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la Luz Jimena de Teresa de Oteyza and Dr. Antonio Capella Kort for their
supervision as members of my tutorial committee.

My doctoral studies were nourished by valuable encounters. I could mention,
among others, the conversations I had with Peter D. Miller, Robert Marangell,
Jaime Angulo Pava, César Hernández Melo, Corrado Mascia and Miguel Ro-
drigues during a workshop at Casa Matemática Oaxaca in June 2017. The
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Introducción

Del lat́ın unda, se conoce como onda a la propagación de una perturbación que
produce a su paso una variación de las propiedades f́ısicas locales del medio por
el que atraviesa. La velocidad determinada con la que se desplaza depende de
las caracteŕısticas del medio en el que viaja.

Al ser un concepto unificador, la idea de onda abarca una gran variedad de
fenómenos f́ısicos, como pueden ser:

• las ondulaciones que forma un guijarro al caer sobre una superficie de
agua;

• el sorprendente fenómeno de la ola solitaria que remonta ŕıos y estuarios
conocida como macareo;

• las ondas electromagnéticas que en ciertos casos no requieren de un soporte
material para trasladarse;

• las ondas acústicas;

• las enérgicas sacudidas elásticas generadas por rompimientos tectónicos
de gran magnitud que llamamos sismos.

Los fenómenos enlistados manifiestan un comportamiento oscilatorio que
se propaga en algún medio, es decir: involucran un movimiento repetido (o
periódico) en torno a una posición de equilibrio aśı como un desplazamiento
espacial. Dicho comportamiento queda descrito a través de varios elementos
que conforman una onda como son el periodo o tiempo necesario para completar
una oscilación. También está la longitud de onda o distancia que hay entre el
mismo punto de dos oscilaciones consecutivas. Otra propiedad es la frecuencia
que es el número de periodos por unidad de tiempo. Finalmente la velocidad
de propagación con la que se traslada el movimiento ondulatorio. Son estas
propiedades las que caracterizan a los fenómenos enlistados y que las distinguen
entre śı.

Para que las ondas se propaguen en un medio es necesario que este sea
estable, es decir: que bajo la acción de una perturbación exterior el medio debe
de desarrollar un mecanismo de restauración que lo devuelva hacia su posición
de equilibrio original. La naturaleza y las propiedades ya descritas de la onda
dependen de la manera en la que actúa este mecansimo. Para las olas del
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mar, por ejemplo, dicho mecanismo de restauración es la gravedad que tiende a
regresar la superficie libre hacia una posición de equilibrio. El correspondiente
mecanismo para las ondas sonoras es la tendencia de un fluido a uniformizar su
presión. Finalmente, para las ondas de torsión (como las que produce un arco
tocando sobre un vioĺın) el mecanismo es el torque que ejerce la cuerda.

Este trabajo está dividido en dos partes siendo la segunda una generalización
de la primera. El primer objeto de estudio es la ecuación de Burgers-Fisher.
Al ser una ecuación de balance viscosa, manifiesta un equilibrio entre varios
efectos f́ısicos pues además del término lineal de difusión incorpora los términos
no lineales de advección (representados por la función de flujo no lineal de
Burgers) y de reacción loǵıstica (bajo la ecuación de Fisher-KPP). Arrancamos
el caṕıtulo 2 con una descripción del origen de las dos ecuaciones que componen
a Burgers-Fisher aśı como del contexto en el que se desarrollaron y con una
revisión de los esfuerzos previos para estudiar la ecuación.

El caṕıtulo 3 de resultados preliminares establece el contexto en el que es-
tudiaremos la propiedad de estabilidad aśı como una introducción a la teoŕıa
perturbativa de operadores. Tiene como objetivo sentar las bases para los sigu-
ientes caṕıtulos en los que probaremos que para las distintas soluciones el es-
pectro (continuo) de Floquet de la linealización alrededor de estas intersecta el
semiplano inestable de valores complejos con parte real positiva, una propiedad
conocida como inestabilidad espectral. Aśı mismo enuncia los resultados de ex-
istencia de las ondas a través de un breve repaso de la teoŕıa de Andronov-Hopf
y del método de Melnikov.

En el caṕıtulo 4 estudiamos el surgimiento de ondas periódicas como solu-
ciones a la ecuación. Dicha ecuación presenta dos familias distintas de soluciones
periódicas. La primer familia consiste de ondas de amplitud pequeña y periodo
finito relativamente corto que emergen de una bifurcación de Hopf alrededor de
un valor cŕıtico de la velocidad de onda. La segunda familia está compuesta de
ondas de mayor amplitud y periodo mucho más grande que surgen de una bifur-
cación homocĺınica y convergen a un pulso homocĺınico cuando su periodo tiende
a infinito. A manera de resultado auxiliar probamos con el método de Melnikov
la existencia de esta onda solitaria que modela, por ejemplo, el fenómeno del
macareo enunciado anteriormente. El Apéndice A contiene la verificación de
una condición de no-degeneración para garantizar su existencia mientras que el
Apéndice B presenta un camino distinto -de carácter geométrico- para demostrar
su existencia.

En el caṕıtulo 5 demostraremos que para las ondas de amplitud pequeña el
espectro del operador linealizado en torno a la onda puede ser aproximado por
el de un operador de coeficientes constantes alrededor de la solución constante
cero y determinado por la relación de dispersión que intersecta el semiplano
inestable. De esta forma se concluye su inestabilidad espectral.

En el caṕıtulo 6 abordamos la inestabilidad espectral de la otra familia de
ondas mediante otro conjunto de herramientas. Sus elementos satisfacen las
condiciones del resultado de Gardner [65] de convergencia de espectro periódico
en el ĺımite homocĺınico subyacente. Probamos que este ĺımite es inestable al
combinar la teoŕıa perturbativa de operadores con teoŕıa oscilatoria de Sturm
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estableciendo la existencia de un valor propio con parte real positiva para la
linealización alrededor de ella. Esta inestabilidad es heredada a la familia de
ondas de periodo grande.

La idea de estabilidad es tan amplia que engloba varias definiciones. Surgida
de manera simultánea en áreas aparentemente tan dispares entre śı como son
la hidrodinámica y la óptica no lineal, la inestabilidad modulacional atrajo la
atención tanto de investigadores occidentales como soviéticos en la década de
los años 60 del siglo pasado. El matemático Gerald Whitham abrió la brecha
con su art́ıculo de 1965 [181] en el que introdujo una teoŕıa no lineal de ondas
moduladas que refinó a lo largo de los siguientes 20 años. La teoŕıa produce
resultados satisfactorios a nivel f́ısico que concuerdan con lo obtenido en exper-
imentos además de tener una sorprendente estructura matemática. La teoŕıa
de Whitham se basa en la suposición de que las ecuaciones de ondas no-lineales
que admiten familias de ondas viajeras periódicas debeŕıan también poseer otras
soluciones cercanas a diferentes representantes de la familia. Es considerada una
teoŕıa asintótica en el ĺımite en el que la variación de los parámetros de la onda
es gradual comparado con las fluctuaciones de la onda misma. Esto permite
la utilización de una gran variedad de herramientas asintóticas para estudiar
la dinámica de las ondas moduladas. El objetivo de este análisis es obtener
ecuaciones -las llamadas ecuaciones modulacionales- que describan la forma en
la que vaŕıan los parámetros. En el caṕıtulo 7 abordamos la cuestión de la
estabilidad modulacional para las ondas de amplitud pequeña.

La primera parte cierra con una discusión que sintetiza los resultados obtenidos
y plantea algunas preguntas no tratadas en el presente trabajo que quedan pen-
dientes para un estudio futuro.

La ecuación de Burgers-Fisher es quizá el modelo escalar más simple que
combina los efectos de advección no lineal junto con viscosidad y una tasa de
producción de tipo loǵıstico. Si generalizamos mediante hipótesis adecuadas las
funciones que representan la advección y la tasa de producción obtenemos las
leyes de balance viscosas generales. Bajo ciertas condiciones impuestas al flujo
y al término de producción estas presentan dos familias de soluciones análogas
a las que presenta Burgers-Fisher. La segunda parte del trabajo está dedicada
a las leyes de balance viscosas generales.

El caṕıtulo 9 es una introducción a leyes de balance viscosas y se enuncian
las hipótesis y condiciones que pedimos a las funciones de flujo y de producción
para que preserven ciertas propiedades estudiadas en la primera parte.

Siguiendo a grandes rasgos la pauta marcada por la primera parte, el caṕıtulo
10 prueba la existencia de las dos familias de soluciones periódicas y acotadas.
Los métodos empleados son los mismos a los utilizados en el caṕıtulo de exis-
tencia de la primera parte.

El caṕıtulo 11 está dedicado a la inestabilidad espectral de las ondas de
amplitud pequeña y a las de periodo grande halladas en el caṕıtulo anterior.
La técnica utilizada para el segundo resultado es ligeramente distinta a la que
aparece en la primera parte.

El caṕıtulo 12 incluye dos ejemplos de ecuaciones clasificadas como leyes
viscosas de balance y que sirven para ilustrar lo enunciado en el presente trabajo
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ya que cumplen con las hipótesis necesarias. Se trata de la ecuación loǵıstica
de Buckley-Leverett para un fluido de dos fases en un medio poroso [28] y la
ecuación generalizada de Burgers-Fisher (cf. [31, 106,173]).

Las discusiones con las que finaliza la segunda parte recapitulan lo obtenido.
Hay un caṕıtulo de conclusiones a manera de cierre en el que se comparan

los resultados obtenidos en ambas partes de la tesis y se enuncian las diferencias
que hay entre ellas. Aśı mismo se plantean preguntas que no fueron abordadas
en el presente trabajo y que quedan pendientes.
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Part I

The Viscous Burgers-Fisher
Equation
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Chapter 1

Introduction

From latin, unda, a wave is the propagation of a perturbation that produces a
variation of the local physical properties of the medium as it traverses it. The
determined velocity with which it displaces depends upon the characteristics of
the medium in which it travels.

Since it is a broad concept, the idea of a wave encompasses a great variety
of physical phenomena, such as:

• the ripples formed by a pebble when it is thrown on a water surface;

• the amazing pheomenon of the solitary wave that travels up a river or
narrow bay against the direction of the current known as tidal bore;

• the electromagnetic waves that in certain cases do not require a material
support to move;

• the acoustic waves;

• the violent elastic shakes generated by strong tectonic ruptures known as
earthquakes.

The above phenomena exhibit an oscillatory behavior that propagates in
a medium, in other words: they involve a repetitive (or periodic) movement
around an equilibrium position as well as a spatial displacement. Such behavior
is described through a series of elements that make up a wave as the required
time to complete an oscillation known as period. We have as well the concept
of wavelength or distance between the same point of two succesive oscillations.
Another property is the frequency that is the quantity of periods in a time
unit. Finally, the propagation velocity with which the undulatory movement
travels. These properties characterize the mentioned phenomena and they let
us distinguish them.

For a wave to propagate in a medium it requires it to be stable, that is:
that under the action of an external perturbation the medium must develop a
restorative mechanism that returns it to its original equilibrium position. The
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nature and the above mentioned properties of a wave depend on the manner
that this mechanism acts. In this way, for example, the associated restorative
mechanism for water waves is the gravity that tends to return the free surface
to its equilibrium position. The corresponding mechanism for acoustic waves is
the tendency of a fluid to make its pressure uniform. Finally, for torsion waves
(as the ones produced by a bow playing over a violin) the mechanism is the
torque exerted by the chord.

This work is divided into two parts, with the second one being a sort of
generalization of the first one. The first object of study is Burgers-Fisher equa-
tion. Since it is a viscous balance law it exhibits an equilibrium between several
physical effects combining linear diffusion and incorporating nonlinear terms of
advection (represented by the nonlinear Burgers flux function) and logistic re-
action (under the Fisher-KPP reaction term). The thesis begins in Chapter 2
with a description of the origin of both equations that constitute Burgers-Fisher
as well as a review of the historical efforts to study it.

Chapter 3 is dedicated to preliminary results and sets the context in which
we study the stability properties of solutions, as well as introducing spectral
perturbation theory. Its objective is to establish the basis for the following
chapters where we prove that for the distinct solutions the (continuous) Floquet
spectrum of the linearization around them intersects the unstable half-plane of
complex values with positive real part, a property known as spectral instability.
It also introduces the basis for the existence results through a brief overview of
Andronov-Hopf bifurcation theory and Melnikov’s method.

In Chapter 4 we study the emergence of periodic waves as solutions to the
equation. It possesses two distinct families of periodic solutions. The first
family consists of small-amplitude waves and finite period that emerge from a
Hopf bifurcation around a critical value of the wave velocity. The second family
is composed of larger amplitude waves and much larger period that arise from
a homoclinic bifurcation and converge to a solitary pulse when their period
tends to infinity. As an auxiliary result we prove, with the use of Melnikov’s
method, the existence of this solitary wave that models, for example, the tidal
bore phenomenon. Appendix A contains the verification of a non-degeneracy
condition that guarantees its existence while Appendix B presents an alternative
path -a geometric one- to prove its existence.

Chapter 5 is devoted to prove that for small-amplitude waves the spectrum
of the linearized operator around the wave can be approximated by that of
a constant coefficient operator around the zero solution and determined by a
dispersion relation which intersects the unstable complex half-plane. This proves
their spectral instability.

In Chapter 6 we deal with the spectral instability of the other family of
waves through a different toolset. Its elements satisfy the assumptions of the
seminal result by Gardner [65] of convergence of periodic spectra in the infinite-
period limit to that of the underlying homoclinic wave. By combining operator
perturbation theory with Sturm oscillation theory we establish the existence of
an eigenvalue with positive real part for the linearization around the homoclinic
orbit thus proving its instability; it inherits it to the family of waves.
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The idea of stability is so broad that it comprises several definitions. Modu-
lational instabiltiy, appearing simultaneously in such distinct areas as hydrody-
namics and nonlinear optics, attracted the attention of both Western and Soviet
scientists during the 1960s. Mathematician Gerald Whitham opened the gap
with his 1965 paper [181] in which he introduced a nonlinear theory of modu-
lated waves that he refined during the following 20 years. The theory produces
satisfactory physical results that agree with the experimental data. Whitham’s
theory is based on the assumption that nonlinear wave equations that admit
families of periodic traveling waves should also have other solutions that are
close to different representatives of the family. It is considered an asymptotic
theory in the limit in which the variation of the parameters is gradual with re-
spect to the fluctuations of the wave itself. This permits the use of asypmtotic
techniques to study the dynamics of the modulated waves. The objective is to
obtain equations -called modulation equations- that describe the way in which
the parameters vary. In Chapter 7 we approach the question of modulational
stability for the small-amplitude waves.

The first part ends with a discussion that summarizes the results obtained
and it suggests some questions for further works.

Burgers-Fisher equation is perhaps the simplest scalar model combining non-
linear advection effects together with viscosity and a production rate of logistic
type. If we generalize through proper hypotheses the functions that represent
the advection and the production rate, we obtain general viscous balance laws.
Under certain conditions imposed on the aforementioned terms they present two
families of solutions analogous to the ones of Burgers-Fisher. The second Part
of this thesis is dedicated to general viscous balance laws.

Chapter 9 introduces general viscous balance laws and it states the conditions
imposed on the flux function and the production term for them to preserve
certain properties of the first part.

Following closely the roadmap of Part I, Chapter 10 proves the existence of
both families of bounded periodic solutions. We do this with the same techniques
used in the existence chapter of the first part.

Chapter 11 is dedicated to the spectral instability of the small-amplitude
waves and the large-period ones found in the previous chapter. There is a slight
change in the technique used in the latter result with respect to Part I.

Chapter 12 includes two examples of viscous balance laws that illustrate
the results of this thesis as they satisfy the required hypothesis. They are the
logistic Buckley-Leverett model for a two-phase fluid in a porous medium [28]
and the generalized Burgers-Fisher equation (cf. [31, 106,173]).

The closing discussion in Part II is a recapitulation of the obtained results.
There is a chapter of conclusions that compares the similarities in the results

of both parts as well as their differences. It also suggests some questions that
were not treated in this work and that stay pending.
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Chapter 2

Motivation and background

2.1 The viscous Burgers equation

Consider an equation of the form

∂ρ

∂t
+
∂q(ρ, ρx)

∂x
= 0, (2.1.1)

with ρ := ρ(x, t) representing the density or the concentration of a physical
quantity and q(ρ, ρx) being its flux function. Without sources nor sinks, the
rate of change of the physical quantity in the interior of any interval [x1, x2] is
determined by the net flux through the end points of the interval, this is the
reason why it is known as a scalar conservation law. In many physical problems
the assumption that q is a function of the density gradient ρx as well as ρ makes
a better approximation. A simple model is to take

q(ρ, ρx) := Q(ρ)− νρx, (2.1.2)

where ν > 0 is a positive constant and Q is a scalar function of ρ. Substituting
(2.1.2) into (2.1.1), we obtain

ρt + c(ρ)ρx = νρxx,

where c(ρ) = Q′(ρ). If we multiply the above expression by c′(ρ) we obtain

ct + ccx = νc′(ρ)ρxx (2.1.3)

= ν{cxx − c′′(ρ)ρ2
x}. (2.1.4)

If Q(ρ) is a quadratic function of ρ, then c(ρ) is linear in ρ and c′′(ρ) = 0.
Consequently equation (2.1.3) becomes

ct + ccx = νcxx.

As a simple model for turbulence, c is replaced by the fluid velocity field u(x, t)
to obtain the viscous Burgers equation

ut + uux = νuxx x ∈ R, t > 0. (2.1.5)
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Equation (2.1.5) appears in the works of British mathematicians Andrew
Forsyth and Harry Bateman. The latter proposed in his 1915 paper Some
recent researches on the motion of fluids [17] the viscous equation (2.1.5) as
a model for the appearance of discontinuities when the viscocity coefficient ν
approaches zero. This agrees with the result that the inviscid equation

ut + uux = 0

develops discontinuities [183].
It is worth to mention as an interesting fact that Eberhard Hopf -whose

bifurcation theory plays a crucial role in the present thesis- was concerned with
this equation as well. In his 1950 paper The partial differential equation ut +
uux = νuxx [86] he determines a complete solution of it and studies in detail
a pair of conjectures arising in modern fluid dynamics. It also attracted the
attention of James Lighthill who used it to study the propagation of sound
waves in a viscous media.

It probably bears the name of Jan Burgers due to the profound interest
devoted to it by him. He first suggested the equation in his 1948 paper A
mathematical model illustrating the theory of turbulence [29] as a model in the
study of one-dimensional turbulent fluid motion. Some years later, in 1974,
he published an entire monograph entitled The nonlinear diffusion equation:
asymptotic solutions and statistical problems in which he deals with the problem
of vanishing viscocity and large values of t.

Equation (2.1.5) can be transformed into the heat equation using the Hopf-
Cole transformation

u = −2ν
1

φ

∂φ

∂x

making it possible to find an analytic solution for it. It appears in various areas
of science as gas dynamics, traffic flow, propagation of waves in elastic tubes
filled with viscous fluids and in magnetohydrodynamic waves in a medium with
finite electric conductivity.

It provides an example in which both dissipation -due to the linear diffusion
term- and, in the inviscid case with ν = 0, shock formation -due to the nonlinear
transport term uux- coexist. These effects will merge with the ones of the
following equation to form the object of study of the first part of this thesis.

2.2 Fisher-KPP equation

A semi-linear parabolic partial differential equation of the form

ut − νuxx = f(x, t, u), for x ∈ R, t > 0, (2.2.1)

is called a reaction-diffusion equation. This terminology is justified by the
presence of the source or reaction term f and the diffusion uxx. It arises in
chemical problems involving the diffusion of the concentration of a substance
u(x, t) through a medium. Its solutions display a variety of behaviors including
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traveling waves and, in the case of systems, self-organized structures known as
Turing patterns.

In 1937 Ronald Fisher published his paper The wave of advance of advanta-
geous genes [59] where he analyzed the problem of an advantageous (or favoured)
gene’s dispersion in a population and the resulting traveling wave solution. His
nonlinear evolution equation describing the logistic growth-diffusion process has
the form

ut − νuxx = ku
(

1− u

κ

)
, (2.2.2)

where ν > 0 is a diffusion coefficient, k > 0 is the linear growth rate, and κ > 0 is
the carrying capacity of the environment. The reaction term g(u) = ku

(
1− u

κ

)
represents a nonlinear logistic growth rate which is proportional to u for small
u, but decreases as u increases and vanishes when u = κ. It corresponds to the
growth of a population u when there is a limit κ on the size of the population that
the habitat can support -known as carrying capacity. If u > κ, then g(u) < 0,
so the population decreases whenever u is greater thant the limiting value.
This interpretation suggests that the habitat can support certain maximum
population so that

0 ≤ u(x, 0) ≤ κ, x ∈ R.

It has been proven that this equation has traveling wave solutions and several
questions have been posed. Among others, do they have a particular speed of
propagation? What is their asymptotic behavior? Are they sensitive to small
perturbations?

Coincidentally, Soviet mathematicians Andrey Kolmogorov, Ivan Petrovskii
and Nikolai Piskunov publish that same year A study of the diffusion equation
with increase in the amount of substance, and its application to a biological
problem [109] in which they state a series of properties of this equation. For
example, for all initial data satisfying 0 ≤ u(x, 0) ≤ 1 the solution to (2.2.2) is
also bounded for all x and t, that is

0 ≤ u(x, t) ≤ 1, for x ∈ R, t > 0.

After introducing the nondimensional quantities x∗, t∗, u∗ defined by

x∗ =

(
k

ν

) 1
2

x, t∗ = kt, u∗ = κ−1u

we obtain the nondimensional form of Fisher’s equation

ut − uxx = u(1− u), x ∈ R, t > 0. (2.2.3)

This equation has two constant-state equilibria, u ≡ 0 and u ≡ 1, with the first
one being unstable and the latter stable. If

u(x, 0) = u0(x), x ∈ R,

is an initial condition with 0 < u0(x) < 1, there will be a competitive action
between the reaction and the diffusion terms, with diffusion trying to spread and
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lower u0 against the reaction tendency to increase u towards the equilibrium
solution u ≡ 1.

Under the assumption that there exist traveling wave solutions of the form

u(x, t) = u(z), z := x− ct,

with c denoting the wave’s propagation velocity one arrives at the conclusion
that there is a unique traveling wave solution for every velocity c with c ≥ 2

√
νk.

Actually, the minimum value cmin = 2
√
νk is the required speed of propagation

of an advantageous gene.
Equation (2.2.3) appears in other areas of study like combustion and phase

transition phenomena. It blends its production term with the effects of equation
(2.1.5) to craft Burgers-Fisher equation.

2.3 Burgers-Fisher equation

Burgers-Fisher equation,

ut + uux = uxx + u(1− u), (2.3.1)

where u = u(x, t), x ∈ R and t > 0 is a scalar viscous balance law in one
space dimension that owes its name to the dissipative equation (2.1.5) and the
reaction-diffusion equation (2.2.3). f(u) = 1

2u
2 is a nonlinear flux function and

g(u) = u(1 − u) is a balance (or reaction) term expressing production of the
quantity u. Viscosity (or diffusion) effects are modeled through the Laplace
operator applied to u.

Equation (2.3.1) possesses a rich structure as it combines the dynamics of
the nonlinear logistic reaction term as well as the convection/advection effect
and the diffusion transport of the aforementioned models. These results explain
why it exhibits a considerable diversity of solutions. In fact through various
methods a great assortment of expressions have been found that possess different
properties. For example, the authors Mickels and Gumels construct in [139] a
particular finite difference scheme for equation (2.3.1).

Equation (2.3.1) is a particular case of the generalized Burgers-Fisher equa-
tion

ut + purux − uxx = qu(1− ur). (2.3.2)

Various numerical methods have been employed to construct solutions for it. By
implementing the tanh− coth method, Wazwaz [179] finds exact non-bounded
periodic solutions. It is interesting that his results were later confirmed by
Manafian and Lakestani in [131] through a G′/G-expansion method. We can
also mention the exponential function solution found by Lu, Yu-Cui and Shu-
Jiang in [125] for both equations (2.3.1) and (2.3.2). They do this by considering
a decomposition scheme to obtain the exact solutions for the initial condition
and then construct its numerical solutions. They provide as well a comparison
between both types of solutions. Other efforts concerning (2.3.2) include the
solitary-wave solutions reported by Kaya and El-Sayed in [106] and the multiple
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soliton solutions obtained by Chen and Zhang in [31] through a generalized tanh
function method.

The investigation of Zhou, Liu and Zhang [189] regarding bounded traveling
waves for equation (2.3.2) studies local and nonlocal bifurcations such as the
Hopf bifurcation, homoclinic bifurcation, heteroclinic bifurcation and Poincaré
bifurcation. They obtain sufficient conditions to guarantee the existence of dif-
ferent kinds of bounded traveling waves including solitary waves, kink waves and
periodic waves. They study as well the existence of various oscillatory bounded
traveling waves. The results and tools that appear in the article inspired the
existence sections of the present thesis.

As mentioned in the Introduction, equation (2.3.1) is a viscous balance law
that exhibits, among others, periodic traveling wave solutions. A considerable
amount of effort has been dedicated to the question of the stability of periodic
traveling wave solutions to this type of equations. Nonclassical viscous conserva-
tion laws arising in multiphase fluid and solid mechanics exhibit a rich variety
of traveling wave phenomena, including homoclinic (pulse-type) and periodic
solutions along with the heteroclinic (shock, or front-type) solutions. Working
with parabolic systems of conservation laws of the form

ut +
∑
j

f j(u)xj = ∆xu, f j ∈ Rn, x ∈ Rd, t ≥ 0,

Johnson and Zumbrun [94] show that spectral stability implies linearized and
nonlinear stability of spatially periodic traveling wave solutions of viscous sys-
tems of conservation laws for systems of generic type.

In their work, [93] the authors Johnson, Noble, Rodrigues and Zumbrun
consider reaction-diffusion and conservation laws in a common framework

ut + f(u)x + g(u) = (B(u)ux)x, u ∈ Rn,

with f ≡ 0 corresponding to the reaction-diffusion case and g ≡ 0 to the con-
servative case. They establish nonlinear stability and asymptotic behavior for
periodic traveling waves under localized perturbations or nonlocalized perturba-
tions that are asymptotic to constant shifts in phase. A key point is to identify
the way in which initial perturbations translate to initial data for the associated
formal system, a task accomplished by detailed estimates on the linearized solu-
tion operator about the background wave. At the same time, their description
of solutions gives the result of nonlinear asymptotic stability with respect to
localized perturbations in the phase-decoupled case.

In his seminal paper [168], D. Serre studies the spectral stability of a periodic
traveling wave through Floquet’s theory. He states that the large wavelenght
analysis is the description of the zero set of a function D(λ, θ) around the origin.
The result in the article states that this zero set is described, at the leading order,
by a characteristic equation

det(λIN − iθ∂F (u)/∂u) = 0,
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where the flux F appears in a first-order system of conservation laws of the form

ut + F (u)x = 0.

He concludes that hyperbolicity of the latter system is a necessary condition for
spectral stability of periodic traveling waves.

The stability properties of periodic traveling wave solutions have been fur-
ther studied using Whitham modulation theory. As was briefly mentioned in
the introduction, this theory provides an asymptotic method for studying slowly
varying periodic waves. Equations are derived which describe the slow evolution
of the governing parameters for the nonlinear periodic waves (such as the am-
plitude, wavelength and frequency) and are called the modulation (or Whitham)
equations. Suppose that the periodic solution of an equation depends on three
real parameters α, β and γ. In a slowly modulated wave they become slow func-
tions of x and t, that is they change little in one wavelength L and one period T .
The objective is to find equations which govern the evolution of α, β and γ. The
main idea is to substitute a modulated solution u(x, t, α(x, t), β(x, t), γ(x, t)) into
the original equation and average it over fast oscillations -i.e. high-frequency-
with wavelenght L. Whitham showed that this procedure can be done most
easily with the use of conservation laws.

The initial mathematical challenge of the problem of stability behavior of
modulated periodic wavetrains is that the linearized equations, having periodic
coefficients, have purely essential spectrum when considered as problems on the
whole line, making difficult either the treatment of linearized behavior or the
passage from linear to nonlinear estimates.

This issue was overcome in the reaction-diffusion case by Schneider [164],
[165]. Using a method of diffusive stability he combined diffusive-type linear es-
timates with renormalization techniques to show that, assuming diffusive spec-
tral stability, long-time behavior under localized perturbations is essentially
described by a scalar linear convection-diffusion equation in the phase variable,
with the amplitue decaying more rapidly. In [164] the author focuses on the
Swift-Hohenberg equation

ut = −(1 + ∂2
x)2u+ ε2u− u3, x ∈ R, t ≥ 0,

with respect to small integrable perturbations. The difficulty he encounters is
proving stability when the linearization around a solution possesses continuous
spectrum up to zero and he proves that the fully nonlinear problem behaves
asymptotically as the linearized one.

In their article, Johnson, Noble, Rodrigues and Zumbrun [92] determine
time-asymptotic behavior of spectrally stable periodic traveling wave solutions
of reaction-diffusion systems under small perturbations consisting of a nonlo-
calized modulation plus a localized (L1) perturbation, showing that solutions
consist to leading order of a modulation whose parameter evolution is governed
by an associated Whitham averaged equation. In a companion paper [91], they
establish nonlinear stability with detailed diffusive rates for the same family of
equations. They conclude that spectral stability implies nonlinear modulational
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stability of periodic traveling wave solutions of reaction-diffusion system under
small perturbations.

As a second example of this section we mention the work done with periodic
solutions of general parabolic conservation laws

ut + (f(u))x = (B(u)ux)x,

by Oh and Zumbrun in [147]. They exhibit a dispersion relation agreeing to
lowest order with the spectral expansion of the critical eigenmodes, thus de-
termining low-frequency -sideband- stability. To be more precise: they prove
that well-posedness of the Whitham equation may be seen as a necessary con-
dition for low-frequency modulational stability. They describe some interesting
consequences regarding the Whitham modulation equations and modulational
stability of periodic waves.

The aforementioned research on the spectral stability of periodic traveling
wave solutions of viscous balance laws has inspired the present thesis. A study
of the spectral and modulational stability of such solutions for Burgers-Fisher
equation is the first contribution of this thesis since this matter has not been
previously addressed in the mathematical literature. A second contribution is
the generalization of the existence results of periodic traveling wave solutions to
a general class of equations (general viscous balance laws). Finally, as a third
contribution, the techniques used to determine the spectral instability of the
periodic traveling wave solutions for Burgers-Fisher equation were extended to
general viscous balance laws.

Before proving the existence of periodic traveling wave solutions for Burgers-
Fisher equation we have to comment some preliminary results that will be nec-
essary.
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Chapter 3

Preliminary results

The existence of periodic traveling wave solutions for equation (2.3.1) will rely
on widely-known techniques and tools that we will enunciate without proof but
with references as to where can they be found. We begin by introducing the
notation and some terminology.

On notation

Linear operators acting on infinite-dimensional spaces are indicated with calli-
graphic letters (e.g., L and T ), except for the identity operator which is indi-
cated by Id. The domain of a linear operator, L : X → Y , with X, Y Banach
spaces, is denoted as D(L) ⊆ X. We denote the real and imaginary parts of
a complex number λ ∈ C by Reλ and Imλ, respectively, as well as complex
conjugation by λ∗. Complex transposition of matrices is indicated by the sym-
bol A∗, whereas simple transposition is denoted by the symbol A>. For any
linear operator L, its formal adjoint is denoted by L∗. Standard Sobolev spaces
of complex-valued functions on the real line will be denoted as L2(R;C) and
Hm(R;C), with m ∈ N, endowed with the standard inner products,

〈u, v〉L2 =

∫
R
u(x)v(x)∗ dx, 〈u, v〉Hm =

m∑
k=1

〈∂kxu, ∂kxv〉L2 ,

and corresponding norms ‖u‖2L2 = 〈u, u〉L2 , ‖u‖2Hm = 〈u, u〉Hm . For any T > 0,
we denote by L2

per([0, T ];C) the Hilbert space of complex T -periodic functions
in L2

loc(R) satisfying

u(x+ T ) = u(x), a.e. in x,

and with inner product and norm

〈u, v〉L2
per

=

∫ T

0

u(x)v(x)∗ dx, ‖u‖2L2
per

= 〈u, u〉L2
per
.
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For any m ∈ N, the periodic Sobolev space Hm
per([0, T ],C) will denote the set

of all functions u ∈ L2
per([0, T ];C) with all weak derivatives up to order m in

L2
per([0, T ];C). By Sobolev’s lemma (see, e.g., Iorio and Iorio [87]), Hm

per ↪→ Ckper

for m > k + 1
2 , k ∈ N, and we can characterize the spaces Hm

per as

Hm
per([0, T ],C) = {u ∈ Hm([0, T ];C) : ∂jxu(0) = ∂jxu(T ), j = 0, 1, . . . ,m− 1}.

