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Abstract
Fluids with complex rheological properties have an internal structure at

molecular scale, however we experience them as homogeneous; which makes
them a challenging subject of study. Most bacteria live in complex fluids and
boundary conditions. Due to the environment in which they live, which make
it a difficult problem to attack because there are many variables involved.
Moreover, there are not general Navier-Stokes equations that describe complex
fluids.

In this thesis, the behavior of artificial helical swimmers was investigated
-conserving the Reynolds number- changing the fluid and the boundary
conditions. Trying to simulate a common microorganism called E. Coli which
is widely investigated for biomedical studies. I will focus mainly on three
points: (i) the effect of fluid elasticity on swimming speed, (ii) effect of
confinement (boundary conditions) on swimming speed for Newtonian and
viscoelastic fluids, and (iii) the theoretical model of a helical swimmer in a
granular medium. In this study a magnetically actuated helical swimmer
was used. In essence, the swimmer’s head has a magnet which is aligned
with an external magnetic field. To generate a swimmer displacement, the
external magnetic field has to rotate, so that the swimmer rotates around its axis.

In the study of the confined helical swimmer, we found that the swimming
speed increases with a greater confinement. This behavior can be seen for both
the Newtonian and the viscoelastic fluids. Furthermore, the swimmer’s speed
in the viscoelastic fluid is larger than for the Newtonian for all confinements.
In addition, the swimming speed in viscoelastic fluids was studied. We found
that depending of the geometry of the swimmer, the swimming speed may
increase, decrease or remained unchanged. We proposed that such influence of
viscoelasticity on the swimming speed may be explained by a “snowman ” effect.
Finally, the extension of the Theory of Resistive Forces for a granular medium
considering a helical swimmer shows that it is a good approximation according
to experimental comparison. The model captures the general behavior of the
swimming speed. However, it does not predict the minimum conditions for
the swimmer displacement and the angle at which the speed is maximum.
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Resumen
Los fluidos con propiedades reológicas complejas poseen una estructura
interna a escala molecular, sin embargo los percibimos como homogéneos, lo
que los convierte en un tema de estudio desafiante. Debido a su entorno, la
mayoría de las bacterias viven en fluidos y condiciones de frontera complejos,
esto hace que entender su dinámica sea un tema difícil de atacar debido a las
variables involucradas. Además, no hay ecuaciones generales de Navier-Stokes
que describan a los fluidos con propiedades reologícas complejos.

En esta tesis se investigó el comportamiento de un nadador helicoidal
artificial conservando el número de Reynolds constante, cambiando las
pripiedades del fluido y las condiciones de frontera. Estos parámetros se
ajustan tratando de simular un microorganismo común llamado E. Coli,
ampliamente investigado en estudios biomédicos. Me enfocaré en tres puntos
principales: (i) el efecto de la elasticidad del fluido en la velocidad de nado,
(ii) el efecto del confinamiento (como condiciones de frontera) en la velocidad
de nado para fluidos Newtonianos y viscoelásticos (Boger), y(iii) el modelo
teórico de un nadador helicoidal en un medio granular. En este estudio se
utilizo un nadador helicoidal accionado magnéticamente. En esencia la cabeza
del nadador tiene un imán que se alinea con un campo magnético externo. Para
generar el nado, el campo magnético externo rota de modo que el nadador
gira alrededor de su eje.

En el estudio de nado confinado encontramos que la velocidad de nado
se incrementa con el confinamiento. Este comportamiento se puede ver tanto
para el fluido Newtoniano como para el viscoelástico. Además, para un mismo
confinamiento la velocidad del nadador en el fluido viscoelástico es mayor que
para el Newtoniano en todos los casos. También se observó que la velocidad
de nado en fluidos viscoelásticos en algunos casos incrementa, en otros decrece
o permanece sin cambio, dependiendo la geometría del nadador. Propusimos
que esta influencia de la viscoelasticidad en la velocidad de nado puede estar
controlada por un efecto de “snowman”. Finalmente, la extensión de la teoría
de fuerzas resistivas para medio granular considerando un nadador helicoidal,
muestra que es una buena aproximación de acuerdo con los resultados de los
experimentos. El modelo captura el comportamiento general de la velocidad
de nado, sin embargo no predice las condiciones mínimas para que el nadador
se desplace ni el ángulo en el cual la velocidad es máxima.
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Chapter 1

Problem statement

Many types of motile cells adapt to their environment to survive. One
type of locomotion is the flagella-based swimming of microorganisms such
a E. coli whose tail adopts a helical shape. The understanding about how
micro-swimmers move and stir the fluid that surrounds them is helpful for
many applications. Micro-robots could be used to deliver drugs in a specific
tissue or transporting and driving nano-machines through some media [1, 2,
3]. This understanding is also needed to better attack challenges including
acute epidemics, persistent infection [4], and food spoilage and contamination
[5].

Evidently, the comprehension of the microorganisms swimming in complex
fluids is needed. In this work, we call complex fluids to those which are
non-Newtonian. Fluids with complex rheological properties are usually
homogeneous at the macroscopic scale and disordered at the microscopic scale,
but possess structure at the intermediate scale. Examples include polymeric
solutions, dense particle suspensions, and emulsions. These complex fluids
often exhibit non-Newtonian properties under an applied deformation, such
as viscoelasticity, yield-stress, and shear-thinning viscosity. Since this subject is
quite extensive, we address only three aspects that affect the swimming speed
of a helical swimmer: first, the effect of the viscoelastic fluid on the swimming
speed. Second, the confinement on swimming speed in a Newtonian and
complex fluid. Third, the effect of granular media on swimming speed.

1.0.1. Newtonian case

Our current understanding of locomotion at low Re number is derived
mainly from investigations in Newtonian fluids. The Re number is the
ratio between the inertial and viscous forces. The theoretical framework
for micro-swimming mechanics in a Newtonian fluid was started with
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investigations of idealized micro-swimmers like a sheet by Taylor [6] and
flagellated cells by Hancock & Gray [7] integrating theoretical and experimental
studies to explain the basic mechanism of sperm motility. Hancock developed
a resistive-force theory (RFT) for slender-body theory in Stokes flow. The RFT
captures the contribution of the fluid and the geometry’s body. Both theories
predict that the swimmer speed is proportional to the square of the wave
amplitude.

Although the RFT approach is often satisfactory [8], it can be problematic
for nontrivial flagellar interactions that occur in the presence of boundaries or
even more in presence of boundaries in non-Newtonian fluid that is the closest
case to the biological problem. There is a need of an investigation that address
these interactions and explore how micro-swimmers respond through changes
in their environment in a Newtonian and non-Newtonian fluid in order to
know the effects of such as alterations in fluid rheology or the contributions of
a boundary. All of these interactions are very important for applications such
as fertilization [9] and biological problems.

1.0.2. Non-Newtonian case

In many cases, the micro-swimmer’s locomotion occurs through
environments that contain proteins and other polymers which display elastic,
and non-Newtonian characteristics. Some examples include mucus transport
by lung cilia [10] and spermatozoa swimming through the female reproductive
tract. These complex fluids often have effects on the locomotion of
microorganisms. A good example is the experiment carried out by Arratia
et al. [11], they compared a human sperm in two complex fluids: cervical
mucus with viscosity μ = 0.0007 Pa.s and semen with viscosity μ = 0.14 Pa.s.
They showed that the sperm swims at approximately the same velocity in both
media despite the large variation of viscosities, see Figure 1.1. Also, they noted
that human sperm flagellum beat with higher frequency but smaller amplitude
and wavelength in cervical mucus compared to semen [11].
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Figure 1.1: (a,b) Low-viscosity saline medium, with viscosity
of 0.0007 Pa.s and (c,d) high viscosity saline-methilcellusose
medium, with viscosity raised to 0.14 Pa.s. The sperm swims
at approximately the same velocity in either medium, despite the

large ratio of viscosities. Taken from Arratia (2014) [11].

The swimming theory in non-Newtonian fluids is much less developed
than the Newtonian case. That is because for the non-Newtonian case the
equations are highly non-linear, and hence classical Stokes flow methods
involving superposition of fundamental solutions are invalid. Non-linearity
appears due to a number of sources such as, the presence of time-dependent
stresses, normal stress differences, and shear-dependent material functions in
complex fluids. For example, viscoelastic fluids exhibit stress relaxation over
time. The combined effect of both time scales the time required for relaxation
and the periods of applied oscillatory stresses, as for a flagellum, introduce
responses to the applied stresses that are out phase, as well as an in phase
with them. Thus, the force distribution created by a motile flagellum will be
affected by fluid viscoelasticity and the nature of the viscoelastic behavior will
determine the swimming velocity [11].

For Newtonian fluids, only a single parameter is required to describe the
rheological behavior: viscosity. And it only is used to correlate flow data one
group of dimensionless variables, that number is the Reynolds number, Re.
For viscoelastic fluids, the rheological behavior cannot be described by a single
parameter, and two dimensionless groups are currently in use to correlate data
for such materials. The Deborah number, De, governs the degree to which
elasticity manifests itself in response to transient deformations. It is the ratio
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of a characteristic time, τ, of the fluid to the duration of observation. Unless
a deformation is very slow, the behavior of a viscoelastic fluid is strongly
nonlinear, and the dimensionless group intended to describe the degree of
nonlinearity is characterized by the Weissenberg number, Wi. It is the product
of a characteristic time of the fluid and a characteristic rate of deformation [12].

There are some theoretical efforts to model a swimming speed in
non-Newtonian fluids. Fulford et al. [13] extended the RFT theory for
a viscoelastic fluid with a linear Maxwell model for viscoelasticity (as in
Equation 2.45), and he did not find change in swimming speed compared with
the Newtonian case. However, Lauga [14] showed that the swimming speed
depends nonlinearly on wave amplitude and found that for a given wave
pattern on a two-dimensional sheet, viscoelastic effects slow the swimmer
relative to its velocity in a Newtonian liquid. In contrast, a two-dimensional
numerical simulation for a finite undulating sheet using de Oldroyd-B model
showed that fluid elasticity could in fact increase swimming speed when the
beating frequency is equal to the inverse of the fluid relaxation time.

Additionally, the effects of fluid elasticity on microswimmers have been
considered in computational studies on helical swimmers. Numerical
simulations of swimmers with finite-length and large-amplitude showed that
under some conditions, the swimming speed may be enhanced by elasticity
[15]. Swimming speed has a maximum when the relaxation time of the
fluid is similar to the period of the undulation. Other numerical simulations
capture the effect of the walls in the swimming speed. Li and Spagnolie [16]
investigated a helical swimmer inside a cylinder with different diameters.
They found that the swimming speed can develop local maxima in the helical
pitch, and the effects of confinement decrease exponentially fast with the tube
diameter.

Despite of these recent efforts, there is still a lack of experimental
investigations about swimming on viscoelastic fluids, the effects on fluid
elasticity, and the effect of confinement on swimming is still not clear.
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1.0.3. Granular case

Locomotion models have been developed for no-slip frictional materials like
Newtonian fluids where it is possible to predict the propulsion speed because
the swimmer interaction with the fluids is modeled by the Navier-Stokes
equations with given boundary conditions. A new challenge is to understand
the locomotion in other kinds of materials with a fluid-like behavior, for
example: in sand, mud, etc. In these kinds of materials, there are not
conservation equations to model the interaction between the boundary and
the body at the level of Navier-Stokes equations [17, 18].

In particular, locomotion is less well understood in granular media due to
its complex rheological features. The frictional nature of the particles results
in yield stress, a threshold above which the grains flow in response to external
forcing [17]. The resistance experienced by a moving intruder originates from
the inhomogeneous and anisotropic response of the granular force chains,
which are short areas affected grains surrounded [19]. At low locomotion
speed and a granular media slightly polydisperse (to avoid segregation),
where the granular matter is in a quasi-static regime, the effect of inertia is
negligible compared to frictional and gravitational forces [20, 19], which is a
regime similar to that of low Reynolds-number fluid.

