
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO
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Abstract

We consider minimal information exchange in the Russian Cards problem

scenario. Such scenario is usually considered as a promising model in studies

about unconditionally secure protocols for general purposes, including the

implementation of various cryptographic primitives.

Roughly, the problem scenario consists of two card players, Alice and Bob,

trying to communicate to each other the cards they hold, through public

announcements. The security requirement states that these announcements

must not allow a third card player, Cath, to know who (Alice or Bob) is

holding any of the cards that she does not have. The deck of cards is supposed

to be known in advance and fully distributed among the three players so that

all three know how many cards each one is holding. The communication

protocol is also assumed to be common knowledge among the players, so

that the only private information each player has is his own hand of cards.

In most related works, only informative announcement protocols are used

for solving the problem. Then, such solutions consist of two steps or an-

nouncements, one from Alice and the other from Bob. In this work however,

we mostly consider minimally informative and secure announcement pro-

tocols. We discuss possible advantages of using these, compared to their

informative counterparts, in terms of communication complexity and the

possibilities of them being used in scenarios where it is known that no si-

multaneously secure and informative protocols exist. Additionally, we are

interested in using this type of announcement protocols for designing com-

munication strategies with at least two steps, which allow the exchange of

information between two agents in an unconditionally secure manner.
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Chapter 1

Introduction

Security is an usual and important requirement for information transmission

protocols. Two agents A and B should be able to communicate with each

other without an eavesdropper C being capable of learning secret information

from the messages. A conventional approach for achieving this would be

public-key cryptography. In this approach, information is safeguarded relying

on the computational intractability of cryptanalysis for decryption of the

messages. In other words, this approach works under the assumption that

the agents have limited computational capabilities and therefore provides

what is known as conditional security. On the other hand, another approach

would be to get rid of this assumption and rather rely on what the agents

know or not, i.e. the information available for each party. As opposite to

the former, this knowledge-based protocol approach is information-theoretic

secure, i.e. provides unconditional security.

A promising approach in studies about such unconditionally secure pro-

tocols appears to be modeling agents as card players [9, 10, 11, 12] and, in

particular, using a scenario and constraints inspired by the Russian Cards

problem [6]. In such scenario the cards are viewed as representing correlated

input information for the participants.

The present work has been developed in collaboration with Eduardo Pas-

cual Aseff. Pascual’s work is focused on informative and secure protocols for
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a more general Russian Cards scenario, where there are r cards that are not

dealt to anyone. Our discussions on the problem have been productive and

helped us improving our results.

1.1 The Russian Cards problem

The Generalized Russian Cards problem scenario is usually described as fol-

lows: three players A,B and C, respectively named Alice, Bob and Cath,

draw cards from a deck D of n cards labeled from 0 to n − 1. A gets a

cards, B gets b and C gets c, as specified by a signature (a,b, c), with

n = a + b + c1. Then, the goal is for A and B to inform each other about

which cards they hold while ensuring that C cannot know who holds any

particular card (except for the ones she owns).

A particular instance of this problem can be described by the signature

(a,b, c), with n = a+b+c. The (3, 3, 1) instance of the generalized problem

is regarded as the Russian Cards problem due to [6] and was first presented

at the Moscow 2000 Mathematical Olympiad.

It is clear that the basic problem underling the situation described above

is to design a protocol for Alice and Bob. Such protocol should be informative

for each other and safe against Cath. The first condition, regards the first

goal for the problem above, which is that Bob should learn Alice’s hand

from her announcement (and conversely, Alice should learn Bob’s), in which

case we also say this announcement is informative. On the other hand, the

second condition, safety, deals with the goal of Cath not being able to infer a

single card from Alice’s hand neither Bob’s, i.e. their announcements should

be safe. The previous formulation of the safety requirement is also called

weak-1-security [20], but stronger formulations have also been considered.

It is well known that any announcement from a player is equivalent to

announcing that he holds one of the hands from a specific set of possible or

alternative hands. Such set is also regarded as an announcement [6]. As the

1Recently, the case where r cards are not dealt, i.e. n = a + b + c + r, was also

considered in [18]
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announcements are supposed to be truthful, the actual hand that the player

holds must be contained in the set of alternative hands representing the an-

nouncement. This fact allows the study of the problem from a combinatorial

perspective.

Moreover, when only informative announcements are considered, it is

clear that the problem requirements are met with only two announcements

(one from Alice and one from Bob), therefore two-steps protocols are suf-

ficient for solving the problem when both announcements are informative.

Additionally, in such cases, the second announcement can always be infor-

mative and safe. Given that Bob is informed about Alice’s hand he can

always announce Cath’s hand, which is informative for Alice while being safe

from Cath, as it doesn’t give her any new information. Hence, in such cases,

designing a communication strategy for solving the problem reduces to de-

signing an announcement protocol for Alice’s announcement. However, this

is not the case when not fully informative announcements are considered.

In such cases, the second announcement is not trivial, furthermore, solving

the problem according to the classic requirements, demands communication

strategies with more than two steps.

As it was early noted, a couple of assumptions are necessary to make

the problem precise and therefore, formally distinguish between ‘good’ and

‘bad’ solutions [16]. First, all circumstances regarding the scenario are as-

sumed to be public knowledge, except for which cards each player holds.

This means it is assumed to be common knowledge among the three play-

ers, how many cards each player hold, the content of the announcements

they make, as well as the communication protocol they use. Therefore, the

only private information is what they wish to communicate. As is standard

in modern cryptography, this assumption embraces Kerckhoffs’ principle, i.e.

rejects security through obscurity. The second assumption is that the player’s

computational capabilities are unlimited. As we previously remarked, this

assumption, unlike the first, is not common in cryptography but it is in

information theory approaches. This means, a ‘good’ solution can not be

vulnerable to cryptanalisys. Finally, we assume that communication is com-

pletely reliable i.e., agents communicate via an error-free channel. When
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we take these assumptions into consideration, finding solutions becomes a

challenging problem.

1.2 Zero-error source coding with side

information

Now that we have presented the problem we are mainly concerned with, we

want to discuss the relation between this and other problem from informa-

tion theory, namely zero-error source coding with side information [21, 17].

Roughly, the single instance2 scenario is the following: an informant Alice

has some input information a ∈ ΩA while the recipient Bob has some corre-

lated information b ∈ ΩB. All possible input pairs (a, b) are defined by the

elements in the support set S, which both Alice and Bob know. Then, the

goal is for Alice to communicate a to Bob with zero probability of error and

using the minimum amount of bits.

Its clear from the problem statement that informativity is a common

requirement for solutions to this problem as well as for the Russian Cards

case. On the other hand, both problem present additional requirements,

namely security, for the Russian Cards case and optimality for zero-error

source coding.

Although these last requirements are clearly different, there’s no need for

them to be mutually exclusive. In fact, it is reasonable to think that aiming

for optimality for the transmission protocol i.e., a smaller set of possible

messages, it may be the case that each individual message carries information

about a bigger set of possible values for a and therefore more ambiguity,

making it perhaps more secure against an eavesdropper.

The previous discussion and the similar structure of both problems makes

it natural to think about the Russian Cards problem as a special kind of a

zero-error source coding problem. This relation between both problems was

also previously noted in [14]. Therefore, using some of the tools from the

2In general, the problem of one-way communication can also be considered in the

multiple instances scenario i.e., with multiple communication rounds.
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zero-error source coding literature appears to be a promising approach for

the analysis of the Russian Cards problem.

1.3 Motivation

Recently, a weaker alternative for the informative requirement, called mini-

mally informative was considered in [18]. For this variant of the problem, B

is not required to learn A’s entire hand, instead we need B to learn something

about it. We regard this as the problem of minimal information transmission

in the Russian Cards scenario.

In the present work, we are mostly interested in studying secure mini-

mal information exchange in the Russian Cards scenario. Thus, while [18]

only focuses on the problem of information transmission, i.e., only one-way

communication; here, we also consider protocols for information exchange,

i.e., we study the communication in both ways. In particular, as we are

mostly concerned with the problem of secure minimal information exchange,

we study protocols in which both, Alice and Bob communicate with each

other with the goal of learning something about each other’s hands, while

preventing Cath from learning a single card of theirs.

The terminology we use is mostly that from [18]. Thus, this work extends

the results presented in [18], specifically regarding the problem of minimal

information transmission. Additionally, our approach for formalizing the

problem is motivated by the links with the problem of zero-error source

coding with side information, previously noted in [14].

In particular, we are interested in answering how much such protocols

can help in reducing communication complexity with respect to (fully) infor-

mative ones.

Also, it is well known that no (fully) informative and safe announcement

protocols exists for various problem instances, for example, when Alice or Bob

have less information than Cath, i.e. when they hold less cards. It would

be interesting to answer whether this weaker informative requirement could

allow some information exchange between Alice and Bob in a safe manner
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even in such scenarios.

1.4 Contribution

In the present work, we provide a formal presentation of the problem of se-

cure minimal information exchange in the Russian Cards scenario. Our main

results, that we describe in this section, will be presented in the 23rd Inter-

national Symposium on Stabilization, Safety, and Security of Distributed

Systems (SSS’21)[15].

We present a two-message minimally informative solution in which Alice

and Bob use the announcement protocol χ2 proposed in [18], announcing

both the sum of their cards modulo 2. We show this is a proper minimally

informative solution to the problem whenever 1 ≤ c ≤ bn/2c− 2, 2 ≤ a,b <

bn/2c. This is, exchanging only one bit, Alice and Bob can learn some

information about each other’s hand in a safe manner in several Russian

Cards scenarios. However, such scenarios do not include the classic instance

of the generalized problem, i.e., (3, 3, 1).

We present another two-message minimally informative announcement

protocol construction that could be used for the classic Russian Cards prob-

lem, unlike the first construction proposed. This construction is based on

Singer sets and yields four different deterministic and safe protocols for Al-

ice’s announcement. We also verified the minimally informative requirement

for this construction using the proof assistant system Coq. With such pro-

tocol, A can inform B one of her cards, privately.

Furthermore, we show that when c = 1, any two-message minimally

informative announcement protocol is also safe. This means that the an-

nouncement protocols resulting from the previously mentioned construction

are also safe for (3, 3, 1).

Finally, we show how these protocols can be used in a two-message min-

imally informative solution for the classic Russian Cards problem, allowing

Alice and Bob to exchange information in a safe manner. Thus, using this

protocol Alice and Bob can learn at least one card from each others hand,
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without Cath learning any, and this can be achieved by exchanging only one

bit.

1.5 Related work

The Russian Cards problem, its generalizations and many variations have

been subject of quite a few amount of studies since its appearance at the

Moscow 2000 Mathematical Olympiad. However, its origins may be traced

long back [13, 9, 10, 11, 12]. A well known solution for the classic (3, 3, 1)

problem uses modular arithmetic, where A announces the sum of her cards

modulo 7, and then B announces C’s card [16].

A seminal paper on this matter [6] models the classic Russian Cards

problem via epistemic logic and shows that no matter how complex the con-

struction of a player’s announcement might be, it is always equivalent to

the announcement of a set of possible hands for that player. In lights of this

result, the author identifies 102 direct exchange solutions, i.e. two-steps solu-

tions, for the deal ({123}, {345}, {6}) using combinatorial reasoning. More-

over, some important properties about informative and safe announcements

are presented. The problem, as well as its generalized form, has received a

fair amount of attention since then.

