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PRESENTA:
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Abstract

This thesis is devoted to the study of the stability of homogeneous systems and the design of homo-
geneous controllers based on Continuous Higher-Order Sliding Mode. The homogeneity properties of
a class of discontinuous systems are exploited to extend classical results on the design of Lyapunov
functions, and a numerical method to design Lyapunov functions for this class of systems is devel-
oped. Moreover, an analysis of the stability of homogeneous systems affected by parasitic dynamics
is performed in the framework of Lyapunov methods. In the general case of homogeneous systems,
these results allows to conclude that the classical concept of motion separation of singularly perturbed
systems works only when the involved dynamics have the same homogeneity degree. When the par-
asitic dynamics has a smaller homogeneity degree than the main dynamics, this concept of motion
separation is valid locally in a vicinity of the origin, while for the contrary case such a concept works
only outside of a neighborhood of the origin. So, these results can be seen as a generalization of the
concept of motion separation for a wider class of homogeneous singularly perturbed systems. Later,
three schemes of control: state feedback, output feedback, and adaptive, based on Continuous Twist-
ing Algorithm of Third Order are proposed, where the stability analysis and gain design are realized
based on homogeneous Lyapunov functions. Additionally, experimental results of the implementa-
tion of these controllers in electromechanical setups are provided. Finally, sub-optimal designs of a
continuous sliding mode controller in the PID form and a homogeneous controller in the PD-form
are presented, based on frequency methods. Two sets of gains for these controllers are suggested
to minimize the amplitude of chattering caused by the presence of a critically-damped second-order
fast-actuator in the control system or the energy needed to maintain the trajectories into a real sliding
mode. In addition, finite-time stability at the origin for the ideal system (without an actuator) with
the suggested design is proven by using homogeneous Lyapunov functions. Most of the results in this
thesis address one of the main issues in the implementation of sliding mode controllers, the so-called
chattering. They represent new directions in further research of analysis of chattering and design of
sliding mode controllers with criteria for chattering minimization.

Keywords: Chattering analysis, Differential inclusions, Discontinuous control, Frequency domain
methods, Homogeneity, Lyapunov methods, Nonlinear system, Robust control applications, Singular
perturbations, Sliding Mode Control.
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Resumen

Esta tesis aborda el estudio de la estabilidad de sistemas homogéneos y el diseño de controladores
homogéneos basados en modos deslizantes de orden superior. Las propiedades de homogeneidad de
cierta clase de sistemas discontinuos son utilizadas para ampliar resultados clásicos acerca del diseño
de funciones de Lyapunov. Además, se desarrolla un método numérico para diseñar funciones de
Lyapunov para la clase de sistemas bajo estudio. Por otro lado, se realiza un análisis de la estabilidad
de sistemas homogéneos afectados por dinámicas parásitas en el marco de los métodos de Lyapunov.
En el caso general de sistemas homogéneos, estos resultados concluyen que el concepto clásico de
separación de dinámicas para sistemas singularmente perturbados funciona solo cuando los sistemas
involucrados tienen el mismo grado de homogeneidad. Cuando la dinámica parásita tiene un grado
de homogeneidad menor que la dinámica principal, dicho concepto de separación de dinámicas es
válido localmente en una vecindad del origen, mientras que en el caso contrario, tal concepto funciona
solo fuera de una vecindad del origen. Por lo tanto, estos resultados pueden verse como una general-
ización del concepto de separación de dinámicas para una clase más amplia de sistemas homogéneos
singularmente perturbados. Posteriormente, se proponen tres esquemas de control: realimentación
de estado, realimentación de salida y adaptable, basados en el algoritmo twisting continuo de tercer
orden, donde el análisis de estabilidad y el diseño de ganancias se realizan basados en funciones de
Lyapunov homogéneas. Además, se presentan resultados de la implementación de estos controladores
en sistemas electromecánicos. Finalmente, se presentan diseños subóptimos de un controlador con-
tinuos por modos deslizantes en la forma de PID y un controlador homogéneo en la forma de PD
mediante métodos de frecuencia. Se sugieren dos conjuntos de ganancias para minimizar la amplitud
del chattering causado por la presencia de un actuador rápido de segundo orden crı́ticamente amor-
tiguado en el sistema de control, ó la energı́a necesaria para mantener las trayectorias en un modo
deslizante real. Además, se prueba la estabilidad en tiempo finito del sistema ideal (sin un actuador)
con el diseño sugerido mediante el uso de funciones de Lyapunov homogéneas. La mayorı́a de los
resultados de esta tesis abordan uno de los principales problemas en la implementación de contro-
ladores por modos deslizantes, el llamado chattering, las cuales representan nuevas direcciones de
investigación acerca del análisis de chattering y el diseño de controladores por modos deslizantes con
criterios para minimizar el chattering.

Palabras clave: Análisis de chattering, Inclusiones diferenciales, Control discontinuo, Métodos
en el dominio de la frecuencia, Homogeneidad, Métodos de Lyapunov, Sistema no lineales, Aplica-
ciones de control robusto, Perturbaciones singulares, Control por modos deslizantes.
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Chapter 1

Introduction

The homogeneity [Zubov, 1964, Bacciotti and Rosier, 2005, Polyakov, 2020] is a kind of symmetry of
a function with respect to a dilation of its arguments. One of the first notions of homogeneity appeared
in the eighteenth century, when Leonhard Euler focused in the study of homogeneous polynomials. A
generalization of this concept was introduced by [Zubov, 1964] and independently by [Hermes, 1986,
Hermes, 1991] with the so-called weighted homogeneity.

Homogeneous systems constitute a subclass of nonlinear dynamics admitting special properties
like scalability of solutions, global expansion of local behaviors, robustness, and different rates of
convergence: rational, exponential and finite-time. Moreover, homogeneous systems have many prop-
erties similar to linear ones. All these features have been found advantageous in analysis and design
of nonlinear control systems [Zubov, 1964, Bacciotti and Rosier, 2005, Polyakov, 2020]. Remarkably,
nonlinear systems can be approximated by homogeneous maps for local analysis, when linearization
is non-informative or simply impossible [Hermes, 1991, Polyakov, 2020].

The Lyapunov function (LF) method is one of the main approaches to analyze the stability of
dynamical systems [Bacciotti and Rosier, 2005, Khalil, 2002, Zubov, 1964]. Particularly, for linear
systems the design of LF’s has been widely studied [Khalil, 2002, Bacciotti and Rosier, 2005]. Many
of these results can be extended to nonlinear homogeneous systems, e.g., if a homogeneous sys-
tem is asymptotically stable at the origin, then there exists a homogeneous proper LF [Zubov, 1964,
Rosier, 1992, Efimov et al., 2018]. However, most of those results are restricted to homogeneous sys-
tems with continuous vector fields.

Commonly, systems with discontinuous right-hand side are represented by differential inclusions
[Filippov, 1988]. For this class of systems, the homogeneity concepts have been generalized by
[Bernuau et al., 2013a, Levant et al., 2016]. The design of homogeneous LF’s for homogeneous sys-
tems with discontinuous right-hand side has been widely studied, see for example the works of
[Nakamura et al., 2002, Tuna and Teel, 2006, Sánchez and Moreno, 2016, Sanchez and Moreno, 2019].
Furthermore, a more general framework is proposed in [Mendoza-Avila et al., 2021], where explicit
formulas of Lipschitz-continuous and homogeneous LF’s are provided with a posterior construction
through a numerical methodology. These results can be seen as a generalization of the classical results
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of [Persidskii, 1937, Massera, 1949, Yoshizawa et al., 1955] and [Kurzweil, 1963] for discontinuous
homogeneous system of negative degree.

Other concepts of stability have been also extended to the class of homogeneous system. For
instance, input-to-stability and some other related notions for homogeneous system are subject of
the papers [Ryan, 1995, Hong, 2001, Bernuau et al., 2013b], homogeneous approximations have been
reported by [Hermes, 1991, Andrieu et al., 2008], and the relationship between homogeneity prop-
erties and finite-time convergence is studied by [Bhat and Bernstein, 2005]. Furthermore, the paper
[Mendoza-Avila et al., 2020a] presents an analysis of the stability of singularly perturbed systems in
the framework of homogeneity notions. Three types of stability were discovered by depending on the
relation between the Homogeneity Degrees (HD) of the Fast Dynamics (FD) and the Slow Dynamics
(SD): global asymptotic stability (GAS) when both dynamics have the same HD and the Singular Per-
turbation Parameter (SPP) is sufficiently small, practical GAS when the FD has a greater HD than the
SD, and local asymptotic stability when the FD has a smaller HD than the SD. In the last two cases,
we show that both the final bound of the trajectories and the domain of attraction depends on the SPP.

Many examples of homogeneous systems with discontinuous right-hand side can be found in
the family of sliding-mode algorithms [Levant, 2005a, Bernuau et al., 2014, Levant and Livne, 2016].
Sliding Mode Control [Utkin, 1992, Shtessel et al., 2014] is one of the most efficient techniques to
deal with systems under uncertainty conditions. In theory, this kind of controllers are able to pro-
vide an exact compensation of bounded and matched disturbances, and finite-time convergence of the
system trajectories to the sliding set by means of a discontinuous control signal.

Higher Order Sliding Mode (HOSM) controllers were developed in order to ensure, for a chain
of integrators of order n, finite-time convergence to the n − th order sliding mode, i.e., to nullify
the output σ(t) and its (n − 1) derivatives (σ(t) = σ̇(t) = . . . = σ(n−1)(t) = 0), even in presence
of bounded, non-vanishing and matched disturbances or uncertainties [Levant, 2001, Levant, 2003a,
Levant, 2005b] .

Continuous Higher Order Sliding Mode (CHOSM) controllers were recently introduced in order
to obtain a continuous control signal, which leads to a significantly reduction the level of chatter-
ing, see [Zamora et al., 2013, Fridman et al., 2015, Levant, 1993, Kamal et al., 2016, Moreno, 2016,
Torres-González et al., 2017, Mendoza-Avila et al., 2017, Moreno, 2018, Mendoza-Avila et al., 2020b,
Laghrouche et al., 2017, Mercado-Uribe and Moreno, 2020]. Such controllers provide finite-time con-
vergence to the (n + 1) − th order sliding set for the trajectories of a chain of integrators of order n
with non-vanishing Lipschitz-continuous and matched disturbances by means of a continuous control
signal and using only information of the output and its derivatives up to the order (n− 1).

Particularly, [Mendoza-Avila et al., 2020b] presents the design of a Third-Order Continuous Twist-
ing Algorithm (3-CTA). This controller is able to provide, in theory, finite-time convergence to zero
for the trajectories of a third-order chain of integrators, and an exact compensation of Lipschitz-
continuous and matched disturbances. In addition, an output feedback 3-CTA (3-OFCTA) was in-
troduced by using a third-order Robust and Exact Differentiator to estimate the states from the mea-
surable output. Separation principle for 3-OFCTA was proven which allows the design of the gains for
controller and observer, independently. Moreover, [Mendoza-Avila et al., 2018] provides an adaptive
version of the 3-CTA (3-ACTA), where the adaptive gain is automatically adjusted until the stability
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is ensured for all future time. The main advantages of the 3-ACTA are the rejection of Lipschitz-
continuous and matched disturbances with an unknown Lipschitz constant, and a proper tunning of
the gains reducing the amplitude of the chattering.

In practice, the presence of parasitic dynamics in the control system (e.g., delays, actuators, sen-
sors, hysteresis, etc.) deteriorates the performance CHOSM controllers, such that, the chattering arise
despite the continuous control signal [Boiko and Fridman, 2005, Pérez-Ventura and Fridman, 2019].
So, a proper design of these controllers is needed to optimize the the response of the closed-loop
system. For instance, engineers are accustomed to work with PID control structures where the gains
are chosen from several criteria depending on the parasitic dynamics which are not considered in the
model, see for example [Ziegler and Nichols, 1942, Aström and Hägglund, 2005, Boiko et al., 2006,
Boiko, 2014a, Pilloni et al., 2012a, Pilloni et al., 2012b]. Hence, [Pérez-Ventura et al., 2021] proposes
a sub-optimal design of the Continuous Sliding Mode Controller in the PID form (PID-CSMC) (orig-
inally introduced by [Zamora et al., 2013]) based on frequency domain methods. This controller has
only three gains directly related to the error signal in proportional, integral and derivative ways, which
implies a synergistic relation between with the conventional PID. The proposed design considers a
critically damped second-order actuator to parameterize the effects of fast-parasitic dynamics and
uses the describing function approach to predict the parameters of the main harmonic approximation
of chattering [Atherton, 1975, Gelb and Vander Velde, 1968, Boiko, 2009, Boiko, 2018, Utkin, 2016].

This thesis is devoted to the study of stability of homogeneous systems and the design of homoge-
neous controllers based on Continuous Higher-Order Sliding Mode (CHOSM). Here, the most of the
results obtained through my doctoral research are collected in a detailed and extended way. Briefly,
the homogeneity properties of some nonlinear systems are exploited to extend classical results on the
design of LF’s, and on stability analysis of singularly perturbed systems. Moreover, three schemes
of control: state feedback, output feedback and adaptive, based on Continuous Twisting Algorithm
of third Order (3-CTA) are proposed, where stability analysis and design of gains are realized based
on homogeneous LF’s. Finally, it is presented a sub-optimal design of the PID-CSMC based on fre-
quency domain methods and homogeneous LF’s. The contributions and the outline of the thesis are
summarized in the following.

Chapter 3 presents two converse Lyapunov theorems for a class of discontinuous and homogeneous
systems of negative degree. This results can be seen as a generalization of classical results about LF
design to the considered class of systems. Moreover, a numerical methodology to construct LF is
proposed, which consists of two steps: first point-wise calculation of values of the the LF provided
by the converse theorems; second, interpolation of this points on the unit sphere. Both together,
the converse theorem and the numerical methodology, constitute a new framework for the numerical
design of homogeneous and Lipschitz-continuous LF for a wide class of discontinuous Higher-Order
Sliding Mode algorithms.

Later, chapter 4 studies the effect of Parasitic Dynamics (PD) on the stability of a homogeneous
control system, assuming just continuity of the considered vector fields. Three types of stability for
such an interconnection were discovered depending on the relation between the HD’s of the PD and the
Main Dynamics (MD): GAS when both dynamics have the same HD and the SPP is sufficiently small,
practical GAS when the PD has a greater HD than the MD, and local asymptotic stability when the PD
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has a smaller HD than the MD. In the last two cases, both the final bound of the trajectories and the
domain of attraction depends on the SPP. In the general case of homogeneous systems, these results
allows to conclude that the classical concept of motion separation of singularly perturbed systems
works only when the involved dynamics have the same homogeneity degree. When the parasitic
dynamics has a smaller homogeneity degree than the main dynamics, this concept of motion separation
is valid locally in a vicinity of the origin, while for the contrary case such a concept works only outside
of a neighborhood of the origin. So, these results can be seen as a generalization of the concept of
motion separation for a wider class of homogeneous singularly perturbed systems. Moreover, a LF-
based approach for analysis of the chattering generated by finite-time convergent controllers due to
the presence of fast actuators is introduced. Under the assumption that chattering arises in the steady
state of the system trajectories, this result allows to show the relationship between the amplitude of
chattering, the SPP, and the HD of the finite-time convergent controller.

In Chapter 5, the design of a Third-Order Continuous Twisting Algorithm (3-CTA) is presented.
This controller is able to provide, in theory, finite-time convergence to zero for the trajectories of
a third-order chain of integrators, exact compensation of Lipschitz-continuous and matched distur-
bances, and steady-state precision of fourth order w.r.t. sampling step for the system’s output. More-
over, an adaptive version of the 3-CTA (3-ACTA) is provided, where the adaptive gain adjusts its
value automatically until the stability of the closed-loop system is assured for all future time. The
main advantages of the 3-ACTA are the rejection of Lipschitz-continuous and matched disturbances
with an unknown Lipschitz constant, and a proper adjustment of the gains reducing the amplitude of
the chattering in the states. In addition, it is introduced an output feedback 3-CTA (3-OFCTA) using
a third-order Robust and Exact Differentiator to estimates the states from the measurable output. The
3-OFCTA preserves, in theory, all features of robustness, convergence, and precision of the 3-CTA
while requiring only information from the measurable output. Separation principle for 3-OFCTA is
proven which allows the design of the gains for controller and observer, independently. Finally, both
controllers 3-ACTA and 3-OFCTA were implemented in a reaction wheel pendulum and a magnetic
levitation system, respectively, with satisfactory results.

Further, Charter 6 addresses with a sub-optimal design of the PID-CSMC and a homogeneous
controller in the PD-form (PD-HC) based on frequency methods. Two sets of gains for the PID-
CSMC and two more for the PD-HC are suggested in order to minimize the amplitude of chattering
caused by the presence of a critically damped second-order actuator in the control system or the energy
needed to maintain the trajectories into a real sliding mode. The proposed design uses the describing
function approach to predict the parameters of the main harmonic approximation of chattering. Then,
it is proven that the suggested gins ensure finite-time stability at the origin for the ideal system (without
an actuator) by means of a homogeneous LF.

Finally, Chapter 7 summarizes and makes conclusion of the results presented in this thesis.



Chapter 2

Preliminaries

This chapter presents some notation and a brief review of concepts of homogeneity and stability
that will be use along this thesis. Most of these results are taken from the works in [Zubov, 1964,
Filippov, 1988, Bacciotti and Rosier, 2005, Polyakov, 2012, Bernuau et al., 2013a, Levant et al., 2016,
Bernuau et al., 2014, Levant, 2005a, Polyakov, 2020]

2.1 Notation

• N, Q and R are the sets of natural, rational and real numbers, respectively. Moreover, R+

represents the set of non-negative real numbers, i.e., R+ = {x ∈ R : x ≥ 0} and in a similar
way for the sets N and Q.

• | · | denotes the absolute value in R, ‖·‖ denotes the Euclidean norm in Rn.

• diag(ai) denotes the diagonal matrix with elements a1, a2, . . . , an ∈ R.

• For any matrix A ∈ Rn×n, s(A) represents its eigenvalues. Also, smin(A) and smax(A) depict
the minimum and the maximum eigenvalue of A, respectively.

• The closed convex hull of a setD ⊂ Rn (the minimal closed convex set containingD) is denoted
by C̄O(D).

• The boundary of a set D ⊂ Rn is denoted by ∂(D).

• S(x0, ρ) = {x ∈ Rn : ‖x− x0‖ = ρ} represents the sphere in Rn of radius ρ with center at x0.
Also, B(x0, ρ) = {x ∈ Rn : ‖x − x0‖ ≤ ρ} represents the closed ball in Rn of radius ρ with
center at x0. If x0 = 0 then S(ρ) and B(ρ) denotes the sphere and the ball centered at the origin,
respectively.

19
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• The sign function can be defined as a set-valued function given by

dxc0 =


1; x > 0,

[−1, 1] ; x = 0,
−1; x < 0,

On the other hand, it can also be defined as a single-valued function denoted by

sign(x) =


1; x > 0,
a; x = 0,
−1; x < 0,

for some a ∈ [−1, 1] ⊂ R.

• For x ∈ R and γ ∈ R, define dxcγ := |x|γsign(x), i.e., the signed power γ of x. Accordingly,
dxc0 = sign(x). Note that if γ is an even number then dxcγ = |x|γsign(x) 6= xγ , e.g.,
dxc

1
2 = |x|

1
2 sign(x) 6= x

1
2 or dxc4 = |x|4sign(x) 6= x4. Otherwise, if γ is an odd number

then dxcγ = |x|γsign(x) = xγ , e.g., dxc
1
3 = |x|

1
3 sign(x) = x

1
3 or dxc1 = |x|1sign(x) = x.

Moreover, dxcγ1dxcγ2 = |x|γ1+γ2 , dxcγdxc0 = |x|γ , |x|γdxc0 = dxcγ , d
dxdxc

γ = γ|x|γ−1, and
d
dx |x|

γ = γdxcγ−1.

• A continuous function α : R+ → R+ belongs to the class K if α(0) = 0 and it is strictly
increasing. The function α : R+ → R+ belongs to the class K∞ if α ∈ K and it increases to
infinity. A continuous function β : R+ × R+ → R+ belongs to the class KL if β(·, t) ∈ K∞
for each fixed t ∈ R+ and limt→∞ β(s, t) = 0 for each fixed s ∈ R+.

• For a Lebesgue measurable function u : R+ → Rm define the norm

‖u‖(t0,t1) = ess sup
t∈(t0,t1)

|u(t)|,

then ‖u‖∞ = ‖u‖(0,+∞). The space Lm∞ is defined as the set of measurable essentially bounded
functions u : R+ → Rm, such that, ‖u‖L∞ = ‖u‖∞ <∞.

• For a V : R→ R+ denote the upper Dini derivative:

V̇ +(t) = lim sup
h→0+

V (t+ h)− V (t)

h
, ∀t ∈ R+.

If V is locally Lipschitz continuous then V̇ + is finite, and if V is differentiable then V̇ + is the
usual derivative of V . For V : Rn → R+ the generalized directional derivative at x ∈ Rn in the
direction d ∈ Rn is defined by

D+V (x)d = lim sup
y→x h→0+

V (y + hd)− V (y)

h
.
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• Ck is the set of continuous functions with continuous derivatives at least up to the order k,
where k ∈ N+. Particularly, C0 is the set of continuous functions, C1 is the set of continu-
ous differentiable functions and C∞ is the set of differentiable functions, also called smooth
functions.

2.2 Stability definitions

The concept of stability introduced by Lyapunov at the end of the 19th century refers to the fact
that some nominal motion of a dynamical system are stable if other motions with initial conditions
nearby remains close to the nominal one. Without lost of generality, we can consider the zero solution
(equivalently, the origin) of a dynamical system as the nominal motion since we can translate any other
solution to the origin through a change of coordinates. Most of the following results are taken from
[Khalil, 2002, Bacciotti and Rosier, 2005, Polyakov, 2020].

Consider the differential equation
ẋ = f(x), (2.1)

where x ∈ Rn is the state and the vector field f : Rn → Rn ensures forward existence and uniqueness
of the system solutions at least locally in time. Moreover, the origin is the only equilibrium motion,
e.i., f(0) = 0 and f(x) 6= 0 ∀ x 6= 0. Many dynamical systems are modeled by the differential
equation (2.1).

A more general model is given by the differential inclusion

ẋ ∈ F (x) (2.2)

where x is the state and F : R⇒Rn is a set-valued map, with an unique equilibrium motion at the
origin, e.i., 0 ∈ F (0) and 0 /∈ F (x) ∀ x 6= 0. Under some restrictions on F , the system (2.2)
has unique solution in forward time. The differential inclusion (2.2) allows to represent a wider class
of system like discontinuous right-hand side ones. It is clear that the differential equation (2.1) is a
particular case of the differential inclusion (2.2) with F (x) = {f(x)}.

The solutions of the system (2.2) are denoted by χ(t, x0) where x0 ∈ Rn is the initial condition,
such that, χ(0, x0) = x0.

Definition 2.1. For the system (2.2) possessing uniqueness of solutions in forward time for any x0 ∈
Ω ⊆ Rn, the origin is said to be

• Locally (globally) Lyapunov stable if for any x0 ∈ Ω (x0 ∈ Rn, respectively) the solution
χ(t, x0) is defined for all t ≥ 0 and for any ε > 0 there exists δ > 0, such that, for any x0 ∈ Ω
(x0 ∈ Rn) if ‖x0‖ < δ then ‖χ(t, x0)‖ < ε for all t ≥ 0. It is unstable in any other case.

• Locally (globally) asymptotically stable if it is locally (globally) Lyapunov stable and locally
(globally) asymptotically attractive. The latter means that there exists a set Ω (Ω = Rn), such
that, lim

t→+∞
‖χ(t, x0)‖ = 0 for any x0 ∈ Ω (x0 ∈ Rn). The set Ω is called the domain of

attraction.
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• Locally (globally) exponentially stable if it is locally (globally) asymptotically stable with a
domain of attraction Ω (Ω = Rn) and there exist C > 0 and r > 0, such that, ‖χ(t, x0)‖ ≤
C‖x0‖e−rt for all t > 0 and any x0 ∈ Ω (x0 ∈ Rn).

• Locally (globally) finite-time stable if it is locally (globally) Lyapunov stable and locally (glob-
ally) finite-time attractive with a domain of attraction Ω (Ω = Rn). The latter means that there
exists Ts : Rn → R+, such that, ‖χ(t, x0)‖ = 0 for all t ≥ Ts(x0) and all x0 ∈ Ω (x0 ∈ Rn).
The function Ts : Rn → R+ is called the settling time function.

• Locally (globally) fixed-time stable if it is locally (globally) finite-time stable and the settling
time function T (x0) is bounded for all x0 ∈ Ω (x0 ∈ Rn), i.e., there exists Tmax > 0 such that
T (x0) ≤ Tmax for all x0 ∈ Ω (x0 ∈ Rn).

The stability definition for the trajectories of the system (2.2) can be also formulated in the frame-
work of the comparisson functions (see [Hahn, 1967]).

Proposition 2.1. [Bacciotti and Rosier, 2005]. The following statements are equivalent:

1. The origin of (2.2) is globally asymptotically stable (GAS);

2. there exist a function β : R+ × R+ → R+ which is of class KL such that

||χ(t, x0)|| ≤ β(||x0||, t) (2.3)

for each x0 ∈ Rn and all t ≥ 0.

Recall that a function V satisfying that V (0) = 0 and V (x) > 0 (V (x) ≥ 0) for all x 6= 0 is said
to be positive definite (semidefinite). A function V is said to be negative definite (semidefinite) if −V
is positive definite (semidefinite).

The Lyapunov function method offers a simple and effective tool for stability analysis of dynamical
systems. This method consists in select a positive definite function and investigate its behavior along
the system’s trajectories, such that, if it is decreasing then it is called a Lyapunov function.

Theorem 2.1. The origin of the system (2.2) is locally (globally) Lyapunov stable if and only if there
exist a positive definite function V : Ω ⊆ Rn → R+ and some functions α1, α2 ∈ K (α1, α2 ∈ K∞,
respectively) such that the inequalities

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), (2.4)

and
sup

d∈F (x)
D+V (x)d ≤ 0, (2.5)

hold for any x ∈ Ω\{0} where Ω is a neighborhood of the origin (Ω = Rn, respectively). In addition,
if there exists a function α3 ∈ K such that the inequality (2.5) is replaced by

sup
d∈F (x)

D+V (x)d ≤ α3(‖x‖), (2.6)

then the origin of the system (2.2) is locally (globally) asymptotically stable.

Proofs of the previous theorem can be found in [Bacciotti and Rosier, 2005, Polyakov, 2020].
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2.3 Homogeneity

The symmetry of a function w.r.t. an uniform dilation of its arguments is called homogeneity. The
linear functions are a subset of homogeneous ones w.r.t. the uniform dilation. Then, homogeneous
nonlinear mappings keep some features of linear ones, and these have been found advantageous for
analysis and design of control systems.

2.3.1 Standard homogeneity

In the eighteenth century, Leonhard Euler introduced the concept of standard homogeneity (homo-
geneity w.r.t. the uniform dilations) in the context of homogeneous polynomials. In control theory,
this concept was introduced by Lasalle and Hahn in the 1940’s.

Definition 2.2. A function f : Rn → Rm is said to be homogeneous (in the standard sense) if there
exists a number κ ∈ R such that

f(λx) = λκf(x) ∀λ > 0, ∀x ∈ Rn.

The number κ is called the homogeneity degree of the function f .

Another necessary and sufficient condition for homogeneity is given by the Euler’s theorem on
homogeneous function as presented below.

Theorem 2.2. A continuously differentiable function f : Rn → Rm is homogeneous of a degree κ if
and only if for all i ∈ {1, . . . ,m}

n∑
j1

xj
∂fi
∂xj

(x) = κfi(x), x ∈ Rn.

It is clear that any linear function is homogeneous of degree κ = 1, i.e., if f(x) = Ax, 0 6=
A ∈ Rm×n, then f(λx) = λAx = λf(x). Another example of these functions are homogeneous
polynomials, e.g., a quadratic function f(x) = x2

1 + x1x2 + x2
2 is homogeneous of degree κ = 2:

f(λx) = (λx1)2 + λx1λx2 + (λx2)2 = λ2f(x).

Moreover, the sign function is homogeneous of degree κ = 0, i.e., sign(λx) = sign(x).
Note that products and quotients of homogeneous functions are also homogeneous besides the

sum of homogeneous function of the same degree inherits the property. Moreover, from the Euler’s
homogeneous function theorem we can conclude that the derivative of a homogeneous function is also
homogeneous.

For example, the function

f(x) =
x3

1 + x3
2

x2
1 + x2

2
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is homogeneous of degree κ = 1 but it is not linear. Whereas the function

f(x) =
x1 + x2

|x1|+ |x2|
is homogeneous of degree κ = 0 and it is discontinuous at x = 0.

Some necessary conditions that relate the regularity of a homogeneous mapping f : Rn → R to
its homogeneity degree κ are:

• if κ ≤ 0 then f is discontinuous at x = 0,

• if 0 < κ < 1 then f is not Lipschitz continuous at the origin.

2.3.2 Weighted homogeneity

The standard homogeneity has been introduced by means of a uniform dilation x → λx, λ > 0.
Nevertheless, this definition of homogeneity has a quite restrictive field of use. So, [Zubov, 1964]
proposed a generalization of the standard concept of homogeneity by performing a weighted dilation
of the variable x = (x1, x2, . . . , xn)> ∈ Rn. This generalization is called wighted homogeneity and it
has permitted to deal with a broader class of mathematical objects.

For strictly positive real numbers ri (i = 1, . . . , n) called weights define the vector r =
[r1, . . . , rn]>, where rmax = max1≤j≤n rj and rmin = min1≤j≤n rj , and the dilation matrix Λr(λ) =
diag(λri)ni=1 where λ > 0, such that,

Λr(λ)x = (λr1x1, . . . , λ
rixi, . . . , λ

rnxn)T .

The wighted homogeneity is also called r-homogeneity. Note that if r1 = r2 = . . . = rn = 1 then
the standard definition of homogeneity is recovered. So, the homogeneity properties of a function in
the weighted sense can be identified analogously to the standard case.

Definition 2.3. A function g : Rn → R is said to be r-homogeneous of degree µ ∈ R if for all λ > 0
and all x ∈ Rn,

g(Λr(λ)x) = λµg(x).

A vector field f : Rn → Rn is said to be r-homogeneous of degree ν ∈ R (ν ≥ −rmin) if ∀x ∈ Rn
and ∀λ > 0,

f(Λr(λ)x) = λνΛr(λ)f(x),

which is equivalent to the i-th component of f being a r-homogeneous function of degree ri + ν.

Under this definition of a r-homogeneous vector field, the condition of the Euler’s theorem on
homogeneous functions becomes:

Proposition 2.2. [Zubov, 1964]. A continuously differentiable vector field f : Rn → Rn is r-
homogeneous of degree ν if and only if for all i ∈ {1, . . . , n}

n∑
j1

rjxj
∂fi
∂xj

(x) = (ν + ri)fi(x), x ∈ Rn.
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Remark 2.1. The degree and the weights of a r-homogeneous function (vector field) are not unique.
So that, if the function g : Rn → R (the vector field f : Rn → Rn) is r-homogeneous of degree µ (ν)
with wights r = [r1, . . . , rn]>, then it is also r̃-homogeneous for with a degree µ̃ = pµ (ν̃ = pν) with
weights r̃ = [pr1, . . . , prn]> for all p > 0.

Let’s see some examples of r-homogeneous functions.

• the function g = sign(x1 + dx2c2) is r-homogeneous of degree µ = 0 with weights r = [2, 1].

• the function g = |x1|3 + x1dx2c4 + x6
2 is r-homogeneous of degree µ = 6 with weights

r = [2, 1]. Also, it is r̃-homogeneous of degree µ = 3 with weights r̃ = [1, 1
2 ].

• the vector field

f =

[
x2

−dx1c
1
3 − 2dx2c

1
2

]
is r-homogeneous of degree ν = −1

2 with weights r = [3
2 , 1]>. Also, it is r-homogeneous of

degree ñu = −1 with weights r = [3, 2].

Note that these functions are not homogeneous in the standard sense but they are homogeneous in the
wighted one.

In addition, products, quotients, sums (for the same degree) and derivatives of r-homogeneous
functions inherit the property. On the other hand, the relation between the continuity and the ho-
mogeneity degree of a homogeneous function is kept in the weighted sense. Furthermore, for a r-
homogeneous vector field f of degree ν we have that fixing rmin = 1:

• f is discontinuous on every axis of the states space if ν = −1, and

• f does not satisfy the Lipschitz condition if −1 < ν < 0.

Definition 2.4. Given a vector of weights r = [r1, . . . , rn]>. For any ρ ≥ 1, a r-homogeneous norm
is given by

‖x‖r =

(
n∑
i=1

|xi|
ρ
ri

) 1
ρ

, ∀x ∈ Rn.

Additionally, the sphere and the ball of radius s > 0 are defined in terms of the r-homogeneous norm
as Sr(s) = {x ∈ Rn : ‖x‖r = s} and Br(s) = {x ∈ Rn : ‖x‖r ≤ s}, respectively.

Note that the r-homogeneous norm does not satisfy the triangle inequality hence it is not a norm in
the usual sense. By its definition , the function x 7→ ‖x‖r is a r-homogeneous of degree 1. Moreover,
there exists

¯
σ, σ̄ ∈ K∞ such that

¯
σ(‖x‖r) ≤ ‖x‖ ≤ σ̄(‖x‖r) ∀x ∈ Rn, (2.7)

i.e. there is a relation between the norms ‖ · ‖ and ‖ · ‖r [Efimov et al., 2018].
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Corollary 2.1. [Efimov et al., 2018]. Let rmax ≤ 1 and ρ ≥ 1, then ‖ · ‖r is locally Lipschitz
continuous.

According to Remark 2.1, the conditions rmax ≤ 1 and ρ ≥ 1 can be always assumed, such that,
the Lipschitz continuity of the r-homogeneous norm ‖ · ‖r is guaranteed. .

Definition 2.5. The system (2.1) is said to be r-homogeneous of degree ν if the vector field f is
r-homogeneous of degree ν.

Following theorem establishes that the solution of a r-homogeneous differential equation is en-
dowed with a kind of symmetry.

Theorem 2.3. [Zubov, 1964, Bernuau et al., 2013a]. Assume that the system (2.1) is r-homogeneous
of degree ν and admits a unique solution χ(t, x0) in forward time for each initial condition x0 ∈ Rn.
Then

Λr(λ)χ(λνt, x0) = χ(t,Λr(λ)x0), (2.8)

for all λ > 0 and all t ≥ 0 where solutions are defined.

Note that similar to linear systems, the origin x = 0 is always an equilibrium point of a r-
homogeneous systems. Moreover, from Theorem 2.3 we can see that any local property, like local
stability or the existence of solutions for small initial conditions, can always be extended globally.

Now, let us recall some results about the homogeneity of differential inclusion, see for example
[Levant, 2005a, Bernuau et al., 2014].

Definition 2.6. [Levant, 2005a]. A set-valued map F : R⇒Rn is r-homogeneous of degree ν ∈ R if
for all x ∈ Rn and for all λ > 0 we have

F (Λr(λ)x) = λνΛr(λ)F (x).

Furthermore, the differential inclusion (2.2) is r-homogeneous of degree ν if the set-valued map F is
so.

Proposition 2.3. [Levant, 2005a, Bernuau et al., 2013a]. Let a set-valued vector field F : R⇒Rn be
r-homogeneous of degree ν. Then for all x0 ∈ Rn and any solution χ(t, x0) of the system (2.2) with
initial condition x0, and all λ > 0, the absolutely continuous curve t 7→ Λr(λ)χ(λνt, x0) is also a
solution of the system (2.2) with initial condition Λr(λ)x0, i.e.,

Λr(λ)χ(λνt, x0) = χ(t,Λr(λ)x0), (2.9)

for all λ > 0 and all t ≥ 0 where solutions are defined.

Similarly to the previous cases, several properties of set-valued r-homogeneous maps can be ex-
tended from the sphere Sr(s) to almost everywhere xRn \ {0}.
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Proposition 2.4. [Bernuau et al., 2013a]. Let a set-valued vector field F : R⇒Rn be r-homogeneous
of degree ν. Then F (x) is compact for all xRn \ {0} if and only if F (x) is compact for all x ∈ Sr(1).
The same property hold for convexity or upper semi-continuity.

The following proposition establishes the relationship between the homogeneity properties of a
discontinuous vector field f and its Filippov regularization (see [Filippov, 1988]) given by a set-valued
map F .