Maladen et al. [21], inspired by RFT theory for locomotion in viscous
fluids, developed an empirical RTF in locomotion of sandfish which moves in
the subsurface undulating by a sinusoidal waveform. However, it is known
that drag forces may differ depending on the physics which governs the
body-medium interaction. For this reason, Maladen et al. [21] measured in
granular substrates the forces perpendicular F⊥ and parallel F|| to the direction
of movement for a slender cylinder and fitting some parameters. In this
way, they obtained the analogous version of resistant coefficients for granular
media. These functions were shown effective in modeling the undulatory
subsurface locomotion of sandfish. Nevertheless, an interesting topic is missing
to investigate: the influence of the geometry in the self-propulsion in granular
media, in particular a helical swimmer. A recent study by Jung et al. [22]
demonstrates that helical rotation is employed Erodium and Pelargonium seeds
to penetrate cohesionless soils.
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1.1. Objectives and structure of the thesis

After a review of the current literature, it is clear that many outstanding
questions remain to be answered. The main aim of this thesis is to analyze
experimentally and theoretically the behavior of a helical swimmer in complex
media: granular media and Non-Newtonian fluids. Also, we analyze the
differences in the velocity field when the swimmer is confined in Newtonian
and non-Newtonian fluids.

1.1.1. Objectives for the confined case

1. Measure the speed for a helical swimmer in a Newtonian fluid and
Non-Newtonian fluid in the confined case to compare the differences.

1.1.2. Objectives viscoelastic fluids

1. To mesure the speed for helical swimmers with different geometries and
relative head sizes to quantify the influence of the swimmer geometry on
the swimming speed.

2. Theoretically quantify the influence of the viscoelasticity and the
tendency of the experimental swimmer speed.

1.1.3. Objectives for granular matter

1. Calculate theoretically the speed in granular media with and without
head for a helical swimmer.

To serve these purposes, we investigate experimentally the effect on the
swimming speed by the boundaries for Newtonian and Non-Newtonian fluids
at low Re numbers with three different rotation frequencies in Chapter 3.
This work is a complement of numerical simulations since no experiments
have been conducted for this case. The experimental set-up is explained in
Section 3.2. We found that the speed increases with the confinement for both
fluids. Additionally, we found that the velocity is larger for the viscoelastic
fluid (Boger) compared with the Newtonian one, see Section 3.3.2.

In Chapter 4, we explored the effects of the helical swimmer geometry
on the swimming speed in a viscoelastic fluid. The experimental setup is
explained in Section 4.2. It is found that the swimming speed is controlled
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by the ratio of the head to helix size. This asymmetry of sizes induces a
viscoelastic force that increases or decreases the locomotion, see Section 4.3.

Finally, in Chapter 5 we apply the analogy of RFT theory for a helix in a
granular media in the free case and compare it with experimental results. This
part exploits the application of RTF in granular media since there is a similar
estimate for the speed but with a sinusoidal wave. We showed that RTF
quantitatively describes well the movement of helical swimmers in granular
media, see Section 5.3.
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Chapter 2

General theory

In this chapter, we discuss relevant and general theories about swimming
speed in Newtonian and Non-Newtonian fluids in the unconfined case.
We start with a general theory about Newtonian fluids and the regime for
microorganisms. Also, we develop the Resistive Force Theory applied for a
helical swimmer. Then we discuss the general theory to model a viscoelastic
fluid.

2.1. Locomotion at Low Reynolds number in

Newtonian fluids

We will discuss the regime of Reynolds number that we consider for
micro-swimmers. Then, we summarize the classical application of Newtonian
fluid mechanics to flagellated cell swimming via slender-body theory and RFT.

The balance of momentum equations for an incompressible fluid describe
the evolution of the velocity u(r, t) of a fluid with density, ρ, dynamic viscosity,
μ, a pressure gradient, ∇p, and a body force, f [23]:

ρ

(
∂u
∂t

+ u · ∇u
)
= −∇p + ∇ ·D + f = 0. (2.1)

For a Newtonian fluid the shear-stress D is linearly proportional to the fluid
strain-rate γ̇. The constant of proportionality being the fluid shear viscosity
μ such that D =

μ
2 γ̇ =

μ
2 [∇u + (∇u)T], where the superscript T represents the

transpose tensor. The material derivate is defined as

Du
Dt

=
∂u
∂t

+ u · ∇u. (2.2)
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Dimensionless variables can be defined by choosing a characteristic length
scale L and a characteristic velocity scale V,

ũ =
u
V

, x̃ =
x
L

, ∇̃ = ∇L, t̃ =
V
L

t, p̃ =
p

μV/L
.

In terms of the dimensionless variables, the balance of momentum equations
become

ρVL
μ

(
∂ũ
∂t̃

+ (ũ · ∇̃)ũ
)
= ∇̃p̃ + ∇̃2ũ. (2.3)

Note that the body forces, were considered zero f = 0. The terms on the
left-hand side of this equation are the inertial effects. They describe the flow
of momentum through the fluid. The second term on the right-hand side is
the viscous term. This quantifies the dissipation on any velocity gradient. The
balance of inertial and viscous contributions to a fluid’s flow is described by
the Reynolds number (Re), which follows from the coefficient of the viscous
term in Equation 2.3

Re =
ρVL
μ

=
inertial response
viscous response

(2.4)

where μ is the fluid viscosity. We can estimate the Re number for a
micro-swimmers such as E.coli which swims in water. The viscosity of the water
is μ = 1 × 10−3 Pa·s and its density is ρ = 1000 kg/m3, the characteristic length
usually is L ≈ 2× 10−6 m and it is known the average velocity V ≈ 25× 10−6 m/s
[24]. With this values and the Equation 2.4, the Reynolds number for this case
is Re ≈ 5× 10−5. In general typical sizes from microorganisms are 10−5 m and
velocities are 10−5 m/s giving Re ≈ 10−4 for swimming in water. Therefore, the
Reynolds number is Re 	 1, and thus we can assume the flow to be laminar.
Additionally, we can consider the frequency-based Reynolds number, typically
defined as

Re f req =
ρL2ω

μ
(2.5)

where ω ∼ 100 Hz is the frequency at which the bacterium flagella rotate, with
this the Re f req << 0.1 for E. Coli.
Then linear viscous forces rule the movement at small Reynolds number and
the balance of momentum equations is reduced to the Stokes equations:

∇̃p̃ = ∇̃2ũ, ∇̃ · ũ = 0, x ∈ Ω, (2.6)

where ũ is the velocity vector field in the domain Ω external to the swimmer.
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The velocity is introduced in the model as a boundary condition ũ = V for x
on the swimmer boundary, where V denotes the speed of the boundary and
thus represents no slip.
The Stokes equations are linear and therefore easier to solve than the
Navier-Stokes equations. However, when the body boundary Ω is complex,
like in the case of a helical swimmer, solving the Stokes equations analytically
becomes a major challenge. One way to solve this problem analytically is with
the Resistive-Force Theory (RTF) developed by Gray and Hancock [7].

2.2. Resistive-Force Theory (RFT)

At low Reynolds number, a rotating flagellum exerts an axial thrust Fthrust

and a torque T related to the flagellum’s axial velocity, V, and rotation rate, ω.
The axial thrust is balanced by the drag forces of the helix, Dhelix, and the head,
Dhead. If there are no external forces, it may be written as

Fthrust = Dhelix + Dhead. (2.7)

However, until now we don’t know any of these terms. To solve this problem,
a theory called Resistive-Force theory was developed.

The essence of the propulsion mechanism for swimmers with flagellum
was first described by Gray & Hancock [7]. The basis of the Resistive-Force
Theory was stated by Hancock [25]. Their theory essentially requires that the
drag coefficients associated with normal K⊥ and tangential K|| motion satisfy
K⊥/K|| ≈ 2. Gray & Hancock fundamentally explained how a propagating
flagellar wave produces a propulsive thrust that is balanced by the drag on
the head. The Resistive-Force Theory can be interpreted as a logarithmically
accurate local approximation that treats the ratio of the flagellum radius to its
bending radius of curvature as a small parameter [26]. In other words, the
RFT has better results for smaller helical angles.

Gray & Hancock assumed that the hydrodynamic forces experienced by the
organism would be approximately proportional to the local body velocity. The
force exerted by a body of flagellar segment, ds, with speed V|| in its tangential
direction and speed V⊥ in its normal direction experiences a local viscous drag
approximately given by

F = K⊥V⊥ + K||V||, (2.8)
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where K corresponds to the local drag coefficient per unit length and it depends
on swimmer geometry and fluid viscosity,⊥ and || are the normal and tangential
components, respectively as shown in Figure 2.1.

Figure 2.1: Normal and tangential vector on a differential element
of the slender body. Helix with outer radius R and angle β with
head radius a. Which moves with constant velocity in x axis Vx

and rotation rate ω.

They developed this model for a microorganism that moves sinusoidally,
such as C. Elegans. However, it can be implemented for the case of E. Coli
which moves helically. Consider a swimmer in a Newtonian fluid that has a
helical-slender flagellum with an outside radius R and a spherical head with
radius a, see Figure 2.1. The swimmer has a constant velocity V along the x
axis and an angular velocity ω. The parameterization of the helix is:

r(x, t) = [x + Vt, R cos(θ), R sin(θ)] , (2.9)

where θ = (kx − ωt) and k = 2π/λ is the wave number. Arranging this
parameterization in cylindrical coordinates, we obtain

r(x, t) =
[
(x + Vt)êx + Rêρ

]
. (2.10)

We find the vector tangential to the helix

t̂ =
1√

1 + R2k2
[̂ex + Rkêθ

∣∣∣
θ=kx] = [cos(β)êx + sin(β)êθ

∣∣∣
θ=kx], (2.11)

where β is the angle between the tangential vector and the x axis, it entails

cos β = t̂ · êx =
1√

1 + R2k2
, sin β =

Rk√
1 + R2k2

⇒ tan β = Rk. (2.12)
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Let F the Force vector acting on a differential arc length segment ds of the
flagellum. This vector can be decomposed in the tangential direction plus a
vector in a plane normal to the tangential vector as

F = (F · t̂)̂t + [F − (F · t̂)̂t]. (2.13)

Then, we can define the unitary normal direction as

n̂ =
F − (F · t̂)t
‖F − (F · t̂)t‖ . (2.14)

Therefore Equation 2.13 can be alternative written as

F = (F · t̂)̂t + ‖F − (F · t̂)̂t‖n̂, t̂ ⊥ n̂. (2.15)

Then, if we consider only the tangent and the normal components

F|| = (F · t̂) and F⊥ = ‖F − (F · t̂)̂t‖, (2.16)

we can rewrite any vector F as

F = F||t + F⊥n. (2.17)

Combining Equation 2.11, Equation 2.17, and Equation 2.12 we obtain

F|| = cos βFx + sin βFθ, F⊥ = cos βFθ − sin βFx. (2.18)

In matrix form any vector acting on one differential line segment ds can be
written as ⎛⎜⎜⎜⎜⎝ F||

F⊥

⎞⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝ cos β sin β
− sin β cos β

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝ Fx

Fθ

⎞⎟⎟⎟⎟⎠ , (2.19)

Where Fx is the propulsion force and Fθ is associated with the torque force. The
same decomposition can be applied for the velocity vector

⎛⎜⎜⎜⎜⎝ V||
V⊥

⎞⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝ cos β sin β
− sin β cos β

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝ Vx

Vθ

⎞⎟⎟⎟⎟⎠ . (2.20)
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Using the linear relation between the Forces and Velocities given by Gray &
Hancock in Equation 2.8 in matrix form, we find

⎛⎜⎜⎜⎜⎝ dF||
dF⊥

⎞⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝ K|| 0

0 K⊥

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝ V||

V⊥

⎞⎟⎟⎟⎟⎠ (2.21)

