

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN

"ESTUDIO PARA LA NIVELACIÓN DE LA PARCELA SIETE DEL CENTRO DE ENSEÑANZA AGROPECUARIA DE LA FES-CUAUTITLÁN"

TESIS

QUE PARA OBTENER EL TÍTULO DE INGENIERA AGRÍCOLA

PRESENTA:

KAREN IVONNE HIDALGO TÉLLEZ

ASESOR:

Dr. HOMERO ALONSO SÁNCHEZ

Cuautitlán Izcalli, Estado de México, 2021

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

DEDICATORIAS

A Frida, por supuesto...

Hija, gracias por ser mi compañera en ésta vida, gracias por acompañarme desde el primer día en la Facultad aun siendo tan pequeña. Por ser mi inspiración y enseñarme tanto a través de tu gran corazón, con mucho amor éste trabajo es especialmente dedicado para ti.

A mis padres, Antonio y Margarita, por inculcarme la bella vocación del Ingeniero Agrícola. Gracias por su apoyo incondicional y alentarme a estudiar la profesión que deseaba aunque las circunstancias parecían difíciles.

A mi hermana Karla, por siempre estar, te quiero mucho.

A mi abuelita Costa, mi tía Lilí y mi tío Rubén, por sus cuidados, cariño y apoyo a nuestro sustento, estoy muy agradecida.

A quien nos enseñó sobre valentía, mi angelito en el cielo, Valentina.

AGRADECIMIENTOS

A Dios, por brindarme dicha y colocar en mi vida a todas las personas que me han ayudado a crecer y fortalecerme.

A la máxima casa de estudios, la Universidad Nacional Autónoma de México por abrirme sus puertas al conocimiento y brindarme educación integral.

A la Facultad de Estudios Superiores Cuautitlán y a la comunidad de Ingeniería Agrícola por ayudar a mi formación profesional.

Agradezco el apoyo brindado por el Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT: IA208519) para la realización de esta tesis.

A mi asesor de tesis, el Dr. Homero Alonso Sánchez por la conducción y observaciones realizadas en el presente trabajo.

A Margarito Morales García, por el apoyo para la realización del trabajo de campo que requirió la ejecución de la metodología.

CONTENIDO GENERAL

ÍNDICE DE CUADROS		iii
ÍNDICE DE FIGURAS		iv
RESUMEN		v
I. INTRODUCCIÓN		1
1.1 Ob	vjetivos	1
1.1.1	Objetivo general	1
1.1.2	Objetivos específicos	2
II. REVIS	ÓN DE LITERATURA	3
2.1 Nivelación de terrenos		3
2.1.1	Concepto e importancia de la nivelación de tierras	3
2.1.2	Beneficios	4
2.1.3	Planeación de los trabajos de nivelación	5
2.1.4	Pasos para llevar a cabo la nivelación	7
2.2.	Levantamiento topográfico para el proyecto de nivelación	8
2.2.1	Cuadrícula con teodolito, cinta y nivel	8
2.2.2	Levantamiento con estación total	8
2.2.3	Levantamiento con equipo láser	9
2.2.4	Levantamiento con equipo GPS	11
2.3 Cá	lculo de las pendientes proyecto	12
2.4 Cá	lculo de espesores y volúmenes de corte y relleno	17
2.4.1	Método de los cuatro vértices	18
2.4.2	Método de la adición	19
2.5 Aj	ustes a la elevación del plano proyecto	20
2.6 Pro	oblemas especiales en el proyecto de la nivelación	21
2.6.1	Lotes de forma irregular	21
2.6.2	Pendientes obligadas	22
2.6.3	Restricciones diversas	22
III. METOI	OOLOGÍA	23
3.1 Descripción del sitio		23

3	.2 Ma	teriales y métodos	23
	3.2.1	Obtención del plano proyecto	24
	3.2.2	Ajuste del plano proyecto	25
	3.2.3	Cálculo del volumen de corte y relleno	25
	3.2.4	Comparación de los escenarios	26
IV.	RESULT	ΓADOS	27
4	.1 Cál	culo para la nivelación de tierras del escenario 2019	27
	4.1.1	Obtención del plano proyecto	28
	4.1.2	Ajuste del plano proyecto	32
	4.1.3	Cálculo de volúmenes de corte y relleno	34
4	.2 Cál	culo para la nivelación de tierras de escenario 2021	38
	4.2.1	Obtención del plano proyecto	40
	4.2.2	Ajuste del plano proyecto	42
	4.2.3	Cálculo de volúmenes de corte y relleno	44
4	.3 Ana	álisis de los dos Escenarios	48
V.	V. CONCLUSIONES		51
VI.	VI. LITERATURA CITADA		53

ÍNDICE DE CUADROS

- Cuadro 1. Estimación de parámetros para utilizar método de Mínimos Cuadrados del Escenario 2019. 29
- Cuadro 2. Cortes y rellenos en los puntos de la cuadrícula regular (20 × 20 m) con el plano proyecto calculado y el ajuste con el coeficiente de abundamiento de 0.3 en el Escenario 2019.
- Cuadro 3. Elevaciones y espesores de corte y relleno para el proyecto ejecutivo de nivelación de tierras del Escenario 2019.
- Cuadro 4. Arreglo de los espesores de corte y relleno en metros, para aplicar el método de los cuatro vértices. Escenario 2019. 36
- Cuadro 5. Volúmenes de corte en metros cúbicos, calculados con el método de los cuatro vértices. Escenario 2019. 36
- Cuadro 6. Volúmenes de relleno en metros cúbicos, calculados con el método de los cuatro vértices. Escenario 2019. 37
- Cuadro 7. Estimación de parámetros para utilizar método de Mínimos Cuadrados del Escenario 2021. 39
- Cuadro 8. Cortes y rellenos en los puntos de la cuadrícula regular (20 x 20 m) con el plano proyecto calculado y el ajuste por el coeficiente de abundamiento de 0.3 en el Escenario 2021.
- Cuadro 9. Elevaciones y espesores de corte y relleno para el proyecto ejecutivo de nivelación de tierras del Escenario 2021. 45
- Cuadro 10. Arreglo de los espesores de corte y relleno en metros, para aplicar el método de los cuatro vértices. Escenario 2021. 46
- Cuadro 11. Volúmenes de corte en metros cúbicos, calculados con el método de los cuatro vértices. Escenario 2021. 46
- Cuadro 12. Volúmenes de relleno en metros cúbicos, calculados con el método de los cuatro vértices. Escenario 2021. 47
- Cuadro 13. Comparación de resultados del cálculo para la nivelación de tierras del Escenario 2019 y 2021. 49

ÍNDICE DE FIGURAS

figura 1. Relación de desnivel entre dos puntos. Fuente: Universidad Nacional del Centro	o do
la Provincia de Buenos Aires, s.f.	12
Figura 2. Valores propuestos por Trueba recomendados para la relación corte/relleno en	lo
trabajos de nivelación de tierras. Fuente: Comisión Nacional de Agua, 2014.	20
Figura 3. Configuración topográfica de la parcela siete a partir del levantamiento	coı
radiaciones. Escenario 2019.	28
Figura 4. Esquema de la triangulación de la cuadrícula regular y las curvas de nivel	que
resultan con el plano proyecto ajustado al coeficiente de abundamiento (0).3)
Escenario 2019.	37
Figura 5. Configuración topográfica de la parcela siete a partir del levantamiento	coı
radiaciones. Escenario 2021.	38
Figura 6. Esquema de la triangulación de la cuadrícula regular y las curvas de nivel	que
resultan con el plano proyecto ajustado al coeficiente de abundamiento (C).3)
Escenario 2021.	47

RESUMEN

La nivelación de terrenos agrícolas es una práctica física de preparación que permite completar y optimizar el diseño de los sistemas de riego por gravedad, pues es directamente en la parcela donde se refleja el uso y manejo racional del agua. Por esta razón, la uniformidad del riego por gravedad está en función de la proyección y ejecución de la nivelación de tierras.

Se realizó el estudio para la proyección de nivelación de la parcela siete de la Facultad de Estudios Superiores Cuautitlán, con la finalidad de contribuir al uso eficiente del agua de riego. Para ello, se ejecutó el cálculo de la nivelación de tierras de la parcela, donde se obtuvo la ecuación del plano proyecto que minimice el movimiento de tierras y posteriormente se calcularon los espesores de cortes y rellenos. Dicho cálculo se realizó con datos del levantamiento topográfico por radiaciones de 2019 y 2021 para comparar la modificación de las pendientes por consecuencia de las labores culturales. Para establecer una cuadrícula regular se utilizó el programa SINIVET 5.0; se generaron los cálculos de la proyección en hoja de cálculo y, posteriormente se definieron las cotas del terreno natural así como las cotas ajustadas a la nivelación y al coeficiente de abundamiento.

El cálculo de los volúmenes de corte y relleno se realizó por medio de dos métodos. Se definió que para la nivelación de 2021, utilizando el método de la adición, el volumen de corte es 722.234 m³ y el volumen de relleno es 559.849 m³; y utilizando el método de los cuatro vértices para el mismo año, el volumen de corte es 537.060 m³ y volumen de relleno es 413.432 m³. Para ejecutar la nivelación, se estimó que el costo del movimiento de tierras con base en el primer método de cálculo de volumen es de \$21,667.02, y de \$16,111.80 para el segundo método, de acuerdo al costo actual utilizado en los distritos de riego del centro del país.

I. INTRODUCCIÓN

Uno de los principales problemas que enfrentan los productores agrícolas en las áreas de riego por gravedad en México y en el mundo, es la baja eficiencia y deficiente uniformidad con que se aplica el agua (Hernández y Sánchez, 2007). La crisis del agua ha permeado en el ámbito agrícola, donde el riego parcelario demanda una tecnificación en diferentes niveles; sin embargo, los avances han sido limitados (Instituto Mexicano de Tecnología del Agua, 2016).

En México, el riego por gravedad, ocasiona grandes pérdidas de agua en su manejo a nivel parcelario y eficiencias de riego muy bajas (Instituto Mexicano de Tecnología del Agua, 2020). Para lograr un riego eficiente con un adecuado drenaje parcelario, y generar mayor rendimiento de los cultivos, se recurre a la nivelación de tierras. Corregir el desnivel de las áreas de riego es un paso imprescindible para el crecimiento productivo, lo que a su vez contribuye al ahorro del 30% del agua que se consume durante el riego (Instituto Mexicano de Tecnología del Agua, 2020). Teniendo en cuenta la disminución de la disponibilidad de agua de riego y la productividad de los cultivos, así como el aumento de la demanda de alimentos, se requiere de estudios que permitan la identificación y la adopción rápida de tecnologías para una gestión eficiente del agua (Sánchez *et al.*, 2020). Debido a que el diseño del riego por gravedad está concebido estrictamente en la parcela, un proyecto de nivelación permite mejorar las condiciones de manejo para lograr una mayor producción de los cultivos y hacer un uso racional del agua en la irrigación agrícola.

1.1 Objetivos

1.1.1 Objetivo general

Proyectar la nivelación de tierras de una parcela demostrativa de la Unidad Agrícola del Centro de Enseñanza Agropecuario (CEA) perteneciente a la Facultad de Estudios Superiores Cuautitlán para contribuir a mejorar el uso del agua de riego.

1.1.2 Objetivos específicos

- · Utilizar los procedimientos y métodos topográficos disponibles para caracterizar geométricamente la parcela.
- · Proyectar la nivelación de tierras en dos periodos (2019 y 2021) para identificar las diferencias en los volúmenes de movimiento de tierras.
- Determinar los parámetros que minimicen el movimiento de tierras utilizando el método de mínimos cuadrados para calcular los volúmenes de movimiento de tierras y su costo.

II. REVISIÓN DE LITERATURA

2.1 Nivelación de terrenos

2.1.1 Concepto e importancia de la nivelación de tierras

La nivelación de terrenos agrícolas es una práctica de acondicionamiento físico, que consiste en la remoción de tierras de las partes altas y su acarreo y depósito en las bajas, a fin de dejar una superficie plana que se ajuste, hasta donde sea posible, a las pendientes naturales del terreno y que facilite las labores agrícolas, en especial la aplicación del agua de riego (Hernández y Sánchez, 2007).

La nivelación de terrenos agrícolas impacta de forma importante en la mejora del desempeño del riego parcelario en el riego por gravedad en cuanto a la eficiencia de aplicación, la uniformidad y distribución del agua, incluyendo la reducción de tiempo de riego (Prado y Hernández, 2014). El tema de nivelación de tierras agrícolas sigue siendo de alto impacto en el rescate de volúmenes de agua de riego, que sin esta práctica de mejoramiento físico, se perdería irremediablemente entre un 20 y 30%; es por ello que el mejoramiento territorial de los terrenos agrícolas, mediante los trabajos de nivelación, es una práctica indispensable y, quizá la más impactante para lograr el uso racional del agua en el riego por gravedad (Hernández y Sánchez, 2007). Además, el primer paso en una eficiente sistematización del riego es la buena nivelación del terreno para obtener un riego eficaz (Rodríguez *et al.*, 1999).

En otras partes del mundo, se han obtenido resultados en el manejo de agua, entre los que destaca la disminución del consumo de agua por unidad de área, lográndose un ahorro significativo de la misma y esto a su vez, contribuye al mejor manejo del agua. Además, los riegos se efectúan como promedio en menos tiempo, lo que conlleva a disminución de los costos del riego por concepto de salario. Lo antes expuesto, garantiza mayor uniformidad del riego y del establecimiento del cultivo. Sin embargo, una limitación importante identificada es la falta de conocimiento técnico seguido de un alto costo de nivelación (Sánchez *et al.*, 2020).

En México, desde el año 2013, el IMTA trabaja junto con las Asociaciones de Usuarios de Riego en un proyecto solicitado por la CONAGUA para implementar el Riego por Gravedad Tecnificado, generando proyectos de nivelación de tierras para el mejoramiento de su riego parcelario. Dicho mejoramiento se ha realizado a través del componente de Riego por Gravedad Tecnificado (RIGRAT), perteneciente al programa de apoyo a la infraestructura hidroagrícola, a cargo de la CONAGUA, con el propósito de utilizar racionalmente el agua en las parcelas, y generar una cultura de ahorro en el uso del agua en la producción agrícola (Comisión Nacional de Agua, 2016), y que tiene el objetivo de tecnificar el riego por gravedad en las unidades de riego mediante apoyos a los Usuarios Hidroagrícolas para la aplicación diseñada y controlada de trazos de riego, nivelación de tierras, medición y mejora del servicio de riego, a fin de mejorar la estimación del uso del agua de la fuente de abastecimiento a la parcela (Secretaría de Medio Ambiente y Recursos Naturales, 2019). Los proyectos de nivelación de tierras han consistido en realizar un levantamiento topográfico de la parcela, elaboración del proyecto ejecutivo, cuantificación de los volúmenes de cortes y rellenos, así como la elaboración de los planos correspondientes y determinación de los costos de los trabajos (Universidad Autónoma Chapingo, 2013). De esta manera en 5 años de trabajo, se lograron obtener ahorros a nivel de presa, por más de 10 millones de m³ anuales en las superficies asesoradas por el IMTA (Instituto Mexicano de Tecnología del Agua, 2020).

2.1.2 Beneficios

La nivelación de tierras pretende solucionar problemas de baja eficiencia de aplicación y deficiente uniformidad del riego ocasionados por irregularidades topográficas (Navarro, 2018); además permite que el agua de riego se aplique perfecta y regularmente en toda su superficie, o bien la de lluvia escurra adecuadamente sin dar lugar a procesos erosivos indeseables (Franquet y Querol, 2010). De acuerdo con Hernández y Sánchez, los beneficios principales de la nivelación son:

- a) Aumento de la eficiencia de aplicación y de la uniformidad del riego (con diseño y manejo adecuado del riego).
- b) Ahorro de agua, mano de obra y energía.

- c) Mejoramiento del drenaje superficial.
- d) Control de la erosión.
- e) Mayor eficiencia en el uso de fertilizantes.
- f) Operación más eficiente de la maquinaria.
- g) Mayor eficiencia en casi todas las prácticas de manejo del cultivo.

2.1.3 Planeación de los trabajos de nivelación

Todos los trabajos de nivelación se deben planificar como parte integrante de un sistema general de riego agrícola para facilitar el uso de la conservación de los recursos hídricos y del suelo (Natural Resources Conservation Service, 2018). Antes de iniciar cualquier acción para nivelar un terreno para riego por gravedad, es preciso comprobar si se ha elegido el método adecuado de riego y cuáles son los requisitos de pendiente que exige su implementación. Existen condiciones que pueden hacer imposible o antieconómico el riego por gravedad y por consiguiente los trabajos de nivelación de tierras:

- a) Suelos excesivamente permeables. Si la infiltración básica excede 7.5 cm h⁻¹, se asume que el riego por gravedad ocasionará importantes pérdidas por percolación profunda y podrá causar problemas de drenaje y salinidad en suelos aledaños.
- b) Suelos someros. Si la profundidad de corte requerida para la nivelación de tierras excede la profundidad límite del suelo, se obtendrá el resultado de que piedras y otros materiales indeseables sean llevados a la superficie donde permanentemente reducirán el rendimiento de los cultivos.
- c) Topografía muy ondulada. Este factor limita con frecuencia la preparación de la tierra para riego. Generalmente, los trabajos que requieren mover más de 600 m³ ha¹¹ se consideran demasiado costosos para emprenderlos.
- d) Pendientes fuertes. En los terrenos con pendientes fuertes, el agua produce encauzamientos, provocando una severa erosión. Además, generalmente conduce a mayor dificultad para humedecer el suelo.
- e) Problemas de drenaje subsuperficial. Un ejemplo de esta condición son las áreas que consisten de terrenos planos y porosos con un nivel freático bastante alto. Como el riego

por gravedad no permite en general esta condición, la nivelación de tierras no es recomendable.

f) Caudal disponible pequeño. Si se usa un caudal reducido para regar por gravedad, los resultados de la nivelación no serán de gran impacto, pues se recomienda el riego localizado.

