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Chapter 1

Preliminaries

Machine learning has been an area of research with a huge boom in interest over the recent years.
Many machine learning algorithms have been developed for a wide variety of applications with a
spectacular performance on certain tasks, equalling that of a human and in some cases improving
over human performance [9]. These algorithms have proven quite effective in many specific fields
including image recognition [9], real time translation [2] and time series forecasting [10].

The main goal of machine learning is to use data to infer inherent patterns in it and use those
patterns to shape the approach to treat unseen problems. In contrast to other modelling approaches,
where intuition and previous knowledge are used to find an approach to the problem at hand, machine
learning is focused on extracting the ’intelligence’ from the data itself [3]. For instance, in image
recognition the data is the image itself and from it, a label of the content in the image is produced
by a "learned" rule from previously labelled images; in real time translation, a sentence or phrase in
a given language is given as data and a translation to another language is produced. This approach
leads to rather opaque models with little interpretative use but highly effective.

Machine learning has a wide variety of applications in different fields, however there are three
main learning problems into which most use cases can be grouped into: supervised learning, unsu-
pervised learning and reinforcement learning. In supervised learning we are given a set of n samples
of data, these samples xµ ∈ Rm,µ = 1,2, . . . ,n are accompanied with a label yµ ∈ Rn. The goal of
supervised learning is to find a function f such that f (xµ) = yµ ,µ = 1,2, . . . ,n and when presented
with a new sample xnew without its label, f (xnew) will approximate the label [3].

Unsupervised learning involves input data with no labels available, in stark contrast to supervised
learning. The goal of unsupervised learning then is to recover the inherent structure of the data from
the given dataset. Unsupervised learning is often used for generative modelling, where the objective
is to find a probability distribution from which to generate data which is statistically similar to the
given dataset. An arbitrary probability distribution in general can be modelled with unsupervised
learning techniques [3].

Finally, reinforced learning does not directly involve a dataset, but rather, an artificial agent is
placed in an environment. The actions taken by the agent are determined by obtaining information
from the environment and calculating a possible reward, the actions change the environment with the
intention of maximising reward. Learning occurs by interacting with the environment and the idea
is to obtain reward-maximising strategies. Reinforced learning techniques have been successfully
used to teach an artificial agent board games such as chess and Go [3].

In this work, we focus on a particular subset of machine learning techniques involving neural
networks, these are commonly known as Deep Learning. We explore the possible application of
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2 CHAPTER 1. PRELIMINARIES

Deep Learning to forecasting of epidemics with a Bayesian approach. In this chapter we present
a review of neural networks, in particular one of the earliest architectures designed: the multilayer
perceptron. We focus on supervised learning with multilayer perceptrons from a frequentist perspec-
tive and expose several inherent shortcomings to it. As an alternative, we review Bayesian concepts
and definitions and apply them to supervised learning. Finally, we discuss practical implementa-
tion of Bayesian methods to neural networks, with an emphasis on numerical approximation to the
posterior via MCMC methods.

1.1 Basics of Neural Networks

Neural networks have been one of the most widely used tools for pattern recognition and machine
learning in the modern era. The reasons for their wide usage are their remarkable performance
with so little prior information, their tolerance to random noise within the data, and the high model
flexibility it offers. While there are many different types of neural networks, we will discuss the
most basic type of them: the multilayer perceptron, one of the earliest architectures developed. In
this section we shall provide the basic definitions and elements of a multilayer perceptron and how
it is usually applied to supervised learning problems.

1.1.1 Multilayer Perceptron as a Function Approximator

We start by defining a L-layered perceptron Uθ as a Rm → Rn function from a m-dimensional
input space into a n-dimensional output space. The function Uθ depends upon its parameters
θ = {W (1),b(1),W (2),b(2), . . .W (L),b(L)}. For l ∈ 1, . . . ,L− 1, both W (l), the weights, and b(l) the
biases, comprise the l-th layer of the neural network; this layer is characterised by its width rl . As
a convention we define r0 = m,rL = n; the width rl determines the dimensions of the weights and
biases: W (l) is a matrix of dimensions rl× rl−1 and b(l) a vector of dimension rl [3].

For the first layer we can take an input x = (x1, . . . ,xm) and define its output a(1), a vector of
dimension r1 given by

a(1) =W (1)x+b(1). (1.1)

Given the output, we define the activation z(1), another r1-dimensional vector, by applying element-
wise an activation function g(1), a R→ R mapping. The j-th component of the activation is given
by

z(1)j = g(1)(a(1)j ). (1.2)

We extend these definitions for every layer 1 < l ≤ L by taking x = z(0) and the final n-dimensional
output as z(L), so that we have a rl-dimensional output vector a(l) given by

a(l) =W (l)z(l−1)+b(l), (1.3)

and a rl-dimensional activation z(l) obtained by element-wise application of an activation function
g(l), such that the j-th component of z(l) is

z(l)j = g(l)(a(l)j ). (1.4)

Given an input x, the L-layered multilayer perceptron Uθ maps it by succesive forward application
of the equations (1.3),(1.4).
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Figure 1.1: Graphical representation of a multilayer perceptron.

z(0) = x, (1.5)

a(1) =W (1)z(0)+b(1), (1.6)

z(1) = g(1)(z(1)), (1.7)
...

a(l+1) =W (l+1)z(l)+b(l+1), (1.8)

z(l+1) = g(l+1)(z(l+1)), (1.9)
...

Uθ (x) = z(L) = g(L)(a(L)). (1.10)

It is important to note that the activation functions g(l) must be non-linear functions in every
layer, otherwise we reduce the perceptron into a simple linear transformation. Common activation
functions are the ReLU (rectified linear unit), sigmoid σ and hyperbolic tangent tanh functions,
presented here:

ReLU(x) = max(0,x); σ(x) =
1

1+ e−x ; tanh(x) =
ex− e−x

ex + e−x (1.11)

While the affine structure of every layer, and a clever choice of activation function are important
from a computational point of view, the successive application of non-linear functions are the per-
ceptron’s greatest strength; this inherent nonlinearity is what gives the perceptron its very high model
flexibility.

Indeed, there have been several results concerning the perceptron’s ability to approximate any
arbitrary function (although results have been proven for other types of architectures), these results
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are known as Universal Approximation Theorems. In [6] it is proven that a neural network with a
single hidden layer is able to approximate any function for an arbitrary continuous, discriminatory,
sigmoidal activation if no constraint is put on the number of neurons and size of the weights; [12]
extends the result for non-continuous activations and relaxes the assumptions on the activation, only
requiring the activation functions to be non-polynomical. It is to be noted that while these results
provide a theoretical guarantee of approximation to any arbitrary function, there is no result for
the number of nodes or layers required to provide an approximation. From a practical point of
view, approximation might not be possible in some cases due to the high number of parameters, and
therefore computation power, required.

1.1.2 The Supervised Learning Problem
Now that we have seen the potential of a neural network as an universal approximator, the immediate
question is: How do we achieve this? We discussed briefly the three main machine learning prob-
lems, and for each one of them the approach is different. Here we focus on the supervised learning
problem, where we wish to use a dataset and its labels to find a function that approximates the labels
without the labels necessarily available.

We define a training set D = {(xµ ,yµ)}n
µ=1 comprised of the n samples, or training examples,

xµ ∈Rd and their respective labels yµ ∈Rm. The d components of each training sample are called the
features of the data. To find our suitable function, we use a neural network Uθ with a fixed number of
layers L, layer widths rl and activation functions g(l) for l = 1,2, . . . ,L. The neural network’s output
for a given input is completely determined by the parameters of each layer. Finding the mapping
between features and labels is equivalent to finding the set of weights and biases for every layer such
that for every sample in the training set xµ , Uθ (xµ)≈ yµ . The process to achieve this is commonly
called training the neural network.