Combining Equation 2.21 and Equation 2.20, we obtain

⎛⎜⎜⎜⎜⎝ dF||
dF⊥

⎞⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝ K|| 0

0 K⊥

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝ cos β sin β
− sin β cos β

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝ Vx

Vθ

⎞⎟⎟⎟⎟⎠ . (2.22)

We may substitute Equation 2.19 in Equation 2.22 to obtain an expression for
the force in terms of the velocity (Vx, Vθ) and the resistant coefficients (K||, K⊥)
as ⎛⎜⎜⎜⎜⎝ dFx

dFθ

⎞⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝ K|| cos2 β+ K⊥ sin2 β sin β cos β(K|| −K⊥)

sin β cos β(K|| −K⊥) K⊥ cos2 β+ K|| sin2 β

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝ Vx

Vθ

⎞⎟⎟⎟⎟⎠ . (2.23)

Hence, the total propulsive force can be obtained by integrating the differential
force dFx over the entire flagellum length

Fx =

s′∫
0

[sin β cos β(K|| −K⊥)Vθ + (K|| cos2 β+ K⊥ sin2 β)Vx] ds, (2.24)

where ds is the arc length defined as ds = ‖r′(x)‖dx. Combining Equation 2.9
and Equation 2.12 we obtain

ds = ‖r′(x)‖dx =
√

1 + R2k2dx =
dx

cos β
. (2.25)

After applying this change of variable in Equation 2.24, we obtain

Fx =

LT∫
0

[sin β(K|| −K⊥)Vθ + (K|| cos2 β+ K⊥ sin2 β)
Vx

cos β
] dx, (2.26)

where LT is the helix length. Integrating with respect to x, the total propulsion
force in the x direction due to the flagellum is given by

Fx = LT

[
sin β(K|| −K⊥)Vθ +

(
K|| cos β+ K⊥

sin2 β

cos β

)
Vx

]
(2.27)

Note that the anisotropy between the normal and tangential
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drag coefficients, K⊥ > K||, is the origin of drag-based thrust [27].
In other words, supposse that K⊥ = K|| then balance force is
FxT = K||(cos β + sin2 β/ cos β)Vx = 0 which implies that Vx = 0 but it
is not true because experimentally we see helix in movement. So, the
anisotropy of resistant coefficients induces that force balance is not zero.Also,
note that the only way in which a flapping velocity Vθ may lead to a net
propulsion force is when K⊥ > K||. This is the condition for drag to induce
propulsion.

Additionally, note that the RFT obtains the total force integrating the local
forces on each small segment. The local forces are calculated using drag
coefficients per unit length in the normal and tangential directions, so the
RTF predicts the thrust and the drag on a flagellum. Then, the propulsion force
in Equation 2.27 has two contributions: (1) the thrust and the (2) drag forces

Fthrust = L sin β(K|| −K⊥)Vθ, Dhelix = L
(
K|| cos β+ K⊥

sin2 β

cos β

)
Vx (2.28)

For an unconfined swimmer the resistance coefficients K|| and K⊥ (per unit
length) for a slender body with radius r0 and length 2l are calculated analytically
[28] as

K|| =
4πμ

2ln
(

2l
r0

)
− 1

and K⊥ =
8πμ

2ln
(

2l
r0

)
+ 1

. (2.29)

If we consider the slender body hypothesis lr0. The first coefficients of the
Taylor series expansion are

K|| ≈ 4πμ and K⊥ ≈ 8πμ. (2.30)

Hence K⊥ ≈ 2K|| in a first order. Now, we still approximation need to include the
drag force contribution due to the head in the force balance, see Equation 2.7.
It is known that for a spherical body with radius a, the drag force is Dhead =

6πμaV = DV [28]. With a balanced force between the thrust, Fthrust, and the
drag, Dhelix + Dhead, forces is easy to find the velocity of the swimmer

V =
LTR2kω(K⊥ −K||)

LTR2k2K⊥ + LTK|| + D
√

1 + R2k2)
, (2.31)
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where the tangential velocity was taken as Vθ = Rω. Also we may rewrite the
velocity in terms of the helix angle, β, according to Equation 2.12

V = Rω
(ς− 1) tan β

1 + ς tan2 β+
D
K||

a
LT

1
cos β

, (2.32)

where ς = K⊥/K||.

2.3. Non-Newtonian fluids

A large number of liquid materials which behavior do not behave like
Newtonian fluids, some examples include polymeric liquids, suspensions,
surfactants, etc. These kinds of fluids have rather more complicated
macroscopic properties and they are called non-Newtonian or even complex
fluids. For example, a viscoelastic fluid exhibit the presence of memory, i.e.
the stresses also depend on the flow history. Unfortunately, there is not a
model analogous to the Navier-Stokes equations that describes momentum
conservation of viscoelastic fluids. Usually, one may choose a model that is
known to describe a particular type of fluid. In this section we describe two
popular models used for diluted polymeric solutions that incorporate memory
and stress anisotropy into constitutive equations. This section is based in these
books: Leal [29], Macosko [30], Larson [31] and Spagnolie [27].

2.3.1. Maxwell’s model

As mentioned the behavior of viscoelastic fluids is the result of two
contributions: the elastic and the viscous response to forces. As a first
approximation, we may think of a viscoelastic fluid as the linear combination
of those responses. We can think in the simple shear deformation of a solid for
the elastic response, and in the shear stress acting on a fluid for the viscous part.

The shear stress σ in an elastic solid produces deformations or changes in
the strain γ. In the case of a small deformations this may be modeled using
Hooke’s law and can be written as

σ = Gγ, (2.33)

where G is the elastic constant of the material, also called shear modulus.
An analogous equation for the Newtonian viscous fluids is the linear
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relationship between the stress σ and strain rate γ̇:

σ = ηγ̇, γ̇ =
∂γ

∂t
, (2.34)

where η is the fluid viscosity for non-Newtonian fluids. It is important to note
the distinción between the displacement gradient γ and the velocity gradient
γ̇. Due to similarities with Hook’s law linear solids and liquids are often
represented graphically by springs (elastic solid) and dashpots (viscous fluid),
see Figure 2.2.

(a) (b)

Figure 2.2: Graphical depiction of elements in the two types of
material response: a) a spring, elastic response b) a dashpot,

viscous response.

The simplest model for a viscoelastic fluid with constant viscosity is the
Maxwell model, where the configuration of the spring and the dashpot is
one followed by the other as you can see in Figure 2.3. This model is the first
approximation of the response of a viscoelastic fluid in one direction. However,
to model the response of the material in all directions, a sum of springs and
dampers is usually proposed to model a viscoelastic fluid.

Figure 2.3: Ilustration of Maxwell linear viscoelastic model.

Imagine that this configuration is subjected to fixed displacements of
their ends. The spring and the dashpot are stretched initially; however, the
displacement of the spring can be redistributed to the dashpot, keeping the
total displacement constant. To derivate the constitutive equations, we call
the total deformation γ = γs + γd and the total stress σ = σs + σd. Where the
subscripts s and d correspond to deformation and stresses for the spring and
dashpot respectively. The total deformation γ is the spring deformation ( γs
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elastic component) plus the dashpot deformation (γd viscous component)

γ = γs + γd. (2.35)

So, the rate of deformation in time is

γ̇ = γ̇s + γ̇d (2.36)

Considering the Equation 2.33, we have γ̇s = σ̇/G. Additionally, the viscous
contribution is given by γ̇ = σ/η, see Equation 2.34. So, it is easy to see that
the constitutive equation for the Maxwell model are

γ̇ =
1
G
σ̇+
σ
η

, (2.37)

equivalently in terms of σ, we have

ηγ̇ =
η

G
σ̇+ σ (2.38)

Since the Maxwell model is linear, it is easy to analyze in terms of its
response to a periodic deformation with frequency ω. Solving Equation 2.37
for a deformation γ = γ0 sinωt, we obtain

σ(t) = γ0ηω

(
cosωt

1 + (τω)2 +
τωT sinωt
1 + (τω)2

)

=
η

1 + (τω)2 γ̇(t) + G
(τω)2

1 + (τω)2γ(t)
(2.39)

where τ = η/G. So, the stress is decomposed into two waves of the same
frequency: one in phase (sinω) and other 90◦ out of phase (cosω). Also,
comparing the Equation 2.39 with equations Equation 2.33 and Equation 2.34
we can note that there are contributions due to a frequency dependent viscosity
(proportional to γ̇) and another due to shear modulus (proportional to γ).

Due to the elastic and viscous behavior, two functions are defined as the
elastic (storage) modulus G′(ω) and the viscous (or loss) modulus G′′(ω) given
by

G′(ω) = G
(τω)2

1 + (τω)2 , G′′(ω) = G
τω

1 + (τω)2 (2.40)

In this sense, if a material satisfies G′ > G′′, we can say that is more elastic
than viscous and viceversa. The crossover between the two regimes, G′ = G′′,
occurs when the time scale of deformation is similar to the time scale of
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relaxation, ω−1 ∼ τ.
Equation 2.39 and Equation 2.40 are the basis of linear rheology. For small
deformation amplitudes γ0, we can measure the shear stress σ(t), see
Equation 2.39 and with it determines the viscosity, elastic modulus, and
Maxwell relaxation time of the fluid. Linear rheological measurements are
usually interpreted in terms of complex modulus, G∗(ω) = G′(ω) + i G′′(ω),
where i denotes the imaginary part of a complex number. Rheometers provide
the storage and loss modulus as a function of ω and for Maxwell model
the relaxation time can be determined as τ = ω−1

0 , with ω0 as the frequency
where G′(ω0) = G′′(ω0). However, the Maxwell model is often insufficient
to describe even in linear rheology of polymeric solutions, and G′ and G′′

do not cross due to additional dissipation mechanisms. For example, if a
viscoelastic material dissipates more energy than it stores implies that G′′ > G′

and viceversa.

2.3.2. Oldroyd-B model

The Maxwell model has a physical problem: It is not frame-invariant. To
show this, assume that we do the same experiment two times. The first time
in a stationary lab frame, and in the second time with a constan velocity v0

with respect to the lab frame. The stress components of the moving frame
experiment should be written in terms of the lab frame coordinates as σi j(x +

u0t, t). The time derivates become

∂
∂t

σi j(x + u0t, t) =
∂
∂t

σi j + u0 · ∇σi j (2.41)

We expected that both experiments should be described by the same equations
since a there are not acceleration in the moving frame. Hence no additional
stresses should be created in the fluid. However the time derivate in Maxwell
model Equation 2.38 and Equation 2.41 differ by a term proportional to v0. So,
this indicates that the Maxwell model is not frame-invariant [27].

To solve this complication, we need to define the upper convected derivates
of a tensor as

Â =
D
Dt

A − (∇u)T · A − A · (∇u) (2.42)

where Â is the upper-convected time derivative of a tensor A, D/Dt is
the material derivative, and ∇u is the velocity gradient. In general, the
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upper-convected time derivative is the change rate of some tensor property for
a small element of the fluid that is written in the coordinate system rotating and
stretching with the fluid. Then, the time derivatives in constitutive relations
are generally written in this way to ensure that the parcels are frame-invariant.
There are other frame-invariant choices, but the most popular, polymeric
constitutive equations are formulated in terms of upper-convected time
derivates.

The next simplest model of a polymeric fluid is the Oldroyd-B model.
This constitutive equation is especially appropriate because it separates
contributions of the solvent and the polymer. The Oldroyd-B equation is

τσ̂ + σ = η(γ+ λr ˆ̇γ), (2.43)

where σ is the stress tensor, γ is the deformation rate tensor, τ is the relaxation
time, η is the viscosity, λr is the retardation time, and the ˆ denotes the upper
convected time derivative, see Equation 2.42.

