UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE ESTUDIOS SUPERIORES ARAGÓN

PROCESAMIENTO DE SEÑALES PARA UNA SONDA DE ULTRASONIDO DOPPLER TRANSCRANEAL

TESIS

Que para obtener el título de

Ingeniero Eléctrico-

Electrónico

PRESENTA

Sergio Zaleta Andrade

DIRECTOR DE TESIS

Fernando Xavier Vázquez Martínez

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

I

A la Facultad de Estudios Superiores Aragón y a la Universidad, por la formación que me han dado.

Reconocimientos

A mi madre, mi hermano y, en especial, a mi padre por haberme apoyado de manera incondicional, en todos los aspectos, durante mi carrera en la Universidad, incluso en situaciones adversas. Sin ellos, nada de esto hubiese sido posible. Gracias.

Al Dr. Andrea Lecchini Visintini por haberme aceptado como asistente de investigación visitante en la Universidad de Leicester. A la Dra. Emma Chung por haberme dado la oportunidad de colaborar en su proyecto de investigación y por su paciencia y disponibilidad para enseñarme los fundamentos del ultrasonido Doppler TCD. A la estudiante de doctorado y amiga Poppy Turner por haber supervisado mi trabajo durante mi estancia en la Universidad de Leicester, así como de manera remota y siempre resolver mis dudas y estar al pendiente del desarrollo de este trabajo de tesis.

Al Dr. Donato Valdez Pérez por sus consejos y ayudarme a sentirme con confianza para seguir adelante en el desarrollo de este trabajo de tesis y mis estudios académicos, así como su incondicional apoyo para resolver mis dudas al escribir algunos capítulos de este proyecto.

A mi amigo y hermano Luis Sastre, y a la Universidad Politécnica de Valencia – su Universidad - por haber colaborado con la mayoría de los documentos científicos en los que este trabajo de tesis se sustenta.

Al Mtro. Fernando Xavier Vázquez-Martínez por ser mi asesor de tesis y por haber sido un apoyo durante el último año de mi carrera.

A mis amigos por haber estado conmigo siempre, motivándome, y recibir mis llamadas siempre que me sentía con fatiga por haber estado escribiendo durante varias horas capítulos de esta tesis.

Declaración de autenticidad

Por la presente declaro que el contenido de este trabajo de tesis es original y no se ha presentado de forma total o parcial para su consideración en cualquier otro título o grado en esta o cualquier otra Universidad del mundo, a menos que se haga referencia específica al trabajo de otras personas. Este trabajo de tesis es el resultado de mi investigación y no incluye nada que sea el resultado de algún trabajo realizado en colaboración, salvo que se especifique lo contrario en el texto.

Sergio Zaleta Andrade. Estado de México, 2020.

Índice general

Índice de figuras	VIII				
Indice de tablas	XII				
1. Resumen	2				
2. Tecnología de los Sistemas de Ultrasonido Doppler Transcraneal	4				
2.1 Transductores Ultrasonicos	5				
La Idoneidad y Desempeño de los Materiales en los Transductores	5				
Estructura de los Transductores Básicos	7				
2.2 Rayos y Campos Ultrasónicos	9				
Generación de Rayos y Campos Ultrasónicos	9				
Rayos y Campos Ultrasónicos de Onda Continua – CW	9				
Rayos y Campos Ultrasónicos de Onda Pulsada – PW	11				
2.3 Reconstrucción de la Sección Transversal de un Rayo Ultrasónico Obtenido	13				
Experimentalmente Utilizando Matlab®					
Equipo de Laboratorio a Utilizar: Descripción general	13				
Proceso de Captura de Información: Ejecución del Experimento	15				
Estructura de Datos de Archivos del Experimento: a Detalle	16				
2.4 Estructura del Código de Reconstrucción de la Sección Transversal de un					
Rayo Ultrasónico Obtenido Experimentalmente Utilizando Matlab®					
Lectura de Archivos *.tdt y *.txt con Matlab®	18				
Gráfica de la Sección Transversal del Haz Ultrasónico en Dos					
Dimensiones: Última Parte del Proceso de Refactorización de Datos					
Interfaz Gráfica de Usuario (GUI) del Código de reconstrucción de la	23				
Sección Transversal de un Rayo Ultrasónico Obtenido					
Experimentalmente Utilizando Matlab®					
2.5 Frecuencia Doppler en Sistemas CW	25				
2.6 Sistemas Doppler de Onda Continua – CW	26				
2.7 Sistemas Doppler de Onda Pulsada Multibarrera – PW	28				
Tipos de Sistemas Doppler PW	28				
Procesamiento de Señales en Serie en Sistemas Doppler PW Multibarrera	30				
Proceso de Obtención de Información Doppler en sistemas Doppler PW	31				
de una Barrera					
La Demodulación Analógica de la Frecuencia Doppler de un sistema PW	32				
de una Barrera					
Asegurar el Funcionamiento Adecuado del Detector del Cruce por Cero	34				
para Evitar la Atenuación de las Señales					
Consideraciones a la Salida del Detector de Fase para Asegurar el	35				
Funcionamiento Adecuado del Sistema PW					

Descripción Técnica de un sistema Doppler PW Multibarrera con	35
Procesamiento de Datos Seriales	
3. Intensidad del Eco de una Sonda de Ultrasonido Doppler Transcraneal	37
3.1 Dispositivos de Ultrasonido Transcraneales No Invasivos	37
Sistema Spencer	37
Posición de la Sonda en el Sistema Spencer	38
Sistema Nihon Kohden	39
3.2 Intertaz Grafica de Usuario (GUI) en Matlab® para el Calculo de la Intensidad	41
de la Sonda de Ultrasonido Transcraneal de Equipos de Tecnologías	
Spencer y Nihon Kohden	4.1
Proposito de la Interfaz Grafica de Usuario	41
Estructura del Codigo de la GUI	42
Descripcion de los Codigos Incorporados en la GUI	43
	44
3.3 Lectura de Archivos de las Senales de Ultrasonido Doppier de los Equipos de	45
Lechologias Spencer y Ninon Konden	10
Archivos .mat del Sistema Spencer	46
Archivos II del Sistema INK	46
Algoritmo de Extracción de Datos de Archivos del Sistema Spencer y INK	48
ell la GUI 24 Aprovimación Inicial: Soñal de Ultroconido Dopplor Transpropol Constradoro	40
del Eso	49
UEI ECO Derámetres del Sistema Spanser y NK	40
Algoritmo do Aprovinación do la Soñal do Illtrasonido Dopplor	49 54
Algonitho de Aproximación de la Senar de Olitasonido Doppier Transcraneal Generadora del Eco en la GUI	54
3.5 Compresión de las Señales de Elltrasonido Doppler Transcraneales	57
Algoritmo de Compresión de Señales de Ultrasonido Doppler Hansclaheales	50
Algoritho de Compresión de Senales de Ottasonido Doppier Osando la GUI	57
4 Temas Selectos de Procesamiento de Señales de Ultrasonido Doppler	60
Transcraneal	00
4.1 Sobremuestreo de Alta Definición	60
4.2 Tecnología ST3 Doppler Transcraneal de Modo M de Potencia (PMM)	63
4.3 Interfaz Gráfica de Usuario para Analizar Señales de Ultrasonido Doppler	64
Transcraneales	
5. Conclusiones v Trabaio Futuro	66
5.1 Conclusiones	66
5.2 Discusión	67
Aproximación Inicial: Señal de Ultrasonido Doppler Transcraneal	67
Generadora del Eco	• •
Reducción de la Tasa de Muestreo o Compresión de las Señales	68
Control de Potencia de Transmisión en el Programa de Adquisición de	69
Datos del Sistema NK	
Exportación de Datos entre Aplicaciones de Equipos de Ultrasonido TCD	69
5.3 Trabajo Futuro	70
Investigación Futura	70
Algoritmos	70
-	

Apéndice A – Acrónimos	71					
Apéndice B – Códigos del Cálculo de la Intensidad de Señales de	73					
Ultrasonido Doppler Transcraneales						
Interfaz Gráfica de Usuario – gui_Echo.m	73					
Lectura de Archivos de equipos Spencer y NK – readfile.m	79					
Generación de las Amplitudes de las Señales de Ultrasonido Doppler – beam.m	83					
Compresión de las Señales TCD – avData.m	83					
Normalización a Uno de las Amplitudes de las Señales Comprimidas – norm2one.m	84					
Método de Aproximación de la Intensidad Inicial de las Señales de Ultrasonido TCD – amplitude.m	84					
Cálculo de la Amplitud máxima Entre Todas las Señales de un Archivo de los Equipos Spencer o NK – peaksfinder.m	85					
Apéndice C – Códigos para la Reconstrucción de la Sección Transversal de	88					
un Rayo Ultrasónico Obtenido Experimentalmente Utilizando Matlab®						
Interfaz Gráfica para Reconstruir la Sección Transversal de un Rayo Ultrasónico – beampattern_GUI.m	88					
Lectura de Archivos *.tdt y *.txt – filereader.m	92					
Código Incorporado en filereader.m para poder llevar a cabo la lectura de archivos *.tdt – tdtread.m	92					
Código Incorporado en filereader.m para poder llevar a cabo la lectura de archivos 93						
*.txt – txtread.m						
Extracción de los Valores RMS de los Encabezados de los 37 Archivos que Contienen la Información de la Sección Transversal del Haz del Ultrasonido – main2.m	94					

Índice de figuras

- 2.1. Transductor amortiguado de un solo elemento para la generación y 7 detección de ultrasonidos de onda pulsada. Figura obtenida de Evans *et al.* 2000. Adaptada y traducida por Zaleta-Andrade para este trabajo de tesis.
- 2.2. Fluctuación a lo largo del eje de un campo ultrasónico de onda continua. 10 Figura obtenida de Evans *et* al. 2000. Adaptada y traducida por Zaleta- Andrade para este trabajo de tesis.
- 2.3. Variaciones de la intensidad de un campo de ondas continuas 11 perpendicular al eje en los puntos A y B, representado por la escala de grises. Figura obtenida de Evans *et* al. 2000. Adaptada y traducida por Zaleta-Andrade para este trabajo de tesis.
- 2.4. Variación de la intensidad de un campo de ondas pulsadas a lo largo 12 de su eje, correspondiente a tres ciclos. Figura obtenida de Evans *et al.* 2000. Adaptada y traducida por Zaleta-Andrade para este trabajo de tesis.
- 2.5. Foto de una configuración similar al experimento de Justyna. Figura 14 obtenida de University of Erlangen (2000). Adaptada por Zaleta-Andrade para este trabajo de tesis.
- 2.6. Diagrama de una configuración similar al experimento de Justyna. 14 Figura obtenida de University of Erlangen (2000). Adaptada y traducida por Zaleta- Andrade para este trabajo de tesis.
- 2.7. Parte de un archivo *.tdt con nombre "RmsZ-20-0mm.tdt" con datos 17 obtenidos del experimento de Justyna.
- 2.8. Parte de un archivo *.tdt con nombre "PmZ-23-0mm.tdt" con datos 17 obtenidos del experimento de Justyna.
- 2.9. Parte de un archivo *.txt con nombre "RF-Z-44-0mm-Y8-X33.txt" con 18 datos obtenidos del experimento de Justyna.
- 2.10. Interfaz gráfica de usuario (GUI) en Matlab® para la reconstrucción de 23 la sección transversal de un rayo ultrasónico.

- 2.11. Sección transversal de un rayo ultrasónico en la posición Z-20-0mm. 25 Resultado de los eventos "START" y "Select .mat file".
- 2.12. Relación de los tiempos de muestreo y las amplitudes de cada muestra 25 del haz de ultrasonido.
- 2.13. Ultrasonido Doppler de onda continua siendo insonado en un vaso 26 sanguíneo. Figura obtenida de Atkinson *et al.* 1977. Adaptada y traducida por Zaleta-Andrade para este trabajo de tesis.
- 2.14. Diagrama a bloques de un sistema típico Doppler CW. Figura obtenida 28 de Evans *et al.* 2000. Adaptada y traducida por Zaleta-Andrade para este trabajo de tesis.
- 2.15. Diagrama a bloques de un medidor de flujo de un sistema Doppler CW.
 28
 Figura obtenida de Brody *et al.* 1974. Adaptada y traducida por Zaleta- Andrade para este trabajo de tesis.
- 2.16. Formas de onda de las velocidades instantáneas registradas 29 simultáneamente en varios lugares del camino del ultrasonido en una arteria carótida común de un sujeto sano. Figura obtenida de Reneman *et al.* 1986. Adaptada y traducida por Zaleta-Andrade para este trabajo de tesis.
- 2.17. Los perfiles de velocidad axial en intervalos de tiempo discretos 30 durante el ciclo cardiaco. Figura obtenida de Reneman *et al.* 1986. Adaptada y traducida por Zaleta-Andrade para este trabajo de tesis.
- 2.18. Representación esquemática del procesamiento de datos en paralelo 31 y serie en dispositivos Doppler multibarrera. Los números representan los canales procesados (o barreras). ep es puso de emisión (emission pulse en idioma inglés). Figura obtenida de Reneman *et al.* 1986. Adaptada y traducida por Zaleta- Andrade para este trabajo de tesis.
- 2.19. Diagrama a bloques de un sistema Doppler PW de una sola barrera. 33 Las señales Ø1 y Ø2 representan entradas de referencia en cuadratura del detector de fase (que en realidad contiene dos detectores de fase). Figura obtenida de Hoeks, Reneman, y Peronneau 1981. Adaptada y traducida por Zaleta-Andrade para este trabajo de tesis.
- 2.20. Diagrama a bloques de un sistema Doppler PW multibarrera con 36 procesamiento de datos en serie. Figura obtenida de Hoeks *et al.* 1981. Adaptada y traducida por Zaleta-Andrade para este trabajo de tesis.

- 2.21. Diagrama a bloques de un digitalizador o ADC. Figura obtenida de 36 Hoeks, Reneman, y Peronneau 1981. Adaptada y traducida por Zaleta-Andrade para este trabajo de tesis.
- 3.1. ST3 Sistema de Ultrasonido Transcraneal de Tecnologías Spencer. 38 Figura obtenida de Spencer Technologies 2016.
- 3.2. Hueso temporal.

39

- 3.3. Línea temporal (línea punteada); tragus (círculo). Figura obtenida de 39 Wikimedia Commons Contibutors 2010. Adaptada por Zaleta-Andrade para este trabajo de tesis.
- 3.4. Interfaz de adquisición de datos del dispositivo BrainTV. Figura obtenida 40 de Chung, Banahan, Minhas, y Lecchini-Visintini 2018. Adaptada y traducida por Zaleta-Andrade para este trabajo de tesis.
- 3.5. Equipo de integración (superior izquierda), posición de la sonda 41 (superior derecha), y puertos (inferior derecha) del equipo BrainTV. Figura obtenida de Chung *et al.* 2018. Adaptada por Zaleta-Andrade para este trabajo de tesis.
- 3.6. Salida de la GUI: intensidad de los valores RMS de las señales de cada 42 una de las barreras (gates) en dB, utilizando un archivo *.iq2 (dos canales).
- 3.7. Flujo de las salidas de cada función incorporada en el código de la GUI. 42
- 3.8. Parte del código de lectura de archivos *.iq1, *.iq2, y *.mat llamado 43 readfile.m. Figura obtenida del código original gui_Echo.m.
- 3.9. Parte del código que normaliza, a uno, todos los valores devueltos por 44 avData.m: el valor absoluto de las componentes en fase y en cuadratura comprimidas de las señales de ultrasonido Doppler. Figura obtenida del código original gui Echo.m.
- 3.10. Matlab® GUI que muestra la intensidad de señales de ultrasonido 45 Doppler transcraneal de archivos *.mat, *.iq1, y *.iq2.
- 3.11. Cálculo de la intensidad de las señales de ultrasonido Doppler de 33 45 profundidades distintas, utilizando la interfaz gráfica de Matlab®.
- 3.12. Estructura interna de un archivo *.mat del sistema Spencer. Figura obtenida de un archivo de la carpeta privada de la investigación de la 46 Universidad de Leicester.

- 3.13. Encabezado de un archivo *.iq1. Figura obtenida de un archivo 47 contenido en la carpeta privada de la investigación de la Universidad de Leicester.
- 3.14. Componentes en fase y cuadratura de un archivo *.iq1 de señales de 48 ultrasonido Doppler producidas por la insonación de un rayo ultrasónico transcraneal utilizando el sistema NK. Figura obtenida de un archivo contenido en la carpeta privada de la investigación de la Universidad de Leicester.
- 3.15. Comandos de obtención de información de guardado del archivo a 49 utilizar para su lectura. Figura obtenida del código original *gui_Echo.m*.
- 3.16. Amplitud máxima de la señal de ultrasonido retrodispersada (eco) de 50 la barrera número 10 de un archivo NK de un canal. Las magnitudes del tiempo de muestreo y amplitud del eco son desconocidas para el autor de este trabajo de tesis. Figura obtenida utilizando Matlab®.
- 3.17. Parte del código de la función *peaksfinder.m*. Figura obtenida del 54 código original *gui_Echo.m*.
- 3.18. Código de la función amplitude.m. Figura obtenida del código original 55 gui_Echo.m.
- 3.19. Código de la función *beam.m*. Figura obtenida del código original 55 *gui_Echo.m*.
- 3.20. archivo *peaks.mat* construido con bases de datos de estudios Doppler 56 transcraneales privados de 2019, propiedad de la Universidad de Leicester. Figura obtenida utilizando Matlab®.
- 3.21. Señal creada aleatoriamente en Matlab® para representar una señal 57 de ultrasonido Doppler con 300 muestras.
- 3.22. Señal comprimida por un factor de 50 de la señal de ultrasonido 58 Doppler de 300 muestras (creada aleatoriamente con Matlab®)
- 3.23. Representación simbólica de comprimir una señal por un factor de 50, 58 haciendo referencia al proceso de reducción de la resolución de las señales de ultrasonido Doppler en la función avData.m en la GUI.
- 3.24. Parte del código de disminución de la resolución de las señales de 59 ultrasonido Doppler transcraneales readfile.m. Figura obtenida del código original gui_Echo.m.

- 4.1. Señales TCD normales en pantalla PMM: arteria cerebral media (MCA) 64 (rojo: 40 60 mm), arteria cerebral anterior (ACA) (azul: 60 70 mm), ACA contralateral (rojo: 70 80 mm), y MCA contralateral (azul: 80 90 mm). Figura obtenida de Hakimi *et al.* (2020).
- 4.2. Interfaz gráfica de usuario BrainTV en Matlab®. Figura obtenida del 65 manual de usuario de la GUI, propiedad privada de la Universidad de Leicester (2019). Adaptada y traducida por Zaleta-Andrade para este trabajo de tesis.
- 5.1. Cálculo de la intensidad de las señales de ultrasonido Doppler de 33 67 profundidades distintas. A la izquierda se utiliza el valor de referencia inicial con el método de aproximación propuesto en el capítulo 3 de este trabajo de tesis. A la derecha se desprecia la intensidad de referencia (valor casi cero). Figura obtenida de la GUI del cálculo de la intensidad en Matlab®.

Índice de tablas

Tabla 2.1. Factores importantes para determinar la idoneidad de algunos5materiales piezoeléctricos. Tabla obtenida de Evans *et al* (2000).5Traducida por Zaleta- Andrade para este trabajo de tesis.

Tabla 2.2. Propiedades de los materiales piezoeléctricos más comunes. ρ , 6 densidad; *c*, velocidad del sonido; *d*, constante de transmisión; *g*, constante de recepción; *k*, constante de acoplamiento electro-mecánico; ϵ^{T} , constante dieléctrica libre. Tabla obtenida de Evans *et al* (2000).

Tabla 2.3. Tabla de las matrices que contienen los datos de la19refactorización de los archivos *.tdt o *.txt.19

Tabla 2.4. Descripción general de las funciones de Matlab® más19importantes utilizadas en filereader.m. Información obtenida del centro deayuda de MathWorks® para América Latina.

Tabla 2.5. Descripción general de las funciones de Matlab® más21importantes, utilizadas en tdtread.m y txtread.m. Información obtenida del21centro de ayuda de MathWorks® para América Latina.21

Tabla 2.6. Descripción general de las funciones de Matlab® más importantes utilizadas en main2.m. Información obtenida del centro de ayuda de MathWorks® para América Latina.

Tabla 2.7. Descripción de la funcionalidad de cada uno de los botones de23la GUI para la reconstrucción de la sección transversal de un rayoultrasónico.

22

Tabla 3.1. Máximas amplitudes de distintos archivos *.iq1 (NK), calculadas 51 utilizando la función *peaksfinder.m*. Datos obtenidos de archivos contenidos en la carpeta privada de la investigación de la Universidad de Leicester.

Tabla 3.2. Máximas amplitudes de distintos archivos *.mat (Spencer),52calculadas utilizando la función peaksfinder.m. Datos obtenidos de
archivos contenidos en la carpeta privada de la investigación de la
Universidad de Leicester.52

Capítulo 1 Resumen

El estudio del movimiento cerebral en humanos es de particular interés para la medicina de diagnóstico debido a sus alcances en la detección no invasiva del daño cerebral. El uso de equipos de ultrasonido transcraneales Doppler (TCD) permite iterar frecuentemente en el desarrollo de mejores dispositivos que detecten de forma más precisa el daño cerebral de forma no invasiva con datos en tiempo real. Una de las posibles aplicaciones del estudio del movimiento cerebral y del desarrollo de estos dispositivos de ultrasonido TCD se basa en encontrar correlaciones con otros sistemas fisiológicos, como los movimientos del corazón, al igual que para desarrollar equipos de ultrasonido TCD no invasivos de emergencia que puedan detectar daño cerebral, en tiempo real, en una ambulancia. La Universidad de Leicester y el Hospital Universitario de Leicester NHS Trust del Reino Unido han abierto las puertas al autor de este trabajo de tesis para el estudio de las tecnologías de punta de equipos de ultrasonido TCD vanguardistas, como el dispositivo BrainTV desarrollado en colaboración con la compañía japonesa Nihon Kohden, y el programa computacional BrainTV hecho en Matlab® por investigadores del grupo de ingeniería aeroespacial y computacional y el departamento de ciencias cardiovasculares de la Universidad de Leicester.

