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Abstract

The work presented in this Bachelor’s thesis in physics focuses on a quantum system
of electrons under the presence of a 3D topological insulator (TI). One of the main
properties of TI’s is that their microscopic effective electronic Hamiltonian can recover
the free Dirac Lagrangian in exchange for the appearance of an additional effective
electromagnetic action proportional to the fine structure constant, which produces
the so-called axion electrodynamics. This feature is strongly exploited throughout
this thesis, as one can effectively treat the electrons under the presence of a TI as
a free electron gas, but within the effects of the effective electromagnetic response.
This response, under the presence of external electromagnetic fields, creates induced
electromagnetic fields inside the material, which affect the behaviour of the electrons.

When solving the respective Schrödinger equation, and under the presence of a
finite plate of a TI in an external perpendicular magnetic field, bound states are
produced. This happens because an electric field is induced inside the plate which in
turn produces a finite triangle potential that constrains the electrons. The production
of these bound states has two important consequences. First, the dependence in the
magnetic field of the bound-state energies produces a non-trivial magnetization term
in addition to the 2D analogue of the Landau magnetization. Second, this localization
allows the treatment of this electron gas to be as if it was constrained to move in a
bi-dimensional plate which, for this reason and for the presence of the perpendicular
magnetic field, makes the system appropriate for the realization of the quantum
Hall effect (QHE). An attempt to replicate the QHE on this system is made, but
corrections to the Hall current are obtained. These discrepancies arise from the fact
that the parallel electric field needed for the realization of the QHE also induces
a parallel internal magnetic field. The corrections to the Hall current are treated
via perturbation theory in terms of the small parameter given by the fine structure
constant that accompanies each induced field. These corrections turn out to be non-
trivial and of second-order on this parameter.

In both of the previous phenomenon, a discontinuous transition of the macroscopic
variables is found, which arises from the sudden appearance of new energy states at
particular values of the external magnetic field and thus resulting in quantum phase
transitions of first order. This is the main result of this work, which as mentioned, is
present both in the magnetization and in the corrections of the Hall current.

The thesis is organized as follows. In chapter 1 a review of the Hall effect is
made, with special focus on its quantum version. In chapter 2 a general review of
TI is also made, going from their general properties to the particular effective micro-
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ABSTRACT iv

scopic Hamiltonian which produces the electromagnetic response. In chapter 3 the
Schrödinger equation for the quantum system previously described is solved, obtain-
ing the bound state solutions. Also, an extensive discussion over the occupation of
the energy states is made as a preamble to the emergence of the phase transition. In
chapter 4 the magnetization for this system is calculated. First for a thin-plate where
only one energy band is present, then close to the first critical point from which a
second energy band appears and produces the phase transition, and finally, for a gen-
eral critical point from which the nth energy band appears. In chapter 5, the parallel
electric field is introduced and the corrections to the QHE via perturbation theory are
obtained. Numerical analysis for these corrections are made to visualize the presence
of the phase transitions. The conclusions are presented in chapter 6. Appendix A
enlists the constants and variables used throughout this work. Appendix B manages
the corrections to all of the results produced by the presence of spin, as it is for sim-
plicity generally ignored. Appendix C briefly presents the Airy functions and their
properties, and shows how they are involved in the wave function solutions in the case
of a constant electric field. Appendix D reviews the WKB approximation and applies
it to our particular system to obtain a closed formula for the bound state energies.
Appendix E clarifies some non-trivial limits which appear in the matrix elements of
chapter 5.



Resumen

El trabajo presentado en esta tesis de licenciatura en física se enfoca en sistemas
cuánticos de electrones bajo la presencia de un aislante topológico (AT) 3D. Una de
las principales propiedades de los AT es que su Hamiltoniano microscópico efectivo
puede recuperar la Lagrangiana de Dirac a cambio de la aparición de una acción elec-
tromagnética efectiva adicional proporcional a la constante de estructura fina, la cual
produce la así llamada electrodinámica axiónica. Esta propiedad es constantemente
aprovechada a lo largo de esta tesis puesto que uno puede tratar a los electrones bajo
la presencia de un AT como un gas de electrones libres, pero bajo los efectos de la
respuesta electrodinámica efectiva. Esta respuesta, bajo la presencia de campos elec-
tromagnéticos externos, crea campos electromagnéticos inducidos dentro del material,
los cuales afectan el comportamiento de los electrones.

Al resolver la ecuación de Schrödinger respectiva, y bajo la presencia de una placa
finita de un AT con un campo magnético perpendicular externo, hay una aparición
de estados ligados. Esto sucede debido a que un campo eléctrico es inducido dentro
de la placa, que en consecuencia produce un potencial triangular finito que constriñe
a los electrones. La producción de estos estados ligados tiene dos consecuencias
importantes. Primero, la dependencia en el campo magnético de las energías de los
estados ligados produce un término de magnetización no trivial además del análogo
en 2D de la magnetización de Landau. Segundo, esta localización permite que el
manejo de este gas electrones sea como si estuviera constreñido a moverse en una
placa bidimensional que, por esta razón y debido a la presencia del campo magnético
perpendicular, hace que el sistema sea apropiado para la realización del efecto Hall
cuántico (EFC). Se hace un intento para replicar el EFC en este sistema, pero se
encuentran correcciones a la corriente Hall. Estas discrepancias surgen debido a que
el campo eléctrico adicional necesario para la realización del EFC también induce un
campo magnético paralelo interno. Las correcciones a la corriente Hall son tratadas
mediante teoría de perturbaciones en términos del parámetro pequeño dado por la
constante de estructura fina que acompaña a cada campo inducido. Éstas resultan
ser no triviales y de segundo orden en este parámetro.

En ambos fenómenos previos se encuentra una transición discontinua de las vari-
ables macroscópicas, que surge de la aparición espontánea de nuevos estados de en-
ergía en valores particulares del campo magnético externo y que entonces resulta en
transiciones de fase cuánticas de primer orden. Este es el resultado principal de este
trabajo, que como fue mencionado, está presente tanto en la magnetización como en
las correcciones a la corriente Hall.
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RESUMEN vi

La tesis tiene la siguiente organización. En el capítulo 1 se hace una revisión del
efecto Hall, con especial enfoque en su versión cuántica. En el capítulo 2 se hace
también una revisión general de los AT, abarcando desde sus propiedades generales
hasta el Hamiltoniano microscópico efectivo particular que produce la respuesta elec-
tromagnética. En el capítulo 3 se resuelve la ecuación de Schrödinger para el sistema
cuántico previamente descrito, obteniendo las soluciones de estados ligados. Además,
se hace una discusión extensiva sobre la ocupación de los estados de energía como un
preámbulo de la emergencia de la transición de fase. En el capítulo 4 la magnetización
para este sistema es calculada. Primero para una placa delgada donde sólo una banda
de energía está presente, luego cerca del primer punto crítico a partir del cual aparece
una segunda banda de energía y produce la transición de fase y finalmente, para un
punto crítico general a partir del cual aparece la n-ésima banda. En el capítulo 5 el
campo eléctrico paralelo es introducido y las correcciones al EFC mediante teoría de
perturbaciones son obtenidas. Se hace un análisis numérico para estas correcciones
para visualizar la presencia de las transiciones de fase. Las conclusiones se presentan
en el capítulo 6. El apéndice A enlista las constantes y variables usadas a lo largo
de este trabajo. El apéndice B maneja las correcciones a todos los resultados pro-
ducidas por la presencia del espín, pues por simplicidad es generalmene ignorado. El
apéndice C presenta brevemente a las funciones de Airy y sus propiedades, y muestra
como estas están involucradas en las funciones de onda para el caso de un campo
eléctrico constante. En el apéndice D se hace una revisión de la aproximación WKB,
junto con su aplicación a nuestro sistema en particular para obtener una fórmula cer-
rada de las energías de los estados ligados. Finalmente, el apéndice E aclara algunos
limites no triviales que aparecen en los elementos de matriz en el capítulo 5.
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1 Introduction to the Hall effect

The Hall effect (HE) takes place on systems of electrons restricted to move on a bi-
dimensional surface where a perpendicular magnetic field Bz is present. When an
electric current Ix is induced on the plate, a transverse voltage Vy appears [1] (see
Fig. 1.1).

Figure 1.1: Hall effect system.

Classically, this transverse voltage is linearly dependent on the magnetic field,
such that the transverse resistivity takes the form

ρxy ≡ −Vy/Ix =
Bz

nee
, (1.1)

where e is the fundamental charge and ne the electronic surface density. This is the
classical Hall effect, discovered by Edwin Hall in 1879 [2]. This effect is peculiar, as
the resistivity above-defined does not depend on the collision time between electrons.
A more detailed description of the classical Hall effect can be found in section 1.1.

When the plate presents disorder [3], in the presence of strong magnetic fields
(around 15 T) and at low temperatures (around 3 K) [4], the behavior of the system
completely changes. The Hall voltage forms constant plateaus, each with the distinct
value

ρxy =
2π}
e2

1

ν
, ν ∈ N , (1.2)

where } is Planck’s constant. Furthermore, the longitudinal resistivity becomes zero1,
ρxx = 0. This is the integer quantum Hall effect (QHE). It was discovered experimen-
tally by Klaus von Klitzing in 1980 [4], which earned him the 1985 Nobel Prize. This
effect motivated the definition of RK = 2π}/e2 as the quantum of resistivity (also

1It actually presents peaks around each transition point between plateaus, but we will not focus
on this phenomenon.
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CHAPTER 1. INTRODUCTION TO THE HALL EFFECT 2

known as the von Klitzing constant); the QHE precisely allows the measurement of
this constant with incredible precision. With the 2018 redefinition of the fundamen-
tal constants h and e, it has a defined value of [5] RK = 25812.80745...Ω. A more
detailed description of the QHE will be made in section 1.2. A comparison between
the classical and quantum Hall effect’s transverse resistivity is shown in Fig. 1.2.

Figure 1.2: Classical and quantum transverse resistivity in the HE, divided by the quantum
of resistivity RK . A typical value [3] of ne = 5× 1015 m−2 was used.

With the reduction of impurities, the quantum behaviour of the resistivity breaks,
but in the process, fractional valued plateaus arise. This was discovered by Tsui and
Störmer in 1982 [6], and is known as the fractional quantum Hall effect2. It is a mid-
point between the integer-valued plateaus and the classical linearly-behaved HE. This
phenomenon is best described when the interactions between electrons are taken into
account [3]. Nonetheless, this will not be discussed here as it escapes the purposes of
this thesis.

1.1 Classical Hall effect

Take the system of Fig. 1.1. The Lorentz force gives the equation of motion for
electrons

m
dv
dt

= −e(E + v×B), (1.3)

where m is the electron mass, v its velocity, and E, B the electric and magnetic
fields respectively. In absence of electric fields, and with B = Bêz the solution to the
equation is

x(t) = x0 + r0 sin(ωBt− ϕ), y(t) = y0 + r0 cos(ωBt− ϕ), (1.4)
2The fractional case is still technically a quantum Hall effect. Yet, for simplicity and unless stated

otherwise, on this thesis the quantum Hall effect will only denote the integer case.
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where x0, y0, r0, ϕ are arbitrary integration constants, and

ωB =
eB

m
. (1.5)

This motion is called cyclotron motion, where electrons move in circles at a frequency
given by ωB, denoted as the cyclotron frequency. This variable carries the sign of B
and thus, the electrons go clockwise for B in the ẑ direction, and counterclockwise in
the −ẑ direction.

But when the electrons are trapped in a finite plate such as in Fig. 1.1, the
movement of the electrons in the boundary changes. Instead of completing their
circular motion, they collide with the boundary of the plate, bouncing with opposite
velocity, which sets off a new displaced turn. In summary, the electrons on the bulk
move in circular orbits, while the ones on the boundaries propagate across them. This
can be seen in Fig. 1.3. Even with the unidirectional displacement of electrons in
the boundaries, no net current is induced because opposite borders carry opposite
current.

Figure 1.3: Cyclotron motion of electrons in the bulk and edges of the plate. In the edges,
chiral states (constrained to move in one direction) appear.

If we take the plate infinite in the x direction, we get electrons constrained to
move to the right (left) in the lower (upper) edge of the plate. These are called
chiral states [7]. The left and right states usually don’t mix, as they are separated
by the bulk. But when a current in the y-direction is induced, the number of chiral
states in one direction diminishes, while the other one increases. Electronic charge is
conserved, but chirality is not. In the context of quantum field theory, this phenomena
is called the chiral anomaly [8] and is a pure quantum effect. Yet, in this context,
this can be seen classically! This anomaly will be discussed in section 2.2.2, as it is
the responsible of the effective electromagnetic theory in topological insulators.

We introduce an electric field in the plate E = Exêx + Eyêy. To form a static
current we also need to introduce the mean free time between collisions τ , which
accounts for the collisions between electrons in the material. Thus, the macroscopic
classical equation of motion they obey is given by the Drude model [9, 10]

m
dv
dt

= −e(E + v×B)− mv
τ
. (1.6)
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At equilibrium the velocity is constant, therefore

v = −ωBτ
B

(E + v×B). (1.7)

Substituting the velocity on the same equation,

v =
ωBτ

B
(E− ωBτ

B
E×B− ωBτ

B
(v×B)×B), (1.8)

where in this case

(v×B)×B = (v ·B)B−B2v
= −B2v,

(1.9)

because v is perpendicular to B.
Now, in matrix form,

E×B =

(
0 Bz

−Bz 0

)(
Ex
Ey

)
. (1.10)

With this, and introducing the electronic current density3 J = −neev, Eq. (1.8)
becomes Ohm’s law in (2D) matrix form

J = σeE, (1.11)

with
σe =

σDC
1 + ω2

Bτ
2

(
1 −ωBτ
ωBτ 1

)
, (1.12)

where
σDC =

neeτ

m
= nee

ωBτ

B
(1.13)

is the usual Drude conductivity.
Inverting the conductivity matrix produces the resistivity matrix,

ρ ≡ σ−1
e =

1

σDC

(
1 ωBτ

−ωBτ 1

)
. (1.14)

The longitudinal term

ρxx =
1

σDC
, (1.15)

corresponds to the usual resistivity of the Drude model. For a perfect conductor
(limit τ −→ 0), we obtain ρxx = 0, which corresponds to the one of the QHE. The
transverse term

ρxy =
B

nee
, (1.16)

corresponds to the classical transverse resistivity (1.1) of the HE. This is completely
independent of the scattering time. Thus, from the classical level we have an in-
dication that this term is associated with the geometry of the system, and not its
impurities.

3Because we take the electronic surface density ne = N/A, this current density in reality possesses
units of A/m, which is in correspondence with working in a 2D system.
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1.2 Quantum Hall effect

A theoretical description of the QHE calls for the use of quantum mechanics. At
first instance, it will appear as if this is enough. But careful consideration will reveal
that nevertheless, the classical current should be recovered. This is not unexpected.
Quantum mechanics usually predicts the quantization of microscopic variables such
as the energy or the angular momentum of an individual particle, and thus one would
not expect that macroscopic variables like the resistivity can also be quantized. It
will be seen that the presence of disorder plays a key role. But ultimately, it will be
seen that the QHE is of topological character [3].

In the following discussion (and from now on) we will completely ignore the effect
of spin on the QHE. A brief discussion over the effects of spin can be found in
Appendix B.

1.2.1 Landau Levels

Take the time-independent Schrödinger equation ĤΨ = EΨ. The Hamiltonian of
electrons under the action of electromagnetic fields is [11]

Ĥ =
1

2m

(
p̂ + eA(x̂)

)2 − e φ(x̂), (1.17)

where π̂ππ = p̂ + eA(x̂) is the canonical momentum operator and A(x̂), φ(x̂) are
the operators of the respective electromagnetic potentials. That is, for static fields,
E = −∇φ and B = ∇×A. In this section it will not be necessary to fix a gauge.

For now we will stay only with the magnetic field B = Bêz, without the electric
field. In this case, the canonical momentum obey

[π̂x, π̂y] = −ie}B. (1.18)

Defining the operators

â† =
1√

2e}B
(π̂x + iπ̂y), â =

1√
2e}B

(π̂x − iπ̂y), (1.19)

we get, through Eq. (1.18), the commutation relation

[â, â†] = 1. (1.20)

Furthermore, the (2D) Hamiltonian can be expressed as

Ĥ =
1

2m
π̂ππ · π̂ππ = }ωB

(
â†â +

1

2

)
. (1.21)

This is exactly the Hamiltonian of the quantum harmonic oscillator, whose frequency
is the cyclotron frequency. The solutions are then expressed by the well known Her-
mite polynomials [11,12] with energies given by

En = }ωB
(
n+

1

2

)
, n = 0, 1, 2, ... (1.22)
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These are the Landau levels. They are in correspondence with the classical solutions,
where for a constant magnetic field, the electrons move in cyclotron orbits. We can
go even further in this relation. Classically, from Eq. (1.4), the center of the orbits
is given by

x0 = x(t)− r0 sin(ωBt− ϕ) = x+
ẏ

ωB
= x+

πy
mωB

,

y0 = y(t)− r0 cos(ωBt− ϕ) = y − ẋ

ωB
= y − πx

mωB
.

(1.23)

Thus, we can define the center of mass operators as

X̂ = x̂ +
π̂y
mωB

, Ŷ = ŷ − π̂x
mωB

. (1.24)

They commute with the Hamiltonian,

i}
∂

∂t
〈X̂〉 = 〈[X̂, Ĥ]〉 = 0, i}

∂

∂t
〈Ŷ〉 = 〈[Ŷ, Ĥ]〉 = 0, (1.25)

and thus are constants of evolution. That is, their expectation value is constant.
Nevertheless, the operators do not commute with each other,

[X̂, Ŷ] = −i`2
B, (1.26)

where

`B =

√
}
eB

=

√
}

mωB
(1.27)

is called the magnetic length.
Eq. (1.26) has a direct physical interpretation. In a semi-classical quantization of

phase space4, the uncertainty relation between these two variables is

∆X∆Y = 2π`2
B. (1.28)

This means that each wave-function occupies an area of 2π`2
B. Because the electrons

are fermions, they cannot occupy both the same energy level, and the same spatial
area. Therefore, a plate of area A can only harbor

g =
A

∆X∆Y
=

A

2π`2
B

=
eBA

2π}
=
AB

Φ0

(1.29)

electrons on each energy state. g is thus the degeneracy of each Landau level. The
quantity

Φ0 =
2π}
e

(1.30)

is called the flux quantum. This means that the necessary electron’s surface density
required to exactly fill ν Landau levels is

ne =
B

Φ0

ν. (1.31)
4We say this because in Eq. (1.28) we don’t use the usual uncertainty relation ∆X∆Y ≥∣∣ 1

2i 〈[X̂, Ŷ]〉
∣∣, but instead quantize the area as ∆X∆Y =

∣∣ 2π
i 〈[X̂, Ŷ]〉

∣∣, which can be shown to be
equivalent to a semi-classical quantization of phase space [13]. All arguments treating the degeneracy
of the Landau levels use, in one way or another, semi-classical approximations.
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1.2.2 Quantum Current

Now we turn on the electric field E = Eêx, such that φ(x) = −Ex. We also fix the
gauge as the Landau gauge, where A(x) = xBêy. Thus, the Hamiltonian becomes

Ĥ =
1

2m

(
p̂2
x + (p̂y + eBx̂)2

)
+ eEx̂. (1.32)

There is a translational invariance in the y-coordinate, so we can use the ansatz wave
function

Ψn,ky(x) = Aeikyyφn(x), (1.33)

then

Ĥ =
1

2m

(
p̂2
x + (}ky + eBx̂)2

)
+ eEx̂

=
p̂2
x

2m
+

1

2
mω2

B

(
x̂ + ky`

2
B +

mE

eB2

)2

− eE
(
ky`

2
B +

mE

2eB2

)
.

(1.34)

This is the Hamiltonian of the harmonic oscillator with its center and energies shifted.
Thus

Ψn,ky(x) = Ceikyyφn

(
x+ ky`

2
B +

mE

eB2

)
, (1.35)

with C a normalization constant and

φn(x) =
1√

2nn!`B

1

π1/4
e−x

2/(2`2B)Hn(x/`B), (1.36)

the eigenfunctions of the harmonic oscillator, which also called Hermite functions [14].
Furthermore, the energies are

En,ky = }ωB
(
n+

1

2

)
− eE

(
ky`

2
B +

mE

2eB2

)
. (1.37)

We now compute the electric current. If we consider the system as a gas of electrons,
the average current is

I = −e〈ẋ〉 = − e

m
〈p̂ + eA(x̂)〉 = − e

m

∑
O.S.

〈Ψn,ky | − i}∇+ eA(x̂)|Ψn,ky〉, (1.38)

where the sum is made over the occupied states.
The allowed ky values still need careful treatment. Suppose we have a plate of

lengths Lx and Ly. Because the system is free in the y-direction, the borders have
the effect of quantizing the allowed values of ky in units of 2π/Ly. For the other
direction, we have the restriction −Lx/2 ≤ x ≤ Lx/2. As the wave-functions are
localized around x = −ky`2

B − mE
eB2 , then

Lx
2
≥ ky`

2
B +

mE

eB2
≥ −Lx

2
. (1.39)
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Then ky ∈ [a, b], with

a = − 1

`2
B

(Lx
2

+
mE

eB2

)
,

b =
1

`2
B

(Lx
2
− mE

eB2

)
.

(1.40)

With this, the sum over ky for an occupied Landau level becomes∑
ky

(...) −→ Ly
2π

∫ b

a

(...)dky. (1.41)

For this section, only the trivial integral will be required,

Ly
2π

∫ b

a

dky =
Ly
2π

(b− a) =
LxLy
2π`2

B

≡ N. (1.42)

This recovers the degeneracy of each Landau level (1.29). Nevertheless, this should
be treated as the number of states allowed in each Landau level, because the electric
field has lifted the degeneracy of the energy in Eq. (1.37), as now each level also
depends linearly on ky.

It is worth noting that, by only considering the difference (b− a), a careful treat-
ment with the cumbersome limits given by (1.40) should not be needed. It would
be sufficient to take a = −Lx/(2`2

B) and b = Lx/(2`
2
B) like previous authors have

done [3]. Yet, it will be seen in section 5.4.2, where we compute the current for
topological insulators, that these cumbersome limits are actually relevant.

Proceeding with the calculation of the current (1.38) in the y direction,

Iy = − e

m

∑
(n,ky)

〈Ψn,ky |}ky + ex̂B|Ψn,ky〉. (1.43)

The wave functions are assumed normalized. The expectation value in x̂ of the
harmonic oscillator (1.36) is zero, so the expectation value in x̂ of the wave function
(1.35) is

〈Ψn,ky |x̂|Ψn,ky〉 = −
(
ky`

2
B +

mE

eB2

)
. (1.44)

Thus

Iy = − e

m

∑
(n,ky)

[
}ky − eB

(
ky`

2
B +

mE

eB2

)]
=
∑

(n,ky)

eE

B

= N
eE

B
ν.

(1.45)

Eqs. (1.41) and (1.42) were used, and ν Landau levels were assumed to be completely
occupied.
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Dividing by the area to get the current density,

Jy =
e2

2π}
Eν. (1.46)

The current in the x-direction is zero, for the expectation value of the momen-
tum operator is zero in the harmonic oscillator. The treatment for both currents is
analogous in the case of an electric field in the y-direction. Thus,

J =

(
0 −σxy
σxy 0

)(
Ex
Ey

)
, E =

(
0 ρxy
−ρxy 0

)(
Jx
Jy

)
, (1.47)

where
ρxy = σ−1

xy =
2π}
e2

1

ν
(1.48)

is the QHE resistivity (1.2). This tells us that the integer ν of the resistivity has a
direct physical meaning: It corresponds to the number of Landau levels completely
filled.

Nonetheless, this calculation does not explain what happens when a Level is par-
tially occupied. In this case, one would not get the complete integral (1.42), only a
fraction of it. The so-called "robustness of the Hall states" appears to break in those
cases. There are thus additional phenomena that must be taken into account.

1.2.3 The influence of disorder

The origin of the robustness of the Hall states was first proposed by Ando [15]. In
short, as remarked by Klitzing [4], "[...] the electrons in impurity bands, arising from
short range scatterers, do not contribute to the Hall current; whereas the electrons
in the Landau level give rise to the same Hall current as that obtained when all
the electrons are in the level and can move freely". In this section we will make a
simple calculation in the semi-classical approximation, proposed by Tong [3], to prove
the first assertion: There exist some impurity bands which do not contribute to the
current. In the next section we will discuss the second assertion: Even when only
part of the electrons contribute to the current, its value is the same as if all of the
electrons were to move freely.



CHAPTER 1. INTRODUCTION TO THE HALL EFFECT 10

Figure 1.4: Microscopic picture of the random potential U(x, y), which models the disorder
on the plate. Its equipotentials constitute the paths through which the electrons are allowed
to move. There are localized states (red curves) and extended states (blue curves).

For modelling the disorder, we can take a continuous potential U(x, y) with ran-
dom (and small) values distributed along the plate. We study the effect of this
potential on the Landau levels described by the Hamiltonian Ĥ of Eq. (1.21). That
is, we consider the movement in the x-y plane with a magnetic field in the z direction.
Taking again the center of mass operators X̂ and Ŷ of Eq. (1.24), the addition of the
potential Û ≡ U(X̂, Ŷ) modifies their motion so that

i}
∂

∂t
〈X̂〉 = 〈[X̂, Ĥ + Û]〉 = 〈[X̂, Û]〉, i}

∂

∂t
〈Ŷ〉 = 〈[Ŷ, Ĥ + Û]〉 = 〈[Ŷ, Û]〉. (1.49)

Performing an Taylor expansion of the operator Û around (x0, y0) ≡ (〈X̂〉, 〈Ŷ〉), at
first order5,

Û ≈ U(x0, y0)1̂ + (X̂− x01̂)
∂U

∂x
+ (Ŷ − y01̂)

∂U

∂y
. (1.50)

Therefore, using Eq. (1.26),

i}
∂

∂t
〈X̂〉 ≈ 〈[X̂, Ŷ]〉∂U

∂y
= −i`2

B

∂U

∂y
, i}

∂

∂t
〈Ŷ〉 ≈ 〈[Ŷ, X̂]〉∂U

∂y
= i`2

B

∂U

∂y
. (1.51)

Thus, (Ẋ, Ẏ ) is perpendicular to ∇U , and so the expected movement of the center of
mass takes place along the equipotentials of U .