Otra de las decisiones importantes previas a los trabajos de nivelación de tierras es seleccionar la época adecuada para realizar los trabajos. Con el fin de hacer económico el movimiento de tierras y evitar dañar físicamente al suelo, la nivelación debe efectuarse en el período libre de lluvias. Cuando los terrenos estén bajo explotación, debe hacerse la nivelación entre ciclos agrícolas o durante el ciclo en el que se obtienen menos beneficios (Hernández y Sánchez, 2007).

Debe considerarse también en la programación de los trabajos, que toda cubierta vegetal y residuos de cosecha tienen que ser cortados e incorporados uniformemente en el área bajo proyecto o bien ser sacados fuera del área a nivelar. De igual manera se debe tomar en cuenta, además del método de riego y las pendientes naturales del terreno, otros factores como el espesor de suelo disponible, las intensidades de lluvia que podrían causar erosión y la posición y elevación de canales y drenes (Hernández y Sánchez, 2007).

Los suelos deberán ser lo suficientemente profundos para que, tras el trabajo de nivelación, se mantenga una zona radicular adecuada y utilizable que permita una producción satisfactoria de cultivos con las medidas de conservación adecuadas (Natural Resources Conservation Service, 2018). Suelos delgados y de topografía irregular podrán nivelarse sólo si se subdivide el área en tablas pequeñas que se proyecten y nivelen por separado, sin olvidar que debe preverse el suministro de agua y la salida de ésta (drenaje) en cada una de las tablas (Instituto Mexicano de Tecnología del Agua, 2010). Las áreas limitadas de suelos poco profundos pueden nivelarse para proporcionar grados de riego adecuados o una mejor disposición de campo.

La topografía de una parcela regada por gravedad, aún después de la nivelación, no permanece sin cambios. Año con año las operaciones normales del cultivo causan desacomodos en la capa superficial. Especialmente después de la nivelación, con los primeros riegos, las áreas de relleno se asientan dejando una superficie irregular. Por lo tanto es recomendable establecer un cultivo anual después de una nivelación para realizar un ajuste (Instituto Mexicano de Tecnología del Agua, 2010).

2.1.4 Pasos para llevar a cabo la nivelación

Inicialmente, se debe estudiar el campo e identificar una estrategia general de riego. Una vez realizado, se puede iniciar el programa de nivelación de tierras (Walker, 1989). Para la realización del levantamiento es necesario establecer una red básica que englobe la zona y permita obtener coordenadas de todos los puntos observados, en el sistema de coordenadas de proyecto. En general, los trabajos topográficos empiezan con la obtención de la cartografía a escala 1:50,000 y 1:25,000 de la zona del trabajo y de los alrededores, para la localización de los vértices de la red. También puede trabajarse con las fotografías aéreas, Google Earth u otro tipo de documentos (Melitón, 2016).

Tras llevar a cabo el diseño de la red sobre la cartografía existente, en campo se comprueba la viabilidad de la situación de los vértices previstos y se decide su posición definitiva. Es necesario disponer de una red en el sistema de referencia elegido, para desde ella, llevar a cabo los trabajos de radiación de los puntos de relleno. Una vez concluida la materialización de los puntos que componen la red, comienzan los trabajos de observación. Para realizar los trabajos topográficos de un levantamiento, se dispone entre dos metodologías a elegir: Equipos de topografía clásica y equipos GPS; cada una de ellas conlleva el uso de un equipo de observación específico, así como un tratamiento concreto de datos y de resultados. Dependiendo de las condiciones del terreno o del pliego de condiciones (costos), ambas técnicas se complementan o se utilizan de forma independiente (Melitón, 2016). Una vez que se ha determinado el diseño de la superficie, comienza la operación de nivelación de la tierra.

2.2. Levantamiento topográfico para el proyecto de nivelación

Existen tres tecnologías para la nivelación de tierras: a) la tradicional, b) equipo de rayo láser, y c) GPS.

2.2.1 Cuadrícula con teodolito, cinta y nivel

En 2010, el Instituto Mexicano de Tecnología del Agua describió que la nivelación de tierras en forma tradicional consiste en:

- a) Determinar las condiciones topográficas actuales del terreno, estableciendo una cuadrícula en el campo (tamaño de la cuadrícula más empleada de 20 a 30 m) empleando tránsito, cinta y nivel o estación total, dejando estacas permanentes como apoyo para la ejecución de los trabajos. Se coloca un trompo con cota a ras del suelo, a un lado de cada estaca, que sirve como nivel de referencia durante el movimiento de tierras.
- b) Elaborar el proyecto ejecutivo de nivelación con el cálculo de la pendiente.
- c) Calcular espesores de cortes y rellenos (datos de construcción).
- d) Ejecución de la nivelación con equipos e implementos de tracción mecánica, llevando un control de cortes y rellenos y verificando que se cumpla con la tolerancia establecida.
- e) Proporcionar un alisado final con niveladora, cuando el movimiento grueso de tierras ha sido aceptado.

2.2.2 Levantamiento con estación total

Los métodos para el Levantamiento con estación total son: poligonación, radiación, intersección y triangulación (Chiquito, 2012):

Poligonación: Se utiliza cuando de una sola estación no se domina todo el sector a levantar y es necesario utilizar más estaciones. La posición de una segunda estación se determina desde

la primera por radiación y la posición de una tercera desde la segunda por el mismo procedimiento. El método de poligonación se utiliza para ligar entre sí las diferentes estaciones de un mismo levantamiento.

Radiación: Consiste en situarse con el instrumento en el centro del terreno a levantar y después orientarlo para que la lectura cero corresponda al meridiano elegido, luego se determinan los azimut, las alturas y las longitudes de los radios, que irán desde el punto de ubicación del instrumento hasta el punto medido.

Intersección: Este método se utiliza cuando no es posible el empleo del método de radiación por no ser posible o práctica la medida de las distancias. Es especialmente apropiado para ubicar puntos distantes de fácil identificación sin necesidad de colocar miras.

Triangulación: Este método es muy similar al de intersección, salvo que se determina una tercera estación. Consiste en la formación de una sucesión de triángulos, de tal manera que cada uno tenga por lo menos un lado que forme parte además de otro triángulo. Su empleo es especialmente apropiado para relacionar puntos muy alejados entre sí y también para formar un sistema de puntos bien ligados entre ellos, con el objeto de servir de apoyo y comprobación a trabajos topográficos ejecutados por otros métodos.

2.2.3 Levantamiento con equipo láser

La tecnología de nivelación que más se utiliza actualmente en México, es la tecnología láser (Hernández y Sánchez, 2007). La luz láser tiene tres características que la hacen ideal para los propósitos de nivelación de tierras:

- a) El haz conserva su diámetro original, sin mostrar tendencia a abrirse, a pesar de viajar grandes distancias.
- b) Pierde poca intensidad al viajar por la atmósfera, por lo que puede alcanzar grandes distancias.
- c) No se mezcla con otras clases de luz y puede ser detectada por receptores adecuados.

Un sistema típico de rayo láser para la nivelación de tierras, con capacidad para levantamientos topográficos y para controlar automáticamente el movimiento de tierras, tiene tres componentes principales:

- 1. Emisor: Un sistema óptico define el rayo y los mecanismos de control y lo orientan en la posición necesaria. Los emisores de rayo láser están equipados con mecanismos electrónicos que lo autonivelan y garantizan mantener el nivel establecido dentro de márgenes muy reducidos. El mecanismo de autonivelación electrónico mantiene las pendientes que fueron seleccionadas.
- 2. Receptor o detector: Consiste esencialmente de una fotocelda con una receptividad de 360° de amplitud. Este componente se instala sobre un mástil, que a su vez se coloca sobre la cuchilla de corte del implemento de movimiento de tierras. El receptor, debidamente instalado y en conexión con la caja de control, tiene la capacidad de monitorear al rayo láser. Cuando registra la señal, la envía a la caja de control, desde donde se administran las diversas acciones.
- 3. Caja de control: Este componente, instalado en un tablero frente al operador de la maquinaria, es el cerebro de todo el sistema y tiene diversos interruptores para seleccionar modos de trabajo o realizar acciones específicas. También permiten elegir entre dos opciones de operación: manual y automática. Cuando se selecciona el modo de operación automática, las válvulas electrohidráulicas se activan por las señales provenientes de la caja de control (en respuesta a la señal láser monitoreada por el receptor), y hacen los ajustes automáticamente de acuerdo con la función básica que en ese momento se esté realizando.

Por lo tanto, la nivelación con equipo láser consiste en:

- a) Obtener las condiciones topográficas actuales del terreno, utilizando el equipo emisor y receptor de rayo láser (sistema láser previamente configurado para esta función). El procedimiento convencional consiste en detener el tractor en puntos previamente señalados en el terreno, ubicados con cierta equidistancia (generalmente de 20 o 30 m).
- b) Efectuar el cálculo de las pendientes proyecto, ya sea en forma simplificada o por alguna variante del principio de mínimos cuadrados.

c) Realizar el movimiento de tierras, guiado por el sistema láser previamente configurado para efectuar esta función.

2.2.4 Levantamiento con equipo GPS

Recientemente se empieza a utilizar en México el equipo con control GPS para realizar la nivelación de tierras, pero aún es muy reducido el número de sitios en los que se utilizan o se conocen sus características y ventajas con respecto a los equipos con tecnología láser. Ésta última es más utilizada dado que los sistemas GPS que se ofrecen en el mercado cuestan cerca del doble que los sistemas de control láser. Además, si un usuario desea emigrar del sistema de control láser al control GPS, no puede utilizar ningún componente del sistema láser (Prado y Hernández, 2014).

Un sistema típico de nivelación de tierras agrícolas de control GPS, consiste de una Caja de Control, un receptor GPS y una antena GPS. El receptor GPS envía información de posición y elevación a la caja de control. La caja de control compara la posición real frente a las posiciones deseadas. En caso que sea necesaria una corrección, la caja de control envía una señal a la válvula hidráulica, la cual eleva o baja el equipo hasta que alcance el nivel requerido (Hernández y Sánchez, 2007). Para efectuar la nivelación de terrenos agrícolas se siguen una serie de pasos de forma secuencial.

- a) Se instala la estación base en un lugar despejado, verificando que el receptor y radio emisor estén funcionando adecuadamente.
- b) Después que el tractor se sitúa en el predio a nivelar, que lleva consigo: la caja de control, estación móvil y escrepa, se verifica que el sistema receptor en el tractor esté recibiendo señal de la estación base.
- c) Se genera un punto de control, preferentemente en el perímetro o parte exterior del predio a nivelar.
- d) Se delimita el predio a nivelar, realizando un recorrido por su perímetro con el tractor.

- e) Se hace un recorrido en zigzag en el interior del terreno para registrar su topografía (coordenadas *x*, *y*, *z*).
- f) Se realiza el procesamiento de la información topográfica para obtener el plano de curvas de nivel y cortes/rellenos, así como las pendientes naturales.
- g) Se indican las pendientes proyecto y el factor de abundamiento y se procesa nuevamente para obtener el plano de cortes y rellenos.
- h) Se calibra la cuchilla, situándose en un punto del terreno de cero cortes y cero rellenos. La cuchilla es bajada manualmente hasta descansar libremente sobre la superficie del terreno para identificar la cota a la que debe mantenerse para generar las pendientes proyecto.
- i) Se cambia a control automático la cuchilla y se realiza la nivelación.

2.3 Cálculo de las pendientes proyecto

La pendiente es una forma de medir el grado de inclinación de un terreno. La pendiente entre dos puntos es la relación entre el desnivel existente entre ambos con la distancia horizontal que los separa, como se esquematiza en la Figura 1. Por ser este un término adimensional, se suele multiplicar por 100 y expresarlo en porcentaje (%). La pendiente en porcentaje indica cuantos metros sube o baja el terreno por cada 100 metros medidos en horizontal (Universidad Nacional del Centro de la Provincia de Buenos Aires, s.f.). En el riego por gravedad, el IMTA (2010) señala que no es conveniente que la pendiente del riego sea mayor que 2% porque se generan velocidades erosivas.

$$Pend_{AB}(\%) = \frac{\Delta Z_{AB}}{AB_{HORIZ}} \times 100 \tag{1}$$

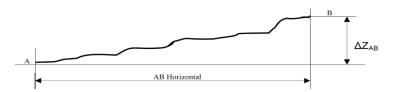


Figura 1. Relación de desnivel entre dos puntos. Fuente: Universidad Nacional del Centro de la Provincia de Buenos Aires, s.f.

Existen dos criterios principales en el diseño de la nivelación: a) Seleccionar la pendiente que maximice la efectividad de un sistema de riego existente o que se esté planeando adoptar.

b) Seleccionar la pendiente que minimice el movimiento de tierras (Hernández y Sánchez, 2007). De igual manera se considera muy conveniente, insistir y enfatizar sobre la justificación, alcances, beneficios y conceptos, de la nivelación de terrenos agrícolas, para garantizar su factibilidad técnica, financiera y social (Prado y Hernández, 2014).

El elemento clave para obtener proyectos económicos en la nivelación de tierras, es la determinación de las pendientes proyecto, ya que a partir de éstas se calculan las cotas proyecto y los datos de construcción, es decir, los espesores de corte y relleno (Comisión Nacional de Agua, 2014).

El método utilizado tradicionalmente para calcular movimiento de suelo se basa en el cálculo del centroide, o cota terreno promedio, cuya ubicación planimétrica está definida por el centro matemático dado por las coordenadas medias en los ejes x e y Posteriormente, de acuerdo con la finalidad propuesta (nivelación a cero en todas las direcciones o respeto de la pendiente natural en una o dos direcciones), se calcula la cota proyecto de cada punto de la retícula. Este cálculo se realiza en función de la textura de suelo (Rodríguez *et al.*, 1999).

Es posible calcular el valor más probable de cada observación mediante el ajuste de las observaciones de forma simultánea, de manera que la suma de los cuadrados de los valores residuales (la diferencia entre las observaciones medidas y las ajustadas) sea un valor mínimo. Este es el origen del término "mínimos cuadrados" (Autodesk, 2013).

Previo al cálculo de las coordenadas más probables de los puntos de la red básica mediante el ajuste mínimo cuadrático, se han de obtener y comprobar los cierres de los triángulos, desechando aquellas observaciones que superen la tolerancia. Previo a la compensación propiamente dicha, hay que efectuar correcciones a las magnitudes observadas. Obtenidas y aplicadas las correcciones se procede a la compensación de la red. Para ello se necesitan observaciones redundantes en relación con el número de incógnitas, lo que permitirá obtener los valores más probables de las magnitudes. El método exige conocer unas coordenadas iniciales de todos los puntos, tanto estacionados como observados (Melitón, 2016).

La aplicación del método de mínimos cuadrados proporciona un criterio con el cual se obtiene la mejor recta que representa a los puntos dados, lo cual conduce a la obtención del plano proyecto al calcular analíticamente la ecuación del plano que balancea cortes y rellenos, haciendo mínimo el movimiento de tierras (Comisión Nacional de Agua, 2014); en el que para cada incógnita se obtienen: valores únicos, los valores más probables, y se indica su precisión. (Melitón, 2016). Para obtener la ecuación del plano proyecto, se recurre a la ecuación de una superficie plana en el espacio, referida a ejes ortogonales, mediante una solución matricial en la cual es indistinta la forma en que se realizó el levantamiento topográfico (García *et al.*, 2020):

$$\hat{Z}_{ii} = A + BX_i + CY_i \tag{2}$$

Donde:

 \hat{Z}_{ii} = Cota sobre el plano proyecto en un punto de coordenadas X_i , Y_j

B, C = Pendientes en los sentidos de los ejes x e y, respectivamente (constantes)

A = Constante que geométricamente representa la cota sobre el plano proyecto, en el origen del sistema de coordenadas.

i = 1, 2, 3, ..., n (Núm. de hileras)

j = 1, 2, 3, ..., m (Núm. de columnas)

El principio de Mínimos Cuadrados establece que: Los mejores estimadores de los parámetros A, B, y C se obtienen cuando la suma de cuadrados de las desviaciones (en este caso espesores de corte o relleno) se minimice, esto es:

$$S = \sum_{i,j} (Z_{ij} - \hat{Z}_{ij})^2 = \sum_{i,j} (Z_{ij} - A - BX_i - CY_j)^2 = Minimo$$
(3)

Utilizando la técnica del Cálculo Diferencial, para minimizar la expresión anterior, se obtiene sucesivamente:

$$\frac{\partial S}{\partial A} = 0$$

$$\frac{\partial S}{\partial B} = 0$$

$$\frac{\partial S}{\partial C} = 0$$

Combinando los resultados de las expresiones anteriores, se obtienen las ecuaciones normales:

$$NA + B\Sigma X + C\Sigma Y = \Sigma Z$$

$$A\Sigma X + B\Sigma X^{2} + C\Sigma XY = \Sigma XZ$$

$$A\Sigma Y + B\Sigma XY + C\Sigma Y^{2} = \Sigma YZ$$
(4)

Que en notación matricial:

$$\begin{bmatrix} N & \Sigma X & \Sigma Y \\ \Sigma X & \Sigma X^2 & \Sigma XY \\ \Sigma Y & \Sigma XY & \Sigma Y^2 \end{bmatrix} \begin{bmatrix} A \\ B \\ C \end{bmatrix} = \begin{bmatrix} \Sigma Z \\ \Sigma XZ \\ \Sigma YZ \end{bmatrix}$$
 (5)

Por lo tanto:

$$\begin{bmatrix} A \\ B \\ C \end{bmatrix} = \begin{bmatrix} N & \Sigma X & \Sigma Y \\ \Sigma X & \Sigma X^2 & \Sigma XY \\ \Sigma Y & \Sigma XY & \Sigma Y^2 \end{bmatrix}^{-1} \begin{bmatrix} \Sigma Z \\ \Sigma XZ \\ \Sigma YZ \end{bmatrix}$$
(6)

La solución por determinantes de las ecuaciones normales es:

$$A = \frac{D_A}{D} \tag{7}$$

$$B = \frac{D_B}{D} \tag{8}$$

$$C = \frac{D_C}{D} \tag{9}$$

Donde:

$$D = NX^{2}Y^{2} + 2XYXY - (Y)^{2}X^{2} - N(XY)^{2} - (X)^{2}Y^{2}$$
(10)

$$D_A = ZX^2Y^2 + XXYYZ + YXYXZ - YYZX^2 - Z(XY)^2 - XXZY^2$$
 (11)

$$D_R = NXZY^2 + YZXY + XYYZ - (Y)^2XZ - NXYYZ - XZY^2$$
(12)

$$D_C = NYZX^2 + XYXZ + XZXY - YZX^2 - NXYXZ - (X)^2YZ$$
(13)

N = Número total de vértices de la cuadrícula

De la etapa previa del levantamiento topográfico, se conocen las cotas del terreno natural, en cada punto Z_{ij} de la cuadrícula. Una vez obtenidas las nuevas cotas \hat{Z}_{ij} , y si las pendientes obtenidas, son adecuadas para el método de riego que se pretenda utilizar, se procede al ajuste de la elevación del plano proyecto, donde se considera el ajuste por el abundamiento que se genera al eliminarse la compactación.