Their inner product and norm are given by

〈u, v〉Hmper =

m∑
j=0

〈∂jxu, ∂jxv〉L2
per
, ‖u‖2Hmper = 〈u, u〉Hmper .

We use the standard notation in asymptotic analysis (cf. [52,141]), in which the
symbol “∼” means “behaves asymptotically like” as x → x∗; more precisely,
f ∼ g as x → x∗ if f − g = O(|g|) as x → x∗ (or equivalently, f/g → 1 as
x→ x∗ if both functions are positive).

3.1 Andronov-Hopf bifurcation theory

This section is dedicated to the results needed to prove the existence of the
family of small-amplitude waves.

Systems of differential equations that model a physical phenomenon usually
incorporate parameters that may change the topological structure of the asso-
ciated phase diagrams -thus, of the solutions- when varied. Consider a planar
system of differential equations depending on a parameter µ ∈ R{

U ′ = F (U, V µ)
V ′ = G(U, V, µ),

(U, V ) ∈ R2 (3.1.1)

Its equilibrium points consists of those (U0, V0) ∈ R2 and µ0 ∈ R such that
F (U0, V0, µ) = 0 = G(U0, V0, µ0). A qualitative approximation of the behavior
of the solutions of (3.1.1) in a neighborhood of these may be studied through the
linearization around them. The resulting phase portraits will change in structure
and nature as the incorporated parameters are varied. As this variation occurs
the phase portrait of the system varies as well resulting in two possible cases:
either the phase portrait remains topologically equivalent to the original one or
its topology changes. We formalize this behavior in the following

Definition 3.1.1. [110] (Bifurcation) The appearance of a topologically non-
equivalent phase portrait under variation of parameters in a parameter-dependent
system as (3.1.1) is called a bifurcation.

That is, a bifurcation is a change in the topological structure of the phase
portrait as its parameters cross a specific value known as bifurcation or critical
value.

Recall that (U0, V0) is called a hyperbolic equilibrium point for system (3.1.1)
at the parameter value µ = µ0 if none of the eigenvalues of the Jacobian matrix
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Ã(U0,V0)(µ0) is purely imaginary. A question that arises is whether or not the
hyperbolic nature of the equilibrium point changes if we vary the parameter.
Actually, the smoothness of the vector field with respect to µ implies that the
eigenvalues of the matrix Ã(U0,V0)(·) change continuously as the parameter varies
[110]. Under a slight variation, the equilibrium point may move in the plane
while it remains being hyperbolic. The hyperbolicity can thus be altered only
by the presence of a pair of simple complex eigenvalues on the imaginary axis:
λ1,2 = ±iω0 with ω0 > 0 for some value of the parameter. A nonhyperbolic
equilibrium satisfying this condition is accompanied by a topological change in
the local structure of the phase plane. This takes us to the following

Definition 3.1.2. [110] (Hopf bifurcation) The bifurcation corresponding to
the appearance of λ1,2 = ±iω0 with ω0 > 0 as eigenvalues of the Jacobian
matrix is called a Hopf (or Andronov-Hopf ) bifurcation.

This phenomenon is characterized by the appearance of a limit cycle as the
parameter µ crosses a critical value µ0. The following result states the conditions
under which such limit cycle appears.

Theorem 3.1.3 (Andronov-Hopf). Consider the planar system{
U ′ = F (U, V µ)
V ′ = G(U, V, µ),

(3.1.2)

where F and G are functions of class C3 and µ ∈ R is a bifurcation parameter.
Suppose (U, V ) = (U0, V0) is an equilibrium point of system (3.1.2), which may
depend on µ. Let the eigenvalues of the linearized system around (U0, V0) be
given by

λ±(µ) = α(µ)± iβ(µ).

Let us assume that for a certain value µ = µ0 the following conditions are
satisfied:

(a) (non-hyperbolicity condition) α(µ0) = 0, β(µ0) = ω0 6= 0, and

sgn(ω0) = sgn((∂G/∂U)(U0, V0, µ0)). (3.1.3)

(b) (transversality condition)

dα

dµ
(µ0) = d0 6= 0.

(c) (genericity condition) a0 6= 0, where a0 is the first Lyapunov exponent,

a0 =
1

16

(
FUUU + FUV V +GUUV +GV V V

)
+

+
1

16ω0

(
FUV (FUU + FV V )−GUV (GUU +GV V )− FUUGUU + FV VGV V

)
,

(3.1.4)

where all the partial derivatives of F and G are evaluated at (U0, V0, µ0).
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Then there exists ε > 0 such that a unique curve of closed periodic orbit
solutions bifurcates from the equilibrium point into the region µ ∈ (µ0, µ0 + ε)
if a0d0 < 0, or into the region µ ∈ (µ0 − ε, µ0) if a0d0 > 0. The fixed point is
stable for µ > µ0 (respectively, µ < µ0) if d0 < 0 (respectively, d0 > 0). Conse-
quently, the periodic orbits are stable (respectively, unstable) if the equilibrium
point is stable (respectively, unstable) on the region where the periodic orbits
exist. Moreover, the amplitude of the periodic orbits grows like

√
|µ− µ0| and

their fundamental periods behave like

T (µ) =
2π

|ω0|
+O(|µ− µ0|),

as µ → µ0. The bifurcation is called supercritical if the bifurcating periodic
orbits are stable, and subcritical if they are unstable.

Remark 3.1.4. Theorem 3.1.3 is the classical result first proved by Andronov
[4] in the plane and extended to arbitrary finite dimensions by Hopf [86]. The
reason to include its precise statement here is that most of its versions in the
standard literature (see, for example, [71,72,110]) are expressed in terms of the
normal form of a generic system (3.1.2), for which the sign condition (3.1.3) is
usually implicitly assumed. But for a system not necessarily written in normal
form, the sign condition has to be verified in order to determine on which side
of the bifurcation value do the periodic orbits emerge. The formula for the first
Lyapunov exponent (3.1.4) is well-known and can be found in [71], p. 152 (see
also [72]). The expression for the period can be found in the version of the same
theorem by Marsden and McCracken [133] (see Theorem 3.1, p. 65).

Remark 3.1.5. As the theorem states, there are two types of Andronov-Hopf
bifurcation. The first one is called supercritical because the cycle exists for
values of the parameter µ that are greater than the bifurcation value. The
other one is called subcritical since the cycle is present before the bifurcation.
In both cases we have a loss of stability of the equilibrium at µ = µ0 under the
increase of the parameter. In the first case, the stable equilibrium is replaced
by a stable limit cycle of small amplitude. Therefore, the system remains in a
neighborhood of the equilibrium and we have soft or noncatastrophic stability
loss. In the second case, the region of attraction of the equilibrium point is
bounded by the unstable cycle, which shrinks as the parameter approaches its
critical value and disappears.

Remark 3.1.6. The notion of a stable periodic orbit in the statement of
Andronov-Hopf’s theorem refers to the standard concept from dynamical sys-
tems theory: the orbit is stable as a solution to system (3.1.2) for a specific (and
constant) value of c if any other nearby solution (to the system with the same
c) tends to the orbit under consideration. This notion is completely unrelated
to the concept of spectrally stable periodic traveling wave which is instead mo-
tivated from the dynamical stability of the traveling wave as a solution to the
evolution PDE.
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3.2 Melnikov’s method: perturbation of a Hamil-
tonian system

The results of this section are used to prove the existence of the family of large
period waves.

Consider a planar Hamiltonian vector field with a small perturbation incor-
porated {

U ′ = ∂VH + εR(U, V, ε, µ),
V ′ = −∂UH + εQ(U, V, ε, µ),

(3.2.1)

here µ = (µ1, µ2) ∈ R2 is a vector parameter and 0 < ε � 1 is small. Due to
the conditions imposed on the planar systems studied in this thesis they will
have A0 = (0, 0) and A1 = (1, 0) as equilibrium points -actually A1 is a hyper-
bolic equilibrium- for both their perturbed system (3.2.1) and their unperturbed
Hamiltonian system {

U ′ = ∂VH,
V ′ = −∂UH.

(3.2.2)

Let β := H(1, 0) denote the energy level at A1 as equilibrium of the Hamiltonian
system. We require the following conditions on the unperturbed flow.
A1 The set

Γβ := {(U, V ) ∈ R2 : H(U, V ) = β},

is a homoclinic loop for the Hamiltonian system joining the hyperbolic saddle
A1 = (1, 0) with itself.

Remark 3.2.1. A homoclinic orbit (cf. [71, 110]) is a trajectory of a flow of
a dynamical system which joins a saddle equilibrium point with itself. More
precisely, it is an orbit that is asymptotic to the same equilibrium as t −→ ∞
and t → −∞. When the system is perturbed, the orbit can break up into two
manifolds, one emerging from the point and the other one arriving at it. These
are the unstable and stable manifolds associated to the equilibrium. Melnikov’s
function is defined as a measure of the relative position between them. A zero
of this function will correspond to a transversal intersection of the manifolds
and the appearance of an associated homoclinic orbit.

A2 There exists a family of periodic orbits for system (3.2.2),

Γh := {(U, V ) ∈ R2 : H(U, V ) = h}, h ∈ (0, β),

such that

(i) Γh → A0 = (0, 0) as h→ 0+, and

(ii) Γh → Γβ as h→ β−.

Systems of this form present a global type of bifurcation compared to the
local nature of the one introduced in the previous section.
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A3 If T = T (h) denotes the fundamental period of the periodic orbit Γh, h ∈
(0, β), then T (h) −→∞ as h −→ β−. From standard properties of Hamiltonian
systems (see, e.g., [162,163]), 0 < T (h) <∞ for each h ∈ (0, β) and T (h)→∞
as h→ β−, which is the infinite period of the homoclinic loop Γβ .

In view of observations A1, A2 and A3 we define the open sets

Ωh := intΓh = {(U, V ) ∈ R2 : 0 < H(U, V ) < h},

for each h ∈ (0, β). In the same fashion let us define

Ωβ := intΓβ =
{

(U, V ) ∈ R2 : 0 < H(U, V ) < β
}

Then the Melnikov integrals [73] can be defined as

M̃(h, µ) :=

∫
Ωh

(∂UR+ ∂VQ) dUdV.

They satisfy (see [35]):

• M̃ ∈ C∞ for |ε|+ |h− h0| � 1, for any h0 ∈ (0, β) and all µ ∈ R2;

• the derivative with respect to h is given by

∂hM̃(h, µ) =

∮
Γh

(∂UR+ ∂VQ) dσh, h ∈ (0, β), µ ∈ R2.

We define the Melnikov integrals precisely at h = β as

M(µ) := M̃ (β, µ) =

∫
Ωβ

(∂UR+ ∂VQ) dUdV,

and

M1(µ) := ∂hM̃ (β, µ) =

∮
Γβ

(∂UR+ ∂VQ) dσβ .

The following theorem is due to Melnikov [138] (see also [35]), and it estab-
lishes the conditions under which the perturbed system underlies a homoclinic
loop emerging from the homoclinic orbit for the Hamiltonian system (see, e.g.,
Theorem 6.8, p. 466, in [32], Theorem 6.4, p. 266 in [73], as well as Lemma
4.5.1 and Theorem 4.5.4 in [71].)

Theorem 3.2.2 (Melnikov’s method for perturbed homoclinic orbits [138]).
Suppose that A1 is a hyperbolic saddle equilibrium point for the unperturbed
Hamiltonian system (3.2.2) possessing a homoclinic loop Γβ. If ε > 0 is suffi-
ciently small then the perturbed system (3.2.1) has a unique hyperbolic equilib-
rium point A1(ε) = A1 + O(ε). Moreover, if M(µ0) = 0 and M1(µ0) 6= 0 (that
is, if the Melnikov integral has a simple zero at µ = µ0 at the energy level h = β
on the homoclinic loop) then the perturbed system (3.2.1) with µ = µ0 has a
unique hyperbolic homoclinic loop Γβε for each ε > 0 sufficiently small, relative
to the stable and unstable manifolds of the hyperbolic equilibrium point A1(ε).
If, on the other hand, M(µ) has no zeroes and |ε| 6= 0 is small, then the stable
and unstable manifolds of A1(ε) do not intersect.
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The existence of a family of large period waves that bifurcate from the homo-
clinic loop of a saddle with non-zero saddle quantity is provided by Andronov-
Leontovich’s theorem [5], [6].

Theorem 3.2.3 (Andronov-Leontovich). Consider a two-dimensional system{
U ′ = F (U, V, µ)
V ′ = G(U, V, µ),

with smooth F and G, having at A1 = (U1, V1) ∈ R2, µ0 ∈ R a hyperbolic saddle
equilibrium with eigenvalues λ1(µ0) < 0 < λ2(µ0) and a homoclinic orbit Γβ.
Let us define the saddle quantity

σ0 = λ1(µ0) + λ2(µ0).

Assume σ0 6= 0. Then:

• If σ0 < 0 then for sufficiently small µ−µ0 > 0 there exists a unique stable
limit cycle Γ(µ) bifurcating from Γβ which as µ −→ µ+

0 gets closer to the
homoclinic loop at µ = µ0. When µ < µ0 there are no limit cycles.

• If σ0 > 0 then for sufficiently small µ − µ0 < 0 there exists a unique
unstable limit cycle Γ(µ) bifurcating from Γβ which as µ −→ µ−0 gets
closer to the homoclinic loop at µ = µ0. When µ > µ0 there are no limit
cycles.

3.3 The spectral problem

We proceed to study the evolution of a perturbation of the periodic traveling
waves under Burgers-Fisher equation. Substituting u := ϕ+v in (2.3.1) written
in the Galilean frame associated with the independent variables (z, t) = (x−ct, t)
one finds that the perturbation v := v(z, t) necessarily satisfies the nonlinear
equation

vt − cvz + ϕvz + vϕz + vvz = vzz + v − 2ϕv − v2.

As a leading approximation for small perturbations, we replace the above ex-
pression by its linearization around v = 0 and obtain the linear equation

vt + (ϕz − 1 + 2ϕ)v + (ϕ− c)vz = vzz. (3.3.1)

Since ϕ depends on z but not on t, this equation admits treatment by separation
of variables, which leads naturally to the spectral problem. Seeking particular
solutions of the form v(z, t) = w(z)eλt, with λ ∈ C, w satisfies the linear ordinary
differential equation

λw + (ϕz − 1 + 2ϕ)w + (ϕ− c)wz = wzz, (3.3.2)

in which the complex growth rate λ appears as the spectral parameter. This
equation will only have a nonzero solution w in a given Banach space X for
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certain λ ∈ C, and these values of λ make up the spectrum for the linearized
problem. A necessary condition for the stability of ϕ is that there are no points
of spectrum with Reλ > 0, which would imply the existence of a solution v that
lies in X as a function of z and grows exponentially in time. These concepts
will be formalized shortly.

The spectral problem with w ∈ H2(R;C) × H1(R;C) can be equivalently
regarded as a first order system of the form

wz = A(z, λ)w,

with w := (w,wz)
> ∈ Y , for a Banach space Y and

A =

(
0 1

λ+ ϕz − 1 + 2ϕ ϕ− c

)
.

Note that the coefficient matrix A is periodic in z with period T . This fact
gives us a hint that Floquet theory is about to appear.

In order to set this problem in a functional analytical context we consider
the closed, densely defined operators T (λ) : D ⊂ X −→ X defined by

T (λ)w := wz −A(z, λ)w,

on a domain D(T ) dense in X. The family of operators is parametrized by
λ ∈ C, but the domain X is taken independent of λ ∈ C. The resolvent set and
spectrum associated with T are then defined as follows.

Definition 3.3.1. (Resolvent set and spectrum of T ) [100]. We define the
following subsets of the complex λ-plane:

i the resolvent set ρ = ρ(T ) is defined by

ρ := {λ ∈ C : T (λ) is one-to-one and onto, and T −1(λ) is bounded};

ii the point spectrum σpt = σpt(T ) is defined by

σpt := {λ ∈ C : T (λ) is Fredholm with zero index and has a non-trivial kernel};

iii the essential spectrum σess = σess(T ) is defined by

σess := {λ ∈ C : T (λ) is either not Fredholm or has index different from zero}.

The spectrum σ = σ(T ) of T is the disjoint union of the essential and point
spectra, σ = σess ∪ σpt.

The definition of spectra and resolvent associated with periodic waves de-
pends upon the choice of the function space Y . Here, we shall consider

D(T ) = H2(R;C) and X = L2(R;C),
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which corresponds to studying spectral stability of periodic waves with respect
to spatially localized perturbations in the Galilean frame in which the waves are
stationary.

It is well known that the L2(R) spectrum of a differential operator with
periodic coefficients contains no isolated eigenvalues, in other words it is purely
essential or continuous. Indeed, we have the following

Lemma 3.3.2 (Gardner [63]). All L2(R;C2)-spectrum of T is purely essential,
that is, σ = σess and σpt is empty.

Proof. See, e.g., the proof of Lemma 3.3. in Jones et al. [100].

3.4 Floquet characterization of the spectrum and
the periodic Evans function

Let F(z, λ) denote the 2 × 2 identity-normalized fundamental solution matrix
for the differential equation

wz = A(z, λ)w, (3.4.1)

that is, the unique solution of

Fz(z, λ) = A(z, λ)F(z, λ) with initial condition F(0, λ) = Id, for all λ ∈ C.

The T -periodicity in z of the coefficient matrix A implies that

F(z + T, λ) = F(z, λ)M(λ), for all z ∈ R, where M(λ) := F(T, λ).

The matrix M(λ) is called the monodromy matrix [100] for the first-order system
(3.4.1). The monodromy matrix is a representation of the linear mapping taking
a given solution w(z, λ) evaluated for z = 0 to its value one period later. Let
µ(λ) denote an eigenvalue of M(λ), and let w0(λ) ∈ C2 denote a corresponding
eigenvector: M(λ)w0(λ) = µ(λ)w0(λ). Then w(z, λ) := F(z, λ)w0(λ) is a
nontrivial solution of system (3.4.1) that satisfies

w(z + T, λ) = F(z + T, λ)w0(λ)

= F(z, λ)M(λ)w0(λ)

= µ(λ)F(z, λ)w0(λ)

= µ(λ)w(z, λ), for all z ∈ R.

Thus, w(z, λ) is a particular solution that goes into a multiple of itself upon
translation by a period in z. Such solutions are called Floquet solutions, and the
eigenvalues µ(λ) of the monodromy matrix M(λ) are called Floquet multiplier.
If R(λ) denotes any number for which eR(λ) = µ(λ), then e−R(λ)z/Tw(z, λ) is
a T -periodic function of z, or equivalently by Bloch’s theorem, w(z, λ) can be
written in the form

w(z, λ) = e−R(λ)z/T z(z, λ), where z(z + T, λ) = z(z, λ) for all z ∈ R.
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The quantity R(λ) is called Floquet exponent.
The L2(R;C2) spectrum of T is characterized in terms of the monodromy

matrix as follows.

Proposition 3.4.1 (Jones, Marangell, Miller and Plaza [100]). λ ∈ σ if and
only if there exists µ ∈ C with |µ| = 1 such that

D(λ, µ) := det(M(λ)− µId) = 0,

that is, at least one of the Floquet mulitipliers lies on the unit circle.

The characteristic polynomial that appears in the previous result plays a
central role in the present work.

Definition 3.4.2. (Periodic Evans function). The periodic Evans function is
the restriction of D(λ, µ) to the unit circle S1 ⊂ C. Thus, for each θ ∈ R
(modulo 2π), D(λ, eiθ) is an entire function of λ ∈ C whose isolated zeroes are
particular points of the spectrum σ and it has the form

D(λ, θ) = ei2θ − tr M(λ)eiθ + det M(λ).

The parametrization of the spectrum in terms of Floquet multipliers of the
form µ = eiθ ∈ S1, or equivalently θ ∈ R (mod. 2π) can be made even clearer by
introducing the set σθ of complex numbers λ for which there exists a nontrivial
solution of the boundary-value problem consisting of (3.3.2) with the boundary
condition (

w(T )
wz(T )

)
= eiθ

(
w(0)
wz(0)

)
, (3.4.2)

for θ ∈ (−π, π]. We define the Floquet spectrum σF as the union of these partial
spectra

σF =
⋃

−π<θ≤π

σθ.

Observe that if θ = 0 (corresponding to equationD(λ, 1) = 0) then the boundary
conditions in (3.4.2) become periodic and σ0 detects perturbations which are
T -periodic. For this reason σ0 is called the periodic partial spectrum. By a
symmetric argument, the set σπ (corresponding to equation D(λ,−1) = 0)
detects anti-periodic perturbations which correspond to those that change sign
after translation by T in z. Their fundamental period is thus 2T .

The real angle parameter θ is usually a local coordinate for the spectrum
σ as a real subvariety of the complex λ-plane. To remove the θ-dependence
associated with the boundary conditions in (3.4.2) one can pose the problem in
a proper periodic space independently of (but indexed by) θ ∈ (−π, π] by means
of a Bloch-wave decomposition. Define

u(z) := e−iθz/Tw(z).

Then the non-separated boundary conditions in (3.4.2) transform into periodic
ones, ∂jzu(T ) = ∂jzu(0), j = 0, 1, and the spectral problem (3.3.2) is recast as

Lθu = λu,
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for a one-parameter family of Bloch operators{
Lθ := (∂z + iθ/T )2 + a1(z)(∂z + iθ/T ) + a0(z),

Lθ : ([0, T ];C)→ ([0, T ];C),

with domain D(Lθ) = ([0, T ];C), parametrized by θ ∈ (−π, π]. Since the fam-
ily has compactly embedded domains in ([0, T ];C) then their spectrum consists
entirely of isolated eigenvalues, σ(Lθ) = σpt(Lθ). Moreover, they depend con-
tinuously on the Bloch parameter θ, which is typically a local coordinate for
the spectrum σ(L)|L2 , explaining the intuition that the former is purely “con-
tinuous” and consisting of curves of spectrum in the complex plane (see Propo-
sition 3.7 in [100]) meaning that λ ∈ σ(L)|L2 if and only if λ ∈ (Lθ) for some
θ ∈ (−π, π]. Consequently, we also have the spectral representation (see [63,104]
for details),

σ(L) =
⋃

−π<θ≤π

σpt(Lθ).

Having established the previous concepts we may formalize the following and
recalling (Gardner) that the spectrum of the linearization about a periodic wave
consists entirely of continuous spectrum. Why is L2- stability necessary. Propo-
sition 3.4.1 the spectrum is characterized in terms of the monodtromy matrix
which will be util in the future when we do the monodrmmy matrix analysis.

Definition 3.4.3. (Spectral stability). We say that a bounded periodic wave ϕ
is spectrally stable as a solution to (2.3.1) if the L2-spectrum of the linearized
operator around the wave defined in (3.3.2) satisfies

σ(T ) ∩ {λ ∈ C : Reλ > 0} = ∅.

Otherwise we say that is it spectrally unstable.

Remark 3.4.4. Recall from Proposition 3.4.1 that the distinctiveness of the
L2(R;C) setting is that it permits us to characterize the spectrum in terms of
the monodromy matrix. This result is proven in [100] using Lemma 3.3.2. The
convenience of working with a Hilbert space becomes evident in the proof of
the latter. For this reason, we would be unable to state an analogous result in
a space different from L2 (like Lp with p 6= 0). We will profit from the fact of
expressing the spectrum in terms of the monodromy matrix in the modulational
stability analysis of Chapter 7.

In his work [63], the author further characterizes the spectra of an operator
defined on a bounded domain by proving that it consists of closed curves. He
makes use of the previously defined Evans function D(λ).

Theorem 3.4.5 (Kapitula and Promislow [104]). Consider the operator L with
bounded domain. Let γ ⊂ C be a simple closed curve oriented in the positive
sense, which does not intersect σ(L). Then the winding number

W (µ) =
1

2πi

∮
γ

∂λD(λ, µ)

D(λ, µ)
dλ
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is constant for µ ∈ (−1, 1]. Moreover, if W (0) = 1, then the spectra inside of γ
forms a smooth, closed curve.

In a later work [65] the author relates the spectrum of a family of periodic
traveling wave solutions parametrized by α and pulse-type solutions in the case
in which the latter converge to it as α −→ 0. That is, if Tα is the period of
the elements of the family then Tα −→ ∞ as α −→ 0. Through topological
methods he proved that every isolated eigenvalue of the linearization about the
pulse generates a small circle (a loop) of eigenvalues for the linearization around
the periodic waves. This is stated in the following

Theorem 3.4.6 (Gardner [65]). Suppose that K ⊂ Ω is a simple closed curve
which is disjoint from the spectrum of the homoclinic wave, and let m be the
multiplicity of eigenvalues of the homoclinic wave interior to K. Then there
exists α0 such that for α < α0, the curve K encloses exactly m γ-eigenvalues
(counting multiplicities) of the periodic wave for each γ on the unit circle of the
complex plane.

3.5 Spectral perturbation theory

In this section a review of basic perturbation theory for a linear family of op-
erators of the form L(ε) = L0 + εA is given. This theory will help us to prove
the spectral instability of the family of small-amplitude waves. We describe a
simple criterion in the case of L0 being a self-adjoint operator to establish when
does an eigenvalue λ0 of L0 persists for ε 6= 0 and small, as described in [84].
A more general description of the theory can be found in [105]. We first recall
some basic definitions.

Definition 3.5.1. (Relatively bounded operator). Let A,S : X −→ Y be linear
operators with X,Y Banach spaces. We say that A is relatively bounded with
respect to S, or simply S-bounded, provided that D(S) ⊂ D(A) and that there
exist α, β ≥ 0 such that

‖Au‖ ≤ α‖u‖+ β‖Su‖

for all u ∈ D(S).

Definition 3.5.2. (Riesz projection). Let L : X → Y be a closed operator with
X,Y Banach spaces. Suppose Γ ⊂ ρ(L) is a closed rectifiable contour around
a discrete eigenvalue of L, λ0 ∈ σpt(L). The Riesz projection for L and λ0 is
defined as

P =
1

2πi

∮
Γ

(L − λ)−1 dλ.

The algebraic multiplicity of λ0 is the dimension of the range of P, m(λ0) =
dimR(P), whereas the geometric multiplicity of λ0 is the nullity of L − λ0,
m(λ0) = dim ker(L − λ0). Clearly m(λ0) ≤ m(λ0).
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Consider a family of operators

L(ε) = L0 + εA, (3.5.1)

defined on a Hilbert space H such that D(L0) ⊂ D(A) ⊂ H, so that L(ε) :
D(L0) ⊂ H → H for all ε small.

Definition 3.5.3. A discrete eigenvalue λ0 ∈ σpt(L0) is stable with respect to
the family L(ε) if

(i) there exists r > 0 such that Γr = {λ ∈ C : |λ− λ0| = r} ⊂ ρ(L(ε)) for all
small |ε| � 1, and

(ii) if Pε denotes the Riesz projection for L(ε) and λ0 corresponding to the
contour Γr then Pε → P0 in norm as ε→ 0.

Proposition 3.5.4 (Kato [105]). Suppose λ is a stable eigenvalue (in the sense
of Definition (3.5.3)) of L0. Then for all |ε| sufficiently small, any operator L(ε)
of the form (3.5.1) has discrete eigenvalues λn(ε) near λ of total multiplicity
equal to the multiplicity of λ.

In order to prove the stability of an eigenvalue (in the sense of Definition
3.5.3) we need the following proposition which provides a simple criterion for
the persistence of a discrete eigenvalue λ0 of L0 under the family L(ε) in the
particular case when L0 is self-adjoint.

Theorem 3.5.5 (Hislop and Sigal [84]). Let L(ε) have the form (3.5.1), with
A being L0-bounded. Then all discrete eigenvalues of L0 are stable. Morevoer,
if λn(ε) are the eigenvalues of L(ε) near the eigenvalue λ of L0, then the total
multiplicity of λn(ε) equals the total multiplicity of λ.

Finally, we state the following result that describes the eigenvalues of Sturm-
Liouville operators on the real line.

Theorem 3.5.6 (Kapitula and Promislow [104]). Consider the eigenvalue prob-
lem Lp = λp on the space H2(R), where Lp := ∂2

xp+ a1(x)∂xp+ a0(x)p and the
coefficients a1(x) and a0(x) decay exponentially at x = ±∞. The point spectrum
consists of a finite number, possibly zero, of simple eigenvalues, which can be
enumerated in a strictly descending order

λ0 > λ1 > · · · > λN > b := max{a−0 , a
−
1 }.

For j = 0, ..., N the eigenfunction pj(x) associated with the eigenvalue λj can
be normalized such that:

1. pj has j simple zeroes;

2. The eigenfunctions are orthonormal in the ρ-weighted inner product,

〈pj , pk〉ρ =

∫ 1

−1

u(x)v(x)ρ(x) dx

= δjk
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where δ is the Kronecker delta and

ρ(x) = e
∫ x
0
a1(s) ds > 0

is the weight function;

3. The largest, or ground-state eigenvalue, if it exists, can be characterized
as the supremum of the bilinear form associated to L,

λ0 = sup
||u||ρ=1

〈Lu, u〉ρ.

Now that we are equipped with the preliminary results we may proceed to
the existence chapter, devoted to study the existence of the waves.
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Chapter 4

Existence of bounded
periodic traveling waves

The existence of two types of bounded periodic traveling waves for Burgers-
Fisher equation (2.3.1) is established in this chapter. The first type consists
of small-amplitude, finite closed orbits that emerge from a supercritical Hopf
bifurcation around the wave’s speed critical value c = 0. These bifurcations are
referred to as local because we need to analyze the vector field in a neighborhood
of an equilibrium point. Furthermore, the present case is a local bifurcation of
cycles due to the appearance of small-amplitude periodic oscillations. The sec-
ond type includes bounded, large period traveling waves that emerge from a
non-local (or global) homoclinic bifurcation for which the analysis concerns a
broader region of the plane. Global bifurcations cannot be detected by restrict-
ing attention to a neighborhood of an equilibrium point. In both cases, the
speed c is a bifurcation parameter in the sense that structural changes occur in
the phase plane as it varies and as it crosses a special value.

4.1 Small-amplitude periodic waves

Let
u(x, t) := ϕ(x− ct) (4.1.1)

be a traveling wave solution to equation (2.3.1) where ϕ : R −→ R is the
wave profile and c ∈ R is its velocity. Let us denote the Galilean variable
of translation as z = x − ct. A bounded spatially periodic traveling wave is a
solution of the form (4.1.1) for which the wave profile is periodic in its argument
with fundamental period T > 0 satisfying

ϕ(z + T ) = ϕ(z), for all z ∈ R,

and
|ϕ(z)|, |ϕ′(z)| ≤ C, for all z ∈ R and some C > 0.
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The substitution of (4.1.1) in (2.3.1) yields the following ordinary differential
equation for the profile function

−cϕz + ϕϕz = ϕzz + ϕ(1− ϕ). (4.1.2)

We will use the tools of planar Hopf bifurcation theory to prove the existence
of periodic solutions for (4.1.2). With this in mind, let us denote U(z) = ϕ(z),
V (z) = ϕz(z),

′ = d/dz and write (4.1.2) as the first order planar system{
U ′ = V
V ′ = −cV + UV − U(1− U).

