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Resumen

Este trabajo presenta dos métodos computacionales para estudiar la morfología
de estructuras cerebrales, utilizando Imágenes de Resonancia Magnética (IRM).
En la primera etapa del proyecto, se desarrolló, validó y aplicó un método basado
en vóxeles para medir el ancho delos surcos cerebrales, empleando imágenes de
una base de datos MIRIAD (Minimal Interval Resonance Imaging in the Alzheimer’s
Disease) de pacientes con Alzheimer y sujetos de control. Este método (LM
basado en EDT) emplea la Transformada de Distancia Euclidiana 3D (EDT) de
la superficie pial y un algoritmo de etiquetado Local Maxima (LM). El segundo
método consiste en la estimación de la tortuosidad para objetos tridimension-
ales, utilizado el código cadena de pendiente (SCC, por susu siglas en inglés).
Este método se utilizó para estimar la tortuosidad del surco central, utilizando
la base de datos MIRIAD. Los resultados muestran que la pérdida de materia
gris de los pacientes con Alzheimer ocasiona que los surcos se ensanchen y esto
ocasiona diferencias de forma capturadas por la tortuosidad propuesta.
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Abstract

This work presents two novel computational methods to study the 3D mor-
phology of brain structures, based on Magnetic Resonance Images (MRI). In the
first stage of the project a voxel-based method for measuring the sulcal width
was developed, validated and applied to a database of Alzheimer’s Disease (AD)
patients and Control subjects. This method (EDT-based LM) employs the 3D Eu-
clidean Distance Transform (EDT) of the pial surface and a Local Maxima (LM)
labeling algorithm. The second stage consisted of estimating the tortuosity for
three-dimensional objects, in particular for the central sulcus, for its anatomi-
cal relevance. When applied to the Minimal Interval Resonance Imaging in the
Alzheimer’s Disease (MIRIAD) database the results concurred with the hypoth-
esis of the gray matter loss for AD patients and showed how the sulci broadened
and had morphological differences captured by the proposed tortuosity.
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1

Introduction

Medical imaging refers to several different technologies and processes used to create

visual representations of the static and dynamic properties of the human body for di-

agnostic and treatment purposes. It encompasses different imaging modalities such as

X-ray radiography, Fluoroscopy, Magnetic Resonance Imaging (MRI), Ultrasound, among

others. Each type of technology gives different information about the area of the body be-

ing studied or treated. Because of its complexity and rapid technological advancements

it has become a multidisciplinary field that requires collaboration of biologists, chemists,

medical physicists, pharmacologists, computer scientists, biomedical engineers, and

clinicians of all specialties.

The medical imaging diagnoses began with the discovery of the X-rays around 1895.

It is characterized by being multidisciplinary. It involves the acquisition and storage of

the images, as well as the registration, segmentation, computer-assisted diagnosis (CAD),

and transfer systems (PACS), among others [2].

In recent years, the accelerated development of computational tools has led to sig-

nificant advances in the analysis and processing of digital images, particularly medical

images. This has promoted the development of new computational techniques for the

reconstruction, study and interpretation of medical images [3].

In this work, the magnetic resonance imaging (MRI) technology was employed to ob-

tain brain images; enabling the examination, measurement, and analysis of its anatomical

features, in living humans. This imaging modality has particularly enriched the field of

quantitative neurobiology ([4]; [5]). It also provides detailed information concerning the

morphological features of various brain regions [4]. Studies of brain morphometry using

1



Chapter 1. Introduction

MRI are important because they have shown potential for the prognosis of neurological

diseases ([6]; [7]; [8]).

Shape analysis relates to ways of statistically identifying and characterizing structural

differences among populations for finding correlations between brain shape and, for

example, disease severity. A large number of approaches for characterizing differences in

the shape and neuroanatomical configuration of different brains have recently emerged,

due to improved resolution of anatomical human brain scans and the development of

new sophisticated image processing techniques. The morphometric analysis of magnetic

resonance images (MRI) of the brain has become a widely used approach to investigate

neuroanatomical correlations of both normal brain development and neurological disor-

ders.

The phenomenon of magnetic resonance was discovered in the year 1946 by Felix

Bloch and Edward Purcell independently. Initially, it was only used for chemical and

physical analysis. It was until 1971 that Raymond Damadian proved that the times of

nuclear magnetic relaxation were different for healthy tissues and for tumors, or which

motivated the research and development of this technique [9]. In 1973 Paul Lauterbur

showed that it was possible to create an image using MRI [10]. It was until 1977 that

the first human images of MRI were acquired, and from 1983 this technique began to

be used to obtain images of the brain ([11], [12],[13]). MRI has been used as support for

clinical diagnosis for almost 40 years.

Currently, MRI images are the main tool for the diagnosis of various pathologies [14]

thanks to the development and advances in technology. These advances range from the

development of new acquisition sequences, and the use of more powerful magnets, to

the implementation of new computational tools for the handling, storage, and processing

of images [15].

In the present work, the interest is focused on the image processing tools for brain

MRI, especially in developing new methods to quantify brain morphology. Brain mor-

phology has become a subfield of two fields: morphometry and neuroscience. It studies

the structural measures of the brain, most commonly: volume, shape, area, length, and

width. These kinds of measures are usually obtained from T1 weighted MRI, as in this

work. Brain morphology has been applied to identify differences in brain structures

associated with a medical condition, such as Alzheimer’s disease. Giovanni B. Frisoni,

et al. assess the relevance of structural MRI marker in the diagnosis and treatment of

2



Chapter 1. Introduction 1.1. A review of the computational tools

Alzheimer disease [16], Anders M. Fjell et al. present a detailed evaluation of different

brain structures using the cortical volume, among other markers, to identify differences

through normal aging and Alzheimer disease [17], Leah H. Somerville presents another

work that uses cortical volume to understand maturity through aging [18].

A subject currently inspiring great interest is variation in cortical folding, as this

relates to cognitive function [19]. The human cerebral cortex is highly folded, which

provides a large surface area that fits within the skull [20]. This also comprises the most

developed area of the brain, where higher brain functions such as thinking, planning,

and decision making take place. The folds can also be described as a series of ridges

and indentations. A brain ridge is known as a gyrus, while an indentation or depression

is a sulcus or fissure [21]; approximately 70% of the cortical surface is buried in sulci [22].

1.1 | A review of the computational tools

Sulcal width has been studied as a potential biomarker for a number of diseases, partic-

ularly Alzheimer’s (AD) [15; 23; 24]. Sulcal width is defined as the minimal Euclidean

distance between two points on the pial surface that belongs to different sides of the

sulcal basin. Only a few algorithms in the literature measure sulcal width.

The first two reports consist of object-based methods, but these generate an indirect

measurement and are also highly dependent on the segmentation method [25]. Mangin

[26] proposed an indirect measurement of sulcal width, dividing the total volume of

cerebrospinal fluid within the sulcus by the area of a previously constructed skeletal

mesh. This mesh is parallel to the sulcus walls and located at the center of the sulcus.

Kochunov [6] developed the second object-based method (available in the BrainVisa

software), which requires a medial mesh. This method involves tracing two vectors at

each vertex to the point where they intersect with the gray matter mesh, and then the

Euclidean distance is calculated between these two intersections; this process gives the

average width and its standard deviation. Importantly, object-based methods produce

indirect measurements of sulcal width, from which sulcal width maps cannot be con-

structed.

In a recent work [27], a vertex-wise method was developed for estimating the sulcal

width at each point on the cortical surface. This method takes as input the pial surface

3
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triangular mesh from the FreeSurfer software (version 5.3) and is divided into three main

stages: 1) sulcal segmentation, sulcal lines, and gyral crown extraction; 2) depth map

generation, referring to previous sulcal surfaces; and 3) sulcal width map estimation.

The method proposed in this project provides a direct measurement that allows the

estimation of the sulcal width at each point of the brain surface.

Digital representation of three-dimensional data, objects and images, has an impor-

tant role in many fields, such as: computer vision, medicine, geology, anthropology,

astronomy, etc. The main contribution of this kind of representation is the possibility

to measure and compare different characteristics and qualities of the digitized objects

[28],[29]. There is a special interest in new feature descriptors to capture and quantify

the morphological characteristics of three dimensional images. For example in med-

ical imaging, the automatic segmentation of tumors is a field of interest, in which the

morphological characteristics of the tumors are valuable. Tortuosity is a morphological

property that describes some aspects of the complexity of objects. Merriam-Webster

dictionary defines “tortuosity" as “full of twists, turns; crooked" [30]. In this work, a

method to estimate the tortuosity of 3D objects is proposed. This method allows the

estimation of tortuosity in voxelized objects using the Slope Chain Code and minimizing

the stair-stepping artifacts.

The tortuosity as a shape feature has been used for multiple applications, such as:

measurement of tortuosity in aluminium foams using airbone ultrasound by L. H. Le et

al. [31]; a fully automated tortuosity quantification system with application to corneal

nerve fibers in con-focal microscopy images presented by R. Annunziata et al. [32],

morphology changes of blood vessels [33].

The computation of tortuosity for 3D objects has been approached only by a few au-

thors. Zhang and Nagy [34] presented three measures of tortuosity and their application

to analyzing cracks in concrete: 1) average angle between surface normals, 2) average

principal curvatures, and 3) standard deviations of principal curvatures. Their results

only show that the proposed tortuosity measurements can differentiate surfaces, but

did not explain which represents better the morphological changes. W. Xiao et al. [35]

described the combined effect of tortuosity and surface roughness on the estimation of

flow rate through a single rough joint. They analyzed how the fluid flow through rock

joints is greatly influenced by the tortuosity and surface roughness. In both cases, data

interpolation is necessary to obtain the corresponding meshes of the 3D objects.
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This work proposes a simple measure of tortuosity for 3D voxelized objects based on

the SCC approach [36], the data used to compute the SCC is directly obtained from the

voxels, without the need to interpolate. It can describe and characterize a wide set of

voxelized objects, such as: tumors, organs, brain structures, archaeological artifacts, and

bones, among others. The main motivation is to present a simple tool to measure, quan-

tify, and measure morphological characteristics of different three-dimensional objects.

1.2 | Thesis outline

Chapter 2 defines the most important concepts mentioned and used throughout this

thesis. The sulcal with estimation method is presented and explained in chapter 3, and

its application to the MIRIAD database and the results obtained. The tortuosity for

three-dimensional objects is described along with its application to the Central Sulcus

for the MIRIAD database in chapter 4. Finally, the conclusions and limitations of the

proposed new tools are presented in chapter 5.

1.3 | Hypothesis

Brain sulci have morphological characteristics detectable in magnetic resonance images,

which allow their characterization and classification between normal subjects and popu-

lations with pathologies or conditions of interest. These characteristics can be analyzed

with image processing techniques and visualized with computer graphics tools.

1.4 | Aim

To develop methods to quantify morphological features of different brain structures and

to evaluate the differences among populations employing MRI brain studies.

1.5 | Goals

First stage: Sulcal width computing

1. Selection of MRI studies T1-weighted for the database integration.

2. Segmentation of gray matter for each MRI study.
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3. Computation of the Euclidian Distance Transform (EDT) for each gray matter

volume.

4. Label of the local maxima voxels of the EDT.

5. Estimation of the sulcal width based on the local maxima voxels detected.

6. Design of computational phantoms to validate the developed method.

7. Study of the method performance variations due to the voxel anisotropy and size.

8. Computation and selection of descriptors in order to characterize each structure.

9. Application of 3D visualization and computer graphics tools for parametric images

for descriptors.