Así mismo, el cálculo de los valores de las cotas proyecto, con la finalidad de nivelar el predio conservando la pendiente general del terreno, se puede realizar empleando el Coeficiente de Trueba (Durán y Gómez, 1993).

Trueba, 1971, citado por Duran, 1993, menciona y hace uso de los mínimos cuadrados a través de modelos matemáticos, estableciendo valores de coeficientes de regresión, por medio de tablas modelo (las tablas determinan el valor del centroide con cierto número de combinaciones de estacado en las abscisas y en las ordenadas), de tal manera que los bloques del terreno a nivelar se ajusten a alguno de los modelos preparados por él y posteriormente obtener la ecuación del plano proyecto; esto es, empleando los coeficientes de Trueba para terrenos de forma cuadrada o rectangular que se ajusten a un estacado mínimo de 4x4 (columnas y filas), hasta de 31x31 variando tanto las filas como las columnas.

Para el desarrollo del método se utilizan las tablas de coeficientes de Trueba y las cotas del terreno a nivelar. Como particularidad del método, es el hecho de que no se requiere la

elaboración del plano topográfico con las curvas de nivel del terreno natural, sino que se va directamente al plano de proyecto con isolíneas del terreno nivelado (Durán y Gómez, 1993).

2.4 Cálculo de espesores y volúmenes de corte y relleno

Los espesores de corte mayores de 30 cm generalmente conducen a una pérdida de la capa mejor acondicionada para el desarrollo de los cultivos, siendo conveniente establecerlo como límite máximo en suelos profundos (hasta 80 cm de espesor) (Instituto Mexicano de Tecnología del Agua, 2010). Para afectar lo menos posible la fertilidad del suelo se recomienda en no más del 10% de la superficie del terreno espesores de corte mayores a los permisibles.

El volumen de cortes generalmente debe exceder el volumen de rellenos en un 30 a 100 por ciento. El porcentaje de reducción debe determinarse localmente para cada campo. Algunas de las variables son: profundidad de cortes y rellenos, textura del suelo, contenido de humedad del suelo y tipo de equipo de movimiento de tierra utilizado (Natural Resources Conservation Service, 2018).

La obtención de la relación corte/relleno implica efectuar la suma de todos los cortes y rellenos calculados anteriormente, debiéndose llegar a una relación corte/relleno cercana a 1.20 (Franquet y Querol, 2010). El Instituto Mexicano de Tecnología del Agua señala que en un proyecto de nivelación es necesario contar con un volumen mayor de corte que de relleno. Por lo que se busca que la relación entre el volumen de cortes y rellenos sea mayor de 1.0 (entre 1.0 y 1.5 dependiendo de la textura del suelo).

El criterio general de una buena nivelación es aceptar una tolerancia de 3 cm, en áreas de corte: tolerancia nula hacia arriba y 3 cm hacia abajo, y en áreas de relleno: tolerancia nula hacia abajo y 3 cm hacia arriba. No es recomendable en los trabajos de nivelación mover más de 750 m³ ha⁻¹, para que la inversión sea rentable (Instituto Mexicano de Tecnología del Agua, 2010).

Los espesores de corte o relleno, en cada punto de la cuadrícula, se calculan mediante:

$$C_{ij} = Z_{ij} - \hat{Z}_{ij} \tag{14}$$

Donde:

 C_{ij} = Espesores de corte (valores positivos) o espesores de relleno (valores negativos), en m;

 Z_{ij} = Cotas del terreno natural, en m;

 \hat{Z}_{ij} = Cotas proyecto, que se obtienen al sustituir las coordenadas de cada punto de la cuadrícula, en la ecuación del plano proyecto, en m.

La estimación de volúmenes de corte y relleno, puede hacerse por varios métodos; en este trabajo se utilizará el método de adición y el método de los cuatro vértices.

2.4.1 Método de los cuatro vértices

Para el cálculo de volúmenes de corte y relleno se usa el método recomendado por el NRCS del USDA, es decir, el llamado método de los cuatro vértices (Comisión Nacional de Agua, 2014), que solicita datos de construcción (cotas topográficas tomadas en campo mediante radiaciones) en los cuatro vértices de un cuadro representativo; y se hace necesario crear una cuadrícula homogénea (Hernández *et al.*, 2015). Sin embargo, el cálculo es más laborioso porque es aplicable a las áreas individuales, L², en cuyos vértices se conocen los datos de construcción. El correcto uso del método de los cuatro vértices requiere que los cortes o rellenos de los bordes externos del terreno, sean conocidos. En la práctica, sin embargo, es satisfactorio suponer que el corte en la línea del límite es idéntico al del vértice más cercano (United States Department of Agriculture, 1983). Los volúmenes de corte y relleno, se calculan mediante:

$$\tilde{V}_{c} = \frac{L^{2}}{4} \cdot \frac{\left(\sum C\right)^{2}}{\sum C + \left|\sum R\right|} \tag{15}$$

$$\tilde{V}_r = \frac{L^2}{4} \cdot \frac{\left(\sum R\right)^2}{\sum C + \left|\sum R\right|} \tag{16}$$

Donde

 \tilde{V}_c = Volumen de corte en el cuadro correspondiente, en m³

 \tilde{V}_r = Volumen de relleno en el cuadro correspondiente, en m³

 ΣC = Suma de espesores de corte en los vértices del cuadro correspondiente

 ΣR = Suma de espesores de relleno en los vértices del cuadro correspondiente

2.4.2 Método de la adición

Este método es más sencillo, pero también el menos preciso. Los volúmenes de corte y relleno, se calculan mediante las ecuaciones 17 y 18, respectivamente:

$$V_c = L^2 \sum_{i=1}^{Nc} C_i {17}$$

$$V_r = L^2 \sum_{j=1}^{Nr} |R_j| \tag{18}$$

En las que:

 V_c = Volumen total de corte, en m³;

 C_i = Espesor de corte i-ésimo, en m;

i = 1, 2, 3, ...,

Nc = Número de espesores de corte;

L = Módulo de cuadrícula

 V_r = Volumen total de relleno, en m³;

 R_i = Espesor de relleno j-ésimo, en m; y

j = 1, 2, 3, ...,

Nr = Número de espesores de relleno;

2.5 Ajustes a la elevación del plano proyecto

Es necesario contar con un volumen mayor de corte que de relleno para cubrir las necesidades de este último por el abundamiento que se genera al eliminarse la compactación. Por lo tanto, es necesario modificar el plano proyecto de tal forma que la relación corte/relleno sea mayor que 1:

$$\frac{|Vc|}{Vr} = Q > 1$$

Esta relación depende fundamentalmente de la estructura del suelo y su mayor o menor contenido de materia orgánica. Para un suelo franco, se ha encontrado que varía entre 1.20 y 1.30. En la Figura 2, se expone el esquema propuesto por Trueba a partir de la textura del suelo definido sobre el triángulo de texturas del sistema americano para definir valores de la relación Q en función de la textura (Comisión Nacional de Agua, 2014).

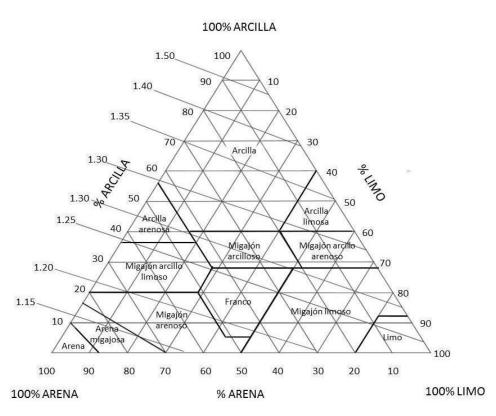


Figura 2. Valores propuestos por Trueba recomendados para la relación corte/relleno en los trabajos de nivelación de tierras. Fuente: Comisión Nacional de Agua, 2014.

Para aumentar el número de cortes, se debe bajar la cota del centroide, con lo cual se lleva el plano proyecto de corte hacia abajo paralelamente a sí mismo (Negro, 1998). Para cubrir este requisito, el plano se baja una cantidad Δ que puede estimarse con la ecuación 19: en la que Q es la relación de corte/relleno, deseada (algunos espesores de relleno pequeños, pueden pasar a ser espesores de corte, una vez que se baja en Δ al plano proyecto). El valor de N_c debe incluir el número de estacas que no tienen corte ni relleno).

$$\Delta = \frac{Q \sum_{j=1}^{N_r} Rj - \sum_{i=1}^{N_c} Ci}{Q N_r + N_c}$$
 (19)

2.6 Problemas especiales en el proyecto de la nivelación

2.6.1 Lotes de forma irregular

Se puede demostrar que dada una condición topográfica cualquiera (representada por N puntos del terreno con posición y elevación conocidas), el principio de mínimos cuadrados garantiza que siempre habrá un plano (y sólo uno), que mejor se ajuste a las pendientes naturales del terreno, de tal forma que minimicen los espesores de corte y relleno, a la vez que los equilibren. Sin embargo, el requisito que se debe exigir, es que las cotas del terreno natural sean representativas, es decir, que cada una de ellas debe haberse tomado en el centro de un cuadro de superficie $L \times L$. En terrenos de forma irregular, pueden quedar cuadros incompletos o de mayor tamaño, los cuales ocasionarían un sesgo en las pendientes óptimas, a menos que en estos cuadros se les definan sus coordenadas centroidales y en este punto se tome la cota topográfica. El valor de dicha cota deberá ponderarse en función de la superficie que representa y posteriormente puede usarse el método general de mínimos cuadrados. En terrenos bajo riego, rara vez se encuentran lotes demasiado irregulares, por lo que casi siempre es posible usar sólo las cotas comprendidas en un rectángulo (lo más grande posible), inscrito en el terreno, y aplicar cualquiera de las variantes simplificadas. Una vez obtenido el plano proyecto, éste se extrapola, para obtener los datos de construcción en todo el terreno. En cuanto al cálculo de volúmenes, puede obtenerse una densidad de cortes y rellenos dentro del rectángulo y también extrapolarlo en toda el área del lote (Comisión Nacional de Agua, 2014).

2.6.2 Pendientes obligadas

Cuando resulta que las pendientes naturales del terreno no se adaptan a los requerimientos del método de riego elegido, se especifican éstas, de manera que el plano proyecto tendrá pendientes obligadas. Este plano se hace pasar por el centroide del terreno, con lo que se logra siempre un equilibrio entre cortes y rellenos. Es claro que ahora los volúmenes a mover y sus distancias de acarreo se incrementan, pero ésta es la mejor solución si se deben respetar las pendientes especificadas (Comisión Nacional de Agua, 2014).

2.6.3 Restricciones diversas

En algunos casos pueden agregarse otras restricciones al proyecto, como el especificar una profundidad máxima de corte permisible o no permitir rellenos junto al canal de suministro, que pudieran disminuir la carga hidráulica más allá de lo recomendable. Como esto plantea un problema de aproximaciones sucesivas, en las que se varíen las pendientes, se hace recomendable el uso del cómputo electrónico para cumplir las restricciones impuestas (Comisión Nacional de Agua, 2014).

III. METODOLOGÍA

3.1 Descripción del sitio

El área de producción de la Unidad Agrícola del Centro de Enseñanza Agropecuaria (CEA), perteneciente a la Facultad de Estudios Superiores Cuautitlán (FES-C) en el Estado de México (se encuentra en las coordenadas 19°41'39" de latitud norte y 99°11'33" de longitud oeste, a 2255 msnm con temperatura media anual de 21°C y precipitación media anual de 599 mm), se encarga de producir forraje para abastecer los requerimientos del CEA. La superficie con derecho a riego de la Facultad es de aproximadamente 60 hectáreas, en la figura de usuario del agua pertenece a la Unidad de Riego Cuautitlán y al Distrito de Riego 073 de la Concepción, que tiene como fuentes de abastecimiento la presa Guadalupe y presa la Concepción, éstas se alimentan del escurrimiento superficial de sus cuencas. La red de riego se compone de infraestructura hidroagrícola para distribuir el agua a las parcelas de producción. Actualmente, se conoce que el área de producción del CEA presenta desniveles y pendientes encontradas, además de las visibles necesidades de rehabilitación de la infraestructura.

3.2 Materiales y métodos

La nivelación de tierras agrícolas ocupa el cumplimiento de algunos requerimientos mínimos para iniciar con un proyecto ejecutivo, por esa razón se deben verificar las condiciones de viabilidad que indica la literatura y la praxis para reducir el riesgo de generar una propuesta sin sustento técnico y que raye en la baja sustentabilidad. En el campo es necesario realizar el levantamiento de los rasgos terrestres que permitan caracterizar geométricamente el área de proyecto, por su parte en gabinete se siguen también una serie de pasos para obtener un proyecto de nivelación de tierras; para ello, sin constituir una receta, se siguieron los siguientes pasos generales donde se incluyen los materiales a utilizar:

- Se realizó la planeación de los trabajos utilizando información cartográfica digital como las cartas topográficas escala 1:50,000 e imágenes de satélite de GoogleEarth que circunscriben el área de la Unidad Agrícola del CEA.
- Con la planeación de gabinete se realizó un recorrido de campo para organizar los trabajos topográficos.
- En los dos escenarios se obtuvieron las condiciones de la superficie de la parcela siete de la Unidad Agrícola del CEA, para ello se realizó un levantamiento topográfico con la estación total Leica TC 307. Se estacionó y orientó desde un punto de control donde se dominó toda la superficie y por medio del método de radiaciones se realizaron las mediciones para que el instrumento calculara las coordenadas de los Puntos de Configuración y Detalle tomando como base un Punto de Control y Apoyo (PCA). Se simuló una cuadrícula de aproximadamente 30 pasos en la dirección esteoeste y norte-sur con la finalidad de llevar un orden sistemático.

Con la información de campo se procedió a realizar el trabajo de gabinete para el proyecto de nivelación de la que se describe en los siguientes apartados.

3.2.1 Obtención del plano proyecto

- Para el procesamiento de los datos de la estación total, se exportaron al módulo CivilCAD de AutoCAD, donde se realizó la triangulación de los datos para obtener las curvas de nivel de las condiciones actuales de la parcela. Se utilizó el programa SINIVET 5.0 para el proyecto de nivelación de tierras al cual se le ingresó la información de los PCA y PCD para obtener la interpolación de las coordenadas y las nuevas cotas de la cuadrícula regular.
- Con las cotas del levantamiento se aplicó el método directo de mínimos cuadrados para obtener la ecuación del plano proyecto, utilizando la ecuación 2, y de la ecuación 7 a 13. Para ello se ordenaron los datos de las coordenadas a manera de que fue posible aplicar las determinantes para dicho método según lo descrito en el apartado 2.3. Se evaluó si las pendientes obtenidas en la ecuación del plano proyecto se aceptaban o se modificaban en función a la entrada y salida del agua de riego en la

parcela. A partir de aplicar la ecuación del plano proyecto, se calcularon las cotas para minimizar el movimiento de tierra, y se realizó la comparación con las cotas del terreno regular para conocer los espesores de corte y relleno.