(4.1.3)

For each parameter value c ∈ R system (4.1.3) has two equilibria, A0 = (0, 0)

and P1 = (1, 0), in the (U, V )-phase plane. Let Ã0(c) and Ã1(c) denote the
Jacobian matrices of the linearizations of (4.1.3) around A0 and P1, respectively.
That is

Ã0(c) =

(
0 1
−1 −c

)
, and Ã1(c) =

(
0 1
1 1− c

)
,

with eigenvalues

λ±0 (c) = − c
2
± 1

2
(c2 − 4)1/2, and λ±1 (c) =

1

2
(1− c)± 1

2

√
(1− c)2 + 4,

respectively. Note that P1 = (1, 0) is a hyperbolic saddle for each value of

c ∈ R since the eigenvalues of Ã1(c) are real with opposite sign. On the other
hand, the origin A0 = (0, 0) is a node, a focus or a center, depending on the
value of c ∈ R. In other words, changes occur in the qualitative behavior of the
solutions as c is varied. As mentioned in section 3.1, this phenomenon is known
as bifurcation and c receives the name of bifurcation parameter as it gives birth
to the family of periodic orbits when it crosses a critical value.

A curve of closed period orbit solutions for system (4.1.3) would translate
into small-amplitude periodic traveling waves for Burgers-Fisher equation due
to (4.1.1). We then proceed to verify that it satisfies the conditions of Theorem
3.1.3. The following result pertains to the existence of small-amplitude bounded
periodic traveling wave solutions to equation (2.3.1) that emerge from a Hopf
bifurcation around a critical value of the speed.

Theorem 4.1.1 (Alvarez and Plaza [3]). [Existence of small-amplitude periodic
orbits]. For the planar system{

U ′ = V
V ′ = UV − cV − U(1− U),

there exists ε0 > 0 such that a unique curve of closed and stable periodic orbit
solutions bifurcate from (U, V ) = (0, 0) into the region c ∈ (0, ε0). Moreover, the
amplitude of the periodic orbits grows like

√
|c| and their fundamental periods

behave like
T (c) = 2π +O(c),

|ϕ|, |ϕz| = O(
√
c),

(4.1.4)

respectively, as c→ 0+.
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Proof. We will verify that conditions (a)-(c) of (3.1.3) are satisfied. For 0 ≤
|c| < 2 let the eigenvalues of Ã0(c) be expressed as

λ±0 (c) = α(c)± iβ(c),

with

α(c) = − c
2
, β(c) = −1

2

√
4− c2.

We have a bifurcation value at c0 = 0 for which α(0) = 0 and the origin is a
center for system (4.1.3) with eigenvalues

λ±0 (0) = ±i.

Notice that

(a) The non-hyperbolicity condition is satisfied because α(0) = − 0
2 = 0,

β(0) = ω0 = −1 6= 0 and

sgn (ω0) = sgn (−1) = sgn ((∂G/∂U)(0, 0, 0)).

(b) The transversality condition is satisfied since dα
dc (0) = − 1

2 =: d0 6= 0;

(c) To compute the first Lyapunov exponent, notice that F (U, V, c) = V and
hence all second derivatives of F are zero. The Lyapunov exponent reduces
to

a0 =
−(GUV )(GUU )

16ω0

=
−2

−16
=

1

8
> 0.

This verifies the genericity condition (c). The requirements of (3.1.3) are satis-
fied.

Theorem 4.1.2 (Alvarez and Plaza [3]). [Existence of small-amplitude periodic
waves]. There exists ε0 > 0 sufficiently small that, for each 0 < ε < ε0 there
exists a unique periodic traveling wave solution for equation (2.3.1) of the form
u(x, t) = ϕε(x−c(ε)t), traveling with speed c(ε) = ε and with fundamental period

Tε = 2π + O(ε), as ε −→ 0+.

The profile function ϕε is of class C3(R), satisfies ϕε(z + Tε) = ϕε(z) for all
z ∈ R and is of small amplitude, more precisely,

|ϕε(z)|, |(ϕε)′(z)| ≤ C
√
ε,

for all z ∈ R and some uniform C > 0.
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Proof. In view of the previous result, there exists a familiy of small-amplitude
periodic orbits parametrized by ε such that, for all 0 < ε < ε0 there exists a
unique periodic orbit, which we denote as (Ū ε, V̄ ε)(z) = (ϕε, (ϕε)′)(z) solution
to (4.1.3) with speed c(ε) = ε, with fundamental period

Tε = T0 + O(ε) = 2π + O(ε),

and such that (ϕε, (ϕε)′) −→ (0, 0) as ε −→ 0+ with amplitudes

|ϕε(z)|, |(ϕε)′(z)| ≤ C
√
ε,

for some uniform constant C > 0. Each of these orbits is associated to a periodic
traveling wave solution to Burgers-Fisher equation of the form

uε(x, t) = ϕε(x− c(ε)t).
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Figure 4.1: Emergence of small-amplitude waves for the Burgers-Fisher equation
(2.3.1). Panel (a) shows the phase portrait of system (4.1.3) for the speed value
c = −0.05. Panel (b) shows the case when c = 0, the parameter value where a
subcritical Hopf bifurcation occurs. Panel (c) shows the case where c = 0.005: the
orbit shown is a numerical approximation of the unique small amplitude periodic wave
for this speed value. Panel (d) shows the graph of the approximated periodic wave ϕ
as a function of the Galilean variable z = x− ct.
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Remark 4.1.3. The emergence of small-amplitude waves for Burgers-Fisher
equation (2.3.1) is illustrated in Figure 4.1. Figure 4.1(a) shows the phase
portrait of system (4.1.3) for the speed value c = −0.05; the origin is a repulsive
node and all nearby solutions move away from it. Figure 4.1(b) shows the case
when c = 0, the parameter value where the subcritical Hopf bifurcation occurs;
the origin is a center and solutions move away if they start far enough from
the origin and locally rotate around a linearized center otherwise. Figure 4.1(c)
shows the case where c = 0.005: the orbit shown is a numerical approximation
of the unique small amplitude periodic wave for this speed value, the origin
is an attractive node and nearby solutions inside the periodic orbit approach
zero, whereas solutions outside the periodic orbit move away since the orbit is
unstable as a solution to system (4.1.3). Panel 4.1(d) shows the graph of the
periodic wave ϕ as a function of the Galilean variable z = x− ct.

4.2 Large period waves

In addition to the small-amplitude periodic waves our equation has another type
of solution for larger values of parameter c. It has a pulse type solution for a
particular value c = c1 and a family of periodic waves that bifurcate from it when
c < c1. We will begin by proving the existence of the homoclinic orbit which
corresponds to the pulse solution through Melnikov’s method. An alternative
techinque to prove its existence through a more qualitative argument, is included
in appendix B.

4.2.1 Existence of a homoclinic orbit

Melnikov’s method [71] will enable us to determine global information about
homoclinic bifurcations through a perturbation argument upon a Hamiltonian
system. System (4.1.3) may be expressed as the auxiliary system{

U ′ = V
V ′ = aUV − cV − U(1− U).

with parameters a and c. If we let a = εµ1 and c = εµ2 with 0 < ε� 1 then it
can be written in the form{

U ′ = ∂VH + εR(U, V, µ)
V ′ = −∂UH + εQ(U, V, µ),

with R(U, V, µ) ≡ 0, Q(U, V, µ) = µ1UV − µ2V and µ = (µ1, µ2) ∈ R2.
Notice that for ε = 0 the unperturbed system has the following associated

Hamiltonian function

H(U, V ) =
1

2
V 2 +

1

2
U2 − 1

3
U3.
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Remark 4.2.1. Observe that A0 = (0, 0) and A1 = (1, 0) are equilibrium points
for both the Hamiltonian system and the perturbed system. If we linearize the
Hamiltonian system around the origin, the corresponding Jacobian reads

Ã(0, 0) =

(
0 −1
1 0

)
,

with eigenvalues λ = ±i and henceforth A0 = (0, 0) is a center for the Hamilto-
nian system. Likewise, the linearization around A1 yields

Ã(1, 0) =

(
0 1
1 0

)
,

with eigenvalues λ = ±1 ∈ R, and hence A1 is a hyperbolic saddle for the
Hamiltonian system.

On the other hand, notice that A1 = (1, 0) is also a hyperbolic saddle for
the perturbed system for any parameter values a and c (equivalently, for any ε,
µ1 and µ2). Indeed, the linearization around A1 = (1, 0) is

Ã(1, 0) =

(
0 1
1 a− c

)
,

having eigenvalues

λ± =
aU − c±

√
(aU − c)2 + 4

2
.

We have λ− < 0 < λ+ for all values of a and c, yielding a hyperbolic saddle,
independently of the parameter values. In the same fashion, if we linearize the
same system around A0 = (0, 0) the resulting Jacobian is

Ã(0, 0) =

(
0 1
−1 −c

)
,

with associated eigenvalues

λ± =
−c±

√
c2 − 4

2
.

Thus, A0 = (0, 0) is a center for c = 0.

The energy levels at A0 = (0, 0) and A1 = (1, 0) as equilibria of the Hamil-
tonian system are

β := H(1, 0) =
1

6
, (4.2.1)

and H(0, 0) = 0, respectively. Observe the following properties of our Hamilto-
nian system.

A1 The level curve

Γ
1
6 =

{
(U, V ) ∈ R2 :

1

2
V 2 +

1

2
U2 − 1

3
U3 =

1

6

}
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Figure 4.2: Homoclinic loop Γβ with β = 1
6
, in the (U, V )-phase plane and periodic

orbits Γh, h ∈
(
0, 1

6

)
, for the unperturbed Hamiltonian system.

is a homoclinic loop that joins the hyperbolic saddle A1(1, 0) with itself. It is
given explicitly by the graph

V (U) := ±V̄ 1
6
(u) = ±

√√√√2

(
1

6
−
∫ U

0

s(s− 1) ds

)

= ±

√
2

∫ 1

U

s(s− 1) ds

= ±
√

1

3
− U2 +

2

3
U3, defined for U ∈

(
−1

2
, 1

)
.

It is important to notice that condition A1 states that the level curve Γ
1
6 is a

homoclinic orbit for the unperturbed Hamiltonian system that joins (1, 0) with
itself. The homoclinic loop appears in Figure 4.2.

A2 In the compact region enclosed by Γ
1
6 ∪A1 there is a family of periodic

orbits Γh that surround the center A0 = (0, 0) and they are parametrized by

Γh =

{
(U, V ) ∈ R2 :

1

2
V 2 +

1

2
U2 − 1

3
U3 = h with h ∈

(
0,

1

6

)}
.

These orbits appear as well in Figure 4.2.
Note that Γh tends to A0 = (0, 0) if h −→ 0, while it tends to Γ

1
6 if h −→ 1

6 .
If we define

G(U) =

U∫
0

s(1− s) ds,
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it is clear that G(0) = 0 and G(1) = 1
6 = G

(
− 1

2

)
, G′(U) > 0 if U ∈ (0, 1) and

G′(U) < 0 if U ∈
(
− 1

2 , 0
)
. Therefore, for each energy level h ∈

(
0, 1

6

)
there exist

unique values u1(h) ∈
(
− 1

2 , 0
)

and u2(h) ∈ (0, 1) such that

G(u1(h)) = h = G(u2(h)),

and the periodic orbits are given explicitly by the graphs of

V (U) := ±V̄ 1
6
(u) = ±

√√√√2

(
h−

∫ U

0

s(s− 1) ds

)

=

√
2h+ U2 − 2

3
U3,

defined for U ∈ (u1(h), u2(h)) and h ∈
(
0, 1

6

)
.

A3 If Th is the fundamenal period of the periodic orbit Γh then Th −→ ∞
monotonically as h −→ 1

6 .
In view of observations A1, A2 and A3 we define the open sets

Ωh := {(U, V ) ∈ R2 : 0 < H(U, V ) < h}
= {(U, V ) ∈ R2 : u1(h) < U < u2(h), − V̄h(V ) < V < V̄h(V )}
= intΓh,

where h ∈
(
0, 1

6

)
and V̄h(U) :=

√(
2h− 2

3u
3 + u2

)
. Notice that h > s3

3 −
s2

2 for

each U ∈ (u1(h), u2(h)) and each h ∈
(
0, 1

6

)
. In the same fashion

Ω 1
6

:= intΓ
1
6 =

{
(U, V ) ∈ R2 : 0 < H(U, V ) <

1

6

}
= lim

h−→ 1
6
−

Ωh.

Recall from section 3.2 that we define the Melnikov integrals at h = 1
6 as

M(µ) := M̃

(
1

6
, µ

)
=

∫
Ω 1

6

(∂UR+ ∂VQ) dUdV,

and

M1(µ) := ∂hM̃

(
1

6
, µ

)
=

∮
Γ

1
6

(∂UR+ ∂VQ) dσh,

where

dσh =

√
1 +

(
dV̄h(U)

dU

)2

dU,

parametrized by U ∈ (u1(h), u2(h)).
With the use of Theorem 3.2.2 we are able to prove the existence of a ho-

moclinic orbit for the planar profile system (4.1.3).
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Theorem 4.2.2. System{
U ′ = V
V ′ = aUV − cV − U(1− U)

has a homoclinic orbit joining the hyperbolic saddle point A1 = (1, 0) with itself
for the parameter values a = 1 and c = 1/7.

Proof. We will use Melnikov’s method. Note that ∂UR = 0 and ∂VQ = µ1U−µ2

so we can evaluate the Melnikov integrals previously defined. Hence

M(µ1, µ2) = M̃

(
1

6
, µ1, µ2

)
=

∫
Ω 1

6

(µ1U − µ2) dUdV

=

1∫
− 1

2

V̄ (U)∫
−V̄ (U)

(µ1U − µ2) dV dU

=

1∫
− 1

2

V̄ (U)∫
−V̄ (U)

µ1U dV dU − µ2

1∫
− 1

2

V̄ (U)∫
−V̄ (U)

dV dU

= 2µ1

1∫
− 1

2

UV̄ (U) dU − 2µ2

1∫
− 1

2

V̄ (U) dU

= 2
√

2

µ1

1∫
− 1

2

U

√∫ 1

U

s(s− 1) ds dU


−2
√

2

µ2

1∫
− 1

2

√∫ 1

U

s(s− 1) ds dU

 .
Define

I0 :=

1∫
− 1

2

√∫ 1

U

s(s− 1) ds dU ≈ 0.4242

and

I1 :=

1∫
− 1

2

U

√∫ 1

U

s(s− 1) ds dU ≈ 0.0606.

Then M(µ1, µ2) = 2
√

2[µ1I1 − µ2I0] and it vanishes only when

µ2 =
I1
I0
µ1 =

1

7
µ1 ≈ 0.1428µ1.
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In order to apply Theorem 3.2.2 we need to verify that M1 does not vanish at
these particular values of µ1 and µ2. Recall that

M1(µ1, µ2) =

∮
Γ

1
6

(µ1U − µ2) dσ.

For the top section of the line integral we make Ũ(s) = s ∈
(
− 1

2 , 1
)

and Ṽ (s) =

+V̄ (s). In this manner, dŨ
ds = 1 and

dŨ

ds
=

d

ds

√
2

∫ 1

s

ξ(ξ − 1) dξ

= −s(s− 1)

V̄ (s)
.

Then √√√√(dŨ
ds

)2

+

(
dṼ

ds

)2

ds =

√
1 +

s2(s− 1)2

V̄ (s)2
ds

=

√
V̄ (s)2 + s2(s− 1)2

V̄ (s)
ds

= dσ+.

The top section of the line integral is∮
Γ

1
6

(µ1U − µ2) dσ+ =

∫ 1

− 1
2

(µ1Ũ(s)− µ2)

√
V̄ (s)2 + s2(s− 1)2

V̄ (s)
ds

=

∫ 1

− 1
2

(µ1s− µ2)

√
V̄ (s)2 + s2(s− 1)2

V̄ (s)
ds.

For the bottom section of the line integral we make Ũ(s) = 1−s with s ∈
(
0, 3

2

)
and Ṽ (s) = −V̄ (Ũ(s)) = −V̄ (1− s) < 0. In this manner, dŨ

ds = −1 and

dṼ

ds
= −V̄ ′(1− s)(−1) = V̄ ′(1− s)

= − s(s− 1)

ȳ(1− s)
,

and

dσ− =

√
V̄ (1− s)2 + s2(s− 1)2

V̄ (1− s)
ds.
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The bottom section of the line integral is∮
Γ

1
6

(µ1U − µ2) dσ− =

∫ 3
2

0

(µ1Ũ(s)− µ2)

√
V̄ (1− s)2 + s2(s− 1)2

V̄ (1− s)
ds

= −
∫ − 1

2

1

(µ1ξ − µ2)

√
V̄ (ξ)2 + ξ2(ξ − 1)2

V̄ (ξ)
dξ,

after making the change of variables ξ := 1− s and dξ = −ds.
Let

I :=

1∫
− 1

2

2U

√
1 +

U2(U − 1)2

V̄ (U)2
dx ≈ 0.6921

and

|∂Ω 1
6
| := 2

1∫
− 1

2

√
1 +

U2(U − 1)2

V̄ (U)2
dU ≈ 4.07334.

Then
M1(µ1, µ2) = 2µ1I − 2µ2|∂Ω 1

6
|.

Since M(µ1, µ2) vanishes at µ2 = I1
I0
µ1 then we actually need

I 6= I1
I0
|∂Ω 1

6
|,

which is satisfied since I1
I0
|∂Ω 1

6
| = 0.5817.

In order to apply Theorem 3.2.2 we choose 0 < ε� 1 sufficiently small and let

µ0 := (µ1, µ2) =

(
1

ε
,

1

ε

(
I1
I0

))
.

Since M(µ0) = 0 and M1(µ0) = ∂hM̃
(

1
6 , µ0

)
6= 0 we conclude that the per-

turbed system has a unique homoclinic loop Γ
1
6
ε for each 0 < ε� 1 sufficiently

small, relative to the stable and unstable manifolds at A1 = (1, 0). For each
0 < ε� 1 sufficiently small the value for µ0 set as µ1 = 1

ε , µ2 = I1
I0

1
ε yields, on

each case, c = c1 := I1
I0

as the critical velocity value and a1 = εµ1 = 1.
We reach the conclusion: system{

U ′ = V
V ′ = UV − c1V − U(1− U)

has a unique homoclinic orbit joining the hyperbolic saddle (1, 0) with itself for
the velocity

c1 =
I1
I0

=
1

7
.
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Corollary 4.2.3 (Existence of a traveling pulse). The system (4.1.3) has a
homoclinic loop for the velocity value c = c1 = I1/I0, which we denote as

Γ0 := {(ψ,ψ′)(z) : z ∈ R},

with ψ ∈ C3(R) and such that (ψ,ψ′)(z) → (1, 0) as z → ±∞. Moreover, the
convergence is exponential, that is, there exist constants C, κ > 0 such that

|ψ(z)− 1|, |ψ′(z)| ≤ Ce−κ|z|, as |z| → ∞. (4.2.2)

This homoclinic orbit is associated to a traveling pulse solution to equation
(2.3.1) of the form u(x, t) = ψ(x− c1t) and traveling with speed c = c1.

Proof. Let us denote the homoclinic orbit from Theorem 4.2.2 as (ψ,ψ′)(z).
This orbit is a solution to system (4.1.3) with speed value c = c1. Since F,G ∈
C3 it is clear that ψ ∈ C2. Upon differentiation of (4.1.3) we obtain

ψ′′′ = (−c1 + ψ)ψ′′ + (ψ′)2 − (1− 2ψ)ψ′. (4.2.3)

Then by a boostrapping argument we conclude that ψ ∈ C3(R). The exponen-
tial decay follows from standard ODE estimates and the fact that A1 = (1, 0) is
a hyperbolic saddle for system (4.1.3) for the speed value c = c1. More precisely,
the stable and unstable eigenvalues are given by

λ1(c1) =
1

2
(1− c1)− 1

2

√
(1− c1)2 + 4 < 0,

λ2(c1) =
1

2
(1− c1) +

1

2

√
(1− c1)2 + 4 > 0,

(4.2.4)

so that
|ψ(z)− 1|, |ψ′(z)| ≤ Ceλ1(c1)z, as z →∞,
|ψ(z)− 1|, |ψ′(z)| ≤ Ceλ2(c1)z, as z → −∞.

Thus, we can take
κ := min{λ2(c1),−λ1(c1)} > 0, (4.2.5)

to obtain (4.2.2), as claimed.

4.2.2 Periodic wavetrains with large period

The following theorem guarantees the existence of a family of periodic orbits for
Burgers-Fisher equation that converge to the homoclinic orbit found in Theorem
4.2.2. The existence of large period, bounded periodic orbits is a consequence of
both the existence of a homoclinic loop and Andronov-Leontovhich’s theorem
3.2.3.

Theorem 4.2.4 (Existence of large period orbits). For system{
U ′ = V
V ′ = UV − cV − U(1− V )
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Figure 4.3: Numerical approximation of the homoclinic loop for the Burgers-Fisher
equation with speed value c1 = I1/I0 (dashed line) and the periodic wave nearby with
speed value c1 − ε, ε ≈ 0.05.

with (U, V ) ∈ R2 and c ∈ R there exists ε > 0 such that if the velocity c lies in

the interval
(
I1
I0
− ε, I1I0

)
, it has a unique periodic orbit whose period T −→ ∞

as c −→ I1
I0

−
.

Proof. Recall from Remark 4.2.1 that A1 = (1, 0) is a hyperbolic saddle point
of the system. The linearization around this point evaluated at the bifurcation
parameter value µ = c1 is

D(1,0)f =

(
0 1
1 6

7

)
with eigenvalues

λ1

(
1

7

)
=

3−
√

58

7
< 0 <

3 +
√

58

7
= λ2

(
1

7

)
,

and adding them together gives the quantity σ0 = 6
7 > 0. The previous dis-

cussion regarding the zero of the Melnikov function provides the requirements
concerning the existence of a homoclinic orbit and the transversality of the sta-
ble and unstable manifolds associated to (1, 0) when c1 = I1

I0
.

From Theorem 3.2.3 we conclude that for sufficiently small µ− 1
7 < 0 (that is,

µ < 1
7 ) there exists a unique closed orbit bifurcating from the homoclinic orbit

found in Theorem 4.2.2 and that gets closer to it as µ −→ 1
7

−
.
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Remark 4.2.5. Figure 4.3 shows a numerical approximation of the homoclinic
loop.

Theorem 4.2.6 (Existence of large period waves). There is a critical speed
given by

c1 :=
I1
I0
, (4.2.6)

such that there exists a traveling pulse solution (homoclinic orbit) to equation
(2.3.1) of the form u(x, t) = ϕ0(x − c1t), traveling with speed c1 and satisfying
ϕ0 ∈ C3(R) and

|ϕ0(z)− 1|, |(ϕ0)′(z)| ≤ Ce−κ|z|,

for all z ∈ R and some κ > 0. In addition, one can find ε1 > 0 sufficiently
small such that, for each 0 < ε < ε1 there exists a unique periodic traveling wave
solution to the viscous balance law (2.3.1) of the form u(x, t) = ϕε(x − c(ε)t),
traveling with speed c(ε) = c1 − ε, with fundamental period

Tε = O(| log ε|)→∞, (4.2.7)

and amplitude
|ϕε(z)|, |(ϕε)′(z)| = O(1), (4.2.8)

as ε → 0+. Moreover, the family of periodic orbits converge to the homoclinic
or traveling pulse solution as ε → 0+ and satisfy the bounds (after a suitable
reparametrization of z),

sup
z∈[−Tε2 ,

Tε
2 ]

(
|ϕ0(z)− ϕε(z)|+ |(ϕ0)′(z)− (ϕε)′(z)|

)
≤ C exp

(
− κTε

2

)
, (4.2.9)

|c1 − c(ε)| = ε ≤ C exp
(
− κTε

)
, (4.2.10)

for some uniform C > 0, the same κ > 0 and for all 0 < ε < ε1.

Proof. We apply the previous Theorem to conclude the existence of a family of
periodic orbits parametrized by

0 < ε := |c− c1| ∈ (0, ε̃1),

which we denote as (Ū ε, V̄ ε)(z) =: (ϕε, (ϕε)′)(z), z ∈ R, solutions to system
(4.1.3) with speed value c(ε) = c1 − ε with fundamental period

Tε = O(| log ε|)→∞,

and amplitude
|ϕε(z)|, |(ϕε)′(z)| = O(1),

as ε → 0+. Moreover, the family of orbits converge to the homoclinic loop,
relative to the saddle point A1 = (1, 0) as ε→ 0+, which we denote as

(ϕ0, (ϕ0)′)(z) := (ψ,ψ′)(z), z ∈ R,
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with (ϕ0, (ϕ0)′)(z) → (1, 0) exponentially fast as z → ±∞. Thanks to this

convergence of the family we know that there exists δ̃(ε) > 0 such that δ̃(ε)→ 0
as ε→ 0+ and

|ϕ0(z)− ϕε(z)| ≤ δ̃(ε), for all |z| ≤ Tε
2
.

Since the homoclinic loop (ϕ0, (ϕ0)′) = (ψ,ψ′) is non-degenerate in the sense
of Beyn [19, 20] (see Definition A.0.2 and Lemma A.0.4 in Appendix A) then
we can apply Corollary 3.2 in Beyn [19] (p. 178) to conclude that there exists
0 < ε1 < ε̃1 sufficiently small and an appropriate reparametrization of the phase
z such that

sup
z∈[−Tε2 ,

Tε
2 ]

(
|ϕ0(z)− ϕε(z)|+ |(ϕ0)′(z)− (ϕε)′(z)|

)
≤

≤ C exp
(
−
(

min{λ2(c1), |λ1(c1)|}
)Tε

2

)
,

and
ε ≤ C exp

(
−
(

min{λ2(c1), |λ1(c1)|}
)
Tε
)
,

for each 0 < ε < ε1, where λ2(c1), λ2(c1) are the spectral bounds of the ho-
moclinic orbit given by the (4.2.4). Set κ = min{λ2(c1), |λ1(c1)|} > 0 (like in
(4.2.5)). This shows the bounds (4.2.9) and (4.2.10). Finally, the family of or-
bits ϕε is of class C3 in z ∈ R and in the bifurcation parameter c thanks to the
regularity of f and g, and to standard ODE results. The theorem is proved.

47



Chapter 5

Spectral instability of
small-amplitude waves

Spectral stability of small amplitude periodic waves can be studied as a per-
turbation of the zero-amplitude case. The spectrum of the small amplitude
periodic solutions is determined directly from the dispersion relation of the
PDE linearized around the zero solution. In [107] the authors study the con-
tinuous dependence of the spectrum on its parameters -like the velocity or the
amplitude of the solutions- and they conclude that the same stability properties
persist for small amplitude solutions. The presence of eigenvalues with positive
real part for the zero-amplitude solution translates as spectral instability for the
perturbed solution and the aforementioned dependence guarantees the spectral
instability of the small amplitude solutions as a consequence.

Recall the family of small-amplitude periodic waves parametrized by c ∈
(0, ε). From (4.1.4) as c→ 0+ their amplitude and fundamental period behave
like

T (c) = 2π +O(c),

|ϕ|, |ϕz| = O(
√
c).

(5.0.1)

The associated spectral problem (3.3.2)
λw = wzz + (c− ϕ)wz + (1− 2ϕ− ϕz)w,

w(T (c)) = eiθw(0),

wz(T (c)) = eiθwz(0), some θ ∈ (−π, π],

(5.0.2)

can be expressed as an equivalent spectral problem in a periodic space by using
the following Bloch transformation

y :=
πz

T (c)
, u(y) := e−iθy/πw

(T (c)y

π

)
,
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for given θ ∈ (−π, π]. Then the spectral problem transforms into

λu =
1

T (c)2

(
iθ + π∂y

)2
u+

c− ϕ(y)

T (c)

(
iθ + π∂y

)
u+ (1− 2ϕ(y)− ϕz(y))u,

where u ∈ H2
per([0, π];C) is subject to π-periodic boundary conditions,

u(0) = u(π), uy(0) = uy(π).

If we multiply by T (c)2 we obtain the following equivalent spectral problem

Lθu = λ̃u, (5.0.3)

for the operator

Lθ = (iθ + π∂y)2 + T (c)(c− ϕ)(iθ + π∂y) + T (c)2(1− 2ϕ− ϕz)

with u ∈ H2
per([0, π];C), for any given θ ∈ (−π, π] and λ̃ = T (c)2λ.

The spectral problem can be reformulated as a perturbed spectral problem.
Note that the coefficients can be written as

T (c)(c− ϕ) = (T0 + O(ε))

(
c(ε)− ϕ

(
T (c)y

π

))
= (T0 + O(ε))(c0 + O(ε)− ϕ(0) + O(|ϕ|))
= (T0 + O(ε))(O(ε) + O(

√
ε))

=
√
εb1(y),

where

b1(y) :=
1√
ε
T (c)(c− ϕ).

Also

T (c)2(1− 2ϕ− ϕz) = (T0 +O(ε))2(1− 2ϕ− ϕz)
= (T 2

0 +O(ε))(1 +O(|ϕ|) +O(|ϕz|))
= (T 2

0 +O(ε))(1 +O(
√
ε))

= T 2
0 +O(

√
ε)

= 4π2 +O(
√
ε).

If we let

b0(y) :=
T (c)2(1− 2ϕ− ϕz)− 4π2

√
ε

.

and if we make ε̃ =
√
ε we obtain

Lθu = (iθ + π∂y)2u+ 4π2u+ ε̃b1(y)(iθ + π∂y)u+ ε̃b0(y)u = L0
θu+ ε̃L1

θu,

where the operators L0
θ and L1

θ are defined as

L0
θ := (iθ + π∂y)2 + 4π2Id

L1
θ := b1(y)(iθ + π∂y) + b0(y)Id,
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respectively. Therefore, the spectral problem is recast as a perturbed spectral
problem of the form

Lθu = L0
θu+ ε̃L1

θu = λ̃u, u ∈ H2
per([0, π],C). (5.0.4)

Our objective is to show that the eigenvalues of L0 are stable, that is: that
the eigenvalues of a small perturbation remain close to the ones of the unper-
turbed operator. Due to the theory presented in section 3.5 it suffices to proceed
as in the following result

Theorem 5.0.7. For every θ ∈ (−π, π], L1
θ is L0

θ-bounded.

Proof. We will prove the existence of α, β ≥ 0 such that ‖L1
θu‖ ≤ α‖u‖+β‖L0

θu‖
for all u ∈ H2

per([0, π];C). We have the following bound for L1
θ

‖L1
θu‖L2

per
= ‖b1(y)(iθ + ∂y)u+ b0(y)u‖L2

per

≤ π‖b1(y)‖L∞‖uy‖L2
per

+
[
|θ|‖b1(y)‖L∞ + ‖b0(y)‖L∞

]
‖u‖L2

per

≤ πK1‖uy‖L2
per

+ (πK1 +K0)‖u‖L2
per
,

(5.0.5)
since |θ| ≤ π and where 0 < K1 := ‖b1‖L∞ , 0 < K0 := ‖b0‖L∞ . Now, it is
known (see Kato [105], p. 192) that for all u ∈ H2([0, π];C) there holds the
estimate

‖uy‖L2(0,π) ≤
π

N − 1
‖uyy‖L2(0,π) +

2N(N + 1)

π(N − 1)
‖u‖L2(0,π), (5.0.6)

where N is any positive number with N > 1. Substitute (5.0.6) into (5.0.5) to
obtain

‖L1
θu‖L2

per
≤ C1(N)‖uyy‖L2

per
+ C0(N)‖u‖L2

per
, (5.0.7)

where

C1(N) =
π2K1

N − 1
> 0,

C0(N) = K0 +
K1

N − 1

(
π(N − 1) + 2N(N + 1)

)
> 0.