Proposition 2.5. [Bernuau et al., 2013a]. Let f be a discontinuous vector field and F be the asso-
ciated set-valued map. If f is r-homogeneous of degree ν, then F is also r-homogeneous of degree
ν.

The homogeneity properties of nonlinear functions have been found advantageous in the analysis
and design of control systems.

2.4 Stability of homogeneous systems

The homogeneity properties of some nonlinear dynamical system have been found useful for a gener-
alization of classical results on stability analysis.

Theorem 2.4. [Zubov, 1964, Hahn, 1967]. If the origin of a locally attractive equilibrium point of a
r-homogeneous system, then the origin is globally asymptotically stable.

So, we have that the homogeneity simplifies global expansion of any local stability property
(asymptotic, finite-time, etc.) [Bacciotti and Rosier, 2005, Polyakov, 2020].

The Lyapunov theorem has been also generalized form continuous r-homogeneous systems.

Theorem 2.5. [Zubov, 1964]. Consider the system (2.1) where the vector field f is continuous and
r-homogeneous of degree ν. Then the origin is globally asymptotically stable if and only if there exist
a r-homogeneous and continuous function V , of class C1 on Rn \ {0}, such that, V and −V̇ are
positive definite.

Recall that if a linear system is asymptotically stable at the origin then it has a Lyapunov function
in the family of quadratic forms. Similarly, it turns out that if the origin of a r-homogeneous system is
asymptotically stable then it admits a r-homogeneous Lyapunov function. Several converse Lyapunov
theorems have been reported in the literature, however, the following generalized all its predecessors.

Theorem 2.6. [Rosier, 1992]. Consider the system (2.1) where the vector field f is continuous and
r-homogeneous of degree ν. If the origin is an asymptotically stable equilibrium point, then for any
p ∈ N and any ν > p ·maxi{ri} there exists a class Cp and r-homogeneous Lyapunov function V of
degree µ for the system (2.1).

The counterpart of this theorem for r-homogeneous differential inclusions is presented in the fol-
lowing result. We say that a set-valued map F satisfies the standard assumptions if it is upper semi-
continuous, and for all x ∈ Rn, it is not empty, compact and convex.
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Theorem 2.7. [Bernuau et al., 2013a]. Let F be a r-homogeneous set-valued map of degree ν, satis-
fying the standard assumptions. Then the following statements are equivalent:

• The system (2.2) is strongly globally asymptotically stable.

• For all µ > max(−ν, 0), there exists a pair (V,W ) of continuous functions, such that:

1. V is of class C∞ in Rn, positive definite and r-homogeneous of degree µ;

2. W is of class C∞ in Rn \ {0}, strictly positive outside of the origin and r-homogeneous
of degree µ+ ν;

3. supd∈F (x)D
+V (x)d ≤ −W (x) for all x 6= 0.

In the previous theorem, the ward strongly means that the asymptotic stability holds for all solu-
tions of the differential inclusion starting at he same initial condition, for the case of non-uniqueness
of solutions. Therefore, from the previous we can conclude that if the system (2.2) is r-homogeneous
of degree ν and asymptotically stable at origin, then there exists a smooth, r-homogeneous, Lyapunov
function V : Rn → R+ of degree µ > max{0,−ν}, which satisfies

a‖x‖µr ≤ V (x) ≤ b‖x‖µr , ∀x ∈ Rn,

sup
d∈F (x)

D+V (x)d ≤ −cV 1+ ν
µ (x), ∀x ∈ Rn,

for some 0 < a ≤ b and c > 0 [Zubov, 1964, Rosier, 1992, Bernuau et al., 2013a].
Recall Proposition 2.1, for the case of an r-homogeneous systems of degree ν there is a generic

parametrization of the KL-function β in inequality (2.3) given by

β(s, t) =



( ba)
1
µ s(

1+a
ν
µ ν
µ
csνt

) 1
ν

ν > 0,
((

b
a

)− ν
µ s−ν + ν

µca
ν
µ t
)− 1

ν
t < − b

− νµ s−ν
ν
µ
c

0 t ≥ − b
− νµ s−ν
ν
µ
c

ν < 0,

(
b
a

) 1
µ e
−ct
µ s ν = 0.

(2.10)

for all t ≥ 0 [Efimov et al., 2018].
One important feature of r-homogeneous systems is that their rate of convergence is related to

their homogeneity degree. For instance, [Hong et al., 1999, Rosier, 1992, Bhat and Bernstein, 1997,
Bhat and Bernstein, 2005] study this property for the case of a ordinary differential equation (2.1) with
a continuous vector field f . On the other hand, the works of [Nakamura et al., 2002, Levant, 2005a,
Bernuau et al., 2013a] extend that results for a differential inclusion (2.2) with a set-valued map F .
The following theorem was taken from [Nakamura et al., 2002] and it can be seen as a generalization
of all other results.
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Theorem 2.8. [Nakamura et al., 2002]. Assume that the differential inclusion (2.2) is r-homogeneous
of degree ν and strongly asymptotically stable at origin. Then it is

• globally finite-time stable at the origin if ν < 0

• globally exponentially stable at the origin if ν = 0

• globally fixed-time stable w.r.t. a unit ball Br(1) if ν > 0.

The finite-time convergence is associated with the lack of Lipschitz continuity of r-homogeneous
vector fields of negative degree in the origin.

Corollary 2.2. [Bhat and Bernstein, 1997]. Let f1, . . . , fp be continuous r-homogeneous vector fields
with degree ν1 < ν2 < . . . < νp and denote f = f1 + f2 + . . .+ fp. Moreover, assume that f(0) = 0.
If the origin is globally asymptotically stable under f1 then the origin is locally asymptotically stable
under f . Moreover, if the origin is globally finite-time stable under f1 then the origin is locally finite-
time stable under f .

Roughly speaking, the last results implies that dynamics with a smaller homogeneity degree dom-
inate near to the origin.

2.5 Sliding mode control

Sliding Mode Control (SMC) technique is one of the main tools to robust control design. In theory, this
kind of controllers are able to ensure finite-time convergence for system’s trajectories to zero even in
the presence of non-vanishing, bounded and matched disturbances [Utkin, 1992, Shtessel et al., 2014].

Consider the second order system

ẋ1 = x2 ,
ẋ2 = φ(t) + u ,

(2.11)

where x1 and x2 are the states, u is the control input and φ is a bounded disturbance, i.e., |φ(t)| ≤ L
with a known upper-bound L > 0.

Basically, the idea of SMC design consists in introduced a nominal dynamics for the system (2.11),
for example a linear time-invariant differential equation

ẋ1 + cx1 = 0, c > 0. (2.12)

It can be readily seen that the nominal dynamics (2.12) is exponentially stable at the origin. Let’s
introduce the variable

σ = x2 + cx1, c > 0, (2.13)

in the state space of the system (2.11), such that, if we drive the variable σ to zero in finite-time then
the system (2.11) collapses to the nominal dynamics (2.12) and exponential stability of the states x1
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and x2 is guaranteed even in presence of the perturbation φ. For this task we can design a suitable
control law like the sign function:

ū = −Ksign(σ), K > 0. (2.14)

Let us proof the stability of the system (2.11) in closed loop with the proposed control scheme. First,
from (2.11) and (2.13), the dynamics of σ is given by

σ̇ = cx2 + φ(t) + u.

Now, considering ū = −cx2 + ū = −cx2 −Ksign(σ) we obtain

σ̇ = −Ksign(σ) + φ(t).

The last differential equation can be associated with the differential inclusion

σ̇ ∈ − [−K,K] + [−L,L] .

Clearly, this differential inclusion is asymptotically stable at the origin forK > L, and r-homogeneous
of degree ν = −1 with weight r = 1. Thus, from Theorem 2.8, finite-time convergence of the variable
σ to zero is guaranteed despite the perturbation term φ (see [Shtessel et al., 2014] for more details
about SMC design).

Definition 2.7. [Shtessel et al., 2014]. The variable (2.13) is called a sliding variable.

Definition 2.8. [Shtessel et al., 2014]. Equations (2.12) and (2.13) rewritten in a form

σ = x2 + cx1 = 0, c > 0,

correspond to a straight line in the state space of the system (2.11) and it is referred to as a sliding
surface.

Definition 2.9. [Shtessel et al., 2014]. The control u that drives the system’s states to a sliding surface
in a finite-time Ts, and keeps them on the surface thereafter in the presence of bounded disturbances,
is called a sliding mode controller. The behavior of the system’s trajectories in the interval of time
[0, Ts) is called the reaching phase and an ideal sliding mode is said to be taking place in the system’s
trajectories for all t > Ts.

Note that the previous case correspond to the so-called first-order sliding mode, where the sliding
variable has a relative degree one. Likely, all these definition can be extended to sliding variable of
higher relative degree through the concept of Higher-Order Sliding Mode (HOSM) [Levant, 1993,
Levant, 2003b, Shtessel et al., 2014, Fridman et al., 2015, Fridman and Levant., 2002].

From [Fridman et al., 2015], the sliding mode controller can be sorted out in five generations as it
is briefly described as follows:
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First generation: Conventional Sliding Modes

First-order sliding mode controllers (FOSMC) was introduced by [Utkin, 1992] (the first version in
English). There, a two-step procedure for FOSMC design was establish: I) sliding surface design; II)
selection of a discontinuous (relay or unit) controller ensuring the sliding mode.

In theory, this controllers are able to provide an exact compensation (insensitivity) of bounded
matched disturbances, and finite-time convergence of the system trajectories to a sliding surface.

However, the FOSMC has some disadvantages like the generation of a discontinuous control signal
which causes the undesired effect of chattering (high frequency oscillation in the steady state of the
system’s trajectories), the sliding surface converges to zero in finite-time but the states variables do so
asymptotically, and the sliding surface is restricted to have relative degree one w.r.t. the control input,
hence, high-order derivatives of the state variables are required for the sliding surface design.

Second generation: Second-Order Sliding Modes

The controllers of this generation ensure finite-time convergence to second-order sliding modes, that
is, for systems with relative degree two the output and its first derivative are nullified in finite-time in
spite of the presence of bounded disturbances [Levant, 1993].

These controllers achieve quadratic and linear precision of convergence w.r.t. the sampling step for
the sliding output and its first time-derivative, respectively, [Levant, 1993]. In addition, in the presence
of fast actuator in control systems, quadratic precision for the sliding output and linear precision
for the sliding output’s derivative are ensured w.r.t. the actuator’s time-constant [Boiko et al., 2007,
Levant and Fridman, 2010].

The Twisting Algorithm [Emel’Yanov et al., 1986] and the Terminal Algorithm [Wu et al., 1998,
Feng et al., 2002] belong to this generation of sliding mode controllers.

However, the control action is still discontinuous and the undesired chattering arise.

Third generation: the Super-Twisting algorithm

The Super-Twisting (STA) controller [Levant, 1993]:

u = −k1dσc
1
2 + z, ż = −k2dσc0,

where σ is a sliding output of relative degree one w.r.t the control input, is able to provide finite-time
convergence to second-order sliding modes despite the presence of perturbations with a bounded first
derivative, e.i., σ = σ̇ = 0 for all t ≥ Ts without the usage of σ̇.

The main advantages of this algorithm are the theoretically exact compensation of disturbances
with a bounded first derivative (but they do not need to be bounded), and the generation of a contin-
uous control signal, which offers a substantially chattering attenuation (but not its complete removal
[Boiko and Fridman, 2005]).

Another interesting feature of the STA is that it can be used to construct a ”robust exact” sliding
mode differentiator [Levant, 1998] in the form

˙̂x1 = −k1dx̂− fc
1
2 + x̂2, ˙̂x2 = −k2dx̂− fc0,
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where f is the signal to be differentiated and it is assumed that |f̈ | ≤ L for some known constant L.
For an appropriated selection of the gains k1 and k2, the convergence properties of the STA ensure
that f − x̂1 = ḟ − x̂2 = 0 after a finite-time. Thus, x̂2 is an exact estimation of the derivative ḟ in
the absence of noise and sampling, and the best possible approximation under uncertainty conditions
[Levant, 1993].

The disadvantages of this controller include that: for systems with relative degree higher than one,
the design of a sliding surface is still needed. Hence, the sliding variable is nullified in finite-time but
the states converge to the origin asymptotically.

Forth generation: Arbitrary Order Sliding Mode Controllers

For dynamical systems affected by bounded Lebesgue measurable perturbations and with an output
of arbitrary relative degree r w.r.t. the control input, the HOSM controllers are able to provide finite-
time convergence to zero of the output σ and its derivatives up to order r − 1, e.i., σ = σ̇ = . . . =
σ(r−1) = 0. This controllers warranty precision of r − th order w.r.t sampling step and fast parasitic
dynamics [Levant, 2003a, Levant and Fridman, 2010]. In addition, the sliding surface design is no
longer needed.

The Nested HOSM Algorithm [Levant, 2001] was the first controller belonging to this generation.
This controller uses information from σ, σ̇, . . . , σ(r−1) and it is constructed by combining the relay
controller with hierarchical terminal sliding modes [Wu et al., 1998] in a recursive way, generalizing
the last one for higher-order systems.

However, this algorithm produces discontinuous control signal and the effect of chattering is still
arising. Another example of an algorithm of this generation is the so-called Quasi-continuous HOSM
controller [Levant, 2005b], which is continuous everywhere except at the sliding set σ = σ̇ = . . . =
σ(r−1) = 0. In practice, the last condition is rarely achieve due to the non-idealities (noise, delays,
discretization, etc.) in the control system hence the control law remains continuous. Thus, this allows
a substantially reduction of the chattering.

Moreover, an arbitrary order differentiator based on HOSM was introduced by [Levant, 2003a,
Levant, 2005a] to estimate the k − 1 consecutive derivatives of a signal f , exactly and in finite-time,
under ideal conditions. Whereas, in presence of measurement noise or discretization, this differentiator
provides the best possible asymptotic accuracy for the estimations [Levant, 1993]. In both cases, with
the unique information of the upper-bound L for |f (k)|.

Fifth generation: Continuous Arbitrary Order Sliding Mode Controllers

For dynamical systems affected by non-vanishing perturbations with a bounded first derivative, the
continuous HOSM controllers are able to provide finite-time convergence to (r + 1) − th sliding set
Πr = {σ = σ̇ = . . . = σ(r) = 0}, i.e., the output σ, of arbitrary relative degree r w.r.t. the control
input, and its derivatives up to order r are nullified in finite-time.

There are reported in the literature many continuous HOSM controllers, which can be seen as gen-
eralizations of the Super-Twisting Algorithm for higher-order systems. Four types of such controllers
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can be distinguished:

• Continuous Terminal Sliding Mode Controllers introduced by [Kamal et al., 2016] (see also
[Fridman et al., 2015]). For arbitrary order systems, these controllers are performed by the first-
order Super-Twisting with a terminal sliding surface. This surface is given by a r-homogeneous
polynomial of the states with an appropriated degree and weights to provide finite-time conver-
gence.

• Higher Order Super-Twisting presented by [Laghrouche et al., 2017]. For a perturbed chain of
n-integrators, this controller is based on a nominal homogeneous controller and its associated
Lyapunov function (LF). The integral action depends on all plant’s states, and it is of quasi-
continuous type.

• Discontinuous Integral Control given by [Zamora et al., 2013, Moreno, 2016, Moreno, 2018]
for second-order systems, and [Mercado-Uribe and Moreno, 2020] for arbitrary order systems.
This algorithm is performed by a memoryless, homogeneous and nonlinear state feedback, with
the addition of a discontinuous integral term, which is a sign function of the output variable or
of a homogeneous polynomial of the state variables.

• Continuous Twisting Algorithm introduced by [Torres-González et al., 2017] for second-order
system, and by [Mendoza-Avila et al., 2020b] for third-order systems. This algorithms can be
seen as a memoryless, homogeneous, nonlinear state feedback plus a discontinuous integral
extension consisting of a linear combination of sign functions of all system coordinates. For the
case of second-order, this term contains the sign of the output plus sign of its derivative similar
to the Twisting Algorithm.

The HOSM controllers produce a continuous control signal which attenuates the chattering, sub-
stantially. Moreover, they achieve precision of (r+ 1)− th order w.r.t sampling step and fast parasitic
dynamics. In addition, the sliding surface design is not longer needed.



Chapter 3

Converse theorems and numerical
construction of Lyapunov functions for a
class of Sliding-Mode algorithms

The Lyapunov function (LF) method is one of the main approaches to analyze the stability of dy-
namical systems [Bacciotti and Rosier, 2005, Zubov, 1964]. For linear systems, the design of LF has
already been widely studied [Bacciotti and Rosier, 2005]. In the case of nonlinear systems, a general
methodology to design LF is still an open problem. However, several converse Lyapunov theorems
have been developed to demonstrate the existence of a LF for certain classes of nonlinear stable sys-
tems [Kurzweil, 1963, Massera, 1949, Persidskii, 1937, Yoshizawa et al., 1955].

On the other hand, [Clarke et al., 1998] presents the construction of a smooth LF for Filippov dif-
ferential inclusions generalizing the results of [Kurzweil, 1963], which is an extension of the results
of [Massera, 1949] for the case of smooth vector fields. A remarkable fact in [Clarke et al., 1998] is
that only the upper semi-continuous behavior of the Filippov inclusion is required for the existence
of a smooth LF for. Moreover, [Rosier, 1999] presents other inverse Lyapunov theorem for discon-
tinuous systems, where a smooth LF is provided and Lyapunov and Lagrange stabilities are stud-
ied. The counterpart of the work in [Clarke et al., 1998] for discrete-time systems was developed by
[Kellett and Teel, 2004], where the existence of smooth LF for robust globally asymptotically stable
difference inclusions was proven.

The homogeneity has been found advantageous for the design of LF [Zubov, 1964, Rosier, 1992].
For homogeneous systems of positive degree, in [Efimov et al., 2018] several explicit formulas of ho-
mogeneous LF are provided based on the converse theorems of [Massera, 1949] and [Persidskii, 1937].
Moreover, they give a methodology for numerical construction of such functions. With a different ap-
proach, [Sanchez and Moreno, 2019, Sánchez and Moreno, 2016] use generalized homogeneous poly-
nomials as LF for a class of homogeneous systems including negative homogeneity degree and dis-
continuous ones. On the other hand, [Nakamura et al., 2002] unifies the converse theorems presented
by [Clarke et al., 1998] and [Rosier, 1999] into a simple and elegant framework with posterior con-
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struction of a homogeneous LF associated with a homogeneous differential inclusion. Such a con-
verse theorem was generalized by [Tuna and Teel, 2006] for homogeneous hybrid systems covering
the discrete-time case as well.

Many examples of homogeneous and discontinuous systems are found in the family of Higher-
Order Sliding Mode (HOSM) algorithms [Shtessel et al., 2014], and several approaches of LF design
have been developed for particular cases of them. For instance, generalized polynomial LF for homo-
geneous HOSM algorithms are presented by [Sanchez and Moreno, 2019, Sánchez and Moreno, 2016].
On the other hand, [Moreno and Osorio, 2012] provide a family of strict LF for the Super-Twisting Al-
gorithm by means of quadratic forms. Moreover, [Polyakov and Poznyak, 2009] introduced a LF for
the Twisting Algorithm based on the method of Zubov. Furthermore, a unified LF for second order
sliding mode control systems is presented by [Polyakov and Poznyak, 2012]. For a class of HOSM
described by homogeneous and piecewise continuous vector fields, [Sánchez and Moreno, 2012] (see
also [Sánchez and Moreno, 2014]) provided a constructive method to design homogeneous LF by in-
tegrating a positive definite function along the whole trajectories of the system. The latter method
allows the design of a LF for Twisting and Terminal algorithms but its extension to a broader class of
systems is complicated.

Despite the number of papers in the literature related to converse Lyapunov theorems for homoge-
neous and discontinuous systems, only the existence of the LF is proven in most of them under some
restrictions. Contrarily, the present chapter provides two converse Lyapunov theorem with explicit
formulas of homogeneous and Lipschitz continuous LF generalizing the results of [Kurzweil, 1963,
Massera, 1949, Persidskii, 1937] and [Yoshizawa et al., 1955] for discontinuous homogeneous sys-
tems. Moreover, our results extend the methodology of [Efimov et al., 2018] of numerical construc-
tion of homogeneous LF to a class of discontinuous and homogeneous systems of negative degree.
Both previous contribution establish a new framework to the numerical design of homogeneous and
Lipschitz continuous LF for a wide class of HOSM. All the work presented here is already published
in [Mendoza-Avila et al., 2021].

The rest of the chapter has the following structure. In Section 3.1, some useful definitions and
preparatory results are presented. Section 3.2 contains the converse theorems and LF design for homo-
geneous discontinuous systems. Section 3.3 describes the methodology for a numerical construction
of a LF for homogeneous discontinuous systems. In Section 3.4, the proposed methodology is applied
to the numerical design of a LF for Twisting and Terminal algorithms. Finally, the conclusions are
given in Section 3.5.

3.1 Preliminaries

Following [Filippov, 1988] (see also [Cortes, 2008]), a discontinuous vector field f : Rn → Rn is
called piecewise continuous if there exist a finite number of disjoint, open and connected sets Di ⊂
Rn; i = 1, . . . ,m whose closures D̄i cover Rn, i.e., Rn = ∪mi=1D̄i, such that, for all i = 1, . . . ,m,
the vector field is continuous on Di.
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Consider the system
ẋ(t) = f(x(t)), t ∈ R+, (3.1)

where x(t) ∈ Rn is the state and f : Rn → Rn is a piecewise continuous vector field with an
equilibrium point at the origin, i.e., f(0) = 0. In the sequel, we will sometimes omit the time variable
in x(t) and just write x.

Let S be the set of points where f is discontinuous, such that S is equal to the union of the
boundaries of the sets Di, i.e., S = ∪mi=1∂(Di). Note that S has measure zero.

For a piecewise continuous vector field f : Rn → Rn, we can define a Filippov set-valued map

F (x) = c̄o

{
lim
i→∞

f(xi) : xi → x, xi /∈ S
}
, ∀x ∈ Rn

where c̄o denotes the convex closure of a set. By its definition, the set F (x) is non-empty, compact
and convex for all x ∈ Rn and the set-valued function F is upper semi-continuous [Filippov, 1988,
Cortes, 2008].

For any initial condition x0 ∈ Rn and t ∈ [0, t1] ⊂ R+ with t1 > 0, a Filippov solution of
the piecewise continuous system (3.1) is an absolutely continuous functions χ : [0, t1] × Rn → Rn
satisfying the inclusion χ̇(t, x0) ∈ F (χ(t, x0)) for almost all t ∈ [0, t1]. A sufficient condition for
uniqueness of solutions of a piecewise continuous system is given as follows

Proposition 3.1. [Filippov, 1988]. Let f : Rn → Rn be a piecewise continuous vector field, with
Rn = D̄1∪D̄2 for some disjoint, open and connected setsD1, D2 ⊂ Rn. Let S = ∂(D1) = ∂(D2) be
the set of points at which f is discontinuous and assume that S is a C2-manifold. Moreover, assume
that for i = 1, 2, the restriction of f to Di admits a continuous extension to the closure D̄i denoted by
f|D̄i , which is continuously differentiable on Di and f|D̄1

− f|D̄2
is continuously differentiable on S.

If for each x ∈ S, either f|D̄1
(x) points into D2 or f|D̄2

(x) points into D1, then χ(t, x0) is the unique
Filippov solution of (3.1) starting from any initial condition x0 ∈ Rn.

It is easy to check that the number of partitions Di ⊂ Rn; i = 1, . . . ,m can be extended
to any arbitrary finite number m ≥ 2. Roughly speaking, the uniqueness of solutions on each set
Di is guaranteed by the continuous differentiability of f on Di while the assumption of continuous
differentiability of f|D̄i − f|D̄j along S, with i 6= j and i, j ∈ [1,m], guarantees that the uniqueness is
not disrupted by the discontinuity [Cortes, 2008].

At the points belonging to S, the Filippov solution of the piecewise continuous system (3.1) can
exhibit different behaviors. Suppose that x ∈ S belongs to the boundary of just two sets, i.e., x ∈
∂(Di) ∩ ∂(Dj), for some i, j ∈ [1,m], but x /∈ ∂(Dk), for all k ∈ [1,m] \ {i, j}. First, if all
vectors belonging to F (x) point into Di (respectively, Dj), then a Filippov solution that reaches S at
x continues its motion in Di (respectively Dj). Second, if a vector in F (x) is tangent to S, then either
all Filippov solutions that start at x leave S immediately, or there exist Filippov solutions that reach
the set S at x and slide on S afterwards, which is called sliding motions [Cortes, 2008].

Consider the following hypothesis about the system (3.1).
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Assumption 3.1. Let the system (3.1) be r-homogeneous of degree ν < 0 and be endowed with the
property of uniqueness of Filippov solutions in Rn \ {0} with no sliding motion on Rn except at the
origin. Furthermore, let f be discontinuous only on a set of measure zero S ⊆

⋃m
i=1 ∂Di for disjoint,

open and connected setsDi ⊂ Rn, i = 1, . . . ,m, wherem > 0 is a finite integer, whose closures cover
Rn, i.e., Rn =

⋃m
i=1 D̄i. Moreover, on each D̄i with i = 1, . . . ,m, f admits a continuous projection

f|D̄i , which is locally Lipschitz continuous onDi, and if x ∈ ∂Di∩∂Dj ⊂ S for i 6= j ∈ {1, . . . ,m},
then either f|D̄i(x) points into Dj or f|D̄j (x) points into Di.

Some examples of algorithms satisfying Assumption 3.1 are the twisting algorithm, the terminal
algorithm (for a special selection of the controller gains β2 > 2α the trajectories of this algorithm
behave in twisting mode, hence, they exhibit sliding mode only at the origin), or the quasi-continuous
controller, which belong to the family of HOSM [Shtessel et al., 2014].

Under Assumption 3.1, the solutions of the system (3.1) admit a local Lipschitz continuity property
w.r.t. initial conditions on a bounded interval of time:

Lemma 3.1. [Mendoza-Avila et al., 2021]. Let Assumption 3.1 be satisfied and the system (3.1) be
globally finite-time stable, then for any q > 1 there is LSr(1),T̄q(1) > 0 such that for the solutions of
(3.1)

‖χ(t, x1)− χ(t, x2)‖ ≤ LSr(1),T̄q(1)‖x1 − x2‖

for any x1, x2 ∈ Sr(1) and all t ∈ [0, T̄q(1)).

It can be seen that under Assumption 3.1 the continuous dependence of the trajectories w.r.t. the
initial conditions follows from the existence of Lipschitz continuous projections f|D̄i of the vector
field f , which cover the whole state space, and the absence of sliding motion outside the origin. The
proof of Lemma 3.1 is provides in Section A.1 of Appendix A.

For a r-homogeneous system (3.1) of degree ν, if it is asymptotically stable at origin, then there
exists a smooth and r-homogeneous LF V : Rn → R+ of degree µ > max{0,−ν} satisfying

a‖x‖µr ≤ V (x) ≤ b‖x‖µr , ∀x ∈ Rn, (3.2)

sup
d∈F (x)

D+V (x)d ≤ −cV 1+ ν
µ (x), ∀x ∈ Rn, (3.3)

for some 0 < a ≤ b and c > 0 [Zubov, 1964, Bernuau et al., 2013a]. Then, for any x0 ∈ Rn, the
trajectories of the system (3.1) are bounded by

‖χ(t, x0)‖r ≤ β(‖x0‖r, t) ∀t ≥ 0, (3.4)

where

β(s, t) =


((

b
a

)− ν
µ s−ν + νca

ν
µ

µ t

)− 1
ν

t < −µb−
ν
µ s−ν

νc

0 t ≥ −µb
− νµ s−ν

νc

ν < 0. (3.5)
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is aKL-function, and it is a generic parametrization of the upper bound β(‖x0‖r, t) in 3.4 for all t ≥ 0
in homogeneous systems of negative degree [Efimov et al., 2018].

On the other hand, following the work in [Efimov et al., 2018] the speed of convergence of the
trajectories of r-homogeneous systems can be quantified as follows:

Definition 3.1. Assume the system (3.1) is asymptotically stable. For q > 1, define the map Tq :
Rn → R+ as the first time the norm of the solution becomes q times smaller than the norm of the
initial condition:

‖χ(Tq(x0), x0)‖r = q−1‖x0‖r.

From its definition, it is easily seen that Tq is r-homogeneous of degree −ν:

Tq(Λr(λ)x0) = λ−νTq(x0), ∀x0 ∈ Rn, ∀λ > 0.

Definition 3.2. Assume the system (3.1) is asymptotically stable. For q > 1, define a continuous
function T̄q : Rn → R+ as the time from which the solution remains in the ball with a radius q times
smaller than the norm of the initial condition:

‖χ(t, x0)‖r ≤ q−1‖x0‖r, ∀t ≥ T̄q(x0).

Moreover, define a continuous function T̄max
q : R+ → R+ as

T̄max
q (‖x0‖r) = sup

x0∈Sr(s)
T̄q(x0).

Note that T̄q is also r-homogeneous of degree −ν:

T̄q(Λr(λ)x0) = λ−ν T̄q(x0), ∀x0 ∈ Rn, ∀λ > 0.

Moreover, T̄max
q is uniform on the sphere Sr(s), and taking into account (3.5):

T̄max
q (‖x0‖r) =

(
b
a

)− ν
µ − qν

− ν
µca

ν
µ

‖x0‖−νr ; ν < 0. (3.6)

3.2 Converse Theorems

The results of Massera [Massera, 1949] and Kurzweil [Kurzweil, 1963] provide the design of a LF as
the integral of aK∞ function depending on the system’s trajectories, while Persidskii [Persidskii, 1937]
and Yoshizawa [Yoshizawa et al., 1955] propose the design of LF based on the supremum of a K∞
function of the system’s solutions. In this section, these classical converse Lyapunov theorems are
generalized for r-homogeneous discontinuous systems satisfying Assumption 3.1. Also, explicit for-
mulas of r-homogeneous and Lipschitz continuous LF are provided.
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3.2.1 Design based on the integral of the trajectories

Theorem 3.1. Let the system (3.1) satisfy Assumption 3.1. Then the following is equivalent:

(i) The discontinuous system (3.1) is globally finite-time stable at the origin.

(ii) For all x ∈ Rn and µ ≥ 1, there exists q > 1 such that the function

U(x) =

∫ Tmax
q (‖x‖r)

0
‖χ(t, x)‖µr dt, (3.7)

where Tmax
q (s) = supx∈Sr(s) Tq(x) and Tq is given by Definition 3.1, is locally Lipschitz con-

tinuous on Rn \ {0}, r-homogeneous of degree µ− ν, and satisfies

Tmin
q q−µ‖x‖µ−νr ≤ U(x) ≤ Tmax

q (1)
b

a
‖x‖µ−νr , ∀x ∈ Rn,

D+U(x)F (x) < 0, for a.a. x ∈ Rn \ {0},

where Tmin
q = infx∈Sr(1) Tq(x).

The proof of Theorem 3.1 is presented in Section A.2 of Appendix A.

Remark 3.1. Note that when q → ∞ the time Tq (x) becomes the convergence time, and the LF
(3.7) proposed by Theorem 3.1 corresponds to the case of [Massera, 1949], where the trajectory is
integrated for all the time until it reaches the origin.

3.2.2 Design based on the supremum of the trajectories

First, let % > 0 be a real parameter satisfying |%ν| > 1. Define a function k : R+ × Rn → R+ by

k(t, x) =
‖χ(t, x)‖%νr t% + κ1

‖χ(t, x)‖%νr t% + κ2
, (3.8)

for given parameters 0 < κ1 < κ2 < +∞.

Theorem 3.2. Let the system (3.1) satisfy Assumption 3.1. Then, the following claims are equivalent:

(i) The discontinuous system (3.1) is globally finite-time stable at the origin.

(ii) For all x ∈ Rn, there exists q > 1 such that

V (x) = sup
t∈[0,Tq(x)]

{‖χ(t, x)‖r k(t, x)}, (3.9)

where Tq is given in Definition 3.1, is a locally Lipschitz continuous on Rn\{0} and r–homogeneous
function of degree 1 satisfying

κ1

κ2
‖x‖r ≤ V (x) ≤

(
b

a

) 1
µ

‖x‖r for all x ∈ Rn,

D+V (x)f(x) < 0 for a.a. x ∈ Rn \ {0}.
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The proof of Theorem 3.2 is provided in Section A.3 of Appendix A.
Remark 3.2. Note that when q →∞ the time Tq (x) becomes the convergence time, and the LF (3.9)
proposed by Theorem 3.2 corresponds to the case of [Persidskii, 1937], where the supremum of the
trajectories is looked for all the time until the origin is reached.

Both proposals of computing the LF (3.7) and (3.9) up to the times Tmax
q (‖x‖r) and Tq (x),

respectively, can be readily applied for systems with a positive homogeneity degree, which is studied
by [Efimov et al., 2018] but using T̄q (‖x‖r). However, the time Tq (x) (and Tmax

q (‖x‖r) defined as
the supremum of Tq (x) for all x in the same sphere) greatly simplifies the calculations because it is
easier to identify when the trajectories χ (t, x) reach the sphere of radius 1

q ‖x‖r for the first time, in
contrast to the time T̄q (‖x‖r) from which the trajectories χ (t, x) never left the ball of radius 1

q ‖x‖r.

3.3 Numerical design

The LF provided by Theorems 3.1 and 3.2 can be numerically realized by following the methodology
proposed by [Efimov et al., 2018].

First of all, due to homogeneity properties of the LF (3.7) and (3.9), for any x ∈ Rn there is a
unique y ∈ Sr(1) such that x = Λr(‖x‖r)y and U(x) = ‖x‖ρ0r U(y), where ρ0 is the homogeneity
degree of the LF. Thus, it is enough to approximate the values of the LF on the unit sphere, and later
recover its values globally applying the dilation Λr(‖x‖r).

The methodology of [Efimov et al., 2018], for numerical construction of r-homogeneous LF, con-
sists of two steps:

1. Point-wise calculation of some values of the LF, uniformly distributed on the unit sphere Sr(1),
and

2. Interpolation of the LF for any y ∈ Sr(1).

Although this methodology was developed by considering systems with positive homogeneity
degree, an extension to the case of systems with negative homogeneity degree is straight forward
because the LF provided by Theorems 3.1 and 3.2 satisfy the properties of homogeneity and Lipschitz
continuity required by the proposal of [Efimov et al., 2018]. This extension is developed as follows.

Consider the explicit Euler method [Butcher, 2003]. Recall, from Assumptions 3.1, χ(t, x0) is the
unique solution of system (3.1) with initial condition x0. So, for a given fixed sampling step h > 0,
the discrete trajectory χh(ti, x0) denotes an approximation at instants ti = ih, i = 1, 2, 3, . . . of the
solution χ(t, x0).

For N > 0, let the points ξj ∈ Sr(1) (with j = 1, . . . , N ) form a uniform grid on the unit sphere.
Then, considering the LF (3.7) based on the integral of the system’s trajectories, define

Uhj = h
Jmax∑
i=1

‖χh(ti, ξj)‖µr , (3.10)

Jmax = arg inf
i≥0

sup
1≤j≤N

‖χh(ti, ξj)‖r ≤ q
−1.
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Now, considering the LF (3.9) based on the supremum of the system’s trajectories, define

V h
j = sup

i∈[0,J ]
{‖χh(ti, ξj)‖r k(ti, ξj)}, (3.11)

J = arg inf
i≥0
‖χh(ti, ξj)‖r ≤ q−1,

and

kj(ti, ξj) =
‖χh(ti, ξj)‖%νr t%i + κ1

‖χh(ti, ξj)‖%νr t%i + κ2
,

where % > 0 such that |%ν| > 1.

Remark 3.3. The parameter J in the proposal of [Efimov et al., 2018] is taken such that ‖χh(ti, ξj)‖r ≤
q−1 holds for all 1 ≤ j ≤ N and all i ≥ J . However, in that case, it is not clear how to find J at
least that the whole trajectory is computed until it converges to the origin. In contrast, our proposal
simplifies the calculation of J because it is possible to determine the point when ‖χh(ti, ξj)‖r ≤ q−1

holds for the first time and take Jmax as the largest J for the initial conditions ξj ∈ Sr(1) (with
j = 1, . . . , N ). Moreover, the definition of J presented here reduces the data load and make the
numerical design of LF more efficient than the original approach of [Efimov et al., 2018]. Pleasantly,
our proposal can be used for systems with positive homogeneity degree, as well.

Following proposition shows that homogeneous LF possess a kind of robustness w.r.t. small de-
formations under some restrictions.

