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Abstract

We review important results in probability theory and mathematical statistics,
that are essential for a deep understanding of Bayesian non-parametric statistics.
In particular we prove the representation theorem for exchangeable sequences, par-
tially exchangeable arrays, exchangeable partitions and symmetric random mea-
sures. Latter, we focus on the class of random probability measures with exchange-
able increments, better known as species sampling processes. These constitute the
building blocks for a wide variety of Bayesian non-parametric models. We study
their weak topological support, some convergence results and properties of samples.

The main contribution of the thesis is the introduction of new classes of species
sampling processes, characterized by stick-breaking weights with either exchange-
able or Markovian length variables. Our models generalize well-known Bayesian
non-parametric priors in an unexplored direction. We give conditions to assure the
species sampling processes are proper and have full support, which in turn means
they are feasible Bayesian non-parametric mixing priors. For a rich sub-class we
explain how the stochastic ordering of the weights can be modulated, and Dirichlet
and Geometric processes can be recovered. Important quantities related to clus-
tering probabilities are derived, and an MCMC algortithm is proposed for density
and clustering estimation.
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un problema dif́ıcil en matemáticas se traduce a más diversión. Gracias a la diversidad
de los juegos que me pońıa mi papá, sus enseñanzas se han extendido a las diferentes
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Introduction

The concept of symmetry is intrinsic in the way we understand our universe and relate to
it. The human brain naturally recognizes patterns we would characterize as symmetric
almost everywhere around us, moreover we have a tendency to search for symmetry to
understand and explain the world we live in. Indeed, in many areas of knowledge the
concept of symmetry is fundamental. For example in Biology, the notion of symmetry is
vastly used to describe body shapes: bilateral animals, highly influenced by the purpose
of movement, are roughly symmetric with respect to the sagittal plane, which divides the
body into left and right; many plants such as sea anemones often have radial symmetry,
which suits them for nutrition and self defence reasons; other animals, like a starfish,
have fivefold symmetry. In physics, the concept has become one of the most powerful
tools, as many laws of nature originate in symmetry, Anderson (1972) even wrote -
it is only overstating the case to say that physics is the study of symmetry.- Outside
natural sciences, for instance in arts, we find exceptional uses of symmetric patterns
to create marvellous pieces. To name a couple of notable examples, famous paintings
of M.C. Escher consist in repeating a figure that perfectly bonds with itself1, and in
music we find the work of Bach, who widely exploited permutations and invariance
in his compositions2. Of course, these are only a few examples that lead us to the
conclusion that symmetry and the way we understand our universe are inseparable. In
mathematics, the story is no different, most sub-areas strongly rely on symmetric objects
to specialize or expand their theories. Broadly, we refer to an object as symmetric, if
it remains somehow invariant under the action of a mathematical transformation. The
object to be studied, the transformation and in which way it remains invariant, vary
from subject to subject. In this thesis one of the central topics, and the main incentive
behind our models, are a very special kind of symmetric random objects, referred to as
exchangeable.

The motivations to study exchangeable elements are extensive and diverse. From a
theoretical perspective the study of exchangeability leads to representation theorems of
great significance, in particular, these explain deep connections between distinct types of
random objects and different kinds of distributional symmetries. From an applied view-
point, exchangeability and generalizations of it, lead to extremely flexible models that
can be adjusted to a wide variety of practical problems. Indeed, exchangeable random
objects, being intrinsically symmetric, are mathematically tractable enough so we can
work with them, while leading to ductile classes of statistical models. In fact, in Bayesian
statistics, a prevalent assumption we make on data points, is that they can be model by
an exchangeable sequence. These symmetric infinite collections embody one of the most
basic forms of exchangeability. Namely, a sequence of random variables, X = (xi)i≥1,
is called exchangeable if its distribution is invariant under the action of permutations,
that is, X is equal in distribution to (xσ(i))i≥1 for every bijection σ : N → N. The first
representation theorem for exchangeable sequences was proven by de Finetti (1931), lat-
ter, authors such as Hewitt and Savage (1955) and Ryll-Nardzewski (1957) generalized
the result to cover richer spaces. This celebrated theorem named in honour to Bruno
de Finetti, states that a sequence, X = (xi)i≥1, taking values in a space that is measur-
ably isomorph to R, is exchangeable if and only if there exist an almost surely unique

1https://mcescher.com/gallery/symmetry/
2https://www.youtube.com/watch?v=xUHQ2ybTejU

8



random probability measure, µ, such that given µ, the elements of X are independent
and identically distributed according to µ. It is mainly due to de Finetti’s theorem
that Bayesian statistics take exchangeability as such a pliable assumption over certain
type of data. To spell this out, assuming that data points come from independent and
identically distributed random variables, is clearly more restrictive than to assume that
the order in which data points were sampled is irrelevant. Seemingly, working under the
latter assumption is much harder than to assume the former one, however, de Finetti’s
theorem explains that in terms of mathematical tractability, there is not much loss of
assuming exchangeability over independence and identical distribution. Of course this
is true provided that we are able to understand and work with random probability mea-
sures, which is not such a minor detail. To overpass this obstacle many Bayesian models
assume that the random probability measure, µ, degenerates on a parametric family of
distributions. With the aim of avoiding this restrictive parametric assumption, Bayesian
non-parametric statistics undertakes the problem of studying random probability mea-
sures. Naturally, the analysis of these objects, in all their generality, can be extremely
difficult, which brings us back to symmetry, but this time through exchangeable ran-
dom probability measures, better known as species sampling processes. Just as it occurs
with exchangeable sequences, for exchangeable random probability measures there exist
a representation theorem that allows us to decompose them into components we are able
to understand and work with. For this reason species sampling processes have become
the building blocks for the vast majority of Bayesian non-parametric models and are the
main topic of this thesis.

The thesis is organized as follows. In Section 1, mainly following the work of Kallen-
berg (2002, 2017), we will introduce basic notions of Borel spaces and random probability
measures. As mentioned above, exchangeability, even in one of its most basic forms, can
not be properly dealt with if we do not introduce the concept of random probability
measures. Section 2 studies three broad classes of closely related exchangeable ran-
dom objects: Exchangeable sequences (de Finetti; 1931; Hewitt and Savage; 1955; Ryll-
Nardzewski; 1957; Aldous; 1985), exchangeable partitions of the set of natural numbers
(Kingman; 1982; Aldous; 1985; Pitman; 2006), and exchangeable probability measures
(Kallenberg; 2005, 2017). The main objective of this section, being to derive the corre-
sponding representation theorems. Latter, Section 3 undertakes a deeper study of species
sampling processes. In particular, we review the concept of full support, which an es-
sential requirement for species sampling processes in Bayesian non-parametric modelling
(Datta; 1991; Ghosal et al.; 1999; Wu and Ghosal; 2008; Bissiri and Ongaro; 2014). In
this section we also specialize de Finetti’s theorem to exchangeable sequences driven by
species sampling process. Towards the end of Section 3 we will go through some of the
most famous constructions of the random probability measures in question, such as using
urn schemes (Blackwell and MacQueen; 1973; Pitman; 1996b), by means of normaliza-
tion of completely random measures (Regazzini et al.; 2003; Prünster; 2003; James et al.;
2009; Hjort et al.; 2010), through the stick-breaking decomposition (Sethuraman; 1994;
Ishwaran and James; 2001; Pitman; 2006), and the most recently introduced method,
exploiting random subsets of N, (Walker; 2007; Fuentes-Garćıa et al.; 2010; De Blasi
et al.; 2020; Gil-Leyva; 2021). The last part of Section 3, analyses as an example, the
canonical and most popular model, the Dirichlet process (Ferguson; 1973; Blackwell and
MacQueen; 1973; Sethuraman; 1994) as well as the Geometric process introduced by
Fuentes-Garćıa et al. (2010). Up to this point, no major novel contribution has been
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explored, though some existent connections have been clarified. In Section 4 we arrive
to the main contribution of this work, which consist in the introduction of new classes
of Bayesian non-parametric priors, exploiting the stick-breaking construction of species
sampling processes and connections previously established. To be precise, most efforts
have concentrated in exploring stick-breaking processes based on independent variables.
There are only a handful of examples (Fuentes-Garćıa et al.; 2010; Favaro et al.; 2012,
2016) of stick-breaking processes based on explicitly dependent variables. The dependent
case has remained somehow elusive due to some mathematical hurdles to overcome. Our
proposal here, represents to some extent, the first general treatment of the dependent
case. Explicitly, we study stick-breaking processes based on exchangeable and Marko-
vian variables, and derive sufficient and necessary conditions for these processes to lead
to appropriate Bayesian non-parametric models (Gil-Leyva et al.; 2020; Gil-Leyva and
Mena; 2021). We also explain that Dirichlet and Geometric processes belong to the novel
classes, and are, in some way, the extreme points of stick-breaking processes based on
stationary random variables, giving these famous Bayesian non-parametric priors a new
interpretation. Section 5 illustrates to how to put all this theory into practice with the
aid of Markov chain Monte Carlo methods. Of special relevance, we propose a Gibbs
sampling algorithm for the novel classes of Bayesian non-parametric models, introduced
in Section 4, by modifying the slice samplers proposed by Walker (2007) and Kalli et al.
(2011). The main part of the thesis ends with a small section where we present final
comments and possible future work related to the thesis. We shall also mention that all
the proofs of the results are deferred to the Appendix. Explicitly, Appendix A includes
the proofs of the results in Section 1, Appendix B contains the proofs of the results
corresponding to Section 2, and so on.
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1 Preliminaries

In this preliminary section we will introduce essential notions of random measures over
Borel spaces. The main motivation of working in Borel spaces is that these provide a
wide enough framework that covers most relevant cases, yet not so general to entice
in technical difficulties. For example R, Rn and R∞ are well-known examples of Borel
spaces. More generally, any Polish space, that is a complete and separable metric space,
together with its Borel σ-algebra, is a Borel space, whenever working with a distance
is required we will further assume the spaces we are working on are Polish. A Borel
space (S,BS) is in particular a measurable space, so we might consider the set of all
σ-finite measures over (S,BS), the set of all finite measures over the same space, and
the one containing all probability measures, we denote these spaces byM(S), F(S) and
P(S), respectively. Roughly speaking, a random measure is simply a random object
that takes values inM(S), in order to define it properly as a measurable mapping, first
of all we must endow measure spaces with a suitable σ-algebra, we do this in Section
1.1. In Section 1.2 we introduce the notion of kernels, which is a concept slightly more
general than random measures, in fact if a kernel is defined over a probability space we
attain a random measure. Inhere we also study important kernel operators that will
eventually allow us to measurably transform random measures. Section 1.3 is dedicated
to structural properties of random measures, we explain how to characterize the law
of these random objects and derive their atomic decomposition. Latter in Section 1.3
we introduce the simplest kinds of random measures, termed basic point processes, and
some elementary transformations of them. As we will illustrate in Section 1.3.3, basic
point process constitute the building blocks of more complex kinds of random measures
such as completely random measures. Sections 1.1 - 1.3 are mainly based on the work of
Kingman (1993) Kallenberg (2002), Daley and Vere-Jones (2008) and Kallenberg (2017).

Most of the focus of subsequent sections is in random probability measures, in times
we will be required to study convergence properties of them and analyse the support of
their distributions. To this aim, in Section 1.4 we will endow P(S) with a metric that
generates the same σ-algebra introduced earlier in Section 1.1. This will then allow us to
define some modes of convergence of random probability measures as well as the concept
of weak support. The work of Parthasarathy (1967), Billingsley (1968) and Kallenberg
(2017) are main bibliography in which Section 1.4 is based on.

1.1 Borel and measure spaces

Two measurable spaces (S,S) and (T, T ) are said to be Borel-isomorphic if and only if
there exist a bijection f : S → T such that f and its inverse function f−1 are measurable.
A measurable space (S,S) is a Borel space if it is Borel-isomorphic to some Borel subset
of R, and in this case we call S the Borel σ-algebra of S, and denote it by BS. The
following result shows that Rn, R∞, R+, are examples of Borel spaces.

Theorem 1.1. Any Polish space, together with its Borel σ-algebra, that is the σ-algebra
generated by the topology induced by the metric, is a Borel space.

For a proof of Theorem 1.1, we refer the reader to Theorem 1.1 of Kallenberg (2017).
Hereinafter every space is assumed to be Borel, and specifically Polish, if working with
a metric is required. Additionally, every Borel space is understood to be localized, that
is we can find a sub-collection Ŝ of BS, such that
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a) Ŝ is a ring, i.e. it is closed under finite unions, finite intersections and proper
differences.

b) For every B ∈ Ŝ and A ∈ BS we have that A ∩B ∈ Ŝ.

c) There exist (Sn)∞n=1 ∈ Ŝ such that Sn ↗ S and Ŝ =
⋃∞
n=1(BS ∩ Sn),

where BS ∩ B = {B ∩ A : A ∈ BS}. The collection (Sn)∞n=1 in (c) is called a localizing

sequence, and we refer to the elements of Ŝ as bounded sets. The triplet
(
S,BS, Ŝ

)
is called localized Borel space. Given any sequence (Sn)∞n=1 ⊆ BS, such that Sn ↗ S,
the class

⋃∞
n=1(BS ∩ Sn) forms a localizing ring. It can be easily shown that localizing

rings on Borel spaces generate the Borel σ-algebra, that is σ(Ŝ) = BS. To see this note
that σ(Ŝ) ⊆ BS, conversely if we fix a localizing sequence, (Sn)∞n=1, for every A ∈ BS,
A ∩ Sn ↗ A hence BS ⊆ σ(Ŝ). When working with Polish spaces the typical localizing
ring is the set of all metrically bounded sets. Localizing rings are very important classes of
sets since they allow us to prove certain important properties locally, that is for bounded
sets, and latter extend them to the Borel σ-algebra by a monotone class argument.

For a localized Borel space,
(
S,BS, Ŝ

)
, we say a measure, µ over (S,BS), is lo-

cally finite whenever µ(B) < ∞ for every B ∈ Ŝ. We denote by M(S) to the set
of all locally finite measures over (S,BS), and endow it with the smallest σ-algebra,

BM(S), that makes all the projection maps,
{
πB : µ 7→ µ(B)

∣∣∣B ∈ Ŝ}, measurable.

This way
(
M(S),BM(S)

)
becomes a measurable space in its own right. Equivalently,

BM(S) can be defined as the smallest σ-algebra generated by all the integration maps,{
πf : µ 7→ µ(f) =

∫
fdµ

∣∣ f : S → R+, measurable
}

. The following lemma shows that
these couple of ways of defining BM(S) are in fact equivalent.

Lemma 1.2 (Borel σ-algebra ofM(S)). For any localized Borel space,
(
S,BS, Ŝ

)
, the

following generate the same σ-algebra of M(S)

I. The projection maps
{
πB : µ 7→ µ(B) | B ∈ Ŝ

}
.

II. The projection maps {πB : µ 7→ µ(B) | B ∈ BS}.

III. The integration maps {πf : µ 7→ µ(f) | f : S → R+, measurable}.

The proof of Lemma 1.2 can be found in Appendix A.1. Notice that the space of all
finite measures over (S,BS),

F(S) = {µ ∈M(S) : µ(S) <∞} = π−1
S [R+],

and the space of all probability measures over (S,BS),

P(S) = {µ ∈M(S) : µ(S) = 1} = π−1
S [{1}].

are both measurable subsets of BM(S). The next result, whose proof can be found in
Kallenberg (2017), justifies the notation BM(S).

Theorem 1.3. For a localized Borel space,
(
S,BS, Ŝ

)
, the measure spaces

(M(S),BM(S)), (F(S),BF(S)) and (P(S),BP(S)) are Borel spaces, where BF(S) =
BM(S) ∩ F(S), and BP(S) = BM(S) ∩ P(S).
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1.2 Kernels and operators

Definition 1.1 (Kernel). Let (S,S) be a measurable space and (T,BT ) a Borel space.
A (locally finite) kernel µ, from S into T , denoted by µ : S → T , is a mapping µ :
S ×BT → R+ such that

i) For every s ∈ S fixed, µs = µ(s, ·) is a locally finite measure.

ii) For every B ∈ BT fixed, µ(B) = µ(·, B) is a measurable function from S into
BR+

Naturally if µs is finite for every s ∈ S, we say µ is finite, and we call µ a probability
kernel when µs(T ) = 1, for every s ∈ S.

Perhaps, the simplest way of regarding a kernel is simply as measurable function
from S into M(T ). Indeed, by definition µs is a locally finite measure for every s ∈ S,
and by Lemma 1.2 together with the fact that µ(B) is a measurable function for every
B ∈ BT , we get that µ(·) : S →M(T ) is measurable with respect to S and BM(T ).

Now, if we denote by S+ to the set of all measurable functions, f : S → R+, (and
analogously for T ), any kernel µ : S → T can be identified with an operator Aµ : T+ →
S+, given by Aµ(f) = g, where

g(s) = µ(s, f) = µs(f) =

∫
fdµs =

∫
f(t)µs(dt),

for every f ∈ T+. Namely, using the standard machinery (first proving the result for
a simple function f , and then approximating non-negative functions through simple
functions) we obtain that Aµ(f) ∈ S+ for every f ∈ T+. This small discussion is
formalized by Theorem 1.4, further details of its proof of are given in Appendix A.2.

Theorem 1.4 (kernel definitions). The following are equivalent:

I. µ is a kernel from S into T .

II. Aµ : T+ → S+.

III. µ(·) : S →M(T ) is measurable.

Remark 1.1 (Notation: Kernels and operators). For simplicity the operator, Aµ, cor-
responding to the kernel µ : S → T , will be denoted by the same greek letter. That is,
hereinafter µ(f) stands for Aµ(f) for every f ∈ T+

For kernels µ,ν : S → T we define the sum of µ and ν as the kernel µ+ ν : S → T
given by

µ+ ν(s, B) = µ(s, B) + ν(s, B),

for every s ∈ S and B ∈ BT . And, for fixed A ∈ BT , we define the restriction of µ to
A as the kernel 1Aµ : S → T satisfying

1Aµ(s, B) = µ(s, A ∩B),

for every s ∈ S and B ∈ BT . Note that for a measurable set B, if B ⊆ A, 1Aµ(B) =
µ(B) and if B ∩ A = ∅, 1Aµ(B) = µ(∅) = 0. Trivially, the restriction and the sum of
kernels results in a kernel. Taking into account Remark 1.1, other transformations of
kernels that lead to a kernel are defined below.
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Definition 1.2 (Product and composition of kernels). Consider two Borel spaces
(T,BT ) and (U,BU), and a measurable space (S,S). Let µ : S → T and ν : T → U be
σ-finite kernels.

i) We define the product of µ and ν as the kernel, µν : S → U , given by µν(f) =
µ(ν(f)) for every f ∈ U+. Explicitly,

(µν)s(f) =

∫ ∫
f(u)νt(du)µs(dt)

for every s ∈ S and f ∈ U+.

ii) We define the composition of µ and ν as the kernel, µ ◦ ν : S → T × U , given by
µ ◦ ν(f) = µ(ν(f)), for every f ∈ (T × U)+. Explicitly,

(µ ◦ ν)s(f) =

∫ ∫
f(t, u)νt(du)µs(dt)

for every s ∈ S and f ∈ (T × U)+.

Definition 1.3 (Product kernel). Consider two Borel spaces (T,BT ) and (U,BU), and
a measurable space (S,S). Let µ : S → T and ν : S → U be σ-finite kernels we define
the product kernel µ⊗ ν : S → T × U by

(µ⊗ ν)s(f) =

∫ ∫
f(t, u)µs(dt)νs(du) =

∫ ∫
f(t, u)νs(du)µs(dt)

for every measurable f : T × U → R+.

In the context of the above definition, note that if f(t, u) = 1A(t)1B(u) for some
A ∈ BT and B ∈ BU we get µ ⊗ ν(A × B) = µ(A)ν(B). Clearly Definition 1.3 can
be extended to define the product of finitely many kernels. For the case of probabil-
ity kernels, this definition can be further extended to the product of countably many
kernels as follows. Let (S,S) be a measurable space and consider the Borel spaces
{(Tn,BTn)}n≥1. For each n ≥ 1 let µ(n) : S → Tn be a probability kernel. Set
N = {(n1, . . . , nk) : k ∈ N, ni 6= nj ∈ N} , and for (n1, . . . , nk) let us denote

µ(n1,...,nk) =
k⊗
i=1

µ(ni) = µ(n1) ⊗ · · · ⊗ µ(nk).

For each s ∈ S fixed, the family
{
µ

(n1,...,nk)
s

}
(n1,...,nk)∈N

satisfies the hypothesis of Kol-

mogorov’s consistency theorem, hence there exist a unique probability measure µs
over

(∏
n≥1 Tn,

⊗
n≥1 BTn

)
, such that for every (n1, . . . , nk) ∈ N , its projection to(∏k

i=1 Tni ,
⊗k

i=1 BTni

)
is precisely µ

(n1,...,nk)
s . To see that µ : S →

∏
n≥1 Tn is a ker-

nel it suffices to see that for each B ∈
⊗

n≥1 BTn fixed, µ(·, B) is a measurable function.
This can be easily be done by a monotone class argument with the π-system

C =

{∏
n≥1

Bn ∈
⊗
n≥1

BTn : Bn ∈ BTn and Bn 6= Tn for finitely many indexes n

}
and the λ-system D = {B ∈

⊗
n≥1 BTn : µ(·, B) is measurable}. In general, such prob-

ability kernel, µ, over
(∏

n≥1 Tn,
⊗

n≥1 BTn

)
will be denoted by

⊗
n≥1µ

(n). Particularly,

if Tn = T and µ(n) = ν for every n ≥ 1 we simply write ν∞ instead of
⊗

n≥1µ
(n).
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Remark 1.2. Although we will not be using it, we shall mention that the definition of
product kernel can be further extend to uncountably many probability kernels.

1.3 Random measures

Given a probability space (Ω,F ,P), and a Borel space (S,BS), a (locally finite) random
measure over (S,BS) is defined as kernel µ : Ω → S, or equivalently, it is a random
element taking values in

(
M(S),BM(S)

)
. As usual, the law of a random measure, µ, is

defined as the push-forward probability measure Q over
(
M(S),BM(S)

)
given by

Q(B) = P [µ ∈ B] = P
[
µ−1[B]

]
for every B ∈ BM(S) and where µ−1[B] = {ω ∈ Ω : µω = µ(ω, ·) ∈ B}. Two random
measures µ and ν over a Borel space (S,BS), are said to be equal in distribution denoted

by µ
d
= ν, whenever their laws coincide. The following theorem allows us to characterize

in different ways the law of a random measure.

Theorem 1.5. Let µ and ν be locally finite random measures over the same Borel space
(S,BS). Then the following are equivalent

I. µ
d
= ν

II. (µ(B1), . . . ,µ(Bn))
d
= (ν(B1), . . . ,ν(Bn)) for every B1, . . . , Bn ∈ BS.

III. (µ(A1), . . . ,µ(An))
d
= (ν(A1), . . . ,ν(An)) for every mutually disjoint measurable

sets A1, . . . , An ∈ BS.

IV. µ(f)
d
= ν(f) for every f ∈ S+.

V. E
[
e−µ(f)

]
= E

[
e−ν(f)

]
for every f ∈ S+.

See Appendix A.3 for a proof. For a random measure µ over (S,BS), the mapping
f 7→ E

[
e−µ(f)

]
, is called Laplace transform of µ. This tool is specially useful to charac-

terize the law of a random measure, as it leads to mathematically analytical expressions.
Now, we turn to characterize almost sure equalities of random measures. Two random

measures µ and ν are said to be equal almost surely, denoted by µ
a.s.
= ν if and only

if there exist A ∈ F with P[A] = 1, and such that for every ω ∈ A, µω = νω. Clearly
this implies µ(B)

a.s.
= ν(B) for every B ∈ BS. As the following proposition states, the

converse is also true.

Proposition 1.6. Let µ and ν be random measures over (S,BS) and defined on the
same probability space. Then µ

a.s.
= ν if and only if for every B ∈ BS, µ(B)

a.s.
= ν(B).

The proof of Proposition 1.6 appears in Appendix A.4. Before stating the following
result, recall that for s ∈ S, Dirac’s delta at s, denoted by δs, is the measure over (S,BS)
that assigns a mass of 1 to any measurable set that contains s, and assigns a mass of 0
to any measurable set which does not contain s, that is

δs(B) = 1B(s) =

{
1 if s ∈ B
0 if s 6∈ B,

for every B ∈ BS.

15



Theorem 1.7 (Atomic decomposition). Let µ be a (locally finite) random measure over
a Borel space (S,BS). We can measurably decompose µ as

µ
a.s.
=
∑
j≤κ

αjδξj + ν,

for some random elements: κ taking values in Z+ ∪{∞}, {(αj, ξj)}j≤κ with state space
R+×S, and a random measure, ν, satisfying ν(ω, {s}) = 0 for every s ∈ S, and ω ∈ Ω.
Moreover, the decomposition is almost surely unique up to the order of the elements in
{(αj, ξj)}j≤κ.

The proof of Theorem 1.7 can be found in Appendix A.5. In such context, to the
elements in (ξj)j≤κ we call atoms or locations of µ, to αj we call the size of the atom

ξj, and to ν we call the diffuse part of µ. If µ
a.s.
= ν we say µ is diffuse almost surely. In

the opposite case where µ
a.s.
=
∑

j≤καjδξj , we call µ discrete almost surely, in particular
if αj ∈ N for all j, we say µ is a point process. Furthermore if αj = 1 for all j, so that

µ
a.s.
=
∑

j≤κ δξj , and ξi 6= ξj almost surely for all i 6= j, we say µ is simple. For simple
point processes, their law can be further characterized by the avoidance probability
P[µ(B) = 0] for B ∈ Ŝ.

Lemma 1.8. Let µ and ν be two simple point processes over (S,BS). Then µ
d
= ν if

and only if P[µ(B) = 0] = P[ν(B) = 0], for every B ∈ Ŝ.

See Appendix A.6 for a proof.

1.3.1 Basic point processes

One of the simplest random measures one can possibly think of, is µ = δξ, for some
random element ξ taking values in the Borel space (S,BS). Clearly µ(B) ∈ {0, 1} for
every B ∈ BS and µ(B) = 1 if and only if ξ ∈ B. If µ0 is the distribution of ξ (denoted
by ξ ∼ µ0) we get

P[µ(B) = x] =


µ0(B) if x = 1

1− µ0(B) if x = 0

0 otherwise.

That is µ(B) ∼ Ber(µ0(B)). A natural generalization of the above, is to consider a finite
collection (ξj)

n
j=1 of independent and identically distributed (i.i.d.) random elements

with distribution µ0 (here denoted as (ξj)
n
j=1

iid∼ µ0) and define µ =
∑n

j=1 δξj . This
random measure assigns a mass of 1 to each element in (ξj)

n
j=1, thus µ(B) counts the

number of random locations that fall into B, and it has a binomial distribution with
parameters n and µ0(B), namely µ(B) ∼ Bin(n, µ0(B)), for this reason µ is called a

binomial process based on (n, µ0). If instead we consider a sequence (ξj)j≥1
iid∼ µ0, and a

random variable, κ, taking values in N, independent of the locations, then the random
measure µ =

∑κ
j=1 δξj is called a mixed binomial process based on (κ, µ0). Of course,

conditionally given κ, µ(B) follows a binomial distribution with parameters κ and µ0.
One interesting subfamily of this type of random measures, arises when κ follows a
Poi(θ) distribution, in this scenario µ(B) has a Poi(θµ0(B)) distribution and for disjoint
measurable sets {Bi}i≥1 ⊆ BS, (µ(Bi))i≥1 forms an independent collection of random
variables. This type of mixed Binomial processes is a very important one and will be
properly defined below.
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Definition 1.4 (Poisson random measure, mixed poisson random measure, Cox process).
Let µ ∈M(S) be a measure over (S,BS). A random measure, µ, over (S,BS) is called
a Poisson process or Poisson random measure directed by µ if

i) (µ(Bi))i≥1 are independent random variables whenever the measurable sets (Bi)i≥1

are disjoint.

ii) µ(B) ∼ Poi(µ(B)) for every B ∈ BS.

Further if κ is random variable taking values in N, and given κ, µ is a Poisson process
directed by κµ, we say that µ is a mixed Poisson process directed by (κ, µ). More
generally if ν is a random measure taking values in M(S) and conditionally given ν, µ
is a Poisson random measure directed by ν, we say that µ is a Cox process directed by
ν.

In the context of the above definition, the directing random measures µ and ν are
also called the intensities of the point process µ. If µ is a Poisson process

E[µ(B)] = µ(B), B ∈ BS,

and in the case of Cox processes we have a similar situation conditionally given ν, that
is

E[µ(B)|ν] = ν(B), B ∈ BS.

Also, if Ξ = (ξj)j≥1 is a collection of random elements such that the counting measure
µ =

∑
j δξj is Binomial, Poisson or Cox process, we say Ξ defines a Binomial, Poisson

or Cox process, respectively.
We will refer to the point processes defined above as basic point process, the term

comes from the fact that these constitute the building blocks for wider and more general
classes of random measures, such as random measures with independent increments and
random measures with exchangeable increments.

Proposition 1.9 (Laplace transforms of basic point process). Let µ0 be a probability
measure over (S,BS), let µ and ν be random measures taking values in M(S), and
consider a random element κ taking values in N.

i) If µ is a mixed Binomial process based in (κ, µ0). Then

E
[
e−µ(f)

∣∣κ] =
(
µ0

(
e−f
))κ

, f ∈ S+

ii) If µ is a Cox process directed by ν. Then

E
[
e−µ(f)

∣∣ν] = exp
{
−ν

(
1− e−f

)}
, f ∈ S+

Remark 1.3. In the statement of the above proposition we are using the short notation
of the integrals, and we will continue to do so. In the conventional notation, the above
equations read as

E
[
exp

{
−
∫
f(s)µ(ds)

} ∣∣∣∣κ] =

(∫
e−f(s)µ0(ds)

)κ
,

and

E
[
exp

{
−
∫
f(s)µ(ds)

} ∣∣∣∣ν] = exp

{
−
∫ (

1− e−f(s)
)
ν(ds)

}
,

for every f ∈ S+.
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The proof of Proposition 1.9 can be found in Appendix A.7. As aforementioned, if
µ is a mixed Binomial process based on (κ, µ0), where κ is Poisson distributed, then µ
is a Poisson process. This can be easily corroborated by taking expectations in (i) of
Proposition 1.9, and comparing it to (ii) whenever ν is non-random. With the aid of
these Laplace transforms, it can be further proved that µ is a mixed Poisson or binomial
process if and only if the restriction, 1Bµ, is a mixed Binomial process for every bounded
set B ∈ Ŝ. Latter, this result can be used to prove the existence of Cox processes directed
by a locally finite random measure (for further details see for instance Kallenberg; 2017).
Another corollary of Proposition 1.9 is that the law of a Cox process, µ, and the one of
its intensity measure, ν, characterize each other. Indeed, by taking expectations in (ii),
we get that for every f ∈ S+

E
[
e−µ(f)

]
= E

[
exp

{
−ν

(
1− e−f

)}]
,

by Theorem 1.5, the assertion follows. To explain in more detail the relationship between
a Cox process and its intensity measure, we have the following result, whose proof appears
in Appendix A.8

Proposition 1.10. Let µ be a Cox process directed by ν over the Borel space (S,BS).
Then

a) µ is simple almost surely if and only if ν is diffuse, almost surely.

b) 1{µ(f)<∞} = 1{ν(f∧1)<∞} almost surely, for every f ∈ S+.

As we will see eventually, the above Proposition is extremely useful when constructing
Poisson (or Cox) random measures.

1.3.2 Transforms of basic point processes

Definition 1.5 (ν-transform of µ). Let (S,BS), (T,BT ) be Borel spaces, let µ =∑
j≤κ δξj be a simple random measure over (S,BS), also let ν : S → T be a probabil-

ity kernel. Let (τj)j≥1 be random elements taking values in T and such that they are
conditionally independent given (ξj)j≥1, and τj has distribution νξj . Define the random
measure over (T,BT ), η =

∑
j≤κ δτj , whenever η is locally finite we say that η is a

ν-transform of µ.

Remark 1.4. The above definition extends naturally for point processes. Simply note
that any realization µ of point process, µ, can be expressed as µ =

∑
j≤κ δsj , allowing

si = sj. Thus, in Definition 1.5, µ needs not to be simple as long as it is a point process.

Let us highlight a few important cases. Let η =
∑

j≤κ δτj be a random measure
over (T,BT ) which is a ν-transform of the (possibly random) measure µ =

∑
j≤κ δξj

over (S,BS). If T = S × U where U is Borel, ρ : S → U is a probability kernel,
and νs = δs ⊗ ρs then η is called a ρ-randomization of µ. Here, τj = (ξj,αj) for
some conditionally independent random elements (αj)j≥1 such that, given ξj, αj has
distribution ρξj , that is

η =
∑
j≤κ

δ(ξj ,αj) =
∑
j≤κ

δξj ⊗ δαj .
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If the projection η(· × U) is simple almost surely on S, or equivalently η({s} × U) ≤ 1
for every s ∈ S, then η is also called a U -marking of µ or U -marked point process.
Figure 1 illustrates two ρ-randomizations of point processes, the one on the right is not
a U -marked point process, since ξ2 = ξ5. It is easy to see that η is a U -marking of µ if
and only if µ is simple. Despite this, if U = R+, to the point process η =

∑
j≤κ δ(ξj ,αj)

over S ×R+ we can assign the purely atomic measure over (S,BS), η̃ =
∑

j≤καjδξj . If
η is a marked point process this identification is unique, and η̃ is also called a marked
point processes or marking of µ.

Figure 1: Realizations of two ρ-randomizations of point processes.

Whether η is a marking or not. If U = [0, 1] and ρs is the Lebesgue measure for
each s ∈ S, then η is called a uniform randomization of µ. Finally, if U = {0, 1} then ρ
necessarily takes the form

ρs = p(s)1{1} + (1− p(s))1{0}

for some measurable function p : S → [0, 1], that is, ρs is a Ber(p(s)) distribution. In this
instance η̃ is an integer valued random measure such that each atom of size 1, ξj, of µ is
an atom of η̃ with probability p(ξj) or is dismissed with probability 1− p(ξj), and each
atom of size n, ξj, is an atom of size 0 ≤ k ≤ n with probability

(
n
k

)
p(ξj)

k(1−p(ξj))n−k.
An alternative way to represent this process is:

η̃ =
∑
j≥1

1{uj≤p(ξj)}δξj

where (uj)j≥1 are independent Unif(0, 1) random variables, in this instance η̃ is called
a p-thinning. An equivalent way to describe a p-thinning is stated in the following
definition.

Definition 1.6 (p-thinning). Consider a (possibly random) point process µ. Let η be a
uniform randomization of µ, and let p : S → [0, 1] be a measurable function. We define
the p-thinning of µ as the random measure over (S,BS), η̃, that satisfies

η̃(f) = η(fp)
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for every measurable function f : S → R+ and where fp(s, u) = f(s)1{[0,p(s)]}(u). If
p(s) = c ∈ [0, 1] for every s ∈ S we simply say η̃ is a c-thinning.

Lemma 1.11 (Laplace functionals). Set (S,BS) and (T,BT ) two Borel spaces. Let µ
be a locally finite point process over (S,BS), let ν : S → T be a probability kernel and
consider a measurable function p : S → [0, 1] .

i) If η is a ν-transform of µ then for any f : T → R+,

E
[
e−η(f) | µ

]
= exp

{
µ
(
log
{
ν
(
e−f
)})}

.

ii) If η̃ is a p-thinning of µ, then

E
[
e−η̃(f) | µ

]
= exp

{
µ
(
log
{

1− p
(
1− e−f

)})}
.

See Appendix A.9 for a proof.

1.3.3 Completely random measures

Using basic point process and their transform we can now characterize the class of
random measures with independent increments.

Definition 1.7 (Completely random measure). A random measure µ over (S,BS) is
called a completely random measure whenever its has pairwise independent increments,
that is for every disjoint B1, . . . , Bn ∈ BS, the random variables (µ(B1), . . . ,µ(Bn)) are
independent.

The following theorem, due to Kingman and Itô, specializes the atomic decomposition
(See Theorem 1.7) for locally finite completely random measures.

Theorem 1.12. Let µ be a locally finite random measure over the Borel space (S,BS).
Then, µ is completely random if and only if it can be almost surely uniquely decomposed
as

µ = β +
∑
j≥1

γjδsj +
∑
j≥1

αjδξj ,

where

a) (sj)j≥1 are fixed elements of S and (γj)j≥1 are independent R+-valued random
variables.

b) {(ξj,αj)}j≥1 are i.i.d. (S×R+)-valued random elements. Moreover, {(ξj,αj)}j≥1

defines a Poisson process over S × R+, directed by some diffuse measure ν that
satisfies ∫

R+

(x ∧ 1) ν(B, dx) <∞, (1.1)

for every B ∈ Ŝ.

c) β is a non-random, locally finite and diffuse measure over (S,BS).
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The proof of Theorem 1.12 can be found in the Appendix A.10. To the countable
subset (sj)j≥1 ⊆ S, we call the set of fixed atoms of µ. Inhere, whenever we work with a
completely random measure we will assume it has no fixed atoms and that the intensity
ν can be decomposed as ν(ds, dx) = µ(ds)%(dx), so that equation (1.1) becomes

µ(B)

∫
R+

(x ∧ 1) %(dx) <∞, (1.2)

for every B ∈ Ŝ. In other words, µ is locally finite and % satisfies
∫
R+

(x∧ 1) %(dx) <∞.

This assumption implies that the random atoms (ξj)j≥1 and the random jumps (αj)j≥1

are independent. Additionally, if we also consider the diffuse component, β = c µ,
for some constant c ≥ 0, we get that for every mutually disjoint measurable sets
B1, . . . , Bn ∈ BS, such that µ(Bi) = µ(Bj), the random variables µ(B1), . . . ,µ(Bn) are
not only independent, but also they are i.i.d., in which case we say µ is a µ-homogeneous
completely random measure. Now, one of our main topics of interest are random proba-
bility measures, and we will be using completely random measures to build them through
normalization. To this aim, there are further requirements to make. Indeed, in order
for µ/µ(S) to be well defined, we must have 0 < µ(S) < ∞. Evidently, if µ is a µ-
homogeneous completely random, to attain µ(S) < ∞, is it enough to ask µ(S) < ∞
and

∫
R+

(x ∧ 1) %(dx) < ∞. On the other side, µ(S) > 0 can be assured by either as-

suming the diffuse component β(S) = cµ(S) > 0, that is c > 0, or by requiring µ to
jump infinitely often, that is in every set B with µ(B) > 0, there will be infinitely many
very small jumps, formally, when this occurs we say that µ has infinite activity, and this
property can be corroborated through

∫
R+
%(dx) = ∞, which, from (1.2) is easily seen

to be equivalent to
∫

[0,1]
%(dx) =∞.

Example 1.1 (Subordinators). Set S = R+ and let λ denote the Lebesgue measure over
(R+,BR+). Consider a locally finite, λ-homogeneous, completely random measure, µ,
and define the stochastic process φ = {φ(t)}t≥1 given by φ(t) = µ([0, t]). Clearly µ and
φ determine each other completely, and the following hold.

i) φ(0) = 0 almost surely.

ii) The paths of φ are right-continuous and their left limits exist.

iii) φ has independent increments. That is, for every 0 = t0 < t1 · · · < tn, the random
variables (φ(ti)− φ(ti−1))ni=1 are independents.

iv) φ has independent stationary increments, i.e. for every 0 ≤ r < t, φ(t − r)
d
=

φ(t)− φ(r).

We call a subordinator to any stochastic process that satisfies (i) – (iv). As a consequence
of Theorem 1.12 we get that any subordinator, φ, can be decomposed as

φ(t) = ct+
∑
j≥1

αjδξj([0, t]),

for every t ≥ 1, where c ≥ 0 and {(ξj,αj)}j≥1 defines a Poisson process over R+ × R+,
with intensity, ν, that decomposes as ν(ds, dx) = λ(ds)%(dx) = ds %(dx).
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Figure 2: Simulation of a subordinator, φ(t) =
∑

j≥1αjδξj([0, t]) with infinite activity
and with no drift, i.e. c = 0 (A). The graph in the right side (B) shows the corresponding
point process {(ξj,αj)}j≥1 over R+ × R+, that encodes the jumps of the subordinator
and the locations of such jumps.

Figure 3: Simulation of a subordinator, φ(t) = ct+
∑

j≥1αjδξj([0, t]) with finite activity
and with positive drift, i.e. c > 0 (A). The graph in the right side (B) shows the
corresponding point process {(ξj,αj)}j≥1 over R+ × R+, that encodes the jumps of the
subordinator and the locations of such jumps.

Figures 2 and 3 show some simulations of subordinators such that
∫
R+

(x∧ 1)%(dx) <
∞. The one in Figure 2 corresponds to a subordinator whose diffuse component is
identically zero and with infinite activity, i.e.

∫
[0,1]

%(dx) = ∞, so that infinitely many

tiny jumps occur in a finite interval. On other side, the subordinator represented by
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Figure 3 has a non-zero diffuse component and finite activity, this is, only a finite number
of jumps occur in any finite interval, this holds whenever

∫
[0,1]

%(dx) <∞. Note that in

either case we have that for every T > 0, 0 < φ(T ) < ∞ almost surely, hence through
the normalization F = φ/φ(T ) we can construct a random distribution function over(
[0, T ],B[0,T ]

)
.

1.4 Random probability measures

Consistently with Section 1.1, we denote by P(S), to the space of all probability measures
over the Borel space (S,BS). A random probability measure over (S,BS), µ, is simply a
measurable mapping from a probability space (Ω,F ,P) into

(
P(S),BP(S)

)
, equivalently

it is a probability kernel from Ω into S, µ : Ω → S. The main objective of this section
is to endow P(S) with a metric that induces BP(S). To this aim we will consider that
(S, d) is a metric space and that BS is precisely the σ-algebra generated by the topology
induced by the metric d. Providing a metric on P(S) will then allow us to define weak
convergence of random probability measures as well as the concept of weak support.

1.4.1 Topology of weak convergence

For µ, µ1, µ2, . . . ∈ P(S) we say that (µn)n≥1 converges weakly to µ, denoted by µn
w→ µ,

whenever

µn(f) =

∫
fdµn →

∫
fdµ = µ(f),

for every continuous and bounded function f : S → R. The Portmanteau theorem
gives alternative definitions of this mode of convergence, in terms of closed, open and
µ-continuity sets, this last one refers to Borel sets, whose boundary has µ-measure equal
to 0.

Theorem 1.13 (Portmanteau). For µ, µ1, µ2, . . . ∈ P(S), the following statements are
equivalent:

I. µn
w→ µ.

II. lim supn µn(A) ≤ µ(A), for every closed set A.

III. lim infn µn(A) ≥ µ(A), for every open set A.

IV. µn(A)→ µ(A), for every Borel set with µ(∂A) = 0, where ∂A denotes the boundary
of A.

We provide the proof of Theorem 1.13 in Appendix A.11. For µ, ν ∈ P(S), we define
the Lévy-Prokhorov metric, by

dP(µ, ν) = inf{ε > 0 : µ(A) ≤ ν (Aε) + ε, ν(A) ≤ µ (Aε) + ε,∀A ∈ BS}, (1.3)

where Aε = {s ∈ S : d(s, A) < ε} and d(s, A) = inf{d(a, s) : a ∈ A}. The following
theorem justifies the adopted terminology.

Theorem 1.14 (Prokhorov). dP as in (1.3) is a metric on P(S) and, if S is separable,
then dP(µn, µ)→ 0 and µn

w→ µ are equivalent.
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As can be seen in the proof of Theorem 1.14 (see Appendix A.12), in general
dP(µn, µ) → 0 implies µn

w→ µ, it is for the converse result that we require S to be
separable. Under this assumption we even have that (P(S), dP) is separable, and in this
case, for a countable dense set, D, in S,{

k∑
j=1

wkδsk : s1, s2, . . . ,∈ D,w1, w2, . . . ∈ [0, 1] ∩Q,
k∑
j=1

wk = 1

}
,

is countable and dense in P(S). The proof of this affirmations as well the proof of the
following theorem can be found in Kallenberg (2017) or Parthasarathy (1967).

Theorem 1.15. If (S, d) is a Polish space, then (P(S), dP) is also Polish.

With the Lévy-Prokhorov metric, dP , in place we can define the topology of weak
convergence, denoted by τP , as the topology induced by dP , and consider the coarsest
σ-algebra, BP(S), containing τP . The Borel σ-algebra, BP(S), makes all the integration
maps, {πf : µ 7→ µ(f) | f : S → R is continuous and bounded}, measurable. Further, if
S is Polish we can even write

BP(S) = σ({πf : µ 7→ µ(f) | f : S → R is continuous and bounded}).

The following theorem shows that, for a Polish space S, BP(S) as defined in Section 1.1,
and as defined here are identical.

Theorem 1.16 (Borel σ-algebra of P(S)). For a Polish space (S, d) with Borel σ-algebra
BS, the following generate the same σ-algebra of P(S).

I. The weakly open sets of P(S).

II. The integration maps {πf : µ 7→ µ(f) | f : S → R is continuous and bounded}.

III. The integration maps {πf : µ 7→ µ(f) | f : S → R+ is measurable}.

IV. The projection maps {πB : µ 7→ µ(B) | B ∈ BS}.

The proof of the Theorem 1.16 appears in Appendix A.13. As a consequence of this
result, a random probability measure µ can be regarded as an operator that transforms
continuous and bounded functions, f : S → R, into random variables, µ(f). In terms
of the law of random probability measures, Theorem 1.5 can be extended as follows (see
Appendix A.14, for a proof).

Lemma 1.17. Consider a Polish space (S, d) with Borel σ-algebra BS. Let µ and ν be
random probability measures over (S,BS). Then the following are equivalent.

I. µ
d
= ν

II. µ(f)
d
= ν(f) for every continuous and bounded function f : S → R.

III. E
[
e−µ(f)

]
= E

[
e−ν(f)

]
for every continuous and bounded function f : S → R.
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1.4.2 Convergence of random probability measures

For random probability measures µ,µ(1),µ(2), . . . over (S,BS), defined on the probabil-
ity space (Ω,F ,P), we say that

(
µ(n)

)
n≥1

converges weakly almost surely to µ, denoted

by µ(n) a.s.w→ µ, whenever µ(n)(f)
a.s.→ µ(f) for every continuous and bounded function

f : S → R. Analogously we say
(
µ(n)

)
n≥1

converges weakly in Lp, in probability, or in

distribution, to µ, denoted by µ(n) Lpw→ µ, µ(n) Pw→ µ and µ(n) dw→ µ, respectively, when-
ever µ(n)(f)→ µ(f) in the corresponding mode of convergence, for every continuous and

bounded function f : S → R. Evidently µ(n) a.s.w→ µ and µ(n) Lpw→ µ are both sufficient

conditions for µ(n) Pw→ µ, which in turn implies µ(n) dw→ µ.
The following lemma, whose proof appears in Appendix A.15, allows us to character-

ize convergence of random probability measure in terms of its components as determined
by Theorem 1.7.

Lemma 1.18 (Infinite mixtures). Let ∆∞ = {(w1, w2, . . .) : wj ≥ 0,
∑

j≥1wj = 1}
denote the infinite dimensional simplex. Consider two Borel spaces (S,BS) and (T,BT ),
such that S and T together with suitable metrics are Polish, and let ν : S → T be a
probability kernel such that νsn

w→ νs as sn → s in S. Then the following mappings are
continuous with respect to the product and weak topologies.

i) [(w1, w2, . . .), (µ1, µ2, . . .)] 7→
∑

j≥1wjµj, from ∆∞ × P(S)∞ into P(S).

ii) [(w1, w2, . . .), (s1, s2, . . .)] 7→
∑

j≥1wjδsj , from ∆∞ × S∞ into P(S).

iii) µ =
∑

j≥1wjδsj 7→
∫
νs µ(ds) =

∑
j≥1wjνsj , from P(S) into P(T ).

iv) [(w1, w2, . . .), (s1, s2, . . .)] 7→
∑

j≥1wjνsj , from ∆∞ × S∞ into P(T ).

Indeed, for random probability measures, its atomic decomposition (Theorem 1.7)
reduces to

µ =
∑
j≥1

wjδξj +

(
1−

∑
j≥1

wj

)
ν,

where (ξj)j≥1 are random elements of taking values in S, (wj)j≥1 are non-negative ran-
dom variables with

∑
j≥1 wj ≤ 1, and ν is a diffuse random probability measure over

(S,BS). So, for example, Lemma 1.18 assures that if
(
w

(n)
j , ξ

(n)
j

)
j≥1

converges is distri-

bution to (wj, ξj)j≥1, where
∑

j≥1 w
(n)
j = 1 =

∑
j≥1 wj. Then,

µ(n) =
∑
j≥1

w
(n)
j δ

ξ
(n)
j

dw→
∑
j≥1

wjδξj = µ.

A similar argument follows for the almost sure convergence.

1.4.3 Weak support of random probability measures

Recall that for a probability measure µ on a second countable topological space, the
support of µ, denoted by S(µ) is the defined as the intersection of all closed sets C such
that µ(Cc) = 0. Further, for a random variable x ∼ µ, the support of x, S(x), is defined
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as the support of µ. The last notion we will analyse in this preliminary section is the
concept of weak support of a random probability measure, that is we are interested in
defining the support of, µ ∼ Q, where µ is a random probability measure.

With this in mind, we find that for every µ ∈ P(S), an open base of neighbourhoods
of µ for the topology for weak convergence is the class of sets

Uε1,...,εk(µ;B1, . . . , Bk) =
k⋂
i=1

{ν ∈ P(S) : |µ(Bi)− ν(Bi)| < εi} ,

where k is a positive integer, B1, . . . , Bk are µ-continuity sets and ε1, . . . , εk are positive
real numbers. So, for a random probability measure µ with distribution Q, we define its
(weak) support, WS(µ) = WS(Q), as the set of all probability measures, ϕ, such that

Q (Uε1,...,εk(ϕ;B1, . . . , Bk)) = P [µ ∈ Uε1,...,εk(ϕ;B1, . . . , Bk)] > 0

for all ε1, . . . , εk > 0, every k-tuple of ϕ-continuity sets and every positive integer k.

Proposition 1.19. Let (S, d) be a Polish space with Borel σ-algebra BS, let µ ∼ Q be
a random probability measure over (S,BS), with E[µ] = µ0. Then

WS(Q) = WS(µ) ⊆ {ϕ ∈ P(S) : S(ϕ) ⊆ S(µ0)}.

The proof of Proposition 1.19 is provided in Appendix A.16. This result establishes
an upper bound for the weak support of a random measure. As we will explain in Section
3, from a Bayesian perspective we are interested in those random probability measures µ,
such that its support is as wide as can be, that is WS(µ) = {ϕ ∈ P(S) : S(ϕ) ⊆ S(E[µ])}.
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2 Exchangeable random elements

The study of symmetrically distributed random objects is crucial in both theoretic and
applied probability, particularly in Bayesian non-parametric statistics the concept of
exchangeability plays a fundamental role. Roughly speaking a random element is ex-
changeable if its distribution remains invariant under the action of permutations, and
generally for infinite dimensional exchangeable random objects there exist a represen-
tation theorem. The representation theorem for exchangeable sequences taking values
in {0, 1} was first proven by de Finetti (1931), latter, authors such as Hewitt and Sav-
age (1955) and Ryll-Nardzewski (1957) generalized this results to richer spaces. The
celebrated de Finetti’s theorem has been extended in various directions, for example Di-
aconis and Freedman (1980) derived a representation theorem for exchangeable Markov
chains, and Aldous (1981) and Kallenberg (1989) analysed exchangeable and partially
exchangeable arrays of random variables. Apart from these, Kingman (1978a,b), mo-
tivated by applications in genetics (Ewens; 1972), introduced the concept of partition
structures, and eventually Kingman (1982) and Aldous (1985), among others, studied ex-
changeability for random partitions. Other random structures for which a representation
theorem has been derived are stochastic process and random measures with exchange-
able increments (Kallenberg; 2005, 2017). Extraordinary compilations on the subject
are the monographs by Aldous (1985), Pitman (2006) and Kallenberg (2005, 2017).

This section is dedicated to the study of three closely related classes of exchangeable
random objects and their corresponding representation theorems: Exchangeable random
sequences taking values in some Borel space, exchangeable random partitions of N, and
locally finite exchangeable random measures over some Borel space. The representa-
tion theorem for exchangeable sequences, better known as de Finetti’s representation
theorem, states that a sequence X = (xi)i≥1 is exchangeable if and only if there exist
an almost surely unique, X-measurable, random probability measure, µ, known as the
directing random measure of X, such that conditionally given µ, X becomes a sequence
of independent and identically distributed (i.i.d.) random elements with common dis-
tribution µ. This theorem makes evident that the law of an exchangeable sequence can
be expressed in terms of the law of some random probability measure, explicitly if we
denote by Q to the distribution of µ then we have

P[X ∈ · ] =

∫
µ∞Q(dµ).

Now, given an exchangeable sequence X, the sequential sampling from it together with
the equivalence relation over N,

i ∼ j ⇔ xi = xj,

defines a random partition of N, say Π, whose distribution remains invariant under
permutations of the elements of its blocks. The representation theorem for exchangeable
random partitions, attributed to Kingman, states that every exchangeable partition
of N can be generated this way. This makes clear the relation between exchangeable
sequences and exchangeable partitions of N. As to the relation between exchangeable
random partitions and random probability measures, putting together both mentioned
representation theorems should clarify it. Explicitly, if Π is constructed through the
sequential sampling from an exchangeable sequence X, the relative sizes of the blocks
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of Π that contain an infinite number of elements are precisely the sizes of the atoms
of the directing random measure of the sequence, and the proportion of elements that
contribute as a singleton to Π, is the size of the diffuse part of the directing random
measure. Notice that Π does not contain any information about a the values of the
atoms, nor the shape of the diffuse part.

The rest of this section is organized as follows. In Section 2.1, following Aldous (1985)
and Kallenberg (2005) we analyse exchangeable sequences and separately exchangeable
arrays and derive the corresponding representation theorems. As an example, we il-
lustrate with de Finetti’s theorem for {0, 1}-valued random variables. Section 2.2 is
primarily based on the work of Pitman (2006), and it is concerned with exchangeable
partitions of the set of positive integers. Here we introduce basic concepts on the sub-
ject and derive Kingman’s representation theorem, latter we study some constructions of
these random objects, and towards the end of this part, following Pitman (1995, 1996a),
we present an overview of partially exchangeable partitions. Finally, Section 2.3, which
is based in the work by Kallenberg (2017), studies random measures with exchangeable
increments.

2.1 Random sequences and arrays

2.1.1 Exchangeable sequences

In this section every sequence, X = (xi)i≥1, is assumed to take values in the Borel space
(S,BS), unless explicitly stated otherwise.

Definition 2.1 (Exchangeable sequences).

i) We say that (xi)
n
i=1 is exchangeable if for every permutation, σ, of {1, . . . , n} we

have that
(x1,x2, . . . ,xn)

d
=
(
xσ(1),xσ(2), . . . ,xσ(n)

)
.

ii) A sequence X = (xi)i≥1 is said to be exchangeable if for every n ∈ N, the sub-
collection (xi)

n
i=1 is exchangeable. Equivalently, for every finite permutation of N,

σ, we have that σ(X)
d
= X, where σ(X) =

(
xσ(i)

)
i≥1

.

In the above definition, by a finite permutation of N we mean a permutation, σ :
N→ N, that only shuffles finitely many numbers, so that there exist n ∈ N, such that for

every m > n, σ(m) = m. Note that if X = (xi)i≥1 is exchangeable, then σ(X)
d
= X also

holds for arbitrary permutations of N, this due to the fact that the law of a sequence
is characterized by its finite dimensional distributions. Thus, in the second part of
Definition 2.1, we could have not restricted to class of finite permutations. Moreover we
could have restricted such class even more. For instance, consider the finite permutation
of N, σm, such that σm(1) = m, σm(m) = 1 and σm(k) = k for any natural number k
other than 1 and m, it is easy to see that any finite permutation of N can be written as
finite composition of elements in (σm)m∈N, which implies that X is exchangeable if and

only if for every m ∈ N, σm(X)
d
= X.

An important fact about exchangeable sequences is that their elements are equally
distributed, this can be easily corroborated by fixing m ∈ N and B ∈ BS and noting
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that

P[x1 ∈ B] = P

[
(xσm(1) ∈ B) ∩

m⋂
i=1

(xσm(i) ∈ S)

]
= P[xm ∈ B].

A first example of an exchangeable sequence, is a collection of i.i.d. random elements,
X = (xi)i≥1. Recall that for such a sequence there exist a (deterministic) probability
measure µ, over (S,BS) such that for every n ∈ N and each {Bi}ni=1 ⊆ BS,

P

[
n⋂
i=1

(xi ∈ Bi)

]
=

n∏
i=1

µ(Bi),

or equivalently P [X ∈ · ] = µ∞, denoted here by (xi)i≥1
iid∼ µ, or X ∼ µ∞. From the

above equation, the exchangeability of X follows trivially. For i.i.d. sequences, as a
consequence of the strong law of large numbers, it is true that their law is given by the
almost sure limit

1

n

n∑
i=1

δxi(B) =
1

n

n∑
i=1

1{xi∈B} → P[xi ∈ B] = µ(B),

as n→∞.
In terms of the dependence between the elements, at the other side of the spectrum,

we find that a second example of an exchangeable sequence is a collection of almost
surely equal random elements. That is (xi)i≥1, where xi = x, almost surely, for some
random element x. For this sequence it is clear that

P

[
n⋂
i=1

(xi ∈ Bi)

∣∣∣∣∣x
]

= δx

(
n⋂
i=1

Bi

)
=

n∏
i=1

δx(Bi),

for every n ∈ N and B1, . . . , Bn ∈ BS. If µ denotes the law of x, by taking expectations,
we obtain

P

[
n⋂
i=1

(xi ∈ Bi)

]
= µ

(
n⋂
i=1

Bi

)
.

Note that δx
a.s.
= n−1

∑n
i=1 δxi , so trivially n−1

∑n
i=1 δxi → δx, almost surely, as n→∞.

This said, the main objective of this section is to generalize the above observations to
arbitrary exchangeable sequences. Namely, we are interested in showing that X = (xi)i≥1

is exchangeable if and only if there exist an almost surely unique random probability

measure µ, such that (xi)i≥1
iid∼ µ, conditionally given µ. Furthermore, in this instance,

µ is given by the almost sure limit of the empirical distributions, limn→∞ n
−1
∑n

i=1 δxi ,
and the joint law of (x1, . . . ,xn) is given by E[µn] for every n ≥ 1. To this aim, let us
consider the following notions that will be latter proven equivalent to exchangeability.

Definition 2.2 (Conditionally i.i.d).

i) We say X = (xi)i≥1 is conditionally i.i.d. given a σ-algebra G, if for every n ≥ 1
and {Bi}ni=1 ⊆ BS

P

[
n⋂
i=1

(xi ∈ Bi)

∣∣∣∣∣G
]

=
n∏
i=1

P [xi ∈ Bi | G] =
n∏
i=1

µ(Bi),

almost surely, for some random probability measure µ, or equivalently

P[X ∈ · | G] = µ∞ a.s.
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ii) A random sequence X = (xi)i≥1 is called conditionally i.i.d. if there exist a sub-σ-
algebra G such X is conditionally i.i.d. given G.

Definition 2.3 (Mixture of i.i.d). A random sequence X = (xi)i≥1 is said to be a mixture
of i.i.d. if for every n ≥ 1 and {Bi}ni=1 ⊆ BS

P

[
n⋂
i=1

(xi ∈ Bi)

]
=

∫
P(S)

n∏
i=1

µ(Bi)Q(dµ)

or equivalently

P[X ∈ · ] =

∫
P(S)

µ∞Q(dµ)

for some probability measure Q over (P(S),BP(S)).

Definition 2.4 (Contractable sequence). A random sequence X = (xi)i≥1 is said to be
contractable if for every n ≥ 1 and 0 < k1 < k2 < . . . < kn,

(x1, . . . ,xn)
d
= (xk1 , . . . ,xkn)

Equivalently, every (infinite) subsequence X̃ = (xkj)j≥1 ⊆ (xi)i≥1 where k1 < k2 < · · · ,
satisfies X

d
= X̃.

It is a direct consequence of the above definitions that if X is conditionally i.i.d.
then it is a mixture of i.i.d which implies X is exchangeable, this in turn, means that
X is contractable. So to prove that the aforementioned definitions are all equivalent it
suffices to show that if X is contractable, then it is a conditionally i.i.d. A somewhat
rough argument, but that provides certain intuition of why this happens, can be given as
follows: If X = (xi)i≥1 is contractable, then we might think it is a sub-sequence of larger
sequence (with the cardinality of the natural numbers) which is equally distributed to
X. Insomuch as the index set, N, was choosen arbitrarily, and as Z and N have the
same cardinalities, by a simple duplication trick (after possibly enlarging the original
probability space) we might even regard X as a subsequence of (xi)i∈Z. Then, the

contractability of (xi)i∈Z
d
= (xi)i≥1 means that ((xi)i≤0,x1)

d
= ((xi)i≤0,xk) for every

k ≥ 2, so that the information that (xi)i≤0 provides about x1 is the same information
that it provides about xk, this is

P[x1 ∈ · | (xi)i≤0] = P[xk ∈ · | (xi)i≤0],

a.s. The above equation states that given (xi)i≤0, (x1,x2, . . .) are equally distributed.

Also, the assumed contratability implies ((xi)i≤k,xk+1)
d
= ((xi)i≤0,xk+1), so that the

finitely many random elements (x1, . . . ,xk) provide no more information about xk+1

than (xi)i≤0 does, that is

P[xk+1 ∈ · | (xi)i≤0] = P[xk+1 ∈ · | (xi)i≤0,x1, . . . ,xk],

a.s. Meaning that for every k ≥ 1, xk+1 is conditionally independent of (x1, . . . ,xk)
given (xi)i≤0. Putting everything together, this must mean that X is conditionally i.i.d.
given (xi)i≤0.
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Theorem 2.1 (Ryll-Nardzewski). Let X = (xi)i≥1 be a sequence taking values in a Borel
space (S,BS), then the following statements are equivalent

I. X is conditionally i.i.d.

II. X is a mixture of i.i.d.

III. X is exchangeable.

IV. X is contractable.

The complete and formal proof of Theorem 2.1 appears in Appendix B.1. Notice that

if there exist a random probability measure µ such that (xi)i≥1
iid∼ µ, given µ, so that

P[X ∈ · | µ] = µ∞, then by Theorem 2.1 we know that X is exchangeable. Conversely,
if X is exchangeable then by the same Theorem we know that there exist a sub-σ-
algebra, G, such that X is conditionally i.i.d. given G. If we let µ be a regular version
of P[x1 ∈ · | G], then, since µ is G-measurable, by the tower property of conditional
expectation we also have that X is conditionally i.i.d. given µ with P[x1 ∈ · | µ] = µ.
Thus, Theorem 2.1 partially proves the result we were interested in, it still remains to
show the almost sure uniqueness of µ and that limn→∞ n

−1
∑n

i=1 δxi = µ almost surely.
The following Theorem, whose proof can be found Appendix B.2, shows the remaining
part.

Theorem 2.2. Let X = (xi)i≥1 be an exchangeable sequence such that P[X ∈ · | G]
a.s.
=

µ∞ for some sub-σ-algebra G and some random probability measure µ over (S,BS).
Then,

a) X is independent of G given µ.

b) X is conditionally i.i.d. given µ.

c) µ is unique almost surely, X-measurable and given by the almost sure limit

lim
n→∞

1

n

n∑
i=1

δxi(B)
a.s.
= µ(B) B ∈ BS

d) P[X ∈ · ] =
∫
P(S)

µ∞Q(dµ) if and only if Q is the law of µ.

In the context of the above theorem, µ, which is almost surely unique and X-
measurable is called the directing random measure of X, we equivalently say that X

is directed by µ and denote this by {X | µ} ∼ µ∞ or {x1,x2, . . . | µ}
iid∼ µ. Another

important highlight here, is that the laws of X and Q characterize each other, and Q is
known as the de Finetti measure of X. The name of Q comes from the fact that the most
widely known version of the Theorem 2.1, known as de Finneti’s representation theorem
(in honour to de Finetti (1931)), states, without involving the concept of contractability,
that every sequence, X = (xi)i≥1, is exchangeable if and only if it is conditionally i.i.d.
together with Theorem 2.2. The proof of de Finetti’s theorem, instead of using the tail
σ-algebra of the sequence (see Appendix B.1), uses the so-called exchangeable σ-algebra
defined as H =

⋂
n∈NHn, where

Hn = σ(θn(X), f(x1, . . . ,xn) : f is a symmetric function),
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and θn(X) = (xn+1,xn+2, . . .). Roughly speaking, Hn contains the complete information
of xn+1,xn+2, . . . and partial information of x1, . . .xn, more precisely, the information
that Hn contains about the latter group of random elements is through symmetric func-
tions, so for instance

∑n
i=1 xi and

∏n
i=1 xi are both Hn-measurable functions. Also, for

1 ≤ k ≤ n, and a measurable function f : S → R+, E[f(x1)|Hn]
a.s.
= E[f(xk)|Hn]. That

said, this alternative proof consist in noting that {Hn}n∈N is a reverse filtration, and
that for every 1 ≤ k ≤ n and bounded measurable function f : Sk → R we have that

E [f(x1, . . . ,xk)|Hn] =
1

|Nn,k|
∑

(j1,...,jk)∈Nn,k

f(xj1 , . . . ,xjk), (2.1)

a.s. where Nn,k = {(j1, . . . , jk) ∈ {1, . . . , n}k : ji 6= jl, for all i 6= j}, this can be easily
seen by noting that the right hand side is a symmetric function of (x1, . . . ,xn). Now,
the left hand side of equation (2.1) is a reverse martingale, hence converges a.s. to
E [f(x1, . . . ,xk)|H] as n → ∞, meanwhile the right hand side is asymptotically equiva-
lent to

1

nk

n∑
j1=1

· · ·
n∑

jk=1

f(xj1 , . . . ,xjk)

thus,
1

nk

n∑
j1=1

· · ·
n∑

jk=1

f(xj1 , . . . ,xjk)
a.s.→ E [f(x1, . . . ,xk)|H] .

The choice k = 1 and f = 1B for some B ∈ BS proves

lim
n→∞

1

n

n∑
i=1

1B(xi)
a.s.
= P[x1 ∈ B|H],

and the choice f =
∏k

i=1 1Bi for some {Bi}ki=1 ∈ BS proves the desired conditional
independence.

The next example discusses the above characterizations for some of the simplest
sequences of exchangeable random variables.

Example 2.1. If X = (xi)i≥1 is an exchangeable sequence of {0, 1}-valued random
variables, the results we have developed so far simplify to:

i) The long-run proportion of random variables that take the value x ∈ {0, 1} must
be

lim
n→∞

1

n

n∑
i=1

1{x}(xi)
a.s.
= px(1− p)1−x, x ∈ {0, 1}

for some [0, 1]-valued random variable p.

ii) Conditionally given p, X is a collection of i.i.d. random variables such that xi ∼
Ber(p), and

iii) For every {x1, . . . ,xn} ∈ {0, 1}n

P[x1 = x1, . . . ,xn = xn] =

∫
[0,1]

px(1− p)n−xQ(dp),

for some probability measure Q over ([0, 1]; B[0,1]), and where x =
∑n

i=1 xi.
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In order words, i), ii) and iii) explain that the most general sequence of exchangeable
{0, 1}-valued random variables can be constructed by choosing a [0, 1]-valued random
variable p and conditionally given p, sampling Bernoulli random variables with such
parameter. In particular, if p ∼ Be(α, β)

P[x1 = x1, . . . ,xn = xn] =

∫
[0,1]

px(1− p)n−xQ(dp)

=
Γ(α + β)

Γ(α)Γ(β)

∫ 1

0

pα+x−1(1− p)β+n−x−1dp

=
Γ(α + β)Γ(α + x)Γ(β + n− x)

Γ(α)Γ(β)Γ(α + β + n)

=
(α)x(β)n−x
(α + β)n

(2.2)

where (z)m =
∏m−1

k=0 (z + k) with the convention that the empty product equals one.

The next example is a particular and fun case of Example 2.1.

Example 2.2 (Pólya Eggenberger urn). Imagine an urn contains β white balls and α
black balls. At each step of the experiment, a ball is drawn and returned together with
another one of the same color. Define the event

Ai = the ith ball drawn is black

and let xi = 1Ai. Then it is easy to see that X = (xi)i≥1 is a sequence of exchangeable
{0, 1}-valued random variables, as for n ∈ N, x1, . . . , xn ∈ {0, 1} and σ permutation of
{1, . . . , n},

P

(
n⋂
i=1

(xi = xi)

)
=

(α)x(β)n−x
(α + β)n

= P

(
n⋂
i=1

(xσ(i) = xi)

)
. (2.3)

Comparing equations (2.2) and (2.3), we see that X could have been equivalently
constructed by independently letting xi ∼ Ber(p) (conditionally given p) for some
p ∼ Be(α, β). Moreover by i) in Example 2.1 we see that the long-run proportion of
black balls in the urn is Be(α, β) distributed whilst the long-run proportion of white balls
in the urn is Be(β, α) distributed.

Before moving on let us highlight one important fact. A key piece, to characterize ex-
changeable (contractable) sequences, is the fact that they are infinite sequences, this way
we can define the tail σ-algebra, the exchangeable σ-algebra or the limit in Theorem 2.2
c), this limiting information is precisely what allows any of the above characterizations.
For a finite collection of exchangeable random variables, (xi)

n
i=1, we still have that if it

is conditionally i.i.d. then it is a mixture of i.i.d., which in turn implies it is exchange-
able. Despite the equivalence holds only if the finite collection can be regarded as subset
of some infinite exchangeable sequence. The next example shows a finite exchangeable
sequence that can not be thought as a sub-collection of a larger one.

Example 2.3. Let X = (xi)i∈{1,2} such that

P[x1 = 0,x2 = 1] = P[x1 = 1,x2 = 0] =
1

2
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and
P[x1 = 1,x2 = 1] = P[x1 = 0,x2 = 0] = 0.

X is clearly a finite collection of exchangeable random variables, now if it could be re-
garded as a subset of an infinite exchangeable sequence, then the entire sequence would
be {0, 1}-valued and iii) in Example 2.1 must have held, thus, particularly

0 =

∫
[0,1]

p2Q(dp) =

∫
[0,1]

(1− p)2Q(dp),

that is, Q assigns a mass of one to 0 and 1, which is impossible.

2.1.2 Partially exchangeable arrays

In this section, we will discuss a generalization of exchangeability to a higher dimension,
so instead of working with sequences we will be working with arrays, here denoted

by X =
(
x

(j)
i

)
i∈N,j∈J

, where the index set, J, is at most countable. The sequence

X(j) =
(
x

(j)
i

)
i∈N

is going to be thought as jth column of the array, whilst Xi =
(
x

(j)
i

)
j∈J

denotes the ith row. We will be particularly interested in deriving a representation
theorem for the arrays whose distribution is preserved under permutations of entries
that leave each element in the same column (see Figure 4). Before doing so, we define
the notion of exchangeability over some random element and highlight some results
concerning such concept, these will make our objective become trivial. The results in
this part are corollaries of Theorems 2.1 and 2.2, that is why we will call them such way.

Figure 4: Illustration of two permutations of an array, the one in the left represents an
arbitrary shuffle, whilst the one in the right leaves each element in its original column.

Definition 2.5. We say X = (xi)i≥1 (taking values in the Borel space (S,BS)) is
exchangeable over a random element ζ (with range the Borel space (T,BT )) if η =
((xi, ζ))i≥1 forms and exchangeable sequence.

Note that if X is exchangeable over ζ then for {Bi}ni=1 ⊆ BS

P

[
n⋂
i=1

[(xi, ζ) ∈ (Bi × T )]

]
= P

[
n⋂
i=1

(xi ∈ Bi)

]
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which implies X is exchangeable itself. By the third part of Theorem 2.2, for B ∈ BS

and A ∈ BT

δζ(A)

(
1

n

∑
i≤n

1B(xi)

)
→ µ(B)δζ(A),

almost surely, as n→∞, where µ is the directing random measure of X. Simultaneously,
we have

δζ(A)

(
1

n

∑
i≤n

1B(xi)

)
=

1

n

∑
i≤n

1B×A(xi, ζ)→ ν(B × A),

almost surely, where ν is the directing random measure of η. This means µ⊗δζ coincides
(almost surely) with the directing random measure of η = ((xi, ζ))i≥1. In particular,
we have that the σ-algebra generated by ν and the one generated by (ζ,µ) are equal,
except for null sets, and

P[X ∈ · | ζ,µ] = P[X ∈ · |ν] = µ∞,

almost surely, so we have proven the following result.

Corollary 2.3. Let (S,BS) and (T,BT ) some Borel spaces, Let X = (xi)i≥1 taking
values in S be exchangeable over a random element ζ with range space T . Then

a) The directing random measure of η = ((xi, ζ))i≥1 is ν = µ ⊗ δζ, where µ is the
directing random measure of X, and

b) X is conditionally independent of ζ and ν given µ.

Definition 2.6. Let J ⊆ N. For j ∈ J, let X(j) =
(
x

(j)
i

)
i≥1

be a collection of random

elements taking values in some Borel space (S,BS).

i) We say X =
(
x

(j)
i

)
i∈N,j∈J

is a completely exchangeable or contractable array if its

distribution is invariant under arbitrary permutations of its elements, or equiva-
lently, any sub-array of the same size has the same distribution as the original.

ii) We say X =
(
x

(j)
i

)
i∈N,j∈J

is separately exchangeable or contractable if for any

family of permutations of N, or contractions σ = (σj)j∈J

σ(X) =
(
σj
(
X(j)

))
j∈J

d
= X

where σj
(
X(j)

)
=
(
x

(j)
σj(i)

)
i∈N

.

There are not many new things to say about completely exchangeable arrays, after
all, they are countable sets of exchangeable random elements, hence we can reorder
such elements and treat them as exchangeable sequences. So let us focus in separately
exchangeable arrays. For the separately exchangeable or contractable array, X, let us
denote

X \X(k) =
(
X(j)

)
j 6=k , X(k) \ x(k)

m =
(
x

(k)
i

)
i 6=m

, and X \ x(k)
m =

(
x

(j)
i

)
(i,j)6=(m,k)

.
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In the context of the Definition 2.6, by letting σj be the identity function for each
j 6= k, we obtain that X(k) is exchangeable (or contractable) over X \ X(k) hence it is
exchangeable itself and has a directing random measure, say µ(k). By the second part of
Corollary 2.3 we have that X(k) is conditionally independent of X \X(k) given µ(k) and

by the representation theorem for exchangeable sequences, we know x
(k)
m is conditionally

independent of X(k)\x(k)
m given µ(k), these together imply that x

(k)
m must be conditionally

independent of X\x(k)
m given µ(k). Moreover, the second part of Corollary 2.3 also states

that X(k) is conditionally independent of
(
µ(j)

)
j∈J

, given µ(k) that is

P
[
X(k) ∈ ·

∣∣∣ (µ(j)
)
j∈J

]
= P

[
X(k) ∈ · | µ(k)

]
=
(
µ(k)

)∞
.