Equation 2.43 can also be considered as the combination of the constitutive
equations for the solvent and the polymer. That is, the equation for the solvent
stress σs is (see Equation 2.34)

σs = ηsγ̇, (2.44)

where ηs is the solvent viscosity. The equation for the polymer stress σp be
given for the Maxwell model (see Equation 2.38)

σ̂p + τ ˆσ̇p = ηpγ̇, (2.45)

where ηp is the viscosity due to the polymer. Adding the two stresses yields to
the total stress σ, the result is the Oldroyd-B model in Equation 2.43 with the
retardation time estimated as λr = ηsτ/(ηs + ηp).
The Oldroyd-B model is one of the simplest models that provides a macroscopic
hydrodynamic description of polymer solutions. The Oldroyd-B model
qualitatively describes many features of the incompressible viscoelastic fluids
(called Boger fluids, see Section 2.3.3). In a steady state simple shear flow,
this constitutive equation predicts a constant viscosity, a first normal stress
difference, and zero second normal stress difference [32].
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2.3.3. Boger fluids

To simplify the problem theoretically, numerically, and experimentally
for a complex fluid, we considered a particular fluid called Boger. A Boger
fluid is a liquid that is elastic and has a constant viscosity which does not
vary with shear rate. Nevertheless, most of the elastic liquids are polymer
solutions; therefore, they are inherently shear thinning (i.e., viscosity decreases
with larger shear rates). However, Boger fluids are mixtures of very diluted
polymer solutions such that viscosity variations with shear rate can be ignored
[33].

Theoretically, numerically, and experimentally Boger fluids are important
because we may separate elastic from viscous effects later on or afterwards.
Such a separation is possible if the same experiment is conducted using two
fluids: a Boger and a Newtonian fluid with the same viscosity. Therefore,
differences measured at the same flow rate are the result from elastic effects
alone. These kinds of fluids are modeled numerically and theoretically using
the Oldroyd-B model, see Section 2.3.2.

A Boger fluid is usually modeled with the addition of many elastic modes
associated with different relaxation times. Then, we may use the expression for
the modulus in Equation 2.40, but with a series of relaxation times, τi. In other
words, the elastic and the viscous modulus are estimated as the sum series

G′(ω) =
N∑

i=1

Gi
τ2

iω
2

1 +ω2τ2
i

, G′′(ω) = ωηs +
N∑

i=1

Gi
τiω

1 +ω2τ2
i

, (2.46)

for low-amplitude oscillation at frequency ω. Where G′(ω) and G′′(ω) are
the new storage and loss modulus respectively; ηs is the Newtonian solvent
viscosity, and Gi are the fitting parameters for each relaxation time τi. Using
the method discovered by Baumgaertel and Winter [34] the coefficients Gi are
determined as the minimum average square deviation (min, see Equation 2.47)
between predicted G′ and G′′ values and measured data of Ḡ′ and Ḡ′′.
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where Ḡ′j and Ḡ′′j are the measured data at m frequencies ω j and G′, G′′ are
calculated values from Equation 2.46.
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To compute an average relaxation time 〈τ〉, we need take in to account each
mode Giτi as in the next expression

〈τ〉 =
∑N

i=1 Giτ2
i∑N

i=1 Giτi
(2.48)
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Chapter 3

Confined helix in viscoelastic fluids

3.1. Introduction

The flagellar actions that occur with confined boundaries in a
non-Newtonian fluid are the closest to the biological problem. For example,
micro-organisms swimming through permeable boundaries, cell walls, or
micro-vasculature. Confinement is an environmental constraint that strongly
influences the motion of micro-organisms.

The effect of solid boundaries on the swimming speed in viscoelastic and
Newtonian fluids has been a topic of increasingly active research. We will
mention some of them. For a Newtonian fluid, it has been calculated by
Katz [35] and more recently pointed by others [36, 37, 38] that the swimmers
can take advantage of walls to increase their motility. One the one hand,
Felderhof [39] has shown that the speed for a Taylor sheet increases with
confinement. On the other hand, Zhu [36] used a squirmer model to show
that the velocity decreases with confinement the swimmer is pushed toward
the wall. Liu et al. [38] analyzed a helical flagellum in a tube and found that
the swimming speed increases monotonically as the confinement increases.
However, Acemoglu et al. [40] adopted a similar model, They also accounted
for the effects of the head and found a decrease in velocity with the confinement.

There have been some numerical efforts to model the effect of confinement.
Through a numerical model for a helical ribbon, a filament, and a screw-in
circular channels with radius Rch under constant angular velocity Demir
et al. [41] showed there is a positive influence of the confinement on the
swimming velocity. Ledesma [37] reported on a dipolar swimmer in a rigid
or elastic tube and found a speed enhancement due to the walls. Jana et al.
[42] studied experimentally and numerically the swimming of paramecium
inside a capillary tube. They showed that the microorganism executes helical
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trajectories wich become in straight lines as the diameter of the capillary tube
decreases. They found a stepped enhancement due to the confinement. This
behavior has been reported for helical swimmers by other studies such as Liu
et al. [38], Spagnolie [27], Bilbao, and Wu et al. [43].

Changes in fluid rheology or contributions due to the presence of
boundaries are some of the effects that we need to address to be able to
understand the dynamics of micro-swimmers. Understanding the behavior of
confined micro-swimmers may also provide us a way to develop applications
in micro-fluidic devices. It should be noted that an analytical expression for a
confined swimmer in a viscoelastic fluid does not exists up to date.

In the following section we investigated the case closest to the biological
problem. We experimentally address the effects on the swimming speed due
to the presence of boundaries in Newtonian and non-Newtonian fluids.

3.2. Experimental set-up

A control experiment was carried out to verify analytic results for the free
Newtonian case from Section 2.2. Also, we experimentally measured the
swimming speed in a confined media for Newtonian and Non-Newtonian
fluids. In this section, we describe how we measured swimming speed in a
confined environment with rigid walls in Boger and Newtonian fluids.

3.2.1. Fluids

We considered two test fluids: the first was Newtonian with viscosity
μ = 0.46 Pa.s and density ρ = 1384 kg/m3. The second was a Boger fluid
with density ρ = 1340 kg/m3, constant viscosity μ = 1.22 Pa.s, and average
relaxation time τ = 0.47 s. This relaxation time was obtained fitting a Maxwell
of four elements to the rheological test results (G’ and G”) following the method
used by Baumgaertel [34], see Equation 2.47.

3.2.2. Helical swimmer

The swimmer was designed to fulfill the restrictions of the model described
in the Section 2.2: its head is spherical and the wave-length of the helix is larger
than its diameter. In other words, we make those assumptions to assure that
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any element in the flagellum remains close to the center-line of the helix, and
it allows a good approximation to the RFT theory.

Figure 3.1: Geometric parameters of the helical swimmer with
small curvature-arc. The helix has a radius R, wavelength λ,
total length LT, and the thickness of the helical filament is r0.

Additionally, the spherical head has a radius a.

The swimmer shown schematically in Figure 3.1 was 3D printed with ABS
plastic (Young’s modulus, E = 2.6 GPa), and geometric parameters shown in
Figure 3.1 and Table 3.1.

Geometrical characteristics of the swimmer

Units: [mm]

Tail Wave length λ = 35.20± 0.68

Total length L = 43.64± 0.09

Exterior radius R = 3.15± 0.68

Thickness r0 = 0.79± 0.07

Head radius a = 3.39± 0.31

Table 3.1: Geometrical parameters for the helical swimmer with
spherical head.

A permanent cylindrical magnet and an air bubble were placed inside the
head to have neutral buoyancy. The magnet is 3.18 mm both length and
diameter and it has a remanent magnetic flux Bm = 1.265 ± 0.015 T and
density ρm = 7450 Kg/m3.

3.2.3. Magnetic device

We used the magnetically actuated helical swimmers designed by Godinez
et al. [44]. In essence, a magnetized head driven by an external magnetic field
experiences a torque aligns its magnetic field Bm with the external field Be, see
Figure 3.2(b). To generate an actuation, the magnetic field has to rotate, so
the swimmer is rotated around its helical axis, see Figure 3.2(a). The external
magnetic field, Be = 5.8 mT , was generated with a Helmholtz coil with radius
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Rcoil = 140 mm, as described in detail previously [44]. Three rotation rates
were considered: 1.46 ± 0.5 s−1, 1.96 ± 0.6 s−1, and 2.39 ± 0.5 s−1. A container
(dimensions 15 × 13 × 14.5 cm3) with test fluid was placed inside the coil as
shown in Figure 3.2(a)

(a) (b)

Figure 3.2: Experimental setup used to propel a helical swimmer
in a confined media. (a) Magnetic device: A pair of coils generate
an external magnetic field Be. The coils rotate with frequency
ω and the confinement of the swimmer is by two parallel walls
equally distant from the swimmer. (b) The external magnetic field
Be is aligned with the field Bm generated by a magnet inside the

head of the swimmer to actuate the swimmer.

3.2.4. Confinement

The confinement was achieved by placing two thin parallel and equidistant
layers, with distance h from the center-line, to the propeller axis as shown in
Figure 3.3. A swimmer was placed in the container, and its motion was parallel
to the walls, see Figure 3.2(a), until the swimmer had no propulsion due to the
closeness of the walls. The swimming displacement was filmed with a digital
camera at 30 fps. The images were digitally processed to obtain the swimmer’s
position and speed. Each experiment was repeated five times. A total of 16
confinement values were tested.
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Figure 3.3: The confinement of the swimmer is given by two
parallel walls with distance h from the center-line of the swimmer.
The motion of the swimmer is longitudinally parallel to the walls.

3.3. Results and discussion

In this section, we considered the confinement effect in the swimming speed
in both Newtonian and Boger fluids for three frequencies. As expected, the
confinement and the fluid elasticity lead to changes in locomotion speed.

3.3.1. Newtonian fluid

We conducted measurements of the swimming speed in a Newtonian fluid
without confinement, since we needed to corroborate the accuracy of the
experimental technique and the agreement with the theoretical RTF prediction
of Equation 2.31 [6, 7]. Consequently, the experiment was considered
unconfined when h/a = 4.81 , where a is the radius of the swimmer’s head
and h is the distance from the swimmer to the wall which in this case is the
wall of the container, see Figure 3.2(a).

As shown in Figure 3.4 the swimmer speed increases with the rotating
frequency ω, and the agreement with the theory is reasonable. Considering
the geometry of the swimmer the solid line in pink color corresponds to the
prediction of the resistive force theory in Equation 2.31.

Figure 3.5 shows the mean forward speed measured as a function of the
confinement ratio, h/a, for the Newtonian fluid and with three different
rotation speeds. At a given rotation rate, the swimmer speed progressively
increases with confinements (as h/a decreases). The swimming speed in the
most confined case, attained at h/a ≈ 3, is approximately 25% faster than
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Figure 3.4: Swimming speed as a function of frequency: (◦),
ω = 0.64s−1; (�), ω = 0.85s−1; and (�), ω = 1.04s−1. The line is

obtained from Eqn (2.31).

the unconfined one, h/a ≈ 10. The same behavior, was found with the three
rotation speeds tested.

3 4 5 6 7 8 9 10

Confinement [h/a]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

S
p

ee
d

 [
m

m
/s

] 

=0.64 s-1

= 0.85 s-1

=1.04  s-1

Figure 3.5: Swimming speed in Newtonian fluid as a function of
confinement, h/a,for different rotational speeds: (◦),ω = 0.64s−1;
(�), ω = 0.85s−1; and (�), ω = 1.04s−1. The sketches on the left
and right correspond to the position of the walls with respect to

the swimmer (confinement).

It is important to note that small values of h/a could not be tested because the
swimmer rotation rate lagged behind the external rotation field. In other words,
the magnetic torque was not sufficiently strong to maintain the swimmer
“locked” with the external field. The confinement induces an increment in



3.3. Results and discussion 31

the torque needed to rotate the swimmer at a given rate. Such cases were
discarded.

3.3.2. Viscoelastic fluid

We show the results replacing the Newtonian fluid by a viscoelastic fluid
(Boger) with nearly constant viscosity described in Section 3.2.1.

