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Abstract

We present a study of the two-flavor Schwinger model by means of lattice simulations,
using Wilson fermions and the Hybrid Monte Carlo algorithm. At finite temperature, we
measure the masses of the bosons, which are related to mπ and mη, as a function of the
degenerate fermion mass m. We compare the results with the numerical solution of a
set of equations obtained by Hosotani et al. based on bosonization, which predict these
masses when m �

√
2g2/π, where g is the gauge coupling. Furthermore, we measure

the pion decay constant Fπ in the so-called δ-regime, where finite size effects of the pion
mass lead to Fπ = 0.6688(5). Finally, we measure the quenched topological susceptibility.
Applying a two-dimensional version of the Witten-Veneziano formula, we compute the η
meson decay constant Fη = 0.374(3), which has a lower value than Fπ. This is in contrast
to large Nc Quantum Chromodynamics, where the two decay constants coincide.

i



Resumen

Se presenta un estudio del modelo de Schwinger con dos sabores por medio de simula-
ciones Monte Carlo, usando fermiones de Wilson y el algoritmo Monte Carlo Hı́brido.
A temperatura finita, se miden las masas de los bosones que aparecen en la teoŕıa, las
cuales se encuentran relacionadas con mπ y mη, como función de la masa degenerada de
los fermiones, m. Se comparan los resultados con la solución numérica a un conjunto de
ecuaciones obtenidas por Hosotani et al. basándose en bosonización. Dichas ecuaciones
predicen las masas de los bosones cuando m �

√
2g2/π, donde g es la constante de

acoplamiento de gauge. Asimismo, se mide la constante de decaimiento del pión Fπ en
el llamado régimen δ, donde efectos de volumen finito sobre la masa del pión conducen
a Fπ = 0.6688(5). Finalmente, se mide la susceptibilidad topológica. Aplicando una
versión bidimensional de la fórmula de Witten-Veneziano, se determina la constante de
decaimiento del mesón η, Fη = 0.374(3), la cual tiene un valor más bajo que el de Fπ. Esto
contrasta con Cromodinámica Cuántica con muchos colores, en donde ambas constantes
de decaimiento coinciden.
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Introduction

Quantum Chromodynamics (QCD) is the theory for the strong interaction. It is described
in terms of quark and gluon fields. Phenomenologically, it is known that the quarks
and gluons are confined and it is not possible to isolate them. Still, at high energies, the
quarks are asymptotically free and we can study their interaction by means of perturbative
methods. At low energy we cannot use the coupling constant as a perturbative parameter,
so different methods are used.

A non-perturbative approach to the low energy regime of QCD are lattice simulations,
which allow us to derive results from first principles. The first notions of this method were
developed by Kenneth Wilson in the 1970s [1]. The general idea is based on the functional
integral formalism. Performing a transition to Euclidean time (a Wick rotation), we can
interpret the functional integral as a partition function of Statistical Mechanics. Then
we discretize the Euclidean space-time and using the partition function we generate field
configurations by means of Monte Carlo algorithms. With the configurations we can
measure different observables. Numerous results have been obtained with this approach
and they agree with experimental measurements, for instance, hadron masses, matrix
elements and decay constants1.

Perhaps, the most noticeable challenge of lattice QCD are the high computational
resources that are needed. Therefore, it is more convenient to test numerical techniques
in simpler models than QCD. The Schwinger model is a common choice as a toy model
for QCD. It represents QED in two dimensions and has similar properties as QCD, such
as confinement, topology and chiral symmetry breaking. Also, since the model is two
dimensional, simulations do not require that much computer power. The model was
introduced by J. Schwinger in 1962 [3, 4]. Later, S. Coleman et al. proved the properties
that we mentioned before [5, 6].

For one massless fermion, the Schwinger model has an exact solution. However, for
N > 1 massive flavors there is no precise analytic solution for the chiral condensate or the
masses of the bosons that appear in the model. Even so, there have been several analytic
approaches. In particular, in Chapter 3 we review the work done by Hosotani et al.,
which uses bosonization to reduce the finite temperature Schwinger model to a quantum
mechanical system. Assuming two degenerate flavors of mass m, they arrive at a set of
equations, which can be solved numerically in order to compute the chiral condensate and
the mass of the bosons that appear, for arbitrary values of m, as long as m �

√
2g2/π,

where g is the gauge coupling. We compare the solution of Hosotani’s equations with
lattice simulations of the Schwinger model at finite temperature.

Another approach to the low energy regime of QCD are effective field theories. A
particularly successful one is Chiral Perturbation Theory. In this theory one considers the

1A review of the most important lattice measurements at low energy can be found in ref. [2].
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Introduction

spontaneous symmetry breaking of the chiral flavor symmetry of QCD

SU(N)L ⊗ SU(N)R → SU(N)L=R

to write an effective Lagrangian, in terms of a field U(x) in the coset space

U(x) ∈ (SU(N)L ⊗ SU(N)R)/SU(N)L=R = SU(N).

This field represents the lightest hadrons for N flavors, so at low energy they dominate
the theory. Also, the meson field U(x) replaces the quark and gluon fields.

In finite volume, several regimes of Chiral Perturbation Theory are established. We
focus on the δ-regime, which consists of a small spatial volume but with a large Euclidean
time extent. This regime has been little explored in the literature. Although it is unphysi-
cal, one can obtain physical results for the low energy constants of QCD. Also, it could be
of interest because the small spatial volume enables faster simulations. Based on previous
results obtained by Leutwyler, Hasenfratz and Niedermayer [7,8] for dimension d ≥ 3, we
make a conjecture about their two-dimensional version and we verify it by simulating the
two-flavor Schwinger model. This allows us to compute the pion decay constant Fπ in two
dimensions.

Finally, we determine the quenched topological susceptibility and, by using the Witten-
Veneziano formula [9,10], we obtain the decay constant of the η-meson in two dimensions.
In large Nc QCD, it coincides with Fπ. We verified whether the relation Fη ' Fπ is also
valid in the Schwinger model.

Outline

This thesis is composed of the following chapters:

• Chapter 1: We discuss some important features of the Schwinger model and their
relation with QCD.

• Chapter 2: We review the path integral and we explain the transition to Euclidean
space. We discuss the main ideas about how a lattice simulation is carried out. We
present the lattice formulation of Euclidean QED. Finally, we extend the ideas of
the lattice formulation from QED to QCD.

• Chapter 3: We review the analytic approach to the Schwinger model by Hosotani
et al. We compare the results of lattice simulations with a numerical solution to a
set of equations, which allow us to compute the masses of the bosons that appear in
the theory.

• Chapter 4: We review basic concepts of Chiral Perturbation Theory. We briefly
describe three finite volume regimes, which can be used to perform lattice simulations
of QCD, with a focus on the δ-regime. We present results of the measurement of the
pion decay constant, Fπ, in two dimensions.

• Chapter 5: We define the topological charge, the topological susceptibility and we
compute them with lattice simulations. In this manner, we determine Fη in two
dimensions by using the Witten-Veneziano formula for the Schwinger model.

• Chapter 6: We summarize our results and present the conclusions.

• Appendix: We describe the Hybrid Monte Carlo algorithm for a scalar field, a nu-
merical integral, the jackknife error and the autocorrelation time.

vi



Chapter 1

The Schwinger model

The Schwinger model represents Quantum Electrodynamics in 1+1 dimensions [4]. It
is used as a toy model for Quantum Chromodynamics (QCD), because it has similar
properties, such as: confinement, chiral symmetry breaking and topology. In contrast to
QCD, however, this model does not have a running coupling constant. Its Lagrangian in
Minkowski space-time (in natural units) for one flavor is given by

L = −1

4
FµνF

µν + ψγµ(i∂µ − gAµ)ψ −mψψ, (1.1)

where Fµν = ∂µAν−∂νAµ, Aµ(x) is the U(1) gauge field, g is the gauge coupling constant,
ψ and ψ are independent Grassmann fields in the functional integral formulation (see
Chapter 2) and γµ are the Dirac matrices. They can be chosen as

γ0 = σ3 =

(
1 0
0 −1

)
, γ1 = iσ1 =

(
0 i
i 0

)
, (1.2)

which satisfy (γµ)† = γ0γµγ0, {γµ, γν} = 2gµν with gµν = diag(1,−1). We assume Aµ(x)
to be dimensionless and g to have dimension mass. With the γ matrices, we can define
one more matrix

γ5 ≡ γ0γ1, which implies {γµ, γ5} = 0, γ2
5 = I, γ†5 = γ5. (1.3)

The equations of motion can be obtained through the Euler-Lagrange equations

∂µ

(
∂L

∂(∂µAν)

)
− ∂L
∂Aν

= 0 ⇒ ∂νF
νµ = gJµ, Jµ ≡ ψγµψ, (1.4)

∂µ

(
∂L

∂(∂µψ)

)
− ∂L
∂ψ

= 0 ⇒ i∂µψγ
µ +mψ = −gγµAµψ, (1.5)

∂µ

(
∂L

∂(∂µψ)

)
− ∂L
∂ψ

= 0 ⇒ iγµ∂µψ −mψ = gγµAµψ. (1.6)

Since Fµν is antisymmetric, eq. (1.4) implies that Jµ is conserved

∂µJ
µ = 0. (1.7)

If one applies a global axial transformation to the fields ψ and ψ

ψ → ψ′ = eiαγ5ψ, ψ → ψ ′ = ψeiαγ5 , α ∈ R, (1.8)

1



Chapter 1.

the Lagrangian in eq. (1.1) transforms to

L = −1

4
FµνF

µν + ψeiαγ5γµ(i∂µ − gAµ)eiαγ5ψ −mψe2iαγ5ψ. (1.9)

Since {γµ, γ5} = 0, it follows that

e−iαγ5γµ = (I− iαγ5 + · · · ) γµ = γµ (I + iαγ5 + · · · ) = γµeiαγ5 , (1.10)

and therefore

L = −1

4
FµνF

µν + ψγµ(i∂µ − gAµ)ψ −mψe2iαγ5ψ. (1.11)

We see that for m = 0, the Lagrangian has a symmetry under the transformation given
in eq. (1.8). The Noether current of this symmetry, known as axial current, is

Jµ5 = ψγµγ5ψ. (1.12)

Let us compute its divergence by taking into account the mass, using eq. (1.3) and relying
on the equations of motion (1.5) and (1.6)

∂µJ
µ
5 = ∂µψγ

µγ5ψ + ψγµγ5∂µψ

= ∂µψγ
µγ5ψ − ψγ5γ

µ∂µψ

= i(gAµψγ
µ +mψ)γ5ψ + iψγ5(gAµγ

µψ +mψ)

= igAµψγ
µγ5ψ + imψγ5ψ − igAµψγµγ5ψ + imψγ5ψ

= 2imψγ5ψ. (1.13)

Hence, one would expect in the massless model Jµ5 to be conserved. However, it was proved
that Jµ5 exhibits an anomaly at the quantum level [11,12]. When m = 0 one actually has

∂µJ
µ
5 = − g

π

1

2
εµνF

µν . (1.14)

This equation is known as the axial anomaly. In order to show that the theory is sensitive
to this expression, we define

∗F ≡ 1

2
εµνF

µν = F 01 = −F01 = −E. (1.15)

In 1+1 dimensions the Abelian strength field tensor is given by

Fµν(x) =

(
0 E(x)

−E(x) 0

)
, (1.16)

which confirms ∗F = −E. Furthermore, Fµν = εµνF01 = εµνE, hence

Fµν = −εµν ∗F. (1.17)

Let us note that

ε01γ1 = −ε01γ1 = −γ1 = γ1 = γ0γ0γ1 = γ0γ5,

ε10γ0 = −ε10γ0 = γ0 = γ0 = −γ0γ1γ1 = γ1γ0γ1 = γ1γ5, (1.18)

therefore εµνγν = γµγ5. With this expression we can rewrite eq. (1.12) as

Jµ5 = εµνJν . (1.19)

2



Confinement Chapter 1.

If we multiply by εσµ and use the property ενµεµσ = δνσ, eq. (1.19) takes the form

Jσ = εσµJ
µ
5 , Jσ = εσµJ5µ. (1.20)

Substituting eq. (1.17) in eq. (1.4) leads to

− ∂µεµν ∗F = gJν (1.21)

and by using eq. (1.20) we have

− ∂µεµν ∗F = gενµJ5µ. (1.22)

Multiplying by ενρ yields
∂ρ
∗F = gJ5 ρ. (1.23)

We can take the derivative on both sides of the equation and rename the dummy index

∂µ∂µ
∗F = g∂µJ5µ = −g

2

π
∗F. (1.24)

Finally, substituting eq. (1.15) gives(
∂2 +

g2

π

)
E = 0, (1.25)

which is the Klein-Gordon equation of a scalar field with the mass µ, µ2 = g2/π. Therefore,
in the massless one flavor Schwinger model, a boson of mass µ appears. This result has
been generalized to an arbitrary number of N massless flavors [13], where a boson of
mass µ2 = Ng2/π appears, along with N − 1 massless bosons. For massive fermions no
general solution exists, although there are several approaches. We will review one of those
approaches in Chapter 3. Deeper discussions of QED in 1+1 dimensions can be found in
refs. [14, 15].

1.1 Confinement

As we mentioned before, the Schwinger model exhibits confinement. We can illustrate this
fact by analyzing the classical equations of motion

∂µF
µν = Jν . (1.26)

Let us fix the gauge by setting A0 = 0 and suppose that we place a charge g at the origin,

∂1F
10(x) = gδ(x) =⇒ ∂xE(x) = gδ(x) =⇒ E(x) = gθ(x) + E0, (1.27)

where θ(x) is the Heaviside function and E0 is a constant electric field. If we calculate the
energy of this configuration, we see that it diverges

1

2

∫ ∞
−∞

dxE2 →∞. (1.28)

This means that the finite energy states must be charge neutral. Now, let us consider two
charges ±g at x = ∓L/2. The equation of motion reads

∂xE(x) = g δ

(
x+

L

2

)
− g δ

(
x− L

2

)
=⇒ E(x) = g θ

(
x+

L

2

)
− g θ

(
x− L

2

)
+E0.

(1.29)

3



Vacuum angle Chapter 1.

Figure 1.1: Electric field between an electron-positron pair in QED2, considering the
background field E0.

If we set E0 = 0, the electric field is

E(x) =

{
g |x| < L

2

0 otherwise.
(1.30)

We can calculate the energy of this configuration,

1

2

∫ ∞
−∞

dxE2 =
1

2

∫ L/2

−L/2
dx g2 =

g2L

2
. (1.31)

We see that the energy grows linearly with the separation of the charges, illustrating
confinement. This property holds at the quantum level as well [5].

1.2 Vacuum angle

If we do not fix the background field E0 to zero, it is possible to generate electron-positron
pairs when the difference of the energy between both particles together and the background
field is negative

∆H =
1

2

∫ L/2

−L/2
dx
[
E(x)2 − E2

0

]
< 0. (1.32)

The electric field E(x) between the particles is now given by (see figure 1.1)

E(x) = E0 ± g, −L
2
≤ x ≤ L

2
. (1.33)

Pairs can be created when

∆H =
L

2

(
g2 ± 2gE0

)
< 0

⇔

{
g
2 < E0 for E(x) = E0 − g
E0 < −g

2 for E(x) = E0 + g

⇔ g

2
< |E0|. (1.34)

In this context, the vacuum angle θ is introduced as

θ =
2πE0

g
. (1.35)

4



Chiral symmetry breaking Chapter 1.

Whenever |θ| > π, pair production is favorable. θ = 0 refers to confinement. This
parameter was introduced to the Schwinger model by Coleman [6] and it adds the following
term to the Lagrangian

Lθ =
gθ

4π
εµνFµν . (1.36)

We can rewrite εµνFµν as
εµνFµν = ∂µ(2εµνAν), (1.37)

which is a divergence. Therefore, Lθ does not affect the equations of motion. In QCD a
similar parameter appears.

1.3 Chiral symmetry breaking

As we will revise in a more detailed manner in Chapter 4, if one applies the chiral projection
operators

PL =
I− γ5

2
, PR =

I + γ5

2
, (1.38)

to the fields ψ and ψ, we can write the Lagrangian as

L = −1

4
FµνF

µν + ψLγ
µ(i∂µ − gAµ)ψL + ψRγ

µ(i∂µ − gAµ)ψR −m(ψRψL + ψLψR),

ψR = PRψ, ψL = PLψ, ψR = ψPL, ψL = ψPR, (1.39)

which has a global symmetry under the transformations

ψL → ψ′L = eiϕLψL, ψL → ψ ′L = ψLe
−iϕL , eiϕL ∈ U(1)L, (1.40)

ψR → ψ′R = eiϕRψR, ψR → ψ ′R = ψRe
−iϕR , eiϕR ∈ U(1)R (1.41)

when m = 0. However, the chiral condensate, i.e. the vacuum expectation value 〈ψψ〉
transforms as

〈ψ ′ψ′〉 =

〈(
ψRe

i(ϕL−ϕR)ψL + ψLe
i(ϕR−ϕL)ψR

)〉
. (1.42)

We see that it is invariant only when ϕL = ϕR, so U(1)L ⊗U(1)R breaks to U(1)L=R.

In the N -flavor Schwinger model with degenerate fermion mass m, it has been shown
[16] that the chiral condensate has the following dependence on m and θ when m/µ� 1

〈ψψ〉 = − µ

4π

(
2eγ cos

θ

2

) 2N
N+1

(
m

µ

)N−1
N+1

, µ =
Ng2

π
(1.43)

where γ is the Euler-Mascheroni constant. For the one flavor model we can see that

〈ψψ〉 = − µ

2π
eγ cos

θ

2
, (1.44)

i.e. there is no dependence on the fermion mass. Hence the chiral condensate is non-
vanishing even when m = 0. We also observe from eq. (1.43) that when N > 1, there is
no chiral symmetry breaking in the massless Schwinger model, since 〈ψψ〉 = 0.

5



Chapter 2

Lattice formulation

Quantum Chromodynamics (QCD) is the established theory of the strong interaction. Its
high energy regime can be managed through perturbation theory, since the quarks and
gluons are asymptotically free. This means that the strong coupling αs becomes small at
high energies. It is known that

αs(q) ∝
1

ln
(

q
ΛQCD

) ,
where q is the transfer momentum and ΛQCD is the intrinsic energy scale of QCD. This
enables one to perform expansions in powers of the coupling constant, when the energy is
much larger than ΛQCD. However, the low energy regime of QCD cannot be treated by
perturbation theory, because the coupling becomes large. A non-perturbative approach to
investigate this regime are lattice simulations. The main idea of this method is based on
discretizing the space-time, on a four dimensional lattice. By means of the path integral
and Monte Carlo simulations it is possible to generate field configurations that allow us
to calculate relevant physical quantities. The first step to implement this procedure is a
transition to Euclidean time, which is a rotation of the time coordinate to the imaginary
axis. Some important properties of the Euclidean formulation will be discussed in the next
section.