Proposition 3.2. (Efimov et al. [Efimov et al., 2018]). For a locally Lipschitz continuous and r-
homogeneous function V of degree µ > −ν, assume that the estimates (3.2) and (3.3) are satisfied
with constants 0 < a ≤ b and c > 0. Let ε : Rn → R be a locally Lipschitz continuous and r-
homogeneous function of degree µ, such that, −a < ε and c > ε̄, where ε = infy∈Sr(1) ε(y) and
ε̄ = supy∈Sr(1)D

+ε(y)f(y). Then V ′(x) = V (x) + ε(x) is a locally Lipschitz continuous and r-
homogeneous LF for the system (3.1).

The following corollary shows that there exist some functions Ũ and Ṽ which coincides in point-
wise values with the discrete functions (3.10) and (3.11), respectively. Hence, under Proposition 3.2,
they are also LF for the system (3.1).

Corollary 3.1. Let Assumption 3.1 be satisfied by the system (3.1). Then there exist q > 1, N > 0
and h > 0, such that,

Uhj = Ũ(ξj) and V h
j = Ṽ (ξj),

for all j = 1, . . . , N , where Ũ : Rn → R+ and Ṽ : Rn → R+ are locally Lipschitz continuous and
r-homogeneous LF of degree µ− ν and 1, respectively, for the system (3.1).

Proof. Since all conditions of Theorems 3.1 and 3.2 are satisfied, for q > 1 sufficiently large a LF
for the system (3.1) can be selected in the same form of U given by (3.7) or V given by (3.9). By the
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properties of the (explicit) Euler method [Butcher, 2003], for a sufficiently large value of N > 0 and
a small enough h > 0 the inequalities

|Uhj − U(ξj)| < ε1, and |V h
j − V (ξj)| < ε2,

hold for any ε1, ε2 > 0 and all j = 1, . . . , N . From Proposition 3.2, a r-homogeneous LF possesses
certain robustness against small deformations. So, since the values of ε1, ε2 can be made arbitrarily
small by increasing N and decreasing h, if U in (3.7) and V in (3.9) are LF for the system (3.1), then
the same is true for a Ũ and Ṽ described in Corollary 3.1.

The next step is to make an interpolation of the points Uhj and V h
j in order to find the functions Ũ

and Ṽ , respectively. This procedure is described in [Efimov et al., 2018] as follows.
First, note that a homogeneous norm is any positive definite, Lipschitz continuous and homoge-

neous function of degree 1, such that, Sr(1) = Sn = {x ∈ Rn : ‖x‖ = 1} (e.g., an implicit definition
of a canonical homogeneous norm from [Polyakov et al., 2016] can be used); then for any x, y ∈ Sn,
let g(x, y) = arccos(x>y) denotes the geodesic distance on the unit sphere Sn.

Now, from the theory of radial basis function for interpolation on the sphere (see [Cheney, 1995,
Hubbert, 2002]), a continuous function p : [0, π] → R is (zonal) strictly positive definite on Sn if for
all distinct points ξj ∈ Sn with j = 1, . . . , N and for all N > 0, the matrix

ΠN = {p(g(ξi, ξj))}Ni,j=1

is positive definite. Then selecting a zonal strictly positive definite function p (several examples are
provided in [Cheney, 1995, Hubbert, 2002], e.g., p(s) = e−as

2
, p(s) = s3, etc.):

• There exists always θU ∈ RN such that Uhj = Ũ(ξj) for all j = 1, . . . , N where

Ũ(ξ) =
N∑
j=1

θU,jp(g(ξ, ξj)). (3.12)

where the vector θU is the solution of the equation ΓUN = ΠNθU ,where ΓUN = [Uh1 , . . . , U
h
N ]T ∈

RN .

• There exists always θV ∈ RN such that V h
j = Ṽ (ξj) for all j = 1, . . . , N where

Ṽ (ξ) =

N∑
j=1

θV,jp(g(ξ, ξj)). (3.13)

where the vector θV is the solution of the equation Γ VN = ΠNθV ,where Γ VN = [V h
1 , . . . , V

h
N ]T ∈

RN .

The matrix ΠN is non-singular, symmetric and positive definite thanks to the properties of the function
p. Some assumptions on p and ΠN are needed:
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Assumption 3.2. The function p(g(ξ, ξ0)) is locally Lipschitz continuous w.r.t. ξ for any ξ, ξ0 ∈ Sn.

Assumption 3.3. There exist α > 0 and % > 0 such that for any N > 0∥∥Π−1
N

∥∥
2
≤ %

N1+α

where ‖·‖2 is the induced matrix norm.

In [Efimov et al., 2018], it has been proven that a locally Lipschitz continuous and r-homogeneous
LF for r-homogeneous systems with positive degree is given, on the unit sphere, in the form of (3.12)
or (3.13). On the other hand, from the results of Corollary 3.1 and Theorems 3.1 and 3.2, the LF (3.7),
(3.9), (3.12) and (3.13) have the properties of boundedness, homogeneity and Lipschitz continuity
required by the proof of Theorem 3 in [Efimov et al., 2018]. Therefore, for a large enough N > 0
(i.e., a sufficiently dense grid on the unit sphere) and a small enough sampling step h > 0, (3.12)
appropriately approximates the LF (3.7) on Sr(1), whereas (3.13) appropriately approximates the LF
(3.9) on Sr(1), hence by the robustness of a homogeneous LF predicted by Proposition 3.2, it can
be concluded that (3.12) and (3.13) are projections on Sr(1) of LF for the system (3.1). Moreover,
as it was mentioned before, for any x ∈ Rn there is a unique ξ ∈ Sr(1) such that x = Λr(‖x‖r)ξ
and U(x) = ‖x‖ρ0r U(ξ), where ρ0 is the homogeneity degree of the LF. Consequently, the following
corollary is derived.

Corollary 3.2. Let Assumptions 3.1, 3.2 and 3.3 be satisfied. Then there exist q > 1, N > 0 and
h > 0 such that for any x ∈ Rn:

• A locally Lipschitz continuous and r-homogeneous of degree µ − ν LF for the system (3.1) is
given by

Ũ(x) = ‖x‖µ−νr Ũ(ξ) (3.14)

where Ũ is given by (3.12).

• A locally Lipschitz continuous and r-homogeneous of degree 1 LF for the system (3.1) is given
by

Ṽ (x) = ‖x‖rṼ (ξ) (3.15)

where Ṽ is given by (3.13).

The main drawback of the present procedure of numerical design of LF is the selection of the
parameters q > 1, N > 0 and h > 0. There is no way to determine a priori their suitable values yet.
Thus, the procedure should be repeated for different values of q > 1, N > 0, and h > 0 till obtaining
a desired LF.

Note that by construction, the functions (3.14) and (3.15) are positive definite, Lipschitz continu-
ous and r-homogeneous of the corresponding degree. To confirm that the methodology was success-
fully realized, the negative definiteness of the derivative of those LF has to be tested. By homogeneity
properties of the system (3.1) and the designed Lyaunov functions, the verification of the negative
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definiteness of the derivatives can be performed on the unit sphere Sr(1) only, that is, for any x ∈ Rn
there exists an unique y ∈ Sr(1) such that x = Λr(‖x‖r)y, then considering V as a r-homogeneous
and locally Lipschitz continuous LF:

D+V (x)F (x) = ‖x‖ρ0r D+V (y)F (y).

Thus, if D+V (y)F (y) < 0 then we have obtained a LF.
Usually, the design of LF is employed to evaluate the stability of a system. If we consider a system

satisfying Assumption 3.1 and the presented methodology returns a LF, then the asymptotic stability
of that system is guaranteed.

3.4 Examples of numerical design of Lyapunov functions

As it has been mentioned before, many HOSM algorithms satisfy Assumption 3.1, hence a LF like
(3.14) or (3.15) can be computed for them by following the methodology described in Section 3.3. In
the following two examples are provided: the Twisting Algorithm for the design based on the integral
of the trajectories and the (Nonsingular) Quasi-continuous Control Algorithm for the design based on
the supremum of the trajectories. Both algorithms are described in detail in [Shtessel et al., 2014].

3.4.1 Design based on the integral of the trajectories

Consider the Twisting Algorithm given by

ẋ1 = x2,
ẋ2 = −c1dx1c0 − c2dx2c0,

(3.16)

where x ∈ R2 is the state and c1, c2 ∈ R+ have to satisfy c1 > c2 to guarantee stability at the origin.
The system (3.16) is r-homogeneous of degree ν = −1 and weights r = [2, 1]. From Corollary 3.2
and considering the parameters and expressions:

q = 10, h = 0.01, a = 50, µ = 3, N = 50, c1 = 2, c2 = 1,

p(s) = e−as
2
, g(x, y) = arccos(x>y),

a LF for the system (3.16) is given by

Ũ(x) = ‖x‖µ−νr

N∑
j=1

θje
−a arccos2(ξ>ξj) (3.17)

where ξ ∈ Sr(1) such that x = Λr(‖x‖r)ξ and the points ξj ∈ Sr(1), with j = 1, . . . , N , form an
uniform grid on the unique sphere. Moreover, the vector θ is the solution of the equation ΓN = ΠNθ,
where ΠN = {e−a arccos2(ξ>i ξj)}Ni,j=1 and ΓN = [Uh1 , . . . , U

h
N ]T where Uhj are given by (3.10) with
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Figure 3.1: Results of numerical design of a LF for the system (3.16).
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µ = 3. Furthermore, the system’s trajectories χh(ti, ξj), with j = 1, . . . , N , are computed by using
the Euler method [Butcher, 2003] with h = 0.01.

Fig. 3.1 presents the results of the numerical design of a LF for the system (3.16), Fig. 3.1(a) shows
system’s trajectories where the red points are the initial data. Note that there is not sliding motion on
the interval of time where the trajectories were computed. Furthermore, Fig. 3.1(b) provides the values
of the designed LF (3.17) on the unit sphere. The red points represents the components of the vector
ΓN = [Uh1 , . . . , U

h
N ]T and the blue line represents the interpolation. Finally, a point-wise calculation

of the derivative of the LF is provided in Fig. (3.1(c)) depicted by the red marks and the dash-dot and
blue line is just a reference to joint the points and highlight the plot.

3.4.2 Design based on the supremum of the trajectories

Consider the (nonsingular) Quasi-continuous Control Algorithm given by

ẋ1 = x2,

ẋ2 = −k1
k2x1+dx2c2
k2|x1|+|x2|2

(3.18)

where x ∈ R2 is the state and k1, k2 > 0 are tunning parameters. The system (3.18) is r-homogeneous
of degree ν = −1 and weights r = [2, 1]. From Corollary 3.2 and considering the parameters and
expressions:

q = 3, h = 0.01, a = 50,

% = 2, κ1 = 1, κ2 = 2,

N = 50, k1 = 3, k2 = 5,

p(s) = e−as
2
, g(x, y) = arccos(x>y),

a LF for the system (3.18) is given by

Ṽ (x) = ‖x‖r
N∑
j=1

θje
−a arccos2(ξ>ξj) (3.19)

where ξ ∈ Sr(1) such that x = Λr(‖x‖r)ξ and the points ξj ∈ Sr(1), with j = 1, . . . , N , form an
uniform grid on the unique sphere. Moreover, the vector θ is the solution of the equation ΓN = ΠNθ,
where ΠN = {e−a arccos2(ξ>i ξj)}Ni,j=1 and ΓN = [V h

1 , . . . , V
h
N ]T where V h

j are given by (3.11) with
% = 2, κ1 = 1 and κ2 = 2. Furthermore, the system trajectories χh(ti, ξj), with j = 1, . . . , N , are
computed by using the Euler method [Butcher, 2003] with h = 0.01.

The numerical design of a LF for the system (3.18) is shown by Fig. 3.2. The system’s solutions
are presented in Fig. 3.2(a) where the red points are the initial conditions, note that they do not exhibit
sliding motion. Moreover, the values of the designed LF (3.19) on the unit sphere are depicted by Fig.
3.2(b), where the red points represents the components of the vector ΓN = [Uh1 , . . . , U

h
N ]T and the

blue line represents the interpolation. Finally, a point-wise calculation of the derivative of the LF is
provided in Fig. (3.2(c)) highlighted by the red marks and the dash-dot and blue line is just a reference
to joint the points.
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Figure 3.2: Results of numerical design of a LF for the system (3.18).
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3.5 Conclusion

This chapter presented two converse Lyapunov theorems for a class of discontinuous and homoge-
neous systems of negative degree, including some well-known HOSM algorithms. This results can
be seen as a generalization of classical results about LF design (such as the approaches of Kurzweil,
Massera, Persidskii, and Yoshizawa) to the considered class of systems. Moreover, explicit expres-
sions of the homogeneous and Lipschitz continuous LF were provided. However, the realization of
this LF requires the calculation of the system’s trajectories, which is a very difficult task for nonlinear
systems. Accordingly, a numerical methodology to construct LF is proposed under some technical as-
sumptions, which consist of two steps: first pointwise calculation of values of the the LF provided by
the converse theorems; second, interpolation of this points on the unit sphere. Both together, the con-
verse theorem and the numerical methodology, constitute a new framework for the numerical design
of homogeneous and Lipschitz continuous LF for a wide class of discontinuous HOSM algorithms as
it is illustrated by the examples.



Chapter 4

Analysis of stability of homogeneous
systems in presence of parasitic dynamics

Homogeneous controllers of negative degree posses an infinite gain near to the origin hence they are
able to provide finite-time convergence of the system trajectories to zero [Bhat and Bernstein, 1997,
Levant, 2005a, Boiko, 2020]. However, in presence of fast actuators this infinite gain produces the
so-called chattering: a high frequency oscillatory behavior of the system trajectories in steady-state.
Recently, the problems of reduction and analysis of chattering have attracted a lot of attention, see for
example [Fridman, 1999, Fridman, 2002, Levant, 2010, Seeber and Horn, 2017, Rosales et al., 2018,
Boiko, 2014b, Haimovich and De Battista, 2019, Banza et al., 2020].

Commonly, singularly perturbed models are used to justify the decomposition of interconnected
systems in the Main Dynamics (MD) and the Parasitic Dynamics (PD) (see the list of reference in
[Kokotovic et al., 1999]). Methods of stability analysis for smooth singularly perturbed systems are
based on the results of [Klimushchev and Krasovskii, 1961], where asymptotic stability of the inter-
connection is concluded from uniform exponential stability of the linearized systems. Relaxing that
assumption, [Saberi and Khalil, 1984] have addressed asymptotic and exponential stability by means
of quadratic-type Lyapunov Functions (LF) and estimates the domain of attraction in terms of the
upper bound of the Singular Perturbation Parameter (SPP). On the other hand, in the framework of
Input-to-State Stability (ISS), [Christofides and Teel, 1996] has studied the properties of smooth sin-
gularly perturbed systems providing a kind of ”total stability” under standard assumptions.

Despite the amount of publications on singular perturbations theory, those results do not cover the
general case of homogeneous systems. The reasons for this include that the homogeneous systems
can be non-smooth, the velocity of convergence of homogeneous systems is parametrized by their
Homogeneity Degree (HD), the homogeneous systems of negative degree usually exhibit chattering
in the presence of linear PD, and, the homogeneous systems of negative degree are faster around the
origin than any exponentially converging dynamics but they are slower in the large.

In order to fill this gap, this chapter presents a study of the stability of the interconnection of a
homogeneous MD and a homogeneous PD, with different HD’s, by means of concepts of singular per-
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turbations theory, Lyapunov methods, ISS properties and Small-Gain Theorem. This analysis requires
just continuity of the MD and the PD. The obtained results allow to conclude three kinds of stability
for the interconnection according to the HD:

• Global asymptotic stability (GAS) when the HD coincide and the SPP is sufficiently small.

• Practical GAS when the HD of the PD is greater than the HD of the MD (which also describes
ROD). The final bound of the trajectories is a function of the SPP and its size decreases for a
smaller SPP.

• Local asymptotic stability when the HD of the PD is smaller than the HD of the MD/ROD,
where the domain of attraction is a function of the SPP and its size increases with decreasing
the SPP.

Moreover, under the assumption that chattering arises in the steady state of the system trajectories,
the previous results are used to develop a new approach based on Lyapunov methods for estimation
of an upper-bound of chattering produced by finite-time convergent controllers in presence of a fast
actuator, which has been commonly studied in frequency domain, e.g., by using: describing function,
harmonic balance, equivalent gain, etc. [Boiko, 2009]. This new approach allows to show the rela-
tionship between the amplitude of chattering, the SPP ε, and the HD ν of the finite-time convergent
algorithm.

The rest of the chapter has the following structure. In Section 4.1 some useful definitions and
preliminaries results are presented. Section 4.2 contains the problem statement and the main result
of this work. In Section 4.3, some examples are provided in order to illustrate the different cases of
the main result. Furthermore, an study of chattering produced by finite-time convergent controllers
in presence of a fast actuator is introduced in Section 4.4. Finally, the conclusions are presented in
Section 4.5.

4.1 Preliminaries

4.1.1 Input-to-state stability

Consider the system
ẋ = f(x, u), (4.1)

where x ∈ Rn is the state vector and u ∈ Rm is an input. In addition, f : Rn+m → Rn ensures forward
existence and uniqueness of the system solutions at least locally in time, and f(0, 0) = 0. The next def-
initions and theorems were introduced by [Bernuau et al., 2013b, Dashkovskiy and Kosmykov, 2013,
Jiang et al., 1996].

Definition 4.1. The system (4.1) is said to be input-to-state practically stable (ISpS), if there exist a
class KL function β, a class K function γ and a constant c ≥ 0, such that, for any u ∈ L∞ and any
x0 ∈ Rn, the solution x(t) with initial condition x(0) = x0 satisfies

‖x(t)‖ ≤ max{β(‖x0‖, t), γ(‖u‖L∞), c} (4.2)
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for all t ≥ 0. The function γ is called nonlinear asymptotic gain. The system (4.1) is called ISS if
c = 0.

If u(t) = 0 for all t ≥ 0, then an ISpS system (4.1) is called practically GAS, and an ISS system
(4.1) is called GAS; if the estimate (4.2) is satisfied just for a bounded set of initial conditions x0, then
such a system is called locally ISpS (locally ISS, respectively) [Bacciotti and Rosier, 2005].

Definition 4.2. A smooth function V : Rn → R is called the ISpS-LF for system (4.1) if there exist
some c ≥ 0, α1, α2, α3 ∈ K∞ and χ ∈ K, such that, for all x ∈ Rn and u ∈ Rm

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), (4.3)

and
‖x‖ ≥ χ(max{‖u‖, c}) =⇒ ∂V

∂x f(x, u) ≤ −α3(‖x‖) (4.4)

hold. Moreover, if c = 0 then V is called an ISS-LF for the system (4.1).

Remark 4.1. The function γ(·) in (4.2) can be computed from the functions α1(·), α2(·) and χ(·). It
is given by

γ(s) = α−1
1 ◦ α2 ◦ χ(s). (4.5)

Theorem 4.1. The system (4.1) is ISS (ISpS) if it admits an ISS (ISpS) LF.

If the vector field f is locally Lipschitz continuous (at least outside the origin), then the existence
of an ISS (ISpS) LF is also a necessary condition for the ISS (ISpS) stability of the system (4.1)
[Lopez-Ramirez et al., 2020].

4.1.2 Input-to-state stability of interconnected systems

Consider the system

ẋ = f(x, y), (4.6)

ẏ = g(x, y, u), (4.7)

where x ∈ Rn, y ∈ Rm, u ∈ Rp and the origin x = y = u = 0 is an equilibrium point. The system
(4.6)-(4.7) can be seen as two interconnected systems where y is an input to the system (4.6) and x, u
are inputs to the system (4.7). Assume that both systems are ISpS w.r.t. their corresponding inputs.
Therefore, from condition (4.2) for all t ≥ 0:

‖x(t)‖ ≤ max{β1(‖x0‖, t), γ1(‖y‖L∞), c1}
‖y(t)‖ ≤ max{β2(‖y0‖, t), γ2(‖x‖L∞), γ3(‖u‖L∞), c2}

where x0 ∈ Rn and y0 ∈ Rm are the initial conditions for each variable, u ∈ L∞, β1, β2 ∈ KL and
γ1, γ2, γ3 ∈ K are some functions from the indicated classes.
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Theorem 4.2. [Dashkovskiy et al., 2010]. Let each system (4.6) and (4.7) be ISpS. If there exists some
c0 ≥ 0, such that,

γ1 ◦ γ2(s) < s, for all s > c0, (4.8)

then the interconnected system (4.6)-(4.7) is ISpS. Furthermore, if c0 = c1 = c2 = 0 then the system
is ISS.

The inequality (4.8) is commonly refered as the small-gain condition. In particular, if the nominal
system (4.6)-(4.7) is ISS then its solutions with u = 0 are GAS.

Roughly speaking, the Small-Gain Theorem establishes that the interconnected system (4.6)-(4.7)
is ISS, if the composite function γ1 ◦ γ2(·) is a simple contraction.

For the case of locally ISS systems, [Dashkovskiy and Rüffer, 2010] presents another version of
Theorem 4.2, where the small-gain condition (4.8) is replaced by

γ1 ◦ γ2(c3) < c3 and γ1 ◦ γ2(s) < s, (4.9)

for all 0 < s ≤ c3, and some c3 > 0. In this case, local ISS of the interconnected system (4.6)-(4.7) is
concluded.

4.2 Problem statement and main result

Consider the singularly perturbed system

ẋ = f(x, y), (4.10)

εẏ = g(x, y), (4.11)

where x ∈ Rn and y ∈ Rm are the state variables, ε > 0 is a small parameter (also called the SPP),
and f : Rn+m → Rn and g : Rn+m → Rm are continuous vector fields ensuring forward existence
and uniqueness of the trajectories. In the sequel, the system (4.10) is called the MD and the system
(4.11) is called the PD.

Moreover, for some vector of weights r and r̃ the vector fields f and g are (r, r̃)-homogeneous of
degree ν and µ, respectively, i.e.,

f(x, y) = λ−νΛ−1
r (λ)f(Λr(λ)x,Λr̃(λ)y) (4.12)

and,
g(x, y) = λ−µΛ−1

r̃ (λ)g(Λr(λ)x,Λr̃(λ)y). (4.13)

In consequence, note that f(0, 0) = 0 and g(0, 0) = 0.
Now, consider the following assumption:

Assumption 4.1. Consider the system (4.10)-(4.11):
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1. The equation g(x, y) = 0 has an isolated and continuously differentiable solution y = h(x)
defining an invariant manifold of system (4.11).

2. The Reduced-Order Dynamics (ROD)

˙̄x =f(x̄, h(x̄)), (4.14)

is GAS at the origin.

3. Defining z = y − h(x), the Boundary-Layer (BL)

dz
dτ = g(x, z + h(x)); τ = t

ε , (4.15)

is GAS at the origin, uniformly w.r.t. x. Moreover, there exists a smooth parametrized (r̃, r)-
homogeneous LF W (z, x) satisfying

W (Λr̃(λ)z,Λr(λ)x) = λιW (z, x), (4.16)

az‖z‖ιr̃ ≤W (z, x) ≤ āz‖z‖ιr̃, (4.17)
∂W (z,x)

∂z g(x, z + h(x)) ≤ −bz‖z‖µ+ι
r̃ , (4.18)

for all z ∈ Rm, x ∈ Rn and for some az, az, bz > 0, where ι > max{0,−µ} is the HD of W .

As a consequence of (4.13), the function h admits certain symmetry, i.e.,

h(Λr(λ)x) = Λr̃(λ)h(x),

and consequently, h(0) = 0. This implies that the ROD (4.14) is r-homogeneous of a degree ν, i.e.,
the ROD inherits the homogeneity properties of the MD.

Moreover, by Assumption 4.1, the ROD (4.14) is GAS at the origin and r- homogeneous of degree
ν, hence there exists a LF V (x) which satisfies

V (x) = λ−κV (Λr(λ)x), (4.19)

ax‖x‖κr ≤ V (x) ≤ āx‖x‖κr , (4.20)
∂V (x)
∂x f(x, h(x)) ≤ −bx‖x‖ν+κ

r , (4.21)

sup
‖x‖r≤1

‖∂V (x)
∂x ‖ ≤ cx, (4.22)

for all x ∈ Rn and for some ax, ax, bx, cx > 0, where κ > max{0,−ν} is the HD of V . On the other
hand, W (z, x) is a r̃-homogeneous LF for the system (4.15), in consequence, the inequalities

sup
‖ζ‖r̃≤1
‖ξ‖r≤1

∥∥∥∂W (ζ,ξ)
∂ζ

∥∥∥ ≤ cz, (4.23)

sup
‖ζ‖r̃≤1
‖ξ‖r≤1

∥∥∥∂W (ζ,ξ)
∂ξ

∥∥∥ ≤ dz, (4.24)
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hold, for some cz, dz > 0.
Furthermore, by the continuity of f(x, y) on the unit sphere, for any bx, cx and 0 < θ < 1, there

exists δ, such that, if ‖Λr̃(‖x‖−1
r )z‖r̃ ≤ δ, then

‖f(ξ, h(ξ) + Λr̃(‖x‖−1
r )z)− f(ξ, h(ξ))‖ ≤ θbx

cx
, (4.25)

for all ξ ∈ Sr(1). On the other hand, there exists η such that

η =
1

bz
sup

ξ∈Br(1)
ζ∈Br̃(1)

{(
dz + cz

∥∥∥∂h(ξ)
∂ξ

∥∥∥) ‖f(ξ, ζ + h(ξ))‖
}
. (4.26)

Remark 4.2. Since f(x, y) is r-homogeneous and due to equivalence of a homogeneous norm and the
standard one, the r-homogeneous norm can be used to analyze the continuity of the functions. �

Remark 4.3. Note that the r̃-homogeneous norm ‖·‖r̃ is r̃-homogeneous of degree 1, i.e., ‖Λr̃(λ)z‖r̃ =
λ‖z‖r̃. Thus, if λ = ‖x‖−1

r then ‖Λr̃(‖x‖−1
r )z‖r̃ = ‖x‖−1

r ‖z‖r̃.
The following theorem contains the main result of this chapter, where the stability of the intercon-

nected system (4.10)-(4.11) is studied in terms of the HD, besides estimations of the ultimate bound
and the domain of attraction for the system trajectories are provided.

Theorem 4.3. Let the system (4.10)-(4.11) satisfy Assumption 4.1. There exist constants ax, āx, ay, āy,
bx, cx, by, cy, θ̃1, θ̃2, δ, η > 0, such that, the interconnected system (4.10)-(4.11) is

• GAS for µ = ν and

ε < min

 θ̃1

η
,
θ̃2

(
δ
axaz
āxāz

)µ+ι

η

 . (4.27)

• Locally asymptotically stable for µ < ν and all initial condition

‖x0‖r <

 θ̃2

(
δ
axaz
āxāz

)µ+ι

εη


1

ν−µ

(4.28)

and

‖y0 − h(x0)‖r < min


(
θ̃1

εη

) 1
ν−µ

,

 θ̃2

(
az
āz

)µ+ι

εη
(
δ−1 āx

ax

)ν+ι


1

ν−µ
 . (4.29)
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• Practically GAS for µ > ν, with final bounds

‖x(t)‖r <

 εη

θ̃2

(
δ
axaz
āxāz

)µ+ι


1

µ−ν

(4.30)

and

‖y(t)− h(x(t))‖r ≤ max


(
εη

θ̃1

) 1
µ−ν

,

εη
(
δ−1 āx

ax

)ν+ι

θ̃2

(
az
āz

)µ+ι


1

µ−ν
 . (4.31)

for all t > T , with some T > 0, and all x0 ∈ Rn and y0 ∈ Rm.

So, from Theorem 4.3 we have that for ν = µ there exists a critical value ε∗, such that, GAS of the
origin of the system (4.10)-(4.11) is ensured for ε < ε∗. Here, the value of ε determines how long the
trajectories of the system (4.10)-(4.11) deviate from the trajectories of the ROD (4.14). Moreover, this
case coincides with the concept of motion separation predicted by classical results on the stability of
smooth (at least Lipschitz continuous) singularly perturbed systems (see [Kokotovic et al., 1999] and
references therein), and it allows to ensure GAS.

For µ 6= ν, the system (4.10)-(4.11) always possesses some kind of stability (local or practical),
and by decreasing the value of ε it is possible to enlarge the domain of attraction for µ < ν, or to
decrease the size of the final bound of the solutions for µ > ν. Systems with a smaller HD are faster
around the origin and slower in the large, and vice versa. Therefore, for ν > µ the concept of motion
separation given by the standard model of singularly perturbed systems is only valid near to the origin
, hence, just local asymptotic stability of the origin of the system (4.10)-(4.11) can be concluded. On
the other hand, for ν < µ such a concept of motion separation is only valid outside of a neighborhood
of the origin, in consequence, just practical stability of the trajectories of the system (4.10)-(4.11) can
be predicted.

In the literature, the most of existing results about he stability of the system (4.10)-(4.11) require
sufficient smoothness of the vector fields involved in the analysis. However, this condition is quite con-
servative for the general case of homogeneous systems. In contrast, our study request just continuity
of the vector fields f, g of the system (4.10)-(4.11).

4.3 Illustrative Examples

The following examples have the purpose to illustrate the different kinds of stability predicted by
Theorem 4.3. To this end, some simplifications are introduced in order to exhibit that results nicely.
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4.3.1 Case ν < µ

Consider the system

ẋ =− dy1c
2
3 (4.32)

εẏ1 = y2, εẏ2 = −y1 − 2y2 + α
3
2x, (4.33)

where x is the state of the MD (4.32), y1, y2 are the states of the PD (4.33), and ε is a small parameter.
For ε = 0, the solution h(x) is given by y1 = α

3
2x and y2 = 0, such that, the ROD

ẋ = −αdxc
2
3 (4.34)

is continuous and r-homogeneous of degree ν = −1
2 for the weight r = 3

2 . Also, for any α > 0, it
is finite-time stable at the origin. On the other hand, for ε ≈ 0 define z1 = y1 − α

3
2x, z2 = y2 and

τ = ε−1t, such that, the BL

dz1
dτ = z2,

dz2
dτ = −z1 − 2z2, (4.35)

is continuous, r̃-homogeneous of degree µ = 0 for the weights r̃ = [1, 1], and exponentially stable for
any ε > 0.

Then, ν < µ and according to Theorem 4.3 the system (4.32)-(4.33) is practically GAS as it is
depicted in Fig. 4.1.
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Figure 4.1: Simulation of the interconnected system (4.32)-(4.33) where α = 5 and ε = 0.05.

Note that the states of the system (4.32)-(4.33) exhibit oscillations in the steady state. To the
intuition of the authors, this behavior is due to the PD is not fast enough to reach the quasi-stationary
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state h(x) = [α
3
2x, 0]>. According to Theorem 4.3, the amplitude of the oscillations depends on the

parameter ε, and it is illustrated by Fig. 4.2.
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Figure 4.2: Chattering in the output of the closed-loop system (4.32)-(4.33) with α = 5 and different
values of ε.

Moreover, from Theorem 4.3 the region of practical stability is computed as follows. The stability
of the ROD (4.34) can be proven by the LF V (x) = 1

2x
2, which fulfills the inequalities (4.19)-(4.22)

with the constants κ = 2, ax = āx = 0.5, bx = α and cx = 1. On the other hand, a LF for
the BL (4.35) is given by W (y) = 1

2y
>Py, where P = P> > 0 is a solution of the equation

Ā>P + PĀ = −Q with Q > 0. Selecting

P =

[
3 0.5

0.5 3

]
, Q =

[
1 1
1 11

]
,

the function W (y) satisfies (4.16)-(4.18), (4.23) and (4.24) with ι = 2, ay = smin(P ) = 2.5, āy =
cy = smax(P ) = 3.5, by = smin(Q) ≈ 0.9 and dy = 0. Furthermore, for the system (4.32)-(4.33),
δ = 0.875α

3
2 , η = 5.13α

3
2 (α

3
2 + 1)

2
3 , θ = 0.75 and θ̃2 = 0.75 satisfy (4.25) and (4.26). Finally,

substituting all the parameters in equation (4.30), we have

lim
t→∞
‖x(t)‖r ≤ 39.53ε2.

The following table provides the estimation of chattering level for different values of ε. Note that the
results presented by Fig. 4.2 satisfy the estimations provided by Table 4.1. Unfortunately, the final
bound for the variable y is not computed in the example because it is strongly overestimated, as usual
when estimations are obtained based on LF.
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ε |x|
0.05 0.0988
0.01 0.00395
0.005 0.000988

Table 4.1: Estimation of ultimate bounds for different values of ε.

4.3.2 Case ν = µ

Now, let us consider the following interconnection of two homogeneous systems of the same degree

ẋ = −αdy1c
2
3 (4.36)

εẏ1 = y2, εẏ2 = −dy1 − xc
1
3 − 2dy2c

1
2 , (4.37)

where x is the state of the system (4.36), y1, y2 are the states of the PD (4.37), and ε is a parameter.
For ε = 0, y1 = x and y2 = 0 give the expression of h(x), hence, the reduced order system (4.34) is
recovered, which is continuous and r-homogeneous of degree ν = −1

2 for the weight r = 3
2 , and for

any α > 0, finite-time stable at the origin. On the other hand, for ε ≈ 0 define z1 = y1 − x, z2 = y2

and τ = ε−1t, such that, the BL

dz1
dτ = z2,

dz2
dτ = −dz1c

1
3 − 2dz2c

1
2 , (4.38)

is continuous, r̃-homogeneous of degree µ = −1
2 for the weights r̃ = [3

2 , 1], and finite-time stable
at the origin, for any ε > 0. In this case, ν = µ, hence by Theorem 4.3 the system (4.36)-(4.37) is
expected to be globally finite-time stable as it is illustrated in Fig. 4.3.

A critical value ε∗ is computed as follows. The stability of the ROD (4.34) can be proven by
the LF V (x) = 1

2x
2, which fulfills the inequalities (4.19)-(4.22) with the constants κ = 2, ax =

āx = 0.5, bx = α and cx = 1. On the other hand, a LF for the BL (4.35) is given by W (z, x) =

10.5|z1|
5
3 +8.5|z2|

5
2 +3.5z1z2, which satisfies (4.16)-(4.18), (4.23) and (4.24) with ι = 5

2 , ay = 6.462,
āy = 10.809, by = 2.654, cy = 22.11 and dy = 0. Furthermore, solving (4.25) and (4.26) for the
system (4.39)-(4.40), δ = 0.875 and η = 13.22α, where θ = 0.75, θ̃1 = 0.25 and θ̃2 = 0.75 were
used. Then, substituting all the parameter in (4.27) a critical value ε∗ = 0.0129 is obtained, hence, the
stability of the interconnection (4.36)-(4.37) is guaranteed for any ε < 0.0129. In this case the value
of ε determines how the trajectories of (4.36)-(4.37) deviate from the trajectories of the reduced order
dynamics (4.34) as it is shown in Fig. 4.4.

4.3.3 Case ν > µ

Finally, consider an interconnection given by

ẋ = −y1, (4.39)

εẏ1 = y2, εẏ2 = −dy1 − αxc
1
3 − 2dy2c

1
2 , (4.40)
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Figure 4.3: Simulation of the closed-loop system (4.36)-(4.37) where α = 1.2 and ε = 0.01.
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Figure 4.4: Response of the closed-loop system (4.36)-(4.37) for different values of ε.

where x is the state of the system (4.39), y1, y2 are the states of the PD (4.40), and ε is a small
parameter. For ε = 0, y1 = αx and y2 = 0, and the reduced order dynamics is given by

ẋ = −αx, (4.41)
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which is a linear systems, r-homogeneous of degree ν = 0 for the weight r = 1, and also, asymptoti-
cally stable at the origin for any α > 0. On the other hand, for ε ≈ 0 define z1 = y1−αx, z2 = y2 and
τ = ε−1t, such that, the BL (4.38) is obtained again, which is continuous, r̃-homogeneous of degree
µ = −1

2 for the weights r̃ = [3
2 , 1], and finite-time stable at the origin for any ε > 0. In this case,

the HD’s of the subsystems (4.39) and(4.40) hold ν > µ, hence, it is locally asymptotically stable at
the origin as it is predicted by Theorem 4.3 and confirmed in Fig. 4.5, where for an initial condition
x0 = 3 and y0 = [0, 0] the states converge to zero but for an initial condition x0 = 5 and y0 = [0, 0]
the stability cannot be ensured.
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Figure 4.5: Simulation of the closed-loop systems (4.39)-(4.40) with α = 60, ε = 0.01, x0 = 2 and
y0 = [0, 0] (top), or x0 = 5 and y0 = [0, 0] (bottom).

