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Abstract

Two agents, Alice (A) and Bob (B) wish to privately exchange information by

public announcements overheard by a computationally unlimited eavesdrop-

per Cath (C). In order for them to achieve a certain level of confidentiality

in their communication, their inputs must be correlated. Dependent inputs

are represented using a deck of cards. There is a publicly known signature

(a,b, c), meaning that A gets a cards, B gets b cards, and C gets c cards,

out of the deck of n cards, where n = a + b + c + r. A and B want to learn

each other’s cards while preventing C from learning any card from A’s or B’s

hand.

Our perspective is inspired by distributed computing and considers color-

ings of a generalization of Johnson graphs. We formally present the problem

of information exchange in the Russian Cards problem scenario described

above, where there are r cards not dealt to anyone. We present some general

impossibility results and study the communication complexity of information

transmission and information exchange protocols in this scenario. In doing

so, we explore in detail links with a fundamental problem in Coding Theory

regarding constant weight codes.
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Chapter 1

Introduction

The problem of two card players, Alice (A) and Bob (B), trying to publicly

communicate their hands to the other, while preventing a third player, Cath

(C), from learning any of their cards is often regarded as the Russian Cards

problem, or one of its variants. From the problem statement, is clear that se-

curity, in the form of privacy, is an essential requirement, which immediately

reveals a relation with cryptography. In particular, since one of the usual as-

sumptions for the problem is that the agents involved (the card players) are

computationally unlimited, solutions must aim for unconditional security.

In Section 1.1, we present the notion of unconditional security and dis-

cuss its role and relevance in the context of modern cryptography. We also

discuss the reasons why the study of the Russian Cards problem and its gen-

eralizations could be of great importance for designing unconditional secure

protocols for more general purposes, such as implementing well-known cryp-

tographic primitives. In Section 1.2, we present the classic and generalized

versions of the Russian Cards problem. The motivation and contributions of

the present work are presented in Section 1.3. A related work discussion can

be found in Section 1.4. Finally, the organization in chapters of the present

work is documented at the end of this chapter.
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1.1 Unconditional security in modern

cryptography

Nowadays, cryptography is present in innumerable applications of our daily

lives to provide confidential communications. Among these applications we

can mention online payments, digital currencies, computer passwords and

many others.

Most modern cryptosystems, whether they are symmetric or asymmetric,

are designed around computational complexity assumptions; therefore, they

are based on the model of computational-security. All such cryptosystems no

matter if they use private- or public-key cryptography, although in practice are

extremely hard to break, can be broken in principle given a sufficient amount

of ciphertext by trying all of the possible keys. Hence, such systems are

vulnerable to the development of science and technology, since computational

power greatly increases and some of the previously considered hard problems,

such as integer factorization, might not be hard enough in the future.

Thus, computer science and technology developments require for cryp-

tosystems with computational security to be constantly reevaluated and, in

occasions, they might need to be adapted. The permanent risk of being bro-

ken that these systems face, motivates the search for cryptosystems providing

unconditional security. Unconditionally secure cryptosystems cannot be bro-

ken even if the adversary has unlimited computational resources; therefore,

unconditional security will only become more and more relevant. The term

unconditional security was used first by Diffie and Hellman in their seminal

paper New Directions in Cryptography [9], as far as we know, although the

area was born with Shannon. This type of security is based on the fact that

there is not enough information available to the adversary that allows him

to break the system. Then, in order for such cryptosystems to be proven

secure the adequate framework is information theory rather than complexity

theory.

A central notion in information-theoretic analysis of cryptosystems is

Shannon’s definition of perfect secrecy, which is without a doubt the strongest
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formulation of security one can find. However, despite the strong motivation

for the search of unconditional security and the fact that such a nice formu-

lation for what perfect security means (perfect secrecy) is already available,

most research in past years focuses on the computational security of cryp-

tosystems, rather than in unconditional security. This is also due to Shan-

non’s well-known lower bound on the amount of a priori shared secret infor-

mation (secret key length) for any perfectly secure cipher. This suggested

that, in practical scenarios, such a high level of security was unfeasible. How-

ever, more recent research showed that unconditional security can in fact be

achieved in various special but realistic scenarios, thus somewhat mitigating

the pessimism surrounding unconditional security.

As observed in [22], almost every cryptographic primitive could be im-

plemented in an unconditional secure manner; however, under certain condi-

tions. As an example, bit commitment and oblivious transfer are two crypto-

graphic primitives for which it is well known that there is no unconditionally

secure scheme implementation in a two-player scenario. However, uncondi-

tional security has been achieved in both cases in the presence of a third

party, namely a “trusted initializer” [20]. The role of the trusted initializer is

to provide the participants with some sort of correlated inputs during a setup

phase. Another example of when unconditional security has been achieved

via correlated inputs is [13], in this case for secret bit transmission. Here,

as well as in [14, 15] correlated inputs are modeled using a random deal of

cards and the participants are modeled as card players such as in the Russian

Cards problem scenario.

Since the statement of the Russian Cards problem, as we will see in the

following section, is quite general, it is very likely that solutions for the

problem could be useful for implementing several cryptographic primitives,

such as the ones previously mentioned, in a unconditionally secure manner.
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1.2 The classic and the generalized Russian

Cards problems

Let D be a deck of n cards labeled from 0 to n − 1, which are distributed

among three players Alice (A), Bob (B) and Cath (C), so that A gets a,

B gets b and C gets the remaining c cards. A and B should communi-

cate between them through a public channel, with the following two goals

or requirements. First, following [19, 23], a solution or protocol should be

informative for A, that is, A must learn B’s hand and, on the other hand,

it must be also informative for B, that is, B must also learn A’s hand. The

second requirement, regarded as safety, states that C cannot learn whether

A or B has any particular card (except for the ones she owns).

A particular instance of this problem can be described by the signature

(a,b, c), then n = a + b + c. This is usually regarded as the generalized

Russian Cards problem, while the (3, 3, 1) instance of the problem is known

as the Russian Cards problem and was presented at the Moscow 2000 Math-

ematical Olympiad. We may also regard the latter as the classic Russian

Cards problem, since it was the first instance of the problem that was ac-

tively studied.

All circumstances regarding the actual scenario, i.e., the deck composi-

tion, the signature (a,b, c) of the deal and the communication protocol, are

assumed to be common knowledge among the players, except for which cards

each player holds.

1.2.1 Problem solutions

Solutions to the problem may consist of only two announcements (one from

A and one from B), and these solutions are regarded as two-step protocols

[2, 11]. Then, in such solutions, both announcements from A and B must be

informative for the other. On the other hand, we regard the protocol for A’s

announcement only, as a one-step protocol.

Whenever A can make an informative and safe announcement, since B
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is informed about A’s hand, he can always announce C’s hand. Hence, B’s

announcement is informative for A and also safe, as the announcement does

not give C any new information. This would be a two-step solution or, in

other words, an informative and safe two-step protocol. Then, designing

a two-step protocol for secure information exchange reduces to designing a

one-step protocol for secure information transmission.

A one-step protocol for A’s announcement is said to be deterministic when

the hand that she holds uniquely determines the announcement that she

makes [23]. Conversely, if for some hand there are different announcements

that A could make, the protocol is said to be non-deterministic [23].

1.2.2 Announcements as alternative hands

It is well known that any public announcement from a player (no matter

how the announcement is worded in natural language or coded) is always

equivalent to the player making of public knowledge that he has one of the

hands in a particular set L, which we regard as an announcement [10].

As an example, consider the problem instance (2, 2, 1) and A announcing

“the sum of my cards is even”. This is equivalent to the public announcement

that A holds one of the hands in the set {{0, 2} , {0, 4} , {1, 3} , {2, 4}}.
In the following, when representing set of cards or hands we might omit

the commas separating the elements of the set and even the brackets. Thus,

we might write the set representing the previous announcement as {{02} ,
{04} , {13} , {24}} or {02, 04, 13, 24}

1.2.3 Problem variants and generalizations

Over the generalized problem scenario variations in the requirements have

also been considered, especially regarding the security (safety) requirement.

The original requirement, as stated above is also regarded as weak 1-security

[23]. Alternatively, if C cannot learn whether A or B holds any particular set

of k cards, we are in the presence of weak k-security. Even a stronger security

requirement regarded as perfect k-security [23] has also been considered. This
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is closer to Shannon’s perfect secrecy notion [21], since C must not gain any

probabilistic advantage in guessing who holds any set of k cards. Thus, for

achieving perfect 1-security, C must consider, for any card x that she does

not hold, that the probability of A or B holding x is the same as before

the communication. Notice that, given the number of cards dealt, these

probabilities are a
n−c and b

n−c , respectively. Thus, although weak security

is not concerned with giving C advantage in making educated guess, any of

the aforementioned security conditions provides unconditional security in the

sense that they do not relay on the assumption of a computationally limited

adversary.

On the other hand, we can think of an even more general scenario, where

there are r cards in the deck that are not dealt to anyone, i.e. n = a+b+c+r.

This was recently considered for the first time in [19]. In this case, a problem

instance is described by the signature (a,b, c), and additionally, the value of

n, or alternatively, the value of r. Hence, in the following, unless explicitly

stated otherwise, we will consider n = a + b + c for any problem instance

with signature (a,b, c).

1.3 Motivation and contribution

What separates this work from others is mostly the fact that we consider

the problem of information exchange in the more general Russian Cards

scenario, in which there are r cards in the deck that are not dealt to any

player, i.e., n = a + b + c + r. This scenario was only considered recently

in [19]; however, only the information transmission problem, i.e., one-way

communication, was rigorously studied over the paper and only considering

deterministic solutions. Most of the terminology and notation that we use

in this work came from [19]

For this work we focus on both one-step and two-step protocols providing

weak 1-security. We do not consider more lengthy solutions nor stronger se-

curity requirements. Hence, in the following, we might use the terms security,

safety and weak 1-security interchangeably. Thus, our work is an extension
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of [19] in the sense that we now focus on studying the communication in both

ways, i.e., two-step protocols, and also consider non-deterministic protocols.

Additionally, unlike other works that study the problem from an epis-

temic logic perspective, here we take a combinatorial approach, inspired by

distributed computing.

Secure information exchange when n = a + b + c + r. We provide

a formal presentation of the problem of information exchange in the more

general Russian Cards scenario, where r cards from the deck are not dealt to

the players, as well as generalizations of several known results for this new

scenario.

Additionally, we introduce the notion of perfectly safe response protocols,

in which B’s response is perfectly safe with respect to A’s announcement.

One of our main contributions is an impossibility result regarding perfectly

safe response protocols. Namely, we prove that, unlike in the case where

n = a+b+c, when r > 0, B cannot make an informative announcement for A

without revealing any new information to C. Moreover, we also consider two-

step protocols in which B’s announcement is trivially informative for A and

show that these protocols are proper solutions if and only if the protocol for

A’s announcement is informative and safe for the problem instance (a,b, c+

r). Furthermore, we show that in this general scenario, a solution to the

problem of secure information transmission does not always mean that we

can solve the problem of secure information exchange, unlike in the case

where n = a + b + c.