Figure 3.6 displays the measured mean speed V as a function of the
confinement, h/a , for a Newtonian and a viscoelastic fluid (Boger). Filled
symbols correspond to the Boger fluid while empty symbols are for the
Newtonian one. The same swimmer was used under the same magnetic field
and frequencies.
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Figure 3.6: Swimming speed versus confinement in Newtonian
(empty symbols) and non-Newtonian fluid (filled symbols) for
three different frequencies: (◦), ω = 0.64s−1; (�), ω = 0.85s−1;

and (�), ω = 1.04s−1.

First of all, for both fluids and all frequencies that we retested, the results
are similar: the speed increases with confinement. However, the swimmer
speed in the Boger fluid is above the speed in the Newtonian case for the
two higher frequencies, while for the lowest frequency the speed is similar.
The increment in speed with confinement is in agreement with the numerical
results previously reported(E. Demir et al. [41], L. Li et al. [16], G. J. Li et al.
[45], B. U. Felderhof et al. [39], and H. Wu et al. [43]).
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Additionally, the effect of confinement on the speed for both fluids is small
for h/a > 6. This threshold is important because we can get an estimated
value of the distance between the swimmer and walls for which the walls
do not affect too much the swimmer speed. As a consequence, in any other
experimental set-up where the swimmer is considered free, the use of a
container where the confinement is greater than 6 works as an unbounded
domain. These results are also in good qualitative agreement with numerical
results ( L. Faucci et al. [46], R. Ledesma et al. [37], and B. Liu et al. [38]) and
the theoretical prediction of D.F. Katz [35].

Figure 3.7 shows the speed in a Boger fluid as a function of Weissenberg
number defined as Wi = τV

h for each rotation frequency. Where τ is the
relaxation time of the Boger fluid, V is the swimmer speed in the Boger fluid,
and h is the distance from de swimmer to the walls, see Figure 3.3. The speed
increases as the Wi increases for all the frequencies. It should be noted that in
our case the Wi number increase because we changed the confinement, h, and
with it the swimmer speed. However, the same result should be obtained if we
change the fluid, i.e the relaxation time τ.
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Figure 3.7: Swimming speed in a Boger fluid as a function of
Weissenberg number for all the confinements. Each symbol
corresponds to each rotation speed: (◦), ω = 0.46s−1; (�),

ω = 0.85s−1; and (�), ω = 1.04s−1.

The Wi number is the ratio between elastic forces and viscous forces. So, for
large Wi numbers the elastic energy stored in the fluid is greater than energy
dissipated due to viscosity. In our case, the largest Wi number corresponds to
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the most confined case, then we can say that the elastic energy increases in the
fluid as the confinement does. In other words, the confinement induces larger
shear rates (V/h) and thus produces a faster elastic response. Therefore, the
fluid can store more elastic energy.

On the other hand, the Boger fluid experiences both viscous and elastic
forces. The viscous force is the shear stress τxy. The dominant elastic force
will be appear due to a new apparent force: the first normal-stress difference
N1 = τxx − τyy that did not exist in Newtonian fluids. The Wi number is
proportional to N1, so when Wi increases the apparent force N1 increases as
well. It should be noted that N1 has a component in the motion direction of the
swimmer, i.e., τxx. So, this may be why the speed is greater in the viscoelastic
fluid compared with the Newtonian fluid.

The effect of viscoelasticity on the swimming dynamics is, in general,
poorly understood. Contrasting results have been reported. For instance, F.
A. Godinez et al. [47] found that swimmer speeds can be larger, smaller, or
even equal than that in a Newtonian fluid, depending on the kinematics of
swimming. On the other hand, S. E. Spagnolie et al. [48] reported that the
swimming speed depended on the Deborah number and helix geometry.

In our case, it is clear that confinement below the threshold implies an
increase in speed ratio. The confinement induces additional shear in the
fluid which would produce a larger viscoelastic response of the fluid than
an unconfined case, leading to a more pronounced effect on the swimming
speed. This chapter shows that confinement could be an additional factor to be
considered when analyzing the swimming speeds in non-Newtonian media.
What we found in experiments is limited by confinement and the swimmer
geometry. Future work should explore other confinement types, for example,
an elastic or rigid cylindrical boundary as in [37]. Also, the effect of swimmer
geometries in confined media could be analyzed.

3.4. Summary and Conclusions

In this chapter, we present an experimental investigation about the effect
of the boundaries and elasticity on the swimming speed using a magnetically
actuated swimmer.
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Experimental results indicate that speed increases with confinement for all
frequencies in both fluids: Newtonian and viscoelastic. Additionally, we find
that fluid elasticity increases the propulsion of the helical swimmer. This trend
is qualitatively similar to numerical and experimental results. Therefore, I
expect an additional force when swimming in viscoelastic media to drive any
speed increase.
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Helix in viscoelastic fluids

4.1. Introduction

Fluid embebed microorganisms exploit several methods to cope with the
viscous effects or their surrounding environment dominated by viscous effects
[49]. In particular, the majority of motile bacteria developed helical flagellar
filaments to achieve locomotion [50]. These semi-rigid filaments can be used
either in isolation (monotrichous bacteria) or for cells with several helical
filaments (peritrichous bacteria); they may bundle together to form a single
helical structure. In all cases, propulsion of the cell is enabled by the rotation
of a helix in the viscous fluid: since a helix is chiral, a rotation around the
helical axis bypasses the constraints of the scallop theorem [51] leading to a
viscous thrust along its axis.

The mechanics of helical swimming is well understood in the case of
Newtonian flows [52]. However, many of the fluids in which microorganisms
move are not Newtonian, ranging from mucus and complex suspensions to
biological tissues. When such a complex fluids are involved, the dynamics
of swimming microorganisms is significantly affected by viscoelasticity, the
presence of shear-dependent stresses, or both. Numerous studies have been
devoted to the subject [14, 53, 54, 55, 56, 57, 48, 47]. Some results appear to
be in contradiction with each other, and thus a number of fundamental issues
remain unsolved.

There are some theoretical efforts that consider the elastic contributions of
the fluid. Chaudhury [58] attempted to incorporate the effects of fluid elasticity
on locomotion using a series of expansions. He predicted that fluid elasticity
could either increase or decrease the propulsion speed of the waving sheet
depending on the value of Re. Later, the effects of elasticity on beating flagellar
structures were considered in the Stokes flow regime using the Maxwell model
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with Equation 2.45 [13]. It was shown that self-propulsion was not affected
by viscoelasticity even at large Deborah numbers (De = λω), where λ is the
fluid relaxation time and ω is the beating frequency. However, the total work
decreased with increasing De. Then, it was suggested that a microorganism
could swim faster in a viscoelastic fluid with the same expenditure of energy
compared with a Newtonian fluid.

More recently, Riley & Lauga [59] showed that for a waving sheet like-Taylor
sheet inside a viscoelastic fluid, elastic stresses could alter the speed U
according to the equation

U
UN

=
1 + De2 (ηs/η)

1 + De2 , (4.1)

for small amplitude swimming and using the Oldroyd-B model in equations
Equation 2.43, where UN is the Newtonian speed and ηs is the solvent viscosity.
While η = ηs + ηp where ηp is the polymer viscosity. If we consider diluted
solutions (such a Boger fluid) i.e., ηs/η < 1, then U ≤ UN for De 	 1. In other
words, the velocity in the viscoelastic fluid is lower than in the Newtonian fluid.

The effects of fluid elasticity on the swimming behavior were experimentally
investigated by X. Shen et al. [54], they found that fluid elasticity hinders
self-propulsion. Compared to Newtonian solutions, fluid elasticity leads to
up to 35% slower propulsion as shown in Figure 4.1. Figure 4.1 shows the
swimming speed, U, normalized by Newtonian speed, UN, as a function of
Deborah number. Experimental data, squares, show that speed decreases as
elasticity in the fluid increases. The dotted line corresponds to numerical
simulations of Teran et al. [15] that is discussed below. The solid line shows
the general trend from the model of Riley & Lauga [59] using Equation 4.1,
and the dashed line corresponds to predictions of Riley & Lauga [59] using the
experimental data by X. Shen.
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Figure 4.1: Swimming speed normalized by Newtonian Speed UN
for a C.Elegans as a function of Deborah number. The experimental
data, squares, show that propulsion speed decreases as Deborah
number. The solid line shows the general trend using a model
of Equation 4.1. The dashed line corresponds to prediction of
Equation 4.1 with experimental data. Taken form X. Shen (2010).

Also, they show that the self-propulsion decreases as elastic stresses grow
in magnitude in the fluid, and they related that decrease with the stretching of
flexible molecules near hyperbolic points in the flow.

Numerical simulations have also been used to address the effect of elasticity
on swimming behavior. Teran et al. [15] considered a free sheet swimming in
a viscoelastic fluid (Oldroyd-B fluid, Equation 2.43), along which moves a
wave with small and large amplitudes. The simulation shows that the sheet
increases its velocity as the Deborah number, De, increase and has a maximum
in De ≈ 1 for large amplitudes. For De > 1 the swimming speed decreases as De
increases, see Figure 4.2 where the De vs the ratio of average swimmer speed to
Newtonian speed, R, is shown. For small-amplitudes results for infinite sheets
suggest that viscoelasticity impedes locomotion as Riley & Lauga showed.
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Figure 4.2: The ratio of average swimmer speed to Newtonian
speed (R) as a function on De. βDe is the ratio of polymer to
solvent viscosity, the limit De → 0 yields a Newtonian fluid.

Taken form Teran (2010).

An important experimental result measured on artificial swimmers is the
dependence of propulsion speed on the geometry of the waveform and the
fluid elasticity or Deborah number. Liu et. al. [53] measured the speed of two
rotating rigid helixes in two viscoelastic fluid (Boger fluid). They found that the
swimming speed increases relative to the viscous speed reaching a peak when
the relaxation time is comparable to the rotation period as shown in Figure 4.3.

Figure 4.3: Ratio of free-swimming speed in viscoelastic fluid Vp
to that in the Newtonian fluid V0, as a function of the Deborah
number De, for two different polymer solutions and two different

helices.

Other geometries are explored to design a propeller able to move in only
complex fluids. For example, two linked spheres rotating at the same angular
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speed as a rigid body, as shown in Figure 4.4. This setup is called “snowman”
which propels under an external torque.

Figure 4.4: Geometrical setup of “snowman”: two spheres
rotating with angular velocity ω along their axis. The radii of the
upper and lower spheres are denoted by RU and RL respectively.

Taken from Pak et. al. (2012) [60].

The snowman was model by Pak et al. [60] for two aligned rotating spheres
at the same speed as a rigid body, see Figure 4.4. Pak [60] shows that the
velocity in a viscoelastic fluid is:

Uelastic

ωRL
= De(1− ξ)2r∗3(1− r∗)

(1 + r∗)6 (4.2)

where r∗ is the ratio of the radius of the upper sphere to the radius of the lower
spheres r∗ = RU/RL, ω is the rotation frequency, De is the Deborah number
and ξ is the relative viscosity ξ = ηs/η where η = ηs + ηp. This equation is
a second-order expansion of an Oldroyd-B fluid for small Deborah numbers.
In Figure 4.5 shows the propulsion speed as a function of r∗. The dotted line
represents Equation 4.2, the red points are the numerical results in an Oldroyd-B
fluid. Note that the optimal sphere size occurs at r∗opt ∼ 0.58.
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Figure 4.5: Propulsion speed of snowman as a function of the
ratio r∗ = RU/RL at De=0.1 and ξ = 0.5. Red dots: numerical
results. Dotted line: analytic model of Equation 4.2. Taken from

Pak et al. (2012) [60].

It should be noted that the velocity goes to zero when r∗ = 1, the two
spheres have the same radius, and r∗ = 0, there is only one sphere, as shown
in Figure 4.5. Also, elastic effects tend to produce a secondary flow in opposite
directions. We can see this effect, see Figure 4.5, where the snowman should
swim faster or slower depending on the position of the small sphere.