To train a neural network it is convenient to define a loss function L (θ ;D); a common way to
construct such a loss function is to define a loss L(θ ;xµ ,yµ) for xµ ,yµ ∈ D and define L as the
mean of L over the training set:

L (θ ;D) =
1
n

n

∑
µ=1

L(θ ;xµ ,yµ). (1.12)

The loss function is a means of quantifying the training error, that is the error the neural network
has with respect to the training labels.

By way of example, consider the case where the labels of the training set are a continuous, real
variable. For every pair xµ ,yµ ∈D we define L(θ ,xµ ,yµ) as the square error

L(θ ,xµ ,yµ) = ‖Uθ (xµ)− yµ‖2. (1.13)

Then the loss function is the mean square error

L (θ ;D) =
1
n

n

∑
µ=1
‖Uθ (xµ)− yµ‖2. (1.14)

The parameters θ of the neural network are adjusted to minimise the loss function, and we shall
say that the optimal parameters θ ? are those which minimise L (θ ;D), that is

θ
? ≡ argmin

θ

L (θ ;D). (1.15)
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Figure 1.2: A case of overfit for a simple supervised learning problem with one feature and one
dimensional label. Notice the blue curve has no training error, yet its predictions on unseen data are
rather poor; the red curve has a slightly higher training error but much better predictions.

Thus, our supervised learning problem is effectively reduced into a mathematical optimisation one.
Once we have solved this optimisation problem with the optimisation algorithm of our preference,
we then expect the neural network not only to approximate with relative precision the labels in the
training set, but to predict, or generalise, to inputs and labels previously not seen during training.

While θ ? ensures a low error on the labels of the training set by virtue of being a minimiser
of the loss function, there is no a priori guarantee it will have a low error on new examples which
were not seen during training. This error, defined as the generalisation error, is most important in
applications and measures the performance of the neural network. The standard way of estimating
the generalisation error is picking a subset of the training set (at random) to evaluate the performance
of the trained neural network on unseen samples, the rest of the dataset is used as a training set [3].

An important problem that often arises in supervised learning is the problem of overfitting. Over-
fitting refers to the fact that low training error doesn’t guarantee good generalisation error. A com-
mon cause of overfitting is having a small training dataset, this will cause random nuances in the data
to be encoded into the neural network. Even if a large amount of data is available, a neural network
with too many parameters will also capture the random nuance in the data resulting in overfit [1].

Besides monitoring the generalisation error as described above, regularisation is a common tech-
nique to prevent overfit. As mentioned, a large number of parameters may cause overfitting; it is
natural then to constrain the neural network to use fewer non-zero parameters. We define a penalty
using the p-norm over the parameters θ as

λ ∑
θ

‖θ‖p ≡ λ

L

∑
l=1

(
‖W (l)‖p +‖b(l)‖p

)
, (1.16)

where the p-norm of a n×m matrix W is defined as

‖W‖p =

(
n

∑
i=1

m

∑
j=1
|wi j|p

)1/p

. (1.17)
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The parameter λ is a positive real number, denoted as the regularisation parameter, and it controls
the strength of the penalty, usually λ is fine-tuned by hand. This penalty is added to the chosen cost
function and a new cost function is obtained:

L (θ) =
1
n

n

∑
µ=1

L(θ ;xµ ,yµ)+λ ∑
θ

‖θ‖p . (1.18)

Other techniques to prevent overfit include early stopping and trading width by depth. In early
stopping the optimisation algorithm used to find θ ? is stopped before obtaining a minimum. Both
the training error and the generalisation error are monitored and while the training error will always
decrease, generalisation error will increase when overfit starts to occur; at this point the optimisation
is terminated. Trading width by depth is a less direct method to avoid generalisation. Networks with
more layers, greater depth, often require less units on each layer, i.e. they require less depth on each
layer. Increasing the depth acts as regularisation since the features on later layers are constrained
by the structures of the earlier layers. On the other hand, too deep networks may take too long to
converge to a minimum, so this must be taken into account [1].

1.2 Basics of Bayesian Inference
In the above section we discussed the basics of neural networks and gave a passing sketch of how
they are commonly calibrated to match outputs from a training dataset. On this section, we focus in
the shortcomings of that approach, emphasising the need of quantifying the trustworthiness and the
uncertainty of the output of a neural network, specially when used to predict an output coming from
inputs not used for training the neural network. After doing so, we provide the basic concepts and
definitions of Bayesian inference, a probabilistic framework which provides a conceptually clear
way of quantifying uncertainty in our predictions.

1.2.1 Understanding Uncertainty
As we mentioned earlier, one of the advantages of neural networks is their high modelling flexibility,
the high number of parameters and non-linear activation functions make it possible to approximate
any function with few previous assumptions or constraints. However the low interpretability of the
results obtained from a neural network and the risk of overfitting are two important problems that
arise in supervised learning. Another important aspect is quantifying the amount of information
about the process we can obtain from the data, in other words, estimating the generalisation power
of our neural network. Usually, whether a neural network makes accurate predictions or not is
estimated by using data available but not used for training and measure the agreement between
the data and the neural network’s output. This approach gives no estimate of the probability of the
output matching the correct one and therefore we have no way of knowing how robust our prediction
actually is [4].

These aforementioned problems make it difficult to have trustworthy predictions from a neural
network, and therefore their use for decision making, especially in areas of high risk, is limited. As
we see, robust modelling using neural networks must then avoid the inherent overconfidence of the
predictions coming from the training process. Any useful estimate provided by a neural network
should not then be a simple output but rather the uncertainty of it must be completely characterised.

We can classify the uncertainty inherent to any kind of data-based predictions as either aleatoric
or epistemic. Aleatoric uncertainty comes from the stochastic nature of the phenomenon we intend
to model and the error made during the collection of observations, this kind of uncertainty is inherent
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to the data and is irreducible. On the other hand, epistemic uncertainty is that uncertainty due to lack
of more knowledge; in a certain way, this kind of uncertainty encodes what we don’t know about
the process due to “missing pieces” in our knowledge [4].

1.2.2 Maximum Likelihood Estimation
To start with, let’s formalise the intuition of the neural network as a parametric model approximating
the true function governing the model. We treat the features and labels of the data x,y as random
variables; we define a conditional probability p(y

∣∣x) from which the training set D is a sample.
Let p(y

∣∣x;θ) be a parametric family of probabilistic distributions; given x we use p(y
∣∣x;θ) to

map it to a number estimating the probability p(y
∣∣x), this estimate depends on the parameters θ

used. This definition of parametric family of distributions is a general one, although we will focus in
the particular case in which a neural network Uθ is involved, in this case θ refers to the parameters of
the neural network. The frequentist approach involves assuming there exists a true set of parameters
for the probability distribution. This set of parameters is fixed but unknown.

