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comentarios de este manuscrito, aśı como su participación en el jurado evaluador.

A continuación, le doy gracias a mis padres, Rogelio Peñaloza Bermúdez y Columba
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Resumen

En este trabajo hacemos un estudio de los modelos de genealoǵıa de poblaciones, en
particular hacemos un análisis a los modelos que tienen banco de semillas, es decir, son
modelos que tienen individuos que se encuentran inactivos por algunas generaciones.

En el caṕıtulo 1 se presentan los principales conceptos, modelos y técnicas que ayu-
darán a dar un mejor entendimiento de los resultados que se obtuvieron en esta tesis.

En el caṕıtulo 2 se presenta un marco para la construcción simultanea del modelo
seed-bank con distribución de saltos multigeneracionales y una ley de reproducción
tipo Cannings que satisfaga una construcción paintbox, conjuntamente se dan algunos
resultados ĺımite hacia adelante y hacia atrás en el tiempo, es decir, damos algunas
condiciones para la convergencia al coalescente de Kingman y estudiamos escenarios
más allá de esta clase de coalescentes, en estos somos capaces de describir como el
fenómeno de seed-bank débil reduce el tamaño t́ıpico de los eventos de coalescencia.
También se presenta un resultado de dualidad. La principal técnica que se usa es
construir una gráfica aleatoria que nos permita encajar el proceso ancestral y el pro-
ceso de frecuencia de ambos modelos, Cannings y seed-bank, simultáneamente y aśı
estudiar la relación de dualidad. Con este resultado se cubre un hueco en el estudio
de los modelos con seed bank, debido a que hasta el d́ıa de hoy no se hab́ıa hecho un
análisis, con mecanismos de reproducción más generales, tales como los basado en el
modelo de Cannings.

En el caṕıtulo 3 se hace un estudio del comportamiento asintótico de algunas fun-
cionales del coalescente seed-bank, correspondiente a un modelo con seed-bank fuerte.
Esto podŕıa ser de utilidad para aplicaciones en genética. El principal resultado es la
obtención de la longitud total del coalescente, donde obtuvimos que la longitud activa
se comporta similar a la longitud del coalescente Kingman, lo que significa que no es
posible distinguir entre el coalescente Kingman y el colescente seed-bank usando sólo
la longitud. Lo que nuestros resultados muestran es que la mayoŕıa de las mutaciones
ocurren en la fase Kingman, es decir entre el tiempo cero y el tiempo de la primera
reactivación, todo esto empezando con n plantan y cero semillas, y en esta parte del
árbol, la parte dormida o inactiva es irrelevante. Para hacer una discriminación entre
el coalescente Kingman y el seed-bank se necesitan resultados más finos como por
ejemplo fórmulas de muestreo (Sampling formula). Al final del caṕıtulo se presenta
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una fórmula de muestreo usando la idea del proceso del restaurante chino. Como
resultado obtuvimos una aproximación a la probabilidad de la frecuencia de bloques
activos e inactivos al tiempo de la primera reactivación.

Un futuro trabajo es calcular la longitud del árbol del coalescente seed-bank con
simultáneas activaciones y desactivaciones [10].
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Summary

In this work we do a study of population genealogy models, in particular we analyze
the models that have a seed bank, that is, they are models that have individuals that
are inactive for some generations.

Chapter 1 presents the main concepts, models and techniques that will help to give a
better understanding of the results obtained in this thesis.

Chapter 2 presents a framework for the simultaneous construction of the seed-bank
model with distribution of multigenerational jumps and a Cannings-type reproduc-
tion law that satisfies a paintbox construction, together some limit results are given
forwards and backwards in time, that is, we give some conditions for convergence
to the Kingman coalescent and we study scenarios beyond this class of coalescers, in
these we are able to describe how the weak seed-bank phenomenon reduces the typical
size of the coalescence events. A duality result is also presented. The main technique
used is to construct a random graph that allows us to fit the ancestral process and
the frequency process of both models, Cannings and seed-bank, simultaneously and
thus study the duality relationship. With this result, a gap is covered in the study
of seed bank models, because until today an analysis had not been done, with more
general reproduction mechanisms, such as those based on the Cannings model.

In chapter 3 a study of the asymptotic behavior of some functionalities of the seed-
bank coalescent is made, corresponding to a model with a strong seed-bank. This
could be useful for applications in genetics. The main result is obtaining the total
length of the coalescent, where we obtained that the active length behaves similar
to the length of the Kingman coalescent, which means that it is not possible to
distinguish between the Kingman coalescent and the seed-bank coalescent using only
the length. What our results show is that most mutations occur in the Kingman phase,
that is, between time zero and the time of the first reactivation, all this starting with
n plants and zero seeds, and in this part of the tree, the dormant or inactive part
is irrelevant. To discriminate between the Kingman coalescent and the seed-bank
coalescent, finer results are needed, such as Sampling formula. A sampling formula is
presented at the end of the chapter using the idea of the Chinese restaurant process.
As a result, we obtained an approximation to the probability of the frequency of active
and inactive blocks at the time of the first reactivation.
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A future possible work is to calculate the length of the seed-bank coalescing tree with
simultaneous activations and deactivations [10].
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Chapter 1

Introduction

1.1 Neutral models

1.1.1 Wright-Fisher Model and Wright-Fisher diffusion

Definition 1.1.1. Wright-Fisher Model. Consider a haploid (one parent) popu-
lation and assume discrete and non-overlapping generations, in which each generation
has a fixed number N ∈ N of individuals, and everybody has the same chance to
reproduce, i.e., the model is neutral. The dynamics are as follows: each individual
from generation k + 1 chooses, independently and uniformly at random, its parent
from generation k, for k ∈ Z.

Now, suppose there are two different types of alleles in the population, A and a. Also,
suppose that these alleles are neutral, i.e., the reproduction of one individual does not
depend on its type. Furthermore, each individual copies the type of its parent. In
the area of genetics, the samples are not the individuals themselves but their genetic
material. A gene can have different forms, and each form is called allele [47]. For
example, in Mendel’s experiment, the gene that gives the color of peas has two alleles:
one determines the color green, and the other determines the color yellow.

Let XN
k denotes the number of individuals with allele A in generation k. The process

{XN
k }k≥0 is a discrete time Markov chain, i.e., given the present state, the past does

not matter to predict the future ([25], section 1.2). Moreover, given XN
k = i, with

i ∈ {0, 1, ..., N}, XN
k+1 has a binomial distribution,

P(XN
k+1 = j|XN

k = i) =

(
N

j

)(
i

N

)j (
1− i

N

)N−j

, j ∈ {0, 1, ..., N}. (1.1)

We do not consider any mutation mechanism so, eventually, all individuals in the
population will have the same type. Once one type is reached by the entire population
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the proportion cannot change anymore. The process {XN
k }k≥0 has two absorbing

states, 0 and N . Let τ = inf{k ≥ 0 : XN
k = 0 or XN

k = N} be the first time that
a whole generation has type A or a. For the allele A, the event {XN

τ = 0} is called
extinction, while the event {XN

τ = N} is called fixation.

Proposition 1.1.2. The Markov chain {XN
k }k≥0 is a (bounded) martingale and start-

ing from i, the probability of fixation is i/N .

The Markov chain {XN
k }k≥0 is a martingale due to its Binomial kernel. A proof

can be found in [48], Proposition 1.1.1.1. Hence, its expectation is constant, and its
conditional variance is

Var(XN
k+1|XN

k = i) = N
i

N

(
1− i

N

)
. (1.2)

Under the neutral Wright-Fisher model, there exists the possibility to lose genetic
variability by pure chance. In other words, the change in allele frequencies is caused
by the random variation in individual reproduction.

Now, we measure the time in units ofN generations and we renormalizeXN as follows,

Y N
t :=

XN
⌊Nt⌋

N
, t ≥ 0. (1.3)

The process {Y N
t }t≥0 gives the A-allele frequency process (rescaled in time).

Now, suppose that the proportion of the population of type A at time zero is Y N
0 = p.

Then, by taking time intervals of length 1/N

E[Y N
1/N |Y N

0 = p] =
1

N
E
[
XN

1

∣∣XN
0 = Np

]
=

1

N
Np = p (1.4)

and the conditional variance is

Var(Y N
1/N

∣∣Y N
0 = p) =

1

N2
E
[(
XN

1 − E[XN
1 ]
)2 ∣∣X0 = Np

]
=

p(1− p)

N
. (1.5)

Furthermore, E
[(

Y N
1/N − p

)m ∣∣Y N
0 = p

]
= O (1/N2) for all m ≥ 3.

These computations provide some intuition for a diffusion approximation ([29], Chap-
ter 10). The following theorem enunciates this formally.

Theorem 1.1.3. [43] Let {Y N
t }t≥0 be the rescaled frequency process of individuals with

A-allele in the Wright-Fisher model, started from Y N
0 = p ∈ [0, 1]. If Y N

0 converges
in distribution to a random variable Y0, then

{Y N
t }t≥0 ⇒ {Yt}t≥0

12



(weakly on the Skorohod space of càdlàg functions with values in [0, 1]), where Y is
the strong solution to the following stochastic differential equation:

dYt =
√

Yt(1− Yt)dBt;Y0 = p (1.6)

where B is a standard Brownian motion. The process {Yt}t≥0 is the so-called Wright-
Fisher diffusion.

Before giving a sketch of the theorem’s proof, we introduce the definition of the
infinitesimal generator.

Definition 1.1.4. ([29] Chapter 1, Section 1 and Chapter 4) Let {Yt}t≥0 be a Markov
process with state space R. For a function f : R → R with ||f || = supy∈R |f(y)| < ∞
and y ∈ R, the infinitesimal generator is the linear operator A defined by

Af(y) = lim
t→0

E[f(Yt)− f(Y0)|Y0 = y]

t
. (1.7)

The domain D(A) of A is the subspace of all f for which this limit exists.

To prove Theorem 1.1.3, we need the generator of Y N to converge to the generator
of the Wright-Fisher diffusion. Then, we can use Theorem 1.1 in Chapter 10 in [29].
Following the idea in [27], Chapter 2, we study how E[f(Y N

t )] behaves over time,
where f : [0, 1] → R is a nice function. Intuitively, if t = 1/N in the process Y N and
N converges to infinity, the limit is the generator of Y , that is, by equation (1.7)

Af(p) = lim
N−→∞

E[f(Y N
1/N)

∣∣Y N
0 = p]− E[f(p)]
1/N

.

By Taylor’s theorem, and equations (1.4) and (1.5), there exists a constant C such
that

E[f(Y N
1/N)

∣∣Y N
0 = p]

= E
[
f(p) + f ′(p)(Y N

1/N − p) +
f ′′(p)

2

(
Y N
1/N − p

)2
+ C

(
Y N
1/N − p

)3 ∣∣Y n
0 = p

]
= f(p) +

f ′′(p)

2

p(1− p)

N
+O

(
1

N2

)
,

and then,

N
(
E[f(Y N

1/N)
∣∣Y N

0 = p]− E[f(p)]
)
=

f ′′(p)

2
p(1− p) +O

(
1

N

)
.

Thus, the generator of the limit process is

Af(p) =
p(1− p)

2
f ′′(p). (1.8)

This is the generator of the Wright-Fisher diffusion, which is the strong solution of
the stochastic differential equation (1.6) (see Chapter 8 and Chapter 10 in [29]).
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1.1.2 The Kingman coalescent

Consider a population with the Wright-Fisher model dynamics (the types of alleles
do not matter). Then, take a sample of size two from the population of size N at
generation k, with k fixed. The probability that these individuals have the same
parent at the previous generation, k − 1, is N−1. Since the choice of the parents is
made independently at each generation, the time to the most recent common ancestor
(MRCA) of this sample has a geometric distribution with parameter N−1. It implies
that the expected number of generations to find the MRCA in a sample of size two
is N . Usually, we are interested in large populations, so this suggests measuring time
in units of size N , which corresponds to the time rescaling used in equation (1.3).
Under this time rescaling, the distribution of the time to the MRCA converges to an
exponential distribution with parameter one, that is, for t ≥ 0

P(Time to the MRCA > ⌊tN⌋) =
(
1− 1

N

)⌊tN⌋

→ e−t as N → ∞.

Next, we consider a sample of size 2 ≤ n ≤ N at generation k. The probability
that three individuals have the same parent one generation back is of order N−2,
and the probability that two have the same parent is

(
n
2

)
N−1. Hence, it is more

likely that two individuals have the same parent than three (or more). Following the
same idea as for a sample of size two (we measure the generations in units of size
N), the distribution of the time that any two ancestral lineages merge converges to
an exponential distribution with parameter

(
n
2

)
. When this merger happens, there

remain n− 1 lineages because the first merger only affects two lines that were chosen
uniformly at random, and again the distribution of the time to a new coalescence
converges to an exponential with parameter

(
n−1
2

)
and so on ([27], Chapter 2).

The family tree of these n individuals taken in a fixed generation k can be described
by a sequence of equivalence relations [44], {Wg}g≥0, on [n] = {1, 2, ..., n}, such that i
and j, individuals of generation k, are in the same element (block) of Wg if they have a
common ancestor at generation k− g. Each block of Wg corresponds to an individual
at generation k − g. Suppose two individuals at generation k − g choose the same
parent at k−g−1. In that case, it implies that their corresponding equivalence classes
of Wg are merged in Wg+1; otherwise, the blocks are not merged. Then, {Wg}g≥0 is a
discrete time partition-valued Markov chain. The next theorem says that this Markov
chain converges in distribution with a specific time scale.

Theorem 1.1.5. [44]. The process {W⌊Nt⌋}t≥0, converges in distribution, as N → ∞,
to {Kn

t }t≥0 . The limit of this genealogical process is called the Kingman n-coalescent.

Before giving the formal definition of the Kingman n-coalescent, we introduce some
notation. Let Pn be the set of partitions of [n] and let P be the set of partitions on
N.

14



Definition 1.1.6. The Kingman coalescent, [45, 44]. A n-coalescent is a conti-
nuous time Markov chain, {Kn

t }t≥0, with values in the state space Pn, and with the
following transition rates: let π1, π2 ∈ Pn,

π1 7→ π2 at rate

{
1 if π1 ≺ π2,
0 otherwise.

The notation π1 ≺ π2 means that π2 is obtained from π1 by merging exactly two blocks
of π1. The initial partition, Kn

0 , is almost surely the trivial partition in singletons.

Kingman’s n-coalescent satisfies the consistency property: let m < n and denote

by ρm the restriction map to Pm, then {ρm ◦Kn
t }t≥0

d
= {Km

t }t≥0. Thus, by Kol-
mogorov’s extension theorem, there exists a unique continuous time Markov chain
{Kt}t≥0, with state space P , such that its restriction to Pn is equal in distribution to
the n-coalescent, for each n. This projective limit is called the Kingman coalescent.

Observe that in Kingman’s coalescent, two blocks of Kt merge independently of their
size and the value of Kt for every t ≥ 0. This is due to the property of exchangeability
of the coalescent, meaning that the law of Kt is invariant under any permutation of
N with finite support. This property also holds for the n-coalescent ([2], Chapter 2).

Another property of the Kingman coalescent is that the expected time of the MRCA
of an (infinite) sample is finite and equals two. More precisely, let Tn be the time to
the MRCA of a sample of n individuals and let τi be the amount of time during which
there are i lineages. Observe that τi has an exponential distribution with parameter(
i
2

)
for 2 ≤ i ≤ n, and that Tn = τ2 + τ3 + · · ·+ τn, then

E[Tn] =
n∑

i=2

E[τi] =
n∑

i=2

1(
i
2

) = 2
n∑

i=2

1

i− 1
− 1

i
= 2

(
1− 1

n

)
−−−→
n→∞

2 (1.9)

Observe that E[τ2] = 1, which means that the expected time of the final coalescence is
half of the expected time to the MRCA of a sample of infinite size. Furthermore, the
Kingman coalescent comes down from infinity : while starting with an infinite number
of blocks, instantaneously, its number of blocks is finite, almost surely.

Theorem 1.1.7. Let {Nt}t≥0 be the block counting process of the Kingman coalescent
(starting from an infinite number of singletons). Then almost surely, for every t > 0,
Nt is finite.

This is intuitively clear from the comments above. The reader can see a proof in [2],
Chapter 2.

Observe that the process N is a death process with jumps of size one. The process
N goes from state n to state n − 1 at rate

(
n
2

)
, so by Definition 1.1.4, the generator

of N is

Gf(n) =
(
n

2

)
(f(n− 1)− f(n)) (1.10)
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1.1.3 Duality

In [58], the concept of duality defined in [53] is used to give a relation between the
Wright-Fisher diffusion and the Kingman coalescent. This relation is a coupling of
the forward process, {Yt}t≥0, which describes the evolution of the population forward
in time, and the backward process, {Nt}t≥0, which is the block counting process
associated to the Kingman coalescent {Kt}t≥0. The next theorem is the formalization
of this but let us first introduce the definition of duality.

Definition 1.1.8. (Definition 1.1 in [55] ) The process {Vt}t≥0 is dual to the process
{Wt}t≥0 with respect to F , a bounded measurable function on E1 × E2, where E1 is
the state space of V and E2 is the state space of W , if

Ev[F (Vt, w)] = Ew[F (v,Wt)] (1.11)

for all v ∈ E1, w ∈ E2 and t ≥ 0. Here Ev denotes the expectation given that V0 = v
and Ew denotes the expectation given that W0 = w.

Theorem 1.1.9. [58] Let {Yt}t≥0 be the Wright-Fisher diffusion starting at Y0 = p ∈
(0, 1) and let {Nt}t≥0 be the block counting process of the Kingman coalescent starting
at N0 = n ∈ N. Then, the process {Yt}t≥0 is moment dual to the process {Nt}t≥0,
that is

Ep[Y
n
t ] = En[p

Nt ]. (1.12)

In this case F (p, n) = pn. Observe that Ep[Y
n
t ] is the n-th moment of Yt, thus (1.12)

characterizes the moments of Y .

The proof of this result can be easily obtained thanks to Proposition 1.2 in [40], saying
that the duality has to be verified only at the level of generators. More precisely, let
A be the generator of {Yt}t≥0 as in (1.8) and let G be the generator of {Nt}t≥0 as
in (1.10). If F (p, ·) and En[F (p, ·)] are in D(G) for all p ∈ [0, 1] and if F (·, n) and
Ep[F (·, n)] are in D(A) for all n ∈ N, and if

AF (·, n)(p) = GF (p, ·)(n), (1.13)

then, {Yt}t≥0 and {Nt}t≥0 are duals with respect to F . Now, observe that

AF (·, n)(p) = 1

2
p(1− p)

∂2F

∂p2
=

1

2
p(1− p)n(n− 1)pn−2

and

GF (p, ·)(n) = 1

2
n(n− 1)(pn−1 − pn) =

1

2
n(n− 1)pn−1(1− p).
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This proves the duality of the generators and hence of the processes.