Now, picture the landscape of this potential, such as in Fig. 1.4. The electrons
located around the "cliffs" and "valleys" of the potential will be constrained to move
in close paths. Thus, these states will not contribute to the current. These are called
localized states in Ref. [3]. On the other hand, the electrons in the intermediate
points (where U is close to zero) have paths connected all around the plate, and so
are allowed to move freely between the cliffs and valleys of the potential. These states
are called extended states in the same reference.

5For this, we are assuming that |∇U | � }ωB/lB , which holds for small perturbations.
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Figure 1.5: Density of states of the original Landau Levels without and with the disorder
potential. On the right, the localized states correspond to the tails of the distributions (red),
while the extended states correspond to the centers (blue).

The potential has also an impact on the energies. As it breaks translational sym-
metry, the degeneracy of the Landau levels is lifted. Still, we assume that the potential
is small enough (U � ~ωB), so that the levels don’t mix. This can be seen in Fig.
1.5, where the density of states (DOS) changes from delta distributions to extended
distributions on the energy through the introduction of disorder. Furthermore, as we
saw in Fig. 1.4, the localized states arise at the perturbed energy levels of the po-
tential, so they correspond to the tails of the distributions. Meanwhile, the extended
states stay at the zero energy levels of the potential, so they correspond to the center
of the distributions, at the same energies of the Landau levels.

Overall, we can then conclude that the impurities are the responsible for the
robustness of the Hall states. Because, even when a Landau level (distribution) may
be partially filled, the current will not change until the filling arrives to the level of
the extended states. That is, until it arrives to the energies of the original Landau
levels.

1.2.4 The Corbino geometry

We now discuss the reasons behind why, even when only some electrons contribute
to the current, the values of the conductivity are as if all of the electrons of a Landau
level were filled. To do this, we must take into account a full geometrical description
of the system.

One very convenient arrangement is the Corbino geometry (or Corbino ring) [16].
This consists of taking the HE system of Fig. 1.1 and bending it over itself in a ring,
such as in Fig. 1.6. In a way, we can think of the original rectangular plate as a
section of a very big ring. Thus, the êx direction becomes the angular direction êφ,
and the êy direction becomes the negative6 radial direction −êr. The perpendicular
magnetic field B is still in the z direction in all space. Furthermore, instead of directly
placing an electric field around the angular direction, we can induce it through the

6This is to get a right-handed system, so that at the end all of the signs are consistent.
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time variation of a magnetic flux Φ which goes through the center of the ring (like in
a solenoid).

Figure 1.6: The Corbino ring.

This setup has many advantages. First, we don’t have to worry about externally
setting an input and output of electrical charge around the edges of the x direction
to make the current, as it is now in an angular direction which circles back around
itself. Second, the chiral currents (seen in Fig. 1.3) now are naturally separated, so
a distinction between the two chiral currents can be made. Lastly, as we will see,
the action of the electric field will couple more naturally to the system through the
variation of the central flux, which will ultimately allow us to completely describe the
QHE.

In cylindrical (polar) coordinates, the Hamiltonian takes the form

Ĥ =
1

2m

[
− }2

r

∂

∂r

(
r
∂

∂r

)
+
( }
ir

∂

∂φ
+ eAφ

)2
]
. (1.52)

Here, the potential Aφ contains two terms: One corresponding to the constant mag-
netic field in the z direction, and another one from the central flux Φ. Taking the
Coulomb gauge ∇ ·A = 0, Aφ will only depend on r, and thus for a circular contour
C over the ring,∮

C

A · dr = 2πrAφ(r) ≡ πr2B + Φ, Aφ(r) =
Br

2
+

Φ

2πr
. (1.53)

There are special values of the flux for which we recover the Landau levels. Unsur-
prisingly, these are given by integer multiples of the quantum of flux. This can be
seen from the following procedure: When Φ = kΦ0 with k ∈ Z and Φ0 the quantum
of flux of Eq. (1.30), one can perform a gauge transformation such that

Ψ(r, φ) −→ exp
[ eΦφ

2πi~

]
Ψ(r, φ) = exp[−ikφ]Ψ(r, φ),

Aφ(r) −→ Aφ(r) +
~
ir

eΦ

2πi~
=
Br

2
.

(1.54)

This maintains the periodicity of the wave functions in φ and cancels the flux term of
the vector potential, so that the Hamiltonian describing electrons under a constant
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magnetic field B is consistently recovered. We thus expect that the spectrum of the
Hamiltonian (1.52) corresponds to the Landau levels for these cases.

Having noticed this we analyse the general case where the flux takes an arbitrary
value. From the rotational symmetry of the system, angular momentum is conserved,
and so we can take the ansatz wave functions

Ψn,l(r, φ) = e−ilφψn,l(r). (1.55)

With this, the Hamiltonian then takes the form

Ĥ = − }2

2m

1

r

∂

∂r

(
r
∂

∂r

)
+ V (r), V (r) ≡ 1

2m

(
− }
r
l +

eBr

2
+

eΦ

2πr

)2

. (1.56)

Here, l is an integer, as the wave functions are periodic in φ. For the label n, because
the aforementioned procedure allows us to remove the presence of the flux when
Φ = kΦ0, we can generally identify it with the label of the Landau levels.

Now, in general, the radial components will be localized around a radius rl. This
happens when the radial differential operator (that is, the kinetic operator) is max-
imum. As the sum of this operator with the potential is the constant energy, this
happens when the potential is null: V (rl) = 0. The solutions to this condition are

rl = `B
√

2(l − Φ/Φ0). (1.57)

We now perform a slow variation of the flux Φ over a time interval T , such that
Φ(t = 0) = 0 and Φ(t = T ) = Φ0. This produces an electric field around the ring
following Lenz’s law,

E = − 1

2πr

∂Φ

∂t
êφ = − 1

2πr

Φ0

T
êφ, (1.58)

which plays the role of the longitudinal electric field. Furthermore, the adiabatic
theorem [11] ensures us that each wave function remains an eigenstate of the Hamil-
tonian with the same quantum numbers n and l. Thus, each state |n, l〉 goes from
being localized at rl = `B

√
2l at t = 0 to being localized at rl = `B

√
2(l − 1) at t=T,

which corresponds to the position that the |n, l − 1〉 state had at t = 0. This creates
a one particle radial current from the outer edge of the ring to the inner edge,

J =
1

2πr

(−e)
T

(−êr). (1.59)

This phenomenon is independent of the quantum number n, and so each Landau level
filled produces a current of this kind. If ν Landau levels are full, then

ρxy =
Eφ
J−r

=
Φ0

e

1

ν
, (1.60)

which recovers the QHE resistivity of Eq. (1.2). Even when the charge transfer builds
a one-particle current (for each Landau level), this is done exactly in a time such that
the QHE current is produced.



CHAPTER 1. INTRODUCTION TO THE HALL EFFECT 14

For the cases where the Landau levels are partially filled, the disorder comes into
rescue. Introducing a random potential U(x) such as in the one in the last section,
the Hamiltonian is now

Ĥ =
1

2m

[
− }2

r

∂

∂r

(
r
∂

∂r

)
+
( }
ir

∂

∂φ
+ eAφ

)2
]

+ U(r, φ). (1.61)

This, in principle, breaks the rotational symmetry, which induces the localized states,
but leaves some extended states just as it was discussed in the last section. But
before we continue, we must clarify the concept of localized states in this context.
The existence of these new localized states must not come into confusion with the
existence of the localization radius rl. The localization radius exists for both the
extended and localized states. The difference between these two is that the localized
states are bounded not only in a radius, but also in an angular region. The extended
states are only localized around a radius, but they are extended through the whole
angular region of the disk (see Fig. 1.7).

Figure 1.7: Microscopic picture of the effect of random potential U(x, y) in the Corbino ring.
Just as before, there are localized states (red curves) and extended states (blue curves). The
localized states are bounded in a radius and in an angle. The extended states are unbounded
in the angular coordinate, but are localized around a radius.

The angular localization of the localized states nullifies the restriction for the
periodicity of the φ coordinate [3], so the gauge transformation of Eq. (1.54) can
be performed for arbitrary values of the flux (k can be real). This means that the
localized states are unaffected by the flux, and therefore do not contribute to the
current (just as in the last section). This cannot be performed for the extended states,
as the periodicity in φ coordinate is still needed for them. And so the extended states
are still affected by the flux, while the localized states are not.
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Despite this, we can directly see here how the remaining extended states still build
the same value of the current. Through the process of the flux changing from Φ = 0
to Φ = Φ0, we can still see that the extended states transform from (extended states
of) Landau levels to themselves. We show this by noticing that the condition for the
localization radius is now V (r) + U(r) = 0, which will be particularly satisfied for
states that are both extended (U(r) = 0) and have a localization radius (V (r) = 0).
As the localized states remain unchanged, the extended states must then transform
into the next extended state neighbour, skipping any "gaps" left by a localized state.
In total we will then recover the same current (1.59), independently of whether the
Landau levels are full or not, and as long as all of the extended states are filled. This
is sufficient, as one can see from the density of states of Fig. 1.5.



2 Introduction to topological insula-
tors (TI)

The notion of topological insulators as a new phase of matter was first introduced by
Kane and Mele [17,18] in 2005, and further developed in subsequent studies [19–22].
Some of the first materials capable of presenting the TI phase were theoretically pre-
dicted to be Bi1−x Sbx [23] and the HgTe quantum well [24], as well as Bi2 Se3, Bi2 Te3

and Sb2 Te3 [25]. Later studies confirmed these predictions (such as for Bi0.9 Sb0.1 [26]
or the HgTe quantum well [27] for example).

In this chapter we will give a brief introduction to the basic properties that define
topological insulators (section 2.1), as well as the origins and consequences of the
effective electromagnetic theory of these materials (section 2.2). The resulting changes
in the boundary conditions for electromagnetic fields will be the key tools for the set-
ups studied in the next chapters.

2.1 Definition and basic properties of TI

Topological insulators are crystalline systems which have two defining properties:

1. Their Hamiltonian possesses time reversal symmetry.

2. They are insulators in the bulk, but possess topologically non-trivial conduction
states in the edges.

In section 2.1.1 we will make a short review of time reversal symmetry and its physical
consequences on the general energy levels of a system. In section 2.1.2 we will study
the physical consequences of time reversal symmetry on the energy bands of a crystal
system, and distinguish the case where these effects originate the topologically non-
trivial edge states of a TI.

2.1.1 Time reversal symmetry

The time reversal transformation is generally defined as,

T : t −→ −t. (2.1)

16
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For example, for classical variables of movement such as mass m, electric charge q,
momentum p, and angular momentum L,

T : m −→ m,

T : q −→ q,

T : p −→ −p,
T : L −→ −L.

(2.2)

Thus, for the electromagnetic fields and potentials [28],

T : E −→ E,
T : B −→ −B,
T : A0 −→ A0,

T : Ai −→ −Ai.

(2.3)

Kramers theorem

In quantum mechanics, the time reversal transformation is represented as an anti-
unitary1 linear operator [11],

Θ = U K, (2.4)
where K represents complex conjugation on the coefficients of a wave-function (not
on the kets that form the basis) and U is a unitary operator. The transformations of
(2.2) and (2.3) are preserved when taking the action of time reversal on the respective
operators. For wave-functions, its explicit representation depends completely on the
basis at hand. Nevertheless, there exists an important general property for this
operator. If j denotes the total spin of the wave-function, then

Θ2 = (−1)2j. (2.5)

That is, it is 1 for boson and −1 for fermion systems.
Now, suppose that a Hamiltonian possesses time reversal symmetry. That is,

[ H,Θ] = 0. (2.6)

Then, if |n〉 is an eigen-ket of H with energy En, so will Θ|n〉 be. It could be the
case that Θ|n〉 results in the original ket, but it could also be the case that this is a
different eigen-ket with a degeneracy in the energy. We probe the possibility of the
first case. At most, recovering the original ket would mean that Θ|n〉 = eiδ|n〉. But,
using that Θ is anti-unitary, this would mean that

Θ2|n〉 = Θeiδ|n〉 = e−iδΘ|n〉 = e−iδeiδ|n〉 = +|n〉. (2.7)

From relation (2.5), this is forbidden for fermion systems. Thus, for fermions, Θ|n〉
must be a different eigen-ket and so every energy level of H is doubly degenerate.
This is Kramers theorem, originally noted by him while studying crystal systems [29],
but related to time inversion symmetry by Wigner [30].

1If Θ were purely unitary, Hamiltonians which commute with it (such as the free particle Hamil-
tonian) would have a boundless negative energy spectrum. As this is unacceptable, it is then taken
as anti-unitary.
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2.1.2 Topologically non-trivial edge states

In crystalline systems, the discrete translational symmetry allows the eigen-states to
be described by the so-called energy band structure. This consists of expressions for
the eigen-energies as functions of the so-called crystalline momentum k, which lives
in reciprocal space (just as the position vector r lives in the real space) and also
presents a translational symmetry. That is, the energies of the system are given by
energy bands E = Es(k), with s = 0, 1, 2... the band index. If the reciprocal space is
invariant under a discrete translation given by a vector G, then Es(k + G) = Es(k).
For example, for 1D systems, G = 2π/a, where a is the lattice constant associated
with the translational symmetry of real space.

(a) Topologically equivalent to a normal insulator. (b) Topologically non-trivial edge states.

Figure 2.1: Two possible energy spectra for Hamiltonians with time reversal symmetry
plotted in one direction in reciprocal space. The shaded regions depict the bulk states proper
of an insulator, while the dashed lines depict the edge states with conduction bands. The
intersections with the Fermi level are given by red dots. By the time reversal symmetry, the
spectra must be symmetric around the origin, and must have intersecting bands at special
points (blue crosses).

Just as the usual momentum, the crystalline momentum (non-trivially2) trans-
forms as T : k −→ −k. Thus, for Hamiltonians of crystalline systems which also
possess time reversal symmetry, the band structure is symmetric with respect to the
origin,

Es(k) = Es(−k). (2.8)
2A way to see this is by recalling that Bloch’s theorem [1] implies that the wave functions can be

expressed as Ψk(r) = eik·ruk(r), with u(r) a function with the periodicity of the crystal. Thus, as
time reversal implies complex conjugation, its action is equivalent to taking k −→ −k.
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This is consistent with the double-degeneracy of the energies described by the Kram-
mers theorem seen in section 2.1.1. Nevertheless, there are two special cases for
which, in Eq. (2.8), k was already identified with −k. These are k = 0 and k = G/2.
For these points, Krammers theorem implies that two separate energy bands must
intersect to give the double degeneracy. This is completely independent of the shape
of the Hamiltonian, as long as the time reversal symmetry is maintained. That is,
the shape of the band structure can be tuned in any continuous way, but the double
degeneracy points in k = 0 and k = G/2 will always exist.

This property has important consequences, for it allows us to make a classification
of the Hamiltonians of insulators which are related by smooth transformations that do
not close the energy gap in the bulk. That is, we can relate energy spectra which are
topologically equivalent and distinguish those who are not. We focus on the easiest of
these classifications, which corresponds to the so-called Z2 classification of topological
insulators belonging to 2D space [17].

Two cases are depicted in Fig. 2.1. In both, we consider an arbitrary spectrum
with valence and conduction bands in the bulk separated by an energy gap (shaded
regions). Depending on the details of the Hamiltonian, there could exist edge states
inside the gap (dashed lines). As discussed before, the time reversal symmetry re-
stricts the spectrum to be symmetric around the origin, and to have intersections
of two different band structures at the special points k = 0 and k = G/2. For the
edge states, these points are marked by blue crosses. For the first case (Fig. 2.1a),
the edge states near the Fermi energy intersect each other at both of the special
points. Thus, we can perform a smooth deformation to lower these bands and recover
a normal insulator. For the second case (Fig. 2.1b), the edge states near the Fermi
energy connect instead to both the conduction and valence bands, closing the gap
and thus obtaining a conductor in the edges. No smooth transformation preserving
time reversal symmetry can be performed to recover an insulator state (it is said to
be symmetry protected), and so it is a different topological phase of matter: The
topological insulator.

Now, note the number of times that the edge states cross the Fermi energy level
for both cases (red dots). As the symmetry around the origin always doubles this
number, we can just focus on one side. With this, Fig. 2.1a possesses two independent
intersections, while Fig. 2.1b only one. If we translate or deform the bands, either
no intersection points, or an even number of points are added. Thus, the number of
independent intersection points

N =
1

2
|{Es(k) = EF}| (mod 2) (2.9)

form a topological invariant. For this, it is said that we obtain a Z2 classification
of the band structure for 2D TI [17]. The classification for 3D TI can be found in
Ref. [19].



CHAPTER 2. INTRODUCTION TO TOPOLOGICAL INSULATORS (TI) 20

2.2 Effective electromagnetic theory in TI

The notion that the topological insulators’ response to external electromagnetic fields
can be completely described by the so-called θ-term was first proposed theoretically
by Qi, Hughes and Zhang [31] in 2008. In 2017, Dziom, Shuvaev and Pimenov et
al. made the first experimental confirmation of this phenomenon [32] by measuring
that the Faraday rotation angle of electromagnetic waves going through TI media
was universal and equal to the fine structure constant α = e2/4π, in accordance to
the predictions of the θ-term [33,34].

In the study of Xiao et al., they first demonstrated the existence of TI in (4 + 1)
dimensions and, based on an energy band model with the desired topological proper-
ties, obtained the electromagnetic response. From there, they performed a procedure
called dimensional reduction, in which they chose a gauge such that translational
invariance is present in one direction. That way, one of the crystalline moments can
be chosen as a good quantum number, and thus could be related to a intrinsic pa-
rameter of the system called θ. Their electromagnetic effective theory could now be
represented by the θ-term, which is an effective Lagrangian

Lθ = − e2

32π2
θ(x)FµνFρσε

µνρσ , (2.10)

where Fµν = ∂µAν − ∂νAµ is the electromagnetic field tensor, e is the fundamental
charge and εµνρσ is the totally anti-symmetric tensor in (3+1) dimensions with ε0123 =
1. θ(x) is the intrinsic parameter which characterizes TIs. Although this parameter is
constant within each TI, its space-time dependence comes from the fact that different
TI media could be arranged in space-time. As it could be inferred, in this section we
work in natural units (c = ~ = 1).

Here, in sections 2.2.1 and 2.2.2, we will directly compute this term in a model in
(3 + 1) dimensions. We follow the procedure summarized by Sekine and Nomura [34],
which takes an effective Hamiltonian proposed by Zhang et al. [25] and applies the
Fujikawa method [8] to determine the θ-term.

2.2.1 Effective microscopic Hamiltonian

Here we take for example Bi2 Se3 (Bismuth Selenide). By looking at its crystal
structure, one can see that a pair of Se atoms and a pair of Bi atoms possess inversion
symmetry around a point where the third Se atom is located [25]. Thus, definite
parity eigenstates can be constructed. It turns out that, around the Γ point, the
lowest energy orbitals are the p orbitals. A basis can then be constructed as |P1+

x,y,z〉
and |P1−x,y,z〉 states for the p orbitals of the pair of Bi atoms (where ± denotes parity),
|P2+

x,y,z〉 and |P2−x,y,z〉 states for the pair of Se atoms, and a |P0−x,y,z〉 state for the
central Se atom3. Nevertheless, taking into account chemical bonding and the total

3This central atom state with only negative parity comes from the fact that p orbitals are odd
around the orbit’s center.
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charge distributions, the degeneracy is split such that |P1+
z 〉 and |P2−z 〉 turn out to

be the lowest energy eigenstates [25].
An effective Hamiltonian for the resulting {|P1+

z , ↑〉, |P1+
z , ↓〉, |P2−z , ↑〉, |P2−z , ↓〉}

basis (where ↑, ↓ denotes spin) can then be built. At lowest order in the crystalline
momentum k, it can be expressed as [34]

ĤTI = vFk ·ααα +m0α4, (2.11)

where vF is the Fermi velocity and m0 < 0 is a constant parameter of the crystal (For
Bi2 Se3, m0 ∼ −0.28 eV [34]). αµ are 4×4 matrices in the Dirac representation, given
by

αi =

(
0 σi
σi 0

)
, α4 =

(
1 0
0 −1

)
, (2.12)

which satisfy the relation {αµ, αν} = 2δµν1.
The Hamiltonian (2.11) would represent the Dirac Hamiltonian if not for the

negative mass term m0. We thus pass to field theory, defining the gamma matrices

γi ≡ α4αi =

(
0 σi
−σi 0

)
, γ0 ≡ α4 =

(
1 0
0 −1

)
, γ5 ≡ iγ0γ1γ2γ3 =

(
0 1
1 0

)
,

(2.13)
which satisfy {γµ, γν} = 2gµν1, with gµν = diag(1,−1,−1,−1) the Minkowski metric.
The pseudoscalar γ5 anticommutes with each γ matrix, {γµ, γ5} = 0. Introducing
the fermionic fields Ψ and Ψ̄ ≡ Ψ†γ0, the Legendre transformation of (2.11) in field
theory gives the Lagrangian density

L = Ψ†
[
− k0 − H

]
Ψ = Ψ̄

[
− γµkµ −m0]Ψ, (2.14)

where we absorbed the Fermi velocity in the spatial crystalline momentum. Now, tak-
ing the Fourier transformation and introducing the electromagnetic coupling −kµ −→
i∂µ −→ iDµ ≡ i(∂µ − ieAµ), with Ψ = Ψ(x), the action is

S[Ψ, Ψ̄] =

∫
d4xΨ̄

[
iγµDµ −m0]Ψ, (2.15)

which would be the usual Dirac action if not for the negative mass. Note that this
action describes only the bulk states, completely ignoring the presence of the edge
states.

2.2.2 The θ-term

In the case m0 = 0, the classical action (2.15) is invariant under the chiral transfor-
mation

Ψ(x) −→ Ψ′(x) = eiθγ
5/2Ψ(x), Ψ̄(x) −→ Ψ̄′(x) = Ψ̄(x)eiθγ

5/2, (2.16)

defined by a global (constant) chiral angle θ. This implies that the associated Noether
current, the chiral current jµ5 ≡ Ψ̄γµγ5Ψ, is conserved: ∂µjµ5 = 0.
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The astonishing result, which was first a problem encountered by H. Fukuda, Y.
Miyamoto, S. Tomonaga and J. Steinberger, but finally resolved by J. Bell, R. Jackiw
and S. Adler [8], is that this conservation is not fulfilled when moving from classical
field theory to quantum field theory (QFT). This is the so-called chiral anomaly, and
it is in fact the mechanism through which the θ-term arises (even when classically, the
chiral current is not conserved, as m0 6= 0). A classical picture of this phenomenon
was already seen in the Hall effect, particularly in Fig. 1.3, but the quantum analogue
could also be visualised in the Corbino ring setup (Fig. 1.6). In all of these systems,
the common elements are the presence of electromagnetic fields and border regions.
These will be in fact, the necessary elements for the realization of the θ-term.

The chiral anomaly

One interpretation of the chiral anomaly in QFT can be found by analysing the
Feynman path integral [8]

Z[Aµ] ≡
∫
DΨDΨ̄ exp

(
iS[Ψ, Ψ̄]

)
, (2.17)

where the integration is to be taken over all of the configurations4 of the fermionic
fields Ψ and Ψ̄. The vector potential Aµ is taken as an external non-dynamical field.
One can show that any correlation function of the fermionic fields can be computed
in terms of the path integral [8]. In this way, this object completely describes the
quantization of the theory.

Now we consider a change of integration variables, taking the chiral transforma-
tion, but now we take the chiral angle as a local and small parameter δθ(x),

Ψ(x) −→ Ψ′(x) = eiδθ(x)γ5/2Ψ(x), Ψ̄(x) −→ Ψ̄′(x) = Ψ̄(x)eiδθ(x)γ5/2. (2.18)

Under this transformation, the Lagrangian in Eq. (2.15) changes like

L′ = Ψ̄′eiδθ(x)γ5/2[iγµDµ −m0]eiδθ(x)γ5/2Ψ

= Ψ̄[iγµDµ −m0]Ψ− 1

2
Ψ̄γµγ5Ψ∂µ(δθ(x))− iδθ(x)Ψ̄γ5m0Ψ

= L − 1

2
jµ5 ∂µ(δθ(x))− iδθ(x)Ψ̄γ5m0Ψ

(2.19)

Thus, integrating by parts, the action transforms as

S[Ψ′, Ψ̄′] = S[Ψ, Ψ̄] +

∫
d4xδθ(x)

[1

2
∂µj

µ
5 − iΨ̄γ5m0Ψ

]
. (2.20)

4The formal way to do this is to expand the fields in terms of a basis φn(x), with coefficients
an defined as Grassmann numbers (that is, numbers such that anam ≡ −aman) so that the Pauli
exclusion principle is fulfilled. Thus, the integral over all field configurations is translated to an
integral over all of the coefficients an.
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If we assumed that the measure of the path integral DΨDΨ̄ remained unchanged
under this change of variables, then we would have that

Z[Aµ] =

∫
DΨ′DΨ̄′ exp

(
iS[Ψ′, Ψ̄′]

)
=

∫
DΨDΨ̄ exp

(
iS[Ψ, Ψ̄] + i

∫
d4xδθ(x)

[1

2
∂µj

µ
5 − iΨ̄γ5m0Ψ

])
.

(2.21)

As the integral cannot depend on the arbitrary variation of the fields (because we
integrate over all of the field configurations) described by δθ(x), we must have that

∂µj
µ
5 = 2iΨ̄γ5m0Ψ, (2.22)

which recovers the conservation of the chiral current for the massless case. Nonethe-
less, the detail noted by Fujikawa was that the measure could change in this trans-
formation. That is, one can get

DΨ′DΨ̄′ = J [Ψ, Ψ̄, Aµ]DΨDΨ̄, (2.23)

with a non-trivial Jacobian J [Ψ, Ψ̄, Aµ]. Using the so-called Fujikawa method [8] one
can find that this Jacobian is given by

J [Ψ, Ψ̄, Aµ] ≡ J [Aµ] = exp
(
− i
∫

d4xδθ(x)A(x)
)
, A(x) =

e2

32π2
FµνFρσε

µνρσ.

(2.24)
This creates an additional contribution in Eq. (2.21) when comparing the path in-
tegral under this change of variables. For the same reasons as before, we must have
that

∂µj
µ
5 =

e2

16π2
FµνFρσε

µνρσ + 2iΨ̄γ5m0Ψ. (2.25)

That is, even in the massless case, the quantization of the theory breaks the conser-
vation of the chiral current.