The domain of attraction for the trajectories of the system (4.39)-(4.40) is given by Theorem 4.3
as follows. The stability of the ROD (4.41) can be proven by the LF V (x) = 1

2x
2, which fulfills the

inequalities (4.19)-(4.22) with the constants κ = 2, ax = āx = 0.5, bx = α and cx = 1. On the other
hand, a LF for the BL (4.38) is proposed asW (z, x) = 10.5|z1|

5
3 +8.5|z2|

5
2 +3.5z1z2, which satisfies

(4.16)-(4.18), (4.23) and (4.24) with ι = 5
2 , ay = 6.462, āy = 10.809, by = 2.654, cy = 22.11 and

dy = 0. Furthermore, by solving (4.25) and (4.26) for the system (4.39)-(4.40), we obtain δ = 0.75α
and η = 8.33α(α+ 1), where θ = 0.75 and θ̃2 = 0.75 were used.

So, substituting all the parameters in equation (4.28), ‖x0‖r ≤ 0.000317ε−2. Therefore, for ε =
0.01, it is obtained ‖x0‖r ≤ 3.17 supporting the simulation results shown in Fig. 4.5. Now, if the
value of the parameter ε decreases then the domain of attraction for trajectories x(t) increases, such
that, for ε = 0.005 it turns out that ‖x0‖r ≤ 12.68. Accordingly, the stability of the interconnected
system (4.39)-(4.40) is ensured for x0 = 5 and y0 = [0, 0] as Fig. 4.6 shows. Similar to the first
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Figure 4.6: Simulation of the closed-loop systems (4.39)-(4.40) with α = 60, ε = 0.005, x0 = 5 and
y0 = [0, 0].

example, the domain of attraction for the variable y is not presented because the obtained estimation
is not useful.

4.4 Finite-time convergent controllers in presence of a second-order fast
actuator

A homogeneous controller of negative degree is able to provide finite-time convergence of the trajecto-
ries of the plant to zero [Bhat and Bernstein, 1997]. However, in practice the control signal is supplied
to the plant by means of an actuator (see Fig. 4.7). Nevertheless, the presence of the actuator in the

C A

−
+

P

φ

ur v x

x

e
+

+

Figure 4.7: Control system with an actuator.
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closed-loop deteriorates the performance of the controller.

4.4.1 Motivational example

For instance, consider the system
ẋ = v (4.42)

where x is the state and v is an input. Selecting v = uh(x) where

uh(x) = −αdxc
1
2 , (4.43)

the closed-loop system (4.42)-(4.43) is continuous and r-homogeneous of degree ν = −1
2 and weight

r = 1. Also, for any gain α > 0, it is finite-time stable at the origin as it is shown by Fig. 4.8.
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Figure 4.8: Nominal response of the closed-loop system (4.42)-(4.43).

Now, let the model of a linear fast actuator be

εẏ1 = y2,

εẏ2 = −y1 − 2y2 + uh(x),

v = y1,

(4.44)

where y1, y2 are the states variables, ε parametrizes its time constant, v is an output of the system
and the input uh(x) is given by (4.43). The behavior of the closed-loop system (4.42)-(4.43)-(4.44) is
depicted in Fig. 4.9, where it can be seen that although the control law (4.43) is continuous the states
of the plant exhibit oscillations in steady state. To the intuition of the authors, this behavior is due to
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Figure 4.9: Response of the closed-loop system (4.42)-(4.43) in presence of the actuator (4.44) with
ε = 0.05 and α = 5.

near to the origin the controller is faster than the PD hence it cannot be despised in the control system.
Furthermore, the amplitude of the oscillations depends on the parameter ε and it is illustrated by Fig.
4.10.

4.4.2 Stability analysis and estimation of the final bound of the trajectories

Consider the system

ẋ = Ax+Bv (4.45)

εẏ1 = y2,

εẏ2 = −y1 − 2y2 + ψ(u(x)),

v = ψ−1(y1),

(4.46)

where x ∈ Rn is the state of the plant, y = [y1, y2] ∈ R2 are the states of the actuator, ε is a parameter,
ψ is a smooth enough function, such that, ψ(u(x)) is Lipschitz continuous and ψ(0) = 0, u(x) is a
continuous control law designed to stabilize the plant and v is the connexion between the plant and the
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Figure 4.10: Chattering in the output of the closed-loop system (4.42)-(4.43) with α = 5 due to
presence of the actuator (4.44).

actuator. The matrices A ∈ Rn×n and B ∈ Rn has the form

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

 B =


0
0
...
0
1

 (4.47)

such that, the subsystem (4.45) is a chain of integrators, which represents any nonlinear controllable
system through feedback linearization. The mathematical models (4.45) and (4.46) describe the plant
and the actuator of a control system like the depicted by Fig. 4.7.

Now, it can readily seen that ε = 0 implies y1 = ψ(u(x)), accordingly, the system (4.45)-(4.46)
collapses to the reduced order dynamics

ẋ = Ax+Bu(x). (4.48)

Assumption 4.2. The reduced order system (4.48) is r-homogeneous of degree ν < 0 and finite-time
stable at the origin.

By Assumption 4.2, there exists a r-homogeneous LF V of degree κ > max{0,−ν}, which
satisfies inequalities (4.19)-(4.22) for all x ∈ Rn and for some ax, ax, bx, cx > 0. Additionally, by the
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continuity of ψ and u on the unit sphere, for any bx, cx and 0 < θ < 1 there exist δ such that if

|z1|
‖x‖r

≤ δ (4.49)

then

‖ψ−1(ψ(u(ξ)) + z1
‖x‖r )− u(ξ)‖ ≤ θbx

cx
, (4.50)

for all ‖ξ‖r = 1.
On the other hand, from (4.46) the unforced actuator[

ẏ1

ẏ2

]
= 1

ε

[
0 1
−1 −2

] [
y1

y2

]
is a stable and linear system, which is r̃-homogeneous of degree µ = 0 with weights r̃ = [1, 1]. Hence,
there exists a LF W (y) = 1

2y
>Py, where P ∈ R2 and P = P> > 0 is a solution of the equation[

0 1
−1 −2

]>
P + P

[
0 1
−1 −2

]
≤ −2Q (4.51)

where Q ∈ R2 and Q = Q> > 0. Therefore, the LF W satisfies the inequalities (4.16)-(4.18), (4.23)
and (4.24) with ι = 2, ay = smin(P ), āy = smax(P ), by = smin(Q), cy = smax(P ) and dy = 0.

Also, denote

η ≥ smax(P )

smin(Q)
sup

‖ξ‖r≤1,‖ζ‖r̃≤1

∥∥∥∂ψ(u(ξ))
∂ξ

[
Aξ +Bψ−1(ψ(u(ξ)) + ζ1)

]∥∥∥ . (4.52)

According to Theorem 4.3, since the HD’s of the systems (4.48) and (4.46) (with x = 0) satisfy
ν < µ, then the interconnection is expected to be practically GAS at the origin. Note that the system
(4.48)-(4.46) is a particular case of the system (4.10)-(4.11). In this case the PD is given by the
subsystem (4.46). By its structure, it is GAS at the origin and r̃-homogeneous of degree 0, and
the existence of an unique and Lipschitz continuous solution y1 = ψ(u(x)) is guaranteed. Thus,
Assumption 4.1 is reduced to Assumption 4.2 and the following corollary is readily derived from
Theorem 4.3.

Corollary 4.1. Let Assumption 4.2 be satisfied. Thus, the singularly perturbed system (4.45)-(4.46)
is practically GAS at the origin. Moreover, there exist T > 0, such that, the trajectories of the system
(4.45) are ultimate bounded by

‖x(t)‖r ≤
(
ηε

θ̃

(
δ−1 āxsmax(P )

axsmin(P )

)2
)− 1

ν
, ∀t > T. (4.53)
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The result presented in Corollary 4.1 permits to ensure that the trajectories of the system (4.45)-
(4.46) remains in a ball defined by (4.53) for all t > T but it does not mean that the trajectories
converge to a periodic solution like Fig. 4.9 depicts in the motivational example. However, under
the assumption that such oscillations (chattering) arise in the steady state, an upper-bound of their
amplitude is given by the inequality (4.53).

So, the result of Corollary 4.1 can be seen as an alternative based on Lyapunov methods for
analysis of chattering produced finite-time convergent controllers, which has been usually performed
in frequency domain, e.g., by using: describing function, harmonic balance, equivalent gain, etc.
[Boiko, 2009]. This new approach allows to show the relationship between the amplitude of chatter-
ing, the SPP ε, and the HD ν of the system (4.48).

4.4.3 Motivational Example (Revisited)

Recall the example at the beginning of this section. Conditions of stability of the closed-loop system
(4.42)-(4.43) in presence of the PD (4.44) are provided by Lemma 4.1, such that, the amplitude of the
oscillations depicted in Fig. 4.10 can be predicted by inequality (4.53).

The stability of the nominal system ẋ = −αdxc
1
2 can be proven by the LF V (x) = 1

2x
2, which

fulfills the inequalities (4.19)-(4.20) with the constants κ = 2, ax = āx = 1
2 , bx = α and cx = 1. On

the other hand, a LF for the unforced actuator dynamics (4.46) is given by W (y) = 1
2y
>Py, where

P =

[
2 1

2
1
2 2

]
is a solution of the equation (4.51) with

Q =

[
1 1
1 7

]
.

Then, we have smin(P ) = 3
2 , smax(P ) = 5

2 , smin(Q) ≈ 0.84, and smax(Q) ≈ 7.16. Now, to compute
the constant δ in (4.49), consider ξ = {−1, 1}, such that, the inequality

‖dα2ξ + z1
‖x‖r c

1
2 − αdξc

1
2 ‖ ≤ α

2
,

is fulfilled by
|z1|
‖x‖r ≤

3
4α

2 = δ.

On the other hand, the constant η in (4.52) is given by

η = 1
3α

2(α2 + 1)
1
2 . (4.54)

Then, substituting all the parameters in equation (4.53) it is obtained

lim
t→∞
‖x(t)‖r ≤ 28ε2. (4.55)
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Finally, the following table provides the estimation of the amplitude of chattering for different values
of ε.

ε |x|
0.05 0.03
0.01 0.0028

0.005 0.0007

Table 4.2: Estimation of chattering in the output of the closed-loop system (4.42)-(4.43) for different
values of ε.

Note that the estimations provided by Table 4.2 are pretty similar to the results presented by Fig.
4.10. Nevertheless, the estimations obtained by using Lyapunov methods are usually overestimated.

4.5 Conclusion

This chapter presented a study of the effect of a stable homogeneous PD on the stability of a homo-
geneous MD, where the HD of every subsystem are possibly different. This analysis is based on ISS
and Small-Gain Theorem by assuming only continuity of the considered vector fields. Three types of
stability for such an interconnection were discovered depending on the relation between HDs of PD
and MD:

• GAS when both dynamics have the same HD and the SPP is sufficiently small.

• Practical GAS, when the PD has a greater HD than the MD. The estimation of the final bound
of the trajectories is provided and its size grows with the SPP. In this case, the chattering may
appear if a finite-time convergent MD is considered.

• Local asymptotic stability with an estimation of the domain of attraction, when the PD has a
smaller HD than the MD. The size of the domain of attraction decreases if the SPP is increased.

The first case can be interpreted as a generalization of the concept of motion separation predicted by
classical results on smooth (at least Lipschitz continuous) singularly perturbed systems for a wider
class of homogeneous systems. On the other hand, such a concept of motion separation is only valid
outside of a neighborhood of the origin for the second case, and near to the origin for the third one,
hence, just local and practical stability can be concluded, respectively.

Moreover, an analysis of the stability of finite-time convergent algorithms in presence of a fast
actuator was performed. Under the assumption that chattering arises in the steady state of the system
trajectories, this result allows to show the relationship between the amplitude of chattering, the SPP
ε, and the HD ν of the finite-time convergent algorithm. Thus, this new approach can be seen as
an alternative based on Lyapunov methods for analysis of chattering produced finite-time convergent
controllers.



Chapter 5

Third-order Continuous Twisting
Algorithm

The Continuous Twisting Algorithm (CTA) was introduced by [Torres-González et al., 2015] (see also
[Torres-González et al., 2017]) to provide finite-time stability for the trajectories of a perturbed double
integrator with Lipschitz-continuous non-vanishing and matched disturbances by means of a contin-
uous control signal and using just information of the output and its first derivative. This controller
consists of a r-homogeneous and nonlinear state feedback with an appropriated vector of weights r,
such that, it is able to provide finite-time convergence for a nominal double integrator, and a discon-
tinuous integral extension capable to reject Lipschitz-continuous non-vanishing and matched distur-
bances. This integral term contains a linear combination of the sign of the output plus the sign of its
derivative similar to the Twisting Algorithm introduced by [Levant, 1993].

From [Torres-González et al., 2015, Torres-González et al., 2017], the stability analysis and the
design of gains for the CTA consist of a two-step procedure based on the Generalized Form (GF) ap-
proach [Sánchez and Moreno, 2014, Sánchez and Moreno, 2016, Sanchez and Moreno, 2019]. First,
an appropriated Lyapunov function (LF) candidate is selected in the class of GF. Second, parameters
of the LF candidate and Gains of the CTA are computed, such that, the LF candidate is positive definite
and its derivative along the trajectories of the controlled system is negative definite, which can be done
by using Polya’s theorem [Pólya, 1928] or Sum of Squares (SOS) methods [Parrilo, 2000].

Recently, the CTA has attracted a lot of attention in the community of Sliding Mode Control
(SMC). For instance, [Moreno et al., 2016] proposes an adaptive version of the CTA (ACTA), where
the controller gain is adjusted automatically, keeping all properties the original CTA in the case when
the upper-bound of the perturbation’s derivative is unknown. Further, [Sanchez et al., 2017b] presents
two schemes of output feedback CTA (OFCTA) based on the first and second order Robust and Ex-
act Differentiator (RED), and provides an analysis of robustness w.r.t. noise in the measurements of
the output. Moreover, [Golkani et al., 2020] introduces a Lyapunov based saturated controller which
incorporates the Twisting Algorithm and the CTA. On the other hand, the CTA has been proposed
as a great solution to practical applications, for example, see the works of [Keshtkar et al., 2018,

68
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Jin et al., 2019, Gutiérrez-Oribio et al., 2020, Rojas-Contreras et al., 2017, Pérez-Ventura et al., 2020,
Franco et al., 2021].

The present chapter is devoted to the design of a CTA for third order systems (3-CTA). In theory,
this controller is able to provide finite-time stability to the origin of a chain of integrators of third-order,
with an exact compensation of Lipschitz-continuous non-vanishing and matched disturbances. This is
achieved with a continuous control signal and using only information of the output and its derivatives
of first and second order. Moreover, the proposed controller achieves sliding accuracy of orders 4,
3, 2 and 1, w.r.t. the sampling step, for the output and its derivatives up to third-order, respectively
(see [Levant, 1993, Levant and Fridman, 2010] for details about sliding accuracy). The 3-CTA was
firstly presented in [Mendoza-Avila et al., 2017] to illustrate a recursive procedure to select a proper
LF candidate in the class of GF for the arbitrary order Continuous Twisting Algorithm (n-CTA).

Furthermore, an adaptive 3-CTA (3-ACTA) is provided for the case when the bound of pertur-
bation’s derivative is unknown. The controller gains are adjusted by an adaptation law until a level
that allows to reject the perturbation and guarantees the finite-time convergence to zero for the sys-
tem trajectories. In addition, this scheme avoids overestimation of gains which leads to reduction of
chattering. The theoretical properties of this controller are validated by implementation in an Inertial
Wheel Pendulum (IWP).

Moreover, for a chain of integrators of third order with an unique measurable output σ with relative
degree three w.r.t. the control input, an output feedback 3-CTA (3-OFCTA) is introduced. This output
feedback scheme consists of a 3-CTA complemented with an observer based on the Third-Order RED
(3-RED), which allows to estimate two derivatives of the output, i.e., σ̇, σ̈, robustly and in finite-time.
A separation principle is established to design the controller and the observer independently. In the
absence of noise, the 3-OFCTA preserves all features of robustness, finite time stability, homogeneity,
and precision w.r.t. sampling step from the original 3-CTA, while requiring only information of a
measurable output of the plant. Furthermore, experimental results for the implementation of the 3-
OFCTA in a magnetic levitation system (MLS) are presented. This system is subjected to uncertainty
conditions, and the plate position is the only measurable output with relative degree three w.r.t. the
control input, hence the 3-OFCTA is a reasonable solution to control the MLS.

The rest of the chapter is structured as follows. Some definitions and preliminary results are given
in Section 5.1. Section 5.2 presents the state feedback controller 3-CTA. In Section 5.3, we provide
the adaptive controller 3-ACTA, besides a precision test to compare the 3-CTA vs the 3-ACTA, and
experimental results of the implementation of the 3-ACTA in the IWP. An observer based on the 3-
RED and the output feedback controller 3-OFCTA are presented in Section 5.4 with simulation and
experimental results of its implementation in a MLS, and also precision tests for 3-CTA and 3-OFCTA
are given. Finally, in Section 5.5 some conclusions are drawn.

5.1 Preliminaries: generalized forms

The concept of GF is introduced in [Sánchez and Moreno, 2014] as a generalization of (classical)
forms. A form is a r-homogeneous polynomial function of degree p ∈ N, where r = [1, . . . , 1]
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[Hardy et al., 1988]. The set of quadratic forms is a particular case of (classical) forms.

Definition 5.1. A function g : Rn −→ R is a GF if it is r-homogeneous of degree m ∈ R, and
it consists of a linear combination of a finite number of homogeneous monomials, which are sums,
products and sums of products of terms like:

adxcp or b|x|q, where a, b ∈ R, p, q ∈ R>0.

4

Note that a GF is not required to be continuous. Some examples of GF are:

g1(x) = dx1c
7
2 − 2x2

1|x2|3 − 3dx1c
5
2 dx2c2 + 3|x2|7,

g2(x) = a|x1|
5
3 − dx1c

2
3 |x2|

3
2 − bdx1c0dx2c5 + cdx2c2x3

Moreover, GF have some important properties, e.g., partial derivatives of GF’s are also GF’s, or
for the same r, sums or products of GF’s are also GF’s. Further, for r ∈ Qn any GF can be represented
by (classical) forms in each hyper-octant of the state space (see Example 5.1).

A set of forms that permits to represent a GF in the hold state space is called the set of associated
forms. This associated forms are obtained by applying a suitable change of coordinates x = d(z) in
each hyper-octant of the state space, where every element of the variable z ∈ Rn is nonnegative. One
option is

xi =

{
z2ri
i for xi ≥ 0

−z2ri
i for xi < 0

i = 1, ..., n. (5.1)

where zi > 0 and ri is the homogeneity weight of the corresponding variable xi. With this transforma-
tion we obtain associated forms whose domains are restricted to the positive hyper-octant, i.e., zi > 0,
i = 1, ..., n, and all their exponents are even (see Example 5.1).

So, the problem of analyze the positive definiteness of a GF can be reduced to determine the
positive definiteness of its associated forms, for which there are classical tools like Polya’s theorem
[Pólya, 1928] or SOS methods [Parrilo, 2000].

Example 5.1. Consider the GF

h(x) = x2
1 − ax1dx2c2 + bx4

2, (5.2)

which is r-homogeneous of degree 4 with weights r = [2; 1]. By applying the change of coordinates
(5.1) to the GF (5.2) in each quadrant of the space state {x1, x2}, we obtain the following associated
forms in {z1 ≥ 0, z2 ≥ 0}:

• for {x1 ≥ 0, x2 ≥ 0} and {x1 ≤ 0, x2 ≤ 0},

h1(z) = z8
1 − az4

1z
4
2 + bz8

2 ,
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• for {x1 ≤ 0, x2 ≥ 0} and {x1 ≥ 0, x2 ≤ 0},

h1(z) = z8
1 + az4

1z
4
2 + bz8

2 .

Note that due to the GF (5.2) is symmetric w.r.t. the origin, it can be completely represented by only
two associated forms. Moreover, if a2 = 4b for any b > 0, both associated forms h1(z) and h2(z) are
positive definite, hence we can conclude that the GF (5.2) is also positive definite for any b > 0 and
a2 = 4b.

5.1.1 Sum of squares

A polynomial function p(x1, . . . , xn) = p(x) is a SOS if there exists some polynomials h1(x), . . . , hm(x)
such that

p(x) =

m∑
i=1

h2
i (x). (5.3)

Note that if p(x) is a SOS then it is positive semi-definite, i.e., p(x) ≥ 0 for all x ∈ Rn [Parrilo, 2000].
The SOS condition (5.3) is equivalent to the existence of a positive semi-definite matrix Q such

that
p(x) = ZT (x)QZ(x), (5.4)

where the vector Z(x) contains some properly chosen monomials [Choi et al., 1995]. This represen-
tation of a SOS polynomial permits to compute its coefficients through the solution of some matrix
inequalities, which can be efficiently computed by means of semidefinite programming with available
software. For instance, the Matlab toolbox SOSTOOLS with SEDUMI solver is able to determine the
condition under which a polynomial is SOS [Prajna et al., 2002].

5.1.2 Generalized Forms approach for Lyapunov function design

The works in [Sánchez and Moreno, 2014, Sánchez and Moreno, 2016, Sanchez and Moreno, 2019]
present a methodology for construction of LF for homogeneous HOSM algorithms based on GF’s. It
consists in propose a GF as a LF candidate and offers a systematic procedure to determine the coef-
ficients of the GF that warranty its positive definiteness and the negative definiteness of its derivative.
This procedure is summarized in the following steps:

1. Consider the system ẋ = f(x), x ∈ Rn, whose vector field f is described by GF. Obtain the
homogeneity degree k and the vector of weights r of the system under study.

2. Select a GF V : Rn → R (with a homogeneity degree m and a vector of weights r) given by

V (x) =

n∑
i=1

αi|xi|
m
ri + P (αj , x); j > n (5.5)

where P (αj , x) contains cross terms between the variables xi ∈ x; i = 1, ..., nwith coefficients
αj .
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3. Compute the negative of the derivative of V along the trajectories of the considered system, e.i.,
W (x) = −V̇ (x) = −∂V

∂x ẋ.

4. Apply an adequate change of coordinates from x to z (like (5.1)) to get the sets of associated
forms {Vi(z)} and {Wi(z)} of the GF V (x) and W (x), respectively.

5. Find the parameters to guarantee that every form in the sets {Vi(z)} and {Wi(z)} is positive
definite. For this we can use the SOS approach, where this parameters are calculated by means
of the solution of some matrix inequalities, which can be efficiently done by using SOSTOOLS
with SEDUMI solver.

5.2 A State feedback controller: 3-CTA

Consider a SISO system with a control input u ∈ R and an output σ ∈ R of relative degree 3, i.e.
...
σ = u + φ(t). Introducing the state vector x ∈ R3 as x1 = σ, x2 = σ̇, x3 = σ̈, we obtain the third
order model

ẋ1 = x2,
ẋ2 = x3,
ẋ3 = u+ φ(t) ,

(5.6)

where the disturbance φ(t) is given by a Lipschitz continuous function w.r.t. time, i.e., it satisfies
| ddtφ(t)| ≤ ρ. The control objective is to render the state x of the system (5.6) finite-time stable for
every disturbance φ(t), with Lipschitz constant smaller than ρ, and such that the control law u(t) is a
continuous signal.

Assuming that all states of the system (5.6) are measurable, the 3-CTA (originally introduced in
[Mendoza-Avila et al., 2017]) is given by

u = −k1L
3
4 dx1c

1
4 − k2L

2
3 dx2c

1
3 − k3L

1
2 dx3c

1
2 + η

η̇ = −k4Lsign(x1)− k5Lsign(x2)− k6Lsign(x3) ,
(5.7)

where ki, i = 1, ..., 6, are (constant) gains to be designed for stability, and the constant L > 0 is a
scaling factor to endow the controller of robustness. So, the 3-CTA (5.7) allows to achieve the control
objective.

Moreover, in [Levant, 1993, Levant and Fridman, 2010] the accuracy of homogeneous HOSM
controllers is defined as the supremum value of the states when the system’s trajectories are in steady
state. According to homogeneity weights of the states of the closed-loop systems (5.6)-(5.7), the
accuracy of the states w.r.t. sampling time τ is given by

|x1(t)| ≤ ∆1τ
4, |x2(t)| ≤ ∆2τ

3, |x3(t)| ≤ ∆3τ
2, |x4(t)| ≤ ∆4τ, (5.8)

where ∆1,∆2,∆3 and ∆4 are constants independent of τ . The value of ∆i depends on several fac-
tors, e.g., the gains ki and scaling factor L, etc. These parameters ∆i can be seen as a measure of
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k1 k2 k3 k4 k5 k6 µc
D1 1.3 2.2 3 0.009 0.004 0.002 0.001
D2 1.3 2.2 3 0.008 0.003 0 0.0006
D3 1.3 2.2 3 0.005 0 0.001 0.0003
D4 1.3 2.2 3 0.004 0 0 0.0001

Table 5.1: Sets of gains for the 3-CTA.

chattering produced by the 3-CTA, and they can be estimated by means of frequency domain meth-
ods: describing function, harmonic balance equation, equivalent gain, etc., which has been studied by
[Pérez-Ventura and Fridman, 2019] for different CHOSM algorithms.

Theorem 5.1. Consider the disturbed system (5.6), where | ddtφ(t)| ≤ ρ, and the control law (5.7).
There exist gains k1, k2, k3, k4 ∈ R>0, k5, k6 ∈ R, with k4 > |k5| + |k6| + ρ, and a constant
µc ∈ R>0, such that, for any scaling factor L > ρ

µc
the origin of the close-loop system (5.6)-(5.7) is

globally finite-time stable. 4

The proof of Theorem 5.1 and gain design for controller (5.7) are presented in Section C.1 of
Appendix C. Table 5.1 shows some examples of possible sets of gains for controller (5.7) and their
level of tolerance µc. To implement the 3-CTA, the user only needs to select a set of gains of Table
5.1 and adjust the scaling factor L as L > ρ

µc
Following the proof of Theorem 5.1 presented in Section C.1 of Appendix C, more sets of gains for

the 3-CTA can be found. Moreover, note that there are three available configurations of the integrator
η of the 3-CTA:

1. Three signs:
η̇ = −k4Lsign(x1)− k5Lsign(x2)− k6Lsign(x3),

with set D1.

2. Twisting like:
η̇ = −k4Lsign(x1)− k5Lsign(x2),

with set D2, or
η̇ = −k4Lsign(x1)− k6Lsign(x3),

with set D3.

3. Integral discontinuous:
η̇ = −k4Lsign(x1),

with set D4.

The differences between the configurations are related to the transient behavior of the 3-CTA.
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Remark 5.1. The 3-CTA consists of two terms: (i) a memoryless continuous state feedback, depending
on the gains k1, k2, k3, that should stabilize the origin of the close-loop system (5.6)-(5.7) in finite time
in the absence of the perturbation φ. This requires the gains k1, k2, k3 to be positive. (ii) An integral
controller, depending on the gains k4, k5, k6, which should estimate and compensate the perturbation
φ(t) in finite time, too. For this it is required that k4 > |k5| + |k6| + ρ, so that the close-loop
system (5.6)-(5.7) has a unique equilibrium point at the origin (see Section C.1 of Appendix C). Gains
k5, k6 ∈ R are not required to be sign definite, and they can be used to improve the performance of
controller (5.7).

5.3 Adaptive 3-CTA

The scaling factor L allows the 3-CTA (5.7) to deal with disturbances with any known bound of its
first time derivative. However, the bound of perturbation’s derivative is commonly unavailable making
the tunning of the scaling factor L difficult. In order to solve this problem an adaptation law can be
used to adjust automatically the scaling factor L to a proper value.

Following the proposal of [Moreno et al., 2016], the 3-CTA (5.7) with adaptive scaling factor L(t)
is proposed as

u = −k1L
3
4 (t)dx1c

1
4 − k2L

2
3 (t)dx2c

1
3 − k3L

1
2 (t)dx3c

1
2 + η

η̇ = −k4L(t)sign(x1)− k5L(t)sign(x2)− k6L(t)sign(x3),
(5.9)

where the adaptation law for the scaling factor L(t) is given by

L̇(t) =

{
`, if Te(t) 6= 0 or ||x̄(t)|| > 0
0, if Te(t) = 0 and ||x̄(t)|| = 0

(5.10)

where x̄ = (x1, x2, x3) and ` is a positive constant. Function Te(t) represents a timer with behavior is
given by

Te(t) =

{
ti + τd − t, if ti ≤ t ≤ ti + τd
0, if t ≥ ti + τd

(5.11)

where τd > 0 is a constant dwell time. The time instants ti are defined, such that, for i = 0, t0 = 0, and
for i > 0, they are the instants when ||x̄(t)|| changes from zero to a non zero value. The adaptation law
lets the scaling factor L(t) grows until ||x̄(t)|| = 0, for at least a period of time τd. If x̄ deviates from
zero due to an increasing of the disturbance size, then the gain grows for at least τd until it becomes
zero again. This procedure is repeated a finite number of times until ||x̄(t)|| remains at zero for all
future time. In practice the ideal condition ||x̄|| = 0 is replaced by a small neighborhood of zero, i.e.,
||x̄|| < ε. The constant ε depends on the precision of sensors and actuators, the integration step and
the acceptable chattering level. However, a very small ε can generate a bug in the algorithm which can
cause instability.

Theorem 5.2. Consider system (5.6) where |φ̇(t)| < ρ with ρ unknown, and controller (5.9) where
scaling factor L(t) is given by adaptation law (5.10). If gains ki; i = 1 . . . 6 satisfy Theorem 5.1,
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Figure 5.1: Simulation of the system (5.6) in closed-loop with controller (5.7) with set of gains D1

and L = 4500.

then the trajectories of the closed-loop system (5.6)-(5.9) converge to zero globally and in finite-time.
4

The proof of Theorem 5.2 is presented in Section C.2 of Appendix C. Even in the case that the pa-
rameter ρ is known the 3-ACTA outmatches the 3-CTA because the parameter ρ can be overestimated
making the scaling factor L of the 3-CTA bigger than needed. In contrast, the 3-ACTA includes the
adaptation law (5.10) to find the correct value of the scaling factor L(t), automatically. Nevertheless,
the main disadvantage of the adaptation law (5.10) is that the scaling factor can grow up, only. Thus,
if after certain time instant the perturbation decreases, there is no way to adjust the scaling factor L(t)
to more proper value.

Simulation results

The objective of simulations is to show the theoretical properties of the 3-CTA and the 3-ACTA. The
simulations were performed in Matlab Simulink with sampling step τ = 0.00001[s] and the Euler
integration method.

Stabilization by 3-CTA: Considering a perturbation φ(t) = 3 sin(0.8t) + cos(2t) + 3 and initial
conditions x0 = [5, 0, 0]T , Fig. 5.1 shows the simulation of the system (5.6) in closed-loop with the
controller (5.7), with the set of gainsD1 from Table 5.1. We can see that the states x1, x2, x3 of system
(5.6) converge to origin, while the integral term η compensate exactly perturbation φ, and the control
signal u is continuous.
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Figure 5.2: Simulation of the system (5.6) in close loop with controller (5.9) with set of gains D1 and
L given by adaptation law (5.10).

Stabilization by 3-ACTA: Considering a perturbation φ(t) = 3 sin(0.8t)+cos(2t)+3 and initial
conditions x0 = [5, 0, 0]T , Fig. 5.2 shows the simulation of the system (5.6) in closed-loop with the
controller (5.9) with the set of gainsD1 from Table 5.1 and L(t) given by adaptation law (5.10), where
` = 40 and τd = 0.5[s]. We can see that the states x1, x2, x3 of system (5.6) converge to origin, while
the integral extension η compensate exactly perturbation φ, and the control signal u is continuous.

Precision test: 3-CTA vs 3-ACTA

According to homogeneity weights of the states of the closed-loop systems (5.6)-(5.7) and (5.6)-(5.9),
the accuracy of the states w.r.t. sampling time τ is given by (5.8). By the simulations shown in Fig.
5.1 and 5.2 with Euler method and τ = 0.00001[s], the constants ∆i are determined in Fig. 5.3 as

∆1 = 68000, ∆2 = 44000, ∆3 = 36600, ∆4 = 1360,

and
∆1 = 4180, ∆2 = 2777, ∆3 = 2544, ∆4 = 612,

for for the 3-CTA nd the 3-ACTA, respectively. Such constants ∆i can be confirmed by a simulation
with a different sampling time, e.g., τ = 0.0001[s], as it is shown in Fig. 5.4.
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Figure 5.3: Accuracy provided by 3-CTA (—–) and 3-ACTA (—–) in closed-loop with a disturbed
triple integrator, with sampling step τ = 0.00001.
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Figure 5.4: Simulation results, with sampling step τ = 0.0001, of the accuracy provided by controller
3-CTA (—–) and 3-ACTA (—–) in closed-loop with a disturbed triple integrator.
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Figure 5.5: Inertia wheel pendulum.

From Fig. 5.3 and 5.4, note that the accuracy provided by the 3-ACTA is higher than the accuracy
of the 3-CTA. This is because the adaptation law (5.10) avoid the overestimation of the gains and it
permits improve the performance of the 3-CTA and decrease chattering effects.

5.3.1 Implementation of the 3-ACTA in a reaction wheel pendulum

An IWP is an under-actuated mechanical system consisting in a bar suspended from a pivot with a
rotating disk attached at the end. The disk is actuated by a 12 [v] DC-motor while the pendulum is
unactuated, such that, the pendulum is drive by the inertia generated by the angular acceleration of the
disk (see Fig. 5.5(a)).

The state vector is defined as x̄T = [x1 x2 x3] = [q1 q̇1 q̇2], where q1 is the pendulum angle,
q2 is the disk angle. Since the disk angular position is a cyclic variable, it can be ignored into a state
space model. Then, a dynamical model of the IWP is given by

ẋ1 = x2,

ẋ2 = −d22
D ϕ(x1)− d22b1

D x2 + d12b2
D x3 − d12

D u

ẋ3 = d21
D ϕ(x1) + d21b1

D x2 − d11b2
D x3 + d11

D u

(5.12)

where u is the control input, b1 is the friction term on the pendulum axis, b2 the friction on the wheel
axis and

ϕ(x1) = −m̄g sin(x1),
m̄ = m1`c1 +m2`1,
D = d11d22 − d12d21 > 0,
d11 = m1`

2
c1 +m2`

2
1 + I1 + I2,

d12 = d21 = d22 = I2,

(5.13)
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are parameters, whose values are provided by Table 5.2 (see Fig. 5.5(b)).

Table 5.2: List of parameters of the Inertial Wheel Pendulum.

Parameters. Values. Parameters. Values.
b1 0.0173 Ns

m2 b2 0.0313 Ns
m2

I2 0.0027 kgm2 d11 0.0479 kgm2

m 0.2514 kg g 9.81 m
s2

The control objective is to stabilize the pendulum in the upper position from a different initial
condition. Due to the uncertainties in the system (5.12), the 3-ACTA (5.9) is a great solution to this
problem.

First, let’s put the system (5.12) in a normal form. For this, define the diffeomorphism:

ξ1 = b1x1 + d11x2 + d12x3,
ξ2 = −ϕ(x1),
ξ3 = −ϕ′(x1)x2.

(5.14)

Applying the transformation (5.14) to system (5.12), we obtain

ξ̇1 = ξ2, ξ̇2 = ξ3, ξ̇3 = f(x) + g(x)u. (5.15)

where g(x) = d12
D ϕ′(x1) and

f(x) = −ϕ′′(x1)x2
2 + ϕ′(x1)

[
d22
D ϕ(x1) + d22b1

D x2 − d12b2
D x3

]
.

Remark 5.2. The system (5.15) is only valid in the upper part of pendulum workspace, i.e. −π
2 <

χ1 <
π
2 , around the origin.

Now, by an exact feedback linearization u = 1
g(x) (v − f(x)), the system (5.15) becomes

ξ̇1 = ξ2, ξ̇2 = ξ3, ξ̇3 = v + φ(t), (5.16)

where v is a new control input and φ(t) represents parametric uncertainties and disturbances which
are assumed to be Lipschitz continuous functions.

