sample_t_bill_1year_daily ))* sum(term_1_vasicek_a))*365

Now, with this estimation, we are ready to use Euler-Maruyama method and include the forecast two
steps ahead

# Estimation of the 1 and 2 step ahead values of the Vasicek model
# Euler Maruyama Method for SDE
tail(t_bill_1year_daily)
tail(sample_t_bill_1year_daily)

rate_estimation_1_ahead <- sample_t_bill_1year_daily[length(sample_t_bill_1year_daily )] +
(vasicek_a -
(vasicek_b*sample_t_bill_1year_daily[length(sample_t_bill_1year_daily )]) )*(1/365)

rate_estimation_2_ahead <- rate_estimation_1_ahead +
(vasicek_a - (vasicek_b*rate_estimation_1_ahead) )*(1/365)

# Inclusion of the last two element in the forecast
t_bill_1year_daily[length(t_bill_1year_daily)-1] <- rate_estimation_1_ahead
t_bill_1year_daily[length(t_bill_1year_daily)] <- rate_estimation_2_ahead

Figure 9: Interest rate values and forecast.

where the last two values are the two forecasts.

5.1.4 Relative entropy algorithm under macroeconomic restrictions

We have to build the most significative macroeconomic events that can change the dynamics of the
prices of MSFT, ORCL, and GOOG. For the sake of simplicity we will restrict ourselves to the
events: A1 = China-U.S trade deal, A2 = New NAFTA or USMCA trade deal , and A3 = Hong Kong
Resolution. We can build our probability space as

ΩΛ = {C1 × C2 × C3 : Ci = Ai or Ci = Ac
i}, (5.31)

where the probability measure PΛ will be the a priori distribution as in Proposition 2.4. The variables
that we will use for the restriction are: net income, revenue, assets, equity, current assets, and current
liabilities.

In financial statement forecasting it is not clear how each account depends on macroeconomic
events. This forces us to express each accounting variable as a function of past information, and
variables that are really sensitive to macroeconomic events. In this work, we will focus on revenue as
the variable that is sensitive to macroeconomic events. This idea can be written as follows

Accountt+1 ≈ Accountt + f(Revenuet,Other Accountst, r), (5.32)
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where r is a vector of growth rates that contains the expected rate of growth (from t to t + 1) of
revenue, and the known rates of growth of other accounts such as cost of good sold, tax rate, etc. Here
we list some of the notation that will be used throughout this part.

Definition Notation

Revenue growth rate rrev

COGS as percentage of revenue rCOGS

Tax rate rtax

Net Cash flow from financing activities CFF

Net Cash flow from investing activities CFI

Net Cash flow from operating activities CFO

Earnings before taxes EBT

Property, plant and equipment PPE

Net increase(cash) CFF + CFI + CFO

Accounting Variablet+1 −Accounting Variablet ∆Accounting Variablet+1

Table 3: Accounting notations

The formulas that we will use are the following12. For revenue we use

Revenuet+1 ≈ Revenuet(1 + rrev). (5.33)

For cost of goods sold

COGSt+1 ≈ rCOGSRevenuet+1. (5.34)

For net income

Net Incomet+1 ≈ EBTt+1 − Taxest+1 ≈ Net Incomet + (1− rtax)rrevGross Profitt. (5.35)

For current liabilities

Current Liabilitiest+1 ≈ Accounts Payablet+1 ≈ Current Liabilitiest + rrevAccounts Payablet. (5.36)

For equity

Equityt+1 ≈ Equity Capitalt+1 + Retained Earningst+1 ≈ Equityt + ∆Retained Earningst. (5.37)

For MSFT and GOOG, the asset account will be of the form

Assetst+1

≈ Casht+1 + Accounts Receivablet+1 + Inventoryt+1 + Marketable Securitiest+1 + PPEt+1

≈ Assetst + rrev(Accounts Receivablet + Inventoryt) + Net Increase(cash)t
+ ∆Net Increase(cash)t + ∆Marketable Securitiest

(5.38)

12Proof of the formulas can be found in Appendix E.
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However, for ORCL, we use the following formula for assets

Assetst+1 ≈ Casht+1 + Accounts Receivablet+1 + Marketable Securitiest+1 + PPEt+1

≈ Assetst + rrevAccounts Receivablet + Net Increase(cash)t
+ ∆Net Increase(cash)t + ∆Marketable Securitiest

(5.39)

because it does not have inventories. Using the same concept, for MSFT, and GOOG, the current
asset account is

Current Assetst+1 ≈ Casht+1 + Accounts Receivablet+1 + Inventoryt+1 + Marketable Securitiest+1

≈ Current Assetst + rrev(Accounts Receivablet + Inventoryt) + Net Increase(cash)t
+ ∆Net Increase(cash)t + ∆Marketable Securitiest.

(5.40)

For ORCL the corresponding account is

Current Assetst+1 ≈ Casht+1 + Accounts Receivablet+1 + Marketable Securitiest+1

≈ Current Assetst + rrevAccounts Receivablet + Net Increase(cash)t
+ ∆Net Increase(cash)t + ∆Marketable Securitiest.

(5.41)

Notice ORCL uses trade receivables account, but MSFT, and GOOG use accounts receivable instead.
Moreover, MSFT uses the account short term investments, but ORCL, and GOOG use the account
marketable securities instead. However, the name of the accounts does not affect the accounting
meaning in these formulas. For this reason, we use the names accounts receivable, and marketable
securities in the formulas above.

Now, we need to know how sensible revenue is with respect to the each event. One way to do this
is by decomposing the revenue rate of growth in market share growth, and market growth. First, we
start with the approximation

Company’s Revenuet ≈ (Company’s Market Sharet)(Company’s Markett). (5.42)

Therefore, using ∆ lnx ≈ %∆x, we get the formula

Company’s Revenue Growtht ≈ Company’s Market Share Growtht + Company’s Market Growtht.
(5.43)

We can check in https://ustr.gov/countries-regions that more than 55% of the exports of
the US to China, México, Canada, and Hong Kong come from electrical machinery, machinery, mineral
fuels, plastics, vehicles, medical instruments, and aircraft. In addition, the U.S exports, and imports
of goods by F.A.S basis with the same countries, taken from https://fred.stlouisfed.org/, do not
show a significant change due to the macroeconomic events that occurred prior to August 01, 2019.
Therefore, the macroeconomic events may only have a possible small impact on revenues, drift and
diffusion coefficients. The information is provided below.
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16Programmed in ggplot2, https://ggplot2.tidyverse.org/. Source code in Appendix F.
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17Programmed in ggplot2, https://ggplot2.tidyverse.org/. Source code in Appendix F.
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There has been some research about the correlation between volatility and economic growth such
as the works by (Dabusinskas et al., 2013), and (Mobarak, 2005) that support this hypothesis. The
following chart displaying Volatility Index (VIX), and the SPY demonstrates a potential negative
autocorrelation between volatility and economic growth. In fact, we have that during the period from
2007-01-10 to 2020-03-16 the Pearson’s autocorrelation of these variables was about −0.5222381.
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With the previous information, we have the following data about the impact of the macroeconomic
events on the direction of each one of the variables.

Event Effect on σ Effect on µ Effect on sales Effect on r

A1 ×A2 ×A3 ↓ ↑ ↑ ↑
Ac

1 ×A2 ×A3 ↑ ↓ ↓ ↓
A1 ×Ac

2 ×A3 ↑ ↓ ↓ ↓
Ac

1 ×Ac
2 ×A3 ↑ ↓ ↓ ↓

A1 ×A2 ×Ac
3 ↓ ↑ ↑ ↑

Ac
1 ×A2 ×Ac

3 ↑ ↓ ↓ ↓
A1 ×Ac

2 ×Ac
3 ↑ ↓ ↓ ↓

Ac
1 ×Ac

2 ×Ac
3 ↑ ↓ ↓ ↓

Table 4: Macroeconomic effects on coefficients of the SDE for big agents: ↑ (increase), and ↓ (decrease)

Now, we need to quantify the values of ↑ and ↓ for each one of the macroeconomic events. For this
step, we must follow a conservative and cautious approach considering small changes since the data
do not give reasons to consider big changes.
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Event
Change factor

on σ
Change factor

on µ
Change factor

on sales
Change factor

on r

A1 ×A2 ×A3 σ↓ µ↑ rrev,↑ r↑
Ac

1 ×A2 ×A3 0.5σ↑ 0.5µ↓ 0.5rrev↓ 0.5r↓
A1 ×Ac

2 ×A3 0.7σ↑ 0.7µ↓ 0.7rrev,↓ 0.7r↓
Ac

1 ×Ac
2 ×A3 0.9σ↑ 0.9µ↓ 0.9rrev,↓ 0.9r↓

A1 ×A2 ×Ac
3 0.2σ↓ 0.2µ↑ 0.2rrev,↑ 0.2r↑

Ac
1 ×A2 ×Ac

3 0.55σ↑ 0.55µ↓ 0.55rrev,↓ 0.55r↓
A1 ×Ac

2 ×Ac
3 0.75σ↑ 0.75µ↓ 0.75rrev,↓ 0.75r↓

Ac
1 ×Ac

2 ×Ac
3 σ↑ µ↓ rrev,↓ r↓

Table 5: Quantification macroeconomic effects

Here the notation is self-explanatory. Following the notation in table 5, for each one of the
columns, we consider the highest and lowest values for the change factors (that correspond to the
best or worst macroeconomic events) and multiply them by some factors that depend on the impact
of the macroeconomic events and the methods the big agent used to estimate them. Here, we build
those factors based on the top exporters and importers. As an example, for the column of diffusion
coefficient, we denote by σ↑ and σ↓ the highest and lowest possible numerical values for the stocks’
volatility that correspond to the worst and best macroeconomic event respectively. Following the
context, if Ac

1 × Ac
2 × Ac

3 happens, the worst case scenario is happening, then it is expected that the
highest volatility value, σ↑, must occur and the net effect will be capture through the estimators

r̂rev =
Revenuet − Revenuet−1

Revenuet−1
+ rrev,↓ ˆ̂σ = σ̂(1 + σ↑) and ˆ̂r = r̂(1 + r↓), (5.44)

that will appear in the formula 5.50. For the sake of simplicity, and because the macroeconomic
information does not provide any clue to take a more aggressive assumptions, we will adopt a more
conservative approach by using small factors:

rrev,↑ = 0.05 rrev,↓ = −0.05 σ↑ = 0.005, σ↓ = −0.005, r↑ = 0.005, and r↓ = −0.005. (5.45)

For the optimization process of 2.47 and 2.48, we require the a prior distribution PΛ. It will be
given by the following table

Macroeconomic Event PΛ Qλ̄

A1 ×A2 ×A3 0.5/7 0.0276

Ac
1 ×A2 ×A3 0.5/7 0.1192

A1 ×Ac
2 ×A3 0.5/7 0.1449

Ac
1 ×Ac

2 ×A3 0.5/7 0.1761

A1 ×A2 ×Ac
3 0.5/7 0.0603

Ac
1 ×A2 ×Ac

3 0.5/7 0.1252

A1 ×Ac
2 ×Ac

3 0.5/7 0.1521

Ac
1 ×Ac

2 ×Ac
3 0.5 0.1941

Table 6: A priori distribution.
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This means that around August 01, 2019, we are assuming the investor’s negative expectations about
the macroeconomic events were above 50%. However, after using the CVXfromR package tools, and
the information of the last four financial quarters (prior to 2019-08-01) of MSFT, ORCL, and GOOG
to build the constraints, we get that the a posteriori distribution Qλ̄ is more coherent with what
happened later: the macroeconomic environment was not as severe as expected. In fact, 2019 turned
out to be a good year for the stock market.

The code for these computations is the following21

# 15 accounting factors MSFT , ORCL , GOOG

# Revenue
revenue_t <- c(33717,11136,38944)
revenue_rate <- c((33717/30571)-1,(11136/9614)-1,(38944/36339)-1)

# Net Income
net_income_t <- c(13187,3740,9947)
gross_profit_t <- c(23305,9072,21648)
tax_rate <- c(0.1020,0.0970,0.1330)

# Current Liabilities
current_liabilities_t <- c(69420,18630,37000)
accounts_payable_t <- c(9382,580,3925)

# Equity
equity_t <- c(102330,22363,192192)
retained_earnings_t <- c(24150,-3496,145346)
retained_earnings_t_m_1 <- c(18338,-1287,138720)

# Assets
assets_t <- c(286556,108709,257101)
accounts_receivable_t <- c(29524,5134,20965)
inventory_t <- c(2063,0,964)
net_increase_cash_t <- c(144,5794,-2561)
net_increase_cash_t_m_1 <- c(4574,3896,2447)
marketable_sec_t <- c(133819,17313,104469)
marketable_sec_t_m_1 <- c(131618,25310,94340)

# Current Assets
current_assets_t <- c(175552,46386,147437)

# Accounting Forecasting Formulas

#

accounting_function <- function(macro_factor , rev_up_down){

# Forecast Revenue
revenue_forecast <- revenue_t*(1 + revenue_rate + (macro_factor*rev_up_down) )
# Forecast Net Income
net_income_forecast <- net_income_t +

((1- tax_rate )*( revenue_rate +
(macro_factor*rev_up_down)) *gross_profit_t)

# Forecast Current Liabilities
current_liabilities_forecast <- current_liabilities_t +

( (revenue_rate + (macro_factor*rev_up_down))

21Code using CVXfromR package created by professor Jacob Bien.
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*accounts_payable_t)
# Forecast Equity
equity_forecast <- equity_t + (retained_earnings_t - retained_earnings_t_m_1)

# Forecast Assets
assets_forecast <- assets_t + (( revenue_rate + (macro_factor*rev_up_down ))*

(accounts_receivable_t + inventory_t)) +
net_increase_cash_t + (net_increase_cash_t- net_increase_cash_t_m_1) +
(marketable_sec_t - marketable_sec_t_m_1)

# Forecast Current Assets
current_assets_forecast <- current_assets_t +

(( revenue_rate + (macro_factor*rev_up_down ))*( accounts_receivable_t + inventory_t)) +
net_increase_cash_t + (net_increase_cash_t- net_increase_cash_t_m_1) +
(marketable_sec_t - marketable_sec_t_m_1)

vector_accounting <- c(sum(revenue_forecast), sum(net_income_forecast),
sum(current_liabilities_forecast),sum(equity_forecast),
sum(assets_forecast), sum(current_assets_forecast ))

return(vector_accounting)