There is a natural interpretation of this duality result. Observe that, on one hand,
Ep[Y

n
t ] is the probability that n individuals, chosen at random in the infinite popula-

tion at time t, have the A-allele given that at time zero the population has a fraction
p of A-allele individuals. On the other hand, En[p

Nt ] is the probability that the Nt

ancestors of the same sample of size n (chosen at time t) carry the A-allele t units
of time in the past, because at time zero we know that Y0 = p. The fact that those
two values are equal means that one model stands for the backward in time version
of the other. The duality theorem gives us two forms to calculate the moments of the
marginals of the Wright-Fisher diffusion. Commonly it is easier to work with En[p

Nt ]
than Ep[Y

n
t ].

This method can be extended in discrete time thanks to the same interpretation.
Using the notation of Sections 1.1.1 and 1.1.2. the probability that n individuals
chosen at random at generation g have the A-allele is Ep[(Y

N
g )n] for p ∈ { 1

N
, 2
N
, ..., N

N
}.

Going g generations backward in time, this expectation is equal to En[p
Wg ]. This gives

an easy intuition for a duality result that is harder to obtain trough computations
than in the continuous case [34].

1.1.4 Cannings’ model

We now give the definition of a more general model with discrete generations and
fixed size of population, which is the key of Möhle’s lemma, and is known as Can-
nings’ model (thanks to works of Cannings [14],[15]). Recall that a random vector
(ν1, ν2, . . . , νN) is exchangeable if its law is invariant under permutations of its labels.
More explicitly, for any permutation σ = (σ(1), . . . , σ(N)) of {1, ..., N},

(ν1, ν2, . . . , νN)
d
= (νσ(1), νσ(2), . . . , νσ(N)).

Definition 1.1.10. Cannings’ model. Consider a population of fixed size N , where
N is a positive integer. The population is haploid and neutral. Each individual in
each generation is randomly labeled from 1 to N . Generation g + 1 is generated by
the children of individuals from generation g. Each individual in generation g + 1
chooses its parent from generation g randomly and independently according to an
exchangeable random vector (ν1, ν2, . . . , νN) such that

∑N
i=1 νi = N . Intuitively, the

random variable νi indicates the law of the number of offspring of the ith individual
at each generation.

We are going to analyze the genealogical process as in the Wright-Fisher model. First,
we define

cN = E
[
ν1(ν1 − 1)

N − 1

]
(1.14)
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which is the probability for two randomly chosen individuals at the same generation
of having the same parent. To see this, denote this event by A and observe that

P(A) =E[P(A|(ν1, ν2, . . . , νN))]

=E

[
N∑
i=1

νi(νi − 1)

N(N − 1)

]

=E
[
ν1(ν1 − 1)

N − 1

]
where the last equality is obtained thanks to exchangeability. Note that cN = 0 if
and only if νi = 1 a.s., for all i ∈ [N ]. It is assumed in the sequel that cN > 0 for all
N . The value cN is called the coalescent probability.

The Wright-Fisher model is a particular case of Cannings’ model when the vector
(ν1, ν2, . . . , νN) has a multinomial distribution with parameters N and pi = 1/N for
all i ∈ [N ]. In this case cN = 1/N .

Following the same analysis that we realized in Section 1.1.2, the law of the time to the
MRCA in the Cannings’ model for a sample of size two is geometric with parameter
cN , and its expectation is 1/cN , it suggests accelerating the time by 1/cN to obtain a
non degenerate limit as N → ∞. Assume that cN → 0. Then, for t ≥ 0,

P( Time to the MRCA > ⌊t/cN⌋) = (1− cN)
⌊t/cN ⌋ → e−t.

Now, we consider a sample of size three at a given generation, the probability that
these three individuals have the same parent one generation before is,

dN = E
[
ν1(ν1 − 1)(ν1 − 2)

(N − 1)(N − 2)

]
.

Let ∼r be the equivalence relation on [n], defined by i ∼r j if and only if the ith
and jth individuals of a sample of size n ≤ N have a common ancestor r generations
backward in time. Let {Cg}g≥0 be the discrete Markov chain with values in the state
space Pn, the set of all equivalence relations on [n] (it is constructed similar to the
process {Wg}g≥0 in Section 1.1.2) and let DPn [0,∞) be the space of cádlág functions
from [0,∞) to Pn together with the Skorokhod topology.

Theorem 1.1.11. [57]. a) The time scaled ancestral process {C⌊t/cN ⌋}t≥0 converges
in distribution, in DPn([0,∞)), to the Kingman n-coalescent {Kn

t }t≥0 if and only if

lim
N→∞

dN
cN

= 0. (1.15)
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This means that the Kingman n-coalescent appears in the limit, as N tends to infin-
ity if and only if triple mergers of ancestral lineages are asymptotically negligible in
comparison with binary mergers [56].

b) The limit (1.15) implies that,

lim
N→∞

cN = 0 and lim
N→∞

E[ν1(ν1 − 1)ν2(ν2 − 1)]

N2cN
= 0. (1.16)

The last limit means that, as N tends to infinity, simultaneous coalescences of ances-
tral lineages are asymptotically negligible in comparison with binary mergers.

This result is, actually, part of a much more general work found in [61], and we
will discuss it later. Measuring time in units of size 1/cN and assuming that (1.15)
holds, we can adapt Theorem 1.1.3 and Theorem 1.1.9 to the case of large populations
evolving according to Cannings’ model, see Section 2.2 in [29].

When limN→∞ dN/cN ̸= 0, we can have multiple collisions; that is, many mergers can
occur to obtain one single line or simultaneous multiple collisions, which means that
many mergers can happen to get one single line. Many of these can occur at the same
time.

In [63], Sagitov introduced coalescents with multiple collisions as limits of ancestral
processes of a population evolving according to the Cannings’ model. Sagitov used a
proper time-scale factor for their asymptotic analysis, similar to what we present in
this section. See also [59] for a simpler formulation.

In [62], Pitman, independently, introduced and studied coalescents with multiple colli-
sions as Markov and exchangeable coagulating processes (and without considering
their connection to Cannings’ model), and called this class of processes Λ-coalescents.
They also appear in [22].

Theorem 1.1.12. [62]. Let (λb,k, 2 ≤ k ≤ b < ∞) be an array of non-negative real
numbers. There exist for each π ∈ P a P-valued coalescent Π with Π0 = π, whose
restriction Πn to [n] is for each n a Markov chain such that, when Πn

t has b blocks,
each k-tuple of blocks of Πn

t is merging to form a single block at rate λb,k, if and only
if

λb,k =

∫
[0,1]

xk−2(1− x)b−kΛ(dx)

for some non-negative and finite measure Λ on Borel subset of [0, 1]. We call the
P-valued Markov process induced by a finite measure Λ on [0, 1] the Λ-coalescent.
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For Λ = δ0, the point mass at zero, we obtain the Kingman coalescent. In [65],
Schweinsberg showed that the Λ-coalescent comes down from infinity if and only if

∞∑
b=2

γ−1
b < ∞

where γb =
∑b

k=2(k−1)
(
b
k

)
λb,k is the rate at which the number of blocks is decreasing.

More generally, in [60], Möhle and Sagitov established the complete picture of limit
genealogies of Cannings’ model. A general coalescent structure allowing simultaneous
and multiple collisions of ancestral lines is obtained. The central condition of their
main result requires the existence of the limits

lim
N→∞

E[(ν1)k1 · · · (νj)kj ]
Nk1+···+kj−jcN

:= ϕj(k1, · · · , kj)

for all j ∈ N and k1 ≥ · · · ≥ kj ≥ 2.

In [64], Schweinsberg introduced and studied the class of coalescents with simultane-
ous and multiple collisions thanks to exchangeability tools. The following definition
describes the more general family of exchangeable coalescents.

Definition 1.1.13. [64], [3]. Let Ξ be a finite measure on the infinite simplex,

∆ = {(x1, x2, ...) : x1 ≥ x2 ≥ ... ≥ 0 ,
∞∑
i=1

xi ≤ 1},

and write Ξ = Ξ0 + aδ0 where Ξ0 has no atom at zero, δ0 is the unit mass at zero
and a ≥ 0. The Ξ-coalescent (with characteristic measure Ξ) is a process {Πt}t≥0

with values in P with the property that for each n ∈ N, its restriction to [n] is a
Pn-valued Markov chain. Let ξ be a partition with b blocks and let η be a partition
obtained by merging disjoint groups of blocks of ξ, such that η has r + s blocks in
which s blocks remain unchanged and the other r blocks contain k1, k2, ..., kr ≥ 2 of
the original blocks. Thus b =

∑r
i=1 ki + s and the rate of transition from ξ to η is

λb;k1,··· ,kr;s equals

λb;k1,··· ,kr;s =

∫
∆

∑s
l=0

∑
i1 ̸=... ̸=ir+l

(
s
l

)
xk1
i1
· · ·xkr

ir
xir+1 · · ·xir+l

(
1−

∑∞
j=1 xj

)s−l∑∞
j=1 x

2
j

Ξ0(dx)

+ a1{r=1,k1=2}.

The Λ-coalescent is a special case of the Ξ-coalescent when Ξ is concentrated on the
subset of ∆ consisting of the sequence (x1, x2, · · · ) such that xi = 0 for all i ≥ 2. A
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sufficient condition for a Ξ-coalescent to come down from infinity was also presented
in [64].
As for the Wright-Fisher model, a general moment duality result, between Cannings’
model and its ancestry process, was established in [34]. As N → ∞, the moment
duality relation still holds as the ancestry process converges to a Ξ-coalescent and
Theorem 1.1.9 can be generalized. The associated forward in time process turns to
a diffusion with jumps. More precisely, this process corresponds to the frequency
of one type in a Ξ-Fleming-Viot process [7]. Previously, the duality relation for the
Λ-coalescent was established in [4].

1.2 A weak seed bank model

In this section and the next one, we focus on two models that include some seed bank
effects. These models were introduced in the last two decades ([41], [8], [9]) and they
became an essential topic in population genetics. Indeed, phenomena of dormancy
were observed in nature. Individuals can deactivate for some time and then awake.
This seed bank effect can yield important modifications in the evolution of certain
plant populations. For example, large fluctuations in the population size of Linanthus
parryae in the Mojave desert is explained by some delay in seeds germination for many
years [26]. A seed bank effect was also observed for eggs or bacteria [37]. The presence
of seed banks dampens selective presence caused by environmental variables and, thus,
increases the genetic variation (e.g., the number of mutations). Some effects of the
seed bank were studied in [68], [50].

This section introduces one class of seed bank models, where the dormancy period is
smaller than the diffusive time rescaling. Under this model, [71] observed that the
relative allele frequencies within a sample are unchanged. The mean waiting times to

Figure 1.1: Linanthus parryae [1]
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coalescence are similar to those of a population without a bank. This is known as the
weak seed bank effect.

1.2.1 Definition

We first introduce a modification of the Wright-Fisher model introduced by Kaj,
Krone, and Lascoux [41] (and extended in [8]) where the individuals can choose their
parent at some random generation in the past.

Definition 1.2.1. Weak seed bank model, [41], [8]. Consider a haploid (neutral)
population of fixed size N ∈ N. Consider individuals ν = (iν , kν) ∈ VN := Z × [N ]
where iν denotes the generation and kν the label among the N individuals alive at this
generation. Let A(ν0) = {νj}j≥0 be the ancestral line of individual ν0. In particular,
{iνj}j≥0 is a strictly decreasing sequence of generations, with i.i.d. decrements {iνj −
iνj−1

}j≥1having distribution µ. The variables {kνj}j≥0 are independent and uniformly
distributed in [N ], independent of {iνj}j≥0.

Observe that, if µ = δ1, the classical Wright-Fisher model is recovered. In that case,
all individuals choose their parent in the previous generation. In the reference [41],
the weak seed bank model is introduced with µ having a finite support, while [8]
extends this model to µ with infinite support and finite expectation.

1.2.2 Convergence of the genealogical process

Kaj et al. [41] and Blath et al. [8] showed that the limit of the rescaled ancestral
process of a sample of size n converges, as N goes to infinity, to a time-changed King-
man n-coalescent. The coalescence rate should be slowed down due to the ancestors’
structure, since two lineages jump among generations before they fall into a common
generation, and one coalescence can occur.

In this introduction, we present the case when µ has finite support [m]. For the sake
of simplicity, we consider the block counting process associated with the ancestral
lineages. For this purpose, we see the population’s state through a window consisting
of m consecutive generations.

Definition 1.2.2. Ancestral process. Consider a sample of n ≤ N individuals that
live between generation 0 and m− 1 (backward in time). Let AN,n(k) be the number
of most recent ancestors of the sample living between generation k and k+m− 1, see
Figure 1.2. The sample reaches its MRCA when AN,n(k) = 1 for some k ≥ 0.

The definition is generalized in [8] to a partition-valued process, and its convergence
towards a time-changed Kingman coalescent is established.
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Theorem 1.2.3. [41],[8]. Suppose that β := 1/E[iν1 − iν0 ] > 0. As N → ∞, the
ancestral process {AN,n(⌊Nt/β2⌋)}t≥0 converges weakly in D[n][0,∞) to the block coun-
ting process of a Kingman n-coalescent.

The key tool to prove this result relies on studying the time to the ancestor of two
individuals. The complete picture is as follows.

Theorem 1.2.4. [8]. Let ν, ω ∈ VN belonging to the same generation and let τ be the
time to their MRCA,

τ := inf{i ≥ 0 : A(ν) ∩ A(ω) ∩ ({−i} × [N ]) ̸= ∅}.

Suppose that the tails of µ are of the form µ(n, n+ 1, ...) = nαL(n) for α ∈ (0,∞)
and a slowly varying function L.

(i) If α ∈ (0, 1
2
) then P(A(ν) ∩ A(ω) ̸= ∅) < 1 for all N ∈ N.

(ii) If α ∈ (1
2
, 1) then P(A(ν) ∩ A(ω) ̸= ∅) = 1 and E[τ ] = ∞ for all N ∈ N.

(iii) If α > 1 then P(A(ν) ∩ A(ω) ̸= ∅) = 1 for all N ∈ N and limN−→∞ E[τ ]/N =
1/β2.

The intuitions of the proof of Theorem 1.2.3 can be found in [41], when µ has finite
support [m] (satisfying case (iii)). As we mentioned before, the population’s state
can be seen through a window, which consists in m consecutive generations. We
formulate this in terms of a space-time urn model. Each urn represents a generation
and is labeled 0, 1, .... The urn with label 0 corresponds to the current generation, and
the other urns correspond to the generations 1, 2, ... backward in time. Furthermore,
each urn contains N cells, and the balls inside the urns represent the individuals. A
m-window is a collection of m consecutive urns. The kth window consists in urns
(k, k + 1, . . . , k +m− 1).

For 1 ≤ n ≤ N , let

Sn :=

{
(x1, x2, ..., xm), xi ∈ N ∪ {0},

m∑
i=1

xi ≤ n

}
.

Let X(0) = (X1(0), ..., Xm(0)) ∈ Sn such that Xi(0) is the number of balls in the (i−
1)th urn at the 0th m-window. The starting configuration is such that

∑m
i=1 Xi(0) =

n. The transition from the 0th m-window to the 1st m-window is made by relocating
the X1(0) balls (the individuals in the 0th urn) independently to the urns 1, 2, . . . ,m
according to the probabilities µ(1), µ(2), . . . , µ(m), respectively. Then, they choose a
cell into the urn uniformly. If a ball falls into an occupied cell or two balls fall in the
same (empty) cell, a coalescence occurs, and thus, the total number of balls decreases
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0th m-window

1st m-window

µ(1) µ(3)

µ(4)

Figure 1.2: An example of jump from the 0th m-window to the 1st m-window with
m = 4, N = 10 and n = 7. In this case AN,n(0) = 7 and AN,n(1) = 6. A coalescence
is produced because one relocated ball falls into an occupied cell.

by one; that is, the balls merge into a single ball. The balls in urns 1, . . . ,m−1 do not
move, see Figure 1.2. Then, X(k) = (X1(k), ..., Xm(k)), where Xi(k) is the number of
balls in urn i+ k− 1, and the transition from the kth m-window to the (k + 1)th m-
window is made by relocating the balls in the kth urn to the urns k+1, . . . , k+m−1
similar as we did before. Thus, {X(k)}k≥0 is a discrete-time Markov chain with values
in Sn. Observe that

AN,n(k) = X1(k) + ...+Xm(k).

Now, let R(k + 1) = (R1(k + 1), . . . , Rm(k + 1)), where Ri(k + 1) is the number of
relocated balls that fell at the ith urn of the (k + 1)th m-window. Given X1(k),
R(k + 1) has a multinomial distribution with parameters X1(k) and µ(1), . . . , µ(m).
In particular

Ri(k + 1) ∼ Bin(X1(k), µ(i)). (1.17)

We calculate the probability that a coalescence occurs after relocating balls. For this
propose assume that there are b balls in a specific urn and r balls are relocated in this
urn.

P(no coalescence) =

(
1− b

N

)(
1− b+ 1

N

)
. . .

(
1− b+ r − 1

N

)
= 1− 1

N

r−1∑
i=0

(b+ i) +O

(
1

N2

)
= 1− 1

N

(
br +

(
r

2

))
+O

(
1

N2

)
.
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From here, observe that the coalescence of exactly two lineages occurs with a prob-
ability approximately equal to (br +

(
r
2

)
)/N , and the coalescence of three or more

lineages occurs with a probability O(1/N2). For N big enough, the event of a multi-
ple coalescence will result negligible.

Now, denote the ith unit vector by ei, set for i ≤ m − 1, ai = Xi+1(k)Ri(k + 1) +(
Ri(k+1)

2

)
and σ(X1(k), . . . , Xm(k)) := (X2(k), . . . ., Xm(k), 0). If we consider all the

urns and condition on X(k) and R(k+1), the chain jumps from X(k) to X(k+1) =
σ(X(k)) +R(k+1) with probability 1− 1

N

∑
i ai(k) +O(1/N2) (no coalescence), and

jumps to X(k + 1) = σ(X(k)) + R(k + 1) − ei with probability 1
N
ai(k) + O(1/N2)

(one coalescence in the ith urn). In summary, the transitions of the block counting
process, given X(k) and R(k + 1), are such that

P(AN,n(k + 1)− AN,n(k) = −1|X(k), R(k + 1))

=
1

N

m−1∑
i=1

Xi+1(k)Ri(k + 1) +
1

N

m∑
i=1

(
Ri(k + 1)

2

)
+O

(
1

N2

)
.

Then, using (1.17), we get

P(AN,n(k + 1)− AN,n(k) = −1|X(k))

= E[P(AN,n(k + 1)− AN,n(k) = −1|X(k), R(k + 1))|X(k)]

= X1(k)
1

N

m−1∑
i=1

Xi+1(k)µ(i) +
1

N

(
X1(k)

2

) m∑
i=1

µ2(i) +O

(
1

N2

)
.

Finally, define for j ≤ m,

βj =

∑m
i=j µ(i)∑m
i=1 iµ(i)

.

Observe that
∑m

j=1 βj = 1 and βj = β1

∑m
i=j µ(i), which implies that the probabilities

βj satisfy

βj = βj+1 + β1µ(j), j = 1, ...,m− 1

and βm = β1µ(m). It is also easy to prove that β1 = β in Theorem 1.2.3.