The training set is used to estimate this true set of parameters. To do so, we start assuming every
sample

(
xµ ,yµ

)
∈D is independent and identically distributed. Then, we define the likelihood as

p(D
∣∣θ)≡ n

∏
µ=1

p(yµ

∣∣xµ ;θ), (1.19)

we expect p(yµ

∣∣xµ ;θ) to approximate p(yµ

∣∣xµ) for every sample (xµ ,yµ). To do so we define the
maximum likelihood estimator (MLE) θ ? as

θ
?
MLE ≡ argmax

θ

p(D
∣∣θ). (1.20)

The MLE is often found by taking the negative logarithm of the likelihood, since it is more
numerically stable; to express the likelihood as an expectation with respect to the training set, it
is also often scaled by 1

n , n being the number of samples in the training set. Since the logarithm
preserves inequalities, the MLE θ ? can be equivalently defined as[8]

θ
?
MLE = argmin

θ

[
−1

n

n

∑
µ=1

log p(yµ

∣∣xµ ;θ)

]
. (1.21)

Notice that the definitions (1.21) and (1.15) coincide if log p(yµ

∣∣xµ ;θ) = L(θ ;xµ ,yµ). In most
cases this is true, and the loss function L (θ ;D) is revealed as the (negative) log likelihood of the
probabilistic model we assign to our supervised learning problem.

As a practical example, consider the case where the labels y correspond to a real continuous
variable. Let us further assume a multivariate Gaussian probability model such that

p(y
∣∣x) = N (y;Uθ (x),σ2). (1.22)

Here, Uθ (x) is predicting the mean of the Gaussian; we further assume that the covariance matrix is
the identity matrix multiplied by a fixed, pre-chosen, real constant σ . The negative log likelihood of
the model for the training set is then

n

∑
µ=1

log p(yµ

∣∣xµ ;θ) = m logσ +
m
2

log2π +
n

∑
µ=1

‖Uθ (xµ)− yµ‖2

2σ2 , (1.23)
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removing all constants we obtain the MLE for this model as

θ
?
MLE = argmin

θ

n

∑
µ=1

‖Uθ (xµ)− yµ‖2

2σ2 . (1.24)

The MLE obtained is equivalent to the minimum of the loss function in (1.14) since the loss function
and the negative log likelihood only differ by a constant and thus have the same maxima and minima.

1.2.3 Bayesian Inference
The Bayesian approach involves not only treating the dataset D as a sample of p(y

∣∣x). We propose a
parametric family of distributions given by a fixed neural network with parameters θ , the parameters
θ are themselves considered to be random variables. We define the prior of the parameters p(θ) as
the distribution over θ ; this distribution is chosen before taking into account the training set and its
purpose is to encode previous assumptions about the model. By virtue of Bayes’ theorem, we define
the posterior distribution p(θ

∣∣D) as:

p(θ
∣∣D) =

p(D
∣∣θ)p(θ)

p(D)
. (1.25)

We can start to see the appeal of Bayesian inference: conceptually, given the data D and model
depending on the parameters θ the posterior gives us a probability distribution for the parameters
explaining the data. The prior p(θ) represents our knowledge of the event we are modelling without
having seen any data, the likelihood encodes the knowledge we extract from the available data. The
likelihood “updates” our prior knowledge and the result is the posterior.

An attractive aspect of Bayesian inference is the introduction of priors. The priors are useful for
encoding beforehand knowledge into the problem; adding more knowledge into the problem helps
us make more accurate estimations, improve generalisation power beyond the dataset and in the case
of punctual estimation, faster convergence into a more reliable minimum [4]. Punctual estimation
of the posterior is similar to maximum likelihood estimation, the difference lies in the optimisation
objective: we seek to find a set of parameters which maximise the posterior, instead of the likelihood.
The resulting set of parameters is defined as the maximum a posteriori estimator:

θ
?
MAP = argmax

θ

p(θ
∣∣D). (1.26)

To illustrate the utility of priors for the parameters of a neural network, let us consider again
a probabilistic model with a Gaussian distribution N (y;Uθ (x),σ) as discussed on the previous
section. We use as prior a Gaussian distribution with mean 0 and as covariance matrix proportional
to the identity matrix by a constant σ ′, over the parameters, assuming they are independent and
identically distributed, that is

p(θ) ∝ exp
[
− 1

2(σ ′)2 ‖θ‖
2
]
≡

L

∏
l=1

exp
[
− 1

2(σ ′)2

(
‖W (l)‖2 +‖b(l)‖2

)]
. (1.27)

Taking the negative logarithm of the posterior defined by the likelihood and the prior, and removing
constants (particularly, the p(D) term, since it doesn’t have any dependence on θ ), the MAP estimate
is

θ
?
MAP = argmin

θ

1
n

n

∑
µ=1
‖Uθ (xµ)− yµ‖2 +λ ∑

θ

‖θ‖2. (1.28)



1.2. BASICS OF BAYESIAN INFERENCE 9

prior likelihood

posterior
θ?MAP θ?MLE

Figure 1.3: An example of a Bayesian posterior. Notice how point estimation (either MAP or MLE)
reduces a distribution to a single point.

Notice that the negative log probability is in this case equivalent to (1.18) when p = 2; an anal-
ogous argument can be made for an arbitrary p, showing that regularisation is nothing more than
adding priors and optimising with respect to the posterior. The Bayesian approach provides then a
straightforward approach to design more complicated, yet interpretable, regularisation terms [8].

While point estimates form the basis of supervised learning from a probabilistic perspective, they
are an attempt to summarise a distribution into a single point. As such, they throw away much of the
information about the uncertainty of our predictions since a prediction with a point estimate assumes
we have obtained the “true” set of parameters of the model and there is no possible uncertainty on
the parameters. The main reason for using Bayesian inference in this work is the estimation of the
epistemic uncertainty in the predictions of our model, particularly, we wish to obtain an uncertainty
for the predictions y on unseen data x, given the knowledge we obtained from the training set; then,
it is important to take into account the whole posterior over θ instead of its likeliest value. Through
the posterior, we can do so by defining the predictive posterior distribution:

p(y|x,D) =
∫

p(y|x,θ)p(θ
∣∣D) dθ . (1.29)

1.2.4 Tempered posteriors
In recent times, the application of Bayesian methods to Deep Learning has resulted in the observation
of improved model performance with the introduction of tempered posteriors [20]. Having chosen a
likelihood function p(D

∣∣θ) and a prior p(θ), we define the tempered posterior pT (θ
∣∣D) by means

of a “temperature” parameter T :

pT (θ
∣∣D) = p(D

∣∣θ)1/T p(θ .) (1.30)

The temperature parameter is tuned to obtain an acceptable predictive performance and it is empiri-
cally observed in most that T < 1 yields the best predictive, leading to “cold" posteriors [20].
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Figure 1.4: A visual representation of posterior tempering for different temperatures T ; we include
both T > 1 and T < 1. Notice that for T < 1, the distribution sharpens around its mode and other
regions of interest of the posterior may be smoothed over.

The introduction of a cold temperature in the likelihood part of the posterior is equivalent to
overcounting the data, and thus it smooths over several local modes of the posterior which might not
provide either a good fit to the training data or a good generalisation to unseen data. In this work,
we shall explore the effects of the temperature parameter for predictions and compare them to an
untempered posterior.

1.3 Practical Implementation of Bayesian Inference
While the Bayesian framework is very appealing because of its conceptual simplicity and the offered
ability to estimate uncertainty, it is only recently that it has started to take off in usage; the main
reason for this is the high computational cost associated. The equation (1.25) is deceptively simple,
since so far we haven’t discussed the p(D) term. We define p(D), the evidence, as the posterior
integrated over the whole set of possible parameters θ

p(D) =
∫

p(D |θ)p(θ) dθ . (1.31)

This integral is a multidimensional integral and in general it is not analytically tractable, partly due to
a likelihood which is not tractable analytically but mainly because of the high number of dimensions
involved. Precisely this last reason makes the integral hard approximate numerically, since most
numerical integration schemes lose precision on high dimensions. Thus, obtaining an analytical
predictive posterior is only feasible for a small number of specific cases with few dimensions.

