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ABSTRACT

Most of this work is based on a manuscript that was provided to me by Fuensanta
Aroca, which contains research and ideas developed by her, Jesús del BlancoMaraña
and Gregorio Manrique. My work was to finish and / or provide some full proofs
of certain results stated in such manuscript. Concretely, I worked on the following:
All Section 1.1, Example 1.2.11, Proposition 1.3.1, Lemma 1.3.3, all examples of
Section 1.4, Proposition 1.5.9, Section 2.1, all examples of Section 2.2, Lemma
2.3.3, Example 2.3.4, Lemma 2.4.10, Corollary 2.4.11, Corollary 2.4.12, Corollary
2.4.13 and all statements and examples of Appendix A; also I provided completion
of proofs of Lemma 3.2.8, Proposition 3.3.6, Proposition 3.3.7, Proposition 3.3.8
and Theorem 3.3.9.

Classical Tropical Geometry deals with the tropical semi-field (R ∪ {∞}, ⊕, �),
where

G ⊕ H := min(G, H) and
G � H := G + H.

It also studies properties of tropical polynomials, which are expressions of the form

5 =
⊕
0∈E( 5 )

20 � -0,

where E( 5 ) ⊂ Z= is finite, -0 := -
01
1 � . . . � -

0=
= , where 0 = (01, . . . , 0=) and

every 20 ∈ R. Every tropical polynomial induces a function 5 : R= → R, which is
piece-wise linear. Under this setting, we can associate certain polyhedra to 5 and
study their geometrical properties. For aditional information on classical tropical
geometry, please see [10] and [13].

We may ask the following question: what happens if, instead of considering the
tropical semi-field (R ∪ {∞}, ⊕, �) and tropical polynomials as before, we take a
totally-ordered abelian group Γ and consider the semifield (Γ ∪ {∞}, ⊕, �) as well
as tropical polynomials with coefficients in Γ? In this thesis, we explore some
consequences of this scenario.

We recall that some previous works on the subject are [1], [2], [5], [7] [11], [12],
[14], and [15].

This thesis is organized as follows:
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• In Chapter 1, we study some properties of torsion-free abelian groups. We
develop notions of Γ−dependency and Z−dependency. Also, we study some
properties of rational linear and affine subspaces.

• In Chapter 2, we develop notions of rational convex geometry. In particular,
we study some properties of rational closed convex sets, rational boundaries
and rational polyhedra.

• In Chapter 3, we study some properties of Γ-tropical polynomials. We also
study some properties related to associated polyhedra of a given Γ-tropical
polynomial.

• In Appendix A, we show that Fourier-Motzkin algorithm works for totally
ordered divisible abelian groups and we give a criteria to determine solvability
of any given system of linear inequalities over such a group.

Throughout this thesis, we consider N as the set of positive integers, so 0 ∉ N.
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C h a p t e r 1

LINEAR GEOMETRY OVER TORSION-FREE ABELIAN
GROUPS

In this chapter we study rational linear and affine spaces over torsion-free abelian
groups. For this, first we see that we can embed these groups into their divisible
hull, which will allow us to consider not just integer but rational linear combinations
of elements of any such group. This way, we may consider integer (and rational!)
matrices as linear operators over such groups and study their set of zeroes, which we
will consider as rational linear spaces. Finally, we study some properties of these
rational linear spaces and extend some notions to rational affine spaces.

In a nutshell, the aim of this chapter is to show that, if � is an integer or rational
matrix and Γ is a torsion-free abelian group, then {G ∈ Γ= | �G = 0} is a linear
space of Γ= whose geometric properties depend on those of {G ∈ Z= | �G = 0}.

1.1 Torsion-free abelian groups
Let us recall some basic notions of group theory.

Let (Γ, +) be an abelian group. For 6 ∈ Γ and : ∈ N, we will use the standard
notation

:6 := 6 + · · · + 6︸         ︷︷         ︸
k -times

and − :6 := : (−6).

Recall that the order of an element 6 ∈ Γ is the least positive integer = such that
=6 = 0 if it exists and ∞ otherwise. An abelian group is torsion-free if the only
element that has finite order is zero, that is, for every 6 ∈ Γ, if =6 = 0 and = ≠ 0,
then 6 = 0.

Let us recall that every Z−module can be considered as an abelian group and vice
versa.

Example 1.1.1. Consider (R, +) and (Z/3Z, +) as abelian groups with usual addi-
tive operation. Note that (R, +) is torsion-free while (Z/3Z, +) is not, because 2 has
order 3 (since 2 + 2 + 2 = 6 = 0 mod 3).
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Consider a commutative ring with unity �. We are going to use tensor products of
�−modules to illustrate some examples, so we first recall their universal property.

Proposition 1.1.2 (Universal Property of Tensor Product). Let � be a commutative
ring with unity. Let " , # be �-modules. There exists a pair (), ⊗) consisting of
an �−module ) and an �−bilinear mapping ⊗ : " × # → ) with the following
universal property:

Given any �−module & and any �−bilinear mapping 5 : " × # → &, there exists
a unique �−linear mapping 5 ′ : ) → % such that the following diagram

" × # &

)

5

⊗
5 ′

is commutative. Moreover, ) is unique up to �−module isomorphism. The
�−module ) is denoted by " ⊗� # . We denote ⊗(<, =) = < ⊗ =.

Proof. A proof can be found for example in [4, pp. 24-25]. �

An abelian group Γ is divisiblewhen for all = ∈ N and all 6 ∈ Γ, the equation =G = 6
has a solution in Γ.

Example 1.1.3. We note that Z is not divisible because the equation 2G = 1 does not
have a solution in Z. On the other hand, Q is divisible. If Γ is an arbitrary abelian
group, then the tensor product Q ⊗Z Γ is a divisible group. To show this, consider
the equation =G = H, for a given = ∈ N and H := @ ⊗ 6 ∈ Q ⊗Z Γ. Let G = @

=
⊗ 6.

Note that =H = =( @
=
⊗ 6) = =@

=
⊗ 6 = @ ⊗ 6.

In the case of divisible abelian groups, the equation =G = 6 does not have to have a
unique solution.

Example 1.1.4. Consider the non-trivial divisible abelian groupQ/Z. The equation
3G = 0 has at least two solutions, namely, 1

3 + Z and
2
3 + Z.

Remark 1.1.5. Let Γ be a torsion-free divisible abelian group. Suppose that = ≠ 0.
Then the equation =G = 6 has a unique solution in Γ. For if H, I ∈ Γ are different
solutions of =G = 6, say H, I then, as =H = =I, it follows that =(H − I) = 0, so we get
that H = I because = ≠ 0.
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We recall the notion of localisation of a module. Let � be a commutative ring, and
( ⊂ � a multiplicatively closed set, this is, 1 ∈ (, 0 ∉ ( and for every B, C ∈ (
we have that BC ∈ (. Let " be an �−module. Define a relation ≡ on " × ( as
(<, B) ≡ (<′, B′) if and only if there exists C ∈ ( such that C (B<′− B′<) = 0. We have
that ≡ is an equivalence relation. Denote by <

B
the equivalence class of an element

(<, B). The set of such fractions is denoted by (−1" which is also an �−module. A
more comprehensive discussion about localisation of �-modules can be found for
example in [4, pp. 38 -39].

Proposition 1.1.6. Let ( = Z \ {0}. If Γ is a torsion-free abelian group, then Γ can
be embedded as a subgroup of (−1Γ. Furthermore (−1Γ is torsion-free as well.

Proof. Let 8 : Γ→ (−1Γ given by 8(G) = G
1 . We show that 8 is injective. Note that if

G
1 = 0, then there exists = ∈ ( such that =G = 0. Note that = ≠ 0. As Γ is torsion-free,
it follows that G = 0.

Let us prove that (−1Γ is torsion-free. Suppose that =( G
B
) = 0, for some = ≠ 0 and

B ∈ (. Multiplying by B we get that =G = 0. Arguing as in the first part of this proof,
this implies that G = 0, so G

B
= 0. Therefore, (−1Γ is torsion-free. �

Definition 1.1.7. A subgroup � of a group Γ is said to be essential for Γ if for every
non-trivial subgroup  of Γ, we have that � ∩  ≠ {0}.

Example 1.1.8. The group (Z, +) is essential for (Q, +). Let Γ be a non-trivial
subgroup of (Q, +). Let 6 = <

=
∈ Γ, for some integers <, = with < ≠ 0. Then

=6 = <, so < ∈ Γ. Therefore Γ ∩ Z ≠ {0}, and the claim follows.

Proposition 1.1.9. Let � be a subgroup of an abelian group Γ. Then � is essential
for Γ if and only if for every homomorphism ℎ : Γ → Γ′, with Γ′ an abelian group,
if the restriction ℎ|� is a monomorphism, then ℎ is a monomorphism as well.

Proof. We prove necessity. Suppose that � is essential for Γ. Let ℎ : Γ → Γ′

be a homomorphism of abelian groups such that ℎ|� is a monomorphism, that is,
ker(ℎ |�) = {0}. Note that ker(ℎ) ∩� = ker(ℎ |�) = {0}, then ker(ℎ) = {0} because
� is essential for Γ.

We prove sufficiency. Let  be a non-trivial subgroup of Γ. Consider the canonical
projection ? : Γ → Γ/ . Suppose, reasoning by contradiction, that � ∩  = {0}.
Then, ? |� is a monomorphism. By hypothesis, it follows that ? is a monomorphism
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as well. Therefore  = ker(?) = {0}, which is a contradiction because  is not
trivial. We conclude that � is essential for Γ. �

Definition 1.1.10. Given an abelian group Γ, if � is a divisible group that contains
Γ as a subgroup and if there is no proper subgroup of � that contains Γ, then � is
said to be minimal divisible for Γ.

Lemma 1.1.11. Let � be a divisible group that contains Γ. The group Γ is essential
for � if and only if � is minimal divisible for Γ.

Proof. A proof can be found for example in [8, pp. 107]. �

Theorem 1.1.12. Let Γ be an abelian group. Every divisible group � that contains
Γ also contains aminimal divisible group for Γ. Moreover, any twominimal divisible
groups for Γ are isomorphic.

Proof. A proof can be found for example in [8, pp. 107]. �

By Theorem 1.1.12, any two minimal divisible groups over Γ are isomorphic. The
divisible hull of an abelian group Γ is defined to be any minimal divisible group for
Γ.

Proposition 1.1.13. Let Γ be a torsion-free abelian group. Then the divisible hull
of Γ is the localisation (−1Γ, where ( = Z \ {0}.

Proof. By Proposition 1.1.6, as Γ is torsion-free, we know that Γ is a subgroup of
(−1Γ. Then it suffices (by Lemma 1.1.11 and Proposition 1.1.9) to show that if
ℎ : (−1Γ → Γ′ is a homomorphism of abelian groups such that ℎ |Γ is a monomor-
phism, then ℎ is a monomorphism as well. Let ℎ be such a homomorphism. Suppose
that ℎ( 6

=
) = 0, then ℎ( 61 ) = =ℎ(

6

=
) = 0 and 6

1 ∈ Γ. As ℎ |Γ is injective, it follows that
6 = 0. Then 6

=
= 0. Therefore ℎ is a monomorphism, and the claim follows. �

We denote the divisible hull of a torsion-free abelian group Γ as div(Γ).

Definition 1.1.14. Let Γ be an abelian group and = ∈ N. By a system of equations
over Γ we mean a set of equations �G = H, where � ∈ Z<×= and H ∈ Γ<. A system
of equations over Γ is compatible if there is no a non-zero row vector D ∈ Z1×< such
that D� = 0 and D · H ≠ 0.

We can solve compatible systems of equations in divisible abelian groups.
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Theorem 1.1.15. Every compatible system of equations over an abelian group Γ
admits a solution in Γ if and only if Γ is divisible.

Proof. See for example [8, p. 103]. �

In particular, observe that, if we want to solve a system of equations over a torsion-
free abelian group Γ and the system is compatible, we can always find a solution in
div(Γ).

1.2 Γ− dependency and Z−dependency
Let Γ be an abelian group. Wewant to extend certain notions about convex geometry
to arbitrary totally-ordered groups, so first we need to define an appropriate notion
of linear subspace on Γ= and for that, first we must provide a notion of linear
dependency.

We can use the natural Z-module structure of the product Γ= to define the usual
scalar multiplication

Z × Γ= −→ Γ=

(<, G) ↦→ <G := (<G1, . . . , <G=)

where G = (G1, . . . , G=).

There is also a natural way to multiply elements of Z= by elements of Γ given by

Γ × Z= −→ Γ=

(6, A) ↦→ 6A := (6A1, . . . , 6A=)

where A = (A1, . . . , A=).

Note that, for every 6 ∈ Γ, the set

�6 := {(<6, =6) : <, = ∈ Z}

is a subgroup of Γ × Γ. Moreover, if Γ is torsion-free and 6 ≠ 0, then �6 is
isomorphic to Z × Z as a group. We will discuss similar examples later.

Example 1.2.1. In the following image, we multiply the integer vector (3, 2) by a
non-zero element 6 ∈ Γ.

5



(3,2)

Z

Z

The group Z × Z

(3g,2g)

The group �6

Definition 1.2.2. We say that G ∈ Γ= is a rational combination of G (1) , . . . , G (B) ∈ Γ=

when
<G = <1G

(1) + · · · + <BG
(B)

for some integers <, <1, . . . , <B, where < ≠ 0.