It is shown in [41] that

E

[
X1(0)

1

N

m−1∑
i=1

Xi+1(0)µ(i) +
1

N

(
X1(0)

2

) m∑
i=1

µ2(i)

]
= β2

(
n

2

)
Thus, the limit genealogies for this model, when time is multiplied by 1/β2, are given
by the Kingman n-coalescent.

25



1.2.3 Duality and forward process

Since the limiting genealogies in the weak seed bank model are given by a time-changed
Kingman coalescent, dual to a time-changed Wright-Fisher diffusion, it is clear that
this diffusion should play the role of the forward frequency process. This observation
appears in [8] but no convergence result is provided. In [46], some work is done in this
direction considering a slightly different model. In chapter 2 we present an extended
work on the weak seed bank model with a more general reproductive mechanism,
such as Cannings model. Also we provide forward and backwards convergence results
extending [41], [8] and [46] and we establish a duality result in the discrete case thanks
to a random graph representation of the model.

1.3 A strong seed bank model

This section presents a seed bank model defined and studied by Blath, González
Casanova, Kurt, and Wilke-Berenguer in 2016 [9]. It is a modification of the Wright-
Fisher model where the seed bank age distribution is geometric. In this model, unlike
the previous one, the evolution is thought like a model with two islands. One island
represents the active population while the other island represents the dormant popu-
lation, and there is migration between them, while the reproductions only happen in
the active population. The size of the dormant population is of order N , and the time
that individuals can be inactive is also of order N . We denominate these assumptions
by the strong seed bank effect.

1.3.1 Definition of the model

Definition 1.3.1. Strong seed bank model, [9]. Consider a haploid population
of fixed size N . Assume that the population additionally supports a seed bank of
constant size M . The N active individuals are called plants and the M dormant
individuals are called seeds. Let 0 ≤ ε ≤ 1 such that ⌊εN⌋ ≤ M and let δ := εN/M .
The N plants from generation 0 produce N − ⌊ϵN⌋ plants by multinomial sampling
(as in the Wright-Fisher model) and ⌊ϵN⌋ seeds in generation 1. Then, ⌊δM⌋ = ⌊ϵN⌋
uniformly (without replacement) sampled seeds from the seed bank in generation 0
become plants in generation 1. Thus, generation 1 is again made of N plants and M
seeds, see Figure 1.3. This random mechanism is then to be repeated independently
to produce the next generations.

Observe that this model has, unlike [41], non-overlapping reproductions.

Suppose that there exist two constants c,K ∈ (0,∞) such that

ε =
c

N
and M =

N

K
. (1.18)
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Figure 1.3: The discrete strong seed bank model. In this picture, N = 5, M = 3
and ⌊εN⌋ = ⌊δM⌋=1, i.e., four plants are produced in each generation by active
individuals, one seed germinates, and one new seed is produced.

In words, c corresponds to the number of seeds that become plants (activation), and
to the number of plants that become seeds (deactivation) at each generation. Then,
the seed bank age distribution is geometric with parameter

δ =
cK

N
.

The parameter K is the relative size of the seed bank with respect to the active
population [9].

1.3.2 The seed bank coalescent

The stochastic process that describes the limiting genealogy of a sample taken from
the strong seed bank model is called the seed bank n-coalescent. We need to introduce
some further notations before we can properly define this process.

The set of marked partitions P{p,s}
n , where s means seed and p means plant, is similar

to the set of partitions of [n], Pn, but additionally each block of a partition π ∈ P{p,s}
n

has a flag which can be either p or s. For example, π = {1, 2, 3}p, {4}s, {5, 6}s, {7}p
is an element of P{p,s}

7 .

Definition 1.3.2. The seed bank coalescent, [9]. The seed bank n-coalescent
{Πn

t }t≥0, with seed bank intensity c > 0 and relative seed bank size 1/K > 0, is the
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Figure 1.4: A possible realization of the seed bank 7-coalescent. Dotted lines indicate
inactive individuals, and the crosses mean that an individual becomes a plant or a
seed.

continuous time Markov chain with values in P{p,s}
n having the next dynamics. Each

pair of plant blocks merges at rate 1, independent of each other. Moreover, any block
can change its flag from p to s at rate c, and vice versa at rate cK.

The seed bank coalescent, {Π(t)}t≥0 is defined as the unique Markov process dis-
tributed as the projective limit, as n goes to infinity, of {Πn(t)}t≥0.

The block-counting process of the seed bank coalescent is the two-dimensional Markov
chain {Nn(t),Mn(t)}t≥0 with values in (N∪{0})×(N∪{0}) and the following transition
rates, for t ≥ 0.

(N(t),M(t)) jumps from (i, j) to

 (i− 1, j), ar rate
(
i
2

)
(coalescence)

(i− 1, j + 1), at rate ic (deactivation)
(i+ 1, j − 1), at rate jcK (activation).

Note that, for t ≥ 0, N(t) can have either an upward jump if a seed becomes a plant,
or a downward jump if there is a coalescent event or a plant becomes a seed. Each
jump has size one.

To see that the seed bank n-coalescent is the limit genealogy of a sample taken from
the strong seed bank model, we can adapt the intuitions of section 1.1.2. Take a
sample of size n ≤ N where, for simplicity, all individuals are plants from generation
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zero. We go backward in time, and in each generation, we verify if there is an ancestor
of the sample among the plants or the seeds. Let {ΠN

n (k)}k≥0 denote the ancestral

process with values in P{p,s}
n , where two individuals belong to the same block of ΠN

n (k)
if they have a common ancestor at generation −k and the flag of the block indicates
if the ancestor is a plant or a seed.

Observe that, in the seed bank model, only the plant lineages can coalesce. Then, by
(1.18), the probability that a given block with flag p changes its flag by s at the next
generation is ε = c/N . The probability that a given block with flag s changes its flag
by p is δ = cK/N , and the probability that two given blocks with flag p merge is
(1− c/N)2 1/N . We start with n blocks, and the blocks’ dynamics are independent.
The probability of having simultaneous changes of flags, simultaneous or multiple
coalescence is of order 1/N2 or smaller. A recent work of Blath, Gónzalez Casanova,
Kurt, and Wilke-Berenguer, [10], presents the seed bank coalescent with simultaneous
switching.

Theorem 1.3.3. [9]. For any n ∈ N, suppose that (1.18) holds. The ancestral process
{ΠN

n (⌊Nt⌋)}t≥0 converges weakly as N → ∞ to the seed bank n-coalescent {Πn(t)}t≥0

starting with n plants.

1.3.3 Properties of the seed bank coalescent

Unlike the Kingman coalescent, the seed bank coalescent does not come down from
infinity.

We use the following notation: when the system starts with n plants and m seeds, we
refer to the block-counting process as (N(n,m),M(n,m)), and we simplify (N(n,0),M(n,0))
to (Nn,Mn).

Theorem 1.3.4. [9]. For any (n,m) ∈ (N ∪ {0}) × (N ∪ {0}) such that n + m is
(countably) infinite, then

P(∀t ≥ 0 : M(n,m)(t) = ∞) = 1.

If the system starts with an infinite number of plants and zero seeds, the number
of deactivations is infinite a.s. This implies the presence of an infinite amount of
lineages in the seed bank in all cases. To prove this, we can use a coupling where
the new model does not see the reactivated individuals. Then if we let Yn(t) be the
number of deactivations up to time t ≥ 0, this random variable can be bounded
by the sum of n independent Bernoulli random variables with respective parameters
cj/(

(
j
2

)
+ cj), 1 ≤ j ≤ n, the rate of deactivation over the rate of coalescence plus the

rate of deactivation. This is then easy to show that for any t > 0 and any k ∈ N,

lim
n→∞

P(Yn(t) < k) = 0.
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This implies, together with other observations that,

P(∀t > 0 : Y∞(t) = ∞) = 1.

It means that there have been an infinite amount of movements to the seed bank,
a.s. Finally, we can easily check that if we start with an infinite number of seeds, the
number of seeds remains infinite for all t > 0 a.s.

The next property concerns the time to the most recent common ancestor (TMRCA)

σn = inf{t > 0 : Nn(t) +Mn(t) = 1} = inf{t > 0 : Nn(t) = 1, Mn(t) = 0}. (1.19)

Theorem 1.3.5. [9]. For all c > 0 and K > 0, the expectation of σn is bounded as
follows.

E[σn] ≍ log log n,

where ≍ means the weak asymptotic equivalence of sequences, that is

lim inf
n→∞

E[σn]

log log n
> 0

and

lim sup
n→∞

E[σn]

log log n
< ∞.

The intuition behind this result is that one seed has to become a plant before it is
involved in a coalescence event. Thus the TMRCA of a sample of n plants is directed
by the number of seeds and the time they take to coalesce. Thanks to the coupling
with Bernoulli random variables, we can show that the number of individuals that
visit the seed bank before they coalesce is asymptotically of order log n, and as the
rate of migration from the seed bank is linear, the time of reactivation of these seeds
is of order log log n.

In Chapter 3 we present the asymptotic behavior of some relevant functionals of the
seed bank tree, for example, the behavior of the first time that a plant becomes a
seed, the first time that a seed becomes a plant, the number of plants and seeds at
these times, and the total branch length of the tree, where we start with n plants and
zero seeds.

1.3.4 Forward process and moment duality

As in Section 1.1.1, we suppose that there are two alleles, a and A, in the popula-
tion and we denote by {UN(k)}k≥0 the A-allele frequency process of plants, that is,
UN(k) is the number of plants with type A divided by N at generation k. Also, let
{V M(k)}k≥0 be the A-allele frequency process of seeds. The two-dimensional process
is a discrete-time Markov chain with values in BN × CM , where

BN =

{
0,

1

N
,
2

N
, ..., 1

}
and CM =

{
0,

1

M
,
2

M
, ..., 1

}
.
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Proposition 1.3.6. [9]. Suppose that conditions (1.18) hold. Consider test func-
tions f ∈ C3([0, 1]2). Consider a pair of elements (uN , vM) ∈ BN × CM con-
verging to (u, v) ∈ [0, 1]2 Then, the discrete generator AN of the frequency process
{UN(k), V M(k)}k≥0 has the following limit

lim
N→∞

ANf(uN , vM) = Af(u, v),

where A is defined by

Af(u, v) := c(v − u)
∂f

∂u
(u, v) + cK(u− v)

∂f

∂v
(u, v) +

1

2
u(1− u)

∂f 2

∂u2
(u, v). (1.20)

The forward limit process can be reformulated with a system of SDEs.

Corollary 1.3.7. [9]. Suppose that conditions of Proposition 1.3.6 hold. If UN(0) →
u a.s., and V M(0) → v a.s., then

{UN(⌊Nt⌋), V M(⌊Nt⌋)}t≥0 ⇒ {U(t), V (t)}t≥0 (1.21)

on D[0,∞)([0, 1]
2) as N → ∞, where {U(t), V (t)}t≥0 is a two-dimensional diffusion

solving

dU(t) = c(V (t)− U(t))dt+
√
U(t)(1− U(t))dB(t),

dV (t) = cK(U(t)− V (t))dt,

where B is standard Brownian motion.

Finally, we enunciate a duality result between the block counting process of the seed
bank coalescent and the forward frequency process.

Theorem 1.3.8. [9]. Let (u, v) ∈ [0, 1]2 and (n,m) ∈ N ∪ {0} × N ∪ {0}. Denote by
Eu,v the law of the forward frequency process given that (UN(0), V N(0)) = (u, v), and
by En,m the law of the block counting process of the seed bank coalescent given that
(N(0),M(0)) = (n,m). Then, for every t ≥ 0

Eu,v[(U(t))n(V (t))m] = En,m[u
N(t)vM(t)]. (1.22)

In this case, the duality of Definition 1.1.8 is obtained with the function

F (u, v;n,m) := unvm.

The proof results from computations on generators, as for Theorem 1.1.9.
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1.4 Inference techniques

1.4.1 Models for mutations

We have studied models where the offspring inherit the types of their parents. This
section focuses on the population types, which can change through mutations.

All mutations are changes in the DNA sequence. Researchers can measure the mu-
tation rate at several scales, for example, mutation across the entire genome (as the
rate per genome per generation) or mutation in a gene (as the rate per locus per gen-
eration). Each gene’s particular location on the chromosome is more formally called
a genetic locus, [47].

Consider a Wright-Fisher model where individuals can mutate. Let µ̂ be the proba-
bility per individual per generation of a mutation for the locus under consideration.
Suppose we observe only one ancestral lineage, and X denotes the number of gener-
ations until we see a mutation. This has a geometric distribution with parameter µ̂.
Then, suppose that Nµ̂ ∼ µ for some µ > 0. Rescaling the time, we have for t > 0.

P(X ≤ ⌊Nt⌋) = 1− (1− µ̂)⌊Nt⌋ −→ 1− e−µt as N → ∞.

In the Wright-Fisher model, the limit genealogy of a sample of size n is given by the
Kingman n-coalescent, and additionally, we add mutations in the ancestral lineages.
Under these hypotheses, the probability of observing a coalescence and a mutation in
the sample in a single generation is O (1/N2), disappearing in the rescaling.

A different point of view to add mutations in the Kingman coalescent is by throwing
down an independent Poisson process of mutation points on each lineage with pa-
rameter µ. To ensure that the types in the sample are consistent with the pattern
of mutation deriving from such a Poisson process, we must first assign a type to the
MRCA. Then we go back through the coalescent tree assigning types to ancestral
lineages ([27], Chapter 2, section 2.4) see figure 1.5.

In the next sections, we introduce some important models of mutation.

1.4.2 Infinite alleles model

We consider a haploid population of size N , with parent independent mutation. ([27]
Chapter 2, section 2.4). In the parent independent mutation model, if an individual
has a mutation that occurs at a constant rate per individual independent of the current
type, her new type is chosen according to a probability distribution independent of the
previous type. In the infinite alleles model, every time a mutation occurs, it generates
a new, unique allele (type) that has never been seen before in the population. The
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Figure 1.5: Mutations added to a Kingman 5-coalescent by superimposing an indepen-
dent Poisson process of mutations on each branch. The crosses represent mutations.
In this example, the individuals with label 4 and 6 have the same (ancestral) type.

infinite alleles model can be seen as the parent independent mutation model’s limit
when the number of alleles tends to infinity ([27] Chapter 2, section 2.4).

We are interested in the allelic partition, resulting when we identify individuals car-
rying the same type at the observed gene. The allelic partition is described through a
vector called the allele frequency spectrum, which describes the number of different al-
leles with a given multiplicity. The Ewens’ sampling formula gives the law of the allele
frequency spectrum when the genealogies are given by the Kingman n-coalescent.

In the infinite alleles model, not all the mutations can be observed from a present
sample. If two mutations occur in the same lineage, the ancient one is hidden by the
new one. The genealogical process resulting is a coalescent with killing (or Kingman n-
coalescent with freezing), see figure 1.6. The block-counting process of the Kingman
coalescent with killing denoted by (NK

t , Dt)t≥0, is a continuous time Markov chain
with values in N0 × N0 and transition rates

From (i, j) to

{
(i− 1, j) at rate

(
i
2

)
(coalescent)

(i− 1, j + 1) at rate iµ (killing)

The next result provides the entire distribution of the sample following the infinite
allele model. To simplify notations, set θ = 2µ.

Theorem 1.4.1. Ewens’ sampling formula, [30]. Let ai be the number of alleles
present i times in a sample of size n. The distribution of the allele frequency spectrum
is given by

p(a1, . . . , an) =
n!

θ(θ + 1) · · · (θ + n− 1)

n∏
j=1

θaj

jajaj!
. (1.23)
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Figure 1.6: The Kingman coalescent with killing resulting from figure 1.5.

Now, in terms of the allelic partitions that the Kingman coalescent with killing gen-
erates, we can reformulate the last result.

Theorem 1.4.2. ([2] Chapter 2, section 2.3) Let Π be the allelic partition obtained
from the Kingman coalescent and the infinite alleles model with mutation rate µ = θ/2.
Then Π has the law of a Poisson-Dirichlet random partition with parameter θ. The
allelic partition Π is such that his restriction to [n], for all n ≥ 1, has the distribution
(1.23), which defines a consistent family of partitions as n increases.

We can rewrite (1.23) as

p(a1, . . . , an) = αθ,n

n∏
j=1

e−θ/j (θ/j)
aj

aj!
,

where αθ,n =
n! exp{

∑n
j=1 θ/j}

θ(θ+1)···(θ+n−1)
is a normalization constant that depends on θ and n.

Observe that the allele frequency spectrum has the distribution of independent Poisson
random variables W1, . . . ,Wn with respective parameters θ/j, conditioned on the
event

∑n
j=1 iWj = n.

One manner to prove the Ewens’ sampling formula is showing that Π can be con-
structed as a Chinese Restaurant Process with parameter θ.

Definition 1.4.3. Chinese Restaurant process ([2] Chapter 1, section 1.3). We
consider a random partition process {πn}n such that πn ∈ Pn and being constructed
by induction. Set π1 = {1}. We build πn+1 from πn by assigning a block to (n + 1).

With probability
θ

θ + n
, (n+1) stands in a new block. With probability

k

θ + n
, (n+1)

is assigned to an existing block of size k, with 1 ≤ k ≤ n. There is no problem in
extending this process to π ∈ P such that its restriction to [n] is πn for all n ≥ 1.
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The name of the Chinese Restaurant process comes from the next interpretation, when
θ = 1. Consider an empty restaurant with round tables. A first customer arrives at the
restaurant and sits by himself. When a new customer arrives, she decides, uniformly
at random, between sitting at an empty table or sitting to the right of a customer
already present in the restaurant. The partition obtained by this process, where each
table represents a block, is that of the Chinese Restaurant process.

The random partition π obtained from the Chinese Restaurant process is a Poisson-
Dirichlet random partition with parameter θ. In particular, π is exchangeable.

Returning to the idea of the proof of Theorem 1.4.2, define 0 < tn−1 < ... < t1 < t0
to be the times at which we have an event (mutation or coalescence) in the Kingman
n-coalescent with killing. Thinking as for the Chinese Restaurant process we label
each customer with ti. At time t0, we add one lineage (it is the MRCA). During the
time interval (t1, t0], we have the partition π1 = {1}. Suppose that πk is the partition
during time (tk, tk−1]. Then, given πk, at time tk we have a coalescence or a mutation.
If the event was a mutation, (k+1) will open a new block of the partition πk+1. But if
the event was a coalescent, (k+1) will join one existing block, see figure 1.7. Suppose
that blocks of πk have size n1, ..., nj for some j ≥ 1 and

∑j
i=1 ni = k. Observe that

between time tk and tk+1, there are k + 1 lineages. Then,

P ( new block |πk) =
θ(k+1)

2(
k+1
2

)
+ θ(k+1)

2

=
θ

k + θ

P (k + 1 joins the jth block |πk) =

(
k+1
2

)(
k+1
2

)
+ θ(k+1)

2

nj

k
=

nj

k + θ

In the last probability, the first term corresponds to one coalescence, and the second
is the probability of this coalescence occurs with a block of size nj.

A large literature in population genetics is dedicated to the generalization of sampling
formulas to other models. In Chapter 3, we present a sampling formula related to the
seed bank coalescent, adapting the Chinese Restaurant process, with the difference
that we start with a random number of tables.