In [2] the authors focus on two-step solutions for various instances of the

generalized problem. The authors state the problem requirements via some

epistemic axioms and then reformulate these conditions in equivalent, but

purely combinatorial terms. It is shown that there is no two-step solution

when c ≥ a− 1. Also, some bounds on the sizes of good announcements are

given. Proposed solutions cover problem instances such as (a, 2, 1), provided

a ≡ 0, 4 mod 6, and more interestingly, cases where b = O(a2). To this end,

the authors propose constructions based in Singer difference sets and block

designs, in particular, Steiner triple systems.

Unlike the previous works, which focus on the classic security condition,

also known as weak 1-security, in [3] the authors strengthened the security

requirement. In order to not give C probabilistic advantage in guessing
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the ownership of any card, this condition, also known as perfect 1-security,

requires that all cards not held by C appear the same number of times in

the hands C considers possible for A and also in the hands C considers B

could hold. A good announcement construction satisfying this requirement is

proposed using binary designs for parameters (2k−1, 2k−1−1, 1), where k ≥ 3.

A two-step protocol for (a, a, 1) with a > 2, where A announces the sum

of her cards modulo n = 2a + 1 is proposed in [1]. The paper also discus

state safe, as a relaxed variant of the classic card safe security condition, in

which Cath is only required to not learn the full hand of the other players.

More recently, in [4], this modulo-sum protocol was generalized to provide a

two-step solution for (a, b, 1) with a,b > 2.

Although the solutions discussed above consist of two-step protocols, in

[7] it is proved that no such solution exists for (4, 4, 2), therefore the authors

proposed a three-step protocol for this problem instance. The first known

solution for c > a is reported in [5] via a four-step protocol based on finite

vector spaces.

Multi-player variations of the problem, i.e. involving more than three

players, have also been considered [8].

In [20] the authors provide a formal definition of what they call weak

k-security and perfect k-security. Most literature focus on what they refer to

as weak 1-security, which is the original security condition. They also dis-

tinguish between deterministic announcement strategies, in which A’s hand

uniquely determines her message, and non-deterministic ones. Additionally,

they give a characterization of informative strategies having optimal commu-

nication complexity, namely the set of announcements must be equivalent to

a large set of t − (n, a, 1)-designs, where t = a − c. They show that for a

perfectly (d− 1)-secure strategy for (a, b, a− d), where b ≥ d− 1, a = d+ 1

and hence c = 1. Moreover, the authors give a characterization of informa-

tive and perfectly (d − 1)-secure strategies for (d + 1, b, 1), with b ≥ d − 1,

involving d− (n, d+ 1, 1)-designs.

Also, in recent years the links between the problem and zero-error source

coding were exposed in [14].
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Building on the results from [18]. The results of this work are part of

the research project about Russian Cards problems initiated by Rajsbaum

in [18]. We stress that the present work takes mostly from [18] the basic

framework and terminology; and also builds on some of the results from the

cited paper. Here, we summarize the relation between both works.

In [18] the author focuses on the problem of information transmission,

i.e., only one-way communication. Here, we also consider protocols for in-

formation exchange, i.e., we study the communication in both ways. Since

we are mostly concerned with the problem of secure minimal information

exchange, we present some preliminary results from [18] regarding the prob-

lem of minimal information transmission; and we build on such results for

presenting our contributions. In that sense, our work is an extension of [18].

In this work, we present the notion of minimally informative protocol,

analogous to that presented in [18, Definition 1]; however, our formulation is

not limited to the Russian Cards scenario, instead we use the more general

framework of source coding with side information, for Definition 1. Moreover,

the preliminary results presented in Chapter 3 are mostly from [18]. Addi-

tionally, we present the results from [18, Section 4.1] in Section 5.1, Lemmas

3 and 4. Then, we build on these results for the proof of Theorem 5.

Moreover, in [18, Section 4.1] the author presented a minimally informa-

tive and safe protocol for (3, 3, 1), using two messages, which allows Alice

to use a single bit for informing one of her cards to Bob. This, was one of

the 2× (76505394) two-message minimally informative and safe protocols for

(3, 3, 1) that we found using a computer program. We also present in this

work one of these two-message protocols in Section 3.5.

1.6 Organization

The present work consists of six chapters. In Chapter 2 we present the prob-

lem of (one-way) information transmission using a similar framework to the

one commonly used in studies about zero-error source coding with side infor-

mation [21, 17]. In doing so, we present the notion of informative protocol.
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Additionally, we also present the notion of minimally informative protocol,

which therefore regards the problem of minimal information transmission.

Such notion was previously presented in [18], although the author formulates

the notion for the particular case of the Russian Cards scenario.

In Chapter 3 we show how the previous framework and notions can be

used for formalizing the problem of information transmission in the Russian

Cards scenario, as it was previously noted in [14]. Moreover, we present the

notion of safe protocol for information transmission in this scenario, which

therefore regards the problem of secure information transmission. Addition-

ally, we present some preliminary known results, which we rephrase and prove

using our framework and terminology.

In Chapter 4 we introduce the problem of secure information exchange

for Russian Cards problems and present the notions of one-step and two-step

protocols. Thus, in this chapter, we are concerned with the communication

in both ways, rather than only with one-way communication.

In Chapter 5 we present some minimally informative solutions for several

instances of the Russian Cards problem. Additionally we provide a novel

result regarding safety in two-message minimally informative protocols when

c = 1. These are the main contributions of the present work, as discussed in

Section 1.4.

Finally, the conclusions can be found in Chapter 6.
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Chapter 2

One-way information

transmission protocols

We already remarked the similarities between the Russian Cards problem

and zero-error source coding with side information. Moreover, we exposed

the reasons why we think the tools proved successful for the last problem

may be suitable for the Russian Cards problem as well.

The zero-error source coding with side information problem, as we pre-

viously describe it, is determined by the support set S of all pairs (a, b) of

possible input assignments for the informant A and the recipient B. Asso-

ciated with S is a characteristic graph GB, also called confusability or indis-

tinguishability graph. Hence, we can also associate with such problem the

characteristic graph GB associated to S.

We formally introduce these concepts in Section 2.1 and define in such

terms the notion of protocol. In Section 2.2 we formalize what it means for

a protocol to be informative. We also define in Section 2.2 the notion of

minimally informative protocol, which was previously presented in [18]. In

this case, the goal for Bob is to learn something about Alice’s input, after

her announcement, instead of her whole hand.
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2.1 Characteristic graphs and protocols

Let S be a support set, defined over a discrete product set ΩA × ΩB, i.e.,

S ⊆ ΩA × ΩB, we define the associated characteristic graph GB as follows.

The vertex set of GB is ΩA and there is an edge (a, a′) if and only if there is

b ∈ ΩB such that (a, b), (a′, b) ∈ S.

We can also call GB a indistinguishability graph because each edge (a, a′)

in GB expresses the fact that when the recipient Bob has input b he can not

distinguish between the informant Alice having input a or a′, as he considers

both values possible.

Then, for any edge (a, a′) in GB there is an input b for Bob, for which a

and a′ are indistinguishable, denoted by a
b∼ a′. For each b ∈ ΩB, this in-

distinguishability relation,
b∼ is an equivalence relation, consisting of a single

equivalence class, which we call the indistinguishability class for b. There-

fore, for any b ∈ ΩB we define its corresponding indistinguishability class to

be the set denoted K(b̄) = {a | (a, b) ∈ S}. Hence, for each b ∈ ΩB, the

elements in K(b̄) induce a clique in GB, overloading notation we also denote

the clique itself by K(b̄). Then, K(b̄) is the set of all input values that Bob

considers possible for Alice, given that his input is b.

Then, for a problem with associated characteristic graph GB, a determin-

istic protocol PA : ΩA → M for Alice’s announcement is a vertex coloring

function for GB, whereM is the domain of possible messages that Alice may

send. Thus, we say that PA is an m-message protocol if |M| = m.

Thus, when Alice has input a ∈ ΩA, PA(a) ∈ M uniquely determines

the message she send. Hence, for each M ∈ M, P−1A (M) denotes the set of

vertices from GB colored M .

Also, for any b ∈ ΩB and any M ∈ M, P(b,M) = {a | a ∈ K(b̄) ∧ a ∈
P−1A (M)} denotes the set of inputs for A that B considers possible given that

his input is b and A’s announcement was M . We can also call this set the

indistinguishability class for b after M .

In the following, the set of compatible messages with any b ∈ ΩB, is

denoted PA(K(b̄)) = {PA(a)|a ∈ K(b̄)}. This is, the set of messages that B

could possibly hear having input b.
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2.2 Informative and minimally informative

protocols

We can already formally define what it means for a protocol to be informative

and also minimally informative. Recall that a vertex coloring of a graph is

proper if each pair of adjacent vertices have different colors.

Definition 1 (Informative and minimally informative). Let PA : ΩA → M
be a protocol for a problem with associated characteristic graph GB,

� PA is informative if it is a proper vertex coloring of GB.

� PA is minimally informative if for each b ∈ ΩB such that |K(b̄)| > 1,

there is some edge (a, a′) in the clique K(b̄) of GB, such that PA(a) 6=
PA(a′).

Notice that, according to the informative definition, PA being informative

is equivalent to |P(b,M)| ≤ 1, for all b ∈ ΩB and for all M ∈M. This means

that for any inputs assignment (a, b) for Alice and Bob, whenever Alice can

announce M , i.e, if M ∈ PA(K(b̄)), Bob will know Alice’s input is the only

element a in P(b,M).

On the other hand, regarding the minimally informative definition, this

is also equivalent to P(b,M) ⊂ K(b̄), for all b ∈ ΩB and all compatible

messages M ∈ PA(K(b̄)). Notice that P(b,M) ⊃ K(b̄) is impossible, by the

definition of P(b,M) and if P(b,M) = K(b̄), for some b ∈ ΩB and some

M ∈ PA(K(b̄)), this would mean that if Bob has input b, the announcement

M does not offer any new information to Bob. In other words, the least one

can expect B to learn from an announcement is that A’s input is in a proper

subset of K(b̄).

Also, it is clear that any informative protocol is also minimally informa-

tive. Moreover, if GB has no edges no communication is needed for B to

know A’s input, since no matter what B’s input is, he would only consider

one possibility for A’s input. Hence, in such case, any coloring function for

GB is an informative and therefore, also minimally informative protocol.
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Chapter 3

Information transmission in

Russian Cards problems

In this chapter, we formally present the problem of secure information trans-

mission in the generalized Russian Cards problem scenario. Additionally, we

present some known impossibility results regarding informative protocols, as

well as a characterization for minimally informative protocols, previously

shown in [18].

In Section 3.1 we introduce the problem and relate it to coloring functions

of Johnson graphs.

In Section 3.2 we characterize the notions of informative and minimally

informative announcement protocols for the Russian Cards problem with

signature (a,b, c). The former notion corresponds to what we refer to as

the problem of full information transmission; while the latter regards the

problem of minimal information transmission in the Russian Cards scenario.

In Section 3.3 we define the notion of secure or safe announcement pro-

tocol. Hence, this notion regards what we refer to as the problem of secure

information transmission in the Russian Cards scenario.

Some examples of announcement protocols for the Russian Cards prob-

lem, satisfying different requirements are presented in Section 3.5. We also

discuss lower bounds on the number of messages for an informative Russian
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Cards protocol in Section 3.4.

3.1 Representing Indistinguishability by

Johnson graphs

Let D = {0, . . . , n− 1}, n > 1, denote the deck of n distinct cards. A subset

a of D is a hand, a ∈P(D). For a hand a, ā denotes the set D− a, i.e., ā is

the complementary set of a with respect to D. If |a| = m, we may say that

a is an m-set or m-hand. Thus, if Pm(D) stands for the set of all subsets of

D of size m, a ∈Pm(D).