3.2.2 Ajuste del plano proyecto

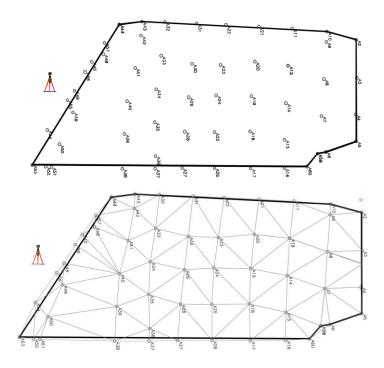
Se utilizó el coeficiente de Trueba correspondiente para la textura del suelo de la parcela, el cual se ingresó a la ecuación 14 para el ajuste de la ecuación del plano proyecto para minimizar el fenómeno de abundamiento, donde los volúmenes de corte deben ser mayores a los de relleno. Posteriormente, la ecuación ajustada se aplicó a las coordenadas de la cuadrícula regular.

3.2.3 Cálculo del volumen de corte y relleno

- Empleando como insumo los espesores de corte y relleno ajustados, se calcularon los volúmenes. Se determinaron los volúmenes utilizando dos métodos diferentes: método de la adición con las ecuaciones 15, 16 y el de los cuatro vértices con las ecuaciones 17, 18 según lo descrito en el apartado 2.4.1 y 2.4.2.
- Los valores obtenidos posterior a realizar el ajuste del coeficiente de abundamiento al plano proyecto, fueron procesados en el módulo de CivilCAD de AutoCAD para esquematizar la triangulación de la cuadrícula regular y obtener las curvas de nivel del proyecto de nivelación de tierras.
- Finalmente se estimó el costo que generará el movimiento de tierras a partir de los volúmenes calculados con los dos métodos aplicados, y se elaboró el informe con la memoria de cálculo.

.

3.2.4 Comparación de los escenarios


Con los resultados de los parámetros para nivelación; ecuación, pendientes, desplazamiento del plano, relación corte relleno, volúmenes de movimiento de tierra y costo, se realizó la comparación de dos tiempos diferentes: Escenario 2019 y Escenario 2021; por lo cual, ésta metodología será aplicada en ambos escenarios.

IV. RESULTADOS

4.1 Cálculo para la nivelación de tierras del escenario 2019

Con un levantamiento topográfico por radiaciones se obtuvieron coordenadas convenientemente en el primer cuadrante topográfico del plano cartesiano; para evitar el número elevado de dígitos en los cálculos no se tomaron las coordenadas de la proyección UTM, en cambio, la coordenada Z fue la que reporta el GPS donde la elevación es con respecto al nivel medio del mar. Los ejes se definieron de acuerdo a un plano topográfico donde el eje "y" coincide con la meridiana magnética y el "x" en la dirección oeste-este.

Con las coordenadas como insumo se obtuvo el plano con las curvas de nivel que se observan en la Figura 3. Para su obtención se utilizaron las herramientas del CivilCAD para generar curvas equidistantes cada 5 cm, esto con el fin de identificar los cambios de relieve que obligan la dirección y trazo del riego. El riego normalmente se aplica con el trazo de los surcos en la dirección sur a norte, sin embargo, los regadores de la parcela han manifestado la dificultad para regar señalando que el agua se cuelga en la segunda mitad del surco. Esta condición es evidente en la Figura 3, y en la práctica causa desbordamiento y evita la llegada del agua al final (pie de parcela).

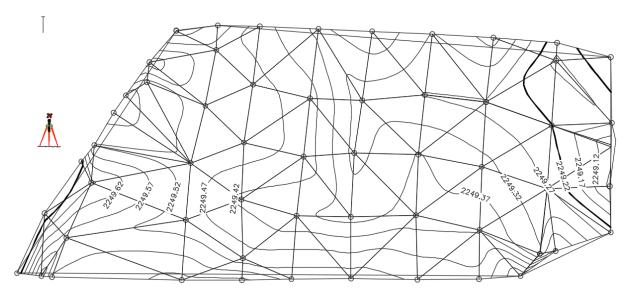


Figura 3. Configuración topográfica de la parcela siete a partir del levantamiento con radiaciones. Escenario 2019.

4.1.1 Obtención del plano proyecto

Tomando como insumo los datos del levantamiento para el Escenario 2019 se aplicó el método de Mínimos Cuadrados. Para aplicar las ecuaciones correspondientes, en el Cuadro 1 se procedió a ordenar las coordenadas que corresponden a las columnas 2, 3 y 4. La columna 5 y 6 se obtienen elevando al cuadrado la columna 2 y 3 respectivamente. Además, la columna 7= (columna 2)(columna 3); columna 8= (columna 2)(columna 4) y columna 9=(columna 3)(columna 4). El último renglón del cuadro corresponde a la suma de cada columna y son los valores que se utilizaron como insumos para calcular los determinantes.

Cuadro 1. Estimación de parámetros para utilizar método de Mínimos Cuadrados del Escenario 2019.

1	2	3	4	5	6	7	8	9
N	$\mathbf{X_i}$	$\mathbf{Y}_{\mathbf{j}}$	$\mathbf{Z}_{\mathbf{ij}}$	X_i^2	Y_j^2	$X_i Y_j$	$X_i Z_{ij}$	$Y_j Z_{ij}$
A2	843.499	285.162	2,249.557	711,489.720	81,317.366	240,533.719	1,897,497.955	641,488.173
A3	844.020	252.245	2,249.451	712,368.916	63,627.540	212,899.699	1,898,580.508	567,412.767
A4	842.988	220.640	2,249.336	710,627.925	48,682.010	185,996.762	1,896,162.131	496,293.495
A5	843.556	197.654	2,249.519	711,585.882	39,067.104	166,732.119	1,897,594.125	444,626.428
A6	815.162	188.363	2,249.706	664,488.271	35,480.620	153,546.266	1,833,873.718	423,761.371
A7	810.889	219.417	2,249.550	657,540.159	48,143.820	177,922.722	1,824,134.225	493,589.512
A8	813.149	251.109	2,249.501	661,210.483	63,055.730	204,188.907	1,829,178.364	564,869.947
A9	815.495	283.301	2,249.440	665,031.280	80,259.457	231,030.407	1,834,405.948	637,268.601
A10	815.996	292.277	2,249.467	665,848.656	85,425.845	238,496.717	1,835,554.949	657,467.466
A11	783.304	294.778	2,249.671	613,564.373	86,894.069	230,900.639	1,762,175.168	663,153.518
A12	779.566	262.799	2,249.548	607,722.369	69,063.314	204,869.034	1,753,670.011	591,178.965
A13	779.514	262.753	2,249.532	607,641.297	69,039.139	204,819.511	1,753,540.563	591,071.282
A14	777.389	230.438	2,249.619	604,332.880	53,101.672	179,139.851	1,748,827.940	518,397.703
A15	776.146	198.925	2,249.695	602,401.837	39,571.156	154,394.744	1,746,090.651	447,520.578
A16	775.891	174.379	2,249.760	602,006.068	30,408.036	135,299.009	1,745,567.411	392,310.899
A17	744.388	174.186	2,249.792	554,112.750	30,340.763	129,661.881	1,674,717.042	391,882.269
A18	743.693	206.148	2,249.672	553,078.535	42,496.998	153,310.721	1,673,064.194	463,765.383
A19	744.853	236.521	2,249.653	554,805.247	55,942.183	176,173.258	1,675,659.661	532,090.177
A20	748.197	266.330	2,249.548	559,798.003	70,931.669	199,267.174	1,683,103.940	599,122.119
A21	752.038	296.613	2,249.597	565,560.401	87,979.272	223,064.099	1,691,781.304	667,259.715
A22	721.194	297.982	2,249.694	520,120.064	88,793.272	214,902.682	1,622,464.690	670,368.318
A23	716.115	263.496	2,249.572	512,819.977	69,430.142	188,693.306	1,610,951.128	592,753.224
A24	712.061	237.169	2,249.584	507,030.156	56,249.135	168,878.677	1,601,839.908	533,531.588
A25	710.374	205.449	2,249.624	504,630.510	42,209.292	145,945.525	1,598,073.275	462,183.001
A26	710.405	174.579	2,249.832	504,674.554	30,477.827	124,021.707	1,598,290.777	392,773.421
A27	679.858	174.437	2,249.832	462,206.220	30,428.267	118,592.303	1,529,565.159	392,453.945
A28	682.510	205.896	2,249.656	465,819.218	42,393.163	140,525.976	1,535,411.592	463,195.172
A29	686.021	235.551	2,249.733	470,624.126	55,484.274	161,592.815	1,543,362.958	529,926.858
A30	689.386	264.458	2,249.723	475,252.368	69,938.034	182,313.511	1,550,926.415	594,957.245
A31	693.674	299.244	2,249.637	481,182.925	89,546.972	207,577.633	1,560,513.572	673,190.374
A32	663.771	300.458	2,249.721	440,591.277	90,275.010	199,435.157	1,493,298.433	675,946.672
A33	660.235	271.351	2,249.773	435,909.595	73,631.365	179,155.292	1,485,377.752	610,478.153
A34	655.535	242.463	2,249.789	429,725.481	58,788.306	158,942.861	1,474,814.307	545,490.590
A35	654.236	214.125	2,249.689	428,024.089	45,849.516	140,088.176	1,471,826.408	481,714.657
A36	655.046	184.876	2,249.772	429,084.607	34,179.135	121,102.192	1,473,703.025	415,928.848
A37	654.494	173.840	2,249.913	428,361.742	30,220.346	113,777.150	1,472,553.434	391,124.876
A38	623.784	173.937	2,249.916	389,105.855	30,254.080	108,499.031	1,403,460.477	391,343.639
A39	625.777	203.881	2,249.770	391,596.228	41,567.462	127,583.939	1,407,853.196	458,685.357
A40	628.212	232.286	2,249.782	394,649.689	53,956.786	145,924.736	1,413,338.925	522,592.862
A41	635.795	260.825	2,249.786	404,234.646	68,029.681	165,831.100	1,430,401.565	586,800.433
A42	641.389	288.755	2,249.778	411,379.208	83,379.450	185,204.136	1,442,981.737	649,634.646
A43	642.154	300.927	2,249.837	412,361.118	90,557.059	193,241.326	1,444,740.704	677,036.699
A44	620.869	298.310	2,249.902	385,477.694	88,988.856	185,211.282	1,396,893.280	671,168.266
A45	595.042	266.078	2,249.871	354,074.387	70,797.502	158,327.452	1,338,766.615	598,641.176
A46	578.823	241.197	2,249.797	335,035.487	58,175.993	139,610.251	1,302,233.124	542,644.287
A47	620.971	298.249	2,249.877	385,604.362	88,952.466	185,203.831	1,397,107.246	671,023.565
A48	605.968	272.667	2,249.833	367,196.611	74,347.293	165,227.340	1,363,325.678	613,455.215
A49	577.441	222.505	2,249.957	333,437.531	49,508.475	128,483.398	1,299,216.295	500,626.682
A50	564.603	194.942	2,249.825	318,775.983	38,002.383	110,064.741	1,270,256.820	438,585.385
A51	557.337	175.367	2,249.854	310,623.974	30,753.585	97,738.430	1,253,925.754	394,550.146
A52	551.749	175.786	2,249.720	304,426.407	30,900.718	96,989.662	1,241,279.635	395,469.280
A53	539.275	177.302	2,250.051	290,816.986	31,435.999	95,614.447	1,213,395.128	398,938.542
A54	553.367	207.298	2,250.041	306,214.483	42,972.461	114,711.769	1,245,097.313	466,428.999
A55	572.231	233.049	2,250.012	327,447.745	54,311.836	133,357.746	1,287,525.492	524,363.047
A56	588.807	257.445	2,249.878	346,693.094	66,277.928	151,585.289	1,324,742.791	579,219.842
A57	607.048	282.536	2,249.674	368,506.667	79,826.591	171,512.772	1,365,658.978	635,613.893
A58 A59	807.084	186.982	2,249.606	651,383.776	34,962.268	150,910.087	1,815,619.884	420,635.829
A59 A60	807.180 797.244	186.976 175.894	2,249.606 2,249.895	651,538.745 635,597.198	34,960.025 30,938.699	150,923.194 140,230.348	1,815,835.846	420,622.331 395,743.031
							1,793,714.164	
Σ	41,136.769	13,852.606	132,733.426	29,157,449.833	3,362,579.412	9,669,778.510	92,545,523.286	31,164,370.467

Para obtener la ecuación del plano proyecto, se utilizaron las ecuaciones (7, 8, 9). Las cuales se alimentaron con los datos de la sustitución de las ecuaciones (10, 11, 12 y 13) con N = 59. En las sustituciones que se muestran enseguida, los valores entre paréntesis indican el número de columna de donde se toma la suma correspondiente calculada en el último renglón del Cuadro 1.

$$D = 73(\Sigma 5)(\Sigma 6) + 2(\Sigma 2)(\Sigma 3)(\Sigma 7) - (\Sigma 3)^{2}(\Sigma 5) - 73(\Sigma 7)^{2} - (\Sigma 2)^{2}(\Sigma 6)$$

$$\tag{10}$$

$$D_{A} = (\Sigma 4)(\Sigma 5)(\Sigma 6) + (\Sigma 2)(\Sigma 7)(\Sigma 9) + (\Sigma 3)(\Sigma 7)(\Sigma 8) - (\Sigma 3)(\Sigma 9)(\Sigma 5) - (\Sigma 4)(\Sigma 7)^{2}$$

$$- (\Sigma 2)(\Sigma 8)(\Sigma 6)$$
(11)

$$D_{B} = 73(28)(26) + (23)(24)(27) + (22)(23)(29) - (23)^{2}(28) - 73(27)(29) - (22)(24)(26)$$

$$- (22)(24)(26)$$
(12)

$$D_C = 73(\mathcal{L}9)(\mathcal{L}5) + (\mathcal{L}2)(\mathcal{L}3)(\mathcal{L}8) + (\mathcal{L}2)(\mathcal{L}4)(\mathcal{L}7) - (\mathcal{L}3)(\mathcal{L}4)(\mathcal{L}5) - 73(\mathcal{L}7)(\mathcal{L}8)$$

$$- (\mathcal{L}2)^2(\mathcal{L}9)$$
(13)

Resultando los cocientes de las ecuaciones 7, 8 y 9 respectivamente:

$$A = \frac{D_A}{D} = \frac{6,937,540,960,047,100}{3,082,196,390,618} = 2,250.843 \text{ m}$$

$$B = \frac{D_B}{D} = \frac{-4,155,043,936}{3,082,196,390,618} = -0.001348 \text{ m}$$

$$C = \frac{D_C}{D} = \frac{-2,418,680,704}{3,082,196,390,618} = -0.000785 \text{ m}$$

Por lo tanto, la ecuación (2) del plano proyecto del Escenario 2019 es:

$$\hat{Z}_{ij} = 2,250.843 + (-0.001348)X_i + (-0.000785)Y_j$$

El valor de la ordenada al origen parece sobrepasar el rango de elevaciones del terreno natural, sin embargo, este valor corresponde a la coordenada del origen (x=0, y=0). Los coeficientes de X_i e Y_j son las pendientes naturales que generan el mínimo movimiento de tierras, los valores negativos son congruentes con las condiciones de la parcela debido a que la pendiente es descendente de oeste a este (dirección del eje X positivo) y también de sur a norte (dirección positiva del eje Y). En la parcela siete, la regadera se traza en dirección del eje X y el trazo del riego corresponde con el eje Y; las pendientes (B = -0.001348 y C = -0.000785) son apropiadas para el diseño del riego por gravedad, pero pertenecen a un plano imaginario con mínimo movimiento de tierras y el suelo se debe desvanecer para eliminar los altos y bajos.

Para calcular los volúmenes se necesita una retícula regular, por lo cual, los datos x_i, y_j, z_{ij} del levantamiento por radiaciones y las coordenadas de los vértices de la poligonal del terreno con valores X_v, Y_v , se procesaron en el programa SINIVET 5.0 para obtener una cuadrícula homogénea de tamaño 20×20 .

En el Cuadro 2 se muestran los resultados de la cuadrícula regular, la cual se generó a partir de los límites del terreno y la interpolación de las coordenadas para obtener los nuevos valores x_i, y_j (columna 1 y 2) donde $L = 20 \, m$. En cada nodo de la cuadrícula (i, j), el programa interpola el valor Z_{ij} del terreno natural $(Z_{ij}(TN))$ (columna 3). En cada nodo también se aplicó la ecuación del plano proyecto $\hat{Z}_{ij} = 2,250.843 + (-0.001348)X_i + (-0.000785)Y_j$ (columna 4) que representa la nueva elevación \hat{Z}_{ij} para el mínimo movimiento de tierras. Con estos resultados, se calcularon los espesores de corte y relleno (columna 5) diferenciados por el signo según la ecuación (14), donde se obtuvieron los valores $\Sigma C_{ij} = 1.463 \, m \, y \, R_{ij} = 1.191 \, m$, con número de rellenos $N_r = 35 \, y$ número de cortes $N_c = 41$; por lo tanto, la relación corte/relleno resulta Q = 1.2.

4.1.2 Ajuste del plano proyecto

Los resultados del Cuadro 2 se utilizaron como insumo para calcular el desplazamiento vertical del plano proyecto Δ de la ecuación (19), y a partir de la textura franco arcillosa del suelo (Figura 2), se le asignó el valor deseado de 1.3 a Q.

$$\Delta = \frac{Q\sum_{j=1}^{N_r} Rj - \sum_{i=1}^{N_c} Ci}{QN_r + N_c} = \frac{1.3 \cdot 1.191 - 1.463}{1.3 \cdot 35 + 41} = -0.001$$
(19)

El ajuste de la ordenada al origen del plano proyecto es $\Delta = 0.001 \, m$ que indica un desplazamiento vertical de 1 mm. Por lo tanto la ecuación para calcular \hat{Z}_{ij} ajustada a Δ es $\hat{Z}_{ij} = 2,250.842 + (-0.001348)X_i + (-0.000785)Y_j$ (columna 7). Nuevamente se calcularon los espesores de corte y relleno (columna 8), donde $C_{ij} = 1.503 \, \text{m} \, \text{y} \, R_{ij} = 1.158 \, \text{m}$; la relación corte/relleno resulta Q = 1.3 que coincide con el valor deseado.