These results are summarized as follows.

Corollary 2.4. Let (S,BS) be a Borel space, J ⊆ N and X =
(
X(j)

)
j∈J

be separately ex-

changeable with range space S, such that X(j) =
(
X

(j)
i

)
i∈N

has directing random measure

µ(j). Then, conditionally given
(
µ(j)

)
j∈J

, the elements of
(
x

(j)
i

)
i∈N,j∈J

, are independent

and x
(j)
i ∼ µ(j).

Conversely if X is an array, whose columns are conditionally independent given(
µ(j)

)
j∈J

, and
{

X(k)
∣∣∣ (µ(j)

)
j∈J

}
∼
(
µ(k)

)∞
. Then

P [X ∈ ·] =

∫
P(S)|J|

∏
j∈J

µ∞j Q(dµ), (2.4)

where µ = (µj)j∈J, and Q denotes the law of
(
µ(j)

)
j∈J

. Equivalently, for every finite

subset K of J, nk ∈ N and Bk,1, . . . , Bk,nk ∈ BS,

P

[⋂
k∈K

(
nk⋂
i=1

{
x

(k)
i ∈ Bk,i

})]
=

∫
P(S)|K|

∏
k∈K

(
nk∏
i=1

µk(Bk,i)

)
QK(dµ1, . . . , dµk),

where QK denotes the law of
(
µ(k)

)
k∈K

. In particular if K = {1, 2}, for every n1, n2 ∈ N
and A1, . . . , An1 , B1, . . . , Bn2 ∈ BS, we obtain

P
[
x

(1)
1 ∈ A1, . . . ,x

(1)
n1
∈ An1 ,x

(2)
1 ∈ B1, . . . ,x

(2)
n2
∈ Bn2

]
=

∫
P(S)2

(
nk∏
i=1

µ1(Ai)

)(
n2∏
i=1

µ2(Bi)

)
Q{1,2}(dµ1, dµ2).

where Q{1,2} denotes the law of
(
µ(k)

)2

k=1
. From equation (2.4) it is clear that X is sepa-

rately exchangeable. This way, we have proven the representation theorem for separately
exchangeable arrays.

Theorem 2.5. Let X =
(
x

(j)
i

)
i∈N,j∈J

be an array whose elements take values in the

Borel space (S,BS), and where J ⊆ N is at most countable. Then the following are
equivalent:
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I. X is separately exchangeable.

II. There exist an almost surely unique collection of random measures
(
µ(j)

)
j∈J

,

such that the elements of X are conditionally independent given
(
µ(j)

)
j∈J

and its

columns satisfy
{

X(k)
∣∣∣ (µ(j)

)
j∈J

}
∼
(
µ(k)

)∞
.

III. For every finite subset K of J, nk ∈ N and Bk,1, . . . , Bk,nk ∈ BS,

P

[⋂
k∈K

(
nk⋂
i=1

{
x

(k)
i ∈ Bk,i

})]
=

∫
P(S)|K|

∏
k∈K

(
nk∏
i=1

µk(Bk,i)

)
Q(dµ),

for some probability measure Q over
(
P(S)|J |,BP(S)|J|

)
, and where µ denotes

(µj)j∈J.

Theorem 2.5 shows that the most general separately exchangeable array, X =(
x

(j)
i

)
j∈J,i∈N

, can be constructed by first considering a collection of random measures(
µ(j)

)
j∈J

, and then sampling x
(j)
i ∼ µ(j) (conditionally given µ(j)) for every i ≥ 1. The

dependence scheme between the columns of the array and the directing random measures

is illustrated below, recalling that X(j) =
(
x

(j)
i

)
i≥1

denotes the jth column of the array.

Figure 5: Dependence scheme between the first four columns of a separately exchangeable
array and their directing random measures.

Notice that in Theorem 2.5, no further requirements are made about the mutual
dependence of the random probability measures in

(
µ(j)

)
j∈J

. This said, we can recog-

nize two opposite scenarios. The first one, where the elements in
(
µ(j)

)
j∈J

are mutually

independent (see Figure 6) so that X(1),X(2), . . . are simply, mutually independent, ex-
changeable sequences. And the second one, where µ(j) = µ, for every j ∈ J and some
random probability measure, µ, in which case {X | µ} ∼ µ∞, and we obtain that X is
even exchangeable (see Figure 7).

Figure 6: Dependence scheme between the first four columns of a separately exchangeable
array and their mutually independent directing random measures.
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Figure 7: Dependence scheme between the first four columns of an exchangeable array
and their unique directing random measure.

Form a practical point of view, if one encounters grouped data, say,{
X(1) =

(
x

(1)
1 , x

(1)
2 , . . .

)
, X(2) =

(
x

(2)
1 , x

(2)
2 , . . .

)
, . . . , X(n) =

(
x

(n)
1 , x

(n)
2 , . . .

)}
,

modelling it as if sampled from a separately exchangeable array X =
(
x

(j)
i

)
i≥1,j∈[n]

,

is a great idea. This, due to the fact that the dependence between the groups can
range between complete independence, meaning that we might as well model each group
separately, and the case where the groups behave as though they were one unique larger
group. Furthermore, under this assumption, within each group the data is exchangeable,
roughly speaking this means that the order in which the data points, x

(j)
1 , x

(j)
2 , . . ., we

sampled, is irrelevant. Depending on the context this consideration can be as flexible as
possible without losing mathematical tractability of the model. Examples of Bayesian
non-parametric models that exploit this type of symmetric arrays can be found in the
work of Camerlenghi et al. (2019).

A final remark on this topic is that separately exchangeable arrays are often called
partially exchangeable instead. This section was mainly based in the work of Kallenberg
(2005), so we adopted the terminology used there.

2.2 Random partitions

2.2.1 Preliminary definitions

Given an arbitrary non-empty set, S, a partition of S is an unordered collection of
subsets of S, A = {Aj}j≥1, called blocks, such that Aj 6= ∅ for every j ≥ 1, Ai ∩ Aj = ∅
for every i 6= j and

⋃
j≥1Aj = S. We will mainly be working with partitions of N or

[n] = {1, . . . , n}, we denote by Pk[n] to set of all partitions of [n] into exactly k blocks, by

P[n] to set of all partitions of [n], and by PN to the set of all partitions of N. For a positive
integer n, a composition of n into 1 ≤ k ≤ n parts is a sequence (n1, . . . , nk) of positive
integers such that

∑k
i=1 ni = n. We will denote by Ckn to set of all compositions of n into

exactly k parts, and by Cn to set of all compositions of n. Note that in a partition the
ordering of the blocks is irrelevant, for instance, {{1, 2}, {3}} is exactly the same partition
as {{3}, {1, 2}}, but in a composition the order do matters so (1, 2) and (2, 1) are two
distinct compositions of 3. We say a partition is ordered when we assign an ordering to
the blocks, it is straight forward that for each partition with k blocks there are k! ordered
partitions that correspond to it. Note that given an ordered partition, (A1, . . . , Ak), of
[n], the vector (|A1|, . . . , |Ak|) defines a composition of n into k parts. We can also define
an unordered composition of n into k parts as any set {nj}kj=1 of positive integers such

that
∑k

j=1 nj = n. Any unordered composition of n into k parts, {nj}kj=1, can be uniquely
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identified with and element inMk
n = {(m1, . . . ,mn) ∈ Zn+ :

∑n
i=1 imi = n,

∑n
i=1 mi = k},

through mi =
∑k

j=1 1{nj=i}, that is mi counts the number of parts of the composition

that equal i. Clearly, any partition, A = {A1, . . . , Ak}, of [n] defines an element in Mk
n

through mi = |{Aj ∈ A : |Aj| = i}|, for every i ∈ [n].

Definition 2.7 (Internal permutation of a partition). Let A ∈ P[n] and σ be a permu-
tation of [n] (or let A ∈ PN and σ be a permutation of N). We define the σ-internal
permutation of A by

σ(A) = {σ(Aj) : Aj ∈ A}

where σ(Aj) = {σ(i) : i ∈ Aj} for every block, Aj, of A.

Example 2.4. Consider A = {{1, 6}, {2, 5}, {3}, {4}} ∈ P[6], and the permutation of
[6], σ, given by σ(1) = 3, σ(2) = 5, σ(3) = 6, σ(4) = 4, σ(5) = 1 and σ(6) = 2, or in
compact cycle notation σ = (13625)(4), then

σ(A) = {{3, 2}, {5, 1}, {6}, {4}}

Definition 2.8 (Restriction of partitions). Let m ≤ n. Let A ∈ P[n], or A ∈ PN, we
define the restriction of A to [m] by

A
∣∣
[m]

= {Aj ∩ [m] : Aj ∈ A,Aj ∩ [m] 6= ∅}.

Example 2.5. Let A and σ be as in Example 2.4, then

a) A
∣∣
[5]

= {{1}, {2, 5}, {3}, {4}}

b) σ(A)
∣∣
[4]

= {{3, 2}, {1}, {4}}

Let m ≤ n and A ∈ P[m]. Let us denote by P[n](A) to the set of all partitions of [n]
such that its restriction to [m] is A, that is

P[n](A) = {B ∈ P[n] : B
∣∣
[m]

= A}

and analogously
PN(A) = {B ∈ PN : B

∣∣
[m]

= A}

Example 2.6. Consider A = {{1, 3}, {2}}. Then

P[4](A) =

{{
{1, 3, 4}, {2}

}
,
{
{1, 3}, {2, 4}

}
,
{
{1, 3}, {2}, {4}

}}
.

In general, for every n ∈ N, and A = {A1, . . . , Ak} ∈ P[n]

P[n+1](A) = {A(j) : j ∈ {1, . . . , k + 1}}

where A(j) = {Ai}i 6=j ∪ {Aj ∪ {n+ 1}} and A(k+1) = {A1, . . . , Ak, {n+ 1}}.
Let us denote by P∞ to the set of all infinite families of partitions (Πn)n≥1 such that

Πn ∈ P[n] and for every 1 ≤ m ≤ n, Πm = Πn

∣∣
[m]

. Notice that there is a correspondence

one to one between elements of P∞ and PN. Namely, for a partition of N, Π, the collection
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(
Π
∣∣
[n]

)
n≥1
∈ P∞, conversely for (Πn)n≥1 ∈ P∞ there exist a unique element Π ∈ PN

such that Πn = Π
∣∣
[n]

, for every n ≥ 1. For this reason, we simply call the elements of

P∞ as partitions of N.
Due to its finite nature, the partition space P[n] is Borel and its Borel σ-algebra

is BP[n]
= 2P[n] , where 2S denotes the set of all subsets of S. This said, a random

partition Πn of [n] is a measurable mapping, Πn : Ω → P[n]. Note that together
with a random partition of [n], say Πn, there other random variables implicitly defined,
such as the number of blocks of Πn, which we will denote by Kn, and the unordered
composition of n corresponding to the frequencies of the blocks which we will denote by
Nn = {n1, . . . ,nKn}. Alternatively, we can encrypt this unordered composition through
the random vector, Mn = (m1, . . . ,mn), given by mi =

∑Kn

j=1 1{nj=i}. Note that

P[Kn = k] =
∑
A∈Pk

[n]

P[Πn = A],

so the distribution of Kn is known (perhaps not analytically) given the distribution of
Πn, this is not different for the distribution of Nn or Mn.

2.2.2 Consistent families of random partitions

Definition 2.9 (Strongly consistent random partitions). For n ≥ 1 let Πn be a random
partition of [n]. We say that (Πn)n≥1 is (strongly) consistent or a random partition of
N, if for every m ≤ n, Πn ∈ P[n](Πm), or equivalently Πn

∣∣
[m]

= Πm almost surely.

Definition 2.10 (Projective distributions). Let πn be a probability measure on
(P[n],BP[n]

) for every n ≥ 1. We say that (πn)n≥1 is a projective family of distribu-
tions if for every m ≤ n and every A ∈ P[m]

πm({A}) =
∑

B∈P[n](A)

πn({B})

Definition 2.11 (Consistent in distribution random partitions). Let Πn be a random
partition of [n] defined on the probability space (Ωn,Fn,Pn). We say that (Πn)n≥1 is
consistent in distribution, if for every m ≤ n and A ∈ P[m]

Pm[Πm = A] =
∑

B∈P[n](A)

Pn[Πn = B]. (2.5)

Or equivalently, (πn)n≥1 defines a projective family, where πn denotes the distribution of
Πn.

Remark 2.1. It is easy to see that equation 2.5 is equivalent to

Pn[Πn = A] =
∑

B∈P[n+1](A)

Pn+1[Πn+1 = B]

for every n ∈ N and A ∈ P[n]. In particular, if (Ωn,Fn,Pn) = (Ω,F,P) for every n ∈ N,
the above reduces to

P[Πn = A] =
∑

B∈P[n+1](A)

P[Πn+1 = B].
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Another trivial remark concerning the aforementioned definitions is that if (Πn)n≥1

is a (strongly) consistent family of random partitions then it is also consistent in distri-
bution. In fact, for every random partition Πn of [n], and each 1 ≤ m ≤ n, we have that
the distribution of Πm = Πn

∣∣
[m]

is completely characterized by that of Πn through

P[Πm = A] =
∑

B∈P[n](A)

P[Πn = B].

for every partition, A, of [m]. The converse is clearly false.

2.2.3 Exchangeable partitions of [n]

Definition 2.12 (Exchangeable random partition). Let Πn be a random partition of [n],
we say that it is exchangeable if, for every permutation, σ, of [n], and every A ∈ P[n],

P[Πn = A] = P[Πn = σ(A)]

where σ(A) denotes the σ-internal permutation of A, equivalently Πn
d
= σ(Πn).

Proposition 2.6. Let Πn be an exchangeable random partition of [n], for some n ≥ 2.
Then, for every m < n, Πm = Πn

∣∣
[m]

is an exchangeable partition of [m].

See Appendix B.3 for a proof. Roughly speaking, Πn being exchangeable means that
the probability of the event {Πn = A} does not depends of which elements of [n] are
grouped together, at most it depends on the number of blocks of A and the frequency
of each block. This leads to the following equivalent definition.

Definition 2.13 (Exchangeable random partition/ EPPF). Let Πn be a random parti-
tion of [n], we say that it is exchangeable if for every A = {A1, . . . , Ak} ∈ P[n],

P[Πn = A] = πn(|A1|, . . . , |Ak|)

for some symmetric function of its arguments, πn : Cn → [0, 1]. In this case πn is called
exchangeable partition probability function or EPPF for short.

Note that for a fixed composition of n into k parts, (n1, . . . , nk) ∈ Ckn, there are
exactly n!/(k!

∏k
i=1 ni!) partitions of [n] with k blocks and with block sizes given by

{n1, . . . , nk}. Insomuch as for every random partition of [n] we have that∑
A∈P[n]

P[Πn = A] = 1,

and since the any EPPF πn, is symmetric, we get that∑
(n1,...,nk)

n!

k!
∏k

i=1 ni!
πn(n1, . . . , nk) = 1 (2.6)

(where the sum ranges over the set of compositions of n, Cn). In fact the most general
EPPF of [n] is any positive integer-valued symmetric function such that (2.6) holds.

As one can intuit from the definition of an exchangeable partition, the block sizes
and the number of blocks are of primary interest. Next we describe some ways to encode
the block frequencies as a random composition of n.
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Definition 2.14 (Orderings of the blocks). Let Πn = {Πn,1, . . . ,Πn,Kn} be a random
partition of [n] having Kn blocks with corresponding frequencies {n1, . . . ,nKn}, so that
|Πn,j| = nj.

a) We say that Π̃n =
(
Π̃n,1, . . . , Π̃n,Kn

)
is the ordering of the blocks of Πn according

to the least element, or in order of appearance, if Π̃n,1 is the block containing 1,
under the event A1 = [n] \ Π̃n,1 6= ∅, Π̃n,2 is the block of Πn that contains minA1,
if A2 = A1 \ Π̃n,2 6= ∅, Π̃n,3 is the block of Πn that contains minA2, and so on.
To the frequencies of the blocks in order of appearance, we denote by ñj = |Π̃n,j|,
and we write Ñ = (ñ1, . . . , ñKn) for the corresponding composition of n.

b) We say that Π↓n =
(
Π↓n,1, . . . ,Π

↓
n,Kn

)
is a decreasing ordering of Πn, if n↓j =

|Π↓n,j| ≥ |Π
↓
n,j+1| = n↓j+1, for every j ≥ 1 such that Π↓n,j+1 6= ∅. To the entries of

the composition of n, N↓ =
(
n↓1, . . . ,n

↓
Kn

)
, we call ranked frequencies of Πn.

c) We say that Πex
n =

(
Πex
n,1, . . . ,Π

ex
n,Kn

)
is in exchangeable random order, if the order

blocks, Πex
n,1, . . . ,Π

ex
n,Kn

, were obtained by uniformly permuting the blocks of Πn. To

the corresponding frequencies of Πex
n , we denote by Nex =

(
nex

1 , . . . ,n
ex
Kn

)
.

Proposition 2.7. Let Πn be an exchangeable partition of [n] with EPPF πn. Let Kn be
the random number of blocks of Πn, Nn = {n1, . . . ,nKn} be the unordered composition of
n induced by Πn and let Mn = (m1, . . . ,mn) be given by mi =

∑Kn

j=1 1{nj=i}, that is mj

counts the number of blocks of Πn with exactly i elements. Also let Ñ = (ñ1, . . . , ñKn),

N↓ =
(
n↓1, . . . ,n

↓
Kn

)
and Nex =

(
nex

1 , . . . ,n
ex
Kn

)
be as in Definition 2.14. Then, for any

positive integers n1, . . . , nk such that
∑k

j=1 nj = n, and where mi =
∑k

j=1 1{ni=j} we
have that

P[Mn = (m1, . . . ,mn)] = P[Nn = {n1, . . . , nk}] =
n!∏n

i=1(i!)mi(mi!)
πn(n1, . . . , nk),

P
[
Ñn = (n1, . . . , nk)

]
=

n!∏k
j=1

(∑
i≥j ni

)
(nj − 1)!

πn(n1, . . . , nk),

P[N↓n = (n1, . . . , nk)] =
n!∏n

i=1(i!)mi(mi!)
πn(n1, . . . , nk)1{n1≥n2≥···≥nk},

and

P[Nex
n = (n1, . . . , nk)] =

n!

k!
∏k

j=1 nj!
πn(n1, . . . , nk).

See Appendix B.4 for a proof of Proposition 2.7. This result shows how to compute
the mass probability function of certain compositions of n induced by an exchangeable
partition of [n] in terms of the corresponding EPPF. The following Proposition, con-
versely, explains how to derive the EPPF if the distribution of a composition of n is
available.
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Proposition 2.8. Let Πn be an exchangeable partition of [n], say that (Πn,1, . . . ,Πn,Kn)
is an arbitrary ordering of the blocks of Πn, with corresponding frequencies Nn =
(n1, . . . ,nKn), and that

P[Nn = (n1, . . . , nk)] = π∗n(n1, . . . , nk).

Then, the EPPF of Πn is given by

πn(n1, . . . , nk) =

∏k
j=1 nj!

n!

∑
σ

π∗n(nσ(1), . . . , nσ(k)) (2.7)

where the sum ranges over all k! permutations of [k].

See Appendix B.5 for a proof.

Corollary 2.9. Let Πn be an exchangeable partition of [n] and N↓ = (n↓1, . . . ,n
↓
Kn

)
its ranked frequencies of the blocks. Then, the conditional law of Πn given N↓, is that
of, Π(x1:n) = Π(x1, . . . ,xn), the partition of [n] generated by the random equivalence
relation i ∼ j if and only if xi = xj, where conditionally given N↓, x1, . . . ,xn were

sampled without replacement from a set {x1, x2, . . .} with n↓j values equal to j, i.e. |{i :

xi = j}| = n↓j .

The proof of Corollary 2.9 appears in Appendix B.6. Our next aim is to define
and study exchangeable partitions of N, in particular we are interested in deriving an
analogous result (Kingman’s representation theorem) to that of Corollary 2.9 , for the
infinite case.

2.2.4 Exchangeable partitions of N

Definition 2.15 (Exchangeable partition of N / infinite EPPF).

i) By an exchangeable partition of N we mean a consistent family, Π = (Πn)n∈N, of
exchangeable partitions. Equivalently, we say that Π is an exchangeable partition

of N is Π
d
= σ(Π), for every permutation, σ, of N, and where σ(Π) denotes the

σ-internal permutation of Π.

ii) We say π :
⋃
k∈N Nk → [0, 1], is an infinite exchangeable partition probability func-

tion (EPPF) if there exist an exchangeable partition of N, Π = (Πn)n∈N, such
that

P[Πn = A] = π(|A1|, . . . , |Ak|)
for every n ∈ N and any partition A of [n].

If π is an infinite EPPF, for every sequence of positive integers (n1, . . . , nk) and any
permutation, σ, of [k], π(n1, . . . , nk) = π

(
nσ(1), . . . , nσ(k)

)
, that is, π is symmetric, and

for every n ∈ N ∑
(n1,...,nk)∈Cn

n!

k!
∏k

i=1 ni!
π(n1, . . . , nk) = 1. (2.8)

In other words, the restriction of π to the set Cn =
{

(n1, . . . , nk) :
∑k

j=1 nk = n
}

is a

(finite) EPPF of [n].
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The fact that the laws of a partition of N forms a projective family, translates to the
infinite EPPF as the the so-called addition rule:

π(n1, . . . , nk) = π(n1, . . . , nk, 1) +
k∑
j=1

π(n1, . . . , nj−1, nj + 1, nj+1, . . . , nk). (2.9)

Note that if π :
⋃
k∈NNk → [0, 1], is an arbitrary symmetric function of its arguments,

satisfying (2.9), then using the symmetry of π and rearranging the terms of the sum we
get ∑

(n1,...,nk)∈Cn

n!

k!
∏k

i=1 ni!
π(n1, . . . , nk) =

∑
(n1,...,nk)∈Cn+1

(n+ 1)!

k!
∏k

i=1 ni!
π(n1, . . . , nk)

which means that if π(1) = 1, then (2.8) also holds for π. This leads to the following
equivalent definition of an infinite EPPF.

Definition 2.16 (Infinite EPPF). We say π :
⋃
k∈N Nk → [0, 1], is an infinite exchange-

able partition probability function (EPPF) if it is a symmetric function, π(1) = 1, and
for every sequence of positive integers (n1, . . . , nk)

π(n1, ...nk) = π(n1, ..., nk, 1) +
k∑
j=1

π(n1, ..., nj−1, nj + 1, nj+1, ..., nk).

Evidently, for every exchangeable partition of N, Π = (Πn)n∈N, its law is completely
characterized by an infinite EPPF, π. And conversely, by Kolmogorov’s consistency
theorem, for each infinite EPPF, π, there exist an exchangeable partition of N, Π =
(Πn)n∈N, whose law is described by π.

In terms of the EPPF, it is also easy to derive a prediction rule for the consistent
family of exchangeable random partitions, (Πn)n≥1, as follows. Let A = {A1, . . . , Ak} ∈
P[n], with nj = |Aj|, and consider A(j) = {Ai}i 6=j ∪ {Aj ∪ {n + 1}}, for j ∈ [k] and
A(k+1) = {A1, . . . , Ak, {n + 1}}. Then, as A is the only partition on P[n] such that
A(j)

∣∣
[n]

= A, for each j ∈ [k + 1], we get

P[Πn+1 = A(k+1)|Πn = A] =
P[Πn+1 = A(k+1)]

P[Πn = A]
=
π(n1, . . . , nk, 1)

π(n1, . . . , nk)
, and

P[Πn+1 = A(j)|Πn = A] =
π(n1, . . . , nj−1, nj + 1, nj+1, . . . , nk)

π(n1, . . . , nk)
,

(2.10)

for j = [k]. To the collection of numbers {π(j | n1, . . . , nk)}(n1,...,nk)∈Cn,j∈[k+1], given by

π(j | n1, . . . , nk) =
π(n1, . . . , nj−1, nj + 1, nj+1, . . . , nk)

π(n1, . . . , nk)
,

π(k + 1 | n1, . . . , nk) =
π(n1, . . . , nk, 1)

π(n1, . . . , nk)
,

(2.11)

for j ∈ [k], we call the prediction rule for the infinite EPPF π. Clearly an infinite EPPF
and its prediction rule characterize each other completely.
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2.2.5 Random partitions of N generated by sampling without replacement

Let X = (xi)i∈N be a sequence of random elements taking values in some Borel space
(S,BS). And let Π(X) = Π(x1:∞) = (Π(x1:n))n≥1, be the random partition of N
generated by the random equivalence relation i ∼ j if and only if xi = xj. So for
example, say that for some realization x1 = a,x2,= a,x3 = b,x4 = c and x5 = b, then
the under such event Π(x1:5) = {{1, 2}, {3, 5}, {4}}. Note that this transformation is
measurable since the diagonal part {(s1, s2) ∈ S2 : s1 = s2}, of S2 is. By definition
it is obvious that for 1 ≤ m ≤ n ≤ ∞, Π(x1:n)

∣∣
[m]

= Π(x1:m). Indeed, for n ≥ 1,

xn+1 necessarily takes a value already observed in x1, . . . ,xn, in which case n + 1
will be added to an existing block of Π(x1:n), or xn+1 is distinct from x1, . . . ,xn, in
which case {n + 1} will be added as a new, additional block to Π(x1:n), either way
Π(x1:(n+1)) ∈ P[n+1](Π(x1:n)), almost surely. Moreover, if X is exchangeable then

for every permutation σ of N, we have that X
d
= σ(X), hence Π(X)

d
= Π(σ(X)),

which means that for every n ≥ 1, the distribution of Π(x1:n) is invariant under
internal permutations. That is, Π(x1:n) is exchangeable. Thus, by sequentially
sampling from exchangeable sequences, we can generate exchangeable partitions of
N. Theorem 2.10 shows that every exchangeable partition of N can be generated this way.

Theorem 2.10 (Kingman’s representation theorem). Let Π = (Πn)n≥1 be an exchange-
able random partition of N. For each n ∈ N, let Kn be the number of blocks of Πn, let(
n↓n,1, . . . ,n

↓
n,Kn

)
be ranked frequencies of Πn and set n↓j = 0 for j ≥ Kn. Then for

each j ≥ 1, n↓n,j/n has an almost sure limit w↓j , as n → ∞ . Moreover the conditional

distribution of Π given (w↓1,w
↓
2, . . .) is that of Π(x1:∞) where {x1,x2, . . . | µ}

iid∼ µ for
some random probability measure, µ, with ranked sizes of atoms (w↓1,w

↓
2, . . .).

Last theorem, whose proof can be found in Appendix B.7, sets up a bijection between
probability distributions of infinite exchangeable random partitions, as specified by an
infinite EPPF, and probability distributions of (w↓1,w

↓
2, . . .) on the set

∆
↓
∞ :=

{
(w1, w2, . . .) : w1 ≥ w2 ≥ . . . ≥ 0,

∞∑
i=1

wi ≤ 1

}
(2.12)

This bijection is known in literature as Kingman’s correspondence or Kingman’s bijec-
tion, explicitly:

a) Given a probability distribution P over
(

∆
↓
∞,B∆

↓
∞

)
we can choose a random ele-

ment (w↓1,w
↓
2, . . .) with distribution P, and let µ be any random probability mea-

sure over any Borel space (S,BS) taking the form

µ =
∑
j≥1

w↓jδξj +

(
1−

∑
j≥1

w↓j

)
µ0

where (ξj)j≥1 are deterministic or random distinct elements of S, and µ0 is a diffuse
probability measure. Now, let X = (xk)k≥1 be a sequence of exchangeable random
variables with directing random measure µ, and define the exchangeable partition
of N, Π = Π(x1:∞). As Π is exchangeable, it has an (infinite) EPPF, π, which
corresponds to P.
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b) Conversely, consider an (infinite) EPPF π and let Π be some exchangeable parti-
tion of N, whose distribution is characterized by such EPPF. Kingman’s represen-
tation theorem establishes (following the notation of the statement of this theorem)
that the almost sure limits,

lim
n→∞

n↓n,j
n

= w↓j ,

exist and that the limiting random variables (w↓1,w
↓
2, . . .) are such that (w↓j )j≥1 ∈

∆
↓
∞ almost surely, hence its distribution is some probability measure over(
∆
↓
∞,B∆

↓
∞

)
, P corresponding to π.

Definition 2.17 (Orderings of weights). Let W = (wj)j≥1 be a sequence of non-negative
random variables such that 0 <

∑
j≥1 wj ≤ 1 almost surely. To the elements of W we

call weights.

i) We say W↓ = (w↓1,w
↓
2, . . .) is the decreasing permutation of W if W↓ is a permu-

tation of W and w↓1 ≥ w↓2,≥ · · · .

ii) We call W̃ = (w̃1, w̃2, . . .), a size-biased permutation of W, or say that it is
invariant under size-biased permutations, if W̃ is obtained by sampling without
replacement from W, with probabilities proportional to W. That is

P [w̃1 ∈ · |W] =
∑
j≥1

wj∑
k≥1 wk

δwj
,

and for i ≥ 1,

P [w̃i+1 ∈ · |W, w̃1, . . . w̃i] =

∑
j≥1 wjδwj

−
∑i

j=1 w̃jδw̃j(∑
k≥1 wk −

∑i
l=1 w̃l

) ,

if
(∑

k≥1 wk −
∑i

l=1 w̃l

)
> 0 (so that there exist wj > 0 such that wj 6= w̃l for

every l ∈ [i]), and P [w̃i+1 ∈ · |W, w̃1, . . . w̃i] = δ0, otherwise (so that for every wj

satisfying wj 6= w̃l for every l ∈ [i], we get wj = 0).

iii) We call W̃′ = (w̃′1, w̃
′
2, . . .), a size-biased pseudo-permutation of W if

P [w̃′1 ∈ · |W] =
∑
j≥1

wjδwj
+

(
1−

∑
j≥1

wj

)
δ0,

and for every i ≥ 1,

P [wi+1 ∈ · |W, w̃′1, . . . , w̃
′
i] =

∑
j≥1 wjδwj

−
∑i

j=1 w̃′jδw̃′j +
(
1−

∑
k≥1 wk

)
δ0(

1−
∑i

l=1 w̃′l

)
if
(

1−
∑i

l=1 w̃′l

)
> 0, and P [w̃i+1 ∈ · |W, w̃1, . . . w̃i] = δ0, otherwise.
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Remark 2.2. To understand the difference between size-biased permutations and size-
biased pseudo-permutations note that a size-biased permutation, W̃, of W simply
permutes the elements of W in such way that larger weights tend to appear before
smaller weights. For a size-biased pseudo-permutation, W̃′, of W it is still true
that larger weights tend to appear before smaller weights, however, this second re-
ordering allows the possibility of zeros appearing in the sequence even if wj > 0
for every j ≥ 1. For example, consider the deterministic weights sequence W =
(1/4, 1/8, 1/16, . . .), so that wj = (1/2)j+1, and

∑
j≥1 wj = 1/2. For this weights se-

quence, (0, 0, 1/8, 1/64, 0, 1/4, 1/128, . . .) could be a realization of W̃′ but not of W̃,
removing the zeros from W̃′, say (1/8, 1/64, 1/4, 1/128, . . .), is a realization of W̃. In
general W̃ has the same number of zeros than W does and they always appear at the end
of the sequence. In contrast, if

∑
j≥1 wj < 1, W̃′ , has infinitely many zeros intercalated

with the elements of W. For a second example say that W = (1/4, 1/4, 0, 0, . . .), so that∑
j≥1 wj = 1/2. For this weights sequence the only possible realization of a size-biased

permutation is W̃ = W = (1/4, 1/4, 0, 0, . . .), alternatively, there are infinitely many
possible realizations of W̃′, for example (0, 1/4, 0, 1/4, 0, . . .) and (1/4, 0, 0, 0, 1/4, 0, . . .)
are two distinct possible realizations of W̃′. In fact,

P [w̃′1 = 0] =
1

2
= P [w̃′1 = 1/4] .

Now, if the sequence W satisfies
∑

j≥1 wj = 1 almost surely, then it is straight forward
from Definition 2.17 that a size-biased pseudo-permutation and a size-biased permutation
are exactly the same.

Remark 2.3. Although this case is absolutely not interesting, for the sequence W =
(0, 0, . . .) we say that W is the decreasing reordering of itself, and a size-biased permuta-
tion and pseudo-permutation of itself. This vacuous remark is to cover all possible cases
in the following proposition.

Proposition 2.11. Let Π = (Πn)n≥1 be an exchangeable random partition of N.

For each n ∈ N, let
(
Π̃n,1, . . . , Π̃n,Kn

)
be the ordering of the blocks of Πn according

to the least element, with corresponding block sizes (ñn,1, . . . , ñn,Kn) and consider the

ranked frequencies
(
n↓n,1, . . . ,n

↓
n,Kn

)
, set n↓n,j = ñn,j = 0, for all j > Kn. Define

w↓j = limn→∞ n↓n,j/n. Then

lim
n→∞

ñn,j
n
→ w̃j,

almost surely, for every j ≥ 1, and where W̃ = (w̃1, w̃2, . . .) is a size-biased pseudo-
permutation of W↓ = (w↓1,w

↓
2, . . .). In particular, if

∑
j≥1 w↓j = 1 almost surely, W̃ is

invariant under size-biased permutations.

The proof of Proposition 2.11 appears in Appendix B.8. For a distribution P over

(∆
↓
∞,B∆

↓
∞

) we can recognize two important mutually exclusive cases.

� Proper case: This scenario happens when W↓ = (w↓j )j≥1 ∼ P, satisfies
∑

j≥1 w↓j =
1 almost surely. In this case the corresponding exchangeable partition of N and
its EPPF are also termed proper. By Kingman’s representation theorem it is clear
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that for a proper exchangeable partition of N, Π, every i ∈ N will belong to a block
containing infinitely many elements almost surely. For proper EPPF’s Kingman’s
correspondence can be made more explicit by noting that for any partition A =
{A1, . . . , Ak} of [n],

P[Πn = A |W↓] =
∑

(j1,...,jk)

k∏
i=1

(
w↓ji

)|Ai|
,

where the sum ranges over all k-tuples of distinct positive integers. Thus by the
tower property and monotone convergence theorem we get

π(n1, . . . , nk) =
∑

(j1,...,jk)

E

[
k∏
i=1

(
w↓ji

)ni]
.

for any positive integers n1, . . . , nk.

� Improper case: This case takes place when W↓ = (w↓j )j≥1 ∼ P, satisfies

P

[∑
j≥1

w↓j < 1

]
> 0

In this instance we also say that the corresponding exchangeable partition of N and
its EPPF are improper. For such a partition Π, from Kingman’s representation
theorem, we get that for every i ∈ N, i will either belong to a block of Π containing
infinitely many elements, or will contribute to the partition as a singleton, almost
surely.

2.2.6 The ordered paintbox

Here we provide a construction that might help us understand the connection between
exchangeable partitions, sequences of exchangeable random variables and completely
random measures, particularly subordinators. This construction is just an alternative
way of looking at Kingsman’s correspondence.

Let R be a random closed subset of [0, 1] such that the open complement Rc :=
[0, 1] \ R has a canonical representation as a disjoint union of countably many open
interval components, which we are going to call gaps of R. That is Rc =

⋃∞
j=1Rj where

Rj is an open interval of [0, 1], and Ri ∩ Rj = ∅ for every i 6= j. If this representation
turns out to be the union of m open intervals, just set Rj = ∅ for every j > m.

Imagine we have a countable number of uncoloured balls, and we decide to color
them according to the next procedure. Let u1,u2, ... be Unif(0, 1) independent random
variables which are also independent of R and assume that to each gap of R we assign a
different colour. Now if ui falls into Rj we are going to paint the ith ball with the color
j (previously assigned to Rj), if on the other hand ui falls into R we are going to paint
the ith ball with a unique color different from the colors assigned to the gaps and also
different from any other previously used color. Note that the colors of the balls generate
an exchangeable partition Π of N by the equivalence relation i ∼ k if and only if the ith
ball and the kth ball to be painted have the same colour. It is clear that if ui falls into
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R the ith ball will contribute to a singleton in Π. Usually R is referred as the paintbox
and Π as above is called the partition generated by the paintbox R.

Let wj be the length ofRj so that P[ui ∈ Rj] = wj, note that the wj’s can be thought
as the sizes of the atoms of some random distribution function F. So that if we sample

{x1,x2, . . . | F}
iid∼ F and consider Π(x1:∞), then this one has the same distribution as

Π generated by the coloured balls. Or conversely, given a random distribution function
F, the closure of the set {F(x) : F is continuous at x} defines a closed random subset of
[0, 1] whose lengths of the gaps coincide with the sizes of the atoms of F. See Figure 8
for an illustration of this paragraph.

Figure 8: Construction of paintbox through random distribution function.

As mentioned in Example 1.1 a subordinator {φ(t)}t≥0 is a stochastic process such
that φ(0) = 0 a.s., has independent and stationary increments, and its trajectories are
non-decreasing, right-continuous and their left limit exists. Note that any subordinator is
very similar to a random distribution function except for the fact that limt→∞φ(t) 6= 1,
nevertheless by suitably restraining and normalizing, we can transform it into a ran-
dom distribution function and generate partitions by sampling from it. Explicitly, let
ς = inf{t : φ(t) = ∞}, with the convention inf(∅) = ∞ and let R be the closure of
{φ(t) : 0 ≤ t < ς}. R is called the range of φ, it is clear by definition that R is a closed
interval of [0,∞]. Let τ be a stopping time and consider the closed interval of [0,φ(τ )],
Rτ = [0,φ(τ )]∩R. Let Rc

τ = [0,φ(τ )]\Rτ be the open component of Rτ with canonical
representation Rc

τ =
⋃∞
j=1 Rj (where Rj is open an interval and Rj ∩Ri = ∅ whenever

i 6= j). Let αi be the Lebesgue measure of Ri, so that (αi)
∞
i=1 are the jumps of the sub-

ordinator up to time τ . Now, consider the transformation G : [0,φ(τ )] → [0, 1] given
by G(t) = t/φ(τ ), that is, we normalize the set [0,φ(τ )], then R = G(Rτ ) is a random
closed subset of [0, 1], hence R could be thought as a paintbox. Define, once again,
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Rc = [0, 1] \R and let
⋃∞
j=1Rj be its canonical representation. It is then clear that (by

possibly renaming the open intervals) Rj = G(Rj), hence the Lebesgue measure of Rj

will be given by wj = αj/φ(τ ). Now, given the random closed subset R of [0, 1] we can
generate a random exchangeable partition, by the procedure described above. Figure 9
illustrates this construction.

Figure 9: Construction of paintbox through subordinator.

In order for this construction to be well defined we require 0 < φ(τ ) < ∞ almost
surely. In particular, if φ(t) < ∞ for all t ∈ R, as explained in Section 1.3.3, we can
write

φ(t) = ct+
∑
j≥1

αjδξj([0, t]), t ≥ 0

where c ≥ 0 and {(ξj,αj)}j≥1 defines a Poisson process over R+ × R+, with intensity
ν that can be decomposed as ν(ds, dx) = ds%(dx), where

∫
R+

(x ∧ 1)%(dx) < ∞. It is
easily seen that if c = 0, for every stopping time τ , Rτ will have a Lebesgue measure
zero almost surely thus the derived paintbox R will also have Lebesgue measure of zero
a.s. Therefore we stand in the proper scenario, i.e.

∑∞
i=1 wi = 1 a.s. In this case, we

must also require that
∫

[0,1]
%(dx) = ∞, so that infinitely many very small jumps occur

in a finite interval, and we can assure that φ(τ ) > 0 almost surely. If a paintbox R is
constructed through the normalization of a subordinator, then the partition generated
by R is also called the partition generated by the subordinator φ.
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2.2.7 Chinese restaurant construction and partially exchangeable partitions

Imagine there exist a Chinese restaurant with numbered tables, each one allowing in-
finitely many customers seating at once. Let π be an infinite EPPF, with prediction rule
π(· | . . .), as in (2.11). When the first customer arrives he/she will be seated at table
number 1. After n customers have arrived and are currently occupying k tables, with nj
customers seating at table j. The customer (n+1)th will seat at table j with probability
π(j | n1, . . . , nk), for j ∈ [k + 1], as illustrated in Figure 10.

Figure 10: Step of the chinese restaurant process with a given prediction rule, condi-
tioning on event that there are currently k occupied tables with nj costumers seated at
table j, for all j ∈ [k].

Let Πn be the partition of [n] generated by the equivalence relation i ∼ j if and
only if the ith and the jth customers to arrive at sitting at the same table. Then by
construction Π = (Πn)n≥1 is an exchangeable partition of [n] and its infinite EPPF is
precisely π. It is also obvious that every exchangeable partition of N can be constructed
this way.

For example, fix two real numbers 0 ≤ σ < 1 and θ > −σ, and say that as above
when the first customer arrives he/she will seat at table 1, and after n customers have
arrived and are occupying k tables, with nj customers seating at table j. The customer
(n + 1)th will seat at table j with probability (nj − σ)/(n + θ), for j ∈ [k], or will seat
at a new table with probability (θ + kσ)/(n+ θ), as illustrated in Figure 11. Note that
this is well defined as

θ + kσ

n+ θ
+

k∑
j=1

nj − σ
n+ θ

= 1.

Moreover, if Π = (Πn)n≥1 is the partition of N generated through the two-parameter
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scheme, a simple counting argument gives

π(n1, . . . , nk) = P[Πn = A] =
(θ + σ)k−1↑σ

∏k
j=1(1− σ)nj−1

(θ + 1)n
(2.13)

for every partition A = {A1, . . . , Ak} of [n] with |Ai| = ni, and where (x)m↑α =
∏m−1

i=0 (x+
iα), and (x)m = (x)m↑1. That is Π is exchangeable, π as in (2.13) describes an infinite
EPPF (since n was arbitrary) and

π(j | n1, . . . , nk) =
nj − σ
n+ θ

, π(k + 1 | n1, . . . , nk) =
θ + kσ

n+ θ
, (2.14)

for j ∈ [k], is its prediction rule. To Π we call a two parameter partition

Figure 11: Step of the chinese restaurant process for the two parameter model, condi-
tioning on event that there are currently k occupied tables with nj costumers seated at
table j, for all j ∈ [k].

In particular if σ = 0 and θ > 0, the new to customer to arrive will chose where to sit
with probabilities proportional to (n1, . . . , nk, θ). That is, the prediction rule simplifies
as

π(j | n1, . . . , nk) =
nj

n+ θ
, π(k + 1 | n1, . . . , nk) =

θ

n+ θ
(2.15)

for j ∈ [k], and the correponding EPPF to

π(n1, . . . , nk) = P[Πn = A] =
θk
∏k

j=1(nj − 1)!

(θ)n
. (2.16)

In this case we call Π a Dirichlet partition, (2.16) is also known as Ewens sampling
formulae and has a very interesting relation to stochastic models in genetic populations
(Ewens; 1972).
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Proposition 2.12. Fix 0 ≤ σ < 1 and θ > −σ, and consider the two parameter chinese
restaurant model. Let wj be the long-run proportion of customers that will end up sitting
at table j. Then

i) w1 = v1 and for j ≥ 2, wj = vj
∏j−1

i=1 (1−vi) where (vi)i≥1 are independent random
variables with vi ∼ Be(1− σ, θ + iσ).

ii) The generated exchangeable partition of N, Π, is proper, that is
∑

j≥1 wj = 1
almost surely.

iii) (w1,w2, . . .) are in size-biased random order, in other words, they are invariant
under size-biased permutations.

The proof of Proposition 2.12 can be found in Appendix B.9. In general if Π =
(Πn)n≥1 is the exchangeable partition of N generated by the chinese restaurant scheme,

and for each n ∈ N,
(
Π̃n,1, . . . , Π̃n,Kn

)
is the ordering of the blocks of Πn according to

the least element, then Π̃n,j describes precisely which customers are sitting at table j
after n customers arrived. So it is a straight-forward consequence of Proposition 2.11,
that if w̃j is the long run-proportion of customers that will end up sitting at table j,
then (w̃1, w̃2, . . .) is a size-biased pseudo-permutation of some weights sequence, and if
Π is proper (w̃1, w̃2, . . .) is also invariant under size-biased permutations.

Now, let (wj)j≥1 be an arbitrary sequence of weights (not necessarily proper, nor
invariant under size-biased permutations) and consider the following random seating
plan. The first customer to arrive will always sit at table 1, after n customers have
arrived and are occupying k tables, the next customer to arrive will seat at table j with
probability wj, for j ∈ [k], or will seat at table k + 1 with probability 1 −

∑k
j=1 wj, as

illustrated in Figure 12.

Figure 12: Step of the chinese restaurant process with a random seating plan, condition-
ing on event that there are currently k occupied tables.
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Given w1, . . . ,wk it is quite easy to compute the conditional probability that after
n =

∑k
j=1 nj customers have arrived, there are n1, . . . , nk of them sitting at tables

1, . . . , k, respectively, and it is

k∏
j=1

w
nj−1
j

k−1∏
j=1

(
1−

j∑
i=1

wj

)

Hence,

π′(n1, . . . , nk) = E

[
k∏
j=1

w
nj−1
j

k−1∏
j=1

(
1−

j∑
i=1

wi

)]
(2.17)

is the (unconditional) probability that for every j ∈ [k] there are exactly nj customers

seated at table j after
∑k

j=1 nj already arrived. Evidently the random seating plan
generates partition of N, Π′ = (Π′n)n≥1, by means of the equivalence relation i ∼ j
if and only if the ith and the jth customer to arrive sit at the same table. The first
thing one might wonder is if Π′ is exchangeable, or in other words, if π′ as in (2.17)
defines an EPPF. Although in some cases it might, the general answer is no. Note that
through the random seating plan we are forcing the long-run proportion of elements
in the block containing 1 to be w1, the long-run proportion of elements in the block
containing the smallest element that is not in the block that contains 1 to be w2, and
so on. So if (w1,w2, . . .) is not a size-biased pseudo-permutation, by Proposition 2.11,
it is not possible that Π′ is exchangeable. Consider the following example.

Example 2.7. Let w1 = 1/4, w2 = 1/2, w3 = 1/4, and wj = 0 for j > 3, almost surely.
Let Π′ = (Π′n)n≥1 be the partition of N generated by the chinese restaurant process with
random seating plan and weights as above. Let us focus in Π3. Then from equation
(2.17),

P[Π′3 = {{1}, {2}, {3}}] = π′(1, 1, 1) =

(
3

4

)(
1

4

)
=

3

16
,

P[Π′3 = {{1, 2, 3}}] = π′(3) =

(
1

4

)2

=
1

16
,

P[Π′3 = {{1}, {2, 3}}] = π′(1, 2) =

(
3

4

)(
1

2

)
=

6

16
,

and

P[Π′3 = {{1, 2}, {3}}] = P[Π′3 = {{1, 3}, {2}}] = π′(2, 1) =

(
1

4

)(
3

4

)
=

3

16
,

Note that Π is not exchangeable as {{1, 2}, {3}} is an internal permutation of
{{1}, {2, 3}} but P[Π3 = {{1}, {2, 3}}] 6= P[Π = {{1, 2}, {3}}]. Now, let (w̃1, w̃2, . . .) be
a size-biased permutation of (w1,w2, . . .). So that w̃j = 0 almost surely for every j > 3,
and

P[(w̃1, w̃2, w̃3) = (1/2, 1/4, 1/4)] =
1

2
, P[(w̃1, w̃2, w̃3) = (1/4, 1/2, 1/4)] =

1

3
,

and

P[(w̃1, w̃2, w̃3) = (1/4, 1/4, 1/2)] =
1

6
.
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Let Π = (Πn)n≥1 be the partition of N generated by the chinese restaurant process with
random seating plan and weights (w̃1, w̃2, w̃3, . . .). Again, let us focus in Π3. Then,
from (2.17)

P[Π3 = {{1, 2}, {3}}] = P[Π3 = {{1, 3}, {2}}]

= π′(2, 1) =

(
1

2

)(
1

2

)(
1

2

)
+

(
1

3

)(
1

4

)(
3

4

)
+

(
1

6

)(
1

4

)(
3

4

)
=

1

8
+

1

16
+

1

32
=

7

32
,

P[Π3 = {{1}, {2, 3}}] = π′(1, 2)

=

(
1

2

)(
1

2

)(
1

4

)
+

(
1

3

)(
3

4

)(
1

2

)
+

(
1

6

)(
3

4

)(
1

4

)
=

1

16
+

1

8
+

1

32
=

7

32
,

P[Π3 = {{1, 2, 3}}] = π′(3)

=

(
1

2

)(
1

2

)2

+

(
1

3

)(
1

4

)2

+

(
1

6

)(
1

4

)2

=
1

8
+

1

32
=

5

32
,

and

P[Π3 = {{1}, {2}, {3}}] = π′(1, 1, 1)

=

(
1

2

)(
1

2

)(
1

4

)
+

(
1

3

)(
3

4

)(
1

4

)
+

(
1

6

)(
3

4

)(
1

2

)
=

1

16
+

1

16
+

1

16
=

6

32
.

The above example together with the chinese restaurant construction with random
seating plan motivate the following definition.

Definition 2.18. Let Π′n be a random partition of [n]. We say that Π′n is partially
exchangeable if for any partition A = {A1, . . . , Ak} of [n], where A1, . . . , Ak are in order
of appearance

P[Π′n = A] = π′n(|A1|, . . . , |An|)

for some function π′ :
⋃n
k=1 Nk → [0, 1] in such case π′n is called a (finite) partially

exchangeable partition probability function (pEPPF) of [n].

Proposition 2.13. For some n ≥ 1, let Π′n+1 be a partially exchangeable random par-
tition of [n + 1] with pEPPF π′n+1. Then, Π′n = Π′n

∣∣
[n+1]

is a partially exchangeable

partition of [n], and the pEPPF of Π′n is given by

π′n(n1, . . . , nk) = π′n+1(n1, . . . , nk, 1) +
k∑
j=1

π′n+1(n1, . . . , nj−1, nj + 1, nj+1, . . . , nk).
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From Proposition 2.13, whose proof can be found in Apendix B.10, and a simple
inductive argument we get that if Π′n is a partially exchangeable partition of [n] for
some n ≥ 2, and for m < n, Π′m = Π′n

∣∣
[m]

, then Π′m is a partially exchangeable partition

of [m]. This justifies the following definition

Definition 2.19. Let Π′ = (Π′n)n≥1 be a partition of N. We say that Π′ is partially
exchangeable if for every n ≥ 1 and any partition A = {A1, . . . , Ak} of [n], where
A1, . . . , Ak are in order of appearance

P[Π′n = A] = π′(|A1|, . . . , |An|)

for some function π′ :
⋃
k∈N Nk → [0, 1] in such case π′ is called (infinite) partially

exchangeable partition probability function (pEPPF).

It is straight forward from Proposition 2.13 that every infinite pEPPF π′ satisfies the
addition rule

π′(n1, . . . , nk) = π′(n1, . . . , nk, 1) +
k∑
j=1

π′(n1, . . . , nj−1, nj + 1, nj+1, . . . , nk).

This is simply a consequence from the fact that the laws of any random partition of N
form a projective family. As one can intuit, many of the basic definitions and results
extend naturally from exchangeable partitions to partially exchangeable partitions. For
instance if one substitutes the EPPF, π by the pEPPF π′ in equations (2.10) and (2.11),
one obtains the prediction rule of a partially exchangeable partition of N. For now, we
get back to the Chinese restaurant process with random seating plan.

Proposition 2.14. The partition of N generated by the chinese restaurant scheme with
random seating plan is always partially exchangeable and its pEPPF is given by (2.17).

Proposition 2.14 is straight-forward from equation (2.17) and the definition of par-
tially exchangeable partition. Another fact that is obvious from the corresponding defi-
nitions is that if Π′ is partially exchangeable, then its pEPPF is symmetric if and only if
Π′ is further exchangeable. This said, the following Theorem, together with Proposition
2.14 and equation (2.17), formally proves that the chinese restaurant process with ran-
dom seating plan determined by the weights, (w1,w2, . . .), generates an exchangeable
partition of N if and only if (w1,w2, . . .) is a size-biased pseudo-permutation.

Theorem 2.15. Let (wj)j≥1 be a weights sequence. Then the following are equivalent

i) (wj)j≥1 is a size-biased pseudo-permutation.

ii) π′(n1, . . . , nk) = E
[∏k

j=1 w
nj−1
j

∏k−1
j=1

(
1−

∑j
i=1 wj

)]
is a symmetric function of

its arguments.

Corollary 2.16. Let (wj)j≥1 be a weights sequence. Then the following are equivalent

i)
∑

j≥1 wj = 1 almost surely and (wj)j≥1 is a size-biased permutation.

ii) π′(n1, . . . , nk) = E
[∏k

j=1 w
nj−1
j

∏k−1
j=1

(
1−

∑j
i=1 wj

)]
is a symmetric function of

its arguments, and w1 > 0 almost surely.
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Corollary 2.17. Let W = (wj)j≥1 be an arbitrary weights sequence. Let Π′ = (Π′n)n≥1

be the partially exchangeable partition of N constructed through the chinese restaurant
with random seating plan driven by a size-biased pseudo-permutation, W̃ = (w̃j)j≥1, of
W. Also consider the exchangeable partition of N, Π = (Πn = Π(x1:n))n≥1, generated

by sequentially sampling, {x1,x2, . . . | µ}
iid∼ µ, from a random probability measure µ

with sizes of the atoms given by (wj)j≥1. Then Π′ is equal in distribution to Π, and the
EPPF of Π is given by

π(n1, . . . , nk) = E

[
k∏
j=1

(w̃j)
nj−1

k−1∏
j=1

(
1−

j∑
i=1

w̃j

)]
. (2.18)

Proofs of the above results can be found in Appendix B.11, B.12 and B.13, re-
spectively . For an arbitrary weights sequence, W = (wj)j≥1, we have shown that
we can construct a partially exchangeable partition of N, Π′ = (Π′n)n≥1 through the
chinese restaurant with random seating plan driven by W, and that the pEPPF, π′,
of Π′ is given by (2.17). But also we can construct an exchangeable partition of N,
Π = (Πn = Π(x1:n))n≥1 by sequentially sampling, {x1,x2, . . . | µ}, from a random
probability measure µ with sizes of the atoms given by W. The way Π′ and Π relate
to each other is through the size-biased pseudo-permutation of the weights, as Corollary
2.17 shows. Although it would we great to be able to write the EPPF, π, of Π in terms
of π′, this is very hard to do. The reason this is, is because in general π is not a sym-
metrization of π′, if it were, in particular we would have π(n) = π′(n) for every n ≥ 1,
and as Example 2.7 illustrates, this is not case more often than not. To the best of our
knowledge, so far there are only two explicit formulae that express the EPPF in terms
of the weights sequence. One of them is equation (2.18), and if the weights are proper,
the other one is

π(n1, . . . , nk) =
∑

(i1,...,ik)

E

[
k∏
j=1

(
wij

)nj−1

]
, (2.19)

where the sum ranges over all k-tuples of distinct positive integers. The derivation of
(2.19) is explained immediately after Proposition 2.11, for the case where the weights
are decreasing, but for arbitrary weights sequence it is completely analogous. The clear
advantage of (2.18) over (2.19) is that seemingly no infinite sum is involved, and it is
true even for the improper case, its disadvantage is that we would require to know how
the size-biased pseudo-permutation distributes.

2.2.8 Final remarks

For an arbitrary weights sequence W = (wj)j≥1 let us denote W(σ) to any sequence
such that the removal of zeros out of it results in a sequence that is a permuta-
tion of the sequence obtained by removing the zeros of W. For simplicity we will
simply say W(σ) is a permutation of W. Also, for a distribution P over ∆∞ ={

(w1, w2, . . .) : wj ≥ 0,
∑

j≥1wj ≤ 1
}

, let us denote

σ(P) =
{
P(σ) : if W ∼ P then some W(σ) ∼ P(σ)

}
.

In other words, σ(P) denotes the equivalence class of P, generated by the equivalence
relation P is related to P0 if and only if P and P0 are the distributions of permutations
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of the same weights sequence. So far, give or take, we have explained two methods of
constructing a random partition of N given P over ∆∞

I. The first construction consists in taking W ∼ P, letting µ be any random
probability measure with atom’s sizes given by W, sampling sequentially from

{x1,x2, . . . | µ}
iid∼ µ and considering Π = (Π(x1:n))n≥1. For this construction we

know

a) Π is always exchangeable (hence has an infinite EPPF) and the long run
proportion of elements in the jth block in order of appearance is w̃j, where
W̃ = (w̃1, w̃2, . . .) is a size-biased paseudo-permutation of W.

b) By Kingman’s representation theorem, every exchangeable partition, Π, of
N can be constructed this way. Moreover, this weights sequence is precisely
the long-run proportions of elements in the blocks of Π, according to some
ordering.

c) For P and P(σ) ∈ σ(P) the partitions generated are identically distributed,
meaning that through this construction they generate the same infinite EPPF.
Thus we have a one to one correspondence between infinite EPPF’s and equiv-
alence clases σ(P)’s. To spell this out, Kingman chose a representative of the
class, which is the distribution of the decreasing rearrangement of the weights.

II. The second construction consists in taking W ∼ P, and consider the chinese restau-
rant process with random seating plan driven by W, then let Π′ be the random
partition of N generated by the equivalence relation i ∼ j if and only if the ith
and the jth costumers to arrive end up sitting at the same table.

a) Π′ is always partially exchangeable (hence has an infinite pEPPF, given by
(2.17)), and the long run proportion of elements in the jth block in order of
appearance is wj. In particular, if W is a size-biased pseudo permutation,
then Π is even exchangeable and its EPPF coincides with that corresponding
to σ(P) in the first construction.

b) There is a representation theorem for partially exchangeable partitions of N
(Pitman; 1995), which states that every partially exchangeable partition, Π′

of N can be constructed through the chinese restaurant with random seating
plan, driven by some weights sequence. Furthermore, this weights sequence
is given by the long-run proportions of elements in the blocks of Π, according
the least element.

c) For two distinct probability measures, P and P0, over ∆∞, the pEPPF corre-
sponding to them is different, even if P0 ∈ σ(P). So this this construction sets
up a one to one correspondence between distributions over ∆∞ and infinite
pEPPF’s.

This is illustrated in Figure 13.
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Figure 13: Correspondence between a weights sequence, permutations of it, and the
respective EPPF and pEPPF’s. W denotes an arbitrary weights sequence, W̃ a size-
biased pseudo permutation of W, W↓ its decreasing rearrangement, and W(σ) another
arbitrary permutation of W.

Further reading about exchangeable and partially exchangeable partitions can be
found in Pitman (2006), Pitman (1995) and Pitman and Yakubovich (2017).

2.3 Random measures

The last big class of exchangeable elements we will be analysing are random measures.
In the preliminaries section we formally defined what is a random measure, we also char-
acterized a sub-class of exchangeable random measures which we termed homogeneous
completely random measures. Consistently with Section 1, Borel spaces, (S,BS), are
asummed to be localized and denote the localizing ring by Ŝ. Recall thatM(S) denotes
the space of all locally finite measures over (S,BS), so a measure, µ, over (S,BS) belongs
to M(S) if and only of µ(B) <∞ for all B ∈ Ŝ.

Definition 2.20 (Symmetric random measure). Let λ be a diffuse measure in M(S),
and µ be a locally finite random measure over (S,BS).

i) We say µ is λ-symmetric if for every measurable function f : S → S, such that

λ = λ(f−1[·]) we have that µ
d
= µ(f−1[·]).

ii) We say that µ has λ-exchangeable increments if for every disjoint sets B1, . . . , Bn ∈
BS, with λ(Bi) = λ(Bj), we get (µ(B1), . . . ,µ(Bn)) is exchangeable.

iii) If S = R+ or S = [0, 1], and λ stands for the Lebesgue measure, for every B ∈ Ŝ
we define the contraction map fB : B → [0, λ(B)] by fB(t) = λ([0, t] ∩ B), and

we say µ is contractable if µ(f−1
B [·]) d

= 1[0,λ(B)]µ, for each B ∈ Ŝ, and where 1Aµ
denotes the restriction of µ to A.

Proposition 2.18. For S = R+ or S = [0, 1], and if λ stands for the Lebesgue measure,
(i), (ii) and (iii) of Definition 2.20 are equivalent.
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Figure 14: Illustration of a contraction map.

The proof of Proposition 2.18 is provided in Appendix B.14. The equivalence between
(i) and (ii) of Definition 2.20 remains true for general Borel spaces (S,BS) and arbitrary
diffuse measures λ ∈M(S). In the general case we recognize two scenarios, if λ(S) =∞,
through a suitable Borel bijection we can reduce to the case S = R+ and λ represents
the Lebesgue measure over (R+,BR+). Alternatively, if λ(S) <∞, µ remains symmetric
(exchangeable) with respect to λ′ = λ/λ(S) hence we may assume λ(S) = 1 and reduce
to the case where S = [0, 1] and λ stands for the Lebesgue measure over ([0, 1],B[0,1]).
Thus, the following result is a Corollary of Proposition 2.18.

Corollary 2.19. A locally finite random measure µ over a Borel space (S,BS) is λ-
symmetric if and only if it is λ-exchangeable, for λ ∈M(S).

Proposition 2.20. Let µ be a λ-symmetric random measure over the Borel space
(S,BS), set µ = E[µ] then µ is also µ-symmetric.

The proof of Proposition 2.20 can be found in Appendix B.15. A first example
of a λ-symmetric random measure is the diffuse measure, µ = βλ, for some positive
random variable, β. For the case where λ(S) = ∞, another example of a random
measure with λ-exchangeable increment is a mixed Poisson process, µ, with intensity
κλ, for some positive random variable, κ. Indeed, for every collection of disjoint sets
B1, . . . , Bn ∈ BS, with λ(Bi) = λ(Bj), (µ(B1), . . . ,µ(Bn)) is conditionally i.i.d., hence
exchangeable. As for the case where λ(S) < ∞, an example of a λ-symmetric simple
point process is a mixed binomial process, µ =

∑κ
j=1 δξj , based on (κ, λ′), for some

κ taking values in N, and where λ′ = λ/λ(S). Recall that in this case, conditionally

given κ, (ξj)
κ
j=1

iid∼ λ′, from which is easy to see that for every measurable partition of
S, {B1, . . . , Bn}, (µ(B1), . . . ,µ(Bn)) ∼ Multinomial(κ;λ′(B1), . . . , λ′(Bn)), from which
the exchangeability of the increments follows easily. As the following result states (see
Appendix B.16 for a proof), these examples constitute the class of simple point processes
and diffuse random measures with λ-exchangeable increments.

Lemma 2.21. Let (S,BS) be a Borel space with localizing ring Ŝ and consider a diffuse
measure λ ∈M(S).

i) A locally finite simple point process, µ, is λ-symmetric if and only if it is mixed
Poisson or a mixed binomial process based on κ and λ (or λ/λ(S)), for some
random variable, κ taking values in R+ or N, respectively.

ii) A locally finite difusse random measure, µ is λ-symmetric if and only if µ = βλ,
for some non-negative random variable β.
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More generally, if λ(S) = ∞, homogeneous completely random measures, with no
diffuse component, are also examples of λ-symmetric random measures. Indeed, as ex-
plained by Theorem 1.12, such a measure, can be decomposed as µ =

∑
j≥1αjδξj , where

{(ξj,αj)}j≥1 defines a Poisson process whose intensity decomposes as λ ⊗ %, for some
measure % such that

∫
R+

(x∧1)%(dx) <∞. This random measure, µ satisfies that for ev-

ery collection of disjoint sets B1, . . . , Bn ∈ BS, with λ(Bi) = λ(Bj), (µ(B1), . . . ,µ(Bn))
is i.i.d., in particular it is exchangeable. Generalizing these processes, we might consider
a random measure % over (R+,BR+), where

∫
R+

(x ∧ 1)%(dx) < ∞ holds almost surely,

and take {(ξj,αj)}j≥1 forming a Cox process directed by λ ⊗ % (so that conditionally
given %, {(ξj,αj)}j≥1 defines a Poisson process). Then for B1, . . . , Bn ∈ BS as above
(µ(B1), . . . ,µ(Bn)) is conditionally i.i.d. (given %), so µ =

∑
j≥1αjδξj is also an ex-

ample of a λ-symmetric random measure. As for the case where λ(S) < ∞, another
example of a λ-exchangeable random measure is µ =

∑
j≥1αjδξj , where the collections

(αj)j≥1 and (ξj)j≥1
iid∼ λ/λ(S) are independent. To see that the latter random measure

has λ-symmetric increments, let f : S → S, be a λ-preserving transformation, define
ν = µ(f−1[·]) and consider a simple function g =

∑n
i=1 ai1Ai , where A1, . . . , An ∈ BS

are disjoint. Then

µ(g) =
∑
j≥1

αjg(ξj) =
∑
j≥1

n∑
i=1

αjaiδξj(Ai)
d
=
∑
j≥1

n∑
i=1

αjaiδξj(f
−1[Ai]) = ν(g),

and by the proof of Theorem 1.5, this show µ
d
= µ(f−1[·]). Once again, the random

measures discussed in this paragraph are not only simple examples of purely atomic
random measures with λ-exchangeable increments, but characterize completely this class.
Formally we have the following result whose proof appears in Appendix B.17.

Lemma 2.22. Let (S,BS) be a Borel space with localizing ring Ŝ and consider a
diffuse measure λ ∈ M(S). Then a locally finite, purely atomic random measure,
µ =

∑
j≥1αjδξj , is λ-symmetric if and only

i) For λ(S) <∞, (ξj)j≥1
iid∼ λ/λ(S) is independent of (αj)j≥1.

ii) For λ(S) = ∞, {(ξj,αj)}j≥1 defines a Cox process directed by λ ⊗ %, for some
random measure, %, over (R+,BR+) and satisfying

∫
R+

(x ∧ 1)%(dx) < ∞ almost
surely.

Putting together Lemma 2.22 and the second part of Lemma 2.21, we can derive the
representation theorem for random measure with λ-exchangeable increments.

Theorem 2.23. Let (S,BS) be a Borel space with localizing ring Ŝ and consider a
diffuse measure λ ∈ M(S). Then, a locally finite random measure µ is λ-symmetric if
and only if it can be decomposed as µ =

∑
j≥1αjδξj + βλ, for some positive random

variable, β, and where

i) For λ(S) <∞, (ξj)j≥1
iid∼ λ/λ(S) is independent of (αj)j≥1.

ii) For λ(S) = ∞, {(ξj,αj)}j≥1 defines a Cox process directed by λ ⊗ %, for some
random measure, %, over (R+,BR+) and satisfying

∫
R+

(x ∧ 1)%(dx) < ∞ almost
surely.
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Corollary 2.24. Let (S,BS) be a Borel space and consider a finite and diffuse measure
λ over (S,BS). Then, a random probability measure, µ, is λ-symmetric if and only if it
takes the form

µ =
∑
j≥1

wjδξj +

(
1−

∑
j≥1

wj

)
µ0,

where µ0 = λ/λ(S), and (ξj)j≥1
iid∼ µ0 is independent of (wj)j≥1 which are non-negative

random variables such that
∑

j≥1 wj ≤ 1 almost surely.

The random probability measures in Corollary 2.24 constitute the building blocks of
Bayesian non-parametric models, and will be the objects of study of next section.

62



3 Species sampling processes

Random probability measures with exchangeable increments, better known as species
sampling process are the building blocks for a wide range of Bayesian non-parametric
models. This due to the fact that they are extremely flexible while remaining mathemat-
ically tractable. In comparison to other subjects of probability and statistics, the study
of species sampling processes remains flourishing, and its has been mainly developed by
means of concrete examples. The canonical example of species sampling processes in
Bayesian non-parametric literature is the Dirichlet processes (Ferguson; 1973; Blackwell
and MacQueen; 1973; Kingman; 1975; Sethuraman; 1994), for a complete compilation
on this model see the monograph by Ghosal and van der Vaart (2017). Searching for
generalizations and competitive alternatives to the canonical model, different construc-
tions of species sampling processes have been developed. Some of the most notable
are through the normalization of homogeneous completely random measures (Regazz-
ini et al.; 2003; James et al.; 2009; Hjort et al.; 2010), through the prediction rule of
exchangeable partitions (Blackwell and MacQueen; 1973; Pitman; 1996b; Hansen and
Pitman; 2000; De Blasi et al.; 2015), by means of the stick-breaking decomposition of
weights sequences (Sethuraman; 1994; Ishwaran and James; 2001; Pitman; 2006; Favaro
et al.; 2012, 2016) and most recently by virtue of latent random subsets of N (Walker;
2007; Fuentes-Garćıa et al.; 2010; De Blasi et al.; 2020). Constructions of species sam-
pling processes are extremely important because they allow us to specify the laws of
random probability measures with exchangeable increments, which in general is not an
easy task to do. This in turn creates a wide range of Bayesian non-parametric models.

In contrast to the natural development of Bayesian non-parametric literature, here
we tackle the study of species sampling processes in the opposite direction, that is, we
begin by deriving properties for the general class of species sampling processes and latter
specialize the analysis to concrete examples. We start Section 3.1 with an overview of
basic properties and the definition of important quantities related to the random proba-
bility measures in question. Section 3.2 is latter dedicated to analyse some convergence
results of species sampling processes, these are extremely important for the new class
of models we will define in Section 4. In Section 3.3, we characterize exchangeable se-
quences driven by species sampling processes. The results in Section 3.3 are specifically
enriching because they make explicit the relation between exchangeable sequences, ex-
changeable partitions and random measures with exchangeable increments. While some
of the content of Sections 3.1-3.3 is well known in literature, to best of our knowledge, it
has not been described in the unified way presented here. Section 3.4 is then dedicated
to study the support of species sampling processes, we do this following the work of
Bissiri and Ongaro (2014) (also see Datta; 1991; Ghosal et al.; 1999; Wu and Ghosal;
2008, for more one this topic). As mentioned by Bissiri and Ongaro (2014), having a
large support is the unique an essential requirement for a species sampling model to
become a feasible Bayesian non-parametric prior. Hence, when we define the law of a
species sampling process it is a priority to corroborate it has full support. In Section 3.5
we detail the methods previously mentioned to determine the distribution of a species
sampling process. Finally, in Section 3.6 we review some of the most famous examples
in Bayesian non-parametric statistics, including the celebrated Dirichlet processes.
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3.1 Basic properties and definitions

Definition 3.1 (Species sampling process 1). A random probability measure µ, over a
Borel space (S,BS) is called a species sampling process (SSP) if it has µ0-exchangeable
increments with respect to a diffuse probability measure, µ0 over (S,BS).

From Corollary 2.24 we have the following equivalent definition of species sampling
processes, which is the best known in literature.

Definition 3.2 (Species sampling process 2). A random probability measure µ, over a
Borel space (S,BS) is called a species sampling process (SSP) if its atomic decomposition
specializes to the form

µ =
∑
j≥1

wjδξj +

(
1−

∑
j≥1

wj

)
µ0, (3.1)

where µ0, which is called base measure of µ, is some diffuse probability measure over

(S,BS), and the collection of atoms Ξ = (ξj)j≥1
iid∼ µ0 is independent of the weights

W = (wj)j≥1 which are non-negative random variables such that
∑

j≥1 wj ≤ 1 almost
surely. Whenever

∑
j≥1 wj = 1 almost surely, so that µ is purely atomic, we say µ is

proper, and otherwise we call µ improper.

The term species sampling is due to Pitman, and it comes from the fact that we
might think each atom, ξj, represents an unknown species in a population, and wj is the
proportion of individuals in the population of species ξj, if µ is improper, (1−

∑
j≥1 wj)

represents the number of individuals in the population that come from a species with

only one member. This way, if we were to sample {x1,x2, . . . | µ}
iid∼ µ, then xi would

be of species ξj with probability wj, for every j ≥ 1, and xi would be of a rare species,
containing only one member, with probability (1−

∑
j≥1 wj).

In Bayesian non-parametric statistics, the distribution of a SSP is often referred to
as the prior distribution, or simply prior. We will adopt this terminology hereinafter.
Clearly a prior is completely characterized by the distribution of the weights and the
atoms. In other words a diffuse probability measure µ0 over (S,BS), together with a
distribution, P, over ∆∞ = {(w1, w2, . . .) : wj ≥ 0,

∑
j≥1wj ≤ 1}, determine completely

the distribution, say Q, of a SSP. However, the converse is not true, indeed there are
infinitely many distributions over ∆∞ that lead to the exact same prior. This is explained
by the following result.

Proposition 3.1. Let µ be a SSP as in (3.1), and let σ be a (possibly) random permu-
tation of N, independent of the atoms of µ. Then, µ is equal in distribution to

∑
j≥1

wσ(j)δξj +

(
1−

∑
j≥1

wσ(j)

)
µ0.

In other words, the prior distribution is invariant under permutations of the weights.

The proof of Proposition 3.1 can be found in Appendix C.1. In practice, when defining
prior distributions by means of choosing a base measure and a distribution over ∆∞, it
is highly important to bethink of Proposition 3.1. Depending on the context, working
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with one ordering of the weights or another can have appealing advantages. Ideally one
would have available the distribution of all possible permutations of a weights sequence,
so that one could chose the most convenient, unfortunately this is generally not the
case. When implementing these models, one usually works with the representation of
the weights that is the most mathematically tractable, however one should keep in mind
the considered representation of the weights is not unique for the prior in question.

One of the most important quantities related to SSPs is the tie probability,

P[xi = xj] = E [P[x1 = x2 | µ]] = E

[∑
j≥1

(wj)
2

]
=
∑
j≥1

E
[
(wj)

2] ,
for i 6= j, and where {x1,x2, . . . | µ}

iid∼ µ. As Lemma 3.2 and Corollary 3.3 show, the
first couple of moments of a prior are completely determined by the base measure and
the tie probability. Formally we have the following definition.

Definition 3.3 (Tie probability). Let µ be a species sampling process as in (3.1). To
ρ =

∑
j≥1 E

[
(wj)

2] we call the tie probability of µ.