The effective macroscopic action

In our context, the chiral anomaly can be used to our advantage to modify the
negative mass term of (2.15) and in turn obtain an effective electromagnetic response.
We do that by once again applying a change of variables given by the global chiral
transformation (2.16). Under this, the action is now

S[Ψ′, Ψ̄′] =

∫
d4xΨ̄

[
iγµDµ −m eff ]Ψ, (2.26)

with an effective mass
m eff = eiθγ

5

m0. (2.27)

We will later see that this effective mass will make us recover the free Dirac action
with a positive mass term. On the other side, the electromagnetic response is given
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by integrating the infinitesimal parameter δθ(x) in the Jacobian (2.24), which in
turn gives us the effective Lagrangian Lθ of Eq. (2.10). We have thus obtained the
equivalence

Ψ̄
[
iγµDµ −m0]Ψ ≡ Ψ̄

[
iγµDµ −m eff ]Ψ− e2

32π2
θFµνFρσε

µνρσ. (2.28)

We remark once again that the chiral angle is constant within each TI, and its spatial
dependence comes from the arrangement of different TI media in space-time. In fact,
each TI can possess a different microscopic Hamiltonian. Nevertheless, we will see in
the next section that all of the TI media possess the same value for the parameter θ,
while the trivial insulators can be seen like TI with θ = 0. Specifically, the vacuum
gives us both θ = 0 and the original Dirac Lagrangian with a positive mass term.

The allowed values of θ

As (γ5)2 = 1, the chiral transformation term can expressed as

eiθγ
5/2 =

∞∑
n=0

(iθγ5/2)n

n!
=
∞∑
n=0

(iθγ5/2)2n

(2n)!
+
∞∑
n=0

(iθγ5/2)2n+1

(2n+ 1)!

= 1

∞∑
n=0

(−1)n
(θ/2)2n

(2n)!
+ iγ5

∞∑
n=0

(−1)n
(θ/2)2n+1

(2n+ 1)!

= 1 cos(θ/2) + iγ5 sin(θ/2).

(2.29)

Thus, taking θ −→ θ + 2π changes the transformation as

ei(θ+2π)γ5/2 = eiπγ
5

eiθγ
5/2 = −eiθγ5/2. (2.30)

This extra minus sign cancels when taking both of the field transformations of Eq.
(2.16). Thus, adding 2π to θ does not change the theory. That is, θ is defined modulo
2π; for example in the interval (−π, π]. This was also found to hold in the context of
TI when speaking about different θ-media [31].

Now, the time reversal symmetry present in TI further restricts the allowed values
of θ. The term FµνFρσε

µνρσ can be expressed as proportional to E ·B. As this term
transforms as T : E ·B −→ −E ·B, the θ parameter must transform as T : θ −→ −θ
to keep the action invariant. The only allowed values of θ which are equivalent under
this transformation are θ = 0 and θ = π = −π (mod 2π). The first one corresponds
to trivial insulators, and the second one to topological insulators.

As mentioned earlier, the value θ = π, which is equal within all TI media, produces
the effective mass

m eff = eiπγ
5

m0 = −m0, (2.31)

with an opposite sign. Thus, through Eq. (2.28) we can recover the free Dirac
Lagrangian with a positive mass in exchange for the electromagnetic response Lθ.
We will of course generally have different values for the mass and scale factors in the
momentum in different TI media, but from now on we will make the strong assumption
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that all of these parameters are equal to the ones of the free Dirac Lagrangian,
such that the only difference between the bulk states of a TI and the vacuum is
the Lagrangian Lθ with θ = π. Otherwise, we would not be able to go very far in our
analysis.

2.2.3 Axion electrodynamics

The sum of the Maxwell Lagrangian and the θ-term gives the so-called axion electro-
dynamics (or the θ-electrodynamics) Lagrangian. That is,

L = LED + Lθ =

∫
d4x

[
− 1

4
FµνF

µν − jµAµ −
e2

32π2
θ(x)FµνFρσε

µνρσ

]
. (2.32)

The Euler-Lagrange equations are

∂µ
δL

δ(∂µAν)
− δL
δAν

= 0. (2.33)

For the usual electrodynamics terms,

∂µ
δLED
δ(∂µAν)

= −∂µF µν ,
δLED
δAν

= −jν . (2.34)

For the anomalous θ-term, we use that

FµνFρσε
µνρσ = 4(∂µAν)(∂ρAσ)εµνρσ. (2.35)

Thus,

∂µ
δLθ

δ(∂µAν)
= − e2

4π2
∂µ

[
θ(x)(∂ρAσ)εµνρσ

]
,

δLθ
δAν

= 0. (2.36)

By the anti-symmetric property of the Levy-Civita symbol, the first term reduces
to

∂µ
δLθ

δ(∂µAν)
= − e2

8π2
(∂µθ(x))Fρσε

µνρσ. (2.37)

Thus, the only modifications to Maxwell’s equations appear when θ(x) is not
constant. In total,

∂µF
µν +

α

2π
(∂µθ(x))Fρσε

µνρσ = jν , (2.38)

where we took α = e2/4π, the fine-structure constant.
Now, expressing everything in terms of the electromagnetic fields and sources,

ρ = j0, J i = ji, Ei = F0i, Bi = −1

2
εijkF

jk, Fij = −εijkBk, ε123 = 1,

(2.39)
then, for the ν = 0 term,

∂iF
i0 − α

2π
(∂iθ(x))Fjkε

0ijk = ρ. (2.40)
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Then,
∇ · E +

α

π
B · ∇θ(x) = ρ. (2.41)

For the ν = i terms,

∂0F
0i + ∂jF

ji +
α

2π
(∂0θ(x))Fjkε

0ijk +
α

π
(∂jθ(x))F0kε

ji0k = J i. (2.42)

Then,

∇×B− α

π

∂θ(x)

∂t
B− α

π
∇θ(x)× E = J +

∂E
∂t
. (2.43)

The homogeneous parts of Maxwell’s equations

∇ ·B = 0, ∇× E = −∂B
∂t
, (2.44)

still hold, for they are a consequence of the general identity [28]

∂µε
µνρσFρσ = 0. (2.45)

Eqs. (2.41), (2.43) and (2.44) constitute the so-called axion electrodynamics equa-
tions [34]. Note that for a constant value of θ we recover the original Maxwell’s
equations. As we have seen in section 2.2.2, in our context we will have two cases:
θ = π for topological insulators, and θ = 0 for normal insulators. Being constant
terms, we will recover the usual Maxwell’s equations in the bulk of each material.
The corrections will arise in the interfaces of TI with normal insulators, for there a
variation of θ is present.

2.2.4 Modified boundary conditions

We now go back to SI units, recovering the vacuum permitivity ε0, vacuum perme-
ability µ0 and speed of light c factors. The axion electrodynamics equations here
are

∇ · E = ρ/ε0 − c
α

π
B · ∇θ(x),

∇ ·B = 0,

∇× E = −∂B
∂t
,

∇×B =
1

c

α

π

(∂θ(x)

∂t
B +∇θ(x)× E

)
+ µ0J +

1

c2

∂E
∂t
,

(2.46)

Figure 2.2: Two regions of different θ-media and the interface S between them.
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Let us take then two regions U1 and U2 with different θ-terms, θ1 and θ2 respec-
tively, such that

θ(x) =

{
θ1, x ∈ U1,

θ2, x ∈ U2.
(2.47)

We further take the normal unit vector n̂ of the interface S between the materials,
pointing from U1 to U2. This is depicted in Fig. 2.2. Taking δ(S) as the surface Dirac
delta of the interface, then

∇θ(x) = −n̂δ(S)(θ1 − θ2),
∂θ(x)

∂t
= 0. (2.48)

We further ignore any other magnetization or polarization changes in the materials,
and assume that the system is static. Defining

θ̃ ≡ α

π
(θ1 − θ2), (2.49)

then, the axion-ED equations (2.46) become

∇ · E = ρ/ε0 + δ(S)θ̃cB · n̂,
∇ ·B = 0,

∇× E = 0,

∇×B = δ(S)
θ̃

c
E× n̂ + µ0J.

(2.50)

Thus, in absence of surface current and charge distributions in the interface5, the
boundary conditions at S become [33]

(E2 − E1)⊥ = θ̃cB⊥(S),

(E2 − E1)‖ = 0,

(B2 −B1)‖ = − θ̃
c
E‖(S),

(B2 −B1)⊥ = 0.

(2.51)

Here, ⊥ and ‖ respectively label the perpendicular and parallel components to the
surface, and the sub-index denotes the region from which the field is evaluated. The
evaluation of B⊥ and E‖ at the interface S is well defined, as these components are
continuous through it.

The first of these boundary conditions implies that an external perpendicular mag-
netic field will induce a perpendicular polarization term. The third, that an external
parallel electric field will induce a parallel magnetization term. The general phe-
nomenon for which polarization terms arise from magnetic fields, and magnetization
terms from electric fields, is called the magnetoelectric effect, which has been studied
ever since 1888 [35]. This is an example of one such effect.

5Other than the ones responsible of for the modified boundary conditions.



3 Quantum system

On this chapter we introduce the basic quantum system from which most of the future
calculations will be based on. It consists of an infinite plate of a TI with thickness
L, surrounded by vacuum. By the effective electromagnetic theory seen in section
2.2, each region can be described by a θ-term with general value θ1 for the vacuum,
and θ2 for the TI. We place a constant magnetic field B through the external vacuum
medium. From the modified boundary conditions (2.51), an internal electric field Ẽ
is induced on the inner TI medium (see Fig. 3.1).

Figure 3.1: Base system: Finite plate of TI with thickness L and a perpendicular external
magnetic field.

This electric field is given by

Ẽ = θ̃cB, θ̃ =
α

π
(θ1 − θ2). (3.1)

Recall that α is the fine-structure constant and θ is the intrinsic parameter that
characterizes each medium. Particularly, for θ1 = 0 (vacuum) and θ2 = π (TI), then
θ̃ = −α, and thus

Ẽ = −αcB . (3.2)

We suppose that the effective electromagnetic theory is sufficient to completely ac-
count for the presence of the TI, such that the quantum motion of electrons is free
even inside the TI. That is, the presence of the TI is effectively described by the

28
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induced fields such that for everything else it is treated as a vacuum. The interaction
between electrons is also ignored.

With the use of Landau gauge, and the alignment of the z-axis in the field’s
direction, the electromagnetic potentials are

A(x) = xBêy, φ(x) = 0, (3.3)

for the two θ1-media, and

A(x) = xBêy, φ(x) = −Ẽz, (3.4)

for the θ2-medium. Despite the potential difference from z = 0 to z = L of the
induced electric field, we take the same level of constant potential between the two
θ1-media. That is because in reality we suppose that the TI plate is a finite, but large
plate in the x-y directions. This way, the two vacuum are actually connected and
thus possess no potential difference.

This produces a system with a triangle potential V(z) = q φ(z) between z = 0 and
z = L, which rises or sinks depending on the direction of the fields and charge of the
particles. For a magnetic field in the positive z direction (B > 0 so that Ẽ < 0) and
electrons (q = −e), this potential sinks. This gives rise to the possibility of allocating
bound states inside the TI (see Fig. 3.1).

It is no coincidence that we study an infinite (thick) plate with a perpendicular
magnetic field just as in the HE. The purpose of this set-up is to mimic the conditions
of the HE. Despite being a 3D electron gas, the existence of bound states will allow
us to treat the system as a multi-layered 2D electron gas, and thus naturally recover
the QHE. Nonetheless, when we introduce the parallel electric field in chapter 5, an
additional small magnetic field will be induced inside the plate. This will weakly
break the usual QHE setup. Our work will consist of computing, for how much does
the resulting current change. We will also make a side calculation in chapter 4 for
the consequences of bound energy states dependent on the external magnetic field in
this set-up. That is, we will compute the induced magnetization of this system.

We remark once again that the effects of spin are ignored for simplicity, which in
turn are discussed in Appendix B.

3.1 Wave functions

It is sufficient to know the solutions of the Schrödinger equation in two cases: For a
pure constant magnetic field, and for constant parallel electric and magnetic fields.
For both cases the solutions to the Schrödinger equation are separable, and have the
same x− y components that of section 1.2.2 with the electric field in the x-direction
turned off. This gives automatic continuity on those coordinates when gluing them
up. The only differences are present on the z wave function, for which Airy functions
appear (see Appendix C).

That is to say, the general solutions for the bound states are

Ψ1
n,ky ,κ(x) = eikyyφn

(
x+ ky`

2
B

)
(Ee−κz + Aeκz), (3.5a)
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for z ≤ 0,
Ψ2
n,ky ,κ(x) = eikyyφn

(
x+ ky`

2
B

)
(C Ai(ξ) +DBi(ξ)), (3.5b)

for 0 ≤ z ≤ L, and

Ψ3
n,ky ,κ(x) = eikyyφn

(
x+ ky`

2
B

)
(Be−κz + Feκz), (3.5c)

for z ≥ L. A, B, C, D, E, F are constants to be determined, κ ∈ R+, ky ∈ R,
n = 0, 1, 2..., φn(x) the quantum Harmonic oscillator solutions (1.36) and Ai(ξ), Bi(ξ)
are the well known Airy functions [36]. Once again we took the magnetic length `B
and the cyclotron frequency ωB. We also now took the dimensionless variable

ξ =
( }2

2meẼ

)2/3(
κ2 +

2meẼ

}2
z
)
, (3.6)

which can be put in a more compact notation,

ξ = `2
Ẽ
κ2 +

z

`Ẽ
= σ2 +

Γ

L
z, (3.7)

where

`Ẽ =

(
}2

2meẼ

)1/3

(3.8)

is the so-called electric length, where in this context we used the induced electric field
Ẽ, and with the dimensionless constants

σ =
( }2

2meẼ

)1/3

κ , Γ =
(2meẼ

}2

)1/3

L . (3.9)

These are to be interpreted, up to a sign, as a dimensionless (bound) momentum and
as a dimensionless thickness, respectively. These will be constantly used from now on.
Note that, under our set-up, both σ and Γ are negative. We also have the relations

ξ |z=0= σ2, τ ≡ ξ |z=L= σ2 + Γ, (3.10)

and
∂ξ

∂z
=
κ

σ
. (3.11)

The energies are given by

En,κ = −}2κ2

2m
+ }ωB

(
n+

1

2

)
. (3.12)

The general problem reduces to solving for the boundary conditions. The x − y
part is of no interest, as it can be factored out in every calculation, and is already
normalized1. From now on, when speaking about the wave function, it will be on
reference to the z-dependence part.

1The wave packets eikyy cannot be properly normalized. One would take the y-direction to be
finite Ly, and normalize by that length. But ignoring the y-direction altogether is equally valid.
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The convergence condition of the wave function implies E = F = 0. Thus, defining
ω = κL and using Ecs. (3.10) and (3.11), the boundary conditions are

A = C Ai(σ2) +DBi(σ2) (3.13a)

Be−ω = C Ai(τ) +DBi(τ) (3.13b)

for the continuity of the wave function in z = 0 and z = L respectively, and

A =
1

σ
(C Ai′(σ2) +DBi′(σ2)) (3.14a)

Be−ω = − 1

σ
(C Ai′(τ) +DBi′(τ)) (3.14b)

for the continuity of its derivative on the same respective points.

3.2 Energy quantization

We have 4 undetermined coefficients. With the boundary conditions and the normal-
ization, we have 5 equations. This creates a condition equation for σ, which produces
a quantization of the energies in κ. Mixing the boundary conditions we obtain

F (σ,Γ) ≡ [Ai′(τ) + σAi(τ)][Bi′(σ2)− σBi(σ2)]

− [Bi′(τ) + σBi(τ)][Ai′(σ2)− σAi(σ2)] = 0.
(3.15)

For each dimensionless thickness Γ, the roots of F (σ,Γ) will be the allowed values of
σ. Figure 3.2a shows an example of F (σ,Γ) for a representative thickness of Γ = −20.
Multiple allowed values of σ are present.

(a) F (σ,Γ) for Γ = −20 in log scale. (b) Roots of F as a function of Γ.

Figure 3.2: (a) Plot of the function of Eq. (3.15). The function grows exponentially fast,
but with oscillations in a finite interval, which give rise to its roots. (b) The roots of F found
numerically for a range of values in Γ.
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We can numerically obtain the roots of F (σ,Γ) for each value of Γ. With this, the
result is a relationship between different energy bands described by the allowed values
of σ, as a function of Γ. That is, we obtain solution curves σk(Γ) (k = 0, 1, 2...). This
can be seen in Figure 3.2b.

We can see that the allowed energy bands are continuous and both, the number of
allowed energies, and their value, increase with |Γ|. We can also see that there exists
a range of values |Γ| < Γc, with

Γc ≈ 2.94869, (3.16)

for which only one energy band (the ground state) is allowed. This band can be
approximated for small values of Γ. That is,

|σ0(Γ)| ≈ 1

4
Γ2. (3.17)

for |Γ| << 1. Figure 3.3a shows the validity of this approximation, where we can see
that in this scale it fits up until |Γ| = 1.

(a) Fit at quadratic order of σ0(Γ). (b) WKB approximation for σk(Γ).

Figure 3.3: Fits (a) for the base state at low values of Γ and (b) in the WKB approximation,
which best fits for bigger values of σ and Γ.

Figure 3.2b also shows that the allowed energy bands σk(Γ) have an overall be-
haviour similar to |σk(Γ)| ∼

√
|Γ| − ak. An analysis through the WKB approximation

(see Appendix D) confirms this hypothesis. That is, under this approximation, we
obtain that

|σk(Γ)| ≈
√
|Γ| − (3π/2)2/3(k + 1/2)2/3 . (3.18)

Figure 3.3b shows the comparison between this approximation and the bands obtained
numerically. We can see that the WKB approximation is valid for high values of Γ
and σ. The base state and first excited state, nonetheless, are the ones that fit the
worst.



CHAPTER 3. QUANTUM SYSTEM 33

Figure 3.4: Complete bands σk(Γ), including positive non-physical solutions.

These first bands have a peculiar behaviour, which is apparent when we also
compute the positive roots of F (σ,Γ), shown in Figure 3.4. Although we can have
positive values of σ and Γ if we had Ẽ > 0 (i.e. B < 0), they must both at the end
be of equal sign. Thus, the positive solutions of sigma plotted for negative values of
Γ are non-physical solutions. They just allow us to visualize the complete behaviour
of the mathematical solution curves. The curves for positive values of Γ are just the
mirror image inverted around the Γ axis.

The solution bands σ0 and σ1 are special: One changes its curvature and tends
to zero as Γ tends to zero, while the other one diverges to negative infinity. Mean-
while, the rest look like parabolas. That is what would be expected for bands where√
|Γ| − ak.

3.3 Occupation of energy states

There are three quantum numbers: (n, κk, ky), where the first two are quantized (κk
are the allowed values related to σk). The energies (3.12) are not dependent in ky.
That is, E = En,κ, so in the same way as the QHE, each (n, κk) level possesses the
degeneracy of a Landau level,

g =
AB

Φ0

, (3.19)

where A is still the area of the plate in the x-y direction. So, despite being a 3D
system with two kinds of quantized levels n and κk, we can think of the combination
of them as "Landau levels". For example, a system with E0,κ0 , E0,κ1 ,...,E0,κν−1 filled,
or one where E1,κ0 ,...,Eν−1,κ0 are filled instead, or even one where the filling is mixed
between the n-levels and the κk levels, can be considered as a system with ν Landau
levels full, for the necessary number of electrons required to fill them is the same.

Nonetheless, there will be cases when the observables are dependent on how each
Landau level (n, κ) is filled. From the general expressions, it is not clear whether
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the filling will start first with the n levels, with the κ levels, or in a mixture. This
is what we will study in this section. For clarity, we will generally use n to denote
the quantum number of a particular Landau level, while ν will be used to denote the
number of Landau levels filled, either for a specific κk level or for the total energy
levels of the system.

3.3.1 Total occupied states

From Eq. (3.19), we can get that ν Landau levels will be filled when we have an
electron surface density2 ne such that

ν = ne
Φ0

B
. (3.20)

As discussed in section (1.2.3), the presence of disorder, necessary for the realisation
of the QHE, will weakly break the degeneracy of each Landau level, but will be the
responsible of the robustness of the Hall states. The current will change not when a
Landau level starts to fill, or when is completely filled, but when the extended states
of the Landau level are filled. As one can see from the density of states of Fig. 1.5,
the extended levels fill whenever a Landau level is approximately half filled. That is,
the disorder effectively produces quantized a current just as if νtot Landau levels were
filled, where for an arbitrary surface density, this number is given by

ν tot =

⌊
ne

Φ0

B

⌉
, (3.21)

where bxe is the round to nearest integer function. This is the occupation number
that matters to us. If we were instead interested in Landau levels with partial filling,
or with complete occupation, we would need to use other kinds of rounding functions.
As we will see, this would hardly matter. The degeneracy of the Landau levels is so
big that the following results would also be approximately valid for these cases.

3.3.2 Filling

We take the energies (3.12), express κ in terms of σ and divide by the energy }ωB to
make them dimensionless,

En,κ = (n+ 1/2)− εσ2. (3.22)

Here, we defined

ε =
1

}ωB
}2

2m`2
Ẽ

= −α`Ẽ
mc

}
, (3.23)

a dimensionless constant which gives us the quotient between the energy of a κ level
and an energy quantum ~ωB. It depends only on B, is positive (`Ẽ is negative), and is

2Despite being a 3D system, we can still define surface density as number of electrons per unit
area, as the gas is localized inside the plate and uniformly distributed in x-y.
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of order α. For a better physical interpretation, it can be put in terms of the reduced
Compton wavelength of the electron ň ≡ }/mc. That is,

ε = −α`Ẽ
ň
. (3.24)

As this constant only depends on the magnetic field, it is easy to visualize its order
of magnitude. This is shown in Figure 3.5, for the typical range of values of B in the
Hall Effect.

Figure 3.5: ε as a function of B.

Even when ε decreases with B, it is at least bigger than 20 for this ranges. Mean-
while, the n levels are only naturals {0, 1, 2, ...}. These numbers and the differences
between different values of σ turn to be big enough for the parameters used such that
the energy difference between the base state (0, κ0) and the first excited state in κ,
(0, κ1), turn out to be very big. Thus, typically we wont have excited states in κ
before some amount of n levels are already filled.

We can make a more systematic analysis of this. Suppose we have filled ν − 1
Landau levels in the first κ level (that is, we have filled up to the Eν−2,κ0 level), and
we still have more levels to be filled. For the next ν-th level to be E0,κ1 instead of
Eν−1,κ0 , we need that

E0,κ1 < Eν−1,κ0 . (3.25)
This implies that

ν − 1 > ε(σ2
0 − σ2

1), (3.26)
where |σ0| > |σ1|. And so, if we have an amount of at least ν Landau levels filled that
is greater than 1 + ε(σ2

0 − σ2
1), then there will be occupation in κ1. As we have the

ability to fill ν tot Landau levels in total (as given by Eq. (3.21)), we thus find that

ν tot > 1 + ε(σ2
0 − σ2

1) (3.27)

is a sufficient condition for a system to have occupation in the κ1 level. This a relation
which depends on B, ne and L. Although, from this last one it depends very weakly.
We can see that when we use the WKB approximation (3.18), for which

σ2
0 − σ2

1 ≈
(

3π

4

)2/3

(32/3 − 1), (3.28)
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which gets rid of the dependence on L. Expressing ε in an alternative way

ε =

(
α2

4πň2

Φ0

B

)1/3

, (3.29)

the condition of Eq. (3.27) takes the form

⌊
ne

Φ0

B

⌉
> 1 +

1

4
(32/3 − 1)

(
9πα2

ň2

Φ0

B

)1/3

. (3.30)

So, defining a superficial Compton density

nC ≡
1

43

(
9πα2

ň2

)
≈ 1.5776× 1020 m−2, (3.31)

this becomes ⌊
ne

Φ0

B

⌉
> 1 + (32/3 − 1)

(
nC

Φ0

B

)1/3

, (32/3 − 1) ≈ 1.08. (3.32)

This is a simpler relation, dependent only on ne and B. The numerical factor (32/3−1)
is left on purpose because we will generalize this formula for higher levels of κ.

One could ask himself, what is the physical interpretation of the quantity on the
right hand side of this relation? As the left hand side describes the total amount of
occupied Landau levels ν tot, the right hand side must also be an amount of Landau
levels. And this is true, the term

ν0 ≡ 1 + (32/3 − 1)

(
nC

Φ0

B

)1/3

(3.33)

measures how many Landau levels are necessary to allocate in the κ0 level in order
to reach the κ1 level: If ν tot < ν0, we were left too short and κ1 is not reached. If
ν tot = ν0 we are right on the spot from which the κ1 level starts to be filled. If
ν tot > ν0 we have more than the necessary and so the levels continue to fill. Of course
we ignore whether ν0 is an integer or not, as this number was beforehand produced
from approximations.
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Figure 3.6: Visual representation of the filling. First, ν0 levels need to be allocated in the κ0

level in order to reach the κ1 level. Next, an equal amount of ν1 levels need to be allocated
in each of the two levels: κ0 and κ1, leaving a total of ν0 +2ν1 levels needed in order to reach
the κ2 level. In the same way, the levels needed to reach the κ3 level are ν0 + 2ν1 + 3ν2. The
process continues until all of the available levels νtot are allocated.

So, if ν tot > ν0 we can further ask ourselves whether we have enough Landau
levels to reach the E0,κ2 level. First note that we now have two different κ levels that
have to be filled: The κ0 level, which was left with ν0 Landau levels occupied, and
the κ1 level, which is just now starting to fill. We assume that the energy Eν0−1,κ0

is approximately equal to the energy E0,κ1 , such that the number of Landau levels
needed to reach the E0,κ2 level is approximately the same for both of these levels.
That is, if we denote by ν1 as the amount of Landau levels needed to allocate in the
κ1 level in order to reach the E0,κ2 level, one needs a total amount of

ν = ν0 + 2ν1 (3.34)

levels to be occupied in this system: ν0 levels are needed to first reach the E0,κ1 level,
ν1 are needed to allocate in κ1 level (filling up to the Eν1−1,κ1 energy level) in order to
reach the E0,κ2 level and another ν1 in order to account that in this process we also
have to keep filling the κ0 level, starting from where we left (and thus also filling up
to the Eν0+ν1−1,κ0 energy level). For a visual representation of this filling, see Fig. 3.6.