On the other hand, the estimate

‖L0
θu‖L2

per
= ‖(iθ+π∂y)2u+4π2u‖L2

per
≥ π2‖uyy‖L2

per
−‖2iθπuy+(4π2−θ2)u‖L2

per
,

together with (5.0.6) and |θ| ≤ π, yield

π2‖uyy‖L2
per
≤ ‖L0

θu‖L2
per

+ 2π|θ|‖uy‖L2
per

+ (4π2 − θ2)‖u‖L2
per

≤ ‖L0
θu‖L2

per
+ 2π2

( π

N − 1
‖uyy‖L2

per
+

2N(N + 1)

π(N − 1)
‖u‖L2

per

)
+ 4π2‖u‖L2

per

≤ ‖L0
θu‖L2

per
+

2π3

N − 1
‖uyy‖L2

per
+

4π

N − 1

(
π(N − 1) +N(N + 1)

)
‖u‖L2

per
.
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Let us choose N sufficiently large, say N ≥ 1 + 4π, so that

1− 2π

N − 1
≥ 1

2
,

and therefore

‖uyy‖L2
per
≤ 2

π2
‖L0

θu‖L2
per

+
8

π(N − 1)

(
π(N − 1) +N(N + 1)

)
‖u‖L2

per
.

Upon substitution into (5.0.7) we arrive at

‖L1
θu‖L2

per
≤ α‖u‖L2

per
+ β‖L0

θu‖L2
per
,

with uniform constants

α :=
8C1(N)

π(N − 1)

(
π(N − 1) +N(N + 1)

)
+ C0(N) > 0,

β :=
2C1(N)

π2
> 0,

which means that L1
θ is L0

θ-bounded.

Now, let us take a look at the spectral problem specialized to the case of the
Floquet exponent (or Bloch parameter) with θ = 0, namely

L0u = L0
0 + ε̃L1

0u = λ̃u, u ∈ H2
per([0, π];C).

First, it is to be observed that the operator{
L0

0 = π2∂2
y + 4π2Id,

L0
0 : ([0, π];C)→ ([0, π];C),

with domain D(L0
0) = H2

per([0, π];C), is self-adjoint with a positive eigenvalue

λ̃0 = 4π2 associated to the constant eigenfunction u0(y) = 1/
√
π ∈ ([0, π];C)

satisfying ‖u0‖ = 1 and u0 ∈ ker(∂2
y) ⊂ ([0, π];C). Since L1

0 is L0
0-bounded,

by Theorem 3.5.5 the operator L0 = L0
0 + ε̃L1

0 has discrete eigenvalues λ̃j(ε)

in an ε-neighborhood of λ̃0 = 4π2 with multiplicities adding up to m0 if ε is
sufficiently small. Moreover, since λ̃0 > 0 there holds

Reλj(ε) > 0, |ε| � 1.

We arrive to the spectral instability of the small-amplitude periodic waves whose
existence was proven in Theorem 4.1.1. The main idea behind the proof is that,
since the waves have small-amplitude, the spectrum of the linearized opera-
tor around the wave can be approximated by the one of a constant coefficient
operator around the zero solution which is, in turn, determined by a disper-
sion relation curves intersecting the unstable complex half plane. The above
discussion proves the following
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Lemma 5.0.8. For each 0 < ε� 1 sufficiently small there holds

σpt(L0
0 + εL1

0)|L2
per
∩ {λ ∈ C : |λ− 4π2| < r(ε)} 6= ∅,

for some r(ε) = O(ε) > 0.

We may proceed to prove the spectral instability of the small-amplitude
periodic waves.

Theorem 5.0.9 (Spectral instability of small-amplitude waves). There exists
0 < ε̄0 < ε0 such that every small-amplitude periodic wave ϕε from Theorem
4.1.1 with 0 < ε < ε̄0 is spectrally unstable, that is, the spectrum of the linearized
operator around the wave intersects the unstable half plane C+ = {λ ∈ C :
Reλ > 0}.

Proof. Now, since ε̃ =
√
ε, from Lemma 5.0.8 we know that for 0 < ε � 1

sufficiently small there exist discrete eigenvalues λ(ε) ∈ σpt(L0
0+
√
εL1

0) such that
|λ− 4π2| ≤ C

√
ε for some C > 0. Transforming back into the original problem,

this implies that there exist eigenvalues λ = λ(ε) and bounded solutions w of
(5.0.2) with θ = 0 that satisfy

|(T 2
0 +O(ε))λ(ε)− 4π2| = O(

√
ε),

or equivalently (in view that T0 = 2π),

|λ(ε)− 1| = O(
√
ε), 0 < ε� 1. (5.0.8)

This implies that for ε > 0 small enough (in a possibly smaller neighborhood,
0 < ε < ε̄0 < ε0) there exist unstable eigenvalues λ(ε) with Reλ(ε) > 0 of the
spectral problem (5.0.2) with θ = 0, for some appropriate eigenfunctions w. If
we let θ vary within (−π, π] we obtain curves of spectrum that locally remain
in the unstable half plane (see Figure 5.1). We conclude that

σ(Lε)|L2 =
⋃

−π<θ≤π

σ(Lθ)|L2
per
∩ {λ ∈ C : Reλ > 0} 6= ∅,

for ε > 0 sufficiently small.
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Figure 5.1: Cartoon representation of the unstable real eigenvalue λ0 = 1 > 0 and of
the neighboring unstable eigenvalues λj(ε) near λ0 for 0 < ε� 1 small for the case of
a Floquet exponent θ = 0. By letting θ vary within (−π, π] we obtain unstable curves
of spectrum of the linearized operator around the periodic wave.
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Chapter 6

Spectral instability of large
period waves

We will now turn our attention to the spectral instability analysis of the large
period waves. We begin by proving that the continuous spectrum of these
periodic waves converges to the spectrum of the homoclinic orbit that joins
(1, 0) with itself and is a solution of the following system{

U ′ = V
V ′ = UV − 1

7V − U(1− U).
(6.0.1)

We proceed by verifying that the family of waves satisfies the structural assump-
tions on convergence of spectra of periodic traveling waves in the infinite-period
(homoclinic) limit to the isolated point spectrum of the underlying homoclinic
orbit. The tool used in this section is the periodic Evans function Dε(λ, θ) as-
sociated to the family of periodic waves parametrized by ε and its convergence
to the corresponding homoclinic Evans function D0(λ) as ε −→ 0+.

Then, if the pulse were spectrally unstable this would imply the spectral
instability of the periodic waves. In fact, we prove that the spectrum of (6.0.1)
has a non-empty intersection with the right-half plane, implying the instability
of both the pulse and of the family of periodic waves bifurcating from it.

6.1 Spectral instability of the traveling pulse

Consider the traveling pulse solution to system (6.0.1) found in Theorem 4.2.4
u(x, t) = ϕ

(
x− 1

7 t
)

traveling with velocity c = 1
7 . From the phase plane con-

struction, this trajectory emerges from the equilibrium point (1,0), encircles the
origin without touching it and returns back to (1,0). Therefore, there must be
an intersection point x∗ of this curve with the negative real axis. In other words,
it has precisely one zero.

Denoting as before the Galilean variable of translation z = x− 1
7 t, for 0 < ε�

1, we expand in the form ϕ(z) = φ(z)+εp(z)eλt, for some λ ∈ C. Substituting in
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the eigenvalue problem (3.3.2) and keeping terms at order O(ε) we get a linear
eigenvalue problem for p,

L0p = λp, with L0 := ∂2
z −

1

7
∂z + 2φ− 1. (6.1.1)

L0 is a second-order Sturm-Liouville operator (see, for example, [104]) that acts
on L2(R;C). Its coefficients

ā0
0(z) = 2φ(z)− 1 (6.1.2)

ā0
1(z) = −1

7
(6.1.3)

decay exponentially to finite limits since φ −→ 1 as z −→ ±∞. In particular

|ā0
1(z)− ā∞1 |+ |ā0

0(z)− ā∞0 | ≤ Ce−α|z|, z −→ ±∞, (6.1.4)

where the limit coefficients are ā∞0 := 1 and ā∞1 := − 1
7 .

We are now in conditions to prove the instability of the traveling pulse as a
consequence of Theorem 3.5.6 from Sturm-Liouville theory.

Theorem 6.1.1. The traveling pulse solution of system (6.0.1) is spectrally
unstable. More specifically, there exists λ0 > 0 real and strictly positive such
that λ0 ∈ σpt(L0).

Proof. We can apply Theorem 3.5.6 given the exponential decay (6.1.4) to con-
clude that the point spectrum of L0 consists of a finite number of simple real
eigenvalues which can be enumerated in a strictly decreasing order

λ0 > λ1 > ... > λN ,

for some N ∈ N and with eigenfunctions pj having exactly j zeroes.
By differentiating the stationary state equation in (6.1.1) with respect to z we
get

L0(∂zφ) = ∂2
z [∂zφ]− 1

7
∂z[∂zφ] + 2∂zφ− 1 = 0.

Since ∂zφ(z) −→ 0 exponentially when z −→ ±∞, we conclude that ∂zφ ∈
H2(R;C) is an eigenfunction of L0 with associated eigenvalue λ = 0. That is

0 ∈ σpt(L0).

Furthermore, from the phase plane construction, ∂zφ has precisely one zero, and
from Theorem 3.5.6 we conclude that λ1 = 0 is the second largest eigenvalue
whose associated eigenfunction has exactly one zero. Therefore, there exists a
positive eigenvalue λ0 > 0, the ground state, with eigenfunction p0 which has
no zeroes at all. The rest of the nonzero eigenvalues must be negative.
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6.2 Approximation theorem for large period

In order to establish the spectral instability of the large period waves of section
4.2, we need to verify that the family of waves satisfies the structural assump-
tions of convergence of spectra of periodic traveling waves in the infinite-period
(homoclinic) limit to the isolated point spectrum of the underlying homoclinic
orbit. This phenomenon is treated from a topological perspective in Gard-
ner [63] and in the more analytical works of Sandstede and Scheel [159] and
Yang and Zumbrun [188]. We will however work through a distinct path using
Jost functions following the aruments presented in [104]. The objective is to
compare the spectra of the homoclinic pulse with the one of the family of peri-
odic orbits that converge to it. We must pay attention to a difference between
the operators that define them. The operator associated to the pulse acts on
the entire (unbounded) real line R while the one defining the periodic orbits
acts on a bounded domain of the form [−L,L].

Consider the traveling pulse solution to equation (2.3.1) from Theorem 4.2.2

Lp := ∂2
xp+ ā0

1(z)∂xp+ ā0
0(x)p = λp, z ∈ R, (6.2.1)

acting on L2(R;C) whose coefficients satisfy the asymptotic decay

|ā0
1(z)− ā∞1 |+ |ā0

0(z)− ā∞0 | ≤ Ce−α|z|.

Its point spectrum is located in the natural domain of the Evans function,

Ω =

{
λ ∈ C : Reλ >

ā0
1

2

}
.

The essential spectrum is ∂Ω and the absolute spectrum lies on the imaginary
axis {λ ∈ C : Reλ = 0}.

We need the vector version of the eigenvalue problems to compare their
spectra. It is obtained by making Y = (p, ∂xp)

T

∂zY = A(z, γ)Y, (6.2.2)

with

A(z, λ) =

(
0 1

λ− ā0
0(z) −ā0

1(z)

)
.

The associated eigenvalues and eigenfunctions for the unbounded domain prob-
lem are given by

µ1(λ) = − ā
0
1

2
+ λ and v1(λ) =

(
1

µ1(λ)

)

µ2(λ) = − ā
0
1

2
− λ and v2(λ) =

(
1

µ2(λ)

)
.

The corresponding Jost functions (see p. 216 in [104]) J±∞(z, λ) satisfy (6.2.2)
and

lim
z→−∞

e−µ1(λ)zJ−∞(z, λ) = v1(λ)
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lim
z→∞

e−µ2(λ)zJ+
∞(z, λ) = v2(λ).

They satisfy the following decay properties for L� 1

|J−∞(−L, λ)| = O(e−ku(λ)L)

|J+
∞(L, λ)| = O(eks(λ)L),

with

ku(λ) = Reµ1(λ) > 0,

ks(λ) = Reµ2(λ) < 0.

We define the Evans function for the unbounded domain problem in terms of
the Jost functions as

D∞(λ) = det(J−∞,J
+
∞)(0, λ).

Now consider the following bounded domain problem

Lηp := ∂2
zp+ ā0

1,η(z)∂zp+ ā0
0,η(z)p = λp, z ∈ [− Lη, Lη], (6.2.3)

subject to 2Lη-periodic boundary conditions.
For j = 0, 1 the coefficients ā0

j,η are 2Lη-periodic, āj,η(z + 2Lη) = āj,η(z)
and limη→0+ Lη = ∞. The periodic coefficients of problem (6.2.3) have large
period and converge uniformly over a period to the coefficients of the unbounded
domain problem,

|ā0
j,η(z)− ā0

j (z)| = O(ηe−α|z|), − Lη ≤ z ≤ Lη. (6.2.4)

We will compare the point spectrum of the Bloch decomposition of Lη with the
spectrum of the unbounded domain problem. Recall that the Bloch decompo-
sition expresses the spectrum of Lη as a union of the point spectrum of the
operators

Lµ,ηq := (∂z + iµ)2q + ā0
1,η(z)(∂z + iµ)q + ā0,η(z)q = λq, − 1

Lη
< µ ≤ 1

Lη
.

(6.2.5)
In the case of simple eigenvalues, for each fixed µ the spectrum of (6.2.5)

consists of continuous curves that depend on µ. Our objective is to analyze the
approximation of the spectrum curves of the Bloch problem to the spectrum
of the unbounded domain problem. We discard the µ dependence in the Bloch
problem (6.2.5) and assume without loss of generality that µ = 0.

Let ΦL(z, λ, µ) ∈ C2×2 be the fundamental solution matrix of the vector
version of the eigenvalue problem. Define the Jost functions as

J−L (0, λ) = ΦL(0, λ)Φ−1
L (−Lη, λ)J−L (−Lη, λ)

J+
L(0, λ) = Φ∞(0, λ)Φ−1

∞ (Lη, λ)J+
L(Lη, λ)
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which provide a map for the vectors J±L (±L, λ) from x = ±Lη to z = 0 under
the action of the flow generated by ∂zY = A(z, λ)Y.

The Evans matrix DL(λ) ∈ C2×2 has J±(0, λ) as columns

DL(λ) := (J−L , J
+
L )(0, λ),

and the Evans function is defined as its determinant

DL(λ) = det DL(λ).

For bounded domain problems it can be defined as well through the matrix

DL(λ, µ) = ΦL(0)Φ−1
L (−Lη)−ΦL(0)Φ−1

L (Lη).

The matrices ΦL(0, λ)Φ−1
L (±Lη, λ) are the solution map of problem (6.2.5)

from z = ±L to z = 0. Under hypothesis (6.2.4) the integrals defined over
(ā0
j,η − ā0

j )(z) are O(η)-uniformly close over [−L,L]. Thus, the flow generated
by the unbounded domain problem is also O(η)-uniformly close over [−L,L]
to the corresponding map of the vector form of problem (6.2.1). Then, for
0 < η � 1, the matrix

D∞(λ) := Φ∞(0, λ)Φ−1
∞ (−Lη, λ)−Φ∞(0, λ)Φ−1

∞ (Lη, λ)

where Φ∞(z, λ) is the fundamental matrix of the unbounded domain problem
is O(η) close to the matrix DL(λ, µ) since

|D∞(λ)−DL(λ, µ)| = |Φ∞(0, λ)Φ−1
∞ (−Lη, λ)−Φ∞(0, λ)Φ−1

∞ (Lη, λ)

−(ΦL(0)Φ−1
L (−Lη)−ΦL(0)Φ−1

L (Lη))|
≤ |Φ∞(0, λ)Φ−1

∞ (−Lη, λ)−ΦL(0)Φ−1
L (−Lη)|

+|Φ∞(0, λ)Φ−1
∞ (Lη, λ)−ΦL(0)Φ−1

L (Lη))|.

The question as to what happens with the eigenvalues of the bounded domain
problem with respect to the ones of the unbounded problem is addressed in the
following

Theorem 6.2.1. [104] Consider the eigenvalue problem for the Bloch-wave
decomposition (6.2.5), under the approximation assumption (6.2.4). Suppose
that for the unbounded domain problem, (6.2.1), λ = λ0 ∈ Ω is an isolated
eigenvalue with multiplicity m. Let γ ⊂ C be a positively oriented simple closed
curve of fixed radius that contains λ0 within its interior and is an O(1) distance
from all other spectra of the unbounded domain problem. Then, for η sufficiently
small, for each −1

Lη
< µ ≤ 1

Lη
the Bloch-wave eigenvalue problem has precisely

m eigenvalues in the interior of γ.

Proof. Suppose λ ∈ Ω lies to the right of the essential spectrum and is not an
eigenvalue for the unbounded domain problem.

We show that, up to multiplication by an analytic nonzero constant,

det D∞(λ) = D∞(λ) +O(η).
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Since the matrix Φ∞(z1, λ)Φ−1
∞ (z2, λ)v represents the flow of vector v from

z = z2 to z = z1, we have

J−∞(0, λ) = Φ∞(0, λ)Φ−1
∞ (−Lη, λ)J−∞(−Lη, λ),

J+
∞(0, λ) = Φ∞(0, λ)Φ−1

∞ (Lη, λ)J+
∞(Lη, λ).

We define the matrix

N(λ) :=
(
J−∞(−Lη, λ),−J+

∞(Lη, λ)
)
.

This matrix is invertible and analytic for every λ in the natural domain since the
eigenvectors of the asymptotic matrix A∞0 (λ) associated to the unbounded do-
main problem form a basis for C2 and the functions J−∞(−Lη, λ) and−J+

∞(Lη, λ)
have the asymptotic decay

J−∞(−Lη, λ) ∼ e−µ1(λ)Lηv1(λ),

J+
∞(Lη, λ) ∼ eµ2(λ)Lηv2(λ).

Observe that

D∞(λ)N(λ) = D∞(λ)
(
J−∞(−Lη, λ),−J+

∞(Lη, λ)
)

=
[
Φ∞(0, λ)Φ−1

∞ (−Lη, λ)−Φ∞(0, λ)Φ−1
∞ (Lη, λ)

] (
J−∞(−Lη, λ),−J+

∞(Lη, λ)
)

= Φ∞(0, λ)Φ−1
∞ (−Lη, λ)J−∞(−Lη, λ)−Φ∞(0, λ)Φ−1

∞ (Lη, λ)J−∞(−Lη, λ)

−Φ∞(0, λ)Φ−1
∞ (−Lη, λ)J+

∞(Lη, λ) + Φ∞(0, λ)Φ−1
∞ (Lη, λ)J+

∞(Lη, λ).

We had the following decay estimates

|J−∞(−Lη, λ)| = O(e−ku(λ)Lη )

|J+
∞(Lη, λ)| = O(eks(λ)Lη )

so that

|Φ∞(0, λ)Φ−1
∞ (Lη, λ)J−∞(−Lη, λ)| = O(e−ku(λ)Lη )

|Φ∞(0, λ)Φ−1
∞ (−Lη, λ)J+

∞(Lη, λ)| = O(eks(λ)Lη ).

Thus, for k :=min{ku,−kz} > 0 we have the asymptotic matrix relation

D∞(λ)N(λ) = Φ∞(0, λ)Φ−1
∞ (−Lη, λ)J−∞(−Lη, λ) + Φ∞(0, λ)Φ−1

∞ (Lη, λ)J+
∞(Lη, λ) +O(e−kLη )

= J−∞(0, λ) + J+
∞(0, λ) +O(e−kLη )

= (J−∞,J
+
∞)(0, λ) +O(e−kLη ).

After taking determinants on both sides of the equation

det D∞ det N(λ) = D∞ +O(e−kLη ).
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Since N(λ) is invertible

det D∞ = detD∞(λ) det N−1(λ) +O(e−kLη ).

We see that for λ in the natural domain of the Evans function, det D∞(λ) and
D∞(λ) would be exponentially close when Lη −→∞ (η −→ 0+).

We had the closesness between DL(λ) and D∞(λ). It follows from Rouche’s
theorem that if D∞(λ) = 0 with multiplicity m then in a neighborhood of λ
with radius O(e−(Reλ)Lη ), the zeroes of DL(λ) would have to add up to m.

The previous result along with (3.4.5) yield the desired result that consists in
the emergence of a closed loop of spectra of the periodic waves as they bifurcate
from an isolated eigenvalue of the homoclinic orbit to which they converge.

Corollary 6.2.2. Suppose λ0 is a simple eigenvalue of the unbounded domain
problem. Then, for the approximate periodic problem there is a simple closed
curve of spectrum that contains this point.

Finally, the solitary wave inherits its instability to the large-period family of
waves that emerge from it.

Corollary 6.2.3 (Spectral instability of large period waves). The large period
waves that bifurcate from the homoclinic loop of system (6.0.1) are spectrally
unstable.

Proof. Let λ0 > 0 be the real, simple and positive (homoclinic) eigenvalue of
the linearized operator, L0, around the traveling pulse (see Theorem 6.1.1).
Since λ0 > 0 is an isolated eigenvalue, then we can take a closed contour γ
around it such that K = γ̄ ∪ (int γ) is a small compact set contained in Ω
with no eigenvalues of L0 on ∂K = γ. Moreover, since the unstable homoclinic
eigenvalue λ0 is simple, then there exists one single closed loop of spectrum Λ.
This loop does not necessarily contain λ0 but belongs to a neighborhood of it.
Hence, we conclude that the spectrum of the linearized operator L around each
periodic wave is contained in the unstable half plane.
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Chapter 7

Modulational stability:
analysis of the monodromy
matrix

We will study the monodromy matrix M(λ) of equation (3.3.2) in order to
analyze its L2(R;C)-spectrum in a neighborhood of the origin λ = 0 through
the Evans function previously defined (see Section 3.4). We begin by computing
the series expansion of the fundamental solution matrix F(z, λ) based at λ =
0. Since F(z, λ) is entire for bounded z, this series has an infinite radius of
convergence and setting z = T gives the corresponding power series expansion
for the monodromy matrix M(λ). This series is also an asymptotic series in the
limit λ −→ 0, and hence a finite number of terms suffices to approximate the
spectrum σ in a neighborhood of the origin.

We compute two indices that govern slow modulation for large period due
to the importance of determining the instability behavior of perturbations of
periodic wavetrains in the low-frequency regime. The tangency to the imaginary
axis of low frequency spectral curves is described by the hyperbolicity of a first
order modulation system. In particular, we study the tangency to the imaginary
axis of low frequency spectral curves as described by a hyperbolic modulation
of a first order system and the curvature of these related to the parabolicity of
a second order modulation system as explained in [145]. We prove necessary
conditions for spectral stability of traveling waves in the low frequency regime.

7.1 Construction of M(0)

In order to obtain the (unique) fundamental solution matrix for λ = 0 and the
corresponding monodromy matrix, it suffices to find the particular solutions
y1(z) and y2(z) of the differential equation (3.3.2) for λ = 0, that is

(ϕz − 1 + 2ϕ)w + (ϕ− c)wz = wzz, (7.1.1)
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that satisfy the initial conditions

y1(0) = 1 = y2z(0) and y1z(0) = 0 = y2(0). (7.1.2)

They would then constitute the columns of F(z, 0),

F(z, 0) =

(
y1(z) y2(z)
y1z(z) y2z(z)

)
.

In order to obtain the particular solutions y1 and y2 we will first develop the
general solution of the equation (7.1.1) through the method of reduction of
order. If ϕ := ϕ(z) with z = x− ct is a solution of (4.1.2) we state the following

Lemma 7.1.1. The two-dimensional vector space of solutions to the first order
system (7.1.1) is spanned by

y1(z) =

(
ϕz(z)
ϕzz(z)

)
and y2(z) =

(
y(z)
yz(z)

)
where the function y is defined as

y(z) = ϕ(0)ϕz(z)

z∫
0

e
−
y∫
0

(ϕ(ξ)−c) dξ

ϕ2
z(y)

dy.

Proof. As ϕ solves (4.1.2), then

−cϕz + ϕϕz = ϕzz + ϕ(1− ϕ).

For f ′(ϕ) = ϕ and g(ϕ) = ϕ(1− ϕ) this identity can be expressed as

−cϕz + f ′(ϕ)ϕz = ϕzz + g(ϕ),

or
0 = ϕzz + (c− f ′(ϕ))ϕz + g(ϕ).

After differentiating with respect to z we get

0 = ϕzzz + (c− f ′(ϕ))ϕzz + (g′(ϕ)− f ′(ϕ)z)ϕz. (7.1.3)

Thus, y1 = (ϕz, ϕzz)
T will be one of the solutions that we will use to define the

monodromy matrix. We still need to find another linearly independent solution
y2 through the method of order reduction.

Let w = rϕz with r considered as the new unknown. Then wz = rzϕz+rϕzz
and wzz = rzzϕz + 2rzϕzz + rϕzzz. Substituting in

(ϕ− c)wz + (ϕz − 1 + 2ϕ)w = wzz (7.1.4)

we obtain

[(ϕ− c)[rzϕz + rϕzz] + (ϕz − 1 + 2ϕ)rϕz = rzzϕz + 2rzϕzz + rϕzzz.
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By (7.1.3) the equation for r reduces to

rzϕϕz − crzϕz = rzzϕz + 2rzϕzz.

By letting u := rz the last equation becomes a first-order equation for rz

uϕϕz − cuϕz = uzϕz + 2uϕzz,

whose solution is

u(z) = A
e

z∫
0

(ϕ(ξ)−c) dξ

ϕ2
z(z)

,

thus

g(z) = A

z∫
0

e

y∫
0

(ϕ(ξ)−c) dξ

ϕ2
z(y)

dy +B.

The general solution for w is

w(z) = Aϕz(z)

z∫
0

e

y∫
0

(ϕ(ξ)−c) dξ

ϕ2
z(y)

dy +Bϕz(z), (7.1.5)

where A and B are arbitrary constants. It follows then that the corresponding
expression for the derivative is

wz(z) = Aϕzz(z)

z∫
0

e

y∫
0

(ϕ(ξ)−c) dξ

ϕ2
z(y)

dy +A
e

y∫
0

(ϕ(ξ)−c) dξ

ϕz(y)
+Bϕzz(z).

The constants (A1, B1) and (A2, B2) corresponding to the fundamental pair of
solutions y1(z) and y2(z) respectively can be determined by imposing the initial
conditions (7.1.2). The result of proceeding in this manner is

A1 = 0 and B1 =
1

v0
, while A2 = v0 and B2 = 0,

where v0 := ϕz(0).
The expression

y(z) = v0ϕz(z)

z∫
0

e

y∫
0

(ϕ(ξ)−c) dξ

ϕ2
z(y)

dy

solves (4.1.2) since

yz(z) = v0ϕzz(z)

z∫
0

e

y∫
0

(ϕ(ξ)−c) dξ

ϕ2
z(y)

dy + v0
e
∫ z
0

(ϕ(ξ)−c) dξ

ϕz(z)
.
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To simplify the calculations let us define

Γ(z) :=
e
∫ z
0

(ϕ(ξ)−c) dξ

ϕ2
z(z)

. (7.1.6)

Thus

yzz = v0ϕzzz(z)

z∫
0

Γ(y) dy+v0ϕzz(z)Γ(z)+v0
e
∫ z
0

(ϕ(z)−c) dξ

ϕz(z)
(c−ϕ(z))−v0ϕzzΓ(z).

That is

yzz = v0ϕzzz(z)

z∫
0

Γ(y) dy + v0
e
∫ z
0

(ϕ(ξ)−c) dξ

ϕz(z)
(c− ϕ(z)).

Adding up the terms for yz and yzz we obtain

0 = yzz + (c− f ′(ϕ))yz + (g′(ϕ)− f ′(ϕ)z)y.

We have obtained a formula for the fundamental solution matrix F(z, 0):

F(z, 0) =

(
ϕz(z)
v0

y(z)
ϕzz(z)
v0

yz(z)

)
(7.1.7)

=


ϕz(z)
v0

v0ϕz(z)
z∫
0

Γ(y) dy

ϕzz(z)
v0

v0ϕzz(z)
z∫
0

Γ(y) dy + v0
e

z∫
0
(ϕ(ξ)−c) dξ

ϕz(z)

 . (7.1.8)

Remark 7.1.2. Due to the normalization ϕz(0) 6= 0 the general solution for-
mula (7.1.5) makes sense in a neighborhood of z = 0. However, ϕz(z) will have
exactly two zeroes within the fundamental period interval z ∈ (0, T ), and there-
fore the integrand 1

ϕ2
z

becomes singular near these points. On the other hand,

the zeroes of ϕz are necessarily simple. Indeed, ϕz(z) is a nontrivial solution of
the linear second-order equation (7.1.4), and therefore if ϕz(z0) = 0 = ϕzz(z0)
for some z0 ∈ R, then by the Existence and Uniqueness Theorem we would
also have ϕz(z) = 0 for all z in contradiction to the nontriviality of ϕz. This
argument shows that all apparent singularities corresponding to the zeroes of
ϕz in the general solution formula (7.1.5) for equation (7.1.4) are necessarily
removable. Still, care must be taken in the use of this formula for z near roots
of ϕz. Let us go a little deeper on this issue.

Expression (7.1.5) is a valid formula for z in any interval containing z = 0
that contains no zeros of ϕz. It is no longer correct, however, if z is allowed to
pass beyond a zero of ϕz. Therefore, to allow z to increase by a period to z = T
we require an alternate expression that is valid for z near T .
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Let z0 ∈ (0, T ) denote the smallest positive zero of ϕz. Since ϕz is an
analytic function of z in some horizontal strip of the complex plane contain-

ing the real axis it follows that ϕ−2
z (y)e

y∫
0

(ϕ(ξ)−c) dξ
is a meromorphic differ-

ential having a double pole at z = z0. In this situation, the contour inte-

gral
z∫
0

ϕ−2
z (y)e

y∫
0

(ϕ(ξ)−c) dξ
dy defines a single-valued meromorphic function near

z = z0. The solution w(z) may be then continued to the real interval z > z0

simply by choosing a path of integration from y = 0 to y = z that avoids the
double pole of the integrand at y = z0, and all such paths are equivalent by the
Residue Theorem. Thus, the same solution that is given by (7.1.5) for z near
z = 0 is given for z near T by

w(z) = v0ϕz(z)

z∫
T

e

y∫
0

(ϕ(η)−c) dη

ϕ2
z(y)

dy + δv0ϕz(z),

where δ is defined by the formula

δ :=

T∫
0

e

y∫
0

(ϕ(η)−c) dη

ϕ2
z(y)

dy =

T∫
0

Γ(y) dy, (7.1.9)

in which the integral is interpreted as a complex contour integral over an ar-
bitrary contour in the strip of analyticity of ϕz that connects the specified
endpoints and avoids the double-pole singularities of the integrand. Note in
particular that although the integrand is certainly positive for real ξ ∈ (0, T ), δ
need not be positive because a real path of integration is not allowed if ϕz has
any zeroes.

7.2 Series expansion of F(z, λ) about λ = 0

The Picard iterates for the fundamental solution matrix F(z, λ) converge uni-
formly on (z, λ) ∈ [0, T ]×K, for every K ⊂ C compact set. Since the coefficient
matrix A(z, λ) is entire in λ for each z, it follows that F(z, λ) is an entire analytic
function of λ ∈ C, for every z ∈ [0, T ]. Hence, the fundamental solution matrix
F(z, λ) has a convergent Taylor expansion about every point of the λ-complex
plane. In particular, the series about the origin has the form

F(z, λ) =

∞∑
n=0

λnFn(z), z ∈ [0, T ], (7.2.1)

for some coefficient matrices {Fn(z)}n, and this series has an infinite radius of
convergence. Setting λ = 0 gives

F0 = (z) = F(z, 0),
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which has already been computed in (7.1.7). Our goal is to express a recursive
formulae defining the subsequent coefficients, and to explicitly compute F1(z)
and F2(z). The benefit of the latter finite computation is that as a convergent
power series, the series (7.2.1) may equally be considered as an asymptotic
series in the limit λ→ 0. Thus, a finite number of terms are sufficient to obtain
increasing accuracy in this limit. We will also obtain the first few terms of
the corresponding expansion of the monodromy matrix M(λ) by evaluating the
terms of (7.2.1) at z = T .