This difficulty can be circumvented by remembering the definition of the predictive posterior in
(1.29). Since it is obtained by marginalising over the posterior, we may very well think of it as the
expected value of a certain quantity. Then this integral can be approximated by taking samples from
the posterior and calculating with them p(y|x,θ), finally averaging over all the samples:
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∫
p(y|x,θ)p(θ

∣∣D) dθ ≈ ∑
θ∼p(θ

∣∣D)

p(y|x,θ). (1.32)

Thus, we have reduced the problem of calculating a possibly incalculable integral into obtaining
samples from a certain distribution. While this is not by a any means a trivial problem, especially
with the distributions that will appear later, it certainly is more tractable, with several algorithms at
our disposition.

As discussed, this intractability of the posterior makes sampling methods one of the most useful
and widely available methods for approximation. In particular, the most widely used sampling
methods are Markov Chain Monte Carlo methods. These algorithms require the generation of a
Markov Chain (a stochastic process where the next step of the process depends only on the current
state of the chain) whose equilibrium distribution is the posterior.

1.3.1 Random Walk Metropolis-Hastings

The Metropolis-Hastings algorithm is one of the classical algorithms for posterior approximation.
While computationally prohibitive for very large dimensional models, we shall review it here to
establish some basic concepts common to the rest of the algorithms. The algorithm takes an un-
normalised probability distribution π(θ) - in our specific case π(θ) = p(D

∣∣θ)p(θ) -, a proposal
distribution g(θ ′

∣∣θ), and number of iterations. This proposal distribution must be such that the
detailed balance condition is fulfilled [17]:

π(θ)g(θ ′
∣∣θ) = π(θ ′)g(θ

∣∣θ ′). (1.33)

the Markov chain itself must be ergodic, which means it must be aperiodic and recurrent. The
Markov chain is essentially walking randomly along the parameter space, the acceptance step is
critical to steer the chain into regions of high probability. It is fairly common to use a Gaussian
distribution N (θ t ,ε) as the proposal distribution. The variance ε is a specially important parameter
to tune since a very small variance will not let the random walker explore the whole parameter space
(without a large number of iterations) while a too large variance will not let the random walker be
attracted into high probability regions easily [17].

Given θ 0,π(θ),M
for t = 1 to M do

θ ′ ∼ g(θ ′
∣∣θ t−1)

A(θ ′,θ t−1) = min(1, π(θ ′)
π(θ t−1)

)

u∼ Unif(0,1)
if u≤ A(θ ′,θ t−1) then

θ t = θ ′

else
θ t = θ t−1

end
end

Algorithm 1: Metropolis-Hastings algorithm [17].
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Figure 1.5: Three different realisations of Random Walk Metropolis-Hastings with different variance
for the proposal function, notice the importance of choosing an adequate variance. Too small a
variance will not sample efficiently since it doesn’t traverse the whole posterior in a short number of
iterations; a large variance will cause most of the proposals to be rejected and the chain will get stuck
in a single part of the posterior. The contour plot represents the (unnormalised) density distribution
we wish to sample from.

1.3.2 No U-Turn Sampling

This sampling algorithm is intended to be an improvement over Metropolis-Hastings by attempting
to remove the random walking element. One of the deficiencies of random walk Metropolis-Hastings
is the fact that it traverses the parameter space randomly. For high dimensional models, this random
walk might take a very prohibitive time to converge. For continuous variables, as it is in this case, we
can define an auxiliary set of momentum variables and implement Hamiltonian Monte-Carlo [11].
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Figure 1.6: A visual representation of Hamiltonian Monte Carlo. Random sampling of momenta
changes the level curve of the particle, which is then evolved in time according to Hamilton’s equa-
tions with a Leapfrog numerical scheme. This allows for a greater exploration of the posterior.

For every variable θd , we define a momentum rd . These momenta are usually taken to be inde-
pendently drawn from a normal distribution. This results on the following joint distribution p(~θ ,~r):

p(~θ ,~r) = exp(L (~θ)− 1
2
~r ·~r) (1.34)

L is the logarithm of the joint density of the variables ~θ . This has a very natural interpretation as a
Hamilton system where θ is a particle’s position and~r is the momentum vector in a d-dimensional
space. We can then simulate the time evolution with an economic numerical method: the Leapfrog
algorithm which induces the updates:

rt+ε/2 = rt +
ε

2
∇L (θ) θ

t+ε = θ
t + εrt+ε/2 rt+ε = rt+ε/2 +

ε

2
∇L (θ t+ε) (1.35)

We can evolve this for L steps using the stepsize ε . However, since this is an approximation, we incur
in numerical error. Thus we can employ an acceptance-rejection step as in Metropolis to ensure that
we are moving into lower energy (higher probability) regions.

Since the Leapfrog method functions as the proposal function of Metropolis-Hastings, the pa-
rameters L and ε need to be tuned in a manner similar to the variance for the proposal distribution.
Usually ε is fixed, and the number of steps L is the one to be adjusted. The NUTS algorithm is an
alternative to this, by using an adaptive L found by means of a recursive algorithm [11].

1.3.3 Stochastic Gradient Langevin Dynamics
This algorithm is specially suited for large scale datasets and intended to be computationally cheaper
than the usual MCMC algorithms. In this algorithm, we implement Langevin dynamics. The pa-
rameter updates consist of gradient steps with an additional injection of Gaussian noise to avoid a
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collapse into a minimum. The resulting updates for a dataset with N data items xi are

θ
t+1 = θ

t −∆θt , (1.36)

∆θt =
εt

2

(
∇ log p(θ t)+

N

∑
i=1

log p(xi
∣∣θ t)+ηt

)
, (1.37)

η ∼N (0,ε). (1.38)

To ensure convergence to a local maximum, a major requirement is for the stepsizes εt to satisfy:
∞

∑
t=1

εt = ∞,
∞

∑
t=1

ε
2
t < ∞. (1.39)

A usual choice for the stepsize is εt = a(b+ t)−γ with γ ∈ (0.5,1] [19]. Note that this can be seen as
using a gradient-based proposal function and while usually an acceptance step is required, it can be
proven [19] that the decreasing schedule for εt makes it unnecessary.

1.3.4 Parallel Tempering
All of the methods mentioned above have a key fault. They will not sample the posterior accurately
if the posterior has multiple modes since the chain is not likely to move between them. To overcome
this, we use parallel tempering, also known as Metropolis Coupled Markov Chain Monte Carlo (or
MC3). This method is based on a simple statistical physics intuition: the system’s energy distribution
collapses to its most likely energy (the ground state) as the temperature decreases. Conversely,
heating the system will make the distribution wider and the energy valleys will be less sharp.

Given [θ
(0)
1 , . . . ,θ

(0)
n ],π(θ), [T1, . . . ,Tn],M

for t = 1 to M do
for i = 1 to n do

θ ′i ∼ g(θ ′i
∣∣θ t−1

i )

A(θ ′i ,θ
t−1
i ) = min

(
1, π(θ ′i )

Ti

π(θ t−1
i )Ti

)
u∼ Unif(0,1)
if u≤ A(θ ′i ,θ

t−1
i ) then

θ t
i = θ ′i

else
θ t

i = θ
t−1
i

end
end
j = Random(1, . . . ,n)

P(i, i−1) = min
(

1,
π(θ t

i−1)
Ti π(θ t

i )
Ti−1

π(θ t
i )

Ti π(θ t
i−1)

Ti−1

)
u∼ Unif(0,1)
if u≤ P(i, i−1) then

θ t
i = θ t

i−1
θ t

i−1 = θ t
i

end
Algorithm 2: Parallel tempering algorithm [13].

