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Resumen

En este trabajo se presenta y estudia un modelo de axión sabroso. Se derivan con-

stricciones fenomenológicas a bajas enerǵıas, que permiten que el axión sabroso sea un

candidato a materia obscura. Este axión surge mediante la identificación de la simetŕıa

de Peccei-Quinn con la simetŕıa de Froggatt-Nielsen. En el primer caṕıtulo se iden-

tifican los problemas que el modelo pretende rsolvers, estos son la ausencia de masa

de neutrinos en el Modelo Estándar, la jerarqúıa en los valores de las masas de los

fermiones, la existencia de mateŕıa obscura, y la posibilidad de que esta esté compuesta

por un nuevo tipo de part́ıcula. En el siguiente caṕıtulo se discuten las masas en el

Modelo Estándar y algunas extensiones simples, mientras que en el tercer caṕıtulo los

aspectos necesarios de f́ısica de axiones se presentan, tal que el modelo de axión sabroso

pueda ser entendido. Luego, en el cuarto caṕıtulo se costruye el modelo partiendo del

sector de quarks, donde a orden principal las matrices de masas adquieren una estruc-

tura de intracción a primeros vecinos (Nearest-Neighbour-Interaction). Los neutrinos

obtienen masas de Majorana, con una estructura del tipo A2 en su matriz de masas,

por medio del mecanismo sube y baja (seesaw) tipo-I. El axión se extrae de los bosones

de Goldstone de la teoŕıa, y se compara contra el axion de la teoŕıa de gran unificación

de SU(5). Posteriormente, se realiza un un estudio numérico detallado de las masas

y parámetros de mezcla de los quarks y leptones. Esto permite estudiar decaimientos

que violan el sabor con axiones, al igual que violación del sabor mediada por corrientes

neutras. Por último, el axión se propone como candidato a materia obscura, donde es

producido por el mecanismo de desalinación (misalignment mechanism). Este modelo

se desarrolló en colaboración con el Dr. Eduardo Peinado, el Dr. Newton Nath, y el

M.Sc. León Garćıa.
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Abstract

In this work a flavourful axion model is presented and studied. Constraints, derived

from the low-energy phenomenology, on the parameters of this model permit the axion

to be a dark matter candidate. This axion arises through an identification of the

Froggat-Nielsen symmetry with the Peccei-Quinn symmetry. In the first chapter the

problems which are to be solved are identified, mainly the lack of neutrino masses in

the Standard Model and the hierarchy of the fermion mass values, the existence of

dark matter, and the possibility that it is a new type of particle. Following this, in the

next chapter the masses in the Standard Model and some very simple extensions are

discussed, while in the third chapter the necessary aspects of axion physics are presented

so that the flavourful axion model can be understood. Next, in the fourth chapter the

model is constructed by parting from the quark sector, where at leading order the

mass matrices acquire the Nearest-Neighbour-Interaction structure. The neutrinos get

Majorana masses, with an A2 structure of the mass matrix, by way of the type-I

seesaw mechanism. The axion is extracted from the theory’s Goldstone bosons, and is

bechmarked against the SU(5) grand unified theory axion. Following this, a detailed

numerical study of the masses and mixing parameters of the quarks and leptons is done.

This allows studying flavour violating decays with axions, as well as flavour violation

mediated by flavour changing neutral currents. Finally, the axion is poised as a dark

matter candidate through the misalignment mechanism. This model was developed in

collaboration with Dr. Eduardo Peinado, Dr. Newton Nath, and M.Sc. León Garćıa.
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Chapter 1

Introduction

The consolidation of the Standard Model of Particle Physics (SM) during the 1970s

can be considered one of the greatest scientific achievements of the past century. This

model explains three fundamental forces of nature, the electromagnetic force, the weak

force, and the strong force, with gravity notably absent. Although the model has been

tested to varying degrees of accuracy, most of which agree with the SM, there still

exist unanswered questions. Besides the fact that gravity is missing from the SM, the

masses of the fermions pose some of the most important open questions. For example,

the masses and nature of the neutrinos, as well as the wide range of the values of the

fermion masses, which span many orders of magnitude, are some of the problems which

can be considered unanswered by the SM in its current state.

Moving on to a much greater scale, of the order of at least Mpc, unanswered ques-

tions in cosmology regarding the nature of dark matter open the SM for extensions that

must be consistent with cosmology, the so-called dark sector. There is the possibility

(or necessity, depending on one’s point of view) to explain minimally and concisely the

phenomena at short distances (or high energies) with those at cosmological scales.

In this work a model addressing the mass hierarchies of the SM fermions (including

neutrinos), and the strong CP problem, while at the same time giving a possible dark

matter candidate, a flavourful axion, is presented. The name flavourful axion stems

from the fact the Peccei-Quinn and Froggatt-Nielsen symmetries are identified, where-

upon the Peccei-Quinn symmetry is treated as a flavour symmetry, and its Goldstone

boson, the axion, becomes flavourful.

The aim of this chapter is to motivate the problem from the particle physics point

of view (Section 1.1), and also to give an historical motivation to the dark matter

problem (Section 1.2). Before the model is presented, an overview of the theoretical

framework behind it is given. In Chapter 2 masses and mass generation in the Stan-

dard Model are discussed (Section 2.1), including the simplest realizations of massive

neutrinos (Section 2.2). A possible solution to the mass hierarchy problem is given by

the Froggatt-Nielsen mechanism, which is the topic of Section 1.1. Chapter 3 deals

1



1.1 Fermion Masses

with the fundamentals of axion physics, with an emphasis on parameters studied in

the model (Chapter 4), including the dark matter relic density. Longer calculations

and some minor topics not directly related to the model are relegated to the different

appendices, in a way that the main body of this work is mostly self-contained.

1.1 Fermion Masses

Regarding fermions, the most obvious issue in the SM are the massless neutrinos.

Although the possibility of neutrinos having non-zero masses has been proposed at least

since Pontecorvo’s work in the 1950s (see for example [10]), wherein the possibility of

flavour oscillations occurring between neutrinos was studied. Nevertheless, almost 50

years had to pass for the experimental confirmation of neutrino oscillations, for which

a Nobel Prize was awarded in 2015 to Takaaki Kajita and Arthur B. McDonald for

the work of the Super-Kamiokande [11] and SNO [12] experiments, respectively. Since

these oscillations can only occur if the neutrinos are massive, there is clear incentive

to extend the SM by allowing for massive neutrinos. Interestingly, neutrinos masses

are not as clearly defined as those of the other fermions. Neutrinos in the SM are

chiral, and only left-handed neutrinos (and hence right-handed anti-neutrinos) appear

in this model. In particular, it is unclear whether they are Majorana fermions or Dirac

fermions, the latter case would also imply the existence of right-handed neutrinos (see

Section 2.2).

Another problem, more philosophical in nature, is the fermion mass-hierarchy. The

fermion masses in the SM are generated by the Higgs mechanism (see Section 2.1.2),

and thus depend on the vacuum expectation value and the Yukawa couplings between

the Higgs doublet and the fermions. The mass of the electron is me ≈ 0.511 MeV,

while that of the top quark is mt ≈ 172 GeV. There is a difference of six orders of

magnitude between these two fermions, and hence between the biggest and smallest

Yukawa coupling. This wide range in the values of the couplings can be considered

unnatural1. Therefore, extensions of the SM explaining this hierarchy are proposed.

These can range from minimal extensions like that presented here (Froggatt-Nielsen)

to explanations coming from string theory (for example [13]).

1.2 Dark Matter

Dark matter (DM) is matter that interacts gravitationally at long range, but other-

wise very weakly. The dark comes from the fact that this kind of matter interacts

very weakly, if at all, with the electromagnetic field, thus making it very elusive and

1Where naturalness should be considered as the property of all the couplings to be of order 1.

2



1.2 Dark Matter

practically invisible to direct electromagnetism based observation. There is compelling

evidence for its existence using indirect observations, as will be seen in this section and

Appendix A. DM has been, and continues to be, a strong motivator for extending the

SM. Arguments in favour of DM composed of a new kind of particle are presented in

Appendix A, in contrast with baryonic DM or modifications of gravitational dynamics

without DM.

The first appearence of the modern concept of DM is often attributed to Fritz

Zwicky [14]1. What Zwicky did is apply the virial theorem to the Coma galaxy clus-

ter [15], finding an upper bound for its mass2, MC , of

Mc > 9× 1043 kg. (1.1)

With the former in mind and an estimation of the number of sun-like stars he found a

mass-to-light ratio of 5003, one of the conclusions of this unusually high number was that

there exists a large amount of non-radiating matter in the cluster, i.e. DM. Nowadays

it is known that clusters of the size of Coma do actually have an asymptotical mass-to-

light ratio of about 400, which somewhat agrees with Zwicky’s result. His calculation

was not correct due to a value for the Hubble constant (to infer the speed of the

cluster) that was an order of magnitude too large [15]. Nevertheless, his conclusion of

the existence of unseen matter is one of the early suggestions of DM.

Contemporary to Zwicky (actually a bit earlier, in 1932), Jan Oort found that the

amount of observable mass in a galaxy was only about a third of the total mass, by

analyzing the dynamics of stars of varying sizes [16, 17]. This did not garner much

attention at the time (for that matter, neither did Zwicky’s work on the subject), but

a general method of identifying these discrepancies arose in the form of the rotation

curves of galaxies. A rotation curve of a galaxy is a plot of the rotational velocity,

vc, of the stars and gas in the galaxy against the galactic radius r, where this means

the distance to the symmetry axis of the galaxy. The expectation for such a curve

is Keplerian in the limit r → ∞, this means v ∝ r−
1
2 . This expectation stems from

the form of the Newtonian potential. An axisymmetric galaxy has the following speed

profile

vc =

√
GNM(r)

r
, (1.2)

with M(r) the mass enclosed by a sphere of radius r centred on the galactic centre.

Outside the sphere M is constant and vc declines as r−
1
2 . Notice this holds even for

1Zwicky’s original paper stems from 1933, and was written in German, the cited paper is a review
of that work from 1937.

2See Appendix B.1 for a outline of the derivation of this result.
3This quantity is adimensional, since it is normalized to the Sun’s mass-to-light-ratio.

3



1.2 Dark Matter

non-uniform mass distributions, ρ. In general, a spherically symmetrical distribution

satisfies

ρ(r) =
1

4πr2

dM(r)

dr
. (1.3)

The density distribution will only affect rotation when r < R, with R the galactic

radius.

(a) Rotation curves of 21 light galaxies.

(b) Mean rotation curve for the 21 galaxies (solid line) and least-squares fit to a model
presented in [1].

Figure 1.1: Galaxy rotation curves from Vera Rubin and her collaboratos [1].

By the 1970s and 1980s, in great part because of Vera Rubin’s work [1], it was clear

that the Keplerian limit was not satisfied, in fact in the limit of large radial distances the

rotation curves become constant, what is now called a flat rotation curve (see Fig. 1.1).

An explanation for this phenomenon is the existence of a dark halo, a distribution of

matter, that interacts gravitationally with the rest of the galaxy, but is not observable,

4



1.2 Dark Matter

in other words, a DM distribution. The mass density, ρ, can be written as

ρ(r) = ρv(r) + ρD(r) (1.4)

the sum of the visible matter and DM densities. The visible matter will experience

Keplerian falloff as r increases, after a maximum rm at 0 < rM < R, but if the galactic

halo is large enough (i.e. at least Rh > R), the falloff will not be observed. Take as an

example a simplified scenario, where the dark halo is spherical and the contribution of

visible matter can be neglected (i.e. in the limit r ∼ R). From Eq. (1.2) it can be seen

that to get flat rotation curves M(r) ∝ r, therefore combining Eq. (1.2) and Eq. (1.3)

one arrives at the mass distribution in presence of this halo

ρ(r) =
v2
c

4πGNr2
. (1.5)

This is obviously an idealized result, but it shows that the density should have a factor

of r−γ , with γ ∼ 2, as r � 01. As a sidenote, the inclusion of a dark halo stabilizes the

galaxy. Numerical simulations show that galactic disks are unstable and tend to form

bars, unless there is a large enough dispersion of velocities (see for example [18]).

Another indication for the existence of DM is the gravitational lensing of light [15].

As postulated by General Relativity, massive objects bend the trajectory of light, caus-

ing a lensing effect. This lensing can manifest either as the appearance of multiple

images of the same object (strong lensing) or the distortion of said object (weak lens-

ing). Measuring the deflection of light it is possible to estimate the mass of galaxies

and other celestial bodies.

If DM is not baryonic or composed of massive objects, then it must indeed be a

new type of matter, a new particle. Based on ΛCDM (Lambda Cold Dark Matter), the

standard cosmological model, and some of the phenomena mentioned in this section

and Appendix A, where many arguments in favour of particle dark matter are laid out,

there are some properties a DM candidate should have. These are [15]:

• Dark: This means roughly that the DM candidate should interact very weakly, if

at all with the electromagnetic field. An important aspect of this is that the DM

candidate would radiate photons very inefficiently, rendering it dissipationless2.

• Collisionless: What should be understood exactly is that the self-interaction to

mass ratio is small σxx
mx
� 1. Or equivalently, that the mean free path of these

particles should be of the order of galaxy cluster sizes, i.e. Mpc.

1A common parametrization is ρ(r) = ρ0
1+( ra )γ

, where a is a characteristic linear scale of the galaxy.
2Consequences of this are that the DM particle would not accrete nor collapse to the center of

gravity as easily as baryons do [15].
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1.2 Dark Matter

• Classical: In the sense that the particles’ de Broglie wavelength should not be

larger than a dwarf galaxy’s scale (of the order of kpc), so that the dark halo can

be coherent.

• Fluid: The DM candidate should mostly behave as a fluid. If this were not the

case, i.e. if it was granular, forming massive particles of considerable mass, the

effect of the DM would destabilize and disrupt present structures, for example by

heating galactic disks. Also, it would result in more microlensing than is observed.

These characteristics are not as constraining as they seem. The particle should interact

weakly compared to its mass, it should be optically opaque and its distribution should

correspond to ΛCDM. A very popular category of DM candidates are the WIMPs

(Weakly Interacting Massive Particles), particles that are coupled at least as weakly as

the weak interaction, therefore at large scales its main interaction is gravitational. An-

other popular candidate, and the focus of this work, are axions and axion-like particles

(see Chapter 3), these are very light scalar particles, that originally were postulated as

a solution to the Strong CP problem (see Section 3.1.2).

SM extensions, which account for DM, can also serve to guide other, different SM

extensions, with the aim to solve different problems within the same framework. For

example, in Chapter 4, a model is presented where an axion arises as a DM candidate,

while simultaneously explaining the fermion mass hierarchy, and solving the strong

CP problem. In this regard, it is also necessary to understand the problem from the

point of view of particle physics, in particular how the SM works, and how to extend

it consistently. This is the aim of the next chapter.
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Chapter 2

Masses in the Standard Model and

Beyond

In this chapter the tree-level masses in the Standard Model are introduced (Section 2.1).

Since initially, all the particles in the Standard Model are massless, the Higgs mecha-

nism, which gives the SM particles their mass, is also explained (Section 2.1.2). With

this mechanism the masses of all the particles are derived at tree-level from massless La-

grangian. Later, two simple extensions of the Standard Model are explained, regarding

neutrino masses (Section 2.2), and the fermion mass hierarchy (Section 2.3).

2.1 Masses in the Standard Model

Masses in the Standard Model (SM) do not appear in the Lagrangian until the Elec-

troweak (EW) symmetry breaks, through a mechanism known as the Higgs Mechanism

(see Section 2.1.2). After this, the charged fermions, the weak gauge bosons, and the

Higgs boson become massive. At the end of this section, in table section 2.1.7, the free

parameters of the SM, including the masses, are summarized. The approach taken here

follows mostly from the textbooks [19, 20].

2.1.1 Standard Model Lagrangian

To understand how masses appear in the SM it is useful to know the structure of its

Lagrangian. The SM is a SU(3)C × SU(2)L × U(1)Y Yang-Mills theory [19], where

SU(3)C is the Quantum Chromodynamics (QCD) gauge group and SU(2)L×U(1)Y is

the EW gauge group, which is spontaneously broken down to U(1)Q, the electromag-

netic (EM) gauge group. As will be shown is Section 2.1.3 this is not the same as U(1)Y ,

which corresponds to (weak) hypercharge. The group SU(2)L corresponds to the weak

isospin. It is worth noting that SU(2)L × U(1)Y is a chiral theory, which means left-

and right-handed fermions transform differently. Before symmetry breaking all fields

7



2.1 Masses in the Standard Model

Gaµ W a
µ Bµ Qn unR dnR Ln enR H

SU(3)C representation 8 1 1 3 3 3 1 1 1
SU(2)L representation 1 3 1 2 1 1 2 1 2

Hypercharge Y 0 0 0 1/6 2/3 −1/3 −1/2 −1 1/2

Table 2.1: Representations and charges of the SM fields.

in the SM are massless. The mechanism through which the symmetry breaking occurs

and the fields acquire mass is explained in section 2.1.2.

For SU(3)C there are eight gauge bosons called gluons, Gaµ, with a running from 1 to

8. The gauge bosons belonging to SU(2)L are W a
µ , here a runs from 1 to 31. Finally, the

U(1)Y gauge boson is Bµ. Fermions are usually separated into two categories: quarks

and leptons. Quarks carry colour charge and thus couple to gluons, whereas leptons

do not. In other words, quarks of each flavour transform under SU(3)C as triplets,

whereas leptons transform trivially. This means that a quark field q is represented as

q =

qRqG
qB

 . (2.1)

The three entries represent the three colour charges a quark can have: red, green, and

blue, or anti-red, anti-green, and anti-blue, for quarks and anti-quarks, respectively.

For SU(2)L the situation is somewhat different as it distinguishes between left and

right fields. Left-handed fermions transform as doublets, while right-handed fermions

transform as singlets. Therefore, the fermions can be written as

Qn =

(
unL
dnL

)
, Ln =

(
νnL
enL

)
, unR, dnR, νnR, enR, (2.2)

where n runs from 1 to 3 and represents the generation the fermion belongs to. Thus

each fermion can actually be one of the following un ∈ {u, c, t}, dn ∈ {d, s, b}, en ∈
{e, µ, τ} and νn ∈ {νe, νµ, ντ}. Lastly, there is a complex scalar SU(2)L doublet, H,

which can be written as

H =

(
H+

H0

)
. (2.3)

A summary of the representations and charges of the SM fields is given in Table 2.1.

The Standard Model Lagrangian, before symmetry breaking, can be written as

follows

LSM = LG + LF + LS + LY , (2.4)

1For any SU(N), there will be N2−1 gauge bosons, as these transform in the adjoint representation.
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2.1 Masses in the Standard Model

LG represents the gauge boson kinetic Lagrangian, LF the fermion kinetic Lagrangian,

LS the scalar Lagrangian, and LY the Yukawa terms.

The gauge boson kinetic Lagrangian is given by

LG = −1

4
GaµνG

µν
a −

1

4
W a
µνW

µν
a −

1

4
BµνB

µν , (2.5)

where

Gaµν = ∂µG
a
ν − ∂νGaµ + gsf

a
bcG

b
µG

c
ν ,

W a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcW
b
µW

c
ν ,

Bµν = ∂µBν − ∂νBµ, (2.6)

are the field strength tensors for gluons, and the W a and B bosons, respectively. Ad-

ditionally, gs is the strong coupling constant, g the weak coupling constant, fabc = fabc

are the SU(3) structure constants, and εabc = εabc the SU(2) structure constants.

The fermion Lagrangian is

LF =
∑
Ψ

ΨiγµDµΨ, (2.7)

where the sum runs over all fermions Ψ. One has to take care with Dµ, the covariant

derivative, since different fermions do not necessarily transform in the same way. In

general it can be written as

DµΨ =
(
∂µ − iFSU(3)Cgs

1

2
λaG

a
µ − iFSU(2)Lg

1

2
σaW

a
µ − iY g′Bµ

)
Ψ. (2.8)

The factors FSU(3)C and FSU(2)L are dependent on the representation of the field under

the gauge group. For an arbitrary SU(N) they are

FSU(N)(Ψ) =


1, if Ψ is in the fundamental representation

0, if Ψ is in the trivial representation

−1, if Ψ is in the anti-fundamental representation

(2.9)

For SU(N) the N representation is fundamental and 1 is trivial. Conjugate fields

transform in the conjugate representation. It is also worth noting that the hypercharge

Y is field dependent as well, the hypercharge of the conjugate of a field also changes

sign. Also, it should be kept in mind that when numbers are summed with matrices, it

is understood that these represent the identity matrix multiplied by said number, for

example σa + Y = σa + Y I2×2. All charges and representations can be read off from

Table 2.1. The hypercharge coupling constant, g′ was introduced, as well as σa, the
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2.1 Masses in the Standard Model

three Pauli matrices, and λa, the eight Gell-Mann matrices.

The scalar Lagrangian is

LS = (DµH)†(DµH)− µ2H†H − λ(H†H)2, (2.10)

where µ and λ are the quadratic and quartic couplings, respectively. The quartic

coupling can be interpreted as a mass, but in order for the Higgs Mechanism to work

it must be imaginary. From Eq. (2.8) it follows by replacing Ψ with H, that

DµH =
(
∂µ − ig

1

2
σaW

a
µ − ig′

1

2
Bµ

)
H. (2.11)

It is common to write the Lagrangian as

LS = (DµH)†(DµH)− V (H), V (H) = µ2H†H + λ(H†H)2, (2.12)

especially when the scalar potential, V (H), is more complicated.