Note that the tie probability does not depends on the ordering of the weights, in fact
as 0 ≤

∑
j≥1 wj ≤ 1 almost surely, we have that

∑
j≥1(wj)

2 =
∑

j≥1(wσ(j))
2, almost

surely, for any (possibly random) permutation, σ, of N. Before stating the first result
that concerns this very important number, recall that for a suitable integrable function
f , and a random (or deterministic) measure we denote µ(f) =

∫
fdµ =

∫
f(s)µ(ds).

Lemma 3.2. Let (S,BS) be a Borel space and µ =
∑

j≥1 wjδξj +
(

1−
∑

j≥1 wj

)
µ0 be

a species sampling process over S with base measure µ0 and with tie probability ρ. Let
f, g : S → R be measurable and bounded functions. Then,

i) E [µ(f)] = µ0(f).

ii) E [µ(f)2] = ρ µ0(f 2) + (1− ρ)µ0(f)2

iii) E [µ(f)µ(g)] = ρ µ0(fg) + (1− ρ)µ0(f)µ0(g).

The proof of Lemma 3.2 appears in Appendix C.2. By making f = 1A and g = 1B,
we obtain the following straight-forward corollary of Lemma 3.2.

Corollary 3.3. Let (S,BS) be a Borel space and µ =
∑

j≥1 wjδξj +
(

1−
∑

j≥1 wj

)
µ0

be a species sampling process over S with base measure µ0 and with tie probability ρ.
Then, for any measurable sets A and B,

i) E [µ(A)] = µ0(A).

ii) Var (µ(A)) = ρ µ0(A)(1− µ0(A))

iii) Cov (µ(A),µ(B)) = ρ(µ0(A ∩B)− µ0(A)µ0(B)).
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3.2 Limiting properties

Corollary 3.3, shows that the expectation, the variance and the self-covariance of a SSP
are completely determined by the base measure and the tie probability. Realize that if
ρ is close to zero, Var(µ(A)) ≈ 0 and Cov(µ(A),µ(B)) ≈ 0. Indeed, the first limiting
result concerning a SSP is that, as ρ→ 0, a SSP converges weakly in distribution to its
base measure, and conversely, as ρ → 1, a SSP converges weakly in distribution to δξ,
for some ξ ∼ µ0.

Theorem 3.4. Consider a Polish space S with Borel σ-algebra BS. Let µ0, µ
(1)
0 , µ

(2)
0 , . . .

be diffuse probability measures over (S,BS), such that µ
(n)
0 converges weakly to µ0 as

n → ∞. For n ≥ 1 let ρ(n) ∈ (0, 1), and let µ(n) be a SSP with base measure µ
(n)
0 and

tie probability ρ(n).

i) If ρ(n) → 0, as n→∞, then µ(n) converges weakly in distribution to µ0.

ii) If ρ(n) → 1, as n → ∞, then µ(n) converges weakly in distribution to δξ, where
ξ ∼ µ0.

The proof of Theorem 3.4 is given in Appendix C.3.

Remark 3.1. a) In Theorem 4.11, Kallenberg (2017), shows that the weak conver-
gence in distribution of random probability measures is equivalent, to the weak
convergence of the corresponding distributions. So in the context of Theorem 3.4,
if we denote by Q(n) the prior of µ(n), and by Q the distribution of δξ, then the re-
sult also states that if ρ(n) → 0, then Q(n) converges weakly to δµ0, and if ρ(n) → 1,
then Q(n) converges weakly to Q as n→∞.

b) If we require the SSP’s in Theorem 3.4 to be defined in the same probability space,
and ρ(n) → 0, then µ(n) also converges weakly in L2 to µ0, as n → ∞. As to
the second part of the result, if we denote by ξ

(n)
1 to the atom corresponding to the

largest weight of µ(n), and we require ξ
(n)
1 → ξ almost surely, we can assure that

if ρ(n) → 1, then µ(n) converges weakly in L2 to δξ. The proof of this statement is
contained in the proof of Theorem 3.4, in the Appendix.

c) The corresponding almost sure convergence can not be assured in general. Despite
this, under the conditions stated in (b), there exist a subsequence

(
µ(nk)

)
k≥1

such

that (i) or (ii) in Theorem 3.4, holds almost surely.

To illustrate Theorem 3.4, in Figure 15 we show some simulations of different SSPs
over ([0, 1],B[0,1]) all of them with base measure µ0 = Unif(0, 1). The realization of the
SSP in A, corresponds to a very small tie probability, whilst the one in F, has assigned
a tie probability close to 1. Figure 16 shows the respective distribution functions, so
for instance if B in Figure 15 illustrates a simulation of µ(B), then B in Figure 16 shows
the same realization of F(B)(x) = µ(B)([0, x]). Here, it can be appreciated that, when
ρ is small the simulation of the random distribution function is very similar to the
identity function on [0, 1], which coincides with the cumulative distribution function of
a Unif(0, 1). Conversely, for large values of ρ, the realization of the distribution function
resembles that of δξ where ξ was drawn from a Uniform distribution.
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Figure 15: Simulations of six species sampling processes with base measure Unif(0, 1)
and tie probability ρ = 0.005, 0.02, 0.25, 0.5, 0.75, 0.95, for A–F, respectively. In each
sub-figure the height of the vertical lines indicate the weights and the intersection of
each line the the x-axis indicates the corresponding atoms.

Figure 16: Simulations of the cumulative distribution functions, F(x) = µ((−∞, x]) =
µ([0, x]), corresponding to the species sampling processes in Figure 15.
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In Lemma 1.18, we showed that the mappings, [(w1, w2, . . .), (µ1, µ2, . . .)] 7→∑
j≥1wjµj, from ∆∞ × P(S)∞ into P(S), and [(w1, w2, . . .), (s1, s2, . . .)] 7→

∑
j≥1wjδsj

from ∆∞ × S∞ into P(S), are continuous with respect to the weak topology, where
∆∞ denotes the infinite dimensional simplex. The following Theorem, which is straight
forward from Lemma 1.18, states another limiting property for SSPs.

Theorem 3.5. Let (S,BS) be a Polish space and consider the SSPs over (S,Bs), µ =∑
j≥1 wjδξj + w0µ0, and µ(n) =

∑
j≥1 w

(n)
j δ

ξ
(n)
j

+ w
(n)
0 µ

(n)
0 , for every n ≥ 1, where

w
(n)
0 = 1 −

∑
j≥1 w

(n)
j and analogously w0 = 1 −

∑
j≥1 wj. Let us denote W(n) =(

w
(n)
0 ,w

(n)
1 , . . .

)
, W = (w0,w1, . . .), Ξ(n) =

(
ξ

(n)
j

)
j≥1

and Ξ = (ξj)j≥1, for n ≥ 1.

a) If W(n) and Ξ(n) converge almost surely to W and Ξ, respectively. Then µ(n)

converges weakly almost surely to µ.

b) If W(n) and Ξ(n) converge in distribution to W and Ξ, respectively. Then µ(n)

converges in distribution to µ.

3.3 Properties of samples from a species sampling process

In this section we will analyse the main properties of exchangeable sequences driven
by a species sampling process. Recall that in general the law of a sequence (xi)i≥1 is
completely characterize by the finite dimensional distributions, P [x1 ∈ B1, . . . ,xn ∈ Bn],
for n ≥ 1, and by the predictive distributions P [xn+1 ∈ · | x1, . . . ,xn], for n ≥ 1 together
with P[x1 ∈ ·]. We start with a representation-like theorem, that describes the finite
dimensional distributions and the predictive distributions of a sequence {x1, . . . ,xn |
µ} iid∼ µ, driven by an species sampling process, it also characterizes the law of the
exchangeable partition of N, (Π(x1:n))n≥1 and the conditional law of (x1, . . . ,xn) given
Π(x1:n).

Theorem 3.6. Let (xi)i≥1 be an random sequence, taking values in a Polish space
(S,B(S)), and for n ≥ 1, define Π(x1:n) as the random partition of [n] generated by the
random equivalence relation i ∼ j if and only if xi = xj. Let µ0 be a diffuse probability
measure over (S,B(S)) and let π be an infinite EPPF. The following are equivalent in
terms of the law of (xi)i≥1.

I. (xi)i≥1 is exchangeable and directed by a species sampling process µ as in (3.1), with
base measure µ0, and whose size-biased pseudo-permuted weights (w̃j)j≥1 satisfy

π(n1, . . . , nk) = E
[∏k

j=1 w̃
nj−1
j

∏k−1
j=1

(
1−

∑j
i=1 w̃j

)]
.

II. Given the size-biased pseudo-permuted weights sequence, W̃ = (w̃j)j≥1, such that

π(n1, . . . , nk) = E
[∏k

j=1 w̃
nj−1
j

∏k−1
j=1

(
1−

∑j
i=1 w̃j

)]
, x1 ∼ µ0, and for every n ≥

1,

P[xn+1 ∈ · | x1, . . . ,xn,W̃] =
Kn∑
j=1

w̃1δx∗j +

(
1−

Kn∑
j=1

w̃j

)
µ0,

where x∗1, . . . ,x
∗
Kn

are the distinct values that {x1, . . . ,xn} exhibits in order of
appearance. That is x∗j = xkj for every j ≥ 1, with k1 = 1 and for j ≥ 1,
kj+1 = min{i ≥ 1 : xi 6∈ {xk1 , . . . ,xkj}}.

68



III. x1 ∼ µ0, and for every n ≥ 1,

P[xn+1 ∈ · | x1, . . . ,xn] =
Kn∑
j=1

π
(
n(j)
)

π(n)
δx∗j +

π
(
n(Kn+1)

)
π(n)

µ0,

where x∗1, . . . ,x
∗
Kn

are the distinct values that {x1, . . . ,xn} exhibits, n =
(n1, . . .nKn) is given by nj = |{i ≤ n : xi = x∗j}|, n(j) = (n1, . . .nj−1,nj +

1,nj+1, . . . ,nKn) and n(Kn+1) = (n1, . . . ,nKn , 1).

IV. The law of (Π(x1:n))n≥1 is described by the infinite EPPF, π, and for every n ≥ 1
and B1, . . . , Bn ∈ B(S)

P [x1 ∈ B1, . . . ,xn ∈ Bn | Π(x1:n)] =
Kn∏
i=1

µ0

( ⋂
j∈Πi

Bj

)

where Π1, . . . ,ΠKn are the blocks of Π(x1:n).

V. For every n ≥ 1, and any x1, . . . , xn ∈ S,

P [x1 ∈ dx1, . . .xn ∈ dxn] = π(n1, . . . , nk)
k∏
i=1

µ0(dx∗j)

where x∗1, . . . , x
∗
k are the distinct values in {x1, . . . , xn}, and nj = |{i : xi = x∗j}|.

Figure 17: Prediction rule for an exchangeable sequence driven by a SSP. Kn = k denotes
the number of distinct values that {x1, . . . ,xn} exhibits, x∗1, . . . ,x

∗
k are such distinct

values, with corresponding frequencies n = (n1, . . .nk), so that nj = |{i ≤ n : xi = x∗j}|.
We also denote n(j) = (n1, . . .nj−1,nj + 1,nj+1, . . . ,nk) and n(k+1) = (n1, . . . ,nk, 1).
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The proof of Theorem 3.6 can be found in Appendix C.4. Roughly speaking, the

equivalence between I and III in Theorem 3.6, explains that for {x1,x2, . . . | µ}
iid∼ µ,

the prediction rule of the sequence is given by a step in chinese restaurant process, with
a determined prediction rule, and where the labels of the tables have been randomized
independently according to µ0. Indeed, if x∗1,x

∗
2 . . . are the distinct values of {x1,x2, . . .},

in order of appearance, we might think that x∗j represents the jth table to be open in
a chinese restaurant process (see Figure 17 and compare it with Figure 10, recalling
that in Section 2.2 we used the notation π(j | n) = π(n(j))/π(n)). Analogously, the

equivalence between I and II in Theorem 3.6 explains that {x1,x2, . . . | µ}
iid∼ µ may be

constructed through the chinese restaurant process with random seating plan driven by
a size-biased pseudo-permutation, and randomizing the labels of the tables according to
µ0. Theorem IV 3.6 explains that the law of the partition Π = (Π(x1:n))n≥1 is given
by the infinite EPPF corresponding to the prediction rule in II and the expectation,

π(n1, . . . , nk) = E
[∏k

j=1 w̃
nj−1
j

∏k−1
j=1

(
1−

∑j
i=1 w̃j

)]
in I and III, and that, condition-

ally given Π(x1:n) = {Π1, . . . ,ΠKn}, we specify x1, . . . ,xn by sampling x∗1, . . . ,x
∗
Kn

independently from µ0, and setting xi = x∗j if and only if i ∈ Πj. That is to say, con-

ditionally given Π(x1:n), the random vector (x1, . . . ,xn) distributes as
(
x∗l1 , . . . ,x

∗
ln

)
with lr = j if and only if r ∈ Πj. For example, say that for some realization
Π(x1:6) = {{1, 4, 5}, {2, 3}, {6}}, then under such event, (x1, . . . ,x6) distributes as

(x∗1,x
∗
2,x

∗
2,x

∗
1,x

∗
1,x

∗
3), where {x∗1,x∗2,x∗3}

iid∼ µ0 independently of Π(x1:6). With this in
mind, the proof of the following Theorem becomes quite simple (see Appendix C.5 for
details).

Theorem 3.7. Let (xi)i≥1 be an exchangeable sequence driven by a SSP, µ, with base
measure, µ0, and corresponding EPPF, π. Fix n ≥ 1 and let f : Sn → R be measurable
function, then

E [f(x1, . . . ,xn)]

=
∑
A∈P[n]


∫
f(xl1 , . . . , xln)

k∏
j=1

∏
r∈Aj

1{lr=j} µ0(dx1) . . . µ0(dxk)

 π(|A1|, . . . , |Ak|),

(3.2)
whenever the integrals in the right side exist, and where, k = |A| and A1, . . . , Ak stand
for the blocks of A ∈ P[n]. Moreover, if f is symmetric (and the integrals exist), Equation
(3.2) reduces to

E [f(x1, . . . ,xn)] =
n∑
k=1

∑
(m1,...,mn)∈Mk

n

n!∏n
i=1(i!)mi(mi!)

π(n1, . . . , nk)

×
∫
f
(
x[n1,...,nk]

)
µ0(dx1) . . . µ0(dxk),

(3.3)

where Mk
n = {(m1, . . . ,mn) ∈ Zn+ :

∑n
i=1mi = k,

∑n
i=1 imi = n}, and for

(m1, . . . ,mn) ∈ Mk
n and x = (x1, . . . , xk) ∈ Sk, (n1, . . . , nk) denotes the ranked com-

position of n into k parts such that mi =
∑k

j=1 1{nj=i}, and x[n1,...,nk] denotes the vector
of size n with the first n1 entries equal to x1, the next n2 entries equal to x2 and so on.
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Example 3.1. To make clearer the notation of Theorem 3.7 let us consider the case
n = 3, so that f : S3 → R. Note that the set of all partitions of [3] is

P[3] = [({1, 2, 3}), ({1}, {2, 3}), ({2}, {1, 3}), ({3}, {1, 2}), ({1}, {2}, {3})] .

For (x∗i )
3
i=1

iid∼ µ0 we have that under the event (Π(x1:3) = {1, 2, 3}), f(x1,x2,x3) dis-
tributes like f(x∗1,x

∗
1,x

∗
1); conditioning on (Π(x1:3) = {{1}, {2, 3}}), f(x1,x2,x3) is equal

in distribution to f(x∗1,x
∗
2,x

∗
2); given (Π(x1:3) = {{2}, {1, 3}}), f(x1,x2,x3) distributes

identically as f(x∗1,x
∗
2,x

∗
1); conditionally given (Π(x1:3) = {{3}, {1, 2}}), f(x1,x2,x3)

distributes like f(x∗1,x
∗
1,x

∗
2); and conditioning on (Π(x1:3) = {{1}, {2}, {3}}),

f(x1,x2,x3)
d
= f(x∗1,x

∗
2,x

∗
3). This said, it is clear that

E [f(x1,x2,x3)]

= π(3)

∫
f(x∗1, x

∗
1, x
∗
1)µ0(dx∗1) + π(1, 2)

∫
f(x∗1, x

∗
2, x
∗
2)µ0(dx∗1)µ0(dx∗2)

+ π(1, 2)

∫
f(x∗1, x

∗
2, x
∗
1)µ0(dx∗1)µ0(dx∗2) + π(1, 2)

∫
f(x∗1, x

∗
1, x
∗
2)µ0(dx∗1)µ0(dx∗2)

+ π(1, 1, 1)

∫
f(x∗1, x

∗
2, x
∗
3)µ0(dx∗1)µ0(dx∗2)µ0(dx∗3).

Furthermore, if f is a symmetric function of its arguments, we obtain that

E [f(x1,x2,x3)]

= π(3)

∫
f(x∗1, x

∗
1, x
∗
1)µ0(dx∗1) + 3

{
π(1, 2)

∫
f(x∗1, x

∗
2, x
∗
2)µ0(dx∗1)µ0(dx∗2)

}
+ π(1, 1, 1)

∫
f(x∗1, x

∗
2, x
∗
3)µ0(dx∗1)µ0(dx∗2)µ0(dx∗3),

whenever the integrals exist.

For n = 2 we can write (3.2) in terms of the tie probability of the species sampling
process. Indeed, for {x1,x2, . . . | µ} ∼ µ, with µ a SSP with base measure µ0 and
corresponding EPPF π. The event (x1 = x2) is identical to (Π(x1:2) = {{1, 2}}), so in
terms of the EPPF, we can express the tie probability of µ as, ρ = π(2) = E [w̃1], so
that 1−ρ = π(1, 1) = 1−E [w̃1], where w̃1 is size-biased pick of the weights of µ. Thus,

E[f(x1,x2)] = ρ

∫
f(s, s)µ0(ds) + (1− ρ)

∫
f(s1, s2)µ0(ds1)µ0(ds2).

Another quantity that can be written in terms of the tie probability is the prediction
rule in Theorem 3.6 II, for n = 1,

P[x2 ∈ · | x1] =
π(2)

π(1)
δx1 +

π(1, 1)

π(1)
µ0 = ρ δx1 + (1− ρ)µ0.

Noticing that the exchangeability of (xi)i≥1 implies (x1,x2)
d
= (xi,xj) for every i 6= j,

we trivially obtain the following corollary of Theorems 3.6 and 3.7.

Corollary 3.8. Let µ be a SSP with base measure µ0 and tie probability ρ. Consider
{x1,x2, . . . | µ} ∼ µ. Then, for every i 6= j
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a) P[xj ∈ · | xi] = ρ δxi + (1− ρ)µ0.

b) Conditioning on xi 6= xj, (xi,xj)
iid∼ µ0.

c) For any measurable function, f : S2 → R, such that
∫
f(s1, s2)µ0(ds1)µ0(ds2) and∫

f(s, s)µ0(ds) exist, we have that

E[f(xi,xj)] = ρ

∫
f(s, s)µ0(ds) + (1− ρ)

∫
f(s1, s2)µ0(ds1)µ0(ds2).

From Corollary 3.8, the following (conditional) moments are easy to compute, for
details see Appendix C.6.

Corollary 3.9. Let µ be a SSP with base measure µ0 and tie probability ρ. Consider
{x1,x2, . . . | µ} ∼ µ. Then, for every i 6= j

a) E[xj | xi] = ρxi + (1− ρ)E[xi]

b) Var(xj | xi) = (1− ρ)
{
ρ (xi − E[xi])

2 + Var(xi)
}

c) Cov(xi,xj) = ρVar(xi)

d) Corr(xi,xj) = ρ.

In the context of Corollary 3.9, for small values of ρ, E[xj | xi] ≈ E[xj], Var(xj |
xi) ≈ Var(xj) and Cov(xi,xj) ≈ 0, alternatively for values of ρ close to 1, E[xj | xi] ≈ xi,
Var(xj | xi) ≈ 0 and Cov(xi,xj) ≈ Var(xi). In fact for exchangeable sequences driven be
SSPs we have the following version of Theorem 3.4.

Theorem 3.10. Let (S,BS) be a Polish spaces. For each n ≥ 1, let X(n) =
(
x

(n)
i

)
i≥1

be an exchangeable sequence taking values in (S,BS) and driven by a SSP, µ(n), with tie

probability ρ(n) and base measure µ
(n)
0 . Say that as n→∞, µ

(n)
0 converges weakly to µ0.

i) If ρ(n) → 0, as n→∞, then X(n) converges in distribution to (xi)i≥1
iid∼ µ0.

ii) If ρ(n) → 1, as n → ∞, then X(n) converges in distribution to a sequence of
identical random variables (x,x, . . .), where x ∼ µ0.

The proof of Theorem 3.10 can be found in Appendix C.7, this result should already
give us an idea of how flexible the class of SSPs is. At the beginning of Section 2,
we mentioned that the two extrema of the mutual dependence between elements of
an exchangeable sequence are complete independence, and identical random elements.
These coincide with the limits of an exchangeable sequence driven by a SSP, as the tie
probability approaches zero or one, respectively. Furthermore, from Corollary 3.9 (d) we
get that using SSPs as drivers, for every ρ ∈ (0, 1), we can construct an exchangeable
sequence with such correlation coefficient.
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3.4 Full support

From Bayesian non-parametric perspective, a desirable property of the prior is that its
support is as large as possible. In Section 1.4.3 we defined the notion of weak support of
a random probability measure and in Proposition 1.19 we established and upper bound
for it. For a species sampling process µ over the Borel space (S,BS), where S is Polish,
we get that its weak topological support WS(µ) ⊆ {ϕ ∈ P(S) : S(ϕ) ⊆ S(µ0)}, where
µ0 is the base measure of µ. This motivates the following definition.

Definition 3.4. Let (S,BS) be a Borel space where S is Polish. A species sampling
process µ, with base measure µ0 is said to have full support, whenever WS(µ) = {ϕ ∈
P(S) : S(ϕ) ⊆ S(µ0)}. In this instance, its prior distribution is also said to have full
support.

In particular if the support of µ0 is the whole space S, and µ has full support, this
assures WS(µ) = P(S). As the next result explains, whether a species sampling process
has full support or not is completely determined by the weights sequence. In effect,
while the base measure sets up a candidate for the weak support of the species sampling
process, the weights sequence dictate if the support fulfills the proposal.

Theorem 3.11. Consider a species sampling process µ as in (3.1) with distribution Q.
The following are equivalent.

I. Q (equiv. µ) has full support.

II. For every ε > 0, and every 0 < γ < 1 P
[
maxj≥1 wj < ε,

∑
j≥1 wj > γ

]
> 0, where

wj = wj/
∑

j≥1 wj.

III. For every ε > 0 there exists an integer m such that

P

[
w1 < ε, . . . ,wm < ε,

m∑
j=1

wj > 1− ε

]
> 0.

Theorem 3.11 was proven by Bissiri and Ongaro (2014), for the sake of completeness
we replicate their proof in Appendix C.8. For a proper species sampling processes, the
weights, (wj)j≥1, sum up to one almost surely, hence

∑
j≥1 wj > γ almost surely, for

every 0 < γ < 1 and wj = wj almost surely, for every j ≥ 1. Thus the following
corollary is straight-forward from Theorem 3.11.

Corollary 3.12. A proper species sampling process, µ =
∑

j≥1 wjδξj , has full support
if and only if for every ε > 0, P [maxj≥1 wj < ε] > 0.

3.5 Constructions

Although it is possible to derive structural properties for the general class of SSPs, from
an operational viewpoint, it is vacuous as long as the distributions of these random
probability measures remain unspecified. The first obvious way to determine the distri-
bution of a SSP, µ, over (S,BS), is through its finite dimensional distributions. That is,
through the specification of the law of (µ(B1), . . . ,µ(Bn)) for every collection of disjoint
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sets, B1, . . . , Bn. For some SSPs (see Section 3.6.1) it is possible to characterize the
distributions of these vectors, but in general it this is very hard to do. To overcome
this hurdle researchers have developed various methods to specify a prior distribution.
Essentially, all of this methods exploit the atomic decomposition of a SSP, as described
in Definition 3.2, and determine the prior by means of choosing a base measure and
then constructing a distribution over ∆∞, which is the mathematically challenging task.
Below we describe some of the most famous constructions.

3.5.1 Construction through a prediction rule

We have already described this construction indirectly. Indeed, given an infinite EPPF,
π, and a diffuse probability measure, µ0, over (S,BS), we can build the exchangeable
sequence, (xi)i≥1, such that x1 ∼ µ0, and for n ≥ 1

P[xn+1 ∈ · | x1, . . . ,xn] =
Kn∑
j=1

π
(
n(j)
)

π(n)
δx∗j +

π
(
n(Kn+1)

)
π(n)

µ0, (3.4)

where x∗1, . . . ,x
∗
Kn

are the distinct values that {x1, . . . ,xn} exhibits, with correspond-
ing frequencies n = (n1, . . .nKn), and where n(j) = (n1, . . .nj−1,nj + 1,nj+1, . . . ,nKn)
and n(Kn+1) = (n1, . . . ,nKn , 1). Theorem 3.6 together with Proposition 2.2 yield
µ = limn→∞ n

−1
∑n

i=1 δxi is a species sampling process. The base measure of µ
is precisely the distribution of x1, µ0, and as a consequence of Kingman’s cor-
respondence (see Theorem 2.10 or Proposition 2.11) π determines uniquely, up to
permutations, the distribution of the weights. Furthermore, the correspondence
between the EPPF and the distribution of the weights is made explicit through

π(n1, . . . , nk) = E
[∏k

j=1 w̃
nj−1
j

∏k−1
j=1

(
1−

∑j
i=1 w̃j

)]
, where (w̃j)j≥1 is a size-biased

pseudo-permutation. As to the tie probability of µ, it is given by ρ = π(2). Clearly,
every species sampling process can be constructed using this method.

An enormous advantage of this construction, specially from a practical perspective,

is that for {x1,x2, . . . | µ}
iid∼ µ, the laws of (xi)i≥1 and (Π(x1:n))n≥1 are automatically

specified analytically. So, for example, if one wants to draw samples from this exchange-
able sequence one could simply sample x1 ∼ µ0 and sequentially x2,x3, . . . from (3.4),
without the need of sampling µ, which is determined by infinitely many random vari-
ables. A small drawback of this method is that, while it is true that the distribution of
the weights is indirectly determined by the infinite EPPF, we may not be able to attain
the law of (wj)j≥1, explicitly. Hence, some structural properties, such as whether or not
the SSP is proper or the prior has full support, can be rather complicated to corroborate.

3.5.2 Normalization of a random measure with independent increments

Recall from Section 1.3.3 that for a diffuse, locally finite measure, λ, over (S,BS),
a λ-homogeneous completely random measure, λ, is one that can be decomposed as
λ =

∑
j≥1αjδξj + cλ, where c is some non-negative constant and {(ξj,αj)}j≥1 defines a

Poisson process over S×R+ with intensity λ⊗%, where % satisfies,
∫
R+

(x∧1)%(dx) <∞.

Further, if λ is finite we get λ is finite almost surely, and if c > 0 or %(R+) =
∫
R+
%(dx) =

∞, we also have λ(S) > 0, almost surely. Under these constrains we can define the
random probability measure µ = λ/λ(S). Now, for any disjoint measurable sets,
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B1, . . . , Bn ∈ BS such that λ(Bi) = λ(Bj), we have that (λ(B1), . . . ,λ(Bn)) forms
an i.i.d. vector. When we normalize, (µ(B1), . . . ,µ(Bn)) losses the independence prop-
erty, however it remains conditionally i.i.d. given λ(S). Thus (µ(B1), . . . ,µ(Bn)) is even
exchangeable and from Definition 3.1 we obtain µ is a SSP. Evidently, the base measure
of µ is given by µ0 = λ/λ(S), and the distribution of the weights is indirectly character-
ized by %. This kind of species sampling processes are also known as normalized random
measures with independent increments (NRMI, for short Prünster; 2003; Regazzini et al.;
2003; James et al.; 2009). This construction can be regarded as the composition of two
methods we have already described. In effect, for λ, % and c as above, we can first build
a partition, Π, through the ordered paintbox (see Section 2.2.6) using a subordinator
with intensity % and drift c. Latter, given the EPPF, π, of Π, and the diffuse random
probability measure, µ0 = λ/λ(S), construct the species sampling process µ as in Section
3.5.1.

It is easy to see that an NRMI, µ, is proper if and only if c = 0. Indeed, the weights
of µ, (wj)j≥1, are precisely the normalized jumps of λ, (αj/λ(S))j≥1, and we have that
c = 0 if and only if λ(S) =

∑
j≥1αj, which in turn is equivalent to∑
j≥1

wj =
1

λ(S)

∑
j≥1

αj = 1.

For a proper NRMI, µ, the almost sure representation,

µ =
∑
j≥1

w↓jδξj =
∑
j≥1

α↓j
λ(S)

δξj ,

where
(
w↓j

)
j≥1

and
(
α↓j

)
j≥1

are the decreasing rearrangement of the weights and the

jumps respectively, is also termed a Poisson-Kingman random probability measure. Us-
ing Corollary 3.12 and the Poisson-Kingman representation, Bissiri and Ongaro (2014)
showed that a sufficient condition for a proper NRMI to have full support is that the
distribution of λ(S) is absolutely continuous with respect to the Lebesgue measure.

As to the EPPF, if it is not already available as in Section 3.5.1, for this or other
constructions, it is generally very hard to attain. For proper NRMI’s there are methods
to derive an expression for the EPPF and the tie probability (see for instance Lijoi et al.;
2005; James et al.; 2009). However, more often than not, these expressions are rather
complicated, and some times not even in a closed form.

This method to define a prior is one of the most widely studied in literature. As for
each known law of a subordinator and a finite measure over a Borel space, we can define
the law of a SSP through this construction. Moreover, if we drop the hypothesis of the
completely random measure being homogeneous, this method enables the characteriza-
tion of laws of random probability measure with a more complex structure than a SSPs,
that is, where the weights are not necessarily independent of the atoms. Despite this, a
small disadvantage of this construction is that it is not exhaustive in the class of SSPs,
meaning that there are SSPs that are not NRMI’s.

3.5.3 Stick-breaking construction

In contrast to the previous methods to define a prior, this one consists in defining law
of the atoms (ξj)j≥1 and that of the weights sequence (wj)j≥1 directly. This is, choosing
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a the base measure, µ0, over a Borel space (S,BS), and construct a distribution over(
∆∞,B∆∞

)
, where ∆∞ = {(w1, w2, . . .) ∈ [0, 1]∞ :

∑
j≥1wj ≤ 1}. Now, as the weights

satisfy
∑

j≥1 wj ≤ 1, almost surely, they can not be i.i.d., exchangeable or even Marko-
vian, unless they are deterministic, which makes notorious how challenging it can be to
define distributions over ∆∞. Essentially, the stick-breaking construction translates the
problem of defining a distribution over ∆∞ into the seemingly simpler one of defining a
distribution over [0, 1]∞, as explained in what follows.

Consider a stick of length one and a sequence of [0, 1]-valued random variables,
(vi)i≥1. The stick breaking construction consists in sequentially and proportionally cut-
ting the stick according to (vi)i≥1. At the first step we are going to cut the stick into
two parts, one of length w1 = v1 and the remainder of length (1−w1) = (1− v1). Sec-
ondly, the leftover of length (1− v1), will be cut again into two parts, one proportional
to v2, obtaining a stick of length w2 = v2(1 − v1), and the remainder will then have
length 1 − (w1 + w2) = (1 − v2)(1 − v1), see Figure 18 for an illustration. Continuing
inductively, after the jth step, we will have j sub-sticks of lengths, w1, . . . ,wj, where
wj = vj

∏j−1
i=1 (1−vi), along with a remainder of length 1−

∑
j≥1 wj =

∏j
i=1(1−vi). By

construction it is clear that 0 ≤ wj ≤ 1 and
∑

j≥1 wj ≤ 1, hence the sequence (wj)j≥1

takes values in ∆∞ and its distribution is completely characterized by that of (vi)i≥1.

Figure 18: First steps of the stick-breaking construction and an improbable snail.

The first thing to note is that any sequence of weights can be constructed this way,
formally we have the following Proposition.

Proposition 3.13. Let (wj)j≥1 be a sequence of random variables that satisfy 0 ≤ wj ≤
1, for every j ≥ 1, and

∑
j≥1 wj ≤ 1, almost surely. Then there exist a sequence of

[0, 1]-valued random variables, (vi)i≥1 such that for every j ≥ 1, wj = vj
∏j−1

i=1 (1− vi),
almost surely.

The proof of Proposition 3.13 can be found in Appendix C.9. A straight-forward
consequence of this result is that the stick-breaking construction is exhaustive in the
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class of SSPs, meaning that the weights of any SSP can be stick-breaking constructed.
Due to how much we will be exploiting this method to define a prior, we will dedicate it
a formal definition.

Definition 3.5. We call a stick-breaking process to any SSP, µ, as in (3.1), such that
its weights, W = (wj)j≥1, are decomposed as

w1 = v1, wj = vj

j−1∏
i=1

(1− vi), j ≥ 2, (3.5)

for some sequence, V = (vi)i≥1, of [0, 1]-valued random variables. In this case we write
(wj)j≥1 = SB[(vi)i≥1], or equivalently W = SB[V]. To the weights, W = (wj)j≥1, we
call stick-breaking weights and to the the elements of V = (vi)i≥1 we call proportional
length variables (or simply length variables) of µ (or W).

An important remark here is that in terms of the law of a SSP, the stick-breaking
construction is not unique. This is a consequence of the fact that the prior is invariant
under weights’ permutations (see Proposition 3.1) and that the stick-breaking is an
almost sure decomposition. In other words, to each distribution of a sequence of length
variables over [0, 1]∞, there corresponds a unique prior, but the converse is not true. To
make this clearer consider the following example.

Example 3.2. Fix v1 = v2 = 1/2,v3 = 1 and vi = 0 for every i ≥ 4, also define

v′1 = 0,v′2 = 1/4,v′3 = 2/3,v′4 = 1, and v′i = 0 for every i ≥ 5. Trivially (vi)i≥1 6
d
=

(v′i)i≥1. Now, set (wj)j≥1 = SB[(vi)i≥1] and (w′j)j≥1 = SB[(v′i)i≥1]. It is easy to see w1 =
1/2,w2 = w3 = 1/4 and wj = 0 for every j ≥ 4, also w′1 = 0,w2 = w4 = 1/4,w3 = 1/2
and wj = 0 for j ≥ 5. Thus, (w′j)j≥1 is a permutation of (wj)j≥1, and clearly for every

independent i.i.d. sequence (ξj)j≥1 we get
∑

j≥1 wjδξj
d
=
∑

j≥1 w′jδξj .

As the following result shows, important structural properties of a SSP and the
corresponding prior can be restated in terms of the law of the length variables.

Lemma 3.14. Let µ be a species sampling process with stick-breaking weights (wj)j≥1 =
SB[(vi)i≥1].

i.a) µ is proper if and only if limj→∞ E
[∏j

i=1(1− vi)
]

= 0.

i.b) µ is proper if and only if

P

[{∑
i≥1

vi =∞

}
∪

{⋃
i≥1

[vi = 1]

}]
= 1.

In particular, if
∑

i≥1 vi =∞ almost surely, we get µ is proper.

ii) If for every ε > 0 there exist 0 < γ < ε such that P [
⋂n
i=1 (γ < vi < ε)] > 0, for

every n ≥ 1, then µ has full support.
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The proof of Lemma 3.14 appears in Appendix C.10, this result is extremely useful
from an operational point of view (see Section 3.6 for illustrations). We shall highlight
that the validity of Lemma 3.14 does not depends on the ordering of the weights. Thus,
it is enough to have available the stick-breaking decomposition for one ordering of the
weights.

Now we turn to analyse the relationship between the distribution of the length vari-
ables and tie probability, or more generally the EPPF. From Definition 3.3, it is obvious
that for a stick-breaking process µ with weights W = (wj)j≥1 = SB[(vi)i≥1], we can
rewrite its tie probability as

ρ =
∑
j≥1

E

[
(vj)

2

j−1∏
i=1

(1− vi)
2

]
. (3.6)

As to the EPPF, from equation (2.19), we have that if the weights sum up to one, for
any positive numbers, n1, . . . , nk,

π(n1, . . . , nk) =
∑

(i1,...,ik)

E

[
k∏
j=1

(
vij
)nj−1

ij−1∏
l=1

(1− vl)
nj−1

]
, (3.7)

where the sum ranges over all k-tuples of distinct positive integers. Unfortunately, more
often than not, this equation does not lead to a closed expression for the EPPF. A
quantity that is seemingly easier to compute is the pEPPF, π′, corresponding to W, as
introduced in Section 2.2.7. Indeed from (2.17), we obtain that for any positive numbers,
n1, . . . , nk,

π′(n1, . . . , nk) = E

[
k∏
j=1

v
nj−1
j (1− vj)

∑
i>j ni

]
. (3.8)

In Section 2.2.7 we proved that π′ is a symmetric function of its arguments if and only
if W is in size-biased random order, in which case π′ coincides with the EPPF, π, and
particularly we obtain ρ = π(2) = π′(2) = E[v1].

One of the biggest downsides of this construction is that most distributions over
[0, 1]∞ will lead to stick-breaking weights that are not invariant under size-biased per-
mutations, hence the EPPF will generally become defiant to attain. On the opposite
side, an enormous strength of this construction is that it translates the complex prob-
lem of defining distributions of ∆∞ into the much easier one of finding distributions
over [0, 1]∞. Moreover the simplicity of this construction enables to prove structural
properties of the SSP, in a simple and elegant form.

3.5.4 Random subsets of N

In contrast to their counterparts, this method is relatively new (Fuentes-Garćıa et al.;
2010; De Blasi et al.; 2020; Gil-Leyva; 2021). The original motivation behind this method
is mostly numerical, and it arises from the fact that most interesting SSPs depend on
infinitely many random variables, which in practice makes them challenging to imple-
ment. In essence this construction consists in building a latent random set, say Ψ,
that takes values in FN = {A ⊆ N : 0 < |A| < ∞}, and that makes sampling x
from the proper SSP, µ =

∑
j≥1 wjδξj , equivalent to sampling it from uniform ran-

dom probability measure, |Ψ|−1
∑

j∈Ψ δξj . This approach not only solves the practical
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problem of dealing with infinitely many random variables (see Section 5.2.2), but also
suggests a new form to construct distributions over the infinite dimensional simplex
∆∞ = {(w1, w2, . . .) ∈ [0, 1]∞ :

∑
j≥1wj = 1}.

So consider a random element, τ , taking values in some Borel space (T,BT ) and a
mass probability kernel pΨ(· | ·) from T into FN, so that for each t ∈ T , pΨ(· | t) is
a mass probability function over FN, and for each A ∈ FN, pΨ(A | ·) is a measurable
function from (T,BT ) into ([0, 1],B([0, 1]). Let Ψ be some random set satisfying {Ψ |
τ} ∼ pΨ(· | τ ), and say that given Ψ, we uniformly pick one of its elements, d. Define
wj as the conditional probability that d = j given τ , that is wj = P[d = j | τ ]. Under
the assumption that d is conditionally independent of τ given Ψ, and by the tower
property of conditional expectation we obtain,

wj = E
[

1

|Ψ|
1{j∈Ψ}

∣∣∣∣ τ] =
∑
A∈FN

1

|A|
1{j∈A}pΨ(A | τ ), j ≥ 1. (3.9)

As the events (d = j)j≥1 are mutually disjoint and its union (d ∈ N) occurs almost surely
we must have

∑
j≥1 wj = 1. This is, by conditional monotone convergence theorem, and

since
∑

j≥1 1{j∈Ψ} = |Ψ|, we get

∑
j≥1

wj = E

[
1

|Ψ|
∑
j≥1

1{j∈Ψ}

∣∣∣∣∣ τ
]

= 1, (3.10)

almost surely. Thus, each parametric distribution, pΨ, over FN, together with a ran-
domization of its parameters, τ , and through (3.9), characterizes completely the law of
W = (wj)j≥1, which takes values in the infinite dimensional simplex. In other words, if
we denote by pτ to the distribution of τ , the pair (pΨ,pτ ), defines a distribution over
∆∞. Thus any species sampling process, µ, with weights (wj)j≥1 as in (3.9) is proper.
Now, to corroborate it has full support, from Corollary 3.12, it suffices to check that the
largest weight is arbitrarily small with positive probability. This is relatively simple to
do and fairly intuitive in terms of the random set. Note that for every j ≥ 1,

wj = E
[

1

|Ψ|
1{j∈Ψ}

∣∣∣∣ τ] ≤ E
[

1

|Ψ|

∣∣∣∣ τ] .
Hence, if for every ε > 0, we have that the events, {|Ψ| > 1/ε} ⊆ {wj < ε, j ≥ 1} =
{maxj≥1 wj < ε}, which yields

P
[
max
j≥1

wj < ε

]
≥ P

[
|Ψ| > ε−1

]
,

and we obtain the following Corollary,

Corollary 3.15. Let µ be a SSP with weights, (wj)j≥1, as in (3.9). If P[|Ψ| > n] > 0,
for every n ∈ N, then µ has full support.

Roughly speaking, if Ψ is allowed to contain arbitrarily many random elements, then
the largest weight can be arbitrarily small, and µ has full support. Next we prove that
the weights of any proper species sampling process can be expressed as in (3.9) for some
random set.
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Proposition 3.16. Let µ be a proper species sampling process with weights (wj)j≥1.
Then there exist a random set Ψ taking values in FN and a random element τ that takes
values in a Borel space such that (3.9) holds.

The proof of Proposition 3.16 can be found in Appendix C.11, this result guaranties
that this construction holds for every SSP, however it is not unique. In fact, this con-
struction is not even unique for a fixed weights sequence (wj)j≥1. Meaning that there
exists two distinct pairs (Ψ, τ ) and (Ψ′, τ ′) such that (3.9) holds for (wj)j≥1.

Our next result, see Appendix C.12 for a proof, embodies the original motivation
behind this construction, and will be highlighted in Section 5.2.2 in an applied setting.

Proposition 3.17. Let (T,BT ) be a Polish space and consider a mass probability ker-
nel pΨ from T into FN. Let τ be a random element taking values in T , consider

{Ψ1, . . . ,Ψn | τ}
iid∼ pΨ(· | τ ) and define W = (wj)j≥1 as in (3.9). Also consider a

diffuse probability measure µ0 over the Borel space (S,BS), and an independent collec-

tion Ξ = (ξj)j≥1
iid∼ µ0. If x1, . . . ,xn are conditionally independent given Ξ,Ψ1, . . . ,Ψn,

with {xk | Ψk,Ξ} ∼ |Ψk|−1
∑

j∈Ψk
δξj , and we also assume that, xk is conditionally

independent of τ , given Ψk, for 1 ≤ k ≤ n, then {x1, . . . ,xn |W,Ξ} iid∼
∑

j≥1 wjδξj .

Deriving a closed expression for the EPPF in terms of these random sets does not
seems feasible, however, this is not the main motivation for the method. In fact, this
construction precisely arose as an alternative way to solve the practical implementation
problem of SSPs for which a closed expression for the EPPF is not available (see Section
5.2.2). Putting this construction in a slightly distinct category than their counterparts.

3.6 Examples

In here we will present some of the most popular SSPs in Bayesian non-parametric
literature. We will go through their constructions as well as basic structural properties.

3.6.1 Dirichlet process

The Dirichlet process has earned the title of the canonical example of SSPs in a Bayesian
non-parametric context (Ferguson; 1973; Blackwell and MacQueen; 1973; Sethuraman;
1994), mainly due to its mathematical tractability and distinct representations. We will
begin by defining this process in various ways and showing that these definitions are in
fact equivalent.

Definition 3.6 (Dirichlet process, finite dimensional distributions). Let (S,BS) be a
Borel space and consider a diffuse finite measure µ over (S,BS). We say µ is a Dirichlet
process with total mass parameter θ = µ(S) and base measure µ0 = µ/µ(S), if

(µ(B1), . . . ,µ(Bn)) ∼ Dir(µ(B1), . . . , µ(Bn))

for every measurable partition {Bi}ni=1 of S.

Definition 3.7 (Dirichlet process, prediction rule, EPPF). Let (S,BS) be a Borel space
and consider a diffuse probability measure µ0 over (S,BS). We say µ is a Dirichlet
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process with total mass parameter θ > 0 and base measure µ0, if it is a species sampling
process with base measure µ0 and corresponding EPPF, π, given by

π(n1, . . . , nk) =
θk
∏k

j=1(nj − 1)!

(θ)n
,

for every sequence of positive numbers (n1, . . . , nk). Equivalently, we say µ is a Dirichlet
process with total mass parameter θ > 0 and base measure µ0, if it is the directing random
measure of an exchangeable sequence (xi)i≥1 such that x1 ∼ µ0 and for every n ≥ 1,

P[xn+1 ∈ · | x1, . . . ,xn] =
Kn∑
j=1

nj
θ + n

δx∗j +
θ

θ + n
µ0 =

1

θ + n

(
n∑
i=1

δxi + µ0

)

where x∗1, . . . ,x
∗
Kn

are the Kn distinct values that {x1, . . . ,xn} exhibits, and for every
1 ≤ j ≤ Kn, nj = |{1 ≤ i ≤ n : xi = x∗j}|.

Definition 3.8 (Dirichlet process, NRMI, Gamma process). Let (S,BS) be a Borel
space and consider a diffuse finite measure λ over (S,BS). Let λ =

∑
j≥1αjδξj

be a λ-homogeneous completely random measure with no diffuse component such that
{(ξj,αj)}j≥1 defines a Poisson process with intensity λ⊗ %, where

%(dx) =
e−x

x
dx.

To the NRMI µ = λ/λ(S) we call a Dirichlet process with total mass parameter θ = λ(S)
and base measure µ0 = λ/λ(S).

Definition 3.9 (Dirichlet process, stick-breaking). Let (S,BS) be a Borel space and

consider a diffuse probability measure µ0 over (S,BS). Fix θ > 0, Let (vi)i≥1
iid∼ Be(1, θ)

and set (wj)j≥1 = SB[(vi)i≥1]. To the stick-breaking process, µ, with base measure µ0

and weights sequence (wj)j≥1, we call a Dirichlet process with total mass parameter θ
and base measure µ0.

Theorem 3.18. The four definitions of the Dirichlet process are equivalent.

Hereinafter we will denote by D(θ,µ0) to the distribution of a Dirichlet process with
total mass parameter θ > 0 and base measure µ0. Our next result is a straight-forward
consequence of the proof of Theorem 3.18 (see Appendix C.13).

Corollary 3.19. Let µ ∼ D(θ,µ0) and consider {x1,x2, . . . | µ}
iid∼ µ. Then, for every

m ≥ 1 and each measurable partition, {Bi}ni=1, of the corresponding space, we get

{
(µ(B1), . . . ,µ(Bn)) | x(m)

}
∼ Dir

(
m∑
i=1

δxi(B1) + θµ0(B1), . . . ,
m∑
i=1

δxi(Bn) + θµ0(Bn)

)
,

where x(m) = (x1, . . . ,xm).

Structural properties of Dirichlet processes can be easily derived from their various
representations. For example from Definition 3.8 it is direct that every Dirichlet process is
proper. This property can also be obtained from Definition 3.9 together with Proposition
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2.12 or Lemma 3.14, these also show that the representation of the Dirichlet weights
given by Definition 3.9 is invariant under size biased permutations. Additionally, from

Definition 3.9 we get that any µ ∼ D(θ,µ0) has length variables (vi)i≥1
iid∼ Be(1, θ), so

evidently, for every 0 < γ < ε, and n ≥ 1,

P

[
n⋂
i=1

(γ < vi < ε)

]
=

n∏
i=1

P[γ < vi < ε] > 0.

Thus, Lemma 3.14 yields Dirichlet processes have full support. This proves the next
Corollary.

Corollary 3.20. Let µ ∼ D(θ,µ0). Then µ is proper and it has full support.

As explained in Sections 3.1, 3.2 and 3.3 further basic properties of a SSP can be
written in terms of the tie probability and the base measure. For µ ∼ D(θ,µ0), from
Definition 3.7, we easily compute

ρ = π(2) =
1

1 + θ
. (3.11)

Note that as θ →∞, ρ→ 0 and as θ → 0, ρ→ 1. While it would be vacuous to restate
all the previously derived results for Dirichlet processes, we will highlight some of the
most notable ones.

Corollary 3.21. Let µ ∼ D(θ,µ0). Then, for any measurable sets A and B,

i) E [µ(A)] = µ0(A).

ii) Var (µ(A)) =
µ0(A)(1− µ0(A))

1 + θ
.

iii) Cov (µ(A),µ(B)) =
(µ0(A ∩B)− µ0(A)µ0(B))

1 + θ
.

Corollary 3.22. Consider a Polish space S with Borel σ-algebra BS. Let
µ0, µ

(1)
0 , µ

(2)
0 , . . . be diffuse probability measures over (S,BS), such that µ

(n)
0 converges

weakly to µ0 as n→∞. For n ≥ 1 let ρ(n) > 0, and let µ(n) ∼ D(
θ(n),µ

(n)
0

).

i) If θ(n) →∞, as n→∞, then µ(n) converges weakly in distribution to µ0.

ii) If θ(n) → 0, as n → ∞, then µ(n) converges weakly in distribution to δξ, where
ξ ∼ µ0.

Corollary 3.23. Let {x1,x2, . . . | µ}
iid∼ µ where µ ∼ D(θ,µ0). Fix n ≥ 1 and let

f : Sn → R be measurable function, then

E [f(x1, . . . ,xn)]

=
∑
A∈P[n]


∫
f(xl1 , . . . , xln)

k∏
j=1

∏
r∈Aj

1{lr=j} µ0(dx1) . . . µ0(dxk)

 θk
∏k

j=1(|Aj| − 1)!

(θ)n
,

(3.12)
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whenever the integrals in the right side exist, where k = |A| and A1, . . . , Ak stand for the
blocks of A ∈ P[n]. Moreover, if f is symmetric (and the integrals exist), equation 3.12
reduces to

E [f(x1, . . . ,xn)] =
n!

(θ)n

n∑
k=1

θk−1
∑

(m1,...,mn)∈Mk
n

1∏n
i=1(i)mi(mi!)

×

×
∫
f
(
x[n1,...,nk]

)
µ0(dx1) . . . µ0(dxk),

(3.13)
where Mk

n, and x[n1,...,nk] are as in Theorem 3.7.

Corollaries 3.21 and 3.22 are also proven by Ghosal and van der Vaart (2017), whilst
Corollary 3.23 was first proven by Yamato (1984), for the particular case of symmetric
functions and through a very complicated induction argument.

Before moving on we shall comment that a very important random variable which
summarizes relevant information about SSP is the number of distinct values, Kn, that

a sample from {x1, . . . ,xn | µ}
iid∼ µ exhibits. We have already mentioned this random

variable but we have not discussed it in detail. For the case where µ ∼ D(θ,µ0), from
Definition 3.7 it is easy to see that (Kn)n≥1 is a Markov chain such that K1 = 1 almost
surely, and for n ≥ 1

P[Kn+1 = x | Kn] =
n

θ + n
1{x=Kn} +

θ

θ + n
1{x=Kn+1}. (3.14)

The tower property of conditional expectation, this yields

E[Kn+1] =
1

n+ θ
(nE[Kn] + θ{E[Kn] + 1}) = E[Kn] +

θ

n+ θ
,

and by a simple induction argument we can compute

E[Kn] =
n∑
i=1

θ

i− 1 + θ
.

For most SSPs characterizing analytically the distribution of Kn is generally more com-
plicated or not feasible. In order to provide a sensible comparison between this and
other models, for all examples of SSPs we will illustrate the distribution of Kn by means
of numerical methods. That is, we will draw samples from Kn, and latter analyse the
frequency polygons (see Figure 19, below). For Dirichet processes, using equation 3.14,
we can easily sample from the marginal distribution of Kn, for n ≥ 1 and θ > 0, fixed.

Figure 19 illustrates how, for fixed n, the larger θ is, the bigger are the values favoured
by the distribution of Kn. This behaviour was already evident from Definition 3.7 and
equation 3.14. Another way to understand this effect is by focussing on the stick-breaking
construction. Indeed, larger values of θ translate to smaller length variables, which in
turn implies that even the larger weights tend to be small, thus providing samples from

{x1, . . . ,xn | µ}
iid∼ µ ∼ D(θ,µ0) that exhibit a wide variety of values.
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Figure 19: Frequency polygons of samples of size 10000 from the distribution of K10

(A), K20 (B), K40 (C) and K80 (D). For each fixed value of n we vary θ in the set
{0.5, 1, 3, 6, 10}.

3.6.2 Pitman-Yor process

The Pitman-Yor process was first introduced by Perman et al. (1992) and Pitman and
Yor (1992), and it is a generalization of the Dirichlet process. Pitman-Yor processes, that
are not Dirichlet processes, inherit to some extent the tractability of the particular case.
However, computations do tend to be more complicated, if feasible. For instance, to the
best of our knowledge, the finite dimensional distributions of these random probability
measures are not yet available. Other definitions provided in the former section can be
adjusted to cover this more general class.

Definition 3.10 (Pitman-Yor process, prediction rule, EPPF). Fix 0 ≤ σ < 1 and
θ > −σ. Let (S,BS) be a Borel space and consider a diffuse probability measure µ0 over
(S,BS). We say µ is a Pitman-Yor process with parameters (σ, θ, µ0) if it is a species
sampling process with base measure µ0 and corresponding EPPF, π, given by

π(n1, . . . , nk) =
(θ + σ)k−1↑σ

∏k
j=1(1− σ)nj−1

(θ + 1)n
,

for every sequence of positive numbers (n1, . . . , nk), where (x)m↑α =
∏m

i=1(x + iα),
and (x)m = (x)m↑1. Equivalently, we say µ is a Pitman-Yor process with parameters
(σ, θ, µ0), if it is the directing random measure of an exchangeable sequence (xi)i≥1 such
that x1 ∼ µ0 and for every n ≥ 1,

P[xn+1 ∈ · | x1, . . . ,xn] =
Kn∑
j=1

nj − σ
θ + n

δx∗j +
θ + σKn

θ + n
µ0
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where x∗1, . . . ,x
∗
Kn

are the Kn distinct values that {x1, . . . ,xn} exhibits, and for every
1 ≤ j ≤ Kn, nj = |{1 ≤ i ≤ n : xi = x∗j}|.

Definition 3.11 (Pitman-Yor process, stick-breaking). Fix 0 ≤ σ < 1 and θ > −σ. Let
(S,BS) be a Borel space and consider a diffuse probability measure µ0 over (S,BS). Let
(vi)i≥1 be an independent collection of random variables with vi ∼ Be(1−σ, θ+ iσ), and
set (wj)j≥1 = SB[(vi)i≥1]. To the stick-breaking process, µ, with base measure µ0 and
weights sequence (wj)j≥1, we call a Pitman-Yor process with parameters (σ, θ, µ0).

The fact that Definitions 3.10 and 3.11 describe the same SSP is a direct consequence
of Proposition 2.12. From now on, to the distribution of a Pitman-Yor process with
parameters (σ, θ, µ0) we denote by PY(σ,θ,µ0). As is the case of Dirichlet processes,
structural properties of Pitman-Yor processes follow easily from their definitions. The
proof of the following result is similar to that of Corollary 3.20.

Corollary 3.24. Let µ ∼ PY(σ,θ,µ0). Then µ is proper and it has full support.

From the Definition 3.10 we can derive the tie probability of Pitman-Yor process.
Indeed, for µ ∼ PY(σ,θ,µ0), its tie probability is given by

ρ = π(2) =
1− σ
θ + 1

. (3.15)

Note that as θ → ∞, or for fixed θ, as σ → 1, we get ρ → 0. Alternatively, if θ → −σ,
for fixed σ, we get ρ→ 1. So inserting this into the results in Sections 3.1, 3.2 and 3.3,
one can rewrite for Pitman-Yor processes, all the properties we have already derived for
general SSPs.

As to the random variables Kn = |Π(x1:n)| where {x1,x2, . . . | µ}
iid∼ µ ∼ PY(σ,θ,µ0),

analogously as in the Dirichlet case, we get (Kn)n≥1 is a Markov chain with Kn = 1
almost surely, and for n ≥ 1,

P[Kn+1 = x | Kn] =
n− σKn

θ + n
1{x=Kn} +

θ + σKn

θ + n
1{x=Kn+1}. (3.16)

From this we obtain the recursion

E[Kn+1] =
(n+ θ + σ)E[Kn] + θ

θ + n
,

which in turn yields

E[Kn] =
θ(θ + σ)n
σ(θ)n

− θ

σ
.

For Pitman-Yor processes it is relatively easy to compute P[Kn = x] for n ≥ 1 and
x ∈ [n] (see for instance Pitman; 2006). Despite this, in other to compare Pitman-Yor
processes to other models that do not enjoy this advantage, we illustrate the distribution
of Kn by drawing samples from it. Analogously as in the Dirichlet case we can draw
samples from this marginal distribution through equation 3.16. As observed in Figure
20, larger values of θ or σ impact the distribution of Kn with larger probabilities assigned
to bigger values. Once again, this should already be evident from Definition 3.10 and
equation 3.16.
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The fact that clustering probabilities are so simple to compute for Pitman-Yor pro-
cesses (including Dirichlet processes) is greatly influenced by the fact that their size-
biased permuted weights have a simple stick-breaking representation. As shown by
Pitman (1996a), the weights described in Definitions 3.9 and 3.11, are the only strictly
positive stick-breaking weights with independent length variables that are invariant in
distribution under size-biased permutations. This said it should not be surprising that
for other stick-breaking processes, the clustering probabilities are much harder to char-
acterize, whenever feasible.

Figure 20: Frequency polygons of samples of size 10000 from the distribution of K20 for
σ = 0.9 (A), σ = 0.6 (B), σ = 0.4 (C) and σ = 0.1 (D). For each fixed value of σ we vary
θ in the set {0.5, 1, 3, 6, 10}.

3.6.3 Geometric process

In contrast to Dirichlet and Pitman-Yor processes, for Geometric processes it is their
decreasingly ordered weights that have a simple stick-breaking representation. In fact it is
the simplicity of their decreasing weights what has made this model popular. Geometric
processes were introduced by Fuentes-Garćıa et al. (2010), here the authors presented
a construction of these SSPs by means of random sets and derived the stick-breaking
representation.

Definition 3.12 (Geometric process, stick-breaking). Let ν0 be a probability measure
over ([0, 1],B[0,1]) with ν0({0}) = 0. Consider a Borel space (S,BS) and a diffuse
probability measure µ0 over (S,BS). Let v ∼ ν0 and for every j ≥ 1 set wj = v(1−v)j−1,
so that (wj)j≥1 = SB[(vi)i≥1] where vi = v for every i ≥ 1. To the stick-breaking process,
µ, with base measure µ0 and weights sequence (wj)j≥1, we call a Geometric process with
parameters (ν0, µ0).
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Definition 3.13 (Geometric process, random sets). Let ν0 be a probability measure over
([0, 1],B[0,1]) with ν0({0}) = 0. Consider a Borel space (S,BS) and a diffuse probability
measure µ0 over (S,BS). Let v ∼ ν0 and let N be a random variable taking values in N
such that

P[N = n | v] = nv2(1− v)n−1 (3.17)

that is, conditionally given v, N is a displaced negative-binomial random variable with
parameters (2,v). Define the random set Ψ = {1, . . . ,N} and (wj)j≥1 through (3.9),
with τ = v. To the SSP, µ, with base measure µ0 and weights sequence (wj)j≥1, we call
a Geometric process with parameters (ν0, µ0).

Note that if (wj)j≥1 are as in Definition 3.13 then

wj = E
[

1

|Ψ|
1{j∈Ψ}

∣∣∣∣v] = E
[

1

N
1{j≤N}

∣∣∣∣v] =
∑
n≥j

v2(1− v)n−1 = v(1− v)j−1,

which shows that Definitions 3.12 and 3.13 describe the same SSP. To the distribution
of a Geometric process with parameters ν0 and µ0 we denote by G(ν0,µ0). Checking that
Geometric processes are proper is trivial. Also, if there exists 0 < ε < 1 such that (0, ε)
is contained in the support of ν0, then, for 0 < ε ≤ ε we get that (0, ε) is as well contained
in the support of ν0, and for ε < ε < 1 we have that ν0((0, ε)) > ν0((0, ε)) > 0, either
way for (wj)j≥1 as in Definition 3.12 we obtain

P
[
max
j≥1

wj < ε

]
= P[v < ε] = ν0((0, ε)) > 0.

Thus Corollary 3.12 together with the definition of Geometric processes prove the fol-
lowing result.

Corollary 3.25. Let µ ∼ G(ν0,µ0). Then µ is proper and, if there exists 0 < ε < 1 such
that (0, ε) is contained in the support of ν0, µ has full support.

In particular, if ν0 = Be(α, β) for some α, β > 0 we get µ ∼ G(ν0,µ0) has full support.
For Geometric processes it is very hard to compute the corresponding EPPF, while it is
possible to derive an expression for the tie probability, even this one has a complicated
expression in contrast to Pitman-Yor processes. Indeed, for µ ∼ G(ν0,µ0), with weights
as in Definition 3.12, its tie probability can be computed through

ρ =
∑
j≥1

E
[
(wj)

2] = E

[∑
j≥1

v2
{

(1− v)2
}j−1

]
= E

[
v2

1− (1− v)2

]
= E

[
v

2− v

]
.

Hence

ρ =
1

2

∫ 1

0

x

1− (x/2)
ν0(dx), (3.18)

and for ν0 = Be(α, β), the above expression reduces to

ρ =
Γ(α + β)

2Γ(α)Γ(β)

∫ 1

0

xα(1− x)β−1

1− (x/2)
dx =

2F1(1, α + 1;α + β + 1, 1/2)

2
(3.19)
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where 2F1 denotes the Gauss-hypergeometric function. Once more, by inserting this
quantity into previously derived results, one obtains a variety of basic properties for
Geometric processes.

Naturally, for µ ∼ G(ν0,µ0) the law of (Kn)n≥1 is also more challenging to characterize
than for Pitman-Yor processes. Despite the mathematical hurdles to overcome, there
have been advances in this topic recently. For instance, Mena and Walker (2012) showed
that conditioning on the length variable, v,

E[Kn | v] =
n∑
r=1

(−1)r−1

(
n

r

)
vr

1− (1− v)r
,

taking expectations in the above equation one can derive an expression for E[Kn]. Also,
De Blasi et al. (2020) analysed the asymptotic behaviour of Kn, for some decreasing
weights structures, including particular cases of Geometric processes. Figure 21 illus-
trates the distribution of Kn where µ ∼ G(ν0,µ0). In this case we do not have available

a prediction rule for {x1,x2, . . . | µ}
iid∼ µ, nor for (Kn)n≥1. However the construction

through random sets together with Proposition 3.17 gives us a sampling method that
does not requires truncating the weights sequence. To be more explicit, in other to draw
a sample for Kn we can first sample the length variable v ∼ ν0, then given v, sample
independently N1, . . . ,Nn from (3.17). Finally, independently for 1 ≤ i ≤ n, chose uni-
formly a random element of Ψi = {1, . . . ,Ni}, say di. This way the number of distinct
values in {d1, . . . ,dn} is precisely a sample of Kn.

Figure 21: Frequency polygons of samples of size 10000 from the distribution of K20

corresponding to µ ∼ G(Be(α,θ),µ0) for α = 0.7 (A), α = 1 (B), α = 3 (C) and α = 6 (D).
For each fixed value of α we vary θ in the set {0.5, 1, 3, 6, 10}.
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In Figure 21 we can observe that larger values of the second parameter, θ, of the
Beta distribution, translate to a tendency of Kn to take bigger values. Conversely,
smaller values of the first parameter, α, make the distribution of Kn tilt towards larger
values. This behaviour is consistent with the one observed for Dirichlet and Pitman-Yor
processes. In effect, small length variables lead to small values of the largest weights,
hence the corresponding species sampling process, generates diverse samples.

In contrast to the size-biased permutation, decreasingly ordered weights do not al-
low us to compute clustering probabilities in a direct way. However, working with the
decreasing representation of the weights do has important advantages, specially from an
operational perspective. An obvious benefit for decreasing sequences is that the first
weights are the ones that are the most representative, so for example, if truncation is
necessary, working with this representation of the weights will simplify the problem. An-
other enormous advantage is that the decreasing ordering reduces identifiability issues
that arise from Proposition 3.1, and the well-known label switching problem (see for
instance Mena and Walker; 2015). Ideally one would have available the distribution for
all permutations of the weights and be able to chose the ordering that performs better
in a given situation. Unfortunately, this is generally not the case and one is forced to
work with the representation of the weights that is the most accessible.

3.6.4 Other models

Each of the constructions described in Section 3.5, leads to generalizations or competitive
alternatives to Dirichlet, Pitman-Yor and Geometric processes. For instance, Gibbs-type
models are a natural generalization of the EPPF in Definition 3.10, as explained by
De Blasi et al. (2015). Gibbs-type priors are characterized by having an EPPF of the
form

π(n1, . . . , nk) = Vn,k

k∏
i=1

(1− σ)ni−1,

where σ < 1 and Vn,k is a function of k and n =
∑k

i=1 ni that satisfies the recursive
equation

Vn,k = (n− kσ)Vn+1,k + Vn+1,k+1.

These models share a close relation with product partition models as introduced by Har-
tigan (1990) and latter studied by Barry and Hartigan (1993) and Quintana and Iglesias
(2003), among others. Namely, a product partition model refers to the distribution of a
random partition, Πn, of {1, . . . , n} (not necessarily exchangeable) such that,

P[Πn = {A1, . . . , Ak}] ∝
k∏
i=1

p(Ai),

for some positive function, p, called cohesion function. As consequence of the work
by Gnedin and Pitman (2006), imposing the exchangeability constrain to a consistent
family of product partition models, we are left with a Gibbs-type prior. This partially
explains how complicated it can be to define a species sampling prior through its EPPF
outside the class of Gibbs-type models.

One of the most widely studied constructions of SSPs is through the normalization
of completely random measures. Perhaps the most famous example outside the Dirich-
let process, is the normalized inverse-Gaussian process characterized by the intensity
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measure

%(dx) =
exp{−x/2}
x
√

2xπ
dx.

For this random probability measure Favaro et al. (2012) derived a stick-breaking decom-
position. Also, Lijoi et al. (2005) and James et al. (2009) analysed clustering probabilities
related to normalized inverse-Gaussian processes. Further Bayesian non-parametric con-
tributions based on NRMI’s can be found in the work by Regazzini et al. (2003), Hjort
et al. (2010) and Ghosal and van der Vaart (2017).

Generalizing Dirichlet and Pitman-Yor processes, stick-breaking processes featuring
independent length variables have also been deeply studied (Pitman; 1996a; Ishwaran
and James; 2001). There are only a handful of cases (and not general classes) of stick-
breaking processes with explicit dependent length variables, the most notable example
being the normalized inverse Gaussian process (Favaro et al.; 2012). General results
concerning the dependent case have remained somehow elusive due to the mathematical
hurdles to be overcome. In Section 4, we present the first general treatment of stick-
breaking processes with dependent length variables, here we also define new Bayesian
non-parametric stick-breaking priors and implement them latter in Section 5.

As to the construction using random sets, to the best of our knowledge, it has not yet
been widely exploited. Outside the Geometric processes, further examples can be found
in the work of De Blasi et al. (2020) and Gil-Leyva (2021). Before we move on to the
main contribution of the present work, we shall mention that there are more interesting
constructions and examples of SSPs apart from the ones discussed in here, some of them
can be consulted in the work of Hjort et al. (2010), Phadia (2016), Castillo (2017) and
Ghosal and van der Vaart (2017).
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4 Stick-breaking processes with non-independent

length variables

In this section we investigate the general classes of stick-breaking processes with ex-
changeable and Markovian length variables. Both of these classes generalize Dirichlet
and Geometric processes. In fact, it is the following simple observation that motivate
our models. Recall that for a Dirichlet process, its size-biased permuted weights can

be decomposed as (wj)j≥1 = SB[(vi)i≥1] where (vi)i≥1
iid∼ Be(1, θ). As to Geometric

process, a simple stick-breaking representation is available for its decreasing weights,
(wj)j≥1 = SB[(v,v, . . .)], where v ∼ ν0. Now, the sequences of Dirichlet length vari-
ables, (vi)i≥1, and the one of Geometric length variables, (v,v, . . .), both have identically
distributed elements, furthermore, both are exchangeable. As explained at the beginning
of Section 2.1, for (vi)i≥1 its directing random measure is the deterministic distribution
Be(1, θ), and for (v,v, . . .) it is directed by δv. Also, both sequences are homogeneous
Markov processes, for the Dirichlet length variables we have that v1 ∼ Be(1, θ) and
its one-step transition is given by P[vn+1 ∈ dv | vn] = Be(dv | 1, θ), as for the Geo-
metric length variables we have v1 = v ∼ ν0 and the one-step transition is precisely
P[vn+1 ∈ dv | vn] = δvn(dv) = δv(dv). Other very important common features are
that both sequences lead to stick-breaking weights that sum up to one, and both define
stick-breaking processes with full support. A key difference between Dirichlet and Geo-
metric length variables, is that they lay in opposite sides of the spectrum in terms of the
dependence of their elements, while the elements in (vi)i≥1 are completely independent,
the entries of (v,v, . . .) are totally dependent. This annotation suggest that Dirichlet
and Geometric processes can be generalized by means of exchangeable sequences and
homogeneous Markov chains taking values in [0, 1]. Moreover, this generalization will
lead to general classes of priors for which Dirichlet and Geometric models are precisely
the extreme points.

The rest of this section is organized as follows, in Section 4.1 we investigate the gen-
eral class of stick-breaking processes with exchangeable length variables. Here we derive
conditions on the directing random measure of the length variables to assure the SSP
they define has full support and is proper. We also explain how to recover Dirichlet and
Geometric processes as weak limits of stick-breaking processes with exchangeable length
variables. For a wide subclass we compute the probability that consecutive weights
are decreasingly ordered and explain how the stochastic ordering of the weights can be
modulated by a single real-valued parameter, when the directing random measure of
the length variables is a SSP as well. We finish Section 4.1 by specializing the analysis
to the case where the length variables are directed by a Dirichlet process, and explain
how the results developed can also be specialized to the case where the length variables
are driven by a Pitman-Yor process or other interesting species sampling models. Sec-
tion 4.2 is concerned with stick-breaking processes whose length variables form a Markov
chain. Here we replicate the analysis of Section 4.1 for Markovian length variables. Infor-
mally the transition of the length variables plays similar role on Markov stick-breaking
processes than that of the directing measure of the length variables on exchangeable
stick-breaking processes. In Section 4.2.2 we derive conditions on the initial distribu-
tion and the transition of stationary Markov length variables so the SSP they define is
propper and has full support. We also explain how Dirichlet and Geometric processes
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can be recovered as weak limits of stick-breaking processes with Markovian length vari-
ables. Latter, Sections 4.2.3 and 4.2.4, present different examples of stationary Markov
processes of length variables that define proper SSPs with full support. We see that
for these special cases, the stochastic ordering of the weights can be modulated by a
single real-valued parameter, as well as how alike is the model to Dirichlet and Geomet-
ric process. In particular for the examples in Section 4.2.4 we will be able to compute
the probability that consecutive weights are decreasingly ordered. To finalize the prior
analysis of stick-breaking processes with non-independent length variables, in Section
4.3 we study non-stationary length variables, this automatically discards exchangeable
length variables, but if we relax the hypothesis that the Markovian length variables are
homogeneous and have a stationary distribution, will be able to study stick-breaking
processes with non identically distributed length variables. In fact a motivation for the
last kind of processes we study here is to generalize the models in Section 4.2 to contain
or approximate Pitman-Yor process in addition to Dirichlet processes. Now, the analysis
of stick-breaking processes with non-independent and non identically distributed length
variables can become arduous. For this reason we simply focus in generalizing the ex-
amples in Section 4.2.4. In effect Section 4.3 is meant to illustrate how the models in
Section 4.2 can be further generalized in interesting directions, and leave a path open
for future research.

4.1 Stick-breaking processes with exchangeable length vari-
ables

Our objects of study here are stick-breaking processes whose weights’ distribution re-
mains invariant under permutations of the length variables (Gil-Leyva and Mena; 2021).
We begin by defining this class of species sampling processes.

Definition 4.1. We call an exchangeable stick-breaking process (ESB) to any SSP as in
(3.1) whose weights (wj)j≥1 decompose as (wj)j≥1 = SB[(vi)i≥1] for some exchangeable
sequence (vi)i≥1 with [0, 1]-valued elements. To the corresponding weights, we call an
exchangeable stick-breaking weights sequence (ESBw).

From a Bayesian perspective, one of the first properties one should analyse is whether
a species sampling process has full support and if it is discrete almost surely. The
following result, gives sufficient conditions on the directing random measure and the
de Finetti measure of the exchangeable length variables so the respective ESB has full
support and is proper.

Theorem 4.1. Let µ be an ESB with weights (wj)j≥1 = SB[(vi)i≥1], for some exchange-

able sequence {v1,v2, . . . , | ν}
iid∼ ν, with ν0 = E[ν].

i) If there exist ε > 0 such that (0, ε) is contained in the support of ν0, then µ has
full support.

ii) µ is discrete almost surely if and only if ν({0}) < 1 almost surely.

The proof of Theorem 4.1, can be found in Appendix D.1. In this context, if
0 = ν0({0}) = E[ν({0})], we have that ν({0}) = 0 almost surely. Hence, a sufficient con-
dition to assure

∑
j≥1 wj = 1, is that 0 is not an atom of ν0, that is to say, P[vi = 0] = 0.
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For example, if ν0 = Be(a, b) for some a, b > 0, so that marginally vi ∼ Be(a, b), then 0
is not an atom of ν0. Furthermore, the support of a Be(a, b) distribution is [0, 1], which
means that the conditions given in (i) and (ii) of Theorem 4.1 are satisfied and we have
the following Corollary.

Corollary 4.2. Let µ be a species sampling process with weights collection, (wj)j≥1 =
SB[(vi)i≥1] for some exchangeable sequence (vi)i≥1, such that marginally vi ∼ Be(a, b).
Then, µ is proper and it has full support.

Notice that Geometric processes with a Beta distributed length variable and stick-
breaking processes featuring i.i.d. Beta lengths variables, including Dirichlet processes,
are all particular cases of the SSPs in Corollary 4.2. Our next convergence result (see
Appendix D.2 for a proof) explains how Geometric and Dirichlet processes can be recover
as limits of non-trivial ESBs.

Theorem 4.3. Let (S,BS) be a Polish space. For each n ≥ 1 consider a dif-

fuse probability measure, µ
(n)
0 , over (S,BS) and a random probability measure, ν(n),

over
(
[0, 1],B[0,1]

)
such that ν(n)({0}) < 1 almost surely. Let µ(n) be an ESB with

base measure µ
(n)
0 and length variables

{
v

(n)
1 ,v

(n)
2 . . .