A deal (a, b, c) consists of three disjoint hands, meaning that cards in a

are dealt to A, cards in b to B, and cards in c to C. We say that the hand is

the input of the agent. We call γ = (a,b, c) the signature of the deal (a, b, c)

if |a| = a, |b| = b and |c| = c. Hence, for the problem instance with signature

(a,b, c), the inputs of A, B and C, are the hands a ∈ Pa(D), b ∈ Pb(D)

and c ∈Pc(D), respectively. As we previously remarked, it is assumed that

A, B and C are aware of both, the deck and the signature. Also, while A

and B get at least one card each, i.e. a,b ≥ 1, C may get none, c ≥ 0 and

n = a + b + c.

In the language of e.g. [4, 5, 7], A’s announcement protocol should be

“informative” for B and “safe” from the eavesdropper C. Thus, we can

model the Russian Cards problem with signature (a,b, c) as two one-way

information transmission problems, each with almost opposite requirements.

First, is the communication between the informant Alice and the recipient

Bob, which should be informative. Second, is the communication between

Alice and the eavesdropper Cath (because Alice’s announcement is public),

which must not be informative, and additionally, must not allow Cath to

learn a single card from Alice’s hand. Then, Alice needs an informative

announcement protocol for the first problem, such that it is also safe for

the second problem. We already defined what it means for a protocol to be

informative and, in the following sections, we will also define the notion of

safety that the Russian Cards problem requires.
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For the communication problem between Alice and Bob, we have the

support set SB = {(a, b)|(a, b) ∈ Pa(D) ×Pb(D) ∧ a ⊆ b̄}. On the other

hand, for modeling the communication between Alice and Cath, the support

set is SC = {(a, c)|(a, c) ∈Pa(D)×Pc(D) ∧ a ⊆ c̄}.
With the support sets for each problem, we can now denote the associated

characteristic graphs for SB and SC as GB and GC , respectively. Thus, we say

that GB and GC are the indistinguishability graphs for B and C, respectively,

induced by the Russian Cards problem with signature (a,b, c).

Notice that (a, a′) ∈ E(GB) iff ∃b ∈ Pb(D) such that a, a′ ⊆ b̄. Such b

exists iff b ≤ |D− (a∪ a′)|, which is equivalent to b ≤ (a + b + c)− |a∪ a′|.
Then, since |a ∪ a′| = 2a − |a ∩ a′|, it follows that (a, a′) ∈ E(GB) iff b ≤
b + c − a + |a ∩ a′|, and this is equivalent to a − c ≤ |a ∩ a′|. This is,

(a, a′) ∈ E(GB) iff a− c ≤ |a ∩ a′|. By a similar argument we can show that

(a, a′) ∈ E(GC) iff a− b ≤ |a ∩ a′|.
.

Definition 2 (Distance d Johnson graph [18]). For a set of n elements, the

graph Jd(n,m), 0 ≤ d ≤ m, has as vertices all m-subsets. Two distinct

vertices a, a′ are adjacent whenever m − d ≤ |a ∩ a′|. When d = 1, we have

a Johnson graph, denoted J(n,m).

Thus, from our previous observations, it is clear that the indistinguisha-

bility graph for B in the Russian Cards problem with signature (a,b, c) is

the graph Jc(n, a), i.e. GB = Jc(n, a). In particular, GB is a Johnson graph,

J(n, a), exactly when c = 1. Similarly, the indistinguishability graph for C,

GC , is equal to Jb(n, a).

As we previously remarked, for any b ∈ Pb(D), the elements in K(b̄)

induce a clique in GB, and therefore in Jc(n, a). Thus, K(b̄) denotes the set

of hands that B considers possible for A, provided that he holds the hand b.

Similarly, for any c ∈Pc(D), the elements in K(c̄) induce a clique in Jb(n, a)

representing the hands that C considers possible for A, given that she holds

the hand c.

Notice that if c = 0 and therefore n = a+b, then B with input b considers

only one possible input for A, namely, b̄. In this case, E(GB) = ∅.
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3.2 Informative and minimally informative

announcements

Previously, we proved that the indistinguishablility graphs for B and C in-

duced by the Russian Cards problem with signature (a,b, c), are Jc(n, a)

and Jb(n, a), respectively. Hence, for the problem with signature (a,b, c)

consider an announcement protocol for A, PA : Pa(D) → M. We take the

view of PA as a vertex coloring of the graphs Jc(n, a) and Jb(n, a). A color

class, P−1A (M), for any message M , is an announcement, therefore we can also

describe an m-message announcement protocol as a set of m announcements

or color classes, i.e, {P−1A (M)|M ∈M}.
The following characterization is a reformulation of Definition 1 and it is

similar to that presented in [18].

Theorem 1 (Informative characterization for Russian Cards). Let PA :

Pa(D)→M be an announcement protocol for (a,b, c).

� PA is informative if and only if PA is a proper vertex coloring of

Jc(n, a).

� PA is minimally informative if and only if for each b ∈ Pb(D) such

that |K(b̄)| > 1, there is some edge (a, a′) in the clique K(b̄) of Jc(n, a),

such that PA(a) 6= PA(a′).

The following result was previously shown in [2]:

Theorem 2. Let PA : Pa(D) → M be an announcement protocol for

(a,b, c), then the following conditions are equivalent.

1. PA is informative.

2. For any M ∈ M and any pair of distinct a, a′ ∈ P−1A (M), |a ∩ a′| <
a− c.

Proof. PA is informative iff it is a proper vertex coloring of Jc(n, a). Then,

for any M ∈ M, a, a′ ∈ P−1A (M) iff (a, a′) is not and edge in Jc(n, a). As

(a, a′) is not and edge in Jc(n, a) iff |a∩a′| < a− c, the theorem follows.
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It follows from Theorem 2 that a > c is a necessary condition for the

existence of an informative protocol for (a,b, c).

Corollary 1. There is no informative announcement protocol for (a,b, c) if

c ≥ a.

The following result expresses the fact that when c ≥ 1, the minimally

informative condition is equivalent to B learning a set s, |s| = c which

contains at least one of A’s cards, after any possible announcement from A.

Recall that the elements in P(b,M) are all a ∈ K(b̄) such that PA(a) = M .

Theorem 3. Let PA : Pa(D)→M be an announcement protocol for (a,b, c)

with c ≥ 1, then the following conditions are equivalent.

1. PA is minimally informative.

2. For any b ∈Pb(D) and any compatible message M ∈ PA(K(b̄)), there

is a set s ⊂ b̄, |s| = c, such that for any a ∈ P(b,M), a ∩ s 6= ∅.

Proof. Suppose PA is minimally informative, then for any b ∈ Pb(D) and

any compatible message M ∈ PA(K(b̄)), P(b,M) ⊂ K(b̄), i.e., |P(b,M)| <
|K(b̄)|. Then, let a be an element in K(b̄) − P(b,M) and let s be b̄ − a, so

that |s| = c. Assume for contradiction that there is an element a′ ∈ P(b,M)

such that a′ ∩ s = ∅. Then, |a ∪ a′| > a. Hence, |b ∪ a ∪ a′ ∪ s| > n, which

is a contradiction since b, a, a′ and s are all subsets of a deck of n cards. It

follows that, for any a ∈ P(b,M), a ∩ s 6= ∅.
On the other hand, for the second condition to hold, the protocol needs

to be minimally informative. Otherwise, suppose there is b ∈ Pb(D) such

that all elements in K(b̄) are colored M , i.e. the protocol is not minimally

informative. Then, assume for contradiction that there is a set s, |s| = c,

such that for any a ∈ K(b̄) with PA(a) = M , a ∩ s 6= ∅. Notice that

b̄ − s ∈ K(b̄), and therefore b̄ − s ∈ P(b,M) (as P(b,M) = K(b̄) in a

not minimally informative protocol). This means that there is an element

a ∈ K(b̄) with PA(a) = M , namely a = b̄ − s, such that a ∩ s = ∅, which is

a contradiction.
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Notice that for the previous equivalence to hold we need c ≥ 1. As we

previously remarked if c = 0, no protocol or communication is needed for B

to learn A’s hand, so that any protocol for this case is minimally informative.

However, a set s, |s| = 0 can not contain any of A’s cards, which does not

make sense.

When c = 1 and considering a minimally informative protocol, a direct

consequence of Theorem 3 is that B learns at least one of A’s cards. This

fact can be formally stated as in the following corollary.

Corollary 2. Let PA : Pa(D) → M be an announcement protocol for

(a,b, 1), then for any b ∈Pb(D) and any compatible message M ∈ PA(K(b̄)),

there is a card x ∈ b̄, such that for any a ∈ P(b,M), x ∈ a.

3.3 Safe announcements

The security requirement we discuss here is known as weak 1-security [20],

but we often call it for short safety. As we have seen, informativity is a

requirement for the communication between Alice and Bob and therefore we

formalize it as a property of a coloring function (protocol) for the graph GB,

i.e. Jc(n, a). On the other hand, safety means that Cath can not be able to

infer any of Alice’s or Bob’s cards after hearing Alice’s announcement. Hence,

we can formally define what it is a safe announcement protocol in terms of

the properties of coloring functions for Jb(n, a) (recall GC = Jb(n, a)).

Definition 3 (Safety). Let PA : Pa(D)→M be an announcement protocol

for (a,b, c), then PA is safe if for any c ∈ Pc(D), any y ∈ c̄ and any

M ∈ PA(K(c̄)), there is some edge (a, a′) in the clique K(c̄) of Jb(n, a) with

PA(a) = PA(a′) = M , such that y ∈ a4a′.

Recall that for any c ∈Pc(D), K(c̄) is the initial indistinguishability class

of c, while P(c,M) is its indistinguishability class after the announcement

M . The intuition behind the above definition is the following. We need Cath

to not be able to distinguish between Alice having or not any of the cards in

c̄. Hence, for any such card y ∈ c̄ we need to avoid two things:
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� y being in all hands from P(c,M)1 (in which case Cath would know

Alice holds the card y)

� y being in none of the hands from P(c,M) (in which case Cath would

know Bob holds the card y).

Then, we need that whenever Cath can hear the message M , i.e. for any

c ∈ Pc(D) and any M ∈ PA(K(c̄)), for any card she does not hold, y ∈ c̄,
there are two hands for Alice a, a′ ∈ P(c,M) (indistinguishable after M for

Cath holding c) such that y ∈ a and y 6∈ a′.

Remark 1 (Safety). Some consequences of the safety definition:

� When b ≤ c, Jb(n, a) is a subgraph of Jc(n, a) on the same set of

vertices. Thus, since PA being informative is equivalent to being a

proper vertex coloring of Jc(n, a) and safety requires PA not to be a

proper vertex coloring of Jb(n, a), it follows that, an announcement

protocol can be informative and safe only if b > c. In this case, while

K(c̄) induces a clique in Jb(n, a), it does not induce a clique in Jc(n, a).

� Joining color classes P−1A (M)∪P−1A (M ′) of a protocol preserves safety,

but not necessarily informative properties.

Remark 2 (The assumption c ≥ 1). When c = 0 any announcement pro-

tocol is trivially informative, and hence minimally informative, as in fact

no communication is needed for B to know A’s hand. Also, in this case,

the protocol that always sends the same message (P−1A (M) = Pa(D), with

M = {M}) is both informative and safe. Therefore, the interesting cases are

those in which c ≥ 1.