El capítulo 2 de este trabajo de tesis contiene los fundamentos teóricos necesarios para entender las tecnologías que los sistemas de ultrasonido TCD implementan. El papel fundamental de los osciladores y transductores en la generación de los rayos y campos ultrasónicos de onda continua o pulsante. La forma de generar las mejores posibilidades de detectar el movimiento cerebral y otros parámetros como su velocidad o profundidad. Incluso, se explica a detalle la parte experimental de la caracterización digital de un rayo ultrasónico, hecho por la radióloga Justyna Janus – que a partir de ahora se le hará referencia simplemente como RJ – en colaboración con el autor de este trabajo de tesis.

El capítulo 3 muestra el orden de los sub-capítulos de acuerdo al flujo que el autor de este trabajo de tesis siguió para desarrollar el cálculo en Matlab® de la intensidad del eco de una sonda de ultrasonido Doppler transcraneal desde cero. Para realizar los estudios del movimiento cerebral en el Reino Unido, se tiene que ir al Hospital Universitario de Leicester NHS Trust, ya que es el único lugar en ese país que cuenta con equipos de ultrasonido TCD de última generación. Ahí se encuentran dos equipos TCD de dos compañías diferentes; Tecnologías Spencer y Nihon Kohden. Las tecnologías que estos dispositivos utilizan son de vanguardia, siendo el prototipo TCD de NK el más utilizado por los investigadores de Leicester en la recolección de los datos de campo en pacientes y voluntarios debido a que es un prototipo desarrollado exclusivamente para el estudio del movimiento cerebral en la Universidad de Leicester y el Hospital Universitario de Leicester NHS Trust. Para calcular la intensidad de las señales Doppler, el autor de este trabajo de tesis desarrolló una interfaz de Matlab® que solo necesita un archivo proveniente de un dispositivo NK o Spencer, para mostrar las gráficas de la intensidad deseadas. Los algoritmos de refactorización de datos y del cálculo de las intensidades de las señales Doppler se describen a detalle. También se resuelve el problema de la intensidad inicial mediante un método de aproximación desarrollado por el autor de este trabajo de tesis.

Las tecnologías comerciales de los sistemas TCD NK y Spencer están basadas en conocimiento científico que es accesible en varias universidades del mundo. En el capítulo 4 se describen a detalle los fundamentos de dos tecnologías que hacen posible los estudios del movimiento cerebral. También se hace una revisión general del programa de uso privado BrainTV hecho en Matlab® por la Universidad de Leicester.

Capítulo 2

Tecnología de los Sistemas de Ultrasonido Doppler Transcraneal

Los elementos activos son importantes para la operación de los transductores, en especial su efecto piezoeléctrico. Determinar las características de los elementos activos de los transductores es importante para la medicina de diagnóstico, ya que determinan el desempeño del transductor. Los sistemas TCD utilizan un rango de RF que solo ciertos transductores pueden generar, así que es sumamente importante que el fabricante del oscilador del transductor y del sistema TCD escojan el material piezoeléctrico con las propiedades adecuadas que permitan generar las frecuencias deseadas. El diseño de la estructura de los transductores también es relevante para su desempeño, especialmente en la transmisión de energía acústica a través de su interfaz.

La medición de las profundidades del tejido necesita el uso de ultrasonido de onda pulsada para obtener información Doppler desde la cabeza del transductor hasta el final de un rango fijo o incluso hasta el final de un grupo de varios rangos fijos. Los sistemas TCD utilizan osciladores que generan este tipo de ondas pulsantes en lugar de ondas ultrasónicas continuas.

La correcta calibración de los transductores utilizados para medir las propiedades de los tejidos humanos requiere una descripción completa de las características de los campos ultrasónicos generados. Existen técnicas basadas convencionalmente en mediciones punto a punto del campo acústico que, con ayuda de una computadora, logran predecir el campo ultrasónico a través de cálculos. En este capítulo se muestra el desarrollo experimental y el cálculo de predicción de un campo ultrasónico para representarlo de forma digital utilizando Matlab®, donde este último es uno de los resultados del trabajo del autor de esta tesis.

Los circuitos necesarios para procesar las señales Doppler dependen del tipo de ultrasonido insonado. Una señal de ultrasonido TCD de onda pulsada utiliza un solo transductor para generar y detectar las señales retrodispersadas, en seguida de un

4

circuito detector de fase, filtros, y un contador de cruce por ceros. El resultado es una señal de audio y una señal de velocidad, conteniendo la distancia de la cabeza del transductor al punto de colisión del ultrasonido con un objetivo. La señal de velocidad también contiene el tiempo de dicha colisión.

2.1 Transductores Ultrasónicos

La idoneidad y desempeño de los materiales en los transductores

En la medicina de diagnóstico, los elementos activos de los transductores dependen de su efecto piezoeléctrico para operar. Es decir, de la habilidad de los elementos activos de generar cargas eléctricas en respuesta a un estrés mecánico aplicado. Actualmente, los materiales de uso más común para dichos fines son los cerámicos piezoeléctricos, pero existen otros como los polímeros piezoeléctricos cuyas propiedades acústicas son muy cercanas a las del tejido. Esto hace que el paso del ultrasonido a lo largo de la interfaz transductor/tejido sea más eficiente.

El desempeño de los transductores no es siempre el mismo, ya que pequeñas variaciones en las características de los materiales o en su estructura pueden causar un gran impacto en el desempeño final. Por ejemplo, los transductores desarrollados exclusivamente para proyectos especiales – como el dispositivo BrainTV mencionado más adelante – pueden tener un rendimiento un poco decepcionante. Esto debido a que estos dispositivos no se han visto beneficiados por las mejoras que los transductores de equipos comerciales pueden adquirir debido al periodo de años de desarrollo a los que se han visto sometidos.

La idoneidad de los materiales depende de un número de factores, en particular, de la presión piezoeléctrica constante y la distorsión del campo eléctrico constante comúnmente denotados por la letra g y d, respectivamente (Shung y Zippuro 1996).

Denotación	Nombre	Definición	Unidades
			(SI)

g	Constante de	Campo eléctrico de	$volts \cdot metro$
	presión	un circuito abierto por	Newtons
		unidad de estrés aplicada.	
d	Constante de	Deformación	metro
	transmisión	producida por unidad de	volt
		estrés aplicado cuando la	
		tensión externa es cero.	

Tabla 2.1: Factores importantes para determinar la idoneidad de algunos materiales piezoeléctricos. Tabla obtenida de Evans *et al* (2000). Traducida por Zaleta-Andrade para este trabajo de tesis.

Evans y McDicken (2000), con permiso de Shung y Zipparo (1966), muestran en la tabla 2.2 las propiedades de los materiales piezoeléctricos más comunes. Además, Evans *et al.* analizan los datos de la tabla, diciendo que los cerámicos PZT son superiores al cuarzo cuando el rendimiento combinado de transmisión/recepción es considerado. También, mencionan que el polímero PVDF tiene un desempeño intermedio y que la elección entre el elemento PZT recae en otras consideraciones prácticas. Por ejemplo, los sistemas de ultrasonido TCD NK y Spencer – mencionados más adelante – no pueden utilizar un material PVDF aunque este muestre una impedancia acústica mejor adaptada al tejido que otros materiales. La razón es porque usar un material PVDF en los sistemas ultrasónicos como Spencer o NK rebasaría los parámetros de frecuencia adecuados para estudios transcraneales. Un material PVDF está diseñado para funcionar a 15 MHz, pero los sistemas NK y Spencer utilizados en ultrasonidos transcraneales solo a 2 MHz.

Propiedad		PVDF	Cuarzo		PZT-
			(corte X)	5H	
d (10) ⁻¹² m/V)	15	2.31		583
g	(10-2	14	5.78		1.91
Vm/N)					

k	(sin	0.11	0.14	0.55
unidades)				
εΤ	(10 ⁻¹¹	9.7	3.98	3010
F/m)				
c (m/s	;)	2070	5740	3970
ρ (kg/	′m³)	1760	2650	7450
Temp	eratura	100	573	190
de Curie (°	C)			

Tabla 2.2: Propiedades de los materiales piezoeléctricos más comunes. ρ , densidad; c, velocidad del sonido; d, constante de transmisión; g, constante de recepción; k, constante de acoplamiento electro-mecánico; ε^{T} , constante dieléctrica libre. Tabla obtenida de Evans *et al* (2000).

Estructura de los transductores básicos

Es informativo conocer el modelo y estructura básica de un transductor como el de la figura 2.1, aún cuando los equipos de ultrasonido Doppler utilicen transductores más complejos que los que se describen en este sub capítulo.

Figura 2.1: Transductor amortiguado de un solo elemento para la generación y detección de ultrasonidos de onda pulsada. Figura obtenida de Evans *et al.* 2000. Adaptada y traducida por Zaleta-Andrade para este trabajo de tesis.

Cada cara del elemento piezoeléctrico es revestido con una capa metálica delgada que actúa como un electrodo. Una conexión por cable a estos electrodos permite que se

aplique una señal de excitación y que la señal del eco pase al amplificador del receptor. En el caso de usar un elemento cerámico, de una o varias capas, este se une a la cara frontal del transductor – llamada placa de onda – con el propósito de reducir la diferencia de la impedancia acústica en la interfaz transductor/tejido. De esta manera lograr una mayor transferencia de energía acústica a través de la interfaz, *I.e.*, reducir las pérdidas de energía del ultrasonido durante el proceso de insonación del ultrasonido en el tejido.

La adaptación de la placa de onda es más efectiva para los transductores CW, ya que el grosor de la placa puede ser igual a un cuarto de la longitud de onda del ultrasonido (Evans *et al.* 2000). Para el caso de los transductores de sistemas PW – que se explican más adelante – el pulso de ultrasonido tiene un determinado ancho de banda en frecuencia y, por lo tanto, una extensión de anchos de banda que la placa de onda no puede acomodar de manera exacta. Sin embargo, Kossoff (1966) y Kino (1987) dicen que el uso de placas de onda continua siguen siendo una característica valiosa de los transductores en sistemas PW (Kossoff 1966). Para reducir las vibraciones del elemento activo después que la excitación del pulso ha cesado, un material de amortiguación – como la resina epoxi cargada de metal – deber ser unido a la superficie superior e inferior del transductor.

El elemento piezoeléctrico y sus componentes están soportados en el extremo de un tubo de aislante acústico que está alojado en un cilindro de metal. Este cilindro de metal se encuentra aterrizado para funcionar como una pantalla que previene la captación de señales electromagnéticas. Esto es muy importante debido a lo débil que pueden ser las señales de eco detectadas por el transductor. El electrodo frontal también está aterrizado para completar la pantalla alrededor del elemento. El electrodo trasero está conectado al transmisor y al receptor del instrumento. En ocasiones se coloca una bobina de inducción a través de la capacitancia del elemento junto a una red de adaptación eléctrica que optimiza la transferencia de potencia durante la transmisión y recepción. Para mantener una buena relación señal a ruido (SNR) es necesario colocar un chip pre-amplificador muy cerca del elemento piezoeléctrico (*ibid*). Finalmente, todo el ensamblado debe ser montado en un estuche de plástico que debe estar sellado para mantener fuera el agua o líquido de acoplamiento.

8

2.2 Rayos y Campos Ultrasónicos

Generación de rayos y campos ultrasónicos

Para producir campos y rayos ultrasónicos altamente direccionales es necesario que el elemento activo del transductor tenga dimensiones de 1 cm o menos. Esto ya que la longitud de onda del ultrasonido en tejidos blandos para todas las frecuencias utilizadas comercialmente es menor a 1mm (Evans *et al.* 2000). El pequeño tamaño de los transductores es muy conveniente y versátil para el diagnóstico ultrasónico –y su alta capacidad de direccionalidad de suma importancia– ya que prácticamente todas las técnicas de imagen Doppler dependen de ella.

Healey, Leeman, y Weight (1996) hacen hincapié en que la descripción completa de los campos ultrasónicos en las aplicaciones médicas es muy importante cuando se miden las propiedades de ultrasonido en los tejidos humanos. Una descripción completa de los campos ultrasónicos es generalmente requerida en la caracterización y/o calibración de los transductores utilizados en estos estudios (Healey *et al.* 1996). Las técnicas de medición del campo ultrasónico se basan convencionalmente en mediciones punto a punto del campo acústico, utilizando un hidrófono de punto, que son casi invariables en un tanque de agua. Utilizar esta técnica de medición del campo ultrasónico resulta en la obtención de la dependencia tridimensional del espacio y el tiempo del campo de presión en forma de un mapa tetra-dimensional. La cantidad de datos del mapa es tan substancial que Healey *et al* consideran apropiado especificar el campo con un conjunto de sus datos mucho más pequeños, a partir del cual se pueda predecir el campo ultrasónico a través de un cálculo.

Rayos y campos ultrasónicos de onda continua –CW

Evans *et al.* mencionan que existe una amplia documentación de la transmisión de campos desde elementos de disco plano que oscilan uniformemente a una frecuencia bien definida –como los sistemas CW descritos más adelante– en un modo de vibración delgada. Kinsler, Frey, Coppens, y Sander (1982) han desarrollado soluciones analíticas

completas para la distribución de amplitud de presión a lo largo del eje del transductor y fuera del eje en el campo lejano (Kinsler *et al.* 1962, y Evans *et al.* 2000). La amplitud de presión a lo largo del eje del transductor está dada por:

$$P(z) = P_0 Sin\left[\frac{\pi}{\lambda}(a^2 + z^2)^{\frac{1}{2}} - z\right]$$
 Ec.(2.1)

P₀: es la amplitud de presión máxima;Z: es la distancia a lo largo del eje del transductor;y:a es el radio del disco.

La figura 2.2 muestra una de las características significativas de las fluctuaciones del transductor al generar un rayo ultrasónico. Se puede observar que existen fluctuaciones rápidas a una distancia menor que $a^{2/\lambda}$ con respecto a la cara del transductor: esta región se conoce como campo cercano o campo de Fresnel. El último máximo axial – o el máximo más distante del transductor (Duck, Baker, y Starritt 1998) – ocurre al final del campo cercano: a esta región se le conoce como campo lejano o de Fraunhofer (Evans *et al.* 2000).

Figura 2.2: Fluctuación a lo largo del eje de un campo ultrasónico de onda continua. Figura obtenida de Evans *et* al. 2000. Adaptada y traducida por Zaleta-Andrade para este trabajo de tesis.

También existen fluctuaciones en la dirección perpendicular al eje del campo de ondas continuas (*ibid*). En la figura 2.3 se puede observar como las fluctuaciones del

transductor que genera el rayo ultrasónico son rápidas en la zona cercana y lentas en la zona lejana.

Figura 2.3: Variaciones de la intensidad de un campo de ondas continuas perpendicular al eje en los puntos A y B, representado por la escala de grises. Figura obtenida de Evans *et* al. 2000. Adaptada y traducida por Zaleta-Andrade para este trabajo de tesis.

La zona de recepción, de acuerdo con Evans *et al.* (2000) es idéntica en forma al campo de transmisión, ya que en transductores sin enfoque electrónico la recepción es lo contrario de la transmisión.

Rayos y campos ultrasónicos de onda pulsada – PW

Sustituir las técnicas experimentales por cálculos teóricos es posible (Duck 1981), ya que existe un buen consenso entre varios de los resultados calculados y los experimentales (Beaver 1974) para la simulación de la descripción completa de los campos ultrasónicos generados por transductores para aplicaciones médicas. Estos cálculos han sido desarrollados para elementos oscilatorios de varias formas (Cahill y Baker 1997, Duerinckx 1981, Jensen y Svendosn 1992, y Baker, Berb, Sahin, y Tijotta 1995). Evans *et al* (2000) provee un ejemplo de la variación de la intensidad del campo ultrasónico de ondas pulsadas a lo largo de su eje utilizando un cálculo numérico. Esto se muestra en la figura 2.4.

Figura 2.4: Variación de la intensidad de un campo de ondas pulsadas a lo largo de su eje, correspondiente a tres ciclos. Figura obtenida de Evans *et al.* 2000. Adaptada y traducida por Zaleta-Andrade para este trabajo de tesis.

2.3 Reconstrucción de la sección transversal de un rayo ultrasónico obtenido experimentalmente utilizando Matlab®

El resultado del proceso de caracterización del rayo ultrasónico de este sub-capítulo es producto de la experimentación llevada a cabo por RJ el Hospital Universitario de Leicester NHS Trust (Reino Unido) en 2019, en colaboración con la Universidad de Leicester. La experimentación se describe de forma general debido a que la divulgación de la caracterización de los sistemas utilizados, y otros de sus detalles, no han sido autorizados por el Hospital Universitario de Leicester NHS Trust ni por la Universidad de Leicester.

Equipo de laboratorio a utilizar: descripción general

En el experimento se colocó un hidrófono y un transductor, separados a una cierta distancia el uno del otro, alineados con ayuda de un sistema de posicionamiento con precisión aparente de 3 mm dentro de un tanque tipo pecera lleno de agua. La razón por la que esta técnica se hace en agua es porque la atenuación del ultrasonido en este medio acuoso es muy mínima, ya que el coeficiente de atenuación es de 0.002 dB·cm⁻¹ (*ibid*). A continuación, se muestra una fotografía y un diagrama que se apega a la configuración del experimento de la radióloga (figura 2.5 y 2.6) (University of Erlangen 2014).

Figura 2.5: Foto de una configuración similar al experimento de RJ. Figura obtenida de University of Erlangen (2000). Adaptada por Zaleta-Andrade para este trabajo de tesis.

Figura 2.6: Diagrama de una configuración similar al experimento de RJ. Figura obtenida de University of Erlangen (2000). Adaptada y traducida por Zaleta-Andrade para este trabajo de tesis.

Proceso de captura de información: ejecución del experimento

En el experimento de RJ, el transductor se mantiene fijo y el único que utiliza el sistema de posicionamiento es el hidrófono. La razón es porque la sección transversal del rayo ultrasónico emitido por el transductor es mayor que la sección transversal receptora del hidrófono, por lo que el experimento consiste en mover el hidrófono de tal manera que se logre capturar la totalidad de la sección transversal del haz de ultrasonido.

El sistema de posicionamiento permite mover al hidrófono a lo largo y ancho de los ejes tridimensionales. La precisión de los pasos de cada movimiento del sistema de posicionamiento del experimento de RJ es de 3 mm. La posición inicial Z del hidrófono, de acuerdo a la colección de datos del experimento, es en 20-0 mm. El número 0 – a la derecha – de esta notación es el punto de referencia del eje Z, el cual puede estar tan cercano a las paredes de la pecera como el experimentador lo requiera. El número de la izquierda indica la posición actual del hidrófono. Esta notación se vuelve más compleja cuando se añaden las posiciones iniciales X y Y, las cuales tienen su referencia justo en el centro del sistema de posicionamiento y son denotadas como X1 y Y1. Por lo tanto, debido a que el experimento de Justyna tiene una posición inicial en el eje Z de 20-0 mm, X de -9 mm, y Y de -9 mm, ambas respecto al centro del sistema de posicionamiento, la notación para describir la posición inicial del hidrófono es: Z20-Y1-X1.

La ejecución del experimento de Justyna consiste en posicionar al hidrófono en el punto inicial Z20-Y1-X1, para después emitir el rayo ultrasónico y que el hidrófono detecte las perturbaciones del medio acuoso generadas por el ultrasonido para guardar estos datos en la computadora DAQ – proceso conocido como *adquisición de datos*. En seguida, el hidrófono da un paso en el eje X, describiendo ahora una posición: Z20-Y1-X2. Este proceso de adquisición de datos se repite a conveniencia del experimentador. De esta manera, el experimento de Justyna logra capturar toda la información necesaria para caracterizar un rayo ultrasónico de forma digital.

15

Estructura de datos de archivos del experimento: a detalle

La computadora DAQ almacena tres archivos diferentes: dos en formato *.tdt y otro en *.txt. Los archivos *.tdt contienen información relevante del sistema de posicionamiento que mueve al hidrófono: los valores iniciales de posicionamiento de cada uno de los ejes tridimensionales, la precisión del paso de los movimientos del hidrófono, el número total de pasos del hidrófono, y su posición actual en el eje Z. Estos valores están dados en milímetros y al conjunto de toda esta información se le denomina "encabezado" o "header". Los archivos *.txt contienen las posiciones exactas del hidrófono en todos los ejes (en milímetros), así como el mayor valor pico del rayo ultrasónico detectado y su valor RMS (raíz media cuadrada por sus siglas en idioma inglés). Estos valores están dados en mili-voltios.

Los archivos *.tdt contienen una malla de datos de campo libre que no fueron relevantes para los resultados que el experimento de Justyna requería del autor de este trabajo de tesis. Entonces, desde que las dos versiones de archivos contienen los mismos datos de encabezado y solamente difieren en la malla de datos de campo libre, y debido a que estos datos no se utilizan, la extracción puede llevarse a cabo despreciando uno de los tipos de archivos *.tdt. Es posible que uno de los archivos *.tdt contenga los valores picos de las magnitudes de las perturbaciones ocasionadas por el rayo ultrasónico debido al nombre que reciben. *E.g.,* "RmsZ-20-0mm".

Los archivos *.txt contienen la información necesaria para recrear el rayo ultrasónico mediante la relación tiempo y magnitud: la frecuencia de muestreo (en MHz), y la resolución (en bits) de la tarjeta ADC, así como el número de muestras obtenidas junto a cada una de sus amplitudes (en mili-volts). Sin embargo, estos datos no fueron relevantes para los resultados que el experimento de Justyna requería del autor de este trabajo de tesis.

Las figuras 2.7, 2.8, y 2.9 muestran una parte de cómo es que el procesador de palabras y editor de texto TextEdit® (incluido en el sistema operativo macOS) muestran la información de los archivos *.tdt y *.txt antes mencionados.