}

# Size of the distribution
size_p_distribution <- 8
size_q_distribution <- 8

# A_accounting
A_accounting <- matrix( c(accounting_function(1,0.05),

accounting_function(0.5, -0.05),
accounting_function(0.7, -0.05),
accounting_function(0.9, -0.05),
accounting_function(0.2, 0.05),
accounting_function(0.55, -0.05),
accounting_function(0.75, -0.05),
accounting_function(1,-0.05)),

ncol=size_q_distribution , byrow = F)

# Optimization Shannon ’s entropy using CVXfromR
n <- size_q_distribution
A <- A_accounting
b <- A%*% c(0.5/7,0.5/7,0.5/7,0.5/7,0.5/7,0.5/7,0.5/7,0.5)

opt.vals <- CallCVX(cvxcode , const.vars=list(n=n, A=A, b=b),
opt.var.names="pmaxent")

priori_distribution <- c(0.5/7,0.5/7,0.5/7,0.5/7,0.5/7,0.5/7,0.5/7,0.5)
posteriori_distribution <- opt.vals$pmaxent

Figure 10: A posteriori distribution.
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5.1.5 Estimation of the price from a big agent perspective

Now, we are ready to compute the price of the MSFT call option from the perspective of the big agent.
From Corollary 2.5, we remember that the formula for the price of a big agent is given by

P (C) = EQλ̄
[
e−
∫ T
0 rsds (ST −K)+

]
= EP

[
m∑
k=1

1Λk×ΩW̄ e
−
∫ T
0
krsds

(
kST −K

)
+

(
λk
pk

)
exp

{
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0

kθl · dWl −
1

2
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0
| kθl|2dl

}]

=
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λkE(kQλ̄)

[
e−
∫ T
0
krsds

(
kST −K
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+

]
(5.46)

where kS(i) satisfies the dynamics of the form
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(5.47)

kQλ̄ is given by

d(kQλ̄)

dP
:=

dQΛ

dP
exp

{
−
∫ T

0

kθl · dWl −
1

2

∫ T

0
| kθl|2dl

}
, (5.48)

and the process

kW t :=

∫ t

0

kθldl +Wt (5.49)

is an n−dimensional Brownian motion under kQλ̄. Since we are going to make the estimation of prices
of call options on short periods of time, we can assume the parameters are constants. Therefore, we
can use all the machinery we have developed so far. Using the standard procedure to price Black-
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Scholes-Merton formula for call options, we get

P (C)
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(5.50)

where

vk = T

3∑
j=1

(
kσ(ij)

)2
(5.51)

and

fk(
kS

(i)
0 ) = log(S

(i)
0 ) +

−1

2

3∑
j=1

(
kσ(ij)

)2
+ kr

T. (5.52)

The code is provided below

# price of big agent
vector_of_strikes <- c(strike_msft , strike_orcl , strike_goog)
list_prices_big_agent <- list()
vector_prices_big_agent <- c()
j <- 0
p_big_agent <- function(s_0,sigma_agent ,t, K, r){

c1 <- dot_product(sigma_agent , sigma_agent)
f <- log(s_0) + ((-c1/2) + (r/100))*(t/365)
first_term <- exp(-(r/100)*(t/365))*exp(f)*exp((t/365)*c1*0.5)*

pnorm( ((f - log(K))/ sqrt((t/365)*c1)) + sqrt((t/365)*c1))
second_term <- exp(-(r/100)*(t/365))*K*pnorm (((f - log(K))/ sqrt((t/365)*c1)))
price_formula <- first_term - second_term
return(price_formula)

}
for (stock in list_of_stocks ){

j <- j + 1
for (i in c(0: ( length(t_bill_1year_daily) - start_date_bond_analysis ))){

t_maturity <-
as.numeric(difftime(maturity_1t_bill ,

index(t_bill_1year_daily[i + start_date_bond_analysis]), units = "days"))
if (i > t_forecast ){

vector_prices_big_agent <- c(vector_prices_big_agent ,
p_big_agent(as.numeric(stock_step_ahead[[j]][i - t_forecast]),

list_sigma [[1+ i]][j,], t_maturity , vector_of_strikes[j],
as.numeric(t_bill_1year_daily[start_date_bond_analysis + t_forecast ])) )

}
else {

vector_prices_big_agent <- c(vector_prices_big_agent ,
p_big_agent(as.numeric(stock[start_date_bond_analysis + i]),

list_sigma[[1+i]][j,], t_maturity ,
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vector_of_strikes[j],
as.numeric(t_bill_1year_daily[start_date_bond_analysis + i])) )

}

}
list_prices_big_agent [[j]] <- vector_prices_big_agent
vector_prices_big_agent <- c()

}

5.2 Estimation of parameters for small agents

In the application of the theory just described, we can assume that the retail investors are interested
in 2 stocks of a set of 3 correlated stocks. In other words, for each α-stereotyped agent, Vα = R2×{0}.
This hypothesis makes sense since small investors cannot keep track and trade many stocks at the
same time. In addition to that, and since we want to forecast prices within short periods of time, we
also assume that the processes ut in Uα are deterministic. The idea behind this assumption is based
on how the stock option models are applied in the financial markets: the random variables of a model
such as interest rates, volatility, etc., are upgraded every day and considered as constant inputs in the
model to price the option.

Estimate of σ̂α and µ̂α

We assume the estimation σ̂α and µ̂α comes from the solution to the linear equations 5.27.

5.2.1 Estimate of η̂α

The estimation of ηα is straightforward using the formula η̂α = (σ̂α)−1(µ̂α − r̂Jn,1). The code is
provided below

# Eta estimation
j <- 0
list_eta_stocks <-list()
length_mu <- length(list_mu[[1]])
for (i in c(0:( length(MSFT_Close)-start_date_time_s_analysis ))){

list_eta_stocks [[i+1]] <-
ginv(list_sigma [[i+1]]) %*%( list_mu[[i+1]] -

rep(t_bill_1year_daily[start_date_time_s_analysis +i],length_mu))
}

5.2.2 Estimate of %̂α and λα for the bond model

To estimate the %α, we will use 1-year treasury bills. The formula used in practice 22 to compute the
price of a 1-year treasury bill with expiration date T ; time (in days) that has passed since quote date
t; and interest rate r is given by

bt,T =

[
1−

(
T − t
360

)
r

]
. (5.53)

22https://www.nasdaq.com/articles/how-calculate-price-treasury-bills-2016-01-05
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Now, to estimate %α, we will use Lagrange multipliers together with the maximum likelihood approach
as with σ̂. We start by describing the dynamics, and likelihood function of the zero-coupon bond
Bα
t,T . We will assume Bα

t,T is the same for each agent α ∈ A. To estimate the parameters using
maximum likelihood method on transition functions, we will assume the parameters rα, %α, ηα and σα

as constants. Then, using Ito’s formula, and dBα
t,T = Bα

t,T [(rαt + (%αt )∗σαt η
α
t )dt+ (%αt )∗σαt dWt]. we get

d ln(Bα
t,T ) = (rα + (%α)∗σαηα)dt− 1

2
((%α)∗σα)((%α)∗σα)∗dt+ (%α)∗σαdWt. (5.54)

Thus,

Bα
t,T = Bα

0,T exp

{(
rα + (%α)∗σαηα − 1

2
((%α)∗σα)∗((%α)∗σα)

)
t+ (%α)∗σαWt

}
. (5.55)

Following the same ideas to construct likelihood function as in 5.18, we have that the transition
functions of the zero-coupon bond are given by

Ptn−tn−1(bαtn−1
, bαtn)

=
1

btn
√

2π‖(%α)∗σα‖2∆t
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−
(
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[
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2
‖(%α)∗σα‖2

]
∆t

)
2∆t‖(%α)∗σα‖2

 .

(5.56)

We make some transformations on the transition probabilities to compute the maximum likelihood
estimators. Let λ be a function defined as λ(%α) = σα%α. We can see that λ is a homeomorphism
of {(%α,(1), ..., %α,(n)) : %α,(1), ..., %α,(n) ∈ R} onto itself. Therefore, by using this transformation, our
likelihood function can be written as

f(λα,(1), ..., λα,(n); bαt1,T , ..., b
α
tM ,T

)

=
M∏
k=1

1

btk,T
√
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2
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)2
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 .

(5.57)

After some computations, we get

∂ log f(λα,(1), ..., λα,(n); bαt1,T , ..., b
α
tM ,T

)
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=
−M

2

[
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rα + (λα)∗ηα − 1

2
‖λα‖2

]
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)
2∆t‖λα‖2

= λα,(i)g1(∆t, rα, ηα, ‖λα‖, bt1,T , ..., btM ,T ) + ηα,(i)g2(∆t, rα, ηα, ‖λα‖, bt1,T , ..., btM ,T ),

(5.58)
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where

g1(∆t, rα, ηα, ‖λα‖, bt1,T , ..., btM ,T )

=
−M
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+
1
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and

g2(∆t, rα, ηα, ‖λα‖, bt1,T , ..., btM ,T )

=
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(5.60)

However, we need some restriction on λα to get a solution. We begin by making the expected values
equal to the past values of the bond.23 Assume that bt,T is the market value of the zero-coupon bond,
then by solving the equation

E

[
Bα

0,T exp

{(
rα + (%α)∗σαηα − 1

2
((%α)∗σα)∗((%α)∗σα)

)
t+ ((%α)∗σα)∗Wt

}]
= bt,T , (5.61)

and using the expected value formula for log-normal distributions, we get

Bα
0,T exp

{
(rα + (λα)∗ηα)t− 1

2
‖λα‖2t+

1

2
‖λα‖2t

}
= bt,T . (5.62)

Solving this equation for (λα)∗λα, we obtain

(λα)∗λα =

(
log
(
bt,T /B

α
0,T

)
/t− rα

)2

(ηα)∗ηα
. (5.63)

Now, we will use Lagrange multipliers with target function 5.57 and restriction 5.63, this lead us
to

L(λα, k) = log f(λα,(1), ..., λα,(n); bαt1,T , ..., b
α
tM ,T

)− k

‖λα‖2 −
(

log
(
bt,T /B

α
0,T

)
/t− rα

)2

(ηα)∗ηα

 . (5.64)

Using 5.58, we get that the conditions of the first order conditions of the Lagrangian function are of
the form

∂ logL(λα, k)

∂λα,(i)

= λα,(i)g1(∆t, rα, ηα, ‖λα‖, bt1,T , ..., btM ,T ) + ηα,(i)g2(∆t, rα, ηα, ‖λα‖, bt1,T , ..., btM ,T )− 2kλα,(i)

= 0

(5.65)

23This method is similar to the implied volatility method used in the Black-Scholes-Merton formula.
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for i = 1, 2, 3., and

∂L(λα, k)

∂k
= −

‖λα‖2 −
(

log
(
bt,T /B

α
0,T

)
/t− rα

)2

(ηα)∗ηα

 = 0. (5.66)

From equation 5.65, we get that

(λα,(i))2

(ηα,(i))2
=

(g2(∆t, rα, ηα, ‖λα‖, bt1,T , ..., btM ,T ))2

(g1(∆t, rα, ηα, ‖λα‖, bt1,T , ..., btM ,T )− 2k)2 . (5.67)

Since the right-hand side of the equation does not depend on i, we get that

(λα,(i))2

(ηα,(i))2
=

(λα,(j))2

(ηα,(j))2
(5.68)

for any i, j = 1, 2, 3. Now, using the previous equation, we get

3∑
i=1

(λα,(i))2 =
(λα,(j))2

(ηα,(j))2

3∑
i=1

(ηα,(i))2 (5.69)

for j = 1, 2, 3. By the use of the condition 5.66, these equations can be rewritten as(
log
(
bt,T /B

α
0,T

)
/t− rα

)2

(ηα)∗ηα
=

(λα,(j))2

(ηα,(j))2

3∑
i=1

(ηα,(i))2. (5.70)

Therefore,

λ̂α,(j) =

(
log
(
bt,T /B

α
0,T

)
/t− rα

)
η̂α,(j)

‖η̂α‖2
, %̂α,(j) = (σ̂−1λ̂α)(j) for j = 1, 2, 3. (5.71)

The code for λ̂α,(j) is the following

# Estimation bond price

# start date maximum likelihood estimation bond
start_date_maximum_likelihood_bond <-

min(which(format(index(t_bill_1year_daily), "%Y-%m-%d") == ’2016-01-06’))

# start date 1-Year Treasure Bill analysis
start_date_bond_analysis <-

min(which(format(index(t_bill_1year_daily), "%Y-%m-%d") == start_time_series_date))

# maturity bond
maturity_1t_bill <-as.Date("2019-10-18", tz = "UTC")

# How to price Treasury Bills
# https ://www.nasdaq.com/articles/how -calculate -price -treasury -bills -2016-01-05
bond_price_function <- function(r){

a <- as.numeric(difftime(maturity_1t_bill ,index(r), units = "days"))
decimal_rate <- as.numeric(r)/100
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b <- (a* decimal_rate)/365
return( 1- b )

}

# Real 1 year T-Bill prices
bond_prices <- lapply(t_bill_1year_daily ,bond_price_function)
bond_prices <- bond_prices$DTB1YR

# restrictions of the maximum likelihood estimation of /rho for bonds
product <- function(x){

a <- sum(x*x)
return(a)

}

t <- 0
numerator_formula <- 0
denominator_formula <- 0
log_b_B <- 0
eta_inner_product <- lapply(list_eta_stocks , product)
list_bond_lambdas <- list()
for (i in c(0: ( length(t_bill_1year_daily) - start_date_bond_analysis ))){

t <- as.numeric(difftime(maturity_1t_bill ,
index(t_bill_1year_daily[i + start_date_bond_analysis]), units = "days"))

log_b_B <- log(bond_prices[i + start_date_bond_analysis ]/
bond_prices[start_date_bond_analysis ])

numerator_formula <- (log_b_B/(t/365) -
(as.numeric(t_bill_1year_daily[i+start_date_bond_analysis ]/100)) )*

list_eta_stocks [[i+1]]
denominator_formula <- eta_inner_product [[i+1]]
list_bond_lambdas [[i+1]] <- numerator_formula/denominator_formula