Remark 1.2.3. With the notation given above, we see that G ∈ Γ= is a rational
combination of G (1) , . . . , G (B) ∈ Γ= if and only if G =

∑B
8=1

<8

<
G (8) (considered as

element of (−1Γ) for some integers<, <1, . . . , <B, where< ≠ 0. If also
∑B
8=1

<8

<
= 1,

we say that G is a rational convex combination of G (1) , . . . , G (B) .

Definition 1.2.4. We say that G ∈ Γ= is a Γ-combination of A (1) , . . . , A (B) ∈ Z= when

G = G1A
(1) + · · · + GBA (B)

for some elements G1, . . . , GB in Γ.

Definition 1.2.5. We say that a given set {A (1) , . . . , A (B)} ⊂ Z= is Γ-independent if,
for every 61, . . . , 6B ∈ Γ, with

∑B
8=1 68A

(8) = 0, then 68 = 0 for all 8.

Lemma 1.2.6. Let Γ be a non-trivial torsion-free abelian group. A given set
{A (1) , . . . , A (B)} ⊂ Z= is Γ-independent if and only if it is Z-independent.

Proof. Suppose that the set {A (1) , . . . , A (B)} is Γ-independent. Let <1, . . . , <B ∈ Z
be such that <1A

(1) + · · · + <BA
(B) = 0. Take any non-zero element 6 ∈ Γ. We have

6(<1A
(1) + · · · + <BA

(B)) = (<16)A (1) + · · · + (<B6)A (B) = 0. Then, by hypothesis,
<86 = 0 for all 8. Since Γ is torsion-free we have that <8 = 0 for all 8. Therefore, the
A′
8
s are Z−independent.
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Now suppose that {A (1) , . . . , A (B)} ⊂ Z= are Z-independent (which implies Q-
independency). Let {A (B+1) , . . . , A (=)} ⊂ Z= be such that {A (1) , . . . , A (=)} is a basis of
the vector space Q=. Let " be the matrix that has the A (8)’s as rows. Note that "
is invertible because the set of A (8)’s are linearly independent. Consider the adjoint
matrix adj("). Denote � := adj("). As" is an integer matrix and the entries of �
are determinants of integer submatrices of " , it follows that � is an integer matrix.
We know that � is such that �" = det(")Id, see for example [9, pp. 159-160].
Therefore � = det(")"−1.

Nowwe show that the set {A (1) , . . . , A (B)} ⊂ Z= is Γ−independent. Let 61, . . . , 6B ∈ Γ
such that

∑B
8=1 68A

(8) = 0 (note that this is a row vector). Multiplying by � we get(∑B
8=1 68A

(8)
)
� = 0, then

∑B
8=1 68

(
A (8)�

)
= 0. On the other hand, as we have the

relation "� = det(")Id, it follows that A (8)� = det(")48, where 48 is the vector in
which the 8−th entry is equal to 1 and the remaining entries are zero. Therefore, we
get that

det(")∑B
8=1 6848 =

∑B
8=1 det(") (6848)

=
∑B
8=1(det(")68)48

=
∑B
8=1 68 (det(")48)

=
∑B
8=1 68 (A (8)�)

= 0,

which implies that, det(")68 = 0, for all 8, and since det(") ≠ 0 and Γ is torsion-
free, it follows that 61 = 62 = · · · = 6B = 0. �

Corollary 1.2.7. LetΓ be a non-trivial torsion-free abelian group. EveryΓ−independent
set of Z= has cardinality at most =.

Proof. If � is a Γ−independent set of Z=, then, by Lemma 1.2.6, it is also a
Z−independent set, therefore its cardinality is at most =. �

Lemma 1.2.8. Let Γ be a torsion-free abelian group. If {A (1) , . . . , A (=)} is a basis
of Z=, considered as Z−module, then, for every G ∈ Γ=, there exists an =-tuple
(D1, . . . , D=) ∈ Γ= such that G = D1A

(1) + · · · + D=A (=) . Moreover, this =-tuple is
unique.

Proof. Given G = (G1, . . . , G=) ∈ Γ= we have

G = G141 + · · · + G=4=
= G1(

∑=
8=1<

(1)
8
A (8)) + · · · + G= (

∑=
8=1<

(=)
8
A (8))

= (∑=
8=1<

(8)
1 G8)A

(1) + · · · + (∑=
8=1<

(8)
= G8)A (=)

7



for some {< ( 9)
8
∈ Z | 8 = 1, . . . , = and 9 = 1, . . . , =} ⊂ Z. Take D 9 =

∑=
8=1<

(8)
9
G8.

The uniqueness is a direct consequence of Lemma 1.2.6. �

Note that Lemma 1.2.8 allows us to talk about the coordinates of a point G ∈ Γ= in
the base {A (1) , . . . , A (=)} ⊂ Z= considered as a module.

Now, we recall some basic facts about linear subgroups of Z=.

Given 0 = (01, . . . , 0=) ∈ Z=, for every G ∈ Γ=, we denote 0 · G =
∑=
8=1 08G8 , where

G = (G1, . . . , G=). The map G ↦→ 0 · G is Z−linear as expected.

Definition 1.2.9. Wewill say that a subgroup ( ⊂ Z= is linearwhen it can be written
as kernel of some integer matrix, say ( = ker(�), where � ∈ Z<×=.

Not every subgroup of an abelian group is a linear subgroup, as the following
example shows.

Example 1.2.10. Consider the free-group Z. Every linear subgroup is of the form
{= ∈ Z| 0= = 0}, for some 0 ∈ Z. Therefore, the only linear subgroups of Z are {0}
and Z itself. In particular, this implies that the subgroup 2Z is not linear.

Definition 1.2.11. Let Γ be an abelian group. The rank of Γ, denoted by rank(Γ),
is defined as

rank(Γ) = dimQ(Q ⊗Z Γ),

where dimQ(Q ⊗Z Γ) is the Q-vector space dimension of Q ⊗Z Γ.

Example 1.2.12. Note that Q ⊗Z Q = Q, then rank(Q) = 1.

Example 1.2.13. It can be proven that Q ⊗Z R = R, then rank(R) = ∞, since R is a
Q-vector space of infinite dimension.

Example 1.2.14. As Q ⊗Z Z= = Q=, we have that rank(Z=) = =.

We use the following notation. Let = ∈ N and Γ a totally-ordered abelian group.
Given a set of elements {A (1) , . . . , A (B)} of Z=, we denote by 〈A (1) , . . . , A (B)〉Γ the set
of Γ−linear combinations of A (1) , . . . , A (B) , that is

〈A (1) , . . . , A (B)〉Γ :=

{
B∑
8=1

68A
(8) ∈ Γ=

����� 68 ∈ Γ
}

8



Theorem 1.2.15. Let ( be a subgroup of a free abelian group, of rank <. There
is a basis {F1, . . . , F=} of , and a basis {D1, . . . , D<} of ( with the following
properties:

(i) < ≤ =

(ii) for each 9 ≤ < there exists a positive integer 3 9 such that D 9 = 3 9F 9

(iii) 38 |38+1 for every 8 = 1, . . . , < − 1.

Proof. A proof can be found for example in [3, pp. 461 -462] �

Example 1.2.16. Consider

〈(2, 0), (0, 3)〉Z = 2Z × 3Z

as a subgroup of
〈(1, 0), (0, 1)〉Z = Z × Z.

Note that condition (88) of Theorem 1.2.15 holds, because 2(1, 0) = (2, 0) and
3(0, 1) = (0, 3). However, condition (888) is not true with these values as 2 does not
divide 3, so the basis {(1, 0), (0, 1)} is not the one specified by Theorem 1.2.15.

Nevertheless, we note that 〈(2, 3), (1, 2)〉Z = Z×Z. If 31 = 1 and 32 = 6, then 31 |32

and we see that 2Z × 3Z = 〈(2, 3), (6, 12)〉Z, then the conclusion (888) of Theorem
1.2.15 is true, so {(2, 3), (1, 2)} is a basis guaranteed by Theorem 1.2.15.

Corollary 1.2.17. Given a linear subgroup ( ⊂ Z= there exist < ∈ N and a basis
{A (1) , . . . , A (=)} of Z= such that ( = 〈A (1) , . . . , A (<)〉Z.

Proof. Let ( be a linear subgroup of Z=, say ( = ker(�), where � ∈ Z:×=. By
Theorem 1.2.15, there exist a basis {A (1) , . . . , A (=)} of Z= and a basis {D(1) , . . . , D(<)}
of ( such that D( 9) = 3 9A ( 9) for some positive integers 3 9 . Note that, as 3 9A ( 9) ∈ (,
it follows that 3 9 �(A ( 9)) = �(3 9A ( 9)) = 0, for 9 = 1, . . . , <. As every 3 9 ≠ 0, we
have that �(A ( 9)) = 0. Therefore A ( 9) ∈ (, for 9 = 1, . . . , <. We conclude that
〈A (1) , . . . , A (<)〉Z ⊂ ( ⊂ 〈A (1) , . . . , A (<)〉Z and the corollary follows. �

Proposition 1.2.18. Let ( = ker(�) be a linear subgroup of Z=, with � ∈ Z:×=. Let
{A (1) , . . . , A (=)} be a basis of Z= as in Corollary 1.2.17. Let 0 (8) denote the rows of
the matrix �, for 8 = 1, . . . , : . Then the set{

(0 (1) · A (8) , . . . , 0 (:) · A (8)) | 8 = < + 1, . . . , =
}
⊂ Z:

is Z−independent.
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Proof. Suppose that
∑=
8=<+1 B8 (0 (1) · A (8) , . . . , 0 (:) · A (8)) = 0, for some integers B8,

8 = < + 1, . . . , =. Then, by linearity we have that(
0 (1) ·

(
=∑

8=<+1
B8A
(8)

)
, . . . , 0 (:) ·

(
=∑

8=<+1
B8A
(8)

))
= 0.

Therefore, the vector
∑=
8=<+1 B8A

(8) ∈ ker(�) = (. As ( = 〈A (1) , . . . A (<)〉Z, we have
that, for 8 = 1, . . . , < , there exist integers B8 such that

∑=
8=<+1 B8A

(8) =
∑<
8=1 B8A

(8) ,
then

∑=
8=<+1 B8A

(8) − ∑<
8=1 B8A

(8) = 0. As {A (1) , . . . , A (=)} is a basis, we deduce that
B8 = 0 for 8 = 1, . . . , < and the claim follows. �

1.3 Z−linear operators and Γ−linear operators
Consider Γ a torsion-free abelian group. A matrix � ∈ Z<×= can be considered as a
linear operator over both Γ= and Z= in the expected way, that is, if G = (G1, . . . , G=)
is an element of Γ= (or Z=), then �G =

∑=
8=1 G8�8, where the �8’s are the columns

of �. In order to avoid confusion, we denote kerΓ= (�) := {G ∈ Γ= | �G = 0} and
kerZ= (�) := {A ∈ Z= | �A = 0}.

A key result that allows us to interpret some notions of Γ= using Z= is the following.

Proposition 1.3.1. Let Γ be a torsion-free abelian group. Consider kerΓ= (�),
for some � ∈ Z:×=. Let {A (8) ∈ Z= | 8 = 1, . . . , =} be a basis of Z= such that
kerZ= (�) = 〈A (1) , . . . , A (<)〉Z. Then, kerΓ= (�) = 〈A (1) , . . . , A (<)〉Γ.

Proof. Let {A (8) ∈ Z= | 8 = 1, . . . , =} be a basis such that kerZ= (�) = 〈A (1) , . . . , A (<)〉Z,
as in Corollary 1.2.17.

Note that �A (8) = 0, for 8 = 1, . . . , <. Let G ∈ kerΓ= (�). By Lemma 1.2.8, we can
write G =

∑=
8=1 G8A

(8) , for some G8 ∈ Γ. Denote by 0 ( 9) the rows of �, for 9 = 1, . . . , : .
By linearity, we have that 0 = 0 ( 9) · G = 0 ( 9) · (∑=

8=1 G8A
(8)) = ∑=

8=<+1 G8 (0 ( 9) · A (8)),
for every 9 . Again, by linearity we have that

=∑
8=<+1

G8 (0 (1) · A (8) , . . . , 0 (:) · A (8)) =
(

=∑
8=<+1

G8 (0 (1) · A (8)), . . . ,
=∑

8=<+1
G8 (0 (:) · A (8))

)
= 0.

By Proposition 1.2.18, G8 = 0 for all 8 = < + 1, . . . , =. Then G =
∑<
8=1 G8A

(8) . As
G ∈ kerΓ= (�) was arbitrary, kerΓ= (�) ⊂ 〈A (1) , . . . , A (<)〉Γ. On the other hand, as
�A (8) = 0, for 8 = 1, . . . , <, we see that 〈A (1) , . . . , A (<)〉Γ ⊂ kerΓ= (�), so the claim
follows. �
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Lemma 1.3.2. The assigment kerΓ= (�) ↦→ kerZ= (�) is well-defined.