Remark 3 (The assumption a ≥ 2). Moreover, if a = 1, a safe protocol PA

must always send the same message M . Otherwise, if PA({y}) 6= PA({y′})
for y, y′ ∈ D, then when C has a hand c, such that y, y′ ∈ c̄, and hears

the message PA({y}) she knows that A does not have card y′. Thus, in

such case, when c ≥ 1, a safe protocol PA cannot be minimally informative,

1Notice that it could be that there is a hand c for C, for which some message M is

never sent by PA.
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and thus cannot be informative either. Although regarding the informative

requirement, this is also a consequence of Corollary 1, we can not say the

same about the minimally informative condition.

From the previous remarks it is clear that we should concentrate in the

cases where b, c ≥ 1 and a ≥ 2 even when considering only minimally

informative and safe protocols for Russian Cards problems.

The following argument is similar to [2, Lemma 3].

Lemma 1. Assume c ≥ 1 and let PA : Pa(D) → M be an informative

and safe announcement protocol for (a,b, c), then for any y ∈ D and any

M ∈M, card y is contained in at least c + 1 a-sets from the announcement

P−1A (M).

Proof. Assume for contradiction, there is an arbitrary y ∈ D and M ∈
M, such that card y is included in at most t ≤ c, a-sets, {a1, a2, ..., at}
from the announcement P−1A (M), i.e. {a1, a2, ..., at} ⊂ P−1A (M). Since PA

is informative, by Corollary 1, it holds that a ≥ c. Hence, for each i ∈
{1, 2, ..., t} there is another card yi ∈ D, yi 6= y such that yi ∈ ai. Thus,

consider a c-set c, such that {y1, y2, ..., yt} ⊆ c and y ∈ c̄, which exists

given that a ≥ 2. Also, as PA is safe there is also an a-set at+1 in P−1A (M)

such that y 6∈ at+1. Notice that it is always possible for c to be in the

complement of at+1. Otherwise, it would be that for some i ∈ {1, 2, ..., t},
all elements in ai except for y are included in at+1, i.e. |ai ∩ at+1| = a − 1.

But, as a− 1 ≥ a− c, by Theorem 2, this is a contradiction with PA being

informative. Therefore, M ∈ PA(K(c̄)), then for and any a in the clique

K(c̄) such that PA(a) = M , we have that y 6∈ a, which is a contradiction

with PA being a safe protocol.

Corollary 3. When c ≥ 1, there is no informative and safe announcement

protocol for (a,b, c) if c ≥ a− 1.

Proof. In light of Corollary 1 there is no informative protocol when c ≥ a,

so we only need to consider an informative and safe protocol PA for the case

c = a− 1. In such case, by Theorem 2, for any M ∈ M and any two hands
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a, a′ ∈ P−1A (M), we have that |a ∩ a′| = ∅. Hence, any card y ∈ D appears

at most once in every announcement, which by Lemma 1, is a contradiction

with PA being informative and safe.

By Remark 1, an announcement protocol can be simultaneously informa-

tive and safe only if b > c. Combining this fact with Corollary 3, we get the

following:

Corollary 4. When c ≥ 1, there is no informative and safe announcement

protocol for (a,b, c) if c ≥ b or c ≥ a− 1.

3.4 Lower bounds on the number of

messages for informative protocols

It is clear now that, for the Russian Cards problem with signature (a,b, c),

the smallest m such that a fully informative m-message protocol exists, is

the chromatic number of the graph Jc(n, a), denoted χ(Jc(n, a)). However,

such protocol will not necessarily be a safe protocol. Hence, the minimum

number of bits needed for Alice to communicate her full hand to Bob is

log2 χ(Jc(n, a)).

Even in the case of c = 1, computing the chromatic number of Jc(n, a),

namely a Johnson graph, is an important open question. Apart from some

special cases, only the trivial lower bound implied by the size of the maximal

cliques is known.

In general, as all elements in the clique K(b̄) of Jc(n, a) must have dif-

ferent colors, it holds that for an m-message informative protocol for the

signature (a,b, c), m ≥ |K(b̄)|, i.e., m ≥
(
a+c
a

)
.

A less trivial general lower bound for m in the case of informative proto-

cols follows from the next result which was previously shown in [20]:

Lemma 2. If there is an m-message informative announcement protocol for

the signature (a,b, c), then m ≥
(
n−a+c

c

)
.
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Proof. Consider any x ∈ Pa−c(D). Then, there are exactly
(
n−a+c

c

)
a-sets

a ⊂ D, such that x ⊂ a. By Theorem 2 all such a-sets must have different

colors according to any informative protocol for (a,b, c).

For the classic Russian Cards problem with signature (3, 3, 1), this last

bound yields m ≥ 5, while the former yields m ≥ 4, so in this case, the last

is a tighter bound.

Combining the previous observation we have:

max

{(
a + c

a

)
,

(
n− a + c

c

)}
≤ χ(Jc(n, a))

In particular, for J(n, a), we have max {a + 1, n− a + 1} ≤ χ(J(n, a)).

Also, it is known that χ(J(n, a)) ≤ n. Hence, when c = 1, the number of

bits necessary and sufficient for an informative protocol is Θ(log n).

In the following, we may say that a coloring of Jc(n, a) is safe if such col-

oring is a safe announcement protocol for the Russian Cards problem with

signature (a,b, c), according to Definition 3. Additionally, χsf (Jc(n, a)) de-

notes the cardinality of the smallest color setM for which the graph Jc(n, a)

has a safe proper coloring. It follows that χ(Jc(n, a)) ≤ χsf (Jc(n, a)). In

particular, it is known that χ(J(7, 3)) = χsf (J(7, 3)) = 6.

Similarly, in the following we may regard a minimally informative an-

nouncement protocol for the Russian Cards problem with signature (a,b, c),

as a minimally informative coloring of Jc(n, a). Moreover, χmin(Jc(n, a))

denotes the cardinality of the smallest color setM for which the graph has a

minimal informative coloring, and if we require such coloring to be also safe,

then it is denoted χsf
min. Thus, χmin ≤ χsf

min ≤ χsf . We will see that χsf
min

can be much smaller than χsf . In an extreme case, for n even, we have that

χsf
min(J(n, n/2)) = 2 (Corollary 5), while χsf (J(n, n/2)) ≥ χ(J(n, n/2)) ≥
n/2.

3.5 Protocol examples

As we previously mentioned, the (3, 3, 1) instance of the Russian Cards prob-

lem was presented at the Moscow 2000 Mathematical Olympiad. The solu-
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tion considered by the organizers can be stated as follows [16]: Both, Alice

and Bob, announce the sum modulo 7 of their three cards..

Thus, in this solution, Alice and Bob use the same announcement proto-

col, that we denote as sum7. This sum7 protocol is indeed a safe and proper

7-coloring for J(7, 3) and can be defined in our terminology as a function

sum7 : P3(D)→ Z7 as follows:

sum7(a) = (
∑
x∈a

x) mod 7.

or alternatively, as a collection of 7 announcements as follows:

sum−17 (0) = {016, 025, 034, 124, 356}
sum−17 (1) = {026, 035, 125, 134, 456}
sum−17 (2) = {036, 045, 126, 135, 234}
sum−17 (3) = {012, 046, 136, 145, 235}
sum−17 (4) = {013, 056, 146, 236, 245}
sum−17 (5) = {014, 023, 156, 246, 345}
sum−17 (6) = {015, 024, 123, 256, 346}

As we shall see in Section 4.1, although sum7 satisfies Theorem 1 (In-

formativity) and Definition 3 (Safety), some extra considerations are needed

for guarantying that this announcement protocol is safe for Bob’s response

to Alice, and therefore a solution to the Russian Cards problem.

Let’s analyze what happens for the deal ({236}, {015}, {4}). In this case,

A’s announcement is sum−17 (4), i.e., she sends the message ′4′. Figure 3.1

shows that every hand in the announcement, except for {236}, collides with

B’s hand. This means, that B can learn A’s hand after the announcement.

From C’s perspective, A could have one of the hands in {013, 056, 236}.
Figure 3.2 shows that, C considers possible for A to hold or not the card

number 0 and also card 3. The same happens for the other cards that C

doesn’t hold, which means that the announcement is safe.

For the same instance, (3, 3, 1), the following protocol χ is minimally

informative and safe, i.e., a safe minimally informative 2-coloring for J(7, 3).
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Figure 3.1: Perspective of B after A’s announcement, for the deal

({236}, {015}, {4})

Figure 3.2: Perspective of C after A’s announcement, for the deal

({236}, {015}, {4})

χ−1(0) = {012, 013, 014, 015, 016, 023, 024, 025, 036, 046, 126, 134, 135, 156,

234, 245, 246, 256, 345}
χ−1(1) = {026, 034, 035, 045, 056, 123, 124, 125, 136, 145, 146, 235, 236, 346,

356, 456}

In Appendix A, Table A.1 we show for each 3-set b, how χ partitions the 3-

sets in K(b̄) into two color classes, so that the reader can check, that this is in

fact a minimally informative coloring for J(7, 3). Analogously, in Table A.2

we show how χ partitions K(c̄) for each card c into two color classes. This

way the reader can easily check that in all such partitions and for any card

other than c, there is a hand which contains it and other that doesn’t. Thus,

χ is also a safe coloring for J(7, 3).
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Chapter 4

Information exchange in

Russian Cards problems

So far we were mostly concerned with characterizing the informative and

safety notions only for the announcement protocol of the agent starting the

communication, i.e. for Alice. This is because, in some cases, the announce-

ment protocol for Bob’s response can be trivially informative and safe at the

same time. As we already mentioned, such protocol could be the announce-

ment of Cath’s hand. Hence, in such cases, we can easily achieve (secure)

full information exchange between Alice and Bob, once we have solved the

problem of (secure) full information transmission in the Russian Cards sce-

nario. However, such response strategy is only available for Bob when he

is completely informed about Alice’s hand, i.e. when Alice’s announcement

protocol is informative.

Thus, as we are mostly interested in studying minimally informative an-

nouncement protocols, we need to consider a different announcement protocol

for Bob, that allows Alice to learn something about Bob’s hand, while pre-

venting Cath from learning the fate of any card she doesn’t hold. Therefore,

we need to consider the general problem of information exchange in the Rus-

sian Cards scenario. In this chapter, our main goal is to formally present this

problem.
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In Section 4.1 we introduce the problem of secure information exchange

for Russian Cards problems and present the notions of one-step and two-step

protocols.

In Section 4.2 we formally present the notions of informative, minimally

informative and safe solutions for Russian Cards problems, from a combina-

torial perspective.

In Section 4.3 we formally present the notion of perfectly safe response

protocol as well as some well known examples.

4.1 One-step and two-step protocols

It may seem reasonable to think, that if A uses a safe announcement pro-

tocol for (a,b, c), and B answers to A according to a safe announcement

protocol for parameters (b, a, c), then, their cards could remain secret from

C. However, this is not the case, as the following situation illustrates.

Consider the classic instance of the problem, (3, 3, 1), and the deal ({245},
{136}, {0}). If both A and B use the announcement protocol from Ap-

pendix A, C learns who holds every card after Bob’s announcement. What

happens in this scenario is that A announces 0 and B announces 1. But

then, there is only one hand in A’s announcement that doesn’t intersect with

all hands in B’s announcement. In other words, there is only a pair of com-

patible hands, i.e. disjoint hands, from both announcements. Thus, it is

only possible for Alice and Bob to hold exactly one hand from their respec-

tive announcements, meaning that it is certain for Cath which cards they all

hold.