10. Selecton of MRI studies database for subjects with Alzheimer’s disease.

Selection and extraction of morphological descriptors.

Significance evaluation of the descriptors.

Second stage: Tortuosity estimation method for three-dimensional objects

1. To propose a tortuosity estimation method for 3D objects.

2. Optimization of the accuracy and resolution of the method.

3. Estimation of the tortuosity of the central sulci for the MIRIAD database.
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2

Basic Concepts

2.1 | Brain Anatomy

The brain is a complex arrangement of near to 100 billion neurons and 10–50 trillion

neuroglias, which allows humans to process, modulate, and interpret sensory stimuli;

regulate the functions of the different body systems; and perform higher mental func-

tions such as memory, imagination, and creative thought [37]. For centuries it has been

studied, although in the last decades the rapid technology developments and magnetic

resonance imaging (MRI) have allowed to study the brain without having to lift the skull

and led to new ways to understand and analyze it.

2.1.1 | Gray matter & white matter

The nervous system has been divided into grey matter and white matter. Gray matter

contains cell bodies, neuronal extensions including axons and dendrites (see Fig. 2.1), as

well as synapses between extensions, glia, and blood vessels. It is primarily responsible

for processing and interpreting information.

White matter is indicated due to its white appearance as a result of mainly myelinated

axons, although it also contains unmyelinated axons(see Fig. 2.1). It can also include

neurons when it is in close proximity to grey matter. Its job is to transmit information to

other parts of the nervous system.

At a higher level, the brain is divided into three main parts: cerebrum, brainstem, and

cerebellum (Fig. 2.2). For this work purposes, we are only going to define the cerebrum,

its tissues and substructures.
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Chapter 2. Basic Concepts 2.1. Brain Anatomy

Figure 2.1: On the top, the anatomy of a neuron. On bottom, a synapses scheme. Created
with BioRender.com

2.1.2 | Cerebrum

The cerebrum consists of two cerebral hemispheres that are partially connected with

each other by the corpus callosum. Each hemisphere contains a cavity called the lateral

ventricle, and it is responsible for different tasks. It represents one of the largest regions

of the brain, and it is responsible for processing information associated with movement,

smell, sensory perception, language, communication, memory, and learning. The cerebral

cortex serves as the cerebrum’s outer layer and is arbitrarily divided into four lobes:

frontal, parietal, temporal, and occipital, as seen in Fig. 2.2.

2.1.2.1 | Cerebral cortex

The cerebral cortex has a multi-layered organizational pattern that varies through the

brain. The cytoarchitecture reveals variations in cell shape, size, and density; character-

istics which are used as anatomical landmarks to divide the cortex into distinct areas.

The cerebral cortex is also the outer gray matter covering the cerebrum [38]. On its

surface, it has bulges of brain tissue known as gyri, alternating with deep fissures known
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Figure 2.2: Schematic diagram of lateral aspect of left cerebral hemisphere. The three
main parts are labeled; brainstem, cerebellum, and cerebrum divided in lobes. Created with
BioRender.com

as sulci. The enfolding of the brain is an adaptation to brain growth during evolution. It

takes place during embryonic development and is important to optimize the functional

organization and wiring of the brain, as well as to allow fitting a large cortex in a limited

cranial volume [39][40].

Despite variability in folding patterns among humans, there are specific types of

preserved folding patterns [41]. Because of this, the shape and distribution of these

patterns have been a matter of interest, as well as the possible reasons for their origin.

One of the first descriptors developed to characterize these folding patterns was the

degree of cortical folding (GI), this feature permits the description of a mean value for

the whole brain, but also a local specific analysis of different brain regions. The GI is

commonly defined as the ratio between the length of the complete contour and the length

of the outer contour (without the sulci) [42]. Many other tools have been developed since

then, it has represented a challenge for computational neuroanatomy, though this has

significantly improved with the development of surface and voxel-based algorithms.

2.2 | Magnetic Resonance Imaging (MRI) brief de-

scription

MRI is based on nuclear magnetic resonance (NMR), whose name comes from the inter-

action of atomic nuclei with the imposed magnetic field when exposed to radiofrequency
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Figure 2.3: Folding patterns visible in a high resolution human brain model using the
multilevel human atlas. Image obtained of the Big Brain project (https : //bigbrainproject.org/)

(RF) electromagnetic waves of a specific resonance frequency. The first successful nuclear

magnetic resonance (NMR) spectroscopy experiments were independently demonstrated

in 1945 by Felix Bloch and Edward Purcell. Spatial encoding in NMR is accomplished by

using magnetic field gradients, which can introduce spatial variations in the main mag-

netic field. Magnetic resonance imaging (MRI) was commercially used in the 1980s. It

uses the same NMR signals and spatial information using tomographic sectional images

of the human body in the axial coronal and sagittal planes [43].

Magnetic resonance images depend on the distribution and concentration of hydro-

gen nuclei in the body and on the physicochemical environment of those nuclei. It detects

the magnetic moment created by single protons present hydrogen atoms. This magnetic

moment aligns itself to an external field B0. Another possible position is alignment in the

opposite direction, although this is less convenient and causes energy consumption. The

energy difference between these two possible positions can be written as the quantized

energy of a photon with ν being the frequency of an electromagnetic field and } Planck’s
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constant (see Eq.2.1).

4E = γ · } ·B0 = } · ν (2.1)

Hydrogen is a highly suitable element to obtain the images for its abundance in the

human body, two hydrogen atoms in every water molecule [44]. The spinning protons

produce small magnetic fields when a patient is placed in the MRI scanner (see Fig. 2.4,

hydrogen protons align with the applied magnetic field to create a net magnetization

vector. The behavior of this spin can be treated as a macroscopic magnetization M0

following the laws of classical electrodynamics. Hydrogen nuclei will provide a macro-

scopic magnetization when exposed to an external magnetic field, aligned in the direction

of the main static field, z-direction. This rotating magnetization is called longitudinal

magnetization. Applying a magnetic field perpendicular to the main static magnetic

field will cause a rotation of the macroscopic magnetization. Any attempt to turn the

macroscopic magnetization towards the x-y plane will cause the magnetization vector

to rotate around the main direction with a frequency of 42.58 MHz/T (Larmor frequency).

Figure 2.4: MRI scanner diagram. Created with BioRender.com

When the applied electromagnetic field uses the same frequency, one magnetic com-

ponent of this field rotates with the macroscopic magnetization, generating a constant

(B1) field. Due to this resonance situation, the magnetization can be turned around
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at any angle, depending on the amplitude and duration of the B1 field. This process

is also known as radio frequency (RF) excitation. With the B1 field switched off, the

magnetization continues to rotate with the specific frequency of 42.58 MHz/T and will

induce a signal in a nearby coil.

The amplitude of the induced signal is proportional to the number of protons in-

volved in the excitation process. The amplitude of the induced signal depends on the

actual amount of longitudinal magnetization ‘flipped’ into the transverse plane. The

actual longitudinal magnetization is a function of the tissue-specific relaxation rate,

the time needed for the realignment of the magnetization with the main magnetic field

(T1-relaxation time). The rotating transverse magnetization results from of a significant

number of individual magnetic moments of hydrogen nuclei, each pointing in the same

direction. The dipole-dipole interaction between all these magnetic moments will cause

a ‘dephasing’ of the transverse magnetization. The relaxation rate associated with this

phenomenon is tissue-specific and is called T2-relaxation [45] [46].

2.2.1 | Brain anatomy through MRI

In the previous section, we explained in detail the MRI procedure and the informa-

tion of the body we acquire from this type of images, which is a non-invasive imaging

technique. Here we describe its application to the brain. The study of neuroanatomy

using non-invasive imaging has allowed us to identify and characterize the different

parts, sections, and structures of the brain without the need for surgery. We can also

obtain some information about its function, the potential influence of the environment,

the changes through development, aging, or disease. Technology developments in MRI

acquisition and image processing have been essential to its application, since it provides

an indirect measurement of the biological signals and anatomical information.

MRI measures radio-frequency signals emitted from hydrogen atoms after the ap-

plication of electromagnetic waves and localizing the signal using spatially varying

magnetic gradients. Contrast depends on the density of protons within the voxel and

properties of the local tissue related to the magnetic properties of hydrogen or detected

through manipulation of magnetic fields. The image contrast depends on the precise

timing of the pulse sequences. In table 2.1 the different values of T1 y T2 MRI sequences

for three different brain tissues are presented: Gray matter, White matter, Cerebrospinal

fluid (CSF). Due to these different values, the tissues and structures are distinguishable

in the images (see Fig. 2.5).
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Tissue T1(ms) T2(ms)

Gray matter 1200 110
White matter 860 80
CSF 4500 2200

Table 2.1: Average relaxation times for different brain tissues, with a B0 = 3T [1].

Figure 2.5: From left to right: sagittal, coronal, and horizontal planes of the brain
obtained with MRI. In (a) the images were acquired with a T1-weighted sequence. The
white matter has greater gray values (looks white), the gray matter appears gray, while
water and CSF appear dark. Images in (b) were acquired with the T2-weighted sequence.
In this type of images the white matter appears in dark gray, gray matter appears in light
gray, and water and CSF appear white.

After the image acquisition, there are different approaches towards measuring and

characterizing brain structures. In this thesis, we are going to take the macroscopic

approach, developing new computational tools to measure shape characteristics of the

brain, which considers the sizes and shapes across multiple voxels. In their work, Jason

P Lerche et al. [47] proposed 5 domains to divide the macroscopic applications:

1. Manual labeling volumes. Trained physicians manually segment regions of interest

from brain scans.
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2. Automatic segmentation algorithms. It has allowed the individual study of each

brain structure and its application to larger databases.

3. Brain morphometry. It aims to quantify different features of the images and the

comparison among populations.

4. Analysis of the folding pattern of the cerebral cortex.

5. Diffusion tractography.

These techniques are often complementary, and it will depend on the application.

For example, in this work, we analyzed some morphometric characteristics of the folding

patterns and used automatic segmentation algorithms to identify the brain cortex.

The above mentioned contributions to the neuroanatomical field have changed the

way we understand and analyze the brain. It has led to the development of many com-

putational methods and imaging techniques to analyze and study brain anatomy, these

together are included in emerging fields; computational neuroanatomy and quantitative

imaging, among others. The main advantage of these new tools is the possibility to

quantify and compare many characteristics of the brain, which has allowed us to know

more about how the human brain works, and how different diseases or conditions affects

it.
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3

Sulcal width estimation

3.1 | Method

All the brain images analyzed in this work have been acquired by Magnetic Resonance

Imaging (MRI). This work is divided in two stages:

1. The implementation of a voxel-based method to measure the sulcal width (EDT-

based LM).

2. The application of the proposed method to a database with Alzheimer patients and

control subjects.

3.1.1 | EDT-based LM method

First stage

A method for labeling Local Maxima based on EDT was developed to measure sulcal

width. The algorithm was designed to use the discrete representation of the pial surface

as input, and to compute the morphological features on a regular three-dimensional grid,

comprising a voxel-based approach.

