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DIRECTOR DE LA TESIS: DR. RAMÓN GABRIEL PLAZA VILLEGAS
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—Man, what are you talking

about? Me in chains? You may

fetter my leg but my will, not even

Zeus himself can overpower.

Epictetus Introduction

The present work investigates the local in time well-posedness problem for a system
of hyperbolic-parabolic partial differential equations. We deal with the Cauchy
problem (pure initial value problem) in both cases,

(i) the linear non-autonomous one (eqs: (3.1)-(3.3)); and
(ii) the quasilinear case (eqs. (4.1)-(4.3)).

This problem has been fairly studied before, for example, in the purely hyperbolic
symmetric case one can revise [24], [31], [36], [42], [44] and in the composite
hyperbolic-parabolic case we have the standard literature [25], [38], [47], [54]. In
particular, we took interest in the works of Kawashima ([25]) and Serre ([47]).
Is fair to say that, in general, all the previous references deal with an equation of
the form

A0(U)Ut +Ai(U)∂iU −Bij(U)∂i∂jU +D(U)U = F (U ;DxU), (0.1)

where the summation convention has been used. Here U stands as the variable to
be determined and is such that U = U(x, t) ∈ R

N for all (x, t) ∈ R
d × [0, T ] for

some T > 0 given. The coefficients are matrices of order N ×N .
On one hand, in [25], Kawashima states and proves the local existence and unique-
ness for the quasilinear case of a hyperbolic-parabolic equations. He uses the stan-
dard method known as linearization and fixed point. The essence of this method
is first to show the local well-posedness for the Cauchy problem of the linearized
version of (0.1) (equation (0.2)) and prove sufficiently strong energy estimates.
Then, such estimates are used to define a Banach space Y , a subset X ⊂ Y and an
operator T such that T : X → X is well-defined as T (U) = V , where

A0(U)Vt +Ai(U)∂iV −Bij(U)∂i∂jV +D(U)V = F (U ;DxU), (0.2)

notice that, in particular, this means that X is invariant with respect to T . Then
one shows that this operator (in fact some extension of it, see chapter 4, theorem
4.5.1) has a unique fixed point, U∞ and due to some regularity considerations one
shows that U∞ is in fact the solution to the initial value problem associated to
equation (0.1).
In Kawashima’s case, it is assumed that the linearized equations (0.2) are decoupled,
or more precisely, there is a partition of N such that U = (u1, u2) where u1 ∈ R

n,
u2 ∈ R

k and n + k = N (and also for the solution V = (v1, v2)); there is a
block structure in the matrix coefficients of (0.2), such that, equation (0.2) can be
rewritten as two separate equations, one purely hyperbolic and another strongly
parabolic, namely

A0
1(u1, u2)∂tv1 +Ai

11(u1, u2)∂iv1 = f1(U,Dxu2),

A0
2(u1, u2)∂tv2 −Bij

22(u1, u2)∂i∂jv2 = f2(U,DxU).
(0.3)

In this way, obtaining the energy estimates for V is the same as obtaining an en-
ergy estimate for v1 and another for v2, that is, by a separate procedure. Once the

3



4 INTRODUCTION

energy estimates are computed, one can prove the local existence and uniqueness
of solutions with evolution semigroup theory (under certain structural assumptions
for the coefficient matrices of course). Moreover, in [27] he shows that if a system
of the form (0.1) is derived from a set of viscous conservation laws, condition N is
satisfied and the system is symmetrizable (which is equivalent to the existence of a
convex entropy function), then there is a diffeomorphism that turns (0.1) into the
quasilinear version of (0.3), a system in normal form. Part of Kawashima’s bril-
liance came to reduce the local existence of the initial value problem for quasilinear
systems derived from conservation viscous laws, to the existence of the symmetrizer
(and thus, the existence of the convex entropy function) and to the verification of
condition N, which seems to serve computational purposes only, but is satisfied
by the compressible, viscous, heat conducting Navier-Stokes equations ([48]), and
in fact, as Serre points out ([47]), these condition can be understood as a natural
block structure for the diffusion terms.
On the other hand, in [47], Serre shows the local existence for a system of the
form (0.1) when is derived from a set of viscous balance laws that are entropy dis-
sipative. Contrary to Kawashima’s result [25] he does allow coupling between the
hyperbolic and parabolic variables, yet his system is fully symmetrized and it has
its own normal form. He also uses the linearization and fixed point method, but
it would be unfair to only stated that way. Through his approach, he manages
to improve Kawashima’s regularity requirements for the initial data. He, in fact,
enlarges the class of initial data by only requiring that s > d

2 + 1, not only that, s
can be a positive real number. In Kawashima’s results s ≥ s0 +1 and s is an integer
(is it is our case, see assumption H3). Serre also assumes that the diffusion in (0.1)
is in divergence form and do not considers the existence of high-order terms. His
approach depends on the existence of the convex entropy function that is strongly
dissipated by the diffusion.

In the work presented here, we consider a coupled system of hyperbolic-parabolic
partial differential equations. In fact, contrary to Kawashima’s case, we consider
the coupled hyperbolic and parabolic variables during the treatment of the lin-
earized version of our system (eqs. (3.1)-(3.3)). Contrary to Serre’s case we do
not assume any type of conservative structure for the equation (0.1). A particu-
lar block matrix decomposition is assumed together with a partition of U into a
triplet U = (u, v, w)⊤ such that u ∈ R

n, v ∈ R
k, w ∈ R

p and n+ k + p = N . This
structure allows coupling between hyperbolic (u,w) and parabolic (v) variables and
does not allow coupling between hyperbolic variables (u,w). As we will explain,
this assumption is satisfied by physical systems. Although our system is not decou-
pled, we manage to decouple the linearized energy estimates and thus finding the
respective regularity requirements for each variable. We use the standard energy
method. The reader might ask him or herself, what’s the difference against assum-
ing a linear system of the form (0.3)? We can give a somewhat intuitive answer to
this with the following formal argument. Consider a scalar equation for a variable
u for which hyperbolic regularity is expected, lets say

ut + ux + u = f.

If we use the energy method to estimate the solution in some Sobolev-Hilbert space
with norm ‖·‖, and inner product (·, ·) (in fact, it will be enough to think that, ‖·‖,
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is the L2(Rn)-norm, to grasp the general idea) then at some point we will obtain

‖u‖ d
dt

‖u‖ ≤ C
(
‖f‖‖u‖ + ‖u‖2

)

for some positive constant C independent of u. Then, dividing by ‖u‖ and applying
Gronwall’s and Hölder’s inequalities we get the estimate (see, [25], the proof of
inequality (2.16)1)

‖u‖2 ≤ eCt

{
‖u0‖2 + t

(∫ t

0

‖f‖2

)}
.

Notice the appearance of the factor t in front of the Bochner’s norm of f . Now,
imagine that we have a coupled variable v, for which parabolic regularity is ex-
pected, involved in the dynamics of u, i.e.

ut + aux + u+ bvx = f. (0.4)

for some constants a and b, and assume the equation for v is of the form

vt − c0vxx − ux = g, (0.5)

for some positive constant c0. If we apply the same steps as in the previous case, for
equation (0.4), when dividing by ‖u‖, before getting to use Gronwall’s inequality,
we will obtain the estimate

d

dt
‖u‖ ≤ C (‖f‖ + ‖u‖ + ‖vx‖) . (0.6)

Observe that, this way of proceed, isolates the term ‖vx‖ in the right hand side
of the estimate. We could integrate (0.6), apply Hölder’s inequality and squaring
it to get one more time the t factor, however, we still be in need to deal with an
equation of the new variable v, and since parabolic regularity is expected for it, the
term involving ‖vx‖2 would be isolated in the left hand side of the respective energy
estimate (see (2.32) for example). Adding both estimates would yield an inequality
unfit to the application of Gronwall’s inequality. In order to avoid this undesirable
inequality the right procedure has to be applied to the equation of the hyperbolic
variable. In particular, we cannot divide by ‖u‖ in the coupled case. Although we
can obtain energy estimates with standard procedure, there will be no t factor in
front of (∫ t

0

‖f‖2

)
,

which as it is explained in chapter 4, implies that our operator T and its extension,
are not contractive maps.
In the study of hyperbolic and hyperbolic parabolic systems it is common to define
an iteration T (V k) = V k+1 that will approximate the solution of the initial value
problem associated with (0.1). Then, consider the sequence of real numbers

ak := ‖T (V k+1) − T (V k)‖y.

Such sequence, {ak}, has been reported to satisfy two types of inequalities:

(1) There is a constant 0 < α < 1 such that ak ≤ αak−1 (cf. [24], [31] and
[25]).

(2) There is a constant 0 < α1 < 1 such that ak ≤ α1ak−1 + βk, where {βk}
is a sequence chosen with the property that

∑
k βk < ∞ (cf. [36], [42],

[44] and [46]).
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In the first case, this means that their operator T is a contraction. Meanwhile,
in the second case, although T is not a contraction (but almost), their inequality
implies that ∑

k

ak < ∞

and so, ak → 0, hence, the sequence
{

T (V k)
}

is a Cauchy sequence in Y . Then, a
fixed point of the extension of T can be shown to exist, in a similar manner than
the one presented in chapter 4.
As we show in chapter 4, the linearized energy estimates obtained in chapter three
are not strong enough to classify our case in neither of the previous categories.
However, we manage to find a third case, one in which {ak} satisfies the inequality

ak ≤ α0 (ak−1 + ak−2)

for some 0 < α0 ≤ 1
6 , for all k ≥ 2. As we show in Lemmas 6 and 7, this is enough

to show that ak → 0.
The particular structure of the equations (3.1)-(3.3), i.e. the split into three types
of variables, two hyperbolic and one parabolic was motivated by the Cattaneo-
Christov systems for compressible fluid flow ([2], [4], [6], [7], [20], [50], [53], [51],
[15], etc). The author recognizes that this split might not be necessary, however,
it is the structure that the Cattaneo-Christov possesses (see chapter 5 and 6). By
this we mean that we have two hyperbolic variables, the density ρ and the vector
(θ, q), that are decoupled. It was by this observation that the author concluded
that there was no need to symmetrize the full system to apply a local existence
theorem. In fact, as the reader can see, it is not assumed a complete symmetry of
the system (3.1)-(3.3), because, as it is the case for the Cattaneo-Chistov model,
only a partial symmetrizer can be found (Theorem 6.1.4).
In fact, through the approach presented in chapters 3 and 4, we managed to show
that, when dealing with an equation of the form (0.1), there is no need to assume
that the equation is in full symmetric form or the existence of a symmetrizer for it
(see definition 5.2.1 and 6.1.1), as long as the diffusion term has a sub-block that
is strongly elliptic (see, assumption D in chapter 4 for the quasilinear case and
assumption III in chapter 3 for the linear case). In particular, we are not assuming
that the matrices Ai are in full symmetric form. Now, if we were dealing with the
case in which the diffusion term is a strongly elliptic operator (as it is the case of
chapter 1), then this result is not surprising, given that, the second order terms
will be the dominant terms in the equation (0.1) and the linearized energy estimate
will only require for A0 to be symmetric and positive definite and for the matrices
Bij to be symmetric, besides the strong ellipticity property of course. In fact, such
a case, can be treated as a perturbation of the simpler equation

A0Ut = Bij∂i∂jU

in both linear and quasilinear cases. Which corresponds to the fully parabolic equa-
tion. By allowing coupling in the linearized equations we can provide an example
of a system with the form (0.1) that is not fully symmetrized and is not fully para-
bolic, and still, the initial value problem for the linear and quasilinear equations is
well-posed. A system of equations with such structure would not be of hyperbolic-
parabolic structure (contrary to the cases presented in [25] and [47]) because the
system without diffusion and relaxation (formally setting Bij = 0 for all i, j and
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D = 0) would not be of hyperbolic nature. Is in this sense that we refer to this
system as partially hyperbolic-parabolic.

The Cattaneo-Christov systems for compressible fluid flow comprises the equa-
tions of conservation of mass (5.1), balance of momentum (5.2), balance of energy
(5.3) together with the frame invariant formulation of Maxwell-Cattaneo law pro-
posed by Christov [6], namely

τ [qt + v · ∇q − q · ∇v + (∇ · v)q] + q = −κ∇θ
where τ stands as the relaxation time (see [59]). This equation of evolution for the
heat flux appears to correct one of the main drawbacks of Fourier’s constitutive
law, given as

q = −κ∇θ
where θ denotes the temperature field at a point x of a medium at time t > 0 and
κ > 0 is the termal conductivity coefficient. Fourier’s law predicts infinite speed
of propagation of heat, that is, thermal disturbances in a continuous medium will
be felt instantly (although unequally) at all other points of the medium no matter
how distant they are located. A contradiction with the theory of relativity. Other
models besides the Cattaneo-Christov model have been proposed to correct this
unrealistic feature. One of the best known is the Cattaneo-Maxwell heat transfer
law (see, e.g., [21]),

τqt + q = −κ∇θ,
where τ > 0 is the relaxation time. Even though Maxwell-Cattaneo heat transfer
law preserves the causality principle for heat propagation in steady continuous
media, it is incompatible with the Galilean postulate with frame indifference when
the medium is in motion [7]. Consequently, Christov and Jordan proposed that
the partial time derivative in the Maxwell-Cattaneo law should be replaced by
a material derivative. Under this viewpoint, Christov [6] formulated, a material,
frame-indifferent version of the Cattaneo-Maxwell law that replaces the partial time
derivative of the heat flux by a Lie-Oldroyd upper convected material derivative
[43], namely,

qt + v · ∇q − q · ∇v + (∇ · v)q.

As Straughan [50] and Christov [6] point out it is important to test this new model.

The previous considerations led us to divide this work into six chapters:

• In chapter one we state notation and several known results that will be of
aid during this work.

• In the second chapter we provide a complete proof for the local well-
posedness of a strongly parabolic linear system of equations. This result
has been reported fairly (see e.g. [25] and [38]). However we provide
stronger energy estimates that involve the L2(0, T ;Hs−1) norms of the
time derivatives. We achieve this by means of the identity (2.51), based
in the works of [40]. However, the involvement of several dimensions and
the assumption of strong ellipticity for the diffusion instead of the uniform
ellipticity used in [40], complicates the computations. To conclude the
proof we use an evolution semigroup approach (see [23]) and infact follow
Matsumura and Kawashima’s instructions given in [25] and [38].
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• The third chapter deals with the local well-posedness of equations (3.1)-
(3.3) once an initial condition is provided. We proceed by means of the
vanishing viscosity method. We construct a strongly parabolic extension,
dependent on a parameter 0 < ǫ < 1 of (3.1)-(3.3) and look for energy
estimates independent of ǫ. We show that, although the hyperbolic vari-
ables in the equations are not decoupled from the parabolic variables, still
is possible to decouple the energy estimates. We conclude the existence
through a compactness argument involving weak and weak∗ topologies.
By dealing with the coupled variables since the beginning, our local well-
posedness result is stronger than those given in [25] and [47]. Because
in comparison with [25] we do not require a fixed point argument to deal
with the coupling variables, and in fact our existence time is the same as
the one given (say T > 0), contrary to the result of using a fixed point
argument because it yields an existence time less than the one given and
dependent on the initial data. In this case a sharp continuation principle
is required to conclude the existence for all t ∈ [0, T ] (as the one given in
[36]). This might not represent too much complications, however, with
our method we prove the local existence once and for all t ∈ [0, T ]. On the
other hand, in comparison with [47] we do not assume the existence of a
convex entropy function or any other conservative assumption, not even
a fully symmetrized equation. The latter implying that we do not require
hyperbolicity for the system without diffusion and relaxation in order for
our result to hold (Theorem 3.4.1).

• The fourth chapter handles the quasilinear case (4.1)-(4.3) and in fact,
we try to follow the quasilinear case presented in [25]. However, is in
this chapter that we realize that our energy estimates are weaker than
those given in [25], in the sense that, we cannot obtain the existence of a
solution as the fixed point of a contraction mapping, or even in the case of
an almost contraction mapping (case (2)). In this scenario we are forced
to obtain a different type of fixed point argument that yields the local
existence. For this, Lemmas 6 and 7 are of vital importance since they
yield the convergence of our iterations. We resume our method in one
single theorem (Theorem 4.5.1), which presents a new type of fixed point
result.

• In the fifth chapter we study the one-dimensional Cattaneo-Christov sys-
tem. We show the existence of a symmetrizer, we prove that it has
a hyperbolic-parabolic structure and proceed to verify the Kawashima-
Shizuta theory for the linearized case of the equations, around a constant
equilibrium state. By verifying Kawashima’s genuinely coupling condition
we conclude the strict dissipativity of the spectral problem, compute the
compensation matrices for both viscous and inviscid cases, and find global
linear decay rates. We conclude the chapter applying our local existence
and uniqueness results of the previous chapters.

• Finally, in the sixth and last chapter, we study the three dimensional ver-
sion of the Cattaneo-Chrsitov systems. We show that, computationally
speaking, its not possible to find a symmetrizer for this system. On the
way, we provide an example that shows that the property of symmetriz-
ability is not invariant under diffeomorphisms. When trying to verify the
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hyperbolic-parabolic structure of the system we found out that, the invis-
cid, non-relaxed system is not hyperbolic and thus is not symmetrizable.
Yet we introduce the concept of partial symmetrizer and use it to prove lo-
cal existence and uniqueness for the viscous case of the Cattaneo-Christov
systems.

The author gives special thanks to Dr. Ramón Plaza for his invaluable instructions
and guidance, Dr. Carlos Málaga for his discussion about the Cattaneo-Christov
system and Dr. Rafael del Ŕıo for his teachings in functional analysis.





1
Notation and basic results

Let Ω ⊆ R
d be an open set and 1 ≤ p ≤ ∞. For 1 ≤ p < ∞, Lp(Ω) stands as the

space of measurable functions such that |f |p is integrable over Ω, with the norm

‖f‖Lp(Ω) =

(∫

Ω

|f(x)|pdx
)1/p

.

For p = ∞, L∞(Ω) denotes the space of bounded measurable functions over Ω,
with the norm

‖f‖L∞(Ω) = esssupx∈Ω |f(x)|.
If Ω = R

d we write Lp(Rd) = Lp. When p = 2, the inner product of the Hilbert
space L2 will be denoted as 〈·, ·〉 and the generated norm coincides with ‖ · ‖L2 but
it will be denoted simply as ‖ · ‖.

Let N0 the set of natural numbers together with the number zero. If α ∈ N
n
0 then

α = (α1, ...., αd) with each αi ∈ N0, which means that α is a multi index. We use
standard multi index notation, in particular, for α ∈ N

n
0 we write

∂α
x · =

∂|α|·
∂α1x1 · · · ∂αdxd

,

and for k ∈ N, Dk
xf is the set of all partial derivatives ∂α

x f for |α| = k. We agree
that D1· = D· = ∇· and that D0f = f .

Let m ∈ N0. We denote Hm(Ω) as the standard Sobolev space

Hm(Ω) =
{
u ∈ L1

loc(Ω) : ∂α
xu ∈ L2(Ω), ∀ α ∈ N

d
0 such that |α| ≤ m

}

with the norm

‖f‖Hm(Ω) =


 ∑

|α|≤m

‖∂α
x f‖2

L2(Ω)




1/2

.

11



12 1. NOTATION AND BASIC RESULTS

This norm is generated by the inner product in Hm(Ω) defined as

〈f, g〉Hm(Ω) =
∑

|α|≤m

〈∂α
x f, ∂

α
x g〉L2(Ω).

In the case in which Ω = R
d we write Hm := Hm(Rd), with norm ‖ · ‖m and inner

product 〈·, ·〉m. Note that H0 = L2 and ‖f‖0 = ‖f‖.
We also define the Banach space

Ĥm(Ω) =
{
u ∈ L∞(Ω) : ∇u ∈ Hm−1(Ω)

}

with the norm

‖f‖
m̂,Ω

= ‖f‖L∞(Ω) + ‖∇f‖Hm−1 .

In the case Ω = R
d we write Ĥm := Ĥm(Rd). When m = 0 we define Ĥ0 = L∞

and ‖f ‖̂
0

= ‖f‖∞.
In general, we define the spaces Wm,p(Ω) for 1 ≤ p < ∞ as

Wm,p(Ω) =
{
u ∈ L1

loc(Ω) : ∂α
xu ∈ Lp(Ω), ∀ α ∈ N

d
0 such that |α| ≤ m

}
,

with the norm

‖f‖W m,p(Ω) =


 ∑

|α|≤m

‖∂α
x f‖p

Lp(Ω)




1/p

.

In the case m = 0 we define W 0,p(Ω) = Lp(Ω) and if Ω = R
d we write Wm,p(Rd) =

Wm,p.
The following results can be found in [40]

Theorem 1.0.1. [40] If s > d
2 the space Ĥs(Ω) is an algebra under point by

point multiplications. That is, if f, g ∈ Ĥs(Ω) their product fg belongs to Ĥs(Ω)
and

‖fg‖s̄,Ω ≤ C‖f‖s̄,Ω‖g‖s̄,Ω (1.1)

where C is a constant independent of f and g. More generally, if f ∈ Ĥs(Ω) and
g ∈ Hr(Ω), 0 ≤ r ≤ s, then fg ∈ Hr(Ω), and

‖fg‖r ≤ C‖f‖s̄‖g‖r (1.2)

where C is a constant independent of f and g.

Theorem 1.0.2. [40] Let m,n, and, k ∈ N0 such that m ≥ k, n ≥ k, and
m + n − k > d

2 . Let f ∈ Hm(Ω) and g ∈ Hn(Ω). Then, the product fg ∈ Hk(Ω),
and

‖fg‖k ≤ C‖f‖m‖g‖n, (1.3)

with C independent of f and g.

Corollary 1. [40] Let s,m ∈ N0 such that s > d
2 and 0 ≤ r ≤ s. Then

Hs ×Hr →֒ Hr, and for all f ∈ Hs(Ω) and g ∈ Hr(Ω)

‖fg‖r ≤ C‖f‖s‖g‖r (1.4)

where C is a constant independent of f and g. In particular, Hs(Ω) is an algebra
under pointwise multiplication and for all f, g ∈ Hs(Ω)

‖fg‖s ≤ C‖f‖s‖g‖s (1.5)

in accord with (1.3) for r = s.
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We define the commutator of two functions ξ and w as

Gα(ξ, w) := ∂α
x (ξw) − ξ∂α

xw, (1.6)

and it satisfies the following estimates (for the proof, see [40])

Theorem 1.0.3. [40] Let m, s ∈ N such that s > d
2 + 1 and 1 ≤ m ≤ s. Let

ξ ∈ Ĥs and w ∈ Hm. Then, for all α ∈ N
d
0 with |α| ≤ m, the commutator Gα(ξ, w)

belongs to Hm−|α| and

‖Gα(ξ, w)‖m−|α| ≤ C‖∇ξ‖s−1‖w‖m−1. (1.7)

Functions in Sobolev spaces can be regularized by means of the Friedrichs’
mollifiers, {ηǫ}ǫ>0, that is, we set

uǫ(x) := (ηǫ ∗ u) (x) =
1

ǫd

∫

Rd

η

(
x− y

ǫ

)
u(y)dy (1.8)

where ηǫ is Friedrichs’ mollifier in R
d. For this mollifiers we state a couple of

standard results (cf. [3], [10], [40]):

Theorem 1.0.4. Let, u : Rd → R locally integrable and, for every ǫ > 0, we
define uǫ ∈ C∞(Rd) by uǫ = ηǫ ∗u. If u ∈ Lp, 1 ≤ p ≤ ∞, then Dα

xu
ǫ ∈ Lp for every

multi-index α ∈ N
d
0; then uǫ ∈ Wm,p for every m ∈ N. Moreover, if u ∈ Wm,p then

‖uǫ‖m,p ≤ ‖u‖m,p.

If 1 ≤ p < ∞, uǫ → u in Wm,p if ǫ → 0, and the mapping

M : R+ × Lp → Lp

M(ǫ, u) := uǫ

is continuous from R+ ×Wm,p to Wm,p.

Similarly to theorem 1.0.3 we can state commutator estimates with respect to
the mollification operation instead of the derivative operation, that is,

Theorem 1.0.5. [40] Let s,m ∈ N, with s > d
2 +1 and 1 ≤ m ≤ s. Let h ∈ Ĥs,

u ∈ Hm−1 and define Cǫ(h, u) as

Cǫ(h, u) = ηǫ ∗ (hu) − h(ηǫ ∗ u).

Then, Cǫ(h, u) ∈ Hm for every ǫ > 0, and

‖Cǫ(h, u)‖m ≤ C‖∇h‖s−1‖u‖m−1.

In fact, Cǫ(h, u) → 0 in Hm if ǫ → 0.

As a consequence of this last theorem we have

Corollary 2. [40] Let s,m ∈ N, with s > d
2 + 1 and 1 ≤ m ≤ s. For

i, j = 1, .., d let Gij ∈ Ĥs and u ∈ Hm+1. Then, Cǫ(Gij , ∂i∂ju) ∈ Hm for every
ǫ > 0, and

‖Cǫ(Gij , ∂i∂ju)‖m ≤ C‖∇Gij‖s−1‖∇u‖m.

In fact, Cǫ(Gij , ∂i∂ju) → 0 in Hm if ǫ → 0.

Even if a function u ∈ Wm,p has no more derivatives higher than those of order
m, its mollification can be proven to have derivatives of order higher than m in
Lp, however, the norm of these higher order derivatives can only be dominated by
a bound that is inversely proportional to ǫ > 0 as it is described in the following
theorem
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Theorem 1.0.6. [40] If u ∈ Wm,p and α ∈ N
n
0 is such that |α| > m, then

Dα
xu

ǫ ∈ Lp, and

‖∂α
xu

ǫ‖p ≤ C

ǫ|α|−m
‖u‖m,p (1.9)

for some positive constant C.

Proof. Let’s write α = β + γ, where β, γ ∈ N
n
0 are such that |β| = m and

|γ| > 0. Then

∂α
x (uǫ) = ∂β+γ

x (uǫ) = ∂γ
x(∂β

xu
ǫ(x)) = ∂γ

x

(
∂β

xu(x)
)ǫ

= ∂γ
x

∫

Rd

ηǫ(x− y)∂β
xu(y)dy

=
1

ǫ|γ|

1

ǫd

∫

Bǫ(x)

∂γ
x(η)

(
x− y

ǫ

)
∂β

xu(y)dy

=
1

ǫ|γ|

∫

B1(0)

∂γ
z (η)(z)∂β

xu(x− ǫz)dz.

Let q ∈ [1,∞] such that 1
p + 1

q = 1, then

|∂α
x u

ǫ(x)| =

∣∣∣∣∣
1

ǫ|γ|

∫

B1(0)

(∂γ
z η)(z)

1
p + 1

q ∂β
xu(x− ǫz)dz

∣∣∣∣∣

≤ 1

ǫ|γ|

∫

B1(0)

|∂γ
z η| 1

q |∂γ
z η

1
p ∂β

xu(x− ǫz)|dz

≤ 1

ǫ|γ|

(∫

B1(0)

|∂γ
z η|dz

) 1
q
(∫

B1(0)

|∂γ
z η(z)||∂β

xu(x− ǫz)|pdz
) 1

p

,

by integrating with respect to x ∈ R
d we get

∫

Rd

|∂α
x u

ǫ(x)|pdx ≤ 1

ǫ|γ|p

∫

Rd

(∫

Rd

|∂γ
z η(z)||∂β

xu(x− ǫz)|pdz
)

=
1

ǫ|γ|p

∫

Rd

|∂γ
z η(z)|

(∫

Rd

|∂β
xu(x− ǫz)|pdx

)
dz

=
1

ǫ|γ|p

∫

Rd

|∂γ
z η(z)|‖∂βu‖p

pdz,

from which (1.9) follows. �

The following result provides chain rule estimates, (see, [40] and [54], for ex-
ample)

Theorem 1.0.7. Let s ≥ 1 be an integer and assume that v = (v1, .., vN ) ∈ Ĥs

Let F = F (v) be a C∞-function of v ∈ R
N . Then for 1 ≤ j ≤ s, we have

DxF (v) ∈ Hj−1 and

‖DxF (v)‖j−1 ≤ CM(1 + ‖v‖L∞)j−1‖Dxv‖j−1, (1.10)

where C is a positive constant and M =
∑j

k=1 sup
{

|Dk
vF (v)| : v ≤ λ := ‖v‖L∞

}
.

In the following, we briefly review the definition and the main properties of
Banach spaces involving time. For the main properties of these spaces we refer to
[10], [40], [19], [57].
Let (0, T ) ∈ R an interval, and X a Banach space with norm ‖ · ‖X .
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Definition 1.0.1. The space Lp(0, T ;X) consists of all strongly measurable
function u : [0, T ] → X such that

‖u‖Lp(0,T ;X) :=

(∫ T

0

‖u(t)‖p
Xdt

)1/p

< ∞

para 1 ≤ p < ∞ and

‖u‖L∞(0,T ;X) := ess sup
0≤t≤T

‖u(t)‖X < ∞.

Let 1 ≤ p < ∞ and assume that X is either reflexive or separable, then

(Lp(0, T ;X∗))
∗ ∼= Lp′

(0, T ;X∗).

If p = 2 and X is a Hilbert space, L2(0, T ;X) is also a Hilbert space, with respect
to the inner product

〈u, v〉L2(0,T ;X) =

∫ T

0

〈u(t), v(t)〉Xdt.

Definition 1.0.2. (i) The space C([0, T ];X) comprises all continuous
functions u : [0, T ] → X with

‖u‖C([0,T ];X) := max
0≤t≤T

‖u(t)‖X < ∞
.

(ii) We denote by Cw([0, T ];X) the space of funtions u : [0, T ] → X which are
weakly continous; that is, such that for all f ∈ X∗, the scalar function

t ∋ [0, T ] → 〈f, u(t)〉X∗,X ∈ R

is continuous on [0, T ].

The following result can be found in [40] and [33].

Theorem 1.0.8. Let X and Y be Banach spaces, with X reflexive and X →֒ Y .
Suppose that u ∈ L∞(0, T ;X) ∩ C([0, T ];Y ). Then, u ∈ Cw([0, T ];X), and the map
t → ‖u(t)‖X is bounded. In addition, if X is a Hilbert space, and

d

dt
‖u(t)‖2

X ∈ L1(0, T ),

then u ∈ C([0, T ];X).

We denote the classical derivative of f ∈ C([0, T ];X) as ft, and set

C1([0, T ];X) = {u ∈ C([0, T ];X) : ut ∈ C([0, T ];X)} ,
which is a Banach space with the norm

‖u‖C1([0,T ];X) = max
0≤t≤T

‖u(t)‖X + ‖ut(t)‖X .

Definition 1.0.3. (a) Let u ∈ L1(0, T ;X). We say that v ∈ L1(0, T ;X)
is the weak derivative of u, written

ut = v,

if it satisfies that
∫ T

0

φ′(t)u(t)dt = −
∫ T

0

φ(t)v(t)dt

for all scalar test functions φ ∈ C∞
0 (0, T ).
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(b) The Sobolev space W 1,2(0, T ;X) consists of all functions u ∈ L2(0, T ;X)
such that ut exists and ut ∈ L2(0, T ;X). Furthermore,

‖u‖W 1,2(0,T ;X) :=

(∫ T

0

‖u(t)‖2
X + ‖ut(t)‖2

Xdt

)1/2

.

The following theorem relates the concept of weak derivative with that of clas-
sical derivative.

Theorem 1.0.9. Let u ∈ W 1,2(0, T ;X). then

(1) u ∈ C([0, T ];X). More precisely, W 1,2(0, T ;X) →֒ C([0, T ];x).

(2) u(t) = u(s) +
∫ t

s
ut(τ)dτ for all 0 ≤ s ≤ t ≤ T .



—Like oxygen to a fire, obstacles

became fuel for the blaze that was

their ambition — Every impedi-

ment only served to make the in-

ferno within them burn with great

ferocity

The obstacle is the way

2
Local well-posedness for a linear parabolic system

Let us consider the following Cauchy problem

A0(x, t)ut −
d∑

i,j=1

Bij(x, t)∂i∂ju = f(x, t) −
d∑

i=1

Ai(x, t)∂iu−D(x, t)u (2.1)

u(x, 0) = u0(x) (2.2)

where x ∈ R
d, t ∈ [0, T ] with T > 0 be given, u = u(x, t) ∈ R

n, A0, Bij , Ai,D are
square matrices of order n× n for each (x, t) ∈ R

d × [0, T ], and f = f(x, t) ∈ R
n is

a given function.
The following assumptions will be of essence:

H1 The matrix A0 is symmetric and Bij = Bji for all i, j = 1, ...d.

H2 A0 > 0 and the symbol
∑d

i,j=1 B
ij(x, t)ωiωj is symmetric and positive

definite for all ω = (ω1, ..., ωd) ∈ S
d−1 and for all (x, t) ∈ R

d × [0, T ].
In particular, this means that there are two positive constants a0 and a1

such that for all v ∈ R
n

a0|v|2 ≤
(
A0(x, t)v, v

)
Rn ≤ a1|v|2 ∀ (x, t) ∈ R

d × [0, T ],

where (·, ·)Rn denotes the inner product in R
n. On the other hand, in

the case of the diffusion term, we are requiring the existence of a positive
constant η > 0 such that, the Legendre-Hadamard ellipticity condition is
satisfied, that is

(
Bij(x, t)ξiξjv, v

)
Rn ≥ η|ξ|2|v|2

for all ξ = (ξ1, .., ξd) ∈ R
d, v ∈ R

n and (x, t) ∈ R
d × [0, T ].

H3 Let s,m ∈ N0 such that s ≥ s0 + 1, s0 =
[

d
2

]
+ 1 and 1 ≤ m ≤ s. Where

l =
[

d
2

]
is the only integer that satisfies that

l ≤ d

2
< l + 1.

H4 A0, (A0)−1 ∈ L∞(0, T ; Ĥs).

17
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H5 ∂tA
0 ∈ L2(0, T ;Hs−1).

H6 Ai,D ∈ L2(0, T ; Ĥs) for all i = 1, .., d.
H7 ∇Bij ∈ L2(0, T ;Hs−1) and ∂tB

ij ∈ L2(0, T ;Hs−1) for all i, j = 1, ..., d.
H8 For each i, j = 1, .., d, the matrices, Bij(·, ·), are uniformly continuous in

QT and Bij ∈ L∞(QT ) where QT := [0, T ] × R
d for all i, j = 1, ..., d.

H9 f ∈ L2(0, T ;Hm−1) and u0 ∈ Hm.

Let T > 0, we define the space

Pm(T ) :=
{
u ∈ C([0, T ];Hm) : ut ∈ L2(0, T ;Hm−1), ∇u ∈ L2(0, T ;Hm)

}
, (2.3)

which is a Banach space with the norm

‖u‖2
Pm(T ) := max

0≤t≤T
‖u(t)‖2

m +

∫ T

0

‖ut(t)‖2
m + ‖∇u(t)‖2

mdt. (2.4)

2.1. A priori estimate

We begin this chapter by obtaining an a priori estimate of the solution u of
the Cauchy problem (2.1)-(2.2) in the space Pm(T ), that is, if u ∈ Pm(T ) is a
solution of the problem (2.1)-(2.2) and assumptions H1-H9 hold, then u satisfies
the estimate

‖u‖2
Pm(T ) ≤ J2

0 Ψ2
2, (2.5)

where J0 depends on the initial data and Ψ0 depends on the coefficients and of T .
To establish (2.5), the idea is to differentiate (2.1) α times with respect to space
variables with |α| ≤ m and multiply this equations in L2 by 2∂α

xu and 2∂α
xut,

adding them up and estimating the resulting relation.
To carry out this idea let us start with the identity

〈A0ut −Bij∂i∂ju, u〉m = 〈f −Ai∂iu−Du, u〉m, (2.6)

where repeated index notation has been used and the dependence of the matrix
coefficients on t ∈ [0, T ] has been omitted for simplicity . Since we want to justify
this operation applied to u ∈ Pm(T ), there are two main concerns; first of all we
are only assuming that f ∈ C(0, T ;Hm−1), which means that the right hand side
of

A0ut −Bij∂i∂ju = f −Ai∂iu−Du

is, at most, an element of Hm−1 for a.a t ∈ [0, T ]; and on the other hand, what we
really want is to separate the terms

〈A0ut, u〉m − 〈Bij∂i∂ju, u〉m

in order to obtain proper estimates, however, this is no longer legit since we do not
know if the terms A0ut and Bij∂j∂ju belong to Hm. This explains the reason of
why is always needed to assume extra regularity on u in order to establish the a
priori estimate. In our case, we will first establish (2.5) with the extra regularity
assumption that

ER u ∈ Pm+1(T ) and f ∈ L2(0, T ;Hm).

Then, in order to conclude the estimate for u ∈ Pm(T ) and f ∈ C(0, T ;Hm−1), we
will use a mollification argument.
Let us take then assumption ER as true. We should be capable of verifying that
Bij∂i∂ju ∈ Hm. Indeed, because of assumptions H7 and H8 we have that, Bij ∈
L∞(Q) and for a.a. t ∈ [0, T ], ∇Bij ∈ Hs−1, so Bij ∈ Ĥs for a.a. t ∈ [0, T ],
and since u ∈ Pm+1(T ), in particular we have that u ∈ L2(0, T ;Hm+2), and thus
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∂i∂ju ∈ Hm for a.a. t ∈ [0, T ]. Due to assumption H3, s > d
2 and theorem

1.0.1 is applicable, thus Bij∂i∂ju ∈ Hm. For the term A0∂tu we proceed in the
same manner, we use assumptions, H3 and H4 together with assumption ER to
conclude that A0∂tu ∈ Hm for a.a. t ∈ [0, T ].
This observations justify the following procedure. First, note that, assumption H2

implies the existence of (A0)−1 for all t ∈ [0, T ]. Now, if we multiply equation (2.1)
by (A0)−1 we obtain

∂tu− (A0)−1Bij∂i∂ju = (A0)−1f − (A0)−1Ai∂iu− (A0)−1Du (2.7)

and then we apply the operator ∂α
x · to this equation and use Leibniz’s rule to get

(∂α
xu)t − (A0)−1Bij∂i∂j(∂α

x u) −
∑

0<β≤α

(
α

β

)
∂β

x

(
(A0)−1Bij

)
∂α−β

x (∂i∂ju) =

= ∂α
x

(
(A0)−1[f −Ai∂iu−Du]

)
. (2.8)

By using the definition of commutator given in (1.5) we can write

(∂α
x u)t − (A0)−1Bij∂i∂j(∂α

xu) = ∂α
x

(
(A0)−1[f −Ai∂iu−Du]

)

+Gα((A0)−1Bij , ∂i∂ju) (2.9)

with G0 = 0. By multiplying by A0 this last equation becomes

A0(∂α
x u)t −Bij∂i∂j(∂α

xu) = A0∂α
x

(
(A0)−1[f −Ai∂iu−Du]

)

+A0Gα((A0)−1Bij , ∂i∂ju) (2.10)

Remark 1. The objective that led us from equation (2.7) through equation
(2.10) is that, we cannot deal with equation (2.7) in order to obtain the estimates
since the symmetry of this equation has been spoiled down by the multiplication by
the factor (A0)−1.
The key point of this argument is that, if we denote the right hand side of (2.10)
as Rα, then Rα ∈ Hm−|α| for a.a. t ∈ (0, T ) and its norm in this space can
be estimated in terms of the norm of u in at most the space Hm+1, that is, not
requiring the additional regularity u ∈ Pm+1(T ) explicitly.

Observe that, since both Bij and (A0)−1, belong to the space Ĥs for a.a.
t ∈ [0, T ] theorem 1.0.1 assures us that

‖(A0)−1Bij‖s̄ ≤ C‖(A0)−1‖s̄‖Bij‖s̄ (2.11)

i.e. (A0)−1Bij ∈ Ĥs. Thus, we can take ξ = (A0)−1Bij in (1.5). Also, by the
additional regularity assumption we have that w := ∂i∂ju ∈ Hm, then theorem
1.0.3 gives the estimate

‖Gα

(
(A0)−1Bij , ∂i∂ju

)
‖m−|α| ≤ C‖∇

(
(A0)−1Bij

)
‖s−1‖∂i∂ju‖m−1 (2.12)

and that Gα ∈ Hm−|α| for every 0 ≤ m ≤ s, 0 ≤ |α| ≤ m (remember that G0 = 0).
This, together with theorem 1.0.1 gives us that A0Gα ∈ Hm−|α| and leads us to
the estimate

‖A0Gα

(
(A0)−1Bij , ∂i∂ju

)
‖m−|α| ≤ C‖A0‖s̄‖Gα

(
(A0)−1Bij , ∂i∂ju

)
‖m−|α|.

(2.13)
It remains to obtain similar estimates for A0∂α

x

(
(A0)−1[f −Ai∂iu−Du]

)
; this will

be done in a similar way to the previous lines, that is, as a consequence of theorems
1.0.1 and 1.0.3 combined with assumptions H4, H6, H7 and H8. So, we will
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concentrate on taking the inner product of (2.10) with 2∂α
xu in L2 and estimating

this identity with the obtained estimates for Rα.
Taking the inner product in L2 of (2.10) with 2∂α

x yields

〈A0∂α
xut, 2∂

α
x u〉 − 〈Bij∂i∂j∂

α
xu, 2∂

α
x u〉 = 〈A0∂α

x

(
(A0)−1f

)
, 2∂α

x u〉
− 〈A0∂α

x

(
(A0)−1Ai∂iu

)
, 2∂α

x u〉
− 〈A0∂α

x

(
(A0)−1Du

)
, 2∂α

x u〉
+ 〈A0Gα

(
(A0)−1Bij , ∂i∂ju

)
, 2∂α

x u〉 (2.14)

where

2〈A0∂α
xut, ∂

α
x u〉 =

d

dt
〈A0∂α

xu, ∂
α
x u〉 − 〈∂α

x u, (∂tA
0)∂α

x u〉 (2.15)

holds since each inner product appearing is a L1(0, T ) function, according to hy-
pothesis H4 and H5. Also, integrating by parts, using Cauchy-Schwarz inequality
and theorem 1.0.3, yields

〈A0∂α
x

(
(A0)−1Ai∂iu

)
, 2∂α

x u〉 = 2
{

〈Ai∂i∂
α
xu, ∂

α
x u〉 + 〈A0Gα

(
(A0)−1Ai, ∂iu

)
, ∂α

x u〉
}

= 2
{

−〈Ai∂α
xu, ∂i∂

α
xu〉 − 〈(∂iA

i)∂α
x u, ∂

α
xu〉

+ 〈A0Gα

(
(A0)−1Ai, ∂iu

)
, ∂α

x u〉
}

≤ C
{

‖Ai∂α
xu‖‖∂i∂

α
xu‖ + ‖(∂iA

i)∂α
x u‖‖∂α

xu‖

+ ‖A0‖s̄

d∑

i=1

‖∇
(
(A0)−1Ai

)
‖s−1‖u‖2

m

}
,

using theorems 1.0.1 and 1.0.3 we obtain the inequality

〈A0∂α
x

(
(A0)−1Ai∂iu

)
, 2∂α

x u〉 ≤ C

{
d∑

i=1

‖Ai‖s̄‖u‖m‖∇u‖m + ‖∂iA
i‖s−1‖u‖2

m

+ ‖A0‖s̄‖(A0)−1‖s̄

d∑

i=1

‖Ai‖s̄‖u‖2
m

}
(2.16)

In the same manner, we obtain the following estimate

〈A0∂α
x

(
(A0)−1Du

)
, 2∂α

x u〉 ≤ C
{

‖D‖s̄ + ‖A0‖s̄‖(A0)−1‖s̄‖D‖s̄

}
‖u‖2

m (2.17)

and due to assumption H5 we get

〈∂α
x u, (∂tA

0)∂α
xu〉 ≤ ‖∂tA

0‖s−1‖u‖2
m. (2.18)

By using (2.13) along with theorem 1.0.1 we obtain the estimate for the last term
in (2.14), which is

〈A0Gα

(
(A0)−1Bij , ∂i∂ju

)
, 2∂α

x u〉 ≤ C‖A0‖s̄‖(A0)−1‖s̄

d∑

i,j=1

‖Bij‖s̄‖∇u‖m‖u‖m

(2.19)
We are left to obtain the estimate for the term that involves f . First note that, if
α = 0 then the term involving f is dominated by ‖f‖‖u‖ and then for α > 0 we
have the following identity

〈A0∂α
x

(
(A0)−1f

)
, ∂α

x u〉 = 〈∂α
x f, ∂

α
x u〉 + 〈A0Gα

(
(A0)−1, f

)
, ∂α

x u〉
= −〈∂α−γ

x f, ∂α+γ
x u〉 + 〈A0Gα

(
(A0)−1, f

)
, ∂α

x u〉,
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where, in the last equality α = η + γ with γ a multi index such that |γ| = 1 and
integration by parts was used. In this way, |α−γ| ≤ m−1, thus the Cauchy-Schwarz
inequality combined with theorems 1.0.1 and 1.0.3 yield

〈A0∂α
x

(
(A0)−1f

)
, ∂α

x u〉 ≤ C
{

‖∇u‖m + ‖A0‖s̄‖(A0)−1‖s̄‖u‖m

}
‖f‖m−1 (2.20)

which is a valid estimate for 0 ≤ |α| ≤ m.
By using estimates (2.15) through (2.20) in (2.14) we get

d

dt
〈A0∂α

xu, ∂
α
x u〉 − 〈Bij∂i∂j∂

α
xu, ∂

α
x u〉 ≤C

{
‖∇u‖m‖f‖m−1 +

d∑

i=1

‖Ai‖s̄‖u‖2
m

+

d∑

i=1

‖Ai‖s̄‖u‖m‖∇u‖m

+ ‖D‖s̄‖u‖2
m + ‖∂tA

0‖s−1‖u‖2
m

+

d∑

i,j=1

‖Bij‖s̄‖u‖m‖∇u‖m



 , (2.21)

Where assumption H4 has been used and as a consequence we can consider

‖A0‖s̄, ‖(A0)−1‖s̄ ≤ C (2.22)

Because of the strict positivity of A0 (assumption H2) we can assure that, for
v ∈ L2

E0(v)2 := 〈A0v, v〉 (2.23)

defines an equivalent norm in L2. Where, again, the dependence on t of this matrix
has been omitted, but to be precise, for each t ∈ [0, T ] for which A0(t) = A0(·, t) is
finite we can define an equivalent norm in L2 with the form given in (2.23). This
means that, if v ∈ Hm, then

Em(v)2 :=
∑

|α|≤m

E0(∂α
x v) (2.24)

defines an equivalent norm in Hm. By adding all the inequalities given in (2.21)
with respect to |α| ≤ m we obtain the inequality

d

dt
Em(u)2 −

∑

|α|≤m

〈Bij∂i∂j∂
α
xu, ∂

α
xu〉 ≤C

{
‖∇u‖m‖f‖m−1 +

d∑

i=1

‖Ai‖s̄‖u‖2
m

+

d∑

i=1

‖Ai‖s̄‖u‖m‖∇u‖m

+ ‖D‖s̄‖u‖2
m + ‖∂tA

0‖s−1‖u‖2
m

+

d∑

i,j=1

‖Bij‖s̄‖u‖m‖∇u‖m



 , (2.25)

for some constant C > 0 independent of u.
By Garding’s inequality (see, [1], [41] and [39]), there are two constants G0 =
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G0(‖Bij‖L∞(QT ), ‖Bij‖
C([0,T ];Ĥs)

) > 0 and γ0 = γ0(‖Bij‖L∞(QT ), ‖Bij‖
C([0,T ];Ĥs)

) ≥
0 such that

−
∑

|α|≤m

〈Bij∂i∂j∂
α
xu, ∂

α
x u〉 ≥

∑

|α|≤m

G0‖∂α
x u‖2

1 − γ0‖∂α
x u‖2

= G0

(
‖u‖2

m + ‖∇u‖2
m

)
− γ0‖u‖2

m, (2.26)

thus, from (2.25) we get that

d

dt
Em(u)2 +G0

(
‖u‖2

m + ‖∇u‖2
m

)
≤C

{
‖∇u‖m‖f‖m−1 +

d∑

i=1

‖Ai‖s̄‖u‖2
m

+

d∑

i=1

‖Ai‖s̄‖u‖m‖∇u‖m

+ ‖D‖s̄‖u‖2
m + ‖∂tA

0‖s−1‖u‖2
m

+

d∑

i,j=1

‖Bij‖s̄‖u‖m‖∇u‖m + γ0‖u‖2
m



 .