Thus, although Bob is using a safe protocol for parameters (3, 3, 1), ac-

cording to Definition 3, his announcement reveals the ownership of all cards

to Cath. Then, it is clear that, although Bob’s protocol needs to be safe from

Cath, this is not a sufficient condition for preventing Cath from learning the

fate of the cards she doesn’t hold. Intuitively, this happens because Defini-

tion 3, takes only into account the initial knowledge of C, while we need a

formulation that also considers what C learned from A’s announcement.
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From the previous discussion, it is clear that we need a formal presentation

of the problem of secure information exchange in Russian Cards problems,

specially taking care of the formulation of the safety notion. Such presenta-

tion can also be found in [7] but from an epistemic logic perspective, while

here we take a combinatorial approach.

In keeping with [7], there are two kinds of solutions to the Russian Cards

problem consisting both of exactly one announcement from Alice and other

from Bob. This two types of solutions are one-step protocols and two-step

protocols. In one-step protocols, Bob’s announcement does not depend on

Alice’s announcement. Hence it does not matter the order of the announce-

ments as they even could be simultaneous. Conversely, in two-step protocols,

Bob’s announcement depends on hearing Alice’s.

Then, we take the view of a two-step protocol ρ for the Russian Cards

problem with signature (a,b, c) as a pair ρ = (PA, PB), where PA : Pa(D)→
MA is an announcement protocol for A, and PB : Pb(D) ×MA → MB

is the protocol for B’s announcement, depending on his hand and also on

Alice’s previous message. Hence, P−1B (M ′) denotes the set of pairs (b,M)

such that PB(b,M) = M ′. Moreover, we say that ρ is an m-message protocol

if m = max {|MA|, |MB|}.
Additionally, we take the view of a one-step protocol ρ = (PA, PB) for the

Russian Cards problem with signature (a,b, c) as a special kind of two-step

protocol in which for any pair of messages (M1,M2) ∈ MA, PB(b,M1) =

PB(b,M2), for any b ∈ Pb(D). Thus, in a one-step protocol, it does not

matter which message B receives with input b, since he will always send

the same message regardless. Therefore, in the following, when referring

specifically to a one-step protocol ρ = (PA, PB), we may take the view of PB

as function depending only on B’s input, i.e., PB : Pb(D)→MB.

Then, the solution presented in Section 3.5, in which Alice and Bob use

the same announcement protocol sum7, is an example of a one-step proto-

col for the classic instance of the Russian Cards problem. Therefore, this

protocol can be denoted by the pair (sum7, sum7). On the other hand, the

solutions in which Bob announces Cath’s hand after an informative and safe

announcement from Alice, are examples of two-step protocols and not one-
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step protocols.

4.2 Safe information exchange protocols

Consider a two-step protocol (PA, PB), where PA : Pa(D) → MA and PB :

Pb(D) × MA → MB. Then, for all M ∈ MA, we define the function

PB,M : Pb(D)→MB by

PB,M(b) = PB(b,M)

Then, P−1B,M(M ′) denotes the set
{
b | (b,M) ∈ P−1B

}
, which we regard as B’s

announcement after receiving message M from A. Notice that, in particular

for a one-step protocol (PA, PB), P−1B,M1
(M ′) = P−1B,M2

(M ′), for any pair of

messages M1,M2 ∈MA.

For an arbitrary two-step Russian Cards protocol (PA, PB) we will regard

PB as the response protocol for Bob. Observe that for all M ∈ MA, PB,M

can be seen as an announcement protocol for (b, a, c). Hence, we say PB

is informative if for all M ∈ MA, PB,M is an informative announcement

protocol. Intuitively, this means that Bob’s announcements according to PB,

will be informative for Alice. Similarly, we say PB is minimally informative

if for all M ∈M, PB,M is a minimally informative announcement protocol.

Definition 4 (Informative and minimally informative protocol). Let ρ =

(PA, PB) be a two-step protocol for the Russian Cards problem with signature

(a,b, c), then ρ is (minimally) informative if both PA and PB are (minimally)

informative.

As we previously discussed, the formulation of the safety notion for a

Russian Cards protocol (PA, PB) is a bit more complex. However, it is easy

to see that PA needs to be a safe announcement protocol with respect to C

and, while this suffices for PA, we need a stronger requirement for the case

of PB, as it follows from the following definition. In the following, for any

c-set c, a pair of compatible messages with c, (M,M ′) ∈MA ×MB, is such

that there is a deal (a, b, c), with PA(a) = M and PB(b,M) = M ′.
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Definition 5 (Safe protocol). Let ρ = (PA, PB) be a protocol for the Russian

Cards problem with signature (a,b, c). Then, ρ is safe if for any c ∈Pc(D),

any y ∈ c̄ and any compatible messages with c, (M,M ′) ∈MA ×MB, there

are two hands a, a′ in P(c,M) such that y ∈ a4a′ and PB(D − c− a,M) =

PB(D − c− a′,M) = M ′.

4.3 Perfectly safe response protocols

Previously, we remarked that whenever there is a safe and informative an-

nouncement protocol for Alice, there is a two-step safe and informative pro-

tocol for the corresponding Russian Cards problem, in which Bob announces

Cath’s hand. However, so far we have only claimed this is a safe two-step

protocol based on an intuitive, but informal argument, i.e., the fact that

this announcement does not give Cath any new information. Although, this

argument may seem to be limited to this kind of response protocol, it is, in

fact, the intuitive reason behind why other types of solutions also work well.

For instance, we could also use this argument to explain why the aforemen-

tioned protocol (sum7, sum7) (in which Alice and Bob announce the sum of

their cards modulo 7) is a solution to the classic Russian Cards problem, at

least regarding the safety requirement. That is, in this case, Bob’s response

is something that Cath can infer at the moment she heard Alice’s announce-

ment, since she already knows the sum modulo 7 of his own cards and Alice’s

cards. Then, although in this case, Bob’s response protocol is not explicitly

the announcement of Cath’s hand, his response protocol, sum7, is equiva-

lent to that, in the sense that he is informing nothing more than what Cath

already knows.

The following definition formalizes this notion, that we call perfectly safe

response protocol.

Definition 6 (Perfectly safe response). Let ρ = (PA, PB) be a protocol for

the Russian Cards problem with signature (a,b, c) then, the response protocol

PB is perfectly safe with respect to PA if for any c ∈Pc(D), any y ∈ c̄, any

compatible message M ∈ PA(K(c̄)), and any two hands a, a′ in P(c,M), it
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holds that PB(D − c− a,M) = PB(D − c− a′,M).

The intuition behind the previous definition is that the response protocol

PB is perfectly safe with respect to PA if, from C’s perspective, any two

indistinguishable scenarios after A’s announcement are still indistinguishable

after B’s announcement.
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Chapter 5

Minimally informative

protocols for Russian Cards

We present in Section 5.1 the two-message protocol χ2, in which Alice an-

nounces the sum of her cards modulo 2. Such announcement protocol is

minimally informative if and only if b < bn/2c. Thus, although χ2 is not

minimally informative for the classic Russian Cards problem (3, 3, 1), it is for

some cases in which it is known that no informative protocols exists, namely,

cases where a ≤ c. Moreover, this protocol is also safe for some of this

instances. In particular, for the problem instance (3, 4, 3) χ2 is minimally

informative and safe. This section is a presentation of the results from [18].

In Section 5.2 we present a two-message one-step solution in which Alice

and Bob use the announcement protocol χ2. This is, using only one bit, Alice

and Bob can exchange some information in a safe manner in several Russian

Cards scenarios. However, such scenarios do not include the classic instance

of the generalized problem, i.e. (3, 3, 1).

In Section 5.3 we present a two-message minimally informative announce-

ment protocol construction for the classic problem (3, 3, 1).

We show in Section 5.4 that, when c = 1, any two-message minimally in-

formative protocol is also a safe protocol. This means that the announcement

protocol from Section 5.3 is also safe for (3, 3, 1). Furthermore, in Section 5.5
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we show how this protocol can be used in a two-message one-step minimally

informative solution for the classic Russian Cards problem.

5.1 Two-message minimally informative

protocol by modular arithmetic

This section is a presentation of the results from [18]. This results are pre-

sented here since in the following section we extend these results for obtaining

a one step minimally informative solution for various instances of the Russian

Cards problem.

For signature (a,b, c) consider the two-message protocol χ2 : Pa(D) →
{0, 1}, defined as follows:

χ2(a) = (
∑
x∈a

x) (mod 2).

5.1.1 χ2 is minimally informative

Notice that, for each hand b for B, there are exactly
(
n−b
a

)
possible hands

for A. These are the vertices of a maximal clique K(b̄) in Jc(n, a) consisting

of all a ⊂ b̄ such that |a| = a.

The following lemma states the necessary and sufficient conditions for the

protocol χ2 to be minimally informative when c ≥ 1.

Lemma 3. Assume that c ≥ 1, then the protocol χ2 is minimally informative

for (a,b, c) if and only if b < bn/2c.

Proof. Notice that, if b ≥ bn/2c, for b = |b|, b̄ may consist only of cards

of the same parity, in which case, all a ⊂ b̄ would have the same parity.

Therefore, when c ≥ 1, b < bn/2c is clearly a necessary condition for χ2 to

be minimally informative.

On the other hand, if we assume b < bn/2c, then |b̄| > n−bn/2c for any

b with |b| = b, and b̄ must consist of both even and odd cards. To show that

χ2 is minimally informative, consider any clique K(b̄). Let a ⊂ b̄, |a| = a,
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be a vertex of K(b̄) with the largest number of odd cards. Since there are

both even and odd cards in b̄, a contains at least one odd card, y. Since a

contains the largest possible number of odd cards, it contains the minimum

number of even cards. Thus, there is at least one even card y′ ∈ b̄ \ a, given

that |a| < |b̄|. Let a′ = (a \ y) ∪ y′. Thus, a′ is also a vertex of K(b̄), and

χ2(a) 6= χ2(a
′).

5.1.2 The protocol χ2 is safe

Lemma 3 implies that χ2 is minimally informative for (3, 2, 2), namely, for

J2(7, 3). However, it is not safe for this problem instance. Notice that, if C

holds the hand {1, 3} and A’s message is 0, C knows A does not have card

5. Conversely, if the A’s announcement is 1, C learns that A holds card 5.

The safety definition from Definition 3 instantiated for the protocol χ2,

says that (cf. [4, Proposition 6])χ2 is safe (with respect to c) if for each

c-set c, y ∈ c̄, and M ∈ {0, 1}, there are two a-sets a, a′ ∈ c̄, such that

χ2(a) = χ2(a
′) = M and y ∈ a4a′. The following result states the necessary

and sufficient conditions for χ2 to be a safe protocol for the Russian Cards

problem.

Lemma 4. Assume that c ≥ 1, then the protocol χ2 is safe for (a,b, c) if

and only if a,b ≥ 2 and c ≤ bn/2c − 2.

Proof. First, we prove that a,b ≥ 2 and c ≤ bn/2c − 2 are necessary condi-

tions when c ≥ 1.

Given that the number of odd cards in D is bn/2c, if C holds c = bn/2c−
1 odd cards she can deduce from the announcement whether A holds the

remaining odd card. Then, c ≤ bn/2c − 2 is clearly necessary.

As noted in Remark 3, if a = 1, a safe protocol for c ≥ 1, needs to be

a constant function for all possible cards that A may hold. As it is always

possible that A’s card is even or odd is clear that χ2 does not always send

the same message. Hence, a ≥ 2 is necessary.

Also, b ≥ 2 is necessary. Otherwise, if b = 1, for any c-set c, |K(c̄)| =

a + 1 and for any card y ∈ c̄ there is only one hand a from K(c̄) that does
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not contain y. Thus, since a ≥ bn/2c + 1 its clear that {0, 1} ∈ PA(K(c̄)).