First, the pial surface EDT was computed to obtain the distance d from each voxel

outside the brain, to the nearest voxel on the cortical boundary. For the purposes of this

work, the unit of distance is termed Minimum Voxel Dimension (MVD) and is defined

as the smallest voxel side. Equation 3.1 describes this relationship, where p is a point

outside the pial surface B , and q is a point within the B boundary ∂B .

d(p,B) =minqε∂B ||p − q||,pεR3 (3.1)
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The result of this transformation is a 3D image, where the level of intensity of gray

for each voxel is d. Subsequently, to work exclusively with information about sulci,

this image was masked by the morphological closing (Serra, 1984) of the pial surface,

with a sphere of 3 voxel radius, as the structuring element. Within each sulcus, the 3D

crest lines (Local Maxima) represent half the distance between the closest borders of

the sulcus. An algorithm to detect and label these Local Maxima voxels was developed.

Fig. 3.1 is a two-dimensional example of the main stages in the EDT-based LM voxels

algorithm.

3.1.2 | Pre-processing, segmentation pipeline

The pial surface is necessary for computing sulcal width because it represents the boun-

dary between gray matter and cerebrospinal fluid. There are different ways of extracting

it. For the purposes of this work, each structural T1-weighted MRI scan was analyzed by

the FreeSurfer cross-sectional pipeline [48] in order to calculate the pial surface. The

main stages in this process are pre-processing, voxel-based processing, and surface-based

processing. This includes segmentation of subcortical structures, extraction of cortical

surfaces, cortical thickness estimation, spatial normalization onto the FreeSurfer surface

template (FsAverage), and parcellation of the cerebral cortex into units, with respect to

gyral and sulcal structures. Pial surface extraction can be accomplished using any other

neuroimaging software, such as Functional MRI from the brain Software Library (FSL).

3.1.3 | Pial surface EDT

After calculating the pial surface, this was converted into a binary volume, where all

voxels inside the pial surface (i.e., brain tissue) were featured (“1”), and all voxels outside

were not-featured (“0”). EDT computation to calculate pial volume employs the fast al-

gorithm for three or more dimensions, designed for Matlab by [49]. This transformation

provides a distance map of the pial surface; Fig. 3.1 is a 2D example of the EDT for a

binary image.
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Figure 3.1: EDT-based LM. Left, 2D image of a simulated section of the brain cortex.
Middle, EDT of the brain tissue (pial surface) of the left image. Right, LM of the EDT
(middle), modulated by distance.

3.1.4 | Local Maxima labeling algorithm

A local maximum is a voxel that has the greatest intensity label within a neighbor-

hood. The Local Maxima labeling algorithm aims to identify and label those voxels in

the crest line that manifest the maximum intensity value within the search neighborhood.

Fig. 3.2 illustrates the three main components of the algorithm:

� The neighborhood to be searched, a discretized sphere (S) with radius r.

� The EDT of the object to be studied (a triangle in the case of this 2D example).

� The voxel-run intensities.

Prior to Local Maxima detection, it is necessary to define the spherical neighborhood

shell S, in order to compare the voxel under examination (central voxel) with pairs of

shell voxels in opposite positions Npairs, for all directions. It is also necessary to define

the search subvolume EDTvol, employing the radius r of the chosen S and operate without

exceeding the voxel-array dimensions.

The LM labeling algorithm scans the pial surface EDTvol of 256× 256× 256 voxels

within the spherical search neighborhood. This scan involves reading and comparing

the values of the two voxel runs made for each Npair in the neighborhood shell. For
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Figure 3.2: Local Maxima Algorithm. (a) Discrete spherical neighborhood (S) of r = 2;
opposite offset pairs are added to test point p, resulting the pair pa = (x-∆x, y-∆y, z -∆z),
pb= (x+∆x, y+∆y, z +∆z); (b) Inner EDT of the object; two discrete Bresenham lines,
(−−−→pap ) and (−−−→ppb ), are scanned for each pair in the neighborhood; (c) Bresenham voxel
runs for p (green voxel). In this case, p is detected and labeled as local maximum.

the purposes of this work, the voxel runs are defined as chains of 26 connected voxels,

identified, according to the Bresenham algorithm [50; 51], from the shell to the central

voxel. The Bresenham algorithm determines the voxels that should be selected to trace a

close approximation to a straight line between two points.

A voxel is identified as a local maximum (a Local Maxima voxel) if intensity values

decrease in the S direction for both voxel runs, at least for Ndirections. This means that

it should follow an up-down staircase pattern (Fig. 3.2), where the highest value is

the voxel being examined. The pseudo-code is presented as Algorithm3.1.4. For sulcal

width computation, r = 3 and Ndirections = 7 were selected; r was determined from the

resulting mean sulcal width (≈ 3 mm), and Ndirections were optimized to minimize the

lack of accuracy in the algorithm.
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To obtain the sulcal width at each Local Maximum, the corresponding value of the

EDTvol is multiplied by two because the maximum is located at half the distance between

the closest opposing pial voxels, i.e. half the sulcal width at these voxels. The mea-
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surements obtained from the EDT-based LM vary in terms of depth and along the sulci,

suggesting morphology changes inside the sulci. This detailed information is of great

interest and can be summarized by computing morphological descriptors for each sulcus.

To compare these measurements among patients, with the application implemented

here, each sulcus was identified based on the Destrieux atlas [52], and summarizing

values were computed, i.e., the MSW and the MAD for the width values within the sulcus.

3.2 | Results

3.2.1 | EDT-based LM

This section presents the results of the method validation, and its application to the

MIRAD database.

3.2.1.1 | Validation

To model width variations within 3D objects and test the performance of the developed

method, an helicoidal horn phantom was designed (see A), exhibiting variations in

parameters, for example 3D orientation, radii (width), and non-planarity, as shown in

Fig. 3.3a. The phantom’s main characteristics are the angle shifts and radius (Rhorn)

variations. The Rhorn value for every θ angle is known as is the position of the crest line

(Fig. 3.3b). The crest line voxels follow Rhorn < ε for each θ (ε was set as 1 MVD), in

contrast with the theoretical approach in which the crest line voxels comply with Rhorn
= 0. The results of the EDT-based LM method, applied to the helicoidal horn for seven

directions, are illustrated in Fig. 3.3c and were compared with the phantom information.

The identification of the Local Maxima voxels is affected by image resolution and

discretization artifacts. These can make those voxels outside the crest line comply with

the criterion in at least one direction (Fig. 3.4, two and five directions), causing them to

be mislabeled; thus, increasing the inaccuracy (δ) of the method. Voxels in the crest line

match this criterion in the case of most directions, but for small Rhorn values, this number

of directions decreases, creating holes (Fig. 3.4, seven and ten directions). The number

of directions was optimized to minimize inaccuracy and maximize the labeling of voxels

in the crest line. To quantify inaccuracy, Rhorn theoretical values were compared with
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Figure 3.3: Computational phantom design. a) Discrete helicoidal horn with Rhorn (θ).
b) Discrete helicoidal horn with Rhorn (θ) < ε. c) EDT-based LM algorithm result based
on a seven-direction criterion.

those obtained using the proposed method.

After considering both factors: 1) mislabeling of Local Maxima voxels, and 2) dis-

cretization errors, the following equation is proposed:

δ = D ′ − (D − d) (3.2)

D ′ D ′ is the output of the EDT-based LM multiplied by two.

D D is theoretically the shortest distance from the local maximum labeled

voxel to the phantom boundary.

d d is theoretically the shortest distance from the local maximum, labeled voxel

to the helicoidal horn axis of the phantom. Note that ideally d = 0.

δ computation was made for Ndirections ε [2,10] to determine which value maximizes

accuracy and to guarantee that voxels labeled as local maximum pertain to the crest line.

Evidently, the value of Ndirections that maximizes the accuracy of the method is 7, and

the sulcal width varies between 1 and 7 MVD, with δ ε [0.01, 0.45] MVD (Fig. 3.4).

A detailed analysis was made to define the conditions of method applicability: voxel

size and voxel anisotropy. A triangular prism-shaped phantom was built (Fig. 3.5a),
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Figure 3.4: Ndirections optimization. At the top, helicoidal horn EDT-based LM results
for 2, 5, 7 and 10 directions (from left to right). At the bottom, δ values (blue line) and
rate of crest line voxels labeled (gray line) for directions between 2 and 10. Voxels with
label >0 are shown in gray.

making a full angular evaluation possible. Fig. 3.5 shows the triangular prism shaped-

phantom, a voxel-based representation along with its construction parameters.

For the angular evaluation the phantom parameters were selected as follows: length=100

mm, height=50 mm, width=20 mm, and orientation angles: θ (around Z axis) =0o, Φ

(around Y axis)=0o„ and Ψ (around X axis) ε [0o, 90o,], Ψ is also known as the pitch. For

the purposes of this work, a 256× 256× 256 mm3array was employed.

A voxel size evaluation was performed to determine the maximum value for accu-

rately measured widths, ranging between 1 and 6 mm. The method was applied to the

triangular prism-shaped phantom, using different voxel sizes. Mean width, percentage

of Local Maxima voxels, and their inaccuracy were obtained for each voxel size and Ψ

value; results are presented in Fig. 3.5. In the graph on the left, the y-axis represents the
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Figure 3.5: Triangular prism(a) Diagram of a triangular prism and its parameters. (b)
Voxel-based representation of the triangular prism-shaped phantom.

Ψ values, in which the phantom is generated, the x-axis represents the different isotropic

voxel sizes tested, and the colors represent inaccuracy (mm). In the graph on the right,

the y-axis represents the Ψ values, the x-axis represents the different isotropic voxel sizes

tested and the colors are the percentage of Local Maxima detected, respectively. The

percentage of Local Maxima voxels is computed, based on results obtained for a voxel

size of 1× 1× 1 mm.
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Figure 3.6: Accuracy evaluation for different voxel size. Left, variation in average accuracy, with size and orientation. Right,
variation in the percentage of Local Maxima voxels detected (compared to those obtained for a 1× 1× 1 mm size) for different
sizes of isotropic voxels and Ψ values.
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Figure 3.7: Accuracy evaluation for different voxel anisotropy.Left, accuracy evalua-
tion for isotropic voxels from different orientations. Middle, accuracy variations for
different values of one-sided anisotropy and orientations. Right, accuracy variations for
different cases of two-sided anisotropy and orientations.

The maximum voxel size for which the application of the EDT-based LM method is

recommended for measuring widths between 1 and 6 mm, is 2.5 mm for each voxel side.

Fig. 3.6 shows how inaccuracy increases when voxel size reaches 3 mm per side or larger;

likewise, the percentage of Local Maxima voxels detected decreases significantly, due to

discretization errors.

Anisotropy robustness was evaluated in a way similar to the voxel size accuracy, pre-
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viously described. Fig. 3.7 presents the results from this analysis; in each case, accuracy

variation was measured for each Ψ angle. On the left, the isotropic case is presented as

reference, with values of δ ε [0, 0.45] mm. These are consistent with results obtained

using the helicoidal horn. In the middle, an evaluation for different values of one-sided

anisotropy was made; in this case one side is different from the others. On the right, the

results for the two-sided anisotropy analysis are presented; in this case all the voxel sides

are different.

The developed method can be used with different voxel sizes and different anisotropy

conditions. Based on the accuracy values obtained, the applicability conditions recom-

mended are: 1) for one-sided anisotropy, a limit of 1:1:1.5 aspect ratio, 2) for two-sided

anisotropy, a maximum aspect ratio of 1:1.2:1.5, and 3) a maximum voxel size of 2.5 mm.
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Figure 3.8: Sulcal width of the right transverse temporal sulcus.

3.2.2 | Application to brain images

The goal of this section is to apply the developed method to brain MRI studies, and

evaluate its capability to differentiate between a group of patients with AD and a group

of matched controls. The decision to test the method using this dataset was made because

AD causes a significant loss of gray matter ([53]; [54]; [55]); some sulci are thus expected

to broaden ([23]).