The last part of the SM Lagrangian contains the Yukawa interactions. These are the

couplings of fermions to H. A general Lorentz invariant Yukawa term is proportional

to

ΨiHΨj . (2.13)

This is not SU(2)L×U(1)Y invariant in general, though. Also, the fermion mass terms

are proportional to

ΨΨ = ΨLΨR + ΨRΨL, (2.14)

which is also not invariant under SU(2)L×U(1)Y in general. This means that the most

general SU(2)L×U(1)Y invariant Yukawa term must contract the left-handed doublet

ΨL with H, and then multiply ΨR. As a consequence, there will be no mixing between

leptons and quarks, and neutrinos will not posses Yukawa terms. The lepton Yukawa

terms take the form

LY, l = −yeijLiHejR, (2.15)

where the indexes i, j run over the three generations and a sum is implied. In the

SM ye is diagonal. For quarks there is a small complication, since U(1)Y must also be

conserved. For this to happen the sum of hypercharges in the Yukawa term must be 0.

This is not a problem for the down-type quarks, since the hypercharges in

LY, d = −ydijQiHdjR (2.16)

are −1/6 + 1/2− 1/3 = 0. The analogue for up-type quarks would sum −1/6 + 1/2 +

2/3 = 1, which is not U(1)Y invariant. It would be if 1/2 was exchanged to −1/2,
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2.1 Masses in the Standard Model

i.e. H would have to be replaced by its U(1)Y conjugate, while also being an SU(2)L
doublet. This is most easily realized by defining

H̃ ≡ iσ2H
∗, (2.17)

which transforms as a doublet under SU(2)L, but has the opposite U(1)Y charge. Thus,

the Yukawa term for up-type quarks is

LY, u = −yuijQiH̃ujR. (2.18)

Lastly, LY is the sum of Eqs. (2.15), (2.16), and (2.18) and their hermitian conjugates

(h.c.), since the Lagrangian has to be real (so that the action is real). Thus the Yukawa

Lagrangian of the SM is

LY = −yeijLiHejR − yuijQiH̃u
j
R − ydijQiHd

j
R + h.c. (2.19)

2.1.2 Higgs Mechanism

As mentioned before, the SM gauge group, SU(3)C×SU(2)L×U(1)Y , is spontaneously

broken down to SU(3)C × U(1)Q. This happens because the Higgs doublet acquires a

vacuum expectation value (vev), characterized by

v =

√
−µ2

λ
, (2.20)

which is possible when the µ2 < 0 and λ > 0 in the scalar potential of Eq. (2.12).

Goldstone’s Theorem [21, 22, 23] states that in a spontaneously broken continuous

symmetry, a massless scalar boson, known as a Goldstone boson, arises for every broken

generator of the symmetry. This is not observed in a gauge symmetry, as the Goldstone

bosons are absorbed by the gauge bosons, which become massive. The mechanism

through which this occurs is called the Higgs Mechanism.

This mechanism is more easily illustrated in an Abelian gauge theory, as the process

is conceptually the same. Consider a U(1) gauge theory with a complex scalar field, φ.

The Lagrangian of this is

L = −1

4
FµνF

µν + (Dµφ)†(Dµφ)− µ2φ†φ− λ(φ†φ)2, (2.21)

where Fµν = ∂µAν − ∂νAµ, and Aµ is the theory’s gauge boson, and Dµ = ∂µ − ieAµ,

with e being the scalar coupling to the gauge field. If µ2 < 0, 〈0|φ|0〉 = 0 is not a

minimum of the potential (here it is a local maximum), thus the field acquires a vev,
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2.1 Masses in the Standard Model

spontaneously breaking U(1). After symmetry breaking the field can be written as

φ(x) =
v + h(x)√

2
ei
π(x)
v , (2.22)

here h is a real scalar field, which satisfies 〈0|h|0〉 = 0, and π a Goldstone boson. The

factors of 1√
2

and 1
v preserve canonical normalization in the kinetic terms. Substituting

Eq. (2.22) in the Lagrangian of Eq. (2.21)

L =− 1

4
FµνF

µν

+
1

2

(
∂µh− i

1

v
(v + h)∂µπ − ie(v + h)Aµ

)(
∂µh+ i

1

v
(v + h)∂µπ + ie(v + h)Aµ

)
− µ2

2
(v + h)2 − λ

4
(v + h)4, (2.23)

where the exponentials have canceled. The field h has mass given by the quadratic

terms in the Lagrangian, while π is massless. To see what happens to the gauge field

it is useful to focus only on its kinetic terms, i.e. in

LA = −1

4
FµνF

µν +
e2v2

2

(
Aµ +

1

ev
∂µπ

)(
Aµ +

1

ev
∂µπ

)
. (2.24)

The field Aµ has acquired mass mA = ev, but there is also kinetic mixing between

Aµ and π in the form of an evAµ∂
µπ term. This term can be removed by the gauge

transformation

Aµ → Aµ −
1

ev
∂µπ. (2.25)

This gauge is called the unitary gauge. Therefore, the gauge boson has absorbed the

Goldstone boson and as such has now three degrees of freedom, which means it has

acquired mass (the new degree of freedom corresponds to longitudinal polarization). It

is often said that the gauge boson eats the Goldstone boson, thus acquiring mass.

Returning to the SM, after symmetry breaking the Higgs doublet can be written as

H(x) = exp

(
2i
τaπ

a(x)

v

)(
0

1√
2

(
v + h(x)

)) , (2.26)

where h is a real scalar, called the Higgs boson, and τa = σa
2 are the SU(2) generators,

with a = 1, 2, 3. As in the Abelian case, the factors of 1√
2

and 2
v are included to

preserve canonical normalization of the fields. The vev of the Higgs doublet is

〈H〉 = 〈0|H|0〉 =

(
0
v√
2

)
. (2.27)
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2.1 Masses in the Standard Model

In the unitary gauge πa = 0, thus

H(x) =

(
0

1√
2
(v + h(x))

)
. (2.28)

This simplifies the Lagrangian considerably, but as in the abelian case, one can do

the entire calculation explicitly and then remove πa with a gauge transfromation. The

Lagrangian after symmetry breaking becomes quite complicated, as three of the EW

gauge bosons become massive (as well as the fermions, which will be discussed in 2.1.5)

and 3- and 4-point interactions appear between gauge bosons themselves, as well as with

the Higgs boson, which can no longer be written in a somewhat compact Lagrangian.

2.1.3 Gauge Boson Masses

Through the Higgs Mechanism the weak gauge bosons acquire mass. Since there re-

mains an unbroken U(1)Q, one boson must remain massless. This corresponds to the

massless photon of QED. To focus on the masses of the vector bosons it is enough to

look at (Dµ〈H〉)†(Dµ〈H〉), taking Dµ as in Eq. (2.12) and noticing that ∂µ〈H〉 = 0, it

follows that

(Dµ〈H〉)†(Dµ〈H〉) =
v2

8

(
0 1

)( gW 3
µ + g′Bµ g(W 1

µ − iW 2
µ)

g(W 1
µ + iW 2

µ) −g′Bµ + gW 3
µ

)2(
0

1

)
. (2.29)

Defining

W±µ ≡
1√
2

(W 1
µ ∓ iW 2

µ), (2.30)

it follows that

(Dµ〈H〉)†(Dµ〈H〉) =
v2

8

(
2g2W+

µ W
−µ + (gW 3

µ − g′Bµ)2
)
. (2.31)

The W+ and W− bosons are two of the massive vector bosons, whose mass can be

read from Eq. (2.31) as mW = gv
2 , the photon and the third massive vector boson must

come from (gW 3
µ − g′Bµ)2. This term can be expressed as

(gW 3
µ − g′Bµ)2 =

(
Bµ W 3µ

)( g′2 −gg′
−gg′ g2

)(
Bµ
W 3
µ

)
. (2.32)

This matrix must be diagonalized to give the masses of the new bosons. The matrix is

orthogonal, so it must be diagonalized by a rotation, which is to be expected, as the
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2.1 Masses in the Standard Model

fields are canonically normalized. The matrix that diagonalizes is given by

O =
1√

g2 + g′2

(
g −g′
g′ g

)
=

(
cos θW − sin θW
sin θW cos θW

)
, (2.33)

where θW is the Weinberg angle and is a free parameter of the SM. It follows from this

that tan θW = g′

g , i.e. g sin θW = g′ cos θW . After diagonalization Eq. (2.32) becomes

(gW 3
µ − g′Bµ)2 =

(
Aµ Zµ

)(0 0

0 g2 + g′2

)(
Aµ
Zµ

)
, (2.34)

where

Aµ ≡ sin θWW
3
µ + cos θWBµ

Zµ ≡ cos θWW
3
µ − sin θWBµ. (2.35)

Lastly, Eq. (2.31) takes the following form

(Dµ〈H〉)†(Dµ〈H〉) =
g2v2

4
W+
µ W

−µ +
(g2 + g′2)v2

8
ZµZ

µ + 0 ·AµAµ. (2.36)

As a consequence of this, the last massive vector boson, the Z boson, has a mass

mZ = v
2

√
g2 + g′2 = gv

2 cos θW
= mW

cos θW
, implying that the mass of the W bosons is

smaller than that of the Z boson. Another result is that the photon, Aµ, is massless

and therefore it must be the gauge boson of U(1)Q.

To get the full vector boson kinetic terms it is necessary to rewrite

−1

4
W a
µW

µ
a −

1

4
BµB

µ. (2.37)

Using the definitions of Eqs. (2.30) and (2.35) it follows directly that

LV,EW = −1

4
FµνF

µν − 1

4
ZµνZ

µν − 1

2
W+
µνW

−µν +
m2
W

2
W+
µ W

−µ +
m2
Z

2
ZµZ

µ

+ ie cot θW
(
ZµνW

+µW−µ −W+
µνZ

µW−ν +W−µνZ
µW+ν

)
+ ie

(
FµνW

+µW−µ −W+
µνA

µW−ν +W−µνA
µW+ν

)
+ e2(AµW

+µAνW
−ν −AµAµW+

ν W
−ν)

+
e2

2 sin2 θW
(W+

µ W
+µW−ν W

−ν −W+
µ W

−µW+
ν W

−ν)

+ e2 cot2 θW (ZµW
+µZνW

−ν − ZµZµW+
µ W

−µ

+W+
µ W

−
ν A

µZν +W−µ W
+
ν A

µZν − 2W+
µ W

−µAνZ
ν). (2.38)
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2.1 Masses in the Standard Model

The field strength tensors for the photon, the W± bosons, and the Z boson are defined

as Fµν ≡ ∂µAν − ∂νAµ, W±µν = ∂µW
±
ν − ∂νW±µ , and Zµν ≡ ∂µZν − ∂νZµ, respectively.

Most of the Lagrangian describes interactions between 3 and 4 gauge bosons. The W±

bosons are directly coupled to the photon (having electric charge ±1, respectively),

while the Z boson is not.

To understand how the electromagnetic charge arises from symmetry breaking it is

useful to look at Dµ from Eq. (2.8). Rewriting it using τa = 1
2σa (and ignoring QCD),

the covariant derivative becomes

Dµ = ∂µ − iFSU(2)LgτaW
a
µ − iY g′Bµ. (2.39)

Defining τ± ≡ 1√
2
(τ1 ± iτ2) it is possible to write

τaW
a
µ = τ+W

+
µ + τ−W

−
µ + τ3W

3
µ . (2.40)

Using this, the covariant derivative can be expanded as

Dµ = ∂µ − iFSU(2)Lgτ+W
+
µ − iFSU(2)Lgτ−W

−
µ − iFSU(2)Lgτ3W

3
µ − iY g′Bµ. (2.41)

Next, using Eq. (2.35) it is possible to write Dµ in terms of the mass eigenstates, which

results in

Dµ =∂µ − iFSU(2)Lgτ+W
+
µ − iFSU(2)Lgτ−W

−
µ

− i
(
FSU(2)Lg cos θW τ3 − Y g′ sin θW

)
Zµ

− i
(
FSU(2)Lg sin θW τ3 + Y g′ cos θW

)
Aµ. (2.42)

Using the fact that g sin θW = g′ cos θW ≡ e, the electric charge, the covariant derivative

finally becomes

Dµ =∂µ − iFSU(2)Lgτ+W
+
µ − iFSU(2)Lgτ−W

−
µ

− i g

cos θW

(
FSU(2)Lτ3 −Q sin2 θW

)
Zµ − iQeAµ, (2.43)

where

Q = T3 + Y (2.44)

is the U(1)Q charge. The matrix τ3 has been changed to the more general T3 which

is the diagonal element of a given SU(2) representation, e.g. τ3 for the fundamental

representation, and 1
2diag(1, 0, −1) for the adjoint (triplet) a representation. By doing

this it can be easily seen that the electric charge of the W± boson is in fact QW± = ±1.

This makes it clear that SU(2)L × U(1)Y breaks down to U(1)Q, which is not U(1)Y
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2.1 Masses in the Standard Model

as the charge Q is a mixture of Y and the SU(2)L generator T3.

2.1.4 Higgs Boson Mass

It is worth briefly discussing the Higgs boson, h. The terms in the Lagrangian only

including the Higgs boson are

Lh =
1

2
∂µh∂

µh− µ2

2
(v + h)2 − λ

4
(v + h)4, (2.45)

which are the same as in the Abelian case. Expanding (2.45), while using the value for

v from Eq. (2.20) and mW = gv
2 , leads to

Lh =
1

2
∂µh∂

µh− 1

2
m2
hh

2 − g m2
h

4mW
h3 − g2 m2

h

32m2
W

h4, (2.46)

where the constant term has been dropped, which can be done since it does not con-

tribute to the Euler-Lagrange equations, and it also factors out of the path integral

(and can thus be normalized away)1. From this equation it is clear that the Higgs

boson mass mh, is given by m2
h = −2µ2.

The complete (boson) Lagrangian includes interactions with the gauge bosons as

well, this means there are 3 and 4 particle interactions between gauge bosons and the

Higgs boson, in addition to self interactions of the aforementioned bosons. The fate of

the fermions after symmetry breaking is discussed in Section 2.1.5.

2.1.5 Fermion Masses

The SM fermions couple to the Higgs doublet through the Yukawa is interactions de-

scribed by Eq. (2.19). Again, using the unitary gauge, the doublet can be separated

into two parts: the vev and the Higgs boson. The part with the Higgs boson generates

Yukawa couplings between this boson and the fermions, where the Yukawa matrices

are scaled by a factor of 1√
2
.

The fermion masses, as well as (kinetic) mixings, are generated by the Higgs vev. It

is helpful to explicitly write the SU(2) conjugate of the vev, as was done for the vev in

Eq. (2.27), which is

〈H̃〉 = iσ2〈H∗〉 =

(
v√
2

0

)
. (2.47)

1It is worth noting that a constant term will contribute to the Hamiltonian density nonetheless.
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2.1 Masses in the Standard Model

Figure 2.1: Graph showing the Higgs couplings to masses of some Standard Model par-
ticles as measured by the CMS collaboration [2].

This leads to the following products:

Li〈H〉 =
v√
2
eiL,

Qi〈H̃〉 =
v√
2
uiL,

Qi〈H〉 =
v√
2
diL, (2.48)

from which it is possible to write the fermion mass terms as

LM, f = −M e
ije

i
Le

j
R −Mu

iju
i
Lu

j
R −Md

ijd
i
Ld

j
R + h.c., (2.49)

where the mass matrices, Mf , are defined as

Mf ≡ v√
2
yf (2.50)

following Eq. (2.19). As can be seen in Fig. 2.1 current measurements of the masses

and the Higgs boson couplings agree to a high degree with the Higgs Mechanism, as the

masses of different particles accommodate themselves in a line in the Yukawa coupling-

mass term.
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2.1 Masses in the Standard Model

2.1.6 Quark Masses and Mixings

The charged lepton mass matrix is usually taken to be diagonal and thus extracting the

masses of the leptons is pretty straightforward. This is not the case for quarks. One

can naively think that these matrices can also be taken to be diagonal, but this is not

the case. The reason for this is that it is possible to diagonalize either the up- or the

down-type quark matrix, but since they also interact through a charged current there

is no assurance that they will be simultaneously diagonalizable. This is not a problem

for the leptons, since only the charged lepton mass matrix needs to be diagonalized,

thus it can be taken to be diagonal beforehand. This will become a problem with the

introduction of massive neutrinos in Section 2.2.

The mass matrices are, in general, complex and lack any symmetry, as there is no

underlying symmetry or physcial principle in the SM which limits the Yukawa inter-

actions [19]. To get the masses from the quarks a technique called biunitary diagonal-

ization [19, 20] is used. By employing this technique left- and right-handed, as well as

up- and down-type quarks, are transformed independently, which allows to bypass the

issues that arise while using standard diagonalization. The procedure is general for an

arbitrary matrix (which has a diagonal basis), essentially, it is possible to construct two

hermitian matrices from the product of a matrix and its hermitian conjugate. These

are diagonalized by unitary transformations, which then can be used to diagonalize the

original matrix.

In this case the hermitian matrices are

UuL
†MuMu†UuL = Mu

D
2 = UuR

†Mu†MuUuR

UdL
†
MdMd†UdL = Md

D
2

= UdR
†
Md†MdUdR, (2.51)

the D subscript signifies that the matrix is diagonal. This allows the quark mass terms

to be written as ∑
q

−qLU qLM
q
DU

q
R
†
qR + h.c., (2.52)

here qL/R is a column vector containing either the three generations of the up- or the

down-type quarks, qL/R is implicitly transposed. Finally, transforming the quarks as

qL/R → q′L/R = U qL/RqL/R, (2.53)

where the primed fields are in the mass basis, the mass terms become

−LM, f = lLM
elR + u′LM

u
Du
′
R + d′LM

d
Dd
′
R + h.c., (2.54)

lL/R is a column vector of charged leptons, analogous to qL/R.
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2.1 Masses in the Standard Model

Apart from the six quark masses, there are mixing parameters, though these are

only four, which is much less than one would expect from the 36 parameters of the two

quark mass matrices. The entire mixing can be codified in a unitary matrix, called the

CKM matrix (Cabibbo-Kobayashi-Maskawa) [24, 25]. This matrix is defined as

VCKM ≡ UuL†UdL (2.55)

and has 9 parameters. If this matrix were completely real it would be orthogonal (i.e.

a 3D rotation), thus it has 3 angles, and 6 phases as its parameters. Many of these

can be removed by a phase transformation the quark fields, i.e. qi → qieiα
i
, where

αi is the phase corresponding to the i-th quark. This is equivalent to multiplying the

CKM matrix by a diagonal matrix of phases by both sides. In principle, this would

allow one to remove the six phases, but this is not the case, as the transformation

where all phases are equal leaves the matrix invariant, i.e. it is possible to factorize

one of the phases from the phase matrices without transforming the CKM matrix.

Therefore, only five phases can be set to 0, and the CKM matrix is left with four

parameters, the three angles and one phase. The most common parametrization is the

PDG parametrization [8], where

VCKM =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (2.56)

with cij = cos θij and sij = sin θij . The parameters are the angles θ12, θ23, θ13, and the

CP violating phase δ. The angle θ12 = θC is often called the Cabibbo angle. The angles

θij can be taken between 0 and π
2 (due to phase redefinition), while δ can be any value

between 0 and 2π. Currently they can be taken as [8]

sin θ12 = 0.22650± 0.00048, sin θ13 = 0.00361+0.00011
−0.00009

sin θ23 = 0.04053+0.00083
−0.00061, δ = 1.196+0.045

−0.043. (2.57)
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2.1 Masses in the Standard Model

2.1.7 Summary of Standard Model Parameters

Table 2.2 summarizes the 19 free parameters of the SM. When relevant, the 1σ un-

certainty range1 is given. The parameter θ quantifies strong CP violation and will be

discussed in Section 3.1.

Parameter Central value 1σ range

g′ 0.345369 0.345360→ 0.345378
g 0.629773 0.629720→ 0.629827
gs 1.2172 1.2120→ 1.2224

v/GeV 246.21965 246.21957→ 246.21971
mh/GeV 125.10 124.96→ 125.24
me/MeV 0.5109989461 0.5109989430→ 0.5109989492
mµ/MeV 105.6583745 105.6583721→ 105.6583769
mτ/MeV 1776.86 1776.74→ 1776.98
mu/MeV 2.16 1.90→ 2.65
md/MeV 4.67 4.50→ 5.15
ms/MeV 92.9 92.2→ 93.6
mc/GeV 1.27 1.25→ 1.29
mb/GeV 4.18 4.16→ 4.21
mt/GeV 172.76 172.46→ 175.06
θ12/

◦ 13.091 13.063→ 13.119
θ13/

◦ 0.207 0.201→ 0.213
θ23/

◦ 2.323 2.288→ 2.370
δ/ ◦ 68.53 66.06→ 71.10

θ < 10−10

Table 2.2: Standard Model free parameters.

All masses and mxings are taken from the 2020 PDG review [8]. The five lightest

quarks are taken from lattice calculations and have their masses given in the MS scheme,

where for the three lightest the scale is taken as µ = 2 GeV, while the charm and

bottom quark have them at their pole mass µ = mc, mb, respectively. The top quark

mass reported corresponds to direct measurements. The vev v is calculated as v =

(
√

2GF )−
1
2 , with GF = 1.1663788(7) × 10−5 GeV−2 the Fermi constant measured by

the MuLan collaboration [26]. The gauge couplings are taken from [8], where they are

given in the MS scheme at µ = MZ = 91.1876(21) GeV. Lastly, θ is bound by neutron

electric dipole moment measurements [27, 28].