2.1 Path integral and Euclidean space-time

Let us begin by discussing the path integral for quantum mechanics in one dimension, the
generalization to higher dimensions is straightforward. The starting point is the Green’s
function or time propagator Û(t, t0) of the Schrödinger equation, which satisfies(

Ĥ − i~ ∂
∂t

)
Û(t, t0) = −i~ Îδ(t− t0), (2.1)

where Î is the identity operator and Ĥ the Hamilton operator. If Ĥ does not depend
explicitly on time, the solution to eq. (2.1) reads

Û(t, t0) = θ(t− t0)e−
i
~ Ĥ(t−t0), (2.2)

where θ is the Heaviside function. We assume t > t0, hence θ = 1. The propagator allows
us to find the temporal evolution of a known state at t0 by using

|ψ(t)〉 = Û(t, t0) |ψ(t0)〉 . (2.3)

6



Path integral and Euclidean space-time Chapter 2.

The idea now is finding an expression for the propagator. Let us consider a complete
orthonormal set of position eigenstates {|x〉}, thus we define

U(x, t;x0, t0) = 〈x| Û(t, t0) |x0〉 . (2.4)

We will take N − 1 different intermediate times

t0 < t1 < · · · < tN−1 < t. (2.5)

Two consecutive times will be separated by an equidistant length ε = t−t0
N , i.e. tj+1− tj =

ε. We can write the propagator in the form

U(x, t;x0, t0) = 〈x| e−
i
~ Ĥ(t−t0) |x0〉

= 〈x| e−
i
~ Ĥ(t−tN−1)e−

i
~ Ĥ(tN−1−tN−2) · · · e−

i
~ Ĥ(t2−t1)e−

i
~ Ĥ(t1−t0) |x0〉

= 〈x| e−
i
~ εĤ · · · e−

i
~ εĤ |x0〉

= 〈x|
(
e−

i
~ εĤ
)N
|x0〉 . (2.6)

Since {|x〉} is complete, we apply the operator∫
dx |x〉 〈x| = Î (2.7)

N − 1 times, once at each intermediate time t1, . . . , tN−1,

U(x, t;x0, t0) =

∫
dx1

∫
dx2 · · ·

∫
dxN−1 〈x| e−

i
~ εĤ |xN−1〉 · · · 〈x2| e−

i
~ εĤ |x1〉

× 〈x1| e−
i
~ εĤ |x0〉

=

∫
dx1

∫
dx2 · · ·

∫
dxN−1

N−1∏
j=0

〈xj+1| e−
i
~ εĤ |xj〉 , (2.8)

where xN ≡ x. We assume the Hamilton operator to have the standard form

Ĥ =
p̂2

2m
+ V̂ , (2.9)

where p̂ is the momentum operator with a complete orthonormal basis {|p〉} and V̂ is
a potential term that only depends on the position operator x̂. Now we use Trotter’s
formula1, which states that for two bounded or semi-bounded (from below) operators Â
and B̂ the following relation is satisfied

eÂ+B̂ = lim
n→∞

(
eÂ/neB̂/n

)n
. (2.10)

Since this is often the case of p̂2 and V̂ , we rewrite(
e−

i
~ εĤ
)N

= lim
N→∞

(
e−

iεp̂2

2m~ e−
i
~ εV̂

)N
, (2.11)

and conclude

U(x, t;x0, t0) = lim
N→∞

∫
dx1

∫
dx2 · · ·

∫
dxN

N−1∏
j=0

〈xj+1| e−
iεp̂2

2m~ e−
i
~ εV̂ |xj〉 . (2.12)

1See Section 2.3.1 of ref. [17] for a proof.
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In order to simplify this expression we apply∫
dp |p〉 〈p| = Î (2.13)

to the matrix element

〈xj+1| e−
iεp̂2

2m~ e−
i
~ εV̂ |xj〉 =

∫
dp 〈xj+1| e−

iεp̂2

2m~ |p〉 〈p| e−
i
~ εV̂ |xj〉 . (2.14)

Since V̂ only depends on x̂, we obtain

e−
i
~ εV̂ |xj〉 = e−

i
~ εV (xj) |xj〉 . (2.15)

From

〈p|x〉 =
1√
2π~

e−ipx/~ = 〈x|p〉∗ (2.16)

we infer

〈xj+1| e−
iεp̂2

2m~ e−
i
~ εV̂ |xj〉 =

∫
dp e−

iεp2

2m~ e−
i
~ εV (xj) 〈xj+1|p〉 〈p|xj〉

=
1

2π~

∫
dp e−

iεp2

2m~ e−
i
~ εV (xj)e

i
~p(xj+1−xj). (2.17)

This is a Gaussian integral of the form∫
dx e−ax

2+bx =

√
π

a
eb

2/4a, Re(a) ≥ 0, a 6= 0. (2.18)

The case Re(a) = 0 is non-trivial, but it can be shown by using Cauchy’s integral theorem.
Identifying a = iε/(2m~) and b = i(xj+1 − xj)/~, the result for the integral in eq. (2.17)
reads

e−
i
~ εV (xj)

√
m

2πi~ε
eimε(xj+1−xj)2/2ε2~. (2.19)

Substituting this result in eq. (2.12) yields

U(x, t;x0, t0) = lim
N→∞

∫
dx1

∫
dx2 · · ·

∫
dxN−1

( m

2πi~ε

)N/2
× exp

 iε
~

N−1∑
j=0

[
m

2

(
xj+1 − xj

ε

)2

− V (xj)

] . (2.20)

This expression is known as the path integral. It can be interpreted as a sum over all the
possible trajectories that a non-relativistic particle can travel when moving from x0 to x,
because there is an integral over all positions at each intermediate time step tj

2, see figure
2.1. In the continuum limit N → ∞ ↔ ε → 0, the argument of the exponential is the
continuous time action

S[x] =

∫
dt

(
1

2
mẋ2 − V

)
= lim

ε→0

N−1∑
j=0

ε

[
m

2

(
xj+1 − xj

ε

)2

− V (xj)

]
. (2.21)

2In field theory this interpretation is not right and one can question whether the name path integral is
appropriate. For that reason, functional integral is used as well. Still, we will refer to it as path integral.
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Figure 2.1: The path integral can be interpreted as a coherent sum over all possible paths
from x0 to x.

For this reason, the propagator can also be written as

U(x, t;x0, t0) =

∫
D[x]e

i
~S[x], D[x] = lim

ε→0
dx1dx2 · · · dxN−1

( m

2πi~ε

)N/2
. (2.22)

Further details about the path integral can be found in refs. [17, 18].

If we consider t as a purely imaginary parameter, we can perform the change of variable
it → τ , where τ is known as Euclidean time. It follows that dτ2 = (idt)2 = −dt2. Thus,
under this transformation all the terms of the interval ds2 have the same sign, in contrast to
Minkowski space-time. This change of coordinate transforms ẋ(t) = ix′(τ) and dt = −idτ .
As a result the action turns into

S[x] =

∫
dt

(
1

2
mẋ2 − V

)
= i

∫
dτ

(
1

2
mx′2 + V

)
= iSE [x], (2.23)

where we define the Euclidean action as

SE [x] =

∫
dτ

(
1

2
mx′2 + V

)

= lim
a→0

N−1∑
j=1

a

[
m

2

(
xj+1 − xj

a

)2

+ V (xj)

]
, (2.24)

where a = iε. By taking periodic boundary conditions x0 = xN = x, fixing t0 = 0 (for
convenience) and assuming that the system evolves during a Euclidean time τmax = Na,
we define the Euclidean path integral as

Z =

∫
dx 〈x| Û(τmax, 0) |x〉 =

∫
D[x]e−SE [x]/~, D[x] = lim

a→0
dx1dx2 · · · dxN

( m

2π~a

)N/2
Û(τmax, 0) = e−τmaxĤ/~. (2.25)

Note that there is an extra dxN in D[x] that involves one more integration. This gives a
link with statistical mechanics, where the partition function is given by

Z = tr
[
e−βĤ

]
, β =

1

kBT
, (2.26)
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where T denotes temperature. In the case of the path integral, the factor β is

β =
1

~
τmax, (2.27)

Thus, we see that the Euclidean path integral is mathematically equivalent to the partition
function in statistical mechanics. This equivalence enables us to interpret

p[x] =
1

Z
e−SE [x]/~ (2.28)

as the probability of the path [x]. A first calculation with this interpretation can be done
if we consider the eigenstates |n〉 of Ĥ∫

dx 〈x| Û(τmax, 0) |x〉 = tr
[
e−βĤ

]
= tr

[
e−

τmax
~ Ĥ

]
=

∑
n

〈n| e−
τmax

~ Ĥ |n〉

=
∑
n

e−
τmax

~ En . (2.29)

As τmax grows, only the exponential with the ground state energy E0 (which we suppose
non-degenerate) in its argument persists∫

dx 〈x| Û(τmax, 0) |x〉 → e−τmaxE0/~, for large τmax. (2.30)

Therefore, it is possible to calculate the ground state energy through the decay of Z at
large Euclidean time. Another consequence of the interpretation of the Euclidean path
integral as a partition function is that one can calculate thermal expectation values using
exp(−SE [x]/~) as a weight factor. For example, let us suppose an operator Â that depends
on the position operator x̂; its expectation value is

〈Â(x̂(τ))〉 =
1

Z
tr
[
Â(x̂(τ))e−βĤ

]
=

1

Z

∫
D[x]A(x(τ))e−SE [x]/~, (2.31)

where Z is given by eq. (2.25). We obtain the correlation of two operators Â(x̂) and B̂(x̂)
as well

〈Â(x̂(τ))B̂(x̂(0))〉 =
1

Z

∫
D[x]A(x(τ))B(x(0))e−SE [x]/~

=
1

Z
tr
[
Â(x̂(τ))B̂(x̂(0))e−βĤ

]
=

1

Z
tr
[
eτĤ/~Â(x̂(0))e−τĤ/~B̂(x̂(0))e−βĤ

]
=

1

Z

∑
n

〈n| eτĤ/~Â(x̂(0))e−τĤ/~B̂(x̂(0))e−βĤ |n〉

=
1

Z

∑
n,m

〈n| eτĤ/~Â(x̂(0))e−τĤ/~ |m〉 〈m| B̂(x̂(0))e−βĤ |n〉

=
1

Z

∑
n,m

〈n| Â(x̂(0)) |m〉 eτ(En−Em)/~ 〈m| B̂(x̂(0)) |n〉 e−βEn

=
1

Z

∑
n,m

〈n| Â(x̂(0)) |m〉 〈m| B̂(x̂(0)) |n〉 e−τEm/~e−(τmax−τ)En/~. (2.32)
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In the third line we made use of the fact that a time dependent operator can be written
in Euclidean time according to the Heisenberg picture

Ô(τ) = eτĤ/~ Ô(0) e−τĤ/~. (2.33)

In the other lines we have made use of the following properties∑
m

|m〉 〈m| = Î, eαĤ |m〉 = eαEm |m〉 , 〈m| eαĤ = eαEm 〈m| , (2.34)

where α is a constant. In addition, we assume the eigenenergies to be non-degenerate. If
we use eq. (2.29) for Z we can rewrite eq. (2.32) as

〈Â(x̂(τ))B̂(x̂(0))〉 = eτmaxE0/~
∑

n,m 〈n| Â(x̂(0)) |m〉 〈m| B̂(x̂(0)) |n〉 e−τEm/~e−(τmax−τ)En/~

1 + e−τmax(E1−E0)/~ + e−τmax(E2−E1)/~ + · · ·
.

(2.35)

We have factorized e−τmaxE0/~ from the partition function. Then

〈Â(x̂(τ))B̂(x̂(0))〉 =

∑
n,m 〈n| Â(x̂(0)) |m〉 〈m| B̂(x̂(0)) |n〉 e−τ(Em−E0)/~e−(τmax−τ)(En−E0)/~

1 + e−τmax(E1−E0)/~ + e−τmax(E2−E1)/~ + · · ·
.

(2.36)

From this expression we see that if τmax →∞ only those terms where En = E0 will persist,
giving as a result

lim
τmax→∞

〈Â(x̂(τ))B̂(x̂(0))〉 =
∑
m

〈0| Â(x̂(0)) |m〉 〈m| B̂(x̂(0)) |0〉 e−τ(Em−E0)/~. (2.37)

If now we take Â = B̂ the correlator is

lim
τmax→∞

〈Â(x̂(τ))Â(x̂(0))〉 = | 〈0| Â |0〉 |2 + | 〈1| Â |0〉 |2e−τ(E1−E0)/~

+
∑
m≥2

| 〈m| Â(x̂(0)) |0〉 |2e−τ(Em−E0)/~. (2.38)

As τ becomes large, only the first two terms contribute, therefore

lim
τmax→∞

〈Â(x̂(τ))Â(x̂(0))〉 − | 〈0| Â |0〉 |2 ' | 〈1| Â |0〉 |2e−τ(E1−E0)/~, τ large. (2.39)

We see that this quantity decays exponentially in the Euclidean time. This decay depends
directly on the energy gap E1−E0, in that manner, this gap can be obtained by calculating
the correlation 〈Â(x̂(τ))Â(x̂(0))〉. This is relevant because E1 −E0 is related to the mass
of a particle in field theory.

All these concepts can be described in bosonic fields by promoting the paths to field
configurations

xi ↔ Φ(x),

D[x] =
∏
i

dxi ↔
∏
x

dΦx = D[Φ],

SE [x] ↔ SE [Φ(x)], (2.40)

where SE [Φ(x)] =
∫
ddx

[
1
2∂µΦ(x)∂µΦ(x) + m2

2 Φ(x)2
]
. From now on let us set ~ = 1. In

this case, the partition function and the probability of a configuration [Φ] are

Z =

∫
D[Φ]e−SE [Φ], p[Φ] =

1

Z
e−SE [Φ]. (2.41)
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The expectation values are calculated through

〈Â(τ)〉 =
1

Z

∫
D[Φ]e−SE [Φ]Â[Φ], (2.42)

and the exponential decay of eq. (2.39) now occurs between the sites of the field configu-
ration

〈ΦxΦy〉 − 〈Φx〉〈Φy〉 ∝ exp

(
−|x− y|

ξ

)
, for infinite volume. (2.43)

ξ is known as the correlation length, it is the inverse of the energy gap E1−E0 and it sets
the scale of the system. In actual simulations an infinite volume is impossible, so one often
fixes a volume (aL)d with d the dimension of the system. By imposing periodic boundary
conditions, the relation in eq. (2.43) is modified to

〈ΦxΦy〉 − 〈Φx〉〈Φy〉 ∝ cosh

(
|x− y| − La/2

ξ

)
. (2.44)

In general, one can compute n-point functions

〈Φ̂(x1) · · · Φ̂(xn)〉 =
1

Z

∫
D[Φ]Φ(x1) · · ·Φ(xn)e−SE [Φ]. (2.45)

When one deals with fermion fields the path integral formulation is different, since they
obey anticommutation rules. In order to define the path integral for fermions one has to
treat the components of the spinor fields as Grassmann numbers, which are anticonmmut-
ing variables. We will give a brief summary of the most important formulas to handle
these numbers.

Let us define the Grassmann numbers ηi, i = 1, 2, . . . , N as a set of variables that
satisfy the relation

{ηi, ηj} = 0. (2.46)

This implies that η2
i = 0 and therefore any function that depends on these numbers can

be written as

f(η) = f +
∑
i

fiηi +
∑
i,j

fijηiηj +
∑
i,j,k

fijkηiηjηk + · · · , (2.47)

where f, fi, fij and fijk are complex numbers in general. The differentiation rules are

∂ηi
∂ηj

= δij ,
∂(ηiηj)

∂ηi
= ηj ,

∂(ηjηi)

∂ηi
= −ηj , i 6= j, (2.48)

while the integration rules are∫
dηi ηj = δij ,

∫
dηidηj ηiηj = −1, i 6= j. (2.49)

In this formalism, the spinor fields ψ and ψ are independent fields of N Grassmann
components. The following relation can be proved for any arbitrary matrix M of dimension
N ×N ∫

D[ψ,ψ] exp(−ψMψ) = detM,

D[ψ,ψ] =
∏
i

dψi dψi. (2.50)
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If M is also invertible, then∫
D[ψ,ψ] ψxψyexp(−ψMψ) = (M)−1

xy detM. (2.51)

The partition function, without gauge interaction, is defined as the integral in eq. (2.50),
but regarding M as a discretization of the Dirac operator. Further details about the
Euclidan path integral and the Grassmann numbers can be found in refs. [19–21].

2.2 Concept of a lattice simulation

The idea of a lattice simulation is to generate field configurations [Φ], distributed accord-
ing to the probability distribution in eq. (2.41). One can numerically compute n-point
functions of the field configurations and obtain various observables, given by exponential
decays, using expressions like eq. (2.44).

In order to obtain configurations with the desired probability distribution, one must
rely on Monte Carlo algorithms. These algorithms create Markov chains, which are se-
quences of configurations where each new configuration is generated by considering only
the previous one

[Φ1]→ [Φ2]→ [Φ3]→ · · · (2.52)

The Markov chains have to be ergodic, that is, if one has two arbitrary configurations [Φ]
and [Φ′], then the algorithm has to be able to move from [Φ] to [Φ′] in a finite number of
updates. They also have to satisfy the detailed balance condition, which will be explained
below.

There are several algorithms to perform the configuration updates. Perhaps the sim-
plest one to explain is the Metropolis algorithm, which we describe as a recipe for a scalar
field.

1. First of all, one has to create an initial configuration [Φ]. This can be done, for
instance, by assigning the same value to all the elements Φx ∈ [Φ] (cold start) or by
the assignation of random values to each site (hot start).

2. Then one has to update the configuration. To do so one chooses a site x with the
corresponding value Φx and calculates Φx+ε, with ε randomly selected in the interval
(−ε0, ε0), ε0 > 0. One has the freedom to set ε0, normally it is the same for all the
sites x.

3. Now, one considers the transition probability

W ([Φ]→ [Φ′])

W ([Φ′]→ [Φ])
=
p[Φ′]

p[Φ]
= e−∆SE [Φ,Φ′], ∆SE [Φ,Φ′] = SE [Φ′]− SE [Φ], (2.53)

where W ([A]→ [B]) is the probability of moving from [A] to [B]. The configurations
[Φ] and [Φ′] only differ at the site x, where Φ′x = Φx + ε. Equation (2.53) defines
detailed balance. The Metropolis algorithm implements it as follows: if ∆SE [Φ,Φ′] ≤
0, the new configuration is [Φ′], otherwise, the algorithm accepts the update [Φ] →
[Φ′] with a probability exp(−∆SE [Φ,Φ′]).