The algorithm consists of running n Markov chains through the parameter space in parallel with
an unnormalised posterior π(θ) = p(D

∣∣θ)p(θ). We define a set of temperatures T1,T2, . . . ,Tn so
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that we have the following auxiliary distributions πi(θ) = π(θ)Ti (occasionally, only the likelihood
part p(D

∣∣θ) is scaled, the prior is left untouched). In every iteration of the algorithm, a candidate
for every chain is proposed and is accepted or rejected according to the usual Metropolis step. After
the acceptance or rejection of the candidate for all chains a new Metropolis step happens, this time
between chains. A common way to do it is to use adjacent chains, since acceptance will not be very
likely for Ti << Tj, although occasionally random chains are used as well [13]. Notice that this
algorithm can be implemented with any of the algorithms reviewed in this section, since parallel
tempering does not specify the proposal function to be used for the generation of candidates in each
chain.

1.3.5 Adaptive Parallel Tempering
Parallel tempering offers a way to sample a multimodal distribution, a case in which a traditional
Metropolis-Hastings algorithm might get stuck in a single mode for too long and lead to a false
convergence. However, it is non-trivial to determine the temperature ladder to be used for each
particular case. Temperatures are often chosen empirically, guided by several trial runs and some
general guidelines [14].

In an adaptive algorithm, the temperatures are not set a priori, but rather, in every iteration of
the algorithm the temperatures themselves are updated along with the parameters to be sampled.
We seek to find a ladder of temperatures in which the mean transition probability (the probability
of switching parameters across chains) is uniform. To do so, we define our sequence of inverse
temperatures {βn}n≥0 = {β (1:N)

n }n≥0 to be parametrised by {ρn}n≥0 = {ρ(1:N)
n }n≥0 so that

β
(1)
n = 1, (1.40)

β
(m)
n = β

(m)(ρ
(1:m−1)
n ), m ∈ {2, . . . ,N}, (1.41)

β
(m+1)(ρ(1:m)) = β

(m)(ρ(1:m−1))exp
(
−exp(ρ(m))

)
. (1.42)

The adaptation of the temperatures occurs by updating {ρn}n≥0 as follows:

ρ
(l)
n = Πρ

(
ρ
(l)
n−1 + γn,1H(l)

(
ρ

1:l
n−1,θn

))
. (1.43)

Πρ is a projection into a constrain set, and

H(l)
(

ρ
(1:l),θ

)
= min

1,
(

π(θ l+1)

π(θ (l))

)∆β (l)(ρ(1:l))
−α

?, (1.44)

∆β
(l)(ρ(1:l)) = β

(l)(ρ(1:l−1))−β
(l+1)(ρ(1:l)). (1.45)

α? is the target acceptance rate between tempered chains. The algorithm is designed for the inverse
temperatures to converge into a value which yields the desired target acceptance rate α?, without
any prior tuning of the temperatures [14].
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Chapter 2

Neural Ordinary Differential
Equations

On the previous chapter, we examined one of the most simple neural network models. Now, we shall
combine that and ordinary differential equations to produce Neural Ordinary Differential Equations.
First of all, we give a brief over view of ordinary differential equations; then we go on to explain
exactly how do they fit into a deep learning framework; we also give a passing sketch of their diverse
applications, with an emphasis on their modelling potential for time series.

2.1 Ordinary Differential Equations
Let x = (x1,x2, . . . ,xn) be a n-dimensional vector where each xi ∈ x is a real-valued function; in
particular we shall develop the case where

xi : J→ R, i = 1,2, . . .n, (2.1)

J = [t0, t] is a continuous interval of R. We define an k-th order ordinary differential equation (ODE)
for x as

x(k) = F
(

t,x(0),x(1), . . . ,x(k−1)
)
. (2.2)

Here, F is a mapping J×Rn→Rn and x j stands for the vector of j-th derivatives of the components
of x, that is

x( j) =

(
d jx1

dt j ,
d jx2

dt j , . . .
d jxn

dt j

)
. (2.3)

A k-order differential equation can always be transformed into a system of k 1-st order differen-
tial equations by considering the vector y = (x,x(1), . . . ,x(i), . . . ,x(k−1)), then we obtain the system

y(1)1 = y2

y(1)2 = y3

...

y(1)k = F (t,y)

17



18 CHAPTER 2. NEURAL ORDINARY DIFFERENTIAL EQUATIONS

Furthermore, we can eliminate the explicit dependence on t of F by adding a new variable y1 = t,
then y = (y1,x,x(1), . . . ,x(i), . . . ,x(k−1)) and

y(1)1 = 1

y(2)2 = y3

...

y(1)k+1 = F (y)

In light of this, we will from now on only discuss systems of 1-st order ordinary differential equations
with no explicit time dependence.

We define an initial value problem for a system of ODEs by specifying the initial conditions
(t0,y0

1, . . . ,y
0
n)∈ J×Rn. A solution φ for the initial value problem is a vector of functions φ1, . . . ,φn :

J→ Rn that satisfy the system of ODEs and furthermore:

φ1(t0) = y0
1

φ2(t0) = y0
2

...

φn(t0) = y0
n

From the above given definitions, we see that a system of ODEs is a mapping of an n-dimensional
space into itself. This n-dimensional space, which in our particular case is Rn, is defined as the phase
space. A solution φ of an initial value problem can be interpreted as follows: given an initial point
y(t0) = (y0

1, . . . ,y
0
n) on the phase space with an initial time t0, an ODE system y(1) = F (y) is a

temporal evolution rule outputting a trajectory φ which moves in time through the phase space,
representing the temporal evolution of y(t0).

2.2 Combining ODEs and Neural Networks
The connection between neural networks and differential equations is made when we use a neural
network Uθ as the mapping F of an ODE system, resulting in the neural ordinary differential
equation

y(1) =Uθ (y). (2.4)

In this situation Uθ gives the time evolution of its input y(t0) through phase space, resulting in
an output y(t). From a computational point of view, we use a black-box numerical library to use
already-implemented numerical methods for approximation of differential equations; the specific
library used throughout this work is DiffEqFlux, a Julia library specially designed for neural ordi-
nary differential equations. [15]

Neural ODE can be integrated in a rather natural way into a deep learning framework. A clear
example comes from residual networks, commonly used for image classification[9]. A residual
network is constructed from a neural network Uθ mapping the input space Rn by mapping an input
x into

x→ x+Uθ (x). (2.5)

We can define a sequence of outputs xt , t ∈ {0,1, . . . ,T −1} given by

xt+1 = xt +Uθ (xt) (2.6)
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Figure 2.1: The trajectory through phase space from y(t0) given by F (y), which is represented on
the plot as the vector field over the phase space. Note that F (y) is always tangent to the trajectory
and represents its velocity on phase space.

The final output xT is composition of these equations. This is a discretisation of the equation (2.4),
obtained from a first order Taylor expansion of Uθ around the point xt , so a residual layer can be
interpreted as a discrete NODE[5] or conversely, a NODE is a continuous residual neural network.