}

Now, by the use of the definition of the homeomorphism

%α,(j) = (σ−1λα)(j) (5.72)

for j = 1, 2, 3., we get

# list of var_rho parameters of the bond model
list_var_rho <- list()
for (i in c(0:( length(t_bill_1year_daily)-start_date_bond_analysis ))){

list_var_rho[[i+1]] <- ginv(list_sigma [[i+1]])%*% list_bond_lambdas [[i+1]]
}

5.2.3 Estimate of ˆ̂%

Since %α must lie in Vα = R2 × {0}, we must ensure that any estimation of %̂α must lie in Vα too.
Given the fact that the stocks, and the bond are close to maturity, it is expected that the values
of %̂ and λ̂α should be close to zero. Therefore, we should use the estimator ˆ̂% = π1,2(%̂α) where
π1,2 : R3 → R2 × {0} is defined by π1,2(x, y, z) = (x, y, 0). We provide the code for the estimation of
ˆ̂% together with the error of estimation of the bond prices under the estimation ˆ̂%

# Bond price estimation using the SDE
a<- 0 # variable used to build formula_bond_estimation variable
formula_estimation_bond <- 0
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# abs value of difference between formula_estimation_bond and bond_prices
error_bond_estimation <- list()
# estimation of bond prices using projection_var_rho instead of list_var_rho
list_estimation_bond <- list()
# estimation of list_var_rho using its projection on R^{2} \times {0}
projection_var_rho <- list()
for (i in c(0:( length(t_bill_1year_daily)-start_date_bond_analysis ))){

t <-
as.numeric(difftime(maturity_1t_bill ,

index(t_bill_1year_daily[i + start_date_bond_analysis]),
units = "days"))

projection_var_rho[[i+1]] <- c(list_var_rho[[i+1]][1],list_var_rho[[i+1]][2], 0)
a <-( t(list_sigma[[i+1]]%*% projection_var_rho[[i+1]])%*% list_eta_stocks [[i+1]])
a <- (a + as.numeric(t_bill_1year_daily[i+start_date_bond_analysis ]/100))*(t/365)
formula_estimation_bond <- exp(a)*bond_prices[start_date_bond_analysis]
list_estimation_bond[[i+1]] <- formula_estimation_bond
error_bond_estimation [[i+1]] <- abs(list_estimation_bond[[i+1]] -

bond_prices[i + start_date_bond_analysis ])
}

The errors of the estimation are the following

Figure 11: Bond estimation error using ˆ̂%α

5.2.4 Estimate of ρ̂α

The estimation of ρα comes from the formula ρ̂α = (σ̂α)−1(µ̂α − r̂αJn×1 − σ̂α(σ̂α)∗ ˆ̂%α).

# Estimation \rho^{\ alpha}
i <- 0
list_rho <- list()
for (i in c(0:( length(MSFT_Close)-start_date_time_s_analysis ))){

a <- list_sigma[[i+1]]%*% projection_var_rho[[i+1]]
list_rho[[i+1]] <- list_eta_stocks [[i+1]] - a

}
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5.2.5 Estimate of u

Since ρα and uα are deterministic functions, we have

V α,C,u
t = EQρα,u

[
C − 1

2γα

∫ T

t
‖ρα,us ‖2ds

∣∣∣∣Ft]
=

1

2γα

∫ t

0
‖ρα,us ‖2ds+ EQρα,u

[
C − 1

2γα

∫ T

0
‖ρα,us ‖2ds

∣∣∣∣Ft]
= V α,C,u

0 +
1

2γα

∫ t

0
‖ρα,us ‖2ds+

∫ t

0
(πα,us )∗σαs · dWα.u

s ,

(5.73)

and by the representation theorem of martingales (see for instance Revuz and Yor, 1999, Section V.4)

EQρα,u [C| Ft] = EQρα,u [C] +

∫ t

0
(πα,us )∗σαs · dWα.u

s . (5.74)

In the case of a vanilla option i.e. options whose payoffs depends on the terminal value of the
underlying asset we have

C = f (ST ) = (f ◦ g)
(
Wα,u
T

)
, (5.75)

and as a result

EQρα,u
[
(f ◦ g)

(
Wα,u
T

)∣∣Ft] = EQρα,u
[
(f ◦ g)

(
Wα,u
T

)]
+

∫ t

0
(πα,us )∗σαs · dWα.u

s . (5.76)

for some measurable functions f and g.

Let us assume that f and g are C2, and that (Pt)
∞
t=0 is the transition probabilities of the Qρ

α,u-
Brownian motion (Wα,u

t )Tt=0, then using the definition of Markov property via transition probabilities,
and Ito’s formula, we get

EQρα,u
[
(f ◦ g)

(
Wα,u
T

)∣∣Ft] = PT−t(f ◦ g) (Wα,u
t )

= PT (f ◦ g) (Wα,u
0 ) +

n∑
j=1

∫ t

0

∂

∂xj
PT−l (f ◦ g)

(
Wα,u
l

)
dW

α,u,(j)
l ,

(5.77)

where the other terms accompanying dt are zero because EQρα,u
[
(f ◦ g)

(
Wα,u
T

)∣∣Ft] is a Qρ
α,u-

martingale. By using 5.76 and 5.77 we have that

((πα,ut )∗σαt )(j) =
∂

∂xj
PT−l (f ◦ g)

(
Wα,u
l

)
(5.78)

for each j = 1, ..., n with

(πα,ut )∗σαt =
[
((πα,ut )∗σαt )(1) . . . ((πα,ut )∗σαt )(n)

]
. (5.79)
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Since we want to estimate the u over short periods of time, we will consider it constant to be estimated.
Following these ideas, the dynamics of S(i) can be rewritten as

dS
(i)
t = µ(i)S

(i)
t dt+ S

(i)
t

 n∑
j=1

σ(ij)dW
(j)
t


= S

(i)
t

µ(i)dt+
n∑
j=1

σ(ij)
(
dW

α,u,(j)
t − ρα,u,(j)dt

) .
(5.80)

Therefore, we get

S
(i)
t = S

(i)
0 exp

t
µ(i) −

n∑
j=1

σ(ij)ρα,u,(j) − 1

2

n∑
j=1

(σ(ij))2

+

n∑
j=1

σ(ij)W
α,u,(j)
t

 . (5.81)

Let us use the function gt(·) of class C1,2 as

gs(W
α,u
l ) = S

(i)
0 exp

s
µ(i) −

n∑
j=1

σ(ij)ρα,u,(j) − 1

2

n∑
j=1

(σ(ij))2

+

n∑
j=1

σ(ij)W
α,u,(j)
l

 , (5.82)

where gt(W
α,u
t ) = S

(i)
t . Thus, by the previous notation we have

PT−t(f ◦ gT ) (Wα,u
t )

= EQρα,u
[
(f ◦ gT )

(
Wα,u
T

)∣∣Ft]
= EQρα,u

f
S(i)

0 exp

T
µ(i) −

n∑
j=1

σ(ij)ρα,u,(j) − 1

2

n∑
j=1

(σ(ij))2

+

n∑
j=1

σ(ij)dW
α,u,(j)
T


∣∣∣∣∣∣Ft


= EQρα,u

[
f

(
gT (Wα,u

T )

gt(W
α,u
t )

gt(x)

)]
x=Wα,u

t

.

(5.83)

By using chain rule and 5.82, we get

∂

∂xj
EQρα,u

[
f

(
gT (Wα,u

T )

gt(W
α,u
t )

gt(x)

)]
x=Wα,u

t

=

(
∂gt(x)

∂xj

)∣∣∣∣
x=Wα,u

t

d

dy
EQρα,u

[
f

(
gT (Wα,u

T )

gt(W
α,u
t )

y

)]
y=gt(W

α,u
t )

= σ(ij)S
(i)
t

d

dy
EQρα,u

[
f

(
gT (Wα,u

T )

gt(W
α,u
t )

y

)]
y=gt(W

α,u
t )

.

(5.84)

Now we are ready for the following lemma

Lemma 5.2. Let f(z) = (z −K)+. Then

((πα,ut )∗σαt )(j) = σ(ij)S
(i)
t EQρα,u

[
S

(i)
T

S
(i)
t

1[K,+∞)

(
S

(i)
T

S
(i)
t

y

)]
y=gt(W

α,u
t )

. (5.85)
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Proof. By using approximations to f(x) = (x−K)+ by C2 functions, and the relation

PT−t(h ◦ gT ) (Wα,u
t ) = EQρα,u

[
h

(
gT (Wα,u

T )

gt(W
α,u
t )

gt(x)

)]
x=Wα,u

t

. (5.86)

with h of class C2 as in the equation 5.84 we get the result.

Thanks to Lemma 5.2 the problem of pricing can be solved by maximizing with respect to u the
function fρα,t(z

α,u, u) given by

fρα,t(z
α,u, u) = − 1

2γα
‖ρα,ut ‖2 − (ρα,ut )∗zα,u

= − 1

2γα
‖ρα,ut ‖2 − (ρα,ut )∗((πα,ut )∗σαt )

= − 1

2γα
‖ρα,ut ‖2 −

n∑
j=1

(ρα,ut )(j)σ(ij)S
(i)
t EQρα,u

[
S

(i)
T

S
(i)
t

1[K,+∞)

(
S

(i)
T

S
(i)
t

y

)]
y=gt(W

α,u
t )

.

(5.87)

In order to make the computations easier, we need to rewrite the previous formula to be applied
in an algorithm. We know that

σ(ij)S
(i)
t EQρα,u

[
S

(i)
T

S
(i)
t

1[K,+∞)

(
S

(i)
T

S
(i)
t

y

)]
y=gt(W

α,u
t )

= σ(ij)S
(i)
t EQρα,u

[
eh(Wα,u,t,T,σ,u,α,µ)1[k,∞)

(
yeh(Wα,u,t,T,σ,u,α,µ)

)]
y=gt(W

α,u
t )

,

(5.88)

where

h(Wα,u, t, T, σ, u, α, µ)

= exp


n∑
j=1

σ(ij)(W
α,u,(j)
T −Wα,u,(j)

t ) +

−1

2

n∑
j=1

(σ(ij))2 −
n∑
j=1

σ(ij)ρ
α,u,(j)
t + µ(i)

 (T − t)

 .
(5.89)

Using the fact that Wα,u is an n-dimensional Brownian motion under Qρ
α,u, we get that

EQρα,u

[
S

(i)
T

S
(i)
t

1[K,+∞)

(
S

(i)
T

S
(i)
t

y

)]
y=gt(W

α,u
t )

(5.90)

can be written as

1√
2π(T − t)

∫ ∞

l(σ,u,t,T,S
(i)
t ,K,α)

e−y
2/2(T−t)e(

∑n
j=1(σ(ij))2)

1/2
y+(−

∑n
j=1(σ(ij))2/2−

∑n
j=1 σ

(ij)ρα,u,(j)+µ(i))(T−t)dy,

(5.91)
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where

l(σ, u, t, T, S
(i)
t ,K, α) =

log(k/S
(i)
t ) +

(
1

2

∑n
j=1(σ(ij))2 +

∑n
j=1 σ

(ij)ρ
α,u,(j)
t − µ(i)

)
(T − t)√∑n

j=1(σ(ij))2
. (5.92)

Now, by the binomial formula, we get that 5.88 can be expressed as

σ(ij)S
(i)
t e(−

∑n
j=1 σ

(ij)ρα,u,(j)+µ(i))(T−t)√
2π(T − t)

∫ ∞

l(σ,u,t,T,S
(i)
t ,K,α)

e

− (y − (T − t)(
∑n

j=1(σ(ij))2
)

1/2
)2

2(T − t) dy. (5.93)

By substitution z = y/
√
T − t, the previous formula can be rewritten as

σ(ij)S
(i)
t e(−

∑n
j=1 σ

(ij)ρα,u,(j)+µ(i))(T−t)
√

2π

∫ ∞

l(σ,u,t,T,S
(i)
t ,K,α)/

√
T−t

e

(
y −

√
(T − t)

∑n
j=1(σ(ij))2

)2

2 dy. (5.94)

Using substitution z = y −
√

(T − t)
∑n

j=1(σ(ij))2, the integral∫ ∞

l(σ,u,t,T,S
(i)
t ,K,α)/

√
T−t

e

(
y −

√
(T − t)

∑n
j=1(σ(ij))2

)2

2 dy (5.95)

equals ∫ ∞

(
− log(S

(i)
t /k)+

(
−

1

2
∑n
j=1(σ(ij))2+

∑n
j=1 σ

(ij)ρ
α,u,(j)
t −µ(i)

)
(T−t)

)
/
√

(T−t)
∑n
j=1(σ(ij))2

e

y2

2 dy. (5.96)

Therefore, by symmetry property of the normal distribution, we get

EQρα,u

[
S

(i)
T

S
(i)
t

1[K,+∞)

(
S

(i)
T

S
(i)
t

y

)]
y=gt(W

α,u
t )

= e(−
∑n
j=1 σ

(ij)ρα,u,(j)+µ(i))(T−t)Φ

 log(S
(i)
t /k) +

(
1

2

∑n
j=1(σ(ij))2 −

∑n
j=1 σ

(ij)ρ
α,u,(j)
t + µ(i)

)
(T − t)√

(T − t)
∑n

j=1(σ(ij))2

 .

(5.97)
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In the application of the theory just described, we can assume that the retail investors are interested
in 2 stocks out of a set of 3 correlated stocks. In other words, for each α-stereotyped agent Vα =
R2×{0}. This hypothesis makes sense since small investors cannot keep track and trade many stocks
at the same time. In addition to that, and since we want to forecast prices within short periods of
time, we also assume that the processes ut in Uα are deterministic. The idea behind this assumption
is based on how the stock option models are applied in the financial markets: the random variables
of a model such as interest rates, volatility, etc., are upgraded every day and considered as constant
inputs in the model to price the option.