4. The first three steps are repeated for all x on the lattice. When the whole configura-
tion has been updated we say that a sweep was performed. It can be proved (see e.g.
ref. [22]) that this algorithm generates configurations with the required probability,
after a large number of update steps.
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Before measuring any type of quantity with the configurations generated through Monte
Carlo algorithms, one has to perform a large number of sweeps until they have the correct
distribution; this process is called thermalization. When the thermalization has been
achieved, one can start to measure different observables numerically. For example, let us
suppose that one wants to know the value of the field Φ at the site x of the lattice. The
first step to do is thermalization, after that one can use “well-behaved”3 configurations
to measure 〈Φx〉. Between each configuration that is used for measurements, one has
to apply several sweeps, because each measurement has to be decorrelated (statistically
independent) from the others.

2.3 QED in the continuum and on the lattice

In this section we review relevant features of the discretization of the action in Quantum
Electrodynamics, SQED. First, let us discuss some properties of its continuum action.

The first step to build SQED refers to the action of the one flavor free fermion field

SF [ψ,ψ] =

∫
d4x ψ(x) (iγµ∂µ −m)ψ(x). (2.54)

This equation is written in Minkowski space-time and in units of ~ = c = 1, later we
will rewrite everything in Euclidean space. This action is invariant under global U(1)
transformations

ψ(x)→ ψ′(x) = Ωψ(x), ψ(x)→ ψ ′(x) = ψ(x)Ω−1, (2.55)

because the derivative does not act in Ω. However, if one promotes the global transforma-
tion to a local one, i.e. Ω→ Ω(x), then SF is not invariant anymore. In order to preserve
the invariance one promotes the derivative ∂µ to a covariant derivative Dµ that obeys

D′µψ
′(x) = Ω(x)Dµψ(x), (2.56)

where Ω(x) = eiα(x) ∈ U(1). This holds if

Dµ = ∂µ + igAµ(x), (2.57)

where g is the coupling constant and Aµ(x) is a four vector potential or gauge field, that
transforms as

Aµ(x)→ A′µ(x) = Aµ(x)− 1

g
∂µα(x). (2.58)

It can be checked that these expressions fulfill eq. (2.56),

D′µψ
′ =

(
∂µ + igA′µ

)
Ω(x)ψ(x)

= i∂µα e
iαψ + eiα∂µψ + igAµe

iαψ − i∂µα eiαψ

= ΩDµψ. (2.59)

To finish constructing the QED action, we add the term

SG[A] = −1

4

∫
d4xFµνF

µν , (2.60)

3By “well-behaved” we mean that the configurations have the proper probability distribution.
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where Fµν is the field strength tensor given by Fµν = ∂µAν−∂νAµ. This tensor is invariant
under the transformation in eq. (2.58). Therefore the complete QED action is

SQED[ψ,ψ,A] = −1

4

∫
d4xFµνF

µν +

∫
d4x ψ(iγµDµ −m)ψ. (2.61)

To transform the action to Euclidean space we have to replace x0 → −ix4, thus the
integration measure now is dx1dx2dx3(−idx4) = −id4x. The index 4 is to mark the
difference between Euclidean and real time. As a consequence of this change of coordinate,
the time derivative and A0 transform as well

∂0 → i∂4, A
0 → iA4. (2.62)

The change of A0 is because it has to behave as the derivative, due to eq. (2.58). We also
introduce the Euclidean γ matrices, whose relation with the Minkowski γ matrices is

γE4 = γ0, γEj = −iγj , γE5 = γE1 γ
E
2 γ

E
3 γ

E
4 . (2.63)

These matrices satisfy {γEµ , γEν } = 2δµνI, µ, ν = 1, 2, 3, 4. Then, SF becomes

SF [ψ,ψ,A] = −i
∫
d4xψ

(
iγ0D0 + iγjDj −m

)
ψ

= −i
∫
d4xψ

(
iγE4 iD4 − γEj Dj −m

)
ψ

= iSEF [ψ,ψ,A], (2.64)

where SEF [ψ,ψ,A] is defined by

SEF [ψ,ψ,A] =

∫
d4xψ

(
γEµDµ +m

)
ψ. (2.65)

The pure gauge term transforms as

SG[A] = iSEG [A], SEG [A] =
1

4

∫
d4xFµνFµν . (2.66)

Therefore, the action is (see ref. [21] for further details)

SQED = iSEQED, S
E
QED =

1

4

∫
d4xFµνFµν +

∫
d4xψ

(
γEµDµ +m

)
ψ. (2.67)

We proceed to discretize SEQED by taking into account two important properties:

1. In the continuum limit, the discretization has to yield eq. (2.67).

2. The action on the discretized space has to preserve the gauge invariance, in analogy
to the continuum.

Let us consider a four dimensional hypercubic lattice

V = {~n = (n1, n2, n3, n4)|nµ = 0, 1, . . . , Nµ − 1;µ = 1, 2, 3, 4}, (2.68)

where ~n labels a point in the Euclidean space. We will assume that the points are separated
by a length a, named lattice constant. The fermion fields are only defined at the sites
labeled by ~n: ψ(~n), ψ(~n). Now, we begin in the same way as in the continuum, that is, by
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considering the Euclidean action of a free fermion field, eq. (2.65). A first discretization
can be obtained by replacing the continuum derivative by a discrete one,

∂µψ(x)→ ψ(~n+ µ̂)− ψ(~n− µ̂)

2a
, (central finite differences), (2.69)

where ~n ± µ̂ are the nearest neighbors of the site ~n in the µ-direction. This leads to the
following discrete version of SEF

SEF [ψ,ψ] = a4
∑
~n

ψ(~n)

 4∑
µ=1

γEµ
ψ(~n+ µ̂)− ψ(~n− µ̂)

2a
+mψ(~n)

 . (2.70)

We would like this action to remain invariant under local transformations Ω(~n) ∈ U(1),

ψ′(~n) = Ω(~n)ψ(~n), ψ(~n) = ψ ′(~n)Ω−1(~n). (2.71)

The mass term in eq. (2.70) does indeed remain invariant, since the transformations Ω(~n)
and Ω−1(~n) cancel. The discretized derivative, however, does not remain invariant

ψ ′(~n)ψ′(~n+ µ̂) = ψ(~n)Ω−1(~n)Ω(~n+ µ̂)ψ(~n+ µ̂) 6= ψ(~n)ψ(~n+ µ̂). (2.72)

This expression shows that eq. (2.70) is not a proper discretization if we want to preserve
local invariance. This forces us to introduce a gauge field in order to preserve the local
symmetry, as in the continuum. We introduce a field Uµ(~n) that transforms as

Uµ → U ′µ(~n) = Ω(~n)Uµ(~n)Ω−1(~n+ µ̂). (2.73)

That way, the product ψ(~n)Uµ(~n)ψ(~n+ µ̂) is locally U(1) invariant

ψ ′(~n)U ′µ(~n)ψ′(~n+ µ̂) = ψ(~n)Ω−1(~n)Ω(~n)Uµ(~n)Ω−1(~n+ µ̂)Ω(~n+ µ̂)ψ(~n+ µ̂)

= ψ(~n)Uµ(~n)ψ(~n+ µ̂). (2.74)

In order to preserve the symmetry of the term ψ(~n)ψ(~n− µ̂), we multiply by U †µ(~n− µ̂),
because its transformation rule is

U ′†µ (~n− µ̂) =
[
Ω(~n− µ̂)Uµ(~n− µ̂)Ω−1(~n)

]†
= Ω(~n)U †µ(~n− µ̂)Ω−1(~n− µ̂).

This implies that

ψ ′(~n)U ′†µ (~n− µ̂)ψ′(~n− µ̂) = ψ(~n)Ω−1(~n)Ω(~n)U †µ(~n− µ̂)Ω−1(~n− µ̂)Ω(~n− µ̂)ψ(~n− µ̂)

= ψ(~n)U †µ(~n− µ̂)ψ(~n− µ̂). (2.75)

The field Uµ(~n) provides a link between the sites ~n and ~n+ µ̂, for that reason it is known
as link variable. A schematic representation of these links is shown in figure 2.2.

With the link variables one can discretize the action SEF in a gauge invariant way

SEF [ψ,ψ, U ] = a4
∑
~n

ψ(~n)

 4∑
µ=1

γEµ
Uµ(~n)ψ(~n+ µ̂)− U †µ(~n− µ̂)ψ(~n− µ̂)

2a
+mψ(~n)

 .

(2.76)
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Figure 2.2: The link variables connect nearest neighbors lattice sites: Uµ(~n) connects ~n

with ~n+ µ̂, while U †µ(~n− µ̂) connects ~n with ~n− µ̂.

Up to this point we have not yet related the link variables to continuum QED. In order
to do that we are going to revise the analogue of these variables in the continuum. Let
us suppose that we want to preserve gauge invariance of the product ψ(x)ψ(y), which for
arbitrary Ω(x) and Ω(y) transforms as

ψ ′(x)ψ′(y) = ψ(x)Ω−1(x)Ω(y)ψ(y) 6= ψ(x)ψ(y), for x 6= y. (2.77)

To maintain the symmetry one uses the so-called paralell transporter or Schwinger line
integral

U(x, y) = eig
∫
C Aµdxµ , (2.78)

where Aµ(x) is the gauge field, g the gauge coupling constant and C is a curve connecting
x and y. The important property of this term is that it transforms under U(1) as

U(x, y)→ U ′(x, y) = Ω(x)U(x, y)Ω−1(y), (2.79)

then

ψ ′(x)U ′(x, y)ψ′(y) = ψ(x)Ω−1(x)Ω(x)U(x, y)Ω−1(y)Ω(y)ψ(y)

= ψ(x)U(x, y)ψ(y). (2.80)

Let us consider |εµ| � 1, thus

U(x, x+ εµ) ≈ eigεµAµ(x), (2.81)

where we have approximated the line integral by the product of Aµ(x) with (x+ εµ)− x.
This suggests the following expression for the link variables

Uµ(~n) = eigaAµ(~n). (2.82)

In order to verify that this expression is appropriate, we need to check that in the limit
a → 0, the continuum action is recovered. As we will see, eq. (2.82) does this correctly.
By expanding the link variables we obtain

Uµ(~n) = 1 + igaAµ(~n) +O(a2),

U †µ(~n− µ̂) = 1− igaAµ(~n− µ̂) +O(a2). (2.83)

Substituting in eq. (2.76) yields

SEF = a4
∑
~n

ψ(~n)

(
4∑

µ=1

γEµ
(1 + igaAµ(~n))ψ(~n+ µ̂)− (1− igaAµ(~n− µ̂))ψ(~n− µ̂)

2a

+ mψ(~n) +O(a)

)

= a4
∑
~n

ψ(~n)

(
4∑

µ=1

γEµ
ψ(~n+ µ̂)− ψ(~n− µ̂)

2a

+
ig

2
(Aµ(~n)ψ(~n+ µ̂) +Aµ(~n− µ̂)ψ(~n− µ̂)) +mψ(~n) +O(a)

)
. (2.84)
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The first term in the parentheses is a discrete version of γEµ ∂µψ(x), while in the second
term we will take ψ(~n± µ̂)Aµ(~n− µ̂) = ψ(~n)Aµ(~n) +O(a) because the sites are separated
by a distance a. Then, eq. (2.84) reduces to

SEF = a4
∑
~n

ψ(~n)

(
4∑

µ=1

γEµ
ψ(~n+ µ̂)− ψ(~n− µ̂)

2a
+ igAµ(~n)ψ(~n) +mψ(~n) +O(a)

)
. (2.85)

In the limit a→ 0 we obtain

SEF =

∫
d4xψ(x)

[
γEµ (∂µ + igAµ(x)) +m

]
ψ(x)

=

∫
d4xψ(x)(γEµDµ +m)ψ(x). (2.86)

Therefore, the discretization in eq. (2.76) of SEF satisfies the two conditions that we men-
tioned at the beginning. However, this expression is not completely right for a non-trivial
reason that we will revise in the next section4.

For now let us continue with the discretization of the pure gauge term

SEG =
1

4

∫
d4xFµνFµν . (2.87)

Again we have to make sure that the expression we use is gauge invariant and that in the
limit a→ 0 eq. (2.87) is recovered. For this purpose, we define a plaquette variable

Uµν(~n) ≡ Uµ(~n)Uν(~n+ µ̂)U †µ(~n+ ν̂)U †ν (~n), (2.88)

where µ̂ and ν̂ denote different directions. From eq. (2.82) we see that the link variables are
group elements of U(1) and as a result Uµν ∈ U(1) as well. Geometrically, the plaquette
Uµν(~n) connects the sites ~n, ~n+ µ̂, ~n+ µ̂+ ν̂ and ~n+ ν̂ (see figure 2.3). Besides, by using
the following transformation rules

U ′µ(~n) = Ω(~n)Uµ(~n)Ω−1(~n+ µ̂),

U ′ν(~n+ µ̂) = Ω(~n+ µ̂)Uν(~n+ µ̂)Ω−1(~n+ µ̂+ ν̂),

U ′†µ (~n+ ν̂) = Ω(~n+ µ̂+ ν̂)U †µ(~n+ ν̂)Ω−1(~n+ ν̂)

U ′†ν (~n) = Ω(~n+ ν̂)U †ν (~n)Ω−1(~n), (2.89)

we can see that the plaquette transforms as

U ′µν(~n) = Ω(~n)Uµν(~n)Ω−1(~n). (2.90)

Since Ω(~n) and Uµν(~n) belong to U(1), which is an Abelian group (i.e. its elements com-
mute), we conclude that

U ′µν(~n) = Uµν(~n). (2.91)

Hence, the plaquettes are gauge invariant when the transformation group is U(1). Based
on this property, we define the Wilson gauge action as

SEG [U ] =
1

g2

∑
~n

∑
µ<ν

[
1− 1

2

(
Uµν(~n) + U †µν(~n)

)]
. (2.92)

4Equation (2.76) is known as the naive fermion action.
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Figure 2.3: Schematic representation of the plaquette variable Uµν . It links the points ~n,
~n+ µ̂, ~n+ µ̂+ ν̂ and ~n+ ν̂ on the lattice by using the link variables.

Let us verify that this action coincides with eq. (2.87) in the limit a→ 0. We can substitute
eq. (2.82) in the definition of the plaquette

Uµν(~n) = eigaAµ(~n)eigaAν(~n+µ̂)e−igaAµ(~n+ν̂)e−igaAν(~n). (2.93)

The exponents can be rearranged

Uµν(~n) = e
iga2

(
Aν (~n+µ̂)−Aν (~n)

a
−Aµ(~n+ν̂)−Aµ(~n)

a

)
= eiga

2(∂µAν(~n)−∂νAµ(~n)+O(a))

= eiga
2(Fµν(~n)+O(a)). (2.94)

Then

Uµν(~n) + U †µν(~n) = 2− g2a4(Fµν(~n) +O(a))2 + g4a8(Fµν +O(a))4 + · · ·

= 2− g2a4Fµν(~n)Fµν(~n) +O(a5) (2.95)

Substituting in eq. (2.92) yields

SEG [U ] =
1

g2

∑
~n

∑
µ<ν

g2a4

2
Fµν(~n)Fµν(~n) +O(a5)

=
1

4
a4
∑
~n

∑
µ,ν

Fµν(~n)Fµν(~n) +O(a5). (2.96)

The factor of 2 comes from the fact that on the right-hand side Fµν is antisymmetric and
that the sum extends over all possible values of µ and ν, not only those where µ < ν.
When a → 0 the Wilson action converges to the continuum action (2.87). Finally, the
complete naive discretization of the Euclidean QED action takes the form

SEQED[ψ,ψ, U ] = a4
∑
~n

ψ(~n)

 4∑
µ=1

γEµ
Uµ(~n)ψ(~n+ µ̂)− U †µ(~n− µ̂)ψ(~n− µ̂)

2a
+mψ(~n)


+

1

g2

∑
~n

∑
µ<ν

[
1− 1

2

(
Uµν(~n) + U †µν(~n)

)]
. (2.97)
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2.4 Wilson fermions

As we mentioned in the previous section, the discretization of the fermion action given in
eq. (2.76) is not fully correct. To see why, let us rewrite it as follows

SEF [ψ,ψ, U ] = a4
∑
~n,~m

ψ(~n)D(~n, ~m)ψ(~m),

D(~n, ~m) =
4∑

µ=1

γEµ
Uµ(~n)δ~n+µ̂, ~m − U †µ(~n− µ̂)δ~n−µ̂, ~m

2a
+mδ~n,~m, (2.98)

where D(~n, ~m) is the Dirac operator. Let us suppose for the moment that we are working
in the chiral limit, i.e. m = 0 and that there are no gauge fields. We will compute the
inverse of the Dirac operator D−1(~n, ~m). To do so we use the Fourier transform, defined
for an arbitrary function f(~n) as

f̃(~p) =
1√
|V |

∑
~n

f(~n)e−i~p·~na, |V | ≡ N1N2N3N4. (2.99)

The inverse transformation is

f̃(~n) =
1√
|V |

∑
~p

f̃(~p)ei~p·~na,

Ṽ =

{
~p = (p1, p2, p3, p4)| pµ =

2π

aNµ
kµ, kµ = −Nµ

2
+ 1,−Nµ

2
+ 2, . . . ,

Nµ

2

}
. (2.100)

Then, if one transforms the fermion fields the Dirac operator takes the form

D̃(~p, ~q) =
1

|V |
∑
~n,~m

e−i~p·~naD(~n, ~m)ei~q·~ma

=
1

|V |
∑
~n

e−i(~p−~q)·~na
4∑

µ=1

γEµ

(
ei~q·µ̂a − e−i~q·µ̂a

2a

)

=
1

|V |
∑
~n

ei(~p−~q)·~na
4∑

µ=1

(
γEµ

i

a
sin(qµa)

)
. (2.101)

The first sum can be expressed as

1

|V |
∑
~n

ei(~p−~q)·~na =
4∏

ν=1

1

Nν

Nν−1∑
nν=0

ei(pν−qν)nνa, (2.102)

where pν = 2πkν/(aNν) and qν = 2πk′ν/(aNν). When kν = k′ν the product is equal to
one. Now let us analyze its value when kν 6= k′ν ,

1

Nν

Nν−1∑
nν=0

ei(pν−qν)nνa =
1

Nν

Nν−1∑
nν=0

(
ei(pν−qν)a

)nν
=

1

Nν

1− ei(pν−qν)Nνa

1− ei(pν−qν)a

=
1

Nν

1− ei2π(kν−k′ν)

1− ei2π(kν−k′ν)/Nν
. (2.103)

20



Wilson fermions Chapter 2.