Measurements for all sulcal regions were obtained with a T1-weighted brain MRI

from a single subject. The sulcal regions were identified by subtracting the brain closing

volume and the pial surface. Subsequently, the anatomical labeling of the sulci was

undertaken, based on the Destrieux cortical atlas [52]. For each sulcus, an estimation

of MSW and MAD descriptors, was performed. Fig. 3.8 shows the sulcal width map

for the transverse temporal sulcus of the right hemisphere. Changes in sulcal width are

detected for this sulcus; the measurements obtained were between 2 and 7 mm, with an

MSW of 3.55 mm and a MAD of 0.69 mm. Applying the EDT-based LM method to the

brain endorses a depth and length-based analysis of sulcal width, which can be used to

evaluate variations, spatial relations and morphology trends.

The dataset, obtained from the MIRIAD [56], includes MRI scans taken from 66

subjects on the same 1.5 Tesla Signa MRI scanner (GE Medical systems, Milwaukee, WI).

The database is publicly available at Minimal Interval Resonance Imaging in Alzheimer’s

Diseases site (MIRIAD).
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Three-dimensional T1-weighted brain images were acquired from a FOV (field of

view) of 240 × 240 × 186 mm, in a 256 × 256 × 256 matrix, resulting in a voxel size of

0.94× 0.94× 1.5 mm3. All MRI images were processed, employing the FreeSurfer cross-

sectional pipeline, and the EDT-based LM was to further estimate the MSW and MAD

for each sulcus and compared between groups by applying a Wilcoxon rank-sum test.

Significance was defined as p < 0.05 and corrected for multiple comparisons (80 sulci),

with a false discovery rate of 0.05.

Fig. 3.9 shows the application of the proposed method to the MIRIAD database. a)

Sulcal width map for a control subject. b) Sulcal width map for a patient. Anatomical

differences between these two subjects are visually evident; the sulci of the patient’s

brain are wider, and the results of the EDT-based LM method are consistent with these

differences. These sulcal width maps portray the fact that the variations of the average

Sulcal Width for each sulcus (SW ) are different among brain regions.
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Figure 3.9: Sulcal width measurements computed by applying the EDT-based LM method. Frontal, posterior and lateral
brain views from (a) Control Subject and (b) AD patient
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Figure 3.10: Differences in sulcal width between 43 patients with mild-moderate
Alzheimer’s disease and 23 controls (z values, Wilcoxon Rank Sum Test; p <0.05, False
Discovery Rate (FDR) corrected). a) Lateral view of the left hemisphere, b) medial view
of the left hemisphere, c) lateral view of the right hemisphere, d) medial view of the
right hemisphere.

For the 80 sulci tested, MSW increased significantly among the patients, compared to

controls. Fig. 3.10 shows the z values for these sulci. The sulci with greatest differences

in MSW (higher z values) are located in the frontal and temporal lobes.

In their research, Im, Kiho et al. discovered that the greatest sulcal widening in the

AD group was in the temporal lobe, concurring with our results. Liu et al. measured

the sulcal width of five different sulci (Sylvian fissure, central, intra-parietal, superior

frontal and superior temporal sulci) and made a comparison between control, very mild

AD and mild AD, and only the intra-parietal sulcus width showed no differences [57].

The results showed significant differences for these five sulci. This is consistent with the

finding of sulcal widening in the frontal and temporal lobes [55].

In the case of MAD, which measures sulcal width variability, 12 sulci showed signifi-

cant differences between groups. Fig. 3.11 shows the z values mapped on the brain for

these sulci.
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Figure 3.11: Differences in the sulcal morphology variation between 42 patients with
mild-moderate Alzheimer’s disease and 23 controls (z values, Wilcoxon Rank Sum Test;
p <0.05, FDR corrected). a) Lateral view of the left hemisphere, b) medial view from the
left hemisphere, c) lateral view of the right hemisphere, d) medial view from the right
hemisphere.

Sulci results with statistical significance in terms of MAD measurements are located

at the temporal and frontal lobes. This result complies with MSW results. In AD pa-

tients, sulcal width variability is lower in the frontal lobe and higher in the temporal lobe.

Finally, a Spearman correlation was performed between the Mini-Mental State Ex-

amination (MMSE) scores and both descriptors (MSW and MAD) to determine whether

sulcal width was related to the MMSE score in the AD group. For both descriptors, some

sulci had p values lower than 0.05; however, none of these survived the correction for

multiple comparisons. The correlation coefficient value for all correlations is negative,

meaning that if sulcal width or variability in sulcal width increases, the MMSE score (i.e.,

cognitive performance) decreases.

In the work of [23], the authors measure the mean sulcal span and compare it with

the MMSE scores, which show similar results, i.e., negative correlations for all sulci

31



Chapter 3. Sulcal width estimation 3.3. Discussion

([23]).

3.3 | Discussion

The EDT-based LM method is able to identify and label most of the Local Maxima voxels

and measure the sulcal width value for each of the labeled voxels. All parameters were

optimized to maximize the number of crest line voxels labeled and minimize inaccuracy;

this was accomplished using the designed helicoidal horn computational phantom. This

method is limited by the EDT resolution and the discretization artifacts. To determine

the range of voxel size and voxel anisotropy to use this method a triangular-prism shaped

phantom was designed and employed. For the different voxel sizes analyzed, the MSW

and MAD do not vary significantly because the increase in voxel size mostly affects the

number of Local Maxima voxels detected, even though the inaccuracy of the method

increases with voxel size. In the case of anisotropy, the analysis was performed for

two anisotropy cases; one-sided anisotropy, in which only one side is different, and a

two-sided anisotropy, in which the three voxel sides are different.

The results for the one-sided anisotropy (Fig. 3.7, middle) show that the MSW and

MAD do not change significantly, but the inaccuracy values increase with the one-sided

anisotropy. In the case of two-sided anisotropy, results are similar (Fig. 3.7, right), the

MSW and MAD do not change significantly, and the inaccuracy values increase as two-

sided anisotropy increases. The highest values of inaccuracy are obtained for Ψ = 10o as

a result of the discretization artifacts of the computational phantom. The conditions of

use for the EDT-based LM method are: 1) for anisotropy, a limit of 1:1:1.5 aspect ratio, 2)

for two-sided anisotropy, a maximum aspect ratio of 1:1.2:1.5, and 3) a maximum voxel

size of 2.5 mm. After the validation process, it was concluded that the developed method

is sensitive to the variability of the sulcal morphology, throughout the brain.

The Destrieux atlas to obtain the cortex labels was chosen because it divided the

cortex into gyral and sulcal regions, facilitating the labeling of most sulci. An algorithm

was developed to use these cortex labels to fill the corresponding sulcal volume; which

facilitates the identification, analysis of individual sulcal width values and their subse-

quent comparison. One of the main advantages of the EDT-based LM method, compared

to the object-based methods previously described, is that sulcal width maps can be

computed; these maps reveal any morphological changes either within a single sulcus or

involving the entire brain sulcal region, but only enable a qualitative examination.
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Even though the proposed method is not voxel-wise, sulcal width variation can be

analyzed and characterized by morphological descriptors. The sensibility of the pro-

posed method, to detect sulcal width differences between a control group and a mild

AD group, was evaluated, measuring two morphological descriptors MSW and MAD.

Evidently, MSW values were significantly higher for the eighty labeled sulci, in patients

with AD. These results suggest that gray matter loss associated with AD ([55]) is closely

related to the increase in sulcal width, which is more evident in the frontal and temporal

lobes. The variability in sulcal width (MAD) only changed significantly in the case of

eight sulci. This lack of significant differences between control and AD patients, in terms

of the MAD values for most sulci, suggest that they broaden globally. The relationship

between sulcal width and cognitive function, via the MMSE score, was analyzed, even

though these results did not survive the correction for multiple comparisons. However,

some results suggest the possibility of a significant relationship, if a larger sample is

used. Further research is necessary to explore the value of this detailed information, as a

marker of disease progression.

MSW measurements were also obtained; using the object-based method (BrainVisa)

for the sixty-six subjects, to compare data obtained using each method, and determine

the degree of correlation between them. The Brain Visa atlas was also used to label the

sulci and compute sulcal width, employing the EDT-based LM method. The detailed

comparison was made for five from each hemisphere, the MSW values were poorly

correlated between both methods and only for the central sulcus correlation coefficient

was r >0.5. This case can be explained because of the well-defined morphology of this

sulcus. The general lack of correlation between these two methods may relate to differ-

ences in approach; the Object Based sulcal width is computed, applying the distance

between vertexes and using the EDT-based LM method, sulcal width represents the

distance between voxels, this comparison was made with the Brain Visa Atlas which

label 125 sulci. The main shortcoming for this method is that the labeling algorithm

misses some of the Local Maxima voxels, which makes it impossible to be voxel-wise as is.
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3.4 | Comparison with BrainVisa

The sulcal width measurements obtained using the EDT-based LM method were com-

pared, to those obtained using the object based morphometry method ([6]), which is

available as a BrainVisa tool. For this purpose, all the images of the MIRIAD database

were labeled with the BrainVisa altlas, then, the mean sulcal width of four sulci (Central,

Temporal Superior, Superior Frontal and Inferior Frontal) was computed, using both

methods. These measurements were obtained for each subject and both hemispheres.

A correlation analysis was performed to determine how the EDT-based LM sulcal

width measurements, for an individual sulcus, are related to those obtained using the

object-based method for the same sulci. The (SW ) and the standard deviation for all

subjects of the MIRIAD database were obtained for each individual sulcus using both

methods, and likewise the correlation coefficient (r) was computed for each sulcus.

The sulcus presenting the biggest differences between methods is the Superior Frontal

sulcus for both hemispheres.

The highest values for the correlation coefficient (r ε [0.39 0.68]) are obtained for the

Central and Temporal Superior sulci. r values close to one mean stronger linear correla-

tion. For the Superior Frontal and the Inferior Frontal sulci, the r ε [0.12 0.39]. In Fig.

3.12, the relationship between the measurements using the two different methods can

be appreciated more clearly; at the top, the sulci measurements with higher correlation

values for both hemispheres are displayed; at the bottom, the sulci measurements with

lower correlation values are displayed; even if the correlation is not strong, both have

similar tendencies.
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Figure 3.12: Comparison between methods. Relationship between the sulcal width measurements computed using both
methods: EDT-based LM (x-axis), and Object based (y-axis).
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4

Tortuosity estimation for
three-dimensional objects

The classical, simple, and most widely used definition to measure vessel tortuosity [58] is

the ratio between the arc length of the curve (C) and the length of the underlying chord

(L), which is the line segment joining two points, τ = C/L. A drawback of this approach

is its failure to compute tortuosity correctly. In Fig. 4.1 two curves with different shapes,

both preserving the same length of the curve and underlying chord are presented, Curve

a has significantly more turns and twists, and therefore it is more tortuous than curve

b, but according to this definition τa = τb. This fails to represent the morphological

differences among different shapes.

Figure 4.1: Example for curves with different morphological characteristics, same arc
length and underlying chord.

Other methods have been proposed to compute the tortuosity of 2D structures. For

instance, Chandrinos et al. [59] defined a measure based on computing the angle change
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at discrete steps. Hart et al. [60] proposed a tortuosity τ involving curvature by segments.

Goh et al. [61] presented a measure of τ based on the integration of all direction changes.