1.4.3 Infinite sites model

Now, suppose that we observe a fixed chromosome. In the infinite sites model, every
time a mutation occurs in a lineage, it affects a new, never touched before or after,
site (locus) of the chromosome ([2] Chapter 2, section 2.3,[27] Chapter 2, section
2.4). Unlike the infinite alleles model, the infinite sites model keeps up variations in
chromosome sites. In the first model, the individuals only carry information about
the most recent mutation. In contrast, in the second model, they carry information
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Figure 1.7: Representation of the Kingman coalescent with killing in terms of the
Chinese Restaurant process. The blue circles represent the tables and the black
circles represent the customers.

about all their ancestors’ mutations because these are transmitted unchanged to all
offspring and will be visible forever.

We still assume constant mutation rate, and given the coalescent tree, mutations fall
on it according to a Poisson process with parameter θ/2 per unit length. In this model,
we are interested in the site frequency spectrum, SFS, it is a vector (Sn,1, . . . , Sn,n−1)
where Sn,i is the number of sites at which exactly i individuals have a mutation.

Theorem 1.4.4. ([2] Chapter 2, section 2.3, [25] Chapter 2, section 2.1) Under
the infinite sites model, the expected value of each component of the site frequency
spectrum is

E[Sn,i] =
θ

i
(1.24)

As a straightforward consequence, the total number of sites at which a mutation
occurs, Sn (also called the number of segregating sites), has the following expectation

E[Sn] = θ

n−1∑
i=1

1

i
. (1.25)

The latter result can be easily obtained by observing that, given the coalescent tree,

Sn is a Poisson random variable with parameter
θ

2
Ln, where Ln is the total length
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of the Kingman n-coalescent, that is, the sum of the lengths of all the branches in
the tree. The waiting times for a coalescence are independent and exponentially
distributed with parameters

(
i
2

)
, 2 ≤ i ≤ n, so

Ln =
n∑

i=2

i(
i
2

)Ei =
n∑

i=2

2

i− 1
Ei

where the Ei’s are i.i.d. standard exponential random variables. Then,

E[Sn] = E[E[Sn|Ln]] =
θ

2
E [Ln] = θ

n−1∑
i=1

1

i
.

Actually, the asymptotics of Ln can be precised.

Theorem 1.4.5. ([27] Chapter 2, section 2.6) The variable Ln/2 is distributed as the
maximum of n− 1 i.i.d. standard exponential random variables. In particular

lim
n→∞

Ln

2
− log n = Y (1.26)

in distribution, where Y has a Gumbel distribution with density f(y) = exp{−y−e−y}.

As a consequence, we get the following almost sure convergence for Sn.

lim
n→∞

Sn

log n
= θ. (1.27)

This type of results is very interesting to obtain estimators of θ, since Sn is easily
observable.

In the Kingman coalescent case, it is easy to obtain the expected value and the asymp-
totic of Ln. However, in other coalescents, obtain these results is more complicated.
The main goal of Chapter 3 is to present similar results on the length of the seed
bank coalescent.
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Chapter 2

Seedbank Cannings Graphs: How
dormancy alleviates random
genetic drift

In the last two decades, Cannings models and their multiple merger genealogies ([63,
60, 66] and more recently [6, 31, 36]) as well as seed bank models based on individual
dormancy ([41, 8, 9, 10]) have become significant topics in mathematical population
genetics. One of the unifying themes in both modeling areas is that they arise from
extensions of the Wright-Fisher model, and that classical population genetics forces
such as genetic drift and selection are affected in important ways. While the theory,
in particular on the side of seed bank models, is still incomplete, important progress
has been made, in particular for Cannings models.

An important tool for the analysis of both models is given by moment duality for
Markov processes. This technique establishes a mathematical relation between for-
ward and backward in time processes. The celebrated duality between the Wright-
Fisher diffusion and the Kingman colescent was gradually generalized to a wide class
of neutral population genetics models, including some finite size discrete populations
such as Cannings-type models [34]. In this case, the duality leads to asymptotic re-
sults for both forward frequency and genealogical processes. However, for seed bank
models the duality tool still has to be set. It was established only in one limiting
setting (with infinite population [9]). For finite population size systems (finite N),
graphical constructions are highly useful, in particular if they allow the simultaneous
construction of forward and backward processes (the most elegant tool here is cer-
tainly the look-down construction of Donnelly and Kurtz [20, 21], which even allows
for nested approximating particle systems and also convergence results in the Can-
nings model case - for the seed bank model, look-down constructions are currently
being developed but have not been published yet).

For seed bank models, approximating finite size graph-theoretic models have followed
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two approaches. For the backward in time model of [41], which is based on the Wright-
Fisher model with additional multi-generational jumps of (bounded) size, the system
has been extended a) to geometric jump sizes of bounded expected range in [46] (which
also provide some insight into the forward in time frequency diffusion), b) to the
general finite expectation case in [8], and c) even to unbounded (heavy-tailed) jump
sizes in [11]. A second modeling frame is given by an external modelling of the seed
bank in terms of a “second island” (in the spirit of Wright’s island models), effectively
leading to geometric jump sizes on the evolutionary scale of order N (expectation
scales with N). Here, forward and backward limits have been constructed, giving rise
to the seed bank diffusion and the seed bank coalescent [9] (see more analysis and
generalization in [35, 10] and an interesting connection with metapopulations in [49]).

Both modelling frames (generational jumps and second island) have their advantages
and disadvantages. For the Wright-Fisher models with multi-generational jumps, one
typically loses the Markov property. For the island version, one retains the Markov
property, but then needs to investigate two-dimensional frequency processes, which in
the limit are harder to analyze than one-dimensional diffusions, since e.g. the Feller
theory is missing (this can in part be replaced by recent theory for polynomial diffu-
sions [12]). Interestingly, it turns out that for the limiting frequency processes, both
approaches are two sides of the same medal. The two-dimensional seed bank diffu-
sion (corresponding to the island version) can be reformulated as a delay Stochastic
Differential Equation (losing the Markov property), which then can be interpreted in
terms of the approach of [41], see [12].

In none of the above papers, more general reproductive mechanisms, such as based
on Cannings’ models, have been analyzed. One motivation for this paper is to close
this gap. We present an extended framework for the simultaneous construction of
seed bank models with general multi-generational jumps distribution and Cannings-
type reproductive laws satisfying a paintbox-construction. We are also able to provide
forward and backward convergence results (extending [41], [46] and [8]) and to provide
an explicit sampling duality, which is valid already in the finite individual models.
Note that the interplay of general reproduction and seed banks with other evolutionary
forces can be subtle, and we provide a frame for its analysis (also regarding the real-
time embedding of coalescent-based estimates, see e.g. [10]).

In section 2.1 we construct a random graph that allows us to embed the ancestry
and the frequency processes of both Cannings and seed bank models simultaneously
and study the duality relation of the processes forward and backward in time. Fur-
thermore, we analyze the scaling limits of the ancestral process in presence of skewed
reproduction mechanisms and dormancy. We give conditions for convergence to the
Kingman coalescent and study scenarios beyond this universality class, where we are
able to describe how weak seed bank phenomena reduce the typical size coalescence
events, when combining seed banks with Cannings models that would, in absence of
the seed bank component, converge to a Λ or a Ξ coalescent. Section 2.2 uses the
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moment duality to formally prove convergence of the frequency process to a Wright-
Fisher diffusion. This intuitively clear result was missing in the literature, probably
because the lack of the Markov property of the frequency process that makes usual
techniques fail.

2.1 A random graph version of the model of Kaj,

Krone and Lascoux

Consider a discrete-time haploid population of constant size N ≥ 1 at each generation.
The vertex set V N = Z × [N ] represents the whole population. We denote the g-th
generation by V N

g := {v ∈ V N : v = (g, k) for some k ∈ [N ]}. Set a probability
measure WN on the probability measures on [N ]. Let {W̄N

g }g∈Z be a sequence of
independentWN -distributed random variables with W̄N

g = {WN
v }v∈V N

g
. Each variable

WN
v gives the reproductive weight of the individual v in the population graph. Also

consider a sequence {mN}N≥1 of integers and set a probability measure µN on [mN ].
Let {JN

v }v∈V N be a collection of independent µN -distributed random variables. The
variable JN

v says how many generations ago individual v’s father is living. Finally, set
a collection of random variables in [N ], {UN

v }v∈V N such that UN
v is the label of the

father of v. Its conditional distribution is

P(UN
(g,i) = k|JN

(g,i) = j, {W̄N
g }g∈Z) = WN

(g−j,k).

Definition 1. (The seed bank random di-graph) Consider the random set of directed
edges

EN = {(v, (g − JN
v , UN

v )), for all v = (g, i) ∈ V N}.

The seed bank random di-graph with parameters N , WN and µN is given by GN :=
(V N , EN).

Two classical examples are

� the Kaj, Krone and Lascoux (KKL) seed bank graph [41], in this case µN has
finite support [m], i.e. mN = m, and WN = δ(1/N,...,1/N).

� the Cannings model with parameter WN [14, 15, 60], in this case µN = δ1.

For every u, v ∈ V N we denote by δ(u, v) the distance of u and v in the graph GN ,
i.e. the number of vertices in a path from u to v or from v to u. Now let us define
the ancestral process associated with this graph.
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Figure 2.1: In this case N = 8 and mN = 2. The gray circles represent the members
of S0 = {v1, v2, v3, v4, v5} where, for example, v2 = (0, 4) and v5 = (−1, 3). The
light gray circles represent the ancestors of the sample. Ā8

0 = {4, 1}, Ā8
1 = {2, 2},

Ā8
2 = {3, 0}, Ā8

3 = {1, 1}, Ā8
4 = {1, 0}, Ā8

5 = {1, 0}.

Definition 2 (The ancestral process). Fix a generation g0 and Sg0 consisting in a
sample of individuals living between generation g0 and g0 − mN + 1, i.e. Sg0 ⊂
∪mN

i=1V
N
g0+1−i. For every g ≥ 0, letAN

g be the set composed by the most recent ancestors
of the individuals of Sg0 that live at a generation g0 − g′ for some g′ ≥ g, that is

AN
g = {v ∈ ∪∞

g′=gV
N
g0−g′ : ∃u ∈ Sg0 such that δ(u, v) ≤ δ(u, v′) for all v′ ∈ ∪∞

g′=gV
N
g0−g′}.

Define, for all i ∈ [mN ],
AN,i

g = |AN
g ∩ V N

g0−g+1−i|
and ĀN

g = (AN,1
g , . . . , AN,mN

g ). We call {ĀN
g }g≥0 the ancestral process. In the sequel,

we consider the initial configuration Sg0(n̄), for n̄ = (n1, . . . , nmN
), such that ni ≥ 0

individuals are uniformly sampled (with repetition) from generation g0 + 1 − i. We
denote the law of the ancestral process of this sample by Pn̄. See Figure 2.1 for an
illustration.

For simplicity, we suppose that sup{i ≥ 1 : ni > 0} does not depend on N . This
model was introduced by Kaj et al. [41] directly, in the sense that they construct
a random graph only implicitly. Our construction permits to provide a transparent
relation between the ancestral process and the forward frequency process defined in
Section 2.2. Observe that {ĀN

g }g≥0 is a Markov chain.
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Proposition 1 (Proof of Theorem 1 in [41]). Let M(n) be a multinomial random
variable with parameters n and {µN(i)}i≥1. Also, for any n̄ = (n1, . . . , nmN

) ∈ [N ]mN ,
let Z(n̄) = (n2, . . . , nmN

, 0)+M(n1). Then, the transitions of {ĀN
g }g≥0 can be written

in terms of M and Z as follows.

� Pn̄(Ā
N
1 = Z(n̄)) = 1−

∑∞
i=1

1
N
[
(
n1

2

)
µN(i)2 + µN(i)n1ni+1] + o(N−2)

� Pn̄(Ā
N
1 = Z(n̄)− ei) =

1
N
[
(
n1

2

)
µN(i)2 + µN(i)n1ni+1] + o(N−2)

where ei is the vector with the i-th coordinate equal to 1 and the others are equal to
0, for all i ≥ 1.

Proof. We need to make two observations. First note that all the randomness in the
transitions of the chain {ĀN

g }g≥0 lies in what happens to the first coordinate. If for
some g ≥ 0, ĀN

g = (0, n2, . . . , nmN
) it is easy to see that ĀN

g+1 = (n2, . . . , nmN
, 0)

almost surely. On the other hand, if n1 > 0, the individuals that are in AN
g ∩ V N

g0−g

cannot belong to AN
g+1, and then each of these individuals, if denoted by v, must be

replaced by an individual which lives JN
v generations in the past, that is

Pe1(Ā
N
1 = ei) = µN(i).

Further, if n1 > 1, one needs to find n1 new ancestors, but some of them could be
the same due to some coalescence. The complete picture is as follows: for i ≥ 2 and
j, k ≥ 1, and by denoting e0 for the null vector,

P2e1+ei(Ā
N
1 = ei−1 + ej + ek) =



2µN(j)µN(k) if i− 1 ̸= j ̸= k
(µN(j))2(1− 1/N) if i− 1 ̸= j, j = k
2µN(i− 1)µN(k)(1− 1/N) if i− 1 = j, j ̸= k
2µN(i− 1)µN(j)1/N if i− 1 ̸= j, k = 0
2(µN(i− 1))21/N(1− 1/N) if i− 1 = j, k = 0
(µN(i− 1))21/N2 if j = k = 0

.

(2.1)
The proof follows easily after these observations.

We now construct a less natural backward process which will be very useful when
establishing its moment duality with the forward process in Section 2.2. We provide
an illustrative example right after the definition.

Definition 3 (The window process). Fix a generation g0, and Sg0 ⊂ ∪mN
i=1V

N
g0+1−i.

For g ≥ 1, consider the equivalence relation on Sg0 , that we denote by ∼g, such that
u ∼g v if and only if they have a common ancestor at a generation between g0− g+1
and g0. Let π0 = π1 be the trivial partition made of the isolated elements of Sg0

(singletons) and let πg be the partition induced by ∼g in the sample Sg0 . Let BN
g
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be the set composed by the closest ancestors, living at a generation g0 − g′ for some
g′ ≥ g, of each of the blocks in πg. Then, for 1 ≤ i ≤ mN , we define

BN,i
g := |BN

g ∩ V N
g0−g+1−i|

and B̄N
g := (BN,1

g , . . . , BN,mN
g ). We call {B̄N

g }g≥0 the window process. As for the
ancestral process, we denote by Pn̄ the law of the window process generated from the
initial sample Sg0(n̄).

Example 2.1.1. We illustrate the definition of window process by the realization pic-
tured in figure 2.1. In this case π0 = π1 = π2 = {{v1}, {v2}, {v3}, {v4}, {v5}}. Observe
that even if some individuals reach their common ancestor at generation -2, they re-
main isolated in π2. Then π3 = {{v1, v2}, {v3, v4}, {v5}}, π4 = {{v1, v2, v3, v4}, {v5}},
π5 = {{v1, v2, v3, v4, v5}}. Hence, B8

0 = {v1, v2, v3, v4, v5} and, when moving some
generations backwards, we get B8

1 = {v5, (−1, 5), (−2, 4), (−2, 7), (−2, 7)} and B8
2 =

{(−2, 3), (−2, 4), (−2, 4), (−2, 7), (−2, 7)}. Observe that in B8
2 the ancestors (−2, 4)

and (−2, 7) appear twice.
Also B8

3 = {(−3, 7), (−3, 7), (−4, 6)}, B8
4 = {(−4, 6), (−4, 6)}, B8

5 = {(−5, 5)}. Fi-
nally the values of the window process are B̄8

0 = {4, 1}, B̄8
1 = {2, 3}, B̄8

2 = {5, 0},
B̄8

3 = {2, 1}, B̄8
4 = {2, 0}, B̄8

5 = {1, 0}.

A more intuitive and graphical interpretation is the following: in the genealogical tree
of the sample Sg0 , the variable B

N,1
g gives the number of edges having an extremity at

generation g0−g (plus the number of individuals of Sg0 living at this generation). For
other values of i, BN,i

g is the number of edges crossing generation g0 − g and having
an extremity at generation g0 − g− i+1 (plus the number of individuals of Sg0 living
at this generation). The window process and the ancestral process only differ in the
time where we acknowledge a coalescence event. In the window process coalescence
events only occur in the first coordinate, while in the ancestral process coalescence
events may take place at every entry (see Figure 2.1).

The following equivalent (in law) definition of the window process allows us to com-
pare it with the ancestral process. Let CN(n) be the number of ancestors after one
generation of a sample of n individuals in a Cannings model with weights distributed
as WN . As in Proposition 1, let M(n) be a multinomial random variable with pa-
rameters n and {µN(i)}i≥1. Given B̄N

g−1 = n̄ = (n1, . . . , nmN
) ∈ [N ]mN ,

B̄N
g = (n2, . . . , nmN

, 0) +M(CN(n1)).

in distribution. It is left to the reader to show that indeed both definitions are
equivalent.

The process {B̄N
g }g≥0 can be expressed in terms of a particle system. Fix N,µN

and WN . Let Y N
g = (RN

g , L
N
g ) define a Markov chain with state space N × [N ] and

transition probabilities, conditional on the weights W̄N
g ,

P
(
(RN

g , L
N
g ) = (i, k)|{W̄N

g }g, (RN
g−1, L

N
g−1) = (1, j)

)
= WN

(g0+1−g−i,k)µ
N(i)
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for every i ≥ 1, , k ∈ [N ], and

P
(
(RN

g , L
N
g ) = (i, k)|{W̄N

g }, (RN
g−1, L

N
g−1) = (i+ 1, j)

)
= WN

(g0−g,k)

for every i ≥ 1 and k ∈ [N ].

Proposition 2. Set n =
∑

ni to be the total size of the initial sample. For every
g ≥ 0, consider n independent realizations of Y N

g , that we call Y N,j
g = (RN,j

g , LN,j
g ) for

1 ≤ j ≤ n. Let σN,1 = ∞ and

σN,j = inf
{
g ≥ 1 : Y N,j

g = Y N,j′

g = (1, k), for some j′ < j such that σN,j′ > g,

k ∈ [N ]} .

For all i ≥ 1, set
∑n

j=1 1{RN,j
0 =i} = BN,i

0 . Then, the i-th component BN,i
g of the random

vector B̄N
g is equal in distribution to

∑n
j=1 1{RN,j

g =i}1{σN,j>g}, for all g ≥ 0.

Proof. The proof consists in observing that g0 −RN,j
g − g+1. is equal in distribution

to the generation of the most recent ancestor, living at a generation g0 − g′ for some
g′ ≥ g, of a fixed individual in the initial sample Sg0 . So we couple these two processes.
At the particular times in which RN,j

g = 1 (and thus a coalescence event can occur in
the window process) we take LN,j

g to be the label of the closest ancestor. Then σN,j

corresponds to the generation at which individual j’s ancestral lineage is involved into
a coalescence event with the ancestral lineage of an individual of lower level. Under
this coupling,

BN,i
g =

n∑
j=1

1{RN,j
g =i}1{σN,j>g}

almost surely.