Hence, w.l.o.g. suppose PA(a) = 0, then all hands in K(c̄) colored 1 do not

contain y, which contradicts the safety requirement.

We prove now that the previous conditions are sufficient for χ2 to be safe.

Consider any c-set c, and y ∈ c̄. Let z, z′ ∈ D \ (c ∪ y) be cards of different

parity, which they exist because c ≤ bn/2c − 2. First, let a1 be any a-set

in c̄ that does not include y, and which includes z but not z′, which exists

because b ≥ 2. Let a2 = (a1 \ z) ∪ z′. Thus, χ2(a1) 6= χ2(a2). Similarly, let

a′1 be any a-set in c̄ which includes y, and which includes z but not z′. And

let a′2 = (a′1 \ z) ∪ z′. Thus, χ2(a
′
1) 6= χ2(a

′
2).

We are done, because for each M ∈ {0, 1}, there is one i ∈ {1, 2} such

that χ2(ai) = M and does not include y, and there is one i ∈ {1, 2} such

that χ2(a
′
i) = M and does include y.

Combining Lemma 3 and Lemma 4 we get the following theorem.

Theorem 4. When c ≥ 1, the protocol χ2 is minimally informative and safe

for (a,b, c) if and only if a,b ≥ 2, c ≤ bn/2c − 2 and b < bn/2c.

Remarkably, by the previous Theorem, χ2 is minimally informative and

safe in some cases where no informative and safe protocol exists. Recall that

there is no informative and safe protocol (Corollary 4) in cases where

c ≥ b or c ≥ a− 1. (5.1)

Thus, for example, by Theorem 4, χ2 is minimally informative and safe

for (3, 4, 3) and (6, 6, 8), but there is no safe and informative solution in any

of these cases. In particular, for the classic Russian Cards case χ2 is not

minimally informative. More generally, when c = 1, we get the following.

Corollary 5. The protocol χ2 is minimally informative and safe for (a,b, 1)

if and only if a > dn/2e − 1 and b < bn/2c.
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5.2 One-step minimally informative solution

by modular arithmetic

In the previous section we presented the announcement protocol χ2, and

stated when it is minimally informative and safe for A’s announcement. Our

purpose in this section, is to present a one-step minimally informative solu-

tion for some instances of the Russian Cards problem.

In this one-step protocol, both A and B use the announcement protocol

χ2, therefore we denote this solution by (χ2, χ2).

Theorem 5. When 1 ≤ c ≤ bn/2c − 2, 2 ≤ a,b < bn/2c, the one-step

protocol (χ2, χ2) is minimally informative and safe for (a,b, c).

Proof. By Theorem 4, it is easy to see that χ2 is minimally informative for

(a,b, c) and also for (b, a, c), therefore (χ2, χ2) is minimally informative for

(a,b, c).

Regarding the safety requirement, consider an arbitrary c-set c, any card

y ∈ c̄ and any M ∈ {0, 1}. As χ2 is a safe announcement protocol for

(a,b, c), there are a, a′ ∈ P(c,M) such that y ∈ a4a′. Notice that when A

announces M , B’s message is fixed to be χ2(D)−M −χ2(c) (mod 2). Thus,

there is exactly one M ′ = χ2(D)−M −χ2(c) (mod 2) such that (M,M ′) are

compatible messages with c. Then, since χ2(D−a−c) = χ2(D−a′−c) = M ′,

(χ2, χ2) is safe.

The intuition behind why χ2 is safe for Bob’s response in this one-step pro-

tocol is that, once Alice announces according to χ2, this information already

allows Cath to infer Bob’s announcement. Therefore, Bob’s announcement

does not give Cath any new information. Hence, what we have proved in fact

is that, with respect to χ2, Bob’s response protocol is perfectly safe according

to Definition 6.

Thus, we have our first one-step protocol for secure information exchange,

which can be used for various instances of the generalized Russian Cards

problem scenario, such as (4, 4, 2), (4, 3, 3) and (5, 5, 2). Some of these in-

stances can be described more generally as (a, a, 2), with a ≥ 4. In particu-
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lar, for cases in which c = 1, such as the classic Russian Cards problem, this

protocol would not be useful.

5.2.1 Two-step minimally informative protocol: first

attempt

We know that, when c = 1, a minimally informative announcement from

Alice, allows Bob to learn at least one of the cards that Alice holds. The

question we want to address now is whether it is safe for Bob to answer back

to Alice saying: “You hold one of the cards x or y and I hold the other”.

This is obviously a minimally informative announcement to Alice, given that

she will know one of Bob’s cards. Therefore, at first glance, this may seem

like a promising approach for not letting Cath to know which card belongs to

who. However, this is not a trivial response since it reveals new information

to Cath. This announcement allows Cath to know that neither A nor B,

hold a hand containing both, x and y or a hand with neither x nor y.

Although this approach does not correspond to a trivial response, we

cannot yet discard it as a possible response protocol. However, from the

following analysis it is clear that in fact this approach does not always yield

a solution. Consider the card deal ({456} | {012} | {3}) and the protocol

from Appendix A. In this case, A announces χ(456) = 1 and, after this, C

considers possible for A to hold a hand in χ−1(1) ∩K(3̄), i.e., P({3} , 1) =

{026, 045, 056, 124, 125, 145, 146, 456}. On the other hand, B learns that A

has card 6, so he can announce: “You hold one of the cards 0 or 6 and I hold

the other”. Let’s call this message from Bob M ′. After B’s announcement,

C knows that Alice cannot hold the hand 026, because it contains both 0

and 6. Also, C knows that Alice cannot hold the hand 124, because it does

not contain either 0 or 6. Using similar analysis, we get that, after B’s

announcement, the only hands that C considers possible for Alice are those

in {045, 146, 456}. Therefore, C can infer that A holds card 4, and also that

Bob holds card 2. Hence, this is not an appropriate response protocol.
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5.3 Two-message minimally informative

protocol by Singer sets for (3,3,1)

In [18, Section 4.2] the author presented a construction that allows to obtain

a minimally informative and safe protocol for (3, 3, 1) using three messages.

However, this is not optimal, namely there are minimally informative solu-

tions for this problem instance using only two different messages. In fact,

all these solutions could be easily computed by a program, which is what we

did and found a total of 2 × (76505394) 2-colorings. We already presented

one of these two-message protocols in Section 3.5, which we found using our

program. Although we were not able to find any protocol construction for

that solution, here we present a construction for four of this two-message

protocols.

The construction we present is based on Singer difference sets (or perfect

difference sets) [19] and is inspired in the good announcement construction

proposed in [2, Theorem 3].

First, we present the notions that we use for the protocol construction

and then, some results that will be useful for proving that such construction

yields a deterministic minimally informative protocol for (3, 3, 1), using two

messages.

Definition 7. A set S of size m+1, is a perfect difference set if the differences

si−sj module m(m+1)+1, with i 6= j, si, sj ∈ S, are all the different integers

from 1 to m(m+ 1).

In the following, the notation x+ S for a set S stands for the set {x+ s

mod v | s ∈ S}.
The proof of the following lemma is similar to the one presented in [2,

Theorem 3] for verifying that their announcement construction is informative.

Lemma 5. Let S be a perfect difference set of size m+1 and v = m(m+1)+1,

then for any two distinct elements l1, l2 ∈ {x + S | x ∈ Zv}, it holds that

|l1 ∩ l2| = 1.
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Proof. Let l1 be x+S and l2 be y+S with x 6= y. Assume for contradiction

that |l1 ∩ l2| 6= 1, then |l1 ∩ l2| = 0 or |l1 ∩ l2| > 1.

If it is the case that |l1∩l2| = 0, as S is a perfect difference set there are two

elements s1, s2 ∈ S such that s1−s2 = x−y mod v, then y+s1 = x+s2 mod

v, that is, an element from l1 is equal to one from l2, being a contradiction

with |l1 ∩ l2| = 0.

In the other case, any element in the intersection of l1 and l2 is equal to

both x+ s1 and y + s2, module v, for some s1, s2 ∈ S. Then x− y = s2 − s1
mod v and, as S is a perfect difference set, this uniquely define the pair s1, s2
so there is no more than one element in the intersection of l1 and l2, which

contradicts |l1 ∩ l2| > 1.

For a prime power m there is a perfect difference set of size m + 1 [19],

with all elements between 0 and m(m+ 1). Thus, we know there is a perfect

difference set S of size 3, such that S ⊆ Z7 which is what we need for the

following protocol construction.

Let S be a perfect difference set of size 3 and S ′ a 3-set such that S ′ ⊆
D − S. Let L and L′ be defined as follows:

L = {x+ S | x ∈ Z7} (5.2)

L′ = {x+ S ′ | x ∈ Z7} (5.3)

Then, the protocol χS : P3(D)→ Z2 is defined by,

χS(0)−1 = L ∪ L′,

χS(1)−1 = P3(D)− χS(0)−1.

Lemma 6. The sets of cliques K(ā) of J(7, 3), a ∈ L is a partition of

P3(D)− L.

Proof. For any a ∈ L, K(ā) ⊆ P3(D) − L, given that any element a′ ∈ L

intersects with a by Lemma 5, it cannot be part of K(ā).
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Let a and a′ be two distinct elements of L, so by Lemma 5 |a ∩ a′| = 1,

then |ā∩ ā′| = 2. Thus, any 3-set in K(ā) intersects with any 3-set in K(ā′)

in at most two elements, which means that K(ā) and K(ā′) are disjoint sets.

Finally, as |P3(D) − L| =
(
7
3

)
− 7 = 28 and |K(ā)| = 4 for any 3-set a,

we have that the union of the seven cliques K(ā) of J(7, 3), with a ∈ L, is

the set P3(D)− L.

The main result of this section is stated in the following Theorem:

Theorem 6. Let S be a perfect difference set of size 3 and S ′ a 3-set such

that S ′ ⊆ D − S. The protocol χS is minimally informative for (3, 3, 1).

Proof. By Lemma 6, for any b ∈P3(D) we have two cases, namely b ∈ L or

b ∈ K(ā) for some a ∈ L.

Suppose b ∈ L, then there is x ∈ Z7, such that b = x + S. Therefore

x+S ′ ∈ K(b̄), otherwise if x+S and x+S ′ were to have common elements,

it would mean that S and S ′ are not disjoint. Thus, as |L| = |L′|, for any

b ∈ L there is exactly one element a ∈ L′ such that a ∈ K(b̄), given that all

the cliques K(b̄), b ∈ L are disjoints by Lemma 6. Finally, let a ∈ K(b̄) be

x+ S ′ and a′ be any element in K(b̄)− a, then χS(a) = 0 and χS(a′) = 1.

Now suppose b ∈ K(ā) for some a ∈ L. Then a ∈ K(b̄) and χS(a) = 0.

Let a′ be any element in K(b̄)−{a}, then dist(a, a′) = 1, i.e. |a∩a′| = 2 and

therefore a′ 6∈ L, otherwise it would contradict Lemma 5. Now let a1, a2, a3
be the three elements in K(b̄) − {a}, and assume for contradiction that

χS(a1) = χS(a2) = χS(a3) = 0, i.e. a1, a2, a3 ∈ L′. Let b̄ = {x, y, z, k}, then

w.l.o.g. a1 = {x, y, z}, a2 = {x, y, k} and a3 = {x, k, z}. Moreover, let s′1, s
′
2

and s′3 be the three distinct elements in S ′, then w.l.o.g. s′1+ i = x, s′2+ i = y

and s′3+ i = z, for some i ∈ Z7, so that i+S ′ = {x, y, z} = a1. The following

is a case analysis considering the different ways in which the other two sets, a2
and a3, could be obtained according to (5.3), so that j + S ′ = {x, y, k} = a2
and l + S ′ = {x, k, z} = a3, for distinct i, j, l with j, l ∈ Z7.