Proof. Suppose that kerΓ= (�) = kerΓ= (�), for some integer matrices � ∈ Z<×= and
� ∈ Z:×=. We want to prove that kerZ= (�) = kerZ= (�). Let 0 ∈ kerZ= (�) and
6 ∈ Γ a nonzero element. Note that 60 ∈ Γ= and �(60) = 6(�0) = 60 = 0, then
60 ∈ kerZ= (�) = kerZ= (�). It follows that 6(�0) = �(60) = 0. As 6 ≠ 0, we get
that �0 = 0. Therefore, kerZ= (�) ⊂ kerZ= (�). Using the same argument, we get
the other inclusion and the claim follows. �

Proposition 1.3.3. Let Γ be a torsion-free abelian group. Let = ∈ N. The assigment
kerΓ= (�) ↦→ kerZ= (�) is a 1-1 correspondence.

Proof. By Lemma 1.3.2, we know that kerΓ= (�) ↦→ kerZ= (�) is a well-defined
function. We prove injectivity. Suppose that kerZ= (�) = kerZ= (�). We know, by
Corollary 1.2.17, that kerZ= (�) = 〈A (1) , . . . , A (<)〉Z = kerZ= (�) for some A (8) ∈ Z=.
Then, by Proposition 1.3.1, we have that kerΓ= (�) = 〈A (1) , . . . , A (<)〉Γ = kerΓ= (�).

Finally, thanks to Corollary 1.2.8 and Proposition 1.3.1 it is clear that the assigment
kerΓ (�) ↦→ kerZ(�) is surjective. �

Lemma 1.3.4. Let Γ be a torsion-free abelian group.

1. If kerZ= ()) ⊂ kerZ= ((), for some integer matrices (, ) , then kerΓ= ()) ⊂
kerΓ= (().

2. For every collection of integer matrices {#8}8∈� , there exists an integer ma-
trix # such that

⋂
8∈� kerZ= (#8) = kerZ= (#). Moreover,

⋂
8∈� kerΓ= (#8) =

kerΓ= (#).

Proof. Let us prove 1. By Corollary 1.2.17, there exists a basis {E (8)}=
8=1 for Z=

such that kerZ= (() = 〈E (1) , . . . , E (B)〉Z. In particular, kerZ= (() is free. Also observe
that kerZ= ()) is a subgroup of kerZ= ((), then, by Theorem 1.2.15, there exists a
basis {F (8)}B

8=1 for kerZ= (() such that kerZ= ()) = 〈:1F
(1) , . . . , :<F (<)〉Z for some

: 9 ∈ Z. By Proposition 1.3.1, we get that kerΓ= ()) = 〈:1F
(1) , . . . , :<F (<)〉Γ and

kerΓ= (() = 〈E (1) , . . . , E (B)〉Γ. Finally, observe that, for every 6 ∈ Γ, we have that
6: 9F

( 9) ∈ kerΓ= ((), for all 9 , therefore kerΓ= ()) ⊂ kerΓ= (().

Now let us prove 2. Let 08
9
be the 9−th row of #8, for every 8 and every 9 . Consider

〈08
9
〉Z to be the group generated by the 089 ’s for all 8 and 9 . By Theorem 1.2.15, there

11



exists row vectors 11, . . . , 1! ∈ Z1×= such that 〈08
9
〉Z = 〈11, . . . , 1!〉Z. Let # be the

matrix whose rows are all the 1′
:
B. Observe that kerZ= (#) =

⋂
8∈� kerZ= (#8). Now, if

G ∈ ⋂
8∈� kerΓ= (#8), then 089 ·G = 0 for every 8, 9 , so 1: ·G = 0 for every : . Therefore,

we have that #G = 0 which implies that
⋂
8∈� kerΓ= (#8) ⊂ kerΓ= (#). Also, if

G ∈ kerΓ= (#), then #G = 0, so 1: ·G = 0 for every : . By construction, it follows that
08
9
· G = 0 for every 8, 9 , so #8G = 0 for every 8. Then kerΓ= (#) ⊂

⋂
8∈� kerΓ= (#8).

Therefore,
⋂
8∈� kerΓ= (#8) = kerΓ= (#). �

1.4 Rational linear subspaces
Let Γ be a torsion-free abelian group (so we can talk about coordinates of any G ∈ Γ=

according to Lemma 1.2.8).

Definition 1.4.1. Let 0 ∈ Z1×= be a non-zero integer row vector. The kernel of 0,
considered as a linear operator over Γ, is called a rational linear hyperplane.

Observe that � ⊂ Γ= is a rational linear hyperplane when there exists a non-zero
0 ∈ Z= such that

� = {G ∈ Γ= | 0 · G = 0}.

Definition 1.4.2. A kernel of an integer matrix will be called a rational linear
subspace.

This means that ! ⊂ Γ= is a rational linear subspace if there exists a matrix � ∈ Z<×=

such that
! = {G ∈ Γ= | �G = 0}.

Definition 1.4.3. Let ! = kerΓ= (�) be a rational linear subspace of Γ=, where
� ∈ Z<×=. We denote by SG(!) := kerZ= (�). The group SG(!) will be called the
parallel subgroup of !. It is well-defined by Proposition 1.3.3.

Example 1.4.4. Let Γ = R. Consider the group Γ2. Consider ! = kerΓ ((1, 1)). We
show the picture of ! and its parallel subgroup.

12



Γ

Γ

L as a linear subspace

Z

Z

The parallel subgroup of L

Example 1.4.5. Let Γ = R2. Consider the space Γ2 = R2 × R2. Denote by
((G, H), (I, F)) the coordinates of any element of Γ2. Let ! = kerΓ2 ((1, 1)).

! = {((G, H), (I, F)) ∈ R2 × R2 | ( (G, H), (I, F)) · (1, 1) = (0, 0)}
= {((G, H), (I, F)) ∈ R2 × R2 | (G, H) + (I, F) = (0, 0)}
= {((G, H), (I, F)) ∈ R2 × R2 | (G + I, H + F) = (0, 0)}

We show a picture of the projections of ! in the planes -/ and ., .

X

Z

Projection of ! in plane XZ

Y

W

Projection of ! in plane YW
We also note that the parallel subgroup of ! is the same as in Example 1.4.5.
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Z

Z

The parallel subgroup of L

Example 1.4.6. Let Γ = R2 considered as an abelian group. We note that Γ =
kerΓ (0), where 0 ∈ Z. Therefore, the parallel subgroup SG(Γ) = kerZ(0) = Z. This
can be seen in the following drawing.

R

R

R2

Z

The parallel subgroup of R2

Definition 1.4.7. Let ! ⊂ Γ= be a rational linear subspace over a torsion-free abelian
group Γ. We define dimΓ= (!) = rank(SG(!)) to be the dimension of !.

Note that rank(SG(!)) = rank(kerZ= (�)) = null(�), where the last equality follows
by definition of nullity of � (see for example [9, pp. 71]).

Lemma 1.4.8. The dimension of a rational linear subspace is well-defined.

14



Proof. Let ! be a rational linear subspace. If ! has two matrix representations, say,
! = {G ∈ Γ= | #G = 0} = {G ∈ Γ= | "G = 0}, then, by Proposition 1.3.3, we have
that kerZ= (#) = kerZ= ("), so null(") = null(#) = rank(ker(#)) = rank(SG(!)),
that is, the dimension is independent of the matrix representation of !, for every
rational affine subspace !. �

Proposition 1.4.9. Let Γ be a torsion-free abelian group. We have the following:

1. dimΓ= (Γ=) = =, for every = ∈ N.

2. Let � = kerΓ (0) be a rational linear hyperplane for some non-zero 0 ∈ Z1×=.
Then dimΓ= (�) = = − 1 (so the word "hyperplane" is justified).

Proof. Let us prove that dimΓ= (Γ=) = =, for every = ∈ N. Note that Γ= = kerΓ (0),
where 0 ∈ Z=×=. As dimΓ (Γ=) = null(0) = =, the claim follows.

Let � = kerΓ= (0) be a rational linear hyperplane for some non-zero 0 ∈ Z1×=.
Finally, we show that dimΓ= (�) = = − 1. Note that dimΓ= (�) = null(0) = = − 1
since 0 ≠ 0, so the claim follows. �

1.5 Rational affine subspaces
Through this section, consider Γ as a torsion-free abelian group.

Definition 1.5.1. A subset � of Γ= will be called a rational affine hyperplane if

� = {G ∈ Γ= | 0 · G = 6}

for some 0 ∈ Z= \ {0} and 6 ∈ Γ.

Definition 1.5.2. A subset � ⊂ Γ= is a rational affine subspace if

� = {G ∈ Γ= | #G = H},

for some integer matrix # ∈ Z<×=, < ∈ N and H ∈ Γ<.

Note that Γ= = {G ∈ Γ= | 0G = 0}, is a rational affine subspace.

Example 1.5.3. Rational affine subspaces may be empty even if the system of equa-
tions that defines them is compatible (in the sense of Definition 1.1.14). Consider
Γ = Z. The system of linear equations[

1 1
0 2

] [
G

H

]
=

[
1
1

]
15



is compatible but it has no solution in Z×Z, because the only solution of this system

is given by

[
1
2
1
2

]
∈ Q × Q. Therefore, the rational affine subspace

{[
G

H

]
∈ Γ2

�����
[
1 1
0 2

] [
G

H

]
=

[
1
1

]}
is empty.

Definition 1.5.4. Let G (1) , . . . , G (<) ∈ Γ=. We say that G ∈ Γ= is a rational combi-
nation of the G (8)’s if

:G =

<∑
8=1

:8G
(8) ,

for some integers :, :8, where : ≠ 0. Also, if : =
∑<
8=1 :8, then we say that G is an

affine rational combination of the G (8)’s.

Proposition 1.5.5. Let Γ be a torsion-free abelian group and let ( ⊂ Γ= be a
rational affine subspace. Given I ∈ (, the set {G ∈ Γ= | I + G ∈ (} is a rational
linear subspace. Furthermore, if ( = {G ∈ Γ= | #G = H}, then kerΓ= (#) = {G ∈
Γ= | I + G ∈ (}.

Proof. Suppose that ( = {G ∈ Γ= | #G = H}, for some integer matrix # ∈ Z<×=,
< ∈ N, where all rows of # are non-zero and H ∈ Γ<. Denote the rows of # by
08. Let I ∈ (. Then #I = H. Note that 08 · (I + G) = H is equivalent to 08 · G = 0,
because 08 · I = H, for every 8. Therefore, I + G ∈ ( if and only if G ∈ kerΓ= (#) and
the claim follows. �

Proposition 1.5.6. Let Γ be a torsion-free abelian group, let ( = {G ∈ Γ= | #G = H}
be a rational affine subspace for some integer matrix # and ! = kerΓ= (#). For
every I ∈ (, we have that

( = I + !.

Proof. Let I ∈ (. Suppose that G ∈ (. Then #G = H = #I, so # (G − I) = 0. As
G − I ∈ !, we have that G = I + (G − I) ∈ I + !. Therefore, ( ⊂ I + !. Conversely,
for every I + F, with F ∈ !, we have that I + F ∈ (, because by Proposition 1.5.5,
we have that ! = {G ∈ Γ= | I + G ∈ (}. �

Let ( be a rational affine subspace. We denote SG(() := SG(!), where ! is as in
Proposition 1.5.6.
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Definition 1.5.7. For every submodule + ⊂ Z=, we can define its orthogonal
complement, denoted by +⊥, as

+⊥ := {D ∈ Z= | D · G = 0 for every G ∈ +}.

Notice that every set of the form SG(*), with* ⊂ Γ=, is a subgroup ofZ=, which can
be considered as a submodule of Z=, so we can talk about its orthogonal complement
SG(*)⊥. Observe also that +⊥ is a subgroup of Z=.

Proposition 1.5.8. Let Γ be a torsion-free abelian group and let ( ⊂ Γ= be a
rational affine subspace. We have that 0 ∈ SG(()⊥ if and only if 0 is constant on (,
considered as a linear operator.

Proof. Let ( = {G ∈ Γ= | #G = H} be a rational affine subspace, where # is
an integer matrix. We have that SG(() = kerZ= (#). By Proposition 1.5.6, we
know that ( = I + kerΓ= (#), for every I ∈ (. Also, by Proposition 1.3.1, there
exists a basis {A (8) | 8 = 1, . . . , =} of Z= such that kerZ= (#) = 〈A (1) , . . . , A (B)〉Z.
Moreover, kerΓ= (#) = 〈A (1) , . . . , A (B)〉Γ. If 0 ∈ SG(()⊥, then 0 · A (8) = 0, for
8 = 1, . . . , B. This implies that, for every E ∈ kerΓ= (#), we have that 0 · E = 0.
Let I ∈ (. As ( = I + kerΓ= (#), we get 0 · E = 0 · I, for every E ∈ (. Therefore,
0 is constant in (. Now, suppose that 0 is constant on (. Let 6 ≠ 0 be an
element in Γ. Then 6A (8) ∈ kerΓ (#), for 8 = 1, . . . , B. Let I ∈ (. Note that
0 · I = 0 · (6A (8)) + 0 · I, by linearity of 0 and because 6A (8) + I ∈ (, by Proposition
1.5.3. Then 6(0 · A (8)) = 0 · (6A (8)) = 0. As 6 ≠ 0 and Γ is torsion-free, we obtain
that (0 · A (8)) = 0, for 8 = 1, . . . , B. Therefore 0 ∈ SG(()⊥. �

Proposition 1.5.9. Let Γ be a torsion-free abelian group and * ⊂ Γ=. The inter-
section

aff(*) :=
⋂
{( ⊂ Γ= | ( is rational affine subspace and* ⊂ (}

is well-defined and it is the smallest rational affine subspace of Γ= that contains*.

