UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE QUIMICA

.....

ESTUIDO QUIMICO DE PLANTAS MEXICANAS USADAS EN MEDICINA TRADICIONAL: Constituyentes de <u>Chenopodium graveolens</u> Willd, <u>Chenopodium ambrosioides</u> L. y <u>Amphipterygium</u> adstringens Schiede ex Schlecht

> TESIS DE MAESTRIA EN CIENCIAS QUIMICAS (QUIMICA FARMACEUTICA)

ANDRES NAVARRETE CASTRO

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

PRESIDENTE	DR. ALFONSO ROMO DE VIVAR
ler. VOCAL	DR. EUGENE A. BRATOEFF T.
SECRETARIO	DR. RAFAEL CASTILLO BOCANEGRA
SUPLENTE	M. EN C. MA. TERESA REGUERO REZA
SUPLENTE	M. EN C. JOSE MANUEL MENDEZ STIVALET

CASTRO AND

SUSTENTANTE

hdola. DRA. RACHEL MATA DE ESPINDOLA

DIRECTOR DEL TRABAJO

SITIO DONDE SE DESARROLLO EL TEMA:

DEPARTAMENTO DE FARMACIA. DIVISION DE BIOQUIMICA Y FARMACIA. FACULTAD DE QU<u>I</u> MICA.U.N.A.M.

ABSTRACT

As a part of a systematic study on Mexican plants used in Traditional Medicine, it was done the phytochemical investigation of the three diff<u>e</u> rents species: <u>Chenopodium graveolens</u> Willd, <u>Chenopodium ambrosioides</u> L., and Amphipterygium adstringens Schiede ex Schlecht.

From the chloroformic extract of the aereal parts of <u>Ch. graveolens</u> it was isolated and characterized ten differents compounds: pinocembrine, pinostrobine, chrysine, stigmasterol, stigmast-22-en-3-ol, 3 glucositosterol, geranyl acetate, cryptomeridiol and two new natural products, namely (+) 8 hydroxi-elemol and (+) 8 acetoxi-cryptomeridiol. The presence of the flavanones pinocembrine and pinostrobine might be related with the biological activity of the plant.

From the hexane extracts of two differents collections of the stem bark of <u>A</u>. <u>adstringens</u>, they were isolated and characterized by chemical and spectral means the following compounds: Masticadienonic acid, 3-epi-hidroxymasticadienonic acid, 3 -hidroxy masticadienonic acid, oleanolic acid, 3-epioleanolic acid, -sitosterol and a mixture of two differents series of anacardic acids. One of the series has lateral chain of 19 carbon atoms and the other has lateral chain of 21 carbon atoms. The members of the latter are new natural products. The presence of Anacardic acids in this plant is of biological and industrial importance.

In addition the pharmacological evaluation of six triterpenic acids struct<u>u</u> rally related with masticadienonic acid, as hypocholesterolemic agents was performed.

RESUMEN

Como parte de un estudio sistemático sobre plantas mexicanas usadas en medicina tradicional, se realizó el estudio fitoquímico del <u>Chenopodium graveolens</u> Willd, <u>Chenopodium ambrosioides</u> L. y <u>Amphipte-</u> <u>rygium adstringens</u> Schiede ex Schelecht.

Del extracto clorofórmico de las partes aereas del <u>Chenopodium</u> <u>graveolens</u> Willd, se aislaron y caracterizaron la pinostrobina, la pinocembrina, la chrysina, el estigmasterol, el estigmast-22-en-3-ol, el 3ß-glucositosterol, el acetato de geranilo, el criptomeridiol y dos nuevos metabolitos secundarios: (+)-8 α -hidroxi-elemol y (+)-8 α acetoxi-criptomeridiol. El constituyente mayoritario pinostrobina puede estar relacionado con la actividad biológica de la planta.

Del extracto clorofórmico de <u>Chenopodium</u> <u>ambrosioides</u>, se aisló el estigmast-22-en-3-ol.

Del extracto hexánico de-dos lotes de corteza de <u>Amphipterygium</u> <u>adstringens</u>, se aislaron y caracterizaron los ácidos masticadienónico, isomasticadienónico, 3α -hidroximasticadienónico, 3-epi-hidroximasticadienónico, oleanólico, 3-epi-oleanólico, el β -sitosterol y una mezcla de dos series de ácidos anacárdicos con cadenas laterales de 19 y 21 átomos de carbono. Los miembros de la última serie representan nuevos productos naturales. La presencia de ácidos anacárdicos en el cuachalalate es de importancia industrial y biológica.

En forma adicional se realizó la evaluación farmacológica preliminar como agentes hipocolesterolemiantes de seis compuestos triterpénicos relacionados estructuralmente al ácido masticadienónico.

1.

INDICE

	Página
LISTA DE TABLAS	vi
LISTA DE FIGURAS	x
LISTA DE ESQUEMAS	xvi
LISTA DE ABREVIACIONES	xvii
RESUMEN	1
INTRODUCCION	2
OBJETIVOS	7'
Capítulo I: Constituyentes químicos de <u>Chenopodium</u>	
graveolens Willd y Chenopodium ambrosioides L	8
1. Generalidades acerca del género <u>Chenopodium</u>	8
1.1 Taxonomía y distribución	8
1.2 Fitoquímica	11
1.3 Importancia biológica y económica	12
2. Constituyentes de <u>Chenopodium</u> graveolens Willd (Yerba	
ba del zorrillo)	18

Página

2.1	Materi	al y métodos	18
	2.1.1	Material vegetal	18
	2.1.2	Métodos de extracción y fraccionamiento	10
		preliminar	18
	2.1.3	Aislamiento y purificación de los compues-	
		tos I-X	20
	2.1.4	Caracterización de los compuestos aislados-	
2.2	Resu l t	ados y discusión	28
	2.2.1	Identificación de la pinostrobina <u>31</u>	
		(Compuesto I)	28
	2.2.2	Identificación del estigmasterol <u>32</u>	
		(Compuesto II)	34
	2.2.3	Identificación del estigmast-22-en-3-ol <u>33</u>	
		(Compuesto III)	35
	2.2.4	Identificación del acetato de geranilo <u>34</u>	
		(Compuesto IV)	38
	2.2.5	Identificación de la pinocembrina <u>35</u>	
		(Compuesto V)	41
	2.2.6	Identificación de la chrysina, <u>37</u>	
		(Compuesto VI)	47
	2.2.7	Identificación del (+)-8α-hidroxi-elemol <u>40</u>	
		(Compuesto VII)	54

		2.2.8	Identificación del (+)-8α-acetoxi-	
			criptomeridiol <u>41</u> (Compuesto VIII.)	62-
		2.2.9	Identificación del criptometidiol	6 9
3. ⁻	Cons	tituyen	tes de <u>Chenopodium</u> <u>ambrosioides</u> L	73
	3.1	Materi	ales y métodos	73
		3.1.1	Material vegetal	73
		3.1.2	Métodos de extracción, fraccionamiento y	
			separación	73
	3.2	Result	ados y discusión	78
	·	3.2.1	Aislamiento e identificación del estigmas-	10
			22-en-3-ol 33 del Chenopodium ambrosioides -	78
4.	Conc	lusione	S	79`
Cap	ítulo	II: C	ONSTITUYENTES QUIMICOS DE <u>Amphipterigium</u>	
		<u>a</u>	dstringens Schiede ex Schelecht	82
1.	Gene	ralidad	es acerca del <u>Amphipterygium</u> <u>adstringens</u>	82
	1.1	Aspect	os taxonómicos de <u>Amphipterygium</u> <u>adstringens</u> -	82
	1.2	Fitoqu	ímica	83
	1.3	Import	ancia biológica y económica del <u>Amphipterigium</u>	
		adstri	ngens	85

2.	Mate	riales	y Métodos	8 6
	2.1	Materi	al vegetal	<u>8</u> 6
	2.2	Método	os de extracción, fraccionamiento y	•,
		separa	ción de la primera recolección	86
		2.2.1	Extracción	86
		2.2.2	Fraccionamiento preliminar del extracto	
			hexánico (EH-I)	88
		2.2.3	Aislamiento y purificación de los compues-	
			tos XI-XV del extracto hexánico EH-I	88
	2.3	Método	s de extracción, fraccionamiento y	
		separa	ción de la segunda recolección	92
		2.3.1	Extracción	92
		2.3.2	Fraccionamiento preliminar del extracto	
			hexánico (EH-II)	92
		2.3.3	Aislamiento y purificación de los compues-	
			tos XVI-XXIII del extracto hexánico EH-II -	95
	2.4	Determ	inación de las constantes físicas y	
		espect	roscópicas de los constituyentes	9 9
	2.5	Prepar	ación de derivados	9 9
2	Deeu	1+2400	v diaguaián	100
J.	resu	TLAUUS		100 <i>A</i> -
	3.1	Identi	ficación del sitosterol, <u>49</u>	
		(Compu	esto XII y XVIII)	100

	3.2	Identificación del ácido masticadienónico 45	
		(Compuesto XX)	102
	2 2	Idontificación del feide increationdiamónica [1	102 .
	3.3	Identificación del acido isomasticadienonico <u>51</u>	
		(Compuesto XXI, metil éster)	110
	3.4	Identificación del ácido oleanólico <u>53</u>	
		(Compuesto XV, métil éster)	114
	3.5	Identificación del ácido 3-epioleanólico, <u>55</u>	
		(Compuesto XIX)	116
	3.6	Identificación del ácido 3-α-hidroximasticadienó-	
		nico <u>46</u> (Compuesto XXII)	120
	3.7	Identificación del ácido 3-epi-hidroximasticadie-	
		nónico 58 (Compuesto XXIII)	125
	3.8	Identificación de los ácidos anacárdicos <u>48</u>	
		(Compuesto XVI, metil éster)	12 9
4.	Conc	lusiones	157
			107
PRO	POSIC	IONES PARA CONTINUAR ESTE TRABAJO	164
			101
BIBLIOGRAFIA			16 6
APE	NDICE	. Evaluación biológicá de triterpenos relacionados	
		estructuralmente con el ácido masticadienónico,	
		como agentes hipocolesterolemiantes	178

LISTA DE TABLAS

TABLA 1.	Secciones, subsecciones y especies tipo del género <u>Chenopodium</u> L	9
TABLA 2.	Perfil fitoquímico del género <u>Chenopodium</u>	13
TABLA 3.	Resumen del fraccionamiento vía cromatografía en columna del extracto clorofórmico del <u>Chenopodium graveolens</u>	21
TABL A 4.	Constantes físicas y espectroscópicas de la pinostrobina <u>31</u> (Compuesto I)	29
TABLA 5.	Constantes físicas y espectroscópicas del compuesto IV (acetato de geranilo)	39
TABLA 6.	Constantes físicas y espectroscópicas del derivado diacetilado del compuesto V (pinocembrina)	42
TABLA 7.	Constantes físicas y espectroscópicas del compuesto VI (chrysina) y sus derivados acetilado y monometilado	48
TABLA 8.	Constantes físicas y espectroscópicas del compuesto VII (+)-8α-hidroxi-elemol	5 5
TABLA 9.	Constantes físicas y espectroscópicas del compuesto VIII (+)-8α-acetoxi-criptomeridiol	63

TABLA 10.	Constantes físicas y espectroscópicas del compuesto IX (criptomeridiol)	70.	
TABLA 11.	Resumen del fraccionamiento vía cromatografía en columna del extracto clorofórmico del Chenopodium ambrosioides	76 /	
TABLA 12.	Constituyentes del <u>Chenopodium</u> graveolens	79	1
TABLA 13.	Eluyentes empleados en la separación del extracto hexánico EH-I, de la corteza de <u>A. adstringens</u>	89	
TABLA 14.	Eluyentes empleados en la separación del extracto hexánico EH-II,de la corteza de <u>A. adstringens</u>	94	
TABLA 15.	Eluyentes empleados en la separación de las fracciones 214-221 metiladas del extracto hexánico EH-II de <u>A. adstringens</u>	96	
TABLA 16.	Compuestos aislados y caracterizados de los extractos hexánicos EH-I y EH-II de la corteza de <u>A. adstringens</u>	101	/
TABLA 17.	Constantes físicas y espectroscópicas del compuesto XX (ácido masticadienónico) y su éster metílico	105	
TABLA 18.	Constantes físicas y espectroscópicas del compuesto XXI (éster metílico del ácido iso- masticadienónico)	111	

٠

Págin a

TABLA	19.	Constantes físicas y espectroscópicas del compuesto XIX (ácido 3-epi-oleanólico y de su derivado metil éster (3-epi-oleanolato de dimetilo)	117
TABLA	20	Constantes físicas y espectroscópicas del compuesto XXII (ác. 3α-hidroximasticadienónico) y su derivado metil éster	121
TABLA	21.	Constantes físicas y espectroscópicas para el compuesto XXIII (ác. 3-epi-hidroximasticadienó- nico	12 6
TABLA	22.	Constantes físicas y espectroscópicas del compuesto XI (ácidos anacárdicos), y sus deri- vados metilados (Compuesto XVI) y metilado- acetilado (Compuesto XXIV)	132
TABLA	23.	Características en espectrometría de masas y RMN ¹ H de tres ácidos anacárdicos (como ésteres metílicos acetilados)	145
TABLA	24.	Iones principales en el espectro de masas para las series de ácidos anacárdicos metil ésteres XVI y acetilmetil ésteres XXIV	149
TABLA	25.	Propiedades físicas y espectroscópicas del producto XXV	152

viii

ix

TABLA 26.	Constituyentes de <u>Amphipterygium</u> <u>adstringens</u>	15 9
TABLA 27.	Propiedades físicas y espectroscópicas del ácido instipolinácico	160

LISTA DE FIGURAS

FIGURA	1.	Estructura de los metabolitos secundarios del género <u>Chenopodium</u>	15
FIGURA	2.	Espectro de RMN ¹ H de la pinostrobina (80MHz, CDC1 ₃)	30
FIGURA	3.	ESPECTRO DE RMN ¹³ C de la pinostrobina (100MHz, CDC1 ₃)	31
FIGURA	4.	Estructura de la pinostrobina	33
FIGURA	5.	Estructura del estigmasterol	34
FIGURA	6.	Espectro de IR del estigmast-22-en-3-ol	36
FIGURA	7.	Espectro de RMN ¹ H del estigmast-22-en-3-ol (80MHz, CDCl ₃)	37
FIGURA	8.	Estructura del estigmast-22-en-3-ol	35
FIGURA	9.	Estructura del acetato de geranilo	38
FIGURA	10.	Espectro de RMN ¹ H del acetato de geranilo (CDC1 ₃ , 80MHz)	40
FIGURA	11.	Espectro de RMN ¹ H del acetato de pinocembrina (100MHz, CDCl ₃)	43

FIGURA 12.	<pre>Posibilidades estructurales para el compuesto V (V-A)</pre>	44
FIGURA 13.	. Caracterización de la pinocembrina, a través de su diacetato y por correlación química con el compuesto I	46
FIGURA 14.	. Fragmentación propuesta para la chrysina en espectrometría de masas	49
FIGURA 15.	. Espectro de RMN ¹ H de la chrysina (100MHz, piridina-d ₅)	50
FIGURA 16	. Espectro de RMN ¹ H del diacetato de la chrysina (100MHz, CDCl ₃)	51
FIGURA 17	. Espectro de RMN ¹ H de la tectochrysina (100MHz, CDCl ₃)	52
FIGURA 18	. Estructura de la chrysina y su derivado acetilado (<u>38</u>) y monométilado (<u>39</u>)	53
FIGURA 19	. Espectro de RMN ¹ H del (+)-8∝-hidroxielemol (CDCl ₃ , 80MHz)	56
FIGURA 20	. Espectro de RMN ¹³ C del (+)-8α-hidroxielemol (DMSO-d ₆ , 50MHz)	57
FIGURA 21	. Estructura del (+)-8α-hidroxielemol	61

FIGURA 22.	Espectro de RMN ¹³ C del (+)-8α-acetoxi- criptomeridiol	64
FIGURA 23.	Espectro de RMN ¹ H del (+)-8α-acetoxi- criptomeridiol (CDCl ₃ , 80MHz)	6 6
FIGURA 24.	Estructura del (+)-8α-acetoxi-criptomeridiol	67
FIGURA 25.	Espectro de RMN ¹ H del criptomeridiol (CDC1 ₃ , 80MHz)	71
FIGURA 26.	Estructura del criptomeridiol -=	72
FIGURA 27.	Estructura del 3β-glucositosterol	72
FIGURA 28.	Estructura de los metabolitos secundarios identificados previamente en <u>A.</u> adstringens	84
FIGURA 29.	Estructura del β-sitosterol	102
FIGURA 30.	Estructura del ácido masticadienónico <u>45</u> y su éster metílico, <u>50</u>	103
FIGURÁ 31.	Espectro de RMN ¹ H del ácido masticadienónico (CDC1 ₃ , 80MHz)	106
FIGURA 32.	Espectro de RMN ¹ H del éster metílico del ácido masticadienónico (CDC1 ₃ , 80MHz)	107
FIGURA 33.	Fragmentación propuesta para el ácido masticadienónico	108

FIGURA 34.	Espectro de RMN ¹³ C del ácido masticadienónico (CDC1 ₃ , 100MHz)	109
FIGURA 35.	Espectro de RMN ¹ H del éster metílico del ácido isomasticadienónico (CDC1 ₃ , 80MHz)	112
FIGUR A 36.	Estructura del ácido isomasticadienónico <u>51</u> y de su éster metílico	113
FIGURA 37.	Estructura del ácido oleanólico <u>53</u> y del oleanolato de metilo <u>54</u>	114
FIGURA 38.	Espectro de RMN ¹ H del oleanolato de metilo (CDC1 ₃ , 80MHz)	115
FIGURA 39.	Espectro de RMN ¹ H del 3-epi-oleanolato de metilo (CDCl ₃ , 80MHz)	118
FIGURA 40.	Estructura del ácido 3-epi-oleanólico <u>55</u> y su éster metílico <u>56</u>	119
FIGURA 41.	Estructura del ácido 3α-hidroximasticadienó- nico <u>46</u> y su éster metílico <u>57</u>	122

FIGURA 4	2. Espectro de RMN ¹ H del ácido 3α-hidroximasti- cadienónico (CDC1 ₃ , 80MHz)	123
FIGURA 4	8. Espectro de RMN ¹ H del éster metílico del ácido 3α-hidroximasticadienónico (CDC1 ₃ , 80MHz)	124
FIGURA 44	. Espectro de RMN ¹ H del ácido 3-epi-hidroximas- ticadienónico (CDC1 ₃ , 80MHz)	127
FIGURA 4	5. Estructura del ácido 3-epi-hidroximasticadie- nónico	128
FIGURA 40	5. Espectro de masas por IE del compuesto XVI	133
FIGURA 4	. Espectro de UV del compuesto XVI (CHCl ₃)	134
FIGURA 48	8. Espectro de IR del compuesto XVI (película)	135
FIGURA 49	D. Espectro de RMN ¹ H del compuesto XVI (CDCl ₃ , 60MHz)	136
FIGURA 5). Espectro de masas por IE del compuesto XXIV	137
FIGURA 5	. Espectro de IR del compuesto XXIV (CHCl ₃)	138
FIGURA 52	2. Espectro de RMN ¹ H del compuesto XXIV (CDC1 ₃ , 80MHz)	139
FIGURA 5	8. Espectro de RMN ¹³ c del compuesto XXIV (CDC1 ₃ , 100MHz)	140 /

xiv

C

FIGURA 54.	Estructuras generales de los ácidos anacárdicos -	142
FIGURA 55.	Fragmentación general propuesta para los ésteres metílicos de los ácidos anacárdicos	143
FIGURA 56.	Fragmentación general propuesta para los ésteres metilicos acetilados de los ácidos anacárdicos-	14 4
FIGURA 57.	Espectro de masas por IQ del compuesto XVI	147
FIGURA 58.	Cromatograma del compuesto XVI en cromatografía de gases	148
FIGURA 59.	Espectro de masas por IE del compuesto XXV	15 3
FIGURA 60.	Espectro de IR del compuesto XXV (CHCl ₃)	154
FIGURA 61.	Espectro de RMN ¹ H del compuesto XXV (CDC1 ₃ , 80MHz)	155
FIGURA 62.	Estructura del ácido 6-eicosilsalicílico	15 6
FIGURA 63.	Estructura del ácido dihidroisomasticadienó- nico	161

/

LISTA DE ESQUEMAS

ESQUEM A 1.	Extracción de las partes aereas del <u>Chenopodium graveolens</u> Willd	19
ESQUEMA 2.	Extracción de las partes aereas del <u>Chenopodium</u> <u>ambrosioides</u> L	74
ESQUEMA 3.	Primera extracción de <u>A. adstringens</u> , recolec- tado en junio de 1983	87
ESQUEMA 4.	Segunda extracción de <u>A. adstringens</u> , recolec- tado en octubre de 1985	93

LISTA DE ABREVIACIONES

- Ar : Anillo bencénico
- c: cuarteto
- CDC1₃ : cloroformo deuterado
 - d : doblete
 - dd : doble de dobles
 - ddd : doble de doble de dobles
 - D_20 : agua deuterada
- DMSO-d₆ : Dimetilsulfóxido hexadeuterado
 - EH-I : Extracto hexánico I
 - EH-II : Extracto hexánico II
 - EMIE : Espectro de masas obtenido por impacto electrónico
 - EMIQ : Espectro de masas obtenido por ionización química
 - Fig: Figura
 - Hz: Hertz
 - IE : Impacto electrónico
 - IQ: Ionización química
 - IR : Infrarrojo
 - J : Constante de acoplamiento
 - Jaa : Constante de acoplamiento axial-axial
 - Jae : Constante de acoplamiento axial-ecuatorial
 - MHz : Mega Hertz
 - PF: Punto de fusión
- Piridina-d₅ : Piridina pentadeuterada

xviii

- pp**m :** partes por millón
- RMN¹H : Resonancia magnética nuclear de hidrógeno
- RMN ¹³C : Resonancia magnética nuclear de carbono-13
 - s: singulete
 - t : triplete
 - TMS : Tetrametilsilano
 - UV : Ultravioleta

INTRODUCCION

Los problemas de salud en México son los propios de los países en desarrollo, generados principalmente por enfermedades infecciosas y/o parasitarias, la desnutrición, la deficiente higiene ambiental y la limitación en los servicios de salud a un porcentaje mínimo de la población (Lamy y Zolla, 1978). Si sumamos a esto el elevado costo de los medicamentos, entre otras cosas, por la ausencia de una industria farmoquímica propia y el uso inadecuado de los recursos existentes, en conjunto se forma un panorama crítico de la salud en México (Lamy y Zolla, 1978; Estrada, 1985).

Tomando en cuenta lo anterior, se hace evidente la necesidad de encontrar alternativas, en varias direcciones, para mejorar los problemas de salud en México. En este sentido, la Organización Mundial de la Salud (OMS) en su tratado de Alma-Ata de 1978 (OMS, 1978), propone:

 Que los países en desarrollo como el nuestro, hagan uso de sus recursos naturales y su medicina tradicional para resolver ciertos problemas de salud.

2. Impulsar la investigación multidisciplinaria de la medicina tradicional y de los recursos terapéuticos que utilizan, haciendo partícipes a los practicantes de tal medicina (curanderos, yerberos, parteras, etc.), y establecer lineamientos para su investigación y estu-

2.

dio (Bannerman, 1977; Bannerman, 1980; OMS, 1976; OMS, 1978; ONUDI, 1983; Penso, 1980). En Africa, China y la India se llevaron a cabo algunos programas de este tipo, obteniéndose resultados favorables (Farnsworth, 1980).

A la medicina tradicional, sin intentar darle una definición se la puede entender como un conjunto de conocimientos y prácticas generadas en el seno de la población, transmitidos generacionalmente y que basada en un saber empírico, intenta ofrecer soluciones a las diversas manifestaciones de la enfermedad, buscando propiciar la salud entre la comunidad. Este acervo de conocimientos y prácticas terapéuticas forma parte de la cultura popular y por lo tanto está sujeta a los cambios y el desarrollo de la misma (Lozoya, 1978; Tempesta, 1980; ONUDI, 1983). Se estima que aproximadamente un 75-80% de la población total de los países en desarrollo hace uso de la medicina tradicional para resolver sus problemas de salud (Tempesta, 1980).

Los practicamentes de esta medicina hacen uso de los recursos a su alcance: plantas, animales y minerales de la región y con mucha frecuencia su utilización va acompañada de prácticas mágicas y rituales (ONUDI, 1983).