Therefore, in addition to the expected dependence on the value of the
Deborah number, the geometrical properties of the swimmer have a significant
impact on the free-swimming speed in a non-Newtonian fluid. The biological
example where the shape is known to be essentially rigid and unchanged
by the fluids is the rotating helical filaments of swimming bacteria. In
the Newtonian limit, the dynamics of a swimming rotating helix is well
understood and characterized [28, 25, 51].

In this section, we conduct experiments to measure the swimming speeds
for helices with many different geometries and relative head sizes.
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4.2. Experimental set-up

The experimental design is similar to that previously used in Section 3.2.3.
A force-free magnetically swimmers are used, so the swimmers can be rotated
under the action of an external rotating magnetic field.

4.2.1. Helical swimmers

Ten swimmers were used with different head and helices sizes. Its head is
cylindrical with length LH and diameter DH. The helical tail has a wavelength
λ, radius R, the thickness of the helical filament r0, and total length LT as shown
in Figure 4.6.

Figure 4.6: Geometric parameter of the magnetically-driven
helical swimmer. The helix has a radius R, wavelength λ,
total length LT, and the thickness of the helical filament is r0.

Additionally, the head has a length LH, and diameter DH.

Table 4.1 shows the geometrical parameters of the 10 swimmers. The empty
and full symbols correspond to experimental points for Newtonian and Boger
fluids in the following figures. It is important to note that the head size, DH,
remains relatively constant for all swimmers. However, to achieve different
pitch angles, the helix size, 2R, varies significantly. Therefore, the ratio D∗ =
2R/DH varies from 0.6 to 3.93. In other words, the helix diameter may be
smaller, D∗ < 1, or larger, D∗ > 1, than the head diameter as shown in Figure 4.7.

Figure 4.7: Sketch of the ten swimmers. The helix diameter may
be smaller, D∗ < 1, or larger, D∗ > 1, than the head diameter.
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Geometrical parameters of the swimmers

Swimmer LH DH r0 λ 2R LT D∗ = 2R
DH

Units [mm] [mm] [mm] [mm] [mm] [mm]

R1 (�, �) 23 3.0 0.9 10 1.8 56.8 0.6
A1 (�, �) 17.3 4.1 1.0 9.5 3.0 54.3 0.73
A4 (�, �) 17.3 4.1 1.0 5.0 3.5 37.6 0.85
F1 (�, �) 14.3 4.0 0.3 7.6 3.5 35.7 0.88
R2 (�, �) 23 3.0 0.9 10 3.2 45.9 1.07
R3 (�, �) 23 3.0 0.9 10 4.6 37.3 1.53
A2 (�, �) 17.3 4.1 1.0 9.5 7.0 39.36 1.71
A5 (�, �) 17.3 4.1 1.0 13.0 9.0 37.2 2.20
A3 (�, �) 17.3 4.1 1.0 9.5 15.0 23.2 3.66
R4 (♦, 
) 23 3.0 0.9 10 11.8 16.8 3.93

Table 4.1: Geometrical parameters for ten helical swimmers. The
empty and full symbols represent experiments in Newtonian and

Boger fluids respectively in following figures.

Also, a permanent magnet and air bubble were placed inside the head to
have neutral buoyancy. The magnet is 3.18 mm in length and diameter and it
has a remanent magnetic flux Bm = 1.2650.015 T.

4.2.2. Fluids

Two types of fluids were used, a Newtonian and a viscoelastic Boger
fluid, and we used two test fluids with different properties in each case.
The rheological properties of the fluids were determined using a rheometer
with parallel plates with 40 mm diameter and 1 mm gap (TA Instruments,
ARES-G2). Both steady and oscillatory tests were conducted to measure the
dynamic viscosity, μ, the storage and loss moduli, G’ and G”, respectively. The
mean relaxation time, λ, is calculated by fitting G’ and G” to a generalized
Maxwell model [34]. The density ρ of the fluids was obtained using a 25 ml
pycnometer. Table 4.1 shown the fluid rheological properties.
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Rheological properties of the fluids

Fluid ρ μ n τ

Units [kg/m3] [Pa · s] [s]

N1 1390 3.5 1 0
N2 1385 1.64 1 0
B1 1340 3.8 0.98 1.23
B2 1366 1.64 0.98 1.63

Table 4.2: Rheological properties of the four fluids: two
Newtonian (N1, N2) and two Boger (B1, B2) fluids. Where ρ
is the density, μ dynamic viscosity, n power index, and τ fluid

relaxation time.

4.3. Results and Discussion

In Figure 4.8, we show three typical experimental results chosen to illustrate
the three possible qualitative results. The swimming speed is plotted as a
function of the rotational frequency ω for swimmers F1, R1, and R4 from
Table 4.1 for the first fluid pair N1 and B1, see Table 4.2. Empty and full
symbols correspond to Newtonian fluid and Boger fluid respectively.

Figure 4.8: (Left) Swimming speed as a function of rotational
frequency ω, for three representative swimmers (F1, R1 and R4
see Table 4.1). Empty and filled symbols represent the results
for Newtonian, N1, and viscoelastic ,B1, fluids respectively (see
Table 4.2). (Right) Sketch of the three swimmers: F1, R1, and R4
which shows that the helix diameter can be smaller or larger than

the head diameter.
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Clearly, for a helical swimmer three different behaviors are possible.
The swimmer can swim faster (green rhombus), slower (red circles), or
approximately with the same speed (grey square) in a viscoelastic fluid
compare to the Newtonian case. The three swimmers, despite the changes in
their geometrical parameters, are propelled by the same helical action, and
the most notable difference between them is the value of the ratio between the
sizes of the head and helical radius, D∗ = 2R/DH, which ranges from 0.63
-slower swimming to 3.93 degrees -faster swimming-.

To quantify the influence of viscoelasticity on the locomotion, we next
calculate the ratio of the swimming speeds, UNN/UN, where UNN and UN

are the measured mean speeds in the viscoelastic and Newtonian fluids,
respectively. To assess the relative importance of viscoelastic effects, we
calculate the Deborah number as De = ωτ, where τ is the fluid relaxation
time (from Table 4.2). The ratio UNN/UN is plotted in Figure 4.9 as a function
of Deborah number for all the swimmers studied here (from Table 4.1). Despite
the large range of Deborah numbers in our experiments (from below 1 to above
20), a clear trend is not apparent in the data.
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Figure 4.9: Ratio of viscoelastic swimming speed between
viscoelastic and Newtonian fluids, UNN/UN, as a function of

Deborah number, De = ωτ.

Instead of the Deborah number, one could argue that the relevant parameter
to interpret the data is the Weissenberg number, Wi, which, instead of
comparing the relaxation time of the fluid with the rotation rate of the swimmer,
compares it to the relative rate of deformation in the flow. Hence, we can
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define Wi as Wi = γ̇τ, where γ̇ is the characteristic shear rate. For a rotating
helix, the shear rate scales as Rω/λ. Therefore, we have Wi ∼ (R/λ)De. We
plot in Figure 4.10 the normalized mean speed, UNN/UN as a function of the
Weissenberg number for all experiments. These dimensionless numbers can
therefore not be used alone to characterize the cadges in swimming speed when
viscoelastic effects are present.
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Figure 4.10: Ratio of viscoelastic swimming speed between
viscoelastic and Newtonian fluids, UNN/UN, as a function of

Weissenberg number Wi = (R/λ)De.

Contrasting our data with the experimental results from Liu et al. [53], we
notice that in this work also the dependence of the swimming speeds with De
number for helices with different pitch angles did not collapse into a single
curve. The follow-up numerical study by Spagnolie et al. [48] showed also
that the ratio UNN/UN was affected by both the Deborah number and the helix
pitch angle. Guided by these studies, we re-plot our data in Figure 4.11 with
the swimming speed increase now shown as a function of 2πR/λ = tan β,
see Equation 2.12. Displayed in this manner, we see a remarkably consistent
increase of swimming enhancement with R/λ (i.e. with the helix angle, β)
regardless of the value of the Deborah number. A value of R/λ ∼ 0.213,
corresponding to a helix angle β ∼ 53.3, appears to mark the transition from a
decrease to an increase in swimming speed. We have also included the data
from Liu et al. [53] in Figure 4.11 (∗ and × symbols); the small number of data
points in that study appear to fit within the uncertainty of our experiments.
However, the increase in UNN/UN found by these authors was very modest in



46 Chapter 4. Helix in viscoelastic fluids

comparison with the present data where we obtain increases of up to a factor
of five.

Figure 4.11: Ratio of viscoelastic to Newtonian swimming speed,
UNN/UN, as a function of the helix aspect ratio, R/λ. The ∗ and

× symbols show the data from Liu et al. [53].

Figure 4.11 shows that the helix-to-head size ratio, D∗ = 2R/DH , varies
from 0.6 to 3.9. Therefore, the helix diameter can be smaller, similar or larger
than the head diameter. To explore how this change in geometry affects the
swimming speed, we show in Figure 4.12 the normalized swimming speed,
UNN/UN, as a function of the size ratio D∗, for all the experiments conducted
in this investigation. Clearly and similarly to the results in Figure 4.11, a
correlation can be identified. When the head is smaller than the helix, the
swimming speed in the viscoelastic fluid is larger than the Newtonian one,
and when the head is larger the opposite happens.
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Figure 4.12: Ratio of viscoelastic to Newtonian swimming speed,
UNN/UN, as a function of helix to head diameter ratio, D∗ =

2R/DH.

4.3.1. Model

We can provide a physical mechanism for the change in swimming
plotted as in Figure 4.12 by turning to past work that addressed the effect
of asymmetry for rotating swimmers in viscoelastic fluids. These theoretical
[60] and experimental studies [61] showed that a snowman, i.e., a dumbbell
composed of two spheres of different diameters, could swim in a viscoelastic
fluid when rotating about its symmetry axis. The physical origin of the
propulsion lies in the secondary flows generated in elastic fluids by the
normal-stress difference that, for a rotating sphere, leads to fluid flows directed
away from the sphere along its rotation axis. A dumbbell made of two spheres
of different sizes experiences therefore an imbalance of drag due to these two
elastic flows, resulting in swimming. This viscoelastic propulsion force is
directed in the direction from the largest to the smallest sphere [60, 61].

Our data in Figure 4.12 clearly indicate that the front-back asymmetry
of the helical swimmers does control the normalized swimming speed. We
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propose therefore that it is the size asymmetry between the head and the
tail that leads to an additional snowman-like viscoelastic force affecting the
swimming speed. If this mechanism is correct, and for locomotion that takes
place head-first (the case in our experiments), a swimmer with a head smaller
than the helix should swim faster due to this viscoelastic snowman effect.
Conversely, if the head is larger than the tail the swimming speed should
decrease. This is indeed what we see in our experiments.

To be more quantitative, we consider the theoretical expression derived in
Equation 4.2. For the force balance and estimate the additional viscoelastic force
resulting from the difference in size between the head and helix. Assuming as a
first approximation that the additional viscoelastic force is generated regardless
of the detailed shape of the head or helix, and identifying the diameters of the
spheres in Ref. [60] to the diameters of the head and helix in our experiment,
we can propose the snowman propulsive force as

Fsnow = DHKsDe
D∗3(1−D∗)
(1 + D∗)5 ωR (4.3)

Where Ks is viscous drag coefficient, D∗ = 2R/DH is the rise ratio, and De = ωτ
is the Deborah number.