Setting z = T in the expansion gives the series for the monodromy matrix
M(0), also an entire function of λ

M(λ) =

∞∑
n=0

λnMn, Mn = Fn(T ).

Observe that M0 = F0(T ) = M(0). Let us define the solution matrix to the
first-order system wz = A(z, λ)w for λ = 0,

Q0(z) := (y1(z),y2(z)),

where y1(z) and y2(z) are the two linearly independent solutions found in
(7.1.1). That is

Q0(z) =

(
ϕz(z) y(z)
ϕzz(z) yz(z)

)
. (7.2.2)

Due to the following expression for the derivative of y

yz(z) = v0ϕzz(z)

∫ z

0

Γ(ξ) dξ + v0ϕz(z)Γ(z),

the solution matrix evaluated at z = 0 is

Q0(0) =

(
v0 0
0 1

)
,

with inverse

Q−1
0 (0) =

(
1
v0

0

0 1

)
.

Observe that the normalized fundamental solution matrix at λ = 0 is

F(z, 0) = Q0(z)Q−1
0 (0).

The series about the origin takes the form

F(z, λ) =

∞∑
n=0

λnQn(z)Q−1
0 (0), (7.2.3)

for z ∈ [0, T ]. The exact expression for series elements Qn are determined
briefly. This expression is useful to compute the monodromy map at λ = 0. It
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can be obtained by setting z = T in F(z, 0) through the relation

M(0) = F(T, 0) = Q0(T )Q−1
0 (0)

=

 v0 v2
0δ

0 e

T∫
0

(ϕ(η)−c) dη

( 1
v0

0

0 1

)

=

 1 v2
0δ

0 e

T∫
0

(ϕ(η)−c) dη


=

(
1 v2

0δ
0 κ

)
,

with κ := e

T∫
0

(ϕ(η)−c) dη
. This notation simplifies the following expressions for its

trace and its determinant

tr M(0) = 1 + κ

det M(0) = κ.

Actually, according to Abel’s theorem [100] the last equality is true for every
value of λ, not only for λ = 0 since

det M(λ) = exp

 T∫
0

tr A(z, λ) dz

 ,

= e

T∫
0

(ϕ(z)−c) dz

= κ.

Consistently with the solution (7.2.2) at λ = 0, let us denote the solution matrix
as Q = Q(z, λ), for z ∈ R, λ ∈ C. It solves the equation

dQ

dz
= A(z, λ)Q. (7.2.4)

We want to compute Q(z, λ) perturbatively for λ ∼ 0. Since the coefficients
A(z, λ) are analytic in λ then Q has, for each z ∈ [0, T ], a convergent power
series expansion in λ,

Q(z, λ) =

∞∑
n=0

λnQn(z). (7.2.5)

Observe that, for

A0 =

(
0 1

λ+ ϕz(z)− 1 + 2ϕ(z) ϕ(z)− c

)
,

and

A1 =

(
0 0
1 0

)
,
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we can obtain a Taylor series expansion for A, dismissing the terms of order
O(λ3) and higher, we get

dQ

dz
= (A0(z) + λA1)Q. (7.2.6)

We have already computed the leading term Q0(z) = Q(z, 0). To compute
the other terms in the series we subtitute expression (7.2.5) into the differen-
tial equation (7.2.6) and collect together the coefficients of like powers of λ.
In particular, if we collect the terms of order λ we obtain the following non-
homogeneous differential equation for Q

dQ1

dz
= A0(z)Q1 + A1Q0. (7.2.7)

Proceeding in this manner, collecting the terms of order O(λn) with n ≥ 2 we
obtain the hierarchy

dQn

dz
= A0(z)Qn + A1Qn−1 + A2Qn−2 for n = 2, 3, ...

We solve these equations sequentially using the fundamental solution matrix
of the homogeneous terms by variation of parameters. Then, the solution to
equation (7.2.7) is given by

Q1(z) = Q0(z)

z∫
0

Q−1
0 (y)A1Q0(y) dy.

Similarly we obtain the hierarchy of exact recursive formulae for the coefficients
Qn(z) in the series expansion for Q(z, λ), namely,

Qn(z) = Q0(z)

∫ z

0

Q−1
0 (y)(A1Qn−1(y) + A2Qn−2) dy, for n ≥ 2.

Therefore, each term of the series for the monodromy matrix satisfies

dnM(λ)

dλn
= n!Qn(T )Q−1

0 (0)

and can be thus computed explicitly using the recursive formulae of Qn(z).
We collect the previous observations in the following

Proposition 7.2.1. The monodromy matrix M(λ), its trace, and its determi-
nant, have the following convergent series expansions

M(λ) =

∞∑
n=0

λnQn(T )Q−1
0 (0),

tr M(λ) =

∞∑
n=0

λntr Qn(T )Q−1
0 (0),

det M(λ) = κ.
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The coefficients in the series are completely determined by the recursive
formulae. We will obtain the first few terms of the series expansion of the
monodromy matrix M(λ) simply by evaluation of the terms of (7.2.3) for z = T .
They will be useful to determine tr M(λ) which will then be used to determine
an approximation of the Evans function in a neighborhood of the origin.

Since the first coefficient is tr Q0(T )Q−1
0 (0) = 1 + κ we proceed to calculate

the second term of the series expansion of tr M(λ), tr Q1(T )Q−1
0 (0) where

Q1(z) := Q0(z)

∫ z

0

Q−1
0 (ζ)A1Q0(ζ) dζ,

and the matrix A1 defined previously.
Observe that

Q−1
0 (z) =

(
yz

ϕzyz−yϕzz
−y

ϕzyz−yϕzz−ϕzz
ϕzyz−yϕzz

ϕz
ϕzyz−yϕzz

)
.

The determinant of Q0(z) takes the form

ϕzyz − yϕzz = v2
0e

z∫
0

(ϕ(ξ)−c) dξ

then

Q−1
0 (z)A1 =

1

v2
o

 yz(z)e

z∫
0

(ϕ(ξ)−c) dξ
−y(z)e

z∫
0

(ϕ(ξ)−c) dξ

−ϕzz(z)e
z∫
0

(ϕ(ξ)−c) dξ
ϕz(z)e

z∫
0

(ϕ(ξ)−c) dξ

( 0 0
1 0

)

=
1

v2
o

 −y(z)e

z∫
0

(ϕ(ξ)−c) dξ
0

ϕz(z)e

z∫
0

(ϕ(ξ)−c) dξ
0

 .

If we multiply the above expression by Q0 from the right-hand side

Q−1
0 (ζ)A1Q0(ζ) =

1

v2
o

 −y(z)ϕz(z)e

z∫
0

(ϕ(ξ)−c) dξ
−y2(z)e

z∫
0

(ϕ(ξ)−c) dξ

ϕ2
z(z)e

z∫
0

(ϕ(ξ)−c) dξ
−y(z)ϕz(z)e

z∫
0

(ϕ(ξ)−c) dξ


and, integrating in [0, z]

∫ z

0

Q−1
0 (ζ)A1Q0(ζ) dζ =


z∫
0

−y(η)ϕz(η)e

η∫
0
(ϕ(ξ)−c) dξ

v20
dη

z∫
0

−y2(η)e

η∫
0
(ϕ(ξ)−c) dξ

v20
dη

z∫
0

ϕ2
z(η)e

η∫
0
(ϕ(ξ)−c) dξ

v20
dη

z∫
0

−y(η)ϕz(η)e

η∫
0
(ϕ(ξ)−c) dξ

v20
dη

 .

Finally, since

Q1(z) := Q0(z)

∫ z

0

Q0(ζ)−1A1Q0(ζ) dζ,
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then the second term of the series for tr M(λ) is given by

tr Q1(T )Q−1
0 (0) = −

T∫
0

y(η)ϕz(η)e

η∫
0

(ϕ(ξ)−c) dξ

v2
0

dη − δ
T∫

0

y(η)ϕz(η)e

η∫
0

(ϕ(ξ)−c) dξ

v0
dη

+

T∫
0

−y(η)ϕz(η)e

η∫
0

(ϕ(ξ)−c dξ

v2
0

dη

= −δ
T∫

0

y(η)ϕz(η)e

η∫
0

(ϕ(ξ)−c) dξ

v0
dη.

= −δ
T∫

0

ϕ2
z(η)e

η∫
0

(ϕ(ξ)−c) dξ
η∫

0

Γ(ξ) dξ dη.

For the third term of the series expansion we define

tr Q2(T )Q−1
0 (0) = tr

(
Q0(T )

∫ T

0

Q−1
0 (ζ)A1Q1(ζ) dζQ−1

0 (0)

)

+tr

(
Q0(T )

∫ T

0

Q−1
0 (ζ)A2Q0(ζ) dζQ−1

0 (0)

)
.

Since

A2 =

(
0 0
0 0

)
,

then

tr Q2(T )Q−1
0 (0) = tr

(
Q0(T )

∫ T

0

Q−1
0 (ζ)A1Q1(ζ) dζ

)
.

For the meanwhile let us make

Q1(ζ) =

(
a11 a21

a21 a22

)
.

As

Q−1
0 (ζ)A1 =

 −y(z)e

z∫
0
(ϕ(ξ)−c) dξ

v20
0

ϕz(z)e

z∫
0
(ϕ(ξ)−c) dξ

v20
0

 ,

then if we multiply by Q1 from the right-hand side

Q−1
0 (ζ)A1Q1(ζ) =

 −a11(ζ)y(ζ)e

ζ∫
0
(ϕ(ξ)−c) dξ

v20
−a12(ζ)y(ζ)e

ζ∫
0
(ϕ(ξ)−c) dξ

v20

a11(ζ)ϕz(ζ)e

ζ∫
0
(ϕ(ξ)−c) dξ

v20
a12(ζ)ϕz(ζ)e

ζ∫
0
(ϕ(ξ)−c) dξ

v20
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and if we integrate in [0, z] we get

∫ T

0

Q−1
0 (ζ)A1Q1(ζ) dζ =


−

T∫
0

a11(ζ)y(ζ)e

ζ∫
0
(ϕ(ξ)−c) dξ

v20
dζ −

T∫
0

a12(ζ)y(ζ)e

ζ∫
0
(ϕ(ξ)−c) dξ

v20
dζ

T∫
0

a11(ζ)ϕz(ζ)e

ζ∫
0
(ϕ(ξ)−c) dξ

v20
dζ

T∫
0

a12(ζ)ϕz(ζ)e

ζ∫
0
(ϕ(ξ)−c) dξ

v20
dζ

 .

Adding up the diagonal terms

tr Q2(T )Q−1
0 (0) = −

T∫
0

a11(ζ)
y(ζ)e

ζ∫
0

(ϕ(ξ)−c) dξ

v0
dζ + δ

T∫
0

a11(ζ)ϕz(ζ)e

ζ∫
0

(ϕ(ξ)−c) dξ
dζ

+

T∫
0

a12(ζ)
ϕz(ζ)e

ζ∫
0

(ϕ(ξ)−c) dξ

v2
0

dζ.

Since we know the coefficients a11(ζ) and a12(ζ) of Q1(T ) then

a11(ζ) = ϕz(ζ)

ζ∫
0

−y(η)ϕz(η)e

η∫
0

(ϕ(ξ)−c) dξ

v2
0

dη + y(ζ)

ζ∫
0

ϕ2
z(η)e

η∫
0

(ϕ(ξ)−c) dξ

v2
0

dη

a12(ζ) = −ϕz(ζ)

ζ∫
0

y2(η)e

η∫
0

(ϕ(ξ)−c) dξ

v2
0

dη − y(ζ)

ζ∫
0

y(η)ϕz(η)e

η∫
0

(ϕ(ξ)−c) dξ

v2
0

dη.

We now have a series expansion for tr M(λ) with its first three terms

tr M(λ) = 2 + λtr Q1(T )Q−1
0 (0) + λ2tr Q2(T )Q−1

0 (0) + O(3).

The benefit of this finite computation is that as a convergent power series,
the series (7.2.3) may equally well be interpreted as an asymptotic series in the
Poincaré sense in the limit λ −→ 0. Thus, a finite number of terms are sufficient
to obtain increasing accuracy in this limit, and the order of accuracy is deter-
mined by the number of retained terms. We will profit from these calculations
in the next section devoted to instability criteria.

7.3 Instability indices

In this section we determine some stability properties for the periodic wavetrain
solutions of Burgers-Fisher equation described in terms of two indices, or signs,
that provide stability tests. This was the objective of constructing the previ-
ous asymptotic expansion for the trace of the monodromy matrix M(λ) valid
for small λ. We begin with the parity index before proceeding to the modula-
tional stability index and the information it provides about the spectrum in a
neighborhood of the origin.
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7.3.1 The parity index

The parity index for periodic waves compares the Evans function around λ = 0
with its asymptotic behavior along the real axis for large λ. The Evans function
is analytic and its set of zeroes coincides with the spectrum of the linearization
of the operator around the periodic wave solution. This index then compares the
signs of the first derivative of the Evans function at λ = 0 and the function’s
sign when λ −→ ∞ for which we need to determine an asymptotic matrix
which approximates the linearized problem for large values of λ. If there is a
change of signs between these two quantities there must be an odd number of
zeroes lying on the real positive axis, indicating the presence of positive and
unstable eigenvalues. However, we must note that if the signs coincide, this test
is inconclusive.

We have already observed that λ = 0 belongs to the spectrum σ. In fact,
λ = 0 belongs to the periodic partial spectrum σ0, as both Floquet multipliers
coincide at µ = 1. At a physical level, this is related to the translation invari-
ance of the periodic traveling wave [100]. Recall from (3.4.1) that the periodic
eigenvalues (that is, the points of the periodic partial spectrum σ0) are the roots
of the periodic Evans function D(λ, µ) with µ = 1 ∈ S1. By substituting µ = 1,
we obtain the following expression for the Evans function

D(λ, 1) = 1− tr M(λ) + det M(λ),

where M(λ) is the monodromy matrix associated to the spectral problem. The
coefficients calculated in the previous section will appear in the series expansion
of order three of this matrix. To define the parity index we will consider the
restriction of the Evans function to λ ∈ R.

Lemma 7.3.1. The restriction of the periodic Evans function D(λ, 1) to λ ∈ R
is a real analytic function. Moreover, for λ ∈ R+ with sufficiently large we have
D(λ, 1) < 0.

Proof. Since the matrix A(z, λ) has real coefficients for λ ∈ R, the fundamental
solution matrix F(z, λ) is real for real λ and z ∈ [0, T ]. By evaluation at z = T
the same can be said for the elements of the monodromy matrix M(λ), this
proves the real-analyticity.
In order to analyze the behavior of the Evans function for λ � 1 we need to
find a matrix A∞ that describes the asymptotic behavior of A(z, λ),

A(z, λ) =

(
0 1

λ+ ϕz(z)− 1 + 2ϕ(z) ϕ(z)− c

)
for large values. We begin with a change of coordinates

ϕz = v

vz = (λ+ ϕz − 1 + 2ϕ)y + (ϕ− c)v

z =
ξ√
λ

and ϕ̃ = ϕ

(
ξ√
λ

)
.
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In this manner we have
ṽ =

v√
λ
,

ϕzzξ = ϕ̃ξ,

and

ϕ̃ξ =
1√
λ
ϕz

(
ξ√
λ

)
.

The rescaled system becomes{
ũξ = ṽ

ṽξ = 1 +
ϕ̃ξ√
λ

+ 2ϕ−1
λ + (ϕ̃−c)ṽ√

λ
.

Since both ϕ and ϕz are bounded, function ṽ has the following asymptotic
bound

lim
λ→+∞

ṽξ = 1.

The asymptotic behavior of matrix A(z, λ) is described by the matrix

A∞ =

(
0 1
1 0

)
,

and the asymptotic problem turns out to be(
ũξ
ṽξ

)
=

(
0 1
1 0

)(
ũ
ṽ

)
.

Since the coefficient matrices A(z, λ) and A∞ are uniformly close for z ∈ [0, T ],
their respective Evans functions D∞(λ, 1) and D(λ, 1) are close in the limit
when λ −→∞ [154].

To determine the monodromy matrix M∞ = eA
∞T of the asymptotic prob-

lem we define

X(T ) =

(
eT e−T

eT −e−T
)
, X(0) =

(
1 1
1 −1

)
and X(0)−1 =

(
1
2

1
2

1
2 − 1

2

)
.

So

M∞ = eA
∞T = X(T )X(0)−1

=

(
eT

2 + e−T

2
eT

2 −
e−T

2
eT

2 −
e−T

2
eT

2 + e−T

2

)
.

Its trace and determinant are given by

tr M∞ = eT + e−T

det M∞ = 1.

The periodic Evans function D∞(λ, 1) = 1− tr M∞ + det M∞ associated with
the approximating system is therefore

D∞(λ, 1) = 2− eT − e−T < 0.

That is, the sign of the Evans function as λ −→∞ is negative.
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We want to compare the previous result with the sign of the first derivative
of the Evans function

D(λ, 1) = 1− tr M(λ) + det M(λ)

in a neighborhood of the origin. Recall the following expressions from Proposi-
tion 7.2.1

tr M(λ) =

∞∑
n=0

tr Qn(T )Q−1
0 (0)λn

det M(λ) = κ.

Note that

tr M(λ) = tr Q0(T )Q−1
0 (0) +

∞∑
n=1

tr Qn(T )Q−1
0 (0)λn

= 1 + κ+

∞∑
n=1

tr Qn(T )Q−1
0 (0)λn,

so

D(λ, 1) = 1−

[
1 + κ+

∞∑
n=1

tr Qn(T )Q−1
0 (0)λn

]
+ κ

= −
∞∑
n=1

tr Qn(T )Q−1
0 (0)λn.

Remember that we are interested in the first derivative of this function and its
evaluation at λ = 0. Thus, by derivating with respect to λ we get

Dλ(λ, 1) = −
∞∑
n=1

ntr Qn(T )Q−1
0 (0)λn−1

= −tr Q1(T )Q−1
0 (0)−

∞∑
n=2

ntr Qn(T )Q−1
0 (0)λn−1.

Only the first term remains after evaluating at λ = 0

Dλ(0, 1) = −tr Q1(T )Q−1
0 (0)

= δ

T∫
0

ϕ2
z(η)

η∫
0

Γ(ξ) dξe

η∫
0

(ϕ(ξ)−c) dξ
dη.

That is, the sign of the first derivative of the Evans function evaluated at λ = 0
depends entirely on the sign of δ because the integral which it multiplies has
positive sign. This suggests the following
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Definition 7.3.2. The parity index is defined by

γP := sgn δ.

This leads us to the following instability criterion

Proposition 7.3.3. If the integral δ defined in (7.1.9) exists and if γP < 0
(resp., γP > 0), then the number of positive real points in the periodic partial
spectrum σ0 ⊂ σ, i.e., periodic eigenvalues, is even (resp, odd) when counted
according to multiplicity. In particular, if γP > 0 there is at least one posi-
tive real periodic eigenvalue and hence the underlying periodic wave ϕ solving
Burgers-Fisher equation (2.3.1) is spectrally unstable, with the corresponding ex-
ponentially growing solution of the linearized equation (3.3.1) having the same
spatial period T as ϕz.

Proof. If γP < 0, then D(λ, 1) has the same sign for sufficiently small and
sufficiently large strictly positive λ, while if γP > 0 the signs are opposite for
small and large λ. Since D(λ, 1) is real-analytic for real λ it clearly has an even
number of positive roots for γ < 0 and an odd number of positive roots for
γP , with the roots weighted by their multiplicities. By Proposition 3.4.1, these
roots correspond to points in the spectrum σ, and since µ = 1, they are periodic
eigenvalues.

The signs of Dλ(0, 1) and D∞(λ, 1) coincide in the case γP < 0, thus making
this instability test inconclusive because it only guarantees that the number of
real positive (periodic) eigenvalues is even (possibly zero).

The instability detected by the parity index corresponds to a perturbation
with spatial period T and with strict positive exponential growth rate λ. We
will now turn our attention to another index that can detect instabilities of a
different type, namely those having arbitrarily small exponential growth rates.

7.3.2 The modulational instability index

The parity index provides us with some clues of the asymptotic behavior of the
Evans function in the limit when λ −→∞. Now we want to acquire information
about the behavior of the entire spectrum σ in a complex neighborhood of
the origin, not limited to the periodic partial spectrum as was the case for
the previous index. The resulting curves of spectrum may be parametrized
implicitly by θ ∈ R via the equation D(λ, eiθ) = 0. We are thus interested in
finding an expansion of the function D(λ, eiθ) in a complex neighborhood of
(λ, θ) = (0, 0). This is equivalent to expanding function D(λ, µ) near (λ, µ) =
(0, 1).

Recall that the periodic Evans function D(λ, eiθ) is analytic in the variables
(λ, θ) ∈ C2 and has the following expansion in a neighborhood of (λ, θ) = (0, 0),

D(λ, eiθ) = ei2θ − tr M(λ)eiθ + det M(λ).

We analyze how solutions to D(λ, eiθ) = 0 with (λ, θ) ∈ C × R bifurcate
from (0, 0). The modulational instability index determines whether or not the
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spectral curves are tangent to the imaginary axis at the origin and if they are
located in the unstable half-plane of elements with positive real part.

Since
D(λ, µ) = µ2 − tr M(λ)µ+ det M(λ),

if we make µ = eiθ we have

D(λ, θ) = ei2θ − tr M(λ)eiθ + det M(λ).

We will use the following second order series expansions

eiθ = 1 + iθ − θ2

2
+ O(3),

ei2θ = 1 + i2θ − 2θ2 + O(3),

tr M(λ) = tr M(0) + λtr Mλ(0) +
1

2
λ2tr Mλλ(0) + O(3).

Since tr M(0) = 1 + κ and det M(λ) = κ then

Dλ(λ, θ) =

(
−iθ +

θ2

2
− 1

)
tr Mλ(0) +

(
λθ2

2
− λ− iθλ

)
tr Mλλ(0),

and Dθ(λ, θ) = i− 3θ − iκ+ θκ+ λ(θ − i)tr Mλ(0) +
λ2

2
(θ − i)tr Mλλ(0),

so that

Dλ(0, 0) = i(1− κ),

Dθ(0, 0) = −tr Mλ(0).

By the Implicit Function Theorem,

D(λ̃(θ), θ) = 0,

and

Dλ(λ̃(θ), θ)
dλ̃

dθ
+Dθ(λ̃(θ), θ) = 0.

Differentiating the above expression with respect to θ

Dλ(λ̃(θ), θ)
d2λ̃

dθ2
+Dλλ(λ̃(θ), θ)

(
dλ̃

dθ

)2

+Dλθ(λ̃(θ), θ)
dλ̃

dθ
+Dθθ(λ̃(θ), θ) = 0.

For λ̃ ∼ 0 we have

−tr Mλ(0)
d2

dθ2
λ̃(0)− tr Mλλ(0)

(
d

dθ
λ̃(0)

)2

− itr Mλ(0)
d

dθ
λ̃(0) + κ− 3 = 0.
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Solving for d2

dθ2 λ̃(0)

d2

dθ2
λ̃(0) = − tr Mλλ(0)

tr Mλ(0)

(
d

dθ
λ̃(0)

)2

− i d
dθ
λ̃(0) +

κ− 3

tr Mλ(0)

= tr Mλλ(0)

(
d

dθ
λ̃(0)

)2

+ itr Mλ(0)
d

dθ
λ̃(0)− κ+ 3.

Since
d

dθ
λ̃(0) = −Dθ(λ̃, θ)

Dλ(λ̃, θ)

with Dθ(0) = i(1− κ) and Dλ(0) = −tr Mλ(0) then,

d

dθ
λ̃(0) = i

(1− κ)

tr Mλ(0)
.

The above expression describes a tangency at the origin. Whether the curves
of spectrum lie in the right (unstable) or the left (stable) half-plane depends on
the sign of

d2

dθ2
λ̃(0) = − tr Mλλ(0)

tr Mλ(0)

(
i

(1− κ)

tr Mλ(0)

)2

− i
(
i

(1− κ)

tr Mλ(0)

)
+

κ− 3

tr Mλ(0)

=
tr Mλλ(0)

tr Mλ(0)

(1− κ)2

tr Mλ(0)2
+

1− κ
tr Mλ(0)

+
κ− 3

tr Mλ(0)

=
tr Mλλ(0)(1− κ)2

tr Mλ(0)3
− 2

tr Mλ(0)
.

This motivates the definition of another instability index.

Definition 7.3.4. The modulational instability index γM is given by

γM := sgn

(
tr Mλλ(0)(1− κ)2

tr Mλ(0)2
− 2

)
1

tr Mλ(0)
,

with

tr Mλ(0) = tr Q1(T )Q−1
0 (0)

= −δ
T∫

0

ϕ2
z(η)

η∫
0

Γ(ξ) dξe

η∫
0

(ϕ(ξ)−c) dξ
dη,

and

tr Mλλ(0) = tr Q2(T )Q−1
0 (0)

= −
T∫

0

a11(ζ)
y(ζ)e

ζ∫
0

(ϕ(ξ)−c) dξ

v0
dζ + δ

T∫
0

a11(ζ)ϕz(ζ)e

ζ∫
0

(ϕ(ξ)−c) dξ
dζ

+

T∫
0

a12(ζ)
ϕz(ζ)e

ζ∫
0

(ϕ(ξ)−c) dξ

v2
0

dζ.
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Remark 7.3.5. The sign of γM is determined by the one of δ since for |κ| � 1
we have κ2 < 1 and 0 < 1 − κ2. If it were the case, for example, that δ < 0,
we would have trMλλ(0) < 0 and trMλλ(0)(1− κ2) < 0. Since 2trMλ(0)2 > 0
then

trMλλ(0)(1− κ2) < 2trMλ(0)2.

This inequality will be preseved after dividing by trMλ(0)2 > 0

trMλλ(0)(1− κ2)

trMλ(0)2
< 2.

The assumption that δ < 0 would imply trMλ(0) < 0 because
∫ η

0
Γ(y) dy < 0

for every 0 < η < T in such case and

trMλ(0) = −δ
T∫

0

ϕ2
z(η)

η∫
0

Γ(ξ) dξe

η∫
0

(ϕ(ξ)−c) dξ
dη.

That is,
trMλλ(0)(1− κ2)

trMλ(0)3
>

2

trMλ(0)

or

γM =

(
trMλλ(0)(1− κ2)

trMλ(0)2
− 2

)
1

trMλ(0)
> 0.

Due to the absence of symmetry of the spectrum with respect to the imagi-
nary axis, the sign of the above expression is very relevant. The local structure
of the spectrum near the origin is tangent to the imaginary axis. Its relative
position, whether it lies in the left or the right-hand plane is relevant since this
motivates the following concept of modulational stability.

Definition 7.3.6. [100] A periodic traveling wave solution ϕ of Burgers-Fisher
equation is said to be modulationally unstable if for every neighborhood U of the
origin λ = 0 we have (σ\ iR)∩U 6= ∅. Otherwise, ϕ is said to be modulationally
stable. For an angle θ ∈

(
0, π2

)
, let Sθ denote the union of the open sectors given

by the inequalities | arg(λ)| < θ or | arg(−λ)| < θ. A modulational instability is
called weak if for every θ ∈

(
0, π2

)
and for very neighborhood U of the origin,

σ ∩ U ∩ Sθ = ∅. A modulational instability that is not weak is called strong.

Remark 7.3.7. The fact that the spectrum is locally tangent to the imaginary
axis at the origin λ = 0 is inconclusive for stability because these curves could
fail to be confined to the imaginary axis, or because there could be other parts
of the spectrum with nonzero real parts far from the origin. In other words,
there could be either a weak modulational instability, or an instability of non-
modulational type.

Observe also that a periodic traveling wave ϕ can be modulationally stable
according to the previous definition without being spectrally stable in the sense
defined in Chapter 3, because the spectrum σ may coincide exactly with the
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imaginary axis in a neighborhood of the origin while cointaining values of λ
with Reλ 6= 0 elsewhere. This can be illustrated with the parity index which
is designed to detect points of σ that are real and not close to the origin, and
hence that correspond to unstable modes exhibiting rapid exponential growth
in time.

The previous results can be summarized as

Theorem 7.3.8. If the integral δ defined in (7.1.9) exists and if γM < 0 (resp.
γM > 0) then equation D(λ, eiθ) = 0 parametrically describes (for small real θ)
a smooth curve tangent to the imaginary axis in a neighborhood of the origin in
the complex λ-plane that is contained in the left (resp. right) half-plane.

This leads us to the following modulational stability criterion.

Corollary 7.3.9. If the integral δ defined in (7.1.9) exists and if γM < 0,
the small-amplitude periodic waves found in Theorem 4.1.1 are modulationally
stable.

It is a common procedure in the physics literature to restrain the attention to
proving a solution’s modulational stability, often disregarding the more arduous
task of verifying if it is spectrally stable. The relevance of the previous corollary
is that modulational stability is not a sufficient condition to guarantee spectral
stability. If it were the case, for example, that γM < 0, the small-amplitude
periodic traveling wave solutions to Burgers-Fisher equation would be modu-
lationally stable in contrast with their spectral instability stated in Theorem
5.0.9.
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Chapter 8

Discussion

Part I of the present thesis is devoted to the study of periodic traveling wave
solutions for Burgers-Fisher equation. Under the assumption that it possesses
traveling wave solutions one obtains the following second-order ordinary differ-
ential equation satisfied by the wave’s profile

U ′′ = UU ′ − cU ′ − U(1− U),

where the wave velocity c ∈ R is a parameter. It plays the role of a bifurcation
parameter because it changes the nature of the solutions to the equivalent planar
system as it varies. This translates as changes in the phase diagrams of the
planar system. In this first part we have shown that three different types of
solutions can be found for c in the interval

(
0, 1

7

]
. The first one consists of

a family of small-amplitude closed orbits that emerge from a Hopf bifurcation
as the parameter value crosses c = 0. On the other hand, through Melnikov’s
method we prove that there is a homoclinic orbit for the particular value c = 1

7
and a family of large-period waves that emerge from a homoclinic bifurcation
for values c < 1

7 . Appendix B shows an alternative geometric argument to prove
the existence of the homoclinic orbit.

As mentioned in the Introduction, the problem of the spectral stability of
periodic traveling wave solutions to partial differential equations is of interest.
For this reason we examine the Floquet spectrum of the linearization around
the two families of periodic wavetrains. In the small-amplitude case, it is shown
that all the waves belonging to the family are spectrally unstable by the appli-
cation of standard perturbation theory of linear operators. The instability is
due to a structural assumption on the model equations: the instability of the
origin as an equilibrium point of the reaction generates an unstable eigenvalue
of an associated constant coefficient operator (the linearization around the zero
solution), from which the linearization of a small-amplitude wave represents a
perturbation. This approximation technique has been recently investigated by
Kóllar et al. [107] to study the spectral stability of small-amplitude waves for
scalar equations with Hamiltonian structure. In the case of large period waves,
we verify the conditions under which the fundamental result by Gardner [65]
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(of convergence of periodic spectra in the infinite-period limit to that of the un-
derlying homoclinic wave) applies. The typical instability of the traveling pulse
then produces unstable spectrum curves for the linearized operator around the
periodic wave, proving in this fashion, spectral instability of each member of
the family.

Modulational stability is thoroughly used in the periodic traveling wave liter-
ature to study spectral stability. The idea of including this analysis in this thesis
was to compare the results between both spectral and modulational stability and
to examine if there existed a possible contradiction among them. That is, is it
the case that the small-amplitude periodic traveling waves are modulationally
stable in contrast with them being spectrally unstable? Observe that the sta-
bility indices were only enunciated for the family of small-amplitude waves and
that the sign of δ is not explicitly determined. That is, the instability criterions
associated to the indices are given in terms of the sign of δ. A great amount
of effort was devoted to determine the sign of this integral. However, no con-
clusive result was obtained. With the advantage of working with an integrable
equation, the authors in [100] obtain the sign of a very similar integral. The
calculation of the stability indices for the large-period waves is pending.