Good announcements and protocols. Some authors formulate the in-

formative and safety requirements for individual announcements, instead of

protocols [2, 3, 11]. Recall that an announcement is equivalent to a set

of alternative hands for a player. In those works, the authors regard the

announcement satisfying the informative and safety formulations as good an-

nouncements. About this approach, the authors in [23] argue that “it is not

possible to formally define or discuss the security of a scheme using defi-

nitions that focus on individual announcements”. Motivated by this claim,
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we argue that in fact this approach is valid, at least when considering weak

1-security, in the sense that good announcements can lead to a protocol con-

struction, although not necessarily deterministic. Moreover, this protocol

would inherit the informative and safety properties, and therefore can be

considered a formal solution.

However, we also observe that the different strategies that can be used

for the protocol construction, could have important implications on the com-

munication complexity of the resulting protocol.

Communication complexity bounds. We want to study the communi-

cation complexity of information transmission and information exchange pro-

tocols for Russian Cards problems. In doing so, we explore in detail the links

between informative Russian Cards protocols and the fundamental problem

regarding binary constant-weight codes. In particular, we follow ideas from

[16] in order to present an informative one-step protocol for the general case

c+r > 1, which therefore implies an upper bound on the number of messages

needed for information transmission. To that effect, our approach and result

is similar to that of [19]. Namely, we show that O((c+r) log n) bits are suffi-

cient for a one-step informative protocol, and O((c+r) log n+log
(
n−a
b

)
) bits

are sufficient for a two-step informative protocol. This bound for one-step

informative protocols, generalizes a bound for informative and safe solutions

when c + r = 1 and a,b ≥ 3, in which log n bits are sufficient for the trans-

mission [6].

1.4 Related work

The origins of the Russian Cards problem may be found in works such as

[13, 14, 15]; however, the active study of the problem, as it is known today,

and its generalizations started with [10]. Among other things, that paper

was responsible for the name of the problem. Although in [10] the author

takes an epistemic logic approach for modeling the problem, the author also

shows that whenever a player makes an announcement, the announcement
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can be seen as the player making of public knowledge that he has one of the

ha nds in a specific set L of alternative hands. Hence, in the present work,

as well as in most works, such set L is regarded as an announcement. This is

a useful and important result, since it allows the study of the problem with

a combinatorial approach.

In [2] the authors focus on the scenario where all cards are dealt to the

three players, i.e., n = a+b+c and in two-step solutions in which Alice makes

the first announcement. Since the authors assume that Bob’s announcement

would be informing Alice about Cath’s hand, they focus on designing a good

announcement for Alice in some problem instances. The authors formalize

the notion of a good announcement L via some epistemic axioms and equiva-

lent combinatorial ones. These axioms or conditions are stated in such a way

that, whenever Alice can make a (thoughtful) good announcement L, the

problem requirements (informative and safety) are met after Bob’s response

announcing Cath’s hand. Then, the authors study some conditions for the

existence of good announcements. Namely, they show that when c ≥ a − 1

there is no good announcement for Alice and therefore, no two-step solution

for the Russian Cards problem. Additionally, the authors present some lower

and upper bounds on the sizes of good announcements.

Two-step solutions have been found for various instances of the general-

ized problem. Some solved instances are (a, 2, 1), provided a ≡ 0, 4 mod 6,

and more interestingly, those where b = O(a2), found in [2] with solutions

via perfect difference sets and block designs. Also, (a, a, 1) with a > 2

[1], where A announces the sum of her cards modulo 2a + 1. A generalized

version of this result is presented in [6], for (a, b, 1) with a,b > 2.

Solutions consisting of more than two steps have also been studied, al-

though not at the same extent that two-step solutions. In [11] the authors

proposed a three-step solution for (4, 4, 2) after proving that no two-step so-

lution exists for this problem instance. Also, a four-step protocol based on

finite vector spaces is presented in [7] as the first known solution when c > a.

In [23] the authors formalize the notions of weak k-security and perfect k-

security. In such terminology, the classical security condition for the problem

is called weak 1-security. Although most literature focus on this classical
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security requirement, some others have also been considered. For instance, in

[3] the authors present a perfect 1-security good announcement construction

for (2k−1, 2k−1 − 1, 1), where k ≥ 3, via binary designs. Furthermore, the

authors in [23] provide a characterization of informative and perfectly (d−1)-

secure solutions for (d + 1, b, 1), with b ≥ d − 1, involving d − (n, d + 1, 1)-

designs.

Moreover, in [23] the authors also distinguish between deterministic solu-

tions or protocols, in which A’s hand uniquely determines her message, and

non-deterministic ones.

Similarly, recently a weaker alternative for the informative requirement,

known as minimally informative was considered in [19] where, instead of

having to learn each other’s hand, A and B only need to learn “something”

about their respective hands. Additionally, in that paper, it is also consid-

ered the more general scenario for the Russian Cards problem in which there

are r cards that are not dealt to the players. In that work the author takes

a distributed-computing perspective based on Algebraic Topology, specifi-

cally, using simplicial complexes. Some of the results that we present in

this work regarding only the information-transmission problem, i.e., one-way

communication, were previously presented in [19], although only consider-

ing deterministic protocols. Moreover, in [19] the author exposes the link

between comunication complexity of informative Russian Cards protocols

and a fundamental problem in Coding Theory. In particular, this relation

is a consequence of the characterization of informative protocols for Russian

Cards problem as proper colorings of Johnson graphs. We also exploit this

link in the present work in a similar fashion.

Organization. The present work consists of five chapters. In Chapter 2 we

present the formal specification of both the secure information transmission

and secure information exchange problems, in the general Russian Cards

scenario where n = a + b + c + r. Additionally, we present several general

results, some of which are generalizations of known results and others which

are novel.

In Chapter 3 we present a different approach to solutions, that focuses on

10



announcements, instead of protocols [2, 3] and discuss the relation between

both, in particular from the perspective of communication complexity.

In Chapter 4 we discuss the links between informative protocols for Rus-

sian Cards problem and the fundamental problem regarding constant weight

codes. We also exploit this relation for presenting one of such protocols.

Additionally, we provide a general upper bound for the communication com-

plexity of such protocols.

Finally, the conclusions can be found in Chapter 5.

11



Chapter 2

The Russian Cards problem

In the first part of this chapter, Section 2.1, we formally present the prob-

lem of secure information exchange in the Russian Cards problem scenario

in which there are r cards in the deck that are not dealt to any player.

As we previously remarked this particular scenario has not been extensively

studied. Following [19], the model of the problem is inspired by a distributed-

computing approach [17] that relies on topological notions, such as simplicial

complexes. Moreover, we use this model for defining the notions of informa-

tive and safe protocols.

In Section 2.2, we focus on one-step protocols. In particular, we show

how they can be modeled as vertex-coloring functions of a Johnson graph.

Additionally, we characterize the notions of informative and safe one-step

protocols as properties of colorings for these graphs. Also, we present some

generalizations of several known results which were originally stated when

considering only the scenario where n = a + b + c or solely deterministic

protocols. Most of these results came as straightforward consequences of the

characterizations that we present.

In Section 2.3, we study two-step protocols and present some general novel

results for the more general scenario where n = a + b + c + r.
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2.1 Modeling the problem

Let D = {0, . . . , n− 1}, n > 1, be a deck of n distinct cards. Each subset

x of cards is a hand, x ∈ P(D). We may say for short that x, |x| = m, is

an m-set or m-hand, namely, if x ∈Pm(D), the subsets of D of size m. A

deal = (a, b, c) consists of three disjoint hands, meaning that the cards in a are

dealt to A, the cards in b to B, and the cards in c to C. We call γ = (a,b, c)

the signature of the deal (a, b, c) if |a| = a, |b| = b and |c| = c, following the

notation introduced by Fischer and Wright [14], although their notation did

not used bold letters for the scalars. This notation may be seen as misleading

for the readers, since scalars are usually used to represent vectors; however,

we remind that we closely follow the terminology and notation from [19].

A given signature and the value of r (or alternatively n), with n = a +

b+c+r, determines an instance of the problem. We assume that the players

A, B and C are aware of the deck and the signature. While A and B get

at least one card (a,b ≥ 1), C may get none (c ≥ 0). However, we assume

c + r ≥ 1. Otherwise, if c = r = 0, A and B would know each other’s hands

without the necessity of any communication.

When it is only required for A to inform B about her hand via a single

announcement, we regard this as an information-transmission problem, and

the protocol that A uses to that effect is a one-step protocol, denoted PA.

When B is required to also inform A about his hand, we say this is an

information-exchange problem. Solutions to this problem consisting of only

two announcements (one from A and one from B), are regarded as two-step

protocols, denoted as the pair (PA, PB), where PA is the protocol for A’s

announcement, and PB is the protocol for B’s. We may also regard PB as a

response protocol.

In the following section, Section 2.1.1, we present the notions of determin-

istic and non-deterministic protocols for Russian Cards problems and discuss

its communication complexity. In Section 2.1.2, we model the problem via

an input simplicial complex, an approach that can be found in distributed-

computing works. Finally, in Sections 2.1.3 and 2.1.4, we present the notions

of informative and safe Russian Cards protocols relying on this model.
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2.1.1 Deterministic and non-deterministic protocols

We are interested in studying both deterministic and non-deterministic proto-

cols. If we denote byMA the domain of messages that Amay send, a one-step

protocol PA can be modeled by the function PA : Pa(D)→P∗(MA) 1, mean-

ing that A with hand a can announce M if and only if M ∈ PA(a). Similarly,

if we denote byMB the domain of messages that B may send, the protocol for

B’s announcement, PB, would be a function PB : Pb(D)×MA →P∗(MB).

As seen in Section 1.2, any public announcement of a player can be asso-

ciated with a set of alternative hands that the player might hold [10]. Thus,

since the number of different such sets is finite and the elements of MA and

MB encode such sets, it makes sense to assume that bothMA andMB are

finite sets.

When considering non-deterministic protocols, the players’ announce-

ments are not uniquely determined by their hands and the messages that have

been publicly announced (if any). Hence, if we consider a non-deterministic

one-step protocol PA for A, in which A holding hand a may announce one of

several possible messages, then |PA(a)| > 1.

On the other hand, in deterministic protocols, the communication be-

tween A and B is uniquely determined by their hands and the messages that

have been publicly announced (if any). Hence, if we consider a determinis-

tic one-step protocol PA, then for any a ∈ Pa(D), |PA(a)| = 1. Similarly,

for a deterministic protocol PB for B’s announcement, we have that for any

b ∈Pb(D) and any M ∈MA, |PB(b,M)| ≤ 1 2.

In the following, we may also regard a deterministic one-step protocol

PA as a function from Pa(D) to MA, meaning that PA(a) = M if M is

A’s message to B when she holds the hand a. Similarly, in a deterministic

two-step protocol, we may say PB(b,M) = M ′, if M ′ is B’s response to A’s

message, M , when he holds hand b.

1For a set S, P∗(S) denotes the power set of S without the empty set, i.e., P∗(S) =

P(S)− ∅.
2Notice that |PB(b,M)| = 0 exactly for the cases in which it is impossible that B with

hand b may hear the message M .
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Communication complexity. In distributed computing, an important

matter is the amount of communication needed between the agents (or pro-

cesses) to solve a problem or task. For a particular problem, the communi-

cation complexity is the minimum number of bits that the agents may com-

municate to solve the problem. One of the main goals for the present work

is studying the communication complexity of several solutions to different

variants of the Russian Cards problem.