In this case, we assume an additional force due to viscoelastic force resulting
from the difference in size between the head and helix that we called Fsnow. Then
the total balance forces of Equation 2.7 becomes in

Fthrust + Fsnow = Dhelix + Dhead (4.4)

For simplicity, we assume the propulsion and drag forces on the helix are not far
from those given by the Newtonian resistive-force theory from Equation 2.28.
In this sense, the steady force balance on the swimmer in a viscoelastic fluid is
become in

L sin β(K|| −K⊥)ωR + DHKsDe
D∗3(1−D∗)
(1 + D∗)5 ωR =

L
(
K|| cos β+ K⊥

sin2 β

cos β

)
V + K||LHV

(4.5)
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Solving for the velocity V and renaming as VNN, we obtain

VNN = ωR
(ς− 1) tan β+

D∗HK∗s
cos β

De
D∗3(1−D∗)
(1 + D∗)5

1 + ς tan2 β+ ς0L∗ sec β
., (4.6)

where ς = K⊥/K||, L∗ = LH/L, K∗s = Ks/K||, D∗H = DH/L and ς0 = D/K||.
Note that this equation is similar to the velocity for the Newtonian fluid, see
Equation 2.32, but with an extra term due to the viscoelasticity. In fact, we can
rewrite Equation 4.6 as the sum of Newtonian and viscoelastic contributions,
as:

VNN = ωR
(ς− 1) tan β

1 + ς tan2 β+ ς0L∗ sec β
+ωR

D∗HK∗s
cos β

De
D∗3(1−D∗)
(1 + D∗)5

1 + ς tan2 β+ ς0L∗ sec β
. (4.7)

We can define the viscoelastic contribution as

Velas = ωR

D∗HK∗s
cos β

De
D∗3(1−D∗)
(1 + D∗)5

1 + ς tan2 β+ ς0L∗ sec β
. (4.8)

Then taking in account the equations for the Newtonian velocity VN,
Equation 2.32, and the viscoelastic velocity Velas, Equation 4.8, we can write
the Equation 4.7 equivalently as

VNN = VN + Velas. (4.9)

Normalizing by the Newtonian velocity, the additional viscoelastic thrust
resulting from the front-back asymmetry leads to the normalized swimming
speed written as a sum

VNN

VN
= 1 +

Velas

VN
. (4.10)

Where
Velas

VN
= D∗HK∗s

De
sin β(ς− 1)

D∗3(1−D∗)
(1 + D∗)5 (4.11)

This last expression indicates that the viscoelastic contribution due to the
asymmetry of the swimmer depends on many factors, including the Deborah
number and the size ratio of the head and the helix, D∗. Importantly, the ratio
Uelas/UN can be positive or negative depending on the value of D∗ relative to
one. Swimmers with D∗ > 1 will swim faster than in the Newtonian fluid while
those with D∗ < 1 will slow down.
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To show that this snowman model can reproduce the experimental trend,
we use Equation 4.11 to define first a modified value of Uelas/UN, termed U∗S,
as

U∗S =
Uelas

UN

sin β
D∗H

= K∗s
De
ς− 1

D∗3(1−D∗)
(1 + D∗)5 (4.12)

where sin β and D∗H are known quantities in the experiments.The value of U∗s
can be plotted as a function of D∗ for given values of De and Ks. So, from
Figure 4.9 we extract data for De ≈ 6.8.

Figure 4.13: Modified extra swimming speed, U∗S (defined in
Equation 4.12), as a function of helix to head diameter ratio
D∗ ≡ 2R/DH, for ≈ 6.8. The symbols are the experimental values
while the lines show the theoretical predictions of the model in
Equation 4.12 with values ξs = 20 (solid line), 40 (dashed line)

and 80 (dash-dotted line)

We show in Figure 4.13 the comparison between the model, Equation 4.12,
and the experimental values using three dimensionless values for K∗s. The
model can reproduce the experimental trend and shows a clear transition for
UNN/UN from negative to positive values, thus explaining the transition from
slower to faster than Newtonian when the helix to tail size ratio goes from
smaller to larger than unity.

4.4. Summary and Conclusions

In this chapter, we have carried out experiments on the locomotion
of free-swimming magnetically-driven rigid helices in Newtonian and
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viscoelastic (Boger) fluids. We varied the sizes of the swimmer’s body and
its helical tail and showed that the viscoelasticity impact depends critically
on the swimmer geometry: it can lead to a large increase of the swimming
speed, a decrease, or can have approximately no impact. We proposed
that the influence of viscoelasticity on helical propulsion is controlled by a
snowman-like viscoelastic effect, previously reported for dumbbell swimmers,
wherein the front-back asymmetry of the swimmer generates a non-Newtonian
elastic propulsion force that can either favor or hinder locomotion.

The obvious next step in this investigation would be to address a similar
question for biological swimmers propelled by helical flagellar filaments.
Swimming bacteria such as E. coli have a cell body whose width is
approximately DH ≈ 0.88 μm while the diameters of the helical flagella are
approximately 2R ≈ 0.4 μm. The dimensionless ratio in that cases is given by
D∗ = 2R/D therefore that bacteria self-propelling in similar fluids would have
their swimming speed decreased by elastic stresses.
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Chapter 5

Helix swimming in granular mater

5.1. Introduction

In nature, many animals live on the surface of the ground. Some of these
animals are undulatory crawlers, such as sand lizard and snakes. Such animals
may propel themselves at twice their body length per second both under and
over a sandy surfaces [19]. Frictional ground reaction forces provide thrust.
Despite differences in the physical mechanisms involved, solid friction is an
analog to the resistive-force theory in viscous fluid. As such, this concept has
been successfully applied in the context of granular media to describe the
undulatory motion of sand lizards and snakes [62, 20].

Locomotion in granular matter is less well understood due to its complex
rheological features [17, 18]. For this reason accurate equations comparable to
the Navier-Stokes equations for fluids have not been developed. The frictional
nature of the particles results in yield stress, a threshold above which the
grains flow in response to external forcing [17]. The resistance experienced
by a moving intruder originates from the inhomogeneous and anisotropic
response of the granular force chains. These chains are local areas affected
by the surrounding grains [19]. At low locomotion speed and a granular
media slightly polydisperse (to avoid segregation), where the granular matter
is in a quasi-static regime, the effect of inertia is negligible when compared
to frictional and gravitational forces from granular media [20, 19]. This is
analogous to low Reynolds-number fluid.

Maladen et al. [21], inspired by RFT theory for locomotion in viscous fluids,
developed an empirical RTF in locomotion of sandfish which moves in the
subsurface describing a sinusoidal waveform. However, it is known that drag
forces can differ depending on the physics which governs the body-medium
interaction. For this reason, Maladen et al. [21] measured in granular substrates
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the forces perpendicular F⊥ and parallel F|| to the direction of movement for
a slender cylinder and fitting some parameters, in this way they obtained the
analogous version of resistant coefficients for granular media. These functions
were shown effective in modeling the undulatory subsurface locomotion of
sandfish. Nevertheless, the influence of geometry in the self-propulsion in
granular media is an interesting topic that has not been investigated, in
particular with a helical swimmer. Since then, recent studies demonstrated
that helical motion is employed by Erodium and Pelargonium seeds to penetrate
loose soils [22].

5.1.1. RTF for granular matter

In this section, we discuss under what assumptions the RTF theory can
be applied to a granular medium. Also, we will discuss about the resistance
coefficients for this case developed by Maladen et al. [21].

We only consider for undulatory locomotion in granular media the
slow-motion regime where grain-grain and grain-swimmer frictional forces
dominate material inertial forces [21, 63]. Also, we assume the swimmer
motion near the surface in a horizontal plane, so the change of resistance due
to depth is irrelevant. In this regime, the granular particles behave like a dense
frictional fluid where the material is constantly stirred by the movement of the
swimmer [63, 17]. The resistance coefficients in the Newtonian case, expressed
in Equation 2.8, can be considered constant. The analogy for granular media
was developed experimentally by Maladen et al. [21], these coefficients are in
function of fitting parameters CS and CF, and the orientation ψ of the element
to motion direction as shown in Figure 5.1,

F⊥(ψ) = 2r0(CS sin β0 + CF sinψ), F|| = 2r0CF cosψ. (5.1)

Where r0 is the radius of the segment, tan β0 = cotγ0 sinψ, γ0 is a constant
related to the internal slip angle of the granular media [21], and ψ is the angle
between the velocity vector V and tangential vector t̂, see Figure 5.1.
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Figure 5.1: Sketch of the velocity V, normal n̂, and tangential
t̂ vectors. And the angle between the velocity and tangential

vectors ψ.

A key parameter in granular media is the volume fraction φ defined as the
ratio of material volume to total occupied volume. The response of granular
media to intrusion depend on φ, in this way CS and CF depends on φ [21]. In
other words, CS and CF capture the contribution of the kind of granular media
characterized by the volume fraction, φ, and the internal slip angle, γ0. In fact,
CS and CF have units of Kg/s2, which in analogy with the theory of the fluids
correspond to μV, where V is velocity and μ is viscosity. In this way, for each
granular media we have different coefficients CS and CF as well as for each
fluid we have different viscosities.

5.2. Experimental setup

To study the swimming dynamics in the sand, we considered the
self-propulsion of a magnetic robot. The experimental design is similar to
that previously used in Section 3.2.3. The swimmer consists of a magnetic head
and a helical tail, it was placed in the middle of a pool filled with rigid particles.
Resulting from the interaction of the rotating helix with the granular media, the
robot propelled itself without being attached to a shaft or any other external
structure. For more details see reference [64].

5.3. Results and discussion

In this section we present the estimation for the velocity of a helicoidal
swimmer in a granular media. We link the resistance coefficients developed
by Maladen et al. [21] in a granular media and the RTF for a helix from the
Section 2.2. We estimate two cases: with and without head.
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5.3.1. Speed estimation

To do a speed estimation, we should rewrite Equation 5.1. For our purposes
it is necessary to remember that ψ is the angle between the velocity vector V
and tangential vector t̂. It follows that

sinψ =
V
‖V‖ · n̂ =

V⊥
‖V‖ and cosψ =

V
‖V‖ · t̂ =

V||
‖V‖ . (5.2)

In this way we can rewrite Equation 5.1 in terms of sinψ and cosψ, with the
identity cos β0 = (tan2 β0 + 1)−1/2 it is easy to see

F⊥ = 2r0

(
CS

sin β0

cos β0

cos β0

sinψ
+ CF

)
sinψ

= 2r0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
CS√

sin2ψ+ tan2 γ0

+ CF

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ sinψ

=
2r0

‖V‖

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
CS√

sin2ψ+ tan2 γ0

+ CF

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠V⊥,

F|| =
2r0CF

‖V‖ V||

(5.3)

In analogy with viscous flow theory Equation 2.8 we can redefine

F⊥ = K⊥(ψ)V⊥ with K⊥(ψ) =
2r
‖V‖

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
CS√

sin2ψ+ tan2 γ0

+ CF

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

F|| = K||V||with K|| =
2r0CF

‖V‖ .

(5.4)

Note that K|| is constant because the drag is independent of ψ, and K⊥ depends
on the orientation ψ of the element to motion direction. Additionally, K⊥ and
K|| have units off kg/s that in analogy with fluids theory correspond to μ d,
where μ is viscosity and d is any distance. So, we recover the meaning of K⊥
and K|| as resistant coefficients because those are the resistance to movement
by a unit of length.

From Equation 5.4, we can apply the RTF theory described in Section 2.2
for any slender body in granular media when the inertial forces are negligible.
This theory was applied for sinusoidal swimmer, 2D, on the media surface by
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Maladen et al. [21].