The conditions for having reached the κ2 level are two, one for each κ level being
filled:

E0,κ2 < Eν0+ν1−1,κ0 , E0,κ2 < Eν1−1,κ1 . (3.35)

These imply
(ν0 + ν1)− 1 > ε(σ2

0 − σ2
2), ν1 − 1 > ε(σ2

1 − σ2
2). (3.36)

Summing up both inequalities, and identifying ν from Eq. (3.34),

ν > 2 + ε(σ2
0 + σ2

1 − 2σ2
2). (3.37)
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Once again using the WKB approximation, and noting that we have the ability to
fill ν tot Landau levels in total, given by Eq. (3.21), we now arrive at the condition⌊
ne

Φ0

B

⌉
> 2 + (2 · 52/3 − 32/3 − 1)

(
nC

Φ0

B

)1/3

, (2 · 52/3 − 32/3 − 1) ≈ 2.77. (3.38)

for the filling to reach the κ2 level. Note that if relation (3.38) is fulfilled, so is (3.32),
which is consistent with the fact that κ0 must be filled before κ1 is filled.

In the same way as before, the total number of Landau levels used to reach the
κ2 level is given by the right hand side of relation (3.38). That is,

ν0 + 2ν1 ≡ 2 + (2 · 52/3 − 32/3 − 1)

(
nC

Φ0

B

)1/3

, (3.39)

and thus, using Eq. (3.33),

ν1 =
1

2
+ (52/3 − 32/3)

(
nC

Φ0

B

)1/3

. (3.40)

Following the same argumentation, this process can be easily generalized. For us to
reach an arbitrary level κm (provided of course, that Γ is such that the level exists),
it is needed that⌊

ne
Φ0

B

⌉
> m+ bm

(
nC

Φ0

B

)1/3

, bm ≡ m(2m+ 1)2/3 −
m−1∑
l=0

(2l + 1)2/3 . (3.41)

Figure 3.7: Occupation sectors in log scale for ne.

Relation (3.41) is a sufficient condition for a system to have occupation in the κm
level. The maximalm for which it holds, will be the maximal κm level filled (note that
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the case m = 0 is always trivially fulfilled). In that way, we obtain sectors in B–ne
space for which relation (3.41) holds for a maximal occupation level κm. These are
shown in figure 3.7. Note that the rounding function which originated from Eq. 3.21
hardly makes a difference in these scales.

The total number of Landau levels used to reach the κm level is once again the
right hand side of the relation (3.41). That is,

ν0 + 2ν1 + ...+mνm−1 = m+ bm

(
nC

Φ0

B

)1/3

. (3.42)

Once again, refer to Fig. 3.6 to visualize this filling. Using this same equation to solve
for νm−1:

mνm−1 = m+ bm

(
nC

Φ0

B

)1/3

−
(
ν0 + 2ν1 + ...+ (m− 1)νm−2

)
= m+ bm

(
nC

Φ0

B

)1/3

− (m− 1)− bm−1

(
nC

Φ0

B

)1/3

= 1 + (bm − bm−1)

(
nC

Φ0

B

)1/3

.

(3.43)

As we have that

bm − bm−1 = m(2m+ 1)2/3 −m(2m− 1)2/3, (3.44)

then

νm−1 =
1

m
+cm

(
nC

Φ0

B

)1/3

, cm ≡
1

m
(bm−bm−1) = (2m+1)2/3−(2m−1)2/3. (3.45)

We recall that νm−1 tells us the number of Landau levels necessary to allocate in the
κm−1 level in order to reach the κm level.

In a way, the results of this analysis do not depend on the thickness L of the plate.
Nevertheless, we must emphasize that we have ignored the possibility that Γ (which
is determined by L) could have a value such that a level κm does not even exists (see
Fig 3.2b). If this were the case, the occupation would just continue to fill the n levels
of all of the lower κ levels. This will be further analysed in the next section.

3.3.3 Fermi Energy

Once we know the maximal m for which relation (3.41) holds, we know what is the
maximum κ level with occupation: κm. Now we can ask ourselves exactly how many
Landau levels are allocated in each of these κ levels. We already know that we have
used ν0 + 2ν1 + ... + mνm−1 levels (given by Eq.(3.42)) in order to reach the κm
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level, which have been distributed along the levels κ0, κ1, ..., κm−1. Namely, we have
allocated ν0 +ν1 + ...+νm−1 levels in κ0, ν1 +ν2 + ...+νm−1 levels in κ1, and continued
until κm−1, which has been filled with νm−1 levels (see Fig 3.6), where the value of
each νk can be obtained from Eq.(3.45). But this is not the end of the story, for we
could still have some remaining Landau levels that are not sufficient to reach the next
κm+1 level, but need to be allocated nonetheless. These are given by

n tot −
(
ν0 + 2ν1 + ...+mνm−1

)
=

⌊
ne

Φ0

B

⌉
−m− bm

(
nC

Φ0

B

)1/3

(3.46)

As we now have m+ 1 levels to be filled (which are κ0,...,κm), these remaining levels
must be distributed equitably in each one. Thus, if we take

nm ≡
1

m+ 1

{⌊
ne

Φ0

B

⌉
−m− bm

(
nC

Φ0

B

)1/3}
, (3.47)

then, by this definition,

ν tot = ν0 + 2ν1 + ...+mνm−1 + (m+ 1)nm. (3.48)

With this we have exhausted all of the Landau levels available and can precisely
know how many have been allocated in each κ level. That is, κ0 has been filled with
ν0 + ν1 + ... + νm−1 + nm levels, κ1 with ν1 + ν2 + ... + νm−1 + nm levels and so on,
continuing until κm−1, which has been filled with νm−1 +nm levels and finally reached
κm, filled with nm levels. Thus, the Fermi energy is given by

EF = Enm,κm ≈ Eνm−1+nm,κm−1 ≈ ... ≈ Eν0+...+νm−1+nm,κ0 . (3.49)

Once again, this would be a general result if all of the κ levels were always allowed,
but this is not always the case. The case for which a κ level, which in theory could be
occupied but is forbidden, will now be considered. Namely, let us imagine that the
level κk+1 is forbidden, leaving the κk level as the last one available to be occupied.
If k + 1 is greater than the maximal m previously obtained, the initial procedure is
unaffected as the occupation does not even reach this forbidden level: We are done.
But, if k + 1 ≤ m, then the filling previously discussed must change. This is not so
hard to correct and is in fact very similar to the procedure we have just performed.
We take the levels

ν0 + ν1 + ...+ kνk−1, (3.50)

which have been used in order to reach this last κk level. As there are no more κ
levels beyond this point, we can simply distribute the remaining levels in the k + 1
available κ levels to be filled. That is, we take

nk ≡
1

k + 1

{⌊
ne

Φ0

B

⌉
− k − bk

(
nC

Φ0

B

)1/3}
, (3.51)
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and thus the filling will be left in a similar way: κ0 filled with ν0 + ν1 + ...+ νk−1 +nk
levels, κ1 with ν1 + ν2 + ...+ νk−1 + nk levels and so on, continuing until κk−1, which
is filled with νk−1 + nk levels and finally reaching κk, filled with nk levels. The Fermi
energy will thus be

EF = Enk,κk ≈ Eνk−1+nk,κk−1
≈ ... ≈ Eν0+...+νk−1+nk,κ0 . (3.52)

Note that is can significantly change the behaviour of the Fermi energy at points
where a new κ level appears.

Figure 3.8: Dimensionless Fermi energy of Eq. (3.22) at a fixed thickness of L = 10 nm
using the numerical roots for σ(Γ), but the filling analysis with the WKB approximation of
Fig. 3.7. IA: The n levels linearly increase EF at the κ0 level. IIA: The occupation reaches
the κ1 level (see Fig. 3.7), so the n levels fill half as fast as there are now two κ levels. IB: Γ
is such that the κ1 level does not exists (see Fig. 3.2b), so the κ0 level keeps filling linearly
even when the occupation sector corresponded to κ1. IIIA: The occupation reaches the κ2

level, so now there are three κ levels to be filled, which further reduces the speed at which
the n levels are filled. IIB: Γ is such that the κ2 level does not exists, so the κ0 and κ1 keep
filling in a way similar to IB. An analogous process continues for IIIB, IVA, IVB and so on.
Discontinuites on the Fermi energy are found on the transitions between the zones IB, IIB,
IIIB, ... and the zones II, III, IV, ... (either A or B) respectively.

With the results from the previous section, and the discussion presented here
we summarize the computation of the Fermi energy for arbitrary parameters in an
algorithmic procedure:

1. Obtain the total amount of Landau levels ν tot from Eq. (3.21).

2. Compute the maximum m for which relation (3.41) holds.
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3. For this maximum m, compute nm from Eq. (3.47).

4. The (dimensionless) Fermi energy will then be Enm,κm .

5. If Γ is such that a κk+1 level does not exists with k + 1 ≤ m (that is, the levels
could in principle reach this forbidden level), take nk from Eq. (3.47) instead.

6. The (dimensionless) Fermi energy will instead be Enk,κk .

7. If k + 1 > m, the initial steps are unaffected and the Fermi energy is still the
one from step 4, as the occupation does not even reach this forbidden level (this
is important!).

The results from this procedure are shown in Fig. 3.8 for a convenient3 thickness of
L = 10 nm. There, for the values of σ(Γ) we used the exact numerical roots from
Fig. 3.2b and not the WKB approximation. This is because the later breaks for small
values of Γ for the σ0 values. Apart from the transition regions expected in the filling,
directly related to Fig. 3.7, we obtain other regions separated by two vertical lines,
from which we can clearly see that the Fermi energy is discontinuous. These vertical
lines correspond to the values of B such that Γ is at a critical point at which a σ, and
thus a κ level, starts to become allowed for the particular value of L = 10 nm taken.
These critical values for the magnetic field of course depend on the value of thickness
and thus the location of the vertical lines Fig. 3.8 are just representative for this case.

We then obtain multiple regions. In the IA region the filling is done only on the
κ0 level, so the n levels in EF make it increase linearly with ne. From IA to IIA the
filling in κ1 starts, and so the rate at which EF increases is halved according to step
4. At IB, Γ is such that κ1 is not allowed, so the filling continues at the κ0 level with
the original rate. The same happens at IIB, where the Γ is such that κ2 is not allowed
and so the filling of the n levels maintains its halved rate for the κ0 and the κ1 levels.
At III the κ2 level becomes allowed, so the filling of n further reduces according to
step 4. This continues for greater values of B, and changes its borders and frequency
for different values of L.

The transition between the IA and IIA zones appears discontinuous, but it should
in principle be smooth. The appearance of a discontinuity arises from two reasons:
First, at the transition the energy of (ν0 − 1,κ0) is not exactly equal to the energy
of (0,κ1). Second, the location of this zone is not exactly correct, as this is given by
Eq. (3.41) and thus is a result from the WKB approximation. The same happens for
the transition between IIA and III. The transition between IB and II (A or B), and
between IIB and III is another story. As the rate at which the energy fills changes
in a discontinuous way between these transitions, the Fermi energy does become
discontinuous between these sectors. For example, for IB the integer n0 is used to
fill the κ0 level, producing a Fermi energy given by En0,κ0 , but for IIA and IIB the κ1

3For illustrative purposes it is convenient to use small values of L, as bigger values produce many
more regions to appear in Fig. 3.8, cramping up the plot. On the other side, values of L smaller
than 10 nm are known to break the quantization of θ or the magnetoelectric effect altogether, as
very small thicknesses give rise to an hybridization of the TI’s edge states [37].
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level is also filled, and thus the κ0 level is filled with ν0 +n1 levels instead, producing
a Fermi energy given by Eν0+n1,κ0 , where n0 is not equal to ν0 +n1 so the energies are
different, which results in a discontinuity in this variable.

This discontinuity is an important result which will reappear in many of our
calculations. It is a consequence of the discontinuous appearance of new σ solutions
for distinct values of Γ. From this discussion we can see that, for this transition to
appear, we need two factors:

1. A new σ(Γ) solution needs to appear discontinuously.

2. The occupation number must be such that the new κ level is able to be filled.

3.3.4 Dispersion states

In general, dispersion states will appear when the occupation is big enough such that
EF > 0. As seen by Fig. 3.8, this does happens frequently for the parameters taken.
These dispersion states will correspond to taking κ −→ ±ik in the energies and wave
functions. Physically, as these states are not bound to the plate, they will wander
off it. Thus, if we have EF > 0, we expect the positive energy bound states to decay
into dispersion states and escape the system. This is undesired for our purposes as
this condition is exactly what we need to obtain discontinuities of the macroscopic
variables (such as the Fermi energy of the last section). The reason for this is that,
when a new κm allowed state appears, its energy is approximately zero (as σ is small).
As stated in the last section, for the discontinuities to arise we need an occupation
number big enough such that this new state can be filled. Thus, we must necessarily
have EF > 0 if we want to study these discontinuities.

We can come around this problem by embedding the system in a box with a gas
of the electrons. This is in fact what is usually done in most of the thermodynamic
treatments: Take a finite volume V of the system by surrounding it with an impen-
etrable box, such that the system is closed. In our context we do that by placing an
infinite potential at z < −Lz/2 and at z > Lz/2 and assuming that Lz � L so that
our bound solutions and energies are not affected by this potential. The extra gas of
electrons will maintain the dispersion states occupied, and thus preclude the positive
energy bound states from decaying. The presence of this gas will nonetheless modify
the electronic properties studied later, but these modifications will be ignored as the
free electron gas is a very basic and well known system.

In conclusion, from now on when we talk about positive Fermi energy we assume
that the system is in such finite volume set-up, but nevertheless ignore the modifi-
cations induced by the presence of the free electron gas. When we talk about the
number of particles N , we will still refer solely to the bound states, ignoring the
number of particles in the dispersion states. Finally, we assume that the system is
in thermodynamic equilibrium, such that the Fermi energy in both systems is equal.
Although this implies that there will be an interchange of particles between bound
and dispersion states when a new κ level appears (the Fermi Energy changes, just
like in Fig. 3.8), we will ignore this phenomenon for simplicity, but therefore expect
that our results for the discontinuities of the macroscopic variables will not be exact.
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Nevertheless, the important factor is that the discontinuities will still be present, as
this interchange will also discontinuously change the corresponding macroscopic vari-
ables of the electron gas when changing it’s particle number. The exact contribution
of this phenomenon is left as a possible direction for future research.

Figure 3.9: Minimum thickness L for which EF < 0.

Finally, and for completeness, we include a plot of the minimum thickness L for
which EF < 0 and thus no dispersion states exist. For thicknesses greater than those
it is not necessary to enclose the system in a box with an electron gas, but also won’t
present discontinuities in the macroscopic variables. On the other side, the smaller
ones will be the ones fit for the discontinuities to arise (provided we have our finite
box set-up). This plot is shown in Fig. 3.9.

3.4 Normalization condition

We explicitly write the normalization condition, as it will be needed in the future. It
is convenient to define the functions

A(ξ) = C Ai(ξ) +DBi(ξ), (3.53)

and
B(ξ) = C∗Ai(ξ) +D∗ Bi(ξ). (3.54)

These are not to be confused with the constants A and B of the amplitudes of the
wave functions, nor with the original Airy functions Ai(ξ) and Bi(ξ). These general
linear combinations of Airy functions have a closed form for various useful integrals
(see Appendix C) and will be used throughout this work.

By the boundary conditions (3.13a), (3.13b), (3.14a) and (3.14b), the functions
A(ξ) and B(ξ) satisfy

A(σ2) =
1

σ
A′(σ2) = A (3.55)
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and
A(τ) =

−1

σ
A′(τ) = Be−w. (3.56)

The expressions are analogous for B(ξ) = A∗(ξ). In general, we will express the
constants A and B in terms of A(ξ) and B(ξ) by means of these equations, for it is
more practical.

Thus, the norm of the wave function is

〈
Ψ
∣∣Ψ〉 =

∫
dy

∫ ∞
−∞

φn

(
x+ kyl

2
B

)2

dx

[
|A|2

∫ 0

−∞
e2κz dz

+

∫ L

0

A(ξ)B(ξ) dz + |B|2
∫ ∞
L

e−2κz dz

]
.

(3.57)

As usual, the divergent integral in y is regularized by means of a finite length Ly. The
Hermite functions are already normalized. With this, and using the relations (3.55),
(3.56) and (C.6), we get the normalization condition〈

Ψ
∣∣Ψ〉 = Ly`Ẽ

[ 1

2σ
A(σ2)B(σ2) +

( 1

2σ
+ Γ

)
A(τ)B(τ)

]
= 1, (3.58)

which puts the final constraints on the constants of the wave function. Nonetheless,
we wont solve for them until we need them later in chapter 5.

3.4.1 Orthogonality

Having obtained the normalization condition, in this section, the non-trivial orthog-
onality relation 〈

Ψ
(0)
n′,ky ,κ′

∣∣Ψ(0)
n,ky ,κ

〉
= δn,n′δκ,κ′ (3.59)

will be explicitly derived. The y part is ignored, as before. The x part is the well
known orthogonal Hermite function. It is sufficient to prove the non-trivial relation
in the z part. Thus, we are to prove that

Pκ,κ′ ≡ A′∗A

∫ 0

−∞
e(κ+κ′)z dz +

∫ L

0

A(ξ)B(ξ′) dz +B′∗B

∫ ∞
L

e−(κ+κ′)z dz (3.60)

is zero for κ 6= κ′.
Making the proper change of variables, the second integral ends up proportional

to (C.7). Identifying the constants A and B with the functions A(ξ) and B(ξ) by
means of (3.55) and (3.56), then

Pκ,κ′ = `Ẽ

[
A(σ2)B(σ′2)

1

σ + σ′
+ I1

∣∣∣σ2+Γ

σ2
+ A(τ)B(τ)

1

σ + σ′

]
. (3.61)

Substituting I1 and imposing the boundary conditions, we are left with

I1

∣∣∣σ2+Γ

σ2
= − 1

σ + σ′
[A(τ)B(τ ′) + A(σ2)B(σ′2)] (3.62)
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which cancels the other terms of (3.60). Thus,

Pκ,κ′ = 0 (3.63)

for κ 6= κ′. This proves the orthogonality of the solutions.



4 Magnetization in TI

Take the bound states in a finite TI plate with an external magnetic field B analyzed
in chapter 3. For this chapter, it is useful to work better with the H field. We have
an induced electric field Ẽ = −αcB coming from the magnetoelectric effect of the
effective theory. At first instance, there is no magnetization and the H field is

H = B/µ0. (4.1)

With this consideration, we will arrive in this chapter that nevertheless, the nature
of the bound-state system does induce a magnetization. By the formal definition of
the magnetization, we must work with the H field nonetheless. And so, we could not
take the magnetization term in the H field before calculating it. In some way, we
could think of this as a first order correction.

In this approximation, the cyclotron energy is

ωB =
eB

m
≈ eµ0H

m
. (4.2)

The expression of σ in Eq. (3.9) allows us to re-express the energies of Eq. (3.12) as

En,k = − ~2

2m`2
Ẽ

σ2
k(Γ) + }ωB(n+ 1/2), n = 0, 1, ..., k = 0, 1, ..., (4.3)

where σk(Γ) is the number k band of Fig. 3.2b, which is a function of Γ. k = 0 is the
upper band, and the level with the lowest energy (that is, the ground state).

As before, for simplicity we completely ignore spin in the following calculations.
The results with spin taken into account are presented in Appendix B.

4.1 Thin-plate magnetization

For |Γ| < |Γc| of Eq. (3.16), all of the electrons can only occupy the ground state in
κ, no matter the temperature, for this is the only allowed energy. They still respect
the Pauli exclusion principle, as there is an infinite number of Landau levels (n) to
occupy.

In this case, for a constant volume (constant L), we have a system given by the
Landau levels plus a constant dependent on the H field. That is, we have

εn ≡ En,0 = −E0(H) + }ωB(n+ 1/2), (4.4)

47
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with
E0(H) =

~2

2m`2
Ẽ

σ2
0(Γ), (4.5)

where
Ẽ ≈ −

√
µ0

ε0
αH. (4.6)

This induces a magnetization identical to the well known Landau magnetiza-
tion [38,39] with the addition of a correction given by E0(H). This treatment is thus
very similar to the computation of the Landau magnetization with some corrections1.
We take then the partition function with the Fermi-Dirac statistics [39]

lnQ = g

∞∑
n=0

ln[1 + eβ(µ−εn)], (4.7)

where β = 1/kBT and g is the degeneracy of each Landau level, which was calculated
previously in section 1.2.1. That is,

g =
V 2/3

2π`2
B

(4.8)

with `B the magnetic length. This is related to the 2D free (spinless) electron’s gas
degeneracy

g0 =
mV 2/3

2π}2
(4.9)

by g = g0}ωB. Furthermore, because the energies are of the form εn = }ωB(n+1/2)−
E0(H), then ∆εn = }ωB ≡ ∆x.

Defining
S(ε) ≡ ln[1 + eβε], (4.10)

and
µE ≡ µ− 1

2
}ωB + E0(H), (4.11)

then

lnQ = g0∆x
∞∑
n=0

S(µE − n}ωB). (4.12)

Thus, for ∆x� kbT , we can use the Euler-Maclaurin formula [40]

∆x
∞∑
n=0

f(an) ≈
∫ ∞
a0

f(x) dx+
∆x

2
[f(a∞)+f(a0)]+

(∆x)2

12
[f ′(a∞)−f ′(a0)]+O(∆x)4.

(4.13)
1There are also some peculiarities, as this is an electron gas bounded into a 2D system, while the

usual Landau magnetization is given for a 3D electron gas system [38,39]
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In the case of S we assume that ~ωB << kBT . That is, H is sufficiently small. Now,
all of the terms with a∞ are zero. Taking into account that an = µE−n}ωB decreases
with n, some changes of sign are made. Thus,

lnQ = g0

[ ∫ µE

−∞
S(ε) dε+

}ωB
2
S(µE) +

(}ωB)2

12
S ′(µE) +O(H4)

]
(4.14)

Expanding all of the terms as a Taylor series around µ = µE + 1
2
}ωB −E0(H), (which

is valid for |1
2
}ωB−E0(H)| � kBT ), and leaving everything in terms of S(µ), we then

have

lnQ = g0

[ ∫ µ

−∞
S(ε) dε+ E0(H)S(µ)− (}ωB)2

24
S ′(µ) +O(H3)

]
. (4.15)

We are allowed to take E0(H) as small as ~ωB because we are in the Γ −→ 0 limit,
where we can take σ0(Γ) as arbitrarily small. We have ignored some terms of E0(H)
by generally assuming that its behaviour is like

E0(H) ∼ Hp, 2 ≤ p < 3. (4.16)

Were it the case that p = 3 or more, then this correction would be of the order of all
of the H3 terms that we ignored. If we had p less than 2, then higher order terms
in E0(H) would also have to be taken into account. Fortunately, in our case where
Γ −→ 0, we have that the order is exactly p = 2 and thus this result also applies here.

On the other hand, the partition function of the free (2D) system is approximately

lnQ(H = 0) ≈ g0

∫ ∞
0

ln[1 + eβ(µ−ε)] dε =

∫ µ

−∞
g0S(ε) dε (4.17)

where S(ε) is the function of Eq. (4.10). Thus, we have that for our partition function

lnQ ≈
[
1 + E0(H)

∂

∂µ
− (}ωB)2

24

∂2

∂µ2
+O(H3)

]
lnQ(H = 0). (4.18)

Taking the Grand potential [41] (or Landau potential) Ω = −kBT lnQ, with
F = Ω + µN for N (number of particles) constant, for which ∂F

∂µ
= 0, then

Ω(T, V, µ,H) ≈
[
1 + E0(H)

∂

∂µ
− (}ωB)2

24

∂2

∂µ2
+O(H3)

]
Ω(T, V, µ,H = 0), (4.19)

where Ω0 = Ω(H = 0). At low temperatures µ ≈ EF and S ′(µ − E) ≈ βh(EF − E),
where

h(ε) =

{
1, ε > 0,

0, ε < 0,
(4.20)

is the Heaviside step function. Therefore, using Eq. (4.17), we obtain that

∂Ω0

∂µ
≈ − 1

β

∂

∂µ

∫ ∞
0

g0(ε)S(µ− ε) dε = −
∫ EF

0

g0(E) dE = −N. (4.21)



CHAPTER 4. MAGNETIZATION IN TI 50

where N is the particle number. Furthermore,

∂2Ω0

∂µ2
≈ −g0(EF ) = −g0. (4.22)

The density of states generally depends on the energy, but in the free 2D electron gas
case it is constant. The magnetization (in SI) is defined as [38,41]

M ≡ − 1

µ0V

∂F

∂H
= − 1

µ0V

∂Ω

∂H
(4.23)

for constant N . So
M =

1

µ0V

∂E0(H)

∂H
N − µ0

3V
µ2
BHg0. (4.24)

We used that }ωB = 2µBµ0H, where µB = e}/(2m) is the Bohr magneton. The
second term is similar to the Landau magnetization, which is produced from the
energy levels }ωB(n+1/2). Nonetheless, it is not exactly the same as the one obtained
usually in an 3D electron gas with a constant magnetic field. This is because in 3D,
the gas is allowed to take the continuum of wave vectors in z between −kF and kF
(where kF is the Fermi wave vector), while here the bound states have only one value
allowed. So, we have a susceptibility

χ =
∂M

∂H
, (4.25)

that results in
χ tot = χθ̃ + χ̃Landau. (4.26)

The magneto-electric contribution is

χθ̃ =
N

µ0V

∂2E0(H)

∂H2
=
n3D
e

µ0

∂2E0(H)

∂H2
, (4.27)

with n3D
e = N/V the electronic volume density.