We can go a little bit further to write 5.97 into a easier formula. Following the hypotheses men-
tioned before, and using the definition of Uα, we get

Uα = {(σα)−1(x) : x ∈ {0} × {0} × R}

=

(σα)−1

0
0
z

 : z ∈ R

 .
(5.98)

Now, using the definition ρα,u = ρα + u, the function fρα,t(z
α,u, u) can be restated as follows

fρα,t(z
α,u, u)

= − 1

2γα
‖ρα,u‖2 −

n∑
j=1

(ρα,u)(j)(σα)(ij)S
(i)
t EQρα,u

[
S

(i)
T

S
(i)
t

1[K,+∞)

(
S

(i)
T

S
(i)
t

y

)]
y=gt(W

α,u
t )

= − 1

2γα

∥∥∥∥∥∥ρα + (σα)−1

0
0
z

∥∥∥∥∥∥
2

− σα
ρα + (σα)−1

0
0
z


(i)

S
(i)
t exp


− n∑

j=1

(σα)(ij)ρα,u,(j) + µ(i)

 (T − t)

Φ
(
ψ(σα, u, t, T, S

(i)
t ,K, α)

)

= − 1

2γα

∥∥∥∥∥∥ρα + (σα)−1

0
0
z

∥∥∥∥∥∥
2

− (σαρα)(i)S
(i)
t exp


− n∑

j=1

(σα)(ij)ρα,(j) + µ(i)

 (T − t)

Φ
(
ψ(σα, u, t, T, S

(i)
t ,K, α)

)
,

(5.99)

where

ψ(σ, u, t, T, y,K, α) =

log(y/k) +

(
1

2

∑n
j=1(σ(ij))2 −

∑n
j=1 σ

(ij)ρ
α,(j)
t + µ(i)

)
(T − t)√

(T − t)
∑n

j=1(σ(ij))2
. (5.100)
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Therefore,

ũ = arg sup
u∈Ṽ⊥α

fρα,t(z, u) = arg sup
(0,0,z)>∈R3

−

∥∥∥∥∥∥ρα + (σα)−1

0
0
z

∥∥∥∥∥∥
2

= arg inf
(0,0,z)>∈R3

∥∥∥∥∥∥ρα + (σα)−1

0
0
z

∥∥∥∥∥∥
2

.

(5.101)

# Estimation hat u
list_hat_u <- list()
list_optimization_u <- list() # list of the arg and target value of the opt process of u
values <- c()
for (j in c(0:( length(MSFT_Close)-start_date_time_s_analysis ))){

values <- c()
target_func_opt_u <- function(z){

a <- list_rho[[j+1]] + (ginv(list_sigma[[j+1]])%*%c(0,0,z))
return(product(a))

}
values <- c(optimize(target_func_opt_u, c(-10000,10000) )$minimum ,

optimize(target_func_opt_u, c(-10000,10000) )$ objective)
names(values) <- c("value min", "value function")
list_optimization_u[[j+1]] <- values
list_hat_u[[j+1]] <- c(0,0,as.numeric(values[1]))

}

5.2.6 Estimation of the price under a small agent perspective

In this part we will generate a more practical formula to compute the price of call options for any
α−stereotyped agent. First, we use the formula for small agents developed in Proposition 3.14 together
with the equation 5.97. Next, we use the estimation of u as in 5.101. Finally, we connect these results
to create the equation we will need to price call options using R code.

We start by explaining what is the role of u in 5.101 in the process of pricing pα(v0, C). As we
observed earlier, the formula of the price of a derivative C from a α−stereotyped agent perspective is
given by the formula

pα(v0, C) = Bα
0,T

(
sup

Qρα,u∼Pα

{
EQ[C]− 1

γα
h(Qρ

α,u|Pα)

}
− sup
Qρα,u∼Pα

{
− 1

γα
h(Qρ

α,u|Pα)

})
. (5.102)

By the use of the comparison theorem for BSDEs (see for instance El Karoui and Rouge, 2000,
Theorem B.2.), and the fact that every expected value EQρα,u [X], can be written in the form

EPα

[
X
dQρ

α,u

dPα

]
, (5.103)

the maximization problem

sup
Qρα,u∼Pα

{
EQρα,u [C]− 1

γα
h(Qρ

α,u|Pα)

}
(5.104)
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is equivalent to the maximization of the driver fρα,t(zt, ut) = −1/2γα‖ρα,ut ‖2−(ρα,ut )∗z of the dynamics

−dV α,C,u
t = fρα,t(z

α,u
t , ut)dt− (zα,ut )∗dWt of the process

V α,C,u
t = EQρα,u

[
C − 1

2γα

∫ T

t
‖ρα,ut ‖2dt

∣∣∣∣Ft] (5.105)

with initial value satisfying

V α,C,u
0 = EQρα,u [C]− 1

γα
h(Qρ

α,u|Pα). (5.106)

Therefore using the expression 5.97, the definition of ũ as in 5.101, and the fact that the estimators
of all the parameters of the models are constants, we get

sup
Qρα,u∼Pα

{
EQρα,u [C]− 1

γα
h(Qρ

α,u|Pα)

}
= EQρα,ũ [C]− 1

γα
h(Qρ

α,ũ|Pα)

= EQρα,ũ

[(
S

(i)
T −K

)
+

]
− 1

2γα
‖ρα,ũ‖2T.

(5.107)

We will rewrite the formula

EQρα,ũ

[(
S

(i)
T −K

)
+

]
(5.108)

into a better equation to compute in practice. We have that

EQρα,ũ

[(
S

(i)
T −K

)
+

]
= EQρα,ũ

[(
elog(y)e

∑n
j=1(σα)(ij)W

α,u,(j)
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(
−
∑n
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∑n
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t +µ(i)

)
T −K

)
+

]
= E

Qρ
α,ũ
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ef(y)+X −K

)
+

]
y=S

(i)
0

(5.109)

where

f(y) = log(y) +

− n∑
j=1

((σα)(ij))2/2−
n∑
j=1

(σα)(ij)ρ
α,u,(j)
t + µ(i)

T
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n∑
j=1

(σα)(ij)W
α,u,(j)
T .

(5.110)

Then, using the basic rules of normal distributions and substitution in the integral, we get that

E
Qρ

α,ũ

[(
ef(y)+X −K

)
+

]
y=S

(i)
0

=
1√

2πT
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∫ ∞
log(K)−f(S
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0 )

(
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(ij)
0 )+x −K
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e−x
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j=1((σα)(ij))2
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1√

2πT
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j=1((σα)(ij))2

∫ ∞
log(K)−f(S

(ij)
0 )

ef(S
(i)
0 )+xe−x
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∑n
j=1((σα)(ij))2
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0 )− log(K)√
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 .

(5.111)
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If we use the notation

v =

√√√√T

n∑
j=1

((σα)(ij))2, (5.112)

we have that formula 5.111 can be written as
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Therefore,

sup
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where in this case
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Now, we have to solve
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the solution to the previous maximization problem is the same as ũ in 5.101. Therefore, the estimation
of price of the derivative C, with underlying S(i) with i = 1, 2, from an α−stereotyped agent perspective
is given by

pα(v0, C)/Bα
0,T

=

(
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{
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where

f(S
(i)
0 ) = log(S

(i)
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− n∑
j=1

((σα)(ij))2/2−
n∑
j=1

(σα)(ij)ρ
α,(j)
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From this estimation method of the prices of small agents, we can conclude that the prices seem to
not be affected by the level of risk aversion. These findings do not offer a contradiction, but they agree
to some extent with economists such as Eugene Fama. The following is the code to compute the price
of the big agent.

# price of small agents
t_forecast <- length(MSFT_Close)-start_date_time_s_analysis -2
length(t_bill_1year_daily) - start_date_bond_analysis -2
vector_of_strikes <- c(strike_msft , strike_orcl , strike_goog)
list_prices_small_agents <- list()
vector_prices_small_agents <- c()
j <- 0

p_small_agent <- function(s_0,sigma_agent , rho_agent ,t, K, mu){
c1 <- dot_product(sigma_agent , sigma_agent)
c2 <- dot_product(sigma_agent , rho_agent)
f <- log(s_0) + ((-c1/2) - (c2) + mu)*(t/365)
first_term <- exp(f)*exp((t/365)*c1*0.5)* pnorm( ((f - log(K))/ sqrt((t/365)*c1)) +
sqrt((t/365)*c1))

second_term <- K*pnorm (((f - log(K))/ sqrt((t/365)*c1)))
price_formula <- (first_term - second_term)*as.numeric(list_estimation_bond[[i+1]])
return(price_formula)

}

for (stock in list_of_stocks ){
j <- j + 1
for (i in c(0: ( length(t_bill_1year_daily) - start_date_bond_analysis ))){

t_maturity <-
as.numeric(difftime(maturity_1t_bill ,
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index(t_bill_1year_daily[i + start_date_bond_analysis]), units = "days"))
if (i > t_forecast ){

vector_prices_small_agents <-
c(vector_prices_small_agents ,

p_small_agent(as.numeric(stock_step_ahead[[j]][i - t_forecast]),
list_sigma [[1+ t_forecast ]][j,], list_rho[[1+ i]], t_maturity ,

vector_of_strikes[j], list_mu[[1+ i]][j]) )
}
else{

vector_prices_small_agents <- c(vector_prices_small_agents ,
p_small_agent(as.numeric(stock[start_date_bond_analysis + i]),

list_sigma [[1+i]][j,], list_rho[[1+i]], t_maturity ,
vector_of_strikes[j], list_mu[[1+i]][j]) )

}

}
list_prices_small_agents [[j]] <- vector_prices_small_agents
vector_prices_small_agents <- c()

}

#Mixture Diffusion Pricing
sigma_up <- 0.005
sigma_down <- -0.005
drift_up <- 0.005
drift_down <- -0.005
vector_macro_factors <- c(1,0.5,0.7,0.9,0.2,0.55,0.75,1)
risk_f_rate_factors <- c(drift_up, drift_down , drift_down , drift_down ,

drift_up , drift_down , drift_down , drift_down)*
vector_macro_factors

sigma_factors <- c(sigma_down , sigma_up , sigma_up , sigma_up ,
sigma_down , sigma_up , sigma_up , sigma_up)*

vector_macro_factors

vector_of_strikes <- c(strike_msft , strike_orcl , strike_goog)
list_prices_big_agent <- list()
vector_prices_big_agent <- c()
j <- 0
p_big_agent <- function(s_0,sigma_agent ,t, K, r){

c1 <- dot_product(sigma_agent , sigma_agent)
f <- log(s_0) + ((-c1/2) + (r/100))*(t/365)
first_term <- exp(-(r/100)*(t/365))*exp(f)*exp((t/365)*c1*0.5)*

pnorm( ((f - log(K))/ sqrt((t/365)*c1)) + sqrt((t/365)*c1))
second_term <- exp(-(r/100)*(t/365))*K*pnorm (((f - log(K))/ sqrt((t/365)*c1)))
price_formula <- first_term - second_term
return(price_formula)

}
for (stock in list_of_stocks ){

j <- j + 1
for (i in c(0: ( length(t_bill_1year_daily) - start_date_bond_analysis ))){

t_maturity <- as.numeric(difftime(maturity_1t_bill ,
index(t_bill_1year_daily[i + start_date_bond_analysis]), units = "days"))

if (i > t_forecast ){
mix_price <- 0
for (k in c(1:size_q_distribution )){

mix_price <- mix_price + (posteriori_distribution[k]*
p_big_agent(as.numeric(stock_step_ahead[[j]][i - t_forecast]),

list_sigma [[1+ i]][j,]*(1 + sigma_factors[k]), t_maturity ,
vector_of_strikes[j],

as.numeric(t_bill_1year_daily[start_date_bond_analysis + t_forecast ])*
(1 + risk_f_rate_factors[k])))

}
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vector_prices_big_agent <- c(vector_prices_big_agent ,mix_price )
}
else {

mix_price <- 0
for (k in c(1:size_q_distribution )){

mix_price <- mix_price + (posteriori_distribution[k]*
p_big_agent(as.numeric(stock[start_date_bond_analysis + i]),

list_sigma [[1+i]][j,]*(1 + sigma_factors[k]), t_maturity ,
vector_of_strikes[j],

as.numeric(t_bill_1year_daily[start_date_bond_analysis + i])*
(1+risk_f_rate_factors[k]) ))

}
vector_prices_big_agent <- c(vector_prices_big_agent , mix_price)

}

}
list_prices_big_agent [[j]] <- vector_prices_big_agent
vector_prices_big_agent <- c()

}

5.2.7 Coefficients of market participation of small and big agents

In this part, we will use the previous information of the prices of the agents in the market to build
the market price. We recall that we will price an MSFT call option using the information of three
derivatives in the market

Characteristic
Call option

MSFT
Call option

ORCL
Call option

GOOG

Issue date 2019-08-01 2019-08-01 2019-08-01

Maturity date 2019-10-18 2019-10-18 2019-10-18

Strike 140 55 1200

Table 7: Stock options under analysis.

For this purpose, we will use the idea mentioned at the beginning of this work. In other words, we will
compute the OLS coefficient to known what is the impact of the the prices that propose each agent on
the market price. After fitting the OLS model, we will make time series analysis on the OLS errors.
Finally, we will add the values of the OLS model and the estimation of the error to get an estimation
of the market price of the call options of MSFT.

The following is the code for the call option prices of MSFT, ORCL, and GOOG.