Notice that the following three ways for obtaining a2 are impossible, since

for any distinct i, j ∈ Z7 and any r ∈ Z7, r + i 6≡ r + j mod 7:
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s′1 s′2 s′3
+i x y z

+j x y k

s′1 s′2 s′3
+i x y z

+j x k y

s′1 s′2 s′3
+i x y z

+j k y x

Similarly, the following three ways for obtaining a3 are also impossible:

s′1 s′2 s′3
+i x y z

+l x k z

s′1 s′2 s′3
+i x y z

+l x z k

s′1 s′2 s′3
+i x y z

+l k x z

The following scenarios are also impossible since, for any distinct r, t ∈ Z7,

r − t 6≡ t− r mod 7, given that 7 is a prime number:

s′1 s′2 s′3
+i x y z

+j y x k

s′1 s′2 s′3
+i x y z

+l z k x

Then, we have only four possibilities left for obtaining a2 and a3 simulta-

neously, which are represented as follows:

s′1 s′2 s′3
+j k x y

+l k z x

s′1 s′2 s′3
+j k x y

+l z x k

s′1 s′2 s′3
+j y k x

+l k z x

s′1 s′2 s′3
+j y k x

+l z x k

These last four scenarios are also clearly impossible by the same argu-

ments we mentioned earlier. Thus, since we have shown that in any of the

previous scenarios we arrive to a contradiction, the theorem follows.

Additionally, we also verified Theorem 6 using the proof assistant system,

Coq, for mechanically checking the arguments of the proof we presented

here.
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5.4 Safety for two-message minimally

informative protocols

In the previous section we presented a two-message minimally informative

protocol construction for (3, 3, 1). Although we did not prove that this pro-

tocol is also safe, it is in indeed, in light of the following theorem, which is

the main result of this section.

Theorem 7. A two-message minimally informative announcement protocol

for (a,b, 1) is also safe if b ≥ 2.

Proof. Let χ : Pa(D) → Z2 be a minimally informative announcement pro-

tocol for (a,b, 1). Assume for contradiction that χ is not safe. That is,

according to the safety Defitition 3, ∃c ∈ D1, ∃M ∈ Z2,∃x ∈ c̄, such that

for any a-sets a, a′ ⊆ c̄, it holds ¬(χ(a) = χ(a′) = M) ∨ x 6∈ a4a′. Thus, for

such c, M and x we have χ(a) = χ(a′) = M ⇒ x ∈ a ∩ a′ ∨ x 6∈ a ∪ a′; so, if

we consider any a, a′ ⊆ c̄ such that a, a′ ∈ χ−1(M), if x ∈ a then x ∈ a′ or

else if x 6∈ a then x 6∈ a′. This means, for c, M and x one of the following

should hold:

(1) for any a ⊆ c̄, if χ(a) = M then x 6∈ a
(2) for any a ⊆ c̄, if χ(a) = M then x ∈ a

Let {M ′} = Z2 − {M}, then the previous is equivalent to:

(1) for any a ⊆ c̄, if x ∈ a, then χ(a) = M ′

(2) for any a ⊆ c̄, if x 6∈ a, then χ(a) = M ′

Suppose (1) holds. First, consider an arbitrary a-set a′ ⊆ c̄, such that x 6∈ a′.
Let b̄ = a′ ∪ {x}, so that b̄ ⊆ c̄ and for any a ∈ K(b̄), x ∈ a or a = a′. Thus,

since χ is minimally informative, we have that χ(a′) = M ; otherwise, all

elements in K(b̄), would be colored M ′ given that (1) holds. Thus, we have

shown that for any a-set a′ ⊆ c̄, such that x 6∈ a′, it holds that χ(a′) = M .

Now, let b be a b-set such that c, x ∈ b. Then, for any a-set a ∈ K(b̄), we

1We also denote the singleton set with card c as c, as it is always clear from the context

which case it is.
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have that a ⊆ c̄ and x 6∈ a; therefore, χ(a) = M . This means that all a-sets

in K(b̄) are equally colored by χ, a contradiction to χ being a minimally

informative coloring for (a,b, 1).

Suppose (2) holds. Let b be a b-set such that c, x ∈ b. Then for any

a-set a′ ∈ K(b̄), we have χ(a′) = M ′. Then, all elements in K(b̄) are equally

colored by χ, thus we arrived to a contradiction with χ being a minimally

informative coloring for (a,b, 1).

Since, in any of the two cases we arrive to a contradiction, it holds that

χ is safe and the theorem follows.

Notice that c = 1 is necessary for the sake of the arguments in the proof.

Otherwise, D−a′−{x} is not a valid construction for a b-set b, and therefore

b̄ cannot be a′∪{x}. Thus, for example, the previous lemma does not hold for

the case (2, 3, 2). For this case, even when there are minimally informative

colorations for J2(7, 2), these may not be safe. For instance, in Appendix B

we present a minimally informative coloring for this case, but it is not safe.

5.5 One-step minimally informative solution

for (3,3,1)

In this section we present a one-step solution to the classic Russian Cards

problem, with signature (3, 3, 1). In this protocol, both Alice and Bob, use

the same announcement protocol, based on the construction from Section 5.3,

hence we denote this solution by (χS, χS).

Theorem 8. Let S be a perfect difference set of size 3 and S ′ a 3-set such

that S ′ ⊆ D − S. The one-step protocol (χS, χS) is minimally informative

and safe for (3, 3, 1).

Proof. By Theorem 6, it is straightforward that (χS, χS) is minimally infor-

mative for (3, 3, 1). Regarding the safety property, according to Definition 5,

we must consider any card c ∈ D 2 that C might hold, any card y ∈ D−c that

2We also denote the singleton set with card c as c, as it is always clear from the context

which case it is.
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C does not hold, and any compatible messages (M,M ′) ∈ {0, 1}×{0, 1}, and

we must show that there are two 3-sets a, a′ ∈ P(c,M) such that y ∈ a4a′

and χS(D−a−c) = χS(D−a′−c) = M ′. Note that there are exactly
(
6
3

)
= 20

3-sets in K(c̄). Hence, since there are exactly six elements in χ−1S (0) con-

taining the card c, the remaining eight elements in χ−1S (0) are contained in

K(c̄), and therefore, these elements conform the set P(c, 0). Thus, the other

twelve 3-sets in K(c̄) (apart from the eight elements in χ−1S (0)) are contained

in χ−1S (1), and therefore, such elements conform the set P(c, 1).

In the following we analyze all four cases of possible pair of compatible

messages (M,M ′) ∈ {0, 1} × {0, 1}:

� Assume (M,M ′) = (0, 0). Notice that, among the eight 3-sets in

P(c, 0), by the construction of the set χ−1S (0), there must be two el-

ements a, a′ ∈ P(c, 0), such that a = t + S and a′ = t + S ′, for some

t ∈ Z7. Thus, a and a′ are disjoint 3-sets in P(c, 0). Therefore, for

any card y ∈ D − c, y ∈ a4a′, since all cards in D − c must appear

in exactly one of the two 3-sets a and a′. Additionally, this also means

that D − a − c = a′, therefore, χS(D − a − c) = χS(a′) = 0 and

χS(D − a′ − c) = χS(a) = 0. Thus, it follows that χS(D − a − c) =

χS(D − a′ − c) = 0.

� Assume (M,M ′) = (0, 1). Notice that, there are exactly three elements

in L′ = {x+S ′ | x ∈ Z7} that contain card c. Let us say these elements

are t+S ′, u+S ′ and v+S ′. Then, the elements t+S, u+S and v+S from

L are in P(c, 0). By Lemma 5, the intersection of any pair of elements

from L is exactly one. Then, since c 6∈ t+ S ∪ u+ S ∪ v + S, from the

inclusion-exclusion principle, it follows that |t+ S ∪ u+ S ∪ v+ S| = 6

and |t + S ∩ u + S ∩ v + S| = 0. Then, for any card y ∈ D − c, there

are two elements a, a′ ∈ {t+ S, u+ S, v + S}, i.e., a, a′ ∈ P(c, 0), such

that y ∈ a4a′. Without lost of generality, assume that a = t + S and

a′ = u + S. Consider the 3-sets b = D − a− c and b′ = D − a′ − c, so

that b ∈ K(ā) and b′ ∈ K(ā′). Notice that, by Lemma 5, b, b′ 6∈ L, since

a∩b = ∅ and a′∩b′ = ∅. Assume for contradiction that there are at least

two distinct elements in K(ā) ∩ L′. Then, one of these elements must
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be t+ S ′, and other must be x+ S ′ for some x ∈ Z7, with x 6= t. This

means, that K(t+ S) and K(x+ S) are not disjoint, a contradiction

with Lemma 6. Then, there is exactly one element in K(ā)∩L′, which

is t + S ′. But, since c ∈ t + S ′, it follows that b 6∈ K(ā) ∩ L′, i.e.,

b 6∈ L′. Thus, b 6∈ χ−1S (0), which means χS(b) = 1. Similarly, we can

prove that b′ 6∈ L′ then, b′ 6∈ χ−1S (0), therefore χS(b′) = 1. It follows

that χS(D − a− c) = χS(D − a′ − c) = 1.

� Assume (M,M ′) = (1, 0). Given that a = b, A and B use the same

protocol, this follows from the previous case, i.e., they are symmetric.

� Assume (M,M ′) = (1, 1). Notice that the 20 elements in K(c̄) can be

partitioned into ten pairs, such that the 3-sets in the pair are disjoint

sets. Since twelve of these 3-sets conform the set P(c, 1), at least two

of them must be disjoint, say a and a′. Thus, for any card y ∈ D − c,
we have that y ∈ a4a′. Then, by a similar argument to that from case

(M,M ′) = (0, 0), we have that χS(D − a− c) = χS(D − a′ − c) = 1.
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Chapter 6

Conclusions

We have studied the problem of secure minimal information exchange be-

tween two agents A and B in the presence of an eavesdropper C. As in

the Russian Cards problem scenario, the agents are modeled as card players,

holding cards randomly dealt from a deck of n cards, according to a publicly

known signature (a,b, c), specifying the number of cards dealt to A, B and

C, respectively. Unlike in the classic Russian Cards problem, A and B are not

required to learn the full hand of each other; instead, they only need to learn

something about it. This way, their announcements must be minimally in-

formative, but not necessarily informative. Additionally, the communication

must be unconditionally secure, in the sense that the agents are treated as

being computationally unlimited; in particular, the communication protocol

must provide weak 1-security [20].

Our formalization, which is inspired in the framework from works about

zero-error source coding, lead us to various formulations in terms of properties

of Johnson graphs, similar to those from [18].

6.1 Repercussions

Reducing Communication Complexity. As we have seen, the mini-

mum number of bits needed for an informative announcement protocol is
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log2 χ(Jc(n, a)), since the chromatic number of Jc(n, a) determines the num-

ber of different messages needed for an informative protocol. Although, in

general, determining the exact chromatic number of Johnson graphs is still

an open question, it is known that Θ(c log n) bits are needed and sufficient

for information transmission in the Russian Cards scenario with signature

(a,b, c) [18]. However, as we have shown (see Section 5.2 and 5.5), only one

bit suffices for achieving minimal information exchange and even security in

various instances of the problem, and therefore, this is optimal in terms of

communication complexity.