Since kν − k′ν ∈ Z, the numerator vanishes. Hence

1

|V |
∑
~n

ei(~p−~q)·~na = δp1,q1δp2,q2δp3,q3δp4,q4 = δ~p,~q. (2.104)

Substituting in eq. (2.101) yields

D̃(~p, ~q) = δ~p,~qD̃(~p), D̃(~p) =
i

a

4∑
µ=1

(
γEµ sin(pµa)

)
. (2.105)

In order to calculate D−1(~n, ~m) we use the inverse transformation

D−1(~n, ~m) =
1

|V |
∑
~p

D̃−1(~p)ei~p·(~n−~m)a. (2.106)

To find D̃−1(~p) we multiply

− D̃(~p)D̃(~p) =
1

a2

 4∑
µ=1

(
γEµ
)2

sin2(pµa) +
∑
µ6=ν

γEµ γ
E
ν sin(pµa) sin(pνa)

 . (2.107)

Since {γEµ , γEν } = 2δµνI, the product reduces to

− D̃(~p)D̃(~p) =
1

a2

4∑
µ=1

sin2(pµa), (2.108)

thus

D̃−1(~p) =
−i
a

∑
µ γ

E
µ sin(pµa)

1
a2
∑

µ sin2(pµa)
. (2.109)

As a consequence of the Fourier transform, the momentum components are in (−π/a, π/a]
(first Brillouin zone). When a→ 0 one obtains the propagator in the continuum

D̃−1(~p) =
−i
∑

µ γ
E
µ pµ

p2
. (2.110)

We see that in the continuum there is only one pole at ~p = ~0; this is correct since the
poles of the propagator represent particles and we are dealing with just one fermion. On
the other hand, the discrete version has poles at ~p = ~0 and when each component of ~p is
either 0 or π/a. Thus the discrete version has 16 poles, with 15 of them being unphysical5.
This is known as the fermion doubling problem and shows that the naive discretization
that we gave in the last section is wrong, even though it is gauge invariant and converges
to the right expression in the continuum limit. A way of solving this issue was proposed
by Kenneth Wilson [1]: the idea is modifying the Dirac operator by adding a term that
eliminates the unwanted particles, but that vanishes when a → 0. The term he adds is
called the Wilson term and it is a discretization of the Laplace operator multiplied by
−a/2

W = −a
2

4∑
µ=1

δ~n+µ̂, ~m − 2δ~n,~m + δ~n−µ̂, ~m
a2

. (2.111)

5In d dimensions 2d − 1 unwanted fermions appear.
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The sum is just a discrete version of ∂µ∂µ, so the full term convergences to zero when
a → 0. In the case with gauge fields, to preserve the gauge invariance we have to insert
the link variables

W = −a
2

4∑
µ=1

Uµ(~n)δ~n+µ̂, ~m − 2δ~n,~m + U †µ(~n− µ̂)δ~n−µ̂, ~m
a2

. (2.112)

Adding this term to the Dirac operator yields

DW =

(
m− 4

a

)
δ~n,~m −

1

2a

4∑
µ=1

[
(1− γEµ )Uµ(~n)δ~n+µ̂, ~m + (1− γEµ )U †µ(~n− µ̂)δ~n−µ̂, ~m

]
.

(2.113)

This version of the Dirac operator eliminates the fermion doublers, by sending them to
a cutoff energy of O(1/a). The fermions simulated with this formulation are known as
Wilson fermions and they were implemented in a Hybrid Monte Carlo (HMC) algorithm to
obtain results with the Schwinger model (see Appendix A for a discussion of this algorithm
with a scalar field). Unfortunately, there is one problem with this formulation: it breaks
chiral symmetry explicitly, even when m = 0. This can be seen if one substitutes the
chiral transformations

ψ(~n)→ ψ ′(~n) = ψ(~n)eiαγ5 , ψ(~n)→ ψ′(~n) = eiαγ5ψ(~n), α ∈ R (2.114)

and considers W when multiplied by the fermion fields

ψ ′(~n)Wψ′(~m) = ψ(~n)Weiαγ
E
5 eiαγ

E
5 ψ(~m) 6= ψ(~n)Wψ(~m). (2.115)

If it is intact, the chiral symmetry prevents additive mass renormalization. This is not the
case for Wilson fermions, so additive mass renormalization sets in, and approaching the
chiral limit requires a fine tuning of the bare fermion mass. The expectation values can
be calculated through

〈Â〉 =
1

Z

∫
D[ψ,ψ]D[U ]e−S

E
QED[ψ,ψ,U ]A[ψ,ψ, U ],

Z =

∫
D[ψ,ψ]D[U ]e−S

E
QED[ψ,ψ,U ],

D[U ] =
∏
~n∈L

4∏
µ=1

dUµ(~n) (Haar measure). (2.116)

There are more ways of discretizing D(~n, ~m) that deal with the doubling problem and they
introduce other kind of fermions, such as staggered fermions, Ginsparg-Wilson fermions,
etc. Reviews of those formulations can be found in refs. [20,23], however they will not be
used in this work.

To finish this section, we make a comment about the scale fixing in the lattice frame-
work. Usually, the discretized Euclidean action of the Schwinger model is rewritten in
terms of the dimensionless parameter

β ≡ 1

(ag)2
, (2.117)

where a is the lattice constant and g the gauge coupling. One can approximate the
continuum limit by making β larger. For that reason, it is very common to set a = 1
and to vary the separation between the lattice sites by using the gauge coupling as a free
parameter. This kind of units are known as lattice units and we will use them to present
our results.
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2.5 QCD on the lattice

In this section we extend the ideas of the discretization of the QED action to QCD, which
is a non-Abelian gauge theory. We begin by considering the Euclidean action∫

d4xψ(γEµDµ +m)ψ +
1

4

∫
d4x tr [Gµν(x)Gµν(x)] , (2.118)

whereGµν = ∂µAν−∂νAµ+ig[Aµ, Aν ] is the gluon field strength tensor andAµ(x) ∈ SU(3).
In order to assure invariance under local SU(3) transformations, the covariant derivative
must satisfy

D′µψ
′(x) = Ω(x)Dµψ(x), Ω(x) ∈ SU(3), (2.119)

which is accomplished if Aµ transforms as

Aµ(x)→ A′µ(x) = Ω(x)Aµ(x)Ω−1(x)− i

g
Ω(x)∂µΩ−1(x). (2.120)

We verify this by substitution

D′µψ
′ =

(
∂µ + igA′µ

)
Ω(x)ψ(x)

= ∂µΩψ + Ω∂µψ + igΩAµψ + Ω∂µΩ−1Ωψ

= ∂µΩψ + Ω∂µψ + igΩAµψ + Ω∂µ(Ω−1Ω)ψ − ΩΩ−1∂µΩψ

= Ω(∂µψ + igAµψ)

= ΩDµψ. (2.121)

The discretization of the Dirac operator is the same as in QED, i.e. the discretization
without the fermion doublers corresponds to eq. (2.113). The link variables definition is
analogous to eq. (2.82). Also, the plaquette variables are defined as in eq. (2.88), but in
this case one has to preserve the order of the operations because the link variables are
matrices. Even though these definitions are analogous, the construction of the gauge action
is different, since the plaquettes are not gauge invariant due to the non-commutativity of
the link variables. Still, we can construct a gauge invariant Wilson action using the trace
operator as follows

SEG [U ] =
3

g2

∑
~n∈L

∑
µ<ν

(
1− 1

3
Re tr [Uµν(~n)]

)
, Uµν ∈ SU(3). (2.122)

Let us verify that this action converges to the correct expression in the continuum. First
we simplify the plaquettes expression

Uµν(~n) = eigaAµ(~n)eigaAν(~n+µ̂)e−igaAµ(~n+ν̂)e−igaAν(~n), (2.123)

by using the Baker-Campbell-Hausdorff formula, which states that for two matrices A and
B

eaAeaB = eaA+aB+a2

2
[A,B]+O(a3). (2.124)

If we apply the formula to (2.123) we obtain

Uµν(~n) = exp

{
iga

(
Aµ(~n) +Aν(~n+ µ̂)−Aµ(~n+ ν̂)−Aν(~n)

)
− g2a2

2
[Aµ(~n), Aν(~n+ µ̂)]

+
g2a2

2
[Aµ(~n), Aµ(~n+ ν̂)] +

g2a2

2
[Aν(~n+ µ̂), Aµ(~n+ ν̂)] +

g2a2

2
[Aµ(~n), Aν(~n)]

+
g2a2

2
[Aν(~n+ µ̂), Aν(~n)]− g2a2

2
[Aµ(~n+ ν̂), Aν(~n)] +O(a3)

}
. (2.125)
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Now, if we use a Taylor expansion for the field

Aν(~n+ µ̂) = Aν(~n) + a ∂µAν(~n) +O(a2), (2.126)

we reduce eq. (2.125) to

Uµν(~n) = eiga
2(∂µAν(~n)−∂νAµ(~n)+ig[Aµ(~n),Aν(~n)])+O(a3)

= eiga
2(Gµν(~n)+O(a)). (2.127)

Then

Re tr[Uµν(~n)] = tr

[
I− a4g2

2
Gµν(~n)Gµν(~n)

]
+O(a5). (2.128)

Substituting in eq. (2.122) yields

SEG [U ] =
3

g2

∑
~n∈L

∑
µ<ν

a4g2

6
tr [Gµν(~n)Gµν(~n)] +O(a5)

=
a4

4

∑
~n∈L

∑
µ,ν

tr [Gµν(~n)Gµν(~n)] +O(a5). (2.129)

In the limit a→ 0, we obtain the gauge action

SEG =
1

4

∫
d4x tr [Gµν(x)Gµν(x)] . (2.130)

Deeper discussions of lattice QCD can be revised in refs. [20, 21,24].
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Chapter 3

Hosotani’s approach to the Schwinger model

In the 1990s, Yukio Hosotani et al. published several studies of the massive Schwinger
model for an arbitrary number ofN > 1 flavors at finite temperature T , where they reduced
the massive model to a quantum mechanical system of N−1 degrees of freedom [16,25–27].
This allowed them to derive analytic predictions for the boson masses that appear, and
for the chiral condensate. In the massless N flavor model, it is known that a boson mass
µ =

√
Ng2/π appears [13]. In the Schwinger model with degenerate non-zero fermion

mass the approach by Hosotani gives as a result N bosons, N − 1 of them with the same
mass µ2 and one with mass µ1 > µ2. In the limit m → 0 one obtains µ2 → 0 and µ1 →
µ [26, 27].

We will review the most important equations of this approach without complete deriva-
tions, together with a numerical solution for the predictions of the boson masses and the
chiral condensate in the two flavor model at finite temperature. The reliability of these
solutions is limited to m� µ, as explained in Sections 6 and 8 of ref. [27].

3.1 Reduction to a quantum mechanical system

The QED Lagrangian for the N flavor Schwinger model in Euclidean space is given by

L =
1

4
FµνFµν +

N∑
f=1

ψf
[
γEµ (∂µ + igAµ) +mf

]
ψf . (3.1)

The index f denotes the flavor. We consider degenerate fermion masses, that is mf ≡ m.
The idea is to map the model onto a circumference of length Lt and to impose the following
boundary condition on the fermion fields and the gauge field

ψf

(
τ +

1

T
, x

)
= −e2πiαfψf (τ, x),

Aµ

(
τ +

1

T
, x

)
= Aµ (τ, x) , (3.2)

where αf is a phase factor and T = 1/Lt denotes the temperature. By setting αf = 0 it
is possible to relate the model on the circle with the finite temperature Schwinger model.

Next one uses the bosonization method to reduce the model to a quantum mechanical
system of N − 1 degrees of freedom. The main idea is to write the fields in terms of
bosonic operators that obey certain commutation relations, see e.g. refs. [16,27]. However,
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those steps are rather tedious and here we only review the resulting formulation. After
bosonization, the eigenvalue equation

Ĥ |Φ0〉 = E0 |Φ0〉 , (3.3)

where Ĥ is the Hamilton operator, |Φ0〉 is the vacuum state and E0 its energy, is reduced
to

[−4ϕ +κ0FN (ϕ1, ..., ϕN)] g(ϕ1, ..., ϕN) = εg(ϕ1, ..., ϕN),

κ0 =
N

π(N − 1)
mLtBe

−π/(µNLt), FN (ϕ1, ..., ϕN) = −
N∑
f=1

cosϕf ,

B = [B(µ1Lt)]
1/N [B(µ2Lt)]

1−1/N , ε =
NLtE0

2π
+
πN2

12
,

B(z) =
z

4π
exp

[
γ +

π

z
− 2

∫ ∞
1

du

(euz − 1)
√
u2 − 1

]
. (3.4)

γ = 0.57721566490... is the Euler-Mascheroni constant. The angular variables ϕf are
constrained by

ϕN = θ −
N−1∑
f=1

ϕf , (3.5)

where θ is the vacuum angle, which can be restricted to (−π, π]. It coincides with the
vacuum angle that we introduced in Section 1.2 in a different form. 4ϕ is the Laplacian
of the system, given by

4ϕ =
N−1∑
f=1

(
∂

∂ϕf
− iβf

)2

− 2

N − 1

N−1∑
f<f ′

(
∂

∂ϕf
− iβf

)(
∂

∂ϕf ′
− iβf ′

)
βf = αf − αN . (3.6)

The function B(z) has no direct physical meaning, but it appears in the equations. We
show its behavior in figure 3.1. ε has to be determined together with g(ϕ1, ..., ϕN), µ1 and
µ2 by solving the first line of eqs. (3.4) and other equations below. We are interested in a
solution for µ1 and µ2.

The first line in eq. (3.4) is an eigenvalue problem for a system of N − 1 degrees of
freedom, due to the restriction (3.5). We simplify eqs. (3.4) for N = 2. The Laplacian is
now given by

4ϕ =

(
d

dϕ1

+ iδα

)2

= −
(
i
d

dϕ1

− δα
)2

, (3.7)

with δα = α2 − α1. In virtue of the constraint (3.5), the function F2(ϕ1, ϕ2) is expressed
as

F2(ϕ1) = − cos(ϕ1)− cos(ϕ1 − θ) = −2 cos
θ

2
cos

(
ϕ1 −

θ

2

)
. (3.8)

Substituting 4ϕ and F2(ϕ1) in the first line of eqs. (3.4) yields[(
i
d

dϕ1

− δα
)2

− 2κ0 cos
θ

2
cos

(
ϕ1 −

θ

2

)]
g(ϕ1) = εg(ϕ1). (3.9)

Let us define

κ ≡ 2κ0 cos
θ

2
=

4

π
mLt cos

θ

2
[B(µ1Lt)B(µ2Lt)]

1/2 e−π/(2µLt), (3.10)
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Figure 3.1: B(z) defined in eq. (3.4). For large z, B(z) ≈ zeγ

4π .

thus, eq. (3.9) can be written as[(
i
d

dϕ1

− δα
)2

− κ cos

(
ϕ1 −

θ

2

)]
g(ϕ1) = εg(ϕ1). (3.11)

Finally, we substitute ϕ = ϕ1 − θ
2 and define f(ϕ) = g(ϕ+ θ

2). Then, eq. (3.11) takes the
form [(

i
d

dϕ
− δα

)2

− κ cosϕ

]
f(ϕ) = εf(ϕ). (3.12)

In refs. [16, 25–27], it is shown that the masses µ1, µ2 and the chiral condensate −〈ψψ〉θ
can be obtained through the following equations, when m� µ,

µ2
2 =

2π2

L2
t

κ

∫ π

−π
dϕ cosϕ |f0(ϕ)|2,

µ2
1 = µ2 + µ2

2,

〈ψψ〉θ = − µ2
2

4πm
, (3.13)

where f0(ϕ) denotes the ground state function of eq. (3.12), which obeys f0(ϕ+2π) = f0(ϕ)
and has to be normalized.

Now we need to find a solution to eq. (3.12) in order to calculate µ2; however, κ also
depends on µ2. This means that eqs. (3.10), (3.12) and (3.13) must be solved in a self-
consistent way. Analytically this is hardly possible for general values, but it can be done
numerically. Still, there is one limiting case that is worth analyzing, because it will provide
a cross-check with the numerical solutions of the next section. Let us set δα = 0. We
see in figure 3.1 that B(z) is monotonically increasing, so if we restrict ourselves to the
case cos(θ/2) ≥ 0, for µLt � 1 we have κ � 1. According to ref. [26], this allows us to

approximate1 cosϕ ≈ 1− ϕ2

2 and eq. (3.12) reduces to

−d
2f

dϕ2
− κ

(
1− ϕ2

2

)
f = εf. (3.14)

1In Hosotani’s work this approximation is not clearly argued, but it is necessary in order to obtain a
limiting case that is already known in the literature, as we mention at the end of this section.
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With the ansatz f(ϕ) = e−bϕ
2

we obtain

− d2f

dϕ2
− κ

(
1− ϕ2

2

)
f =

(
2b− 4b2ϕ2 − κ+ κ

ϕ2

2

)
e−bϕ

2
, (3.15)

then

ε = 2b− 4b2ϕ2 − κ+ κ
ϕ2

2
. (3.16)

Let us remember that ε is a constant (see for instance the third line of eq. (3.4)), so it
cannot depend on ϕ, which forces us to fix b =

√
κ/8. As a result, the normalized solution

to eq. (3.12), under the previous assumptions, is

f(ϕ) =
e−
√

κ
8
ϕ2∫ π

−π dϕ|e
−
√

κ
8
ϕ2 |2

. (3.17)

To calculate µ2 we denote

I ≡

∫ π
−π dϕ

(
1− ϕ2

2

)
e−
√

κ
2
ϕ2

∫ π
−π dϕe

−
√

κ
2
ϕ2

, (3.18)

in that manner we can rewrite the first line of eqs. (3.13) as

µ2
2 =

2π2

L2
t

κI =
8

L2
tπ
mLt cos

θ

2
[B(µ2Lt)B(µ1Lt)]

1/2 e−π/(2µLt)I. (3.19)

Since we consider µLt � 1 then e−π/(2µLt) ≈ 1. We are also able to obtain a simpler
form of the function B(z) in eq. (3.4). We see directly from its expression that if z � 1
the exponential term in the denominator of the integrand vanishes. Thus the integral is
suppressed, together with the factor π/z. Then

B(z) ≈ zeγ

4π
, z � 1, (3.20)

see figure 3.1. With this result the value for µ2 is approximately

µ2
2 ≈ 8π2

L2
tπ
mLt cos

θ

2

(
µ1Lte

γ

4π

)1/2(µ2Lte
γ

4π

)1/2

I

= 2m cos
θ

2
eγ
√
µ1µ2I. (3.21)

Equation (3.13) is valid when m� µ. That way, we can approximate µ1 by µ =
√

2g/
√
π,

since it is its value when the fermions are massless. Now, let us analyze the integral I in
eq. (3.18)

I = 1−
∫ π
−π dϕ

ϕ2

2 e
−
√

κ
2
ϕ2∫ π

−π dϕ e
−
√

κ
2
ϕ2

. (3.22)

We can use the error function to express the denominator∫ π

−π
dϕ e−aϕ

2
=

√
π

a
erf(
√
aπ), where a =

√
κ

2
, erf(x) =

2√
π

∫ x

0
dt e−t

2
. (3.23)

By using the following property (see ref. [28] for the error function properties)∫
dx erf(

√
ax) = x erf(

√
ax) +

1√
πa
e−ax

2
+ constant (3.24)
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Figure 3.2: I(κ) defined in eq. (3.22).

and integrating by parts, it is possible to show that∫ π

0
dϕϕ2e−aϕ

2
=

√
π

4a3/2
erf(
√
aπ)− π

2a
e−aπ

2
. (3.25)

Therefore ∫ π
−π dϕ

ϕ2

2 e
−
√

κ
2
ϕ2∫ π

−π dϕ e
−
√

κ
2
ϕ2

=
1

2a
−
√

π
ae
−aπ2

erf(
√
aπ)

. (3.26)

In the limit Lt → ∞ we have κ → ∞ and as a consequence a → ∞. Thus, considering
that

lim
a→∞

erf(
√
aπ) = 1, (3.27)

we conclude

lim
Lt→∞

I = 1, when cos
θ

2
≥ 0. (3.28)

This can also be seen numerically, as shown in figure 3.2. Then, eq. (3.21) is simplified to

µ2
2 = 2eγm

√
µµ2 cos

θ

2
(3.29)

We are finally left with

µ2 =

(
4e2γµm2 cos2 θ

2

)1/3

=

(
4e2γ

√
2

π
gm2 cos2 θ

2

)1/3

. (3.30)

We evaluate the constant terms(
4e2γ

√
2

π

)1/3

= 2.1633 . . . (3.31)

Therefore

µ2 = 2.1633 . . .