Quizás la importancia de la medicina tradicional se pueda resumir en los tres puntos siguientes:

1) Representa un modelo para procurar la salud en forma eficaz para el hombre en su propio ambiente físico.

2) Las plantas y animales medicinales usados en medicina tradi-

3.

cional representan fuentes potenciales preciadas para el desarrollo y descubrimiento de nuevos medicamentos.

3) Debido a la reserva natural de numerosas plantas y animales ofrece, en términos económicos, una alternativa para curar numerosas enfermedades a un costo menor.

En el caso particular de México la práctica de la medicina tradicional es bien conocida desde tiempos antiguos. La bibliografía existente es extensa y plantea interesantes investigaciones (Lozoya, 1984). El registro escrito más antiguo sobre plantas medicinales, llamado Códice Badiano, fue escrito en Nahuatl en 1552 por Martín de la Cruz, del Colegio de la Santa Cruz de Tlatelolco, y traducido al latín por otro indígena Xochimilca, Juan Badiano (Heyden, 1983; López, 1971). Este códice contiene 185 ilustraciones en color de plantas medicinales y menciona el uso medicinal de 270 especies en total (Estrada, 1985b). Algunos años después (1570-1577) Francisco Hernández (Hernández, 1959), Fray Bernardino de Sahagún (Sahagún, 1969), Francisco Ximénez y otros autores dieron a conocer más de 3500 plantas medicinales. De 1850 a 1952 aparecieron las Farmacopeas, éstas, actualizan los usos de las plantas medicinales más importantes. Destacan también la obra de Francisco del Paso y Troncoso, escrita en 1886 y las investigaciones experimentales del Instituto Médico Nacional (1888-1915) sobre la herbolaria medicinal de México (Lamy y Zolla, 1978). En la actualidad la obra más importante sobre plantas medicinales mexicanas es la del maestro Maximino Martínez (Martínez,

1969), que constituye un catálogo con la clasificación botánica, descripción de las plantas, habitat y usos comúnes. Merece mención como fuentes de información más científicos desde el punto de vista botánico, químico y farmacológico sobre plantas medicinales mexicanas, la Revista Medicina Tradicional, las monográfias y folletos editados por 🖉 🛱 entonces Instituto Mexicano para el Estudio de las Plantas Medicinales (Díaz, 1974, 1976; Lozoya, 1976).

En los últimos diez años se han publicado varios trabajos sobre plantas medicinales de México en artículos, tesis, libros y resúmenes de congresos (Estrada, 1985b).

La medicina tradicional es, entonces una de las alternativas más importantes para resolver algunos de los problemas de salud en México. Pero debe señalarse que su adaptación requiere de grandes esfuerzos de investigación multidisciplinaria.

El estudio multidisciplinario de la medicina tradicional comprende varios aspectos: (a) antropológico; (b) botánico y/o etnobotánico; (c) químico; (d) farmacológico; y (e) clínico.

El aspecto químico es importante debido a que permite conocer los elementos constitutivos de la flora medicinal y permite además el hallazgo de nuevos y/o conocidos agentes medicinales. Los métodos para realizar estudios químicos de plantas medicinales pueden ser:

a) Por medio de estudios fitoquímicos convencionales, mediante los cuales se aislan y caracterizan los metabolitos de las plantas y posteriormente se someten a ensayos biológicos. Este método tiene

5.

1a

la desventaja de que generalmente se aislan los metabolitos que se encuentran en cantidades relativamente altas y no necesariamente son los responsables de la actividad biológica.

b) Discriminación farmacológica para una actividad dada de los extractos vegetales en combinación con el estudio químico de las fracciones activas. El fraccionamiento se hace en base a la actividad biológica. Este método tiene la ventaja de que permite el aislamiento de substancias activas que se encuentran presentes en pequeñas cantidades y que de otra forma probablemente no hubiesen podido ser detectadas, y además resulta mucho más conveniente para el fitoquímico ya que le ahorra el trabajo de aislar un mayor número de compuestos que probablemente no tengan actividad biológica.

Existen numerosas referencias en donde se señala la metodología adecuada para realizar estudios químicos de plantas medicinales (Farkas, 1980; Farnsworth, 1980; Farnsworth y Bingel, 1977; Galeffi, 1980; Fairbairn, 1980; Salemink, 1980).

La investigación química de plantas medicinales es necesaria, ya que generalmente se usan en la medicina tradicional preparados formados por varias plantas, las cuales pueden contener substancias activas que actúan en forma antagónica o sinergista y es conveniente caracterizarlas por los múltiples beneficios que se pueden obtener de ellas (Farnsworth, 1980).

Los principales grupos de compuestos químicos a los que pertenece la mayoría de los principios activos aislados de las plantas medicinales, corresponden en primer lugar a los alcaloides, seguido por los sesquiterpenos, diterpenos, triterpenos, esteroides, flavonoides, cumarinas, quinonas y monoterpenos (Farnsworth y Bingel, 1977), aunque también se han identificado como principios activos otros tipos de compuestos como: aminoácidos, naftalenos, lignanos, ácidos fenólicos, isotiocianatos, compuestos alifáticos y carbocíclicos, fenilpropanoides, cianoderivados, tiofenos y xantonas (Pesce, 1977; Farnsworth, y Bingel, 1977; Salemink, 1980).

Los estudios químicos que se han realizado sobre plantas medicinales mexicanas son numerosos, muchos de los cuales no se han realizado en México. Por otra parte, los estudios biológicos sobre las mismas son más escasos y se han realizado generalmente en forma independiente a los estudios químicos. Los estudios que se realizan actualmente sobre plantas medicinales mexicanas en general son aislados, sin continuidad, y las bondades medicinales que se llegan a demostrar en estos estudios son desconocidos por los practicamentes y usuarios de este tipo de medicina.

Finalmente es de hacer notar que la gran riqueza y variedad de la flora mexicana, la gran tradición sobre el uso de vegetales con fines curativos, la carencia de una industria farmoquímica propia y las condiciones de los servicios de salud,hacen necesarios los estudios sistemáticos y multidisciplinarios sobre las plantas medicinales mexicanas.

7.

OBJETIVOS

1. OBJETIVOS GENERALES

Considerando lo antes expuesto y como parte de un estudio sistemático de plantas mexicanas usadas en medicina tradicional cuyos objetivos principales son contribuir al conocimiento de la composición química y, en lo posible de la acción biológica de la flora medicinal mexicana, se considero conveniente el estudio fitoquímico de tres / plantas ampliamente usadas en medicina popular. Las plantas escogidas para el logro de los objetivos son: <u>Chenopodium graveolens</u> Willd, <u>Chenopodium ambrosioides</u> L y <u>Amphipterygium adstringens</u> Schiede ex Schlecht.

2. OBJETIVOS ESPECIFICOS

2.1 Recopilar la información botánica, etnobotánica, química y farmacológica de las especies vegetales objeto de estudio.

2.2 Efectuar las operaciones preliminares propias a la preparación de extractos vegetales para cada una de las plantas a ser estudiadas.

2.3 Preparar los extractos vegetales de acuerdo a la metodología convencional.

2.4 Fraccionar los extractos mediante los métodos adecuados.

2.5 Separar y purificar los constituyentes de las diferentes fracciones. 2.6 Identificar mediante métodos químicos y espectroscópicos las substancias aisladas.

2.7 Correlacionar los resultados obtenidos con la información previamente descrita en la literatura, en cuanto a:

2.7.1 Composición química de las especies estudiadas.

2.7.2 Actividad biológica de las substancias aisladas y su posible relación con las propiedades medicinales de la planta.

2.8 Proporcionar sugerencias en relación a estudios futuros.

CAPITULO I

CONSTITUYENTES QUIMICOS DE <u>Chenopodium</u> graveolens Willd y <u>Chenopodium</u> <u>ambrosioides</u> L.

1. GENERALIDADES ACERCA DEL GENERO Chenopodium.

1.1 TAXONOMIA Y DISTRIBUCION.

1

١

El género <u>Chenopodium</u> es cosmopolita y está constituído aproximadamente por unas 200 especies agrupadas en 10 secciones y seis subsecciones. En la Tabla 1 se resumen las diferentes secciones, subsecciones y especies tipo del género <u>Chenopodium</u> (Heywood, 1978).

Desde el punto de vista taxonómico existen pocas monografías del género y dos clásicas están representadas por la de Aellen y Just y por la de Wahl. Ambas proporcionan en forma más o menos detallada la distribución, descripción y claves para la clasificación de las diferentes especies del género (Aellen y Just, 1943; Wahl, 1954).

El <u>Chenopodium graveolens</u> Will (Sección <u>Botryoides</u>, subsección <u>Botrys</u>), se encuentra ampliamente distribuído en el continente americano, desde el sur de los Estados Unidos hasta la Argentina. En México se encuentra en gran parte del territorio en medio de muchos tipos de vegetación (Rzedowski y Rzedowski, 1979).

(

SECCION Y SUBSECCION		ESPECIES TIPO
Ι.	Roubieva	<u>Ch. multifidum</u> L; <u>Ch. huamani</u> Ulbrich
II.	Orthosporum	<u>Ch. pumilio</u> R. Br.
III.	<u>Ambrina</u>	<u>Ch.</u> <u>ambrosioides</u> L.
IV.	<u>Botryoides</u>	
	1) Botrys	<u>Ch. dissectum</u> standley; <u>Ch. botrys</u> L.; <u>Ch. foetidum</u> Schrad; <u>Ch. graveolens</u> Willd
	2) Theloxys	<u>Ch. aristatum</u> L.
۷.	Degenia ⁻	<u>Ch. frigidum</u> Phil; <u>Ch. chenopodioides</u> L.; <u>Ch. macrospermum</u> Hook.
VI.	<u>Eublitum</u>	<u>Ch. overi</u> Aellen; <u>Ch. foliosum</u> Aschers; <u>Ch. capitatum</u> L.
VII.	<u>Pseudoblitum</u>	<u>Ch. mexicanum</u> Moq; <u>Ch. glaucum</u> L; <u>Ch. rubrum</u> L.
VIII.	<u>Thellungia</u>	<u>Ch. antareticum</u> (Hook. f.)
IX.	Agathophyton	<u>Ch. bonus-henricus</u> L; <u>Ch. californicum</u> S. Wats
Х.	Chenopodia	
	1) Lejosperma	<u>Ch. subglabrum</u> S. Wats; <u>Ch. album</u> L.; <u>Ch. urbicum</u> L.
	2) Cellulata	<u>Ch. watsoni</u> A. Nelson; <u>Ch. berlandieri</u> Moq <u>Ch. serotinum</u> L; <u>Ch. quinoa</u> Aellen
	3) Undat a	<u>Ch. murale</u> L; <u>Ch. polyspermum</u> L.
	4) Grossefoveata	<u>Ch. hybridum</u> L; <u>Ch. gigantospermum</u> Aellen

TABLA 1.	Secciones,	subsecciones	/ especies	tipo del	género
	Chenopodiur	n L.			

Rzedowski, en su libro Flora fanerogámica del Valle de México hace la siguiente descripción del <u>Ch. graveolens</u>.

"Hierba anual, erguida, glandulosa, muy olorosa, de 20 a 80 cm. de alto; tallo simple o ramificado, a veces rojizo; peciolo delgado, hojas ovadas u oblongas, de 2 a 6 cm de largo por 1 a 3 cm de ancho, sinuado-pinnatífidas, con los lóbulos oblongos o deltoideos, glabras o algo viscidas en el haz, cubiertas de glándulas amarillas en el envés; inflorescencia de numerosas cimas axilares, dispuestas en largas panículas; flores sésiles en la bifucación de las ramas laterales y una sola termina en el extr<u>e</u> mo de cada una de las ramas laterales, flores pediceladas generalmente abortivas, caedizas, sus pedicelos espiniformes; perianto de menos de 1 mm de largo, corniculado en el ápice de los lóbulos, cubierto de glándulas, envolviendo incompletamente el fruto; semilla por lo general horizontal, de 0.5 mm de diámetro, de color café oscuro y con el pericarpo adherente".

y para el <u>Chenopodium ambrosioides</u> L. (Sección <u>Ambrina</u>) la siguiente: "Hierba anual o perene, erguida o ascendente, fuertemente olorosa, glandulosa, de 40 cm a 1 m de alto; tallo simple o ramificado; hojas pecioladas, oblongas o lanceoladas, de 3 a 10 cm de largo por 1 a 5 cm de ancho, gradualmente reducidas hacia la parte superior, subenteras ó sinuado-dentatas; influorescencia en forma de espigas con numerosas flores, dispuestas en panícula piramidal, con ó sin hojas interpuestas; perianto de 1 mm de lago, glanduloso, envolviendo el fruto, pericarpo delgado que se desprende fácilmente, glanduloso; semilla horizontal ó vertical, de unos 0.7 mm de diámetro con el margen obtuso, negra brillante y lisa". (Rzedowski y Rzedowski, 1979).

1.2 FITOQUIMICA.

Varias especies de este género han sido investigadas desde el punto de vista fitoquímico. La mayoría de estos trabajos describen: a) El estudio del aceite esencial haciendo particular énfasis en el contenido de ascaridol (principio activo antiparasitario) (Nicholaev, 1956; Nicholas, 1955; Takemoto y Nikjiama, 1957; Rovesti, 1973; Rostembekova, Goryaev y Dembitskii, 1974, 1975, inter alia).

 b) El contenido de flavonoides (flavonoles) con propósitos quimiotaxonómicos (Crawford, 1975; Arasawa, Minabe, Saeki, Takakuwa y Nakaoki, 1971; Crawford y Evans, 1978; Crawford y Mabry, 1978; Mandich, Barros y Silva, 1982).

También se han reportado el aislamiento y caracterización de betacianinas (Rustembekova, Gorgaev y Gladyshev, 1973; Piatelli e Imperato, 1971); écdiesteroides (Toth, Bathory, Szendrei, Minker y Blazso, 1981; Bathory, Thot, Szendrei y Reish, 1982); glicosidos triterpénicos (Chirva, Chebar, Kintya y Bobeiko, 1971; Bogacheva, Kogan y Libizov, 1972); endoperoxidos monoterpénicos y algunos sesquiterpenos polioxigenados (De Pascual, Bellido y González, 1978a, 1978b y 1980). En la Tabla 2 se resume el perfil fitoquímico del género <u>Chenopodium</u>, indicándose los diferentes tipos de metabolitos secundarios, ejemplos de los mismos, sus fuentes naturales y las referencias correspondientes. Es de hacer notar que en el caso de los monoterpenos solo se hará referencia a los del tipo peróxido por ser los mismos específicos del género.

1.3 IMPORTANCIA BIOLOGICA Y ECONOMICA.

Numerosas plantas del género <u>Chenopodium</u> L., son de gran interés por los múltiples beneficios que pueden ser derivados de las mismas. En este sentido, es bien conocido que muchas especies constituyen un recurso alimenticio en algunas regiones del mundo (Tóth, Báthory, Szender, Minker y Blazso, 1981; Martínez, 1969), un ejemplo local está dado por el <u>Chenopodium nuttalliae</u> Safford, comunmente llamado Huauzontle y que ha sido usado como un preciado alimento desde la época de los Aztecas (Wilson y Heiser, 1979). Algunas otras gozan de reputación folklórica como agentes medicinales, en virtud de sus efectos antihelmínticos (Martínez, 1969; Bye, 1985; Bye,1986; Van Pooijen, 1979; Whid, 1960), anticonceptivos (Mandich, Barros y Silva, 1982; Quezada, 1975), analgésicos y/o antipiréticos (Bye, 1986).

En México el uso como vermifugo de las hojas y las partes aereas de la "yerba del zorrillo" (<u>Ch. graveolens</u>) y del epazote (<u>Ch. ambro-</u> <u>sioides</u>) es bien conocido desde épocas precolombinas (Velázquez, 1979; Bye, 1986; INEA, 1982). Evidencias arqueológicas de coprolitos sugie-
TIPO DE METABOLITOS SECUNDARIO	COMPUESTO*	FUENTE NATURAL	REFERENCIAS
a) Flavonoides (Flavonoles)	Kaenferol <u>1</u>	<u>Ch.</u> fremontii, S.	Crawford y Mabry, 1978
	Quercetina <u>2</u>	<u>Ch. flabellifolium</u> Standley	Crawford y Evans, 1978
	Isorhamnetina <u>3</u>		٢
	Quercetin-3-0-galactosido <u>4</u>	<u>Ch. santae-clarae</u> L.	Mandich, Barros y Silva 1982
	Quercetin-di-glu-rhamnosa <u>5</u>	<u>Ch.</u> ambrosioides L.	Avasawa, Minabe, Saeki, Takakuwa y Nakaoki,1971
b) Betacianinas	Betanina <u>6</u>	<u>Ch.</u> <u>botrys</u> L.	Rustem bekova, Goryaev y Gladyshev, 1973
		<u>Ch.</u> <u>urbicum</u> L.	Piatelli e Imperato, 1971
c) Esteroides (Ecdiesteroides)	Polipodina B <u>7</u> 20-hidroxiecdisona <u>8</u>	<u>Ch.</u> bonus-henricus L.	Báthory, Tóth, Szendrei y Reisch, 1982
d) Triterpenos (glicosidos)	Saponina <u>9</u> Saponina <u>10</u>	<u>Ch.</u> <u>anthelminticum</u> L.	Chirva, Cheban, Kintya y Bobeiki, 1971
e) Sesquiterpenos - Guaiano	-11-acetoxi-cis-guai-10 [°] (14)-en-14α-ol <u>11</u> -cis-guai-lo-en-4α, 11- diol <u>12</u>	<u>Ch.</u> <u>botrys</u> L.	De Pascual, Bellido y González, 1978a; 1978b, 1980

TABLA 2. Perfil fitoquímico del género Chenopodium.

TIPO DE METABOLITO SECUNDARIO	EJEMPLOS TIPO*		FUENTE NATURAL	RÉFERENCIAS		
-Eudesmano	6α-acetoxiselin-4(15)-en-	11-ol <u>13</u>				
	selin-4(15)-en-3g,11-diol	<u>14</u>				
	selin-4(15)-en-3a,6a,11-t	riol <u>15</u>				
	selin-4(15)-en-38-6a,11-t	riol <u>16</u>				
	6¤-acetoxi-selin-3-en-11-	ol-2-ona <u>17</u>				
	4α-acetoxi-selinan-6α,11-	diol <u>18</u>				
	selin-3,5-dien-11-ol-2-on	a <u>19</u>				
	selin-4-en-3a,6a,11-triol	20				
	selinan-3a,4a,6a,11-tetra	ol <u>21</u>				
	Selinan-38,4a, 6a,11-tetraol <u>22</u>					
	11-acetoxiselin-4α-ol <u>23</u>					
	criptomeridiol <u>24</u>					
-Elemano	Acetato de elemol <u>25</u>		<u>Ch.</u> <u>botrys</u> L.	De Pascual, Bellido		
	Elemol <u>26</u>			y González, 1978a.		
	+ botrydiol <u>27</u>					
f) Monoterpenos **	Endoperoxidos de α-feland 28, <u>19</u>	reno	<u>Ch.</u> multifidum L.	De Pascual, Bellido, Torres, Sastre y Grande 1981		
	Ascaridol <u>30</u>		<u>Ch.</u> <u>ambrosioides</u> L.			

TABLA 2. Perfil fitoquímico del género <u>Chenopodium</u> (Continuación).

*Los números corresponden a las estructuras de la Figura 1.

**Sólo se consideran los de tipo endoperóxido.

a) <u>Flavonoides</u> (Flavonoles).

c) <u>Esteroides</u> (Ecdiesteroides).

FIGURA 1. Estructura de los metabolitos secundarios del género Chenopodium.

- Eudesmano

1

FIGURA 1. Estructura de los metabolitos secundarios del género Chenopodium. (Continuación).

ren un uso similar en épocas prehistóricas (en Bye, 1986). Actualmen te la actividad antihelmínticade ambas especies es de conocimiento general en toda la República; aun más, estas plantas forman parte de un cuadro básico de drogas vegetales de la O.M.S. para el tratamiento de parasitosis en varios países en desarrollo. (Informe de la ONUDI, ID/295). Además de su acvidad vermifuga, es bien conocido en la medicina tradicional mexicana las propiedades abortivas del Ch. ambrosioides (Quezada, 1975).

Finalmente cabe destacar que el epazote posee actividad nematicida en diversos tipos de suelo, lo cual tiene importancia de indole agronómica (Morishita, Tagoimi, Taketsugu, 1978).

Tomando en cuenta lo antes mencionado y dentro de los objetivos generales y específicos previamente establecidos, se considero conveniente efectuar el análisis químico del epazote morado (<u>Ch.</u> <u>ambrosioides L.</u>) y de la yerba del zorrillo (<u>Ch. graveolens</u> Willd).

2. CONSTITUYENTES DE <u>Chenopodium graveolens</u> Willd (yerba del zorrillo).

2.1 MATERIALES Y METODOS.

2.1.1 MATERIAL VEGETAL.

La planta (partes aereas) fué obtenida a través de una epazotera del Mercado de Sonora, México, D.F. en abril de 1985, y fué identificada por el Dr. Robert Bye, del Jardín Botánico Exterior, Instituto de Biología, UNAM. Una muestra de referencia se depositó en el Herb<u>a</u> rio Nacional (Voucher DGL 1158).

El material vegetal se dejó secar a temperatura ambiente y se corto en trozos pequeños.

2.1.2 METODOS DE EXTRACCION Y FRACCIONAMIENTO PRELIMINAR.

El material vegetal (3.1 Kg) se extrajo según el procedimiento señalado en el Esquema 1.

El total del extracto clorofómico (103.5 g) se fracciono preliminarmente mediante una cromatografía preparativa en columna, utilizando como adsorbente silica gel (3 Kg, silica gel G 60 Merck 70-230 mallas); el proceso de elución se efectuó con hexano, cloroformo y acetona en diferentes proporciones. Se recogieron un total de 425 fracciones de 500 ml cada una; cada fracción fué analizada por cromatografía en capa fina, combinándose aquellas cromatográficamente similares. En la Tabla 3 se resumen los sistemas de eluyentes empleados, el número de fracciones eluídas con cada uno de ellos y

- 1/ Cantidad dedmaterial/vegetalst311 Kg1 Kg.
- <u>2/ Extracciónovia maceracióno(Bovécesepor periodosodes3ddiasdéadacada</u> vez 30/13delcloroformó)/x00).
- 3/ Cantidaditotalodelextractoal03.50g.5 g.

ESQUEMAUIMA Extraccióncdenlas partesraereasrdel <u>Chenópodium/graveolenslens</u> Willdilld. las fracciones combinadas.

Los análisis cromatográficos en capa fina, se efectuaron siguiendo las técnicas convencionales, utilizando placas de vidrio recubiertas de gel de silice (silica gel 60 GF₂₅₄, Merck). Como agente cromogénico se utilizó una solución reactivo de sulfato cérico en ácido sulfúrico concentrado, y para lograr el desarrollo de color era necesario calentar por dos minutos a 110°C. Como fase móvil se utilizaron varios sistemas de disolventes: benceno, benceno-acetona (en diversas proporciones), benceno-acetato de etilo (en diversas proporciones), hexano-acetato de etilo (en diversas proporciones), acetato de etilo, cloroformo y acetona.

.21.3 AISLAMIENTO Y PURIFICACION DE LOS COMPUESTOS I-X.

- a) De las fracciones 121-146 de la Tabla 3 se obtuvo un polvo cristalino de p.f. = 95°C. Recristalizaciones sucesivas de éter etilico, elevaron el punto de fusión a 100°C. El rendimiento total de este producto fue de 3 g (0.15 de rendimiento) y se denominó compuesto I, <u>31</u>.
- b) Las fracciones 147-214 (6.1 g) de la columna original (Tabla 3);
 se recromatografiaron en una columna empacada con 100 g de gel de silice; la elución se inició con hexano y posteriormente con hexano-acetato de etilo (90:10). Se recolectaron 150 fracciones de 100 ml cada una.