For the experiments we use the dSPACE1103 and a sampling step of 1[ms]. The IWP shown in Fig.
5.5(a) has a 12[v] DC-motor as actuator, also it has two encoders to measure the angular positions, one
for the pendulum and the other for the disk, both velocities are computed by a RED of second-order
(see [Levant, 2003a]) and we assume that the estimation errors vanish immediately, hence we can take
all the states of the IWP are measurable. During the experiments two perturbations are executed, the
first is a matched disturbance φ1 at t = 15[s] and another unmatched φ2 at t = 22.5[s]. Adaptive
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Figure 5.6: IWP driven by the 3-ACTA (5.9) with the set of gains D1 of Table 5.1 and L(t) given by
the adaptation law (5.10).

gain L(t) starts from an initial condition L(0) = 107 and it grows at the rate of ` = 40 during at least
τd = 0.5[s] or until |x̄1| < 0.05, |x̄2| < 0.5 and |x̄3| < 12 hold.

Fig. 5.6 shows the experimental results of the implementation of the 3-ACTA (5.9) on the IWP,
with the set of gains D1 of Table 5.1 and L(t) given by the adaptation law (5.10). It can be looked
at the states of the system (5.12) converge closely to origin from initial condition x̄0 = [0.4, 0, 0], the
control signal u is continuous and compensates the matched disturbance φ1. On the other hand, the
3-ACTA is able to keep the IWP near to the upper position in spite of the unmatched disturbance φ2.
Furthermore, the adaptive gain L(t) increases its value until the stability of IWP in the upper position
is achieved.

5.4 Output feedback 3-CTA

Considering σ = x1 as the only measurable output of system (5.6), the states x2 and x3 can be robustly
estimated in finite time by the observer

˙̂x1 = −λ1H
1
4 dx̂1 − σc

3
4 + x̂2

˙̂x2 = −λ2H
2
4 dx̂1 − σc

2
4 + x̂3

˙̂x3 = −λ3H
3
4 dx̂1 − σc

1
4 + ζ + u

ζ̇ = −λ4Hsign(x̂1 − σ),

(5.17)
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where λi > 0, i = 1, . . . , 4, are gains and the constant H > 0 is a scaling factor. The observer (5.17)
is a particular case (with r = 3 and nf = 0) of the filtering observer presented in [Levant, 2018].

Theorem 5.3. Consider the system (5.6) with an measurable output σ = x1 and assume that | ddtφ(t)| ≤
ρ. For any ρ ≥ 0, there exist gains λi > 0, i = 1, . . . , 4, and a constant Hmin > 0, such that, for any
scaling factor H > Hmin, observer (5.17) estimates the states of the disturbed system (5.6) exactly
and in finite-time. 4

The proof of Theorem 5.3 and a methodology for selection of gains for observer (5.17) are pre-
sented in Section C.3 of Appendix C.

An output feedback scheme 3-OFCTA is designed by combining the 3CTA (5.7) with the finite-
time observer (5.17):

u = −k1L
3
4 dσc

1
4 − k2L

2
3 dx̂2c

1
3 − k3L

1
2 dx̂3c

1
2 + η

η̇ = −k4Lsign(σ)− k5Lsign(x̂2)− k6Lsign(x̂3)
˙̂x1 = −λ1H

1
4 dx̂1 − σc

3
4 + x̂2

˙̂x2 = −λ2H
2
4 dx̂1 − σc

2
4 + x̂3

˙̂x3 = −λ3H
3
4 dx̂1 − σc

1
4 + ε+ u

ε̇ = −λ4Hsign(x̂1 − σ).

(5.18)

Theorem 5.4. Consider the system (5.6) with | ddtφ(t)| ≤ ρ and a measurable output σ = x1. If gains
ki, i = 1, . . . , 6, and Lmin satisfy Theorem 5.1 and gains λj , j = 1, . . . , 4, and Hmin satisfy Theorem
5.2, then for any L > Lmin and H > Hmin, the trajectories of the closed-loop system (5.6)-(5.18)
converge to zero globally and in finite-time. 4

The proof of Theorem 5.4 is presented in Section C.4 of Appendix C.

Remark 5.3. Note that the output feedback controller 3-OFCTA (5.18) is able to keep the same preci-
sion orders w.r.t. sampling step τ than the state feedback controller 3-CTA but with different coeffi-
cients ∆i; i = 1, ..., 4.

5.4.1 Implementation of the 3-OFCTA in a magnetic levitator

The MLS (see Fig. 5.7) is a nonlinear, open loop unstable, time-varying, and dynamical system where
a plate of magnetic material is suspended by means of the electromagnetic force produced by a coil.

Following [Khalil, 2002], a state space model of MLS is given by

ẋ1 = x2,

ẋ2 = − k
M x2 + aL0

2M
x23

(a+x1)2
− g,

ẋ3 = 1
L(x1)

(
−Rx3 − aL0

x2x3
(a+x1)2

+ u
)
,

(5.19)

where x1, x2, x3 represent the plate’s position in [m], velocity in [
m

s
] and coil current in [A], respec-

tively, and u is the control input (voltage applied to coil). Furthermore, M > 0 is the mass of the
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(a) This picture is taken from the ECP’s website:
http://www.ecpsystems.com/controls maglevit.htm.
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Figure 5.7: Magnetic Levitation System.

plate, g > 0 is the gravity acceleration, k > 0 is a viscous friction coefficient, R > 0 is the electric
resistance, and L(x1) = L1 + aL0

a+x1
is the coil inductance, which is a function of the plate posi-

tion, where a, L0, L1 are positive constants (see Fig. 5.7). The parameters values (obtained from the
manufacturer) are presented in Table 5.3.

Parameter. Values. Parameter. Values.
M 0.1203 [kg] g 9.815 [m

s2
]

k 0.01 [N ·s m] L1 0.1 [H]
L0 0.245 [H] a 0.0088 [m]
R 1.75 [Ω]

Table 5.3: List of parameters of the Magnetic Levitation System.

The physical setup contains an optical sensor to measure the plate position x1. So, the control
objective is that x1 tracks the time-varying reference:

r(t) = 0.01 sin (t) + 0.022[m]. (5.20)

For x1 ≥ 0 and x3 ≥ 0, applying the diffeomorphism

σ1 = x1, σ2 = x2, σ3 = − k

M
x2 +

aL0

2M

x2
3

(a+ x1)2
− g,
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to the system (5.19) , we obtain

σ̇1 = σ2, σ̇2 = σ3, σ̇3 = f(σ) + g(σ)u, (5.21)

where

f(σ) =
k2

M2
σ2 +

kg

M
− 2

(
R

L(σ1)
+

k

2M
+

σ2

a+ σ1
+

aL0σ2

L(σ1)(a+ σ1)2

)
×
(
σ3 +

k

M
σ2 + g

)
,

and

g(σ) =

(
2aL0

(
σ3 + k

M σ2 + g
)) 1

2

M
1
2L(σ1)(a+ σ1)

.

Now, define the tracking errors e1 = σ1 − r(t), e2 = σ2 − ṙ(t), and e3 = σ3 − r̈(t), whose
dynamics is given by

ė1 = e2, ė2 = e3, ė3 = f(σ) + g(σ)u− r(3)(t) , (5.22)

such that, by applying the feedback linearization

u = g(σ)−1 (v − f(σ)) , (5.23)

where v is the new control variable, we obtain

ė1 = e2, ė2 = e3, ė3 = v + φ(t) , (5.24)

where φ(t) is a perturbation term, which includes external signals or model uncertainties. In our case,
since r(3)(t) is not compensated, we have φ(t) = r(3)(t) = −0.01 cos (t).

Simulation results

The objective of simulations is to show the theoretical properties of the 3-CTA and the 3-OFCTA to
manage a MLS robustly and with high precision. The simulations were performed in Matlab Simulink
with sampling step τ = 1[ms] for different numerical methods detailed below. The initial conditions
are x0 = [0.01, 0, 0.58]T .

Tracking by 3-CTA: Fig. 5.8 shows the simulation results, using Dormand-Prince as integration
method and τ = 1[ms], of a MLS in closed-loop with the 3-CTA. The gains were selected from the
set D1 in Table 5.1 and L = 42. We can see that the states x1 and x2 reach and keep the desired
trajectory (5.20) in finite-time while x3 remains bounded. Note that the control signal u is continuous
and compensates the disturbance r(3).
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Figure 5.8: Simulation of tracking for MLS’s plate position by means of 3-CTA.

Tracking by 3-OFCTA: Fig. 5.9 presents the simulation results, using Euler method and τ =
1[ms], of a MLS in closed-loop with the 3-OFCTA. The controller’s gains were taken from the set D1

in Table 5.1 and L = 62, while, for the observer the gains are

λ1 = 4.5, λ2 = 2.4, λ3 = 0.8, λ4 = 0.1, (5.25)

and H = 1.5. We can see that the states x1 and x2 follows the desired reference (5.20) while x3

remains bounded. Note that the control signal u nullifies the tracking errors in finite-time by means
of a continuous signal despite the presence of disturbance r(3). Moreover, the position error is the
only information available to the controller while velocity and acceleration errors are estimated by the
observer (5.17).

Precision test: 3-CTA vs 3-OFCTA

Fig. 5.10 presents the bound of the tracking errors in steady state when the MLS is driven by the
3-CTA. According to the sliding order of the closed-loop system (5.6)-(5.7), the accuracy provided by
the 3-CTA is given by inequalities (5.8) where for a sampling time of τ = 1[ms] the constants ∆i are:

∆1 = 220, ∆2 = 105, ∆3 = 196

. Moreover, the independence of constants ∆i w.r.t. sampling step τ is confirmed by the bound of
the tracking errors (also presented in Fig. 5.10) when the simulation is performed with τ = 0.1[ms].
On the other hand, Fig. 5.11 presents the bound of the tracking errors in steady state when the MLS
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Figure 5.9: Simulation of tracking for MLS’s plate position by means of 3-OFCTA.
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Figure 5.10: Precision test in tracking errors for 3-CTA.

is driven by the 3-OFCTA. According to the sliding order of closed-loop system (5.6)-(5.18), the
accuracy provided by the 3-OFCTA is given by (5.8), and for a sampling time τ = 1[ms] the constants
∆i are:

∆1 = 510, ∆2 = 365, ∆3 = 350.

Moreover, when the simulation is performed with τ = 0.1[ms], the bound of the tracking errors (also
presented in Fig. 5.11) confirmed the independence of constants ∆i w.r.t. sampling step τ .

The theoretical accuracy (5.8) is validated for the 3-CTA and the 3-OFCTA by numerical simula-
tions, where both differentiator and controller are discretized in the same computer chip with the same
sampling step τ .

As we have said in Remark 5.3, the incorporation of the observer (5.17) in the control scheme does
not change the accuracy orders of the trajectories of the closed-loop system. However, the constants
∆i are a bigger for the case of the 3-OFCTA as it is expected for a more complex algorithm.

Experimental results: tracking via 3-OFCTA

Considering σ = x1 (the plate position) as the only measurable output of the MLS, this experiment
aims to show the effectiveness of the output feedback controller 3-OFCTA to make the plate position
track the sinusoidal trajectory (5.20), robustly and with high precision .

The experimental setup consists of two parts:

• The magnetic levitation system (ECP model 730 depicted in Fig. 5.7), which includes laser
sensors and a high magnetic flux coil .
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Figure 5.11: Precision test in tracking errors for 3-OFCTA.

• A PC with DSP board, ECP software and Simulink Matlab with the real-time toolbox.

A SISO version of the ECP model 730 is constructed with a single magnet managed by the re-
pulsive force produced by the lower actuator. The measurable output of ECP model 730 is the plate
position given by the lower laser sensor. Moreover, for discretization we use the Euler integration
method with sampling step τ = 1[ms].

Fig. 5.12 shows the experimental results of the implementation of the 3-OFCTA in the MLS
through the output feedback linearization (5.23). The nominal values of the parameters of the system
ECP model 730 are given by the manufacturer (see Table 5.3). Moreover, the gains for the 3-OFCTA
(5.18) are given by

k1 = 1.7, k2 = 3.2, k3 = 4.1, k4 = 0.9,
k5 = 0.4, k6 = 0.1, L = 1150,

(5.26)

for the controller (5.7), and the gains in (5.25) with H=1800, for the observer (5.17). Both sets of gains
was adjusted experimentally in order to get a good performance.

We can see in Fig. 5.12 that the plate position x1 tracks the sinusoidal trajectory with high preci-
sion, the plate velocity x2 tracks the reference derivative, the coil current x3 is bounded and control
signal u is continuous despite of the presence of high-frequency oscillations. Furthermore, the actuator
is protected by a saturation but the control signal does not exceed the saturation limits.

The smoothness of the measurements for the plate position x1 and the coil current x3 in Fig.
5.12 is a consequence of the high resolution of the optical sensor and the high magnetic flux actuator.
Moreover, note in Fig. 5.13 that the plots of e1, e2 and e3 present high-frequency oscillations due to
they are estimated by means of the discontinuous observer (5.17).
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Figure 5.12: Tracking for plate position of a MLS via 3-OFCTA.
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Despite of the chattering caused by the discretization and the lack of finite-time convergence, we
can observed the effectiveness of the 3-OFCTA to managed a physical system with robustness against
perturbations and model uncertainties (as e.g. friction between the plate and the stab). In Fig. 5.13,
we can appreciate the accuracy in steady state of the tracking for position, velocity and acceleration of
the MLS. Note that the position error is more or less 5× 10−4 [m], and this represents a deviation of
5% w.r.t. the reference, which varies 0.01 [m] around the point 0.022 [m].

5.5 Conclusion

For a third-order chain of integrators affected by Lipschitz-continuous non-vanishing and matched
disturbances, three schemes of control were presented. The first one is a state feedback controller
3-CTA which is able to provide, in theory, finite-time convergence to zero, exact compensation of the
considered perturbations, and precision in the steady state of fourth order w.r.t. sampling step for the
system’s output.

The second one an adaptive controller 3-ACTA where the adaptive gain adjusts its value automat-
ically until the stability of the closed-loop system is assured for all future time despite the presence of
perturbation in the considered class. The main advantages of the 3-ACTA are that the knowledge of the
upper-bound of the perturbation’s derivative is not required for gains design, and over-scaling of the
gains is avoided, which reduce the amplitude of the chattering in the output. Moreover, experimental
results of the implementation of 3-ACTA on an IWP were presented.

Finally, we introduced an output feedback controller 3-OFCTA which preserves, in theory, all
features of robustness, convergence, and precision of the 3-CTA while requiring only information from
the measurable output. Separation principle for 3-OFCTA is proven which allows the design of the
gains for controller and observer, independently. Finally, experimental results of the implementation
of 3-OFCTA in an MLS were presented where tracking of a sinusoidal trajectory for plate position is
ensured.



Chapter 6

Design of a PID-like controller based on
Discontinuous Integral Control

The classical Proportional-Integral–Derivative (PID) structure is the most employed controller in in-
dustrial processes. Some of the main advantages of the classical PID are their simplicity, suitable
performance for “slow-dynamics” processes, and the availability of tuning rules like the methods of
[Ziegler and Nichols, 1942] or [Aström and Hägglund, 2005]. The integral action provides the asymp-
totic rejection of constant disturbances, nullifying the steady–state error for constant set points. For
first-order systems, the PI control place the closed-loop eigenvalues in desired positions of the complex
plane, ensuring exponential stability and compensation of constant perturbations. For second-order
systems, the PD enforces exponential stability to the origin, and due to the integral action the PID is
endowed with this property plus robustness against constant perturbations. PI, PD and PID can also
be used for systems of higher order rest in the framework of dominant pole approximation. However,
these controllers may have weak performance in presence of nonlinear effects (i.e. friction, hysteresis,
backlash) and/or fast time-varying set–points and perturbations.

Continuous Higher-Order Sliding Mode (CHOSM) controllers are structurally efficient to deal
with systems affected by non-vanishing Lipschitz-continuous time-varying perturbations, see for ex-
ample the works in [Levant, 1993, Moreno, 2016, Kamal et al., 2016, Torres-González et al., 2017,
Laghrouche et al., 2017, Mendoza-Avila et al., 2020b, Mercado-Uribe and Moreno, 2020]. The well-
known Super-Twisting Algorithm [Levant, 1993] belongs to the family of second-order CHOSM con-
trollers and has a PI structure. This allows to establish tuning rules of its parameters in order to obtain
pre–specified frequency and amplitude of the chattering generated by the presence of fast-actuators
and delays in the control loop making the relative degree of the plant higher than one, for example
see the proposals of [Boiko and Fridman, 2005, Pilloni et al., 2012a, Pilloni et al., 2012b]. A simi-
lar methodology was proposed by [Pérez-Ventura and Fridman, 2019], minimizing the amplitude of
chattering and the average power needed to maintain the trajectories into real sliding-modes.

Continuous Terminal Algorithm [Fridman et al., 2015, Kamal et al., 2016], Discontinuous Inte-
gral Controller (DIC) [Moreno, 2016, Moreno, 2018], and Continuous Twisting Algorithm (CTA)

90
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[Torres-González et al., 2017] were designed to drive the trajectories of disturbed second-order sys-
tems, in the form of a double integrator and affected by non-vanishing Lipschitz-continuous time-
varying matched perturbations, to the origin in finite-time. They enforce a third-order sliding mode,
i.e., the output and its first and second time-derivatives are nullified in finite-time, while the control
signal convergences to the opposite value of perturbations in finite-time, as well. These CHOSM
controllers provides, in the absence of measurement noises, sliding-accuracy proportional to cubic de-
gree of the sampling step h for the output, proportional to quadratic degree of h for the output’s first
time-derivative, and proportional to h for the rejection of perturbations.

Stability proofs for the aforementioned CHOSM controllers are based on homogeneous polyno-
mial Lyapunov function (LF) (see [Moreno, 2016, Torres-González et al., 2017, Moreno, 2018]). It
results in the general case, the needing to solve bilinear inequalities that appeared when the coeffi-
cients of the LF and the controller gains are computed to guarantee the positive definiteness of the
LF and the negative definiteness of its time-derivative. However, there is not any criteria of optimiza-
tion for selecting that gains, besides Lyapunov-based designs leads to an overestimation of the gains,
which affects the performance of the closed-loop system. All this reasons makes difficult the practical
implementation of these CHOSM controllers.

Commonly, engineers are accustomed to work with PID control structures where the gains are cho-
sen from several criteria depending on the parasitic dynamics which are neglected in the model like
delays, actuators, sensors, hysteresis, etc. See for example [Ziegler and Nichols, 1942, Boiko, 2014b,
Aström and Hägglund, 2005, Boiko et al., 2006, Pilloni et al., 2012a, Pilloni et al., 2012b]. In this chap-
ter, the Continuous Sliding Mode Controller in the PID form (PID-CSMC) (originally introduced by
[Zamora et al., 2013]) and a Homogeneous controller in the PD form (PD-HC), which coincides with
the static part of the PID-CSMC, are considered. The first one has three gains to be selected, which are
directly related to the error signal in proportional, integral and derivative ways, which implies a syn-
ergy relation with the conventional PID. Whereas, the second one has only two gains, which are related
to nonlinear functions of the error signal and its first time-derivative, respectively, in a similar way than
the classical PD. Indeed, the nonlinearities in the PID-CSMC and the PD-HC permit to overcome the
features of the classical PID and PD, respectively, because finite-time stability and exact compensa-
tion of certain class of time-varying perturbations can be guaranteed, in theory. Nevertheless, despite
the PID-CSMC and the PD-HC generate a continuous control signal, the chattering phenomena arise
whenever applied to linear plants of relative greater than two [Pérez-Ventura and Fridman, 2019].

Considering a cascade connection of a perturbed second-order chain of integrators and a critically-
damped second-order fast-actuator, we are proposing a frequency domain based criteria to design the
PID-CSMC and the PD-HC gains in order to minimize the amplitude of chattering and the average
power needed to maintain the trajectories in a real sliding mode. Additionally, for the perturbed
second-order chain of integrators controlled by the PID-CSMC or the PD-HC with designed gains,
stability at the origin is studied by means of homogeneous polynomial LF. On the other hand, in the
presence of a critically-damped second-order fast-actuator , the Loeb’s criterion allows to show that
if the predicted oscillations arise, then the proposed design ensures their Orbital Asymptotic Stability
(OAS).

The structure of this chapter is as follows: Section 6.1 presents some important definition and
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Figure 6.1: Block diagram of a system for DF analysis.

preliminaries results. The methodology to design the gains of the PID-CSMC in provided in Section
6.2. The PD-HC and is design are presented in Section 6.3. Finally, the conclusions are summarized
in Section 6.4.

6.1 Preliminaries

6.1.1 Describing Function Approach

The Describing Function (DF) approach provides a simple and fairly precise method to find a possible
periodic solution in nonlinear dynamical systems. This method is limited to system that can be sepa-
rated in a static nonlinearity and a linear time-invariant differential equation, which are interconnected
in a closed-loop (see Fig. 6.1). Moreover, the linear system must have low-pass filter characteristics
such that the input to the nonlinearity can be well approximated by its main harmonics [Boiko, 2009].

The DF of the non-linearity u(t) is defined as the first-harmonic of the Fourier’s series of the
periodic control u(t) divided by the amplitude A of the possible oscillation [Boiko, 2009], i.e.,

N(A,ω) =
ω

πA

(∫ 2π
ω

0
u(t) sin(ωt)dt+ j

∫ 2π
ω

0
u(t) cos(ωt)dt

)
. (6.1)

Parameters of amplitude A and frequency ω of a possible periodic solution can be predicted by
solving the Harmonic Balance (HB) equation

N(A,ω)W (jω) = −1 . (6.2)

(see more details in [Atherton, 1975, Gelb and Vander Velde, 1968]). In other words, the parameter of
a possible oscillation can be found in the intersection point of the Nyquist plotW (jω) and the negative
reciprocal of the DF N(A,ω) [Boiko, 2009].

Usually, the DF approach is used to predict the parameters of the main harmonic approximation of
chattering caused by the presence of parasitic dynamics in non-smooth control systems [Atherton, 1975,
Gelb and Vander Velde, 1968, Boiko, 2009, Boiko, 2018, Utkin, 2016].
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6.1.2 Average Power

Consider a mechanical system, accordingly, x1(t) represents the position and x2(t) represents the
velocity. Assume that the trajectories converge to an oscillatory behavior x1(t) = A sin(ωt) and
x2(t) = Aω cos(ωt). So, the (kinetic) energy of the oscillations is proportional to the square of the
velocity, i.e., e(t) ∝ x2

2(t). Thus, average power in a period T = 2π
ω of the oscillation is given by

P =
1

T

∫ T

0
e(t)dt =

ω

2π

∫ 2π
ω

0

(
Aω cos(ωt)

)2
dt =

A2ω2

2
, (6.3)

6.1.3 Loeb’s stability criterion

The stability of an oscillatory state is presented in terms of quasi-static disturbances in amplitude
and frequency of the predicted oscillations. So, a limit cycle is stable if it returns to its original
equilibrium state, on the contrary, if its amplitude or frequency increases or decays then it is unstable
[Gelb and Vander Velde, 1968].

The Loeb’s stability criterion [Loeb, 1956] claims that if a system has periodic solution satisfying
equation (6.2), then the following inequality should be satisfied for a stable oscillatory regime,

∂U

∂A

∂V

∂ω
− ∂U

∂ω

∂V

∂A
> 0 , (6.4)

with

U(A,ω) = Re{N(A,ω) +W (jω)−1} , V (A,ω) = Im{N(A,ω) +W (jω)−1} , (6.5)

and it is unstable in any other case.

6.2 The Continuous Sliding-Mode Controller in PID form

Consider a process modeled by a perturbed double integrator:

ẋ1(t) = x2(t) ,
ẋ2(t) = f(t) + u(t) ,

(6.6)

with x1(t) as the output and u(t) as the control input. The disturbance term f(t) is assumed Lipschitz-
continuous, i.e., |ḟ(t)| ≤ L with a known upper-bound L > 0. Also, the measurements of the states
x1(t) and x2(t) are available for all t ≥ 0. For readability sake, the variable t will be omitted in the
sequel.

The Continuous Sliding-Mode Controller in PID form (PID-CSMC),

u = −k1dx1c1/3 − k2dx2c1/2 + v ,
v̇ = −k3dx1c0 ,

(6.7)
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Figure 6.2: The PID-CSMC input is transferred to the plant through an actuator.

with properly designed gains k1, k2, k3 > 0, ensures the finite-time stability to the origin of the closed-
loop system

ẋ1 = x2 ,

ẋ2 = −k1dx1c1/3 − k2dx2c1/2 + x3 ,

ẋ3 = −k3dx1c0 + ḟ .

(6.8)

where x3 = f + v is an extended state due to the integral controller. Note that the PID-CSMC (6.7)
is a simplified version of the CTA [Torres-González et al., 2017] and the DIC [Moreno, 2018]. From
now on, the closed-loop system (6.8) will be called the ideal model due to the conditions established
in the following theorem.

Theorem 6.1. [Torres-González et al., 2017, Moreno, 2018] Consider the system (6.6) with a Lipschitz-
continuous perturbation f(t) with a Lipschitz constant L. Then, for an appropriated design of the
gains k1, k2, k3, the control law (6.7) stabilizes the origin of the ideal model (6.8) in finite-time.

Remark 6.1. If the gains k1 = λ1, k2 = λ2 and k3 = λ3 with constants λ1, λ2, λ3 > 0, ensure the
finite-time stability of the ideal model (6.8), with a perturbation with a Lipschitz constant L > 0.
Then, for an arbitrary ∆ > 0, the gains k1 = λ1∆2/3, k2 = λ2∆1/2 and k3 = λ3∆ ensure the finite-
time stability of the ideal model (6.8), when it is affected by a perturbation with Lipschitz constant
L∆.

There are reported in the literature several sets of gains for the PID-CSMC that ensure finite-
time stabilization of the trajectories of the closed-loop system (6.8), see for example [Moreno, 2016,
Torres-González et al., 2017, Moreno, 2018, Zamora et al., 2013]. However, there are not a criteria for
selecting the gains from such sets other than guarantee the stability in the Lyapunov sense. However,
it is a well known fact that methods of design based on LF leads to an overestimation of the gains,
which can deteriorate the performance of the controller. Also, the Lyapunov-based design implies the
solution of a larger set of matrix inequalities, where both the control gains and the coefficients of the
LF must be found. These problems can be understood as bi-linear inequalities due to products of such
gains and parameters appear in the time-derivative of the LF.

6.2.1 Real sliding modes

The presence of parasitic dynamics in the control system deteriorates the ideal properties of the PID-
CSMC closed-loop (6.8), so that chattering may appear [Boiko, 2009, Utkin, 2016]. This behavior is
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so-called real sliding mode [Fridman, 1999, Levant, 2010]. As shown in Fig. 6.2, the control signal
is transferred to the plant (6.6) through an actuator, hence a more accurate model for this process is
given by

ẋ1 = x2 ,
ẋ2 = f + ū ,
µż = g(z, u) , ū = h(z) ,

(6.9)

where z ∈ Rm is the actuator state, ū ∈ R is the output of the actuator and u ∈ R is the control input
defined by the PID-CSMC (6.7). The actuator dynamics is assumed stable, such that, for small values
of the actuator’s time-constant µ > 0 the output ū uniformly tends to the control input u. Any stable
transfer function Ga(s) with Ga(0) = 1 can be taken as a linearized model of the actuator dynamics
in (6.9) [Levant, 2010].

Previous designs of PID-CSMC use reduced-order models of the plant which take into account
only its main dynamics and neglect the parasitic ones. However, in real implementations the pres-
ence of unmodeled dynamics deteriorates the ideal properties of the closed-loop system (6.8). For
instance, if the gains k1, k2 and k3 of the PID-CSMC are designed to enforce an ideal sliding mode
in the closed-loop (6.8), then, they are able to generate a real sliding mode in the presence of an ac-
tuator. In the latter case, the properties of finite-time convergence and insensibility w.r.t. disturbances
are meaningless because the system trajectories exhibit chattering in steady state and a propagation
of the low frequency disturbance (see [Boiko, 2009]), even when CHOSM controllers are used (see
[Pérez-Ventura and Fridman, 2019, Boiko and Fridman, 2005, Pilloni et al., 2012a, Pilloni et al., 2012b,
Utkin, 2016]).

6.2.2 Description of the system

The plant (6.6) can be expressed in a transfer function form as G(s) = 1/s2. In addition, by following
[Boiko and Fridman, 2005, Utkin, 2016, Pérez-Ventura and Fridman, 2019], let’s consider a critically
damped second-order actuatorGa(s) = 1/(µs+1)2, where the small parameter µ > 0 is the actuator’s
time-constant. Therefore, the actuator-plant cascade connection has the form

W (s) = Ga(s)G(s) =
1

s2(µs+ 1)2
. (6.10)

6.2.3 Sliding accuracy of the PID-CSMC

The sliding accuracy (level of chattering) is used to evaluate the performance of the closed-loop sys-
tem (6.8) in steady state. For instance, in [Levant and Fridman, 2010] the sliding accuracy of n-th
order discontinuous SMC w.r.t. the time-constant µ > 0 was reported as |x1| < γ1µ

r1 , |x2| <
γ2µ

r2 , . . . , |xn| < γnµ
rn where γi > 0 are constants and ri; i = 1, . . . , n are the homogeneity degree

of the corresponding variable (see Chapter 2 for details about a homogeneity concepts). In the follow-
ing, for the system (6.9) in closed-loop with the PID-CSMC (6.7) the coefficients γi > 0 of the real
sliding mode are computed by using the DF approach.
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Figure 6.3: Diagram for DF of the PID-CSMC.

Proposition 6.1. Let the actuator-plant model (6.10) have low-pass filter properties and the actuator
time-constant µ > 0 be small. The PID-CSMC (6.7) is able to provide sliding accuracy, w.r.t. the
time-constant µ, of third and second order for the output x1 and its time-derivative x2, respectively,
i.e.,

|x1| = ∆

(
2α1λ1

πK2(1−K2)

)3/2

µ3 , |x2| = ∆

(
2α1λ1

πK
4
3 (1−K2)

)3/2

µ2 , (6.11)

where the parameter K ∈ (0, 1) is the solution of the non-linear equation,

2Kλ3/2
1 − (1−K2)3/4λ2λ

3/4
1 + (1−K2)3/2λ3 = 0 , (6.12)

where λ1, λ2, λ3 > 0 and ∆ > 0 are the parameters of the PID-CSMC, and α1 ≈ 1.821 and α2 ≈
1.748 are the coefficients of the main-harmonic of the Fourier’s series.

Proof. Recall that the actuator-plant dynamics (6.9) is assumed to have low-pass filter characteristics
[Atherton, 1975, Gelb and Vander Velde, 1968], i.e., if W (jω) is a linearized model of the actuator-
plant dynamics (6.9), then |W (jω)| >> |W (jnω)|, for n = 2, 3, ... where ω is the frequency of
self-excited oscillations. Thus, a well approximation of the steady-state response of the closed-loop
system (6.9)-(6.7) is given by its first-harmonic, i.e.,

x1(t) ≈ A sin(ωt)
x2(t) ≈ Aω cos(ωt)

(6.13)

where A is the amplitude and ω the frequency. These parameters of the periodic motion (6.13) can be
found by solving the HB equation (6.2).

Now, following the methodology of [Pérez-Ventura and Fridman, 2019] the DF of the PID-CSMC
is given by

N(A,ω) =
2α1k1

πA2/3
+ j

2α2k2ω
1/2

πA1/2
+

(
4k3

πA

)(
1

jω

)
, (6.14)



97 Design of a PID-like controller based on Discontinuous Integral Control

where α1 ≈ 1.821, α2 ≈ 1.748 are the coefficients of the first-harmonic of the Fourier’s series.
The HB equation (6.2) for the actuator-plant model (6.10) and the DF (6.14) can be rewritten as

2α1k1

πA2/3
+ j

(
2α2k2ω

1/2

πA1/2
− 4k3

πAω

)
= ω2 (1− µ2 ω2) + j2µω3 . (6.15)

If the amplitude A is cleared from the real part of (6.15) and substituted into the imaginary one, the
following expression is obtained

α2k2

π1/4(2α1k1)3/4
(1− µ2ω2)3/4 − 2π1/2k3

(2α1k1)3/2
(1− µ2ω2)3/2 = µω . (6.16)

Note that (6.16) can be rewritten as (6.12) using k1 = λ1∆2/3, k2 = λ2∆1/2, k3 = λ3∆ and
K = µω. Hence, from (6.15) the predicted chattering parameters are

A = ∆

(
2α1λ1

πK2(1−K2)

)3/2

µ3 , (6.17)

ω =
K
µ
. (6.18)

Finally, substituting the parameters of amplitude (6.17) and frequency (6.18) into the main harmonic
approximation (6.13), it is possible to derived the bounds (6.11).

Note that similarly to [Levant and Fridman, 2010], Proposition 6.1 provides the sliding accuracy
for the PID-CSMC trajectories in steady-state, where the level of chattering is proportional to the
actuator time-constant powered by the homogeneity weight of the corresponding variable.

6.2.4 Stability of self-excited oscillations

Now, by means of the Loeb’s criterion we are going to establish the conditions such that if the predicted
oscillations (6.13) arise in the steady state response of the system (6.9) in closed-loop with the PID-
CSMC (6.7), then they are going to be OAS.

Proposition 6.2. Consider the actuator-plant model (6.10), with low-pass filter properties and a small
actuator time-constant µ > 0, in closed-loop with the PID-CSMC (6.7). For any ∆ > 0, the periodic
solution (6.13) will be OAS if the inequality

λ
3/4
1 >

3K
(
1−K2

)3/4
4 (1 + 2K2)

λ2 , (6.19)

holds, where K ∈ (0, 1) is a solution of the non-linear equation (6.12), and λ1, λ2, λ3 ≥ 0 are the
gains of the PID-CSMC.
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Proof. Following the Loeb’s criterion (see Section 6.1 for details), the real and imaginary parts of the
HB equation (6.15) can be expressed as

U(A,ω) = 2α1k1A
1/3ω + πAω3(µ2ω2 − 1) ,

V (A,ω) = 2α2k2A
1/2ω3/2 − 4k3 − 2πµAω4 ,

and the partial derivatives w.r.t. A and ω are

∂U

∂A
=

2α1k1ω

3A2/3
+ πω3(µ2ω2 − 1) ,

∂U

∂ω
= 2α1k1A

1/3 + πAω2(5µ2ω2 − 3) ,

∂V

∂A
=
α2k2ω

3/2

A1/2
− 2πµω4 ,

∂V

∂ω
= 3α2k2A

1/2ω1/2 − 8πµAω3 .

Substituting this expressions in inequality (6.4), it is obtained

πA2/3ω2(µ2ω2 + 1)− α2k2A
1/6ω3/2µ >

2

3
α1k1 . (6.20)

Finally, substituting the amplitude (6.17) and frequency (6.18) into (6.20), the condition (6.19) is
derived and it must be fulfill to warranty an OAS periodic solution (6.13) in the steady state response
of the system (6.9) in closed-loop with the PID-CSMC (6.7).

6.2.5 Design of gains for the PID-CSMC

Here, the PID-CSMC gains are selected from a frequency domain approach, in a similar way as in the
classical PID. So, we propose two criteria for selecting the PID-CSMC gains in order to minimize the
upper-bounds (6.11), and this means to maximize the sliding accuracy provided by the controller.

Fig. 6.4 shows the amplitude of chattering (6.17) as a function of the PID-CSMC gains λ1 and
λ2 ∈ [1.5, 10], with a fixed gain λ3 = 1.1. Note that the amplitude (6.17) can be minimized by a
suitable selection of the PID-CSMC gains. For example, we can see in Fig. 6.4 (the plot on the right)
that fixing the gain λ1 > 0, there exist a gain λ2 > 0 that minimize the function of amplitude of
chattering (6.17).

Assuming that λ1 > 0 and λ3 > 0 are fixed, the term K2
(
1−K2

)
, in the denominator of (6.17),

has a maximum value if K2 = 0.5. Accordingly, it is a good idea to find the gain λ2 > 0 in order to
fix the solution of (6.12) as K2 = 0.5. Under this restriction, the equation (6.12) becomes

1.42λ
3/2
1 − 0.595λ2λ

3/4
1 + 0.354λ3 = 0 , (6.21)

from where it is derived

λ2 = 2.387
λ

3/2
1 + 0.25λ3

λ
3/4
1

. (6.22)

Moreover, the restriction (6.19) for K2 = 0.5 becomes

λ
3/4
1 > 0.158λ2 , (6.23)
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Figure 6.4: Amplitude of chattering in the steady-state response of the PID-CMSC closed-loop. Left:
Amplitude behavior varying the gains λ1 and λ2. Center: Amplitude behavior varying the gain λ1

and fixing λ2 in different values. Right: Amplitude behavior varying the gain λ2 and fixing λ1 in
different values. The gain λ3 = 1.1 was chosen in all cases.

which must be satisfied in order to ensure an OAS periodic solution (6.13). From (6.22) and (6.23), it
is derived

λ
3/2
1 > 0.151λ3. (6.24)

Proposition 6.3. Given the parameters λ1 > 0 and λ3 > 0 to fulfill (6.24), the value λ2 > 0
minimizing the amplitude (6.17) is obtained from (6.22), such that, the triad λ1, λ2, λ3 minimizes the
amplitude (6.17) while ensures the stability of the predicted oscillations (6.13).