To relate our Landau-like contribution to the original one, we relate the density
of states of the 2D free electron gas (4.9) with the density of states of the 3D free
(spinless) electron gas g3D(EF ) = mkF

2π2}2 . That is,

g0(EF )

V
=

m

π}2L
=

π

LkF
g3D(EF ). (4.28)

So, in comparison with the Landau diamagnetism of a 3D electron gas [41] (in SI)

χLandau = −µ0

3
µ2
Bg3D(EF ), (4.29)

we obtain that

χ̃Landau = −mµ0µ
2
B

6π}2L
=

π

LkF
χLandau . (4.30)
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The extra factor of this susceptibility corresponds to the difference between taking
only localized states with one allowed value of kz, and of having an unlocalized gas
of electrons with free kz. That is, if we apply the integration∫ kF

−kF

L dkz
2π

,

to Eq. (4.30), we recover the Landau diamagnetism.
Now we analyze the χθ̃ term. If we take Γ −→ 0 such that, following the approx-

imation (3.17), we have |σ0(Γ)| ≈ 1
4
Γ2,

E0(H) ≈ m

8}2
e2E2L4 ≈ mµ0

8}2ε0
e2α2H2L4. (4.31)

This is of order H2, as desired, so the previous hypothesis taken holds. With this,

χθ̃ =
m

4}2ε0
e2L4α2n3D

e , (4.32)

which results in a paramagnetic term.

4.2 Phase transitions

We saw in section 3.2 that there are special values of Γ for which a new σ allowed
band appears. As discussed in section 3.3.3, these appearances affect the filling of
the states, and thus can produce discontinuities of macroscopic quantities such as
the Fermi energy when varying the magnetic field at these special points and as long
as the electronic density is large enough. Furthermore, this will clearly affect the
partition function of the material, as it will discontinuously change from one value
of Γ to another, potentially producing a phase transition. In this section we analyze
this effect by means of the magnetization as an order parameter.

We first study the simplest of these cases, which is the appearance of the σ1(Γ)
band at |Γ| = Γc of Eq. (3.16). Thus, for |Γ| < Γc, only the base state κ0 is allowed,
but for |Γ| > Γc, the κ1 starts to be allowed. In the last section we generalize the
results for an arbitrary band at a critical point.

4.2.1 Before the critical point

We start with the case |Γ| < Γc, where only the σ0(Γ) band is present. For this case
the partition function is, like in the last section,

lnQ− ≡ lnQ(|Γ| < Γc) = g

∞∑
n=0

ln[1 + eβ(µ−εn,0)], (4.33)

with energies

εn,0 ≡ −E0(H) + }ωB(n+ 1/2), E0(H) =
~2

2m`2
Ẽ

σ2
0(Γ). (4.34)
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We once again express it as

lnQ− = g0∆x
∞∑
n=0

S(µE0 − n}ωB), µE0 ≡ µ− 1

2
}ωB + E0(H), (4.35)

and make use of the Euler-Maclaurin formula so that

lnQ− = g0

[ ∫ µE0

−∞
S(ε) dε+

}ωB
2
S(µE0) +

(}ωB)2

12
S ′(µE0) +O(H4)

]
. (4.36)

Following the same procedure as before, we would next expand this expression as a
Taylor series around µ = µE0 + 1

2
~ωB−E0(H). Nevertheless, we can no longer assume

that |1
2
}ωB − E0(H)| � kBT , as E0(H) is no longer small in the regime Γ ≈ Γc. In

fact, as we saw in section 3.3.2, this energy is much greater than the energy of a
normal Landau level ~ωB. The most we can do is expand around µ + E0(H). Here
we only need that 1

2
~ωB � kBT .

Furthermore, as |Γ| > 1, the behaviour of σ0(Γ) is best described by the WKB
approximation (3.18). That is,

|σ0(Γ)| ≈
√
|Γ| − a0, a0 = (3π/4)2/3. (4.37)

And thus

E0(H) ≈ ~2

2m`2
Ẽ

(
L/|`Ẽ| − a0

)
= e|Ẽ|L− a0

(}2e2Ẽ2

2m

)1/3

. (4.38)

This contains terms of order H and H2/3. Either way, this compels us to take into
account higher order powers of E0(H) (which still appear in this expansion). These
will correspond to third order derivatives of Ω0 with respect to the chemical potential.
But, from Eq. (4.22), as g0 is constant with respect to the energy/chemical potential,
then

∂3

∂µ3
Ω0 ≈

∂

∂µ
g0 = 0 (4.39)

as well as all of the higher-order derivatives.
Taking all of this into account, the Taylor expansion of (4.36) yields

lnQ− ≈ g0

[ ∫ µ+E0(H)

−∞
S(ε) dε− (}ωB)2

24
S ′[µ+ E0(H)] +O(H3)

]
. (4.40)

Ignoring once again the third order derivatives of the potential,

∂

∂H
lnQ− ≈ g0

∂E0(H)

∂H
S[µ+ E0(H)]− 1

24
g0

[ ∂

∂H
(~ωB)2

]
S ′[µ+ E0(H)] (4.41)

and

∂2

∂H2
lnQ− ≈ g0

∂2E0(H)

∂H2
S[µ+ E0(H)]

+ g0

([
∂E0(H)

∂H

]2

− 1

24

[ ∂2

∂H2
(~ωB)2

])
S ′[µ+ E0(H)].

(4.42)
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In terms of the Grand potential Ω− = −kBT lnQ−,

∂

∂H
Ω−(T, V, µ,H) ≈

[
∂E0(H)

∂H

∂

∂µ
− 1

24

[ ∂

∂H
(~ωB)2

] ∂2

∂µ2

]
Ω0[µ+ E0(H)], (4.43)

and

∂2

∂H2
Ω−(T, V, µ,H) ≈

[
∂2E0(H)

∂H2

∂

∂µ
+

[
∂E0(H)

∂H

]2
∂2

∂µ2

− 1

24

[ ∂2

∂H2
(~ωB)2

] ∂2

∂µ2

]
Ω0[µ+ E0(H)].

(4.44)

Note how now we have taken Ω0[µ+E0(H)] ≡ Ω(T, V, µ+E0(H), H = 0) with the non-
negligible energy E0(H) added to the chemical potential. This has a very important
consequence. Namely,

∂Ω0[µ+ E0(H)]

∂µ
= −

∫ EF+E0(H)

0

g0(E) dE = −
∫ EF
−E0(H)

g0(E) dE = −N. (4.45)

Thus, for a given chemical potential, the number of particles given here is now in-
creased. This should be expected, as with the base state energy reduction given by
−E0(H), the number of Landau levels necessary to reach a given energy increases.
Still, for |Γ| < Γc, Eq. (4.45) recovers the total number of particles N , as κ0 is the
only allowed value in κ.

On the other hand, the second order derivative

∂2Ω0

∂µ2
[µ+ E0(H)] = −g0 (4.46)

still recovers the density of states of the free 2D electron gas.
In total, the magnetization and susceptibility for |Γ| < Γc are

M− = M−
θ̃

+Hχ̃Landau, χ− = χ−
θ̃

+ χ̃Landau, (4.47)

where
M−

θ̃
=

1

µ0V

∂E0(H)

∂H
N, (4.48)

χ−
θ̃

=
1

µ0V

∂2E0(H)

∂H2
N +

1

µ0V

[
∂E0(H)

∂H

]2

g0 (4.49)

and χ̃Landau is given by Eq. (4.30). Notice how to obtain χ−
θ̃
as the derivative with

respect of H ofM−
θ̃
we must use the implicit H dependence of N given by Eq. (4.45).

Using the resulting expression of E0(H) from the WKB approximation (4.38),

∂E0(H)

∂H
= e

√
µ0

ε0
αL− 2

3
a0

(~2e2µ0

2mε0
α2
)1/3

H−1/3

=
(

1− 2

3

a0

|Γ|

)
e

√
µ0

ε0
αL

(4.50)
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and

∂2E0(H)

∂H2
=

2

9
a0

(~2e2µ0

2mε0
α2
)1/3

H−4/3

=
2

9

a0

|Γ|
2m

~2

µ0

ε0
e2α2L4

(4.51)

In the last steps of these two equations, we used that H can be expressed in terms of
|Γ| as

H =
~2

2m

√
ε0
µ0

1

eα

|Γ|3

L3
. (4.52)

Combining those two equations in Eqs. (4.48) and (4.49) we obtain

M−
θ̃

=
(

1− 2

3

a0

|Γ|

)
ceαLn3D

e (4.53)

and

χ−
θ̃

=
2m

~2ε0
e2α2L

[
2

9

a0

Γ4
L3n3D

e +
1

4π

(
1− 2

3

a0

|Γ|

)2
]
, (4.54)

which is once again a paramagnetic term2.

4.2.2 After the critical point

Now we take |Γ| > Γc. For this case the new κ1 level is now also allowed. We
must be careful to note the partition function is not the only relevant object that
discontinuously changes. If we wish to work at a constant total particle number N ,
then the chemical potential must also change. This can be seen in Fig. 3.8 by looking
at how the Fermi energy discontinuously diminishes from the IB to the IIA and IIB
regions. Nevertheless, this only happens when the occupation number is such that
the κ1 level can be reached. That is, when EF > 0 in our context. Thus,

lnQ+ ≡ lnQ(|Γ| > Γc) = g
∞∑
n=0

[
ln[1 + eβ(µ′−εn,0)] + ln[1 + eβ(µ′−εn,1)]

]
, (4.55)

where

µ′ ≈

{
µ− n1~ωB, EF > 0,

µ, EF < 0,
(4.56)

where n1 is the remaining amount of n Levels filled in κ1 after this level appears
(consistent within our notation in section 3.3.2). A way to convince oneself that
the change in the chemical potential (Fermi energy) is given by this expression is by
looking at the filling visualization of Fig.3.6. Close to the critical point the zeroth
energy is the first red line where the κ1 level is reached. Thus, when only κ0 is allowed,

2Substituting the numerical values of a0 = (3π/4)2/3 and |Γ| ≈ Γc = 2.95 we obtain that
1− 2a0/(3|Γ|) ≈ 0.6 so that the magnetization is positive, i.e. in the direction of the H field.
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but the Fermi energy is positive, half of the Landau levels above the first red line are
passed onto the κ1 level. This amount of Landau levels is in fact the n1 constant from
Eq. (3.47). Note that in both cases the chemical potential maintains its original sign.
The energy εn,0 is the same one as in Eq. (4.34) and the new energy is given similarly
by

εn,1 ≡ −E1(H) + ωB}(n+ 1/2), E1(H) =
~2

2m`2
Ẽ

σ2
1(Γ). (4.57)

Once again we express the partition function as

lnQ+ = g0∆x
∞∑
n=0

[
S(µ′E0 − n}ωB) + S(µ′E1 − n}ωB)

]
, (4.58)

with
µ′E0 ≡ µ′ − 1

2
}ωB + E0(H), µ′E1 ≡ µ′ − 1

2
}ωB + E1(H). (4.59)

Using the Euler-Maclaurin formula and performing the same Taylor expansion as in
Eq. (4.40) for the first term, and as in Eq. (4.18) for the second term (E1(H) ≈ 0 for
|Γ| & Γc), then

lnQ+ ≈ g0

[ ∫ µ′+E0(H)

−∞
S(ε) dε− (}ωB)2

24
S ′[µ′ + E0(H)] +O(H3)

]
+ g0

[ ∫ µ′

−∞
S(ε) dε+ E1(H)S(µ′)− (}ωB)2

24
S ′(µ′) +O(H3)

]
.

(4.60)

Now, as ν1 ∼ νtot ∼ 1/B and ~ωB ∼ B, then the modified chemical potential µ′
does not depend on H, and thus is not affected by the derivatives with respect to H.
Therefore, the result from differentiating and expressing everything in terms of the
Grand potential Ω+ = −kBT lnQ+ is

∂

∂H
Ω+(T, V, µ′, H) ≈

[
∂E0(H)

∂H

∂

∂µ′
− 1

24

[ ∂

∂H
(~ωB)2

] ∂2

∂µ′2

]
Ω0[µ′ + E0(H)]

+

[
∂E1(H)

∂H

∂

∂µ′
− 1

24

[ ∂

∂H
(~ωB)2

] ∂2

∂µ′2

]
Ω0[µ′],

(4.61)

and

∂2

∂H2
Ω+(T, V, µ′, H) ≈

[
∂2E0(H)

∂H2

∂

∂µ′
+

[
∂E0(H)

∂H

]2
∂2

∂µ′2

− 1

24

[ ∂2

∂H2
(~ωB)2

] ∂2

∂µ′2

]
Ω0[µ′ + E0(H)]

+

[
∂2E1(H)

∂H2

∂

∂µ′
− 1

24

[ ∂2

∂H2
(~ωB)2

] ∂2

∂µ′2

]
Ω0[µ′].

(4.62)

Now, by construction,

∂Ω0

∂µ′
[µ′ + E0(H)] = −

∫ EF−n1~ωB

−E0(H)

g0(E) dE = −(N − n1g), (4.63)
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and
∂Ω0

∂µ′
[µ′] = −

∫ EF−n1~ωB

0

g0(E) dE = −n1g, (4.64)

where we used that g0~ωB = g. For EF > 0, n1 6= 0, whereas for EF < 0, n1 = 0. We
also implicitly used that

N = (ν0 + 2n1)g, (4.65)

where ν0 are the necessary n levels to go from E = −E0(H) to E = −E1(H) ≈ 0.
For the second derivatives,

∂2Ω0

∂µ′2
[µ′ + E0(H)] = −g0, (4.66)

and
∂2Ω0

∂µ′2
[µ′] = −g0h(EF ), (4.67)

where h(x) is the Heaviside function (4.20). This function appears because Eq. (4.64)
is zero for EF < 0.

In total, the magnetization and susceptibility for |Γ| > Γc are

M+ = M+

θ̃
+Hχ̃Landau(1 + h(EF )), χ+ = χ+

θ̃
+ χ̃Landau(1 + h(EF )), (4.68)

where
M+

θ̃
=

1

µ0V

∂E0(H)

∂H
(N − n1g) +

1

µ0V

∂E1(H)

∂H
n1g, (4.69)

χ+

θ̃
=

1

µ0V

∂2E0(H)

∂H2
(N − n1g) +

1

µ0V

∂2E1(H)

∂H2
n1g +

1

µ0V

[
∂E0(H)

∂H

]2

g0, (4.70)

and χ̃Landau is given by Eq. (4.30).
For E0(H) we once again use the WKB approximation and thus the derivatives

given in Eqs. (4.50) and (4.51). For E1(H) we cannot do the same, as the WKB
approximation results in specially poor results for small values of sigma (that is, near
|Γ| = Γc). Instead, according to our initial supposition that |Γ| & Γc so that E1(H)
is small, we use a direct linear fit for σ1(Γ) around |Γ| ≈ Γc. Numerically, we obtain
that

|σ1(Γ)| ≈ m1(|Γ| − Γc), m1 ≈ 0.0975, (4.71)

for |Γ| & Γc. With this

E1(H) ≈ ~2

2m`2
Ẽ

m2
1

(
L/|`Ẽ| − Γc

)2
, (4.72)

and thus
∂E1(H)

∂H
=

~2

3m`2
Ẽ

m2
1

H
(|Γ| − Γc)(2|Γ| − Γc) ≈ 0 (4.73)
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and

∂2E1(H)

∂H2
=

~2

9m`2
Ẽ

m2
1

H2

(
2|Γ|2 − Γ2

c

)
≈ 2

9

m2
1

Γ3
c

2m

~2

µ0

ε0
e2α2L4

(4.74)

Thus, Eqs. (4.69) and (4.70) become

M+

θ̃
=
(

1− 2

3

a0

Γc

)
ceαL

(
n3D
e − n1g/V ) (4.75)

and

χ+

θ̃
=

2m

~2ε0
e2α2L

[
2

9

L3

Γ4
c

(
a0(n3D

e − n1g/V ) + Γcm
2
1n1g/V

)
+

1

4π

(
1− 2

3

a0

Γc

)2
]
.

(4.76)
Because n3D

e = N/V , where N > n1g, we once again obtain a paramagnetic term.

4.2.3 Order parameter

From Eqs. (4.47), (4.48), (4.68) and (4.69) we see that the magnetization is discon-
tinuous at the transition point |Γ| = Γc. The discontinuity is given by

∆M ≡
(
M+ −M−)∣∣

|Γ|=Γc

=
(
M+

θ̃
−M−

θ̃
+Hχ̃Landauh(EF )

)∣∣∣
|Γ|=Γc

=

[
1

µ0V

(∂E1(H)

∂H
− ∂E0(H)

∂H

)
n1g +Hχ̃Landauh(EF )

]∣∣∣
|Γ|=Γc

.

(4.77)

If EF < 0, then n1 = 0 and thus the magnetization (as well as the susceptibility)
becomes continuous once again. This is the same thing that happened in the Fermi
energy when considering the filling. That is, for EF < 0 the κ1 level is not occupied,
so its presence doesn’t affects the system.

Substituting the derivatives (4.50) and (4.73), as well as the modified Landau
susceptibility (4.30), and evaluating H at |Γ| = Γc by means of Eq. (4.52), we
explicitly obtain that

∆M = −
(

1− 2

3

a0

Γc

)
ceαLn1g/V −

µBň

24πα

Γ3
c

L4
h(EF ), (4.78)

where we used the reduced Compton wavelength of the electron ň = }/mc. Substi-
tuting the value of g in terms of H (and thus in terms of Γc), then

∆M = −µB
2π

Γ3
c

L3

[(
1− 2

3

a0

Γc

)
n1 +

ň

12αL
h(EF )

]
. (4.79)
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This corresponds to a discontinuity of a first derivative of the partition function,
proper of a phase transition of first order, being the magnetization the order parame-
ter. This phase transition is not related at all with thermal fluctuations, but instead to
a discontinuous transition in the energy spectrum of the Hamiltonian. Furthermore,
this approximation is valid in the zero temperature limit, and its only dependence on
the thermodynamic variables lies in the value of L and of H (defined implicitly by the
value of Γc). What we have obtained then is a so-called quantum phase transition
of first order [42].

4.2.4 General case

This phenomenon happens infinitely often as |Γ| increases, as more σk bands appear,
and at a rate given (through the WKB approximation) by ∆Γ = a0

[
(2k + 3)2/3 −

(2k + 1)2/3
]
, which becomes smaller at greater values of k.

From Eqs. (4.48) and (4.69) and our knowledge of how the filling is done we can
infer the general expression for the magnetization when m + 1 bands are allowed.
That is,

M
(m)

θ̃
=

1

µ0V

∂E0(H)

∂H
n

(m)
0 g +

1

µ0V

∂E1(H)

∂H
n

(m)
1 g + ...+

1

µ0V

∂Em(H)

∂H
n(m)
m g, (4.80)

where N = (ν0 + 2ν1 + ...+mνm−1 + (m+ 1)nm)g such that

n
(m)
k = νk + νk+1 + ...+ νm−1 + nm (4.81)

give the total number of n levels occupied in each κk level. Each κ level with oc-
cupation also contributes with an equal term of the Landau magnetization, just like
in Eq. (4.68). Therefore, taking Em(H) ≈ 0, the discontinuity in the magnetization
produced by the appearance of a σm(Γ) band at a critical point |Γ| = Γ

(m)
c is

∆M (m) ≡
(
M (m) −M (m−1)

)∣∣
|Γ|=Γ

(m)
c

=
(
M

(m)

θ̃
−M (m−1)

θ̃
+Hχ̃Landauh(EF )

)∣∣∣
|Γ|=Γ

(m)
c

=

[
1

µ0V

(∂Em(H)

∂H
− ∂E0(H)

∂H
− ...− ∂Em−1(H)

∂H

)
nmg

+Hχ̃Landauh(EF )

]∣∣∣
|Γ|=Γ

(m)
c

,

(4.82)

where once again the derivative of Em(H) at the critical point is zero. For the other
ones we use the general values ak = (3π/2)2/3(k + 1/2)2/3 in Eq. (4.50) to finally
obtain

∆M (m) = −µB
2π

Γ
(m)3
c

L3

[(
m− 2

3

1

Γ
(m)
c

(a0 + ...+ am−1)
)
nm +

ň

12αL
h(EF )

]
. (4.83)
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The first term changes only on the numerical factor and is always dependent on the
number of occupied Landau levels of the new κ band. The second term remains
unchanged, where once again it only counts when there is occupation on this new
band.

The change on the magnetization ends up being negative every time, decreasing
the magnetization at each critical point. Nevertheless, like in Eqs. (4.53) and (4.75),
the magnetizationMθ̃ always increases with L, and thus with |Γ|. The associated Lan-
dau diamagnetism decreases with L, but also its corresponding (negative) increment.
Therefore, in general we expect a see-saw behaviour of the magnetization, where it
gradually increases but suddenly drops at each critical point. As the critical points
grow closer, the phase transition eventually becomes immeasurable in accordance to
the classical limit.



5 Quantum Hall effect in TI

We consider the system of chapter 3 once again, where an external magnetic field
induces an internal electric field that creates bound energy states. Furthermore, we
now take an external electric field E in the x direction just as in chapter 1 of the
HE. By the modified boundary conditions (2.51) with θ̃ = −α we now also obtain an
induced magnetic field

B̃ = α
E

c
. (5.1)

The system described with the electromagnetic fields outside and inside the material
is shown in Fig. 5.1.

Figure 5.1: Quantum Hall effect system in TI. We have external fields E and B, and induced
internal fields Ẽ and B̃ such that on the interior the magnetic field is B = (B̃, 0, B) and
the electric field is E = (E, 0,−Ẽ). For clarity, note that E and B are not the same as the
magnitude of the fields |E| and |B|.

The purpose of this chapter is to compute the quantum Hall current produced
by the bulk states in the same way as in section 1.2.2 by exploiting the existence
of bound states inside the plate, and to obtain the corrections originated from the
induced electromagnetic fields Ẽ and B̃. Note nonetheless that this is an additional
contribution to the one described by the θ-term. The magnetoelectric effect produced
by the θ-term is a consequence of the HE present in the edge states of the TI [43].

60
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Here, we are studying the HE of the bulk states which are effectively bound to the
material through the magnetoelectric effect.

Having noted the context in which we are working, we now analyse the wave
function solutions of this system. The presence of the induced magnetic field of Eq.
(5.1) inside the TI now prevents us from separating the wave-functions such that
they can fulfill the boundary conditions at the x, y directions. Furthermore, solving
directly for the total Hamiltonian results very troublesome, as the energy spectrum
differs from inside and outside the plate. This means that the quantum numbers
(n, ky, κ) cannot be taken as equal both inside and outside, so one needs to expand
one set of solutions in terms of the other with the constriction that the expanded
parameters are such that the energies are equal in both sides. Doing so solves both the
boundary conditions and energy continuity difficulties, but at the cost of expressing
the first ones by means of an infinite matrix. Thus, the quantization condition (3.15)
becomes an infinite determinant and the wave-functions themselves end up being
infinite series of the free eigenfunctions, which results very troublesome when trying
to compute the allowed values of σ. Fortunately we can avoid these complications
by separating the terms arising from the induced magnetic field B̃ and treating them
as a perturbation potential. This naturally recovers both the same energy spectrum
and the boundary conditions at the x, y directions. This is also appropriate, as the
small α factor lends itself perfectly to be treated as a perturbation parameter. Note
nevertheless that we do not take the term from Ẽ as a perturbation potential, even
when it is also proportional to α, as it is necessary to produce the original bound state
solutions. This is consistent, because Ẽ is also proportional to the magnetic field B,
which for the QHE is very big, this variable is not considered as a small parameter.
We remark thus that the perturbation variable will be taken as B̃. This will result in
non-integer powers of α in the final perturbation expansion of the current.

As before, spin is ignored in our calculations. Its corrections are discussed in
Appendix B.

5.1 Hamiltonian

5.1.1 Total Hamiltonian

Outside

The electromagnetic potentials outside are

φ(x) = −xE, A(x) = xBêy. (5.2)

Thus, the Hamiltonian outside is given by

Ĥ =
1

2m

[
p̂2
x + p̂2

z +
(
p̂y + eBx̂

)2
]

+ eEx̂ (5.3)
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Inside

The electromagnetic potentials inside are

φ(x) = −xE + zαcB, A(x) =
(
xB − α

c
Ez
)
êy (5.4)

Thus, the Hamiltonian inside is given by

Ĥ =
1

2m

[
p̂2
x + p̂2

z +
(
p̂y + eBx̂− eα

c
Eẑ
)2
]

+ eEx̂− eαcBẑ (5.5)

5.1.2 Perturbation Hamiltonian

As noted previously, we treat the problem by means of perturbation theory. We then
take

Ĥ = Ĥ0 + Ĥ′, (5.6)

with

Ĥ0 =


1

2m

[
p̂2
x + p̂2

z +
(
p̂y + eBx̂

)2
]

+ eEx̂, z ≤ 0 ∨ z ≥ L.

1
2m

[
p̂2
x + p̂2

z +
(
p̂y + eBx̂

)2
]

+ eEx̂ + eẼẑ, 0 ≤ z ≤ L.
(5.7)

and

Ĥ′ =

{
0, z ≤ 0 ∨ z ≥ L.
1
2
mω2

B̃
ẑ2 − ωB̃ ẑ

(
p̂y + eBx̂

)
, 0 ≤ z ≤ L.

(5.8)

ωB̃ is of the order of the small parameter α. With that in mind, the first term of Ĥ′

is of quadratic order, so this will be ignored at first order. To be clear, let us define

Ĥ′1 =

{
0, z ≤ 0 ∨ z ≥ L.

−ωB̃ ẑ
(
p̂y + eBx̂

)
, 0 ≤ z ≤ L,

(5.9)

a first order correction, and

Ĥ′2 =

{
0, z ≤ 0 ∨ z ≥ L.
1
2
mω2

B̃
ẑ2, 0 ≤ z ≤ L,

(5.10)

a second order correction. In that way,

Ĥ′ = Ĥ′1 + Ĥ′2. (5.11)

5.2 Zero order solutions

The free Hamiltonian of Eq. (5.7) is a mixture of the ones in sections 1.2.2 and 3.1.
It is equally separable and we can easily deduce the solutions (just add the term
of the x-Electric field to the Hermite functions). Thus, the boundary conditions,
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quantization and spectrum are the ones previously studied. We recall some of the
important results.