The chain {RN
g , L

N
g }g≥0 provides a very convenient coupling to the ancestral and the

window processes, mainly because {RN
g }g≥0 has an invariant measure given by

νN(i) =
P(JN

v ≥ i)

E[JN
v ]

.

To see this, just observe that the chain has two types of behaviours. Using the notation
Pj(·) = P(·|RN

0 = j), we have

(i) Deterministic transitions: if j > 1, then Pj(R
N
1 = j − 1) = 1

(ii) Random transitions: for j ≥ 1, P1(R
N
1 = j) = P(JN

v = j) = µN(j).
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Then,

∞∑
j=1

Pj(R
N
1 = i)νN(j) = Pi+1(R

N
1 = i)νN(i+ 1) + P1(R

N
1 = i)νN(1)

=
P(JN

v ≥ i+ 1)

E[JN
v ]

+
P(JN

v = i)

E[JN
v ]

= νN(i).

The techniques that we will use to compare two Markov chains, in this case the
rescaled window process and another chain which block-counting process converges
to this of some coalescent, consist in using coupling concepts developed in [52]. Let
us first recall the definition of mixing time (see page 55 of [52]). We denote dN(g) =
maxj∈[mN ] ||Pj(R

N
g ∈ ·) − νN(·)||TV and the mixing time τN = inf{g > 0 : dN(g) <

1/4}.

The main theorem of [41] (proved for µN with finite support and extended to finite
expectation in [8]) consists in showing that the L1 norm of the ancestral process
converges weakly to the block counting process of the Kingman coalescent under a
constant time change. Here we extend this result to the window process and to some
more general Cannings’ mechanism.

Theorem 1 (Convergence of the window process I: Kingman limit). Fix {µN}N≥1

such that βN := E[JN
v ] < ∞ and fix the distribution WN on the N -dimensional

vectors that sum to 1. Let τN be the mixing time of {RN
g }g≥0, cN := NE[(WN

(1,1))
2]

and dN := NE[(WN
(1,1))

3]. Assume that µN(1) > 0 and that

cN/β
2
N → 0, N ετNcN → 0, (1/4)N

ε

β2
N → 0 and dN/(βNcN) → 0.

for some ε > 0. Then, let {B̄N}N≥1 be the sequence of window processes with
parameters N and µN and starting condition B̄N

0 = n̄ for all N ∈ N big enough.
Then,

{|B̄N
⌊tβ2

N/cN ⌋|}t≥0 ⇒ {NK
t }t≥0 (2.2)

as N → ∞, where {NK
t }t≥0 stands for the block counting process of a Kingman

coalescent.

Furthermore, suppose that νN converges to a measure ν as N → ∞. Let V t,K be a
(conditional) multinomial random variable with parameters NK

t and ν. For any fixed
time t > 0, in distribution,

lim
N→∞

B̄N
⌊tβ2

N/cN ⌋ = V t,K . (2.3)
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Note that when βN → β < ∞ the third condition of Theorem 1 is automatically
fulfilled. On the other side, when βN → ∞, then the fourth condition is always
fulfilled because dN/cN ≤ 1. The latter reflects the fact that a strong seed bank effect
makes impossible the existence of multiple merges. The next two results discuss the
interplay between weak seed banks and random genetic drift. Note also that the
second condition implies that τN < ∞ for all but finitely many N , meaning that the
support of µN is finite for all but at much finitely many N .

Denote by ∆ the infinite simplex on [0, 1]. Let Fβ : ∆ 7→ ∆ be such that for A ∈ ∆,
Fβ(A) = {ȳ/β, ȳ ∈ A}. To any finite measure Ξ over ∆, we associate a finite measure
Ξβ defined by the rule

Ξβ(Fβ(A)) = Ξ(A)

for any borelian A on ∆. Observe that Ξβ associates no weight on mass partitions
ȳ = (y1, y2, . . . ) such that

∑
yi > 1/β.

Theorem 2 (Convergence of the window process II: Ξ limit). Fix {µN}N∈N such that
βN = E[JN

v ] < ∞ and fix the distribution WN . Assume that the ancestral process of a
Cannings model driven by WN , that we denote by {CN

g }g≥0 is such that, as N → ∞,

{CN
⌊t/cN ⌋}t≥0 ⇒ {NΞ

t }t≥0

where {NΞ
t }t≥0 stands for the block counting process of a Ξ-coalescent. If βN → β <

∞, then
{|B̄N

⌊t/cN ⌋|}t≥0 ⇒ {NΞβ

t }t≥0. (2.4)

Furthermore. Suppose that νN converges to a measure ν as N → ∞. Let V t,Ξβ
be a

multinomial random variable with parameters ν and NΞβ

t . For any fixed time t > 0,
in distribution,

lim
N→∞

BN
⌊t/cN ⌋ = V t,Ξβ

. (2.5)

It is interesting that the seed bank effect sends the class of Λ-coalescents into itself.

Proof of Theorem 1. The proof consists in coupling the window process {B̄N
g }g≥0 to a

process which is ”always in stationarity”. Recall that the variables Y N,j
g = (RN,j

g , LN,j
g )

define the process that models the distance between g and the level of the ancestor
of the j-th block induced by ∼g .

If we suppose that {B̄N
g }g≥0 starts a.s. with one lineage, i.e. B̄N

0 = ek for some k, it is
easy to verify that it has a stationary distribution ν̄N given by ν̄N(ei) = νN(i). Now,
let Y N,j

g = (RN,j
g , LN,j

g ) where {RN,j
g }g≥0 is a sequence of independent νN -distributed

random variables. Let

σN,j = inf
{
g ≥ 1 : Y N,j

g = Y N,j′

g = (1, k), for some j′ < j such that σN,j′ > g,

k ∈ [N ]} .
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Hence, we define an artificial window process by

Z̄N
g = (ZN,1

g , . . . , ZN,mN
g )

where, as n =
∑

ni,

ZN,i
g =

n∑
j=1

1{RN,j
g =i}1{σN,j≥g}.

The process {|Z̄N
g |}g≥0 is Markovian.

We now proceed in two steps to prove (2.2). First, we calculate the generator of
{|Z̄N

g |}g≥0 in order to discover its scaling limit. Let f : N → R be a bounded function.
Then

GNf(n) = E[f(|Z̄N
1 |)− f(n)] = P(|Z̄N

1 | = n− 1)[f(n− 1)− f(n)]

+O(P(|Z̄N
1 | = n− 2))

=

(
n

2

)
cN
β2
N

[f(n− 1)− f(n)] +O(
dN
β3
N

).

So we conclude that
{|Z̄N

⌊β2
N t/cN ⌋|}t≥0 ⇒ {NK

t }t≥0. (2.6)

Second, let us couple {|Z̄N
⌊β2

N t/cN ⌋|}t≥0 and {|B̄N
⌊β2

N t/cN ⌋|}t≥0 to show that the same

limit is true for the rescaled window process. The coupling consists in constructing
for every i ≥ 1 the random variable (RN,1

ρi
, . . . , RN,mN

ρi
) as the optimal coupling of

(RN,1
ρi

, ..., RN,mN
ρi

) and the stationary distribution (νN)⊗mN , where the times {ρi}i≥1

correspond to the times where the processes {|Z̄N
⌊β2

N t/cN ⌋|}t≥0 and {|B̄N
⌊t/cN ⌋|}t≥0 can

jump. More precisely, if we denote for any p, q ∈ [n], ρN,p,q
k = inf{g > ρN,p,q

k−1 : LN,p
g =

LN,q
g } (with ρN,p,q

0 = 0), then ρi = inf{g > ρi−1 : g = ρN,p,q
k for some p, q ∈ [n] and

some k ∈ N} (with ρ0= 0). Note that we do not precise the dependence on N in the
notation. In our case, the probability that the coupling is successful

pN := inf
n̄∈[N ]mN

Pn̄((R
N,1
ρ1

, . . . , RN,mN
ρ1

) = (RN,1
ρ1

, . . . , RN,mN
ρ1

))

= 1− sup
n̄∈[N ]mN

Pn̄((R
N,1
ρ1

, . . . , RN,mN
ρ1

) ̸= (RN,1
ρ1

, . . . , RN,mN
ρ1

))

= 1− sup
n̄∈[N ]mN

∥Pn̄((R
N,1
ρ1

, . . . , RN,mN
ρ1

) = ·)− (νN)⊗mN (·)∥TV

where Pn̄ stands for the law of {RN,1
g , . . . , RN,mN

g }g≥0 (or {RN,1
g , . . . , RN,mN

g }g≥0) start-
ing at the state n̄ ∈ [N ]mN and where Proposition 4.7 in [52] is used for the last
equality. To prove that pN → 1 when N → ∞, take ε > 0 such that N ετNcN → 0.
The condition µN(1) > 0 implies that, for any i ≥ 1, the processes {RN,i

g }g≥0 are
irreducible. So, by Theorem 4.9 in [52], we have
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||Pn̄((R
N,1
NετN

, . . . , RN,mN

NετN
) = ·)− (νN)⊗mN (·)||TV < (1/4)N

ε

. (2.7)

Then observe that, stochastically, ρ1 ≥ ΓN where ΓN is a geometric random variable
with parameter n2cN ≥

(
n
2

)
cN and thus P(ρ1 < N ετN) ≤ P(ΓN < N ετN) → 0.

Let TN
1 = inf{i ≥ 1 : |Z̄N

ρi
| = 1}. Observe that if |Z̄N

0 | = n (we will use the notation
Pn), stochastically

TN
1 ≤

n∑
i=1

GN
i

where the GN
i ’s are independent geometric random variables with parameter β−2

N .
We finish the proof noting that the trajectories of both processes are identical with
overwhelming probability

Pn(sup
t

||Z̄N
⌊tβ2

N/cN ⌋| − |B̄N
⌊tβ2

N/cN ⌋|| = 0) = E[pT
N
1

N ] (2.8)

≥
∞∑
i=1

(1− 1

β2
N

)i−1 1

β2
N

pniN (2.9)

=
pnN
β2
N

1

1− (1− 1
β2
N
)pnN

→ 1 (2.10)

which gives (2.2).

Finally, let us prove (2.3). Let t > 0 fixed, and suppose that νN converges to a measure
ν. By, equation (2.6) we have that limN→∞ |Z̄N

⌊tβ2
N/cN ⌋| = NK

t . Then, observe that Z̄N
g

has a multinomial distribution with parameters |Z̄N
g | and νN . Thus, in distribution,

lim
N→∞

Z̄N
⌊tβ2

N/cN ⌋ = V t,K . (2.11)

On the other hand, by (2.2), we have that

lim
N→∞

|B̄N
⌊tβ2

N/cN ⌋| = NK
t .

For t > 0 fixed, let us couple Z̄N
⌊tβ2

N/cN ⌋ and B̄N
⌊tβ2

N/cN ⌋ to show that the limit (2.11) is the

same for B̄N
⌊tβ2

N/cN ⌋. As we did before, the coupling consists in constructing the random

variable (RN,1

⌊tβ2
N/cN ⌋, . . . , R

N,mN

⌊tβ2
N/cN ⌋) as the optimal coupling of (RN,1

⌊tβ2
N/cN ⌋, . . . , R

N,mN

⌊tβ2
N/cN ⌋).

The probability that the coupling is successful

ϱN := inf
n̄∈[N ]mN

Pn̄((R
N,1

⌊tβ2
N/cN ⌋, . . . , R

N,mN

⌊tβ2
N/cN ⌋) = (RN,1

⌊tβ2
N/cN ⌋, . . . , R

N,mN

⌊tβ2
N/cN ⌋))

= 1− sup
n̄∈[N ]mN

Pn̄((R
N,1

⌊tβ2
N/cN ⌋, . . . , R

N,mN

⌊tβ2
N/cN ⌋) ̸= (RN,1

⌊tβ2
N/cN ⌋, . . . , R

N,mN

⌊tβ2
N/cN ⌋))

= 1− sup
n̄∈[N ]mN

∥Pn̄((R
N,1

⌊tβ2
N/cN ⌋, . . . , R

N,mN

⌊tβ2
N/cN ⌋) = ·)− (νN)⊗mN (·)∥TV
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Take ε > 0 such that N ετNcN → 0, and observe that βN > 0. This implies that

P(⌊tβ2
N/cN⌋ < N ετN) → 0 as N → ∞. (2.12)

By, (2.7) and (2.12), we have that ϱN −→ 1. This gives (2.3).

Remark 1. Consider two processes, {RN
g }g≥0 and {RN

g }g≥0, the first one starting
with one particle in stationarity and the second one starting with one particle in state
one. If we consider their Doebling coupling (which consists in letting them evolve
according to their respective laws and in merging their paths when they meet for
the first time, see [52], Section 5), their coupling time, TN , is less than two with
probability

νN(1) +

mN−1∑
i=1

µN(i)νN(i+ 1) ≤ νN(1) +
1

βN

mN−1∑
i=1

µN(i) =
1

βN

(2− µN(mN)).

As the process {RN
g }g≥0 visits the state one approximately every βN steps we conclude

that P(TN > N εβ2
N) → 0 when N → ∞. Since τN ≤ inf{t ≥ 0;P(TN > t) < 1/4}, we

obtain that τN ≤ max(N εβ2
N ,mN) and that hypotheses of Theorem 1 can be relaxed

to the following

cN/β
2
n → 0, N ε max(N εβ2

N ,mN)cN → 0, (1/4)N
ε

β2
N → 0 and dN/(βNcN) → 0

with the advantage that they are easier to verify.

Proof of Theorem 2. The proof of (2.4) is similar to that of (2.2) in Theorem 1. In
the present case, let Ii denote the indicator of the event that LN,i

1 = LN,j
1 for some

j ∈ [i− 1]. Note that {CN
⌊t/cN ⌋}t≥0 has generator

CNf(n) = c−1
N E[f(n−

n∑
i=1

Ii)− f(n)]

which by hypothesis converges to the generator of the block counting process of a Ξ-
coalescent. Finally note that, using the same notation, the generator of the artificial
(in stationarity) block counting process {Z̄N

⌊t/cN ⌋}t≥0 is

CNf(n) = c−1
N E[f(n−

n∑
i=1

Ii1{RN,i
1 =1})− f(n)].

As 1{RN,i
1 =1} is a Bernoulli random variable with parameter tending to β−1 and inde-

pendent of Ii, we conclude that

{|B̄N
⌊t/cN ⌋|}t≥0 ⇒ {NΞβ

t }t≥0.

The rest of the proof is identical to Theorem 1.
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2.2 The forward frequency process

In this section we introduce the forward frequency process associated to the weak
seed bank graph, we establish duality results with the ancestral and window processes
introduced in the previous section, and we establish some scaling limits results thanks
to these tools.

Definition 4 (The frequency process). Fix a generation g0 and an initial sample
Sg0 ⊂ ∪mN

i=1V
N
g0+1−i, that we call the type A individuals. Hence, ∪mN

i=1V
N
g0+1−i\Sg0 is the

set of type a individuals. For g ≥ 0, set (omitting again the dependence to Sg0)

XN,i
g =

1

N
|{v ∈ V N

g0+g+1−i : v is not connected to u for some u ∈ ∪mN
i=1V

N
g0+1−i\Sg0}|.

Then, define the process of the neutral frequency of type A individuals {X̄N
g }g≥0, by

X̄N
g = (XN,1

g , . . . , XN,mN
g ).

Set a vector x̄ = (x1, . . . , xmN
) ∈ ([N ]/N)mN . In the sequel, we suppose that the

forward frequency process starts from a fraction x1 of generation 0, a fraction x2 of
generation −1, and so on... We denote this sample by S0(x̄) = ∪mN

i=1 ∪
xiN
k=1 {(1− i, k)}

and we denote the law of the frequency process starting from this configuration by
Px̄.

Again for simplicity, we suppose that sup{i ≥ 1 : xi > 0} does not depend on N .

Proposition 3. Fix the parameters N , µN and WN of the seed bank di-graph. The
processes {X̄N

g }g≥0 and {ĀN
g }g≥0 are sampling duals: for every g ≥ 0, we have

Ex̄[h
0(n̄, X̄N

g )] = En̄[h
0(ĀN

g , x̄)] where h0(n̄, x̄) := Pn̄(AN
1 ⊂ S0(x̄)).

Proof. Suppose that the ancestral process starts at generation g + 1 from the sam-
ple Sg+1(n̄), as in Definition 2. Also suppose that the frequency process starts at
generation 0 from the sample S0(x̄), as in Definition 4. Introduce the functions

hg(n̄, x̄) := Pn̄(AN
g+1 ⊂ S0(x̄)). (2.13)

We can write hg(n̄, x̄) in terms of the forward process by conditioning as follows.

hg(n̄, x̄) =
∑

ȳ∈([N ]/N)mN

h0(n̄, ȳ)Px̄(X̄
N
g = ȳ)

= Ex̄[h
0(n̄, X̄N

g )].

At this point it should be clear that we can also condition according to the backward
process.

hg(n̄, x̄) =
∑

m̄∈[N ]mN

h0(m̄, x̄)Pn̄(Ā
N
g = m̄)

= En̄[h
0(ĀN

g , x̄)].
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X̄8
0 =

(
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,
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8
, 0

)

X̄8
1 =

(
5

8
,
5

8
,
4

8

)

X̄8
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(
6

8
,
5

8
,
5

8

)

X̄8
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(
7

8
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6

8
,
5

8

)

X̄8
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(
7

8
,
7

8
,
6

8

)

Figure 2.2: In this case N = 8, mN = 3 and x̄ =
(
4
8
, 4
8
, 0
)
. The gray circles represent

the members of S0(x̄) = {v1, v2, v3, v4, v5, v6, v7, v8} where, for example, v3 = (−1, 3)
and v6 = (0, 2). The light gray circles represent the sample’s offspring. It is useful to
observe that XN,i

g = XN,i+1
g+1 .
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This implies that for all x̄ ∈ ([N ]/N)mN , n̄ ∈ [N ]mN and g ≥ 1,

En̄[h
0(ĀN

g , x̄)] = Ex̄[h
0(n̄, X̄N

g )].

The sampling duality provides a relation between the forward and the ancestral pro-
cesses. However, in this case the relation is not a moment duality. It is possible to
write explicitly this sampling duality and to use it, but we will rather use the less
natural window process which has the advantage of being precisely the moment dual
of the forward process.

Proposition 4. Fix the parameters N , µN and WN of the seed bank di-graph. The
window process {B̄N

g }g≥0 and the forward frequency process {X̄N
g }g≥0 are moment

duals.

Proof. We will construct a sampling duality that is exactly moment duality i.e duality
with respect to the function H : NmN × [0, 1]mN 7→ [0, 1],

H(n̄, x̄) =

mN∏
i=1

xni
i (2.14)

Fix n̄ ∈ [N ]mN and x̄ ∈ ([N ]/N)mN , and set the samples S0(n̄) and S0(x̄) as in
Definition 2 and Definition 4 (with g0 = 0). Observe that S0(n̄) = {v = (1−i, Uj,i), i =
1, . . . ,mN , j = 1, . . . , ni} where the Uj,i’s form a family of independent uniformly
distributed random variables with values in [N ]. Then, we have

h̃(n̄, x̄) := P(S0(n̄) ⊂ S0(x̄)) =

mN∏
i=1

ni∏
j=1

P((1− i, Uj,i) ∈ S0(x̄)) =

mN∏
i=1

ni∏
j=1

xi = H(n̄, x̄).