On the other hand, we can select the gains of the PID-CSMC to minimize the (kinetic) energy
needed to maintain the trajectories into a real sliding mode. Replacing the estimated parameters (6.17)
and (6.18) in the average power (6.3), we obtain

P = µ4

(
4(α1k1)3

π3K4(1−K2)3

)
. (6.25)

Note that the square root of (6.25) corresponds to the accuracy bound of |x2| in (6.11).
Similarly to the previous case, the average power (6.25) can be minimized by setting K ≈ 0.6559

such that K4 ≈ (1−K2)3. Substituting this value in equation (6.12), it is obtained

1.312λ
3/2
1 − 0.656λ2λ

3/4
1 + 0.43λ3 = 0 , (6.26)

from where it is derived

λ2 = 2
λ

3/2
1 + 0.328λ3

λ
3/4
1

. (6.27)

Moreover, the restriction (6.19) for K = 0.6559 becomes

λ
3/4
1 > 0.173λ2 , (6.28)
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which must be satisfied to ensure an OAS periodic solution (6.13). From (6.27) and (6.28), it is derived

λ
3/2
1 > 0.174λ3. (6.29)

Proposition 6.4. Given the parameters λ1 > 0 and λ3 > 0 to fulfill (6.29), the value λ2 > 0
minimizing the average power (6.25) is obtained from (6.27), such that, the triad λ1, λ2, λ3 minimizes
the average power (6.25) while ensures the stability of predicted oscillations (6.13).

Some examples of gains satisfying the statements of Propositions 6.3 and6.4 are provided by the
sets D1 and D2 in Table 6.1, respectively.

6.2.6 Stability analysis of the ideal closed-loop

The sets of gains from Proposition 6.3 and 6.4 ensure an OAS periodic solution (6.13), while min-
imize the amplitude or the average power of chattering. However, such properties are verified only
in the region where the approximation (6.13) of the steady-state response is valid. To ensure Global
Asymptotic Stability (GAS) of the permanent oscillatory regime (6.13), it is sufficient to show that
the ideal closed-loop system (6.8) possesses a kind of robustness against inputs (e.g., Input-to-State
Stability (ISS) or L-stability). To this end, the following lemma establishes the GAS of the origin of
the closed-loop system (6.8).

Lemma 6.1. Let the second-order system (6.6), with |ḟ | < L, in closed-loop with the PID-CSMC
(6.7). For some gains λ1, λ2, λ3 and ∆ = 1, there exist constants αi; i = 1, ..., 9, such that,

V (x) = α1|x1|
7
3 + α2|x2|

7
2 + α3|x3|7 + α4dx1c

5
3x2 + α5|x1|x2

2

+ α6x1dx3c4 + α7|x1|
5
3x2

3 + α8x2x
5
3 + α9|x2|

3
2x4

3, (6.30)

is a LF for the closed-loop system (6.8).

The proof of Lemma 6.1 is presented in Section D.1 of Appendix D. So, the existence of a LF for
the nominal system (6.8) ensures that it is asymptotically stable at the origin. Also, due to this system
is r-homogeneous of negative degree ν = −1, then it is endowed with a kind of ISS. Therefore, if
Lemma 6.1 holds with a set of gains from Propositions 6.3 and6.4, then the proposed design works
globally. Some examples of gains satisfying the statements of Lemma 6.1 are provided by the sets D1

and D2 in Table 6.1.

6.2.7 Summarizing the results

Since the gains in Table 6.1 satisfy Propositions 6.3 and 6.4, and Lemma 6.1, the following theorem is
directly derived from these previous results.

Theorem 6.2. Consider a second-order system in cascade connection with a critically damped actu-
ator given by (6.9), with |ḟ | < L̄ and a small time-constant µ > 0. Given the parameters λ1, λ2, λ3
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Set λ1 λ2 λ3

D1 2.7 5.345 1.1

D2 2.7 4.281 1.1

Table 6.1: Sets of gains for the PID-CSMC.
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Figure 6.5: Normalized parameters: amplitude (6.17), frequency (6.18) and average power (6.25), for
varying k2 ∈ [1 10]∆1/2 and fixing k1 = 2.7∆2/3, k3 = 1.1∆, with ∆ = 5.

by the sets D1 and D2 in Table 6.1 and ∆ > L̄
L (for some L > 0), the PID-CSMC (6.7) is able to

ensure that the system’s trajectories converge to a permanent oscillatory regime, while minimize the
amplitude (6.17) or the average power (6.25), respectively.

More suitable triads of the PID-CSMC gains λ1, λ2 and λ3 that minimize the effects of chattering
can be determined from Propositions 6.3 and 6.4. However, we need to check if the stability conditions
of Lemma 6.1 hold, as well.

A numeric solution of the HB equation (6.15) for λ1 = 2.7, λ3 = 1.1∆ and several values of
λ2 ∈ [1 10] is depicted by Fig. 6.5. It confirms that the suggested gains in Theorem 6.2 minimize
the amplitude or the average power of chattering, respectively. Moreover, that result are supported by
numerical simulation of the closed-loop system (6.9)-(6.7).
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6.2.8 Numerical Tests

The simulations are performed in the following framework: the Euler’s integration method with con-
stant step τ = 10−4 is used to solve the closed-loop (6.9)-(6.7). Also, µ = 0.05 is considered for
the time-constant of the actuator dynamics in (6.10). Further, the upperbound ∆ = 5 is taken for
simplicity.

Test 1: nominal behavior

Consider the unperturbed control system (6.9)-(6.7), with f(t) = 0. So, the steady-state response
is only conformed by the oscillations caused by the parasitic dynamics in (6.10). Fig. 6.6 (on the
left) shows the simulation of the system (6.9)-(6.7) with the gains k1 = 2.7∆2/3, k2 = 5.345∆1/2

and k3 = 1.1∆, which are selected to minimize the amplitude of chattering according to Proposition
6.3. On the other hand, Fig. 6.6 (on the right) shows the simulation of the system (6.9)-(6.7) with
the gains k1 = 2.7∆2/3, k2 = 4.281∆1/2 and k3 = 1.1∆, which are chosen to minimize the energy
needed to maintain the trajectories into a real sliding mode, according to Proposition 6.4. In both
cases, we can see that increasing or decreasing the gain of k2 from the critical value k2c = 5.345∆1/2

or k2c = 4.281∆1/2 lead to larger chattering amplitudes or energy needed to maintain the trajectories
into a real sliding mode, respectively, validating the theoretical predictions.

Test 2: disturbed behavior

The disturbed response of the control system (6.9)-(6.7) contains a propagation of the perturbation
term f(t) due to the presence of an actuator [Gelb and Vander Velde, 1968, Boiko, 2009]. In general,
we cannot expect for a periodic solution because it depends on the shape of the perturbations, e.g.,
slowly varying disturbances (w.r.t. the frequency of the oscillations generated by the actuator). A
rigorous study of the perturbed case can be done via the so-called equivalent gains or dual-input DF’s
[Gelb and Vander Velde, 1968, West et al., 1956], but such analysis will be left as future work.

Just to illustrate this phenomenon, two perturbations are considered to show the sub-optimality of
the proposed design of the PID-CSMC, a constant one f(t) = 1 and a sinusoidal one f(t) = sin(t).
According to Proposition 6.3, the gains k1 = 2.7∆2/3, k2 = 5.345∆1/2 and k3 = 1.1∆ minimize
the amplitude of chattering. Fig. 6.7 (on the left) shows the simulation with a constant perturbation
f(t) = 1 in the closed-loop (6.9)-(6.7) . Furthermore, Fig. 6.7 (on the right) shows simulations with
a sinusoidal perturbation f(t) = sin(t) in the closed-loop (6.9)-(6.7). It can be seen that the fast-
oscillations are mounted on slow-frequency components due to the propagation of the perturbation.
In both cases, increasing or decreasing the value of k2 from the critical one k2c = 5.345∆1/2 lead to
larger chattering amplitudes, validating the theoretical predictions, again.
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Figure 6.6: Response of the closed-loop system (6.9)-(6.7) for different values of k2 around the critical
gain k2c . Left: minimizing the chattering amplitude. Right: minimizing the energy needed to maintain
the trajectories into a real sliding mode.

6.3 An homogeneous controller in PD form

Consider again the system (6.6). Now, let us introduce a homogeneous controller in PD form (PD-HC)
given by

u = −k1dx1c1/3 − k2dx2c1/2 , (6.31)

with gains k1, k2, k3 > 0. In absence of perturbations, i.e., f = 0, this controller is able to provide
finite-time stability to the origin of the closed-loop system

ẋ1 = x2 ,

ẋ2 = −k1dx1c1/3 − k2dx2c1/2 .
(6.32)

Remark 6.2. Note that the PD-HC lacks of any discontinuous term, so it is not able to enforce sliding
mode to the trajectories of the closed-loop system (6.32). Nevertheless, this controller possesses an
infinite gain near to the origin hence it is capable to provide finite-time convergence.

Remark 6.3. Similarly to the classical PD, the proposed controller if no able to reject perturbations.
However, due to the homogeneity properties of the closed-loop system (6.32), it possesses a kind of
ISS (see [Bernuau et al., 2013b]).
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Figure 6.7: Response of the closed-loop system (6.9)-(6.7) in presence of perturbations for different
values of k2 around the critical gain k2c = 5.345. Left: a constant perturbation. Right: a sinusoidal
perturbation.

Now, let’s consider the system (6.9), which describes the control systems depicted by Fig. 6.2,
where the control signal s supplied to the plant through an actuator. In this case, we cannot expect the
finite-time convergence because the infinite gain of the PD-HC near to the origin cause the so-called
chattering [Rosales et al., 2018] .

In the following, we aim to analyze the chattering generated by the PD-HC in the frequency
domain, and propose a gain design to minimize the effect of this undesired phenomena in the control
system.

6.3.1 Accuracy of the PD-HC

Recall that the actuator-plant dynamics (6.10) is assumed to have low-pass filter characteristics [Atherton, 1975,
Gelb and Vander Velde, 1968]. Thus, the oscillatory regime (6.13) is a well approximation of the
steady-state response of the closed-loop system (6.9)-(6.31).

Following the methodology of [Pérez-Ventura and Fridman, 2019] the DF of the PD-HC is given
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by

N(A,ω) =
2α1k1

πA2/3
+ j

2α2k2ω
1/2

πA1/2
, (6.33)

where α1 ≈ 1.821, α2 ≈ 1.748 are the coefficients of the first-harmonic of the Fourier’s series.
The HB equation (6.2) for the actuator-plant model (6.10) and the DF (6.33) can be rewritten as

2α1k1

πA2/3
+ j

2α2k2ω
1/2

πA1/2
= ω2 (1− µ2 ω2) + j2µω3 . (6.34)

If the amplitude A is cleared from the real part of (6.15) and substituted into the imaginary one, the
following expression is obtained

α2k2

π1/4(2α1k1)3/4
(1− µ2ω2)3/4 = µω . (6.35)

Now, substituting α1 ≈ 1.821, α2 ≈ 1.748 k1 = λ1∆2/3, k2 = λ2∆1/2 and K = µω in (6.35),
we obtain

2Kλ3/4
1 − λ2(1−K2)3/4 = 0 . (6.36)

Note that due to the homogeneity properties of the closed-loop system (6.32), the change of variables
k1 = λ1∆2/3, k2 = λ2∆1/2 preserves its qualitative behavior.

Finally, from the HB equation (6.34), the predicted chattering parameters are

A = ∆

(
2α1λ1

πK2(1−K2)

)3/2

µ3 , (6.37)

ω =
K
µ
. (6.38)

where K ∈ (0, 1) is a solution of equation (6.36). Finally, considering the parameters of amplitude
(6.37) and frequency (6.38), and the main harmonic approximation (6.13), we obtain the bounds

|x1| = ∆

(
2α1λ1

πK2(1−K2)

)3/2

µ3 , |x2| = ∆

(
2α1λ1

πK
4
3 (1−K2)

)3/2

µ2 . (6.39)

Proposition 6.5. Let the actuator-plant model (6.10) have low-pass filter properties and the actuator
time-constant µ > 0 be small. The PD-HC (6.31) is able to provide accuracy, w.r.t. the time-constant
µ, of third and second order for the output x1 and its time-derivative x2, respectively, i.e., the inequal-
ities (6.39) hold.

Remark 6.4. Note that the bounds of chattering for both the PID-CSMC and the PD-HC are the same.
We can make two conclusion from this fact: first, the static part of the PID-CSMC establishes the
convergence properties of the algorithm and it is the main source of chattering. Second, the disconti-
nuity in the PID-CSMC is filtered by an integrator, hence its effect in the generation of chattering is
mitigated.
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6.3.2 Stability of the self-excited oscillations

Similarly to the case of the PID-CSMC, let us establish the conditions to keep the OAS of the predicted
oscillations (6.13) in the steady state response of the system (6.9) in closed-loop with the PD-HC
(6.31).

Following the Loeb’s criterion (see Section 6.1 for details), the real and imaginary parts of the HB
equation (6.34) can be expressed as

U(A,ω) = 2α1k1 + πA2/3ω2(µ2ω2 − 1) ,

V (A,ω) = 2α2k2A
1/6ω1/2 − 2πµA2/3ω3 .

So, their partial derivatives w.r.t. A and ω are given by

∂U

∂A
=

2πω2(µ2ω2 − 1)

3A1/3
,

∂U

∂ω
= 2πA2/3ω(2µ2ω2 − 1) ,

∂V

∂A
=

2α2k2ω
1/2

6A5/6
− 4πµω3

3A1/3
,

∂V

∂ω
=
α2k2A

1/6

ω1/2
− 6πµA2/3ω2 .

Substituting this expressions in inequality (6.4), we obtain

2πA1/2ω1/2(µ2ω2 + 1)− α2k2µ > 0 . (6.40)

Finally, considering α1 ≈ 1.821, α2 ≈ 1.748 k1 = λ1∆2/3, k2 = λ2∆1/2 and substituting the
amplitude (6.37) and frequency (6.38) into (6.40), it becomes

λ
3/4
1 >

K
(
1−K2

)3/4
4 (1 + K2)

λ2 , (6.41)

holds, where K ∈ (0, 1) is a solution of the non-linear equation (6.36), and λ1, λ2 ≥ 0 are the gains
of the PD-HC.

Proposition 6.6. Consider the actuator-plant model (6.10), with low-pass filter properties and a small
actuator time-constant µ > 0, in closed-loop with the PD-HC (6.31). For any ∆ > 0, the periodic
solution (6.13) will be OAS if the inequality (6.41) is satisfied.

6.3.3 Design of gains for the PD-HC

Here, the PD-HC gains are selected from a frequency domain approach, in a similar way as in the
classical PD. So, we propose two criteria for selecting the PD-HC gains in order to minimize the
upper-bounds of chattering (6.39).

Similarly to the design of the PID-CSMC, the term K2
(
1−K2

)
, in the denominator of (6.37), has

a maximum value if K2 = 0.5. Accordingly, we should select the gains λ1 > 0 and λ2 > 0 in order
to fix the solution of (6.36) in K2 = 0.5. Under this restriction, the equation (6.36) becomes obtain

λ
3/4
1 = 0.421λ2 . (6.42)
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Moreover, the restriction (6.41) for K2 = 0.5 becomes

λ
3/4
1 > 0.07λ2 . (6.43)

It is clear that if the gains λ1 and λ2 satisfy the equation (6.42), then they also satisfy the inequality
(6.43), such that, an OAS periodic solution (6.13) is ensured.

Proposition 6.7. Given the parameter λ1 > 0, if the value λ2 > 0 is obtained from (6.42), then the
amplitude (6.17) is minimized and the stability of the predicted oscillations (6.13) is guaranteed.

Now, replacing the estimated parameters (6.37) and (6.38) in the average power (6.3), we obtain
the estimation (6.25), again. So, it is minimized by setting K ≈ 0.6559 such that K4 ≈ (1 − K2)3.
Substituting this value in equation (6.36), it is obtained

λ
3/4
1 = 0.5λ2 . (6.44)

Furthermore, the restriction (6.41) for K = 0.6559 becomes

λ
3/4
1 > 0.075λ2 . (6.45)

It can be readily seen that if the gains λ1 and λ2 satisfy the equation (6.44), then they also satisfy the
inequality (6.45), ensuring an OAS periodic solution (6.13).

Proposition 6.8. Given the parameter λ1 > 0, if the value λ2 > 0 is obtained from (6.44), then the
amplitude (6.17) is minimized and the stability of the predicted oscillations (6.13) is guarantee.

Some examples of gains satisfying the statements of Propositions 6.7 and 6.8 are provided by the
sets D1 and D2 in Table 6.2, respectively.

6.3.4 Stability analysis of the ideal closed-loop

The following lemma establishes the conditions for GAS of the origin of the closed-loop system (6.32).

Lemma 6.2. Let the second-order system (6.6), with f = 0, in closed-loop with the PD-HC (6.31).
For some gains λ1, λ2 > 0 and ∆ > 0, there exist constants α1, α2, and α3, such that,

V (x) = α1|x1|3 + α2|x2|
9
2 + α3dx1c

7
3x2. (6.46)

is a LF for the closed-loop system (6.32).

The proof of Lemma 6.2 is presented in Section D.2 of Appendix D. So, the existence of a LF for
the nominal system (6.32) ensures that it is asymptotically stable at the origin, and due to this system
is r-homogeneous of negative degree ν = −1, then it is endowed with a kind of ISS. Therefore, if
Lemma 6.2 holds with a set of gains from Propositions 6.7 and6.8, then the proposed design works
globally. Some examples of gains satisfying the statements of Lemma 6.2 are provided by the sets D1

and D2 in Table 6.2.
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Set λ1 λ2

D1 1 2.375

D2 1 2

Table 6.2: Sets of gains for the PD-HC.

6.3.5 Summarizing the results

Since the gains in Table 6.2 satisfy Propositions 6.7 and 6.8, and Lemma 6.2, the following theorem is
directly derived from these previous results.

Theorem 6.3. Consider a second-order system in cascade connection with a critically damped actu-
ator given by (6.9), with f = 0 and a small time-constant µ > 0. Given the parameters λ1, λ2, by
the sets D1 and D2 in Table 6.2 and ∆ > 0, the PD-HC (6.31) is able to ensure that the system’s
trajectories converge to a permanent oscillatory regime (6.13), while minimize the amplitude (6.37)
or the average power (6.25), respectively.

More suitable pairs of gains λ1, and λ2 of the PD-HC minimizing the effects of chattering can be
determined from Propositions 6.3 and 6.4. However, we need to check if they satisfy the conditions of
Lemma 6.1, as well.

6.3.6 Numerical Tests

The simulations are performed in the following framework: the Euler’s integration method with con-
stant step τ = 10−4 is used to solve the closed-loop (6.9)-(6.31). Also, µ = 0.05 is considered for
the time-constant of the actuator dynamics in (6.10). Further, the upperbound ∆ = 5 is taken for
simplicity.

Consider the unperturbed control system (6.9)-(6.31), with f(t) = 0. So, the steady-state response
is only conformed by the oscillations caused by the parasitic dynamics in (6.10). Fig. 6.8 (on the left)
shows the simulation of the system (6.9)-(6.7) with the gains k1 = 1∆2/3 and k2 = 2.375∆1/2, which
are selected to minimize the amplitude of chattering according to Proposition 6.3. On the other hand,
Fig. 6.8 (on the right) shows the simulation of the system (6.9)-(6.31) with the gains k1 = 1∆2/3 and
k2 = 2∆1/2, which are chosen to minimize the energy needed to maintain the trajectories into a real
sliding mode, according to Proposition 6.4. In both cases, we can see that increasing or decreasing the
gain of k2 from the critical value k2c = 2.375∆1/2 or k2c = 2∆1/2 lead to larger chattering amplitudes
or energy needed to maintain the trajectories into a real sliding mode, respectively, validating the
theoretical predictions.

Clearly, the controller (6.31) is not able to reject perturbations because it does not have an integral
term. So, the simulations of the perturbed case are presented here.
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Figure 6.8: Response of the closed-loop system (6.9)-(6.31) for different values of k2 around the
critical gain k2c . Left: minimizing the chattering amplitude. Right: minimizing the energy needed to
maintain the trajectories into a real sliding mode.

6.4 Conclusion

This charter presents a sub-optimal design of the PID-CSMC based on a frequency domain approach,
similarly to the classical PID. Two sets of gains are suggested for the PID-CSMC in order to minimize
the amplitude or the average power of the chattering caused by the presence of a critically damped
second-order actuator in the control system. The DF approach and the HB equation have been used
to predict an oscillatory behavior in the steady state of the trajectories (chattering), and calculate
amplitude and frequency of this oscillations, as well. Moreover, we have proven by means of a ho-
mogeneous LF that the suggested gains ensure finite-time stability to the origin for the ideal system
(without an actuator), and an exact compensation of Lipschitz-continuous matched perturbations. On
the other hand, in the presence of fast-actuators the Loeb’s criterion give the conditions on the gains of
the PID-CSMC to generate an OAS oscillatory regime. The proposed design is validated by numerical
simulations.

Furthermore, we have presented a sub-optimal design of the PD-HC, which is a nonlinear version
of the classical PD. Through the DF approach and the HB equation, we have predicted chattering in
the steady state of the trajectories caused by the presence of a critically damped second-order actuator
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in the control system, with an estimation of its amplitude and frequency. Then, two sets of gains have
been proposed in order to minimize the amplitude or the average power of the chattering. Addition-
ally, we have proven that the suggested gains ensure finite-time stability to the origin for the ideal
unperturbed system (without an actuator), by means of a LF. On the other hand, in the presence of
fast-actuators the Loeb’s criterion give the conditions on the gains of the PD-HC to generate an OAS
oscillatory regime. The proposed design is validated by numerical simulations.

Moreover, our results have shown that the static part of the PID-CSMC, which coincides with the
PD-HC, provides the convergence properties of the closed-loop system like the settling time or the
rise time. On the other hand, the discontinuous integral term provides robustness against Lipschitz-
continuous matched perturbations. This behavior is consistent with the classical PID, where the PD
part molds the transitory behavior of the closed-loop system and the integral term nullify the steady
state error. However, the nonlinearities in the PID-CSMC permit to overcome the features of the
classical PID because finite-time stability and exact compensation of certain class of time-varying
perturbations can be guaranteed, in theory. Also, the nonlinearities in the static part of the PID-CSMC
(i.e., the PD-HC) are the main responsible of chattering because the discontinuity is filtered by an
integrator and its contribution to the generation of this oscillations is mitigated.



Chapter 7

Conclusion

This thesis is devoted to the study of stability of homogeneous systems and the design of homoge-
neous controllers based on Continuous Higher-Order Sliding Mode (CHOSM). Briefly, the homo-
geneity properties of some nonlinear systems are exploited to extend classical results on the design of
Lyapunov functions (LF), and on stability analysis of nonlinear systems affected by parasitic dynam-
ics. Moreover, three schemes of control: state feedback, output feedback and adaptive, are proposed
based on Continuous Twisting Algorithm of third Order (3-CTA), where stability analysis and design
of gains are realized based on homogeneous LF’s. Finally, it is presented a sub-optimal design of the
CHOSM controller in PID form (PID-CSMC) based on frequency domain methods and homogeneous
LF’s.

Chapter 3 presented two converse Lyapunov theorems for a class of discontinuous and homoge-
neous systems of negative degree. This results can be seen as a generalization of classical results about
LF design to the considered class of systems. Moreover, a numerical methodology to construct LF is
proposed under some technical assumptions. It consists of two steps: first point-wise calculation of
values of the the LF provided by the converse theorems; second, interpolation of this points on the
unit sphere. Both together, the converse theorem and the numerical methodology, constitute a new
framework for the numerical design of homogeneous and Lipschitz-continuous LF for a wide class of
discontinuous Higher-Order Sliding Mode algorithms.

In Chapter 4, the effect of Parasitic Dynamics (PD) on the stability of a homogeneous control
system is studied, assuming just continuity of the considered vector fields. Three types of stability
for such an interconnection were discovered depending on the relation between the Homogeneity
Degrees (HD) of the PD and the Main Dynamics (MD): Global Asymptotic stability (GAS) when
both dynamics have the same HD and the Singular Perturbation Parameter (SPP) is sufficiently small,
practical GAS when the PD has a greater HD than the MD, and local asymptotic stability when the
PD has a smaller HD than the MD. In the last two cases, both the final bound of the trajectories and
the domain of attraction depends on the SPP.

From these results, we can conclude that in the general case of nonlinear system the velocity of
the different motions is not completely parametrized by the SPP. Particularly, for smooth systems this
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parametrization works (at leas locally), and for homogeneous systems it is complemented with the
homogeneity degree. Thus, when the involved dynamics have the same HD my results can be seen
as a generalization of the concept of motion separation for a wider class of homogeneous singularly
perturbed systems. When the PD has a smaller HD than the MD, this concept of motion separation is
valid locally in a vicinity of the origin, and when the PD has a greater HD than the MD this concept of
motion separation works only outside of a neighborhood of the origin. Therefore, in the last two cases
just local or practical stability can be predicted.

Moreover, in Chapter 4 a LF-based approach for analysis of the chattering produced by finite-
time convergent controllers in presence of a fast actuator is introduced. Under the assumption that
chattering arises in the steady state of the system trajectories, this result allows to show the relationship
between the amplitude of chattering, the SPP, and the HD of the finite-time convergent algorithm.

Chapter 5 presented the design of a Third-Order Continuous Twisting Algorithm (3-CTA). This
controller is able to provide, in theory, finite-time convergence to zero for the trajectories of a third-
order chain of integrators, exact compensation of Lipschitz-continuous and matched disturbances,
and steady-state precision of fourth-order w.r.t. sampling step for the system’s output. Moreover, an
adaptive version of the 3-CTA (3-ACTA) is provided, where the adaptive gain is automatically tunned
until the stability of the closed-loop system is assured for all future time. The main advantages of the 3-
ACTA are the rejection of Lipschitz-continuous and matched disturbances with an unknown Lipschitz
constant, and a proper adjustment of the gains reducing the amplitude of the chattering in the states.
In addition, it is introduced an output feedback 3-CTA (3-OFCTA) by using a third-order Robust
and Exact Differentiator to estimate the states from the measurable output. The 3-OFCTA preserves,
in theory, all features of robustness, convergence, and precision of the 3-CTA while requiring only
information from the measurable output. Separation principle for 3-OFCTA is proven which allows
the design of the gains for controller and observer, independently. Finally, both controllers 3-ACTA
and 3-OFCTA were implemented in a reaction wheel pendulum and a magnetic levitation system,
respectively, with satisfactory results.

Finally, Charter 6 provided sub-optimal designs of the PID-CSMC and a homogeneous controller
in the PD-form (PD-HC) based on frequency methods. Two sets of gains for the PID-CSMC and two
more for the PD-HC are suggested in order to minimize the amplitude of chattering caused by the
presence of a critically-damped second-order fast-actuator in the control system or the energy needed
to maintain the trajectories into a real sliding mode. By means of a homogeneous LF, we have proven
that the suggested designs ensure finite-time stability at the origin for the ideal system (without an
actuator).

Moreover, these results have shown that the static part of the PID-CSMC, which coincides with
the PD-HC, provides the convergence properties of the closed-loop system like the settling time or the
rise time. On the other hand, the discontinuous integral term provides robustness against Lipschitz-
continuous matched perturbations. This behavior is consistent with the classical PID, where the PD
part molds the transitory behavior of the closed-loop system and the integral term nullify the steady
state error. However, the nonlinearities in the PID-CSMC permit to overcome the features of the
classical PID because finite-time stability and exact compensation of certain class of time-varying
perturbations can be guaranteed, in theory. Also, the nonlinearities in the static part of the PID-CSMC
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(i.e., the PD-HC) are the main responsible of chattering because the discontinuity is filtered by an
integrator and its contribution to the generation of this oscillations is mitigated.

Most of the results in this thesis address to one of the main issues in implementation of CHOSM
controller, the so-called chattering. Specifically, the results from Chapters 4 and 6 represent new
directions in further research of analysis of chattering, and design of CHOSM algorithms with criteria
for chattering minimization.



Appendix A

Converse theorems and numerical
construction of Lyapunov functions for a
class of Sliding-Mode algorithms: proofs

A.1 Proof of Lemma 3.1

Consider the interval [0, T̄q(1)) formed by a finite collection of subinterval [tx0k , t
x0
k+1), i.e.,

[0, T̄q(1)) =

Nx0⋃
k=0

[tx0k , t
x0
k+1)

for some finite Nx0 > 0 and for any x0 ∈ Rn. Under Assumption 3.1, on each interval (tx0k , t
x0
k+1) the

trajectory stays in a respective domain Dik with ik ∈ {1, . . . ,m}, such that, χ(tx0k , x0) ∈ S for all
k ∈ {0, . . . , Nx0 + 1} (except probably tx00 and tx0Nx0+1). Assume that the system (3.1) is stable and
by the definition of T̄q(1),

χ(t, x0) ∈ X :=

{
x ∈ Rn : q′−1 ≤ ‖x‖r ≤

(
b

a

) 1
µ

}

for all t ∈ [0, T̄q(1)) and q′ ∈ [q,+∞), where a, b, µ are given in (3.5). Denote by Li > 0 the corre-
sponding Lipschitz constant of (3.1) on Di ∩X with i ∈ {1, . . . ,m}, and Lmax = maxi=1,...,m Li. In
addition, there exist θX ,ΘX , LX > 0 such that

θX ≤ ‖f(x1)− f(x2)‖ ≤ LX ‖x1 − x2‖+ ΘX , ∀x1, x2 ∈ X .

Let us show the Lipschitz property of the solutions of the system(3.1) under Assumption 3.1 for any
x1, x2 ∈ Sr(1) on the interval [0, T̄q(1)). To this end, denote N̄ = supx0∈Sr(1)Nx0 , which is a finite
integer under hypotheses of the lemma.
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Consider first the interval [0, t′), where t′ = min{tx11 , t
x2
1 } and χ(t, xj) ∈ Dij for j = 1, 2 and

t ∈ (0, t′). If Di1 = Di2 then using Bellman-Gronwall lemma we obtain:

‖χ(t, x1)− χ(t, x2)‖ = ‖x1 − x2 +

∫ t

0
f(χ(s, x1))− f(χ(s, x2))ds‖

≤ ‖x1 − x2‖+

∫ t

0
‖f(χ(s, x1))− f(χ(s, x2))‖ds

≤ ‖x1 − x2‖+ Lmax

∫ t

0
‖χ(s, x1)− χ(s, x2)‖ds

≤ eLmaxt‖x1 − x2‖

for all t ∈ [0, t′). If Di1 and Di2 are distinct sets, then

‖χ(t, x1)− χ(t, x2)‖ ≤ ‖x1 − x2‖+

∫ t

0
‖f(χ(s, x1))− f(χ(s, x2))‖ds

≤ ‖x1 − x2‖+

∫ t

0
LX ‖χ(s, x1)− χ(s, x2)‖+ ΘXds

≤ (1 +HX T̄q(1))‖x1 − x2‖+ LX

∫ t

0
‖χ(s, x1)− χ(s, x2)‖ds

≤ (1 +HX T̄q(1))eLX t‖x1 − x2‖

for all t ∈ [0, t′) provided that ΘX ≤ HX ‖x1 − x2‖ for some HX > 0. Or alternatively,

‖χ(t, x1)− χ(t, x2)‖ ≤ ‖x1 − x2‖+

∫ t

0
LX ‖χ(s, x1)− χ(s, x2)‖+ ΘXds

≤ ‖x1 − x2‖+ ΘX t+ LX

∫ t

0
‖χ(s, x1)− χ(s, x2)‖ds

≤ (1 +KX )eLX t‖x1 − x2‖

for all t ∈ [0, t′) provided that ΘX t ≤ KX ‖x1 − x2‖ for some KX > 0. To complement these cases,
it remains to consider the scenario with ΘX > HX ‖x1 − x2‖ and ΘX t > KX ‖x1 − x2‖, then for a
sufficiently big value of HX , the initial conditions belong to a neighborhood of S (since ‖x1 − x2‖ <
ΘX
HX

and x1 ∈ Di1 , x2 ∈ Di2). Recalling Assumption 3.1, in such a case either χ(t′, x1) ∈ Di2 or
χ(t′, x2) ∈ Di1 , hence, there is SX > 0 such that t′ ≤ SX

θX
‖x1 − x2‖ and for KX ≥ SX

ΘX
θX

we get a
contradiction. Therefore,

‖χ(t, x1)− χ(t, x2)‖ ≤ L‖x1 − x2‖

for all t ∈ [0, t′), where

L = max{eLmaxT̄q(1), (1 +HX T̄q(1))eLX T̄q(1), (1 +KX )eLX T̄q(1)}.
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Now, consider t ∈ [t′, t′′) for t′′ = min{max{tx11 , t
x2
1 },min{tx12 , t

x2
2 }}, and applying the same

argumentation as previously:

‖χ(t, χ(t′, x1))− χ(t, χ(t′, x2))‖ ≤ L‖χ(t′, x1)− χ(t′, x2)‖ ≤ L2‖x1 − x2‖

for all t ∈ [t′, t′′), and we used continuity of the solutions for the time instant t′. Therefore,

‖χ(t, x1)− χ(t, x2)‖ ≤ max
{
L,L2

}
‖x1 − x2‖

for all t ∈ [0, t′′). The same consideration can be repeated for all other intervals of time in a similar
way leading to the estimate:

‖χ(t, x1)− χ(t, x2)‖ ≤ max
j=0,...,2N̄

Lj‖x1 − x2‖

for all t ∈ [0, T̄q(1)), and the desired result follows for LSr(1),T̄q(1) = max{L,L2N̄}.

A.2 Proof of Theorem 3.1

Under Assumption 3.1, the system (3.1) is r-homogeneous of negative homogeneity degree ν, hence,
the existence of the LF (3.7) satisfying the statement of Theorem 3.1 is enough to conclude the finite-
time stability of the origin of the discontinuous system (3.1). Conversely, assuming the first claim in
Theorem 3.1, the existence of the LF (3.7) is proven as follows.

Assuming asymptotic stability for the system (3.1), by the definition of Tq and inequality (3.4),
where the function β is given by (3.5), the solution χ(t, x0) is bounded by

‖χ(t, x0)‖r ∈

[
1

q′
,

(
b

a

) 1
µ

]
, (A.1)

where q′ > q > 1, for all t ∈
[
0, Tmax

q (‖x‖r)
]

and for any x0 ∈ Sr(1).
Now, for any x0 ∈ Rn define

U(x0) =

∫ Tmax
q (‖x0‖r)

0
‖χ(t, x0)‖µr dt, (A.2)

where Tmax
q (‖x0‖r) is defined in Theorem 3.1. The function (A.2) is r-homogeneous of degree µ− ν

since for all x0 ∈ Rn and λ > 0

U(Λr(λ)x0) =

∫ Tmax
q (‖Λr(λ)x0‖r)

0
‖χ(t,Λr(λ)x0)‖µr dt

=

∫ λ−νTmax
q (‖x0‖r)

0
‖Λr(λ)χ(λνt, x0)‖µr dt

= λµ−ν
∫ Tmax

q (‖x0‖r)

0
‖χ(τ, x0)‖µr dτ = λµ−νU(x0),
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where the change of variables τ = λνt was used.
By construction U(0) = 0. Moreover, considering (A.1) and for any x0 ∈ Sr(1)

U(x0) =

∫ Tmax
q (1)

0
‖χ(t, x0)‖µr dt ≥

∫ Tq(x0)

0
q−µdt = Tq(x0)q−µ,

and

U(x0) =

∫ Tmax
q (1)

0
‖χ(t, x0)‖µr dt ≤

∫ Tmax
q (1)

0

b

a
dt = Tmax

q (1)
b

a
.