Bullitt et al. [33] defined how to evaluate the number of inflection points (twists), in

order to distinguish smoothly curved vessel from those ones that make abrupt changes in

direction. Grisan et al. [62] proposed a novel method for the automatic grading of retinal

vessel tortuosity. More recently, Bribiesca [36] proposed a measure of tortuosity for 2D

curves represented by means of the Slope Chain Code (SCC). This representation is inde-

pendent of translation, rotation, and optionally, of scaling, an important advantage for

computing tortuosity. It also allows to use grammatical techniques to compute tortuosity

in an easy way. An interesting review of quantifying the tortuosity of the retinal blood

vessel was presented by M. Abdalla et al. [63].

In order to describe our proposed measure of tortuosity for voxelized objects, a

number of concepts and definitions are presented below.

4.1 | Definitions

4.1.1 | Curvature

A curve is a continuous map from a one-dimensional space to an n-dimensional space.

Latecki and Rosenfeld [64] presented an interesting approach to describe the boundaries

of planar real objects by means of a class of planar arcs and curves. James and James [65]

describe curvature as: “the absolute value of the rate of change of the angle of inclination

of the tangent line with respect to distance along the curve". In the case of a circle the

curvature is the reciprocal of the radius.

The curvature is an important element that allows the characterization of curves. The

average curvature Kav of an arc EF is the ratio between the corresponding angle of

contingency α, and the length of the arc (see Fig. 4.2a), which is equivalent to the

geodesic distance between EF (Eq. 4.1),

Kav =
α
EF

(4.1)

The curvature KE of a line at a given point E is the limit of the average curvature of

arcEF, when the length of this arc approaches zero (that is, when point F approaches

point E) and is defined as follows:

KE = lim
F→E

Kav = lim
EF→0

α
EF

(4.2)
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4.1.2 | Discrete curvature

When a curve is defined in the discrete space we can assume that the arc EF is constant

and straight, as in the notation of the SCC [36]. Thus, if EF is equal to 1 in Eq. 4.1, then:

KE = α. (4.3)

Therefore, the discrete curvature of a discrete curve at point center G is the angle of

contingency α, or the slope change between contiguous straight-line segments at that

point. The slope change is scaled to lie within (−1,1). For practical purposes, we do not

consider the slope changes equal to 1 or −1. Fig. 4.2b shows the range of slope changes

[0,1) and [0,−1).

Figure 4.2: Curvature: (a) continuous curvature; (b) the range of slope changes [0,1) and
[0,−1).

4.1.3 | Slope chain code

The chain code is a contour oriented representation, based on region boundaries, result-

ing in a lossless data reduction of the image. The chain code of a region is determined by

specifying a starting pixel and the sequence to go from pixel to pixel along the boundary

[66].

Based on [36] a chain A is an ordered sequence of n elements, and is represented by

Eq. 4.4

A= a1a2...an (4.4)

When the element an of the chain represents the slope change of the contiguous

straight-line segments of the curve in that element position, it is called a SCC. The range

of slope changes varies from -1 to 1.
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4.1.4 | 2D tortuosity

Tortuosity τ , a morphological property of curves and surfaces, is one of the most impor-

tant measures of shape used to calculate deformations in different objects, allowing to

quantify their degree of turns or detours. The definition for this work purposes is based

on the SCC (Eq. 4.5), where τ is the sum of all the absolute values of the chain elements

ai and N is the number of elements [36].

τ =
N∑
n=1

|an| (4.5)

4.2 | Measure of τ3D

The proposed estimation of tortuosity is designed to use a voxelized representation of a

three-dimensional object as input.

The steps of the method are:

1. Obtain the voxelized representation of the object of interest.

2. Track contours for every slice i, j,k, for each corresponding direction X,Y ,Z

3. Filter the stair-stepping artifact.

� Design.

– Downsample the contours.

– Apply the Digital Straight Segment (DSS) algorithm [67].

� Compute the 3D tortuosity of the resulting voxelized representation of the

object of interest.

4. Uncertainty determination.

4.2.1 | Voxelized representation

The discrete representation of 3D objects has two different origins: voxelization and 3D

reconstruction from multiple 2D images; in both cases the voxel is the volume unit.

The voxelization process consists in the approximation of data structures that store

geometric information in a continuous domain by a set of voxels, i.e. the data of the object

is now stored in a regular 3D grid [68].
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The 3D reconstruction from multiple 2D images is a mathematical process that

generates 3D models from multiple 2D projections. Reconstructed 3D images have

become essential for the medical field (Magnetic Resonance Imaging, Computerized

Tomography, Positron Emission Tomography), video games, robotics, augmented reality,

computer vision, among others [69]. The reconstruction techniques depend on the

acquisition methods.

4.2.2 | Contour tracking

To calculate the slope changes, the boundary of the voxelized object has to be approx-

imated by straight-line segments. Contour tracking has the objective of tracing the

complete border of an object and without repetition [70]; as a result, a boundary points

sequence is obtained [71]. The object boundary provides the necessary information to

analyze the shape and to estimate τ . For 3D objects, the contour tracking is performed

for each slice si , and three directions X,Y and Z.

4.2.3 | Filtering the stair-stepping artifact

The main drawback for the voxelized representations comes from the stair-stepping

artifact which, for measuring τ3D , prevents obtaining the slope changes corresponding

to the morphology of the object. In Fig. 4.3 a simple example of the stair stepping effect

is presented. It shows a voxelized representation of a straight line in two different angles

and the corresponding contour. The stair-stepping error, in this case, occurs when the

angle is different from 0 or 90 degrees, which is shown in Fig. 4.3 right.

To accurately capture the morphology of the voxelized object. it is necessary to

minimize the contribution of this artifact. We designed a two-step filter for this objective.

First, we downsample the contour vertices, and second, we apply a DSS algorithm.
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Figure 4.3: Example of the stair-stepping artifact. Left, voxelized representation of
a straight line in a 90 degree angle and the corresponding contour. Right, voxelized
representation of a straight line in a 45 degrees angle and the corresponding contour.

4.2.3.1 | Filter design

In this section, each step of the correction method and the uncertainty calculation is

described. The uncertainty due to the stair-stepping artifact for the estimation of τ is

quantified using a voxelized sphere as a computational phantom.

� Downsampling contours. To reduce the noise (stair-stepping artifact) the first

step was to reduce by ten the sampling frequency of the tracked contours. The

downsampling factor (DSW) is related to the size of the analyzed objects.

� Digital straight segment algorithm. After downsampling the contours the DSS

algorithm is applied, to select the vertices that define different straight segments.

DSS algorithms use a polygonal approximation to curves [72]. In this work the

Kovalevsky [73] method was selected, it is based on the calculation of the narrowest

strip defined by the nearest support below and above.

In Fig. 4.4 the steps of the designed filter are shown. A voxelized sphere was generated

with a radius of 20 voxels and a 0° angle. The gray area is a slice of this sphere and the

black line is the tracked contour. The downsample vertices are shown in blue and the

results of the DSS algorithm are shown in red.
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Figure 4.4: Filtered contour obtained from a sphere slice. The straight line is the tracked
contour from the gray voxelized circle. The blue points are the downsample vertices and
the red vertices are the result after apply the DSS algorithm.

4.2.4 | Tortuosity estimation

The 3D tortuosity estimation is proposed as an extension of the 2D measurement based

on SCC, it consists of the sum of all the slope changes in each contour, in the three direc-

tions. The vertices of each contour are obtained after filtering the stair-stepping artifact

(with DSF=10 and the DSS algorithm) to minimize its contribution to the tortuosity.

The equations presented in eq. 4.6 are the 3D adaptation of the chain element eq. 4.4

where N is the total number of chain elements, and SX ,SY ,SZ , represent the number of

slices in each direction. Eq. 4.7 shows the correspondence between 2D tortuosity and 3D

tortuosity computed per slice (i, j, k). The proposed equation to estimate τ3D is presented

in eq. 4.8, where Ni ,Mj ,Lk , are the number of chain elements, and slope change for each

slice, and direction.

Xi = x1ix2i ...xNi , contour(s)in slice i, direction X, i = 1, ...,SX

Yj = y1jy2j ...yMj , contour(s)in slice j, direction Y , j = 1, ...,SY

Zk = z1kz2k ...zLk , contour(s)in slice k, direction Z,k = 1, ...,SZ

(4.6)
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Ni∑
n=1

| an |→
Ni∑
n=1

| xni |,
Mj∑
m=1

| ymj |,
Lk∑
l=1

| zlk | (4.7)

τ3D =

SX∑
i=1

Ni∑
n=1

| xni |

SX
+

SY∑
j=1

Mj∑
m=1

| ymj |

SY
+

SZ∑
k=1

Lk∑
l=1

| zlk |

SZ
(4.8)

4.2.4.1 | Uncertainty

One of the propositions in the work of Bribiesca [36] is that the sum of the slope changes

of simple closed curves always is equal to 2, in the three-dimensional case τ3D is equal to

6. This allows to determine the uncertainty of the proposed method using a voxelized

sphere.

The variation of τ3D was evaluated in terms of the sphere radius and its generating

angle, and determine the absolute error (∆x) for each measurement (xi) comparing it

with the true value (x), see eq. 4.9. In Fig. 4.5 the ∆x of the estimated values of tortuosity

changing the radius and angle is presented. X − axis presents the different angles, in

which the sphere is generated, from 0 to 360, Y − axis has different sphere radii, from 10

to 80 voxels. The color bar represents the absolute error of τ3D . The tortuosity can be

estimated with an uncertainty of ± 1 for objects with r ∈ [10,70], and has proven to be

invariant under scaling for DSF=10 (Fig. 4.5) (∆x = |xi − x|). τ3D is extremely sensitive

to the chain elements definition, thus the filtering process is essential to an accurate

estimation.

∆x = |xi − x| (4.9)
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Figure 4.5: Tortuosity estimation for different radii. Y − axis, different radius sizes
(pixels), X − axis, generating angle, color-scale, absolute error of estimated tortuosity.

4.3 | Application examples

To illustrate the potential of the proposed method, the τ3D was estimated for different

voxelized objects: an hippocampus, a volcano and the brain. The proposed method was

successfully applied to the three presented examples, the results are shown in Figs. 4.6,

4.7 and 4.8.

In the first example (Fig.4.6) the tortuosity is used to compare the morphology of

two hippocampi from different patients. On the left, an axial view of the brain with the

hippocampus labeled in red; the two different views of the hippocampi are shown with

the respective value of τ3D . The morphological differences can be described qualitatively,

and the tortuosity allows to quantify them, and to differentiate between this two hip-

pocampi,
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Figure 4.6: Left,a coronal view of a brain MRI with the hippocampus labeled. Right, two
views pf different voxelized hippocampi, and the respective τ3D estimation.

The second example is a voxelized representation of the Iztaccihuatl (a Mexican

volcano). Three different 2D orthogonal projections are shown (XY, XZ and YZ), in

each case the blue line is the tracked contour, ant the red circles are the result of the

stair-stepping artifact filter, which are used to compute τ3D . For this kind of images

the proposed descriptor can help to evaluate the morphological differences between

volcanoes, the possibles changes after volcanic activity, the changes in time of the surface,

among natural changes of the environment.
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Figure 4.7: Voxelized model of the Iztaccihuatl volcano with the τ3D estimation. On the
left three different slices projected in orthogonal planes are shown. Each slice show the
projection of the voxelized volcano in the respective plane, the tracked contour with a
blue line, and the filtered vertices with red circles.