From informative to minimally informative protocols. In [18], the

author presents a construction that produces a safe and minimally informa-

tive announcement protocol from a safe and informative one, for the same

problem instance. The protocol construction uses the idea that merging two

color classes of a protocol PA, i.e., P−1A [M ] and P−1A [M ′], leads to a new

protocol that preserves safety, although possibly not informative properties.

Therefore, this is a general propose strategy for obtaining a minimally in-

formative protocol from known solutions to the problem. In particular, this

construction allow us to obtain a three-message minimally informative and

safe protocol for (3, 3, 1), based on the well known modular protocol from [4].

In Section 5.3 we present a two-message safe and minimally informa-

tive protocol construction for (3, 3, 1) based on Singer difference sets. This

construction is also inspired in the informative solution proposed in [2, The-

orem 3]. We believe this may serve as an example of how the techniques

for informative protocol constructions can be creatively adapted for obtain-

ing minimally informative protocols, using a more problem-specific approach

compared to the previously mentioned, from [18].

Overcoming Impossibility Results. It is well known that no (fully)

informative and safe announcement protocols exists for various problem in-

stances, either when c ≥ b or c ≥ a − 1. However, as we have shown, we

can overcome this impossibility by weakening the informative requirement,

namely, considering minimally informative announcements instead. Thus, for
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example, by Theorem 4, the protocol χ2, presented in [18] is minimally infor-

mative and safe for (3, 4, 3) and (6, 6, 8), although there is no simultaneously

safe and informative announcement protocol for any of these cases.

6.2 Future work

It is well known and easy to see that a solution for the classic Russian Cards

problem implies a solution to the problem of unconditionally secure secret key

exchange [9]. In general, it is quite likely that solutions for the classic problem

could lead to unconditionally secure implementations of several cryptographic

primitives. Notice that, in the problem scenario, the random deal of cards

models correlated inputs for the participants, which are modeled as card

players, such as in [9, 10, 11, 12], where the authors study unconditionally

secure bit transmission and secret key exchange.

However, still remains the question of whether the minimally informative

variant of the Russian Cards problem could also lead to unconditionally

secure implementations of some general-purpose cryptographic primitive and

in which scenarios.

Additionally, a full characterization of the deals for which minimally in-

formative solutions and, in particular, two-message protocols exist could be

also a subject of future investigation. For example, it is not known whether a

secure minimally informative announcement protocol exists for the signature

(a,b, c), with b > c ≥ a > 1 and b ≥ bn/2c. Since no informative protocol

exists for these problem instances with c ≥ a, the protocol construction from

[18, Section 4.2] would not work; additionally, since b ≥ bn/2c, the protocol

χ2 from Section 5.1 would not be useful either. The further study of two-

message protocols would be particularly interesting since such protocols are

optimal in terms of communication complexity.

Moreover, it is also worthy to answer whether in future studies regarding

minimally informative protocols we should keep the security requirement

as weak 1-security. In other words, it might be reasonable to strengthen

the security requirement since we are weakening the main classic goal of
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informativeness. Notice that, even when a minimally informative protocol is

safe, in the sense of providing weak 1-security, it might well be the case that

the eavesdropper C learns at least as much as B from A’s announcement; in

fact, it is clear that this would be the case whenever c ≥ b. The intuition

behind this can be expressed in terms of the initial knowledge of the agents,

i.e, when c ≥ b the initial knowledge of C is at least as much as B’s. Thus,

it probably does not make much sense to use such protocols in those cases.

As an alternative, we could study minimally informative protocols providing

perfect k-security or weak k-security [20], for some k > 1. For practical

purposes, such protocols would probably be more useful than the weak 1-

secure ones in a wider amount of scenarios.

On the other hand, for future work, it might also be reasonable to study

an alternative requirement for informativeness, but not as weak as the min-

imally informative requirement. To that effect, we could formulate the re-

quirement so that it can be expressed in terms of the amount of cards that

B should learn from A’s announcement. This is because such formulation

might be more consistent with the standard security formulations which are

also concerned with the amount of cards that C must not learn. We believe

that this decision would have important implications regarding the useful-

ness of such protocols for practical implementations of unconditionally secure

cryptographic primitives.
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Appendix A

An example of minimally

informative coloring for J(7,3)

The following is an example of a minimally informative coloring for J(7, 3),

which we previously presented in Section 3.5.

χ−1(0) = {012, 013, 014, 015, 016, 023, 024, 025, 036, 046, 126, 134, 135, 156,

234, 245, 246, 256, 345}
χ−1(1) = {026, 034, 035, 045, 056, 123, 124, 125, 136, 145, 146, 235, 236, 346,

356, 456}
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b χ−1(0) ∩K(b̄) χ−1(1) ∩K(b̄) b χ−1(0) ∩K(b̄) χ−1(1) ∩K(b̄)

012 {345} {346, 356, 456} 013 {245, 246, 256} {456}
014 {256} {235, 236, 356} 015 {234, 246} {236, 346}
016 {234, 245, 345} {235} 023 {156} {145, 146, 456}
024 {135, 156} {136, 356} 025 {134} {136, 146, 346}
026 {134, 135, 345} {145} 034 {126, 156, 256} {125}
035 {126, 246} {124, 146} 036 {245} {124, 125, 145}
045 {126} {123, 136, 236} 046 {135} {123, 125, 235}
056 {134, 234} {123, 124} 123 {046} {045, 056, 456}
124 {036} {035, 056, 356} 125 {036, 046} {034, 346}
126 {345} {034, 035, 045} 134 {025, 256} {026, 056}
135 {024, 046, 246} {026} 136 {024, 025, 245} {045}
145 {023, 036} {026, 236} 146 {023, 025} {035, 235}
156 {023, 024, 234} {034} 234 {015, 016, 156} {056}
235 {014, 016, 046} {146} 236 {014, 015} {045, 145}
245 {013, 016, 036} {136} 246 {013, 015, 135} {035}
256 {013, 014, 134} {034} 345 {012, 016, 126} {026}
346 {012, 015, 025} {125} 356 {012, 014, 024} {124}
456 {012, 013, 023} {123}

Table A.1: Color partitions of K(b̄) for each b, according to χ
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c χ−1(0) ∩K(c̄) χ−1(1) ∩K(c̄)

0
{126, 134, 135, 156, 234,

245, 246, 256, 345}

{123, 124, 125, 136, 145,

146, 235, 236, 346, 356,

456}

1
{023, 024, 025, 036, 046,

234, 245, 246, 256, 345}
{026, 034, 035, 045, 056,

235, 236, 346, 356, 456}

2
{013, 014, 015, 016, 036,

046, 134, 135, 156, 345}
{034, 035, 045, 056, 136,

145, 146, 346, 356, 456}

3

{012, 014, 015, 016, 024,

025, 046, 126, 156, 245,

246, 256}

{026, 045, 056, 124, 125,

145, 146, 456}

4

{012, 013, 015, 016, 023,

025, 036, 126, 135, 156,

256}

{026, 035, 056, 123, 125,

136, 235, 236, 356}

5

{012, 013, 014, 016, 023,

024, 036, 046, 126, 134,

234, 246}

{026, 034, 123, 124, 136,

146, 236, 346}

6

{012, 013, 014, 015, 023,

024, 025, 134, 135, 234,

245, 345}

{034, 035, 045, 123, 124,

125, 145, 235}

Table A.2: Color partitions of K(c̄) for each c, according to χ
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Appendix B

An example of minimally

informative not safe coloring

for J2(7, 2)

Here we present an example of minimally informative not safe coloring for

J2(7, 2).

ϕ−1(0) = {01, 02, 03, 04, 05, 06, 12, 13, 14, 25, 26, 35, 36, 45, 46}
ϕ−1(1) = {15, 16, 23, 24, 34, 56}

56



b ϕ−1(0) ∩K(b̄) ϕ−1(1) ∩K(b̄) b ϕ−1(0) ∩K(b̄) ϕ−1(1) ∩K(b̄)

012 {35, 36, 45, 46} {34, 56} 013 {25, 26, 45, 46} {24, 56}
014 {25, 26, 35, 36} {23, 56} 015 {26, 36, 46} {23, 24, 34}
016 {25, 35, 45} {23, 24, 34} 023 {14, 45, 46} {15, 16, 56}
024 {13, 35, 36} {15, 16, 56} 025 {13, 14, 36, 46} {16, 34}
026 {13, 14, 35, 45} {15, 34} 034 {12, 25, 26} {15, 16, 56}
035 {12, 14, 26, 46} {16, 24} 036 {12, 14, 25, 45} {15, 24}
045 {12, 13, 26, 36} {16, 23} 046 {12, 13, 25, 35} {15, 23}
056 {12, 13, 14} {23, 24, 34} 123 {04, 05, 06, 45, 46} {56}
124 {03, 05, 06, 35, 36} {56} 125 {03, 04, 06, 36, 46} {34}
126 {03, 04, 05, 35, 45} {34} 134 {02, 05, 06, 25, 26} {56}
135 {02, 04, 06, 26, 46} {24} 136 {02, 04, 05, 25, 45} {24}
145 {02, 03, 06, 26, 36} {23} 146 {02, 03, 05, 25, 35} {23}
156 {02, 03, 04} {23, 24, 34} 234 {01, 05, 06} {15, 16, 56}
235 {01, 04, 06, 14, 46} {16} 236 {01, 04, 05, 14, 45} {15}
245 {01, 03, 06, 13, 36} {16} 246 {01, 03, 05, 13, 35} {15}
256 {01, 03, 04, 13, 14} {34} 345 {01, 02, 06, 12, 26} {16}
346 {01, 02, 05, 12, 25} {15} 356 {01, 02, 04, 12, 14} {24}
456 {01, 02, 03, 12, 13} {23}

Table B.1: Color partitions of K(b̄) for each b, according to ϕ
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c ϕ−1(0) ∩K(c̄) ϕ−1(1) ∩K(c̄)

01 {25, 26, 35, 36, 45, 46} {23, 24, 34, 56}
02 {13, 14, 35, 36, 45, 46} {15, 16, 34, 56}
03 {12, 14, 25, 26, 45, 46} {15, 16, 24, 56}
04 {12, 13, 25, 26, 35, 36} {15, 16, 23, 56}
05 {12, 13, 14, 26, 36, 46} {16, 23, 24, 34}
06 {12, 13, 14, 25, 35, 45} {15, 23, 24, 34}
12 {03, 04, 05, 06, 35, 36, 45, 46} {34, 56}
13 {02, 04, 05, 06, 25, 26, 45, 46} {24, 56}
14 {02, 03, 05, 06, 25, 26, 35, 36} {23, 56}
15 {02, 03, 04, 06, 26, 36, 46} {23, 24, 34}
16 {02, 03, 04, 05, 25, 35, 45} {23, 24, 34}
23 {01, 04, 05, 06, 14, 45, 46} {15, 16, 56}
24 {01, 03, 05, 06, 13, 35, 36} {15, 16, 56}
25 {01, 03, 04, 06, 13, 14, 36, 46} {16, 34}
26 {01, 03, 04, 05, 13, 14, 35, 45} {15, 34}
34 {01, 02, 05, 06, 12, 25, 26} {15, 16, 56}
35 {01, 02, 04, 06, 12, 14, 26, 46} {16, 24}
36 {01, 02, 04, 05, 12, 14, 25, 45} {15, 24}
45 {01, 02, 03, 06, 12, 13, 26, 36} {16, 23}
46 {01, 02, 03, 05, 12, 13, 25, 35} {15, 23}
56 {01, 02, 03, 04, 12, 13, 14} {23, 24, 34}

Table B.2: Color partitions of K(c̄) for each c, according to ϕ
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