Cuadro 2. Cortes y rellenos en los puntos de la cuadrícula regular $(20 \times 20 \text{ m})$ con el plano proyecto calculado y el ajuste con el coeficiente de abundamiento de 0.3 en el Escenario 2019.

1	2	3	4	5 Corte (+)	6	7	8 Corte(+) o	9
X_i	Y_j	$\boldsymbol{\hat{Z}_{ij}}\left(T\boldsymbol{N}\right)$	Â _{ij} sin corregir	o relleno(-	C/R	\hat{Z}_{ij} ajustada	relleno(-) ajustado a Δ	C/R ajustado
(m)	(m)	(m)	(m)	(m)	(m ³)	(m)	(m)	(m ³)
639.274	300.927	2,249.800	2,249.745	0.055	21.872	2,249.744	0.056	22.269
659.274	300.927	2,249.768	2,249.718	0.050	19.857	2,249.717	0.051	20.254
679.274	300.927	2,249.724	2,249.691	0.033	13.042	2,249.690	0.034	13.439
699.274	300.927	2,249.674	2,249.664	0.010	3.826	2,249.663	0.011	4.223
719.274	300.927	2,249.651	2,249.637	0.014	5.411	2,249.636	0.015	5.808
739.274	300.927	2,249.627	2,249.611	0.016	6.596	2,249.610	0.017	6.993
759.274	300.927	2,249.586	2,249.584	0.002	0.980	2,249.583	0.003	1.377
779.274	300.927	2,249.608	2,249.557	0.051	20.565	2,249.556	0.052	20.962
799.274	300.927	2,249.596	2,249.530	0.066	26.549	2,249.529	0.067	26.947
819.274	300.927	2,249.478	2,249.503	-0.025	-9.866	2,249.502	-0.024	-9.469
839.274	300.927	2,249.494	2,249.476	0.018	7.319	2,249.475	0.019	7.716
619.274	280.927	2,249.834	2,249.788	0.046	18.410	2,249.787	0.047	18.807
639.274	280.927	2,249.789	2,249.761	0.028	11.195	2,249.760	0.029	11.592
659.274	280.927	2,249.779	2,249.734	0.045	17.979	2,249.733	0.046	18.376
679.274	280.927	2,249.760	2,249.707	0.053	21.164	2,249.706	0.054	21.561
699.274	280.927	2,249.720	2,249.680	0.040	15.948	2,249.679	0.041	16.346
719.274	280.927	2,249.611	2,249.653	-0.042	-16.867	2,249.652	-0.041	-16.470
739.274	280.927	2,249.577	2,249.626	-0.049	-19.682	2,249.625	-0.048	-19.285
759.274	280.927	2,249.549	2,249.599	-0.050	-20.098	2,249.598	-0.049	-19.701
779.274	280.927	2,249.560	2,249.572	-0.012	-4.913	2,249.571	-0.011	-4.516
799.274	280.927	2,249.543	2,249.545	-0.002	-0.928	2,249.544	-0.001	-0.531
819.274	280.927	2,249.487	2,249.518	-0.031	-12.544	2,249.517	-0.030	-12.147
839.274	280.927	2,249.478	2,249.491	-0.013	-5.359	2,249.490	-0.012	-4.962

1	2	3	4	5	6	7	8	9
$\mathbf{X}_{\mathbf{i}}$	Y_j	$\hat{Z}_{ij}\left(TN\right)$	$\mathbf{\hat{Z}_{ij}}$ sin corregir	Corte(+) o relleno(-)	C/R	Â _{ij} ajustada	Corte(+) o relleno(-) ajustado a \(\Delta \)	C/R ajustado
(m)	(m)	(m)	(m)	(m)	(m ³)	(m)	(m)	(m^3)
599.274	260.927	2,249.837	2,249.831	0.006	2.547	2,249.830	0.007	2.945
619.274	260.927	2,249.832	2,249.804	0.028	11.332	2,249.803	0.029	11.729
639.274	260.927	2,249.799	2,249.777	0.022	8.917	2,249.776	0.023	9.314
659.274	260.927	2,249.787	2,249.750	0.037	14.901	2,249.749	0.038	15.298
679.274	260.927	2,249.767	2,249.723	0.044	17.686	2,249.722	0.045	18.083
699.274	260.927	2,249.715	2,249.696	0.019	7.671	2,249.695	0.020	8.068
719.274	260.927	2,249.605	2,249.669	-0.064	-25.545	2,249.668	-0.063	-25.148
739.274	260.927	2,249.591	2,249.642	-0.051	-20.360	2,249.641	-0.050	-19.963
759.274	260.927	2,249.611	2,249.615	-0.004	-1.575	2,249.614	-0.003	-1.178
779.274	260.927	2,249.582	2,249.588	-0.006	-2.391	2,249.587	-0.005	-1.994
799.274	260.927	2,249.553	2,249.561	-0.008	-3.206	2,249.560	-0.007	-2.809
819.274	260.927	2,249.516	2,249.534	-0.018	-7.222	2,249.533	-0.017	-6.824
839.274	260.927	2249.457	2,249.507	-0.050	-20.037	2,249.506	-0.049	-19.640
599.274	240.927	2,249.869	2,249.846	0.023	9.070	2,249.845	0.024	9.467
619.274	240.927	2,249.821	2,249.819	0.002	0.654	2,249.818	0.003	1.051
639.274	240.927	2,249.772	2,249.792	-0.020	-8.161	2,249.791	-0.019	-7.764
659.274	240.927	2,249.736	2,249.765	-0.029	-11.776	2,249.764	-0.028	-11.379
679.274	240.927	2,249.720	2,249.738	-0.018	-7.392	2,249.737	-0.017	-6.995
699.274	240.927	2,249.685	2,249.712	-0.027	-10.607	2,249.711	-0.026	-10.210
719.274	240.927	2,249.613	2,249.685	-0.072	-28.623	2,249.684	-0.071	-28.225
739.274	240.927	2,249.626	2,249.658	-0.032	-12.638	2,249.657	-0.031	-12.241
759.274	240.927	2,249.657	2,249.631	0.026	10.547	2,249.630	0.027	10.944
779.274	240.927	2,249.639	2,249.604	0.035	14.131	2,249.603	0.036	14.528
799.274	240.927	2,249.595	2,249.577	0.033	7.316	2,249.576	0.030	7.713
819.274	240.927	2,249.539	2,249.550	-0.011	-4.299	2,249.549	-0.010	-3.902
839.274	240.927	2249.439	2,249.523	-0.011	-33.515	2,249.522	-0.010	-33.118
579.274	220.927	2,249.911	2,249.889	0.022	8.807	2,249.888	0.023	9.204
599.274	220.927	2,249.870	2,249.862	0.022	3.192	2,249.861	0.009	3.589
619.274	220.927	2,249.825	2,249.835	-0.010	-4.023	2,249.834	-0.009	-3.626
639.274	220.927	2,249.762	2,249.808	-0.046	-18.439	2,249.807	-0.045	-18.042
659.274	220.927	2,249.716	2,249.781	-0.046	-26.054	2,249.780	-0.043	-25.657
679.274	220.927	2,249.710	2,249.754	-0.066	-26.470	2,249.753	-0.065	-26.073
699.274	220.927	2,249.658	2,249.727	-0.069	-27.685	2,249.735	-0.068	-27.288
719.274	220.927	2,249.626	2,249.727	-0.009	-27.083	2,249.720	-0.008	-27.288
739.274	220.927	2,249.661	2,249.700	-0.074	-4.916	2,249.672	-0.073	-4.519
759.274	220.927			0.028	11.069		0.029	
779.274	220.927	2,249.674 2,249.676	2,249.646 2,249.619	0.028	22.654	2,249.645 2,249.618	0.029	11.466 23.051
799.274	220.927			0.057	19.838	2,249.591	0.058	20.235
819.274		2,249.642	2,249.592					
839.274	220.927 220.927	2,249.590	2,249.565 2,249.538	0.025	9.823 -9.393	2,249.564	0.026	10.220
	200.927	2249.515		-0.023		2,249.537	-0.022 -0.041	-8.995
559.274		2,249.890	2,249.932	-0.042	-16.655 -31.071	2,249.931	-0.041 -0.077	-16.258
579.274	200.927	2,249.827	2,249.905	-0.078		2,249.904		-30.673
599.274	200.927	2,249.845	2,249.878	-0.033	-13.086	2,249.877	-0.032	-12.689
619.274	200.927	2,249.875	2,249.851	0.024	9.699	2,249.850	0.025	10.096
639.274	200.927	2,249.846	2,249.824	0.022	8.883	2,249.823	0.023 -0.002	9.280
659.274	200.927	2,249.794	2,249.797	-0.003	-1.132	2,249.796		-0.735
679.274	200.927	2,249.772	2,249.770	0.002	0.853	2,249.769	0.003	1.250
699.274	200.927	2,249.758	2,249.743	0.015	6.037	2,249.742	0.016	6.434
719.274	200.927	2,249.754	2,249.716	0.038	15.222	2,249.715	0.039	15.619
739.274	200.927	2,249.750	2,249.689	0.061	24.406	2,249.688	0.062	24.804
759.274	200.927	2,249.743	2,249.662	0.081	32.391	2,249.661	0.082	32.788
779.274	200.927	2,249.734	2,249.635	0.099	39.576	2,249.634	0.100	39.973
799.274	200.927	2,249.751	2,249.608	0.143	57.160	2,249.607	0.144	57.557

4.1.3 Cálculo de volúmenes de corte y relleno

Con los espesores ajustados se obtuvo el volumen de corte y relleno donde se utilizaron las ecuaciones (17) y (18) según corte o relleno respectivamente (columna 9). Con el método de la adición el volumen total de corte resulta 601.376 m^3 y de relleno 463.391 m^3 , estos valores coinciden con la relación Q = 1.3.

El Cuadro 3, muestra la forma de la cuadrícula regular que genera con interpolación el programa SINIVET 5.0, la cual resultó de 15 columnas × 6 filas y 76 vértices. En cada celda, que indica un nodo, se muestra de arriba hacia abajo, la elevación del terreno natural, la elevación del plano proyecto ajustado y el valor del corte o relleno según el signo + (corte) y – (relleno). También se indican las coordenadas rectangulares que constituyen la información para el proyecto ejecutivo de nivelación de tierras. Con estos valores se trabaja en campo generando una cuadrícula con estacas en las que se anota el corte o relleno como guía para el operador de la escrepa o, de otro modo, se indican los puntos de control y las pendientes deseadas en el equipo láser o GPS.

Cuadro 3. Elevaciones y espesores de corte y relleno para el proyecto ejecutivo de nivelación de tierras del Escenario 2019.

		<i>x</i> / <i>y</i>	559.274	579.274	599.274	619.274	639.274	659.274	679.274	699.274	719.274	739.274	759.274	779.274	799.274	819.274	839.274
$\hat{Z}_{ij}\left(TN\right)$							2249.80	2249.77	2249.72	2249.67	2249.65	2249.63	2249.59	2249.61	2249.6	2249.48	2249.49
\hat{Z}_{ij} ajustada	1	300.927					2249.744	2249.717	2249.690	2249.663	2249.636	2249.610	2249.583	2249.583	2249.529	2249.502	2249.475
corte o relleno							0.056	0.051	0.034	0.011	0.015	0.017	0.003	0.052	0.067	-0.024	0.019
$\hat{Z}_{ij}\left(TN\right)$						2249.83	2249.79	2249.78	2249.76	2249.72	2249.61	2249.58	2249.55	2249.56	2249.54	2249.49	2249.48
\hat{Z}_{ij} ajustada	2	280.927				2249.787	2249.760	2249.733	2249.706	2249.679	2249.652	2249.625	2249.598	2249.571	2249.544	2249.517	2249.490
corte o relleno						0.047	0.029	0.046	0.054	0.041	-0.041	-0.048	-0.049	-0.011	-0.001	-0.030	-0.012
\hat{Z}_{ij} (TN)					2249.84	2249.83	2249.8	2249.79	2249.77	2249.72	2249.61	2249.59	2249.61	2249.58	2249.55	2249.52	2249.46
\hat{Z}_{ij} ajustada	3	260.927			2249.830	2249.803	2249.776	2249.749	2249.722	2249.695	2249.668	2249.641	2249.614	2249.587	2249.560	2249.533	2249.506
corte o relleno					0.007	0.029	0.023	0.038	0.045	0.020	-0.063	-0.050	-0.003	-0.005	-0.007	-0.017	-0.049
\hat{Z}_{ij} (TN)					2249.87	2249.82	2249.77	2249.74	2249.72	2249.69	2249.61	2249.63	2249.66	2249.64	2249.6	2249.54	2249.44
\hat{Z}_{ij} ajustada	4	240.927			2249.845	2249.818	2249.791	2249.764	2249.737	2249.711	2249.684	2249.657	2249.630	2249.603	2249.576	2249.549	2249.522
corte o relleno					0.024	0.003	-0.019	-0.028	-0.017	-0.026	-0.071	-0.031	0.027	0.036	0.019	-0.010	-0.083
\hat{Z}_{ij} (TN)				2249.91	2249.87	2249.83	2249.76	2249.72	2249.69	2249.66	2249.63	2249.66	2249.67	2249.68	2249.64	2249.59	2249.52
\hat{Z}_{ij} ajustada	5	220.927		2249.888	2249.861	2249.834	2249.807	2249.780	2249.753	2249.726	2249.699	2249.672	2249.645	2249.618	2249.591	2249.564	2249.537
corte o relleno				0.023	0.009	-0.009	-0.045	-0.064	-0.065	-0.068	-0.073	-0.011	0.029	0.058	0.051	0.026	-0.022
\hat{Z}_{ij} (TN)			2249.89	2249.83	2249.85	2249.88	2249.85	2249.79	2249.77	2249.76	2249.75	2249.75	2249.74	2249.73	2249.75		
Â _{ij} ajustada	6	200.927	2249.931	2249.904	2249.877	2249.850	2249.823	2249.796	2249.769	2249.742	2249.715	2249.688	2249.661	2249.634	2249.607		
corte o relleno			-0.041	-0.078	-0.032	0.025	0.023	-0.002	0.003	0.016	0.039	0.062	0.082	0.100	0.144		

También se aplicó el método de los cuatro vértices para determinar los volúmenes de cortes y rellenos. Para aplicar la ecuación (15) y (16) respectivamente, se ordenaron en el Cuadro 4 los espesores de corte o relleno ajustados con Δ que se tomaron del Cuadro 3. Para los volúmenes de corte o relleno se aplicó la ecuación (15) o (16) en cada vértice, la cual fue alimentada con los datos de las cuatro esquinas del vértice en cuestión; en los vértices externos a los bordes, se asumió que su valor es idéntico al del vértice más cercano dentro de los bordes del terreno. Este método implica que en el área de influencia de un vértice o nodo (20 × 20 m) puede haber cortes o rellenos por lo tanto se aplicaron las dos ecuaciones (15 y 16) en cada vértice y se obtiene el Cuadro 5 (cortes) y el Cuadro 6 (rellenos). Con este método el volumen de corte resultó de 447.651 m³ y de relleno 317.036 m³, lo que implica una relación Q = 1.41, para obtener Q = 1.3 es un proceso iterativo tedioso que no se realizó en este trabajo, pero se puede implementar en un algoritmo computacional.

Cuadro 4. Arreglo de los espesores de corte y relleno en metros, para aplicar el método de los cuatro vértices. Escenario 2019.