De las fracciones 24-29, eluídas con hexano-acetato de etilo 90:10 se obtuvieron 100 mg (0.003% de rendimiento) de un compuesto homo-

Eluyente	Proporción	No. de fracciones	Fracciones combinadas	Observaciones
Hexano	100%	1 - 32	1 - 14	Descartadas
			15 - 18	Descartadas
			19 - 27.	Descartadas
Hexano:Cloroformo	90 : 10	33 - 53	28 - 35	Descartadas
			36 - 4 4	Descartadas
Hexano:Cloroformo	70 : 30	54 - 82	45 - 63 .	
Hexano:Cloroformo	60:40	83 - 98	64 - 96	
Hexano:Cloroformo	50 : 50	99 - 187	*97 - 145	+* Combinadas luego de sepa- rar el compues- to 1
Hexano:Cloroformo	25 : 75	188 - 265	147 - 214	+
			215 - 257	+
Cloroformo	100	266 - 310	258 - 271	Descartadas
			272 - 275	Descartadas
			276 - 309	Descartadas

TABLA 3. Resumen del fraccionamiento vía cromatografía en columna del extracto clorofórmico del <u>Chenopodium graveolens</u>.

Eluyente	Proporción	No. de fracciones	Fracciones combinadas	Observaciones
Cloroformo:Acetona	90 : 10	311 - 352	310 - 312	+
			313 - 315	+
			316 - 350	+
Cloroformo:Acetona	80:20	353 - 383	351 - 373	+
Clofoformo:Acetona	70:30	384 - 411	374 - 405	+
Cloroformo:Acetona	60:40	412 - 429	406 - 413	
Cloroformo:Acetona	50 : 50	430 - 445	414 - 448	+
Cloroformo:Acetona	25 : 75	446 - 464		
Acetona	100	465 - 487	449 - 485	

TABLA 3.	Resumen del fraccionamiento	vía cromatografía en	columna del	extracto clorofórmico
	del <u>Chenopodium</u> graveolens.	(Continuación).		

+ Fracciones estudiadas.

geneo cromatográficamente y de p.f. = 169° (Compuesto II, <u>32</u>). De las fracciones 31-39 de esta misma columna se separaron 75 mg (0.0025% de rendimiento) de un polvo blanco de p.f. = 161°C. (Compuesto III, <u>33</u>).

Finalmente de las fracciones 90-100 se obtuvieron 300 mg (0.01% de rendimiento) aceite incoloro de olor agradable (Compuesto IV, 34).

c) De las fracciones 310-312 de la Tabla 3 precipitaron 500 mg de un polvo verde-amarillento con p.f. = 90°. (Compuesto V, <u>35</u>).
El remanente de esta fracción (4.75 g) se recromatografió en 200 g de gel de silice, utilizando como eluyentes hexano-cloroformo 1:1, cloroformo, cloroformo con cantidades crecientes de acetato de etilo (95:5, 90:10, 80:20) y acetato de etilo. Se obtuvieron 155 fracciones, de 100 ml cada una.

Las fracciones 47-51 (2 g) eluídas con cloroformo-acetato de etilo 95:5 se acetilaron con anhidrido acético y piridina 1:1 a temperatura ambiente. Después de procesar la mezcla de reacción se separaron 500 mg de un sólido blanco de p.f. = 105° . (Compuesto V-A acetilado, <u>36</u>).

- d) De las fracciones 313-315 de la Tabla 3 cristalizaron 1.5 g (0.05% de rendimiento) de un compuesto amarillo de p.f. 275-280°. (Compuesto VI, <u>37</u>).
- e) Las fracciones 316-350 de la Tabla 3, fueron filtradas sobre carbón activado y tonsil (1:1, 100 g). La solución filtrada se concentró <u>in vacuo</u> obteniéndose 4.34 g de un residuo, el cual fue recromatografiado sobre 150 g de gel de silice. La elución

se inició con hexano-acetato de etilo 90:10 continuándose con can tidades crecientes de acetato de etilo (80:20, 70:30, 60:40 y 50:50) y finalizando con acetato de etilo. Las fracciones 45-99 (2 g) eluídas con hexano-acetato de etilo 80:20, fueron a su vez cromatografiadas en 80 g de gel de silice impregnados con nitrato de plata (al 10%) utilizandose como eluyentes cloroformo y clorofo<u>r</u> mo-acetato de etilo 95:5; de las fracciones 48-64 de esta última columna se obtuvo una masa cristalina de color verde, la cual fue purificada por tratamiento con carbón activado. Luego del proceso de purificación se obtuvo un polvo cristalino de p.f. = 110°C. (Compuesto VII, <u>38</u>). El rendimiento del compuesto VII fué de 140 mg (0.00.45%).

- f) Las fracciones 374-405 (5.51 g) de la columna original (Tabla 3), fueron recromatografiadas en 200 g de gel de silice. La elución se hizo con cloroformo y cantidades crecientes de acetato de etilo. De las fracciones 134-153 eluídas con cloroformo-Acetato de etilo 97.5:2.5 se obtuvieron 110 mg (0.0036% de rendimiento) de una su<u>s</u> tancia con p.f. de 70°C. (Compuesto VIII, <u>38</u>), de las fracciones 154-169 eluídas con la misma polaridad, se aislaron 90 mg (0.003% del peso seco) de un sólido con p.f. de 130°C. (Compuesto IX, <u>24</u>).
- g) Las fracciones 414-448 (2.84 g), de la Tabla 3, fueron recromatografiadas en 120 g de gel de silice, la elución se hizo con acetato de etilo y cantidades crecientes de acetona; se recogieron fracciones de 50 ml. De las fracciones 21-35 eluídas con acetato

de etilo, se aisló un polvo cristalino, que después de recristalizarlo varias veces de éter etílico originó 110 mg (0.0036% de rendimiento) de una sustancia pura de p.f. = 280° (desc.). (Compuesto X, <u>39</u>)

2.1.4 CARACTERIZACION DE LOS COMPUESTOS AISLADOS.

a) Determinación de las constantes físicas y espectroscópicas.
Los puntos de fusión fueron medidos en un aparato Fisher-Jones y no están corregidos. Los espectros I.R. fueron registrados en un instrumento Nicolet FT-IR 5X de un solo haz, en pastilla KBr o en solución de cloroformo por el señor Alejando Correa de la Compañía Dupont. Los espectros de RMN ¹H y de RMN ¹³c se determinaron en un espectrómetro FT-80 Varian utilizando como disolventes CDCl₃ y/o DMSO-d₆ y como referencia interna TMS. Los espectros UV se obtuvieron en un espectrometro de doble haz Hitachi 220 S.
Los espectros de masa fueron obtejidos en un aparato Hitachi Perkin-Elmer RMU 6D en el Instituto de Química de la UNAM. Las rotaciones ópticas fueron determinadas en un polarímetro Perkin-Elmer 241.

Los espectros de RMN ¹³C de los compuestos VII y VIII fueron realizados en el laboratorio de Resonancia Magnetica Nuclear del Departamento de Química Farmacéutica de la Universidad de Purdue, Indiana, USA.

Los análisis elementales se realizaron en Galbraith Laboratories,

Inc., Knoxville, Tenn., USA.

b) Preparación de derivados.

b1) Acetilaciones: Para formar los derivados acetilados de los productos asilados se empleo 1 ml de anhidrido acético y 1 ml de piridina por cada 100 mg de producto. En todos los casos la mezcla de reacción se dejo por 12 horas a temperatura ambiente. Cuando en el medio de la reacción se formaron produc tos sólidos, éstos se separaron por filtración y posteriormen te se lavaron con éter etílico; en los otros casos se proceso la reacción de manera habitual. (Shriner, Fuson-Curtin, 1980).

A	conti	inuación	se	resu	imen 1	0 S	compuest	tos	que	fueron	acet	ilados,	asi	C0-
mc	los	rendimie	ento	os y	punto	de	fusión	de	los	compues	stos	obtenid	os.	

CANTIDAD DEL COMPUESTO	PRODUCTO	CANTIDAD DE PRODUCTO OBTENIDO	PUNTO DE FUSION
100 mg		180 mg	198°C
30 mg	III acetilado	15 mg	178-180°C
50 mg	II acetilado	40 mg	127°C
50 mg	X acetilado	48 - 5 mg	138-140°C
200 mg	V acetilado (<u>36</u>)	140 mg	105° C
	CANTIDAD DEL COMPUESTO 100 mg 30 mg 50 mg 50 mg 200 mg	CANTIDAD DEL COMPUESTOPRODUCTO100 mg	CANTIDAD DEL COMPUESTOPRODUCTO PRODUCTO OBTENIDOCANTIDAD DE PRODUCTO OBTENIDO100 mg180 mg30 mgIII acetilado30 mgIII acetilado50 mgII acetilado50 mgX acetilado48-5 mg200 mgV acetilado (36)

b2) Metilación. Para obtener los derivados metilados de los productos aislados se utilizó una solución etérea de diazometano. Por cada 100 mg de producto a metilar se utilizo 20 ml de una solución de diazometano preparada con 4 ml de una solución acuosa de hidróxido de potasio al 50%, 20 ml de éter etílico y 2 g de <u>N</u>-nitroso-<u>N</u>-metil-urea. En todos los casos el producto a metilar se disolvió en 10 ml de etanol ó en 10 ml de éter, y la mezcla se dejo reaccionar a temperatura ambiente durante 12 horas.

A continuación se indican los compuestos sometidos a metilación, el rendimiento de los productos obtenidos y sus puntos de fusión.

COMPUESTO	CANTIDAD DEL COMPUESTO	PRODUCTO	CANTIDAD DE PRODUCTO OBTENIDO	PUNTO DE FUSION
VI (<u>37</u>)	100 mg		(100 mg)	177-179°
V (<u>35</u>)	200 mg	I (<u>31</u>)		

2.2 RESULTADOS Y DISCUSION.

Del extracto clorofórmico de las parteas aereas del <u>Ch.</u> <u>graveolens</u>, luego de un fraccionamiento preliminar vía una cromatograffa preparativa en columna sobre silica gel (Tabla 3) y posteriores cromatografías en columna de las fracciones originales sobre silica gel impregnada o no con NO_3Ag , se obtuvieron 10 metabolitos secundarios: un monoterpenoide (Compuesto IV _____), tres flavonoides (Compuesto I, V y VI ____), tres sustancias esteroidales (Compuesto II, III y X _____) y tres metabolitos sesquiterpenoides (compuesto VII, VIII y IX _____), dos de los cuales resultaron ser nuevos productos naturales.

2.2.1 IDENTIFICACION DE LA PINOSTROBINA, 31 (Compuesto I).

El compuesto I se obtuvo de las fracciones menos polares de la columna preparativa original en un rendimiento del 0.1%. Las constantes físicas y los datos espectroscópicos utilizados en su identificación se resumen en la Tabla 4.

Su fórmula molecular se estableció como $C_{16}H_{14}O_4$ por espectrometría de masas y permite un índice de insaturación de 10.

Los espectros de IR y UV indicaron el carácter aromático del compuesto I, esta información fué confirmada por los espectros RMN ¹H (Figura 2) y de RMN ¹³C (Figura 3), los cuales presentaban señales típicas para protones (7.4 ppm, 6.1 ppm) y carbonos (168, 164.3, 162.9, 103.3, 92.2 y 94.3 ppm) aromáticos, respectivamente.

TABLA 4. Constantes físicas y espectroscópicas de la pinostrobina 31, (Compuesto I).

P.f.	100°C
EMIQ m/z (%)	271 (M+1), 100
UV λ MeOH mm (log ε): Max	242 (0.8877), 294 (3.4231)
$IR v \frac{CHCl}{Max} 3 \text{ cm}^{-1}$	1634, 1570, 1295, 1155, 1085
rmn ¹ h	
(80 MHz, CDCl ₃ ppm)	11(s,1H,0 <u>H</u>), 7.4(s,5H,H ₂ ,-H ₆ ,), 6.1(s,2H,
(Figura 2)	H ₆ -H ₈), 5.37 (dd, 1H, J=11, 5Hz, H ₂), 3.8
	(s, 3H, OME), 3.17 (dd, 1H, J=11, 17Hz,H ₃),
	2.77 (dd, 1H, J=17, 5Hz, H ₃).
RMN ¹³ C	
(20 MHz, CDCI ₃ ppm)	195.7 (s, C-4), 168 (s, C-7), 164.3 (s,
(C-5), 162.9 (s, C-9), 138.7 (s, C-1'),
(Figura 3)	128.9 (d, C-3', C-4', C-5'), 126.2 (d,
	C-2', C-6'), 103.5 (s, C-10), 94.3 (d,
	C-8), 92.2 (a, C-6), 79.2 (d, C-2), 55.6
	(c, <u>M</u> eO), 43.4 (t, C-3).

-

Asimismo la presencia en el espectro de RMN ¹H de tres señales doble de dobles, una entrada a 3.17 ppm (J = 11,17 Hz), otra a 2.77 ppm (J = 17,5 Hz) y la última a 5.37 ppm (J = 11,5 Hz), permitió inferir <u>a priori</u> que el compuesto I era una flavanona. Estas señales representan el sistema ABX típico que conforman los protones H-2, H-3 y H-3' del esqueleto fundamental, y en el cual el grupo fenilo se encuentra α orientado. Por otra parte el singulete a 195.7 ppm (C-4), las señales triple a 43.4 ppm (C-3) y doble a 79.2 ppm (C-2) en el espectro de RM ¹³C sustentaron aun más esta proporsión.

La ubicación del grupo hidroxilo en C-5 se hizo considerando el desplazamiento químico del protón a 11 ppm (desaparece luego de equ<u>i</u> librar con D_20) en el espectro de RMN ¹H y el cual es característico para un protón fenólico quelatado con un grupo carbonilo. La ausencia de absorción para hidroxilos y la presencia de absorción observada para el carbonilo de la estructura tipo (1635 cm⁻¹) en el espectro infrarr<u>o</u> jo eran consistentes con la anterior propuesta.

La disposición del grupo hidroxilo en C-5, así como el singulete integrado para dos protones a 6.1 ppm (H-6, H-8) en el espectro de RMN ¹H, permitieron colocar el grupo metoxilo (<u>s</u> a 3.80 ppm y c a. 55.6 ppm en los espectros de RMN ¹H y RMN ¹³C respectivamente) en C-7. Si el metoxilo antes considerado hubiese estado en C-6 ó C-8 no se obse<u>r</u> varía la equivalencia química de los protones que resuenan a 6.1 ppm (Harbone y Mabry, 1982). Finalmente el singulete integrado para cinco protones en 7.40 ppm permitió inferir que el anillo aromático B de la flavanona era monosustituído. Considerando lo antes expuesto se pudo establecer la estructura para el compuesto I como la 2-fenil 5-hidroxi-7-metoxi flavanona, conocido comunmente como pinostrobina, y cuya estructura se indica en la Figura 4. Las constantes físicas y algunas espectroscópicas indicadas en la Tabla 4 concuerdan con las previamente reportadas en la literatura (Asakawa, 1970; Wolenweber, y Egger, 1971).

Es de hacer notar que el espectro de RM 13 C para este compuesto no se ha descrito previamente en la literatura. Las asignaciones se i<u>n</u> dican en la Tabla 4 y se hicieron de acuerdo a la teoría del desplazamiento químico (Wehrli y Wirthlin, 1978), comparación con compuestos modelos (Harbone y Mabry, 1982) y en base a la multiplicidad observada en el espectro acoplado (Figura 3).

FIGURA 4. Estructura de la pinostrobina.

2.2.2 IDENTIFICACION DEL ESTIGMASTEROL, <u>32</u>, (Compuesto II).

Al recromatografiar las fracciones 147-214 de la Tabla 3 se obtuvieron 100 mg (0.003% del peso seco) del estigmasterol, el cual fue identificado por comparación con una muestra auténtica siguiendo los procedimientos convencionales (conportamiento cromatográfico, punto de fusión, punto de fusión mixto, IR, RMN ¹H, EM y obtención de derivados). En la Figura 5 se indica la estructura del estigma<u>s</u> terol.

32

2.2.3 IDENTIFICACION DEL estigmast-22-en-3-ol, 33, (Compuesto III).

De las mismas fracciones de donde se obtuvo el compuesto II se separaron 75 mg (0.0025% del peso seco) del compuesto III. Los espectros de IR y RMN ¹H (Figuras 6 y 7 respectivamente) mostraron el perfil característico de una sustancia esteroidal.

La conparación de las constantes físicas, espectroscópicas, y del comportamiento cromatográfico en capa fina del derivado acetilado, con aquellas de una muestra auténtica permitieron caracterizar inequivocamente el compuesto III como estigmast-22-en-3-ol, <u>33</u>, cuya estructura se indica en la Figura 8.

33

FIGURA 8. Estructura del Estigmast-22-en-3-ol.

2.2.4 IDENTIFICACION DEL ACETATO DE GERANILO, 34 (Cômpuesto IV).

El compuesto IV, cuya estructura se indica en la Figura 9, se obtuvo como un aceite incoloro de olor agradable y altamente soluble en cloroformo. La cantidad total obtenida de este aceite fue de 300 mg (0.01% del peso seco). Los datos espectroscópicos empleados en su identificación se resumen en la Tabla 5, y en la Figura 10 se representa su espectro de RMN ¹H. La caracterización definitiva de este común monoterpeno se realizó por comparación con una muestra auténtica, siguiendo procedimientos bien establecidos.

34

FIGURA 9. Estructura del acetato de geranilo.

TABLA 5.	Constantes físicas y espectróscopicas del Compuesto IV	1
	(acetato de geranilo).	

	<u>م</u> ــــ
Propiedad	Resul tados
P.f.	(Aceite)
EMIE m/z (%)	196 (M ⁺ , 5), 136 (M-60,20), 121 (M-60-15, 25), 93 (M-60-43, 20), 85 (33), 81 (33), 69 (C ₅ H ₉ , 72.2), 43 (100), 41 (30).
IR v CHCl3 cm ⁻¹ Max	2960, 2920, 1725, 1240, 1020
RMN ¹ H (80MHz, CDC1 ₃ , ppm) (Figura 10)	5.3 (t, 1H, H-2), 5.1 (m, 1H, H-6), 4.55 (d, J=6Hz, 2H. H-1), 2.01 (s, 3H, Ac), 1.67 (s, 6H, Me-8, Me-9), 1.6 (s, 3H, Me-10).

۱

FiglŒspectro de RMN 'H del Acetato de geranilo (CDCl₃, 80MHz)

Ą

2.2.5 IDENTIFICACION DE LA PINOCEMBRINA, 35, (Compuesto V).

Los múltiples intentos realizados para obtener el compuesto V en forma pura no fueron exitosos y, considerando que en el espectro IR del crudo de las fracciones 310-312 de la columna preparativa original (Tabla 3), no se observaban señales para grupos acetato, pero si para grupos hidroxilos fenólicos se decidió acetilar la fracción en las condiciones descritas en la sección experimental. Posteriormente una cromatografía en columna del producto de la reacción permitió finalmente separar el compuesto V diacetilado, <u>36</u>, en forma pura.

Las contantes físicas y los datos espectroscópicos del compuesto V diacetilado se especifican en la Tabla 6.

El espectro masas obtenido por electrón impacto permitió establecer la fórmula molecular como $C_{19}H_{16}O_6$. Su espectro IR mostró bandas para acetato fenólico (1795 cm⁻¹), carbonilo de γ pirona (1710 cm⁻¹) y además indicio el carácter aromático del compuesto (bandas a 1630 cm⁻¹, 1595 cm⁻¹). El espectro de RMN ¹H (Figura 11) resultó ser muy similar al del compuesto I y como características comunes entre ambos espectros se observo lo siguiente: a) El sistema ABX típico de una flavanona (2.75 dd, J=17.5Hz, H-3; 3.10, dd, J=77, 11Hz, H-3'; 5.47 ppm, dd, J=11, 5Hz, H-2); b) un singulete a 7.4 ppm (asignado a los protones del anillo B en el caso del compuesto I).

Entonces, por analogía con la pinostrobina, el derivado acetilado V-A debía ser una flavanona con el anillo B no sustituído.

TABLA 6. Constantes físicas y espectroscópicas del derivado diacetilado del compuesto V (pinocembrina).

Propiedad	Resultados
P.f.	105°C
EMIE m/z (%)	340 M ⁺ , (5), 298 (100), 256 (53), 255 (51), 179 (53)
IR v ^{KB} r cm ⁻¹ Max cm ⁻¹	1795, 1710, 1630, 1595, 1450, 1200, 1140, 1040.
RMN ¹ H	
(80 MHz, CDC1 ₃₁ δ) (Figura 11)	7.4 (s, 5H, $H_{2'}-H_{6'}$), 6.77 (d, 1H, J=3Hz, H-6), 6.51 (d, 1H, J=3 Hz, H-8), 5.47 (dd, H, J=17,5 Hz, H-2), 3.1 (dd, 1H, J=17,11Hz, H-3), 2.75 (dd, 1H, J=17,5 Hz, H-3'), 2.27 (s, 3H, CH_3 -C-), 2.25 (s, 3H, CH_3 -C-).

42.

5

Por otra parte, las diferencias entre los espectros de los compuestos I y V acetilado fueron las siguientes: a) ausencia de la señal para un metoxilo a 3.80 ppm en el espectro de \hat{V} . En su lugar se observaban dos señales para acetatos aromáticos a 2.25 ppm y 2.30 ppm, indicativo del carácter difenólico del producto natural, b) la ausencia del singulete a 6.1 ppm y que correspondían a H-6 y H-8 de la pinostrobina. En su lugar se observaron dos dobletes (J=3Hz) a 6.51 ppm y 6.77 ppm. La diferencia de desplazamiento químico y el valor de la constante de acoplamiento de los dobletes, indicaban que los dos acetoxilos debían estar dispuestos en el anillo A en una relación meta.

Este último requerimiento lo podían satisfacer los dos isómeros A y B indicados en la Figura 12

Figura 12. Posibilidades estructurales para el Compuesto V acetilado. (V-A).

La comparación con modelos adecuados (Harborne y Mabry, 1975) y consideraciones de la teoría del desplazamiento químico, permitieron concluir que el isómero A representaba la mejor opción.

La comprobación definitiva del isómero A como estructura correcta se logro por medio de la correlación química del compuesto natural V con la pinostrobina <u>31</u>, mediante una metilación con diazometano como se ilustra en la Figura 13.

Es de hacer notar que el derivado diacetilado originado al tratar el producto V con anhidrido acético y piridina fué idéntico al COMPUESTOV-A, (36) acetilado obtenido como se señala en la sección experimental. Este hecho confiere validez a la correlación química con la pinostrobina antes mencionada.

La información anterior permitó identificar al compuesto V como la 5,7-dihidroxi-flavanona también denominada pinocembrina y cuya fórmula se ilustra en la Figura 13. Al igual que la pinocembrina esta flavanona había sido descrita previamente en dos especies de plantas diferentes (Suga, Iwata y Asakawa, 1972; Nagarajan y Parmar, 1977).

FIGURA 13. Caracterización de la pinocembrina, a través de su diacetato (a) y por correlación química (b), con el compuesto [(pinostrobina).

١

2.2.6. IDENTIFICACION DE LA CHRYSINA, <u>37</u>, (COMPUESTO VI).

El compuesto VI, $C_{15}O_4H_{10}$ (espectrometría de masas), se obtuvo como un polvo amarillo, en un rendimiento del 0.05% de la planta seca. En la Tabla 7 se resumen las constantes físicas y espectroscópicas del compuesto VI y de sus derivados diacetilado y monometilado. El comportamiento cromatográfico en capa fina y los espectros UV (Tabla 7) y de masas indicaron en principio que el compuesto VI era una flavona. Aun más, el patrón de fragmentación observado en el último, según se ilustra en la Figura 14, permitió inferir que la flavona era dihidroxilada en el anillo A y sin sustituyentes en el anillo B.

El espectro de RMN ¹H en piridina (Figura 15) fué poco informativo, observándose tan solo claramente las señales para dos hidroxilos fenólicos, uno a 5 ppm y el otro a 11 ppm, esta última absorción, como en el caso del compuesto I, es característica del hidroxilo en C-5. El espectro de RMN ¹H (Figura 16) del derivado acetilado (<u>38</u>) confirmó la naturaleza difenólica del compuesto VI, ya que se observaban dos singuletes, cada uno integrado para tres protones, a 2.35 y 2.34 ppm. Por otra parte, las dos señales dobles a 7.57 ppm (J=3Hz) y a 6.8 ppm (J=3Hz) permitieron establecer que los hidroxilos se encontraban ubicados en las posiciones 5 y 7 del anillo A. Finalmente, en este espectro se observó claramente la señal típica del protón H-3 de la flavona a 6.6 ppm y un multiplete en 7.9 y 7.6 ppm que correspondía a los protones del anillo B.