(
m2g cos2 θ

2

)1/3

, Lt →∞, cos
θ

2
≥ 0, m� µ. (3.32)

29



Numerical solution Chapter 3.

The two flavor massive Schwinger model has a certain analogy to QCD, that way we
can relate µ1 with the mass of the η′ meson and µ2 with the pion mass (see Chapter
5). Anyhow, we will refer to the boson of mass µ1 as η. So from now on we will denote
µ1 = mη and µ2 = mπ. There are two predictions for mπ at infinite volume and small
fermion mass m. The first one is a semi-classical prediction [29], that is equal to eq. (3.32)
by taking θ = 0. The other prediction was deduced by A. Smilga [30] and it is slightly
different from the semi-classical one: mπ = 2.008(m2g)1/3.

It is possible to derive further expressions for limiting cases, however, the rest of the
analysis will be done numerically.

3.2 Numerical solution

The first step to solve eqs. (3.10), (3.12) and (3.13) is to find a solution of the differential
equation that involves f(ϕ) with the condition f(ϕ+ 2π) = f(ϕ), ϕ ∈ (−π, π]. If one sets
δα = 0, performs the change of variable ϕ = 2x and defines a ≡ 4ε, q ≡ −2κ, then eq.
(3.12) takes the form

d2f

dx2
+ (a− 2q cos 2x)f = 0, f(x+ π) = f(π), x ∈

(
−π

2
,
π

2

]
, (3.33)

which is the quantum pendulum equation [26] or the Mathieu equation. Furthermore, if
δα 6= 0 one can perform the change of variable f(ϕ) = e−iϕ δαg(ϕ). Thus, the derivatives
and the boundary condition become

df

dϕ
= e−iδα

(
dg

dϕ
− ig δα

)
,

d2f

dϕ2
= e−iϕ δα

(
−2iδα

dg

dϕ
− δα2 +

d2g

dϕ2

)
,

g(ϕ+ 2π) = ei2πδαg(ϕ). (3.34)

Substituting in eq. (3.12) yields

− d2g

dϕ2
− κ cosϕg = εg. (3.35)

This is the same equation for f(ϕ) when δα = 0 but with a different boundary condition
given by the last line of eqs. (3.34)2.

The solutions to eq. (3.33) are the Mathieu functions of first kind, denoted by

1√
π

cen

(ϕ
2
,−2κ

)
,

1√
π

sen

(ϕ
2
,−2κ

)
, n an even number, (3.36)

while the solutions to eq. (3.35) are non-periodic solutions to the Mathieu equation, known
as Floquet solutions. There are some analytic expressions for the Mathieu functions cen,
sen, and the Floquet solutions. The former can be expressed as a linear combination of
the sine and cosine functions, while the Floquet solutions are sought by using the so-called
Floquet theorem, which allows us to find solutions of the form

Fν(ϕ) = eiνϕP (ϕ). (3.37)

Here ν is a constant, determined by the boundary condition, and P (ϕ) is a periodic
function. However, the result is quite complicated, see for example refs. [28,32]. The best

2For this reason, eq. (3.12) is also known as the Damped Mathieu Equation, see e.g. ref. [31].
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way to proceed is by discretizing eq. (3.12) in order to obtain a matrix eigenvalue problem
that will allows us to find the ground state function f0(ϕ).

Let us expand eq. (3.12)

− d2f

dϕ2
− 2iδα

df

dϕ
+ δα2f − κ cosϕ = εf (3.38)

and divide the interval (−π, π] in N + 1 sites separated by ∆ϕ = 2π/N . Then we replace
the continuum derivatives by discrete derivatives

fj = f(ϕj),
df

dϕ
→ fj+1 − fj−1

2∆ϕ
,

d2f

dϕ2
→ fj+1 − 2fj + fj−1

∆ϕ2
,

ϕ ∈ (−π, π], f0 = fN . (3.39)

Substituting them in eq. (3.38) yields

− fj+1 − 2fj + fj−1

∆ϕ2
− 2iδα

fj+1 − fj−1

2∆ϕ
+ δα2 fj − κ cosϕj fj = εfj . (3.40)

The index j runs from 0 to N − 1 (we are assuming f−1 = fN−1 since f is periodic). Thus
we have N algebraic equations that can be written in matrix form if we substitute

fj+1 − 2fj + fj−1

∆ϕ2
−→ 1

∆ϕ2


−2 1 0 0 · · · · · · · · · 1
1 −2 1 0 · · · · · · · · · 0
0 1 −2 1 · · · · · · · · · 0
...

...
...

... · · · 1 −2 1
1 0 0 0 · · · 0 1 −2


︸ ︷︷ ︸

M1


f0

f1

f2
...

fN−1


︸ ︷︷ ︸

~f

,

fj+1 − fj−1

2∆ϕ
−→ 1

2∆ϕ



0 1 0 0 0 · · · 0 −1
−1 0 1 0 0 · · · 0 0
0 −1 0 1 0 · · · 0 0
0 0 −1 0 1 · · · 0 0
...

...
...

...
...

...
...

...
0 0 0 0 0 · · · 0 1
1 0 0 0 0 · · · −1 0


︸ ︷︷ ︸

M2


f0

f1

f2
...

fN−1

 ,

δα2fj − κ cosϕj fj −→ diag(δα2 − κ cosϕ0, . . . , δα
2 − κ cosϕN−1)︸ ︷︷ ︸

M3

~f. (3.41)

In that manner, the N algebraic equations can be expressed as(
− M1

∆ϕ2
− iδα

∆ϕ
M2 + M3

)
~f = ε ~f, (3.42)

where M1, M2, M3 and ~f are defined in eq. (3.41). This is a linear algebra eigenvalue
problem that can be solved using standard subroutines, e.g. LAPACK. Then, the eigen-
vectors ~f are obtained. However they are not yet normalized as

∫ π
−π dϕ|f(ϕ)|2 = 1, so
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one must use a numerical integral (see Appendix B) to normalize the resultant vector ~f .
Reference [26] mentions some limiting case solutions of the ground state of eq. (3.38)

f0(ϕ) ≈



1√
2π

[
1 + κ

1−4δα2 (cosϕ− 2iδα sinϕ)
]

for κ
1±2δα � 1

1√
2π

[
1√
2

(
1 + e∓iϕ

)
+ κ

4
√

2

(
e±iϕ + e∓2iϕ

)]
for δα = ±1

2 , κ� 1

1∫ π
−π |e

−iδαϕ−
√

κ
8 ϕ

2
|2dϕ

e−iδαϕ−
√

κ
8
ϕ2

for κ� 1.

(3.43)

One can compare the numerical result with these particular expressions in order to
verify the outcome of diagonalizing eq. (3.42). In figure 3.3 the comparison is shown.

The next step is to find solutions for mπ and the chiral condensate 〈ψψ〉 = −m2
π/(4πm).

Equations (3.13) correspond to the following system of equations[(
i
d

dϕ
− δα

)2

− κ cosϕ

]
f(ϕ) = εf(ϕ),

(mπLt)
2 = 2π2κ

∫ π

−π
dϕ cosϕ |f0(ϕ)|2,

κ =
4

π
mLt cos

θ

2
[B(mηLt)]

1/2 [B(mπLt)]
1/2 e−π/2µLt . (3.44)

Below we are going to use the notation β = 1/g2 and we recall that µ2 = 2g2/π.

Equations (3.44) can be solved as a non-linear system of equations or in a self-consistent
way. We explain both procedures as recipes. To solve eqs. (3.44) as a non-linear system
one performs the following steps:

• First, one has to assign values to the input parameters κ, δα, θ, β and m; that way
one has to determine mπ and Lt.

• Then, the ground state function is calculated numerically by using eq. (3.42) for the
κ and δα values that we chose, and the result is normalized.

• With f0 already calculated, one computes mπLt with the second equation of (3.44),
using once again a numerical integrator.

• Note that mπLt is already known from the previous step, but in order to find Lt and
mπ separately one has to determine the “Lt-roots” of the last equation in (3.44).
This can be done using a root finder, for instance bisection.

Following these four steps the system can be solved. It is important to note, however,
that with this procedure one does not have control over Lt, but over κ, so if a solution
for a specific Lt is desired, then a scan for several values of κ has to be applied. Still, it
is possible to have control over Lt, but then one cannot give an initial value for m and it
has to be determined in the same way we computed Lt in the last four steps. That is, one
would have to do the following steps instead:

• Assign values to κ, δα, θ, β, Lt and leave mπ and m undetermined.

• Calculate the normalized groundstate f0(ϕ).

• With f0 already calculated, one computes mπ with the second equation of (3.44).

• Now one has to determine m in the last equation of (3.44). In this case one can
solve for m analytically, there is no need for a root finder.
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Figure 3.3: Ground state function of eq. (3.38). The approximate solutions correspond
to the expressions in eq. (3.43). In the two plots on the right-hand side it is hard to
distinguish the two curves. We use N + 1 = 103 points in the discretization.

On the other hand, if one wants to have total control over both variables, Lt and m,
then the system has to be solved self-consistently. The idea is to carry out the following
steps:

• Assign a value to δα, θ, β, Lt, m and start from an initial guess for the pion mass
mini
π . The pion mass will be determined self-consistently.

• Calculate κ.

• Calculate a new value of the pion mass, mnew
π , using the second equation of (3.44).

• If |mnew
π −mini

π | is smaller than an error that one desires, then mnew
π is the result for

mπ. Otherwise, one has to use mnew
π as mini

π and repeat these four steps until the
final value has converged within the error. We cannot guarantee that the iteration
converges, but in the examples that we tested the result always converges to the
same values that one obtains with the two previous methods.

We implemented these three methods with Python and all of them give the same results.
In general, the last one is most expensive computationally since one does not know how
long the algorithm takes to converge and it depends on the initial guess. Anyhow, this
method is most useful since we can fix arbitrary values of Lt and m. We choose these
two parameters to be dimensionless, that way we set the energy scale of the system and
compare the solution with the results of lattice simulations.

The first result to be revised is eq. (3.32), because it helps to verify the numerical
solution and it also allows us to check the outcome with the three different methods
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explained above. To do so, we substitute mη for its value in the chiral limit (mη = µ) and
then we solve eqs. (3.44). In figure 3.4 the pion mass is shown as a function of (m2g)1/3

for different values of Lt and δα = θ = 0, β = 4. We see that when Lt becomes larger, the
values move closer to the semi-classical prediction.

(a) Fixing m and determining Lt

(b) Fixing Lt and determining m

(c) Self-consistent solution

Figure 3.4: Solution for the pion mass as function of (m2g)1/3 when one substitutes
mη ≈ µ. Each plot was made with one of the three different methods described above.
We observe that the results coincide.
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If one does not substitute mη ≈ µ and instead uses mη =
√
m2
π + µ2, the result of

figure 3.4 is different, since mπ will not converge to eq. (3.32). In figure 3.5, the pion mass
as a function of (m2g)1/3 and mη as a function of m are shown, but taking into account
the change in mη. The chiral condensate can be calculated as well by using the third line
of eqs. (3.13). Different values of this quantity as function of Lt and the temperature are
shown in figure 3.6.

(a)

(b)

Figure 3.5: Predictions of mη and mπ for different fermion masses and values of Lt. We see
that as Lt becomes larger, for small m the value of mπ approaches to the semi-classical
prediction and in the chiral limit it vanishes. We also observe that mη converges to
µ =

√
2× 0.52/π ' 0.39 when m→ 0.
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Figure 3.6: Predictions of the chiral condensate -〈ψψ〉 as a function of Lt and the temper-
ature T . In the limit m → 0, 〈ψψ〉 vanishes. At high temperature the chiral condensate
vanishes faster. We anticipated this result in Chapter 1, where we mentioned that only
when we consider one flavor, 〈ψψ〉 does not go to zero in the chiral limit.

3.3 Lattice simulations results

In this section we show results of mπ and mη obtained with lattice simulations at finite
temperature for β = 1/g2 = 4. Each value of mπ and mη was obtained through 103

measurements separated by 10 sweeps. 500 sweeps were performed to thermalize the
configurations. The fermion mass was also measured, since it undergoes renormalization
and one cannot use the bare Wilson fermion mass. We determined m by using the PCAC
relation, see Section 4.4. We compare the results of the simulations with the prediction
given by Hosotani, by setting δα = θ = 0. In figures 3.7, 3.8 and 3.9 results of mπ vs.
(m2g)1/3 and mη vs. m for a spatial volume L = 64 and a time extent Lt = 10, 12, 16 are
shown, respectively. These plots are in lattice units, i.e. we have set the lattice constant
a = 1, so the masses do not have dimensions.

For β = 4, the mass of η in the chiral limit is
√

2× 0.52/π ' 0.39; then, one would
expect Hosotani’s prediction to match the simulation results for a fermion mass m� 0.39.
This implies that the prediction should be valid when (m2g)1/3 � 0.42. In figure 3.7 we
see that when (m2g)1/3 . 0.1, the analytic approach matches well the results of the
simulations. For larger m, the values of mπ and mη obtained by means of the simulations
disagree with the prediction. Still, in both cases mπ is above the semi-classical prediction.

Now, if (m2g)1/3 . 0.1, then m . 0.044. According to figure 3.7 (b), in this region the
prediction coincides with the simulation results. Both sets of results converge to a value
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very close to 0.4, which is compatible with mη =
√

2g2/π. However, for masses larger
than 0.05 we see again a discrepancy between the simulations and the analytic approach.
In figures 3.8 and 3.9 we increase Lt and the agreement between the simulations and the
prediction by Hosotani occurs when m . 0.05.

With the simulations we can also measure the chiral condensate. Even so, we cannot
compare directly this result with the prediction by Hosotani, because, as we mentioned
in Chapter 2, Wilson fermions break the chiral symmetry. Therefore, we do not see that
〈ψψ〉 vanishes as m goes to zero. For instance, in figure 3.10 we show 〈ψψ〉 for Lt = 10
and L = 64 as a function of the fermion mass.

Based on these results, we can affirm that the predictions of eqs. (3.44) do not allow
us to perform a study for masses m &

√
2g2/π. Nevertheless, it is still useful to compare

values near the chiral limit. The approach analyzed in this chapter for the Schwinger
model at finite temperature would be more useful to compare results for the boson masses
and the chiral condensate for arbitrary values of θ, close to m = 0. In principle, this is
what Hosotani intended when he developed his solution. At finite θ, lattice simulations
are not feasible due to the sign problem, where the action becomes complex and we cannot
use exp(−S) as a probability weight factor. In this chapter we revised how far one can
go with the outcome of eqs. (3.44) to study the finite temperature Schwinger model for
arbitrary fermion mass.

(a) mπ vs. (m2g)1/3
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(b) mη vs. m

Figure 3.7: Masses of the η and π mesons as a function of the degenerate fermion mass m
for Lt = 10.

(a) mπ vs. (m2g)1/3
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(b) mη vs. m

Figure 3.8: Masses of the η and π mesons as a function of the degenerate fermion mass m
for Lt = 12.

(a) mπ vs. (m2g)1/3
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(b) mη vs. m

Figure 3.9: Masses of the η and π mesons as a function of the degenerate fermion mass m
for Lt = 16.
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(a) −〈ψψ〉 vs. m obtained with lattice simulations.

(b) −〈ψψ〉 vs. m obtained with eqs. (3.44) and the last line of eqs. (3.13).

Figure 3.10: In the upper plot, we show the result of 〈ψψ〉 obtained with the lattice
simulations, while in the lower plot we show the prediction by Hosotani. The former does
not vanish in the chiral limit due to the explicit chiral symmetry breaking encoded in the
Wilson fermion formulation.
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Chapter 4

Chiral Perturbation Theory and the δ-regime

As it was mentioned in Chapter 2, the low energy regime of QCD cannot be treated by
using the gauge coupling as a perturbative parameter, but one can use lattice simulations.
A systematic analytical approach to this regime is Chiral Perturbation Theory, which is an
effective field theory. In virtue of the chiral symmetry breaking of QCD, the Lagrangian
of the effective theory is built by introducing a field in the coset space of the symme-
try breaking group. This field describes the lightest hadrons, since at low energy they
dominate the theory. If the symmetry breaking is spontaneous, the particles that appear
are massless and they are known as Nambu-Goldstone Bosons. On the other hand, if
the symmetry breaking is explicit, the particles have a light mass and we refer to them
as quasi Nambu-Goldstone Bosons, which correspond to light mesons. In principle, the
effective Lagrangian contains all the terms that are consistent with the symmetries of the
underlying theory. Since the number of terms is infinite, they are truncated in the sense
of a low energy expansion. This leads to a consideration of the chiral symmetry of the
QCD Lagrangian.

4.1 QCD chiral symmetry

Since we are interested in low energy, we will work with the flavors whose masses satisfy
mf � ΛQCD ≈ 300 MeV. Therefore we only take into account the u and d quarks, with
masses in the following range [33]

mu = 1.9 - 2.65 MeV,

md = 4.5 - 5.15 MeV. (4.1)

Then, in Minkowski space-time, the QCD Lagrangian is given by

L =
∑
f=u,d

(qf iγ
µDµqf −mfqfqf )− 1

4
tr [GµνG

µν ] ,

Dµ = (∂µ + igAµ), Gµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ], (4.2)

where qf and qf are fermion fields associated with the flavor f with mass mf . The gauge

field is Aµ(x) =
∑8

a=1A
a
µ(x)Ta, where Aaµ(x) are field components and Ta are the basis

elements of the traceless Hermitian 3×3 matrices (generators of SU(3)). This implies that
the gauge field is a matrix as well. The Lagrangian is constructed in the same way as we
did in Section 2.3, so it is invariant under SU(3) gauge transformations. We are interested
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in analyzing the chiral symmetry, therefore we apply the chiral projection operators, which
were already introduced in section 1.3.