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
		0	0	0	0	0.056	0.051	0.034	0.011	0.015	0.017	0.003	0.052	0.067	-0.024	0.019	
1	0	0	0	0	0	0.056	0.051	0.034	0.011	0.015	0.017	0.003	0.052	0.067	-0.024	0.019	0.019
2	0	0	0	0	0.047	0.029	0.046	0.054	0.041	-0.041	-0.048	-0.049	-0.011	-0.001	-0.030	-0.012	-0.012
3	0	0	0	0.007	0.029	0.023	0.038	0.045	0.020	-0.063	-0.050	-0.003	-0.005	-0.007	-0.017	-0.049	-0.049
4	0	0	0	0.024	0.003	-0.019	-0.028	-0.017	-0.026	-0.071	-0.031	0.027	0.036	0.019	-0.010	-0.083	-0.083
5	0	0	0.023	0.009	-0.009	-0.045	-0.064	-0.065	-0.068	-0.073	-0.011	0.029	0.058	0.051	0.026	-0.022	-0.022
6	-0.041	-0.041	-0.078	-0.032	0.025	0.023	-0.002	0.003	0.016	0.039	0.062	0.082	0.100	0.144	0	0	0
		-0.041	-0.078	-0.032	0.025	0.023	-0.002	0.003	0.016	0.039	0.062	0.082	0.100	0.144	0	0	•

Cuadro 5. Volúmenes de corte en metros cúbicos, calculados con el método de los cuatro vértices. Escenario 2019.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	0	0	4.702	8.465	14.359	17.215	14.800	7.268	4.054	0	3.775	4.131	1.173	7.480	0
2	0	0.736	2.932	8.632	11.820	15.776	11.961	5.576	2.369	0.385	3.914	6.207	2.799	5.259	0
3	0	2.367	4.965	3.846	7.366	5.735	5.352	1.587	1.150	0.397	1.043	5.119	1.504	0.321	0
4	2.301	1.633	4.461	1.853	3.243	2.624	1.789	0.829	0.272	0.490	2.682	7.040	6.575	1.981	0.572
5	4.461	0.583	0.736	2.241	1.335	1.096	0.360	1.366	4.544	10.056	17.175	27.251	12.715	10.825	0
6	0.526	0.099	1.725	0.950	0	0.507	0	0.985	3.870	10.000	20.882	30.512	18.311	17.432	1.359

Cuadro 6. Volúmenes de relleno en metros cúbicos, calculados con el método de los cuatro vértices. Escenario 2019.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	0	0	0	0	0	0	0	1.184	1.985	7.544	2.736	2.108	3.625	0.188	6.644
2	0	0	0	0	0	0	0	2.531	2.539	5.170	2.415	0.123	2.130	2.206	7.395
3	0	0	0	0.523	0.652	1.137	2.069	9.119	7.498	13.760	6.422	2.631	3.013	8.046	13.532
4	0	0	0.134	2.401	3.807	6.803	9.183	16.439	11.197	11.531	3.538	0.111	0.462	4.783	2.604
5	11.832	5.453	5.717	2.668	1.577	2.153	4.332	5.954	2.347	2.274	0.409	0	0.065	2.787	9.255
6	5.992	6.438	5.574	5.415	5.616	8.903	11.984	10.611	4.012	2.407	0.055	0	0	0.233	1.053

En la Figura 4 se muestra la triangulación para la cuadrícula regular, así como las curvas de nivel con sus elevaciones después del ajuste del plano proyecto. Con las curvas como líneas rectas se nota la generación de un plano con las pendientes del proyecto que se calculó. En el estudio no fue necesario proponer otras pendientes para evitar movimiento de tierras adicionales; ajustándose a las del terreno natural con el método de mínimos cuadrados, resultan valores que son adecuados para la tecnificación del riego por gravedad donde se recomienda que no sobrepasen de 2% para reducir las velocidades erosivas del riego.

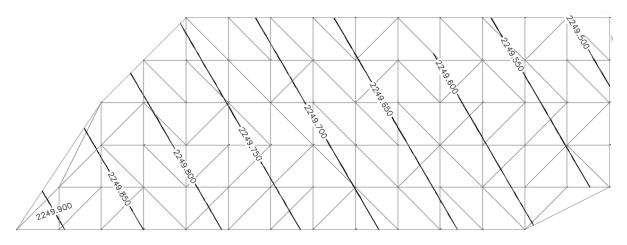


Figura 4. Esquema de la triangulación de la cuadrícula regular y las curvas de nivel que resultan con el plano proyecto ajustado al coeficiente de abundamiento (0.3). Escenario 2019.

4.2 Cálculo para la nivelación de tierras de escenario 2021

Después de retirar el rastrojo del ciclo de producción 2020 se preparó la parcela con un paso del arado de disco y en esas condiciones se obtuvo la información del relieve de la parcela siete de la FESC. Los datos del levantamiento para el Escenario 2021 se obtuvieron mediante el método de radiaciones, siguiendo un orden sistemático para obtener un conjunto de puntos representativos que posteriormente se utilizaron como insumo para identificar por interpolación las coordenadas rectangulares (x, y, z) de una cuadrícula regular $(20 \times 20 \text{ m})$ del terreno natural (TN).

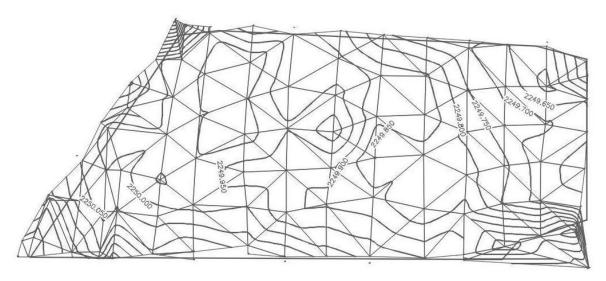


Figura 5. Configuración topográfica de la parcela siete a partir del levantamiento con radiaciones. Escenario 2021.

En el Cuadro 7 se muestran, en las primeras cuatro columnas, la información del levantamiento y en las que siguen se muestran los cálculos básicos para aplicarles el método de mínimos cuadrados. El origen del sistema coordenado fue el mismo del 2019 tomando la misma convención de signos en los ejes; también se utilizó la misma poligonal para comparar los resultados del proyecto de nivelación.

Cuadro 7. Estimación de parámetros para utilizar método de Mínimos Cuadrados del Escenario 2021.

1	2	3	4	5	6	7	8	9
N	$\mathbf{X_i}$	$\mathbf{Y_{j}}$	\mathbf{Z}_{ij}	X_i^2	Y_j^2	$\mathbf{X_i}\mathbf{Y_j}$	$\mathbf{X_{i}Z_{ij}}$	$\mathbf{Y_{j}}\mathbf{Z_{ij}}$
A1	843.150	283.986	2,249.801	710,901.923	80,648.162	239,442.965	1,896,919.713	638,912.437
A2	821.548	292.258	2,249.620	674,940.623	85,414.739	240,103.888	1,848,170.137	657,469.442
A3	843.961	276.534	2,249.803	712,270.845	76,470.998	233,383.937	1,898,746.890	622,146.798
A4	821.611	249.323	2,249.975	675,044.800	62,161.809	204,846.298	1,848,604.435	560,969.842
A5	843.837	263.472	2,249.647	712,060.039	69,417.600	222,327.459	1,898,334.251	592,719.444
A6	821.416	270.302	2,249.582	674,723.752	73,063.387	222,030.635	1,847,841.973	608,067.414
A7	843.612	245.509	2,249.662	711,680.869	60,274.767	207,114.458	1,897,841.409	552,312.718
A8	820.792	249.817	2,249.709	673,699.343	62,408.533	205,047.770	1,846,542.925	562,015.553
A9	842.479	225.774	2,249.617	709,770.191	50,973.989	190,209.932	1,895,254.181	507,905.478
A10	818.290	229.352	2,249.674	669,598.688	52,602.432	187,676.635	1,840,885.962	515,967.681
A11	840.126	204.931	2,249.670	705,811.528	41,996.715	172,167.841	1,890,006.033	461,027.123
A12	818.050	208.080	2,249.680	669,206.293	43,297.162	170,219.661	1,840,351.399	468,112.739
A13	837.249	190.864	2,250.040	700,985.051	36,428.990	159,800.430	1,883,842.615	429,451.185
A14	818.367	188.449	2,249.960	669,724.383	35,513.139	154,220.669	1,841,292.790	424,003.387
A15	844.672	171.392	2,249.799	713,471.125	29,375.252	144,770.142	1,900,342.671	385,597.775
A16	798.547	183.067	2,250.037	637,677.631	33,513.380	146,187.321	1,796,760.746	411,906.623
A17	776.147	178.735	2,249.918	602,403.700	31,946.343	138,724.891	1,746,266.431	402,139.994
A18	776.082	175.406	2,249.882	602,303.271	30,767.195	136,129.284	1,746,092.922	394,642.352
A19	797.401	206.567	2,249.747	635,848.674	42,670.008	164,716.933	1,793,950.957	464,723.938
A20	776.471	200.823	2,249.873	602,906.903	40,329.797	155,933.040	1,746,960.688	451,825.796
A21	798.235	227.270	2,249.762	637,179.754	51,651.471	181,414.640	1,795,839.670	511,302.510
A22	777.853	222.130	2,249.819	605,054.512	49,341.826	172,784.531	1,750,027.334	499,752.744
A23	798.439	249.179	2,249.720	637,504.996	62,090.174	198,954.256	1,796,264.412	560,582.980
A24	778.093	245.654	2,249.790	605,429.184	60,345.986	191,141.887	1,750,546.525	552,670.363
A25	798.921	270.413	2,249.686	638,275.403	73,123.082	216,038.573	1,797,322.289	608,343.890
A26	778.092	268.219	2,249.753	605,426.538	71,941.593	208,699.184	1,750,513.911	603,427.175
A27	799.953	293.144	2,249.653	639,924.962	85,933.463	234,501.532	1,799,616.891	659,472.504
A28 A29	778.975 779.289	291.220 295.376	2,249.703 2,249.728	606,802.518 607,291.190	84,809.030 87,246.686	226,853.109 230,182.848	1,752,463.069	655,158.283
A29 A30	756.203	293.370	2,249.728	571,843.431	88,220.643	224,607.202	1,753,188.058 1,701,244.176	664,514.533 668,210.340
A30 A31	730.203	298.548	2,249.718	536,456.781	89,130.789	218,665.992	1,647,794.976	671,660.301
A32	755.435	275.945	2,249.860	570,681.737	76,145.809	208,458.683	1,699,622.539	620,838.293
A33	730.768	276.138	2,249.884	534,021.431	76,252.250	201,792.804	1,644,142.556	621,278.693
A34	754.974	254.922	2,249.891	569,985.590	64,985.226	192,459.457	1,698,608.983	573,546.714
A35	728.669	253.977	2,249.859	530,958.512	64,504.266	185,065.094	1,639,402.508	571,412.214
A36	754.295	233.233	2,249.835	568,961.400	54,397.492	175,926.329	1,697,039.966	524,735.092
A37	727.501	231.515	2,249.799	529,258.142	53,598.964	168,427.100	1,636,731.697	520,861.091
A38	754.399	203.604	2,249.802	569,118.153	41,454.385	153,598.318	1,697,248.829	458,067.562
A39	726.703	209.955	2,249.861	528,097.832	44,081.060	152,574.940	1,634,981.638	472,369.341
A40	755.009	176.777	2,249.950	570,037.835	31,250.214	133,468.364	1,698,731.375	397,740.086
A41	724.688	177.599	2,249.987	525,172.987	31,541.334	128,703.755	1,630,539.029	399,594.991
A42	724.486	173.883	2,250.145	524,879.385	30,235.298	125,975.730	1,630,197.650	391,261.963
A43	701.024	177.641	2,250.028	491,434.649	31,556.183	124,530.324	1,577,323.629	399,696.324
A44	678.065	177.498	2,250.102	459,772.144	31,505.540	120,355.181	1,525,715.413	399,388.605
A45	700.932	206.273	2,249.893	491,305.669	42,548.551	144,583.346	1,577,022.000	464,092.179
A46	678.162	174.738	2,250.251	459,903.970	30,533.404	118,500.774	1,526,035.169	393,204.584
A47	703.596	225.913	2,249.909	495,046.628	51,036.458	158,951.018	1,583,025.848	508,282.567
A48	679.197	201.748	2,249.906	461,308.972	40,702.296	137,026.765	1,528,130.080	453,914.261
A49	704.817	245.629	2,250.036	496,766.299	60,333.409	173,123.090	1,585,862.498	552,673.193
A50	679.280	224.611	2,249.907	461,421.590	50,450.281	152,574.077	1,528,317.277	505,354.761
A51	706.168	265.717	2,249.968	498,673.668	70,605.312	187,640.640	1,588,856.078	597,853.847
A52	679.620	247.520	2,249.953	461,883.480	61,266.101	168,219.499	1,529,113.283	556,908.142
A53	707.639 680.307	285.532	2,249.912	500,753.379	81,528.295	202,053.382	1,592,126.153	642,420.973 608,079.439
A54 A55	680.307 708.931	270.269 300.736	2,249.902	462,818.022 502,583.021	73,045.495 90,442.082	183,866.178 213,200.972	1,530,624.755	676,614.574
A55 A56	708.931 683.267	298.733	2,249.863 2,249.930	466,854.203	90,442.082 89,241.107	204,114.149	1,594,997.401 1,537,303.596	672,127.214
A50 A57	683.279	302.284	2,249.930	466,869.782	91,375.314	206,543.877	1,537,303.396	680,094.648
A58	660.975	303.522	2,249.853	436,887.554	92,125.604	200,620.363	1,487,095.912	682,879.882
A59	637.588	302.727	2,249.992	406,518.458	91,643.576	193,015.039	1,434,567.899	681,133.103
A60	659.330	283.395	2,250.049	434,715.521	80,312.669	186,850.646	1,483,523.907	637,652.411
A61	637.284	299.510	2,249.987	406,130.514	89,706.360	190,872.968	1,433,880.040	673,894.056
			,	,	,	,	, -,	,

1	2	3	4	5	6	7	8	9
N	X_i	$\mathbf{Y}_{\mathbf{j}}$	\mathbf{Z}_{ij}	X_i^2	Y_j^2	$X_i Y_j$	$X_i Z_{ij}$	$\mathbf{Y_{j}}\mathbf{Z_{ij}}$
A62	657.441	263.824	2,250.004	432,228.143	69,603.209	173,448.740	1,479,243.980	593,605.505
A63	634.299	277.331	2,250.007	402,334.714	76,912.594	175,910.792	1,427,176.290	623,997.141
A64	656.390	244.242	2,250.025	430,848.357	59,653.959	160,317.842	1,476,894.810	549,549.706
A65	631.928	254.252	2,249.999	399,332.997	64,643.876	160,668.705	1,421,837.368	572,065.846
A66	655.817	223.745	2,249.918	430,096.462	50,061.780	146,735.799	1,475,535.373	503,407.678
A67	629.626	231.360	2,250.000	396,429.152	53,527.496	145,670.381	1,416,658.950	520,560.225
A68	657.469	204.541	2,250.002	432,264.828	41,836.898	134,479.067	1,479,305.440	460,216.984
A69	628.273	205.820	2,249.982	394,726.586	42,361.790	129,310.961	1,413,602.266	463,090.845
A70	658.202	183.616	2,250.079	433,229.741	33,714.982	120,856.663	1,481,006.273	413,151.406
A71	628.325	180.378	2,250.151	394,792.180	32,536.259	113,336.052	1,413,825.902	405,877.962
A72	658.285	179.093	2,250.085	433,339.405	32,074.338	117,894.337	1,481,197.654	402,974.698
A73	628.390	175.766	2,250.338	394,874.118	30,893.546	110,449.363	1,414,090.121	395,532.009
A74	605.936	179.105	2,250.107	367,158.557	32,078.601	108,526.185	1,363,421.060	403,005.414
A75	584.047	176.503	2,250.284	341,111.132	31,153.203	103,085.908	1,314,272.069	397,181.202
A76	608.711	199.662	2,250.024	370,529.325	39,864.954	121,536.556	1,369,614.809	449,244.517
A77	610.201	219.536	2,249.942	372,345.138	48,196.231	133,961.309	1,372,916.633	493,944.167
A78	586.421	202.099	2,250.055	343,889.707	40,844.127	118,515.294	1,319,479.728	454,734.540
A79	613.705	244.235	2,249.990	376,633.827	59,650.638	149,888.118	1,380,830.113	549,525.858
A80	588.872	224.782	2,250.015	346,769.879	50,526.813	132,367.582	1,324,970.158	505,762.197
A81	617.317	264.667	2,249.975	381,080.649	70,048.515	163,383.394	1,388,948.492	595,493.683
A82	592.082	258.693	2,250.080	350,561.095	66,922.017	153,167.410	1,332,231.867	582,079.720
A83	622.001	284.964	2,249.964	386,884.746	81,204.196	177,247.468	1,399,478.958	641,157.616
A84	594.027	272.447	2,250.213	352,867.483	74,227.313	161,840.678	1,336,686.153	613,063.556
A85	623.663	304.043	2,250.222	388,956.036	92,442.146	189,620.491	1,403,381.103	684,164.248
A86	607.901	285.000	2,250.011	369,543.869	81,224.829	173,251.660	1,367,784.387	641,252.460
A87	618.360	307.057	2,250.536	382,369.584	94,283.694	189,871.580	1,391,642.341	691,041.707
A88	581.645	247.889	2,249.964	338,311.022	61,448.857	144,183.306	1,308,680.536	557,740.876
A89	577.732	250.706	2,250.048	333,774.379	62,853.248	144,840.615	1,299,924.956	564,099.409
A90	567.626	230.114	2,250.043	322,199.049	52,952.315	130,618.473	1,277,182.458	517,765.720
A91	564.398	232.388	2,250.187	318,544.651	54,004.368	131,159.455	1,270,000.142	522,917.357
A92	580.678	224.937	2,249.999	337,186.591	50,596.474	130,615.668	1,306,524.244	506,107.125
A93	579.530	202.280	2,250.031	335,854.673	40,917.198	117,227.268	1,303,959.790	455,136.271
A94	566.123	208.082	2,250.074	320,495.138	43,297.911	117,799.702	1,273,818.418	468,198.773
A95	577.177	180.277	2,250.103	333,133.174	32,499.833	104,051.778	1,298,707.474	405,642.044
A96	576.682	176.493	2,250.165	332,561.552	31,149.779	101,780.248	1,297,628.527	397,138.371
A97	561.920	180.073	2,250.225	315,754.086	32,426.105	101,186.339	1,264,446.432	405,203.641
A98	562.044	177.095	2,250.262	315,893.683	31,362.568	99,535.105	1,264,746.706	398,509.699
A99	538.096	177.549	2,250.341	289,547.090	31,523.505	95,538.156	1,210,899.041	399,544.894
A100	532.078	177.570	2,250.474	283,106.466	31,531.176	94,481.108	1,197,426.580	399,617.118
A101	540.892	188.023	2,250.326	292,564.480	35,352.461	101,699.922	1,217,184.006	423,111.920
A102	534.654	186.191	2,250.316	285,854.472	34,667.163	99,547.795	1,203,139.551	418,989.036
A103	549.877	208.498	2,250.237	302,364.935	43,471.583	114,648.516	1,237,354.021	469,170.814
A104	548.857	211.066	2,250.165	301,244.336	44,548.941	115,845.225	1,235,019.486	474,933.776
Σ	71,824.37	24,220.34	233,995.92	50,502,626.913	5,826,604.96	16,802,091.819	161,600,552.183	54,494,491.880

4.2.1 Obtención del plano proyecto

A los datos del levantamiento para el Escenario 2021 se les aplicó el método de mínimos cuadrados. En el Cuadro 7 se ordenaron las coordenadas x, y, z. El último renglón del cuadro corresponde a la suma de cada columna y son los valores que se utilizaron como insumos para calcular los determinantes.