Although, as discussed, NODE layers have wide potential for different applications, in this work
we shall focus on learning systems of differential equations from data. This is a supervised learning
problem where our training set consists of a set of observation times {ti}’s and observations {z(ti)}
of the system we wish to model. The idea is then to obtain a neural network Uθ capturing the hidden
dynamics that govern the system. The neural network is expected not only to interpolate accurately
between the observations in the training set, we wish to extrapolate from the training data to generate
predictions from our differential equations model. Our fundamental assumption is that the system
from which we are sampling the training data is generated by a differential equation so that

dz(t)
dt

= F (z(t)) (2.7)

then, we use a multilayer perceptron Uθ to approximate this function F . As mentioned on the pre-
vious chapter, we would like to obtain an estimate of the epistemic uncertainty associated to the data
and, through the posterior predictive distribution, give a probabilistic estimate of our predictions. As
discussed on the first chapter, this is equivalent to inducing a probabilistic Bayesian model once we
set the corresponding likelihood and priors for θ .

The assumption of a system being governed by a system of ordinary differential equations are
widely used for modelling because they are a fairly natural way of expressing the continuous time
dynamics of a certain set of variables zi’s with respect to time t. As we see, ODEs provide us with a
natural language to discuss the time evolution of a system; then, in principle, the only remaining step
is to find an adequate F which accurately models our system. However, using neural networks to
learn differential equations is in stark contrast to the usual modelling approach with ODEs; usually
the system of differential equations is derived not from data but from heuristic arguments or previous
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knowledge. This latter approach usually results in fairly interpretable models with little flexibility,
neural networks are in the opposite end: the flexibility of a neural network provided by the universal
approximation theorems is very high, although the high number of parameters and the non-linearities
involved make for a model with little interpretability.



Chapter 3

Some Simple Examples

In this chapter we wish to demonstrate the Bayesian framework that has been already discussed.
In particular, it is of interest to determine and discuss the performance of the sampling algorithms
discussed at the end of the past chapter. To do so, we generate artificial data from two deterministic
ODE systems and from a small part of the whole time series, attempt to forecast the rest of it along
with a probabilistic distribution for the model’s forecast.

3.1 Case Study 1: Reconstruction of a Neural ODE

In this case study, we define a R2→ R2 mapping by using a neural network with one hidden layer
of fifty neurons. The activation function for the hidden layer is a sigmoid and the activation function
for the output layer is the identity. We initialise at random a fixed set of weights and biases to gen-
erate data for two variables x1,x2 for t ∈ [0,25] by numerically integrating with the initial condition
x1(0) = 1,x2(0) = 0. We split this data in two and use the first half (t ∈ [0,12.4]) to benchmark the
four sampling algorithms previously discussed.

As likelihood we use a Gaussian distribution with constant variance centered on the model’s
predictions. We use a uniform prior over the parameters. This results on a measure π(θ

∣∣D) propor-
tional to the posterior, given by

π(θ
∣∣D) =

12.4

∏
t=0

exp

[
−1

2

(
NODEθ (xt)− xt)

σ

)2
]

(3.1)

3.1.1 Random Walk Metropolis-Hastings

Metropolis-Hastings was implemented by using a random sample from a multivariate normal dis-
tribution N (0,0.1I). The chain was run for 2000 steps with a variance ε = 1.5 for the proposal
function (Gaussian proposal). Several trial chains were run varying both the variance ε and the
number of steps for the chain. It was observed that the acceptance rate was higher than 90% for all
ε proposals used (ε from 10−4 to 10.5).

21
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Figure 3.1: 250 samples from RWMH

3.1.2 No U-Turn Sampling

The algorithm was initialised with a starting point generated from a multivariate normal N (0, I).
The identity matrix was used as mass matrix. We allowed for 300 samples, using 100 to allow the
algorithm to warm-up, aiming for an acceptance rate of 0.65.

Figure 3.2: 200 samples from NUTS sampling



3.1. CASE STUDY 1: RECONSTRUCTION OF A NEURAL ODE 23

3.1.3 SGLD

The algorithm was again initialised with a variable from a Gaussian distribution. SGLD was run for
40000 iterations with parameters a = 0.035,b = 0.25,γ = 0.65; these parameters were chosen after
tuning using several trial runs. The last 500 samples from the algorithm were used to approximate
the posterior.

Figure 3.3: 500 samples from SGLD

3.1.4 Parallel Tempering

In this implementation of parallel tempering, we use a ladder of eight decreasing temperatures in
a geometric sequence {Ti = 0.1i−1

∣∣i = 1, . . . ,8}. Each of the eight chains were initialised with a
N (0,0.5I) sample. The algorithm was run for 2500 steps with a variance ε = 0.1 for the proposal
function. We use the last 500 samples from the warmest chain to approximate the posterior.
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Figure 3.4: 500 samples from parallel tempering

As we can appreciate from the plots, the vanilla Metropolis-Hastings algorithm and NUTS result
in worse estimates. Both SGLD and parallel tempering provide a better estimate, reaching into the
posterior’s regions of high probability. However, as appreciated on (3.3), the sampling process gets
stuck into a single local minimum and doesn’t explore the rest of the posterior. Parallel tempering
clearly avoids this, traversing several minima, as we can see on (3.4). It is to be remarked, that
unlike the rest of the sampling algorithms, NUTS wasn’t fine tuned; allowing a greater number of
warm-up samples or changing the target acceptance rate might improve its performance. However,
in principle, the algorithm is self adapting, so the improvement might not be as large as required.
The computational time for NUTS is also considerably higher than the other three methods, taking
about eight hours to complete, compared to minutes for the rest of the algorithms.

3.2 Case Study 2: Lotka-Volterra Equations

In this section we apply the aforementioned sampling methods to the Lotka-Volterra system of equa-
tions. The Lotka-Volterra equations are two nonlinear differential equations, originally proposed to
model interactions between a prey and a predator. The two variables x1,x2 evolve in time according
to:

dx1

dt
= αx1−βx1x2 (3.2)

dx2

dt
= δx1x2− γx2 (3.3)

with α,β ,γ,δ real, positive parameters for the model.
We generate data with the initial condition x1(0) = 1,x2(0) = 1 and parameters α = 1.5,β =

1,γ = 3,δ = 1 for the time span t ∈ [0,14]. The architecture proposed for our neural network is a
simple two layered multilayered perceptron with fifty neurons on its hidden layer. The activation
for the hidden layer is a sigmoid and the identity function for the output layer. As posterior, we
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proposed again an uniform prior on the parameters of the neural network and a Gaussian likelihood
as used in the first case study.

3.2.1 Random Walk Metropolis-Hastings

The algorithm was implemented using a Gaussian distribution with variance ε = 0.5 as proposal
function. The chain was run for 2000 steps and while several trial runs were used to determine
optimal number steps and variance for proposal function, the acceptance rate consistently remained
around 90%. The last 500 steps of the chain were used to simulate the posterior.

Figure 3.5: 500 samples from Random Walk Metropolis-Hastings.

3.2.2 No U-Turn Sampling

The algorithm was randomly initialised, with the identity matrix again as mass matrix. The algo-
rithm was run for 500 steps, allowing the first 100 for warming up of the chain. The algorithm adapts
the stepsize and mass matrix with a target acceptance rate of 0.65.

3.2.3 SGLD

As before, the algorithm was randomly initialised and run for 40,000 steps. As parameters, a =
0.5,b = 0.05,γ = 0.5 were chosen after several trial runs. The last 500 steps of the algorithm were
used as samples.
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Figure 3.6: 400 samples from NUTS algorithm.

Figure 3.7: 500 samples from SGLD.

3.2.4 Parallel Tempering

After several trial runs fine tuning the number of steps, the temperature ladder and the variance
for the proposal function in regular parallel tempering, we ran Adaptive Parallel Tempering with
10 temperature levels using an adaptive proposal function. The algorithm was run for for 350,000
steps. The target acceptance rate between the temperature chain was 0.24. The posterior itself was
tempered with an initial temperature of T = 1×10−4. The last 500 samples from the warmest chain
were used to simulate from the posterior.
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Figure 3.8: 500 samples from parallel tempering.