PR =
1

2
(I + γ5), PL =

1

2
(I− γ5), (4.3)

to the quark fields in order to obtain the right-handed and left-handed fields

qRf = PRqf , qLf = PLqf , qRf = qfPL, qLf = qfPR. (4.4)

By using {γ5, γ
µ} = 0, γ2

5 = I, γ†5 = γ5 and the definition (4.3) of the chiral operators one
obtains the following properties

PL,R = P †L,R, P
2
L,R = PL,R, PRPL = PLPR = 0, PR,Lγ

µ = γµPL,R, (4.5)

qf = qRf + qLf , qf = qRf + qLf . (4.6)

With eqs. (4.5) and eqs. (4.6) the QCD Lagrangian takes the form

L =
∑
f=u,d

[
qLf iγ

µDµqLf + qRf iγ
µDµqRf −mf (qRf qLf + qLf qRf )

]
− 1

4
tr [GµνG

µν ] . (4.7)

Now, we use global chiral transformations defined by

qR,Lf → q′R,Lf = eiαγ5qR,Lf , qR,Lf → q′R,Lf = qR,Lf e
iαγ5 , α ∈ R. (4.8)

By using γµeiαγ5 = e−iαγ5γµ, the quark part of the Lagrangian transforms as∑
f=u,d

[(
q′Lf iγ

µDµq
′
Lf

+ q′Rf iγ
µDµq

′
Rf

)
−mf (q′Rf q

′
Lf

+ q′Lf q
′
Rf

)
]

=
∑
f=u,d

[(
qLf iγ

µDµqLf + qRf iγ
µDµqRf

)
−mf (qRf e

i2αγ5qLf + qLf e
i2αγ5qRf )

]
. (4.9)

Hence, L is invariant under the transformations of eq. (4.8) only when mf = 0, for that
reason this is called the chiral limit. Let us work in the chiral limit for the moment.

If we express the quark fields as doublets

qR =

(
qRu
qRd

)
, qR =

(
qRu , qRd

)
, qL =

(
qLu
qLd

)
, qL =

(
qLu , qLd

)
, (4.10)

we can rewrite the massless Lagrangian as

L = qLiγ
µDµqL + qRiγ

µDµqR −
1

4
tr [GµνG

µν ] (4.11)

and apply separate global U(2) transformations

qR → q′R = RqR, qR → q′R = qRR
†, R ∈ U(2)R,

qL → q′L = LqL, qL → q′L = qLL
†, L ∈ U(2)L. (4.12)

Under these transformations, L is once again invariant. The corresponding symmetry
group is U(2)L⊗U(2)R. An element of U(2) can be decomposed into an element of SU(2)
multiplied by a phase factor, thus

U(2)L ⊗U(2)R = SU(2)L ⊗ SU(2)R ⊗U(1)B ⊗U(1)A, (4.13)
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where U(1)A is the axial symmetry, which is broken explicitly under quantization (axial
anomaly). U(1)B is associated with the baryon number conservation, while SU(2)L ⊗
SU(2)R is the chiral flavor symmetry group. At low energy, the latter breaks spontaneously
to SU(2). We analyze this through the chiral condensate

〈0| qq |0〉 = 〈0| (qRqL + qLqR) |0〉 . (4.14)

Under the transformations in eq. (4.12) the chiral condensate transforms as

〈0| q′q′ |0〉 = 〈0| (qRR†LqL + qLL
†RqR) |0〉 , (4.15)

where we see that 〈0| qq |0〉 remains invariant only if R = L. Hence, we have the following
spontaneous breaking pattern

SU(2)L ⊗ SU(2)R → SU(2)L=R. (4.16)

The order parameter of this symmetry is 〈0| qq |0〉, so when it is different from zero the
chiral symmetry is indeed spontaneously broken. Because of the Goldstone theorem, this
broken symmetry corresponds to

dim(SU(2)L ⊗ SU(2)R)− dim(SU(2)) = 3 + 3− 3 = 3 (4.17)

massless Nambu-Goldstone Bosons (NGB). If now we take into account the masses mu and
md, the symmetry is explicitly broken and the NGBs turn into light massive quasi NGBs,
which can be identified with the pion triplet π+, π−, π0. See refs. [34–36] for extensive
reviews.

4.2 Effective Lagrangian

In order to build the effective Lagrangian Leff, one introduces a field U(x) in the coset
space of the symmetry breaking group, i.e.

U(x) ∈ (SU(2)L ⊗ SU(2)R)/SU(2)L=R = SU(2), (4.18)

which transforms under global transformations of SU(2)L ⊗ SU(2)R as

U(x)→ U ′(x) = RU(x)L†, R ∈ SU(2)R, L ∈ SU(2)L. (4.19)

For two quark flavors, the field U(x) can be expressed in terms of pseudoscalar pion fields:
~π = {π1(x), π2(x), π3(x)}. Thus, U(x) is written as

U(x) = exp

(
i
~π · ~τ
Fπ

)
, ~τ = (σ1, σ2, σ3), (4.20)

where Fπ is known as the pion decay constant and makes the argument of the exponential
dimensionless (the pion fields have dimension of mass in units of c = ~ = 1 in d = 4) and
where σi are the Pauli matrices, which are the generators of SU(2). Hence

U(x) = exp

(
i
φ(x)

Fπ

)
, φ(x) =

(
π0

√
2π+

√
2π− −π0

)
,

π0 = π3, π
± =

π1 ∓ iπ2√
2

. (4.21)

Leff is constructed by using U(x). It must have all the terms that present the symmetries
of QCD, in particular Lorentz invariance and chiral symmetry. Each term is accompanied

44



Effective Lagrangian Chapter 4.

by a coefficient denominated Low Energy Constant (LEC), which is a free parameter of
the effective theory and has to be determined from the underlying theory. However, there
are actually an infinite number of terms consistent with the symmetries. They can be
organized in increasing powers of momentum, which is the same as increasing number of
derivatives, so one can truncate them for low energy. In the massless case, the effective
Lagrangian with the least number of derivatives reads

Leff =
F 2
π

4
tr
(
∂µU∂

µU †
)
. (4.22)

The factor F 2
π/4 is required because if one expands in powers of φ up to second order,

the kinetic term 1
2tr(∂µφ∂

µφ†) is obtained. Under the transformation of eq. (4.19) the
Lagrangian is invariant

Leff =
F 2
π

4
tr
(

ΩR∂µUΩ−1
L ΩL∂

µU †Ω−1
R

)
=
F 2
π

4
tr
(

Ω−1
R ΩR∂µU∂

µU †
)

=
F 2
π

4
tr
(
∂µU∂

µU †
)
,

(4.23)
where we have used the cyclic property of the trace.

If one introduces the masses mu and md to the theory, a term that explicitly breaks
the chiral symmetry is added

Ls.b. =
F 2

0B0

2
tr
(
MU † + UM

)
, M =

(
mu 0
0 md

)
, (4.24)

where s.b. stands for “symmetry breaking” and F0 and B0 are two LECs. To leading
order the massive effective Lagrangian reads

Leff =
F 2
π

4
tr
(
∂µU∂

µU †
)

+
F 2

0B0

2
tr
(
MU † + UM

)
. (4.25)

For degenerate quark masses, mu = md ≡ m, the LECs satisfy the following relations [37]

Fπ = F0

[
1 +O

(
m

ΛQCD

)]
,

〈0| qq |0〉 = −2F 2
0B0

[
1 +O

(
m

ΛQCD

)]
,

mπ =
√

2B0m

[
1 +O

(
m

ΛQCD

)]
. (4.26)

In the chiral limit we obtain Fπ = F0. For m� ΛQCD eqs. (4.26) allow us to write Leff in
a more convenient way

Leff =
F 2
π

4
tr
(
∂µU∂

µU †
)

+
Σ

4
tr
(
MU † + UM

)
, Σ ≡ −〈0| qq |0〉 . (4.27)

The effective Lagrangian can be formulated in terms of a normalized field ~S(x) ∈ O(4),
|~S(x)| = 1 as well, since there is a local isomorphism between O(4) and SU(2)L⊗ SU(2)R.
This is known as the non-linear σ model [38]. The symmetry breaking pattern takes the
form

O(4)→ O(3) ←→ SU(2)L ⊗ SU(2)R → SU(2). (4.28)

In terms of the field ~S(x), the non-trivial Leff term with the least number of derivatives
reads

Leff =
F 2
π

2
∂µ~S · ∂µ~S. (4.29)
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Now, we introduce an external field ~H that explicitly breaks the symmetry by adding the
term

Ls.b. = −Σ ~H · ~S, (4.30)

where ~H plays the same role as a degenerate quark mass.

4.3 Regimes of Chiral Perturbation Theory

From eq. (4.27) we see that the leading order LECs are Fπ, Σ. These constants can
be determined through lattice QCD simulations. Still, one cannot simulate an infinite
volume, so three regimes with finite volume in Euclidean space, V = L3 × Lt, have been
established. For each one of them, the relation between the LECs can be different from
the one that is shown in eqs. (4.26). Nevertheless, the values of these LECs are the same
in all the regimes. Let us briefly review them:

• The p-regime consists of a large volume compared to the correlation length: L,Lt �
ξ = m−1

π . In this regime the finite volume corrections are suppressed by a factor
proportional to exp(−mπL), so eqs. (4.26) are valid [37].

• If L,Lt . ξ we refer to the ε-regime [39]. Here the finite volume corrections cannot
be neglected. In the ε-regime the chiral condensate has the following dependence on
the LECs, m and the volume when B0mL

2 � 1 (see e.g. ref. [40])

〈0| qq |0〉 = −2F 2
0B0

(
I ′1(F 2

0B0mV )

I1(F 2
0B0mV )

− 1

F 2
0B0mV

)
, (4.31)

where I1 is the modified Bessel function of first kind of order one. Let us revise the
infinite volume limit of this expression. For that purpose, we denote x = F 2

0B0mV
and we use the asymptotic large x form of the modified Bessel functions (see e.g.
ref. [28])

Iν(x) ∼ ex√
2πx

(
1− 4ν2 − 1

8x

)
, (4.32)

and therefore
I ′1(x)

I1(x)
− 1

x
∼ −15− 30x+ 16x2

6x− 16x2
. (4.33)

When x → ∞ this expression converges to 1. Thus, the infinite volume limit of
eq. (4.31) recovers 〈0| qq |0〉 = −2F 2

0B0. On the other hand, we obtain the limit of
〈0| qq |0〉 when m→ 0 in a finite volume. To do so we use the following expressions
for the modified Bessel functions and their derivatives

Iν(x) =

∞∑
k=0

(x/2)ν+2k

k!Γ(ν + k + 1)
, I ′ν(x) = Iν−1(x)− ν

x
Iν(x). (4.34)

Then we have

I ′1
I1
− 1

x
=

I0(x)− 1
xI1(x)

I1(x)
− 1

x
=

∑∞
k=0

(x/2)2k

k!Γ(k+1)∑∞
l=0

(x/2)1+2l

l!Γ(l+2)

− 2

x

≈︸︷︷︸
x→0

1
Γ(1)

(x/2)
Γ(2)

− 2

x
= 0. (4.35)

Hence, we see that in the chiral limit 〈0| qq |0〉 vanishes. This is consistent with the
fact that in finite volume there is no spontaneous symmetry breaking.
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• Finally, the δ-regime is determined by a volume of size V = L3×Lt, where the spatial
volume is small, but the Euclidean time extent is large, that is L . ξ � Lt [7].

The pion decay constant has been calculated in the p-regime and the ε-regime with three
flavors several times, giving a result of Fπ = 92.1(9) MeV [2, 41–43]. On the other hand,
the δ-regime is less explored; there Fπ has been measured with two flavors obtaining
Fπ = 78+14

−10 MeV [44].

The ε and δ-regime are useful from a technical point of view, because the small volume
reduces the computing time of the simulations. In particular, in the δ-regime the fact
that L . ξ � Lt has several effects. First, in the chiral limit the pion does not become
massless and instead there is a residual mass mR

π 6= 0 (this is also true for the ε-regime).
Another consequence is that there is approximately only one dimension, that enables us
to treat the system as a quasi one dimensional field theory, i.e. quantum mechanics [7].
Then, since O(4) is locally isomorphic to SU(2)⊗SU(2), if we consider again ~S(x) ∈ O(4),
the system describes a particle moving in a unit 3-sphere S3 [38]. One can express mR

π as
the energy gap of a quantum rotor, which is given by

Ej =
j(j +N − 2)

2Θ
, (4.36)

where Θ is the moment of inertia and N refers to the group O(N). The value of Θ was
computed in ref. [8] up to next-to-leading order, for a general dimension d > 2 and N ≥ 2

Θ = F 2
πL

d−1

[
1 +

N − 2

4πF 2
πL

d−2

(
2
d− 1

d− 2
+ · · ·

)]
, (4.37)

The leading term had been calculated in ref. [7] for four dimensions already.

The residual pion mass is obtained by substituting j = 1 and N = 4 in eq. (4.36)

mR
π =

3

2Θ
. (4.38)

In four dimensions we have

mR
π =

3

2F 2
πL

3(1 + ∆)
, ∆ =

0.477 · · ·
(FπL)2

+ . . . , d = 4. (4.39)

Calculations of ∆ up to 1/(FπL)4 have been done in refs. [45,46]. In two dimensions there
is a divergence of the next-to-leading term, so instead we just consider the leading term,
yielding

mR
π '

3

2F 2
πL

, d = 2. (4.40)

This dimension has not been considered in this context, because there are no NGBs [47–49].
Still, at finite fermion mass the lightest particles are similar to quasi NGBs and we will
refer to them as pions [50]. Note that when d = 2, Fπ is dimensionless, since the mass has
units of inverse of length.

We performed simulations of the two flavor Schwinger model in the δ-regime with the
HMC algorithm. This allowed us to obtain mR

π as a function of L, in order to verify the
relation mR

π ∝ 1/L and extract the value of Fπ from eq. (4.40).

4.4 δ-regime simulation results

As in Chapter 3, we will denote β = 1/g2. All the plots shown are in lattice units, i.e. the
lattice constant a is set to 1. To make the lattice finer, we increment the value of β. Results
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for β = 2, 3 and 4 were obtained through 103 measurements, separated by 10 sweeps. 500
sweeps were performed to thermalize the field configurations. It is important to mention
that under gauge interaction the mass of the Wilson fermion undergoes renormalization,
so it is necessary to measure a renormalized mass m, instead of using the input mass of
the simulations. This can be achieved with the Partial Conservation of Axial Current
(PCAC) relation (see e.g. Section 9.1.4 of [20])

〈∂µAaµ(x)P a(0)〉 = 2m〈P a(x)P a(0)〉, (4.41)

where Aaµ is the isovector axial current, P a is the pseudoscalar density and m the renor-
malized fermion mass

Aaµ(x) =
1

2
q(x)γµγ5σ

aq(x),

P a(x) =
1

2
q(x)γ5σ

aq(x), (4.42)

where σa denotes the Pauli matrices. Equation (4.41) partially restores the broken axial
symmetry when m = 0. With the PCAC relation, we were able to measure the renormal-
ized fermion mass m for different lattice sizes, and thus to express mπ as a function of
m.

In figure 4.1 (a), mπ is shown as a function of the degenerate quark mass m for L = 6,
Lt = 64 and β = 4. We see that close to the chiral limit, the value of mπ becomes very
unstable, so one cannot simply measure mπ at m = 0. Instead one extrapolates the value
to m = 0. However, that is easier to do with figure 4.1 (b), where mπ is plotted against
(m2g)1/3. A function of the form y =

√
a+ b x3, where x = (m2g)1/3 and a and b are fit

parameters, was fitted to extrapolate to mR
π . Many attempts with functions of the form

y =
√
a+ b xc and y = a+ bxc were performed. The best results were obtained by taking

c = 3 in the former expression. We do not have an explanation for this behavior, but it
works best to infer mR

π . We observe that in figure 4.1 (a) there are results for negative
fermion mass. In the simulation both signs of the mass are measured, but the negative
values do not have physical meaning and they were ignored in the extrapolations.

This same procedure was performed for different L between 5 and 12 and Lt = 64. In
figure 4.2 we show plots of mπ vs. (m2g)1/3 for β = 2, in figure 4.3 for β = 3 and in figure
4.4 for β = 4.

Finally, we plot mR
π as a function of L and fit a function of the form 3/(2LF 2

π ), see
figures 4.5, 4.6 and 4.7.
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(a) mπ vs. m. We see that near m = 0 the pion mass result is plagued by large
errors.

(b) mπ vs. (m2g)1/3. We fit a function of the form mR
π =

√
a+ bm2g to obtain the

value of the residual pion mass: mR
π = 0.549(12). The predictions for mπ in infinite

volume, mentioned in Chapter 3, are shown for comparison.

Figure 4.1: Results of mπ and m. Note that there are also values for m < 0, but they
are unphysical. However, in the simulation both signs of the mass are measured. In the
lower plot only m > 0 was considered. The errors were computed by using the jackknife
method, see Appendix C.
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(a) mπ vs. (m2g)1/3 for L = 7. mR
π =0.4645(72) (b) mπ vs. (m2g)1/3 for L = 8. mR

π =0.4063(45)

(c) mπ vs. (m2g)1/3 for L = 9. mR
π =0.3749(47) (d) mπ vs. (m2g)1/3 for L = 10. mR

π =0.3505(58)

(e) mπ vs. (m2g)1/3 for L = 11. mR
π =0.3163(59) (f) mπ vs. (m2g)1/3 for L = 12. mR

π =0.3040(51)

Figure 4.2: Results for β = 2. Each value of mπ and m was obtained by averaging 103

measurements of different configurations. Between each configuration used, 10 sweeps
were performed. All the fits were made with gnuplot.
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(a) mπ vs. (m2g)1/3 for L = 7. mR
π =0.4639(103) (b) mπ vs. (m2g)1/3 for L = 8. mR

π =0.4057(58)

(c) mπ vs. (m2g)1/3 for L = 9. mR
π =0.3722(29) (d) mπ vs. (m2g)1/3 for L = 10. mR

π =0.3437(42)

(e) mπ vs. (m2g)1/3 for L = 11. mR
π =0.3104(30) (f) mπ vs. (m2g)1/3 for L = 12. mR

π =0.2832(51)

Figure 4.3: Results for β = 3. Each value of mπ and m was obtained by averaging 103

measurements of different configurations. Between each configuration used, 10 sweeps
were performed.
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(a) mπ vs. (m2g)1/3 for L = 7. mR
π =0.4684(75) (b) mπ vs. (m2g)1/3 for L = 8. mR

π =0.4068(63)

(c) mπ vs. (m2g)1/3 for L = 9. mR
π =0.3741(40) (d) mπ vs. (m2g)1/3 for L = 10. mR

π =0.3323(22)

(e) mπ vs. (m2g)1/3 for L = 11. mR
π =0.3167(54) (f) mπ vs. (m2g)1/3 for L = 12. mR

π =0.2857(41)

Figure 4.4: Results for β = 4. Each value of mπ and m was obtained by averaging 103

measurements of different configurations. Between each configuration used, 10 sweeps
were performed.
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Figure 4.5: Behavior of mR
π vs. L for β = 2. The dashed line is a fit of a function of the

form mR
π = a/L. The chi-square per degree of freedom is χ2

ν = 7.932.