Proof. If * = ∅, then aff(*) = ∅, which is an affine rational subspace. Suppose
that * ≠ ∅. Let D ∈ *. We know, by Proposition 1.5.6, that every rational affine
space (8 ⊃ * can be written as (8 = kerΓ= (#8) + D, for some integer matrix #8. By
Lemma 1.3.4, it follows that

⋂
8∈� kerZ= (#8) = kerZ= (�), for some integer matrix �
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and also
⋂
8∈� kerΓ= (#8) = kerΓ= (�). Now, we observe that

aff(*) =
⋂{( ⊂ Γ= | ( is rational affine subspace and* ⊂ (}

=
⋂
8∈� (kerΓ= (#8) + D)

= (⋂8∈� kerΓ= (#8)) + D
= kerΓ= (�) + D
= {G ∈ Γ= | �G = H},

where H := �B ∈ Γ. As aff(*) is a rational affine subspace (and clearly the smallest
that contains*), the claim follows. �

The set aff(*) is called the affine hull of*.

Observe that if* ≠ ∅, then aff(*) ≠ ∅, since* ⊂ aff(*).

Definition 1.5.10. We define the parallel subgroup of* as the parallel subgroup of
kerΓ= (�), that is, SG(*) := SG(kerΓ= (�)), where � is as in the proof of Proposition
1.5.9.

Note that this is well-defined since kerΓ= (�) +D = kerΓ= (�′) +D implies kerΓ= (�) =
kerΓ= (�′). Also, we define the dimension of * as the dimension of the rational
linear space kerΓ= (�).
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C h a p t e r 2

CONVEX GEOMETRY OVER TOTALLY-ORDERED ABELIAN
GROUPS

In this chapter, we consider a special class of torsion-free abelian groups, namely,
totally ordered abelian groups. This allow us to consider not just linear spaces, but
rational halfspaces which are defined by a certain inequality. Therefore, we can
also define rational closed convex sets as arbitrary intersection of those halfspaces.
In particular, we put our atention in a special class of rational closed convex sets,
namely, rational polyhedra, which are finite intersection of rational halfspaces.

In order to achieve this, first we see that we can extend the order of a totally
ordered abelian group into its divisible hull, so, as in Chapter 1, we can consider
not just integer, but also rational matrices as linear operators. Next we study some
properties of rational convex sets and finally we derive geometric properties of
rational polyhedra.

2.1 Totally ordered abelian groups

Definition 2.1.1. A totally ordered abelian group is an abelian group (Γ, +) equipped
with a total order ≤ that is compatible with the group operation, that is, 6 ≤ ℎ implies
6 + D ≤ ℎ + D for all 6, ℎ, D ∈ Γ.

Example 2.1.2. The following are totally ordered abelian groups:

1. (Q, ≤), where ≤ is the usual order.

2. (Z2, ≤), where ≤ is the lexicographic order. Recall that lexicographic order
is defined as follows: Given any (0, 1), (0′, 1′) we define (0, 1) ≤ (0′, 1′)
if 0 ≤ 1 or 0 = 0′ and 1 ≤ 1′. Intuitively, this order captures the way
dictionaries are ordered: the word ’annual’ comes before ’breakfast’ since
0 < 1 in the alphabeth and the word ’Gauss’ comes before ’Godel’ since
� = � but 0 < >.

Remark 2.1.3. Let Γ be a totally ordered abelian group. The following holds:

1. Γ is torsion-free.
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Just note that if 6 ≠ 0, say 6 > 0, we have that 6 < 26 < . . . < =6, for all
= ∈ N. If 6 < 0 we argue similarly.

2. If Γ is not the zero group, then it is infinite.

It is consequence of 1, because every finite group is not torsion-free.

This implies that finite groups cannot be totally ordered.

Example 2.1.4. Consider Q/Z as an abelian group, which is infinite, but is not
torsion-free. By Remark 2.1.3, we see that Q/Z cannot be totally ordered.

Corollary 2.1.5. For every totally ordered group Γ, there exists a total order in the
divisibe hull of Γ, div(Γ), which extends the one in Γ.

Proof. As Γ is totally ordered, say by ≤, then by 2.1.3 we get that Γ is torsion-
free. By Remark 1.1.13, we know that Γ is a subgroup of div(Γ) = (−1Γ, where
( = Z \ {0}. Observe that div(Γ) = (−1

0 Γ, where (0 = N. Let us define 6

=
≤′ ℎ

=′ if
=′6 ≤ =ℎ in Γ, where =, =′ ∈ N. By a routine verification, it follows that ≤′ defines a
total order over div(Γ) which is compatible with the group operation and ≤′ clearly
extends ≤. �

Remark 2.1.6. Let Γ be a divisible totally ordered abelian group, G ∈ Γ and = ∈ N.
There exist a unique H ∈ Γ such that =H = G. Note that if H′, H′′ ∈ Γ are solutions of
=H = G and H′ < H′′, then =H′ < =H′′, so G < G, which is a contradiction.

Example 2.1.7. Note that Q is a divisible totally ordered abelian group considered
with the standard total order inherited from R.

Definition 2.1.8. A totally ordered group Γ is said to be dense-in-itself when, for
all G, H ∈ Γ with G < H, there exists I ∈ Γ such that G < I < H.

Remark 2.1.9. Every divisible totally ordered abelian group is dense-in-itself. Let
Γ be a divisible totally ordered abelian group. Given G, H ∈ Γ such that G < H, we
have that G <

G + H
2

< H and as Γ is divisible, we have that
G + H

2
∈ Γ.

2.2 Rational closed convex sets

Definition 2.2.1. Let Γ be a totally ordered abelian group. Every set of the form

�
≤6
0 = {G ∈ Γ= : 0 · G ≤ 6},

where 0 ∈ Z1×=, 6 ∈ Γ and 0 ·G is the usual sum∑
8 08G8, is called rational halfspace.
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Example 2.2.2. The following are rational halfspaces.

1. Let Γ = R considered with usual order. The halfspace �≤1
2 in Γ is the left

region.

1
20 1

The halfspace H≤1
2 in Γ.

2. Let Γ = R considered with the usual order. The halfspace �≤2
(1,1) ⊂ Γ

2 is the
gray region.

X

(0,2)

(2,0)

Y

The halfspace H≤2
(1,1) in Γ

2.

3. Let Γ = R2 considered with the lexicographic order. The halfspace �≤(2,2)1 ⊂
Γ is the gray region.

(2,2)

X

Y
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The halfspace H≤2
(1,1) in Γ.

4. Let Γ = R2 considered with the lexicographic order. The halfspace �≤(2,3)(1,1) ⊂
Γ2 = R4 cannot be drawn on this page. However, if we denote by (G, H, F, I)
the coordinates of points of Γ2, we find that elements in �≤(2,3)(1,1) are given by
conditions G + F ≤ 2 with I, H arbitrary and, if G + F = 2, then H + I ≤ 3. If
we consider the planes -, and ./ we see the following:

(0,2)

(2,0)
X

W

G + F < 2

Y

Z

y and z arbitrary

(0,3)

(3,0)
X

W

G + F = 2
(0,3)

(3,0)
Y

Z

H + I ≤ 3

Projections on the planes XW and YZ of the halfspace �≤(2,3)(1,1) .

Proposition 2.2.3. Let Γ be a totally-ordered abelian group. Consider a rational
halfspace �≤60 ⊂ Γ=, where 0 ∈ Z= and 6 ∈ Γ. We have that �≤60 is empty if and
only if 0 = 0 and 6 < 0.

Proof. We show necessity. Suppose that 0 ≠ 0 or 6 ≥ 0. If 6 ≥ 0, then 0 ∈ �≤60 ,
so �≤60 is not empty. Now suppose that 0 ≠ 0. Then there exists 8 ∈ {1, . . . , =}
such that 08 ≠ 0. We have two cases: 086 ≤ 6 or −086 ≤ 6. If 086 ≤ 6, just note
that 086 = 0 · (0 . . . , 0, 6, 0, . . . , 0), where 6 is in the 8−t́h coordinate. Therefore,
(0 . . . , 0, 6, 0, . . . , 0) ∈ �≤60 . The case −086 ≤ 6 is similar.
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We show sufficiency. Suppose that 0 = 0 and 6 < 0. If there exists G ∈ �≤60 , then
0 = 0 · G = 0 · G ≤ 6 < 0, which is a contradiction. Therefore, �≤60 is empty. �

Rational affine hyperplanes are not necessarily non-empty even when they are prop-
erly defined.

Example 2.2.4. Consider Γ = { <3: | < ∈ Z and : ∈ Z}, 0 = 2 ∈ Z and 6 = 3 ∈ Γ.
Note that Γ is a subgroup of Q, then Γ is a totally ordered abelian group with order
inherited from Q. However, note that equation 2G = 3 does not have a solution in
Γ, so the hyperplane �=3

2 is empty.

Definition 2.2.5. A non-empty set � ⊂ Γ= is a rational closed convex set if it can
be written as arbitrary intersection of rational halfspaces.

Definition 2.2.6. Suppose that Γ is a totally ordered divisible abelian group. Let
G (1) , . . . , G (:) ∈ Γ=. We say that G ∈ Γ= is a rational convex combination of all the
G (8) if there exists C1, . . . , C: ∈ Qwith C8 > 0 and

∑:
8=1 C8 = 1, such that G =

∑:
8=1 C8G

(8) .

Definition 2.2.7. Let � ⊂ Γ=. We say that G ∈ Γ= is a rational convex combination
of � if there exists G (1) , . . . , G (:) ∈ � such that G is a rational convex combination
of all the G (8) .

Remark 2.2.8. Note that Γ= = �≤0
0 . Therefore, every non-empty subset of Γ= is

contained in a rational halfspace.

Definition 2.2.9. For every non-empty � ⊂ Γ=, we define its rational convex hull,
denoted as conv(�), as intersection of all rational halfspaces that contain �.

By Remark 2.2.8, such intersection is well-defined. Observe that conv(�) is the
least rational convex set that contains �. Therefore, � is a rational convex set if and
only if � = conv(�).

Example 2.2.10. Take Γ = R and � = [4, c]. We have that conv(�) = [4, c] .

Example 2.2.11. Take Γ = R and � = {(G, H) ∈ R2 | H − cG = 0} ⊂ Γ2. We have
that conv(�) = R2.

Proposition 2.2.12. Suppose that � ⊂ Γ= is a rational convex set. If G is a rational
convex combination of �, then G ∈ �.
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Proof. Suppose that � =
⋂
8∈� �

≤68
08 . Suppose that G ∈ Γ= is a rational convex

combination of �, then there exists G (1) , . . . , G (:) ∈ �, C1, . . . , C: ∈ Q with C8 > 0
and

∑:
8=1 C8 = 1 such that G =

∑:
8=1 C8G

(8) . Take any 0 9 , with 9 ∈ �. We have that
0 9 · G = 0 9 · (

∑:
8=1 C8G

(8)) = ∑:
8=1 C8 (0 9 · G (8)) ≤

∑:
8=1 C86 9 = (

∑:
8=1 C8)6 9 = 6 9 , where

the inequality is true since G (1) , . . . , G (:) ∈ �≤6 90 9
. Therefore, G ∈ �≤6 90 9

. As 9 ∈ �
was arbitrary, it follows that G ∈ ⋂

8∈� �
≤68
08 , so the claim follows. �

Example 2.2.13. The converse of Proposition 2.2.12 is not true. Consider Γ = R
and � = [0, 1] ∩ Q. Note that every rational convex combination of � belongs to
�. On the other hand, we have that conv(�) = [0, 1] ≠ � since 1

c
∈ [0, 1] \ �.

Therefore, � is not a rational convex set.

Definition 2.2.14. Let� ⊂ Γ= be a rational closed convex set. The parallel subgroup
of � is the parallel subgroup of the rational affine hull of � and we denote it as
SG(�) := SG(aff(�)).

2.3 Rational boundary

Definition 2.3.1. Let Γ be a totally ordered abelian group. Consider a non-empty
rational closed convex set � ⊂ Γ=. A rational affine hyperplane �=60 is said to be a
supporting hyperplane for � if � ∩ �=60 ≠ ∅ and either � ⊂ �≤60 or � ⊂ �≥60 .

Without loss of generality, we may always suppose that � ⊂ �≤60 (by taking −0 and
−6 if necessary).

Definition 2.3.2. We say that a supporting hyperplane � is defined by 0 if � = �
=6
0

for some 6 ∈ Γ.

Lemma 2.3.3. Let � be a non-empty rational closed convex subset of Γ=. If there
exists a supporting hyperplane for �, say �=60 , defined by 0, then it is the only
supporting hyperplane for � defined by 0.

Proof. Suppose that�=ℎ0 is also a supporting hyperplane. In particular,�=ℎ0 ∩� ≠ ∅,
so there exist G ∈ � such that 0 · G = ℎ. As � ⊂ �≤60 , it follows that ℎ = 0 · G ≤ 6.
With a similar argument, we get that 6 ≤ ℎ, so 6 = ℎ. �

By Lemma 2.3.3 we can define such �=60 as the a-supporting hyperplane of � and
denote it by Π0 (�).
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Example 2.3.4. Consider � = Γ = R and 0 = 1. Recall that, for every 6 ∈ R, there
exists ℎ ∈ R such that 6 < ℎ. Then � ⊄ �≤61 , for every 6 ∈ R. We conclude that �
does not have an 1−supporting hyperplane.