Something that is not addressed here is the existence of traveling wave solu-
tions for values of the velocity between 0 and 1

7 . Are these the endpoints of an
interval of wave velocities for which closed orbits exist? Is it the same family of
periodic traveling waves? Do the periodic solutions that are born as c crosses 0
increase and grow in period until they merge with the homoclinic orbit at c = 1

7
and disappear? We have no analytic or formal arguments with which could we
answer these inquiries. At least numerically, the phase diagram for values of c
between 0 and 1

7 seem to be a continuous family of closed orbits that surround
the origin. We have, however, no analytical tools with which could we defend
the existence of waves for every value of c ∈

(
0, 1

7

)
.

A natural question that arises is if the results presented so far could be
extended to a broader family of equations. That is, would we have periodic
traveling wave solutions if we establish the suitable conditions for a general
flux function f(u) and for a production term g(u)? Would these be stable or
unstable? Is a modulational stability analysis feasible? These questions lead
us to the second part of this thesis where we examine to what degree can we
extend the results of Part I to general viscous balance laws.
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Part II

General Viscous Balance
Laws
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Chapter 9

Introduction to viscous
balance laws

Scalar viscous balance laws in one space dimension have the form

ut + f(u)x = νuxx + g(u), (9.0.1)

where u = u(x, t) ∈ R and x ∈ R, t > 0. Here f = f(u) denotes a nonlinear flux
function and g = g(u) is a balance (or reaction) term expressing production of
the quantity u. Viscosity (or diffusion) effects are modeled through the Laplace
operator applied to u with constant viscosity coefficient, ν > 0. When f ≡ 0
the equation reduces to the standard reaction-diffusion equation for which the
existence and the stability of traveling waves have been widely investigated (see,
e.g., [11, 56,58] and the many references therein).

Scalar viscous balance laws typically arise as parabolic regularizations of
hyperbolic balance laws of the form (cf. [41, 42]),

ut + f(u)x = g(u), (9.0.2)

also known as inhomogeneous conservation laws [53], describing idealized invis-
cid problems in which only reaction and convective effects are taken into consid-
eration (for example, equation (9.0.2) may describe the evolution of a density
u of point particles moving with speed f ′(u) and reacting at rate g(u)/u). In
the theory of scalar conservation laws (cf. [42, 114]), it is well known that the
convexity of the flux function f plays a key role and determines the structure of
entropy solutions. The introduction of the reaction term g(u) (which may de-
scribe production/consumption, chemical reactions or combustion, among other
interactions) is capable of drastically changing the long time behavior of solu-
tions, as was demonstrated by Mascia in both the convex [134] and non-convex
cases [135,136]. Applications of balance laws, although not scalar, include mod-
els for roll waves [12, 143], nozzle flow [30], or combustion theory [37]. Thus,
scalar and systems of balance laws have been the subject of investigations for
a long time (for an abridged list of references, see [41, 53, 54, 134–137, 171]; see
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also the recent paper [49] on scalar equations). Since the effects of diffusion are
important in many physical applications (such as viscous fluid flow [29] and semi-
conductor theory [75,167]), viscous balance laws have been proposed to account
for such effects. In the scalar case, it is common to find viscous balance laws as
tools to study viscous profiles as approximations of their inviscid wave counter-
parts when the viscosity coefficient ν is small (see, for example, [39,77,78]). In
conclusion, scalar viscous balance laws represent simplified models that combine
diffusion (viscosity), convection and reaction effects into one single equation.

The objective of the second part of this work is to extend the results obtained
in the first part. In particular, we are interested in analyzing spatially periodic
traveling wave solutions to a large class of viscous balance laws of the form
(9.0.1). In the literature, there exist several works addressing the stability per
se of traveling wave solutions to equation (9.0.1). For example, the existence and
nonlinear (asymptotic) stability of traveling front solutions for viscous balance
laws have been studied by Wu and Xing [185]. In particular, they analyze the
spectrum of the linearized operator around the fronts on the real line. Their
analysis has been extended to the non-convex case in [186]. Scalar viscous
balance laws with degenerate viscosity coefficients have been recently studied
by Xu et al. [187]. Regarding spatially periodic traveling waves, there exist
many papers addressing the existence problem (and asymptotic behavior) for
specific equations; see, for instance, [116, 125, 173, 174, 189], among others. Up
to our knowledge, the stability of periodic wave solutions to equations in the
general form (9.0.1) has not been studied before in the literature.

In order to extend the properties of the solutions of Burgers-Fisher equation
we need to establish suitable structural assumptions on the elements of equation
(9.0.1). In particular, we suppose that the reaction function is of monostable
or Fisher-KPP type (see hypothesis (H2) below). Following the roadmap of the
first part we begin by proving that this class of equations underlies two families
of periodic waves. The first family consists of small-amplitude waves with finite
fundamental period which emerge from a Hopf bifurcation around a critical
value of the wave speed. The second family includes arbitrarily large period
waves arising from a homoclinic bifurcation around a second critical value of
the speed, and which tend to a limiting traveling (homoclinic) pulse when their
fundamental period tends to infinity. First, we apply Melnikov’s integral method
for perturbed homoclinic orbits to show the existence of a traveling pulse for the
viscous balance law. The wave speed of the latter is precisely the bifurcation
parameter value under which there happens the bifurcation of a limit cycle from
the homoclinic loop of a saddle with non-zero saddle quantity, as a consequence
of Andronov-Leontovich’s theorem. In this fashion, we exhibit the existence of
bounded periodic waves with large fundamental period tending to infinity (the
“period” of the homoclinic loop) as the speed of the wave tends to the critical
homoclinic speed.

In addition, we also study the stability properties of both families of periodic
waves. For that purpose, we linearize the equation around the wave under con-
sideration and study the associated spectral problem. This procedure leads to
the concept of spectral stability, or, in lay terms, the property that the linearized
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operator around the wave is “well-behaved” in the sense that it does not support
eigenvalues with positive real part. In the case of periodic waves, the spectrum
of the linearized operator is continuous and we are required to study the Flo-
quet spectrum, comprised by curves of spectrum on the complex plane. It is
shown that both families of periodic waves are spectrally unstable, that is, that
the corresponding Floquet spectra intersect the unstable complex half plane of
eigenvalues with positive real part. In the case of small amplitude waves, we
prove that the spectrum of the linearized operator around the wave can be ap-
proximated by that of a constant coefficient operator around the zero solution
and determined by a dispersion relation which intersects the unstable complex
half plane. Applying standard perturbation theory of linear operators, we show
that unstable point eigenvalues of the constant coefficient operator split into
neighboring curves of Floquet spectra of the underlying small amplitude waves.
In the case of large period waves the pioneering work by Gardner [65] charac-
terized the spectrum of the linearized operator around such periodic waves and
related it to that of the linearized operator around the homoclinic loop (travel-
ing pulse for the PDE). Gardner proved the convergence of both spectra in the
infinite period limit and, under very general conditions, that loops of continuous
periodic spectra bifurcate from isolated point spectra of the limiting homoclinic
wave. Hence, the typical spectral instability of the traveling pulse determines
the spectral instability of the periodic waves under consideration. We then ver-
ify the hypotheses of a recent refinement of Gardner’s result due to Yang and
Zumbrun [188] to conclude the spectral instability of the family. Finally, we
present some examples of viscous balance laws that satisfy the hypotheses in
this paper, for which our existence and instability results apply. Among these,
we include the equation of Part I to verify that it satisfies the conditions of Part
II.

9.1 Equations and assumptions

For concreteness, from this point on we consider scalar viscous balance laws in
one space dimension of the form

ut + f(u)x = uxx + g(u), (9.1.1)

where f and g are sufficiently regular functions and where the viscosity coeffi-
cient has been set to ν = 1. It is assumed that g is of Fisher-KPP type [59,109]
having two equilibrium points, one stable and one unstable, and which models
growth of logistic type (see assumption (H2) below). Thus, the model equation
under consideration covers a large class of general viscous balance laws as f
is not required to be strictly convex. When one analyzes the convergence of
viscous waves to their hyperbolic counterparts one cannot get rid of the viscos-
ity parameter by simple scaling due to the presence of the reaction term and,
hence, the problem is singularly perturbed (see [77]). In the present context,
however, the analysis of existence and stability of the viscous wave does not
involve the inviscid limit and it is possible to normalize the space variable and
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the flux function, x → x/
√
ν and f → f/

√
ν, respectively, so that the model

(9.0.1) reduces to equation (9.1.1) without loss of generality.
In the sequel, we make the following assumptions on the nonlinear functions

f and g:
f ∈ C4(R), (H1)

g ∈ C3(R) and it is of Fisher-KPP type, satisfying

g(0) = g(1) = 0,

g′(0) > 0, g′(1) < 0, (H2)

g(u) > 0 for all u ∈ (0, 1),

g(u) < 0 for all u ∈ (−∞, 0).

There exists u∗ ∈ (−∞, 0) such that∫ 0

u∗

g(s) ds+

∫ 1

0

g(s) ds = 0. (H3)

We also make some assumptions on the interaction between f and g. For in-
stance, we suppose that:

a0 := f ′′′(0)− f ′′(0)g′′(0)√
g′(0)

6= 0, (genericity condition). (H4)

Observe that, under (H2) and (H3), u∗ ∈ (−∞, 0) is the unique value such
that (H3) holds and, moreover,∫ 1

u

g(s) ds > 0, for all u ∈ (u∗, 1).

Therefore we can define

γ(u) :=

√
2

∫ 1

u

g(s) ds, u ∈ (u∗, 1), (9.1.2)

as well as the integrals

I0 :=

∫ 1

u∗

γ(s) ds > 0,

I1 :=

∫ 1

u∗

f ′(s)γ(s) ds,

J := 2

∫ 1

u∗

f ′(s)
√

1 + γ′(s)2 ds,

and L := 2

∫ 1

u∗

√
1 + γ′(s)2 ds.

(9.1.3)
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Notice that L and J are, typically, elliptic integrals; L is simply the length of
the curve defined by the function γ and it clearly exists; since f is of class C4

this implies that J exists as well. Based on the above definitions we further
assume:

I0J 6= LI1, (non-degeneracy condition), (H5)

f ′(1) 6= I1
I0
, (saddle condition). (H6)

Remark 9.1.1. Hypothesis (H1) is a minimal regularity assumption on f to
guarantee the existence of small amplitude periodic waves. We emphasize that
we do not require the nonlinear flux f to be strictly convex (f ′′(u) ≥ δ > 0 for
all u) and that our results apply to general flux functions with inflection points
(such as the Buckley-Leverett flux function (12.1.2) below) which are useful in
the description of non-classical shocks and phase transitions (see LeFloch [117]
for further information). Assumption (H2) specifies a balance (or production)
term with logistic response, with an unstable equilibrium point at u = 0 and a
stable one at u = 1, plus the required regularity. Hypothesis (H3) is the balance
of forces condition (if we interpret g as the derivative of a potential) necessary for
the existence of a homoclinic orbit. Assumptions (H4), (H5) and (H6) determine
the interaction conditions between f and g which are sufficient to guarantee the
existence of bounded periodic waves. In particular, hypothesis (H4) ensures
a Hopf bifurcation from which small-amplitude periodic orbits with bounded
fundamental period emerge. Assumptions (H5) and (H6) make sure that a
bifurcation from a limit cycle occurs from a homoclinic loop (traveling pulse
type solution) giving rise to bounded periodic waves with large fundamental
period.
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Chapter 10

Existence of bounded
periodic traveling waves

This chapter contains the existence proofs of two different families of bounded
periodic waves: one with small-amplitude and bounded period that emerge from
a Hopf bifurcation from the origin, and those with finite amplitude and large
fundamental period that bifurcate from a homoclinic loop in the neighborhood
of a critical velocity. In both cases, the speed c ∈ R plays the role of the
bifurcation parameter.

10.1 Small-amplitude periodic waves

Consider a traveling wave solution to (9.1.1) having the form

u(x, t) = ϕ(x− ct), (10.1.1)

where ϕ : R→ R is the wave profile and c ∈ R is the speed of propagation. Let
us denote the Galilean variable of translation as z = x−ct. A bounded spatially
periodic traveling wave is a solution of the form (10.1.1), for which the wave
profile is a periodic function of its argument with fundamental period T > 0,
satisfying

ϕ(z + T ) = ϕ(z), for all z ∈ R,

and
|ϕ(z)|, |ϕ′(z)| ≤ C, for all z ∈ R, for some C > 0.

Substitution of (10.1.1) into (9.1.1) yields the following ODE for the wave
profile,

−cϕ′ + f ′(ϕ)ϕ′ = ϕ′′ + g(ϕ). (10.1.2)

In order to analyze the existence of periodic solutions to (10.1.2), let us
denote U(z) = ϕ(z), V (z) = ϕ′(z), ′ = d/dz and write (10.1.2) as the first order

88



system in the plane{
U ′ = F (U, V, c) := V
V ′ = G(U, V, c) := −cV + f ′(U)V − g(U).

(10.1.3)

Notice that, from assumptions (H1) and (H2) we have F,G ∈ C3(R3) and
that for each parameter value c ∈ R system (10.1.3) has two equilibria, A0 =
(0, 0) and A1 = (1, 0), in the (U, V )-phase plane. Let us denote the Jacobian
with respect to (U, V ) of the right hand side of (10.1.3) as

Ã(U, V ) :=

(
FU FV
GU GV

)
=

(
0 1

f ′′(U)V − g′(U) −c+ f ′(U)

)
.

Let Ã0 = Ã(0, 0) and Ã1 = Ã(1, 0) denote the linearizations of (10.1.3) evaluated
at the two equilibria, A0 and A1, respectively, so that

Ã0 =

(
0 1

−g′(0) −c+ f ′(0)

)
, and Ã1 =

(
0 1

−g′(1) −c+ f ′(1)

)
.

Note that the eigenvalues of Ã1 are

λ±1 (c) =
1

2

(
f ′(1)− c

)
± 1

2

√
(f ′(1)− c)2 − 4g′(1), (10.1.4)

and therefore, in view of (H2), g′(1) < 0 and the equilibrium point A1 = (1, 0) is
a hyperbolic saddle for system (10.1.3) for each value of c ∈ R. The eigenvalues
of Ã0 are

λ±0 (c) =
1

2

(
f ′(0)− c

)
± 1

2

√
(f ′(0)− c)2 − 4g′(0), (10.1.5)

and hence the origin A0 = (0, 0) is a node, a focus or a center, depending on
the value of c ∈ R. In the sequel we shall vary c as a bifurcation parameter to
establish the conditions under which periodic orbits for (10.1.3) do emerge.

The existence of small-amplitude periodic traveling waves for viscous balance
laws of the form (9.1.1) is a direct consequence of Andronov-Hopf’s bifurcation
Theorem 3.1.3. Such periodic orbits bifurcate from a local change of stability
of the origin when the speed c crosses a critical value c0.

Theorem 10.1.1. Under the assumptions (H1), (H2) and (H4), there exist,
a critical speed c0 = f ′(0) ∈ R and ε0 > 0 sufficiently small, such that a
unique family of closed periodic orbit solutions (U, V )(z) for system (10.1.3)
bifurcates from the origin A0 = (0, 0). The family is parametrized by speed
values c ∈ (c0, c0 + ε0) if a0 > 0, or by c ∈ (c0 − ε0, c0) if a0 < 0. Moreover, the
amplitude of the periodic orbits and their fundamental periods behave like

|U |, |V | = O(
√
|c− c0|),

and

T (c) =
2π√
g′(0)

+O(|c− c0|),

respectively, as c→ c0.
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Proof. It is a direct consequence of Andronov-Hopf’s bifurcation theorem upon
verification of conditions (a) thru (c). Let us first write the eigenvalues (10.1.5)
of Ã0 as

λ±0 = α(c)∓ iβ(c),

where

α(c) :=
1

2
(f ′(0)− c), β(c) := −1

2

√
4g′(0)− (f ′(0)− c)2,

defined for c ∼ f ′(0). Note that, under hypothesis (H2), β(c) ∈ R for c ∼ f ′(0).
Hence we have a bifurcation value for the speed given by c0 = f ′(0) for which
α(c0) = 0 and the origin is a center for system (10.1.3) with eigenvalues

λ+
0 (c0) = −i

√
g′(0), λ−0 (c0) = i

√
g′(0).

Notice that ω0 := β(c0) = −
√
g′(0) 6= 0 and, since GU = f ′′(U)V − g′(U), we

obtain
(GU )|(0,0,c0) = −g′(0),

yielding sgn (ω0) = sgn ((GU )|(0,0,c0)) = −1, that is, the non-hyperbolicity con-
dition (a). Likewise, the transversality condition (b) is satisfied inasmuch as

dα

dc
(c0) = −1

2
=: d0 6= 0.

Finally, to compute the first Lyapunov exponent, notice that F (U, V, c) = V
and hence all second derivatives of F are zero. The Lyapunov exponent (3.1.4)
then reduces to

a0 =
1

16

(
GUUV +GV V V

)
|(0,0,c0) −

1

16ω0

(
GUV (GUU +GV V )

)
|(0,0,c0).

Upon calculation and evaluation of the derivatives,

GUV |(0,0,c0) = f ′′(0), GUU |(0,0,c0) = −g′′(0), GV V |(0,0,c0) = 0,

GUUV |(0,0,c0) = f ′′′(0), GV V V |(0,0,c0) = 0,

we arrive at

a0 =
1

16

(
f ′′′(0)− f ′′(0)g′′(0)√

g′(0)

)
=
a0

16
6= 0,

in view of (H4). This verifies the genericity condition (c). Since d0 < 0 and
sgn (a0) = sgn (a0), we obtain the result.

The following theorem pertains to the existence of small-amplitude bounded
periodic traveling wave solutions to equations of the form (9.1.1) that emerge
from a Hopf bifurcation around a critical value of the speed.
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Theorem 10.1.2 (existence of small amplitude periodic waves). Suppose that
conditions (H1) thru (H4) hold. Then there exist a critical speed given by

c0 := f ′(0), (10.1.6)

and ε0 > 0 sufficiently small such that, for each 0 < ε < ε0 there exists a unique
periodic traveling wave solution to the viscous balance law (9.1.1) of the form
u(x, t) = ϕε(x−c(ε)t), traveling with speed c(ε) = c0+ε if a0 > 0, or c(ε) = c0−ε
if a0 < 0, and with fundamental period,

Tε =
2π√
g′(0)

+O(ε), as ε→ 0+. (10.1.7)

The profile function ϕε = ϕε(·) is of class C3(R), satisfies ϕε(z + Tε) = ϕε(z)
for all z ∈ R and is of small amplitude, more precisely,

|ϕε(z)|, |(ϕε)′(z)| ≤ C
√
ε, (10.1.8)

for all z ∈ R and some uniform C > 0.

Proof. In view of Theorem 10.1.1, there exists a family of small amplitude peri-
odic orbits parametrized by ε := |c−c0| such that, for all 0 < ε < ε0 there exists
a unique periodic orbit, which we denote as (Ū ε, V̄ ε)(z) =: (ϕε, (ϕε)′)(z), z ∈ R,
solution to system (10.1.3) with speed c(ε) = c0 − ε if a0 < 0 or c(ε) = c0 + ε if
a0 > 0, with fundamental period

Tε = T0 +O(ε) =
2π√
g′(0)

+O(ε),

and such that (ϕε, (ϕε)′)→= (0, 0) as ε→ 0+ with amplitudes

|ϕε(z)|, |(ϕε)′(z)| ≤ C
√
ε,

for some uniform constant C > 0.
Each of these orbits is associated to a periodic traveling wave solution to

the viscous balance law (9.1.1) of the form uε(x, t) = ϕε(x − c(ε)t), traveling
with speed c(ε) = c0 ± ε ≷ c0, depending on the sign of a0. Moreover, from
standard ODE theory and from the regularity assumptions on f and g, it can
be easily verified that the orbit is a C3 function of z ∈ R and of the bifurcation
parameter c. The theorem is proved.

10.2 Large period waves

Before establishing the existence of large-period traveling waves, we need to
guarantee the existence of a homoclinic orbit for system (10.1.3).
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10.2.1 Existence of a homoclinic orbit

We apply Melnikov’s integral method to the auxiliary system{
U ′ = V,
V ′ = −cV + af ′(U)V − g(U),

(10.2.1)

where a ∈ R is an auxiliary parameter, and write it as a near-Hamiltonian
system of the form (cf. [73]),{

U ′ = ∂VH + εR(U, V, ε, µ),
V ′ = −∂UH + εQ(U, V, ε, µ),

(10.2.2)

where

H(U, V ) :=
1

2
V 2 +

∫ U

0

g(s) ds, (10.2.3)

is the Hamiltonian, and

R(U, V, ε, µ) ≡ 0,

Q(U, V, ε, µ) := µ1f
′(U)V − µ2V,

µ = (µ1, µ2) ∈ R2, a =: εµ1, c =: εµ2.

Here µ = (µ1, µ2) ∈ R2 is a vector parameter and 0 < ε � 1 is small. The
associated Hamiltonian (unperturbed) system reads{

U ′ = ∂VH = V
V ′ = −∂UH = −g(U).

(10.2.4)

Remark 10.2.1. First, it is to be observed that A0 = (0, 0) and A1 = (1, 0)
are equilibrium points for both the Hamiltonian system (10.2.4) and the per-
turbed system (10.2.2). If we linearize system (10.2.4) around the origin, the
corresponding Jacobian reads

Ã(0, 0) =

(
0 −g′(0)
1 0

)
,

with eigenvalues λ = ±i
√
g′(0) and henceforth A0 = (0, 0) is a center for system

(10.2.4). Likewise, the linearization around A1 = (1, 0) yields

Ã(1, 0) =

(
0 −g′(1)
1 0

)
,

with eigenvalues λ = ±
√
−g′(1) ∈ R, and hence A1 = (1, 0) is a hyperbolic sad-

dle for the Hamiltonian system (10.2.4). The stable and unstable eigendirections
at A1 are given by

r− =

(
−
√
−g′(1)
1

)
and r+ =

(√
−g′(1)

1

)
,
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respectively.
On the other hand, notice that A1 = (1, 0) is also a hyperbolic saddle for

the perturbed system (10.2.2) for any parameter values a and c (equivalently,
for any ε, µ1 and µ2). Indeed, the linearization of (10.2.2) around A1 = (1, 0) is

Ãε(1, 0) =

(
0 −g′(1)
1 af ′(1)− c

)
,

having eigenvalues

λε± =
1

2

(
af ′(1)− c±

√
(af ′(1)− c)2 − 4g′(1)

)
,

and in view of (H2), we have λε− < 0 < λε+ for all values of a and c, yielding a
hyperbolic saddle, independently of the parameter values. In the same fashion,
if we linearize (10.2.2) around A0 = (0, 0) the resulting Jacobian is

Ãε(0, 0) =

(
0 −g′(0)
1 af ′(0)− c

)
,

with associated eigenvalues

λε± =
1

2

(
af ′(0)− c±

√
(af ′(0)− c)2 − 4g′(0)

)
.

Thus, A0 = (0, 0) is a center whenever a = 1.

The energy levels at A0 = (0, 0) and A1 = (1, 0) as equilibria of the Hamil-
tonian system (10.2.4) are

β := H(1, 0) =

∫ 1

0

g(s) ds > 0, (10.2.5)

and H(0, 0) = 0, respectively. Now let us make the following observations about
the Hamiltonian system (10.2.4):

A1 First, notice that the set

Γβ := {(U, V ) ∈ R2 : H(U, V ) = β}, (10.2.6)

is a homoclinic loop for the Hamiltonian system (10.2.4) joining the hyperbolic
saddle A1 = (1, 0) with itself. The homoclinic orbit is given explicitly by the
graph

V (U) = ±V̄ β(U) := ±

√
2
(
β −

∫ U

0

g(s) ds
)

= ±γ(U), U ∈ (u∗, 1), (10.2.7)

where the function γ = γ(·) is defined in (9.1.2).

A2 There exists a family of periodic orbits for system (10.2.4),

Γh := {(U, V ) ∈ R2 : H(U, V ) = h}, h ∈ (0, β), (10.2.8)

such that
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(i) Γh → A0 = (0, 0) as h→ 0+, and

(ii) Γh → Γβ as h→ β−.

Indeed, if we define

G̃(u) =

∫ u

0

g(s) ds,

then under assumptions (H2) and (H3) it is clear that G̃(0) = 0, G̃(1) = G̃(u∗) =
β and G̃′(u) > 0 if u ∈ (0, 1), G̃′(u) < 0 if u ∈ (u∗, 0). Therefore, for each energy
level h ∈ (0, β) there exist unique values u1(h) ∈ (u∗, 0) and u2(h) ∈ (0, 1) such
that

G̃(u1(h)) = G̃(u2(h)) = h,

and the periodic orbits are given explicitly by the graphs

V (U) = ±V̄ h(U) := ±

√
2
(
h−

∫ U

0

g(s) ds
)
, U ∈ (u1(h), u2(h)), h ∈ (0, β).

(10.2.9)
It is also clear that V̄ h → V̄ β as h→ β− and that the orbits shrink to the origin
as h→ 0+.
A3 If T = T (h) denotes the fundamental period of the periodic orbit Γh, h ∈
(0, β), then T (h) → ∞ as h → β−. The period can be computed explicitly by
the elliptic integral

T (h) =
√

2

∫ u2(h)

u1(h)

dy√
h−

∫ y
0
g(s) ds

, h ∈ (0, β).

From standard properties of Hamiltonian systems (see, e.g., [162, 163]), 0 <
T (h) < ∞ for each h ∈ (0, β) and T (h) → ∞ as h → β−, which is the infinite
period of the homoclinic loop Γβ .

In view of observations A1 thru A3 above, let us now define the open sets

Ωh := int Γh = {(U, V ) ∈ R2 : 0 < H(U, V ) < h}
=
{

(U, V ) ∈ R2 : u1(h) < U < u2(h)), −V̄ h(U) < V < V̄ h(U)
}
,

(10.2.10)
for each h ∈ (0, β). In the same fashion, let us define

Ωβ := int Γβ = {(U, V ) ∈ R2 : 0 < H(U, V ) < β}
=
{

(U, V ) ∈ R2 : u∗ < U < 1, −γ(U) < V < γ(U)
}
.

(10.2.11)

Theorem 10.2.2. Under assumptions (H1), (H2), (H3) and (H5), system
(10.2.1) has a unique homoclinic orbit joining the hyperbolic saddle point A1 =
(1, 0) with itself for the parameter values a = 1 and c = c1 = I1/I0.

Proof. Follows upon application of Melnikov’s method. First notice that in view
that R(U, V ) = 0 and Q(U, V ) = µ1f

′(U)V −µ2V we can evaluate the Melnikov
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integrals defined in section 3.2. Since ∂UR = 0 and ∂VQ = µ1f
′(U) − µ2, we

then have

M(µ) =

∫
Ωβ

(µ1f
′(U)− µ2) dV dU

=

∫ 1

u∗

∫ γ(U)

−γ(U)

(µ1f
′(U)− µ2) dV dU

= 2
(
µ1

∫ 1

u∗

f ′(U)γ(U) dU − µ2

∫ 1

u∗

γ(U) dU
)

= 2
(
µ1I1 − µ2I0

)
.

Hence, M(µ) = 0 only when

µ2 =
I1
I0
µ1. (10.2.12)

Now let us evaluate M1 at any µ ∈ R2 satisfying (10.2.12). From the definition
of M1 we obtain

M1(µ) =

∮
Γβ

(µ1f
′(U)− µ2) dσβ

= µ1

∮
Γβ
f ′(U) dσβ − µ2

∮
Γβ

dσβ

= 2µ1

∫ 1

u∗

f ′(U)
√

1 + γ′(U)2 dU − µ2|∂Ωβ |

= µ1J − µ2L

= µ1

(
J − I1

I0
L

)
6= 0

if µ1 6= 0 and in view of (H5). Therefore, choose ε > 0 sufficiently small and set

µ1 :=
1

ε
> 0, µ2 =

I1
I0
µ1,

so that

c = εµ2 =
I1
I0
, a = εµ1 = 1.

Hence µ0 := (µ1, µ2) = (1/ε, (I0/εI1)) ∈ R2 is the bifurcation value for which
the Melnikov integral has a simple zero. In this case the critical value for the
speed is

c = c1 =
I1
I0
.

Upon application of Theorem 3.2.2, if ε is sufficiently small then the per-
turbed system (10.2.2) has a unique hyperbolic point A1(ε) = A1 + O(ε). But
since A1 = (1, 0) is a hyperbolic saddle for system (10.2.2) for any parameter
values we observe that

A1(ε) ≡ A1 = (1, 0), for any 0 < ε� 1.
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Now, since M(µ0) = 0 and M1(µ0) 6= 0 we conclude that the perturbed system
has a unique homoclinic loop Γβε relative to the stable and unstable manifolds
at A1, for parameter values a = 1 and c = c1. This yields the result.

Corollary 10.2.3 (existence of a traveling pulse). The system (10.1.3) has a
homoclinic loop for the speed value c = c1 = I1/I0, which we denote as

Γ0 := {(ψ,ψ′)(z) : z ∈ R},

with ψ ∈ C3(R) and such that (ψ,ψ′)(z) → (1, 0) as z → ±∞. Moreover, the
convergence is exponential, that is, there exist constants C, κ > 0 such that

|ψ(z)− 1|, |ψ′(z)| ≤ Ce−κ|z|, as |z| → ∞. (10.2.13)

This homoclinic orbit is associated to a traveling pulse solution to the viscous
balance law (9.1.1) of the form u(x, t) = ψ(x − c1t) and traveling with speed
c = c1.

Proof. The proof is analogous to the one of Corollary (4.2.3). In fact, let
(ψ,ψ′)(z) be the homoclinic orbit from Theorem 10.2.2. By construction it
is a solution to system (10.1.3) with speed value c = c1. Upon differentiation of
the system we obtain

ψ′′′ = (−c1 + f ′(ψ))ψ′′ + f ′′(ψ)(ψ′)2 − g′(ψ)ψ′. (10.2.14)

The stable and unstable eigenvalues are given by

λ1(c1) =
1

2
(f ′(1)− c1)− 1

2

√
(f ′(1)− c1)2 − 4g′(1) < 0,

λ2(c1) =
1

2
(f ′(1)− c1) +

1

2

√
(f ′(1)− c1)2 − 4g′(1) > 0,

(10.2.15)

so that
|ψ(z)− 1|, |ψ′(z)| ≤ Ceλ1(c1)z, as z →∞,
|ψ(z)− 1|, |ψ′(z)| ≤ Ceλ2(c1)z, as z → −∞.

Thus, we can take
κ := min{λ2(c1),−λ1(c1)} > 0, (10.2.16)

to obtain (10.2.13), as claimed.

10.2.2 Periodic wavetrains with large period

The existence of large-period, bounded periodic orbits is a consequence of both
the existence of a homoclinic loop and Andronov-Leontovich’s Theorem 3.2.3.

Theorem 10.2.4 (existence of large period orbits). Under assumptions (H1),
(H2), (H3), (H5) and (H6), there exist a critical speed c1 given by c1 = I1/I0
and 0 < ε̃1 � 1 sufficiently small such that, for each value c ∈ (c1 − ε̃1, c1) if
f ′(1) > c1 (respectively, for each value c ∈ (c1, c1 + ε̃1) if f ′(1) < c1) system
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(4.1.3) has a unique closed periodic orbit solution (U, V )(z) which becomes the
homoclinic loop at A1 = (1, 0) from Theorem 10.2.2 as c→ c−1 (respectively, as
c → c+1 ). Moreover, the amplitude of the periodic orbits and their fundamental
periods behave like

|U |, |V | = O(1),

and
T (c) = O(| log(|c− c1|)|)→∞,

respectively, as c→ c1.