∣∣∣ν(n)
}

iid∼ ν(n). Let us denote

V(n) =
(
v

(n)
i

)
i≥1

and set W(n) = SB
[
V(n)

]
. Say that as n → ∞, µ

(n)
0 converges

weakly to the diffuse probability measure µ0.

i) If ν(n) converges weakly in distribution to a deterministic probability measure ν0

with ν0 6= δ0, then µ(n) converges weakly in distribution to a stick-breaking process,

µ, with base measure µ0 and featuring independent length variables (vi)i≥1
iid∼ ν0, as

n → ∞. In particular if ν0 = Be(1, θ), the limit µ ∼ D(θ,µ0), and W(n) converges
in distribution to the size-biased permuted weights of µ.

ii) If ν(n) converges weakly in distribution to δv for some [0, 1]-valued random variable
v ∼ ν0, where ν0({0}) = 0. Then, as n→∞, µ(n) converges weakly in distribution
to µ ∼ G(ν0,µ0), and W(n) converges in distribution to the decreasingly ordered
weights of µ.

Before we move on to some examples and special sub-classes of ESBs, recall that some
important quantities related to stick-breaking process can be written in terms of expec-

tations of power products of length variables, E
[∏k

j=1 v
aj
j (1− vj)

bj

]
, for non-negative

integers (aj, bj)
k
j=1. For instance, equations (3.6), (3.7) and (3.8) illustrate this for the tie

probability, the EPPF and the pEPPF, respectively. This is why throughout this section

we will be placing emphasis in computing the quantities E
[∏k

j=1 v
aj
j (1− vj)

bj

]
. In par-

ticular, if the length variables are exchangeable, for any non-negative integers (aj, bi)
k
j=1,

we have that

E

[
k∏
j=1

v
aj
j (1− vj)

bj

]
=

∫ { k∏
j=1

∫
vaj(1− v)bjν(dv)

}
Q(dν) (4.1)

where Q is the distribution of directing random measure of (vi)i≥1.
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Example 4.1. Fix α, θ > 0 and let v ∼ Be(α, θ). Also fix κ ∈ N and consider {z | v} ∼
Bin(κ,v), so that marginally

P[z = z] =
(α)z(θ)κ−z
(α + θ)κ

,

for every z ∈ {0, . . . , κ}. Now, let {v1,v2, . . . | z}
iid∼ Be(α+ z, θ+κ− z). Clearly (vi)i≥1

is exchangeable, and from the Beta-Binomial conjugate model we get that the marginal
distribution of vi is precisely a Be(α, θ) distribution. This means, by Corollary 4.2, that
any SSP with length variables (vi)i≥1, is proper and has full support. Moreover, by (4.1)
we can compute for any k ≥ 1 and non-negative integers (aj, bj)

k
j=1,

E

[
k∏
j=1

v
aj
j (1− vj)

bj

]

=
κ∑
z=0

{
k∏
j=1

Γ(α + θ)

Γ(α)Γ(θ)

∫
vα+z+aj−1(1− v)θ+κ−z+bj−1dv

}
(α)z(θ)κ−z
(α + θ)κ

=
κ∑
z=0

{
k∏
j=1

(α)z+aj(θ)κ−z+bj
(α + θ)κ+aj+bj

}
(α)z(θ)κ−z
(α + θ)κ

.

Hence for the corresponding pEPPF we obtain

π′(n1, . . . , nk) =
κ∑
z=0

{
k∏
j=1

(α)z+nj−1(θ)κ−z+mj
(α + θ)κ+mj−1−1

}
(α)z(θ)κ−z
(α + θ)κ

.

where mj =
∑

i>j ni. This shows that generally (wj)j≥1 = SB[(vi)i≥1] is not invariant
under size-biased permutations because π′ is not a symmetric function.

To illustrate Theorem 4.3, consider v ∼ Be(α, θ) as above, and for each κ ∈
{0, 1, 2, . . .} let

{
z(κ)

∣∣v} ∼ Bin(κ,v), with the convention Bin(0,v) = δ0. Set{
v

(κ)
1 ,v

(κ)
2 , . . .

∣∣∣ z(κ)
}

iid∼ Be
(
α + z(κ), θ + κ− z(κ)

)
, so that the directing random measure

of V(κ) =
(
v

(κ)
i

)
i≥1

is precisely ν(κ) = Be
(
α + z(κ), θ + κ− z(κ)

)
. It is easy to show (see

Lemma 4.16 below) that ν(κ) converges weakly in distribution to δv as κ → ∞. Thus,
the second part of Theorem 4.3 proves that the ESBs, µ(κ), with length variables V(κ),
and base measure µ

(κ)
0 converge weakly in distribution to µ(∞) ∼ G(Be(α,θ),µ0) as κ→∞,

whenever the base measures
(
µ

(κ)
0

)
κ≥1

converge weakly µ0. Also the choice κ = 0 yields

ν(κ) = ν(0) = Be(α, θ). Particularly if α = 1, we get that the ESB, µ(0), with length
variables V(0) is a Dirichlet process.

4.1.1 Exchangeable stick-breaking processes driven by species sampling
models

As previously explained, SSPs are very flexible models, recall that these ones constitute
the class of random probability measures with exchangeable increments with respect
to diffuse finite measures. Moreover, depending on the distribution of the atoms and
weights of an SSP, its weak topological support can be as wide as the complete space
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of probability measures over the measurable space where they are defined. Since we are
interested in stick-breaking processes featuring exchangeable length variables, it seems
sensible to analyse the special case where the length variables are driven by some SSP
themselves. To be precise, we will study ESBs denoted by µ, with length variables

{v1,v2, . . . | ν}
iid∼ ν, where ν is a SSP over

(
[0, 1],B[0,1]

)
. In this instance, we simply

say µ is an ESB driven by the SSP ν (see Figure 22 for an illustration of the underlying
dependence structure of µ). To avoid confusion we denote the EPPF corresponding to
ν by πν , its tie probability by ρν and its base measure by ν0.

Figure 22: Underlying dependence structure of an ESB, µ, driven by a species sampling
process, ν.

Note that in Figure 22 we assumed the ESB, µ, driven by the SSP, ν, is proper,
this is justified by the second part of Theorem 4.1. Indeed, as ν is a SSP, by definition
its base measure, ν0 = E[ν] is required to be diffuse, thus ν({0}) = 0 almost surely,
and Theorem 4.1 (ii) yields µ is proper. By Theorem 4.1 (i) we also know that if (0, ε)
belongs to the support of the base measure, ν0, for some 0 < ε < 1, then µ has full
support. This is summarized by the following result.

Corollary 4.4. Let µ be an ESB driven by a SSP ν with base measure ν0. Then

i) µ is discrete almost surely.

ii) If there exist 0 < ε < 1 such that (0, ε) belongs to the support of ν0, µ has full
support. In particular if ν0 = Be(α, θ), µ has full support.

Now, putting together Theorems 3.4 and 4.3 we get that modulating the tie probabil-
ity, ρν , of the underlying SSP, ν, we can arbitrarily approximate Dirichlet and Geometric
processes by means of ESBs driven by SSPs. This is a very appealing result in contrast
to the general version, while Theorem 4.3 modulates the convergence through random
probability measures, which can be infinite dimensional, the next Corollary controls the
convergence is terms of a single number, ρν ∈ [0, 1].
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Corollary 4.5. Let (S,BS) be a Polish space. Consider some diffuse probabil-

ity measures µ0, µ
(1)
0 , µ

(2)
0 , . . ., over (S,BS), and some diffuse probability measures,

ν0, ν
(1)
0 , ν

(2)
0 , . . ., over

(
[0, 1],B[0,1]

)
. Say that as n → ∞, µ

(n)
0 converges weakly to µ0

and ν
(n)
0 converges weakly to ν0. For n ≥ 1, let ρ

(n)
ν ∈ (0, 1), and consider the ESB µ(n)

with base measure µ
(n)
0 , and length variables

{
v

(n)
1 ,v

(n)
2 . . .

∣∣∣ν(n)
}

iid∼ ν(n), where ν(n) is

a SSP with base measure ν
(n)
0 and tie probability ρ

(n)
ν . Also consider the stick-breaking

weights of µ(n), W(n) = SB
[
V(n)

]
, where V(n) =

(
v

(n)
i

)
i≥1

.

i) If ρ
(n)
ν → 0, as n → ∞, then µ(n) converges weakly in distribution to a stick-

breaking process, µ, with base measure, µ0, and independent length variables

(vi)i≥1
iid∼ ν0. Particularly, if ν0 = Be(1, θ), µ ∼ D(θ,µ0) and W(n) converges in

distribution to the size-biased permuted weights of µ.

ii) If ρ
(n)
ν → 1, as n→∞, then µ(n) converges weakly in distribution to µ ∼ G(ν0,µ0),

and W(n) converges in distribution to the decreasingly ordered weights of µ.

Corollary 4.5 has major consequences when it comes to understand the ordering of

the weights of an ESB. For general ESB’s with length variables, {v1,v2, . . . | ν}
iid∼ ν,

we have that

E[wj+1] = E

[
vj

j∏
i=1

(1− vi)

]
= E

[
E[v1 | ν](1− E[v1 | ν])j

]
≤ E

[
E[v1 | ν](1− E[v1 | ν])j−1

]
= E[wj],

that is the expected weights are decreasing. In most cases this is not true for the weights
themselves. One of the most interesting features about ESBs driven by SSPs is that,
for a fixed base measure, ν0, by simply tuning the tie probability, we can modulate
how likely are the weights to be decreasing. Moreover, as the following theorem shows
(see Appendix D.3 for a proof) the probability that consecutive weights are decreasing,
ranges from a quantity determined by the underlying base measure and one.

Theorem 4.6. Fix a diffuse probability measure ν0 over
(
[0, 1],B[0,1]

)
. For each ρν ∈

(0, 1), let
{

v
(ρν)
1 ,v

(ρν)
1 , . . . | ν(ρν)

}
iid∼ ν(ρν), for some SSP, ν(ρν), with base measure ν0,

and tie probability ρν. Set
(
w

(ρν)
j

)
j≥1

= SB

[(
v

(ρν)
i

)
i≥1

]
. Then, for every j ≥ 1,

a) P
[
w

(ρν)
j ≥ w

(ρν)
j+1

]
= ρν + (1 − ρν)E [−→ν0(c(v))], where c(v) = 1 ∧ v(1 − v)−1 for

every v ∈ [0, 1], v ∼ ν0, and −→ν0 is the distribution function of ν0, that is −→ν0(x) =
ν0([0, x]).

b) The mapping ρν 7→ P
[
w

(ρν)
j ≥ w

(ρν)
j+1

]
is continuous and non-decreasing. Partic-

ularly, if (0, ε) is contained in the support of ν0, for some ε > 0, the mapping,

ρν 7→ P
[
w

(ρν)
j ≥ w

(ρν)
j+1

]
, is strictly increasing.

c) As ρν → 1, P
[
w

(ρν)
j ≥ w

(ρν)
j+1

]
→ 1, and as ρν → 0, P

[
w

(ρν)
j ≥ w

(ρν)
j+1

]
→

E [−→ν0(c(v))], where c, −→ν0 and v are as in (a).

96



d) For every ρν ∈ (0, 1), P
[
w

(ρν)
j ≥ w

(ρν)
j+1

]
≥ E [−→ν0(c(v))], where c, −→ν0 and v are as

in (a).

Suprisingly, comparing (b) of Theorem 4.6 and (ii) in Corollary 4.4, we found that
the requirement over the base measure, ν0, that assures the ESB has full support, also

guarantees the mapping, ρν 7→ P
[
w

(ρν)
j ≥ w

(ρν)
j+1

]
, is strictly increasing. That is, for

most ESBs of interest we will have that the probability that consecutive weights are
decreasingly ordered grows with underlying tie probability, ρν . As previously mentioned,
this is the case of ν0 = Be(a, b). In Section 4.1.2 below, we will further specialize Theorem
4.6 for the case ν0 = Be(1, θ). For now, we shall highlight that if ν0 = Be(1, θ), as a
consequence of Corollary 4.5, we know that as ρν → 0 the corresponding weights converge
in distribution to size-biased permuted weights. This is not true for other choices of ν0,
what remains true for any diffuse probability measure, ν0 is that if ρν → 1, the weights
in question converge in distribution to decreasing weights. Recall that the ordering of
the weights has important consequences when it comes to modelling, for example if the
interest is in clustering, working with size-biased ordered weights can be advantageous,
in contrast, working with decreasingly ordered weights reduces identifiability problems
that arise from the invariance of the prior under permutations of its weights.

For the weights, (wj)j≥1 = SB[(vi)i≥1], where (vi)i≥1 is driven by a SSP, another
quantity that can be easily computed is the conditional probability

P[wj+1 ≤ wj | w1, . . . ,wj] = P[vj+1 ≤ c(vj) | v1, . . . ,vj],

where c is as in Theorem 4.6 (a). First of all, to see that these probabilities are equal
(almost surely), note that from the stick-breaking decomposition of the weights we get
wj+1 ≤ wj if and only if vj+1 ≤ vj(1 − vj)

−1, which in turn is equivalent to vj+1 ≤
c(vj). It is also straight forward from the stick-breaking construction that (w1, . . . ,wj)
is (v1, . . . ,vj)-measurable. Conversely, the proof Proposition 3.13 yields (v1, . . . ,vj) is
(w1, . . . ,wj)-measurable as well, when 0 < vi < 1 almost surely for every i ≥ 1, this
is of course the case of ESBs, because the underlying base measure is diffuse. Now,
since (vi)i≥1 is sampled from a SSP, we already know from Theorem 3.6 how to compute
P[vj+1 ≤ c(vj) | v1, . . . ,vj], and we obtain our following result.

Theorem 4.7. Let ν be a species sampling process over
(
[0, 1],B[0,1]

)
, with base measure

ν0 and EPPF πν. Consider {v1,v2, . . . | ν}
iid∼ ν and define (wj)j≥1 = SB[(vi)i≥1]. Set c

and −→ν0 as in Theorem 4.6. Then

P[wn+1 ≤ wn | w1, . . . ,wn] = P[vn+1 ≤ c(vn) | v1, . . . ,vn]

=
Kn∑
j=1

πν
(
n(j)
)

πν(n)
1{v∗j≤c(vn)} +

πν
(
n(Kn+1)

)
πν(n)

−→ν0(c(vn)),

where v∗1, . . . ,v
∗
Kn

are the distinct values that {v1, . . . ,vn} exhibits, n = (n1, . . .nKn)
is given by nj = |{i ≤ n : vi = v∗j}|, n(j) = (n1, . . .nj−1,nj + 1,nj+1, . . . ,nKn) and

n(Kn+1) = (n1, . . . ,nKn , 1).

A variety of properties of exchangeable length variables driven by SSPs are described
in Section 3.3, for example from Corollary 3.9 we can compute some conditional moments.
An specially important property is described in Theorem 3.7, as it allows to derive
expectations of power products of length variables.
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Theorem 4.8. Consider the length variables {v1,v2, . . . | ν}
iid∼ ν, for some species

sampling process, ν, with base measure ν0 and EPPF πν. Then, for every sequence of
non-negative integers (aj, bj)

k
j=1,

E

[
k∏
j=1

v
aj
j (1− vj)

bj

]
=

∑
{A1,...,Am}

πv(|A1|, . . . , |Am|)×

×
m∏
j=1

{∫
[0,1]

(v)
∑
i∈Aj

ai(1− v)
∑
i∈Aj

bi ν0(dv)

}
,

(4.2)

where the sum ranges over the set of all partitions of {1, . . . , k}. In particular if ν0 =
Be(α, θ), the integrals in (4.2) reduce to∫

[0,1]

(v)
∑
i∈Aj

ai(1− v)
∑
i∈Aj

bi ν0(dv) =
Γ(a+ b)Γ(a+

∑
i∈Aj ai)Γ(b+

∑
i∈Aj bi)

Γ(a)Γ(b)Γ(a+ b+
∑

i∈Aj(ai + bi))
.

Inserting (4.2) into equations (3.6) and (3.7) we obtain expressions for the tie, ρ,
probability and the EPPF , π, corresponding to the ESB µ. Unfortunately, these are
rather hard to manage as are written in terms of infinitely many unordered sums. Also,
inserting (4.2) into (3.8) we obtain an expression for the pEPPF corresponding to the
weights. Although the pEPPF is also expressed through an unordered sum, it does
not has infinitely many terms. As we will see in Section 5, this quantity has a nice
interpretation in terms of the so-called latent allocation variables, which in turn provide
an alternative to analyse clusters when the EPPF is not available (Fuentes-Garćıa et al.;
2019).

Clearly, Dirichlet and Geometric processes are two examples ESBs driven by SSPs.

Indeed, the sequences of length variables (vi)i≥1
iid∼ Be(1, θ) and (v,v, . . .) are both

exchangeable and driven by the trivial SSPs ν = Be(1, θ), with tie probability ρν = 0
and ν = δv, with tie probability ρν = 1, respectively. Next we focus in a sub-class of
ESBs driven by a SSP, to which Dirichlet and Geometric processes do not belong, but
can still be recovered as weak limits.

4.1.2 Dirichlet driven stick-breaking processes

ESBs driven by SSPs remain too general to specify a Bayesian non parametric prior.
As mentioned in Section 3.6.1, the Dirichlet process is the canonical example of SSPs in
Bayesian literature, mainly due to its mathematical tractability. So here we specialize
to exchangeable length variables, V = (vi)i≥1, driven by a Dirichlet process, ν ∼ D(β,ν0),
with total mass parameter β and base measure ν0. For the sake of a simpler analysis,
and motivated by Corollary 4.2 and by the first part of Corollary 4.5, we will further
concentrate in the case ν0 = Be(1, θ).

Definition 4.2. Let (S,BS) be a Borel space and consider a diffuse probability measure,
µ0, over (S,BS). Let ν ∼ D(β,ν0) where ν0 = Be(1, θ). To the SSP, µ, with base measure

µ0 and exchangeable length variables, {v1,v2, . . . | ν}
iid∼ ν, we call a Dirichlet driven

stick-breaking process (DSB) with parameter (β, θ, µ0), to its distribution we denote by
DSB(β,θ,µ0). The weights sequence, W = (wj)j≥1 = SB[(vi)i≥1], will be referred to as
Dirichlet driven stick-breaking weights sequence (DSBw) with parameters (β, θ).
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The choice ν0 = Be(1, θ), not only guaranties that the corresponding species sampling
process is proper and has full support, but also allows us to recover Geometric and
Dirichlet processes in the weak limits as β → 0 (ρν = 1/(β + 1) → 1) and β → ∞
(ρν = 1/(β + 1)→ 0), respectively.

Corollary 4.9. Let (S,BS) be a Polish space and let µ0, µ
(1)
0 , µ

(2)
0 be diffuse probability

measures over (S,BS) such that µ
(n)
0 converges weakly to µ0, as n→∞. For each n ≥ 1

let β(n), θ(n) ∈ (0,∞), with θ(n) → θ in (0,∞). Let µ(n) ∼ DSB(
β(n),θ(n),µ

(n)
0

) and let

W(n) be the corresponding DSBw with parameters
(
β(n), θ(n)

)
.

i) If β(n) →∞, as n→∞, then µ(n) converges weakly in distribution to µ(∞), where
µ(∞) ∼ D(θ,µ0), and W(n) converges in distribution to the size-biased permutation
of the weights of µ(∞).

ii) If β(n) → 0, as n → ∞, then µ(n) converges weakly in distribution to µ(0), where
µ(0) ∼ G(Be(1,θ),µ0), and W(β) converges in distribution to the decreasingly ordered
weights of µ(0).

Corollary 4.9 follows immediately from Corollary 4.5 by substituting ρ
(n)
ν =

1/
(
1 + β(n)

)
. As to the ordering of DSBw’s, we have the following Corollary of Theorems

4.6 and 4.7 (see Appendix D.4, for details in calculations).

Corollary 4.10. Fix θ > 0, and for each β > 0, consider a DSBw,
(
w

(β)
j

)
j≥1

=

SB

[(
v

(β)
i

)
i≥1

]
, with parameters (β, θ). Let us denote by 2F1 to the Gauss hypergeometric

function. Then, for every j ≥ 1,

a) P
[
w

(β)
j ≥ w

(β)
j+1

]
= 1− 2F1(1, 1; θ + 2, 1/2)βθ

2(β + 1)(θ + 1)
, for every β > 0.

b) The mapping β 7→ P
[
w

(β)
j ≥ w

(β)
j+1

]
is continuous and strictly decreasing.

c) As β →∞, P
[
w

(β)
j ≥ w

(β)
j+1

]
→ 1− 2F1(1, 1; θ + 2, 1/2)θ

2(θ + 1)
.

d) As β → 0, P
[
w

(β)
j ≥ w

(β)
j+1

]
→ 1.

e) P
[
w

(β)
j ≥ w

(β)
j+1

]
≥ 1− 2F1(1, 1; θ + 2, 1/2)θ

2(θ + 1)
, for every β > 0.

f) P
[
w

(β)
j ≥ w

(β)
j+1

∣∣∣w(β)
1 , . . . ,w

(β)
j

]
=

1

β + j

∑
i∈Aj

ni + β

[
1−

(
1− c

(
v

(β)
j

))θ],

where Aj =
{
i ≤ Kj : v∗i ≤ c

(
v

(β)
j

)}
, c(v) = 1 ∧ v(1 − v)−1, v∗1, . . . ,v

∗
Kj

are

the distinct values that {v(β)
1 , . . . ,v

(β)
j } exhibits, and ni =

∣∣∣{k ≤ j : v
(β)
k = v∗i

}∣∣∣.
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In the context of Corollary 4.10, if the length variables of the DSBw’s are marginally
Unif(0, 1) distributed, so that θ = 1, we obtain

1 ≥ P
[
w

(β)
j ≥ w

(β)
j+1

]
=

1 + β log(2)

1 + β
≥ log(2)

and

P
[
w

(β)
j ≥ w

(β)
j+1

∣∣∣w(β)
1 , . . . ,w

(β)
j

]
=

1

β + j

∑
i∈Aj

ni + βc
(
v

(β)
j

) ,

for every β > 0 and j ≥ 1, where Aj, ni and c are as in (f).
Another quantities that simplifies nicely for DSBs are the expectations of power

product of length variables, which in turn allow the derivation of an expression for
clustering probabilities.

Corollary 4.11. Consider the length variables {v1,v2, . . . | ν}
iid∼ ν, where ν ∼

D(β,Be(1,θ)). Then, for every sequence of non-negative integers (aj, bj)
k
j=1,

E

[
k∏
j=1

v
aj
j (1− vj)

bj

]
=

∑
{A1,...,Am}

(βθ)m

(β)k

m∏
j=1

(|Aj| − 1)! (
∑

i∈Aj ai)!

(θ +
∑

i∈Aj bi)1+
∑
i∈Aj

ai

, (4.3)

where the sum ranges over the set of all partitions of {1, . . . , k}. In particular, if θ = 1,

E

[
k∏
j=1

v
aj
j (1− vj)

bj

]
=

∑
{A1,...,Am}

βm

(β)k

m∏
j=1

(|Aj| − 1)! (
∑

i∈Aj ai)! (
∑

i∈Aj bi)!

(1 +
∑

i∈Aj(ai + bi))!
.

To illustrate Corollaries 4.9 and 4.10, in Figure 23 we show some simulations of
Dirichlet driven length variables and the corresponding stick-breaking weights sequences
for distinct values of ρν = 1/(1+β). In A.v and B.v we can observe that for larger values
of ρν (denoted by ρ in the images), the length variables tend to repeat values more often,
this then leads to weights (A.w and B.w) than are more likely to be decreasingly ordered.
Conversely smaller values of the tie probability make the length variables more likely to
be sampled independently of previous length variables, thus the corresponding weights
tend to behave similarly to the Dirichlet size-biased weights. Figure 24 also illustrates
the convergence in Corollary 4.9 through the distribution the number of distinct values,

Kn = |Π(x1:n)|, that a sample from {x1, . . . ,xn | µ}
iid∼ µ exhibits, where µ is a DSB.

As is the case of most priors for which the distribution of the size-biased permuted
weights is not available, for DSBs the distribution of Kn is very hard to characterize
analytically. Despite, whenever one can sample from the finite dimensional distributions
of the weights, (w1, . . . ,wm), drawing samples from Kn is relatively simple, as explained

here. First sample (uk)
n
k=1

iid∼ Unif(0, 1), and w1, . . .wm up the first index, m, that
satisfies

∑m
j=1 wj > maxk uk. Define dk = i, if and only if

∑i−1
j=1 wj ≤ uk <

∑i
j=1 wj,

with the convention that the empty sum equals zero. Finally, note that the number of
distinct values in {d1, . . . ,dn}, is precisely a sample from Kn. Evidently, to obtain a
sample of w1, . . . ,wm, it suffices to sample the length variables, v1, . . .vm. For a DSBw
this can be easily done using the prediction rule of the Dirichlet driven length variables.
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Figure 23: Simulations (A.v,B.v) of {v1, . . . ,v20 | ν}
iid∼ ν ∼ D(β,ν0) with ν0 = Be(1, θ) for

distinct values of ρν = 1/(β+1). ρν , denoted by ρ, in the image was fixed to 0, 0.2, 0.5, 0.8
and 1. A.w and B.w show the corresponding DSBw’s (wj)

20
j=1 = SB[(vj)

20
j=1].
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Figure 24: Frequency polygons of samples of size 10000 from the distribution of K20

corresponding to a DSB prior with ρν = 1 (A), ρν = 0.8 (B), ρν = 0.6 (C), ρν = 0.4
(D), ρν = 0.2 (E) and ρν = 0 (F). For each fixed value of ρν we vary θ in the set
{0.5, 1, 3, 6, 10}.

Let us denote by K
(β,θ)
n to the random variable, Kn, corresponding to a DSB with

parameters (β, θ, µ0), for simplicity when β = 0 and β = ∞ we refer to a Geometric

and Dirichlet process, respectively. In Figure 24, we exhibit the distribution of K
(β,θ)
n

for different choices of β and θ and for n = 20, recall that β = (1 − ρν)/ρν . Inhere, we

observe a graphical representation of how K
(β,θ)
n

d→ K
(0,θ)
n as β → 0 and K

(β,θ)
n

d→ K
(∞,θ)
n

as β → ∞. In the same figure we see that an increment on β contributes to the
distribution of K

(β,θ)
n with a smaller mean and variance. Conversely, decreasing the

value of β, impacts the prior distribution of K
(β,θ)
n with a larger mean and variance, and

a heavier right tail, say less informative. Consistently with the observations for other
models (see Figures 19, 20 and 21), for DSBs we appreciate that for a fixed value of
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ρν = 1/(1 + β), an increment on θ makes the distribution of K
(β,θ)
n favour larger values.

This due to the fact that marginally vi ∼ Be(1, θ), so bigger values θ suggest smaller
length variables, which translate to small values even for the largest weights, this in turn
means that samples from the corresponding DSBs are diverse. That is to say, if θ is

large, samples from {x1,x2, . . . | µ}
iid∼ µ ∼ DSB(β,θ,µ0) take a wide variety of distinct

values.

4.1.3 Models beyond Dirichlet driven stick-breaking processes

The generality of Section 4.1.1 allows us to construct a great variety of new Bayesian non-
parametric priors. In fact, for every known species sampling process, ν, with available
EPPF, πν and tie probability, ρν , the analysis in Section 4.1.1 can be carried out, thus
leading to a complete analysis of a new model. This is the case of Gibbs-type priors
(e.g. De Blasi et al.; 2015), and some normalized random measures with independent
increments (James et al.; 2009).

To provide another concrete example, let us consider the case where ν is a Pitman-
Yor process (see Section 3.6.2) with parameters α ∈ [0, 1) and β > −σ. Recall that for
this species sampling process its tie probability is

ρν = πν(2) =
1− α
β + 1

. (4.4)

Hence, for stick-breaking weights (wj)j≥1 = SB[(vi)i≥1], where {v1,v2, . . . | ν}
iid∼ ν ∼

PY(α,β,ν0) by substituting (4.4) into Theorem 4.6 we obtain,

P[wj ≥ wj+1] =
1− α + (β + α)E [−→ν0(c(v))]

β + 1
,

for every j ≥ 1, where −→ν0 and c are as in the same theorem. For the special case
ν0 = Be(1, θ), the probability in question simplifies to

P[wj ≥ wj+1] = 1− 2F1(1, 1; θ + 2, 1/2)(β + α)θ

2(β + 1)(θ + 1)
,

and if θ = 1 we even get

P[wj ≥ wj+1] =
1− α + (β + α) log(2)

β + 1
.

Note that, by (4.4), as β → ∞ or α → 1 and β → β′ ∈ (−1,∞) we get ρν → 0.
Alternatively, as α → α′ ∈ [0, 1) and β → −α′, the tie probability ρν → 1. Therefore,
Corollary 4.5 assures that by means of Pitman-Yor driven ESBs we can approximate
(weakly in distribution) Dirichlet and Geometric process. This last assertion is not
true for all sub-classes of ESBs with underlying species sampling process. In fact, if ν
represents a normalized inverse-Gaussian random measure, with total mass parameter
β > 0, as proved by Lijoi et al. (2005), its tie probability is

ρν =
1

2
[1 + β2eβE1(β)− β],
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where E1(β) =
∫∞
β
x−1e−xdx is the exponential integral. Using the inequality

e−β

2
log

(
1 +

2

β

)
< E1(β) < e−β log

(
1 +

1

β

)
,

it can be shown as β → ∞, ρν → 0, and as β → 0, ρν → c ≤ 1/2. Thus Geometric
processes can not be recovered as weak limits of ESBs with normalized inverse-Gaussian
processes as the directing random measure of the length variables.

Back to Pitman-Yor driven ESBs, using the prediction rule of Pitman-Yor processes

and Theorem 4.7, for (wj)j≥1 = SB[(vi)i≥1], where {v1,v2, . . . | ν}
iid∼ ν ∼ PY(α,β,ν0), we

can compute the conditional probability

P[wn+1 ≤ wn | w1, . . . ,wn] =
Kn∑
j=1

nj − α
θ + n

1{v∗j≤c(vn)} +
θ + αKn

θ + n
−→ν0(c(vn))

=
1

θ + n

{∑
j∈An

nj − |An|α + (θ + αKn)−→ν0(c(vn))

}
,

where c, −→ν0 , Kn, v∗1, . . . ,v
∗
Kn

and n1, . . . ,nKn are as is the same theorem, and An =
{j ≤ Kn : v∗j ≤ c(vn)}. For these length variables, recalling the EPPF of ν,

πν(n1, . . . , nk) =
(β + α)k−1↑α

∏k
j=1(1− α)nj−1

(β + 1)n−1

,

and using (4.2), we can also compute for any non-negative integers (aj, bj)
k
j=1,

E

[
k∏
j=1

v
aj
j (1− vj)

bj

]
=

∑
{A1,...,Am}

(β + α)m−1↑α
∏m

j=1(1− α)|Aj |−1

(β + 1)k−1

×

×
m∏
j=1

{∫
[0,1]

(v)
∑
i∈Aj

ai(1− v)
∑
i∈Aj

bi ν0(dv)

}
,

where the sum ranges over the set of all partitions of {1, . . . , k}. In particular, if ν0 =
Be(1, θ), the above even reduces to

E

[
k∏
j=1

v
aj
j (1− vj)

bj

]
=

∑
{A1,...,Am}

θm(β + α)m−1↑α

(β + 1)k−1

m∏
j=1

(1− α)|Aj |−1 (
∑

i∈Aj ai)!

(θ +
∑

i∈Aj bi)1+
∑
i∈Aj

ai

.

There are also interesting choices of ν, outside Bayesian non-parametric priors. For
example, one might consider the species sampling process with finitely many atoms

ν = α

κ∑
j=1

pjδv∗j + (1−α) ν0,

for some κ ∈ N and where pj ≥ 0,
∑κ

j=1 pj = 1 and α is an independent random
variable taking values in [0, 1]. The advantage of such a measure is that, depending on
the distribution of (pj)

κ
j=1 and α, the EPPF, πν , could be relatively simple to derive,
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as well as the tie probability which can be computed through ρν = E [α2]
∑κ

j=1 E
[
p2
j

]
.

Noting that at no point did we required the underlying species sampling process, ν, to be

proper, the choice α < 1 almost surely, would imply that {v1,v2, . . . | ν}
iid∼ ν exhibits

exactly κ values that repeat infinitely often and that there are infinitely many indexes i
that contribute to (Π(v1:n))n≥1 as a singleton. For example if

ν = αδv∗ + (1−α)Be(1, θ),

where v∗ ∼ Be(1, θ), there would be exactly one value, v∗ in {v1,v2, . . . | ν}
iid∼ ν that

repeats infinitely often and infinitely many vi’s that are sampled independently from
a Be(1, θ) distribution. In other words, with probability α, vi is a length variable of a
Geometric process, and with probability 1−α it is sampled as if it were a length variable
of a Dirichlet process. Hence, even this extremely simple species sampling process, ν, can
lead to interesting ESBs that are some kind of hybrids between Dirichlet and Geometric
process. The general analysis in Section 4.1.1, also covers this simple scenario.

4.2 Stick-breaking processes with Markovian length variables

As mentioned at the begining of Section 4, Dirichlet length variables, (vi)i≥1
iid∼ Be(1, θ),

and Geometric length variables (v,v, . . .) are not only exchangeable, but are also trivial
Markov processes. The objective here is to replicate the analysis we did for ESBs but
this time considering stick-breaking processes with Markovian length variables. For the
exchangeable case, in Section 2.1 we had already analysed sequence with such symmetry,
we have not yet discussed Markov processes whatsoever, so we start with a quick review
of Markov chains.

4.2.1 Preliminaries of discrete-time Markov processes

Let (S,BS) be a Borel space and (vi)i≥1 a random sequence taking values in S. We say
that (vi)i≥1 is a Markov chain whenever

P[vi+1 ∈ B | v1, . . . ,vi] = P[vi+1 ∈ B | vi],

(almost surely) for every B ∈ BS and i ≥ 1, equivalently

E[f(vi+1) | Fi] = E[f(vi+1) | vi],

for every measurable f : S → R+ and where Fi denotes the σ-algebra generated by
v1, . . . ,vi. In other words, vi+1 is conditionally independent of (v1, . . . ,vi−1), given vi.
Another characterization of Markov chains is that we can write vi+1 = gi(vi,ui) for

every i ≥ 1, where gi : S × [0, 1] → S is a measurable function and (ui)i≥1
iid∼ Unif(0, 1)

is independent of (vi)i≥1. In particular if gi = g1 for every i ≥ 1 so that

P[vi+1 ∈ B | vi] = P[v2 ∈ B | v1],

we say that (vi)i≥1 is an homogeneous Markov chain. In general, to the distribution
of v1, ν0, we call initial distribution of the chain (vi)i≥1, and to the probability kernels
from S into S, νi : S → S, that satisfy

νi(vi;B) = P[vi+1 ∈ B | vi],
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we call one-step transition probability kernels. If (vi)i≥1 is homogeneous νi = ν1 for
every i ≥ 1, for simplicity, in this instance we dismiss the index and write ν = ν1 =
νi. Whether (vi)i≥1 is homogeneous or not, we can compute the joint distribution of
(v1, . . . ,vn), through

P [v1 ∈ B1, . . . ,vn ∈ Bn] = (ν0 ◦ ν1 ◦ · · · ◦ νn−1)

(
n∏
i=1

1Bi

)

=

∫
. . .

∫ { n∏
i=1

1Bi(vi)

}
νn−1(vn−1; dvn) · · ·ν1(v1; dv2)ν0(dv1),

(4.5)
for every n ≥ 1 and B1, . . . , Bn ∈ BS. Similarly, we can obtain the marginal distribution

P [vn ∈ B] = (ν0ν1 · · ·νn−1) (1B)

=

∫
. . .

∫
1B(vn)νn−1(vn−1; dvn) · · ·ν1(v1; dv2)ν0(dv1),

(4.6)

(see Definition 1.2, for the composition and product of kernels).
Now, for an homogenous Markov chain, (vi)i≥1 with one-step transition probability

kernel, ν, we say the probability measure, λ, is an stationary distribution whenever
λν = λ, this is

λ(f) =

∫
f(s)λ(ds) =

∫ ∫
f(v)ν(s; dv)λ(ds) = (λν)(f),

for every measurable function f : S → R+. In this instance we also call λ invariant for
ν. Note that if λ is an stationary distribution for (vi)i≥1 and vi ∼ λ, then vi+1 ∼ λ
marginally. Further, if the initial distribution, ν0, is an stationary distribution for the
chain, then vn ∼ ν0, for every n ≥ 1, in this case we also call (vi)i≥1 an stationary
Markov chain. Let us consider the following trivial examples.

Example 4.2. Consider the probability kernel ν : S → S given by ν(s; ·) = δs, for each
s ∈ S. Then any probability measure λ over (S,BS) is invariant for ν, as

(λν)(f) =

∫ ∫
f(v)δs(dv)λ(ds) =

∫
f(s)λ(ds) = λ(f),

for every measurable function f : S → R+. This means that an homogeneous Markov
chain (vi)i≥1 with one-step transition, ν, has infinitely many stationary distributions.
Indeed, if vi ∼ λ and vi+1 = vi almost surely, then vi+1 ∼ λ, for every i ≥ 1 and any
probability measure λ over (S,BS). Moreover, any choice of the initial distribution ν0,
yields an stationary Markov chain.

Example 4.3. Consider the constant probability kernel ν : S → S given by ν(s; ·) = ν
for each s ∈ S. Then, for any probability measure λ over (S,BS) we get

(λν)(f) =

∫ ∫
f(v)ν(dv)λ(ds) =

∫
f(v)ν(dv) = ν(f),

for every integrable function f : S → R+. Thus, for ν there exist exactly one invariant
probability measure, and it is itself. In other words, the homogeneous Markov chain
(vi)i≥1 with one-step transition, ν = ν, is stationary if and only if its initial distribution
ν0 = ν.
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In general for a fixed one-step transition probability kernel, ν, it is possible that
there exist no invariant probability measures, that there exists exactly one invariant
probability measure or that there are infinitely many invariant probability measures. It
is easy to see that if the probability measures λ1 and λ2 are both invariant for ν, then
for every t ∈ [0, 1], the mixture, tλ1 + (1 − t)λ2, is also invariant for ν, hence the set
of invariant probability measures with respect to ν, denoted by I[ν], is convex. We
say that a probability measure λ ∈ I[ν] is ν-ergodic if it is extremal in I[ν], that is,
it can not be decomposed as a mixture of other probability measures λi’s belonging to
I[ν]. It can be shown that two invariant ν-ergodic probability measures, λ and ν are
either identical or mutually singular (meaning that the exist disjoint A,B ∈ BS such
that A ∪ B = S, λ(A) = 0, and ν(B) = 0). To conclude this preliminary section we
state the ergodic theorem for stationary Markov chains.

Theorem 4.12 (Birkhoff; Ergodic theorem for stationary Markov chains). Consider
an stationary Markov chain, (vi)i≥1, with initial and stationary distribution, ν0, and
one-step transition probability kernel, ν. If ν0 is ν-ergodic, then

lim
n→∞

1

n

∑
i≤n

f(vi) =

∫
f(v)ν0(dv) = E[f(v1)], (4.7)

almost surely, for every measurable function f : S → R. In particular, if I[ν] = {ν0},
4.7 holds.

A detailed review of Markov processes can be found in the work by Feller (1968);
Karlin and Taylor (1975); Kallenberg (2002).

4.2.2 Stick-breaking processes featuring stationary Markovian length vari-
ables

Just as in the instance where the length variables are exchangeable, here we begin by
analysing general properties of stick-breaking processes featuring stationary and Marko-
vian length variables.

Definition 4.3. We call a Markov stick-breaking process (MSB) to any SSP as in (3.1)
whose weights (wj)j≥1 decompose as (wj)j≥1 = SB[(vi)i≥1], where (vi)i≥1 is a Markov
process that takes values in [0, 1]. To the corresponding weights, we call an Markov
stick-breaking weights sequence (MSBw).

In this section we focus in MSBs with stationary length variables (vi)i≥1. Further, we
will assume that the initial and stationary distribution, ν0, is ν-ergodic, for the one-step
transition probability kernel, ν, of the chain. Recall that if the invariant measure of ν
is unique then it is also ν-ergodic. This said, we begin by giving conditions on ν and ν0

under which the corresponding MSB is proper and has full support.

Theorem 4.13. Let µ be an MSB with weights (wj)j≥1 = SB[(vi)i≥1], for some station-
ary Markov chain (vi)i≥1 with one-step transition ν, and initial and stationary distribu-
tion, ν0.

i) If for every ε > 0 there exist 0 < δ < ε such that for every n ≥ 1

(ν0 ◦ ν ◦ · · · ◦ ν) ((δ, ε)n) =

∫ ε

δ

. . .

∫ ε

δ

ν(vn−1; dvn) · · ·ν(v1; dv2)ν0(dv1) > 0,
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then µ has full support. In particular, if there exist ε > 0 such that (0, ε) is
contained in the support of ν0, and for every v ∈ (0, ε), (0, ε) is also contained in
the support of ν(v; ·), then µ has full support.

ii) If ν0 is ν-ergodic, then µ is proper if and only if ν0 6= δ0. In particular if ν0 is the
only invariant measure for ν, then µ is proper if and only if ν0 6= δ0.

The proof of Theorem 4.13 can be found in Appendix D.5. The second part of this
result shows that most stationary Markov chains (vi)i≥1 will lead to a proper MSB, µ.
Indeed, if the ν-ergodic measure ν0 = δ0, necessarily (vi)i≥1 = (0, 0, . . .) almost surely,
in which, non-interesting, case µ is even diffuse almost surely. Otherwise, if ν0 6= δ0,
which covers most cases of interest, µ will be purely atomic almost surely. In particular
if the initial distribution ν0 = Be(a, b) is ν-ergodic, then µ has full support.

As can be done by means of ESBs, Dirichlet and Geometric process can be recovered
in the weak limits of MSBs, as our following result explains (see Appendix D.6 for a
proof).

Theorem 4.14. Let (S,BS) be a Polish space. For each n ≥ 1 consider a diffuse

probability measure, µ
(n)
0 , over (S,BS), a probability kernel, ν(n) : [0, 1] → [0, 1], from

[0, 1] into itself, and ν(n)-ergodic and invariant probability measure ν
(n)
0 6= δ0. Let µ(n)

be an MSB with base measure µ
(n)
0 and length variables, V(n) =

(
v

(n)
i

)
i≥1

, that form

an stationary Markov chain with one-step transition probability kernel, ν(n), and initial
distribution, ν

(n)
0 . Also set W(n) = SB

[
V(n)

]
. Say that as n → ∞, µ

(n)
0 converges

weakly to the diffuse probability measure µ0, and ν
(n)
0 converges weakly to some probability

measure ν0 with ν0({0}) = 0.

i) If for every vn → v in [0, 1], ν(n)(vn; ·) converges weakly to ν0(v; ·) = ν0, then µ(n)

converges weakly in distribution to a stick-breaking process µ with base measure µ0

and featuring independent length variables (vi)i≥1
iid∼ ν0, as n → ∞. In particular

if ν0 = Be(1, θ), the limit µ ∼ D(θ,µ0), and W(n) converges in distribution to the
size-biased permuted weights of µ.

ii) If for every vn → v in [0, 1], ν(n)(vn; ·) converges weakly to δv, then µ(n) con-
verges weakly in distribution to µ ∼ G(ν0,µ0), as n → ∞, and W(n) converges in
distribution to the decreasingly ordered weights of µ.

In the following couple of Sections we will be providing examples using parametrized
one-step transition probability kernels. In particular we will specialize Theorem 4.14 to
make it more clearer. For the general case, some remaining important quantities can be
expressed in terms of the transition, ν, and the stationary distribution ν0, of the length
variables (vi)i≥1. For example for the MSBw (wj)j≥1 = SB[(vi)i≥1], we have that the
probability that consecutive weights are decreasingly ordered is

P[wj+1 ≤ wj] = E[P[vj+1 ≤ c(vj) | vj]] = E [ν (vj; [0, c(vj)])] ,

where c(v) = 1 ∧ v(1 − v)−1. Recalling that vj ∼ ν0, because ν0 is a stationary, this
yields

P[wj+1 ≤ wj] =

∫
ν(v; [0, c(v)])ν0(dv) =

∫
[0,1]

∫
[0,c(v)]

ν(v; dx)ν0(dv). (4.8)
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Another important quantity regarding the ordering of the weights is the conditional
probability P[wj+1 ≤ wj | w1, . . . ,wj], as explained before Theorem 4.7, for general
stick-breaking weights sequences, such that 0 < vi < 1 almost surely, we have that

P[wj+1 ≤ wj | w1, . . . ,wj] = P[vj+1 ≤ c(vj) | v1, . . . ,vj].

In contrast to the case where the length variables are exchangeable (see for instance
Theorem 4.7), for Markovian length variables, this conditional probability only depends
on the last length variable. Indeed, the Markov property of the length variables of
MSBw’s implies

P[wj+1 ≤ wj | w1, . . . ,wj] = P[vj+1 ≤ c(vj) | vj] = ν (vj; [0, c(vj)]) , (4.9)

where c is as above. Note that (4.9), is conditionally independent of v1, . . . ,vj−1 given
vj, opposed to the exchangeable counterpart where P[wj+1 ≤ wj | w1, . . . ,wj] depends
measurably on each length variable (v1, . . . ,vj).

Before we move, note that the expectations of power products of Markovian length
variables, which are important to characterize clustering related probabilities, can also
we described in terms of the transition, ν, and the stationary distribution ν0. From (4.5)
it is easy to see

E

[
k∏
j=1

v
aj
j (1− vj)

bj

]
=

∫
. . .

∫ k∏
j=1

v
aj
j (1− vj)bj ν(vk−1; dvk) · · ·ν1(v1; dv2)ν0(dv1)

(4.10)
for any non-negative integers (aj, bj)

k
j=1.

4.2.3 Beta-Binomial stick-breaking processes

Beta-Binomial stick-breaking processes were introduced by Gil-Leyva et al. (2020).
These processes are special because they were the first class of stick-breaking processes
with dependent length variables to be introduced, that recover Dirichlet and Geometric
processes as weak limits. We begin this section by defining the Beta-Binomial transition
and study some properties of this probability kernel.

Definition 4.4 (Beta-Binomial transition). Consider α, θ > 0 and κ ∈ {0, 1, . . .}. To
the probability kernel ν : [0, 1]→ [0, 1] given by

ν(p; dv) =
κ∑
z=0

Be(dv | α + z, θ + κ− z)Bin(z | κ, p) (4.11)

we call a Beta-Binomial transition, where Bin(x | κ, v) denotes the mass probability
function at x of a Binomial distribution, Bin(κ, p), and Be(v | α, θ) denotes the density
function at v of a Be(α, θ) distribution. Here we use the convention that Bin(0, p) = δ0

for every p ∈ [0, 1].

The first thing to note about the Beta-Binomial transition is that it is a mixture
of Beta distributions. In effect, if {vj+1 | vj} ∼ ν(vj; ·), where ν is as in (4.11), this
simply means that given vj, vj+1 is sampled from a Be(α+z, θ+κ−z) distribution with
probability Bin(z | κ,vj), for every z ∈ {0, . . . , κ}. Thus, if we were to sample vj+1 from
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P[vj+1 ∈ · | vj], we can first sample a latent random variable {zj | vj} ∼ Bin(κ,vj) and
then sample {vj+1 | zj} ∼ Be(α+zj, θ+κ−zj). Recall from the Beta-Binomial conjugate
model that if v ∼ Be(α, θ) and {z | v} ∼ Bin(κ,v) then the conditional density of v
given z is proportional to (v)α+z(1 − v)θ+κ−z, hence {v | z} ∼ Be(α + z, θ + κ − z).
This said, it is clear that if vj ∼ Be(α, θ) marginally, then we also have vj+1 ∼ Be(α, θ)
marginally, meaning that ν0 = Be(α, θ) is an invariant distribution for ν as in (4.11).
Further, since the support of ν0 and ν(p; ·) is [0, 1] for every p ∈ [0, 1] we even get ν0 is
the only invariant distribution for ν, therefore it is ν-ergodic. This proves the following
Lemma.

Lemma 4.15. Consider a Beta-Binomial transition, ν, as in (4.11). Then,

i) ν0 = Be(α, θ) is the only invariant distribution for ν, in particular we get ν0 is
ν-ergodic.

ii) For every ε > 0 and p ∈ [0, 1], (0, ε) is contained in the support of ν0 and ν(p; ·).

Figure 25: Density function of the Beta-Binomial transition ν(κ)(p; ·) =
∑κ

z=0 Be(dv |
α+ z, θ+ κ− z)Bin(z | κ, p) for κ ∈ {0, 50, 200, 1000, 5000}. In all cases we fixed p = 0.3
and α = θ = 10.

Our next result concerning the Beta-Binomial transition, same that is proved in
Appendix D.7, is one of the main motivations behind this model.

Lemma 4.16. For each κ ∈ {0, 1, . . .} let α(κ), θ(κ) > 0 and consider the Beta-Binomial
transition, ν(κ), given by ν(κ)(p; dv) =

∑κ
z=0 Be

(
dv | α(κ) + z, θ(κ) + κ− z

)
Bin(z | κ, p),

for every p ∈ [0, 1]. Also consider the invariant distribution ν
(κ)
0 = Be

(
α(κ), θ(κ)

)
of ν(κ).
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i) For the choice κ = 0 we get ν(0)(p; ·) = Be
(
α(0), θ(0)

)
= ν

(0)
0 , for every p ∈ [0, 1].

ii) Say that as κ→∞, and pκ → p in [0, 1], α(κ) → α and θ(κ) → θ in (0,∞). Then

ν(κ)(pκ; ·) converges weakly to δp, and ν
(κ)
0 converges weakly to Be(α, θ), as κ→∞.

In Figure 25 we illustrate the convergence of the Beta-Binomial transitions, men-
tioned in Lemma 4.16, by means of the densities of ν(k)(pκ; ·). To better show the effect
of κ we fixed α(κ) = θ(κ) = 10 and pκ = 0.3 for each κ. Here it can be appreciated that
as κ grows, the mass concentrates in a smaller interval centered around p = 0.3. So we
have a graphical illustration of how ν(k)(p; ·) converges weakly to δp.

Naturally we will be using the Beta-Binomial transition and its invariant distribution
as a driver of MSBs, formally we define these stick-breaking processes below.

Definition 4.5. Let (S,BS) be Borel space and consider a diffuse probability measure,
µ0, over (S,BS). Let ν be a Beta-Binomial transition with parameters (α, θ, κ), as
in (4.11). We call a Beta-Binomial stick-breaking process (BBSB) with parameters
(α, θ, κ, µ0) to any MSB, µ, with base measure µ0 and Markovian length variables (vi)i≥1

with one-step transition probability kernel, ν, and initial distribution ν0 = Be(α, θ). The
stick-breaking weights (wj)j≥1 = SB[(vi)i≥1] will be referred to as Beta-Binomial stick-
breaking weights sequence (BBSBw) with parameters (α, θ, κ).

With all the results we have developed thus far, it is fairly simple to show that BBSBs
constitute a feasible class Bayesian non-parametric priors. Putting together Theorem
4.13 and Lemma 4.15 we obtain the following result.

Corollary 4.17. Any BBSB is proper and has full support.

Another immediate result arises from Theorem 4.14 and Lemma 4.16, this one proves
that by tuning κ and α one approximate Dirichlet and Geometric processes by means of
BBSBs

Corollary 4.18. Let (S,BS) be a Polish space, for every κ ∈ {0, 1, . . .} let α(κ), θ(κ) > 0

and let µ
(κ)
0 be a diffuse probability measure over (S,BS). Consider a BBSB µ(κ) with

parameters
(
α(κ), θ(κ), κ, µ

(κ)
0

)
. Say that as κ → ∞, α(κ) → α, β(κ) → β in (0,∞) and

µ
(κ)
0 converges weakly to the diffuse probability measure µ0. Then

i) For κ = 0 we get that µ(0) is a stick-breaking process with base measure µ
(0)
0 and

featuring i.i.d. length variables (vi)i≥1
iid∼ Be

(
α(0), θ(0)

)
. In particular, if α(0) = 1,

µ(0) ∼ D(
θ(0),µ

(0)
0

) and the corresponding BBSBw, W(0), is invariant under size-

biased permutations.

ii) As κ → ∞, µ(κ) converges weakly in distribution to µ(∞) ∼ G(Be(α,θ),µ0), and the
corresponding BBSBw’s, W(κ) converge in distribution to the decreasing ordered
weights of µ(∞).

Realize that if µ
(κ)
0 = µ0, α(κ) = α and θ(κ) = θ for every κ ∈ {0, 1, . . .}, a simpler

version of Corollary 4.18 is attained. The dependence of these parameters on κ is simply
to have the most general version of the result in question. This said, note that just as can
be done using DSBs, as analysed in Section 4.1.2, by simply tuning a single real-valued
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parameter, we can approximate Dirichlet and Geometric processes through BBSBs. In
contrast to DSBs, where the modulating parameter, denoted by β, takes values in (0,∞)
(or ρν = 1/(1+β), which takes values in (0, 1)), for BBSBs the tuning parameter, κ, takes
values in {0, 1, . . .}. This might be regarded as a small disadvantage of BBSBs against
DSBs. For example Dirichlet processes can be approximated with arbitrary precision by
means of DSBs that are not a Dirichlet process, by making ρν = 1/(1 + β) arbitrarily
small. This can not be done using BBSBs, if κ 6= 0, so that the BBSB is not a Dirichlet
process, the smaller value κ can take is one, which is not arbitrarily close to zero. A
more significant disadvantage of BBSBs against DSBs, or more generally stick-breaking
processes driven by SSPs, is that computing the probability that consecutive weights

are decreasing is much harder to do for BBSBs. In fact, for BBSBw’s,
(
w

(κ)
j

)
j≥1

, with

parameters (α, θ, κ), from (4.8), we obtain

P
[
w

(κ)
j+1 ≤ w

(κ)
j

]
=

∫ 1

0

∫ c(p)

0

κ∑
z=0

Be(dv | α + z, θ + κ− z)Bin(z | κ, p)Be(dp | α, θ)

=
κ∑
z=0

(
κ

z

)
Γ(α + θ)

Γ(α)Γ(θ)

∫ 1

0

Ic(p)(α + z, θ + κ− z)pα+z(1− p)θ+κ−zdp

=
κ∑
z=0

(
κ

z

)
(α)z(θ)κ−z
(α + θ)κ

E
[
Ic(v)(α + z, θ + κ− z)

]
where c(v) = 1∧v(1−v)−1, v ∼ Be(α+z, θ+κ−z) and Ix(a, b) =

∫ x
0
Be(dv | a, b) denotes

the regularized Beta function. Comparing this quantity with Theorem 4.6 or Corollary

4.10, we see that P
[
w

(κ)
j+1 ≤ w

(κ)
j

]
is a much more complicated function of κ than its

counterparts of the tuning parameters ρν or β. For BBSBw’s it is even hard to show

that the mapping κ 7→ P
[
w

(κ)
j+1 ≤ w

(κ)
j

]
is non-decreasing, or derive an optimal lower

bound for P
[
w

(κ)
j+1 ≤ w

(κ)
j

]
. However, what can be shown as a consequence of Corollary

4.18 is that P
[
w

(κ)
j+1 ≤ w

(κ)
j

]
→ 1 as κ→∞, meaning that if κ is sufficiently large, the

probability in question is close to one. Now, using equation (4.9) we can compute the
conditional probability

P
[
w

(κ)
j+1 ≤ w

(κ)
j

∣∣∣w(κ)
1 , . . . ,w

(κ)
j

]
=

κ∑
z=0

I
c
(
v
(κ)
j

)(α + z, θ + κ− z)Bin
(
z
∣∣∣κ,v(κ)

j

)
where

(
v

(κ)
i

)
i≥1

are the length variables of
(
w

(κ)
j

)
j≥1

. In contrast to P
[
w

(κ)
j+1 ≤ w

(κ)
j

]
,

the conditional probability a less complex function of κ. Nonetheless, when compared
against Theorem 4.7 and Corollary 4.10 (f), it remains a complicated function of the
tuning parameter.
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Figure 26: Simulations (A.w,B.w) BBSBw’s (wj)j≥1 with parameters (α = 1, θ, κ) for
κ ∈ {0, 10, 100, 1000, 10000}. A.v and B.v show the corresponding underlying length
variables (vi)

20
i=1.

In Figure 26 we show some simulations of BBSBw’s for distinct values of κ. In A.v
and B.v we observe that for a larger value of κ, the length variable vj+1 takes values closer
to vj, alternative a smaller value of κ allows vj+1 to take values that are farther from vj
with a larger probability. Informally, we might think of vj+1 as a noisy observation of
vj, and the larger κ is, the smaller is the noise. Now, if vj+1 takes a value that is very
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close to vj, so that vj+1 ≈ vj ≤ vj(1−vj)
−1, this yields wj+1 ≤ wj, which explains why

as κ grows the weights are more likely to be decreasingly ordered. If we compare Figure
26 with Figure 23 we see that the tuning parameters, κ and ρν , of BBSBs and DSBs,
respectively, modulate the ordering of the weights in very distinct ways. While in DSBs
the tie probability, ρν , controls the probability that vj+1 takes a value previously observed
in (v1, . . . ,vj), in particular the probability that vj+1 = vj, for BBSBs vj+1 = vj occurs
with probability zero, however κ modulates how likely vj+1 ≈ vj. Also, for DSBs, under
the event {vj 6= vj+1} we have that the value of vj+1 is chosen independently of the
value vj takes, in contrast, for BBSBs under the event {vj 6= vj+1}, which occurs almost
surely, the value vj takes always affects that of vj+1 unless κ = 0. This said, at least
empirically, it seems that the way the stochastic ordering of the weights is controlled by
BBSBs is neater than that of DSBs.

To better understand the effect of tuning parameter on the length variables, hence
the weights, we can compute conditional moments of length variables. For DSBs these
moments can be attained from Corollary 3.9. For BBSBs we have our next result (see
Appendix D.8 for details on computations).

Proposition 4.19. Let (vi)i≥1 be a stationary Markov chain with Beta-Binomial tran-
sition ν as in (4.11), and initial distribution Be(α, θ). Then, for every i ≥ 1.

a) E[vi+1 | vi] =
α + κvi
α + θ + κ

.

b) Var(vi+1 | vi) =
(α + κvi)(θ + κ(1− vi)) + κvi(1− vi)(α + θ + κ)

(α + θ + κ)2(α + θ + κ+ 1)
.

c) Cov(vi,vi+1) =
καθ

(α + θ)2(α + θ + 1)(α + θ + κ)
.

d) Corr(vi,vi+1) =
Cov(vi,vi+1)√

Var(vi)
√
Var(vi+1)

=
κ

α + θ + κ
.

Consistently with the analysis we have been carrying out for BBSBs, if for a fixed
value of κ, we increase α and θ, we get Corr(vi,vi+1) ≈ 0. Alternatively, if we fix α
and θ, for larger values of κ, Corr(vi,vi+1) ≈ 1. Also, if α and θ are very small with
respect to κ, E[vi+1 | vi] ≈ vi and Var(vi+1 | vi) ≈ 2vi(1−vi)/(κ+ 1). So this yields an
alternative path to understanding how, for κ = 0 the length variables are independent,
and as κ → ∞, P[vi+1 ∈ · | vi] → δvi . An extra piece of information we obtain from
Proposition 4.19 is that for larger values of α or θ, we require an even larger value of κ
for (vi)i≥1 to approximate (v,v, . . .) in distribution. That is, if either α or θ take a big
value, we require an even bigger of κ to approximate a Geometric process using BBSBs.

Another quantity of interest determined by the length variables is computed in the
following result (See Appendix D.9 for details in calculations).

Proposition 4.20. Let (vi)i≥1 be a stationary Markov chain with Beta-Binomial transi-
tion ν as in (4.11), and initial distribution Be(α, θ). Then for any non-negative integers
(aj, bj)

n
j=1,

E

[
n∏
j=1

v
aj
j (1− vj)

bj

]
=

κ∑
z1=0

· · ·
κ∑

zn=0

{
n∏
i=1

(
κ

zi

)
(αi)ai+zi(θi)bi+κ−zi

(αi + θi)ai+bi+κ

}
where α1 = α, θ1 = θ and for 2 ≤ i ≤ k, αi = α + zi−1 and θi = θ + κ− zi−1.
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Recall that the expectations of power products of length variables allows us to com-
pute clustering-related probabilities through (3.6), (3.7) and (3.8). In particular Propo-
sition 4.20 together with (3.8) show that more often that not, BBSBw’s will not be in
size-biased random order, making it hard to study analytically clustering probabilities.
For our last prior analysis of BBSBs we study empirically the distribution of Kn.

Figure 27: Frequency polygons of samples of size 10000 from the distribution of K20

corresponding to a BBSB prior with κ = 0 (A), κ = 5 (B), κ = 10 (C), κ = 100
(D), κ = 1000 (E) and κ = ∞ (F). For each fixed value of κ we vary θ in the set
{0.5, 1, 3, 6, 10}. In all cases we fixed α = 1.

In Figure 27 we illustrate the distribution of K
(κ,θ)
n = |Π(x1:n)| where {x1,x2, . . . |

µ} iid∼ µ, and µ is a BBSB with paramaters α = 1, θ ∈ {0.5, 1, 3, 6, 10} and κ ∈
{0, 5, 10, 100, 1000,∞}. Here K

(∞,θ)
n refers to the case here µ ∼ G(Be(1,θ),µ0), also note

that the choice α = 1 allows to recover Dirichlet processes when κ = 0. Figure 27 is
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graphical representation of Corollary 4.18, here we can appreciate that K
(κ,θ)
n

d→ K
(0,θ)
n

as κ→ 0 and K
(κ,θ)
n

d→ K
(∞,θ)
n as κ→∞. Note that for a fixed value of θ, an increment

of κ contributes to the distribution of K
(κ,θ)
n with a larger mean in variance. In other

words the distribution of K
(κ,θ)
n becomes less informative as κ grows. In Figure 27 we

also see that parameter the θ affects the rates of convergence. Explicitly, if θ is small
we see that the distribution of K

(κ,θ)
n approximates well that of K

(∞,θ)
n , even is κ is not

that large. However, we require a really small value of κ in order to approximate the
distribution of K

(0,θ)
n through that of K

(∞,θ)
n . Conversely if θ is big, we observe that the

convergence rate of K
(κ,θ)
n

d→ K
(0,θ)
n , as κ → 0, is fast, meaning that we do not need an

extremely small value of κ to attain, K
(κ,θ)
n ≈ K

(0,θ)
n in distribution. In this case, where

θ is large, the convergence rate K
(κ,θ)
n

d→ K
(∞,θ)
n , as κ → ∞, is slow, so an very large

value of κ is required to approximate the distribution of K
(∞,θ)
n through that of K

(κ,θ)
n .

Comparing Figures 24 and 27 we see that this is not the case for DSBs, where θ does
not seems to affect the convergence of DSBs to the limiting processes, at least when
we analyse the distribution of Kn. In this sense, one might think that the way DSBs
approximate Dirchlet and Geometric processes is neater than the way BBSBs do.

4.2.4 Spike and slab stick-breaking processes (SSBs)

To motivate this second example of MSBs recall that if {v̂1, v̂2, . . . | ν̂}
iid∼ ν̂ where ν̂ is

a species sampling process over
(
[0, 1],B[0,1]

)
with base measure ν̂0 and tie probability

ρν then for every i ≥ 1,

P [v̂i+1 ∈ · | v̂i] = ρν δv̂i + (1− ρν)ν̂0,

(see for instance Corollary 3.8). Here we will work with Markovian length variables
(vi)i≥1 with one-step transition probability kernel ν : [0, 1]→ [0, 1] such that

ν(vi; ·) = P [vi+1 ∈ · | vi] = pδvi + (1− p)ν0,

for some p ∈ [0, 1], and a suitable probability measure ν0 over [0, 1]. First of all note
that for any probability measure λ over [0, 1], and measurable function f : [0, 1]→ R+,

λν(f) =

∫ ∫
f(x)ν(v; dx)λ(dv)

= p

∫
f(v)λ(dv) + (1− p)ν0(f) = pλ(f) + (1− p)ν0(f),

which implies that ν0 is invariant for ν, moreover, if p < 1, ν0 is only invariant measure
for ν. This said, we will further assume v1 ∼ ν0, so that marginally vi ∼ ν0, for every
i ≥ 1, and (vi)i≥1 becomes a stationary Markov chain. With this considerations taken
into account, note that if ρν = p, and ν̂0 = ν0, then for every i ≥ 1, (v̂i, v̂j+1) is equal in
distribution to (vi,vj+1). So in a certain way the following models are the Markovian
version of ESBs driven by SSPs. Formally we define this processes below.

Definition 4.6. Let (S,BS) be Borel space and consider a diffuse probability measure,
µ0, over (S,BS). Fix p ∈ [0, 1] and consider a probability measure, ν0, over

(
[0, 1],B[0,1]

)
such that ν0({0}) = 0. To the probability kernel ν : [0, 1]→ [0, 1] given by

ν(v; ·) = pδv + (1− p)ν0, (4.12)
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for every v ∈ [0, 1], we call a spike and slab transition probability kernel with parameters
(p, ν0). Also, to any MSB, µ, with base measure µ0 and Markovian length variables,
(vi)i≥1, with initial distribution ν0 and one-step transition probability kernel, ν, as in
(4.12), we call a spike and slab Markov stick-breaking process (SSB, for short) with
parameters (p, ν0, µ0). The corresponding stick-breaking weights (wj)j≥1 = SB[(vi)i≥1]
will be referred to as spike and slab Markov stick-breaking weights sequence (SSBw) with
parameters (p, ν0).

As we have mentioned, for ν as in (4.12), ν0 is the only invariant measure whenever
p < 1. In this case ν0 is clearly ν-ergodic, and the requirement ν0({0}) = 0, trivially
implies ν0 6= δ0. Thus, Theorem 4.13 shows that any SSB, µ, with p < 1 is proper.
For the case p = 1, the SSB becomes a Geometric process, which we know is proper
as long as the distribution, ν0, of the length variable, satisfies ν0({0}) = 0, as required.
This means that any SSB as introduced in Definition 4.6 is proper. Now, if there exist
0 < ε < 1, such that (0, ε) is contained in the support of ν0, then for p < 1, we also
have that (0, ε) is contained in the support of ν(v; ·) for every v ∈ [0, 1], in which case
we get the corresponding SSB has full support. Under the same assumption over ν0, for
the case p = 1, Corollary 3.25 shows this SSB also has full support. This discussion is
summarized in the following result.

Corollary 4.21. Let µ be a SSB with parameters (p, ν0, µ0). Then µ is proper, and
if there exist 0 < ε < 1, such that (0, ε) is contained in the support of ν0, µ has full
support. In particular, the choice ν0 = Be(α, θ) yields µ has full support.

Now, fix µ0 and ν0 as in Definition 4.6, and for p ∈ [0, 1], consider the SSB, µ(p),
with parameters (p, ν0, µ0). As we have mentioned µ(1) ∼ G(ν0,µ0), and evidently µ(0) is
a stick-breaking process featuring i.i.d. length variables, in particular, if ν0 = Be(1, θ),
µ(0) ∼ D(θ,µ0). By simply looking at equation (4.12) and using Theorem 4.14 it is very
easy to show that µ(p) converges weakly in distribution to µ(1) as p → 1 and that
µ(p) converges weakly in distribution to µ(0) as p → 0. The next result rephrases this
in a slightly more general scenario (see Appendix D.10 for the details regarding the
convergence of the probability kernels).

Corollary 4.22. Let (S,BS) be a Polish space. For each n ≥ 1 let pn ∈ (0, 1), and

consider a diffuse probability measure, µ
(n)
0 , over (S,BS), and a probability measure,

ν
(n)
0 , over

(
[0, 1],B[0,1]

)
with ν

(n)
0 ({0}) = 0. Also, let µ(n) be SSB with parameters(

pn, ν
(n)
0 , µ

(n)
0

)
. Say that, as n → ∞, µ

(n)
0 converges weakly to the diffuse probability

measure µ0, and ν
(n)
0 converges weakly to a probability measure ν0, with ν0({0}) = 0.

i) If pn → 0 then µ(n) converges weakly in distribution to a stick-breaking process,

µ, featuring i.i.d. length variables (vi)i≥1
iid∼ ν0. In particular, if ν0 = Be(1, θ),

µ ∼ D(θ,µ0), and the corresponding SSBw, W(n), of µ(n), converge in distribution
to the size-biased permuted weights of µ.

ii) If pn → 1, µ(n) converges weakly in distribution to µ ∼ G(ν0,µ0), and the corre-
sponding SSBw, W(n) converge in distribution to the decreasing ordered weights of
µ.
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So far we have developed three concrete examples of classes of stick-breaking processes
with dependent length variables, by means of which, by tuning a single real-valued
parameter we can recover Dirichlet and Geometric processes. Namely for DSBs we
can tune the parameter β, which takes values in (0,∞), (or ρν = 1/(1 + β) ∈ (0, 1)),
for BBSBs the modulating parameter is κ ∈ {0, 1, . . .}, and for SSBs we the tuning
parameter is p ∈ [0, 1]. A common advantage DSBs and SSBs over BBSBs is that the
tuning parameter lays in a continuous space, which in turn translates to the fact that
Dirichlet and Geometric processes can be approximated arbitrarily, this is of course not
true for BBSBs. Another common advantage of SSBs and DSBs, or more generally
ESBs driven by SSPs, is that we can easily compute the probability that consecutive
weights are decreasing. In fact for these classes of processes, the probability in question

is very similar. As mentioned at the beginning of this section, for {v̂1, v̂2, . . . | ν̂}
iid∼ ν̂

where ν̂ is a species sampling process over
(
[0, 1],B[0,1]

)
with base measure ν̂0 and tie

probability ρν , and for the stationary Markov chain (vi)i≥1, with initial distribution ν0

and one-step transition probability kernel, ν, as in (4.12), we get (v̂i, v̂j+1) is equal in
distribution to (vi,vj+1) whenever ρν = p and ν̂0 = ν0. This means that if we consider
(ŵj)j≥1 = SB[(v̂i)i≥1] and (wj)j≥1 = SB[(vi)i≥1], then P[ŵj+1 ≤ ŵj] = P[wj+1 ≤ wj].
Hence by substituting ρν by p in Theorem 4.6 we already have available important

properties of P[wj+1 ≤ wj]. Explicitly, if
(
w

(p)
j

)
j≥1

is a SSBw with parameters (p, ν0),

we have
P
[
w

(p)
j ≥ w

(p)
j+1

]
= p + (1− p)E [−→ν0(c(v))] ,

where c(v) = 1∧v(1−v)−1 for every v ∈ [0, 1], v ∼ ν0, and −→ν0 is the distribution function
of ν0, that is −→ν0(x) = ν0([0, x]). In particular, the choice ν0 = Be(1, θ) yields

P
[
w

(p)
j ≥ w

(p)
j+1

]
= 1− 2F1(1, 1; θ + 2, 1/2)(1− p)θ

2(θ + 1)
,

and if θ = 1, we get P
[
w

(p)
j ≥ w

(p)
j+1

]
= p+(1−p) log(2). Now, to highlight the difference

between SSBw’s and ESBw’s where the length variables are driven by SSPs, we can use
(4.9) to compute the conditional probability

P
[
w(p)
n ≥ w

(p)
n+1

∣∣∣w(p)
1 , . . . ,w(p)

n

]
= p + (1− p)−→ν0

(
c
(
v(p)
n

))
,

for the case ν0({0}) = ν0({1}) = 0, which simplifies to

P
[
w(p)
n ≥ w

(p)
n+1

∣∣∣w(p)
1 , . . . ,w(p)

n

]
= 1− (1− p)

[
1− c

(
v(p)
n

)]θ
,

if ν0 = Be(1, θ). Comparing these equations to Theorem 4.7, we see that for SSBw’s
the conditional probability depends only on the nth length variable, meanwhile for the
exchangeable counterpart, it depends on every length variable up to index n. This due
to the fact that exchangeable length variables, (v̂i)i≥1, are allowed to take previously
observed values, in contrast, the length variables of SSBw’s, (vi)i≥1, either take the
last observed value, or choose a new one independently of past observations. Note that
as a function of the indexes {1, 2, . . .}, both (v̂i)i≥1 and (vi)i≥1 are piecewise constant
functions. Further, if for some index j ≥ 1 we observe vj = vj+1 = vj+2, then wj+1/wj =
(1− vj) = (1− vj+1) = wj+2/wj+1. Thus, (wj)j≥1 = SB[(vi)i≥1] is piecewise decreasing
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and the rate at which the weights decrease is also piecewise constant. In this sense, the
parameter p controls how often do the weight decrease and how often do the decreasing
rates change. In the extreme case p = 1 the decreasing rate never changes and in the
opposite instance, p = 0, the decreasing rate always changes. A similar behaviour is
observed for (ŵj)j≥1 = SB[(v̂i)i≥1] in terms of their tie probability ρν . See Figures 23
and 28 for an illustration.

Figure 28: Simulations (A.v,B.v) of a ν0-Bernoulli Markov chain (vj)
20
j=1 with ν0 =

Be(1, θ) for distinct values of p, this probability was fixed to 0, 0.2, 0.5, 0.8 and 1. A.w
and B.w show the corresponding stick-breaking weights (wj)

20
j=1 = SB[(vj)

20
j=1].
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Another property that the length variables of SSBs, (vi)i≥1, share with exchangeable
length variables, (v̂i)i≥1, driven by species sampling processes, are some conditional

moments. Recalling that (vi,vi+1)
d
= (v̂i, v̂i+1), whenever ρν = p and ν̂0 = ν0, and using

Corollary 3.9 we obtain.

Corollary 4.23. Let (vi)i≥1 be an stationary Markov chain with initial distribution ν0

and one-step transition probability kernel ν as in (4.12). Then for every i ≥ 1,

a) E[vi+1 | vi] = p vi + (1− ρ)E[vi],

b) Var(vi+1 | vi) = (1− p)
{

p (vi − E[vi])
2 + Var(vi)

}
,

c) Cov(vi,vi+1) = pVar(vi),

d) Corr(vi,vi+1) = p.

In terms of the length variables an important difference between SSBs and ESBs
driven by SSPs are the expectations of power products of length variables. For ESBs
these are computed in Theorem 4.8, and Corollary 4.11 for the special case of DSBs, for
SSBs we compute these expectations below.