Hence, by homogeneity

Tmin
q q−µ‖x‖µ−νr ≤ U(x) ≤ Tmax

q (1)
b

a
‖x‖µ−νr , (A.3)

for all x ∈ Rn, where Tmin
q and Tmax

q (1) are defined in Theorem 3.1.
Now, in order to analyze the Lipschitz continuity of the function (A.2), consider two states x1, x2 ∈

Sr(1) and∣∣∣∣U(x1)− U(x2)

∣∣∣∣ =

∣∣∣∣∣
∫ Tmax

q (‖x1‖r)

0
‖χ(t, x1)‖µr dt−

∫ Tmax
q (‖x2‖r)

0
‖χ(t, x2)‖µr dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ Tmax

q (1)

0
‖χ(t, x1)‖µr − ‖χ(t, x2)‖µr dt

∣∣∣∣∣
≤

∫ Tmax
q (1)

0

∣∣∣∣‖χ(t, x1)‖µr − ‖χ(t, x2)‖µr
∣∣∣∣dt . (A.4)

Recall, from inequality (A.1) the solutions χ(t, x0) are all bounded for any x0 ∈ Sr(1) and all t ∈
[0, Tmax

q (1)]. Under Assumption 3.1, the Lipschitz continuity of the trajectories χ(t, x0) w.r.t. x0 is
predicted by Lemma 3.1 for all t ∈ [0, T̄q(1)] (note that Tmax

q (1) ≤ T̄q(1)), the Lipschitz continuity of
the r-homogeneous norm is established by Corollary 2.1, and the power function x 7→ xµ is Lipschitz
continuous for any µ > 1 as well. As the composition of Lipschitz continuous functions inherits the
property, then it is obtained ∣∣∣∣‖χ(t, x1)‖µr − ‖χ(t, x2)‖µr

∣∣∣∣ ≤ L̄‖x1 − x2‖, (A.5)

for all t ∈ [0, Tmax
q (1)], all x1, x2 ∈ Sr(1) and some L̄ > 0. Consequently, substituting (A.5) in (A.4)∣∣∣∣U(x1)− U(x2)

∣∣∣∣ ≤ ∫ Tmax
q (1)

0
L̄‖x1 − x2‖dt ≤ Tmax

q L̄‖x1 − x2‖

for all x1, x2 ∈ Sr(1), then the function U is locally Lipschitz continuous on the unit sphere, and by
homogeneity, it is Lipschitz continuous in Rn \ {0} as needed.



118 Lyapunov functions for a class of Sliding-Mode algorithms: proofs

Along a trajectory χ (t, x0), the derivative of U (χ (t, x0)) at the point x0 is given by

D+U(x0)F (x0) = lim sup
h→0+

1

h
[U(χ(h, x0))− U(x0)] .

So, it is enough to show that the function (A.2) is decreasing along any trajectory of the system (3.1),
i.e.,U (χ (t, x0)) < U (x0) , for any (small) t ∈

(
0, Tmax

q (‖x0‖r)
)
, to conclude thatD+U(x0)F (x0) <

0 for almost all x0 ∈ Rn \ {0}.
From the semi-group property we have that ‖χ(τ, χ(t, x0))‖r = ‖χ(τ + t, x0)‖r, for all t, τ ∈ R+

and x0 ∈ Rn. Thus, for any x0 ∈ Rn and all t ∈ R+,

U(χ(t, x0)) =

∫ Tmax
q (‖χ(t,x0)‖r)

0
‖χ(τ, χ(t, x0))‖µr dτ

=

∫ Tmax
q (‖χ(t,x0)‖r)

0
‖χ(τ + t, x0)‖µr dτ

=

∫ t+Tmax
q (‖χ(t,x0)‖r)

0
‖χ(s, x0)‖µr ds−

∫ t

0
‖χ(s, x0)‖µr ds

=

∫ t+Tmax
q (‖χ(t,x0)‖r)

Tmax
q (‖x0‖r)

‖χ(s, x0)‖µr ds−
∫ t

0
‖χ(s, x0)‖µr ds

+

∫ Tmax
q (‖x0‖r)

0
‖χ(s, x0)‖µr ds.

with q > 1 and µ > 1. The first term in the latter expression depends on q, the second one is negative
and the third one corresponds to the LF (A.2). Let us show that growing q warranties the decreasing
of the LF (A.2) along any trajectory χ (t, x0). So, in the first integral

‖χ(s, x0)‖r ≤ β
(
x0, T

max
q (‖x0‖r)

)
∀s ≥ Tmax

q (‖x0‖r),

where β is aKL-function given by (3.5). Note that Tmax
q (‖x0‖r) grows with q then β

(
x0, T

max
q (‖x0‖r)

)
decreases to zero as q tends to infinity. For the second integral, since the function ‖χ(t, x0)‖µr is con-
tinuous w.r.t. t, for any ε > 0 there exist t1 > 0, such that, if 0 ≤ t < t1 then∣∣∣∣ ‖χ(t1, x0)‖µr − ‖χ(0, x0)‖µr

∣∣∣∣ < ε,

and
‖x0‖r − ε < ‖χ (t, x0)‖r < ‖x0‖r + ε. (A.6)

Thus, for t ∈ [0, t1), we obtain

U(χ(t, x0))− U(x0) ≤
∫ t+Tmax

q (‖χ(t,x0)‖r)

Tmax
q (‖x0‖r)

βµ
(
x0, T

max
q (‖x0‖r)

)
ds−

∫ t

0
(‖x0‖r − ε)µ ds

≤ βµ
(
x0, T

max
q (‖x0‖r)

) (
t+ Tmax

q (‖χ(t, x0)‖r)
−Tmax

q (‖x0‖r)
)
− (‖x0‖r − ε)µ t.
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By the homogeneity of Tmax
q :

Tmax
q (‖χ(t, x0)‖r) = c(t)Tmax

q (‖x0‖r) ,

where c(t) =
(
‖χ(t,x0)‖r
‖x0‖r

)−ν
. Let t ∈ [0, t1), then

U(χ(t, x0))− U(x0) ≤ βµ
(
x0, T

max
q (‖x0‖r)

) (
t+ (c(t)− 1)Tmax

q (‖x0‖r)
)
− (‖x0‖r − ε)µ t

≤ −
(
(‖x0‖r − ε)µ − βµ

(
x0, T

max
q (‖x0‖r)

))
t

+ |c(t)− 1|βµ
(
x0, T

max
q (‖x0‖r)

)
Tmax
q (‖x0‖r).

It is enough for our purpose to study the behavior of U for t ∈ [0, t1] (where t1 is a small positive
constant) and x0 ∈ Sr(1). Since −1 < ν < 0, if ‖χ(t, x0)‖r > 1 then ‖χ(t, x0)‖−νr < ‖χ(t, x0)‖r,
on the contrary, if ‖χ(t, x0)‖r < 1 then ‖χ(t, x0)‖−νr > ‖χ(t, x0)‖r, hence, from both cases we can
conclude that ∣∣‖χ(t, x0)‖−νr − 1

∣∣ ≤ |‖χ(t, x0)‖r − 1| ,

and by homogeneity the property hold for all x0 ∈ Rn and t ∈ [0, t1]. So,

c(t)− 1 =

(
‖χ(t, x0)‖r
‖x0‖r

)−ν
− 1 ≤ ‖χ(t, x0)‖r

‖x0‖r
− 1,

where the facts that ν ∈ [−1, 0) and rmax = 1 were used for Lipschitz continuity of ‖ · ‖r. Moreover,
denote the respective Lipschitz constant by L−ν‖·‖r,x0 > 0 for the set where the trajectories behave.
Applying the last observation

c(t)− 1 ≤ L−ν‖·‖r,x0
‖χ(t, x0)− x0‖

‖x0‖r
.

Furthermore, since χ(t, x0) = x0 +
∫ t

0 f (χ(τ, x0)) dτ and f is bounded, we have

‖χ(t, x0)− x0‖ ≤
∫ t

0
‖f(χ(s, x0))‖ds ≤ fmax,x0t,

where fmax,x0 = supt≥0 ‖f(χ(t, x0))‖, such that,

c(t)− 1 ≤ L−ν‖·‖r,x0
fmax,x0

‖x0‖r
t.

Thus,

U(χ(t, x0))− U(x0) ≤ −
(
(‖x0‖r − ε)µ − βµ

(
x0, T

max
q (‖x0‖r)

))
t

+ L‖·‖r,x0
fmax,x0

‖x0‖r
βµ
(
x0, T

max
q (‖x0‖r)

)
Tmax
q (‖x0‖r)t

≤ −
[
(‖x0‖r − ε)µ − κx0,qβµ

(
x0, T

max
q (‖x0‖r)

)]
t
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for t ∈ [0, t1], where κx0,q = 1 + L‖·‖r,x0
fmax,x0
‖x0‖r T

max
q (‖x0‖r). Note that the first term in brackets

of the right-hand side of the latter expression is negative if ε < ‖x0‖r is selected, and the second one
decreases monotonically to zero with growing q, and κx0,q stays bounded due to the system (3.1) is
assumed finite-time stable and Tmax

q (s) < Ts where Ts is the settling time function. This implies that
there is a (finite) value q∗ such that for q > q∗ the inequality U (χ (t, x)) − U (x) < 0 holds. Due
to homogeneity, it is sufficient to verify this only on the unit sphere Sr (1) and since it is a compact
set the existence of a constant value q∗ > 1 is concluded. Consequently, U is decreasing along any
trajectories of the system (3.1) for almost all x0 ∈ Rn. Finally, this completes the proof of Theorem
3.1.

A.3 Proof of Theorem 3.2

Under Assumption 3.1, the system (3.1) is r-homogeneous of negative homogeneity degree ν, hence,
the existence of the LF (6.30) satisfying the statement of Theorem 3.2 is enough to conclude the finite-
time stability of the origin of the discontinuous system (3.1). Conversely, assuming the first claim in
Theorem 3.2, the existence of the LF (D.3) is proven as follows.

Consider x0 ∈ Rn, then

V (x0) = sup
t∈[0,Tq(x0)]

{‖χ(t, x0)‖r k(t, x0)}, (A.7)

where k : R+ × Rn → R+ is a continuous function, differentiable with respect to the first argument,
given by

k(t, x0) =
‖χ(t, x0)‖%νr t% + κ1

‖χ(t, x0)‖%νr t% + κ2
, (A.8)

where 0 < κ1 < κ2 < +∞ and % > 0 is a real parameter satisfying |%ν| > 1.
First, since the system (3.1) is assumed finite-time stable at the origin, then there exists a settling

time Tx0 such that ‖χ(t, x0)‖r = 0 for all t ≥ Tx0 . Thus, the supremum of the function ‖χ(t, x0)‖r
arises on the interval of time t ∈ [0, Tx0 ], i.e.,

sup
t∈[0,Tx0 ]

{‖χ(τ, x0)‖r} = sup
t≥0
{‖χ(t, x0)‖r} .

Note that function (A.8) is lower and upper bounded by κ1
κ2
≤ |k(t, ·)| < 1, besides V (x0) =

κ1
κ2
‖x0‖r for t = 0, hence, V (x0) ≥ κ1

κ2
‖x0‖r for all 0 ≤ t < Tx0 . Recalling Definitions 4.1 and 3.2,

there exists the time T̄κ2
κ1

(x0), such that,

‖χ(t, x0)‖r ≤
κ1

κ2
‖x0‖r, ∀t ≥ T̄κ2

κ1

(x0) .

and for q > 1 sufficiently large, there exist also the time Tq (x0) ≥ T̄κ2
κ1

(x0) when the trajectories

χ (t, x0) reach the sphere of radius 1
q ‖x0‖r for the first time and they never leave the ball of radius
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κ1
κ2
‖x0‖r, thereafter. Consequently,

V (x0) = sup
t∈[0,Tq(x0)]

{‖χ(t, x0)‖r k(t, x0)} = sup
t≥0
{‖χ(t, x0)‖r k(t, x0)}, (A.9)

for such a choice of q. In the sequel, both expressions for V (x0) will be used indistinctly.
So, considering equation (3.4) (see function β in (3.5)) and the facts χ(0, x0) = x0 and κ1

κ2
≤

|k(t, ·)| < 1, the function (A.9) satisfies V (0) = 0 (since x = 0 is an equilibrium point), and

κ1

κ2
‖x0‖r ≤ V (x0) ≤

(
b

a

) 1
µ

‖x0‖r for all x0 ∈ Rn.

Now, since the system (3.1) is r-homogeneous of degree ν < 0 and the norm ‖·‖r is r-homogeneous
of degree 1 then

‖χ(t,Λr(λ)x0)‖r = ‖Λr(λ)χ(λνt, x0)‖r = λ‖χ(λνt, x0)‖r.

Also,

k (t,Λr(λ)x0) =
‖χ(t,Λr(λ)x0)‖%νr t% + κ1

‖χ(t,Λr(λ)x0)‖%νr t% + κ2

=
‖χ(λνt, x0)‖%νr λ%νt% + κ1

‖χ(λνt, x0)‖%νr λ%νt% + κ2
= k (λνt, x0)

for all x0 ∈ Rn, t ∈ R+. These properties imply that for all x0 ∈ Rn and λ > 0:

V (Λr(λ)x0) = sup
t≥0
{‖χ(t,Λr(λ)x0)‖r k (t,Λr(λ)x0)}

= λ sup
s≥0
{‖χ(s, x0)‖r k (s, x0)} = λV (x0),

where the substitution s = λνt was used, hence V is r-homogeneous of degree 1.
Now, let us prove the Lipschitz continuity of V . For this, consider x1, x2 ∈ Sr(1) and Tmax

q (1) =
supx0∈Sr(1) Tq(x0), such that,

|V (x1)− V (x2)| =

∣∣∣∣∣ sup
t∈[0,Tmax

q (1)]
{‖χ(t, x1)‖r k(t, x1)} − sup

t∈[0,Tmax
q (1)]

{‖χ(t, x2)‖r k(t, x2)}

∣∣∣∣∣ .
Adding a zero:

sup
t∈[0,Tmax

q (1)]
{‖χ(t, x2)‖r k(t, x1)} − sup

t∈[0,Tmax
q (1)]

{‖χ(t, x2)‖r k(t, x1)} = 0,
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and applying the triangle inequality for the absolute value,

|V (x1)− V (x2)| ≤

∣∣∣∣∣ sup
t∈[0,Tmax

q (1)]
{‖χ(t, x1)‖r k(t, x1)} − sup

t∈[0,Tmax
q (1)]

{‖χ(t, x2)‖r k(t, x1)}

∣∣∣∣∣
+

∣∣∣∣∣ sup
t∈[0,Tmax

q (1)]
{‖χ(t, x2)‖r k(t, x2)} − sup

t∈[0,Tmax
q (1)]

{‖χ(t, x2)‖r k(t, x1)}

∣∣∣∣∣ ,
and since the absolute value of difference of supremums is less than the supremum of absolute value
of difference, then

sup
t∈[0,Tmax

q (1)]
{|‖χ(t, x1)‖r − ‖χ(t, x2)‖r| k(t, x1)} ≥

≥

∣∣∣∣∣ sup
t∈[0,Tmax

q (1)]
{‖χ(t, x1)‖r k(t, x1)} − sup

t∈[0,Tmax
q (1)]

{‖χ(t, x2)‖r k(t, x1)}

∣∣∣∣∣ ,
and

sup
t∈[0,Tmax

q (1)]
{‖χ(t, x2)‖r |k(t, x2)− k(t, x1)|} ≥

≥

∣∣∣∣∣ sup
t∈[0,Tmax

q (1)]
{‖χ(t, x2)‖r k(t, x2)} − sup

t∈[0,Tmax
q (1)]

{‖χ(t, x2)‖r k(t, x1)}

∣∣∣∣∣ ,
hence it is obtained that

|V (x1)− V (x2)| ≤ sup
t∈[0,Tmax

q (1)]
{|‖χ(t, x1)‖r − ‖χ(t, x2)‖r| k(t, x1)}

+ sup
t∈[0,Tmax

q (1)]
{‖χ(t, x2)‖r |k(t, x2)− k(t, x1)|} .

From (A.8) it can be seen that |k(t, x0)| < 1, and from (3.5) ‖χ(t, x0)‖r ≤ b
a , hence

|V (x1)− V (x2)| ≤ sup
t∈[0,Tmax

q (1)]
|‖χ(t, x1)‖r − ‖χ(t, x2)‖r|

+
b

a
sup

t∈[0,Tmax
q (1)]

|k(t, x2)− k(t, x1)| .

Again, from (A.8)

|k(t, x2)− k(t, x1)| = |‖χ(τ, x2)‖%νr − ‖χ(τ, x1)‖%νr | (κ2 − κ1)t%

(‖χ(τ, x2)‖%νr t% + κ2)(‖χ(τ, x1)‖%νr t% + κ2)
,
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besides for |%ν| > 1 the power function is locally Lipschitz continuous on Rn with the Lipschitz
constant K in Br( ba) \ {0}, i.e.,

|‖χ(τ, x2)‖%νr − ‖χ(τ, x1)‖%νr | ≤ K |‖χ(τ, x2)‖r − ‖χ(τ, x1)‖r| ,

and there exists some constant M such that

sup
t∈[0,Tmax

q (1)]

{
(κ2 − κ1)t%

(‖χ(τ, x2)‖%νr t% + κ2)(‖χ(τ, x1)‖%νr t% + κ2)

}
≤M.

Therefore,

|V (x1)− V (x2)| ≤ sup
t∈[0,Tmax

q (1)]
|‖χ(t, x1)‖r − ‖χ(t, x2)‖r|

+
b

a
MK sup

t∈[0,Tmax
q (1)]

|‖χ(t, x1)‖r − ‖χ(t, x2)‖r| .

Moreover, under Assumption 3.1 and following Lemma 3.1, the trajectories χ(t, x0) are locally Lips-
chitz continuous w.r.t. their initial conditions, and from Corollary 2.1 the r-homogeneous norm ‖ · ‖r
is also locally Lipschitz continuous. Therefore,

|V (x1)− V (x2)| ≤ L2‖x2 − x1‖+
b

a
MKL2‖x2 − x1‖.

and we conclude that the function (A.9) is locally Lipschitz continuous on Sr(1) and by homogeneity
it inherits this property for all Rn \ {0}.

Now, using the semi-group property of the state transition map χwe obtain that ‖χ(τ, χ(t, x0))‖r =
‖χ(τ + t, x0)‖r, for all t, τ ∈ R+ and x0 ∈ Rn. In addition,

k (τ, χ(t, x0)) =
‖χ(τ, χ(t, x0))‖%νr τ% + κ1

‖χ(τ, χ(t, x0))‖%νr τ% + κ2
=
‖χ(τ + t, x0))‖%νr τ% + κ1

‖χ(τ + t, x0))‖%νr τ% + κ2

Then, for any x0 ∈ Rn, the function (A.9) satisfies

V (χ(t, x0)) = sup
τ≥0
{‖χ(τ, χ(t, x0))‖r k (τ, χ(t, x0))}

= sup
τ≥0

{
‖χ(τ + t, x0)‖r

‖χ(τ + t, x0)‖%νr τ% + κ1

‖χ(τ + t, x0)‖%νr τ% + κ2

}
= sup

τ≥t

{
‖χ(τ, x0)‖r

‖χ(τ, x0)‖%νr (τ − t)% + κ1

‖χ(τ, x0)‖%νr (τ − t)% + κ2

}
< sup

τ≥t

{
‖χ(τ, x0)‖r

‖χ(τ, x0)‖%νr τ% + κ1

‖χ(τ, x0)‖%νr τ% + κ2

}
< sup

τ≥0
{‖χ(τ, x0)‖r k(τ, x0)} = V (x0),
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where the strict inequality follows from the strict monotonicity of function k, i.e. k(t1, ·) < k(t2, ·)
for t1 < t2. The upper Dini derivative of V (χ (t, x0)) along a trajectory χ (t, x0) at the point x0 is
given by

D+V (x0)F (x0) = lim sup
h→0+

1

h
[V (χ(h, x0))− V (x0)] ,

almost everywhere. Since the inequality V (χ(τ, x0)) < V (x0) have been proven for any (small)
τ > 0, then D+V (x0)F (x0) < 0 is deduced for almost all x0 ∈ Rn \ {0}. This concludes the proof
of Theorem 3.2.



Appendix B

Analysis of stability of homogeneous
systems in presence of parasitic
dynamics: proofs

B.1 Proof of Theorem 4.3

Recall the system (4.10)-(4.11) given by

ẋ = f(x, y), (B.1)

εẏ = g(x, y), (B.2)

where x ∈ Rn and y ∈ Rm are the state variables, ε > 0 is a small parameter, and f : Rn+m → Rn
and g : Rn+m → Rm are continuous vector fields ensuring forward existence and uniqueness of
system trajectories. Moreover, for some vector of weights r and r̃ the vector fields f and g are (r, r̃)-
homogeneous of degree ν and µ, respectively.

Under a hypothesis like Assumption 4.1, the concepts of the singular perturbation theory aims to
show that the behavior of the singularly perturbed system (B.1)-(B.2) is pretty similar to the behavior
of the ROD

˙̄x =f(x̄, h(x̄)), (B.3)

such that, the presence of the PD (B.2) in the control loop can be neglected (see [Kokotovic et al., 1999]
and references therein). Thus, the stability of the system (B.1)-(B.2) is warrantied by proving that the
trajectories y of the PD converge to the equilibrium manifold h(x). However, since the initial condi-
tion y0 differs from the initial value h(x0), there exists a transitory response of the system (B.2) before
the trajectories y can reach the desired behavior. Let’s represent such a transitory by the variable z,
such that, y = z + h(x) and the system (B.1) is rewritten as

ẋ = f(x, z + h(x)). (B.4)

125
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It can be readily seen that if z = 0, the system (B.4) collapse to the ROD. Therefore, (global, local or
practical) asymptotic stability of the origin of the system (B.4) can be concluded from ISS stability of
the system (B.4) w.r.t. z, plus (global, local or practical) vanishing of z to zero.

First, let’s investigate the ISS properties of the system (B.4) by using V (x) as an ISS-LF candidate,
which satisfies the inequalities:

V (x) = λ−κV (Λr(λ)x), (B.5)

ax‖x‖κr ≤ V (x) ≤ āx‖x‖κr , (B.6)
∂V (x)
∂x f(x, h(x)) ≤ −bx‖x‖ν+κ

r , (B.7)

sup
‖x‖r≤1

‖∂V (x)
∂x ‖ ≤ cx, (B.8)

for all x ∈ Rn and for some ax, ax, bx, cx > 0, where κ > max{0,−ν} is its HD.
So, the derivative of V along the trajectories of the system (B.4) is given by

V̇ =∂V (x)
∂x f(x, z + h(x))

=∂V (x)
∂x f(x, h(x)) + ∂V (x)

∂x (f(x, z + h(x))− f(x, h(x))) .

Since V is r homogeneous of degree κ and f is r, r̃-homogeneous of degree ν, by means of the
dilations Λr(λ) and Λr̃(λ) where λ = ‖x‖−1

r , it is obtained

V̇ =∂V (x)
∂x f(x, h(x)) + ‖x‖ν+κ

r
∂V (ξ)
∂ξ

(
f(ξ,Λr̃(‖x‖−1

r )z + h(ξ))− f(ξ, h(ξ)
)

≤∂V (x)
∂x f(x, h(x)) + ‖x‖ν+κ

r

∥∥∥∂V (ξ)
∂ξ

∥∥∥∥∥f(ξ,Λr̃(‖x‖−1
r )z + h(ξ))− f(ξ, h(ξ)

∥∥ , (B.9)

where ξ = Λr(‖x‖−1
r )x and ξ ∈ Sr(1).

Recall that by the continuity of f(x, y) on the unit sphere, for any bx, cx and 0 < θ < 1, there
exists δ, such that, if ‖Λr̃(‖x‖−1

r )z‖r̃ ≤ δ, then

‖f(ξ, h(ξ) + Λr̃(‖x‖−1
r )z)− f(ξ, h(ξ))‖ ≤ θbx

cx
, (B.10)

for all ξ ∈ Sr(1).
Therefore, substituting (B.7), (B.8) and (B.10) in (B.9), it can be concluded that

V̇ ≤− bx‖x‖ν+κ
r + θbx‖x‖ν+κ

r

≤− (1− θ)bx‖x‖ν+κ
r , if ‖x‖r ≥ δ−1‖z‖r̃, (B.11)

where 0 < θ < 1. According to Definition 4.2, V (x) is an ISS-LF for the system (B.4) hence it is ISS
w.r.t. input z. Moreover, from Definition 4.1, the solution x(t) of the system (B.4) is bounded by

‖x(t)‖r ≤ max{β1(‖x0‖r, t), γ1( sup
τ∈[0,t)

‖z(τ)‖r̃)}, (B.12)
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for all t ≥ 0, where β1 is a KL function and, from Definition 4.2, Remark 2.1 and inequalities (B.6)
and (B.11), γ1 is a K function given by

γ1(s) = δ−1 āx
ax
s. (B.13)

Now, let’s investigate the scenarios where the transitory z vanishes to zero, such that, the convergence
of the trajectories y to the desired behavior h(x) can be concluded. The dynamics of the variable z is
given by

ż = 1
ε g(x, z + h(x))− ∂h(x)

∂x f(x, z + h(x)), (B.14)

where x can be seen as an input.
The stability of the system (B.14) can be proven by using W (z, x) as an ISS-LF candidate, which

satisfies the inequalities:

W (Λr̃(λ)z,Λr(λ)x) = λιW (z, x), (B.15)

az‖z‖ιr̃ ≤W (z, x) ≤ āz‖z‖ιr̃, (B.16)
∂W (z,x)

∂z g(x, z + h(x)) ≤ −bz‖z‖µ+ι
r̃ , (B.17)

sup
‖ζ‖r̃≤1
‖ξ‖r≤1

∥∥∥∂W (ζ,ξ)
∂ζ

∥∥∥ ≤ cz, (B.18)

sup
‖ζ‖r̃≤1
‖ξ‖r≤1

∥∥∥∂W (ζ,ξ)
∂ξ

∥∥∥ ≤ dz, (B.19)

for all z ∈ Rm, x ∈ Rn and for some az, az, bz, cz, dz > 0, where ι > max{0,−µ} is its HD. So, the
derivative of W along the trajectories of the system (B.14) is given by

Ẇ =∂W (z,x)
∂z

(
1
ε g(x, z + h(x))− ∂h(x)

∂x f(x, z + h(x))
)

+ ∂W (z,x)
∂x f(x, z + h(x))

=1
ε
∂W (z,x)

∂z g(x, z + h(x)) +
(
∂W (z,x)

∂x − ∂W (z,x)
∂z

∂h(x)
∂x

)
f(x, z + h(x)). (B.20)

By homogeneity of each component in (B.20), applying the dilations Λr(λ
−1) and Λr̃(λ

−1) where
λ = max{‖z‖r̃, ‖x‖r},

Ẇ =1
ε
∂W (z,x)

∂z g(x, z + h(x)) + λν+ι
(
∂W (ζ,ξ)

∂ξ − ∂W (ζ,ξ)
∂ζ

∂h(ξ)
∂ξ

)
f(ξ, ζ + h(ξ))

≤1
ε
∂W (z,x)

∂z g(x, z + h(x)) + λν+ι
(∥∥∥∂W (ζ,ξ)

∂ξ

∥∥∥+
∥∥∥∂W (ζ,ξ)

∂ζ

∥∥∥∥∥∥∂h(ξ)
∂ξ

∥∥∥) ‖f(ξ, ζ + h(ξ))‖ , (B.21)

where ξ = Λ−1
r (λ)x and ζ = Λ−1

r̃ (λ)z (i.e., ξ ∈ Br(1) and ζ ∈ Br̃(1)). Now, substituting (B.17),
(B.18) and (B.19) in (B.21), we obtain

Ẇ ≤ − bz
ε ‖z‖

µ+ι
r̃ + bzηλ

ν+ι,
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where
η =

1

bz
sup

ξ∈Br(1)
ζ∈Br̃(1)

{(
dz + cz

∥∥∥∂h(ξ)
∂ξ

∥∥∥) ‖f(ξ, ζ + h(ξ))‖
}
. (B.22)

Then, for any 0 < θ̃ < 1, we have

Ẇ ≤− (1− θ̃) bzε ‖z‖
µ+ι
r̃ − θ̃ bzε ‖z‖

µ+ι
r̃ + bzηmax{‖z‖ν+ι

r̃ , ‖x‖ν+ι
r }.

Since max{a, b} ≤ a+ b for any a, b ∈ R+, the last expression can be rewritten as

Ẇ ≤− (1− θ̃) bzε ‖z‖
µ+ι
r̃ − (θ̃1+θ̃2)bz

ε ‖z‖µ+ι
r̃ + bzη‖z‖ν+ι

r̃ + bzη‖x‖ν+ι
r ,

where θ̃1, θ̃2 > 0 are such that θ̃1 + θ̃2 = θ̃. Hence, if

‖z‖µ+ι
r̃ ≥ ηε

θ̃2
‖x‖ν+ι

r , (B.23)

then

Ẇ ≤− (1− θ̃) bzε ‖z‖
µ+ι
r̃ − θ̃1bz

ε ‖z‖
µ+ι
r̃ + bzη‖z‖ν+ι

r̃ ,

and therefore the system (B.14) is

• ISS w.r.t. x, if µ = ν and
ε ≤ θ̃1

η . (B.24)

• locally ISS w.r.t. x, if µ < ν and

‖z‖r̃ ≤
(
θ̃1
εη

) 1
ν−µ

. (B.25)

• ISpS w.r.t. x, if µ > ν and

‖z‖r̃ ≥
(
εη

θ̃1

) 1
µ−ν

. (B.26)

Accordingly, from Definition 4.1, the trajectories of the system (B.14) are bounded by

‖z(t)‖r̃ ≤ max{β2(‖z0‖r̃, t), γ2( sup
τ∈[0,t)

‖x(τ)‖r), ρ},

for all t ≥ 0, where β2 is aKL function, ρ is a constant given by ρ = 0 for µ ≤ ν, and ρ = āz
az

(
εη

θ̃1

) 1
µ−ν

for µ > ν, also considering Definition 4.2, Remark 2.1 and inequalities (B.16) and (B.23), γ2 is a class
K function given by

γ2(s) = āz
az

(
ηε

θ̃2
sν+ι

) 1
µ+ι

. (B.27)

Now, the systems (B.4) and (B.14) are interconnected. So, the internal stability of the interconnection
can be investigated by using Theorem 4.2 (considering (4.9) for local behaviors). Likely, the functions
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(B.13) and (B.27) are the nonlinear asymptotic gains for the systems (B.4) and (B.14), respectively.
According to the small-gain condition (4.8) or (4.9), the stability of the interconnected system (B.4)-
(B.14) is insured if the composition

γ1(γ2(s)) = δ−1 āxāz
axaz

(
ηε

θ̃2
sν+ι

) 1
µ+ι

,

is a contraction, i.e., γ1(γ2(s)) < s, that is,

δ−1 āxāz
axaz

(
ηε

θ̃2
sν+ι

) 1
µ+ι

< s,

and
εη

θ̃2

(
δ
axaz
āxāz

)µ+ι < sµ−ν . (B.28)

According to the HD’s of the systems (B.1) and (B.2), from inequality (B.28) there are three different
cases:

• For µ = ν, the system (B.4)-(B.14) is GAS if

ε <
θ̃2

(
δ
axaz
āxāz

)µ+ι

η
, (B.29)

which can be always guaranteed for a sufficiently small value of ε.

• For µ < ν, the system (B.4)-(B.14) is locally asymptotically stable if

‖x‖r <

 θ̃2

(
δ
axaz
āxāz

)µ+ι

εη


1

ν−µ

, (B.30)

• For µ > ν, the system (B.4)-(B.14) is practically GAS if

‖x‖r >

 εη

θ̃2

(
δ
axaz
āxāz

)µ+ι


1

µ−ν

. (B.31)

Finally, for the cases where ν ≥ µ, vanishing of the transitory z can be concluded (at east locally),
which warranties GAS (or local asymptotic stability) of the interconnected system (B.1)-(B.2) at the
origin. However, for the case ν < µ only practical stability can be proven, but since the system (B.4)
is ISS w.r.t. z then the same property can be concluded for the MD (B.1) in presence of the PD (B.2).

The estimations (4.27), (4.28) and (4.30) are derived from inequalities (B.29)-(B.31), where (B.24)
is also considered. Similarly, since z = y − h(x) and h(0) = 0, the estimations (4.29) and (4.31) can
be readily obtained from the composition γ2(γ1(s)) < s, where (B.25) and (B.26) are considered, too.
Thus, Theorem 4.3 is proven.



Appendix C

Third-order Continuous Twisting
Algorithm: proofs

C.1 Proof of Theorem 5.1
Consider the system (5.6), where the disturbance φ(t) satisfies | ddtφ(t)| ≤ ρ, and the 3-CTA (5.7),
where η is the integral term. Define x4 = η + φ(t) as a virtual state, thus the closed-loop system
(5.6)-(5.7) can be written as

ẋ1 = x2
ẋ2 = x3
ẋ3 = −k1L

3
4 dx1c

1
4 − k2L

2
3 dx2c

1
3 − k3L

1
2 dx3c

1
2 + x4

ẋ4 ∈ −k4Ldx1c0 − k5Ldx2c0 − k6Ldx3c0 + [−ρ, ρ] ,

(C.1)

where dxic0 represents the set-valued sign function.
The system (C.1) has a r-homogeneous vector-set field of degree p = −1 and wights r =

[4, 3, 2, 1] for variables x1, x2, x3 and x4, respectively. Furthermore, the system (C.1) is multivalued,
hence, its solutions are understood in the Filippov’s sense (see [Filippov, 1988]).

Note that the origin is an equilibrium point for (C.1) if x2 = 0, x3 = 0, −k1L
3
4 dx1c

1
4 = x4 and

0 ∈ k4dx1c0 + [−k5, k5] + [−k6, k6] + [−ρ, ρ] . (C.2)

Hence, x1 = 0 is the unique solution of (C.2) iff k4 > |k5|+ |k6|+ρ. Otherwise, x1 can take any value
and the system (C.1) may have multiple equilibrium points. Therefore, the existence and uniqueness
of an equilibrium point in the origin requires that k4 > |k5| + |k6| + ρ holds, as it is mentioned in
Remark 5.1.

Let us scale the variables

x1 = Lz1, x2 = Lz2, x3 = Lz3, x4 = Lz4 , (C.3)

130
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where L ∈ R+. The system (C.1) in the new coordinates z can be rewritten as

ż1 = z2

ż2 = z3

ż3 = −k1dz1c
1
4 − k2dz2c

1
3 − k3dz3c

1
2 + z4

ż4 ∈ −k4dx1c0 − k5dx2c0 − k6dx3c0 +
[
− ρ
L ,

ρ
L

]
.

(C.4)

In [Mendoza-Avila et al., 2017] a LF candidate for the system (C.4) is proposed as

V1(z) = α1|z1|
7
4 + α2|z2|

7
3 + α3|z3|

7
2 + α4|z4|7 + α5dz1c

5
4 z3

+ α6z1z2 + α7dz2c
5
3 z3 − α8z2dz4c4 − α9z3z

5
4 − α10z1z

3
4 , (C.5)

where αi; i = 1, ..., 10 are the coefficients. The derivative of function (C.5) along the trajectories of
the system (C.4) is given by

V̇1(z) ∈ −W1(z) + U1(z)
[
− ρ
L ,

ρ
L

]
,

≤ −
(

1− U1(z)

W1(z)

ρ

L

)
W1(z), (C.6)

where U1(z) is a continuous function given by

U1(z) = 3α10z1z
2
4 + 4α8z2|z4|3 + 5α9z3z

4
4 − 7α4dz4c6, (C.7)

and W1(z) is the derivative of function (C.5) along the trajectories of the nominal system (C.4) (with
φ(t) = 0) given by

W1(z) = α5k1|z1|
3
2 + α5k2dz1c

5
4 z

1
3
2 − α5dz1c

5
4 z4 + α5k3dz1c

5
4 dz3c

1
2 − α6z1z3

−7
4α1dz1c

3
4 z2 − β1z1z

2
4 + α7k1dz1c

1
4 z

5
3
2 − α9k1dz1c

1
4 z5

4 + 7
2α3k1dz1c

1
4 dz3c

5
2

−5
4α5|z1|

1
4 z2z3 + β2z

2
2 + α7k3z

5
3
2 dz3c

1
2 − α7z

5
3
2 z4 − 7

3α2dz2c
4
3 z3 − β3z2z

3
4

−5
3α7z

2
3
2 z

2
3 + 7

2α3k2z
1
3
2 dz3c

5
2 − α9k2z

1
3
2 z

5
4 + 7

2α3k3|z3|3 − 7
2α3dz3c

5
2 z4

−β4z3z
4
4 − α9k3dz3c

1
2 z5

4 + β5z
6
4 ,

(C.8)

where βi; i = 1, . . . , 5 are

β1 , 3α10

(
k4dz1c0 + k5dz2c0 + k6dz3c0

)
,

β2 , α7k2 − α6,

β3 , 4α8

(
k4dz1c0 + k5dz2c0 + k6dz3c0

)
dz4c0 − α10,

β4 , 5α9

(
k4dz1c0 + k5dz2c0 + k6dz3c0

)
− α8dz4c0,

β5 , 7α4

(
k4dz1c0 + k5dz2c0 + k6dz3c0

)
dz4c0 + α9.
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Note that both functions (C.5) and (C.8) are GF’s. Thus, following [Sánchez and Moreno, 2016,
Sanchez and Moreno, 2019], the analysis of positive definiteness of (C.5) and (C.8) can be done
through the analysis of positive definiteness of their associated forms {V1i} and {W1j}, respectively,
which can be studied by using the SOS representation [Parrilo, 2000] (see Section 5.1 for details). So,
if every form in the sets {V1i} and {W1j} is positive definite, then the GF’s (C.5) and (C.8) are positive
definite, as needed.