Proof. Under the assumptions, it is clear that A1 = (1, 0) is a hyperbolic saddle
for system (10.1.3) with c = c1 (see Remark 10.2.1). Also, from Theorem
10.2.2 this system underlies a homoclinic orbit joining A1 with itself for this
critical value of the speed. The eigenvalues od the linearization of (10.1.3) at
A1 evaluated at the critical bifurcation parameter c = c1 satisfy

λ1(c1) < 0 < λ2(c1),

where λ1(c1) and λ2(c1) are given by (10.2.15). Hence the saddle quantity is
non-zero,

Σ0 = f ′(1)− c1 6= 0,

in view of (H6). From Andronov-Leontovich’s Theorem, we conclude the exis-
tence of ε̃1 > 0 sufficiently small such that, if f ′(1) > c1 (respectively, f ′(1) <
c1), then for each c ∈ (c1 − ε̃1, c1) (respectively, c ∈ (c1, c1 + ε̃1)), there exists a
unique closed periodic orbit for system (10.1.3) with large fundamental period
T (c). The fact that the amplitude of the family of periodic orbits (for each c
near c1) is of order O(1) follows directly from the fact that they belong to a
neighborhood of the homoclinic loop. That the fundamental period behaves like
O(| log(|c− c1|)|) follows from a direct estimation of the time required for a tra-
jectory to pass by a saddle point (see Gaspard [66], or Exercise 8.4.12 in [172]).
The theorem is proved.

Theorem 10.2.5 (existence of large period waves). Under assumptions (H1) -
(H3), (H5) and (H6), there is a critical speed given by

c1 :=
I1
I0
, (10.2.17)

such that there exists a traveling pulse solution (homoclinic orbit) to equation
(9.1.1) of the form u(x, t) = ϕ0(x − c1t), traveling with speed c1 and satisfying
ϕ0 ∈ C3(R) and

|ϕ0(z)− 1|, |(ϕ0)′(z)| ≤ Ce−κ|z|,

for all z ∈ R and some κ > 0. In addition, one can find ε1 > 0 sufficiently small
such that, for each 0 < ε < ε1, there exists a unique periodic traveling wave
solution to the viscous balance law (9.1.1) of the form u(x, t) = ϕε(x − c(ε)t),
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traveling with speed c(ε) = c1 + ε if f ′(1) < c1 or c(ε) = c1 − ε if f ′(1) > c1,
with fundamental period

Tε = O(| log ε|)→∞, (10.2.18)

and amplitude
|ϕε(z)|, |(ϕε)′(z)| = O(1), (10.2.19)

as ε → 0+. Moreover, the family of periodic orbits converges to the homoclinic
or traveling pulse solution as ε → 0+ and satisfies the bounds (after a suitable
reparametrization of z),

sup
z∈[−Tε2 ,

Tε
2 ]

(
|ϕ0(z)− ϕε(z)|+ |(ϕ0)′(z)− (ϕε)′(z)|

)
≤ C exp

(
−κTε

2

)
, (10.2.20)

|c1 − c(ε)| = ε ≤ C exp
(
− κTε

)
, (10.2.21)

for some uniform C > 0, the same κ > 0 and for all 0 < ε < ε1.

Proof. Assuming (H1), (H2), (H3), (H5) and (H6) we apply Theorem 10.2.4 in
a manner analogous to the one in Theorem 4.2.6.
There is, however, a difference in the speed value that we must take into account.
Since the flux function f(u) is not explicitly given we are not able to state on
which side of the value c1 will the orbits occur. The large period waves will
occur for c(ε) = c1 + ε if f ′(1) < c1 or c(ε) = c1 − ε if f ′(1) > c1. The rest of
the proof goes as in Theorem 4.2.6.
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Chapter 11

Spectral instability of
periodic traveling waves

This chapter is devoted to the stability properties of both families of periodic
waves as solutions to the viscous balance law. We begin with the spectral
instablity of the small-amplitude periodic waves.

11.1 Spectral instability of small-amplitude waves

The main idea behind this instability result is that the spectral stability of
small-amplitude waves can be studied as a perturbation of the zero-amplitude
case, which is, in turn, determined by a dispersion relation curves intersecting
the unstable complex half plane.

The following proposition provides a simple criterion for the persistence of a
discrete eigenvalue λ0 of a given operator L0 under the family L(ε) (as defined
in (3.5.1)), in the particular case when L0 is self-adjoint.

Proposition 11.1.1. Suppose that L0 is a self adjoint operator and that A is
L0-bounded. Then, all discrete eigenvalues of L0 are stable with respect to the
family L(ε). Moreover, for all |ε| sufficiently small the operator L(ε) has discrete
eigenvalues λj(ε) in a neighborhood of λ0 of total algebraic multiplicities equal
to the algebraic multiplicity of λ0. Each eigenvalue λj(ε) admits an analytic
series expansion (or Rayleigh-Schrödinger expansion) of the form

λj(ε) = λ0 +

∞∑
k=1

αjkε
k,

for some αjk ∈ C with non-zero radius of convergence.

Proof. See Proposition 15.3, Theorem 15.7 and formulae (15.6) - (15.8) in Hislop
and Sigal [84] (chapter 15, pp. 149–157).

99



Remark 11.1.2. It is important to observe that A does not need to be self-
adjoint (not even symmetric). Proposition 11.1.1 guarantees that the eigenvalue
λ0 splits into discrete eigenvalues λj(ε) of L(ε) with same total multiplicity in
a ε-neighborhood of λ0.

Let us consider the family of periodic, small-amplitude waves from Theorem
10.1.1, which are parametrized by ε := |c − c0| ∈ (0, ε0), where c0 = f ′(0) and
c = c(ε) is the wave speed of each element of the family. These waves have
amplitude of order

|ϕε|, |ϕεz| = O(
√
ε),

and fundamental period

Tε =
2π√
g′(0)

+O(ε) =: T0 +O(ε).

The associated spectral problem
λw = wzz +

(
c(ε)− f ′(ϕε)

)
wz +

(
g′(ϕε)− f ′(ϕε)z

)
w,

w(Tε) = eiθw(0),

wz(Tε) = eiθwz(0), some θ ∈ (−π, π],

(11.1.1)

can be recast as an equivalent spectral problem in a periodic space. Consider
the following Bloch transformation

y :=
πz

Tε
, u(y) := e−iθy/πw

(Tεy
π

)
,

for given θ ∈ (−π, π]. Then, the spectral problem (11.1.1) transforms into

λu =
1

T 2
ε

(
iθ + π∂y

)2
u+

āε1(y)

Tε

(
iθ + π∂y

)
u+ āε1(y)u,

where the coefficients

āε1(y) := c(ε)− f ′(ϕε(Tεy/π)),

āε0(y) := g′(ϕε(Tεy/π))− f ′′(ϕε(Tεy/π))ϕεz(Tεy/π),

are clearly π-periodic in the y variable and where u ∈ Hper([0, π];C) is subject
to π-periodic boundary conditions,

u(0) = u(π), uy(0) = uy(π).

Multiply by T 2
ε (constant) to obtain the following equivalent spectral problem

Lθu = λ̃u, (11.1.2)

for the operator{
Lθ :=

(
iθ + π∂y

)2
+ aε1(y)

(
iθ + π∂y

)
+ aε0(y)Id,

Lθ : D(Lθ) = Hper([0, π];C) ⊂ Lper([0, π];C) −→ Lper([0, π];C),
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for any given θ ∈ (−π, π] and where

λ̃ := T 2
ε λ,

aε1(y) := Tε ā
ε
1(y),

aε0(y) := T 2
ε ā

ε
0(y).

Let us write (11.1.2) as a perturbation problem. The coefficients can be written
as

aε1(y) =
(
T0 +O(ε)

)(
c(ε)− f ′(ϕε(Tεy/π))

)
=
(
T0 +O(ε)

)(
c0 +O(ε)− f ′(0) +O(|ϕε|)

)
=
(
T0 +O(ε)

)(
O(ε) +O(

√
ε)
)

=
√
ε b1(y),

where

b1(y) :=
1√
ε
aε1(y) = O(1), y ∈ [0, π].

Likewise

aε0(y) =
(
T0 +O(ε)

)2(
g′(ϕε(Tεy/π))− f ′′(ϕε(Tεy/π))ϕεz(Tεy/π)

)
=
(
T 2

0 +O(ε)
)(
g′(0) +O(|ϕε|) +O(|ϕεz|))

)
=
(
T 2

0 +O(ε)
)(
g′(0) +O(

√
ε)
)

= T 2
0 g
′(0) +O(

√
ε)

= 4π2 +O(
√
ε).

Thus, we write

b0(y) :=
aε0(y)− 4π2

√
ε

= O(1), y ∈ [0, π].

Now, if we denote ε̃ :=
√
ε ∈ (0,

√
ε0) we obtain

Lθu =
(
iθ + π∂y

)2
u+ 4π2u+ b1(y)

(
iθ + π∂y

)
u+ ε̃b0(y)u = L0

θu+ ε̃L1
θu,

where the operators L0
θ and L1

θ are defined as{
L0
θ :=

(
iθ + π∂y

)2
+ 4π2Id,

L0
θ : D(L0

θ) = Hper([0, π],C) ⊂ Lper([0, π],C) −→ Lper([0, π],C),

and as{
L1
θ := b1(y)

(
iθ + π∂y

)
+ b0(y)Id,

L1
θ : D(L1

θ) = H1
per([0, π],C) ⊂ Lper([0, π],C) −→ Lper([0, π],C),

respectively. Note that here bj(y) = O(1), y ∈ [0, π], j = 0, 1. Therefore, the
spectral problem (11.1.2) is recast as a perturbed spectral problem of the form

Lθu = L0
θu+ ε̃L1

θu = λ̃u, u ∈ Hper([0, π],C). (11.1.3)
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Here, the densely defined operators Llθ, l = 0, 1, act on Lper([0, π];C) with norm

‖u‖Lper =

(∫ π

0

|u(z)|2 dz
)1/2

.

Lemma 11.1.3. For each θ ∈ (−π, π], L1
θ is L0

θ-bounded.

Proof. The proof is the same as the one presented in Theorem 5.0.7. The
constants α and β work out exactly in the same way in the present case because
they are defined in terms of b0(y) and b1(y).

Let us focus on the spectral problem (11.1.3), specially on the case of the
Floquet exponent (or Bloch parameter) with θ = 0,

L0u = L0
0 + ε̃L1

0u = λ̃u, u ∈ Hper([0, π];C).

As mentioned in Chapter 5, the operator{
L0

0 = π2∂2
y + 4π2Id,

L0
0 : Lper([0, π];C)→ Lper([0, π];C),

with domain D(L0
0) = Hper([0, π];C), is clearly self-adjoint with a positive

eigenvalue λ̃0 = 4π2 associated to the constant eigenfunction u0(y) = 1/
√
π ∈

Hper([0, π];C), satisfying ‖u0‖Lper = 1 and u0 ∈ ker(∂2
y) ⊂ Hper([0, π];C). Since

L1
0 is L0

0-bounded, the operator L0 = L0
0 + ε̃L1

0 has discrete eigenvalues λ̃j(ε̃)

in a ε-neighborhood of λ̃0 = 4π2 with multiplicities adding up to m0 if ε is
sufficiently small. Moreover, since λ̃0 > 0 there holds

Reλj(ε) > 0, |ε̃| � 1.

Hence, we have proved the following

Lemma 11.1.4. For each 0 < ε̃� 1 sufficiently small there holds

σpt(L0
0 + ε̃L1

0)|L2
per
∩ {λ ∈ C : |λ− 4π2| < r(ε̃)} 6= ∅,

for some r(ε) = O(ε̃) > 0.

The previous discussion and observations lead us to the spectral instability
of the small-amplitude waves.

Theorem 11.1.5 (spectral instability of small-amplitude waves). Under con-
ditions (H1) thru (H4), there exists 0 < ε̄0 < ε0 such that every small-amplitude
periodic wave ϕε from Theorem 10.1.1 with 0 < ε < ε̄0 is spectrally unstable,
that is, the spectrum of the linearized operator around the wave intersects the
unstable half plane C+ = {λ ∈ C : Reλ > 0}.
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Proof. The proof is analogous to the one presented in Theorem 5.0.9, with the
difference that the fundamental period takes the form

T0 =
4π2

g′(0)
.

Remark 11.1.6. It is to be noticed that |λ(ε)−1| = O(ε) readily implies spec-
tral instability in view of the sign of g′(0). Thus, the instability of u = 0 as
equilibrium point of the reaction function (in the sense that u = 0 is a local
maximum of the potential

∫ u
g(s) ds)) is responsible for the spectral instability

of the small-amplitude waves bifurcating from the equilibrium. Heuristically,
this result can be interpreted as follows: when ε→ 0+ the small-amplitude pe-
riodic waves collapse to the origin and the linearized operator tends (formally)
to a constant coefficient linearized operator around zero, whose spectrum is de-
termined by a dispersion relation that invades the unstable half plane thanks to
the sign of g′(0). Notice as well that the positive sign of g′(0) is also responsible
for the existence of the periodic waves bifurcating from the origin. The dedi-
cated reader may easily verify that there is no Hopf bifurcation when g′(0) < 0,
as no change of stability of the origin occurs when we vary c in a neighborhood
of c0.

11.2 Spectral instability of large period waves

We begin by proving that the homoclinic orbit -i.e, the traveling pulse- has
an eigenvalue with positive real part, thus making it unstable. The main idea
behind this behavior is that the family satisfies the assumptions of the classical
result by Gardner [65] (see also [159, 188]) of convergence of periodic spectra
in the infinite-period limit to that of the underlying homoclinic wave, which is
spectrally unstable. The techniques that appear in this section differ slightly
from the ones of Chapter 6.

11.2.1 Spectral instability of the traveling pulse

Let us consider the traveling pulse solution to equation (9.0.1) from Theorem
10.2.5 (or Corollary 10.2.3),

u(x, t) = ϕ0(x− c1t), x ∈ R, t > 0,

traveling with speed c1 = I1/I0. Denoting as before the Galilean variable of
translation as z = x − c1t, let us consider a solution to (9.1.1) of the form
ϕ0(z) + eλ̄tw(z) with some w ∈ H2(R;C) and some λ̄ ∈ C. Upon substitution
and linearization we arrive at the following eigenvalue problem

λ̄ = L̄0w := wzz + (c1 − f ′(ϕ0(z))wz + (g′(ϕ0(z))− f ′(ϕ0(z))z)w,

L̄0 : D(L̄0) = H2(R;C) ⊂ L2(R;C) −→ L2(R;C).
(11.2.1)
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L̄0 is a closed, densely defined operator in L2(R;C), that is, on the whole real
line. Moreover, L̄0 is of Sturmian type (see, e.g., Kapitula and Promislow [104],
section 2.3),

L̄0 = ∂2
z + ā0

1∂z + ā0
0 Id,

with smooth coefficients

ā0
1(z) = c1 − f ′(ϕ0(z)),

ā0
0(z) = g′(ϕ0(z))− f ′(ϕ0(z))z,

which decay exponentially to finite limits as z → ±∞ in view of (10.2.13), more
precisely,

|ā0
1(z)− ā∞1 |+ |ā0

0(z)− ā∞0 | ≤ Ce−κ|z|, z → ±∞, (11.2.2)

with,
ā∞1 := c1 − f ′(1), ā∞0 := g′(1).

The operator L̄0 is not self-adjoint but can be made self-adjoint under the
ω-inner product

〈u, v〉L2
ω

:=

∫
R
u(z)v(z)∗ω(z) dz,

where the weight function ω(·) is defined as

ω(z) := exp

(∫ z

0

ā0
1(s) ds

)
,

and has finite asymptotic values ω± := limz→±∞ e−ā
∞
1 zω(z).

The instability of the traveling pulse is therefore a direct consequence of
standard Sturm-Liouville theory (see for example [104]).

Theorem 11.2.1. The traveling pulse solution is spectrally unstable, more pre-
cisely, there exists λ̄0 > 0 (real and strictly positive) such that λ̄0 ∈ σpt(L̄0).
Moreover, this eigenvalue is simple.

Proof. Since L̄0 : L2 → L2 is of Sturmian type and its coefficients satisfy (6.1.4)
we can apply Theorem 3.5.6 to conclude that the point spectrum of L̄0 consists
of a finite number of simple real eigenvalues which can be enumerated in a
strictly decreasing order

λ̄0 > λ̄1 > . . . > λ̄N > ā∞0 ,

with N ∈ N, and for any j = 1, . . . , N , the eigenfunction qj ∈ H2 associated to
λ̄j can be normalized such that qj has exactly j zeroes. Moreover, the ground
state eigenvalue λ̄0 is determined by

λ̄0 = sup
‖u‖L2

ω
=1

〈L̄0u, u〉L2
ω
,

where the supremum is achieved precisely at u = q0, which has no zeroes.
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Now, it is to be observed that λ = 0 belongs to σpt(L̄0) because the derivative
of ϕ0 is the associated eigenfunction. Indeed, equation (10.2.14) (with ψ = ϕ0,
the traveling pulse) is equivalent to

L̄0(∂zϕ
0) = ∂3

zϕ
0 + ā0

1(z)∂2
zϕ

0 + ā0
0(z)∂zϕ

0 = 0.

Moreover, since ϕ0 ∈ C3(R) and by exponential decay, it is clear that ∂zϕ
0 ∈

H2(R;C). Thus, λ = 0 ∈ σpt(L̄0) with associated eigenfunction ∂zϕ
0.

Notice, however, that from the phase plane construction ∂zϕ
0 has exactly

one zero (located at (u∗, 0) in the phase plane; see Theorem 10.2.2). Hence, we
deduce that λ̄1 = 0 is the second largest eigenvalue, associated to the eigenfuc-
tion q1 = α1∂zϕ

0 (where α1 6= 0 is a normalizing constant), which has exactly
one zero. Therefore, there exists one positive eigenvalue λ̄0 > 0, the ground
state, with eigenfunction q0 ∈ H2, which has no zeroes.

The spectral problem for the traveling pulse (11.2.1) can be recast as a first
order system on the whole real line of the form

Wz = A0(z, λ)W, (11.2.3)

where

A0(z, λ) :=

(
0 1

λ− ā0
0(z) −ā0

1(z)

)
=

(
0 1

λ− (g′(ϕ0)− f ′(ϕ0)z) −c1 + f ′(ϕ0)

)
.

(11.2.4)
These coefficients are clearly analytic in λ ∈ C and of class C1(R;C2×2) as
functions of z ∈ R. Moreover, they have asymptotic limits given by

A0
∞(λ) := lim

z→±∞
A0(z, λ) =

(
0 1

λ− ā∞0 −ā∞1

)
=

(
0 1

λ− g′(1) −c1 + f ′(1)

)
.

(11.2.5)
Thanks to exponential decay (10.2.13) of the homoclinic orbit, we have

|ϕ0(z)− 1|+ |(ϕ0)′(z)| ≤ Ce−κ|z|, z ∈ R.

Therefore, from continuity of the coefficients and for any |λ| ≤ M , with some
M > 0, there exists a constant C(M) > 0 such that

|A0(z, λ)− A0
∞(λ)| ≤ C(M)e−κ|z|, (11.2.6)

for all z ∈ R. Hence,

Ω∞ = {λ ∈ C : Reλ > g′(1)}, (11.2.7)

is an open connected subset in the complex plane. Then, from assumption (H2),
it is clear that the unstable half plane, namely C+ := {λ ∈ C : Reλ > 0}, is
properly contained in Ω∞. Moreover, it is easy to verify that for every λ ∈ Ω∞
the coefficient matrix A0

∞(λ) has no center eigenspace and that its stable, S0
∞(λ),

and unstable, U0
∞(λ), eigenspaces satisfy

dimU0
∞(λ) = dim S0

∞(λ) = 1, for all λ ∈ Ω∞.
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Ω∞ is called the set of consistent splitting (or domain of hyperbolicity) of A0
∞(λ).

One can define the family of operators

T 0(λ) : L2(R;C)× L2(R;C) −→ L2(R;C)× L2(R;C),

parametrized by λ ∈ C, densely defined with domain D(T 0) = H2(R;C) ×
H1(R;C) and given by

T 0(λ) =
d

dz
− A0(z, λ).

It is well-known (cf. [104,154]) that σpt(L̄0)|L2 coincides with the set of complex
numbers λ ∈ C such that T 0(λ) is a Fredholm operator with index equal to zero.
Therefore, from Theorem 11.2.1 we reckon the existence of an unstable real and
simple eigenvalue, λ̄0 > 0, for which there exists a bounded solution

W0 =

(
q0

∂zq0

)
∈ H2(R;C)×H1(R;C),

to the equation
T 0(λ̄0)W0 = ∂zW0 − A0(λ̄0, z)W0 = 0,

for all z ∈ R. As a corollary of Theorem 11.2.1, the homoclinic Evans function
associated to the traveling pulse is non-vanishing in the open set Ω∞, except
for a single, real, unstable and simple zero at λ = λ̄0 > 0. More precisely,

D0(λ) 6= 0, for all λ ∈ Ω∞\{λ̄0},

D0(λ̄0) = 0,
dD0

dλ
(λ̄0) 6= 0,

where D0 = D0(λ) denotes the homoclinic Evans function for the traveling pulse
ϕ0 = ϕ0(z).

11.2.2 Approximation theorem for large period

In order to establish the spectral instability of the large period waves from
Theorem 10.2.5, we need to verify that the family of waves satisfies the structural
assumptions of the seminal result of Gardner [65] on convergence of spectra of
periodic traveling waves in the infinite-period (homoclinic) limit to the isolated
point spectrum of the underlying homoclinic orbit. We refer to the analytical
works of Sandstede and Scheel [159] and Yang and Zumbrun [188].

Under assumptions (H1) - (H3), (H5) and (H6), consider the family of peri-
odic traveling waves from Theorem 10.2.5,

u(x, t) = ϕε(x− c(ε)t),
ϕε(z) = ϕε(z + Tε), for all z ∈ R,

traveling with speed c = c(ε) and parametrized by ε = |c1 − c(ε)|, with 0 < ε <
ε1 � 1 sufficiently small. The family converges as ε → 0+ to the solitary wave
(traveling pulse) solution ϕ0(x− c1t) traveling with speed c1 = I1/I0, which is
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associated to a homoclinic orbit for system (4.1.3) with c = c1. The fundamental
period of the family of periodic waves, Tε, converges to ∞ as ε → 0+ at order
O(| log ε|).

We know that the spectral problem for each member of the family ϕε, 0 <
ε < ε1, can be written as a first order system of the form

Wz = Aε(z, λ)W, (11.2.8)

where the coefficients,

Aε(z, λ) =

(
0 1

λ− āε0(z) −āε1(z)

)
, (11.2.9)

are analytic in λ ∈ C, continuous in ε > 0 and of class C1(R;C2×2) as functions
of z ∈ R. Here, the scalar coefficients,

āε1(z) := c(ε)− f ′(ϕε(z)),
āε0(z) := g′(ϕε(z))− f ′(ϕε(z))z,

are bounded, sufficiently smooth functions of z. The family of operators{
T ε(λ) : L2(R;C)× L2(R;C) −→ L2(R;C)× L2(R;C),

T ε(λ) = ∂z − Aε(z, λ),

parametrized by λ ∈ C, has the property that its spectrum is purely essential.
Notice as well that

Aε(z, λ)− A0(z, λ) =

(
0 0

ā0
0(z)− āε0(z) ā0

1(z)− āε1(z)

)
=

(
0 0

g′(ϕ0)− g′(ϕε)− f ′′(ϕ0)(ϕ0)′ + f ′′(ϕε)(ϕε)′ c1 − c(ε)− f ′(ϕ0) + f ′(ϕε)

)
.

Hence, since the coefficients are smooth and bounded and, from estimates
(10.2.20) and (10.2.21), we have, for |λ| ≤M ,

|Aε(z, λ)− A0(z, λ)| ≤ C(M)
(
|ϕ0(z)− ϕε(z)|+ |(ϕ0)′(z)− (ϕε)′(z)|+ |c1 − c(ε)|

)
≤ C(M)e−κTε/2.

Consequently, from the estimate above, Theorem 10.2.5 and (11.2.6) we
conclude that, for every |λ| ≤M , there holds

Tε = O(| log ε|)→∞, as ε→ 0+,

|A0(z, λ)− A0
∞| ≤ C(M)e−θ̄|z|, for all z ∈ R,

|A0(z, λ)− Aε(z, λ)| ≤ C(M)e−κTε/2, for all |z| ≤ Tε
2
,

(11.2.10)

for some uniform constants C(M), κ > 0. Here θ̄ = κ in view of (11.2.6).
Conditions (11.2.10) are the structural assumptions (H1) - (H3) in [188] (p.

30). Thus we have the following

107



Theorem 11.2.2 (Gardner [65]; Yang and Zumbrun [188]). Assume (11.2.10).
Then on a compact set K ⊂ Ω∞ such that the homoclinic Evans function
D0 = D0(λ) does not vanish on ∂K, the spectra of Lε for Tε sufficiently large
(or equivalently, for any 0 < ε < ε2 with 0 < ε2 � 1 sufficiently small) con-
sists of loops of spectra Λεk,j ⊂ C, k = 1, . . . ,mj, in a neighborhood of order

O(e−ηTε/(2mj)) of the eigenvalues λj of L̄0, where mj denotes the algebraic
multiplicity of λj and 0 < η < min{κ, θ̄}.

Proof. See Corollary 4.1 and Proposition 4.2 in [188].

Remark 11.2.3. The conclusion of Theorem 11.2.2 is a refinement of the clas-
sical Gardner’s result (Theorem 1.2 in [65]) due to Yang and Zumbrun [188],
who prove the convergence of the periodic Evans function, Dε(λ, θ), associated
to the periodic waves for each value of ε to the corresponding homoclinic Evans
function D0(λ), as ε → 0+. For that purpose, they rescale the periodic Evans
function as a Jost-function type determinant, involving the difference of two
matrix-valued functions (see also [190]). The third equation in (11.2.10) (ex-
ponential bound) is an additional hypothesis to those of Gardner, but it holds
true in many situations (like ours) where the vertex of the homoclinic loop is
a hyperbolic rest point of the traveling wave ODE, under the (typically true)
transversality condition regarding the associated Melnikov separation function
with full rank with respect to the bifurcation parameter (for an extensive discus-
sion on this issue, see Sandstede and Scheel [159], Proposition 5.1 and hypotheses
(G1) and (G2)).

The spectral instability of the members of the family of large period waves
is proven in the following result.

Theorem 11.2.4 (spectral instability of large period waves). Under assump-
tions (H1) - (H6), there exists 0 < ε̄1 < ε1 such that every small-amplitude
periodic wave ϕε from Theorem 10.2.5 with 0 < ε < ε̄1 is spectrally unstable,
that is, the spectrum of the linearized operator around the wave intersects the
unstable half plane C+ = {λ ∈ C : Reλ > 0}.

Proof. Under assumptions (H1), (H2), (H3), (H5) and (H6), it is clear that
the family of periodic waves with large period, ϕε, as well as the traveling
pulse ϕ0 from Theorem 10.2.5, satisfy hypotheses (11.2.10). Let λ̄0 > 0 be
the real, simple and positive (homoclinic) eigenvalue of the linearized operator,
L̄0, around the traveling pulse (see Theorem 11.2.1). Since C+ ⊂ Ω∞ and
λ̄0 > 0 is an isolated eigenvalue, then we can take a closed contour Γ around
λ̄0 such that K = Γ ∪ (int Γ) is a small compact set contained in Ω∞ with no
eigenvalues of L̄0 on ∂K = Γ. Then, from Theorem 11.2.2 we conclude that
there exists ε̄1 := min{ε1, ε2} > 0 sufficiently small such that for all 0 < ε < ε̄1
there exists a loop of spectrum Λε ⊂ C in a small neighborhood around λ̄0 of
order O(e−κTε/2) = O(ε) of eigenvalues of the linearized operator Lε around
ϕε. Moreover, since the unstable homoclinic eigenvalue λ̄0 is simple, then for
each 0 < ε < ε̄1 there exists one single closed loop of spectrum Λε. This loop
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Figure 11.1: Cartoon representation of the unstable, simple, real eigenvalue, λ̄0 > 0,
of the linearized operator L̄0 around the homoclinic loop. For 0 < ε � 1 sufficiently
small there exists a unique loop of spectra, Λε, of the linearized operator Lε around
the periodic wave inside an unstable O(ε)-neighborhood of λ̄0.

does not necessarily contain λ̄0 but belongs to a O(ε)-neighborhood of it (see
Figure 11.1). Hence, we conclude that the spectrum of the linearized operator
Lε around each periodic wave ϕε with 0 < ε < ε̄1 is contained in the unstable
half plane. The theorem is proved.
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Chapter 12

Examples

In this section we present two examples of viscous balance laws of the form
(9.0.1) which satisfy the hypotheses previously discussed.

12.1 Logistic Buckley-Leverett model

Consider the following viscous balance law

ut + ∂x

(
u2

u2 + 1
2 (1− u)2

)
= uxx + u(1− u), x ∈ R, t > 0. (12.1.1)

The nonlinear flux function is the well-known Buckley-Leverett function [28],

f(u) =
u2

u2 + 1
2 (1− u)2

, (12.1.2)

which is a relatively simple scalar model that captures the main features of two
phase fluid flow in a porous medium. Given that f is not uniformly convex, it
allows the emergence of non-classical wave solutions to the Riemann problem for
the associated conservation law (see, e.g., [117, 118]). When applied to model
oil recovery, the two phases correspond to pure oil (u = 0) and pure water
(u = 1). Hence, in typical applications the values of u range in [0, 1] and, in
addition, there is no production term. In this case, we allow values of u ∈ R in
order to capture the emergence of periodic waves. The production term is, as
in Burgers-Fisher equation, the logistic reaction function g(u) = u(1− u).

Clearly, the functions (12.1.2) and g(u) = u(1−u) satisfy assumptions (H1),
(H2) and (H3). Moreover, g′(u) = 1 − 2u, g′′(u) = −2 and computing the
derivatives of f yields

f ′(u) =
u(1− u)(

u2 + 1
2 (1− u)2

)2 , f ′′(u) =
4(1− 9u2 + 6u3)(

1− 2u+ 3u2
)3 ,

f ′′′(u) = −24(−1 + 6u− 18u3 + 9u4)(
1− 2u+ 3u2

)4 .
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Whence, the value of a0 is given by

a0 = f ′′′(0)− f ′′(0)g′′(0)√
g′(0)

= 32,

and the genericity condition (H4) holds. Since a0 > 0, from Theorem 10.1.1 we
know there exist a family of small amplitude periodic waves for each speed value
c ∈ (0, ε0), for some small 0 < ε0 � 1, because c0 = f ′(0) = 0 in this case, and
this corresponds to a subcritical Hopf bifurcation in which the periodic waves
are unstable as solutions to the dynamical system (10.1.3) with c = c(ε). Their
fundamental period is approximately 2π in view of formula (10.1.7). Figure 12.1
shows the phase portraits of system (10.1.3) for equation (12.1.1) and different
values of c ∼ 0. Figure 12.1(a) shows the phase plane for c = −0.05, in which
the origin is a repulsive node; Figure 12.1(b) shows the case with the bifurcation
value of the speed, c = 0; and Figure 12.1(c) shows the case with c = 0.0025
and the orbit shown is a numerical approximation of the unique small amplitude
periodic wave for this speed value, the origin is an attractive node and nearby
solutions inside the periodic orbit approach zero.

Since the production term is the logistic function g(u) = u(1 − u) as in
Burgers-Fisher, we have analogously that I0 = 3/5. Upon substitution of the
flux function (12.1.2) we obtain

I1 =

∫ 1

−1/2

f ′(s)γ(s) ds =

∫ 1

−1/2

s(1− s)
√

1− 3s2 + 2s3(
s2 + 1

2 (1− s)2
)2 ds = 0.353458.

Hence, the value of the speed of the homoclinic orbit from which the periodic
loops with large period bifurcate is

c1 =
I1
I0

= 0.589097.

This shows, for instance, that the saddle condition (H6) holds, inasmuch as
f ′(1) = 0. The values of L and J in (9.1.3) are given by the following elliptic
integrals, whose values are approximated numerically,

L = 2

∫ 1

−1/2

√
1− 4s3 + 3s4

1− 3s2 + 2s3
ds ≈ 4.07339, (12.1.3)

J = 2

∫ 1

−1/2

s(1− s)(
s2 + 1

2 (1− s)2
)2
√

1− 4s3 + 3s4

1− 3s2 + 2s3
ds ≈ 1.62723.