1The 1σ uncertainty is the range corresponding to the values with one standard deviation centered
around the mean (assuming a normal distribution). The probability that a value falls in this range is
about 68.3%.
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2.2 Massive Neutrinos

2.2 Massive Neutrinos

Since the observation of neutrino oscillations [29], confirming that neutrinos have mass,

there has been the need to extend the SM to accommodate these developments. The

decay width of the Z boson constrains the number of active neutrinos to three fami-

lies [30]. An active neutrino is a neutrino, which takes part in weak interactions, this is

contrasted to a sterile neutrino, which does not, and as of now the number of families

of sterile neutrinos is unconstrained (but will be taken to be at least three). Therefore,

when constructing neutrino masses the number of left (active) neutrinos must be the

same as in the SM, but it is possible to include many more sterile neutrinos (at least

three are needed to accommodate cosmological observations [31]).

2.2.1 Dirac and Majorana Masses

The most direct way to produce a mass term for neutrinos is by including a right-

handed neutrino and coupling it to the left-handed neutrinos in a Yukawa term, which

generates the neutrino masses after EW symmetry breaking, as was done for the other

fermions [32, 33]. This leads to a Yukawa term of the form

−yeijLiH̃νjR, (2.58)

where the maximum value j takes is not necessarily 3. After symmetry breaking this

becomes a Dirac mass term, which can be written in matrix form as

−νLMννR, (2.59)

where ν are neutrino column vectors.

Unlike the other fermions, it is possible to construct Majorana masses for neutrinos.

A Majorana mass term violates charge conservation (because it mixes terms with the

same charge), so this means that quarks and charged leptons can not have a Majorana

mass. To write the Majorana mass it is useful to remember the charge conjugation, in

this case the neutrino νL/R,

νcL/R = CνL/R = iγ2γ0νL/R. (2.60)

Since the Majorana mass term combines a left or right handed fermion with its charge

conjugate, this term is only permited if the fermion is self-conjugate, i.e. all the quan-

tum numbers of this term must be 0. This means that a Majorana term for left-handed

neutrinos is prohibited, since they carry weak isospin and hypercharge1. But sterile

1This restriction can be circumvented by introducing an SU(2)L Higgs triplet [32].
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2.2 Massive Neutrinos

neutrinos are self conjugate, thus a Majorana mass term is permitted, which takes the

form

−mR

2
νcRνR + h.c., (2.61)

here the factor of 1
2 comes from the fact that these terms are self conjugate. If these

neutrinos carry lepton number L = 1, the existance of a Majorana mass would result

in lepton number violation by |∆L| = 2. This is also true for B −L, which is anomaly

free. Actually, one of the ways to look for Majorana masses is by lepton number vio-

lating processes, for example neutrinoless double-beta decay (also called 0νββ decay).

Lepton number violation by ±2 can be seen directly from the dimension 5 Weinberg

operator [34]

LW =
1

2

Cij
Λ

(LicLH̃
∗)(H̃†LjL) + h.c., (2.62)

where Λ is the scale at which this operator becomes significant and Cij a dimensionless

coupling constant. The Weinberg operator also serves two classify the three seesaw

mechanisms by the way of its UV completions. The type-I seesaw mechanism is pre-

sented in this and the next section, and is done by couplings to SU(2)L singlet heavy

fermions (the sterile neutrinos). In the type-II seesaw mechanism the UV completion

is done with heavy scalar SU(2)L doublets, an implementation of this can be seen is

Section 4.1.3.2, albeit for a dimension 5 operator in the quark sector. In the type-

III seesaw mechanism the UV completion follows from the inclusion of SU(2)L triplet

fermions, and is not discussed here.

Combining the right-handed Majorana mass terms with the Dirac mass term, where

mL/R are now matrices, leads to the most general SM compatible neutrino mass La-

grangian

Lm, ν = −νLmDνR − νcR
mR

2
νR + h.c. (2.63)

This Lagrangian can be written in matrix form as

Lm, ν = −1

2

(
νcL νR

)( 0 MνT

mD mR

)(
νL
νcR

)
+h.c. =

(
νcL νR

)
M

(
νL
νcR

)
+h.c. , (2.64)

where νL/R is a column vector of neutrinos. Unlike the charged fermions these are

not necessarily of the same size, νL contains three neutrinos, but νR contains at least

three. It is worth noting that diagonalization of M will lead to Majorana masses for the

eigenstates, if mR 6= 0. Hence, if mR = 0, neutrino masses will be Dirac and only mD

will have to be diagonalized to get the mass eigenstates. As an abbreviation, it is often

said that neutrinos are Dirac or Majorana, if they have Dirac or Majorana masses.
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2.2 Massive Neutrinos

2.2.2 Seesaw Mechanism

Although no direct measurements of neutrinos masses exist, the squared mass difference

of the three active neutrinos has been measured. The sum of the three neutrino masses

gets a cosmological upper bound of about 0.1 eV [35, 36, 37]. Current direct measure-

ments by KATRIN give an upper bound to the neutrinos mass of mν < 0.8 eV [38],

which translates to a bound to the sum of the neutrino masses as
∑
mν < 2.4 eV. This

mass, or sum of masses, is multiple orders of magnitude lighter than the next lightest

fermion, the electron at me ≈ 0.5 × 106 eV (see Table 2.2). Also, these measure-

ments come from relativistic neutrinos, where it is as of now impossible to determine

if they are Dirac or Majorana. Therefore, if neutrinos were Dirac and their masses

generated through the Higgs mechanism, their Yukawa couplings would be of the order

yν ∝ 0.5× 10−12, which is seven orders of magnitude smaller than the electron Yukawa

ye ∝ 0.3× 10−5, and can thus be considered unnatural.

On the other hand, if neutrinos are Majorana the smallness of their masses can

be readily explained, provided the sterile neutrinos are heavy, i.e. mR � mD. One

mechanism which generates these small masses is called the Seesaw mechanism. As an

example, it is easiest consider the case of just one neutrino generation. In such case

the mass Lagrangian from Eq. (2.64) is given by

Lm, ν = −1

2

(
νcL νR

)( 0 mD

mD mR

)(
νL
νcR

)
+ h.c., (2.65)

where mD and mR, in principle, are complex numbers. They can be made real phase

by a redefinition of νR and νL. The eigenvalues of M are

m1/2 =
mR

2
±
√
m2
R

4
+mD

2 =
mR

2

(
1±

√
1 + 4

mD
2

m2
R

)
. (2.66)

Taking the limit mR � mD (meaning that the order of magnitude of the elements of

mR is much greater than those in mD), leads to

m1 = −M
2
D

mR
,

m2 = mR. (2.67)

Thus m1 � m2, since mR � mD. This is explains the small neutrino masses without

needing Yukawa couplings many orders of magnitude smaller than the charged lepton’s

Yukawas.

In a more realistic case, with three active neutrino generations, the process is very
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2.2 Massive Neutrinos

similar. In this case it is not necessary to obtain all the eigenvalues, but to compute a

block-diagonal matrix of the form

M =

(
mL 0

0 m′R

)
. (2.68)

The matrix mL is a 3× 3 matrix corresponding to the active neutrinos, while m′R is an

m×m matrix corresponding to the sterile neutrinos. The matrix eigenvalues are given

analogous to Eq. (2.67), in the mR � mD limit, thus

mL = −mD
Tm−1

R mD,

m′R = mR. (2.69)

It is worth noting that mL is a symmetric matrix, i.e. mT
L = mL. Also, it is common

to denote the active neutrinos after separation as νi, with i = 1, 2, 3.

2.2.3 Lepton Masses and Mixings

Combining the neutrino masses from Eq. (2.63) with the charged lepton mass given by

(2.54), leads to

Lm, l = −eLM eeR − νLmDνR − νRc
mR

2
νR + h.c. . (2.70)

Unlike the SM with massless neutrinos, it is no longer possible to suppose beforehand

that the charged lepton mass matrix is diagonal, since it will no longer be possible to

diagonalize both matrices simultaneously. Like in Section 2.1.6, it will be possible to

diagonalize the matrices through biunitary diagonalization. It is worth noting that as of

now the measured parameters are the difference of the squared masses ∆m2
ij = m2

i−m2
j ,

where ∆m2
21 > 0, but the sign of ∆m2

32 is unknown [8]. This allows for two orderings

of the masses, the so called normal ordering (NO) m3 > m2 > m1 and m2 & m1 > m3,

the inverted ordering (IO).

If the neutrinos are Dirac everything is exactly the same as with the quarks. That

is, the squared mass matrices are diagonalized by

U eL
†M eM e†U eL = M e

D
2 = U eR

†M e†M eU eR

UνL
†mDmD

†UνL = Mν
D

2 = UνR
†mD

†mDU
ν
R, (2.71)

where U lL/R are unitary matrices. By transforming

lL/R → l′L/R = U lL/RlL/R, (2.72)
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2.2 Massive Neutrinos

the Dirac mass matrices become diagonal. Furthermore, also as with the quarks the

entire mixing of leptons can be expressed in a unitary matrix, the PMNS matrix

(Pontecorvo-Maki-Nakagawa-Sakata) [39, 40]. This matrix is defined as

VPMNS ≡ U eL†UνL. (2.73)

If there are three generations of active neutrinos, it takes the same form as the CKM

matrix, where five of the six phases can be absorbed by the lepton fields. In the PDG

parametrization it is given by

VPMNS =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 . (2.74)

Once again, like the CKM matrix, θij take values between 0 and π
2 , and δ, also called

the CP violating phase or Dirac phase, takes values between 0 and 2π. The values of

these parameters are given in Table 2.3.

If neutrinos are Majorana there is a slight difference when compared to the Dirac

case. After generating the left-handed neutrino Majorana masses following the same

procedure as in Section 2.2.2, it is possible to diagonalize through biunitary transfor-

mations as

U eL
†M eM e†U eL = M e

D
2 = U eR

†M e†M eU eR,

UνL
†mlmL

†UνL = mL
2
D = UνR

†mL
†mLU

ν
R, (2.75)

which is like Eq. (2.71), but the Dirac mass has been replaced by a Majorana mass.

The resulting mixing matrix is defined by,

Vl ≡ U eL†UνL. (2.76)

The only difference to the Dirac case is the number of phases. While for Dirac masses

it was possible to redefine five of the six phases, a Majorana mass term prohibits the

redefinition of phases, since a phase transformation of

−1

2
mi
Lν

c
i νi (2.77)

would result in a complex mass, as mi
L would map to mi

Le
2iφ. Consequently, only the

phases of the charged leptons can be redefined. This means that 3 phases can be taken

out of the matrix. The most common parametrization is to take one of the three phases

to the orthogonal matrix, giving the PMNS matrix, while multiplying the other two in
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Parameter Central value 1σ range

∆m2
21/ 10−5eV2 7.55 7.39→ 7.75

∆m2
32/ 10−3eV2 2.424 2.421→ 2.427
θ12/

◦ 34.5 33.5→ 35.7
θ13/

◦ 8.45 8.32→ 8.61
θ23/

◦ 47.7 46.0→ 48.9
δ/ ◦ 218 191→ 256

Table 2.3: Lepton masses and mixng parameters from [7, 8]. Normal mass ordering is
assumed here.

a Majorana phase matrix PM . Thus the mixing matrix is

VPMNS = V D
PMNSPM , (2.78)

where PM = diag(1, eiα, eiβ) is a diagonal phase matrix, and V D
PMNS is the Dirac

PMNS matrix of Eq. (2.74). The phases α and β are called the Majorana phases.

The majorana phases are as of now undetermined1 and thus are also not reported in

Table 2.3.

2.3 Froggatt-Nielsen Mechanism

Another open question in the SM is the fermion mass hierarchy. The Froggatt-Nielsen

(FN) Mechanism [42] generates the hierarchy by a spontaneously broken global U(1)

flavour symmetry, called the Froggatt-Nielsen Symmetry U(1)FN . A flavour symmetry

is a symmetry of the Lagrangian that distinguishes the different flavours. This means,

for example, that fermions of a different flavour possess a different charge under a

U(1) symmetry. The main idea of the FN Mechanism is to dynamically generate the

mass hierarchy by a minimal extension of the SM [43]. Nevertheless, the mechanism

is robust enough to also be applied to more complicated extensions of the SM, one of

such scenarios being supersymmetry.

2.3.1 Mass Hierarchy through U(1)FN and the Flavon Field

In the Froggat-Nielsen approach to mass hierarchy, the U(1)FN flavour symmetry is

introduced, along with a scalar field, σ, which is called the flavon field. It is common

that the flavon field only carries U(1)FN charge (also called FN charge), but is otherwise

a SM singlet. The flavon acquires a vev, breaking the flavour symmetry spontaneously,

while at the same time generating the mass hierarchy.

1The only observable effect would be mββ , coming from 0νββ [41].
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2.3 Froggatt-Nielsen Mechanism

The flavon couples to Yukawa terms like

−yf1ij F iLHf1
R
j σn

Λn
− yf2ij F iLH̃f2

R
j σm

Λm
, (2.79)

where F iL is the SU(2)L fermion doublet, while f1/2 are the singlets. The powers m

and n are non-negative integers and Λ is the scale at which the FN operators become

relevant, sometimes taken to be a GUT scale [43]. The values of m and n are not

arbitrary, since the requirement for the Yukawa terms to be U(1)FN invariant constrains

them. The flavon acquires a vev, 〈σ〉, which is then introduced in the Yukawa terms as

a power. It is often more useful to introduce the parameter ε [43], which is defined as

ε ≡ 〈σ〉
Λ
. (2.80)

As Λ will heavily suppress terms which are of the form 〈σ〉k
Λn , with k < n, Eq. (2.79) will

become

−yf1ij F iLHf1
R
j
εn − yf2ij F iLH̃f2

R
j
εm + O(Λ−1) (2.81)

after symmetry breaking. The O(Λ−1) signifies the remaining terms, which are Yukawa

interactions with the flavon, or powers of it smaller than k, after symmetry breaking.

If ε is of the correct order of magnitude, the Yukawa couplings can be taken all to

be of similar size and the wide range of orders of magnitude of the Yukawa couplings

in the SM can be explained. This means that by choosing m and n appropriately for

the Yukawa couplings it is possible to build a model where all Yukawa couplings are all

of the same (or similar) order of magnitude, and the hierarchies in the mass matrices

(or equivalently, the Yukawa matrices) are generated by powers of ε. Commonly, ε is

taken to be

ε ∼ 0.2 ∼ sin(θC), (2.82)

as this value works phenomenologically [43].

2.3.2 UV Completion

As can be seen from Eq. (2.79) the FN terms before symmetry breaking are not

renormalizable, as they have dimension 4 + n, here n represents the power of the

fermion-flavon interaction. To have a renormalizable theory the FN terms must be

UV-completed. It is standard to do the UV completion of the theory by including

heavy vector-like SU(2)L singlet fermions, called the FN fields. This UV completion

will be denoted in this work as type-I seesaw, since the topology of the UV-complete

dimension 5 diagrams corresponds to the type-I seesaw mechanism for neutrinos. There

are also more possible UV completions, though these tend to be model dependent. For
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example in Section 4.1.3.2 a FN UV completion is done by including heavy SU(2)L
doublet scalars.

The UV completion using heavy fermions is relatively straightforward. Such fermions,

when they couple to the SM fermions have to satisfy the requirement that their charge

assignment corresponds to that of the charge conjugate of the SM fields in a given op-

erator. However, it is not necessary that they form SU(2)L singlets. To UV-complete

the theory it is necessary to include the interaction of the FN fields with the Yukawa

terms and with the flavons. For example the UV completion of a dimension five term

like

−yijQiLHq
j
R

σ

Λ
(2.83)

is achieved by introducing the heavy fermion Fij , with mass Mij . The UV completion

of this term is

−YHijQiLHFijR −MijFijRFijL − YσijFijLσq
j
R. (2.84)

By combining mass terms and Yukawa couplings between the FN fields and the flavon,

as well as to the SM fermions and the Higgs doublet(s) it is possible to generate higher

dimension terms, with the inclusion of Yukawa couplings between the flavon and the

FN fields like

CijklFijLFklR. (2.85)

A diagrammatic example of the UV completions is given in Fig. 2.2 and Fig. 2.3, where

a dimension five and six diagram can be observed. All higher order diagrams can be

drawn like the dimension six diagram (but with more flavon couplings). These diagrams

are usually called spaghetti diagrams [43].

Qi
L

H

qjR

σ

−→ Qi
L

H

qjR

σ

FijR FijL

Figure 2.2: Dimension five type-I Froggatt-Nielsen UV completion.

Another way to UV-complete the theory is by including a heavy SU(2)L scalar, Φ.

This scalar forms Yukawa couplings to the SM fields, as well as to the Higgs doublet

and the flavon through a three scalar interaction. The UV completion of Eq. (2.83)

takes the form

−YijQiLΦqjR − µHΦ†σ. (2.86)
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Qi
L

H
σ

qjR

σ

−→ Qi
L

H σ

qjR

σ

FijR FijL FklR FklL

Figure 2.3: Dimension six type-I Froggatt-Nielsen UV completion.

This type of UV completion will be called type-II seesaw, since the topology of the

diagrams correspond to those of the type-II seesaw mechanism for neutrinos. A diagram

corresponding to this UV completion can be seen in Fig. 2.4.

Qi
L

H

qjR

σ

−→ Qi
L

H σ

qjR

Φ

Figure 2.4: Dimension five type-II Froggatt-Nielsen UV completion.

The FN mechanism is a simple framework for extending the SM, which accounts

for the mass hierarchy, in both quarks and leptons, by the inclusion of the flavour

symmetry U(1)FN . Moving on from masses, the next chapter discusses the strong CP

problem, which concerns the smallness of strong CP violation, and the Peccei-Quinn

solution to this problem, which implies the existence of a pseudoscalar particle, the

axion.
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Chapter 3

Axions

Since the late 1970s, when axions arose as a consequence of the Peccei-Quinn (PQ)

solution to the strong CP problem, axions and axion-like particles (ALPs) have caught

the interest of many physicists not only because they solve the strong CP problem,

but also because if their masses are in a correct range, they would possess properties

that are cosmologically desirable (see Section 3.2). The name axion does not describe a

particular kind of particle, but is generally taken to be a light pseudo-Goldstone boson

from a global chiral symmetry, or more generally in cosmology an axion-like particle

(ALP) is a a particle which has similar cosmological properties to the axion. The

QCD axion is the axion, corresponding to the Peccei-Quinn symmetry, which solves

the strong CP problem.

3.1 QCD Axions

The Peccei-Quinn symmetry is one of the most popular, if not the most popular, solu-

tions to the strong CP problem. The strong CP problem is an open problem in particle

physics, where the CP symmetry is, in principle, violated by strong interactions, but

measurements of the neutron dipole moment bound this violation to be tiny. The value

of the CP violation can thus be considered unnatural, especially since weak interac-

tions violate CP measuredly. A consequence of the breaking of this symmetry is the

appearance of QCD axions (henceforth called axions), which have garnered much in-

terest in their own right. They are the light scalar particles, which correspond to the

pseudo-Goldstone bosons of the PQ symmetry [15].
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3.1.1 The Strong CP Problem

To understand the strong CP problem, it is easiest to look at the QCD Lagrangian in

an isolated fashion. This Lagrangian is

LQCD = −1

4
GaµνG

µν
a +

∑
q

q(iγµDµ −mq)q, (3.1)

where Gaµν (and a = 1, . . . , 8 since Gaµν is in the adjoint representation of SU(3)c) is

the gluon strength tensor defined in Eq. (2.5), q are the quarks and Dµ is the covariant

derivative from Eq. (2.8), though only including the SU(3)c terms. Unlike the SM,

pure QCD is not a chiral theory, i.e. left- and right-handed quarks are treated in the

same way.

The strong CP problem arises from the inclusion of the term

θ
g2
s

32π2
GaµνG̃

µν
a (3.2)

to the QCD Lagrangian. Here θ is a free parameter of the SM. The gluon strength

tensor dual, G̃µνa , is defined as

G̃µνa =
1

2
εµνρσGaρσ, (3.3)

εµνρσ is the totally antisymmetric tensor. The gluon strength tensor transforms as a

pseudotensor, this means that contracting it with the strength tensor will lead to a

term that is not P-invariant, but is C-invariant nonetheless. A direct evaluation of

the indices shows that GaµνG̃
µν
a ∝ Ea · Ba, which is the product of a vector with an

axial vector and therefore not P invariant. Thus, the term in (3.2) is not CP-invariant.

Including it in the QCD Lagrangian leads to

LQCD = −1

4
GaµνG

µν
a +

∑
q

q(iγµDµ −mq)q + θ
g2
s

32π2
GaµνG̃

µν
a . (3.4)

The factor θ has now a clear interpretation, it quantifies how strong CP is broken by the

inclusion of this term. As will be seen later, this is not a physical parameter. Although

it might seem unfounded, the CP-violating term can be included at the classical level,

since this term is a total divergence, in fact it is very similar to the divergence of the

anomalous chiral current (also called the chiral anomaly)

∂µJ
µ
5 = Nf

g2
s

16π2
GaµνG̃

µν
a , (3.5)

where Nf is the number flavours. This symmetry is the chiral analogue of the baryon

31



3.1 QCD Axions

γ

γ

(a) Electromagnetic chiral anomaly.

G

G

(b) QCD chiral anomaly.

Figure 3.1: Chiral anomalies due to triangle diagrams.

number, but is not conserved in the SM, as it is broken by chiral anomalies and the

quarks’ masses. The triangle diagrams, corresponding to the chiral anomaly can be

seen in Fig. 3.1. This means that its inclusion has no effect on the classical equations of

motion and that the effect this term has will not be seen at any order in perturbation

theory. Therefore, the CP-violating term will contribute at most non-perturbatively.

Since QCD is asymptotically free and perturbative after a phase transition at about

200 MeV, CP violation should manifest more strongly at low energies, while becoming

irrelevant at high energies. In Appendix C.1 it is shown that the inclusion of this term

arises naturally from the topology of the gauge group.