					D	mm talt				
					Rillsz-20-0	mm.tat				
The_Magnitude	_15_1n_mv									
X_Start(mn)=	-9.088088									
Y_Start(mn)=	-9.088088									
Z_Start(mm)=	28.088088									
A_StepNumb=	37									
T_StepNumb=	37									
2_StepNumb=	10									
X_Step(mm)=	0.500000									
7 Step(mm)-	2 000000									
7 CurrentBort		20000								
79.857938	76.451823	78.236743	59.218478	65.952819	65.659919	43.856258	59.656158	58.537579	65.975445	43.184416
59.782888	68.817374	53,123412	58.521284	76.811559	79.685787	81.346385	88.914483	79.338618	74.568714	55.686834
64.667177	59.998542	68.599178	68.959567	68.488196	68.971433	31.634386	66.924631	51.839325	51.681325	67.334241
51.794184	61.088588	68.786268	67.488286							
77.648748	71,491848	57,471732	67.027956	63,978452	49,249492	49,615112	64.378544	58,181344	79.744142	53,446673
59.394787	83.649959	89,198234	92,971198	98,288293	108.017717	108.329411	100,104133	96.898644	95.386889	91,285935
88.336448	88.276436	58.876858	64.797666	65.202641	58.835496	59.547848	60.861446	60.841572	60.805813	68.789596
68.688987	67.368228	61.014189	67.426766							
73.984689	57.281542	69.733376	58.034938	63.866976	57.945691	64.011962	64.050883	53.174807	60.623711	84.966960
94.161082	99.385188	106.493720	189.842879	113.488934	113.468925	114.000123	115.201440	113.096447	111.719823	108.986424
184.813386	99.746695	95.124754	86.158458	62.293434	67.226622	42.402277	50.197952	65.417983	58.758749	59.085505
58.955598	59.059372	65.029729	65.601472							
63.163998	71.219643	56.568653	62.869781	63.134727	63.281868	57.965803	58.819135	84.443269	93.620360	101.863897
107.648110	135.224374	161.198558	164.396586	166.830078	169.596543	167.497043	167.141669	166.203161	163.766211	139.467877
115.856929	113.063699	108.835153	103.870382	94.159788	83.635575	56.344393	66.419924	50.341987	65.166110	58.743430
65.426844	65.418652	42.714569	58.892354							
74.521977	62.476521	49.133468	56.779535	63.159858	51.008333	61.841123	88.286572	99.358222	107.301852	136.502690
164.474381	168.925585	173.850661	174.183972	172.252250	171.982452	168.860288	169.951537	167.437358	167.085336	164.381587
162.803323	141.543379	119.061959	114.655883	109.589319	99.428713	88.445216	59.233120	57.525022	57.716603	57.614234
63.786839	63.981568	64.224582	64.179119							
65.727896	52.627316	46.866666	58.461606	52.444524	79.461134	93.149891	103.669095	112.518373	141.128122	178.828725
170.780989	173.106867	171.642998	168.953747	161.103752	157.793635	155.107181	156.346100	155.208952	155.113305	158.837751
100.00948/	161.888252	162.858873	133.336432	114./43240	110.51/391	100.370548	87.034171	50.878544	63.653235	30.095213
57.514862	57.396483	63.878628	57.778845							
171 701167	166 474403	158 430053	348 300768	148 464863	131 310640	100.133013	131 043103	192.179404	170.007433	171.000323
1/1. /0110/	100.474003	150.435903	140.233/00	140.404003	131.210049	123.04/0/0	123.343172	120.320004	127.55002/	134-307011 6F 203137
144-331314 EE 480704	130.377430	130.033332	100.3/3000	137.440304	115./21020	111.910000	101.0033/0	04.300000	33.343477	03.293137
64 179485	57 858367	58 359795	63 481917	95.769156	187.284828	117, 332287	146.678528	171.467988	171 486662	167 803668
155 654696	148 588871	128.498444	114 588748	172 488345	161 518718	152 758296	148 084668	146.701142	140 003034	184, 363877
115.256682	129.268896	142.239125	154.038581	158, 122115	156,796375	114.586444	107.813525	94,831726	88.417932	63.853722
65,231687	58,799633	65.512356	66.822947							
64.129678	63.958958	59.213834	89.299824	186.753469	116.266861	122.671946	172.077226	169, 193953	162.379234	151,189575
131.544840	187.025834	164,922652	152,066484	152,844688	156,952272	161,438335	158,548691	147,483948	132,218994	123.142397
127.892423	146.825130	117.855977	133,955776	158,939661	156,193958	158,372514	114,676597	106,143815	91.801212	59.850125
64,853248	65,062614	66.361887	59,014114							
65.492676	55.331586	86.978499	105.360735	117.584013	123.088726	172.621687	171.640831	160.826119	143.466503	122.209196
168.161790	150.531268	162.770285	195.471241	203.098614	232.874839	249.223795	246.286998	226.189357	191.596386	172.874738
130.743463	116.776108	136.000103	115.672139	137.549218	151.153709	168.169763	155.925313	111.978546	99.573026	83.989118
52.578632	64.616731	65.226489	58.858579							
58.280757	63.773721	97.385961	111.618869	123.129365	127.178985	172.814966	166.313851	150.788563	127.250209	164.179818
148.340213	179.836558	214.098882	281.299673	353.095127	397.434039	416.101993	415.213055	395.008865	348.772535	278.598436
205.318563	158.219359	117.249027	131.767812	116.747484	140.153409	155.610371	160.294456	138.663329	109.223123	97.211287
78.351771	64.571835	64.714831	57.800357							
57.267028	74.356111	109.317385	123.052910	128.992018	174.838658	170.522387	154.418041	131.502020	159.242317	146.534222
165.228648	254.364656	361.101354	438.516330	588.524758	518.293625	527.988826	524.886267	515.092113	487.561237	421.798984
328.828486	222.612415	154.538830	118.224799	146.719577	127.797044	150.702967	161.185762	161.017963	113.061723	102.817891

Figura 2.7: Parte de un archivo *.tdt con nombre "RmsZ-20-0mm.tdt" con datos obtenidos del experimento de Justyna.

					PmZ-23-0n					
The_Magnitude_I	s_In_mv									
X_Start(mm)=	-9.000000									
Y_Start(mm)=	-9.000000									
Z_Start(mm)=	20.000080									
X_StepNumb=	37									
Y_StepNumb=	37									
Z_StepNumb=	10									
X_Step(mm)=	8.569898									
T_Step(mm)=	0.500000									
Z_Step(mm)=	3.000000									
231.868888	136.8888888	125.080888	138.488888	130.608080	136.600000	131.688888	131.686868	144.288888	125,888888	125.400000
236.800808	256, 288888	294.288888	314.000000	332.488888	343.608088	358 888888	349 686888	345 488888	334 408000	328.608888
297.868868	251,286868	243.886888	140.800000	132.808080	138.400000	139.286868	138,686888	140.800000	127.288688	131.808088
136.600808	136.080868	129.286888	141.688888							
228,200808	136.880808	138.880808	141.608080	131,408080	132,600000	138.600000	125.080000	285.000080	224,608080	284.800000
318.400000	346.488888	369.688888	387.000000	482.888888	411.408088	418.080808	416.480808	411.288888	483.888888	388.600000
369.000000	343.600000	312.600000	263.200000	237.408080	139.600000	148.288888	139.000000	145.200000	137.408080	142.800000
139.600000	141.280808	134.880808	174.000000							
122.800000	212.000000	214.080800	132.400000	135.400000	124.600000	130.800800	226.280808	270.400000	313.608080	348.800000
379.000000	402.280808	419.280808	432.200000	441.408080	446.800000	452.400000	455.880808	452.800000	443.408080	436.400000
428.808888	404.400000	379.886868	349.800000	311.600000	252.800000	219.800800	133.480808	138.400000	126.608080	132.200000
134.200000	134.200000	132.000000	133.600000							
213.800000	217.886868	138.000000	135.200000	129.868688	135.400000	253.000000	308.680808	344.488888	379.608080	484.208088
425.400000	430.400000	400.000000	200.400000	261 000000	326.000000	331.000000	322.000000	122 000000	409.000000	403.000000
171.200000	128.286868	127.288888	125 8888888	301.000000	320.400000	200.000000	230.000000	132.000000	134.200000	142.000000
228.488888	211.688888	128.488888	129.488888	131.000000	261.688888	315.886868	358.886868	395.688888	428.588888	451.808088
499.400000	537,480808	563,680888	577.600000	586.000000	588.200000	583,200000	575,480800	560.600000	546.808080	528.400000
501.000800	468.080800	430.600000	413.608080	399.808088	374.808888	348.688888	293.280808	240.400000	143.608080	141.200000
134.600000	148.488888	134.888888	135.600000							
228.400000	137.880808	130.000000	286.208080	270.608080	331.000000	377.600808	413.200000	440.600000	485.608080	539.200000
575.400000	595.680808	602.200000	680.000000	587.000000	579.800000	565.400000	557.880800	547.800000	544.000000	535.200000
526.000000	509.000000	481.800000	443.400000	489.000000	397.400000	373.600000	338.880800	290.200080	234.808080	137.608000
132.200000	133.000000	131.488888	126.408080							
205.200000	129.888888	126.400000	263.600000	327.400000	382.800000	421.600000	443.400000	489.800000	548.200000	586.40000
598.868888	593.200808	572.080800	543.488888	511.000000	482.800000	458.886868	451.280808	452.886666	463.808080	488.200000
495.000000	502.000000	507.000000	492.000000	450.000000	411.200000	394.000000	377.000000	340.000000	294.200000	231.400000
132.000000	130.000000	135.400000	141.000000	206 600000	176 000000	450 000000	403 898999	EE1 600000	505 400000	595 000000
561 000000	513 286868	453 688888	420 200000	437 808088	420.000000	430.000000	472.000000	412 688888	202 200000	266 888888
394.868888	445.080808	488.080888	498.888888	492.888888	451.200000	408.080800	392.886868	368.200000	330,000000	265.400000
136,400000	133,488888	126.888888	131.200080							
139.808888	227.080808	303.000000	368.608080	428.288888	455.808888	471.288888	538.080888	574.488888	573.408080	540.000000
468.800000	433.080800	459.688888	483.400000	502.600000	514.400000	516.200000	506.280808	486.400000	455.208080	421.800000
386.000000	352.400000	392.080888	454.200000	488.000000	491.600000	467.200808	412.280808	395.600000	371.808080	325.808088
247.800808	127.280808	142.400000	141.600000							
132.600000	278.600000	354.600000	415.600000	450.808080	465.000000	524.000000	565.080800	561.800000	517.608080	422.208000
441.600000	484.880808	524.280888	574.000000	674.608080	744.808088	779.288888	765.880808	707.880800	616.000000	496.600000
438.400000	391.600000	351.600000	373.200000	457.608080	497.600000	495.20000	460.000000	405.200000	390.608080	352.00000
294.400000	135.200000	142.080808	126.888888	453 000000	101 000000	F 4F	FCA 300000	F33 444444	120 600000	130 100000
226.400000	511.000000	303.000000	435.000000	402.000000	484.000000	545.000000	560.200000	523.000000	429.600000	430.400000
632, 000000	457 286868	202 688888	356, 200000	370.608080	461 000000	505.500000	408 080000	447 688888	487 488888	305 000000
336.400000	259.888888	143.486888	141.288888	5701000000	4011000000	5001000000	4301000000		4011400000	3031000000
277.600008	355.280808	420,280880	456,608080	466.408080	524.200008	555.200000	529,688888	436,400000	416,408080	476.600000
578,688888	802.880808	943,688888	962.888888	972.888888	975,408088	945,288888	968,888888	935,488888	897.000000	969,608088
938,400008	681.080808	449.688888	386.800000	349.208080	416.600000	494.888888	516,480808	482.288888	417.000000	401.808000
359.400808	292.480808	131.080880	162.608080							
306.000000	377.680808	432.880808	461.800000	483.208080	541.400000	547.400808	488.280808	383.200080	439.808080	514.200000
765.600000	963.680808	881.080880	920.000080	936.208088	931.808088	846.400808	901.880808	891.888888	952.008080	942.808088

Figura 2.8: Parte de un archivo *.tdt con nombre "PmZ-23-0mm.tdt" con datos obtenidos del experimento de Justyna.

Figura 2.9: Parte de un archivo *.txt con nombre "RF-Z-44-0mm-Y8-X33.txt" con datos obtenidos del experimento de RJ.

2.4 Estructura del código de reconstrucción de la sección transversal de un rayo ultrasónico obtenido experimentalmente usando Matlab®

La estructura del código de reconstrucción del haz de ultrasonido se divide en dos partes fundamentales: la lectura de archivos y la reconstrucción del haz ultrasónico. La parte de lectura de archivos reconoce los de tipo *.tdt y *.txt, los identifica y les extrae la información relevante de sus encabezados e ignora datos irrelevantes para el experimento de Justyna. Por ejemplo, el código detecta e ignora los valores de las magnitudes, o datos de campo libres, que provienen del muestreo de la señal de ultrasonido.

La parte de reconstrucción del haz ultrasónico lleva a cabo una refactorización de los datos de los archivos *.tdt y *.txt para ordenarlos matricialmente, con el propósito de mejorar su procesamiento en Matlab®. Este procesamiento permite reconstruir el haz ultrasónico en dos dimensiones, siendo de principal interés mostrar una correlación de los valores pico del haz ultrasónico entre los ejes X y Y.

Lectura de archivos *.tdt y *.txt con Matlab®

Para que el código de reconstrucción logre reconocer los archivos *.tdt y *.txt, así como identificarlos, se construyen dos funciones llamadas *tdtread.m* y *txtread.m*. Estas dos funciones se encuentran integradas en otra función llamada *filereader.m*. Esta última función es la encargada de llevar a cabo la refactorización de datos de un archivo a la vez, ya sea *.tdt o *.txt, utilizando tres matrices que se describen a detalle en la tabla 2.3.

Nombre de la	Descripción de la matriz			
matriz				
header	Salva la información de los			
	encabezados.			
data	Salva la información de los			
	datos de campo.			
extension	Salva la extensión del			
	archivo como un identificador.			

 Tabla 2.3: Tabla de las matrices que contienen los datos de la refactorización de los archivos *.tdt o *.txt.

El centro de ayuda de MathWorks® para América Latina contiene la documentación completa y actualizada de todas las funcionalidades de Matlab®. Cada una de las funciones presentadas en este trabajo de tesis, nativas de Matlab®, contienen más argumentos de los presentados. Estos argumentos se pueden encontrar de forma extensa en la documentación del centro de ayuda de MathWorks® en: https://la.mathworks.com/help/matlab/index.html. Las funciones específicas y más importantes de la función filereader.m son descritas de forma general en la tabla 2.4.

Nombre de la función	Descripción general de
	la función

f=fullfile(partearch1,,partearchN)	Construye nombre
	completo de archivo a partir de
	partes.
tf=isnumeric(A)	Determina si la entrada es
	una matriz numérica.

Tabla 2.4: Descripción general de las funciones de Matlab® más importantes utilizadas en filereader.m. Información obtenida del centro de ayuda de MathWorks® para América Latina.

La función tdtread.m abre un archivo *.tdt para su lectura. Extrae y guarda la información del encabezado y discrimina la que no es relevante mediante una serie de iteraciones entre las líneas de texto de este archivo. De la misma manera, extrae y guarda la información de los datos de campo que, si bien no son relevantes para lo que el experimento de Justyna requería del autor de este trabajo de tesis, presentan el potencial de mostrar la relación *tiempo de muestreo* y *magnitud de la muestra* en las futuras versiones de la GUI del programa de reconstrucción del rayo ultrasónico.

La función txtread.m parece más compleja en comparación con la función tdtread.m debido al número más extenso de líneas de este código, consecuencia de los caracteres de cada línea de los archivos *.tdt. Sin embargo, estas dos funciones – *txtread.m* y *tdtread.m* – llevan a cabo el mismo objetivo: extraer y guardar la información del encabezado y datos de campo de los archivos y discriminar su información irrelevante. Las funciones específicas más importantes que las funciones tdtread.m y txtread.m implementan son descritas de forma general en la tabla 2.5.
Nombre de la función	e la función Descripción general de								
	función								
	Abre el archivo, nombrearch,								
fopen(nombrearch)	para acceso de lectura binaria.								
	Crea una matriz de ceros.								
zeros(n)									
	Lee líneas de archivos								
fgetl(IDarchivo)	previamente abiertos e identificados								
	por fopen(nombrearch), eliminando								
	caracteres de nuevas líneas.								
	Encuentra cadenas dentro de								
strfind(cadena,patrón)	otras cadenas.								
	Lee archivos delimitados por								
dlmread(nombre_archivo)	ASCII (por ejemplo, números reales)								
	Cierra uno o todos los archivos								
fclose(IDarchivo)	abiertos.								
	Lee datos desde un archivo de								
fscanf(IDarchivo, formato)	texto de acuerdo al formato								
	especificado por el argumento de la								
	función "formato"								

Tabla 2.5: Descripción general de las funciones de Matlab® más importantes, utilizadas
en tdtread.m y txtread.m. Información obtenida del centro de ayuda de
MathWorks® para América Latina.

Gráfica de la sección transversal del haz ultrasónico en dos dimensiones: última parte del proceso de refactorización de datos

La función *main2.m* lee un archivo del formato tipo "RF-Z-44-0mm-Y8-X33.txt" y extrae solamente los valores RMS del encabezado de cada uno de los 37 archivos en total que contienen información de una sola posición en el eje Z. Estos archivos deben estar en una carpeta llamada "RF" – por recomendación – y el primer archivo que se seleccione debe corresponder a la posición X0 y Y0. En otras palabras, el formato tipo debe llamarse, por ejemplo, "RF-Z-44-0mm-Y0-X0.txt". Un archivo *.mat con una matriz de datos de 37 x 37 (para el caso del experimento de Justyna) es el resultado de este proceso y debe ser guardado en un lugar de acceso conocido por el usuario, ya que este archivo *.mat contiene parte de la información necesaria para la gráfica de la sección transversal del haz ultrasónico en dos dimensiones. Las funciones específicas y más importantes que la función *main2.m* implementa son descritas de forma general en la tabla 2.6.

Nombre de la	Descripción general de la				
función	función				
zeros(n)	Crea una matriz de ceros.				
cell()	Crea una estructura de datos del				
	tipo matriz de celdas.				
strfind(cadena,patron)	Encuentra cadenas dentro de				
	otras cadenas.				
strcat(s1,,sN)	Concatena cadenas				
	horizontalmente.				
save(nombre_archivo)	Guarda variables del espacio de				
	trabajo en un archivo *.mat.				

Tabla 2.6: Descripción general de las funciones de Matlab® más importantes utilizadas en main2.m. Información obtenida del centro de ayuda de MathWorks® para América Latina.

Interfaz gráfica de usuario (GUI) del código de reconstrucción de la sección transversal de un rayo ultrasónico obtenido experimentalmente utilizando Matlab®

Las gráficas de sección transversal del haz de ultrasonido se obtienen utilizando la información de los archivos *.tdt, de acuerdo a lo que Justyna requería del autor de este trabajo de tesis. Se deja de lado el uso de datos de los archivos *.txt solamente para graficar la intensidad del rayo ultrasónico en el dominio del tiempo como una funcionalidad adicional a lo requerido por Justyna para la caracterización del rayo ultrasónico.

e o beampattern_GUI							
The 2 buttons will plot a intensity map of all X and Y positions for a given Z position (DA							
Click START if you want to extract the DATA from *.bt files							
START							
Click "Select .mat file" if the DATA is saved.							
Belect and the							
EXIT "The software only works for 37 X and Y positions (as in the summing experiment). Potential to make this editable for users.							
Click "Plot Intensity" to plot intensity vs sampling time of one X, Y, \ldots							
Plot Internality							

Figura 2.10: Interfaz gráfica de usuario (GUI) en Matlab® para la reconstrucción de la sección transversal de un rayo ultrasónico.

Nombre del botón	Funcionalidad					
START	Implementa la funcionalidad de					
	main2.m y crea un archivo *.mat con la					
	información necesaria para reconstrui					

	la sección transversal del rayo								
	ultrasónico mediante un mapa de								
	intensidades. Este proceso toma 13								
	minutos y 49 segundos en una								
	computadora comercial MacBook Air								
	de inicios del 2015. El resultado se								
	muestra en la figura 2.11.								
Select .mat file	Pide insertar el archivo *.mat con								
	la información necesaria para								
	reconstruir la sección transversal del								
	haz de ultrasonido. Esta funcionalidad								
	tiene el potencial de que los 13 minutos								
	y 19 segundos que el evento START								
	toma para crear el archivo *.mat sean								
	necesarios solamente una vez.								
EXIT	Termina la ejecución de la GUI.								
Plot intensity	Utiliza los datos de campo,								
	mediante la función txtread.m, para								
	mostrar la relación de los tiempos de								
	muestreo del rayo ultrasónico y sus								
	respectivas magnitudes.								

Tabla 2.7: Descripción de la funcionalidad de cada uno de los botones de la GUI para lareconstrucción de la sección transversal de un rayo ultrasónico.

Figura 2.11: Sección transversal de un rayo ultrasónico en la posición Z-20-0mm. Resultado de los eventos "START" y "Select .mat file".

La imagen anterior no muestra la posición Z del hidrófono, por lo que se convierte en una posible mejora para la GUI. Además, el programa en cuestión solo funciona para archivos con 37 posiciones, ajustándose a los requerimientos del experimento de Justyna. Sin embargo, tiene el potencial de mejorar el algoritmo de main2.m para reconstruir rayos ultrasónicos con infinitas posiciones.

Figura 2.12: Relación de los tiempos de muestreo y las amplitudes de cada muestra del haz de ultrasonido.

2.5 Frecuencia Doppler en Sistemas CW

El principio del efecto Doppler establece que la frecuencia del eco reflejado desde un objetivo en movimiento es diferente a la frecuencia incidente (Atkinson y Wells 1977 y Toman 1984). Si un transductor emite un ultrasonido que viaje a través de los vasos sanguíneos, las células sanguíneas en movimiento retrodispersan la señal nuevamente hacia el transductor con una frecuencia diferente. Esto se puede apreciar en la figura 2.13.

Figura 2.13: Ultrasonido Doppler de onda continua siendo insonado en un vaso sanguíneo. Figura obtenida de Atkinson *et al.* 1977. Adaptada y traducida por Zaleta-Andrade para este trabajo de tesis.