(2.27)

The objective of this type of estimates is to apply Gronwall’s inequality, however,
(2.27) is not fit for this argument since the only derivative that appears on left side
of (2.27) is the one of the norm Em(u)2. Now, since on the right side of (2.27) also
appears the term ‖∇u‖m, this means that we have to isolate this term in order to
absorb it in left side of (2.27) if we expect to obtain an inequality that controls
the norm Em(u)2 and thus ‖u‖2

m. In order to achieve this, we will use Cauchy’s
weighted inequality, that is,

ab =
√

2ǫa
b√
2ǫ

≤ ǫa2 +
b2

4ǫ
∀ǫ > 0, (2.28)

which yields

‖∇u‖m‖f‖m−1 ≤ ǫ1‖∇u‖2
m +

‖f‖2
m−1

4ǫ1
, (2.29)

d∑

i=1

‖Ai‖s̄‖u‖m‖∇u‖m ≤ ǫ2‖∇u‖2
m +

2d
∑d

i=1 ‖Ai‖2
s̄‖u‖2

m

4ǫ2
, (2.30)

d∑

i,j=1

‖Bij‖s̄‖u‖m‖∇u‖m ≤ ǫ3‖∇u‖2
m +

2d2 ∑d
i,j=1 ‖Bij‖2

s̄‖u‖2
m

4ǫ3
, (2.31)

for ǫ1, ǫ2, ǫ3 > 0 to be chosen. Using estimates (2.29)-(2.31) into (2.27) we get

d

dt
Em(u)2 +G0

(
‖u‖2

m + ‖∇u‖2
m

)
≤C

{
µ0(t)‖u‖2

m + (ǫ1 + ǫ2 + ǫ3)‖∇u‖2
m

+ µ1(t)‖u‖2
m + ‖f‖2

m−1

}
, (2.32)

where now, the constant C has absorbed all the terms inversely proportional to
ǫ1, ǫ2 and ǫ3 and

µ0(t) :=
d∑

i=1

‖Ai‖2
s̄ +

d∑

i,j=1

‖Bij‖2
s̄ +

d∑

i=1

‖Ai‖s̄ + ‖D‖2
s̄ + ‖D‖s̄ + γ0 (2.33)
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and

µ1(t) := ‖∂tA
0‖s−1 +

d∑

i,j=1

‖∂tB
ij‖s−1 (2.34)

belong to the space L1(0, T ) due to assumptions H5-H8.
Now we take ǫ1, ǫ2, ǫ3 > 0 such that C(ǫ1 + ǫ2 + ǫ3) ≤ 1

2G0 to obtain

d

dt
Em(u)2 +

G0

2

(
‖u‖2

m + ‖∇u‖2
m

)
≤ C

{
(µ0(t) + µ1(t)) ‖u‖2

m + ‖f‖2
m−1

}
. (2.35)

Integrating with respect to t ∈ [0, T ] yields

Em(u(t))2 +
G0

2

∫ t

0

(
‖u(τ)‖2

m + ‖∇u(τ)‖2
m

)
dτ ≤ Em(u0)2 + C

∫ T

0

‖f(τ)‖2
m−1dτ

+ C

∫ t

0

(µ0(τ) + µ1(τ)) ‖u(τ)‖2
mdτ

which, due to the equivalence between Em(·) and ‖ · ‖m, can be rewritten as

Em(u(t))2 +
G0

2

∫ t

0

(
‖u(τ)‖2

m + ‖∇u(τ)‖2
m

)
dτ ≤ Em(u0)2 + C

∫ T

0

‖f(τ)‖2
m−1dτ

+
C

a0

∫ t

0

(µ0(τ) + µ1(τ))Em(u(τ))2dτ

If we take a constant C0 such that

C0 ≥
max

{
1, C, C

a0

}

min
{

1, G0

2

} (2.36)

we can write

Em(u(t))2 +

∫ t

0

(
‖u(τ)‖2

m + ‖∇u(τ)‖2
m

)
dτ ≤ C0

{
Em(u0)2 +

∫ T

0

‖f(τ)‖2
m−1dτ

+

∫ t

0

(µ0(τ) + µ1(τ))Em(u(τ))2dτ

}
.

(2.37)

Now we are ready to apply Gronwall’s inequality. For this, we define the function

y(t) := C0

{
Em(u0)2 +

∫ T

0

‖f‖2
m−1dτ +

∫ t

0

(µ0(τ) + µ1(τ))Em(u(τ))2dτ

}

which is such that y′(t) = C0 (µ0(t) + µ1(t))Em(u(t))2, and so it satisfies the dif-
ferential inequality

y′(t) ≤ C0(µ0(t) + µ1(t))y(t).

Multiplying by the integrating factor e
−C0

∫ t

0
(µ0(τ)+µ1(τ))dτ

and integrating with
respect to t ∈ [0, T ] we obtain

y(t) ≤ e
C0

∫ t

0
(µ0(τ)+µ1(τ))dτ

y(0), (2.38)



24 2. LOCAL WELL-POSEDNESS FOR A LINEAR PARABOLIC SYSTEM

which according to the definition is the same as

Em(u0)2 +

∫ T

0

‖f‖2
m−1dτ+

∫ t

0

(µ0(τ) + µ1(τ))Em(u(τ))2dτ ≤

e
C0

∫ t

0
(µ0(τ)+µ1(τ))dτ

{
Em(u0)2 +

∫ T

0

‖f(t)‖2
m−1dt

}
.

(2.39)

Using inequality (2.39) into (2.37) we obtain the estimate

Em(u(t))2+

∫ t

0

(
‖u(τ)‖2

m + ‖∇u(τ)‖2
m

)
dτ ≤

C0e
C0

∫ t

0
(µ0(τ)+µ1(τ))dτ

{
Em(u0)2 +

∫ T

0

‖f(t)‖2
m−1dt

}
(2.40)

for all t ∈ [0, T ].
Now, we will take the inner product in L2 of (2.10) with 2∂α

xut, but in this case for
|α| ≤ m− 1, and estimate as before

〈A0∂α
xut, 2∂

α
x ut〉 − 〈Bij∂i∂j(∂α

x u), 2∂α
x ut〉 =〈A0∂α

x

(
(A0)−1f

)
, 2∂α

x ut〉
−〈A0∂α

x

(
(A0)−1Ai∂iu

)
, 2∂α

x ut〉
−〈A0∂α

x

(
(A0)−1Du

)
, 2∂α

x ut〉
+〈A0Gα

(
(A0)−1Bij , ∂i∂ju

)
, 2∂α

x ut〉.
(2.41)

Where we need to work out the term −2〈Bij∂i∂j(∂α
x u), ∂α

x ut〉, this will be done by
means of integration by parts. Let us begin with the identity

〈Bij∂i∂j(∂α
x u), ∂α

x ut〉 = 〈∂i

(
Bij∂j∂

α
xu
)
, ∂α

x ut〉
− 〈
(
∂iB

ij
)
∂j∂

α
xu, ∂

α
x ut〉

= −〈Bij∂j∂
α
xu, ∂i∂

α
xut〉

− 〈
(
∂iB

ij
)
∂j∂

α
xu, ∂

α
x ut〉, (2.42)

which is justified since at least ∂α
xut ∈ H1, so ∂i∂

α
xut ∈ L2 for all i = 1, .., d, and

Bij ∈ Ĥs, thus ∂iB
ij ∈ Hs−1 for all i, j = 1, ..., d. Thus theorem 1.0.1 assures that

Bij∂j∂
α
xu ∈ L2 and since s − 1 > d

2 , the corollary of theorem 1.0.2 (with r = 0)

gives that
(
∂iB

ij
)
∂j∂

α
xu ∈ L2. Using a product rule for the time derivative we get

〈Bij∂i∂j(∂α
xu), ∂α

x ut〉 = − d

dt
〈Bij∂j∂

α
xu, ∂i∂

α
xu〉 (2.43)

+ 〈∂t

(
Bij∂j∂

α
xu
)
, ∂i∂

α
xu〉 (2.44)

− 〈
(
∂iB

ij
)
∂j∂

α
xu, ∂

α
x ut〉. (2.45)
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Now, we deal with each term of the last identity by separate. Observe that, for
(2.43) we have the following

− d

dt
〈Bij∂j∂

α
xu, ∂i∂

α
xu〉 =

d

dt
〈∂i

(
Bij∂j∂

α
xu
)
, ∂α

x u〉

=
d

dt
〈Bij∂i∂j∂

α
xu, ∂

α
xu〉

+
d

dt
〈
(
∂iB

ij
)
∂j∂

α
xu, ∂

α
x u〉

=
d

dt
〈Bij∂i∂j∂

α
xu, ∂

α
xu〉

+
d

dt
〈∂j∂

α
xu,

(
∂iB

ij
)
∂α

xu〉

=
d

dt
〈Bij∂i∂j∂

α
xu, ∂

α
xu〉

+ 〈∂j∂
α
xut,

(
∂iB

ij
)
∂α

xu〉
+ 〈∂j∂

α
xu, ∂t

(
∂iB

ij∂α
xu
)
〉

=
d

dt
〈Bij∂i∂j∂

α
xu, ∂

α
xu〉

− 〈∂α
xut,

(
∂j∂iB

ij
)
∂α

xu〉 (2.46)

− 〈∂α
xut,

(
∂iB

ij
)
∂j∂

α
xu〉 (2.47)

+ 〈∂j∂
α
xu,

(
∂t∂iB

ij
)
∂α

xu〉 (2.48)

+ 〈∂j∂
α
xu,

(
∂iB

ij
)
∂α

xut〉. (2.49)

Where we need to justify the integration by parts carried on terms (2.46)-(2.49).
First note that the terms appearing in (2.47) and (2.49) are actually opposites, due
to the symmetry of each matrix Bij . For this reason consider only (2.47) as an
example. In this case, we use assumption H7 which assures that ∂iB

ij ∈ Hs−1 for
a.a. t ∈ [0, T ]; meanwhile, for each 0 ≤ |α| ≤ m − 1 and j = 1, .., d, ∂j∂

α
xu ∈ L2.

Thus, corollary 1 of theorem 1.0.2 (with s− 1 instead of s and r = 0) allows us to
conclude that (∂iB

ij)∂j∂
α
xu ∈ L2. Consider now the term (2.46). Again, we use

assumption H7, which in this case gives us that ∂i∂jB
ij ∈ Hs−2 for a.a t ∈ [0, T ],

and since ∂α
xu ∈ H1 we apply theorem 1.0.2 directly (with m = s− 2, n = 1, k = 0

and m+n−k = s−1 > d
2 ) to get that ∂i∂jB

ij∂α
xu ∈ L2. In fact, the same argument

applies to (2.48) since ∂t∂iB
ij ∈ Hs−2 for a.a. t ∈ [0, T ] due to assumption H7.

Now we deal with (2.44). First, we use a product rule for the time derivative

〈∂t

(
Bij∂j∂

α
xu
)
, ∂i∂

α
xu〉 = 〈

(
∂tB

ij
)
∂j∂

α
xu, ∂i∂

α
xu〉

+ 〈Bij∂j∂
α
xut, ∂i∂

α
xu〉

and observe that, in order to establish this last identity we are making use of
the extra regularity assumption ER, because if we want to assure that the term
Bij∂j∂

α
xut belongs to L2, according to theorem 1.0.1, we need to assure that the

term ∂j∂
α
xut is itself an element of L2. However, this means that more integration

by parts needs to take place since the estimation of such terms will result in bounds
depending on higher norms than we can afford, according to Remark 1. So by using
the symmetry of Bij and integrating by parts the second term of the last identity
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we get

〈∂t

(
Bij∂j∂

α
xu
)
, ∂i∂

α
xu〉 = 〈

(
∂tB

ij
)
∂j∂

α
xu, ∂i∂

α
xu〉

− 〈∂α
x ut,

(
∂jB

ij
)
∂i∂

α
xu〉

− 〈∂α
x ut, B

ij∂i∂j∂
α
xu〉. (2.50)

Where the last term of this identity is the same as the left hand side of (2.42).
Plugging the found identities into (2.43) and (2.44) yields the formula

2〈Bij∂i∂j∂
α
xu, ∂

α
xut〉 =

d

dt
〈Bij∂i∂j∂

α
xu, ∂

α
x u〉 − 2〈

(
∂jB

ij
)
∂i∂

α
xu, ∂

α
x ut〉

−〈∂α
xut,

(
∂j∂iB

ij
)
∂α

xu〉 + 〈∂j∂
α
xu,

(
∂t∂iB

ij
)
∂α

xu〉
+〈
(
∂tB

ij
)
∂j∂

α
xu, ∂i∂

α
xu〉 (2.51)

We use this formula in the identity (2.41)

E0(∂α
xut)

2 − d

dt
〈Bij∂i∂j∂

α
xu, ∂

α
xu〉 = 〈A0∂α

x

(
(A0)−1f

)
, 2∂α

x ut〉

− 〈A0∂α
x

(
(A0)−1Ai∂iu

)
, 2∂α

x ut〉
+ 〈A0∂α

x

(
(A0)−1Du

)
, 2∂α

x ut〉
+ 〈A0Gα

(
(A0)−1Bij , ∂i∂ju

)
, 2∂α

x ut〉
− 2〈

(
∂jB

ij
)
∂i∂

α
xu, ∂

α
x ut〉

− 〈∂α
xut,

(
∂j∂iB

ij
)
∂α

xu〉
+ 〈∂j∂

α
xu,

(
∂t∂iB

ij
)
∂α

xu〉
+ 〈

(
∂tB

ij
)
∂j∂

α
xu, ∂i∂

α
xu〉. (2.52)

Now, we proceed to estimate all the terms in the right hand side of (2.52), as it
was previously done to get (2.21), only this time we have that 0 ≤ |α| ≤ m− 1. As
a consequence of theorem 1.0.1 we get the estimates

〈A0∂α
x

(
(A0)−1f

)
, ∂α

x ut〉 ≤ C‖f‖m−1‖ut‖m−1, (2.53)

〈A0∂α
x

(
(A0)−1Ai∂iu

)
, ∂α

x ut〉 ≤ C

d∑

i=1

‖Ai‖s̄‖∇u‖m−1‖ut‖m−1, (2.54)

〈A0∂α
x

(
(A0)−1Du

)
, ∂α

x ut〉 ≤ C‖D‖s̄‖u‖m−1‖ut‖m−1. (2.55)

Due to the commutator estimates of theorem 1.0.3 we have that

〈A0Gα

(
(A0)−1Bij , ∂i∂ju

)
, ∂α

x ut〉 ≤ C

d∑

i,j=1

‖Bij‖s̄‖∇u‖m−1‖ut‖m−1. (2.56)

By considering that ∂i∂
α
xu belongs to L2 and ∂jB

ij , ∂tB
ij ∈ Hs−1 we can apply

corollary 1 of theorem 1.0.2 to get

〈(∂jB
ij)∂i∂

α
xu, ∂

α
x ut〉 ≤ C

d∑

i,j=1

‖Bij‖s̄‖∇u‖m−1‖ut‖m−1, (2.57)

〈(∂tB
ij)∂j∂

α
xu, ∂i∂

α
xu〉 ≤ C

d∑

i,j=1

‖∂tB
ij‖s−1‖∇u‖2

m−1. (2.58)
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Finally, by using the fact that ∂t∂iB
ij , ∂j∂iB

ij ∈ Hs−2 and ∂α
xu ∈ H1, theorem

1.0.2 yields the estimates

〈∂j∂
α
xu,

(
∂t∂iB

ij
)
∂α

xu〉 ≤ C

d∑

i,j=1

‖∂tB
ij‖s−1‖∇u‖m−1‖u‖m−1, (2.59)

〈∂α
xut,

(
∂j∂iB

ij
)
∂α

xu〉 ≤ C

d∑

i,j=1

‖Bij‖s̄‖u‖m−1‖ut‖m−1. (2.60)

Note that, in estimates from (2.53) to (2.56) we are applying the same argu-
ment as in (2.22), that is, the constant C appearing in this estimates depends
on ‖A0‖s̄‖(A0)−1‖s̄. Using estimates (2.53)-(2.60) into (2.52) we obtain

E0(∂α
x ut)

2 − d

dt
〈Bij∂i∂j∂

α
xu, ∂

α
x u〉 ≤ C

{
d∑

i=1

‖Ai‖s̄‖∇u‖m−1‖ut‖m−1

+ ‖f‖m−1‖ut‖m−1

+

d∑

i,j=1

‖Bij‖s̄‖∇u‖m−1‖ut‖m−1

+

d∑

i,j=1

‖∂tB
ij‖s−1‖∇u‖2

m−1

+
d∑

i,j=1

‖∂tB
ij‖s−1‖∇u‖m−1‖u‖m−1

+ ‖D‖s̄‖u‖m−1‖ut‖m−1

+

d∑

i,j=1

‖Bij‖s̄‖u‖m−1‖ut‖m−1



 . (2.61)

Now, we will isolate the term ‖ut‖2
m−1 in each of the previous estimates, that is,

by means of Cauchy’s weighted inequality we write

‖f‖m−1‖ut‖m−1 ≤ ‖f‖2
m−1

4ǫ1
+ ǫ1‖ut‖2

m−1 ∀ǫ1 > 0,

d∑

i=1

‖Ai‖s̄‖∇u‖m−1‖ut‖m−1 ≤ ǫ2‖ut‖2
m−1 +

∑d
i=1 ‖Ai‖2

s̄‖∇u‖2
m−1

4ǫ2
∀ǫ2 > 0,

‖D‖s̄‖u‖m−1‖ut‖m−1 ≤ ǫ3‖ut‖2
m−1 +

‖D‖2
s̄‖u‖2

m−1

4ǫ3
∀ǫ3 > 0,

d∑

i,j=1

‖Bij‖s̄‖∇u‖m−1‖ut‖m−1 ≤ ǫ4‖ut‖2
m−1+

(∑d
i,j=1 ‖Bij‖s̄

)2

‖∇u‖2
m−1

4ǫ4
∀ǫ4 > 0,

d∑

i,j=1

‖∂tB
ij‖s−1‖∇u‖m−1‖u‖m−1 ≤




d∑

i,j=1

‖∂tB
ij‖s−1


(‖∇u‖2

m−1 + ‖u‖2
m−1

)
,
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d∑

i,j=1

‖Bij‖s̄‖u‖m−1‖ut‖m−1 ≤ ǫ5‖ut‖2
m−1 +

(∑d
i,j=1 ‖Bij‖s̄

)2

‖u‖2
m−1

4ǫ5
∀ǫ5 > 0.

By using these estimates, the equivalence between E0(·) and ‖ · ‖, and adding all
the estimates with respect to |α| ≤ m− 1 in (2.61) we get

‖ut‖2
m−1 − d

dt

∑

|α|≤m−1

〈Bij∂i∂j∂
α
xu, ∂

α
x u〉 ≤ C

{
(ǫ1 + ǫ2 + ǫ3 + ǫ4 + ǫ5)‖ut‖2

m−1

+ ‖f‖2
m−1 + (µ0(t) + µ1(t))

(
‖∇u‖2

m−1 + ‖u‖2
m−1

)}

If we take the positive numbers ǫ1, ...., ǫ5 such that C(ǫ1 + ǫ2 + ǫ3 + ǫ4 + ǫ5) ≤ 1
2

and observe that the terms ‖∇u‖m−1 and ‖u‖m−1 can be dominated by the term
‖u‖m, we obtain the estimate

1

2
‖ut‖2

m−1 − d

dt

∑

|α|≤m−1

〈Bij∂i∂j∂
α
xu, ∂

α
x u〉 ≤ C

{
‖f‖2

m−1 + (µ0(t) + µ1(t)) ‖u‖2
m

}
.

(2.62)
By integrating (2.62) from 0 to t ∈ [0, T ] we get
∫ t

0

‖ut(τ)‖2
m−1dτ −

∑

|α|≤m−1

〈Bij(t)∂i∂j∂
α
xu(t), ∂α

x u(t)〉 ≤

≤ −
∑

|α|≤m−1

〈Bij(0)∂i∂j∂
α
xu0, ∂

α
x u0〉 + C

∫ t

0

‖f(τ)‖2
m−1dτ

+ C

∫ t

0

(µ0(τ) + µ1(τ)) ‖u(τ)‖2
mdτ. (2.63)

Where integration by parts yields

−
∑

|α|≤m

〈Bij(0)∂i∂j∂
α
xu0, ∂

α
x u0〉 =

∑

|α|≤m

〈∂j∂
α
xu0, (∂iB

ij(0))∂α
x u0〉

+
∑

|α|≤m

〈∂j∂
α
xu0, B

ij(0)∂i∂
α
xu0〉

≤
∑

|α|≤m

‖∂j∂
α
xu0‖‖(∂iB

ij(0))∂α
x u0‖

+
∑

|α|≤m

‖∂j∂
α
xu0‖‖Bij(0)∂i∂

α
xu0‖. (2.64)

In particular, assumption H7 assures that ∂iB
ij(0) ∈ Hs−1(Rd) and because of

Sobolev’s embedding theorem (s− 1 > d
2 ) we will have that

‖∂iB
ij(0)‖L∞ ≤ κs−1‖∂iB

ij(0)‖s−1 < ∞,

for κs−1 > 0 the Sobolev’s constant of the space Hs−1. Hence ∂iB
ij(0) ∈ L∞ and

so we have that

‖∂iB
ij(0)∂α

x u0‖ ≤ ‖∂iB
ij(0)‖L∞‖∂α

xu0‖. (2.65)

On the other hand, assumption H8 gives that Bij(0) ∈ L∞ and so,

‖Bij(0)∂i∂
α
xu0‖ ≤ ‖Bij(0)‖L∞‖∂i∂

α
xu0‖. (2.66)
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Thus

−
∑

|α|≤m−1

〈Bij(0)∂i∂j∂
α
xu0, ∂

α
x u0〉 ≤

∑

|α|≤m−1

‖∂α
x ∇u0‖

d∑

i,j=1

‖∂iB
ij(0)‖L∞‖∂α

xu0‖

+
∑

|α|≤m−1

‖∂α
x ∇u0‖

d∑

i,j=1

‖Bij(0)‖L∞‖∂α
x ∇u0‖

≤ C‖∇u0‖m−1‖u0‖m−1 + C‖∇u0‖2
m−1

≤ C‖u0‖2
m. (2.67)

Observe that, in particular, the constant C appearing in this last estimate is taken
to be such that

C ≥
d∑

i,j=1

‖∂iB
ij(0)‖L∞ ,

d∑

i,j=1

‖Bij(0)‖L∞ . (2.68)

The estimate in (2.67) and Garding’s inequality ( i.e. (2.26) with m− 1 instead of
m) applied to (2.63) gives us

∫ t

0

‖ut(τ)‖2
m−1dτ + G0

(
‖u(t)‖2

m−1 + ‖∇u(t)‖2
m−1

)
≤ γ0‖u(t)‖2

m−1

+ C

{
‖u0‖2

m +

∫ T

0

‖f(τ)‖2
m−1dτ

+

∫ t

0

(µ0(τ) + µ1(τ))‖u(τ)‖2
mdτ

}
. (2.69)

At this point, an estimate for ‖u(t)‖2
m−1 will be needed. We can proceed in two

different ways. We can either, use our previous energy estimate given in (2.37) with
m− 1 instead of m; or, we can use the following standard estimate

d

dt
‖u‖2

m−1 =
d

dt

∑

|α|≤m−1

〈∂α
x u, ∂

α
x u〉 = 2

∑

|α|≤m−1

〈∂α
x u, ∂

α
x ut〉

≤ 2
∑

|α|≤m−1

‖∂α
xu‖‖∂α

x ut‖ ≤ C‖u‖m−1‖ut‖m−1

≤ C

(
ǫ‖ut‖2

m−1 +
‖u‖2

m−1

4ǫ

)
∀ǫ > 0. (2.70)

In both cases, we will be able to control the left out term γ0‖u(t)‖2
m−1 appearing in

the right hand side (2.69) to obtain an estimate fit for Gronwall’s inequality. Thus,
from (2.69) it follows that

∫ t

0

‖ut(τ)‖2
m−1dτ + ‖u(t)‖2

m ≤ C

{
‖u0‖2

m +

∫ T

0

‖f(τ)‖2
m−1dτ

+

∫ t

0

(µ0(τ) + µ1(τ))‖u(τ)‖2
mdτ

}
. (2.71)

Remark 2. Observe that an estimate of the type (2.69) always appears in
several space dimensions, i.e. x ∈ R

d with d ≥ 2 and n ≥ 2; in one space di-
mension we can proceed as in [40] and obtain (2.69) without the left out term
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γ0‖u(t)‖2
m−1. This is because in one space dimension the hypothesis that the sym-

bol
∑d

i,j=1 B
ij(x, t)ωiωj is symmetric and positive definite reduces to require that,

the only viscosity tensor at play, B11, be symmetric and positive definite. So, in
this case Garding’s inequality is not needed and we can use the positive definiteness
of B11 to control Sobolev’s norm ‖ · ‖m on left hand side of a (2.69) type inequality.

Finally, Gronwall’s inequality gives us the estimate
∫ t

0

‖ut(τ)‖2
m−1dτ + ‖u(t)‖2

m

≤ Ce
C
∫ t

0
(µ0(τ)+µ1(τ))

{
‖u0‖2

m +

∫ T

0

‖f(τ)‖2
m−1dτ

}
(2.72)

valid for all t ∈ [0, T ].
Adding up estimates (2.40) and (2.72), and taking into account the equivalence
between the norms Em(·) and ‖ · ‖m we obtain the a priori estimate

max
0≤t≤T

‖u(t)‖2
m +

∫ T

0

(
‖u(t)‖2

m+1 + ‖ut(t)‖2
m−1

)
dt ≤ J2

0 Ψ2
0 (2.73)

where Ψ2
0 = C1e

C1

∫ T

0
(µ0(t)+µ1(t))dt

and J2
0 = ‖u0‖2

m +
∫ T

0
‖f(t)‖2

m−1dt and C1 is
a positive constant that takes into account the observations made in (2.22), (2.36)
and (2.68). In particular, from (2.73), estimate (2.5) follows.

2.2. Mollification

Now, we will obtain (2.5) but without the extra regularity assumption stated in
ER. To this end we will consider the regularization of u ∈ Pm(T ) with Friedrich’s
mollifier {ηǫ}ǫ>0 in the space variables, that is, we set

uǫ(x, t) := (ηǫ ∗ u(·, t)) (x) =
1

ǫd

∫

Rd

ηǫ

(
x− y

ǫ

)
u(y, t)dy.

The main idea is to show that uǫ satisfies a partial differential equation of the form

A0uǫ
t −Bij∂i∂ju

ǫ = f ǫ +Ai∂iu
ǫ −Duǫ + Fǫ

for certain remainder Fǫ that approaches zero as ǫ goes to zero.
We start by assuming that u ∈ Pm(T ) satisfies the differential equation in (2.2),
then u satisfies (2.7) and so we have that

uǫ
t = ηǫ ∗

[
(A0)−1Bij∂i∂ju

]
+ηǫ ∗

[
(A0)−1f

]
−ηǫ ∗

[
(A0)−1Ai∂iu

]
−ηǫ ∗

[
(A0)−1Du

]
.

As a consequence we obtain the equation for the mollification of u

A0uǫ
t −Bij∂i∂ju

ǫ = f ǫ −Ai∂iu
ǫ −Duǫ + F ǫ +Hǫ +Rǫ + Iǫ, (2.74)

where

F ǫ := A0
{
ηǫ ∗

[
(A0)−1Bij∂i∂ju

]
− (A0)−1Bij∂i∂ju

ǫ
}
, (2.75)

Hǫ := A0
{

(A0)−1Ai∂iu
ǫ − ηǫ ∗

[
(A0)−1Ai∂iu

]}
, (2.76)

Rǫ := A0
{
ηǫ ∗

[
(A0)−1Du

]
− (A0)−1Duǫ

}
, (2.77)

Iǫ := A0
{
ηǫ ∗

[
(A0)−1f

]
− (A0)−1f

}
. (2.78)
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We want to apply estimate (2.73) to equation (2.74), only this time, the inhomo-
geneity is given as

f ǫ + F ǫ +Hǫ +Rǫ + Iǫ

and the initial condition will become uǫ(x, 0) = uǫ
0(x). For this to happen, we

need to assure that uǫ ∈ Pm+1(T ) and f ∈ L2(0, T ;Hm). This is a consequence
of theorem 1.0.6, from which, we also have that for every ǫ > 0 there is a constant
C = C(ǫ), independent of t ∈ [0, T ], such that

‖uǫ‖Pm+1(T ) ≤ C(ǫ)‖u‖Pm(T ).

Hence, the estimate in (2.73) is valid for uǫ with

‖uǫ(t)‖2
m +

∫ T

0

(
‖uǫ(t)‖2

m+1 + ‖uǫ
t(t)‖2

m−1

)
dt ≤

≤ CΨ2
0

{
‖uǫ

0‖2
m +

∫ T

0

‖f ǫ(t) + F ǫ(t) +Hǫ(t) +Rǫ(t) + Iǫ(t)‖2
m−1dt.

}

Observe that
∫ T

0

‖f ǫ(t) + F ǫ(t) +Hǫ(t) +Rǫ(t) + Iǫ(t)‖2
mdt

≤
∫ T

0

(‖f ǫ(t)‖m + ‖F ǫ(t)‖m + ‖Hǫ(t)‖m + ‖Rǫ(t)‖m + ‖Iǫ(t)‖m)
2
dt

≤5

∫ T

0

(
‖f ǫ(t)‖2

m + ‖F ǫ(t)‖2
m + ‖Hǫ(t)‖2

m + ‖Rǫ(t)‖2
m + ‖Iǫ(t)‖2

m

)
dt,

where we have used the standard inequality

(v + w + x+ y + z)2 ≤ 5(v2 + w2 + x2 + y2 + z2)

for v, w, x, y, z non-negative real numbers. This means that we are left with the
estimate

‖uǫ(t)‖2
m +

∫ T

0

(
‖uǫ(t)‖2

m+1 + ‖uǫ
t(t)‖2

m−1

)
dt ≤ (Jǫ

0Ψ0)2 (2.79)

where

(Jǫ
0)2 =‖uǫ

0‖2
m+

+5

∫ T

0

(
‖f ǫ(t)‖2

m + ‖F ǫ(t)‖2
m + ‖Hǫ(t)‖2

m + ‖Rǫ(t)‖2
m + ‖Iǫ(t)‖2

m

)
dt.

(2.80)

Thus, from (2.79) we obtain that

‖uǫ‖2
Pm(T ) ≤ (Jǫ

0Ψ0)2 (2.81)

for every ǫ > 0.
Let us observe that, as in theorem 1.0.5 we can write

F ǫ(t) = A0Cǫ
(
(A0)−1Bij , ∂i∂ju

)
,

and since, for a.a. t ∈ [0, T ], (A0)−1Bij ∈ Ĥs and u ∈ Hm+1, we can apply
corollary 2 to conclude that Cǫ

(
(A0)−1Bij , ∂i∂ju

)
∈ Hm for every ǫ > 0 and

Cǫ
(
(A0)−1Bij , ∂i∂ju

)
→ 0 in Hm if ǫ → 0. Thus

‖F ǫ(t)‖m ≤ C‖A0‖s‖Cǫ
(
(A0)−1Bij , ∂i∂ju

)
‖m → 0
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as ǫ → 0. By means of the same arguments we obtain the same conclusion for Hǫ(t),
Rǫ(t) and Iǫ(t). These results together with theorem 1.0.4 gives us the following
convergence properties

‖f ǫ(t)‖m−1 → ‖f(t)‖m−1,

‖uǫ
0‖m → ‖u0‖m,

‖F ǫ(t)‖m → 0,

‖Hǫ(t)‖m → 0,

‖Rǫ(t)‖m → 0,

‖Iǫ(t)‖m → 0,

which allows us to apply Lebesgue’s dominated convergence theorem in order to
compute the limit of (Jǫ

0)2 and conclude that

lim
ǫ→0

(Jǫ
0)2 = ‖u0‖2

m + 5

∫ T

0

‖f(t)‖2
m−1dt.

This means that if we take the limit of the estimate (2.81), as ǫ goes to zero, we
get

lim
ǫ→0

{∫ T

0

‖∇uǫ(t)‖2
mdt+

∫ T

0

‖uǫ
t‖2

m−1dt+ ‖uǫ(t)‖2
m

}

≤
(

‖u0‖2
m+1 + 5

∫ T

0

‖f(t)‖2
m−1dt

)(
C1e

C1

∫ T

0
(µ0(t)+µ1(t))dt

)
. (2.82)

Since u ∈ Pm(T ), the following limits hold

‖uǫ(t)‖2
m → ‖u(t)‖2

m ∀t ∈ [0, T ]

‖∇uǫ(t)‖2
m → ‖∇u(t)‖2

m for a.a t ∈ [0, T ]

‖uǫ
t(t)‖2

m−1 → ‖u(t)‖2
m−1 for a.a t ∈ [0, T ],

in accordance with theorem 1.0.4, where we are taking into account that ∇uǫ =
(∇u)ǫ. Finally, theorem 1.0.4 states that for a.a. t ∈ [0, T ]

‖uǫ
t(t)‖2

m−1 ≤ ‖ut(t)‖2
m−1,

‖∇uǫ(t)‖2
m ≤ ‖∇u(t)‖2

m,

where the square norms in the right hand side of these inequalities belong to
L1(0, T ). Hence, Lebesgue’s dominated convergence theorem yields that

∫ T

0

‖uǫ
t(t)‖2

m−1dt →
∫ t

0

≤ ‖ut(t)‖2
m−1dt,

∫ T

0

‖∇uǫ(t)‖2
mdt →

∫ T

0

≤ ‖∇u(t)‖2
mdt,
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as ǫ → 0. By using these limits in (2.82) we arrive at

‖u(t)‖2
m+

∫ T

0

‖∇u(t)‖2
mdt+

∫ T

0

‖ut‖2
m−1dt

≤
(

‖u0‖2
m + 5

∫ T

0

‖f(t)‖2
m−1dt

)(
C1e

C1

∫ T

0
(µ0+µ1(θ))dt

)

≤5

(
‖u0‖2

m +

∫ T

0

‖f(t)‖2
m−1dt

)(
C1e

C1

∫ T

0
(µ0+µ1(θ))dt

)
(2.83)

for a.a t ∈ [0, T ]. Thus, after redefining the constant C1 we obtain

‖u‖2
Pm(T ) ≤ (J2

0 )Ψ2
0,

thus proving the required energy estimate for a solution u ∈ Pm(T ) of the problem
(2.1)-(2.2).

2.3. Local well-posedness

As a consequence of the a priori estimate (2.5) we can prove that the Cauchy
problem (2.1)-(2.2) is well-posed in the space Pm(T ). Indeed, let u, ū solutions
of (2.1)-(2.2) with respective initial data {u0, f} and

{
ū0, f̄

}
. Then its difference

z := u− ū satisfies the Cauchy problem

A0zt −Bij∂i∂jz = f − f̄ −Ai∂iz +Dz,

u(t = 0) = u0 − ū0;

applying (2.5) to z yields

‖u− ū‖2
Pm(T ) ≤ C1

(
e

C1

∫ T

0
(µ0(t)+µ1(t))dt

)(
‖u0 − ū0‖2

m +

∫ T

0

‖f − f̄‖2
m−1dt

)

= C(T )

(
‖u0 − ū0‖2

m+1 +

∫ T

0

‖f − f̄‖2
mdt

)
,

where

C(T ) := C1

(
e

C1

∫ T

0
(µ0(t)+µ1(t))dt

)
(2.84)

only depends on the coefficients and of T . This means that the norm of u in Pm(T )
depends continuously on the initial data. In particular, this implies that the strong
solution to (2.1)-(2.2) is unique.

2.4. Local existence

In this section we obtain a local existence result for the Cauchy problem (2.1)-
(2.2) in the space Pm(T ) by using an evolution semigroup approach under the new
assumptions

A1 A0, (A0)−1 ∈ C([0, T ]; Ĥs),

A2 Ai,D ∈ C(0, T ; Ĥs) for all i = 1, .., d,
A3 f ∈ C([0, T ];Hm−1) and u0 ∈ Hm,

instead of H4, H6 and H9 respectively, and

A4 ∂tA
i, ∂tD ∈ L2(0, T ;Hs−1) for all i = 1, .., d.
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We use Kato’s results about evolution equations in Banach spaces (see [23], for
example). Although this type of argument has been previously used (cf. [25] and
[38]) we develop the proof with complete detail and use our own energy estimate
given in (2.5).
Next we mention only the result of the usual theory of linear evolution equations
in Banach spaces (see, [22] and [23]) that will be use. Consider the problem

d

dt
U(t) = A(t)U(t) + F (t), (2.85)

U(0) = U0, 0 ≤ t ≤ T, (2.86)

in some Banach space X with norm ‖ · ‖X .

Lemma 1. Suppose the following:

(i) For every fixed t ∈ [0, T ],
(a) A(t) is a closed linear operator with the domain D(A(t)),
(b) D(A(t)) is dense in X,

(c) ‖ (λI −A(t))
−1
v‖X ≤ (Reλ− β)

−1 ‖v‖X for some constant β (in-
dependent of t), all v ∈ X and all λ such that Reλ > β.

(ii) There exists a dense linear subspace Y in X such that
(d) Y is regarded as a Banach space with the norm ‖ · ‖Y ,
(e) ‖v‖X ≤ C‖v‖Y for all v ∈ Y ,
(f) there exists a family of isomorphisms of Y onto X, such that

S(t)A(t)S(t)−1 = A(t) +B(t), B(t) ∈ B(X) for a.e. t ∈ [0, T ],

where B : [0, T ] → B(X) a.e. is strongly measurable with ‖B(·)‖B(X)

upper-integrable on [0, T ]. Furthermore, there is a strongly measur-
able function Ṡ : [0, T ] → B(Y,X) a.e., with ‖Ṡ(t)‖B(Y,X) upper in-
tegrable on [0, T ] such that S is equal to an indefinite strong integral
of Ṡ. In particular, this means that

dS(t)y

dt
= Ṡy for a.e. t ∈ [0, T ] for each y ∈ Y.

(iii) For every fixed t ∈ [0, T ],
(g) Y ⊂ D(A(t)) and A(t) ∈ C([0, T ]; B(Y,X)).

Then, the problem (2.85)-(2.86) has a unique solution

U(t) ∈ C([0, T ];Y ) ∩ C1([0, T ];X)

for U0 ∈ Y and F (t) ∈ C(0, T ;Y ).

Setting

X =L2, U = u, U0 = u0,

A(t) =(A0)−1
{
Bij(t)∂i∂j · −Ai(t)∂i · −D(t)·

}
,

D(A(t)) =Y = H2,

S(t) =λ0I −A(t), B(t) = 0,

where λ0 is a positive constant to be determined, we can write the problem (2.1)-
(2.2) in the form (2.85)-(2.86). Immediately is observed that hypothesis (b), (d)
and (e) are met. In order to fulfill hypothesis (g) we are left to prove that A(t) ∈
C
(
[0, T ]; B(H2, L2)

)
. Let w ∈ H2 and t ∈ [0, T ] be fixed. Observe that assumption

A2 implies H6, which means that, we can apply Sobolev’s product estimates of
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theorems 1.0.1 and 1.0.2 to the vector A(t)w, as it was done in section 2.1, thus
assuring the existence of a positive constant C > 0 (independent of t) such that

‖A(t)w‖ ≤C
{

‖Bij(t)‖s̄‖∂i∂jw‖ + ‖Ai(t)‖s̄‖∂iw‖ + ‖D0(t)‖s̄‖w‖
}

≤C





d∑

i,j=1

‖Bij(t)‖s̄ +

d∑

i=1

‖Ai(t)‖s̄ + ‖D(t)‖s̄



 ‖w‖2

≤C sup
0≤t≤T





d∑

i,j=1

‖Bij(t)‖s̄ +
d∑

i=1

‖Ai(t)‖s̄ + ‖D(t)‖s̄



 ‖w‖2, (2.87)

from which it follows that, for every fixed t ∈ [0, T ], A(t) ∈ B(H2, L2). Observe
that, in particular, the supremum in the right hand side of (2.87) is finite due
to assumptions H8 and A2. If we apply estimate (2.87) to A(t)w − A(t0)w, for
t0 ∈ [0, T ], assuming that ‖w‖2 ≤ 1 we get

‖A(t)w −A(t0)w‖ ≤C





d∑

i,j=1

‖Bij(t) −Bij(t0)‖s̄

+

d∑

i=1

‖Ai(t) −Ai(t0)‖s̄ + ‖D(t) −D(t0)‖s̄

}
,

hence

‖A(t) −A(t0)‖B(H2,L2) ≤C





d∑

i,j=1

‖Bij(t) −Bij(t0)‖s̄

+

d∑

i=1

‖Ai(t) −Ai(t0)‖s̄ + ‖D(t) −D(t0)‖s̄

}
. (2.88)

According to assumptions H8 and A2, the right hand side of this inequality goes
to zero if t → t0, and so we can conclude that hypothesis (g) is satisfied.
Now consider t ∈ [0, T ] fixed. Given f ∈ L2 consider the problem of finding w ∈ H2

such that

S(t)w = λ0w −A(t)w = f (2.89)

which is equivalent to find w ∈ H2 such that

λ0A
0(t)w −Bij(t)∂i∂jw +Ai(t)∂iw +D(t)w = A0(t)f. (2.90)

First, observe that the previous equation can we rewritten as

λ0A
0(t)w − ∂j

(
Bij(t)∂iw

)
+ Āi(t)∂iw +D(t)w = A0(t)f (2.91)

where Āi(t) := ∂jB
ij(t) +Ai(t). In this manner, we can find the weak formulation

of the problem (2.90) in H1 (by using that H1(Rd) = H1
0 (Rd)): To find w ∈ H1

such that

B[w, v; t] = 〈A0(t)f, v〉
for all v ∈ H1, where B[w, v; t] : H1 ×H1 → R is a bilinear form defined as

B[u, v; t] := λ0〈w, v〉 + 〈Bij(t)∂iw, ∂jv〉 + 〈Āi(t)∂iw, v〉 + 〈D(t)w, v〉.
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Note that, B[w, v; t] is continuous on H1 ×H1 for each fixed t ∈ [0, T ] since

|B[w, v; t]| ≤ C sup
0≤t≤T





d∑

i,j=1

‖Bij(t)‖s̄ +

d∑

i=1

‖Ai(t)‖s̄ + ‖D(t)‖s̄



 ‖w‖1‖v‖1

for all w, v ∈ H1. On the other hand, by Garding’s inequality

B[w,w; t] ≥ G0‖w‖2
1 − γ0‖w‖2 + 〈Ai∂iw,w〉 + λ0〈w,w〉 + 〈Dw,w〉,

thus

G0‖w‖2
1 − γ0‖w‖2 ≤ B[u, u; t] + Ĉ‖w‖1‖w‖ − λ0‖w‖2 + Ĉ‖w‖2,

where the constant Ĉ depends on the norms of Ai and D in C([0, T ]; Ĥs). Then for
every ǫ > 0, Cauchy’s weighted inequality yields

G0‖w‖2
1 − γ0‖w‖2 ≤ B[u, u; t] + Ĉ

(
ǫ

2
‖w‖2

1 +
‖w‖2

2ǫ

)
− λ0‖w‖2 + Ĉ‖w‖2.