The third example consists of a magnetic resonance study of the brain and the result

after applying the closing operation with different sizes of the structuring element. The

brain surface is extracted to appreciate the gray matter morphology, particularly its

tortuosity. In this example we use five different volumes, which correspond to the same

subject (Fig. 4.8). The first case is the original voxelized brain surface, the other four are

the result of applying the Mathematical Morphology operator of closing, defined in Eq.

4.10, using a sphere as the structuring element B, with different radii (r ∈ {2,4,6,8}). The

morphological closing of a binary image I by a structuring element B is a composition of

a dilation (⊕) an erosion (	). When applied to 2D or 3D images, this operator is used to

fill holes, reduce concavities, and smooth rough features.

The increment of the structuring element radius results in the loss of feature details on

the brain surface (the gyri and the sulci), therefore, a decrease in the values of τ3D is

expected.

(I ⊕B)	B (4.10)

46



Chapter 4. Tortuosity estimation for three-dimensional objects4.4. Central sulcus tortuosity estimation

Figure 4.8: Top: brain volumes after applying the Mathematical Morphology operator
of "closing" (Eq. 4.10) with five structuring elements: a sphere with increasing radii.
Bottom: the corresponding estimated values of 3D tortuosity.

4.4 | Central sulcus tortuosity estimation

4.4.1 | Overview

As mention before studies of brain morphometry using MRI are still relevant because

they have shown potential for the prognosis of neurological disease. Particularly, cortical

folding structure (gyrus and sulci) is a current field of study and the most analyzed

morphological descriptors are the sulcal width (SW) and the cortical thickness [74]. Nev-

ertheless, there is a lot more information that can be extracted from the anatomical MRI

images to characterize the sulci. In this chapter, the 3D tortuosity of the central sulcus is

calculated for the subjects in Minimal Interval Resonance Imaging in the Alzheimer’s

Disease (MIRIAD) database. The tortuosity is a morphological property of an object

being twisted or having many turns.

In the case of the central sulcus the tortuosity can give information about the folding

pattern differences between hemispheres, or among populations with different patholo-

gies, especially in neurodegenerative diseases. It is important to remember that the

folding patterns are related to the brain’s functional organization. Thus, the hypothesis

of this work is that the calculation of the 3D tortuosity of the central sulcus captures

morphological changes of the pial surface structure caused by the gray matter loss in

Alzheimer patients. This work has been published in the Nuclear Science Symposium

and Medical Imaging Conference [75].
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4.4.2 | Central sulcus implementation

The 3D tortuosity Slope Chain Code based method aims to measure the tortuosity and

use it as a morphological descriptor, and possible biomarker for the central sulcus. This

descriptor is calculated for the enveloping surface of the sulcus.

First, the pial surface was extracted employing the FreeSurfer cross-sectional pipeline to

each structural T1-weighted MRI scan. To label the central sulcus, the Destrieux Atlas

(2009) and the morphological closing of the pial surface obtained with a sphere with

a radius of 3 voxels as the structuring element, were employed. The central sulcus is

extracted for each hemisphere and each subject. In order to measure τ the proposed

method is followed.

Figure 4.9: Two different central sulci of different subjects, both from the left hemisphere.
Right, the voxelized volume of a patient with AD and the maximum value of tortuosity.
Left, the voxelized volume of a control subject with the minimum value of tortuosity

The tortuosity was computed for the central sulci of 66 subjects: 43 patients with

AD and 23 control subjects of the Minimal Interval Resonance Imaging in AD database

(MIRIAD), a set of high-resolution MR images.
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4.4.3 | Results

As it is known AD causes significant gray matter loss; hence it was expected to cause

morphological changes among sulci. The tortuosity was compared between the central

sulci in both hemispheres and between controls and AD patients. The central sulcus was

chosen because it is well defined, easy to label and it has been shown that its morphology

is related to the Alzheimer disease [76], [23]. The results of the method were consistent

with this hypothesis.

In Fig. 4.9 the maximum and minimum values of τ are presented, with their corre-

sponding voxelized representation of the central sulcus of each subject. The result of the

Wilcoxon tests show that the tortuosity values of the central sulci are significantly larger

for the AD patients (p < 0.05) for both hemispheres.

AD patients vs.Control Subjects Left-hemisphere Right-hemisphere
p-values 0.021 0.21
z-values 2.32 1.26

Table 4.1: Results of the Wilcoxon tests applied to the tortuosity of the central sulci of
each hemisphere.

In table 4.1 the results of the Wilcoxon test preformed to the tortuosity values

obtained for the central sulcus are shown for each hemisphere. The null hypothesis is

rejected only for the central sulci on the left-hemisphere, and the z-value indicates that

grater for the AD patients.

While the tortuosity values obtained for the central sulci on the right hemisphere cannot

be differentiated between AD patients and control subjects. We also compare the central

sulcus morphology between hemispheres, the results are shown in 4.2.

The results presented on table 4.2 show that, the values of tortuosity of the central

AD patients Control Subjects
Left-Right hemispheres Left-Right hemispheres

p-values 5.19e-06 6.12e-07
z-values -4.56 -4.99

Table 4.2: Results of the Wilcoxon tests applied to the tortuosity of the central sulci of
each hemisphere.

sulci on the left hemisphere, are significantly different than the values for the right

hemisphere, in both cases (AD patients and Control subjects). The sign on the z-value
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shows that the vales for the central sulci located in the left hemisphere are lower than

the values for the right hemisphere.

4.5 | Discussion

A method of tortuosity an SCC-based was chosen among the other because it is invariant

under translation, rotation, and scale, also it allows a unidimensional representation of

curves. As mention before, tortuosity has been used for many applications and it has

helped to describe different phenomena, mainly for the medical field.

The three-dimensional tortuosity has been proposed by Peyrega, Pardo-Alonso and

Gommes Cedric ([77], [78] and [79]), all of them work on porous media, Peyrega et. al.

([77]) defines the tortuosity as the ratio between the geodesic distance from each voxel

to two different subsets of the object and the Euclidean distance between them. As a

result each voxel has a tortuosity value, they use these tortuosity values to connect a

geodesic path. The method was developed for a particular application for 3D images of

fibrous material, in which entry and exit points can be defined, in consequence, it can

not be applied to other volumetric objects. Pardo-Alonso et. al. compared four different

approaches to compute the geometrical tortuousity in infiltrated aluminum cellular

materials, all estimation methods evaluated were based on the definition of tortuosity as

the ratio in between geodesic distance and the Euclidean distance, the differences among

them is the definition of the paths through the material.

Gomes Cedric et. al. ([79]) proposed measures of tortuosity of porous materials from

binary or gray-tone reconstructions. The first approach is based on a direct comparison

of the geodesic and Euclidean distances calculated from any pore pixel to any limit of the

tomogram. The second method, is based on the geodesic reconstruction of the pore space

of the tomogram, starting from any of its limits, and considering its intensity variations.

The three methods aforementioned were developed for a particular kind of phenomena,

although they work with 3D objects, the tortuosity, as defined by those authors, it is not

meant to capture the 3D morphological changes of volumetric objects, it describes the

changes in 3D trajectories. Because of the indicated differences the methods can not be

compared.

The motivation to extend the 2D SCC based approach for 3D objects is to describe

and quantify the morphological changes describing the complexity of volumetric objects.
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An advantage of the proposed method to estimate τ3D is applying a simple algorithm,

based on the SCC representation of the object. The information to generate the SCC is

obtained directly from the voxels (without interpolation), and it results in reducing the

sources of uncertainty. Another advantage is that It can be used for any voxelized object,

allowing its use in many fields. The presented examples explore some of the possible

ways in which the estimation of τ3D can enrich the descriptions of the analyzed object.
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5

Conclusions

This thesis presents two descriptors and their application to measure morphological

characteristics of brain structures. First, a novel voxel-based method for measuring

sulcal width and extracting descriptors to characterize and compare sulci within and

among brains. This tool can be applied to analyze different populations, especially those

with neurodegenerative diseases. Few similar algorithms have been developed, and the

main advantage of this method is that it is easy to implement, and it generates sulcal

width maps, which can be used to qualitatively analyze the entire brain or only selected

sulci.

Second, the tortuosity for 3D voxelized objects based on the slope chain code, the ap-

proach for 2D curves was proposed by Bribiesca [36]. τ3D is presented as the normalized

sums of all the slope chain elements for each filtered contour, every slice, and direction

X,Y , and Z (Eq.4.8). A filter, to minimize the effect of the stair-stepping artifact on the

3D tortuosity estimation, was proposed and evaluated. We were able to validate the

obtained values of τ and calculate the accuracy. The DSF value was selected to maximize

the τ3D accuracy, and resolution. It was found that the optimal DSF value is 10 and the

minimum radius of the object to analyze is 10. Measuring this descriptor in 3D voxelized

objects represents a great advantage, we were able to measute and compare the central

sulcus τ3D using the MIRIAD database, we found a significan difference between left

and right hemisphere τ3D for both, control subjects and AD patients. Also we found

that the obtained values of τ3D for the central sulci located in the left-hemisphere are

different between AD patients and control subjects, the values for the right-hemisphere

are not significantly different. this shows the potential relevance of τ3D to study sulci.

One of the main contribution of this thesis the use of computational phantoms to
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validate the proposed methods. The validation allows to know the conditions in which

the algorithm can be used and its accuracy, this is absolutely necessary to obtain a valid

quantification.

The descriptors presented in this work are able to quantify different shape charac-

teristics of the brain folding patters, which has two direct consequences: first, they can

be used to characterize and describe different populations, and second, they have the

potential to be used as biomarkes for some brain conditions.

Further work may involve applying these descriptors to a larger databases and testing

them in terms of aging and other neurodegenerative diseases. Also improve the Local

Maxima labeling algorithm to fill voids of the 3D crest lines, allowing a voxel-wise

approach. In the case of τ3D one of the main issues when it comes to the application in

the sulci, is the accurate segmentation of the region of interest, also further work may

include a way to normalize the tortuosity in order to compare it among significantly

different structures.
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A

Helicoidal horn construction

In this section we present the analytical construction of the helicoidal horn. It is impor-

tant to clarify that is not intended to be a representation of the a brain sulcus, its main

objective is to model the sulci variations: direction (x, y and z) and width changes.

A.1 | Distance of a Point to a Circle

In Fig. A.1 an axis ring of the helicoidal horn is presented as well as the points and seg-

ments definitions, necessary for its construction. The following relations and equations

give us the elments to define the distance of a given point P to the circle.
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Figure A.1: Circular horn-axis ring and point/vector definitions and relations.

C code variable name

C Center of the circular ring-axis of the toroid. Cx,Cy ,Cz
R Major radius of a toroid (main circular ring-axis). Raxis
r Minor radius of a toroid (cross section disk). Rtransversal
N Normal vector of the plane of the circle, ||N ||= 1. Nx,Ny ,Nz
P Any point in 3D. x,y,z

Q Projection of P onto the plane of the circle. Qx,Qy ,Qz
K Circle point closest to P. Points C, K, Q, P are co-planar. Kx,Ky ,Kz

Q−C = P−C− (N · (P−C))N⇒ P−Q = (N · (P−C)N (A.1)

K = C+R
Q−C
||Q−C||

= C+R
(P−C− (N · (P−C))N)

||(P−C− (N · (P−C))N)||
(A.2)

The points K ,Q, P form a right triangle, thus the squared (minimal) distance between
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a point P and a circle is:

d2 = ||P−K||2 = ||P−Q||2 + ||Q−K||2

= (N · (P−C))2 + (||Q−C|| −R)2

= (N · (P−C))2 + (
√
(P−C)2 − (N · (P−C))2 −R)2

(A.3)
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A.2 | Distance of a Point to a Helix (a curved cone)

In Fig. A.2 is the 3D extension of the previous case, in which we define the distance from

a point P to a helix.