El cambio de frecuencia es detectado por la comparación de la frecuencia de transmisión y la frecuencia de recepción de la señal (Atkinson *et al.* 1977) El cambio de frecuencia – o frecuencia Doppler – se define como:

 $\Delta f \ es \ el \ cambio \ de \ frecuencia \\ f \ es \ la \ frecuencia \ incidente \\ V * \cos\theta \ es \ la \ velocidad \ del \ objetivo \ en \ la \ dirección \ del \ transductor \\ c \ es \ la \ velocidad \ del \ ultrasonido$

2.6 Sistemas Doppler de Onda Continua – CW

Un sistema Doppler CW emite un haz de ultrasonido continuo, normalmente enfocado a una profundidad específica. La sonda de este sistema usa dos transductores: uno para el proceso de insonación y otro transductor separado para recibir la retrodispersión del ultrasonido insonado (señal Doppler). La medición de las profundidades (o barreras) utilizando un sistema Doppler CW no es posible debido a las características del haz de ultrasonido continuo. Los sistemas CW tienen la ventaja de ser capaces de medir los desfasamientos de la frecuencia Doppler sin interrupciones; a

diferencia de los sistemas PW, en los cuales, la medición de la frecuencia Doppler está restringida por la frecuencia de repetición del pulso (John-Keeton 1997) – PRF.

Un sistema típico Doppler CW comienza su operación mediante un oscilador que opera a una frecuencia constante y acciona un cristal transmisor de la sonda a través de un amplificador transmisor para lograr la insonación del ultrasonido. La retrodispersión, que contiene el eco de los objetivos móviles y estacionarios, alimenta al amplificador de radio frecuencia desde el cristal receptor (Evans *et al.* 2000). Este eco pasa a través de una etapa de detección para eliminar la señal portadora y dejar solo las componentes de desfasamiento de la frecuencia Doppler. Posteriormente, el eco se somete a un contador de cruce por ceros – etapa de conversión de frecuencia a voltaje – para producir una señal de salida estimada que represente los desfasamientos de la frecuencia Doppler para estimar la velocidad del flujo. Cualquier dispositivo que realice este proceso se conoce como medidor de flujo (Brody y Meindl 1974). En las figuras 2.14 y 2.15 se observan dos diagramas a bloques: un sistema típico Doppler CW y otro de un medidor de flujo de un sistema Doppler CW.

Figura 2.14: Diagrama a bloques de un sistema típico Doppler CW. Figura obtenida de Evans *et al.* 2000. Adaptada y traducida por Zaleta-Andrade para este trabajo de tesis.

Figura 2.15: Diagrama a bloques de un medidor de flujo de un sistema Doppler CW. Figura obtenida de Brody *et al.* 1974. Adaptada y traducida por Zaleta-Andrade para este trabajo de tesis.

2.7 Sistemas Doppler de Onda Pulsada Multibarrera – PW

Los sistemas PW son diferentes a los CW principalmente porque el transductor del sistema PW se excita con una ráfaga de pulsos en lugar de estar continuamente excitado. Un sistema PW permite obtener información Doppler desde la cabeza del transductor hasta un rango determinado (Evans *et al.* 2000).

Tipos de sistemas Doppler PW

Existen dos tipos de sistemas Doppler PW: de una sola barrera y de multibarrera. Estos términos son comúnmente usados en idioma inglés como sistemas Doppler PW single-gate y multi-gate. Un sistema de una sola barrera permite seleccionar la dispersión deseada desde una determinada distancia del transductor. *I.e.*, permite seleccionar la profundidad desde la que se desea recopilar el eco del ultrasonido insonado; pero esto presenta inconvenientes. Por ejemplo, los perfiles de velocidad durante un ciclo cardiaco pueden ser determinados solamente desde un solo lugar. Esto limita la aplicación de estos sistemas por errores encontrados en las estimaciones de estos perfiles (Reneman, van Merode, Hick, y Hoeks 1985, y Wille 1979) y dificultades de procesamiento de datos (Reneman, van Merode, Hick, y Hoeks 1986).

Los sistemas de multibarrera son sistemas Doppler más recientes y complejos, que han sido desarrollados para tener la habilidad de detectar de manera simultánea e instantánea las velocidades de un determinado rango de interés (Brandestini 1978, y Hoeks, Reneman, y Peronneau 1981). Con los sistemas multibarrera, los problemas de los perfiles de velocidad de los sistemas de una sola barrera se resuelven debido a que las velocidades pueden registrarse desde varios lugares a lo largo del camino del ultrasonido (Reneman *et al.* 1986). En la figura 2.16 y 2.17 se muestran, de manera respectiva, las formas de onda de las velocidades y perfiles de velocidad de un sistema multibarrera.

Figura 2.16: Formas de onda de las velocidades instantáneas registradas simultáneamente en varios lugares del camino del ultrasonido en una arteria carótida común de un sujeto sano. Figura obtenida de Reneman *et al.* 1986. Adaptada y traducida por Zaleta-Andrade para este trabajo de tesis.

Figura 2.17: Los perfiles de velocidad axial en intervalos de tiempo discretos durante el ciclo cardiaco. Figura obtenida de Reneman *et al.* 1986. Adaptada y traducida por Zaleta-Andrade para este trabajo de tesis.

Procesamiento de señales en serie en sistemas Doppler PW multibarrera

Un sistema Doppler PW de una barrera puede convertirse en multibarrera duplicando los circuitos necesarios para el almacenamiento intermedio de las señales de fase, los filtros de señales Doppler y la detección de la velocidad promedio para cada uno de los canales adicionales.

Los sistemas PW multibarrera procesan el eco del ultrasonido en forma serial. Esto quiere decir que las señales son procesadas una tras otra entre las emisiones de los pulsos. El procesamiento de señales en serie evita el proceso tedioso del procesamiento en paralelo de comparar los diferentes canales entre sí – denominado sintonización de las barreras o frecuencias (Reneman *et al* 1986 y Hoeks 1982). En la figura 2.18 se muestra el principio del procesamiento de señales en serie y paralelo.

Figura 2.18: Representación esquemática del procesamiento de datos en paralelo y serie en dispositivos Doppler multibarrera. Los números representan los canales procesados (o barreras). eg es pulso de emisión (emission pulse en idioma inglés). Figura obtenida de Reneman *et al.* 1986. Adaptada y traducida por Zaleta-Andrade para este trabajo de tesis.

Proceso de obtención de información Doppler en sistemas Doppler PW de una barrera

El proceso de obtención de información Doppler comienza cuando el pulso RF es insonado para pasar a través del cuerpo. Esta señal de ultrasonido se desfasa respecto a la señal inicial debido a objetos a lo largo del camino del ultrasonido. Recordar el principio del efecto Doppler: "la frecuencia del eco reflejado desde un objetivo en movimiento será diferente de la frecuencia incidente" (Atkinson y Wells, 1977 y Toman 1984).

Los ecos que regresan tanto por el desfasamiento de objetos en movimiento como estacionarios son recibidos por el mismo transductor. Este proceso es un ejemplo de procesamiento de señales en serie y se repite en cada pulso de ultrasonido (Evans *et al.* 2000). Posteriormente, la información Doppler tiene que extraerse del eco de cada una de las barreras. A este proceso se le conoce como demodulación y es igual para sistemas PW y CW. La señal resultante de este proceso se denomina "señal demodulada" y contiene la información rango-fase o frecuencia Doppler. *I.e.,* la diferencia de fase entre la señal de referencia y el eco recibido en el rango especificado.

La señal demodulada ahora se muestrea en puntos específicos de tiempo, relativos al inicio de pulso de transmisión. El tiempo de muestreo define la profundidad de interés y es elegido para corresponder al tiempo que toma el sonido en viajar de ida y vuelta del transductor hasta la profundidad deseada. Este proceso se logra a través de la actualización continua por pulso de un amplificador de muestreo y retención. El proceso final de filtrado emite la señal con la información de frecuencia de cambio Doppler del rango de interés (Reneman *et al.* 1986).

La demodulación analógica de la frecuencia Doppler de un sistema PW de una barrera

Una vez que el transductor detecta la señal, esta se amplifica en la sección del receptor. Esta amplificación depende del tiempo para corregir la atenuación creciente del ultrasonido reflejado y retrodispersado a profundidades mayores.

La diferencia de fase instantánea entre la señal detectada y la señal del oscilador en el detector de fase es derivada como una función continua de la profundidad – recordar que la derivada de la distancia respecto al tiempo es la velocidad. Esto se consigue filtrando de paso bajo el resultado de mezclar la señal detectada con la del oscilador. La duración efectiva de la respuesta impulso del filtro paso bajas (Gabor 1946) establece el ancho de la muestra de la barrera y los límites en combinación con la duración de la ráfaga emitida y la dimensión axial del volumen de muestreo. Mientras tanto, la dimensión lateral está dada por el ancho local de la señal de ultrasonido. Para lograr la mejor resolución axial y la mejor relación señal a ruido para una duración determinada de la emisión, el ancho de la muestra de la barrera debe coincidir con la duración de la emisión (Peronneau, Bournat, Bugon, Barbet, y Xhaard 1974).

En un sistema Doppler PW de una sola barrera, la salida del detector de fase de la señal Doppler, sin procesar y a una profundidad específica, se almacena en una memoria analógica después del retraso presente con respecto a la emisión. Al circuito encargado de este proceso se le conoce como circuito de muestreo y retención de las señales. Este circuito tiene una frecuencia de muestreo igual a la frecuencia de repetición de pulso (PRF) de la señal Doppler. Para obtener una función continua en el tiempo, un filtro paso bajas debe ser empleado con una frecuencia de corte igual a la mitad de la máxima repetición de pulso. Las frecuencias de corte, y desde luego el tipo de filtro de un sistema Doppler, van a depender de los objetivos para los que el sistema haya sido pensado. Por ejemplo, el eco retrodispersado por objetos estacionarios o con poco movimiento pueden obscurecer las señales Doppler débiles provocadas por partículas de sangre. Para este caso, se necesita sustituir el filtro paso bajas por un paso bandas. El resultado es una señal Doppler filtrada en forma de una señal de audio.

Para obtener la frecuencia promedio de la señal Doppler, la cual es proporcional a la velocidad promedio del volumen de muestreo, la señal Doppler filtrada alimenta al contador de cruce por cero – que cuenta el número de veces que una señal cruza la línea de referencia 0. La duración efectiva del conteo depende de la frecuencia característica del filtro paso bajas que suaviza los pulsos producidos por el detector de cruce por cero.

Figura 2.19: Diagrama a bloques de un sistema Doppler PW de una sola barrera. Las señales Ø1 y Ø2 representan entradas de referencia en cuadratura del detector de fase (que en realidad contiene dos detectores de fase). Figura obtenida de Hoeks, Reneman, y Peronneau 1981. Adaptada y traducida por Zaleta-Andrade para este trabajo de tesis.

La detección de fase se interpreta en cuadratura para preservar la información de la dirección del flujo (McLeod 1967), y por ende del movimiento, mediante la mezcla de las señales recibidas con dos señales de oscilador (Ø1 y Ø2), desfasadas 90 grados una respecto a la otra. Esto requiere de dos detectores de fase y de dos filtros. En el detector de cruce de ceros, la dirección del flujo se retiene teniendo en cuenta la salida de ambos canales de procesamiento. En sistemas Doppler PW con procesamiento de datos en serie, las muestras de fase se toman desde un número adyacente de volúmenes de muestras y son procesadas a través de un solo circuito. Esto solo es posible si la tasa de rendimiento del sistema de procesamiento excede la frecuencia de muestreo de fase (Hoeks *et al.* 1981).

Asegurar el funcionamiento adecuado del detector del cruce por cero para evitar la atenuación de las señales

Para facilitar el correcto funcionamiento del detector de cruce por cero, la relación señal a ruido en su entrada no debe superar los 20 dB (*ibid*). Sin embargo, a la salida del detector de fase, las señales Doppler pueden estar oscurecidas por señales de baja frecuencia que pueden superar las señales Doppler verdaderas. Por ejemplo, una señal de ultrasonido retrodispersada por partículas de sangre en movimiento se ve obscurecida por señales que se originan en las interfaces de los tejidos. Estas últimas señales pueden superar las señales Doppler de partículas de sangre, y de otros objetivos de interés, en unos 30dB. Sin embargo, este número puede disminuir si se aumenta la frecuencia de emisión por las propiedades de dispersión dependientes de la frecuencia de las partículas de sangre. Esto ocasiona que el sistema Doppler PW sea más sencillo de operar, ya que no requiere de un ajuste para la atenuación individualmente variable de la señal de ultrasonido.

Consideraciones a la salida del detector de fase para asegurar el funcionamiento adecuado del sistema PW

Los niveles de las señales de ultrasonido varían a lo largo del ciclo cardiaco. Para acomodar las variaciones de persona a persona, así como el nivel de señal cambiante durante el ciclo cardiaco, se requieren 20 dB adicionales. Por lo tanto, si se desea facilitar el correcto funcionamiento del detector de cruce por cero, en el caso que la señal de interés sea la retrodispersada por el movimiento de sangre y se quiera garantizar que el sistema Doppler PW funcione adecuadamente, el detector de fase necesita a la salida un rango dinámico de 70dB. La velocidad de procesamiento y el rango dinámico de la salida de los detectores de fase establecen los requisitos básicos para un sistema Doppler PW multibarrera con procesamiento de datos en serie (*ibid*).

Descripción técnica de un sistema Doppler PW multibarrera con procesamiento de datos seriales

Si bien el procesamiento en serie de datos de señales de ultrasonido Doppler se puede llevar a cabo con señales en forma analógica, se prefiere que el alto rango dinámico de estas señales se procese de manera digital.

La frecuencia de emisión y el PRF son características principales de los sistemas que dependen de las velocidades máximas esperadas en la región de interés y la profundidad a lo largo del haz ultrasónico (Peronneau 1974), donde las velocidades deben ser detectadas. La frecuencia de emisión y el PRF demandan características especiales debido a la relación señal a ruido requerida de las señales Doppler detectadas y a su resolución. Por ejemplo, las aplicaciones del sistema Doppler PW se pueden restringir a solamente detectar mediciones de velocidades de flujo superficial si se escoge una frecuencia de emisión de 6 MHz (Hoeks 1981).

Para extender la profundidad a la que se pueden detectar las velocidades, se tiene que retrasar el momento en que se toma la primera muestra de fase respecto al momento de emisión. Es importante considerar una relación señal a ruido lo suficientemente alta para activar el detector de cruce por cero adecuadamente. Sin embargo, este incremento en la relación señal a ruido es a expensas de la resolución axial (*ibid*). La figura 2.20 y

2.21 muestran dos diagramas a bloques simplificados: un sistema Doppler PW de multibarrera con procesamiento de datos en serie y su digitalizador (ADC).

Figura 2.20: Diagrama a bloques de un sistema Doppler PW multibarrera con procesamiento de datos en serie. Figura obtenida de Hoeks *et* al. 1981. Adaptada y traducida por Zaleta-Andrade para este trabajo de tesis.

Figura 2.21: Diagrama a bloques de un digitalizador o ADC. Figura obtenida de Hoeks, Reneman, y Peronneau 1981. Adaptada y traducida por Zaleta-Andrade para este trabajo de tesis.

Capítulo 3

Intensidad del Eco de una Sonda de Ultrasonido Doppler Transcraneal

El análisis ultrasónico transcraneal no invasivo requiere de equipos TCD con tecnología de vanguardia que mejoren la precisión de las mediciones hechas por la sonda transcraneal y que tengan una interfaz de gestión que permita administrar los parámetros del equipo TCD y los datos de campo capturados por la sonda. La empresa Nihon Kohden y la Universidad de Leicester han desarrollado un prototipo TCD denominado BrainTV capaz de detectar señales de ultrasonido Doppler transcraneales y sincronizarlas con otras entradas fisiológicas. De esta manera buscar correlaciones entre el movimiento cerebral y otros sistemas fisiológicos, *e.g.,* los latidos del corazón.

El cálculo de la intensidad de las señales Doppler es un cálculo que no ha sido implementado en el equipo TCD de NK o Spencer, ni en la GUI de Matlab®, y que permite detectar el tipo de objetivo que ocasiona la señal Doppler – *e.g.*, un glóbulo rojo o tejido blando. Dicha intensidad es relativa entre una señal Doppler de referencia, a una profundidad específica, y su señal Doppler precedente. En este capítulo se muestra un algoritmo que realiza el cálculo de la intensidad de las Señales Doppler en Matlab®.

3.1 Dispositivos de Ultrasonido Transcraneales No Invasivos

Sistema Spencer

El dispositivo Doppler transcraneal Spencer implementa dos tecnologías patentadas por Tecnologías Spencer. La primera se llama sobremuestreo de alta definición y la segunda ST3 Doppler Transcraneal de modo M de potencia (Spencer Technologies 2016). A partir de ahora estas dos tecnologías serán llamadas HDO y PMM, respectivamente. Estas dos tecnologías se explican a detalle en el capítulo 4 "Temas Selectos de Ultrasonido Doppler".

Tecnologías Spencer menciona que los exámenes neurovasculares y de monitoreo embólico con ultrasonido transcraneal se pueden realizar fácilmente con su tecnología de vanguardia. También, destaca que la tecnología PMM es un método extremadamente preciso para la medición de las velocidades del flujo sanguíneo cerebral. Esta es la motivación por la que este dispositivo es altamente relevante para este trabajo de tesis. Las capacidades del dispositivo ST3 Doppler Transcraneal de modo M de potencia se enlistan a continuación:

- Procesamiento digital HDO un modo-M de alta fidelidad;
- Monitoreo embólico altamente sensitivo mediante el patentado PMM;
- Mediciones de alta velocidad mediante alta frecuencia de repetición de pulso (PRF);
- Múltiples formatos de reporte; y
- Configuraciones del sistema personalizadas.

Figura 3.1: ST3 Sistema de Ultrasonido Transcraneal de Tecnologías Spencer. Figura obtenida de Spencer Technologies 2016.

Posición de la sonda en el sistema Spencer

El hueso temporal es la porción más delgada del cráneo humano y está localizado inmediatamente arriba del tragus. En esta posición las arterias intracraneales son transmitidas con una sonda TCD de 2 MHz para producir las formas de onda espectrales.

Las distancias se miden desde el punto de referencia "profundidad cero": superficie de la piel donde la sonda hace contacto con la cabeza. Para la mayoría de adultos la línea media se encuentra entre 70 y 80 mm aproximadamente (Hakimi, Alexandrov, y Garami 2020).

Figura 3.2: Hueso temporal.

Figura 3.3: Línea temporal (línea punteada); tragus (círculo). Figura obtenida de Wikimedia Commons Contibutors 2010. Adaptada por Zaleta-Andrade para este trabajo de tesis.

Sistema Nihon Kohden

Nihon Kohden es uno de los principales desarrolladores y fabricantes de sistemas de medición fisiológica-médica en todo el mundo (Chung 2019). Su filosofía se concentra en contribuir al combate de las enfermedades y mejorar la asistencia sanitaria con ayuda de tecnología avanzada (Nihon Kohden 2019). La visión de esta compañía es la creación y evaluación de la tecnología emergente de neuromonitorización y monitoreo fisiológico para la atención aguda hospitalaria.

El velocímetro de tejido cerebral – comúnmente llamado BrainTV o Sistema NK – es un prototipo desarrollado en asociación con la Universidad de Leicester y el Servicio Nacional de Salud del Reino Unido (NHS por sus siglas en idioma inglés) (Chung 2018). Por consecuencia, la información de las tecnologías utilizadas en el dispositivo BrainTV no es de dominio público. Sin embargo, si es conocido que el dispositivo implementa la tecnología TCD de sistemas Spencer.

El dispositivo BrainTV es una unidad mejorada más ligera, portable, y con conexiones USB 2.0. Cuenta con dos canales de transmisión de datos utilizados junto a dos sondas transcraneales de 2 MHz, que se puede usar en conjunto o solamente una de ellas. Las sondas transcraneales tienen una frecuencia de repetición de pulso de 8 KHz (modificables). Este dispositivo sincroniza las señales de ultrasonido Doppler a un electrocardiograma (ECG) y otras entradas fisiológicas como la presión sanguínea (BP) o la presión intracraneal (ICP). Nihon Kohden ha dotado al sistema NK con una interfaz de adquisición de datos capaz de hacer una grabación continua (figura 3.4), sin mayor límite que el del tamaño de la unidad de memoria donde se guarda la grabación.

Figura 3.4: Interfaz de adquisición de datos del dispositivo BrainTV. Figura obtenida de Chung, Banahan, Minhas, y Lecchini-Visintini 2018. Adaptada y traducida por Zaleta-Andrade para este trabajo de tesis.

Figura 3.5: Equipo de integración (superior izquierda), posición de la sonda (superior derecha), y puertos (inferior derecha) del equipo BrainTV. Figura obtenida de Chung *et al.* 2018. Adaptada por Zaleta-Andrade para este trabajo de tesis.

3.2 Interfaz gráfica de usuario (GUI) en Matlab® para el cálculo de la intensidad de la sonda de ultrasonido transcraneal de equipos de Tecnologías Spencer y Nihon Kohden

Propósito de la interfaz gráfica de usuario

Todos los códigos incorporados en esta GUI de Matlab® trabajan en conjunto para calcular la intensidad de las señales de ultrasonido Doppler transcraneal, leyendo archivos con extensiones *.mat, *.iq1, y *.iq2 para mostrar la intensidad de salida de cada señal RMS de cada barrera con base en la siguiente fórmula de Evans *et al.* 2000:

Intensidad de salida en decibeles =
$$10 \cdot 10 \log_{10} \frac{I}{I_0}$$
 Ec.(3.1)

 $I_0 = es$ la intensidad del rayo ultrasónico I = es la intensidad de una señal RMS Doppler

Tanto I₀ como I son detectadas por el mismo transductor. El resultado final del cálculo de las intensidades de las señales Doppler transcraneales se muestra en la figura 3.6

Figura 3.6: Salida de la GUI: intensidad de los valores RMS de las señales de cada una de las barreras (gates) en dB, utilizando un archivo *.iq2 (dos canales).

Estructura del código de la GUI

La GUI incorpora cuatro funciones creadas exclusivamente para llevar a cabo tareas específicas como leer archivos, disminuir la resolución de las señales y normalizar los datos de campo en archivos específicos, etc. Cada función proporciona resultados que siguen el flujo que se muestra en la figura 3.7.

Figura 3.7: Flujo de las slidas de cada función incorporada en el código de la GUI.

Descripción de los códigos incorporados en la GUI

readfile.m

Esta función necesita, como entrada, el nombre de ruta y el nombre de archivo de los archivos *.iq1, *.iq2, o *.mat. *readfile.m* devuelve la siguiente información de las señales de ultrasonido Doppler: las componentes IQ de las señales, su PRF, la frecuencia de la señal de ultrasonido generada por el transductor (generalmente de 2 MHz) y un identificador.