Taking ǫ > 0 such that G0 − Ĉǫ
2 = 1

2 and renaming C̄ = Ĉ/2ǫ we get

1

2
‖w‖2

1 − (γ0 + Ĉ + C̄)‖w‖ ≤ B[w,w; t] − λ0‖w‖2.

and so, by taking λ0 > 0 such that λ0 −(γ0 +Ĉ+C̄) > 0 we obtain that the bilinear
form is coercive

1

2
‖w‖2

1 ≤ B[w,w; t].

Finally observe that, since A0f ∈ L2

〈A0f, v〉 ≤ C‖A0f‖‖v‖1,

meaning that, the mapping v → 〈A0f, v〉 is a continuous linear functional on H1.
Thus, the Lax-Milgram theorem assures the existence of a unique weak solution
w ∈ H1 to (2.91). Then, the standard elliptic regularity theory assures that w ∈ H2,
and so it satisfies equation (2.90). In particular we can conclude that S(t) is an
isomorphism from H2 onto L2.
For the value of λ0 > 0 just found and v ∈ L2 consider

A(t)S(t)−1v = A(λ0I −A(t))−1v := Auλ0
,

where uλ0
∈ H2 is the unique solution to the elliptic problem

−Bij(t)∂i∂juλ0
+Ai(t)∂iuλ0

+D(t)uλ0
+ λ0uλ0

= v

as we just proved. Equivalently this equation can be written as λ0uλ0
−A(t)uλ0

= v.
Then

S(t)A(t)uλ0
= (λ0I −A(t))(λ0uλ0

− v)

= λ2
0uλ0

− λ0v − λ0A(t)uλ0
+A(t)v

= λ0A(t)uλ0
− λ0 − λ0A(t)uλ0

+A(t)v = A(t)v,

hence, S(t)A(t)S(t)−1 = A(t).
Now, for w ∈ H2 assumptions H5, H7 and A4 we can define

Ṡ(t)w = −∂t

(
(A0)−1Bij

)
∂i∂jw + ∂t

(
(A0)−1Ai

)
∂iw + ∂t

(
(A0)−1D

)
w,
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which is such that dS(t)w
dt = Ṡw a.e t ∈ [0, T ] and for all w ∈ H2 such that ‖w‖2 ≤ 1

we have that

‖Ṡ(t)w‖ ≤ C

d∑

i,j=1

‖∂t

(
(A0)−1Bij

)
‖s−1+‖∂t

(
(A0)−1Ai

)
‖s−1+‖∂t

(
(A0)−1D

)
‖s−1,

for some positive constant C independent of t. This implies that

‖Ṡ(t)‖B(H2;L2) ≤
d∑

i,j=1

‖∂t

(
(A0)−1Bij

)
‖s−1+‖∂t

(
(A0)−1Ai

)
‖s−1+‖∂t

(
(A0)−1D

)
‖s−1.

Once more, assumptions H5, H7 and H4 yield that
∫ T

0

‖Ṡ(t)‖B(H2;L2)dt < ∞

where
∫ T

0
·dt is the Bochner integral of the Banach space B(H2;L2). In conclusion,

hypothesis (f) is satisfied.
We move on to verify (c). For this, consider the problem

(λI −A(t))w = v

with w ∈ H2, v ∈ L2 and λ ∈ C. Multiply by w with respect to the inner product
of L2 and take real parts to get

Reλ‖w‖2 + Re〈−Bij∂i∂jw,w〉 + Re〈Ai∂iw,w〉 + Re〈Dw,w〉 = Re〈v, w〉.
Then, after applying Garding’s inequality to the second order operator and the
Cauchy-Schwarz inequality together with theorem 1.0.1 to the rest of the inner
products we are left with the estimate

Reλ‖w‖2 +G0‖w‖2
1 − γ0‖w‖2 ≤ ‖v‖‖w‖ + C‖∇w‖‖w‖ + C‖u‖2

where C is a positive constant that depends on the norms of ‖Ai‖
C([0,T ];Ĥs)

for all

i = 1, ..., d and ‖D‖
C([0,T ];Ĥs)

. Cauchy’s weighted inequality yields

Reλ‖w‖2 +G0‖w‖2
1 − (γ0 + C)‖w‖2 ≤ ‖v‖‖w‖ +

Cδ

2
‖w‖2

1 +
C

2δ
‖u‖2

for all δ > 0. By taking δ > 0 small enough that G0 − Cδ
2 = 1

2 it is obtain that

Reλ‖w‖2 +
1

2
‖w‖2

1 −
(
γ0 + C +

C

2δ

)
‖w‖2 ≤ ‖v‖‖w‖,

thus, if we define β = γ0 + C + C
2δ then, for all λ ∈ C such that Reλ > β we have

that

(Reλ− β) ‖w‖ ≤ ‖v‖,
but since w = (λI −A(t))

−1
v we arrived at (c)

‖ (λI −A(t))
−1
v‖ ≤ 1

Reλ− β
‖v‖.

The closedness of A(t) (for each t ∈ [0, t]) is a consequence of the last resolvent
estimate. Indeed, let {wk} ∈ H2 such that wk → w and A(t)wk → v. Then if

Rλ(t) = (λI −A(t))
−1

, we have Rλ(t)A(t)wk → Rλ(t)v. But

Rλ(t)A(t)wk = λRλ(t)wk − wk
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and so

Rλ(t)v = λRλ(t)w − w.

Thus w = Rλ(t)(λw − v) ∈ D(A(t)) and

Rλ(t)v = Rλ(t)(λw −A(t)w) +Rλ(t)A(t)w − w = Rλ(t)A(t)w.

Since Rλ(t) is one to one it follows that v = A(t)w.
Thus, the hypothesis of the Lemma 1 are satisfied and we can conclude the existence
of a solution u ∈ C([0, T ];H2) ∩ C1([0, T ];L2) for the problem (2.1)-(2.2).
As a final step, we look for an improvement in the regularity of the known solution
u. For this objective we consider the regularization of u once more, that is uǫ.
Because of theorem 1.0.6 we can assure that uǫ ∈ Pm(T ), and as it was previously
shown, we know that uǫ satisfies the equation

A0uǫ
t −Bij∂i∂ju

ǫ +Ai∂iu
ǫ +Duǫ = f ǫ + F ǫ +Hǫ +Rǫ + Iǫ, (2.92)

uǫ(x, 0) = uǫ
0,

hence, uǫ satisfies the energy estimate (2.5) that is

‖uǫ‖2
Pm(T ) ≤ Ψ2

0

(
‖uǫ

0‖2
m +

∫ T

0

‖f̄ ǫ‖2
m−1dt

)
(2.93)

where f̄ ǫ comprises all the terms in the right hand side of (2.93) . Then, for every
ǫ1, ǫ2 > 0 we have the estimate

‖uǫ1 − uǫ2‖2
Pm(T ) ≤ Ψ2

0

(
‖uǫ1

0 − uǫ2
0 ‖2

m +

∫ T

0

‖f̄ ǫ1 − f̄ ǫ2‖2
m−1dt

)
.

Since f̄ ǫ1 − f̄ ǫ2 → 0 in L2(0, T ;Hm−1) and uǫ1
0 − uǫ2

0 → 0 in Hm if ǫ1, ǫ2 → 0,
we conclude that {uǫ}ǫ>0 is a Cauchy sequence in Pm(T ), and thus, there exists
ū ∈ Pm(T ) such that

uǫ → ū in Pm(T ). (2.94)

Now, since uǫ → u in C([0, T ];H2) and, in particular, the convergence in (2.94)
implies convergence in C([0, T ];Hm) for all m ≥ 2, we conclude that u = ū.
In conclusion, we have proven the following result:

Theorem 2.4.1. Let T > 0 be given. Assume that H1, H2, H3, H5, H7, H8,
A1, A2, A3 and A4 are satisfied. Then, the Cauchy problem given in (2.1)-(2.2)
is well-posed in the space Pm(T ).

2.5. Discussions

2.5.1. On the assumption H3. Notice that, the limits of this assumption
were used during the proof of the identity (2.51), where, it was needed to assure
that s − 2 ≥ 0. Since s is an integer with the property that s ≥

[
d
2

]
+ 2 this step

was justified. However, if we make the following assumption

H s is an integer with the property that s > d
2 + 1,

then, the same argument holds. In fact, the whole proof remains valid because
assumption H3 is equivalent to assumption H. Indeed, let us assume that s is an
integer:
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(i) If s ≥
[

d
2

]
+ 2, then

[
d

2

]
+ 1 ≤ d

2
+ 1 <

[
d

2

]
+ 2 ≤ s,

hence s > d
2 + 1. Thus, H3⇒H.

(ii) On the other hand, let s > d
2 + 1 and assume that s <

[
d
2

]
+ 2. Then

[
d

2

]
+ 1 ≤ d

2
+ 1 < s <

[
d

2

]
+ 2,

implying that [
d

2

]
< s− 1 <

[
d

2

]
+ 1.

But this is impossible, because then, s − 1 is an integer between two
successive integers. Thus H⇒H3.

This means that, all our results in this chapter, and subsequent chapters, can be
stated in terms of assumption H instead of H3, since at least for integers they are
actually the same condition.

2.5.2. On a possible conservative structure on the second order terms.

Let us assume that instead of the equation (2.1) we are given the following system

A0ut +Ai∂iu+Du− ∂j

(
Bij∂iu

)
= f, (2.95)

where the dependence of the coefficients and f on (x, t) is being omitted for sim-
plicity. Assuming once more the same structural hypothesis that led us to theorem
2.4.1. we can conclude that the Cauchy problem for this equation is well-posed in
Pm(T ), along with the energy estimate (2.5). The proof is almost exactly the same,
step by step, except for the requirement of the formula (2.51). In fact, we will only
be in need of the following identity

2〈Bij∂i∂
α
x u, ∂j∂

α
xut〉 =

d

dt
〈Bij∂i∂

α
xu, ∂j∂

α
xu〉 − 〈(∂tB

ij)∂i∂
α
xu, ∂j∂

α
xu〉, (2.96)

where the term 2〈Bij∂i∂
α
xu, ∂j∂

α
xut〉 substitutes 〈Bij∂i∂j(∂α

xu), 2∂α
x ut〉 in (2.41).

Let us remember that, in this case |α| ranges between 0 and m−1. So, the question
arises: what’s the advantage of (2.96)? The answer is simple. It avoids the usage
of the limiting case of assumption H3, that is, in order for (2.96) to hold true it is
not required that s− 2 ≥ 0. In fact, we only need corollary 1 ( with s− 1 instead
of s, and r = 0) to justify it, contrary to the identity (2.51) which requires the full
force of the theorem 1.0.2. This means that if we are given an equation with the
second order terms written in conservative form, like in (2.95), we can state the
following assumption (which is more like a rule)

S Assume s > d
2 + 1 but never use that s− 2 ≥ 0,

instead of H3, to conclude the local well-posedness of the associated Cauchy prob-
lem with the same method presented in this chapter. Meaning that, we are im-
proving the regularity required on the initial data and in fact, we are requiring the
exact same regularity as in the hyperbolic case, that is, when we have an equation
of the form

A0ut +Ai∂iu = f

where A0 is symmetric and positive definite, and Ai is symmetric for all i = 1, ..., d
(see for example [36], [42], [44]). This enlargement of the class of the initial data to
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Hs has been previously reported by Serre in [47] for a quasilinear equation that can
be derived from a viscous system of conservation laws that are entropy dissipative.
In fact, as he argues, this regularity assumption enables taking s ∈ R.
Although, his case deals with a quasilinear hyperbolic-parabolic equation, and in
this chapter we only dealt with the linear strongly parabolic one, we can see just
how much of a difference makes an assumption of conservative structure.



3
Well-posedness: Linear non-autonomous coupled

partially hyperbolic-parabolic system

In this chapter we prove the local well-posedness for a linear time-dependent hyperbolic-
parabolic system of partial differential equations. We do not require that the system
is in full symmetric form and we allow for interaction between the hyperbolic and
parabolic variables. Our approach is through the vanishing viscosity method after
achieving the decoupling of the energy estimates for each involved variable.

3.1. Decoupling of the energy estimates

Let us consider three sets of variables, all of them functions of (x, t) ∈ R
d×[0, T ]

for T > 0, u ∈ R
n, v ∈ R

k, w ∈ R
p, with n + k + p = N , such that the following

system of partial differential equations is satisfied

A0
1ut +Ai

11∂iu+Ai
12∂iv = f1(x, t), (3.1)

A0
2vt +Ai

21∂iu+Ai
22∂iv +Ai

23∂iw −Bij
0 ∂i∂jv = f2(x, t), (3.2)

A0
3wt +Ai

32∂iv +Ai
33∂iw +D0w = f3(x, t), (3.3)

where repeated index notation has been used in the space derivatives ∂i· and ∂i∂j ·,
and where each capital letter represents a real matrix function of (x, t) ∈ R

d × [0, T ]
such that

A1
0(x, t) ∈ Mn×n , Ai

11(x, t) ∈ Mn×n ∀1 ≤ i ≤ d,

Ai
12(x, t) ∈ Mn×k ∀1 ≤ i ≤ d , Ai

21(x, t) ∈ Mk×n ∀1 ≤ i ≤ d,

Ai
22(x, t) ∈ Mk×k ∀1 ≤ i ≤ d , Ai

23(x, t) ∈ Mk×p ∀1 ≤ i ≤ d,

Ai
32(x, t) ∈ Mp×k ∀1 ≤ i ≤ d , Ai

33(x, t) ∈ Mp×p ∀1 ≤ i ≤ d,

A0
2(x, t) ∈ Mk×k , A3

0(x, t) ∈ Mp×p

Bij
0 (x, t) ∈ Mk×k , D0(x, t) ∈ Mp×p.

41



42 3. LINEAR NON-AUTONOMOUS CASE

The mapping

(x, t) 7→




f1(x, t)
f2(x, t)
f3(x, t)




is assumed to be given and for each (x, t) ∈ R
d × [0, T ], f1(x, t) ∈ R

n, f2(x, t) ∈ R
k,

f3(x, t) ∈ R
p.

In particular we assume that,

I Ai
11 is a symmetric matrix of order n× n for all 1 ≤ i ≤ d,

II Ai
33 is a symmetric matrix of order p× p for all 1 ≤ i ≤ d.

Observe that equations (3.1), (3.2), (3.3) can be written in the form

A0Ut +Ai∂iU −Bij∂i∂jU +Du = F (3.4)

where

A0 =




A0
1 0 0

0 A0
2 0

0 0 A0
3


 ∈ MN×N ,

Ai =




Ai
11 Ai

12 0
Ai

21 Ai
22 Ai

23

0 Ai
32 Ai

33


 ∈ MN×N ,

Bij =




0 0 0

0 Bij
0 0

0 0 0


 ∈ MN×N ,

D =




0 0 0
0 0 0
0 0 D0


 ∈ MN×N .

With this setting we also assume that

III The matrices A0, Ai, Bij and D all satisfy the assumptions of the theorem
2.4.1, in the sense that, every non-zero defined sub-block of each matrix,
satisfies these assumptions. In particular, this means that there are two
positive constants a0 and a1 such that for all v ∈ R

ni

a0|v|2 ≤
(
A0

i (x, t)v, v
)
Rni

≤ a1|v|2 ∀ (x, t) ∈ R
d × [0, T ],

where ni = n, k, p. Moreover, for the diffusion term, we are requiring the existence
of a positive constant η > 0 such that, the Legendre-Hadamard ellipticity condition
is satisfied, that is (

Bij
0 (x, t)ξiξjv, v

)
Rk

≥ η|ξ|2|v|2

for all ξ = (ξ1, .., ξd) ∈ R
d, v ∈ R

k and (x, t) ∈ R
d × [0, T ].

Observe that, contrary to the last chapter, this assumption does not mean that the
system (3.1)-(3.3) is fully strongly parabolic, but instead of this, that there is an
interplay between hyperbolic and parabolic processes.
It will be proven the local well-posedness of the Cauchy problem for system (3.1)-
(3.3) with initial condition




u(x, 0)
v(x, 0)
w(x, 0)


 =




u0

v0

w0


 = U0 (3.5)

with x ∈ R
d, by making the assumptions that
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IV u0, v0, w0 ∈ Hm,
V f1, f3 ∈ C([0, T ];Hm−1) ∩ L2(0, T ;Hm) and f2 ∈ C([0, T ];Hm−1).

More precisely, we will show the existence of strong local solutions in time for the
problem (3.1)-(3.3) and (3.5). This means that we take (x, t) ∈ R

d × [0, T ] =: QT

where T > 0 is fixed but arbitrary and seek solutions of (3.1)-(3.3) and (3.5) in a
suitable class of Sobolev-Bochner spaces.
According to assumption III we will be dealing with block matrices, so we will
redefine the functions µ0(t) and µ1(t) given in (2.33) and (2.34) respectively, in
terms of it sub-matrices, that is

µ0(t) :=

d∑

i=1

‖Ai
12‖2

s̄ +

d∑

i=1

‖Ai
21‖2

s̄ +

d∑

i=1

‖Ai
22‖2

s̄

+

d∑

i=1

‖Ai
23‖2

s̄ +

d∑

i=1

‖Ai
33‖2

s̄ +

d∑

i=1

‖Ai
32‖2

s̄

+

d∑

i=1

‖Ai
12‖s̄ +

d∑

i=1

‖Ai
21‖s̄ +

d∑

i=1

‖Ai
22‖s̄

+

d∑

i=1

‖Ai
23‖s̄ +

d∑

i=1

‖Ai
33‖s̄ +

d∑

i=1

‖Ai
32‖s̄

+

d∑

i,j=1

‖Bij
0 ‖2

s̄ + ‖D0‖2
s̄ + ‖D0‖s̄ + γ0, (3.6)

and

µ1(t) := ‖∂tA
0
1‖s−1 + ‖∂tA

0
2‖s−1 + ‖∂tA

0
3‖s−1 +

d∑

i,j=1

‖∂tB
ij
0 ‖s−1. (3.7)

We proceed by a vanishing-viscosity approach. Let us consider the following system
of equations

A0U ǫ
t +Ai∂iU

ǫ +DU ǫ −Bij∂i∂jU
ǫ = f + ǫΛ∆U ǫ (3.8)

where Λ is a constant matrix of order N ×N given as

Λ =




In×n 0 0
0 0 0
0 0 Ip×p


 (3.9)

where In×n and Ip×p denote the identity matrix in Mn×n and Mp×p respectively.
This means that we are introducing a parabolic regularization term into the equa-
tions for the hyperbolic variables u and w. No regularization is introduced for the
parabolic variable v.
Let us write system (3.8) in terms of its components

A0
1u

ǫ
t +Ai

11∂iu
ǫ +Ai

12∂iv
ǫ − ǫ∆uǫ = f1(x, t), (3.10)

A0
2v

ǫ
t +Ai

21∂iu
ǫ +Ai

22∂iv
ǫ +Ai

23∂iw
ǫ −Bij

0 ∂i∂jv
ǫ = f2(x, t), (3.11)

A0
3w

ǫ
t +Ai

32∂iv
ǫ +Ai

33∂iw
ǫ +D0w

ǫ − ǫ∆wǫ = f3(x, t). (3.12)
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Now, if we provide the initial condition U ǫ(0) = U0 we can use the results of the
previous section to show the local well-posedness of the Cauchy problem for (3.10)-
(3.12) and thus obtaining a solution, dependent on 0 < ǫ < 1, U ǫ ∈ Pm(T ), for all
1 ≤ m ≤ s.
A suitable energy estimate, independent of ǫ, has to be obtained for the solution
U ǫ that permits us to conclude the existence of a solution for (3.1)-(3.3) as a
consequence of a compactness argument.
We proceed as in the energy estimate for the complete parabolic case. In particular
this means that we have to assume that U ǫ ∈ Pm+1(T ) and obtain the desired
inequality. Then as it was previously done we apply a mollification argument to
conclude that in fact U ǫ ∈ Pm(T ) satisfies the required energy estimate. For
simplicity we write U = (u, v, w)T instead of U ǫ.
As it was previously done, we apply the operator ∂α

x to each equation in (3.10)-
(3.12) to obtain

A0
1(∂α

xut) − ǫ∆(∂α
x u) = A0

1∂
α
x

(
(A0

1)−1[f1 −Ai
11∂iu−Ai

12∂iv]
)

+ ǫA0
1Gα

(
(A0

1)−1,∆u
)
, (3.13)

A0
2(∂α

x vt) −Bij
0 ∂i∂j(∂α

x v) = A0
2∂

α
x

(
(A0

2)−1[f2 −Ai
21∂iu−Ai

22∂iv −Ai
23∂iw]

)

+ ǫA0
2Gα

(
(A0

2)−1B0ij, ∂i∂jv
)
, (3.14)

A0
3(∂α

xwt) − ǫ∆(∂α
xw) = A0

3∂
α
x

(
(A0

3)−1[f3 −Ai
32∂iv −Ai

33∂iw −D0w]
)

+ ǫA0
3Gα

(
(A0

3)−1,∆w
)
. (3.15)

Now we perform the inner product of (3.13)-(3.15), in L2, with

2∂α
x




u
v
w


 .

We will do this in several steps. We begin by taking the inner product of (3.13)
with 2∂α

x u to get

d

dt
〈A0

1∂
α
xu, ∂

α
x u〉 − ǫ〈∆∂α

x u, 2∂
α
x u〉 = 〈(A0

1∂
α
x

(
(A0

1)−1f1

)
, 2∂α

x u〉

− 〈A0
1∂

α
x

(
(A0

1)−1Ai
11∂iu

)
, 2∂α

x u〉
− 〈A0

1∂
α
x

(
(A0

1)−1Ai
12∂iv

)
, 2∂α

x u〉
+ ǫ〈A0

1Gα

(
(A0

1)−1,∆u
)
, 2∂α

x u〉
+ 〈∂α

xu, (∂tA
0
1)∂α

xu〉 (3.16)

Now, we proceed to estimate each term in the right hand side of (3.16). At this
point we will have to deal with the main problem of this section, which is the de-
coupleness of the regularity for each variable, since the natural regularity expected
for a parabolic variable is different than that of a hyperbolic variable. Since we are
not assuming that the hyperbolic variables are decoupled from the parabolic one in
the linear system (3.1)-(3.3) (contrary to the case of lemma 2.6 and propostion 2.7
of [25]), we have to be careful with the types of terms that appear in the energy
estimate for each variable. So, unlike the estimate for the purely parabolic

equation, we will have one rule in order to obtain the energy estimates

in this case, which is, not to allow the appearance of the terms ‖∇u‖m
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and ‖∇w‖m in the right hand side of the a priori estimates. For example
in equation (3.16) the second term in the right hand side of this identity can be
written as

〈A0
1∂

α
x

(
(A0

1)−1Ai
11∂iu

)
, 2∂α

x u〉 = 〈Ai
11∂

α
x ∂iu, 2∂

α
x u〉

+ 〈A0
1Gα

(
(A0

1)−1Ai
11, ∂iu

)
, 2∂α

x u〉,
where we have to integrate by parts the first term in the right hand side of this
identity and use assumption I, which yields

〈Ai
11∂

α
x ∂iu, ∂

α
xu〉 = −2〈(∂iA

i
11)∂α

x u, ∂
α
xu〉,

and so,

〈A0
1∂

α
x

(
(A0

1)−1Ai
11∂iu

)
, 2∂α

x u〉 = −〈(∂iA
i
11)∂α

x u, ∂
α
x u〉

+ 〈A0
1Gα

(
(A0

1)−1Ai
11, ∂iu

)
, 2∂α

x u〉.
By using the Cauchy-Schwarz inequality, the Sobolev product estimates and the
commutator estimates we get

〈A0
1∂

α
x

(
(A0

1)−1Ai
11∂iu

)
, 2∂α

x u〉 ≤ C

(
d∑

i=1

‖Ai
11‖s̄

)
‖u‖2

m, (3.17)

where the constant C is taken as in (2.22). For the term involving f1 in (3.16) we
have the estimate

〈(A0
1∂

α
x

(
(A0

1)−1f1

)
, 2∂α

x u〉 ≤ C‖f1‖m‖u‖m, (3.18)

which is different from that of (2.20) because we are not integrating by parts to
relief f1 from one degree of differentiation. The rest of the terms in (3.16) can be
dealt with in the same manner as in the a priori estimate for the parabolic case in
the last chapter. So, using (3.17) in the right hand side of (3.16), integrating by
parts the term involving the Laplacian and adding up all terms from |α| = 0 up to
|α| = m we get

d

dt

m∑

|α|=0

〈A0
1∂

α
xu, ∂

α
x u〉 + 2ǫ‖∇u‖2

m ≤ C

{
‖f1‖m‖u‖m +

(
d∑

i=1

‖Ai
11‖s̄

)
‖u‖2

m

+ +‖∂tA
0
1‖s−1‖u‖2

m + ǫ‖u‖m‖∇u‖m

+

(
d∑

i=1

‖Ai
12‖s̄

)
‖u‖m (‖v‖m + ‖∇v‖m)

}
.

Note that, in the right hand side of the last inequality, there are no terms involving
‖∇u‖m other than the one that is being multiplied by ǫ and so, eventually we will
be able to get rid of this term. By Cauchy’s weighted inequality, for every δ > 0,
we have that

d

dt

m∑

|α|=0

〈A0
1∂

α
xu, ∂

α
x u〉 + 2ǫ‖∇u‖2

m ≤ C

{
‖f1‖2

m

2
+

‖u‖2
m

2
+

d∑

i=1

‖Ai
11‖s̄‖u‖2

m

+ ǫ

(‖u‖2
m

2δ
+
δ‖∇u‖2

m

2

)
+ ‖∂tA

0
1‖s−1‖u‖2

m

+

d∑

i=1

‖Ai
12‖s̄‖u‖m (‖∇v‖m + ‖v‖m)

}
.
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Let us define now the energy of order m of u as

Em
1 (u) :=

m∑

|α|=0

〈A0
1∂

α
xu, ∂

α
xu〉 (3.19)

and note that

a0‖u‖2
m ≤ Em

1 (u) ≤ a1‖u‖2
m (3.20)

due to assumption III. So, if we take δ = 1
C we get 2− Cδ

2 = 3
2 and since ǫ

(
2 − Cδ

2

)
=

ǫ 3
2 > 0 and use the definition of Em

1 (u) we finally arrive at

d

dt
Em

1 (u) ≤ C

{
‖f1‖2

m + ‖u‖2
m +

(
d∑

i=1

‖Ai
11‖s̄

)
‖u‖2

m + ‖∂tA
0
1‖s−1‖u‖2

m

+

(
d∑

i=1

‖Ai
12‖s̄

)
‖u‖m(‖v‖m + ‖∇v‖m)

}
. (3.21)

Similarly, we define the energy of order m of the variable w as

Em
3 (w) :=

m∑

|α|=0

〈A0
3∂

α
xw, ∂

α
xw〉 (3.22)

satisfying the same type of inequality as in (3.20)

α0‖w‖2
m ≤ Em

3 (w) ≤ α1‖w‖2
m. (3.23)

Applying exactly the same steps previously described we obtain the energy estimate
for w given as

d

dt
Em

3 (w) ≤ C

{
‖f3‖2

m + ‖w‖2
m +

(
d∑

i=1

‖Ai
33‖s̄

)
‖w‖2

m + ‖∂tA
0
3‖s−1‖w‖2

m

+

(
d∑

i=1

‖Ai
32‖s̄

)
‖w‖m(‖v‖m + ‖∇v‖m) + ‖D0‖s̄‖w‖2

m

}
. (3.24)

To derive the energy estimate for the parabolic variable v we can proceed in the
same way as in the past chapter, in particular, we follow the steps that led us to
(2.25), but in this case we will be taking f = f2 − Ai

21∂iu − Ai
23∂iw. Since, in

particular, we are assuming that u,w ∈ C([0, T ];Hm) we can take such f . Hence,

d

dt
Em

2 (v) + G0

(
‖v‖2

m + ‖∇v‖2
m

)
− γ0‖v‖2

m ≤

≤ C

{
‖f2‖m−1‖∇v‖m−1 +

d∑

i=1

‖Ai
21‖s̄‖u‖m(‖∇v‖m + ‖v‖m)

+

d∑

i=1

‖Ai
22‖s̄‖v‖m(‖∇v‖m + ‖v‖m) + ‖∂tA

0
2‖s−1‖v‖2

m

+ ‖∂tA
0
2‖s−1‖v‖2

m +

d∑

i=1

‖Ai
23‖s̄‖w‖m(‖∇v‖m + ‖v‖m)

}
, (3.25)
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where, as in the previous cases, we defined an equivalent norm to ‖v‖2
s,

Em
2 (v) :=

m∑

|α|=0

〈A0
2∂

α
x v, ∂

α
x 〉. (3.26)

Now, we have to absorb each term ‖∇v‖m in the left hand side of the last inequality.
For this, we use once more Cauchy’s weighted inequality to get

(
d∑

i=1

‖Ai
21‖s

)
‖u‖s‖∇v‖s ≤ δ

2
‖∇v‖s

2 + d2

(
d∑

i=1

‖Ai
21‖2

s

)
‖u‖2

s

2δ
,

(
d∑

i=1

‖Ai
22‖s

)
‖v‖s‖∇v‖s ≤ δ

2
‖∇v‖s

2 + d2

(
d∑

i=1

‖Ai
22‖2

s

)
‖v‖2

s

2δ
,

(
d∑

i=1

‖Ai
23‖s

)
‖w‖s‖∇v‖s ≤ δ

2
‖∇v‖s

2 + d2

(
d∑

i=1

‖Ai
21‖2

s

)
‖w‖2

s

2δ
,

and

‖f2‖2
s−1‖∇v‖2

s ≤ δ‖∇v‖2
s

2
+

‖f2‖2
s

2δ
for every δ > 0. Substituing into (3.25) and using the redefinitions of µ0 and µ1

given in (3.6) and (3.7) respectively, we get

d

dt
Em

2 (v) + G0

(
‖v‖2

m + ‖∇v‖2
m

)
≤ 4Cδ

2
‖∇v‖2

m + C
{

‖f2‖2
m−1

+ C (µ0(t) + µ1(t))
(
‖u‖2

m + ‖v‖2
m + ‖w‖2

m

)}
. (3.27)

In the same manner we obtain the following estimates for Em
1 (u) and Em

3 (w)

d

dt
Em

1 (u) ≤ Cδ

2
‖∇v‖2

m + C
{

‖f1‖2
m + (µ0(t) + µ1(t))

(
‖u‖2

m + ‖v‖2
m

)}
, (3.28)

d

dt
Em

3 (w) ≤ Cδ

2
‖∇v‖2

m + C
{

‖f3‖2
m + (µ0(t) + µ1(t))

(
‖w‖2

m + ‖v‖2
m

)}
. (3.29)

Remark 3. Observe that, none of the estimates in (3.27), (3.28) and (3.29),
by itself, is suited to the application of Gronwall’s inequality. Not even in the case
in which we write Em

1 (u), Em
2 (v) and Em

3 (w) instead of ‖u‖2
m, ‖v‖2

m and ‖w‖2
m,

in the right hand side of these estimates, by means of their equivalences. The
reason for this is that, in each estimate the leading variable (i.e. the variable that
is being differentiated) is not the only one that appears in the right hand side of
each estimate. This problem is strictly a consequence of assuming coupling between
hyperbolic and parabolic variables in equations (3.1)-(3.3).

We add up (3.27), (3.28), (3.29) and take δ > 0 such that G0 − 3Cδ = 1
2 to

obtain
d

dt
Em(u, v, w) +G0‖v‖2

m +
1

2
‖∇v‖2

m ≤ C {Fm(f1, f2, f3)

+ a1(µ0(t) + µ1(t))Em(u, v, w)} , (3.30)

where we have set

Em(u, v, w) = Em
1 (u) + Em

2 (v) + Em
3 (w)

and
Fm(f1, f2, f3) = ‖f1‖2

m + ‖f2‖2
m−1 + ‖f3‖2

m.
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Integrate with respect to time between [0, T ] to get

Em(u(t), v(t), w(t)) + G0

∫ t

0

‖v(τ)‖2
mdτ +

1

2

∫ t

0

‖∇v(τ)‖2
mdτ ≤

≤ Em(u0, v0, w0) + C

{∫ T

0

Fm(f1(τ), f2(τ), f3(τ))dτ

+

∫ t

0

(µ0(t) + µ1(t)) Em(u(τ), v(τ), w(τ))dτ

}
, (3.31)

where now the constant C is taken to be dependent of a1.
Note that, at this point, we can apply Gronwall’s inequality to the function

y(t) : = Em(u0, v0, w0) + C

{∫ T

0

Fm(f1(τ), f2(τ), f3(τ))dτ

+

∫ t

0

(µ0(t) + µ1(t)) Em(u(τ), v(τ), w(τ))dτ

}

thus yielding

‖u(t)‖2
m + ‖v(t)‖2

m + ‖w(t)‖2
m +

∫ t

0

‖v(τ)‖2
m + ‖∇v(τ)‖2

mdτ ≤ K2
0 Φ2

0, (3.32)

for all t ∈ [0, T ], where we have defined

K2
0 := ‖u0‖2

m + ‖v0‖2
m + ‖w0‖2

m +

∫ T

0

Fm(f1(τ), f2(τ), f3(τ))dτ, (3.33)

Φ2
0 := C1e

C1

∫ T

0
(µ0(t)+µ1(t))dt

, (3.34)

and where the constant C1 was renamed to indicate that is dependent on G0, a0 and
a1. Observe that a consequence of (3.32) is the decoupling of the energy estimates
for each variable, which is to say that

‖u(t)‖2
m ≤ (K0Φ0)2, (3.35)

‖v(t)‖2
m +

∫ t

0

(
‖v(τ)‖2

m + ‖∇v(τ)‖2
m

)
dτ ≤ (K0Φ0)2, (3.36)

‖w(t)‖2
m ≤ (K0Φ0)2, (3.37)

for all t ∈ [0, T ].
Now we will take the L2 inner product between the equations (3.13)-(3.15) and

2∂α
x




ut

vt

wt


 ,

but this time α will be ranging between 0 ≤ |α| ≤ m − 1, for 1 ≤ m ≤ s. The
resulting identities will be estimated in the same manner as it was previously done.
For the inner product between (3.13) and 2∂α

x ut we get the term

〈∆(∂α
x u), ∂α

x ut〉 = −〈∂i(∂
α
xu), ∂t∂

α
x ∂iu〉,

which is justified by the extra-regularity assumption that ut ∈ L2(0, T ;Hm), more-
over, for this, and the symmetry of the inner product we have that

2〈∆(∂α
x u), ∂α

x ut〉 = − d

dt
〈∂α

x (∂iu), ∂x(∂iu)〉.
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Then, by using this identity in the inner product between the equation (3.13) and
2∂α

xut, and estimating, we obtain the inequality

Em−1
1 (ut) + ǫ

d

dt
‖∇u‖2

m−1 ≤C
{

‖f1‖m−1‖ut‖m−1 +
d∑

i=1

‖Ai
11‖s̄‖u‖m‖ut‖m−1

+
d∑

i=1

‖Ai
12‖s̄‖v‖m‖ut‖m−1 + ‖u‖m‖ut‖m−1

}
. (3.38)

A similar procedure applied for the variable w leads us to

Em−1
1 (wt) + ǫ

d

dt
‖∇w‖2

m−1 ≤C
{

‖f1‖m−1‖wt‖m−1 +
d∑

i=1

‖Ai
32‖s̄‖v‖m‖wt‖m−1

+‖D0‖s̄‖w‖m‖wt‖m−1‖wt‖m‖ut‖m−1

+

d∑

i=1

‖Ai
33‖s̄‖w‖m‖wt‖m−1

}
. (3.39)

For the case of the parabolic variable v, we use the formula (2.51), derived in the

previous chapter, but applied to Bij
0 and proceed in the same manner to get

Em−1
2 (vt)−

d

dt

m−1∑

|α|=0

〈Bij
0 ∂i∂j∂

α
x v, ∂

α
x v〉 ≤

≤C
{

‖f2‖m−1‖vt‖m−1 +
d∑

i=1

‖Ai
21‖s̄‖u‖m‖vt‖m−1+

+
d∑

i=1

‖Ai
22‖s̄‖v‖m‖vt‖m−1 +

d∑

i=1

‖Ai
23‖s̄‖w‖m‖vt‖m−1+

+

d∑

i,j=1

‖Bij
0 ‖s̄‖v‖m‖vt‖m−1 +

d∑

i,j=1

‖∂tB
ij
0 ‖m−1‖v‖m‖vt‖m−1



 . (3.40)

Now, we isolate the norm ‖vt‖2
m−1 on the left side of (3.38), (3.39) and (3.40) by

using Cauchy’s weighted inequality. For the case of the parabolic variable we obtain

1

2
‖vt‖2

m−1− d

dt

m−1∑

|α|=0

〈Bij
0 ∂i∂j∂

α
x v, ∂

α
x v〉 ≤

≤C
{

‖f2‖2
m−1 + (µ0(t) + µ1(t))

(
‖u‖2

m + ‖v‖2
m + ‖w‖2

m

)}
. (3.41)

Integrating with respect to t ∈ [0, T ] and using Garding’s inequality we obtain

1

2

∫ t

0

‖vt(τ)‖2
m−1dτ+G0‖v‖2

m ≤ C

{
‖v0‖2

m−1 +

∫ T

0

‖f2(t)‖2
m−1dt+

+

∫ t

0

(µ0(τ) + µ1(τ))
(
‖u(τ)‖2

m + ‖v(τ)‖2
m + ‖w(τ)‖2

m

)
dτ

}

+γ0‖v‖2
m−1. (3.42)
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Proceeding in a similar manner and taking into account that ǫ > 0 we get the
following estimates for the hyperbolic variables

1

2

∫ t

0

‖ut(τ)‖2
m−1dτ ≤‖u0‖2

m + C

{∫ T

0

‖f1(τ)‖2
mdτ

+

∫ t

0

(µ0(τ) + µ1(τ))
(
‖u(τ)‖2

m + ‖v(τ)‖2
m

)
dτ

}
(3.43)

and

1

2

∫ t

0

‖wt(τ)‖2
m−1dτ ≤‖w0‖2

m + C

{∫ T

0

‖f3(τ)‖2
mdτ

+

∫ t

0

(µ0(τ) + µ1(τ))
(
‖v(τ)‖2

m + ‖w(τ)‖2
m

)
dτ

}
(3.44)

Adding the last three inequalities yields and using the equivalent norms

G0‖v(t)‖2
m+

1

2

∫ t

0

Em−1(ut(τ), vt(τ), wt(τ))dτ ≤

≤Em(u0, v0, w0) +

{
C

∫ T

0

Fm(f1(τ), f2(τ), f3(τ))dτ

+

∫ t

0

(µ0(τ) + µ1(τ))Em(u(τ), v(τ), w(τ))dτ

}

+γ0‖v(t)‖2
m. (3.45)

At this point we add estimate (3.31) to (3.35), and, in particular, we can use it to
dominate the term γ0‖v‖2

m so we can finally get

Em(u(t), v(t), w(t)) +

∫ t

0

Em−1(ut(τ), vt(τ), wt(τ))dτ +

+

∫ t

0

(
‖u(τ)‖2

m + ‖v(τ)‖2
m+1 + ‖w(τ)‖2

m

)
dτ ≤

≤ C

{
Em(u0, v0, w0) +

∫ T

0

Fm(f1(t), f2(t), f3(t))dt

+

∫ t

0

(µ0(τ) + µ1(τ)) (Em(u(τ), v(τ), w(τ))) dτ

}
(3.46)

for al t ∈ [0, T ]. By applying Gronwall’s inequality (for the last time), we obtain
the complete energy estimate

Em(u(t), v(t), w(t))+

∫ t

0

Em−1(ut(τ), vt(τ), wt(τ))dτ+

+

∫ t

0

(
‖u(τ)‖2

m + ‖v(τ)‖2
m+1 + ‖w(τ)‖2

m

)
dτ ≤ K2

0 Φ2
0. (3.47)
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Again, from (3.47) we can obtain the decoupling of the energy estimates for each
variable at play, thus obtaining

‖u(t)‖2
m +

∫ t

0

‖ut(τ)‖2
m−1dτ +

∫ t

0

‖u(τ)‖2
mdτ ≤K2

0 Φ2
0, (3.48)

‖v(t)‖2
m +

∫ t

0

‖vt(τ)‖2
m−1dτ +

∫ t

0

‖v(τ)‖2
m+1τ ≤K2

0 Φ2
0, (3.49)

‖w(t)‖2
m +

∫ t

0

‖wt(τ)‖2
m−1dτ +

∫ t

0

‖w(τ)‖2
mτ ≤K2

0 Φ2
0, (3.50)

for all t ∈ [0, T ].
Hence, we have proven that, for every ǫ > 0, the solution, (uǫ, vǫ, wǫ)T , of the
strongly parabolic extended system (3.10)-(3.12), satisfies the energy estimates
(3.48)-(3.50), that is

‖uǫ(t)‖2
m +

∫ t

0

‖uǫ
t(τ)‖2

m−1dτ +

∫ t

0

‖uǫ(τ)‖2
mdτ ≤K2

0 Φ2
0, (3.51)

‖vǫ(t)‖2
m +

∫ t

0

‖vǫ
t (τ)‖2

m−1dτ +

∫ t

0

‖vǫ(τ)‖2
m+1τ ≤K2

0 Φ2
0, (3.52)

‖wǫ(t)‖2
m +

∫ t

0

‖wǫ
t(τ)‖2

m−1dτ +

∫ t

0

‖wǫ(τ)‖2
mτ ≤K2

0 Φ2
0, (3.53)

for all t ∈ [0, T ], for all 0 < ǫ < 1 and where C(T ) is independent of 0 < ǫ < 1.

Remark 4. (i) Notice that, by assuming the existence of a solution to
system (3.1)-(3.3) and repeating, for this equations, the exact same steps
that led us from (3.10)-(3.12) to the estimates (3.48)-(3.50) (with ǫ = 0)
we obtain the energy estimates (3.48)-(3.50).

(ii) Moreover, observe that, as the previous steps show, in order to derive the
energy estimates given in (3.48)-(3.50) it is enough to assume that we have
a solution (u, v, w) of the Cauchy problem (3.1)-(3.3) with the regularity

u,w ∈ L∞(0, T ;Hm),

v ∈ L∞(0, T ;Hm) ∩ L2(0, T ;Hm+1),

ut, vt, wt ∈ L2(0, T ;Hm−1),

and with the matrix coefficients satisfying only the regularity of assump-
tions H1-H8 (in block-sense) along with

H10 f1, f3 ∈ L2(0, T ;Hm) and f2 ∈ L2(0, T ;Hm−1).
Thus, we have proven the following result:

Theorem 3.1.1. Assume that H1-H8 and H10 are met. If there is a solu-
tion (u, v, w) of the equations (3.1)-(3.3) with initial condition (3.5) and with the
regularity given as

u,w ∈ L∞(0, T ;Hm),

v ∈ L∞(0, T ;Hm) ∩ L2(0, T ;Hm+1),

ut, vt, wt ∈ L2(0, T ;Hm−1),

then, the functions u, v, w satisfy the energy estimates given in (3.30) and (3.46)-
(3.50).

As a corollary of these result we state the following theorem:
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Theorem 3.1.2. Suppose that conditions I-V are met and assume the ex-
istence of a function U = (u, v, w)T ∈ R

n+k+p of (x, t) ∈ R
d × [0, T ] whose

components satisfy that u, v, w ∈ C([0, T ];Hm), ut, vt, wt ∈ L2([0, T ];Hm−1) and
v ∈ L2(0, T ;Hm+1). If U is a solution of the equations (3.1)-(3.3) with initial
condition (3.5), then u, v, w satisfy the energy estimates (3.48)-(3.50) respectively.

3.2. Vanishing viscosity: Compactness

In particular, (3.51)-(3.53) imply that

{uǫ}0<ǫ<1 is bounded in L∞(0, T ;Hm), (3.54)

{uǫ}0<ǫ<1 is bounded in L2(0, T ;Hm) (3.55)

{uǫ
t}0<ǫ<1 is bounded in L2(0, T ;Hm−1), (3.56)

{vǫ}0<ǫ<1 is bounded in L∞(0, T ;Hm), (3.57)

{vǫ}0<ǫ<1 is bounded in L2(0, T ;Hm+1), (3.58)

{vǫ
t}0<ǫ<1 is bounded in L2(0, T ;Hm−1), (3.59)

{wǫ}0<ǫ<1 is bounded in L∞(0, T ;Hm), (3.60)

{wǫ}0<ǫ<1 is bounded in L2(0, T ;Hm), (3.61)

{wǫ
t}0<ǫ<1 is bounded in L2(0, T ;Hm−1). (3.62)

Due to statements (3.54)-(3.62) we can use Banach-Alaoglu’s theorem to extract
sub-sequences converging in the weak or weak∗ topologies. Then, we proceed as
follows: From (3.54) there exists a sub-sequence that still be denoted as {uǫ}0<ǫ<1,
such that

uǫ ∗
⇀ u0 in L∞(0, T ;Hm). (3.63)

Since L∞(0, T : Hm) = X∗ is the dual of L1(0, T ;Hm) = X the pairing 〈·, ·〉X∗,X

will be

〈f, g〉X∗,X :=

∫ T

0

〈f, g〉mdt

for all f ∈ X∗ and g ∈ X. Since Hm is a Hilbert space 〈f, g〉m can be understood
as the inner product in Hm. Thus, (3.63) means that

∫ T

0

〈uǫ, ϕ〉mdt →
∫ T

0

〈u0, ϕ〉mdt (3.64)

for all ϕ ∈ L1(0, T : Hm) as ǫ → 0. This is true in particular if we take ϕ =
φ ∈ L2(0, T ;Hm) and due to (3.55), for all such φ the convergence (3.63) coincides
with the weak convergence in L2(0, T ;Hm). In particular u0 ∈ L∞(0, T ;Hm) ∩
L2(0, T ;Hm).
From (3.60) and (3.61) we can obtain the same conclusion for a sub-sequence {wǫ}
(with the same indexation as uǫ), that is, there is w0 ∈ L∞(0, T ;Hm)∩L2(0, T ;Hm)
such that ∫ T

0

〈wǫ, ϕ〉mdt →
∫ T

0

〈w0, ϕ〉mdt (3.65)

for all ϕ ∈ L1(0, T ;Hm) as ǫ → 0.
From (3.57) and (3.58) we can assure the existence of v0 ∈ L∞(0, T ;Hm), v∗ ∈
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L2(0, T ;Hm+1) and a sub-sequence {vǫ} ∈ L∞(0, T ;Hm) ∩ L2(0, T ;Hm+1) such
that

vǫ ∗
⇀ v0 in L∞(0, T ;Hm), (3.66)

vǫ ⇀ v∗ in L2(0, T ;Hm+1). (3.67)

Let us define the mapping

fα : L2(0, T ;Hm+1) → L2(0, T ;L2)

v 7→ ∂α
x v.