For a one-step protocol PA : Pa(D) → P∗(MA), whether it is deter-

ministic or not, it is clear that what A needs to communicate is a message

M ∈MA. SinceMA is a finite set and it is also of public knowledge among

all players (since it is part of the protocols definitions), then all elements in

the set can be numbered from 0 to |MA| − 1. Hence, for communicating M

to B, A only needs to transmit the index of M . In other words, MA (as

well as MB) can also be seen as a finite set of consecutive indexes starting

from 0. This way, the number of bits for communication that PA requires is

log2(|MA|). Hence, we can define the communication complexity of PA to

be log2(|MA|).
Additionally, if we consider a two-step protocol, where B responds using

the protocol PB : Pb(D) ×MA → P∗(MB), the communication complex-

ity of (PA, PB) is log2(|MA|) + log2(|MB|). Thus, it is clear that, from a

communication-complexity perspective, the goal is to design protocols with

the smallest possible sets MA and MB.

2.1.2 The input complex

In this section, we present how the problem can be modeled, adapting the

distributed-computing formalization of [17] to the case of an eavesdropper.

A similar adaptation can be found in [19].

All possible deals for a given signature over D are represented by an input

complex [17]. For a signature γ = (a,b, c), the input complex I(a,b, c), or

I for short, is defined as follows. It consists of all sets {(A, a), (B, b), (C, c)},
where (a, b, c) is a deal for signature γ, together with all their subsets. Each

maximal set of I, namely of size three, corresponds to a deal, and is called a
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facet. An element of the form (Y, y), where Y ∈ {A,B,C} and y is a hand,

is a vertex, an it is called Y -vertex. We say that the hand y is the input of

the player Y . All vertices in a set of I are connected pair to pair.

Notice that the A-vertices of I are in a one-to-one correspondence with

all subsets of size a of D, i.e., Pa(D). Similarly, the B-vertices correspond

to each of the elements from Pb(D), and the C-vertices to the elements in

Pc(D). Indeed, when c = 0, there is a single vertex for C in I. Figure 2.1

shows that in the case of signature γ = (1, 1, 1), n = 4, the complex is a torus

subdivided into triangles. The vertices of each triangle are colored black,

gray, and white to represent the three different players.Inside the vertex is

the hand (consisting of a single card) dealt to the corresponding player.

Figure 2.1: Input complex I for (1, 1, 1) with n = 4

2.1.3 Informative protocols

In distributed systems, usually an agent is modeled as a state machine. Each

agent starts in a state that depends only on its inputs. Then, they execute a

protocol that may involve local computation or communication among agents

and this may cause the agent to transit to another state. For a protocol, an

execution is a sequence of agent state transitions [17].
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In the Russian Cards problem, the initial state of a player X depends

on x, the hand that the player holds. Since the communication is via public

announcements, any communication may change the state of all players. In

this problem, an execution of a protocol is given by the deal that the players

hold, and the list of messages publicly announced by the players executing

the protocol.

For a fixed protocol and a facet I, representing a specific deal (a, b, c),

we denote all executions starting with I as α(I). Thus, for a facet I, since a

deterministic protocol uniquely determines an execution, α(I) is a singleton

set. However, in general, for a one-step protocol PA and the facet I, α(I) is

the set of executions determined by every possible M ∈ PA(a). Similarly, for

a two-step protocol (PA, PB), α(I) denotes the set of executions determined

by every possible M ∈ PA(a) and every possible message M ′ ∈ PA(b,M).

For an execution α ∈ α(I), we denote by inputX(α) the hand of player

X ∈ {A,B,C} in the deal determined by the facet I.

For a vertex (X, x), defining the input for the player X, we denote by

α(X, x) the set of all the possible executions where X holds the hand x, i.e.,

α(X, x) = {α(I) : (X, x) ∈ I, I ∈ I, |I| = 3}. For example, α(C, c) denotes

all the executions that Cath considers possible when she holds hand c.

The view of a player in an execution consists of its input and the sequence

of messages announced in the execution. Two executions α, α′ are indistin-

guishable to X ∈ {A,B,C}, if the player X has the same view in both [4],

denoted α
X∼ α′. On the contrary, if the executions are not indistinguishable,

we say that they are distinguishable.

Definition 1 (Informative protocol). Let X,X ′ ∈ {A,B}, be two different

players, and (X ′, x′) be any X ′-vertex in I.

� A protocol PX is informative for X ′ if any two executions α1, α2 ∈
α(X ′, x′), such that inputX(α1) 6= inputX(α2), are distinguishable to

X ′.

� A protocol (PA, PB) is informative if PA and PB are informative for B

and A respectively.

The previous definition guarantees that for any possible input, if PX is
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informative, then X ′ may deduce the hand that X is holding. Notice that,

when A or B learn the hand of the other, she or he may deduce the set of

cards that were dealt to C or not dealt at all. Thus, when r = 0 they could

learn the hand held by C.

The informative notion does not consider the player C. Indeed, it is based

only on the the subcomplex of I which is the graph induced by the A-vertices

and the B-vertices.

2.1.4 Safe protocols

In this section, we formally define what it means for a Russian Cards protocol

to be safe in the general scenario where n = a + b + c + r. We want our

definition to resemble as much as possible that of previous papers. However,

previous papers considered only the case r = 0. Some of the informal safety

formulations that can be found in the literature are the following:

1. “C must not be able to infer any card in either of A or B’s hands” [2]

2. “(...) without Cathy3 learning the fate of any particular card” [23]

3. “the cards of A and B should be secret from C” [19]

These informal formulations are equivalent when n = a + b + c; however,

they are not when n = a + b + c + r with r > 0. In fact, the first one

(1) and the last (3) can be interpreted as being semantically equivalent in

any context, but the second (2), when r > 0, can hardly be interpreted as

meaning the same as the other two. This is, when r = 0, Cath not learning

the fate of any card she does not own is equivalent to not knowing whether

such a card is held by Alice or Bob. However, if r > 0, even when Cath

does not know any card in either of A or B’s hands she may well know the

fate of the remaining r cards. Thus, neither 1 nor 3 implies 2, but 2 does

imply 1 and also 3. Therefore, 2 can be seen as a stronger formulation when

considering the case of r > 0.

3In [23] the authors use the name Cathy for the eavesdropper, which we call Cath in

this work.
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The following safety definition expresses the requirement that C must not

be able to infer any card in either of A or B’s hands, i.e., this is equivalent

to formulations 1 and 3. In other words, when r > 0, C may learn the fate

of cards that neither A nor B hold, but for any other pair of cards x and y,

she must not learn which party holds which card.

Definition 2 (Safe protocol). A protocol PA (or a two-step protocol (PA, PB))

is safe if for any C-vertex (C, c) of I, any protocol execution α in α(C, c),

and any pair of cards x, y held by A and B, respectively, in α, there are two

other executions of the protocol α1, α2 ∈ α(C, c), with y ∈ inputA(α1) and

x ∈ inputB(α2), such that α
C∼ α1 and α

C∼ α2.

Notice that the previous definition states when a one-step protocol, as

well as a two-step protocol for a Russian Cards problem, should be considered

safe when n = a + b + c + r. However, when the definition is read for one-

step protocols or, alternatively, for two-step protocols, it should be taken

into consideration that the execution of a one-step protocol differs from the

execution of a two-step protocol. Therefore, we must interpret the notion of

execution in the definition according to the case.

The previous definition guarantees that, in a safe (one-step) protocol, C

does not learn any of the cards held by A or B. That is, whenever C considers

possible that A (B) holds any particular card, there is another scenario that

looks the same for C, in which the card belongs to B (A) instead. However,

for a safe two-step protocol it is still possible that C may learn the fate of

any of the r cards that were not dealt to anyone. As we shall see later, this

will allow in some cases that when there is an informative and safe one-step

protocol PA, B could answer to A announcing the set of cards that neither A

nor B holds, and this would translate into an informative and safe two-step

protocol.

On the other hand, for a safe one-step protocol PA although it may seem

possible also that Cath could learn the fate of any of the r cards that were

not dealt to anyone, this is not the case, as we will show later. In fact, we

will prove that safety for a one-step protocol means the satisfaction of the

informal formulation 2.
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2.2 One-step protocols

In the following sections, we focus on studying one-step protocols. Most of

the terminology and notation that we use in this section is that from [19].

In Section 2.2.1, we show how we can represent indistinguishability in

the Russian Cards scenario via Johnson graphs, as it was previously noted

in [19].

In Section 2.2.2, we characterize the notions of informative and safe one-

step protocols, i.e., Definitions 1 and 2, respectively, as properties of colorings

of these particular graphs. These are generalizations of the informative and

safety characterizations from [19], which only consider deterministic proto-

cols.

In Section 2.2.3, we present some interesting remarks and observations,

most of which came as straightforward consequences of the characterizations

presented.

2.2.1 Representing indistinguishability by Johnson

graphs

A one-step protocol PA : Pa(D) →P∗(MA) is a function defined over the

set of possible hands for A, i.e., the set Pa(D). Such protocol assigns to each

A-vertex (A, a) of I, a set of labels or colors, PA(a). Thus, we can think of a

one-step protocol as a multicoloring function (or simply a coloring function

in the case of a deterministic protocol) of the A-vertices of I.

The vertex (B, b) ∈ I represents that B has input b. The hands that

B with input b considers possible for A are the a-sets contained in the A-

vertices connected to (B, b) in I. Such A-vertices are the A-neighbors of the

vertex (B, b).

Following [19], we define the graph GB in terms of I, as follows. The a-

sets contained in the A-vertices of I are the vertices of GB. Then, V (GB) =

Pa(D). The edge {a, a′} is in E(GB) if and only if (A, a) and (A, a′) are

A-neighbors of the same vertex (B, b) in I, i.e., they are both connected to

(B, b) in I. Thus, for two distinct a, a′ ∈Pa(D), the edge {a, a′} is in E(GB)
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if and only if there is b ∈Pb(D) such that a, a′ ⊆ b̄ = D − b.
Similarly, we define the graph GC considering the perspective of C instead

of B. Both graphs have the same set of vertices: V (GC) = V (GB) = Pa(D).

When C has input c, this is represented by a vertex (C, c) ∈ I, and the hands

that C with input c considers possible for A are the a-sets contained in the A-

neighbors of (C, c) in I. Thus, for two distinct a, a′ ∈Pa(D), the edge {a, a′}
is in E(GC) if and only if there is c ∈Pc(D) such that a, a′ ⊆ c̄ = D − c.

The following lemma can be found in [19]; however, we prove it here since

it is fairly simple and it could be helpful in convincing the reader about the

following observations.

Lemma 1. [19] For a, a′ ∈Pa(D), n = a + b + c + r, we have that {a, a′} ∈
E(GB) if and only if a− (c + r) ≤ |a∩ a′|. Similarly, {a, a′} ∈ E(GC) if and

only if a− (b + r) ≤ |a ∩ a′|.

Proof. Let a, a′ be two hands in Pa(D) such that {a, a′} ∈ E(GB). Then,

there exists a b-set b such that a, a′ ∈ b̄ = D − b. Then, it holds:

|a ∪ a′| ≤ |D − b| = n− b

|a ∪ a′| ≤ a + c + r

By the inclusion-exclusion principle |a ∪ a′| = 2× a− |a ∩ a′|, then we have:

2× a− |a ∩ a′| ≤ a + c + r

a− (c + r) ≤ |a ∩ a′|

and this is exactly what we want to prove.