Figura 3.8: Parte del código de lectura de archivos *.iq1, *.iq2, y *.mat llamado readfile.m. Figura obtenida del código original gui_Echo.m.

avData.m

El código BrainTV disminuye la resolución de las señales de entrada en algún punto dentro de sus códigos. El mismo proceso se implementa en la función avData.m, donde las componentes IQ de las señales Doppler son reducidas en tiempo. Este proceso se explica a detalle en el sub-capítulo "Compresión de las Señales de Ultrasonido Doppler Transcraneales" más adelante en este mismo capítulo.

La función avData.m necesita las componentes en fase y cuadratura de las señales de ultrasonido Doppler con sus respectivos tiempos de muestreo y el número de muestras para reducir la resolución de las señales de entrada. Esta función devuelve el valor absoluto (magnitud) de las componentes en fase y en cuadratura comprimidas,

junto a sus respectivos tiempos de muestreo. También devuelve el valor absoluto de las componentes en fase y en cuadratura no comprimidas.

norm2one.m

Esta función es muy simple y solo normaliza, a uno, todos los valores devueltos por la función avData.m.

Figura 3.9: Parte del código que normaliza, a uno, todos los valores devueltos por avData.m: el valor absoluto de las componentes en fase y en cuadratura comprimidas de las señales de ultrasonido Doppler. Figura obtenida del código original gui_Echo.m.

Descripción de la GUI

La interacción del usuario con la GUI es sencilla, ya que solo se necesita hacer clic en el botón "Import file" para introducir los archivos *.iq1, *.iq2, o el archivo *.mat, que contienen datos de campo de las señales de ultrasonido Doppler transcraneal. También se necesita añadir el archivo "peaks.mat" (explicado a detalle más adelante en este capítulo) que contiene la intensidad inicial para el cálculo de la intensidad de las señales Doppler. La figura 3.10 muestra las diferentes partes de la interfaz gráfica de usuario y la figura 3.11 el resultado final de la GUI, es decir, el cálculo de la intensidad de las señales de ultrasonido Doppler.

Figura 3.10: Matlab® GUI que muestra la intensidad de señales de ultrasonido Doppler transcraneal de archivos *.mat, *.iq1, y *.iq2.

Figura 3.11: Cálculo de la intensidad de las señales de ultrasonido Doppler de 33 profundidades distintas, utilizando la interfaz gráfica de Matlab®.

3.3 Lectura de archivos de las señales de ultrasonido Doppler de los equipos de Tecnologías Spencer y Nihon Kohden

Tanto el sistema Spencer como NK guardan todas las lecturas de los datos de campo dentro de tipos de archivos especiales. Los archivos del sistema NK están en formato binario y contienen un mayor número de datos distintos en comparación con los archivos del sistema Spencer. Dicha información se encuentra en los encabezados o "headers" de los archivos. Esto hace que sea necesario una refactorización de datos mucho más compleja que la de los archivos Spencer, los cuales, son capaces de ser leídos en Matlab® como un dato de tipo estructura (struct). El proceso de lectura de

archivos está a cargo de la función *pb_importfile_Callback(...)* en la GUI, principalmente mediante la implementación de *readfile.m*. Parte de la lectura consta en extraer los datos de campo de las señales codificadas en fase y cuadratura (Componentes IQ).

Archivos .mat del sistema Spencer

Los archivos .mat del sistema Spencer muestran un nombre alfanumérico que incluye fecha y datos relevantes del estudio transcraneal. Esto es muy importante porque permite a los programadores conocer información relevante del archivo incluso sin necesidad de abrirlo. E.g., la extensión *.iq1 quiere decir que el archivo contiene información de un solo canal, lo que quiere decir que la recopilación de datos se hizo mediante una sola sonda en lugar de dos. La estructura interna de los archivos *.mat muestra sus datos como en la figura 3.12.

Figura 3.12: Estructura interna de un archivo *.mat del sistema Spencer. Figura obtenida de un archivo de la carpeta privada de la investigación de la Universidad de Leicester.

La figura 3.12 muestra datos de interés para quien monitorea el TCD (equipo de ultrasonido), entre ellos destacan algunos tiempos de muestreo y la velocidad del movimiento del tejido cerebral (*time_IQavg, time_IQ, y RawVelocity*, respectivamente). Los algoritmos que extraen y refactorizan estos datos se explican más adelante en este capítulo.

Archivos .iq del Sistema NK

A diferencia de un archivo del sistema Spencer, tal como se mencionó anteriormente, los archivos.iq del sistema NK están en formato binario. Contienen un nombre de archivo que muestra directamente información del estudio. La extensión *.iq también es importante porque dice si el archivo contiene datos de dos canales o solo uno. Por ejemplo, *P0000410S4120.iq2* contiene información de dos canales o *P0000410S4120.iq1* que contiene información solo de un canal. La cabecera contiene un arreglo de 8 datos, de los cuales solo 2 son relevantes para el cálculo de la intensidad del ultrasonido retrodispersado. La posición 4 del arreglo contiene la frecuencia de la señal portadora (en MHz) y la posición 8 la frecuencia de repetición de pulso (en kHz). De manera similar, en el sistema Spencer las señales de ultrasonido están codificadas en componentes en cuadratura y fase mediante números complejos. Los algoritmos que extraen y refactorizan estos datos se explican más adelante. Un ejemplo de encabezado de un archivo *.iq1 y una parte de los datos de campo de este archivo se muestran en la figura 3.13 y 3.14, respectivamente.

Figura 3.13: Encabezado de un archivo *.iq1. Figura obtenida de un archivo contenido en la carpeta privada de la investigación de la Universidad de Leicester.

Figura 3.14: Componentes en fase y cuadratura de un archivo *.iq1 de señales de ultrasonido Doppler producidas por la insonación de un rayo ultrasónico transcraneal utilizando el sistema NK. Figura obtenida de un archivo contenido en la carpeta privada de la investigación de la Universidad de Leicester.

Algoritmo de extracción de datos de archivos del sistema Spencer y NK en la GUI

Matlab® permite la lectura y reescritura de datos provenientes de otras aplicaciones. Por ejemplo, los datos extraídos por el sistema Spencer o NK pueden someterse a procesos de refactorización de datos que no son posibles de realizar directamente en los equipos biomédicos. Es decir, para que los procesos de compresión de señales fueran posibles, los fabricantes como Nihon Kohden tendrían que desarrollar soluciones muy específicas para cada usuario.

Afortunadamente, parte del código modular de extracción del eco vuelve el proceso de extracción de datos algo muy sencillo. Basta con insertar el comando "uigetfile(...)" para tener la información de guardado del archivo y posteriormente leerlo utilizando "readfile(...)", tal como se muestra en la figura 3.15.

Figura 3.15: Comandos de obtención de información de guardado del archivo a utilizar para su lectura. Figura obtenida del código original *gui_Echo.m*.

La función *readfile(...)* retorna las componentes en fase y cuadratura de las 33 señales Doppler correspondientes a distintas profundidades cerebrales; la frecuencia de repetición de pulso; la frecuencia portadora; los tiempos de cada muestra; y un identificador del sistema Spencer o NK.

3.4 Aproximación inicial: señal de ultrasonido Doppler transcraneal generadora del eco

Parámetros del Sistema Spencer y NK

La intensidad del eco de una señal de ultrasonido la define Evans *et al.* (2000) como:

$$EI = 10 \cdot \log_{10} \left(\frac{I}{I_0} \right)$$
 Ec.(3.2)

EI es la intensidad del eco [dB] I es la intensidad de la señal recibida I₀ es la intesidad de referencia

La intensidad o amplitud de la señal recibida proviene de la retrodispersión de la insonación transcraneal del ultrasonido Doppler. *I.e.*, son las señales muestreadas codificadas en componentes en fase y cuadratura. La intensidad de referencia es aquella

señal de insonación Doppler transcraneal (también llamada señal portadora), con una frecuencia de 2 MHz (Evans *et al.* 2000) y una amplitud desconocida – a menos que se utilice un instrumento de medición directo sobre la sonda que mida su potencia de emisión. En el apartado de conclusiones de este trabajo de tesis esto se discute a detalle.

El proceso de insonación en sistemas PW permite que la señal de ultrasonido TCD llegue a 33 profundidades distintas del cerebro (llamadas barreras o gates), donde la profundidad 33 es regularmente la más débil debido a la pérdida de potencia de la señal ocasionada por la distancia (Kucewicz 2004). El eco producido en la barrera más cercana al transductor, por lo tanto, es la señal más parecida a la señal portadora. La figura 3.16 muestra la forma de onda de una señal Doppler con un punto de amplitud máxima- I.e., un punto de mayor intensidad del eco.

Figura 3.16: Amplitud máxima de la señal de ultrasonido retrodispersada (eco) de la barrera número 10 de un archivo NK de un canal. Las magnitudes del tiempo de muestreo y amplitud del eco son desconocidas para el autor de este trabajo de tesis. Figura obtenida utilizando Matlab®.

Existe la posibilidad que la intensidad de las señales no sea inversamente proporcional a la profundidad de la barrera, ya que una señal Doppler a una mayor profundidad puede ser más intensa que una señal Doppler a menor profundidad. La razón es que el eco de la señal menos profundo pudo haber sido reflejado por un vaso sanguíneo en vez de tejido blando. El coeficiente de atenuación de la sangre es de 0.2 dB • cm-1 y el del tejido blando de 0.7 dB • cm-1 (Evans et al. 2000). De hecho, detectar

estos fenómenos es una de las aplicaciones potenciales del cálculo de la intensidad del eco – objeto de estudio de este trabajo de tesis –, ya que permite decidir si una señal retrodispersada es producto del movimiento del tejido cerebral o del flujo de un vaso sanguíneo. Por lo anterior, y asumiendo que la señal con el punto de mayor amplitud es la más aproximada a la señal portadora (o de insonación), se puede lograr una aproximación si se encuentra el punto de mayor amplitud entre las 33 señales de eco. Esto es preferible después de aplicar la técnica de disminución de la tasa de muestreo (Tan y Jiang 2013).

La amplitud máxima que resulta del proceso de aproximación es diferente entre archivos del sistema NK y Spencer, así como entre archivos del mismo sistema, NK o Spencer. Las tablas 3.1 y 3.2 muestran las amplitudes máximas de archivos de estudios reales, propiedad de la Universidad de Leicester.

Datos del archivo	Máxima
	amplitud de la señal
	de ultrasonido
	Doppler
Estudio: Georgina	8.0147e03
Sistema: NK	
Número de estudio: P001	
Descripción del estudio:	
Leg_raise_F	
Tipo: .iq1	
Estudio: Georgina	8.5922e3
Sistema:NK	
Número de estudio: P005	
Descripción del estudio: Stand_T	
Tipo: .iq1	

Estudio: Georgina	7.3742e03
Sistema: NK	
Número de estudio: P010	
Descripción del estudio: Maths_T	
Tipo: .iq1	
Estudio: Georgina	2.44e4
Sistema: NK	
Número de estudio: P015	
Descripción del estudio:	
Leg_raise_T	
Tipo: .iq1	

Tabla 3.1: Máximas amplitudes de distintos archivos *.iq1 (NK), calculadas utilizando la
función *peaksfinder.m*. Datos obtenidos de archivos contenidos en la carpeta
privada de la investigación de la Universidad de Leicester.

Datos del archivo	Máxima
	amplitud de la señal
	de ultrasonido
	Doppler
Estudio: Poppy	1.2e9
Sistema: Spencer	
Número de estudio: 00392	
Tipo: .mat	
Estudio: Poppy	1.0372e9
Sistema: Spencer	
Número de estudio: 00398	
Tipo: .mat	
	·

Estudio: Poppy	1.1023e9
Sistema: Spencer	
Número de estudio: 00408	
Tipo: .mat	
Estudio: Poppy	1.414e9
Sistema: Spencer	
Número de estudio: 00464	
Tipo: .mat	

Tabla 3.2: Máximas amplitudes de distintos archivos *.mat (Spencer), calculadas utilizando la función peaksfinder.m. Datos obtenidos de archivos contenidos en la carpeta privada de la investigación de la Universidad de Leicester.

Por los resultados que se muestran en las figuras 3.17 y 3.18, la aproximación es que depende de una base de datos de distintas amplitudes de distintos archivos del mismo sistema, provenientes de estudios con protocolos muy similares. Dicha base de datos muestra una desviación entre cada una de las amplitudes ordenadas de menor a mayor. El resultado promedio de estas desviaciones entre amplitudes propone ser la desviación aproximada entre el punto de mayor amplitud registrado y la señal portadora. Entonces, se dice que la intensidad de referencia (de la señal portadora) se puede definir de la siguiente manera:

$$\mathbf{I} + = \mathbf{A}_{\max} + \Delta \mathbf{I}$$
 Ec.(3.3)

I es la intesidad de referencia A_{max} es la amplitud máxima de varias amplitudes ΔI es la desviación promedio entre varias amplitudes máximas

Algoritmo de aproximación de la señal de ultrasonido Doppler transcraneal generadora del eco en la GUI

El código *beam.m*, junto con el código *amplitude.m*, son funciones que reconstruyen la señal de ultrasonido Doppler RMS con mayor intensidad entre un grupo de señales del mismo tipo. Su objetivo es resolver el problema de no tener una referencia inicial I₀ para el cálculo de la intensidad de salida. El código *peaksfinder.m* puede calcular la amplitud máxima entre todas las señales de un archivo *.iq1, *.iq2, *.mat – que contienen las componentes IQ del haz de ultrasonido Doppler – y guardarla en un archivo llamado *peaks.mat. peaksfinder.m* puede repetir este proceso infinitamente para quizás detectar amplitudes más altas en otros archivos *.mat, *.iq1, o *.iq2 y conseguir una mejor aproximación. Cuanto mayor sea la amplitud encontrada, mejor será la aproximación debido a que la señal más intensa siempre será el haz de salida y a que no puede haber amplificación en ninguna de las señales Doppler. El pico más intenso encontrado por *peaksfinder.m* será la señal más aproximada a la señal de ultrasonido transcraneal insonada.

Figura 3.17: Parte del código de la función *peaksfinder.m.* Figura obtenida del código original *gui_Echo.m.*

Figura 3.18: Código de la función amplitude.m. Figura obtenida del código original *gui_Echo.m*.

Figura 3.19: Código de la función *beam.m*. Figura obtenida del código original *gui_Echo.m*.

El código *peaksfinder.m* puede ser ejecutado de forma independiente, pues no está integrado en la GUI. Este código no necesita ninguna variable de entrada, sino un archivo *.iq1, *.iq2, o *.mat que contenga las componentes IQ de las señales de ultrasonido Doppler. El código peaksfinder.m crea – si no existe ya – un archivo llamado *peaks.mat*

en la misma ruta que *peaksfinder.m*. Las amplitudes máximas de las señales de ultrasonido Doppler procesadas se irán guardando en *peaks.mat* en forma de una pila horizontal. El código *peaksfinder.m* puede ejecutarse de forma infinita para seguir insertando datos en *peaks.mat* y así lograr que la referencia de intensidad inicial se aproxime más al rayo de ultrasonido transcraneal insonado.

peaks ×														
I 1x208 double K Nomero de amplitudes máximas calculadas de varian activadas de varian activadas de das dos)														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	9.2029e	9.2029e	9.1123e	7.8366e	7.8366e	8.0147e	6.0271e	4.9232e	8.2352e	8.2352e	8.0137e	5.5934e	5.5934e	4.7453e
2														

Figura 3.20: archivo *peaks.mat* construido con bases de datos de estudios Doppler transcraneales privados de 2019, propiedad de la Universidad de Leicester. Figura obtenida utilizando Matlab®.

El código *amplitude.m* necesita el nombre y ruta del archivo *peaks.mat* para retornar el pico o punto de mayor amplitud, así como la desviación promedio entre los picos. De estas dos variables retornadas, solo el pico – la variable *reference* dentro del código *amplitude.m* – es utilizado en *beam.m* y la desviación promedio entre los picos puede ser utilizada en mejoras posteriores del método de aproximación planteado en este trabajo de tesis o en otras aplicaciones.

Para retornar las magnitudes y tiempos de muestreo de la aproximación del rayo ultrasónico de salida, *beam.m* necesita de su frecuencia portadora así como de los tiempos de muestreo de las señales de ultrasonido Doppler. El código *beam.m* retorna una señal de salida aproximada con el mismo número de muestras que las señales de ultrasonido Doppler, codificadas en fase y cuadratura.
3.5 Compresión de las señales de ultrasonido Doppler transcraneales

Sea F_m la frecuencia cíclica del componente de frecuencia más alta de una señal continua x(t), el teorema de muestreo (Nyquist) establece que x(t) puede reconstruirse exactamente a partir de una versión muestreada x(n), siempre que la frecuencia de muestreo $F_s=1/T_s$ sea mayor que el doble de F_m . Debido a las características no lineales de los dispositivos físicos, en la práctica se suelen utilizar frecuencias de muestreo algo mayores que la mínima teórica utilizada (Sundararajan 2016). En el caso de las señales de ultrasonido Doppler, estas se encuentran en el espectro electromagnético de radiofrecuencia y, por lo tanto, la frecuencia de muestreo de estas señales $F_s=1/T_s$ debe ser $4F_m$ (Hoeks, Brands, Arts, y Reneman 1994).

De acuerdo con la información del software BrainTV, se supone que el factor de escala es 50 para la compresión del tiempo – o disminución de la resolución de las señales de ultrasonido Doppler. Si esta señal de ultrasonido se denotara como:

 $x(n): x(0), x(1), x(2), x(3), \dots$

Entonces, una señal de ultrasonido de 300 muestras puede verse como en la figura 3.21:

Figura 3.21: Señal creada aleatoriamente en Matlab® para representar una señal de ultrasonido Doppler con 300 muestras.

Para reducir la resolución de la señal x(n), se sustituye la variable n por 50n. Las muestras de la señal comprimida de x(n) se denotan entonces como:

$$x(50n)$$
: $x(0)$, $x(50)$, $x(100)$, $x(150)$...

La señal comprimida por un factor de 50 de la señal de ultrasonido Doppler con 300 muestras se muestra en la figura 3.22.

Figura 3.22: Señal comprimida por un factor de 50 de la señal de ultrasonido Doppler de 300 muestras (creada aleatoriamente con Matlab®).

La señal de ultrasonido Doppler comprimida, x(50n), ahora está compuesta por las muestras múltiplos de 50 de x(n). Las muestras que no son múltiplos de 50 se pierden en el proceso de compresión. La figura 3.23 muestra la representación simbólica de comprimir una señal de ultrasonido Doppler, llevado a cabo por la función avData.m en la GUI para este trabajo de tesis.

Figura 3.23: Representación simbólica de comprimir una señal por un factor de 50, haciendo referencia al proceso de reducción de la resolución de las señales de ultrasonido Doppler en la función avData.m en la GUI.

Algoritmo de compresión de señales de ultrasonido Doppler usando la GUI

El algoritmo de disminución de la resolución es sumamente sencillo. Se necesitan los datos de campo y sus respectivos tiempos de muestreo, así como el factor de disminución de resolución. La función avData.m toma las muestras de las señales de ultrasonido Doppler moduladas en fase y cuadratura y calcula su magnitud a la vez que también comprime la señal Doppler. El código avData.m retorna las magnitudes de las muestras de las señales de ultrasonido Doppler comprimidas por un factor dado por la variable *Av_sample*, sus respectivos tiempos de muestreo, y las magnitudes de las señales de ultrasonido Doppler sin comprimir.

Figura 3.24: Parte del código de disminución de la resolución de las señales de ultrasonido Doppler transcraneales readfile.m. Figura obtenida del código original gui_Echo.m.

Capítulo 4 Temas Selectos de Procesamiento de Señales de Ultrasonido Doppler Transcraneal

Es importante motivar al lector de este trabajo de tesis con temas que revelen información detallada y específica de los sistemas TCD y la GUI *BrainTV*. Tecnologías Spencer y su tecnología HDO, mediante cálculos más precisos, disminuyen la potencia del ruido en banda de las señales de ultrasonido sin afectar la potencia de la señal. La tecnología PMM (de Tecnologías Spencer) utiliza sonógrafos capaces de identificar no solo las formas de ondas espectrales de las señales Doppler, sino otros parámetros como la profundidad de los objetivos – o barreras. La GUI BrainTV (programa de uso privado de la Universidad de Leicester) utiliza los datos de campo de los sistemas TCD de Nihon Kohden y Tecnologías Spencer para extraer la mayor cantidad de datos tanto de los objetivos perturbados ultrasónicamente, como de las señales Doppler resultantes de la perturbación de estos objetivos.

4.1 Sobremuestreo de Alta Definición – HDO

Muchas aplicaciones requieren tomar mediciones usando un convertidor analógicodigital (ADC). Dichas aplicaciones tienen requerimientos basados en el rango dinámico de la señal, el cambio más pequeño de los parámetros a medir, y la relación señal a ruido (SNR). Por esta razón, para mejorar el SNR e incrementar la resolución efectiva de las mediciones, muchos sistemas utilizan la técnica de promediado de señales y sobremuestreo en sistemas ADC (Sillicon Labs 2013).

De acuerdo con el teorema de Nyquist, una frecuencia de muestreo F_s , permite que una señal de interés se reconstruya a ½ de la frecuencia de muestreo. Esto quiere decir que si la frecuencia de muestreo es 1000 kHz, las señales que estén por debajo de los 50 kHz pueden ser reconstruidas y analizadas correctamente (*ibid*). Sin embargo, junto con la señal de entrada hay una señal de ruido – denominada *ruido blanco* – que causa un empalme en las frecuencias menores a 1/2 F_s .

$$E(f) = e_{rms} \cdot \left(\frac{2}{F_s}\right)^{\frac{1}{2}}$$
 Ec.(4.1)

e_{rms} es la potencia de ruido promedio F_s es la frecuencia de muestreo E(f)es la densidad espectralde energía en banda (ESD)

E(f) muestra que ESD disminuye a medida que la frecuencia de muestreo aumenta (Candy y Temes 1987).