Los datos antes señalados permitieron identificar al compuesto VI como la 5,7-dihidroxi-flavona, <u>37</u>, -la chrysina- previamente obtenida

	COMPUESTO VI (<u>37</u>)	DERIVADO ACETILADO DEL COMPUESTOVI <u>(38</u>)	DERIVADO MONOMETILADO DEL COMPUESTO_VI (39)
P.f.	275°C	198°C	177-179°C
EMIE m/z (%)	254 (M+, 100), 253 (90), 226 (20.6), 152 (21.5), 124 (21.9), 105 (5), 102 (7.5), 77 (12).	338 (M+, 100), 296 (37.3), 335 (37.3), 285 (15.2), 254 (100), 43 (11)	268 (M+, 100), 239 (33.1), 225 (20), 138 (25), 95.11 (17.7).
IR Y ^{KBr} cm ⁻¹	3445, 1617, 1571, 1453	1760, 1645, 1615, 1590, 1358, 1170, 1130, 897	1655, 1615, 1595, 1350, 1155, 1035, 843
UV λ MeOH nm Max	246, 268, 313		
RMN ¹ Η (100 MHz, CDCl ₃ , δ)	Figura 15	7.9-7.6 (m, 5H), 7.57 (d, 1H, J=3Hz, H-6), 6.8 (d, 1H, J=3Hz, H-8), 6.6 (s, 1H, H-3), 2.43 (s, 3H, Ac.), 2.35 (s, 3H, Ac.) (Figura 16)	7.5-8.1 (m, 5H), 6.63 (s, 1H, H-3), 6.4 (d, 1H, J=3Hz, H-8), 6.3 (d, 1H, J=3Hz, H-6), 3.87 (s, 3H, OMe).

TABLA 7. Constantes físicas y espectroscópicas del compuesto VI (Chrysina) y sus derivados acetilado y monoacetilado.

de otras fuentes naturales (Subramaniau y Nair, 1972; Govindachari, Parthasarathy, Pai y Kalyanaraman', 1968; Harborne, 1967).

Una evidencia adicional en relación a la identifidad del Compuesto VI se obtuvo a través de su derivado monometilado, la tectochrysina <u>39</u>. Las constantes físicas y espectroscópicas (Tabla 7 y Fig17) de este compuesto resultaron idénticas a las descritas en la literatura. (Harborne 1976; Harborne y Mabry 1975 y referencias alli citadas).

En la Figura 18 se indican las estructuras de la chrysina y de sus derivados acetilado y metilado.

FIGURA 18. Estructura de la ^Chrysina ($\underline{37}$) y sus derivados acetilado ($\underline{38}$) y monometilado, ($\underline{39}$).

2.2.7 IDENTIFICACION DEL (+)- 8α -hidroxi-elemol, <u>40</u> (Compuesto VII).

El compuesto VII se obtuvo como un polvo cristalino, opticamente activo, soluble en cloroformo y poco soluble en acetato de etilo y acetona. La cantidad total obtenida fué de 140 mg (0.0046% del peso seco de la planta). Las constantes físicas y espectroscópicas utilizadas para su caracterización se resumen en la Tabla 8.

Su fórmula molecular se estableció como $C_{15}H_{26}O_2$ (análisis elemental y EMIQ), que permite un índice de insaturación de tres.

Su espectro IR presentó bandas de absorción características para grupos hidroxilos -secundarios y terciarios- (3605, 3460, 1168, 1048 cm⁻¹), y para insaturaciones olefínicas (3084, 1639 y 898 cm⁻¹); la banda de absorción a 898 cm⁻¹ es característica para una doble ligadura terminal.

Los espectros de masas obtenido por IQ y EI presentaron dos pérdidas consecutivas de 18 unidades de masa, confirmando la presencia de dos grupos hidroxilos en la molécula { m/z 221 (M+1-18), m/z 203 (M+1-18-18) en el primero; m/z 220 (M-18), m/z 202 (M-18-18) en el segundo j. Otros iones importantes en el espectro de masas de electrón impacto se encontraron a m/z 59 (pico base) y a m/z 43, correspondiendo a los fragmentos | $(CH_3)_2$ C=OH |⁺ y CH_3 -C=O⁺, respectivamente. Ambos iones resultan de un grupo 2 isopropanol por ruptura del enlace adyacente al grupo hidroxilo (Budzikiewicz, Djerassi y Williams, 1964).

Los espectros de RMN 'H (Figura 19) y de RMN ¹³C (Figura 20), este último mostrando señales para 15 átomos de carbono en concordan-

PROPIEDAD	RESUL TADOS
P.F.	110°C
α ²⁵	+0.01 (0.78, MeOH)
ANALISIS	Calculado para C ₁₅ H ₂₆ O ₂ , C, 75.68%; H, 11.1%. Encontrado C, 75.40%; H, 10.9%
EMIQ m/z (%)	239 {M+1, (4.4)}, 221 (25), 203 (100), 147 (60), 109 (32), 107 (30)
EMIE m/z (%)	223(5), 220 (5), 205(14), 202(151), 162 (10), 157(15), 107(50), 79(58.2), 59(100) 43(92)
IR v CHC1 ₃ Max	3605, 3460, 3084, 2973, 1639, 1377, 1168, 1048, 898
UV λ MeOH nm (log ε) Max	202 (1.7603)
_{RMN} ¹ H (80MHz, CDC1 ₃ , ppm) (Figura 19)	5.77 (dd, 1H, J=10, 16Hz, H-1), 4.92 (m, 1H, H-2), 4.90 (m,1H, H-2), 4.80 (m, 1H, H-3), 4.65 (a, 1H, H-3'), 3.97 (ddd, 1H, J=6,10,10Hz , H-8), 3.15 (s,2H,20 <u>H</u>); 1.75 (sa, 3H, CH ₃ -15), 1.31 (s, 3H, CH ₃ -12), 1.26 (s, 3H, CH ₃ -13), 1.03 (s,3H, CH ₃ -14)
RMN ¹³ C (50MHz, DMSO-d ₆ , ppm) (Figura 20)	149.3 (d, C-1), 146.5 (s, C-4), 112.3 (t, C-2), 110.7 (t, C-3), 73.0 (s, C-11), 67.0 (d, C-8), 53.5 (d, C-5), 51.5 (d, C-7), 48.5 (s, C-10), 40.7 (t, C-9), 29.2 (t, C-6), 28.5 (c, C-13), 24.75 (c, C-12), 24.5 (c, C-15), 17.5 (c, C-14)

TABLA 8.	Constantes físicas y espectroscópicas del compuesto VII	
	{(+)-8α-hidroxi-elemol}.	

cia con la fórmula molecular, permitieron inferir que el compuesto VII era un sesquiterpeno-diol del tipo elemeno. Esta conclusión se baso fundamentalmente en las siguientes observaciones:

a) El espectro de RMN 13 C de la Figura 20 presentó en la región de carbonos olefínicos cuatro señales a 149.3(d), 146.5(s), 112.3(t) y 110.7(t) ppm; estos valores de desplazamiento químico y multiplicidad en el espectro acoplado son característicos para los carbonos 1, 4, 2 y 3 respectivamente de un elemeno. Por otra parte, en el espectro de RMN 'H (Figura 18) se observo una señal doble de doble a 5.77 ppm (J=10,16 Hz), característicos de una interacción cis y trans vinílica y que correspondía de modo consistente con el H-1 de un elemeno. Además se observaron otras absorciones múltiples a 4.65, 4.80, 4.90 y 4.92 ppm propias de los protones H-2 y H-3 de la estructura tipo. Finalmente el singülete ancho integrando para tres protones a 1.75 ppm y atribuible al metilo vinílico en C-4 proporciono una evidencia adicional.

b) Las resonancias a 73 ppm (s) y a 67 ppm (d) en el espectro de RM 13 C (Figura 20), demostraron la presencia de dos carbonos unidos a oxígeno, facilmente asignables a alcoholes terciario y secundario respectivamente y de acuerdo con los resultados de espectrometría de masa (dos pérdidas consecutivas de 18 unidades de masa) y con la existencia de un solo protón carbinólico en el espectro de RMN 'H (Figura 19) a 3.97 ppm.

La disposición y la estereoquímica del grupo hidroxilo secunda-

rio en la estructura sesquiterpénica se hizo en base al análisis del patrón de acoplamiento de la señal a 3.97 ppm (ddd, J=6,10,10 Hz), el cual es consistente con una relación trans diaxial (Jaa=10 Hz) del protón carbinólico con dos protones vecinales, y con una relación cis (J= 6 Hz) con un tercer protón también vecinal. Estas interacciones eran solo posibles si el hidroxilo se ubicaba en C-8 y con una orientación α . Por otra parte, la función carbinólica terciaria debía estar en la cadena isopropílica lateral de acuerdo a los resultados del espectro de masas { pico base a m/z 59 indicativo del fragmento (Me₂-C=OH)⁺}.

Finalmente los desplazamientos químicos del metilo C-14 (17.5 ppm) en el espectro de RMN ¹³C y de 1.03 ppm en el espectro de RMN 'H están en concordancia con la orientación β -axial del mismo. Asimismo la disposición de la cadena insaturada en C-5 debía ser β ecuatorial de acuerdo a los desplazamientos químicos observados por los carbonos de dicha cadena. Si la orientación hubiese sido α el desplazamiento del metilo C-15 hubiese aparecido a campo más alto debido a las interacciones de tipo 1-3 trans diaxial (Wehrli, 1978).

Sobre las bases de la discusión previa fué, entonces, posible identificar al compuesto VII como (+)- 8α -hidroxielemol, cuya estructura se indica en la Figura 21. Esta sustancia no ha sido previamente aislada de fuente natural alguna y por consiguiente constituye un nuevo producto natural.

Cabe hacer mención que el resto de las asignaciones de RMN 13 C

y RMN 'H no mencionadas en la anterior discusión se especifican en la Tabla 8. En el caso de las señales de 13 C las asignaciones se efectuaron de acuerdo a la teoría del desplazamiento químico y por comparación con modelos adecuados.

FIGURA 21. Estructura del (+)- 8α -hidroxielemol.

2.2.8 IDENTIFICACION DEL (+)-8 α -ACETOXI-CRIPTOMERIDIOL <u>41</u>. (Compuesto VIII).

El compuesto VIII se obtuvo también como un polvo cristalino en un rendimiento de 0.0036% del peso seco de la planta. En la Tabla 9 se especifican las constantes físicas y espectroscópicas de este compuesto.

Su fórmula molecular fué establecida como $C_{17}H_{30}O_4$ (por espectrometría de masas). Su espectro de IR mostró bandas características para uno o más hidroxilos (3691, 3597 cm⁻¹) y para acetato (1731 cm⁻¹).

El análisis conjunto de los espectros de masas de IQ. y de los espectros de RMN 13 C (Figura 22) y RMN 'H (Figura 23') permitó establecer <u>a priori</u> que el compuesto VIII era el acetato de un diol sesquiterpénico del tipo eudesmano. En el caso del primero se observaron iones importantes a M+1-18 (281), M+1-18-18 (263), M+1-60-18 (221), M+1-60-18-18 (203) y a M+1-18-58-60 (163); las pérdidas consecutivas de dos moléculas de agua y de 60 unidades de masa sugirieron la presencia del diol y de un acetato respectivamente; por otra parte el fragmento a m/z 163 originado tal como se indica en la Figura 24' era indicativo de un eudesmano (Irwin y Geissman, 1973). El espectro de RMN 13 C (Figura 22) y de RMN 'H (Figura 23) confirmaron los grupos funcionales y la naturaleza del sesquiterpeno, indicando además:

a) La presencia de dos carbonos carbinólicos terciarios [señales a 70.6(s) y 70.1(s) ppm en el espectro de RMN ¹³C y ausencia de protones base de alcohol en el espectro de RMN 'H].

Propiedad	Resultados
P.f.	70°C
α ²⁵ D	+ 0.1 (2, CHC1 ₃)
EMIQ, m/z (%)	299 {M+1, (5)}, 281(100), 263(10), 221 (48.9), 163(40).
EMIE, m/z (%)	95.3(12), 59.2(40), 43(100), 41.2(15)
IR v ^{CHC1} 3 cm ⁻¹ Max	3691.9, 3567, 3006, 2934, 1731, 1602 1387, 1166, 910
UV λ ^{MeOH} nm (log ε) Max	203 (1.74)
RMN 'H (80 MHz, CDC1 ₃ , ppm) (Figura ₂₃) RMN ¹³ C	5.025 (ddd, 1H, J=6,10,10Hz, H-8), 2.01 (s, 3H, CH ₃ -C=0), 1.9 (2H, 20H), 1.21 (s, 6H, CH ₃ -12,CH ₃ -13), 1.10 (s, 3H, CH ₃ -15), 0.96 (s, 3H, CH ₃ -14)
(50 MHz, DMSO-d ₆ , ppm) (Figura 22)	169.6 (\bar{s} , C-16); 70.6 (\bar{s} , C-4), 70.3 (\bar{d} , C-8), 70.1 (\bar{s} , C-11), 52.9 (\bar{d} , C-5), 51.6 (\bar{d} , C-7), 50.1 (\bar{s} , C-10), 43.0 (\bar{t} , C-9), 40.0 (\bar{t} , C-1), 35.1 (\bar{t} , C-6), 29.6 (\bar{t} , C-3), 27.9 (\bar{c} , C-17), 22.2 (\bar{t} , C-2), 21.5 (\bar{c} , C-12), 21 (\bar{c} , C-15), 19.5 (\bar{c} ; C-13), 18.6 (\bar{c} , C-14).

TABL A 9.	Constantes	físicas y	espectroscópicas	de l	compuesto	VIII
	{(+)-8a-ace	etoxi-crip	tomeridiol}.			

17. 001 DVC 220CT85 G-I-17A IN DMSO; FULLY DCPLD

b) Presencia de un ester secundario [resonancia a 70.3(d) ppm.
en el espectro de RMN ¹³C y señal múltiple que integra para un protón
a 5.025 ppm en el espectro de RMN 'H].

c) La disposición y orientación del grupo acetoxi en la posición 8 y α orientado. En este caso al igual que para el compuesto VII, el análisis de primer orden de la señal a 5.025 ppm (ddd, J=6,10,10 Hz) fué consistente con la estereoquímica y posición antes señalada. Es de hacer notar que la ubicación del ester en la posición 6 fué descartada en un principio debido, por una parte a la equivalencia química de los protones de los metilos C-12 y C-13, y por la otra a la ausencia de bandas para acetatos asociados en IR (Irwin y Geissman, 1973; De Pascual, Bellido y González, 1978).

En base a la discusión anterior, la estructura del compuesto VIII fué determinada como (+)-8 α -acetoxi-criptomeridiol (Figura 24), el cual no ha sido aislado previamente de alguna fuente natural, por consiguiente constituye un nuevo metabolito secundario.

⁴¹

FIGURA 24. Estructura del (+)-8 α -acetoxi-criptomeridiol.

FIGURA 24'.FRAGMENTACION DE (+)-8 <-acetoxi-criptomeridiol.

-

2.2.9 IDENTIFICACION DEL CRIPTOMERIDIOL, 42. (Compuesto IX).

De las mismas fracciones de donde se aisló el compuesto VIII, se aislaron 90 mg del compuesto IX (0.003% del peso seco de la planta). Los resultados de sus constantes físicas y espectroscópicas se dan en la Tabla 10.

El espectro de RMN 'H del compuesto IX (Figura 25) fué muy similar al del compuesto VIII (Figura 23), difiriendo fundamentalmente en la ausencia de la señal para el acetato, tanto de los protones del metilo como de la señal del protón base (señal ddd). En el espectro de masas presentó un ión molecular con 58 unidades de masa menos que el compuesto VIII (m/z 240), los iones M-15 (m/z 225), M-15-18 (m/z 2070, M-18-60 (m/z 162) y las señales características del grupo 2-propanol (m/z 43 y m/z 59). Lo anterior indicó en principio que la estructura del compuesto IX debía ser similar a la del compuesto VIII, pero sin el acetato de la posición 8 α .

Con la información anterior fué posible identificar al compuesto IX como criptomeridiol (Figura 27), cuyas constantes físicas y espectroscópicas son concordantes con las descritas en la literatura para este compuesto (Irwin y Geissman, 1973).

TABLA 10. Constantes físicas y espectroscópicas del compuesto IX. (Criptomeridiol).

T

1

i I

]

130°C
3590, 2970, 2930, 2860, 2840, 1390, 1380, 905
240(0.6), 225(2), 207(10), 182(30), 162(62), 59(100), 43(85)
1.6(s, OH), 1.19(s, 6H, CH ₃ -12,CH ₃ -13), 1.09(s, 3H, CH ₃ -15), 0.85(s, 3H, CH ₃ -14)

2.2.10 IDENTIFICACION DEL 3β -glucositosterol <u>43</u> (Compuesto X).

De las fracciones más polares de la columna inicial (Tabla 3) se aisló el compuesto X con un rendimiento del 0.0036%. El cual fué identificado como 3 β -glucositosterol (Figura 28) por comparación de la manera convencional, con una muestra auténtica de este compuesto y de su derivado tetraacetilado.

FIGURA 27. Estructura de 3ß-glucositosterol.

3. CONSTITUYENTES DE Chenopodium ambrosioides L.

3.1 MATERIALES Y METODOS.

3.1.1 MATERIAL VEGETAL.

La planta fue recolectada por el Dr. Robert Bye y la Mestra Edelmira Linares el 25 de julio de 1985, en Mamalhuazuca, Municipio de Ozumba, Estado de México. Una muestra de herbario se encuentra depositada en el Jardín Botánico Exterior del Instituto de Biología de la UNAM. (Boucher: Edelmira Linares y Robert Bye 15:300).

Las partes aereas de la planta se dejaron secar a la sombra por un período de 3 semanas y posteriormente se fraccionaron mecanicamente en trozos pequeños.

3.1.2 METODO DE EXTRACCION, FRACCIONAMIENTO Y SEPARACION.

3.1.2.1 EXTRACCION.

El material vegetal (2.0 Kg) se extrajo según el procedimiento señalado en el Esquema 2.

- 1/ Cantidad de material vegetal, 2.0 Kg.
- <u>2</u>/ Extracción vía maceración (3 veces por períodos de 3 días cada vez 30 1 de cloroformo).
- 3/ Cantidad total de extracto 36.0 g.

ESQUEMA 2. Extracción de las partes aereas de <u>Chenopodium</u> <u>ambrosioides</u> L.

3.1.2.2 FRACCIONAMIENTO PRELIMINAR.

El total del extracto obtenido (36 g), se redisolvió en un volumen pequeño de cloroformo y se adsorbió en 100 g de gel de silice (Silica gel Merck, 70-230 mallas). La masa formada por el extracto y el gel de silice se extendió en un recipiente de 20 X 35 cm y se dejó secar a temperatura ambiente (20°C), por un período de 24 horas. El polvo seco resultante se adicionó a una columna de vidrio (130 x 7.5 cm) previamente empacada por la vía húmeda con 1.0 Kg de gel de silice. Como eluyentes se emplearon n-hexano, n-hexano-cloroformo, cloroformo-acetato de etilo, acetato de etilo y acetona. Se recogieron un total de 590 fracciones de 500 ml cada una. Cada fracción fue seguida por cromatografía en capa fina, combinándose las fracciones idénticas. En la Tabla 11 se muestran los eluyentes emplea-dos para la separación y el número de fracciones eluídas con cada uno de ellos.

TABLA 11.	Resumen del fraccionamiento via	cromatografía e	en columna	del e	extracto clorofórmic	0
	del <u>Chenopodium</u> <u>ambrosioides</u> .					

Eluyente	Proporción	No. de fracciones	Fracciones combinadas	Observaciones
Hexano	100%	1-35	1-36	Descartada
Hexano-cloroformo	90:10	35-74	37-58 58-70	Descartada '
Hexano-cloroformo	80:20	75-101	71-80	Descartada
Hexano-cloroformo	70:30	102-144	81-144	Descartada
Hexano-cloroformo	60:40	145-221	145-159 160-169 170-179	+** +** +**
Hexano-cloroformo	50:50	222-357	180-255 256-265 266-269* 270-273* 274-279* 280-284	Descartada Descartada +*Combinada luego de separar El compuesto III (<u>33</u>) Descartada
Hexano-cloroformo	40:60	358-366	285-374	+

Eluyente	Proporción	No. de fracciones	Fracciones combinadas	Observaciones
Cloroformo	100%	367-396	375-421	+
Cloroformo-acetato de etilo	90:10	397-472	422-450	
Cloroformo-acetato de etilo	80:20	473-486	450-590	Descartada
Cloroformo-acetato de etilo	70:30	487-517	491-590	Descartada
Cloroformo-acetato de etilo	60:40	518-536		
Cloroformo-acetato de etilo	50 : 50	537-559		
Cloroformo-acetato de etilo	30:70	560-573		
Acetato de etilo	100%	574-584		
Acetona	100%	585-590		

TABLA 11. Resumen del fraccionamiento via cromatografia en columna del extracto clorofórmico del <u>Chenopodium ambrosioides</u>. (Continuación).

+ Fracciones estudiadas

.

** Reunidas y recromatografiadas después de pasarlas por carbón activado.

3.2 RESULTADOS Y DISCUSION.

3.2.1 AISLAMIENTO E IDENTIFICACION DEL ESTIGMAST-22-EN-3-OL, <u>33</u> del <u>Chenopodium ambrosioides</u>.

De las fracciones 270-273, se separó un producto cristalino (180 mg) de p.f. 161-162°C. Posteriormente del anterior producto se acetilaron 100 mg con 1 ml de anhidrido acético y 0.5 ml de piridina. Al cabo de 12 horas se formo en la mezcla de reacción un producto cristalino que se separó por filtración y se lavó con éter sulfúrico, obteniéndose 72 mg de un polvo de p.f. 175-176°C. Este producto se identificó como el acetato del estigmast-22-en-3-ol, por comparación en cromatografía, I.R. y RMN 'H con una muestra auténtica. De las fracciones previas (266-269) y posteriores (274-279) se separó más del mismo producto, aislándose un total de 400 mg (0.025% de rendimiento) de Estigmast-22-en-3-ol, en forma pura.

Las fracciones indicadas en la Tabla 11, se recromatografiaron pero no fue posible aislar ningún otro producto a pesar de que se siguió la misma metodología utilizada para el estudio de <u>Ch.</u> graveolens. 4. CONCLUSIONES.

Las conclusiones que se derivan del presente capítulo son las siguientes:

- Se realizó el estudio fitoquímico de dos especies del género 1. Chenopodium de amplio uso en la medicina tradicional mexicana, Chenopodium graveolens Willd y Chenopodium ambrosioides L.
- Del extracto clorofórmico de <u>Chenopodium</u> graveolens Willd 2. (Epazote de Zorrillo) se aislaron y caracterizaron tres flavonoides, tres substancias esteroidales, tres sesquiterpenoides y un monoterpeno.

Los compuestos, sus rendimientos y la categoría estructu a la que pertenecen se resumen en la Tabla 12.

Compuesto	Categoría estructural	Rendimiento N	Número de estructura en el texto	
Pinostrobina	Flavonoide (Flavanona)	0.1%	<u>31</u>	
Pinocembrina	Flavonoide (flavanona)	0.017%	<u>35</u>	
Chrysina	Flavonoide (flavona)	0.05%	<u>37</u>	
Estigmasterol	Esteroide	0.003%	32	
Estigmas-22-en-3-ol	Esteroide	0.0025%	<u>33</u>	
3 _β glucositoster ol	Esteroide	0.0036%	<u>43</u>	
Criptomeridiol	Sesquiterpenoide (Eudesm	nano)0.003%	42	

TABLA 12. Constituyentes del <u>Chenopodium graveolens.</u>

TABLA 1	.2. Const	tituyentes	del	Chenopodium	graveolens.	(Continuación)).
---------	-----------	------------	-----	-------------	-------------	----------------	----

Compuesto	Categoría estructural	Rendimiento	Número de estructura en el texto
(+) 8∝acetoxicrip- tomeridiol	Sesquiterpenoide (Eudes	nano) 0.0036%	<u>41</u>
(+) 8α-hidroxielemol Acetato de geranilo	Sesquiterpenoide (Elemen Monoterpeno	no) 0.0046% 0.01%	<u>40</u> <u>34</u>

Los sesquiterpenoides 40 y 41 resultaron ser nuevos productos naturales

3. Anteriormente, según se indica en la Tabla 3, varios flavonoles han sido detectados como metabolitos secundarios de varias especies de <u>Chenopodium</u> (Tabla 3); sin embargo, es la primera vez que se describe la presencia de flavonas y flavanonas en este género. Es importante señalar que, todos los flavonoles de <u>Chenopodium</u> están oxigenados en el anillo aromático B. (Crawford, 1975; Arasawa, Minabe, Saeki, Takakuwa y Naka Oki, 1971; Crawford y Evans, 1978; Crawford y Mabry, 1978; Mandich, Barrios y Silva, 1982); sin embargo, los flavonoides encontrados en <u>Chenopodium graveolens</u> carecen de sustituyentes oxigenados en tal anillo. Por otra parte, es importante hacer notar que los nuevos sesquiterpenoides (<u>40</u> y <u>41</u>), están sustituídos en la posición 8, mientras que la especie relacionada <u>Ch. botrys</u> posee varios sesquiterpenos con sustituyentes situados en la posición 6 ó 3 (De Pascual, Bellido y Gon-

zález 1980, 1978a, 1978b). Tanto, la ausencia de sustituyentes en el anillo B de los flavonoides así como el patrón de substitución en los esqueletos sesquiterpénicos pueden ser de importancia quimiotaxonómica.