# get number of the column of bids of call options
# for list of quotes of MSFT
number_column_bid_1545_msft <-

which(colnames(at_common_maturity_msft[[1]]) == "bid_1545")
# for list of quotes of ORCL
number_column_bid_1545_orcl <-

which(colnames(at_common_maturity_orcl[[1]]) == "bid_1545")
# for list of quotes of GOOG
number_column_bid_1545_goog <-

which(colnames(at_common_maturity_goog[[1]]) == "bid_1545")
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# get number of the column of asks of call options
# for list of quotes of MSFT
number_column_ask_1545_msft <-

which(colnames(at_common_maturity_msft[[1]]) == "ask_1545")
# for list of quotes of ORCL
number_column_ask_1545_orcl <-

which(colnames(at_common_maturity_orcl[[1]]) == "ask_1545")
# for list of quotes of GOOG
number_column_ask_1545_goog <-

which(colnames(at_common_maturity_goog[[1]]) == "ask_1545")

# take the bid prices of of the list of quotes
#for MSFT
bid_1545_msft <-

lapply(at_common_maturity_msft ,"[[",number_column_bid_1545_msft)
#for ORCL
bid_1545_orcl <-

lapply(at_common_maturity_orcl ,"[[",number_column_bid_1545_orcl)
#for GOOG
bid_1545_goog <-

lapply(at_common_maturity_goog ,"[[",number_column_bid_1545_goog)

# take the ask prices of of the list of quotes
#for MSFT
ask_1545_msft <-

lapply(at_common_maturity_msft ,"[[",number_column_ask_1545_msft)
#for ORCL
ask_1545_orcl <-

lapply(at_common_maturity_orcl ,"[[",number_column_ask_1545_orcl)
#for GOOG
ask_1545_goog <-

lapply(at_common_maturity_goog ,"[[",number_column_ask_1545_goog)

# get list of bid prices and convert them into a vector
# for MSFT
bid_1545_msft <- unlist(bid_1545_msft , use.name=FALSE)
# for ORCL
bid_1545_orcl <- unlist(bid_1545_orcl , use.name=FALSE)
# for GOOG
bid_1545_goog <- unlist(bid_1545_goog , use.name=FALSE)

# get list of ask prices and convert them into a vector
# for MSFT
ask_1545_msft <- unlist(ask_1545_msft , use.name=FALSE)
# for ORCL
ask_1545_orcl <- unlist(ask_1545_orcl , use.name=FALSE)
# for GOOG
ask_1545_goog <- unlist(ask_1545_goog , use.name=FALSE)

# market prices
# for MSFT
market_call_option_price_msft <- (bid_1545_msft + ask_1545_msft)/2
# for ORCL
market_call_option_price_orcl <- (bid_1545_orcl + ask_1545_orcl)/2
# for GOOG
market_call_option_price_goog <- (bid_1545_goog + ask_1545_goog)/2
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With this block of code we can compute the OLS coeffcients without intercept as follows

# OLS errors for the P = /beta*prices + error model
list_error_ols <- list()
length(MSFT_Close) - start_date_time_s_analysis
length_msft_op_price <- length(market_call_option_price_msft)
ols_msft <- lm(formula = market_call_option_price_msft[1:( length_msft_op_price -2)] ~

list_prices_big_agent [[1]][1:( length_msft_op_price - 2)] +
list_prices_small_agents [[1]][1:( length_msft_op_price - 2)] + 0)

for (i in c(0: (length(MSFT_Close) - start_date_time_s_analysis -2 ) )) {
list_error_ols[[i+1]] <- market_call_option_price_msft[i+1] -

as.vector(ols_msft$coefficients) %*% c(list_prices_big_agent [[1]][i+1],
list_prices_small_agents [[1]][i+1])

}

Figure 12: OLS coefficients.

There are some remarks that have to be pointed out about the OLS estimation. Since the data we
are using in this work is not big enough, we are assuming Yt constant for every t. Moreover, this part
is not intended to analyze the impact that trading volume has on the price of financial instruments.
Instead, the idea is to give an estimation of the impact that each one of the agents has on the prices
based on the amount of information they have. In other words, the more information an agent has,
the more accurate its price estimation will be, and therefore, the more supply and demand will be
around that price level. This idea is captured by the model since ‖Yt‖ ≤ 1, and most of the weight of
Yt belongs to the big agent.

5.2.8 Time series analysis of the errors

In this part, we analyze the errors in the model. In the following picture we notice that the series is
not stationary. Therefore, we apply the difference operator once to check if the property holds.

124



−0.4

−0.2

0.0

0.2

Aug 01 Aug 15 Sep 01 Sep 15
Dates

variable

Error OLS

Error OLS

−0.2

0.0

0.2

0.4

0.6

Aug 01 Aug 15 Sep 01 Sep 15
Dates

variable

Diff Error OLS

Diff Error OLS: ∇ε

As it was showed in the image above, the first differentiation shows signs stationarity characteristic.
We make the Augmented Dickey-Fuller test. Since the p-value is less than 0.05, the data does not
have a unit root and is stationary24. Now, we make ACF and PACF analysis on the transformed data.

24Source code in Appendix F
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The functions show patterns of a possible ARIMA(1,1,1) model as it was explained for the implied
volatility case. We will use the model ARIMA(1,1,1) for the errors that come from OLS in this
example.

5.2.9 Calibration and forecasting

In the following example, we will assume that big and small investors want to invest in an MSFT call
option issued at 2019-08-01 with maturity date at 2019-10-18, and strike 140.

2

3

4

5

Aug 01 Aug 15 Sep 01 Sep 15 Oct 01
Dates

D
ol

la
rs

variable

ARIMA(1,1,1) with intercept

MSFT Call market prices

OLS

Calibration and forecasting

In the previous chart, the blue line shows the price of the micro market; PMt = Y
′
tPt + εt as in 1.4

and 1.5 where the prices of each agent are given by the formulas 5.50, 5.118; and the error follows
an ARIMA(1,1,1). The other two lines correspond to the market price of the MSFT call option, and
the OLS model. The values that come after the vertical black line are the forecasts 1 and 2 steps
ahead. The lack of accuracy of the prediction is due to the SDE model and the Euler-Maruyama
discretization method used to estimate the prices of the stocks, and the sensitivity of the OLS term
to small changes in prices.

For the purpose of comparability, we show that the model proposed in this work is slightly more
accurate than the OLS. However, we need to give a more accurate measure of this idea. We will use
the root mean square deviation (RMSD) for this purpose.
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5.2.10 Conclusions

The pricing method that we propose uses the pricing methods by (El Karoui and Rouge, 2000), and
(Brigo, 2002) to compute the price of the micro-market where there are several risky assets, small
agents, and one big agent. We extend the results by (Brigo, 2002) to a multiprice model, and create
a method for computing the prices of derivatives based on macroeconomic information of the stocks.
In this process, we also develop what we call volatility components, the parts of the volatility that
depends on other stocks that are correlated with the underlying. This result lets analysts have an idea
of where the volatility comes from, and a better understanding of systematic risk. With this model
we capture to some extent how a big firm invest in stock options: technical analysis, fundamental
analysis, and economics. For the small agents we create algorithms to give an estimation of the price
proposed by (El Karoui and Rouge, 2000). We conclude that under this new method the price of
small agents has a similar structure to the Black-Scholes-Merton model, and under this estimation
method the price of small investors does not depend on the level of risk aversion when the relations
of preference are assumed to be given by the negative exponential utility function. The results of
this estimation coincide to some extent with the point of view of some economists such as Eugene
Fama. We use these prices in a linear regression model PMt = Y

′
tPt + εt to determine the price of

this micro-market. The estimation of the OLS coefficients, without the use of any restriction, coincide
with the intuition, ‖Yt‖ ≤ 1, where most of the weight of this coefficient pertains to the big agent.
This conclusion coincides with the purpose of this part of the work that is to give an estimation of the
impact that each one of the agents has on the prices based on the amount of information they have.
In other words, the more information an agent has, the more accurate its price estimation will be, and
therefore, the more supply and demand will be around that price level. The errors were studied using
the difference operator once, and PACF, ACF. We conclude that it follows an ARIMA(1,1,1) pattern.
The model proposed in this work outperforms other standard models such as the OLS. However, the
forecasting capabilities of this model are not as good as expected. The supplementary material of this
work contains the code of each one of the algorithms, and supporting evidence of the macroeconomic
hypotheses and the magnitudes we used in this study.

Appendix A

Throughout this part, all the processes considered are defined on a filtered probability space (Ω,F , (Ft)t≥0, Q)
where (Ft)t≥0 satisfies the usual conditions(see Karatzas and Shreve, 2014). The following results have
been derived from (Meyer, 2000, Section I.9 and III.4) and (Shreve, 2004, Chapter 4).

Proposition A.1. If M is a (Ft, Q)-continuous local martingale with M0 ∈ L2 and 〈M〉T ∈ L1, then
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M is a L2-martingale in [0, T ].

Proof. Let (Tn) be a sequence of increasing stopping times that simultaneously reduces M2 − 〈M〉
and M . Since M2

0 − 〈M〉0 = M2
0 is integrable, we get M2

t∧Tn − 〈M〉t∧Tn is a (Ft, Q)-martingale (for
example see Meyer, 2000, Section I.8). Thus, E[M2

t∧Tn ] ≤ E[M2
0 ] +E[〈M〉T ] <∞ for each n ∈ N and

as result (Mt∧Tn)n∈N is uniformly integrable.

Since Mt∧Tn
a.s−−−→

n→∞
Mt and (Mt∧Tn)n∈N is uniformly integrable, we have Mt∧Tn

L1

−−−→
n→∞

Mt and

therefore
Ms = lim

n→∞
Ms∧Tn = lim

n→∞
E[Mt∧Tn |Fs] = E[Mt|Fs]

for all 0 ≤ s ≤ t ≤ T

Proposition A.2. Let M be a (Ft, Q)-continuous local martingale. If E[supl≤t |Ml|] < ∞ for each
t ≥ 0, then M is martingale.

Proof. Since M satisfies E[supl≤t |Ml|] < ∞ for each t ≥ 0, we have for each sequence of stopping
times (Tn) that reduces M ,

Mt∧Tn
a.s−−−→

n→∞
Mt and Mt∧Tm ≤ sup

l≤t
|Ml|

for eachm ∈ N. Therefore, Mt∧Tn
L1

−−−→
n→∞

Mt, and henceMs = limn→∞Ms∧Tn = limn→∞E[Mt∧Tn |Fs] =

E[Mt|Fs] for each 0 ≤ s ≤ t.

Proposition A.3. Let W = (Wt)t≥0 be a (Ft, Q)-Brownian motion and v a well-behaving, real valued

function. If Mt =
∫ t

0 v(s)dWs, then Mt ∼ N
(

0,
∫ t

0 v
2(s)ds

)
for each t ≥ 0.

Proof. We define the Doleans exponential of a process X as

Et(X) := exp

{
Xt −

1

2
〈X〉t

}
.

Let us now set Mt :=
∫ t

0 v(s)dWs and Yt := Et(2M). We know from basic results for L2
Loc processes

(see Revuz and Yor, 1999, Section IV.2) and Itô’s lemma that Y and E2(M) are local martingale and
semimartingale respectively. Therefore, we can get an increasing sequence of stopping times (Tn) that
reduces Y . Now, by the equality E2

t (M) = Yt exp(〈M〉t), we get E2
t∧Tn(M) = Yt∧Tn exp(〈M〉t∧Tn) ≤

Yt∧Tn exp(〈M〉t) and E4
t∧Tn(M) ≤ Y 2

t∧Tn exp(2〈M〉t).

Since 〈
∫ ·

0 v(s)dWs〉t =
∫ t

0 v
2(s)ds <∞, we get, by using L2-Doob’s maximal inequality, that

E

[
sup
s∈[0,t]

E4
s∧Tn(M)

]
≤ E

[
sup
s∈[0,t]

Y 2
s∧Tn exp(2〈M〉t)

]
≤ 4E[Yt∧Tn ] exp(2〈M〉t)
= 4E[Y0] exp(2〈M〉t)
= 4 exp(2〈M〉t) <∞.
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Because sups∈[0,t] E4
s∧Tn(M) ↑ sups∈[0,t] E4

s (M) as n→∞, we obtain

E

[
sup
s∈[0,t]

E4
s (M)

]
< 4 exp(2〈M〉t) <∞,

and therefore E
[
sups∈[0,t] Es(M)

]
< ∞ for each t ≥ 0. By Proposition A.2, we conclude E(M) is

martingale, and then E[Et(M)] = 1 for all t ≥ 0.

By similar arguments to Proposition A.1 and A.2, we get M is a martingale that, by Itô’s isometry,
has mean 0 and variance

∫ t
0 v

2(s)ds for each t ≥ 0. From these results we conclude

E

[
exp

{
λMt −

λ2

2

∫ t

0
v2(s)ds

}]
= 1,

for all λ, and therefore Mt has the same moment-generating function of a normal random variable
with mean 0 and variance

∫ t
0 v

2(s)ds.

Appendix B

Let (Ω,FT , (Ft), P ) be a filtered probability space where (Ft)t∈[0,T ] satisfies the usual conditions,
and consider the dynamics of the well-behaving, strictly positive risky and riskless assets respectively
(St)t∈[0,T ] and (Bt)t∈[0,T ] on (Ω,FT , (Ft), P ) being given by

dSt = γ(t)Stdt+ v(t)StdWt, dBt = r(t)Btdt,

where W = (Wt)t∈[0,T ] is a (Ft, P )-Brownian motion. If we set S̃t = St/Bt, then, by applying Itô’s

lemma to the function f(x, y) = xy evaluated on the vector semimartingale (St, e
−
∫ t
0 r(s)ds) we get

dS̃t = −r(t)e−
∫ t
0 r(s)dsStdt+ e−

∫ t
0 r(s)dsdSt = (γ(t)− r(t))S̃tdt+ S̃tv(t)dWt. (B.1)

Now, we will find the risk-neutral measure by using Girsanov’s theorem. Let us then set

Dt :=
dQ|Ft
dP |Ft

= exp

{
−
∫ t

0
λ(s)dWs −

1

2

∫ t

0
λ2(s)ds

}
,

where λ(s) =
γ(s)− r(s)

v(s)
and Lt = −

∫ t
0 λ(s)dWs. Since Dt satisfies Dt = 1 +

∫ t
0 DsdLs, we get that

D is continuous local martingale. Moreover, by reasoning showed in the proof Proposition A.3, we get
E[〈L〉T ] <∞, where DT = ET (L), and hence D is a martingale in [0, T ]. Now, by Girsanov’s theorem
we have that

W̃t = Wt − 〈W,L〉t = Wt +

∫ t

0

γ(s)− r(s)
v(s)

ds

is a (Ft, Q)-Brownian motion. Then we get by B.1:

dS̃t = S̃tv(t)dW̃t, S̃t = S̃0 exp

{∫ t

0
v(s)dW̃s −

1

2

∫ t

0
v2(s)ds

}
,
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and therefore S̃ is a (Ft, Q)-martingale in [0, T ] (see proof of Proposition A.3). Finally, if S satisfies
dSt = Stγ(t)dt+v(t)StdWt under the measure P , we get S also satisfies the dSt = Str(t)dt+v(t)StdW̃t

under the measure Q, and the reverse is also true. Moreover the arbitrage-free price does not depend
on γ for the case of European options (see for instance Elliott and Kopp, 2006, Section 7.5). This
shows that dynamics of our risky asset (St)t∈[0,T ] under the risk-neutral measure Q can be assumed
to be of the form 2.3 with numéraire (Bt)t∈[0,T ] satisfying dynamics of the type dBt = r(t)Btdt.