This mapping is continuous
∫ T

0

‖fα(v)‖2dt =

∫ T

0

‖∂α
x v‖2dt ≤

∫ T

0

‖v‖2
m+1dt

for all |α| ≤ m+ 1. Note that L2(0, T ;Hm+1) is a reflexive space, thus (3.67) and
the continuity of fα imply that

∂α
x v

ǫ ⇀ ∂α
x v

∗ in L2(0, T ;L2)

for all |α| ≤ m + 1. In particular, this is satisfied for all |α| ≤ m. Since for all
φ ∈ L2(0, T ;Hm), ∂α

xφ(t) ∈ L2 for almost all t ∈ [0, T ], we have that
∫ T

0

〈∂α
x v

ǫ, ∂α
xφ〉dt →

∫ T

0

〈∂α
x v

∗, ∂α
xφ〉dt

for all |α| ≤ m. Thus vǫ ⇀ v∗ in L2(0, T ;Hm) and from (3.66) we conclude that
v0 = v∗. In particular we can conclude that, there exists

v0 ∈ L∞(0, T ;Hm) ∩ L2(0, T ;Hm+1) ∩ L2(0, T ;Hm)

such that ∫ T

0

〈vǫ, ϕ〉mdt →
∫ T

0

〈v0, ϕ〉mdt (3.68)

for all ϕ ∈ L1(0, T ;Hm) as ǫ → 0.
Now, (3.56) implies the existence of a sub-sequence {uǫ

t} ∈ L2(0, T ;Hm−1) (with
the same indexation as the previous ones) such that

uǫ
t ⇀ u1 in L2(0, T ;Hm−1) 1 ≤ m ≤ s.

Thus, ∫ T

0

〈uǫ
t, φ〉m−1dt →

∫ T

0

〈u1, φ〉m−1dt (3.69)

for all φ ∈ L2(0, T ;Hm−1). Also, uǫ
t satisfies the identity

∫ T

0

uǫ(t)φ′(t)dt = −
∫ T

0

uǫ
t(t)φ(t)dt

for all φ(t) ∈ D(0, T ). Then, for every λ ∈ (Hm−1)∗ we have that

λ

(∫ T

0

uǫ(t)φ′(t)dt

)
= −λ

(∫ T

0

uǫ
t(t)φ(t)dt

)

and because of Hille’s theorem
∫ T

0

λ (uǫ(t)φ′(t)) dt = −
∫ T

0

λ (uǫ
t(t)φ(t)) dt
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and thus ∫ T

0

φ′(t)λ(uǫ(t))dt = −
∫ T

0

φ(t)λ(uǫ
t(t))dt

Due to Riesz’s lemma for every λ ∈ (Hm−1)∗ there is a unique v ∈ Hm−1 such that

λ(y) = 〈y, v〉m−1

and also, every v ∈ Hm−1 defines a unique element λv(y) = 〈y, v〉m−1 in (Hm−1)∗ ∼=
Hm−1. This means that∫ T

0

φ′(t)〈uǫ, v〉m−1dt = −
∫ T

0

φ(t)〈uǫ
t, v〉m−1dt

thus, ∫ T

0

〈uǫ, φ′(t)v〉m−1dt = −
∫ T

0

〈uǫ
t, φ(t)v〉m−1dt.

Since φ(t)v, φ′(t)v ∈ L2(0, T ;Hm−1) we can apply (3.64) and (3.69) to each side of
the last identity to conclude that

∫ T

0

〈u0, φ′(t)v〉m−1dt = −
∫ T

0

〈u1, φ(t)v〉m−1dt

for all v ∈ Hm−1. Hence, for every λ ∈ (Hm−1)∗

λ

(∫ T

0

φ′(t)u0(t)dt

)
= −λ

(∫ T

0

φ(t)u1(t)dt

)
.

In consequence, Hahn-Banach’s theorem implies that
∫ T

0

φ′(t)u0(t)dt = −
∫ T

0

φ(t)u1(t)dt

and we can conclude that ∂tu
0 = u1. By applying the same argument to statements

(3.59) and (3.62) we obtain that

∂tv
0 = v1,

∂tw
0 = w1,

where v1 and w1 satisfy
∫ T

0

〈vǫ
t , φ〉Hm−1dt →

∫ T

0

〈v1, φ〉Hm−1dt (3.70)

∫ T

0

〈wǫ
t , φ〉Hm−1dt →

∫ T

0

〈w1, φ〉Hs−1dt (3.71)

for all φ ∈ L2(0, T ;Hm−1).

3.3. Vanishing viscosity: Taking limits

We are left with the task of proving that (u0, v0, w0)T := U satisfies equations
(3.1)-(3.3) with initial condition (3.5). We use an standard argument. Let us begin
by considering the following identity

∫ T

0

〈A0U ǫ
t +Ai∂iU

ǫ +DU ǫ −Bij∂i∂jU
ǫ − ǫΛ∆U ǫ, φ〉dt =

∫ T

0

〈f, φ〉 (3.72)

which is true for all φ ∈ L2(0, T ;L2) and in particular, is true in C1([0, T ];H1).
Due to the linearity of the inner product we can deal with each term in (3.72)
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separately and apply the limits given in (3.64), (3.65), (3.68), (3.69), (3.70) and
(3.71) to obtain that

∫ T

0

〈A0U ǫ
t , φ〉dt →

∫ T

0

〈A0Ut, φ〉dt,
∫ T

0

〈Ai∂iU
ǫ, φ〉dt →

∫ T

0

〈Ai∂iU, φ〉dt,
∫ T

0

〈DU ǫ, φ〉dt →
∫ T

0

〈DU,φ〉dt,

and
∫ T

0

〈Bij∂i∂jU
ǫ + ǫΛ∆U ǫ, φ〉dt →

∫ T

0

〈Bij∂i∂jU, φ〉dt

as ǫ → 0. Hence, we conclude that

∫ T

0

〈A0Ut +Ai∂iU +DU −Bij∂i∂jU, φ〉dt =

∫ T

0

〈f, φ〉dt (3.73)

for all φ ∈ C1([0, T ];H1), which means that U satisfies (3.1)-(3.3).
Finally, we verify that U satisfies (3.5). For this, take into account that, since U ǫ

satisfies (3.8) then

U ǫ
t + (A0)−1

(
Ai∂iU

ǫ +DU ǫ −Bij∂i∂jU
ǫ − ǫΛ∆U ǫ

)
= (A0)−1f (3.74)

due to the invertibility of A0. Then

∫ T

0

(
d

dt
〈U ǫ, φ〉 − 〈U ǫ, φt〉

)
dt+

+

∫ T

0

〈(A0)−1
(
Ai∂iU

ǫ +DU ǫ −Bij∂i∂jU
ǫ − ǫΛ∆U ǫ − f

)
, φ〉dt = 0.

Taking φ(T ) = 0 and ǫ → 0 we obtain

∫ T

0

−〈U, φt〉dt+
∫ T

0

〈(A0)−1
(
Ai∂iU +DU −Bij∂i∂jU − f

)
, φ〉dt =

=〈U0, φ(0)〉.

On the other hand, applying the same argument for the equation satisfied by U we
are left with

∫ T

0

−〈U, φt〉dt+
∫ T

0

〈(A0)−1
(
Ai∂iU +DU −Bij∂i∂jU − f

)
, φ〉dt =

=〈U(0), φ(0)〉.

Comparing the last identities remains that

〈U0, φ(0)〉 = 〈U(0), φ(0)〉

and since φ is arbitrary we conclude that U(0) = U0.
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3.4. Existence

In the previous sections we showed the existence of a solution U = (u, v, w)T

of the Cauchy problem (3.1)-(3.3) with initial condition (3.5) such that

u,w ∈ L∞(0, T ;Hm),

v ∈ L∞(0, T ;Hm) ∩ L2(0, T ;Hm+1),

ut, vt, wt ∈ L2(0, T ;Hm−1).

We can go further and show that in fact U ∈ C([0, T ];Hm). Indeed, first observe
that, in particular U ∈ L2(0, T ;Hm) and Ut ∈ L2(0, T ;Hm−1), hence

U ∈ W 1,2(0, T ;Hm−1),

which implies that U ∈ C([0, T ];Hm−1) since W 1,2(0, T ;Hm−1) →֒ C([0, T ];Hm−1),
according to theorem 1.0.9. The same holds true for A0U , given that assumption
III is satisfied. Thus A0U ∈ W 1,2(0, T ;Hm−1). Then, we can apply theorem 1.0.8
with X = Hm, Y = Hm−1, and the embedding Hm →֒ Hm−1, to conclude that
A0U ∈ Cw([0, T ];Hm). Furthermore, accordingly to estimate (3.30) we have that

d

dt
‖A0(t)U(t)‖2

m ∈ L1(0, T ),

which implies that the mapping t 7→ ‖A0(t)U(t)‖2
m is continuous. This implies

that the mapping t 7→ (A0U)(t) is continuous. Indeed, consider t0, t1 ∈ [0, T ] and
observe that

‖A0(t1)U(t1) −A0(t0)U(t0)‖2
m = ‖A0(t1)U(t1)‖2

m + ‖A0(t0)U(t0)‖2
m

− 2〈A0(t1)U(t1), A0(t0)U(t0)〉m

goes to zero if t0 → t1 due to the continuity of ‖A0(·)U(·)‖2
m and the weak continuity

of A0U(t). So, we get that A0U ∈ C([0, T ];Hm), and since A0 is invertible with

(A0)−1 ∈ C([0, T ]; Ĥs) we can conclude that U ∈ C([0, T ];Hm).
In particular, each variable has possesses different types of regularity for the partial
derivative with respect to time. For example, let us consider the hyperbolic variable
u and its respective equation (3.1), multiply this equation by (A0

1)−1 and use the
triangle inequality to get

‖ut(t1) − ut(t2)‖s−1 ≤ C {‖f1(t1) − f2(t2)‖s−1

+ ‖Ai
11(t2)∂iu(t2) −Ai

11(t1)∂iu(t1)‖s−1

+ ‖Ai
12(t2)∂iv(t2) −Ai

12(t1)∂iv(t1)‖s−1

}
.

Thanks to the proven fact, u ∈ C([0, T ];Hm) the right hand side of the last in-
equality is well defined and continuous as function of t, which means that the right
hand side goes to zero if t1 → t2. Thus we can conclude that ut ∈ C([0, T ],Hm−1).
Arguing in the same manner for v and w we conclude that

u,w ∈ C1([0, T ];Hm−1),

v ∈ C1([0, T ];Hm−2).

Thus, we have proven the following theorem

Theorem 3.4.1 (Well-posedness). Let assumptions I-V be satisfied. Then,
there is a unique solution U = (u, v, w)T to the Cauchy problem for the equations
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(3.1)-(3.3) with initial condition (3.5), such that

u, v, w ∈ C([0, T ];Hm), 1 ≤ m ≤ s, (3.75)

ut, vt, wt ∈ L2(0, T ;Hm−1), 1 ≤ m ≤ s, (3.76)

ut, wt ∈ C([0, T ];Hm−1), 1 ≤ m ≤ s, (3.77)

vt ∈ C([0, T ];Hm−2), 2 ≤ m ≤ s, (3.78)

v ∈ L2(0, T ;Hm+1), 1 ≤ m ≤ s. (3.79)

Moreover, according to theorem 3.1.2, u, v, w satisfy their respective energy estimate
in (3.48)-(3.50) and thus, in this sense, the problem is well-posed.

3.5. Discussions

3.5.1. On the meaning of decoupling hyperbolic from parabolic vari-

ables at a linearized level. A linear system of the form (3.1)-(3.3) has its hyper-
bolic part decoupled from its strongly parabolic part if the matrices Ai

12, Ai
21, Ai

23

and Ai
32 equal zero for all i = 1, .., d. Thus, we are left with a purely symmetric

hyperbolic system for u and one for w and a purely symmetric strongly parabolic
system for v. As Kawashima did in [25], we can treat such a linear system as two
independent equations. In particular, when computing the energy estimates we do
not have to worry about the interaction terms, i.e. the inner products that have to
be majorized by the terms

‖u‖m‖∇v‖m, ‖w‖m‖∇v‖m.

More importantly, we can apply evolution semigroup theory for each equation sepa-
rately. Decoupled equations immediately implies decoupled energy estimates. This
is why Kawashima’s linearized estimates are stronger than the ones presented here
((3.48)-(3.50)). By this we mean that, if we revise the estimates presented in lemma
2.6 in [25], we found that each energy estimate involves only the initial data of the
respective variable that is being estimated. We could even say that assuming de-
coupled equations implies decoupled energy estimates from the left (as is our case),
and from the right. This is not the case of the estimates (3.48)-(3.50), since each
one of this inequalities is majorized by the same factor, K2

0 Ψ2
0, and this term in-

volves the initial data of all the variables at play. That is, the sense of stability
provided by the energy estimates (3.48)-(3.50), predicts that, smallness in each sep-
arate variable is only achievable through smallness in all of the initial data given in
the Cauchy problem (3.4)-(3.5).
On the other hand, assuming that (3.1)-(3.3) has its hyperbolic part coupled with
his parabolic part, means that, in the equations for the hyperbolic variables, there
are terms involving first order derivatives of the parabolic variables and vice versa.
As we will show in the next chapter, this assumption takes its toll in the fixed point
argument, meaning that, the energy estimates (3.48)-(3.50) are unfit to define a
contraction map, contrary to Kawashima’s case. In spite of this, our energy esti-
mates allow a weaker sense of contraction, which will lead us to the existence of a
unique fixed point.

3.5.2. On the rule S. Notice that, as is section 2.5.2, we can use condition
S instead of H3 if we assume the diffusion term −Bij

0 ∂i∂j in (3.2) is given in
divergence form, i.e. ∂j

(
Bij∂iu

)
. The only difference is that now, the conclusion
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(3.78) is not valid, since we are not allowed to use that s−2 ≥ 0, in order to conclude
the local well-posedness with the same conditions as in the purely hyperbolic case.

3.5.3. On the split between hyperbolic variables. As the reader may
have noticed, we are assuming decoupling between the hyperbolic variables u and
w, so the question arises: Is this really necessary? Well, first of all, it is true that
there is no real need to assume a split between hyperbolic variables, that is, we
can state all our results in this chapter in terms only of u and v. The reason for
assuming this split (i.e. assuming a given equation for w) is because the system
(3.1)-(3.3) is based on the Cattaneo-Christov system studied in the last chapter
of this work. And again, the variables appearing in this system can be splitted
into a parabolic variable v and a hyperbolic variable u alone. However, it can
also be splitted into three variables, two of them being hyperbolic, and it was
through this observation that the author realized that there is no need to assume a
fully symmetrized system in order to prove the local well-posedness. In the author’s
opinion, this is not an observation easy to come too, since to many known examples
of hyperbolic-parabolic systems of quasilinear equations can be derived from a set
of viscous balance laws with a strictly convex entropy, implying the existence of
a symmetrizer for such systems. This is not the case for the three dimensional
Cattaneo-Christov system, as it will be explained in the last chapter. For this
reason, a split between hyperbolic variables is assumed in this work. Now, once
assumed, there is a real need to also assume a decoupling between this variables,
take for example the following equation in one space dimension

ut + aux + bvx + cwx = f,

where u and w correspond to hyperbolic variables and v a parabolic one. If we dare
to obtain an energy estimate for this equation, we will have to deal with the term

〈cwx, u〉,
which can only be majorized by a term proportional to ‖wx‖‖u‖ and there is no
way to control the term ‖wx‖2 (from the left) by performing estimates from the
equation for w if there is hyperbolic regularity expected for this variable. Thus,
in this case, the method presented in this chapter is unfit to decouple the energy
estimates.

3.5.4. On the local well-posedness of the system without diffusion

and relaxation. Observe that, in order for the method presented in this chapter
to hold, it is required for a sub-block matrix of the diffusion tensor to satisfy the
Legendre-Hadamard condition (see assumption III in page 42). But then, what
can be said about the local well-posedness for the case without diffusion? (that
is, formally setting Bij = 0 for all i, j = 1, .., d). This case is of major relevance
in fluid dynamics (see for example [9] and [46]) it corresponds to the study of a
compressible fluid without viscosity. Mathematically, the case without diffusion
and relaxation (i.e. formally setting D = 0) would yield a set of equations of the
form

A0Ut +AiU = F, (3.80)

which is well-posed, if and only if, the equation is of hyperbolic type (see [46], theo-
rem 3.1.2). Thus, given the matrix decomposition described in equations (3.1)-(3.3),
the Cauchy problem for this system of equations without diffusion and relaxation
will be, ill-posed, unless the equation (3.80) is hyperbolic. At first sight, the reader
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might find this contradicting the following argument: Consider once more the equa-
tions (3.1)-(3.3) but, with a parameter ǫ > 0 in front of the block matrices Bij

0 ,
that is

A0
1ut +Ai

11∂iu+Ai
12∂iv = f1(x, t),

A0
2vt +Ai

21∂iu+Ai
22∂iv +Ai

23∂iw − ǫBij
0 ∂i∂jv = f2(x, t),

A0
3wt +Ai

32∂iv +Ai
33∂iw +D0w = f3(x, t).

Then, for each ǫ > 0, the initial value problem for this equation with a fixed initial
condition (i.e. independent of ǫ) has a unique solution given as in Theorem 3.4.1.
Now, let ǫ → 0, that is, let us attempt to use the vanishing viscosity method once
more to conclude that the initial value problem without diffusion (and relaxation)
is well-posed. If we manage to do this, given that, the block matrix decomposition
described in equations (3.1)-(3.3) does not imply hyperbolicity, we will contradict
the ill-posedness of non-hyperbolic problems.
Luckily enough, the application of the vanishing viscosity method, once more, can-
not be carry out unless the matrices Ai are all symmetric, which implies the hyper-
bolicity of the equation (3.80). The question is then, why is the symmetric form of
the matrices Ai required to apply one more time the vanishing viscosity method? To
answer this, let us remember that, the vanishing viscosity method requires another
ingredient, which is, the energy estimate of the equation (3.80). No such energy
method can be found without the assumption of symmetric form, because, as it
was explained throughout this chapter, we require that the hyperbolic variables
are decoupled in order to achieve the correct estimates. So, if v is now expected
to have hyperbolic regularity then, we cannot handle the inner products involving
the interaction with other hyperbolic variables (see the previous discussion). The
correct way to proceed would be to make no split between variables, considering
everything one single variable U and thus, as it was done for the estimates of hy-
perbolic variables, we would need to assume that Ai is symmetric for all i = 1, ..d.
Hence, no contradiction can be found.

3.5.5. On a comparison between our case and others. Let us focus on
the works of Kawashima [25] and Serre [47]. If we compare our case with that
of Kawashima’s we can find that, our case can be thought as a perturbation of
Kawashima’s decoupled linearized system. However, the existence time for the
initial value problem would be less than the one given. An undesirable property for
a linear non-autonomous equation. Even if we state and prove a sharp continuation
principle for the solutions, still, the method presented in this chapter yields the local
existence once and for all. On the other hand, as we showed, there is no need to
assume that our linear system is fully symmetrized, to conclude the local existence
of solutions, contrary to Serre’s case. Although, in terms of the required regularity
of initial data, Serre’s result is stronger.
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4
Local existence: Quasilinear case

In this chapter, we prove the local existence of the Cauchy problem for the quasi-
linear version of equations (3.1)-(3.3). We construct a sequence that approximates
the solution by the method of iterations, where each member of the obtained se-
quence is the unique solution to the Cauchy problem for a linear non-autonomous
system with the structure of equations (3.1)-(3.3). Up to this point, the argument
presented here is standard, and in fact, we follow [25]. However, we failed to prove
that the sequence of approximations is contractive (contrary to Kawashima’s case
[25]), nonetheless, we manage to prove that the sequence of approximations has a
limit and it is in fact a solution to the considered problem.

4.1. Nonlinear setting

Let’s consider the following system of partial differential equations for the vari-
able U = (u, v, w)T

A0
1(U)ut +Ai

11(U)∂iu+Ai
12(U)∂iv = f1(U,Dxv), (4.1)

A0
2(U)vt +Ai

21(U)∂iu+Ai
22(U)∂iv +Ai

23(U)∂iw −Bij
0 (U)∂i∂jv

= f2(U,DxU), (4.2)

A0
3(U)wt +Ai

32(U)∂iv +Ai
33(U)∂iw +D0(U)w = f3(U,Dxv), (4.3)

where, for each (x, t) ∈ QT , u(x, t) ∈ R
n, v(x, t) ∈ R

k and w(x, t) ∈ R
p, with

n+ k + p = N and each coefficient appearing in the equation, i.e A0
j , Ai

jl, B
ij
0 and

D0 represents a matrix of the same order as in the last chapter, however, in this
case, every one of them is a given function of U . Which means that the system
(4.1)-(4.3) is of quasilinear nature. In particular, we have to make the following
assumption for the matrix coefficients:

A The functions A0
j (U) for j = 1, 2, 3; Ai

jl(U) for j, l = 1, 2, 3 and i = 1, .., d;

Bij
0 (U), i, j = 1, .., d and D0(U), are sufficiently smooth functions of its

argument U ∈ R
N .

61
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B A0
j (U) for j = 1, 2, 3 are real symmetric and positive definite, uniformly

in each compact set with respect to U ∈ R
N .

C Ai
11(U) ∈ Mn×n and Ai

33(U) ∈ Mp×p are symmetric for U ∈ R
N .

D The functions Bij
0 (U) are real symmetric and satisfy Bij

0 (U) = Bij
0 for all

U ∈ R
N ;
∑d

i,j=1 B
ij
0 (U)ωiωj is real symmetric, positive definite, uniformly

in each compact set with respect to U ∈ R
N for all ω = (ω1, .., ωd) ∈ S

d−1.

The right hand side of the equations (4.1)-(4.3) represents nonlinear terms such
that, once given U ∈ R

N we have that

f1(U,Dxv) ∈ R
n,

f2(U,DxU) ∈ R
k,

f3(U,Dxv) ∈ R
p.

Let η ∈ R
kd and ξ ∈ R

Nd. We assume that

E The functions f1(U, η), f2(U, ξ) and f3(U, η) are sufficiently smooth in
(U, η) ∈ O × R

kd and (U, ξ) ∈ O × R
Nd, respectively and satisfy that

f1(U, 0) = 0,

f2(U, 0) = 0,

f3(U, 0) = 0,

for any U ∈ O ⊂ R
N , where O ⊂ R

N is an open convex set contained in
R

N .

Just as in the previous chapters we assume that

F s ≥ s0 + 1 is an integer.

We provide the system (4.1)-(4.3) with an initial condition,

U(x, 0) = (u0(x), v0(x), w0(x))⊤ (4.4)

and assume that

G U0 ∈ Hs and

(u0, v0, w0)(x) ∈ Og0
,

where Og0
is a bounded open convex set Og0

in R
N such that Og0

⊂ O.

4.2. Invariant set under iterations

For (u, v, w)T (x, t) =: U(x, t) ∈ O, given functions in QT , assume that

u ∈ C([0, T ];Hs) ∩ C1([0, T ];Hs−1), (4.5)

v ∈ C([0, T ];Hs) ∩ L2(0, T ;Hs+1) ∩ C1([0, T ];Hs−2), (4.6)

w ∈ C([0, T ];Hs) ∩ C1([0, T ];Hs−1), (4.7)

vt ∈ L2(0, T ;Hs−1); (4.8)

there is a bounded open convex set Og2
in R

N satisfying Og2
⊂ O and

(u, v, w)(x, t) ∈ Og2
∀(x, t) ∈ QT ; (4.9)

there are positive constants M and M1 such that

sup
0≤τ≤t

‖(u, v, w)(τ)‖2
s +

∫ t

0

‖v(τ)‖2
s+1dτ ≤ M2, (4.10)
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∫ t

0

‖ (ut(τ), vt(τ), wt(τ)) ‖2
s−1dτ ≤ M2

1 (4.11)

for t ∈ [0, T ].
In the following, whenever a quantity C depends on the values of U(x, t) ∈ Og2

, we
will simply write C = C(g2).
We denote by Xs

T (g2,M,M1) the set of functions (u, v, w)(x, t) satisfying (4.5)-
(4.11).
Now, consider the Cauchy problem for the linear equation

A0
1(U)ût +Ai

11(U)∂iû+Ai
12(U)∂iv̂ = f1(U,Dxv), (4.12)

A0
2(U)v̂t +Ai

21(U)∂iû+Ai
22(U)∂iv̂ +Ai

23(U)∂iŵ −Bij
0 (U)∂i∂j v̂

= f2(U,DxU), (4.13)

A0
3(U)ŵt +Ai

32(U)∂iv̂ +Ai
33(U)∂iŵ +D0(U)ŵ = f3(U,Dxv), (4.14)

with initial condition

(û, v̂, ŵ)(x, 0) = (u, v, w)(x, 0) = (u0, v0, w0)(x). (4.15)

In this section we will determine Og2
, M , M1 and T > 0 so that for (u, v, w) ∈

Xs
T (g2,M,M1), the initial value problem (4.12)-(4.15) has a unique solution (û, v̂, ŵ)

in the same set Xs
T (g2,M,M1). That is, Xs

T (g2,M,M1) is invariant under the map-
ping defined by (u, v, w) 7→ (û, v̂, ŵ). With this goal in mind, we prove the following
results.

Lemma 2. Let (u, v, w) ∈ Xs
T (g2,M,M1) and assumption F be satisfied. If the

functions f1, f2 and f3 satisfy assumption E then,

‖f1(U,Dxv)‖s−1 + ‖f2(U,DxU)‖s−1 + ‖f3(U,Dxv)‖s−1 ≤ CM (4.16)

for some constant C = C(g2,M).

Proof. Since,

‖f1(U,Dxv)‖s−1 = ‖f1(U,Dxv)‖ + ‖Dxf1(U,Dxv)‖s−2. (4.17)

estimating each norm in the right hand side of this identity will be enough. First,
consider the identity

f1(U,Dxv) =

∫ 1

0

d

dr
f1(U, rDxv)dr

=

∫ 1

0

Df1(U, rDxv)(0,Dxv)dr

which is a consequence of assumption E. Then, Jensen’s inequality yields

|f1(U,Dxv)|2 ≤
∫ 1

0

|Df1(U, rDxv)(0,Dxv)|2dr.

By integrating in R
d and applying Fubini’s theorem we obtain the following in-

equality

‖f1(U,Dxv)‖2 ≤
∫ 1

0

‖Df1(U, rDxv)(0,Dxv)‖2dr.
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Using the smoothness of f1 we get that

‖f1(U,Dxv)‖2 ≤ C

∫ 1

0

‖Df1(U, rDxv)‖2
L∞‖(0,Dxv)‖2dr

= C‖(0,Dxv)‖2
s−1

∫ 1

0

‖Df1(U, rDxv)‖2
L∞dr. (4.18)

Obviously, this formula will be justified if we show that, the remaining norm in the
integrand is finite. Taking into account that U satisfies conditions (4.9) and (4.10),
and using Sobolev’s embedding theorem we have a constant c = c(g2) such that

‖(U, rDxv)‖L∞ = ‖U‖L∞ + ‖Dxv‖L∞

≤ c(g2) + κs−1‖Dxv‖s−1

≤ c(g2) + κs−1‖U‖s

≤ c(g2) + κs−1M,

thus,

‖(U, rDxv)‖L∞ ≤ C(g2,M), (4.19)

for all 0 ≤ r ≤ 1. Using the smoothness of f1 we can conclude that the norm

‖Df1(U, rDxv)‖2
L∞

is majorized by a constant dependent of g2 and M . Thus, from (4.18) and (4.10)

‖f1(U,Dxv)‖2 ≤ C(g2,M)M, (4.20)

where, again, we are abusing notation, since the constant C(g2,M) has been rede-
fined from that of (4.19), but at the end of the day, is a constant dependent on g2

and M .
For the second norm in (4.17) we use the chain rule estimate of theorem 1.0.7, with
j = s− 1,

‖Dxf1(U, rDxv)‖s−2 ≤ (1 + ‖(U, rDxv)‖L∞)s−2‖(DxU, rD
2
xv)‖s−2

≤ (1 + ‖(U,Dxv)‖L∞)s−2‖(DxU,D
2
xv)‖s−2,

for all 0 ≤ r ≤ 1. Using (4.19) and (4.10) we obtained the required property for
the term involving f1. By applying a similar argument to f2 and f3, (4.16) is
obtained. �

Lemma 3. Let (u, v, w) ∈ Xs
T (g2,M,M1) and Û(x, t) = (û, v̂, ŵ)T (x, t) the

solution to the Cauchy problem (4.12)-(4.15), that satisfies (4.5)-(4.8) and (4.10)

but with M replaced by M̂ . Then,

∫ t

0

‖(ût(τ), v̂t(τ), ŵt(τ))‖2
s−1dτ ≤ C2

3

{
M̂2 + (M̂2 +M2)t

}
(4.21)

with some constant C3 = C3(g2,M).

Proof. First observe that since U ∈ Xs
T (g2,M,M1), then, according to (4.9),

U(x, t) is contained in a compact subset of RN , and so, assumption B assures that
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it has an inverse (A0
1)−1(U). Then, we can multiply equations (4.12)-(4.14) by this

matrix to obtain

ût = (A0
1)−1(U)

{
f1(U,Dxv) −Ai

11(U)∂iû+Ai
12(U)∂iv̂

}
, (4.22)

v̂t = (A0
1)−1(U)

{
f2(U,DxU) −Ai

21(U)∂iû+Ai
22(U)∂iv̂ +Ai

23(U)∂iŵ

− Bij
0 (U)∂i∂j v̂

}
, (4.23)

ŵt = (A0
1)−1(U)

{
f3(U,Dxv) −Ai

32(U)∂iv̂ +Ai
33(U)∂iŵ +D0(U)ŵ

}
.(4.24)

By taking the ‖ · ‖s−1 norm and using the triangle inequality we are left with
estimating this same norm for each term in the right hand side of (4.22)-(4.24).
Consider the coefficient of one first order term in the previous equations, for example
G(U) := (A0

1)−1(U)Ai
11(U). This is a smooth enough function of U , according to

assumption A and B, and in particular, U ∈ Ĥs (for a.a t ∈ [0, T ] of course), due
to condition (4.10). Thus we can apply theorem 1.0.7 with j = s to conclude that
DxF (U) ∈ Hs−1, and

‖DxF (U(·, t))‖s−1 ≤ C(1 + ‖U‖L∞)s−1‖DxU‖s−1 ≤ C0(g2,M) (4.25)

where C0 is a constant dependent on g2 and M according to (4.9) and (4.10), also
independent of t by the same reason. As it was mentioned before, (4.9) assures that
U is contained in a compact subset of RN , so, F (U), being smooth enough, means
that, there is a constant K0, dependent on g2, such that

|F (U(x, t))| ≤ K0(g2) ∀(x, t) ∈ QT ,

hence, F (U(·, t)) ∈ Ĥs for a.a t ∈ [0, T ]. By combining these facts, we can apply
the Sobolev’s product estimate in (1.2) to get that

‖(A0
1)−1(U)Ai

11(U)∂iû‖s−1 ≤ ‖F (U)‖ŝ‖∂iû‖s−1 ≤ C0(g2,M)M̂, (4.26)

where the constant C0(g2,M) is a redefinition from that given in (4.25) that also
takes into account the constant K0. Note that, we can obtain the same conclusion
for every first and zeroth order term appearing in (4.22)-(4.24). We move on to
deal with the second order term in (4.23). By same argument as before we can
show that

‖(A0
1)−1(U)Bij(U)‖ŝ ≤ C0(g2,M).

By hypothesis, v̂ ∈ L2(0, T ;Hs+1), so v ∈ Hs+1 (for a.a t ∈ [0, T ]), and thus
∂i∂j v̂ ∈ Hs−1, hence we can apply estimate (1.2) one more time to obtain that

‖(A0
1)−1(U)Bij(U)∂i∂j v̂‖s−1 ≤ C0(g2,M)‖v̂‖s+1, (4.27)

and in this case this is the best estimate we can get since the ‖v̂‖s+1 is at most,
L2-integrable with respect to time. Finally, to estimate the terms involving f1, f2

and f3 we use lemma 2 combined with an estimate of the form (4.25) for F (U) =
(A0

1)−1(U) and the estimate (1.2) to get

‖(A0
1)−1(U)fi‖s−1 ≤ C0(g2,M)M, for i = 1, 2, 3 (4.28)

where now, C0 has been redefined to take into account the constant C = C(g2,M)
of lemma 2.
Then, we have that

‖ût‖2
s−1 + ‖v̂t‖2

s−1 + ‖ŵt‖2
s−1 ≤ C2

3 (g2,M)
{
M2 + M̂2 + ‖v̂‖2

s+1,
}
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which yields
∫ t

0

‖ (ût(τ), v̂t(τ), ŵt(τ)) ‖2
s−1 ≤ C2

3 (g2,M)
{

(M2 + M̂2)t+ M̂2
}
. (4.29)

�

Note that, since we are assuming U given in equations (4.12)-(4.15) then, the
matrix coefficients are actually functions of (x, t) ∈ QT . This means that, equations
(4.12)-(4.15) are actually a linear non-autonomous system of partial differential
equations. So, we want to apply our existence and uniqueness result given in
theorem 3.4.1 to this equations with initial condition (4.15). For this, we have to
verify that assumptions I to V are met. This is the point of the following lemma.

Lemma 4. Assume that U ∈ Xs
T (g2,M,M1) and that conditions A to G are

satisifed. Then the Cauchy problem for the linear system (4.12)-(4.14) with initial

condition (4.15) has a unique solution Û = (û, v̂, ŵ)T that satisfies conditions (4.5)-
(4.8) and the energy estimates (3.48)-(3.50), respectively.

Proof. The result will follow from theorem 3.4.1 with m = s once we have
verified the assumptions for the matrix coefficients. Observe that assumptions I and
II are a direct consequence of assumption C. Assumption III can be decomposed
into several conditions for the block matrices:

(1) Verification of H1: This is a straight consequence of assumptions B and
D.

(2) Verification of H2: This will be a consequence of assumptions B and D

as well. Indeed, since U(x, t) is contained in the closed ball of radius g2 in
R

N for all (x, t) ∈ QT , then condition B assures that, for each j = 1, 2, 3,

there is a positive constant aj
0 = aj

0(U) independent of (x, t) such that

aj
0|yj |2 ≤ (A0

j (U)yj , yj)RN(j) ∀yj ∈ R
N(j),

where N(1) = n, N(2) = k and N(3) = p. Also, for each j = 1, 2, 3,

supQT
|A0

j (U(x, t))| =: aj
1(U) < ∞, hence,

(A0
j (U)yj , yj)RN(j) ≤ aj

1|yj |2 ∀yj ∈ R
N(j).

By taking a0(U) = minj

{
aj

0

}
and a1(U) = maxj

{
aj

0

}
we obtain that

a0|yj |2 ≤ (A0
j (U)yj , yj)RN(j) ≤ a1|yj |2 ∀yj ∈ R

N(j), (4.30)

for all j = 1, 2, 3. A similar argument leads us to conclude that the symbol
Bij

0 (U(x, t))ωiωj is positive definite for all ω = (ω1, .., ωd) ∈ S
d−1, with

constant η = η(U) > 0 independently of (x, t) ∈ QT .
(3) Verification of H3: This is the same as condition F.
(4) Verification of A1. First of all, for each j = 1, 2, 3, the existence of

the smooth matrix function (A0
j (U))−1 is a consequence of (4.30) and

the smoothness of A0
j (U). Then, for each j = 1, 2, 3 we need to verify

that A0
j ∈ C([0, T ]; Ĥs); in particular, this means verifying that for all

t ∈ [0, T ], A0
j (U(t))(= A0

j (U(·, t))) belongs to Ĥs. However, the proof
of this is carried out in the same way as it was done for the function
F (U) during the proof of lemma 3. Let us consider in general a function
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F = F (U(t)) and t0, t1 ∈ [0, T ]. Observe that, both U(t0) := U0 and
U(t1) := U1 belong to O ⊂ R

N , hence

F (U1) − F (U0) =

∫ 1

0

d

dr
F (U0 + r(U1 − U0)) dr

=

∫ 1

0

DF (Ur)(U1 − U0)dr, (4.31)

where Ur := U0 + r(U1 − U0) ⊂ Og2
⊂ R

N for all 0 ≤ r ≤ 1. Then,

|F (U1) − F (U0)| ≤
∫ 1

0

|DF (Ur)|dr|U1 − U0|

≤ C(g2)|U1 − U0|, (4.32)

thus, if U1 → U0 in Ĥs, in particular, this means that U1 → U0 in L∞

and the previous inequality states that F (U1) → F (U0) in L∞. For the
sake of preciseness, we have that if t1 → t0, then U1 → U0 in the norm of

Ĥs, due to (4.5)-(4.7), in particular this implies convergence in L∞ and
as consequence of (4.32), this implies that

‖F (U(t1)) − F (U(t0))‖L∞ → 0.

We are left with proving the continuity of DxF (U(t)) with respect to
t ∈ [0, T ] in the norm of Hs−1. This can be achieved in the following
manner: Note that DxF (U) = DF (U)DxU , thus

DxF (U1) −DxF (U0) =

∫ 1

0

d

dr
(DF (Ur)DxUr) dr

=

∫ 1

0

DF (Ur)Dx
d

dr
Urdr

+

∫ 1

0

(
d

dr
DF (Ur)

)
DxUrdr

=

∫ 1

0

DF (Ur)Dx(U1 − U0)dr

+

∫ 1

0

D2F (Ur)(U1 − U0)DxUrdr,

squaring and using Jensen’s inequality yields

|DxF (U1) −DxF (U0)|2 ≤
∫ 1

0

|DF (Ur)|2|Dx(U1 − U0)|2dr

+

∫ 1

0

|D2F (Ur)|2|U1 − U0|2|DxUr|2dr

≤ C(g2)
{

|Dx(U1 − U0)|2

+ ‖U1 − U0‖2
L∞

∫ 1

0

|DxUr|2dr,
}

(4.33)

where the smoothness of F was used and the fact that Ur is contained
in a compact set to bound DF (Ur) and D2F (U) with a constant C(g2).
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Integrating with respect to x ∈ R
d gets us to

‖DxF (U1) −DxF (U0)‖2 ≤ C(g2)‖U1 − U0‖2
ŝ

(
1 +M2

)
.

A similar argument applied to the derivatives ∂α
x of DxF (U1) −DxF (U0)

of order 0 < |α| ≤ s− 1 combined with (4.32) leads us to

‖DxF (U1) −DxF (U0)‖2
ŝ ≤ C(g2,M)‖U1 − U0‖2

ŝ (4.34)

which implies the desired continuity.
(5) Verification of A2. The argument is the same as in the previous case.
(6) Verification of H5. In this case we have to prove that, for each j = 1, 2, 3,

∂tA
0
j ∈ L2(0, T ;Hs−1). Consider again an arbitrary smooth function F

of U(t). Then corollary 1 (with s− 1 instead of s) and (4.25) assure that

∫ T

0

‖Ft(U(t))‖2
s−1dt =

∫ T

0

‖DF (U(t))Ut‖2
s−1dt

≤
∫ T

0

‖DF (U(t))‖2
s−1‖Ut(t)‖2

s−1dt

≤ C0(g2,M)2

∫ T

0

‖Ut(t)‖2
s−1dt

≤ C(g2,M,M1), < ∞

thus proving the required statement.
(7) Verification of H7: The statement about the partial derivative of ∂tB

ij is

a consequence of the previous step. We are left to prove that DxB
ij
0 (U) ∈

L2(0, T ;Hs−1). In fact, we can go even further and show that DxB
ij
0 (U) ∈

C([0, T ];Hs−1). This can be achieved with an argument similar to the one

that led us to (4.33) and (4.34). Once again, we set F (U) = Bij
0 (U), from

(4.33) we get

|DxF (U1) −DxF (U0)|2 ≤ C(g2)
{

|Dx(U1 − U0)|2

+ κs‖U1 − U0‖2
s

∫ 1

0

|DxUr|2dr,
}

where Sobolev’s embedding theorem was used. Integrating in R
d yields

‖DxF (U1) −DxF (U0)‖2 ≤ C(g2)‖U1 − U0‖2
s

(
1 + κsM

2
)
.

and applying the same argument to every ∂α
x of DxF (U) results in

‖DxF (U1) −DxF (U0)‖2
s−1 ≤ C(g2,M)‖U1 − U0‖2

s (4.35)

from which the statement follows.
(8) Verification of H8: By applying the exact same steps that gave us (4.32)

to the vectors U(x0, t0), U(x1, t1) for t0, t1 ∈ [0, T ] and x0, x1 ∈ R
d and

F (U) = Bij(U) we conclude that,

|F (U(x1, t1)) − F (U(x0, t0))| ≤ C(g2)|U(x1, t1) − U(x0, t0)|

meaning that the function is Lipschitz continuous with respect to U and
thus uniformly continuous with respect to U . Since we are assuming
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that U ∈ C([0, T ];Hs) then, according to Sobolev’s embedding theorem,
U ∈ C([0, T ];B0(Rd)), where

B0(Rd) :=

{
w ∈ C(Rd) : lim

|x|→∞
|w(x)| = 0

}
,

which, in particular means that U is uniformly continuous in (x, t) ∈ QT .
Thus, the composition mapping

QT ∋ (x, t) 7→ F (U(x, t))

is uniformly continuous.
(9) Verification of A4: The argument is the same as the one explained in step

(6).
(10) Verification of V: To show that fj ∈ C([0, T ];Hs−1) (j = 1, 2, 3) we pro-

ceed as in the proof (4.35). For the property f1(U ;Dxv), f3(U,Dxv) ∈
L2(0, T ;Hs) consider the general case of f = f(U,Dxv). We proceed with
a similar approach to the one presented in the proof of lemma 2. First
observe that,

‖f(U(t),Dxv(t))‖s = ‖f(U(t),Dxv(t))‖ + ‖Dxf(U(t),Dxv(t))‖s−1,

so we need to estimate each of the norms in the right hand side of this
inequality. Observe that, just as in the proof of lemma 2 we have that

‖f(U(t),Dxv(t))‖2 ≤
∫ 1

0

‖Df(rU(t), rDxv(t))(U(t),Dxv(t))‖2dr,

then

‖f(U,Dxv)‖2 ≤ C

∫ 1

0

‖Df(U, rDxv)‖2
L∞‖(0,Dxv)‖2dr

= C‖(0,Dxv)‖2
s−1

∫ 1

0

‖Df(U, rDxv)‖2
L∞dr. (4.36)

In order for the last inequality to make sense we have to assure that the
L∞ norm in the integrand is finite. With the same argument that led us
to (4.19) we can conclude that

‖Df(U(t), rDxv(t))‖L∞ ≤ C (4.37)

for all t ∈ [0, T ], all 0 ≤ r ≤ 1 and a constant C = C(g2,M). If we use
(4.37) into (4.36) and integrate with respect to t ∈ [0, T ] we find that
∫ T

0

‖f(U(t),Dxv(t))‖2 ≤ C(g2,M)

∫ T

0

‖U(t)‖2
s + ‖v(t)‖2

s+1dt < ∞

according to (4.10). Finally, observe that, to show that the function
‖Dxf(U(t),Dxv(t))‖s−1 ∈ L2(0, T ) set r = 1 in (4.37) and integrate in
[0, T ] to conclude.

Thus, the conclusion follows from theorems 3.4.1 and 3.1.2. �

To continue further, let us consider the constant Φ2
0 defined in (3.34) as

Φ2
0 = C1e

C1

∫ T

0
(µ0(t)+µ1(t))dt

.
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Observe that, due to the calculations performed during the proof of lemma 4, we can
conclude that C1 = C1(g2,M). By the same token, we can estimate the L1(0, T )-
norms of µ0 and µ1, given in (3.6) and (3.7). Indeed, observe that, there exists two
positive constants K1 = K1(g2) and K2 = K2(g2,M) such that

∫ T

0

µ0(t)dt ≤ K1(g2)M2
(
T + T 3/2

)
, (4.38)

∫ T

0

µ1(t)dt ≤ K2(g2,M)T 1/2

∫ T

0

‖Ut(t)‖2
s−1dt. (4.39)

Hence,

Φ2
0 ≤ C1e

C2(M2(T +T 3/2)+M2
1 T 1/2) =: Φ2

1, (4.40)

where C2 = C2(g2,M) is a constant redefined from C1 to take into account K1 and
K2.