Para obtener la ecuación del plano proyecto, se utilizaron las ecuaciones (7, 8, 9). Las cuales se alimentaron con los datos de la sustitución de las ecuaciones (10, 11, 12 y 13) con N = 104.

Resultando los cocientes de las ecuaciones 7, 8 y 9 respectivamente:

$$A = \frac{D_A}{D} = \frac{37,842,400,110,886,900}{16,809,153,221,932} = 2,251.297 \text{ m}$$

$$B = \frac{D_B}{D} = \frac{-26,066,833,968}{16.809,153,221,932} = -0.001551 \text{ m}$$

$$C = \frac{D_C}{D} = \frac{-19,158,309,472}{16,809,153,221,932} = -0.001140 \text{ m}$$

Por lo tanto, integrando la ordenada al origen y las pendientes de los ejes en la ecuación (2), que corresponde con el plano proyecto del Escenario 2021 resultó:

$$\hat{Z}_{ij} = 2,251.297 + (-0.001551)X_i + (-0.001140)Y_j$$

Se nota que las pendientes son negativas y son congruentes con las condiciones de la parcela y con la convención de signos utilizada. Los datos x_i, y_j, z_{ij} del levantamiento por radiaciones se procesaron en el programa SINIVET 5.0 para obtener una cuadrícula homogénea de tamaño 20×20 . Los ejes se definieron de acuerdo a la cuadrícula del Escenario 2019.

En el Cuadro 8 se muestran los resultados de la cuadrícula regular, donde L=20~m. En cada nodo se aplicó la ecuación del plano proyecto $\hat{Z}_{ij}=2,251.297+(-0.001551)X_i+(-0.001140)Y_j$ que representa la nueva elevación \hat{Z}_{ij} para el mínimo movimiento de tierras; con esos resultados, se calcularon los espesores de corte y relleno diferenciados por el signo según la ecuación (14), donde se obtuvieron los valores $\Sigma C_{ij}=1.603~m$ y $R_{ij}=1.578~m$, con número de rellenos $N_r=37$ y número de cortes $N_c=39$; por lo tanto, la relación corte/relleno resulta Q=1.0.

4.2.2 Ajuste del plano proyecto

Como se espera un abundamiento del 30% entonces los cortes deben superar a los rellenos en ese porcentaje y el valor deseado de Q=1.3, lo que implica el ajuste del plano proyecto. Los resultados del Cuadro 8 se utilizaron como insumo para calcular el desplazamiento vertical del plano proyecto Δ

$$\Delta = \frac{Q\sum_{j=1}^{N_r} Rj - \sum_{i=1}^{N_c} Ci}{QN_r + N_c} = \frac{1.3 \cdot 1.578 - 1.603}{1.3 \cdot 37 + 39} = 0.005$$
(19)

El ajuste de la ordenada al origen del plano proyecto es $\Delta=0.005\,m$ que indica un desplazamiento vertical de 5 mm. Por lo tanto la ecuación para calcular \hat{Z}_{ij} ajustada a Δ es $\hat{Z}_{ij}=2,251.292+(-0.001551)X_i+(-0.001140)Y_j$. Nuevamente se calcularon los espesores de corte y relleno, donde $C_{ij}=1.806\,$ m y $R_{ij}=1.400\,$ m; la relación corte/relleno resulta Q=1.3 que coincide con el valor deseado.

Cuadro 8. Cortes y rellenos en los puntos de la cuadrícula regular (20 x 20 m) con el plano proyecto calculado y el ajuste por el coeficiente de abundamiento de 0.3 en el Escenario 2021.

1	2	3	4	5	6	7	8	9
X_i	Y_j	$\boldsymbol{\hat{Z}_{ij}}\left(TN\right)$	Ž _{ij} sin corregir	Corte(+) o relleno(-)	C/R	\hat{Z}_{ij} ajustada	Corte(+) o relleno(-) ajustado a A	C/R ajustado
(m)	(m)	(m)	(m)	(m)	(m^3)	(m)	(m)	(m^3)
639.274	300.927	2,249.986	2,249.963	0.023	9.243	2249.958	0.028	11.304
659.274	300.927	2,250.007	2,249.932	0.075	30.049	2249.927	0.080	32.110
679.274	300.927	2,249.973	2,249.901	0.072	28.855	2249.896	0.077	30.916
699.274	300.927	2,249.925	2,249.870	0.055	22.061	2249.865	0.060	24.122
719.274	300.927	2,249.906	2,249.839	0.067	26.867	2249.834	0.072	28.928
739.274	300.927	2,249.839	2,249.808	0.031	12.473	2249.803	0.036	14.534
759.274	300.927	2,249.802	2,249.777	0.025	10.079	2249.772	0.030	12.140
779.274	300.927	2,249.749	2,249.746	0.003	1.285	2249.741	0.008	3.346
799.274	300.927	2,249.682	2,249.715	-0.033	-13.109	2249.710	-0.028	-11.048
819.274	300.927	2,249.640	2,249.684	-0.044	-17.503	2249.679	-0.039	-15.442
839.274	300.927	2,249.699	2,249.653	0.046	18.503	2249.648	0.051	20.565
619.274	280.927	2,250.031	2,250.017	0.014	5.719	2250.012	0.019	7.780
639.274	280.927	2,249.993	2,249.986	0.007	2.925	2249.981	0.012	4.986
659.274	280.927	2,250.016	2,249.955	0.061	24.531	2249.950	0.066	26.592
679.274	280.927	2,249.965	2,249.924	0.041	16.537	2249.919	0.046	18.598
699.274	280.927	2,249.929	2,249.893	0.036	14.543	2249.887	0.042	16.604
719.274	280.927	2,249.960	2,249.862	0.098	39.349	2249.856	0.104	41.410
739.274	280.927	2,249.886	2,249.831	0.055	22.155	2249.825	0.061	24.216
759.274	280.927	2,249.883	2,249.800	0.083	33.361	2249.794	0.089	35.422
779.274	280.927	2,249.806	2,249.769	0.037	14.967	2249.763	0.043	17.028
799.274	280.927	2,249.721	2,249.738	-0.017	-6.627	2249.732	-0.011	-4.566

1	2	3	4	5	6	7	8	9
X_{i}	Y_j	$\hat{Z}_{ij}\left(TN\right)$	\hat{Z}_{ij} sin corregir	Corte(+) o relleno(-)	C/R	\hat{Z}_{ij} ajustada	Corte(+) o relleno(-) ajustado a A	C/R ajustado
(m)	(m)	(m)	(m)	(m)	(m^3)	(m)	(m)	(m^3)
819.274	280.927	2,249.645	2,249.707	-0.062	-24.621	2249.701	-0.056	-22.560
839.274	280.927	2,249.629	2,249.676	-0.047	-18.615	2249.670	-0.041	-16.554
599.274	260.927	2,249.984	2,250.071	-0.087	-34.605	2250.065	-0.081	-32.544
619.274	260.927	2,249.994	2,250.039	-0.045	-18.199	2250.034	-0.040	-16.138
639.274	260.927	2,249.998	2,250.008	-0.010	-4.193	2250.003	-0.005	-2.132
659.274	260.927	2,250.016	2,249.977	0.039	15.413	2249.972	0.044	17.474
679.274	260.927	2,249.973	2,249.946	0.027	10.619	2249.941	0.032	12.680
699.274	260.927	2,249.972	2,249.915	0.057	22.625	2249.910	0.062	24.686
719.274	260.927	2,249.996	2,249.884	0.112	44.631	2249.879	0.117	46.692
739.274	260.927	2,249.850	2,249.853	-0.003	-1.363	2249.848	0.002	0.698
759.274	260.927	2,249.863	2,249.822	0.041	16.243	2249.817	0.046	18.304
779.274	260.927	2,249.822	2,249.791	0.031	12.249	2249.786	0.036	14.310
799.274	260.927	2,249.753	2,249.760	-0.007	-2.945	2249.755	-0.002	-0.884
819.274	260.927	2,249.709	2,249.729	-0.020	-8.139	2249.724	-0.015	-6.078
839.274	260.927	2249.676	2,249.698	-0.022	-8.933	2249.693	-0.017	-6.872
599.274	240.927	2,250.009	2,250.093	-0.084	-33.723	2250.088	-0.079	-31.662
619.274	240.927	2,249.960	2,250.062	-0.102	-40.917	2250.057	-0.097	-38.856
639.274	240.927	2,249.985	2,250.031	-0.046	-18.511	2250.026	-0.041	-16.450
659.274	240.927	2,249.953	2,250.000	-0.047	-18.905	2249.995	-0.042	-16.844
679.274	240.927	2,249.926	2,249.969	-0.043	-17.299	2249.964	-0.038	-15.238
699.274	240.927	2,249.919	2,249.938	-0.019	-7.693	2249.933	-0.014	-5.632
719.274	240.927	2,249.897	2,249.907	-0.010	-4.087	2249.902	-0.005	-2.026
739.274 759.274	240.927 240.927	2,249.813	2,249.876	-0.063 -0.023	-25.281 -9.275	2249.871 2249.840	-0.058 -0.018	-23.220
739.274	240.927	2,249.822 2,249.825	2,249.845 2,249.814	0.011	4.331	2249.840	0.016	-7.214 6.392
799.274	240.927	2,249.784	2,249.783	0.011	0.337	2249.778	0.016	2.398
819.274	240.927	2,249.711	2,249.752	-0.041	-16.457	2249.747	-0.036	-14.396
839.274	240.927	2249.640	2,249.732	-0.041	-32.451	2249.716	-0.036	-30.390
579.274	220.927	2,250.066	2,250.147	-0.081	-32.447	2250.142	-0.076	-30.386
599.274	220.927	2,250.038	2,250.116	-0.031	-31.241	2250.111	-0.073	-29.180
619.274	220.927	2,249.998	2,250.085	-0.087	-34.835	2250.080	-0.082	-32.774
639.274	220.927	2,249.984	2,250.054	-0.070	-28.029	2250.049	-0.065	-25.968
659.274	220.927	2,249.997	2,250.023	-0.026	-10.423	2250.018	-0.021	-8.362
679.274	220.927	2,249.944	2,249.992	-0.048	-19.217	2249.987	-0.043	-17.156
699.274	220.927	2,249.902	2,249.961	-0.059	-23.611	2249.956	-0.054	-21.550
719.274	220.927	2,249.890	2,249.930	-0.040	-16.005	2249.925	-0.035	-13.944
739.274	220.927	2,249.864	2,249.899	-0.035	-13.999	2249.894	-0.030	-11.938
759.274	220.927	2,249.814	2,249.868	-0.054	-21.593	2249.863	-0.049	-19.532
779.274	220.927	2,249.842	2,249.837	0.005	2.013	2249.832	0.010	4.074
799.274	220.927	2,249.809	2,249.806	0.003	1.219	2249.801	0.008	3.280
819.274	220.927	2,249.741	2,249.775	-0.034	-13.575	2249.770	-0.029	-11.514
839.274	220.927	2249.727	2,249.744	-0.017	-6.769	2249.739	-0.012	-4.708
559.274	200.927	2,250.282	2,250.201	0.081	32.429	2250.196	0.086	34.490
579.274	200.927	2,250.135	2,250.170	-0.035	-13.965	2250.165	-0.030	-11.904
599.274	200.927	2,250.144	2,250.139	0.005	2.041	2250.134	0.010	4.102
619.274	200.927	2,250.087	2,250.108	-0.021	-8.353	2250.103	-0.016	-6.292
639.274	200.927	2,250.107	2,250.077	0.030	12.053	2250.072	0.035	14.114
659.274	200.927	2,250.089	2,250.046	0.043	17.259	2250.041	0.048	19.320
679.274	200.927	2,250.052	2,250.015	0.037	14.865	2250.010	0.042	16.926
699.274	200.927	2,250.009	2,249.984	0.025	10.071	2249.979	0.030	12.132
719.274	200.927	2,249.970	2,249.953	0.017	6.877	2249.948	0.022	8.938
739.274	200.927	2,249.941	2,249.922	0.019	7.683	2249.917	0.024	9.744
759.274	200.927	2,249.912	2,249.891	0.021	8.489	2249.886	0.026	10.550
779.274	200.927	2,249.897	2,249.860	0.037	14.895	2249.855	0.042	16.956
799.274	200.927	2,249.957	2,249.829	0.128	51.301	2249.824	0.133	53.362

4.2.3 Cálculo de volúmenes de corte y relleno

Para obtener el volumen de corte y relleno se utilizó el método de la adición con las ecuaciones (17) y (18) según corte o relleno respectivamente. El volumen total de corte resultó 722.234 m³ y de relleno 559.849 m³, estos valores coinciden con la relación Q = 1.3.

El Cuadro 9, muestra la forma de la cuadrícula regular que genera con interpolación el programa SINIVET 5.0 y también se indican las elevaciones ajustadas con los valores de corte o relleno que corresponde a cada nodo.

Cuadro 9. Elevaciones y espesores de corte y relleno para el proyecto ejecutivo de nivelación de tierras del Escenario 2021.

		<i>x</i> / <i>y</i>	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
			559.2740	579.2740	599.2740	619.2740	639.2740	659.2740	679.2740	699.2740	719.2740	739.2740	759.2740	779.2740	799.2740	819.2740	839.2740
$\hat{Z}_{ij}\left(TN\right)$							2249.99	2250.01	2249.97	2249.93	2249.91	2249.84	2249.8	2249.75	2249.68	2249.64	2249.7
\hat{Z}_{ij} ajustada	1	300.927					2249.958	2249.927	2249.896	2249.865	2249.834	2249.803	2249.772	2249.772	2249.710	2249.679	2249.648
corte o relleno							0.028	0.080	0.077	0.060	0.072	0.036	0.030	0.008	-0.028	-0.039	0.051
$\hat{Z}_{ij}\left(TN\right)$						2250.03	2249.99	2250.02	2249.97	2249.93	2249.96	2249.89	2249.88	2249.81	2249.72	2249.65	2249.63
$\hat{Z}_{ij}ajustada$	2	280.927				2250.012	2249.981	2249.950	2249.919	2249.887	2249.856	2249.825	2249.794	2249.763	2249.732	2249.701	2249.670
corte o relleno						0.019	0.012	0.066	0.046	0.042	0.104	0.061	0.089	0.043	-0.011	-0.056	-0.041
\hat{Z}_{ij} (TN)					2249.98	2249.99	2250	2250.02	2249.97	2249.97	2250	2249.85	2249.86	2249.82	2249.75	2249.71	2249.68
\hat{Z}_{ij} ajustada	3	260.927			2250.065	2250.034	2250.003	2249.972	2249.941	2249.910	2249.879	2249.848	2249.817	2249.786	2249.755	2249.724	2249.693
corte o relleno					-0.081	-0.040	-0.005	0.044	0.032	0.062	0.117	0.002	0.046	0.036	-0.002	-0.015	-0.017
$\hat{Z}_{ij}(TN)$					2250.01	2249.96	2249.99	2249.95	2249.93	2249.92	2249.9	2249.81	2249.82	2249.83	2249.78	2249.71	2249.64
\hat{Z}_{ij} ajustada	4	240.927			2250.088	2250.057	2250.026	2249.995	2249.964	2249.933	2249.902	2249.871	2249.840	2249.809	2249.778	2249.747	2249.716
corte o relleno					-0.079	-0.097	-0.041	-0.042	-0.038	-0.014	-0.005	-0.058	-0.018	0.016	0.006	-0.036	-0.076
\hat{Z}_{ij} (TN)				2250.07	2250.04	2250	2249.98	2250	2249.94	2249.9	2249.89	2249.86	2249.81	2249.84	2249.81	2249.74	2249.73
\hat{Z}_{ij} ajustada	5	220.927		2250.142	2250.111	2250.080	2250.049	2250.018	2249.987	2249.956	2249.925	2249.894	2249.863	2249.832	2249.801	2249.770	2249.739
corte o relleno				-0.076	-0.073	-0.082	-0.065	-0.021	-0.043	-0.054	-0.035	-0.030	-0.049	0.010	0.008	-0.029	-0.012
\hat{Z}_{ij} (TN)			2250.28	2250.14	2250.14	2250.09	2250.11	2250.09	2250.05	2250.01	2249.97	2249.94	2249.91	2249.9	2249.96		
\hat{Z}_{ij} ajustada	6	200.927	2250.196	2250.165	2250.134	2250.103	2250.072	2250.041	2250.010	2249.979	2249.948	2249.917	2249.886	2249.855	2249.824		
corte o relleno			0.086	-0.035	0.010	-0.016	0.035	0.048	0.042	0.030	0.022	0.024	0.026	0.042	0.133		

También se aplicó el Método de los cuatro vértices para determinar los volúmenes de cortes y rellenos. En el Cuadro 10 se ordenaron los espesores de corte o relleno ajustados a Δ que resultan de la columna 8 del cuadro 8. El Cuadro 11 muestra los cortes y el Cuadro 12 los rellenos. Con este método el volumen de corte resultó de 537.060 m³ y de relleno 413.432 m³, lo que implica una relación Q = 1.30, sin embargo los volúmenes difieren respecto al método de la adición.