- 4. La presencia de la flavanona pinostrobina, a tan alta concentración puede ser de importancia farmacológica y estar relacionada en parte, con el uso popular que tiene la planta como vermifugo. Esta consideración esta basada en el hecho de que algunas flavanonas poseen la propiedad de inhibir el crecimiento larvario.
- Del extracto clorofórmico de Chenopodium ambrosioides L. (Epazote morado) sólo fué posible ailsar y caracterizar el estigmast-22-en-3-ol con un rendimiento del 0.025%.

CAPITULO II

CONSTITUYENTES QUIMICOS DE <u>Amphipterygium</u> adstringens SCHIEDE EX SCHELECHT

1..GENERALIDADES ACERCA DEL Amphipterygium adstringens

1.1. ASPECTOS TAXONOMICOS DE Amphiterygium adstringens

El <u>Amphiterygium adstringens</u> Schiede ex Schlecht (Sin. <u>Juliania adstringens</u> Schlecht), es una planta perteneciente a la pequeña familia Julianiaceae, cuyas especies se caracterizan por poseer árboles resinosos. El género, en general es americano y se le consigue desde México hasta el Perú (Heywood, 1978).

Esta planta conocida como cuachalalate, quetchalalatl o cuachalala es autóctona de México y se encuentra distribuida en los estados de Nayarit, Jalisco, Michoacan, Guerrero, Oaxaca, Morelos y Puebla (Diaz, 1974; Estrada, 1985; Rzedowski, 1978; Martínez, 1969). Estrada en su libro Jardín Botánico de Plantas Medicinales Maximino Martínez, hace la siguiente descripción de la especie:

"Arbol de aproximadamente 8 m de altura, tronco generalmente torcido con pocas ramas, corteza lisa con grandes

 escamas engrosadas y suberificadas; hojas dispuestas en espiral aglomeradas en las puntas de las ramas; de 6 a 13 cm incluyendo el peciolo, compuesto de 3 a 5 foliolos; planta dioica: flores masculinas en panículas aglomeradas hasta 15 cm de largo; flores femeninas solitarias en las axilas de las hojas; florea de mayo a julio en clima cálido-seco; el fruto es una samara seca, indehiscente, fibrosa, sobre pedicelos aplanados y acrescentes hasta formar una especie de ala de 3 a 4 cm de color café-rojizos con una o dos semillas aplanadas de 5 mm de largo" (Estrada, 1985b).

1.2. FITOQUIMICA del Amphyterygium adstringens

Los estudios fitoquímicos realizados sobre esta planta, son escasos y versan fundamentalmente sobre la corteza del arbol. González <u>et al</u>., detectaron mediante cromatografía en papel y espectroscopía IR la presencia de la sarsa sapogenina, <u>44</u> (González y Delgado, 1962). Posteriormente se aislaron y caracterizaron los ácidos masticadienónico, <u>45</u>, y 3 $_{\alpha}$ hidroximasticadienónico <u>46</u> (Navarrete, 1982) Finalmente Domínguez <u>et al</u>. reportaron la presencia de un ácido triterpénico, el ácido instipolinacico <u>47</u>. (Domínguez, Franco, García, Porras, Vázquez y Amezcua, 1983). En la Figura 29, se muestra las estructuras de estos metabolitos. Es de hacer notar que sobre otras especies del género no existen reportes fitoquímicos previos.

[.] 44

Fig. 28. Estructuras de los metabolitos secundarios identi ficados previamente en <u>A. adstringens</u>

84.

. ____.
1.3. Importancia biológica y econômica del <u>Amphiterygium</u> adstringens.

El cuachalalate es una planta medicinal de uso común en la República Mexicana; su corteza se expende en la mayoría de los mercados nacionales; y se le atribuyen varias propiedades curativas como son: cicatrizante; calmante; antibiotica; para la disolución de cálculos biliares; agente hipocolesterolemiante; antifebrifugo; antimalárico; antiinflamatorio, anticancerigeno y antiulceroso, siendo este último el uso más común entre la población (Martínez, 1969, Estrada, 1985b; Díaz, 1976; Navarrete, 1982).

González <u>et al</u>. demostraron la actividad antitumoral de los extractos metanólicos de la corteza mediante ensayos <u>in</u> <u>vivo</u> en ratones con adenocarcinona mamario (González, Mckenna y Delgado, 1962). En otro estudio se comprobó la actividad hipocolesterolemiante de la corteza via bioensayos en ratas wistar (Navarrete, 1982).

Considerando que el cuachalalate es una planta medicinal mexicana de amplio uso en la medicina tradicional y en base a los objetivos planteados en el Capítulo I, se procedió a reinvestigar esta planta.

2. MATERIALES Y METODOS

2.1. Material vegetal

La planta utilizada en este estudio fue recolectada en el cerro "El Amarillo" situado a 6 km de Tianquistengo, Oaxaca. La recolección se hizo en dos periodos, uno en junio de 1983 (Voucher, AN-1) y otro en octubre de 1985. Una muestra de referencia de la segunda recolección se depositó en el Herbario de Plantas Utiles "Efrain Hernández X" de la Universidad Autónoma Chapingo (Voucher No. 198628 "Xolo") y fue identificada por el M. en C. Erick Estrada Lugo del Departamento de Fitotecnia de la Universidad Autónoma Chapingo.

El material vegetal se secó a la sombra y posteriormente se pulverizó en un molino de cuchillos modelo Wiley4. El material de cada recolección se trabajó por separado.

2.2. Métodos de extracción, fraccionamiento y separación de la primera recolección

2.2.1. Extracción

El extracto se preparó con 800 g de corteza seca y pulverizada (recoleccón de junio de 1983) según el procedimiento señalado en el Es quema 3.

FIGURA 3. Primera extracción de <u>A.</u> adstringens, recolectado en junio de 1983.

2.2.2. Fraccionamiento preliminar del extracto hexanico (EH-I)

El total del extracto hexánico EH-I (29.5 g) del esquema 3, se separó a <u>grosso modo</u> mediante una cromatografía pr<u>e</u> parativa en columna con 850 g de gel de silice (silica gel Merck G 60, 70-230 mallas), utilizándose como eluyentes hexano, hexano-acetato de etilo en diferentes proporciones, acetato de etilo y acetona. Se recogieron un total de 160 fracciones de 250 ml cada una. Cada fracción fue seguida por cromatografía en capa fina, combinándose las fracciones idénticas. En la tabla 13 se muestran los eluyentes empleados para la separación el número de fracciones eludidas y combinadas. Los análisis cromatográficos en capa fina se efectuaron de la misma manera que se indicó en la sección experimental del capítulo II.

2.2.3. Aislamiento y purificación de los compuestos XI-XV del Extracto Hexánico (EH-I).

a.- De las fracciones 17-18 de la Tabla 13. Se obtuvieron 42 mg (0.0053% del peso seco) de un polvo blanco amorfo de pf 62-63°C, que se separó por filtración al vacío y se lavó con metanol. A este compuesto se le denominó Compuesto XI, 48.

ELUYENTE	PROPORCION DE DISOLVENTE	- NO. DE FRACCIONES	FRACCIONES COMBINADAS	OBSERVACIONES
Hexano	100%	1-13	1-16	Descartada
Hexano Acetato de Etilo	95:05	14-35	17-18	+
Hexano- acetato de etilo	90:10	36-46	19-43 44-48	Descartada +
hexano- acetato de etilo	80:20	47-93	49-59 60-63 64-87	+ Descartada +
Hexano- acetato de etilo	70:30	94-116	80-116	Descartada
Hexano- acetato de etilo	60:40	117-121	117-128	Descartada
Hexano- acetato de etilo	50:50	122-126		
Hexano- acetato de etilo	25:75	127-144	129-143	Descartada
Acetato de etilo	100%	145-153	144-152	Descartada
Acetona	100%	154-160	153-160	Descartada

TABLA 13. Eluyentes empleados en la separación del extracto hexaniço EH-I, de la corteza de <u>A</u>. <u>adstringens</u>

+Fracciones estudiadas

b.- Las fracciones 44 - 43 (4.2 g) de la cólumna original (tabla 13) eluidas con hexano - acetato de etilo 30:20, se recromatografiaron sobre 200 g de gel de silice. La elución se inició con hexano y luego con hexano cloroformo en diferentes proporciones; se recogieron un total de 280 fracciones de 125 ml cada una. De las fracciones 96-134 eluidas con hexano-cloroformo 1:1, se separó un sólido que luego de sucesivas lavadas con metanol originó 67 mg de un polvo lustroso (0.0084% del peso seco), de p.f.=133-134°C (compue<u>s</u> to XII, 49).

c.- Las fracciones 49-59 (6.2 g), de la Tabla 13, eluidas también con hexano acetato de etilo 80-20 se adsorbieron en 7.0 g de gel de silice y se recromatografiaron sobre 240.0 g del mismo. El proceso de elución se realizó con cloroformo y cloroformo-acetato de etilo en cantidades crecientes (95:5, 90:10, 70:30 y 50:50). Se recogieron un total de 275 fracciones de 125 ml cada una. Las fracciones 18-111 mostraron las mismas manchas en cromatografía en capa fina, se unieron y después de eliminar el disolvente se obtuvo un residuo de 4.0g. Este residuo se redisolvió en etanol-eter anhidro, se metilo con un exceso de diazometano etereo y se recromatografío en una columna con 200g de gel de silice, usándose como eluyentes cloroformo y cloroformo-acetato de etilo (90:10); se recogieron un total de 97 fracciones de 125 ml cada una. De las frac

ciones 13-16 eluidas con cloroformo se separaron 365.0 mg (0.045% del peso seco), de un polvo blanco cristalino de pf 122-124°C (compuesto XIII, 50)

d.- De las fracciones 64-87 de la columna original (Tabla 13) cristalizaron 830.4 mg de un sólido; luego de sucesivas recristalizaciones en acetona originó un producto de pf = 155°C. El producto anterior mostró dos sustancias predominantes en cromatografía en capa fina.

El producto cristalino anterior (243.5 mg) se esterificó con un exceso de diazometano y posteriormente se purificó por cromatografía en placa fina. Para ello se emplearon dos placas de 20x20 cm de gel de silice (silica gel Merck PF 254, 0.5 mm de espesor) y como fase móvil cloroformo-acetona (90:10). Se obtuvieron 223.3 mg de un compuesto puro en forma de aceite (compuesto XIV, 57). La cantidad total obtenida de la planta del compuesto XIV fueron 738 mg (0.092% del peso seco).

El examen cromatográfico de las aguas madres de cris talización del producto cristalino inicial mostró la presencia, de manera netamente predominante, de una tercera substancia. Al igual que en el caso anterior, después de haber evaporado el disolvente, se metiló con diazometano. El producto de la esterificación (105 mg) se purificó por cromatografía en placa fina eluida con cloroformo-acetona (90:10) obteniéndose de esta manera 12.6 mg (0.0016% del peso seco) de un producto puro de $pf = 195^{\circ}C.$ (Compuesto XV, 54).

2.3. METODOS DE EXTRACCIÓN, FRACCIONAMIENTO Y SEPARACION DE LA SEGUNDA RECOLECCION

2.3.1. Extracción

3.2. Kg de corteza de cuachalalate seca y pulverizada (recolectada en octubre de 1985) fueron extraidos según el procedimiento señalado en el Esquema 4.

2.3.2. Fraccionamiento preliminar del extracto hexanico (EH-II)

El total del extracto hexánico EH-II (86.0g), disuelto en una mezcla de hexano y cloroformo se adsorbió en 120 g de gel de silice y se adicionó a una columna empacada con 2.5 kg de gel de silice (Silica gel G60 Merck, 70-230 mallas,). Para efectuar el proceso de elución se utilizaron los siguientes disolventes: hexano, cloroformo y acetona en diferentes proporciones. Se recogieron un total de 275 fracciones de 500 ml cada una; cada fracción fue analizada por cromatogra fía en capa fina, combinándose aquellas cromatográficamente similares. En la Tabla 14 se resumen los sistemas de eluyentes y el número de fracciones eluidas con cada uno de ellos.

1/ 3.2 kg.

- 2/ Via maceración por periodos de 72 horas utilizando 9.0 1 de hexano
- 3/ Cantidad total de extracto hexanico(EH2):86.0g.
- 4/ Via maceración por periodos de 72 horas utilizando 9.0 1 de acetona
- 5/ Cantidad total de extracto acetónico (EA2):36.0 g.

ESQUEMA 4. Segunda extracción de <u>A.</u> adstringens, recolectada en octubre de 1985.

ELUYENTE	Proporción de disolvente	No. de Fracción	Observaciones
Hexano	100:00	1 - 21	
Hexano-Cloroformo	80:20	22 - 38	
Hexano-cloroformo	60:40	37 - 54	Descartadas
Hexano-cloroformo	50:50	55 -139	
Hexano-cloroformo	40:60	140-151	
Hexano-cloroformo	20:80	52 -187	
Cloroformo	100:00	188 - 213	
Cloroformo-acetona	95:05	214 - 221	+
Cloroformo-acetona	90:10	222 - 267	Descartada
Acetona	100:00	268 - 275	++

TABLA. 14. Eluyentes empleados en la separación del extracto Hexanico EH-II de la corteza de <u>A.</u> <u>adstringens</u>

+ Fracción metilada y recromatografiada

++ Fracción estudiada

En las fracciones 214-221, (Tabla 14) salió el 808 (68.5 g) del extracto EH-II. Para facilitar la posterior resolución de estas fracciones se procedió a metilarlas; para ello se disolvieron en 100 ml de eter etílico y se agregaron 200 ml de solución eterea de diazometano con una concentración teórica de 8.4 g

Posteriormente, estas fracciones se fraccionaron mediante una cromatografía en columna usándose como adsorbente 2.0 kg de gel de silice desactivada al 10%. Se recogi<u>e</u> ron un total de 227 fracciones de 500 ml cada una. En la Tabla 15 se muestran los eluyentes empleados para la separación, el número de fracciones eluidas con cada uno de ellos y las fracciones combinadas.

2.3.3. Aislamiento y purificación de los compuestos XVI-XXIII del extracto hexanico EH-II.

a.- De las fracciones 3-6 de la segunda columna (Tabla 15). eluidas con hexano-cloroformo 1:1, se obtuvo un aceite ligeramente amarillo, homogeneo cromatográficamente en 5 sistemas de eluyentes diferentes: (hexano-cloroformo 80:20 y 50:50; hexano-eter 90:10; hexano-acetona 95:5 y hexano- eter-acidoacetico 81:18:1; se aislaron 12.98 g (0.40% del peso seco de la planta) y se denominó compuesto XVI, 59).

ELUYENTE	PROPORCION DE DISOLVENTE	NO. DE FRACCIONES	FRACCIONES COMBINADAS	OBSERVACIONES
Hexano-cloroformo	50 : 50	1-132	l – 2	Descartada +
Hexano-cloroformo	25:75	133-147	3 – 6	·
			7 – 9	Descartada
Cloroformo	100:00	148-167	10 - 11	+
Cloroformo-acetona	97.5:2.5	168-208	12 - 49 50-60	Descartada +
Cloroformo-acetona	90:10	209-213	61-133	Descartada
Cloroformo-acetona	75:25	212-221	134-148	+
			149-164	Descartada
Acetona	100:00	222-227	165-206	+

TABLA 15. Eluyentes empleados en la separación de las fracciones 214-221 metiladas del extracto hexánico EH-II de <u>A. adstringens</u> <u>EM-17</u>

+ Fracciones estudiadas

L

b.- El combinado de las fracciones 10-11 (Tabla 15) eluidas
con hexano-cloroformo 1:1, mostró una substancia prioritaria en
cromatografía en capa delgada. Al agregarle hexano precipitó
un sólido que se separó por filtración y se lavó con hexano.
El total de sólido obtenido fue 243 mg (0.0076 % del peso seco), pf 122-124°C y se denominó compuesto XVII, 50.

c.- De las fracciones 51-60 (Tabla 15) se separaron 412 mg (0.013% de peso seco) de un producto poco denso y lustroso de pf = 133-134°C (compuesto XVIII, <u>49</u>)

d.-El residuo de las fracciones 134-148, de la segunda columna (Tabla 15) eluidas con hexano-cloroformo (25:75), se disolvió en cloroformo y se filtró a través de una mezcla de tonsil-carbón activado (1:1, 10g); el filtrado se concentró y el residuo (1.34 g) se recromatografió en 40.0 g de gel de silice. La elución se hizo con hexano (fracciones 1-9), hexano-acetato de etilo 90:10 (fracciones 10-21) y hexano-acetato de etilo 75:25 (fracciones 22-45). En las fracciones 21-25 se observó la formación de un sólido blanco que precipitó con hexano-acetato de etilo 75:25. Este producto se separó por filtración, se lavó con hexano originando 210 mg (0.0066% del peso seco) de un sólido blanco de pf = 280°C (Compuesto XIX, <u>55</u>).

e.- De las fracciones 165-206 (Tabla 15) se formó un sólido cristalino al reducir el volumen del disolvente. Este sólido se separó por filtración y se lavó primero con metanol y después con eter. De ésta manera se obtuvieron 7.36 g de un sólido cristalino con pf: 175-176°C. (Compuesto XX, 45). Las aguas madres de este compuesto (17.0 g) se recromatografiaron en 350 g de gel de sílice. Se utilizó como eluyente cloroformo. De las fracciones 25-32 de esta columna se precipitó un sólido verde que se redisolvió con cloroformo y se purificó por tratamiento con carbón activado. El residuo obtenido luego de eliminar el disolvente se disolvió en hexano caliente, se concentró un poco, se dejó en reposo y al cabo de 8 horas precipitó un polvo blanco cristalino (986 mg) de pf 140°C. 100 mg de este compuesto se metilaron con un exceso de diazometano en eter; la mezcla de esta reacción se separó por cromatografía preparativa en capa fina utilizando placas de vidrio de 20 x 20 cm cubiertas con gel de sílice. Como resultado del proceso de purificación se obtuvieron 70.0 mg de un polvo cristalino blanco que se recristalizó de metanol hasta punto de fusión constante de 110-112 °C. La cantidad total obtenida de este compuesto (compues to XXI, 51) fue 690.2 mg (0.023% del peso seco). De las fracciones 33-58 de ésta misma columna se aislaron 2.62 g más del compuesto XX, aislándose finalmente 9.98 g (0.312% del peso seco) de compuesto XX.

f.-En la fracción 268 de la Tabla 14 precipitaron 1.068g de cristales voluminosos (0.033% del peso seco de la planta) de P.f 143-145°C (compuesto XXII, 46).

g.- De las fracciones 270-273 (Tabla 14) precipitó un sólido cristalino (80mg) de p.f. 165° C, el análisis cromatográfico en placa fina mostró la presencia de impurezas. La sustancia se disolvió en cloroformo y se purificó por cromatografía prparativa en capa fina, utilizándose 2 placas de 20 x 20 cm de gel de silice y como eluyente. Se utilizó una mezcla de cloroformo-acetona (90:10) este proceso permitió separar 58 mg (0.0018% del peso seco) de un compuesto en forma de aceite (Compuesto XXIII, <u>58</u>).

2.4. DETERMINACION DE LAS CONSTANTES FISICAS Y ESPEC-TROSCOPICAS DE LOS CONSTITUYENTES

Los aparatos para obtener las constantes físicas y espectroscópicas de los compuestos aislados fueron los mismos que se utilizaron en el estudio de <u>Ch. groveolen y Ch.</u> <u>ambrosioides</u> y sus características se dieron en el Capítulo II en la sección 2.1.4.a.

2.5. PREPARACION DE DERIVADOS

La metodología empleada para preparar los derivados metilados y acetilados se describió en el Capítulo II sección 2.1.4. b.

3. RESULTADOS Y DISCUSION

De los extractos hexanicos EH-I y EH-II de la corteza de cuachalalate, después de fraccionarlos preliminarmente por cromatografía preparativa en columna (Tabla 13 y 14) y posteriores cromatografías en columna y en placa fina sobre silica gel de las fracciones metiladas o no, se obtuvieron cuatro ácidos triterpénicos tetracíclicos, dos ácidos triterpenos pentacíclicos, un esterol y una mezcla de ácidos anacardicos constituida por dos series con cadenas laterales de 19 y 21 átomos de carbono.

Los compuestos anteriores se aislaron en su forma libre y/o como su ester metílico. En la Tabla 16 se indica los nombres y los números de estos compuestos, así como también el extracto hexánico de donde fueron aislados.

3.1. IDENTIFICACION DEL SITOSTEROL, 49 (COMPUESTO XII y XVIII

El compuesto XII del extracto EH-I y el compuesto XVIII del extracto hexanico EH-II resultaron ser iguales y fueron identificados como el conocido β -sitosterol (Fig. 29) por comparación con una muestra auténtica. Del extracto EH-I se aislaron 67 mg que corresponde a un rendimiento del 0.0084%, y del extracto EH-II se aislaron 412 mg correspondientes al 0.013% del peso seco de la planta.

TIPO DE COMPUESTO	COMPUESTOS	No. de c EXTRACTO EH-I	compuesto EXTRACTO EH-II
Triterpenos tetraciclicos	```		
	ac. masticadienonico, <u>45</u> - metil ester, <u>50</u>	_ XIII	XX XVII
	ac. isomasticadienónico <u>51</u> - metil ester, <u>52</u>	-	, xxı
	ac. 3 ≪ - hidroximasticadienónico -metil ester, <u>57</u>	46 - XIV	XXII -
	ac. 3-epi-hidroximasticadienónico	> <u>58</u> –	XXIII
Triterpenos pentaciclicos	ac. oleanolico, <u>53</u> - metil ester, <u>54</u>	xv	-
	ac. epioleanólico, <u>55</u>	-	XIX
Esterol	Sitosterol, <u>49</u>	XII	XVIII
Acidos fenolicos	Acidos anacardicos, <u>48</u> . - metil ester	x1 -	_ xvi

TABLA16. Compuestos aislados y caracterizados de los extractos hexánicos EH-I y EH-II de la corteza de <u>A</u>. <u>adstringens</u>

•

FIGURA. 29. Estructura del β -sitosterol.

3.2. IDENTIFICACION DEL ACIDO MASTICADIENONICO, 45, (Compuesto XX)

El compuesto XX del extracto hexánico EH-II se aisló En un rendimiento del 0.312% (9.98g), con respecto al peso seco de la planta y fue identificado como el ácido masticadienónico (Fig. 30) por comparación de sus constantes físicas y espectroscópicas con las descritas en la literatura. (Seoane, 1956; Kier, Lehn y Ourisson, 1963; Barton y Seoane, 1956; Pozzo-Balbi, Nobile, Scapini y cini, 1976 y 1978; Campello y Marsaioli, 1974; Domínguez, Soriano, Vera y Butrville, 1974; Caputo, Mangoni, Monaco y Palumbo, 1979; Caputo y Mangoni, 1970; Moncaco, Caputo, Palumbo y Mangoni, 1974). El compuesto XIII y compuesto XVII, que se aislaron después de metilar con

н.

FIGURA 30. Estructura del ácido masticadienónico,45 y su ester metílico, 50.

diazometano las fracciones 49-59 del extracto hexánico EH-I y 10-11 del extracto hexánico EH-II, fueron identificados como el metil ester del ácido masticadienónico (Fig. 30).

Las constantes físicas y espectroscopicas para el ácido masticadienónico y su derivado metil ester se dan en la Tabla 17.

Los espectros de RMN¹H del ácido masticadienónico y de su ester metílico, se muestran en las Figuras 31 y 32 re<u>s</u> pectivamente y en la Figura 33 se propone el patrón de fragmentación de acuerdo a los resultados del espectro de masas.