Now we prove sampling duality with respect to this function. As in the proof of
Proposition 3, condition on X̄N

g to obtain that Pn̄(BN
g ∈ S0(x̄)) = Ex̄[h̃(n̄, X̄

N
g )] and

condition on B̄N
g to obtain that Pn̄(BN

g ∈ S0(x̄)) = En̄[h̃(B̄
N
g , x̄)].

Now we are able to state an analogue of Theorem 1 for the dual process, using the
moment duality.

Theorem 3 (Convergence of the forward frequency process). Assume that mN ≤
m < ∞ for all N ∈ N. Fix {WN}N≥1 and {µN}N≥1 (and the associated stationary
distribution νN) such that either the assumptions of Theorem 1 hold or the assump-
tions of Theorem 2 hold. Suppose that νN converges to a measure ν on [m] as
N → ∞. Let {X̄N}N≥1 be the sequence of frequency processes with parameters
N , WN and µN and starting condition X̄N

0 = (⌊Nx1⌋/N, . . . , ⌊Nxm⌋/N) for some
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x̄ ∈ [0, 1]m. Then,
i) Under that assumptions of Theorem 1 hold,

{X̄N
⌊tβ2

N/cN ⌋}t≥0 ⇒ {X̄t}t≥0

where X̄t is a vector with m identical coordinates Xt such that X0 = x0 =
∑m

i=1 ν(i)xi

a.s., and {Xt}t≥0 is the Wright-Fisher diffusion (dual of {NK
t }t≥0).

ii) Under the assumptions of Theorem 2,

{X̄N
⌊t/cN ⌋}t≥0 ⇒ {X̄t}t≥0

where X̄t is a vector with m identical coordinates Xt such that X0 = x0 =
∑m

i=1 ν(i)xi

a.s., and {Xt}t≥0 is moment dual of {NΞβ

t }t≥0.

Remark 2. The assumption of finite support for {µN}N≥1 seems to be more than a
technical assumption. It is hard to believe that an asymptotically infinite dimensional
sequence of processes would converge to an infinite dimensional processes with all
entries being equal. A natural question is, what is the limit in this more general
scenario?

Proof. We only write the details for case i), case ii) follows identically. The proof is
a consequence of Proposition 4, Theorem 1 and the moment problem. Let us abuse
the notation and write X̄N

0 = x̄ for every N .

First, let us clarify the role of x0. Recall that the process {Xt}t≥0 is a martingale.
In particular, its expectation remains constant. We claim that for every i ∈ [m],
limN→∞Ex̄[X

N,i

⌊tβ2
N/cN ⌋] = x0. To see this we use duality and convergence to stationarity

of a single dual particle.

lim
N→∞

Ex̄[X
N,i

⌊tβ2
N/cN ⌋] = lim

N→∞
Eei [

m∏
j=1

xj

BN,j

⌊tτNβ2
N

/(τNcN )⌋ ] =
m∑
i=1

xiν(i) = x0. (2.15)

The first equality comes from duality. For the second equality, use the two first
assumptions of Theorem 1 (resp. Theorem 2) to see that β2

N/(τNcN) → ∞ and thus
that the process is in stationarity in the limit. The third equality follows from the
fact that there is only one positive entry of the unitary vector B̄N

⌊tτNβ2
N/(τN cN )⌋ and that

the position of the entry with the one is ν-distributed in the limit.

Now let us study the limiting behavior of one coordinate. Let n ≥ 1.

lim
N→∞

Ex̄[(X
N,1

⌊tβ2
N/cN ⌋)

n] = lim
N→∞

Ex̄[H(n.e1, X̄
N
⌊tβ2

N/cN ⌋)]

= lim
N→∞

En.e1 [H(B̄N
⌊tβ2

N/cN ⌋, x̄)]

= En.e1 [H(V t,K , x̄)]

= En[x
NK

t
0 ]

= Ex0 [X
n
t ].
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The third equality follows from (2.3) and in the fourth equality we used the same
argument as for (2.15). This proves that all the moments of XN,1

⌊tβ2
N/cN ⌋ converge to the

moments of the Wright-Fisher diffusion.

Finally, we check that in the limit all the coordinates of X̄N
⌊tβ2

N/cN ⌋ must take the

same value. To do this we will calculate the square of the difference of two arbitrary
coordinates. Let i, j ∈ [m]. With te same arguments as before,

lim
N→∞

Ex̄[(X
N,i

⌊tβ2
N/cN ⌋ −XN,j

⌊tβ2
N/cN ⌋)

2] = lim
N→∞

[
Ex̄[(X

N,i

⌊tβ2
N/cN ⌋)

2]

+Ex̄[(X
N,j

⌊tβ2
N/cN ⌋)

2]

−2Ex̄[X
N,i

⌊tβ2
N/cN ⌋X

N,j

⌊tβ2
N/cN ⌋]

]
= lim

N→∞

[
Ex̄[H(2ei, X̄

N
⌊tβ2

N/cN ⌋)]

+Ex̄[(H(2ej, X̄
N
⌊tβ2

N/cN ⌋)]

−2Ex̄[H(ei + ej, X̄
N
⌊tβ2

N/cN ⌋)]
]

= lim
N→∞

[
E2ei [H(B̄N

⌊tβ2
N/cN ⌋, x̄)]

+E2ej [(H(B̄N
⌊tβ2

N/cN ⌋, x̄)]

−2Eei+ej [H(B̄N
⌊tβ2

N/cN ⌋, x̄)]
]

= E2ei [H(V t,K , x̄)] + E2ej [(H(V t,K , x̄)]

−2Eei+ej [H(V̄ t,K , x̄)]

= 0.

This ends the proof.
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Chapter 3

The shape of a seed bank tree

In Section 1.3 we introduced the definition of the strong seed bank model and the
associated seed bank coalescent. In this chapter we study the asymptotic behavior
of some functionals of the seed bank tree, which shed light on connections between
theoretical and applied population genetics.

Recall the definition of the model introduced in Definition 1.3.1. Consider a haploid
population of fixed size N . Assume that the population additionally supports a seed
bank of constant size M . The N active individuals are called plants and the M
dormant individuals are called seeds. Let 0 ≤ ε ≤ 1 such that ⌊εN⌋ ≤ M and let
δ := εN/M . The N plants from generation 0 produce N−⌊εN⌋ plants by multinomial
sampling (as in the Wright-Fisher model) and ⌊εN⌋ seeds in generation 1. Then,
⌊δM⌋ = ⌊εN⌋ uniformly (without replacement) sampled seeds from the seed bank in
generation 0 become plants in generation 1. Thus, generation 1 is again made of N
plants and M seeds, see Figure 3.1. This random mechanism is then to be repeated
independently to produce the next generations.

As we mentioned in Section 1.3, the stochastic process that describes the limiting
genealogy of a sample taken from the strong seed bank model is called the seed bank
n-coalescent.

The seed bank coalescent is a structured coalescent with an active part, having the
dynamics of a Kingman coalescent, and a dormant part where the lineages are frozen.
Lineages can activate or deactivate at certain rates, see Figure 3.2 for an illustration.

As an illustration of the connections between theoretical and applied population ge-
netics, there is a close relation between the shape of the tree of a sample of size n
and the number of mutations observed in it. More precisely, suppose that mutations
appear in the genealogy by simply superimposing a Poisson process on the ancestral
lineages (as it is in the infinite sites model, see Chapter 1.4 in [25]). Then, the shape
of the tree determines the distribution of the data obtained by DNA sequencing and
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Figure 3.1: The discrete seed bank model. In this picture N = 5, M = 3 and
⌊εN⌋=1, i.e., in each generation four plants are produced by active individuals, one
seed germinates, and one plant creates one inactive individual.

Figure 3.2: A possible realization of the seed-bank 7-coalescent. Dotted lines indicate
inactive individuals and the crosses mean that there is a deactivation or a reactivation.
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thus, it can be inferred from it. For example, conditionally on the total length of the
Kingman coalescent, denoted by Ln, the number of mutations observed in the sample
has Poisson distribution with parameter µLn, where µ is the mutation rate. Thus,
if we know the asymptotic behavior of the total length of the tree we can deduce
the asymptotic behavior of the number of mutations. This is the key tool for ob-
taining a Watterson-type estimator for the mutation rate, see [25]. Not surprisingly,
asymptotics of the total length of many classical coalescents have been studied, e.g.
in [24, 17, 42, 19].

In [9], it was established that the time to the most recent common ancestor of a
sample of size n in the seed bank coalescent is of order log log n. This is an important
difference with the classical Kingman coalescent, whose height is finite. Our study
establishes that the total length of the tree built from a sample of n plants and zero
seeds is of the same order as that of the Kingman coalescent, behaving like log n, but
with a different multiplicative constant depending on the activation and deactivation
parameters of the model. Moreover, we show that the total active length behaves
like the total length of the Kingman coalescent. This means that it is not possible
to distinguish between the null Kingman model and the alternative seed bank model
using only the tree length unless the dormant individuals have the possibility to
mutate while being in the seed bank. This is actually the case in the metapopulation
framework described in [49]. This conclusion agrees with the main result in [54] where
Maughan observed experimentally that a population of bacteria undergoing dormancy
typically does not have significantly different number of mutations. Furthermore, our
results offer new insights on the reason for this: most of the mutations occur in
the Kingman phase (shortly before the leaves) and in this part of the ancestral tree,
dormancy is irrelevant. On the other hand, populations suffering a significant amount
of mutations while being in the dormant state would be expected to have a higher
evolutionary rate. This remark together with [54] suggests that the mutations that
occur to individuals in latent state are atypical. This is opposed to previous works
suggesting that the normal rate of molecular evolution of bacteria with a seed bank
is evidence that mutations affecting dormant individuals are frequent [54].

More theoretical and experimental work is needed to clarify the role of dormancy in
the flow of evolution. Finer results, such as sampling formulas, can be derived to
discriminate between both null and seed bank models. For the time being, we are
able to describe the seed bank tree in detail as it undergoes different phases. It can
be said that we describe the shape of the seed bank tree.

3.1 Main results

We study some relevant stopping times of the seed bank coalescent, leading to a
complete description of the shape of the tree and explaining how long the genealogies
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spend in successive dynamical phases, as is detailed precisely in Table 3.1 and Figure
3.3.

In definition 1.3.2 we introduced the seed bank n-coalescent. In this chapter, we are
going to work, mainly, with the block-counting process of the seed bank n-coalescent
that we mention again.

The block-counting process of the seed bank n-coalescent is the two-dimensional
Markov chain (Nn(t),Mn(t))t≥0 with values in ([n]∪{0})×([n]∪{0}) and the following
transition rates, for t ≥ 0.

(Nn(t),Mn(t)) jumps from (i, j) to

 (i− 1, j), at rate
(
i
2

)
(coalescence),

(i− 1, j + 1), at rate c1i (deactivation),
(i+ 1, j − 1), at rate c2j (activation).

In the sequel, we suppose that Nn(0) = n and Mn(0) = 0.

For i ∈ [n], we denote by τ in the hitting time of the level i by the process Nn, i.e.
τnn = 0 and

τ in = inf{t ≥ 0 : Nn(t) = i}. (3.1)

Furthermore, let γn and θn be, respectively, the first time that some plant becomes a
seed and the first time that some seed becomes a plant, i.e.

γn = inf{t > 0 : Mn(t−) < Mn(t)} = inf{t > 0 : Mn(t) = 1} (3.2)

and
θn = inf{t > 0 : Mn(t−) > Mn(t)}. (3.3)

Finally, denote by σn the time to the most recent common ancestor, already studied
in [9],

σn = inf{t > 0 : Nn(t) +Mn(t) = 1} = inf{t > 0 : Nn(t) = 1,Mn(t) = 0}.

We first obtain asymptotic results on the random variables γn and θn and the size
of the system at those times. The results obtained in Sections 3.2 and 3.3 can be
summarized in Table 3.1 and Figure 3.3.

Observe that the rate of coalescence is quadratic with respect to the number of plants
while the rate of deactivation (resp. the rate of activation) is linear with respect to
the number of plants (resp. the number of seeds). From [9], we inferred that the
number of seeds accumulated until time θn, Mn(θn), is of order log n. Lemma 3.3.4

suggests that, until time τ
⌊(logn)a⌋
n , for a > 1/2, the block-counting process (Nn(t))t≥0

behaves similarly to that of the Kingman coalescent. However, at time τ
⌊
√
logn⌋

n , the
system reaches a level of

√
log n plants and the times of decay are no longer close to

those of the Kingman coalescent. Indeed, at this time, we claim that the number of
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Stopping time (τ) Asymptotics of τ Asymptotics of Nn(τ) Asymptotics of Mn(τ)

γn 2(1− Y )/Y n Y n 1
θn T/ log n Z log n 2c1 log n
σn log log n 1 0

Table 3.1: Summary of the asymptotic behavior of the functionals of the seed bank
coalescent studied in this work. Here Y is a Beta(2c1, 1) distributed random variable,
T is an exponential random variable with parameter 2c1c2 and Z is a Fréchet random
variable with shape parameter 1 and scale parameter 4c1c2.

seeds is still of order log n and the coalescence events do not dominate any more the
dynamics. The seed bank coalescent then enters into a mixed regime with coalescence
and activation occurring at the same velocity.

In Section 4 we analyze the total length

Ln = An + In (3.4)

where the active length is defined by

An =

∫ σn

0

Nn(t)dt (3.5)

and the inactive length by

In =

∫ σn

0

Mn(t)dt. (3.6)

Our main result is stated as follows.

Theorem 3.1.1. Consider the seed bank coalescent starting with n plants and no
seeds. Then,

lim
n→∞

Ln

log n
= 2

(
1 +

c1
c2

)
in probability.

Interestingly, numerical techniques of [39] used to study the total length for fixed n
show that the balance between active and inactive lengths is equally conserved for
their expectations for any n ≥ 2,

c1E[An] = c2E[In].

The behavior of both An and In is obtained by considering those variables before and
after the time of the first activation θn. Hence, results of Section 3.3 are key tools
for the forthcoming proofs. Theorem 3.1.1 also gives an immediate corollary on the
number of active and inactive mutations on the seed bank tree.
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Figure 3.3: Summary of the asymptotic behavior of the functionals of the seed bank
coalescent studied in this work. Here Y is a Beta(2c1, 1) distributed random variable,
T is an exponential random variable with parameter 2c1c2 and Z is a Fréchet random
variable with shape parameter 1 and scale parameter 4c1c2. The symbol An

p∼ Bn

means that An

Bn
→ 1 in probability. The symbol An

D∼ XBn means that An

Bn
→ X

in distribution. The symbol An ≍ Bn means that C1Bn ≤ E[An] ≤ C2Bn for some
constants C1, C2.

Corollary 3.1.2. Consider the seed bank coalescent starting with n plants and no
seeds. Let Sn be the number of mutations in the seed bank tree. Let µ be the mu-
tation rate for the active individuals and let κ be the mutation rate for the inactive
individuals. Then

lim
n→∞

Sn

log n
= 2

(
µ+ κ

c1
c2

)
in probability.

Finally, in Section 3.5, we establish a sampling formula inspired by Watterson’s ideas
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in [70], which helps us to understand the fine configuration of the blocks of a seed
bank coalescent at given times.

3.2 The time of the first deactivation

We start with the study of γn, the time of the first deactivation defined in (3.2), and
the size of the system at this time. Observe that, if Nn(0) = n and Mn(0) = 0, there
are n−Nn(γn)−1 coalescence events until time γn and we can write

γn =
n∑

i=Nn(γn)+1

Vi

where the Vi’s are independent exponential random variables with respective pa-
rameters

(
i
2

)
+ c1i.

We start with an easy limit result on the variable Nn(γn). Note that, in a classical
Kingman coalescent with mutations appearing at rate c1, the quantity n−Nn(γn)−1
can also be interpreted as the number of coalescence events before the most recent
mutation in the genealogy. Recent studies on the shape of coalescent trees at the time
of the first mutation in a branch can be found in [33], with some direct applications
to coalescent model selection [32].

Proposition 3.2.1. Consider a seed bank coalescent starting with n plants and no
seeds. Then,

lim
n→∞

Nn(γn)

n
= Y

in distribution, where Y ∼ Beta(2c1, 1).

Proof. Let z ∈ (0, 1). We have that

P(Nn(γn) ≤ zn) =
n∏

i=⌊zn⌋+1

(
i
2

)(
i
2

)
+ c1i

=
n−1∏

i=⌊zn⌋

i

i+ 2c1

= exp

−
n−1∑

i=⌊zn⌋

log

(
1 +

2c1
i

) .
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Using that log(1 + x) ∼ x near 0, we obtain

P(Nn(γn) ≤ zn) ∼ exp

−
n−1∑

i=⌊zn⌋

2c1
i


∼ exp

{
−2c1 log

(
1

z

)}
= z2c1

which is the distribution function of a Beta(2c1, 1) random variable.

Now, let us establish the asymptotic behavior of the time of the first deactivation, γn.

Proposition 3.2.2. Consider a seed bank coalescent starting with n plants and no
seeds. Then,

lim
n→∞

nγn = Γ :=
2(1− Y )

Y
(3.7)

in distribution, where Y is Beta(2c1, 1) distributed. The density function of Γ is

fΓ(x) = c1

(
2

2 + x

)2c1+1

for x ≥ 0. In particular, if c1 > 1/2, then the expectation of Γ is finite

E[Γ] =
2

2c1 − 1

and if c1 > 1, the variance of Γ is finite

Var(Γ) =
4c1

(c1 − 1)(2c1 − 1)2
.

Proof. Let Gn(0) = 0 and, for t ∈ (0, 1), define

Gn(t) =
n∑

i=⌊(1−t)n⌋+1

Vi =
n∑

i=⌊(1−t)n⌋+1

2ei
i(i− 1 + 2c1)

,

where the ei’s are i.i.d standard exponential random variables. With this notation,
we obtain γn = Gn (1−Nn(γn)/n) .

We first show that, for any t ∈ (0, 1), we have

lim
n→∞

(nGn(s))s≤t =

(
2s

1− s

)
s≤t

(3.8)
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in distribution, in the sense of weak convergence in the path space D[0,t]. To this
aim, let us first establish that, for a fixed t ∈ (0, 1),

lim
n→∞

nGn(t) =
2t

1− t
(3.9)

in L2. By definition, we have that

E[nGn(t)] =
n∑

i=⌊(1−t)n⌋+1

2n

i(i− 1 + 2c1)

∼ 1

n

n∑
i=⌊(1−t)n⌋+1

2

(i/n)2
.

By a Riemann sum argument, we obtain that

E[nGn(t)] ∼
∫ 1

1−t

2

x2
dx =

2t

1− t
.

Now, by the independence of the random variables ei,

Var(nGn(t)) =
n∑

i=⌊(1−t)n⌋+1

4n2

i2(i− 1 + 2c1)2

∼
n∑

i=⌊(1−t)n⌋+1

4n2

i4
.