Appendix C

Proposition C.1. Let (Ω,F) a measurable space endowed with two probability measures P and Q
such that Q � P . Then for any sub σ-algebra G and non-negative random variable X on (Ω,F) we
get

EQ[X|G]EP

[
dQ

dP

∣∣∣∣G] = EP

[
X
dQ

dP

∣∣∣∣G] .
Proof. By definition of conditional expectation, it is enough to prove∫

A
EQ[X|G]EP

[
dQ

dP

∣∣∣∣G] dP =

∫
A
EP

[
X
dQ

dP

∣∣∣∣G] dP,
for each A ∈ G . By using Radon-Nikodym’s theorem and basic conditional expectation properties,
we get

∫
A
EP

[
X
dQ

dP

∣∣∣∣G] dP =

∫
A
XdQ =

∫
A

dQ

dP
EQ[X|G]dP =

∫
A
EP

[
dQ

dP
EQ[X|G]

∣∣∣∣G] dP
=

∫
A
EQ[X|G]EP

[
dQ

dP

∣∣∣∣G] dP,
which ends the proof.

Appendix D

Throughout this part all information will be taken from (Jaynes et al., 2003). As it was mention at
the beginning of this work, we are facing the problem of assigning a specific probability distribution
to the macroeconomic model. Assigning probabilities under the standard point of view of statisticians
and mathematicians makes use of the principle of indifference. This process can be done if we can
break the phenomenon that we want to analyze into mutually exclusive, exhaustive possibilities where
no one of them is preferred more than another. However, in many cases such as risk analysis, pricing
derivatives, etc., researchers have initial information that does not change the set of possibilities, but
gives reasons for preferring one possibility to another, and the question is what can they do in this
case?
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The traditional methods deviates from this problem by ignoring fixed information for fixed pa-
rameters and maintaining the idea that sampling probabilities are known frequencies. So far many
researchers have never seen a real problem in which they have prior information about sampling fre-
quencies. Statisticians, and mathematics often starts sampling probabilities by assigning them from
standard mathematical models such as binomial distributions, etc. If we want to be above such false
ideas, we have to give more principles for assigning initial probabilities by logical analysis of the prior
information.

We have defined so far two different problems: estimating a frequency distribution, and assigning
a probability distribution. However, these two problems are almost identical. As a researchers we
want to take into account all of the information we have, and we don’t want conclude things that are
not warranted by the evidence we have. We know that a uniform probability represents an impartial
state of mind, that is, it no favors one over any other possibility. When a researcher has information
about average values of an specific phenomenon, she has reasons for preferring some possibilities over
others, but she would like to assign a probability distribution as uniform as possible and agreeing with
the available information.

The previous problem can be written into a mathematical problem where we first need to find a
measure that quantifies how uniform a distribution is, and then we will need to maximize this function
subjected to some specific restrictions based on our prior information. In other words, our problem will
be a variational problem where we have to maximize this new measure over probability distributions
subjected to some restrictions that reflect our initial information and the properties these distributions
must obey. It is clear that this new measure will quantify the level uncertainty that we have about
the phenomenon in question via a probability distribution.

The following approach that can be found in (Jaynes et al., 2003) is the most cited work of
Shannon’s information theory (Shannon, 1948), and this shows what are the characteristic that this
measure of uncertainty in probability distributions needs to satisfy.

The characteristic of this measure must obey the following assumptions

1. For each n, there exist a numerical measure Hn(λ1...., λn) on Pn that quantifies the ”amount of
uncertainty” expressed by the probability distribution λ̄ = (λ1, ..., λn).

2. Hn has to be a continuous function. If this were not true, we would assume that small changes
in the probability distribution would generate big changes in the amount of the uncertainty.

3. This function has to quantify the idea: the more possibilities considered, the more uncertainty
the researcher faces. This concept can be represented in the scenario where the λi are all equal,
and the function

h(n) := Hn

(
1

n
, ...,

1

n

)
(D.1)

is increasing with respect to n.

4. We require that the measure Hn be consistent, i.e., if there is more than one way of expressing
this value, we must have the same answer for each alternative expression.

Additional to the previous assumption we need to consider another important characteristic of this
function that will allow us to find an algebraic expression for Hn. Suppose that you have a distribution

132



λ̄ = (λ1, q), but now you know that the second alternative can be split into two new alternatives each
one with probabilities λ2 and λ3 respectively, that is λ2 + λ3 = q., then our amount of uncertainty
H2(λ1, q) should satisfy the following equation

H3(λ1, λ2, λ3) = H2(λ1, q) + qH2

(
λ2

q
+
λ3

q

)
. (D.2)

That is, the amount of uncertainty that represent (λ1, λ2, λ3) can be split as the sum of two expressions.
The first part expresses the uncertainty when we remove the possibility that the second event can be
decomposed as two mutually exclusive events with probabilities λ2 and λ3 respectively. The second
term expresses the fact that with probability q the researchers encounters the additional uncertainty
that the events 2 and 3 happens.

For the sake of simplicity, we will drop the index n on Hn because the full proof of shannon make
use of different indeces.

As it is explained in (Jaynes et al., 2003), we can find a most general form for D.2. Suppose
that we start with n propositions (A1, ..., An)and to each one we assign the probabilities (λ1, ..., λn).
Suppose that for some reasons we want to group them to form different large groups, we might group
the first k1 of them as proposition A1 + · · ·+Ak1 and we assign probability v1 = λ1 + · · ·+ λk1 ; then
the next k2 propositions are grouped into Ak1+1 + · · · + Ak1+k2 to which we assign the probability
v2 = λk1+1 + · · ·+ λk1+k2 , etc.

Now we assign the conditional probabilities λ1/v1, ..., λk1/v1 to the propositions A1, ..., Ak1 given
the composite proposition A1 + · · · + Ak1 . The additional uncertainty with probability v1, is then
Hk(λ1/v1, ..., λk/v1). We use the same reasoning for the propositions Ak1+1 + · · · + Ak1+k2 , etc. By
the consistency hypothesis mentioned before the state of uncertainty of (λ1, ..., λn) yield the same
uncertainty to the case where the choices were broken down. Therefore, we get

H(λ1, ..., λn) = H(v1, ..., vr) + v1H

(
λ1

v1
, ...,

λk1

v1

)
+ · · ·+ v2H

(
λk1+1

v2
, ...,

λk1+k2

v2

)
+ · · · (D.3)

that is the general form of D.2.

Since Hn is continuous, it will be enough to determine its formula for all rational number of the
form

λi =
ni∑n
j=1 nj

.

So using D.1 and D.3 we get

h

 n∑
j=1

nj

 = H(λ1, ..., λn) +

n∑
j=1

λjh(nj). (D.4)

Now letting ni = m for all i = 1, ..., n the previous formula becomes

h(mn) = h(m) + h(n). (D.5)

Because m and n are integer we cannot immediately conclude that the solution to D.5 is k ln(·) where
k is a specific constant satisfying initial conditions. Fortunately, this problem can be solved using a
standard procedure. By induction we can extend D.5 to

h(m1 · · ·mk) = h(m1) + · · ·+ h(mk) (D.6)
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and if the factors are the same, we get

h(nk) = kh(n). (D.7)

Now let t and s be two integers greater than or equal to 2. We can then find for any large m an
integer n such that

n

m
≤ ln(s)

ln(t)
<
n+ 1

m
, or tn ≤ sm < tn+1 (D.8)

Since h is increasing, h(tn) ≤ h(sm) ≤ h(sn+1); and by D.7 this is equivalent to

nh(t) ≤ mh(s) ≤ (n+ 1)h(t), (D.9)

and can be rewritten as
n

m
≤ h(s)

h(t)
≤ n+ 1

m
. (D.10)

Taking the difference between D.8 and D.10, we obtain∣∣∣∣h(s)

h(t)
− ln(s)

ln(t)

∣∣∣∣ ≤ 1

m
(D.11)

that is equivalent to ∣∣∣∣ h(s)

ln(s)
− h(t)

ln(t)

∣∣∣∣ ≤ ε (D.12)

where

ε :=
h(t)

m ln(s)
(D.13)

is arbitrarily small. Thus h(t)/ ln(t) must be constant. In other words, h(t) has to be of the form
k ln(t) where k is constant and depend on the logarithm bases. We can leave the base arbitrary for a
moment and just write h(t) as h(t) = ln(t).

Since H is continuous, from D.4 we get that H can be expressed in terms of h and even more

H(λ1, ..., λn) = −
n∑
i=1

λi ln(λi) (D.14)

Appendix E

In this part of the appendix, we will explain how to come up with the accounting equations for
revenue, net income, current liabilities, assets, equity, and current assets used in the implementation
of the model in this work.

We start making some assumptions that are commonly used in financial forecasting

Revenuet+1 ≈ (1 + rrev)Revenuet, (E.1)

COGSt+1 ≈ rCOGSRevenuet+1, (E.2)
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Inventoryt+1 ≈
(

Inventory(Days)

365

)
COGSt+1, (E.3)

Accounts Receivablet+1 ≈
(

Days of sales outstanding

365

)
Revenuet+1, (E.4)

Accounts Payablet+1 ≈
(

Number of days payable

365

)
COGSt+1, (E.5)

Marketable Securitiest+1 ≈ Marketable Securitiest + ∆Marketable Securitiest, (E.6)

Net Increase(Cash)t+1 ≈ Net Increase(Cash)t + ∆Net Increase(Cash)t, (E.7)

Retained Earningst+1 ≈ Retained Earningst + ∆Retained Earningst, (E.8)

Taxest+1 ≈ rtaxEBTt+1 (E.9)

where rrev is the growth rate of revenue, rCOGS is the percentage of COGS to revenue, and rtax is the
tax rate on revenue. In addition to the formulas mentioned above, we include other assumptions based
on practical purposes and the comparatively small changes on the accounts equity capital, PPE, and
debt in short periods of time.

PPEt+1 ≈ PPEt and Equity Capitalt+1 ≈ Equity Capitalt. (E.10)

From these assumptions, we get the following equations for forecasting. For inventories, we get

Inventoryt+1 ≈
(

Inventory(Days)

365

)
COGSt+1

≈
(

Inventory(Days)

365

)
rCOGSRevenuet+1

≈
(

Inventory(Days)

365

)
rCOGS(1 + rrev)Revenuet

≈
(

Inventory(Days)

365

)
(1 + rrev)COGSt

≈ (1 + rrev)Inventoryt.

(E.11)

For accounts receivable

Accounts Receivablet+1 ≈
(

Days of sales outstanding

365

)
Revenuet+1

≈
(

Days of sales oustanding

365

)
(1 + rrev)Revenuet

≈ (1 + rrev)Accounts Receivablet.

(E.12)
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For accounts payable

Accounts Payablet+1 ≈
(

Number of days payable

365

)
COGSt+1

≈
(

Number of days payable

365

)
rCOGSRevenuet+1

≈
(

Number of days payable

365

)
rCOGS(1 + rrev)Revenuet

≈
(

Number of days payable

365

)
(1 + rrev)COGSt

≈ (1 + rrev)Accounts Payablet.

(E.13)

For net income, we assume it is of the form

Net Incomet+1 ≈ EBTt+1 − Taxest+1. (E.14)

Using the formula for taxes E.9, we get

Net Incomet+1 ≈ EBTt+1 − Taxest+1

≈ EBTt+1 − rtaxEBTt+1

≈ (1− rtax)EBTt+1

≈ (1− rtax)[Gross Profitt+1 − Total Expensest+1]

(E.15)

Now, we have to rewrite Net Incomet+1 as a function of the its past observation plus other variables
that are sensible to macroeconomic events. This can be done by the formulas

Gross Profitt+1 ≈ Revenuet+1 − COGSt+1

≈ (1 + rrev)Revenuet − rCOGSRevenuet+1

≈ (1 + rrev)Revenuet − rCOGS(1 + rrev)Revenuet

≈ (1 + rrev)Gross Profitt,

(E.16)

and

Total Expensest+1 ≈Wagest+1 + Rent and Overheadt+1 + δdepPPEt

+ Debt Openingt+1Interestt+1,
(E.17)

where Interestt+1 ≈ Interest Expenset+1 and it is computed as a percentage of Debt Openingt+1. The
account PPEt+1 stands for property, plant and equipment at time t+ 1, and δdep is the depreciation
rate. Since Microsoft, Alphabet, and Oracle exhibit characteristics of economies of scale, we will
assume Total Expenset+1 ≈ Total Expenset in short periods of time for this forecast. Therefore, by
formulas E.16 and E.17, we can rewrite Net Incomet+1 as follows

Net Incomet+1 ≈ (1− rtax)(Gross Profitt+1 − Total Expensest+1)

≈ (1− rtax)((1 + rrev)Gross Profitt − Total Expensest)

≈ Net Incomet + (1− rtax)rrevGross Profitt

(E.18)
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where the last line comes from equation E.15.

For the sake of simplicity, we approximate current liabilities by accounts receivable

Current Liabilitiest+1 ≈ Accounts Payablet+1

≈ (1 + rrev)Accounts Payablet

≈ Current Liabilitiest + rrevAccounts Payablet.