Let a, a′ be two hands in Pa(D) such that a−(c+r) ≤ |a∩a′|. By a similar

argument as the one used in the previous case, it holds that |a∪ a′| ≤ n−b.

Then there exists a set b of cards of size b that is disjoint to both a and a′,

i.e. a, a′ ∈ b̄. This means that a, a′ ∈ E(GB).

The proof for the edges in E(GC) is similar.

The following is a generalization of Johnson graphs [19], and as we shall

see in short, it can be used to represent the graphs GB and GC .
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Definition 3 (Distance d Johnson graph). For a set S of n elements, the

graph Jd(n,m), 0 ≤ d ≤ m, has as vertices all m-subsets of S. Two vertices

a, a′ are adjacent whenever m−d ≤ |a∩a′|. When d = 1, we have a Johnson

graph, also denoted J(n,m).

From the previous definition and Lemma 1 it is straightforward that the

graph GB for signature (a,b, c) is equal to the graph Jc+r(n, a). In particular,

GB is a Johnson graph, J(n, a), exactly when c+r = 1. Similarly, GC is equal

to Jb+r(n, a).

Figure 2.2 shows the graph J(4, 2). Each vertex represents a possible

2-set out of a deck of 4 cards. In other words, the vertices are in one-to-one

correspondence with all possible hands or inputs for A in the Russian Cards

problem with signature (2, 1, 1), r = 0 or (2, 1, 0), r = 1. Additionally, two

vertices are adjacent if they represent hands that B considers possible for A

to have when he holds some hand b. As an example, consider the vertices for

the hands {01} and {02}, which are adjacent, meaning that, with input {3},
B considers both hands possible for A. Conversely, the vertices representing

the hands {01} and {23} are not adjacent since there is not an input for B

such that he would consider both hands as possible inputs for A.

Figure 2.2: The Johnson graph J(4, 2)

For each hand b of B, the set of possible inputs for A, consisting of all

a ∈ Pa(D − b), is denoted Kp(b̄). Similarly, for each hand c of C, the set

of possible inputs for A, consisting of all a ∈Pa(D − c), is denoted Kp(c̄).

The elements in Kp(b̄) and Kp(c̄) induce a clique in Jc+r(n, a) and Jb+r(n, a),

respectively. Overloading notation, the respective cliques themselves are also

sometimes denoted by Kp(b̄) and Kp(c̄).
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Remark 1 (Subgraphs [19]). When b ≤ c then Jb+r(n, a) is a subgraph of

Jc+r(n, a) on the same set of vertices. Therefore, for any b ∈Pb(D) and any

c ∈Pc(D), both Kp(b̄) and Kp(c̄) induce cliques in Jc+r(n, a). Additionally,

if b ⊆ c, then Kp(c̄) ⊆ Kp(b̄).

2.2.2 One-step protocols as vertex coloring of

Johnson graphs

Consider a one-step protocol PA for signature (a,b, c), with n = a + b +

c + r. In light of the results from the previous section we take the view of

PA : Pa(D) → P∗(MA) as a multicoloring of the graph Jc+r(n, a). Thus,

PA is a proper multicoloring of Jc+r(n, a) if for any two adjacent vertices

a, a′ in Jc+r(n, a), PA(a) and PA(a′) are disjoint. Notice that, if PA is a

deterministic protocol, then we may say it is simply a coloring of Jc+r(n, a),

with PA : Pa(D)→MA.

Figure 2.3 represents a coloring of the graph J(4, 2). Hence, this coloring

represents a one-step deterministic protocol PA : P2(Z4) → MA for the

Russian Cards problem with signature (2, 1, 1), r = 0 or (2, 1, 0), r = 1. This

protocol uses three colors or messages, namely, MA = {0, 1, 2}.

Figure 2.3: A coloring of the graph J(4, 2) using three colors: ‘0’, ‘1’ and ‘2’.

Also, for a protocol PA, we denote the announcement corresponding to a

message or color M , by P−1
A (M) 4. Then, for any M ∈MA, the set P−1

A (M)

4P−1
A (M) is equivalent to an “announcement” by A in the terminology of [2], or the

“alternative hands” for A, in the notation of [10, Proposition 24].
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is defined as follows:

P−1
A (M) = {a | M ∈ PA(a)}

As an example, consider the protocol PA represented in Figure 2.3 and notice

that the announcements for such protocol are the following:

P−1
A (0) = {01, 23}

P−1
A (1) = {02, 13}

P−1
A (2) = {03, 12}

The following two theorems reformulate the informative and safety no-

tions of Definitions 1 and 2 for one-step protocols, and generalize the char-

acterizations [19, Theorem 2] and [19, Theorem 3], respectively.

Theorem 1 (Informative characterization). Let PA : Pa(D) → P∗(MA)

be a protocol, then PA is informative for B if and only if PA is a proper

multicoloring of Jc+r(n, a).

Proof. Let PA be an informative protocol and assume for contradiction that

PA is not a proper multicoloring of Jc+r(n, a), then there is a vertex (B, b) ∈ I
such that two different neighbors (A, a), (A, a′) share a color M . There-

fore, there are two executions α, α′ ∈ α(B, b) indistinguishable to B, with

inputA(α) 6= inputA(α′), which is a contradiction with PA being informative

for B.

Conversely, if PA is a proper multicoloring of Jc+r(n, a), then for any ver-

tex (B, b) ∈ I, any pair of neighbors (A, a), (A, a′) have a disjoint set of colors.

Then any two executions α, α′ ∈ α(B, b), with inputA(α) 6= inputA(α′), are

distinguishable to B. Therefore PA is an informative protocol.

This theorem explains what B learns, formally defined by the notion of

decision function from distributed computing [17]. A decision function δB
consists of a function for B, where δB(α) is the value that B decides in

execution α. Clearly, if PA is informative for B then there is a function δB,

such that δB(α) = inputA(α).
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Notice that, it follows from Theorem 1 that the protocol represented

in Figure 2.3 is informative for the Russian Cards problem with signature

(2, 1, 1), r = 0 or (2, 1, 0), r = 1, since it is a proper coloring of J(4, 2).

Recall from Section 2.2.1 the graph GC , which is equivalent to the graph

Jb+r(n, a), where Kp(c̄) induces a clique, for every c ∈Pc(D). In the follow-

ing, the set of messages or colors of the vertices of a clique Kp(c̄) is denoted

by:

PA(Kp(c̄)) =
⋃

a∈Kp(c̄)

PA(a)

Theorem 2 (Safety characterization). Let PA : Pa(D) → P∗(MA) be a

protocol, then the following conditions are equivalent.

1. PA is safe.

2. Consider any c ∈ Pc(D), and any y ∈ c̄. For each M ∈ PA(Kp(c̄)),

there are a, a′ ∈ Kp(c̄) with M ∈ PA(a) ∩ PA(a′) such that y ∈ a4a′ 5.

Proof. (1) ⇒ (2). Let PA be a safe protocol. Then, for any c ∈Pc(D) and

any M ∈ PA(Kp(c̄)), consider any card y ∈ c̄ and an execution α ∈ α(C, c)

starting with I = {(A, a), (B, b), (C, c)}, in which A announces M (M ∈
PA(a)). There are two possible cases, y ∈ inputA(α) and y 6∈ inputA(α).

� If y ∈ inputA(α), then as PA is safe there exists an execution α′ such

that y ∈ inputB(α′) and α
C∼ α′. It follows that M ∈ PA(inputA(α)) ∩

PA(inputA(α′)) and y ∈ inputA(α)4inputA(α′).

� If y 6∈ inputA(α), as y ∈ c̄ then there exists an execution α′ starting

with input I ′ = {(A, a), (B, b′), (C, c)} such that y ∈ inputB(α′), and

it holds α
C∼ α′. As PA is safe, then there exists an execution α′′ such

that y ∈ inputA(α′′) and α′
C∼ α′′. It follows that M ∈ PA(inputA(α))∩

PA(inputA(α′′)) and y ∈ inputA(α)4inputA(α′′).

(2)⇐ (1). Assume that for any c ∈Pc(D), any card y ∈ c̄ and any message

M ∈ PA(Kp(c̄)), there exists a1, a2 ∈ Kp(c̄) with M ∈ PA(a) ∩ PA(a′) such

that y ∈ a14a2.

5The symbol 4 stands for the symmetric difference operator.
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Now let be c a c-set and α ∈ α(C, c) an execution, where the card x is

held by A, and the card y is held by B. For any M ′ ∈ PA(Kp(c̄)), there

must be an a-set a ∈ Kp(c̄) where M ′ ∈ PA(a) ∩ PA(inputA(α)) and y ∈ a,

so, for any facet I with the vertices (C, c) and (A, a), there is an execution

α1 ∈ α(I) such that y ∈ inputA(α1) and α
C∼ α1. There must be also an

a′ ∈ Kp(c̄) with M ′ ∈ PA(a′) ∩ PA(inputA(α)) and x 6∈ a′. As x ∈ c̄, there is

an execution α2 ∈ α(C, c), with inputA(α2) = a′ and x ∈ inputB(α2), which

also satisfies that α
C∼ α2. Thus, PA is safe.

Following [23], we say that a non-deterministic one-step protocol is an

γ-equitable protocol if |PA(a)| = γ for all a ∈Pa(D). Deterministic one-step

protocols are equivalent to 1-equitable protocols.

2.2.3 Some consequences of the characterizations

Some observations regarding the informative and safety reformulations are

the following:

Remark 2 (Communication Complexity). A simple consequence of the in-

formative characterization for a one-step protocol, PA : Pa(D) →P∗(MA)

(Theorem 2), is that |MA| ≥ χ(Jc+r(n, a)) 6. Then, χ(Jc+r(n, a)) is a lower

bound on the communication complexity of the one-step protocol PA.

Remark 3 (Duality). Since Jc+r(n, a) ∼= Jc+r(n, n− a)7, there is an infor-

mative one-step protocol PA for (a,b, c) if and only if P̄A(a) = PA(ā) is an

informative one-step protocol for (n− a, a− (c + r), c).

Remark 4. If d ≤ d′, then Jd(n, a) is a subgraph of Jd
′
(n, a) (Remark 1).

Thus, if PA is a proper vertex coloring of Jd
′
(n, a) then it is also a proper

vertex coloring of Jd(n, a) (similarly, for n ≤ n′).

Remark 5 (Safety). Being Informative requires PA to be a proper vertex

coloring of Jc+r(n, a), while safety requires that PA is not a proper vertex

6The notation χ(G) stands for the chromatic number of the graph G.
7This holds by [19, Lemma 3], and the isomorphism is the function f : Pa(D) →

Pn−a(D) defined as f(a) = ā.
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coloring of Jb+r(n, a). Thus, by Remark 1, if a protocol is informative and

safe, then b > c.