Again, by a Riemann sum argument, we obtain that Var(nGn(t)) converges to 0 as
n → ∞. This gives (3.9).

To obtain (3.8) we follow the same steps as those of Proposition 6.1 in [18], with
α = 2. Then, the proof of (3.7) follows by adapting the alternative proof of Theorem
5.2 in [18], p. 1713, taking α = 2 and the limit variable σ being 1−Y and Beta(1, 2c1)
distributed.

The distribution function of Γ is given by

P (Γ ≤ x) = P
(
Y ≥ 2

2 + x

)

= 1−
(

2

2 + x

)2c1

for x ≥ 0. We get the density by differentiating. The moments of Γ are obtained by
computing

E[Γk] =

∫ ∞

0

kxk−1P(Γ > x)dx =

∫ ∞

0

kxk−1

(
2

2 + x

)2c1

dx.

In particular, the kth moment is finite for c1 > k/2.
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3.3 The time of the first activation

In this section we study θn, the first time that a seed becomes a plant, which we
introduced in (3.3). We also provide some limit laws for Nn(θn) and Mn(θn). Observe
that from time zero up to time θn only two types of events occur, either coalescence or
deactivation. Recall the successive hitting times of the chain Nn, denoted by (τ in)

n
i=1

and defined in (3.1).

Proposition 3.3.1. Consider a seed bank coalescent starting with n plants and no
seeds. Then, the following asymptotics hold.

lim
n→∞

Nn(θn)

log n
= Z (3.10)

in distribution, where Z is a Fréchet random variable with shape parameter 1 and
scale parameter 4c1c2, with distribution function P(Z ≤ z) = exp{−4c1c2/z}. Also

lim
n→∞

Mn(θn)

log n
= 2c1 (3.11)

in probability. Finally,

lim
n→∞

log nθn = T (3.12)

in distribution, where T is an exponential random variable with parameter 2c1c2.

The proof of (3.11) is obtained by combining Lemmas 3.3.2 and 3.3.5. The proof
of (3.10) and (3.12) is obtained by combining Lemmas 3.3.3 and 3.3.6 which appear
in the sequel. We get these results by coupling the seed bank coalescent with two
simpler models.

The coloured seed bank coalescent (see Definition 4.2 in [9]) is a marked coalescent
where additionally each element of [n] has a flag indicating its color: white or blue.
Movements and mergers of the blocks of the colored coalescent follow the same dyna-
mics as those of the classical seed bank coalescent. Additionally, if a block activates,
each individual inside this block gets the color blue. In other cases colors remain
unchanged.

As in [9], we start with all individuals colored with white, so color blue only appears
after a reactivation event, and we also use the notation Nn(t) (resp. Mn(t)) for the
number of white plants (resp. white seeds) at time t, starting with n (white) plants
and zero seeds.

The notation for the reaching times of Nn are τnn = 0 and, for i ∈ [n− 1],

τ in = inf{t > 0 : Nn(t) = i}.
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Note that, on the event {τ in < θn}, we have τ in = τ in a.s., and in general the stochastic
bound

τ i−1
n − τ in ≤st τ

i−1
n − τ in (3.13)

holds.

This model is of particular use to prove that the number of seeds that “survive” up
to moment θn is of order log n. More precisely, as in [9], consider the independent
Bernoulli random variables Bi

n = 1{deactivation at τ in}
, for i ∈ [n−1], with respective

parameter

P(Bi
n = 1) =

c1(i+ 1)(
i+1
2

)
+ c1(i+ 1)

=
2c1

i+ 2c1
, (3.14)

independently of the number of seeds in the system. It is clear that, almost surely for
any t ≥ 0, Mn(t) ≤

∑n−1
i=1 Bi

n. This and Bienaymé-Chebyshev’s inequality lead to the
following straightforward result.

Lemma 3.3.2. For any ε > 0,

P
(
sup
t≥0

Mn(t) > 2c1(1 + ε) log n

)
≤ 1

2c1ε2 log n
. (3.15)

In particular, for any ε > 0,

lim
n→∞

P (Mn(θn) ≤ 2c1(1 + ε) log n) = 1.

From now on, denote the upper bound mn := ⌊2c1(1 + ε) log n⌋ for ε > 0. We will
use this notation in the following proofs.

The bounded seed bank coalescent is a modification of the original seed bank coales-
cent, where only m seeds can be accumulated in the bank. Thus, when the bank is
full, a deactivating lineage disappears instead of moving to the bank. In our case, we
start with n plants and m seeds (the bank is full from the beginning).

Denote by N̄n,m(t) (resp. M̄n,m(t)) the number of plants (resp. seeds) at time t in the
bounded coalescent starting with n plants and m seeds. The block-counting process of
the bounded coalescent with parameters c1, c2 > 0 has the following transition rates.
For i ≤ n and j ≤ m,

(N̄n,m(t), M̄n,m(t)) jumps from (i, j) to

 (i− 1, j), at rate
(
i
2

)
+ c1i1{j=m},

(i− 1, j + 1), at rate c1i1{j<m},
(i+ 1, j − 1), at rate c2j.

By coupling the seed bank coalescent with its bounded version, we obtain a lower
bound for θn and an upper bound for Nn(θn).
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Lemma 3.3.3. Recall T and Z from Proposition 3.3.1. We have that

lim
n→∞

P (θn log n ≤ t) ≤ P(T ≤ t) (3.16)

and
lim
n→∞

P (Nn(θn) > zlog n) ≤ P (Z > z) . (3.17)

Proof. On the event {Mn(θn) ≤ mn}, which occurs asymptotically with probability 1
by Lemma 3.3.2, the variable θn is bounded from below, stochastically, by the random
variable θ̄n,mn defined by

θ̄n,mn = inf{t ≥ 0 : M̄n,mn(t−) > M̄n,mn(t)}

which has an exponential distribution with parameter c2mn. Then, for t > 0

P (θn log n ≤ t) = P (θn log n ≤ t,Mn(θn) ≤ mn) + o(1)

≤ P
(
θ̄n,mn log n ≤ t

)
+ o(1)

= 1− exp

{
−t

c2⌊2c1(1 + ε) log n⌋
log n

}
+ o(1).

So, for any ε > 0,
lim
n→∞

P (θn log n ≤ t) ≤ P (T ≤ t(1 + ε)) . (3.18)

This gives (3.16).

To prove (3.17), observe that, on the event {Mn(θn) ≤ mn}, the variable Nn(θn) is
bounded from above, stochastically, by the random variable N̄n,mn(θ̄n,mn). So,

P (Nn(θn) > zlog n) ≤ P
(
N̄n,mn(θ̄n,mn) > zlog n

)
+ P(Mn(θn) > mn). (3.19)

Let us study the asymptotic of N̄n,mn(θ̄n,mn). With similar arguments as used for
Proposition 3.2.1, we have

P(N̄n,mn(θ̄n,mn) ≤ z log n) =
n∏

i=⌊z logn⌋+1

(
i
2

)
+ c1i(

i
2

)
+ c1i+ c2mn

= exp

−
n∑

i=⌊z logn⌋+1

log

(
1 +

2c2mn

i(i− 1 + 2c1)

)
∼ exp

−2c2mn

n∑
i=⌊z logn⌋+1

1

i2

 .

By a Riemann sum argument, we know that

lim
n→∞

mn

n∑
i=⌊z logn⌋+1

1

i2
= 2c1(1 + ε)

∫ ∞

z

1

x2
dx =

2c1(1 + ε)

z
. (3.20)
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Since P(Z ≤ z) = exp{−4c1c2/z}, we obtain, by taking the limits in (3.19), that

lim
n→∞

P (Nn(θn) > zlog n) ≤ P (Z > z/(1 + ε))

which implies (3.17).

The bounded seed bank coalescent is also useful to bound from above the random
variable Nn(t), for any t ≥ 0. Let (Kn(t))t≥0 stand for the block-counting process
of the Kingman coalescent starting with n lineages. Let (χi(t))i≥1 be a sequence of
i.i.d. Bernoulli variables of parameter 1− exp(−c2t). Those variables are more easily
understood as χi(t) = 1{ei<c2t} where the ei’s are i.i.d. standard exponential variables.
It is easy to convince oneself that, on the event {supt≥0Mn(t) ≤ m}, stochastically,

Nn(t) ≤ Kn(t) +
m∑
i=1

χi(t). (3.21)

This follows because Kn(t) bounds the number of blocks that have not been deacti-
vated before time t and

∑m
i=1 χi(t) bounds the number of blocks that have already

reactivated. Both processes are independent.

We now prove a useful lemma thanks to the two couplings introduced previously. To
simplify the notations here and in the sequel, denote τ

⌊(logn)a⌋
n by τ

(a)
n , for any a > 0.

Lemma 3.3.4. For a > b ≥ 0 such that a+ b > 1,

lim
n→∞

P
(
τ (a)n ≤ (log n)−b

)
= 1.

Proof. Denote En = {suptMn(t) ≤ mn}. We start by observing that

P(τ (a)n > (log n)−b) = P(τ (a)n > (log n)−b, En) + P(τ (a)n > (log n)−b, Ec
n)

From (3.15), we get that

P(Ec
n) ≤

1

2c1ε2 log n
.

So it just remains to control the probability on the event En. Recall (Kn(t))t≥0 and
(χi(t))i≥1 from (3.21). Let ωn,a = inf{t > 0 : Kn(t) = ⌊1

2
(log n)a⌋}. Observe that

{τ (a)n > t,En} = {Nn(t) > (log n)a, En}

⊂ {Kn(t) +
mn∑
i=1

χi(t) > (log n)a}

⊂ {Kn(t) >
1

2
(log n)a} ∪ {

mn∑
i=1

χi(t) >
1

2
(log n)a}

= {ωn,a > t} ∪ {
mn∑
i=1

χi(t) >
1

2
(log n)a}.
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Taking t = (log n)−b, we obtain

P(τ (a)n > (log n)−b, En) ≤ P(ωn,a > (log n)−b) + P(
mn∑
i=1

χi((log n)
−b) >

1

2
(log n)a).

Observe that ωn,a is the sum of independent exponential random variables with pa-
rameter

(
i
2

)
for ⌊1

2
(log n)a⌋+ 1 ≤ i ≤ n. Thus,

E[ωn,a] =
n∑

i=⌊ 1
2
(logn)a⌋+1

[
2

(i− 1)
− 2

i

]
≤ 2⌊1

2
(log n)a⌋.

So, Markov’s inequality for ωn,a gives

P(ωn,a > (log n)−b) ≤ C(log n)b−a

for some constant C > 0, which converges to 0 whenever b < a. On the other
hand, Markov’s inequality applied to a binomial random variable with parameters
⌊2c1(1+ ε) log n⌋ and 1− exp(−c2(log n)

−b) (whose expectation is of order (log n)1−b)
leads to

P(
mn∑
i=1

χi((log n)
−b) >

1

2
(log n)a) ≤ C(log n)1−b−a.

This quantity converges to 0 when a+ b > 1.

We now provide the lower bound for Mn(θn). This result, combined with Lemma
3.3.2 provides the convergence (3.11) in Proposition 3.3.1.

Lemma 3.3.5. For any ε > 0 and a > 1,

lim
n→∞

P(Mn(τ
(a)
n ) > 2c1(1− ε) log n) = 1. (3.22)

which implies that
lim
n→∞

P(Mn(θn) > 2c1(1− ε) log n) = 1. (3.23)

Proof. Let us first note that (3.17) implies that

lim
n→∞

P(Nn(θn) < (log n)a) = 1,

which, thanks to the monotonicity of (Nn(t))t≥0 until time θn, is equivalent to

lim
n→∞

P
(
θn > τ (a)n

)
= 1.

Due to the monotonicity of (Mn(t))t≥0 until time θn, (3.22) implies (3.23).
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Now, on the event {θn > τ
(a)
n }, we have

Mn(τ
(a)
n ) =

n−1∑
i=⌊(logn)a⌋

Bi
n

almost surely, where the Bi
n’s are the Bernoulli random variables introduced in (3.14).

So,

P(Mn(τ
(a)
n ) < 2c1(1− ε) log n) = P(Mn(τ

(a)
n ) < 2c1(1− ε) log n, θn > τ (a)n ) + o(1)

≤ P

 n−1∑
i=⌊(logn)a⌋

Bi
n < 2c1(1− ε) log n

+ o(1)

The latter converges to 0 thanks to Bienaymé-Chebyshev’s inequality.

We are now able to end the overview of the system at time θn. The following result,
combined with Lemma 3.3.3 provides the convergences (3.10) and (3.12) in Proposi-
tion 3.3.1.

Lemma 3.3.6. Recall T and Z from Proposition 3.3.1. We have that

lim
n→∞

P (Nn(θn) ≤ zlog n) ≤ P (Z ≤ z) . (3.24)

which implies that
lim
n→∞

P (θn log n > t) ≤ P(T > t). (3.25)

Proof. Fix ε > 0 and define m̂n := ⌊2c1(1 − ε)log n⌋. Also, denote τ̂n := τ
⌊z logn⌋
n .

First observe that
P (Nn(θn) ≤ z log n) = P(θn ≥ τ̂n)

So it is enough to prove that

lim
n→∞

P(θn ≥ τ̂n) ≤ P(Z ≤ z). (3.26)

For any t ≥ 0, define X(t) to be the number of reactivations until time t. Let Ei be
an exponential random variable with parameter c2i, that can be understood as the
minimum of i independent exponential random variables with parameter c2. Then,
for any a > 1,

P(θn ≥ τ̂n) = P(X(τ̂n) = 0) = P(X(τ̂n)−X(τ (a)n ) = 0, X(τ (a)n ) = 0)

≤ P(X(τ̂n)−X(τ (a)n ) = 0 | X(τ (a)n ) = 0)

≤ P(E
Mn(τ

(a)
n )

> τ̂n − τ (a)n ).
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The latter inequality follows by observing that if there are no activations in the time
interval [τ

(a)
n , τ̂n], then none of the Mn(τ

(a)
n ) seeds present at time τ

(a)
n have activated.

Hence,

P(θn ≥ τ̂n) ≤ E
[
e−c2(τ̂n−τ

(a)
n )Mn(τ

(a)
n )
]

= E
[
e−c2(τ̂n−τ

(a)
n )Mn(τ

(a)
n )1{Mn(τ

(a)
n )>m̂n}

]
+ E

[
e−c2(τ̂n−τ

(a)
n )Mn(τ

(a)
n )1{Mn(τ

(a)
n )≤m̂n}

]
≤ E

[
e−c2m̂n(τ̂n−τ

(a)
n )
]
+ P(Mn(τ

(a)
n ) ≤ m̂n).

So, by denoting for simplicity nz = ⌊z log n⌋ and na = ⌊(log n)a⌋, and by (3.13), we
obtain

P(θn ≥ τ̂n) ≤ E
[
e−c2m̂n

∑na
i=nz+1(τ

i−1
n −τ in)

]
+ P(Mn(τ

(a)
n ) ≤ m̂n). (3.27)

Since the variables τ i−1
n − τ in are independent and exponentially distributed, we have

E
[
e−c2m̂n

∑na
i=nz+1(τ

i−1
n −τ in)

]
=

na∏
i=nz+1

(
i
2

)
+ c1i(

i
2

)
+ c1i+ c2m̂n

= exp

{
−

na∑
i=nz+1

log

(
1 +

2c2m̂n

i(i− 1 + 2c1)

)}
.

Now, we can use equivalences.

E
[
e−c2m̂n

∑na
i=nz+1(τ

i−1
n −τ in)

]
∼ exp

{
−

na∑
i=nz+1

2c2m̂n

i2

}
A similar limit as that given in (3.20) implies that

lim
n→∞

E
[
e−c2m̂n

∑na
i=nz+1(τ

i−1
n −τ in)

]
= e−

4c1c2(1−ε)
z = P(Z ≤ z/(1− ε)). (3.28)

Plugging (3.28) and (3.22) into (3.27), and observing that the result is true for any
ε > 0, we get (3.26).

A very similar path is followed to obtain (3.25). For some t > 0, let tn = t(log n)−1

and for some b > 1, let sn = (log n)−b. As before, we get

P (θn log n > t) = P (θn > tn)

= P (X (tn) = 0)

≤ e−c2m̂n(tn−sn) + P(Mn(sn) ≤ m̂n),

The first term converges to P(T > t(1 − ε)) and the second to 0. To get the latter,
first use (3.16) to see that

lim
n→∞

P(θn > sn) = 1.

Then, just choose a > b such that Lemma 3.3.4 holds, and use (3.22) Since the result
is true for any ε > 0, we get (3.25).
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3.4 Branch Lengths

In this section, we study the total branch length Ln of the seed bank coalescent
starting with n plants and no seeds as defined in (3.4) and prove Theorem 3.1.1 by
combining upcoming Theorems 3.4.1 and 3.4.2.

3.4.1 The active length

Consider the active length defined in (3.5). We prove that this variable has the same
(first-order) asymptotics as the total length of the Kingman coalescent.

Theorem 3.4.1. Consider the seed bank coalescent starting with n plants and no
seeds. Then,

lim
n→∞

An

log n
= 2

in probability.

Proof. Recall the notation τ
(a)
n := τ

⌊(logn)a⌋
n for some arbitrary fixed a ∈ (1/2, 1). We

divide An into the sum of two random variables

An = A1
n + A2

n

where

A1
n =

∫ τ
(a)
n

0

Nn(t)dt and A2
n =

∫ σn

τ
(a)
n

Nn(t)dt.

We prove that A2
n/ log n converges to 0 in probability in part iii) later on.

To deal with A1
n, we will divide it into the sum of two random variables

A1
n = A1,1

n + A1,2
n

where

A1,1
n =

∫ θn

0

Nn(t)dt and A1,2
n =

∫ τ
(a)
n

θn

Nn(t)dt.

Here we have to work carefully since θn can be larger than τ
(a)
n . However, observe

that

P
(
θn ≥ τ (a)n

)
= P

(
Nn(θn) ≤ Nn(τ

(a)
n )
)

= P (Nn(θn) ≤ ⌊(log n)a⌋) .

By Proposition 3.3.1 we see that this probability converges to 0. So,
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P
(∣∣ A1

n

log n
− 2
∣∣ > ε

)
= P

(∣∣ A1
n

log n
− 2
∣∣ > ε, θn < τ (a)n

)
+ P

(∣∣ A1
n

log n
− 2
∣∣ > ε, θn ≥ τ (a)n

)
= P

(∣∣ A1
n

log n
− 2
∣∣ > ε, θn < τ (a)n

)
+ o(1)

≤ P
(∣∣ A1,1

n

log n
− 2
∣∣ > ε

2
, θn < τ (a)n

)
+ P

(∣∣ A1,2
n

log n

∣∣ > ε

2
, θn < τ (a)n

)
+ o(1).