Remark 5. The meaning of (4.40) is that, the energy estimates presented in
(3.48)-(3.50) are valid with Φ2

1 substituting Φ2
0.

Now, fix a constant g2 > 0 so that 0 < g2 < g1 := d(Og0
, ∂O) and take

Og2
= g2 − neighborhood of Og0

, (4.41)

M = 2
√
C1‖(u0, v0, w0)‖s, (4.42)

M1 = 2C3M, (4.43)

where the constants C1, C2 and C3 are the ones defined in (4.40) and (4.21) re-
spectively. We are ready for the main result of this section

Theorem 4.2.1. There is a positive constant T0 that depends on g0, g2 and
‖(u0, v0, w0)‖s such that, if (u, v, w) ∈ Xs

T0
(g2,M,M1) with g2, M and M1 de-

fined by (4.41)-(4.42), the initial value problem (4.12)-(4.15) has a unique solution
(û, v̂, ŵ) in the same space Xs

T0
(g2,M,M1).

Proof. The existence of a solution Û = (û, v̂, ŵ)T to (4.12)-(4.15) follows from
lemma 4. So it suffices to show the respective estimates that define Xs

T0
(g2,M,M1).

By applying the energy estimates (3.48)-(3.50) (with m = s) and remark 5 with
T0 < T instead of T we have that

‖(û, v̂, ŵ)(t)‖2
s +

∫ t

0

‖v̂(τ)‖2
s+1dτ

≤ C1e
C2

(
M2(T0+T

3/2
0 )+M2

1 T
1/2
0

) {
‖(u0, v0, w0)‖2

s +

∫ T0

0

Fs(f1(t), f2(t), f3(t))dt

}
.

(4.44)

Since the function Fs(f1(t), f2(t), f3(t)) ∈ L1(0, T0), we can choose 0 < T0 < T
such that ∫ T0

0

Fs(f1(t), f2(t), f3(t))dt ≤ ‖(u0, v0, w0)‖2
s, (4.45)

at the same time, we can take T0 such that

e
C2

(
M2(T0+T

3/2
0 )+M2

1 T
1/2
0

)
≤ 2. (4.46)
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Then, from (4.44) we have that

‖(û, v̂, ŵ)(t)‖2
s +

∫ t

0

‖v̂(τ)‖2
s+1dτ ≤ 4C1‖(u0, v0, w0)‖2

s = M2.

Therefore, (4.10) is satisfied and thus, we can apply lemma 3 with M̂ = M to get
∫ t

0

‖(ût(τ), v̂t(τ), ŵt(τ))‖2
s−1dτ ≤ C2

3M
2(1 + 2T0).

where

C2
3M

2(1 + 2T0) ≤ 4C2
3M

2 = M1

if

T0 ≤ 3

2
. (4.47)

Finally, this last estimate gives

|(û, v̂, ŵ)(x, t) − (u0, v0, w0)(x)| ≤
∫ t

0

‖∂t(û, v̂, ŵ)(τ)‖L∞dτ

≤ κs−1

∫ t

0

‖∂t(û, v̂, ŵ)(τ)‖s−1dτ

≤ κs−1t
1/2M1

≤ κs−1T
1/2
0 M1. (4.48)

If T0 is such that

κs−1T
1/2
0 M1 ≤ g2, (4.49)

then, from (4.48), (4.9) is satisfied. Summarizing, we have to choose a positive T0

that satisfies (4.45), (4.46), (4.47) and (4.49) to assure that Û ∈ XT0
(g2,M,M1)

whenever U ∈ XT0
(g2,M,M1). This completes the proof of theorem 4.2.1. �

4.3. Non contractive iterations

Based on theorem 4.2.1 we will introduce the successive approximation sequence{
(ul, vl, wl)

}∞

l=0
for the initial value problem (4.1)-(4.4) defined by iteration for

l ∈ N0. For l = 0,

U0(x, t) = (u0, v0, w0)(x, t) := (u0, v0, w0)(x) ∈ Xs
T0

(g2,M,M1),

and for l ≥ 0, set U l := (ul, vl, wl),

A0
1(U l)ul+1

t +Ai
11(U l)∂iu

l+1 +Ai
12(U l)∂iv

l+1 = f1(U l,Dxv
l),
(4.50)

A0
2(U l)vl+1

t +Ai
21(U l)∂iu

l+1 +Ai
22(U l)∂iv

l+1 +Ai
23(U l)∂iw

l+1 −Bij
0 (U l)∂i∂jv

l+1

= f2(U l,DxU
l),

(4.51)

A0
3(U l)wl+1

t +Ai
32(U l)∂iv

l+1 +Ai
33(U l)∂iw

l+1 +D0(U l)wl+1 = f3(U l,Dxv
l),
(4.52)

with initial condition

(ul+1, vl+1, wl+1)(x, 0) = (u0, v0, w0)(x). (4.53)
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By theorem 4.2.1 the sequence (ul, vl, wl)(x, t) is well defined on QT0
for all l ≥ 0,

and

(ul, vl, wl) ∈ Xs
T0

(g2,M,M1),

i.e. the sequence is uniformly bounded for all l ∈ N0. The objective of this section
is to show the convergence of the sequence (ul, vl, wl) as l → ∞. For this, consider
the difference

(ul+1 − ul, vl+1 − vl, wl+1 − wl) =: (ûl, v̂l, ŵl) l ≥ 1

Then we obtain the equations

A0
1(U l)ûl

t +Ai
11(U l)∂iû

l +Ai
12(U l)∂iv̂

l = f̂ l
1, (4.54)

A0
2(U l)v̂l

t +Ai
21(U l)∂iû

l +Ai
22(U l)∂iv̂

l +Ai
23(U l)∂iŵ

l −Bij
0 (U l)∂i∂j v̂

l

= f̂ l
2, (4.55)

A0
3(U l)ŵl

t +Ai
32(U l)∂iv̂

l +Ai
33(U l)∂iŵ

l +D0(U l)ŵl = f̂ l
3, (4.56)

with an initial condition

(ûl, v̂l, ŵl)(x, 0) = (0, 0, 0), (4.57)

where

f̂ l
1 =A0

1(U l)
{
A0

1(U l)−1f1(U l,Dxv
l) −A0

1(U l−1)−1f1(U l−1Dxv
l−1)

}

+A0
1(U l)

{
A0

1(U l−1)−1Ai
11(U l−1) −A1

0(U l)−1Ai
11(U l)

}
∂iu

l

+A0
1(U l)

{
A0

1(U l−1)−1Ai
12(U l−1) −A1

0(U l)−1Ai
12(U l)

}
∂iv

l, (4.58)

f̂ l
2 = A0

2(U l)
{
A0

2(U l)−1f2(U l,DxU
l) −A0

2(U l−1)−1f2(U l−1,DxU
l−1)

}

−A0
2(U l)

{
A0

2(U l)−1Ai
21(U l) −A0

2(U l−1)−1Ai
21(U l−1)

}
∂iu

l

−A0
2(U l)

{
A0

2(U l)−1Ai
22(U l) −A0

2(U l−1)−1Ai
22(U l−1)

}
∂iv

l

−A0
2(U l)

{
A0

2(U l)−1Ai
23(U l) −A0

2(U l−1)−1Ai
23(U l−1)

}
∂iw

l

+A0
2(U l)

{
A0

2(U l)−1Bij
0 (U l) −A0

2(U l−1)−1Bij
0 (U l−1)

}
∂i∂jv

l, (4.59)

f̂ l
3 =A0

3(U l)
{
A0

3(U l)−1f3(U l,Dxv
l) −A0

3(U l−1)−1f3(U l−1Dxv
l−1)

}

+A0
3(U l)

{
A0

3(U l−1)−1Ai
32(U l−1) −A3

0(U l)−1Ai
32(U l)

}
∂iv

l

+A0
3(U l)

{
A0

3(U l−1)−1Ai
33(U l−1) −A3

0(U l)−1Ai
33(U l)

}
∂iw

l,

+A0
3(U l)

{
A0

3(U l−1)−1D0(U l−1) −A3
0(U l)−1D0(U l)

}
wl. (4.60)

Lemma 5. For (ul, vl, wl) ∈ Xs
T0

(g2,M,M1) we have that

‖f̂ l
1‖s−1 ≤ C

(
‖ûl−1‖s−1 + ‖v̂l−1‖s + ‖ŵl−1‖s−1

)
, (4.61)

‖f̂ l
2‖s−2 ≤ C‖(ûl−1, v̂l−1, ŵl−1)‖s−1, (4.62)

‖f̂ l
3‖s−1 ≤ C

(
‖ûl−1‖s−1 + ‖v̂l−1‖s + ‖ŵl−1‖s−1

)
, (4.63)

for some constant C = C(g2,M) independent of l ∈ N.

Proof. Observe that, in (4.58)-(4.60), except for the terms involving f1, f2

and f3, all the terms between brackets can be considered in general as to have
the form F (U l) − F (U l−1) for a smooth matrix function F = F (U). In fact, the
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same consideration is true for the scalar components, h(U l) − h(U l−1), of F (U l) −
F (U l−1). Observe that

h(U l) − h(U l−1) =

∫ 1

0

Dh(U l−1 + r(U l − U l−1))(U l − U l−1)dr

and let us show that

∂ih(U l) − ∂ih(U l−1) =

∫ 1

0

∂i

{
Dh(U l−1 + r(U l − U l−1))(U l − U l−1)

}
dr

for every i = 1, ..., d. Let φ ∈ D(Rd) be a test function and U l
r = U l−1+r(U l−U l−1).

Then, by Fubini’s theorem we have that
∫

Rd

(
h(U l) − h(U l−1)

)
∂iφdx =

∫

Rd

(∫ 1

0

Dh(U l
r)(U l − U l−1)dr

)
∂iφdx

=

∫ 1

0

(∫

Rd

Dh(U l
r)(U l − U l−1)∂iφdx

)
dr,

where Dh(U l
r)(U l − U l−1) ∈ Hs, thus

∫

Rd

(
h(U l) − h(U l−1)

)
∂iφdx = −

∫ 1

0

∫

Rd

∂i

(
Dh(U l

r)(U l − U l−1)
)
φdxdr

= −
∫

Rd

∫ 1

0

∂i

(
Dh(U l

r)(U l − U l−1)
)
drφdx

which proves the statement. In fact, by the same argument we can show that

∂α
xh(U l) − ∂α

xh(U l−1) =

∫ 1

0

∂α
x

{
Dh(U l

r))(U l − U l−1)
}
dr,

for all 0 ≤ |α| ≤ s− 1. Then, Jensen’s inequality gives that

|∂α
xh(U l) − ∂α

xh(U l−1)|2 ≤
∫ 1

0

|∂α
x

{
Dh(U l

r))(U l − U l−1)
}

|2dr,

which leads us to

‖h(U l) − h(U l−1)‖2
s−1 ≤

∫ 1

0

‖Dh(U l
r)(U l − U l−1)‖2

s−1dr.

Applying (1.2) (with r = s− 1), combined with theorem 1.0.7 in the last integrand
yields

‖h(U l) − h(U l−1)‖2
s−1 ≤

∫ 1

0

‖Dh(U l
r))‖2

s̄‖(U l − U l−1)‖2
s−1dr

≤ C(g2,M)‖(U l − U l−1)‖2
s−1

≤ C(g2,M)‖(ûl, v̂l, ŵl)‖2
s−1

= C(g2,M)
(
‖ûl‖2

s−1 + ‖v̂l‖2
s−1 + ‖ŵl‖2

s−1

)
.

Now, consider the second line in (4.58). According to the last inequality, the Hs−1-
norm of this line is majorized by

C(g2,M)
(
‖ûl‖s−1 + ‖v̂l‖s−1 + ‖ŵl‖s−1

)

where we use the fact that the norms of ‖A0
1(U l)‖s−1 and ‖∂iu

l‖s−1 are majorized
by the constants K(g2) and M respectively. The same argument applies for the
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third line in (4.58). In order to obtain the estimate for the term involving f1

consider the general case of a function G = G(U l,Dxv
l). As it was previously

explained, we can show that

‖G(yl) −G(yl−1)‖2
s−1 ≤

∫ 1

0

‖DG(yl
r)(yl − yl−1)‖2

s−1dr

where we have set yl := (U l,Dxv
l) and yl

r = yl−1 + r(yl −yl−1). Just as in the case
that led us to (4.19) we have that

‖yl
r‖L∞ ≤ C(g2,M) < ∞,

for all 0 ≤ r ≤ 1 and all l ∈ N, which implies that, the norm

‖DG(yl
r)‖s̄

is dominated by a constant dependent on M and g2. Hence,

‖G(yl) −G(yl−1)‖2
s−1 ≤ C(g2,M)‖yl − yl−1‖s−1

≤ C(g2,M)
(
‖U l − U l−1‖2

s−1 + ‖Dxv
l −Dxv

l−1‖s−1

)

≤ C(g2,M)
(
‖ûl‖2

s−1 + ‖v̂l‖2
s + ‖ŵl‖2

s−1

)
.

From which the estimate (4.61) follows. The exact same argument yields (4.63).
Finally, (4.62) follows from (4.59) by the same argument, but instead of taking the
Hs−1-norm, we take the one in Hs−2; observe that, in this case, taking the norm
‖·‖s−2 is the only road to (4.62) due to the appearance of the term ∂i∂jv

l in (4.59).
This concludes the proof of lemma 5. �

Applying estimates (3.48)-(3.50) to the Cauchy problem (4.54)-(4.57) (with
m = s− 1) and taking into account Remark 5 we find that

‖(ûl, v̂l, ŵl)(t)‖2
s−1 +

∫ t

0

‖v̂l(τ)‖2
sdτ +

∫ t

0

‖(ûl
t, v̂

l
t, ŵ

l
t)(τ)‖2

s−2dτ

≤ C1e
C2

(
M(T0+T

3/2
0 )+M1T

1/2
0

) {∫ T0

0

Fs−1(f̂ l
1(t), f̂ l

2(t), f̂ l
3(t))dt

}
.

≤ 2C1

∫ T0

0

‖f̂ l
1(τ)‖2

s−1 + ‖f̂ l
2(τ)‖2

s−2 + ‖f̂ l
3(τ)‖2

s−1dτ, (4.64)

where we used condition (4.46). Then lemma 5 yields

sup
0≤t≤T0

‖(ûl, v̂l, ŵl)(t)‖2
s−1 +

∫ t

0

‖v̂l(τ)‖2
sdτ +

∫ t

0

‖(ûl
t, v̂

l
t, ŵ

l
t)(τ)‖2

s−2dτ

≤ C

(∫ T0

0

‖(ûl−1, v̂l−1, ŵl−1)(τ)‖2
s−1dτ +

∫ T0

0

‖v̂l−1(τ)‖2
sdτ

)

≤ C

(
T0 sup

0≤t≤T0

‖(ûl−1, v̂l−1, ŵl−1)(t)‖2
s−1 +

∫ T0

0

‖v̂l−1(τ)‖2
sdτ

)
(4.65)

where C = C(g2,M) is a constant independent of l ≥ 1.
Now, consider l ≥ 2. Then, according with (4.55), the equation satisfied by v̂l−1 is

A0
2(U l−1)v̂l−1

t +Ai
22(U l−1)∂iv̂

l−1 −Bij
0 (U l−1)∂i∂j v̂

l−1 = gl−1 (4.66)
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where gl−1 := f̂ l−1
2 − Ai

21(U l−1)∂iû
l−1 − Ai

23(U l−1)∂iŵ
l−1. Since, at this point,

U l−1, ûl−1 and ŵl−1 are given functions satisfying (4.5)-(4.8), we can regard equa-
tion (4.66) as a purely parabolic equation for the variable v̂l−1 with inhomogeneity
gl−1 and apply theorem 2.4.1 with m = s − 1 and T = T0 to conclude that v̂l−1

satisfies the energy estimate given in (2.73). And so, taking into account Remark
4, (4.46) and (4.57), we can assure that, in particular,

∫ T0

0

‖v̂l−1(τ)‖2
sdτ ≤ 2

∫ T0

0

‖gl−1‖2
s−2dτ. (4.67)

Then, (4.62) of lemma 5 implies that

‖gl−1‖s−2 ≤ C sup
0≤t≤T0

(
‖(ûl−1, v̂l−1, ŵl−1)(t)‖2

s−1 + ‖(ûl−2, v̂l−2, ŵl−2)(t)‖2
s−1

)
,

which combined with (4.65) and (4.67) yield the estimate

sup
0≤t≤T0

‖(ûl, v̂l, ŵl)(t)‖2
s−1 +

∫ t

0

‖v̂l(τ)‖2
sdτ +

∫ t

0

‖(ûl
t, v̂

l
t, ŵ

l
t)(τ)‖2

s−2dτ ≤

≤ CT0

(
sup

0≤t≤T0

‖(ûl−1, v̂l−1, ŵl−1)(t)‖2
s−1 + sup

0≤t≤T0

‖(ûl−2, v̂l−2, ŵl−2)(t)‖2
s−1

)
,

(4.68)

valid for any t ∈ [0, T ] and where C = C(g2,M) is a positive constant.
The objective at this point is to impose another condition on T0 (besides the ones
stated during the proof of theorem 4.2.1) so that

al := sup
0≤t≤T0

‖(ûl, v̂l, ŵl)(t)‖2
s−1 → 0

whenever l → ∞. Let us fixed t ∈ [0, T0] and call

bl :=

∫ t

0

‖v̂l(τ)‖2
sdτ +

∫ t

0

‖(ûl
t, v̂

l
t, ŵ

l
t)(τ)‖2

s−2dτ,

that way, (4.68) can be restated as

al + bl ≤ α0 (al−1 + al−2) ,

where we have set 0 < α0 := CT0.

Lemma 6. If we take T0 small enough so that 0 < α0 < 1, then for all k ∈ N,

a2k + b2k ≤ αk
0φ2kβ0, (4.69)

a2k+1 + b2k+1 ≤ αk
0φ2k+1β0, (4.70)

where β0 := a0 + a1 and {φk}∞
k=1 is Fibonacci’s sequence, i.e. φ1 = 1, φ2 = 1,

φ3 = 2, φ4 = 3,.. and in general φk = φk−1 + φk−2.

Proof. Let’s begin by computing a few cases with the recursion relation in
(4.68). For l = 2

a2 + b2 ≤ α0β0,
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then,

a3 + b3 ≤ α0 (a2 + a1)

≤ α0 (α0β0 + a1)

≤ α0

(
α0β0 +

α0

α0
β0

)

≤ α2
0

(
β0 +

1

α0
β0

)

≤ α0(2β0),

where it was used that 0 < α0 < 1. As we can see, the statements of the theorem
are true for the first cases, thus, we can proceed by induction. Assume that the
statement is true for the first l natural numbers and consider al+1. Then, (4.68)
states that

al+1 + bl+1 ≤ α0 (al + al−1) ,

and we have two cases:

(i) If l+ 1 = 2k0 for some k0 ≥ 2, then l = 2(k0 − 1) + 1 and l− 1 = 2(k0 − 1)
and so, the induction hypothesis yields

a2k0
+ b2k0

≤ α0

(
a2(k0−1)+1 + a2(k0−1)

)

≤ α0

(
αk0−1

0 φ2(k0−1)+1β0 + αk0−1
0 φ2(k0−1)β0

)

= αk0
0 β0

(
φ2(k0−1)+1 + φ2(k0−1)

)

= αk0
0 β0φ2k0

.

(ii) If l+ 1 = 2k0 + 1 for some k0 ≥ 2, then l = 2k0 and l− 1 = 2(k0 − 1) + 1,
which implies that

a2k0+1 + b2k0+1 ≤ α0

(
a2k0

+ a2(k0−1)+1

)

≤ α0

(
αk0

0 φ2k0
β0 + αk0−1

0 φ2k0−1β0

)

= αk0
0 (α0φ2k0

β0 + φ2k0−1β0)

≤ αk0
0 φ2k0+1β0.

Hence, statements (4.69) and (4.70) are satisfied. �

Remark 6. Observe that, at a first glance, the appearance of Fibonacci’s se-
quence might seem as a downside due to the fact that φk → ∞. However, this
only means that, contrary to a contractive sequence, is not enough to require that
0 < α0 < 1 to assure that al → 0 as l → ∞. So now, we are on the hunt for a
particular value of α0 ∈ (0, 1), one that actually yields the convergence to zero of
the right hand side of the estimates in (4.69) and (4.70). The next result presents
such a value.

Lemma 7. If we take T0 small enough so that 0 < α0 ≤ 1
6 , then

αk
0φ2kβ0 → 0,

αk
0φ2k+1β0 → 0

as k → ∞.
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Proof. Let us first show that

φ2k, φ2k+1 ≤ 3k (4.71)

for all k ∈ N. Note that the statement is true for the first few cases

φ1 = 1 < 31,

φ2 = 1 < 31,

φ3 = 2 < 31,

φ4 = 3 < 32.

Let’s proceed by induction. Assume the statement is true for the first l natural
numbers and consider l + 1. As in the proof of lemma 6 we have two cases

(i) If l + 1 = 2k for some k ≥ 2, then l = 2(k − 1) + 1 and l − 1 = 2(k − 1)
and the induction hypothesis yields

φl+1 = φ2k = φl + φl−1

≤ 3k−1 + 3k−1 = 2 · 3k−1

≤ 3k.

(ii) On the other hand, if l + 1 = 2k + 1 for some k ≥ 2, then l = 2k,
l − 1 = 2(k − 1) + 1 and l − 2 = 2(k − 1), which gives

φl+1 = φ2k+1 = φl + φl−1

= φl−1 + φl−2 + φl−1

≤ 3k−1 + 3k−1 + 3k−1

= 3 · 3k−1 = 3k.

From which, the result follows.

Thus, we have shown that

φ2k

3k
≤ 1,

φ2k+1

3k
≤ 1,

for all k ∈ N. Now, let 0 < α0 ≤ 1
6 . Then

αk
0φ2kβ0 ≤

(
1

6

)k

φ2kβ0 ≤ 1

2k
β0,

αk
0φ2k+1β0 ≤

(
1

6

)k

φ2k+1β0 ≤ 1

2k
β0,

by letting k → ∞, we obtain the desired result. �

4.4. Local existence: Convergence of iterations

The results in the previous section show that, if in (4.68), T0 is taken such that

0 < α0 = CT0 ≤ 1

6
,
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then, there exists (u, v, w) ∈ C([0, T0];Hs−1), v0 ∈ L2(0, T0;Hs) and (u1, v1, w1) ∈
L2(0, T0,H

s−2) such that

(ul, vl, wl) → (u, v, w) in C([0, T0];Hs−1), (4.72)

vl → v0 in L2(0, T0;Hs), (4.73)

(ul
t, v

l
t, w

l
t) → (u1, v1, w1) in L2(0, T0;Hs−2). (4.74)

In this section we will show that (u, v, w) =: U is a solution of the system (4.1)-

(4.3). This is equivalent to show that the mapping that takes U into Û = (û, v̂, ŵ) in
(4.12)-(4.14) has a fixed point. Let us begin by improving the regularity of (u, v, w)
in (4.72).

Lemma 8. (u, v, w) ∈ L∞(0, T0;Hs), |(u, v, w)(x, t)| ≤ g2 and

sup
0≤t≤T0

‖(u, v, w)(t)‖2
s ≤ M2.

Proof. Let us remember that (ul, vl, wl) ∈ Xs
T0

(g2,M,M1) for all l ∈ N, which
in particular means that

sup
0≤t≤T0

‖(ul, vl, wl)(t)‖2
s ≤ M2, (4.75)

therefore, there is a sub-sequence {l1} of {l} and a vector (u∗, v∗, w∗) ∈ L∞(0, T0;Hs)
such that

(ul1 , vl1 , wl1)
∗
⇀ (u∗, v∗, w∗) in L∞(0, T0;Hs).

As it was explained in section 3.2, this convergence implies the weak convergence in
L2(0, T0;Hs) (compare with (3.64)), in particular, we have the weak convergence
in L2(0, T0;Hs−1). On the other hand, the convergence in (4.72) implies the norm
convergence in L2(0, T0;Hs−1), hence, the uniqueness of the weak limit yields that

(u, v, w) = (u∗, v∗, w∗),

showing that (u, v, w) ∈ L∞(0, T0;Hs).
Since s− 1 > d

2 , (4.72) and the Sobolev’s embedding theorem imply that

(ul, vl, wl) → (u, v, w) in C
(
[0, T0];B0(Rd)

)
,

meaning that, for given ǫ > 0, there is l0 ∈ N such that, for all l ≥ l0,

sup
0≤t≤T0

‖(ul, vl, wl)(t) − (u, v, w)(t)‖L∞ < ǫ,

which in turn means that

sup
(x,t)∈QT0

|(ul, vl, wl)(x, t) − (u, v, w)(x, t)| < ǫ.

Now, since |(ul, vl, wl)(x, t) − (u0, v0, w0)(x)| ≤ g2 for all (x, t) ∈ QT0
, the previous

lines imply that

|(u, v, w)(x, t)| = |(u, v, w)(x, t) − (ul, vl, wl)(x, t) + (ul, vl, wl)(x, t) − (u0, v0, w0)(x)|
≤ |(u, v, w)(x, t) − (ul, vl, wl)(x, t)| + |(ul, vl, wl)(x, t) − (u0, v0, w0)(x)|
≤ ǫ+ g2

for any ǫ > 0, hence

(u, v, w)(x, t) ∈ Og2
∀(x, t) ∈ QT0

.
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Finally, notice that, from (4.75), for any fixed t ∈ [0, T0] and all l ∈ N we have that

‖(ul, vl, wl)(t)‖2
s ≤ M2.

Thus, for t ∈ [0, T0] fixed, there is a sub-sequence (again denoted by
{
U l(t)

}∞

l=1
)

and a U t ∈ Hs such that

U l(t) ⇀ U t in Hs as l → ∞,

‖U t‖2
s ≤ M2.

For h ∈ L2

g 7→ λh(g) :=

∫

Rd

(h, g)RNdx

defines a continuous linear map on Hs, hence, by the Riesz representation theorem,
we have that, for all h ∈ L2, there is a ψ = ψ(h) ∈ Hs such that,

λh(g) = 〈ψ(h), g〉s

for all g ∈ Hs. Consequently, we get for all h ∈ L2

∫

Rd

(h,U t)RNdx = λh(U t) = 〈ψ(h), U t〉s = lim
l→∞

〈ψ(h), U l(t)〉s

= lim
l→∞

λh(U l(t)) = lim
l→∞

∫

Rd

(h,U l(t))RNdx =

∫

Rd

(h,U(t))RNdx.

The last equality follows from (4.72). Thus, we obtain that U(t) = U t. Conse-
quently

‖U(t)‖2
s ≤ M2

for all t ∈ [0, T0] and the proof is done. �

Lemma 9. v0 = v and (u1, v1, w1) = (ut, vt, wt). Moreover, v ∈ L2(0, T0;Hs+1),
(ut, vt, wt) ∈ L2(0, T0;Hs−1) and

∫ T0

0

‖(ut(t), vt(t), wt(t))‖2
s−1dt ≤ M2

1 ,

∫ T0

0

‖v(t)‖2
s+1dt ≤ M2.

Proof. In particular, (4.73) implies that, vl → v0 in L2(0, T0;Hs−1), which
means that v0 = v, because C([0, T0];Hs−1) is continuously embedded in L2(0, T0;Hs−1).
By the same argument used in section 3.2 we can also conclude that

(u1, v1, w1) = (ut, vt, wt).

On the other hand, it follows from the uniform estimate, i.e.

(ul, vl, wl) ∈ Xs
T0

(g2,M,M1),

that, there is a sub-sequence {l1} of {l}, a vector (u∗∗, v∗∗, w∗∗) ∈ L2(0, T0;Hs−1)
and a v̄ ∈ L2(0, T0;Hs+1) such that

(ul1
t , v

l1
t , w

l1
t ) ⇀ (u∗∗, v∗∗, w∗∗) in L2(0, T0;Hs−1), (4.76)

vl1 ⇀ v̄ in L2(0, T0;Hs+1), (4.77)



80 4. LOCAL EXISTENCE: QUASILINEAR CASE

as l1 → ∞. Then
(∫ T0

0

‖(u∗∗, v∗∗, w∗∗)(t)‖2
s−1

)1/2

≤ lim inf
l1→∞

(∫ T0

0

‖(ul
t, v

l
t, w

l
t)(t)‖2

s−1

)1/2

≤ M1,

(∫ T0

0

‖v̄(t)‖2
s+1

)1/2

≤ lim inf
l1→∞

(∫ T0

0

‖vl(t)‖2
s+1

)1/2

≤ M

Observe that, the convergence in (4.76) implies that

(ul1
t , v

l1
t , w

l1
t ) ⇀ (u∗∗, v∗∗, w∗∗) in L2(0, T0;Hs−2)

and from (4.74) it follows that

(ut, vt, wt) = (u∗∗, v∗∗, w∗∗) ∈ L2(0, T0;Hs−1).

A similar argument applied to the convergence in (4.77) yields that v ∈ L2(0, T0;Hs+1).
The result follows. �

Now let us show that (u, v, w) satisfies the equation (4.1)-(4.3). Note that
equations (4.50)-(4.52) can be written in the form

A0(U l)U l+1
t +Ai(U l)∂iU

l+1 −Bij(U l)∂i∂jU
l+1 +D(U l)U l+1 = F (U l,DxU

l),

where the matrix coefficients were defined in section 3.1 and

F (UL,DxU
l) =




f1(U l,Dxv
l)

f2(U l,DxU
l)

f3(U l,Dxv
l)


 ,

thus, we can write

U l+1
t = (A0)−1(U l)

{
F (U l,DxU

l)

−Ai(U l)∂iU
l+1 +Bij(U l)∂i∂jU

l+1 −D(U l)U l+1
}
. (4.78)

By means of (4.72) we will show that the right hand side of (4.78) converges to

(A0)−1(U)
{
F (U,DxU) −Ai(U)∂iU +Bij(U)∂i∂jU −D(U)U

}

in C([0, T0];Hs−2). Indeed, let L(U) be any matrix coefficient appearing in (4.78),
as we did during the proof of lemma 5, we have that

‖L(U l) − L(U)‖2
s−1 ≤

∫ 1

0

‖DL(U l
r)‖2

s̄‖U l − U‖2
s−1dr,

where in this case U l
r = U + r(U l − U). By lemma 8, we can assure the existence

of a constant C = C(g2,M) such that

‖DL(U l
r)‖2

s̄ ≤ C(g2,M),

hence,

‖L(U l) − L(U)‖2
s−1 ≤ C(g2,M)‖U l − U‖2

s−1. (4.79)

For the term F (U,DxU) we can apply a similar argument but only for the Hs−2-
norm, to get

‖F (U l,DxU
l) − F (U,DxU)‖2

s−2 ≤ C(g2,M)
(
‖U l − U‖2

s−2 + ‖DxU
l −DxU‖2

s−2

)

≤ C(g2,M)‖U l − U‖2
s−1. (4.80)
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Now, let t ∈ [0, T0] be fixed. For the term Ai(U l)∂iU
l+1 we have that

‖Ai(U l(t))∂iU
l+1(t) −Ai(U(t))∂iU(t)‖s−2 ≤ ‖Ai(U l(t))

(
∂iU

l+1(t) − ∂iU(t)
)

‖s−2

+ ‖
(
Ai(U l(t)) −Ai(U(t))

)
∂iU(t)‖s−2

≤ C(g2,M)‖∂iU
l+1(t) − ∂iU(t)‖s−2

+ C(g2,M)‖Ai(U l(t)) −Ai(U(t))‖s−2,

which according to (4.72) and (4.79), goes to zero if l → ∞. Thus,

Ai(U l(t))∂iU
l+1(t) → Ai(U(t))∂iU(t)

as l → ∞, for every t ∈ [0, T0]. The same argument applied to the rest of the terms
in (4.78) together with (4.80) yield the desired result. In particular, this means
that ∂tU

l+1(t) converges to

(A0)−1(U)
{
F (U,DxU) −Ai(U)∂iU +Bij(U)∂i∂jU −D(U)U

}

in C([0, T0],Hs−2), a space that is continuously embedded in L2(0, T0;Hs−2), and
so, (4.74) yields that

Ut = (A0)−1(U)
{
F (U,DxU) −Ai(U)∂iU +Bij(U)∂i∂jU −D(U)U

}
.

Hence U ∈ C1([0, T0];Hs−2) and the differential equation

A0(U)Ut +Ai(U)∂iU −Bij(U)∂i∂jU +D(U)U = F (U,DxU),

is satisfied (being an equality in C([0, T0];Hs−2)). Now, we can state the following
result:

Lemma 10. The function U(x, t) := (u, v, w)(x, t), given in (4.72) is a solution
to the Cauchy problem (4.1)-(4.4) and satisfies that

ut, wt ∈ C([0, T0];Hs−2) ∩ L∞(0, T0;Hs−1), (4.81)

vt ∈ C([0, T0];Hs−2). (4.82)

Proof. We have already shown that U is a solution to the equations (4.1)-
(4.3), and an immediate consequence of (4.53) is that U satisfies the initial condition
(4.4). Notice that (4.81), is a consequence of lemma 8 and the proof is done. �

Now, according to lemmas 8 and 9, the assumptions of the theorem 3.1.1 are
met and we can conclude that U = (u, v, w) satisfies the energy estimates given in
(3.30) and (3.46) to (3.50). In particular, U satisfies (4.44), and since we are taking
T0 as in theorem 4.2.1 and lemma 7, we conclude that

‖(u, v, w)(t)‖2
s +

∫ t

0

‖v(τ)‖2
s+1dτ ≤ M2

for all t ∈ [0, T0]. Thus, from lemmas 8, and 9 we conclude the following result:

Corollary 3. U = (u, v, w) satisfies (4.9), (4.10) and (4.11).

Observe that, according to lemmas 8, 9 and 10 we are still a little short in
the regularity stated in (4.5) through (4.8), so now we ought to show that U ∈
C([0, T0];Hs). For this, we use an exact replica of the argument presented in section
3.4. First observe that, lemmas 8 and 9 imply that

U ∈ W 1,2
(
0, T0;Hs−1

)
,
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implying that U ∈ C([0, T0];Hs−1) due to theorem 1.0.9. This implies thatA0(U)U ∈
W 1,2

(
0, T0;Hs−1

)
too, due to steps (4) and (6) of lemma 4. Then, from the the-

orem 1.0.8, with X = Hs and Y = Hs−1, and the estimate in (3.30) we have
that

A0(U(t))U(t) ∈ Cw([0, T0];Hm),

d

dt
‖A0(U(t))U(t)‖2

m ∈ L1(0, T0),

implying that the mappings

t 7→ ‖A0(U(t))U(t)‖2
m

and
t 7→ A0(U(t))U(t)

are continuous, yielding thatA0(U(t))U(t) ∈ C([0, T0];Hs) and since (A0(U)(t))−1 ∈
C([0, T0]; Ĥs) we conclude that U(t) ∈ C([0, T0];Hs). This result combined with the
fact that U satisfies equations (4.1)-(4.3) immediately yields and improvement of
the regularity for the functions ut and wt in lemma 10, that is,

ut, wt ∈ C([0, T0];Hs−1).

Finally, we resume our findings in the following theorem:

Theorem 4.4.1 (Local existence). Let assumptions A through G be satisfied.
Then there exists a positive constant T0 > 0, depending only on Og0

, Og2
and

‖(u0, v0, w0)‖s, such that the initial value problem (4.1)-(4.4) has a unique solution
(u, v, w) ∈ Xs

T0
(g2,M,M1), where g2, M and M1 are determined by (4.41), (4.42)

and (4.43) respectively. In particular, the solution satisfies

u ∈ C([0, T0];Hs) ∩ C1([0, T0];Hs−1),

v ∈ C([0, T0];Hs) ∩ L2(0, T0;Hs+1) ∩ C1([0, T0];Hs−2),

w ∈ C([0, T0];Hs) ∩ C1([0, T0];Hs−1),

vt ∈ L2(0, T0;Hs−1),

sup
0≤τ≤t

‖(u, v, w)(t)‖2
s +

∫ t

0

‖v(τ)‖2
s+1dτ ≤ 4C1‖(u0, v0, w0)‖2

s

for all t ∈ [0, T0].

Proof. We are only left with proving the uniqueness of the problem. So, as
usual we assume the existence of two functions U1, U2 ∈ Xs

T0
(g2,M,M1) that solve

the initial value problem (4.1)-(4.4). Then, the function z = U2 − U1 solves the
initial value problem

A0(U2)zt +Ai(U2)∂iz−Bij(U2)∂i∂jz +D(U2)z = R,

z(x, 0) = 0,

where R is given by

R = A0(U2)
{
A0(U2)−1F (U2;DxU

2) −A0(U1)−1F (U1;DxU
1)
}

−A0(U2)
{
A0(U2)−1Ai(U2) −A0(U1)−1Ai(U1)

}
∂iU

1

+A0(U2)
{
A0(U2)−1Bij(U2) −A0(U1)−1Bij(U1)

}
∂i∂jU

1

−A0(U2)
{
A0(U2)−1D(U2) −A0(U1)−1D(U1)

}
U1. (4.83)
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Henceforth, we can proceed just as we did during the proofs of lemma 5 and in-
equalities (4.64) through (4.68), thus obtaining

‖z(t)‖2
s−1 +

∫ t

0

‖(v2 − v1)(τ)‖2
sdτ +

∫ t

0

‖zt(τ)‖2
s−2dτ ≤

≤ C1e
C2

(
M(T0+T

3/2
0 )+M1T

1/2
0

) {∫ T0

0

Fs−1(R(t))dt

}

≤ CT0

(
sup

0≤t≤T0

‖z(t)‖2
s−1 + sup

0≤t≤T0

‖z(t)‖2
s−1

)
.

Since T0 > 0 is taken such that 0 < CT0 ≤ 1
6 we get that

sup
0≤t≤T0

‖z(t)‖2
s−1 ≤ 1

3
sup

0≤t≤T0

‖z(t)‖2
s−1.

Hence z(t) = 0 for all t ∈ [0, T0]. �

4.5. The fixed point

From the arguments presented in sections 4.3 and 4.4 we can derive the following
fixed point result:

Theorem 4.5.1. Let Y a Banach space with norm ‖·‖y and X ⊂ Y non-empty.
Let us assume that T : X → X is an operator with the following properties:

(i) Define X∞ ⊂ Y as all the vectors U ∈ Y for which there is a sequence{
Uk
}

⊂ X and V ∈ Y such that

Uk → U and T (Uk) → V in Y. (4.84)

T admits an extension T̂ : X∞ → X∞ well defined as T̂ (U) = V for
every U ∈ X∞ and V as in (4.84).

(ii) There is a constant, 0 < α0 ≤ 1
6 , such that, for all U1, U2 ∈ X∞

‖T̂ 2(U2) − T̂ 2(U1)‖y ≤ α0

{
‖T̂ (U2) − T̂ (U1)‖y + ‖U2 − U1‖y

}
.

Then, there is a unique fixed point U∞ ∈ X∞ of T̂ , that is, T̂ (U∞) = U∞.

Proof. Let U0 ∈ X. Define T (U0) =: V 0 and T 2(U0) = T (V 0) =: V 1, and
in general, for k ∈ N such that k ≥ 2,

T (V k) =: V k+1.

Then, by (ii), for all k ≥ 2,

‖T (V k+1) − T (V k)‖y ≤ α0

{
‖T (V k) − T (V k−1)‖y + ‖T (V k−1) − T (V k−2)‖

}
.

If we set ak := ‖T (V k+1) − T (V k)‖y then, the previous inequality reads

ak ≤ α0 (ak−1 + ak−2) ,

hence, ak → 0 as k → ∞, by lemmas 6 and 7. Implying that
{

T (V k)
}

is a Cauchy
sequence in Y , and so, there is a U∞ ∈ Y such that

T (V k) → U∞.

Moreover, since T (V k) = V k+1 we also have that

V k → U∞.
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Then, by (i), U∞ ∈ X and T̂ (U∞) = U∞. Thus proving the existence of the fixed

point. For the uniqueness assume that U∞, V∞ ∈ X∞ are fixed points of T̂ . Then,
(ii) yields

‖U∞ − V∞‖Y ≤ α0 (‖U∞ − V∞‖y + ‖U∞ − V∞‖y)

implying that

‖U∞ − V∞‖Y ≤ 1

3
‖U∞ − V∞‖y

since 0 < α0 ≤ 1
6 . Hence, it would be impossible that U∞ 6= V∞. The proof is

done. �

Before discussing each statement given in the theorem 4.5.1 let’s apply it to the
case presented in this chapter, and by doing, this we will give a more transcendental
meaning to each computation presented in the last section. Let Y be the vector
space of functions U = (u, v, w) ∈ R

N such that

U ∈ C([0, T0];Hs−1),

v ∈ L2(0, T0;Hs),

Ut ∈ L2(0, T0;Hs−2),

with norm defined by

‖U‖2
Y := sup

0≤t≤T0

‖U(t)‖2
s−1 +

∫ T0

0

‖v(t)‖2
sdt+

∫ T0

0

‖Ut(t)‖2
s−2dt.

Then, take X = Xs
T0

(g2,M,M1), hence X ⊂ Y . Now, fixed the initial condition
(u0, v0, w0) in (4.15) and for every U ∈ X let V = (û, v̂, ŵ) be the unique solution
of the system (4.12)-(4.14) with initial condition (4.15) and define T : X → X as

T (U) = V.

According to the theorem 4.2.1, the operator T defined in this way is well-defined.
Let

{
Uk
}

be a sequence in X such that Uk → U in Y , then, according to lemmas
8 and 9 we have that

U ∈ L∞(0, T0;Hs), (4.85)

v ∈ L2(0, T0;Hs+1), (4.86)

Ut ∈ L2(0, T0;Hs−1), (4.87)

also U satisfies that (4.9) and (4.11) with T = T0. Moreover, by using the same
argument to those presented in this lemmas we have that, for each t ∈ [0, T0] there
is a sub-sequence {l} ⊂ {k} such that

U l(t) ⇀ U(t) in Hs,

vl ⇀ v in L2(0, T0;Hs+1),

and

‖U l(t)‖2
s +

∫ T0

0

‖vl(t)‖2
s+1dt ≤ M2.
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Thus

lim inf
l→∞

‖U l(t)‖2
s + lim inf

l→∞

∫ T0

0

‖vl(t)‖2
s+1dt ≤

lim inf
l→∞

(
‖U l(t)‖2

s +

∫ T0

0

‖vl(t)‖2
s+1dt

)
≤ M2,

implying that U satisfies (4.10) with T = T0. Hence, if we define X0 as the set of
all functions U ∈ Y satisfying (4.85)-(4.87) along with (4.9), (4.10) and (4.11) with
T = T0, then

X∞ ⊂ X ⊂ X0. (4.88)

Now, let U ∈ X∞, V ∈ Y and
{
Uk
}

⊂ X as in (4.84). We need to show that

the extension T̂ : X∞ → X∞ is well-defined, meaning that the value T̂ (U) is

independent of the Cauchy sequence chosen to converge to U and T̂ (X∞) ⊂ X∞.
For this, consider T (Uk) := V k ∈ X. Then, according to the definition of T

A0(Uk)V k
t +Ai(Uk)∂iV

k −Bij(Uk)∂i∂jV
k +D(Uk)V k = F (Uk;DxU

k),

for all k ∈ N and so, just as we did in the computations preceding lemma 10, we
can conclude that the identity

A0(U)Vt +Ai(U)∂iV −Bij(U)∂i∂jV +D(U)V = F (U ;DxU), (4.89)

is satisfied in C([0, T0];Hs−2). Notice that V ∈ X since
{
V k
}

⊂ X, implying that
V ∈ X0, thanks to (4.88). Since U ∈ X0 too, we can apply remark 4 and theorem
3.1.1 to conclude that V satisfies the energy estimates (3.30) and (3.46)-(3.50).

Meaning that, if there is another sequence
{
Ûk
}

in X such that Ûk → U and

T (Ûk) → V̂ then, as in the previous lines,

A0(U)V̂t +Ai(U)∂iV̂ −Bij(U)∂i∂j V̂ +D(U)V̂ = F (U ;DxU)

and since U(x, 0) = V (x, 0) = (u0, v0, w0)(x), we have uniqueness, i.e. V = V̂ .
Thus, the mapping U 7→ V , with U and V as in (4.84) is well defined.