To get the physical parameter for CP violation it is necessary to look at a more

complete model, in particular it is important to remember that a phase in the quark

masses will also lead to CP violation. Writing quark mass phases, θq, explicitly in (3.4)

leads to the Lagrangian

LQCD = −1

4
GaµνG

µν
a +

∑
q

q(iγµDµ −mqe
iθq)q + θ

g2
s

32π2
GaµνG̃

µν
a , (3.6)

where mq are real. These phases contribute to weak CP violation, which is parameter-

ized by the phase CKM matrix. Chiral transformations of the quarks

q → eiγ5
α
2 q, (3.7)

where α is a transformation parameter, lead to mixing of the CP violating term and

the masses’ phases. The quark masses also break the chiral global symmetry explicitly,
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this leads to the a divergence to the chiral current of

∂µJ
µ
5 =

∑
q

2mqqiγ5q +Nf
g2
s

16π2
GaµνG̃

µν
a . (3.8)

Under the chiral transformation of Eq. (3.7), the quark mass term transforms as

qmqe
iθqq → qmqe

i(θq+α)q, (3.9)

This means that under the chiral transformation θq → θq + α. On the other hand,

because of the chiral anomaly the quark measure transforms as [28]

DqDq → DqDqe−iα
g2s

32π2

∫
d4xGaµνG̃

µν
a . (3.10)

Since this enters the action by means of the path integral, it can be taken as a trans-

formation property of θ, such that θ → θ − α. The physical parameter of strong CP

violation must be invariant under these transformations. For only one quark flavour it

is θ = θ + θq In the more general case of multiple quark flavours (for example the SM)

it can be shown that (see [28], for example) the invariant CP violating parameter can

be written as

θ = θ + Arg
(

Det(MuMd)
)
, (3.11)

where Mu/d are the quark mass matrices. This leads to a final Lagrangian

LQCD = −1

4
GaµνG

µν
a +

∑
q

q(iγµDµ −mqe
iθq)q + θ

g2
s

32π2
GaµνG̃

µν
a . (3.12)

CP violation would lead to an asymmetrical charge distribution in the neutron, giving

it an electrical dipole moment. Measurements of this moment are very small, and

constrain the CP violating parameter to be θ < 10−10 [26]. This leads to the statement

of the strong CP problem: If CP is clearly/badly broken by weak interactions, why is

CP violation so small, if at all present, in strong interactions?

3.1.2 Solving the Strong CP Problem: Axions and the Peccei-Quinn

Symmetry

An anomalous, global, chiral U(1) symmetry, called the Peccei-Quinn Symmetry (PQ),

U(1)PQ, is introduced to QCD (and thus to the SM). This symmetry is also spon-

taneously broken, and the axion, a, is its Goldstone boson. Under PQ, the axion

transforms additively, like

a→ a+ αfa. (3.13)
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Here, fa is an energy scale called the axion decay constant, associated to the breaking

of the aforementioned symmetry, and α is a free (real) transformation parameter. The

axion decay constant plays a central role in determining the axion’s dynamics and is a

free parameter of the theory. The fact that this solves the strong CP problem was first

noted by Peccei and Quinn [44, 45], hence the name. The axion as a Goldstone mode of

the was noticed shortly afterwards by both Weinberg and Wilczek (see Appendix C.2).

The axion effective Lagrangian is given by [28]

La =
1

2
(∂µa)(∂µa) + LY (∂µa, Ψ) +

gaγ
4
aFµνF̃µν +

a

fa

g2
s

32π2
GaµνG̃

µν
a . (3.14)

Here gaγ is the axion-photon coupling constant, and is model dependent, while

F̃µν =
1

2
εµνρσFρσ (3.15)

is the electromagnetic dual strength tensor. This means that the axion also couples to

the electromagnetic chiral anomaly. The terms in the axion-fermion couplings are of

the form

LY (∂µa, Ψ) ⊃ ∂µa

2fa
CaΨΨγµγ5Ψ, (3.16)

where CaΨ is a model dependent coupling constant. The last term in the Lagrangian

(3.14) ensures that the PQ symmetry posses a chiral anomaly

∂µJ
µ
PQ ∝

g2
s

32π2
GaµνG̃

µν
a , (3.17)

while also breaking the translation symmetry explicitly. This means the axion is actu-

ally a pseudo-Goldstone boson and will acquire mass. The term LY (∂µa, Ψ) represents

Yukawa couplings between the axion and fermions.

There are two arguments to give on why the PQ symmetry and the axion solve the

strong CP problem. The first argument is that is possible to absorb θ in the axion by

choosing α properly. This is because the full Lagrangian contains a coupling of the

form

L ⊃
(
a

fa
+ θ

)
g2
s

32π2
GaµνG̃

µν
a . (3.18)

Thus, it can be seen that the effect of the CP-violating term becomes unphysical, since

it become a consequence of the transformation properties of the broken PQ symmetry.

The problem with this argument is that θ also transforms under the chiral symmetry

as

θ → θ − α, (3.19)

prohibiting the elimination of θ by the correct choice of α, unless somehow a and θ
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shift differently. Nevertheless, it can be eliminated by the axion’s acquisition of a vev.

Here

a→ ap + 〈a〉, (3.20)

where ap is the physical axion with 〈ap〉 = 0. If

〈a〉 = −faθ, (3.21)

the θ term disappears, solving the strong CP problem [28, 46].

The coupling of the axion to the PQ anomalous current also generates an effective

potential for the action

Veff = − a

fa

g2
s

32π2
GaµνG̃

µν
a . (3.22)

From this potential one can deduce that the vev of Eq. (3.21) is in fact the minimum

of the effective potential, i.e.〈
∂Veff
∂a

〉
= − 1

fa

g2
s

32π2
〈GaµνG̃µνa 〉|〈a〉=−faθ = 0. (3.23)

Also, the axion mass can be extrapolated from this potential, giving

m2
a =

〈
∂2Veff
∂a2

〉
= − 1

fa

g2
s

32π2

∂

∂a
〈GaµνG̃µνa 〉|〈a〉=−faθ. (3.24)

To do the precise calculation in (3.23) and (3.24) it is necessary to employ some low-

energy approximation of QCD (perturbative or non-perturbative), for example in Sec-

tion 3.1.3 chiral Lagrangaian techniques are employed.

A UV completion of this theory was done independently by Weinberg [47] and

Wilczek [48], this axion model is often referred to as the Peccei-Quinn-Weinberg-Wilczek

(PQWW) model [49], by introducing a second Higgs doublet. See Appendix C.2. The

problem with this realization of the UV completion is that the axion decay constant and

the SM Higgs vev are proportional in this model, predicting a mass and couplings of

the axion that are too large. Experiments at KEK, for example [50], during the 1980s

could not find any evidence for this particle, thus ruling out its existence. Invisible

axion models circumvent this problem by decoupling the PQ breaking scale from the

EW breaking scale, the exact form this occurs is presented in Section 3.1.4.

3.1.3 Axion Mass and Couplings

Axion phenomenology presents some peculiarities, many of which rest on the effective

Lagrangian of (3.14), which means, many aspects of axion physics can be studied

without knowledge of the UV-complete theory. Of particular interest for this work
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are the mass of the axion, and the axion-photon coupling. For many applications and

calculations involving the effective theory of axions, for example the axion mass, chiral

Lagrangian techniques can be employed, where good results are obtained in the axion-

pion chiral Lagrangian. Other interesting couplings, which will not be discussed here,

are the axion-electron coupling, axion-hadron couplings, and axion-meson couplings,

including the axion-pion coupling.

A good starting approximation for the effective theory, following [28], takes only

the couplings to the two lightest quarks into account (for a treatment including the

strage quark see [51]). The relevant terms in this Lagrangian are

La =
1

2
(∂µa)(∂µa)+

∂µa

2fa
qC0

aqγ
µγ5q+

g0
aγ

4
aFµνF̃µν+

a

fa

g2
s

32π2
GaµνG̃

µν
a −(qLMqqr + h.c.) ,

(3.25)

where q = (u, d)T , Mq = diag(mu, md), and Caq = diag(Cau, Cad). The quark mass

term has been included as it will be relevant in the future. Performing an axion depen-

dent chiral rotation of the quarks

q → e
iγ5

a
2fa

Qaq, (3.26)

with Qa a 2 × 2 matrix acting on q. Multiple terms will arise in the Lagrangian as a

consequence of this transformation, which is similar to the transformation of Eq. (3.7).

Importantly the term

−g2
s

Tr(Qa)

32π2

a

fa
GaµνG̃

µν
a , (3.27)

which will cancel the topological term in the Lagrangian, provided Tr(Qa) = 1. This

term originates from the chiral anomaly of the quark measure, like Eq. (3.10). Defining

gaγ = g0
aγ − (2Nc)

e2

8π2fa
Tr(QaQ

2),

Caq = C0
aq −Qa,

Ma = e
i q
2fa

QaMqe
i q
2fa

Qa , (3.28)

where Q = diag(2
3 , −1

3) is the electric charge matrix for the quarks and Nc is the

number of colours, 3 in most models. The resulting Lagrangian is

La =
1

2
(∂µa)(∂µa) +

∂µa

2fa
qCaqγ

µγ5q +
gaγ
4
aFµνF̃µν − (qLMqqr + h.c.) . (3.29)
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3.1.3.1 Axion Mass

A relatively simple way to obtain the low energy values for the masses and couplings

is to couple the axion to the chiral Lagrangian. In this case interactions are restricted

to mesons composed of the two lightest quarks, but will further be constrained to only

account for pions. This can be done by coupling the chiral quark current

qCaqγ
µγ5q =

1

2
Tr(Caq)qγ

µγ5q +
1

2
Tr(Caqσ

b)qγµγ5σbq, (3.30)

where σb = σb are the Pauli matrices, to the pion chiral Lagrangian. Since only pions

are of interest in this case, the isosinglet term (corresponding to the η′) can be neglected.

This gives the effective Lagrangian

Lχa =
f2
π

4

(
Tr
(

(DµU)†(DµU)
)

+ 2B0 Tr(UM †a +MaU
†)
)

+
∂µa

4fa
Tr(Caqσ

b)Jbµ, (3.31)

where

Jbµ =
i

2
f2
π Tr

(
σb(UDµU

† − U †DµU)
)

(3.32)

is the pion current coupled to the axion. The pion decay constant fπ is approximately

92.3 MeV [8]1, and B0 is a factor associated to quark condensation. The covariant

derivative of U is

Dµ = ∂µU + ieAµ[Q, U ], (3.33)

where U is a pion-dependent SU(2) transformation, defined as

U = e
iσaπ

a

fπ = cos

(
π

fπ

)
+ i

σaπa
fπ

sin

(
π

fπ

)
, (3.34)

and π2 = πaπa =
(
π0
)2

+ 2π+π−, with π± = 1√
2

(
π1 ∓ iπ2

)
and π0 = π3.

The effective potential generated by the term

−V (a, πa) = B0
f2
π

2
Tr
(
UM †a +MaU

†
)
, (3.35)

in the Lagrangian of (3.31), can be used as a starting point to obtain the axion mass.

It is possible to estimate B0 from this potential2. The terms in the potential not

1The value reported by the PDG is about 130 MeV, which is
√

2 times the value cited, since they
do not normalize this parameter by 1√

2
.

2This will only give contributions due to the condensation of up- and down-quarks, which is enough
for the approximations taken.
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containing the axion (i.e. the pion self interactions) are

V (0, πa) = −B0f
2
π cos

(
π

fπ

)
(mu +md), (3.36)

since Tr(σa = 0). Thus, the two lowest order terms in this potential are

V (0, πa) = −B0f
2
π(mu +md) +

1

2
B0(mu +md)π

2 + O

(
π4

f2
π

)
. (3.37)

The second term is the mass term for the pion. Requiring it to be canonically nor-

malized leads to B0 = m2
π

mu+md
, where mπ ≈ 137.27 MeV is the mass average of the

pion [8].

Qa can be conveniently chosen to be
M−1
q

Tr(M−1
q )

, as this eliminates mass mixings be-

tween the axion and π0, and also simplifies the algebra. Doing the aforementioned

algebra, the potential takes the form

V (a, πa) = −f2
π

m2
π

mu +md[(
mu cos

(
md

mu +md

a

fa

)
+md cos

(
mu

mu +md

a

fa

))
cos

(
π

fπ

)

+
π0

π

(
mu sin

(
md

mu +md

a

fa

)
−md sin

(
mu

mu +md

a

fa

))
sin

(
π

fπ

)]
. (3.38)

The axion mass can be obtained from the quadratic axion term. Proceeding in analogy

with the estimation of B0,

V (a, 0) = −2f2
π

m2
π

mu +md
+

1

2

m2
πmumd

(mu +md)2

f2
π

f2
a

a2 + O

(
a3

f3
a

)
, (3.39)

consequently the axion mass is given by

m2
a =

m2
πmumd

(mu +md)2

f2
π

f2
a

. (3.40)

Taking the square root and substituting for the masses and the pion decay constant

(see Table 2.2 for the quark masses) the authors of [52] obtain

ma ≈ 5.70

(
1012 GeV

fa

)
µeV, (3.41)

This is the value that will be used in this work. Using the numbers of Table 2.2 one gets
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ma ≈ 5.89
(

1012 GeV
fa

)
µeV. This difference, though not large, is important. It stems

from the fact that the masses cited in Table 2.2 are not reported at the same energy

scale. For a consistent result the masses should be run to the same scale. The mass

cited has the parameters run to 2 GeV.

3.1.3.2 Axion-Photon Coupling

The axion-photon coupling is given in Eq. (3.28) as

gaγ = g0
aγ −

3e2

4π2fa
Tr(QaQ

2), (3.42)

which depends on the model-dependent coupling g0
aγ , as well as on the Qa, though

the choice of Qa should not matter for the final result. Nc has been fixed to 3. This

warrants a brief discussion on the nature of the model dependent couplings. Essentially,

they arise from the PQ chiral anomaly

∂µJPQµ =
g2
sN

16π2
GaµνG̃

µν
a +

e2E

16π2
FµνF̃

µν , (3.43)

where N and E are the colour and electromagnetic anomaly coefficents, respectively

and are given by [53]

N =
∑

i
XiT (Ri) , E =

∑
i
XiQ

2
iD(Ri) , (3.44)

where the sums run over all fermions, Xi is the PQ charge, and T (Ri)
1 is the index

of the SU(3)C representation Ri of the i-th fermion. Also, Qi represent the electric

charge of the i-th fermion, and D(Ri) the dimension of Ri.

The anomalous current of Eq. (3.43) will couple to the axion in the following manner

La ⊃
a

va

g2
sN

16π2
GaµνG̃

µν
a +

a

va

e2E

16π2
FµνF̃

µν +
∂µa

va
JPQµ , (3.45)

through a process similar to the one described in Section C.1. Requiring this Lagrangian

to be normalized like (3.14) leads to

va =
fa
2N

, (3.46)

which in turn sets the Lagrangian as

La ⊃
a

fa

g2
s

32π2
GaµνG̃

µν
a +

a

fa

e2

32π2

E

N
FµνF̃

µν +
∂µa

fa

1

2N
JPQµ . (3.47)

1For most calculations it is enough to know T (3) = 1/2, T (6) = 5/2, and T (8) = 3.
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From this Lagrangian it can be seen that

g0
aγ =

e2

8π2fa

E

N
=

α

2πfa

E

N
. (3.48)

In the same way as for the axion mass, the matrix Qa is chosen as
Q−1
M

Tr(Q−1
M )

, which is

equal to mumd
mu+md

diag(m−1
u , m−1

d ). Substituting for this in (3.42) gives

gaγ =
α

2πfa

(
E

N
− 2

3

mu + 4md

mu +md

)
≈ α

2πfa

(
E

N
− 1.92

)
. (3.49)

The axion couplings to fermions can be briefly obtained from Eq. (3.47). To ex-

emplify this, the PQ current can be supposed to contain only a single (left- and right-

handed) fermion species, f , since the contribution of more fermions will be of the same

form. Considering this,

∂µa

fa

1

2N
JPQµ =

∂µa

fa

1

2N

(
fLXfLγµfL + fRXfRγµfR

)
=
∂µa

fa

1

2N
C0
fafγµγ5f, (3.50)

where XfL/R is the charge of the left- or right-handed quark. By identifying terms the

axion-fermion coupling takes the form

C0
fa =

XfL −XfR

2N
. (3.51)

The existence of Yukawa terms in the SM also gives sets the PQ charge of the Higgs

doublet as XH = XfL −XfR .

3.1.4 Invisible Axion Models

To fix the problems with the PQWW axion, the axion decay constant must decouple

from the EW vev, so that it is no longer true that fa ∝ v, like in (C.23). These are called

invisible axion models since they are built with fa >> v, thus giving the axion a very

small mass and interaction. There are two main frameworks to achieve this, the Kim-

Shifman-Vainshtein-Zakharov (KSVZ) [54, 55] type and the Dine-Fischler-Srednicki-

Zhitnitsky (DFSZ) [56, 57] type. KSVZ-type models achieve the UV-completion by

introducing heavy vector-like fermions, an example of the simplest realization of this

is given in Appendix C.3. DFSZ-style models keep the two Higgs doublets from the

PQWW model, but add an extra singlet scalar field, σ. The model in Chapter 4 is a

DFSZ-type model. The general theory of the DFSZ axions is presented below.

Unlike the KSVZ model, the DFSZ model keeps the two Higgs doublets from the

PQWW model, but adds a SM singlet complex scalar, σ. Again, this scalar carries PQ
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a

G

G

→ a

G

G

Figure 3.2: Passing from the axion-anomaly coupling coupling in the UV-complete theory to
the effective axion-gluon coupling. The same applies to to the axion-photon coupling.

charge. Its scalar potential can be written as

V (Hu, Hd, σ) = Ṽ (H†uHu, H
†
dHd, H

†
uHd, σ

†σ) + λHuHdσ
†2 + h.c., (3.52)

where Ṽ is a potential containing all the possible moduli of the scalars. The last term

in the potential ensures that a global U(1) for each of the scalars breaks explicitly into

U(1)Y × U(1)PQ. There are two types of DFSZ models, the difference being on how

the leptons couple to the Higgs doublets. The difference can be seen in their Yukawa

Lagrangians

LDFSZ−IY = yuijQ
iHuu

j
R + ydijQ

iHdd
j
R + yeijL

iHde
j
R + h.c.

LDFSZ−IIY = yuijQ
iHuu

j
R + ydijQ

iHdd
j
R + yeijL

iH̃ue
j
R + h.c. (3.53)

After PQ and EW symmetry breaking, there will be multiple uncharged scalars, in fact

there will be two more than in the PQWW model. By counting these fields it can be

seen that there will be three uncharged polar fields, instead of one, i.e. all of these, or

a combination of them, could be the axion. This is because there will be an uncharged

Goldstone boson for each of the scalars left after symmetry breaking, i.e.

Hu ⊃
vu√

2
ei
au
vu

(
1

0

)
,

Hd ⊃
vd√

2
e
i
ad
vd

(
0

1

)
,

σ ⊃ vσ√
2
ei
aσ
vσ . (3.54)
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The axion will couple to these fields exclusively through the PQ current

JPQµ = −XHuH
†
ui
↔
∂µHu −XHdH

†
di
↔
∂µHd −Xσσ

†i
↔
∂µσ + JPQµ (Ψ), (3.55)

where JPQµ (Ψ) contains the fermionic part of the current and Xφ are the PQ charges of

the fields, with φ = u, d, σ. From the derivatives in the current the terms containing

only the the axion components, aφ, can be written as

JPQµ (aφ) =
∑
φ

Xφvφ∂µaφ = va∂µa. (3.56)

This fixes the axion and its vev as

a =
1

va

∑
φ

Xφvφaφ, v
2
a =

∑
φ

X2
φv

2
φ. (3.57)

The scalar PQ charges in this kind of model are not free, in fact there are two

constraints, so that they are fixed up to normalization. The first constraint comes from

having the term HuHdσ
†2 PQ invariant, which implies

XHu +XHd − 2Xσ = 0. (3.58)

The second constraint comes from avoiding kinetic mixing between the axion and the

Z boson, this constraint comes from a hypercharge current similar to Eq. (3.56) and

puts the constrain as ∑
φ

2YφXφv
2
φ = −XHuv

2
u +XHdv

2
d = 0, (3.59)

where Yφ is the hypercharge of the scalar field φ. Thus choosing a unit charge for σ

fixes the PQ charges as

Xφ = 1, XHu = 2 cos2(β), XHd = 2 sin2(β), (3.60)

again with tan(β) = vu
vd

, i.e. v2
u + v2

d = v2 and v the EW vev. Finally, this leads to the

axion vev from Eq. (3.57)

v2
a = v2

σ + v2
(

sin(2β)
)2
. (3.61)

If vσ � v , the desired result of va ≈ vσ. To integrate out σ, a field dependent chiral

transformation, in terms of the axion, is done

Q→ e−iγ5
a

2va Q, (3.62)
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which uncouples the axion from the radial PQ field and the fermions (see Appendix C.3

for the explicit construction of the radial field). Fig. 3.2 shows diagrammatically how

the axion-gluon coupling appears after the integration. Here,

N =3

(
1

2
XHu +

1

2
XHd

)
= 3,

E =3

(
3

(
2

3

)2

XHu + 3

(
−1

3

)2

XHd + (−1)2XHd

)
, (3.63)

for a type-I DFSZ model. In type-II DFSZ models, the PQ charge in the last term in

E has to be changed to XHu . See Eq. (3.44) for the expression of these factors. An

equivalent, but more direct way of applying similar constraints is used and explained

in the model of Chapter 4, since these constraints are relaxed by the introduction of a

second σ field.