Cuadro 10. Arreglo de los espesores de corte y relleno en metros, para aplicar el método de los cuatro vértices. Escenario 2021.

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
		0	0	0	0	0.028	0.080	0.077	0.060	0.072	0.036	0.030	0.008	-0.028	-0.039	0.051	
1	0	0	0	0	0	0.028	0.080	0.077	0.060	0.072	0.036	0.030	0.008	-0.028	-0.039	0.051	0.051
2	0	0	0	0	0.019	0.012	0.066	0.046	0.042	0.104	0.061	0.089	0.043	-0.011	-0.056	-0.041	-0.041
3	0	0	0	-0.081	-0.040	-0.005	0.044	0.032	0.062	0.117	0.002	0.046	0.036	-0.002	-0.015	-0.017	-0.017
4	0	0	0	-0.079	-0.097	-0.041	-0.042	-0.038	-0.014	-0.005	-0.058	-0.018	0.016	0.006	-0.036	-0.076	-0.076
5	0	0	-0.076	-0.073	-0.082	-0.065	-0.021	-0.043	-0.054	-0.035	-0.030	-0.049	0.010	0.008	-0.029	-0.012	-0.012
6	0.086	0.086	-0.035	0.010	-0.016	0.035	0.048	0.042	0.030	0.022	0.024	0.026	0.042	0.133	0	0	0
		0.086	-0.035	0.010	-0.016	0.035	0.048	0.042	0.030	0.022	0.024	0.026	0.042	0.133	0	0	•

Cuadro 11. Volúmenes de corte en metros cúbicos, calculados con el método de los cuatro vértices. Escenario 2021.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	0	0	1.945	4.073	16.621	16.451	24.857	29.963	19.869	29.475	14.781	8.114	1.778	2.005	0
2	0	0	0.000	0.695	9.352	13.212	24.598	29.804	16.010	26.516	8.222	5.468	1.990	2.686	2.160
3	0	0	0.324	0.117	3.279	2.516	7.103	11.651	5.979	17.146	8.007	7.210	2.271	0.027	0
4	0	0	0	0	1.021	0.694	6.166	9.741	2.736	10.725	2.935	2.773	2.349	0.171	0
5	6.137	5.300	0	1.251	1.148	3.840	4.586	3.878	2.359	3.305	4.862	14.951	3.611	9.023	0
6	0	5.494	0	1.131	1.398	3.248	4.030	2.936	2.161	1.793	5.543	13.015	3.398	13.074	0

Cuadro 12. Volúmenes de relleno en metros cúbicos, calculados con el método de los cuatro vértices. Escenario 2021.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	0	0	0	0	0	0	0	0	0	0	0	0.965	6.184	4.906	13.639
2	0	8.136	4.034	6.538	0.991	0.020	0	0	0	0	0	0.840	2.955	2.245	4.116
3	0	7.915	8.093	10.898	8.611	4.542	1.923	0.964	2.987	0.248	1.902	0.699	5.655	12.304	20.975
4	7.596	15.431	19.824	22.456	10.971	8.838	3.103	2.673	4.762	2.845	1.149	2.481	2.150	2.466	7.293
5	1.006	3.567	14.778	8.725	11.815	4.002	2.342	1.728	4.102	0.743	2.394	0.177	1.373	2.680	11.196
6	11.088	3.141	20.854	10.364	8.425	6.269	3.645	4.245	5.064	5.289	0.834	1.100	1.018	0.090	4.055

En la Figura 6 se muestra una representación de las condiciones finales del plano proyecto ajustado, se observa la triangulación para la cuadrícula regular, así como las curvas de nivel con sus elevaciones después del ajuste del plano proyecto. Con las curvas como líneas rectas se nota la representación del plano con las pendientes del proyecto que se calculó. Al igual que en el escenario 2019 no fue necesario modificar las pendientes naturales ya que generan resultados satisfactorios relacionados con el movimiento de tierra y con las inclinaciones propicias para el manejo del agua.

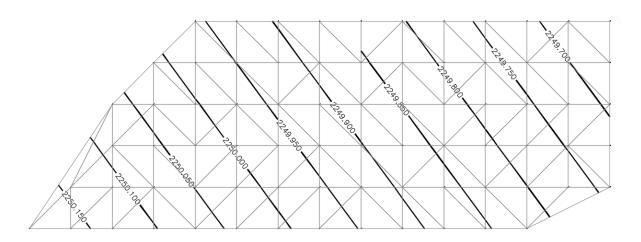


Figura 6. Esquema de la triangulación de la cuadrícula regular y las curvas de nivel que resultan con el plano proyecto ajustado al coeficiente de abundamiento (0.3). Escenario 2021.

4.3 Análisis de los dos Escenarios

Los cálculos para el Escenario 2019 y el Escenario 2021, se realizaron con las mismas coordenadas de la cuadrícula regular, este proceso fue posible por la condición geométrica del levantamiento topográfico.

En 2019 se realizó el levantamiento al final del ciclo de producción cuando el suelo se asienta por la compactación que generan las labores culturales como el riego y el paso de la maquinaria. En 2021 se realizó cuando el suelo estaba expandido después del paso del arado de discos.

El cuadro 13 compara los resultados de los cálculos para la nivelación. La diferencia de la ordenada al origen entre un Escenario y otro es de 0.454 m y está relacionada con el relieve en ambos periodos, pero no significa un desfase de la superficie debido a que el origen está fuera de la poligonal de la parcela y corresponde a una proyección de las pendientes que minimizan el movimiento de tierras.

Las pendientes son congruentes con el manejo del riego de la parcela siete; en la dirección del eje x se traza la regadera y en la del eje y se construyen los surcos. En 2019 resultan de -0.134% y -0.078% mientras que en 2021 resultaron -0.15% y -0.11%. La diferencia es un incremento en la inclinación de 2 y 4 cm en X e Y por cada 100 m.

Los cambios de relieve entre un Escenario y otro generaron un cambio en el ajuste, desplazamiento vertical, del plano proyecto y resultó en orden cronológico de 1 y 5 mm. Este movimiento artificial del plano propicia la relación corte/relleno buscada que en el trabajo fue Q=1.3 relacionada con el coeficiente de abundamiento de 0.3 lo cual significa un incremento en volumen del suelo franco arcilloso del 30% cuando se generan la excavación (cortes), según el triángulo de Trueba.

Los métodos para calcular el volumen de cortes y rellenos arrojaron resultados diferentes, esto es debido a que a pesar de que las ecuaciones de los respectivos métodos son alimentadas con las variables de cortes y rellenos, cada fórmula posee un planteamiento diferente. Los volúmenes más grandes se presentan en el Escenario 2019 y en el caso de los

cortes ascienden a 722.234 m³ (292.978 m³ ha⁻¹) que con el costo actual utilizado en los distritos de riego del centro del país, representa un costo máximo de \$21.667.02 para toda la parcela (3.1 ha) que corresponde a 6,989.361 \$/ha. La literatura señala que para la viabilidad de estos trabajos se recomienda que el movimiento de tierra no supere los 600 m³ ha⁻¹ y el resultado está dentro del rango.

Con lo anterior queda de manifiesto la importancia de realizar el levantamiento y cálculo de los parámetros previo a la ejecución de la nivelación de tierras ya que el relieve es dinámico a través del tiempo en las parcelas agrícolas.

Cuadro 13. Comparación de resultados del cálculo para la nivelación de tierras del Escenario 2019 y 2021.

		Escenario 2019	Escenario 2021
	da al origen msnm)	2,250.843	2,251.297
	iente en X adim)	-0.001348	-0.001551
	iente en Y adim)	-0.000785	-0.001140
	ón del plano oyecto	$\hat{Z}_{ij} = 2,250.843 + (-0.001348)X_i + (-0.000785)Y_j$	$\hat{Z}_{ij} = 2,251.297 + (-0.001551)X_i + (-0.001140)Y_j$
	azamiento ertical	0.001	0.005
	ón del plano to ajustada	$\hat{Z}_{ij} = 2,250.842 + (-0.001348)X_i + (-0.000785)Y_j$	$\hat{Z}_{ij} = 2,251.292 + (-0.001551)X_i + (-0.001140)Y_j$
Método	Volumen de corte (m³)	601.376	722.234
de la adición	Volumen de relleno(m³)	463.391	559.849

	Escenario 2019	Escenario 2021	
Relación corte/relleno (adim)	1.30	1.30	
Costo del movimiento de tierras (\$/m³)	18,041.28	21,667.02	
Método de los Volumen de corte (m³)	447.651	537.060	
cuatro vértices Volumen de relleno (m³)	317.036	413.432	
Costo del movimiento de tierras (\$/m³)	13,429.53	16,111.80	
Relación corte/relleno (adim)	1.41	1.28	

V. CONCLUSIONES

A partir de los objetivos y los resultados del presente estudio, se muestran las siguientes conclusiones:

A través del proceso metodológico se obtuvieron las ecuaciones del plano proyecto para el mínimo movimiento de tierras. No obstante de utilizar el mismo método para los Escenarios 2019 y 2021, las diferencias de elevaciones que resultan muestran que el acomodamiento de la superficie está influenciada por las labores culturales que se realizan en la parcela pues las condiciones del terreno modifican los resultados de los cálculos para la nivelación de tierras; por ejemplo, la mecanización genera movimientos que alteran las pendientes en cada paso del implemento, además de que en una parcela regada por gravedad, las labores del cultivo causan desacomodos en la superficie.

Con la información x_i, y_j, z_{ij} recabada en el levantamiento topográfico, se ejecutó la proyección de la nivelación de tierras de la parcela, sobre la cual se realizó la comparación de las condiciones del terreno en ciclos diferentes (2019 y 2021). En la proyección de la nivelación, las pendientes son congruentes con el manejo del riego de la parcela siete, no obstante, se encontraron diferencias en las pendientes de ambos Escenarios y por lo tanto en los espesores y volúmenes de corte y relleno; el cambio del relieve se atribuye a la dinámica de la parcela a través del tiempo por las labores culturales. En este sentido se recomienda realizar el cálculo previo a la ejecución de la nivelación en las condiciones reales.

La adecuación del plano en función a la textura del suelo presente en la parcela siete de la FESC, con el coeficiente de 0.3 para suelo franco arcilloso permitió considerar el fenómeno de abundamiento en el proceso de movimiento de tierras en los trabajos de nivelación. Con ello, se calcularon los volúmenes de cortes y rellenos con dos métodos diferentes, adición y cuatro vértices, a partir de los cuales se estimó el costo de movimiento de tierras por m³. El método de la adición genera valores más bajos de movimientos de tierra, pero la literatura señala que el método de los cuatro vértices es más preciso que el método de la adición.

La proyección de las pendientes muestra que son adecuadas para la tecnificación y optimización del riego por gravedad y para el diseño, permiten manejar caudales elevados sin causar erosión del suelo.

VI. LITERATURA CITADA

- Anderson, J. M., Mikhail, E. M. s.f. Medición de la distancia vertical: nivelación. En *Introducción a la topografía*. McGraw-Hill.
- Autodesk. 2013. *AutoCAD*. Obtenido de Civil 3D. Recuperado de: http://docs.autodesk.com/CIV3D/2013/ESP/index.html?url=filesCUG/GUID-4D35C7B2-DDF5-4531-99F2-DC2E5F6ECEAB.htm,topicNumber=CUGd30e34012,hash=GUID-B1D76519-8A9C-4592-974A-806DE6739F2B
- Casanova M., L. 2002. *Topografía plana*. Universidad de los Andes. Facultad de Ingeniería. Venezuela.
- Chiquito, M. V. 2012. Levantamiento topográfico, utilizando estación total Trimble, de la vía rural los palmares-Río Bravo, de la parroquia membrillal del Cantón Jipijapa, provincia de Manabí. *Tesis de Licenciatura*. Ecuador: Universidad Estatal del Sur de Manabi.
- Comisión Nacional de Agua. 2014. Subdirección General de Infraestructura Hidroagrícola. Gerencia de Distrito de Riego. Proyecto de riego por gravedad tecnificado (RIGRAT). Curso de capacitación: Nivelación de tierras para el riego por gravedad.
- Comisión Nacional de Agua. 2016. Avances. En la modernización y tecnificación de la infraestructura hidroagrícola 2016.
- Comisión Nacional de Agua. 2017. *Informe anual. Ciclo agrícola 2016-2017*. Seguimiento y evaluación en 2,000 hectáreas incorporadas al proyecto de riego por gravedad tecnificado en el Distrito de Riego 043. Estado de Nayarit.
- Comisión Nacional de Agua. 2017. Manual de operación del subprograma rehabilitación, modernización, tecnificación y equipamiento de distritos de riego. Componente Riego por Gravedad Tecnificado. Modalidad FOFAE.
- Durán, Á. J., Gómez F. S. 1993. Nivelación de Tierras del Predio "El Mezquital" en Tolimán, Mpio. de Tolimán, Jal. *Tesis Profesional*. Universidad de Guadalajara. México.
- Fondo para la Comunicación y la Educación Ambiental, A. C. 2017. *Agua.org.mx*. Recuperado de https://agua.org.mx/actualidad/tipos-riego-disponibilidad-del-agua/
- Franquet, B. J., Querol, G. A. 2010. Nivelación de terrenos por regresión tridimensional. Una aplicación de los métodos estadísticos. UNED. España.

- Fundación UNAM. 2018. Aplican técnica para eficientar el agua en la agricultura. Recuperado de https://www.fundacionunam.org.mx/ecopuma/aplican-tecnica-para-eficientar-el-agua-en-la-agricultura/
- García, H. F., Chávez, M. J., Rubiños, P. J., Terrazas, O. M. 2020. Terra: sistema para proyectos de nivelación de tierras con topografía regular o variable. *Revista Mexicana de Ciencias Agrícolas 11*(8).
- Hernández, S. F., Sánchez, B. J. 2007. Nivelación de tierras. En *Manual para diseño de zonas de riego pequeñas*. Instituto Mexicano de Tecnología de Agua.
- Hernández, S. F., Rendón, P. L., García, H. F., Pérez, N. S. 2015. Herramientas para la asistencia técnica en riego por gravedad. I Congreso Nacional COMEII 2015. Juitepec, Morelos. IMTA: México.
- Instituto Mexicano de Tecnología del Agua. 2010. Riego por gravedad. México.
- Instituto Mexicano de Tecnología del Agua. 2016. Conocimiento y tecnología para la gestión sustentable del agua. *Informe Anual IMTA 2015*.
- Instituto Mexicano de Tecnología del Agua. 2020. *Uso de herramientas geoespaciales para la nivelación de terrenos agrícolas*. Recuperado de https://www.gob.mx/imta/es/articulos/uso-de-herramientas-geoespaciales-para-la-nivelacion-de-terrenos-agricolas?idiom=es
- Melitón, C. A. 2016. Levantamientos topográficos. *Material de cátedra*. Facultad de Ingeniería. UNICEN.
- Natural Resources Conservation Service. 2018. Conservation practice standard. *Irrigation land leveling*. South Dakota.
- Navarro, Á. M. 2018. Nivelación de tierras: una opción viable para el uso eficiente y gestión sustentable del agua en la agricultura. *Ingeniería y Región*, 9.
- Negro, V. 1998. Cátedra de Hidrología Agrícola. Apuntes de nivelación aereal. *Facultad de Ingeniería y Ciencias Agrarias*. Universidad Nacional de Lomas de Zamora.
- Prado, H. J., Hernández, S. F. 2014. *Nivelación de tierras con tecnología GPS*. Memoria. XXX Presentación de Trabajos de Investigación, Producción y Servicio.
- Rodríguez, P. L., Morábito, J. A., Atencio, A. 1999. Nivelación de suelos regadíos. Modelo para calcular cortes y rellenos. *Revista de la Facultad de Ciencias Agrarias*.

- Sánchez, M. A., García, L. A., Tejeda, M. V., Agüero, J. M., Concepción, O. R., Vilalta, A. J., Ramos, D. S. 2020. Utilización de sistemas satelitales para la nivelación de campos arroceros. Revista Ingeniería Agrícola, 10(2).
- Secretaria de Medio Ambiente y Recursos Naturales. 2019. Reglas de Operación para el Programa de Apoyo a la Infraestructura Hidroagrícola, a cargo de la Comisión Nacional del Agua, aplicables a partir de 2019. México.
- United States Department of Agriculture. 1983. *Chapter 12. Land Leveling*. En National Engineering Handbook. USA.
- Universidad Autónoma Chapingo. 2013. Coordinación general e instrumentación de acciones para la implementación del proyecto de riego por gravedad tecnificado en distritos y unidades de riego, 2013. Informe final. Departamento de irrigación.
- Universidad Nacional del Centro de la Provincia de Buenos Aires. s.f. *Apuntes de Agrimensura. Facultad de Ingeniería*. Ingeniería en Agrímensura.
- Walker, W. 1989. Guidelines for designing and evaluating surface irrigation systems. Irrigation and drainage paper. *Capítulo 6: Land leveling*. Roma, Italia: FAO.