We are left with proving that V ∈ X∞. Given that T (Uk) = V k → V in Y , we
only have to show that there is a V ∗ ∈ Y such that T (V k) → V ∗, and in fact, since
T (Uk) ∈ X, then T (V k) = T 2(Uk) is well-defined. To show the convergence of the
sequence

{
T (V k)

}
we will make use of condition (ii). Assume for a moment that,

the inequality in (ii) is true, at least for T , then

‖T (V k) − T (V l)‖y ≤ α0

{
‖V k − V l‖y + ‖Uk − U l‖y

}
,

implying that
{

T (V k)
}

is a Cauchy sequence in Y and thus, there is V ∗ ∈ Y

such that T (V k) → V ∗ in Y . Hence, V ∈ X∞. In consequence, our extension T̂
will be well defined on X∞. So, for this argument to hold, we require to prove
that condition (ii) is satisfied for T : X → X. In fact, the proof is the same as
the inequality (4.68). Consider then, U1, U2 ∈ X and set T (Up) =: V p ∈ X and
T (V p) =: W p ∈ X for p = 1, 2. According with the definition of T , it is satisfied
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that

A0(Up)V p
t +Ai(Up)∂iV

p −Bij(Up)∂i∂jV
p +D(Up)V p = F (Up;DxU

p)
(4.90)

A0(V p)W p
t +Ai(V p)∂iW

p −Bij(V p)∂i∂jW
p +D(V p)W p = F (V p;DxV

p)
(4.91)

V p(x, 0) = W p(x, 0) = (u0, v0, w0)(x)

for p = 1, 2. Let us fixed our attention on (4.91) and set V p = (ûp, v̂p, ŵp), W p =
(ūp, v̄p, w̄p) for p = 1, 2. Then, the difference W 2 −W 1 = W satisfies the equation

A0(V 2)Wt +Ai(V 2)∂iW −Bij(V 2)∂i∂jW +D(V 2)W = R̂, (4.92)

where

R = A0(V 2)
{
A0(V 2)−1F (V 2;DxV

2) −A0(V 1)−1F (V 1;DxV
1)
}

−A0(V 2)
{
A0(V 2)−1Ai(V 2) −A0(V 1)−1Ai(V 1)

}
∂iW

1

+A0(V 2)
{
A0(V 2)−1Bij(V 2) −A0(V 1)−1Bij(V 1)

}
∂i∂jW

1

−A0(V 2)
{
A0(V 2)−1D(V 2) −A0(V 1)−1D(V 1)

}
W 1. (4.93)

By using the steps that led us to estimate (4.65) we conclude that,

sup
0≤t≤T0

‖W (t)‖2
s−1 +

∫ T0

0

‖(v̄2 − v̄1)(τ)‖2
sdτ +

∫ T0

0

‖(Wt)(τ)‖2
s−2dτ

≤ C

(
T0 sup

0≤t≤T0

‖(V 2 − V 1)(t)‖2
s−1 +

∫ T0

0

‖(v̂2 − v̂1)(τ)‖2
sdτ

)
, (4.94)

and since V p is a solution of (4.90), the difference V = V 2 − V 1 satisfies a similar
equation to that of (4.92) (with U2 instead of V 2 and V instead of W ) and in
particular, v̂2 − v̂1 satisfies a purely parabolic equation (as it was explained in
(4.66)) and the energy estimate (2.73), thus yielding

sup
0≤t≤T0

‖W (t)‖2
s−1 +

∫ T0

0

‖v̄2 − v̄1(τ)‖2
sdτ +

∫ T0

0

‖(Wt)(τ)‖2
s−2dτ ≤

≤ CT0

(
sup

0≤t≤T0

‖(V 2 − V 1)(t)‖2
s−1 + sup

0≤t≤T0

‖(U2 − U1)(t)‖2
s−1

)
. (4.95)

From which it follows that condition (ii) is satisfied by T and, as it was stated

before, we conclude that T̂ : X∞ → X∞ is well defined.

We are left with proving that condition (ii) is satisfied by T̂ : X∞ → X∞. But, as it

was previously explained, if T̂ (U) = V for U, V ∈ X∞ ⊂ X0, then (4.89) is satisfied
and so are the energy estimates (3.30), (3.46)-(3.50) and (2.73). Meaning that, the
previous steps can be carried on one more time, and conclude that condition (ii) is
satisfied in its totality.
In conclusion, our operator T satisfies the hypothesis of theorem 4.5.1, implying

the existence of U∞ ∈ X∞ such that T̂ (U∞) = U∞.
Now, repeating the argument presented between corollary 3 and theorem 4.4.1, lead
us to conclude that, in fact, U∞ ∈ X and T (U∞) = U∞.

Remark 7. Observe that, contrary to basic statements involving existence of

fixed points, theorem 4.5.1 is not requiring for the domains of neither T or T̂ to be
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closed sets. Although X∞ is a set of limit points of X, is not necessarily a closed
set (is not a consequence of the given assumptions). In fact, if X∞ were to be a
closed set, then X∞ = X, because X∞ ⊃ X. Furthermore, notice that we are not

assuming that T and T̂ are continuous mappings.
That being said, in the application presented in this section, we can actually show
that X∞ = X. Indeed, is enough to show that X ⊆ X∞. Let V ∈ X. There is a
sequence

{
V k
}

⊂ X such that, V k → V in Y . Consider the sequence W k = T (V k).

Then, setting W 2 = W k, W 1 = W l, V 2 = V k and V 1 = V l, in (4.94), we can
infer that

{
T (V k)

}
is a Cauchy sequence in Y and so, there exists W ∈ Y such

that T (V k) → W in Y . Hence X∞ = X. Moreover, since (4.94) is satisfied by

T̂ (V p) = W p, for V p,W p ∈ X∞ and p = 1, 2, we conclude that, in this case,

T̂ : X∞ → X∞ is continuous with respect to the norm of Y . Not only that, (4.94)

implies that T̂ is Lipschitz continuous. However, Lipschitz’s constant is greater or
equal than 1, meaning that, the mapping is not a contraction. Hence the need of a
different argument, in order to prove the local existence, than the one presented in
[25].

Remark 8. Notice that, condition (i) has similarities with the closed graph
property for a linear operator (observe however, that T doesn’t have to be a linear

operator). Let us define the graph of T̂

Γ(T̂ ) :=
{

(U, T̂ (U)) : U ∈ X∞

}
⊂ Y × Y.

Then, we say that T̂ has the closed graph property if Γ(T̂ ) is closed in Y × Y ,

which is equivalent to say that if U l → U , where
{
U l
}

⊂ X∞ and T̂ (U l) → V in

Y then, U ∈ X∞ and T̂ (U) = V . Let us show that, Γ(T̂ ) = Γ(T̂ ) in Y × Y . Set

V l = T̂ (U l). Then, for every l ∈ N there is
{
U l

k

}
⊂ X such that U l

k → U l and

T (U l
k) → V l in Y as k → ∞. Now, let ǫ > 0 be given. For each fixed l ∈ N there

is k(l) ∈ N such that, for all k ≥ k(l),

‖U l
k − U l‖y <

ǫ

2
,

‖T (U l
k) − V l‖y <

ǫ

2
;

on the other hand, there is a number N0 ∈ N such that for all l ≥ N0, we have that

‖U l − U‖y <
ǫ

2
,

‖T̂ (U l) − V ‖y <
ǫ

2
.

Then take l0 ≥ N0 and k0 ≥ k(l0), to conclude that there is U l0

k0
∈
{
U l

k

}
(l,k)

⊂ X

such that

‖U l0

k0
− U‖y < ǫ

and

‖T (U l0

k0
) − V ‖y < ǫ.

Thus, according to the definition U ∈ X∞ and T̂ (U) = V , showing that Γ(T̂ ) is
closed in Y × Y .
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4.6. Discussions

4.6.1. On the assumption E. By revising [25] we can find an analogue to
assumption E, given in condition 2.2. It postulates the existence of a constant
state, which in our case would be, Ū = (ū, v̄, w̄) such that,

f1(Ū , 0) = 0,

f2(Ū , 0) = 0,

f3(Ū , 0) = 0.

In this manner assuming a lighter condition on the inhomogeneous terms f1, f2

and f3 than the one presented in our assumption E. However, in compressible
fluid dynamics, assumption E is satisfied, for example for the compressible Navier-
Stokes equations and the Cattaneo-Christov system (the latter presented in the
next chapter). In general, the inhomogeneities have two roles; first to account for
coupling terms in the equations, and second, to account for non-linear terms. For
example, f1 could be given as

f1 = Ci∂iv +Diu+Giw + N (U ;Dxv),

where N (U ;Dxv) represents non-linear terms. In this case, f1 doesn’t satisfy as-
sumption E. But, as we showed in chapter 3, we can deal with the first order terms
Ci∂iv, from the beginning, at the linearized version of the equations, because we
are assuming coupling between hyperbolic and parabolic variables. Also, as the
linearized energy estimates for the variable w showed, the zeroth order terms Diu,
Giw present no difficulty when estimating. Thus, thanks to our given assumptions,
the inhomogeneities fi have no more meaning other than to account for non-linear
terms.
That being said, we could also assume the existence of a constant state Ū with
the previous property and still obtain the same results of local well-posedness by
performing minor modifications in our proof. As Kawashima indicates, we would
have to assume that

(u0 − ū, v0 − v̄, w0 − w̄) ∈ Hs,

and most of the assumptions stated for U , would have to be restated in terms of
U− Ū and also the conclusions. For example, instead of assuming U ∈ C([0, T ];Hs)
((4.5)-(4.7)) we would require to assume that

U − Ū ∈ C([0, T ];Hs).

Still, the proof presented here would require little to no modifications.

4.6.2. On the closedness of the set X. As it was mentioned before, we are
not assuming that the set X is a closed set, and by taking into account remarks 7
and 8, we can raise a question, can X be closed in Y ?, is it feasible to assume that?
obviously implying that X = X∞ = X. In the opinion of the author, if the operator
T , is defined through the local well-posedness of a hyperbolic-parabolic system (as
it is our case and [25]) or even purely hyperbolic (as it is the case for [36], [42], [44])
, the answer is no. Take for example the particular case of X, X∞ and Y defined
in this section. Remember that X was defined as Xs

T0
(g2,M,M1). The regularity

required for a function U to belong to Xs
T0

(g2,M,M1) is more demanding than

the one required to belong to Y . In particular, we mean that, if U ∈ X, then, at
most we can show that U ∈ L∞(0, T0;Hs), it doesn’t seem possible to show that



4.6. DISCUSSIONS 89

U ∈ C([0, T0];Hs). In the opinion of the author, proving this requires the usage of
a theorem 1.0.8-like result, and in fact, thanks to this result, what we can actually
show is that U ∈ Cw([0, T0];Hs). But in order to conclude the strong continuity for
U(t) we would require to show that

d

dt
‖U(t)‖2

s ∈ L1(0, T ). (4.96)

For this, two ideas come to mind:

(1) To show an energy estimate for U ∈ X similar to (3.30), implying imme-
diately (4.96). But, for this to work we would need to assure that every
U ∈ X satisfies a partial differential equation of the form (3.1)-(3.3) with
an initial condition; more precisely, assure that, for every U ∈ X there

is a U ∈ X∞ such that T̂ (U) = U , in order to carry on with the energy
estimates and to eventually get to (3.30). At the end of the day this means

showing, a priori, that T̂ is onto. Something that doesn’t seem plausible.
In fact, this observation explains the improvement of the regularity for

the fixed point U∞, since T̂ (U∞) = U∞.
(2) Another way to arrive to (4.96) would be to derive the norm through the

inner product (if it is possible of course), i.e.

d

dt
‖U(t)‖2

s =
d

dt

∑

|α|≤s

‖∂α
xU‖2 =

∑

|α|≤s

d

dt
〈∂α

xU, ∂
α
xU〉 =

∑

|α|≤s

〈∂α
xU, ∂

α
xUt〉,

implying that

d

dt
‖U(t)‖2

s ≤ C
(
‖U‖2

s + ‖Ut‖2
s

)
.

Meaning that if ‖U‖2
s, ‖Ut‖2

s ∈ L1(0, T0), then (4.96) is satisfied. Although, ‖U‖2
s ∈

L1(0, T0) is assured by our energy estimates, we cannot say the same thing for the
term ‖Ut‖2

s. Having an estimate strong enough to assure that ‖Ut‖2
s ∈ L1(0, T0)

is not possible for our case due to the coupling between hyperbolic and parabolic
variables. In fact, without this coupling, and assuming that the diffusion term is
given in conservative form, as in (2.95), we can obtain such an estimate. This result
can be seen in [40]. In this reference we can see two cases for this to happen (in the
scalar case N = 1). If we would manage to prove that every U ∈ X is a solution of
a second order equation in time, in conservative form, purely parabolic, e.g.

A0utt +Ai∂iu+Du− ∂j

(
Bij∂iu

)
= f,

with Bij satisfying H2. Then we would be able to control sup0≤t≤T0
‖Ut(t)‖2

s, thus

assuring (4.96). On the other hand, if every U ∈ X is a solution of a first order
equation in time, purely parabolic, with diffusion in conservative form (like (2.95))
with an initial condition U0 ∈ Hs+1, then ‖Ut(t)‖2

s ∈ L1(0, T0). However, as the
reader might be thinking, these two pathways are rather unrealistic.
But then, one might ask: Isn’t there a way to choose the space Y in order to assure
that X is closed in Y ? This is a fair question since, as it is shown in the case
presented in this chapter, we are to blame the norm of Y for the lack of closedness
of X. That is, once X is defined, the lack of the property of X of being a closed
set is a burden imposed by the definition of Y .
Again, in the case of hyperbolic-parabolic systems, this doesn’t seem to be possible
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to do. Why? Well, first the reader must ask him or her-self: In the case presented
in this chapter, why did we have to choose the norm of Y the way we did? i.e. why

‖U‖2
Y := sup

0≤t≤T0

‖U(t)‖2
s−1 +

∫ T0

0

‖v(t)‖2
sdt+

∫ T0

0

‖Ut(t)‖2
s−2dt ?

The answer is simple, this is the strongest norm for which condition (ii) of the-
orem 4.5.1 is satisfied. This feature is a consequence of the estimates given in
lemma 5. These estimates cannot be improved in the sense that, we cannot control
higher norms of the non-homogeneous terms appearing in this lemma, given our
assumptions. Take for example f̂ l

2 given in (4.59). If we, naively, were to estimate

a stronger norm than the one estimated in (4.62), say, ‖f̂ l
2‖s−1, then the constant

appearing in this inequality would depend on the norm ‖∂i∂jv
l‖s−1, which can only

be controlled by ‖vl‖s+1, a norm that is not bounded by a constant dependent on
g2 and M . That way, we would not be obtaining and analogue to estimate (4.62),

for the norm ‖f̂ l
2‖s−1.

This phenomenon has been fairly reported before, although, with different fixed
point arguments (see the next discussion). In the context of hyperbolic systems one
can revise [31], [24], [36], [42] and [44], for example; and for hyperbolic-parabolic
systems one can check [25] and [46]. In fact, in [36], Majda has coined a couple
of terms to refer to this feature. He calls, boundedness in the high norm the set of
bounds that define the space X, which in this case is Xs

T0
(g2,M,M1); and then he

calls contraction in the low norm, the moment that we find the strongest norm (but
not as the high norm) for which a contraction-like inequality yields the existence
of a fixed point. Thus, resting the case supporting the lack of the closedness of the
set X.

4.6.3. On the lack of a contraction. Consider once more X as the set
defined through the boundedness in the high norm process and the operator T :
X → X defined as the unique solution V ∈ X to the problem

A0(U)Vt +Ai(U)∂iV −Bij(U)∂i∂jV +D(U)V = F (U ;DxU),

V (x, 0) = (u0, v0, w0)(x),

and its extension T̂ : X∞ → X∞. Let Y be the Banach space defined through
the contraction in the low norm process, with norm ‖ · ‖y. As we did during the
proof of the theorem 4.5.1, defined the iteration T (V k) = V k+1 and consider the
sequence of real numbers

ak := ‖T (V k+1) − T (V k)‖y.

In the study of hyperbolic-parabolic quasilinear systems of equations, the sequence
{ak} has been reported to satisfied two types of inequalities:

(1) There is a constant 0 < α < 1 such that ak ≤ αak−1 (cf. [24], [31] and
[25]).

(2) There is a constant 0 < α1 < 1 such that ak ≤ α1ak−1 + βk, where {βk}
is a sequence chosen with the property that

∑
k βk < ∞ (cf. [36], [42],

[44] and [46]).

In the first case, this means that the operator T̂ is a contraction. Meanwhile, in the

second case, although T̂ is not a contraction (but almost), the inequality implies
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that ∑

k

ak < ∞

and so, ak → 0, hence, the sequence
{

T (V k)
}

is a Cauchy sequence in Y . Then,

a fixed point of the extension T̂ can be shown to exist, in a similar manner as we
did in the case presented in this chapter.
As we showed in this chapter, the case of equations (4.1)-(4.3), cannot be classified
in either case (1) or (2). Now, to be fair, at some point ( check (4.65) and (4.95)) we

did showed that T̂ is Lipschitz continuous, but with a Lipschitz’s constant greater
or equal than one, that way stepping out of case (1); but if we take a look at
the inequality (4.65) we did obtained the inequality of case (2), by changing the
definition of Y of course. That is, if we define Y = C([0, T0]);Hs−1), then, by taking
T0 small enough so that 0 < CT0 < 1, we get

ak ≤ α0ak−1 + βk.

However, in this case

βk = βk(V k) :=

∫ T0

0

‖v̂k−1(τ)‖2
sdτ,

thus showing that, βk cannot be chosen a priori, so that,
∑

k βk < ∞, because this
would mean that, we know in advance that the sequence

{∫ T0

0

‖v̂k−1(τ)‖2
sdτ

}

goes to zero rapidly enough. But this, in to many ways, is the conclusion that we
want to achieve. Thus, our case does not belong in (2).
So, what’s the difference? In the opinion in the author, this is due to two main as-
sumptions: the assumption of coupling between hyperbolic and parabolic variables,
and the lack of a conservative structure in equations (4.1)-(4.3).
Assuming conservative structure means that, (4.1)-(4.3) can be derived from a vis-
cous system of conservation laws with a strictly convex entropy. In [46], Serre
deals with this case assuming that the entropy is strongly dissipated. He in fact has
coupling between hyperbolic and parabolic variables (equation (8) in [46]). The
linearized version of his equation (8) is fully symmetrized, a property not shared by
our equations (3.1)-(3.3), since they are only partially symmetrized. The existence
of a symmetrizer (S0(U)) for the quasilinear system is derived from the existence
of a strictly convex entropy. Moreover, his equation (8) is, as he describes it, in
normal form due to the conservative structure assumption. This particular form
for the equations yield strong enough estimates in order to be classified in case (2).
Furthermore, it implies an improvement in the regularity assumed for the initial
data.
On the other hand, assuming decoupling between hyperbolic variables yields stronger
linearized energy estimates, as it was discussed in section 3.5.1. We can actually
explain further this statement. Let’s consider a simple scalar equation for which
hyperbolic regularity is expected, lets say

ut + ux + u = f.
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If we apply the energy method in order to estimate the solution in some (Sobolev)
norm ‖ · ‖, we will obtain at some point the following inequality

d

dt
‖u‖2 ≤ C

(
‖f‖‖u‖ + ‖u‖2

)

for some positive constant C. By the chain rule we get

‖u‖ d
dt

‖u‖ ≤ C
(
‖f‖‖u‖ + ‖u‖2

)

thus
d

dt
‖u‖ ≤ C (‖f‖ + ‖u‖) .

Gronwall’s inequality yields

‖u‖ ≤ eCt

(
‖u0‖ +

∫ t

0

‖f‖
)
.

So far, so good. Now apply Hölder’s inequality to get

‖u‖ ≤ eCt

{
‖u0‖ + t1/2

(∫ t

0

‖f‖2

)1/2
}
,

implying that

‖u‖2 ≤ eCt

{
‖u0‖2 + t

(∫ t

0

‖f‖2

)}
.

Notice the appearance of the factor t in front of the Bochner norm of f . Such factor
did not appears in the bound (K0Φ0) of our energy estimates given in (3.48)-(3.50).
Why? because of hyperbolic-parabolic coupled variables. Now, imagine that we
have a coupled parabolic variable v involved in the dynamics of u, i.e.

ut + ux + u+ vx = f.

Then, the energy method yields

d

dt
‖u‖2 ≤ C

(
‖f‖‖u‖ + ‖u‖2 + ‖u‖‖vx‖

)
,

and if we dare to follow the previous recipe we get the undesirable inequality

d

dt
‖u‖ ≤ C (‖f‖ + ‖u‖ + ‖vx‖) .

This estimate is of no use because if the equation for v is as simple as

vt − c0vxx = g

for some constant c0 > 0 then,

d

dt
‖v‖2 + c0‖vx‖2 ≤ |〈g, v〉|,

implying that the term ‖vx‖2 gets isolated in the left hand side of the inequality.
Meaning that, even if we integrate both estimates and square the estimate for ‖u‖,
then its addition would yield and inequality for which the procedure of Gronwall’s
inequality cannot be applied.
In order to properly obtain the energy estimates for this variables, the explained
procedure of chapter 3 has to be followed. With no factor t available. Thus,
assuming coupled hyperbolic-parabolic variables in the equations for the dynamics
of hyperbolic variables takes its toll in the energy estimates. In this sense is that,
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our energy estimates are weaker than those of Kawashima (cf. [25]). Having this
factor t in the linearized energy estimates would yield a factor T0 in front of{∫ T0

0

‖v̂l−1(τ)‖2
sdτ

}

in (4.65) thus obtaining a sequence {ak} satisfying case (1), i.e. the operator T̂
would be a contraction. Luckily enough, we overcame this difficulty thanks to
theorem 4.5.1. Thus, we can report a third case, one in which {ak} satisfies the
inequality

ak ≤ α0 (ak−1 + ak−2)

for some 0 < α0 ≤ 1
6 , for all k ≥ 2. Is worth mentioning that, as far as the author

knows, theorem 4.5.1 is a new fixed point result.





—I don’t stop when I’m tired. I

stop when I’m done.

David Goggins

5
The Cattaneo-Christov systems for compressible

fluid flow: one dimensional case

In this chapter we consider a compressible, viscous, heat-conducting fluid exhibiting
thermal relaxation according to Christov’s constitutive heat transfer law [6], which
is of Cattaneo type. The resulting evolution equations are known as Cattaneo-
Christov systems. It is shown that, the Cattaneo-Christov systems for one dimen-
sional compressible fluid flow are strictly dissipative. The proof is based on the
verification of a genuine coupling condition for hyperbolic-parabolic systems with
viscous and relaxation effects combined as well as on showing the existence of com-
pensating functions of the state variables in the sense of Kawashima and Shizuta
[48]. This property is used to obtain linear decay rates for solutions to the linearized
equations around equilibrium states. We prove the local existence and uniqueness
of solutions for the initial value problem, in both, the linearized and quasilinear
cases by means of theorem 3.4.1 and 4.1.1 respectively.

5.1. Thermodynamical setting

We consider the basic equations for a compressible, viscous, heat conducting
fluid in space (x ∈ R

d with d = 1, 2 or 3)

ρt + ∇ · (ρv) = 0, (5.1)

(ρv)t + ∇ · (ρv ⊗ v) = ∇ · T, (5.2)

(ρE)t + ∇ · (ρEv) = ∇ · (Tv) − ∇ · q, (5.3)

where ρ = ρ(x, t) is the mass density, v = (v1, .., vd)(x, t) ∈ R
d is the velocity field,

E := ρ
(

1
2 |v|2 + e

)
is the total energy, e = e(x, t) ∈ R is the internal energy field, T

denotes the Newtonian stress tensor given as

T = 2µD(v) + λ∇ · vI − pI,

with I the identity matrix of order d×d and q = (q1, .., qd)(x, t) ∈ R
d is the heat flux

vector. Here, D(u) = 1
2 (∇u+∇uT ) denotes the deformation tensor, p = p(x, t) ∈ R

is the pressure field and λ and µ are the Newtonian viscosity coefficients.

95
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In order to close the system (5.1)-(5.3) a constitutive equation for the heat flux is
needed, that is, a functional relation between q and the other state variables ρ, u,
θ and even D(u) (see [52] chapter 6). In this chapter, we consider equations (5.1)-
(5.3) coupled together with the frame invariant formulation of Maxwell-Cattaneo
law proposed by Christov ([6]) namely

τ [qt + v · ∇q − q · ∇v + (∇ · v)q] + q = −κ∇θ, (5.4)

where θ = θ(x, t) ∈ R denotes the absolute temperature field at a point x of the
medium at time t > 0, τ > 0 denotes the thermal relaxation characteristic time and
κ > 0 is the heat conductivity coefficient. Meaning that, we are not only closing
the system (5.1)-(5.3) but we are introducing a new dynamical or state variable, i.e.
q. Thus, in this setting, the equation (5.4) has both status, one as a constitutive
relation and the other one as the equation of evolution for the state variable q.

Remark 9. Observe that, if we compare system (5.1)-(5.4) with the Navier-
Stokes equations for a viscous, heat conducting, compressible fluid (defined when
choosing q = −κ∇θ) we are taking the strongly elliptic term out of the equation for
the total energy, and instead, we are introducing what we can describe as thermal
relaxation through the zeroth order term in (5.4).

For our purposes we’ll make the following assumptions:

T1 The independent thermodynamical variables are the mass density ρ > 0
and the absolute temperature θ > 0. They vary within the domain

D :=
{

(ρ, θ) ∈ R
2 : ρ > 0, θ > 0

}
.

The pressure, p, the internal energy, e, and the coefficients µ, λ and κ are
given smooth functions of (ρ, θ) whenever ρ > 0 and θ > 0,

p, e, λ, µ, κ ∈ C∞(D)

T2 The viscosity coefficients and the heat conductivity satisfy the inequalities

µ,
2

3
µ+ λ, κ ≥ 0

for all (ρ, θ) ∈ D.
T3 The fluid satisfies the following conditions

p > 0, pρ > 0, pθ > 0, eθ > 0, for all (ρ, θ) ∈ D.
Remark 10. Assumption T3 is clearly satisfied by an ideal gas that satisfies

Boyle’s law,

p(ρ, θ) = Rρθ, e(ρ, θ) =
Rθ

γ − 1
,

where R > 0 is the universal gas constant and γ > 1 is the adiabatic exponent.
Hypothesis T3 are, of course, more general and applicable to compressible fluids
satisfying the standard assumptions of Weyl [55], namely, adiabatic increase of
pressure effects compression (pρ > 0), a generalized Gay-Lussac’s law (pθ > 0) and
the increase of internal energy due to an increase of temperature at constant volume
(eθ > 0).

In the case when min
{
µ, 2

3µ+ λ
}
> 0 for all (ρ, θ) ∈ D, we call the system (5.1)-

(5.4) the viscous Cattaneo-Christov system for compressible fluid flow. We will
distinguish between the viscous (µ, 2

3µ + λ > 0) and the pure thermally relaxed
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system where µ = λ = 0 for all (ρ, θ) ∈ D. These inviscid, thermally relaxed com-
pressible fluids have been coined by Straughan as Cattaneo-Christov gases ([50]).
In the sequel, we denote U = (ρ, v, θ, q)T ∈ O ⊂ R

N as the vector of state variables,
defined on the convex open set

O :=
{

(ρ, v, θ, q) ∈ R
N : ρ > 0, θ > 0

}
,

here N = 2d+2 and d is the spatial dimension, although we will focus our attention
for the cases d = 1, 3. We refer to O as the state space.

5.2. Cattaneo-Christov systems in one space dimension

Let us set d = 1, N = 4. For convenience in notation we define the the combined
viscosity coefficient

ν(ρ, θ) := 2µ+ λ.

When ν > 0 (i.e. the viscous case) we can write system (5.1)-(5.4) as

ρt + (ρv)x = 0,

(ρv)t + (ρv2 + p)x =
(
νvx

)
x
,

(
ρ(e+ 1

2v
2)
)

t
+
(
ρv(e+ 1

2v
2)
)

x
= (−pv + νvvx)x − qx,

τqt + τvqx + q = −κθx,

(5.5)

and when ν = 0 (i.e. the inviscid case) we get

ρt + (ρv)x = 0,

(ρv)t + (ρv2 + p)x = 0,
(
ρ(e+ 1

2v
2)
)

t
+
(
ρv(e+ 1

2v
2)
)

x
= −(pv)x − qx,

τqt + τvqx + q = −κθx.

(5.6)

Notice the substantial difference between the several variables case of (5.4) and
the one dimensional case. In the one dimensional case, the relaxation time is
multiplying the term

qt + vqx,

which corresponds to the standard material derivative Dq
Dt (see, [14]). On the other

hand, the same factor in several variables is

qt + (v · ∇)q + (∇ · v)q − (q · ∇)v,

known as the Lie-Oldroyd upper convected material derivative [43]. The introduc-
tion of such complicated terms in the constitutive equation for the heat flux is to
correct two undesirable features. One being the infinite speed of propagation of
heat, a problem that can be corrected through Maxwell’s heat transfer law ([21]),

τqt + q = −κ∇θ.
However, a heat flux q determined from this equation violates the material frame-
indifference principle, or objectivity principle, in continuum dynamics. Christov
and Jordan ([7]) have shown, for instance, that Maxwell’s law violates the invariance
with respect of Galilean change of frame. The introduction of the Lie-Oldroyd time
derivative instead of the partial time derivative also corrects this problem, as it is
shown in [6]. The point being that, by coupling the equations of a compressible
fluid with the evolution equation (5.4), we expect to obtain a hyperbolic heat-
conduction model for compressible fluid dynamics compatible with the objectivity
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principle. Due to the reduction of (5.4) into the standard material derivative in
one space dimension (something that doesn’t happen when d = 3), we can apply
the Kawashima-Shizuta theory ([48]) to this system written in quasilinear form, as
it is shown next.

Using the well-known thermodynamic relation θpθ = p − ρ2eρ (see, e.g., [11]) and
after some algebra, we recast (5.1)-(5.4) as the following quasi-linear system for the
state variables U ∈ O,

A0(U)Ut +A1(U)Ux +Q(U)U = B(U)Uxx + F (U,Ux), (5.7)

where

A0(U) :=




1 0 0 0
0 ρ 0 0
0 0 ρeθ 0
0 0 0 τ


 , A1(U) :=




v ρ 0 0
pρ ρv pθ 0
0 θpθ ρveθ 1
0 0 κ τv


 ,

B(U) :=




0 0 0 0
0 ν 0 0
0 0 0 0
0 0 0 0


 , Q(U) :=




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 ,

and F (U,Ux) contains the fully nonlinear terms,

F (U,Ux) =




0
νxvx

νv2
x

0


 = O(|Ux|2). (5.8)

Notice that A0, A1, B ∈ C∞(O;R4×4), Q ∈ C∞(O;R4×4), F ∈ C∞(O ×
R

4;R4). In view of hypotheses T1-T3, it is clear that for each U ∈ O, A0(U) > 0 is
positive definite and hence, invertible, whereas B(U) ≥ 0 is positive semi-definite.
In the case where ν ≡ 0 for all (ρ, θ) ∈ D we recover the inviscid, thermally relaxed
system (5.6), for which B ≡ 0.

Remark 11. Observe that, as it was mentioned before, the heat flux q is re-
garded as a state variable and thus, the constitutive heat transfer law (5.4) is part
of the time-dependent equations that determines the evolution of the system. As a
result, system (5.7) is not expressed in conservation form. Instead, it is a quasi-
linear, non-conservative system of equations with dissipation effects represented by
viscosity (the term B(U)Uxx) and dissipation terms due to relaxation (the thermal
relaxation term Q(U)U).

As in the study of systems of conservation laws with relaxation ([9], [34]) the
large time behavior of solutions is determined by a “relaxed” structure, chosen so
that the dynamics leads solutions towards an equilibrium manifold. In quasilinear
systems of the form (5.7), the equilibrium manifold V ⊂ R

4 is defined as

V = {U ∈ O : Q(U)U = 0}.
Mimicking discrete kinetic theory [26], the space of collision invariants is defined
as

M = {ψ ∈ R
4 : ψ⊤Q(U)U = 0, for any U ∈ O} ⊂ R

4.

A solution U = U(x, t) to system (5.7) is an equilibrium solution (or a Maxwellian)
if it lies on the equilibrium manifold, that is, if Q(U(x, t))U = 0 for all x ∈ R, t > 0.
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Clearly, any constant state in the equilibrium manifold, U ∈ V, is an equilibrium
solution. In the case of the Cattaneo-Christov system (5.7) the equilibrium manifold
is given by

V = {(ρ, v, θ, q)⊤ ∈ R
4 : ρ > 0, θ > 0, q = 0}, (5.9)

that is, it corresponds to the states with zero heat flux. Also particular to the
Cattaneo-Christov system is the following property, V = M ∩ U , as the reader may
easily verify.

5.2.1. Hyperbolicity. Let us consider the system

A0(U)Ut +A1(U)Ux = 0, (5.10)

which results from neglecting thermal relaxation and dissipation due to viscosity in
(5.7). For any state U ∈ O, (5.10) is a quasi-linear, strictly hyperbolic first order
system. Although hyperbolicity has been mentioned before as a property of this
“inviscid” Cattaneo-Christov system in one dimension (see, for instance, [20] and
the references therein), for the sake of completeness we verify this fact by computing
its characteristic speeds which (apparently) have not been reported before in the
literature. For any U ∈ O, set

π(ζ) = det
(
A1(U) − ζA0(U)

)
. (5.11)

The roots of π(ζ) = 0 are called the characteristic speeds of system (5.10). If
these roots are all real and different then it is said that the system (5.10) is strictly
hyperbolic at U ∈ O.

Remark 12. We remind the reader that the notion of hyperbolicity is motivated
by the existence of traveling wave solutions to system (5.10) of the form U(x, t) =
ϕ(x − st), for some real propagating speed s ∈ R and a profile vector function ϕ.
Substitution yields the spectral problem

(A1(ϕ) − sA0(ϕ))ϕ′ = 0, (5.12)

with eigenvalue s ∈ R and eigenfunction ϕ′, which leads directly to the characteristic
equation (5.11).

After a straightforward computation we see that

π(ζ) = det




v − ζ ρ 0 0
pρ ρ(v − ζ) pθ 0
0 θpθ ρeθ(v − ζ) 1
0 0 κ τ(v − ζ)


 .

Let us denote m = v − ζ and make the computations to arrive at

π(ζ) = ρ(m2 − pρ)(ρeθτm
2 − κ) − θp2

θτm
2.

This is a second order polynomial in m2. Therefore, we have that π(ζ) = 0 if and
only if

m4 + b̃m2 + c̃ = 0,

where

b̃ = −(ρ2eθτ)−1(ρκ+ ρ2pρeθτ + θp2
θτ), c̃ = (ρ2eθτ)−1ρpρκ.
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Upon inspection of the discriminant

∆ = b̃2 − 4c̃ =

(
pρ +

κ

ρeθτ
+

θp2
θ

ρ2eθ

)2

− 4κpρ

ρeθτ

=

(
pρ − κ

ρeθτ

)2

+
θp2

θ

ρ2eθ

(
2pρ +

2κ

ρeθτ
+

θp2
θ

ρ2eθ

)
> 0,

we conclude that the m2-roots are real and positive,

0 < m2
− = 1

2 |̃b| − 1
2

√
b̃2 − 4c̃ < m2

+ = 1
2 |̃b| + 1

2

√
b̃2 − 4c̃ ,

yielding the characteristic speeds

ζ1 = v −
√
m2

+ < ζ2 = v −
√
m2

− < ζ3 = v +
√
m2

− < ζ4 = v +
√
m2

+.

We conclude that system (5.10) is strictly hyperbolic. We gather these observations
into the following

Lemma 11. Under assumptions T1 - T3 and for each U = (ρ, v, θ, q)⊤ ∈
O ⊂ R

4, the first order system (5.10) is strictly hyperbolic at U ∈ O and the
characteristic speeds are given by

ζ1(U) = v − 1√
2

√√√√
pρ +

κ

ρeθτ
+

θp2
θ

ρ2eθ
+

√(
pρ +

κ

ρeθτ
+

θp2
θ

ρ2eθ

)2

− 4κpρ

ρeθτ
,

ζ2(U) = v − 1√
2

√√√√
pρ +

κ

ρeθτ
+

θp2
θ

ρ2eθ
−
√(

pρ +
κ

ρeθτ
+

θp2
θ

ρ2eθ

)2

− 4κpρ

ρeθτ
,

ζ3(U) = v +
1√
2

√√√√
pρ +

κ

ρeθτ
+

θp2
θ

ρ2eθ
−
√(

pρ +
κ

ρeθτ
+

θp2
θ

ρ2eθ

)2

− 4κpρ

ρeθτ
,

ζ4(U) = v +
1√
2

√√√√
pρ +

κ

ρeθτ
+

θp2
θ

ρ2eθ
+

√(
pρ +

κ

ρeθτ
+

θp2
θ

ρ2eθ

)2

− 4κpρ

ρeθτ
.

In the case of the standard model for inviscid compressible fluid flow (namely,
Euler equations), it is well-known ([9], [49]) that the three characteristic speeds
(in one spatial dimension) are v − c, v and v + c, where the positive quantity
c =

√
pρ > 0 is known as the speed of sound. In the present case we have two

“sound speeds”, c1 =
√
m2

+ and c2 =
√
m2

−, and the characteristic speeds of the

system split into v− c2 < v− c1 < v+ c1 < v+ c2. These sound speeds convey both
thermal and mechanical contributions due to the rate of change of the pressure with
respect to changes in density and in temperature, respectively. Notice that when
thermal effects are neglected, formally, in the limit when κ → 0+ and pθ → 0+, we
have that c1, c2 → √

pρ, and the two sound speeds converge to the sole mechanical
sound speed c (the absence of thermal waves). On the other hand, if we take the

(non-rigorous) limit when pρ → 0+ and pθ → 0+ then c1 → 0 and c2 →
√
κ/(ρeθτ);

this last value is the thermal wave speed in the absence of mechanical effects as
computed by Lindsay and Straughan (see equation (4.29) in [32]; see also [50]).
The significance of the characteristic speeds of Lemma 11 is that they comprise the
exact way in which mechanical and thermal effects are combined.
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5.2.2. Symmetrizability. We now show that system (5.7) can be put into
symmetric form. Let us denote

Definition 5.2.1. We say a quasilinear system of the form (5.7) is symmetriz-
able provided that there exists a matrix function S ∈ C∞(O;R4×4), S = S(U), sym-
metric and positive definite, such that the matrices S(U)A0(U), S(U)A1(U), S(U)B(U)
and S(U)Q(U) are symmetric for all U ∈ O.

Lemma 12. Under assumptions T1 - T3, Cattaneo-Christov system (5.7) is
symmetrizable and the symmetrizer S ∈ C∞(O;R4×4) is given by

S(U) :=




pρ

ρ
0 0 0

0 1 0 0

0 0
1

θ
0

0 0 0
1

κθ



, U ∈ U . (5.13)

Proof. Clearly, S is smooth in the convex open set O. Moreover, S is sym-
metric (diagonal) and positive definite in view of T1 - T3. That S symmetrizes
system (5.7) follows from straightforward computations that yield

Â0(U) := S(U)A0(U) =




pρ

ρ
0 0 0

0 ρ 0 0

0 0
ρeθ

θ
0

0 0 0
τ

κθ



, (5.14)

Â1(U) := S(U)A1(U) =




vpρ

ρ
pρ 0 0

pρ ρv pθ 0

0 pθ
ρveθ

θ

1

θ

0 0
1

θ

τv

κθ




, (5.15)

B̂(U) := S(U)B(U) =




0 0 0 0
0 ν 0 0
0 0 0 0
0 0 0 0


 , (5.16)

Q̂(U) := S(U)Q(U) =




0 0 0 0
0 0 0 0
0 0 0 0

0 0 0
1

κθ


 , (5.17)

which are smooth symmetric matrix functions of U ∈ U . �

Remark 13. It is well-known ([9]) that symmetrizability implies hyperbolicity
of system (5.10). Also, since the works of Friedrichs [12] and Goudunov [13], sym-
metrizability has established itself as an important property. It plays a key role,
for example, to perform energy estimates and to study existence and stability of
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solutions. For systems in conservation form the symmetrizer is usually the Hes-
sian of a convex entropy function. Even in the case of quasi-linear systems not in
conservation form (where the coefficients Aj are not necessarily Jacobians of flux
functions f j) it is possible to define a convex entropy, as shown by Kawashima
and Yong [28]: if the symmetrizer is the Jacobian of a diffeomorphic change of
variables, S(U) = DΨ(U), then a convex entropy function can be introduced. For
Cattaneo-Christov systems, however, the symmetrizer (5.13) is not the Jacobian
of a particular diffeomorphism and the system is not necessarily endowed with a
convex entropy function. To prove this assume that S(U) = DΨ(U) where

Ψ(U) =




ψ1(U)
ψ2(U)
ψ3(U)
ψ4(U)


 .

Then, it follows that

∂ρψ4 = 0, ∂vψ4 = 0, ∂θψ4 = 0, ∂qψ4 =
1

κθ
,

where the first three identities imply that ψ4 = φ(q), i.e. ψ4 is independent of ρ, v
and θ, contradicting the fourth identity.

5.2.3. Strict dissipativity and the genuine coupling condition. In order
to define the strict dissipativity of the system, let us consider solutions around a
constant equilibrium state

U = (ρ, v, θ, 0)⊤ ∈ V,
for which Q(U)U = 0. If U +U is a solution to (5.7) then we can recast the system
as

A0(U)Ut +A1(U)Ux = B(U)Uxx +Q(U)U + N (U,Ux, Ut),

where N comprises the nonlinear terms. Multiply on the left by the constant, sym-
metric, positive definite matrix S(U) to arrive at the following symmetric system

A0Ut +A1Ux + LU = BUxx + N , (5.18)

where,

A0 := S(U)A0(U) = Â0(U),

A1 := S(U)A1(U) = Â1(U),

B := S(U)B(U) = B̂(U),

L := S(U)Q(U) = Q̂(U),

and, once again, N = S(U)N contains the nonlinear terms. Notice that Aj , j =
0, 1, B and L are real symmetric constant matrices, with A0 > 0 (positive definite)
and B, L ≥ 0 (positive semi-definite).

Let us consider the linear part of (5.18), namely, the linear symmetric system

A0Ut +A1Ux + LU = BUxx, (5.19)

which is the symmetric version of (5.7), linearized around an equilibrium state
U ∈ V. Since it is a system with constant coefficients the solution can be determined
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by its Fourier transform with respect to the spatial variable x ∈ R. The resulting
equation is

A0Ût + iξA1Û + LÛ + ξ2BÛ = 0, t > 0, ξ ∈ R, (5.20)

where Û = Û(ξ, t) denotes the Fourier transform of U .
The fact that A0 > 0 and L,B ≥ 0 is not enough to guarantee the decay of

solutions to the linear problem (5.19). We resort to the following sufficient condition
for the essential spectrum of the linear constant coefficient differential operator to
be stable. For each ξ ∈ R, ξ 6= 0, let λ = λ(ξ) ∈ C denote the eigenvalues of the
corresponding characteristic equation, namely, the roots of the following dispersion
relation,

det
(
λA0 + iξA1 + L+ ξ2B

)
= 0. (5.21)

Definition 5.2.2 (strict dissipativity). System (5.19) is said to be strictly
dissipative if Reλ(ξ) < 0 for all ξ ∈ R, ξ 6= 0.

Closely related to the dissipativity condition is the following

Definition 5.2.3 (genuine coupling). System (5.19) satisfies the genuine cou-
pling condition at any state U ∈ O if for any V ∈ R

4, V 6= 0, with BV = LV = 0
then we have that (λA0 +A1)V 6= 0 for all λ ∈ R.

Remark 14. This condition basically expresses that no eigenvector of the hy-
perbolic part of the operator lies in the kernel of the dissipative terms. Such property
is physically relevant. For instance, loss of genuine coupling results into hyperbolic
directions whereby traveling wave solutions to system (5.10) are not dissipated by
the viscous and relaxation terms. In other words, wave solutions to (5.10) (hence
satisfying the spectral equation (5.12)) are also solutions to (5.19) if the eigenvector
ϕ′ lies in kerB ∩ kerL. Genuine coupling has also deep consequences on the time
asymptotic smoothing behavior of solutions to viscous and relaxation systems of
conservation laws (see, for example, [17]). This condition is also known in the lit-
erature as the Kawashima-Shizuta condition, or simply, the Kawashima condition
(see [35, 37, 45] and some of the references therein).

Let us now recall the concept of a compensating function in the sense of
Kawashima and Shizuta [48], specialized to the present one-dimensional case.

Definition 5.2.4. A matrix K is a compensating function for system (5.19)
provided that

(a) KA0 is skew-symmetric, and
(b) 1

2

(
KA1 + (KA1)⊤) +B + L is positive definite.

In the case of symmetric systems, the properties of genuine coupling, strict
dissipativity and the existence of a compensating function are equivalent. This fact
was first proved by Shizuta and Kawashima [48] and fully characterizes the stability
condition for system (5.19) in the symmetric case (see also Humpherys [18] for an
extension to higher order systems).

Theorem 5.2.1 (Shizuta-Kawashima [48]). Assume Aj , B, L, j = 0, 1, are
real symmetric matrices, with A0 > 0, B,L ≥ 0. Then the following statements are
equivalent:

(a) System (5.19) is strictly dissipative.



104 5. 1D CATTANEO-CHRISTOV SYSTEMS

(b) System (5.19) satisfies the genuine coupling condition at U ∈ O.
(c) There exists a compensating function K for system (5.19).
(d) There exists a positive constant k > 0 such that for any ξ ∈ R, ξ 6= 0, and

any root λ = λ(ξ) of the characteristic equation (5.21) there holds

Reλ(ξ) ≤ − kξ2

1 + ξ2
. (5.22)

Remark 15. Notice that property (d) implies automatically property (a). It is
easy to prove that genuine coupling is a necessary condition for strict dissipativity,
i.e. that (a) implies (b). The equivalence theorem establishes the existence of a
compensating function once the genuine coupling condition has been verified. It is
worth mentioning that the general proof in [48] (see also [18]) is constructive. It
provides a formula for K in terms of the eigenprojections of the hyperbolic part (K
is, in fact, a Drazin inverse of the conmutator operator; see Humpherys [18] for
further information).

5.2.4. Genuine coupling of Cattaneo-Christov systems. We now show
that Cattaneo-Christov systems are genuinely coupled. In the sequel, for any fixed
state U = (ρ̄, v̄, θ̄, q̄)⊤ ∈ O we shall denote

p := p(ρ̄, θ̄), e := e(ρ̄, θ̄), κ := κ(ρ̄, θ̄) ν := ν(ρ̄, θ̄),

p̄ρ := pρ(ρ̄, θ̄), p̄θ := pθ(ρ̄, θ̄), ēθ := eθ(ρ̄, θ̄).