3.2 Axions as Dark Matter Candidates

Axions and ALPs can be DM candidates, provided they are light enough to conform

with particle physics observations (or rather the lack thereof), but heavy enough such

that they where not overproduced in the early Universe. The mass range for a DM

axion corresponds to 10−12 eV . ma . 1 MeV [15]. Since many axion couplings are

model dependent, some of the DM properties also depend on the specific axion model.

Luckily, most of them can also be treated at the level of the effective axion Lagrangian

(as given in (3.14)) and are independent of the specifics of the UV-complete theory.

The favoured mechanism to produce cold axions is the Misalignment mechanism (also

calle vacuum misalignement) [58], nevertheless there is also the possibility (though very

strongly disfavored) of thermal axion production [15], and of axion production by the

decay of cosmic strings and domain walls [49].

The Misalignment Mechanism (for QCD axions) explains the production of cold

axions in the early universe by recognizing that the axion angle

θ(x) =
a(x)

fa
, (3.64)

where a(x) is the axion field (or more precisely its vev), will begin in the early Universe

at a value θi, the misalignment angle, which does not necessarily minimize the axion

potential. As the Universe expands, this angle approaches and then begins to oscillate

around the potential’s minimum. While this occurs, an excess of axions is produced

by the fields’ oscillation. Other particles can also be produced through axion decay.

When the field reaches the minimum, all of its kinetic energy has dissipated due to the
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3.2 Axions as Dark Matter Candidates

oscillation, and the number density per comoving volume of the axions turns out to be

constant. Making some assumptions about the adiabaticity of the fields’ evolution, the

relic density can be found to be

Ωmis
a h2 ≈ 2× 104

(
fa

1016 GeV

) 7
6

〈θ2
i 〉, (3.65)

with h = H0
100 , the reduced Hubble constant. A detailed derivation of this relic density is

found in Appendix B.2. In scenarios where domain walls or cosmic strings are present,

the estimation of the relic density changes considerably [28, 49].
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Chapter 4

A Flavourful Axion Model

In this chapter a model is presented, where the PQ symmetry is identified with the FN

symmetry, i.e.

U(1)FN = U(1)PQ, (4.1)

which can be called the Peccei-Quinn-Froggatt-Nielsen (PQFN) symmetry. Axions

arising from flavour symmetries are known under different names, such as flaxions [59,

60], axiflavons [61, 62, 63], and flavourful axions [64, 65, 66]1. A feature of these kind

of models is that the mass hierarchy, as well as the Strong CP Problem are solved by

the same extention of the SM. Particularly, the model discussed here is a type-II DFSZ

model, and has a Nearest-Neighbour-Interaction texture (NNI) [67] for the quark mass

matrices and an A2 texture [68] for the neutrino mass matrices. Furthermore, some

aspects of the phenomenology of this model will be discussed, either directly or after a

precise χ2 fit of the masses and mixing parameters of the SM fermions. This model [69]

was proposed and developed in collaboration with Dr. Eduardo Peinado, Dr. Newton

Nath, and M.Sc. León Garćıa.

4.1 The Model

The flavourful axion model will be presented from a theoretical standpoint in this

section. First a brief overview of the model is presented, leading to a detailed description

of the quark sector and its UV-completion, as well as the lepton sector. Finally, the

scalar sector, including the physical axion, is discussed.

4.1.1 Overview of the Model

The SM is extended by the inclusion of two Higgs doublets, Hu and Hd, and two

complex scalar SU(2)L singlets, σ and σ′, which are the flavons for quarks and leptons,

1Flavourful axion is the preferred term in this work, mainly because it translates nicely to Spanish
as axión sabroso.
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4.1 The Model

respectively. In the neutrino sector three heavy right-handed fermions, Ni, where i =

1, 2, 3, are added as well, which will be similar to sterile neutrinos in a type-I seesaw

scenario. The inclusion of the two Higgs doublets signifies that the axion in question

will be of the DFSZ type, as a matter of fact a type-II DFSZ axion, as can be seen

from the Lagrangian in (4.20). Breaking of the PQFN symmetry (which henceforth

will only be called the PQ symmetry) will also lead to a physical axion, which will be

a linear combination of the Goldstone bosons of the scalars.

Although there exist some constrains on the PQ charges, as was pointed in Sec. 3.1.3

and Sec. 3.1.4, these are not strong enough to determine the PQ charges of the theory

completely. In order to do this, the FN mechanism can be introduced in such a way

that the mass matrices for quarks and neutrinos arise from the charge assignment and

operators of dimension greater than 4. The NNI texture for the quark masses will

be required to arise at next-to-leading order, likewise the A2 texture will arise for the

neutrinos. The NNI texture has the same zeros as the Fritzsch texture [70, 71], but

unlike the Fritzsch texture, is not necessarily hermitic. This structure has the non-zero

elements in i = j + 1, and here i = N = j, leading to

Mu/d =

0 × 0

× 0 ×
0 × ×

 . (4.2)

The A2 texture is similar in the sense that i = j + 1, but here has i = N, N − 1 = j,

and is also symmetrical, this translates as

mν = mT
ν =

0 × 0

× × ×
0 × ×

 . (4.3)

Both of these textures are chosen, since they are phenomenologically viable. This

means that they are able to give observables, masses and mixing parameters, well

in agreement with results from experiments and global fits. How good these are is

quantified in Sec. 4.2.1. In particular, the NNI texture is chosen over the Fritzsch

texture, since the Fritzsch texture has trouble replicating the small value of Vcb in the

CKM matrix, simultaneously with the large value of mt [72, 73].

The lepton sector, through the inclusion of the Ni fermions will be renormalizable,

whereas for the quark sectors two possible UV-completions are discussed. The first

UV-completion will include heavy coloured, weak isospin singlet, fermions, Fij , corre-

sponding to a scenario analogous to the type-I seesaw mechanism. The second UV-

completion is done through the inclusion of two heavy weak isospin doublet scalars,

Φu/d, corresponding to a type-II seesaw mechanism.
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4.1.2 The Quark Sector

The PQ charges of the quarks are chosen in such a manner that the (3, 3) term in the

up- and down-quark mass matrices are generated at dimension 5, while all the others

are generated at higher dimensions. The strong constraint comes from the requirement

that at order 5 the mass matrices have a NNI structure. Following the convention of

DFSZ models that the Higgs doublets have unit PQ charge (positive or negative) and

requiring PQ invariance of the SM Lagrangian leads to the PQ charges in Table 4.1. It

can be noticed that the charge of the flavon, σ, does not require special treatment and

is determined by the aforementioned constraints. It can be noticed that the PQ charge

of the down-type quarks is opposite to that of the up-type quarks.

Fields/Symmetry QiL uiR diR Hu Hd σ

SU(2)L × U(1)Y (2, 1/6) (1, 2/3) (1, -1/3) (2, -1/2) (2, 1/2) (1, 0)
U(1)PQ (9/2, -5/2, 1/2) (-9/2, 5/2, -1/2) (-9/2, 5/2, -1/2) 1 1 1

Table 4.1: Field content and transformation properties of the PQ-symmetry under the DFSZ
type-I seesaw model, where i = 1, 2, 3 represent families of three quarks. The PQ charges of the
quarks are given in the order of the families’ masses, with the lightest as the first.

The lowest order terms in the effective Lagrangian, invariant under PQ and the SM

gauge symmetries as given by Table 4.1, coupling every combination of up-type quarks

to the flavon are the following

−L ⊃ Cu11

Λ8
Q1LHuu1Rσ

8 +
Cu12

Λ
Q1LHuu2Rσ +

Cu13

Λ4
Q1LHuu3Rσ

4 +
Cu21

Λ
Q2LHuu1Rσ

+
Cu22

Λ4
Q2LH̃du2Rσ

∗4 +
Cu23

Λ
Q2LH̃du3Rσ

∗ +
Cu31

Λ4
Q3LHuu1Rσ

4 +
Cu32

Λ
Q3LH̃du2Rσ

∗

+ yu33Q3LHuu3R , (4.4)

where Cuij represents coupling constant of each term and Λ is the FN cut-off scale of

the model. These terms are analogous for the down sector, owing to the fact that the

PQ charges of the down-type quarks are the negative of the up-type quarks, and reads

as

−L ⊃ Cd11

Λ8
Q1LHdd1Rσ

8 +
Cd12

Λ
Q1LHdd2Rσ +

Cd13

Λ4
Q1LHdd3Rσ

4 +
Cd21

Λ
Q2LHdd1Rσ

+
Cd22

Λ4
Q2LH̃ud2Rσ

∗4 +
Cd23

Λ
Q2LH̃ud3Rσ

∗ +
Cd31

Λ4
Q3LHdd1Rσ

4 +
Cd32

Λ
Q3LH̃ud2Rσ

∗

+ yd33Q3LHdd3R , (4.5)

with Cdij as the coupling constant and Λ as the cut-off scale. It is worth noting that the

Higgs doublets couple to both sectors, i.e. not exclusively to their subscript’s sector.

After PQ symmetry breaking hierarchical mass terms arise from the FN mechanism.
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The corresponding mass matrices are, up to dimension 7 or equivalently up to 〈σ〉
3

Λ3 ,

Mu/d =

 0 εvu/dC
u/d
12 0

εvu/dC
u/d
21 0 εvd/uC

u/d
23

0 εvd/uC
u/d
32 y

u/d
33 vu/d

 , (4.6)

where ε = vσ
Λ = 〈σ〉∗

Λ , and vu/d is the vev of the up- or down-sector Higgs doublet. It

can be noticed that these are NNI-type mass matrices. Since typical values of ε are of

the order of 0.2 [43], the mass matrices can for most purpouses be taken at this order.

Alternatively, an extra symmetry can be introduced to the model, prohibiting higher

order terms, although for simplicity this was not done here. It is also worth noting that

the mass hierarchy between the up- and down-sector is not explicitly generated by the

ε powers, especially between mt and mb, as is typical in FN models. Nevertheless, it

can be explained by a hierarchy between vu and vd.

4.1.3 UV-Completion of the Quark Sector

Two UV-completions of the quark sector are presented, following the style of a type-I

and type-II seesaw mechanism.

4.1.3.1 Type-I Seesaw

As the name of this UV-completion suggests, this is analogous to the Type-I seesaw

UV-completion for neutrinos, but with some differences. Unlike the UV completion

in the case of neutrinos, the heavy fermions will carry colour charge (as an SU(3)C
triplet), and will be vector-like. Otherwise they are analogous, i.e. will be an SU(2)L
singlet, but will carry PQ charge and weak hypercharge. These fermions, F ijq , will

couple to the left-handed quarks and the Higgs doublets with a Yukawa coupling Y
q
ij ,

these fields will mix through the mass terms M
q
ij , and finally will couple to the flavon

and the right-handed quarks with a different Yukawa coupling, Y′qij . The UV-complete

Lagrangian in the up-quark sector, corresponding to Eq. (4.4), is

−LUVu ⊃ Yu12Q1LHuF
12
uR + Mu

12F
12
uRF

12
uL + Y′

u
12 F

12
uLσu2R

+ Yu21Q2LHuF
21
uR + Mu

21F
21
uRF

21
uL + Y′

u
21F

21
uLσu1R

+ Yu23Q2LH̃dF
23
uR + Mu

23F
23
uRF

23
uL + Y′

u
23 F

23
uLσ

∗u3R

+ Yu32Q3LH̃dF
32
uR + Mu

32F
32
uRF

32
uL + Y′

u
32F

32
uLσ

∗u2R. (4.7)
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Fields/Symmetry F 12
uC F 21

uC F 23
uC F 32

uC F 12
dC F 21

dC F 23
dC F 32

dC

U(1)Y 2/3 2/3 2/3 2/3 -1/3 -1/3 -1/3 -1/3
U(1)PQ 7/2 -7/2 -3/2 3/2 7/2 -7/2 -3/2 3/2

Table 4.2: Vector like fermions and their transformation properties of the PQ-symmetry under
the DFSZ type-I seesaw model, where C = L,R.

QiL

Hq

qjR

σ

F ij
qR F ij

qL

Figure 4.1: UV-complete diagram within the DFSZ type-I seesaw framework from Eqs. (4.7)
and (4.8).

The down-quark sector of Eq. (4.5) has a similar UV-completion, which is

−LUVd ⊃ Yd12Q1LHdF
12
dR + Md

12F
12
dRF

12
dL + Y′

d
12 F

12
dLσd2R

+ Yd21Q2LHdF
21
dR + Md

21F
21
dRF

21
dL + Y′

d
21F

21
dLσd1R

+ Yd23Q2LH̃uF
23
dR + Md

23F
23
dRF

23
dL + Y′

d
23 F

23
dLσ

∗d3R

+ Yd32Q3LH̃uF
32
dR + Md

32F
32
dRF

32
dL + Y′

d
32F

32
dLσ

∗d2R . (4.8)

The charges of the heavy fermions can be read from Table 4.2, while Fig. 4.1 shows the

Feynman diagram corresponding to Eq. (4.7) and Eq. (4.8).

The quarks will acquire mass after PQ and EW symmetry breaking, that is after

the three scalars acquire their corresponding vev. The resulting mass matrices (up and

down) take the form

Mu/d =

(
MQLqR MQLFR

MFLqR MFLFR

)
7×7

, (4.9)

which are 7×7 matrix expressed in the (QL, F(u/d)L)× (qR, F(u/d)R). Its entries are the

following submatrices
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MQLqR =

0 0 0

0 0 0

0 0 y
u/d
33 vu/d

 , (4.10)

MQLFR =

Y
u/d
12 vu/d 0 0 0

0 Y
u/d
21 vu/d Y

u/d
23 vd/u 0

0 0 0 Y
u/d
32 vd/u

 , (4.11)

MFLqR =


0 Y′

u/d
12 vσ 0

Y′
u/d
21 vσ 0 0

0 0 Y′
u/d
23 v∗σ

0 Y′
u/d
32 v∗σ 0

 , (4.12)

MFLFR = diag(M
u/d
12 ,M

u/d
21 ,M

u/d
23 ,M

u/d
32 ) . (4.13)

This scenario works like a type-I seesaw, which was discussed in Section 2.2.2,

if the masses of the heavy fermions are much greater than that of the quarks. A

small difference is that the particles will be Dirac particles, unlike the neutrino seesaw.

Therefore, the mass matrix for the SM quarks can be approximated as

mu/d ≈MQLqR −MQLFRM
−1
FLFR

MFLqR . (4.14)

Another difference is the appearance of an extra term in the seesaw formula, MQLqR ,

this would correspond to a left-handed neutrino majorana mass in the neutrino sector,

and since it is prohibited by the SM symmetries (a left-handed Majorana mass term

would violate weak hypercharge, see Section 2.2.1) is set to 0. The approximate mass

matrices are

mu/d =


0

Y
u/d
12 Y′

u/d
12

M12
vu/dvσ 0

Y
u/d
21 Y′

u/d
21

M21
vu/dvσ 0

Y
u/d
23 Y′

u/d
23

M23
v∗d/uv

∗
σ

0
Y
u/d
32 Y′

u/d
32

M32
v∗d/uv

∗
σ y

u/d
33 vu/d

 ,

=

 0 Au/d 0

Bu/d 0 Cu/d

0 Du/d Eu/d

 , (4.15)

where Au/d, Bu/d, Cu/d, Du/d, and Eu/d are complex entries. As was expected from

the low-energy theory, these matrices posses a NNI texture. It is also worth noting that

the suppressing role played by 1
Λ in the low-energy theory is now taken over by 1

Mij
,
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QiL

Hq σ

qjR

Φq

Figure 4.2: UV-complete diagram within the DFSZ type-II seesaw framework from Eqs. (4.16),
and (4.17).

setting a natural scale for these masses at Mij ∼ Λ1.

4.1.3.2 Type-II Seesaw

A second possible UV-completion introduces two new heavy SU(2)L doublets, Φu/d, to

the theory. These transform under SU(2)L × U(1)Y × U(1)PQ in the following repre-

sentations: Φu in (2, −1/2, 2) representation, and Φd in the (2, 1/2, 2) representation.

The Lagrangian of the up-quark sector (Eq. (4.4)) is UV-completed as

−LUVu ⊃ Yu12Q1LΦuu2R + Yu21Q2LΦuu1R + κuHuΦ†uσ

+ Yu23Q2LΦ̃du3R + Yu32Q3LΦ̃du2R + κdH̃dΦdσ
∗ . (4.16)

In the same vein, the Lagrangian (4.5) becomes

−LUVd ⊃ Yd12Q1LΦdd2R + Yd21Q2LΦdd1R + κuHdΦ
†
dσ

+ Yd23Q2LΦ̃dd3R + Yd32Q3LΦ̃dd2R + κdH̃uΦdσ
∗ . (4.17)

The Feynman diagram for this UV-completion can be seen in Fig. 4.2, and has the

same topology as the type-II seesaw, hence the name.

After PQ and EW symmetry breaking, the quarks will acquire masses, as was the

case in the previous UV-completion and also the IR theory. In this case the mass

matrices for the up- and down-quarks will be

mu/d =

 0 Y
u/d
12 vΦu/d 0

Y
u/d
21 vΦu/d 0 Y

u/d
23 vΦd/u

0 Y
u/d
32 vΦd/u y

u/d
33 vu/d

 , (4.18)

where the vevs vΦu/d correspond to the newly introduced heavy scalrs. At leading order

1This is to be expected a priori, since at low energies the UV completion has to agree with the
effective theory. Nevertheless it is a good indication that the UV-completion was done correctly.
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these are

vΦu/d ≈ −
κu/dvσvu/d

M2
Φu/d

, (4.19)

with MΦu/d as the masses of Φu/d. These vevs can be obtained from the scalar potential

in Eqs. (4.31) and (4.32). It is worth noting that the mass matrices, again, possess the

NNI structure. Furthermore, they are again suppressed (but now quadratically) by the

masses of the heavy fields.

4.1.4 The Lepton Sector

Up until now the second flavon, σ′, has not been needed. But, it will be necessary

to include it in the lepton sector, since otherwise the Majorana mass matrix will be

singular at leading order, since the 12-term would be prohibited by the PQ symmetry.

The Yukawa Lagrangian of this sector is given by

−Lly ⊃ yeLeLHd`eR + yµLµLH̃u`µR + yτLτLHd`τR

+ yν1LeLHuN1 + yν2LµLH̃dN2 + yν3LτHuN3

+
M1

2
N c

1N1 +
yN12

2
N c

1N2σ
′ +

yN13

2
N c

1N3σ +
yN33

2
N c

3N3σ
′. (4.20)

The first line includes the terms for the charged leptons, the second, the interaction of

the left-handed leptons with the heavy neutrinos Ni, and the last line the Majorana

terms. From here it can be seen that the charged lepton mass matrix and the neutrino

Dirac mass matrix will be diagonal, whereas the right-handed Majorana mass matrix

will not. The representations of the new fields can be read from Table 4.3.

Fields/Symmetry LiL `iR Ni σ′

SU(2)L × U(1)Y (2, -1/2) (1, -1) (1, 0) (1, 0)
U(1)PQ (1, -3, 0) (0, -2, -1) (0, -2, -1) 2

Table 4.3: Field content and transformation properties of the leptonic fields and the scalar field
σ′, where i = 1, 2, 3 represent the three lepton families.

Since the energy at which PQ breaks is taken to be much greater than that of

EW symmetry breaking, the seesaw mechanism is naturally realized, as the Majorana

masses of the heavy neutrinos will be much larger than the Dirac masses. Explicitly,

they can be written as

MR =

 M1 yN12vσ′ yN13vσ
yN12vσ′ 0 0

yN13vσ 0 yN33vσ′

 (4.21)
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and

MD = diag (vuy
ν
1 , v

∗
uy

ν
2 , vdy

ν
3 ) . (4.22)

The neutrino mass matrix is given by the seesaw formula as

mν = −MT
DM

−1
R MD, (4.23)

which is

mν =
1

vσ′


0 −vuv∗dy

ν
1y
ν
2

yN12
0

−vuv∗dy
ν
1y
ν
2

yN12

(v∗dy
ν
2 )2(M1vσ′y

N
33−v2σ(yN13)2)

v2
σ′y

N
33(yN12)2

vuv∗dvσy
ν
2y
ν
3y
N
13

vσ′y
N
12y

N
33

0
vuv∗dvσy

ν
2y
ν
3y
N
13

vσ′y
N
12y

N
33

−v2u(yν3 )2

yN33

 (4.24)

and corresponds to the A2 texture.

The inclusion σ′ in this model has the consequence that non-zero terms appear at

dimension-6 in the quark sector. The Lagrangian at this dimension takes the form

−Ld=6
Y ⊃ Cu13

Λ2
Q1LHuu3Rσ

′2 +
Cu31

Λ2
Q3LHuu1Rσ

′2 +
Cu22

Λ2
Q2LH̃du2Rσ

′∗2, (4.25)

for up-type quarks, and

−Ld=6
Y ⊃ Cd13

Λ2
Q1LHdd3Rσ

′2 +
Cd31

Λ2
Q3LHdd1Rσ

′2 +
Cd22

Λ2
Q2LH̃ud2Rσ

′∗2, (4.26)

for down-type quarks. The UV-completion can be done with the heavy fermions intro-

duced in Section 4.1.3.1, but only for the first term in each Lagrangian. For the other

two terms new fermions, with different charges, have to be introduced. Nonetheless, as

was stated before, terms of dimension higher than 5 are suppressed strongly by higher

orders of ε, or can be prohibited by additional symmetries. As such the mass matrices

are only considered up to dimension 5. The UV-completion of the first term in (4.25)

can be written as

−LUVu ⊃ Yu12Q1LHuF
12
uR + Mu

12F
12
uRF

12
uL + Yu

′
12 F

12
uLσ

′F 32
uR + Mu

32F
32
uRF

32
uL + Yu

′
32 F

32
uLσ

′u3R ,

(4.27)

and for the corresponding term in (4.26)

−LUVd ⊃ Yd12Q1LHdF
12
dR + Md

12F
12
dRF

12
dL + Yd

′
12 F

12
dLσ

′F 32
dR + Md

32F
32
dRF

32
dL + Yd

′
32 F

32
dLσ

′d3R .