En el espectro de RMN¹³C del ácido masticadienonico (Fig. 34) se observaron claramente las señales para el carbono carbonílico (216.58 ppm), el carbono carboxilico (173, 39 ppm), los carbonos de los dos dobles enlaces (146.87 (d), 146.01(s), 126.1(s), 117(d) y 23 señales más abajo de 53 ppm, que no fue posible asignar debido a la complejidad que presentó el espectro acoplado con hidrógeno. En total este espectro presentó 29 señales, lo que indicó que dos de los átomos de carbono presentan el mismo desplazamiento químico, probablemente los gem dimetilos. Cabe señalar que el espectro de RMN¹³C para el ácido masticadienónico no ha sido descrito pr<u>e</u> viamente en la literatura.

PROPIEDAD	Compuesto XX (Acido masticadienónico)	Compuesto XIII y XVII (metil ester del acido masticadienónico
P. f.	175-176°C	122-124°C
(a) _D	-71°	– 73°
IR ^{KBr} max	3500-2500, 1677, 1705, 1632,1383	2953,1714,1702,1644,1456,1384,1242, 1150.
EMIE mz(%)	454(30),439(100),421(52.2),139(5.5), 113(22.5),95(58.8),81(35),55(53.3).	468(17.3),454(25) 453(56.2),435 422(5.0), 421(17.5),127(58.2),95 (100), 81(56.2),67(67),55(91.7)
RMN ¹ H	$0.8(s, 3H, CH_2 - 13), 0.86(d, J = 6Hz, 3H,$	$0.8(s, 3H, CH_3 - 13), 0.85(d, J = 6Hz, 3H)$
	CH ₃ -20),0.99(s,6H,2CH ₃ -4) 1.04(s,	CH ₃ -20),1.0(s,6H,2CH ₃ -4),1.05(s,
	$3H, CH_3 = 10$, 1.1 (s, $3H, CH_3 = 14$), 1.9 (d,	$3H, CH_3 - 10) 1.1 (s, 3H, CH_3 - 14), 1.9 (d,$
	$J=2Hz, 3H, CH_3-25), 5.3(m, 1H, H-7),$	$J=2Hz$, $3H$, CH_3-25) $3.7(s, 3H, COOCH_3)$,
	6.05 (m,lH,H-24).	5.3(m,1H,H-7)5.9(m,1H,H-24).
	(fig 31)	(['] fig. 32)
RMN ¹³ C		
(CDC1 ₃ , 100MHz; , ppm)	216.58(s,C-3),173.39(s,COOH),146.87	
	(d,c-24) 146.01(s,c-25),126.10(s,	
	c-8),117(d,c-7),52.95,52.47, 51.26,	
	48.61, 47.86, 43.64, 38.57, 36.13,	
	35.09, 34.87, 34.15,34.01, 33.79,	
	28.24, 27.45, 26.93, 24.65,24.45,21.98,	-
/	21.58,20.47,18.33, 12.82.	
	(fig. 34)	

TABLA 17. Constantes físicas y espectroscópicas del compuesto XX (ácido masticadienónico) y de su éster metílico.

106.

A

FIGURA33 . Fragmentación propuesta para el ácido masticadienónico.

3.3. IDENTIFICACION DEL ACIDO ISOMASTICADIENONICO, 51, (Compuesto XXI, metil ester).

El compuesto XXI se obtuvo de las mismas fracciones del ácido masticadienonico y bajo la forma de ester me tílico, en un rendimiento del 0.023% con respecto al peso seco de la planta. Sus constantes físicas y espectroscópicas se resumen en la Tabla 18.

Las características espectroscópicas del compuesto XXI fueron muy parecidas a las del metilester del ácido masticadienónico (Tabla 17). Su espectro IR presentó señales para ester α , β -insaturado (1714, 1243 cm⁻¹), para carbonilo de cetona en anillo de seis miembros (1702 cm⁻¹) y para grupos gem-dimetilos (1373 cm⁻¹). En el espectro de masas obtenido por impacto electrónico, se observaron las mismas señales que para el metil ester del ácido masticadienónico pero con distinta abundancia. El ion molecular se observó a m/z 468 $(C_{31}H_{48}O_3)$ y el pico base a m/z 453 (M-CH₃). El espectro de RMN¹H (Fig. 35) difería de aquel del metil ester del ácido masticadienónico (Fig. 32), fundamentalmente en la región de los protones vinílicos donde sólo existía una señal a 5.9 ppm, lo cual hizo pensar preliminarmente que la molécula solo poseía un doble enlace; sin embargo, la fórmula molecular requería ocho insaturaciones, de las cuales cuatro correspondían a la estructura tetraciclica, una al carbonilo de la cetona, una al ester metílico, y otra al doble enlace evidenciado por la RMN¹H, restando entonces un anillo o una doble ligadura. Ante la falta de evidencias para un anillo carbocíclico adicional y la imposibilidad de un epóxido en

TABLA 18. Constantes físicas y espectroscópicas del compuesto XXI (ester metílico del ácido isomasticadienónico).

PROPIEDAD	RESULTADOS		
P.f.	110 - 112°C		
EMIE m/z(%)	468.4(26.4M+),454(33.1),453.4(100,M-CH ₃)435(10.5, n-CH ₃ -H ₂ O), 422(10),421(27.5,M-CH ₃ -CH ₃ OH) 127 (19.0), 95.2(41.1),81(23),67(30),55(36.1).		
CHCl 3 cm ⁻¹ IR vmax	2954, 1714, 1702, 1643,1457,1373,1242 y 1149.		
RMN'H (80MHZ,CDCl ₃₁ δ) (Fig 35)	0.76(S,3H,CH ₃ -13), 0.90(S,3H,CH ₃ -14), 1.07 (S,6H,2CH ₃ -4) 1.10(S,3H,CH ₃ -10),1.90(d,J=2, 3H,CH ₃ -25), 3.73(S,3H,COOCH ₃), 5.9(m,1H, H-24).		

la molécula, la otra insaturación debía corresponder a una doble ligadura tetrasubstituida. Esta doble ligadura sólo podía estar ubicada en el enlace C-8, C-9 y el pico base (m/z (453)) que resulta de la pérdida de un metilo (M-CH₃) es consistente con esta disposición (existen dos posibilidades de perder el metilo, el de la posición 10 y el de la posición 14, dando origen a un ion alílico muy estable).

En base a la información anterior fue posible identificar al compuesto XXI como el ester metílico del ácido isomasticadienónico <u>52</u> (Fig. 36) y las constantes físicas y espectroscópicas son concordantes con las descritas en la literatura para este compuesto (Caputo y Mangoni, 1970; Pozzo-Balbi, NobiPe, Scapini y Cini, 1976 y 1978).

FIGURA 36 Estructura del ácido isomasticadienónico 51, y de su:ester metílico 52.

52

3.4. IDENTIFICACION DEL ACIDO OLEANOLICO 53 (Compuesto XV, metil ester).

El compuesto XV se obtuvo como un polvo cristalino de pf= 195°C, en un rendimiento del 0.0016% y fue identificado a través de su ester metílico como el ácido oleanolico 53 (Fig. 37 por comparación con una muestra auténtica (Budzikiewicz, Wilson y Djerassi, 1963; Ogunkoya, 1981; Adesina y Reisch . 1985; Budzikiewicz, Djerassi y Williams, 1964). En la figura 38 se muestra el espectro de RMN¹H del oleanolato de metilo.

FIGURA 37. Estructura del ácido oleanolico 53 y del oleanolato de metilo 54.

3.5. IDENTIFICACION DEL ACIDO 3-epi-OLEANOLICO, 55 (Compuesto XIX)

Del extracto hexanico EH-II, se aislaron 210 mg del compuesto XIX que corresponde al 0.0066% del peso seco de la planta; En la Tabla 19, se dan las constantes físicas y espectroscópicas de este compuesto. La identificación del compuesto XIX fue hecha a través de su ester metílico para lo cual se metilaron 100 mg del compuesto XIX con un exceso de diazometano etereo, obteniéndose 73 mg de un polvo blanco de punto de fusión 185-187°C. En la Tabla 19 se dan las constantes físicas y espectroscópicas para este derivado me tilado, 56.

El espectro de masas del derivado metilado del compuesto XIX mostró señales características para un triterpeno pentaciclico con esqueleto de oleaneno insaturado en la posición 12. El ion abundante a m/z 262 (M-208), resulta del rompimiento de la molecula por una fragmentación Retro-Diels-Alder y el pico base resulta de la eliminación del fragmento-COOCH₃ dando origen al ion m/z 203 (M-208-59). (Budzikiewicz, Wilson y Djerassi, 1963; Adesina y Reisch, 1985) En el espectro de RMN'H (Fig. 39) Se observó la presencia de 7 metilos a 0.72, 0.84, 0.89, 0.91 (dos), 0.95 y 1.13 ppm., una señal para el hidróxilo a 1.52 ppm que desaparece después de equilibrarse con D₂0. La señal en

PROPIEDAD		COMPUESTO XIX (ác.3-epi-oleanólico)	Derivado metilado del compuesto XIX 3-epi-oleanolato de metilo)	
	P. f.	280°C	185-187°C	
IR	KBr cm ⁻¹ max	3600 - 250, 3621, 1691, 1462, 1384	3427, 1745, 1384, 1068	
EMIE	m/z (% <u>)</u>		470(M+, C ₃₁ H ₅₀ O ₃ ,11.7), 455(M-15,1.35), 411 (M-59, 4.9) 410(M-60, 4.3), 262(M	
			208, RDA, 91.7) 207 (16.2) 203(M-208- 59,100), 189(26), 133(25)	
RMN'H (80 MHz, CDCl ₃ ,)	H MHz, CDCl ₃ ,)	0.72(S,3H), 0.80(S,3H), 0.87 (S, 3H), 0.92 (S,6H),	0.72(S,3H), 0.84(S,3H),0.89 (S, 3H), 0.91(S, 6H), 0.95(S, 3H)	
		1.12 (S, 3H), 2.85(m,1H),	1.13(S,3H),1.52 (Sa,1H, OH),	
		3.4 (Sa, lH), 5.27(m, lH).	2.85(m, lH), 3.4(t, lH), 3.6(S,	
			3H), 5.25(m, lH). (fig. 39)	

Tabla 19. Constantes físicas y espectroscópicas del compuesto XIX (ácido 3-epi-oleanólico) y su derivado metil ester (3-epi-oleanolato de metilo)

3.4. ppm como triplete indicó la orientación a del hidroxilo. La señal en 3.6 ppm se deebe a los protones del metilo del ester. La señal en 5.25 ppm corresponde al protón vinílico de la posición 12 y la señal múltiple en 2.85 ppm al protón de la posición 18. Con la información anterior el compuesto XIX se identificó como el ácido 3 epioleanolico (Fig. 40).

FIGURA 40. Estructura del acido 3-epioleanolico 55 y su ester metílico 56.

3.6. IDENTIFICACION DEL ACIDO 3 α -HIDROXIMASTI-

CADIENONICO 46 (Compuesto XXII)

Del extracto EH-II se aislaron 1.068 g del compuesto XXII, que corresponde al 0.033% del peso seco de la planta. Del extracto EH-I, se aisló el compuesto XXII en la forma de su éster metílico (Compuesto XIV) con un rendimiento del 0.092%. En la Tabla 20 se dan las constantes físicas y espectroscópicas para los compuestos XXII y su derivado metilado.

El compuesto XXII presentó características simila res al ácido masticadienonico <u>45</u> (Compuesto XX) previamente aislado, y para confirmar su estructura se realizó una correlación química, mediante su oxidación con el complejo anhidrido crómico piridina ($CrO_3.2 C_5H_5N$). El producto de la reacción fue el ácido masticadienónico cuyas constantes físicas y espectroscópicas fueron idénticas a las del ácido masticadienónico aislado de la planta.

Con la información anterior y por comparación de sus propiedades físicas y espectroscópicas con las descritas en la literatura (Campello y Marsaioli, 1974; Kier, Lehn y Ourisson, 1963), fue posible identificar al compuesto XXII como el ácido 3 α -hidroximasticadienonico <u>46</u> (Fig. 41).
-1	1	•	1.10	1
----	---	---	------	---

PROPIEDAD	COMPUESTO XXII (ác 3 -hidroximasticadienónico)	COMPUESTO XIV (3 -hidroximasti cadienonato de metilo)
P. f.	143 - 145°C	(Aceite)
IR KBr cm ⁻¹	3500-2500, 1700, 3450,1065, 1645, 1380.	
CHCl _{3 cm} -l max		3623, 1707, 1643, 1367,1240, 1149, 1074
EMIE m/z (%)	456(19.3), 441(60.7), 424(39), 423(100), 301(12),139(8), 95(43), 81(31.2), 55(36), 43.2(39)	
RMN'H (80 MHZ, CDCl ₃ ,)	0.75(S, 3H,CH ₃ -l3), 0.80(S, 3H,CH ₃ - 10) 0.90(S,6H,2CH ₃ -4), 0.96(S,3H, CH ₃ -l4, 0.85 (d,J=6Hz,3H,CH ₃ -20) 1.9(d,J=2Hz,3H,CH ₃ -25),3.45(t,1H, H-3) 5.25(m,1H,H-7), 6.05(m,1H, H-24).	0.75 (S, 3H, CH_3 -13, 0.80(S, 3H, CH_3 -10), 0.9(S, 6H, 2 CH_3 -4) 0.96 (S, 3H CH_3 -14, 1.75(Sa, 1H, 0H), 1.88(d, J=2 (Hz, 3H, CH_3 -25), 3.45 (S, 3H, COOCH ₃), 5.25(m, 1H, H-7), 5.8(m, 1H, H-24).

TABLA 20. Constantes físicas y espectroscópicas para el compuesto XXII (ác. 3 a-hidroximas ticadienónico) y su derivado metil ester (Compuesto XIV). Los espectros de RMN'H del ácido 3 % -hidroximasticadienónico y su ester metílico se muestran en las figuras 42 y 43

46

57

Fig. 41. Estructuras del acido 3 α -hidroximasticadienónico 46 y su ester metílico 57.

3.7. IDENTIFICACION DEL ACIDO 3-epi-HIDROXIMASTICADIE-NONICO 58 (Compuesto XXIII)

De las fracciones más polares del extracto hexánico EH-II se aislaron 58 mg del compuesto XXIII (0.0018% del p<u>e</u> so seco). En la tabla 21 se dan las constantes físicas y e<u>s</u> pectroscópicas para este compuesto.

El compuesto XXIII presentó espectros de IR, EMIE y RMN¹H similares a aquellos del ácido 3 α -hidroximasticadienónico (Compuesto XXII). El espectro de RMN¹H (Fig. 44) difería esencialmente por la presencia de una señal doble de dobles (J=10,5Hz) centrada en 3.97 ppm en lugar de la señal triple del protón carbinólico del ácido 3 α -hidroximasticadienónico. Lo anterior indicó que la estructura del compuesto XXIII debía ser el epímero de este último. La disposición axial del protón en 3 permitía una interacción trans diaxial (Jaa = 10 Hz) y otra cis axial-ecuatorial (Jae=5Hz) consistente con el patrón de acoplamiento observado para la señal en 3.97 ppm.

La información anterior permitió postular para el compuesto XXIII la estructura del ácido 3-epi-hidroximasticadienónico <u>58</u> (fig. 45), lo cual fue concordante con las

Tab la 21. Constantes físicas y espectroscopicas para el compuesto XXIII (ác 3-epi-hidroximasticadienonico).

Ρr	opiedad	RESULTADOS
	P.f.	(aceite)
IR	KBr1 max cm	3500-2500, 1700, 3450,1065,1640,1380
EMI	E m/z (%)	456(M+,20), 441(61), 424(40), 423(M-15-18, 100), 301(10),139(8),95(45),81(32),55(37) 43,(40).
RMN'H (60MHz,DMSO-d /CDCl ₃)		0.66(S,3H,CH ₃ -13),0.72(S,3H,CH ₃ -10),0.80(s, $^{6H_2CH_3-4)$ 0.9(s,3H,CH ₃ -14);1.8(s,3H,CH ₃ -25); 3.97(d,d J=10,5 H ₇ , 1H, H-3);4.1(5.a,1H OH); 5.2(s.a,1H,H-7), 5.85(m,1H,H-24).
		(Fig 44)

propiedades espectroscópicas descritas en la literatura para este compuesto (Caputo y Mangoni, 1970; Kier, Lehn y Ourisson, 1963).

5**8**

Fig. 45. Estructura del ácido 3-epi-hidroximasticadienonico.

1

3.8 IDENTIFICACION DE LOS ACIDOS ANACARDICOS <u>48</u> (Compuesto XVI metil ester).

De las fracciones 3-6 (Tabla 15) del extracto hexánico EH-II metiladas con diazometano se obtuvo 12.98 (0.4% del peso seco de la planta) de un aceite (Compuesto XVI) altamente soluble en cloroformo, benceno, acetato de etilo e insoluble en agua. El análisis cromatográfico convencional en capa fina, en cinco sistemas diferentes reveló que el compuesto se encontraba puro, ya que en todos los casos se observó una mancha homogenea al revelar con el agente cromogénico. En la Tabla 22 se resumen las constantes físicas y espectroscópicas para este compuesto.

En el espectro de masas de IE (Fig. 46), se observó el ión molecular a m/z 444, que permitía una fórmula de $C_{29}H_{48}O_3$. También se observaron iones importantes a m/z 412 (M-CH₃OH), m/z 166, m/z 147 y m/z 134.

Los espectros de UV (Fig. 47) y de IR (Fig. 48) indicaron el carácter fenólico del compuesto.

El espectro de RMN ¹H (Figura 49) confirmó el carácter aromático del compuesto ya que en la región entre 6.6 y 7.4 ppm se observo un sistema ABC característico de un anillo aromático trisustituído y la presencia de un grupo fenólico quelatado a un carbonilo (11 ppm).

Otras características importantes del espectro fueron las siguie<u>n</u> tes: a) Un multiplete en la región olefínica (5.3 ppm); b) un singulete a 3.8 ppm característico de metoxilo de un éster aromático;
c) un triplete a 2.8 ppm típico de un metileno a un anillo aromático;
d) una señal multiple a 2.0 ppm; e) una señal muy intensa a 1.2 ppm característico de un compuesto polimetilénico; f) un multiplete a
0.9 ppm.

La acetilación del aceite (Compuesto XVI) con anhidrido acético y puridina en las condiciones usuales originó un derivado (Compuesto XXIV) cuyas características físicas y espectroscópicas se resumen en la Tabla 22.

En el espectro de IR del compuesto XXIV (Fig. 51) desapareció la absorción del hidroxilo fenólico del aceite original (Compuesto XVI) y como características relevantes se observaron bandas a 1767 cm⁻¹ (acetato fenólico) y a 1728 cm⁻¹ (ester metílico aromático). Los anterior indicó que el hidroxilo fenólico y el éster metílico del aceite original debían estar en una relación orto, ya que al acetilar, la banda correspondiente al carbonilo del éster metílico se desplazó a frecuencias más altas (ver Fig. 48 y Fig. 51).

El espectro de RMN ¹H (Fig. 52) era muy similar al del compuesto XVI (Fig. 49), difiriendo por una parte por la presencia a 2.25 ppm del singulete típico del metilo del acetato, y por la otra por la ausencia de la señal a 11 ppm y que correspondía al hidroxilo quelatado.

El espectro de RMN ¹³C (Fig. 53) mostró Número de señales distribuídas de la siguiente forma: a) En la región de los carbonilos se observaron las señales corres pondientes al éster metílico y al éster fenólico (singuletes a 168 y 167 ppm respectivamente).

b) En la región de carbonos aromáticos y olefínicos se observaron claramente ocho señales, seis de las cuales correspondían a un anillo aromático y las dos restantes a carbonos olefínicos. La multiplicidad observada para las señales en el espectro desacoplado (Tabla 22) confirmaron claramente que el anillo aromático era trisubstituído y que las olefínicas eran disubstituídas.

c) El metoxilo del éster aromático apareció a 51 ppm y el metilo del acetato a 20 ppm.

d) Se observaron además señales para metilenos y metilo correspondiente a un compuesto alquílico de cadena larga.

El espectro de masas del derivado acetilado (Fig. 50), mostró un incremento de 42 unidades de masas en relación al supuesto ión molecular del compuesto XVI.

Las evidencias antes señaladas permitieron inferir que el compuesto XVI era derivado del ácido salicílico y que poseía además una cadena alquílica unida al anillo bencénico en base a los tripletes a 2.8 y 2.6 ppm observados en los espectros de RMN ¹H (Figs. 49 y 50) del producto y su derivado acetilado respectivamente.

Considerando la fórmula molecular establecida <u>a priori</u> el largo de la cadena alquílica debía de ser de 21 átomos de carbono y además monoinsaturada.

PROPIEDAD	COMPUESTO XI	DERIVADO METILADO EL COMPUESTO XI (COMPUESTOXVII)	DERIVADO METILADO Y ACETILADO DEL COMPUESTO XI (compuesto XXIV)
	62 - 63°C	(aceite)	(aceite)
P. f. EMIE m/z(%)	-	444 (M ⁺ ,C ₂₉ H ₄₈ O ₃ ,9.6),412(M-32) 10),166(97.9),147(100),134 (86.9), 67.1(97.9). (fig. 46	$486 (M^{+}, C_{31}H_{50}O_{4}, 1.3), 454 (M-32, 10), 412 (M-32-42, 5), 166 (40) 147 (50.6), 134 (39), 55 (73.1), 43 (100), 41.1 (51.1) (fig. 50)$
UV. A CHCl 3 nm (log E)		252(2.91);3]6(1.30). (fig.47) /	·
IRvmax	3400-2600, 3200,2925,2850,1685 1645,1610,1570,1475,1455,1170 1500	3500-2500,1665,1608,1448 1342,1314,1249,1211,1166 ^{(fig.} 48	3040,2930,2854,1767,1728,1607,1462,1433,1369,1280,11, 1060 1019,955. (fig. 51
RAN ¹ H (60MHz,CDCl ₃ , ppm)	0.90 (m, CH ₃ -), 1.25 (sa, -CH ₂) 1.7 (m, CH ₂ -c=c) 2.5 (m, CH ₂ Ar) 6.25 (m CH=CH) 6.85 (m, Ar-H) 7.55 (m, Ar-H) 11.2 (s Ar-OH)	0.9 (m, CH ₃) 1.2 (sa, CH ₃) 2.0 (m, CH ₂ -c=c) 2.8 (m, CH ₂ Ar), 3.9 (s, 3H, CH ₃ O) 5.3 (m, CH= CH) 6.75 (m, Ar-H), 7.27 (m, Ar-H), 11 (Ar-OH) (Five a O	
(80MHz,CDCl ₃ , ppm)			0.9 (m, CH ₃)1.25 (sa-CH ₂)2.0 (CH ₂ -C=C), 2.25 (s, 3H, CH ₃ -c) 2.6 (m, CH ₂ -Ar), 3.8 (s 3H, CH _B O) 5.3 (m, CH=CH) 6.85-7.45 (m, Ar-H). (fig.52
RMN ¹³ C (22.6Miz,CDC1 ₃ ppm)			1.68 (s, CH ₃ O) 167 (s, c-CH ₃ 148 (s, C-2) 142 (s, C6) 131 (d, C-4) 130 (d, C-5) 129.9 (d, C=C) 129.4 (d, C=C) 127 (s, CA C-1) 120 (d, C-3) 51 (c, CH ₃ O) B3 (t, CH ₂ Ar) 31 (d, CH ₂ -C=C) 29 (t, CH ₂) 27 (t, CH ₂) 20 (c, CH ₃ C) 14 (c, CH ₃) (fig. 53 c ³)
	and and a state of the state of		(fig. 53 c)

Tabla 22. Constantes físicas y espectroscópicas del compuesto XI (ácidos anacárdicos), y sus derivados metilado (compuesto XVI) y metilado-acetilado. (compuesto XXIV).

1

RA 46. ESPECTRO DE MASAS POR IE DEL COMPUESTO XVI

ABSCRBANCE

(

1

t.

135.

ŧ

FIGURA 50.. ESPECTRO DE MASAS POR IE DEL COMPUESTO XXIV

,

Las características estructurales previamente descritas permitieron establecer la hipótesis de que el compuesto XVI era un ácido anacárdico. Estos ácidos son poco frecuentes en la naturaleza y presentan las estructuras generales presentadas en la Figura 54.