(E.19)

For equity, using the assumptions E.8 and E.10, we obtain

Equityt+1 ≈ Equity Capitalt+1 + Retained Earningst+1

≈ Equity Capitalt + Retained Earningst + ∆Retained Earningst

≈ Equityt + ∆Retained Earningst

(E.20)

For MSFT, and ORCL the assets account is of the form

Assetst+1 ≈ Casht+1 + Accounts Receivablet+1 + Inventoryt+1 + Marketable Securitiest+1 + PPEt+1.
(E.21)

On the other hand, the formula for ORCL is of the form

Assetst+1 ≈ Casht+1 + Accounts Receivablet+1 + Marketable Securitiest+1 + PPEt+1. (E.22)

To come up with a formula for assets that can be used for forecasting, we write the following approx-
imation for cash

Casht+1 ≈ Closing Cash Balancet+1

≈ Opening Cash Balancet+1 + (CFFt+1 + CFIt+1 + CFOt+1)

≈ Casht + (CFFt+1 + CFIt+1 + CFOt+1)

≈ Casht + Net Increse(Cash)t+1

≈ Casht + Net Increse(Cash)t + ∆Net Increse(Cash)t

(E.23)

Using the previous expression, we can rewrite the assets account for MSFT, and ORCL as follows

Assetst+1 ≈ Casht + Net Increase(Cash)t + ∆Net Increase(Cash)t + (1 + rrev)Accounts Receivablet

+ (1 + rrev)Inventoryt + Marketable Securitiest + ∆Marketable Securitiest + PPEt

≈ Assetst + rrev(Accounts Receivablet + Inventoryt) + Net Increase(Cash)t
+ ∆Net Increase(Cash)t + ∆Marketable Securitiest.

(E.24)

Using the same procedure, the asset account for ORCL is

Assetst+1 ≈ Casht + Net Increase(Cash)t + ∆Net Increase(Cash)t + (1 + rrev)Accounts Receivablet

+ Marketable Securitiest + ∆Marketable Securitiest + PPEt

≈ Assetst + rrevAccounts Receivablet + Net Increase(Cash)t + ∆Net Increase(Cash)t
+ ∆Marketable Securitiest.

(E.25)
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For MSFT and GOOG current assets accounts, the formula is given by

Currents Assetst+1 ≈ Casht+1 + Accounts Receivablet+1 + Inventoryt+1 + Marketable Securitiest+1

≈ Current Assetst + rrev(Accounts Receivablet + Inventoryt) + Net Increase(Cash)t
+ ∆Net Increase(Cash)t + ∆Marketable Securitiest,

(E.26)

and for ORCL the formula is

Currents Assetst+1 ≈ Casht+1 + Accounts Receivablet+1 + Marketable Securitiest+1

≈ Current Assetst + rrevAccounts Receivablet + Net Increase(Cash)t
+ ∆Net Increase(Cash)t + ∆Marketable Securitiest,

(E.27)

Appendix F

Bar plot Microsoft’s revenue classified by major geographic areas

market_geo_msft <- data.frame(Region=rep(c(’United States ’, ’Other Countries ’),
each = 4), Quarter=rep(c(’Q1’,’Q2’, ’Q3’, ’Q4’), 2),

Revenue = c(14470,16787,15372,16321,14344,15684,15199,15492))
market_geo_msft
market_geo_msft %>% group_by(Quarter , Region) %>%

summarize(sum_revenue = sum(Revenue )) %>%
mutate(percent = sum_revenue / sum(sum_revenue), cum_sum = cumsum(sum_revenue )) %>%
ggplot(aes(x=Quarter , y=sum_revenue , fill=Region ))+
geom_bar(stat=’identity ’) +
geom_text(aes(label=paste0(sprintf("%1.1f", percent*100),"%")),

position=position_stack(vjust=0.5), colour="white") +
scale_fill_brewer(palette="Paired")+
ggtitle("Revenue Classified by Major Geographic Areas MSFT") +
xlab("Quarters 2019") +
ylab("Revenue in millions of dollars")

Bar plot Oracle’s revenue classified by major geographic areas

market_geo_goog <- data.frame(Region=rep(c(’United States ’, ’EMEA’, ’APAC’,
’Other Countries ’), each = 4),

Quarter=rep(c(’Q3 2018’,’Q4 2018’, ’Q1 2019’, ’Q2 2019’), 4),
Revenue = c(15523,16027,16532,17863, 10958,13374,11791,12401,

5424,5768,6112,6551,1835,1869,1904,2129))
market_geo_goog
market_geo_goog %>% group_by(Quarter , Region) %>%

summarize(sum_revenue = sum(Revenue )) %>%
mutate(percent = sum_revenue / sum(sum_revenue), cum_sum = cumsum(sum_revenue )) %>%
ggplot(aes(x=Quarter , y=sum_revenue , fill=Region ))+
geom_bar(stat=’identity ’) +
geom_text(aes(label=paste0(sprintf("%1.1f", percent*100),"%")),

position=position_stack(vjust=0.5), colour="white") +
scale_fill_brewer(palette="Paired")+
ggtitle("Revenue Classified by Major Geographic Areas GOOG") +
xlab("Quarters 2018-2019") +
ylab("Revenue in millions of dollars")
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Bar plot Alphabet’s revenue classified by major geographic areas

market_geo_orcl <- data.frame(Region=rep(c(’Americas ’, ’EMEA’, ’APAC’),
each = 4), Quarter=rep(c(’Q1’,’Q2’, ’Q3’, ’Q4’), 3),

Revenue = c(5161,5243,5266,5208,2576,2782,2781,2667,1456,1537,1567,1541))
market_geo_orcl
market_geo_orcl %>% group_by(Quarter , Region) %>%

summarize(sum_revenue = sum(Revenue )) %>%
mutate(percent = sum_revenue / sum(sum_revenue), cum_sum = cumsum(sum_revenue )) %>%
ggplot(aes(x=Quarter , y=sum_revenue , fill=Region ))+
geom_bar(stat=’identity ’) +
geom_text(aes(label=paste0(sprintf("%1.1f", percent*100),"%")),

position=position_stack(vjust=0.5), colour="white") +
scale_fill_brewer(palette="Paired")+
ggtitle("Revenue Classified by Major Geographic Areas ORCL") +
xlab("Quarters 2019") +
ylab("Revenue in millions of dollars")

Bar plot top U.S. exports to Canada

us_canada_export <- data.frame(Activities=c(’Vehicles ’,’Machinery ’,
’Mineral Fuels ’,’Electrical Machinery ’,
’Plastics ’, ’Rest of Economic Activities ’),

Revenue=c(52,45,27,26,14, 135.8))
us_canada_export
us_canada_export_chart <- us_canada_export %>%

group_by(Activities) %>%
summarize(sum_revenue = sum(Revenue )) %>%
mutate(percent = sum_revenue/sum(sum_revenue), cum_sum = cumsum(sum_revenue )) %>%
arrange(sum_revenue) %>%
ggplot(aes(x=’U.S. exports to Canada ’, y=sum_revenue , fill=Activities ))+
geom_bar(stat=’identity ’) +
geom_text(aes(label=paste0(sprintf("%1.1f", percent*100),"%")),

position=position_stack(vjust=0.5), colour="white") +
scale_fill_brewer(palette="Dark2")+
ggtitle("Segmentation U.S. top exports to Canada 2018") +
xlab("") +
ylab("Revenue in billions of U.S. dollars")

Bar plot top U.S. exports to México

us_mexico_export <- data.frame(Activities=c(’Machinery ’,’Electrical Machinery ’,
’Mineral Fuels ’,’Vehicles ’,

’Plastics ’, ’Rest of Economic Activities ’),
Revenue=c(46,43,35,22,18,140.4))

us_mexico_export_chart <- us_mexico_export %>%
group_by(Activities) %>%
summarize(sum_revenue = sum(Revenue )) %>%
mutate(percent = sum_revenue/sum(sum_revenue), cum_sum = cumsum(sum_revenue )) %>%
ggplot(aes(x=’U.S. exports to Mexico ’, y=sum_revenue , fill=Activities ))+
geom_bar(stat=’identity ’) +
geom_text(aes(label=paste0(sprintf("%1.1f", percent*100),"%")),

position=position_stack(vjust=0.5), colour="white") +
scale_fill_brewer(palette="Dark2")+
ggtitle("Segmentation U.S. top exports to Mexico 2018") +
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xlab("") +
ylab("Revenue in billions of U.S. dollars")

Bar plot top U.S. exports to China

us_china_export <- data.frame(Activities=c(’Aircraft ’,’Machinery ’,
’Electrical Machinery ’, ’Optical and Medical Intruments ’,

’Vehicles ’, ’Rest of Economic Activities ’),
Revenue=c(18,14,13,9.8,9.4,56.1))

us_china_export_chart <- us_china_export %>%
group_by(Activities) %>%
summarize(sum_revenue = sum(Revenue )) %>%
mutate(percent = sum_revenue/sum(sum_revenue), cum_sum = cumsum(sum_revenue )) %>%
ggplot(aes(x=’U.S. exports to China ’, y=sum_revenue , fill=Activities ))+
geom_bar(stat=’identity ’) +
geom_text(aes(label=paste0(sprintf("%1.1f", percent*100),"%")),

position=position_stack(vjust=0.5), colour="white") +
scale_fill_brewer(palette="Dark2")+
ggtitle("Segmentation U.S. top exports to China 2018") +
xlab("") +
ylab("Revenue in billions of U.S. dollars")

Bar plot top U.S. exports to Hong Kong

us_hongkong_export <- data.frame(Activities=c(’Electrical Machinery ’,
’Precious Metals and Stones ’,’Art and Antiques ’,

’Machinery ’,’Meat’, ’Rest of Economic Activities ’),
Revenue=c(11,9.2,2.2,2.1,1.6,11.2))

us_hongkong_export_chart <- us_hongkong_export %>%
group_by(Activities) %>%
summarize(sum_revenue = sum(Revenue )) %>%
mutate(percent = sum_revenue/sum(sum_revenue), cum_sum = cumsum(sum_revenue )) %>%
ggplot(aes(x=’U.S. exports to Hong Kong’, y=sum_revenue , fill=Activities ))+
geom_bar(stat=’identity ’) +
geom_text(aes(label=paste0(sprintf("%1.1f", percent*100),"%")),

position=position_stack(vjust=0.5), colour="white") +
scale_fill_brewer(palette="Dark2")+
ggtitle("Segmentation U.S. top exports to Hong Kong 2018") +
xlab("") +
ylab("Revenue in billions of U.S. dollars")

Merging U.S. exports bar plots

ggarrange(us_canada_export_chart , us_mexico_export_chart , us_china_export_chart ,
us_hongkong_export_chart , ncol=2, nrow=2)

Bar plot Top U.S. imports from Canada
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us_canada_import <- data.frame(Activities=c(’Mineral Fuels ’,
’Vehicles ’,’Machinery ’,’Special Other (returns)’,

’Plastics ’, ’Rest of Economic Activities ’),
Revenue=c(85,53,23,16,12,129.8))

us_canada_import_chart <- us_canada_import %>%
group_by(Activities) %>%
summarize(sum_revenue = sum(Revenue )) %>%
mutate(percent = sum_revenue/sum(sum_revenue), cum_sum = cumsum(sum_revenue )) %>%
arrange(sum_revenue) %>%
ggplot(aes(x=’U.S. imports from Canada ’, y=sum_revenue , fill=Activities ))+
geom_bar(stat=’identity ’) +
geom_text(aes(label=paste0(sprintf("%1.1f", percent*100),"%")),

position=position_stack(vjust=0.5), colour="white") +
scale_fill_brewer(palette="Dark2")+
ggtitle("Segmentation U.S. top imports from Canada 2018") +
xlab("") +
ylab("Revenue in billions of U.S. dollars")

Bar plot Top U.S. imports from México

us_mexico_import <- data.frame(Activities=c(’Vehicles ’,’Electrical Machinery ’,
’Machinery ’,’Mineral Fuels ’,

’Optical and Medical Instruments ’,
’Rest of Economic Activities ’),

Revenue=c(93,64,63,16,15,95.1))

us_mexico_import_chart <- us_mexico_import %>%
group_by(Activities) %>%
summarize(sum_revenue = sum(Revenue )) %>%
mutate(percent = sum_revenue/sum(sum_revenue), cum_sum = cumsum(sum_revenue )) %>%
ggplot(aes(x=’U.S. imports from Mexico ’, y=sum_revenue , fill=Activities ))+
geom_bar(stat=’identity ’) +
geom_text(aes(label=paste0(sprintf("%1.1f", percent*100),"%")),

position=position_stack(vjust=0.5), colour="white") +
scale_fill_brewer(palette="Dark2")+
ggtitle("Segmentation U.S. top imports from Mexico 2018") +
xlab("") +
ylab("Revenue in billions of U.S. dollars")

Bar plot top U.S. imports from China

us_china_import <- data.frame(Activities=c(’Electrical Machinery ’,
’Machinery ’,’Furniture and Bedding ’,

’Toys and Sports Equipment ’, ’Plastics ’,
’Rest of Economic Activities ’),

Revenue=c(152,117,35,27,19,189.5))

us_china_import_chart <- us_china_import %>%
group_by(Activities) %>%
summarize(sum_revenue = sum(Revenue )) %>%
mutate(percent = sum_revenue/sum(sum_revenue), cum_sum = cumsum(sum_revenue )) %>%
ggplot(aes(x=’U.S. imports from China ’, y=sum_revenue , fill=Activities ))+
geom_bar(stat=’identity ’) +
geom_text(aes(label=paste0(sprintf("%1.1f", percent*100),"%")),

position=position_stack(vjust=0.5), colour="white") +
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scale_fill_brewer(palette="Dark2")+
ggtitle("Segmentation U.S. top imports from China 2018") +
xlab("") +
ylab("Revenue in billions of U.S. dollars")

Bar plot top U.S. imports from Hong Kong

us_hongkong_import <- data.frame(Activities=c(’Special Other (returns)’,
’Electrical Machinery ’,’Precious Metals , and Stones ’,

’Machinery ’, ’Plastics ’, ’Rest of Economic Activities ’),
Revenue=c(2.4,0.98,0.916, 0.321, 0.166, 1.517))

us_hongkong_import_chart <- us_hongkong_import %>%
group_by(Activities) %>%
summarize(sum_revenue = sum(Revenue )) %>%
mutate(percent = sum_revenue/sum(sum_revenue), cum_sum = cumsum(sum_revenue )) %>%
ggplot(aes(x=’U.S. imports from Hong Kong’, y=sum_revenue , fill=Activities ))+
geom_bar(stat=’identity ’) +
geom_text(aes(label=paste0(sprintf("%1.1f", percent*100),"%")),

position=position_stack(vjust=0.5), colour="white") +
scale_fill_brewer(palette="Dark2")+
ggtitle("Segmentation U.S. top imports from Hong Kong 2018") +
xlab("") +
ylab("Revenue in billions of U.S. dollars")