Figure A.2: Helicoidal horn-axis ring and point/vector definitions and relations.
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Ccodevariablename
θ The arc-of-length parameter, in radians. theta

Raxis Major radius of the helix at θ (main circular ring-axis). Raxis
r Rate of the helix "elevation", or pitch= 2πb and slope = b/Raxis b

Chelix(θ) Center of the circular ring-axis of the helix at θ. Cx,Cy ,Cz
Chelix(0) Initial center values. Cx,Cy ,Cz
rtransversal(θ) Transversal (cross-section) radius of the toroidal or horn helix at θ. Rtransversal
T(θ) Tangential vector of the helix, ||T||= 1. T angx,T angy ,T angz
N(θ) Normal vector of the helix, ||T||= 1. Normx,Normy ,Normz

T,N define the osculating plane at θ. (N is also named the curvature vector)

B(θ) Binormal vector of the helix, ||B||= 1. Binormx,Binormy ,Binormz
B is orthogonal to the osculating plane of the helix at θ

T,N,B is a trihedron at any point of the helix at θ

P Any point in 3D. x,y,z

To calculate the distance of P to the helix, we obtain its argument wrt Chelix
θ = atan2(y −Cy ,x −Cx) +π, with positive range π ∈ [0,2π]

Q Projection of P onto the osculating plane of the helix at θ, following B(θ)

K(θ) Helix point closest to P. Kx,Ky ,Kz
Note that points Chelix,K,Q,P are "instantaneously" co-planar for any θ.

H (θ) Parametrical definition of the helix: Helix(theta)

H (θ) =


Raxis cos(θ) +Cx
Raxis sin(θ) + Cy

Cz + bθ

(A.4)

Tunorm (θ) =
dH (θ)

dθ
=


−Raxis sin(θ)

Raxis cos(θ)

b

, T =
Tunorm
‖Tunorm‖

(A.5)

Nunorm (θ) =
dT(θ)
dθ

=


−Raxis cos(θ)

−Raxis sin(θ)

0

, N =
Nunorm

‖Nunorm‖
, (A.6)

where N · T = 0, N = T⊥ in the osculating plane, N(θ) points to Chelix(θ), and:

B (θ) = T (θ) ×N (θ) (A.7)

The shortest distance follows the same formulation as in the caseb = 0, at any θ :

Q−Chelix = P − Chelix − (B · (P − Chelix))B ⇒ P − Q = (B · (P − Chelix))B, (A.8)

K = Chelix+ Raxis
Q−Chelix

‖Q−Chelix‖
= Chelix+ Raxis

P − Chelix − (B · (P − Chelix))B∥∥∥P − Chelix − (B · (P − Chelix))B
∥∥∥ (A.9)
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The points K,Q,P form a right triangle, thus the squared (minimal) distance between a

point P and an helix Heli(θ) is:

d2 = ||P−K||2 = ||P−Q||2 + ||Q−K||2

= (B · (P−Chelix ))
2 + (||Q−Chelix|| −Raxis)2

= (B · (P−Chelix))
2 + (

√
(P −Chelix)2 − (B · (P−Chelix))2 −Raxis)2

(A.10)

The helix torsion τ is defined as:

τ =
(H ′ ×H ) ·H ′′′

‖H ′ ×H ′′‖
, H (θ) =


u = Raxis cos(θ)

v = Raxis sin(θ)

w = bθ

(A.11)

with,

τ =
u′′′(v′w′′ − v′′w′) + v′′′(w′u′′ −w′′u′) +w′′′(u′v′′ −u′′v′)

(v′w′′ − v′′w′)2 + (w′u′′ −w′′u′)2 + (u′v′′ −u′′v′)2 =
b

R2
axis+ b

2
(A.12)

and its curvature κ:

if b = 0 (a circle), then κ =
1

Raxis
(A.13)

The analytical solution of the distance calculation of a given point P to the helicoidal

horn is given, thus, for any given point we can calculate the exact distance, and compare

it with the result of the proposed method for calculating the sulci width in a voxel

representation of the brain from MRI images.

59



References

[1] J. P. Wansapura, S. K. Holland, R. S. Dunn, and W. S. Ball Jr, “Nmr relaxation times in the human brain

at 3.0 tesla,” Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for
Magnetic Resonance in Medicine, vol. 9, no. 4, pp. 531–538, 1999.

[2] K. Doi, “Diagnostic imaging over the last 50 years: research and development in medical imaging

science and technology,” Physics in Medicine & Biology, vol. 51, no. 13, p. R5, 2006.

[3] A. P. Dhawan, Medical image analysis. John Wiley & Sons, 2011, vol. 31.

[4] R. Bansal, A. J. Gerber, and B. S. Peterson, “Brain morphometry using anatomical magnetic resonance

imaging,” Journal of the American Academy of Child and Adolescent Psychiatry, vol. 47, no. 6, p. 619,

2008.

[5] J.-F. Mangin, D. Riviere, A. Cachia, E. Duchesnay, Y. Cointepas, D. Papadopoulos-Orfanos, D. L. Collins,

A. C. Evans, and J. Régis, “Object-based morphometry of the cerebral cortex,” IEEE transactions on
medical imaging, vol. 23, no. 8, pp. 968–982, 2004.

[6] P. Kochunov, W. Rogers, J.-F. Mangin, and J. Lancaster, “A library of cortical morphology analysis

tools to study development, aging and genetics of cerebral cortex,” Neuroinformatics, vol. 10, no. 1, pp.

81–96, 2012.

[7] S. Alcauter, F. A. Barrios, R. Díaz, and J. Fernández-Ruiz, “Gray and white matter alterations in

spinocerebellar ataxia type 7: an in vivo dti and vbm study,” Neuroimage, vol. 55, no. 1, pp. 1–7, 2011.

[8] H. Matsuda, “Voxel-based morphometry of brain mri in normal aging and alzheimer’s disease,” Aging
and disease, vol. 4, no. 1, p. 29, 2013.

[9] R. Damadian, “Tumor detection by nuclear magnetic resonance,” Science, vol. 171, no. 3976, pp.

1151–1153, 1971.

[10] P. C. Lauterbur et al., “Image formation by induced local interactions: examples employing nuclear

magnetic resonance,” 1973.

60



Appendix A. Helicoidal horn construction References

[11] P. A. Bottomley, H. Hart Jr, W. Edelstein, J. Schenck, L. Smith, W. Leue, O. Mueller, and R. Redington,

“Anatomy and metabolism of the normal human brain studied by magnetic resonance at 1.5 tesla.”

Radiology, vol. 150, no. 2, pp. 441–446, 1984.

[12] M. Johnson, J. Pennock, G. Bydder, R. Steiner, D. Thomas, R. Hayward, D. Bryant, J. Payne, M. Levene,

and A. Whitelaw, “Clinical nmr imaging of the brain in children: normal and neurologic disease,”

American Journal of Roentgenology, vol. 141, no. 5, pp. 1005–1018, 1983.

[13] B. A. Holland, D. K. Haas, D. Norman, M. Brant-Zawadzki, and T. H. Newton, “Mri of normal brain

maturation.” American Journal of Neuroradiology, vol. 7, no. 2, pp. 201–208, 1986.

[14] T. Ai, J. N. Morelli, X. Hu, D. Hao, F. L. Goerner, B. Ager, and V. M. Runge, “A historical overview of

magnetic resonance imaging, focusing on technological innovations,” Investigative radiology, vol. 47,

no. 12, pp. 725–741, 2012.

[15] M. Lakrimi, A. Thomas, G. Hutton, M. Kruip, R. Slade, P. Davis, A. Johnstone, M. Longfield, H. Blakes,

S. Calvert et al., “The principles and evolution of magnetic resonance imaging,” in Journal of Physics:
Conference Series, vol. 286, no. 1. IOP Publishing, 2011, p. 012016.

[16] G. B. Frisoni, N. C. Fox, C. R. Jack Jr, P. Scheltens, and P. M. Thompson, “The clinical use of structural

mri in alzheimer disease,” Nature Reviews Neurology, vol. 6, no. 2, p. 67, 2010.

[17] A. M. Fjell, L. McEvoy, D. Holland, A. M. Dale, K. B. Walhovd, A. D. N. Initiative et al., “What is

normal in normal aging? effects of aging, amyloid and alzheimer’s disease on the cerebral cortex and

the hippocampus,” Progress in neurobiology, vol. 117, pp. 20–40, 2014.

[18] L. H. Somerville, “Searching for signatures of brain maturity: what are we searching for?” Neuron,

vol. 92, no. 6, pp. 1164–1167, 2016.

[19] P. Gautam, K. J. Anstey, W. Wen, P. S. Sachdev, and N. Cherbuin, “Cortical gyrification and its

relationships with cortical volume, cortical thickness, and cognitive performance in healthy mid-life

adults,” Behavioural brain research, vol. 287, pp. 331–339, 2015.

[20] B. Fischl, N. Rajendran, E. Busa, J. Augustinack, O. Hinds, B. T. Yeo, H. Mohlberg, K. Amunts, and

K. Zilles, “Cortical folding patterns and predicting cytoarchitecture,” Cerebral cortex, vol. 18, no. 8, pp.

1973–1980, 2007.

[21] K. Hoehn and E. N. Marieb, Human anatomy & physiology. Benjamin Cummings, 2007.

[22] D. Van Essen and H. Drury, “Structural and functional analyses of human cerebral cortex using a

surface-based atlas,” Journal of Neuroscience, vol. 17, no. 18, pp. 7079–7102, 1997.

[23] T. Liu, D. M. Lipnicki, W. Zhu, D. Tao, C. Zhang, Y. Cui, J. S. Jin, P. S. Sachdev, and W. Wen, “Cortical

gyrification and sulcal spans in early stage alzheimer’s disease,” PloS one, vol. 7, no. 2, p. e31083, 2012.

[24] L. Lee, E. Dale, A. Staniszewski, H. Zhang, F. Saeed, M. Sakurai, I. Orozco, F. Michelassi, N. Akpan,

H. Lehrer et al., “Regulation of synaptic plasticity and cognition by sumo in normal physiology and

alzheimer’s disease,” Scientific reports, vol. 4, p. 7190, 2014.

61



Appendix A. Helicoidal horn construction References

[25] D. Liu and F. Xia, “Assessing object-based classification: advantages and limitations,” Remote Sensing
Letters, vol. 1, no. 4, pp. 187–194, 2010.

[26] J.-F. Mangin, E. Jouvent, and A. Cachia, “In-vivo measurement of cortical morphology: means and

meanings,” Current opinion in neurology, vol. 23, no. 4, pp. 359–367, 2010.

[27] I. Martínez Tejada, “Vertexwise sulcal width map computed over the human cortical surface using

magnetic resonance imaging,” B.S. thesis, 2016.

[28] S. N. Srihari, “Representation of three-dimensional digital images,” ACM Computing Surveys (CSUR),
vol. 13, pp. 399–424, 12 1981. [Online]. Available: https://dl.acm.org/doi/10.1145/356859.356862

[29] J. K. Udupa, “Three-dimensional visualization and analysis methodologies: A current perspective,” pp.

783–806, 5 1999.