Proposition 4.24. Let ν0 be a diffuse probability measure over
(
[0, 1],B[0,1]

)
and let

(vi)i≥1 be an stationary Markov chain with initial distribution ν0 and one-step transition
probability kernel ν as in (4.12). Then for any non-negative integers (aj, bj)

k
j=1,

E

[
k∏
j=1

v
aj
j (1− vj)

bj

]
=

∑
(τ0,...,τm)

pm−1(1− p)k−m×

×
m−1∏
j=0

{∫
[0,1]

(v)
∑
i∈Aj

ai(1− v)
∑
i∈Aj

bi ν0(dv)

}
,

where Aj = {τj, . . . , τj+1 − 1}, and the sum ranges over all sequences (τ0, . . . , τm) with
τ0 = 1 < τ1 < · · · < τm = k + 1. In particular if ν0 = Be(1, θ)

E

[
k∏
j=1

v
aj
j (1− vj)

bj

]
=

∑
(τ0,...,τm)

pm−1(1− p)k−mθm
m−1∏
j=0

(∑
i∈Aj ai

)
!(

θ +
∑

i∈Aj bi

)
1+
∑
i∈Aj

ai

.

See Appendix D.11 for a proof. To finish the prior analysis of SSBs in Figure 29

we illustrate the distribution of K
(p,θ)
n = |Π(x1:n)| where {x1,x2, . . . | µ}

iid∼ µ and
µ is a SSB with parameters (p,Be(1, θ), µ0). Consistently with the notation of the
present section, and for the sake of a sensible comparison between models here we denote

K̂
(ρν ,θ)
n = |Π(x̂1:n)| where {x̂1, x̂2, . . . | µ̂}

iid∼ µ̂ and µ̂ is an ESB driven by a SSP with
underlying tie probability ρν and base measure ν̂0 = Be(1, θ). In particular if the SSP of

the length variables is a Dirichlet process, Figure 24 illustrates the distribution of K̂
(ρν ,θ)
n

for distinct values of ρν and θ. Analogously as for other models, Figure 29 illustrates the
convergence in distribution stated in Corollary 4.22. When we compare Figures 24, 27
and 29 we observe that, seemingly, the way SSBs approximate Dirichlet and Geometric
process is much more similar to that of DSBs than BBSBs, in spite of the fact that BBSBs
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and SSBs share Markovian length variables. However, if we only focus in Figures 24 and
29 we see that the convergence rates to the limit processes are different. For instance

for DSBs we see that K̂(ρν ,θ) approximates much better K̂(1,θ) d
= K(1,θ), for ρν = 0.8

than K(p,θ) does for p = 0.8. For SSBs we see that even if p = 0.95, K(p,θ) struggles to
approximate K(1,θ). Conversely, we have that K(p,θ) ≈ K(0,θ), for p = 0.4, while DSBs
we requires ρν < 0.2 to attain K̂(ρν ,θ) ≈ K̂(0,θ) with sufficient precision. This suggest
that the convergence rate of SSBs to Dirichlet processes is faster than that DSBs. In
contrast the converge rate of SSBs to Geometric processes is very slow when compared
to DSBs.

Figure 29: Frequency polygons of samples of size 10000 from the distribution of K20

corresponding to a DSB prior with p = 1 (A), p = 0.95 (B), p = 0.9 (C), p = 0.8 (D),
p = 0.4 (E) and p = 0 (F). For each fixed value of ρν we vary θ in the set {0.5, 1, 3, 6, 10}.
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4.3 Stick-breaking processes with non-homogeneous length
variables

After analysing stick-breaking processes with stationary length variables, either Marko-
vian or exchangeable, one of the first question that might come to mind is whether it is
possible to generalize these models to include or approximate stick-breaking processes
with non identically distributed length variables, for example Pitman-Yor processes. The
first thing we note is that if length variables are not equally distributed, then they are
not stationary. This automatically discards exchangeable length variables, however, if
we loosen the homogeneity and stationarity assumptions, we will be able to recover more
general processes through Markovian length variables. As noted in past sections there
are various choices of transitions that will allow us to recover Dirichlet and Geometric
processes as weak limits, this is also the case of these more general models, however the
analysis and the notation is much more complicated due to the lack of stationarity. To
keep the study simple, here we will be focussing on generalizing SSBs processes, albeit
one should keep in mind that for other transitions, such as the Beta-Binomial transition,
a similar analysis can be carried on.

4.3.1 Non-homogeneous SSBs

To set up the framework fix p ∈ [0, 1], and consider a collection of probability measures,
ν = (νi)i≥1, over

(
[0, 1],B[0,1]

)
, with νi({0}) = νi({1}) = 0, and a collection of continuous

functions Υ = (Υi : [0, 1] → [0, 1])i≥1 such that for every 0 < v < 1 and i ≥ 1,
0 < Υi(v) < 1. Here we will be working with non-homogeneous Markovian length
variables, (vi)i≥1, with initial distribution ν0 = ν1 and one-step transition probability
kernel at time i, νi : [0, 1]→ [0, 1], given by

νi(vi; ·) = P [vi+1 ∈ · | vi] = p δΥi(vi) + (1− p)νi+1, (4.13)

so that vi+1 = Υi(vi) with probability p and with probability (1 − p) vi+1 is sampled
independently from νi+1. To the collection of transitions (νi)i≥1 we call non-homogeneous
SSB transitions with parameters (p, ν,Υ). When we used stationary length variables,
we continuously required that the stationary distribution does not has an atom in zero,
here due to Theorem 4.25 below, we also require that the distribution of vi does not has
an atom in one. This is done by asking that the functions Υi’s map (0, 1) into (0, 1) and
imposing the condition νi({1}) = νi({0}) = 0. Mainly this is done to avoid technical
subtleties, but there is not much lost in generality by asking these conditions, indeed if
marginally the distribution of vi is diffuse, for example vi ∼ Be(ai, bi), this conditions
are satisfied. The restriction that the functions Υi’s are continuous is due to Theorem
4.26.

Definition 4.7. Let (S,BS) be Borel space and consider a diffuse probability mea-
sure, µ0, over (S,BS). Fix p ∈ [0, 1], and consider a collection of probability mea-
sure, ν = (νi)i≥1, over

(
[0, 1],B[0,1]

)
, with νi({0}) = ν0({1}) = 0, and a collection of

continuous functions Υ = (Υi : [0, 1] → [0, 1])i≥1 such that Υi maps (0, 1) into (0, 1).
To any MSB, µ, with base measure µ0 and Markovian length variables, (vi)i≥1, with
initial distribution ν0 = ν1 and one-step transitions (νi)i≥1, as in (4.13), we call a non-
homogeneous SSB with parameters (p, ν,Υ, µ0). The corresponding stick-breaking weights
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(wj)j≥1 = SB[(vi)i≥1] will be referred to as non-homogeneous SSBw’s with parameters
(p, ν,Υ).

In the above definition, note that if Υi is the identity function and νi = ν0 for every
i ≥ 1 we recover a SSB with parameters (p, ν0, µ0) as in Definition 4.6. Also note that
the choice p = 1, yields vi+1 = Υi(vi) almost surely, so that the non-homogeneous SSB
has length variables

(
Υ(i)(v)

)
i≥0

where Υ(0) denotes the identity function and for every

i ≥ 1, Υ(i) = Υi ◦ · · · ◦ Υ1. Just as in the stick-breaking decomposition of Geometric
processes, these length variables are completely determined by a single random variable,
v, and clearly, if Υi denotes the identity function for every i ≥ 1, we recover a Geo-
metric process. At the other end, where p = 0, we get the length variables (vi)i≥1 are
independent with vi ∼ νi for every i ≥ 1, in particular if νi = Be(1 − σ, θ + iσ), we
recover a Pitman-Yor process. These non-homogeneous SSBs with either independent
or completely dependent length variables will be referred to as limiting processes. In
general due to the lack of stationarity of the length variables, it is more complicated
to prove that non-homogeneous SSBs are proper. In fact, not all of these processes are
proper, and this will be determined by the collections of functions, Υ, and probability
measures, ν. However, a very nice result about non-homogeneous SSBs is that if one of
the limiting processes is proper, we can assure the corresponding non-homogeneous SSB
with parameter p ∈ (0, 1) is proper. Formally, we have the following result.

Theorem 4.25. Let µ0, ν and Υ be as in Definition 4.7. For each p ∈ [0, 1], let µ(p)

be a non-homogeneous SSB with parameters (p, ν,Υ, µ0). If either µ(0) or µ(1) is proper,
then µ(p) is proper for each p ∈ (0, 1).

The proof of Theorem 4.25 can be found in Appendix D.12. Generally it is much
more easier to prove non-homogeneous SSBs with parameter p ∈ (0, 1) are proper by
using the limiting process that features independent length variables, µ(0), than to do
this by using the limiting processes with completely dependent length variables, µ(1).
Indeed, as can be seen in the proof of Theorem 4.25 to show that µ(0) is proper it suffices
to prove ∑

i≥1

∫
x νi(dx) =

∑
i≥1

E [vi] =∞

where vi ∼ νi. In contrast to prove that µ(1) is proper we must show
∑

i≥0 Υ(i)(v) =∞
almost surely, where v ∼ ν1, Υ(0) is the identity function and for every i ≥ 1, Υ(i) =
Υi ◦ · · · ◦ Υ1. So generally we will use µ(0) to prove that for every p ∈ (0, 1), µ(p) is
proper. The following result shows that the limiting processes can be recovered as weak
limits of non-homogeneous SSBs with p ∈ (0, 1), as long as every process involved is
proper.

Theorem 4.26. Let µ0, ν and Υ be as in Definition 4.7, with the additional assumptions
that

∑
i≥1 E [vi] = ∞, with vi ∼ νi,

∑
i≥0 Υ(i)(v) = ∞ almost surely, where v ∼ ν1,

Υ(0) is the identity function and for every i ≥ 1, Υ(i) = Υi ◦ · · · ◦ Υ1. For each p ∈
(0, 1), let µ(p) be a non-homogeneous SSB with parameters (p, ν,Υ, µ0), and consider the
corresponding non-homogeneous SSBw, W(p), with parameters (p, ν,Υ). Then

i) As p → 0, µ(p) converges weakly in distribution to a stick-breaking process, µ(0),
with independent length variables (vi)i≥1 where vi ∼ νi. In particular if νi =
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Be(1 − σ, θ + iσ) for some 0 ≤ σ < 1 and θ > −σ, then µ(0) is a Pitman-Yor
process and W(p) converges in distribution to the size-biased permuted weights of
µ(0).

ii) As p → 1, µ(p) converges weakly in distribution to a stick-breaking process, µ(1),
with completely dependent length variables,

(
Υ(i)(v)

)
i≥0

. In particular, if for every

i ≥ 1, and v ∈ [0, 1], Υi(v) ≤ v, then W(p) converges in distribution to the
decreasingly ordered weights of µ(1).

See Appendix D.13 for a proof. Theorem 4.26 generalizes Corollary 4.22, for the
special case ν

(n)
0 = ν0 and µ

(n)
0 = µ0 for every n ≥ 1 (in the notation of Corollary 4.22).

In this sense a more general version of Theorem 4.26 still holds if for every n ≥ 1 we

consider a non-homogeneous SSB, µ(n), with parameters

(
pn,
(
ν

(n)
i

)
i≥1

,Υ, µ
(n)
0

)
, and

let pn → 0 or pn → 1, µ
(n)
0

w→ µ0 and for every i ≥ 1, ν
(n)
i

w→ νi. The proof of this
more general version is practically identical to that of Theorem 4.26. The main reason
we stated the simpler variant is to simplify the notation and due to Theorem 4.25. Now,
in the context of Theorem 4.26, as the second part states, if Υi(v) ≤ v for i ≥ 1 and
v ∈ [0, 1], then as p → 1 , W(p) converges in distribution to a weights sequence that
is decreasingly ordered. Under this assumption we can even show that as p grows, the
weights become more likely to be decreasingly ordered. Indeed if w

(p)
j is the jth element

of W(p) then
P
[
w

(p)
j+1 ≤ w

(p)
j

]
= p + (1− p)E [−−→νj+1(c(vj))] ,

where −−→νj+1 denotes the distribution function of νj+1, vj ∼ νj and c(v) = 1 ∧ v(1− v)−1

for v ∈ [0, 1]. Evidently, if E [−−→νj+1(c(vj))] < 1, the mapping

p 7→ P
[
w

(p)
j+1 ≤ w

(p)
j

]
is strictly increasing, and otherwise, P

[
w

(p)
j+1 ≤ w

(p)
j

]
= 1. Note that unlike the station-

ary case, for non-homogeneous SSBs the probability in question depends on j.
The last essential characteristic we must study for non-homogeneous SSBs is their

support. Fortunately, for p ∈ [0, 1) it is easy to derive sufficient conditions for the SSP
to have full support. In fact, the following result is straight-forward generalization of
Theorem 4.13 and Corollary 4.21, for this reason we exclude the proof.

Theorem 4.27. For each p ∈ [0, 1) let µ(p) be an non-homogeneous SSB with parameters
(p, ν,Υ, µ0), where µ0, ν and Υ are as in Definition 4.7. If there exists ε > 0 such that
for every i ≥ 1, (0, ε) is contained in the support of νi then µ(p) has full support for each
p < 1.

The last Theorem does not gives sufficient conditions under which the limit process
µ(1) has full support. In general for these processes it is not trivial to derive the result.
However, if µ(1) is proper and for each i ≥ 1, Υi(v) ≤ v for every v ∈ [0, 1], then as shown

in the proof of Theorem 4.26, the corresponding SSBw, W(1) =
(
w

(1)
j

)
j≥1

, is decreasing.

This yields w
(1)
j , which equals the first length variable, is the largest weight. Hence, if

we require ν1((0, ε)) > 0, for some ε > 0, we get P
[
w

(1)
j < ε

]
> 0, for every ε > 0, and
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Theorem 3.12 implies µ(1) is has full support. This small discussion is summarized by
the following proposition.

Proposition 4.28. Let µ(1) be a proper non-homogeneous SSB with parameters
(1, ν,Υ, µ0), where µ0, ν and Υ are as in Definition 4.7. If there exists ε > 0, such
that ν1((0, ε)) > 0 and for each i ≥ 1, Υi(v) ≤ v for all v ∈ [0, 1], then µ(1) has full
support.

4.3.2 Non-homogeneous SSBs with Be(1− σ, θ + iσ) length variables

To specialize the analysis to a very interesting case, let us consider 0 ≤ σ < 1 and
θ > −σ, and define the collection of functions Υ = (Υi)i≥1 given by

Υi(x) = I−1
Ix(1−σ,θ+iσ)(1− σ, θ + (i+ 1)σ), (4.14)

for every i ≥ 1, where Ix(α, β) denotes the regularized Beta function

Ix(α, β) =
Γ(α + β)

Γ(α)Γ(β)

∫ x

0

vα−1(1− v)β−1dv

and I−1
y (α, β) denotes the inverse regularized Beta function, so that Ix(α, β) = y if and

only if I−1
y (α, β) = x. Theorem 4.29 below presents a list of important properties of Υi,

meanwhile, Figure 30 illustrates Υi for distinct values of θ and σ.

Figure 30: Graph of I−1
Ix(1−σ,θ)(1 − σ, θ + σ) for σ ∈ {0.2, 0.4, 0.6, 0.8, 0.99} and θ ∈

{0.1, 0.5, 1, 3} (A–D) respectively.

Theorem 4.29. Let Υ = (Υi)i≥1 be as in equatioin (4.14). Then
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a) Υi is continuous, increasing and maps (0, 1) into (0, 1).

b) The inverse function of Υi is Υ−1
i (y) = I−1

Iy(1−σ,θ+(i+1)σ)(1− σ, θ + iσ).

c) For every n ≥ 1, Υ(n)(x) = (Υ1 ◦ · · · ◦Υn)(x) = I−1
Ix(1−σ,θ+σ)(1− σ, θ + (n+ 1)σ).

d) If vi ∼ Be(1− σ, θ + iσ) then Υi(vi) ∼ Be(1− σ, θ + (i+ 1)σ). This yields that if
v1 ∼ Be(1− σ, θ + σ), then vn = Υ(n)(v1) ∼ Be(1− σ, θ + (n+ 1)σ).

e) Υi(v) ≤ v, for i ≥ 1 and v ∈ [0, 1].

f)
∑

n≥0 Υ(n)(v) = ∞, for every v ∈ (0, 1), where Υ(0) is the identity function, and

Υ(n) is as in (c), for n ≥ 1,.

The proof of Theorem 4.29 can be found in Appendix D.14. The main motivation
behind studying these functions is, of course, to use them to define the transition of

the length variables,
(
v

(p)
i

)
i≥1

, of a non-homogeneous SSBw,
(
w

(p)
j

)
j≥1

, or the non-

homogeneous SSB, µ(p). So for p ∈ [0, 1] consider a non-homogeneous Markov chain(
v

(p)
i

)
i≥1

with initial distribution ν0 = ν1 = Be(1 − σ, θ + σ) and one-step transition

probability kernel at time i,

νi

(
v

(p)
i ; ·

)
= P

[
v

(p)
i+1 ∈ ·

∣∣∣v(p)
i

]
= p δ

Υi

(
v
(p)
i

) + (1− p)νi+1,

where Υi is as in (4.14) and νi+1 = Be(1−σ, θ+(i+1)σ) for every i ≥ 1. As a consequence

of Theorem 4.29 (d), we know that v
(p)
i ∼ Be(1−σ, θ+ iσ), marginally, despite the value

of p. At the extreme case p = 0 we find the elements of
(
v

(0)
i

)
i≥1

are independent, the

corresponding stick-breaking weights,
(
w

(0)
j

)
j≥1

, are invariant under size-biased permu-

tations and the non-homogeneous SSB, µ(0), is a Pitman-Yor processes. At the other

end, where p = 1, we discover a sequence of length variables,
(
v

(1)
i

)
i≥1

=
(
Υ(n)(v)

)
n≥0

,

that are completely determined by a single random variable v
(1)
1 = v ∼ Be(1− σ, θ+ σ).

In this case, as a consequence of the proof of Theorem 4.26 (ii) and Theorem 4.29 (e),

we know the corresponding stick-breaking weights
(
w

(1)
j

)
j≥1

are decreasingly ordered

and the non-homogeneous SSB, µ(1), generalizes a Geometric process µ̂(1) ∼ G(Be(1,θ),µ0)

in an analogous way that the Pitman-Yor process, µ(0), generalizes a Dirichlet pro-

cess, µ̂(0) ∼ D(θ,µ0). In fact, the choice σ = 0 yields that
(
v

(p)
i

)
i≥1

is an stationary

Markov chain with Be(1, θ) marginals, for every p ∈ [0, 1], so that µ(1) ∼ G(Be(1,θ),µ0),
µ(0) ∼ D(θ,µ0), and for p ∈ (0, 1), µ(p) is a SSB as introduced in Definition 4.6. So
we have fulfilled the objective of generalizing (stationary) SSBs to include interesting
processes with length variables that are not identically distributed, such as Pitman-Yor
processes. Now, for these non-homogeneous SSBs, using the results we have developed
thus far, it is straight-forward to prove essential properties. For instance since the
Pitman-Yor process µ(0) is proper, using Theorem 4.25, we find that for every p ∈ (0, 1),
the non-homogeneous SSB, µ(p) is also proper. Further, from the proof Theorem 4.25
and Theorem 4.29 (f) we also know the generalized Geometric process, µ(1), is proper.
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Hence, Theorem 4.26 proves that as p → 0, µ(p) converges weakly in distribution to
µ(0), and as p → 1, µ(p) converges weakly in distribution to µ(1), as long as all these
SSPs share the same base measure. Finally, from Theorem 4.27 and Proposition 4.28
we know that for each p ∈ [0, 1] and each 0 ≤ σ < 1, θ > −σ, µ(p) has full support,
meaning that this special king of non-homogeneous SSBs lead to feasible Bayesian-non
parametric priors.

4.3.3 Final remarks on stick-breaking processes with non-homogeneous
length variables

We will not be studying MSBs with non-stationary length variables in further detail,
but before we move on, there are a couple of quick remarks to make:

i) In addition to Υ = (Υi)i≥1 as in (4.14), there are other interesting choices of Υ.
For example, if we consider the positive numbers (αi, βi)i≥1 and set

Υi = I−1
Ix(αi,βi)

(αi+1, θi+1), (4.15)

and νi = Be(αi, βi) we can construct non-homogeneous Markov chains of length
variables with the given Beta marginals. Of course, if we set αi = 1 − σ and
βi = θ+ iσ, we recover the models in Section 4.3.2. For Υi as in (4.15), analogous
properties to that of Theorem 4.29 (a)–(d) hold, but depending on (αi, βi)i≥1,
properties such as the ones in (e)–(f), might not be true. If we are not interested
in length variables with Beta marginals, a wide variety of interesting choices for
Υ might come to mind, the one thing we require is that Υi : [0, 1] → [0, 1] is
continuous and maps (0, 1) into (0, 1).

ii) If instead of considering the transitions of length variables, νi’s, as in (4.13) we set

νi(p; dv) =
κ∑
z=0

Be(dv | 1− σ + z, θ + (i+ 1)σ + κ− z)Bin(z | κ,Υi(p)),

where Υi is as in (4.14), then we can generalize BBSBs to contain Pitman-Yor
processes, in the same way we generalized SSBs, and a similar analysis to that of
Sections 4.3.1 and 4.3.2 can be carried on.
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5 Gibbs sampling methods

The main motivation behind Bayesian non-parametric statistics is to avoid restrictive
parametric assumptions about the distribution that generates the data. This is done by
constructing random probability measures with large support, see Datta (1991); Ghosal
et al. (1999); Wu and Ghosal (2008); Bissiri and Ongaro (2014) for an explanation of
why the large support is an essential requirement for Bayesian non-parametric priors.
In general, constructing an arbitrary random probability measure with a wide support
can be extremely complicated, which is why SSPs are the building blocks for the vast
majority of Bayesian non-parametric models. Indeed, SSPs are sufficiently tractable so
that many theoretical properties can be derived, this allows a deep comprehension of
the model. Furthermore, as analysed in Section 3.4, it is possible to construct SSPs
with (weak topological) supports as large as possible. Last but not least, models based
on SSPs are feasible to implement with the aid of Markov chain Monte Carlo (MCMC)
methods. To illustrate the usefulness of Bayesian non-parametric methods based on
SSPs, here we will use them to estimate density of data and/or cluster data points that
present no repetitions.

The first thing we do in Section 5.1 is to explain the canonical methodology of
how to transform proper SSPs into a random mixtures of diffuse kernels. These diffuse
random probability measures will in turn allow modelling continuous density functions.
In here we find the main reason of why we have been particularly interested in proving
that certain SSPs are proper. In fact, for density estimation purposes through mixture
modelling, the essential requirement we need to impose on the SSP are that it is proper
and has full support. While weights summing up to one will allow a simple construction
of a diffuse random probability measure, the full support warranties sufficient flexibility
of the Bayesian non-parametric model. Now, depending on the available construction or
representation of the SSP, there exist distinct MCMC methods to implement the models,
some of them we review in Section 5.2. For instance, if the SSP is a Dirichlet process,
we can exploit the prediction rule to derive a Gibbs sampler algorithm, as developed by
Escobar (1988, 1994); MacEachern (1994) and Escobar and West (1995), this algorithm
can be adapted for any species sampling prior with EPPF obtainable in closed form. If
this is not the case we can exploit the construction through random sets of SSPs (see
Section 3.5.4) to derive a Gibbs sampling method. For most stick-breaking processes the
EPPF nor the latent random sets are available, for this type of priors, Walker (2007)
derive a general slicer sampler algorithm, latter modified by Kalli et al. (2011). Here
we are particular interested in adjusting Bayesian non-parametric models based on the
new priors introduced in Section 4, hence we will be using Walker’s slice sampler or its
modification as driver for the implementation of our models. Finally in Section 5.3 we
will design small experiments to test the performance of priors based on stick-breaking
processes with dependent length variable and contrast the results with the ones obtained
with Dirichlet and Geometric priors.

5.1 Random mixtures

In order to estimate the density of a dataset, the first thing we need to show is how to
transform a proper SSP, which is a purely atomic random probability measure into a
diffuse random probability measure. So consider a couple of Borel spaces, (S,BS) and
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(T,BT ), a proper SSP, µ =
∑

j≥1 wjδξj , over (S,BS), and a diffuse probability kernel
K : S → T (so that K : S ×BT → [0, 1], for each s ∈ A, K(s, ·) is a diffuse probability
measure over (T,BT ) and for every B ∈ BT , K(·, B) is a measurable function). Usually,
we consider {K(s, ·) : s ∈ S} to be a parametric family and S its parameter space. For
example if T = R and S = R × R+ we might choose K to denote a Gaussian kernel
so that K((s1, s2), ·) is a Normal distribution with mean s1 ∈ R and variance s2 ∈ R+.
For this reason, throughout this section we will use the notation K(B | s) = K(s, B) for
every diffuse probability kernel K : S → T . With these objects in mind, we can define
the measurable transformation of µ

µ 7→
∫
K(· | s)µ(ds) =

∑
j≥1

wjK(· | ξj). (5.1)

First of all note that φ =
∑

j≥1 wjK(· | ξj) is a diffuse random probability measure over
(T,BT ) as

φ(T ) =
∑
j≥1

wjK(T | ξj) =
∑
j≥1

wj = 1,

and for each t ∈ T ,

φ({t}) =
∑
j≥1

wjK({t} | ξj) = 0.

The measurability of φ is direct from (5.1).

Remark 5.1. In particular if S and T , endowed with suitable metrics, are Polish, and
for each sn → s in S we have that K(· | sn) converges weakly to K(· | s) in P(T ), from
Lemma 1.18 we get that the mapping (5.1) is even continuous with respect to the weak
topology. This assures that whenever the SSPs µ(n) converge weakly in distribution (or
almost surely) to µ, then φ(n) =

∫
K(· | s)µ(n)(ds) also converges weakly in distribution

(or almost surely) to φ =
∫
K(· | s)µ(ds). In other words, versions of Theorems 4.3 and

4.14 and their corollaries also hold for these diffuse transformations of species sampling
processes. Given that we will be interested in implementing models based on stick-breaking
processes with exchangeable and Markovian length variables, and compare the results with
the limiting processes the Dirichlet and Geometric priors, we will continue under the
assumptions that this extra continuity condition is imposed on the kernel K.

Formally we have the following definition.

Definition 5.1 (Random mixtures/diffuse kernels). Consider a couple of Borel spaces
(S,BS) and (T,BT ), a diffuse probability kernel K : S → T , a sequence of non-negative
random variables (wj)j≥1 with

∑
j≥1 wj = 1 almost surely, and an independent sequence

(ξj)j≥1 of i.i.d. random objects that take values in S. To the diffuse random probability
measure φ =

∑
j≥1 wjK(· | ξj) we call a random mixture.

Note that just as a SSP, µ, the law of a random mixture φ is completely character-
ized by the distribution of the atoms, (ξj)j≥1, and that of the weights, (wj)j≥1. So it
is natural to wonder, why is it important to construct random mixtures through mea-
surably transforming a SSP? Well, the main reason is that random mixtures are harder
to analyse than SSPs, perhaps due to the lack of exchangeable increments. Regarding
random mixtures as a measurable transformation of SSPs allows us to capture impor-
tant structural properties through the latent discrete structures. For example, it is clear
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from (5.1) that the law of a random mixture is completely determined by that of a SSP,
and some methods to define the law of a SSP consist on integrating over the weights se-
quence, such as the construction of SSPs through EPPF. Another important issue is that
analysing the support of a SSPs is much easier, and under mild conditions on the kernel,
K, we can assure that if the SSP has full support, then the Bayesian non-parametric
model, that utilizes φ as the directing random measure of exchangeable observations,
will be flexible enough. In what follows we will present a quick overview of i.i.d. samples
from a random mixture, here the advantages of taking into consideration the underlying
SSP become more obvious.

5.1.1 Samples from random mixtures

In Bayesian non-parametric statistics it is common to model the law of exchangeable
sequences (yi)i≥1 such that P[yi = yk] = 0, for each pair of indexes i 6= k, by means of

a random mixture, that is to consider {y1,y2, . . . | φ}
iid∼ φ =

∑
j≥1 wjK(· | ξj). Indeed,

the diffuseness of φ yields P[yi = yk] = 0, for i 6= k, this is why random mixtures are
sensible tools to model the directing random measure of exchangeable data that present
no repetitions, whereas SSPs are not due to their discrete nature. However, even in this
setting the study of SSP is crucial. Namely, in terms of the law of (yi)i≥1 the following
sampling schemes are equivalent:

I. {y1,y2, . . . | φ}
iid∼ φ.

II. {x1,x2, . . . | µ}
iid∼ µ, and independently for i ≥ 1, {yi | xi} ∼ K(· | xi).

In effect, under the second scheme, by the tower property of conditional expectation,
since µ is (xi)i≥1-measurable, and from (5.1), we get that for any measurable sets
B1, . . . , Bn,

P

[
n⋂
i=1

(yi ∈ Bi)

∣∣∣∣∣µ
]

= E

[
P

[
n⋂
i=1

(yi ∈ Bi)

∣∣∣∣∣ (xi)i≥1

] ∣∣∣∣∣µ
]

=
n∏
i=1

E [K(Bi | xi) | µ]

=
n∏
i=1

∫
K(Bi | s)µ(ds)

=
n∏
i=1

φ(Bi),

as φ is µ-measurable, this implies {y1,y2, . . . | φ}
iid∼ φ. An important gain from the

second sampling scheme is that we can compute the joint distribution of (y1, . . . ,yn).
Using the tower property of conditional expectation once more, we attain that for any
measurable sets, B1, . . . , Bn,

P

[
n⋂
i=1

(yi ∈ Bi)

]
= E

[
n∏
i=1

K(Bi | xi)

]
.
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Being that f(x1, . . . ,xn) =
∏n

i=1K(Bi | xi) is a measurable function of a sample from
a SSP, Theorem 3.7 provides an expression for P[y1 ∈ B1, . . . ,yn ∈ Bn]. Note that

sampling {y1,y2, . . . | φ}
iid∼ φ simply means that with probability wj, yi is sampled

from K(· | ξj). This said, another major advantage of the second sampling scheme over
the first one is that xi records the information about which component of the mixture,
{K(· | ξj)}j≥1, was yi sampled from. More precisely, since the elements in (ξj)j≥1 are
distinct almost surely, whenever xi = ξj we know that with probability one yi was
sampled from K(· | ξj). This then allow us to cluster elements in (yi)i≥1 according to
the ties exhibited in (xi)i≥1, in other words, according to the component of the mixture
from which they were ultimately sampled. In this setting the number of distinct values
{x1, . . . ,xn} exhibits, denoted by Kn in previous sections, can be interpreted as the
number of significant components in {y1, . . . ,yn}, that is, from how many elements in
{K(· | ξj)}j≥1 do we have at least one sample point. Notice that a priori this means we
are modelling the clusters of the data points y1, . . . ,yn through the EPPF corresponding
to µ. In some cases, specially if the EPPF of the model is not available, it is convenient
to restate sampling scheme II, by introducing the so called latent allocation variables
(di)i≥1, defined by di = j if and only if xi = ξj. Note that since ξj 6= ξk almost surely
for every j 6= k, the latent allocation variables are almost surely well defined, and we
can rewrite the second sampling scheme as:

III. Given W = (wj)j≥1, {d1,d2, . . . |W}
iid∼
∑

j≥1 wjδj, given Ξ = (ξj)j≥1 and (di)i≥1,
{xi | di,Ξ} ∼ δξdi , and {yi | xi} ∼ K(· | xi), independently for i ≥ 1.

or equivalently

III. {d1,d2, . . . | W} iid∼
∑

j≥1 wjδj, and {yi | di,Ξ} ∼ K(· | ξdi), independently for
i ≥ 1.

Sampling schemes II and III contain exactly the same amount of information, the differ-
ence is that in one of them the clustering of the observations is recorded by (xi)i≥1 whilst
in the other it is recorded through (di)i≥1. Indeed, if we consider the random partition
Π(d1:n) of {1, . . . , n}, generated by the random equivalence relation i ∼ k if and only
if di = dk, and analogously for (xi)i≥1, then Π(d1:n) is equal almost surely to Π(x1:n),
because outside a P-null set di = dk if an only if xi = xk. This clearly means that both,
Π(d1:n) and Π(x1:n) are exchangeable, and share same the EPPF. The key difference
between modelling the clusters through (di)i≥1 and (xi)i≥1 is that in order to compute
the finite dimensional distributions of (xi)i≥1 we require the EPPF (see Theorem 3.6 V).
As to (di)i≥1, it is easy to compute for any d1, . . . , dn ∈ N

P[d1 = d1, . . . ,dn = dn |W] =
k∏
j=1

w
mj
j ,

where mj = |{i ≤ n : di = j}| =
∑n

i=1 1{di=j} and k = max{d1, . . . , dn}, and taking
expectations in the last equation we obtain

P[d1 = d1, . . . ,dn = dn] = E

[
k∏
j=1

w
mj
j

]
. (5.2)
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Moreover, if the stick-breaking decomposition of the weights W = SB(V) where V =
(vi)i≥1, is available, we can rewrite

P[d1 = d1, . . . ,dn = dn] = E

[
k∏
j=1

v
mj
j (1− vj)

∑
i>j mi

]
. (5.3)

Thus, to compute the joint distribution of (d1, . . . ,dn) we do not need to have the EPPF
in explicit form. For example, for the models introduced in Section 4 most of the times
we will be able to attain an expression for the expectations of power products of length
variables, hence the joint distribution of (d1, . . . ,dn), in contrast to the EPPF which is
much harder to compute. In fact, if we compare equation (5.3) with (3.8) we see that the
pEPPF corresponding to W is similar to the joint distribution of (d1, . . . ,dn) shifted,
while the pEPPF is evaluated in n1, . . . , nk ≥ 1, the joint distribution of the latent
allocation variables is written in terms of m1, . . . ,mk ≥ 0. The reason behind the fact
that the EPPF is not required to compute the finite dimensional distributions of (di)i≥1,
is that, contrary to the directing random measure, µ, of (xi)i≥1, the law of

∑
j≥1 wjδj,

which is the directing random measure of (di)i≥1, is not invariant under permutations of
the weights. So although for the overall model the ordering of the weights is irrelevant,
if we focus on the latent allocation variables, it does have an impact which can be used
to our advantage if necessary.

In general when the EPPF is available and manageable it might be more convenient
to assume sampling scheme II, otherwise, most of the times it is necessary to consider the
latent allocation variables and even expand sampling scheme III in order to implement
the models. This small discussion will become clearer in the subsequent section.

5.2 Gibbs sampling methods

Throughout this section, for the sake of simplicity we will be working with the Bayesian
notation. So for a couple of random elements, η and ζ, that take values in Borel spaces,
we will denote by p(η) to the marginal density or mass probability function of η and
by p(η | ζ) to the conditional density or mass probability function of η given ζ. For
example

p(η) =
Γ(α + β)

Γ(α),Γ(β)
ηα−1(1− η)β−11[0,1](η), or p(η) ∝ ηα−1(1− η)β−11[0,1](η),

means that η ∼ Be(α, β), and

p(ζ | η) =

(
n

ζ

)
ηζ(1− η)n−ζ 1{0,...,n}(ζ)

refers to {ζ | η} ∼ Bin(n, ζ). We will also be excluding the indicator functions that
express the support of the distribution when they are obvious.

Before we discuss how to implement some Bayesian non-parametric models let us
present a quick introduction into Bayesian modelling, so that we can appreciate the
usefulness and in some cases necessity of MCMC methods. As previously mentioned,
in Bayesian statistics one usually models presumably exchangeable data {y1, . . . ,yn} as
i.i.d. sampled from a determined distribution given a random element η, that is

p(y1, . . . ,yn | η) =
n∏
i=1

p(yi | η).
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To fully specify the Bayesian model one has to pick the prior (marginal) distribution of
η, p(η), so that we can try to compute the posterior distribution

p(η | y1, . . . ,yn) ∝ p(y1, . . . ,yn | η)p(η).

Whenever feasible we can then estimate quantities of interest, which are commonly
measurable functions of η, say f(η), through the expected a posteriori (EAP)

E [f(η) | y1, . . . ,yn] =

∫
f(η)p(dη | y1, . . . ,yn),

or through the maximum a posteriori (MAP) f(η̂), where

η̂ = arg max
η

p(η | y1, . . . ,yn).

Example 5.1. Say we encounter {0, 1}-valued data {y1, . . . ,yn}, and decide to model

them as i.i.d. sampled from {y1, . . . ,yn | η}
iid∼ Ber(η), where η ∼ Be(α, β), that is

p(y1, . . . ,yn | η) =
n∏
i=1

p(yi | η) =
n∏
i=1

p(yi | η) =
n∏
i=1

ηyi(1− η)1−yi .

and p(η) = Be(η | α, β). Then we get

p(η | y1, . . . ,yn) ∝ ηα+
∑n
i=1 yi−1(1− η)β+n−

∑n
i=1 yi−1

which means {η | y1, . . . ,yn} ∼ Be (α +
∑n

i=1 yi, β + n−
∑n

i=1 yi). If we were interested
in the probability that yi = 1 for an extra data point, we could estimate this probability
through the EAP estimator

E[η | y1, . . . ,yn] =
α +

∑n
i=1 yi

α + β + n
, (5.4)

or through the MAP estimator

η̂ =
α +

∑n
i=1 yi − 1

α + β + n− 2
, (5.5)

provided that α+
∑n

i=1 yi > 1 and β + n−
∑n

i=1 yi > 1. Notice that if there exist a true

number, p, such that (yi)i≥1
iid∼ Ber(p), then both estimators the one in (5.4) and the one

in (5.5) converge to p as the sample size, n→∞, this is a simple consequence of the law
of large numbers. Whenever this holds, we say the estimators are consistent, and this is
clearly a desirable property of models. Now, a key factor that allowed us to compute the
posterior distribution in the current example is that p(y1, . . . ,yn | η) and p(η) form a
conjugate pair, that is, the prior distribution of η and its posterior distribution belong
to the same parametric family, in this situation, the Beta distribution. In general, when
conjugacy is not attained, which is commonly the case of more complex models, it is
much harder to compute the posterior distribution.
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If it is not possible to compute p(η | y1, . . . ,yn) we can try to draw i.i.d. samples,(
η(t)
)T
t=1

from the posterior distribution (Gilks et al.; 1995, e.g. by means of rejection
sampling) and then, by the strong law of large numbers, we can estimate the quantity
of interest through the EAP

E [f(η) | y1, . . . ,yn] ≈ 1

T

T∑
t=1

f
(
η(t)
)

or through the MAP f(η̂) ≈ f
(
η(t̂)
)

, where

t̂ = arg max
t≤T

p

(
η(t) | y1, . . . ,yn

)
.

In the case that direct sampling from p(η | y1, . . . ,yn) is not feasible, one can recur
to (MCMC) method, such as the Gibbs sampler, to draw correlated samples. This
algorithm is broadly described below.

Say that after possibly re-parametrizing the model through (η1, . . . ,ηm), where η =
g(η1, . . . ,ηm) for some measurable function g, it is possible to compute the conditional
distributions

p(ηj | . . .) = p(ηj | y1, . . . ,yn,η−j) ∝ p(y1, . . . ,yn | η1, . . . ,ηm)p(η1, . . . ,ηm),

where η−j = {η1, . . . ,ηm}\{ηj}, for every j ∈ {1, . . . ,m}. The Gibbs sampler algorithm

consists in choosing some initial values η
(0)
1 , . . . ,η

(0)
m for η1, . . . ,ηm in the support of

(η1, . . . ,ηm) and sequentially for t ≥ 0, sample:

� η
(t+1)
1 from p(η1 | . . .) given ηj = η

(t)
j for j ∈ {2, . . . ,m},

� η
(t+1)
2 from p(η2 | . . .) given η1 = η

(t+1)
1 and ηj = η

(t)
j for j ∈ {3, . . . ,m},

�

...

� η
(t+1)
m from p(ηm | . . .) given ηj = η

(t+1)
j for j ∈ {1, . . . ,m− 1},

as illustrated in Figure 31. Then
(
η

(t)
1 , . . . ,η

(t)
m

)
t≥0

is a Markov chain with unique

stationary distribution p(η1, . . . ,ηm | y1, . . . ,yn), so the Ergodic theorem for stationary

Markov chains assures that we can find T0 ∈ N such that for every t > T0,
(
η

(t)
1 , . . . ,η

(t)
m

)
is precisely a sample from p(η1, . . . ,ηm | y1, . . . ,yn). When implementing the Gibbs
sampler one usually samples from the Markov chain up to some time T > T0 and

disregards the samples
(
η

(t)
1 , . . . ,η

(t)
m

)T0
t=0

obtained during the so called burn-in period.

This way, we can estimate the quantity of interest using the EAP

E [f(g(η1, . . . ,ηm)) | y1, . . . ,yn] ≈ 1

T − T0

T∑
t=T0+1

f
(
g
(
η

(t)
1 , . . . ,η(t)

m

))
,

or alternatively through the MAP

f(η̂) = f
(
g
(
η

(t̂)
1 , . . . ,η(t̂)

m

))
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where
t̂ = arg max

T0<t≤T
p

(
η

(t)
1 , . . . ,η(t)

m

∣∣∣y1, . . . ,yn

)
.

Figure 31: One iteration of the Gibbs sampler.

Returning to the Bayesian non-parametric problem we are interested in, say we model
data points {y1, . . . ,yn}, that present no repetitions as i.i.d. sampled from a random
mixture φ =

∑
j≥1 wjK(· | ξj). Hereinafter we will work under the assumption that the

base measure, µ0, of the proper SSP, µ =
∑

j≥1 wjδξj , and K(· | s), for each s ∈ S, have
a density with respect to suitable measures, this then implies φ also has a density and
is well defined. For the sake of a simpler notation we will be denoting the corresponding
densities with the same letters, so that

p(y1, . . . ,yn | φ) =
n∏
i=1

φ(yi),

or alternatively

p(y1, . . . ,yn | Ξ,W) =
n∏
i=1

∑
j≥1

wjK(yi | ξj),

where Ξ = (ξj)j≥1 and W = (wj)j≥1. Specifying the prior distributions p(φ) or p(Ξ,W)
can be done by constructing a SSP through one of the methods described in Section
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3.5. In general it is not possible to compute p(φ | y1, . . . ,yn) or p(Ξ,W | y1, . . . ,yn)
explicitly, nor to draw i.i.d. samples from them. Furthermore, the random objects we
are interested in are infinitely dimensional, which means that even if we want to recur
to a Gibbs sampler algorithm we will need to re-parametrize the model, so that its
implementation is feasible. Depending on the available representation or construction
of the species sampling prior, there are various well know methods to overcome this
obstacle. In what follows we describe some of them.

5.2.1 Using the prediction rule

As mentioned in Section 5.1.1, modelling {y1, . . . ,yn | φ}
iid∼ φ is equivalent to

p(y1, . . . ,yn | x1, . . . ,xn) =
n∏
i=1

K(yi | xi) (5.6)

where {x1, . . . ,xn | µ}
iid∼ µ. Now, if the EPPF, π, or the prediction rule for (xi)i≥1 are

available, using the exchangeability of (xi)i≥1 and Theorem 3.6, we know that a priori,
for every i ≤ n,

p(xi | X−i) =
K∑
j=1

π
(
n(j)
)

π(n)
δx∗j (xi) +

π
(
n(K+1)

)
π(n)

µ0(xi),

where X−i = {x1, . . . ,xn} \ {xi}, x∗1, . . . ,x
∗
K are the distinct values in X−i, n =

(n1, . . . ,nK) is given by nj = |{l 6= i : xl = x∗j}|, n(j) = (n1, . . .nj−1,nj+1,nj+1, . . . ,nK)

and n(K+1) = (n1, . . . ,nKn , 1). Under this approach we want to update x1, . . . ,xn at
each iteration of the Gibbs sampler. In order to do so it suffices to compute

p(xi | . . .) ∝ p(y1, . . . ,yn | x1, . . . ,xn)p(xi | X−i)

∝
K∑
j=1

π
(
n(j)
)

π(n)
K(yi | x∗j)δx∗j (xi) +

π
(
n(K+1)

)
π(n)

µ0(xi)K(yi | xi)

∝
K∑
j=1

qjδx∗j (xi) + qK+1
µ0(xi)K(yi | xi)∫
K(yi | s)µ0(ds)

(5.7)

where

qj =
π
(
n(j)
)

π(n)
K(yi | x∗j), (5.8)

for every j ∈ {1, . . . ,K} and

qK+1 =
π
(
n(K+1)

)
π(n)

∫
K(yi | s)µ0(ds). (5.9)

For example, if π is the EPPF of a Dirichlet process with total mass parameter θ get
have that

qj =
nj

θ + n− 1
K(yi | x∗j),
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for every j ∈ {1, . . . ,K} and

qK+1 =
θ

θ + n− 1

∫
K(yi | s)µ0(ds).

In general to sample xi from (5.7) we set xi = x∗j with probability proportional to qj or
with probability proportional to qK+1 we sample xi from

p(xi | yi) ∝ µ0(xi)K(yi | xi),

which can be easily done whenever µ0 and K form a conjugate pair, in this case the
integral ∫

K(yi | s)µ0(ds)

is generally feasible to compute or approximate. The algorithm can be stated as follows:

Algorithm 1: First T iterations of a Gibbs sampler algorithm using the EPPF

Pick some values x
(0)
1 , . . . ,x

(0)
n in the support of µ0 and initialize

(x1, . . . ,xn) =
(
x

(0)
1 , . . . ,x

(0)
n

)
.

for t ∈ {1, . . . , T} do
for i ∈ {1, . . . , n} do

Sample xi from (5.7);

Set x
(t)
i = xi;

Result: The Markov chain
(
x

(t)
1 , . . . ,x

(t)
n

)T
t=1

.

Unfortunately, this method can suffer from a slow convergence to the stationary
distribution p(x1, . . . ,xn | y1, . . . ,yn), when the values of qj as in (5.8) become much
larger than qK+1 as in (5.9), which can cause that many iterations of the Gibbs sampler
occur before a new value x∗j is sampled. To overcome this problem West et al. (1994)
and MacEachern (1994) proposed to re-express the sampling of x1, . . . ,xn in terms of
the distinct values x∗1, . . . ,x

∗
Kn

that {x1, . . . ,xn} exhibits and the partition structure
{Π1, . . . ,ΠKn} where Πj = {i ≤ n : xi = x∗j}, essentially this results in adding a step
to Algorithm 1 where x∗j is updated for every j ∈ {1, . . . ,Kn}. To spell this out first
note that we can rewrite (5.6) as

p(y1, . . . ,yn | x1, . . . ,xn) =
Kn∏
j=1

∏
i∈Πj

K(yi | x∗j).

Also recall from Theorem 3.6 that

p(x1, . . . ,xn) = π(n1, . . . ,nKn)
Kn∏
j=1

µ0(x∗j),

where nj = |Πj|. Hence to update x∗j for {1, . . . ,Kn}, we have to sample it from

p(x∗j | . . .) ∝ µ0(x∗j)
∏
i∈Πj

K(yi | x∗j) (5.10)
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which is easy to do if µ0 and K constitute a conjugate pair. Now, to update the random
partition {Π1, . . . ,ΠKn} we can update one a time for, i ∈ {1, . . . , n}, to which block
does i belongs. Noting that i ∈ Πj if and only if xi = x∗j , to do this we can sample xi
from p(xi | . . .) and this way update the membership of i. Since x∗1, . . . ,x

∗
Kn

provide no
more information about xi than X−i does, it is straightforward to see that conditioning
on x∗1, . . . ,x

∗
Kn

, p(xi | . . .) remains as in (5.7). With this considerations taken into
account we can modify Algorithm 1 as follows:

Algorithm 2: First T iterations of a modified Gibbs sampler algorithm using
the EPPF

Initialize the partition of {1, . . . , n}, {Π1, . . . ,ΠKn} =
{

Π
(0)
1 , . . . ,Π

(0)
Kn

}
for t ∈ {1, . . . , T} do

for j ∈ {1, . . . ,Kn} do
Sample x∗j from (5.10);

for i ∈ {1, . . . , n} do
Sample xi from (5.7);

Set x
(t)
i = xi;

Define Πj = {i ≤ n : xi = x∗j}, where x∗1, . . . ,x
∗
Kn

are the distinct values
{x1, . . . ,xn} exhibits.

Result: The Markov chain
(
x

(t)
1 , . . . ,x

(t)
n

)T
t=1

.

Despite whether we choose to implement Algorithm 1 or 2, given the samples(
x

(t)
1 , . . . ,x

(t)
n

)T
t=1

obtained from the Gibbs sampler, we can use the EAP to estimate

the density of the data at y by means of

φEAP(y) ≈ 1

T − T0

T∑
t=T0+1

1

n

K
(t)
n∑

j=1

n
(t)
j K

(
y
∣∣∣x∗j (t)

)
where T0 is the last iteration of the burn-in period, K

(t)
n is number the distinct values

in
{

x
(t)
1 , . . . ,x

(t)
n

}
, x∗1

(t), . . . ,x∗
(t)

Kn
(t) are such values, and n

(t)
j =

∣∣∣{i ≤ n : x
(t)
i = x∗j

(t)
}∣∣∣.

By means of the EAP, we can also estimate the posterior distribution of the number of
significant components, Kn, in the data set {y1, . . . ,yn} through

P[Kn = j | y1, . . . ,yn] ≈ 1

T − T0

T∑
t=T0+1

1{
K

(t)
n =j

}.
Alternatively, we can find

t̂ = arg max
T0<t≤T

p

(
y1, . . . ,yn

∣∣∣x(t)
1 , . . . ,x(t)

n

)
p

(
x

(t)
1 , . . . ,x(t)

n

)
= arg max

T0<t≤T
π
(
n

(t)
1 , . . . ,n

(t)

K
(t)
n

)K
(t)
n∏

j=1

µ0

(
x∗j

(t)
) ∏
i∈Π

(t)
j

K
(
yi

∣∣∣x∗j (t)
)
.

and use the MAP to estimate the density at y, through

φMAP(y) ≈ 1

n

K
(t̂)
n∑

j=1

n
(t̂)
j K

(
y
∣∣∣x∗j (t̂)

)
.
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By means of the MAP we can also estimate the number of significant components by

K
(t̂)
n , and the clusters of the data points {y1, . . . ,yn}, by putting yi and yk in the same

block if and only if x
(t̂)
i = x

(t̂)
k . Another way to estimate the clusters is via the mixture

components, {
n

(t̂)
j

n
K
(
·
∣∣∣x∗(t̂)j

)}K
(t̂)
n

j=1

,

by defining

ci = arg max
1≤j≤K

(t̂)
n

{
n

(t̂)
j

n
K
(
yi

∣∣∣x∗(t̂)j

)}
,

for every i ∈ {1, . . . , n}, and putting yi and yk in the same cluster if and only if ci = ck.
Notice that, although φ is infinitely dimensional, this Gibbs sampler allows us to

estimate the density by only sampling finitely many random elements, this we were able
to achieve by writing the model in terms of a sample {x1, . . . ,xn} of the SSP, µ, and
exploiting their distinct representations as stated in Theorem 3.6. Furthermore, if µ0 and
K are conjugate the algorithm is very easy to implement, for the cases where conjugacy
is not attained various solutions have been proposed (e.g. West et al.; 1994; Walker and
Damien; 1998; MacEachern and Müller; 1998; Neal; 2000). Perhaps the major drawback
of this method is that we require the EPPF or the prediction rule, which is unattainable
in closed forms for most SSP priors. Usually, the canonical examples of the present
algorithm are the Dirichlet and the Pitman-Yor processes because their prediction rules
are simple enough that the sampler is feasible to implement. Now for some models it
is possible to characterize the partition structure given a latent random variable (e.g.
James et al.; 2009) in these cases the algorithm can be adapted to cover a wider range of
SSP priors. For the priors without this characteristic there are other paths to implement
the model.

5.2.2 Using latent random sets

As before, say we model data as i.i.d. sampled from {y1, . . . ,yn | φ}
iid∼ φ =∑

j≥1 wjK(· | ξj). This time assume that the EPPF corresponding to µ =
∑

j≥1 wjδξj
is note available but we can construct µ by means of latent random sets as explained in
Section 3.5.4. That is we can write

wj = E
[

1

|Ψ|
1{j∈Ψ}

∣∣∣∣ τ] , j ≥ 1, (5.11)

for a random element τ ∼ p(τ ) that takes values in a Borel space, and some random
set {Ψ | τ} ∼ p(Ψ | τ ) that takes values in FN = {A ⊆ N : 0 < |A| < ∞}. As a con-
sequence of Proposition 3.17 and the discussion in Section 5.1.1, assuming {y1, . . . ,yn |
φ} iid∼ φ, is equivalent to consider {yi | xi} ∼ K(· | xi), {xi | Ξ,Ψi} ∼ |Ψi|−1

∑
j∈Ψi

δξj ,

independently for i ∈ {1, . . . , n}, and {Ψ1, . . . ,Ψn | τ}
iid∼ p(Ψ | τ ), where evidently

τ ∼ p(τ ) and Ξ = (ξj)j≥1
iid∼ µ0. By further introducing the latent allocation variables
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di = j if and only if xi = ξj we can re-express

{yi | Ξ,di} ∼ K(· | ξdi) indep. for i ∈ {1, . . . , n}
{di | Ψi} ∼ Unif(Ψi) indep. for i ∈ {1, . . . , n}

{Ψ1, . . . ,Ψn | τ}
iid∼ p(Ψ | τ )

τ ∼ p(τ )

(ξj)j≥1
iid∼ µ0.

that is

p(y1, . . . ,yn,d1, . . . ,dn,Ψ1, . . . ,Ψn | Ξ, τ ) =
n∏
i=1

K(yi | ξdi)
1

|Ψi|
1{di∈Ψi}p(Ψi | τ ).

(5.12)
Under this approach, the full conditional distributions required to update the random
elements involved, at each iteration of the Gibbs sampler, are proportional to (5.12)
multiplied by the prior of τ and Ξ, and computed below.

Updating ξj for j ≥ 1:

p(ξj | . . .) ∝ µ0(ξj)
∏
i∈Dj

K(yi | ξj) (5.13)

where Dj = {i ≤ n : di = j}. Drawing samples from (5.13) is easy when conjugacy
is attained for µ0 and K. Note that if Dj = ∅ the ξj is simply sampled form its prior
distribution µ0.

Updating di for i ∈ {1, . . . , n}:

p(di | . . .) ∝ K(yi | ξdi)1{di∈Ψi}

which yields

p(di | . . .) =
K(yi | ξdi)1{di∈Ψi}∑

j∈Ψi
K(yi | ξdi)

. (5.14)

To sample di from this distribution simply means that we set di = j with probability
proportional to K(yi | ξj) for each j ∈ Ψi. Being that Ψ is non-empty and finite almost
surely drawing samples from (5.14) is easy.

Updating Ψi for i ∈ {1, . . . , n}:

p(Ψi | . . .) ∝
p(Ψi | τ )

|Ψi|
1{di∈Ψi}. (5.15)

Updating τ :

p(τ | . . .) ∝ p(τ )
n∏
i=1

p(Ψi | τ ). (5.16)

Whether it is simple or possible to sample from equations (5.14) and (5.16) depends
on p(Ψi | τ ) and p(τ ). An example of a species sampling prior where this is very easy to
do is the Geometric prior. Recall from Section 3.6.3 that if µ =

∑
j≥1 wjδξj ∼ G(ν0, µ0),

then we can write wj as in (5.11) where τ ∼ ν0 and Ψ = {1, . . . ,N}, with

p(N | τ ) = Nτ 2(1− τ )N−1.
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Hence, if the Geometric prior is considered, by setting Ψi = {1, . . . ,Ni}, where

{N1, . . . ,Nn | τ}
iid∼ p(N | τ ), (5.12) becomes

p(y1, . . . ,yn,d1, . . . ,dn,N1, . . . ,Nn | Ξ, τ ) =
n∏
i=1

K(yi | ξdi)1{di≤Ni}τ
2(1− τ )Ni−1.

(5.17)
In this particular case, the full conditionals of ξj and di are left unchanged. Clearly, to
update Ψi it suffices to update Ni and latter define Ψi = {1, . . . ,Ni}, as follows:

Updating Ni for every i ∈ {1, . . . , n}:
p(Ni | . . .) ∝ (1− τ )Ni−11{di≤Ni}, (5.18)

thus, a posteriori Ni follows a truncated Geometric distribution, which is very easy to
sample from using the memory loss property of the distribution in question. It only
remains to compute the full conditional of τ , which is also very simple to do if we assign
a Be(α, β) prior to this random variable.

Updating τ :

p(τ | . . .) ∝ p(τ )
n∏
i=1

τ 2(1− τ )Ni−1 ∝ τα+2n−1(1− τ )β+
∑n
i=1 Ni−n−1, (5.19)

thus to update τ we simply sample it from a Be (α + 2n, β +
∑n

i=1 Ni − n). For more
details on the implementation of this algorithm for the Geometric process, see Fuentes-
Garćıa et al. (2010), other examples of Bayesian non-parametric priors for which this
algorithm is particularly useful can be found in De Blasi et al. (2020) and Gil-Leyva
(2021).

Returning to the general scenario, realize that we do not require to sample ξj for
every j ≥ 1 it suffices to sample enough of them so that the updating of (di)

n
i=1 can take

place. This is, it is enough to sample ξj for every j ∈
⋃n
i=1 Ψi which is a finite set, hence

feasible to do. The complete Gibbs sampler algorithm is shown below:

Algorithm 3: First T iterations of a Gibbs sampler algorithm using latent
random sets

Initialize di = d
(0)
i ∈ N for every i ∈ {1, . . . , n}

for t ∈ {1, . . . , T} do
for i ∈ {1, . . . , n} do

Sample Ψi from (5.15);

Set Ψ
(t)
i = Ψi;

Sample τ from (5.16);
Set τ (t) = τ ;
for j ∈

⋃n
i=1 Ψi do

Sample ξj from (5.13);

Set ξ
(t)
j = ξj;

for i ∈ {1, . . . , n} do

Sample d
(t)
i from (5.14);

Set d
(t)
i = di;

Result: The Markov chain(
d

(t)
1 , . . . ,d

(t)
n ,Ψ

(t)
1 , . . . ,Ψ

(t)
n , τ (t),

(
ξ

(t)
j

)
j∈
⋃n
i=1 Ψ

(t)
i

)T
t=1

.
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Given the samples(
d

(t)
1 , . . . ,d(t)

n ,Ψ
(t)
1 , . . . ,Ψ(t)

n , τ
(t),
(
ξ

(t)
j

)
j∈
⋃n
i=1 Ψ

(t)
i

)T
t=1

obtained from the Gibbs sampler, we can use the EAP to estimate the density of the
data at y by means of

φEAP(y) ≈ 1

T − T0

T∑
t=T0+1

1

n

n∑
i=1

1∣∣∣Ψ(t)
i

∣∣∣
∑
j∈Ψ

(t)
i

K
(
y
∣∣∣ ξj(t)

)
,

where T0 is the last iteration of the burn-in period. We can also estimate the posterior
distribution of the number of significant components, Kn, in the data set {y1, . . . ,yn}
through

P[Kn = j | y1, . . . ,yn] ≈ 1

T − T0

T∑
t=T0+1

1{
K

(t)
n =j

}.
where K

(t)
n is the number of distinct values in

{
d

(t)
1 , . . . ,d

(t)
n

}
. Alternatively, we can find

t̂ = arg max
T0<t≤T

p(y1, . . . ,yn,d1, . . . ,dn,Ψ1, . . . ,Ψn | Ξ, τ )p
(
τ (t)
) ∏
j∈
⋃
i Ψ

(t)
i

µ0

(
ξ

(t)
j

)
= arg max

T0<t≤T


n∏
i=1

K
(

yi

∣∣∣∣ ξ(t)

d
(t)
i

)
p

(
Ψ

(t)
i

∣∣∣ τ (t)
)

∣∣∣Ψ(t)
i

∣∣∣ 1{
d
(t)
i ∈Ψ

(t)
i

}p (τ (t)
) ∏
j∈
⋃
i Ψ

(t)
i

µ0

(
ξ

(t)
j

)
.

and use the MAP to estimate the density at y, through

φMAP(y) ≈ 1

n

n∑
i=1

1∣∣∣Ψ(t̂)
i

∣∣∣
∑
j∈Ψ

(t̂)
i

K
(
y
∣∣∣ ξj(t̂)

)
.

By means of the MAP we can also estimate the number of significant components by

K
(t̂)
n , and the clusters of the data points {y1, . . . ,yn}, by putting yi and yk in the same

cluster if and only if d
(t̂)
i = d

(t̂)
k , or via the mixture components 1

n

n∑
i=1

1{
j∈Ψ

(t̂)
i

}∣∣∣Ψ(t̂)
i

∣∣∣ K
(
·
∣∣∣ ξ(t̂)

j

)
j∈
⋃n
i=1 Ψ

(t̂)
i

,

by defining

ci = arg max
j∈
⋃n
i=1 Ψ

(t̂)
i

 1

n

n∑
k=1

1{
j∈Ψ

(t̂)
k

}∣∣∣Ψ(t̂)
k

∣∣∣ K
(
yi

∣∣∣ ξ(t̂)
j

) ,

for every i ∈ {1, . . . , n}, and putting yi and yk in the same cluster if and only if ci = ck.
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5.2.3 Slice sampler

This Gibbs sampler algorithm was derived by Walker (2007), and is particularly useful for
those species sampling priors where the distribution of the weights is available in closed
form but the EPPF is not. This is the case for many stick-breaking processes such as
the models introduced in Section 4. Essentially this algorithm consists in defining latent
random sets using slices and then apply the algorithm is Section 5.2.2. The construction
of these latent random sets is precisely the proof of Proposition 3.16, despite we will
replicate it here. First of all consider a latent random variable u with marginal support
[0, 1], and such that

p(u |W) =
∑
j≥1

1{u<wj} = |{j ≥ 1 : u < wj}|, (5.20)

where W = (wj)j≥1 (see Figure 49 in Appendix C.12 for an illustration of p(u | W)).
Now, define Ψ = {j ≥ 1 : u < wj}, and note that from (5.20), u < maxj wj, so Ψ is
non-empty almost surely. Moreover, being that

∑
j≥1 wj = 1, we also have that Ψ is

finite with probability one. Finally if we set τ = W, we get

E
[

1

|Ψ|
1{j∈Ψ}

∣∣∣∣ τ] =

∫ 1

0

1

|Ψ|
1{u<wj}p(u | τ )du =

∫ 1

0

1{u<wj}du = wj

for every j ≥ 1. Thus, Ψ = {j ≥ 1 : u < wj} and τ = W satisfy equation (5.11)
meaning that we have constructed a random set that allows a re-parametrization or
augmentation of model in such way that only finitely many random elements have to be
updated at each iteration of the Gibbs sampler. Namely, under analogous arguments to
those of Section 5.2.2, modelling {y1, . . . ,yn} as i.i.d. sampled from the random mixture
φ is equivalent to

{yi | Ξ,di} ∼ K(· | ξdi) indep. for i ∈ {1, . . . , n}
{di | Ψi} ∼ Unif(Ψi) indep. for i ∈ {1, . . . , n}

Ψi = {j ≥ 1 : ui < wj} indep. for i ∈ {1, . . . , n}

{u1, . . . ,un |W}
iid∼ p(u |W)

W ∼ p(W)

(ξj)j≥1
iid∼ µ0.

Noting that j ∈ Ψi if and only if ui < wj and |Ψi| = p(ui |W), for every i ∈ {1, . . . , n},
this yields p(y1, . . . ,yn |W,Ξ) can be augmented as

p(y1, . . . ,yn,d1, . . . ,dn,u1, . . . ,un |W,Ξ) =
n∏
i=1

K(yi | ξdi)1{ui<wdi
}. (5.21)

The full conditionals required to update the random elements at each iteration of the
Gibbs sampler are proportional to

p(y1, . . . ,yn,d1, . . . ,dn,u1, . . . ,un |W,Ξ)p(Ξ)p(W)

and described below.
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Updating ξj for j ≥ 1:

p(ξj | . . .) ∝ µ0(ξj)
∏
i∈Dj

K(yi | ξj), (5.22)

where Dj = {i ≤ n : di = j}.
Updating di for i ∈ {1, . . . , n}:

p(di | . . .) ∝ K(yi | ξdi)1{ui<wdi
} ∝ K(yi | ξdi)1{di∈Ψi}. (5.23)

Hence the updating of (ξj)j≥1 and (di)
n
i=1 in this Gibbs sampler remains identical to

the updating of them in the algorithm described in Section 5.2.2.
Updating ui for i ∈ {1, . . . , n}:

p(ui | . . .) ∝ 1{ui<wdi
} ∝ Unif(ui | 0,wdi). (5.24)

that is we simply have to sample ui ∼ Unif(ui | 0,wdi) independently for i ∈ {1, . . . , n}.
Updating W:

p(W | . . .) ∝ p(W)
n∏
i=1

1{ui<wdi
}. (5.25)

For instance if the stick-breaking representation of the weights is available W = SB(V),
for a sequence of length variables V = (vj)j≥1 with mathematically tractable prior
distribution, we can the weights sequence via the length variables.

Updating V:

p(V | . . .) ∝ p(V)
n∏
i=1

1

{
ui < vdi

∏
l<di

(1− vl)

}
. (5.26)

If we denote by V−j, to the collection of available vl’s excluding vj, after some algebra
it is easy to obtain

p(vj | . . .) ∝ p(vj | V−j)1{aj < vj < bj}. (5.27)

where

aj = max
{i:di=j}

{
ui∏

l<di
(1− vl)

}
(5.28)

and

bj = 1− max
{i:di>j}

{
ui

vdi

∏
l<di,l 6=j(1− vl)

}
, (5.29)

with the convention that max ∅ = 0. Evidently, for j > k = max{d1, . . . ,dn} the
posterior distribution p(vj | . . .) coincides with the prior p(vj | V−j).

Remark 5.2. Once we have updated vl for every l < j we can set wj = vj
∏

l<j(1−vl)
and latter compute the random sets Ψ’s. Note that we do not require to update ξj, vj
and wj for every j ≥ 1, it suffices to sample them for j ≤ m, where m is the first
natural number that satisfies

∑m
j=1 wj ≥ maxi(1− ui), then is not possible that ui < wj

for any i ≤ n and j > m. This way we can completely define the random sets Ψi’s and
the updating of (di)

n
i=1 can take place.
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Algorithm 4: First T iterations of a Gibbs sampler algorithm for stick-breaking
priors using slices

Initialize di = d
(0)
i ∈ N for every i ∈ {1, . . . , n} and wj = w

(0)
j for

j ≤ max{d1, . . . ,dn}
for t ∈ {1, . . . , T} do

for i ∈ {1, . . . , n} do
Sample ui from (5.24);

Set u
(t)
i = ui;

Set m = max{d1, . . . ,dn};
for j ≤m do

Sample ξj from (5.22);
Sample vj from (5.27);

Set w
(t)
j = wj = vj

∏
l<j(1− vl) and ξ

(t)
j = ξj;

while
∑m

j=1 wj < maxi(1− ui) do
Set m = m + 1;
Sample ξm from µ0;
Sample vm from p(vm | V−m);

Set wm = w
(t)
m = vm

∏
l<m(1− vl), and ξ

(t)
m = ξm;

Set m(t) = m;
if a prior distribution has been assigned to an hyper-parameter λ: then

Sample λ from p(λ | . . .);
Set λ(t) = λ;

for i ∈ {1, . . . , n} do
Define Ψi = {j : ui < wj};
Sample di from (5.23);

Set d
(t)
i = di;

Result: The Markov chain(
d

(t)
1 , . . . ,d

(t)
n ,u

(t)
1 , . . . ,u

(t)
n ,
(
w

(t)
j

)
j≤m(t)

,
(
ξ

(t)
j

)
j≤m(t)

,λ(t)

)T
t=1

.

Let us consider some examples that are extremely relevant to us because they spe-
cialize this Gibbs sampler algorithm to some models studied in Section 4.

Example 5.2 (Updating the length variables of a Dirichlet process). If the species
sampling process µ =

∑
j≥1 wjδξj is a Dirichlet process with total mass parameter θ.

We know, from Definition 3.9, that we may decompose wj = vj
∏

l<j(1 − vj) for the

length variables (vj)j≥1
iid∼ Be(1, θ). In this case (5.27) simplifies to

p(vj | . . .) ∝ Be(vj | 1, θ)1{aj < vj < bj}.

So to update vj, for j ≤ k = max {d1, . . . ,dn}, we simply sample it from a truncated Beta
distribution. To do this we can compute the posterior cumulative distribution function
of vj,

Fj(vj) =
(1− aj)

θ − (1− vj)
θ

(1− aj)θ − (1− bj)θ

and use the inverse-sampling technique, that is we first sample a uniform random variable
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zj ∼ Unif(0, 1) and then set vj = F−1
j (zj), where F−1

j is the inverse function of Fj.
Clearly for j > k, to update vj we sample it from its prior distribution Be(vj | 1, θ).

Example 5.3 (Updating the length variables of a Dirichlet driven stick-breaking process
(DSB)). If µ =

∑
j≥1 wjδξj ∼ DSB(β, θ, µ0), is a DSB (see Definition 4.2) then we may

write wj = vj
∏

l<j(1− vj) for some exchangeable length variables {v1,v2, . . . | ν}
iid∼ ν

where ν ∼ D(β,Be(1, θ)) is a Dirichlet process with total mass parameter β and base
measure Be(1, θ). By Theorem 3.6, Definition 3.7, and exploiting the exchangeability
of the length variables, we know that a priori, for any finite subset, V−j, of the length
variables that does not contain vj,

p(vj | V−j) =
K∑
l=1

nl
n + β

δv∗l (vj) +
β

n + β
Be(vj | 1, θ), (5.30)

where n = |V−j|, K is the number of distinct values in V−j, v∗1, . . . ,v
∗
K are such distinct

values and nl = |{vi ∈ V−j : vi = v∗l }|. Now, by Remark 5.2 below, we know that when
updating vj, the set of available length variables, V−j, is finite at each iteration, hence
(5.27) specializes to

p(vj | . . .) ∝
∑
l∈Cj

nl δv∗l + β
[
(1− aj)

θ − (1− bj)
θ
]
fj(vj) (5.31)

where Cj = {l : aj < v∗l < bj} and fj denotes the density

fj(vj) =
θ(1− vj)

θ−1

(1− aj)θ − (1− bj)θ
1{aj < vj < bj}.

This way, to update vj, we set vj = v∗l for l ∈ Cj with probability

ql =
nj∑

l∈Cj
nl + β [(1− aj)θ − (1− bj)θ]

,

or we sample vj from the truncated Beta distribution, with probability

q0 =
β
[
(1− aj)

θ − (1− bj)
θ
]∑

l∈Cj
nl + β [(1− aj)θ − (1− bj)θ]

.

When implementing DSB priors, motivated by Corollaries 4.5 and 4.9, it might be
of interest to estimate the underlying tie probability ρν = P[vj = vl] = 1/(β + 1), in
order to do this we can consider this quantity random and assign it a prior, p(ρν). By
doing so, roughly speaking, we allow the model to choose between DSB priors that behaves
arbitrarily similar to a Dirichlet prior, to a Geometric prior or somewhere in between.
If we decide to assign a prior distribution to this hyper-parameter, it is straightforward
to check that the full conditionals of ξj, di and ui will remain unchanged, as to the full
conditional of vj, it will be as described above conditionally given β = β = (1− ρν)/ρν.
In this circumstance we will require to update ρν at each iteration of the Gibbs sampler.
Since ρν only affects directly the length variables, it is easy to see that the full conditional
distribution of this random variable is

p(ρν | . . .) ∝ p(v1,v2, . . . | ρν)p(ρν)
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Being that at each iteration of the Gibbs sampler we only sample finitely many length
variables (see Remark 5.2) say v1, . . . ,vm and from Theorem 3.6 we obtain

p(ρν | . . .) ∝ π(n1, . . .nKm)p(ρν)

where Km is the number of distinct values {v1, . . . ,vm} exhibits, n1, . . . ,nKm are the
frequencies of the distinct values and π is the EPPF of the Dirichlet process. Hence,

p(ρν | . . .) ∝
(1− ρν)Km−1 ρm−Km

ν∏m−2
i=0 (1 + iρν)

p(ρν).

Drawing samples from the full conditional of ρν is possible with the aid of a rejection
sampling method such as Adaptive Rejection Metropolis Sampling (ARMS) (Gilks et al.;
1995).

Example 5.4 (Updating the length variables of a spike and slab stick-breaking process
(SSB)). If µ =

∑
j≥1 wjδξj is a spike and slab stick-breaking process with parameters

(p,Be(1, θ), µ0) (see Definition 4.6) we can decompose wj = vj
∏

l<j(1 − vl) for every
j ≥ 1 where (vj)j≥1 is a Markov chain with initial and stationary distribution Be(1, θ)
and transition

p(vj+1 | vj) = p δvj(vj+1) + (1− p)Be(vj+1 | 1, θ).
Exploiting the Markov property of the length variables it is easy to see that for j = 1,
(5.27) specializes to

p(v1 | . . .) ∝ p(v1)p(v2 | v1)1{a1 < v1 < b1}

∝ Be(v1 | 1, θ)
{

p 1{v1=v2} + (1− p)Be(v2 | 1, θ)
}

1{a1 < v1 < b1}

∝ p1{a1 < v2 < b1}Be(v2 | 1, θ)δv2(v1)

+ (1− p)Be(v2 | 1, θ)Be(v1 | 1, θ)1{a1 < v1 < b1}.

Hence to update v1 we set v1 = v2 with probability proportional to

q2 = p1{a1 < v2 < b1},

or with probability proportional to

q0 = (1− p)
[
(1− a1)θ − (1− b1)θ

]
we sample v1 from a truncated Beta distribution. Now, for j ≥ 2, we get that (5.27)
reduces to

p(vj | . . .) ∝ p(vj | vj−1)p(vj+1 | vj)1{aj < vj < bj}

∝ 1{aj < vj < bj}
{

p 1{vj=vj−1} + (1− p)Be(vj | 1, θ)
}
×{

p 1{vj=vj+1} + (1− p)Be(vj+1 | 1, θ)
}

∝ 1{aj < vj−1 = vj+1 < bj}p2δvj−1
(vj)+

1{aj < vj−1 < bj}p(1− p)Be(vj+1 | 1, θ)δvj−1
(vj)+

1{aj < vj+1 < bj}p(1− p)Be(vj+1 | 1, θ)δvj+1
(vj)+

(1− p)2Be(vj+1 | 1, θ)Be(vj | 1, θ)1{aj < vj < bj}.
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Thus to update vj, with probability proportional to

qj−1 =
1{aj < vj−1 = vj+1 < bj}p2

Be(vj+1 | 1, θ)
+ 1{aj < vj−1 < bj}p(1− p)

we set vj = vj−1, with probability proportional to

qj+1 = 1{aj < vj+1 < bj}p(1− p)

we set vj = vj+1, or with probability proportional to

q0 = (1− p)2
[
(1− a1)θ − (1− b1)θ

]
we sample vj from a truncated Beta distribution. If vj+1 is not given when updating vj,
the full conditional of the random variable in question is slightly different. In this case
we have that

p(vj | . . .) ∝ p(vj | vj−1)1{aj < vj < bj}

∝ 1{aj < vj−1 < bj}p δvj−1
(vj) + (1− p)1{aj < vj < bj}Be(vj | 1, θ).