Merging U.S. import bar plots

ggarrange(us_canada_import_chart , us_mexico_import_chart , us_china_import_chart ,
us_hongkong_import_chart , ncol=2, nrow=2)

Graph U.S. exports to Canada, China, Hong Kong, and México, Canada

us_china_export_ts <- getSymbols("EXPCH", src = "FRED", auto.assign = FALSE)
us_mexico_export_ts <- getSymbols("EXPMX", src = "FRED", auto.assign = FALSE)
us_canada_export_ts <- getSymbols("EXPCA", src = "FRED", auto.assign = FALSE)
us_hongkong_export_ts <- getSymbols("EXP5820", src = "FRED", auto.assign = FALSE)

merged_exports <- merge.xts(us_china_export_ts, us_mexico_export_ts,
us_canada_export_ts, us_hongkong_export_ts, by = "ID")

names(merged_exports) <- c(’China’, ’Mexico ’, ’Canada ’, ’Hong Kong’, ’ID’)
merged_exports <- subset(merged_exports , select = c(1,2,3,4))
merged_exports <- data.frame(merged_exports)
merged_exports$Dates <- index(us_canada_export_ts)
head(merged_exports)
df1 <- merged_exports %>%

select(Dates , China , Mexico , Canada , Hong.Kong) %>%
gather(key = "variable", value = "value", -Dates)

ggplot(df1, aes(x = Dates , y = value )) +
geom_line(aes(color = variable), size = 1) +
scale_color_manual(values = c("#00AFBB", "#E7B800", "#CC0099", "#FF3300")) +
theme_minimal () +
ggtitle("U.S. Exports of Goods by F.A.S Basis Canada , China , Hong Kong , and Mexico") +
xlab("Source: U.S. Bureu of Economic Analytics") +
ylab("Millions of Dollars")
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Graph U.S. imports from Canada, China, and México

us_china_import_ts <- getSymbols("IMPCH", src = "FRED", auto.assign = FALSE)
us_mexico_import_ts <- getSymbols("IMPMX", src = "FRED", auto.assign = FALSE)
us_canada_import_ts <- getSymbols("IMPCA", src = "FRED", auto.assign = FALSE)

merged_imports <- merge.xts(us_china_import_ts, us_mexico_import_ts,
us_canada_import_ts, by = "ID")

names(merged_imports) <- c(’China’, ’Mexico ’, ’Canada ’, ’ID’)
merged_imports <- subset(merged_imports , select = c(1,2,3))
merged_imports <- data.frame(merged_imports)
merged_imports$Dates <- index(us_canada_import_ts)
head(merged_imports)

df2 <- merged_imports %>%
select(Dates , China , Mexico , Canada) %>%
gather(key = "variable", value = "value", -Dates)

ggplot(df2, aes(x = Dates , y = value )) +
geom_line(aes(color = variable), size = 1) +
scale_color_manual(values = c("#00AFBB", "#E7B800", "#CC0099")) +
theme_minimal () +
ggtitle("U.S Imports of Goods by Customs Basis from Canada , China , and Mexico") +
xlab("Source: U.S. Bureu of Economic Analytics") +
ylab("Millions of Dollars")

Graph of VIX vs SPY, and their correlation

vix <- getSymbols("VIXCLS", src = "FRED", auto.assign = FALSE)
spy <- getSymbols("SPY", src = "yahoo", auto.assign = FALSE)
spy_vix <- merge.xts(spy , vix , by = "ID")

# start date spy and vix
start_date_spy_vix <-

min(which(format(index(spy_vix), "%Y-%m-%d") == ’2007-01-10’))

# end date SPY and VIX
end_date_spy_vix <-

min(which(format(index(spy_vix), "%Y-%m-%d") == ’2020-03-16’))

spy_vix <- spy_vix[start_date_spy_vix: end_date_spy_vix]
spy_vix <- na.approx(spy_vix)
spy_vix <- subset(spy_vix , select = c(1,7))
names(spy_vix) <- c(’SPY’, ’VIX’)
dates_spy_vix <- index(spy_vix)
spy_vix <- data.frame(spy_vix)
spy_vix$Dates <- dates_spy_vix

df3 <- spy_vix %>%
select(Dates , SPY , VIX) %>%
gather(key = "variable", value = "value", -Dates)

ggplot(df3, aes(x = Dates , y = value )) +
geom_line(aes(color = variable), size = 1) +
scale_color_manual(values = c("#00AFBB", "#FF3300")) +
theme_minimal () +
ggtitle("VIX and SPY500 indexes from 2007-01-10 to 2020-03-16 ") +
xlab("Source: Chicago Board Options Exchange") +
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ylab("Dollars")

cor(spy_vix$SPY , spy_vix$VIX)

Error OLS and difference operator applied to Error OLS plots

# Time series with outliers
error_ols <- unlist(list_error_ols , use.name=FALSE)

# Cleaned time series errors
cleaned_error_ols <- tsclean(error_ols)

# Error OLS
dates_cleaned_errors_ols <-

index(MSFT_Close[start_date_time_s_analysis :( length(MSFT_Close)-2)])
df_cleaned_error_ols <- data.frame(cleaned_error_ols)
df_cleaned_error_ols$Dates <- dates_cleaned_errors_ols
colnames(df_cleaned_error_ols) <- c( "Error OLS", "Dates")
df_cleaned_error_ols <- df_cleaned_error_ols %>%

select(Dates , "Error OLS") %>%
gather(key="variable", value = "value", -Dates)

plot_error_ols <- ggplot(df_cleaned_error_ols , aes(x = Dates , y = value )) +
geom_line(aes( color = variable), size = 1) +
scale_color_manual(values = c("#999999")) +
theme_minimal () +
geom_point(aes(color=variable ))+
ggtitle(TeX("Error OLS")) +
xlab("Dates") +
ylab("")

# Diff Error OLS
dates_diff_cleaned_errors_ols <-

index(MSFT_Close[( start_date_time_s_analysis+1) :( length(MSFT_Close)-2)])
df_diff_cleaned_error_ols <- data.frame(diff(cleaned_error_ols))
df_diff_cleaned_error_ols$Dates <- dates_diff_cleaned_errors_ols
colnames(df_diff_cleaned_error_ols) <- c( "Diff Error OLS", "Dates")
df_diff_cleaned_error_ols <- df_diff_cleaned_error_ols %>%

select(Dates , "Diff Error OLS") %>%
gather(key="variable", value = "value", -Dates)

plot_diff_error_ols <- ggplot(df_diff_cleaned_error_ols , aes(x = Dates , y = value )) +
geom_line(aes( color = variable), size = 1) +
scale_color_manual(values = c("#999999")) +
theme_minimal () +
geom_point(aes(color=variable ))+
ggtitle(TeX("Diff Error OLS: $\\ nabla \\ epsilon$")) +
xlab("Dates") +
ylab("")

# Plotting Error OLS and diff Error OLS
ggarrange(plot_error_ols , plot_diff_error_ols , ncol=1, nrow=2)

Implied volatility MSFT, ORCL, and GOOG plots
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# Implied Volatility MSFT
dates_prices_msft <- index(MSFT_Close[start_date_time_s_analysis :length(MSFT_Close )])
df_impl_volatility_msft <- data.frame(implied_volatility_msft)
df_impl_volatility_msft$Dates <- dates_prices_msft
colnames(df_impl_volatility_msft) <- c( "Implied Volatility", "Dates")

df_impl_volatility_msft <- df_impl_volatility_msft %>%
select(Dates , "Implied Volatility") %>%
gather(key="variable", value = "value", -Dates)

plot_imp_volatility_msft <- ggplot(df_impl_volatility_msft , aes(x = Dates , y = value )) +
geom_line(aes( color = variable), size = 1) +
scale_color_manual(values = c("#999999")) +
theme_minimal () +
geom_point(aes(color=variable ))+
ggtitle("Implied Volatility MSFT") +
xlab("Dates") +
ylab("")

# Implied Volatility ORCL
dates_prices_orcl <- index(ORCL_Close[start_date_time_s_analysis :length(ORCL_Close )])
df_impl_volatility_orcl <- data.frame(implied_volatility_orcl)
df_impl_volatility_orcl$Dates <- dates_prices_msft
colnames(df_impl_volatility_orcl) <- c( "Implied Volatility", "Dates")

df_impl_volatility_orcl <- df_impl_volatility_orcl %>%
select(Dates , "Implied Volatility") %>%
gather(key="variable", value = "value", -Dates)

plot_imp_volatility_orcl <- ggplot(df_impl_volatility_orcl , aes(x = Dates , y = value )) +
geom_line(aes( color = variable), size = 1) +
scale_color_manual(values = c("#999999")) +
theme_minimal () +
geom_point(aes(color=variable ))+
ggtitle("Implied Volatility ORCL") +
xlab("Dates") +
ylab("")

# Implied Volatility GOOG
dates_prices_goog <- index(GOOG_Close[start_date_time_s_analysis :length(GOOG_Close )])
df_impl_volatility_goog <- data.frame(implied_volatility_goog)
df_impl_volatility_goog$Dates <- dates_prices_goog
colnames(df_impl_volatility_goog) <- c( "Implied Volatility", "Dates")

df_impl_volatility_goog <- df_impl_volatility_goog %>%
select(Dates , "Implied Volatility") %>%
gather(key="variable", value = "value", -Dates)

plot_imp_volatility_goog <- ggplot(df_impl_volatility_goog , aes(x = Dates , y = value )) +
geom_line(aes( color = variable), size = 1) +
scale_color_manual(values = c("#999999")) +
theme_minimal () +
geom_point(aes(color=variable ))+
ggtitle("Implied Volatility GOOG") +
xlab("Dates") +
ylab("")

ggarrange(plot_imp_volatility_msft , plot_imp_volatility_orcl ,
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plot_imp_volatility_goog , ncol=1, nrow=3)

Difference operator on implied volatility of MSFT, ORCL, and GOOG plots

# Diff Implied Volatility MSFT
dates_prices_msft <- index(MSFT_Close[start_date_time_s_analysis :length(MSFT_Close )])
df_diff_impl_volatility_msft <-

data.frame(diff(implied_volatility_msft[1:( length(implied_volatility_msft)-2)]))
id_remove_msft_dates <- which(dates_prices_msft %in%

c(dates_prices_msft[1],dates_prices_msft[41],dates_prices_msft[42]))
dates_prices_msft <- dates_prices_msft[-id_remove_msft_dates]
df_diff_impl_volatility_msft$Dates <- dates_prices_msft
colnames(df_diff_impl_volatility_msft) <- c( "Diff Implied Volatility", "Dates")
df_diff_impl_volatility_msft
df_diff_impl_volatility_msft <- df_diff_impl_volatility_msft %>%

select(Dates , "Diff Implied Volatility") %>%
gather(key="variable", value = "value", -Dates)

plot_diff_volatility_msft <- ggplot(df_diff_impl_volatility_msft , aes(x = Dates , y = value )) +
geom_line(aes( color = variable), size = 1) +
scale_color_manual(values = c("#999999")) +
theme_minimal () +
geom_point(aes(color=variable ))+
ggtitle(TeX("Diff Implied Volatility MSFT: $\\ nabla \\sigma _{imp}")) +
xlab("Dates") +
ylab("")

# Diff Implied Volatility ORCL
dates_prices_orcl <- index(ORCL_Close[start_date_time_s_analysis :length(ORCL_Close )])
df_diff_impl_volatility_orcl <-

data.frame(diff(implied_volatility_orcl[1:( length(implied_volatility_orcl)-2)]))
id_remove_orcl_dates <- which(dates_prices_orcl %in%

c(dates_prices_orcl[1],dates_prices_orcl[41],dates_prices_orcl[42]))
dates_prices_orcl <- dates_prices_orcl[-id_remove_orcl_dates]
df_diff_impl_volatility_orcl$Dates <- dates_prices_orcl
colnames(df_diff_impl_volatility_orcl) <- c( "Diff Implied Volatility", "Dates")
df_diff_impl_volatility_orcl <- df_diff_impl_volatility_orcl %>%

select(Dates , "Diff Implied Volatility") %>%
gather(key="variable", value = "value", -Dates)

plot_diff_volatility_orcl <- ggplot(df_diff_impl_volatility_orcl , aes(x = Dates , y = value )) +
geom_line(aes( color = variable), size = 1) +
scale_color_manual(values = c("#999999")) +
theme_minimal () +
geom_point(aes(color=variable ))+
ggtitle(TeX("Diff Implied Volatility ORCL: $\\ nabla \\sigma _{imp}")) +
xlab("Dates") +
ylab("")

# Diff Implied Volatility GOOG
dates_prices_goog <- index(GOOG_Close[start_date_time_s_analysis :length(GOOG_Close )])
df_diff_impl_volatility_goog <-

data.frame(diff(implied_volatility_goog[1:( length(implied_volatility_goog)-2)]))
id_remove_goog_dates <- which(dates_prices_goog %in%

c(dates_prices_goog[1],dates_prices_goog[41],dates_prices_goog[42]))
dates_prices_goog <- dates_prices_goog[-id_remove_goog_dates]
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df_diff_impl_volatility_goog$Dates <- dates_prices_goog
colnames(df_diff_impl_volatility_goog) <- c( "Diff Implied Volatility", "Dates")
df_diff_impl_volatility_goog
df_diff_impl_volatility_goog <- df_diff_impl_volatility_goog %>%

select(Dates , "Diff Implied Volatility") %>%
gather(key="variable", value = "value", -Dates)

plot_diff_volatility_goog <- ggplot(df_diff_impl_volatility_goog , aes(x = Dates , y = value )) +
geom_line(aes( color = variable), size = 1) +
scale_color_manual(values = c("#999999")) +
theme_minimal () +
geom_point(aes(color=variable ))+
ggtitle(TeX("Diff Implied Volatility GOOG: $\\ nabla \\sigma _{imp}")) +
xlab("Dates") +
ylab("")

ggarrange(plot_diff_volatility_msft ,plot_diff_volatility_orcl ,
plot_diff_volatility_goog , ncol=1, nrow=3)
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