(4.28)

The diagram corresponding to these UV-completions can be see in Fig. 4.3.
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Q1L

Hq σ′

q3R

σ′

F 12
qR F 12

qL F 32
qR F 32

qL

Figure 4.3: UV complete diagram for a dimension-6 operator within the DFSZ type-I seesaw
framework in presence of flavon field σ′ as follows from Eqs. (4.27), and (4.28).

4.1.5 The Scalar Sector

The complete scalar sector depends on the UV-completion of the theory, as the type-II

seesaw UV-completion introduces two new heavy SU(2)L doublets, in addition to the

original four scalar fields, since these are complex or SU(2)L doublets, the degrees of

freedom are more than four. As a matter of fact, the scalars in the first UV-completion

can be written as

Hu =

(
h0
u + iAu
h−u

)
, Hd =

(
h+
d

h0
d + iAd

)
, σ = S + iA , σ′ = S′ + iA′ , (4.29)

where each term corresponds to a real scalar field. It is worth noting that the fields

Ai are the Goldstone bosons of the theory and will contribute to the physical axion.

Additionally, the two heavy scalars can be written as

Φu =

(
φ0
u + iA′u
φ−u

)
, Φd =

(
φ+
d

φ0
d + iA′d

)
. (4.30)

The scalar potential, again, will depend on the UV-completion of the theory. Nor-

mally, scalar potentials in DFSZ-style models are restricted to have either terms like

H̃uHdσ or H̃uHdσ
2 [56, 74]. Since there are two scalar singlets, σ and σ′, both of

type of couplings will be present, each with a different flavon, as can be seen from the

scalar potential (4.31). This, as well as the quantity of scalar fields present, means that

the scalar potential will be quite complicated. For the type-I seesaw UV-completion it

reads

V1 = µ2
uH
†
uHu + µ2

dH
†
dHd + µ2

1σσ
† + µ2

2σ
′σ′† + λu(H†uHu)2 + λd(H

†
dHd)

2 + λ(σσ†)2

+ λ′(σ′σ′†)2 + λ1(H†uHd)(H
†
dHu) + λ2(H†uHu)(H†dHd) + λ3(H†uHd)(H

†
dHu)

+ λ4(σσ†)(H†uHu) + λ5(σσ†)(H†dHd) + λ6(H̃†uHd)(σ
†)2 + λ7(σ′σ′†)(H†uHu)

+ λ8(σ′σ′†)(H†dHd) + λ9(σ′σ′†)(σσ†) + λ10(H̃†uHd)σ
′† + κ(σ2σ′† + (σ†)2σ′).

(4.31)
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In the type-II seesaw scenario the potential becomes even more complicated. Here it

can be written as

V2 = V1 + µ2
ΦuΦ†uΦu + µ2

Φd
Φ†dΦd + κu(H†uΦu)σ† + κd(H

†
dΦd)σ

† + λ11(Φ̃†dΦu)(σ′†)2

+ λ12(H̃†dΦu)(σ′†σ†) + λ13(H̃†uΦd)(σ
′†σ†) + λ14(Φ†uΦu)2 + λ15(Φ†dΦd)

2

+ λ16(Φ†dHd)(H
†
dΦd) + λ17(Φ†uHd)(H

†
dΦu) + λ18(Φ†dHu)(H†uΦd)

+ λ19(Φ†uHu)(H†uΦu) + λ20(Φ†dΦu)(Φ†uΦd) + λ21(σσ†)(Φ†uΦu) + λ22(σσ†)(Φ†dΦd)

+ λ23(σ′σ′†)(Φ†uΦu) + λ24(σ′σ′†)(Φ†dΦd) . (4.32)

It is worth mentioning that here, for simplicity (since there are many scalars), the

scalar fields after spontaneous symmetry breaking are not normalized by
√

2. This can

change some of the values derived in the past chapters by factors of
√

2.

4.1.6 The Axion

To extract the physcial axion from the PQ current, as was done in Section 3.1.4, it is

useful to begin by writing down the Goldstone boson absorbed by the Z-boson (due to

the Higgs mechanism), which is

AZ =

∑
i YiviAi√∑
i Y

2
i v

2
i

, (4.33)

where Yi is the hypercharge of each scalar field, and vi its vev. For the type-I seesaw

model the relevant Goldstone bosons are Ai ∈ {A,A′, Au, Ad}, whereas for the type-II

seesaw they are Ai ∈ {A,A′, Au, Ad, A′u, A′d}. Similarly, the Goldstone boson related to

the PQ symmetry is given by

APQ =

∑
iXiviAi√∑
iX

2
i v

2
i

, (4.34)

where Xi is the PQ charge of the scalar field, whose Goldstone boson is Ai. Since

the axion is orthogonal to the Z-boson Goldstone, it is necessary to subtract AZ from

it [53]. This leads to the axion taking the form

a = APQ −

 ∑
iXiYiv

2
i√∑

i Y
2
i v

2
i

√∑
iX

2
i v

2
i

AZ . (4.35)

There are some restrictions on the axion of Eq. (4.35). The first one comes from the

SM Higgs vev, i.e.
√∑

i Y
2
i v

2
i ≈ 246 Gev. The second restriction is that

√∑
iX

2
i v

2
i
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is bounded from below by the value of fa, the possible values of which are discussed

in the following sections. For these two restrictions to be simultaneously satisfied a

strong hierarchy must exist between the vevs of the flavons and the Higgs doublets,

wherein vσ/σ′ � vu/d. Also, the following hierarchy is chosen vσ � vσ′ , since it leads

to negligible mixing between A and A′. This also means that the quarks will couple

stronger to the axion than the leptons, as well as generating a hierarchy between the

masses of quarks and leptons.

Interesting model dependent parameters for this axion are the following: the mass,

the axion decay constant, the electomagnetic anomaly factor, the colour anomaly factor,

and the axion-photon coupling [28]. Of these parameters, only the axion decay constant

is a free parameter, and it is inversely proportional to the mass. For the origin of these

parameters see Section 3.1.3. The anomalous factors are given by (3.44) as

N =
∑

i
XiT (Ri) = 5 , E =

∑
i
XiQ

2
iD(Ri) =

28

3
. (4.36)

The mass is given by Eq. (3.41)

ma ≈ 5.70

(
1012 GeV

fa

)
µeV. (4.37)

The axion decay constant can be at most be reduced from fa = va√
2N

to

fa ≈
vσ√
2N

, (4.38)

since vσ is by a significant degree the largest of the vevs in va =
√∑

X2
i v

2
i (the sum

runs over all the scalars in the theory). Notice that since the vevs were not normalized

by
√

2, fa = va√
2N

, instead of va
2N . The axion-photon coupling is given by Eq. (3.49),

and is

gaγ =
α

2πfa

(
E

N
− 2

3

mu + 4md

mu +md

)
≈ α

2πfa

(
E

N
− 1.92

)
. (4.39)

In this model E
N = 28

15 ≈ 1.87, which implies gaγ will be small and negative. Comparing

it to the DFSZ benchmark SU(5) grand unified theory [75], where E
N = 8

3 , the following

relationship is found

|gSU(5)
aγ |

|gFlaxionaγ | ≈ 14 . (4.40)

Thus it is suppressed by more than an order of magnitude when compared to the

benchmark, where

gSU(5)
aγ =

1.53

1016GeV

(
ma

µeV

)
. (4.41)
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Even without knowledge of fa it is possible to discuss part of the phenomenology

of the axion-photon interaction. Restricting the discussion to the (gaγ − ma) plane,

for ma ≥ 1 eV, gaγ is mostly constrained from cosmology and astrophysics as can be

seen from Fig. 1 of Ref. [76]. Besides this, for ma ≤ 1 eV various haloscope detectors

put the tightest constraints on the axion mass and axion-photon coupling as has been

outlined in Figure 16 of Ref. [28]. For an axion mass of O(10−6) eV, as the reason of

interest for the model, the Axion Dark Matter eXperiment (ADMX) [77] searching for

cold dark matter axions with a haloscope detector, provides the most stringent bound.

It can be seen from Fig. 5 of [77] that the ADMX can explore 2× 10−6 ≤ ma ≤ 3.8×
10−6 eV for the coupling strength of O(10−15) Gev−1. On the other hand, the ADMX

Phase IIa/Gen-2 can improve their sensitivity to the axion mass to (1.8, 8)× 10−6 eV

for |gaγ | one order of magnitude smaller compared to the latest ADMX bound, i.e.,

O(10−16) Gev−1, for details see Fig. 9 of [77]. Choosing fa ∼ 1012 GeV, and ma ∼
10−6 eV, the axion-photon coupling is |gaγ | ∼ 10−18 GeV−1, as given by Eq. (3.49), and

hence the suppression of this coupling places this model beyond the reach of projected

ADMX Phase IIa/Gen-2 sensitivity [77]. Fig. 4.4 shows many of these bounds in their

current form and their projections.

4.2 Numerical Analysis

With the model well established, it is now possible to study some phenomenological

properties numerically. The analysis begins with a χ2 fit to the masses and mixing

parameters of the fermions (Section 4.2.1). The best-fit points are later used to study

flavour violation, focusing on flavour violating decays with axion in a final state (Sec-

tion 4.2.2), and flavour violating neutral currents (Section 4.2.3). From these processes

constraints on the free parameters of the model can be derived.

4.2.1 Masses and Mixing Parameters of Fermions

A χ2 fit is conducted to find the parameters of the mass matrices, that lead to the best

values according to experiments and global fits. The χ2 function is defined as follows

χ2 =
∑ (µexp − µfit)2

σ2
exp

, (4.42)

where the sum runs over all observables. Also, µfit represent the masses and mixing

parameters calculated from the mass matrices. The observable and fitting parameters

can be read from Table 4.4 (quarks) and Table 4.5 (leptons), where µexp and σexp are

the observables to be fitted and their standard deviation [8, 9].
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Figure 4.4: Different axion models, including this flavourful axion, and bounds in the gaγ −ma

plane. Current bounds are solid, while future projections are transparent. The exception to this
rule is the bound coming from Kaon decay (light brown), which is model dependent and only
applicable for the flavourful axion (see Section 4.2.2). This plot was adapted from [3].

58



4.2 Numerical Analysis

4.2.1.1 Quark Masses and Mixing Parameters

The quark mass matrices are given by Eq. (4.43). It is worth noting that the quark

fields can be redefined such that there exist only two non-zero phases (in [78] this

was done for four-zero textures of the mass matrices). In the Appendix D, a detailed

analysis of the phase redefinition is presented. Thus, the up- and down-quark mass

matrices that are used in the fit are given by

mu/d =

 0 Au/d 0

Bu/d e
−iαu/d 0 Cu/d e

−iαu/d

0 Du/d e
−iβu/d Eu/d e

−iβu/d

 . (4.43)

Also, as pointed out in Appendix D, it is the difference in the up- and down- quark

phase matrices that is relevant for the CKM matrix, therefore, phases αd and βd have

been fixed to zero. There are 12 parameters that need to be fitted, 10 amplitudes (5

for each matrix) and 2 phases. These 12 parameters are fitted to account for the 10

physical observables related to them, the 6 quark masses, the 3 CKM angles and the

CP-violating phase. The observables are obtained from these matrices using the MPT

package [79]. The fit is done at the energy scale MZ [9]. The initial values for the fitting

procedure are randomized, while the rest of the procedure is based on a deterministic

minimization algorithm. The results from the best fit are given in Table 4.4, where

χ2
q = 0.0355. It is worth noting that χ2

q is not normalized by the number of free

parameters.

Unsurprisingly, χ2 is very small, as the number of free parameters is larger than

the number of observables. Nonetheless, this shows that the NNI texture is capable of

reproducing observations with great accuracy.

4.2.1.2 Lepton Masses and Mixing Parameters

Following a similar approach to the quark sector, the masses and mixing angles of the

leptonic sector are fitted. In this case only the elements of the neutrino mass matrix are

fitted, since the charged lepton matrix is already diagonal. The neutrino mass matrix

has the A2-texture and takes the form

mν =

 0 a eiφa 0

a eiφa b eiφb c eiφc

0 c eiφc d eiφd

 . (4.44)

It is not necessary to redefine the phases of this matrix, as there are more observables

than degrees of freedom. Nevertheless, the phases can be redefined, leaving only two

of them non-zero. The fitting procedure was done in for both cases, finding exactly
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Parameter Best fit

Au/(10−2 GeV) 1.493
Bu/(10−2 GeV) −5.531

Cu/GeV −3.008
Du/(101 GeV) 3.562
Eu/(102 GeV) 1.679
Ad/(10−2 GeV) −1.241
Bd/(10−2 GeV) 1.228
Cd/(10−1 GeV) −3.083
Dd/(10−1 GeV) −4.774

Ed/GeV −2.797
αu/◦ 96.64
βu/◦ 98.34

Observable
Global-fit value

Model best-fit
Best-fit value 1σ range

θq12/
◦ 13.03 12.98→ 13.07 12.988

θq13/
◦ 0.209 0.201→ 0.216 0.2085

θq23/
◦ 2.41 2.37→ 2.45 2.411

δq/◦ 69.21 66.12→ 72.31 68.516
mu/(10−3 GeV) 1.288 0.766→ 1.550 1.2889
mc/(10−1 GeV) 6.268 6.076→ 6.459 6.2677
mt/GeV 171.68 170.17→ 173.18 171.684
md/(10−3 GeV) 2.751 2.577→ 3.151 2.7507
ms/(10−2 GeV) 5.432 5.153→ 5.728 5.4328
mb/GeV 2.854 2.827→ 2.880 2.8536
χ2
q 0.0355

Table 4.4: Best-fit values of the model parameters in the quark sector are shown in the upper
table. The global best-fit as well as their 1σ error [8, 9] for the various observables are given in the
second and third columns of the lower table. Also, the best-fit values of the various observables
are listed in the last column of the lower table.

the same values for all observables, therefore only one of them, the one without phase

redefinition, is presented here.

The χ2 function is identical as in (4.42), the only differences being the observables

and their standard deviations. The leptonic masses and mixings obtained from the

fit, which are compatible with the latest global fit data, can be seen in Table 4.5 at

χ2
l = 2.0053. As was the case with the quark sector, χ2

l is not normalized by the number

of free parameters.

The only parameter in Table 4.5 that falls out of the 1σ range is δl (it falls in the

1.07σ range). Nevertheless, considering that χ2
l ≈ 2 is unnormalized, the fit is still very

good. The PDG [8] gives four global fits for the neutrino masses and mixings, of these

the most recent [7] was chosen. While most parameters vary relatively little between

the fits, there is significant deviation of δl from the last fit to the first three. Also, in

all cases the uncertainty of δl is by far the largest. With this in mind, the that fact

best-fit point for the model falls slightly outside the 1σ range is not very worrying, as

in all the other global fits it falls inside of this range. Interestingly, in all cases it is

bigger than the central value of the fit, suggesting that the A2 texture favours values

of δl near the maximal CP-violating phase of 270◦.
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Parameter Best fit

a/(10−3 eV) 9.933
b/(10−2 eV) 2.646
c/(10−2 eV) 2.475
d/(10−2 eV) 2.264

φa/◦ 29.87
φb/
◦ 91.88

φc/◦ 3.03
φd/
◦ −109.97

Observable
Global-fit value

Model best-fit
Best-fit value 1σ range

θl12/
◦ 34.5 33.5→ 35.7 34.85

θl13/
◦ 8.45 8.31→ 8.61 8.432

θl23/
◦ 47.7 46.0→ 48.9 48.11

δl/◦ 218 191→ 256 258.8
α/◦ 65.27
β/◦ 265.08
∆m2

21/(10−5 eV2) 7.55 7.39→ 7.75 7.571
∆m2

32/(10−3 eV2) 2.424 2.394→ 2.454 2.4221∑
mν/(10−2 eV) 6.453

me/MeV 0.4865763 0.4865735→ 0.4865789 -
mµ/GeV 0.10271897 0.10271866→ 0.10271931 -
mτ/GeV 1.74618 1.74602→ 1.74633 -
χ2
l 2.0053

Table 4.5: Best-fit values of the model parameters in the lepton sector are shown in the upper
table. The global best-fit as well as their 1σ error [7, 8, 9] for the various observables are given in
the second and third columns of the lower table. Also, the best-fit values of the various observables
are listed in the last column of the lower table.

4.2.2 Flavour Violating Decays with Axions

The model contains flavour violating Yukawa couplings. Flavour violating processes

containing quarks are particularly interesting, as they can have an axion in the final

state [80], i.e.

qi → qja, (4.45)

where the quark qi can decay to the quark qj and an axion. These processes can be

studied through meson decays and are independent of the UV-completion of the theory,

and thus are the same in both models.

The starting point of this analysis is the Lagrangian of the quark-flavon interaction,

of Eq. (4.4) and Eq. (4.5). In the interaction basis, the Yukawa couplings of the quarks

to σ can be written as

Lσq = yuijujLσuiR + yu
′
ij ujLσ

†uiR + ydijdjLσdiR + yd
′
ijdjLσ

†diR , (4.46)
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where the Yukawa coupling matrices y
u(′)
ij and y

d(′)
ij are

yu/d =
1

vσ

 0 Au/d 0

Bu/d 0 0

0 0 0

 , yu
′/d′ =

1

vσ

0 0 0

0 0 Cu/d

0 Du/d 0

 , (4.47)

and Au/d, Bu/d, Cu/d, and Du/d are the (complex) parameters of the quark mass ma-

trices. Transforming the quarks to the mass basis (see Section 2.1.6), the quark-flavon

Yukawa Lagrangian becomes

Lσq′ = yuijU
†
ikLu

′
kLσUjlRu

′
lR + yu

′
ijU

†
ikLu

′
kLσ

†UjlRu
′
lR

+ ydijV
†
ikLd

′
kLσVjlRd

′
lR + yd

′
ijV
†
ikLd

′
kLσ

†VjlRd
′
lR, (4.48)

where u′/d′ denote quark mass eigenstates, UuL and UuR diagonalize the up quark mass

matrix and UdL and UdR diagonalize the down quark mass matrix, respectively. Writing

the Yukawa couplings in the mass basis as λu(′) = U †Ly
u(′)UuR and λd(′) = V †Ly

d(′)UdR,

Eq. (4.48) can written more compactly as

Lσq′ = λuiju
′
iLσu

′
jR + λu

′
iju
′
iLσ
†u′jR + λdijd

′
iLσd

′
jR + λd

′
ijd
′
iLσ
†d′jR . (4.49)

Finally, by neglecting axion mixing with other scalars, the Lagrangian describing the

coupling of the axion to the quarks

Laq′ = ia(εuiju
′
iu
′
j + εdijd

′
id
′
j + ε′uiju

′
iγ5u

′
j + ε′dijd

′
iγ5d

′
j) , (4.50)

where εu,dij = (λij−λ†ij)/2 and ε′u,dij = (λij+λ
†
ij)/2 . From these couplings the branching

ratio of flavor violating decays with axions can be calculated.

The most sensitive test of neutral flavor violation with a final state axion is the

K+ → π+a process [80]. The decay ratio for the Kaon decay to axion and pion is given

in [81],

Γ(K+ → π+a) ≈ mK

64π
|εd21|2B2

S

(
1− m2

π

m2
K

)
, (4.51)

where BS is a non-perturbative parameter and is calculated in lattice to BS ≈ 4.6 [81].

To estimate the Kaon decay the best-fit point, as tabulated in Table 4.4, is evaluated

in Eq. (4.48) and Eq. (4.49), to find |εd21|2. This leads to

Γ(K+ → π+a) ≈ 1.9× 10−9GeV3

v2
σ

. (4.52)

Using the latest constraint of the branching ratio for the Kaon decay from the E949
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Collaboration [82] i.e.,

BR(K+ → π+a) =
Γ(K+ → π+a)

ΓTotal(K+)
< 7.3× 10−11 , (4.53)

the following constraint on vσ is vσ > 2.5× 1010 GeV. For the models described above,

where vσ ≈
√

2faN with N = 5, the bounds on vσ can be shifted to the axion decay

constant, fa, where

fa > 7× 109 GeV . (4.54)

Current measurements from the NA62 collaboration [83] give a similar, and in some

cases smaller, limit to the branching ratio. A smaller branching ratio would also make

the bound on vσ more stringent, but in this case not very significantly. The smallest

branching ratio coming from NA62 is BR(K+ → π+a) < 5× 10−11, although it would

require an axion mass of about (160−225) MeV [83], since the axion mass must be signif-

icantly smaller, the actual constraint imposed by NA62 is not as strong. Nevertheless,

the sensitivity of NA62 to this decay channel is BR(K+ → π+a) < 1.0×10−12 [65, 84].

If future measurements were to reach this limit, the bound on vσ would become

vσ > 2.1 × 1011 GeV, or equivalently, fa > 3 × 1010 GeV. These bounds are an or-

der of magnitude smaller than those coming from the E949 experiment.

Another meson decay that can constrain the axion decay constant is the B+ → K+a

decay, where the bottom to strange quark transition is probed. The decay width of

this process is given by [81] as

Γ(B+ → K+a) ≈ mB

64π
|εd32|2(fK0 (0))2

(
mB

mb −ms

)2(
1− m2

K

m2
B

)3

, (4.55)

with fK0 (0) ∼ 0.33[85]. The experiment Belle-II constrains the branching ratio of this

process to BR(B+ → K+a) < 10−6 − 10−8 [61], which leads

vσ > 1.8× (107 − 108) GeV . (4.56)

Since vσ ≈
√

2Nfa, the bound above translates into

fa > 6× (106 − 107) GeV. (4.57)

This bound is smaller than that coming from Kaon decays, as such, the former is taken.