El análisis detallado del espectro de masas del aceite original y de su derivado acetilado, tal como se ilustra en las Figuras 55 y 56, confirmaron la hipótesis anterior ya que presentaron el patrón de fragmentación característico para este tipo de metabolitos secundarios (Spencer, Tjerks y Kleiman, 1980). Es de hacer notar que el fragmente M-32 (Figuras 55 y 56) es concluyente para ubicar la cadena alquílica lateral orto al grupo carboxilico.

Así mismo los resultados de RMN ¹H eran consistentes con los previamente descritos para este tipo de compuestos. Las características de RMN ¹H y de espectrometría de masas para tres ácidos anacárdicos se resumen en la Tabla 23 y se presentan tan solo con fines comparativos (Spencer, Tjarks y Kleiman, 1980).

El conocimiento previo de que los ácidos anacárdicos generalmente se presentan en la naturaleza bajo la forma de mezclas complejas, no separables por procedimientos cromatográficos de baja resolución y la incongruencia de los resultados de análisis elemental con la fórmula molecular establecida por EMIE, puso en duda que el compuesto XVI fuese un único compuesto. (Boekenoogen, 1967; Gellerman y Schlenk, 1968).

÷

a:
$$-(CH_2)_{10}-CH_3$$

b: $-(CH_2)_{12}-CH_3$
c: $-(CH_2)_{14}-CH_3$
d: $-(CH_2)_7-CH=CH-(CH_2)_5-CH_3$
e: $-(CH_2)_9-CH=CH-(CH_2)_3-CH_3$
f: $-(CH_2)_9-CH=CH-(CH_2)_5-CH_3$
g: $-(CH_2)_{11}-CH=CH-(CH_2)_3-CH_3$
h: $-(CH_2)_7-CH=CH-(CH_2)-CH=CH-(CH_2)_4-CH_3$
i: $-(CH_2)_7-CH=CH-CH_2-CH=CH-(CH_2)_4-CH_2$
j: $-(CH_2)_7-CH=CH-CH_2-CH=CH-CH_2-CH=CH_2$
j: $-(CH_2)_7-CH=CH-CH_2-CH=CH_2-CH=CH_2-CH=CH_2$
j: $-(CH_2)_7-CH=CH-CH_2-CH=CH_2-CH=CH_2-CH_2-CH_3$
k: $-(CH_2)_{10}$
1: $-(CH_2)_{12}$

FIGURA. 54. Estructuras generales de los ácidos anacárdicos.

rig.55. Fragmentación general propuesta para los esteres metílicos de los ácidos anacárdicos.

Fig.56 . Fragmentación general propuesta para los esteres metílicos acetilados de los ácidos anacárdicos.

Tabla 23. Características en espectrometría de masas y RMN¹H de tres ácidos anacárdicos (como ésteres metílicos acetilados)

	ÇO	OMe
R>		_OAc
व	\bigcirc	2
54	\checkmark	3

				Α.	ESPECTR	OMETRIA	DE MASA				
R	Posi	ción	Peso			INTI	ENSII	AD	•		
	enla	.ce	cular ·	M+	M-3	2+	M-42+	M-74+	166	147	134
C ₁₂ ^H 25	-		376	2	21		100	32	32	35	21
C ₁₅ ^H 29	9		402	6	37		11	22	41	34	25
C ₁₇ H ₃₃	10		430	7	40		10	25	19	34	22
<u> </u>	B. R	ESONAN	ICIA MAGN	IETICA	NUCLEAR	PROTONIC	A (CDC1 ₃ ,	ppm)			
R	CH ₃	CH ₂	CH2-CH2	-Ar C	^H 2 ^{-CH=}	Aç-`-	CH2-Ar	сооснз	Сн=сн	PROTO AROMA	NES FICOS
C ₁₂ ^H 25	0.87t	1.25m	n 1.55	m	-	2.2s	2.72t	3.82s	-	6.83 6.99 7.25	6.90 7.09 7.33
C ₁₅ H ₂₉	0.88t	1.28m	n 1.57	m l	. 9 5m	2.2 s	2.72t	3,82s	5.28m	6.83 6.99 7.26	6.92, 7.10, 7.33.
C ₁₇ H ₃₃	0.88t	1.30m	n 1.58	m 2	.00m	2.2 s	2.66m	3.38s	5.28m	6.83 6.99 7.27	6.90 7.08 7.34

Los análisis de masas por IQ (Fig. 57) y cromatografía de gases preliminar (Fig. 58) definieron ciertamente que el producto estaba constituido por dos series de ácidos anacárdicos. Los resultados de IQ, que se resumen en la Tabla 24 indicaron claramente que el aceite estaba constituido por dos series de ácidos anacardicos con cadenas laterales de 19 y 21 átomos de carbono y que cada serie estaba formada por tres miembros: uno con la cadena lateral saturada, otro con una insaturación y el último con dos insaturaciones en la cadena lateral. Como se observa en la Tabla 24 y en la figura 57, para cada una de las series se encontró el ion molecular M+1, el ion M+1-CH₃OH y el ion M+1-CH₃OH-C₂H₂O, los cuales se observan normal y exclusivamente en los espectros de IQ de ácidos anacardicos individuales o en mezclas de ellos (Spencer, Tjarks y Kleiman, 1980).

Una vez definida la presencia de dos series de ácidos anacardicos mediante cromatografía de gases y EMIQ, fue posible discriminar los fragmentos característicos para cada uno de sus miembros en los espectros de IE obtenidos originalmente para el aceite y su derivado acetilado, estos resultados se resumen también en la Tabla 24 y en las Figuras 55 y 56.

FIGURA 58. CROMATOGRAMA DEL COMPUESTO XVI EN CROMATOGRAFIA DE GASES

Tabla 24. Iones principales en el espectro de masas para las series de ácidos anacardicos metil esteres XVI y acetil metil esteres XXIV (figura)

XVI

XXIV

	-							
		Metil es	Acetil	Metil	ester	XXIV		
R	E	MIE	EMI Q		EMIE			
	M+	M-32	M+1 ⁺	M+1-32	M+	M-32	[.] M-42	M-74
C ₂₁ ^H 43	446	414	447	415	_	456	446	114
C ₂₁ ^H 41	444	412	445	413	486	454	444	412
C ₂₁ ^H 39	442	410	443	41'1	484	452	442	410
с ₁₉ н ₃₉	418	386	419	38 7	460	428	418	386
C ₁₉ ^H 37	416	384	417	385	458	426	416	384
C ₁₉ H ₃₅	414	382	415	383	456	424	414	382
	<u></u>		Į					1ª at

Con la finalidad de resolver la mezcla en sus constituyentes individuales y así poder determinar las posiciones y estereoquímica de las dobles ligaduras en los miembros mono y diinsaturados, se prepararon derivados epoxidados y dihidroxilados, más sin embargo, la no disposición de las columnas adecuadas en el cromatógrafo de gases impidió el logro de este objetivo.

En relación a la estereoquímica de las dobles ligaduras vale la pena comentar que las evidencias proporcionadas por los espectros de RMN¹H de las mezclas (fig. 49 y 52) indicaron que estas deben ser de naturaleza cisoide y lo cual está en concordancia con el hecho de que todos los ácidos anacardicos conocidos poseen dobles ligaduras de tipo cis (Gellermany Sclenk, 1968; Izzo y Dawson, 1949).

A pesar de los inconvenientes de indole técnico para completar exitosamente este trabajo por el momento, las evidencias de la presente discusión son definitivamente concluyentes para la presencia de dos series ternarias de ácidos anacárdicos con cadenas laterales de 19 y 21 átomos de carbono en la corteza del cuachalalate.

La aseveración anterior fue confirmada definitivamente por los resultados de la hidrogenación del compuesto XVI, el cual dió como producto una mezcla binaria de los ésteres metílicos de los ácidos anacárdicos con cadenas laterales saturados de 19 y 21 átomos de carbono. En la tabla 25 se resumen los resul tados de las constantes físicas y espectroscópicas de esta mez cla binaria (producto XXV).

En el espectro de masas (Fig. 59) se observaron los dos iones moleculares a 446 ($C_{29}H_{50}O_3$ para el compuesto con cadena lateral de 21 átomos de carbono y a 418 ($C_{27}H_{46}O_3$) para el compuesto con cadena lateral de 19 átomos de carbono y sus correspondientes iones característicos M-32, así como también los iones a m/z 166, 147 y 134. (ver Tabla 24).

El espectro de RMN¹H (fig. 61) fue concordante con lo anterior, ya que no presentó señales para protones vinílicos ni para protones de metilenos vecinos a dobles enlaces, lo que demostró que los compuestos presentes en la mezcla eran saturados.

PROPIEDAD	· · · ·
P.f.	40°C
EMIE m/z(%) (fig. 59)	446 $(M_1^+, C_{29}H_{50}O_3, 26.7), 414 (M_1-CH_3OH, 5),$ 418 $(M_2^+, C_{27}H_{46}O_3, 55.1), 386 (M_2^+-CH_3OH, 10.3),$ 166 (25), 147 (54.6), 134 (40), 43 (100), 42 (50.0)
CHCl3cm-1 IR v max ³ cm ⁻¹ (fig. 60)	3600-2600, 1663, 1608, 1450, 1347, 1315,1250,1166, 1120
RMN ¹ H (80MH _z , CDC1 ₃ ,ppm) (fig. 61)	0.87(t,CH ₃), 1.25(m,-CH ₂ -), 1.55(m;CH ₂ -CH ₂ -Ar), 2.72 (t,CH ₂ -Ar), 2.82 (s, COOCH ₃), 6.83-7.35 (m, H-Ar).

Tabla 25. Propiedades físicas y espectroscópicas del pro-

GURA 59. ESPECTRO DE MASAS POR IE DEL COMPUESTO XXV

FIGURA 60. ESPECTRO DE IR DEL COMPUESTO XXV(CHCI, 3)

يعوينه أأني الرقاء فالعلم لحق

٠.

e,

FIGURA 61. ESPECTRO DE RMN¹H DEL COMPUESTO XXV(CDC1₃,80MHz)

Con respecto a la serie de 21 átomos de carbono es de hacer notar que sus miembros representan nuevos productos naturales, ya que anteriormente solo se han reportado ácidos anacárdicos con cadenas laterales de 11, 13, 15, 17 y 19 átomos de carbono (Boekenoogen, 1967; Adawadkar y Elsohly, 1981; Hamkes, Durrani y Tyman, 1980). La ausencia de evidencias para ramificaciones en la cadena lateral en los espectros de RMN ¹H y de masas, así como las evidencias antes señaladas, permitien inequivocamente identificar al miembro saturado de la serie C₂₁ (Fig. 62) como el ácido 6-eicosil-salicílico.

FIGURA 62. Estructura del ácido 6-eicosil-salicílico.

Es de hacer notar que este raro grupo de productos naturales se biosintetizan a partir de la acetil-CoA y de la molonil-CoA por la ruta del acetato malonato (Boeknoogen, 1967).
CONCLUSIONES

Las conclusiones que se pueden derivar del presente capítulo son las siguientes:

 Se realizó el estudio fitoquímico de dos lotes
de cuachalalate (<u>Amphipterygium adstringens</u> Schiede ex
Schlecht) procedentes del mismo sitio pero de distinto período de recolección. En general se obtuvieron los mismos
compuestos en ambos lotes.

2. De los extractos hexanicos EH-I y EH-II de la corteza de cuachalalate se aislaron y caracterizaron cuatro ácidos triterpenicos tetraciclicos, dos ácidos triterpenicos pentacíclicos, un esterol y dos series de ácidos anaca<u>r</u> dicos con cadenas laterales de 19 y 21 átomos de carbono. Los compuestos, sus rendimientos en cada extracto y la categoría estructural a la que pertenecen se resumen en la Tabla 26. La serie de ácidos anacárdicos de 21 átomos de carbono resultaron ser nuevos productos naturales. Esto último constituye el punto relevante del estudio de esta planta, ya que los ácidos anacardicos industrialmente se utilizan en la fabricación de lacas, pegamentos y, en la elaboración de los colorantes y polímeros (Hankes, Durrani y Tyman, 1980; Hagashi, Kato, Miyamoto y Yoshida, 1983; Boekenoogen, 1967). Desde el punto de vista biológico los ácidos anacárdicos poseen diversas actividades tales como: antibiótica, fungicida y antiinflamatoria (Adawadkar y el Sohly, 1981) y molusquícida (Sullivan, Richards, Lloyd y Krishna, 1982).

3. Al igual que en un estudio previo los constituyentes mayoritarias fueron los ácidos masticadienónico y 3 α -hidroximasticadienónico. El ácido instipolinácico previamente reportado por Domínguez <u>et al</u>. no pudo ser aislado en este estudio. En relación a este último ácido, vale la pena hacer destacar que las propiedades espectroscópicas descritas para el mismo y que se resumen en la Tabla 27 no son concordantes con la estructura propuesta <u>47</u> (Fig. 28). Por ejemplo, en el espectro de RMN¹H se describen señales para ocho metilos tres protones vinílicos y dos bases de

Compuesto	Categoría estructural	Rendi	.miento	No. de estruc tura en el texto	
		EH-I	EH-II		
Acido Masticadienónico	Triterpeno tetracíclico	0.045%	0.312%	45	
Acido Isomasticadienónic	o Triterpeno tetracíclico		0.023%	51	
Acido 3α-hidroximastica dienónico	- Triterpeno tetracíclico	0.092%	0.033%	57	
Acido 3-epi-hidroximasti cadienonico	- Triterpeno tetracíclico	-	0.0018%	58	
Acido oleanólico	Triterpeno pentacíclico	0.0016%	-	53	
Acido epioleanolico	Triterpeno pentacíclico	-	0.0066%	54	
β-sitosterol	Esterol	0.0084%	0.013%	49	
Acidos anacárdicos	Acido alquilfenólico	0.0053%	0.40%	48	

Tabla 26. Constituyentes del Amphipterygium adstringens

ł

99-100 (1983) RESULTADOS ROPIEDAD 166 - 167°C . f: ETOH $(\varepsilon = 19060)$ V max $R v \frac{KBr}{max} cm^{-1}$ 3400 (OH), 2990-2880 (CH,CH₂,CH₃), 1690 (COOH), 1620 (c=c), 1380-1370 (gem (CH₃)₂C), 1290-1170 (C-O) 970, 900 (c=c)0.94 (3H,s), 0.96 (3H,s), 1.06(3H,s), 1.08(3H,d, MN'H (ppm 400MHz) J=6HZ), 1.10 (3H,s), 1.21(3H,s), 1.26(3H,s), 1.86 (3H,s), 2.03 (2H,ml, 2.27 (H,ddd), 2.41 (H,m), 2.53 (H,m), 2.86 (H,t), 3.47 (H,d,d) 3.64 (H,dd), 5.27 (H, ancha), 5.68 (1H,m), 6.39 (lH,d). señal para 8 metilos, 3 protones vinílicos, dos bases de hidroxilo RMN¹³C (ppm) 168.7 (s), 145.6(s), 141.5(d), 127.2(s), 117.6(d), 73.9(d), 52.2(d), 50.8 (s,t) 48.2, 43.8, 34.2, 33.5, 30.9, 27.9, 27.6, 27, 25.8, 25.3, 23.4, 21.6, 20.4, 18.0, 17.5(s), 12.8(d). (señal para 24 átomos de carbono)

abla 27. Propiedades físicas y espectroscópicas del ácido instipolinácico. (Domínguez, X.A. <u>et al</u>. Rev. Lat. Quim. 14(2), 99-100 (1983)

hidroxilos (Domínguez, Frando, García, Porras, Vázquez y Amezcua, 1983), a pesar de que en la estructura propuesta hay solamente siete metilos, un protón vinílico y una base de hidróxilo; además se propone que el mencionado compuesto es el isomero geométrico Z del ácido dihidroisomasticadienónico (Fig. 63), lo cual obviamente es incorrecto ya que estudios de difracción de rayos X demostraron que el ácido dihidroisomasticadienónico tiene una configuración Z (Pozzo-balbi, Nobile, Scapini y Cini, 1976).

Fig. 63. Estructura del ácido dihidroisomasticadienónico.

Curiosamente las propiedades espectroscópicas del ácido instipolinácico (Tabla 27) coincidieron con las mismas de la mezcla cristalina de donde se obtuvo el ácido 3 a -hidroximasticadienónico; tal como se menciona en la sección experimental el análisis cromatográfico en placa fina (usando gel de silice impregnada con nitrato de plata) de esa mezcla cristalina, reveló la presencia de tres substancias diferentes. Estas observaciones en conjunto, por una parte con la discrepancia entre las propiedades espectroscópicas descritas para el ácido instipolinácico y la estructura propuesta, y por la otra con el desconocimiento de la configuración correcta de la doble ligadura de la cadena lateral del ácido dihidroisomasticadienônico, permiten concluir que la elucidación estructural descrita para el ácido instipolinácico está basado sobre evidencias poco claras y, que además el nombre de ácido Instipolinácico debe desaparecer de la literatura, puesto que la estructura tal como la proponen los autores corresponde realmente a la del ácido 3a -dihidroisomasticadienónico (Pozzo-bulbi, Nobile, Scapini y Cini, 1976).

4. La existencia de ácidos anacárdicos en la corteza del cuachalalate es de importancia industrial y biológica, y muy posiblemente las actividades antibiótica, antipirética y antiinflamatoria que se le atribuyen a esta planta sean debidas a la presencia de este tipo de compuestos.

5. La presencia de ácidos anacárdicos en la naturaleza estaba restringida a tres familias, las <u>Anacar-</u> <u>daceae</u>, la <u>Gingkoaceae</u> y la <u>Miristicaceae</u>. Ahora el cuachalalate, un miembro de la familia <u>Julianiaceae</u> constituye una nueva fuente natural para estos productos. Resulta interesante mencionar que tanto los ácidos anacardicos como los triterpenos de tipo tirucalano son metabolitos comunes a las familias de las <u>Anacardaceae</u> y de las <u>Julianiaceae</u>, las cuales se sabe estan relacionadas filogenéticamente (Heywood, 1978).

L

163

Ŷ

PROPOSICIONES PARA CONTINUAR ESTE TRABAJO

, 1. Para el <u>Chenopodium graveolens</u> Wild (epazote de zorrillo) se recomienda hacer el análisis del aceite esencial, para determinar, fundamentalmente, la presencia o ause<u>n</u> cia del ascaridol.

2: Hacer la investigación fitoquímica de otras colecciones de <u>Ch. graveolens</u> a fin de analizar las variaciones ontogénicas y de estudiar en forma más detallada el contenido de metabolitos secundarios (los resultados de estos estudios podrían ser de importancia quimiotaxonómica).

3. Hacer la evaluación biológica como agentes antiparasitarios de los favonoides encontrados en este estudio.

 Realizar nuevamente el estudio fitoquímico de
Ch. ambrosioides L. (epazote morado), con la finalidad de aislar mayor número de metabolitos secundarios.

5. Hacer la separación mediante cromatografía de gases de la mezcla de ácidos anacárdicos para determinar la estructura de la cadena lateral de cada uno de estos. Este estudio se inicio formando derivados dihidroxilados con OsO, y epoxidados con ácido perbenzóico. También se puede efectuar esta separación por cromatografía de líquidos a alta presión (HPLC).

6. Actualmente está en progreso la evaluación de la mezcla mediante la técnica de espectrometría de masas/ espectrometría de masas (MIKES) que permitirá analizar y caracterizar individualmente cada uno de los constituyentes de la mezcla.

7. Realizar la evaluación como antibióticos de cada uno de los ácidos anacardicos de las series de 19 y 21 átomos de carbono y establecer relación de estructura química actividad biológica.

8. Efectuar el estudio en detalle de los extractos acetónicos de la corteza de cuachalalate, sobre todo en la parte de mayor polaridad, ya que los extractos acetónicos obtenidos (EA-I y EA-II) mostraron constituyentes comunes con los extractos hexanicos estudiados y es precisamente en la parte más polar en donde se diferencian.

BIBLIOGRAFIA

.

- Adawadkar, P.D. y El Sohly, M.A. (1981). I solation, puri fication and antimicrobial activity of anacardic acids from *Ginko biloba* fruits. Fitoterapía, 52(3) pp 129-135 (En C.A.: 97:52394 d, 1982).
- Adesina, S.K. y Reisch, J. (1985). A triterpenoid glicoside from Tetrapleura tetraptera fruit. Phytochemis try. 24; pp 3003-3006.
- Alva Ixtlilxóchitl, D. de. (1952). Obras Históricas. Vol. II. Historia chichimeca. Editora Nacional. Mêxico.
- Arasawa, M., Minabe, N., Saeki, R., Takakuwa, T. y Nakaoki, T. (1971). Yakugaku Zasshi, 91, 522 (En C.A. (1971), 75, 59801 p).

Asakawa, Y. (1970). Bull. Chem. Soc. Japan. 43:2223.

- Astudillo, V.A. (1983). Análisis químico de Eryngium heterophyllum. Engelman, y búsqueda del principio activo en el control de cálculos biliares inducidos en Hamster dorado (Mesocricetus auratus). Tesis de Maestría. Colegio de Postgraduados, Chapingo, Méxi co. pp 5-6.
- Ballesteros, U.N.E. y Alpide, N.P. (1984). Aislamiento y evaluación farmacológica preliminar de ácidos triter pénicos de semillas de Schinus molle (Pirul). Tesis profesional. Químico Farmacéutico Biólogo. ENEP-Zaragoza. UNAM.
- Bannerman, H. (1977). La medicina tradicional en el programa de la OMS. Crónica de la OMS, 31,11, Ginebra, Suiza. pp 479-480.
- Bannerman, H.R. (1980). Organization and cooperation for development of studies on plants used in tradicional medicine: some guide lines for research and studies. J. of Ethnopharmacology. 2, pp 189-192.

- Barajas, C.L.E. (1951). Los animales usados en la medicina popular mexicana. México. Imprenta Universita ria.
- Barton, D.H.R. y Seoane, E. (1956). Triterpenoids. Part XXII. The constitution and stereochemistry of Mas ticadienonic Acid. J. Chem. Soc., pp 4150-4157.
- Bathory, M., Toth, I., Szendrei, K. y Reisch, J. (1982) Ecdysteroids in Spinacia oleracea and Chenopodium bonus-Hennicus. Phytochemistry. 21, pp 236-238.
- Bernardi, B. (1980). An antropological approach: the problem of plants in traditional medicine. J. of Ethnopharmacology. 2, pp 95-98.
- Boekenoogen, H.A. (1967). Straight chains of carbon atoms in Nature. Chem. Ind. (London) pp 387-397.
- Bogacheva, N.G., Kogan, L.M. y Libizov, N.I., (1972). Triterpenoid glycosides from Chenopodium ambrosioides Khim prir. Soedin 3, pp 395 (En C.A. <u>77</u>, 162003V, 1972).
- Budzikiewicz, H., Djerassi, C. y Williams, D.H., (1964). Structure elucidation of Natural Products by Mass Spectrometry, Holden-Day, San Francisco.
- Budzikiewics, H., Willson, J.M. y Djerassi C. (1963). Mass Spectra of Pentacyclic Triterpenes. J. Am. Chem. Soc. 85, pp 3688-3692.
- Burbage, L. y Wells, J. (1983). Plantas medicinales: incre mento de las perspectivas en la industria farmacêuti ca. Forum de Comercio Internacional Vol. 19, No. 2, pp 26-32.
- Bye, R. (1985). (Comunicación personal) Instituto de Bio logía UNAM.
- Campello, J.P. y Marsaoli, A.J. (1974). Triterpenes of Schinus-terebenthefolius. Phytochemistry; 13, pp 659-660.

Capasso, F., Balestrieri, B. y Mascolo, N. (1980). Actua lidad de las plantas medicinales. Medicina Tradi cional III, (10), pp 53-61.

- Caputo, R. y Mangoni, L. (1970). Acidi triterpenici dalle galle di Pistacia terebintus. Gazz. Chim. Ital. 100, pp 317-325.
- Caputo, R., Mangoni, L., Mónaco, P. y Palumbo G. (1979). Triterpenes from the galls of *Pistacia palestina*. Phytochemistry, 18, pp 896-898.
- Chirva, V., Chebar, P.L., Kintya, P.K. y Bobeiko, V. A. (1971). Structure of triterpenoid glicosides from Chenopodium anthelminticum roots. KHIM. Prir. Soedin. 7(1), pp 27-30.