2.2.4 One-step protocol example

When c + r = 1, an example of solution for the Russian Cards problem with

signature (a,b, c) is the one-step protocol χmodn, where A announces the

sums of her cards modulo n. This protocol is presented in [6, 19]. Formally,

the protocol is the function χmodn : Pa(D)→ Zn, defined as:

χmodn(x) = (
∑
y∈x

y) mod n

For example, in the classic instance of the Russian Cards problem, (3, 3, 1)

with n = 7, the protocol is specified by the following announcements:

χ−1
mod7(0) = {016, 025, 034, 124, 356}
χ−1
mod7(1) = {026, 035, 125, 134, 456}
χ−1
mod7(2) = {036, 045, 126, 135, 234}
χ−1
mod7(3) = {012, 046, 136, 145, 235}
χ−1
mod7(4) = {013, 056, 146, 236, 245}
χ−1
mod7(5) = {014, 023, 156, 246, 345}
χ−1
mod7(6) = {015, 024, 123, 256, 346}

2.3 Two-step protocols

In the previous sections, we formally presented the Russian Cards problem

in its most general form. Additionally, we presented some general results

regarding one-step protocols. In this section, we study more closely two-

step protocols for solving the problem. As we mentioned earlier, two-step

protocols have not been rigorously studied in the more general Russian Cards

scenario where n = a + b + c + r, so most of the formulations and results

presented in this chapter are novel.
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In particular, it is well known that in the generalized scenario with n =

a + b + c, the existence of an informative and safe one-step protocol is

equivalent to the existence of an informative and safe two-step protocol, in

which B’s announcement is trivially safe in the sense that it does not give

C any new information. However, when n = a + b + c + r, although, as we

will see in Section 2.3.1, the existence of a two-step solution does mean a

one-step solution for the particular problem instance, we will see in sections

2.3.2 and 2.3.3 that the implication in the other way does not hold.

2.3.1 One-step protocols for two-step solutions

It is straightforward that when n = a + b + c, the existence of an infor-

mative and safe one-step protocol PA for (a,b, c) is a necessary condition

for the existence of a two-step solution for the same problem instance. As

the following theorem states, this can be generalized also for the case where

n = a + b + c + r.

Theorem 3. When n = a + b + c + r, if there is an informative and safe

two-step protocol for (a,b, c), then there is a one-step protocol PA for the

same problem instance, which is informative for B and safe.

Proof. Consider a two-step informative and safe protocol ρ = (PA, PB). Since

ρ is informative, it is straightforward that PA is informative for B. Consider

for PA an execution α ∈ α(C, c) and any cards x, y such that x ∈ inputA(α)

and y ∈ inputB(α). Now consider the execution β ∈ α(C, c) for protocol

(PA, PB) starting with the same inputs as α. As (PA, PB) is safe, there exist

executions β1, β2 ∈ α(C, c) such that x ∈ inputB(β1), y ∈ inputA(β2), β
C∼ β1

and β
C∼ β2. The executions α1, α2 ∈ α(C, c) for PA with same input that

β1 and β2 respectively, satisfy that x ∈ inputB(α1), y ∈ inputA(α2), α
C∼ α1

and α
C∼ α2 hence PA is safe for (a,b, c), with n = a + b + c + r.

Moreover, in a two-step solution (PA, PB) for a specific problem instance

with r = 0, if the protocol PA is informative for B and safe, one may assume

that PB consists in announcing C’s hand. Notice that, since the protocol

PA is informative for B, B knows A’s hand after her announcement, and
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hence he can deduce the cards of C. Thus, after B’s announcement of C’s

hand, A can also deduce the cards from B’s hand. Thus, this strategy is an

informative two-step solution. Additionally, this is also safe since C does not

learn anything new from B’s announcement. Therefore, it is clear that when

r = 0, the existence of an informative and safe one-step protocol for (a,b, c)

is not only a necessary condition, but additionally, a sufficient condition for

the existence of a two-step solution for the specific problem instance. In the

following sections we show that, unlike in the case when r = 0, if we have

that r > 0, this last result cannot be generalized. That is, the existence

of informative and safe one-step protocols for a problem instance is not a

sufficient condition for the existence of two-step solutions.

However, if only informativeness is needed in a two-step protocol, the

following theorem is straightforward.

Theorem 4. An informative two-step protocol (PA, PB) exists if PA is in-

formative for B; and |MB| >=
(
n−a
b

)
, where MB is the domain of messages

for PB.

Proof. When A has input a, the hands that she considers possible for B

are all the hands in Pb(D − a). There are a total of
(
n−a
b

)
such hands.

Now, consider an informative protocol PA. After A announces a message M ,

based on her input a, B knows a. Assume a pre-agreed order on the possible

hands for B from A’s perspective, so that they are referred to by the integers

1, . . . ,
(
n−a
b

)
. Thus, we may define a protocol PB by PB(b,M) = i, where i

is the index of B’s hand in Pb(D − a). The protocol PB is informative and

sends
(
n−a
b

)
different messages, which is optimal for an informative two-step

protocol.

2.3.2 Perfectly safe response strategies

In this section, we have the intention to address what we think is an im-

portant difference between the generalized Russian Cards problem, as stated

originally, and the more general form where n = a + b + c + r.

It is well known that, when n = a + b + c, B’s response strategy in

two-step safe protocols may consist in announcing C’s hand. The argument
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behind this claim is simple: it is because this announcement does not give

C any new information. In other words, this means that, C could infer B’s

message even before hearing his announcement, only from her knowledge of

the protocol and A’s announcement. This observation also implies that in

such cases, B’s response protocol needs to be deterministic.

Thus, in fact, we could say that in such cases B’s response protocol is

perfectly secure in the strongest possible sense. This is, from C’s perspective,

the probability of A or B holding any set of cards, is exactly the same before

and after B’s announcement. Hence, for any informative and safe one-step

protocol PA, such a perfect secure response strategy would translate into a

safe two-step protocol. Since we are interested in studying this particular

kind of two-step protocols, we present the following definition in order to

make this notion precise.

Definition 4 (Perfectly safe response). Let (C, c) be any C-vertex of I and

PA be a one-step protocol. A response protocol PB is perfectly safe with

respect to PA if for any two executions α, α′ of the protocol PA, with α, α′ ∈
α(C, c) and α

C∼ α′, it holds that PB(inputB(α),M) = PB(inputB(α′),M),

for any M ∈ PA(inputA(α)).

Intuitively, the previous definition states that a response protocol PB is

perfectly safe with respect to a one-step protocol PA if any two scenarios

indistinguishable to C after A’s announcement according to PA are still in-

distinguishable after B’s announcement according to PB.

Theorem 5. When r > 0, there is no two-step protocol (PA, PB) for (a,b, c),

where PB is perfectly safe with respect to PA and informative for A.

Proof. Consider a two-step protocol (PA, PB), with PB being perfectly safe

with respect to PA. Given that r > 0, there are two facets in I (and corre-

sponding deals), I = {(A, a), (B, b), (C, c)} and I ′ = {(A, a), (B, b′), (C, c)},
with b 6= b′. Thus, there are two PA executions α ∈ α(I) and α′ ∈ α(I ′), and

therefore α, α′ ∈ α(C, c), such that α
C∼ α′. Now, since PB is a perfectly safe

with respect to PA, it holds that PB(inputB(α),M) = PB(inputB(α′),M) for

any M ∈ PA(a). But then, PB is not informative for A, since there are two
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PB executions in α(A, a) with different inputs for B, namely b and b′, that

are indistinguishable to A.

Notice that for the previous result there is no assumption about the one-

step protocol used for A’s announcement, hence it does not matter whether

this is an informative protocol or not. This means that, when r > 0, if a two-

step protocol is informative for A, then it always allows C to learn something

from B’s announcement. This is an important result because this means that,

unlike in the case r = 0, we cannot assume that designing an informative

and safe one-step protocol for A’s announcement means solving the problem

of full-information exchange in the more general scenario where r > 0. In

these cases we must always consider what C learns from B’s announcement

in order to check that this new knowledge does not compromise the safety of

the communication protocol or strategy.

Moreover, when r > 0 the trivially informative response from B would

be to announce all cards that both, he and A does not hold, which are

those from C’s hand and the ones not dealt to anyone. However, this is

not a perfectly safe response protocol, neither would mean a secure two-

step protocol, according to the informal safety formulation 2, because C will

learn the fate of all the r cards that were not dealt. However, since our safety

Definition 2 allows C to learn the fate of the cards that were not dealt, we

cannot discard this response strategy yet, as it may translate into a two-step

solution.

2.3.3 On the existence of two-step solutions

As seen in the previous section, when r > 0, one may think that in a two-step

solution (PA, PB), the response protocol PB, could consist in announcing the

set of cards not held by A nor B, which is a superset of C’s hand. In the

following, we may regard this particular kind of response protocol as trivially

informative, and will be denoted by P ∗B.

The following theorem states a necessary and sufficient condition for a

two-step protocol with trivially informative response to be a solution in the

general Russian Cards scenario where n = a + b + c + r.

31



Theorem 6. Let n = a + b + c + r, then a two-step protocol (PA, P
∗
B) is

informative and safe for (a,b, c) if and only if PA is an informative and safe

one-step protocol for (a,b, c + r).

Proof. Is straightforward that (PA, P
∗
B) is informative if and only if PA is

informative, so we are going to focus here on safety.

If (PA, P
∗
B) is safe for (a,b, c), since B’s announcement reveal the fate of

the r remaining cards, after hearing both messages C can assume the role

of a player containing c + r cards, and still cannot learn any of the cards of

either A or B. Then, if C initially held the c + r cards, he could not either

learn any card of A or B after hearing only A’s announcement. Thus, PA is

safe for (a,b, c + r).

If PA is safe for (a,b, c+r), then (PA, P
∗
B) is safe for (a,b, c+r), because

B announces exactly the cards that C holds, and this do not give to C any

new information. Hence, (PA, P
∗
B) is also safe for (a,b, c), because in this

case C has even less information that in the previous case.

The previous result means that if we want to consider the problem of

information exchange in the Russian Cards scenario where n = a + b + c + r

different from the case with n = a + b + c, we need to design a response

strategy for B apart from the trivially informative one.

The following result indicates that, when r > 0, although there may be

safe and informative one-step protocols for a problem instance (a,b, c), it

could be the case that no safe and informative two-step protocol exists for

the same problem instance.

Theorem 7. There is no a safe and informative two-step protocol for (2, 1, 0),

with r = 1.

Proof. For an informative protocol PA of this problem instance, it holds that

|MA| ≥ 3, because for any b ∈ P1(D) the clique Kp(b̄) has size 3. Given

a safe protocol PA of this problem instance, for any M ∈ MA it holds that

|P−1
A (M)| ≥ 2. Since |P2(D)| = 6, combining previous results, in a safe an

informative protocol PA for this instance, |MA| = 3, and for any M ∈MA it
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holds that |P−1
A (M)| = 2. Indeed, for this instance, any safe and informative

protocol is equivalent to the following one:

P−1
A [0] = {01, 23} P−1

A [1] = {02, 13} P−1
A [2] = {03, 12}

Assume for contradiction that there is a protocol PB such that (PA, PB) is

informative and safe. Then, since PB is informative for A, the executions

α = α({(A, 01), (B, 2), (C, ∅)}) and α′ = α({(A, 01), (B, 3), (C, ∅)}) must

be distinguishable to A, hence PB(0, 2) 6= PB(0, 3). Similarly, PB(0, 0) 6=
PB(0, 1). Since the protocol is safe, according to Definition 2 there must

be two executions α1, α2 such that α
C∼ α1, α

C∼ α2, 0 ∈ inputB(α1) and

1 ∈ inputB(α2), but this is clearly impossible, given that PB(0, 0) 6= PB(0, 1).