Concluding this section, the axion decay constant fa > 7×109 GeV bound translates

to the bounds ma < 0.7× 10−3 eV, and |gaγ(GeV−1)| < 0.8× 10−14, for the axion mass

and axion-photon coupling, respectively. These bounds are two orders of magnitude

stronger than the limits from astrophysics (see Figure 1 of [76]). It is worth noting that
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these bounds are obtained by neglecting σ−σ′ mixing. When this mixing is sizable the

bounds on fa are relaxed, and consequently those on ma and |gaγ | as well. On the other

hand, the bounds would at most become stronger by about an order of magnitude in

the case where the branching ration of NA62 is as low as its sensitivity. See Fig. 4.4

for the limits imposed by Kaon decay and different experiments.

4.2.3 Flavour Violating Higgs Couplings

The two Higgs doublets present in this model allow for the existence of flavour changing

neutral currents (FCNCs). These currents are relevant for this model, since natural

flavour conservation1 is difficult to implement here, since it would require the impo-

sition of discrete symmetries or the inclusion of more Higgs doublets, deviating from

minimality. FCNCs are stongly constrained through some decays, like the Kaon-to-

muon decay KL → µ−µ+, or top decays such as t → hc, hu [87]. This can be used

to the advantage of furthering the constraints of the model, by setting limits to the

scalars’ masses and couplings to the Higgs bosons.

The high scale of PQ breaking induces a decoupling of the components of Hu and

Hd from the components of σi. This simplifies the expression for the Higgs bosons,

which at leading order are h ≈ hu0 cosα+hd0 sinα, and H ≈ −hu0 sinα+hd0 cosα, where

one identifies h as the 125 GeV boson observed at LHC, and H as an additional heavy

scalar. The couplings of these two particles to the SM fermions may be obtained from

the effective Lagrangian of (4.4) and (4.5) and read as follows

L ⊃ Cu1
vu
uLuRh

u
0 +

Cu2
vd
uLuRh

d
0 +

Cd1
vd
dLdRh

d
0 +

Cd2
vu
dLdRh

u
0 , (4.58)

where the matrices C
u/d
i are given by

C
u/d
1 =

 0 Au/d 0

Bu/d 0 0

0 0 Eu/d

 , C
u/d
2 =

0 0 0

0 0 Cu/d

0 Du/d 0

 , (4.59)

whose entries are the parameters of the quark mas matrices. Writing this in terms of

the bosons h and H, and the quarks in the mass basis, the Lagrangian becomes

L ⊃ hu′Lu′R
(
C ′u1
vu

cosα− C ′u2
vd

sinα

)
+Hu′Lu

′
R

(
C ′u1
vu

sinα+
C ′u2
vd

cosα

)
+ (u→ d) ,

(4.60)

1The authors of [86] define natural flavour conservation as the assumption that only one Higgs field
can couple to a given quark species.
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Figure 4.5: Exclusion region plot in the (tanα−tanβ) plane obtained from the non-observation
of the t→ hc flavor violating decay. The gray colored region is excluded by ATLAS data [4], the
purple colored region is expected to be probed in the future by the HL-LHC experiment [5] and
the orange region will be further probed by ILC or CLIC [6]. The uncolored region (see white
thin band) predicts a branching ratio beyond the sensitivity of these experiments. The dashed
line indicates limit of no flavor violation in light Higgs Yukawa couplings.

where the matrices C
′u/d
i are defined as

C ′ui = Uu †L Cui U
u
R , C ′di = Ud †L Cdi U

d
R . (4.61)

Besides α, the other free parameter for studying flavour violation is β, which is through

the relationship

vSM = vu sinβ + vd cosβ, (4.62)

where vSM is the SM Higgs vev.

In the limit vu/vd = cotα the Yukawa couplings of h are proportional to the up- and

down-quark mass matrices, while the couplings of H are not. After the transformation

of the fermion states to the mass basis, the couplings of h are diagonal, while the

couplings of H are not, thus this will be called the flavour conserving limit (for h),

since the diagonal nature of the coupling matrix prohibits mixing between the flavours.

This limit does not affect the couplings of the axion, which means that the processes
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discussed in the previous section do not vanish. A deviation of α from the flavor

conserving limit will introduce flavor violating couplings of the light Higgs boson, which

can be probed with observables such as t→ hc in the up-sector and h→ bs in the down

sector. The t→ hc decay channel currently has an upper bound set by ATLAS [4]

BR(t→ hc)LHC < 1.1× 10−3 , (4.63)

while future experiments HL-LHC [5], ILC and CLIC [6] project the following sensitiv-

ities to this process

BR(t→ hc)HL−LHC < 2× 10−4 , (4.64)

BR(t→ hc)ILC/CLIC < 10−5 .

(4.65)

With this in mind, the branching ratio can be calculated from (4.60) following [88]

Γt→hc =
C2
tcmt

16π

√
[1− (Rc −Rh)2] [1− (Rc +Rh)2]

[
(Rc + 1)2 −R2

h

]
, (4.66)

where the coupling Ctc is defined as

Ctc =
[(C ′u1 )23 + (C ′u1 )32] cosα

vSM sinβ
− [(C ′u2 )23 + (C ′u2 )32] sinα

vSM cosβ
, (4.67)

mt is the top quark mass, Rh is the Higgs to top mass ratio, Rh = mh/mt, and Rc
is the charm to top mass ratio, Rc = mc/mt. Using the experimental value for the

total width of the top quark [8] the constraints on the free parameters tanα and tanβ

are derived, and illustrated in Fig. 4.5. From the best fit point given in Table 4.4, a

numerical value of Eq. (4.66) is obtained, giving the following approximate constraint

on the free parameters ∣∣∣∣cosα

sinβ
(1− tanα tanβ)

∣∣∣∣ ≤ 17
ΓExpt→hc
[GeV ]

, (4.68)

for a given experimental input of the decay width ΓExpt→hc. Fig. 4.5 shows that small

values of tanβ allow only large values of tanα and small values of tanα allow only

large values of tanβ, which is also implied by Eq. (4.68). It can also be seen that

ATLAS data has already ruled out a large portion of the parameter space (gray-region)

and HL-LHC (purple-region) and CLIC (orange-region) will leave only a small region

around the tanβ = cotα limit unprobed [6].

It is also worth noting that the t→ hu and h→ cu decays can also place constraints
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on α and β, however these are not as strong as those coming from t → hc, since

the hierarchy in the mass matrices is inherited by the coupling matrices C
u/d
i (see

Eq. (4.59)), which in turn is passed down to the physical coupling matrices C
′u/d
i (see

Eq. (4.61)). Accordingly the constraints imposed by the aforementioned processes are

found to be numerically much weaker than those coming from t→ hc.

4.2.4 Flavourful Axion as a Dark Matter Candidate

The flavourful axion can be a good dark matter candidate, provided a sufficient amount

of them was produced in the early universe. Its cosmological properties are not altered

significantly by the fact that the PQ symmetry is taken to be a flavour symmetry as

well, thus a standard analysis can be performed. The main contribution to the axion

relic denisty is produced by the misalignment mechanism (see Appendix B.2), which is

Ωah
2 ≈ 2× 104

(
fa

1016GeV

)7/6

〈θ2
i 〉 , (4.69)

where θi is the initial misalignment angle of the cosmological axion field and takes values

in the range [0, 2π). For the axion breaking scale 5 × 1010 < fa < 1 × 1015 (GeV),

one can match the axion relic density to the observed dark matter relic abundance

ΩDMh
2 ∼ 0.12 without fine tuning θ. It is worthwhile to mention that the N > 1

prediction of DFSZ models induce the formation of stable domain walls in the universe,

which is incompatible with the standard cosmology [89]. One way to avoid the effect of

domain walls on the observed universe is to embed this type of models in a cosmological

model where inflation happens after the formation of these walls, thereby inflating away

the density of the walls (see Appendix B.2 for a brief explanation). Another possible

resolution of the domain wall problem is to destabilize the walls with a dynamical

breaking of the PQ symmetry [90, 91].
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Chapter 5

Conclusion

A flavourful axion model was constructed and some of its phenomenological aspects

were studied. This model aims to solve multiple problems at once. Mainly, to explain

the fermion mass hierarchy, including the neutrinos, and provide a solution to the strong

CP problem using the Peccei-Quinn symmetry and its axion. Additionally, axions are

popular and well motivated dark matter candidates, and the flavourful axion from this

model is no exception. Before this, the theoretical framework regarding the masses

and mass hierarchies in the Standard Model (Chapter 2), and axions (Chapter 3), were

presented.

The model itself is constructed first by identifying the Froggat-Nielsen and Peccei-

Quinn symmetries, thus treating the Peccei-Quinn symmetry as a flavour symmetry.

The charges of the fermions under this symmetry are such that the up- and down-quark

mass matrices have the NNI structure, with only the (3, 3) term being generated at

tree level and the hierarchy between the mass matrices being explained by a hierarchy

between the vevs of the two Higgs doublets, that appear in the DFSZ-style axion

model. The lepton masses are realized in a type-I seesaw scenario, obtaining the A2

structure for the neutrinos’ masses, implying they are Majorana particles. In the quark,

sector two UV-completions, following the type-I and type-II seesaw topologies in the

diagrams, are given, whose quark mass matrices also possess the NNI structure. In the

scalar sector, the axion is extracted from the Goldstone bosons of the flavons and Higgs

doublets. The axion and its decay constant are obtained from the scalars’ Goldstone

bosons and the scalars’ Peccei-Quinn charges and vevs. Using the SU(5) grand unified

theory as a benchmark, it can be seen that the flavourful axion’s coupling to the photon

is about 14 times weaker that the SU(5) axion.

The masses and mixing parameters of the quarks and leptons were obtained by

means of a χ2 fit, and can be seen in Table 4.4 and Table 4.5, respectively. Using the

parameters found in the fit it is possible to put constraints on the flavourful axion’s free

parameter fa, by analyzing flavour violating decays with the axion as a final state. The

constraint found is fa ≥ 7×109 GeV, implying ma < 0.7×10−3 eV, and |gaγ(GeV−1)| <
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0.8 × 10−14. The two Higgs doublets present in the model raise the possibility of the

existence of flavour changing neutral currents, where the t → hc decay channel is

the most constraining. These constraints, obtained through the branching ratio of

the decay, are summarized in Fig. 4.5, where the latest bounds of ATLAS, as well as

the limits of future experiments (HL-LHC, ILC and CLIC), are shown. Lastly, the

flavourful axion can also be a cold dark matter candidate, where it can explain the

dark matter relic density for any initial misalignment angle provided the axion decay

constant takes a value between 5 × 1010 GeV and 1 × 1015 GeV, and the axions were

produced by the misalignment mechanism.

These results show that it is possible to construct relatively simple (regarding extra

fields and symmetries) extensions of the Standard Model, that can explain many of

the problems present in it at the same time, in this case the fermion mass hierarchy,

the strong CP problem, and the neutrino masses, while also providing a dark matter

candidate. Since there are more free parameters than observables in the quark sector,

future studies in this model could also focus on trying to eliminate some of them, for

example by finding or imposing symmetries. Through a phenomenological analysis, it

is possible to constrain these models, whereby they can be made to conform to current

observations, while also distinguishing them from the Standard Model.
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Appendix A

Why a New Particle?

A question that can (and should) be asked before contemplating the introduction

of a new particle, is the more fundamental question why dark matter? Is there no

other explanation for the phenomena mentioned in Sec. 1.2? The short answer is yes,

with some caveats. For instance, there are theories like Modified Newtonian Dynamics

(MOND) [92] and its relativistic offspring Tensor-Vector-Scalar gravity (TeVeS) [93],

that attempt to explain phenomena attributed to DM by other means. In this case

by modifying graviational dynamics. MOND in particular modifies Newtonian dynam-

ics (hence the name) in the small acceleration limit, explaining the rotation curves

of some galaxies. Since this is non-relativistic, MOND fails to explain gravitational

lensing. TeVeS is a relativistic generalization of MOND, where MOND arises in the

weak field limit, as Newtonian dynamics does for General Relativity. This theory can

explain gravitational lensing. Nonetheless, most alternatives to DM have trouble in

other areas. One very important area where the standard cosmological model, ΛCDM

(Lambda Cold Dark Matter), holds an acute advantage is in explaining the history and

evolution of the Universe.

Numerical simulations based on ΛCDM can replicate the Cosmic Microwave Back-

ground (CMB), and importantly its anisotropies, while many theories based on TeVeS

fail in this task (as with most contested theories, there are exemptions, see [94] for

an in-depth discussion). Furthermore, the structure and evolution of the CMB helps

discriminate between DM candidates. The argument against modified gravity and in

general a dark-materless Universe given in [15] rests on the CMB anisotropies and the

formation of large scale structures. In the early Universe, before recombination1, the

baryonic density fluctuations and the photon thermal fluctuations (i.e. the thermal

fluctuations in the CMB) were proportional, since baryons and photons were tightly

coupled. As such, the baryonic density fluctuations in the early Universe can be con-

1This means the formation of hydrogen atoms from free protons and electrons that occurred as the
Universe cooled down.
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strained by the anisotropies of the CMB to be

δρ

ρ
< 10−4. (A.1)

Nowadays, large scale, non-linear structures exist, which is related to large baryonic

density fluctuations
δρ

ρ
� 1. (A.2)

However, the baryonic density fluctuations should grow like matter (in the linear regime,

which is valid in the early Universe), in other words

δρ

ρ
∼ a, (A.3)

where a is the scale factor. This factor would grow due to redshift by about three orders

of magnitude from the value it took on recombination to the present value. This would

imply that the fluctuations are much smaller than what can be seen today. In turn, this

discrepancy suggests that there must exist matter, that decoupled from baryons and

photons earlier than recombination, thus creating inhomogenities, which interact with

the rest of the matter gravitationally, that could later grow and explain the non-linear

structures present nowadays.

Disregarding modifications to gravity still does not assure that DM is a new particle.

The last argument showed that it is hard to account for structure formation with only

baryons. Another argument against baryonic DM is that Big Bang Nucleosynthesis [8]

predicts a baryon density

Ωbh
2 ≈ 0.02, (A.4)

which is in agreement, for example the results of the Planck 2018 Review [95] show

Ωbh
2 = 0.0224 ± 0.0001. Compelling as these arguments are, they are bound to cos-

mological scales. For a long time it was thought that at the galactic scale the dark

halos could be composed of massive, macroscopic objects composed of baryons, called

MACHOs (Massive Compact Halo Objects), like brown dwarfs and gas balls (Jupiter-

like planets). Consistent with the cosmological estimates, these objects were not found

at the rates. Experiments like EROS-2 [96] observed the dark halo of the Magellanic

Clouds, expecting to find about 39 microlensing events, but could only observe one.

While this does not mean MACHOs do not exist, it does strongly constrain their con-

tribution to the total amount of DM to at most 8%.
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Appendix B

Derivation of some Cosmological

Quantities

B.1 Virial Mass of the Coma Cluster

A brief overwiew of the derivation of the virial mass of the galaxies is given, follow-

ing [15]. First summing the forces applied to every galaxy in the cluster and then taking

the time-average of these forces times the position of the galaxy, i.e of the virial

Vir =
∑
i

Fi · ri. (B.1)

Under the assumption that the cluster is stationary, the time derivative of the polar

moment of inertia, defined as

Θ =
∑
i

Mir
2
i (B.2)

vanishes. From this follows that the time average of the virial is

Vir = −2T , (B.3)

where T is the kinetic energy of the cluster. In the Newtonian limit the inverse square

law holds for the gravitational potential, thus

Vir = U = −1

2

∑
i 6=j

GN
MiMj

|ri − rj|
, (B.4)

where Mi is the mass of the i-th galaxy and GN the gravitational constant. The galaxies

can be taken as uniformly distributed in a sphere of radius Rc and of total mass Mc,

this leads to

U = −GN
3Mc

5Rc
. (B.5)
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The kinetic energy average is thus the kinetic energy of a body with mass Mc and speed

given by the average of the individual galaxies’ kinetic energies, where Zwicky used v2

for the double average. Taking this and Eq. (B.3) into account it follows that

Mc =
5Rcv2

3GN
. (B.6)

Considering non-uniform spherical distributions Zwicky took this as an upper limit to

the cluster mass, which is about

Mc > 9× 1043 kg. (B.7)

B.2 Misalignment Mechanism

Axion self-interactions are given by a potential. Since the interest here is to under-

stand how axions were formed in the early Universe it will be important to write a

temperature-dependent effective potential,

V

(
a

fa
, T

)
. (B.8)

Defining the axion angle

θ(x) =
a(x)

fa
, (B.9)

it can be noticed that θ possesses the following periodic symmetry

θ = θ + 2π, (B.10)

since it relates to the strong CP-violating phase. The potential should respect this

symmetry, thus

V (θ, T ) ∼ cos(θ). (B.11)

As a matter of fact, calculations based on the Dilute Instanton Gas Approximation

(DIGA) [97] find the potential as

V (θ, T )|T�TC = χ(T ) (1− cos(θ)) , (B.12)

where TC ≈ 200 MeV is the QCD critical temperature, where the phase transition from

the confined to the free regime occurs, i.e. where QCD becomes perturbative. The

other parameter, X(T ) is the QCD toplogical susceptibility, and is given by

χ(T ) = f2
am

2
a(T ). (B.13)
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The temperature dependence of the mass (and also other parameters) is a complication

that arises in finite temperature QFT, after the phase transition the mass can be given

by a power law

ma(T )|T�Tc ' βma(T = 0)

(
TC
T

)γ
, (B.14)

with β is a QCD dependent proportionality constant. The power γ ≈ 3.7, while β is of

the order O(−2).

The axion angle has a Klein-Gordon (in a potential) equation of motion

�θ +
∂V (θ, T )

∂θ
= 0. (B.15)

In an expanding (and flat) universe a scalar field satisfies

�θ(x) =

(
∂2
t + 3H(t)∂t −

1

R2(t)
∇2

)
θ(x), (B.16)

where H the Hubble rate, defined as H(t) = Ṙ(t)
R(t) . The axion potential takes the form

(from Eq. (B.12) and Eq. (B.13))

V (θ, T )|T�TC = f2
am

2
a(T )

∞∑
n=1

(−1)n+1θ2n

(2n+ 1)!
. (B.17)

Keeping only the quadratic term in the potential and doing a spatial Fourier transform

(∇2 → −k2) Eq. (B.16) becomes

θ̈ + 3H(t)θ̇ +
k2

R2(t)
θ +m2

a(T )θ = 0. (B.18)

Each wavevector k characterizes the (Fourier) modes of the axion angle field. The full

solution to Eq. (B.18) will include an integral over all the modes. The zero modes of the

field (k = 0) are the main contributors to the number density. Since higher frequency

modes become relevant when k & H(t)R(t), their number density is suppressed in

comparisson to that of the zero modes1 [28].

The equation of motion can be taken therefore as

θ̈ + 3H(t)θ̇ +m2
a(T )θ = 0. (B.19)

It is worth noting that temperature is time varying, this means T = T (t) and therefore

ma(T ) = ma(t).

1In a more formal treatment of the subject, it would be necessary to discuss the relationship between
the wavelength, λ, k, and R in order to reach this conclusion.
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The equation of motion Eq. (B.19), is similar to the equation of motion of a damp-

ened oscillator (it would be exactly this equation if the coefficients were constant).

There are two important regimes for the qualitative behaviour of θ. The first regime

happens at high temperatures. Eq. (B.14) shows that at temperatures far greater than

TQCD, ma ∼ 0, which is the case for this regime. The second regime occurs when the

mass term starts to become relevant. In this regime the field will start to oscillate, as

such a time, tosc, can be defined, which signals the onset of this behaviour. This time

can be defined implicitly by

Tosc = T (tosc), (B.20)

where the oscillation temperature, Tosc, is given by

ma(Tosc) = 3H(Tosc). (B.21)

Therefore, the first regime happens at t� tosc, and the second at t & tosc.

For the first regime

θ̈ + 3H(t)θ̇ = 0. (B.22)

and R(t) ∝ t
1
2 , as at this time it can be assumed that the Universe is radiation domi-

nated, which implies

3H(t) = 3
1

2

t−
1
2

t
1
2

=
3

2t
. (B.23)

This gives the equation of motion in this regime as

θ̈ +
3

2t
θ̇ = 0. (B.24)

A natural initial condition is given at time PQ breaks, tPQ, i.e.

θ(tPQ) = θPQ

θ̇(tPQ) = θ̇PQ. (B.25)

The solution can be thus found by integrating twice, giving

θ(t) = θPQ − 2θ̇PQt
3
2
PQ

(
t−

1
2 − t−

1
2

PQ

)
= θPQ +

θ̇PQ
HPQ

(
1− RPQ

R(t)

)

θ̇(t) = θ̇PQ
t
3
2
PQ

t
3
2

= θ̇PQ

(
RPQ
R(t)

)3

, (B.26)

where HPQ = H(tPQ) and RPQ = R(tPQ). This solution goes from θPQ at tPQ to

θPQ +
θ̇PQ
HPQ

as t grows.

75



B.2 Misalignment Mechanism

Unless t ∼ tPQ, which would be significantly earlier than tosc, the aforementioned

solution is approximately as a constant. Therefore, in the second regime the angle from

Eq. (B.26) can be taken as a constant. This angle is called the (initial) misalignment

angle

θi = θPQ +
θ̇PQ
HPQ

, (B.27)

since it is not necessarily aligned (meaning of the same value) with the angle that

minimizes the axion potential. From Eq. (B.26) it can also be seen that

θ̇i ≈ 0, (B.28)

since tosc � tPQ. The value of the misalignment angle will depend on cosmological

factors, but will also be important to determine the axion relic density, which is the

reason for the name of this mechanism.