The wave functions are

Ψ1
n,ky ,κ = eikyyφn

(
x+ ky`

2
B +

mE

eB2

)
Aeκz, z ≤ 0, (5.12)

Ψ2
n,ky ,κ = eikyyφn

(
x+ ky`

2
B +

mE

eB2

)(
C Ai(ξ) +DBi(ξ)

)
, 0 ≤ z ≤ L, (5.13)

Ψ2
n,ky ,κ = eikyyφn

(
x+ ky`

2
B +

mE

eB2

)
Be−κz, z ≥ L, (5.14)

with
φn(x) =

1√
2nn!`B

1

π1/4
e−x

2/2`2BHn(x/`B), (5.15)

the Hermite functions [14], being Hn the Hermite polynomials. Their energies are

En,ky ,κ = }ωB
(
n+

1

2

)
− eE

(
ky`

2
B +

mE

2eB2

)
− }2κ2

2m
(5.16)

As before, the boundary conditions in x-y are automatically satisfied. Once again the
boundary conditions in z imply

A = C Ai(σ2) +DBi(σ2), (5.17a)

σA = C Ai′(σ2) +DBi′(σ2), (5.17b)

and
Be−ω = C Ai(σ2 + Γ) +DBi(σ2 + Γ), (5.18a)

− σBe−ω = C Ai′(σ2 + Γ) +DBi′(σ2 + Γ), (5.18b)

which give the quantization condition

F (σ,Γ) ≡ [Ai′(τ) + σAi(τ)][Bi′(σ2)− σBi(σ2)]

− [Bi′(τ) + σBi(τ)][Ai′(σ2)− σAi(σ2)] = 0,
(5.19)

with τ = σ2 + Γ. This is the same one as section 3.1, so we once again obtain the
same κ energy curves defined by the allowed σk(Γ) bands of Fig. 3.2b. We will also
work once again with the functions

A(ξ) = C Ai(ξ) +DBi(ξ), (5.20)

and
B(ξ) = C∗Ai(ξ) +D∗ Bi(ξ). (5.21)

Not to be confused with the constants A and B of the amplitudes of the wave func-
tions, nor with the original Airy functions Ai(ξ) and Bi(ξ).
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By the boundary conditions (5.17a), (5.17b), (5.18a) y (5.18b), the functions A(ξ)
and B(ξ) satisfy

A(σ2) =
1

σ
A′(σ2) = A (5.22)

and
A(τ) =

−1

σ
A′(τ) = Be−w. (5.23)

The expressions are analogous for B(ξ) = A∗(ξ). In general, we will express the
constants A and B in terms of A(ξ) and B(ξ) by means of these equations, for it is
more practical.

Also, using the boundary conditions, it is possible to obtain that

A(τ) = πA(σ2)G(σ,Γ) (5.24)

and
B(τ) = πB(σ2)G(σ,Γ), (5.25)

where

G(σ,Γ) = Bi(τ)(Ai′(σ2)− σAi(σ2)) + Ai(τ)(σBi(σ2)− Bi′(σ2)). (5.26)

For simplicity, C and D will now be assumed reals, such that A(ξ) and B(ξ) coincide1.
Thus, by means of Eqs. (3.58), (5.24) and (5.25), we get

A(σ2) = B(σ2) =
1√
LylẼ

1√
1

2σ
+
(

1
2σ

+ Γ
)
π2G2(σ,Γ)

, (5.27)

A(τ) = B(τ) =
1√
LylẼ

πG(σ,Γ)√
1

2σ
+
(

1
2σ

+ Γ
)
π2G2(σ,Γ)

. (5.28)

Nonetheless, it is useful to keep using the distinction between each function A(ξ) and
B(ξ), for inner products of different wave functions will appear later. These will result
in products such as A(σ2)B(σ′2), A(τ)B(τ ′), where each function corresponds to a
different wave function, and therefore is defined as a linear combination of different
constants.

5.3 Perturbation matrix elements

As usual, the perturbation corrections are given in terms of the matrix element of the
perturbation Hamiltonian 〈

Ψ
(0)
n′,k′y ,κ

′

∣∣ Ĥ′∣∣Ψ(0)
n,ky ,κ

〉
. (5.29)

When computing this, p̂y is substituted by }ky, and thus the wave functions in y
induce a δ(ky − k′y) (equivalent to Ly when ky = k′y). At the moment this will be
obviated.

1Without this, they would in general differ by an arbitrary and unimportant phase, so this
assumption can be done without loss of generality.
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5.3.1 First Order

The first order Hamiltonian can be expressed as

H′1
κ,κ′

n,n′ ≡
〈
Ψ

(0)
n′,ky ,κ′

∣∣ Ĥ′1∣∣Ψ(0)
n,ky ,κ

〉
= ωB̃ Vn′,κ′

n,κ , (5.30)

where

Vn′,κ′

n,κ = −
∫ ∞
−∞

∫ L

0

dx dz φn′

(
x+ ky`

2
B +

mE

eB2

)
B(ξ′)z(~ky + eBx)

× φn
(
x+ ky`

2
B +

mE

eB2

)
A(ξ),

(5.31)

where ξ = σ2 + Γ
L
z and ξ′ = σ′2 + Γ

L
z. Because the Hermite functions are orthonormal,

and because [12]∫ ∞
−∞

φn′(x)xφn(x) dx = `B

√
n+ 1

2
δn′,n+1 + `B

√
n

2
δn′,n−1, (5.32)

then

Vn′,κ′

n,κ =
[
δn,n′

mE

B
− eB`B

√
n+ 1

2
δn′,n+1 − eB`B

√
n

2
δn′,n−1

] ∫ L

0

A(ξ)zB(ξ′) dz

≡ Υn,n′ Iκ,κ′ ,

(5.33)

with

Υn,n′ = δn,n′
mE

B
− eB`B

√
n+ 1

2
δn′,n+1 − eB`B

√
n

2
δn′,n−1 (5.34)

and

Iκ,κ′ =

∫ L

0

A(ξ)zB(ξ′) dz. (5.35)

With the change of variables ξ = σ2 + Γ
L
z and ξ′ = ξ + ∆ with ∆ = σ′2 − σ2, then

Iκ,κ′ =
L2

Γ2

∫ σ2+Γ

σ2

A(ξ)(ξ − σ2)B(ξ + ∆) dξ. (5.36)

So, in general

Iκ,κ′ = l2
Ẽ

[I2 − σ2I1]
∣∣∣σ2+Γ

σ2
, (5.37)

where, depending of whether κ is equal to κ′ or not, will be the case that the I1 and
I2 of this expression correspond to the ones in Eqs. (C.7) and (C.9), or to the ones
in Eqs. (C.6) and (C.8).



CHAPTER 5. QUANTUM HALL EFFECT IN TI 66

Case κ 6= κ′:

Here we have ∆ 6= 0, so Eqs. (C.7) and (C.9) are used. Furthermore, with Eqs. (5.22)
and (5.23), we obtain that

[I2 − σ2I1]
∣∣∣
σ2

=

[
2

(σ − σ′)2(σ + σ′)3
− 1

(σ + σ′)2

]
A(σ2)B(σ′2), (5.38)

and

[I2 − σ2I1]
∣∣∣σ2+Γ

= −

[
2

(σ − σ′)2(σ + σ′)3
+

1

(σ + σ′)2

+ Γ
( 1

σ + σ′
+

2

(σ′2 − σ2)2

)]
A(τ)B(τ ′).

(5.39)

Case κ = κ′:

Here we have ∆ = 0, so Eqs. (C.6) and (C.8) are used. Again, by means of Eqs.
(5.22) and (5.23) we get

[Ī2 − σ2Ī1]
∣∣∣
σ2

=
σ

3
A(σ2)B(σ2), (5.40)

and
[Ī2 − σ2Ī1]

∣∣∣σ2+Γ

=
[Γ

3
(Γ− 2σ2)− σ

3

]
A(τ)B(τ). (5.41)

Final form of Iκ,κ′

With these results, along with Eqs. (5.27) and (5.28) applied respectively to σ and
σ′, we have completely determined Iκ,κ′ in terms of Airy functions. That is,

Iκ,κ = −`Ẽ

{[Γ

3
(2σ2 − Γ) +

σ

3

]
π2G2(σ,Γ) +

σ

3

}
1

1
2σ

+
(

1
2σ

+ Γ
)
π2G2(σ,Γ)

(5.42)

if κ = κ′, and

Iκ,κ′ = −`Ẽ

{[
2

(σ − σ′)2(σ + σ′)3
+

1

(σ + σ′)2
+ Γ

( 1

σ + σ′
+

2

(σ′2 − σ2)2

)]

× π2G(σ′,Γ)G(σ,Γ) +

[
2

(σ − σ′)2(σ + σ′)3
− 1

(σ + σ′)2

]}
× 1√

1
2σ

+
(

1
2σ

+ Γ
)
π2G2(σ,Γ)

1√
1

2σ′
+
(

1
2σ′

+ Γ
)
π2G2(σ′,Γ)

(5.43)
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(a) κ′ = κ. (b) κ′ = κ0, κ 6= κ′.

Figure 5.2: Plots of the matrix element Iκ,κ′ evaluated in the allowed σ(Γ) bands of Fig.
3.2b.

if κ 6= κ′. The Ly previously ignored at the beginning was recovered here to be
canceled with the 1/Ly involved in Eqs. (5.27) and (5.28). It can be seen that the
limit κ′ −→ κ in (5.43) does not recover (5.42) and in fact results in a pole. This is
discussed in Appendix E.

Fig. 5.2a shows a plot of Iκ,κ (ignoring the `Ẽ factor), where it has been evaluated
on the different allowed values of σ(Γ). This gives different curves of Iκ,κ which
only depend on Γ. The base state (the level with the highest allowed value of σ)
corresponds to the lower curve. The next levels subsequently follow it from above.

Fig. 5.2b shows in an analogous way the plot of Iκ,κ0 . That is, Iκ,κ′ with the
different levels of σ = σ(Γ) and with σ′ = σ0(Γ), the base state. The first excited
state σ1 corresponds to the lower curve. The next levels follow it, alternating in
positive/negative curves.

Approximations for Iκ,κ

Eqs. (5.42) and (5.43) are cumbersome expressions. Specially with the term G(σ,Γ)
of Eq. (5.26), which includes Airy functions2. Nonetheless, it is useful to look at the
graph of G(σ,Γ) (such as in Fig. 5.3), focusing on the allowed values of σ, for which
it will be evaluated at the end. We then see that these allowed values are positioned
in points close to where G(σ,Γ) takes a maximum amplitude. That is, at many of
the allowed values, the assumption

|G(σ root,Γ)| � 1 (5.44)

holds.
2This term not only is algebraically cumbersome. The main problem is that the Airy functions

involved quickly diverge (causing overflow issues with numerical computations). This is exactly in
correspondence with the approximation made in this section.
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Figure 5.3: Plot of G(σ,Γ) in log scale for Γ = −20, with the position of the respective
allowed values of σ. The values of G at these positions tend to be at maximum amplitudes.

That allows us to take an approximation with G2(σ,Γ) −→ ∞. With this limit,
Eq. (5.42) results in

Iκ,κ ≈ −`Ẽ
[Γ

3
(2σ2 − Γ) +

σ

3

] 2σ

1 + 2σΓ
. (5.45)

This is more manageable, and in fact reproduces the original behaviour at most cases.
This can be seen in Fig. 5.4a, where both expressions are compared.

(a) Approximation G2(σ,Γ) −→∞. (b) Approximation σΓ� 1.

Figure 5.4: Comparison between the two approximations (5.45) and (5.46) with the exact
expression, evaluated in the allowed values of σ, which depend on Γ..

A further approximation can be made, where we focus on the regime σΓ� 1. In
this case, we get

Iκ,κ ≈ `Ẽ
1

3
(Γ− 2σ2). (5.46)
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Fig. 5.4b shows a comparison between this approximation and the exact one.
To have a more intuitive idea of the general order of magnitude of Iκ,κ, we can

take σ ∼
√
|Γ| (such as in WKB), so that

Iκ,κ ∼ −`Ẽ
Γ

3
= −L

3
. (5.47)

That is, it is mostly linearly dependent on Γ (as it could be seen in Fig. 5.2a).
Cancelling the electric length we obtain that this function approximately of order
zero in terms of the perturbation parameter α, and in fact goes like the thickness of
the plate L.

Approximations for Iκ,κ′.

The approximation methods for Iκ,κ′ are the same that the ones for Iκ,κ. The only
detail is that now the limit has the behaviour G(σ,Γ)G(σ′,Γ) −→ ±∞. That is,
there is an undefined sign. That is of no greater importance, because the corrections
are quadratic in Iκ,κ′ . Thus, up to a sign, the first approximation is

Iκ,κ′ ≈ −`Ẽ
(

Γ +
1

σ + σ′

)(
1

σ + σ′
+

2

(σ′2 − σ2)2

)
2
√
σσ′√

1 + 2σΓ
√

1 + 2σ′Γ
. (5.48)

Fig. 5.5a shows the comparison between this approximation and the exact expression,
where we manually placed the correct sign for each curve.

(a) Approximation G2(σ,Γ) −→∞. (b) Approximation σΓ� 1.

Figure 5.5: Comparison between the two approximations (5.48) and (5.49) with the exact
expression, evaluated in the allowed values of σ, which depend on Γ.

If we further suppose that σΓ� 1 and σ′Γ� 1, then

Iκ,κ′ ≈ −`Ẽ
(

1

σ + σ′
+

2

(σ′2 − σ2)2

)
. (5.49)
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Fig. 5.5b shows the comparison between this approximation and the exact expression.
To obtain the order of magnitude of Iκ,κ′ , we can note that for big values of Γ

(which is generally the case), the second term dominates over the first one. This is
because σ + σ′ ∼

√
|Γ|, which can be big, while (σ′2 − σ2)2 tends to a constant. For

example, by means of the WKB approximation (3.18), we have that

σ2
0 − σ2

1 ≈
(3π

4

)2/3

(32/3 − 1) ≈ 1.91. (5.50)

So, the order of Iκ,κ′ goes like

Iκ,κ′ ∼ −`Ẽ
2

(σ′2 − σ2)2
(5.51)

This can be seen in Fig. 5.2b, where Iκ,κ′ tend to constants as Γ increases. In
particular Iκ0,κ1 , the biggest one, tends to

Iκ0,κ1 ∼ −`Ẽ
2

(1.91)2
= −0.55`Ẽ. (5.52)

That coincides with the plot. So Iκ,κ′ can be seen in the order of magnitude of the
electric length of the induced field.

5.3.2 Second Order

The matrix element of second order in α is

H′2
κ,κ′

n,n′ ≡
〈
Ψ

(0)
n′,ky ,κ′

∣∣ Ĥ′2∣∣Ψ(0)
n,ky ,κ

〉
=

1

2
mω2

B̃
δn,n′ Jκ,κ′ , (5.53)

with

Jκ,κ′ ≡
∫ L

0

A(ξ)z2B(ξ′) dz. (5.54)

A similar, but more extensive3, calculation as the one in the previous section results
in

Jκ,κ = − 1

15
`2
Ẽ

{[
Γ2(4σ2 − 3Γ)− (1 + 2Γσ)(4σ3 − 3)

]
π2G2(σ,Γ) + (4σ3 + 3)

}
× 1

1
2σ

+
(

1
2σ

+ Γ
)
π2G2(σ,Γ)

(5.55)

3One must use an integral formula for the linear combination of Airy functions multiplied by a
quadratic term in ξ, also found in Ref. [36].
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if κ = κ′, and

Jκ,κ′ = −`2
Ẽ

{[(
2

(σ + σ′)3
+

12

(σ − σ′)2(σ + σ′)4
+

24

(σ − σ′)4(σ + σ′)5

)
(1 + (σ + σ′)Γ)

+ Γ2
( 1

σ + σ′
+

4

(σ′2 − σ2)2

)]
π2G(σ′,Γ)G(σ,Γ)

−

[
2

(σ + σ′)3
− 12

(σ − σ′)2(σ + σ′)4
+

24

(σ − σ′)4(σ + σ′)5

]}
× 1√

1
2σ

+
(

1
2σ

+ Γ
)
π2G2(σ,Γ)

1√
1

2σ′
+
(

1
2σ′

+ Γ
)
π2G2(σ′,Γ)

(5.56)

if κ 6= κ′. No further treatments will be made, as it will be seen that these integrals
actually cancel out.

5.4 Perturbative corrections

5.4.1 Wave Function

The perturbation matrix element is

H′
κ,κ′

n,n′ = H′1
κ,κ′

n,n′ + H′2
κ,κ′

n,n′ , (5.57)

with
H′1

κ,κ′

n,n′ = ωB̃Υn,n′ Iκ,κ′ (5.58)

of first order in α, and

H′2
κ,κ′

n,n′ =
1

2
mω2

B̃
δn,n′ Jκ,κ′ . (5.59)

of second order in α. If we define the energy difference

∆Eκ,κ
′

n,n′ = E (0)
n,ky ,κ

− E (0)
n′,ky ,κ′

= }ωB(n− n′)− }2

2m
(κ2 − κ′2), (5.60)

then the perturbation series of the wave function (without normalization) is [11]

∣∣Ψn,κ

〉
=
∣∣Ψ(0)

n,κ

〉
+ ωB̃

∑
M ′ 6=M

Υn,n′ Iκ,κ′

∆Eκ,κ′n,n′

∣∣Ψ(0)
n′,κ′

〉
+ ω2

B̃

(
m

2

∑
κ′ 6=κ

Jκ,κ′

∆Eκ,κ′n,n

∣∣Ψ(0)
n,κ′

〉
+
∑

M ′′ 6=M

∑
M ′ 6=M

Υn′′,n′Υn′,n Iκ′′,κ′ Iκ′,κ

∆Eκ,κ′′n,n′′∆E
κ,κ′

n,n′

∣∣Ψ(0)
n′′,κ′′

〉
−
∑
M ′ 6=M

Υn,nΥn′,n Iκ,κ Iκ′,κ

(∆Eκ,κ′n,n′ )
2

∣∣Ψ(0)
n′,κ′

〉)
+O(α3)

(5.61)
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where M = {n, κ} is taken to simplify the notation, with the convention that a sum
with M ′ 6= M implies that at least one of the quantum numbers is different (that is,
one could still be equal). The ky term is obviated, as it involves no corrections. The
first row corresponds to the usual terms which are linear in the perturbation series.
Nevertheless, the linear term correspondent to H′2 is of second order in α. For this it
is attached with a parenthesis to the quadratic terms, which lie on the second row.
This second row doesn’t includes the quadratic term of H′2, nor the product of H′1
with H′2, for they are of fourth and third order, respectively.

The normalized wave function is defined by∣∣Ψn,κ

〉
N

= (Zn,κ)
1/2
∣∣Ψn,κ

〉
, (5.62)

where up to second order,

Zn,κ = 1− ω2
B̃

∑
M ′ 6=M

|Υn,n′ Iκ,κ′ |2

(∆Eκ,κ′n,n′ )
2

+O(α3). (5.63)

5.4.2 Current

Once again we consider the system as an electron gas. So, in its most simplified form,
and just like the one presented in section 1.2.2, the average current is

I = − e

m

∑
O.S.

〈Ψn,ky ,κ| − i}∇+ eA(x̂)|Ψn,ky ,κ〉, (5.64)

where the sum is made over the occupied states. We take each Landau level as
completely full (no matter if in reality the levels are half filled), in the same way
that it was taken for this same calculation in section 1.2.2. Thus, we are implicitly
assuming that the perturbations from the induced fields do not disturb at zeroth
order the quantization of the current. That is, we assume that the perturbation is
small enough such that the property that the current behaves as if the Landau levels
were full even when they are only partially full is maintained.

In our case, the total vector potential is

A(x) =

{
xBêy, z ≤ 0 ∨ z ≥ L.

(xB − α
c
Ez)êy, 0 ≤ z ≤ L.

(5.65)

To simplify the notation, we define the operator

z̃ =

{
0, z ≤ 0 ∨ z ≥ L.

z, 0 ≤ z ≤ L.
(5.66)

Thus, the current is

I = − e

m

∑
(n,ky ,κ)

〈
Ψn,ky ,κ

∣∣− i}∇+ e(Bx− α

c
Ez̃)êy

∣∣Ψn,ky ,κ

〉
(5.67)
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with (n, ky, κ) the values of the occupied states. The associated Hall current is given
by the y-component

Iy = − e

m

∑
(n,ky ,κ)

〈
Ψn,ky ,κ

∣∣}ky + eBx− eα
c
Ez̃
∣∣Ψn,ky ,κ

〉
(5.68)

When substituting the perturbation series, we only have to consider the matrix ele-
ments (where we obviate the Dirac delta of ky)〈

Ψ
(0)
n′,ky ,κ′

∣∣Ψ(0)
n,ky ,κ

〉
= δn,n′δκ′,κ′ , (5.69)

〈x
〉κ,κ′
n,n′
≡ 〈Ψ(0)

n′,ky ,κ′

∣∣x∣∣Ψ(0)
n,ky ,κ

〉
= δκ,κ′

[
`B

√
n+ 1

2
δn′,n+1 + `B

√
n

2
δn′,n−1 − (ky`

2
B +

mE

eB2
)δn,n′

]
,

(5.70)

and
〈z̃〉κ,κ

′

n,n′ ≡
〈
Ψ

(0)
n′,ky ,κ′

∣∣z̃∣∣Ψ(0)
n,ky ,κ

〉
= δn,n′ Iκ,κ′ . (5.71)

The first equation is the orthogonality relation of the unperturbed states, calculated
in section 3.4.1. The second term is analogous to Υn,n′ of Eq. (5.34). The third one
is exactly given by Iκ,κ′ , calculated in section 5.3.1.

Current at first order

At first order, the wave function is∣∣Ψn,ky ,κ

〉
=
∣∣Ψ(0)

n,ky ,κ

〉
+ ωB̃

∑
M ′ 6=M

Υn,n′ Iκ,κ′

∆Eκ,κ′n,n′

∣∣Ψ(0)
n′,ky ,κ′

〉
(5.72)

and the normalization constant is Zn,κ = 1. The current in y is then

Iy = − e

m

∑
(n,ky ,κ)

[〈
Ψ

(0)
n,ky ,κ

∣∣+ ωB̃
∑

M ′′ 6=M

Υn,n′′ Iκ,κ′′

∆Eκ,κ′′n,n′′

〈
Ψ

(0)
n′′,ky ,κ′′

∣∣](}ky + eBx− eα
c
Ez̃)

×

[∣∣Ψ(0)
n,ky ,κ

〉
+ ωB̃

∑
M ′ 6=M

Υn,n′ Iκ,κ′

∆Eκ,κ′n,n′

∣∣Ψ(0)
n′,ky ,κ′

〉]
(5.73)

In terms of the matrix elements (5.69), (5.70) and (5.71), and ignoring quadratic
terms in α, we have

Iy = − e

m

∑
(n,ky ,κ)

[
}ky − eB(ky`

2
B +

mE

eB2
)− eα

c
E〈z̃〉κ,κn,n + ωB̃eB

∑
M ′′ 6=M

〈x〉κ,κ
′′

n,n′′
Υn,n′′ Iκ,κ′′

∆Eκ,κ′′n,n′′

+ ωB̃eB
∑
M ′ 6=M

〈x〉κ
′,κ
n′,n

Υn′,n Iκ′,κ

∆Eκ,κ′n,n′

]
(5.74)
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Taking M ′′ −→ M ′ (mute indexes), inserting the value of the matrix element of z̃,
and noting that all elements are symmetric,

Iy = − e

m

∑
(n,ky ,κ)

[
− mE

B
− eα

c
E Iκ,κ + 2ωB̃eB

∑
M ′ 6=M

〈x〉κ,κ
′

n,n′
Υn,n′ Iκ,κ′

∆Eκ,κ′n,n′

]
. (5.75)

Now, 〈x〉κ,κ
′

n,n′ ∼ δκ,κ′ , so in the sum, κ′ = κ. That forces n′ 6= n and ∆Eκ,κn,n′ =
}ωB(n− n′). Thus

Iy =
e

m

∑
(n,ky ,κ)

[
mE

B
+ e

α

c
E Iκ,κ − 2

ωB̃eB

}ωB
Iκ,κ

∑
n′ 6=n

〈x〉κ,κn,n′Υn,n′

n− n′

]
(5.76)

In the last term, the only non-zero terms are the ones where4 n′ = n+1 and n′ = n−1,
for which

〈x〉κ,κn,n+1Υn,n+1

−1
+
〈x〉κ,κn,n−1Υn,n−1

1
= eB`2

B

(n+ 1

2

)
− eB`2

B

(n
2

)
=

1

2
eB`2

B. (5.77)

Simplifying the factor
ωB̃e

2B2`2
B

}ωB
= e

α

c
E, (5.78)

we then have

Iy =
e

m

∑
(n,ky ,κ)

[mE
B

+ e
α

c
E( Iκ,κ − Iκ,κ)

]
= e

∑
n,ky ,κ

E

B

(5.79)

The first order correction nullifies itself exactly, and so we recover the original ex-
pression of equation (1.45). Despite having an extra sum over the κ levels, the final
result will be the same because a filled κ level possesses exactly the same degeneracy
(given by the sum in ky) with respect to a n level and because the current presents
no dependency on the quantum numbers. That is, it matters not how each Landau
level is filled and how the quantum energies are structured. The only difference is the
interpretation of the integer that defined each plateau. Originally it corresponded
to the number of filled Landau (n) levels. Now we must think of it as a mixture
between the discrete n and κ Levels, which in turn allow us to generally consider
them as Landau levels again (just as how it was taken in section 3.3). A second order
calculation is needed.