Thus, the non-degeneracy condition (H5) holds as I0J ≈ 0.976335 6= LI1 ≈
1.43977. These calculations show that the logistic Buckley-Leverett model
(12.1.1) satisfies the aforementioned hypotheses.

In view that c1 > f ′(1) = 0, Theorem 10.2.4 implies that the family of
periodic waves with large period emerge for speed values in a neighborhood
above the value c1, that is, for c ∈ (0.5891, 0.5891 + ε1) with ε1 > 0 small.
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Figure 12.1: Emergence of small-amplitude waves for the logistic Buckley-Leverett
model (12.1.1). Panel (a) shows the phase portrait of system (10.1.3) for the speed
value c = −0.05; the origin is a repulsive node and all nearby solutions move away.
Panel (b) shows the case when c = 0, the parameter value where a subcritical Hopf
bifurcation occurs. Panel (c) shows the case where c = 0.0025: the orbit shown is a
numerical approximation of the unique small amplitude periodic wave for this speed
value.
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Figure 12.2: Numerical approximation of the homoclinic loop for the logistic Buckley-
Leverett equation (12.1.1) with speed value c1 ≈ 0.5891 (dashed line) and the periodic
wave nearby with speed value c1 + ε, ε ≈ 0.025.

Figure 12.2 shows a numerical approximation of the homoclinic loop to system
(10.1.3) with speed c1 (dashed line) and a large-period wave from the family
with speed c ≈ c1 + 0.025 (continuous line). This is a family of spectrally
unstable periodic waves in view of Theorem 11.2.4.

Remark 12.1.1. Up to our knowledge no previous work has been done on
the logistic Buckley-Leverett equation. In the absence of a production term,
equation (12.1.1) displays the Buckley-Leverett profile that consists in a shock
wave followed by a rarefaction wave which is due to the non-convexity of the flux
function (12.1.2). In the context of two-phase flow the presence of a production
term would imply that this shock wave will diminish and convert itself into
periodic traveling waves?

12.2 Modified generalized Burgers-Fisher equa-
tion

The family of equations

ut + aumux = buxx + ku(1− um), (12.2.1)

where a, b, k ∈ R and m ∈ N are constants, is known in the literature as the gen-
eralized Burgers-Fisher equation [31,106,174]. The family underlies many types
of traveling wave solutions: pulses, fronts, periodic wavetrains, both bounded
or unbounded (see [125,174,189] and the many references therein).
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As a final example, let us consider the following viscous balance law

ut + ∂x

(
1
4u

4 − 1
3u

3
)

= uxx + u− u4, x ∈ R, t > 0, (12.2.2)

which is a modification of the generalized Burgers-Fisher equation with param-
eter values a = 1, b = 1, k = 1, m = 3. We call it a modified generalized
Burgers-Fisher equation and it corresponds to nonlinear flux and reaction func-
tions given by

f(u) =
1

4
u4 − 1

3
u3, (12.2.3)

and
g(u) = u− u4, (12.2.4)

respectively. Clearly, this pair satisfies assumptions (H1), (H2) and (H3), where
the unique value u∗ ≈ −0.72212 such that (H3) holds is approximated numeri-
cally. Upon calculation of the derivatives, one finds that

a0 = −2 6= 0,

which means that hypothesis (H4) holds and the family of small amplitude
waves occur for negative speed values c(ε) = −ε < 0 = c0 = f ′(0), sufficiently
small. From Theorem 10.1.2 and from Andronov-Hopf theory a supercritical
Hopf bifurcation occurs and the small amplitude periodic orbits are stable as
solutions to the dynamical system (10.1.3) with speed value c(ε) = −ε. Fig-
ure 12.3 illustrates the emergence of small-amplitude waves for the modified
generalized Burgers-Fisher equation (12.2.2). As before, we present the phase
portraits of system (10.1.3) for different speed values. Figure 12.3(a) shows the
phase plane for the speed value c = 0.05; the origin is an attractive node and
all nearby solutions converge at the origin. Figure 12.3(b) shows the case when
c = 0, the parameter value where the supercritical Hopf bifurcation occurs; the
origin is a center and solutions move away if they start sufficiently far from the
origin and rotate locally around a linearized center otherwise. Figure 12.3(c)
shows the case where c = −0.005: the orbit shown is a numerical approximation
of the unique small amplitude periodic wave for this fixed speed, the origin is a
repulsive node and nearby solutions both inside and outside the periodic orbit
approach the periodic wave because it is stable as a solution to system (10.1.3).

Like in the previous example, one can numerically approximate the integrals
in (9.1.3), namely

I0 =
1√
5

∫ 1

u∗

√
3− 5s2 + 2s5 ds ≈ 0.979027,

I1 =
1√
5

∫ 1

u∗

(s3 − s2)
√

3− 5s2 + 2u5 ds ≈ −0.129571,
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(c) c = −0.005

Figure 12.3: Emergence of small-amplitude waves for the modified generalized
Burgers-Fisher equation (12.2.2). The bifurcation value for this case is c0 = f ′(0) = 0.
Panel (a) shows the phase portrait of system (10.1.3) for the speed value c = 0.05.
Panel (b) shows the case when c = 0, the parameter value where the supercritical Hopf
bifurcation occurs. Panel (c) shows the case where c = −0.005: the orbit shown is a
numerical approximation of the unique small amplitude periodic wave for this speed
value.
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Figure 12.4: Numerical approximation of the homoclinic loop for the modified
Burgers-Fisher equation (12.2.2) with speed value c1 ≈ −0.1323 (dashed line) and
the periodic wave nearby with speed value c1 − ε, ε ≈ 0.05.

and,

L = 2

∫ 1

u∗

√
3− 8s5 + 5s8

3− 5s2 + 2s5
ds ≈ 5.02904,

J = 2

∫ 1

u∗

(s3 − s2)

√
3− 8s5 + 5s8

3− 5s2 + 2s5
ds ≈ −1.27529,

yielding the critical value of the homoclinic speed,

c1 =
I1
I0
≈ −0.132347,

and, in turn, the verification of hypotheses (H5) and (H6): I0J ≈ −1.24854 6=
LI1 ≈ −0.651619 and c1 6= f ′(1) = 0. Therefore, we conclude that the modi-
fied generalized Burgers-Fisher equation (12.2.2) satisfies hypotheses (H1) thru
(H6). Finally, observe that since c1 < 0 = f ′(1), Theorem 10.2.4 implies that
the family of large period waves emerge for speed values below c1 ≈ −0.1323,
that is, for c ∈ (c1 − ε1, c1) with ε1 > 0 small. Figure 12.4 shows a numerical
approximation of the homoclinic loop to system (10.1.3) with speed c1 (dashed
line) and a large-period wave from the family with speed c ≈ c1 − 0.05 (contin-
uous line). Once again, this is a family of spectrally unstable periodic waves in
view of Theorem 11.2.4.

Remark 12.2.1. The generalized Burgers-Fisher equation (12.2.1) with the
above parameter values (a = 1, b = 1, k = 1, m = 3), namely,

ut + u3ux = uxx + u− u4,
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does not satisfy the genericity condition (H4). Hence, we are not able to apply
the existence Theorem 10.1.2. This does not mean, of course, that small am-
plitude periodic waves may not emerge from a higher order (degenerate) Hopf
bifurcation, a calculation that we do not pursue here.
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Chapter 13

Discussion

Following very closely the program of Part I, the second part generalizes the
results on the existence and stability of periodic traveling wave solutions to a
large class of scalar viscous balance laws in one space dimension of the form

ut + f(u)x = νuxx + g(u), (13.0.1)

where u = u(x, t) ∈ R and x ∈ R, t > 0. Here f = f(u) denotes a nonlinear flux
function and g = g(u) is a balance (or reaction) term expressing production of
the quantity u. Viscosity (or diffusion) effects are modeled through the Laplace
operator applied to u with constant viscosity coefficient, ν > 0. When f ≡ 0
the equation reduces to the standard reaction-diffusion equation for which the
existence and the stability of traveling waves have been widely investigated.
Observe that for f(u) = 1

2u
2 and g(u) = u(1 − u) we obtain the equation

studied in the first part.
With the help of conditions (H1) through (H6) we show first of all that there

is a Hopf bifurcation point for the wave’s velocity c -that serves as a parameter-
at which a small-amplitude and finite period limit cycle is born. We show as well
that there is another homoclinic bifurcation point for c at which a large-period
and finite amplitude limit cycle bifurcates from a splitting homoclinic orbit. We
make use of spectral perturbation arguments to prove that the periodic traveling
wave solutions are spectrally unstable for both families of waves. In the case of
the waves arising from the Hopf bifurcation, a quantitative comparison is made
between the linearized operator and a constant coeffcient operator. For the
waves arising from the homoclinic bifucation, the comparison is instead with
the operator linearized about the homoclinic orbit. Both of the comparison
operators have spectrum in the right half-plane.

Some questions on the interval of existence of the waves arise for the examples
dicussed in Part II. For example, what happens for Buckley-Leverett’s equation
between the velocities c0 and c1? We could ask the same question for the
generalized Burgers-Fisher equation. The existence analysis of the waves -either
Hopf or homoclinic- is local and we do not provide any information about the
system for values of c outside the neighborhoods of both bifurcation points.
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Observe, however, that the nature of these questions differs between Burgers-
Fisher equation and the other two examples due to a topological difference
in the corresponding intervals of existence. The question for Burgers-Fisher
equation is to determine whether or not the interval of existence is actually one.
The question on the other two examples is different because the intervals are
necessarily disjoint. The matter in these two cases is what happens to the waves
that turns them off and activates them again as the parameter crosses another
critical value.
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Chapter 14

Conclusions

The combined effects of nonlinear advection, viscosity and a production rate of
logistic type present in viscous balance laws provide them with a rich structure
that permits them to possess periodic traveling wave solutions. The present
thesis presents a procedure composed of various techniques used to prove their
existence and their stability. Part I of the thesis focuses exclusively on Burgers-
Fisher equation, while Part II generalizes the procedure to general viscous bal-
ance laws.

Although the general outline is preserved there are slight differences between
both Parts. One of them is the absence of a modulational stability analysis for
general viscous balance laws. The reason for this is not the lack of interest
in it but rather its technical difficulty. The corresponding work that appears
in Part I for Burgers-Fisher equation makes it evident that for general viscous
balance laws this would be unfeasible. The questions of extending the results
of Chapter 7 remains then open. For this same reason we do not include a
geometric argument like the one in Appendix B for the existence of a homoclinic
orbit and we stay only with the analytical technique of Melnikov’s method.

The pioneering work of R. A. Gardner [63, 65] opened the door to the use
of asymptotic Evans functions techniques to study the convergence of spec-
tra of periodic traveling waves in the infinite-period, or homoclinic limit [188].
Through a topological approach he showed that loops of essential periodic spec-
tra bifurcate from isolated point spectra of the limiting homoclinic wave. Since
then, this question has received much attention from different perspectives. We
can mention, among others, the work of B. Sandstede and A. Scheel [159] in
which they determine the precise location of the aforementioned loops. Another
approach is illustrated in the work of Z. Yang and K. Zumbrun [188] where they
examine the convergence of a sequence of periodic Evans functions Dε(λ, γ),
λ, γ ∈ C, where ε→ R indexes the family of periodic waves converging as ε→ 0
to a homoclinic, or solitary wave, profile. For that purpose, they rescale the pe-
riodic Evans function as a Jost function determinant, involving the difference of
two matrix-valued functions. The spectral instability of the large period waves
of both parts of the thesis is based on this convergence of a suitably rescaled
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version of the sequence of periodic Evans functions Dε(λ, γ). However, the in-
stability result that appears in Part II is stronger because it requires (11.2.10) as
an additional hypothesis which holds true in such situations in which the vertex
of the homoclinic loop is a hyperbolic rest point of the traveling wave ODE,
under the transversality condition regarding the associated Melnikov separation
function with full rank with respect to the bifurcation parameter. I decided to
use the stronger result in Part II because it concerns a more general family of
equations as the viscous balance laws.

A question that follows the analysis of this thesis is whether these periodic
wavetrains are orbitally unstable as solutions to the respective nonlinear PDE.
For equations with specific structures, it is widely known that the spectral in-
stability of a traveling wave solution is a key prerequisite to show their nonlinear
(orbital) instability (see, e.g., [69, 123, 169]). In view that viscous balance laws
of the form (9.1.1) lack special structures (such as symmetries, Hamiltonian
form or complete integrability), the study of orbital instability of these periodic
waves warrants further investigations.

The crucial step from Part I to Part II was the generalization of functions
f(u) and g(u) with properties (H1) through (H6). These properties allowed
to extend the existence and instability results of Burgers-Fisher equation to a
broad class of viscous balance laws. A natural question is if these could be
further generalized to extend the results to a yet broader class of equations?
Are all conditions (H1)-(H6) necessary in the way we enunciated them or could
they be relaxed?

An analysis of viscous balance laws from the perspective of Whitham’s mod-
ulational theory is a pending matter that was not addressed here. Modulation
theory is a formal asymptotic method to study slow-varying periodic waves
through the analysis of the involved parameters (such as the wave’s amplitude,
frequency or velocity). In Chapter 7, for the case of Bugers-Fisher equation, the
parameter c, representing the wave’s velocity, is expressed as a function of the
spatial and temporal variables x and t, respectively. The object of modulation
theory is the slow evolution of the involved parameters. As it can be seen in
the aforementioned Chapter, the analysis would be considerably complicated
for viscous balance laws and this is the reason why this is not undertaken in
this thesis.

Due to the complicated equations that appear it may be necessary to ap-
proach them with the aid of numerical techniques. In this thesis the stability
indices could only be studied for the family of small-amplitude waves solutions of
Burgers-Fisher equation. Any attempt to extend the analysis to general viscous
balance laws would necessarily require the use of numerical approximations.

As mentioned in both parts, the existence results for both families are local
and valid only for sufficiently small signed neighborhoods of the critical velocity
values. The question if the interval

(
0, 1

7

]
forms a continuous family of periodic

solutions for Burgers-Fisher equation is not addressed and remains open. A
similar question arises from the examples of Part II concerning the equations
of Buckley-Leverett and the generalized Burgers-Fisher equation. The nature
of the problem for the latter is a little different, however, since the families of
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periodic waves occur for disjoint intervals of the parameter value c.
The matter of the stability of periodic traveling wave solutions is far from

being closed. The research concerning them is very alive due to their diverse
applications as solutions to partial differential equations. The present thesis is
an effort to understand the nature of periodic traveling waves as solutions to
partial differential equations. It presents a specific procedure and a set of tools
that could be systematically applied to other families of equations. It is obvious
that the scheme has yet to be refined and polished. With this in mind, and
in order to reach its perfection, it opens new oppotunities and persepectives
to challenge and test it in other contexts, with other types of equations and
problems. This is the infalible path to excellence.
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Appendix A

Non-degeneracy of the
homoclinic orbit

In this appendix we prove that the homoclinic orbit from Theorem 10.2.2 (or
Corollary 10.2.3) satisfies a nondegeneracy condition in the sense established by
Beyn [20]. Consider general (parametrized) dynamical systems of the form

dy

dz
= F̄ (y, µ), y ∈ Rm, µ ∈ Rp, z ∈ R, (A.0.1)

with m, p ∈ N, F ∈ C1(Rm × Rp;Rm). Beyn [20] calls any pair (y(z), µ∗) a
connecting orbit pair if y = y(z) is a solution to (A.0.1) at µ = µ∗ for all z ∈ R
and the limits

y± = lim
z→±∞

y(z),

exist. Since F̄ is continuous, necessarily F̄ (y±, µ∗) = 0. If y+ = y− then the
orbit is called homoclinic, and if y+ 6= y− then it is called heteroclinic. For any
m ∈ N, k ∈ Z, k ≥ 0, let us denote the Banach spaces

Xk
m =

{
φ ∈ Ck(R;Rm) : lim

z→±∞

djφ(z)

dzj
exists for j = 0, 1, . . . , k

}
,

‖φ‖Xkm =

k∑
j=0

sup
z∈R

∣∣∣∣djφ(z)

dzj

∣∣∣∣ .
Note that for any φ ∈ Xk

m with k ≥ 1, by the mean value theorem, there holds

djφ(z)

dzj
→ 0, as z → ±∞, all j = 1, . . . , k.

Definition A.0.2 (Beyn [19,20]). A connecting orbit pair (y(z), µ∗) ∈ X1
m×Rp

of (A.0.1) is called non-degenerate if the following conditions hold:
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(a) The matrices
Ā± = lim

z→±∞
DyF̄ (y(z), µ∗)

are hyperbolic with stable dimensions ms
±.

(b) p = ms
+ +ms

− − 1.

(c) The only solutions (w, µ) ∈ X1
m × Rp to the variational system

dw

dz
= DyF̄ (y(z), µ∗)w +DµF̄ (y(z), µ∗)µ

are w = k(dy/dz) and µ = 0 for some constant k ∈ R.

Under assumptions (H1), (H2), (H3) and (H5), let (Ū , V̄ )(z) = (ψ,ψ′)(z),
z ∈ R, be the homoclinic loop of system (10.1.3) from Theorem 10.2.2 and
Corollary 10.2.3 with speed value c = c1. Let us denote

b̂1(z) := c1 − f ′(ψ(z)),

b̂0(z) := g′(ψ(z))− f ′(ψ(z))ψ′(z).
(A.0.2)

These coefficients are functions of class C2 and uniformly bounded (in view that
ψ(z) ∈ [u∗, 1], compact, for all z ∈ R). Moreover, clearly,

b̂1(z)→ c1 − f ′(1), b̂0(z)→ g′(1),

exponentially as z → ±∞. First we need the following auxiliary

Lemma A.0.3. Suppose there exist solutions ζ ∈ X2
1 and η ∈ X2

1 to

Bζ := ζ ′′ + b̂1(z)ζ ′ + b̂0(z)ζ = 0,

and to
B∗η := η′′ − b̂1(z)η′ + (b̂0(z)− b̂′1(z))η = 0,

respectively, such that
ζ, η → 0 as z → ±∞.

Then, all other solutions u, v ∈ X2
1 to Bu = 0 and to B∗v = 0 are multiples of

ζ and η, respectively.

Proof. Suppose u ∈ X2
1 is a solution to Bu = 0. Since limz→±∞ u exists and

limz→±∞ dju/dzj = 0, j = 1, 2, it is then clear that the Wronskian

w̄(z) := uζ ′ − u′ζ,

satisfies
w̄′ = −b̂1(z)w̄, z ∈ R,

w̄ → 0, as z → ±∞.
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Hence,

w̄(z) = C0 exp

(
−
∫ z

0

b̂1(s) ds

)
,

for some constant C0 ∈ R. Now, since b̂1(z)→ c1− f ′(1) as z → ±∞, it is easy
to verify that

w̄(z) = C0 exp

(
−
∫ z

0

b̂1(s) ds

)
∼ C0 exp

(
(f ′(1)− c1)z

)
,

as z → ±∞ for some other constant C0 ∈ R. In view that

exp
(
(f ′(1)− c1)z

)
→

{
∞, if f ′(1) > c1 as z →∞,
∞, if f ′(1) < c1 as z → −∞,

we conclude that C0 = 0 (otherwise we contradict w̄ → 0 as z → ±∞) and,
hence, the Wronskian vanishes everywhere. This implies that u = kζ for some
constant k ∈ R. The proof for the solution v to B∗v = 0 is analogous.

Lemma A.0.4. The (homoclinic) connecting orbit pair (ψ,ψ′, c1) ∈ X1
2 ×R for

system (10.1.3) is non-degenerate in the sense of Definition A.0.2.

Proof. We apply Proposition 2.1 of Beyn [20], which states that any connecting
orbit pair (y(z), µ∗) ∈ X1

m × Rp for a generic system of the form (A.0.1) is
non-degenerate if and only if the matrices Ā± are hyperbolic and the linear
operator 

A : X1
m → X0

m,

A :=
d

dz
− Ā(z),

with Ā(z) := DyF̄ (y(z), µ∗), has the following properties:

(i) dim kerA = 1, dim kerA∗ = p; and,

(ii) the p× p matrix

E =

∫ ∞
−∞

Φ(z)>DµF̄ (y(z), µ∗) dz, (A.0.3)

is non-singular, where the p columns Φi ∈ X1
m, i = 1, . . . , p of Φ form a

basis of kerA∗.

Here the operator A∗ : X1
m → X0

m is given by

A∗ =
d

dz
+ Ā(z)>.

(See Proposition 2.1, p. 383 in [20], for further details.) In our case, for system
(10.1.3) the matrices Ā are given by

Ā(z) = D(U,V )

(
F (U, V )
G(U, V )

)
|(U,V,c)=(ψ,ψ′,c1)

=

(
0 1

f ′′(ψ(z))ψ′(z)− g′(ψ(z)) −c1 + f ′(ψ(z))

)
,
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with asymptotic limits

Ā± = lim
z→±∞

Ā(z) =

(
0 1

−g′(1) −c1 + f ′(1)

)
= (A1)|c=c1 ,

and with eigenvalues (10.2.15). Hence, they are clearly hyperbolic with stable
dimension ms

+ = ms
− = 1. Now, from Corollary 10.2.3 we know that ψ ∈ C3(R)

and hence

Φ(z) :=

(
ψ′

ψ′′

)
∈ X1

2 ,

is a solution to AΦ = 0, because (10.2.14) can be written as

d

dz

(
ψ′

ψ′′

)
− Ā(z)

(
ψ′

ψ′′

)
= 0.

If we define ζ(z) := ψ′(z), z ∈ R, then ζ ∈ X2
1 and it is a solution to

Bζ = ζ ′′ + b̂1(z)ζ ′ + b̂0(z)ζ = 0,

where the coefficients b̂j(z), j = 0, 1, are defined in (A.0.2). Moreover, ζ → 0 as
z → ±∞. Therefore, by Lemma A.0.3 we have that any other solution u ∈ X2

1

to Bu = 0 is a multiple of ζ. This implies, in turn, that

dim kerA = 1, kerA = span {Φ} ⊂ X1
2 .

Let us now define

η(z) := χ(z)ζ(z), χ(z) := exp

(∫ z

0

b̂1(s) ds

)
.

Then upon differentiation

χ′ = b̂1χ, χ′′ = b̂′1χ+ b̂1χ
′,

η′ = χ′ζ + χζ ′, η′′ = χ′′ζ + 2χ′ζ ′ + χζ ′′,

yielding

B∗η = η′′ − b̂1η′ + (b̂0 − b̂′1)η = χ
(
ζ ′′ + b̂1ζ

′ + b̂0ζ
)

= χBζ = 0.

Moreover, η = χζ ∈ X2
1 . Indeed, it is clear that η ∈ C2, inasmuch as ζ, χ ∈ C2.

In addition,
χ(z) ∼ exp

(
(c1 − f ′(1))z

)
,

as z → ±∞. But since ζ decays as exp(λ1(c1)z) as z →∞ and as exp(λ2(c1)z)
as z → −∞, where λ1 and λ2 are given by (10.2.15), it is easy to verify that
η → 0 as z → ±∞. For example, if z →∞ we have

η = χζ ∼ exp
([

1
2 (c1 − f ′(1))− 1

2

√
(c1 − f ′(1))2 − 4g′(1)

]
z
)
→ 0,
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independently of the sign of c1− f ′(1). In the same fashion, η → 0 as z → −∞.
Finally, it is clear that η′, η′′ → 0 as z → ±∞. Whence, we have that η ∈ X2

1

and Lemma A.0.3 implies that any other solution v ∈ X2
1 of B∗v = 0 is a

multiple of η. If we further define

ξ(z) :=

∫ z

0

b̂0(s)η(s) ds,

then from the exponential decay of η and boundedness of b̂0 it is clear that ξ
has finite limits as z → ±∞. Also, ξ′ = ηb̂0 → 0 and ξ′′ = η′b̂0 + ηb̂′0 → 0 as
z → ±∞. We conclude that

Ψ(z) :=

(
ξ
η

)
∈ X1

2

is the only (up to constants) solution to

A∗Ψ =
d

dz
Ψ + Ā(z)>Ψ = 0.

This yields dim kerA∗ = 1 and kerA∗ = span {Ψ} ⊂ X1
2 . Condition (i) is

therefore verified inasmuch as we have one bifurcation parameter c and p = 1.
Finally, the integral in (A.0.3) reduces to

E =

∫ ∞
−∞

(
ξ
η

)>
∂c

(
F
G

)
|(ψ,ψ′,c1)

dz =

∫ ∞
−∞

(
ξ
η

)>(
0

−ψ′(z)

)
dz

= −
∫ ∞
−∞

χ(z)ψ′(z)2 dz

= −
∫ ∞
−∞

exp

(∫ z

0

b̂1(s) ds

)
ψ′(z)2 dz 6= 0,

verifying, in this fashion, condition (ii). The lemma is proved.
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Appendix B

Qualitative proof of the
existence of a homoclinic
orbit for Burgers-Fisher
equation

The existence of the homoclinic orbit was proven in Chapter 4 with the use of
Melnikov’s method. The proof included in this appendix guarantees the exis-
tence of the same pulse through a geometric argument instead. Since A1(1, 0)
is a saddle point for (4.1.3), its stable and unstable manifolds have both di-
mension 1. A homoclinic orbit to a saddle point occurs when its stable and
unstable manifolds intersect. We will prove that for velocity value c = −1 the
stable and unstable manifolds have a positive difference of intersections with
the U < 0 axis, while for c = 1 the difference is instead negative. The existence
of a value c1 ∈ (−1, 1) at which the manifolds intersect would then follow from
the intermediate value theorem.

Consider the Burgers-Fisher equation

ut + f(u)x = uxx + g(u), (B.0.1)

with
f(u) = 1

2u
2, g(u) = u(1− u).

The associated ODE system for the traveling wave solution reads{
U ′ = V =: F (U, V, c),

V ′ = −cV + UV − U(1− U) =: G(U, V, c).
(B.0.2)

The point A1 = (1, 0) is a saddle for system (B.0.2) for each value of c ∈ R.
We look at the interval c ∈ [−1, 1]. The linearization of (B.0.2) at A1 is

Ã1 =

(
0 1

−g′(1) −c+ f ′(1)

)
=

(
0 1
1 1− c

)
,
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with eigenvalues

λs(c) = 1
2 (1− c)− 1

2

√
(1− c)2 + 4 < 0 < λu(c) = 1

2 (1− c) + 1
2

√
(1− c)2 + 4.

The corresponding eigenvectors are

rs(c) =

(
1

λs(c)

)
, ru(c) =

(
1

λu(c)

)
.

Given c ∈ [−1, 1] let us denote by Ws(c) the stable manifold and by Wu(c)
the unstable manifold of the saddle A1. Locally Ws(c) ≈ rs(c), Wu(c) ≈ ru(c),
near A1. These manifolds are determined by graphs of appropriate solutions to

dV

dU
=
F (U, V, c)

G(U, V, c)
= U − c− U

V

(
1− U

)
.

We apply the concept of rotated vector field (see [112]) to determine how
the stable/unstable manifolds change with the parameter c. To that end, we
observe thatFG

0

×
∂cF∂cG

0

 =

 V
−cV + UV − U(1− U)

0

×
 0
−V
0

 =

 0
0
−V 2

 .

This implies that the vector field (F,G)> rotates clockwise as c increases.
Let W+

s (c) be the intersection of Ws(c) with the upper half plane R2
+ =

{V > 0}, and let W−u (c) be the intersection of Wu(c) with the lower half plane
R2
− = {V < 0}. The location of the points where there is vertical (U ′ = 0) or

horizontal (V ′ = 0) tangency are given by V = 0 (the U axis) and by the graph

v(U, c) :=
U(1− U)

U − c
, (B.0.3)

respectively. The latter graph plays a relevant role in determining the relative
position of the intersections of W−u (c) and W+

s (c) with the U < 0 axis.

The case c = −1
In this case the curve for horizontal tangencies is given by

v−(U) := v(U,−1) =
U(1− U)

1 + U
.

Its graph can be found (the dotted curve) in Figure B.1. Notice that

dv−

dU
=

1− 2U − U2

(U + 1)2
,

dv−

dU
(1) = −1

2
.
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Figure B.1: c = −1. Notice that pu(−1) < ps(−1).
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Figure B.2: c = 1. Notice that ps(1) < pu(1).

Since the slope of W+
s (−1) is given by the eigenvalue λs(−1) = 1 −

√
2 ≈

−0.41 > −1/2, this implies that the manifold W+
s (−1) leaves (as z decreases)

the point A1 below the isocline v−(U). Nearby U ′ > 0 and V ′ < 0. V ′ changes
sign along W+

s (−1) only when it intersects v−(U). Notice that the sign of the
flow on the strip (U, 0), 0 < U < 1, yields G < 0 and the flow points downwards.
This implies that the intersection of W+

s (−1) with v−(U) must take place for
a value U ∈ (0, 1). After that, V ′ > 0 and this implies that W+

s (−1) intersects
the U < 0 axis at a point (ps(−1), 0) with ps(−1) < 0. See Figure B.1.

On the other hand, the unstable manifold W−u (−1) leaves the saddle with
U ′ > 0 and V ′ < 0. V ′ changes sign at the intersection with v−(U), which
happens at a point U < 0. This suggests that the intersection of W−u (−1) with
the U < 0 axis happens at a point (pu(−1), 0) with pu(−1) < 0, which is further
away from the origin that (ps(−1), 0). Hence, we expect the stable and unstable
manifolds to have a positive difference of intersections with the U < 0 axis for
the speed value c = −1:

ps(−1)− pu(−1) > 0.

131



The case c = 1

The curve of horizontal tangencies (B.0.3) for c = 1 is now simply

v+(U) := v(U, 1) = −U

(dotted straight line in Figure B.2). The unstable manifold W−u (1) leaves the
saddle with values U ′ < 0, V ′ < 0. V ′ changes sign at the intersection with
v+(U), which happens for a U -value in the interval (0, 1). Since v+(0) = 0, the
intersection of W−u (1) with the U < 0 axis happens at a point (pu(1), 0) with
pu(1) < 0. In the same fashion, the intersection of W+

s (1) with v+(U) = −U
happens at a point with U < 0 and V ′ changes sign there. This suggests that
the intersection ofW+

s (1) with the U < 0 axis happens at a point (ps(1), 0) with
ps(1) < 0. Since the intersection with v+ happens for U < 0 and that of W−u (1)
happens for positive U -values, we expect the point (pu(1), 0) to be closer to the
origin than (ps(1), 0). See Figure B.2. Thus,

ps(1)− pu(1) < 0.

From continuity with respect to the parameter c, we notice that the function

q(c) := ps(c)− pu(c),

is continuous in c ∈ [−1, 1] and satisfies q(1) < 0 < q(−1). From the interme-
diate value theorem there exists c1 ∈ (−1, 1) such that q(c1) = 0. This would
imply the existence of a homoclinic orbit that joins A1 with itself. Since the
rotated vector field is monotone with respect to c, this speed value c1 must be
unique.

This is not a rigorous proof, but notice that Figures B.1 and B.2 depict
actual numerical approximations of solutions to the ODE system (B.0.2) for
parameter values c = −1 and c = 1, respectively.

Remark B.0.5. This qualitative proof could possibly be extended to general
viscous balance laws. We omit it here due to the technical difficulties of provid-
ing an expression for the isoclines as (B.0.3).
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[2] E. Álvarez and R. G. Plaza, Existence and spectral instability of
bounded spatially periodic traveling waves for scalar viscous balance laws.
Preprint, 2020.

[3] , Spectral vs. modulational stability of bounded periodic wavetrains
for the Burgers-Fisher equation. In preparation.

[4] A. A. Andronov, Les cycles limites de Poincaré et la théorie des oscil-
lations autoentretenues, C.R. Acad. Sci. Paris 189 (1929), pp. 559–561.

[5] A. A. Andronov and E. A. Leontovich, Some cases of dependence
of limit cycles on a parameter, Uchen. Zap. Gork. Univ. (Research notes
of Gorky University) 6 (1937), pp. 3–24.

[6] A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G.
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