Figure 4.6: Behavior of mR
π vs. L for β = 3. The chi-square per degree of freedom is

χ2
ν = 2.581.
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Figure 4.7: Behavior of mR
π vs. L for β = 4. χ2

ν = 2.213. We can see that the data
matches well the relation of 1/L described in eq. (4.40).

From figures 4.5, 4.6 and 4.7 we see that indeed mR
π ∝ 1/L, as we conjectured for the

δ-regime. This can be best seen for β = 4, because the lattice is finer than for β = 2, 3
and as a consequence there are less lattice artifacts. Still, for β = 2, 3 the 1/L relation
is noticeable. For all the β values that we used, we see that when L becomes large, mR

π

vanishes, as it should do for an infinite volume. From the fits we were able to extract Fπ
(see table 4.1).

β 2 3 4

Fπ 0.6683(50) 0.6681(25) 0.6700(22)

Table 4.1: Pion decay constant for different values of β.

For β = 4 the error and χ2
ν are the smallest. Again, this is due to the fact that there are

less lattice artifacts. In order to determine Fπ in the continuum, one has to extrapolate to
β → ∞. However, in this case we observe that for the β values that we used, the results
are the same within errors. Then, in principle we could use Fπ for β = 4 as our final
result. Still, the measurements could be not so well decorrelated and we have to analyze
their autocorrelation time (see Appendix D for the definition) first.

We measured the autocorrelation time of the topological charge Q (see Chapter 5 for
a definition of the topological charge), because this quantity tends to be the one with the
highest autocorrelation. In figures 4.8, 4.9 and 4.10 we show the number of Monte Carlo
configurations sorted according to each topological sector, for simulations with different
masses. We see that the distribution of Q obeys approximately a Gaussian relation and,
in most cases, it is compatible with 〈Q〉 = 0. The exponential autocorrelation time τexp

and the integrated autocorrelation time τint with respect to Q are shown in figures 4.11,
4.12 and 4.13. In some plots (e.g. figures 4.12 (b), (c), (e), (f) and 4.13 (d), (f)) we see
that close to m = 0, the autocorrelation time has a peak. In some other plots, τexp and
τint are scattered. We also observe that in general τint is more stable than τexp, since the
procedure to measure it is more systematic and does not rely on a fit.
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For β = 2, the autocorrelation time does not have a peak and in most cases it is below
2.5, which is a good sign of decorrelation. In a few cases, the exponential autocorrelation
time reaches values larger than 2.5, for instance in figure 4.11 (a) and (b). In those
situations, it is very likely that τexp was not properly determined by fitting eq. (D.2). For
β = 3, τexp and τint increase close to m = 0, but their maximum values remain below 4.

For β = 4, τexp and τint reach maximum values beyond 14, which implies that for this
fine lattice the number of sweeps between each measurement should be increased in order
to suppress correlations, although that also increases significantly the computing time of
the simulations. Given the autocorrelation times obtained with β = 4, we do not take the
value of Fπ corresponding to this β and instead we take an average of the values obtained
for Fπ

Fπ = 0.6688(5). (4.43)

(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Topological charge distribution for different lattices and fermion mass, β = 2.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Topological charge distribution for different lattices and fermion mass, β = 3.
In figure (e) the value of 〈Q〉 is four sigmas deviated from 0, so it is not compatible with
zero.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Topological charge distribution for different lattices and fermion mass, β = 4.
In figure (e) the value of 〈Q〉 is 7.6 sigmas deviated from 0, so it is not compatible with
zero. This is an effect of the autocorrelation of the measurements.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.11: Exponential and integrated autocorrelation time of the topological charge for
different lattices, β = 2.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.12: Exponential and integrated autocorrelation time of the topological charge for
different lattices, β = 3.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.13: Exponential and integrated autocorrelation time of the topological charge for
different lattices, β = 4.
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Chapter 5

The Witten-Veneziano formula

In this chapter we compute the decay constant of the η meson, Fη, in two dimensions and
attempt to make a connection to the value of Fπ that we measured in the previous chapter.
To do so we rely on the Witten-Veneziano formula [9, 10], which in 3-flavor QCD relates
the mass of the η′ meson with mη, mK , Fπ and the quenched topological susceptibility χque

T ,
defined below. This formula is obtained by taking the ’t Hooft limit of a 1/Nc expansion,
where Nc is the number of colors. In this limit one considers Nc →∞ and gs → 0, while
leaving the product g2 = g2

sNc finite (gs is the strong coupling constant).

In theory one introduces two η mesons, with the valence quark composition

η1 =
1√
3

(
uu+ dd+ ss

)
, η8 =

1√
6

(
uu+ dd− 2ss

)
. (5.1)

η1 is a flavor singlet and η8 belongs to an octet of states. In nature one observes the
particles η and η′, which are mixed by an angle θP(

η
η′

)
=

(
cos θP − sin θP
sin θP cos θP

)(
η8

η1

)
. (5.2)

Since the measured value of θP is small, θP = −11.3◦ [33], we have

η ≈ 1√
6

(
uu+ dd− 2ss

)
, η′ ≈ 1√

3

(
uu+ dd+ ss

)
. (5.3)

Veneziano [10] obtained the following formula by taking into account the three lightest
quark flavors and assuming mu = md = 0 and ms > 0 to order 1/Nc

m2
η′ +m2

η − 2m2
K =

6

F 2
η′
χque
T . (5.4)

where Fη′ is the decay constant of the meson η′ and “que” stands for quenched, i.e. its
value when the degenerate fermion mass m→∞. In the chiral limit we obtain the formula
deduced by Witten

m2
η′ =

6

F 2
η′
χque
T . (5.5)

To lowest order in a 1/Nc expansion, we have Fη′ = Fπ [9]. This leads to the question if
this relation between the decay constants holds in the Schwinger model. In general, the
literature refers to eq. (5.4) or (5.5), as the Witten-Veneziano formula.
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In the two-flavor Schwinger model, in the limit of massless fermions, eq. (5.4) is sim-
plified to1 [51, 52]

m2
η =

2N

F 2
η

χque
T , (5.6)

where N is the number of flavors. We compute Fη in the Schwinger model with eq. (5.6)
and based on the result we verify whether the relation Fη ' Fπ holds. This would also
enable us to determine Fπ by an independent method that does not involve the δ-regime.

The topological susceptibility χT is defined for the Euclidean Schwinger model in the
continuum as

χT =

∫
d2x (〈q(x)q(0)〉 − 〈q(x)〉〈q(0)〉) , (5.7)

where
q(x) =

g

4π
εµνFµν(x) =

g

2π
F12(x) (5.8)

is the topological charge density. With q(x) we define the topological charge as

Q =

∫
d2x q(x) ∈ Z. (5.9)

We can formulate χT in terms of Q as well

χT =
〈Q2〉 − 〈Q〉2

V
, (5.10)

where V is the space-time volume. An important property of the topological charge is
that it is an integer number. We can see that fact if we rewrite q(x) as a total divergence

q(x) = ∂µΩµ(x), Ωµ(x) =
g

2π
εµνAν(x). (5.11)

If we consider field configurations of finite action, Fµν(x) has to vanish at infinity, so the
gauge field must be gauge equivalent to 0 when |x| → ∞

0 = A′µ(x) = Aµ(x)− 1

g
∂µϕ(x). (5.12)

Then

Q =

∫
d2x ∂µ

(
g

2π
εµν

1

g
∂νϕ(x)

)
=

1

2π

∫
∂V
dσµ εµν∂νϕ(x), (5.13)

where we have used the Gauss theorem and where we assume ∂V to be the boundary of a
large volume in R2. Now, if we consider a circumference of length L, we identify Q with
the following integral

lim
L→∞

1

2πi

∫ L

0
dxU∗(x)∂xU(x), where U(x) = eiϕ(x), U(L) = U(0). (5.14)

This expression is equal to
1

2π
[ϕ(L)− ϕ(0)] = n ∈ Z, (5.15)

hence Q is an integer.

1One can make an analogy of the flavor singlet of the two-flavor Schwinger model, (uu+ dd)/
√

2, with
the singlet η1 of QCD. Since η1 is close to η′, in the literature they often refer to the flavor singlet of
the two-flavor Schwinger model as η′ [51, 52]. However, it is not the actual η′ particle from QCD and for
simplicity we will denote it as η.
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As we mentioned in Chapter 3, we can relate mη with the gauge coupling as follows

m2
η = N

g2

π
. (5.16)

Thus, by determining χque
T we obtain a value for Fη. According to refs. [51, 52], the

theoretical expression for χque
T in infinite volume and in the continuum is

χque
T =

g2

4π2
' 0.0253 g2. (5.17)

This implies that theoretically Fη = 0.3989. This result was also deduced in ref. [53].

To numerically measure the topological susceptibility by using lattice simulations we
have to discretize the topological charge density. This can be done most easily through
the plaquette variables defined in Chapter 2. From eq. (2.94), we know that for a small
lattice spacing a, the plaquette variables have the following expression

Uµν(~n) = eiga
2Fµν(~n), Fµν(~n) = − i

ga2
lnUµν(~n). (5.18)

That way, we have

q(~n) = − i

2πa2
lnU12(~n) (5.19)

and
Q =

∑
~n

a2q(~n), (5.20)

where the sum runs over all lattice sites {~n = (n1, n2)|nµ = 0, 1, . . . , Nµ − 1;µ = 1, 2}.

The lattice configurations generated through Monte Carlo algorithms are sorted in dif-
ferent sectors, where each one is characterized by a topological charge. Furthermore, there
is evidence (see e.g. refs. [54,55]) that the distribution of these configurations corresponds
approximately to a Gaussian function. Due to parity symmetry, we also have

〈Q〉 = 0. (5.21)

Then, one can calculate χT on the lattice using the following weighted average

χT =

∑
QQ

2NQ

V
∑

QNQ
, (5.22)

where NQ are the number of configurations in the topological sector labeled by Q.

In Chapter 5 we have shown the histograms for Q obtained with simulations for sev-
eral lattice sizes, using low statistics (103 measurements separated by 10 sweeps). We
attempted to compute the topological susceptibility using those results. Unfortunately,
even though the topological charge is compatible with 〈Q〉 = 0, χT as a function of the
fermion mass m does not have a clear behavior, see for instance figure 5.1. This does not
allow us to perform a fit and to extrapolate to the quenched value of χT . Usually the
autocorrelation time for Q is larger than with other observables. Separating the measure-
ments by 10 sweeps could be enough to decorrelate other observables, but here we see that
it affects the result of χT . For that reason, we incremented the number of measurements
to 104, separated by 100 sweeps, and simulated a 10× 64 lattice for β = 4. This improved
the results. In figure 5.2 we show the distribution of the configurations and in figure 5.3
we show the topological susceptibility as a function of the degenerate fermion mass. We
used two functions to extrapolate χT , from their average we obtain

χque
T β = 0.029(1). (5.23)
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This result is in agreement with ref. [56], which reported χque
T β = 0.0300(8) at β = 4, and

with our quenched simulations χque
T β = 0.0304(2) (see below).

Now, we substitute eq. (5.16) in eq. (5.6) and solve for Fη

F 2
η = χque

T

2π

g2
. (5.24)

Using the result in eq. (5.23) yields

Fη = 0.4243(76). (5.25)

To check the lattice artifacts of this quantity, we compute Fη for more values of β.

Figure 5.1: Topological susceptibility as a function of the fermion mass m, computed for
103 measurements with 10 sweeps between each of them on a 11× 64 lattice. χT does not
have a clear behavior for this number of measurements.

(a) Configurations sorted by their topological charge for m = 0.0564(27).
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(b) Configurations sorted by their topological charge for m = 0.3272(66).

Figure 5.2: Distribution of the Monte Carlo configurations in different topological sectors
for β = 4. We see approximately a Gaussian distribution. m denotes the degenerate PCAC
fermion mass. When the mass is smaller, the configurations occupy less topological sectors.

(a) A function of the form y = ae−be
−cx

was fitted to the data.
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(b) We also fitted a function of the form y = a+bx+cx2

d+fx+gx2
.

Figure 5.3: Topological susceptibility as a function of the degenerate fermion mass ob-
tained with 104 measurements. The plots are in lattice unites. We performed two fits in or-
der to extract the value of χT when m→∞. The results yield χque

T /g2 = χque
T β = 0.029(1).

To do so, we performed more simulations to determine χT in the quenched approximation
by working with pure gauge theory, i.e. by generating Monte Carlo configurations using
only the gauge action

SG =
1

4

∫
d4xFµνFµν . (5.26)

This is more convenient than extrapolating χT to infinite m, because the simulations are
faster and they yield results for m→∞. Still, the extrapolation of χT to infinite m works
as a cross-check with the results of β = 4 that we obtain with the quenched simulations.

In figure 5.4, we show χque
T β for different lattices of dimension L×L and β = 2, 3, 4, 5, 6, 7

and 8. We took 104 measurements separated by 10 sweeps for β = 2 and 3; 104 measure-
ments separated by 100 sweeps for β = 4 and 5 and 104 measurements separated by 103

sweeps for β = 6, 7 and 8. In table 5.1 we show χque
T β for the different β values that we

simulated, together with Fη computed with the Witten-Veneziano formula.

β χque
T β Fη

2 0.0389(2) 0.495(1)
3 0.0335(3) 0.459(2)
4 0.0304(2) 0.437(1)
5 0.0285(4) 0.423(3)
6 0.0283(4) 0.422(2)
7 0.0261(11) 0.404(9)
8 0.0256(19) 0.399(15)

Table 5.1: Results of χque
T β and Fη for different β values obtained with pure gauge theory

simulations.
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We observe that χque
T β still depends on β. As β increases, χque

T β decreases monoton-
ically. For β = 4 the number that we obtain by means of the quenched simulations is
compatible, within errors, with the large m extrapolation that we performed before. In
figure 5.5, we show a comparison of our results for χque

T β with the values of refs. [52, 56].
Since χque

T β is not independent of β, Fη also has lattice artifacts. We can perform an
extrapolation to the continuum limit by fitting the ansatz χque

T β = a+ b/β, where a and
b are fit parameters, in order to determine Fη. The extrapolation yields

χque
T β = 0.0223(3), Fη = 0.374(3). (5.27)

The result of eq. (5.27) is slightly below the theoretical prediction for infinite volume
and in the continuum, given by eq. (5.17). We also compare our result of χque

T β for large
β with the value that was obtained in ref. [57]: χque

T β ' 0.023. Our result is in agreement
with this value.

When we compare Fη with the value that we obtained in the δ-regime: Fπ = 0.6688(5),
we observe that they do not agree. Furthermore, in the δ-regime the result is essentially
independent of β, so the lattice artifacts are mild, in contrast to the outcome of Fη. This
confirms that the hypothesis that Fη could be equal to Fπ in the Schwinger model is not
correct, although they are of the same order of magnitude.

(a) χque
T β vs. L for β = 2. An average yields χque

T = 0.0389(2).

(b) χque
T β vs. L for β = 3. An average yields χque

T = 0.0335(3).
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(c) χque
T β vs. L for β = 4. An average yields χque

T = 0.0304(2).

(d) χque
T β vs. L for β = 5. An average yields χque

T = 0.0285(4).

Figure 5.4: χTβ measured for different β and lattices of dimensions L× L.

Figure 5.5: χque
T β vs. 1/β. Bautista et al. refers to ref. [56] and Dürr, Hoelbling to

ref. [57]. HMC algorithm denotes the results that we computed with pure gauge theory
simulations. In order to determine χque

T β in the continuum we fitted a function of the form
χque
T β = a+ b/β, which yielded χque

T β = 0.0223(3).
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Conclusions

In this work we computed the masses of the bosons that appear in the two-flavor Schwinger
model at finite temperature by using lattice simulations. We compared the results with
the analytic approach by Hosotani et al., which is only valid for m � µ =

√
2g2/π, so

we did not expect a perfect agreement with lattice simulations. Still, we confirm the
validity of Hosotani’s equations in the low mass regime. We saw that they are not very
useful to obtain predictions for mπ and mη for arbitrary fermion masses. However, they
would be applicable to compute mπ and mη for arbitrary values of the vacuum angle θ,
when the degenerate fermion mass is much smaller than µ. This cannot be easily done by
lattice simulations, because the Euclidean action becomes complex and exp(−S[x]) does
not represent a probability measure for θ 6= 0.

In the δ-regime, we observed that the residual pion mass mR
π is proportional to 1/L

for d = 2, as we conjectured based on the higher dimensional results previously shown by
Leutwyler, Hasenfratz and Niedermayer. Thus, we were able to compute the pion decay
constant in two dimensions. Our final result is

Fπ = 0.6688(5). (6.1)

It also turned out that this quantity does not depend on the parameter β and shows mild
lattice artifacts.

We determined the η decay constant, Fη, in two dimensions by computing the quenched
topological susceptibility and applying the Witten-Veneziano formula to the Schwinger
model. We verified that our results for χque

T are compatible with the literature. From an
extrapolation to the continuum limit we obtained

χque
T β = 0.0223(3). (6.2)

This value is below of the theoretical prediction by Seiler, which states that χque
T β ' 0.0253,

but is in agreement with the value determined by Dürr and Hoelbling: χque
T β ' 0.023.

With our result of χque
T β we obtained

Fη = 0.374(3). (6.3)

As we mentioned in Chapter 5, in large Nc QCD, to the order 1/Nc we can relate Fη′ = Fπ.
On the other hand, in the Schwinger model nothing assures that this relation holds. Our
results obtained with the Witten-Veneziano formula and in the δ-regime suggest that in
Schwinger model the relation Fη = Fπ is not valid. Still, both decay constants are of the
same order of magnitude in two dimensions.

69



Appendix

A Hybrid Monte Carlo algorithm

In Chapter 2 we described how to implement the Metropolis algorithm to update a scalar
field configuration [Φ] in order to achieve configurations distributed according to p ∝
exp(−S[Φ]), where S[Φ] is the discretized Euclidean action. To update the configuration
from [Φ] to [Φ′] with this algorithm, one performs local updates Φx → Φ′x which are
accepted based on the ratio

p[Φ′]

p[Φ]
= e−∆S[Φ,Φ′], (A.1)

where
∆S = S[Φ′]− S[Φ]. (A.2)

Now, when we consider gauge fields interacting with fermions, the partition function is
given by

Z =

∫
D[U ]D[ψ,ψ] e−S[ψ,ψ,U ] =

∫
D[U ]D[ψ,ψ] e−SF [ψ,ψ,U ]e−SG[U ], (A.3)

where ψ and ψ are Grassmann fields and where U denotes the link variables. If we use
eq. (2.50) and the first line of eqs. (2.98), we can rewrite the partition function as

Z =

∫
D[U ] e−SG[U ] detD[U ], (A.4)

where D[U ] is a discretization of the Dirac operator. Thus, the probability of a configu-
ration [U ] is

p[U ] =
1

Z
e−SG[U ] detD[U ]. (A.5)

We observe that in order to update the link variables, we will have to compute the ratio
detD[U ′]/detD[U ], which is computationally expensive . Therefore, algorithms that per-
form local updates are not very efficient when one deals with fermions and gauge fields,
since one has to consider complete configurations to calculate determinants.