Proposition 2.3.5. Let � ⊂ Γ= be a non-empty rational closed convex set. A vector
0 ∈ Z= is in SG(�)⊥ if and only if � is contained in the 0−supporting hyperplane
of �.

Proof. First we prove necessity. Let 0 ∈ SG(�)⊥ be an integer vector. By Propo-
sition 1.5.8, we have that 0 is constant on aff(�) considered as a linear operator.
Then, for every G ∈ � we have that 0 · G = 6, for some 6 ∈ Γ. Therefore, �=60 is the
0−supporting hyperplane of � and � ⊂ �=60 . Next we prove sufficiency. Suppose
that � ⊂ �=60 for some 6 ∈ Γ and �=60 is the 0−supporting hyperplane of �. We
see that aff(�) ⊂ �=60 because �=60 is a rational affine subspace. Then 0 is constant
in aff(�). By Proposition 1.5.8, it follows that 0 ∈ SG(�)⊥. �

Definition 2.3.6. Let � be a rational closed convex set. We say that a point
G ∈ Γ= is in the rational boundary of � if G ∈ � and there exists an integer vector
0 ∈ Z= \ SG(�)⊥ which defines an 0−supporting hyperplane for � and G ∈ Π0 (�).
The set of points in the rational boundary is denoted by mrat�. We define the rational
interior of � as intrat(�) := � \ mrat�.

Remark 2.3.7. If Γ is a totally ordered divisible abelian group and ∅ ≠ �≤60 , then
m�
≤6
0 = �

=6
0 .

2.4 Rational polyhedra

Definition 2.4.1. Let Γ be a totally ordered abelian group. For every integer matrix
� ∈ Z<×= and every I ∈ Γ= we define

%(�, I) := {G ∈ Γ= | �G ≤ I},

where the notation �G ≤ I means that 08 · G ≤ I8, for every 8, where 08 is the 8−th
row of �. We will say that % is a rational polyhedron if it is a finite intersection
of rational halfspaces, that is, % = %(�, I) for some matrix � ∈ Z<×= and some
I ∈ Γ=. For such %, we define the 0−face of % as

face0% := Π0 (%) ∩ %

if such 0−supporting hyperplane Π0 (%) exists. A subset � ⊂ % is a face of % if �
is an 0−face of % for some vector 0 ∈ Z=.
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Observe that every face of a rational polyhedron is a rational polyhedron, so their
dimension is well-defined. If dim(�) = dim(%) − 1, we say that � is a facet of %.
If dim(�) = 0, we say that � is a vertex of %.

Proposition 2.4.2. Let % ⊂ Γ= be a rational polyhedron. If � is a proper face of %,
then there exists 0 ∈ SG(%) such that � = face0 (%).

Proof. Let � = face0 (%) be a proper face of %, where 0 ∈ Z=. Note that if
0 = 0, then Π0 (%) = �=0

0 = Γ=, so face0 (%) = %, then � is not proper, which is a
contradiction. Then 0 ≠ 0. As 0 ∈ Z=, there exists E ∈ SG(%), F ∈ SG(%)⊥ such
that :0 = E + F, for some : ∈ Z \ {0}. Now, observe that

face0 (%) = face:0 (%)
= faceE+F (%)
= faceE (%),

where the last equality is true because F is constant in % (considered as a linear
operator). �

Proposition 2.4.3. The rational boundary of a non-empty rational polyhedron is
the union of its proper faces.

Proof. Let % ⊂ Γ= be a rational polyhedron and G ∈ mrat%. Then there exists 0 ∈
Z= \SG(%)⊥ such that G ∈ Π0 (%). Consider the face Π0 (%) ∩%. If Π0 (%) ∩% = %,
then % ⊂ Π0 (%), so 0 is constant in % as a linear operator, then by Proposition
2.3.5, we get that 0 ∈ SG(%)⊥, which is a contradiction. Therefore, Π0 (%) ∩ % is
a proper face of % and G ∈ Π0 (%) ∩ %. Now let G ∈ Π0 (%) ∩ % a proper face. By
Proposition 2.4.2, we may suppose that 0 ∈ SG(%). If 0 ∈ SG(%)⊥, then 0 = 0,
so Π0 (%) = Γ=, which contradicts the fact that Π0 (%) ∩ % is a proper face of %.
Therefore, 0 ∉ SG(%)⊥ which implies that G ∈ mrat(%). �

Proposition 2.4.4. Let % ⊂ Γ= be a rational polyhedron. If �, �′ are two faces of
% and �′ ⊂ �, then � = �′ or �′ is a proper face of �.

Proof. Let � = Π0 (%) ∩ % and �′ = Π1 (%) ∩ %. As �′ ⊂ � ⊂ %, we have that
�′ = Π1 (%) ∩�. Let us prove thatΠ1 (%) is a supporting hyperplane for �. Observe
that Π1 (%) = �=61 for some 6 ∈ Γ. Moreover, % ⊂ �≤6

1
and % ∩ �=6

1
≠ ∅. This

implies that � ⊂ �≤6
1
. Also, as ∅ ( % ∩ �=6

1
= �′ ⊂ �, we get that �=6

1
∩ � ≠ ∅.

Therefore,Π1 (%) is a supporting hyperplane for �, so �′ is a face of �. This implies
that if �′ ( �, then �′ is a proper face of �. �
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Proposition 2.4.5. Let % ⊂ Γ= be a rational polyhedron and consider two faces
�, �′ of %. If � ∩ �′ ≠ ∅, then � ∩ �′ is a face of %.

Proof. Let � = Π0 (%) ∩ % and �′ = Π1 (%) ∩ %, where the supporting hyperplanes
are of the form Π0 (%) = �

=6
0 and Π1 (%) = �=ℎ

1
, for some 6, ℎ ∈ Γ. Let F :=

0 + 1 ∈ Z=. Let us prove that �=60 ∩ �=ℎ1 ∩ % = �
=6+ℎ
F ∩ %. if G ∈ �=6+ℎF ∩ %,

then (0 + 1) · G = 6 + ℎ. As % ⊂ �≤60 ∩ �≤ℎ1 , we see that 0 · G ≤ 6 and 1 · G ≤ ℎ
and note that no inequality of these can be strict, because it would contradict that
0 ·G+1 ·G = 6+ℎ. Therefore 0 ·G = 6 and 1 ·G = ℎ. So �=6+ℎF ∩% ⊂ �=60 ∩�=ℎ1 ∩%.
As �=60 ∩�=ℎ1 ∩ % ⊂ �

=6+ℎ
F ∩ %, the claim follows. Moreover, note that % ⊂ �≤6+ℎF

and % ∩ �=6+ℎF = �
=6
0 ∩ �=ℎ1 ∩ % = �

′ ∩ � ≠ ∅, by hypothesis. This implies that
�
=6+ℎ
F is a supporting hyperplane for %. Therefore, �′ ∩ � is a face of %. �

Proposition 2.4.6. Let Γ be a dense-in-itself totally ordered abelian group. Let
% = %(�, I) ⊂ Γ= be a rational polyhedron. Denote by 08 the rows of matrix �.
Then mrat% = ∪{�=I808 ∩ % | 08 ∉ SG(%)⊥}.

Proof. Note that ∪{�=I808 ∩ % | 08 ∉ SG(%)⊥} ⊂ mrat%, because every �
=I8
08 ∩ % ≠ ∅

with 08 ∉ SG(%)⊥ is a proper face by Proposition 2.3.5, so the claim follows by
Proposition 2.4.3. Let us prove the reverse inclusion. If G ∈ mrat%, then there
exists a supporting hyperplane �=60 for % such that G ∈ �

=6
0 . By Proposition

2.4.2, we may suppose that 0 ∈ SG(%). Looking for a contradiction, suppose that
G ∉ ∪{�=I808 ∩ % | 08 ∉ SG(%)⊥}. As G ∈ %, we have that 08 · G < I8 for every 8 such
that 08 ∉ SG(%)⊥. As Γ is dense-in-itself, we may choose n ∈ Γ such that

0 < n < min
{
I8 − 08 · G
08 · 0

���� 08 · 0 > 0
}
.

Observe that, if 08 · 0 > 0, then 08 · G + n08 · 0 < I8, by construction. If 08 · 0 ≤ 0,
then also 08 · G + n08 · 0 < I8, because n08 · 0 ≤ 0 and 08 · G < I8. This implies that
G + n0 ∈ %. But �=60 is a supporting hyperplane for %, then % ⊂ �≤60 . This implies
that 6 + n ‖0‖2 = 0 · G + n ‖0‖2 = 0 · (G + n0) ≤ 6, which is a contradiction because
n > 0. Therefore, there exists 8 such that 08 ∉ SG(%)⊥ and G ∈ �=I808 ∩ % so the
claim follows. �

Remark 2.4.7. Observe that Proposition 2.4.6 implies that, in case that Γ is a
dense-in-itself group, then there exists �1, . . . , �# proper faces of % such that
mrat% = ∪#8=1�8.
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Corollary 2.4.8. Let Γ be a dense-in-itself totally ordered abelian group. Consider
a rational polyhedron % = %(�, I) ⊂ Γ=. Denote by 08 the rows of matrix � and
� = {8 | 08 ∉ SG(%)⊥}. Then G ∈ 8=C (%) if and only if 08 · G < I8 for every 8 ∈ �.

Proof. By definition, we have that intrat(%) = % \ mrat%, and by Proposition 2.4.6
the Corollary follows. �

Lemma 2.4.9. Let % and & be rational polyhedra of Γ= with % ⊂ &. If % ⊄ mrat&,
then intrat(%) ⊂ intrat(&).

Proof. Let us show that mrat& ∩ % ⊂ mrat%. If G ∈ mrat& ∩ %, then there exist a
0−supporting hyperplane�=I0 for& (which defines a proper face of& by Proposition
2.4.3) such that G ∈ �=I0 . Also, & ⊂ �≤I0 . This implies that % ⊂ �≤I0 and
% ∩ �=I0 ≠ ∅. We see that � := % ∩ �=I0 is a proper face of %, since otherwise
% ⊂ �=I0 ∩& ⊂ mrat&, which is a contradiction. Then�=I0 ∩% ⊂ mrat% by Proposition
2.4.3.

Now, if H ∈ intrat(%), then H ∈ % \ mrat%. This implies that H ∈ & but H ∉ mrat&, so
the claim follows. �

Lemma 2.4.10. Suppose that Γ is a divisible totally ordered abelian group. Let
� ⊂ Γ= be a rational closed convex set and % a rational polyhedron such that
� ⊂ mrat%. Then � is contained in one proper face of %.

Proof. Note that Γ is dense-in-itself by Remark 2.1.9. Now, by Remark 2.4.7,
there exists a finite number of proper faces �8 of % such that mrat% ⊂ ∪A8=1�8. Then
� ⊂ ∪A

8=1�8. Looking for a contradiction, suppose that � is not contained in
any proper face �: of %. Then, for each 8, there exists G8 ∈ � such that G8 ∉ �8.
Choose ? :=

∑A
8=1

1
A
G8. As� is a rational closed convex set, it follows that ? ∈ �. As

� ⊂ ∪A
8=1�8, there exists �: such that ? ∈ �: . Observe that �9 = {G ∈ % | 0 9 ·G = I 9 }

for every 9 . Then I: = 0: · ? = 1
A

∑A
8=1 0: · G8. Since G: ∉ �: , we have that

0: · G: < I: , and since G8 ∈ � ⊂ % ⊂ �≤I:0: we have that 0: · G8 ≤ I: for every 8 ≠ : ,
then I: = 1

A

∑A
8=1 0: · G8 < 1

A
AI: = I: , which is false. Therefore, there exists a proper

face �: such that � ⊂ �: . �

Corollary 2.4.11. Let % ⊂ Γ= be a rational polyhedron. Let� ⊂ mrat% be a rational
closed convex set. Then there exists a maximal proper face � of % such that � ⊂ �.
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Proof. Just observe that there is a finite non-zero number of proper faces of % that
contains � by Lemma 2.4.10. �

Corollary 2.4.12. Let Γ be a divisible totally ordered abelian group. The rational
interior of a non-empty polyhedron in Γ= is not empty.

Proof. Let % ≠ ∅ be a rational polyhedron. Suppose that intrat(%) = ∅. Then
% = mrat%. By Lemma 2.4.10, we have that % ⊂ �, where � is a proper face of %,
so we have a contradiction. Therefore, intrat(%) ≠ ∅. �

Corollary 2.4.13. Let Γ be a totally ordered divisible group and % = %(�, I) a
rational polyhedron in Γ=. We have the following:

1. mrat% = ∪8∈��8, where each �8 is a maximal proper face of %, the set � is
finite and �8 ⊄ �9 for every 8 ≠ 9 . Moreover, for every 8 ∈ �, we have that
�8 = �

=I8
08 ∩ %, for some 08 ∉ SG(%)⊥.