Si se tiene una potencia de ruido fija, generada por el ruido de cuantización, es posible calcular la cantidad de sobremuestreo necesaria para aumentar la resolución efectiva de los datos. Para esto, vale la pena mencionar que el ruido de cuantización es la distancia adyacente entre códigos ADC o niveles de cuantización.

N es el número de bits en el código ADC V_{ref} es el voltaje de referencia Δ es el ruido de cuantización

El ruido de cuantización cumple la siguiente condición:

$$e_q \leq \frac{\Delta}{2}$$
 Ec.(4.3)

$e_q = ruido de cuantización$

Si se asume que el ruido se aproxima al ruido blanco, la variable aleatoria representando al ruido tiene una distribución uniforme con una media de cero entre los códigos ADC (Candy *et al.* 1987).

$$\int_{\frac{-\Delta}{2}}^{\frac{\Delta}{2}} \left(\frac{e_q^2}{\Delta}\right) de = \frac{\Delta^2}{12}$$
 Ec.(4.4)

La relación entre la frecuencia de muestreo y la frecuencia de Nyquist se denomina relación de sobremuestreo (OSR).

$$OSR = \frac{F_s}{2 \cdot F_m}$$
 Ec.(4.5)

 F_s es la frecuencia de muestreo F_m es la componente de frecuencia mayor de la señal de entrada

Debido a que se sigue asumiendo que el ruido es *ruido blanco*, se puede hacer que la potencia de ruido en banda sea una función de OSR.

n_0 es la potencia del ruido de salida

Por lo tanto, la n₀ muestra que es posible disminuir la potencia del ruido en banda simplemente al aumentar el OSR. El sobremuestreo y promedio de las señales no afecta la potencia de la señal (Oppenheim y Schafer 1998). Entonces, se aumenta el SNR porque el sobremuestreo disminuye la potencia del ruido y no afecta la potencia de la señal (Sillicon Labs 2013).

En términos prácticos, una señal limitada en banda se mide a menos de ½ de la frecuencia de muestreo y después se sobremuestrea con ayuda de la relación de sobremuestreo (OSR). Las muestras resultantes se promedian para los datos de salidas resultantes. Se suele sobremuestrear por un factor de cuatro para cada bit adicional de resolución o 6 dB de reducción de ruido (*ibid*).

w es el número adicional de bit de la resolución deseada f_s es el requisito de frecuencia de muestreo original f_{os} es la frecuencia de sobremuestreo

4.2 Tecnología ST3 Doppler Transcraneal de Modo M de Potencia – PMM

Tecnologías Spencer menciona que en el libro *Neuroimaging, An Issue of Neurologic Clinics* de Laszlo Mechtler se encuentra la información más reciente del uso de Doppler Transcraneal (TCD). En una parte de la página web de tecnologías Spencer¹ se hace una cita textual donde se menciona que el mayor avance técnico, desde la introducción del TCD, es el uso del Doppler Modo Movimiento de Potencia (PMD), lo que quiere decir que la tecnología ST3 Doppler Transcraneal de modo M de potencia (PMM) está basada en la tecnología PMD.

¹ <u>https://www.spencertechnologies.com</u>

El dispositivo TCD o sistema Spencer muestra formas de onda espectrales que representan la profundidad, dirección, e intensidad del flujo sanguíneo a través de una vasculatura intracraneal (vasos sanguíneos dentro del cráneo). El dispositivo de Tecnologías Spencer no solo mide el flujo sanguíneo directamente, sino que calcula la correlación de otros parámetros basándose en el flujo sanguíneo cerebral (CBF).

Hakimi, Alexandrov, y Garami (2020) mencionan que en el pasado, las máquinas TCD solamente mostraban las formas de onda espectrales. Esto ocasionaba que el operador tuviera que decidir cuál vaso había sido insonado para intentar obtener la misma forma de onda a diferentes profundidades – utilizando técnicas de inversión de la señal con diferentes enfoques o ventanas. Con la incorporación del PMD, los sonógrafos ahora son capaces de obtener la forma de onda espectral e identificar la profundidad de los vasos sanguíneos insonados, la dirección del flujo con respecto a la sonda, y la intensidad de la señal.

Figura 4.1: Señales TCD normales en pantalla PMM: arteria cerebral media (MCA) (rojo: 40 – 60 mm), arteria cerebral anterior (ACA) (azul: 60 – 70 mm), ACA contralateral (rojo: 70 – 80 mm), y MCA contralateral (azul: 80 – 90 mm). Figura obtenida de Hakimi *et al.* (2020).

4.3 Interfaz Gráfica de Usuario para Analizar Señales de Ultrasonido Doppler Transcraneales

El grupo de ingeniería aeroespacial y computacional, en colaboración con el departamento de ciencias cardiovasculares de la Universidad de Leicester, han desarrollado una GUI en Matlab® – denominada BrainTV – capaz de leer, analizar y mostrar los datos extraídos de los sistemas TCD Spencer y NK. El desarrollo de este

programa es la principal motivación del capítulo 3 de este trabajo de tesis, ya que la intensidad del eco de las señales Doppler no se muestra en el programa BrainTV. Los algoritmos presentados en el capítulo 3 serán evaluados y probablemente mejorados por el grupo de investigación encargado del desarrollo del programa BrainTV para su implementación y uso, aproximadamente, a partir de la publicación de este trabajo de tesis. La figura 4.2 muestra la GUI BrainTV en su versión de finales del 2019.

Figura 4.2: Interfaz gráfica de usuario BrainTV en Matlab®. Figura obtenida del manual de usuario de la GUI, propiedad privada de la Universidad de Leicester (2019). Adaptada y traducida por Zaleta-Andrade para este trabajo de tesis.

Capítulo 5 Conclusiones y trabajo futuro

5.1 Conclusiones

El estudio de la generación de los rayos y campos ultrasónicos permite comprender la razón de usar señales de RF pulsantes en los dispositivos de ultrasonido TCD en lugar de señales continuas. Los transductores juegan un papel importante en el estudio del movimiento cerebral, ya que son los encargados no solo de generar las señales ultrasónicas, sino de capturarlas junto con las perturbaciones recibidas a través de su viaje por el cerebro. El procesamiento de estas señales Doppler ha requerido años de estudio para encontrar la manera de extraer la mayor cantidad de información posible de las señales Doppler y correlacionarla con otros sistemas fisiológicos. El cálculo de la intensidad del eco de una sonda de ultrasonido Doppler transcraneal es un dato innovador para el grupo de investigación de la Universidad de Leicester, ya que hasta antes de la publicación de este trabajo de tesis el cálculo de la intensidad no formaba parte del procesamiento de señales Doppler efectuado por el programa BrainTV. Dicha implementación de la GUI que calcula las intensidades de las señales Doppler será evaluada por investigadores de la Universidad de Leicester para su implementación futura en el programa BrainTV. Dicho programa permite a este grupo de investigación procesar las señales Doppler obtenidas por los equipos de ultrasonido TCD para interpretar el movimiento cerebral con otros parámetros fisiológicos como el CO2 del cuerpo, la presión arterial y, ahora, la intensidad con la que esas señales ultrasónicas retornan después de su viaje a través del cerebro.

El experimento hecho por RJ en el capítulo 2 pretende explicar la técnica reconstrucción de un rayo ultrasónico desde su parte experimental hasta el procesamiento de los datos con el fin de digitalizar un haz de ultrasonido. El objetivo final de la digitalización es lograr caracterizar el rayo ultrasónico para determinar su factibilidad en estudios médicos y comprobar si tendrá los resultados deseados por los

investigadores o médicos. El uso específico de la caracterización del rayo ultrasónico presentado en este trabajo de tesis es desconocido por el autor de este trabajo de tesis.

Matlab® es un lenguaje de programación que permite procesar datos digitales a muy alto nivel. La capacidad e innovación tecnológica de los equipos de ultrasonido TCD de NK y Tecnologías Spencer de procesar las señales Doppler ,tal como se explica en el capítulo 2, permite que toda la información de las señales se contenga en un solo archivo digital. De esta manera, Matlab® y un computador pueden procesar las señales y extraer la mayor cantidad de información utilizando algoritmos como el de compresión de datos o el de aproximación de la intensidad inicial de las señales de ultrasonido Doppler.

5.2 Discusión

Aproximación inicial: señal de ultrasonido Doppler transcraneal generadora del eco

Por una parte, se puede argumentar que las formas de onda de la intensidad del eco no cambian, aunque en la fórmula de la intensidad del eco de una señal de ultrasonido TCD se utilice o no una referencia aproximada. De hecho, si la intensidad de referencia se desprecia, la forma de onda permanecerá idéntica. Esto se muestra en la figura 5.1.

Figura 5.1: Cálculo de la intensidad de las señales de ultrasonido Doppler de 33 profundidades distintas. A la izquierda se utiliza el valor de referencia inicial con el método de aproximación propuesto en el capítulo 3 de este trabajo de tesis. A la derecha se desprecia la intensidad de referencia (valor casi cero). Figura obtenida de la GUI del cálculo de la intensidad en Matlab®.

Reducción de la tasa de muestreo o compresión de las Señales

La técnica de reducción de la tasa de muestreo también reduce el número de amplitudes analizadas durante la aproximación. Sin embargo, dicha reducción aumenta el periodo de muestreo por un factor M (Tan *et al.* 2013) y por lo tanto la nueva frecuencia de muestreo se vuelve:

$$\frac{f_{sM}}{2} = \frac{1}{M \cdot T} = \frac{f_s}{M}$$
 Ec.(5.1)

 $\frac{f_{sM}}{2}$ es la frecuencia de Nyquist; $M \cdot T$ es el nuevo periodo de muestreo; f_s es la frecuencia de muestreo original; y M es el factor entero de reducción de la tasa de muestreo.

Lo anterior quiere decir que la frecuencia de Nyquist, después de la reducción de la tasa de muestreo, disminuye M veces. Si la señal a la que se le reduce la tasa de muestreo tiene componentes más grandes que la nueva frecuencia de Nyquist, entonces se introduce solapamiento en la nueva señal. *I.e.*, existe aliasing en la señal con menor tasa de muestreo si:

$$f > \frac{f_s}{2 \cdot M}$$
 Ec.(5.2)

f es una componente en frecuencia de la señal con reducción en su tasa de muestreo; $\frac{f_s}{2 \cdot M}$ es la frecuencia de Nyquist de la señal con reducción en su tasa de muestreo.

Control de potencia de transmisión en el programa de adquisición de datos del sistema NK

El programa de adquisición de datos muestra una opción de control de potencia de transmisión. La intensidad está directamente relacionada con la potencia de la señal. Entonces, la intensidad de la señal de insonación puede que esté relacionada con la potencia de transmisión. *I.e.*, es posible que la intensidad de referencia se pueda recuperar desde el programa de adquisición de datos del prototipo BrainTV de NK. También puede ser que la intensidad de referencia se pueda recuperar directamente desde la hoja de datos técnicos del sistema NK.

Los transductores de los sistemas de ultrasonido TCD NK y Spencer no pueden utilizar osciladores hechos de un material PVDF debido a que su uso es para frecuencias superiores a los 15 MHz. Esto rebasa los parámetros de 2 MHz de la señal portadora del transductor de los equipos TCD Spencer y NK. Por lo tanto, es probable que los sistemas de Nihon Kohden y Tecnologías Spencer utilicen transductores hechos a base de material PZT-5H, según las propiedades mostradas en la tabla 2.2 de Evans et al. (2000).

Exportación de datos entre aplicaciones de equipos de ultrasonido TCD

Si la exportación de datos entre los distintos equipos de ultrasonido TCD no fuera posible, los fabricantes fueran los únicos capaces de desarrollar soluciones específicas para las necesidades de cada usuario. Por ejemplo, el desarrollo del programa BrainTV no hubiese sido posible a no ser que el fabricante del equipo TCD lo hubiera desarrollado él mismo. Esta situación ocasionaría que tanto los equipos de ultrasonido TCD como los programas fueran más costosos. La producción de un solo producto acabaría dependiendo del número de usuarios con necesidades distintas. La cantidad de oferta y demanda disminuiría y con ella la motivación de continuar con el desarrollo tecnológico del producto y de sus aplicaciones.

5.3 Trabajo Futuro

Investigación futura

Después de una investigación previa del contenido relacionado con el ultrasonido Doppler en la biblioteca que la UNAM pone a disposición de alumnos de pregrado, los resultados encontrados con contenido relacionado al tema fue limitado. Además, la mayoría de este contenido está en idioma inglés, por lo que la información relacionada al ultrasonido Doppler se vuelve más limitada aún. Esto reduce la capacidad de alumnos de pregrado de hacer investigación en el tema de ultrasonido Doppler.

Esta tesis busca motivar a futuros alumnos de licenciatura de la Universidad Nacional Autónoma de México a introducirse en el tema del ultrasonido Doppler Transcraneal para producir trabajos de investigación similares a este trabajo de tesis y promover así investigación de posgrado en la detección no invasiva del daño cerebral en humanos desde un punto de vista de ingeniería. Si el lector de este trabajo de tesis entiende el idioma inglés, podrá iniciar su propia investigación basándose en la notable lista de referencias relacionadas con el ultrasonido Doppler que se presentan en la bibliografía.

Algoritmos

La minuciosa descripción de los algoritmos presentados en este trabajo de tesis, en el capítulo 2 y 3, sientan una base para la mejora de los mismos o para el desarrollo de otros algoritmos para que logren extraer datos que puedan ser interesantes para la detección no invasiva del daño cerebral en humanos. Es importante seguir iterando con más estudios en el área del ultrasonido TCD para que alumnos de Licenciatura de la UNAM puedan ir al siguiente nivel y hacer investigación de posgrado con investigadores de otras partes del mundo. De esta manera, aumentar la tasa de desarrollo de un sistema que sea capaz de detectar el daño cerebral de forma no invasiva, y en tiempo real, en casos de emergencia, por ejemplo, en ambulancias.

Apéndice A

Acrónimos

Acrónimo	Definición (Español)	Definición (Inglés)
ADC	Convertidor analógico a digital	Analogue-to-Digital Converter
BP	Presión Sanguínea	Blood Pressure
BrainTV	Velocímetro de Tejido Cerebral	Brain Tissue Velocimetry
CBF	Flujo Sanguíneo Cerebral	Cerebral Blood Flow
CO2	Dióxido de Carbono	Carbon Dioxide
DAC	Convertidor digital a analógico	Digital-to-Analogue Converter
DAQ	Adquisición de datos	Data Acquisition
DSO	Osciloscopio de Almacenamiento Digital	Digital Storage Oscilloscope
ECG	Electrocardiograma	Electrocardiogram
EI	Intensidad o Amplitud del Eco	Eco Intensity or Amplitude
ENOB	Número Efectivo de Bits	Effective Number of Bits
EQ	Ruido de Cuantización	Quantisation Error
ESD	Densidad Espectral de Energía	Energy Spectral Density
GRY	Giroscopio	Gyroscope
GUI	Interfaz Gráfica de Usuario	Graphic User Interface
ICP	Presión Intracraneal	Intracraneal Pressure
IQ	En Fase y Cuadratura	In Phase Quadrature
NHS	Servicio Nacional de Salud (del Reino Unido)	National Health Service (in the UK)
NK	Nihon Kohden	Nihon Kohden

OSR	Relación d sobremuestreo	le	Oversampling Ratio
PMD	Doppler modo movimient de Potencia	to	Power Motion-mode Doppler
PMM	ST3 Doppler Transcranea de modo M d potencia	al le	ST3 Power-M-mode transcranial Doppler
PRF	Frecuencia de Repetició de Pulso	n	Pulse Repetition Frequency
PW	Sistemas de Ond Pulsada	la	Pulsed Wave System
RF	Radio Frecuencia		Radio Frequency
RMS	Raíz Media Cuadrada		Root Mean Square
S/H	Muestreo y Retención		Sample and Hold
SNR	Relación Señal a Ruido		Signal-to-Noise Ratio
TCD	Doppler Transcraneal Ultrasonografía Doppler	0	Transcranial Doppler or Transcranial Doppler Ultrasononography/Ultrasound
TGC	Compensación d Ganancia d Tiempo	le le	Time Gain Compensation

Apéndice B Códigos del Cálculo de la Intensidad de señales de Ultrasonido Doppler Transcraneales

Los códigos y comentarios de los códigos que se muestran a continuación fueron escritos en Matlab® R2019b durante la estancia de investigación en la Universidad de Leicester del autor de este trabajo de tesis. Estos códigos operan en conjunto siguiendo el flujo de la figura 3.7 del capítulo 3 y tienen el propósito de llevar a cabo el cálculo de la intensidad de las señales de ultrasonido TCD a través de la GUI que se muestra en la figura 3.11 del capítulo 3. El único código que opera por separado es peaksfinder.m. Se puede encontrar la descripción de esta función y de todas las demás funciones de este apéndice en el capítulo 3.

Interfaz Gráfica de Usuario - gui_Echo.m

```
function varargout = gui Echo(varargin)
%%Códiqo modular de extracci√≥n del eco de una sonda de ultrasonido Doppler
%%transcraneal con MATLAB.
%%Before running the code, ensure the Signal Processing Toolbox is
%%installed.
%Author: Sergio Zaleta-Andrade, Estudiante de Lic.
88
% GUI ECHO MATLAB code for gui Echo.fig
       GUI_ECHO, by itself, creates a new GUI_ECHO or raises the existing
8
8
       singleton*.
응
웅
       H = GUI ECHO returns the handle to a new GUI ECHO or the handle to
g
       the existing singleton*.
8
ဗွ
       GUI ECHO('CALLBACK', hObject, eventData, handles, ...) calls the local
g
       function named CALLBACK in GUI_ECHO.M with the given input arguments.
웅
웅
       GUI_ECHO('Property','Value',...) creates a new GUI_ECHO or raises the
       existing singleton*. Starting from the left, property value pairs are
웅
g
       applied to the GUI before gui_Echo_OpeningFcn gets called. An
       unrecognized property name or invalid value makes property application
웅
       stop. All inputs are passed to gui Echo OpeningFcn via varargin.
웅
웅
       *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
8
8
       instance to run (singleton)".
8
% See also: GUIDE, GUIDATA, GUIHANDLES
```

```
% Edit the above text to modify the response to help qui Echo
% Last Modified by GUIDE v2.5 28-May-2020 10:47:38
% Begin initialization code - DO NOT EDIT
gui Singleton = 1;
gui State = struct('gui Name',
                                     mfilename, ...
                    'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @gui_Echo_OpeningFcn, ...
                    'gui_OutputFcn', @gui_Echo_OutputFcn, ...
                    'gui_LayoutFcn',
                                     [],...
                    'gui_Callback',
                                      []);
if nargin && ischar(varargin{1})
    gui State.gui Callback = str2func(varargin{1});
end
if nargout
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
    gui mainfcn(gui State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before qui Echo is made visible.
function gui Echo OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
            handle to figure
% hObject
% eventdata reserved - to be defined in a future version of MATLAB
% handles
             structure with handles and user data (see GUIDATA)
% varargin command line arguments to gui Echo (see VARARGIN)
% Choose default command line output for gui Echo
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes gui Echo wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = gui Echo OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject
            handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles
            structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
```