Thus, this is a contradiction with (PA, PB) being safe.

Thus, the previous result confirms that, unlike in the case when r = 0, if

we have that r > 0 the existence of informative and safe one-step protocols for

a problem instance is not a sufficient condition for the existence of two-step

solutions.
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Chapter 3

Communication complexity

bounds for known solutions

So far, we have presented the modeling of solutions to the Russian Cards

problem in the form of informative and safe protocols. In particular, solutions

to the problem of information transmission, i.e. one-step protocols, can be

seen as a collection of predefined announcements. In other words, a one-step

protocol PA : Pa(D) →P∗(MA), can also be regarded as the following set

of announcements1: {
P−1
A (M) | M ∈MA

}
Hence, the approach we have presented is analogous to those approaches

in which a solution is modeled as a predefined set of (possible) announce-

ments. Therefore, our approach is reminiscent of those from [19, 23]. How-

ever, there are other works on Russian Cards problems [3, 2], in which the

authors define solutions to have the form of an announcement. Hence, in

such works, the formulations of the informative and safety requirements do

not focus on protocols, unlike ours do, but rather on individual announce-

ments. An announcement satisfying such formulations is then said to be a

good announcement and, consequently, it is regarded as a solution to the

1Recall that, for a protocol PA, P−1
A (M) = {a | M ∈ PA(a)}, denotes the announce-

ment corresponding to a message M .
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problem. About such approach, the authors in [23] argue that “it is not pos-

sible to formally define or discuss the security of a scheme using definitions

that focus on individual announcements”.

Motivated by this claim, one of our goals for this chapter is to argue that

this approach that focuses on announcements is indeed valid, at least when

considering weak-1-secure solutions. To that effect, we first present this ap-

proach in Section 3.1 and discuss how it is comparable to our own approach

and those from [19, 23]. We say that this approach is valid in the sense that,

as we will see in Section 3.2, it could in fact lead, in a straightforward man-

ner, to the construction of an informative and safe protocol, which would be

compatible with our definition of what a solution to the problem is. Further-

more, in Section 3.3, we consider alternative ways in which an announcement

could be translated into such solution, namely via different possible encod-

ings. Additionally, we also discuss the communication complexity that such

solutions might have.

3.1 Announcements and protocols

In this section, we present the approach from [2, 3] to solutions for the gener-

alized Russian Cards problem. Since in these works the authors only consider

the scenario where n = a+b+c, they focus only on formalizing the problem

of information transmission. Recall that in such scenario this would mean

also a solution to the problem of information exchange with B announcing

C’s hand. Additionally, recall that, as shown in [10], any message from A

can be modeled as the action of publicly announcing that she holds an a-set

from a set L of alternative hands, which is regarded as an announcement.

In other words, an announcement is a non-empty subset of Pa(D). In light

of this, the authors regard solutions to the problem as a special kind of an-

nouncements. We say that an a-set Y , maybe from an announcement L,

avoids the set X if the sets X and Y are disjoint.

According to the formalism from [3, 2], an announcement L is said to

be a good announcement for parameters (a,b, c) with n = a + b + c, if the
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following three axioms or properties hold:

CA1. For every b-set X there is at most one member of L that avoids X.

CA2. For every c-set X the members of L avoiding X have empty intersec-

tion.

CA3. For every c-set X the members of L avoiding X have union consisting

of all cards except those of X.

Then, the authors propose solutions to a particular problem instance

(a,b, c), with n = a + b + c, by showing that a good announcement exists

for such parameters.

These properties, considering that the actual hand of A is contained in

L, guarantee that the announcement L solves the specific instance of the

problem, even in the more general Russian Cards scenario where n = a +

b + c + r.

The first property, CA1, is somehow related to Definition 1, at the level

of a color class of a protocol, and only considering executions where A’s hand

is in L. For any b ∈Pb(D), if A’s hand is the a-set a contained in L, then

a is the only member in L that avoids b, and there is not another execution

indistinguishable to B in which A announces L. Therefore, from now on,

we will refer to this axiom as the informative announcement property. To

see this relation more clearly, we can rephrase CA1 in the formalism from

Section 2.2.1 as follows:

CA1x. For every b-set X there is at most one member of (the color class)

L in the clique Kp(X̄) of J c+r(n, a).

Thus, an informative one-step protocol PA, i.e., satisfying Theorem 1,

would consist of a set of announcements all satisfying CA1.

For the case of both axioms CA2 and CA3, they deal with the safety

requirements for weak 1-security, which at the protocol level can be defined

as in Theorem 2. Both axioms together can be rephrased in the formalism

from Section 2.2.1 as follows:

CA2xCA3. For every c-set X the members of L in the clique Kp(X̄) of

J b+r(n, a) have empty intersection and its union is X̄.
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Again, we can see that a safe protocol PA, i.e., satisfying Theorem 2,

would consist of a set of announcements all satisfying CA2 and CA3.

Thus, for a protocol PA to be informative and safe, we require that the

induced color classes, or announcements, all satisfy CA1, CA2 and CA3.

This is, a protocol PA is informative and safe if for any M ∈ MA the

announcement P−1
A (M) is a good announcement.

The following are examples of good announcements for (3, 3, 1):

L1 = {013, 124, 235, 346, 045, 156, 026}

L2 = {256, 035, 136, 046, 012, 145, 234}

L3 = {014, 123, 246, 345, 036, 156, 025}

Notice that even when these announcements are not disjoint sets (156

is in L1 and L3) and therefore cannot be part of a deterministic protocol,

whenever A can announce L ∈ {L1, L2, L3}, B would know A’s hand after

L, while C won’t be able to tell any of A’s cards nor B’s.

Thus, for what we have seen so far, these good announcements only seem

to be a solution whenever A can announce one of these, i.e., when it is the case

that the actual hand of A is in the announcement L. Thus, for considering

this approach for solving the problem, according to the notion of protocol

from Section 2.1.1, we might need to assume that such good announcements

exists for every possible hand of A; namely, that A can always make a good

announcement, no matter which her actual hand is. However, about this

matter, the authors in [23] point that: “No assumption is made that, for

every possible hand for Alice, an announcement is defined, or that a good

announcement even exists”.

Indeed, such assumption is never explicitly made by the authors in [2], but

we believe that in fact the constructions they propose for good announcements

are not limited for some possible hands of A. The reason behind this is that,

as we will see in the next section, a single good announcement can be easily

transformed in a different good announcement for the same parameters by

simply renaming the cards. In lights of this, we could always obtain a good

announcement containing a specific hand, from any good announcement for
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the same parameters. This idea is also used in [11] for building a one-step

protocol for (4, 4, 2) from an individual announcement for these parameters.

3.2 From good announcements to protocols

As we discussed, a good announcement L helps to solve the problem when A’s

hand is contained in the announcement, and it is a good question whether this

helps or not to solve the problem in other cases. In this section we propose

a method for building a safe and informative one-step protocol for (a,b, c),

with n = a + b + c + r, starting from an already known good announcement

L for the same parameters, which we regard as a seed announcement for this

method.

The following is a method for obtaining a good announcement L′ for

parameters (a,b, c), with n = a + b + c + r, containing an arbitrary a-set,

h. For this, we assume that we have a seed announcement L. The procedure

is the following:

Announcement re-arrangement

1. If h ∈ L, then L′ = L and we are done.

2. Else,

- Choose an arbitrary a-set, h′, from L.

- Build any bijective endofunction f on D which transforms the

cards in h′ into the cards in h.

- Define a bijective endofunction fa for Pa(D), such that for any

a ∈Pa(D), fa(a) = {f(x)|x ∈ a}.
- Let L′ be the collection that results from the transformation of

every a-set in L according to fa, i.e. L′ = {fa(X)|X ∈ L}.

Notice that the function f is simply a card renaming function or permu-

tation of the cards, so for any k with 1 ≤ k ≤ n, the function fk that for

any X ∈ Pk(D) is defined as fk(X) = {f(x) | x ∈ X}, is also a bijective

endofunction. Thus, fa transforms a-sets into a-sets, and it is clear by the
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specification of the function f that the hand h = fa(h′) and therefore, h ∈ L′.
Now we prove that L′ is a good announcement.

Lemma 2. The announcement L′ obtained by an announcement re-arrangement

is a good announcement.

Proof. Since L is a good announcement, the axioms CA1, CA2 and CA3

hold for L. Assume for contradiction that CA1 does not hold for L′. Thus,

there is a b-set b such that at least two members in L′ avoids Y . Let a1

and a2 be two of the hands in L′ that are disjoint with b. Then, by the

specification of the functions fa and fb, we have that f−1
a (a1) and f−1

a (a2)

are both different a-sets in L, avoiding the b-set f−1
b (b), and this contradicts

the fact that L is a good announcement.

In a similar way, we can prove that CA2 and CA3 also holds for L′.

Thus, L′ is a good announcement.

As an example, consider that we want to find a good announcement

for (3, 3, 1) that contains the hand {2, 5, 6}, and that we already know the

announcement L1 from the previous section. Then, using the announcement

re-arrangement method with the endofunction f defined in Table 3.1, we

obtain the announcement L2 (also from previous section), which contains

the desired hand, and is a good announcement.

D 0 1 2 3 4 5 6

f 2 5 3 6 0 1 4

Table 3.1: Example of endofunction on D

The repetition of the previous method allows the construction of a gen-

eral solution for the (a,b, c) instance of the Russian cards problem in the

form of a non-deterministic one-step protocol. To that effect, we can repeat

this procedure using different card renaming functions until every a-set not

contained in L appears in at least one of the generated announcements.

It is important to notice that once this method results in a collection of

good announcements which are not disjoint, the corresponding strategy or
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protocol might be non-deterministic. If there is a hand h contained in more

than one announcement and we try to turn the protocol into a deterministic

one by fixing the announcement i whenever A holds h, we might compromise

the security of the protocol. That is, when A’s hand is a, it needs to be possi-

ble that A announces any of the announcements that contains a. Otherwise,

if there exists an announcement L′ that contains a and is never announced

by A when she has a, C can discard the hand a from the possibilities in L′.

This could cause that CA2 or CA3 not longer holds for L′.

As an example of a non-deterministic protocol obtained by the previous

method, we present the following solution for (3, 3, 1), where the announce-

ments from L2 to L7, were obtained from the seed announcement L1 using

the announcement re-arrangement method.

L1 = {013, 124, 235, 346, 045, 156, 026}

L2 = {256, 035, 136, 046, 012, 145, 234}

L3 = {014, 123, 246, 345, 036, 156, 025}

L4 = {015, 126, 245, 356, 046, 134, 023}

L5 = {016, 124, 346, 256, 023, 135, 045}

L6 = {024, 056, 125, 236, 614, 130, 345}

L7 = {043, 456, 531, 362, 610, 124, 025}

This strategy for building an good announcement L′, containing a specific

hand, from a seed announcement L, is reminiscent of [11, Definition 2]. Here,

the authors also use this announcement re-arrangement method for defining

a one-step protocol. In their approach A may announce any L′ contain-

ing her hand, obtained from a seed announcement via the re-arrangement

method. That is, for any of the n! possible renamings of the cards, there is

a corresponding announcement in the protocol, that could be made. In their

approach, the selection of h′ and definition of f in a random manner is im-

portant; determinism for these steps could compromise safety. On the other

hand, in our approach we might not need all the n! announcements. Instead
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we define a one-step protocol by selecting a subset of these announcements,

that represent a covering of all elements in Pa(D).