2. If � is a rational closed convex set and � ⊂ mrat%, then � ⊂ �9 for a maximal
proper face �9 of %.

Proof. This is just a consequence of Lemma 2.4.10, Corollary 2.4.11 and Proposi-
tion 2.4.6. �

Definition 2.4.14. A rational polyhedral complex over Γ= is a collection F := {�8}8
of rational polyhedra of Γ= such that:

1. ∅ ∈ F ;

2. for every �8 ∈ F , we have that every face � of �8 is also in F ;

3. if �, � ∈ F , then � ∩ � is a face of both � and �.
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C h a p t e r 3

INTRODUCTION TO TROPICAL GEOMETRY OVER A
TOTALLY ORDERED ABELIAN GROUP

In this chapter, we consider Γ as a totally ordered divisible abelian group. Here
we introduce the notion of Γ−tropical polynomial, which is a generalisation of a
tropical polynomial, but with coefficients in Γ. To every such polynomial, as in
the classical case, we associate a family of rational polyhedra which is a polyhedral
complex. In this chapter, we study some geometric properties of these objects.

3.1 The tropical semi-field and Γ-tropical polynomials
The order of (Γ, +, ≤) induces a semi-field TΓ given by the set Γ ∪ {∞} with the
following operations:

• g⊕ℎ := min{6, ℎ} and g⊕∞ := 6;

• g�ℎ := 6 + ℎ and g�∞ := ∞;

for every 6, ℎ ∈ Γ. Also, for every 6 ∈ Γ and : ∈ N, we will denote

6: := 6 � . . . � 6︸          ︷︷          ︸
k -times

and 6−: := (6−1): ,

where 6−1 := −6.

For 0 = (01, . . . , 0=) ∈ Z= and G = (G1, . . . , G=) ∈ Γ= we will denote G0 :=
G
01
1 � . . . � G

0=
= . Observe that 0 · G = G0, where 0 · G = ∑=

8=1 08G8.

A Γ-tropical polynomial in = variables with coefficients in the semi-field TΓ is an
expression of the form

5 (-) =
⊕
0∈E( 5 )

20 � -0, (∗)

where E( 5 ) ⊂ Z= is finite, -0 := -01
1 � . . . � -

0=
= and every 20 ∈ Γ. The set E( 5 )

will be called the support of 5 . The rational convex hull of the set of exponents of
5 is called the Newton polytope of 5 and it is denoted by # ( 5 ).

A Γ-tropical polynomial 5 in = variables induces a map 5 : Γ= → Γ given by

5 (G) =
⊕
0∈E( 5 )

20 � G0,
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for every G = (G1, . . . , G=) ∈ Γ=.

Definition 3.1.1. We say that a map 5 : Γ= → Γ is rational concave if, for every
G, G ( 9) ∈ Γ=, with 1 ≤ 9 ≤ < such that G is a rational convex combination of the
G ( 9) , say G =

∑<
9=1 C 9G

( 9) with
∑<
9=1 C 9 = 1 and C 9 ≥ 0 for all 1 ≤ 9 ≤ <, we have

that 5 (G) ≥ ∑<
9=1 C 9 5 (G ( 9)). On the other hand, we will say that a map 5 : Γ= → Γ

is rational convex if − 5 is rational concave.

Through this chapter, when we talk about a Γ-tropical polynomial 5 in = variables,
we will consider it as in (∗).

Proposition 3.1.2. Let 5 be a Γ-tropical polynomial. Then the induced map
5 : Γ= → Γ is rational concave.

Proof. Let 5 = ⊕0∈E( 5 )20 � G0. Suppose that G =
∑<
9=1 C 9G

( 9) with
∑<
9=1 C 9 = 1

and C8 ≥ 0 for all 1 ≤ 8 ≤ <. For every 9 , let 0 ( 9) ∈ E( 5 ) be such that 5 (G ( 9)) =
20 ( 9) � G ( 9)0

( 9) . Then, 20 ( 9) +0 ( 9) ·G ( 9) ≤ 20 +0 ·G ( 9) , for every 9 and every 0 ∈ E( 5 ).
As every C 9 ≥ 0, we get that C 920 ( 9) + C 90 ( 9) · G ( 9) ≤ C 920 + C 90 · G ( 9) . Adding those
inequalities, we get that for every 0 ∈ E( 5 ):∑<

9=1 C 9 5 (G ( 9)) =
∑<
9=1

(
C 920 ( 9) + C 90 ( 9) · G ( 9)

)
≤ ∑<

9=1

(
C 920 + C 90 · G ( 9)

)
= 20 +

∑<
9=1 C 90 · G ( 9) ,

where the last equality is true because
∑<
9=1 C 9 = 1. Finally, observe that 5 (G) =

20 +
∑<
9=1 C 90 · G ( 9) for some 0 ∈ E( 5 ), so the claim follows. �

3.2 Distinguished exponents
Let 5 be a Γ-tropical polynomial. Observe that for every G ∈ Γ=, there exists at least
one 0 ∈ E( 5 ) such that 5 (G) = 20 � G0.

Definition 3.2.1. Take a Γ-tropical polynomial 5 . The set

�G ( 5 ) := {0 ∈ E( 5 ) | 5 (G) = 20 � G0}

will be called the set of exponents distinguished by x. If there is no ambiguity,
we will denote �G = �G ( 5 ). Also, we will say that an exponent 0 ∈ E( 5 ) is
distinguished if 0 ∈ �G ( 5 ) for some G ∈ Γ=. The set of all distinguished exponents
will be denoted by DE( 5 ).
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Remark 3.2.2. Observe that if 5 is a Γ−tropical polynomial in = variables, then

6 =
⊕

0∈DE( 5 )
20 � -0

induces the same function as 5 .

Lemma 3.2.3. Consider a Γ-tropical polynomial 5 . The vertices of the Newton
polytope of 5 are distinguished exponents.

Proof. Let 0 be a vertex of # ( 5 ). Then there exists a supporting hyperplane �=Al
such that �=Al ∩ # ( 5 ) = {0} and # ( 5 ) ⊂ �

≥6
l . It follows that l · 1 > l · 0,

for every 1 ∈ E( 5 ) \ {0}. In particular, note that l · (1 − 0) ∈ N for every
1 ∈ E( 5 ) \ {0}. As Γ is totally ordered, we can choose 60 ∈ Γ such that 60 > 0
and 60 > max{20 − 21 | 1 ∈ E( 5 )} and this is well-defined since E( 5 ) is finite.
Observe that

(60l)1−0 = (1 − 0) · (60l) = [(1 − 0) · l]60 ≥ 60 > 0,

for every 1 ∈ E( 5 ) \ {0}. Choose H := 60l ∈ Γ=. Then we get that

H1−0 � 21 � (20)−1 ≥ 60 � 21 � (20)−1 > 0.

As H0−1�21� (20)−1 > 0, it follows that 21� H1 > 20� H0, for every 1 ∈ E( 5 ) \{0}.
Therefore, {0} = �H. �

Lemma3.2.4. Consider a Γ-tropical polynomial 5 . Let 0 ∈ E( 5 ) be a distinguished
exponent and {0 (8)}<

8=1 ⊂ E( 5 ). Suppose that 0 is a rational convex combination of
the 0 (8)’s, say 0 =

∑<
8=1 C80

(8) . Then 20 ≤
∑<
8=1 C820 (8) .

Proof. As 0 is a distinguished exponent, then there exists G ∈ Γ= such that 20 � G0 ≤
20 (8) � G0

(8) for every 8. As every C8 ≥ 0, we have that C8 (20 � G0) ≤ C8 (20 (8) � G0
(8) ).

Since
∑<
8=1 C8 = 1, we get that

20 � G0 = (∑<
8=1 C8) (20 � G0)

=
∑<
8=1 C8 (20 � G0)

≤ ∑<
8=1 C8 (20 (8) � G0

(8) )
=

∑<
8=1(C820 (8) � C8G0

(8) )
= (∑<

8=1 C820 (8) ) � (
∑<
8=1 C8G

0 (8) )
= (∑<

8=1 C820 (8) ) � (
∑<
8=1 G

C80
(8) )

= (∑<
8=1 C820 (8) ) � (G

∑<
8=1 C80

(8) )
= (∑<

8=1 C820 (8) ) � G0 .
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As 20 + 0 · G ≤ (
∑<
8=1 C820 (8) ) + 0 · G, the claim follows. �

Lemma 3.2.5. Let 5 be a Γ-tropical polynomial. Let G ∈ Γ= and 0 ∈ conv(�G) ∩
E( 5 ) such that 0 is a rational combination of elements 0 (8) ∈ �G . Then the
corresponding coefficients of 5 satisfy 20 ≥

∑<
8=1 C820 (8) . Moreover, we have 20 =∑<

8=1 C820 (8) if and only if 0 ∈ �G .

Proof. For every 8 = 1, . . . , <, we have that 0 (8) ∈ �G . If 0 ∉ �G , then 20 � G0 >
5 (G) = 20 (8) � G0

(8) , for every 8. As
∑<
8=1 C8 = 1, and every C8 ≥ 0, it follows that

20 � G0 >
∑<
8=1 C8 (20 (8) � G0

(8) )
=

∑<
8=1 C8 (20 (8) + 0 (8) · G)

=
∑<
8=1 C820 (8) +

∑<
8=1(C80 (8) · G)

=
∑<
8=1 C820 (8) + (

∑<
8=1 C80

(8)) · G
=

∑<
8=1 C820 (8) + 0 · G

=
∑<
8=1 C820 (8) � G0 .

Then 20 + 0 · G >
∑<
8=1 C820 (8) + 0 · G, so 20 >

∑<
8=1 C820 (8) .

If 0 ∈ �G , then 20 � G0 = 20 (8) � G0
(8) , for every 8. Arguing as before gives us

20 � G0 = (
∑<
8=1 C820 (8) ) � G0. Therefore, 20 =

∑<
8=1 C820 (8) . �

Proposition 3.2.6. Let 5 be a Γ-tropical polynomial. Given G ∈ Γ= and 0 ∈ E( 5 )
such that 0 is a rational combination of elements of �G . Then either 0 is an element
of �G or it is not a distinguished exponent.

Proof. Suppose that 0 ∉ �G . As 0 ∈ conv(�G) ∩ E( 5 ), we have, by Lemma 3.2.5,
that 20 ≥

∑<
8=1 C820 (8) . Moreover, as 0 ∉ �G , it follows that 20 >

∑<
8=1 C820 (8) . Now,

observe that, for every H ∈ Γ=, we have that

20 � H0 > (∑<
8=1 C820 (8) ) � H0

=
∑<
8=1 C820 (8) + 0 · H

=
∑<
8=1 C820 (8) + (

∑<
8=1 C80

(8)) · H
=

∑<
8=1 C8 (20 (8) + 0 (8) · H)

=
∑<
8=1 C8 (20 (8) � H0

(8) )
≥ ∑<

8=1 C8 5 (H)
= (∑<

8=1 C8) 5 (H)
= 5 (H),

where the last equality follows since
∑<
8=1 C8 = 1. Therefore, 0 is not a distinguished

exponent. �
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Corollary 3.2.7. Consider a Γ-tropical polynomial 5 . For every G ∈ Γ= we have
that

conv(�G) ∩ DE( 5 ) = �G .

Proof. If 0 ∈ �G , then it is a distinguished exponent of 5 and 0 ∈ conv(�G). The
other inclusion follows from Proposition 3.2.6. �

Lemma 3.2.8. Let 5 be a Γ-tropical polynomial. Let G (1) , . . . , G (<) ∈ Γ=. If
∩<
8=1�G (8) ≠ ∅, then there exists G ∈ Γ= such that �G = ∩<8=1�G (8) .

Proof. It is enough to show the case < = 2. Let l ∈ �G ∩ �H. Define

� :=

{
D ∈ Γ= cl � Dl = 20 � D0, for every 0 ∈ �G ∩ �H

cl � Dl ≤ 21 � D1, for every 1 ∈ E( 5 )

}
.

Observe that � is a rational polyhedron. As G ∈ �, we get that � ≠ ∅. By Corollary
2.4.12, there exists I ∈ intrat(�). Note that 2l� Il = 20� I0, for every 0 ∈ �G∩�H

because I ∈ �. Let 1 ∈ E( 5 ) \ (�G ∩ �H). Take the hyperplane

�1 := {D ∈ Γ= | 2l � Dl = 21 � D1}.

We have two cases:

1. � ∩ �1 = ∅. Then 2l � Il < 21 � I1.

2. �∩�1 ≠ ∅. Take D ∈ �∩�1. We have that 2l�Dl = 21 �D1, which implies
that (l − 1) · D = 21 − 2l. On the other hand, as 1 ∉ �G ∩ �H, without loss
of generality, we may suppose that 1 ∉ �G . Then 2l � Gl < 21 � G1, which
implies that (l − 1) · G < 21 − 2l. Therefore, (l − 1) is not constant (as a
linear operator) over �. By Proposition 2.3.5, we have that (l−1) ∉ SG(�)⊥.
Since I ∈ intrat(�), it follows by Corollary 2.4.8, that (l − 1) · I < 21 − 2l.
This implies that 2l � Il < 21 � I1.