Lemma 13. Under assumptions T1 - T3, Cattaneo-Christov systems (5.7)
satisfy the genuine coupling condition at any fixed state U = (ρ̄, v̄, θ̄, q)⊤ ∈ O.

Proof. As before, we denote Aj = Âj(U), B = B̂(U), L = Q̂(U), j = 0, 1.
From the expression for L in (5.17), we see that any V ∈ kerL is of the form
V = (V1, V2, V3, 0)⊤, with Vj ∈ R. Therefore, from (5.14) and (5.15) and for any
λ ∈ R we have

(λA0 +A1)V =




p̄ρ

ρ̄
(λ+ v̄)V1 + p̄ρV2

p̄ρV1 + ρ̄(λ+ v̄)V2 + p̄θV3
p̄ρ ēθ

θ̄
(λ+ v̄)V3 + p̄θV2

V3

θ̄



.

Suppose that V ∈ kerL, V 6= 0 and (λA0 + A1)V = 0 for some λ ∈ R. From
θ̄ > 0 we deduce that V3 = 0. This yields V2 = 0 as p̄θ > 0. Finally, from p̄ρ > 0
we get V1 = 0. Thus, we conclude that V = 0, a contradiction. �

Remark 16. It is to be observed that the genuine coupling condition holds at
any state U ∈ O (not necessarily an equilibrium state). Also, notice that both
the viscous, thermally relaxed Cattaneo-Christov system (5.5) with ν > 0 and the
relaxation system (5.6) with ν ≡ 0, are genuinely coupled. Indeed, in the viscous
case with V ∈ kerB ∩ kerL the proof is exactly the same.

Although genuine coupling readily implies the existence of a compensating func-
tion (thanks to Theorem 5.2.1), it is often possible to provide a formula for it by
direct inspection.
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Lemma 14. Under assumptions T1 - T3 and in the viscous case (ν > 0 for all
(ρ, θ) ∈ D), for every equilibrium state U ∈ V there exists a compensating function
for system (5.19), which is given explicitly by

K = δ




0 p̄ρ 0 0
−p̄ρ 0 −p̄θ 0

0 p̄θ 0 0
0 0 0 0



(
A0
)−1

, (5.23)

for some 0 < δ ≪ 1 sufficiently small.

Proof. We verify directly that (5.23) is a compensating function for system
(5.19). First observe from expression (5.23) that KA0 is clearly skew-symmetric.
Let us now compute

KA1 = δ




0 pρ 0 0
−pρ 0 −pθ 0

0 pθ 0 0
0 0 0 0







ρ

pρ

0 0 0

0
1

ρ
0 0

0 0
θ

ρ̄ēθ
0

0 0 0
κ̄θ

τ







u pρ

ρ
pρ 0 0

pρ ρ u pθ 0

0 pθ

ρ u eθ

θ

1

θ

0 0
1

θ

τu

κ̄θ




= δ




p2
ρ

ρ
u pρ

pρ pθ

ρ
0

−u pρ −
(
ρ pρ +

θ p2
θ

ρ eθ

)
−upθ − pθ

ρ eθ

pρ pθ

ρ
u pθ

p2
θ

ρ
0

0 0 0 0




.

Its symmetric part is

1
2

(
KA1 + (KA1)⊤

)
= δ




p2
ρ

ρ
0

pρ pθ

ρ
0

0 −
(
ρ pρ +

θ p2
θ

ρ eθ

)
0 − pθ

2ρ eθ

pρ pθ

ρ
0

p2
θ

ρ
0

0 − pθ

2ρ eθ
0 0




.

Therefore, for any X = (x1, x2, x3, x4)⊤ ∈ R
4, X 6= 0, we have the following

quadratic form

Q(X) := X⊤
(

1
2

(
KA1 + (KA1)⊤

)
+B + L

)
X

= δ
p2

ρ

ρ
x2

1 + 2δ
pθpρ

ρ
x1x3 − δ

pθ

ρ eθ
x2x4 + δ

p2
θ

ρ
x2

3 +
(
ν̄ − δ

(
ρ pρ +

θ p2
θ

ρ eθ

))
x2

2 +
1

κ̄θ
x2

4

≥ δ

2

p2
ρ

ρ
x2

1 + δ
p2

θ

ρ
x2

3 +
(
ν̄ − δ

(
ρ pρ +

θ p2
θ

ρ eθ
+

pθ

2ρ eθ

))
x2

2 +
( 1

κ̄θ
− δ

pθ

2ρ eθ

)
x2

4.
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Thanks to hypotheses T1-T3 and since ν̄ > 0, one can choose δ > 0 sufficiently
small such that

0 < δ <
2ρ eθ

κ̄θpθ

and 0 < δ < ν̄
(
ρ pρ +

θ p2
θ

ρ eθ
+

pθ

2ρ eθ

)−1

,

yielding

Q(X) ≥ Cδ|X|2 > 0,

for some Cδ > 0 and all X 6= 0. �

In the case without viscosity the form of K differs considerably, due to the fact
that the only dissipation term is the thermal relaxation one.

Lemma 15. Under assumptions T1-T3 and in the pure thermal relaxation
case (ν ≡ 0 for all (ρ, θ) ∈ D), for every equilibrium state U ∈ V there exists a
compensating function for system (5.19), which is given explicitly by

K = δ




0
δ2τθ

2
p2

θpρ

ρ2 0 0

−δ2τθ
2
p2

θpρ

ρ2 0 δpθ 0

0 −δpθ 0
ρeθ

κ̄θ
2

0 0 − ρeθ

κ̄θ
2 0




(
A0
)−1

, (5.24)

for some 0 < δ ≪ 1 sufficiently small.

Proof. We propose to take K of the form

K =




0 α 0 0
−α 0 −β 0
0 β 0 −γ
0 0 γ 0



(
A0
)−1

,

and to appropriately choose constants α, β and γ. Performing the product yields
the matrix

KA1 =




αpρ

ρ
αū

αpθ

ρ
0

−αū −
(
αρ+

βθpθ

ρeθ

)
−βū − β

ρeθ

βpρ

ρ
βū

βpθ

ρ
− γκ̄

τ
−γū

0
γθpθ

ρeθ
γū

γ

ρeθ




,
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whose symmetric part is

1
2

(
KA1 + (KA1)⊤

)
=




αpρ

ρ
0

1

2ρ

(
βpρ + αpθ

)
0

0 −
(
αρ+

βθpθ

ρeθ

)
0

1

2ρeθ

(
γθpθ − β

)

1

2ρ

(
βpρ + αpθ

)
0

βpθ

ρ
− γκ̄

τ
0

0
1

2ρeθ

(
γθpθ − β

)
0

γ

ρeθ




.

Thus, in view that B = 0, we have for any X = (x1, x2, x3, x4)⊤, X 6= 0, that
the corresponding quadratic form is

Q(X) := X⊤
(

1
2 (KA1 + (KA1)⊤) + L

)
X

=
αpρ

ρ
x2

1 −
(
αρ+

βθpθ

ρeθ

)
x2

2 +
(βpθ

ρ
− γκ̄

τ

)
x2

3 +
( γ

ρeθ
+

1

κ̄θ

)
x2

4+

+
1

ρ

(
βpρ + αpθ

)
x1x3 +

1

ρeθ

(
γθpθ − β

)
x2x4.

Let us choose α, β and γ such that

α = δ3α0, β = −δ2β0, γ = −δγ0,

where α0, β0, γ0 > 0 and 0 < δ ≪ 1 are constants to be determined. Then the
quadratic form reads

Q(X) = a1x
2
1 + a2x

2
2 + a3x

2
3 + a4x

2
4 + b13x1x3 + b24x2x4,

where,

a1 := δ3
α0pρ

ρ
,

a2 := δ2

(
β0θpθ

ρeθ
− δα0ρ

)
,

a3 := δ

(
γ0κ̄

τ
− δ

β0pθ

ρ

)
,

a4 :=
1

κ̄θ
− δ

γ0

ρeθ
,

b13 :=
δ2

ρ

(
δα0pθ − β0pρ

)
,

b24 :=
δ

ρeθ

(
δβ0 − γ0θpθ

)
.

Assuming that
a1 > 0,

a4 > 0,

a2 − b2
24

2a4
> 0,

a3 − b2
13

2a1
> 0,

(5.25)
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clearly we have

Q(X) ≥ 1
2a1x

2
1 +

(
a2 − b2

24

2a4

)
x2

2 +

(
a3 − b2

13

2a1

)
x2

3 + 1
2a4x

2
4 ≥ C|X|2 > 0,

for all X 6= 0, X ∈ R
4 and some positive constant satisfying,

0 < C < 1
2 min

{
1
2a1,

1
2a4, a2 − b2

24

2a4
, a3 − b2

13

2a1

}
.

Therefore, we need to find values of α0, β0, γ0 > 0 and 0 < δ ≪ 1 sufficiently small
such that conditions (5.25) hold.

First, notice that under assumptions T1-T3 and α0 > 0, the first condition in
(5.25) is already satisfied. If we further choose parameter values α0, β0 and γ0 such
that

γ0κ̄

τ
− β2

0pρ

2α0ρ
> 0, (5.26)

then, for δ > 0 sufficiently small such that

0 < δ <
2ρpρ

α0p
2
θ

(
γ0κ̄

τ
− β2

0pρ

2α0ρ

)
, (5.27)

we can assure that the fourth condition in (5.25) also holds, as the reader may
easily verify. For small δ we write

1

2a4
=

1

2

(
1

κ̄θ
− δ

γ0

ρeθ

)−1

=
1

2
κ̄θ + δ

κ̄2θ
2
γ0

2ρeθ
+O(δ2).

Hence, it suffices to take δ small enough such that

0 < δ <
ρeθ

κ̄θγ0

, (5.28)

and to choose values of β0 and γ0 satisfying

θpθ

ρeθ

(
β0 − γ2

0

κ̄θ
2
pθ

2ρeθ

)
> 0, (5.29)

in order to obtain

a2 − b2
24

2a4
=
θpθ

ρeθ

(
β0 − γ2

0

κ̄θ
2
pθ

2ρeθ

)
+O(δ) > 0, (5.30)

that is, the third condition in (5.25). Finally, the second inequality in (5.25) follows
from (5.28).

Hence, it suffices to choose positive values of α0, β0, γ0 such that conditions
(5.29) and (5.26) hold. For instance, we can define

α0 :=
τ2θ

2
p2

θpρ

ρ2 > 0,

β0 := pθ > 0,

γ0 :=
ρeθ

κ̄θ
2 > 0

(all positive because of T1-T3). Once these values are determined, we can always
find 0 < δ ≪ 1 sufficiently small such that (5.27), (5.28) and (5.30) hold as well.
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Substitute α = δ4α0, β = −δ2β0 and γ = −δγ0 back into the expression of K to
obtain the result. �

5.2.5. Linear decay rates. In this section we describe how to obtain decay
rates for solutions to the linearized system (5.19) using the properties of the com-
pensating function K. The arguments given here are very similar to those in the
case of hyperbolic conservation laws with relaxation (see section 3 in [29]), with a
slight modification due to the presence of viscous and relaxation terms combined.
It is also to be noticed that we are not applying the equivalence result (Theorem
5.2.1) inasmuch we are explicitly providing the form of K. The estimates hold for
both the pure relaxation (ν ≡ 0) and the viscous with thermal relaxation (ν > 0)
cases.

Let us denote the standard inner product in C
n as 〈 , 〉C and let

[A]s := 1
2 (A+A⊤)

be the symmetric part of any real matrix A. Under the previous assumptions,
namely, that

(i) Aj , L, B, j = 0, 1, are real symmetric matrices;
(ii) A0 > 0, L,B ≥ 0; and
(iii) there exists a compensating function K,

let U be the solution to linearized system (5.19).

Lemma 16. There exists k > 0 such that the solutions U to the linear system
(5.19) satisfy

|Û(ξ, t)| ≤ C|Û(ξ, 0)| exp

(
− kξ2t

1 + ξ2

)
, (5.31)

for all t ≥ 0, ξ ∈ R and some uniform constant C > 0.

Proof. Take the Fourier transform to get equation (5.20). Since the coefficient

matrices are symmetric, if we take the inner product of (5.20) with Û and take the
real part we obtain

1
2∂t〈Û , A0Û〉C + 〈Û , LÛ〉C + ξ2〈Û , BÛ〉C = 0. (5.32)

Now multiply (5.20) by −iξK and take the inner product with Û . The result
is

−〈Û , iξKA0Ût〉C + ξ2〈Û ,KA1Û〉C − 〈Û , iξKLÛ〉C − 〈Û , iξ3KBÛ〉C = 0.

Use the fact that KA0 is skew-symmetric to verify that

Re 〈Û , iξKA0Ût〉C = 1
2ξ∂t〈Û , iKA0Û〉C.

Thus, taking the real part of the previous equation yields

− 1
2ξ∂t〈Û , iKA0Û〉C+ξ2〈Û , [KA1]sÛ〉C = Re

(
iξ〈Û ,KLÛ〉C

)
+Re

(
iξ3〈Û ,KBÛ〉C

)
.

Since L,B ≥ 0 and by symmetry, we obtain the estimate

− 1
2ξ∂t〈Û , iKA0Û〉C + ξ2〈Û , [KA1]sÛ〉C ≤ ǫξ2|Û |2

+ Cǫ

(
〈Û , LÛ〉C + ξ4〈Û , BÛ〉C

)
, (5.33)
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for any ǫ > 0 and where Cǫ > 0 is a uniform constant depending only on ǫ > 0,
|KL1/2| and |KB1/2|. Now multiply equation (5.32) by 1 + ξ2, equation (5.33) by
δ > 0 and add them up. The result is

1
2∂t

(
(1 + ξ2)〈Û , A0Û〉 − δξ〈Û , iKA0Û〉

)
+ 〈Û , LÛ〉 + ξ4〈Û , BÛ〉+

+ ξ2
(
δ〈Û , [KA1]sÛ〉 + 〈Û , LÛ〉 + 〈Û , BÛ〉

)

≤ ǫδξ2|Û |2 + δCǫ

(
〈Û , LÛ〉 + ξ4〈Û , BÛ〉

)
.

(5.34)

Now define

M := 〈Û , A0Û〉 − δξ

1 + ξ2
〈Û , iKA0Û〉.

Notice that M is real because A0 is symmetric and KA0 is skew-symmetric. Since

A0 > 0 there exists C0 > 0 such that 〈Û , A0Û〉 ≥ C0|Û |2. It is then easy to show
that there exists δ0 > 0, sufficiently small, such that if 0 < δ < δ0 then

1

C1
|Û |2 ≤ M ≤ C1|Û |2,

for some uniform C1 > 0.
Now from property (b) of the compensating function K (see Definition 5.2.4),

there exists γ > 0 such that 〈Û , ([KA1]s +L+B)Û〉 ≥ γ|Û |2. Therefore, by taking
0 < δ < 1 we arrive at

〈Û , (δ[KA1]s + L+B)Û〉 ≥ δγ|Û |2.
Choose ǫ = γ/2 and 0 < δ < min{1, δ0, 1/Cǫ} to obtain

1
2∂tM + 1

2

(
ξ2

1 + ξ2

)
δγ|Û |2 +

(1 − δCǫ)

1 + ξ2

(
〈Û , LÛ〉 + ξ4〈Û , BÛ〉

)
≤ 0.

This yields

1
2∂tM +

2kξ2

1 + ξ2
M ≤ 0,

with k = 1
2δγ/C1 > 0. This inequality readily implies the desired estimate (5.31).

�

Theorem 5.2.2 (linear decay rates). Under the assumptions (i) - (iii) suppose
that U0 ∈ Hs(R) ∩L1(R), with s ≥ 2. Then the solution to the Cauchy problem for
linear system (5.19) with U(x, 0) = U0 satisfies the decay rate

‖∂l
xU‖2 ≤ C

(
e−kt‖∂l

xU0‖2 + (1 + t)−(l+1/2)‖U0‖2
L1

)
, (5.35)

for 0 ≤ l ≤ s− 1 and some uniform C > 0.

Proof. Multiply estimate (5.31) by ξ2l to obtain
∫

R

ξ2l|Û(ξ, t)|2 dξ ≤ C

∫

R

ξ2l|Û(ξ, 0)|2 exp

(
− 2kξ2t

1 + ξ2

)
dξ =: C(I1(t) + I2(t)),

where I1 denotes the integral on the right hand side computed on the set ξ ∈ (−1, 1)
and I2 is the integral on |ξ| > 1. Since ξ2/(1 + ξ2) ≥ 1

2ξ
2 for ξ ∈ (−1, 1), we have
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the estimate

I1(t) =

∫ 1

−1

ξ2l|Û(ξ, 0)|2 exp

(
− 2kξ2t

1 + ξ2

)
dξ

≤
(

sup
ξ∈R

|Û0(ξ)|2
)∫ 1

−1

ξ2le−kξ2t dξ

≤ ‖U0‖2
L1

∫ 1

−1

ξ2le−kξ2t dξ.

Using standard calculus tools it is easy to verify that

A(t) := (1 + t)l+1/2

∫ 1

−1

ξ2le−kξ2t dξ

is continuous and uniformly bounded above for all t ≥ 0. Therefore we arrive at

I1(t) ≤ C(1 + t)−(l+1/2)‖U0‖2
L1 ,

for some C > 0 and all t ≥ 0. Now, if ξ2 ≥ 1 then clearly exp(−2kξ2t/(1 + ξ2)) ≤
e−kt. Together with Plancherel’s theorem, this yields the estimate

I2(t) =

∫

|ξ|≥1

ξ2l|Û(ξ, 0)|2 exp

(
− 2kξ2t

1 + ξ2

)
dξ

≤ e−kt

∫

R

ξ2l|Û0(ξ)|2 dξ

≤ e−kt‖∂l
xU0‖2

L2 .

Combining both estimates we arrive at (5.35). �

Corollary 4. Under the thermodynamical assumptions T1-T3 for a com-
pressible fluid, let U = (ρ, u, θ, 0)⊤ ∈ V be a constant equilibrium state. If U0 −U ∈
Hs(R) ∩ L1(R), with s ≥ 2, is an initial perturbation (with finite energy and finite
mass) of the equilibrium state U then the solutions U−U to the linearized equations
around U satisfy the decay estimates

‖∂l
x(U − U)‖2 ≤ C

(
e−kt‖∂l

x(U0 − U)‖2 + (1 + t)−(l+1/2)‖U0 − U‖2
L1

)
, (5.36)

for 0 ≤ l ≤ s − 1 and some uniform C, k > 0. These linear decay rates hold for
solutions to the linearization of both the viscous Cattaneo-Christov system (5.5) (for
which ν > 0) and the inviscid Cattaneo-Christov model (5.6) (for which ν ≡ 0).

Proof. Both systems (5.5) and (5.6) can be recast in the quasilinear symmetric
form (5.7), where the solutions are written as U − U , that is, as perturbations of
the equilibrium state. Under hypotheses T1-T3, the coefficients A0, A1, B and
L satisfy assumptions (i) - (iii), where the compensating function K is given by
(5.23) in the viscous case (ν > 0), and by (5.24) in the pure thermal relaxation
case (ν ≡ 0). Thus, the hypotheses of Theorem 5.2.2 are satisfied and any solution
U−U to the linearized system (5.19) with initial condition U0 −U obeys the desired
linear decay rates, as claimed. �
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5.3. Local existence

In this section we will consider the Cauchy problems for the quasilinear and
linearized cases of the Cattaneo-Christov systems. Let us begin by considering
equation (5.19) together with an initial condition, that is

A0Ut +A1Ux + LU = BUxx,

U(x, 0) = U0(x),
(5.37)

where x ∈ R, U = (ρ, v, θ, q)⊤ and the matrices A0, A1, L and B, are of constant
value and they were defined through (5.18).

Theorem 5.3.1 (Linearized problem). Let s and m be integers satisfying as-
sumption H3 (i.e. s ≥ s0 + 1 and 1 ≤ m ≤ s) and T > 0 be given. Assume that
U0(x) ∈ O for every x ∈ R and U0 ∈ Hs. Under hypothesis T1-T3 for the equation
(5.19), we have that:

(1) If ν > 0 (viscous case) then, there is a unique solution U = (ρ, v, θ, q)⊤ ∈
R

4 of the initial value problem (5.37) such that

ρ, v, θ, q ∈ C([0, T ];Hm), 1 ≤ m ≤ s,

ρt, vt, θt, qt ∈ L2(0, T ;Hm−1), 1 ≤ m ≤ s,

ρt, θt, qt ∈ C([0, T ];Hm−1), 1 ≤ m ≤ s,

vt ∈ C([0, T ];Hm−2), 2 ≤ m ≤ s,

v ∈ L2(0, T ;Hm+1), 1 ≤ m ≤ s.

(5.38)

Moreover,

‖ρ(t)‖2
m +

∫ t

0

‖ρt(τ)‖2
m−1dτ +

∫ t

0

‖ρ(τ)‖2
mdτ ≤K2

0 Φ2
0, (5.39)

‖v(t)‖2
m +

∫ t

0

‖vt(τ)‖2
m−1dτ +

∫ t

0

‖v(τ)‖2
m+1dτ ≤K2

0 Φ2
0, (5.40)

‖θ(t)‖2
m +

∫ t

0

‖θt(τ)‖2
m−1dτ +

∫ t

0

‖θ(τ)‖2
mdτ ≤K2

0 Φ2
0, (5.41)

‖q(t)‖2
m +

∫ t

0

‖qt(τ)‖2
m−1dτ +

∫ t

0

‖q(τ)‖2
mdτ ≤K2

0 Φ2
0, (5.42)

for all t ∈ [0, T ]. Where Φ0 is a constant depending on the matrix coeffi-
cients given as in (3.34) and K0 is given as

K0 = ‖U0‖2
m := ‖ρ0‖2

m + ‖v0‖2
m + ‖θ0‖2

s + ‖q0‖2
m.

(2) If ν̄ = 0 (inviscid case) then there is a unique solution U = (ρ, v, θ, q)⊤

such that

ρ, v, θ, q ∈ C([0, T ];Hm), 1 ≤ m ≤ s,

ρt, vt, θt, qt ∈ C([0, T ];Hm−1), 1 ≤ m ≤ s,

and the energy estimate

‖U(t)‖2
m +

∫ t

0

‖Ut(τ)‖2
m−1dτ +

∫ t

0

‖U(τ)‖2
mdτ ≤ K2

0 Φ2
0, (5.43)

is satisfied for all t ∈ [0, T ] with K0 and Φ0 as in case (1).
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Proof. The result follows as a direct application of theorem 3.4.1. Indeed,
notice that U can be written as U = (u, v, w)⊤ where u = ρ, v is the velocity field
and w = (θ, q). Observe that, in the Cattaneo-Christov systems (both viscous and
inviscid cases) the variables ρ and (θ, q), are decoupled, that is, the split described
in equations (3.1)-(3.3) is satisfied. In this case i = 1 and we have the following
block matrix decomposition

A0
1 =

p̄ρ

ρ̄
, A0

2 = ρ̄, A0
3 =




ρ̄ēθ

θ 0

0 τ
κ̄θ̄


 ,

A1
11 =

v̄p̄ρ

ρ̄
, A1

12 = p̄ρ = A1
21, A1

22 = ρ̄v̄, A1
23 = (p̄θ, 0) = (A1

32)⊤,

A1
33 =




ρ̄v̄ēθ

θ̄
1
θ̄

1
θ̄

τ v̄
κ̄θ̄


 , B = ν̄, and D0 =




0 0

0 1
κ̄θ̄


 .

Given that, we are assuming T1-T3, the matrixA0 and its block matricesA0
1, A

0
2, A

0
3

are strictly postive; furthermore, if ν̄ > 0 then, assumption H2 is fulfilled. Since
each matrix of (5.19) is a constant matrix all the rest of the assumptions of The-
orem 3.4.1 are met for any given T > 0. Thus, the existence and uniqueness of
U satisfying (5.38) is an immediate consequence of (3.75)-(3.79) and each of the
energy estimates in (5.39)-(5.42) follow from the ones in (3.48)-(3.50).
For the case ν̄ = 0, we have that B = 0 and since the system (5.19) is symmetric
and thus hyperbolic we set n = k = 0, so p = N = 4 and apply Theorem 3.4.1 once
more. The conclusions follow. �

Now, we state and prove the local existence for the initial value problem of
the quasilinear case of the Cattaneo-Christov systems. For this, we consider the
symmetrized version of system (5.7), with an initial condition, that is,

Â0(U)Ut + Â1(U)Ux + Q̂(U)U = B̂(U)Uxx + F̂ (U,Ux),

U(x, 0) = U0(x),
(5.44)

where the matrix coefficients are given in (5.14)-(5.15) and F̂ (U,Ux) = S(U)F (U,Ux).

Theorem 5.3.2 (Quasilinear problem). Let s be an integer satisfying s ≥ s0 +1
and T > 0 be given. Set

O :=
{

(ρ, v, θ, q) ∈ R
4 : ρ > 0, θ > 0

}
,

and let U0 ∈ O be given. Under assumptions T1-T3, there are constants 0 < T0 ≤
T and g2 > 0 such that

(1) if ν = ν(ρ, θ) > 0 (viscous case), then, there is a unique solution U =
(ρ, v, θ, q)⊤ ∈ Xs

T0
(g2,M,M1) to the initial value problem (5.44) for some

constants M and M1;
(2) if ν = ν(ρ, θ) ≡ 0 (inviscid case), then, there is a unique solution U =

(ρ, v, θ, q)⊤ satisfying that

ρ, v, θ, q ∈ C([0, T0];Hs),

ρt, v, θt, qt ∈ C([0, T0];Hs−1),
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there is a bounded open convex set Og2
in R

4 such that Og2
⊂ O and

(ρ, v, θ, w)(x, t) ∈ Og2
∀(x, t) ∈ QT0

;

there are positive constants M and M1 such that

sup
0≤τ≤t

‖(ρ, v, θ, q)(τ)‖2
s ≤ M2,

∫ t

0

‖ (ut(τ), vt(τ), wt(τ)) ‖2
s−1dτ ≤ M2

1

for t ∈ [0, T0].

Proof. Observe that, as in the linearized case, we can define the split of
variables u = ρ, v the velocity field, and w = (θ, q) and so, equation (5.7) can
be written in the form (4.1)-(4.3) with the same matrix decomposition as in the
linearized case.
Suppose that ν > 0. Since O is an open and convex set in R

4 and U0 ∈ O, there
is an open, convex and bounded set Og0

such that Og0
⊂ O. By taking, g2, M

and M1 as in (4.41)-(4.43), respectively, and T0 > 0 as in theorem 4.4.1, we can
define the set XT0

(g2,M,M1). Observe that, if (ρ, v, θ, q) ∈ Xs
T0

(g2,M,M1) then,
in particular, (ρ, v, θ, q) ∈ Og2

and thus,

ρ ≥ inf
(x,t)∈QT

ρ(x, t) := ρ1 > 0, θ ≥ inf
(x,t)∈QT

θ(x, t) := θ1 > 0.

Meaning that, assumptions A to G are satisfied (as in the second step during the
proof of Lemma 4). Hence, theorem 4.4.1 leads us to conclude.
For the case ν ≡ 0 we can apply Theorem 4.4.1 once more but this time with
n = k = 0 (i.e. for practical purposes this means taking u = v = 0 in equations
(4.1)-(4.3) and deal with the pure hyperbolic symmetric case). The conclusion
follows. �

5.4. Discussion

In this section we have shown that one-dimensional case of Cattaneo-Christov
systems for compressible fluid flow are strictly dissipative. This property holds for
the case in which viscous and thermal relaxation effects are combined, as well as
for the case where viscosity is neglected and the only dissipation terms are due to
thermal relaxation. We have proved strict dissipativity for these systems by veri-
fying the genuine coupling condition, as well as by providing explicit forms for the
compensating functions which allow, in turn, to establish energy estimates leading
to the decay structure of solutions to the linearized problem around equilibrium
states.

In the process, we have shown, for instance, that Cattaneo-Christov systems in
one dimension are symmetrizable. As we have pointed out, symmetrizability is a
fundamental property in the theory. It is natural to ask whether multi-dimensional
Cattaneo-Christov systems are strictly dissipative. This is a question that will be
addressed in the next chapter.

Even though the estimates performed to obtain the decay rates in Theorem
5.2.2 are very similar (at the linear level) to those for hyperbolic balance laws
[29] (see also [25]), we call upon the attention of the reader that the statement of
Corollary 4 should not be taken for granted. For instance, the analyses pertaining
to the local existence of solutions for viscous systems of conservation laws [25, 47],
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the global existence of solutions for hyperbolic balance laws [16, 56], as well as the
global stability of constant equilibrium states for dissipative balance laws [45], they
all consider the existence of a convex entropy structure which lacks in the present
case because the system is not in conservation form. Therefore, the linear decay
rates around equilibrium states for Cattaneo-Christov systems constitute the first
step to show that constant equilibrium states are asymptotically stable under small
perturbations even in the absence of a convex entropy.

Finally, we showed the local existence and uniqueness of solutions for the initial
value problem, in the linearized and quasilinear cases. Observe that, in particu-
lar, in the inviscid case (ν = 0), both linearized and quasilinear versions of the
Cattaneo-Christov system were symmetric and thus, hyperbolic. Meaning that, the
local well-posedness can also be dealt with the results of Kato ([24]), Kawashima
([25]), Majda ([36]), and so many others.
Notice that, we can actually use Kawashima’s results of local existence ([25]) to
prove the local existence and uniqueness for the hyperbolic-parabolic case (i.e.
ν > 0). This can be done by taking the coupled terms of the Cattaneo-Christov
systems as part of the inhomogeneous terms. However, given that Kawashima’s
linearized case assumes decoupleness, the conclusion obtained by this procedure
will be that, the linearized version of the Cattaneo-Christov system will have a so-
lution in XT0

(g2,M,M1), that is, for T0 ≤ T . Then, a sharp continuation principle
needs to be stated and proven (as in [36]) to conclude the existence of solutions
for all t ∈ [0, T ]. Although, this might not represent too much complications, the
method of local existence presented in chapter 3, needs no such thing. Through
our method, that is, by dealing with the coupling at the linear level, we can show
a solution exists for all t ∈ [0, T ] once and for all, for the linearized case. Observe
that, since the Cattaneo-Chrsitov system has no conservative structure we cannot
apply Serre’s results ([47]), given the lack of a strictly convex entropy.





—En cierto sentido, no seŕıa

paradójico afirmar que el hombre

que plantea un problema no es en-

teramente el mismo que lo resuelve

Santiago Ramón y Cajal

6
The Cattaneo-Christov systems for compressible

fluid flow: three dimensional case

In this final chapter, we deal with the three dimensional version of the Cattaneo-
Christov system, namely equations (5.1)-(5.4) with d = 3. We write them in
quasilinear form. Contrary to the one dimensional version, when d = 3, the system
is not symmetrizable as it stands. Even in this case, we can apply our local existence
results of chapters 3 and 4 thanks to the existence of a partial symmetrizer.

6.1. Hyperbolic-parabolic structure

Let us begin by reminding the reader the notion of hyperbolicity ([9]), par-
tially parabolicity ([49]) and symmetrizability ([9]) in several variables. Consider
a quasilinear system of the form

A0(U)Ut −Bij(U)∂i∂jU = F (U,DxU) −Ai(U)∂iU −D(U)U (6.1)

where the matrix coefficients are of order 8 × 8, and these, together with the in-
homogeneous term F (U,DxU) all have the block structure described in equations
(4.1)-(4.3). Also, consider the case when B = 0, D = 0 and F = 0, namely,

A0(U)Ut +Ai(U)∂iU = 0. (6.2)

Consider the set of states O ⊂ R
8 and open and convex set. Define the symbols

A(ξ;U) :=

3∑

i=1

Ai(U)ξi,

B(ξ;U) :=
3∑

i,j=1

Bij(U)ξiξj ,

where ξ = (ξ1, ξ2, ξ3) ∈ S
2 is a unit vector.

117
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Definition 6.1.1. If it is true that for any fixed U ∈ O and ξ ∈ S
2 the matrix

A0(U) is non singular and the eigenvalue problem

(A(ξ;U) − ηA(U))V = 0

has real eigenvalues (η ∈ R) and eight linearly independent eigenvectors, then we
say that the system (6.2) is hyperbolic.

Consider the case of system (6.1), for which, its reduced system (6.2) is hy-
perbolic and for every fixed U ∈ O and ω ∈ S

2 the eigenvalues of B(ξ;U) have
non-negative real part. Then we say that (6.1) is hyperbolic-parabolic. In the case
in which Ai = D = 0 and F = 0 we say that (6.1) is partially parabolic.

Finally, a system of the form (6.1) is said to be symmetrizable if there exists,
S(U), a matrix value function of U ∈ O, of order 8 × 8, that is smooth and pos-
itive definite, such that S(U)A0(U), S(U)Ai(U), S(U)D(U) and S(U)Bij(u) are
symmetric matrices for all i, j = 1, 2, 3 and S(U)A0(U) is positive definite.

In the case of the three dimensional Cattaneo-Christov system, U = (ρ, v, θ, q)⊤ ∈
R

8 where v, q ∈ R
3 and we have the following matrices: A0(U) is a diagonal matrix

given as

A0(U) =




1
ρI3

ρeθ

τI3


 ,

where I3 denotes the identity matrix of order 3 × 3 and all the empty spaces refer
to zero block matrices of the appropriate sizes.

A(ξ; U) =



ξ · v ξ1ρ ξ2ρ ξ3ρ 0 0 0 0
ξ1pρ ρξ · v 0 0 ξ1pθ 0 0 0
ξ2pρ 0 ρξ · v 0 ξ2pθ 0 0 0
ξ3pρ 0 0 ρξ · v ξ3pθ 0 0 0

0 ξ1θpθ ξ2θpθ ξ3θpθ ρeθξ · v ξ1 ξ2 ξ3

0 τ(−ξ2q2 − ξ3q3) τ(ξ2q1) τ(ξ3q1) ξ1κ τξ · v 0 0
0 τ(ξ1q2) τ(−ξ1q1 − ξ3q3) τ(ξ3q2) ξ2κ 0 τξ · v 0
0 τ(ξ1q3) τ(ξ2q3) τ(−ξ1q1 − ξ2q2) ξ3κ 0 0 τξ · v




,

B(ξ;U) =




0 0 0 0 0 0 0 0
0 µ|ξ|2 + (µ+ λ)ξ2

1 (µ+ λ)ξ1ξ2 (µ+ λ)ξ1ξ3 0 0 0 0
0 (µ+ λ)ξ1ξ2 µ|ξ|2 + (µ+ λ)ξ2

2 (µ+ λ)ξ2ξ3 0 0 0 0
0 (µ+ λ)ξ1ξ3 (µ+ λ)ξ2ξ3 µ|ξ|2 + (µ+ λ)ξ2

3 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




,

D(U) is a diagonal matrix given as

D(U) =

(
O5

I3

)
,
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where O5 is the zero matrix of order 5 × 5. The non-linear terms are

F (U,DxU) =




0
(∇ · v)∂x1

λ+Dxv1 ·Dxµ+ ∂x1
v · ∇µ

(∇ · v)∂x2
λ+Dxv2 ·Dxµ+ ∂x2

v · ∇µ
(∇ · v)∂x3

λ+Dxv3 ·Dxµ+ ∂x3
v · ∇µ

λ(∇ · v)2 + µ
2 (∂jvi + ∂ivj)2

0
0
0




.

For the system (6.1), there is no standard way to compute a symmetrizer without
assuming that the system is derived from a set of viscous balance laws. In particular,
we cannot rely on the existence of a convex entropy function to assure the existence
of the symmetrizer. However, we can begin by guessing the type of form that such a
matrix has to possess. For example, notice that, the most of the equations that make
up the viscous Cattano-Christov system are involved in the compressible Navier-
Stokes equations. For example, the equation of balance of linear momentum, that
is, the equation for the velocity, remains the same for both systems. In particular
this means that their respective diffusion symbols share the same 3 × 3 non-zero
block matrix (see Lemma 17). This might suggest that, if there is a symmetrizer for
the Cattaneo-Christov system, such matrix might be sharing some terms with the
symmetrizer of the compressible Navier-Stokes equations (see [48]). In fact, this
is exactly what happens in one space dimension, the symmetrizer of the Cattaneo-
Christov system is almost the same as that of the one dimensional Navier Stokes
equations (see the last chapter). The only difference being that the symmetrizer for
the Cattaneo-Christov systems is of bigger order than the one of the Navier-Stokes
equations and so it requires one more row and one more column than the later.
Thus, let us consider the following symmetric matrix

S =




m11 m12 m13 m14 m51 m61 m71 m81

m12 m22 m23 m24 m25 m26 m27 m28

m13 m23 m33 m34 m35 m36 m37 m38

m14 m24 m34 m44 m54 m64 m74 m84

m51 m25 m35 m54 m55 m56 m57 m58

m61 m26 m36 m64 m56 m66 m67 m68

m71 m27 m37 m74 m57 m67 m77 m78

m81 m28 m38 m84 m58 m68 m78 m88




,

as a candidate for the symmetrizer of the viscous Cattaneo-Christov system. The
dependence of S and its components with respect with U has been omitted for
simplicity. In the next result we show that if some components of S are fixed,
namely

m23 = m24 = m34 = 0,

then, S is not a symmetrizer for the viscous Cattaneo-Christov system. As it
was explained in the previous lines, this assumption is motivated by the particular
structure of the symmetrizer of the compressible Navier-Stokes equations. In further
results we show that, in fact, no such assumption is needed to show the lack of a
symmetrizer for the Cattaneo-Christov systems.
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Theorem 6.1.1. Assume that τ 6= 1, hypothesis T1-T3 and that

m23 = m24 = m34 = 0.

Let A0, Ai, Bij and D the matrix coefficients of the viscous Cattaneo-Christov
system. Then, there are values U ∈ O such that, if S = S(U) is an 8×8 symmetric
matrix, for which S(U)A0(U), S(U)Ai(U), S(U)Bij(U) and S(U)D(U) are all
symmetric, then S(U) = 0.

Proof. Let us first consider any square diagonal matrix P or order N × N ,
with entries (pij)ij . Let S be a symmetrizer of P, with entries (mij)ij . In particular
this means that S is a symmetric matrix of order N×N such that SP is symmetric.
Then, the entries of SP are of the form

(SP)il =
∑

j

mijpjl = milpll, for any (i, l),

since SP is symmetric, it must occur that

milpll = mlipii,

and since S is symmetric then we obtain the necessary condition

milpll = milpii for all (i, l).

Implying that,

for all i 6= l such that pii 6= pll, mil = 0. (6.3)

Let us proceed by contradiction, that is, for every U = (ρ, v, θ, q)⊤ ∈ O let S = S(U)
be a symmetrizer of the viscous Cattaneo-Chrsitov system. Then, in particular, the
matrices SA0, SA(ξ, U) and SB(ξ, U) are all symmetric for every ξ ∈ S

2. We will
find particular values of ξ ∈ S

2 and U ∈ O such that S doesn’t symmetrize the
matrix coefficients of the viscous Cattaneo-Christov system. Given that, A0 is a
diagonal matrix we can use condition (6.3) to get

m12 = m13 = m14 = m25 = m26 = m27 = m28 = 0,

m35 = m36 = m37 = m38 = m45 = m46 = m47 = 0,

m61 = m71 = m81 = m48 = m56 = m57 = m58 = 0.

Where we have taken U = (ρ, v, θ, q)⊤ ∈ O such that ρ 6= 1. Then, even if it occurs
that eθ = τ (see Remark 17 at the end of the proof), then ρeθ = ρτ 6= τ (see,
Remark 17 at the end of the proof), yielding that m56 = m57 = m58 = 0. Since we
are assuming that τ 6= 1 then ρeθ 6= 1, then m51 = 0, although it was omitted in
the previous equations since it can be proven independently from rule (6.3), as it
is shown next. Also, by assumption

m23 = m24 = m34 = 0.

Let MN be the space of real matrices of order N×N . This vector space is a Hilbert
space with the inner product

(A,B)N×N := aijbij ,

where A,B ∈ MN have the corresponding components aij and bij , and where the
summation convention has been used. That is, we take the inner product as the
contraction of matrices.
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Let us observe that if A ∈ MN is a symmetric matrix and B ∈ MN is an skew-
symmetric matrix, we have that

(A,B)N×N = aijbij =
1

2
(aij + aji)

1

2
(bij − bji)

=
1

4
(aijbij − aijbji + ajibij − ajibji)

=
1

4
(aijbij − ajibji + ajibij − aijbji) = 0,

the last equality follows from the fact that the sum is independent of the index.
Thus, we can conclude that if Ms ⊂ MN is the vector space of all symmetric
matrices then

M⊥
s = Mas

where Mas denotes the vector space of all skew-symmetric matrices of order N×N .
Set N = 8. From the previous observations, we can see that, if there exists a
symmetrizer S = S(U) for the Cattaneo-Christov system, then, in particular the
matrix S(U)A(ξ;U) must be symmetric for every ξ ∈ S2 and according to the
previous reasoning it must happen that

(SA(ξ, U), B)MN
= 0 (6.4)

for every B ∈ Mas. It is enough to verify this equation for every canonical skew-
symmetric matrix. In fact, a necessary and sufficient condition for S to symmetrize
another matrix A is that SA satisfies (6.4) for all canonical skew-symmetric matrices
B. For this reason we will refer to this equations as symmetrization equations. Thus
we obtain the following symmetrization equations for the symbol A(ξ;U):

m51 = 0

ξ1ρm11 − ξ1pρm22 = 0

ξ2ρm11 − ξ2pρm33 = 0

ξ3ρm11 − ξ3pρm44 = 0

ξ1pθm22 − ξ1θpθm55 = 0

(−ξ2q2 − ξ3q3)m66 + (ξ1q2)m67 + (ξ1q3)m68 = 0

(−ξ2q2 − ξ3q3)m67 + (ξ1q2)m77 + (ξ1q3)m78 = 0

(−ξ2q2 − ξ3q3)m68 + (ξ1q2)m78 + (ξ1q3)m88 = 0

ξ2pθm33 − ξ2θpθm55 = 0

(ξ2q1)m66 + (−ξ1q1 − ξ3q3)m67 + (ξ2q3)m68 = 0

(ξ2q1)m67 + (−ξ1q1 − ξ3q3)m77 + (ξ2q3)m78 = 0

(ξ2q1)m68 + (−ξ1q1 − ξ3q3)m78 + (ξ2q3)m88 = 0

ξ3pθm44 − ξ3θpθm55 = 0

(ξ3q1)m66 + (ξ3q2)m67 + (−ξ1q1 − ξ2q2)m68 = 0

(ξ3q1)m67 + (ξ3q2)m77 + (−ξ1q1 − ξ2q2)m78 = 0

(ξ3q1)m68 + (ξ3q2)m78 + (−ξ1q1 − ξ2q2)m88 = 0

ξ1m55 − (ξ1κm66 + ξ2κm67 + ξ3κm68) = 0

ξ2m55 − (ξ1κm67 + ξ2κm77 + ξ3κm78) = 0

ξ3m55 − (ξ1κm68 + ξ2κm78 + ξ3κm88) = 0.

(6.5)
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Observe that the symmetrization equations must be 28 linear equations for the
coefficients mij . As the reader might notice, only 19 equations were written. The
reason for this is that, the rest of them are trivial, that is, all the involved coefficients
are zero. From these equations the relations

m22 =
ρ

pρ
m11,

m33 =
ρ

pρ
m11,

m44 =
ρ

pρ
m11,

m55 =
m22

θ
,

m55 =
m33

θ
,

m55 =
m44

θ
,

(6.6)

follow. Also, from (6.5) we have that



−ξ2q2 − ξ3q3 ξ1q2 ξ1q3

ξ2q1 −ξ1q1 − ξ3q3 ξ2q3

ξ3q1 ξ3q2 −ξ1q1 − ξ2q2






y1

y2

y3


 = 0 (6.7)

where y = (y1, y2, y3)⊤ stands as any of the following triplets

(m66,m67,m68)⊤, (m67,m77,m78)⊤, (m68,m78,m88)⊤.

Now let us take U = (ρ, v, θ, q)⊤ ∈ O with q = (q1, q2, q3) such that

q1 6= q2 6= q3 6= 0

and take ξ ∈ S2 as ξ = q
|q| . Then, the solution of the system (6.7) is the vector

space spanned by (ξ1, ξ2, ξ3). Indeed, define

A =




(−ξ2q2 − ξ3q3) (ξ1q2) (ξ1q3)
(ξ2q1) (−ξ1q1 − ξ3q3) (ξ2q3)
(ξ3q1) (ξ3q2) (−ξ1q1 − ξ2q2)




and observe that its row vectors are linearly dependent for the chosen values of q
and ξ, since

q1




−ξ2q2 − ξ3q3

ξ1q2

ξ1q3




⊤

+ q2




ξ2q1

−ξ1q1 − ξ3q3

ξ2q3




⊤

+ q3




ξ3q1

ξ3q2

−ξ1q1 − ξ2q2




⊤

= 0.

Here we are using that q 6= 0. Thus rankA < 3. Given that, q1, q2 and q3 are
nonzero, if we take ξ = q

|q| , then we can show that any two rows of A are linearly

independent. Indeed, let us assume for example that the first two rows of A are
linearly dependent. Then, there exists an α ∈ R, α 6= 0 such that

α




−q2
2 − q2

3

q1q2

q1q3


 =




q1q2

−q2
1 − q2

3

q2q3


 .

Therefore, α = q2

q1
, and so q2

1 + q2
2 + q2

3 = 0, a contradiction. We can proceed in the

same manner for any other pair of rows. Hence, the dimension of the image of A as
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a linear transformation is 2. Thus, since (ξ1, ξ2, ξ3) ∈ kerA the dimension theorem
yields that dim kerA = 1 and so

kerA =
{
α(ξ1, ξ2, ξ3) ∈ R

3 : α ∈ R
}
.