So far we have seen how the announcement re-arrangement method can

be used in order to obtain a new good announcement from a previously

known one, or more generally, to obtain a protocol for a specific instance

of the Russian Cards problem. From now on we will refer to an announce-

ment or protocol generated by this method as a re-arrangement generated

announcement or a re-arrangement generated protocol, respectively. The fol-

lowing theorem is straightforward considering the Definitions 1 and 2 and

Lemma 2.

Theorem 8. Given a good announcement L, any re-arrangement generated

protocol obtained from L is an informative and safe non-deterministic one-

step protocol.

We can address now what the authors in [23] argue about the approach

presented in [2]: “(. . . )the authors treat security on the announcement level

(...) we argue that it is not possible to formally define or discuss the security

of a scheme using definitions that focus on individual announcements.”

Indeed, as we already discussed, in [2] the authors treat security on the

announcement level. However, as it happens with our own formulation for

the safety requirement, in [23], the authors’ formulation of weak-1 security

is equivalent to the requirement that CA2 and CA3 both hold for every

announcement in the protocol or strategy. Thus, under the assumption that

a good announcement does exist for any possible hand for A, these formal

definition of security are in fact equivalent. Moreover, as we discussed, it

is always safe to make the assumption that a good announcement for every

possible hand exists, as long as a good announcement exists for the specific

problem instance. What this means is that, both approaches are valid and

the constructions that the authors in [2] proposed of good announcements

for various problem instances represent indeed formal solutions, although,

maybe in the form of non-deterministic protocols.
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3.3 Complexity discussion

In this section we continue our discussion regarding the relation between the

approach that focus on announcements and those, like our own, that focus

on protocols. However, as we already saw that both approaches were valid

for obtaining solutions to the Russian Cards problem, we now consider these

approaches from the perspective of communication complexity.

Recall that, for the Russian Cards problem with signature (a,b, c), having

a one-step protocol PA : Pa(D) → MA, A needs to transmit dlog2(|MA|)e
bits for encoding her announcement. However, as discussed in the previous

section, in the approach from [2] the problem can be solved instead with A

communicating any good announcement, containing her hand, for the proper

parameters. We already discussed why this is valid in terms of the informa-

tive and safety requirements, however, this alternative requires a different

announcement encoding strategy and therefore differs from ours in terms of

communication complexity.

Encoding announcements. In the following list, we describe several strate-

gies for the encoding of A’s announcement L′, with |L′| = k. We regard these

as announcement encodings. For the last element of the list we consider a

good announcement L to be of public knowledge among the players, which

A uses to build her announcement L′, as a re-arrangement of L. We also

describe how many bits are required for each encoding.

1. A may communicate L′ as a list of k × a integers in the range from 0

to n− 1. This encoding uses k × a× dlog2 ne bits.

2. A may communicate a boolean array of size
(
n
a

)
, where the i-th element

in the array is true if and only if the i element of Pa(D) is in L′. This

encoding uses
(
n
a

)
bits.

3. A may communicate a single number, in the range from 0 to n! − 1,

that represent the index of the function f used to build L′, among all

of the permutations of the cards. This encoding uses dlog2(n!)e bits.
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We say that an encoding is more efficient than another one when it uses

fewer bits than the other. We suspect that, in general, the encoding 3 is more

efficient than the first two. This is because all announcement re-arrangements

of a commonly known good announcement L conform a subset of all good

announcements for the given parameters. This means that in this last case

the number of elements that we will need to encode is at most the number

of elements that we will need to encode in the first two cases. Although this

reasoning is intuitive, in the following lemma we provide a formal proof.

Lemma 3. The announcement encoding 3 is more efficient than the an-

nouncement encodings 1 and 2.

Proof. By [2, Proposition 1], the numbers of hands in a good announcement

is at least n× (c + 1)/a. Thus,

k × a× dlog2 ne ≥ (
n× (c + 1)

a
)× a× dlog2 ne ≥ n× (c + 1)× log2 n =

(c + 1)×
n∑
i=1

log2 n ≥ (c + 1)×
n∑
i=1

log2 i = (c + 1)× log2(n!) ≥ dlog2(n!)e

This means that the encoding 1 uses at least the same amount of bits than

the encoding 3.

For a good announcement to exist, it must hold that 2 ≤ a ≤ n− 2 and

that n ≥ 4. Thus,
(
n
a

)
≥
(
n
2

)
= n× (n− 1)/2, and n/2 ≥ log2 n. Thus,(

n

a

)
≥ n× (n− 1)/2 ≥ (n− 1)× log2 n > log2(n!) + 1 ≥ dlog2(n!)e

This means that the encoding 3 uses fewer bits than encoding 2.

It is clear that for deterministic solutions, the approach that focuses on

protocols is better from the perspective of communication complexity than

the approach that focuses on announcements. This is because for a protocol

PA : Pa(D) →MA, |MA| ≤
(
n
a

)
and

(
n
a

)
< n!. Moreover, when considering

the approach that focuses on announcements, in order to obtain a better

solution from a communication complexity perspective, it is always better

43



to obtain a protocol from a seed announcement as described in the previous

section. This is because the resulting protocol for the described method will

always have at most
(
n
a

)
< n! announcements.
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Chapter 4

Informative protocols for the

general problem

This chapter presents a general bound for the communication complexity of

informative (not necessarily safe) protocols for the Russian Cards problem.

To that effect, we exploit previous results from the field of Coding Theory.

In Section 4.1, we discuss in detail the link between informative protocols for

Russian Cards problems and the fundamental problem regarding binary con-

stant weight codes, exposed in [19]. In particular, we describe how we can

discover in the literature new informative protocols for the Russian Cards

problem by reinterpreting some proofs from works on Coding Theory. Addi-

tionally, in Section 4.2, we use the ideas from [16, Section III], for presenting

an informative one-step protocol, for the general Russian Cards problem.

In other words, such protocol would be informative for any instance of the

Russian Cards problem. For completeness, in Section 4.3 we also present

the results from [19, Section 8]. Finally, in Section 4.4, we present an upper

bound on the communication complexity of information transmission in the

general Russian Cards scenario, using the previously presented results.
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4.1 Constant weight codes and informative

protocols

Coding Theory studies properties of codes and how they can be used for

several applications. A code can be seen as a mapping of elements from a

source alphabet to strings in a target alphabet, regarded as codewords. For a

binary code, the target alphabet is the set {0, 1}, thus, the codewords are

binary strings. We are interested in a particular kind of codes, regarded as

fixed length codes, where all the codewords have the same length.

Among the applications of codes we can mention data compression, cryp-

tography, data transmission. When data is transmitted over a noisy or unre-

liable channel, it is useful to detect and correct errors that may be introduced

during the transmission. To that effect, it is convenient that any pair of code-

words “differ” as much as possible, and for this purpose, a distance measure

is used to compare codewords. A commonly used distance measure in codes

of fixed length is the Hamming distance, where the distance of the codewords

x, y, denoted as dH(x, y), is the number of positions where x and y differ.

On the other hand, for a codeword x, its Hamming weight is the number

of symbols different from 0, or equivalently, the Hamming distance to the

codeword where all elements are 0, i.e., dH(x, 0̄).

Constant weight codes (CWC), for parameters (n, d, a), are fixed

length codes, where all codewords have length n, minimum Hamming dis-

tance d and constant Hamming weight a. Thus, in a binary CWC of length

n and weight a, every codeword is equivalent to a hand with a cards from a

deck of n cards: the n elements in the codeword represent each card in the

deck, and the a non zero bits in the codeword indicate the cards of the hand.

Thus, a CWC of length n and weight a can be represented by a subset of

vertices of the Johnson graph J(n, a).

By Definition 3, for the graph Jd(n, a), any adjacent vertices a and a′

represent codewords of length n, weight a and distance dH(a, a′) ≤ 2d. Sim-

ilarly, any not adjacent vertices a and a′ represent codewords of length n,
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weight a and distance dH(a, a′) ≥ 2d + 2. Thus, any independent set1 of

Jd(n, a) is a CWC for parameters (n, 2d+ 2, a).

The central problem regarding constant-weight codes is founding the max-

imum number of codewords in a binary constant-weight code with length n,

Hamming distance d, and weight w. This number is denoted A(n, d, w), and

Johnson graphs have been used to calculate bounds on it.

The chromatic number of a graph G, denoted as χ(G), is the minimum

number of disjoint independent sets of G, such that the union of all them

is the graph G. In other words, χ(G) is the smaller size of a partition of

the graph G, where any element is an independent set. This means, that

χ(Jd(n, a)), is the minimum number of disjoint constant weight codes, for

parameters (n, 2d + 2, a), which union is the set of all n-tuples of weight a.

Lets denote the elements of this partition as C1, . . . , Cχ(Jd(n,a)). Since each

Ci denotes an CWC, we have that:

max
i∈{1,...,χ(Jd(n,a))}

|Ci| ≤ A(n, 2d+ 2, w)

But, is easy to check that(
n
a

)
χ(Jd(n, a))

≤ max
i∈{1,...,χ(Jd(n,a))}

|Ci|

Thus, we have the following lower bound for A(n, 2d+ 2, w):(
n
a

)
χ(Jd(n, a))

≤ A(n, 2d+ 2, w)

In general, determining the chromatic number of a Johnson graph is an

open problem. Thus, in Coding Theory literature, there are some proofs that

show a lower bound on A(n, 2δ, w) using the following idea:

1. Define a coloring function χ̄ : Pa(D)→M for Jδ−1(n, a)

2. Show that χ̄ is a proper coloring. Then, χ(Jδ−1(n, a)) ≤ |M|.
1An independent set of a graph is subset of vertices of the graph, where no two of them

are adjacent.

47



3. Finally, since
(na)
|M| ≤

(na)
χ(Jδ−1(n,a))

,
(na)
|M| is a lower bound for A(n, 2δ, w),

given that
(na)

χ(Jδ−1(n,a))
≤ A(n, 2δ, w).

4.2 Information transmission via sets with

distinct sums

In Section 2.2.4, we presented an informative protocol for (a,b, c) with c+r =

1. In this protocol, which we regard as χmodn, A announces the sum of

her cards modulo n. Thus, χmodn is an n-message protocol. However, it is

not difficult to check that for the general case c + r > 1, χmodn is not an

informative protocol.

In this section, we re-use the proof of a bound on A(n, 2 × d + 2, a), for

describing informative solutions when c + r > 1. In particular, here we use

the results from [16, Section III].

Definition 5. A subset S = {s1, s2, . . . , sn} of Zm is called an St-set of size

n and modulus m, if all the sums si1 + si2 + . . . + sit for i1 < i2 < . . . < it
are distinct in Zm.

Proposition 1. When t ≤ (n + 1)/2, an St-set is also an Su-set for any

u ≤ t.