As for every 1 ∈ E( 5 ) \ (�G ∩ �H) we have that 2l � Il < 21 � I1, it follows that
�I = �G ∩ �H. �

3.3 The associated polyhedra of a Γ−tropical polynomial
Let Γ be a totally ordered divisible group. Consider a Γ-tropical polynomial 5 . We
will consider the collection of subsets of Γ= given by Θ 5 := {�G | G ∈ Γ=}, where
�G := {H ∈ Γ= | �G ⊂ �H}.
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Definition 3.3.1. Let 5 be a Γ−tropical polynomial in = variables. The set Θ 5 is
called the associated polyhedra of 5 .

Proposition 3.3.2. For any Γ-tropical polynomial and G ∈ Γ=, �G is a rational
polyhedron.

Proof. Let 5 be a Γ-tropical polynomial. Let G ∈ Γ= and choose l ∈ �G . We have
that

�G =

{
D ∈ Γ= 2l � Dl = 20 � D0, for every 0 ∈ �G

2l � Dl ≤ 21 � D1, for every 1 ∈ E( 5 ) \ �G

}

=

{
D ∈ Γ= Dl−0 = 20 � (2l)−1, for every 0 ∈ �G

Dl−1 ≤ 21 � (2l)−1, for every 1 ∈ E( 5 ) \ �G

}

=

{
D ∈ Γ= (l − 0) · D = 20 − 2l, for every 0 ∈ �G

(l − 1) · D ≤ 21 − 2l, for every 1 ∈ E( 5 ) \ �G

}

=

D ∈ Γ
=

(l − 0) · D ≤ 20 − 2l, for every 0 ∈ �G

(l − 0) · D ≥ 20 − 2l, for every 0 ∈ �G

(l − 1) · D ≤ 21 − 2l, for every 1 ∈ E( 5 ) \ �G

 .
Therefore, �G is a rational polyhedron. �

Proposition 3.3.3. Let 5 be a Γ-tropical polynomial and G, H ∈ Γ=. If H ∈ mrat�G ,
then �G ( �H.

Proof. Let l ∈ �G . As in the proof of Proposition 3.3.2, we have that

�G =

{
D ∈ Γ= (l − 0) · D = 20 − 2l, for every 0 ∈ �G

(l − 1) · D ≤ 21 − 2l, for every 1 ∈ E( 5 ) \ �G

}
.

As H ∈ mrat�G , then �G ⊂ �H and also H ∉ intrat(�G). Then, by Corollary 2.4.8,
there exist 1 ∈ E( 5 ) \ �G such that (l − 1) · H = 21 − 2l. This implies that
2l � Hl = 21 � H1. As l ∈ �H, it follows that 21 � H1 = 2l � Hl ≤ 20 � H0 for
every 0 ∈ E( 5 ), so the claim follows since 1 ∈ �H \ �G . �

Lemma 3.3.4. Let 5 be a Γ-tropical polynomial and G, H ∈ Γ=. If �G ( �H, then
for every 1 ∈ �H \ �G , the set

�1 := {I ∈ Γ= | 20 � (21)−1 = I1−0},

where 0 ∈ �G , is a supporting hyperplane of �G .
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Proof. Let 1 ∈ �H \ �G and 0 ∈ �G . Observe that H ∈ �G since �G ⊂ �H. Also,
H ∈ �1 since 1 ∈ �H. Then �1 ∩ �G ≠ ∅. On the other hand, for every D ∈ �G , we
have that 20 � D0 ≤ 21 � D1 because 0 ∈ �G . Then 20 � (21)−1 ≤ D1−0. Therefore,
�1 is a supporting hyperplane of �G . �

Proposition 3.3.5. Let 5 be a Γ-tropical polynomial and G, H ∈ Γ=. If �G ( �H,
then �H is a proper face of �G .

Proof. First we prove that �H = �G
⋂
1∈�H\�G

�1, where the �1 are as in Lemma
3.3.4. Let 0 ∈ �G . If D ∈ �G

⋂
1∈�. \�G

�1, then �G ⊂ �D. In particular, 0 ∈ �D.
Also, for every 1 ∈ �H \ �G we have that 21 � D1 = 20 � D0. Then �H ⊂ �D, so
D ∈ �H. On the other hand, we have that �H ⊂ �G and �H ⊂

⋂
1∈�. \�G

�1, so the
claim follows.

Now, by Lemma 3.3.4, we have that every �1 is a supporting hyperplane for �G ,
for every 1 ∈ �H \ �G . Then every such �G ∩ �1 is a face of �G and ∅ ( �H ⊂
�G ∩ �1 ∩ �1′ so �G ∩ �1 ∩ �1′ ≠ ∅, for every 1, 1′ ∈ �H \ �G . By Proposition
2.4.5, it follows that the finite intersection �H

⋂
1∈�. \�G

�1 = �H is a face of �G .

Finally, if �G = �H, then �G = �H, which is a contradiction. Therefore, �H is a
proper face of �G . �

Proposition 3.3.6. Let 5 be a Γ-tropical polynomial and G, H ∈ Γ= be such that
�G ⊄ �H and �H ⊄ �G . Then �G ∩ �H ⊂ mrat�- ∩ mrat�H.

Proof. Let D ∈ �G ∩�H. Then �G ∪�H ⊂ �D. As �G ⊄ �H and �H ⊄ �G , it follows
that �G ( �D and �H ( �D. Then by Proposition 3.3.5, it follows that �D is a
proper face of �G and �H. By Proposition 2.4.3, it follows that �D ⊂ mrat�G ∩ mrat�H,
so D ∈ mrat�G ∩ mrat�H and the claim follows. �

Proposition 3.3.7. Let 5 be a Γ-tropical polynomial. Let G ∈ Γ=. If � is a non-empty
face of �G , then exists H ∈ Γ= such that �H = �.

Proof. By the proof of Proposition 3.3.2, we have that

�G =

D ∈ Γ
=

(l − 0) · D ≤ 20 − 2l, for every 0 ∈ �G

(l − 0) · D ≥ 20 − 2l, for every 0 ∈ �G

(l − 1) · D ≤ 21 − 2l, for every 1 ∈ E( 5 ) \ �G

 ,
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wherel ∈ �G . Observe that �G = %(�, I), where the matrix � has rowsl−0, 0−l
and l − 1, and respectively, I has entries 20 − 2l, 2l − 20 and 21 − 2l, for every
0 ∈ �G and 1 ∈ E( 5 ) \ �G .

We have two cases:

1. If � is a maximal proper face of �G , then by Corollary 2.4.13, there exists a
proper face �G ∩�

=2V−2l
l−V such that � ⊂ �G ∩�

=2V−2l
l−V , where V ∈ E( 5 ) \�G .

As � is a maximal proper face of �G , it follows that � = �G ∩ �
=2V−2l
l−V . This

implies that

� =

D ∈ Γ
=

(l − 0) · D = 20 − 2l, for every 0 ∈ �G

(l − V) · D = 2V − 2l,
(l − 1) · D ≤ 21 − 2l, for every 1 ∈ E( 5 ) \ (�G ∪ {V})

 .
Define

� := {1 ∈ E( 5 ) | l − 1 is constant in � and 1 ∉ �G}.

It follows that

� =

D ∈ Γ
=

(l − 0) · D = 20 − 2l, for every 0 ∈ �G

(l − 1) · D = 21 − 2l, for every 1 ∈ �
(l − 3) · D ≤ 23 − 2l, for every 3 ∈ E( 5 ) \ (�G ∪ �)

 .
As � is a face of �G , we have that � ≠ ∅. Therefore, as Γ is divisible, by
Corollary 2.4.12 we have that intrat(�) ≠ ∅. Take H ∈ intrat(�). By Corollary
2.4.8, we have that

(l − 0) · H = 20 − 2l, for every 0 ∈ �G ,

(l − 1) · H = 21 − 2l, for every 1 ∈ �
(l − 3) · H < 23 − 2l, for every 3 ∈ E( 5 ) \ (�G ∪ �).

This implies that �H = �G ∪ �. Then � = {D ∈ Γ= | �H ⊂ �D} = �H, so the
claim follows.

2. Suppose that � is not amaximal proper face of �G . Observe that, as |DE( 5 ) | <
∞, we only have a finite number of sets of the form �H. Choose a minimal set
�H subject to the condition � ⊂ �H, which exists since � ⊂ �G . Suppose that
� is not a proper face of �H. As � is a rational closed convex set, by Corollary
2.4.13 there exists a maximal proper face �′ of �H such that � ⊂ �′ ( �H.
By 1, we know that �′ = �I, for some I ∈ Γ=, so we get a contradiction to the
minimality of �H. Therefore � is a maximal proper face of �H. By 1, we get
that there exists I ∈ Γ= such that � = �I. �
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Proposition 3.3.8. Let 5 be a Γ-tropical polynomial. If �G ∩ �H ≠ ∅, for some
G, H ∈ Γ=, then there exists I ∈ Γ= such that �G ∩ �H = �I.

Proof. First observe that, if �G ∩ �H = ∅, then �G ∩ �H = ∅. Then we may choose
l ∈ �G ∩ �H since �G ∩ �H ≠ ∅ by hypothesis. Denote � := �G ∩ �H. By the proof
of Proposition 3.3.2 we have the following descriptions of both �G and �H:

�G =

{
D ∈ Γ= (l − 0) · D = 20 − 2l, for every 0 ∈ �G

(l − 1) · D ≤ 21 − 2l, for every 1 ∈ E( 5 ) \ �G

}
,

�H =

{
D ∈ Γ= (l − 0) · D = 20 − 2l, for every 0 ∈ �H

(l − 1) · D ≤ 21 − 2l, for every 1 ∈ E( 5 ) \ �H

}
.

Let 1 ∈ E \ �H. Let us make the following observations:

1. If 1 ∈ �G , then �G ∩ �≤21−2ll−1 = �G ∩ �=21−2ll−1 = �G , by the description of �G
shown above.

2. if 1 ∉ �G , then �G ∩ �≤21−2ll−1 = �G , again, by the description of �G shown
above.

Then, by considering 1 and 2 above, we get that

�G ∩ �H = �G
⋂

0∈�H\�G

�=20−2ll−0 ,

which is a finite intersection since E( 5 ) is finite.

Now, denote the elements of �H \ �G as 01, . . . , 0<. Then we have that

�G ∩ �H = �G
<⋂
8=1

�
=208−2l
l−08 .

Finally, let us make an induction argument to finish this proof. Concretely, we want
to show that, for any : ≤ |�H \ �G |, we have that

�G

:⋂
8=1

�
=208−2l
l−08 = �I: ,

for some I: ∈ Γ=.

Consider the case : = 1. As �G ∩ �H ≠ ∅, it follows that �G ∩ �
=201−2l
l−01 ≠ ∅, so

�
=201−2l
l−01 is a supporting hyperplane for �G , since �G ⊂ �

≤201−2l
l−01 . Moreover, we get
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that �G ∩ �H is a non-empty face of �G , so by Proposition 3.3.7, there exist I1 ∈ Γ=

such that �G ∩ �H = �I1 .

Next, suppose that for some : ≤ |�H \ �G |, we have that

�G

:⋂
8=1

�
=208−2l
l−08 = �I:

for some I: ∈ Γ=. Suppose also that : + 1 ≤ |�H \ �G |. Then we have that

�G

:+1⋂
8=1

�
=208−2l
l−08 = �I: ∩ �

=20:+1−2l .
l−0:+1

We claim that �=20:+1l−0:+1 is a supporting hyperplane for �I: . By inductive hypothesis,
we have that

�I: =

{
D ∈ Γ= (l − 0) · D = 20 − 2l, for every 0 ∈ �G ∪ {01, . . . , 0: }

(l − 1) · D ≤ 21 − 2l, for every 1 ∈ E( 5 ) \ (�G ∪ {01, . . . , 0: })

}
.

As 0:+1 ∉ �G ∪ {01, . . . , 0: }, it follows that �I: ⊂ �
≤20:+1−2l
l−0:+1 . On the other hand,

as �G
⋂|�H\�G |
8=1 �

=208−2l
l−08 = �G ∩ �H ≠ ∅, it follows that �I: ∩ �

=20:+1−2l
l−0:+1 ≠ ∅, since

: +1 ≤ |�H \�G |. Therefore, �I: ∩�
=20:+1−2l
l−0:+1 is a face of �I: . Then, by Proposition

3.3.7, there exists I:+1 ∈ Γ= such that

�I: ∩ �
=20:+1−2l
l−0:+1 = �I:+1 ,

so the claim follows.

Finally, by choosing : = |�H \ �G | and using our work above, we conclude that
there exists I ∈ Γ= such that �G ∩ �H = �G

⋂<
8=1 �

=208−2l
l−08 = �I. �

Theorem 3.3.9. Let 5 be a Γ-tropical polynomial. The collection F5 = {�G : G ∈
Γ=} ∪ {∅} is a rational polyhedral complex over Γ=.

Proof. Let �G ∈ F5 . Let � be a non-empty face of �G . By Proposition 3.3.7,
there exists I ∈ Γ= such that � = �I, so � ∈ F5 . On the other hand, consider
�G , �H ∈ F5 such that �G ∩ �H ≠ ∅. By Proposition 3.3.8, there exists F ∈ Γ= such
that �G ∩ �H = �F. Observe that �F ⊂ �G , then, as F ∈ �F, we get that �G ⊂ �F.
By Proposition 3.3.5, this implies that �F is a face of �G . Similarly, we can prove
that �F is a face of �H, so the theorem follows. �

39



A p p e n d i x A

FOURIER-MOTZKIN ALGORITHM FOR TOTALLY ORDERED
GROUPS

Classical Fourier-Motzkin algorithm is a very useful method in convex geometry
over R=. Its main idea resembles Gauss Elimination Method for matrices. Its
usefulness lies not only in the fact that it allows us to eliminate variables in a system
of inequations, but also in the fact that it allows us to prove Farkas’ Lemma, which
has a central role in convex geometry. See, for example [6] and [16].