5.3.2. Speed without head

The force balance from Equation 2.27 considering a headless helical
flagellum, we obtain

(K|| −K⊥) tan βVθ + (K|| + K⊥ tan2 β)Vx = 0, (5.5)

or in an equivalent way considering Equation 2.12

(
1− K⊥

K||

)
R2kω+

(
1 +

K⊥
K||

R2k2
)

Vx = 0 (5.6)

Now we need to consider the resistance coefficients for granular media from
Equation 5.4 and Equation 5.5. For this, it is necessary to change ψ in these
resistance coefficients in terms of the geometric parameters of the helix.
Considering the equation Equation 2.10, we can find the velocity vector

V̂ =
1√

V2
x + R2ω2

[Vxêx,−ωRêθ] . (5.7)

With the Equation 5.7 and Equation 2.11 we can re-express sinψ and cosψ from
Equation 5.2

cos2ψ =
(Vx −ωR2k)2

(V2
x +ω2R2)(1 + R2k2)

, sin2ψ =
(VxRk + Rω)2

(V2
x + R2ω2)(1 + R2k2)

. (5.8)

Now, we can substitute sinψ from Equation 5.8 in the expression for K⊥ from
Equation 5.4

K⊥ = 2r0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Cs
√

1 + R2k2√
(VxRk + Rω)2 + tan2 γ0(V2

x + R2ω2)(1 + R2k2)

+
CF√

V2
x + R2ω2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.9)

while for K|| only we need to consider the Equation 5.7

K|| =
2r0 CF√

V2
x + R2ω2

. (5.10)
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Considering the ratio between K⊥ and K|| we obtain

K⊥
K||

=
CS

CF

√
1 + R2k2

√
V2

x + R2ω2√
(VxRk + Rω)2 + tan2 γ0(V2

x + R2ω2)(1 + R2k2)

+ 1. (5.11)

It is important to note that K⊥/K|| > 1 for all helixes in the granular media.
Therefore, K⊥ > K|| as in theory for Newtonian fluids, Section 2.2. In other
words, there is thrust because the resistance coefficients are different.

Equation 5.11 can be substituted in Equation 5.6 and we obtain a non-explicit
equation for the velocity Vx. Nevertheless, we obtain an expression in powers
of velocity

V4
x

⎡⎢⎢⎢⎢⎣C2
S

C2
F

R4k4 −R2k2(1 + R2k2) − (1 + R2k2)2 tan2 γ0

⎤⎥⎥⎥⎥⎦
− 2V3

x

⎡⎢⎢⎢⎢⎣C2
S

C2
F

R4k3ω+ R2kω(1 + R2k2)

⎤⎥⎥⎥⎥⎦
+ V2

x

⎡⎢⎢⎢⎢⎣C2
S

C2
F

R4k2ω2 +
C2

S

C2
F

R6k4ω2 −R2ω2(1 + R2k2) − tan2 γ0(1 + R2k2)2R2ω2

⎤⎥⎥⎥⎥⎦
− 2Vx

⎡⎢⎢⎢⎢⎣C2
S

C2
F

R6k3w3

⎤⎥⎥⎥⎥⎦+ C2
S

C2
F

R6k2ω4 = 0.

(5.12)

An equivalent equation is obtained if we consider the helix angle β in terms of
the geometrical parameters of the helix via Equation 2.12 where it is followed
that tan β = Rk,

V4
x

⎡⎢⎢⎢⎢⎣C2
S

C2
F

tan4 β− tan2 β(1 + tan2 β) − (1 + tan2 β)2 tan2 γ0

⎤⎥⎥⎥⎥⎦
− 2RωV3

x

⎡⎢⎢⎢⎢⎣C2
S

C2
F

tan3 β+ tan β(1 + tan2 β)

⎤⎥⎥⎥⎥⎦
+ R2ω2V2

x

⎡⎢⎢⎢⎢⎣C2
S

C2
F

tan2 β+
C2

S

C2
F

tan4 β− (1 + tan2 β) − tan2 γ0(1 + tan2 β)2

⎤⎥⎥⎥⎥⎦
− 2R3ω3Vx

⎡⎢⎢⎢⎢⎣C2
S

C2
F

tan3 β

⎤⎥⎥⎥⎥⎦+ C2
S

C2
F

R4ω4 tan2 β = 0.

(5.13)

We solve for the roots of this polynomial function using Mathematica and
found two real velocities, but one of these is larger than we expected. So, we
selected the velocity that fit experimental data. Figure 5.2 shows the speed Vx
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as a function of the angle of the helix, β, for six rotation rates. The solution
from Equation 5.13 is shown in dotted lines and the points are the experimental
data. For all rotation rates, the swimmer speed progressively increases with
the angle of the helix, β, or analogous with the wavelength, λ, until reaches a
maximum and then it decreases. In other words, there is an optimal shape of
the helix for which the velocity has a maximum.

Figure 5.2: Swimming speed in granular medium Vx as a function
of angle of the helix β and the wavelength λ = 2π/k for six
frequencies, ω. Dotted lines are the theoretical prediction form
Equation 5.13 and points are the experimental data. Taken from

R. Vazquez, 2017

For all frequencies the theory predicts the global behavior of the velocity
and it fits well with the experimental points for helix angles β > 60o. However,
for small helix angles the difference between the theoretical prediction and the
experimental measures for the lowest frequency, ω = 5 rad/s, is approximately
33% while for the biggest frequency, ω = 30 rad/s, is approximately 95%.
Additionally, all theoretical lines start at Vx = R2ω2(1 − tan2 γ0)/ tan2 γ0

that is nearly zero. However the experimental points start near 15o which
corresponds to the internal slip angle of the granular media.

We are currently working on finding C2
S/C2

F that fits the experimental data
obtained in our group. In the graph of Figure 5.2 we used an approximate
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value of C2
S/C2

F ≈ 1.7 reported by Madelen [21]. Also, we are developing an
expression that incorporates the effect of the swimmer’s head.

5.3.3. Speed with head

For the second case, we considered the head effect in the force balance
Equation 2.7. Considering a cylindrical head with length LH and the movement
only in the x axis. In general, the force due to the head is

Dhead =

∫ LH

0
(F⊥ sin β− F|| cos β) dx (5.14)

Nevertheless, we will only consider the first term where the head position
is normal to the movement of the swimmer. That is why we only consider the
term which contains the normal force F⊥, so Dhead = F⊥LH, where FN = K⊥Vx

and KN was define in Equation 5.9. Therefore

Dhead = 2rhLH

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Cs
√

1 + R2k2√
(VxRk + Rω)2 + tan2 γ0(V2

x + R2ω2)(1 + R2k2)

+
CF√

V2
x + R2ω2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠Vx,

(5.15)

where rh = DH/2 is the radio of the head and DH is the diameter.
On the other hand, the general balance force (see Equation 2.7) considering the
head in the moving direction is the force due to the body (Equation 2.26) plus
the head force ( Equation 5.15)

FxT =

LT∫
0

[sin β(K|| −K⊥)Vθ + (K|| cos2 β+ K⊥ sin2 β)
Vx

cos β
] dx + Dhead. (5.16)

Considering Equation 2.12, it is easy to see that

FxT =
K⊥
K‖

R2k(kVx −ω) + (Vx + R2kω) + Dhead

√
1 + R2k2

LK‖
= 0 (5.17)

Taking in to account the expressions corresponding to K⊥ and K‖ in
Equation 5.9, Equation 5.10 and Equation 5.11. After some algebra, we can
obtain an expression in powers of velocity
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V4
x

⎧⎪⎪⎨⎪⎪⎩C2
S

C2
F

tan4 β− tan2 β sec2 β− sec4 β tan2 γ0

+2
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DH

2a
sec β

⎡⎢⎢⎢⎢⎣tan2 β+ sec2 β tan2 γ0 −
C2

S

C2
F

tan2 β

⎤⎥⎥⎥⎥⎦
+

L2
H
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T
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H

4a2
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S
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T
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x tan β
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(5.18)

Observe that Equation 5.18 recovers the headless case when the length of
the head LH tends to zero, see Equation 5.13.

We used Mathematica to obtain the graphic solution to Equation 5.18. For
the range of parameters corresponding to our study, two real and two complex
roots are found. The smaller real root is used, since it is closer to experimental
results. As seen in Figure 5.3, the experimental measurements and the
predictions (lines) agree very well qualitatively and quantitatively. It shows
that the swimming speed has a maximum. The prediction underestimates the
experimental results, for about 30% for large helix angles, β. Also, the angle at
which the swimming speed is maximum is around 55o while the model predicts
30o.
Finally, for small angles of the helix the swimmer rotates around its axis in
all experiments but does not move forward. However, this threshold angle is
not reproduced by the model because it is an extension of the RTF in which
there are no minimum conditions for swimming such as a yield stress. In other
words, such a critical angle is intrinsic of the granular media.
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Figure 5.3: Swimming speed in granular medium Vx as a function
of angle of the helix β and the wavelength λ = 2π/k for six
frequencies ω. Dotted lines are the theoretical prediction form
Equation 5.18 and points are the experimental data. Taken from

R. Vazquez, 2017

We should mention that the theoretical lines depend on the coefficients
Cs, C f which were taken from Madelen’s article [21]. The granular medium
used for the experiments is similar to that used by Madelen. However, it is not
exactly the same, so newly calculated coefficients may improve the curve fit.

5.4. Summary and conclusions

The motility of free helical swimmers in granular media is studied
experimentally. The geometrical characteristics of the swimmer robots, which
represent an advantage in swimming ability, were obtained. The extension of
the granular RFT theory to consider the rigid helical tail produced a model
for which predictions showed a good agreement with our experimental data.
The model also captured the order of magnitud of several other features of the
experiments in magnitude order. But two important aspects were not captured:
the first aspect involves the minimum conditions for motion and the angle at
which the velocity is a maximum. We found that, for small angles of the helix,
the swimmer rotates around its axis, but does not move forward. It appears
that an angle threshold should exist. Second, the experiments showed that a
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helix angle of approximately 55o results in a maximum normalized speed; in
contrast, the granular RFT predicts a smaller angle for the fastest swimming
(about 30o). The present experimental campaign contributes to the current
discussion on locomotion in granular media and further validates the granular
RFT modeling.
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Chapter 6

Conclusions

In this thesis, I presented an investigation about swimming in complex
fluids such as Boger fluids and granular mater. This topic has both a
practical and a scientific relevance. It has many applications in human health,
ecological systems, animal locomotion, etc. This thesis makes a contribution
to understand swimming in Boger fluids and granular matter, and the effect
of boundaries in swimming speed for a helical swimmer. As we discussed
before there are some questions about how organism exploit the fluid internal
structure or the boundaries for propulsion.

This thesis shows experimentally that the swimming speed increases with
confinement for all frequencies in both fluids: Newtonian and viscoelastic. In
other words, the walls (confinement) help to increase the swimming velocity.
Additionally, we find that fluid elasticity increases the propulsion of the helical
swimmer. So, we derived analytically that there is an additional force in
viscoelastic media that increases the speed. This is an important achievement
since only result of numerical simulations were reported on the subject.

In this sense, we studied the swimming speed only in a Boger fluid varying
the sizes of the swimmer body and its helical tail and showed for first time
that the impact of viscoelasticity depends critically on the geometry of the
swimmer: it can lead to a large increase of the swimming speed, a decrease
or it may have approximately no impact. We proposed that the additional
force of viscoelasticity on helical propulsion is controlled by a snowman-like
viscoelastic effect, previously reported for dumbbell swimmers, wherein the
front-back asymmetry of the swimmer generates a non-Newtonian elastic
propulsion force that can either favor or hinder locomotion.

Finally, for the firs time we applied the RFT on the motility of free helical
swimmers in granular media. The extension of the granular RFT theory shows
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that it is necessary to take in account the head in the model of a rigid helical
tail. Model predictions showed a good agreement with experimental data.
Meaning that it captured the order of magnitud of several features of the
experiments, but two important aspects were not captured. The first aspect
involves the minimum conditions for motion and the angle at which the velocity
is a maximum. We found that, for small angles of the helix, the swimmer
rotates around its axis, but does not move forward. It appears that an angle
threshold should exist. Second, the experiments showed that a helix angle of
approximately 55o results in a maximum normalized speed; in contrast, the
granular RFT predicts a smaller angle for the fastest swimming (about 30o).
The present experimental campaign contributes to the current discussion on
locomotion in granular media and further validates the granular RFT modeling.
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