Several algorithms that update entire configurations in one step have been introduced.
For fermions interacting with gauge fields, the most efficient is the Hybrid Monte Carlo
(HMC) algorithm [58], which introduces auxiliary momenta π, distributed according to
p[π] ∝ exp(−π2/2), conjugated to the link variables U . By solving the Hamilton equations
we can evolve (π, U) to (π′, U ′) for N steps along a trajectory in the phase space. This
is known as molecular dynamics evolution. After these N steps, one performs a Langevin
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step1, that is, the momenta are generated again and the molecular dynamics evolution is
repeated. We describe the HMC procedure for a scalar field. The steps are the same for
the implementation in QED; however, it involves a more subtle treatment of the fermion
fields and the link variables, which is reviewed in refs. [20, 59,60].

Let us suppose a scalar field configuration [Φ] with Euclidean action S[Φ]. By intro-
ducing the conjugate momenta

πx =
∂L
∂Φ̇x

, (A.6)

the Hamiltonian is given by

H[Φ, π] =
1

2
π2 + S[Φ], (A.7)

where π2 =
∑

x π
2
x and where x runs over all the lattice sites. The momentum configuration

is generated with a Gaussian distribution

p[π] ∝ e−
1
2
π2

(A.8)

and [Φ] with a cold or hot start. From eq. (2.42), we know that the expectation value of
an observable A is given by

〈A〉 =

∫
D[Φ]e−S[Φ]A[Φ]∫
D[Φ]e−S[Φ]

, D[Φ] =
∏
x

Φx. (A.9)

We can insert the momentum to this expression without modifying its outcome

〈A〉 =

∫
D[Φ]D[π]e−

1
2
π2
e−S[Φ]A[Φ]∫

D[Φ]D[π]e−
1
2
π2
e−S[Φ]

, D[π] =
∏
x

πx. (A.10)

Now, we evolve Φx and πx along a trajectory, parametrized by τ , with the Hamilton
equations

dΦx

dτ
=
∂H

∂πx
= πx,

dπx
dτ

= − ∂H
∂Φx

= − ∂S

∂Φx
. (A.11)

After N∆τ steps, the system arrives at a new configuration (π′, φ′). As we mentioned in
Chapter 2, the detailed balance condition

W ([Φ]→ [Φ′])

W ([Φ′]→ [Φ])
=
p[Φ′]

p[Φ]
=
e−S[Φ′]

e−S[Φ]
, p[Φ] ∝ e−S[Φ] (A.12)

has to be fulfilled. We will show that the condition is satisfied when the transitions are
reversible, i.e. if we can go from (π,Φ) to (π′,Φ′) with the same probability as from
(−π′,Φ′) to (−π,Φ), and when the measure does not change, D[Φ]D[π] = D[Φ′]D[π′].
Since eqs. (A.11) are deterministic, there is a transformation rule

f(π,Φ) = (π′,Φ′) (A.13)

that maps (π,Φ)→ (π′,Φ′) and reversibility means that

f(π,Φ) = (π′,Φ′)⇔ f(−π′, φ′) = (−π, φ). (A.14)

Both conditions can be achieved numerically by solving eqs. (A.11), for instance with the
so-called leapfrog integrator, which we describe below.

1This comes from another algorithm, known as Langevin algorithm (see for instance ref. [21]). Mixing
this step with molecular dynamics is the reason of the “hybrid” name.
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The Hamiltonian is a constant of motion and the configurations are constrained to
H = H[Φ, π]; so, in principle, (π′,Φ′) could be used as the new configuration of the Markov
chain. However, eqs. (A.11) cannot be solved exactly, thus H[Φ, π] 6= H[Φ′, π′]. A way to
correct this defect is to apply a Metropolis step, i.e. to calculate ∆H = H[Φ′, π′]−H[Φ, π]
and only accept the change (π,Φ)→ (π′,Φ′) when ∆H ≤ 0, or if ∆H > 0, accept it with
probability exp(−∆H).

The leapfrog integrator updates the values of Φx and πx in a trajectory of length N∆τ ,
N ∈ N, by evolving the value of Φx in N steps of size ∆τ and evolving πx in N steps
consisting of two intermediate steps of length ∆τ/2

Φx [(i− 1)∆τ ] −→ Φx(i∆τ),

πx [(i− 1)∆τ ] → πx
[
(i− 1

2)∆τ
]
→ πx(i∆τ), i = 1, . . . N. (A.15)

The equations for updating the values are

Φx(i∆τ) = Φx [(i− 1)∆τ ] + ∆τ
dΦx

dτ

∣∣∣∣
τ=(i−1/2)∆τ

,

πx

[(
i− 1

2

)
∆τ

]
= πx [(i− 1)∆τ ] +

∆τ

2

dπx
dτ

∣∣∣∣
τ=(i−1)∆τ

,

πx(i∆τ) = πx

[(
i− 1

2

)
∆τ

]
+

∆τ

2

dπx
dτ

∣∣∣∣
τ=i∆τ

. (A.16)

We can substitute the derivatives by using eqs. (A.11) and combine eqs. (A.16) to obtain

Φx(i∆τ) = Φx [(i− 1)∆τ ] + ∆τ πx [(i− 1)∆τ ]− ∆τ2

2

∂S

∂Φx

∣∣∣∣
Φx[(i−1)∆τ ]

,

πx(i∆τ) = πx [(i− 1)∆τ ]− ∆τ

2

[
∂S

∂Φx

∣∣∣∣
Φx[(i−1)∆τ ]

+
∂S

∂Φx

∣∣∣∣
Φx(i∆τ)

]
. (A.17)

Let us verify that the Jacobian of the transformation (Φx[(i − 1)∆τ ], πx[(i − 1)∆τ ]) →
(Φx(i∆τ), πx(i∆τ)) is equal to one. A computation of the matrix of derivatives of eqs.
(A.17) yields

J = det

1− ∆τ2

2
∂

∂Φx[(i−1)∆τ ]
∂S
∂Φx

∣∣∣∣
Φx[(i−1)∆τ ]

∆τ

−∆τ
2

∂
∂Φx[(i−1)∆τ ]

∂S
∂Φx

∣∣∣∣
Φx[(i−1)∆τ ]

1

 = 1. (A.18)

Thus, the measure does not change in any integration step i− 1→ i. Since the Jacobian
of the transformation from τ = 0 to τ = N∆τ is the multiplication of all the Jacobians of
eqs. (A.17) for i = 1, . . . , N , we conclude that the measure does not change after N steps,
i.e. D[Φ]D[π] = D[Φ′]D[π′].

To show the reversibility we identify eqs. (A.17) as the transformation rule f that we
mentioned in eq. (A.13). To check eq. (A.14) we interchange

Φx [(i− 1)∆τ ]↔ Φx (i∆τ) , πx [(i− 1)∆τ ]↔ −πx(i∆τ) (A.19)
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on the right-hand side of eqs. (A.17)

Φx(i∆τ)−∆τ πx(i∆τ)− ∆τ2

2

∂S

∂Φx

∣∣∣∣
Φx(i∆τ)

= Φx(i∆τ)−∆τ πx[(i− 1)∆τ ] +
∆τ2

2

[
∂S

∂Φx

∣∣∣∣
Φx[(i−1)∆τ ]

+
∂S

∂Φx

∣∣∣∣
Φx(i∆τ)

]
− ∆τ2

2

∂S

∂Φx

∣∣∣∣
Φx(i∆τ)

= Φx(i∆τ)−∆τ πx[(i− 1)∆τ ] +
∆τ2

2

∂S

∂Φx

∣∣∣∣
Φx[(i−1)∆τ ]

= Φx[(i− 1)∆τ ]− πx(i∆τ)− ∆τ

2

[
∂S

∂Φx

∣∣∣∣
Φx[(i−1)∆τ ]

+
∂S

∂Φx

∣∣∣∣
Φx(i∆τ)

]
= −πx[(i− 1)∆τ ]. (A.20)

Therefore eq. (A.14) is established.

Now, we still have to show that the HMC algorithm obeys detailed balance. But first,
let us summarize the algorithm steps as a recipe:

1. We generate an auxiliary momentum configuration [π] distributed according to
p[π] ∝ exp(−

∑
x π

2
x/2).

2. Then, we solve the Hamilton equations (A.11) by using the leapfrog integrator in
order to evolve the system from (π, φ)→ (π′, φ′).

3. If ∆H = H[π′, φ′]−H[π, φ] ≤ 0 the configuration is updated, otherwise the update
(π, φ)→ (π′, φ′) is accepted only with probability exp(−∆H). This is equivalent to
accepting the change with probability WM = min (1, exp(−∆H)).

These three steps are repeated the required number of times and together they conform a
sweep. It is important to mention that for each new sweep, the momentum configuration
has to be generated again.

To demonstrate detailed balance, we begin with the transition probability to move from
[Φ] to [Φ′]

W (Φ′|Φ) =

∫
D[π]D[π′]WM (π′,Φ′|π,Φ)WR(π′,Φ′|π,Φ)e−π

2/2, (A.21)

where we introduced the simplified notation W (A|B), which means “the probability to
move from B to A” (here we deviate from the notation in eq. (A.12)). WR stands for
the probability to evolve the system from (π′,Φ′) to (π,Φ), which satisfies reversibility
WR(π′,Φ′|π,Φ) = WR(−π,Φ| − π′,Φ′). WM is the probability to accept the update (step
3 of the recipe). We can rewrite WM (π′,Φ′|π,Φ) as follows

WM (π′,Φ′|π,Φ) = min(1, exp(−∆H)) = exp(−∆H) min(exp(∆H), 1)

= exp(−∆H)WM (π,Φ|π′,Φ′). (A.22)

Since H does not depend on the sign of π, we obtain the relation

WM (π′,Φ′|π,Φ) = exp(−∆H)WM (−π,Φ| − π′,Φ′), (A.23)

and therefore

W (Φ′|Φ) =

∫
D[π]D[π′]WM (π′,Φ′|π,Φ)WR(π′,Φ′|π,Φ)e−π

2/2

=

∫
D[π]D[π′] e−∆HWM (−π,Φ| − π′,Φ′)WR(−π,Φ| − π′,Φ′)e−π2/2

=

∫
D[π]D[π′]WM (−π,Φ| − π′,Φ′)WR(−π,Φ| − π′,Φ′)e−S[Φ′]+S[Φ]−π′2/2. (A.24)
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Under sign flip π → −π, π′ → −π′ the measure does not change, thus

W (Φ′|Φ) =

∫
D[π]D[π′]WM (π,Φ|π′,Φ′)WR(π,Φ|π′,Φ′)e−S[Φ′]+S[Φ]−π′2/2

= W (Φ|Φ′)e−S[Φ′]+S[Φ].

Hence
W (Φ′|Φ)

W (Φ|Φ′)
=
e−S[Φ′]

e−S[Φ]
=
p[Φ′]

p[Φ]
, (A.25)

i.e. detailed balance is satisfied.

B Second order numerical integral

In Chapter 3 we have to evaluate several integrals of the form

I =

∫ b

a
f(x) dx (B.1)

to solve the equations obtained by Hosotani. In order to do so, we construct a numerical
integral up to second order. Let us consider a lattice of N points separated by a length
∆x, with the condition f(x1) = f(a), f(xN ) = f(b). For the interior points of the lattice,
we can approximate the second derivative as

f ′′i ≈
fi+1 − 2fi + fi−1

∆x2
, (B.2)

where we denote fi ≡ f(xi). If N is an odd number, then eq. (B.1) can be written, up to
second order, by using a Taylor series, as

I ≈

N−1
2∑
i=1

∫ x2i+∆x

x2i−∆x

[
f2i + f ′2i(x− x2i) + f ′′2i

(x− x2i)
2

2

]
dx, (B.3)

where we are only integrating on the even sites. Simplifying eq. (B.3) yields

I ≈

N−1
2∑
i=1

2∆xf2i +
∆x3

3
f ′′2i. (B.4)

If we substitute eq. (B.2) we obtain an expression that allows us to evaluate eq. (B.1)
when N is odd

I ≈

N−1
2∑
i=1

∆x

3
(f2i+1 + 4f2i + f2i−1) . (B.5)

On the other hand, if N is an even number, we can use the following variant of eq. (B.5)

I ≈

N
2
−1∑

i=1

∆x

3
(f2i+2 + 4f2i+1 + f2i) . (B.6)

However, we still need to integrate from the site x1 to x2 (see figure 1 for a graphical
depiction). In this case, eq. (B.2) is not valid for the derivatives, because we do not have
any more points to the left of the grid. Thus, we use the following discretization for the
derivatives (see e.g. ref. [61]), which only relies on forward steps

f ′1 ≈
−3f1 + 4f2 − f3

2∆x
, f ′′1 ≈

2f1 − 5f2 + 4f3 − f4

∆x2
. (B.7)
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Then, the contribution of the interval [x1, x1 + ∆x] to the integral is∫ x1+∆x

x1

[
f1 + f ′1(x− x1) + f ′′1

(x− x1)2

2

]
dx = f1∆x+

f ′1
2

∆x2 +
f ′′1
6

∆x3

= ∆x

(
7

12
f1 +

1

6
f2 +

5

12
f3 −

1

6
f4

)
. (B.8)

Therefore, the general result for the second order numerical integral reads

I ≈


∑N−1

2
i=1

∆x
3 (f2i+1 + 4f2i + f2i−1) for odd N,∑N

2
−1

i=1
∆x
3 (f2i+2 + 4f2i+1 + f2i) + ∆x

(
7
12f1 + 1

6f2 + 5
12f3 − 1

6f4

)
for even N .

(B.9)

We test the result with the following definite integrals∫ 1/
√

2

−1/
√

2
xe−x

2
dx = 0,

∫ π

0
ex cos(x) dx = −1

2
(1 + eπ). (B.10)

In figure 2 we show the numerical value of these integrals as a function of the number of
points, N , on the lattice. We also compare the result of eq. (B.9) with a calculation of the
integrals by using midpoint Riemann sums. In figure 2 (a) we observe that the Riemann
sum converges faster and that the numerical integral computed with eq. (B.9) oscillates
around the right value for small N . In figure 2 (b), eq. (B.9) converges faster.

Figure 1: In the upper image we show a lattice with an odd number of points, where we
see that by integrating only in the even sites from x2i −∆x to x2i + ∆x, we can compute
the numerical integral. In the lower image we show the case of a lattice with even N .
There, we can compute the integral from x2 up to the last site (x6 in the figure); however,
the contribution from x1 to x2 would be missing if we only use eq. (B.6). For that reason,
we have to use eqs. (B.7) to calculate the contribution from the blue region, which is given
by eq. (B.8).
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(a)
∫ 1/
√
2

−1/
√
2
xe−x

2

dx as a function of the number of

points used to evaluate the integral.

(b)
∫ π
0
ex cos(x) dx as a function of the number of
points used to evaluate the integral.

Figure 2: Test of the convergence of the numerical integral with the examples of eq. (B.10).
We compare the results of the numerical integral presented in this section with the results
obtained with Riemann sums.

C Jackknife error

The jackknife error, σJ , is a special kind of error that allows us to compute the uncertainty
of a set of measurements by taking into account possible autocorrelations. It is also useful
to determine the error of a fit parameter. For instance, an error to the energy gap given
by the correlation function (eq. (2.44)) can be obtained by fitting a cosh function to
several data subsets and by estimating σJ , using the resultant parameter of each fit as a
measurement.

Let us suppose that we have N measurements of a variable x. We describe the calcu-
lation of σJ as a recipe:

• We calculate the average 〈x〉 of the N measurements.

• We divide the N measurements in M blocks. M should preferably be a number that
satisfies N/M ∈ N.

• For each block m = 1 . . .M , we consider the set of the N measurements without the
block m and calculate its average 〈x〉m.

• The jackknife error is defined as follows

σJ =

√√√√M − 1

M

M∑
m=1

(〈x〉m − 〈x〉)2. (C.1)

An important remark is that when M = N , σJ coincides with the standard error, since
for that case we have

〈x〉m =
1

N − 1

N∑
m′ 6=m

xm′ =⇒ 〈x〉m − 〈x〉 =
1

N − 1
(〈x〉 − xm) . (C.2)

Then

σJ =

√√√√ N − 1

N(N − 1)2

N∑
m=1

(xm − 〈x〉)2 =

√√√√ 1

N(N − 1)

N∑
m=1

(xm − 〈x〉)2. (C.3)
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However, it is not the idea to take M = N , but to work with M � N . In general, σJ
changes for a different number of blocks M and it tends to be larger than the standard
error. Therefore, normally one calculates the right-hand side of eq. (C.1) for several M
and chooses the error as the largest value of the σJ that were computed.

D Autocorrelation time

The autocorrelation time is a quantitative measure of the autocorrelation between the
Markov chain configurations. It depends on a specific observable X. To define it, we make
use of the correlation function

CX(t) = 〈XiXi+t〉 − 〈Xi〉〈Xi+t〉, (D.1)

where t = |i− j|, i, j = 1, . . . , N , with N the number of measurements of X. For large t,
the following behavior is known

CX(t) ∝ e−t/τexp , (D.2)

where we refer to τexp as the exponential autocorrelation time. τexp can be obtained by
measuring CX(t) for large t and fitting eq. (D.2). A small τexp means that the configura-
tions are well decorrelated. When that is not the case, it is recommendable to increment
the number of sweeps between each configuration that is used to take measurements.

There is another autocorrelation time that can be defined, known as the integrated
autocorrelation time

τint =
1

2
+

N∑
t=1

CX(t)

CX(0)
. (D.3)

It can be proved that for large N (see e.g. ref. [62]), the statistical error σX is related to
the variance

Var = 〈(X − 〈X〉)2〉 (D.4)

by

σ2
X = 2τint

Var

N
. (D.5)

Thus, τint provides a way of finding an error that takes into account correlations between
measurements, different from the jackknife error. Another interpretation of eq. (D.5)
is that it tells us that we are using an effective sample of N/(2τint) measurements. If
τint = 1/2, the effective sample is N , which indicates a perfect decorrelation. This is
motivated by the fact that with decorrelated data the uncertainty is simply the standard
error

√
Var/N . Deeper discussions of the autocorrelation time can be found in refs.

[62–64].
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