As shown in the previous figures, we see a similar trend for the sampling methods as in case
study 1. Metropolis-Hastings and NUTS don’t seem to converge into the high probability regions
of the posterior. In that respect, both SGLD and parallel tempering seem to do better. Interestingly
enough, the neural network captures the periodicity inherent to the system in a mostly accurate
manner with a little amount of data. The initial temperature used in both parallel tempering cases
seems to indicate that posterior tempering provides not only better fits to the training data but also
better generalisations. Parallel tempering however, allows the exploration of multiple modes of the
posterior instead of getting stuck in the MAP region.

Again, it is to be noted that SGLD converges to a single mode of the posterior, while parallel
tempering, both in the adapting and non-adapting case, explores more of the posterior. The low
temperatures required in both cases to reach the high probability regions seem to imply a posterior
with several local minima, which would explain the poor performance of Metropolis-Hastings and
NUTS, since it would be likely for them to get stuck on different local modes, impeding them from
traversing the whole posterior.

This hypothesis seems reinforced by the fact that in both cases NUTS took a significantly higher
execution time (about eight hours for NODE reconstruction and about four days for Lotka-Volterra).
The high execution time is due to the recursive nature of the algorithm; it runs several trees inde-
pendently to determine the best stepsizes to avoid get stuck on local minima. Several local minima
would then increase the computation time. This also might be indicative of the fact that using more
iterations of the algorithm might allow better performance, although computationally more expen-
sive than parallel tempering.

Finally, it is worth noting that a change of prior might improve the performance of the algo-
rithms, since it might help to smooth out some of the modes of the posterior. For both parallel
tempering and random walk Metropolis-Hastings, special consideration must be taken on the num-
ber of parameters for the neural network. A high number of parameters might make the random
walk about the parameter space rather inefficient and therefore the chains might take too long to
converge to the posterior. This problem is often referred as the curse of dimensionality.[4]
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Chapter 4

Epidemiological Forecasting

Now that we have reviewed the necessary Bayesian framework and we have discussed through two
simple examples the pros and cons between different numerical approximations to the posterior,
we are ready to focus on the main application of this thesis: epidemiological forecasting. As we
have previously discussed, a Bayesian framework is more robust than a simple point estimation,
considering that point estimation discards all possible forecasts as given by the data and it doesn’t
provide quantification of the quality of the estimation. Having a probability distribution for our epi-
demiological forecasts, the Bayesian predictive posterior, makes for a more trustworthy prediction
system for decision making involving huge health and economic risks such as those posed by the
implementation of restrictive measures.

In this chapter, we briefly discuss the workhorse for epidemiological modelling: compartmental
models. We focus particularly on the SEIR model, and using generated data from this model, we
apply our Bayesian NODE techniques for forecasting. Finally, we discuss possible applications and
implementation details for real data.

4.1 Compartmental Epidemiological Models
We begin by considering a population that can be divided according to a certain set of criteria,
in this case stages of disease, into n homogeneous compartments resulting on the set of variables
x = {x1,x2, . . . ,xn}. These variables are the ones that define our epidemiological compartmental
model. From those compartments, determine by epidemiological interpretation the subset of infec-
tious compartments of x. For ease of discussion, let the first m compartments be the infectious ones;
using this convention, we define the set Xs = {x ≥ 0

∣∣xi = 0, i = 1, . . . ,m} as the set of all disease
free-states (no infected population). Defining Fi(x) as the rate of appearance of infected individuals
on compartment i and V +

i (x),V −i (x) as the rate of transfer in and out of compartment i respectively
by all other means, the compartments evolve from a non-negative set of initial conditions according
to the system of equations

dxi

dt
= fi(x) = Fi(x)−Vi(x) (4.1)

where Vi(x) = V −i −V +
i .[7]

Note that both Fi and Vi denote a directed transfer between compartments, they must be non-
negative. From this fact, the following set of properties follow:
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if x≥ 0, then Fi,V
+

i ,V −i ≥ 0 for all i = 1, . . . ,n (4.2)

if xi = 0, then V −i = 0, in particular, if x ∈ Xs then V −i = 0 for i = 1, . . . ,m (4.3)

Fi = 0 for i = 1, . . . ,m (4.4)

Finally, to ensure a model consistent with observation, we must assume that a free of disease
population will always remain so. This gives the property:

if x ∈ Xs, then Fi(x) = 0, and V +
i (x) = 0 for i = 1, . . . ,m (4.5)

From all the first two conditions, a highly important condition arises. If both conditions are
fulfilled, then xi = 0 automatically implies that fi(x)≥ 0 and hence, the non-negative cone (xi≥ 0, i=
1, . . . ,n) is a forward-invariant set of the system of equations. Forward invariance guarantees that
the solutions to the compartmental model with non-negative initial conditions will always remain
non- negative. [7]

4.2 NODEs for Compartmental Models
Our next objective then is to incorporate neural networks into this compartmental model framework.
We do this by splitting the population into compartments according to epidemiological interpretation
and/or availability of data and sample the fraction of population in each compartment for certain
moments in time. Then, we use a neural network to predict the evolution of those compartment
from the given data. It is somewhat inexact to say that we are replacing the compartmental model
with a neural network since we are implicitly choosing a compartmental model when splitting the
population. Rather, we are replacing the dynamics of the model, given by (4.1), with the neural
network.

It is very important to remark on the conditions (4.2), (4.3), (4.4) given on the previous section.
These conditions are rather strong yet absolutely necessary from an interpretability perspective.
Forward invariance, guaranteed by the referenced conditions, assures us that whenever our initial
conditions are "physical", our solutions will always be "physical" since negative compartments are
senseless from a modelling point of view. Then, special care must be taken when designing the
neural network architecture to be used for the approximation of the model’s dynamics; we attempt
to address this and show the capability of NODEs for the following case study on one of the simplest
compartmental models.

4.3 Case Study: SEIR Model
The SEIR model assumes a constant population N divided into four compartments: susceptibles
S, exposed E, infected I and recovered R, we normalise the population so that the compartments
actually represent the fraction of the total population in each stage of the disease. The flow of the
populations through the four stages is S→ E → I → R in the following way: the population in S
is not immune to the virus, after coming into contact with the infected populations it is infected
with a probability β ; the newly infected do not immediately turn infectious, rather, the disease is
latent for those in the E compartment for a certain period of time; after a period of time, the infected
population becomes infectious to others, flowing into the I compartment; finally, the infectious
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population eventually recovers after a certain time and flows into the R compartment. Thus, we can
write the differential equations system for the four variables as

dS
dt

=−βSI (4.6)

dE
dt

= βSI− 1
τE

E (4.7)

dI
dt

=
1
τE

E− 1
τi

I (4.8)

dR
dt

=
1
τi

I (4.9)

the parameter β corresponds to the infection force of the disease, τE and τI correspond to the average
time a person spends on the exposed E or infected I stage, respectively.