% --- Executes on button press in pb_importfile.

```
function pb_importfile_Callback(hObject, eventdata, handles)
%Cleaning both axes
cla(handles.axes1);
cla(handles.axes2);
%Initialising
   CFd = pwd;
§_____
____
% --- *.mat file open
   [file_name, pathname, ~] = uigetfile({ '*.iq1;*.iq2;*.mat',...
    Models (*.iq1,*.iq2) or MATLAB files (*.mat)'});
8_____
setappdata(handles.figure1, 'fileName', file name);
cd(CFd);
if isnumeric(pathname)
   %Avoiding error due to cancellation
       uiwait(msgbox('Import Data Action Cancelled'));
else
   %setting app data
       fullfile name=fullfile(pathname,file name);
       setappdata(handles.figure1, 'file name', fullfile name);
   %extracting IQ data and other parameters
   %IQdata, IQ components in a complex form
   %PRF, Hz
   %Fc, Mhz
   %systemname, Spencer or NK
   %Time, s
   avsample=100; %For averaging
   Fcbeam=2e6; %Hz
   [IQdata, PRF, Fc, Time, systemname]=readfile(pathname, file name);%PRF,
KHz - Fc, Mhz
   [IQdatabeam Timebeam]=beam(Fcbeam, Time); %IQdatabeam is not a cell.
   %Assesing whether IQdata has 1 or 2 channels
   [nn,mm]=size(IQdata{1,1}); %mm is num of col –gates¬ñ, nn num of rows
   [numchannels,~]=size(IQdata);
   if numchannels == 1
   IQdata{1,1}=[IQdatabeam IQdata{1,1}]; %IQdatabeam is concatenated in the
first collumn of IQdata
   else
   IQdata{1,1}=[IQdatabeam(1:end-8160) IQdata{1,1}]; %IQdatabeam is
concatenated in the first collumn of IQdata
   IQdata{2,1}=[IQdatabeam(8161:end) IQdata{2,1}]; %
   end
   %Assesing whether IQdata is Spencer or NK
       switch systemname
           case 'Spencer'
               %[row,~]=size(IQdata(1,1)); uncomment this line when
               %IMPLEMENTING VSDopp v2... or VSDoppExt...
               if numchannels==1 %1 channel
                  [avdata,~, Time]=avData(IQdata{1,1},avsample, Time);
                  avdatanorm=norm2one(avdata);
```

```
echo=zeros(1,mm-1);%Preallocating for saving echo
                    rmsref=rms(avdatanorm(:,1));
                    for i=1:1:mm-1
                        %Calculating RMS value of the reference and all
                        %the signals (from the 34 gates) to calculate their
                        %echo
echo(1,i)=10*log10(rms(avdatanorm(:,i+1))/rms(avdatanorm(:,1)));
                    end
                    %Plot time
                else %2 channels
                    %Not tested yet because no 2 channel Spencer file was
                    %found in the R drive
                    Time=Time/2;%divide time by 2
                    [avdata1,~,Time1]=avData(IQdata{1,1},avsample, Time);
                    [avdata2,~,~]=avData(IQdata{2,1},avsample, Time);
                    avdatanorm1=norm2one(avdata1);
                    avdatanorm2=norm2one(avdata2);
                    rmsref1=rms(avdatanorm1(:,1));
                    rmsref2=rms(avdatanorm2(:,1));
                    echol=zeros(1,mm-1);%Preallocating for saving echo
                    echo2=zeros(1,mm-1);
                    for i=1:1:mm-1
                        %Calculating RMS value of the reference and all
                        %the signals (from the 34 gates) to calculate their
                        %echo
echol(1,i)=10*log10(rms(avdatanorm1(:,i+1))/rms(avdatanorm1(:,1)));
echo2(1,i)=10*log10(rms(avdatanorm2(:,i+1))/rms(avdatanorm2(:,1)));
                    end
                end
                %Implement here VSDopp v2 BrainTV(...) for raw velocity
                %Implement here VSDoppExt_BrainTV(...) for displacement or
                %velocity
            case 'NK'
                if numchannels==1 %1 channel
                    [avdata,~,Time]=avData(IQdata{1,1},avsample, Time);
                    avdatanorm=norm2one(avdata);
                    echo=zeros(1,mm-1);%Preallocating for saving echo
                    rmsref=rms(avdatanorm(:,1));
                    for i=1:1:mm-1
                        %Calculating RMS value of the reference and all
                        %the signals (from the 34 gates) to calculate their
                        %echo
echo(1,i)=10*log10(rms(avdatanorm(:,i+1))/rms(avdatanorm(:,1)));
                    end
                else %2 channels
                    Time=Time(1:end/2); %Time divided by 2
                    [avdata1,~,Time1]=avData(IQdata{1,1},avsample, Time);
                    [avdata2,~,~]=avData(IQdata{2,1},avsample, Time);
```

```
avdatanorm1=norm2one(avdata1);
                    avdatanorm2=norm2one(avdata2);
                    rmsref1=rms(avdatanorm1(:,1));
                    rmsref2=rms(avdatanorm2(:,1));
                    echol=zeros(1,mm-1);%Preallocating for saving echo
                    echo2=zeros(1,mm-1);
                    for i=1:1:mm-1
                        %Calculating RMS value of the reference and all
                        %the signals (from the 34 gates) to calculate their
                        %echo
echol(1,i)=10*log10(rms(avdatanorm1(:,i+1))/rms(avdatanorm1(:,1)));
echo2(1,i)=10*log10(rms(avdatanorm2(:,i+1))/rms(avdatanorm2(:,1)));
                    end
                end
            otherwise
                uiwait(msgbox('An error has occurred'));
        end
응응
%Left side plot
yticks('auto');
if numchannels==1
    88
    %Plotting process
    echol=length(echo(1,:));
    88
    %Trying to plot DB values
    axes(handles.axes1);
    %Preallocating for saving each gate with its corresponding echo
    gates=zeros(1,echol);
    decibels=zeros(1,echol);
    aux=500; %It helps separating the plots
    for i=1:1:echol
        plot(1,echo(1,i)+aux, 'LineStyle', 'none', 'Marker', 'o');
        gates(1,i)=i; decibels(1,i)=echo(1,i);
        %plot(1,maxlow(i,1),'LineStyle','none','Marker','.');
        text(1.2,aux,num2str(i));
        text(0.5,aux,num2str(echo(1,i)), 'FontSize',10);
        %text(1.2,aux,num2str(maxlow(i,1)),'FontSize',5);
        hold on;
        aux=aux+500;
    end
    ylabel('Echo Amplitud [dB]','FontSize',12,'FontWeight','bold');
    %Plotting echo vs gates
    axes(handles.axes2);
    plot(gates,decibels,...
         'Marker', '*'); %Implement 'MarkerIndices' to see markers in each
symbol
    title(fullfile_name,'FontSize',8,'FontWeight','bold','Color','red');
    ylabel('Echo Amplitude [dB]', 'FontSize', 12, 'Color', 'red');
    xlabel('Gates','FontSize',12,'Color','red');
else
```

```
%implement algorithm for two channels.
    %A plot like axes1 won't be displayed.
    %Preallocating for saving each gate with its corresponding echo
    echol=length(echo1(1,:));
    gates=zeros(1,echol); %both channels contains the same number of gates
    decibels=zeros(2,echol);
    echol=length(echol(1,:)); %echol and echo2 will always be the same
length.
    for i=1:1:echol
        gates(1,i)=i; decibels(1,i)=echol(1,i); decibels(2,i)=echo2(1,i);
    end
        %Plotting echo vs gates
    axes(handles.axes2);
    plot(gates,decibels(1,:),...
         'Marker', '*'); %Implement 'MarkerIndices' to see markers in each
symbol
    title(fullfile_name, 'FontSize', 8, 'FontWeight', 'bold', 'Color', 'red');
    ylabel('Echo Amplitude [dB] - Channel 1', 'FontSize', 12, 'Color', 'red');
    xlabel('Gates','FontSize',12,'Color','red');
    axes(handles.axes3);
    plot(gates,decibels(2,:),...
         'Marker', '*'); %Implement 'MarkerIndices' to see markers in each
symbol
    title(fullfile_name, 'FontSize', 8, 'FontWeight', 'bold', 'Color', 'red');
    ylabel('Echo Amplitude [dB] - Channel 2', 'FontSize', 12, 'Color', 'red');
    xlabel('Gates', 'FontSize', 12, 'Color', 'red');
end
응응
%plotting on axes2 and axes3.
%Displaying in GUI RMS value of the reference signal
% if numchannels>1
웅
      %Implement for two channels
웅
% else
8
      set(handles.st rmsref, 'String', num2str(rmsref));
% end
end
% --- Executes on button press in pb exit.
function pb exit Callback(hObject, eventdata, handles)
            handle to pb_exit (see GCBO)
% hObject
% eventdata reserved - to be defined in a future version of MATLAB
% handles
            structure with handles and user data (see GUIDATA)
clc;close;
% --- Executes on button press in pb_cleanall.
```

```
function pb_cleanall_Callback(hObject, eventdata, handles)
```

```
handle to pb_cleanall (see GCBO)
% hObject
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
axes(handles.axes1);
cla(handles.axes1);
title('');
ylabel('');
xlabel('');
axes(handles.axes2);
cla(handles.axes2);
title('');
ylabel('');
xlabel('');
axes(handles.axes3);
cla(handles.axes3);
title('');
ylabel('');
xlabel('');
uiwait(msgbox('All data have been cleaned successfully.'));
```

Lectura de archivos de equipos Spencer y NK - readfile.m

```
function [IQ, PRF, Fc, Time, systemname] = readfile(pathname, file_name)
%IQ, IQ components of Spencer or NK files, in complex form
%PRF, pulse repetition frequency
%Fc, Frecuency of the beam –usually 2MHz¬ñ
%Time, Sampling time
%systemname, Spencer or NK files
응응
if strcmp(file name(end-3:end),'.mat')
    %Spencer file has been imported
        uiwait(msgbox('Spencer file has been imported succesfully'));
        systemname='Spencer';
    %Preallocating for IQ components
        IQ=cell(1,1);
    %Extracting data. This part of the code must be updated to accept 2
channels data
        FName0=[pathname, file name];
        DATA=load(FName0);
        IQ{1,1}=DATA.CH1 DATA;
        PRF=DATA.PRF;
        Fc=2.0;% Carrier Frequency, MHz
        [nn,~] = size(IQ\{1,1\});
        %Temporal time
        Time = (0:nn-1)*(1/PRF);
        Time = Time';
else
    %NK file has been imported
        uiwait(msgbox('NK file has been imported succesfully'));
        systemname='NK';
    %*.iq1 file read
```

```
fullfile_name=fullfile(pathname,file_name);
        fileID=fopen(fullfile name);
        header=fread(fileID,8, 'float');
        Fc=header(4); %Carrier Frequency, MHz
        PRF = header(8)*1000; %KHz
    %Extracting data
        av sample = PRF/500; %use in downsamplig, later in the code
        idx1=strfind(fullfile name, '.iq1');
        if idx1 > 0
            %1 channel recorder
                file nameav=strcat(fullfile name(1:idx1-1),'.ai1');
        else
            %2 channels recorded
                idx2=strfind(fullfile name,'.iq2');
                file nameav=strcat(fullfile name(1:idx2-1),'.ai2');
        end
            %Reading IQ and AD data???
                if PRF > 500 %downsampling process?
                    if isempty(idx1) %2 channels
                        while ~feof(fileID)%Reading file line by line
                            IQdata = transpose(fread(fileID,...
                                 [117*2+2+32, PRF*10000], 'short'));%Read as
word - 117 is the #IQ - PRF*10000 is the read length.
                        end
                        %separating ch1 and ch2
                            [row,~]=size(IQdata);
                            IQdatach1=IQdata(1:2:row,:);
                        %downsampling to 500Hz
                            avdata ds =
downsample(IQdatach1(:,117*2+2+1:117*2+2+16),av_sample);
                            clear IQdatach1;
                            fclose(fileID);
                            fileID_av=fopen(file_nameav);
                        %Read IQ and averaged data for high PRF
                            while ~feof(fileID av)
IQavdata=transpose(fread(fileID av,[34*2+17,PRF*10000],'float')); %Read as
float - 34 is the #IQ averaged - PRF*10000 is the read length
                            end
                        %separating ch1 and ch2
                            [row,~]=size(IQdata);
                            IQavdatach1=IQavdata(1:2:row,:);
                            IQavdatach2=IQavdata(2:2:row,:);
                        %downsampling to 500Hz
                            avdata2_ds =
downsample(IQavdata(:,34*2+1:34*2+17),av sample);%- 34 is the #IQ averaged
                        %extracting IQ for channel 1 and 2
                            Iavch1=IQavdatach1(:,1:2:34*2);
                            Qavch1=IQavdatach1(:,2:2:34*2);
                            Iavch2=IQavdatach2(:,1:2:34*2);
```

Qavch2=IQavdatach2(:,2:2:34*2); IQ{1,1}=complex(Iavch1,Qavch1); IQ{2,1}=complex(Iavch2,Qavch2); clear Iavch1 Qavch1 Iavch2 Qavch2 IQavdatach1 IQavdatach2; %clear Iavch1 Qavch1 Iavch2 Qavch2 IQavdata; fclose(fileID); else %1 channel while ~feof(fileID)%Reading file line by line IQdata = transpose(fread(fileID,... [117*2+2+32,PRF*10000], 'short')); %Read as word -117 is the #IQ - PRF*10000 is the read length. end %downsampling to 500Hz avdata ds = downsample(IQdata(:,117*2+1:34*2+16),av_sample);%- 117 is the #IQ averaged clear IQdata; fclose(fileID); fileID av=fopen(file nameav); %Read IO and averaged data for high PRF while ~feof(fileID av) IQavdata=transpose(fread(fileID av,[34*2+17,PRF*10000],'float')); %Read as float - 34 is the #IQ averaged - PRF*10000 is the read length end %downsampling to 500Hz avdata2 ds = downsample(IQavdata(:,34*2+1:34*2+17),av sample);%- 34 is the #IQ averaged %extracting IQ for channel 1 Iav=IQavdata(:,1:2:34*2); Qav=IQavdata(:,2:2:34*2); IQ{1,1}=complex(Iav,Qav); clear Iav Qav IQavdata; fclose(fileID); end else if isempty(idx1)%2 channels %Reading file IQdata = transpose(fread(fileID,... [117*2+2+32,180.0*PRF], 'short')); %Read as word -117 is the #IQ - 180.0 is the record time per file in seconds %separating ch1 and ch2 [row,~]=size(IQdata); IQdatach1=IQdata(1:2:row,:); %downsampling? avdata ds = IQdatach1(:,117*2+2+1:117*2+2+16); clear IQdata; %Maybe delete this line

fclose(fileID);%Maybe delete this line fileID av=fopen(file nameav); %Read IQ and averaged data for high PRF IQavdata=transpose(fread(fileID av,... [34*2+17,180.0*PRF], 'float')); %Read as float - 34 is the #IQ averaged - 180.0 is the record time per file in seconds %separating ch1 and ch2 [row,~]=size(IQavdata); IQavdatach1=IQavdata(1:2:row,:); IQavdatach2=IQavdata(2:2:row,:); %downsampling to 500Hz avdata2_ds = IQavdata(:,34*2+1:34*2+17);%- 34 is the #IQ averaged %extracting IQ for channel 1 and 2 Iavch1=IOavdatach1(:,1:2:34*2); Qavch1=IQavdatach1(:,2:2:34*2); Iavch2=IQavdatach2(:,1:2:34*2); Qavch2=IQavdatach2(:,2:2:34*2); IQ{1,1}=complex(Iavch1,Qavch1); IO{2,1}=complex(Iavch2,Oavch2); clear Iavch1 Oavch1 Iavch2 Oavch2 IOavdatach1 IQavdatach2; else %1 channel %Reading file IQdata = transpose(fread(fileID,... [117*2+2+32,180.0*PRF], 'short'));%Read as word -117 is the #IQ - 180.0 is the record time per file in seconds %downsampling? avdata_ds = IQdata(:,117*2+2+1:117*2+2+16); clear IQdata %Maybe delete this line fclose(fileID);%Maybe delete this line fileID av=fopen(file nameav); %Read IQ and averaged data for high PRF IQavdata=transpose(fread(fileID av,[34*2+17,180.0*PRF],'float')); %Read as float - 34 is the #IQ averaged - PRF*10000 is the read length %downsampling to 500Hz avdata2_ds = IQavdata(:,34*2+1:34*2+17);%- 34 is the #IQ averaged- 180.0 is the record time per file in seconds %extracting IQ for channel 1 Iav=IQavdata(:,1:2:34*2); Qav=IQavdata(:,2:2:34*2); IQ{1,1}=complex(Iav,Qav); clear Iav Qav IQavdata; fclose(fileID av);

end

```
end
%time
    [mm,~]=size(avdata2_ds);
    Time=(0:mm-1)'*(1/500); %subtract -3 to mm when trying to
plot rawvelocity
end
```

Generación de las amplitudes de las señales de ultrasonido

Doppler - beam.m

```
function [beam, Time]=beam(Fc, Time)
%The aim of this code is to generate the amplitudes for the signal of the
%ultrasound beam.
%NOTES:
%1/PRF is used as Ts. I haven't understood why, Fc=2Mhz for Dopp Ultrasound
%Fc, Hz
응응
%Instructions for the user
uiwait(msgbox('select peaks.mat file'));
%Opening *.mat file
[filename, pathname]=uigetfile({'*.mat', 'MATLAB files(*.mat)'});
%Calculating Amplitude –reference¬ñ for creating the beam
[reference, ~]=amplitude(pathname, filename);
%reference=0.000001; %Uncomment/comment this line if the initial reference IO
wants
%to be personalised.
timel=length(Time);
%Preallocating
beam=zeros(timel,1);
for i=1:1:timel
    beam(i,1)=reference*sin(2*pi*Fc*Time(i)); %
end
```

beam=complex(beam); %If complex values are not required, eliminate this line.

Compresión de las señales TCD – avData.m

```
function [av_data, IQdata, t] = avData(IQDATA, Av_sample, Time)
%Average IQDATA over a number –given by Av_sample¬ñ
%Returns The abs value of complex data
% The IQDATA but averaged
% Sampling time as a vector
```

```
%Number of rows; samples.
[row,col]=size(IQDATA);
x=1:Av sample:row;
%Preallocating size for av data
av data=zeros(length(x)-1,col);
IQdata=zeros(length(x)-1,col);
t=zeros(length(x)-1,1);
for i = 1:col
    for k=1:length(x)-1
        av_data(k,i) = sqrt(real(IQDATA(x(k),i))^2 + imag(IQDATA(x(k),i))^2);
        IQdata(k,i)=IQDATA(x(k),i);
        if i==1
        t(k,i)=Time(k,1)*100;
        end
    end
end
end
```

Normalización a uno de las amplitudes de las señales comprimidas – norm2one.m

```
function av_datanorm=norm2one(av_data)
%Normalises av_data
if isreal(av_data)
    base=max(max(av_data));
    av_datanorm=av_data./base;
else
    avabs_data=abs(av_data);
    base=max(max(avabs_data));
    av_datanorm=avabs_data./base;
end
```

Método de aproximación de la intensidad inicial de las señales

de ultrasonido TCD - amplitude.m

```
function [reference, deltavg]=amplitude(pathname, filename)
%The aim of this code is to approximate the amplitude of the reference
%signal used to plot the ultrasound echo.
%It uses the peaks calculated using 'peaksfinder.m'
%reference = Max peak of a *.mat file database
%deltavg = the average of the deviation between all sorted peaks in
%ascending order
FName=[pathname filename];
if isnumeric(pathname)
    uiwait(msgbox('Import Data Action Cancelled'));
else
    DATA=load(FName);
    peaks=DATA.peaks;
    sortpeaks=sort(peaks);%<--- Maybe move this line</pre>
```

```
maxpeak=max(peaks); %Calculating maximum peak of all data
    peaksl=length(sortpeaks);
    norepeaks=0;
    %Avoiding repetition in values
    for i=1:1:peaksl-1
        if sortpeaks(i+1)~=sortpeaks(i) && norepeaks(end)~=sortpeaks(i)
            norepeaks=[norepeaks sortpeaks(i) sortpeaks(i+1)]; %#ok<AGROW>
        end
    end
    norepeaks=norepeaks(2:end); %Getting rid of the 1st 0
    peaksl=length(norepeaks);% New length ¬nwith no repetead elem¬n
    %Preallocating
    delta=zeros(1,peaksl-1);
    %Calculating de deviation of each sorted peak
    for i=1:1:peaksl-1
        delta(i)=abs(norepeaks(i+1)-norepeaks(i));
    end
    deltavg=mean(delta); %Average deviation
    reference = maxpeak+deltavg;
end
```

Cálculo de la amplitud máxima entre todas las señales de un

archivo de los equipos Spencer o NK – peaksfinder.m

```
function peaksfinder
%The aim of this code is to generate a 'peaks.mat' file that will help to
%approximate the amplitude of a reference signal
%The interaction is with the Command Window.
% -0 for stop runnign
   -1 up to 9 to continue
8
%NOTES:
   -'peaks.mat' is created automatically, even if it has not been created
8
8
  vet.
   -a the max peak of all the signals within the file will be saved into
웅
   'peaks.mat'
8
응응
CFd=pwd;
userin=1;
while userin~= 0
userin=input('Inset 0 to stop running or other number to continue: ');
if userin == 0
   continue;
end
%Initialising
   CFd = pwd;
   avsample=100;
§_____
% --- *.mat file open
```

```
uiwait(msgbox('Select a Spencer or NK file'));
[file_name, pathname, ~] = uigetfile({ '*.iq1;*.iq2;*.mat',...
 Models (*.iq1,*.iq2) or MATLAB files (*.mat)'});
if isnumeric(pathname)
    uiwait(msgbox('Import Data Action Cancelled'));
    userin=0;
else
    fullfile name=fullfile(pathname, file name);
    [IQdata, ~, ~,Time,systemname]=readfile(pathname, file_name);
    %Assesing whether IQdata has 1 or 2 channels
        [numchannels,~]=size(IQdata);
    %Assesing whether IQdata is Spencer or NK
    switch systemname
        case 'Spencer'
            if numchannels==1 %1 channel
                [avdata,~, Time]=avData(IQdata{1,1},avsample, Time);
                if isreal(avdata)
                    base=max(max(avdata));
                else
                    avabs data=abs(avdata);
                    base=max(max(avabs data));
                end
            else %2 channels
                %Not tested yet because no 2 channel Spencer file was
                %found in the R drive
                Time=Time/2;%divide time by 2
                [avdata1,~,Time1]=avData(IQdata{1,1},avsample, Time);
                [avdata2,~,~]=avData(IQdata{2,1},avsample, Time);
                if isreal(avdata1)
                    base1=max(max(avdata1));
                    base2=max(max(avdata2));
                else
                    avabs data1=abs(avdata1);
                    avabs data2=abs(avdata2);
                    base1=max(max(avabs data1));
                    base2=max(max(avabs data2));
                end
                base=[base1 base2];
            end
        case 'NK'
            if numchannels==1 %1 channel
                [avdata,~,Time]=avData(IQdata{1,1},avsample, Time);
                if isreal(avdata)
                    base=max(max(avdata));
                else
                    avabs data=abs(avdata);
                    base=max(max(avabs data));
                end
            else %2 channels
                Time=Time(1:end/2); %Time divided by 2
                [avdata1,~,Time1]=avData(IQdata{1,1},avsample, Time);
                [avdata2,~,~]=avData(IQdata{2,1},avsample, Time);
                if isreal(avdata1)
                    base1=max(max(avdata1));
                    base2=max(max(avdata2));
```

```
else
                        avabs data1=abs(avdata1);
                        avabs data2=abs(avdata2);
                        base1=max(max(avabs_data1));
                        base2=max(max(avabs_data2));
                    end
                    base=[base1 base2];
                end
            otherwise
                uiwait(msgbox('An error has occurred'));
        end
        namefile='peaks.mat';
        %Writing base on a file
        if ~exist(namefile,'file')
            %Create the file for the first time
            newDATA.peaks=base;
            save(namefile,'-struct','newDATA');
        else
            %Open the file to write it adding new value
            newDATA=load(namefile);
            newDATA.peaks=[newDATA.peaks base];
            save(namefile,'-struct','newDATA');
        end
    end
end
```

Apéndice C Códigos para la reconstrucción de la sección transversal de un rayo ultrasónico obtenido experimentalmente utilizando Matlab®

Los códigos y comentarios de los códigos que se muestran a continuación fueron escritos en Matlab® R2019b durante la estancia de investigación en la Universidad de Leicester del autor de este trabajo de tesis. Estos códigos operan en conjunto para llevar a cabo la reconstrucción de la sección transversal de un rayo ultrasónico obtenido experimentalmente utilizando Matlab® a través de la GUI que se muestra en la figura 2.10 del capítulo 2. Se puede encontrar la descripción de cada uno de los siguientes códigos en el capítulo 2.