This means that with probability proportional to

qj−1 = 1{aj < vj−1 < bj}p
we fix vj = vj−1, or with probability proportional to

q0 = (1− p)
[
(1− a1)θ − (1− b1)θ

]
we sample vj from the corresponding truncated Beta distribution.

As is the case of DSBs, when implementing SSB priors it can be interesting to es-
timate the parameter p, this due to Corollary 4.22. Indeed, by considering p random
and choosing a prior for it, we allow the model to choose between SSB priors that are
similar to a Dirichlet process, to a Geometric process or some SSP in between. If we
decide to regard p as an extra random variable, it is easy to see that the full conditionals
of ξj, di and ui remain identical, and the full conditional of vj also remains the same
by conditioning on p. As to the full conditional of p we have that

p(p | . . .) ∝ p(p)p(v1)
m∏
j=2

p(vj | vj−1)

∝ p(p)
m∏
j=2

p δvj−1
(vj) + (1− p)Be(vj | 1, θ)

where (vj)
m
j=1 are the updated vj’s. Note that since the Beta distribution if diffuse,

Be(vj | 1, θ)1{vj 6=vj−1} remains the density of a Beta distribution which means we can
re-express

p(p | . . .) ∝ p(p)
m∏
j=2

p1{vj=vj−1} + (1− p)1{vj 6=vj−1}Be(vj | 1, θ)

∝ p(p)
m∏
j=2

p
1{vj=vj−1} [(1− p)Be(vj | 1, θ)]1{vj 6=vj−1}

∝ p(p)p
∑m
j=2 1{vj=vj−1}(1− p)

∑m
j=2 1{vj 6=vj−1} .
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Thus if we pick p(p) = Be(p | α, β), then to sample p from its full conditional we simply

have to sample its from a Be
(
α +

∑m
j=2 1{vj=vj−1}, β +

∑m
j=2 1{vj 6=vj−1}

)
distribution.

For some stick-breaking priors the slice sampler can be modified as suggested by Kalli
et al. (2011), so instead of updating (ui)

n
i=1 separately from (vj)j≥1 we update them as

block.
Updating (ui)

n
i=1 and V = (vj)j≥1 as a block:

p(u1, . . . ,un,V | . . .) ∝ p(V)
n∏
i=1

1{ui<wdi
}

∝ p(V)
n∏
i=1

wdi1{ui<wdi
}w
−1
di

∝

{
p(V)

k∏
j=1

v
sj
j (1− vj)

rj

}{
n∏
i=1

Unif(ui | 0,wdi)

}
,

where sj =
∑n

i=1 1{di=j}, rj =
∑n

i=1 1{di>j} and k = max{d1, . . . ,dn}. This way we can
first update the length variables from

p(V | . . . (exclude (ui)
n
i=1) . . .) ∝ p(V)

k∏
j=1

v
sj
j (1− vj)

rj , (5.32)

and then given wj = vj
∏

l<j(1− vl) for every j ≤ k, sample (ui)i≥1 from

p(u1, . . . ,un | . . .) =
n∏
i=1

Unif(ui | 0,wdi). (5.33)

That is we sample ui ∼ Unif(ui | 0,wdi) independently for i ∈ {1, . . . , n}.
This modified Gibbs sampler is particularly useful when there exist a latent random

element, Z, such that given Z (a priori), the length variables are independent and Beta
distributed, this is for every m ∈ N

p(v1, . . . ,vm | Z) ∝
m∏
j=1

Be(vj | αj(Z), βj(Z))

where αj and βj are measurable functions of Z, for every j ≥ 1. In this case conditional
conjugacy is attained for the length variables, hence, taking into account Z, we can
update the first m ≥ k length variables from

p(v1, . . . ,vm | . . . (exclude (ui)
n
i=1) . . .) ∝ p(v1, . . . ,vm | Z)

k∏
j=1

v
sj
j (1− vj)

rj

∝
m∏
j=1

Be(vj | αj(Z), βj(Z))
k∏
j=1

v
sj
j (1− vj)

rj

∝
m∏
j=1

v
αj(Z)+sj−1
j (1− vj)

βj(Z)+rj−1,

(5.34)

149



where, sj = 0 = rj for j > k. This means that to update the length variables, we
can sample independently for j ≤ m, vj ∼ Be(αj(Z) + sj, βj(Z) + rj). Now, if we are
expanding to model to include Z, clearly we must update this random element at each
iteration of the Gibbs sampler. Whenever Z is conditionally independent of the rest of
the random elements involved, given V, its full conditional distribution is given by

p(Z | . . .) ∝ p(V | Z)p(Z).

If the mentioned conditional independence holds then we also have that the remaining
full conditionals are not affected by including Z. Let us consider some examples.

Example 5.5 (Updating independent Beta distributed length variables). Say that
µ =

∑
j≥1 wjδξj is a proper species sampling process, with stick-breaking weights

wj = vj
∏

l<j(1 − vj) for some independent length variables vj ∼ Be(αj, βj). For this
species sampling prior, to update (ui)

n
i=1 and (vj)j≥1 as a block, we can first sample

vj ∼ Be(αj + sj, βj + rj) for j ≤ m, where m > k = max{d1, . . . ,dn} and latter sample
ui ∼ Unif(ui | 0,wdi) independently for i ∈ {1, . . . , n}. This method can be applied for
SSP such as the Dirichlet and the Pitman-Yor process.

Example 5.6 (Updating the length variables of a Beta-Binomial stick breaking prior
(BBSB)). If µ =

∑
j≥1 wjδξj is a BBSB process with parameters (α, β, κ, µ0) (see Def-

inition 4.5) then wj = vj
∏

l<j(1 − vj) for every j ≥ 1, where (vj)j≥1 is Markov chain
with initial and stationary distribution Be(α, θ), and Beta-Binomial transition as in-
troduced in Definition 4.4. As explained below this definition, we can define a latent
Markov chain Z = (zj)j≥1 such that for every j ≥ 1 {zj | vj} ∼ Bin(κ,vj) and
{vj+1 | zj} ∼ Be(α+ zj, θ + κ− zj), where zj is conditionally independent of (vl, zj)

j−1
l=1

given vj, and vj+1 is conditionally independent of (vl)
j
l=1 and (zl)

j−1
l=1 given zj. In other

words, (vj, zj)j≥1 is a Markov chain with initial and stationary distribution

p(z1,x1) = Be(v1 | α, θ)Bin(z1 | κ,v1) (5.35)

and one step ahead transition

p(vj+1, zj+1 | vj, zj) = Be(vj+1 | α + zj, θ + κ− zj)Bin(zj+1 | κ,vj+1). (5.36)

Evidently, integrating over Z we recover the Markov chain V = (vj)j≥1, whilst integrating
over V we obtain that Z = (zj)j≥1 is Markov chain with transition

p(zj+1 | zj) =

∫
Bin(z | κ,v)Be(v | α, θ)dv

=

(
κ

zj+1

)
(α + zj)zj+1

(θ + κ− zj)κ−zj+1

(α + θ + κ)κ
1{zj+1∈{0,...,κ}}

and initial and stationary distribution

p(z1) =

(
κ

z1

)
(α)z1(θ)κ−z1

(α + θ)κ
1{zj+1∈{0,...,κ}}.

Exploiting the reversibility of (vj, zj)j≥1 it is easy to see that for every m ∈ N

p(v1, . . . ,vm | Z) =
m∏
j=1

Be(vj | αj(Z), βj(Z))
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where α1(Z) = α + z1, β1(Z) = θ + κ − z1 and for j ≥ 2, αj(Z) = α + zj−1 + zj and
βj(Z) = θ + 2κ− zj−1 − zj. Hence, we have augmented the model through the inclusion
of Z in such way that the following hold:

a) The length variables are independent and Beta distributed given Z.

b) The conditional distribution of v1, . . . ,vm given Z depends only on finitely many
elements of Z.

c) The rest of the random elements are conditionally independent of Z given V.

With these considerations taken into account, when implementing the slice sampler for
this model we can update (vj)j≥1 and (ui)

n
i=1 as a block by sampling them from (5.34)

and (5.33), respectively, where the measurable functions αj and βj are as defined above
in this example. Due to (c), the full conditionals of (ξj)j≥1 and (di)

n
i=1 are not affected

by including Z. Also as a consequence of (c) and equations (5.35) and (5.36), the full
conditional distribution of the first m elements of Z is

p(z1, . . . , zm | . . .) ∝
m∏
i=1

Bin(zj | κ,vj)Be(vj+1 | α + zj, θ + κ− zj)

∝
m∏
i=1

(vjvj+1)zj [(1− vj)(1− vj+1)]κ−zj

zj!(κ− zj)!(α)zj(θ)κ−zj

1{zj∈{0,...,κ}}.

This means that to update zj, we sample it independently from

p(zj | . . .) ∝
(vjvj+1)zj [(1− vj)(1− vj+1)]κ−zj

zj!(κ− zj)!(α)zj(θ)κ−zj

1{zj∈{0,...,κ}},

which is a discrete distribution with finite support, therefore it is easy to draw samples
from p(zj | . . .). Summarizing, we know how to update each random element involved,
moreover Remark 5.2 remains true for this modified slice sampler, this together with (b)
imply that only finitely many random elements need to be updated at each iteration of
the Gibbs sampler, hence it is practically feasible to implement the algorithm for BBSB
priors.

As done for DSBs and SSBs (see Examples 5.3 and 5.4), motivated by Corollary 4.18,
we can put a prior on the tuning parameter, which in this case is κ = κ, to estimate it.
If we do this, the full conditional of κ is

p(κ | . . .) ∝ p(κ)
m∏
j=1

Be(vj+1 | α + zj, θ + κ− zj)Bin(zj | κ, zj).

where (vj, zj)
m
j=1 are updated vj’s and zj’s. Being that κ takes values in N, sampling

from its full conditional can be quiet involved. However, if the prior p(κ) has finite
support, sampling from p(κ | . . .) becomes easy.

Regardless of the particular specifications of the stick-breaking prior, the general

151



algorithm for this modified slice sampler can be described as follows:

Algorithm 5: First T iterations of the modified Gibbs sampler algorithm for
stick-breaking priors using slices

Initialize di = d
(0)
i ∈ N for every i ∈ {1, . . . , n}, the latent object Z = Z(0), and

the hyper-parameter λ = λ(0), if the model has been augmented to include
them.

for t ∈ {1, . . . , T} do
Set m = max{d1, . . . ,dn};
for j ≤m do

Sample vj from (5.32);

Set wj = w
(t)
j = vj

∏
l<j(1− vl);

for i ∈ {1, . . . , n} do
Sample ui from (5.33);

Set u
(t)
i = ui;

for j ≤m do
Sample ξj from (5.22);

Set ξ
(t)
j = ξj;

while
∑m

j=1 wj < maxi(1− ui) do
Set m = m + 1
Sample ξm from µ0;
Sample vm from p(vm | V−m,Z);

Set wm = w
(t)
m = vm

∏
l<m(1− vl) and ξm = ξ

(t)
m ;

Set m(t) = m;
if the latent random element Z is defined then

Sample Z from p(Z | . . .);
Set Z(t);

if a prior distribution has been assigned to an hyper-parameter λ: then
Sample λ from p(λ | . . .);
Set λ(t) = λ;

for i ∈ {1, . . . , n} do
Define Ψi = {j : ui < wj};
Sample di from (5.23);

Set d
(t)
i = di;

Result: The Markov chain(
d

(t)
1 , . . . ,d

(t)
n ,u

(t)
1 , . . . ,u

(t)
n ,
(
w

(t)
j

)
j≤m(t)

,
(
ξ

(t)
j

)
j≤m(t)

,Z(t),λ(t)

)T
t=1

.

Of course if the latent object Z was not introduced or no hyper-parameter was as-
signed a prior, we omit the steps where they are initialized and updated.

Despite whether we implement Algorithm 4 or 5, posterior inference for the estimated
density and clustering structures, can be performed analogously as for the algorithm that
uses random sets, by defining

Ψ
(t)
i =

{
j : u

(t)
i < w

(t)
j

}
,

for every i ∈ {1, . . . , n}. Now, if we chose to assign a prior distribution to some hyper-
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parameter, λ (such as ρν for DSBs, p for SSBs or κ for BBSBs) we can use the MAP

λ(t̂), or alternative, exploit the fact that
(
λ(t)
)T
t=T0+1

are samples from p(λ | y1, . . . ,yn),
to estimate relevant features of the posterior distribution.

5.3 Illustrations

For this section we designed four small experiments to test the performance of the new
Bayesian non-parametric priors, introduced in Section 4, and compare the results with
the ones provided by their limiting processes: the Dirichlet and the Geometric priors. In
all cases by means of the slice sampler we will adjust mixtures of Gaussian distributions
to data points {y1, . . . ,yn} that present no repetitions. Explicitly, we model the data
{y1, . . . ,yn} as i.i.d. sampled from φ =

∑
j≥1 wjK(· | ξj), where K denotes a Gaussian

distribution and the species sampling process µ =
∑

j≥1 wjδξj is a DSB, a SSB, a BBSB,
or one of the limiting processes. We will call φ a DSB mixture whenever µ is a DSB and
analogously for the other classes of stick-breaking process. For the first three experiments
we will be working with univariate data and fix the corresponding tuning parameter (ρν ,
p or κ) to distinct deterministic values. The main objective of these experiments is to
analyse the posterior impact of Theorems 4.3 and 4.14, by means of DSBs, SSBs and
BBSBs. For univariate data, we will assume a Normal kernel with random location and
scale parameters, i.e. ξj = (mj, τj), and K(· | ξj) = N

(
mj, τ

−1
j

)
, to attain conjugacy

for K and µ0 we assume that a priori ξj follows a Normal-Gamma distribution, this is
µ0(ξj) = N

(
mj | µ, (λτj)−1)Ga(τj | a, b). For the fourth and last experiment, we will

assign a prior distribution to the tuning parameters, so the models can perform posterior
inference and altogether chose between a Dirichlet process, a Geometric process, or some
stick-breaking prior with dependent length variables amidst. For this last experiment,
we will adjust mixtures to bivariate data. Here we consider K(· | ξj) = N2(mj,Σj) and
to achieve conjugacy we assume a Normal-inverse-Wishart prior for ξj = (mj,Σj), so
that µ0(ξj) = N2(mj | µ, λ−1Σj)W

−1(Σj | P, ν).

5.3.1 Results for DSB mixtures with fixed tuning

For this experiment we simulated 200 data points from a mixture of seven Normal
distributions, and we will be adjusting six DSB mixtures with parameters (β, θ, µ0). In
all cases the we will fix θ = 1, and for each distinct DSB mixture we chose a different value
of β in the set {0, 1/3, 1, 4, 9,∞} so that the underlying tie probability ρν = 1/(β + 1)
varies in {1, 0.75, 0.5, 0.2, 0.1, 0}. The DSBs with β = 0 and β =∞ refer to a Geometric
and Dirichlet process respectively.

In Figure 32 we can observe that all the models do a good job estimating the density
through the EAP, and recover each of the seven modes that the histogram of the data
features. The Dirichlet process and the DSB with β = 9 struggle more than the other
models to differentiate the second and third modes from left to right, this can be due
to the initial election of the parameter θ and the fact that a priori the DSB with β = 9
behaves similarly to a Dirichlet process. In Figure 32 we can also observe that it is at
the high density areas that the estimated density from model to model varies slightly.
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Figure 32: Estimated densities by means of the EaP, taking into account 4000 iterations
of the Gibbs sampler, skipping 4 iterations, after a burn-in period of 7000, for a Geometric
mixture (β = 0, ρν = 1), a Dirichlet mixture (β = ∞, ρν = 0) and four DSB mixtures
with parameter β ∈ {1/3, 1, 4, 9} (ρν ∈ {0.75, 0.5, 0.2, 0.1}, respectively). In all cases the
parameter θ = 1.

Figure 33 illustrates the posterior distribution of Kn, with n = 200, for each of
the six DSB mixtures implemented. Here we see that the Dirichlet process and the
DSBs with a larger value of β, give high probability to numbers close to seven, which
is the true number of components of the mixture from which the data was sampled.
In contrast, as the parameter β approaches zero, we observe that the models tend to
assign higher probability to larger values through the posterior distribution of Kn. This
means that these models use more components to provide the estimations illustrated in
Figure 32. Indeed, since the Geometric weights decrease at a constant rate, in order to
estimate the size and shape of some components, the model is forced to overlap many
small components. If we were interested in clustering the data points, this can be a
disadvantage of DSB mixtures with a small value of β, (a large value of the underlying
tie probability ρν) because it is likely that the number of clusters will be overestimated.
However, if we are only interested in density estimation this feature actually makes the
models that behave similar to Geometric processes more likely to capture subtle changes
in the histogram of the data set.

Overall we see that the results are consistent with Corollary 4.9 put together with
Remark 5.1, in the sense that as β grows, the results provided by the DSB mixtures are
similar to those given by a Dirichlet prior, and at the other extreme, when β → 0, the
estimations are closer to those provided by a Geometric prior.
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Figure 33: Frequency polygons corresponding to the posterior distribution of K200, for
the Geometric mixture (β = 0, ρν = 1), the Dirichlet mixture (β = ∞, ρν = 0)
and the four DSB mixtures with parameter β ∈ {1/3, 1, 4, 9} (ρν ∈ {0.75, 0.5, 0.2, 0.1},
respectively). In all cases the parameter θ = 1.

5.3.2 Results for SSB mixtures with tuning

In this experiment we will be testing SSB mixtures in an analogous way we analysed
DSB mixtures in Section 5.3.1. For this study we simulated 220 observations from a
different mixture of seven Gaussian distributions. To this database we will adjust six
distinct SSB mixtures with parameters (p, ν0, µ0), where ν0 = Be(1, θ). For the six
models we fix θ = 1 and for each SSB mixture we will chose a distinct value of p in
the set {0, 0.2, 0.5, 0.8, 0.97, 1}. Here the SSB mixtures with p = 0 and p = 1 refer to a
Dirichlet and a Geometric process, respectively.

Figure 34 exhibits the EAP estimator of the density, given by the the six SSB mix-
tures. In this figure we observe that in general all the models provide a fairly good
estimation of the density and coincide in most points. It is at the high density areas
were the estimation varies from model to model, most evidently the SSB mixtures with
a higher value of p differ from the rest of the models at the size of the local modes.
In particular we see that for the second mode of the histogram, from left to right, the
Geometric process (p = 1) estimates two distinct modes, whereas the rest of the models
estimate one local mode. This is due to the fact that the Geometric priors tend to
estimate the density using a larger number of smaller components which results in the
model being able to capture subtle changes in the dataset. Although in this case the
true mixture features seven modes and not eight as the Geometric process estimates,
this should not be consider a mistake by the Geometric prior, as it is possible that we
require more sampled data points for the dataset to be representative of fine details of
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the true density.

Figure 34: Estimated densities through the EaP, taking into account 4000 iterations of
the Gibbs sampler, skipping 4 iterations, after a burn-in period of 5000, for a Geometric
mixture, a Dirichlet mixture and four SSB mixtures with parameter p = 0.2, 0.4, 0.6, 0.8.
In all cases the parameter θ = 1

On the other side, in Figure 35 we can observe the posterior distribution of Kn for
n = 220, corresponding to each SSB prior. Here we see that SSB mixtures with p ≤ 0.8
accumulate more mass at smaller values of Kn than the SSB models with p ≈ 1. Notice
that for the mixtures with p ∈ {0.2, 0.5, 0.8} the posterior distribution of Kn even gives
higher probability to smaller values than the Dirichlet model. In particular, the SSB with
p = 0.5 recovers the true number of mixture components through the posterior mode of
Kn. This phenomena can be explained by analysing the prior distribution of Kn for each
SSB. As illustrated in Figure 29, if p 6≈ 1, the prior distribution of Kn is similar to that of
a Dirichlet process, with the difference that the prior variance is slightly bigger for SSBs,
with p > 0, without significantly affecting the prior mean. When implementing the
models this translates to a bigger flexibility of SSBs with p ∈ {0.2, 0.5, 0.8}, in terms of
the number of components the model requires to provide the estimates, without favouring
significantly larger values. Now, for the case where p ≈ 1, we observe that generally the
posterior distribution of Kn favours larger values. Despite, note that even for p = 0.97
which is close to one, the posterior distribution of Kn still accumulates mass at smaller
values than in the case of a Geometric prior. This is a consequence of the fact that
the convergence rates of SSBs to Geometric processes, as p → 1 is very slow. Hence to
approximate the results provided by a Geometric prior we require a value of p closer to
one, than p = 0.97.
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Figure 35: Frequency polygons corresponding to the posterior distribution of K220, for
the Geometric mixture, the Dirichlet mixture and the four SSB mixtures with parameter
p = 0.2, 0.4, 0.6, 0.8. In all cases the parameter θ = 1.

5.3.3 Results for BBSB mixtures with fixed tuning parameter

This third experiment consists in contrasting BBSB mixtures against Dirichlet and Ge-
ometric mixtures. For this study we simulated 200 data points from a mixture of eleven
Gaussian kernels. In order to estimate the density of the data we will adjust five BBSB
mixtures with parameters (α, θ, κ, µ0). For all mixtures we fix α = θ = 1, and for each
BBSB model we choose a distinct value of κ in the set {0, 10, 100, 200,∞}. Supported
by Corollary 4.18, the BBSB mixtures with κ = 0 and κ = ∞ refer to Dirichlet and
Geometric processes, respectively.

Figure 36 shows the estimated densities through the EAP estimator for the five BBSB
mixtures, we see that all models recover each of the eleven modes, and at most points
the estimated densities are similar from model to model. Now, if we look thoroughly at
the right part of the histogram, we see that the Geometric process (κ =∞) differs from
other models at the size of high density regions, and if we focus on the left side of the
histogram we can appreciate that, in contrast to the other BBSB models, the Dirichlet
mixture (κ = 0) struggles to separate the three modes on the left.

Looking at Figure 37, we observe analogous results to those observed for DSB mix-
tures in Section 5.3.1. For smaller values of the parameter κ, the posterior distribution
of Kn concentrates mass at values nearer to the true number of components. Alterna-
tively, for larger values of κ, the posterior distribution of Kn exhibits a larger mean and
variance, this is consistent with the prior analysis of BBSB process in Section 4.2.3.
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Figure 36: Estimated densities through the EAP, taking into account 4000 itera-
tions of the Gibbs sampler, skipping 4 iterations, after a burn-in period of 2000, for
a Geometric mixture, a Dirichlet mixture and three BBSB mixtures with parameter
κ ∈ {10, 100, 200}. In all cases we fixed θ = 1.

Figure 37: Frequency polygons corresponding to the posterior distribution of K200, for
the Geometric mixture, the Dirichlet mixture and the three BBSB mixtures parameter
κ ∈ {10, 100, 200}. In all cases we fixed θ = 1.

Overall we see that DSBs, SSBs and BBSBs propose three distinct ways to approxi-
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mate Dirichlet and Geometric processes. In general we observed that models similar to
Dirichlet processes tend to use fewer components to estimate the density, in contrast,
model close to the Geometric process use a larger number of components and are more
sensible to subtle features in the histogram. We can conclude that by fixing the tuning
parameters to distinct values, the posterior inference for these classes of stick-breaking
priors with non independent length variables, is consistent with the analysis of the models
developed in Section 4.

5.3.4 Results for DSB, SSB and BBSB mixtures with random tuning pa-
rameters

For this last study we simulated 510 data points from a paw-shaped mixture of seven
Gaussian distributions. The objective of this experiment is to analyse the results pro-
vided by DSBs, SSBs and BBSBs when the corresponding tuning parameter is considered
random and assigned a prior. In principle this allows the model to chose the best value
of the tuning parameter for the dataset. In this simulation study we will concentrate in
estimating the following quantities of interest: (a) the clusters of the data points using
the MAP, (b) the density of the data using both the MAP and the EAP estimators,
(c) the posterior distribution of the number of significant components, Kn, provided by
the EAP, and (d) the posterior distribution of the tuning parameters using the EAP
estimator.

In order to infer about the quantities (a)–(c) we will adjust five models a Dirichlet,
a DSB, a SSB, a BBSB and a Geometric mixture. In all cases we will consider that the
marginal distribution of the length variables is a Unif(0, 1) distribution, so the parameter
θ = 1. For the DSB mixture we will assume that the underlying tie probability ρν ∼
Unif(0, 1), for the SSB we will also assign a Unif(0, 1) prior to the tuning parameter, p,
as to the BBSB we will consider that a priori κ ∼ Unif({1, . . . , 100}).

In Figure 38 we see that the DSB, the SSB and the BBSB estimate better the clusters
of the data points than the limiting processes. In particular, the DSB recovers exactly
seven clusters as there are according to the true model. Whilst the SSB and the BBSB
estimate eight clusters, the eighth one consist of a very small group of data points, so the
error is relatively small. As to shape of the clusters, the DSB and the SSB are the ones
that perform best. In the same figure we see that the Dirichlet model underestimates the
number of clusters by one when compared with the true model. Indeed, the estimation
provided by the Dirichlet process merges two clusters of the model true. On the other
extreme, the Geometric model overestimates the number of clusters by seven, and under
estimates the sizes of the real clusters. As Figure 38 illustrates, the main advantage of
DSBs, SBS’s and BBSBs with random tuning parameter, over the limiting processes, is
that they are more general, thus allowing the model to chose between a model similar to
the Dirichlet process, to the Geometric process or some model in between that combines
characteristics of both limits. This behaviour of the models is also reflected through the
MAP estimators of the density, presented in Figures 39 and 40. Here we see that the SSB
is the one that provides the best estimation of the density through the MAP, followed
by the DSB. While the Dirichlet process and the BBSB do recover the paw shape of the
density these models do not perform this as neatly as the DSB and specially as the SSB.
As to the Geometric process we observe that through the MAP it does not even recover
the paw shape of the true model.
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Figure 38: Estimated clusters of the data points using the MAP, taking into account 8000
iterations of the Gibbs sampler after a burn-in period of 2000 iterations, according to the
Dirichlet prior (A) a DSB prior (B), a SSB prior (C), a BBSB prior (D) and a Geometric
prior (E). F shows the clustering of the data points according which component of the
true mixture are the data points more likely to come from.
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Figure 39: Estimated densities of the data points using the MAP, taking into account
8000 iterations of the Gibbs sampler after a burn-in period of 2000 iterations, according
to the Dirichlet prior (A) a DSB prior (B), a SSB prior (C), a BBSB prior (D) and a
Geometric prior (E). F shows the true density from which the data points were i.i.d.
sampled.
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Figure 40: 3D view of the estimated densities in Figure 39
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Figure 41: Estimated densities of the data points using the EAP, taking into account
each fourth iteration among 8000 iterations of the Gibbs sampler after a burn-in period
of 2000, according to the Dirichlet prior (A) a DSB prior (B), a SSB prior (C), a BBSB
prior (D) and a Geometric prior (E). F shows the true density from which the data
points were i.i.d. sampled.
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Figure 42: 3D view of the estimated densities in Figure 41
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Figure 43: Frequency polygons corresponding to the posterior distribution of K510, for
the Dirichlet (D), DSB, SSB, BBSB and the Geometric (G) mixtures.

Figures 41 and 42 exhibit the EAP estimators of the density provided by each model.
In comparison to the MAP estimators we see that these ones are much smoother. Looking
at the EAP estimations of the densities, we appreciate that the differences from one
model to another are much more subtle and overall all models estimate the density quite
nicely. However, if we focus in the palm of the paw we see that the DSB, the SSB
and the BBSB recover the shape slightly better than the Dirichlet and the Geometric
processes, perhaps the one that performs best at this task is the BBSB or the SSB.
Before we move on, let us make a small parenthesis to comment that the fact that all
models provide good estimations of the densities through the EAP, is closely related to
the fact that Gaussian mixtures are in general very flexible models and that all of the
species sampling priors considered here have full support. In effect, species sampling
priors with full support lead to very flexible mixtures, so one would expect that, after
enough valid iterations of the Gibbs sampler, all models analysed here provide decent
estimations of the densities.

In Figure 43 we observe the posterior distribution of Kn, (for n = 510) for each
of the models. Here we see that through the posterior mode of Kn the DSB and the
SSB recover the true number of mixtures components. The Dirichlet and the BBSB
models also assing a probability larger than zero to the true number of components.
Despite this, the posterior mode of Kn for the Dirichlet process is one unit smaller than
the true number of components, and posterior mode of Kn for the BBSB model is one
unit bigger. As to the Geometric process, similarly as for other datasets, the posterior
distribution of Kn concentrates in significantly larger values than the real number of
mixture components, which in this particular case is seven.
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Figure 44: Posterior distributions of the tuning parameters ρν , p and κ (B, C and D,
respectively. The dashed lines indicate the MAP estimator of each random parameter.

The last figure we will analyse here is Figure 44, which presents the posterior dis-
tribution of the tuning parameters and the MAP estimator for each of these. For the
underlying tie probability of the DSB, ρν , we see in B that the posterior mode is close
to 0.25, suggesting the for this database a model closer to the Dirchlet process than
the Geometric process is preferred. In C a similar pattern is exhibited in the posteriori
distribution of the tuning parameter, p, of the SSB. As to the posterior distribution κ
for the BBSB, we observe that the mode is at 20, so it coincides with the DSB and SSB
models that a model more similar to a Dirichlet process fits better the dataset.
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6 Conclusions and final comments

To the best of our knowledge Section 4 represents the first general treatment of stick-
breaking processes with non-independent length variables. Since the class of random
sequences with dependent items remains very hard to manage, we decided to restrict
ourselves to the case where the length variables, (vi)i≥1, are either exchangeable or
Makorvian. Exploiting the conditional independence of these sequences, we were able to
prove important properties regarding the validity of the models. Namely, under minor
conditions, we proved that the stick-breaking process in question are proper and have
full support. We also derived limiting properties that give a new interpretation to the
well-known Bayesian non-parametric priors, the Dirichlet and the Geometric processes,
as the extrema of stick-breaking processes with stationary (exchangeable or Markovian)
length variables. Additionally, we implemented mixtures of Gaussian distributions where
the mixing prior generalizes Dirichlet and Geometric processes, and by means of specific
examples we showed the advantages of our models. When we put a prior on the tuning
parameter, DSB, SSB and BBSB mixtures seem to efficiently combine the best features of
both limiting mixing priors. In addition, for DSBs and SSBs we computed the probability
that consecutive weights are decreasingly ordered.

Whilst the present work was mainly motivated by Bayesian non-parametric theory,
and was conducted in this setting, stick-breaking processes continue to be widely used
in other probabilistic frameworks, and the results provided here can easily emigrate to
such contexts. As an example, the ordering of the weights is an appealing result for
other areas of probability.

Outside the principal contribution of the thesis, smaller contributions were made in
other sections. For example, the construction of SSPs by means of latent random sets,
has already been used before, but to the best of our knowledge, the formalization of the
method and the algorithm in Section 5.2.2, have not been described in the general setting
presented here. Another small contribution, or rather remark, that seemingly is not a
widely known fact, is that the classes of SSPs, stick-breaking processes, and exchangeable
random probability measures are exactly the same class. On a similar line of thought,
while I am completely aware that Theorem 3.4 is well-known for Dirichlet processes, I
personally have not seen it written, in terms of the tie probability for the general class of
SSPs. Another remark here is that Corollary 2.24 together with Theorem 3.4 characterize
the extreme points of the class of exchangeable random probability measures. Overall, I
personally hope that the compendium of results presented here, contributes to whoever
reads the thesis.

To conclude the document I want to propose a couple of research lines for further
work:

� The transitions and symmetries we defined in Section 4 and used to defined new
Bayesian non-parametric priors, can also be used to model dependence between
two or more distinct SSPs and latter adjust the corresponding mixtures to partially
exchangeable data.

� It may be interesting to consider stick-breaking process where the length variables
form a martingale. My conjecture is that, it can be proven that most of these
stick-breaking processes, at least lead to feasible Bayesian non-parametric priors,
meaning that they have full support and are proper.
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A Proofs of Section 1

A.1 Proof of Lemma 1.2

Let Σ1, Σ2 and Σ3 be the σ-algebras generated by I, II and III respectively.
Σ1 ⊆ Σ3: For any B ∈ Ŝ and any µ ∈ P(S), we have that

∫
1Bdµ = µ(B), hence the

projection map πB equals the integration map π1B . This proves πB is measurable with

respect to Σ3, for every B ∈ Ŝ, and by definition of Σ1 and Σ3, it follows Σ1 ⊆ Σ3.
Σ3 ⊆ Σ2: If f is a simple measurable function, f =

∑n
i=1 ai1Ai , for some A1, . . . , An ∈

BS(with Ai and Aj disjoint, for i 6= j). By linearity of the integral we have that

πf (µ) = µ(f) =
n∑
i=1

aiµ(Ai) =
n∑
i=1

ai πAi(µ), µ ∈M(S),

that is πf =
∑n

i=1 ai πAi , from which we obtain that πf is Σ2-measurable. Now, if f is an
arbitrary measurable and non-negative function then f and be approximated by simple
functions fn ↗ f , and by monotone convergence theorem we obtain πfn(µ)↗ πf (µ) for
every µ ∈M(S). This is πfn ↗ πf , hence πf is Σ2-measurable, and we get Σ3 ⊆ Σ2.

Σ2 ⊆ Σ1: Fix a localizing sequence, (Sn)∞n=1, and let B ∈ Ŝ. Then Bn = B∩Sn ↗ B,
with Bn ∈ Ŝ, for all n ≥ 1. Evidently, πBn(µ) = µ(Bn) ↗ µ(B) = πB(µ), for every
µ ∈M(S). Thus, πB is Σ1-measurable.

A.2 Proof of Theorem 1.4

I ⇔ II: Let µ be a kernel from S into T . If f = 1B, for some B ∈ BT , we get
Aµ(f) = µ(B) ∈ S+. By linearity we see that for the a simple function, f =

∑n
i=1 bi1Bi,

with B1, . . . , Bn ∈ BT , Aµ(f) =
∑n

i=1 biµ(Bi) ∈ S+. Finally for arbitrary measurable
f : S → R+, there exist a collection of simple functions fn ↗ f , hence by monotone
convergence theorem Aµ(f) = limnAµ(fn) ∈ S+. Conversely, say Aµ(f) ∈ S+, for every
f ∈ T+. The choice f = 1B, for B ∈ BT , shows that µ(·, B) = µ(B) = Aµ(f) is
a measurable function from S into R+. The fact that µs(·) = µ(s, ·) is a measure is
implicit in the definition of the mapping Aµ : T+ → S+.

I,II ⇔ III, follows directly from the definition of the Borel σ-algebra, BM(T ), of
M(T ).

A.3 Proof of Theorem 1.5

I ⇔ II is a straight-forward consequence of Kolomogorov’s consistency theorem. This
is the finite dimensional distributions, characterize the law of µ. It is also obvious that
II ⇒ III. Now say that III holds and fix B1, . . . , Bn ∈ BS. It is easy to see that there
exist m ∈ N and a disjoint collection {Ai}mi=1, such that for every j ≤ n there exist
Kj ⊆ {1, . . . ,m} that satisfies Bj =

⋃
i∈Kj Ai (for example for B1, B2 ∈ BS we might

choose A1 = B1 \ (B1 ∩B2), A2 = B1 ∩B2 and A3 = B2 \ (B1 ∩B2)). Then, we have

(µ(B1), . . . ,µ(Bn)) =

(∑
i∈K1

µ(A1), . . . ,
∑
i∈Kn

µ(Ai)

)
.
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Since (µ(A1), . . . ,µ(Am))
d
= (ν(A1), . . . ,ν(Am)), II follows. We have shown so far I ⇔

II ⇔ III. Now we prove III ⇔ IV. If III holds, for any simple function f =
∑n

i=1 ai1Ai
we have that

µ(f) =
n∑
i=1

aiµ(Ai)
d
=

n∑
i=1

aiν(Ai) = ν(f).

For arbitrary f ∈ S+ there exist a collection of simple functions with fn ↗ f , hence by
monotone convergence theorem, we obtain

µ(f) = lim
n→∞

µ(fn)
d
= lim

n→∞
ν(fn) = ν(f),

which proves IV. Conversely if IV holds, for any disjoint collection of measurable sets
{Ai}ni=1 we have that

n∑
i=1

aiµ(Ai)
d
=

n∑
i=1

aiν(Ai).

for every (a1, . . . , an) ∈ Rn
+, and by the Cramér-Wold theorem (see Corollary 5.5 in

Kallenberg (2002)) III follows. To finish the proof we will show IV ⇔ V. Since µ(f)
and ν(f) are positive random variables, we know that IV is equivalent to E

[
e−tµ(f)

]
=

E
[
e−tν(f)

]
for all t ∈ R+ and f ∈ S+ (see Theorem 5.3 in Kallenberg (2002)), the choice

t = 1 gives V. Finally, assume V holds and fix f ∈ S+ and t ∈ R+. Then tf ∈ S+ and
we obtain E

[
e−tµ(f)

]
= E

[
e−µ(tf)

]
= E

[
e−ν(tf)

]
= E

[
e−tν(f)

]
.

A.4 Proof of Proposition 1.6

Say that S = R and µ(B)
a.s.
= ν(B) for every B ∈ BR. For a, b ∈ Q with a < b, define

Aa,b = {ω ∈ Ω : µ(ω, (a, b)) = ν(ω, (a, b))} and A =
⋂
a,b∈Q
a<b

Aa,b,

evidently A ∈ F is measurable, and P[A] = 1. Now, fix ω ∈ A and c < d ∈ R. There
exist two sequences of rational numbers (ai)i∈N and (bi)i∈N such that a1 < b1, an ↗ c,
and bn ↘ d, thus (an, bn)↗ (c, d). By continuity of measures we obtain

µ(ω, (c, d)) = lim
n→∞

µ(ω, (an, bn)) = lim
n→∞

ν(ω, (an, bn)) = ν(ω, (c, d)).

This shows that the π-system C = {(c, d) : c ≤ d, c, d ∈ R} is contained in the λ-system
D = {B ∈ BR : µ(ω,B) = ν(ω,B)}, with the convention (c, d) = ∅ for c = d. Hence,
a monotone class argument shows that ν(ω,B) = µ(ω,B) for every B ∈ BR. That is
µ

a.s.
= ν. The same is true for random measures over an arbitrary Borel space (S,BS),

and the result for this case follows by picking a suitable Borel bijection between R and
S.

A.5 Proof of Theorem 1.7

Fix a localizing sequence Sn ↗ S in Ŝ, and set Bn = Sn \ Sn−1 with S0 = ∅. Clearly
1Bnµ is finite and µ =

∑
n≥1 1Bnµ, hence, it suffices to derive the desired representation

for finite measures. This said we may assume without loss of generality that µ is finite.
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Furthermore, using the Borel property of S we can further reduce the analysis to the
case S = [0, 1). The decomposition follows from the jump structure of t 7→ µ([0, t]), for
t ∈ [0, 1).

To attain a measurable representation, define the array of sets I = {In,j}n,j with

In,j = [2−n(j − 1), 2−nj), n ∈ N, j ∈ {1, . . . 2n}.

Note that for all n ≥ 1, In = {In,j}2n

j=1 is a partition of [0, 1) and that In+1 is a refinement
of In. Moreover for s < t in [0, 1) there exist n, j1, j2 ≥ 1 such that s ∈ In,j1 , t ∈ In,j2
and j1 6= j2. In this sense, I separates points. Fix ε > 0 and define

κεn =
2n∑
j=1

1{µ(In,j)>ε}, σεn,j = 2−nj1{µ(In,j)>ε}.

Set ξεn,1 = inf{σεn,j : σεn,j 6= 0}, and αεn,1 = µ
(
In,(2nξεn,1)

)
, recursively for 2 ≤ k ≤ κεn,

define
ξεn,k = inf{σεn,j > ξεn,k−1 : σεn,j 6= 0}, and αεn,k = µ

(
In,(2nξεn,k)

)
By construction the above are measurable and the following limits exist

κε = lim
n→∞

κεn, ξεk = lim
n→∞

ξεn,k, and αεk = lim
n→∞

αεn,k

for every k ≤ κε. Note that κε is the number of atoms of µ with size bigger that ε,
(ξεk)

κε

k=1 are such atoms in increasing order and (αεk)
κε

k=1 are the corresponding sizes. This
way

ηε =
κε∑
k=1

αεkδξεk

represents the atomic part of µ with atom sizes bigger that ε. Since µ is finite, ηε is
also finite and there is no subtlety in defining νε = µ − ηε, which has no atoms with
sizes bigger than ε. Now, for ε′ < ε we can do the same procedure for νε, to attain a
measure ηε

′
that encodes the atomic part of νε with atom sizes bigger than ε′, and a

measure νε
′

with no atoms with sizes bigger than ε′, that satisfy νε = ηε
′
+ νε

′
. Notice

that µ = ηε + ηε
′
+ νε

′
. Continuing recursively into countably many steps, we obtain a

measurable representation of all the atoms, and a remainder, ν, such that ν({s}) = 0,
for all s ∈ [0, 1). The uniqueness assertion follows easily from the construction.

A.6 Proof of Lemma 1.8

If µ
d
= ν we clearly have P[µ(B) = 0] = P[ν(B) = 0] for every B ∈ Ŝ. To derive the

converse result we will need require the following Lemma whose proof can be found in
Kallenberg (2017)

Lemma A.1. Every Borel space (S,BS), with localizing ring Ŝ, contains a dissection
system, that is an array of subsets I = {In,j}n,j such that

a) For every n ≥ 1, In = {In,j}j is a countable partition of S.
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b) For every m > n, Im is a refinement of In.

c) For every n ∈ N and B ∈ Ŝ, B is covered by finitely many In,j’s.

d) The σ-field generated by I equals BS.

Now, note that as a consequence of Theorem 1.7, the class of point processes over
(S,BS), here denoted by N (S) is a Borel subset of M(S), hence it is Borel itself, and
to its σ-algebra we denote BN (S). Define the subsets of BN (S)

CB = {µ ∈ N (S) : µ(B) = 0} = π−1
B [{0}] ∈ BN (S),

recalling that πB denotes the projection map µ 7→ µ(B). Set C = {CB : B ∈ Ŝ}, since Ŝ
is a ring, C is a π-system. Indeed, for B,A ∈ Ŝ, µ(A) = 0 and µ(B) = 0 if and only if
µ(A ∪B) = 0, that is CA ∩ CB = CA∪B. By hypothesis, for every B ∈ Ŝ

P[µ ∈ CB] = P[µ(B) = 0] = P[ν(B) = 0] = P[ν ∈ CB].

Thus the π-system C is contained in the λ-system D = {M ∈ BN (S) : P[µ ∈M ] = P[ν ∈
M ]}, and a monotone class argument shows P[µ ∈M ] = P[ν ∈M ] for every M ∈ σ(C).
To finish the proof it suffices to see µ and ν are σ(C)- measurable. To this aim consider
a dissection system I = {In,j}n,j and define define the mapping µ 7→ µ∗ from N (S) into
N (S) given by

µ∗(B) = lim
n→∞

∑
j

µ(In,j ∩B) ∧ 1

for all B ∈ Ŝ. Note that by Lemma 1.2 the mapping is measurable with respect to
BN (S) = BM(S) ∩ N (S). Moreover, µ∗(B) = m if and only if there exist n ≥ 1, and
indexes j1, . . . , jm such that µ(In,ji ∩B) > 0 for every i ∈ {1, . . . ,m} and µ(In,j ∩B) = 0
for all j 6∈ {j1, . . . , jm}. Hence µ 7→ µ∗ is even σ(C)-measurable. Finally since µ and ν
are simple, we get µ = µ∗ and ν = ν∗, which shows µ and ν are σ(C)-measurable.

A.7 Proof of Proposition 1.9

First we prove (i), if κ is non-random, so that κ = n for some n ∈ N, we get µ =
∑n

j=1 δξj ,

for some (ξj)
n
j=1

iid∼ µ0. Thus

µ(f) =

∫
f(s)µ(ds) =

n∑
j=1

f(ξj),

and

E
[
e−µ(f)

]
=

n∏
j=1

E
[
e−f(ξj)

]
=

(∫
e−f(s)µ0(ds)

)n
=
(
µ0

(
e−f
))n

.

if κ is random, (i) follows by conditioning. To prove (ii) first assume ν = ν for some
deterministic random measure ν ∈M(S). Recall that for x ∼ Poi(θ), its probability gen-
erating function is E [ax] = e−θ(1−a). Then, for a positive simple function f =

∑n
i=1 bi1Bi ,
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(where {Bi}ni=1 are disjoint),

E
[
e−µ(f)

]
= E

[
exp

{
−

n∑
i=1

biµ(Bi)

}]

=
n∏
i=1

E
[(
e−bi

)µ(Bi)
]

=
n∏
i=1

exp
{
−ν(Bi)

(
1− e−bi

)}
= exp

{
−

n∑
i=1

(
1− e−bi

)
ν(Bi)

}

= exp

{
−

n∑
i=1

∫ (
1− e−bi1Bi (s)

)
ν(ds)

}

= exp

{
−
∫ (

1− e−
∑n
i=1 bi1Bi (s)

)
ν(ds)

}
= exp

{
−
∫ (

1− e−f(s)
)
ν(ds)

}
= exp

{
−ν
(
1− e−f

)}

Any f ∈ S+ can be approximated by (positive) simple functions fn ↗ f , and using
monotone convergence and Lebesgue dominated convergence theorem, the result extends
for arbitrary f ∈ S+. Finally the case where µ is directed by the random measure, ν,
follows by conditioning.

A.8 Proof of Proposition 1.10

First we prove (i), by conditioning we can reduce to that case where µ is a Poisson
process, so that ν = ν is non-random. Note that both properties are local, that is µ
is simple if and only if the restriction, 1Bµ, is simple for every bounded set B ∈ Ŝ
and analogously ν is diffuse if and only if 1Bν is diffuse. This said, since µ and ν are
locally finite, we may assume without loss of generality that µ and ν are finite. Now, if
ν(S) = 0, µ(S) = 0 almost surely, and we fall in degenerate non-interesting scenario. If
ν(S) > 0 we can normalize this measure to attain a probability measure µ = ν/ν(S). Let
η be a mixed Binomial process based on (n, µ), for some n ∼ Poi(ν(S)). By Proposition
1.9

E
[
e−η(f)

]
= E

[(
µ
(
e−f
))n]

= exp
{
−ν(S)µ

(
1− e−f

)}
= exp

{
−ν
(
1− e−f

)}
,

that is E
[
e−η(f)

]
= E

[
e−µ(f)

]
for any f ∈ S+, and by Theorem 1.5, we get η

d
= µ.

This means that µ is a mixed Binomial process, and we may write µ =
∑κ

j=1 δξj for a

collection (ξj)j≥1
iid∼ µ and some independent Poisson random variable κ. Let A = {s ∈

S : µ ({s}) > 0} be the set of atoms of µ, which is at most countable. Then, By Fubini’s
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theorem we have that, for every i 6= j

P [ξi = ξj] =

∫ ∫
1{s}(t)µ(dt)µ(ds) =

∫
µ({s})µ(ds) =

∑
s∈A

µ({s})2.

Hence P [ξi = ξj] = 0 if and only if A = ∅, that is µ is simple if and only if µ is diffuse.
Finally note that the set of atoms of µ is precisely that of ν.

To prove (ii) assume one more time that µ is a Poisson random measure directed by
ν. By Proposition 1.9, we get that for every f ∈ S+ and each t > 0,

exp
{
−ν
(
1− e−tf

)}
= E

[
e−µ(tf)

]
= E

[
e−tµ(f)1{µ(f)<∞}

]
.

Thus, by Lebesgue dominated convergence theorem, as t→ 0,

exp
{
−ν
(
1− e−tf

)}
→ E

[
1{µ(f)<∞}

]
= P [µ(f) <∞] . (A.1)

Now, if ν(f ∧ 1) = ∞ we get ν
(
1− e−tf

)
= ∞, so by equation A.1, P [µ(f) <∞] = 0.

Conversely if ν(f∧1) <∞ we have that ν
(
1− e−tf

)
→ 0 as t→ 0, thus P [µ(f) <∞] =

1. This proves the statement for Poisson process, the case where µ is a Cox process,
follows by conditioning.

A.9 Proof of Lemma 1.11

To prove (i), first assume µ =
∑

k δsk , is not random. Choosing (τk)k≥1 some independent
random elements taking values in T such that τk has distribution νsk we obtain that for
f ∈ S+

E
[
e−η(f)

]
= E

[
exp

{
−
∑
k

f(τk)

}]
=
∏
k

E
[
e−f(τk)

]
=
∏
k

νsk
(
e−f
)

= exp

{∑
k

log
(
νsk
(
e−f
))}

Now, set g(s) = log
(
νs
(
e−f
))

for each s ∈ S, clearly g : S → R−, it is a measurable
function and

exp

{∑
k

log
(
νsk
(
e−f
))}

= exp

{∑
k

g(sk)

}
= exp {µ(g)} = exp

{
µ(log

(
ν
(
e−f
))}

The scenario where µ is not deterministic follows by conditioning on µ.

To prove (ii), again assume µ =
∑

k δsk is not random, note that we can write η̃ =∑
kαkδsk , where (αk)k≥1 are independent random variables such that αk ∼ Ber(p(sk)),
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then E [e−tαk ] = e−tp(sk) + (1− p(sk)) = 1− p(sk)(1− e−t) for every t ∈ R. This implies
that for every f ∈ S+

E
[
e−η̃(f)

]
= E

[
exp

{
−
∑
k

αkf(sk)

}]
=
∏
k

E [exp {−αkf(sk)}]

=
∏
k

{
1− p(sk)

(
1− e−f(sk)

)}
= exp

{∑
k

log
({

1− p(sk)
(
1− e−f(sk)

)})}
setting g(s) = log

{
1− p(s)

(
1− ef(s)

)}
get that g : S → R− is a measurable and

exp

{∑
k

log
({

1− p(sk)(1− e−f(sk))
})}

= exp

{∑
k

g(sk)

}
= exp {µ(g)} .

Whenever µ is not deterministic, we simply condition on µ to obtain the desired state-
ment.

A.10 Proof of Theorem 1.12

To provide the desired result we will need some preliminary lemmas.

Lemma A.2. Let µ and ν be either simple or diffuse locally finite random measures

over (S,BS), and consider a constant c > 0, then µ
d
= ν if and only if E

[
e−cµ(B)

]
=

E
[
e−cν(B)

]
and every B ∈ Ŝ.

Proof: Clearly µ
d
= ν implies E

[
e−cµ(B)

]
= E

[
e−cν(B)

]
for every B ∈ BS. To prove

the converse result, first assume µ and ν are both diffuse. Define the Cox processes µ∗

and ν∗ directed by cµ and cν respectively. Note that Proposition 1.9 remains true for
0 ≤ f ≤ ∞. Let B ∈ Ŝ, set f =∞1B and note that

e−µ
∗(f) =

{
1 if µ∗(B) = 0

0 if µ∗(B) > 0

with the convention ∞ ∗ 0 = 0. That is e−µ
∗(f) ∼ Ber(P[µ∗(B) = 0]), and analogously

for ν∗. So by hypothesis and Proposition 1.9 we get

P[µ∗(B) = 0] = E
[
e−µ

∗(f)
]

= E
[
e−cµ(B)

]
= E

[
e−cν(B)

]
= E

[
e−ν

∗(f)
]

= P[ν∗(B) = 0].

Since µ and ν are diffuse we must have µ∗ and ν∗ are simple, and by Lemma 1.8 we get

µ∗
d
= ν∗. Finally, since the laws of a Cox process and its intensity measure characterize

each other we get µ
d
= ν.

Now assume µ and ν are simple. Fix B ∈ Ŝ and define p = (1 − e−c). Let µ∗ and
ν∗ be p-thinnings of µ and ν respectively. Let f = ∞1B and note that Lemma 1.11
remains true for 0 ≤ f ≤ ∞. Thus

P[µ∗(B) = 0] = E
[
e−µ

∗(f)
]

= E
[
e−µ(log(1−p1B))

]
= E

[
e−µ(B) log(1−p)] = E

[
e−cµ(B)

]
,
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and analogously for ν∗ and ν. Since µ and ν are simple, we must have that the same

holds for µ∗ and ν∗, so by Lemma 1.8 we obtain ν∗
d
= µ∗, and by construction it is

obvious this implies ν
d
= µ as desired.

Lemma A.3. Let (S,BS) be a Borel space and µ a locally finite random measure.

i) If µ is simple and E[µ({s})] = 0 for all s ∈ S, then µ is completely random if and
only if it is a Poisson random measure.

ii) If µ is diffuse, then it is completely random if and only if it is non-random.

Proof: Clearly if µ is Poisson or non-random then it is completely random, so we
will prove the converse results. Let µ be a locally finite completely random measure and
define the set function ρ : Ŝ → R+ by

ρ(B) = − log
(
E
[
e−µ(B)

])
(A.2)

Note that ρ(∅) = 0 and that for disjoint A,B ∈ Ŝ

ρ(A ∪B) = − log
(
E
[
e−µ(A)

]
E
[
e−µ(B)

])
= ρ(A) + ρ(B),

which shows ρ is finitely additive. In fact, ρ is even countably additive since Bn ↗ B in
Ŝ implies ρ(Bn) ↗ ρ(B) by monotone and Lebesgue dominated convergence theorems.
Further ρ(B) <∞ for all B ∈ Ŝ, Ŝ is a ring and (S,BS) is Borel, thus by Carathéodory’s
extesion theorem ρ can be uniquely extended to a measure over (S,BS). Finally note
that E[µ({s})] = 0 in either (i) or (ii), thus µ({s}) = 0 almost surely, and we get
ρ({s}) = − log

(
E
[
e−µ({s})]) = 0, that is ρ is diffuse.

Now, say (i) holds, and let ν be a Poisson random measure with intensity cρ, where
c = (1− e−1)−1, by Proposition 1.9 we know

E
[
e−ν(B)

]
= exp

{
−cρ

(
1− e−1B

)}
= exp {−ρ(B)} = E

[
e−µ(B)

]
.

µ is simple by hypothesis and since ρ is diffuse, ν is simple by Proposition 1.10. Hence,

Lemma A.2 yields µ
d
= ν, which proves µ is Poisson.

If µ is diffuse, set ν = ρ, then E
[
e−ν(B)

]
= exp {−ρ(B)} = E

[
e−µ(B)

]
. By Lemma

A.2 the result follows.
For a locally finite completely random measure, µ, we define its the set of fixed

atoms as Dµ = {s ∈ S : ρ(s) > 0} where ρ is as in (A.2). It is easy to see that
Dµ = {s ∈ S : E [µ({s})] > 0} = {s ∈ S : P[µ({s}) > 0] > 0}.

Lemma A.4. Let µ =
∑

j≥1αjδξj be a locally finite completely random measure over
(S,BS) with no fixed atoms. Then {(ξj,αj)}j≥1 defines a Poisson random measure over
S × R+ whose diffuse intensity, ν, satisfies∫

R+

(x ∧ 1) ν(B, dx) <∞,

B ∈ Ŝ. In particular, we get that {(ξj,αj)}j≥1 are i.i.d.
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Proof: Define the random measure over S × R+,

η =
∑
j≥1

δ(ξj ,αj) =
∑
j≥1

δξj ⊗ δαj .

Notice that since µ has no fixed atoms, then the atoms ξj’s of µ must be pairwise

distinct almost surely, hence η must be simple. Let T̂ be a localizing ring of S × R+,
fix any B ∈ T̂ and consider the random measure over S, ηB = 1Bη(· × R+). Note
that η(· ×R+) =

∑
j≥1 δξj inherits the independent increments from µ and so does ηB.

Further ηB is simple and E[ηB({s})] = 0 for every s ∈ S. Then, by Lemma A.3, we
get ηB is Poisson, in particular η(B) = ηB(S) is Poisson distributed. Since B ∈ T̂ was
chosen arbitrarily, we have shown that η(B) follows a Poisson distribution for all B ∈ T̂ ,
and Lemma A.2 yields η is a Poisson random measure. Now, as explained in the proof of
the first part of Proposition 1.10, 1Bη is a mixed Poisson Binomial process for all B ∈ T̂ ,
which implies {(ξj,αj)}j≥1 are i.i.d. Finally, given that η is simple, by Proposition 1.10
its intensity measure, ν, must be diffuse, further as µ is locally finite, we get that for
every A ∈ Ŝ, tµ(A) =

∑
j≥1 tαjδξj(A) = η(f) < ∞, where f ∈ (S × R+)+ is given by

f(s, x) = x1A(s). Thus, by the second part of Proposition 1.10 we get,∫
R+

(x ∧ 1) ν(A, dx) = ν (f ∧ 1) <∞,

Proof of Theorem 1.12: The necessity is obvious, so we prove the sufficiency. As
µ is locally finite, its set of fixed atoms is at most countable, let s1, s2, . . ., be such atoms.
The independent increments of µ assure γj = µ({sj}) is a non-negative random variable
independent of the rest of the process. We can subtract from µ, the component repre-
senting the fixed atoms,

∑
j≥1 γjδsj . The remaining discontinuities can be measurably

encoded by

µ∗ =
∑
j≥1

αjδξj ,

as explained in Theorem 1.7. µ∗ inherits from µ the independent increments, and has
no fixed atoms, so Lemma A.4 yields {(ξj,αj)}j≥1 are as in (b). Finally, subtracting
even this part, we end up with a diffuse measure, β, with independent increments, and
by Lemma A.3 we get it is non-random.

A.11 Proof of Theorem 1.13

I ⇒ II: Let A be a closed set. Define the function fε(s) = (1 − d(s, A)/ε)+, with the
shorthand z+ = max{0, z}. So that fε is bounded and continuous and

fε(s) ∈


{1} if s ∈ A
{0} if d(s, A) ≥ ε

(0, 1) if 0 < d(s, A) < ε,

hence, 1A ≤ fε ≤ 1Aε , where Aε = {s ∈ S : d(s, A) < ε}. By I. we obtain

lim sup
n

µn(A) = lim sup
n

µn(1A) ≤ lim sup
n

µn(fε) = µ(fε) ≤ µ(Aε). (A.3)
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Since A is closed, we have A =
⋂
εA

ε, so by making ε→ 0, we get µ(Aε)→ µ(A), which
together with equation (A.3) gives the result.

II ⇔ III: To show II ⇔ III, it suffices to consider complements of the corresponding
sets.

II,III⇒ IV: For any set A, the boundary of A can be written as ∂A = A \A◦, where
A denotes the closure of A, and A◦ its interior. As A is closed and A◦ is open, by II and
III,

µ
(
A
)
≥ lim sup

n
µn
(
A
)
≥ lim inf

n
µn(A◦) ≥ µ(A◦).

Since A is a µ-continuity set we have that µ
(
A
)

= µ(A) = µ(A◦), thus the above
inequalities are in fact equalities, which gives limn µ(A) = µ(A).

IV ⇒ I: Fix a continuous and bounded function f . As f is bounded, there exist
x, y ∈ R such that x ≤ f ≤ y. Now,

µ(f) =

∫
fdµ =

∫ y

x

µ({f > t})dt, (A.4)

where {f > t} = {s ∈ S : f(s) > t}, and the same holds for µn. For any t ∈ (x, y),
and s ∈ ∂{f > t}, we may take a1, a2, . . . ∈ {f > t} and b1, b2, . . . ∈ {f ≤ t} with
an → s and bn → s. As f is continuous we have that f(s) = limn f(an) ≥ t and
f(s) = limn f(bn) ≤ t, hence f(s) = t. That is, ∂{f > t} ⊆ {f = t}, which means that,
µ({f = t}) = 0 implies {f > t} is a µ-continuity set. As µ is a probability measure,
there are at most countably many t’s for which µ({f = t}) > 0, hence by IV,

µn({f > t})→ µ({f > t})

almost everywhere on (x, y). This together with (A.4), show that µn(f)→ µ(f).

A.12 Proof of Theorem 1.14

Evidently dP(µ, ν) = 0 if and only if µ = nu, and dP(µ, ν) = dP(ν, µ) for every µ, ν ∈
P(S). So to prove that dP is a metric it suffices to check the triangle inequality. Let
µ, ν, ξ ∈ P(S), and say dP(µ, ν) < ε, dP(ν, ξ) < λ. Then, for every B ∈ BS,

µ(B) ≤ ν(Bε) + ε ≤ ξ
(
[Bε]λ

)
+ λ+ ε ≤ ξ

(
Bε+λ

)
+ λ+ ε

and analogously ξ(B) ≤ µ
(
Bε+λ

)
+ λ + ε. Thus dP(µ, ξ) ≤ λ + ε, for all such ε

and λ. By considering the corresponding infimum over ε and λ we obtain dP(µ, ξ) ≤
dP(µ, ν) + dP(ν, ξ).

To prove the remaining part of the statement, first say that dP(µn, µ)→ 0, for some
µ, µ1, µ2, . . . ∈ P(S). Then, we may take ε1, ε2, . . ., with dP(µn, µ) < εn and εn → 0.
This way for every closed set A,

lim sup
n

µn(A) ≤ lim sup
n

µ (Aεn) + εn = µ

(⋂
n

Aεn

)
= µ(A).

and we obtain µn
w→ µ. To show the converse result we first prove the following lemma

Lemma A.5. If S is separable. Then, for every µ ∈ P(S) and δ > 0, we may find a
countable collection of open balls, B1, B2, . . ., whose radius is smaller than δ, µ(∂Bn) = 0
for all n, and

⋃
nBn = S.
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Proof of Lemma A.5: Let D be a countable dense set in S. For x ∈ D define
S(x, r) = {s ∈ S : d(x, s) = r} and B(x, r) = {s ∈ S : d(x, s) < r}. Observe that
∂B(x, r) ⊆ S(x, r). The collection S = {S(x, r) : δ/2 < r < δ} is disjoint, hence
at most countably many of its members satisfy µ(S(x, r)) > 0. As, S is uncount-
able, there exist rx ∈ (δ/2, δ) with µ(S(x, rx)) = 0, thus µ(∂B(x, rx)) = 0. Finally as
D is dense

⋃
x∈D B(x, rx) = S, and as D is countable {B(x, rx)}x∈D is also countable.

Returning to the proof of Theorem 1.14, say that µn
w→ µ for some µ, µ1, µ2, . . . ,∈

P(S). Let ε > 0 and take 0 < δ < ε/3. By Lemma A.5 we may find a countable
collection of open balls, B1, B2, . . ., whose radius is smaller than δ/2, µ(∂Bj) = 0 for all

j, and
⋃
j Bj = S. Fix k such that µ

(⋃k
j=1Bj

)
≥ 1− δ, and consider the collection

A =

{⋃
j∈K

Bj : K ⊆ {1, . . . , k}

}

For every A ∈ A, ∂A ⊆
⋃k
j=1 ∂Bn, thus µ(∂A) ≤

∑k
j=1 µ(∂Bn) = 0. By the Portmanteau

theorem (IV) we get µn(A) → µ(A) for every A ∈ A. As A is finite we may find N
such that, |µn(A) − µ(A)| < δ, for every n ≥ N and every A ∈ A. Particularly,

µn

(⋃k
j=1Bj

)
≥ µn

(⋃k
j=1Bj

)
− δ ≥ 1− 2δ, for n ≥ N . Now fix B ∈ BS, and set

A =
⋃
{Bj : j ∈ {1, . . . , k}, Bj ∩B 6= ∅} ∈ A.

We find that

� A ⊆ Bδ ⊆ Bε, as the diameter of Bj is smaller than δ.

� B ⊆ A ∪
(⋃k

j=1Bj

)c
� µ(A) ≤ µn(A) + δ and µn(A) ≤ µ(A) + δ, for all n ≥ N .

� µ
([⋃k

j=1Bj

]c)
≤ δ and µn

([⋃k
j=1 Bj

]c)
≤ 2δ, for every n ≥ N .

Putting this together we obtain

µ(B) ≤ µ(A) + µ

([
k⋃
j=1

Bj

]c)
≤ µn(A) + 2δ ≤ µn (Bε) + ε

and

µn(B) ≤ µn(A) + µn

([
k⋃
j=1

Bj

]c)
≤ µ(A) + 3δ ≤ µ (Bε) + ε,

that is dP(µn, µ) ≤ ε, for every n ≥ N . As ε was arbitrary, this shows dP(µn, µ)→ 0.
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A.13 Proof of Theorem 1.16

Let Σ1,Σ2,Σ3 and Σ4 denote the σ-algebras generated by I,II,III and IV respectively.
Σ1 = Σ2: For any continuous and bounded function f : S → R, we have that the

mapping πf : µ 7→ µ(f) is continuous with respect to the topology of weak converge
(this is a consequence of Theorems 1.13 and 1.14). Hence πf is measurable with respect
to Σ1, and we get Σ2 ⊆ Σ1. Conversely, by Theorem 1.15 we have that (P(S), dP) is
separable, hence every (weakly) open set is a countable union of basis sets

{µ : |µ(f)− r| < ε, f is continuous and bounded, r, ε > 0} ∈ Σ2.

Thus Σ1 ⊆ Σ2, and we obtain Σ1 = Σ2.
Σ3 = Σ4: For any B ∈ BS and any µ ∈ P(S), we have that

∫
1Bdµ = µ(B), hence

the projection map πB equals the integration map π1B and Σ4 ⊆ Σ3 follows. Conversely,
if f is a simple measurable function, f =

∑n
i=1 a11Ai , (with Ai and Aj disjoint, for i 6= j).

By linearity of the integral we have that πf =
∑n

i=1 ai πAi , from which we obtain that
πf is Σ4-measurable. Now, if f is an arbitrary measurable and non-negative function
then f and be approximated by simple functions fn ↗ f and by monotone convergence
theorem we obtain πfn ↗ πf , hence πf is also Σ4-measurable, and we get Σ3 = Σ4.

Σ4 ⊆ Σ2: Let B ∈ BS and define fε : S → R by fε = (1 − d(s, B)/ε)+. Then
0 ≤ fε ≤ 1 is continuous and bounded, and fε → 1B as ε→ 0. By Lebesgue dominated
convergence theorem, we obtain πfε → π1B = πB. Since πfε is Σ2-measurable for each
ε > 0, this shows the projection map πB is Σ2-measurable. As B was chosen arbitrarily,
this shows Σ4 ⊆ Σ2.

Σ2 ⊆ Σ3: Let f : S → R be a continuous and bounded function. As it is continuous,
then it is measurable and we may decompose it as the sum of two measurable non-
negative functions, its positive and negative parts. That is f = f+ − f−, by linearity of
the integral πf = πf+ − πf− , from which is easy to see that πf is Σ3 measurable. Thus
Σ2 ⊆ Σ3.

A.14 Proof of Lemma 1.17

First note that for every bounded function f : S → R and each random probability
measure µ over (S,BS), the random variable µ(f) is bounded, hence E

[
e−µ(f)

]
exists.

This said it is trivial that II implies III. To see the converse simply note that for every
t ∈ R, tf is also a continuous and bounded function from which it is clear that III implies
II. Now we prove III implies I, fix n ∈ N and let B1, . . . , Bn ∈ BS be mutually disjoint.
For ε ∈ (0, 1) and i ∈ {1, . . . , n} define f

(ε)
i : S → R by

f
(ε)
i (s) =

{
1− d(s, Bi)/ε if s ∈ Bε

i

0 if s 6∈ Bε
i

where Bε
i = {s ∈ S : d(s, Bi) < ε}. Then f

(ε)
i is continuous and bounded and f

(ε)
i → 1Bi

as ε → 0. Let b1, . . . , bn ∈ R and note that f (ε) =
∑n

i=1 bif
(ε)
i is also continuous

and bounded for all ε ∈ (0, 1), and f (ε) →
∑n

i=1 bi1Bi as ε → 0. By III we know

that E
[
e−µ(f (ε))

]
= E

[
e−ν(f

(ε))
]
, and by Lebesgue dominated convergence theorem we

obtain E
[
e−

∑n
i=1 biµ(Bi)

]
= E

[
e−

∑n
i=1 biν(Bi)

]
. This shows

(µ(B1), . . . ,µ(Bn))
d
= (ν(B1), . . . ,ν(Bn)) ,
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and by Theorem 1.5, this proves I. Conversely, say I holds and fix a continuous and
bounded function f : S → R+, consider its positive and negative parts, f+(s) =
max{0, f(s)} and f−(s) = −min{0, f(s)}, so that f = f+ − f− with f+, f− ∈ S+. For

every a, b ∈ R+, af+ + bf− ∈ S+, thus, by Theorem 1.5, we get E
[
e−aµ(f+)−bµ(f−)

]
=

E
[
e−aν(f+)−bν(f−)

]
. This means (µ(f+),µ(f−))

d
= (ν(f+),ν(f−)), from which is evident

that µ(f) = µ(f+)− µ(f−)
d
= ν(f+)− ν(f−) = ν(f), and the result follows.

A.15 Proof of Lemma 1.18

(i): Let w = (w1, w2, . . .), w
(n) =

(
w

(n)
1 , w

(n)
2 , . . .

)
n≥1

be elements of ∆∞, and µ =

(µ1, µ2, . . .), µ
(n) =

(
µ

(n)
1 , µ

(n)
2 , . . .

)
n≥1

, be elements of P(S)∞, such that w
(n)
j → wj

and µ
(n)
j

w→ µj, for every j ≥ 1. Define ν(n) =
∑

j≥1w
(n)
j µ

(n)
j and ν =

∑
j≥1wjµj.

Fix a continuous and bounded function f : S → R. Then, for j ≥ 1, w
(n)
j µ

(n)
j (f) →

wjµj(f). Since f is bounded, there exist M such that |f | ≤ M , hence |w(n)
j µ

(n)
j (f)| ≤

w
(n)
j µ

(n)
j (|f |) ≤ w

(n)
j M , for every n ≥ 1, and j ≥ 1. Evidently, Mw

(n)
j → Mwj, and∑

j≥1Mw
(n)
j = M =

∑
j≥1Mwj. Hence, by general Lebesgue dominated convergence

theorem, we obtain

ν(n)(f) =
∑
j≥1

w
(n)
j µ

(n)
j (f)→

∑
j≥1

wjµj(f) = ν(f)

That is ν(n) w→ ν.
(ii): To prove the second part, using (i) it suffices to see that the mapping s → δs

from S into P(S) is continuous. So fix sn → s in S and let f : S → R be a continuous
and bounded function. Then δsn(f) = f(sn) → f(s) = δs, which shows δsn

w→ δs as
desired.

(iii): Consider some discrete probability measures
(
µ(n) =

∑
j≥1w

(n)
j δ

s
(n)
j

)
n≥1

over

(S,BS), such that µ(n) w→
∑

j≥1wjδsj = µ, and set Φ(n) =
∫
νs µ

(n)(ds) =
∑

j≥1w
(n)
j ν

s
(n)
j

and Φ =
∫
νs µ(ds) =

∑
j≥1wjνsj . Let f : T → R be a continuous and bounded function

and define the function h : S → R, by

h(s) =

∫
f(t)νs(dt).

Evidently h is bounded because f is bounded and νs is a probability measure. Further-
more, as νsn

w→ νs, for every sn → s in S, h is also continuous. Thus,

Φ(n)(f) =
∑
j≥1

w
(n)
j h

(
s

(n)
j

)
= µ(n)(h)→ µ(h) =

∑
j≥1

wjh (sj) = Φ(f).

That is Φ(n) w→ Φ.
(iv): The fourth and last part follows easily by composing the mappings in (ii) and

(iii), or alternatively directly from (i).
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A.16 Proof of Proposition 1.19

Since WS(µ) coincides with the intersection of all closed sets C ∈ BP(S) such that
Q(C) = P[µ ∈ C] = 1, to prove this proposition it suffices to show that C = {ϕ ∈ P(S) :
S(ϕ) ⊆ S(µ0)} is closed and that µ belongs to C almost surely. To prove closeness let(
ϕ(n)

)
n≥1

be elements of C such that ϕ(n) w→ ϕ(∞) for some ϕ(∞) ∈ P(S). Note that, as

S(µ0) is a closed set, S
(
ϕ(n)

)
⊆ S(µ0) implies ϕ(n) (S(µ0)) = 1, hence by the Portmanteau

theorem
ϕ(∞) (S(µ0)) ≥ lim sup

n
ϕ(n) (S(µ0)) = 1.

This means S
(
ϕ(∞)

)
⊆ S(µ0), and we get ϕ(∞) ∈ C, that is C is closed. To prove

µ ∈ C almost surely, realize that µ (S(µ0)c) ≥ 0 almost surely and by definition 0 =
µ0 (S(µ0)c) = E [µ (S(µ0)c)]. Thus, we must have µ (S(µ0)c) = 0 almost surely, that is
S(µ) ⊆ S(µ0) almost surely, which shows µ ∈ C almost surely.
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B Proofs of Section 2

B.1 Proof of Theorem 2.1

1. ⇒ 2: There exist G sub-σ-algebra such that (xi)i≥1 is conditionally i.i.d. given G, let
µ be a version of P[x1 ∈ · | G], so it is, of course, a version of P[xk ∈ · | G] for every
k ∈ N, and we have

P[X ∈ · | G] = µ∞

a.s. which implies

P[X ∈ · ] = E[µ∞] =

∫
P(S)

µ∞Q(dµ).

where Q denotes the law of µ.
2. ⇒ 3: Let n ≥ 1, {Bi}ni=1 ⊆ BS and σ permutation of [n], then

P

[
n⋂
i=1

(xi ∈ Bi)

]
=

∫
P(S)

n∏
i=1

µ(Bi)Q(dµ) = P

[
n⋂
i=1

(xσ(i) ∈ Bi)

]
.

3. ⇒ 4: Let n ≥ 1 and 0 < k1 < k2 < · · · < kn, construct a permutation ρ : [kn] →
[kn] such that for every i ∈ [n], ρ(i) = ki, and apply the definition of exchangeability.