Proof. This can be proven in a kind of backward induction, that is: trivially

it holds for u = t, so suppose that it holds for u+1 ≤ t and then try to prove it

holds for u. Assume for contradiction that an Su+1-set S exists, but it is not

an Su-set. This means that in S there are two u-sums, si1 + si2 + . . .+ siu
and sj1 + sj2 + . . .+ sju , that are equal in Zm. As u+ 1 ≤ (n+ 1)/2, there is

an element s′ ∈ S that is not included in any of this two sums. Thus, adding

s′ to each of these sums, give us two different (u+ 1)-sums that are equal, a

contradiction with S being an Su+1-set.

Let q be a prime power (positive integer power of a single prime number),

then there is an Sd-set of size q+ 1 and modulus m = (qd+1− 1)/(q− 1) [16,
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Theorem 8]. Thus, as long as q + 1 ≥ n we can associate each card i ∈ D
with a unique element si of such set S = {s0, s1, . . . , sq}. This way, given

such Sd-set S, we can define a protocol χmodm : Pa(D)→ Zm as follows:

χmodm(a) = (
∑
i∈a

si) mod m

Recall that if d ≥ min{a, n − a}, then Jd(n, a) is a complete graph, and

therefore any informative protocol must be equivalent to an identity function.

Thus, we only consider the case d < min{a, n − a}. In this case, d < n/2,

and given that q + 1 ≥ n, we also have that d ≤ (q + 2)/2.

Theorem 9. χmodm is a proper vertex coloring of Jd(n, a), 1 ≤ d ≤ min{a, n−
a}.

Proof. Assume for contradiction that there are two adjacent vertices a, b of

Jd(n, a) which are equally colored, that is, χmodm(a) = χmodm(b). Namely,

(
∑
i∈a

si) mod m = (
∑
i∈b

si) mod m.

As a and b are adjacent, they differ in γ ≤ d elements. Namely γ = |a− b| =
|b− a|, and therefore:

(
∑
i∈a−b

si) mod m = (
∑
i∈b−a

)si mod m.

This two sums have γ different elements from S, so this means S is not a

Sγ-set, and therefore, by Proposition 1, this is a contradiction with S being

an Sd-set, given that γ ≤ d ≤ (q + 2)/2.

4.3 Information transmission via Galois field

For completeness, we present in this section the results from [19, Section

8] and compare these with those from the previous section. For this, we

rephrase the coding theory argument from [16, Theorem 4] in our notation.
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Let q be a primer power, q ≥ n. Let the elements of the Galois field

GF(q) be w0, w1, . . . , wq−1. For a vertex a of Jd(n, a), let ai = 1 if i ∈ a,

and else ai = 0. Namely, for the following lemma we view a as a vector a =

(a0, . . . , an−1) ∈ Fna. Define χ̄(a) to be the vector (χ1(a), χ2(a), . . . , χd(a)),

χ1(a) =
∑
ai1=1

wi1 ,

χ2(a) =
∑
i1<i2

ai1=ai2=1

wi1wi2 ,

χ3(a) =
∑

i1<i2<i3
ai1=ai2=ai3=1

wi1wi2wi3 ,

· · ·

χd(a) =
∑

i1<i2<...<id
ai1=ai2=...=aid=1

wi1wi2 ...wid ,

(4.1)

Then, for ~v ∈ GF(q)d, the set of vertices colored ~v is χ̄−1(~v).

Recall that if d ≥ min{a, n− a} then Jd(n, a) is a complete graph.

Theorem 10. χ̄ is a proper vertex coloring of Jd(n, a), d ≥ 1, and d <

min{a, n− a}.

Proof. Consider two vertices a, b of Jd(n, a) viewed as vectors of Fna, and such

that χ̄(a) = χ̄(b). Assume for contradiction that a and b are adjacent. Thus,

there are 2γ distinct coordinates r1, . . . , rγ, s1, . . . , sγ, γ ≤ d, where a and b

disagree, and on all other coordinates they agree. Say, ari = 1 while bri = 0,

and conversely, asi = 0 while bsi = 1 (1 ≤ i ≤ γ). Write αi = wri , βi = wsi
(1 ≤ i ≤ γ). Since χ̄(a) = χ̄(b) we have

σ1 =
∑
i

αi =
∑
i

βi

σ2 =
∑
i<j

αiαj =
∑
i<j

βiβj

· · ·

σd =
∑

i1<···<id

αi1 · · ·αid =
∑

i1<···<id

βi1 · · · βid
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Therefore, α1, . . . , αγ, β1, . . . , βγ are 2γ distinct zeros of the polynomial

xγ − σ1x
γ−1 + σ2x

γ−2 − · · · ± σγ.

But a polynomial of degree γ over a field has at most γ zeros.

4.4 Communication complexity of

information exchange

For the informative protocol presented in Section 4.2, the amount of mes-

sages needed is at most m = (qd+1−1)/(q−1). As q+1 ≥ n is needed, using

Bertrand’s postulate (there is always a prime in the interval (x, 2x]) we can

say that there is always a solution with at most ((2n − 2)d+1 − 1)/(2n − 3)

messages, that is O(nc+r) messages. Thus, in terms of communication com-

plexity, we have the following result.

Theorem 11. O((c+r) log n) bits are sufficient for an informative one-step

protocol.

As for the informative protocol from [19, Section 8] presented in the

previous section, the amount of messages needed is at most qd. Then, by

Bertrand’s postulate, there is always a set of size at most (2n)d to properly

color Jd(n, a). Then, in terms of communication complexity this bound is

stronger than the other for some values of n, and for others, weaker. However,

asymptotically, this approach yields the same upper bound of that from

Theorem 11.

We just provided an upper bound for the communication complexity on

the information transmission problem. Now we consider the communication

complexity for the information exchange problem, i.e. when B responds after

A’s announcement. As is already mentioned in Section 2.1.1, for a two-step

protocol (PA, PB), the communication complexity is log2(|MA|)+log2(|MB|),
where MA and MB are the set of messages of PA and PB, respectively.

Recall the proof of Theorem 4, where it is shown that if we have an infor-

mative one-step protocol PA, there is always an informative two-step protocol
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(PA, PB) such that |MB| =
(
n−a
b

)
. In light of this result and Theorem 11,

the following theorem is straightforward.

Theorem 12. O((c+r) log n+log
(
n−a
b

)
) bits are sufficient for an informative

two-step protocol.
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Chapter 5

Conclusions

We have presented the problem of secure information exchange between two

agents A and B in the face of an eavesdropper C. The agents are modeled as

card players, holding cards randomly dealt from a deck of n cards, according

to a publicly known signature (a,b, c), specifying the number of cards dealt

to A, B and C, respectively. Additionally, there are r cards from the deck

that are not dealt to anyone, i.e. n = a+b+c+r. This scenario is reminiscent

to that of the generalized Russian Cards problem, although for the last, it is

usually considered that n = a + b + c. Therefore, in this work we considered

a more general Russian Cards scenario and formalized the informative and

safety requirements of the classic problem in this new context.

The problem is an important case of study in the search for uncondi-

tionally secure implementations of several cryptographic primitives. In that

sense, notice that a solution to the Russian Cards problem implies a solution

to the secret key exchange problem. That is, consider all the possible deals

of A and B from the perspective of C, indexed in a previously known man-

ner from 0 to N − 1, where N =
(
n−c
a

)
×
(
n−c−a

b

)
. Using a solution to the

problem, both A and B can compute the value of k, the actual index of their

deal from C’s perspective, while C has no information about it [13]. Thus,

k would be the shared secret key.

For this work, we focused on solutions to the general problem providing
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weak 1-security, which is a form of unconditional security, in the sense that

the agents are regarded as computationally unlimited. Moreover we studied

one-step and two-step protocols in both, deterministic and non-detrministic

forms.

Our combinatorial perspective, inspired by distributed computing, is based

on a formalization in terms of Johnson graphs, which facilitates using known

results about these graphs, closely related to Coding Theory. Thus, we were

able to prove novel results, as well as explaining and unifying previously

known ones.

5.1 Repercussions

One of our main contributions is the impossibility result regarding the ex-

istence of two-step protocols, in which B’s response is perfectly safe with

respect to A’s announcement. Namely, we proved that, when r > 0, B can-

not make an informative announcement for A without revealing any new

information to C. This marks an important difference between the prob-

lem in this more general setting and the usually considered scenario with

n = a + b + c and this difference is not, in any sense, inconsequential. This

is because, as far as we know, the response strategies used for the last step

of all known solutions are in fact perfectly safe with respect to C’s current

knowledge. Examples of this are all solutions in which B’s announces C’s

hand, as well as the well-known two-step solution for (a,b, 1) (n = a+b+c),

where both A and B announce the sum of their cards modulo n. What hap-

pens in this last example is that, once C hears A’s announcement, she can

already predict B’s announcement from her current knowledge. Notice that

B’s announcement can be determined by∑
x∈b

x mod n = (
∑
x∈D

x−
∑
x∈a

x− c) mod n

Moreover, we also stated a necessary and sufficient condition under which

B’s announcement can be trivially informative for A in a two-step solution

in terms of solutions to the information transmission problem in the scenario

54



where n = a + b + c. This allows us to discard as a possible response

strategy for B the announcing of the cards that he and A does not hold,

whenever A’s announcement is not safe for (a,b, c + r). Once again, this is

an important observation since this response strategy was suggested in [19]

without remarking such drawback.

Furthermore, we showed that in this general scenario where n = a + b +

c + r, although we may find solutions to the problem of secure information

transmission, it could be impossible to solve the problem of secure informa-

tion exchange. This is also an interesting difference with respect to the most

studied case where n = a + b + c.

On the other hand, our discussion regarding the approach to solutions

that focus on individual announcements, or specifically, “good announce-

ments”, led us to argue that in fact these formulations define the security

of a scheme in the same way that non-deterministic weak 1-secure protocols

do. Additionally, we also discussed this approach from the point of view of

communication complexity, which to the best of our knowledge, had not been

done before formally.

Finally, we have shown how we can discover informative protocols for the

general problem in the Coding Theory literature, by reinterpreting some of

the most common methods for proving a bound on A(n, d, w). By doing so,

we were able to show an upper bound on the communication complexity of

information transmission and exchange in the general Russian cards scenario.

Namely, we showed that O((c + r) log n) bits are sufficient for a one-step

informative protocol, and O((c + r) log n+ log
(
n−a
b

)
) bits are sufficient for a

two-step informative protocol.

5.2 Future work

There are still many questions without an answer about Russian Cards prob-

lem, particularly for the more general case where r > 0. For example, for

the cases when there is a safe and informative one-step protocol PA and a

trivially informative response protocol P ∗B is not possible, is there a two-step
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solution for the problem?

Additionally, as we have shown, even for the cases where c + r > 1, it

is possible and not too difficult to find informative protocols using Coding

Theory results. However, there still remains the question about how can we

achieve security for these problem instances, for which only a few, such as

(4, 4, 2) with n = 10 [11], have (secure) solutions.

Many other interesting problems remain open. Some of them are the re-

lation with combinatorial designs that has been thoroughly studied e.g. [24];

considering stronger security requirements e.g. [18]; about fault-tolerant so-

lutions [17], more than two parties e.g. [12], etc. It would be interesting to

understand the role of Johnson graphs in multi-round protocols; there ex-

ists work both from the secret sharing side e.g. [14], and from the Russian

cards side [7, 11], and of course in distributed computing, although without

preserving privacy [5, 8].
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