Current at second order

Now it is crucial to take into account what was mentioned in section 1.2.2. That is,
we must be careful to take the complete limits a, b on the integration of ky, which

4This is still valid for the case n = 0, because that term is null either way.
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are given in Eq. (1.40). This is important, because now, apart from the trivial sum

∑
ky

−→ Ly
2π

∫ b

a

dky =
Ly
2π

(b− a) =
LxLy
2π`2

B

≡ N, (5.80)

which gives the number of states of each Landau level, there will appear linear inte-
grals in ky. In those ones,

∑
ky

ky −→
Ly
2π

∫ b

a

ky dky =
Ly
2π

1

2
(b2 − a2) =

Ly
2π

1

2
(b− a)(b+ a) = −N 1

`2
B

mE

eB2
. (5.81)

where we can factorize the number of states N of each Landau level.
Now, at second order, the wave function is given completely by (5.61), and the

normalization constant by (5.63). Explicitly, the current in y is

Iy =− e

m

∑
(n,ky ,κ)

Zn,κ

[〈
Ψ(0)
n,κ

∣∣+ ωB̃
∑

M ′′ 6=M

Υn,n′′ Iκ,κ′′

∆Eκ,κ′′n,n′′

〈
Ψ

(0)
n′′,κ′′

∣∣+ ω2
B̃

(
m

2

∑
κ′ 6=κ

Jκ,κ′

∆Eκ,κ′n,n

〈
Ψ

(0)
n,κ′

∣∣
+
∑

M ′′ 6=M

∑
M ′ 6=M

Υn′′,n′Υn′,n Iκ′′,κ′ Iκ′,κ

∆Eκ,κ′′n,n′′∆E
κ,κ′

n,n′

〈
Ψ

(0)
n′′,κ′′

∣∣− ∑
M ′ 6=M

Υn,nΥn′,n Iκ,κ Iκ′,κ

(∆Eκ,κ′n,n′ )
2

〈
Ψ

(0)
n′,κ′

∣∣)]
×
(
}ky + eBx− eα

c
Ez̃
)

×

[∣∣Ψ(0)
n,κ

〉
+ ωB̃

∑
M ′ 6=M

Υn,n′ Iκ,κ′

∆Eκ,κ′n,n′

∣∣Ψ(0)
n′,κ′

〉
+ ω2

B̃

(
m

2

∑
κ′ 6=κ

Jκ,κ′

∆Eκ,κ′n,n

∣∣Ψ(0)
n,κ′

〉
+
∑

M ′′ 6=M

∑
M ′ 6=M

Υn′′,n′Υn′,n Iκ′′,κ′ Iκ′,κ

∆Eκ,κ′′n,n′′∆E
κ,κ′

n,n′

∣∣Ψ(0)
n′′,κ′′

〉
−
∑
M ′ 6=M

Υn,nΥn′,n Iκ,κ Iκ′,κ

(∆Eκ,κ′n,n′ )
2

∣∣Ψ(0)
n′,κ′

〉)]
(5.82)

In terms of the matrix elements (5.69), (5.70) and (5.71), at second order in α we
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have

Iy =− e

m

∑
n,ky ,κ

Zn,κ

[
}ky − eB(ky`

2
B +

mE

eB2
)− eα

c
E〈z̃〉κ,κn,n

+ ωB̃
∑
M ′ 6=M

(
eB〈x〉κ,κ

′

n,n′ −
α

c
eE〈z̃〉κ,κ

′

n,n′

)Υn,n′ Iκ,κ′

∆Eκ,κ′n,n′

+ ω2
B̃
eB

(
m

2

∑
κ′ 6=κ

〈x〉κ,κ′n,n

Jκ,κ′

∆Eκ,κ′n,n

+
∑

M ′′ 6=M

∑
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〈x〉κ,κ
′′

n,n′′
Υn′′,n′Υn′,n Iκ′′,κ′ Iκ′,κ

∆Eκ,κ′′n,n′′∆E
κ,κ′

n,n′

−
∑
M ′ 6=M

〈x〉κ,κ
′

n,n′
Υn,nΥn′,n Iκ,κ Iκ′,κ

(∆Eκ,κ′n,n′ )
2

)

+ ωB̃
∑

M ′′ 6=M

(
eB〈x〉κ

′′,κ
n′′,n − e

α

c
E〈z̃〉κ

′′,κ
n′′,n

)Υn′′,n Iκ′′,κ

∆Eκ,κ′′n,n′′

+ ω2
B̃

∑
M ′′ 6=M

∑
M ′ 6=M

(
}kyδn′′,n′δκ′′,κ′ + eB〈x〉κ

′′,κ′

n′′,n′

)Υn,n′′ Iκ,κ′′Υn,n′ Iκ,κ′

∆Eκ,κ′′n,n′′∆E
κ,κ′

n,n′

+ ω2
B̃
eB

(
m

2

∑
κ′ 6=κ

〈x〉κ′,κn,n

Jκ,κ′

∆Eκ,κ′n,n

+
∑

M ′′ 6=M

∑
M ′ 6=M

〈x〉κ
′′,κ
n′′,n

Υn′′,n′Υn′,n Iκ′′,κ′ Iκ′,κ

∆Eκ,κ′′n,n′′∆E
κ,κ′

n,n′

−
∑
M ′ 6=M

〈x〉κ
′,κ
n′,n

Υn,nΥn′,n Iκ,κ Iκ′,κ

(∆Eκ,κ′n,n′ )
2

)]
(5.83)

The order of expansion was this: First, all of the terms that multiply the term of
zero order on the left of Eq. (5.82), which gives the first three rows. Then, the terms
which multiply the one of first order at the left, which gives the fourth and fifth rows.
Finally, the ones that multiply the term of second order, which give the sixth and
seventh rows.

The Jκ,κ′ elements include a 〈x〉κ,κ′n,n ∼ δκ,κ′ . Because the sum over them is made
over κ 6= κ′, these sums are zero. We then use the symmetry properties of each matrix
element and also substitute the value of z̃,

Iy = − e

m

∑
n,ky ,κ

Zn,κ

[
− mE

B
− eα

c
E Iκ,κ

+ 2ωB̃
∑
M ′ 6=M

(
eB〈x〉κ,κ

′

n,n′ − e
α

c
Eδn,n′ Iκ,κ′

)Υn,n′ Iκ,κ′

∆Eκ,κ′n,n′

+ 2ω2
B̃
eB

( ∑
M ′′ 6=M

∑
M ′ 6=M

〈x〉κ,κ
′′

n,n′′
Υn′′,n′Υn′,n Iκ′′,κ′ Iκ′,κ

∆Eκ,κ′′n,n′′∆E
κ,κ′

n,n′

−
∑
M ′ 6=M

〈x〉κ,κ
′

n,n′
Υn,nΥn′,n Iκ,κ Iκ′,κ

(∆Eκ,κ′n,n′ )
2

)

+ ω2
B̃

∑
M ′′ 6=M

∑
M ′ 6=M

(
}kyδn′′,n′δκ′′,κ′ + eB〈x〉κ

′′,κ′

n′′,n′

)Υn,n′′ Iκ,κ′′Υn,n′ Iκ,κ′

∆Eκ,κ′′n,n′′∆E
κ,κ′

n,n′

]
(5.84)
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We have already obtained that the linear terms cancel each other, so we automatically
suppress them now. We then expand the sums with the respective Kronecker deltas
that restrict them. For that we use 〈x〉κ,κ

′

n,n′ ∼ δκ,κ′ , which makes κ′ = κ, and so n′ 6= n,
∆Eκ,κn,n′ = }ωB(n− n′). Thus,

Iy =
e

m

∑
n,ky ,κ

Zn,κ

[
mE

B
+ 2ωB̃eα

E

c
Υn,n

∑
κ′ 6=κ

( Iκ,κ′)
2

∆Eκ,κ′n,n

− 2
ω2
B̃
eB

}ωB

∑
n′′ 6=n

∑
M ′ 6=M

〈x〉κ,κn,n′′Υn′′,n′Υn′,n Iκ,κ′ Iκ′,κ

(n− n′′)∆Eκ,κ′n,n′

+ 2
ω2
B̃
eB

}2ω2
B

∑
n′ 6=n

〈x〉κ,κn,n′Υn,nΥn′,n Iκ,κ Iκ,κ

(n− n′)2
− ω2

B̃
}ky

∑
M ′ 6=M

Υn,n′ Iκ,κ′Υn,n′ Iκ,κ′

(∆Eκ,κ′n,n′ )
2

− ω2
B̃
eB

∑
n′′ 6=n

∑
M ′ 6=M

〈x〉κ
′,κ′

n′′,n′Υn,n′′ Iκ,κ′Υn,n′ Iκ,κ′

∆Eκ,κ′n,n′′∆E
κ,κ′

n,n′

]
.

(5.85)

From the way we take the sums over M ′, we have∑
M ′ 6=M

(...) =
∑
n′ 6=n
κ′=κ

(...) +
∑
κ′ 6=κ
n′=n

(...). (5.86)

We also take
1

}ωB
∆Eκ,κ′n,n =

1

}ωB
}2

2m`2
Ẽ

(σ′2 − σ2) = ε∆, (5.87)

with the same ∆ = σ′2 − σ2 that we previously defined, and with ε, the quotient
of between a κ energy level and the energy quantum of an n level ~ωB, which was
already defined in Eq. (3.23).
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With that in mind, we have

Iy =
e

m

∑
n,ky ,κ

Zn,κ

[
mE

B
+ 2

ωB̃eαE/c

}ωB
mE

B

∑
κ′ 6=κ

( Iκ,κ′)
2

ε∆

− 2
ω2
B̃
eB

}2ω2
B

( Iκ,κ)
2
∑
n′′ 6=n

∑
n′ 6=n

〈x〉κ,κn,n′′Υn′′,n′Υn′,n

(n− n′′)(n− n′)

− 2
ω2
B̃
eB

}2ω2
B

mE

B

∑
κ′ 6=κ

( Iκ,κ′)
2

ε∆

∑
n′′ 6=n

〈x〉κ,κn,n′′Υn′′,n

(n− n′′)

+ 2
ω2
B̃
eB

}2ω2
B

mE

B
( Iκ,κ)

2
∑
n′ 6=n

〈x〉κ,κn,n′Υn′,n

(n− n′)2
− ω2

B̃
}ky

∑
M ′ 6=M

Υn,n′ Iκ,κ′Υn,n′ Iκ,κ′

(∆Eκ,κ′n,n′ )
2

−
ω2
B̃
eB

}2ω2
B

( Iκ,κ)
2
∑
n′′ 6=n

∑
n′ 6=n

〈x〉κ
′,κ′

n′′,n′Υn,n′′Υn,n′

(n− n′′)(n− n′)

−
ω2
B̃
eB

}2ω2
B

mE

B

∑
κ′ 6=κ

( Iκ,κ′)
2

ε∆

∑
n′′ 6=n

〈x〉κ
′,κ′

n,n′′Υn,n′′

ε∆ + (n− n′′)

]
.

(5.88)

We didn’t expand the second sum in the fourth row, which involves a linear ky term,
for it cancels exactly later. Now, explicitly performing the sums

∑
n′′ 6=n

∑
n′ 6=n

〈x〉κ,κn,n′′Υn′′,n′Υn′,n

(n− n′′)(n− n′)
= −1

2
eB`2

B

mE

B
(2n+ 1)

+
1

4
e2B2`3

B

[
(n+ 1)

√
n+ 2

2
+ n

√
n− 1

2

]
,

(5.89)

∑
n′′ 6=n

〈x〉κ,κn,n′′Υn′′,n

(n− n′′)
=

1

2
eB`2

B, (5.90)

∑
n′ 6=n

〈x〉κ,κn,n′Υn′,n

(n− n′)2
= −1

2
eB`2

B(2n+ 1), (5.91)

∑
n′′ 6=n

∑
n′ 6=n

〈x〉κ
′,κ′

n′′,n′Υn,n′′Υn,n′

(n− n′′)(n− n′)
= −1

2
e2B2`2

B

(
ky`

2
B +

mE

eB2

)
(2n+ 1). (5.92)

This last one, when performing the linear sum over ky of Eq. (5.81), ends up being
zero (the cumbersome limits on ky were very important!). Finally,

∑
n′′ 6=n

〈x〉κ
′,κ′

n,n′′Υn,n′′

ε∆ + (n− n′′)
= −1

2
eB`2

B

[
n

ε∆ + 1
+

n+ 1

ε∆− 1

]
. (5.93)
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In this one we note that there exists a pole at |ε∆| = 1. This is nothing more than
the case where

~
2m
|κ′2 − κ2| = ~ωB. (5.94)

That is, this is the case where the energy difference between two κ levels is equal to
~ωB, and so E1,κ and E0,κ′ (or vice-versa) are degenerate. In that case, we would have
to use degenerate perturbation theory instead. Expressing ε in terms of the magnetic
field and other constants we obtain that for that to happen we would need a magnetic
field such that

B = ±∆3α
2Φ0

4πň2 ≈ ±∆3(1.18× 105 T). (5.95)

As ∆ is at the least of order 1, this condition will never happen at a typical QHE
experiment, so this very particular case does not occur.

Now we perform some factor simplifications,

ω2
B̃
e2B2`2

B

}2ω2
B

= α2 e

}B

(
E

c

)2

, eB`B
B

mE
= 2

`3
E

`3
B

. (5.96)

So, with these sums (leaving out once again the previously mentioned ky factor
which cancels at the end), we have

Iy =
e

m

∑
n,ky ,κ

mE

B
Zn,κ

[
1 + α2 e

}B

(
E

c

)2
(

2
∑
κ′ 6=κ

( Iκ,κ′)
2

ε∆
+ ( Iκ,κ)

2(2n+ 1)

− ( Iκ,κ)
2 `

3
E

`3
B

[
(n+ 1)

√
n+ 2

2
+ n

√
n− 1

2

]
−
∑
κ′ 6=κ

( Iκ,κ′)
2

ε∆

− ( Iκ,κ)
2(2n+ 1) +

1

2

∑
κ′ 6=κ

( Iκ,κ′)
2

ε∆

[
n

ε∆ + 1
+

n+ 1

ε∆− 1

])

− ω2
B̃
}ky

B

mE

∑
M ′ 6=M

Υn,n′ Iκ,κ′Υn,n′ Iκ,κ′

(∆Eκ,κ′n,n′ )
2

]
.

(5.97)

Grouping terms together, and performing the sum over ky by means of Eqs. (5.80)
and (5.81), where ∑

ky

−}ky
B

mE
−→ N

}
eB

1

`2
B

= N, (5.98)
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we have that

Iy =
eE

B
N
∑
n,κ

Zn,κ

[
1 + α2 e

}B

(
E

c

)2
(

1

2

∑
κ′ 6=κ

( Iκ,κ′)
2

ε∆

[
n

ε∆ + 1
+

n+ 1

ε∆− 1
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]

− ( Iκ,κ)
2 `

3
E

`3
B

[
(n+ 1)

√
n+ 2

2
+ n

√
n− 1

2
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+ ω2
B̃

∑
M ′ 6=M

Υn,n′ Iκ,κ′Υn,n′ Iκ,κ′

(∆Eκ,κ′n,n′ )
2

]
(5.99)

Thus, the last term cancels out exactly when doing the multiplication with Zn,κ of Eq.
(5.63) at second order. Once again, we emphasize that the correct, but cumbersome
limits of ky, give useful cancellations. We are left with

Iy =
eE

B
N
∑
n,κ

[
1 + α2 e

}B

(
E

c

)2
(

1

2

∑
κ′ 6=κ

( Iκ,κ′)
2

ε∆

[
n

ε∆ + 1
+

n+ 1

ε∆− 1
+ 2

]

− ( Iκ,κ)
2 `

3
E

`3
B

[
(n+ 1)

√
n+ 2

2
+ n

√
n− 1

2

])]
.

(5.100)

Now, we must remember that the expression of Iκ,κ′ in Eqs. (5.42) and (5.43) possesses
a factor given by the electric length `Ẽ. Thus, we can factor it from both terms,
implicitly redefining Iκ,κ′ without this factor (so that it becomes dimensionless). Thus
we express the overall factor of the quadratic correction as

α2 e

}B

(
E

c

)2

`2
Ẽ

=
`2
B`

2
Ẽ

`4
B̃

, (5.101)

which is a dimensionless variable.
The sum

∑
(n,κ) over the first term gives the total amount of occupied energy levels

(denoted by ν tot), which are independent of whether they are n levels or κ levels. The
sum over the rest of the terms must be done depending on the way the energy levels
are filled (it does matters here). So this will be implicitly left as

∑
(n,κ). Thus

Iy =
eE

B
N

[
ν tot +

`2
B`

2
Ẽ

`4
B̃

∑
(n,κ)

(
1

2

∑
κ′ 6=κ

( Iκ,κ′)
2

ε∆

[
n

ε∆ + 1
+

n+ 1

ε∆− 1
+ 2

]

− ( Iκ,κ)
2 `

3
E

`3
B

[
(n+ 1)

√
n+ 2

2
+ n

√
n− 1

2

])]
.

(5.102)

We define the dimensionless functions of E, B and L,

f(E,B,L) ≡
`3
E`

2
Ẽ

`B`4
B̃

1

ν tot

∑
(n,κ)

( Iκ,κ)
2

[
(n+ 1)

√
n+ 2

2
+ n

√
n− 1

2

])
, (5.103)
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and

g(E,B,L) ≡
`2
B`

2
Ẽ

`4
B̃

1

ν tot

∑
(n,κ)

1

2

∑
κ′ 6=κ

( Iκ,κ′)
2

ε∆

[
n

ε∆ + 1
+

n+ 1

ε∆− 1
+ 2

]
, (5.104)

so that
Iy = I(0)

y

(
1 + g − f

)
, (5.105)

where I(0)
y is the original Hall current with ν tot Landau levels filled. So there are two

corrections, and in fact we can give a physical interpretation to each one.
If only one κ level is allowed, the filling is done over the usual n Landau levels.

So ν tot = ν, and we in fact recover the same bi-dimensional system that the one in
the original QHE (In fact, a single allowed κ level is obtained when the thickness of
the plate is very small). Because there is only one level in κ, then the function g is
zero, and the only correction is given by f . Thus, f can be interpreted as the pure
correction from the θ electrodynamics.

Increasing the thickness of the plate, multiple κ levels will be allowed, which is
equivalent to a multitude of layered bi-dimensional systems. The term of zeroth order
corresponds to the total amount of Landau levels filled in each subsystem, which in
turn corresponds to the amount of Hall currents given by the sum of the stacked
plates with filled Landau levels. Like before, f gives the summed θ-electrodynamics
corrections of each layer. Thus, g can be interpreted as the correction given by the
thickness of the material, and the interaction between the superposed layers in it
(which at the end emerge also from the θ corrections).

While both of these corrections are of quadratic order in α, their behaviour still
allows their values to significantly differ. We can analyze the order of magnitude of
the first function with the approximation for Iκ,κ of Eq. (5.47) (taking into account
that we have already taken out the electric length). With this,

f(E,B,L) ∼
`3
E`

2
Ẽ

`B`4
B̃

Γ2

9
≈ 2.25× 10−4

( √
B

T1/2

)(
E

V/m

)(
L2

m2

)
. (5.106)

From this we can see that this correction does not satisfy Ohm’s law J = σE. It is
instead a quadratic correction on the electric field (dividing by I(0)

y we had already
taken out an electric field factor). Nevertheless, we can in the same way define a
conductivity or resistivity just like in Ohm’s law, but it will now instead depend on
the electric field (linearly in this case).

For g, we can see that the Iκ0,κ1 term dominates, so we can take the approximation
(5.52). We can also note that in[

n

ε∆ + 1
+

n+ 1

ε∆− 1
+ 2

]
(5.107)

the 2 dominates, for ε� 1 (see Fig. 3.5). And so, with ∆ = ∆1,0 ≈ −1.91, we have

g(E,B,L) ∼
`2
B`

2
Ẽ

`4
B

4

ε∆5
1,0

≈ −1.53× 10−26

(
E2

V2/m2

)(
T4/3

B4/3

)
(5.108)
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The fact that this expression does not depend on L is no contradiction to our inter-
pretation of g as a correction due to the thickness of the plate. This is just because
the approximation is very brute. In reality ∆ and Iκ,κ′ do carry an L-dependence.
Another interesting fact is that this is a cubic correction of Ohm’s law, but far smaller
than f . So f is the one that dominates between the two. This comes from the fact
that |Iκ,κ| is not bound from above, while |Iκ,κ′| is. Nevertheless, in general f is small.
This can be an advantage if one does wants to recover the Hall effect, for this system
possesses the advantage of automatically confining the electrons in a bi-dimensional
plate, no matter its thickness.

5.4.3 Total conductivity

To obtain the resistivity, it is necessary to make a complete analysis of the conduc-
tivity in 3 dimensions. That is, we must obtain the matrix equation

J = σeE, (5.109)

with

σe =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 (5.110)

at the same order in the perturbation series. Note that, as we have seen in the last
section, this conductivity depends on the electric field. We have obtained that, for
E = (Ex, 0, 0), we produce J = (Jx, Jy, Jz) with

Jy =
eν tot

Φ0

(
1− f + g

)
E. (5.111)

For the current in x and z, the current is only given by

Ix,y = − e

m

∑
(n,ky ,κ)

〈
Ψn,ky ,κ

∣∣− i}∂x,y∣∣Ψn,ky ,κ

〉
. (5.112)

In both cases the complex factor eikyy can pass through the derivative and cancel with
its conjugate, leaving us with only real functions. Multiplied by the −i} factor, the
matrix element at the end will be purely imaginary. As the expectation value of an
Hermitian operator (such as the momentum operator) is always real, this result must
then be zero. So in the end σxx = σzx = 0.

Now, by symmetry σyy = σzy = 0, and also

σyx = −σxy = σ(0)
yx (1− f + g) (5.113)

with
σ(0)
yx =

e2

2π}
ν tot, (5.114)

the total conductivity of the usual QHE. Furthermore, a test electric field in z will
not produce any electromagnetic field through the action of the TI. Thus in this case
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we would have only a magnetic and electric field (external and induced) in z. These
fields do not produce currents in the x or y directions, and thus σxz = σyz = 0. In
total we have

σe =

 0 σxy 0
−σxy 0 0

0 0 σzz

 (5.115)

It will not be necessary to compute the current in z, for we can directly obtain the
inverse matrix as

ρ = σ−1
e =

 0 −1/σxy 0
1/σxy 0 0

0 0 1/σzz

 . (5.116)

In this way, even when we have a 3-dimensional system, the relation between the trans-
verse resistivity and conductivity is the same as the one in the original bi-dimensional
Hall effect.

The final expression for the resistivity of the Hall effect with second order correc-
tions is then

ρxy = ρ(0)
xy (1− f + g)−1 ≈ ρ(0)

xy (1 + f − g) , (5.117)

with
ρ(0)
xy =

2π}
e2

1

ν tot

. (5.118)

5.4.4 The occupation in the correction functions

The functions f(E,B,L) and g(E,B,L) of Eqs. (5.103) and (5.104) also have an
implicit dependency on the electron’s density, as the sums over (n, κ) are performed
over the occupied states. To this end we remember the discussion of section 3.3,
where in section 3.3.2 we discussed how a certain number of Landau n levels must
be filled before reaching higher levels of κ, and in section 3.3.3 we further developed
this discussion by taking into account the appearance of κ bands at certain Γ values,
which caused the occupation in the n levels of each κ level to discontinuously change at
certain values of B for a fixed thickness L, giving rise to discontinuities in macroscopic
variables. In that section we exemplified this phenomenon with the Fermi energy.
Furthermore, in chapter 4 we also obtained that this discontinuities also appear in
the induced magnetization. By the exact same principle, the correction functions
f and g will now possess the same kind of discontinuities, making the current (or
conductivity) the macroscopic discontinuous variable.

The sums over (n, κ) are not so simple to perform, but can calculated with an
algorithm very similar to the one presented in section 3.3.3. That is, we can compute
the number of n levels occupied in each κ level allowed and perform the sums of Eqs.
(5.103) and (5.104) with these numbers, together with the corresponding values of σ
and Γ. We show this result in Figs. 5.6a for the function f and 5.6b for the function
g at the same values used in section 3.3.3 so that the discontinuities appear at the
same values. We further use a representative experimental value for the QHE of the
electric field given by [4] E = 12 mV/130µm ≈ 100 V/m. By how it is defined, the
function g is zero at the region where only the κ0 level is allowed.
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(a) Plot of f(E,B,L).

(b) Plot of g(E,B,L).

Figure 5.6: Correction functions for L = 10 nm and E = 100 V/m. Just like in Fig. 3.8 they
present discontinuities at certain values of B for high enough occupation. The function g is
zero at the region where only κ0 is allowed. The dashed lines separate the same occupation
regions which were previously analysed in Fig. 3.8. There are once again discontinuities at
the regions where a new κ level appears and the occupation is high enough.

From the plots of f and g we can see once again (and by this point it should be
expected) that we obtain the aforementioned discontinuities at fixed values of B for
which the occupation number is high enough. The order of magnitude of the functions
themselves results incredibly small (specially for g), but this is a result from having
taken the small thickness of L = 10 nm, chosen both for computational and visual
facility. One could in principle fine tune the variables through Eqs. (5.106) and
(5.108) such that the orders of magnitude of both functions is increased.

Finally, we note that the function g in Fig. 5.6b presents a change of sign at
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certain heights. This can be explained by analysing the expression of Eq. (5.104). As
seen in Fig. 5.2b, the contribution that dominates is generally the κ = κ0 and κ′ = κ1

term. As σ0 > σ1, then ∆ = σ′2 − σ2 is negative. Thus, at a low enough occupation
number (low enough ne), the constant 2 will dominate over the other terms in Eq.
(5.104), producing a negative g. Now, if we increase the sum over n by increasing
ne, then the other terms will now dominate. As ε � 1 then the denominators of
these terms are generally negative and thus produce a positive result for the sum in
g. By this conclusion we note that, although it appears like so, the place at which g
changes of sign is not related at all to the occupation sectors of Fig. 3.7, as seen by
the miss-match of the dashed lines and the region where the sign changes.



6 Conclusions

A diversity of quantum phenomena emerging from the effective theory of TIs under
the action of external electromagnetic fields were studied. The initial motivation for
this work was the Hall effect (reviewed in chapter 1), as the effective electromagnetic
theory of a TI (reviewed in chapter 2) allowed a system which consisted on a plate
of finite thickness of a TI under the presence of an external magnetic field to hold
bound states and treat the system as a bi-dimensional plate, as an internal electric
field was induced, and whose action in the Schrödinger equation was to produce
a finite triangle potential that allowed this localization (demonstrated in chapter 3).
Although a system which allowed the realisation of the QHE was replicated, additional
unexpected phenomena were encountered.

First off, the quantization condition which depended on the dimensionless thick-
ness Γ, and which was given by Eq. (3.15), produced a variable number of energy
bands as a function of Γ. Thus, for a fixed thickness L there could be a spontaneous
appearance of new bands at critical values of the magnetic field. The implications
for this were first discussed in section 3.3.3, where a general algorithm for comput-
ing the Fermi energy was described, but whose important conclusion was that this
macroscopic variable presented discontinuities at the aforementioned critical points.
Nevertheless, it was noted that this discontinuity was found only when the occupation
number was big enough and, as further discussed in section 3.3.4, for this to happen
we would also need to restrict the system on a finite volume as dispersion states which
could drain the system appeared. This also concluded that the calculations involving
this transition would never be exact because when a new energy band appeared, some
states would inevitably decay into dispersion states (that were nevertheless bound by
the finite volume). The presence of these dispersion states was systematically ignored
throughout this work, and thus the results can not be exact.