4. ⇒ 1: Let us denote by θn to the shift operator, so that θn(X) = (xn+1, xn+2, . . .),
for a sequence X = (x1, x2, . . .). If X is contractable then for every k ≤ m ≤ n

(xm, θm(X))
d
= (xk, θm(X))

d
= (xk, θn(X)). (B.1)

Let Gn := σ(θn(X)) = σ(xn+1,xn+2, . . .) and define τ :=
⋂
n≥1 Gn (the tail σ-algebra of

the sequence), also fix B ∈ Bs. By equation (B.1) we have that

P[xm ∈ B | Gm] = P[xk ∈ B | Gm] = P[xk ∈ B | Gn],

a.s. Moreover, by the tower property of conditional expectation

E [P[xk ∈ B | Gn] | Gn+1] = P[xk ∈ B | Gn+1],

a.s for every n ≥ k, hence (P[xk ∈ B | Gn])n≥k is a reverse martingale, and by the reverse
martingale convergence theorem, as n→∞,

P[xm ∈ B | Gm] = P[xk ∈ B | Gm] = P[xk ∈ B | Gn]→ P[xk ∈ B | τ ], (B.2)

almost surely. Particularly, by choosing k = m and latter k = 1 we get

P[xm ∈ B | Gm] = P[xm ∈ B | τ ] = P[x1 ∈ B | τ ]. (B.3)

The first equality shows that xm is independent of θm(X) given τ , i.e. for every n ∈ N
and m < k1 < k2 < · · · < kn, xm is independent of (xki)

n
i=1 given τ . Thus, for every
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{Bi}ni=1 ⊆ BS,

P

[
n⋂
i=1

(xi ∈ Bi)

∣∣∣∣∣ τ
]

= P[x1 ∈ B1 | τ ]P

[
n⋂
i=2

(xi ∈ Bi)

∣∣∣∣∣ τ
]

= P[x1 ∈ B1 | τ ]

[
P[x2 ∈ B2 | τ ]P

[
n⋂
i=3

(xi ∈ Bi)

∣∣∣∣∣ τ
]]

...

=
n∏
i=1

P[xi ∈ Bi | τ ]

The second equality of equation (B.3) yields P[x1 ∈ B | τ ] is a version of P[xm ∈ B | τ ],
so if we let µ be any regular version of the conditional distribution of x1 given τ , then
P[xm ∈ B | τ ] = µ(B) a.s. for every m ≥ 1, and we can conclude that

P

[
n⋂
i=1

(xi ∈ Bi)

∣∣∣∣∣ τ
]

=
n∏
i=1

P[xi ∈ Bi | τ ] =
n∏
i=1

µ(Ai)

a.s. for every n ∈ N and {Bi}ni=1 ⊆ BS.

B.2 Proof of Theorem 2.2

a) Clearly µ is a G-measurable random probability measure, so by the tower property
of the conditional expectation we have that for every n ≥ 1 and every {Bi}ni=1 ⊆ BS

P

[
n⋂
i=1

(xi ∈ Bi)

∣∣∣∣∣µ
]

= E

(
P

[
n⋂
i=1

(xi ∈ Bi)

∣∣∣∣∣G
] ∣∣∣∣∣µ

)

= E

[
n∏
i=1

µ(Bi)

∣∣∣∣∣µ
]

=
n∏
i=1

µ(Bi),

almost surely. Or equivalently P[X ∈ · | µ]
a.s.
= µ∞. This implies P[X ∈ · |

G] = P[X ∈ · | µ], and as µ is G-measurable we obtain that X is conditionally
independent of G given µ.

b) This is obvious by the proof of a).

c) Let B ∈ BS and let Y = µ(B). Define g : S∞ × [0, 1]→ R by

g(x, z) = 1{n−1
∑
i≤n1B(xi)→z}, where x = (x1, x2, . . .)

Also define the event

A =

{
n−1

∑
i≤n

1B(xi)→ µ(B)

}
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and note 1A = g(X,Y) is a measurable function and Y is G-measurable, hence
(by the disintegration theorem)

P[A] = E[E[g(X,Y)|G]]

= E
[∫

g(x,Y)µ∞(dx)

]
= E

[
µ∞

{
x : n−1

∑
i≤n

1B(xi)→ Y

}]
,

by b) and the strong law of large numbers we also have that conditionally given µ

µ∞

{
x : n−1

∑
i≤n

1B(xi)→ Y

}
= 1

and we conclude P[A] = 1. The X-measurability of µ is obvious.

d) In the proof of Theorem 2.1 we already showed

P[X ∈ · ] =

∫
P(S)

µ∞Q(dµ),

where Q is the law of µ. Now let Q̃ be any probability measure over (P(S),BP(S))
such that the above equation holds, then there exist a random measure µ̃ such
that µ̃ ∼ Q̃ and it is possible to construct a random sequence X̃ = (x̃i)i≥1 such

that P[X̃ ∈ · | µ̃] = µ̃∞. By the proof of Theorem 2.1 we get

P[X ∈ · ] =

∫
P(S)

µ∞Q̃(dµ) = P[X̃ ∈ · ].

Thus X
d
= X̃, which together with P[X̃ ∈ · | µ̃] = µ̃∞ and P[X ∈ · | µ] = µ∞ yield

µ
d
= µ̃, this is Q = Q̃.

B.3 Proof of Proposition 2.6

Let σm be a permutation of [m] and define the permutation of [n], σ by σ(j) = σm(j) if
j ≤ m and σ(j) = j for j > m. Then for every partition A = {A1, . . . , Ak} of [m],

P[Πm = A] =
∑

B∈P[n](A)

P[Πn = B] =
∑

B∈P[n](A)

P[Πn = σ(B)] = P[Πm = σm(A)],

which shows Πm is exchangeable.
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B.4 Proof of Proposition 2.7

Each unordered composition of n into k parts, {nj}kj=1 is uniquely identified with an
element in {(n1, . . . , nk) ∈ Ckn : n1 ≥ n2 ≥ · · · ≥ nk} and it is also uniquely identified
with an element (m1, . . . ,mn) ∈ Mk

n, where mi = |{j ∈ [k] : nj = i}|. The number
of partitions of [n] having exactly mi blocks containing i elements, for every i ∈ [n], is
n!/(

∏n
i=1(i!)mi(mj!)), which shows

P[Mn = (m1, . . . ,mn)] = P[Nn = {n1, . . . , nk}] =
n!∏n

i=1(i!)mi(mi!)
πn(n1, . . . , nk),

and

P[N↓n = (n1, . . . , nk)] =
n!∏n

i=1(i!)mi(mi!)
πn(n1, . . . , nk)1{n1≥n2≥···≥nk},

Now, the number of ordered partitions of [n] having k blocks and such that the jth
block contains nj elements for every j ∈ [k] is n!/

∏k
j=1 nj! and for any such partition

A = (A1, . . . , Ak),

P [Πex
n = A] =

1

k!
πn(n1, . . . , nk),

where Πex
n is as in Definition 2.14. Hence

P[Nex
n = (n1, . . . , nk)] =

n!

k!
∏k

j=1 nj!
πn(n1, . . . , nk).

Finally, note that the number of partitions of [n] such that the block containing the
element 1 has n1 elements is N1 = (n− 1)!/((n1 − 1)!(n− n1)!), among those, the ones
whose second block (according to the order of the least element) contains n2 elements,
are

N2 = N1
((n− n1)− 1)!

(n2 − 1)!((n− n1)− n2)!
=

(n)!

(n1 − 1)!(n2 − 1)!n(n− n1)(n− n1 − n2)!
.

partitions. From those N2, the numbers of partitions whose third block, contains n3

elements is

N3 = N2
((n− n1 − n2)− 1)!

(n3 − 1)!((n− n1 − n2)− n3)!

=
n!{∏3

j=1(nj − 1)!
(
n−

∑j−1
i=1 ni

)}
((n− n1 − n2)− n3)!

.

with the convention that the empty sum equals 0. Inductively, we find that the number
of partitions of [n] whose jth block in the least element order contains nj elements, is

n!∏k
j=1

(∑
i≥j ni

)
(nj − 1)!

,

from which is easy to see that

P
[
Ñn = (n1, . . . , nk)

]
=

n!∏k
j=1

(∑
i≥j ni

)
(nj − 1)!

πn(n1, . . . , nk),
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B.5 Proof of Proposition 2.8

Let Nex = (nex
1 , . . . ,n

ex
Kn

) be as in Proposition 2.7. Then, for every permutation σ of [k]

P[Nex = (n1, . . . , nk),N = (nσ(1), . . . , nσ(k))] =
1

k!
π∗n(nσ(1), . . . , nσ(k))

Summing over all k! permutations of [k], we obtain

P[Nex = (n1, . . . , nk)] =
1

k!

∑
σ

π∗n(nσ(1), . . . , nσ(k))

By Proposition 2.7 we also know that

P[Nex = (n1, . . . , nk)] =
n!

k!
∏k

j=1 nj!
πn(n1, . . . , nk).

Putting together the last couple of equations we conclude

πn(n1, . . . , nk) =

∏k
j=1 nj!

n!

∑
σ

π∗n(nσ(1), . . . , nσ(k)).

B.6 Proof of Corollary 2.9

Let n1 ≥ n2 ≥ . . . nk be a ranked composition of n and consider the collection X =
{x1, . . . , xn} exhibiting nj values equal j. Fix mi =

∑k
j=1 1{nj=i}, and for every i ∈ [n]

let Ci,1 . . . , Ci,mi be the mi distinct sub-collections of X having i identical elements. Let
z1, . . . , zn be sampled without replacement from X and consider, the random partition
of [n], Π(z1:n), generated by the equivalence relation i ∼ j if and only if zi = zj. Then,
for a fix partition A of [n] having exactly mi blocks, Ai,1, . . . , Ai,mi , containing exactly i
elements we get

P[Π(z1:n) = A] =
∑
(σi)i

P

 ⋂
{i:mi>0}

mi⋂
j=1

⋂
l∈Ai,j

(zl ∈ Ci,σi(j))


=
∑
(σi)i

∏n
i=1(i!)mi

n!
=

∏n
i=1(i!)mi(mi!)

n!

where the sum ranges over all collections (σi){i:mi>0}, such that σi is a permutation of
[mi]. This shows that for any partition of [n],

P[Π(z1:n) = A | N↓ = (n1, . . . , nk)] =

∏n
i=1(i!)mi(mi!)

n!

if A has exactly mi blocks containing i elements, and the above probability equals 0
otherwise. Now, note that since N↓ is completely determined by Πn,

P[Πn = A,N↓ = (n1, . . . , nk)] = P[Πn = A] = π(n1, . . . , nk),
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if A has exactly mi blocks containing i elements, and P[Πn = A,N↓ = (n1, . . . , nk)] = 0,
otherwise. Hence, by Proposition 2.7 we obtain

P[Πn = A | N↓ = (n1, . . . , nk)] =
π(n1, . . . , nk)

P[N↓ = (n1, . . . , nk)]
=

∏n
i=1(i!)mi(mi!)

n!

if A has exactly mi blocks containing i elements, and the above probability equals 0
otherwise. Insomuch as N↓ is a discrete random element, this shows that for every
partition A of [n],

P[Π(z1:n) = A | N↓] = P[Πn = A | N↓]

B.7 Proof of Theorem 2.10

Let Π̃n =
(
Π̃n,1, . . . , Π̃n,Kn

)
be the ordering of the blocks of Πn according to the least

element, so that Π̃n,1 contains the element 1, Π̃n,2 contains the smallest element that is
not in Π̃n,1, and so on. Suppose without loss of generality that on the same probability
space where Π is defined, there exist a sequence (ui)i≥1 of i.i.d. Unif(0, 1) random
variables and define

xm =
∑
i≥1

ui1{m∈Π̃n,i}, m ∈ N,

where n is any natural number bigger that m, in other words xm = ui if and only if
m ∈ Π̃n,i. Note that if m ∈ Π̃n,i, then m ∈ Π̃n+k,i for every k ≥ 1, so the above is well
defined. Since Π is exchangeable, so is X = (xm)m∈N (this can be easily corroborated
by fixing a permutation of N and applying the corresponding definitions). Now, let us
rename the uniform random variables in the following way: If (Π↓n,1, . . . ,Π

↓
n,Kn

) is a

rearrangement of the blocks in such way that |Π↓n,j| = n↓n,j, then ûn,j = ui if and only if

there exist k ∈ Π↓n,j such that xk = ui, formally

ûn,j =
∑
i≥1

ui

 ∑
k∈Π↓n,j

1{xk=ui}

 .

Note that for every B ∈ B[0,1], ûn,j ∈ B if and only if xk ∈ B for every k ∈ Π↓n,j, thus

1

n

n∑
i=1

δxi(B) =
∑
j≥1

n↓n,j
n
δûn,j(B), n ∈ N,

the exchangeability of X implies that, as n→∞, the above converges a.s. to the random
variable µ(B), where µ is the directing random measure of X. Particularly, we must
have that n↓n,j/n converges almost surely to a random variable w↓j which is the jth largest
size of the atoms of µ (with the convention that if µ has fewer than j atoms, the size of
jth largest atoms is 0). By construction it is also obvious that Π(x1:∞) = Π, that is, we
could consider Π as if it was generated by sequentially sampling from µ, conditionally
given µ.
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B.8 Proof of Proposition 2.11

By Kingman’s representation theorem, without loss of generality we may consider Π =
Π(x1:∞), for some exchangeable sequence X = (xi)i≥1, taking values in a Borel space
(S,BS), and such that (w↓1,w

↓
2, . . .) are the ranked sizes of the atoms of the directing

random measure, µ, of X (with the convention if µ has fewer than j atoms, the size of
jth largest atoms is 0). Let Ξ = (ξj)j≥1 be the (almost surely distinct) atoms of µ, so
that

µ =
∑
j≥1

w↓jδξj +

(
1−

∑
j≥1

w↓j

)
µ0

for some diffuse probability measure over, µ0, over (S,BS). Define k1 = 1 and for j ≥ 1,
kj+1 = min{i ≥ 1 : xi 6∈ {xk1 , . . . ,xkj}}, with the convention min ∅ = ∞, and where

ki+1 = ∞ if ki = ∞. Set ξ̃j = xkj if kj < ∞ or sample ξ̃j from µ0 independently if
kj =∞, for every j ≥ 1. In other words, if (x1,x2, . . .) exhibits at least j distinct values,
ξ̃j is the jth value to appear in the sample (x1,x2, . . .). By construction, for every i ≤ n,
xi = ξ̃j if and only if i ∈ Π̃n,j, from which is clear that

1

n

n∑
i=1

δxi(B) =
∑
j≥1

ñn,j
n
δξ̃j(B) =

Kn∑
j=1

ñn,j
n
δξ̃j(B),

for every B ∈ BS. By taking limits as n → ∞, and using the fact that the directing
random measure of X is unique almost surely, we get that ñn,j/n → w̃j almost surely,
for every j ≥ 1, where (w̃1, w̃2, . . .) is some permutation of W↓. Note for any atom of
µ, ξj, and every i ≥ 1, we have that ξ̃i = ξj if and only if w̃i = w↓j , moreover w̃i = 0 if

and only if ξ̃i is not an atom of µ. Hence,

P
[
ξ̃1 ∈ ·

∣∣∣W↓,Ξ
]

= P
[
x1 ∈ ·

∣∣W↓,Ξ
]

= P [x1 ∈ · |µ] =
∑
j≥1

w↓jδξj +

(
1−

∑
j≥1

w↓j

)
µ0

implies

P
[
w̃1 ∈ ·

∣∣W↓] =
∑
j≥1

w↓jδw↓j
+

(
1−

∑
j≥1

w↓j

)
δ0.

For i ≥ 1, let Ξ(i) be the set of atoms of µ that have not appeared in {ξ̃1, . . . , ξ̃i} and Ξ̃(i)

be the set of atoms that already appeared in {ξ̃1, . . . , ξ̃i} also set Φ(i) = {j : ξj ∈ Ξ(i)}
and Φ̃(i) = {j : ξj ∈ Ξ̃(i)}. Conditionally given W,Ξ and ξ̃1, . . . , ξ̃i, we know that

ξ̃i+1 can not be equal to any element of Ξ̃(i), hence it is either sampled from µ0 with
probability proportional to 1−

∑
j≥1 wj or equals ξj ∈ Ξ(i) with probability proportional

to w↓j . This is

P
[
ξ̃i+1 ∈ ·

∣∣∣W,Ξ
]

=

∑
j∈Φ(i)

w↓jδξj +
(

1−
∑

j≥1 w↓j

)
µ0

1−
∑

j∈Φ̃(i)
w↓j
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if
(

1−
∑

j∈Φ̃(i)
w↓j

)
> 0 and P

[
ξ̃i+1 ∈ ·

∣∣∣W,Ξ, ξ̃1, . . . , ξ̃i

]
= µ0 otherwise, with the

convention that the empty sum equals 0. As to w̃i we have that

P [w̃i+1 ∈ · |W, w̃1, . . . , w̃i] =

∑
j∈Φ(i)

w↓jδw↓j
+
(

1−
∑

j≥1 w↓j

)
δ0

1−
∑

j∈Φ̃(i)
w↓j

=

∑
j≥1 w↓jδw↓j

−
∑i

j=1 w̃jδw̃j
+
(

1−
∑

j≥1 wj

)
δ0

1−
∑i

j=1 w̃j

,

if
∑i

j=1 w̃i =
∑

j∈Φ̃(i)
w↓j < 1, and P

[
w̃i+1 ∈ ·

∣∣∣W,Ξ, ξ̃1, . . . , ξ̃i

]
= δ0, otherwise. This

shows that (w̃1, w̃2, . . .) is a size-biased pseudo-permutation of W↓. In particular, if∑
j≥1 wj = 1 almost surely, (w̃1, w̃2, . . .) is also size-biased permutation of W↓.

B.9 Proof of Proposition 2.12

Define the event An = the (n + 1)th customers sits at table 1 and set yn = 1An then
P[y1 = 1] = (1− σ)/(θ + 1) and for n ≥ 1

P[yn+1 = 1 | y1 . . . ,yn] =

∑n
i=1 yi + 1− σ
n+ 1 + θ

=
(1− σ) +

∑n
i=1 zi

(1− σ +
∑n

i=1 zi) + (θ + σ + n−
∑n

i=1 zi)
.

Thus for (y1, . . . , yn) ∈ {0, 1}n

P

(
n⋂
i=1

(yi = yi)

)
=

(1− σ)y(θ + σ)n−y
(θ + 1)n

where y =
∑n

i=1 yi, comparing the above equation with equation (2.3), and using the rep-
resentation theorem for exchangeable sequences we obtain that the long-run proportion
of customers sitting at table 1 is w1 = v1 ∼ Be(1− σ, θ + σ).

Now fix j ≥ 1 and assume that for m ≤ j we know that wm = vm
∏m−1

i=1 (1− vi) for
some independent random variables vi ∼ Be(1 − σ, θ + iσ). Note that in the Chinese
restaurant model, after n customers have arrived and are currently occupying k > j
tables with corresponding frequencies n1, . . . , nk, when a new customer arrives he/she
sits at one the first j tables with probability (n′− jσ)/(n+θ), or at table with a number
equal or greater than j + 1, with probability

1− n′ − σ
n+ θ

=
n′′ + θ + jσ

n+ θ

where n′ =
∑j

i=1 ni and n′′ = n − n′. Since the probability that the new customer sits
at table j + 1 is (nj+1 − σ)/(n + θ), we easily compute that (nj+1 − σ)/(n′′ + θ + jσ)
is the conditional probability that he/she at table j + 1 given that he/she does not
sits at one of the first j tables. This said, conditioning on w1, . . . ,wj, imagine that all
the W(j) =

∑j
m=1 wm customers that will end up sitting at one of the first j tables

have made a reservation, so when they arrive, they will just pass through. Among the
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(1−W(j)) remaining customers, the first one to arrive will sit at table j+ 1, and after n
customers without reservation have arrived and there are nj+1 customers sitting at table
j+1, the (n+1)th customer will sit at table j+1 with probability (nj+1−σ)/(n+θ+jσ)
or at a table with number bigger than j+ 1 with probability 1− (nj+1−σ)/(n+ θ+ jσ).
Note that by construction, the long-run proportion of customers that will end up sitting
at table j + 1, in the original chinese restaurant and in the modified chinese restaurant
with reservation, coincide (in distribution). In the modified version, let us focus only in
the customers without reservation, define the event Bn = the (n + 1)th customer sits
at table j + 1 and set zn = 1Bn . Then similarly to table 1 (without reservation), for
(z1, . . . , zn) ∈ {0, 1}n

P

(
n⋂
i=1

(zi = zi)

)
=

(1− σ)z(θ + (j + 1)σ)n−z
(1 + θ + jσ)z

comparing the above equation with equation (2.3), and using the representation theorem
for exchangeable sequences we get that among the customers that do not sit at the first
j tables, the long-run proportion of them that will sit a table j+1 is vj+1 ∼ Be(1−σ, θ+
(j + 1)σ), independently of w1, . . . ,wj. Hence the overall proportion of customers that
will sit at table j + 1 must be vi(1−W(j)). Using the induction hypothesis that wm =

vm
∏m−1

i=1 (1− vi) for every m ≤ j. It is easy to see that 1−W(j) =
∏j

i=1(1− vi) which

shows that wj+1 = vj+1

∏j
i=1(1−vi) for some independent vj+1 ∼ Be(1−σ, θ+(j+1)σ),

and by induction we have prove (i).
To prove (ii) let w1,w2, . . . be as in (i). It suffices to show that

∑
j≥1 wj = 1 almost

surely. This is equivalent to prove that 1 −
∑j

i=1 wi =
∏j

i=1(1 − vi) goes to 0 almost

surely as j →∞. Since (
∏j

i=1(1− vi))j≥1 are almost surely decreasing positive random
variables and bounded by 1, we even get that it suffices to show

E

[
j∏
i=1

(1− vi)

]
=

j∏
i=1

E [(1− vi)] =

j∏
i=1

(1− E[vi])→ 0

as j → ∞. A famous calculus result for divergent series states that for a sequence of
numbers 0 < ai < 1.

∏
i≥1(1− ai) diverges to 0 if and only if

∑
i≥1 ai diverges to ∞. In

our case we know that vi ∼ Be(1− σ, θ + iσ), so∑
i≥1

E[vi] =
∑
i≥1

1− σ
1 + θ + (i− 1)σ

which clearly diverges as the Harmonic series does. and we have proven (ii).
To prove (iii) let Π = (Πn)n≥1 be the exchangeable partition of N generated by the

two-parameter chinese restaurant process. For each n ∈ N, let
(
Π̃n,1, . . . , Π̃n,Kn

)
be the

ordering of the blocks of Πn according to the least element, with corresponding block
sizes (ñn,1, . . . , ñn,Kn). By (ii) we know that Π is proper and by Proposition 2.11 we now
that (w̃1, w̃2, . . .) are in size-biased random order, where w̃j = limn→∞ ñn,j/n, almost
surely. This said, simply note that the long-run proportion of customers that will end
up sitting at table j, wj, is precisely limn→∞ ñn,j/n, and (iii) follows.
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B.10 Proof of Proposition 2.13

Let A = {A1, . . . , Ak} be a partition of [n], whose blocks are ordered according to the
least element. For B ∈ P[n+1](A) with |B| blocks in order of appearance, {B1, . . . , B|B|},
we necessarily have that either |B| = k and ther exist j ∈ [k] such that Bj = Aj∪{n+1}
and for i 6= j, Bi = Ai, or |B| = k+ 1 and for every i ∈ [k], Bi = Ai and B|B| = {n+ 1}.
This said we easily compute

P[Πn = A] =
∑

B∈P[n](A)

P[Πn+1 = B] =
∑

B∈P[n](A)

π′n+1(|B1|, . . . , |B|B||)

= π′n+1(|A1|, . . . , |Ak|, 1) +
k∑
j=1

π′n+1(|A1|, . . . , |Aj−1|, |Aj|+ 1, |Aj+1|, . . . , |Ak|).

B.11 Proof of Theorem 2.15

Assume (i) holds. Let Π′ = (Π′n)n≥1 be the partition of N generated by the chinese
restaurant process with random seating plan determined by (w1,w2, . . .). By Proposition
2.14 we know Π′ is partially exchangeable and its pEPPF is given by

π′(n1, . . . , nk) = E

[
k∏
j=1

w
nj−1
j

k−1∏
j=1

(
1−

j∑
i=1

wj

)]
.

Moreover by construction the long-run proportion of elements that belong to the jth
block of Π′ is wj, where the blocks are ordered according to the least element. By
Kingman’s representation theorem together with Proposition 2.11, we know that there
is a one to one correspondence between EPPF’s and distributions of size-biased pseudo-
permutations sequences of weights, so let π be the EPPF corresponding to (w1,w2, . . .).
Consider an exchangeable partition of N, Π = (Πn)n≥1, with EPPF π, and say that
w̃j is the long-run proportion of elements that belong to the jth block of Π, where the
blocks are ordered according to the least element. By construction and Proposition 2.11
it is clear that (w̃1, w̃2, . . .) is equal in distribution to a size-biased pseudo-permutation
of (w1,w2, . . .). Since both sequences are size-biased pseudo-permutations we must have

(w1,w2, . . .)
d
= (w̃1, w̃2, . . .). Since the distribution of the limiting frequencies of the

blocks in order of appearance characterize completely the law of corresponding partially

exchangeable partition this implies Π
d
= Π′. Hence, Π′ is exchangeable and its EPPF

must be given by π′ = π. That is π′ is a symmetric function of its arguments.
Say (ii) holds. By Proposition 2.14 we know

π′(n1, . . . , nk) = E

[
k∏
j=1

w
nj−1
j

k−1∏
j=1

(
1−

j∑
i=1

wj

)]
.

describes the pEPPF of the partially exchangeable partition of N, Π′, generated by the
chinese restaurant process with random seating plan determined by (w1,w2, . . .). Since
π′ is symmetric we further have that is must be an EPPF and that Π′ is exchangeable.
By construction the long-run proportion of elements that belong to the jth block of Π′,
in the least element order, is wj. Since Π′ is exchangeable, by Proposition 2.11 we obtain
that (w1,w2, . . .) is a size-biased pseudo-permutation of some weights sequence.
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B.12 Proof of Corollary 2.16

By Theorem 2.15 we know π′ is a symmetric function of its argument if and only if
(w1,w2, . . .) is a size-biased pseudo-permutation. Let (w↓1,w

↓
2, . . .) be the decreasing

rearrangement of (w1,w2, . . .). If
∑

j≥1 wj = 1, must have w↓1 > 0 almost surely and
that (w1,w2, . . .) is invariant under size-biased permutations. Hence (w1,w2, . . .) is a
size-biased permutation of (w↓1,w

↓
2, . . .), and by the definition of size-biased permutation

we get w↓1 > 0 almost surely implies w1 > 0 almost surely. Now if
∑

j≥1 wj < 1
occurs with positive probability, since (w1,w2, . . .) is a size-biased pseudo-permutation
of (w↓1,w

↓
2, . . .) we obtain that

P[w1 = 0] = E

[
1−

∑
j≥1

w↓j

]
= 1− E

[∑
j≥1

wj

]
> 0

hence w1 > 0 almost surely can not hold.

B.13 Proof of Corollary 2.17

Let π′ be the pEPPF of Π′ and π be the EPPF of Π. By Theorem 2.15 we know
that π′ is symmetric, hence Π′ is exchangeable. Kingman’s correspondence together
with Proposition 2.11 set up a one to one correspondence between the distribution of
size-biased pseudo-permutation and EPPF’s, furthermore this correspondence is given
by considering the long-run proportion of elements in the blocks in order of appearance.
By construction the long-run proportion in the jth block of Π′, in order of appearance
is w̃j almost surely. And by Proposition 2.11 the long-run proportion of elements in the
jth block of Π, in order of appearance is w∗j , almost surely, where (w∗j )j≥1 is some size-
biasde pseudo-permutation of (wj)j≥1. This means that (w∗j )j≥1 is equal in distribution
to (w̃j)j≥1, hence both partitions that must have the same EPPF, that is (by equation
(2.17))

π(n1, . . . , nk) = π′(n1, . . . , nk) = E

[
k∏
j=1

(w̃j)
nj−1

k−1∏
j=1

(
1−

j∑
i=1

w̃j

)]
,

or in other words Π′
d
= Π.

B.14 Proof of Proposition 2.18

Since all the contraction maps preserve λ under inverse images we trivially have (i)
implies (iii). Now we see that (iii) implies (ii), so let B1, . . . , Bn ∈ BS be disjoint
measurable sets with λ(Bi) = λ(Bj) for all i 6= j and let σ be a permutation of [n].
Define g, h :

⋃n
i=1 Bi → S by

g(s) =
n∑
i=1

[(i− 1)b+ fBi(s)]1Bi(s),

and

h(s) =
n∑
i=1

[(i− 1)b+ fBσ(i)(s)]1Bσ(i)(s),
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where b = λ(B1) = λ(Bi), as illustrated in Figure 45.

Figure 45: Illustration of g and h.

The contractability of µ yields

(µ(B1), . . . ,µ(Bn)) =
(
µ(g−1[0, b]), . . . ,µ(g−1[(n− 1)b, nb])

)
d
= (µ([0, b]), . . . ,µ([(n− 1)b, nb])) ,

and analogously for
(
µ
(
Bσ(1)

)
, . . . ,µ

(
Bσ(n)

))
using h. This shows µ is λ-exchangeable.

Finally we prove (ii) implies (i). Fix f : S → S with λ = λ(f−1[·]) and define
ν = µ(f−1[·]). Let g =

∑n
i=1 bi1Bi be a simple function where B1, . . . , Bn ∈ Ŝ are

disjoint and λ(Bi) = λ(Bj). Let us denote B =
⋃n
i=1Bi, and Ai = f−1[Bi].

a) If f−1[B] ∩ B = ∅, then B1, . . . , Bn, A1, . . . , An are disjoint sets with the same
λ-measure. Thus, the λ-exchangeability of µ implies

(µ(B1), . . . ,µ(Bn),µ(A1), . . . ,µ(An))
d
= (µ(A1), . . . ,µ(An),µ(B1), . . . ,µ(Bn))

which in turn gives (µ(B1), . . . ,µ(Bn))
d
= (µ (f−1[B1]) , . . . ,µ (f−1[Bn])), and we

get µ(g) =
∑n

i=1 biµ(Bi)
d
=
∑n

i=1 biµ(Ai) = ν(g).

b) If f−1[B]∩B 6= ∅ and S = R+, as B and f−1[B] are also bounded sets, we may take
C1, . . . , Cn such that C =

⋃n
i=1 Ci ∩B = ∅ and C ∩ f−1[B] = ∅. Define f̂ : S → S,

by

f̂ =
n∑
i=1

f−1
Ci
◦ fBi(s)1Bi(s) +

n∑
i=1

f−1
Bi
◦ fCi(s)1Ci(s) + s1(B∪C)c(s),

where fD denotes the contraction map on D. Then f̂ maps Bi into Ci, Ci into Bi,
and preserves λ under inverse images. Also define f̃ : S → S, by

f̃ =
n∑
i=1

f−1
Ci
◦ fAi(s)1Ai(s) +

n∑
i=1

f−1
Ai
◦ fCi(s)1Ci(s) + s1(f−1[B]∪C)c(s),
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so that f̃ maps Ai into Ci, Ci into Ai, and preserves λ under inverse images. As
shown in (a) we get

(µ(B1), . . . ,µ(Bn))
d
=
(
µ
(
f̂−1[B1]

)
, . . . ,µ

(
f̂−1[Bn]

))
and

(µ(A1), . . . ,µ(An))
d
=
(
µ
(
f̃−1[A1]

)
, . . . ,µ

(
f̃−1[An]

))
.

And by construction f̂−1[Bi] = Ci = f̃−1[Ai], which yields (µ(B1), . . . ,µ(Bn))
d
=

(µ(A1), . . . ,µ(An)), similarly as in (a) we conclude µ(g)
d
= ν(g).

c) The case where f−1[B] ∩B 6= ∅ and S = [0, 1], follows by (b) by restriction of R+

into [0, 1].

In either case we get µ(g)
d
= ν(g). Note that if g : S → R+ is an arbitrary mea-

surable function, we can construct a sequence of simple functions gn ↗ g where
gn =

∑mn
i=1 bn,i1Bn,i for some disjoint sets Bn,1, . . . , Bn,mn ∈ Ŝ, with λ(Bn,i) = λ(Bn,j).

As shown in the proof of Theorem 1.5, this means that µ(g)
d
= ν(g) also holds for ar-

bitrary positive measurable functions, and by the same theorem we obtain µ
d
= ν =

µ(f−1[·]).

B.15 Proof of Proposition 2.20

Since S is Borel we may assume without loss of generality that S = R+ or S = [0, 1]
and λ stands for the Lebesgue measure. Note that if µ = 0 almost surely, we get µ = 0
and this uninteresting case follows trivially, so assume this is not the case. To prove the
statement it suffices to show λ(B) = λ(A) if and only if µ(B) = µ(A) for every A,B ∈ Ŝ.

For A,B ∈ Ŝ with λ(A) = λ(B) we get by the symmetry of µ that µ(A)
d
= µ(B), hence

µ(A) = µ(B). Now if λ(A) < λ(B) we might take C ⊆ B with λ(C) = λ(A), so that
µ(C) = µ(A). If µ(A) = µ(B) this means that µ(D) = 0, with D = B \ C, thus
µ(D) = 0 almost surely. As λ(D) = λ(B) − λ(A) > 0 and µ is λ-symmetric we get
µ(E) = 0 almost surely for all E ∈ Ŝ, so µ = 0 almost surely, which contradicts the
assumption that µ does not lay in the uninteresting case. Alternatively, we must have
µ(A) = µ(C) < µ(B) and the proof is complete.

B.16 Proof of Lemma 2.21

We have already shown the necessity of the statement so we turn to prove the sufficiency.
First note that if λ(S) <∞ and µ is λ-symmetric, then µ is also symmetric with respect
to λ/λ(S), so we may assume without loss of generality that λ(S) = 1 and through a
suitable Borel bijection further reduce to the case where S = [0, 1] and λ the Lebesgue
measure. If otherwise λ(S) = ∞, under similar arguments we might reduce to the case
where S = R+ and λ stands for the Lebesgue measure.

i.a) Say that µ is a λ-symmetric simple point process, S = [0, 1] and λ is the Lebesgue
measure over ([0, 1],B[0,1]). Note that µ(S) = µ(f−1[S]) for every f : S → S
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such that λ = λ(f−1[S]), so conditionally given µ(S), µ remains exchangeable.
This way, by conditioning on µ(S) we may further reduce to the case µ(S) = n,
for some n ∈ N, so that µ =

∑n
i=1 δξj for some random elements (ξj)

n
j=1 taking

values in S. Let ξ↓1, < · · · < ξ↓n be the increasing rearrangement of the atoms of µ.
Consider some intervals I1 < · · · < In of [0, 1] (where I < J means that x < y, for
every x ∈ I and y ∈ J), and a shift (Ji)

n
i=1 of (Ii)

n
i=1. That is (Ji)

n
i=1 is another

collection of intervals of [0, 1] with J1 < · · · < Jn and λ(Jk) = λ(Ik) for every
k ∈ [n]. The symmetry of µ yields

P

[
n⋂
k=1

{ξ↓k ∈ Ik}

]
= P

[
n⋂
k=1

{µ(Ik) > 0}

]
= P

[
n⋂
k=1

{µ(Jk) > 0}

]
= P

[
n⋂
k=1

{ξ↓k ∈ Jk}

]
,

and by making λ(Ik)→ 0 for all k, we obtain

P

[
n⋂
k=1

{ξ↓k ∈ dxk}

]
= P

[
n⋂
k=1

{ξ↓k ∈ dyk}

]
,

for every elements of S, x1 < · · · < xn and y1 < · · · < yn. That is ξ↓1, . . . , ξ
↓
n

distribute as the ordered statistics of a collection of independent Unif(0, 1) random

variables, in other words P
[
(ξ↓1, . . . , ξ

↓
n) ∈ ·

]
= n!λn, so we can conclude that given

µ(S) = n, (ξj)
n
j=1

iid∼ λ, that is µ is a mixed binomial process based on κ = µ(S)
and λ.

i.b) Say that µ is a λ-symmetric simple point process, S = R+ and λ is the Lebesgue
measure over (R+,BR+). Fix ε > 0 and Aε = [0, ε], by a suitable transformation
and (i.a) we know that 1Aεµ is a mixed binomial based on (1Aελ)/λ(Aε). Further,

since µ is contractable, for every bounded set B ∈ Ŝ we know that µ(f−1
B [·]) d

=
1[0,λ(B)]µ, hence 1Bµ is also a mixed binomial process based on (1Bλ)/λ(B). Now

let B1, B2, . . . ∈ Ŝ such that Bn ↗ S, set λn = 1Bnλ/λ(Bn) and κn = µ(Bn) so
that 1Bnµ is a mixed Binomial process based on κn and λn. For f : S → R+

supported on Bm we get for every n > m,

λn(e−f ) = 1− λ(1− e−f )
λ(Bn)

.

and 1Bnµ(f) = µ(f), so by Proposition 1.9

E
[
e−µ(f)

]
= E

[
λn(e−f )κn

]
= E

[{
1− λ(1− e−f )

λ(Bn)

}λ(Bn)γn
]

(B.4)

where γn = κn/λ(Bn). By Helly’s selection theorem, we have that γn
d→ γ in

[0,∞], along a sub-sequence. Moreover, as xn → x in [0,∞] and mn →∞, we get
(1 − {a/mn}mnxn) → e−ax, thus by taking limits as n → ∞ in (B.4), along the
acquired subsequence we get

E
[
e−µ(f)

]
= E

[
exp

{
−γλ(1− e−f )

}]
. (B.5)
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The choice f = ε1Bm , yields E
[
e−εµ(Bm)

]
= E [exp {−γλ(Bm)(1− e−ε)}], and by

letting ε → 0 we find γ < ∞, almost surely. Hence by a monotone convergence
argument we can extend (B.5) to arbitrary measurable function f : S → R+,
therefore, by Proposition 1.9 and Theorem 1.5, we obtain µ is a mixed Poisson
process based on λ and γ.

ii) Since µ = βλ if and only if µ(B) = βλ(B) for all B ∈ Ŝ, it suffices to consider
the scenario where S = [0, 1] and λ is the Lebesgue measure. If β = µ(S) > 0,
ν = µ/β is a well defined random probability measure that remains λ-symmetric.
By Proposition 2.20 we know that ν is E[ν]-symmetric, so we may assume without
loss of generality that E[ν] = λ. Consider the random measure ν2 = ν ⊗ ν on
S × S and note that the exchangeability of µ yields

E
[
ν2 (I1 × I2)

]
= E [ν (I1)ν (I2)] = E [ν (J1)ν (J2)] = E

[
ν2 (J1 × J2)

]
(B.6)

for every intervals I1 < I2, or I2 < I1, and J1 < J2, or J2 < J1, with λ(Ik) = λ(Jk).
Further, since ν is diffuse we get that E [ν2 {(s1, s2) : s1 = s2}] = 0. Hence by a
suitable approximation (see Figure 46 for an illustration) we can extend (B.6) to
any measurable rectangles I1 × I2 and J1 × J2 such that λ(Ik) = λ(Jk).

Figure 46: Approximation of J1 × J2 by means of measurable rectangles J̃1 × J̃2 with
J̃1 < J̃2. In this Figure, sets with the same color have the same λ2-measure.

This means that E [ν2] is invariant under arbitrary shifts of measurable rectangles,
which in turn, implies that E[ν2] must be proportional to λ2. Now, ν2(S × S) =
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ν(S)ν(S) = 1 = λ2(S × S), thus we even get ν2 = λ2. With this in mind we can
compute

Var(ν(B)) = E
[
ν(B)2

]
− E[ν(B)]2 = λ(B)2 − λ(B)2 = 0,

which proves ν(B) = E[ν(B)] = λ(B), almost surely, for all B ∈ BS. Therefore,
µ = βν = βλ, almost surely. Now, if there exist a measurable set, A, on the
probability space where µ is defined, such that µ = 0 over A, we simply fix
β(ω) = 0 for every ω ∈ A and derive the desired representation on Ac, as above.

B.17 Proof of Lemma 2.22

Since (S,BS) is Borel, by means of a suitable Borel bijection we may reduce to that case
where S = [0, 1], if λ(S) <∞, or S = R+, for λ(S) =∞, and λ stands for the Lebesgue
measure.

i) Say that S = [0, 1] and λ is the Lebesgue measure. Let ν =
∑

j≥1 δ(αj ,ξj), and
consider the point process of R+, ν ′ = ν(· × S) =

∑
j≥1 κjαj, where clearly κj =

|{ξj : µ({ξj}) = αj}|. As ν ′ remains invariant under λ-preserving transformation
of S, we may reduce to the case where this one is non-random. Further, the local
finiteness of µ yields ν ′((a,∞)) <∞, almost surely, for every 0 < a (otherwise we
would have infinitely many atoms, ξj, with corresponding jumps αj > a). Since
it suffices to derive the stated representation on sets of the form (a,∞), we may
even assume ν ′(R+) < ∞, without loss of generality. With this considerations
in mind, we now have ν ′ =

∑
i≤n kiδτi , for some constants n, k1, . . . , kn ∈ N and

τ1, . . . , τn ∈ R+. This means that ν has got to take the form

ν =
∑
i≤n

∑
j≤ki

δ(τj ,σi,j)

for some S-valued random variables (σi,j)i≤n,j≤ki . For i ≤ n, let σ↓i,1 < · · ·σ
↓
i,ki

be
the increasing rearrangement of (σi,j)j≤ki , consider a collection of disjoint interval
(Ii,j)j≤ki and shift (Ji,j)j≤ki , so that Ii,1 < · · · < Ii,ki , Ji,1 < · · · < Ji,ki and
λ(Ii,j) = λ(Ji,j). The λ-symmetry of µ yields

P

[
n⋂
i=1

ki⋂
j=1

{σ↓i,j ∈ Ii,j}

]
= P

[
n⋂
i=1

ki⋂
j=1

{ν({τi} × Ii,j) > 0}

]

= P

[
n⋂
i=1

ki⋂
j=1

{ν({τi} × Ji,j) > 0}

]

= P

[
n⋂
i=1

ki⋂
j=1

{σ↓i,j ∈ Ji,j}

]
by making λ(Ii,j)→ 0 we get

P

[
n⋂
i=1

ki⋂
j=1

{σ↓i,j ∈ dxi,j}

]
= P

[
n⋂
i=1

ki⋂
j=1

{σ↓i,j ∈ dyi,j}

]
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for any elements of S, xi,1 < · · · < xi,ki and yi,1 < · · · < yi,ki . Thus, the law of(
σ↓i,j

)
i≤n,j≤ki

is proportional to the Lebesgue measure on the non-diagonal part of

∆k1 × · · · × ∆kn , where ∆k = {(x1, . . . , xn) ∈ Sk : x1 < · · · < xn}. Furthermore,
from the proof of Proposition 2.20, we get E[µ({s})] = 0 for every s ∈ S, so µ
has no fixed atoms, and we obtain that the elements in (σi,j)i≤n,j≤ki are distinct

almost surely. Hence the law of
(
σ↓i,j

)
i≤n,j≤ki

vanishes on diagonal spaces. This

shows that

P
[(
σ↓i,j

)
i≤n,j≤ki

∈ ·
]
∝ λ

∑
i≤n ki .

Thus, the elements in {ν({τi} × ·)}i≤n are independent binomial process as illus-
trated in Figure 47.

Figure 47: Illustration of the underlying independent binomial processes in {(αj, ξj)}j≥1.

In terms of {(αj, ξj)}j≥1 this shows that ν is a λ-randomization of the point process∑
i≥1 δαj (see Definition of randomization in Section 1.3.2). Finally, noting that

λ : R+ → S, regarded as a kernel is constant on R+, we even get ξj is independent

of αj, and we can conclude (ξj)j≥1
iid∼ λ is independent of (αj)j≥1.

ii) The second part of the statement will not be required for subsequent develop-
ments, so we will sketch this proof avoiding technical details. If S = R+ and λ
represents the Lebesgue measure, then for every ε > 0 we may construct a mea-
surable partition of S, Bε,1, Bε,2, . . ., where λ(Bε,i) = ε for every i ≥ 1. This
means that {µ(Bε,i)}i≥1 is an exchangeable sequence, and by Theorem 2.1 it is
conditionally i.i.d. The conditional independence also holds for disjoint bounded
sets B1, . . . , Bn, (despite whether λ(Bi) = λ(Bj) or not). Indeed, if we denote
xt = µ([0, t]), x(t) = (xs)s>t, and consider the tail σ-algebra τ = σ(x(t) − xt),
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similarly as in Theorem 2.1, and using the λ-symmetry of µ, it can be shown that

P[xt − xs ∈ · | x(t) − xt] = P[xt − xs ∈ · | τ ] = P[xt−s ∈ · | τ ],

almost surely. This means that xt−xs is independent of x(t)−xt given τ and that
the distribution of this increment only depends on t − s. Translating this into µ
we get that given τ , µ has conditionally independent increments, that is Theorem
1.12 holds for µ conditionally given τ . By the proof of Proposition 2.20 we see
E[µ({s})] = 0 for every s ∈ S, so µ has no fixed atoms. Thus, there must exist
τ -measurable locally finite random measures ν over S × R+ satisfying∫

R+

(x ∧ 1)ν(B, dx) <∞

almost surely, for every B ∈ Ŝ, such that conditionally given ν, {(ξj,αj)}j≥1

defines a Poisson process over S×R+ directed by ν. This shows that {(ξj,αj)}j≥1

forms a Cox. To attain the required decomposition of ν, consider the Cox process
γ =

∑
j≥1 δ(ξj ,αj), so that E[γ | τ ] = ν. Note that γ inherits the λ-symmetry

of µ, that is, for every f : S → S with λ = λ(f−1[·]) and bounded sets B and

A, γ(B × A)
d
= γ(f−1[B] × A). Hence, ν is invariant under (inverse images of)

λ-preserving transformations of S, which in turn yields ν = λ⊗% for some random
measure, %, over (R+,BR+) satisfying

∫
R+

(x∧1)%(dx) <∞. The proof of this last

assertion appears in Kallenberg (2002), Theorem 2.6. For a thorough proof of the
result in question see for instance Kallenberg (2005) or Kallenberg (2017).
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C Proofs of Section 3

C.1 Proof of Proposition 3.1

Let σ−1 be the inverse function of σ, which evidently exists and is independent of the
atoms, as σ is a permutation that is independent of the atoms. Since the collection

of atoms Ξ = (ξj)j≥1 is i.i.d. we clearly have that Ξ
d
= (ξσ−1(j))j≥1 = σ−1(Ξ) and by

theorem 1.7 a random probability measure is a measurable function of its weights and
atoms, this implies

µ
d
=
∑
j≥1

wjδξσ−1(j)
+

(
1−

∑
j≥1

wj

)
µ0.

As the sum of the weights is bounded by 1, we have that
∑

j≥1 wj =
∑

j≥1 wσ(j) almost
surely and that

∑
j≥1 wjδξσ−1(j)

=
∑

j≥1 wσ(j)δξσ(σ−1(j))
=
∑

j≥1 wσ(j)δξj almost surely.
Putting this together with the last equation we obtain

µ
d
=
∑
j≥1

wσ(j)δξj +

(
1−

∑
j≥1

wσ(j)

)
µ0.

C.2 Proof of Lemma 3.2

Let us denote w0 = 1−
∑

j≥1 wj, so that
∑

j≥0 wj = 1 almost surely, and by a monotone
convergence argument we also obtain

∑
j≥0 E [wj] = 1. Note that

µ(f) =
∑
j≥1

wjf(ξj) + w0µ0(f),

and that if M is a bound of f , we have that |
∑n

j=1 wjf(ξj)| < M almost surely for
every n ≥ 1. Hence, by linearity of the expectation, Lebesgue dominated convergence

theorem, and since (ξj)j≥1
iid∼ µ0 independently of the weights, we get

E[µ(f)] =
∑
j≥1

E[wj]E[f(ξj)] + E [w0]µ0(f) =

(∑
j≥0

E [wj]

)
µ0(f) = µ0(f).

This proves the first part. To prove the second and thirds parts, first realize that

1 = E

(∑
j≥0

wj

)2
 = E

[∑
j≥1

w2
j

]
+ E

[∑
i 6=j

wiwj

]
+ E

[
w2

0

]
,

and by a monotone convergence argument we get, 1−ρ =
∑

i 6=j E [wiwj]+E [w2
0], where∑

i 6=j aiaj denotes
∑

i≥0

∑
j≥0 aiaj1{i 6=j}. Secondly, since f and g are bounded and µ is
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a random probability measure we have that µ(|f |),µ(|g|) <∞ almost surely. Then,

µ(f)µ(g) =

(∑
j≥1

wjf(ξj) + w0µ0(f)

)(∑
j≥1

wjg(ξj) + w0µ0(g)

)

=
∑
j≥1

w2
jf(ξj)g(ξj) +

∑
i,j≥1

i 6=j

wiwjf(ξi)g(ξj) +

(∑
j≥1

w0wjg(ξj)

)
µ0(f)

+

(∑
j≥1

w0wjf(ξj)

)
µ0(g) + w2

0µ0(f)µ0(g).

Now, if M is a bound for f , and N is a bound of g we have that for every n ≥ 1,
|
∑n

j=1 wjw0f(ξj))| ≤ M , |
∑n

j=1 wjw0g(ξj))| ≤ N , |
∑n

j=1 w2
jf(ξj)g(ξj)| ≤ MN ,

and |
∑n

i=1

∑n
j=1 wiwjf(ξj)g(ξi)1{i 6=j}| ≤ MN . Thus, by linearity of the expectation,

Lebesgue dominated convergence theorem, and since (ξj)j≥1
iid∼ µ0 independently of the

weights, we obtain

E [µ(f)µ(g)]

=
∑
j≥1

E
[
w2
j

]
E [f(ξj)g(ξj)] +

∑
i,j≥1

i 6=j

E [wiwj]E [f(ξi)]E [g(ξj)] + E
[
w2

0

]
µ0(f)µ0(g)

+

(∑
j≥1

E [w0wj]E [g(ξj)]

)
µ0(f) +

(∑
j≥1

E [w0wj]E [f(ξj)]

)
µ0(g).

=
∑
j≥1

E
[
w2
j

]
µ0(fg) +

∑
i 6=j

E [wiwj]µ0(f)µ0(g) + E
[
w2

0

]
µ0(f)µ0(g)

= ρµ0(fg) + (1− ρ)µ0(f)µ0(g).

This proves the third part of the lemma, and the choice g = f gives the second part.

C.3 Proof of Theorem 3.4

We may assume without loss of generality that all the species sampling processes are
defined on the same probability space. First we prove (i), let f : S → R be a continuous
and bounded function. Since f is continuous it is also measurable, and by Lemma 3.2
we have that

E
[{
µ(n)(f)− µ0(f)

}2
]

= E
[{
µ(n)(f)

}2
]
− 2E

[
µ(n)(f)

]
µ0(f) + {µ0(f)}2

= ρ(n) µ
(n)
0

(
f 2
)

+
(
1− ρ(n)

){
µ

(n)
0 (f)

}2

− 2µ
(n)
0 (f)µ0(f) + {µ0(f)}2 .

(C.1)

By hypothesis we know that µ
(n)
0

w→ µ0 and ρn → 0, as n→∞, by taking limits in (C.1),
we found that

E
[{
µ(n)(f)− µ0(f)

}2
]
→ 0,
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as n → ∞. That is, µ(n)(f) converges to µ0(f) in L2, which implies µ(n)(f)
d→ µ0(f).

Since f was an arbitrary continuous and bounded function, this proves (i).

To prove (ii) let w
(n)
1 ≥ w

(n)
2 ≥ · · · be the decreasingly ordered weights of µ(n) and

let ξ
(n)
j be the atom corresponding to w

(n)
j . Let us denote w

(n)
0 = 1−

∑
j≥1 w

(n)
j . Recall

that

ρ(n) =
∑
j≥1

E
[(

w
(n)
j

)2
]

(C.2)

and by the proof of Lemma 3.2 we also know

1− ρ(n) = E
[(

w
(n)
0

)2
]

+
∑
i 6=j

E
[
w

(n)
j w

(n)
i

]
(C.3)

for n ≥ 1. Since the weights are decreasing, we must have that for every i ≥ j ≥ 2,

E
[
w

(n)
i w

(n)
j

]
≤ E

[
w

(n)
i w

(n)
j−1

]
, hence

∑
i 6=j

E
[
w

(n)
i w

(n)
j

]
≥
∑
j≥1

∑
i≥j+1

E
[
w

(n)
i w

(n)
j

]
≥
∑
j≥2

∑
i≥j

E
[
w

(n)
i w

(n)
j

]
≥
∑
j≥2

E
[(

w
(n)
j

)2
]
≥ 0.

for n ≥ 1. By taking limits, as n → ∞, in (C.3) we found
∑

j≥2 E
[(

w
(n)
j

)2
]
→ 0,

which together with (C.2) proves that E
[(

w
(n)
1

)2
]
→ 1. Since 0 ≤ w

(n)
1 ≤ 1, and∑

j≥0 E
[
w

(n)
j

]
= 1, we obtain

E
[
w

(n)
1

]
→ 1 and

∑
j 6=1

E
[
w

(n)
j

]
→ 0, (C.4)

as n→∞. Given that all the corresponding spaces are Polish, and µ
(n)
0

w→ µ0, we might

construct on a probability space
(

Ω̂, F̂, P̂
)

, some independent sequences,
(
ξ̂

(n)
j

)
j≥1

iid∼

µ
(n)
0 , and

(
ŵ

(n)
j

)
j≥1

d
=
(
w

(n)
j

)
j≥1

, such that ξ̂
(n)
j → ξ̂j ∼ µ0, almost surely, as n → ∞,

independently for j ≥ 1. Define µ̂(n) =
∑

j≥1 ŵ
(n)
j δ

ξ̂
(n)
j

+ ŵ
(n)
0 µ

(n)
0 , where ŵ

(n)
0 = 1 −∑

j≥1 ŵ
(n)
j . Then for any continuous and bounded function, f , by equations Lemma 3.2

E
[{
µ̂(n)(f)− δξ̂1(f)

}2
]

= E
[{
µ̂(n)(f)

}2
]
− 2E

[
µ̂(n)(f) f

(
ξ̂1

)]
+ E

[{
f
(
ξ̂1

)}2
]

= ρ(n) µ
(n)
0

(
f 2
)

+
(
1− ρ(n)

){
µ

(n)
0 (f)

}2

− 2E
[
µ̂(n)(f) f

(
ξ̂1

)]
+ µ0(f 2).

(C.5)

As f is bounded, we can write

E
[
ŵ

(n)
1

]
E
[
f
(
ξ̂

(n)
1

)
f
(
ξ̂1

)]
−M2

∑
j 6=1

E
[
ŵ

(n)
j

]
≤ E

[
µ̂(n)(f) f(ξ̂1)

]
≤ E

[
ŵ

(n)
1

]
E
[
f
(
ξ̂

(n)
1

)
f
(
ξ̂1

)]
+M2

∑
j 6=1

E
[
ŵ

(n)
j

]
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where M is a bound of f . By taking limits as n→∞ in the last equation and by (C.4),
we get

E
[
µ̂(n)(f) f

(
ξ̂1

)]
→ E

[{
f
(
ξ̂1

)}2
]

= µ0(f 2).

From which is evident that

E
[{
µ̂(n)(f)− δξ̂1(f)

}2
]
→ 0

as n → ∞. That is µ̂(n)(f) → δξ̂1(f) in L2, which implies µ(n)(f)
d
= µ̂(n)(f)

d→ δξ̂1(f).

As this holds for every continuous and bounded function, f , we obtain µ(n) dw→ δξ̂1 , as
n→∞.

C.4 Proof of Theorem 3.6

In this proof for any random (or deterministic) sequence z1, z2, . . . we write Π(z1:n) to
the partition of [n] generated by the equivalence relation i ∼ j if and only if zi = zj,
and for any random (or deterministic) vector of positive numbers n = (n1, . . . ,nK) set
n(j) = (n1, . . . ,nj−1,nj + 1,nj+1, . . . ,nK) for 1 ≤ j ≤ K and n(K+1) = (n1, . . . ,nK, 1).
To prove this Theorem we will show that (xi)i≥1 as in I–V satisfy:

1) The distinct values that (xi)i≥1 exhibits are i.i.d. and have distribution µ0. This
should be intuitive from each of the statements, because in all cases if xn con-
tributes with a new value not yet observed in {x1, . . . ,xn−1}, this new value is
chosen independently of the previous values.

2) The EPPF of Π(x1:n) is π. For this we will use Kingman representation theorem,
the Chinese restaurant construction with a given prediction rule and the Chinese
restaurant construction with random seating plan (see Sections 2.2.5–2.2.7).

To provide a formal proof we start with a small Lemma.

Lemma C.1. Let Ξ = (ξj)j≥1
iid∼ µ0, where µ0 is diffuse and (di)i≥1 be a sequence such

that its elements take values in N ∪ {0}. Set zi = ξdi if di ∈ N, and sample zi ∼ µ0

independently if di = 0. Then for every n ≥ 1

P[z1 ∈ B1, . . . , zn ∈ Bn | Π(z1:n)] =
Kn∏
j=1

µ0

⋂
i∈Πj

Bi


where Π(z1:n) = {Π1, . . . ,ΠKn}.

Proof of Lemma C.1: Fix n ≥ 1 and set Dj = {i ≤ n : di = j}, for j ∈ N, and
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D0 = {i ≤ n : di = 0}, then

P[z1 ∈ B1, . . . , zn ∈ Bn | d1, . . . ,dn,Ξ] =
n∏
i=1

P[zi ∈ Bi | di,Ξ]

=
n∏
i=1

{∑
j≥1

δξj(Bi)1{di=j} + µ0(Bi)1{di=0}

}

=

∏
j≥1

∏
i∈Dj

δξj(Bi)


{∏
i∈D0

µ0(Bi)

}

=

 ∏
{j:Dj 6=∅}

δξj

⋂
i∈Dj

Bi


{∏
i∈D0

µ0(Bi)

}
,

(C.6)
for measurable sets B1, . . . , Bn and using the convention that the empty product equals

1. By the tower property of conditional expectation and the fact that (ξj)j≥1
iid∼ µ0, we

get

P[z1 ∈ B1, . . . , zn ∈ Bn | d1:n] = E

 ∏
{j:Dj 6=∅}

δξj

⋂
i∈Dj

Bi


{∏
i∈D0

µ0(Bi)

}∣∣∣∣∣∣d1:n


=

 ∏
{j:Dj 6=∅}

µ0

⋂
i∈Dj

Bi


{∏
i∈D0

µ0(Bi)

}

where d1:n = (d1, . . . ,dn). Since µ0 is diffuse we have that outside a P-null set, zi = zk
if and only if there exist j ≥ 1 such that i, k ∈ Dj. Thus if we denote Π(z1:n) =
{Π1, . . . ,ΠKn}, we may rewrite

P[z1 ∈ B1, . . . , zn ∈ Bn | d1:n] =
Kn∏
i=1

µ0

⋂
i∈Πj

Bi


almost surely. As the right side of the above equation is Π(z1:n)-measurable, this yields

P[z1 ∈ B1, . . . , zn ∈ Bn | Π(z1:n)] =
Kn∏
i=1

µ0

⋂
i∈Πj

Bi

 .

Proof of Theorem 3.6: (I. ⇒ IV.): Without loss of generality (after possibly
enlarging the original probability space), we may define a sequence (di)i≥1 such that
conditionally given W, d1,d2, . . . are independent of the atoms Ξ = (ξj)j≥1, and with

{d1,d2, . . . |W}
iid∼
∑
j≥1

wjδj +

(
1−

∑
j≥1

wj

)
δ0
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That is P[di = j |W] = wj for every j ∈ N and with probability 1−
∑

j≥1 wj, di = 0,
independently for i ≥ 1. Conditioning on di and Ξ, set zi = ξdi if and only if di ∈ N, or
sample zi independently from µ0 if and only if di = 0, independently for i ≥ 1. Again,
without loss of generality the sequence (zi)i≥1 may be defined and we may further assume
that (zi)i≥1 is conditionally independent of W = (wj)j≥1 given (di)i≥1. Formally we have
that for every n ≥ 1 and any measurable sets B1, . . . , Bn,

P[z1 ∈ B1, . . . , zn ∈ Bn | d1, . . . ,dn,Ξ] =
n∏
i=1

P[zi ∈ Bi | di,Ξ]

=
n∏
i=1

{∑
j≥1

δξj(Bi)1{di=j} + µ0(Bi)1{di=0}

}
.

(C.7)
By the tower property of conditional expectation, monotone convergence theorem and
by the assumed conditional independences.

P[z1 ∈ B1, . . . , zn ∈ Bn |W,Ξ] = E

[
n∏
i=1

{∑
j≥1

δξj(Bi)1{di=j} + µ(Bi)1{di=0}

}∣∣∣∣∣W,Ξ

]

=
n∏
i=1

{∑
j≥1

δξjP[di = j |W] + µ(Bi)P[di = 0 |W]

}

=
n∏
i=1

{∑
j≥1

δξjwj +

(
1−

∑
j≥1

wj

)
µ0(Bi)

}

=
n∏
i=1

µ(Bi)

Since µ is (W,Ξ)-measurable, this clearly shows that {z1, z2, . . . | µ}
iid∼ µ so that (xi)i≥1

as in I is identically distributed as (zi)i≥1, this together with Lemma C.1 yields

P[x1 ∈ B1, . . . ,xn ∈ Bn | Π(x1:n)] =
Kn∏
j=1

µ0

⋂
i∈Πj

Bi


where Π(x1:n) = {Π1, . . . ,ΠKn}. Finally from Corollary 2.17 we know that the EPPF
of Π(x1:n), is given by

π(n1, . . . , nk) = E

[
k∏
j=1

w̃
nj−1
j

k−1∏
j=1

(
1−

j∑
i=1

w̃j

)]
,

where (w̃j)j≥1 is a size-biased pseudo-permutation of (wj)j≥1. Thus IV holds for (xi)i≥1

as in I.
(II.⇒ IV.): Without loss of generality, we may define the following random elements.

Let Ξ = (ξj)j≥1
iid∼ µ0, and independently, set d1 = 1, and for n ≥ 1,

P[dn+1 = i | W̃,d1, . . . ,dn] =
Kn∑
j=1

w̃jδj(i) +

(
1−

Kn∑
j=1

w̃j

)
δKn+1(i) (C.8)
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where Kn = max{d1, . . . ,dn}. Define (zi)i≥1 by zi = ξdi , so that P[z1 ∈ · | Ξ,d1] = δξd1
,

implying that z1 ∼ µ0, and for n ≥ 1

P[zn+1 ∈ · | Ξ,W̃,d1, . . . ,dn] =
Kn∑
j=1

w̃jδξdj +

(
1−

Kn∑
j=1

w̃j

)
δξKn+1

Note that z∗1 = ξd1 , . . . , z
∗
Kn

= ξdKn
are precisely the distinct values that {z1, . . . , zn}

exhibits in order of appearance, so the last equation implies

P[zn+1 ∈ · | W̃, z1, . . . , zn, ξKn+1] =
Kn∑
j=1

w̃jδz∗j +

(
1−

Kn∑
j=1

w̃j

)
δξKn+1

,

and by the tower property of conditional expectation we obtain

P[zn+1 ∈ · | W̃, z1, . . . , zn] =
Kn∑
j=1

w̃jδz∗j +

(
1−

Kn∑
j=1

w̃j

)
µ0.

This proves that (xi)i≥1 as in II and (zi)i≥1 as constructed here are identically distributed,
which together with Lemma C.1 show that

P[x1 ∈ B1, . . . ,xn ∈ Bn | Π(x1:n)] =
Kn∏
j=1

µ0

⋂
i∈Πj

Bi


where Π(x1:n) = {Π1, . . . ,ΠKn}. The fact that Π(x1:n) is exchangeable and its EPPF
is π, follows by putting together the hypothesis

π(n1, . . . , nk) = E

[
k∏
j=1

w̃
nj−1
j

k−1∏
j=1

(
1−

j∑
i=1

w̃j

)]
,

the fact that µ0 is diffuse, the Chinese restaurant construction with random seating plan,
Theorem 2.15 and Corollary 2.17.

(III. ⇒ IV.): Once more, without loss of generality, we may define the following

random elements. Let (z∗j)j≥1
iid∼ µ0, and independently, set d1 = 1, and for n ≥ 1,

P[dn+1 = i | d1, . . . ,dn] =
Kn+1∑
j=1

π
(
n(j)
)

π(n)
δj(i) (C.9)

where Kn = max{d1, . . . ,dn} and n = (n1, . . .nKn) is given by nj = |{i : di = j}|.
Also define (zi)i≥1 by zi = z∗di , and let us denote Z∗ = (z∗j)j≥1, d1:n = (d1, . . . ,dn) and
z1:n = (z1, . . . , zn). Clearly z1 ∼ µ0, and from (C.9), we get that

P[zn+1 ∈ · | z1:n,Z
∗] =

Kn+1∑
j=1

π
(
n(j)
)

π(n)
δz∗j (B),

206



where n = (n1, . . . ,nKn) are the frequencies of the Kn distinct values, z∗1, . . . , z
∗
Kn

, that
z1, . . . , zn exhibits. By the tower property of conditional expectation, we obtain

P[zn+1 ∈ · | z1:n] = E

[
Kn∑
j=1

π
(
n(j)
)

π(n)
δz∗j (B) +

π
(
n(Kn+1)

)
π(n)

δz∗Kn+1
(B)

∣∣∣∣∣ z1:n

]

=
Kn∑
j=1

π
(
n(j)
)

π(n)
δz∗j (B) +

π
(
n(Kn+1)

)
π(n)

E[δz∗Kn+1
(B)]

=
Kn∑
j=1

π
(
n(j)
)

π(n)
δz∗j (B) +

π
(
n(Kn+1)

)
π(n)

µ0(B)

This shows that (zi)i≥1 is equal in distribution to (xi)i≥1 as in III. Thus Lemma C.1
proves

P[x1 ∈ B1, . . . ,xn ∈ Bn | Π(x1:n)] =
Kn∏
j=1

µ0

⋂
i∈Πj

Bi

 .

The fact that the EPPF of Π(x1:n) is π is immediate from construction (see the Chinese
restaurant construction with a given prediction rule in Section 2.2.7).

(IV ⇒ V): Fix n ≥ 1, Let A = {A1, . . . , Ak} be a partition of [n] with |Ai| = ni, and
consider some measurable sets B1, . . . , Bn. By IV we have that if P[Π(x1:n) = A] > 0 ,

P[x1 ∈ B1, . . . ,xn ∈ Bn,Π(x1:n) = A]

= P[x1 ∈ B1, . . .xn ∈ Bn | Π(x1:n) = A]P[Π(x1:n) = A]

=
k∏
j=1

µ0

⋂
i∈Aj

Bi

 π(n1, . . . , nk),

and this probability equals zero otherwise. Now, fix x1, . . . , xn ∈ S, then

P[x1 ∈ dx1, . . . ,xn ∈ dxn] =
∑
A∈P[n]

P[x1 ∈ dx1, . . . ,xn ∈ dxn,Π(x1:n) = A],

where the sum ranges over all partitions of [n]. Now, for i 6= j we have that if xi ∈ dxi
and xj ∈ dxj, then i and j belong to the same block of Π(x1:n) if and only if xi = xj.
Hence,

P[x1 ∈ dx1, . . . ,xn ∈ dxn,Π(x1:n) = A] 6= 0,

if and only if A = Π(x1:n). In which case.

P[x1 ∈ dx1, . . . ,xn ∈ dxn,Π(x1:n) = A] = π(n1, . . . , nk)
k∏
i=1

µ0(dx∗j),

where x∗1, . . . , x
∗
k are the distinct values in {x1, . . . , xn}, and nj = |{i : xi = x∗j}|. Since

this is the only positive term in the sum we conclude

P[x1 ∈ dx1, . . . ,xn ∈ dxn] = π(n1, . . . , nk)
k∏
i=1

µ0(dx∗j).

We have proven that I,II,III⇒ IV⇒ V. Since the prediction rule, the finite dimensional
distributions and the law of directing random measure characterize completely the law
of an exchangeable sequence, we must also have V ⇒ I, II, III.
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C.5 Proof of Theorem 3.7

Let Π1, . . . ,ΠKn denote the blocks of Π(x1:n), and consider (x∗j)j≥1
iid∼ µ0 independently.

By Theorem 3.6 IV, and the tower property of conditional expectation

E [f(x1, . . . ,xn)] = E [E [f(x1, . . . ,xn) | Π(x1:n)]]

= E

f(x∗l1 , . . . ,x
∗
ln)

Kn∏
j=1

∏
r∈Πj

1{lr=j}


=
∑
A∈P[n]


∫
f(xl1 , . . . , xln)

k∏
j=1

∏
r∈Aj

1{lr=j} µ0(dx1) . . . µ0(dxk)

 π(|A1|, . . . , |Ak|),

whenever the integral in the right side exist, and where, k = |A| and A1, . . . , Ak stand
for the blocks of A, for A ∈ P[n] fixed. This proves (3.2). Note that we may rewrite the
such equation as

E [f(x1, . . . ,xn)] =
n∑
k=1

∑
(m1,...,mn)∈Mk

n

∑
{A1,...,Ak}

π(|A1|, . . . , |Ak|)×

×


∫
f(xl1 , . . . , xln)

k∏
j=1

∏
r∈Aj

1{lr=j} µ0(dx1) . . . µ0(dxk)

 ,

where the inner sum ranges over all partitions of [n] with exactly mi blocks containing
i elements. If f is symmetric, for every partition A = {A1, . . . , Ak} of [n] and any
(x1, . . . , xk) ∈ Sk we have that

f(xl1 , . . . , xln)
k∏
j=1

∏
r∈Aj

1{lr=j} = f(x[n1,...,nk])

where n1, . . . , nk are the ranked sizes of the blocks of A, and x[n1,...,nk] denotes the vector
of size n with the first n1 entries equal to x1, the next n2 entries equal to x2, and so on
(see Figure 48). This together with the symmetric of π imply

π(|A1|, . . . , |Ak|)
∫
f(xl1 , . . . , xln)

k∏
j=1

∏
r∈Aj

1{lr=j} µ0(dx1) . . . µ0(dxk)

is identical to

π(n1, . . . , nk)

∫
f(x[n1,...,nk])µ0(dx1) . . . µ0(dxk).

Finally recall that for every (m1, . . . ,mn) ∈ Mk
n there exist a unique ranked compo-

sition of n into k parts, (n1, . . . , nk) such that mi =
∑k

j=1 1{nj=i}, and that the to-
tal number of partitions of [n], having exactly mi blocks that contain i elements, is
n!/(

∏n
i=1(i!)mi(mi!)). Hence, we conclude

E [f(x1, . . . ,xn)] =
n∑
k=1

∑
(m1,...,mn)∈Mk

n

n!∏n
i=1(i!)mi(mi!)

π(n1, . . . , nk)×

×
∫
f
(
x[n1,...,nk]

)
µ0(dx1) . . . µ0(dxk),
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Figure 48: Graphical explanation of x[n1,...,nk].

C.6 Proof of Corollary 3.9

Recalling that xi ∼ µ0, and using Corollary 3.8 (a), we found that for any measurable
function f : [0, 1]→ R+, and for every i 6= j,

E [f(xj) |xi] = ρ f(xi) + (1− ρ)

∫
f(x)µ0(dx) = ρ f(xi) + (1− ρ)E [f(xi)]

The choice f(x) = x proves (a). To prove (b) note that for f(x) = x2, we obtain
E
[
x2
j

∣∣xi] = ρx2
i + (1− ρ)E [x2

i ], this together with (a) show that

Var(xj | xi) = ρx2
i + (1− ρ)E[x2

i ]− (ρxi + (1− ρ)E[xi])
2

= (1− ρ)
{
ρ (xi − E[xi])

2 + Var(xi)
}
.

To prove (c) we first compute, using (a), E [xixj] = E[xiE [xj |xi]] = ρE [x2
i ] + (1 −

ρ)E[xi]
2. Thus

Cov(xi,xj) = ρE
[
x2
i

]
+ (1− ρ)E[xi]

2 − E[xi]
2 = ρVar(xi).

Finally, (d) follows by diving the last equation by Var(xi) =
√
Var(xi)Var(xj).

C.7 Proof of Theorem 3.10

Say that ρ(n) → 0 as n → ∞. Being that S and P(S) are Polish, and by Theorem 3.4

we might construct on some probability space
(

Ω̂, F̂, P̂
)

some exchangeable sequences{
X̂(n) =

(
x̂

(n)
i

)
i≥1

}
n≥1

, such that X(n) is directed by a SSP, µ̂(n), with base measure

µ
(n)
0 and tie probability ρ(n), and where µ̂(n) converges weakly almost surely to µ0, as
n→∞. Fix m ≥ 1 and B1, . . . , Bm ∈ BS. Since µ0 is diffuse, Bi is a µ0-continuity set,
and by the Portmanteau theorem we know µ̂(n)(Bi)→ µ0(Bi) almost surely, as n→∞.
This together with the representation theorem for exchangeable sequences imply

P̂

[
m⋂
i=1

(
x̂

(n)
i ∈ Bi

) ∣∣∣∣∣ µ̂(n)

]
=

m∏
i=1

µ̂(n)(Bi)→
m∏
i=1

µ0(Bi),

almost surely, as n→∞, and by taking expectations we obtain

P̂

[
m⋂
i=1

(
x̂

(n)
i ∈ Bi

)]
→ Ê

[
m∏
i=1

µ0(Bi)

]
=

m∏
i=1

µ0(Bi) = P̂

[
m⋂
i=1

(x̂i ∈ Bi)

]
,
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where X̂ = (x̂i)i≥1

iid∼ µ0. Thus X(n) d
= X̂(n) d→ X̂ as n→∞, and we have proven (i).

If ρ(n) → 1, analogously as in (i) we may construct sequences

{
X̂(n) =

(
x̂

(n)
i

)
i≥1

}
n≥1

,

and SSPs {µ̂(n)}n≥1 as above, but where µ(n) converges weakly almost surely to δx̂, as
n → ∞, for some x̂ ∼ µ0. Fix m ≥ 1 and B1, . . . , Bm ∈ BS. The diffuseness of µ0

implies that x̂ 6∈ ∂Bi almost surely, so that outside a P̂-null set, Bi is a δx̂-continuity
set, and using the Portmanteau theorem we obtain µ(n)(Bi)→ δx̂(Bi), almost surely, as
n→∞. The representation theorem for exchangeable sequences assures

P̂

[
m⋂
i=1

(
x̂

(n)
i ∈ Bi

) ∣∣∣∣∣ µ̂(n)

]
=

m∏
i=1

µ̂(n)(Bi)→
m∏
i=1

δx̂(Bi),

almost surely, as n→∞, and by taking expectations we get

P̂

[
m⋂
i=1

(
x̂

(n)
i ∈ Bi

)]
→ Ê

[
m∏
i=1

δx̂(Bi)

]
= P̂ [x̂ ∈ B1, . . . , x̂ ∈ Bm] .