During inflation the value of θ will change by of the order of H(T ), this will repeat-

edly happen in a period corresponding to the Hubble time, thus given enough time, θ

will take every possible value, much like a random walk [98]. The standard scenarios

occur under the assumption that the PQ symmetry remains unbroken, in other words

the Universe’s final temperature is lower than the PQ-temperature, and depend on

whether this symmetry is broken during or after inflation1 [28]. This distinction is

necessary due to the possibility of domain walls and other toplological effects [15, 49]

existing for axions. If PQ-breaking occurs during inflation the domain walls will be

negligible, as they will be inflated away. In this case the misalignment angle will take

a homogeneous value. On the other hand, if it occurs after inflation domain walls will

be present and important. Also, the misalignment angle could take different values in

causally disconnected regions, but in the present only one of these might be contained

in our Hubble volume. A first estimation of the misalignment angle for this case can

be made by averaging the squared angle over the interval [−π, π), such that

θi ≡
√
〈θ2
i 〉 =

(
1

2π

∫ π

−π
f(θ)θ2 dθ

) 1
2

, (B.29)

where f(θ) is a distribution, dependent on the axion potential’s form. In the harmonic

approximation, as was used before (V (θ, T ) ≈ θ2

2 ), the distribution is uniform, f(θ) ≈ 1.

This approximation leads to the misalignment angle being

θi =
π√
3
. (B.30)

1More precisely, this condition is that the axion decay constat is larger than the Hubble rate at the
end of inflation.
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Now it is useful to return from the angle θ(t) to the axion field a(t), in order to

calculate the axion relic density. The effective equation of state for the axion field is

wa =

〈
1
2 ȧ− V (a, T )
1
2 ȧ+ V (a, T )

〉
, (B.31)

where wa is called the scale factor, and the average, signified by the brackets, is done

over a time larger than the oscillation period. There is a clear distinction in the scale

factor between the regimes before and after tosc. Before this time

1

2
ȧ
∣∣
t�tosc ≈ 0, (B.32)

since it is proportional to θ̇. This means that

wa|t�tosc = −1. (B.33)

This behaviour is dark energy-like, this means the axion field is frozen at this time,

and corresponds to the approximatley constant solution obtained in Eq. (B.26). After

the field begins to oscillate, the kinetic and potential energies will be the same over a

period of oscillation, leading to

wa|t>tosc = 0. (B.34)

Although the axion field is no longer frozen, the axion number density in a comoving

volume will freeze out, assuming there is no entropy injection in the evolution of the

Universe, this implies that
na(T )

s(T )
= const, (B.35)

where na is the (axion) number density and s the entropy density. This also implies

that

na(T ) = na(Tosc)
s(T )

s(Tosc)
. (B.36)

To continue, it is useful to start with the axion energy density and its derivative

ρa = f2
a

(
θ̇

2
+ma(T )2 θ

2

2

)

ρ̇a = f2
a

(
θ̈

2
+ ṁa(T )ma(T )θ2 +ma(T )2θθ̇

)
, (B.37)

where the spatial derivatives have been neglected. After some algebra, the equation of
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motion, Eq. (B.16), can be rewritten in terms of the new variables as

ρ̇a =

(
ṁa(T )

ma(T )
− 3H(t)

)
ρa. (B.38)

To roughly obtain the energy density for the asymptotic value of the axion field, where

it has settled on the minimum of the potential, a quick calculation cab be performed.

Assuming that the equation evolves adiabatically1, this means that ṁa
ma
, H � ma(T ),

and that entropy will be conserved in the comoving volume. The solution in this case

can be obtained straightforwardly by integrating, giving

ρa = C
ma(T )

R(t)3
, (B.39)

with C being a constant. Since ρa ∝ R(T )−3, it can be inferred that the axion field

describes non-relativistic matter.

Since matter will dominate the axions energy density can be expressed as

ρa(T ) = ma(T )na(T ). (B.40)

Using Eq. (B.14) for the mass and Eq. (B.36), the energy density becomes

ρa(T ) = maβna(Tosc)
s(T )

s(Tosc)

(
TC
T

)γ
. (B.41)

Averaging Eq. (B.37) at Tosc, and diving by the axion mass, an expression for the

number density can be obtained

na(Tosc) = bf2
a

m2
a(Tosc)

2

〈θ2
i 〉
2
. (B.42)

The constant b is of the order O(1), and is included to account for the approximations

taken in previous steps. The entropy density, in a radiation dominated Universe, can

be written as

s(T ) =
2π2

45
gs(T )T 3, (B.43)

where gs(T ) =
∑

p ηpgp

(
Tp
T

)3
represents the effective number of entropy relativistic de-

grees of freedom; the sum runs over all p particle species, Tp is the species’ temperature,

gp its internal degrees of freedom, and ηp = 1, 7
8 the statistical factor for bosons and

1This approximation is not always valid [99].
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B.2 Misalignment Mechanism

fermions, respectively. Combining the last two equations, the energy density becomes

ρa(T ) =
βb

2
m2
af

2
a 〈θ2

i 〉
gs(T )

gs(Tosc)

T 3T γC
T 3+γ
osc

. (B.44)

The axion relic density, from misalignment, takes the form

Ωmis
a =

ρa
ρcrit

, (B.45)

where

ρcrit =
3m2

PlH
2
0

8π
, (B.46)

mPl is the Planck mass, and H0 = H(Ttoday) is the Hubble constant. A better result

takes anhormonic terms in the axion potential into account. Also, in the presence

of domain walls the axion population can significantly change, for example due to

vibrations or decay of the domain walls. A benchmark, which will be used later, for

the relic density is given by [49] as

Ωmis
a h2 ≈ 2× 104

(
fa

1016 GeV

) 7
6

〈θi〉2, (B.47)

with h = H0
100 , the reduced Hubble constant.
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Appendix C

The Origin of the Strong CP Problem

and two Axion Models

C.1 From the U(1) Problem to the Strong CP Problem

The strong CP problem arose historically by a solution of another problem, the U(1)

problem [46]. The U(1) problem was a significant problem with QCD in the 70s, where

an apparent axial U(1) symmetry was broken inconsistently with experimental results.

The problem follows from an observation that in the massless limit, QCD possess global

U(N)L×U(N)R symmetries for the N left and right handed quarks. The symmetry is

equivalent to a vector times an axial symmetry, i.e. U(N)V × U(N)A. This symmetry

is a good approximate symmetry for the three lightest quarks, the up, down, and

strange quark, as well as just the up and down quark, the two lightest quarks. As

U(N) = U(1) × SU(N), the aforementioned symmetry, with N = 2 can be rewritten

as

U(2)L × U(2)R = SU(2)L × SU(2)R × U(1)V × U(1)A. (C.1)

The symmetry is spontaneously broken as quark condensates acquire a vev, in other

words 〈uu〉 = 〈dd〉 6= 0. After symmetry breaking the group is reduced to

SU(2)I × U(1)B × U(1)A. (C.2)

The subgroup SU(2)I = SU(2)V is the vector SU(2) (and a diagonal subgroup of

U(2)L ×U(2)R) corresponding to isospin, U(1)B is the baryon number, this symmetry

is exact in the SM Lagrangian, but anomalous, the U(1)A is the problematic group. The

broken symmetry corresponds to an axial SU(2)A. The Goldstone bosons associated

with the breaking of the symmetry are the three pions π0, π+, and π−. These are

not massless, since the quark masses also break the symmetry explicitly, giving them

mass, i.e. they are pseudo-Goldstone bosons. The problem now is that the U(1)A
symmetry is not observed in nature. If it were also spontaneously broken, there would
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C.1 From the U(1) Problem to the Strong CP Problem

be a massive pseudo-Goldstone boson in the meson spectrum. The η and η′ are the

next lightest mesons after the pion, but group theoretical considerations constrain the

masses to be mη′ <
√

3mπ0 [19]. The masses of the η mesons are, mη ≈ 548 MeV and

mη′ ≈ 958 MeV, compared to mπ0 ≈ 135 MeV [8], which violate the aforementioned

constraint by about 4 times. In consequence, the U(1)A symmetry appears to be no

symmetry at all.

In 1976 t’Hooft gave a solution to the U(1) problem by showing that introduction

of the CP violating term (also called the topological term) broke the U(1)A symme-

try [100]. Essentially, a non-trivial vacuum structure, emerging from the topology of

the QCD gauge group, breaks the U(1)A symmetry further, also giving rise to the

topological term in the QCD Lagrangian. A quick summary of the solution [46], will

be presented.

It is useful to return to the anomalous chiral current from Eq. (3.5). The fact that

this current is anomalous is not apparent from the Lagrangian or in the classical theory,

as a matter of fact it is not zero due to contributions by triangle diagrams like those

of Fig. 3.1 (see Eq. 3.44 for the expression of these factors and [101] for a complete

review on anomalies). This divergence is associated with the chiral symmetry, U(1)A.

If it also were to contribute to the action, the symmetry would not be a symmetry

of the Lagrangian, solving the U(1) problem. Under the chiral symmetry the quarks

transform like in Eq. (3.7). The divergence of the current contributes to the action like

δSQCD5 = α

∫
d4x ∂µJ

µ
5 , (C.3)

since this is a total divergence it can be written as a surface integral, which is formally

done in Euclidean 4-space after a Wick rotation, i.e. by mapping x0 → ix0. This

ensures that the action is actually finite, the end result must be taken back to spacetime

(Minkowski space). Since this is a rather informal summary of the solution it will not

be necessary to take this step explicitly, a more formal treatment of the topic is given

in Chapter 5 of [102].

The divergence can be explicitly written as

δSQCD5 = α
Nfg

2
s

16π2

∫
d4xGaµνG̃

µν
a . (C.4)

The divergence must be in the functional part of the equation, i.e. it must come from

the gluon strength tensors, therefore

GaµνG̃
µν
a = ∂µK

µ. (C.5)

The current Kµ is called a topological current or Chern-Simons current and can be
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C.1 From the U(1) Problem to the Strong CP Problem

expressed as

Kµ = εµνρσGaν

(
Gaρσ −

gs
3
fabcG

b
ρG

c
σ

)
. (C.6)

Using Stokes’ Theorem Eq. (C.4) can be expressed as a surface integral

δSQCD5 = α
Nfg

2
s

16π2

∫
dσµK

µ, (C.7)

where the surface integral is over boundary the hypersphere S3 (again, foramlly in

Euclidean space). Naively, since Kµ ∝ Gµa one would expect Kµ → 0 at the boundary,

as one expects Gµa → 0 at the boundary. This is not exactly true, it is true that Gµa can

be 0 at the boundary, but it can also be a gauge transformation of 0, what is known as

a pure gauge configuration1.

The question that arises then is if it is possible to have non-zero contributions to the

action from the pure gauge configurations. If this is the case, U(1)A is not a symmetry

of QCD, solving the U(1) problem. These configurations are best studied by writing

the gluons as a su(3) vector, i.e.

Gµ =
λa
2
Gaµ, (C.8)

where λa
2 are the su(3) generators. The usefulness of this comes from the fact that

under a gauge transformation

Gµ → U †GµU +
i

gs
U †∂µU, (C.9)

with U ∈ SU(3), therefore U † = U−1. In a pure gauge configuration the gauge field

takes the form

Gµ =
i

gs
U †∂µU. (C.10)

To continue, it is enough to restrict the problem to a subgroup of SU(3), namely SU(2).

The pure gauge configurations can be classified by how U maps to the identity element,

specifically they can be classified by how they fail to be continuously deformed to the

identity element2. As x→∞ the gauge group element U can tend to unity as

Un → e2πin, (C.11)

where n is an integer, called the winding number. This integer is related to the Jacobian

of S3 → S3 maps. To simplify the following expressions a gauge, sometimes called the

1To get a finite contribution to the action the proper boundary condition is Gaµν → 0, allowing the
possibility of non-zero configurations of Gaµ.

2Formally these are the homotopy classes of the gauge group.
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C.1 From the U(1) Problem to the Strong CP Problem

temporal gauge, can be chosen. In this gauge Ga0 = 0, while the spatial components

are unconstrained, consequently K0 6= 0. In this gauge, n results from the following

integral

n = i
g3
s

24π2

∫
d3x Tr(εijkG

i
(n)G

j
(n)G

k
(n)), (C.12)

where Gi(n) is a pure gauge configuration satisfying Eq. (C.11). This is also related to

the current Kµ, that in the chosen gauge simplifies to

K0 = −gs
3
εijkεabcG

a
iG

b
jG

c
k =

4

3
igsε

ijkTr (GiGjGk) . (C.13)

The pure gauge configurations are associated with different vacua, |n〉1. These

vacua are not physical, since Kµ is not gauge invariant. The physical vacuum is a

superposition of the |n〉 vacua,

|θ〉 =
∑
n

einθ|n〉, (C.14)

known as the θ-vaccum. This relates to the contribution to the action δSQCD5 by

considering vacuum transitions. The transition from the vacuum at t = +∞ to t = −∞
can be expressed as

〈θ+|θ−〉 =
∑
n,m

e−imθeinθ〈m+|n−〉. (C.15)

Defining the winding number difference ν = n−m, the vacuum transition becomes

〈θ+|θ−〉 =
∑
ν

eiνθ
∑
m

〈m+|(m+ ν)−〉. (C.16)

On the other hand it can be seen from Eq. (C.12) and Eq. (C.13) that the winding

number difference can be expressed as

ν = n|t=+∞ − n|t=−∞ =
g2
s

32π2

∫
d4x ∂0K

0(t,x) =
g2
s

32π2

∫
d3xK0(t,x)|t=+∞

t=−∞. (C.17)

Now, it is possible to write the transition as a path for fixed ν, this means that∑
m〈m+|(m+ ν)−〉 can be expressed as an integral. Doing this results in the following

expression

〈θ+|θ−〉 =

∫
DG

∑
ν

eiSQCDeiνθδ

(
ν − g2

s

32π2

∫
d4xGaµνG̃

µν
a

)
. (C.18)

1These correspond to classical solutions of the action in Euclidean 4-space, called instantons. An
explicit construction is given in [103].
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C.2 PQWW Axion

The QCD action is SQCD =
∫

d4xLQCD, while the δ assures that ν is fixed. The expres-

sion for ν comes from transforming Eq. (C.17) to the form of Eq. (C.4). Substituting

ν in the exponential leads to the final form of the vacuum transition

〈θ+|θ−〉 =

∫
DG

∑
ν

e
i

(
SQCD+

∫
d4x θ

g2s
32π2

GaµνG̃
µν
a

)
δ

(
ν − g2

s

32π2

∫
d4xGaµνG̃

µν
a

)
.

(C.19)

The exponential now contains the QCD action plus the topological term, from this

follows the effective action

Seff = SQCD +

∫
d4x θ

g2
s

32π2
GaµνG̃

µν
a (C.20)

and hence the topological correction to the QCD Lagrangian from Eq. (3.6). This is

called a superselection rule, since the topological term enters the Lagrangian by the

choice of a θ-vacuum.

By doing this, it is shown that the topological term arises naturally from the com-

plicated vacuum structure of QCD. This solves the U(1) problem, since U(1)A is not a

real symmetry of the QCD Lagrangian. A consequence is the introduction of another

problem, the strong CP problem.

C.2 PQWW Axion

The PQQWW axion was first described in 1977 by Weinberg and Wilczek [47, 48]. A

scalar SU(2)L doublet is introduced, acting as a second Higgs doublet, there is then

a Higgs doublet for up-type quarks, Hu, and a Higgs doublet for down-type quarks

Hd. These scalars are charged under U(1)PQ, as well as the quarks. The scalar sector

(excluding lepton couplings) of the UV-complete Lagrangian takes the form

LH = (∂µHu)†(∂µHu) + (∂µHd)
†(∂µHd)− V (Hu, Hd), (C.21)

where V (Hu, Hd) is a potential including quadratic and quartic interactions between

the scalars. When the scalars acquire a vev, vu/d, SU(2)L × U(1)Y × U(1)PQ breaks

down spontaneously. This will give mass to the fermions coupled to the doublets like

yuijQ
iHuu

j
R, or yuijQ

iH̃du
j
R, (C.22)

where the terms for the down- and lepton sector are analogous (there is no extra Higgs

doublet for the charged leptons). This gives the SM particles masses, but unlike the

SM with one Higgs doublet, there are four neutral real scalars. Like the SM, one gives
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C.3 KSVZ Axion

the Z boson its mass, the other one is the Higgs boson and the last two can form a

complex scalar Φ. The axion decay constant is associated to the vev of Φ, which breaks

the PQ symmetry and is given by

fa =
v

6
sin(2β), (C.23)

with tan(β) = vu
vd

and v the EW vev.

The axion shows up as the radial part of Φ [98]. This field acquires a vev

〈Φ〉 =
fa√

2
, (C.24)

it can then be written as

Φ =
1√
2

(fa + ra)e
i a
fa , (C.25)

where ra is a radial (real scalar) field and the axion appears as the Goldstone boson in

the exponential. It also couples to the, now massive, quarks as (in the diagonal basis)

LΦq =
∑
q

mqqRqLΦ + h.c. (C.26)

The axion-anomaly coupling will arise from terms like

qRe
i a
fa qL, (C.27)

where the radial field and the quarks can be integrated out. A diagrammatic explana-

tion of this process can be seen in Fig. 3.2.

C.3 KSVZ Axion

In KSVZ [54, 55] models, heavy vector-like fermions, Q, are added to the SM, whose

charges and representations can be completely arbitrary, as long as at least one of

the fermions transforms non-trivially under SU(3)C . Besides the fermions, a complex

scalar Φ is added to the theory. This scalar will play the role of the PQWW σ and the

following theory is similar. Since σ is unrelated to the Higgs doublet this framework

allows for fa � v. It is also unnecessary to include two Higgs doublets.

As an example of the implementation of a KSVZ-type axion suppose that only a

heavy fermion, Q, and the scalar σ are added to the SM. The scalar is an SM singlet,

while Q is an SU(3)C triplet, but otherwise uncharged. The Lagrangian for this model
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C.3 KSVZ Axion

looks like

LKSV Z = (∂µσ)†(∂µσ) + QiγµDµQ− (YQQLQRσ + h.c.)− V (σ). (C.28)

Under PQ they transform as

σ → eiασ, Q→ e−iγ5
α
2 Q, (C.29)

this means that the left- and right-handed components of the fermion transform as

QL/R → e±i
α
2 QL/R. The scalar potential V (σ) contains quadratic and quartic terms,

and can be written in terms of the scalar’s vev, va
2 like

V = λσ

(
σ†σ − v2

a

2

)2

. (C.30)

In terms of a radial field and the Goldstone boson, i.e. the axion, this scalar takes the

form of Eq. (C.25)

σ =
1√
2

(va + ra)e
i a
va . (C.31)

The fermion and radial field acquire a mass given by

mQ = YQ
va√

2
, mr =

√
2λσva. (C.32)

To integrate out these fields, a field dependent chiral transformation, in terms of the

axion, is done

Q→ e−iγ5
a

2va Q (C.33)

this uncouples the axion from the fermions and the radial field. As it is anomalous (due

to triangle diagrams) it also introduces the axion-anomaly coupling to the Lagrangian

(see Fig. 3.2), i.e.

δSKSV Z =

∫
d4x

g2
s

32π2

a

va
GaµνG̃

µν
a . (C.34)

In this simple model va can be readily identified with fa, in other words N = 1
2 , since

fa = 1
2N .
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Appendix D

Redefinition of Phases in Mass Matrices

The procedure of redefining the phases of mass matrices will be exemplified here with

the quark mass matrices of Eq. (4.15). These matrices can be written as

mu/d =

 0 Au/d e
iαu/d 0

Bu/d e
iβu/d 0 Cu/d e

iγu/d

0 Du/d e
iδu/d Eu/d e

iεu/d

 , (D.1)

where Au/d, Bu/d, Cu/d, Du/d, Eu/d, αu/d, βu/d, γu/d, δu/d, and εu/d are real param-

eters. These matrices can be diagonalized by bi-unitary transformations. It can be

noticed that the superscript (u/d) can be dropped, since the procedure is identical in

the up- and down- sector (and also in general).

mdiag = U †LmUR = OTLP
†
LmPROR; , (D.2)

where L and R depict the left- and right-chiral fields, respectively, and OL/R ∈ SO(3).

Also, UL = PLOL and UR = PROR are the unitary matrices that diagonalize m†m

and mm†, respectively, and PL = diag(1, eiα, eiβ), PR = diag(eiρ1 , eiρ2 , eiρ3) are the

diagonal phase matrices. Thus transforming the left- and right-handed fermions by PL
and PR, respectively, it is possible to get a completely real mass matrix

m =

 0 A 0

B 0 C

0 D E

 , (D.3)

where the phases have been shifted from P †LmPR to the fields.

Since only U
u/d
L contribute to the CKM matrix, which is defined as

VCKM = (UuL)†(UdL) = ((OuL)T (P uL)†)(P dLO
d
L) ,

= (OuL)Tdiag(1, e−i(αu−αd), e−i(βu−βd))OdL , (D.4)
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one can see that the right-handed phases will not contribute to the masses and mxing

parameters, and can therefore be set to 0 in the fit. It is also worth noting that only

the phase differences appear in VCKM , this means that two phases can be set to 0.

Finally, the phase-redefined mass matrices take the form

P †Lm =

 0 A 0

B e−iα 0 C e−iα

0 De−iβ E e−iβ

 , (D.5)

where in either the top- or down-quark matrix the phases can be set to 0 (or one in

each). An analogous procedure can be carried out for the neutrino mass matrix, where

hermitian conjugation has to be changed for transposition.
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