Crawford, D.J. (1975), Brittonia 27: 279,

- Crawford, D.J. y Evans, K.A. (1978). The affinities of Chenopodium flabellifolium (Chenopodiaceas): evidence from seed coat surface and flavonoid chemistry. Brittonia 30(3), pp 313-318.
- Crawford, D.J. y Mabry, T.J. (1978). Flavonoid chemistry of Chenopodium fremontic. Infraspecific variation and systematic implications at the interspecific level. Biochem. Syst. Ecol. 6, pp 189-197.
- De María y Campos, T. (1979). Los animales en la medicina tradicional mesoamericana. Anales de Antropología XVI. Universidad Nacional Autónoma de México.
- De Pascual, T.J., Bellido, I.S. y González, M.S., (1978a), Componentes de chenopodiaceas. I sesquites. penoides del Chenopodium botrys, L. An. Quim. 74: pp 91-96.
- De Pascual, T.J., Bellido, I.S. y González, M.S., (1978b). An. Quim. 74, pp 1975.

- De Pascual, T.J., Bellido, I.S. y González, M.S., (1980). Chenopodiaceae components: Polioxigenated sesquiterpenes from Chenopodium botrys, Tetrahedron, 36, pp 371-376.
- Domínguez, X.A., Soriano M., Vera, C. y Butruille, D. (1974). L'acide masticadienonique de *Pistacia mexicana*. Phy tochemistry. 13, pp 656.
- Domínguez, X.A., Franco, R., García, S., Porras, M.E., Váz ques, G. y Amezcua, B. (1983). Plantas medicinales mexicanas XLVIII. Estructura del ácido Instipo linácico separado de la corteza del cuachalalate (Amphipterygium adstringens). Rev. Latinoamer. Quim. 14, pp 99-100.
- Enriquez, R. (1978). La química y el estudio de las plan tas medicinales. Medicina tradicional II (5), pp 37-46.
- Estrada, L.E. (1985). Avances en las investigaciones sobre plantas medicinales en la Universidad Autónoma Chapingo y Colegio de Postgraduados, Chapingo Estado de México. Miméografo. Departamento de Fitotec nia, Sección Plantas Medicinales Universidad Autóno ma Chapingo.
- Estrada, L.E. (1986). Jardín Botánico de Plantas Medicina les. Maximino Martínez. Universidad Autónoma Chapingo. Departamento de Fitotecnia pp 20-21.
- Fairbairn, J.W. (1980). Perspectivas in research on the active principles of tradicional herbal medicine. A botanical Aproach: identification and supply of herbs. J. of Ethnopharmacology 2, pp 99-104.
- Farkas, L. (1980). Active principles of plants of tradicional medicine as models of new drugs. J. of ethno pharmacology, 2, pp 145-148.
- Farnsworth, N.S. (1980), The development of pharmacological and chemical research for application to tradicional medicine in development countries. J. of Ethnopharmacology 2, pp 173-181.

- Farnsworth, N.S. y Bingel, A.S. (1977). Problems and prospects of discovering new drugs from haigher plants by pharmacological screening. En Wagner, H. y Wolff P. (Ed.). New natural products and plant drugs with pharmacological, biological or therapeutical actruity. Springer-verlag berlin Heidenberg New York. pp 1-23.

-

- González, E.E. y Delgado, J.N. Phytochemical Investigation of Amphipterygium adstringens. J. Pharm. Sci. 51, pp 786-790.
- González, E.E., McKenna, G.F. y Delgado, J.N. (1962). Anticancer activity of Amphipterygium adstringens. J. Pharm. Sci. 51, pp 901-905.
- Govindachari, T.R., Parthasarathy, P.C., Pai, B.R. y Kalya naraman, P.S., (1968), Tetrahedron, 24: 7027.
- Hankes, A.J., Durrani, A.A. y Tyman, J.P. (1980). Polimer used for porduction of bonded materials. Eur. Pat. Appl. 15,761 (Cl C08 G8/18), 17 sep 1980. Brit. Appl 79/8.451, 09 Mar 1979. 23 pp, (En C.A. 93:24 0530 m, 1980).
- Harborne, J.B., (1967). Comparative Biochemistry of the Flavonoids, A.P., London.
- Harborne, J.B. y Mabry, T.J. (Ed). (1982). The Flavonoids. Advances in Research, Chapman and Hall, London, N.Y.
- Hayashi, T., Kato, H., Miyamoto, A. y Yoshida, M. (1983). Color developer and a recording unit having a layer of the color developer. U.S.U.S. 4, 37467' (Cl, 106-21; C 09/D11/00). 22 Feb 1983. JP. Appl. 70/ 83, 651. 24 Sep 170; 6 pp. (En C.A.: 98: 1890322, 1983).

Heyden, D. (1983). Mitología y simbolismo de la flora en el México prehispánico. Universidad Nacional Autónoma de México, p 174.

- Hopkins, J. y Scheimann, F. (1971). Phytochemistry, 10, pp 1956-1961.
- Instituto Nacional para la Educación de los Adultos (INEA), (1982). Como aliviarse de la pansa. Subdirección de Promoción cultural en la Medio Rural. Ed. Arbol, México.
- Irwin, M.A. y Geissman, T.A., (1973). Sesquiterpene alco hols from Artemisia pygmaea. Phytochemistry, 12, pp 849-852.
- Kier, L.B., Lehn, J.M. y Ourisson, G. (1963). Résonance magnétique nucléaire de produits naturels (IV). Structure et Stéréochimie de la térébinthone et du schinol. Bull. Soc. Chim. Fr. pp 911-912.
- Lamy, Ph. y Zolla, C. (1978). La etnobotánica en relación con los problemas de la salud en México. Medicina Tradicional II (5), 19-35.
- López, A.A. (1971). Textos de Medicina Náhuatl. Sep-Setentas, Secretaría de Educación Pública, México.
- Lozoya, X. (1978). Editorial. A manera de introducción. Medicina Tradicional II (5), pp 3-10.
- Lozoya, X. y Lozoya, M., (1982). Flora Medicinal de México. Primera parte: Plantas indígenas. Instituto Me xicano del Seguro Social, México. pp 31.
- Mandich, L.M., Barros, C. y Silva, M. (1982). Búsqueda de plantas chilenas con actividad antifertilidad. Rela ción química biológica. Bol. Soc. Chil. Quim. 27 (2), pp. 175-177.
- Martínez, M. (1969). Plantas medicinales de México. Editorial Botas, México.

- Mónaco, P., Caputo, R., Palumbo, G. y Mangoni, L. (1974). Triterpene components of gall on the leaves of Pistacia terebinthus, produced by Pemphigus semilunarius. Phytochemistry, 13, pp 1992-1993.
- Morishita, T., Tagoimi, T., Matsuzaka, T. y Taketsugu. (1978). (Ch. i. kari Kogyo Co. Ltd). Japan 7747, 013 (Cl. AOIN9/08) 29 Nov 1977 Appl 73/143, 634, 24 del 1973 (En C.A. 88:100366J, 1978).
- Nagarajan, G.R. y Parmar, V.S., (1977). Planta médica. 32:50.
- Navarrete, C.A. (1982). Estudio químico y pruebas farmacológicas preliminares de la corteza de Juliania adstringens (cuachalalate). Tesis profesional. Químico Farmacéutico Biólogo. ENEP Zaragoza. UNAM.
- Nicholaev, A.G. (1956). Uchenye Zap. Kishiniev Univ. 28: 83 (En C.A. 52:20902 (1958)).
- Nicholas, H.J. (1955). J. Am. Chem. Soc. 77, pp 495.
- Ogunkoya, L. (1981). Application of mass spectromety in structural problems in triterpenes. Phytochemistry. 20, pp 121-126.
- Organización Mundial de la Salud (OMS). (1978). Informe de la conferencia Internacional sobre atención pri maria de salud. Alma-Ata, URSS, 6-12 de septiembre de 1978. pp 1-7.
- Organización Mundial de la Salud. (OMS). (1976). Programa de Promoción y Desarrollo de la Medicina Tradicional. Medicina Tradicional I (1). pp 71-73.
- Organización de las Naciones Unidas para el Desarrollo Industrial (ONUDI). (1983). Desarrollo de fármacos basados en plantas medicinales. Segunda consulta de la Industria Farmacéutica Budapest, Hungría, 21-25 de noviembre 1983. ONUDI ID/WG 393/11. pp 1-24.
- Pearson, S. y Mc Gavack, T. (1953). Rapid procedure for the determination of serum cholesterol. J. Cli. En drocrinology, 12, pp 1245.

- Penso, G. (1980). The role of WOH in la selection and caracterization of medicinal plants (vegetable drugs). J. of Ethnopharmacology, 2. pp 183-188.
- Pesce, E. (1977). Productos farmacéuticos de plantas me dicinales. Medicina tradicional I. (4). pp 5-21.
- Piatelli, M. e Imperato, J. (1971). Betacyanins of some chenopodiaceae. Phytochemistry 10. pp 3133-3134.
- PNUD. (1979). (Programa de las Naciones Unidas para el Desarrollo). Coperación económica y técnica en el sector farmacéutico. Informe general del proyecto INT/009/A/01/99. Guayana.
- Pozzo-Balbi, T., Nobile, L., Scapini, G. y Cini, M. (1976). Triterpenoid ketoacids from Schinus molle L. Gazz. Chem. Ital, 106. pp 785-789.
- Pozzo-Balbi, T., Nobile, L., Scapini, G. y Cini, M. (1978). The triterpenoid acid of shinus molle, phytochemistry, 17. pp 2107-2110.
- Pretsch, E., Clere, T., Seibl, J. y Simon, W. (1980). Tablas para la elucidación estructural de compuestos orgánicos por métodos espectroscópicos. Alhambra, España. pp 51-104.
- Rovesti, P. (1973). Riv. Ital. Essenz. Prof., Piante offic., 45, 31.
- Rustembekova, G.B., Goryaev, M.I. y Dembitskii, A.D. (1974). Substances contained in essential oils 58 Hydrocarbons of Jerusalem Oak (Chenopodium botrys). SSR. Ser Khim. 24(1). pp 47-51. (En C.A. <u>84</u>, 21980 u, 1976).
- Rustembekova, G.B., Goryaev, M.I. y Gladyshev, P.P. (1973). Isolation of betaine from *Chenopodium botrys*. KHIM prir Soedin. 9(4). pp 569. (En C.A. <u>80</u>, 63782 d, 1974).

- Rustembekova, G.B., Goryaev, M.I., Krotova, G.I. y Dembits kii, A.D. (1975). Essencial oils of tucuman province. Essence of *Chenopodium pumilio*. Essenze Deriv. Agrum. 45(1). pp 12-18. (En C.A. <u>84</u>, 35173V, 1976).
- Salemink, C.A. (1980). Problems involved in structure de termination of active principles of plants used in tradicional medicine: extraction, separation and de termination of caracteristics of active principles. J. of ethnopharmacology 2, pp 135-143.
- Sânchez, R., Lerdo de Tejada, A. y González, V. (1980). Acción hipocolesterolemiante de Gautteria gauneri. Medicina tradicional III (9). pp 22-26.
- Schultes, R.E. (1980). El legado de la medicina popular. En Thomson, W.A. (Ed). Guía práctica ilustrada de las plantas medicinales Editorial Blume, España. pp 137-149.
- Secane, E. (1956). Further Crystalline Constituents of Gum Mastic. J. Chem. Soc. pp 4158-4160.
- Silverstein, R.M., Bassler, G.C. y Morroll, T.C. (1980). Identificación espectromética de compuestos orgánicos. Editorial Diana, México. pp 17-84.
- Solis, A. de. (1968). Historia de la conquista de México "Sepan Cuantos", No. 89. Editorial Porrúa, México, pp 171-172.
- Spencer, G.F., Tjarks, L.W. y Keliman, R. (1980). Alkil and phenylalkyl anacardic acids from Knema elegans seed oil. J. Nat. Prod., 43(6). pp 724-730.
- Subramanian, S.A. y Nair, A.G.R. (1972). Curr. Sci. 41: 62.
- Suga, T., Iwata, N. y Asakawa, Y. (1972), Bull, Chem, Soc. Japan, 45:2058,

- Sullivan, J.T., Richards, C.S., Lloid, H.A. y Krishna. G. (1982). Anacardic acid: molluscicide in Cashew nut shell liquid. Plant. Med., 44(3). pp 175-177. (En C.A. 97:2222a, 1982).
- Susplugas, C., Balansard, G. y Rosi, J.C. (1980). Evidence of antihelmintic action of aereal parts from *Inula viscosa* Ait. Attribution to a sesquiterpenic acid of this activity. Acta horticulturae. 96. pp 19-33.
- Takemoto, T. y Nikjiama, T. (1957). J. Pharm. Soc. Japan. 77, 1157.
- Tempesta, E. (1980). Evaluation of local resourses in tradicional medicine. Journal of Ethnopharmacology 2. pp 163-166.
- Toth, I., Bathory M., Szender K., Minker, E. y Blazzo, G. (1981). Ecdysteroids in chenopodiaceae. Chenopodium album. Fitoterapia. 52(2). pp 77-80.
- Van poojen, A.M. (1970). Pharmacohistorical studies. CXXXV. Boldo and Chenopodium. Prarm. Tijdschr. Belg. 47(9). pp. 191-197. (En C.A. 74-67632d, 1971).
- Viesca, T.C. (1977). La medicina tradicional mexicana. Sus raices prehispânicas. Medicina tradicional II (3). pp 43-48.
- Viesca, T.C. (1978). El papel de la historia y la antropología en el estudio de las medicinas tradicionales mexicanas. Medicina tradicional II (5), pp 11-18.
- Wahid, M.A. y Samiullah. (1960). Standaritation of active principles of indigenous pharmacopoeial drugs found in west pakistan. J. Sci. India Res. 3, pp. 228-230. (En C.A. 58-1301 e, 1963).
- Wilson, H.D. y Heiser, C.B. (1979). The origin and evolutionary relationships of "Huauzontle" (Chenopodium nuttalliae Safford) domesticated chenopod of México. Amer. J. Bot. 66(2). pp. 198-206.

Wollenweber, E. y Egger, K. (1971). Phytochemistry, 10. 225.

- Zárate, A.M.A. (1984). Germinación de dos especies medi cinales: cuachalalate (Amphipterygium adstringens) y chaparro amargoso (Castela tortuosa). Tesis. Ing. Agrónomo Fitotecnista. Universidad Autónoma Chapin go. Chapingo, México. 59 pp. <u>BIBL</u>IOGRAFIA COMPLEMENTARIA
- Bye, R. (1986). Medicinal Plants of the Sierra Madre: Comparative Study of Tarahumara and Mexican Market Plants. Economic Botany 40(1), pp. 103-124.
- De Pascual, T.J., Bellido, I.S., Torres, C., Sastre, B.A. y Grande (1981). Phellandrene endoperoxides from the essential oil of <u>Chenopodium multifidum</u>. Phytochemistry 20, pp. 163-165.
- Díaz, G.J.L. (1974) Indice y sinonimia de las plantas medicinales de México. IMEPLAM, México, pp. 138-138.
- Díaz, G.J.L. (1976). Uso de las plantas medicinales de México. Monografías científicas II. IMEPLAM. Méx.
- Harborne, J.B., Mabry, T.J. y Mabry, H. (1975). The Flavonoids. Chapman and Hall.
- Hernandez F. (1959). Historia Natural de Nueva España. Obras Completas UNAM. México 4 volúmenes.
- Heywood, V.H. (Ed.). (1978). Flowering plants of the word. Oxford University Press. Oxfor.
- Lozoya, L.X. (Ed.) (1976). Estado actual del conocimiento en plantas medicinales mexicanas. IMEPLAM. México.
- Quezada, N. (1975). Métodos Anticonceptivos y abortivos tradicionales. Anales de Antropología. Instituto de Investigaciones Antropológicas UNAM. México. pp. 223-242.
- Rzedowski, J. (1978). Vegetación de México. LIMUSA, México. pp. 210.
- Rzedowski, J. y Rzedowski, G.C. (1979). Flora Fanerogámica del Valle de México. CECSA. México. pp. 186-144.

Sahagún, F.B. (1969). Historia General de las Casas de Nueva España. Editorial Porrua, México, 4 volúmenes

- Shriner, R.L., Fuson, R.C. y Curtín, D. y (1980) Identificación sistemática de compuestos orgánicos. LIMUSA, México.
- Velázquez, M.X. (1979). Epazote (Chenopodium ambrosioides L.) Medicina Tradicional II (6), Fasciculo.
- Wehrli, F.W. y T. Wirthlin (1978). Interpretation of carbon-13NMR Spectra, Hayden. and Son Ltd.
- Lozoya, X. 1984. Bibliografía básica sobre Herbolaria Medicinal de México. Secretaría de Desarrollo Urbano y Ecología.

177.

178.

é.

APENDICE

EVALUACION BIOLOGICA DE TRITERPENOS RELACIONADOS ESTRUCTU-RALMENTE CON EL ACIDO MASTICADIENONICO, COMO AGENTES HIPO COLESTEROLEMIANTE

EVALUACION BIOLOGICA DE TRITERPENOS RELACIONADOS ESTRUCTURAL MENTE CON EL ACIDO MASTICADIENONICO COMO AGENTE HIPOCOLESTE-ROLEMIANTE

En un estudio previo (Navarrete, 1982) se demostró el efecto hipocolesterolemiante del ácido masticadienónico en ratas, por lo que muy posiblemente esté compuesto sea el principio activo de la actividad hipocolesterolemiante de la corteza de cuachalalate.

Con el propósito de evaluar la actividad biológica de moléculas similares al ácido masticadienónico, se procedió a evaluar seis compuestos triterpenicos adicionales, el ácido 3-epi-isomasticadienólico (I), ácido isomasticadienólico (II), ácido 3 β -elemónico (III), metil ester del ácido isomasticadienónálico (IV), metil ester del ácido isomastica dienólico (V) y metil ester del ácido 3-epi-isomasticadienolico (VI), cuyos estructuras se muestran en las figuras Al y A2. y todos fueron aislados del <u>Schinusrmolle</u> L. (Ballesteros y Alpide, 1984).

Para realizar la evaluación farmacológica de los triterpenos (I-IV) como agentes hipocolesterolemiantes se formaron grupos de 6 animales cada uno (rata cepa C₂ZV) siguiendo un diseño completamente al azar. Se corrieron dos experimentos (A y B) usando como testigo positivo valeriato de estradiol y, como blanco aceite de maíz (inyectable). La administración se hizo por vía subcutánea. La variable de respuesta fue la concentración de colesterol total sérico dada en mg/100 ml. La cuantificación de colesterol total sérico se determinó a las 24 horas de la administración mediante el método descrito por Pearson y Mc Gavack (1953). El valerato de estradiol (testigo positivo) se administró a una dosis de l3 mg/kg de peso y los compuestos probados se administraron a una dosis equimolecular con respecto al valerato del estradiol disueltos en aceite de maíz.

En el experimento A se evaluaron los compuestos I al IV, y los resultados se presentan en la tabla Al. El análisis de varianza y la separación de medias se da en la tabla A2. Los resultados anteriores muestran que sólo el compuesto IV (metil éster del ác. isomasticadienónálico) muestra un ligero efecto hipocolesterolemiante al bajar los niveles de colesterol en un 10% con respecto al lote control. (Lote Al).

En el experimento B se evaluaron los compuestos IV, V y VI y los resultados se muestran en la tabla A3. El

180.

análisis de varianza y la separación de medias se muestra en la tabla A4. En este experimento nuevamente el compuesto IV baja un 10% los niveles de colesterol.

Los experimentos anteriores muestran que cambios en la estructura del ácido masticadienónico si modifican su acción hipocolesterolemiante pues sólo el compuesto IV (metil ester del Ac. isomasticadienónálico), muestra un ligero efecto hipocolesterolemiante, y el resto de los compuestos probados tienen un comportamiento similar al efecto que causa el aceite de maíz (vehículo). Los resultados anteriores no son suficientes para establecer una relación estructuraactividad, pero si mostraron que los cambios estructurales modifican la acción biológica hipocolesterolemiante del ácido masticadienónico.

I. ác 3-epi-isomasticadienólico

•

II. Acido isomasticadienólico

III. Ac. β elemonico

Fig. Al. Estructura de los triterpenos I, II y III evaluados como hipocolesterolemiantes.

IV. Metil ester del ácido isomasticadienonálico.

V. Metil ester del ácido isomasticadienólico

VI. Metil ester del ácido 3-epi-isomasticadienolálico

Fig. A2. Estructura de los tritérpenos IV, V y VI evaluados como agentes hipocolesterolemiantes.

ł

EXPERIMENTO A

TRATAMIENTOS:	^A 2	A ₇	A ₆	Al	A ₃	A ₅	Å ₄
COMPUESTO*	Testigo (V.E.)	IV	III	Blanco (a. maíz)	Ref. (s.t.)	II	I
	78.8	101.05	108.03	120.13	110.05	87.87	114.08
1	L06.01	102.94	119.12	125.17	114.08	119.12	130.21
	85.85	106.01	98.96	110.97	108.03	125.17	137.26
	88.88	.104.00	126.17	114.08	116.09	139.28	120.13
	82.83	100.05	125.17	96.94	120.13	108.03	116.09
		98.96	96.94		119.12	114.08	121.13
Conc. media de	88.47	102.17	112.39	113.44	114.58	115.59	113.45
Colesterol(C.V.)**	(10.6)	(2.3)	(11.8)	(8.4)	(3.8)	(13.6)	(8.4)

Tabla Al. Niveles de Colesterol total serico (mg/100 ml).

* Compuesto l: ac. 3-epi-isomasticadienólico

II: ác. isomasticadienólico

III: ác. β -elemónico

 \checkmark

IV: metil ester del ácido isomasticadienonálico

V.E.: Valerato de estradiol

**(C.V.) = Coeficiente de variación = (DE/media)(100)

.

Tabla A2. ANALISIS DE VARIANZA DEL EXPERIMENTO A

Modelo: yij = ui + -Ti + Ej (i)

Hipotesis: Ho = $u_1 = u_2 = u_3 = u_4 = u_5 = u_6 = u_7$ y

Ha = al menos una es diferente

Fuente de variació	n g.l	s.c.	c.m.	Fobs.	Freq. (0.05)
Tratamientos (Ti)	6	3815.78	635.96	5.29	2.39
Error (Ej (i))	33	3965.13	120.55		
Como Fobs Freq:	no se acepta	но.			**********
Separa	ción de medias*				
A ₂ A ₇	$A_6 A_1 A_3 A_5 A_4$				

١

* Por la mínima diferencia significativa, contrastes ortogonales y la prueba de Tuckey

** A₇ = Comp IV metil ester del ác. isomasticadienonálico disminuye 10% los niveles de colesterol.

185.

.

EXPERIMENTO B

TRATAMIENTO	Bl	^B 2	^B 3	^B 4	^B 5
Compuesto*	IV	V	VI	Testigo (V.E.)	Blanco (a. maíz)
	84.86	97.89	107.91	63.82	81.86
	80.87	99.89	87.87	67.83	86.87
	78.85	71.84	95.89	61.82	86,87
	80.37	112.92	94.88	56.81	91.88
	80.87	104.90	83.86	61.82	97.89
Conc. media de	81.16	97.48	94.08	62.42	89.07
colesterol (C.V.)**	(2.4)	(14.19)	(8.7)	(5.7)	(6.0)

Tabla A3. Niveles de Colesterol Total Serico (mg/100 ml).

* Compuesto: IV: metil éster del ác. isomasticadienonálico

V: metil éster del ác. isomasticadienólico

VI: metil éster del ác. 3-epi-iso-masticadienolálico

**(C.V.) = Coeficiente de variación = (DE/media)(100)

سهيتم د 🕞

Tabla A4. Análisis de varianza del experimento B.

Modelo: Yij = ui + Ti + Ej (i)

 $Ho = u_1 = u_2 = u_3 = u_4 = u_5$

Ha = al menos una es diferente

Fuente de	variación	g.1.	s.c.	c.m.	Fobs	Freq. (0.05)
Tratamient	os (T1)	4	3812.7	953.175	11.83	2.27
Error (Ej	(i))	20	1615.13	80.756		
Como Fobs	Freq.: . no se	acepta Ho.				
	Separación de m	edias*				

$$\underline{B}_{4} \qquad \underline{B}_{1}^{**} \qquad \underline{B}_{5} \qquad \underline{B}_{3} \qquad \underline{B}_{2}$$

* Por la MDS, contrastes ortogonales y la prueba de Tuckey

** B1: comp IV, baja nuevamente 10% los niveles de colesterol.

1.1.244