Interfaz Gráfica para reconstruir la sección transversal de un rayo ultrasónico – beampattern_GUI.m

```
function varargout = beampattern GUI(varargin)
_____
%*AUTHOR(S):*
8
         Sergio Zaleta updated 07/02/2020
<u> 9</u>_____
                                                  _____
% BEAMPATTERN GUI MATLAB code for beampattern GUI.fig
8
      BEAMPATTERN_GUI, by itself, creates a new BEAMPATTERN_GUI or raises
the existing
      singleton*.
8
8
웅
      H = BEAMPATTERN GUI returns the handle to a new BEAMPATTERN GUI or the
handle to
      the existing singleton*.
8
웅
      BEAMPATTERN GUI('CALLBACK', hObject, eventData, handles, ...) calls the
8
local
      function named CALLBACK in BEAMPATTERN_GUI.M with the given input
S
arguments.
S
8
      BEAMPATTERN_GUI('Property', 'Value',...) creates a new BEAMPATTERN_GUI
or raises the
8
      existing singleton*. Starting from the left, property value pairs are
      applied to the GUI before beampattern_GUI_OpeningFcn gets called. An
8
웅
      unrecognized property name or invalid value makes property application
```

```
웅
       stop. All inputs are passed to beampattern GUI_OpeningFcn via
varargin.
8
       *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
웅
웅
       instance to run (singleton)".
8
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help beampattern GUI
% Last Modified by GUIDE v2.5 07-Feb-2020 22:18:09
% Begin initialization code - DO NOT EDIT
gui Singleton = 1;
gui State = struct('gui Name',
                                     mfilename, ...
                    gui_Singleton', gui_Singleton, ...
                   'gui_OpeningFcn', @beampattern_GUI_OpeningFcn, ...
                   'gui_OutputFcn', @beampattern_GUI_OutputFcn, ...
                   'gui_LayoutFcn', [],...
                   'gui_Callback',
                                     []);
if nargin && ischar(varargin{1})
    gui State.gui_Callback = str2func(varargin{1});
end
if nargout
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
    gui mainfcn(gui State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before beampattern GUI is made visible.
function beampattern GUI OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject
          handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to beampattern_GUI (see VARARGIN)
% Choose default command line output for beampattern GUI
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes beampattern GUI wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = beampattern_GUI_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject
            handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles
          structure with handles and user data (see GUIDATA)
```

```
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on button press in pb start.
function pb start Callback(hObject, eventdata, handles)
            handle to pb start (see GCBO)
% hObject
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
%Displaying messages to the user
step1='Select a file containing X0 and Y0 axis positions, for a Z position,
to extract the RMS values.';
uiwait(msgbox(step1));
fullfile meshname=main2(); %Algorithm that extracts rms values, from X and Y
positions for one Z pos, and their coordinates, mm.
mesh=load(fullfile meshname);
coordinates=flip(mesh.coordinates);
mesh=flip(mesh.mesh);%%Allocating data as Justyna suggested
[nn, ~]=size(coordinates); %nn - x values / mm - y values
%Number of rows and collumns must be the same
%Preallocating for saving coordinates
xsteps=zeros(1,nn);
ysteps=zeros(1,nn);
for i=1:1:nn
    auxx=coordinates{i,1};
    auxy=coordinates{1,i};
    xsteps(1,i)=auxx(1);
    ysteps(1,i)=auxy(2);
end
    figure();
    heatmap(ysteps, xsteps, mesh, ...
        'Title', 'Intensity Map [mv]',...
        'Colormap', parula,...
        'GridVisible','off',...
        'FontColor', 'black',...
'FontName', 'Arial',...
'FontSize',7,...
        'XLabel', 'y-position [mm]',...
        'YLabel', 'x-position [mm]');
% --- Executes on button press in pb selectfiles.
function pb selectfiles Callback(hObject, eventdata, handles)
% hObject
           handle to pb_selectfiles (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles
            structure with handles and user data (see GUIDATA)
%Displaying messages to the user
step1='Select .mat file containing, X and Y values, and their coordinates';
uiwait(msgbox(step1));
[filename, pathname, ~]=uigetfile('*.mat');
fullfile meshname=fullfile(pathname, filename);
if isnumeric(pathname)
    uiwait(msgbox('Data Import Action Cancelled'));
else
```

```
mesh=load(fullfile_meshname);
    coordinates=flip(mesh.coordinates);
    mesh=flip(mesh.mesh);%%Allocating data as Justyna suggested
    [nn, ~]=size(coordinates);%nn - x values / mm - y values
    %Number of rows and collumns must be the same
    %Preallocating for saving coordinates
    xsteps=zeros(1,nn);
    ysteps=zeros(1,nn);
    %saving coordinates
    for i=1:1:nn
        auxx=coordinates{i,1};
        auxy=coordinates{1,i};
        xsteps(1,i)=auxx(1);
        ysteps(1,i)=auxy(2);
    end
    figure();
    heatmap(ysteps, xsteps, mesh, ...
        'Title', 'Intensity Map [mv]',...
        'Colormap', parula, ...
        'GridVisible', 'off',...
        'FontColor', 'black',...
        'FontName', 'Arial',...
        'FontSize',7,...
        'XLabel', 'y-position [mm]',...
'YLabel','x-position [mm]');
end
% --- Executes on button press in pb exit.
function pb exit Callback(hObject, eventdata, handles)
            handle to pb exit (see GCBO)
% hObject
% eventdata reserved - to be defined in a future version of MATLAB
% handles
             structure with handles and user data (see GUIDATA)
clc;close;
% --- Executes on button press in pb_intensity.
function pb intensity Callback(hObject, eventdata, handles)
% hObject
            handle to pb_intensity (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles
             structure with handles and user data (see GUIDATA)
[filename, pathname, ~]=uigetfile('*.txt');
%Avoiding error due to cancellation
if isnumeric(pathname)
    uiwait(msgbox('Data Import Action Cancelled'));
else
    fullfile name=fullfile(pathname,filename);
    [header, data]=txtread(fullfile name);
    data=data';%Vector
    Fs=header(8)*1e3; %Sampling time, Hz
    Ts=1/Fs; %Period, sec
    samples=header(10);%Number of samples
    %Calculating sampling time
    samplingtime=0:Ts:samples*Ts;
    samplingtime=samplingtime(1:end-1);
```

```
%Ploting Amplitude vs Sampling Time
figure();
plot(samplingtime,data,...
        'Color',[0.6350 0.0780 0.1840],...
        'LineWidth',0.25);
xlabel('Time [ms]');
ylabel('Amplitude [mv]')
title(filename,...
        'FontSize',10,...
        'FontWeight','bold',...
        'Color',[0.6350 0.0780 0.1840]);
```

```
end
```

Lectura de archivos *.tdt y *.txt – filereader.m

```
function [header, data, extension]=filereader(pathname, file name)
%This function:
    -Reads in .tdt & .txt files
8
8
   -Returns:
       -'header' information. E.g. –No of samples¬ñ in .txt files;
8
8
        -Free field data
웅
        -Extension. E.g. .txt
%NOTES:
%This function has the potential of being implemented to plot
    %-Sampling time VS Amplitude (using .txt files)
응응
if isnumeric(pathname) % Avoiding error due to cancellation
    uiwait(msgbox('Import Data Aciton Cancelled'));
else
    %Reading file
    fullfile name=fullfile(pathname,file name);
    %Reading extension
    extension=file name(end-3:end);
    switch extension
        case '.txt'
            %Reading *.txt files
            [header, data]=txtread(fullfile name);
        case '.tdt'
            %Reading *.tdt files
            [header, data]=tdtread(fullfile name);
            data=data';
        otherwise
    end
end
```

Código incorporado en filereader.m para poder llevar a cabo la lectura de archivos *.tdt – tdtread.m

function [header,data]=tdtread(fullfile_name)
```
%Algorithm to open and extract relevant data from .tdt files
88
%opening file
fid=fopen(fullfile name);
%Prellocating for header
header=zeros(11,1);
%Saving header information
for i=1:1:11
    tline=fgetl(fid);
    %Avoiding blank lines
        if isempty(tline) || i==1
            header(i)=0; % If file is empty or first line has no numeric data
            %continue;
        else
            idx=strfind(tline,'=');
            header(i,1)=str2double(tline(idx+1:end));
        end
end
%reading 37 col
data=fscanf(fid,'%f', [37 inf]);
%closing file
fclose('all');
```

Código incorporado en filereader.m para poder llevar a cabo

la lectura de archivos *.txt - txtread.m

```
function [header, data]=txtread(fullfile name)
%Algorithm to open and extract relevant data from .txt files
88
%opening file
fid=fopen(fullfile name);
%Prellocating for header
header=zeros(10,1);
    %Saving header information
    for i=1:1:10
        %read line from file
        tline=fgetl(fid);
        %Avoiding blank lines
        if isempty(tline)
            continue;
        else
            %Reading header information
            if contains(tline, ' ')
                                    '');
                idx=strfind(tline,
                header(i,1)=str2double(tline(idx:end));
            elseif contains(tline, '=')
                idx=strfind(tline, '=');
```

Extracción de los valores RMS de los encabezados de los 37 archivos que contienen la información de la sección transversal del haz de ultrasonido – main2.m

```
function fullfile meshname=main2
%For this function you need to create a folder called 'RF' within the
%folder of this project. RF will contain all data of type:
8
    -"RF-Z-20-0mm-Y0-X0.txt"
8
%It will return:
   -An array with rms values (RMS-array) of all X and Y positions of one Z
8
position
   -A cell with X, Y, and Z positions that corresponds with the RMS-array
%CONSIDERATIONS:
    %1)The first file imported must correspond to the X0 and Y0 positions.
    %Otherwise, errors might occur
응응
foldername='RF';
if ~exist(foldername, 'file')
    uiwait(msgbox('No folder found'));
else
    %uiwait(msgbox('Select the first file of a Z-axis position'));
    [filename, pathname, ~]=uigetfile('*.txt');
    if isnumeric(pathname)
        uiwait(msgbox('Data Import Action Cancelled'));
    else
        filename old=filename;
응
              datatype='RF';
옹
              zaxispos=20;
응
              ypoint=0;
응
              xpoint=0;
            zlim=47; ylim=36; xlim=36; %Potential for allowing user edit
limits
```

```
%Preallocating
            mesh=zeros(xlim+1,ylim+1);
            coordinates=cell(xlim+1,ylim+1);
            idxx=strfind(filename,'X0');
            idxy=strfind(filename, 'Y0');
            %idxz=strfind(filename, 'Z');
            msgbox('Extracting RMS values might take some time.');
                for y=0:1:ylim
                    ypos=strcat('Y',num2str(y));
                    if y>10
                        if x==36 %#ok<NODEF> %check this line
                             filename=strcat(filename(1:idxy-
1),ypos,filename(idxy+2:end));
                        else
                             filename=strcat(filename(1:idxy-
1),ypos,filename(idxy+3:end));
                        end
                    else
                        filename=strcat(filename(1:idxy-
1), ypos, filename(idxy+2:end));
                    end
                    %filename(idxy:idxy+1)=ypos;
                    for x=0:1:xlim
                        xpos=strcat('X',num2str(x));
                        if x>10
                             if y<10
                                 filename=strcat(filename(1:idxx-
1),xpos,filename(idxx+3:end));
                            else
filename=strcat(filename(1:idxx),xpos,filename(idxx+4:end));
                            end
                        else
                             if y<10
                                 filename=strcat(filename(1:idxx-
1),xpos,filename(idxx+2:end));
                            else
filename=strcat(filename(1:idxx),xpos,filename(idxx+3:end));
                            end
                        end
                        [header, ~, ~]=filereader(pathname,filename);
                        mesh(x+1,y+1)=header(7);
                        coordinates(x+1,y+1)={[header(3) header(4)
header(5)]}; %mm
                    end
                    filename=filename old;
                end
                %Saving data into a struct
                MESH.mesh=mesh;
                MESH.coordinates=coordinates;
                %Interacting with user to save; the x-axis and y-axis rms
                %values of one Z-axis position; and the x, y, z coordinates
                %(in mm)
                uiwait(msgbox('Save data as a new file'));
                [filemeshname, pathmesh]=uiputfile('*.mat');
```

8	while isnumeric(pathmesh)
8	<pre>uiwait(msgbox('Data Save Action Cancelled'));</pre>
90	end
	<pre>if isnumeric(pathmesh) uiwait(msgbox('Data Save Action Cancelled'));</pre>
	<pre>else fullfile_meshname=fullfile(pathmesh, filemeshname); save(fullfile_meshname,'-struct','MESH'); end</pre>
end	

end

Bibliografía

[1] Atkinson, P., y Wells, PNT., (1977) 'Pulse-Doppler Ultrasound and Its Clinical Application' *The Yale Journal of Biology and Medicine*, 50, pp. 367-373. Disponible desde: <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2595531/pdf/yjbm00139-</u> 0045.pdf (acceso: 14 abril 2020).

[2] Baker, AC., Berg, AM., Sahin, A., Tijotta, JN., (1995) 'The nonlinear pressure field of plane rectangular apertures: experimental and theoretical results.' *J Acoust Soc Am*, 92, pp. 3510-3517.

[3] Beaver, WL., (1974) 'Sonic near fieldsof a pulsed Aston radiator.' *J Acoust Soc Am*, 56, pp. 1043-1048.

[4] Brandestini, M., (1978) 'Topoflow—A digital full range Doppler velocity meter' *IEEE Trans. Sonics Ultrasonics.* SU-25, pp. 287-193.

[5] Brody, WR., and Meindl, JD., (1974) 'Theoretical Analysis of the CW Doppler Ultrasonic Flowmeter' *IEEE Transactions on Biomedical Engineering, BME-21 (3), pp.* 183-192.

[6] Cahill, MD., Baker, AC., (1997) 'Increased off-axis energy deposition due to diffraction and nonlinear propagation of ultrasound from rectangular sources' *J Acoust Soc Am*, 102, pp. 199-203.

[7] Candy, JC., and Temes GC., (eds) (1987) 'Oversampling Methods for A/D and D/A Conversion', *IEEE Transactions on Circuits and Systems*. Nueva York: IEEE Press.

[8] Chung, E., (2019) 'Exchange visit to the Nihon Kohden Ogino Memorial Laboratory in Tokyo, Japan, July 2019'. Leicester. Disponible

desde: <u>https://le.ac.uk/~/media/uol/docs/research-institutes/lpmi/iax-2019/emma-chung-brain_tv_nk_iax_-visit.pdf?la=en</u> (acceso: 7 abril 2020).

[9] Chung, E., (eds) (2018) 'Medical Physics and Clinical Engineering Scientific Support: Bringing Technology to the NHS' Leicester. Disponible desde: <u>https://www.leicestershospitals.nhs.uk/EasySiteWeb/GatewayLink.aspx?alld=69</u> <u>576</u> (acceso: 7 abril 2020).

[10] Chung, E., Banahan, C., Minhas, J., and Lecchini-Visintini, A. (eds) (2018) 'Doppler Techniques for Medical Applications [online]' Leicester. Disponible desde: Carpeta Privada de la Investigación. (Acceso: 31 enero 2019).

[11] Duck, FA., (1981) 'The pulsed ultrasonic field' in Moores, BM., Parker, RP., Pullan, BR. (eds.) *Physical Aspects of Medical Imaging*. Chichester: Wiley, pp. 97-108.

[12] Duck, FA., Baker, AC., Starritt, HC., (1998) *Ultrasound in Medicine* (1st ed.). London: Institute of Physics Publishing.

[13] Duerinckx, AJ., (1981) 'Modelling wavefronts from acoustic phased arrays by computer' *IEEE Trans Biomed Ing BME*, 28, pp. 221-234.

[14] Evans, DE., and McDicken, WN. (2000) 'Doppler Ultrasound: Physics, Instrumentation and Signal Processing' (2nd ed.). Wiley.

[15] Gabor, D., (1946) 'Theory of Communication' J. IEEE, 93 (3), pp. 429-457.

[16] Giordano, NJ., (2010) 'College Physics. Reasoning and Relationships', Julet,m. (Ed) Sound. California, USA: Brooks/Cole, pp. 420.

[17] Hakimi, R., Alexandrov, AV., and Garami, Z., (2020) 'Neuro-Ultrasonography', *Neurologic Clinics* 83 (1), pp. 215.

98

[18] Healey, AJ., Leeman, S., Weight, JP., (1997) 'Space-time imaging of transient ultrasound fields.' *Int. J. Imaging Syst. Technol.*, 8 (1), pp. 45-51.

[19] Hoeks, APG., (1982) 'On the development of multi-gate pulsed Doppler system with serial data processing' Rijksuniversiteit Limburg: Países Bajos. Disponible desde: <u>https://cris.maastrichtuniversity.nl/ws/portalfiles/portal/896286/guid-3449c64a-f597-46eb-b2d5-e6ffb28ae825-ASSET1.0.pdf</u> (acceso: 22 abril 2020).

[20] Hoeks, APG., Brands, PJ., Arts, TGJ., y Reneman, RS., (1994) 'Subsample Volumne Processing of Doppler Ultrasound Signals' *Ultrasound in Med. & Biol.*, 20 (9), pp. 953-965.

[21] Hoeks, APG., Reneman, RS., and Peronneau, PA., (1981) 'A Multigate Pulsed Doppler System with Serial Data Processing' *IEEE Transactions on Sonics and Ultrasonics*, SU-29 (4), pp. 242-243.

[22] Hoeks, APG., Reneman, RS., y Peronneau (1981) 'A multi-gate pulsed Doppler System with serial data processing.' *IEEE Trans. Sonics Ultrasonics*. SU-28, pp. 242-247.

[23] Jensen, JA., Svendosn, NB., (1992) 'Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers.' *IEEE Trans Ultrasónico Ferroelec Freq Contr*, 39, pp. 262-267.

[24] John-Keeton, PI., (1997) *Modern Digital Signal Processing Techniques Applied* to Doppler Ultrasound. PhD Thesis. University of Leicester.

[25] Kino, GS., (1987) 'Acoustic Waves: Devices, Imaging, and Analog Signal Processing'. Prentice-Hall, Engleewood Cliffs, NJ.

[26] Kinsler, LE., Frey, AR., Coppens, AB., and Sanders, JV., (1962) *Fundamentals of Acoustics.* 2nd edn New York, etc: John Wiley & Sons.

[27] Kossoff, G., (1966) 'The Effects of Backing and Matching on the Performance of Piezoelectric Ceramic Transducers' *IEEE Transactions on Sonics and Ultrasonics*. 13 (1), pp. 20-30.

[28] Kucewicz, JC., (2004) *Tissue Pulsatility Imaging: Ultrasonic Measurement of Strain Due to Perfusion.* PhD Dissertation. University of Washington.

[29] McLeod, FC., (1967) 'A directional Doppler flowmeter' *Digest of the 7th Int. Cons. on Medical and Biological Engineering, Sweden.* pp. 123.

[30] Nihon Kohden (2019) 'Key Facts [online]' Disponible desde: <u>https://www.nihonkohden.com/company/facts.html</u> (Acceso: 7 abril 2020).

[31] Nihon Kohden (s/f) 'Our Philosophy. The intersection of medicine and engineering, [online]' Disponible desde: https://www.nihonkohden.com/philosophy/index.html (Acceso: 7 abril 2020).

[32] Oppenheim A. and Schafer R., (eds) (1998)'Discrete-Time Signal Processing'. Nueva Jersey: Prentice Hall.

[33] Peronneau, FA., Bournat, JP., Bugon, A., Barbet, A., and Xhaard, M., (1974) 'Theoretical and practical aspects of pulsed Doppler flowmetry: real-time applications to the measure of instantaneous velocity profiles in vitro and in vivo' *Cardiovascular applications of Ultrasound*, pp. 66-84.

[34] Reneman, RS., Van Merode, T., Hick, P., Hoeks, APG., (1986) 'Cardiovascular applications of multi-gate pulsed doppler systems' *Ultrasound in Medicine & Biology*. 12(5) pp. 357-370.

[35] Reneman, RS., van Merode, T., Hick, P., y Hoeks, APG., (1985) 'Flow velocity patterns in and distensibility of the carotid artery bulb in volunteers of varying age' *Circulation*, 71, pp. 500-509.

[36] RosarioVanTulpe, y Teflotax (modificó) (2010) 'SkullSchaedelSeitlich1.png' Dominio público, disponible desde: <u>https://commons.wikimedia.org/w/index.php?curid=9105493</u> (accesado el 31 de Marzo de 2020).

[37] Shung, KK., and Zippuro, M., (1996) 'Ultrasonic transducers and arrays' *IEEE Engineering in Medicine and Biology Magazine*. 15 (6), pp. 20-30.

[38] Sillicon Laboratories Inc, (2013) 'Improving ADC resolution by Oversampling and Averaging', pp. 1-2 y 6-8.

[39] Skidmore, G., (2010) 'Actors Sylvester Stallone and Bruce Willis on the Expendables panel at the 2010 San Diego Comic Con in San Diego, California', *Flickr: Sylvester Stallone & Bruce Willis*, 22 de Julio. Disponible desde: <u>https://www.flickr.com/photos/gageskidmore/4840665852/</u> (Accesado el 31 de marzo de 2020).

[40] Spencer Technologies (2016) 'Power M-mode Transcranial Doppler withHDO™ DigitalProcessing',disponibledesde: https://www.spencertechnologies.com (accesado el 27 de marzo de 2020).

[41] Sundararajan, D., (2016) *Discrete Wavelet Transform: A signal processing approach*. John Wiley & Sons.

[42] Tan, L., and Jiang, J. (2013) 'Digital Signal Processing' (2nd ed). EEUU: Academic Press. Disponible en: <u>https://www.eetimes.com/multirate-dsp-part-1-</u> <u>upsampling-and-downsampling/</u> (Acceso: 10 abril 2020). [43] Toman, K., (1984) 'Doppler and the Doppler Effect' Nueva York: Rome Air Development Center.

[44] Turner, P. (eds) (s/f) 'BainTV graphical User Interface (GUI). User Instructions' Leicester. Disponible desde: carpeta Privada de la Investigación. (Acceso: 8 abril 2020).

[45] University of Erlangen (2014) 'R&D Towards Acoustic Particle Detection' [presentación en Power Point]. Disponible en: <u>https://ecap.nat.fau.de/wp-content/uploads/2017/03/UliKatz pisa04.pdf</u> (Acceso: 20 mayo 2020).

[46] Wikimedia Commons contributors (2017) 'Archivo:Opticalcavity1.png' *Wikimedia Commons, the free media repository*. Disponible desde: <u>https://commons.wikimedia.org/w/index.php?title=File:Optical-</u> <u>cavity1.png&oldid=263280539(accesado 29 marzo 2020)</u>.

[47] Wille, SØ., (1979) Numerical models of arterial blood flow. Tesis, Instituto de Informatica, Universidad de Oslo, Noruega.