[30] R. Weiner, Webster’s new world dictionary of media and communications, 1990, no. Sirsi) i9780139697593.

[31] L. H. Le, C. Zhang, D. Ta, and E. Lou, “Measurement of tortuosity in aluminum foams using airborne

ultrasound,” Ultrasonics, vol. 50, no. 1, pp. 1–5, 2010.

[32] R. Annunziata, A. Kheirkhah, S. Aggarwal, P. Hamrah, and E. Trucco, “A fully automated tortuosity

quantification system with application to corneal nerve fibres in confocal microscopy images,” Medical
image analysis, vol. 32, pp. 216–232, 2016.

[33] E. Bullitt, G. Gerig, S. M. Pizer, W. Lin, and S. R. Aylward, “Measuring tortuosity of the intracerebral

vasculature from mra images,” IEEE transactions on medical imaging, vol. 22, no. 9, pp. 1163–1171,

2003.

[34] T. Zhang and G. Nagy, “Surface tortuosity and its application to analyzing cracks in concrete,” in

Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., vol. 2. IEEE,

2004, pp. 851–854.

[35] W. Xiao, C. Xia, W. Wei, and Y. Bian, “Combined effect of tortuosity and surface roughness on

estimation of flow rate through a single rough joint,” Journal of Geophysics and Engineering, vol. 10,

no. 4, p. 045015, 2013.

[36] E. Bribiesca, “A measure of tortuosity based on chain coding,” Pattern recognition, vol. 46, no. 3, pp.

716–724, 2013.

[37] S. Sharma and M. Majsak, “Brain anatomy,” 2014.

[38] P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey, V. J. Wedeen, and O. Sporns, “Mapping

the structural core of human cerebral cortex,” PLoS biology, vol. 6, no. 7, p. e159, 2008.

[39] K. Javed, V. Reddy, and F. Lui, “Neuroanatomy, cerebral cortex,” 2019.

[40] V. Fernández, C. Llinares-Benadero, and V. Borrell, “Cerebral cortex expansion and folding: what have

we learned?” The EMBO journal, vol. 35, no. 10, pp. 1021–1044, 2016.

62

https://dl.acm.org/doi/10.1145/356859.356862


Appendix A. Helicoidal horn construction References

[41] P. Chavoshnejad, X. Li, S. Zhang, W. Dai, L. Vasung, T. Liu, T. Zhang, X. Wang, and M. J. Razavi, “Role

of axonal fibers in the cortical folding patterns: A tale of variability and regularity,” Brain Multiphysics,
p. 100029, 2021.

[42] K. Zilles, E. Armstrong, A. Schleicher, and H.-J. Kretschmann, “The human pattern of gyrification in

the cerebral cortex,” Anatomy and embryology, vol. 179, no. 2, pp. 173–179, 1988.

[43] D. Dowsett, P. A. Kenny, and R. E. Johnston, The physics of diagnostic imaging. CRC Press, 2006.

[44] P. Armstrong and S. F. Keevil, “Magnetic resonance imaging: Basic principles of image production.”

BMJ: British Medical Journal, vol. 303, no. 6793, p. 35, 1991.

[45] R. W. Brown, Y.-C. N. Cheng, E. M. Haacke, M. R. Thompson, and R. Venkatesan, Magnetic resonance
imaging: physical principles and sequence design. John Wiley & Sons, 2014.

[46] W. Nitz, “Principles of magnetic resonance imaging and magnetic resonance angiography,” in Clinical
MR Imaging. Springer, 2006, pp. 1–52.

[47] J. P. Lerch, A. J. van der Kouwe, A. Raznahan, T. Paus, H. Johansen-Berg, K. L. Miller, S. M. Smith,

B. Fischl, and S. N. Sotiropoulos, “Studying neuroanatomy using mri,” Nature neuroscience, vol. 20,

no. 3, pp. 314–326, 2017.

[48] B. Fischl, “Freesurfer,” Neuroimage, vol. 62, no. 2, pp. 774–781, 2012.

[49] Y. Mishchenko, “A fast algorithm for computation of discrete euclidean distance transform in three or

more dimensions on vector processing architectures,” Signal, Image and Video Processing, vol. 9, no. 1,

pp. 19–27, 2015.

[50] J. E. Bresenham, “Algorithm for computer control of a digital plotter,” IBM Systems journal, vol. 4,

no. 1, pp. 25–30, 1965.

[51] P. S. Heckbert, “Digital line drawing,” in Graphics gems. Academic Press Professional, Inc., 1990, pp.

99–100.

[52] C. Destrieux, B. Fischl, A. Dale, and E. Halgren, “Automatic parcellation of human cortical gyri and

sulci using standard anatomical nomenclature,” Neuroimage, vol. 53, no. 1, pp. 1–15, 2010.

[53] M. Lehtovirta, M. P. Laakso, G. B. Frisoni, and H. Soininen, “How does the apolipoprotein e geno-

type modulate the brain in aging and in alzheimer’s disease? a review of neuroimaging studies,”

Neurobiology of aging, vol. 21, no. 2, pp. 293–300, 2000.

[54] C. DeCarli, “Part iv. neuroimaging in dementing disorders,” Disease-a-Month, vol. 46, no. 10, pp.

707–724, 2000.

[55] G. Karas, E. Burton, S. Rombouts, R. Van Schijndel, J. O’Brien, P. Scheltens, I. McKeith, D. Williams,

C. Ballard, and F. Barkhof, “A comprehensive study of gray matter loss in patients with alzheimer’s

disease using optimized voxel-based morphometry,” Neuroimage, vol. 18, no. 4, pp. 895–907, 2003.

[56] I. B. Malone, D. Cash, G. R. Ridgway, D. G. MacManus, S. Ourselin, N. C. Fox, and J. M. Schott,

“Miriad—public release of a multiple time point alzheimer’s mr imaging dataset,” NeuroImage, vol. 70,

pp. 33–36, 2013.

63



Appendix A. Helicoidal horn construction References

[57] K. Im, J.-M. Lee, S. W. Seo, S. H. Kim, S. I. Kim, and D. L. Na, “Sulcal morphology changes and their

relationship with cortical thickness and gyral white matter volume in mild cognitive impairment and

alzheimer’s disease,” Neuroimage, vol. 43, no. 1, pp. 103–113, 2008.

[58] W. Lotmar, A. Freiburghaus, and D. Bracher, “Measurement of vessel tortuosity on fundus pho-

tographs,” Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie, vol. 211, no. 1,

pp. 49–57, 1979.

[59] K. Chandrinos, M. Pilu, R. Fisher, and P. Trahanias, Image processing techniques for the quantification of
atherosclerotic changes. Department of Artificial Intelligence, University of Edinburgh, 1998.

[60] W. E. Hart, M. Goldbaum, B. Côté, P. Kube, and M. R. Nelson, “Measurement and classification of

retinal vascular tortuosity,” International journal of medical informatics, vol. 53, no. 2-3, pp. 239–252,

1999.

[61] K. G. Goh, W. Hsu, M. Li Lee, and H. Wang, “Adris: an automatic diabetic retinal image screening

system,” Studies in Fuzziness and Soft Computing, vol. 60, pp. 181–210, 2001.

[62] E. Grisan, M. Foracchia, and A. Ruggeri, “A novel method for the automatic grading of retinal vessel

tortuosity,” IEEE transactions on medical imaging, vol. 27, no. 3, pp. 310–319, 2008.

[63] M. Abdalla, A. Hunter, and B. Al-Diri, “Quantifying retinal blood vessels’ tortuosity,” in 2015 Science
and Information Conference (SAI). IEEE, 2015, pp. 687–693.

[64] L. J. Latecki and A. Rosenfeld, “Supportedness and tameness differentialless geometry of plane curves,”

Pattern Recognition, vol. 31, no. 5, pp. 607–622, 1998.

[65] R. C. James, Mathematics dictionary Fourth edition. New York : Van Nostrand Reinhold Company Inc.,

1976.

[66] L. A. Wulandhari and H. Haron, “The evolution and trend of chain code scheme,” Graphics, Vision and
Image Processing, vol. 8, no. 3, pp. 17–23, 2008.

[67] R. Klette and A. Rosenfeld, Digital geometry: Geometric methods for digital picture analysis. Elsevier,

2004.

[68] T. Subba, A. Pradhan, and P. Rai, ““voxelization” in 3d searching-a study,” International Journal of
Computer Applications, 2015.

[69] R. Khilar, S. Chitrakala, and S. SelvamParvathy, “3d image reconstruction: Techniques, applications

and challenges,” in 2013 International Conference on Optical Imaging Sensor and Security (ICOSS), 2013,

pp. 1–6.

[70] J. Seo, S. Chae, J. Shim, D. Kim, C. Cheong, and T.-D. Han, “Fast contour-tracing algorithm based on a

pixel-following method for image sensors,” Sensors, vol. 16, no. 3, p. 353, 2016.

[71] M. Ren, J. Yang, and H. Sun, “Tracing boundary contours in a binary image,” Image and vision computing,

vol. 20, no. 2, pp. 125–131, 2002.

[72] D. Coeurjolly, Y. Gerard, J.-P. Reveilles, and L. Tougne, “An elementary algorithm for digital arc

segmentation,” Discrete Applied Mathematics, vol. 139, no. 1-3, pp. 31–50, 2004.

64



Appendix A. Helicoidal horn construction References

[73] V. Kovalevsky, “New definition and fast recognition of digital straight segments and arcs,” in [1990]
Proceedings. 10th International Conference on Pattern Recognition, vol. 2. IEEE, 1990, pp. 31–34.

[74] M. J. Mateos, A. Gastelum-Strozzi, F. A. Barrios, E. Bribiesca, S. Alcauter, and J. A. Marquez-Flores, “A

novel voxel-based method to estimate cortical sulci width and its application to compare patients with

alzheimer’s disease to controls,” NeuroImage, vol. 207, p. 116343, 2020.

[75] M. J. Mateos, J. Márquez, and E. Bribiesca, “3d tortuosity: a morphological characterization of the

central sulcus to differentiate patients with alzheimer’s disease and controls,” in 2020 IEEE Nuclear
Science Symposium and Medical Imaging Conference (NSS/MIC). IEEE, pp. 1–4.

[76] S. Li, M. Xia, F. Pu, D. Li, Y. Fan, H. Niu, B. Pei, and Y. He, “Age-related changes in the surface

morphology of the central sulcus,” Neuroimage, vol. 58, no. 2, pp. 381–390, 2011.

[77] C. Peyrega and D. Jeulin, “Estimation of tortuosity and reconstruction of geodesic paths in 3d,” Image
Analysis and Stereology, vol. 32, no. 1, pp. 27–43, 2013.

[78] S. Pardo-Alonso, J. Vicente, E. Solórzano, M. Á. Rodriguez-Perez, and D. Lehmhus, “Geometrical

tortuosity 3d calculations in infiltrated aluminium cellular materials,” Procedia Materials Science, vol. 4,

pp. 145–150, 2014.

[79] C. J. Gommes, A.-J. Bons, S. Blacher, J. H. Dunsmuir, and A. H. Tsou, “Practical methods for measuring

the tortuosity of porous materials from binary or gray-tone tomographic reconstructions,” AIChE
Journal, vol. 55, no. 8, pp. 2000–2012, 2009.

65


	Portada 
	Resumen 
	Contents 
	1. Introduction 
	2. Basic Concepts 
	3. Sulcal Width Estimation 
	4. Tortuosity Estimation for Three-Dimensional Objects 
	5. Conclusions 
	Appendix 
	References