Having studied the basic quantum system, the natural next step was to calculate
its magnetization because the energy bands depended on the external magnetic field
through the induced electric field. This was done in chapter 4. First, the simpler case
where there was only one energy band present was analysed (section 4.1). Having
settled the way to compute the non-trivial magnetization terms, these were now
computed for the first critical point. That is, just before the appearance of the second
allowed energy band (section 4.2.1) and just after its appearance (section 4.2.2). With
this, the presence of a quantum phase transition of first order was demonstrated,
whose order parameter was computed in section 4.2.3. The general case for the
critical point at which the nth energy band appears was computed in section 4.2.4.
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The study finalized in chapter 5 with the analysis of realisation of the QHE on
this system. For this a parallel electric field was introduced, which in turn induced
an internal parallel magnetic field. This disrupted the conventional QHE system, but
nevertheless we assumed that the general behaviour of the current was maintained
as this magnetic field was of the order of the fine structure constant. Thus, a per-
turbation analysis was performed, for which the first order corrections were found
to cancel exactly, while the second order corrections turned out to be non-trivial
expressions. While from the front it was assumed that the original quantization of
the current would still be present at leading order, correction functions were found
which consistently turned out to be very small. When plotting these functions with
a numerical analysis which followed a similar algorithm from section 3.3.3, the same
discontinuities were found in correspondence to the phase transition.

In summary, a quantum phase transition of first order was found. The macro-
scopic variables studied which suffer this phase transition were the Fermi energy, the
magnetization and the Hall current.



A Relevant parameters

All constants and expressions are described within the SI units system. Values taken
from Ref. [5].

A.1 Constants

RK =
2π~
e2

= 25812.80745...Ω (von Klitzing constant).

Φ0 =
2π}
e

= 4.13566773× 10−15 T ·m2 (Quantum of Flux).

α =
1

4πε0

e2

~c
= 1/137.035999084 (Fine-structure constant).

ň =
}
mc

= 3.8615926796× 10−13 m (Electron’s reduced Compton wavelength).

µB =
e~
2m

= 9.274009994× 10−24 A ·m2 (Bohr magneton).

A.2 Variables

B̃ = α
E

c
, Ẽ = −αcB (Induced electromagnetic fields).

ωB =
eB

m
, ωB̃ =

eB̃

m
= α

eE

mc
(Cyclotron frequencies).

`B =

√
}
eB

=

√
}

mωB
, `B̃ =

√
}
eB̃

=

√
}

mωB̃
(Magnetic lengths).

`E =

(
}2

2meE

)1/3

, `Ẽ =

(
}2

2meẼ

)1/3

(Electric lengths).

g =
A

2π`2
B

=
eBA

2π}
=
AB

Φ0

(Landau level’s degeneracy).

ne = N/A (Electron surface density).
n3D
e = N/V = N/(AL) (Electron volume density).

σDC =
neeτ

m
(Drude conductivity).
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A.2.1 Dimensionless variables

σ = `Ẽκ, σ′ = `Ẽκ
′, ∆ = σ′2 − σ2 (Dimensionless momenta).

Γ =
L

`Ẽ
(Dimensionless thickness).

ε =
1

}ωB
}2

2m`2
Ẽ

= −α`Ẽ
ň

=

(
α2

4πň2

Φ0

B

)1/3

(Dimensionless κ-n energy ratio).

En,κ = (n+ 1/2)− εσ2 (Dimensionless energy).



B Spin corrections

Throughout every past calculation we have completely ignored the presence of spin,
both as an additional quantum number, and also as the responsible operator for the
Zeeman interaction. In this appendix we redo the calculations for which its presence
does affect the results.

B.1 Spin in Landau Levels

The presence of spin introduces the Zeeman interaction

ĤZ = gµB ŝ ·B (B.1)

where B = Bêz, ŝ = ±1
2
êz is the spin operator and g is the anomalous gyromagnetic

ratio, which classically possesses the value of g = 2, but in reality acquires corrections
both from quantum field theory and from the crystalline structure [3]. This has
important effects, for the Zeeman-splitting of the energies

∆EZ = gµBB =
g

2
~ωB (B.2)

would mix the spin up states of the level n with the spin down states of the level
n+1 if we had g = 2. Nevertheless, its modified value turns out to produce a Zeeman
splitting much smaller than the energy difference of the Landau levels [3].

If the Zeeman-splitting is so small that it cannot be resolved, the up and down
states will effectively correspond to the same energy. In this case, the degeneracy of
each Landau level gs, with spin taken into account, doubles:

gs ≡ 2g =
2AB

Φ0

. (B.3)

This means that, in general, the number of occupied Landau levels is halved:

νs ≡ ν/2. (B.4)

This applies to all of the ν defined throughout this work. For example,

νstot =

⌊
ne
2

Φ0

B

⌉
, νsm = νm/2, nsm = nm/2. (B.5)
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This also implies that Eq. (3.41) will now take the form

⌊
ne
2

Φ0

B

⌉
> m+ bm

(
nC

Φ0

B

)1/3

, bm ≡ m(2m+ 1)2/3 −
m−1∑
l=0

(2l + 1)2/3 . (B.6)

This can be effectively accounted for by always dividing ne by two in all of our results.
For example, in Figs. 3.8 and 3.9 just divide the ne axis by two to account for the
spin corrections.

B.2 Spin in Magnetization

Chapter 4 is the one that presents the most noticeably spin corrections. The energies
are now modified as

En,k,s = − ~2

2m`2
Ẽ

σ2
k(Γ)+}ωB(n+1/2)+gµBsB, n = 0, 1, ..., k = 0, 1, ..., s = ±1

2
,

(B.7)
so there will be another magnetization term which corresponds to the Pauli param-
agnetism. For the 3D free electron gas one obtains that this term is [41]

χPauli = −3

4
g2χLandau, (B.8)

such that for g = 2 one obtains the well known relation χLandau = −1
3
χPauli. Once

again, we remark that the effects of the material change this relation. In principle,
they could even render the Pauli term negligible with respect to the Landau term [41].
Nevertheless, we keep this term for generality.

In our effective 2D case, the same way as it happened for the Landau term (4.30),
we obtain a susceptibility given by

χ̃Pauli =
π

LkF
χPauli. (B.9)

Thus, in all of our results of this section we must make

χ̃Landau −→
(

1− 3

4
g2
)
χ̃Landau (B.10)

to take spin into account.
With spin, the degeneracies of the 2D and 3D electron gas with spin also change:

gs0 ≡ 2g0 =
mV 2/3

π~2
, gs3D(EF ) =

mkF
π2~2

. (B.11)

This doubles the explicit value of the Landau susceptibility:

χ̃sLandau = −2
mµ0µ

2
B

6π}2L
. (B.12)
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Note that nevertheless we still obtain that gs0~ωB = gs, which was necessary when
discretizing integrals, so all of our results still hold. The relationship

gs0(EF )

V
=

π

LkF
gs3D(EF ), (B.13)

which was needed to relate the 3D Landau (and Pauli) susceptibility with the one we
obtained, also holds when taking spin into account. That is,

χ̃Landau =
π

LkF
χLandau . (B.14)

still holds, as χLandau also doubled.
The χθ̃ term in all of our equations acquires no corrections as long as we take into

account that, for a fixed particle number (or electronic density n3D
e ), the number of

occupied Landau levels νm is halved and the degeneracies are doubled with respect
to the spinless case. In particular, the thin-plate magneto-electric susceptibility

χθ̃ =
m

4}2ε0
e2L4α2n3D

e , (B.15)

remains unchanged. The one before the critical point,

χ−
θ̃

=
2m

~2ε0
e2α2L

[
2

9

a0

Γ4
L3n3D

e +
2

4π

(
1− 2

3

a0

|Γ|

)2
]
, (B.16)

changes by a factor of two in the second term, as we now take gs0 = 2g0 in Eq. (4.49).
The one after the critical point,

χ+

θ̃
=

2m

~2ε0
e2α2L

[
2

9

L3

Γ4
c

(
a0(n3D

e − ns1gs/V ) + Γcm
2
1n

s
1gs/V

)
+

2

4π

(
1− 2

3

a0

Γc

)2
]
,

(B.17)
changes in the same way just in the second term, as for the first terms we have that
nsmgs = nmg.

The general discontinuity of the magnetization at a critical point of Eq. (4.83),
in which we explicitly substituted the degeneracies, is now

∆M (m) = −2µB
2π

Γ
(m)3
c

L3

[(
m− 2

3

1

Γ
(m)
c

(a0 + ...+ am−1)
)
nsm +

ň

12αL

(
1− 3

4
g2
)
h(EF )

]
,

(B.18)
when taking spin into account. Technically only the last term explicitly doubles, as
in the first term, the number nsm is halved.

B.3 Spin in the QHE of TI

If we keep in mind that the Zeeman effect is negligible such that each Landau level
is doubly degenerate, just as we have done, nothing particularly noticeably changes
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in chapter 5. The perturbation Hamiltonian Ĥ′ of Eq. (5.8) does not possess spin
operators that mix spin states, while the Zeeman interaction just enters in the free
Hamiltonian Ĥ0 and does not change the spatial components of the free solutions.
Therefore all of the perturbation matrix elements are diagonal in spin space, and thus
the Energy differences in the perturbation expansion cancel the Zeeman splitting.

At the end all of the expressions stay the same, and the only thing that changes is
the degeneracy of each Landau level gs = 2g, which implicitly changes the sum over
the occupied states in all of our expressions. This can just be taken into account by
taking ne −→ ne/2, just as before. For example, the ne axis in Figs. 5.6a and 5.6b
should be halved to take spin into account.



C Airy Functions

C.1 Overview

The Airy functions were first introduced by G. B. Airy when studying the intensity
of light in the neighbourhood of a caustic [44, 45]. Under the modern notation (first
introduced by H. Jeffreys in 1928 [36,46]), these are given by

Ai(z) =
1

π

∫ ∞
0

cos
(t3

3
+ zt

)
dt, Bi(z) =

1

π

∫ ∞
0

[
e−t

3/3+zt + sin
(t3

3
+ zt

)]
dt,

(C.1)
and are the solutions to the homogeneous differential equation

y′′(z) = zy, (C.2)

which is called the Airy equation. A plot for these functions is shown in Fig. C.1.
Both of the functions are oscillatory for negative values of z, while Ai(z) exponentially
decays and Bi(z) exponentially grows for positive values of z.

Figure C.1: Plot of the Airy functions.

The Wronskian between these functions is [36]

W{Ai(z),Bi(z)} ≡ Ai(z)
d Bi(z)

dz
− Bi(z)

d Ai(z)

dz
=

1

π
, (C.3)
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and thus these are the two independent solutions of the Airy equation (C.2).

C.1.1 Useful integrals

If we define arbitrary linear combinations of the Airy functions given by

A(ξ) = a1 Ai(ξ) + a2 Bi(ξ), (C.4)

and
B(ξ) = b1 Ai(ξ) + b2 Bi(ξ) (C.5)

(where in the main text we take a1 = C, a2 = D, b1 = C∗ and b2 = D∗), then there
exist some general primitives for combinations of these functions. Some of them,
which are used throughout this work (specially in Chapter 5), are

As well as the integrals (C.6) and (C.7), we will also need the ones at next order
in ξ, which are also present in [36]. These are

Ī1 =

∫
A(ξ)B(ξ) dξ = ξA(ξ)B(ξ)− A′(ξ)B′(ξ), (C.6)

I1 =

∫
A(ξ)B(ξ + ∆) dξ =

1

∆

[
B′(ξ + ∆)A(ξ)−B(ξ + ∆)A′(ξ)

]
, (C.7)

Ī2 =

∫
ξA(ξ)B(ξ) dξ =

ξ2

3
A(ξ)B(ξ) +

1

6

[
A′(ξ)B(ξ) + A(ξ)B′(ξ)

]
− ξ

3
A′(ξ)B′(ξ),

(C.8)
and

I2 =

∫
ξA(ξ)B(ξ + ∆) dξ

= −∆ + 2ξ

∆2
A(ξ)B(ξ + ∆) +

1

∆3
(2 + ξ∆2)

[
B′(ξ + ∆)A(ξ)−B(ξ + ∆)A′(ξ)

]
+

2

∆2
B′(ξ + ∆)A′(ξ).

(C.9)

C.2 Wave functions under a constant electric field

Take the 1D time-independent Schrödinger equation ĤΨ(z) = EΨ(z). Under the
action of a constant electric field E, the Hamiltonian is

Ĥ =
p̂2
z

2m
+ eEẑ. (C.10)

This gives the differential equation

− ~2

2m

d2

dz2
Ψ(z) + (eEz − E)Ψ(z) = 0. (C.11)
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We assume that the wave functions are bound states (just like in Chapter 3). This
means that the energies are negative and so can be expressed as

E ≡ Eκ = −~2κ2

2m
, κ ∈ R+. (C.12)

If we further define the dimensionless variable

ξ =
( }2

2meE

)2/3(
κ2 +

2meE

}2
z
)
, (C.13)

then
d2

dz2
=

(
2meE

~2

)2/3
d2

dξ2
, (C.14)

and thus Eq.(C.11) transforms into

Ψ′′(ξ)− ξΨ(ξ) = 0. (C.15)

This is the Airy equation and so the solutions are

Ψ(ξ) = aAi(ξ) + bBi(ξ). (C.16)

This is the reason why the bound-state solutions (3.5b) are given by Airy functions
in their z-component, where in that case the electric field is the induced field Ẽ.



D The WKB approximation

D.1 Overview

The WKB approximation consists of approximating the Schrödinger equation in one
dimension (the z direction in our context) by assuming that the de Broglie wavelength
of the wave function is smaller than the characteristic length at which the potential
V (z) noticeably varies [11]. This is done by defining the classical momentum

p(z) =
√

2m(E − V (z)) (D.1)

which is real for the so-called classical region E > V (z), and imaginary for the non-
classical region E < V (z).

Thus, the Schrödinger equation can be written as

d2ψ

dz2
= −p

2(z)

~2
ψ(z). (D.2)

Expressing the wave function as

ψ(z) = A(z)eiφ(z), (D.3)

where A(z) and φ(z) are real functions then Eq. (D.2) becomes

A′′ + i
(
A2φ′

)′ − A(φ′)2 = −p
2(z)

~2
A. (D.4)

Separating the real and imaginary parts we get the following two sets of equations,
so far completely equivalent to the Schrödinger equation,

A′′ = A
[
(φ′)2 − p2(z)

~2

]
,

(
A2φ′

)′
= 0. (D.5)

Now we suppose that the term A′′/A can be neglected with respect to (φ′)2 and
p2, which this tells us that the wave function’s amplitude does not oscillate very
much [12]. In the first equation, this implies that

φ′(z) ≈ ±p(z)

~
. (D.6)
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Thus, from the second equation of (D.5),

A(z) =
C√
φ′(z)

≈ C√
p(z)

. (D.7)

With this, we now see what was mentioned at the beginning of this section about
the meaning of this approximation, for the condition A′′/A � p2/~2, alongside with
supposing that V ′′(z) ≈ 0 (the potential varies slowly), is equivalent to

~
p
� p2

m|V ′|
=

2[E − V (z)]

|dV/dz|
. (D.8)

That is, once again, we assume that de Broglie wave length is much smaller than
the characteristic length at which the potential varies. Notice, nonetheless, that this
condition will irrevocably break close to the turning points for which E = V (z).

Far from the turning points, in the classical region (p(z) real) the wave function
is approximately

ψ(z) =
C√
p(z)

exp
[
± i

~

∫
p(z′) dz′

]
, (D.9)

and in the non-classical region (p(z) imaginary),

ψ(z) =
C√
|p(z)|

exp
[
± 1

~

∫
|p(z′)| dz′

]
. (D.10)

These account for oscillating and exponentially decreasing respectively functions as
expected. The choice on the limits of integration can always be absorbed in the
normalization constant.

Figure D.1: Regions of interest for a potential well in the WKB method and their approxi-
mations. IA & IB: Non-classical regions with wave functions given by Eq. (D.10) and p(z)
imaginary. III: Classical region with wave function given by Eq. (D.9) and p(z) real. IIA &
IIB: Turning-point regions where the WKB approximation breaks. V (z) is approximated as
a linear function, such that the wave functions are given by Eq. (D.12) around each turning
point z1 and z2. For |z| > zi we have positive ξi ≡ αi(z − zi). For |z| < zi we have negative
ξi, i = 1, 2.
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Close to the turning points we cannot use the WKB approximation, but can
instead directly approximate the potential at first order around each turning point.
That is, if we assume a potential well with turning points z1 and z2 (see Fig. D.1),
then we can take

V (z) ≈ E + V ′(zi)(z − zi), z ≈ zi, i = 1, 2. (D.11)

As this is a linear potential, the solutions to the Schrödinger equation are composed
of Airy functions [12]. That is, close to the turning points,

ψi(z) = aAi(αi[z − zi]) + bBi(αi[z − zi]), αi =
[2m

~2
V ′(zi)

]1/3

, i = 1, 2. (D.12)

Note that for a potential well α1 is negative, while α2 is positive. In total, setting the
integration limits and taking into account the convergence of the wave functions, the
approximate solutions in each region are (see Fig. D.1)

ψ(z) ≈



C1√
|p(z)|

exp
[
− 1

~

∫ z1
z
|p(z′)| dz′

]
, z � z1,

a1 Ai(α1[z − z1]) + b1 Bi(α1[z − z1]), z ≈ z1,
1√
p(z)

(
Ae

i
~
∫ z
z1
p(z′) dz′

+Be
− i

~
∫ z
z1
p(z′) dz′

)
, z1 � z � z2,

a2 Ai(α2[z − z2]) + b2 Bi(α2[z − z2]), z ≈ z2,
C2√
|p(z)|

exp
[
− 1

~

∫ z
z2
|p(z′)| dz′

]
, z2 � z.

(D.13)

Now we stick each solution by mixing the conditions that define each region. First
we stick the non classical regions to the turning points. For the Airy functions we use
the asymptotic expressions corresponding to large positive values of ξi ≡ αi(z − zi)
(that is, z � z1 with z negative for i = 1 and z2 � z with z positive for i = 2), for
which [36]

ai Ai(ξi) + b1 Bi(ξi) ≈
ai

2
√
πξ

1/4
i

e−
2
3
ξ
3/2
i +

bi
√
πξ

1/4
i

e
2
3
ξ
3/2
i . (D.14)

For the solutions in the non classical region we assume z ≈ zi (with z < z1 and
z > z2 respectively) such that the potential is given by (D.11). This gives p(z) ≈√

2m[E − E − V ′(zi)(z − zi)] and thus∫ zi

z

|p(z′)| dz′ ≈ ~
∫ zi

z

∣∣∣√−α3
i (z
′ − zi)

∣∣∣ dz′ = −(−1)i
2

3
~ξ3/2

i , (D.15)

so the corresponding wave functions are approximately

Ci√
|p(z)|

exp
[
(−1)i

1

~

∫ zi

z

|p(z′)| dz′
]
≈ Ci√

~(α3
i [z − zi])1/4

e−
2
3
ξ
3/2
i (D.16)

Comparing the asymptotic forms of Eqs. (D.14) and (D.16), we obtain that

ai =

√
4π

|αi|~
Ci, bi = 0. (D.17)
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Now we stick the classical region to the turning points. For the oscillating solutions
we take once again z ≈ zi such that V (z) is given by Eq. (D.11), alongside with
z > z1 and z < z2 respectively for each point. In this case, both ξi are now negative.
For z ≈ z1 we obtain∫ z

z1

p(z′) dz′ ≈ ~
∫ z

z1

√
−α3

1(z′ − z1) dz′ =
2

3
~(−ξ1)3/2, (D.18)

For z ≈ z2 we need to separate the limits of integration, as they needn’t be close,∫ z

z1

p(z′) dz′ =

∫ z2

z1

p(z′) dz′ −
∫ z2

z

p(z′) dz′

= ~Ω− ~
∫ z2

z

√
−α3

2(z′ − z2) dz′, Ω ≡ 1

~

∫ z2

z1

p(z′) dz′

= ~Ω− 2

3
~(−ξ2)3/2.

(D.19)

Thus, for z ≈ z1,

1√
p(z)

e
± i

~
∫ z
z1
p(z′) dz′ ≈ 1√

~|α1|(−ξ1)1/4
e±

2
3
i(−ξ1)3/2 , (D.20)

and for z ≈ z2,

1√
p(z)

e
± i

~
∫ z
z1
p(z′) dz′ ≈ 1√

~|α2|(−ξ2)1/4
e±i
[

Ω− 2
3

(−ξ2)3/2
]
. (D.21)

For the remaining Airy functions we use the asymptotic expressions for large negative
ξi, which now give [36]

ai Ai(ξi) ≈
ai√

π(−ξi)1/4
sin
[2

3
(−ξi)3/2 +

π

4

]
=

ai
2i
√
π(−ξi)1/4

[
ei

2
3

(−ξi)3/2+iπ/4 − e−i
2
3

(−ξi)3/2−iπ/4
] (D.22)

At the z ≈ z1 region the functions of Eqs. (D.20) and (D.22) match naturally, and so

a1

2i
√
π
eiπ/4 =

A√
~|α1|

, − a1

2i
√
π
e−iπ/4 =

B√
~|α1|

, (D.23)

so that with Eq. (D.17),

A = −ieiπ/4C1, B = ie−iπ/4C1. (D.24)

At the z ≈ z2 region, not only do the constants swap, but we also obtain an extra
factor,

a2

2i
√
π
eiπ/4 =

B√
~|α2|

e−iΩ, − a2

2i
√
π
e−iπ/4 =

A√
~|α2|

eiΩ, (D.25)
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so that with Eq. (D.17),

A = ie−iΩ−iπ/4C2, B = −ieiΩ+iπ/4C2. (D.26)

Using Eqs. (D.24) and (D.26) we obtain that

A

B
= −e−2iΩ−iπ/2 = −eiπ/2. (D.27)

At most, the arguments must differ by 2πik, k ∈ Z. As Ω is positive, we must
have that Ω = π(k + 1/2), k = 0, 1, 2.... This gives us the approximate quantization
condition, and the main result of the WKB approximation,∫ z2

z1

p(z) dz = π~
(
k +

1

2

)
, k = 0, 1, 2... (D.28)

D.2 Application for the bound-state energies

In the context of chapter 3, we have that

p(z) =
√
−κ2 − 2meẼz, (D.29)

where we must remember that Ẽ < 0. From Fig. 3.1 we can see that the first turning
point is the one that fulfills p(z1) = 0. The second one is z2 = L. With these
conditions we obtain that

z1/`Ẽ = −σ2, z2/`Ẽ = Γ. (D.30)

Having fixed the turning points in terms of the bound momentum κ, we can compute
the integral of the WKB quantization condition of Eq. (D.28),

1

~

∫ z2

z1

p(z) dz =

∫ z2

z1

√
−κ2 − z/`3

Ẽ
dz = −2

3
(−σ2 − Γ)3/2. (D.31)

With the right hand side of Eq. (D.28), and taking in mind that Γ and σ are negative,
we thus obtain

|σ| =
√
|Γ| − (3π/2)2/3(k + 1/2)2/3 , (D.32)

which is the desired formula of Eq. (3.18).



E Limits

In chapters 3 and 5, not only does it looks like the limit ∆ −→ 0 of equations (C.7)
and (C.9) does not imply equations (C.6) and (C.8) respectively, but it even seems
that the limit diverges. This is subsequently inherited to the integral Iκ,κ′ . In this
section we will show that the undetermined integrals diverge by a constant term which
is not dependent on ξ, and so any definite integral does not diverge. Furthermore,
the finite term will coincide with the desired limit. Even so, the limit κ = κ′ on the
definite integral Iκ,κ′ does not hold. We will see that this is due to the fact that taking
the limit does not commute with imposing the boundary conditions.

By a direct calculation,

lim
∆−→0

I1 = lim
∆−→0

1

∆

[
B′(ξ + ∆)A(ξ)−B(ξ + ∆)A′(ξ)

]
= lim

∆−→0

{
B′(ξ + ∆)−B′(ξ)

∆
A(ξ)− B(ξ + ∆)−B(ξ)

∆
A′(ξ)

+
A(ξ)B′(ξ)− A′(ξ)B(ξ)

∆

}

= B′′(ξ)A(ξ)−B′(ξ)A′(ξ) +
W (A,B)

∆
,

(E.1)

where W (A,B) is the Wronskian between the two functions. Because A(ξ) and B(ξ)
are linear combinations of Airy functions, they satisfy the Airy equation y′′(ξ) =
ξy(ξ). Thus, if we have A(ξ) = aAi(ξ) + bBi(ξ) and B(ξ) = cAi(ξ) + dBi(ξ), then

W (A,B) = (ad− bc) 1

π
, (E.2)

which is a constant independent of ξ. Thus

lim
∆−→0

I1 = Ī1 + C, (E.3)

where C is an infinite constant that nullifies itself when computing the definite inte-
gral. Something similar happens when taking the limit of I2 to obtain Ī2.

This motivates us to think that Iκ,κ of equation (5.42), being the result of a definite
integral, should be recovered when taking the limit of Iκ,κ′ in equation (5.43). This
is not the case. The limit still results in a pole, even after already having eliminated
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the infinite constant of the indefinite integral. The reason for this is that taking the
limit does not commute with imposing the boundary conditions.

A simple way to see this to take a term similar to the ones that appear in equation
(E.1),

x ≡ A′(τ ′)− A′(τ)

∆
, (E.4)

with τ ′ = τ + ∆.
If we first take the limit,

x1 = lim
∆−→0

A′(τ + ∆)− A′(τ)

∆
= A′′(τ), (E.5)

where A(τ) fulfills the Airy equation, so

x1 = τA(τ) = (σ2 + Γ)A(τ), (E.6)

where we have also taken the definition of τ in terms of the other dimensionless
constants σ and Γ.

Now, if we instead first (like we did when calculating Iκ,κ′) impose the boundary
conditions (5.22) and (5.23), then

x2 = −σ
′A(τ ′)− σA(τ)

∆
. (E.7)

Taking the limit ∆ −→ 0, σ = σ′, then

x2 = −σ lim
∆−→0

A(τ + ∆)− A(τ)

∆
= −σA′(τ). (E.8)

Using the boundary conditions once again,

x2 = σ2A(τ). (E.9)

Comparing both expressions,

x1 − x2 = ΓA(τ) 6= 0. (E.10)

So the limit does not commute with taking the boundary conditions. Because in the
final expressions of Iκ,κ′ we have already imposed the boundary conditions, it is not
expected that the limit κ −→ κ′ from one should recover the other.
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