Hence X(n) d
= X̂(n) d→ (x̂, x̂, . . .) as n→∞.

C.8 Proof of Theorem 3.11

Lemma C.2. Let µ be a species sampling process over (S,BS) as in (3.1) with∑
j≥1 wj > 0. Set ν =

∑
j≥1 wjδξj where wj = wj/

∑
j≥1 wj, for every j ≥ 1. If

µ ∈ P(S) is such that

P

[
ν ∈ Uε1,...,εk(µ;B1, . . . , Bk),

∑
j≥1

wj > ε

]
> 0,

for each positive integer k, every k-tuple (B1, . . . , Bk) of µ-continuity sets and all
(ε1, . . . , εk, ε) ∈ (0, 1)k+1, then µ ∈WS(µ).

Proof: Fix a k-tuple of µ-continuity sets (B1, . . . , Bk), and ε1, . . . , εk ∈ (0, 1)k.
Choose

1 > ε > max{0, 1− εi/|µ0(Bi)− µ(Bi)| : i ∈ {1, . . . , k}} (C.10)

and for every 1 ≤ i ≤ k, define

εi = εi/ε− |µ0(Bi)− µ(Bi)|(1/ε− 1).

Note that by (C.10), −|µ0(Bi) − µ(Bi)| > −εi/(1 − ε) and 1/ε > 1, thus εi > 0. Now,
under the event

k⋂
i=1

{|ν(Bi)− µ(Bi)| < εi} ∩

{∑
j≥1

wj > ε

}
,
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and given that µ =
(∑

j≥1 wj

)
ν +

(
1−

∑
j≥1 wj

)
µ0, we get, for every 1 ≤ i ≤ k,

|µ(Bi)− µ(Bi)| =

∣∣∣∣∣∑
j≥1

wj (ν(Bi)− µ0(Bi)) + (µ0(Bi)− µ(Bi))

∣∣∣∣∣
≤
∑
j≥1

wj |ν(Bi)− µ(Bi)|+

(
1−

∑
j≥1

wj

)
|µ0(Bi)− µ(Bi)|

<
∑
j≥1

wj

(
εi − |µ0(Bi)− µ(Bi)|(1− ε)

ε

)
+ (1− ε) |µ0(Bi)− µ(Bi)|

= (1− ε) |µ0(Bi)− µ(Bi)|
(

1−
∑

j≥1 wj

ε

)
+
εi
∑

j≥1 wj

ε
.

From (C.10) we obtain |µ0(Bi)− µ(Bi)| < εi/(1− ε), hence

|µ(Bi)− µ(Bi)| < εi

(
1−

∑
j≥1 wj

ε

)
+
εi
∑

j≥1 wj

ε
= εi.

This means that

P [µ ∈ Uε1,...,εk(µ;B1, . . . , Bk)] ≥ P

[
ν ∈ Uε1,...,εk(µ;B1, . . . , Bk),

∑
j≥1

wj > ε

]
,

and the result follows.

Lemma C.3. Let (wj)j≥1 be a weights sequence and consider a k-tuple of non-negative
real numbers, (p1, . . . , pk) that sum up to one, with k ≥ 2. For every ε∗ > 0, there exist
ε > 0 such that⋂

j≥1

{wj < ε} ∩

{∑
j≥1

wj = 1

}
⊆

⋃
(n1,...,nk)∈Nk

k⋂
i=1

{∣∣∣∣∣ pi −
ni∑
j=1

wmi+j

∣∣∣∣∣< ε∗

k + 1

}

where m1 = 0 and mi =
∑i−1

j=1 nj, for 2 ≤ i ≤ k + 1.

Proof: Without loss of generality we may assume

0 < ε∗ < min{pi : 1 ≤ i ≤ k} (C.11)

Choose, 0 < ε ≤ min{ε∗/[(k − 1)(k + 1)], pi − ε∗/(k + 1) : 1 ≤ i ≤ k}. Fix ω ∈ Ω such
that wj(ω) < ε for every j ≥ 1 and

∑
j≥1 wj(ω) = 1. In the rest of the proof let us

denote Wj = wj(ω), for j ≥ 1. To complete the proof we must show that there exists a
k-tuple, (n1, . . . , nk), of positive integers such that

pi − ε∗/(k + 1) <

ni∑
j=1

Wmi+j < pi + ε∗/(k + 1), (C.12)

for every 1 ≤ i ≤ k. To this aim we will first prove that for some positive integers,
n1, . . . , nk,

pi − λ <
ni∑
j=1

Wmi+j < pi + λ (C.13)
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for every 1 ≤ i ≤ k− 1 and where λ = ε∗/[2(k− 1)(k+ 1)]. We start with the case i = 1.
As
∑

j≥1Wj = 1, there exists an integer l ≥ 1 such that
∑l

j=1 Wj > p1 − λ > 0. Define

n1 = min{l ≥ 1 :
∑l

j=1Wj > p1 − λ}. Being that W1 < ε ≤ p1 − ε∗/(k + 1) < p1 − λ we

get n1 ≥ 2. Clearly
∑n1−1

j=1 Wj ≤ p1 − λ, and since Wn1 < ε < ε∗/[(k − 1)(k + 1)] = 2λ,
we obtain

∑n1

j=1Wj < p1 + λ. Thus (C.13) holds for i = 1.
Now, assume that for some 1 ≤ i < k − 1, (C.13) holds for every 1 ≤ h ≤ i. By

summation, the induction hypothesis yields

mi+1∑
j=1

Wj =
i∑

h=1

nh∑
j=1

Wmh+j <
i∑

h=1

ph + iλ (C.14)

Given that
∑

j≥1Wj = 1 and
∑i+1

j=1 pj + (i− 1)λ < 1 (by (C.11)), there exist an integer
l > 1 such that

l∑
j=1

Wj >

i+1∑
j=1

pj + (i− 1)λ. (C.15)

For every such integer l, (C.14) and (C.15) imply
∑l−mi+1

j=1 Wmi+1+j =
∑l

j=1Wj −∑mi+1

j=1 Wj > pi+1 − λ. So, we can set

ni+1 = min

{
h ≥ 1 :

h∑
j=1

Wmi+1+j > pi+1 − λ

}
.

Since Wmi+1+1 < ε ≤ pi+1 − ε∗/(k + 1) < pi+1 − λ we get ni+1 ≥ 2. Clearly,∑ni+1−1
j=1 Wmi+1+j ≤ pi+1 − λ, and being that Wmi+1+ni+1

< ε < ε∗/[(k − 1)(k + 1)] = 2λ,
we obtain

∑ni+1

j=1 Wmi+1+j < pi+1 + λ, which shows (C.13) for i+ 1.
Thus we have shown by induction that (C.13) is true for every 1 ≤ i ≤ k − 1. Given

that λ < ε∗/(k + 1), this yields (C.12) for all such i. It remains to prove (C.12) also
holds for i = k. Summing up (C.13) for 1 ≤ i ≤ k − 1 we get

mk∑
j=1

Wj =
k−1∑
i=1

ni∑
j=1

Wmi+j < 1− pk + ε∗/[2(k + 1)] (C.16)

Evidently, for some integer l ≥ 1,

l∑
j=1

Wj > 1− ε∗/[2(k + 1)], (C.17)

and for every such number l, subtracting (C.16) from (C.17), we get
∑l−mk

j=1 Wmk+j =∑l
j=1Wj −

∑mk
j=1Wj > pk − ε∗/(k + 1). Define

nk = min

{
h ≥ 1 :

h∑
j=1

Wmk+j > pk − ε∗/(k + 1)

}
.

As Wmk+1 < ε ≤ pk − ε∗/(k + 1) we get nk ≥ 2. By definition of nk,
∑nk−1

j=1 Wmk+j ≤
pk − ε∗/(k + 1), and being that Wmk+nk < ε < ε∗/[(k − 1)(k + 1)] < 2ε∗/(k + 1), we
obtain

∑nk
j=1 Wmk+j < pk + ε∗/(k + 1), which shows (C.12) holds for i = k.
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Lemma C.4. Let µ =
∑

j≥1 wjδξj be a proper species sampling process with base mea-
sure µ0, such that for every ε > 0,

P

[
A ∩

(⋂
j≥1

{wj < ε}

)]
> 0

for some A ∈ σ(wj : j ≥ 1). Then, for every collection of disjoint sets {B1, . . . , Bk} ⊆
BS with µ0(Bi) > 0 and

∑k
i=1 µ0(Bi) = 1, every k-tuple of positive real numbers

(p1, . . . , pk) that sum up to one, and every ε∗ > 0,

P

[
A ∩

(
k⋂
i=1

{|µ(Bi)− pi| < ε∗}

)]
> 0.

Proof: Let ε∗, {B1, . . . , Bk} and (p1, . . . , pk) be as in the statement of the Lemma in
question. Let us denote PA[E] = P[A ∩ E], for every event E ∈ F . By hypothesis and
Lemma C.3 we have that

PA

 ⋃
(n1,...,nk)∈Nk

k⋂
i=1

{∣∣∣∣∣ pi −
ni∑
j=1

wmi+j

∣∣∣∣∣< ε∗

k + 1

} > 0.

Hence, for some (n1, . . . , nk) ∈ Nk

PA

[
k⋂
i=1

{∣∣∣∣∣ pi −
ni∑
j=1

wmi+j

∣∣∣∣∣< ε∗

k + 1

}]
> 0.

Given that (wj)j≥1 is independent of (ξj)j≥1
iid∼ µ0, and µ0(Bi) > 0, this gives

PA

[
k⋂
i=1

({∣∣∣∣∣ pi −
ni∑
j=1

wmi+j

∣∣∣∣∣< ε∗

k + 1

}
∩

{
ni⋂
j=1

[ξmi+j ∈ Bi]

})]
> 0. (C.18)

for some (n1, . . . , nk) ∈ Nk. Now, as B1, . . . , Bk are disjoint, under the event in (C.18)
we get

pi − ε∗/(k + 1) <
n∑
j=l

wjδξj(Bi) < pi + ε∗/(k + 1) (C.19)

for every 1 ≤ i ≤ k and some integer n. Summing over i = 1, . . . , k, the first inequality
in (C.19) shows 1 − kε∗/(k + 1) <

∑n
j=1 wj, hence

∑
j>n wj ≤ kε∗/(k + 1). Being that

µ(Bi) =
∑

j≥1 wjδξj(Bi), (C.19) yields

pi − ε∗/(k + 1) ≤
n∑
j=1

wjδξj(Bi) ≤ µ(Bi) ≤
n∑
j=l

wjδξj(Bi) +
∑
j>n

wj ≤ pi + ε∗,

Thus

k⋂
i=1

({∣∣∣∣∣ pi −
ni∑
j=1

wmi+j

∣∣∣∣∣< ε∗

k + 1

}
∩

{
ni⋂
j=1

[ξmi+j ∈ Bi]

})
⊆

k⋂
i=1

{|µ(Bi)− pi| < ε∗},
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and by (C.18) we conclude P
[⋂k

i=1{|µ(Bi)− pi| < ε∗}
]
> 0.

Proof of Theorem 3.11:
I ⇒ II: Fix ε > 0 and 0 < γ < 1. Pick an integer k > max{(1 + ε)/ε, 1/(1− γ)} and

choose a measurable partition of S, {B1, . . . , Bk}, such that 0 < µ0(Bi) < 1, Bi is a µ0-
continuity set, for all 1 ≤ i ≤ k, and

µ∗ = max
i∈{1,...,k}

µ0(Bi) > max{1/[(1− γ)k], ε/(kε− 1)}. (C.20)

Notice that we may take such a partition, as (S,BS) is Borel, µ0 is diffuse and by the
choice of k we get 1 > max{1/[(1 − γ)k], ε/(kε − 1)}. Define the probability measure,
µ(k), through

µ(k)(B) =
1

k

k∑
i=1

µ0(B ∩Bi)

µ0(Bi)

for every B ∈ BS. Clearly S
(
µ(k)
)

= S(µ0) and by I we get that µ(k) belongs to the
support of µ. Now set

1/k < ε < min{εµ∗/(µ∗ + ε), (1− γ)µ∗}, (C.21)

and note that by (C.20), 1/k < min{εµ∗/(µ∗ + ε), (1 − γ)µ∗}, hence ε is well defined,
and ε− 1/k > 0. With this in mind, assumption I yields

0 < P
[
µ ∈ Uε−1/k,...,ε−1/k

(
µ(k), B1, . . . , Bk

)]
= P

[
k⋂
i=1

{|µ(Bi)− µ(k)(Bi)| < ε− 1/k}

]

= P

[
k⋂
i=1

{|µ(Bi)− 1/k| < ε− 1/k}

]

≤ P

 k⋂
i=1

 ∑
{j:ξj∈Bi}

wj +

(
1−

∑
j≥1

wj

)
µ0(Bi) < ε




≤ P

[⋂
j≥1

{wj < ε} ∩

{(
1−

∑
j≥1

wj

)
µ∗ < ε

}]

≤ P

[⋂
j≥1

{wj < ε/(1− ε/µ∗)} ∩

{∑
j≥1

wj > 1− ε/µ∗
}]

which by (C.21) yields

P

[⋂
j≥1

{wj < ε} ∩

{∑
j≥1

wj > γ

}]
> 0,

this in turn implies II.
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II ⇒ I: Fix µ ∈ P(S) such that S(µ) ⊆ S(µ0). By virtue of Lemma C.2, to complete
the proof it suffices to show

P

[
ν ∈ Uε1,...,εk(µ;B1, . . . , Bk),

∑
j≥1

wj > ε

]
> 0,

for each positive integer k, every k-tuple (B1, . . . , Bk) of µ-continuity sets and all
(ε1, . . . , εk, ε) ∈ (0, 1)k+1, where ν =

∑
j≥1 wjδξj . Let {C1, . . . , Cm} be the partition

of S generated by {B1, . . . , Bk}, the first thing we want to prove is that if µ0(Ci) = 0,
then µ(Ci) = 0 for all i ∈ {1, . . . ,m}. To this aim denote by C◦i to the interior of
Ci, clearly if µ0(Ci) = 0, then C◦i is an open set with µ0 measure equal to 0, thus
S(µ) ⊆ S(µ0) ⊆ (C◦i )c, which means µ(C◦i ) = 0. Further as ∂(A1 ∩ A2) ⊆ ∂A1 ∪ ∂A2,
for all A1, A2 ∈ BS, and B1, . . . , Bk are µ-continuity sets, we must have µ(∂Ci) = 0 for
all i ∈ {1, . . . ,m}. Thus, for each i such that µ0(Ci) = 0, we obtain µ(Ci) = 0. Note

that m ≤ 2k, hence, by assumption II, Lemma C.4 with A =
{∑

j≥1 wj > ε
}

and for

ε∗ = min{ε1, . . . , εk}, we can write

0 < P

 ⋂
{i:µ0(Ci)>0}

{
|ν(Ci)− µ(Ci)| < 2−kε∗

}
∩

{∑
j≥1

wj > ε

}
≤ P

[
k⋂
i=1

{|ν(Bi)− µ(Bi)| < ε∗} ∩

{∑
j≥1

wj > ε

}]

≤ P

[
ν ∈ Uε1,...,εk(µ;B1, . . . , Bk),

∑
j≥1

wj > ε

]
,

as desired.
II ⇒ III: Let ε > 0, by definition

∑
j≥1 wj ≤ 1 almost surely. Hence

P

[⋃
m≥1

{∑
j>m

wj < ε/2

}]
= 1

This equation together with II for γ = 1− ε/2, yield

0 < P

[⋂
j≥1

{
wj < ε

∑
i≥1

wi

}
∩

{∑
i≥1

wi > 1− ε/2

}]

= P

[⋂
j≥1

{
wj < ε

∑
i≥1

wi

}
∩

{∑
i≥1

wi > 1− ε/2

}
∩
⋃
m≥1

{∑
i>m

wi < ε/2

}]

≤
∑
m≥1

P

[⋂
j≥1

{
wj < ε

∑
i≥1

wi

}
∩

{∑
i≥1

wi > 1− ε/2

}
∩

{∑
i>m

wi < ε/2

}]
.

Hence, there exist m ≥ 1 such that

P

[⋂
j≥1

{
wj < ε

∑
i≥1

wi

}
∩

{∑
i≥1

wi > 1− ε/2

}
∩

{∑
i>m

wi < ε/2

}]
> 0. (C.22)
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Noting that for all m ≥ 1,
∑m

i=1 wi =
∑

i≥1 wi −
∑

i>m wi and
∑

i≥1 wi ≤ 1 almost
surely, (C.22) shows

P

[⋂
j≥1

{wj < ε} ∩

{
m∑
i=1

wi > 1− ε

}]
> 0,

which in turn implies III.
III ⇒ II: Fix ε > 0 and 0 < γ < 1. Set 0 < ε < min{ε/(1 + ε), 1− γ}. Note that if

w1 < ε, . . .wm < ε and
∑m

j=1 wj > 1− ε for some m ≥ 1, then for all j ∈ {1, . . . ,m}

wj < ε <
ε

1− ε

m∑
j=1

wj <
ε

1− ε
∑
j≥1

wj,

and for j > m

wj ≤
∑
j>m

wj =
∑
j≥1

wj −
m∑
j=1

wj ≤ 1−
m∑
j=1

wj < ε <
ε

1− ε
∑
j≥1

wj.

In either case we get wj < ε, further
∑

j≥1 wj ≥
∑m

j=1 wj > 1 − ε > γ. This together
with III, show that

0 < P

[
w1 < ε, . . . ,wm < ε,

m∑
j=1

wj > 1− ε

]

≤ P

[⋂
j≥1

{wj < ε} ∩

{∑
j≥1

wi > γ

}]

for some m ≥ 1. In particular we obtain, P
[
maxj≥1 wj < ε,

∑
j≥1 wi > γ

]
> 0.

C.9 Proof of Proposition 3.13

Let (Ω,F ,P) be the probability space over which (wj)j≥1 is defined. Given that we are
interested in an almost surely decomposition, we may assume without loss of generality
that

∑
j≥1 wj ≤ 1 and 0 ≤ wj ≤ 1, for every j ≥ 1, hold over Ω. Fix v1 = w1, and for

k ≥ 2, define the event Ek =
{
ω ∈ Ω :

∑k−1
j=1 wj(ω) < 1

}
and set

vk =
wk

1−
∑k−1

j=1 wj

1Ek .

Evidently vk is measurable as w1, ...,wk are. Also, since
∑

j≥1 wj ≤ 1, we have that

wk(ω) ≤ 1−
∑k−1

j=1 wj(ω), for every ω ∈ Ek, which yields 0 ≤ vk ≤ 1. This shows (vi)i≥1

is a sequence of [0, 1]-valued random variables. Now, for k < k′ we have that Ek′ ⊆ Ek.
Hence, for every k ≥ 2,

wk(ω) =
wk(ω)

1−
∑k−1

j=1 wj(ω)

k−1∏
j=1

(
1−

∑j
i=1 wi(ω)

1−
∑j−1

i=1 wi(ω)

)
= vk(ω)

k−1∏
j=1

(1− vj(ω)),

for all ω ∈ Ek, and since
∑

j≥1 wj ≤ 1, wk(ω) = 0 = vk(ω), for ω ∈ (Ek)
c. This show

that for every k ≥ 1, wk = vk
∏k−1

j=1(1− vj), as desired.
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C.10 Proof of Lemma 3.14

By definition µ is proper if and only if
∑

j≥1 wj = 1, which can be rewritten as

limj→∞(1 −
∑j

i=1 wi) = limj→∞
∏j

i=1(1 − vi) = 0. Since the length variables are non-

negative and bounded by 1 we get,
∏j

i=1(1− vi)→ 0 almost surely, is equivalent to

lim
j→∞

E

[
j∏
i=1

(1− vi)

]
= E

[
lim
j→∞

j∏
i=1

(1− vi)

]
= 0,

which yields (i.a). To prove (i.b) note that for any real numbers (ai)i≥1 such that 0 ≤
ai < 1,

∏∞
i=1(1− ai) = 0 if and only

∑
i≥1 ai =∞. Now fix ω in the original probability

space and note that if there exist i ≥ 1 such that vi(ω) = 1 then
∏∞

i=1(1 − vi(ω)) = 0
trivially. Alternatively, if vi(ω) < 1, for every i ≥ 1, and

∑
i≥1 vi(ω) =∞, then we also

have
∏∞

i=1(1− vi(ω)) = 0 which implies (i.b).
It remains to prove (ii). Fix 0 < γ < ε such that for every n ≥ 1,

P [
⋂n
i=1 (γ < vi < ε)] > 0. Being that 1−

∑n
j=1 wj =

∏n
i=1(1− vi), we get

0 < P

[
n⋂
i=1

(γ < vi < ε)

]

≤ P

[
n⋂
j=1

{
wj < ε(1− γ)j−1

}
∩

{
n∑
j=1

wj > 1− (1− γ)n

}]

≤ P

[
n⋂
j=1

{wj < ε} ∩

{
n∑
j=1

wj > 1− (1− γ)n

}]

At this stage choose n > log(ε)/ log(1 − γ) so that (1 − γ)n < ε. This yields III of
Theorem 3.11 and the result follows.

C.11 Proof of Proposition 3.16

Fix τ = (wj)j≥1, and define a random variable u such that, conditionally given τ , has
density

pu(u | τ ) =
∑
j≥1

1{u<wj} = |{j ≥ 1 : u < wj}|,

as illustrated below in Figure 49. Now, define Ψu = {j ≥ 1 : wj > u} For every
u ∈ [0, 1]. Clearly Ψu 6= ∅ almost surely, since u ≤ maxj≥1 wj almost surely. Also, as∑

j≥1 wj = 1 almost surely, we must have Ψu is finite almost surely, That is Ψ takes
values in FN with probability one. Finally, note that

wj =

∫ 1

0

1{u<wj}du =

∫ 1

0

1

|Ψu|
1{u<wj}pu(u | τ )du = E

[
1

|Ψu|
1{j∈Ψu}

∣∣∣∣ τ] .
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Figure 49: Illustration of pu(u | τ ), where
(
w↓j

)
j≥1

stands for the decreasing rearrange-

ment of (wj)j≥1.

C.12 Proof of Proposition 3.17

Fix B1, . . . , Bn ∈ BS. By the tower property of conditional expectation and conditional
monotone convergence theorem we obtain

P

[
n⋂
k=1

(xk ∈ Bk)

∣∣∣∣∣ τ ,Ξ
]

= E

[
P

[
n⋂
k=1

(xk ∈ Bk)

∣∣∣∣∣ τ ,Ξ,Ψ1, . . .Ψn

] ∣∣∣∣∣ τ ,Ξ
]

= E

[
n∏
k=1

(
1

|Ψk|
∑
j∈Ψk

δξj(Bk)

)∣∣∣∣∣ τ ,Ξ
]

=
n∏
k=1

E

[
1

|Ψk|
∑
j≥1

1{j∈Ψk}δξj(Bk)

∣∣∣∣∣ τ ,Ξ
]

=
n∏
k=1

(∑
j≥1

E
[

1

|Ψk|
1{j∈Ψk}

∣∣∣∣ τ] δξj(Bk)

)

=
n∏
k=1

(∑
j≥1

wjδξj(Bk)

)

Finally from (3.9) it is evident that W is τ -measurable, from which we conclude

P

[
n⋂
k=1

(xk ∈ Bk)

∣∣∣∣∣W,Ξ

]
=

n∏
k=1

(∑
j≥1

wjδξj(Bk)

)
.
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C.13 Proof of Theorem 3.18

Recall that

a) If z ∼ Gamma(a, 1), then for every t ∈ R+,

E
[
e−tz

]
=

1

(1 + t)a
.

b) If z1, . . . , zn are independent random variables with zi ∼ Gamma(ai, 1), then z =∑n
i=1 zi ∼ Gamma(a, 1), where a =

∑n
i=1 ai. Further,(z1

z
, . . . ,

zn
z

)
∼ Dir (a1, . . . , an) .

c) If (z1, . . . , zn) ∼ Dir (a1, . . . , an), then, for every 1 ≤ k ≤ n

E[zk] =
ak∑n
k=1 ak

.

First we see that Definition 3.8 implies Definition 3.6. Let λ∗ =
∑

j≥1 δ(ξj ,αj) be the
Poisson process over S × R+ defined by {(ξj,αj)}j≥1, and denote λ∗ = λ ⊗ %. Fix
A ∈ BS and t ∈ R+, and define ft : S × R+ → R by ft(s, x) = xt1A(s), so that
λ∗(ft) = tλ(A). By Proposition 1.9 we get

E
[
e−λ

∗(ft)
]

= exp
{
−λ∗

(
1− e−ft

)}
= exp

{
−λ(A)

∫ ∞
0

(1− e−tx)e
−x

x
dx

}
=

1

(1 + t)λ(A)
,

which yields E
[
e−tλ(A)

]
= (1 + t)−λ(A). That is λ(A) ∼ Gamma(λ(A), 1). Since λ has

independent increments and is λ-homogeneous we even get that for every measurable
partition {Bi}ni=1 of S, λ(B1), . . . ,λ(Bn) are independent random variables with λ(Bi) ∼
Gamma(λ(Bi), 1), hence by (b) above we get

(µ(B1), . . . ,µ(Bn)) =

(
λ(B1)

λ(S)
, . . . ,

λ(Bn)

λ(S)

)
∼ Dir(λ(B1), . . . , λ(Bn)).

Definition 3.6, then follows trivially by fixing µ = λ.
Secondly, we show Definition 3.6 yields Definition 3.7. So let µ be as in the first

definition of Dirichlet process and consider an exchangeable sequence (xi)i≥1 directed by

µ, that is {x1, . . . ,xn | µ}
iid∼ µ. Let B = {Bk}nk=1 be a measurable partition of S and

denote µB = (µ(B1), . . . ,µ(Bn)). Let us compute the conditional distribution of µB
given x1, . . . ,xm. To this aim define yk =

∑m
i=1 1{xi∈Bk}, for every 1 ≤ k ≤ n, so that

yk counts the number of xi’s that fall into Bk, and set Y = (yk)
n
k=1. Note that given

µB, Y ∼ Multinomial(µ(B1), . . . ,µ(Bn)), that is

P [Y = (y1, . . . , yn) | µB] =
n!

y1! · · · yn!

n∏
k=1

µ(Bk)
yk .
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As to the distribution of µB, by hypothesis know

P

[
n⋂
k=1

{µ(Bk) ∈ dxk}

]
=

Γ (
∑n

k=1 µ(Bk))∏n
k=1 Γ(µ(Bk))

n∏
k=1

x
µ(Bk)−1
k dxk.

From the last couple of equation it is easy to compute the conditional density of µB
given Y, denoted by p{µB |Y}. In effect,

p{µB |Y}(x1, . . . , xn) ∝

(
n∏
k=1

xyk
k

)(
n∏
k=1

x
µ(Bk)−1
k

)
=

n∏
k=1

x
yk+µ(Bk)−1
k ,

which yields

p{µB |Y}(x1, . . . , xn) =
Γ (
∑n

k=1 yk + µ(Bk))∏n
k=1 Γ(yk + µ(Bk))

n∏
k=1

x
yk+µ(Bk)−1
k .

Hence, we obtain {µB | Y} ∼ Dir (y1 + µ(B1), . . . ,yn + µ(Bn)), which can be rewritten
as

{(µ(B1), . . . ,µ(Bn)) | Y} ∼ Dir

(
m∑
i=1

δxi(B1) + θµ0(B1), . . . ,
m∑
i=1

δxi(Bn) + θµ0(Bn)

)
.

(C.23)
Now, the exchangeability of (xi)i≥1 together with the definition of directing random
measure imply that for A ∈ BS, µ(A) depends on x1, . . . ,xm only through

∑m
i=1 δxi(A).

This together with (C.23) and (c) in the initial remainder yield

P [xm+1 ∈ A | x1, . . . ,xm] = E [P [xm+1 ∈ A | µ,x1, . . . ,xm] | x1, . . . ,xm]

= E [µ(A) | x1, . . . ,xm]

=

∑m
i=1 δxi(A) + θµ0(A)

m+ θ
.

To finish this part of the proof note the P[x1 ∈ A] = E[µ(A)] = µ0. Thus Definition 3.7
holds.

Finally, the proof that Definition 3.7 implies Definition 3.9 follows from Proposition
2.12. Realize that the stick-breaking decomposition, the construction through normaliza-
tion, the EPPF (prediction rule) and the finite dimensional distributions all characterize
completely the law of a SSP, so we must have the four definitions are equivalent.
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D Proofs of Section 4

D.1 Proof of Theorem 4.1

(i) By the second part of Lemma 3.14 it suffices to show that for every 0 < ε′ < 1, there
exist 0 < δ < ε′ such that P [

⋂n
i=1(δ < vi < ε′)] > 0, for every n ≥ 1. So fix 0 < ε′ < 1

and consider ε′′ = min{ε, ε′}, where ε > 0 is such (0, ε) is contained in the support of
ν0. Set δ = ε′′/2, by the representation theorem for exchangeable sequences, Jensen’s
inequality and the fact that (δ, ε′′) ⊆ (0, ε) is contained in the support of ν0,

P

[
n⋂
i=1

(δ < vi < ε′′)

]
≥ E

[
n∏
i=1

ν(δ, ε′′)

]
= E

[
{ν(δ, ε′′)}n

]
≥ {ν0(δ, ε′′)}n > 0,

for every n ≥ 1. As ε′′ ≤ ε′, we conclude P [
⋂n
i=1(δ < vi < ε′)] ≥ P [

⋂n
i=1(δ < vi < ε′′)] >

0, for n ≥ 1.
(ii) By the first part of Lemma 3.14 we know µ is proper if and only if

E
[∏j

i=1(1− vi)
]
→ 0, as j → ∞. Since (vi)i≥1 is exchangeable and directed

by ν, we get E
[∏j

i=1(1− vi)
]

= E [(1− E[v1 | ν])j]. Now, if ν({0}) < 1 almost

surely, then P [v1 > 0 | ν] > 0, almost surely. Since v1 is non-negative, this shows
E[v1 | ν] > 0 almost surely, hence, as j → ∞, (1 − E[v1 | ν])j → 0, almost surely.

This yields E
[∏j

i=1(1− vi)
]

= E [(1− E[v1 | ν])j] → 0 as j → ∞. Alternatively, if

P [ν({0}) = 1] > 0, then for every j ≥ 1,

E
[
(1− E[v1 | ν])j

]
= E

[
(1− E[v1 | ν])j1{ν({0})<1}

]
+ P [ν({0}) = 1] .

Which implies

lim
j→∞

E

[
j∏
i=1

(1− vi)

]
= lim

j→∞
E
[
(1− E[v1 | ν])j

]
≥ P [ν({0}) = 1] > 0.

D.2 Proof of Theorem 4.3

(i) First we see that the sequences of length variables V(n) =
(
v

(n)
i

)
i≥1

converge in

distribution to V = (vi)i≥1. Since [0, 1] and P([0, 1]) are Polish, we might construct on

some probability space
(

Ω̂, F̂, P̂
)

some exchangeable sequences

{
V̂(n) =

(
v̂

(n)
i

)
i≥1

}
n≥1

,

such that V̂(n) is directed by a random probability measure ν̂(n) d
= ν(n), and where ν̂(n)

converges weakly almost surely to ν0 6= δ0, as n→∞. Fix m ≥ 1 and B1, . . . , Bm ∈ B[0,1]

such that Bi is a ν0-continuity set for every i ≤ m. By the Portmanteau theorem we
know ν̂(Bi) → ν0(Bi) almost surely as n → ∞. This together with the representation
theorem for exchangeable sequences imply

P̂

[
m⋂
i=1

(
v̂

(n)
i ∈ Bi

) ∣∣∣∣∣ ν̂(n)

]
=

m∏
i=1

ν̂(n)(Bi)→
m∏
i=1

ν0(Bi),
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almost surely, as n→∞, and by taking expectations we obtain

P̂

[
m⋂
i=1

(
v̂

(n)
i ∈ Bi

)]
→

m∏
i=1

ν0(Bi) = P

[
m⋂
i=1

(vi ∈ Bi)

]
.

Since each sequence of length variables is countable it is enough to prove the convergence

of the finite dimensional distributions, and we get V(n) d
= V̂(n) d→ V as desired. Note

that mapping

(v1, v2, . . . , vj) 7→

(
v1, v2(1− v1), . . . , vj

j−1∏
i=1

(1− vi)

)

is continuous with respect to the product topology, thus the weights of µ(n), W(n) =
SB
[
V(n)

]
, converge in distribution to the weights of µ, W = SB [V]. Further, the

requirements of ν(n) and ν0 assure W(n) and W take values in the infinite dimensional
simplex, ∆∞. In addition, as the base measures µ

(n)
0 converge weakly to µ0, we also

have that the atoms of µ(n), Ξ(n) =
(
ξ

(n)
j

)
j≥1

(which are independent of W(n)) converge

in distribution to the atoms of µ, Ξ = (ξj)j≥1 (which are independent of W). Thus(
W(n),Ξ(n)

) d→ (W,Ξ) in ∆∞ × S∞, and Lemma 1.18 yields µ(n) converges weakly
in distribution to µ. In particular, if ν0 denotes a Be(1, θ) distribution we get µ is a
Dirichlet process.

(ii) Analogously as in (i) we may construct sequences

{
V̂(n) =

(
v̂

(n)
i

)
i≥1

}
n≥1

, such

that V̂(n) is directed by a random probability measure ν̂(n) d
= ν(n), and where ν̂(n)

converges weakly almost surely to δv̂, with v̂ ∼ ν0, as n → ∞. Fix m ≥ 1 and
B1, . . . , Bm ∈ B[0,1] such that Bi is a ν0-continuity set for every i ≤ m. Then we get

that v̂ 6∈ ∂Bi almost surely, so that outside a P̂-null set, Bi is a δv̂-continuity set, and
using the Portmanteau theorem we obtain ν(n)(Bi)→ δv̂(Bi), almost surely, as n→∞.
The representation theorem for exchangeable sequences assures

P̂

[
m⋂
i=1

(
v̂

(n)
i ∈ Bi

) ∣∣∣∣∣ ν̂(n)

]
=

m∏
i=1

ν̂(n)(Bi)→
m∏
i=1

δv̂(Bi),

almost surely, as n→∞, and by taking expectations we get

P̂

[
m⋂
i=1

(
v̂

(n)
i ∈ Bi

)]
→ Ê

[
m∏
i=1

δv̂(Bi)

]
= P̂ [v̂ ∈ B1, . . . , v̂ ∈ Bm] .

Hence V(n) d
= V̂(n) d→ (v̂, v̂, . . .)

d
= (v,v, . . .) as n → ∞. The rest of the proof of (ii)

follows identically is in (i).

D.3 Proof of Theorem 4.6

Fix j ≥ 1. As ν0 diffuse,
(

1− v
(ρν)
j

)
> 0 almost surely, for every ρν ∈ (0, 1) and(

1− v
(ρν)
j

)−1

is well defined. Now, from the stick-breaking decomposition of the weights
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it follows that w
(ρν)
j ≥ w

(ρν)
j+1 if and only if v

(ρν)
j

(
1− v

(ρν)
j

)−1

≥ v
(ρν)
j+1 , or equivalently

v
(ρν)
j+1 ≤ c

(
v

(ρν)
j

)
where c(v) = 1∧v(1−v)−1. By Proposition 3.8 we know that under the

event
{

v
(ρν)
j 6= v

(ρν)
j+1

}
, which occurs with probability 1− ρν , the conditional distribution

of
(
v

(ρν)
j ,v

(ρν)
j+1

)
is that of (v∗,v)

iid∼ ν0. Hence we can easily compute

P
[
w

(ρν)
j ≥ w

(ρν)
j+1

]
= P

[
v

(ρν)
j+1 ≤ c

(
v

(ρν)
j

) ∣∣∣v(ρν)
j = v

(ρν)
j+1

]
ρν+ (D.1)

P
[
v

(ρν)
j+1 ≤ c

(
v

(ρν)
j

) ∣∣∣v(ρν)
j 6= v

(ρν)
j+1

]
(1− ρν)

= ρν + (1− ρν)P [v∗ ≤ c(v)] .

As 0 ≤ P [v∗ ≤ c(v)] ≤ 1, it is clear that ρν 7→ P
[
w

(ρν)
j ≥ w

(ρν)
j+1

]
is continuous and non-

decreasing. Particularly, if there exist ε > 0 such that (0, ε) is contained in the support
of ν0, then for ε′ = min{1/2, ε/2} we have that

P [v < ε′/2, ε/2 < v∗ < ε] = ν0(0, ε′/2) ν0(ε/2, ε) > 0.

Since {v < ε′/2, ε/2 < v∗} ⊆ {v∗ > c(v)}, we get P [v∗ > c(v)] > 0, that is
P [v∗ ≤ c(v)] < 1. From (D.1) it is clear that, in this case, the mapping ρν 7→
P
[
w

(ρν)
j ≥ w

(ρν)
j+1

]
is even increasing, which proves (b).

The proof of (a) follows from (D.1) by noting that P [v∗ ≤ c(v)] = E [−→ν0(c(v))], where
−→ν0 is the distribution function of v∗. Then, by taking limits, as ρν → 1 and ρν → 0, we
obtain (c) and finally lower bound in (d) is immediate from (b) and (c).

D.4 Proof of Corollary 4.10

For ν0 = Be(1, θ), its distribution function is given by, ν0([0, x]) = −→ν0(x) = 1− (1− x)θ,
hence by substituting the tie probability ρν = 1/(β + 1), in Theorem 4.3, we obtain

P
[
w

(β)
j ≥ w

(β)
j+1

]
= 1− β

β + 1
E
[
(1− c(v))θ

]
.

where c(v) = 1 ∧ v(1− v)−1 and v ∼ Be(1, θ). Now,

E
[
(1− c(v))θ

]
= θ

∫ 1/2

0

(
1− x

1− x

)θ
(1− x)θ−1dx = θ

∫ 1/2

0

(1− 2x)θ

(1− x)
dx,

and by the change of variables y = 2x,

E
[
(1− c(v))θ

]
=
θ

2

∫ 1

0

(1− y)θ

(1− y/2)
dy =

2F1(1, 1; θ + 2, 1/2)θ

2(θ + 1)
.

The rest of the proof follows easily by simple substitution and taking the corresponding
limits.
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D.5 Proof of Theorem 4.13

(i) Equation (4.5) proves (v1, . . . ,vn) ∼ ν0 ◦ ν ◦ · · · ◦ ν, thus the first statement of (i) is
straight forward from Lemma 3.14. To prove the second statement in (i), it suffices to
show that for every 0 < ε′ < 1, there exist 0 < δ < ε′ such that P [

⋂n
i=1(δ < vi < ε′)] > 0,

for every n ≥ 1. So fix 0 < ε′ < 1 and consider ε′′ = min{ε, ε′}, where ε > 0 is as in (i),
also set δ = ε′′/2. As (0, ε) is contained in the support of ν(v; ·) for every v ∈ (0, ε), we
get that (δ, ε′′) ⊆ (0, ε) is also contained in the support of ν(v; ·) which yields∫ ε′′

δ

ν(v; dx) = ν(v; (δ, ε′′)) > 0

for every v ∈ (δ, ε′′). Hence,

P

[
n⋂
i=1

(δ < vi < ε′)

]
≥ P

[
n⋂
i=1

(δ < vi < ε′′)

]
=

∫
(δ,ε′′)n

ν0 ◦ ν ◦ · · · ◦ ν(dv1, dv2 . . . , dvn)

=

∫ ε′′

δ

· · ·
∫ ε′′

δ

ν(vn−1; dvn) · · ·ν(v1; dv2)ν0(dv1) > 0.

(ii) If ν0 is ν-ergodic, the ergodic theorem for stationary Markov chains (Theorem
4.12) yields

lim
n→∞

∑
i≤n vi

n
= E[v1],

almost surely. Now, if ν0 6= δ0, E[v1] > 0, which implies
∑

i≥1 vi =∞ almost surely and
the statement follows from Lemma 3.14. Conversely if ν0 = δ0, we get E[v1] = E[vi] = 0
for every i ≥ 1, which implies vi = 0 almost surely for every i ≥ 1 in which case µ is
diffuse almost surely.

D.6 Proof of Theorem 4.14

Lemma D.1 (Continuous mappings). Let S and T be Polish spaces. Let η,η1,η2, ...

be random elements taking values in S, with ηn
d→ η, and consider some measurable

mappings f, f1, f2... from S into T satisfying fn(sn) → f(s), for every sn → s in S.

Then fn(ηn)
d→ f(η).

Proof: Since S is Polish, it is Borel together with its Borel σ-algebra, hence we

might construct on some probability space
(

Ω̂, F̂, P̂
)

the random elements η̂, η̂1, η̂2, ...

such that η̂
d
= η, η̂n

d
= ηn for every n ≥ 1 and η̂n → η̂, almost surely as n → ∞. By

hypothesis this yields fn(η̂n)→ f(η̂) almost surely as n→∞, so in particular we obtain

fn(ηn)
d
= fn(η̂n)

d→ f(η̂)
d
= f(η) as desired.

Lemma D.2. Let S and T be Polish spaces. Consider some random elements γ,γ1,γ2, ...
and η,η1,η2, ... taking values in S and T , respectively. Let ν be the distribution of γ and
ν(n) be the distribution of γn, also consider some regular versions, ν(γ; ·) and ν(n)(γn; ·),
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of P[η ∈ · | γ] and P[ηn ∈ · | γn] respectively. If ν(n) w→ ν and for every sn → s in S we

have that ν(n)(sn; ·) w→ ν(s; ·), then (γn,ηn)
d→ (γ,η).

Proof: Let g : S×T → R be a continuous and bounded function. Define f, f1, f2, ... :
S → R by

fn(s) =

∫
g(s, t)ν(n)(s; dt) and f(s) =

∫
g(s, t)ν(s; dt)

The first thing we will prove is that

fn(sn)→ f(s) as sn → s. (D.2)

So let sn → s. Choose some random elements ζ, ζ1, ζ2, ... with ζn ∼ ν(n)(sn; ·) and ζ ∼
ν(s; ·), this way, ζn

d→ ζ by hypothesis. Define h, h1, h2, ... : T → R by hn(t) = g(sn, t)
and h(t) = g(s, t). As g is continuous, we have that hn(tn) = g(sn, tn)→ g(s, t) = h(t),

for every tn → t in T . Hence, Lemma D.1 yields hn(ζn)
d→ h(ζ), and in particular we

obtain ∫
g(sn, t)ν

(n)(sn; dt) = E[hn(ζn)]→ E[h(ζ)] =

∫
g(s, t)ν(s; dt).

Since sn → s was arbitrary, this proves equation (D.2), which together with the hypoth-

esis and Lemma D.1 show that fn(γn)
d→ f(γ). Particularly,∫ ∫

g(s, t)ν(n)(s; dt)ν(n)(ds) = E[fn(γn)]→ E[f(γ)] =

∫ ∫
g(s, t)ν(s; dt)ν(ds).

(D.3)
Note that the double integral in the left side of equation (D.3) coincides with E[g(γn,ηn)],
whilst the one at the right side coincides with E[g(γ,η)]. That is, we have proven that
E[g(γn,ηn)] → E[g(γ,η)], for every continuous and bounded function g : S × T → R,

or equivalently (γn,ηn)
d→ (γ,η).

Proof of Theorem 4.14: (i) Let (vi)i≥1
iid∼ ν0, and say that for some m ≥ 1,(

v
(n)
1 , . . . ,v(n)

m

)
d→ (v1, . . . ,vm) (D.4)

as n → ∞. Since (vi)i≥1 and
(
v

(n)
i

)
i≥1

are Markov chains, we get

P [vm+1 ∈ · |v1, . . . ,vm] = ν0 and P
[
v

(n)
m+1 ∈ ·

∣∣∣v(n)
1 , . . . ,v

(n)
m

]
= ν(n)

(
v

(n)
m ; ·

)
. By hy-

pothesis we know that that for vn → v ∈ [0, 1], ν(n) (vn; ·) w→ ν0(v; ·) = ν0, this together
with (D.4) and Lemma D.2 yield(

v
(n)
1 , . . . ,v

(n)
m+1

)
d→ (v1, . . . ,vm+1)

as n→∞. This induction argument together with the assumption v
(n)
1

d→ v1 show that

(D.4) holds for every m ≥ 1 and we even obtain
(
v

(n)
i

)
i≥1

d→ (vi)i≥1. The rest of the

proof follows like that of Theorem 4.3, by noting that the mappings (vi)i≥1 7→ SB[(vi)i≥1]
and

[(w1, w2, . . .), (s1, s2, . . .)] 7→
∑
j≥1

wjδsj
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are continuous with respect to the product and weak topologies. The proof of (ii) is
completely analogous, with the difference that if ν(n) (vn; ·) w→ δv for every vn → v ∈
[0, 1], then

(
v

(n)
i

)
i≥1

d→ (v,v, . . .) for some v ∼ ν0.

D.7 Proof of Lemma 4.16

Lemma D.3. For every n ≥ 1 consider a Binomial random variable xn ∼ Bin(n, pn)

where pn → p in [0, 1]. Then, as n→∞, xn
L2→ p.

Proof: For n ≥ 1,

E
[(xn

n
− p
)2
]

=
1

n2
E
[
x2
n

]
− 2p

n
E[xn] + p2

=
pn(1− pn)

n
+ (pn − p)2.

(D.5)

By taking limits as n→∞ in (D.5) we obtain

lim
n→∞

E
[(xn

n
− p
)2
]

= 0.

Proof of Lemma 4.16: The first part of this result is straight forward. To prove
(ii) fix pκ → p ∈ [0, 1]. By Lemma D.3 we might construct on some probability space(

Ω̂, F̂ , P̂
)

some random variables ẑ(k) ∼ Bin(κ, pκ) such that ẑ(κ)/κ→ p almost surely, as

κ→∞. Also consider
{
v̂(k)

∣∣ ẑ(κ)
}
∼ Be

(
α(κ) + ẑ(κ), θ(κ) + κ− ẑ(κ)

)
, so that marginally

v̂(k) ∼ ν(κ)(pκ; ·). Conditionally given ẑ(κ), the moment generator function of v̂(k) is

Ê
[
etv̂

(κ)
∣∣∣ ẑ(κ)

]
= 1 +

∞∑
n=1

(
n−1∏
r=0

α(κ) + ẑ(κ) + r

α(κ) + θ(κ) + κ+ r

)
tn

n!
, (D.6)

for every t ∈ R. By construction we have that ẑ(κ)/κ → p almost surely, and by
hypothesis α(κ) → α and θ(κ) → θ in (0,∞), which means that for every r ≥ 0,

α(κ) + ẑ(κ) + r

α(κ) + θ(κ) + κ+ r
=

(
α(κ) + r

κ
+

ẑ(κ)

κ

)(
α(κ) + θ(κ) + r

κ
+ 1

)−1

→ p, (D.7)

almost surely, as κ→∞. Hence by the tower property of conditional expectation, equa-
tions (D.6) and (D.7), and Lebesgue dominated convergence theorem (the corresponding
functions are dominated by et) we obtain

lim
κ→∞

Ê
[
etv̂

(κ)
]

= lim
κ→∞

Ê
[
Ê
[
etv̂

(κ)
∣∣∣ ẑ(κ)

]]
= Ê

[
1 +

∞∑
n=1

(
n−1∏
r=0

lim
κ→∞

α(κ) + ẑ(κ) + r

α(κ) + θ(κ) + κ+ r

)
tn

n!

]

= Ê

[
1 +

∞∑
n=1

(pt)n

n!

]
= etp,

which proves v̂(κ) d→ p, as κ → ∞, or equivalently ν(κ)(pκ; ·)
w→ δp. The fact that

ν
(κ)
0

w→ Be(α, θ) is obvious.
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D.8 Proof of Proposition 4.19

After possibly expanding the original probability space we might construct a chain (zi)i≥1

such that for every i ≥ 1, {zi | vi} ∼ Bin(κ,vi), where zi is conditionally independent
of (v1, z1, . . . ,vi−1, zi−1), given vi, and {vi+1 | zi} ∼ Be(α + zi, θ + κ − zi), where vi+1

is conditionally independent of (v1, z1, . . . ,vi−1, zi−1,vi) given zi.
a) Using elementary properties of conditional expectation, we obtain

E[vi+1 | vi] = E[E[vi+1 | zi] | vi] = E
[

α + zi
α + θ + κ

∣∣∣∣vi] =
α + κvi
α + θ + κ

.

b) Notice that

Var(vi+1 | vi) = E[Var(vi+1 | zi) | vi] + Var(E[vi+1 | zi] | vi),

we first compute

Var(E[vi+1 | zi] | vi) = Var

(
α + zi

α + θ + κ

∣∣∣∣vi) =
vi(1− vi)κ

(α + θ + κ)2
,

secondly, we note that

E[(α + zi)(θ + κ− zi) | vi]
= Cov(α + zi, θ + κ− zi | vi) + E[α + zi | vi]E[θ + κ− zi | vi]
= −Var(zi | vi) + (α + κvi)(θ + κ− κvi)

= −κvi(1− vi) + (α + κvi)(θ + κ(1− vi)),

hence

E[Var(vi+1 | zi) | vi] = E
[

(α + zi)(θ + κ− zi)

(α + θ + κ)2(α + θ + κ+ 1)

∣∣∣∣vi]
=
−κvi(1− vi) + (α + κvi)(θ + κ(1− vi))

(α + θ + κ)2(α + θ + κ+ 1)
,

and we can conclude the proof of (b),

Var(vi+1 | vi) =
−κvi(1− vi) + (α + κvi)(θ + κ(1− vi)) + vi(1− vi)κ(α + θ + κ+ 1)

(α + θ + κ)2(α + θ + κ+ 1)

=
(α + κvi)(θ + κ(1− vi)) + κvi(1− vi)(α + θ + κ)

(α + θ + κ)2(α + θ + κ+ 1)
.

c) We first note that from the Beta-Binomial conjugate model and since vi ∼ Be(α, θ),
{vi | zi} ∼ Be(α + zi, θ + κ− zi), further by construction vi and vi+1 are conditionally
given zi, thus

E[vivi+1] = E[E[vivi+1 | zi]] = E[E[vi | zi]E[vi+1 | zi]] = E

[(
α + zi

α + θ + κ

)2
]
,
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conditioning on vi, we obtain

E

[(
α + zi

α + θ + κ

)2
]

= E

[
E

[(
α + xi

α + θ + κ

)2
∣∣∣∣∣vi
]]

= E
[
α2 + 2αE[zi | vi] + E[z2

i | vi]
(α + θ + κ)2

]
=
α2 + 2ακE[vi] + κE[vi] + κ(κ− 1)E[v2

i ]

(α + θ + κ)2

=

[
α2 +

κ(2α2 + α)

α + θ
+

κ(κ− 1)α(α + 1)

(α + θ)(α + θ + 1)

]
(α + θ + κ)−2,

hence

Cov(vi,vi+1) = E[vivi+1]− E[vi]E[vi+1]

= (α + θ + κ)−2

[
α2 +

κ(2α2 + α)

α + θ
+

κ(κ− 1)α(α + 1)

(α + θ)(α + θ + 1)

]
− α2

(α + θ)2

=
καθ

(α + θ)2(α + θ + 1)(α + θ + κ)
.

d) The correlation simplifies as follows

Corr(vi,vi+1) =
Cov(vi,vi+1)√

Var(vi)
√
Var(vi+1)

=
καθ(α + θ)2(α + θ + 1)

αθ(α + θ)2(α + θ + 1)(α + θ + κ)
=

κ

α + θ + κ
.

D.9 Proof of Proposition 4.20

After possibly expanding the original probability space we might construct a chain (zi)i≥1

such that for every i ≥ 1, {zi | vi} ∼ Bin(κ,vi), where zi is conditionally independent
of (v1, z1, . . . ,vi−1, zi−1), given vi, and {vi+1 | zi} ∼ Be(α + zi, θ + κ − zi), where vi+1

is conditionally independent of (v1, z1, . . . ,vi−1, zi−1,vi) given zi. Note that from the
Beta-Binomial conjugate model and since vi ∼ Be(α, θ), we also have {vi | zi} ∼ Be(α+
zi, θ+κ−zi). Moreover, for every n ≥ 1, (v1, . . . ,vn) are conditionally independent given
(z1, . . . , zn) and we have {v1 | z1, . . . , zn} ∼ Be(α + z1, θ + κ− z1), and for 2 ≤ i ≤ n,

{vi | z1, . . . , zn} ∼ Be(α + zi−1 + zi, θ + 2κ− zi−1 − zi).

It is also easy to see that (zi)i≥1 is an stationary Markov chain itself with initial distri-
bution

P[z1 = z] =

(
κ

z

)
(α)z(θ)κ−z
(α + θ)κ

,

and one-step transition

P[zi+1 = z | zi] =

(
κ

z

)
(α + zi)z(θ + κ− zi)κ−z

(α + θ + κ)κ
,
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for every z ∈ {0, . . . , κ}. We this considerations in mind, we can easily compute

E

[
n∏
j=1

v
aj
j (1− vj)

bj

]
= E

[
E

[
n∏
j=1

v
aj
j (1− vj)

bj

∣∣∣∣∣ z1, . . . , zn

]]

= E

[
(α + z1)a1(θ + κ− z1)b1

(α + θ + κ)a1+b1

n∏
i=2

(α + zi−1 + zi)ai(θ + 2κ− zi−1 − zi)bi
(α + θ + 2κ)ai+bi

]

=
κ∑

z1=0

· · ·
κ∑

zn=0

{[
n∏
i=1

(αi + zi)ai(θi + κ− zi)bi
(αi + θi + κ)ai+bi

][
n∏
i=1

(
κ

zi

)
(αi)zi(θi)κ−zi

(αi + θi)κ

]}

=
κ∑

z1=0

· · ·
κ∑

zn=0

{
n∏
i=1

(
κ

zi

)
(αi)ai+zi(θi)bi+κ−zi

(αi + θi)ai+bi+κ

}
where α1 = α, θ1 = θ and for 2 ≤ i ≤ k, αi = α + zi−1 and θi = θ + κ− zi−1.

D.10 Proof of Corollary 4.22

Define the probability kernel ν(n) : [0, 1]→ [0, 1] by

ν(n)(v; ·) = pnδv + (1− pn)ν
(n)
0

for every n ≥ 1. From Theorem 4.14, it suffices to show that for every vn → v in [0, 1]
we get ν(n)(vn; ·) w→ ν0, whenever pn → 0 and ν(n)(vn; ·) w→ δv, whenever pn → 1, as
n→∞. So fix vn → v in [0, 1] and a continuous an bounded function f : [0, 1]→ R and
note that

ν(n)(vn; f) =

∫
f(x)ν(n)(vn; dx) = pnf(vn) + (1− pn)ν

(n)
0 (f).

By hypothesis we know ν
(n)
0 (f) → ν0(f), hence if pn → 0 we clearly get ν(n)(vn; f) →

ν0(f) which yields ν(n)(vn; ·) w→ ν0. Alternatively if pn → 1, since f is continuous, we
obtain ν(n)(vn; f)→ f(v) = δv(f), which implies ν(n)(vn; ·) w→ δv.

D.11 Proof of Proposition 4.24

Define τ ∗0 = 0 and for every j ≥ 0 set τ ∗j+1 = min{i > τ ∗j : vi 6= vτ∗j }. Also define

τj =

{
τ ∗j if τ ∗j < k + 1

k + 1 if τ ∗j ≥ k + 1

and m = min{j ≥ 0 : τj = k + 1}. Note that τ1, . . . , τm−1 indicate the indexes at which
the chain (vi)i≥1 changes up to index i = k. Then we can easily compute

E

[
k∏
j=1

v
aj
j (1− vj)

bj

∣∣∣∣∣ (τ0, . . . , τm)

]
=

m−1∏
j=0

{∫
[0,1]

(v)
∑
i∈Aj

ai(1− v)
∑
i∈Aj

bi ν0(dv)

}
where Aj = {τj, . . . , τj+1 − 1}. Finally note that for any sequence (τ0, . . . , τm) with
τ0 = 1 < τ1 < · · · < τm = k + 1,

P[(τ0, . . . , τm) = (τ0, . . . , τm)] = pm−1(1− p)k−m,
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which yields

E

[
k∏
j=1

v
aj
j (1− vj)

bj

]
=

∑
(τ0,...,τm)

pm−1(1− p)k−m×

×
m−1∏
j=0

{∫
[0,1]

(v)
∑
i∈Aj

ai(1− v)
∑
i∈Aj

bi ν0(dv)

}
,

where Aj = {τj, . . . , τj+1 − 1}, and the sum ranges over all sequences (τ0, . . . , τm) with
τ0 = 1 < τ1 < · · · < τm = k+ 1. The rest of the proof follows by computing the integrals∫

[0,1]

(v)
∑
i∈Aj

ai(1− v)
∑
i∈Aj

bi ν0(dv) =
Γ(α + θ)Γ(α +

∑
i∈Aj ai)Γ(θ +

∑
i∈Aj bi)

Γ(α)Γ(θ)Γ(α + θ +
∑

i∈Aj(ai + bi))
,

when ν0 = Be(α, θ), and then simplifying.

D.12 Proof of Theorem 4.25

Let
(
v

(p)
i

)
i≥1

be the non-homogeneous Markov length variables of µ(p). So that
(
v

(0)
i

)
i≥1

is an independent sequence with v
(0)
i ∼ νi, and

(
v

(1)
i

)
i≥1

=
(
Υ(j)(v)

)
j≥0

, where v ∼ ν1,

Υ(0) denotes the identity function, and for every j ≥ 1, Υ(j) = Υj ◦ · · · ◦Υ1. Now, from
Theorem 3.14 we know µ(p) is proper if and only if

lim
j→∞

E

[
j∏
i=1

(
1− v

(p)
i

)]
= 0.

For p ∈ (0, 1) and j ≥ 1 it is easy to compute

E
[
f
(
v

(p)
j+1

) ∣∣∣v(p)
1 , . . . ,v

(p)
j

]
= E

[
f
(
v

(p)
j+1

) ∣∣∣v(p)
j

]
= pf

(
Υj

(
v

(p)
j

))
+ (1− p)

∫
f(x)νi+1(dx)

= pf
(

Υj

(
v

(p)
j

))
+ (1− p)E

[
f
(
v

(0)
j+1

)]
,

(D.8)

for every measurable and integrable function f : [0, 1]→ R. This yields

E

[
j+1∏
i=1

(
1− v

(p)
i

)]
= E

[{
1− pΥj

(
v

(p)
j

)
− (1− p)E

[
v

(0)
j+1

]} j∏
i=1

(
1− v

(p)
i

)]
, (D.9)

which in turn implies

0 ≤ E

[
j+1∏
i=1

(
1− v

(p)
i

)]
≤
{

1− (1− p)E
[
v

(0)
j+1

]}
E

[
j∏
i=1

(
1− v

(p)
i

)]
.

Inductively, we can prove that for every j ≥ 1

0 ≤ E

[
j∏
i=1

(
1− v

(p)
i

)]
≤

j∏
i=1

(
1−

{
(1− p)E

[
v

(0)
i

]})
. (D.10)
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Now, if µ(0) is proper, by Lemma 3.14 we must have

0 = lim
j→∞

E

[
j∏
i=1

(
1− v

(0)
i

)]
= lim

j→∞

j∏
i=1

(
1− E

[
v

(0)
i

])
.

Since νi({1}) = 0 we trivially get 0 ≤ E
[
v

(0)
i

]
< 1 for every i ≥ 1, hence

∑
i≥1 E

[
v

(0)
i

]
=

∞. This proves
∑

i≥1(1 − p)E
[
v

(0)
i

]
= ∞ for every p ∈ (0, 1), which is equivalently to

limj→∞
∏j

i=1

(
1−

{
(1− p)E

[
v

(0)
i

]})
= 0 because 0 ≤ (1 − p)E

[
v

(0)
i

]
< 1. Putting

this together with equation (D.10) show that limj→∞ E
[∏j

i=1

(
1− v

(p)
i

)]
= 0 and from

Lemma 3.14 we obtain µ(p) is proper.
On other side, we also have that (D.9) implies

0 ≤ E

[
j+1∏
i=1

(
1− v

(p)
i

)]
≤ E

[{
1− pΥj

(
v

(p)
j

)}(
1− v

(p)
j

) j−1∏
i=1

(
1− v

(p)
i

)]
, (D.11)

and from equation (D.8), for the choice f(x) = (1− pΥj(x))(1− x), we obtain

E
[{

1− pΥj

(
v

(p)
j

)}(
1− v

(p)
j

) ∣∣∣v(p)
j−1

]
≤ p

{
1− pΥj

(
Υj−1

(
v

(p)
j−1

))}{
1−Υj−1

(
v

(p)
j

)}
≤
{

1− pΥj

(
Υj−1

(
v

(p)
j−1

))}{
1− pΥj−1

(
v

(p)
j

)}
.

Inserting the last equation into (D.11) we get

0 ≤ E

[
j+1∏
i=1

(
1− v

(p)
i

)]

≤ E

[{
1− pΥj

(
Υj−1

(
v

(p)
j−1

))}{
1− pΥj−1

(
v

(p)
j

)} j−1∏
i=1

(
1− v

(p)
i

)]

Continuing inductively we can prove that for every j ≥ 1

0 ≤ E

[
j∏
i=1

(
1− v

(p)
i

)]
≤ E

[
j−1∏
i=0

(
1− pΥ(i)(v)

)]
, (D.12)

where v ∼ ν1. Now, if µ(1) is proper, then we have that limj→∞ E
[∏j−1

i=0

(
1−Υ(i)(v)

)]
=

0, which is equivalent to limj→∞
∏j−1

i=0

(
1−Υ(i)(v)

)
= 0, almost surely, because the

random variables Υ(i)(v)’s are positive and bounded by 1. Noting that by hypothesis
0 < Υ(i)(v) < 1 almost surely, we get

∑
i≥0 Υ(i)(v) = ∞, which yields

∑
i≥0 pΥ(i)(v) =

∞, for every p ∈ (0, 1), this in turn is equivalent to limj→∞
∏j−1

i=0

(
1− pΥ(i)(v)

)
= 0

almost surely. This said, by taking limits as j →∞ in D.12 we finally obtain that µ(p)

is proper.
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D.13 Proof of Theorem 4.26

For pn ∈ (0, 1) and m ≥ 1, consider the probability kernel ν
(pn)
m : [0, 1]→ [0, 1], given by

ν(pn)
m (v; ·) = pnδΥm(v) + (1− pn)νm+1. (D.13)

Fix vn → v ∈ [0, 1] and a continuous and bounded function f : [0, 1]→ R. Note that

ν(pn)
m (vn; f) = pnf(Υm(vn)) + (1− pn)νm+1(f),

hence if pn → 0 we get ν
(pn)
m (vn; f) → νm+1(f). Alternatively, since Υm and f are

continuous, we have that f(Υm(vn))→ f(Υm(v)), so if pn → 1, ν
(pn)
m (vn; f)→ f(Υm(v)).

This is
ν(pn)
m (vn; ·) w→ νm+1, and ν(pn)

m (vn; ·) w→ δΥm(v) (D.14)

as pn → 0 and pn → 1, respectively.

(i) For p ∈ (0, 1) let us
(
v

(p)
i

)
i≥1

to the length variables of W(p). Now fix pn → 0 in

[0, 1], and say that for some m ≥ 1,(
v

(pn)
1 , . . . ,v(pn)

m

)
d→ (v1, . . . ,vm) (D.15)

as n → ∞. Since (vi)i≥1 and
(
v

(pn)
i

)
i≥1

are Markov chains, we get

P [vm+1 ∈ · |v1, . . . ,vm] = νm+1 and P
[
v

(pn)
m+1 ∈ ·

∣∣∣v(pn)
1 , . . . ,v

(n)
m

]
= ν

(pn)
m

(
v

(n)
m ; ·

)
for

ν
(pn)
m as in equation (D.13). By equation D.14 we know that that for vn → v ∈ [0, 1],

ν
(pn)
m (vn; ·) w→ νm+1, this together with (D.15) and Lemma D.2 yield(

v
(pn)
1 , . . . ,v

(pn)
m+1

)
d→ (v1, . . . ,vm+1)

as n→∞. This induction argument together with the assumption v
(n)
1

d
= v1, for every

n ≥ 1, show that (D.15) holds for every m ≥ 1 and we even obtain
(
v

(pn)
i

)
i≥1

d→ (vi)i≥1.

The rest of the proof follows like that of Theorem 4.3, by noting that the mappings
(vi)i≥1 7→ SB[(vi)i≥1] and

[(w1, w2, . . .), (s1, s2, . . .)] 7→
∑
j≥1

wjδsj

are continuous with respect to the product and weak topologies.
(ii) Fix pn → 1, and assume that for some m ≥ 1,(

v
(pn)
1 , . . . ,v(pn)

m

)
d→
(
Υ(0)(v), . . . ,Υ(m−1)(v)

)
(D.16)

as n → ∞. Realize that
(
Υ(i)

)
i≥1

and
(
v

(pn)
i

)
i≥1

are Markov

chains, with P
[
Υ(m)(v) ∈ ·

∣∣Υ(0)(v), . . . ,Υ(m−1)(v)
]

= δΥm(Υ(m−1)(v)) and

P
[
v

(pn)
m+1 ∈ ·

∣∣∣v(pn)
1 , . . . ,v

(n)
m

]
= ν

(pn)
m

(
v

(n)
m ; ·

)
for ν

(pn)
m as in equation (D.13). By
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equation D.14 we know that that for vn → v ∈ [0, 1], ν
(pn)
m (vn; ·) w→ δΥm(v), this together

with (D.15) and Lemma D.2 imply(
v

(pn)
1 , . . . ,v

(pn)
m+1

)
d→
(
Υ(0)(v), . . . ,Υ(m)(v)

)
as n → ∞. The rest of the proof of (ii), with the exception of the ordering of the
limiting weights follows identically as that of (i). To check that the limiting weights are
decreasingly ordered under the stated conditions, if Υi(v) < v, for every v ∈ [0, 1] and
i ≥ 1, then for every random variable v ∼ ν1 we have that v ≥ Υ(1)(v) ≥ Υ(2)(v) ≥ · · · .
Further, as ν1({0}) = 0 and Υi maps (0, 1) into (0, 1) we obtain 0 < Υ(i)(v) almost

surely. This implies that for (wj)j≥1 = SB
[(

Υ(i)(v)
)
i≥1

]
,

wj+1 =
Υ(j)(v)

[
1−Υ(j−1)(v)

]
Υ(j−1)(v)

wj ≤ wj

which shows (wj)j≥1 is decreasingly ordered

D.14 Proof of Theorem 4.29

For every α, β > 0 the mapping x 7→ Ix(α, β) is increasing, continuous, and maps
[0, 1] into [0, 1], hence it has an inverse function I−1

(·) (α, β) which is also increasing and
continuous. Since the composition of increasing and continuous functions is another
function of this king we get that

x 7→ Υi(x) = I−1
Ix(1−σ,θ+iσ)(1− σ, θ + (i+ 1)σ),

is increasing and continuous for every 0 ≤ σ < 1, θ > −σ, and i ≥ 1. Trivially Υi(x) = 1
if and only if x = 1 and Υi(x) = 0 if and only if x = 0, so it is clear that Υi maps (0, 1)
into (0, 1). This proves (a). (b) and (c) follow immediately by simple composition of the
corresponding functions. To prove (d) fix i ≥ 1 and vi ∼ Be(1− σ, θ + iσ). Then by (a)
and (b) we get

P[Υi(vi) ≤ x] = P[vi ≤ Υ−1
i (x)] = IΥ−1

i (x)(1− σ, θ + iσ) = Ix(1− σ, θ + (i+ 1)σ),

which is the distribution function of a Be(1 − σ, θ + (i + 1)σ) distribution. That is
Υi(vi) ∼ Be(1 − σ, θ + (i + 1)σ). The second statement of (d) follows by a simple
induction argument. It remains to prove (e) and (f).

(e) As shown by Karp (2016), for v ∈ [0, 1] and α > 0 fixed, the mapping β 7→ Iv(α, β)
is log-concave, which implies it is quasi-concave, that is for every β1, β2 > 0 and λ ∈ [0, 1]

Iv(α, λβ1 + (1− λ)β2) ≥ min{Iv(α, β1), Iv(α, β2)}. (D.17)

Further, it is a well-known property of the regularized Beta function that

Iv(α, β + 1) = Iv(α, β) +
vα(1− v)β

βB(α, β)
> Iv(α, β), (D.18)

where B(α, β) = Γ(α + β)/[Γ(α)Γ(β)] denotes the Beta function. Hence by (D.17) and
(D.18) we obtain that for every β > 0 and ε ∈ [0, 1],

Iv(α, β + ε) ≥ min{Iv(α, β), Iv(α, β + 1)} = Iv(α, β).
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That is β 7→ Iv(α, β) is monotonically increasing, particularly

Iv(1− σ, θ + iσ) ≤ Iv(1− σ, θ + (i+ 1)σ).

Finally, since v 7→ I−1
v (α, β) is increasing, we conclude

Υi(v) = I−1
Iv(1−σ,θ+iσ)(1− σ, θ + (i+ 1)σ) ≤ I−1

Iv(1−σ,θ+(i+1)σ)(1− σ, θ + (i+ 1)σ) = v

for every v ∈ [0, 1].
To prove (f) we will require preliminary Lemmas.

Lemma D.4. Let 0 < α ≤ 1 and α + β > 2, then v 7→ Iv(α, β) is concave.

Proof: It can be easily seen that

∂2Iv(α, β)

∂v2
=
vα−2(1− v)β−2

B(α, β)
{(α− 1)(1− v)− (β − 1)v},

which is non-positive if and only if (α−1)/(β+α−2) ≤ v. This holds for every v ∈ (0, 1),
as (α− 1)/(β + α− 2) ≤ 0. Thus v 7→ Iv(α, β) is concave.

Lemma D.5. Let 0 < α ≤ 1 and β ≥ 1. Then for every n ∈ {1, 2, ...} and v ∈ (0, 1)

I−1
Iv(α,β+n)(α, β + n+ 1) ≥ n

n+ 1
v.

Proof: Fix v ∈ (0, 1) and n ∈ {1, 2, ...}. By the mean value theorem we know that
there exist u satisfying nv/(n+ 1) < u < v, such that

∂Ix(α, β + n+ 1)

∂x

∣∣∣∣
u

= I ′u(α, β + n+ 1) =
Iv(α, β + n+ 1)− Inv/(n+1)(α, β + n+ 1)

v − nv/(n+ 1)
.

By Lemma D.4 we have that x 7→ Ix(α, β + n + 1) is concave, which implies I ′u(α, β +
n+ 1) ≥ I ′v(α, β + n+ 1). That is

Iv(α, β + n+ 1)− Inv/(n+1)(α, β + n+ 1)

v(n+ 1)−1
≥ I ′v(α, β + n+ 1) =

vα−1(1− v)β+n

B(α, β + n+ 1)
,

where B denotes the beta function. Evidently, (α + β + n) ≥ (n+ 1), thus

(α + β + n)

{
Iv(α, β + n+ 1)− Inv/(n+1)(α, β + n+ 1)

v

}
≥ vα−1(1− v)β+n

B(α, β + n+ 1)
.

Recalling that B(a, b + 1) = bB(a, b)/(a + b) for a, b > 0, the above equation can be
written as

Iv(α, β + n+ 1)− Inv/(n+1)(α, β + n+ 1) ≥ vα(1− v)β+n

(β + n)B(α, β + n)
.

Further, recalling that Iv(a, b + 1) = Iv(a, b) + {va(1− v)b}/{bB(a, b)}, for a, b > 0, we
obtain

Iv(α, β + n) ≥ Inv/(n+1)(α, β + n+ 1).

Finally, since the mapping x 7→ I−1
x (α, β + n+ 1) is increasing we get

I−1
Iv(α,β+n)(α, β + n+ 1) ≥ n

n+ 1
v.
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Lemma D.6. Let 0 < α ≤ 1 and β ≥ 1. For every n ∈ {1, 2, ...} and v ∈ [0, 1] define

Ψ(n)(v) = I−1
Iv(α,β)(α, β + n).

Then
∑∞

n=1 Ψ(n)(v) =∞, for every v ∈ (0, 1).

Proof: Let 0 < α ≤ 1 and β ≥ 1. For j ≥ 1, set

Ψj(v) = I−1
Iv(α,β+j−1)(α, β + j),

so that for every v ∈ [0, 1], Ψ(1)(v) = Ψ1(v) and Ψ(n)(v) = (Ψn ◦ · · · ◦ Ψ1)(v) for n ≥ 2.
Fix v ∈ (0, 1), we first prove by induction that

Ψ(n)(v) ≥ Ψ1(v)

n
, (D.19)

for every n ≥ 1. For the inductive base we trivially have that Ψ(1)(v) = (1/1)Ψ1(v).
Now, assume that Ψ(n−1)(v) ≥ Ψ1(v)/(n−1) for some n ≥ 2. Then as Ψ(n) is increasing,
and by Lemma D.5 we obtain

Ψ(n)(v) = Ψn{Ψ(n−1)(v)} ≥ Ψn{Ψ1(v)/(n− 1)} ≥
(
n− 1

n

)(
Ψ1(v)

n− 1

)
=

Ψ1(v)

n
.

This proves (D.19) for every n ≥ 1, hence
∑∞

n=1 Ψ(n)(v) ≥ Ψ1(v)
∑∞

n=1 1/n =∞.
Proof of Theorem 4.29 (f): First note that if σ = 0, Υ(n) is the identity function

and the result is trivial. Otherwise, there exists m ∈ {1, 2, ...} such that θ + mσ ≥ 1.
Set α = 1−σ, β = θ+mσ and Υ̂(i)(v) = I−1

Iv(α,β)(α, β+ iσ) for every i ≥ 1 and v ∈ [0, 1].

Fix v ∈ (0, 1) and define v̂ = Υ(m−1)(v) = I−1
Iv(α,θ+σ)(α, θ + mσ). This way, for every

n > m, Υ(n)(v) = Υ̂(n−m)(v̂).
As the mapping b 7→ Iv̂(α, b) is monotonically increasing, we have that b 7→ I−1

v̂ (α, b)

is monotonically decreasing. Hence, since σ < 1, we get Υ̂(i)(v̂) = I−1
Iv̂(α,β)(α, β + iσ) ≥

I−1
Iv̂(α,β)(α, β + i) and by Lemma D.6 we obtain

∑∞
i=1 Υ̂(i)(v̂) =∞. Finally we note that∑∞

n=0 Υ(n)(v) ≥
∑∞

n=m+1 Υ(n)(v) =
∑∞

n=m+1 Υ̂(n−m)(v̂), from which the result follows.
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