From (5.1), the associated forms {V1i} and {W1j} of GF’s (C.5) and (C.8) are obtained through
the change of variables

|z1| = y8
1, |z2| = y6

2, |z3| = y4
3, |z4| = y2

4.

Usually, a SOS polynomial is only positive semi-definite. Then, consider the forms V̄1i(y) =
V1i(y) − ε1(y14

1 + y14
2 + y14

3 + y14
4 ) and W̄1j(y) = W1j(y) − ε1(y12

1 + y12
2 + y12

3 + y12
4 ), such that,

if they are SOS for some ε1 > 0 then the strict positive definiteness of every associated form in {V1i}
and {W1j} is ensured.

Using SOSTOOLS [Prajna et al., 2002] we can find the coefficients of the associated form {V1i}
by solving an LMI. However, in {W1j} gains ki and coefficients αi appear as products, making the
problem bilinear. To overcome this problem we select a priori the gains ki by simulation, and we only
use SOSTOOLS to get the coefficients for both sets of the polynomials {V1i} and {W1j}, simultane-
ously.

So, considering ρ
L < µc; µc = 0.001, ε1 = 0.1 and selecting the gains ki of controller (5.7) as

k1 = 1.3, k2 = 2.2, k3 = 3,
k4 = 0.009, k5 = 0.004, k6 = 0.002,

(C.9)

the coefficients αi; i = 0, . . . , 10 of function (C.5) are

α1 = 202100 α2 = 1225000 α3 = 214400 α4 = 213600 α5 = 21077
α6 = 268300 α7 = 502400 α8 = 254500 α9 = 23933 α10 = 234100

(C.10)

such that all elements of {V1i} and {W1j} are positive definite. In consequence, by the continuity of
functions (C.5) and (C.8) on the boundary between each hyper-octant, it is possible to conclude that
this functions are also positive definite on every point of the state space.

Since W1(z) in (C.8) is positive definite, the fraction U1(z)
W1(z) is well defined on Rn. Besides, W1(z)

in (C.8) and U1(z) in (C.7) are r-homogeneous of degree 6 then the fraction U1(z)
W1(z) is r-homogeneous

of degree 0, i.e.,
U1(Λrλz)

W1(Λrλz)
= λ0 U1(z)

W1(z) = U1(z)
W1(z) ; ∀z ∈ Sr(1),

Since the function U1(z)
W1(z) is continuous on the sphere Sr(1), which is a compact set, it follows from the

Bolzano–Weierstrass theorem that there exists a maximum value 0 < δc = maxSr(1)
U1(z)
W1(z) . Note that

for homogeneous functions it is enough to obtain its values on the unit sphere Sr(1) and the remaining
values on Rn are recovered by applying the dilatation Λr(λ). Finally, from (C.6) we have that if
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Sample Vmin V̇min
M1 4402.3 1.2794
M2 4402.7 0.761
M3 4402.3 2.2962
M4 4401.4 0.7306
M5 4400.9 0.5196

Table C.1: Minimums of functions (C.5) and (C.8) taking 108 random points in the unit sphere.

µc <
1
δc

and W1(z) is positive definite, then the inequality V̇1(z) < 0 holds. Thus, the following
lemma is derived.

Lemma C.1. Consider the system (C.4) with Lmin >
ρ
µc

, and the GF’s (C.5) and (C.8). Then there
exist gains k1, k2, k3 ∈ R>0, k4 > |k5| + |k6| + ρ > 0, k5, k6 ∈ R and coefficients αj ∈ R; j =
1, ..., 10 such that (C.5) and (C.8) are positive definite functions for certain value of µc. Accordingly,
the GF (C.5) is a LF for the system (C.4). 4

From Lemma C.1 and the direct Lyapunov theorem (see [Khalil, 2002]), we can concluded that the
origin of the system (C.4) is a globally uniformly asymptotically stable equilibrium point. Moreover,
the closed-loop system (C.4) has a negative homogeneity degree p = −1, hence, its origin is finite-
time stable.

Taking into account that the diffeomorphism (C.3) is linear, the behavior of the trajectories of the
system (C.4) is preserved in the original coordinates x for any value of L. It can be easily seen that
the stability of the system (C.1) is ensured for an arbitrary bound of perturbation φ̇(t) by selecting the
scale factor as L > ρ

µc
; µc = 1× 10−3. Finally, Theorem 5.1 has been proved.

Numerical verification

An alternative and independent way to verify if homogeneous functions (C.5) and (C.8) with coeffi-
cients (C.10) and gains (C.9) are positive definite, is the evaluation of such functions within the unit
sphere S. If the minimum values of functions (C.5) and (C.8) in the unit sphere are positive then by
homogeneous properties functions (C.5) and (C.8) are positive definite as well. Consider the change
of coordinates

z1 = Γ sinϕ sinω cos θ
z2 = Γ sinϕ sinω sin θ
z3 = Γ sinϕ cosω
z4 = Γ cosϕ.

(C.11)

The ratio Γ = 1 is fixed and a sample of 108 points are randomly taken between the limits 0 ≤ ω ≤ 2π,
0 ≤ θ ≤ 2π and 0 ≤ ϕ ≤ π for variables ω, θ and ϕ, respectively. After 5 iterations, the minimums
Vmin and V̇min of functions (C.5) and (C.8), respectively, are shown in Table C.1.



134 Third-order Continuous Twisting Algorithm: proofs

C.2 Proof of Theorem 5.2
Consider the system (5.6), where the perturbation φ(t) satisfies |φ̇(t)| < ρ for a unknown ρ > 0, and
the 3-ACTA (5.9) where η is the integral term and the adaptive gain L(t) is given by (5.10). Define
the variable x4 = η + φ(t), then the closed-loop system (5.6)-(5.9) is given by

ẋ1 = x2
ẋ2 = x3

ẋ3 = −k1L
3
4 (t)dx1c

1
4 − k2L

2
3 (t)dx2c

1
3 − k3L

1
2 (t)dx3c

1
2 + x4

ẋ4 ∈ −k4L(t)dx1c0 − k5L(t)dx2c0 − k6L(t)dx3c0 + [−ρ, ρ] .

(C.12)

Taking some ideas presented in [Negrete and Moreno, 2014], finite-time stability of the origin of the
closed-loop system (C.12) is proven as follows. Consider the change of variables

z1 =
x1

L(t)4q+1
, z2 =

x2

L(t)3q+1
, z3 =

x3

L(t)2q+1
, z4 =

x4

L(t)q+1
, (C.13)

where L(t) > 0∀t ≥ 0 and q > 0 to be selected. The system (C.12) in the new coordinates ζ is given
by

ż1 = −(4q + 1) L̇(t)
L(t)z1 + 1

Lq(t)z2

ż2 = −(3q + 1) L̇(t)
L(t)z2 + 1

Lq(t)z3

ż3 = −(2q + 1) L̇(t)
L(t)z3 − k1

Lq(t)dz1c
1
4 − k2

Lq(t)dz2c
1
3 − k3

Lq(t)dz3c
1
2 + 1

Lq(t)z4

ż4 ∈ −(q + 1) L̇(t)
L(t)z4 − k4

Lq(t)dz1c0 − k5
Lq(t)dz2c0 − k6

Lq(t)dz3c0 +
[
− ρ
Lq+1(t)

, ρ
Lq+1(t)

]
.

(C.14)

Since the change of coordinates (C.13) is linear w.r.t. the state variables, if the states z1, z2, z3, z4

of system (C.14) converge to zero in finite-time, the states x1, x2, x3, x4 of system (C.12) will also
converge to zero in finite-time.

Let us take the function (C.5) as a LF candidate for the system (C.14). The derivative of the
function (C.5) along the trajectories of the system (C.14) is given by

V̇ (z) ≤ −
(

1− U(z)

W (z)

ρ

L(t)

)
W (z)

Lq(t)
− 7q

L̇(t)

L(t)
H(z), (C.15)

where W (z) is given by (C.8), U(z) is given by (C.7), and

H(z) = (1 + 1
4q )α1|z1|

7
4 + (1 + 1

3q )α2|z2|
7
3 + (1 + 1

2q )α3|z3|
7
2 + (1 + 1

q )α4|z4|7

+(1 + 9
28q )α5dz1c

5
4 z3 + (1 + 2

7q )α6z1z2 + (1 + 8
21q )α7dz2c

5
3 z3

−(1 + 6
7q )α9z3z

5
4 − α10z1z

3
4 − (1 + 5

7q )α8z2dz4c4.
(C.16)

For sufficiently large values of q, the coefficients of (C.16) are similar to the coefficients of (C.5),
accordingly, by continuity of (C.5) w.r.t. its coefficients, if (C.5) is positive definite then function
(C.16) is positive definite, as well.
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Selecting the parameters αj ; j = 1, . . . , 10 and the gains ki; i = 1, . . . , 6, such that, they
satisfy Lemma C.2, then V (z) in (C.5) and W (z) in (C.8) are positive definite functions. Then,
by homogeneity arguments the inequality W (z) ≤ εmaxV

6
7 (z) holds. Therefore, inequality (C.15)

becomes

V̇ (z) ≤ −εmax
(

1− U(z)

W (z)

ρ

L(t)

)
V

6
7 (z)

Lq(t)
− 7q

L̇(t)

L(t)
V (z), (C.17)

By its definition L(t) > 0 and L̇(t) ≥ 0 for all t > 0, and L(0) > 0 and L̇(0) > 0 (see
equation (5.10)), hence the second term on the right-hand side of the latter expression is negative
definite. Furthermore, since V (z) is r-homogeneous of degree 7 (see equation (C.5)), the second term
dominates the first one for all z outside of the unit ball, i.e., for all z /∈ Br(1). On the other hand, due
to L(t) is an increasing function in time then there exist a finite time T ≥ 0 from which L(t) > δcρ,
where 0 < δc = maxS

U(z)
W (z) , making the first term on the right-hand side of inequality (C.17) negative

definite, and the inequality V̇ (z) < 0 holds for all t ≥ T and z ∈ Rn. If t < T and z ∈ Br(1),
then inequality (C.17) can be positive but the solutions of closed-loop system (C.14) cannot escape to
infinity in finite-time because the negative definiteness of (C.17) is warrantied outside of the unit ball
for all t ≥ 0.

Finally, we conclude that function (C.5) is positive definite and function (C.15) is negative definite,
hence the states of the system (C.14) converge to zero and it means that the states of system (C.12)
converge to zero too. Therefore, Theorem 5.2 is proven.

C.3 Proof of Theorem 5.3

Consider the system (5.6), where the perturbation term φ(t) satisfies |φ̇(t)| ≤ ρ and σ = x1 is a
measurable output. Moreover, consider the observer (5.17), where ζ is a discontinuous term. Now,
define the observation errors:

e1 = x̂1 − x1, e2 = x̂2 − x2, e1 = x̂3 − x3, e4 = ε− φ(t), (C.18)

such that, the error dynamics is given by

ė1 = −λ1H
1
4 de1c

3
4 + e2

ė2 = −λ2H
2
4 de1c

2
4 + e3

ė3 = −λ3H
3
4 de1c

1
4 + e4

ė4 ∈ −λ4Hde1c0 − [−ρ, ρ].

(C.19)

where dxic0 represents the set-valued sign function. Moreover, the solutions of the system (C.19) are
understood in the Filippov’s sense (see [Filippov, 1988]).

Applying the change of variables

e1 = Hξ1, e2 = Hξ2, e3 = Hξ3, e4 = Hξ4, (C.20)
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to the system (C.19) we obtain

ξ̇1 = −λ1dξ1c
3
4 + ξ2

ξ̇2 = −λ2dξ1c
2
4 + ξ3

ξ̇3 = −λ3dξ1c
1
4 + ξ4

ξ̇4 ∈ −λ4dξ1c0 − [− ρ
H ,

ρ
H ].

(C.21)

The system (C.19) has an homogeneous vector-set field of degree p = −1 and weights r = [4, 3, 2, 1]
for variables ξ1, ξ2, ξ3 and ξ4, respectively.

Following [Cruz-Zavala and Moreno, 2018] (see also [Sanchez et al., 2017a]), a LF for the arbi-
trary order Levant’s differentiator is given by

VRED(ξ) =
n−1∑
j=1

ajΞj(ξj , ξj+1) + an
1
p |ξn|

p, (C.22)

with coefficients ai > 0, i = 1, . . . , n, and

Ξi(ξi, ξi+1) = ri
p |ξi|

p
ri − ξidξi+1c

p−ri
ri+1 + p−ri

p |ξi+1|
p

ri+1

where p ≥ r1 + r2 is the homogeneity degree of function (C.22) and ri are the weights of variables ξi.
According to equation (C.22), a stability analysis and gains design for the system (C.21) can be

performed by using the LF

V2(ξ) = 4
7a1|ξ1|

7
4 − a1ξ1ξ2 + 3

7(a1 + a2)|ξ2|
7
3 − a2ξ2dξ3c2

+ 2
7(2a2 + a3)|ξ3|

7
2 − a3ξ3ξ

5
4 + 1

7(5a3 + a4)|ξ4|7, (C.23)

where ai > 0, i = 1, . . . , 4; are positive constants. The derivative of function (C.23) along the
trajectories of system (C.21) is given by

V̇2(z) ∈ −W2(z) + U2(z)
[
− ρ
H ,

ρ
H

]
≤ −

(
1− U2(z)

W2(z)

ρ

H

)
W2(z),

where U2(z) is a continuous function given by

U2(z) = −5a3ξ3ξ
4
4 + (5a3 + a4)ξ6

4 , (C.24)

and W2(z) is the derivative of function (C.23) along the trajectories of nominal system (C.21) (with
φ(t) = 0) given by

W2(ξ) = a1(λ1 − λ2)|ξ1|
3
2 − a1(1 + λ1)dξ1c

3
4 ξ2 + a1ξ1ξ3 + (a1 + a2)λ2dξ1c

1
2 dξ2c

4
3

+(2a2 + a3)λ3dξ1c
1
4 dξ3c

5
2 − a3λ3dξ1c

1
4 ξ5

4 − a2λ2dξ1c
1
2 dξ3c2 + a1ξ

2
2

−(a1 + a2)dξ2c
4
3 ξ3 + 2a2ξ2|ξ3|ξ4 + a2|ξ3|3 − (2a2 + a3)dξ3c

5
2 ξ4

−2a2λ3dξ1c
1
4 ξ2|ξ3| − 5a3(λ4dξ1c0)ξ3ξ

4
4 + (a3 + λ4(5a3 + a4)dξ1c0dξ4c0)ξ6

4 .
(C.25)
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From results presented in [Cruz-Zavala and Moreno, 2018], for any positive coefficients aj >
0; j = 1, . . . , 4 there exist gains λi; i = 1, . . . , 4 such that functions (C.23) and (C.25) are positive
definite.

Suitable values of λi; i = 1, . . . , 4 can be computed by using SOSTOOLS [Prajna et al., 2002].
For this, consider the functions V̄2(ζ) = V2(ζ) − ε3(ζ14

1 + ζ14
2 + ζ14

3 + ζ14
4 ) ≥ 0 and W̄2(ζ) =

W2(ζ) − ε3(ζ12
1 + ζ12

2 + ζ12
3 + ζ12

4 ) ≥ 0, with ε3 = 1. Now, recall the change of variables (5.1) in
Section 5.1. By applying the change of variables

|ξ1| = ζ8
1 , |ξ2| = ζ6

2 , |ξ3| = ζ4
3 , |ξ4| = ζ2

4 .

to functions V̄2(ζ) and W̄2(ζ), we obtain the sets of associated forms {V̄2i} and {W̄2j} i, j =
1, . . . , 16, respectively. Thus, by means of SOSTOOLS we evaluate the sets of associated forms
{V̄2i} and {W̄2j} i, j = 1, . . . , 16 with the coefficients ai as

a1 = 134.5, a2 = 232.2, a3 = 220.2, a4 = 231.3, (C.26)

and µo = 0.01, and we obtain the gains λi as

λ1 = 4.5, λ2 = 2.4, λ3 = 0.8, λ4 = 0.1, (C.27)

such that, every form in the sets {V̄2i} and {W̄2j} is a SOS. Hence, functions (C.23) and (C.25) are
strictly positive definite.

Since W2(z) and U2(z) are r-homogeneous of degree 6, the fraction U2(z)
W2(z) is r-homogeneous of

degree 0, hence all its values are contained on the unit sphere Sr(1) which is a compact set. So, there
exists a maximum value 0 < δo = maxSr(1)

U1(z)
W1(z) . Accordingly, if µo < 1

δo
and W2(z) is positive

definite, then the inequality V̇2(z) < 0 holds.

Lemma C.2. Let system (C.21) with Hmin >
|φ̇(t)|
µo

, and V3(ξ) : R4 → R a homogeneous function of
degree p = 7 given by (C.23). For any coefficients aj > 0; j = 1, . . . , 4 and certain value µo, there
exist gains λi; i = 1, . . . , 4 (e.g. (C.27)) such that (C.23) is a LF for the 3-RED in (C.21). 4

Since function (C.23) is a LF for the system (C.21), its origin ξ = 0 is asymptotically stable.
Furthermore, the change of variables (C.20) is linear, therefore, for any value of H the asymptotic
stability of the origin e = 0 of the system (C.19) is ensured, as well. Moreover, the system (C.19) has
a negative homogeneity degree, hence, its trajectories exhibit finite-time convergence to zero. Finally,
the proof of Theorem 5.3 is completed.

C.4 Proof of Theorem 5.4

Consider the system (5.6), where the perturbation term φ(t) satisfies |φ̇(t)| ≤ ρ and σ = x1 is a
measurable output. Also, consider the controller (5.18). The closed-loop system (5.6)-(5.18) can be
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written as
ẋ1 = x2

ẋ2 = x3

ẋ3 = −k1L
3
4 dx1c

1
4 − k2L

2
3 dx2 + e2c

1
3 − k3L

1
2 dx3 + e3c

1
2 + x4

ẋ4 = −k4Ldx1c0 − k5Ldx2 + e2c0 − k6Ldx3 + e3c0 + φ̇(t)

ė1 = −λ1H
1
4 de1c

3
4 + e2

ė2 = −λ2H
2
4 de1c

2
4 + e3

ė3 = −λ3H
3
4 de1c

1
4 + e4

ė4 = −λ4Hde1c0.

(C.28)

where x4 = η+φ(t) and ei; i = 1, 2, 3, 4 are given by (C.18). The solutions of the system (C.28) are
defined in the Filippov’s sense [Filippov, 1988]. Now, define the new variables

z1 = x1, z2 = x2 + e2, z3 = x3 + e3, z4 = x4,

such that, the closed-loop system (C.28) in the new coordinates z is given by

ż1 = z2 − e2

ż2 = z3 − λ2H
2
4 de1c

2
4

ż3 = −k1L
3
4 dz1c

1
4 − k2L

2
3 dz2c

1
3 − k3L

1
2 dz3c

1
2 + z4 − λ3H

3
4 de1c

1
4 + e4

ż4 = −k4Ldz1c0 − k5Ldz2c0 − k6Ldz3c0 + φ̇(t)

ė1 = −λ1H
1
4 de1c

3
4 + e2

ė2 = −λ2H
2
4 de1c

2
4 + e3

ė3 = −λ3H
3
4 de1c

1
4 + e4

ė4 = −λ4Hde1c0.

(C.29)

The system (C.29) has a homogeneous vector-set field of degree k = −1 and weights r = [4, 3, 2, 1, 4, 3, 2, 1]T

for the extended state ψ = [zT , eT ]. Moreover, the system (C.29) is a cascade connection of the system
(C.1) and the system (C.19).

From Lemmas C.1 and C.2, LF’s for the systems (C.1) and (C.19) are given by (C.5) and (C.23),
respectively. Thus, a LF candidate for (C.29) can be proposed as

V (ψ) = V1(z) + γV2(e), γ ∈ R>0, (C.30)

where V1 and V2 are given by (C.5) and (C.23), respectively. Note that V is positive definite for any
γ > 0. The derivative of V along the trajectories of the system (C.29) satisfies the following inequality

V̇ ≤ V̇1(z) + |S(ψ)|+ γV̇2(e), (C.31)

where V̇1(z) is the derivative of V1 along the trajectories of the system (C.1), V̇2(e) is the derivative of
V2 along the trajectories of the system (C.19) and S(ψ) is given by

S(ψ) = (7
4α1dx1c

3
4 + 5

4α5|x1|
1
4x3 + α6x2 − α10x

3
4)e2 + (7

3α2dx2c
4
3

+α6x1 + 5
3α7|x2|

2
3x3 − α8dx4c4)λ2H

2
4 de1c

1
2 + (7

2α3dx3c
5
2

+α5dx1c
5
4 + α7dx2c

5
3x3 − α9x

5
4)(λ3H

3
4 de1c

1
4 − e4).

(C.32)
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Now, define W1(z) = −V̇1(z) and W2(e) = −V̇2(e), which are positive definite and r-homogeneous
functions of degree 6. Then, from [Bhat and Bernstein, 2005] (see Lemma 4.2) there exist the con-

stants µ1, µ2 ∈ R>0 such that the inequalities µ1V
6
7

1 (z) < W1(z), and µ2V
6
7

2 (z) < W2(z) hold.
Moreover,

|S(ψ)| ≤ g1(z)h1(e) + g2(z)h2(e) + g3(z)h3(e)

, where

g1(z) = |74α1dx1c
3
4 + 5

4α5|x1|
1
4x3 + α6x2 − α10x

3
4|,

g2(z) = |73α2dx2c
4
3 + α6x1 + 5

3α7|x2|
2
3x3 − α8dx4c4|,

g3(z) = |72α3dx3c
5
2 + α5dx1c

5
4 + α7dx2c

5
3x3 − α9x

5
4|,

h1(e) = |e2|,
h2(e) = |λ2H

1
2 dx1c

1
2 |,

h3(e) = |λ3H
3
4 dx1c

1
4 − e4|,

Since g1, g2 and g3 are continuous, positive semi-definite and r-homogeneous functions of degree 3, 4
and 5, respectively, and h1, h2 and h3 are also continuous, positive semi-definite and r-homogeneous
functions of degree 3, 2 and 1, respectively.

From Lemma 4.2 in [Bhat and Bernstein, 2005], it follows g1(z) ≤ ε1V
3
7

1 (z), g2(z) ≤ ε2V
4
7

1 (z),

g3(z) ≤ ε3V
5
7

1 (z), h1(e) ≤ ε4V
3
7

2 (z), h2(e) ≤ ε5V
2
7

2 (z) and h3(e) ≤ ε6V
1
7

2 (z), for some ε1, . . . , ε6 ∈
R>0. Therefore,

|S(ψ)| ≤ µ3V
3
7

1 V
3
7

2 + µ4V
4
7

1 V
2
7

2 + µ5V
5
7

1 V
1
7

2 ,

where µ3 = ε1ε4, µ4 = ε2ε5 and µ5 = ε3ε6. Then, inequality (C.31) can be rewritten as

V̇ ≤ −µ1V
6
7

1 (z) + µ3V
3
7

1 V
3
7

2 + µ4V
4
7

1 V
2
7

2 + µ5V
5
7

1 V
1
7

2 − γµ2V
6
7

2 (e). (C.33)

Recall the Young’s inequality, where for any a, b, c ∈ R>0 and p, q > 1 satisfying 1
p + 1

q = 1, we

have ab ≤ cp

p a
p + c−q

q b
q.

Thus, for any c1, c2, c3 > 0, the inequalities

V
3
7

1 V
3
7

2 ≤ c21
2 V

6
7

1 + 1
2c21
V

6
7

2 ,

V
4
7

1 V
2
7

2 ≤ 2c
3/2
2
3 V

6
7

1 + 1
3c32
V

6
7

2 ,

V
5
7

1 V
1
7

2 ≤ 5c
6/5
3
6 V

6
7

1 + 1
6c63
V

6
7

2 ,

hold. Hence, V̇ ≤ κ1V
6
7

1 + κ2V
6
7

2 where

κ1 = −µ1 +
µ3c21

2 +
2µ4c

3/2
2

3 +
5µ5c

6/5
3

6
κ2 = −γµ2 + µ3

2c21
+ µ4

3c32
+ µ5

6c63
.
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Now, selecting c2 = c
4/3
1 and c3 = c

5/3
1 then

κ1 = −µ1 +
c21
6 (3µ3 + 4µ4 + 5µ5)

κ2 = −γµ2 + 1
6c101

(
3µ3c

8
1 + 2µ4c

6
1 + µ5

)
.

Note that κ1 < 0 if
c1 <

√
6µ1

3µ3+4µ4+5µ5

and κ2 < 0 if
γ > 1

6µ2c101

(
3µ3c

8
1 + 2µ4c

6
1 + µ5

)
.

Therefore, V̇ is negative definite, so that, ψ = 0 is an asymptotically stable equilibrium point of the
system (C.29). Due to the negative homogeneity degree of the system (C.29), finite-time stability is
concluded. Thus, Theorem 5.4 is proven.



Appendix D

Design of a PID-like controller based on
Discontinuous Integral Control: proofs

D.1 Proof of Lemma 6.1

GAS of the ideal model (6.8), with the set of gains proposed by Propositions 6.3 and 6.4, can be
studied by means of the design of a LF. With this aim let’s follow the GF approach presented by
[Sanchez and Moreno, 2019]. See Section 5.1 in Chapter 5 for some details about this methodology.

Let us recall the system (6.8):

ẋ1 = x2 ,

ẋ2 = −k1dx1c1/3 − k2dx2c1/2 + x3 ,

ẋ3 = −k3dx1c0 + ḟ .

(D.1)

Note that the system (D.1) has a r-homogeneous vector-set field of degree p = −1 and wights
r = [3, 2, 1] for variables x1, x2 and x3, respectively (see Chapter 2 for detail about homogeneity).
Furthermore, the system (D.1) is discontinuous, hence, its solutions are understood in the Filippov’s
sense (see [Filippov, 1988]).

A LF candidate for the system (D.1) is given by Lemma 6.1 as

V (x) = α1|x1|
7
3 + α2|x2|

7
2 + α3|x3|7 + α4dx1c

5
3x2 + α5|x1|x2

2

+ α6x1dx3c4 + α7|x1|
5
3x2

3 + α8x2x
5
3 + α9|x2|

3
2x4

3. (D.2)

So, the derivative of function (D.2) along the trajectories of the system (D.1) (where |ḟ | < L ) is given
by

V̇ (x) ∈ −σ(x) + ψ(x) [−L,L] (D.3)

≤ −
(

1− ψ(x)

σ(x)
L

)
σ(x), (D.4)

141
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where ψ(x) is a continuous function given by

ψ(x) = 7α3dx3c6 + 4α6x1|x3|3 + 5α8x2x
4
3 + 2α7|x1|

5
3x3 + 4α9|x2|

3
2x3

3, (D.5)

and σ(x) is the derivative of function (D.2) along the trajectories of the unperturbed system (D.1), i.e.,
considering f = 0, which is given by

σ(x) = α4k1x
2
1 + α4k2dx1c

5
3 dx2c

1
2 + (2α7k3 − α4)dx1c

5
3x3 + (2α5k1

−7
3α1)dx1c

4
3x2 + 2α5k2|x1||x2|

3
2 + 4α6k3|x1||x3|3 − 2α5|x1|x2x3

−5
3α7dx1c

2
3x2x

2
3 + 7

2α2k1dx1c
1
3 dx2c

5
2 + 3

2α9k1dx1c
1
3 dx2c

1
2x4

3

−5
3α4|x1|

2
3x2

2 + α8k1dx1c
1
3x5

3 + (7
2α2k2 − α5dx1c0dx2c0)|x2|3

−7
2α2dx2c

5
2x3 + 4α9k3dx1c0|x2|

3
2x3

3 + (5α8k3dx1c0dx2c0

−α6dx2c0dx3c0 + 3
2α9k2)|x2|x4

3 + (α8k2 − 3
2α9)dx2c

1
2x5

3

+(7α3k3dx1c0dx3c0 − α8)x6
3.

(D.6)

Note that both functions (D.2) and (D.6) are GF’s. Thus, following [Sanchez and Moreno, 2019],
the analysis of positive definiteness of these functions can be done through the analysis of positive
definiteness of their associated forms {Vi} and {Wj}, respectively, which can be studied by using the
SOS representation [Parrilo, 2000] (see Section 5.1 in Chapter 5 for details). So, if every form in the
sets {Vi} and {Wj} is positive definite, then the GF’s (D.2) and (D.6) are positive definite, as needed.

The associated forms {Vi} and {σj} (i, j = 1, 2, 3) of GF’s (D.2) and (D.6), respectively, are
obtained by the change of variables

|x1| = y8
1, |x2| = y6

2, |x3| = y4
3. (D.7)

This change of variables is obtained from 5.1 in Section 5.1 of Chapter 5.
Usually, a SOS polynomial is only positive semi-definite. Then, consider the forms V̄i(y) =

Vi(y) − ε1(y14
1 + y14

2 + y14
3 ) and W̄j(y) = Wj(y) − ε1(y12

1 + y12
2 + y12

3 ), such that, if they are SOS
for some ε1 > 0 then the strict positive definiteness of every associated form in {Vi} and {Wj} is
ensured.

Using SOSTOOLS [Prajna et al., 2002] we can find the coefficients of the associated form {Vi}
by solving an LMI. However, in {Wj} gains ki and coefficients αi appear as products, making the
problem bilinear. Fortunately, we have selected the gains ki a priori from Propositions 6.3 or 6.4,
and we only use SOSTOOLS to get the coefficients for both sets of the polynomials {Vi} and {Wj},
simultaneously.

Then, consider ε = 1 and the gains given by Table 6.1. By means of SOSTOOLS, the coefficients
αi; i = 0, . . . , 9 of function (D.2) are computed as Table D.1 shows. So, all elements of {Vi} and
{Wj} are positive definite. In consequence, by the continuity of functions (D.2) and (D.6) on the
boundary between each hyper-octant, it is possible to conclude that this functions are also positive
definite on every point of the state space.

Since (D.6) is positive definite, then the quotient ψ(x)
σ(x) is well defined on Rn. Moreover, both

functions (D.5) and (D.6) are r-homogeneous of degree 6, hence ψ(x)
σ(x) is r-homogeneous of degree 0,
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Set Gains λi Coefficients αi

D1

λ1 = 2.7
λ2 = 5.345
λ3 = 1.1

α1 = 18477 α2 = 1351 α3 = 53.55
α4 = 10222 α5 = 4775 α6 = −932.3
α7 = 6026 α8 = −1025 α9 = 3118

D2

λ1 = 2.7
λ2 = 4.281
λ3 = 1.1

α1 = 4810 α2 = 433.7 α3 = 30.3
α4 = 2717 α5 = 1560 α6 = −320.2
α7 = 1720 α8 = −479.8 α9 = 1139

Table D.1: Sets of gains for the PID-CSMC and coefficients of LF (D.2).

i.e.,
ψ(Λr(λ)x)
σ(Λr(λ)x) = λ0 ψ(x)

σ(x) = ψ(x)
σ(x) ; ∀z ∈ Sr(1)

Also, the fraction ψ(x)
σ(x) is continuous on Sr(1), which is a compact set, hence it follows from the

Bolzano–Weierstrass theorem that there exists a maximum value 0 < δc = maxSr(1)
ψ(x)
σ(x) . Note that

for homogeneous functions it is enough to obtain its values on the unit sphere Sr(1) and the remaining
values on Rn are recovered by applying the dilatation Λr(λ). Then, from (D.4) if L < 1

δc
and σ(x) is

positive definite, the inequality V̇ (z) < 0 holds.
Finally, LF (D.2) proves the stability of the closed-loop system D.1 with the proposed gains. Since

the scaling k1 = λ1∆2/3, k2 = λ2∆1/2 and k3 = λ3∆ is homogeneous, the stability analysis is also
valid for any size of the perturbation derivative |f(t)| ≤ L̄ provided that ∆ > L̄

L . Finally, Lemma 6.1
is proven.

D.2 Proof of Lemma 6.2

GAS of the ideal model (6.32), with the set of gains proposed by Propositions 6.7 and 6.8, can be
studied by means of the design of a LF. Again, we are going to use the GF approach, again (see
[Sanchez and Moreno, 2019]).

Let us recall the system (6.32):

ẋ1 = x2 ,

ẋ2 = −k1dx1c1/3 − k2dx2c1/2 .
(D.8)

Note that the system (D.8) has a r-homogeneous vector-set field of degree p = −1 and wights
r = [3

2 , 1] for variables x1 and x2, respectively (see Chapter 2 for details about homogeneity).
A LF candidate for the system (D.8) is given by Lemma 6.2 as

V (x) = α1|x1|5/3 + α2|x2|5/2 + α3x1x2. (D.9)
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Set Gains λi Coefficients αi
D1 λ1 = 1 λ2 = 2.375 α1 = 18477 α2 = 1351 α3 = 53.55

D2 λ1 = 1 λ2 = 2 α1 = 4810 α2 = 433.7 α3 = 30.3

Table D.2: Sets of gains for the PID-CSMC and coefficients of LF (D.9).

So, the derivative of function (D.9) along the trajectories of the system (D.8) is given by V̇ (x) =
−W (x), where

W (x) = α3k1|x1|4/3 + α3k2x1dx2c1/2 − 5
3α1dx1c2/3x2

+ 5
2α2k1dx1c1/3dx2c3/2 + (5

2α2k2 − α3)x2
2 (D.10)

Note that both functions (D.9) and (D.10) are GF’s. Thus, following [Sanchez and Moreno, 2019],
the analysis of positive definiteness of those functions can be done through the analysis of positive
definiteness of their associated forms {Vi} and {Wj}, respectively. For this, we can use the SOS
representation [Parrilo, 2000] (see Section 5.1 in Chapter 5 for details). So, if every form in the sets
{Vi} and {Wj} is positive definite, then the GF’s (D.2) and (D.6) are positive definite, as needed.

The associated forms {Vi} and {σj} (i, j = 1, 2, 3) of GF’s (D.2) and (D.6), respectively, are
obtained by the change of variables

|x1| = y8
1, |x2| = y6

2, |x3| = y4
3. (D.11)

This change of variables is obtained from 5.1 in Section 5.1 of Chapter 5.
Moreover, consider the forms V̄i(y) = Vi(y)−ε1(y14

1 +y14
2 +y14

3 ) and W̄j(y) = Wj(y)−ε1(y12
1 +

y12
2 + y12

3 ), such that, if they are SOS for some ε1 > 0 then the strict positive definiteness of every
associated form in {Vi} and {Wj} is ensured.

Using SOSTOOLS [Prajna et al., 2002] we can find the coefficients of the associated form {Vi}
by solving an LMI. However, in {Wj} gains ki and coefficients αi appear as products, making the
problem bilinear. Fortunately, we have selected the gains ki a priori from Propositions 6.7 or 6.8,
and we only use SOSTOOLS to get the coefficients for both sets of the polynomials {Vi} and {Wj},
simultaneously.

Then, consider ε = 1 and the gains given by Table 6.2. By means of SOSTOOLS, the coefficients
αi; i = 0, . . . , 9 of function (D.9) are computed as Table D.2 shows. So, all elements of {Vi} and
{Wj} are positive definite. In consequence, by the continuity of functions (D.9) and (D.10) on the
boundary between each hyper-octant, it is possible to conclude that this functions are also positive
definite on every point of the state space.

Therefore, LF (D.9) proves the stability of the closed-loop system D.1 with the proposed gains.
Since the scaling k1 = λ1∆2/3, k2 = λ2∆1/2 and k3 = λ3∆ is homogeneous, the stability analysis is
also valid for any ∆ > 0. Finally, Lemma 6.2 is proven.
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