However, if we choose and non zero element of kerA, let’s say α(ξ1, ξ2, ξ3), as a
solution of Ay = 0 to obtain a non trivial symmetrizer, we obtain that the block
matrix from the symmetrizer must satisfy the identity




m66 m67 m68

m67 m77 m78

m68 m78 m88


 =




ξ1α ξ2α ξ3α
ξ1α ξ2α ξ3α
ξ1α ξ2α ξ3α


 ,

for the chosen ξ ∈ S
2. This is a contradiction since this matrix has to be symmetric.

Hence 


m66 m67 m68

m67 m77 m78

m68 m78 m88


 =




0 0 0
0 0 0
0 0 0


 .

Now, according to equations (6.5) this implies that m55 = 0 and then, from equa-
tions (6.6) we obtain that m11 = m22 = m33 = m44 = 0. Thus, S is not strictly
positive, a contradiction. �

It’s important to highlight that, the hypothesis τ 6= 1, serves purely compu-
tational purposes, that is, it is assumed only to make the most out of rule (6.3).
We can get around the assumption τ = 1 by using a simple perturbation argu-
ment. Indeed, observe that S(U)A0(U) is symmetric if and only if for every δ > 0,
S(U)

(
A0(U) + δH

)
is symmetric, where

H =

(
O5

I3

)
.

Thus, theorem 6.1.1 is valid for every τ > 0. The point of this theorem though, is
to show that, the task of computing a symmetrizer might involve special circum-
stances. For example, lets say that, as in [28] we try to derive the existence of a
symmetrizer as the Jacobian of a smooth change of variables. Then, the existence
of such a symmetrizer will be conditioned to assume that τ = 1. Thus, in this
sense, the point of Theorem 6.1.1 is to hint the non-existence of a symmetrizer for
any value of τ > 0.

Observe that, the event in which occurs that eθ = τ is not unrealistic since,
when dealing with an ideal gas (see Remark 10, pag. 84), we lie in the case in
which eθ is a constant. Given that, the symmetrization must be valid for all states
U ∈ O then, we can choose ρ 6= 1. Even in the case of the linearized system around
an equilibrium state, if it occurs that, ēθ = τ , then we take an equilibrium state
such that ρ̄ 6= 1, given that what we actually need to assure, in order to make the
most of rule (6.3) is that ρ 6= 1 and ρeθ 6= τ . So, in this sense, the best conclusion
derived from Theorem 6.1.1 is that, there are constant states U ∈ O such that, if
the viscous Cattaneo-Christov system is linearized around it, the resulting system
is not symmetrizable. A pathology not shared by quasilinear systems derived from
a conservation viscous law with an entropy function.

Notice that we did not prove that the system without diffusion and relaxation
(i.e. formally setting B(ξ;U) = 0 and D(U) = 0) lacks a symmetrizer. That is,
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maybe there is room for the existence of a symmetrizer of the system

A0Ut +Ai∂iU = 0.

In the next result we show that, this is not possible.

Theorem 6.1.2. Let τ > 0 be given. Under assumptions, T1-T3, there is an
state U ∈ O such that, there is no symmetrizer for the set of matrix coefficients,
A0(U), Ai(U), of the Cattaneo-Christov systems.

Proof. Is enough to prove the statement for the case τ = 1. In particular, we
chose the same values of q and ξ ∈ S

2 as in the previous proof. By taking ρ 6= 1,
rule (6.3) yields once more

m12 = m13 = m14 = m25 = m26 = m27 = m28 = 0,

m35 = m36 = m37 = m38 = m45 = m46 = m47 = 0,

m61 = m71 = m81 = m48 = m56 = m57 = m58 = 0.

In this case, we are not assuming that m23 = m24 = m34 = 0 since there is no
diffusion term. It doesn’t matter, we compute the symmetrization equations for
A(ξ;U), and we can group them as follows: First of all, we have the loner m51 = 0,
also, equations (6.7) appear once more, implying, as in the previous proof, that

m67 = m66 = m68 = m77 = m78 = m88 = 0;

we have the new groups

ξ3ρm11 − ξ1pρm24 − ξ2pρm34 − ξ3pρm44 = 0,

ξ2ρm11 − ξ1pρm23 − ξ2pρm33 − ξ3pρm34 = 0,

ξ1ρm11 − ξ1pρm22 − ξ2pρm23 − ξ3pρm24 = 0;

(6.8)

ξ1pθm22 + ξ2pθm23 + ξ3pθm24 − ξ1θpθm55 = 0,

ξ1pθm23 + ξ2pθm33 + ξ3pθm34 − ξ2θpθm55 = 0,

ξ1pθm24 + ξ2pθm34 + ξ3pθm44 − ξ3θpθm55 = 0;

(6.9)

ξ3ρm55 − ξ1κm68 − ξ2κm78 − ξ3κm88 = 0,

ξ2ρm55 − ξ1κm67 − ξ2κm77 − ξ3κm78 = 0,

ξ1ρm55 − ξ1κm66 − ξ2κm67 − ξ3κm68 = 0.

(6.10)

We can carry on a similar analysis as in the previous theorem. For example, one
immediately can show that m11 = m55 = 0. However, there no need to do such a
thing. Observe that, the symmetrizer has its seventh and eighth row equal to zero.
Hence, S = S(U) is not invertible and so, it cannot be positive. Thus, S cannot be
a symmetrizer for the inviscid Cattaneo-Christov system. �

The proofs of Theorems 6.1.1 and 6.1.2 might not seem final for the reader.
One can question the usage of the hypothesis τ 6= 1. Fair enough. However it
seems that this assumption is not unrealistic, since τ turns out to be very small in
many instances, in the order of picoseconds for most metals (see [5] for example).
In fact, we can question the method of proof, it can be argue that, the previous
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proofs depend too much on the rule (6.3). For instance, if we were dealing with a
system of the form

Ut +A
i
(U)∂iU = 0,

for some matrix function of U A
i

= A
i
(U), then, rule (6.3) wouldn’t be helpful.

Thus, we are led to the question, what about a change of variables that turns
the Cattaneo-Christov systems into a symmetrizable system? This is a more than
fair question, given that, since the hyperbolicity is invariant under smooth diffeo-
morphisms ([10]), showing that under a smooth change of variables the inviscid
Cattaneo-Chrsitov system is symmetrizable, yields the hyperbolicity of the system.
Moreover, changing variables doesn’t make too much of a difference in terms of the
local existence and uniqueness of solutions. In fact, the lack of a symmetrizer for
a quasilinear system of the form (6.1) doesn’t imply the lack of a symmetrizer for
the same system under a change of variables. That is, the property of symmetriz-
ability is not invariant under smooth diffeomorphisms (contrary to the property of
hyperbolicity). Let us consider the system of equations

wt + Âwx = 0 (6.11)

where w = w(x, t) ∈ R
2 for every (x, t) ∈ R × (0,∞) and Â ∈ M2×2(R) is given as

Â =

(
1 0

− 1
4

1
2

)
.

Let us note that system (6.11) is symmetrizable. Indeed, if we define

S =

(
1 1

2
1
2 1

)
,

then, S = ST and ∀v ∈ R
2 \ {0} we have that

(Sv, v) =

(
v1 + 1

2v2
1
2v1 + v2

)
·
(
v1

v2

)
= v2

1 + v1v2 + v2
2

and since −v1v2 ≤ |v1v2| ≤ v2
1

2 +
v2

2

2 we obtain the inequality

(Sv, v) ≥ v2
1 + v2

2 −
(
v2

1

2
+
v2

2

2

)
=

1

2
(v2

1 + v2
2) =

1

2
|v|2,

hence S > 0. Also, we have that

SÂ =

(
1 1

2
1
2 1

)(
1 0

− 1
4

1
2

)
=

(
7
8

1
4

1
4

1
2

)
.

Thus, the system

Swt + SÂwx = 0

is symmetric and as a consequence we conclude that system (6.11) is symmetrizable.
Now we define the matrices A and A−1

0 as the ones that satisfy the relation

Â = AA−1
0 =

(
1 0

− 1
4 1

)(
1 0
0 1

2

)
=

(
1 0

− 1
4

1
2

)
.

Then, we introduce the change of variables w = A0u, that is, u = A−1
0 w, which

changes system (6.11) into system

A0ut +Aux = 0 (6.12)
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where

A0 =

(
1 0
0 2

)
.

Let us show that the system (6.12) is not symmetrizable. If there would be a matrix
S = ST such that S > 0, which satisfies that SA0 = (SA0)T > 0 and (SA)T = SA,
then

SA0 =

(
α γ
γ β

)(
1 0
0 2

)
=

(
α 2γ
γ 2β

)

implies that 2γ = γ, that is, γ = 0. Thus, S must be a diagonal matrix. On the
other hand

SA =

(
α 0
0 β

)(
1 0

− 1
4 1

)
=

(
α 0

− β
4 β

)

implies that β = 0, and this is a contradiction since S must be positive definite
(S > 0). Then we conclude that the system (6.12) is not symmetrizable. Observe
that, since hyperbolicity is preserved under smooth changes of variables, this system
is hyperbolic. We can also verify this directly. To show this, we study the eigenvalue
problem

(−ηA0 +A)v = 0 (6.13)

which is equivalent to (
1 − η 0
− 1

4 1 − 2η

)
= 0.

The characteristic polynomial is P (η) = (1 − η)(1 − 2η) and the eigenvalues are
η1 = 1 and η2 = 1

2 .
For η1 = 1 we have that

(A−A0)v =

(
0 0

− 1
4 −1

)(
v1

v2

)
= 0

implies that − 1
4v1 = v2, so we take as an eigenvector (1,− 1

4 )⊤. Then for the case

η2 = 1
2 we have that

(A− 1

2
A0)v =

(
1
2 0

− 1
4 0

)(
v1

v2

)
=

(
1
2v1

− 1
4v1

)
= 0

which implies that v1 = 0. So, as an eigenvector we take (0, 1)⊤.
Since the matrix (

1 0
− 1

4 1

)

is invertible we conclude that the eigenvectors are linearly independent. Given that,
the problem (6.13) has two real eigenvalues with two linearly independent eigen-
vectors we conclude that the system (6.12) is hyperbolic.
Thus, contrary to the property of hyperbolicity, the property of symmetrizability is
not invariant under smooth changes of variables.
In particular, this means that, the hyperbolicity and the symmetrizability proper-
ties do not stand on equal footing. This is not a surprise though, given that Lax
has shown the existence of equations with the form (6.2) that are hyperbolic but
not symmetric ([30]). In fact, in a more general manner than the example provided
in here.
The point of this argument is that, computationally speaking, the quest for a sym-
metrizer seems unending. Yet, its existence is almost essential. In fact, there are
four main reasons to assure its existence: it implies the hyperbolicity; it comes
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in aid when looking for energy estimates, so it seems to be required for the local
existence of the initial value problem (at least for the case without diffusion and
relaxation); the global existence and the strict dissipativity of the linearized system
(Kawashima’s genuinely coupling condition [48]) In fact, in the latter case seems
to be essential given that, Kawashima’s equivalence theorem (Theorem 5.2.1 in the
last chapter and theorem 1.1 in [48]) requires the linearized system be given in
symmetric form (condition 1.1 in [48]).
So, given that, Theorem 6.1.1 and 6.1.2 are hinting the lack of existence of a sym-
metrizer (even for any value of positive τ), it seems that, a feasible way to show
its non-existence is through an indirect proof. The following results put an end to
this matter.

Theorem 6.1.3. Under assumptions T1-T3, the Cattaneo-Christov system
without diffusion and relaxation, i.e. of the form (6.2), is not hyperbolic.

Proof. Let U ∈ O and ξ ∈ S
2 be arbitrary but fixed with q 6= 0. Consider

the eigenvalue problem (
A(ξ;U) − ηA0(U)

)
V = 0,

for η ∈ R and V ∈ R
8. In order to prove that (6.2) is hyperbolic we have to find

eight linearly independent eigenvectors V associated to eight real eigenvalues η.
First, we compute the eigenvalues for this system, that is, we look the roots of the
equation

det |A(ξ;U) − ηA0(U)| = 0. (6.14)

For this, we use the formula to compute the determinant of a block matrix (see
[58]), that is,

det

∣∣∣∣
A B
C D

∣∣∣∣ = (detA) det(D − CA−1B).

All the block matrices are given as

A =




v · ξ − η ξ1ρ ξ2ρ ξ3ρ
ξ1pρ ρv · ξ − ηρ 0 0
ξ2pρ 0 ρv · ξ − ηρ 0
ξ3pρ 0 0 ρv · ξ − ηρ


 ,

B =




0 0 0 0
ξ1pθ 0 0 0
ξ2pθ 0 0 0
ξ3pθ 0 0 0


 ,

C =




0 θpθξ1 θpθξ2 θpθξ3

0 −τ(ξ2q2 + ξ3q3) τξ2q1 τξ3q1

0 τξ1q2 −τ(ξ1q1 + ξ3q3) τξ3q2

0 τξ1q3 τξ2q3 −τ(ξ1q1 + ξ2q2)




and

D =




ρeθv · ξ − ηρeθ ξ1 ξ2 ξ3

ξ1κ τξ · v − ητ 0 0
ξ2κ 0 τξ · v − ητ 0
ξ3κ 0 0 τσ · v − ητ


 .

Then, we have that

detA = ρ3(ξ · v − η)2
(
(ξ · v − η)2 − |ξ|2pρ

)
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where we set α = (ξ · v − η)2 − |ξ|2pρ, so we can write

detA = ρ3(ξ · v − η)2α.

Then

D−CA−1B =




(
ρeθ − θp2

θ

ρα |ξ|2
)

(ξ · v − η) ξ1 ξ2 ξ3

ξ1κ− pθ(v·ξ−η)Q1τ
ρα τ(ξ · v − η) 0 0

ξ2κ− pθ(v·ξ−η)Q2τ
ρα 0 τ(ξ · v − η) 0

ξ3κ− pθ(v·ξ−η)Q3τ
ρα 0 0 τ(ξ · v − η)



,

where

Q1 := ξ2
2q1 + ξ2

3q1 − ξ1ξ2q2 − ξ1ξ3q3,

Q2 := ξ2
1q2 + ξ2

3q2 − ξ1ξ2q1 − ξ2ξ3q3,

Q3 := ξ2
1q3 + ξ2

2q3 − ξ1ξ3q1 − ξ2ξ3q2,

and ξ1Q1 + ξ2Q2 + ξ3Q3 = 0. Hence

det |D − CA−1B| =

(
ρeθ − θp2

θ

ρα
|ξ|2
)
τ3(ξ · v − η)4 − |ξ|2κτ2(ξ · v − η)2.

In consequence we have that

det |A(ξ;U) − ηA0(ξ;U)| = ρ3τ2(ξ · v − η)4P0(η)

where

P0(η) := α

(
ρeθ − θp2

θ

ρα
|ξ|2
)
τ(ξ · v − η)2 − α|ξ|2κ.

Since α is a second degree polynomial in η then P0(η) is a fourth degree polynomial
in η. This means that we will obtain four roots from the equation P0(η) = 0, which
are given as

η1(ξ;U) = ξ · v +
|ξ|√

2

√√√√
(
pρ +

θp2
θ

ρ2eθ
+

κ

ρeθτ

)
+

√(
pρ +

θp2
θ

ρ2eθ
+

κ

ρeθτ

)2

− 4pρκ

ρeθτ

η2(ξ;U) = ξ · v +
|ξ|√

2

√√√√
(
pρ +

θp2
θ

ρ2eθ
+

κ

ρeθτ

)
−
√(

pρ +
θp2

θ

ρ2eθ
+

κ

ρeθτ

)2

− 4pρκ

ρeθτ

η3(ξ;U) = ξ · v − |ξ|√
2

√√√√
(
pρ +

θp2
θ

ρ2eθ
+

κ

ρeθτ

)
+

√(
pρ +

θp2
θ

ρ2eθ
+

κ

ρeθτ

)2

− 4pρκ

ρeθτ

η4(ξ;U) = ξ · v − |ξ|√
2

√√√√
(
pρ +

θp2
θ

ρ2eθ
+

κ

ρeθτ

)
−
√(

pρ +
θp2

θ

ρ2eθ
+

κ

ρeθτ

)2

− 4pρκ

ρeθτ

and from the equation
ρ3τ2(ξ · v − η)4 = 0

we conclude that
η0(ξ;U) = v · ξ

is a root of multiplicity four. Observe that, η1(ξ;U), η2(ξ;U), η3(ξ;U) and η4(ξ;U)
are the three dimensional analogue of the roots given in Lemma 11 for the one
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dimensional case. Thus, by the same argument presented for Lemma 11 we conclude
that, for a given ξ ∈ S

2, all the roots, η1(ξ;U), η2(ξ;U), η3(ξ;U) and η4(ξ;U) are
all different. Now, since the algebraic multiplicity of each of this eigenvalues is 1,
then, each one has geometric multiplicity less or equal than one. Meaning that,
at most, we can find four linearly independent eigenvectors for each {ηi(ξ;U)}4

i=1.
Given that, η0(ξ;U) is different from the other roots, if the eigenvalue η0(ξ;U) were
to have four linearly independent eigenvectors then the system (6.2) would be of
hyperbolic nature. We will show that this is not possible for all U ∈ O and ξ ∈ S

2.
In particular, we chose q and ξ as in theorems 6.1.1 and 6.1.2. For such values of
U ∈ O and ξ ∈ S

2 consider the equation

A(ξ, U) − ξ · vA0(U)V = 0

where V = (V1, V2, ...., V8) ∈ R
8. Then,

ξ1ρV2 + ξ2ρV3 + ξ3ρV4 = 0 (6.15)

ξ1pρV1 + ξ1pθV5 = 0, (6.16)

ξ2pρV1 + ξ2pθV5 = 0, (6.17)

ξ3pρV1 + ξ3pθV5 = 0, (6.18)

θpθξ1V2 + θpθξ2V3 + θpθξ3V4 + ξ1V6 + ξ2V7 + ξ3V8 = 0, (6.19)

−τ(ξ2q2 + ξ3q3)V2 + τξ2q1V3 + τξ3q1V4 + ξ1κV5 = 0, (6.20)

τξ1q2V2 − τ(ξ1q1 + ξ3q3)V3 + τξ3q2V4 + ξ2κV5 = 0, (6.21)

τξ1q3V2 + τξ2q3V3 − τ(ξ1q1 + ξ2q2)V4 + ξ3κV5 = 0. (6.22)

Multiply (6.20) by ξ1, (6.21) by ξ2, (6.22) by ξ3 and add them up to get

κ(ξ2
1 + ξ2

2 + ξ2
3)V5 = 0,

implying that V5 = 0, and since pρ > 0, (6.16) implies V1 = 0. Now, notice that
V5 = 0 turns equations (6.20), (6.21) and (6.22) into

−(ξ2q2 + ξ3q3)V2 + ξ2q1V3 + ξ3q1V4 = 0,

ξ1q2V2 − (ξ1q1 + ξ3q3)V3 + ξ3q2V4 = 0,

ξ1q3V2 + ξ2q3V3 − (ξ1q1 + ξ2q2)V4 = 0,

but observe that, this system can be rewritten as

A
⊤V ′ = 0

where V ′ = (V2, V3, V4) and A
⊤ is the transpose matrix of, A, the matrix defined

in (6.7), thus implying that rankA
⊤ = 2 and so, dim kerA⊤ = 1. Observe that

A
⊤q = 0

for q = (q1, q2, q3)⊤, hence

kerA⊤ =
{
β(q1, q2, q3)⊤ ∈ R

3 : β ∈ R
}
.

In consequence, V ′ = βq for some β ∈ R. Then, according to (6.15) and the
thermodynamical assumption ρ > 0, we get that

βξ · q = 0

but since ξ · q = |q| 6= 0, this is a contradiction unless β = 0. Thus V ′ = 0. Then,
from (6.19) we obtain the equation

ξ1V6 + ξ2V7 + ξ3V8 = 0,
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and since, the rest of the components of any eigenvector V of η0 are zero, the three
parameters left V6(ξ), V7(ξ) and V8(ξ), are not enough to provide four linearly
independent eigenvectors associated with the eigenvalue η0 = ξ ·v. Thus concluding
the proof. �

Since symmetrizability implies hyperbolicity, the following proven corollary set-
tles the question regarding the existence of a symmetrizer for the Cattaneo-Christov
system without diffusion and relaxation, and without computational assumptions
like τ 6= 1.

Corollary 5. There is no symmetrizer for the Cattaneo-Christov systems in
three space dimensions. Moreover, there is no smooth diffeomorphism that turns
this system into a symmetrizable one.

Proof. If there were a smooth change of variables that turns the Cattaneo-
Christov systems into a symmetrizable system, then the resulting system without
difussion and relaxation would be hyperbolic. Since the hyperbolicity is invariant
under smooth changes of variables, then the Cattaneo-Christov system without
diffusion and relaxation would also be hyperbolic, a contradiction with theorem
6.1.3. �

The lack of a symmetrizer prevents us from applying the Kawashima-Shizuta
theory to the Cattaneo-Christov system, like we did in the previous chapter. One
can verify the genuinely coupling condition but it has no mathematical relevance,
since Kawashima’s equivalence theorem ([48]) is not satisfied. Meaning that, we
cannot deduce the strict dissipativity and the existence of global energy estimates
for the linearized system around a constant state. Moreover, the Cauchy problem for
the Cattaneo-Christov system without diffusion and relaxation is ill-posed (theorem
3.1.2 in [46]), given that the system is not hyperbolic. Furthermore, given that,
the introduction of the evolution equation (5.4), for the heat flux, to correct the
infinite transmission of disturbances problem presented in Fourier’s constitutive law
was the aim of the Cattaneo-Christov model, it seems that it has failed its purposes.
However, in [7], equation (5.4) is used together with

ρcp (θt + v · ∇θ) = −∇ · q,
a simplified version of the equation for the energy (5.3) (cp is the specific heat),
to derive a single temperature equation, i.e. the heat equation. Now, this equation
(equation (16) in [7]) clearly is not of parabolic nature, thus avoiding the infinite
transmission of disturbances in the initial conditions. On the other hand, Euler’s
equation for a compressible fluid are of hyperbolic nature, once assumed T1-T3, but
once we use Fourier’s heat flux law to derive a single equation for the temperature
we obtain a parabolic equation. So, it seems that, it is the given constitutive law
for the heat flux that ultimately decides the kind of heat equation that will remain.

Finally, we show the local existence and uniqueness of solution of the initial
value problem for the viscous Cattaneo-Christov system. For this, we introduce a
weaker concept than that of symmetrizer.

Definition 6.1.2. We say that, a system of the form (6.1), with matrix coef-
ficients of order N ×N , is partially symmetrizable, if there exists, a partition of U
into U = (u, v, w) where u ∈ R

n, v ∈ R
k, w ∈ R

p, n+k+p = N , and Sw = Sw(U), a
matrix value function of U ∈ O, of order N×N , that is smooth and positive definite,
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such that, the products Sw(U)A0(U), Sw(U)Ai(U), Sw(U)Bij(U), Sw(U)D(U) and
Sw(U)F (U ;DxU) all have the block matrix decomposition described in equations
(3.1)-(3.3).

In particular, this definition says that Sw(U)A0(U) is symmetric and positive
definite and the matrices Sw(U)Bij(U) are symmetric. However, we are not requir-
ing that the matrices Sw(U)Ai are fully symmetrized.

As it turns out, the Cattaneo-Christov system is partially symmetrized.

Theorem 6.1.4. Under hypothesys T1-T3, the Cattaneo-Christov systems are
partially symmetrizable.

Proof. Consider the matrix function

Sw(U) =




pρ

ρ 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1

θ 0 0 0
0 0 0 0 0 1

κθ 0 0
0 0 0 0 0 0 1

κθ 0
0 0 0 0 0 0 0 1

κθ




, (6.23)

and notice that, in the Cattaneo-Christov systems, the variable ρ is decoupled from
the variable (θ, q) ∈ R

4, that is, there are no spatial derivatives of (θ, q) in the
evolution equation for ρ (the conservation of mass) and vice-versa. So, we define
u = ρ, v as the velocity field, and w = (θ, q), implying that u ∈ R, v ∈ R

3 and
w ∈ R

4. Due to the thermodynamical assumptions Sw(U) > 0. Clearly Sw(U) is
smooth in the open convex set O. Observe that, Sw(U)A(ξ;U) is given as




pρ

ρ v · ξ pρξ1 pρξ2 pρξ3 0 0 0 0

ξ1pρ ρv · ξ 0 0 ξ1pθ 0 0 0
ξ2pρ 0 ρv · ξ 0 ξ2pθ 0 0 0
ξ3pρ 0 0 ρv · ξ ξ3pθ 0 0 0

0 pθξ1 pθξ2 pθξ3
ρeθ

θ v · ξ ξ1

θ
ξ2

θ
ξ3

θ

0 −τ(ξ2q2 + ξ3q3) τξ2q1 τξ3q1
ξ1

θ
τξ·v
κθ 0 0

0 τξ1q2 −τ(ξ1q1 + ξ3q3) τξ3q2
ξ2

θ 0 τ
κθ ξ · v 0

0 τξ1q3 τξ2q3 −τ(ξ1q1 + ξ2q2) ξ3

θ 0 0 τ
κθ ξ · v




.

In this case, by using the symbols for the block matrices, we recognize that, for
each ξ ∈ S

2, A0
11(ξ;U) :=

pρ

ρ v · ξ is a matrix of order 1 × 1 and thus symmetric, and

Ai
33(U) =




ρeθ

θ v · ξ ξ1

θ
ξ2

θ
ξ3

θ
ξ1

θ
τξ·v
κθ 0 0

ξ2

θ 0 τξ·v
κθ 0

ξ3

θ 0 0 τξ·v
κθ




is a symmetric matrix of order 4 × 4. Hence, assumptions I and II are satisfied.
Once this matrices are recognized, the rest of the block structure for Sw(U)A(ξ;U)
follows. The diffusion remains the same, i.e. Sw(U)B(ξ;U) = B(ξ;U) with the
block matrix

B0(ξ;U) = µI3×3 + (λ+ µ)ξ ⊗ ξ.
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Also,

Sw(U)A0(U) =




pρ

ρ 0 0 0 0 0 0 0

0 ρ 0 0 0 0 0 0
0 0 ρ 0 0 0 0 0
0 0 0 ρ 0 0 0 0
0 0 0 0 ρeθ

θ 0 0 0
0 0 0 0 0 τ

κθ 0 0
0 0 0 0 0 0 τ

κθ 0
0 0 0 0 0 0 0 τ

κθ




=




A0
1(U)

A0
2(U)

A0
3(U)


 ,

where A0
1(U) = ρ, A0

2(U) = ρI3×3 (I3×3 denotes the identity matrix of order 3 × 3)
and

A0
3(U) =




ρeθ

θ 0 0 0
0 τ

κθ 0 0
0 0 τ

κθ 0
0 0 0 τ

κθ


 .

Due to the thermodynamical assumptions, each of these matrices is positive definite.
The relaxation is given as

Sw(U)D(U) =




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 τ

κθ 0 0
0 0 0 0 0 0 τ

κθ 0
0 0 0 0 0 0 0 τ

κθ




.

Finally regarding the nonlinear terms, we have that

f1(U ;Dxv) := 0,

because the evolution equation for the mass density is the only equation without
non-linear terms.

f2(U,DxU) =




(∇ · v)∂x1
λ+Dxv1 ·Dxµ+ ∂x1

v · ∇µ
(∇ · v)∂x2

λ+Dxv2 ·Dxµ+ ∂x2
v · ∇µ

(∇ · v)∂x3
λ+Dxv3 ·Dxµ+ ∂x3

v · ∇µ




and

f3(U,Dxv) =




λ(∇ · v)2 + 1
2 (∂jvi + ∂ivj)2

0
0
0


 .

The result follows. �

Observe that, as the Cattaneo-Christov system without diffusion and relaxation
show, the existence of a partial symmetrizer for a system of the form (6.1) doesn’t
imply the hyperbolicity. A statement that supports that this concept is weaker
than the concept of symmetrizer.

Before stating the results involving local existence let us prove one more struc-
tural result for the Cattaneo-Christov systems.



6.1. HYPERBOLIC-PARABOLIC STRUCTURE 133

Lemma 17. Under the hypothesis T1-T3, the block matrix B0(ξ;U) is non-
negative, and for the viscous case, is positive definite for every U contained in a
precompact set whose closure is contained in O.

Proof. Let y = (y1, y2, y3) ∈ R
3. Under the weaker assumption, 2µ + λ ≥ 0,

we will show that, the block B0(ξ;U) satisfies the following inequality

(B0(ξ)y, y)R3 ≥ min {2µ+ λ, µ} |y|2, (6.24)

for all y ∈ R
3 and all ξ ∈ S

2. First observe that

(B0(ξ)y, y)R3 =
[(
µ|ξ|2 + (λ+ µ)ξ2

1

)
y1 + ((λ+ µ)ξ1ξ2) y2 + ((λ+ µ)ξ1ξ3) y3

]
y1

+
[
((λ+ µ)ξ1ξ2) y1 +

(
µ|ξ|2 + (λ+ µ)ξ2

2

)
y2 + ((λ+ µ)ξ2ξ3) y3

]
y2

+
[
((λ+ µ)ξ1ξ3) y1 + ((λ+ µ)ξ2ξ3) y2 +

(
µ|ξ|2 + (λ+ µ)ξ2

3

)
y3

]
y3.

By reducing terms we obtain the following formula

(B0(ξ)y, y)R3 = µ|ξ|2|y|2 + (λ+ µ)|y · ξ|2. (6.25)

Now, due to the assumption 2µ+ λ ≥ 0, we have the following two cases:

(1) min {2µ+ λ, µ} = µ. Then µ ≤ 2µ + λ, and as a consequence we have
that 0 ≤ µ + λ. By looking at formula (6.25), the previous observation
implies that

(B0(ξ;U)y, y)R3 ≥ min {2µ+ λ, µ} |ξ|2|y|2.
(2) min {2µ+ λ, µ} = 2µ+ λ. In this case 2µ+ λ ≤ µ implies that µ+ λ ≤ 0.

By Cauchy-Schwarz inequality we obtain

(µ+ λ)|y · ξ|2 − (µ+ λ)|y|2|ξ|2 ≥ 0.

We can rewrite formula (6.25) and apply this last inequality as follows

(B0(ξ;U)y, y)R3 = (2µ+ λ)|ξ|2|y|2 + (µ+ λ)|y · ξ|2 − (µ+ λ)|ξ|2|y|2
≥ (2µ+ λ)|ξ|2|y|2 = min {2µ+ λ, µ} |ξ|2|y|2.

By using that |ξ| = 1 we obtain the desired inequality.

Observe that, the assumption 2µ+λ ≥ 0 is a consequence of T2, and in fact under
the thermodynamical assumptions T1-T3, the only situation that can happen is
that

min {2µ+ λ, µ} ≥ 0.

This inequality shows that B0(ξ;U) is non-negative. Now, assume that U is con-
tained in a precompact set whose closure is contained in O. Denote as K such set.
Then, in particular,

ρ ≥ ρ1 > 0 and θ ≥ θ1 > 0.

In the viscous case µ(ρ, θ) > 0 and 2µ(ρ, θ) + λ(ρ, θ) > 0, thus, restricted to the
closure of K they achieve its minimum value µ0 > 0 and ν0 > 0 implying that

µ(ρ, θ) ≥ µ0 > 0 and 2µ(ρ, θ) + λ(ρ, θ) ≥ ν0 > 0.

Using (6.24) we conclude that B0(ξ;U) is positive definite. �

Finally we arrive at the local existence of the Cattaneo-Christov system in three
space dimensions. We state both linearized and quasilinear viscous cases.
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Theorem 6.1.5 (Linearized problem). Let s and m be integers satisfying as-
sumption H3 (i.e. s ≥ s0 + 1 and 1 ≤ m ≤ s) and T > 0 be given. Assume that
U0(x) ∈ O for every x ∈ R and U0 ∈ Hs. Under hypothesis T1-T3 for the equation
(5.19), we have that: If 2

3µ+λ, µ > 0 (viscous case) then, there is a unique solution

U = (ρ, v, θ, q)⊤ ∈ R
8 of the initial value problem (5.37) such that

ρ, v, θ, q ∈ C([0, T ];Hm), 1 ≤ m ≤ s,

ρt, vt, θt, qt ∈ L2(0, T ;Hm−1), 1 ≤ m ≤ s,

ρt, θt, qt ∈ C([0, T ];Hm−1), 1 ≤ m ≤ s,

vt ∈ C([0, T ];Hm−2), 2 ≤ m ≤ s,

v ∈ L2(0, T ;Hm+1), 1 ≤ m ≤ s.

Moreover,

‖ρ(t)‖2
m +

∫ t

0

‖ρt(τ)‖2
m−1dτ +

∫ t

0

‖ρ(τ)‖2
mdτ ≤K2

0 Φ2
0,

‖v(t)‖2
m +

∫ t

0

‖vt(τ)‖2
m−1dτ +

∫ t

0

‖v(τ)‖2
m+1dτ ≤K2

0 Φ2
0,

‖θ(t)‖2
m +

∫ t

0

‖θt(τ)‖2
m−1dτ +

∫ t

0

‖θ(τ)‖2
mdτ ≤K2

0 Φ2
0,

‖q(t)‖2
m +

∫ t

0

‖qt(τ)‖2
m−1dτ +

∫ t

0

‖q(τ)‖2
mdτ ≤K2

0 Φ2
0,

for all t ∈ [0, T ]. Where Φ0 is a constant depending on the matrix coefficients given
as in (3.34) and K0 is given as

K0 = ‖U0‖2
m := ‖ρ0‖2

m + ‖v0‖2
m + ‖θ0‖2

s + ‖q0‖2
m.

Theorem 6.1.6 (Quasilinear viscous problem). Consider the initial value prob-
lem for the Cattaneo-Christov system,

A0(U)Ut −Bij(U)∂i∂jU = F (U,DxU) −Ai(U)∂iU −D(U)U

U(x, 0) = U0(x)
(6.26)

where t > 0 and x ∈ R
3. Let s be an integer satisfying s ≥ s0 + 1 and T > 0 be

given. Set

O :=
{

(ρ, v, θ, q) ∈ R
8 : ρ > 0, θ > 0

}
,

and let U0 ∈ O be given. Under assumptions T1-T3, there are constants 0 < T0 ≤
T and g2 > 0 such that, if

2

3
µ(ρ, θ) + λ(ρ, θ), µ(ρ, θ) > 0,

then, there is a unique solution U = (ρ, v, θ, q)⊤ ∈ Xs
T0

(g2,M,M1) to the initial
value problem (6.26), for some constants M and M1.

Proof. First, multiply the differential equation in (6.26) by the partial sym-
metrizer given in (6.23). Then, according to theorem 6.1.4, this yields and equation
with the block matrix decomposition given in (4.1)-(4.3). Since U0 ∈ Hs, and U0

belongs to the open convex set O, we can find an open convex and bounded set
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Og0
such that Og0

⊂ O. Indeed, since s ≥ s0 + 1, Sobolev’s embedding theorem

assures that, there is an open ball Bg0
∈ R

8 such that Bg0
⊂ O and

U0(x) ∈ Bg0
∀x ∈ R

3.

Then, take Og2
, M and M1 as it was described in (4.41)-(4.43). Since Og2

⊂ O
is bounded, lemma 17 assures that B0(ξ;U) satisfies assumption H2. In the same
manner we can show that the block matrices A0

i (U) are positive definite. Finally,
notice that, f1(U ; 0) = 0, f2(U ; 0) = 0 and f3(U ; 0) = 0 for all U ∈ O, thus satifying
assumption E. The conclusion follows as an application of theorem 4.4.1. �

6.2. Discussion

Is important to mention that, if instead of coupling equations (5.1)-(5.3) with
equation (5.4), we couple them with the model

τ (qt + u · ∇q) + q = −κ∇θ, (6.27)

which corresponds to introduce the standard material derivative Dq
Dt instead of the

Lie-Oldroyd derivative we obtain the exact analogue of the one dimensional version
of the Cattaneo-Christov system. Although, once more, we are dealing with a
system with no conservative structure, we can find a symmetrizer for such system.
Surprisingly, the partial symmetrizer for the Cattaneo-Christov system, given in
(6.23), is the symmetrizer for the quasilinear version of equations (5.1)-(5.3) coupled
with (6.27). Being symmetrizable, its associated system without diffusion and
relaxation is hyperbolic, the Kawashima-Shizuta theory can be positively verified,
the local existence theorems are applicable (Theorem 4.4.1 in particular). Moreover,
Christov and Jordan have proposed this model before (see [8]), corresponding to a
model describing second sound-based heat conduction in the moving frame. Where,
(6.27) is Galilean invariant and since it is of hyperbolic-parabolic nature (given
the existence of the symmetrizer), it seems to be that, this is a more suitable
system to study hyperbolic heat conduction. The more outstanding fact is that,
the characteristic speeds for the system without diffusion and relaxation are exactly
the same as the one reported during the proof of theorem 6.1.3, that is, this new
system and the Cattaneo-Christov system share the same characteristic speeds.
Also, notice that, the characteristic polynomial (6.14) does not depends on q, this
is a striking fact, given that, the symbol A(ξ;U) has a block matrix of order 3 × 3
filled with the components of q (take a look at matrix C defined during the proof of
theorem 6.1.3). So, it seems that, this block, induced by the Lie-Oldroyd derivative,
has no effects in the propagation of heat, thus supporting the case for the system
coupled with (6.27). However, Christov and Jordan seem to have discarded this
model involving (6.27) given that, it is impossible to obtain a single equation for
the temperature.
For this reasons, the introduction of the Lie-Oldroyd derivative seems to serve only
the computational purpose of solving for a single hyperbolic differential equation
for the temperature, and its postulate, (5.4), is not a basic physical principle.
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Final discussion and conclusion

In this work, we have dealt, once more, with the old question of local existence
for the initial value problem associated with a coupled set of linear (3.1)-(3.3) and
quasilinear equations (4.1)-(4.3). Contrary to our predecessors, we assumed a parti-
tion in the variable of study, U = (u, v, w), where the variables u,w where expected
to have hyperbolic regularity, and v parabolic regularity and we also assumed cou-
pling in the linear case, between the hyperbolic variables u,w with the parabolic
variable v. Our assumption of coupled variables appearing in the linear case, (3.1)-
(3.3), becomes problematic when computing the energy estimates for each equation.
In that case, we understood the simplicity of assuming decoupling in the linearized
equations, because then, we would be dealing with three separate equations, and so
three energy estimate can be obtained independently of each other. Still, we showed
that, in the presence of coupling between hyperbolic and parabolic variables, given
the block matrix decomposition described in equations (3.1)-(3.3), the method of
energy applied in the right manner yields decoupling of the energy estimates of
each variable and at the same time allows us to identify the expected regularity of
each variable. Our energy estimates (3.48)-(3.50) are stronger than those given in
[25] in the sense that, they incorporate estimates for the norms (in L2(0, T ;Hs−1))
of the partial derivatives with respect to time. Thus, such norm gets controlled
by a constant, that in particular depends on the norm in Hs (s ≥ s0 + 1) of the
initial condition U0. By our method, a vanishing viscosity approach together with
a compactness argument, the linear, non-autonomous system of equations is well
posed in a suitable Banach space (theorem 3.4.1) and in fact, we showed that the
solution exists for all times between [0, T ], where T > 0 has been given. Contrary
to the result that would yield using a fixed point argument for the linear equations
if we do not assume coupling in the hyperbolic and parabolic variables. That, is,
by our method, there is no need to state and prove a sharp continuation principle,
like the one given in [36].
On the other hand there are two main reasons to call our energy estimates weaker
than those given in [25] and many others ( e.g. [24], [31], [36],.., etc). The other
reason concerns the quasilinear equations (4.1)-(4.3) together with initial condition

137
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given in (4.4). To deal with the quasilinear case, we use the so called method of lin-
earization and fixed point. Given that, we already showed the local well-posedness
for the linearized system of equations (chapter 3), our concerns for chapter four,
were to show the existence of a solution for the quasilinear initial value problem
(4.1)-(4.4) as the existence of a fixed point of certain map, T , or more precisely,

a suitable (closed) extension T̂ . We understood that, for this type of problems, a
contraction-like inequality needs to be proven (estimate (4.65)), which allows us to
define a Banach space Y (through the contraction in the low norm process) and a
subset X of Y (through the boundedness in the high norm process) such that the
operator T : X → X is well defined and satisfies the contraction-like inequality
(condition (ii) of theorem 4.5.1). With this setting, we were capable of classifying
several results in local existence for hyperbolic and hyperbolic-parabolic systems
of equations (see, discussion 4.6.3) in two groups. If T (Uk) = Uk+1 denotes an
iteration and

ak := ‖Uk+1 − Uk‖y,

then, the first group is the one for which there is an 0 < α < 1 such that

ak ≤ αak−1

that is, their operator T is a contraction. For the second group, although T is
not quite a contraction, there is an 0 < α1 < 1 and a sequence {βk} such that∑

k βk < ∞ and

ak ≤ α1ak−1 + βk.

Thus, is in this setting in which we found out that the assumption of coupling in the
linearization had taken its toll in the energy estimates, since we couldn’t classify
ourselves in none of those categories. But, this situation allowed us to thrive and
to look for a new type of fixed point argument, thus reporting a third case in which
there is an 0 < α0 ≤ 1

6 such that, for all k ≥ 2

ak ≤ α0(ak−1 + ak−2).

We successfully showed the local existence and uniqueness of solutions for the ini-
tial value problem (4.1)-(4.4). Is essential to mention that, our approach does not
involve any type of conservative assumption, contrary to the approach given in [47].
Moreover, we do not require the full parabolicity of the diffusion (B(ξ; ·)) nor the
full symmetrizability of the convective terms (A(ξ; ·)) but only a weak mixture of
both that does the job in terms of local existence and uniqueness of the initial value
problem.

In the lasts chapters, we applied our results of local existence to the Cattaneo-
Christov systems, a set of partial differential equations without conservative struc-
ture. Although, to say that we applied our findings is an unfair statement, given
that, actually, the Cattaneo-Christov systems motivated the previous analysis. Our
partition of U into (u, v, w) and the block matrix decomposition of equations (3.1)-
(3.3) is satisfied for the Cattaneo-Christov systems once you symmetrize (in one
space dimension), or you partially symmetrize the system (three space dimensions).
In this setting, the variables u, v and w are given as u = ρ, v is the velocity field and
w = (θ, q) and we noticed that ρ is always decoupled from w (viscous and inviscid
cases). Given that, in one space dimension the Cattaneo-Christov systems are sym-
metrizable, hyperbolicity for the inviscid, non-relaxed system is given. Moreover,
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the existence of the symmetrizer allowed us to applied the Kawashima-Shizuta the-
ory (see theorem 5.2.1 extracted from [48]). By verifying Kawashima’s genuinely
coupling condition we showed the strict dissipativity of the Cattaneo-Christov sys-
tems and managed to found explicitly the compensation matrices, given in (5.23)
and (5.24). That way we obtained global energy estimates for the linearized case
of the Cattaneo-Christov systems around constant equilibrium states, stated in
Corollary 4 (see, [2]).

In the three dimensional version of the Cattaneo-Christov systems, we under-
stood the difficulties that the Lie-Oldroyd derivative brings to the table. Because
of it, the system without relaxation and without diffusion is not hyperbolic (The-
orem 6.1.3), thus leaving this problem ill-posed ([46]). In fact, as we showed, this
same material derivative impedes the computation of a symmetrizer (Theorems
6.1.1 and 6.1.2). We found out that the property of symmetrizability is not invari-
ant under diffeomorphisms, contrary to the property of hyperbolicity. We provide
an example of this, that in fact, turns out to be an example of a hyperbolic sys-
tem that is not symmetrizable. Although the lack of a symmetrizer prevents us
to apply the Kawashima-Shizuta theory, still, we were capable of showing the lo-
cal existence and uniqueness for the viscous Cattaneo-Christov system (linearized
and quasilinear cases). For this, we had to introduce a weaker concept than that
of symmetrizer. We defined a partial symmetrizer (Theorem 6.1.4) that yield the
block matrix decomposition defined in chapter 3.

One outstanding fact is that, although the Cattaneo-Christov system without
diffusion and relaxation is not of hyperbolic nature and the viscous case is only
partially strongly parabolic (Lemma 17), we still were capable of proving the local
existence and uniqueness of solutions (Theorem 6.1.5). In the opinion of the author,
this fact is telling us that, the introduction of a viscous partially strongly parabolic
term has regularizing effects, just as is the introduction of a fully strongly parabolic
term.

Regarding the failed of the hyperbolicity (Theorem 6.1.3), this seems to show
that, the introduction of the Lie-Oldroyd derivative in (5.4) is not fulfilling its
physical purpose (to have a hyperbolic heat conducting theory of compressible
fluid flow), yet, it is true that if this equation is used together with the equation
for the energy (5.3), you obtain a scalar equation for the temperature, the heat
equation, as it was showed in [7], that is not parabolic. However, there seems to
be two different concepts at play here, the hyperbolicity (or lack there of) of the
system, and the hyperbolicity (or lack there of) of the second order equation for the
temperature. It seems that, the study of the Cattaneo-Christov system presents a
more general picture than that of, focusing only on the second order equation for
the temperature θ. If this is the case, then, the Cattaneo-Christov systems are not
suited for describing the dynamics of a hyperbolic heat-conducting compressible
fluid flow, given that is not a hyperbolic-parabolic system of equations, but only a
partially symmetrizable, partially parabolic system of equations.
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