Parts i) and ii) are dedicated to show that these two terms converge to 0.

i) Let us first prove that

lim
n→∞

P
(∣∣ A1,1

n

log n
− 2
∣∣ > ε

2
, θn < τ (a)n

)
= 0 (3.29)

Observe that, between times 0 and θn, only coalescence or deactivation events occur.
This implies that we can rewrite A1

n as follows,

A1,1
n =

n∑
i=Nn(θn)+1

iEi,

where, given (Mn(τ
i
n))

n
i=1, the Ei’s are independent exponential random variables

with respective parameters
(
i
2

)
+ c1i+ c2Mn(τ

i
n). Indeed, this parameter is that of the

minimum of three exponential random variables, the first for coalescence, the second
for deactivation, and the third for activation.

Let hn =
∑n−1

i=1
2

i+2c1
. By proving that

E[|A1,1
n − hn|] = o(log n),

we get the desired result. Observe that the variable A1
n is stochastically bounded by

the length of a Kingman coalescent with freezing ([70], [23] and see Section 1.3 in
[25]), that is

Hn =
n∑

i=2

iVi,

where the Vi’s, as in Section 3.2, are independent exponential random variables with
respective parameters

(
i
2

)
+ c1i. This is true because the seeds “accelerate” the jump

times. To be precise consider the following coupling. Let Vi = min {E(c)
i , E

(d)
i } where

E
(c)
i is exponential with parameter

(
i
2

)
and E

(d)
i is exponential with parameter c1i.

Now let E
(a)
i,m be exponential with parameter c2m.
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Construct a process (Ñn(t), M̃n(t))t≥0, equal in distribution to (Nn(t),Mn(t))t≥0 up
to time θn, recursively, using these exponential random variables. This is,

(Ñn(t), M̃n(t)) jumps from (i,m) to


(i− 1,m), if min {E(c)

i , E
(d)
i , E

(a)
i,m} = E

(c)
i

(i− 1,m+ 1), if min {E(c)
i , E

(d)
i , E

(a)
i,m} = E

(d)
i

(0, 0), otherwise .

Here (0, 0) represents a cemetery state. Note that in distribution (Ñn(t), M̃n(t)) =
(Nn(t),Mn(t))1{θn<t}. Thus, by writing (τ̃ in)

n
i=1 for the successive jump times of the

new process and r̃n = sup{i ≥ 1 : min {E(c)
i , E

(d)
i , E

(a)

i,M̃n(τ̃ in)
} = E

(a)

i,M̃n(τ̃ in)
}, we obtain

that

A1,1
n =

n∑
i=r̃n+1

iVi ≤
n∑

i=2

iVi = Hn,

where the first equality is in distribution and the others stand almost surely. The first
equality is true because, although the Vi’s are variables with the “wrong” parameter,
they are not independent of r̃n, and this dependence “accelerates” these exponential
random variables. Hence,

E[|A1,1
n − hn|] ≤ E[Hn − A1,1

n ] + E[|Hn − hn|].

The second term is bounded thanks to the L1-convergence of sums of independent
exponential variables. For the first term,

E[Hn − A1,1
n ] = E

[
Hn − E

[
A1,1

n |Nn(θn), (Mn(τ
i
n))i≥1

]]
= hn − E

 n∑
i=Nn(θn)+1

2

i− 1 + 2c1 +
2c2Mn(τ in)

i


≤ hn − E

 n∑
i=Nn(θn)+1

2

i− 1 + 2c1 +
2c2 supt Mn(t)

i

 .

Then, denote an := ⌊(log n)1+ε1⌋, for some ε1 > 0, and recall the notation mn from
Section 3.3. Now, set the event

En = {sup
t

Mn(t) ≤ mn, Nn(θn) ≤ an}.
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We obtain that

E[Hn − A1,1
n ] ≤ hn − E

1En

n∑
i=Nn(θn)+1

2

i− 1 + 2c1 +
2c2 supt Mn(t)

i


≤ hn − P(En)

n∑
i=an+1

2

i− 1 + 2c1 +
2c2mn

i

≤ hn − P(En)
n∑

i=an+1

2

i− 1 + 2c1 +
2c2mn

an+1

.

Since mn

an+1
≤ C(log n)−ε1 for some constant C and P(En) converges to 1 (thanks to

Proposition 3.3.1), we get that

E[Hn − A1,1
n ] = o(log n).

The L1-convergence is thus obtained. This implies (3.29).

ii) Let us now prove that

lim
n→∞

P
(∣∣ A1,2

n

log n

∣∣ > ε, θn < τ (a)n

)
= 0. (3.30)

It is clear that, on the event {θn < τ
(a)
n },

A1,2
n ≤ τ (a)n (Nn(θn) +Mn(θn)).

Combining Proposition 3.3.1 and Lemma 3.3.4 (choosing b < a), we obtain the result.

iii) Finally, let us prove that

lim
n→∞

P
(∣∣ A2

n

log n

∣∣ > ε

)
= 0. (3.31)

To this end, denote U0 = Nn(τ
(a)
n ) = ⌊(log n)a⌋ (by definition), V0 = Mn(τ

(a)
n ) (which,

by Lemma 3.3.2, is stochastically bounded by 2c1(1+ ε) log n), and, for any k ≥ 1, Uk

(resp. Vk) as the number of plants (resp. seeds) at the kth event after time τ
(a)
n . Each

event can be a coalescence, an activation or a deactivation. Note that the increments
of Uk and Vk are in {−1, 1}. Let Sn be the number of jump times during the interval

(τ
(a)
n , σn], i.e.

Sn = inf{k ≥ 1 : Uk + Vk = 1}.
With these notations, the active branch length on this time interval can be written
as

A2
n =

Sn−1∑
k=0

UkEk
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where, conditional on Uk and Vk, the Ek’s are independent exponential random vari-
ables with respective parameters

(
Uk

2

)
+ c1Uk + c2Vk. So, we have

E[A2
n] = E

[
Sn−1∑
k=0

Uk(
Uk

2

)
+ c1Uk + c2Vk

]
.

Now define
Dn := |{k ≥ 0 : Uk+1 − Uk = −1, Vk+1 − Vk = 1}|

as the number of deactivations during this time interval, and observe that

E[Dn] = E

[
Sn−1∑
k=0

c1Uk(
Uk

2

)
+ c1Uk + c2Vk

]
.

This implies that

E[A2
n] =

1

c 1
E[Dn].

So, it is enough to study the expectation of Dn. We decompose

Dn =

Nn(τ
(a)
n )+Mn(τ

(a)
n )∑

i=2

Di
n

where Di
n is the number of deactivations occurring while the total number of lineages

equals i, that is, Di
n := |{k ≥ 0 : Uk+1 − Uk = −1, Vk+1 − Vk = 1, Uk + Vk = i}|. We

will bound E[Dn] thanks to the next model from Definition 4.9 of [9].

Let (N̂n(t), M̂n(t))t≥0 having the same transitions as (Nn(t),Mn(t))t≥0 whenever

N̂n(t) ≥
√

N̂n(t) + M̂n(t). If not, coalescence events are not permitted. For any

i ≥ 2, by Lemma 4.10 of [9], E[Di
n] ≤ E[D̂i

n], where D̂i
n stands for the number of

deactivations in this model while N̂n(t) + M̂n(t) = i. In what follows we will give

an idea of why E[D̂i
n] = O(i−1/2), implying that E[Dn] = O((log n)1/2), and hence

proving (3.31).

Details of the proof, which are unfortunately quite tedious, can be found inside the
proof of Lemmas 4.10 and 4.11 of [9]. In the sequel, suppose that c1 = c2 = 1, for
sake of simplicity.

Fix i ≥ 2. The variables D̂i
n tends to take higher values when coalescences are

not permitted, we focus on this case. Thus suppose that at time t, N̂n(t) + M̂n(t)

reaches i, with N̂n(t−) = ⌊
√
i⌋ + 1 ≥

√
i+ 1. This means that N̂n(t) = ⌊

√
i⌋ ≤√

i. Reactivations are then needed to allow a new coalescence. Conditional on this
configuration, the probability that D̂i

n equals 0 is equivalent to

i− ⌊
√
i⌋

i
×

(⌊√i⌋
2

)(⌊√i⌋
2

)
+ ⌊

√
i⌋

∼ 1− 3√
i
=: pi.
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This corresponds approximately to the probability of one reactivation, followed by
one coalescence before one deactivation. So we have the following almost sure bound

D̂i
n ≤

Gi−1∑
j=0

∆j

where Gi is a geometric random variable with parameter pi and the ∆j’s give the
number of deactivations between each visit of the state ⌊

√
i⌋. The time when coales-

cence is not allowed, is stochastically bounded from above by the time that a random
walk that goes up one unit at rate i−

√
i (rate at of a reactivation) and down at rate√

i (rate of a deactivation), started at zero, spends below level
√
i. The random walk

has ballistic speed of order i. In particular, it reaches the level
√
i after

√
i/i = 1/

√
i

units of time in average. During the period in which coalescence events are not al-
lowed there are always less that

√
i plants, each of which deactivates at rate c1(= 1).

Then, we conclude that, for any j,

E[∆j] ≤
1√
i
·
√
i = 1

This uniform bound implies that

E[D̂i
n] ≤ E[Gi − 1]E[∆1] = O

(
1√
i

)
,

since E[Gi − 1] ∼ 3√
i
.

3.4.2 The inactive length

Consider the inactive length defined in (3.6).

Theorem 3.4.2. Consider the seed bank coalescent starting with n plants and no
seeds. Then,

lim
n→∞

In
log n

=
2c1
c2

in probability.

Proof. Divide In in two parts

I1n =

∫ θn

0

Mn(t)dt and I2n =

∫ σn

θn

Mn(t)dt.

It is easy to prove that I1n/log n converges to 0 in probability by observing that, almost
surely,

I1n ≤ Mn(θn) · θn,
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and using Proposition 3.3.1.

To study I2n, we approximate it by the accumulated time for the Mn(θn) seeds to
activate, namely

Ĩ2n =

Mn(θn)∑
k=1

ek
c2

where the ek’s are i.i.d. standard exponential random variables. The asymptotics of
this random variable are easily obtained. First, by Proposition 3.3.1, we have that

Mn(θn)/ log n → 2c1

in probability. Second, let Gn(t) =
∑⌊t logn⌋

k=1

ek
c2
,

lim
n→∞

Gn(t)

log n
=

t

c2
(3.32)

en L2. Observe that Ĩ2n = Gn(Mn(θn)/ log n). Following the same steps in the proof
of Proposition 3.2.2. We obtain the desired result,

lim
n→∞

Ĩ2n
log n

=
2c1
c2

in probability.

Finally, the difference between I2n and Ĩ2n can be bounded by INn(θn)+IMn(θn). Indeed,
the variable INn(θn) bounds the inactive length resulting from the plants present at
time θn and the variable IMn(θn) bounds the inactive length resulting from the seeds
present at time θn that activate and deactivate again. Its expectation is clearly of
order log log n. This can be seen repeating the earlier arguments of this proof.

3.5 Sampling formula

Consider the seed bank coalescent at time θn and go back, through the active part of
the genealogical tree, until time zero when there are n active lineages and zero inactive
lineages. During this period of time we observe n − Nn(θn) events divided into two
types: branching inside one lineage (corresponding to a coalescence) and appearance
of a new lineage (corresponding to a deactivation). When there are k lineages, the
probability that a branching event occurs is(

k+1
2

)(
k+1
2

)
+ c1(k + 1)

=
k

k + 2c1
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whereas the probability that a new lineage appears is 2c1
k+2c1

. This observation leads
a connection with classical Hoppe’s urn and the Chinese restaurant process (with
parameter 2c1), which are the key tools to prove Ewens’ sampling formula for the
law of the allele frequency spectrum in the neutral model, see Chapter 1.3 in [25].
However, in our case, the initial configuration is made of a random number Nn(θn) of
tables (old lineages) with one client in each. By applying results of [70], we can obtain
a conditional sampling formula corresponding to observing a certain configuration of
lineages that passed through the seed bank and lineages that did not deactivate (until
time θn).

Now, let k ≤ n be a positive integer, we define the sets

A(k, n) =

{
ai, bi ≥ 0, i ∈ [n] :

n∑
i=1

ai = k and
n∑

i=1

i(ai + bi) = n

}

and

Ā(k, n) =

{
ai ≥ 0, i ∈ [n] :

n∑
i=1

ai = k and
n∑

i=1

iai ≤ n

}
.

From equation (3.3.2) in [70], we obtain the next theorem.

Theorem 3.5.1. Let Oi be the number of “old” blocks of size i (i.e. active blocks of
size i at time θn) and let Ri be the number of “recent” blocks of size i (i.e. inactive
blocks of size i at time θn). Then

P (O1 = a1, . . . , On = an, R1 = b1, . . . , Rn = bn | Nn(θn))

a.s.
=

(n−Nn(θn))!Nn(θn)!

(Nn(θn) + 2c1)(n−Nn(θn))

n∏
i=1

1

ai!

n∏
j=1

1

bj!

(
2c1
j

)bj

, (3.33)

with (ai, bi)i∈[n] ∈ A(Nn(θn), n).

The notation x(n) stands for the ascending factorial, that is, x(n) = x(x + 1) . . . (x +
n− 1).

Remark 3.5.2. From the latter result and Proposition 3.3.1, we can obtain an ap-
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proximate unconditioned sampling formula for large n.

P (O1 = a1, . . . , On = an, R1 = b1, . . . , Rn = bn)

=

∫ ∞

0

P (O1 = a1, . . . , On = an, R1 = b1, . . . , Rn = bn|Nn(θn) = ⌊z log n⌋)×

P(Nn(θn) = ⌊z log n⌋)dz

∼
n∏

i=1

1

ai!

n∏
j=1

1

bj!

(
2c1
j

)bj

×∫ ∞

0

Γ(n− z log n+ 1)Γ(z log n+ 1)Γ(z log n+ 2c1)

Γ(n+ 2c1)
.
4c1c2
z2

e−
4c1c2

z dz.

which does not depend on the non-observable variable Nn(θn). Observe that our sam-
pling formula does not make a statement on allele frequencies, but on block frequencies
of active and inactive blocks at time θn.

The variables Oi and Ri can be inferred if we are capable of deciding if a present
individual has visited the seed bank or not. This seems hard, deactivation can be
treated similarly as mutations form the mathematical point of view, but, as opposed
to mutations, they don’t leave tractable evidence. Furthermore, our result presents
a snapshot of the partition at a random time, not at a deterministic one. For these
reasons it seems too optimistic to believe that this study provides a possible method
of estimating the parameters of the seed bank model.

From (3.33), we obtain the probability generating function of the old and recent
blocks.

Corollary 3.5.3. Let O1, ...On, R1, ..., Rn be random variables with joint density given
by (3.33). Then, their (conditional) probability generating function is

E

[
n∏

i=1

tOi
i

n∏
j=1

s
Rj

j |Nn(θn)

]
=

(n−Nn(θn))!Nn(θn)!

(Nn(θn) + 2c1)(n−Nn(θn))

×

∑
a1,...,an,b1,...,bn∈A(Nn(θn),n)

n∏
i=1

(ti)
ai

ai!

n∏
j=1

1

bj!

(
2c1sj
j

)bj

. (3.34)

Following the idea of Watterson [70], we use two artificial variables, u ∈ (−1, 1) and
v ∈ (−1, 1). They will help us to rewrite (3.34) in a simpler way. First, observe that
for (ai, bi) ∈ A(k, n),

n∏
i=1

(uvi)ai
n∏

j=1

(vj)bj = u
∑n

i=1 aiv
∑n

i=1 i(ai+bi) = ukvn.
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Now, let ck,n be the multiplying coefficient of ukvn in exp
{∑n

i=1 uv
iti +

∑∞
j=1

2c1
j
sjv

j
}
.

We can rewrite (3.34) as

E

[
n∏

i=1

tOi
i

n∏
j=1

s
Rj

j |Nn(θn)

]
=

(n−Nn(θn))!Nn(θn)!

(Nn(θn) + 2c1)(n−Nn(θn))

cNn(θn),n. (3.35)

From this relation, we obtain the probability generating function of the lineages that
have not gone through the seed bank at time θn.

Corollary 3.5.4. Let Oi be the number of “old” blocks of size i (i.e. active blocks of
size i at time θn). Then, the joint probability generating function of O1, O2, ..., On is

E

[
n∏

i=1

tOi
i |Nn(θn)

]
=

∑
a1,..,an∈Ā(Nn(θn),n)

Nn(θn)!

a1!a2!...an!
ta11 ta22 · · · · tann

(
2c1+n−z−1

n−z

)(
2c1+n−1
n−Nnθn

) (3.36)

where z =
∑n

i=1 iai.

Proof. First, we will write explicitly the term ck,n when sj = 1 for all j. Observe that,

exp

{
n∑

i=1

uviti +
∞∑
j=1

2c1
j
vj

}
= (1− v)−2c1 exp

{
u

n∑
i=1

viti

}

= (1− v)−2c1

∞∑
k=0

[u
∑n

i=1 v
iti]

k

k!
.

It implies that the coefficient of uk in the latter expression is

[
∑n

i=1(v
iti)]

k

k!
(1− v)−2c1 =

[
∑n

i=1(v
iti)]

k

k!

(
∞∑
j=0

(
2c1 + j − 1

j

)
vj

)
.

Now, we need to find the coefficient of vn in the latter expression. First, observe that[
n∑

i=1

(viti)

]k
=

∑
a1+...+an=k

k!

a1!a2!...an!
ta11 ta22 · · · · tann vz

where z =
∑n

i=1 iai. For z ≤ n, the coefficient of vn−z in the expression(
∞∑
j=0

(
2c1 + j − 1

j

)
vj

)
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is
(
2c1+n−z−1

n−z

)
. So,

ck,n =
1

k!

∑
a1,...,an∈Ā(k,n)

k!

a1!a2!...an!
ta11 ta22 · · · · tann

(
2c1 + n− z − 1

n− z

)
.

Thus, replacing cNn(θn),n and sj = 1 for all j in (3.35) we have the result.

From the previous corollary we obtain the joint distribution of the lineages which
have not gone through the seed bank at time θn.

P [O1 = a1, ...., On = an|Nn(θn)]
a.s.
=

Nn(θn)!

a1!a2! · · · an!

(
2c1+n−z−1

n−z

)(
2c1+n−1
n−Nn(θn)

)
when a1, . . . , an ∈ Ā(Nn(θn), n).

Now, by taking ti = ti and sj = 1 for all i, j ∈ [n] in (3.35), and finding the correspond-
ing coefficient cNn(θn),n, we obtain the conditional probability generating function of
the number of lineages at time zero that has not been through the seed bank until
time θn

E
[
t
∑n

i=1 iOi |Nn(θn)
]
=

n∑
z=Nn(θn)

tz

(
2c1+n−z−1

n−z

)(
z−1

z−Nn(θn)

)(
2c1+n−1
n−Nn(θn)

) .

Finally, from (3.35), by taking ti = 1 for all i ∈ [n], and from (3.36) we can find the
conditional expectations of Oj and Rj for all j = 1, 2, ...n−Nn(θn),

E (Oj|Nn(θn)) = Nn(θn)

(
2c1+n−j−1

n−j−Nn(θn)+1

)(
2c1+n−1
n−Nn(θn)

)
and

E (Rj|Nn(θn)) =
2c1
j

(
2c1+n−j−1
n−j−Nn(θn)

)(
2c1+n−1
n−Nn(θn)

) .
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