In this appendix we show that the classical Fourier-Motzkin algorithm is still valid
not only forR, but for totaly ordered groups as well. We hope that this may be useful
to develop a theory of convex geometry over totally ordered abelian groups.

Consider a rational polyhedron % := %(�, I) ⊂ Γ3 . Consider the set {G ∈ Γ3 | G: =
0}, where G: is the :−th entry of G. Let us define the following sets:

proj: (%) = {G − G:4: | G ∈ %},

elim: (%) = {G − C4: | G ∈ %, C ∈ Γ},

where every 4: ∈ Q3 is the vector with 1 in the :-th entry and 0 everywhere else.

Theorem A.1.1 (Fourier-Motzkin Algorithm). Let Γ be a totally ordered divisible
group, � ∈ Q<×3 , I ∈ Γ< and : ≤ 3. Denote by 08 the rows of �. Consider the
matrix �/: and the vector I/: defined as follows:

�/: =


08, for all 8 such that 08: = 0

08:0 9 + (−0 9 :08), for all 8, 9 such that 08: > 0 and 0 9 : < 0
,

I/: =


I8, for all 8 such that 08: = 0

08: I 9 + (−0 9 : )I8, for all 8, 9 such that 08: > 0 and 0 9 : < 0
.

Then
elim: (%) = %(�/: , I/: )

proj: (%) = %(�/: , I/: ) ∩ {G ∈ Γ3 | G: = 0}.
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Proof. Fix : ≤ 3. Denote
�0 := {8 | 08: = 0},

�+ := {8 | 08: > 0},

�− := {8 | 08: < 0}.

Suppose that G ∈ %(�/: , I/: ). Then for every (D, 8, 9) ∈ �0 × �+ × �− we have that

0D · G ≤ ID

[08:0 9 + (−0 9 :08)] · G ≤ 08: I 9 + (−0 9 : I8).

Observe that the validity of these inequalities does not depend on the value of G: .
Also, notice that for every (8, 9) ∈ �+ × �− we have that

08:0 9 · G − 08: I 9 ≤ −(−0 9 : )08 · G + (−0 9 : )I8 . (∗)

Also, for every (8, 9) ∈ �+ × �− we have that 08: (−0 9 : ) > 0, so, by multiplying (∗)
by 1

08: (−0 9: ) we obtain

0 9

0 9 :
· G − 1

−0 9 :
I 9 ≤ −

1
08:
08 · G +

1
08:

I8, (∗∗)

for every (8, 9) ∈ �+ × �−. Notice that the left-hand side of (∗∗) is indexed by 9 ∈ �−

while the right-hand side is indexed by 8 ∈ �+ (: is fixed). Denote these linear
functions of G as � 9 (G) and �8 (G), respectively. It follows that

max 9∈�−� 9 (G) ≤ min8∈�+�8 (G)

As Γ is divisible, we can take H ∈ Γ such that max 9∈�−� 9 (G) ≤ H ≤ min8∈�+�8 (G).
It follows that, for every (8, 9) ∈ �+ × �−, we have 0 9 · G − I 9 ≤ −0 9 : H = −0 9 · (H4: )
and 08 · (H4: ) = 08: H ≤ −08 · G + I 9 , which implies that 0 9 · (G + H4: ) ≤ I 9 and
08 · (G + H4: ) ≤ I8, so G + H4: ∈ %(�, I). Therefore, G ∈ elim: (%).

Now, if G ∈ elim: (%), then G ∈ %(�/: , I/: ), because the inequalities defined by
�/:G ≤ I/: do not depend on the :−th entry. Therefore, elim: (%) = %(�/: , I/: ).

Next we prove that proj: (%) = %(�/: , I/: ) ∩ {G ∈ Γ3 | G: = 0}. If G ∈ proj: (%),
then G: = 0 and exists H ∈ Γ such that G + H4: ∈ %(�, I). As the set of inequalities
�/:G ≤ I/: does not depend on the :−th entry, it follows that G ∈ %(�/: , I/: ).
Therefore proj: (%) ⊂ %(�/: , I/: ) ∩ {G ∈ Γ3 | G: = 0}. On the other hand,
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if G ∈ %(�/: , I/: ) ∩ {G ∈ Γ3 | G: = 0}, by our work above, it follows that
G ∈ elim: (%). Then G = D − C4: , for some D ∈ %, C ∈ Γ. As G: = 0, we see that
D: = C, so G = D − D:4: ∈ proj: (%), so %(�/: , I/: ) ∩ {G ∈ Γ3 | G: = 0} ⊂ proj: (%),
and the theorem follows. �

The proof of Theorem A.1.1 is strongly based on ideas found in [6].

In particular, observe that both elim: (%) and proj: (%) are rational polyhedra. Con-
sider again the matrix �/: . Observe that every row

08:0 9 + (−0 9 :08)

of the matrix �/: is a linear combination of rows of � with positive scalars. Then,
there exists amatrix� (:) with non-negative rational entries and, atmost, two positive
entries per row, such that � (:)� = �/: . This way, we have that

elim: (%(�, I)) = %(�/: , I/: ) = %(� (:)�,� (:)I).

Recall also that the system of inequalities �/:G ≤ I/: is a system in terms of
G1, . . . , G:−1, G:+1, . . . , G3 variables. Inductively, we have that

elim1elim2 . . . elim3 (%(�, I)) = %(� (1)� (2) · · ·� (3)�,� (1)� (2) · · ·� (3)I)
= %(��,�I),

where� is a non-negative rationalmatrix. Denote 2B as the rows of�, for some index
set �. Observe that the system ��G ≤ �I is a system of the form 0 ≤ 6B := 2B · I,
for every B, since it does not depend on any G8 variables.

With this analysis, we can prove a Farkas-Gale Lemma for totally ordered groups.

Theorem A.1.2 (Farkas-Gale Lemma). Let Γ be a totally ordered divisible group.
Consider a rational polyhedron % := %(�, I). Then one of the following occurs, but
not the other:

1. % ≠ ∅

2. There exists a row vector 2 ≥ 0 such that 2� = 0 and 2 · I < 0

Proof. First we show that 1 and 2 cannot occur simultaneously. Suppose 1 and 2.
Take G ∈ %(�, I). We have that �G ≤ I. As 2 ≥ 0, it follows that 2�G ≤ 2 · I, but
since 2� = 0, this is 0 ≤ 2 · I < 0, which is a contradiction. Therefore, 1 and 2
cannot occur simultaneously.
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Now suppose that %(�, I) = ∅. Observe that, by definition, we get that elim3 (%) =
∅. By our previous analysis, this implies that

elim1elim2 . . . elim3−1(∅) = %(��,�I).

As for every : ≤ 3, we have that elim: (∅) = ∅, by an induction argument, we get
that ∅ = %(��,�I). Therefore, exists B′ such that 2B′ · I < 0 for if, for every B we
have 2B · I ≥ 0, then as the system �� ≤ �I is of the form 0 ≤ 2B · I, we would
get that ∅ = %(��,�I) = Γ3 , which is false. Observe also that 2B′� = 0, since the
system ��G ≤ �I is a system of the form 0 ≤ 6B := 2B · I, for every B. �

Example A.1.3. Let Γ = R2 with lexicographical order. Consider the system of
inequalities given as


(G1, G2) + 2(H1, H2) ≤ (−1, 0)

3(G1, G2) + (H1, H2) + 2(I1, I2) ≤ (3, 2)
−4(G1, G2) − 3(H1, H2) − 2(I1, I2) ≤ (−3, 0)

,

where (G1, G2), (H1, H2), (I1, I2) ∈ Γ.

Let us determine if this system has a solution ((G1, G2), (H1, H2), (I1, I2)) ∈ Γ3.
Observe that the system can be written in matrix form as �F ≤ I, where

� =


1 2 0
3 1 2
−4 −3 −2

 ,

F =


(G1, G2)
(H1, H2)
(I1, I2)

 ,
I =


(−1, 0)
(3, 2)
(−3, 0),

 .
For the vector 2 := (1, 1, 1), we have that 2� = 0, 2 ≥ 0 and 2 · I = (−1, 2) < (0, 0).
By Theorem A.1.2, it follows that the system of inequalities �F ≤ I has no solutions
in Γ3.

Corollary A.1.4. Let Γ be a totally ordered abelian group and = ∈ N. The following
are equivalent:
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(a) For every rational polyhedron % := %(�, I) ⊂ Γ= one of the following occurs,
but not the other:

1) % ≠ ∅;

2) There exists a row vector 2 ≥ 0 such that 2� = 0 and 2 · I < 0.

(b) Γ is divisible.

Proof. Let us prove sufficiency by contrapositive. Suppose that Γ is not divisible,
then there exists < ∈ N and 6 ∈ Γ such that the equation <G = 6 does not have a
solution in Γ. Take % := �≤H< ∩ �≤−H−< ⊂ Γ. Observe that % = ∅. If there exists
an integer 2 ≥ 0 such that 2(< − <) = 0 and 2(H − H) < 0, then 0 < 0, which is a
contradiction. Therefore neither 1 or 2 occur. On the other hand, necessity follows
from Theorem A.1.2, so the claim follows. �
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LIST OF SYMBOLS

N, Z, Q the set of natural numbers, the set of integers, the set of rational
numbers

" ⊗� # the tensor product of �−modules " and # over a commutative
ring �

" × # the cartesian product of " and #
(−1Γ localisation of Γ over (
div(Γ) the divisible hull of Γ
ker()) kernel of a group homomorphism
ℎ |* restriction of a function

〈01, 02, . . .〉Z the set of Z− linear combinations of the 08’s.
We use the same symbol for Q

kerΓ= (�) the kernel of a linear operator � over Γ=

0 a =−tuple of zeroes
SG(!) the parallel subgroup of !
dim(*) the dimension of*
null(�) nullity of matrix �
"⊥ the orthogonal complement of "

aff(*) the affine hull of*
�/� the quotient group of � by �
�
≤6
0 the rational halfspace defined by 0 and 6

�
=6
0 the rational hyperplane defined by 0 and 6

intrat(�) the rational interior of a rational closed convex set �
mrat(�) the rational boundary of a rational closed convex set �
%(�, I) the rational polyhedron defined by matrix � and =−tuple I
%80 (�) the 0− supporting hyperplane for a given closed convex set �
face0% the 0−face of a polyhedron
6 ⊕ ℎ the tropical sum of 6 and ℎ
6 � ℎ the tropical product of 6 and ℎ
TΓ the tropical semi-field induced by Γ
�G the set of distinguished exponents by G
DE(%) the set of all distinguished exponents of a Γ-tropical polynomial %
N(%) the Newton polytope of a Γ-tropical polynomial %

conv(*) the convex hull of a set*
| |E | | =

»∑
E2
8

the euclidean norm of a vector E = (E1, . . . , E=)
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INDEX OF DEFINITIONS

Γ-tropical polynomial, 30, 31, 33–36
support of, 30

Γ − 2><18=0C8>=, 6

a-face, 26
A-module, 2, 3

localisation of, 3, 4
rank, 9

abelian group, 1, 4, 5, 14
divisible, 2, 4, 5
minimal, 4

free, 9
torsion-free, 1–4, 6, 7, 10–12,

15–17, 19, 20
totally ordered, 19, 20, 22, 24, 25
dense-in-itself, 20, 27, 28, 35
divisible, 20, 25, 28, 29, 32,
34, 36, 39, 40, 42

affine hull, 18
associated polyhedra, 35

dimension, 14
of rational linear space, 18

distinguished exponent, 31–33

Fourier-Motzkin Elimination
Method, 40

G-combination
G-independent, 6

hull
affine
rational, 24

divisible, 4, 20
rational convex, 23, 30

mapping
bilinear, 2
linear, 2

minimal divisible subgroup, 4
multiplication

by an element of a group, 5
dot, 8
scalar, 5

order
of a group, 30
lexicographic, 43
of an element, 1
finite, 1

total, 19

polytope
Newton, 30
vertex of, 32

rational
affine
hyperplane, 15, 24
subspace, 15–17

boundary, 25, 26, 29
closed convex set, 23–25
non-trivial, 28, 29

combination, 6, 23
affine, 16
convex, 6

concave, 31
convex
map, 31

halfspace, 20–23
interior, 25, 28, 29
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linear
hyperplane, 12, 15
subspace, 12, 15, 16

polyhedral complex, 29, 39
polyhedron, 25–29, 35, 40, 42, 44
face of, 26
a-face of, 25
face of, 25–29, 36
facet of, 26
vertex of, 26

ring
commutative, 3

semifield, 30
set

multiplicatively closed, 3

of exponents
distinguished by an element, 31

subgroup
divisible
minimal, 4

essential, 3, 4
linear, 8, 9
parallel, 12, 14, 24

supporting hyperplane, 24, 35
a-supporting hyperplane, 24, 25
defined by, 24

system of equations, 4
compatible, 4, 5, 15

tensor product, 2
total order, 20
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