The system we want to model has two constraints that must be preserved by the predictions
of the neural ODE: the aforementioned forward invariance and a constant population N. This last
condition implies the sum of the derivatives for each compartment must be zero since

dN
dt

=
dS
dt

+
dE
dt

+
dI
dt

+
dR
dt

= 0 (4.10)

then, every solution for each compartment must be within the interval [0,1]. The second constraint
is relatively simple to encode into the neural network: instead of outputting a 4-element vector
corresponding to the derivative of the system, the neural network return a 3-element vector and the
fourth element is determined by the fact that the four entries must sum to zero. The second constraint
however is not as simple to encode directly, so the approach used was to make use of the fact that
the solution must be between 0 and 1. Since the sigmoid mapping σ(x) = 1

1+e−x is injective on
the (0,1) interval, we can apply the inverse transformation of the sigmoid x = − log( 1

σ
− 1) to the

training data and solve the differential equation in that inverse space. The solution is taken to the
original solution space by applying the sigmoid mapping. Note that since the inverse of the sigmoid
doesn’t preserve the zero-sum derivative condition, we can’t implement both constraints at the same
time.

For this case study we generate data from the SEIR model with normalised variables using
the initial conditions S(0) = 0.9,E(0) = 0.02, I(0) = 0.07,R(0) = 0.01 using the parameters β =
0.25,τE = 50,τI = 45. The system of equations was numerically solved and then Gaussian noise
with variance σ = 1×10−5 was added to the data. For our Bayesian model a neural network with
two hidden layers was used; the first layer consisted of 12 neurons, the second layer used 5 neurons
and finally the output layer with four output neurons. In both hidden layers, a σ activation was used,
the output layer has an identity activation. We apply a Gaussian N (0,1) prior on the parameters θ

of the neural network such that the posterior is written as

p(θ
∣∣D) ∝ e−L (θ), L (θ) =

T

∑
t0

[xt − x̂t(θ)]
2 +∑

θ

θ
2, (4.11)

with x̂t(θ) as usual, standing for the solution given by the NODE at time t with initial condition xt0
and parameters θ .

To sample the posterior, adaptive parallel tempering was used with ten different temperature
levels. We set an initial temperature of T = 1×10−4 for the posterior. The last 2,000 samples from
the warmest chain were used. In order to showcase the reduction of epistemic uncertainty when
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additional data is fed into the model, this process was repeated three times; starting with the first
100 days as training data, we increased the time window in steps of 50 days until reaching 200 days
for training usage.

Figure 4.1: Predictive posterior for SEIR using T = 100
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Figure 4.2: Predictive posterior for SEIR using T = 150
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Figure 4.3: Predictive posterior for SEIR using T = 200
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There are several important things to note from the above figures. In general, the neural network
gives a fairly close fit to the data although, while we have our solutions constrained to the (0,1)
interval, there is no conservation of constant population for all of the solutions. This is to be expected
since the sigmoid mapping trick only takes care of constraining the solution but it doesn’t preserve
the zero-sum condition for the derivative. This might be mitigated by adding more either more layers
or neurons to the neural network in order to allow for greater complexity in the neural network,
however, the addition of parameters increases the dimensions of the parameter space which worsens
the performance of the sampling algorithms used.

Notice as well that adding more data improves the generalisation capabilities of the model, which
again it is to be expected since when more data is added, the neural network gains more information
about the system. As we also expected, the variance in the predictive posterior is reduced when
more data is added. Overall we notice that in the regime of little training data, the neural network
model seems to be more predisposed to overfitting; this is expected since it is common knowledge
that neural networks tend to require a high amount of training data to generalise better.
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Chapter 5

Conclusions and Future Work

Neural networks are a powerful tool for pattern recognition due to their capability of approximating
any function given enough layers and parameters. Differential equations have been for centuries
one of the most widely used tools for modelling due to their natural interpretation in many physical
and natural processes. Recently, research effort has been directed in matching both tools into an
even more powerful tool, combining the high model flexibility of neural networks with the very
natural notion of evolving an input through time, notion very naturally expressed with differential
equations. One of the immediate areas where both tools come together is in the forecasting of
time series, where a neural network is used to recreate from training data, the dynamical equations
governing the system.

A particularly important part of forecasting is assessing the trustworthiness of our predictions
and quantifying the information we gain from the available data about the system. Neural networks
as commonly used, with a frequentist framework, are prone to overfitting and throw away valuable
information about the uncertainty of our forecasts. Bayesian inference provides a conceptually clear
framework to avoid these issues. Treating the parameters of the neural network as random variables
themselves, allows us to define a predictive posterior in which our knowledge about the epistemic
uncertainty of our model is encoded.

A key part of Bayesian inference is an adequate selection of priors. Not only does a good prior
encode our beliefs about the data better, but a poor prior may render a model useless. While we
showed that a Gaussian prior on the neural network’s parameters yields good results, there is still
work to be done in figuring out better priors, since there’s not much foundation for it, other than its
ease of computation.

While very conceptually sound, the integrals required to calculate the predictive posterior present
a very high barrier for the implementation of Bayesian methods in practise. A common way to go
around the intractability of the required integrals are sampling methods, these allow for a sound
approximation of the posterior although they usually are computationally expensive and somewhat
difficult to evaluate. Bayesian neural networks is a growing field of study which until recently
has not been hyped due to the high number of parameters involved, the high dimensionality of
the parameter space makes even approximate methods prohibitively expensive to implement. In
this work, we compared four different sampling methods, finding that parallel tempering with a
descending temperature scale is the most effective one, both in performance and computation time.
It is to be noted, though, that all the neural networks used are rather shallow and the number of
parallel chains used was relatively low. Unfortunately parallel tempering using random walks as a
proposal function doesn’t scale very well as the number of parameters increases and loses much of
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its effectiveness due to the famous curse of dimensionality.
A particularly interesting area of application of Bayesian inference and Neural Ordinary Dif-

ferential Equations is epidemiological forecasting. A frequentist approach in an area of very high
risk, with huge health, economic and societal implications, such as epidemiology is rather useless
and a Bayesian approach becomes a very appealing option. One of the most widely used tools for
modelling epidemics is compartmental models. These models are governed by a system of differen-
tial equations describing the evolution of a pandemic. Here is where NODEs come into action, the
effectivity of neural networks to detect patterns in data makes them very attractive for discovering
the underlying governing equations of the compartmental model with few assumptions about it. It
is important to note though, that compartmental models have very specific mathematical properties
which ensure that the model produces interpretable solutions. These properties are not trivial to
implement in a neural network and a future line of work is designing a suitable architecture in order
to encode more prior knowledge about the model.

In spite of the previously stated, a case study using simulated data from the classic SEIR model
shows promising evidence of the predictive power of NODEs and Bayesian methods. We showed
that a shallow neural network is enough to approximate the governing equations of the SEIR model,
although some of the solutions obtained as part of the predictive posterior are not interpretable,
due to the flaws in the architecture that were mentioned above. As it was expected, the epistemic
uncertainty of the model is reduced when more data is used, as it was showcased by showing the
approximate predictive posterior for different time windows. It was noted that, as it is the case
with neural networks, predictions with poor data tended to generalise poorly. A solution to this
and the previous point is the use of Universal Ordinary Differential Equations, where only a part of
the differential equations are replaced by a neural network[16]. This allows us to write in model
structure in a more easy and straightforward manner. An added benefit is that less data is necessary
to produce good predictions.

In many practical cases it is not possible to have a reliable sample of certain compartments of
epidemiological models. This leaves us with an incomplete vector state for the model’s differential
equations making them not well defined. It is of interest then to determine the performance of
NODEs with missing data; a particularly interesting approach is detailed on [18] where the variable
space is artificially augmented to account for the missing variables.

As we can see, Neural Ordinary Differential Equations are a relatively new area of research but
the fact that it is conceptually appealing for forecast prediction and the ease of implementation of
Bayesian methods make it a very interesting area with very high potential.
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